ON THE THEORY AND EXAMPLES

OF

GROUP EXTENSIONS

by

Bernardo Gabriel Rodrigues

Submitted in fulfillment of the academic requirements for the degree of Master of Science in the

School of Mathematics, Statistics and Information Technology
Faculty of Science and Agriculture
University of Natal
Pietermaritzburg.

July 1999

To Verónica and Dulce
and to the memory of my parents

Abstract

The work described in this dissertation was largely motivated by the aim of producing a survey on the theory of group extensions. From the broad scope of the theory of group extensions we single out two aspects to discuss, namely the study of the split and the non-split cases and give examples of both.

A great part of this dissertation is dedicated to the study of split extensions. After setting the background theory for the study of the split extensions we proceed in exploring the ramifications of this concept within the development of the group structure and consequently investigate well known products which are its derived namely the holomorph, and the wreath product. The theory of group presentations provides in principle the necessary tools that permit the description of a group by means of its generators and relators. Through this knowledge we give presentations for the groups of order $p q, p^{2} q$ and p^{3}. Subsequently using a classical result of Gaschutz we investigate the split extensions of non-abelian groups in which the normal subgroup is either a non-abelian normal nilpotent group or a non-abelian normal solvable group. We also study other cases of split extensions such as the affine subgroups of the general linear and the symplectic groups. It is expected that some of the results obtained will provide a theoretical algorithm to describe these affine subgroups. A particular case of the non-split extensions is discussed as the Frattini extensions. In fact a simplest example of a Frattini extension is a non-split extension in which the kernel of an epimorphism ϵ is an irreducible G-module.

Preface

The work described in this dissertation was carried out under the supervision and direction of Professor Jamshid Moori, School of Mathematics, Statistics and Information Technology, University of Natal, Pietermaritzburg, from August 1997 to May 1999.

The dissertation represents original work by the author and has not otherwise been submitted in any form for any degree or diploma to any other University. Where use has been made of the work of others it is duly acknowledged in the text.

Acknowledgements

I wish to thank my supervisor, Professor Jamshid Moori, for the advises, encouragement and guidance he has given me during my studies which led to the compilation of this dissertation. I am uncertain as to what extent words like thankfulness and gratitude could express in great detail the relevance of his dedication and devoted attention to me. In the absence of a word or words which could convey my sense of humble gratitude I would like to say it in the way I know best : muito obrigado.

I am grateful for the facilities made available to me by the School of Mathematics, Statistics and Information Systems of the University of Natal, Pietermartizburg. I also wish to express my sincere gratitude to the Department of Mathematics at the University Agostinho Neto in Luanda for making all the contacts with the sponsors of my studies. I gratefully acknowledge the German Embassy in Angola and Professor Otto Berg who have made possible my first encounter with the Deutscher Akademischer Austauschdienst (DAAD) from which I have had my scholarship. Special thanks are also due to the Ministry of Petroleum of the Republic of Angola(bursary), the University of Natal (graduate assistantship). My special thanks go to my fiance Verónica Patricia L. d'Ornelas Sebastião for her unfailing support and enormous patience during my studies. Special thanks are also due to both our families, for enduring me at almost any time but as up to them I would wish to express my thankfulness personally. Finally I would like to thank my roommates Eugene, Faryad, Jan, Petrovious, for creating a pleasant working environment and to all my non mathematics friends Mr Gastão Lukangu and family whose help and comfort I will always keep in mind. Last, but not least my thanks are due to Mrs Meryl Savage whose valuable help and encouragement have paved the way for my understanding of the English language.

Notation and conventions

N	natural numbers
\mathbb{Z}	integers
Q	rational numbers
R	real numbers
\mathbb{C}	complex numbers
G, N, H, K	groups
1_{G}	the identity element of G
$H \leq G$	H is a subgroup of G
$N \unlhd G$	N is a normal subgroup of G
$H \cong G$	H is isomorphic to G
F	a field
F^{*}	$\mathrm{F}-\{0\}$
$\langle x, y\rangle$	the subgroup generated by x and y
Aut(G)	the automorphism group of G
$N \cdot H$	an extension of N by H
$N: H$	a split extension of N by H
h^{g}	conjugation of h by g
$o(g)$	order of $g \in G$
$C_{G}(g)$	the centralizer of g in G
$C_{G}(H)$	the centralizer of the subgroup H in G
[g]	a conjugacy class of G with representative g
$N_{G}(H)$	the normalizer of the subgroup H in G
$\Phi(G)$	the Frattini subgroup of G
$[G, G], G^{\prime}$	the commutator subgroup of G
$g H$	the left coset of H in G
X, Y	sets
\varnothing	empty set
$\|X\|$	the cardinality of the set X
$G L(n, q)$	general linear group of dimension n over $G F(q)$
$\operatorname{dim}(V)$	the dimension of a vector space V

$D_{2 n}$	dihedral group of order $2 n$
V_{4}	the Klein 4-group
C_{p}	cyclic group of order p
S_{n}	the symmetric group on n symbols
$G F(q)$	the Galois field of q elements
$V(n, q)$	a vector space of dimension n over $G F(q)$
$S P(2 n, q)$	symplectic group of dimension $2 n$ over $G F(q)$
2^{n}	an elementary abelian group of order 2^{n}

Contents

1 Introduction 1
2 Preliminaries 4
2.1 Automorphism Groups 4
2.2 Commutator Subgroup 5
2.3 Solvable and Nilpotent Groups 6
2.4 Frattini subgroup 7
3 Group Extensions: An overview 14
3.1 Exact Sequences and Extensions 14
4 Semidirect Product 18
4.1 Semidirect Product and Split Extensions 18
4.2 The Holomorph 23
4.3 The Wreath Product 27
4.3.1 The Hyperoctahedral Group 28
5 Presentations of Group Extensions 32
5.1 Presentation of a Group 32
5.2 Presentation of a group extension 37
6 Groups of order $p q, p^{2} q$ and p^{3} 40
6.1 Groups of order $p q$ 40
6.2 Groups of order $p^{2} q$ 43
6.3 Groups of order p^{3} 45
7 Frattini Extensions 50
7.1 Frattini Extensions 50
8 Commutator extensions 60
8.1 Commutator extensions 60
9 Extensions of non-abelian groups 65
9.1 Extensions of non-abelian groups 65
9.2 Hereditarily non-Frattini subgroups 69
10 Affine Subgroups 71
10.1 The General Linear Group 71
10.1.1 The Affine Subgroup of the General Linear Group 74
10.2 Symplectic Groups 80
10.2.1 Symplectic Forms 80
10.2.2 Symplectic Spaces 81
10.2.3 Symplectic Groups 89
10.2.4 The Affine Subgroup of the Symplectic Group 95
10.2.5 The group $A(2)=2^{3}: S P(2,2)$ 103
10.2.6 The conjugacy classes of $A(2)=2^{3}: S P(2,2)$ 103
Bibiliography 105

Chapter 1

Introduction

The subject matter of this dissertation concerns with the study of the theory of group extensions and the examples for the split and non-split cases. In considering possible programmes to classify groups, two related general problems may be distinguished. On the one hand, there is the problem of construction: from a given collection of groups, we build up other groups from them by explicit procedures. On the other hand, there is the problem of decomposition: we intend to find out how any given group is built up by procedures from 'simpler' components. The easiest procedure is the direct product construction. The extension problem may be viewed as defining a construction procedure, though unlike the direct product construction, in general this does not lead to a unique type of group.

The fundamental notion underlying the theory of group presentations is that of a free group. From the broad scope of the theory of group presentations we single out two aspects to discuss, namely the study of the presentation of a group extension in general and the presentation of split extension in particular.

It is not immediately clear from the above that the theory of group extensions and the theory of group presentations are closely related. Often both these aspects are treated as distant and unrelated components. An early indication of a unified treatment of these aspects is found in [23]. In this dissertation we offer a perspective from which these relations and certain other classical results emerge naturally as a concatenated whole. It is easy to describe the coverage of this thesis by first referring to chapter 6 , in which this perspective first emerges and undergoes considerable development.

Although drawing on results and definitions from a broad spectrum of mathematical fields, this dissertation is concerned principally with the study of the split and the nonsplit extensions. A general methodological aim of this dissertation has been to illustrate the theory presented as richly as possible with examples.

The preliminary chapter (chapter 2) presents general group theoretical results that will be required in the sequel.

In Chapter 3 we give a generic overview of the theory of group extensions. This chapter constitutes the backbone of the dissertation as a whole. A normal subgroup N of a group G determines a factor group G / N. We write $H=G / N$ and call G extension of N by H. Extension theory concerns with the problem of studying the structure of G using the knowledge about the properties of the two given groups N and H. Thus, the main problem is to find all possible extensions of N by H. Since every group extension is a short exact sequence of groups and homomorphisms, we discuss the background theory of exact sequences and build up to short exact sequences.

Chapter 4 is devoted primarily to an investigation of the structure of a semidirect product. The main result (Theorem 4.1.5) asserts that a semidirect product is equivalent to a split extension. Thus the notions of semidirect product and split extension are used interchangeably to allude to the same entity. We show that the semidirect product may be constructed from groups N and H by taking a homomorphism φ from H into $\operatorname{Aut}(N)$ and defining multiplication for G. An important illustration of the semidirect product occur when H equals to $\operatorname{Aut}(N)$, and $\operatorname{Aut}(N)$ acts naturally on N, giving the holomorph of N. Other important examples of the semidirect product occur in the construction of the wreath products. The wreath product is explicitly represented as a semidirect product in which one group acts on another simply by permuting its factors. Some splitting properties of group extensions are investigated.

In chapter 5 we study the theory of group presentations. Along with the study of the notion of a free group we investigate thoroughly the concepts of presentations, presentations of group extensions and presentations of split extensions, with view of applications in chapter 6.

In chapter 6 we study the non-abelian groups of order $p q, p^{2} q$ and p^{3} respectively. Applying the theory of group presentations we give presentations for these groups and at the same time present some examples of groups of order $p q$ in terms of matrices and permutations.

Chapter 7 concerns with a special type of group extensions. The extensions G for which the Kernel of the epimorphism ϵ is a subgroup of the Frattini subgroup of G. These extensions are known as the Frattini extensions. We derive some new properties from known results of the theory of Frattini extensions.

Yet another special type of extensions occur when the normal subgroup N is the commutator subgroup G^{\prime} of the group G. These extensions are called commutator extensions and are studied in chapter 8 . By reducing the study to the case in which N is an elementary abelian p-group we set the necessary tools to investigate this type of extensions.

Furthermore conditions under which a commutator extension splits are presented.
In chapter 9 we study yet another case of extensions of non-abelian groups. In this extensions the normal subgroup is either a non-abelian nilpotent group or a non-abelian solvable group. We observe that in general if a group G splits over a normal subgroup N the subgroups of G may not necessarily split over their intersections with N. Furthermore a characterization of normal subgroups of G with the property that every subgroup H of G splits over $H \cap N$ is presented. Such subgroups are known as hereditarily non-Frattini subgroups.

Chapter 10 is devoted to the study of the affine subgroups of both the general linear group and the symplectic groups. We start by discussing the general theory of the general linear group. A characterization of the general linear group as split extension is given and at the same time we draw in some results which indicate that the general linear group can be written as a direct product of $S L\left(n, \mathbb{F}^{\prime}\right)$ and \mathbb{F}^{*}. We describe the affine subgroup of the general linear group as the holomorph of the vector space \mathbb{F}^{n} over a field \mathbb{F} and provide some examples of isomorphisms between the affine subgroup of the general linear group and the symmetric groups. Further we concentrate on symplectic groups. We discuss the general theory of symplectic groups and their affine subgroups. In the study of the affine subgroups of the general and symplectic linear groups we analyze the results of R . Gow [13] and prove various stated results in that article. One particular affine subgroup $2^{3}: S P(2,2)$ of the symplectic group $S P(4,2)$ has been studied. The symplectic groups are constructed by defining some bilinear form on the underlying vector space and then taking all the form-preserving automorphisms of the space. For further reading and information on symplectic groups, readers are encouraged to consult [9], [13], [14],[18], [19], [24],[26],[27] and [31].

Chapter 2

Preliminaries

The aim of this chapter is to assemble in readily usable form a selection of mostly standard results from the theory of groups which will be required in the sequel. We will not give proofs of every result. Most of the results could be found in standard texts such as [10], [19], [29], [30] and [31].

2.1 Automorphism Groups

Definition 2.1.1 The automorphism group of a group G, denoted by $\operatorname{Aut}(G)$, is the set of all automorphisms of G, under the binary operation of composition.

Note 2.1.2 This operation gives a group structure on $\operatorname{Aut}(G)$.
Definition 2.1.3 Let g be any element of G. Define a map $\phi_{g}: G \longrightarrow G$ by $\phi_{g}(x)=g x g^{-1}$ for all $x \in G$. Then ϕ_{g} is an automorphism of G, known as an inner automorphism of G.

Remark 2.1.4 We can see that
(i) $\phi_{g}(x y)=g(x y) g^{-1}=g x g^{-1} g y g^{-1}=\phi_{g}(x) \phi_{g}(y)$,
(ii) $\phi_{g}\left(x^{-1}\right)=g x^{-1} g^{-1}$,
(iii) $\left[\phi_{g}(x)\right]^{-1}=\left(g x g^{-1}\right)^{-1}=g x^{-1} g^{-1}=\phi_{g}\left(x^{-1}\right)$.

Each such a map ϕ_{g} is actually an autoraorphism of G. For given $x \in G$ we have that $x=\phi_{g}\left(g^{-1} x g\right)$ and if $\phi_{g}(x)=\phi_{g}(y)$ then $g x g^{-1}=g y g^{-1}$ and so $x=y$. We also have that $\phi_{g h}(x)=g h x(g h)^{-1}=g h x h^{-1} g^{-1}=g \phi_{h}(x) g^{-1}=\phi_{g} \phi_{h}(x)$, so $\phi_{g h}=\phi_{g} \phi_{h}$ for any $x \in G$ and $g, h \in G$.

Theorem 2.1.5 (1) If H is a subgroup of G, then $C_{G}(H) \unlhd N_{G}(H)$ and $N_{G}(H) / C_{G}(H)$ can be embedded in $\operatorname{Aut}(H)$, that is, $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of Aut(H).
(2) The set of all inner automorphisms of G, denoted by $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$ and $G / Z(G) \cong \operatorname{Inn}(G)$.

Proof. (1) For each $x \in N_{G}(H)$, define a map ϕ_{x} on H by $\phi_{x}(h)=x h x^{-1}$.
(i) If $\phi_{x}(h)=\phi_{x}(g)$ then $x h x^{-1}=x g x^{-1}$, so $h=g$ and hence ϕ_{x} is injective.
(ii) Since for any $h \in H$ we have that $x^{-1} h x \in H$, because x^{-1} normalizes H and also $\phi_{x}\left(x^{-1} h x\right)=x\left(x^{-1} h x\right) x^{-1}=h$. Thus ϕ_{x} is surjective.

Now it only remains to show that ϕ_{x} is a homomorphism. But for all g and h in H we have $\phi_{x}(g h)=x g h x^{-1}=x g x^{-1} x h x^{-1}=\phi_{x}(g) \phi_{x}(h)$, which implies that ϕ_{x} is a homomorphism.

The map $\phi: N_{G}(H) \longrightarrow \operatorname{Aut}(H)$ given by $\phi(x)=\phi_{x}$ is a homomorphism. Since $(\phi(x) \phi(y))(h)=\phi(x)(\phi(y)(h))=\phi(x)\left(y h y^{-1}\right)=x\left(y h y^{-1}\right) x^{-1}=(x y) h(x y)^{-1}=\phi(x y)(h)$, we have $\phi(x) \phi(y)=\phi(x y)$.

$$
\begin{aligned}
\operatorname{Ker}(\phi) & =\left\{x \in N_{G}(H) \mid \phi(x)=1_{H}\right\} \\
& =\left\{x \in N_{G}(H) \mid \phi(x)(h)=1_{H}(h), \text { for all } h \in H\right\} \\
& =\left\{x \in N_{G}(H) \mid x h x^{-1}=h, \text { for all } h \in H\right\} \\
& =\left\{x \in N_{G}(H) \mid x h=h x, \text { for all } h \in H\right\} \\
& =C_{G}(H) .
\end{aligned}
$$

Therefore $C_{G}(H) \unlhd N_{G}(H)$ and by the first isomorphism theorem we have that $N_{G}(H) / C_{G}(H) \cong \operatorname{Im}(\phi)$. Hence $N_{G}(H) / C_{G}(H) \cong \operatorname{Im}(\phi) \leq \operatorname{Aut}(H)$.
(2) If $H=G$, then $N_{G}(H)=G$ and so $C_{G}(H)=Z(G)$ and the map ϕ given in part (1) has $\operatorname{Inn}(G)$ as its image. Therefore the isomorphism established in (1) is now $G / Z(G) \cong \operatorname{Inn}(G)$. To show that $\operatorname{Inn}\left(G^{\prime}\right) \unlhd \operatorname{Aut}(G)$ we must show that if $\rho \in \operatorname{Aut}(G)$ and $\phi_{g} \in \operatorname{Inn}(G)$ then $\rho \phi_{g} \rho^{-1} \in \operatorname{Inn}(G)$. We can see that $\left(\rho \phi_{g} \rho^{-1}\right)(x)=\rho\left(\phi_{g}\left(\rho^{-1}(x)\right)\right)=$ $\rho\left(g \rho^{-1}(x) g^{-1}\right)=\rho(g) \rho\left(\rho^{-1}(x)\right) \rho\left(g^{-1}\right)=\rho(g) x \rho\left(g^{-1}\right)=\phi_{\rho(g)}(x)$ for all $x \in G$. Hence $\rho \phi_{g} \rho^{-1}=\phi_{\rho(g)}$ for all $x \in G$ and $\operatorname{Inn}(G) \unlhd \operatorname{Aut}(G)$.

2.2 Commutator Subgroup

Definition 2.2.1 Let x and y be elements of a group G. The commutator of x and y is the element $[x, y]=x y x^{-1} y^{-1}$.

Definition 2.2.2 The commutator subgroup or derived subgroup of G, denoted by $[G, G]$ or G^{\prime}, is the subgroup of G generated by all commutators.

So $G^{\prime}=[G, G]=<[x, y] \mid x, y \in G>$. By recursion, we define $G^{(i+1)}$ as the derived subgroup of $G^{(i)}$ with $G^{(0)}=G$ and $G^{(i+1)}=\left(G^{(i)}\right)^{\prime}$. We also write $G^{(2)}=G^{\prime \prime}$ and $G^{(3)}=$ $G^{\prime \prime \prime}$.

Theorem 2.2.3 Let G be a group. Then
(i) $G^{\prime} \unlhd G$.
(ii) G / G^{\prime} is abelian.
(iii) G is abelian if and only if $G^{\prime}=\left\{1_{G}\right\}$.
(iv) If N is a normal subgroup of G. Then G / N is abelian if and only if $G^{\prime} \leq N$.
(v) If $N \leq G$, then $N^{\prime} \leq G^{\prime}$.

Proof. See [30].
Lemma 2.2.4 Let $N \unlhd G$. Then $(G / N)^{\prime}==G^{\prime} N / N$.
Proof. Since $(G / N)^{\prime}=<[g N, h N] \mid g, h \in: G>$ and $[g N, h N]=g h g^{-1} h^{-1} N=[g, h] N$, it follows that $(G / N)^{\prime}=G^{\prime} N / N$.

2.3 Solvable and Nilpotent Groups

Definition 2.3.1 A group G is said to be solvable if it has a series

$$
\left\{1_{G}\right\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G
$$

in which each factor G_{i+1} / G_{i} is abelian.
Remark 2.3.2 A subgroup H of a group G is called characteristic if $\phi(H)=H$ for every automorphism ϕ of G. Solvability can also be characterized by using a particular series which we introduce now. Evidently, $G \geq G^{\prime} \geq G^{\prime \prime} \geq G^{\prime \prime \prime} \geq \ldots$, and all $G^{(i)}$ are characteristic subgroups of G. The series of subgroups $G=G^{(0)}, G^{\prime}, G^{\prime \prime}, \cdots, G^{(i)}, \ldots$ is called the derived series of G. Each factor $G^{(i)} / G^{(i+1)}$ is abelian. A group G is solvable if and only if $G^{(k)}=\left\{1_{G}\right\}$ for some k.

Proposition 2.3.3 [35] Let G be a solvable group. Then
(i) for any subgroup H of G, H is a soivable group,
(ii) for any normal subgroup N of G, the quotient G / N is solvable.

Proof. See [35].
Definition 2.3.4 A group G is called nilpotent if it has a series

$$
\left\{1_{G}\right\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G
$$

in which each $G_{i} \triangleleft G$ and such that G_{i+1} / G_{i} is contained in the centre of G / G_{i} for all i.
Remark 2.3.5 Note that by definition a nilpotent group G has a non-trivial centre. Also, every nilpotent group is solvable. There are several group theoretical properties which are equivalent to nilpotency for finite groups. Clearly all abelian groups are nilpotent. All finite p-groups are also nilpotent. The group S_{3} is solvable but it is not nilpotent. We can also show that all subgroups and all quot:ent groups of a nilpotent group are nilpotent. (See [30].)

2.4 Frattini subgroup

Definition 2.4.1 Let \mathcal{M} be the collection of all maximal subgroups of a group G. The intersection of all elements of \mathcal{M} is called the Frattini subgroup of G, and is denoted by $\Phi(G)$, that is,

$$
\Phi(G)=\bigcap_{M \in \mathcal{M}} M=\bigcap_{\substack{M \leq G \\ \max }} M
$$

Note 2.4.2 If $G \neq\left\{1_{G}\right\}$ and G is finite, then G certainly has at least one maximal subgroup. Every proper subgroup of G lies in a maximal subgroup of G. If G is infinite, it may have no maximal subgroups. If an infinite group G has no maximal subgroups, then we define $\Phi(G)=G$. If $G=\left\{1_{G}\right\}$, then we define $\Phi(G)=\left\{1_{G}\right\}$.

Remark 2.4.3 Since any automorphism of G, sends a maximal subgroup into a maximal subgroup, the set \mathcal{M} is invariant by any automorphism, and so is $\Phi(G)$. This shows that $\Phi(G)$ is a characteristic subgroup and since characteristic subgroups are normal, we have that $\Phi(G) \unlhd G$.

Lemma 2.4.4 Let $\alpha: G \longrightarrow \bar{G}$ be an epinorphism. Then $g \in \Phi(G)$ implies that $\alpha(g) \in \Phi(\bar{G})$.

Proof. Suppose that $g \in \Phi(G)$. Let \bar{M} be an arbitrary maximal subgroup of \bar{G}. Then there exists a maximal subgroup M of G such that $\alpha(M)=\bar{M}$. But, then $g \in M$ implies that $\alpha(g) \in \bar{M}$. Since \bar{M} is arbitrary we have that $\alpha(g) \in \Phi(\bar{G})$.

Remark 2.4.5 For any homomorphism $\alpha: G \longrightarrow \bar{G}, \alpha(\Phi(G))=\Phi(\alpha(G))$.
Definition 2.4.6 An element x of G is said to be a non-generator of G if for every subset S of G such that $\langle S, x\rangle=G$, then $\langle S\rangle=G$.

Note 2.4.7 The set of all non-generators of a group G is a subgroup. In Theorem 2.4.8 we will show that the Frattini subgroup of G is the set of all non-generators of G.

Theorem 2.4.8 [12] For every finite group G the Frattini subgroup of G is the set of all non-generators of G.

Proof. Let x be a non-generator of G, such that $x \notin \Phi(G)$. Then there exists a maximal subgroup M of G such that $x \notin M$. Then $M \neq\langle x, M\rangle$ and so $G=\langle x, M\rangle$. But this implies that $G=<M>=M$, since x is a non-generator of G, which is a contradiction. Therefore $x \in \Phi(G)$.

Conversely, let $x \in \Phi(G)$ and suppose that $G=\langle x, S\rangle$ with $G \neq\langle S\rangle$ for some subset S of G. Then there exists a maximal subgroup M of G such that $\langle S\rangle \leq M$. Since $x \in \Phi(G), x \in M$ and hence $G=<x, S>\leq M$, which is a contradiction. Thus x is a non-generator.

Corollary 2.4.9 If $G=\Phi(G) H$ for some subgroup H of G, then $G=H$.
Proof. If $G=\Phi(G) H$, we have that $G==\langle\Phi(G), H\rangle$. Now by the Theorem 2.4.8 we obtain that $G=<H>=H$.

Note 2.4.10 Applying Theorem 2.4.8 we deduce that $G=\left\langle x_{i}\right| 1 \leq i \leq n>$ if and only if $G=<\Phi(G), x_{i} \mid 1 \leq i \leq n>$.

Corollary 2.4.11 If $G / \Phi(G)$ is cyclic, then G is cyclic.

Proof. Choose $x \in G$, such that $x \Phi(G)$ generates $G / \Phi(G)$. Then we have that $G=<x, \Phi(G)>$ and so by the Theorem 2.4.8 we deduce that $G=\langle x\rangle$. Hence G is cyclic.

Lemma 2.4.12 The Frattini subgroup of G has no proper supplement. That is for all proper subgroups M of G we have that $\Phi(G) M \neq G$.

Proof. If M is a maximal subgroup of G, then $\Phi(G) \leq M$. Hence $\Phi(G) M=M \neq G$. If M is not a maximal subgroup of G then there exists $N \leq G$ a maximal subgroup of G such that $M \leq N$, and so $\Phi(G) \leq N$. So we have that $\Phi(G) N=N$. Now $\Phi(G) M \leq N<G$. Thus $\Phi(G)$ has no proper supplement in G.

Lemma 2.4.13 If G is finite, then $\Phi(G)$ is nilpotent.

Proof. See [30].
Lemma 2.4.14 Let $N \unlhd G$. Then
(i) $\Phi(G) N / N \leq \Phi(G / N)$.
(ii) If $N \leq \Phi(G)$ then $\Phi(G / N)=\Phi(G) / N$.

Proof. (i) Let K be a maximal subgroup of G / N then $K=M / N$ where M is a maximal subgroup of G and $N \leq M \leq G$. Now $\Phi(G / N)=\bigcap M / N$ with M maximal in G. Since $\Phi(G) \leq M$, we have that $M N \supseteq \Phi(G) N$ and so $\Phi(G) N \leq M$ since $N \leq M$. Hence $\Phi(G) N / N \leq M / N$, for all M maximal in G. Therefore $\Phi(G) N / N \leq \Phi(G / N)$.
(ii) Let π be the natural homomorphism from G onto G / N. Under this homomorphism, there is a one-to-one correspondence between the subgroups of G / N and those subgroups of G containing N. Now $N \leq \Phi(G)$ implies that the maximal subgroups of G containing N correspond to the maximal subgroups of G / N. Hence

$$
\begin{aligned}
\Phi(G / N) & =\bigcap(M / N), \quad \text { where } M \text { runs over all maximal subgroups of } G \\
& =(\bigcap M) / N=\Phi(G) / N .
\end{aligned}
$$

Lemma 2.4.15 $\Phi(G / \Phi(G))=\Phi(G) / \Phi(G)=\left\{1_{G}\right\}$.

Proof. Since $\Phi(G) \unlhd G$, by Lemma 2.4.14 part (ii) we have that $\Phi(G / \Phi(G))=\Phi(G) / \Phi(G)=$ $\left\{1_{G}\right\}$.

Lemma 2.4.16 Let $N \unlhd G$ with G finite. Then $N \leq \Phi(G)$ if and only if there is no proper subgroup H of G such that $H N=G$.

Proof. Assume that $N \leq \Phi(G)$, we need to show that there exists no proper subgroup H of G such that $H N=G$. Let $H<G$. Then there exists a maximal subgroup M of G such that $H \leq M<G$. Since $N \leq \Phi(G)$ then $N \leq M$. Hence $H N \leq M<G$. Thus there is no proper subgroup H of G such that $H N=G$.

Conversely if there is no proper subgroup H of G such that $H N=G$, we want to show that $N \leq \Phi(G)$. Suppose that $N \not \subset \Phi(G)$, then $G \neq\left\{1_{G}\right\}$ and by the definition of Frattini subgroup there exists a maximal subgroup M of G such that $N \not \leq M$. Now $M<M N \leq G$ and maximality of M imply that $M N=G$, which is a contradiction.

Lemma 2.4.17 (Dedekind's Lemma) [30] Let H, K, L be subgroups of a group G with $K \subseteq L$. Then $(H K) \cap L=(H \cap L) K$.

Proof. Since $H \cap L \subseteq H$, then $(H \cap L) K \subseteq H K$. Also $H \cap L \subseteq L$ implies $(H \cap L) K \subseteq$ $L K=L$. Hence $(H \cap L) K \subseteq H K \cap L$. (1)
Now let $x \in(H K) \cap L$. Then $x=h k$ and $x \in L$, for some $k \in K$ and $h \in H$. So $h=x k^{-1} \in L K=L$. Since $H \cap L \subseteq L$, we have that $h \in H \cap L$. Hence $x \in(H \cap L) K$. Thus $(H K) \cap L \subseteq(H \cap L) K$. (2) By (1) and (2) we have that $(H K) \cap L=(H \cap L) K$. \square

Lemma 2.4.18 [3] Let $N \unlhd G$. Then $N \leq \Phi(G)$ if and only if $N / \Phi(N) \leq \Phi(G / \Phi(N))$.
Proof. We know that $\Phi(N) \unlhd N$, so $N / \Phi(N)$ is a group. Also, if $N \leq \Phi(G)$, then $\Phi(N) \leq$ $\Phi(G)$. Therefore $N / \Phi(N) \leq \Phi(G) / \Phi(N)=\Phi(G / \Phi(N))$, by Lemma 2.4.14. Conversely assume that $N / \Phi(N) \leq \Phi(G / \Phi(N))$. Then since $\Phi(G / \Phi(N))=\Phi(G) / \Phi(N)$ by Lemma 2.4.14, we must have $N / \Phi(N) \leq \Phi(G) / \Phi(N)$. Thus $N \leq \Phi(G)$.

Lemma 2.4.19 Let $H \leq G$ and $N \unlhd G$.
(i) If $N \leq \Phi(H)$ then $N \leq \Phi(G)$.
(ii) $\Phi(N) \leq \Phi(G)$.

Proof. (i) If $N \nsucceq \Phi(G)$, then there exists M a maximal subgroup of G such that $N \not \leq M$. Now $M<M N \leq G$ and M a maximal subgroup imply that $M N=G$. Since $N \leq \Phi(H)$ we have that $N \leq H \leq M N=G$. By Lemma 2.4.17, since $N \leq M N$ we have that $M N \cap(N H)=N(H \cap M N)$. But $M N \cap(N H)=M N \cap H=H$ and $N(H \cap M N)=$ $N(H \cap M)$ so we have $H=N(H \cap M)$. Now since $N \leq \Phi(H)$, application of Lemma 2.4.16 yields $H=H \cap M$ and so $H \leq M$. Hence $N \leq H \leq M$ implies that $N \leq M$ which is a contradiction.
(ii) Since $\Phi(N)$ is a characteristic subgroup of N and $N \unlhd G$ we have that $\Phi(N)$ is normal in G. Let M be a maximal subgroup of G and suppose that $\Phi(N) \notin M$. Since $M \leq \Phi(N) M \leq G$, maximality of M implies that $\Phi(N) M=G$. By Lemma 2.4.17 we have that $N=(\Phi(N) M) \cap N=\Phi(N)(M \cap N)$. By Corollary 2.4 .9 we have $M \cap N=N$, hence $N \leq M$ and so $\Phi(N) \leq M$. But this is a contradiction with the assumption that $\Phi(N) \not \leq M$. Hence $\Phi(N) \leq M$ for any maximal subgroup M of G, therefore $\Phi(N) \leq \Phi(G)$.

Lemma 2.4.20 Let $N_{1}, N_{2}, \cdots, N_{r}$ be normal subgroups of a group G. Then the map

$$
\alpha: G \longrightarrow\left(G / N_{1}\right) \times \cdots \times\left(G / N_{r}\right)
$$

defined by $\alpha(g)=\left(g N_{1}, g N_{2}, \cdots, g N_{r}\right)$ is a homomorphism, and its kernel is $\bigcap_{i=1}^{n} N_{i}$.

Proof. By the definitions of quotient groups and direct products we have that

$$
\begin{aligned}
\alpha\left(g g^{\prime}\right) & =\left(g g^{\prime} N_{1}, g g^{\prime} N_{2}, \cdots, g g^{\prime} N_{r}\right) \\
& =\left(g N_{1}, g N_{2}, \cdots, g N_{r}\right)\left(g^{\prime} N_{1}, g^{\prime} N_{2}, \cdots, g^{\prime} N_{r}\right)=\alpha(g) \alpha\left(g^{\prime}\right)
\end{aligned}
$$

and so α is a homomorphism. Furthermore $\alpha(g)=\left(N_{1}, N_{2}, \cdots, N_{r}\right)$, is the identity of $G / N_{1} \times G / N_{2} \times \cdots \times G / N_{r}$ if and only if $g \in N_{i}$ for all $i=1,2, \cdots, r$ and therefore $\operatorname{Ker}(\alpha)=\bigcap_{i=1}^{n} N_{i}$.

Lemma 2.4.21 [10] Let $G_{1}, G_{2}, \cdots, G_{r}$ be finite groups. Then $\Phi\left(G_{1} \times G_{2} \cdots \times G_{r}\right)=$ $\Phi\left(G_{1}\right) \times \Phi\left(G_{2}\right) \times \cdots \times \Phi\left(G_{r}\right)$.

Proof. Let $D=G_{1} \times G_{2} \times \cdots \times G_{r}$ and identify G_{i} with the subgroup $1 \times 1 \times \cdots \times G_{i} \times \cdots \times 1$ of D. Since $G_{i} \unlhd D$, by Lemma 2.4.19 part (ii) we have that $\Phi\left(G_{i}\right) \leq \Phi(D)$, and so $\Phi\left(G_{1}\right) \times \Phi\left(G_{2}\right) \times \cdots \times \Phi\left(G_{r}\right) \subseteq \Phi(D)$. (1)

Let $K_{i}=G_{1} \times G_{2} \times \cdots \times G_{i-1} \times 1 \times G_{i+1} \times \cdots \times G_{r}$. Since $K_{i} \unlhd D$, we have that $\Phi(D) K_{i} / K_{i} \leq \Phi\left(D / K_{i}\right), i=1,2, \cdots, r$. Since $D / K_{i}=G_{i} K_{i} / K_{i} \cong G_{i}$ and $\Phi(D) K_{i} / K_{i} \cong$ $\Phi(D) / \Phi(D) \cap K_{i}$, we have that $\Phi(D) / \Phi(D) \cap K_{i}$ is isomorphic to a subgroup of $\Phi\left(G_{i}\right)$. Thus $\left|\Phi(D) / \Phi(D) \cap K_{i}\right| \leq\left|\Phi\left(G_{i}\right)\right|$. Since $\bigcap_{i=1}^{r} K_{i}=1$, then by Lemma 2.4.20 we have that $\Phi(D)$ is isomorphic to a subgroup of the direct product of r groups $\Phi(D) /\left(\Phi(D) \cap K_{i}\right)$. Hence $|\Phi(D)| \leq \Pi_{i=1}^{r}\left|\Phi\left(G_{i}\right)\right|=\left|\Phi\left(G_{1}\right) \times \Phi\left(G_{2}\right) \times \cdots \times \Phi\left(G_{r}\right)\right|$. (2) Now (1) and (2) imply that $\Phi\left(G_{1} \times G_{2} \times \cdots \times G_{r}\right)=\Phi\left(G_{1}\right) \times \Phi\left(G_{2}\right) \times \cdots \times \Phi\left(G_{r}\right)$.

Theorem 2.4.22 The Frattini factor group $G / \Phi(G)$ of a finite p-group G is an elementary abelian p-group. Furthermore, $G / \Phi(G)$ is a vector space over \mathbf{Z}_{p}.

Proof. Let \mathcal{M} denote the set of all maximal subgroups of G. Since G is a p-group, $\forall M \in \mathcal{M}$ we have that $M \unlhd G$ and G / M is a cyclic p-group of order p. Furthermore $G^{\prime} \leq M$ for all $M \in \mathcal{M}$. Thus $G^{\prime} \leq \Phi(G)$. Since G / M is a cyclic group of order p for all $M \in \mathcal{M}$, we have $x^{p} \in M$ for all $M \in \mathcal{M}$. Thus we deduce that $x^{p} \in \Phi(G)$ for all $x \in G$. Hence $(x \Phi(G))^{p}=\Phi(G) \forall x \in G$. So $G / \Phi(G)$ is an elementary abelian p-group. Thus $G / \Phi(G)$ can be regarded as a vector space over \mathbf{Z}_{p}.

Lemma 2.4.23 Let G be a finite p-group. Then $\Phi(G)=\left\{1_{G}\right\}$ if and only if G is elementary abelian.

Proof. We may assume that $G \neq\left\{1_{G}\right\}$. Suppose first that G is elementary abelian. Since $G \neq\left\{1_{G}\right\}$, then $\Phi(G)<G$ by the definition of $\Phi(G)$. Moreover, since $G \neq\left\{1_{G}\right\}$ and G is elementary abelian then G is characteristically simple by Theorem 7.41 of page 143 in [30]. Now, since $\Phi(G)$ is a proper characteristic subgroup of G we have that $\Phi(G)=\left\{1_{G}\right\}$. Conversely suppose that $\Phi(G)=\left\{1_{G}\right\}$. Since G is a finite p-group, by Theorem 2.4.22
$G / \Phi(G)$ is an elementary abelian p-group. Since $G / \Phi(G)=G /\left\{1_{G}\right\} \cong G$, the proof follows.

Theorem 2.4.24 Let G be a finite p-group and let $G^{p}=<x^{p}: x \in G>$. Then
(i) $\Phi(G)=G^{\prime} G^{p}$,
(ii) if $p=2$, then $\Phi(G)=G^{2}$,
(iii) if $N \leq G$, then $\Phi(N) \leq \Phi(G)$, in particular, if $N \unlhd G$, then $\Phi(G) N / N=\Phi(G / N)$.

Proof. (i) By Theorem 2.4 .22 we have that every maximal subgroup of G contains all p-th powers and all commutators. Thus $G^{\prime} G^{p} \subseteq \Phi(G)$. Obviously $G^{\prime} G^{p} \unlhd G$ and since $G / G^{\prime} G^{p}$ is an abelian group of exponent $p, G / G^{\prime} G^{p}$ is an elementary abelian p-group. By Lemma 2.4.23 we have that $\Phi\left(G / G^{\prime} G^{p}\right)=\left\{1_{G}\right\}$. Now since $G^{\prime} G^{p} \leq \Phi(G)$ we have that $\left\{1_{G}\right\}=\Phi\left(G / G^{\prime} G^{p}\right)=\Phi(G) / G^{\prime} G^{p}$ by Lemma 2.4.14 part (ii). Hence $\Phi(G)=G^{\prime} G^{p}$.
(ii) By part (i) it suffices to show that $G^{\prime} \leq G^{2}$. Let $x, y \in G$. Then $[x, y]=x^{-1} y^{-1} x y=$ $x^{-1} y^{-2} x x^{-2} x y x y=x^{-1} y^{-2} x x^{-2}(x y)^{2}=\left(x^{-1} y^{-1} x\right)^{2} x^{-2}(x y)^{2} \in G^{2}$. Therefore $G^{\prime} \leq G^{2}$, and hence $\Phi(G)=G^{\prime} G^{2}=G^{2}$.
(iii) Let $N \leq G$ then N is a p-group. By (i) we have that $\Phi(N)=N^{\prime} N^{p} \leq G^{\prime} G^{p}=$ $\Phi(G)$. Now, let $N \unlhd G$. Since G is a p-group we have that G / N is also a p-group. By applying part (i) and Lemma 2.4.14 we get $\Phi(G / N)=(G / N)^{\prime}(G / N)^{p}=\left(G^{\prime} N / N\right)\left(G^{p} / N\right)=$ $G^{\prime} N G^{p} / N=G^{\prime} G^{p} N / N=\Phi(G) N / N$.

Theorem 2.4.25 For every (possibly infinite) group G we have $G^{\prime} \cap Z(G) \leq \Phi(G)$.
Proof. Let $F=G^{\prime} \cap Z(G)$. If $F \nsubseteq \Phi(G)$ then there exists a maximal subgroup M of G, with $F \nless M$. Therefore $M<M F<G$ and so maximality of M implies that $M F=G$. Then each $g \in G$ has a factorization $g=m f$ where $m \in M$ and $f \in F$. Since $f \in Z(G)$, $g M g^{-1}=(m f) M(m f)^{-1}=m f M f^{-1} m^{-1}=m M m^{-1}=M$, and hence $M \unlhd G$. Since M is maximal, G / M has prime power order and hence is abelian. Thus $G^{\prime} \leq M$. But $F \leq G^{\prime} \leq M$ implies that $F \leq M$ which is a contradiction.

Theorem 2.4.26 Let N be a finite group. If there exists a group G with $N \unlhd G$ and $N \leq \Phi(G)$, then $\operatorname{Inn}(N) \leq \Phi(\operatorname{Aut}(N))$.

Proof. See Theorem 2.2.6 of page 404 in [8].
The converse of Theorem 2.4.26 has been an open problem for many years. It has been proved recently by Bettina Eick in [11].

Theorem 2.4.27 [11] Let N be a finite group. If $\operatorname{Inn}(N) \leq \Phi(\operatorname{Aut}(N))$, then there exists a finite group G with $N \unlhd G$ and $N \leq \Phi(G)$.

Proof. See Theorem 5 of [11].

Chapter 3

Group Extensions: An overview

In this chapter we present all the basic definitions and results of group extensions which will be required later. If G is a finite group having a normal subgroup N, then we can factorize G into two groups, namely N and G / N. Extension theory concerns with the problem of studying the structure of an extension G of N by H using the knowledge about the properties of the groups N and $G / N \cong \cong H$. Thus the main problem consists in finding all possible extensions of N by H.

3.1 Exact Sequences and Extensions

Definition 3.1.1 If N and H are two groups, then an extension of the group N by the group H is a group G having a normal subgroup $K \cong N$ and $G / K \cong H$. We denote an extension G of N by H, by $G=N \cdot H$.

Let ϕ and ψ be the isomorphisms described in Definition 3.1.1. Consider $N \xrightarrow{\phi} \mathrm{~K} \xrightarrow{i} G$ and $G \xrightarrow{\pi} \mathrm{G} / \mathrm{K} \xrightarrow{\psi} H$, where i is the inclusion map and π is the natural homomorphism. Let $\alpha=i \circ \phi$ and $\beta=\psi \circ \pi$. Then we have that $\left\{1_{N}\right\} \longrightarrow \mathrm{N} \xrightarrow{\alpha} \mathrm{G} \xrightarrow{\beta} \mathrm{H} \longrightarrow\left\{1_{H}\right\}$ where α and β satisfy:

$$
\begin{aligned}
\operatorname{Ker}(\alpha) & =\left\{n \in N \mid \alpha(n)=1_{G}\right\}=\left\{n \in N \mid(i \circ \phi)(n)=1_{G}\right\} \\
& =\left\{n \in N \mid \phi(n)=1_{G}\right\}=\operatorname{Ker}(\phi)=\left\{1_{N}\right\}
\end{aligned}
$$

$\operatorname{Im}(\alpha)=\{(i \circ \phi)(n) \mid n \in N\}=\{\phi(n) \mid n \in N\}=\operatorname{Im}(\phi)=K$,

$$
\begin{aligned}
\operatorname{Ker}(\beta) & =\left\{g \in G \mid \beta(g)=1_{H}\right\}=\left\{g \in G \mid(\psi \circ \pi)(g)=1_{H}\right\}=\left\{g \in G \mid \psi[\pi(g)]=1_{H}\right\} \\
& =\left\{g \in G \mid \psi(g K)=1_{H}\right\}=\{g \in G \mid g K=K\}=K=\operatorname{Im}(\alpha)
\end{aligned}
$$

and $\operatorname{Im}(\beta)=\{\beta(g) \mid g \in G\}=\{\psi(g K) \mid g \in G\}=\operatorname{Im}(\psi)=H$.

Definition 3.1.2 Let $\left\{N_{n}\right\}$ be a sequence of groups and $\left\{\alpha_{n}\right\}$ a sequence of homomorphisms from N_{n-1} into N_{n} Then we call

$$
\begin{equation*}
\cdots \xrightarrow{\alpha_{n-1}} N_{n-1} \xrightarrow{\alpha_{n}} N_{n} \xrightarrow{\alpha_{n+1}} N_{n+1} \rightarrow \cdots \tag{*}
\end{equation*}
$$

a sequence of groups and homomorphisms. We say that the sequence (*) is exact if $\operatorname{ker}\left(\alpha_{n}\right)=\operatorname{Im}\left(\alpha_{n-1}\right)$ for each successive pair $\left(\alpha_{n-1}, \alpha_{n}\right)$.

Definition 3.1.3 A short exact sequence of groups and homomorphisms is an exact sequence of the form $\left\{1_{N}\right\} \rightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \rightarrow\left\{1_{H}\right\}$.

Remark 3.1.4 The conditions of exactness at N, G and H respectively asserts that $\operatorname{Ker}(\alpha)=$ $\left\{1_{N}\right\}, \operatorname{Im}(\alpha)=\operatorname{Ker}(\beta)$ and $\operatorname{Im}(\beta)=H$ which is a restatemet of what we have discussed above. Thus the notion of group extensions and short exact sequences are the same and so we can define an extension as follows:

Definition 3.1.5 If $\left\{1_{N}\right\} \rightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \rightarrow\left\{1_{H}\right\}$ is a short exact sequence, then we say that G is an extension of N by H.

Remark 3.1.6 If G is an extension of N by H given by the short exact sequence $\left\{1_{N}\right\} \rightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \rightarrow\left\{1_{H}\right\}$, then $G / \alpha(N)=G / \operatorname{Ker}(\beta) \cong H$ and $\alpha(N) \cong N$.

Theorem 3.1.7 Let A and B be groups, α_{1}, α_{2} and α_{3} be homomorphisms. Then (i) the homomorphism $A \xrightarrow{\alpha_{2}} B$ is one-to-one iff the sequence $\{1\} \xrightarrow{\alpha_{1}} A \xrightarrow{\alpha_{2}} B$ is exact,
(ii) the homomorphism $A \xrightarrow{\alpha_{2}} B$ is onto iff the sequence $A \xrightarrow{\alpha_{2}} B \xrightarrow{\alpha_{3}}\{1\}$ is exact,
(iii) the homomorphism $A \xrightarrow{\alpha_{2}} B$ is an isomorphism iff the sequence $\{1\} \xrightarrow{\alpha_{1}} A \xrightarrow{\alpha_{2}} B \xrightarrow{\alpha_{3}}\{1\}$ is exact.

Proof. (i) Suppose that the sequence $\{1\} \xrightarrow{\alpha_{1}} A \xrightarrow{\alpha_{2}} B$ is exact. Then $\operatorname{ker}\left(\alpha_{2}\right)=\operatorname{Im}\left(\alpha_{1}\right)$. However $\operatorname{Im}\left(\alpha_{1}\right)=\{1\}$. Thus $\operatorname{ker}\left(\alpha_{2}\right)=\{1\}$ and hence α_{2} is one-to-one. Conversely suppose that $A \xrightarrow{\alpha_{2}} B$ is one-to-one. Then $\operatorname{ker}\left(\alpha_{2}\right)=\{1\}$. However from the sequence $\{1\} \xrightarrow{\alpha_{1}} A \xrightarrow{\alpha_{2}} B$ we have that $\operatorname{Im}\left(\alpha_{1}\right)=\{1\}=\operatorname{ker}\left(\alpha_{2}\right)$ and hence the sequence is exact.
(ii) Suppose that $A \xrightarrow{\alpha_{2}} B \xrightarrow{\alpha_{3}}\{1\}$ is exact. Then $\operatorname{ker}\left(\alpha_{3}\right)=\operatorname{Im}\left(\alpha_{2}\right)$. However $\operatorname{ker}\left(\alpha_{3}\right)=$ B and thus $\operatorname{Im}\left(\alpha_{2}\right)=B$ and hence α_{2} is onto. Conversely suppose that $A \xrightarrow{\alpha_{2}} B$ is onto. Then we have that $\operatorname{Im}\left(\alpha_{2}\right)=B$. However from $A \xrightarrow{\alpha_{2}} B \xrightarrow{\alpha_{3}}\{1\}$, we obtain that $\operatorname{ker}\left(\alpha_{3}\right)=B=\operatorname{Im}\left(\alpha_{2}\right)$. Hence the sequence is exact.
(iii) Suppose that $\{1\} \xrightarrow{\alpha_{1}} A \xrightarrow{\alpha_{2}} B \xrightarrow{\alpha_{3}}\{1\}$ is exact. Then $\operatorname{ker}\left(\alpha_{2}\right)=\operatorname{Im}\left(\alpha_{1}\right)=\{1\}$. Thus α_{2} is one-to-one. Also from the exactness of sequence we have that $\operatorname{ker}\left(\alpha_{3}\right)=B=\operatorname{Im}\left(\alpha_{2}\right)$. Hence α_{2} is onto and hence an isomorphism. Conversely suppose that α_{2} is an isomorphism. Then we obtain that $\operatorname{ker}\left(\alpha_{2}\right)=\{1\}$ and $\operatorname{Im}\left(\alpha_{2}\right)=B$. Thus from the sequence
$\{1\} \xrightarrow{\alpha_{1}} A \xrightarrow{\alpha_{2}} B \xrightarrow{\alpha_{3}}\{1\}$ we obtain that $\operatorname{ker}\left(\alpha_{2}\right)=\{1\}=\operatorname{Im}\left(\alpha_{1}\right)$ and $\operatorname{Im}\left(\alpha_{2}\right)=B=\operatorname{Ker}\left(\alpha_{3}\right)$ and hence the sequence is exact.

Lemma 3.1.8 (Five Lemma) [20]
Let

be a commutative diagram of groups and homomorphisms with exact rows. If $\phi_{0}, \phi_{1}, \phi_{3}$ and ϕ_{4} are isomorphisms, then so is ϕ_{2}.

Proof. We have to show that ϕ_{2} is a one-to-one and onto homomorphism.
(i) ϕ_{2} is one-to-one: Let $x \in \operatorname{Ker}\left(\phi_{2}\right)$. Then $\phi_{2}(x)=1_{B_{2}}$ and $\beta_{2}\left(\phi_{2}(x)\right)=1_{B_{3}}$. Therefore we have that $\beta_{2}\left(\phi_{2}(x)\right)=\phi_{3}\left(\alpha_{2}(x)\right)=1_{B_{3}}$ by commutativity. Hence $\alpha_{2}(x)=1_{A_{3}}$, since ϕ_{3} is one-to-one. Then $x \in \operatorname{Ker}\left(\alpha_{2}\right)$. Hence there exists $y \in A_{1}$ such that $\alpha_{1}(y)=x$ (exactness at A_{2}) and $1_{B_{3}}=\phi_{2}\left(\alpha_{1}(y)\right)=\phi_{2}(x)=\beta_{1}\left(\phi_{1}(y)\right)$ implies that $\phi_{1}(y) \in \operatorname{Ker}\left(\beta_{1}\right)$. So $\phi_{1}(y) \in B_{1}$ and the exactness at B_{1} implies that there exists $w \in B_{0}$ such that $\beta_{0}(w)=\phi_{1}(y)$. Since ϕ_{0} is onto, there exists $j \in A_{0}$ such that $\phi_{0}(j)=w$. Then $\phi_{1}(y)=$ $\beta_{0}(w)=\beta_{0}\left(\phi_{0}(j)\right)=\phi_{1}\left(\alpha_{0}(j)\right)$ by commutativity. Since ϕ_{1} is one-to-one then we have $\alpha_{0}(j)=y$. Now exactness at A_{1} implies that $y \in \operatorname{Ker}\left(\alpha_{1}\right)$, and so $\alpha_{1}(y)=1_{A_{2}}$. Hence $x=1_{A_{2}}$. Therefore $\operatorname{Ker}\left(\phi_{2}\right)=\{1\}$ and heace ϕ_{2} is one-to-one.
(ii) ϕ_{2} is onto: Let $x \in B_{2}$, then there exists $y \in A_{3}$ such that $\phi_{3}(y)=\beta_{2}(x)$. Since $\beta_{3}\left(\beta_{2}(x)\right)=1_{B_{4}}$ by exactness at $B_{4}, \beta_{3}\left[\phi_{3}(y)\right]=1_{B_{3}}$. We get $\phi_{4}\left[\alpha_{3}(y)\right]=1_{B_{4}}$ by commutativity and therefore $\alpha_{3}(y)=1_{A_{4}}$, since ϕ_{4} is an isomorphism. Thus $y \in \operatorname{Ker}\left(\alpha_{3}\right)$ and there exists $z \in A_{2}$ such that $\alpha_{2}(z)=y$ by the exactness at A_{3}. Now we have $\beta_{2}\left(\phi_{2}(z)\right)=\phi_{3}\left(\alpha_{2}(z)\right)=\phi_{3}(y)=\beta_{2}(x)$. Therefore $\beta_{2}\left(\phi_{2}(z)\left(x^{-1}\right)\right)=1_{B_{3}}$ and hence $\phi_{2}(z)\left(x^{-1}\right) \in \operatorname{Ker}\left(\beta_{2}\right)$. Now the exactness at B_{2} implies that there exists $w \in B_{1}$ such that $\beta_{1}(w)=\phi_{2}(z)\left(x^{-1}\right)$. Since ϕ_{1} is onto, there exists $j \in A_{1}$ such that $\phi_{1}(j)=w$. Then we have $\phi_{2}(z)\left(x^{-1}\right)=\beta_{1}(w)=\beta_{1}\left(\phi_{1}(j)\right)=\phi_{2}\left(\alpha_{2}(j)\right)$ by commutativity. Hence $x=\left[\phi_{2}\left(\alpha_{2}(j)\right)\right]^{-1} \cdot \phi_{2}(z)=\phi_{2}\left(\left[\alpha_{2}(j)\right]^{-1}\right) \cdot \phi_{2}(z)=\phi_{2}\left(\alpha_{2}\left(j^{-1}\right) z\right)$ and so ϕ_{2} is onto, thus an isomorphism.

Definition 3.1.9 An extension $\left\{1_{N}\right\} \rightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \rightarrow\left\{1_{H}\right\}$ is said to be equivalent to an extension $\left\{1_{N}\right\} \rightarrow N \xrightarrow{\alpha_{1}} \bar{G} \xrightarrow{\beta_{1}} H \rightarrow\left\{1_{H}\right\}$ if there exists a homomorphism $\phi: G \longrightarrow \bar{G}$ such that the diagram

commutes.

Remark 3.1.10 If G and \bar{G} are equivalent extensions, then by using the five lemma it can be shown that ϕ is an isomorphism between \bar{G} and G. It is also very easy to prove that the equivalence of group extensions given in Definition 3.1.9 is an equivalence relation. We should also mention that equivalent extensions are isomorphic, but isomorphic extensions need not be equivalent. (See example 2 of page 221 of [35].)

Definition 3.1.11 An extension $\left\{1_{N}\right\} \rightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \rightarrow\left\{1_{H}\right\}$ is called
(i) abelian if G is abelian,
(ii) central if $\operatorname{Im}(\alpha)=\alpha(N) \subset Z(G)$,
(iii) cyclic if H is cyclic,
(iv) split if there is a monomorphism $\lambda: H \longrightarrow G$ such that $\beta \lambda=I_{H}$.

Remark 3.1.12 If an extension is abelian, central or cyclic, then so is every equivalent extension. In Theorem 4.1.7 we prove that if an extension splits, then so does any equivalent extension.

Chapter 4

Semidirect Product

The focus of this chapter relates to the splitting extensions of finite groups which internally leads to the splitting of a group over a normal subgroup. For structural purposes, this appears to be the most natural approach for the decomposition of a group in that only the normal subgroup and a subgroup of its automorphism group is needed in order to effect the extension, the so-called semidirect product. We note that other well known products such as the holomorph and the wreath product derive from the semidirect product. So, we will explore the ramifications of this concept within the development of group structure.

4.1 Semidirect Product and Split Extensions

Definition 4.1.1 A group G is a semidirect product of a subgroup N by a subgroup H, if the following conditions are satisfied:
(i) $G=N H$,
(ii) $N \unlhd G$,
(iii) $N \cap H=\left\{1_{G}\right\}$.

The subgroups N and H are said to be complementary. We use the notation $G=N: H$ for a semidirect product G of N by H. The notation $N:^{\varphi} H$ is also used to denote the semidirect product of N by H, this notation will be ustified in the course of the discussion.

Remark 4.1.2 In contrast to a direct product, a semidirect product of N by H is not determined up to isomorphism by the two subgroups. However, the semidirect product depend on how N is normal in G.

Let $G=N: H$. Then we make the following observations.
(1) We have that $H=H /(N \cap H) \cong H N / N=G / N$ by the second isomorphism theorem. Consequently, if G is finite we have that $|G|=|N||G / N|=|N||H|$.
(2) Since $G=N H$, each $x \in G$ can be written as $x=n h$ for $n \in N$ and $h \in H$. Suppose that this could be done in two different ways, that is, suppose $x=n_{1} h_{1}$ and $x=n_{2} h_{2}$ for some $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H$, then we would have $n_{2}^{-1} n_{1}=h_{2} h_{1}^{-1} \in N \cap H=\left\{1_{G}\right\}$, forcing $n_{1}=n_{2}$ and $h_{1}=h_{2}$. Hence each $x \in G$ has a unique expression $x=n h$ where $n \in N$ and $h \in H$.
(3) Let $x, y \in G$ and write $x=n_{1} h_{1}$ and $y=n_{2} h_{2}$. We know that the element $x y$ of G can be written as $n^{\prime} h^{\prime}$ for some unique $n^{\prime} \in N$ and $h^{\prime} \in H$, by (2), so explicitly we have $x y=n_{1} h_{1} n_{2} h_{2}=n_{1} h_{1} n_{2} h_{1}^{-1} h_{1} h_{2}$ where $n^{\prime}=n_{1} h_{1} n_{2} h_{1}^{-1} \in N$, since $N \unlhd G$ and $h^{\prime}=h_{1} h_{2} \in H$.
(4) Let $h \in H$. Since $N \unlhd G$, conjugation by h maps N to N. Consequently we can define a $\operatorname{map} \varphi_{h}: N \longrightarrow N$ given by $\varphi_{h}(n)=h n h^{-1}$ for $n \in N$ and $h \in H$. The map φ_{h} is an automorphism of N.
φ_{h} is onto: For any $x \in N, x=\varphi_{h}\left(h^{-1} x h\right)$.
φ_{h} is one-to-one: If $\varphi_{h}(x)=\varphi_{h}(y)$, then $h x h^{-1}=h y h^{-1}$ so $x=y$
φ_{h} is a homomorphism: For any $x, y \in N$ and $h \in H$ we have

$$
\varphi_{h}(x y)=h(x y) h^{-1}=h x h^{-1} h y h=\left(h x h^{-1}\right)\left(h y h^{-1}\right)=\varphi_{h}(x) \varphi_{h}(y) .
$$

Also for any $g, h \in H$ we have

$$
\left(\varphi_{g} \varphi_{h}\right)(x)=\varphi_{g}\left(\varphi_{h}(x)\right)=\varphi_{g}\left(h x h^{-1}\right)=g\left(h x h^{-1}\right) g^{-1}=g h x(g h)^{-1}=\varphi_{g h}(x) .
$$

Hence $\varphi_{g} \varphi_{h}=\varphi_{g h}$. In this way we have constructed a homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(N)$ where $\varphi(h)=\varphi_{h}$. The homomorphism φ is called the conjugation homomorphism of the semidirect product G. It can be seen from this that $\left(n_{1} h_{1}\right)\left(n_{2} h_{2}\right)=n_{1} \varphi_{h_{1}}\left(n_{2}\right) h_{1} h_{2}$ for any $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H$. Thus the group operation of G can be expressed in terms of the group operations of N and H and the homomorphism φ.
(5) If the homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(N)$ defined by $\varphi(h)=\varphi_{h}$ is the trivial homomorphism, then we have $n h n^{-1}=n \varphi_{h}\left(n^{-1}\right) h=n n^{-1} h=h$ for any $n \in N$ and $h \in H$ and consequently $H \unlhd G$, therefore $G=N \times H$. Conversely, if $G=N \times H$, then the elements of H commute with the elements of N and so the homomorphism φ must be trivial.
(6) If the conjugation homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(N)$ is non-trivial, then the group G must be non-abelian. Because there must be some $h \in H$ and $n \in N$ such that $h n h^{-1}=$ $\varphi_{h}(n) \neq n$, in which case h and n do not commute.

Definition 4.1.3 Given groups N and H and a homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(N)$, define $G=N:^{\varphi} H$ to be the set of all ordered pairs $(n, h) \in N \times H$ equipped with the operation

$$
(n, h)\left(n^{\prime}, h^{\prime}\right):=\left(n \varphi_{h}\left(n^{\prime}\right), h h^{\prime}\right) .
$$

Lemma 4.1.4 If $N \unlhd G$, and $H \leq G$ then the following statements are equivalent:
(i) G is a semidirect product of N by H,
(ii) every element $g \in G$ has a unique expression $g=n h$, where $n \in N$, and $h \in H$,
(iii) there exists a homomorphism $\lambda: H \longrightarrow G$, with $\phi \lambda=I_{H}$, where $\phi: G \longrightarrow H$ is the natural homomorphism,
(iv) there exists a homomorphism $\pi: G \longrightarrow G$, with $\operatorname{Ker}(\pi)=N$ and $\pi(x)=x$ for all $x \in \operatorname{Im}(\pi)$.

Proof. See Lemma 7.20 of [31].
Theorem 4.1.5 A short exact sequence $\left\{1_{N}\right\} \rightarrow N \rightarrow G \xrightarrow{\pi} H \rightarrow\left\{1_{H}\right\}$ splits if and only if G is the semidirect product of N by H_{1}, where $H_{1} \leq G$ and $H_{1} \cong H$ with $\pi\left(H_{1}\right)=H$.

Proof. Suppose that $\left\{1_{N}\right\} \rightarrow N \rightarrow G \xrightarrow{\pi} H \rightarrow\left\{1_{H}\right\}$ splits. Then there exists a homomorphism $\lambda: H \longrightarrow G$, such that $\pi \lambda=I_{H}$. Now

$$
\begin{aligned}
\lambda(x)=\lambda(y) & \Rightarrow \pi(\lambda(x))=\pi(\lambda(y)) \\
& \Rightarrow(\pi \lambda)(x)=(\pi \lambda)(y) \\
& \Rightarrow x=y .
\end{aligned}
$$

So that λ is a monomorphism. Hence $H / \operatorname{Ker}(\lambda) \cong \operatorname{Im}(\lambda)$ which implies that $H \cong \operatorname{Im}(\lambda)$. Thus $\lambda: H \longrightarrow \operatorname{Im}(\lambda)$ is an isomorphism. Let $H_{1}=\operatorname{Im}(\lambda)$. Since $\operatorname{Ker}(\pi)=N$ and $H_{1}=\operatorname{Im}(\lambda) \leq G$ we have that $N \cap H_{1}==\left\{1_{G}\right\}$. We need to show that $N H_{1}=G$. Since $N \unlhd G, N H_{1} \leq G$. Let $g \in G$. Then $\pi(g) \in H$ and $\lambda(\pi(g)) \in \operatorname{Im}(\lambda)=H_{1}$. Since

$$
\pi(\lambda(\pi(g)))=\pi \lambda(\pi(g))=I_{H}(\pi(g))=\pi(g),
$$

we have $g \cdot[\lambda \pi(g)]^{-1} \in \operatorname{Ker}(\pi)=N$. Hence there exists $n \in N$ such that $g .[\lambda \pi(g)]^{-1}=n$. Then we get $g=n[\lambda \pi(g)] \in N H_{1}$. So $G \subseteq N H_{1}$ and hence $G=N H_{1}$. Hence G is a semidirect product of N by H_{1}.

Conversely, suppose that G is the semidirect product of N by H_{1} a subgroup of G with $H_{1} \cong H$. We need to show that $\{1\} \rightarrow N \rightarrow G \xrightarrow{\pi} H \rightarrow\{1\}$ splits. Since G is a semidirect product of N by H_{1}, then $G=N H_{1}$ and $N \cap H_{1}=\{1\}$ and so the elements of H_{1} form a right transversal (a complete set of coset representatives of N in G) of N in G. It follows
that the restriction $\left.\pi\right|_{H_{1}}: H_{1} \longrightarrow H$, given by $\left(\left.\pi\right|_{H_{1}}\right)\left(h_{1}\right)=\pi\left(h_{1}\right)$, for all $h_{1} \in H_{1}$ is an isomorphism. So there exists a homomorphism λ, from H to G given by

$$
H \xrightarrow{\left(\left.\pi\right|_{H_{1}}\right)^{-1}} H_{1} \xrightarrow{i n c} G .
$$

It is easily seen that

$$
(\pi \lambda)(h)=\pi(\lambda(h))=\pi\left[\operatorname{inc}\left(\left(\left.\pi\right|_{H_{1}}\right)^{-1}(h)\right)\right]=\pi\left[\left(\left.\pi\right|_{H_{1}}\right)^{-1}(h)\right]=\pi\left(h_{1}\right)=h,
$$

for all $h \in H$. Hence $\pi \lambda=I_{H}$.

Note 4.1.6 From the above theorem, we have that every split extension G of N by H is equivalent to a semidirect product of N by H. Hence the terms split extension and semidirect product can be used interchangeably to mean one and the same entity.

Theorem 4.1.7 [34] If an extension splits, then so does any equivalent extension.

Proof. Let $\{1\} \rightarrow N \xrightarrow{\alpha} G \xrightarrow{\beta} H \rightarrow\{1\}$ be a split extension such that it is equivalent to the extension $\{1\} \rightarrow N \xrightarrow{\alpha_{1}} \bar{G} \xrightarrow{\beta_{1}} H \rightarrow\{1\}$. Let θ be the homomorphism that gives the equivalence. Then there is a monomorphism $\lambda: H \longrightarrow G$ such that $\beta \lambda=I_{H}$. Let $\lambda_{1}=\theta \lambda$, then $\lambda_{1}: H \longrightarrow \bar{G}$ is a monomorphism such that $\beta_{1} \lambda_{1}=\beta_{1} \theta \lambda=\beta \lambda=I_{H}$.

Remark 4.1.8 It is obvious that $N H=G$ implies that $H N=G$ so that N is a complement of H. An extension G of N by H is a semidirect product of N by H, if and only if $N \unlhd G$ and N has a complement (necessarily isomorphic to H). A subgroup N of G, may not have a complement, and even if it does, a complement need not to be unique. If both subgroups N and H are normal in G, then G is a direct product of N and H.

Definition 4.1.9 Let G, N and H be as in Definition 4.1.3 and $\varphi: H \longrightarrow \operatorname{Aut}(N)$. Then the semidirect product G of N by H is said to realize φ if $\varphi_{h}(n)=n^{h}$ for all $n \in N$, $h \in H$.

Theorem 4.1.10 Let N and H be groups, $\varphi \in \operatorname{Hom}(H, \operatorname{Aut}(N))$. Then $G=N{ }^{\varphi} H$ is a semidirect product of N by H that realizes φ.

Proof. See Theorem 7.22 of [31].

Theorem 4.1.11 If G is a semidirect product of N by H, then $G \cong N:^{\varphi} H$ for some homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(N)$.

Proof. Define $\varphi_{h}(n)=h n h^{-1}$. We know that each element $g \in G$ has a unique expression $g=n h$ with $n \in N$ and $h \in H$. Since multiplication in G satisfies $(n h)\left(n^{\prime} h^{\prime}\right)=$ $n\left(h n^{\prime} h^{-1}\right) h h^{\prime}=n n^{\prime h} h h^{\prime}$, it is easy to see that the map $\alpha: N!^{\varphi} H \longrightarrow G$, given by $\alpha(n, h)=n h$, is an isomorphism. For any $n, n^{\prime} \in N$ and $h, h^{\prime} \in H$ if $\alpha(n, h)=\alpha\left(n^{\prime}, h^{\prime}\right)$, then $n h=n^{\prime} h^{\prime}$. That is, $n^{\prime-1} n=h^{\prime} h^{-1} \in N \cap H=\left\{1_{G}\right\}$. So $n^{\prime-1} n=1_{G}$ and $h^{\prime} h^{-1}=1_{G}$. Hence $n=n^{\prime}$ and $h^{\prime}=h$, so that α is injective. Also, since $\operatorname{Im}(\alpha)=\{\alpha(n, h) \mid n \in$ N and $h \in H\}=\{n h \mid n \in N$ and $h \in H\}=N H=G$ we have that α is onto. Finally we need to show that α is a homomorphism. For $n, n^{\prime} \in N$ and h, h^{\prime} we have that

$$
\begin{aligned}
\alpha\left[(n, h)\left(n^{\prime}, h^{\prime}\right)\right] & =\alpha\left(n \varphi_{h}\left(n^{\prime}\right), h h^{\prime}\right)==\alpha\left(n h n^{\prime} h^{-1}, h h^{\prime}\right)=n h n^{\prime} h^{-1} h h^{\prime}=n h n^{\prime} h^{\prime} \\
& =\alpha(n, h) \alpha\left(n^{\prime}, h^{\prime}\right) .
\end{aligned}
$$

Hence α is an isomorphism.
As an illustration of the preceding discussion, we shall prove in the next example that, there exists only one non-abelian group of order 16 of the type $C_{4}: C_{4}$.

Example 4.1.12 There exists only one non-abelian group of order 16 of the type $C_{4}: C_{4}$.

Proof. Assume that $G=C_{4}: C_{4}$. Then $C_{4} \unlhd G$ and $C_{4} \cap C_{4}=\left\{1_{G}\right\}$. Define $f_{i}: C_{4} \longrightarrow C_{4}$ by $f_{i}(x)=x^{i}$, with $(i, 4)=1$. Also we have that

$$
\operatorname{Aut}\left(C_{4}\right)=\left\{f_{i} \mid f_{i}(x)=x^{i},(i, 4)=1\right\}=\left\{f_{1}, f_{3}\right\} \cong C_{2}
$$

Now define $\varphi: C_{4} \longrightarrow \operatorname{Aut}\left(C_{4}\right)$ by

$$
\varphi_{y}= \begin{cases}f_{1} & \text { if } y \text { is not a generator } \\ f_{3} & \text { if } y \text { is a generator. }\end{cases}
$$

Since φ is a homomorphism we have that $\varphi_{y}{ }^{4}=1_{\operatorname{Aut}\left(C_{4}\right)}$, so that $\varphi_{y}{ }^{4}(x)=f_{i}{ }^{4}=x$. Therefore $x^{i^{4}}=x$ and so $i^{4} \equiv 1(\bmod 4)$.

If $i=1$, then $i \equiv 1(\bmod 4)$ and so $\varphi_{y}(x)=f_{1}(x)=x$. That is $y x y^{-1}=x$. Hence G is abelian. If $i=3$, then we have $81 \equiv 1(\bmod 4)$ so that $\varphi_{y}(x)=f_{3}(x)=x^{-1}$ and therefore G has the presentation

$$
G=<x, y \mid x^{4}=y^{4}=1, y x y^{-1}=x^{-1}>.
$$

Hence there exists only one non-abelian group of order 16 of the type $C_{4}: C_{4}$. In addition it can be easily shown that G has 12 elements of order 4 and 3 elements of order 2.

Theorem 4.1.13 Let G be an extension of N by H. If a subgroup K of G contains N, then K is an extension of N by K / N. If the extension G splits over N, then K also splits over N. If L is a complement to N in G, then $L \cap K$ is a complement to N in K.

Proof. Since $N \leq K \leq G$ and $N \unlhd G$, we have that $N \unlhd K$. So K is an extension of N by K / N. Suppose that G splits over N and let L be a complement to N in G. So we have $N L=G$ and $N \cap L=\left\{1_{G}\right\}$. Then since $G=N L$, we get $K=N L \cap K$. Now N, L and K are subgroups of G such that $N \leq K$. So by Lemma 2.4 .17 we have $K \cap N L=N(L \cap K)$ and hence $K=N(L \cap K)$. Since $N \cap(L \cap K)=(N \cap L) \cap K=\left\{1_{G}\right\}$, we get that $L \cap K$ is a complement of N in K.

Definition 4.1.14 Let G be a finite group. A subgroup K of G is said to be a Hall subgroup if $(|K|,[G: K])=1$.

Theorem 4.1.15 [31] If N is an abelian normal Hall subgroup of a finite group G, then N has a complement.

Proof. See Theorem 7.39 of [31].

4.2 The Holomorph

Definition 4.2.1 Let N be any group, and consider the natural action of $\operatorname{Aut}(N)$ on N. Then the homomorphism $\varphi: \operatorname{Aut}(N) \longrightarrow \operatorname{Aut}(N)$ given by $\varphi(\alpha)=\alpha$ for every $\alpha \in \operatorname{Aut}(N)$ defines a semidirect product $N: \varphi \operatorname{Aut}(N)$ which is called the holomorph of N and denoted by $H o l(N)$.

Note 4.2.2 (i) $N \unlhd \operatorname{Hol}(N)$ by the definition of holomorph and for every $\alpha \in \operatorname{Aut}(N)$ and $n \in N$ we have $\alpha n \alpha^{-1}=n^{\alpha}$, where the product on the left is defined in $\operatorname{Hol}(N)$. Thus every automorphism of N is obtained by restriction from an inner automorphism of $\operatorname{Hol}(N)$.
(ii) If $H \leq \operatorname{Aut}(N)$ and we consider the natural action of H on N. Then the action is the inclusion map $i: H \longrightarrow \operatorname{Aut}(N)$. The corresponding semidirect product $N:{ }^{i} H$, is said to be a relative holomorph of N by H. Clearly by definition $N \leq N:^{i} H=N H \leq H o l(N)$.

Proposition 4.2.3 If $G_{1} \cong G_{2}$, then $\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$.

Proof. We first show that if $G_{1} \cong G_{2}$ then $\operatorname{Aut}\left(G_{1}\right) \cong \operatorname{Aut}\left(G_{2}\right)$. Let $f: G_{1} \longrightarrow G_{2}$, be an isomorphism. Now we define $\bar{f}: \operatorname{Aut}\left(G_{1}\right) \longrightarrow \operatorname{Aut}\left(G_{2}\right)$ by $\bar{f}(\alpha)\left(g_{2}\right)=f\left[\alpha\left(f^{-1}\left(g_{2}\right)\right)\right]$, for all $g_{2} \in G_{2}$. First notice that :

$$
\begin{aligned}
\bar{f}(\alpha)\left(g_{2} g_{2}^{\prime}\right) & =f\left[\alpha\left(f^{-1}\left(g_{2} g_{2}^{\prime}\right)\right)\right]=f\left[\alpha\left(f^{-1}\left(g_{2}\right) f^{-1}\left(g_{2}^{\prime}\right)\right)\right]=f\left[\alpha f^{-1}\left(g_{2}\right) \alpha f^{-1}\left(g_{2}^{\prime}\right)\right] \\
& =f\left[\alpha\left(f^{-1}\left(g_{2}\right)\right)\right] f\left[\alpha\left(f^{-1}\left(g_{2}^{\prime}\right)\right)\right]=\bar{f}(\alpha)\left(g_{2}\right) \bar{f}(\alpha)\left(g_{2}^{\prime}\right) .
\end{aligned}
$$

It is not difficult to see that $\forall \alpha \in \operatorname{Aut}\left(G_{1}\right)$ we have $\bar{f}(\alpha) \in \operatorname{Aut}\left(G_{2}\right)$. We claim that \bar{f} is an isomorphism.
\bar{f} is well defined: Let $\alpha, \beta \in \operatorname{Aut}\left(G_{1}\right)$ such that $\alpha=\beta$. Then $(\bar{f}(\alpha))\left(g_{2}\right)=f\left[\alpha\left(f^{-1}\left(g_{2}\right)\right)\right]$ and $(\bar{f}(\beta))\left(g_{2}\right)=f\left[\beta\left(f^{-1}\left(g_{2}\right)\right)\right]$. Now since $\alpha=\beta$ we have $f\left(\beta\left(f^{-1}\left(g_{2}\right)\right)\right)=f\left(\alpha\left(f^{-1}\left(g_{2}\right)\right)\right)$. So $\bar{f}(\alpha)=\bar{f}(\beta)$.

$$
\begin{aligned}
\bar{f} \text { is one-to-one: } \bar{f}(\alpha)=\bar{f}(\beta) & \Rightarrow f\left(\alpha\left(f^{-1}\left(g_{2}\right)\right)\right)=f\left(\beta\left(f^{-1}\left(g_{2}\right)\right)\right), \quad \forall g_{2} \in G_{2} \\
& \Rightarrow \alpha\left(f^{-1}\left(g_{2}\right)\right)=\beta\left(f^{-1}\left(g_{2}\right)\right), \text { since } f \text { is one-to-one } \\
& \Rightarrow \alpha\left(g_{1}\right): \beta\left(g_{1}\right), \forall g_{1} \in G_{1}, \text { since } f \text { is an isomorphism } \\
& \Rightarrow \alpha=\beta .
\end{aligned}
$$

\bar{f} is onto: Let $\beta \in \operatorname{Aut}\left(G_{2}\right)$. We need to find $\alpha \in \operatorname{Aut}\left(G_{1}\right)$ such that $\bar{f}(\alpha)=\beta$. Let $\alpha=f^{-1} \beta f$. Then $f^{-1} \beta f \in \operatorname{Aut}\left(G_{1}\right)$. Now we have

$$
\bar{f}(\alpha)\left(g_{2}\right)=f\left(\alpha\left(f^{-1}\left(g_{2}\right)\right)\right)=f\left[f^{-1} \beta f\left(f^{-1}\left(g_{2}\right)\right)\right]=f\left(f^{-1} \beta\left(g_{2}\right)\right)=\beta\left(g_{2}\right), \forall g_{2} \in G_{2}
$$

Thus $\bar{f}(\alpha)=\beta$.
\bar{f} is a homomorphism: For all $\alpha, \beta \in \operatorname{Aut}\left(G_{1}\right)$ and all $g_{2} \in G_{2}$ we have

$$
\bar{f}(\alpha \beta)\left(g_{2}\right)=f\left(\alpha \beta\left(f^{-1}\left(g_{2}\right)\right)\right)=f\left(\alpha\left(\beta\left(f^{-1}\left(g_{2}\right)\right)\right)\right)
$$

and

$$
\begin{aligned}
(\bar{f}(\alpha) \bar{f}(\beta))\left(g_{2}\right) & =\bar{f}(\alpha)\left(\bar{f}(\beta)\left(g_{2}\right)\right)=\bar{f}(\alpha)\left(f\left(\beta\left(f^{-1}\left(g_{2}\right)\right)\right)\right) \\
& =f\left(\alpha\left(f^{-1}\left(f\left(\beta\left(f^{-1}\left(g_{2}\right)\right)\right)\right)\right)\right)=f\left(\alpha\left(\beta\left(f^{-1}\left(g_{2}\right)\right)\right)\right)
\end{aligned}
$$

Thus $\bar{f}(\alpha \beta)=\bar{f}(\alpha) \bar{f}(\beta)$ and hence \bar{f} is a homomorphism. So \bar{f} is an isomorphism from $\operatorname{Aut}\left(G_{1}\right)$ into $\operatorname{Aut}\left(G_{2}\right)$. We have the following diagram

and the map $f^{-1} \beta f: G_{1} \longrightarrow G_{2}$. Now we have to show that $\operatorname{Hol}\left(G_{1}\right) \cong \operatorname{Hol}\left(G_{2}\right)$. Define $\psi: \operatorname{Hol}\left(G_{1}\right) \longrightarrow \operatorname{Hol}\left(G_{2}\right)$ by $\psi\left(g_{1}, \alpha\right)=\left(f\left(g_{1}\right), \bar{f}(\alpha)\right), \quad \forall g_{1} \in G_{1}$ and $\forall \alpha \in \operatorname{Hol}\left(G_{1}\right)$.
ψ is well defined and one-to-one :

$$
\begin{aligned}
\psi\left(g_{1}, \alpha\right)=\psi\left(g_{1}^{\prime}, \alpha^{\prime}\right) & \Leftrightarrow\left(f\left(g_{1}\right), \bar{f}(\alpha)\right)=\left(f\left(g_{1}^{\prime}\right), \bar{f}\left(\alpha^{\prime}\right)\right) \\
& \Leftrightarrow f\left(g_{1}\right)=f\left(g_{1}^{\prime}\right) \quad \text { and } \bar{f}(\alpha)=\bar{f}\left(\alpha^{\prime}\right) \\
& \Leftrightarrow g_{1}=g_{1}^{\prime} \quad \text { and } \alpha=\alpha^{\prime} \quad \text { since } f \text { and } \bar{f} \text { are isomorphisms. }
\end{aligned}
$$

ψ is onto : Let $\left(g_{2}, \beta\right) \in \operatorname{Hol}\left(G_{2}\right)$. There exists $g_{1} \in G_{1}$ such that $f\left(g_{1}\right)=g_{2}$ and there exists $\alpha \in \operatorname{Aut}\left(G_{1}\right)$ such that $\bar{f}(\alpha)=\beta$. Now $\psi\left[\left(g_{1}, \alpha\right)\right]=\left(f\left(g_{1}\right), \bar{f}(\alpha)\right)=\left(g_{2}, \beta\right)$ imply that ψ is onto.
ψ is a homomorphism :

$$
\psi\left[\left(g_{1}, \alpha\right)\left(g_{1}^{\prime}, \alpha^{\prime}\right)\right]=\psi\left(g_{1} g_{1}^{\prime \alpha}, \alpha \alpha^{\prime}\right)=\left(f\left(g_{1} g_{1}^{\prime \alpha}\right), \bar{f}\left(\alpha \alpha^{\prime}\right)\right)=\left(f\left(g_{1}\right) f\left(g_{1}^{\prime \alpha}\right), \bar{f}(\alpha) \bar{f}\left(\alpha^{\prime}\right)\right)
$$

and

$$
\begin{aligned}
\psi\left(g_{1}, \alpha\right) \psi\left(g_{1}^{\prime}, \alpha^{\prime}\right) & =\left(f\left(g_{1}\right), \bar{f}(\alpha)\right)\left(f\left(g_{1}^{\prime}\right), \bar{f}\left(\alpha^{\prime}\right)\right)=\left(f\left(g_{1}\right)\left[f\left(g_{1}^{\prime}\right)\right]^{\bar{f}(\alpha)}, \bar{f}(\alpha) \bar{f}\left(\alpha^{\prime}\right)\right) \\
& =\left(f\left(g_{1}\right) \bar{f}(\alpha)\left[f\left(g_{1}^{\prime}\right)\right], \bar{f}(\alpha) \bar{f}\left(\alpha^{\prime}\right)\right)=\left(f\left(g_{1}\right) f\left(\alpha\left(g_{1}^{\prime}\right)\right), \bar{f}(\alpha) \bar{f}\left(\alpha^{\prime}\right)\right) \\
& =\left(f\left(g_{1}\right) f\left(g_{1}^{\prime \alpha}\right), \bar{f}(\alpha) \bar{f}\left(\alpha^{\prime}\right)\right)
\end{aligned}
$$

imply that $\psi\left[\left(g_{1}, \alpha\right)\left(g_{1}^{\prime}, \alpha^{\prime}\right)\right]=\psi\left(g_{1}, \alpha\right) \psi\left(g_{1}^{\prime}, \alpha^{\prime}\right)$.

Proposition 4.2.4 If $\varphi: H \longrightarrow \operatorname{Aut}(N)$ is a monomorphism, then $N:^{\varphi} H$ is isomorphic to the relative holomorph of N by $\operatorname{Im}(\varphi)$.

Proof. Let $G=N:^{\varphi} H$. Define $\varphi^{*}: G \longrightarrow \operatorname{Hol}(N)$ by $\varphi^{*}(n, h)=\left(n, \varphi_{h}\right)$ for all $n \in N$ and $h \in H$. Then it is easy to see that φ^{*} is a homomorphism. Now

$$
\begin{aligned}
\operatorname{Ker}\left(\varphi^{*}\right) & =\left\{(n, h) \mid\left(n, \varphi_{h}\right)=\left(1_{N}, I_{N}\right)\right\} \\
& =\left\{(n, h) \mid n=1_{N}, \varphi_{h}=I_{N}\right\} \\
& =\left\{(n, h) \mid n=1_{N}, h=1_{H}\right\}, \text { since } \varphi \text { is one-to-one } \\
& =\left(1_{N}, 1_{H}\right)=1_{G} .
\end{aligned}
$$

Thus φ^{*} is a monomorphism. Hence $G \cong \operatorname{Im}\left(\varphi^{*}\right)$ where

$$
\operatorname{Im}\left(\varphi^{*}\right)=\left\{\left(n, \varphi_{h}\right) \mid n \in N, h \in H\right\}=\text { relative holomorph of } N \text { by } \operatorname{Im}(\varphi) .
$$

Corollary 4.2.5 If $\varphi: \operatorname{Aut}(N) \longrightarrow \operatorname{Aut}(N)$ is an isomorphism, then $N:^{\varphi} \operatorname{Aut}(N) \cong \operatorname{Hol}(N)$.

Proof. Follows immediately from Proposition 4.2.4.

Lemma 4.2.6 If C_{p} is the cyclic group of order p (p prime), then Aut $\left(C_{p}\right) \cong C_{p-1}$.

Proof. Let $C_{p}=\langle x\rangle$. Each $\alpha \in \operatorname{Aut}\left(C_{p}\right)$ is determined by $\alpha(x)$, so that $\operatorname{Aut}\left(C_{p}\right)=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p-1}\right\}$ where α_{i} is defined by $\alpha_{i}(x)=x^{i}$ for some $i=1,2, \cdots, p-1$. Now let \mathbb{Z}_{p}^{*} be the multiplicative group of non-zero elements of $\mathbb{Z}_{p} \cong \mathbb{Z} / p \mathbb{Z}$ and define $\varphi: \operatorname{Aut}\left(C_{p}\right) \longrightarrow \mathbb{Z}_{p}^{*}$ by $\varphi\left(\alpha_{i}\right)=\bar{i}$. Then φ is an isomorphism so that $\operatorname{Aut}\left(C_{p}\right) \cong \mathbf{Z}_{p}^{*}$. But the group of non-zero elements of a firite field is cyclic, so $\operatorname{Aut}\left(C_{p}\right) \cong C_{p-1}$.

Example 4.2.7 $\operatorname{Hol}\left(C_{p}\right)$.

We know that $\operatorname{Hol}\left(C_{p}\right)=C_{p}: \operatorname{Aut}\left(C_{p}\right) \cong C_{p}: C_{p-1}$. Let $C_{p}=\langle x\rangle$ and $\operatorname{Aut}\left(C_{p}\right)=\langle y\rangle$ where $o(x)=p, o(y)=p-1$ and $y(x)=s^{i}$ with $1 \leq i \leq p-1$ and $i^{k} \neq 1(\bmod p)$ for all $k \in\{1,2, \cdots, p-2\}$.

Let $\varphi: \operatorname{Aut}\left(C_{p}\right) \longrightarrow \operatorname{Aut}\left(C_{p}\right)$ be the isomorphism defined by $\varphi(y)=\varphi_{y}=y^{j}$ where $(j, p-1)=1$ with $1 \leq j \leq p-1$. If $j=1$, then $\varphi_{y}=y$ and $\varphi=I_{\operatorname{Aut}\left(C_{p}\right)}$. Hence in this case we have

$$
\operatorname{Hol}\left(C_{p}\right) \cong C_{p}: \varphi \operatorname{Aut}\left(C_{p}\right)=<x, y \mid x^{p}=y^{p-1}, y x y^{-1}=x^{i}>.
$$

If $j \neq 1$, then $\varphi \neq I_{\operatorname{Aut}\left(C_{p}\right)}$. In this case we have $\operatorname{Hol}\left(C_{p}\right) \cong C_{p} \cdot \varphi \operatorname{Aut}\left(C_{p}\right)$, by Corollary 4.2.5, and

$$
C_{p} \cdot \varphi \operatorname{Aut}\left(C_{p}\right)=<x, y \mid x^{p}=y^{p-1}, y x y^{-1}=x^{i j}>.
$$

For example if $p=7$, then $y(x)=x^{3}$ and for $j=1$ we get

$$
\operatorname{Hol}\left(C_{7}\right)=<x, y \mid x^{7}=y^{6}=1, y x y^{-1}=x^{3}>.
$$

For $j=5$ we have $\varphi_{y}=y^{5}$ and $i^{j}=3^{5} \equiv 5(\bmod 7)$. Thus

$$
\operatorname{Hol}\left(C_{7}\right) \cong C_{7}: \varphi C_{6}=<x, y \mid x^{7}=y^{6}=1, y x y^{-1}=x^{5}>
$$

Next we show that the groups given by the above presentations are isomorphic. For this we identify the first presentation with G_{1} and the second with G_{2} and x and y with a and b respectively in G_{2}. Therefore we have

$$
G_{1}=<x, y \mid x^{7}=y^{6}=1, y x y^{-1}=x^{3}>
$$

and

$$
G_{2}=<a, b \mid a^{7}=b^{6}=1, b a b^{-1}=a^{5}>.
$$

Define $\varphi: G_{1} \longrightarrow G_{2}$ by $\varphi(x)=a$ and $\varphi(y)=b^{-1}$. Since $\varphi\left(y x y^{-1}\right)=\varphi(y) \varphi(x)[\varphi(y)]^{-1}=$ $\varphi\left(x^{3}\right)$, we have $b^{-1} a b=a^{3}$. (1)

Now

$$
\begin{aligned}
b a b^{-1} & =b^{-5} a b^{5}, \text { since } b^{6}=1 \\
& =b^{-4}\left(b^{-1} a b\right) b^{4}=b^{-4} a^{3} b^{4}, \text { by (1) } \\
& =b^{-3}\left(b^{-1} a^{3} b\right) b^{3}=b^{-3}\left(b^{-1} a: b\right)^{3} b^{3}=b^{-3} a^{2} b^{3}=b^{-2}\left(b^{-1} a^{2} b\right) b^{2} \\
& =b^{-2}\left(b^{-1} a b\right)^{2} b^{2}=b^{-2} a^{6} b^{2}=b^{-1}\left(b^{-1} a b\right)^{6}=b^{-1} a^{4} b=\left(b^{-1} a b\right)^{4}=a^{5} .
\end{aligned}
$$

Thus $G_{1} \cong G_{2}$.

4.3 The Wreath Product

In this section we introduce the concept of wreath products. Subsequently we study the hyperoctahedral group as an example of the application of this concept.

Lemma 4.3.1 Let X be a non-empty finite set and let G^{X} denote the set of all maps from X into the group G. For any $f, g \in G^{X}$ let fg be defined for all $x \in X$ by a pointwise multiplication $(f g)(x)=f(x) g(x)$. With respect with the operation of multiplication G^{X} is a group. Moreover G^{X}, is the direct product of $|X|$ isomorphic copies of G.

Proof. See Lemma 8.21 of [30].

Lemma 4.3.2 If G, H are groups and if H acts on a set X, then also H acts on G^{X} with action $f^{h}(x)=f\left(x h^{-1}\right)$, for all $x \in X, h \in H$ and $f \in G^{X}$. Moreover, the action of H on G^{X} determines a homomorphism $\varphi: H \longrightarrow \operatorname{Aut}\left(G^{X}\right)$ given by

$$
\varphi(h)=\varphi_{h}: f \longmapsto f^{h}
$$

for all $h \in H$, and $f \in G^{X}$.

Proof. Let $h, h_{1}, h_{2} \in H, x \in X$ and $f, g \in G^{X}$, then $f^{h_{1} h_{2}}(x)=f\left(x\left(h_{1} h_{2}\right)^{-1}\right)=$ $f\left(x h_{2}^{-1} h_{1}^{-1}\right)=f\left(\left(x h_{2}^{-1}\right) h_{1}^{-1}\right)=f^{h_{1}}\left(x h_{2}^{-1}\right)=\left(f^{h_{1}}\right)^{h_{2}}(x)$. So $f^{h_{1} h_{2}}=\left(f^{h_{1}}\right)^{h_{2}}$. Also $f^{1}(x)=f\left(x 1^{-1}\right)=f(x)$ and $(f g)^{h}(x)=(f g)\left(x h^{-1}\right)=f\left(x h^{-1}\right) g\left(x h^{-1}\right)=f^{h}(x) g^{h}(x)=$ $\left(f^{h} g^{h}\right)(x)$. Hence $(f g)^{h}=f^{h} g^{h}$.

Next, $\operatorname{Ker}\left(\varphi_{h}\right)$ consists of all those functions $f \in G^{X}$ for which $f^{h}(x)=f\left(x h^{-1}\right)=$ $1 \in G$ for all $x \in X$, hence for all $x h^{-1} \in X$, so $f=1 \in G^{X}$. Each φ_{h} is onto since $\varphi_{h}\left(f^{h^{-1}}\right)=\left(f^{h^{-1}}\right)^{h}=f$ for any $f \in G^{X}$, so $\varphi_{h} \in \operatorname{Aut}\left(G^{X}\right)$. Finally we have

$$
\begin{aligned}
\varphi_{h h^{\prime}}(f)(x) & =f^{h h^{\prime}}(x)=f\left(x\left(h^{\prime-1} h^{-1}\right)\right)=f\left(\left(x h^{-1}\right) h^{-1}\right)=f^{h}\left(x h^{-1}\right)=\left(f^{h}\right)^{h^{\prime}}(x) \\
& =\left(\varphi_{h} \varphi_{h}^{\prime}\right)(f)(x)
\end{aligned}
$$

Hence $\varphi_{h h^{\prime}}=\varphi_{h} \varphi_{h^{\prime}}$, for all $h, h^{\prime} \in H$.

Definition 4.3.3 Let G and H be finite groups with H a subgroup of the symmetric group S_{n}. The permutation wreath product, $G \backslash H$, is the semidirect product of a normal subgroup N by H, where N is the direct product of n copies of G. Thus, the elements of N are n-tuples $\left(g_{1}, g_{2}, \cdots, g_{n}\right)$ with each $g_{i} \in G$. The automorphism φ_{h} of G^{n} associated with a permutation h in H is defined by $\varphi_{h}\left(g_{1}, g_{2}, \cdots, g_{n}\right)=\left(g_{h(1)}, g_{h(2)}, \cdots, g_{h(n)}\right)$.

Now for $f, g \in G^{n}$ and $h, h^{\prime} \in H$ we define $(f, h) \odot\left(g, h^{\prime}\right)=\left(f \varphi_{h}(g), h h^{\prime}\right)$.

Remark 4.3.4 In the above construction H acts by conjugation on N, permuting the n direct factors. Also $|G|=|N| \times|H|=|G|^{n} \times|H|$.

4.3.1 The Hyperoctahedral Group

An important source of examples of permutation wreath product arises when the permutation group is taken to be the symmetric group S_{n}. In this section we study the group $C_{2} \imath S_{n}$. We show that this group is the semidirect product of n copies of C_{2} by the group S_{n}. The permutation wreath product $C_{2} \backslash S_{n}$ is also known as the hyperoctahedral group.

Definition 4.3.5 A permutation matrix is a matrix in which every row and column has a unique non zero entry and all non zero entries are equal to 1 .

Remark 4.3.6 Every permutation matrix can be obtained from the identity matrix by permuting columns(rows). Every permutation matrix is orthogonal and thus has an inverse, that is again a permutation matrix, namely its transpose. The set of all permutation matrices is a group under the multiplication of matrices.

Proposition 4.3.7 The set of all permutation matrices is a subgroup of $G L(n, \mathbb{F})$.

Proof. Since the inverse of a permutation matrix is again a permutation matrix, it suffices to show that the product of two permutation matrices is a permutation matrix. Let
$A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two permutation matrices and let $A B=C=\left(c_{i j}\right)$. For any i and j we have that $c_{i j}=1$ if there exists k, such that $a_{i k}=b_{k j}=1$, and that $c_{i j}=0$ otherwise. Now given i, there exists a unique k, such that $a_{i k}=1$, and there exists a unique j such that $b_{k j}=1$. Therefore, we have that $c_{i j}=1$ for one and only one j. In a similar manner we have that for a given $j, c_{i j}=1$ for exactly one i. Hence C is a permutation matrix.

Proposition 4.3.8 [1] The group of all permutation matrices is isomorphic to S_{n}.

Proof. See Proposition 5 of page 42 of [1].

Note 4.3.9 Let X be a set of cardinality n. We may assume that $X=\{1,2, \cdots, n\}$. The set of all subsets of X is denoted by $P(X)$, that is, $P(X)=\{A \mid A \subseteq X\}$.

Lemma 4.3.10 The set $P(X)$ is an elementary abelian 2-group of order 2^{n}, under the operation of symmetric difference.

Proof. It can be easily shown that $(P(X), \Delta)$ is an abelian group. Since for any $A \in P(X)$ we have that $A \Delta A=\emptyset=1_{P(X)}$, we have that every non-identity element of $P(X)$ has order 2 . Hence $P(X)$ is an elementary abelian 2-group.

For calculating the order of $P(X)$ we will consider those subsets X which have r elements each, where $0 \leq r \leq n$. It is known that the number of ways in which r elements can be selected out of n elements is $\binom{n}{r}=\frac{n!}{(n-r)!r!}$, which is therefore equal to the number of subsets of X having r elements each. Hence in total the number of subsets of X is $\sum_{r=0}^{n}\binom{n}{r}$. On substituting $a=1$ in the binomial expansion $(1+a)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{r}$, we get $\sum_{r=0}^{n}\binom{n}{r}=2^{n}$. This proves that X has exactly 2^{n} subsets. So $|P(X)|=2^{n}=$ $2^{|X|}$.

Remark 4.3.11 Let V be the vector space of dimension n over a field \mathbb{F}. Let $\left\{v_{1}, v_{2}, \cdots, v_{n-1}, v_{n}\right\}$ be an ordered basis for V. For each subset A of X we define an element f_{A} of $G L(n, \mathbb{F})$ as follows:

$$
f_{A}\left(v_{i}\right)= \begin{cases}-v_{i} & \text { if } i \in A \\ v_{i} & \text { if } i \notin A .\end{cases}
$$

We denote by D the set of all such mappings and in Proposition 4.3 .12 we shall see that D is an elementary abelian 2-subgroup of $G L(n, \mathbb{F})$ which is isomorphic to $P(X)$.

Proposition 4.3.12 [7] The group $D=\left\{f_{A} \mid A \subseteq X\right\}$ is an elementary abelian 2-subgroup of $G L(n, \mathbb{F})$ isomorphic to $P(X)$.

Proof. It suffices to show that every non-identity element of D has order 2. Let $|A|=$ $m<n$. By the observation made in Remark 4.3.11 we have that a non-identity element of D has the following representation in matrix form

$$
f_{A}=\left(\begin{array}{ccccccccc}
-1 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & -1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & -1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1
\end{array}\right)=\left(\begin{array}{cc}
-I_{m} & 0 \\
0 & I_{n-m}
\end{array}\right) .
$$

However easy computation shows that $f_{A}{ }^{2}=I_{n}$ for all $A \subseteq X$. So D is an elementary abelian 2-subgroup of $G L(n, \mathbb{F})$ isomorphic to $P(X)$.

Let G be the product of D and S_{n} in $G L(n, \mathbb{F})$. We show next that G is a split extension.

Theorem 4.3.13 [7] The group $G=D . S_{n}$ is a split extension of the group D by S_{n}.

Proof. We will show that (i) $D \unlhd G$, (ii) $D \cap S_{n}=I_{n}$.
(i) For any $\pi \in S_{n}$ the action of π on the ordered basis $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ of V is given by $\pi\left(v_{i}\right)=v_{\pi(i)}$. Now if $\pi \in S_{n}$ and $A \subseteq X$ we show that $\pi f_{A} \pi^{-1} \in D$. But

$$
\begin{aligned}
\left(\pi f_{A} \pi^{-1}\right)\left(v_{i}\right)=\pi f_{A}\left(\pi^{-1}\left(v_{i}\right)\right) & =\pi f_{A}\left(v_{\pi^{-1}(i)}\right) \\
& == \begin{cases}\pi\left(-v_{\pi^{-1}(i)}\right) & \text { if } \pi^{-1}(i) \in A \\
\pi\left(v_{\pi^{-1}(i)}\right) & \text { if } \pi^{-1}(i) \notin A\end{cases} \\
& = \begin{cases}-v_{i} & \text { if } i \in \pi(A) \\
v_{i} & \text { if } i \notin \pi(A)\end{cases} \\
& ==f_{\pi(A)}\left(v_{i}\right) .
\end{aligned}
$$

Hence $\pi f_{A} \pi^{-1}=f_{\pi(A)}$ and $f_{\pi(A)} \in D$, for any $A \subseteq X$. Therefore $D \unlhd G$.
(ii) Since the only diagonal permutation matrix is I_{n}, we have $D \cap S_{n}=\left\{I_{n}\right\}$.

Remark 4.3.14 From above we have that $|G|=\left|D S_{n}\right|=2^{n} . n!$. The group G constructed in Theorem 4.3.13 is called the hyperoctahedral group and it is a special case of the generalised symmetric group.

Chapter 5

Presentations of Group Extensions

Due to its role in the description of a group, in this chapter we will study the theory of group presentations. Based on the theory of group presentation we study the presentation of a group extension as well as that of a split extension. For the study of presentations we have widely used [[20], [23], [29]].

5.1 Presentation of a Group

Definition 5.1.1 A group F is said to be free on a subset $X \subseteq F$ if given any group G and any map $\alpha: X \longrightarrow G$ there is a unique homomorphism $\beta: F \longrightarrow G$ extending α, that is, having the property that $\beta(x)=\alpha(x), \forall x \in X$ or that the diagram

is commutative (that is $\alpha=\beta i$) where i is the inclusion map from X to F.

The set X is called a basis of F and $|X|$ is called the rank of F, denoted by $r(F)$.

Lemma 5.1.2 If F is free on X, then X generates F.

Proof. Let $H=<X>=\cap\{K \leq F, X \subseteq K\}$. That is H is the smallest subgroup of F which contains the set X. Let $\phi: X \longrightarrow H$ denote the inclusion map with $\phi^{\prime}: F \longrightarrow H$ the corresponding extension of ϕ. Then $\phi^{\prime}(x)==\phi(x), \forall x \in X$. Let $i^{\prime}: H \longrightarrow F$, denote the inclusion map from H to F. It can be seen from the diagram below that $i^{\prime} \phi^{\prime}$ is an extension of $i^{\prime} \phi$. But so does the identity map I_{F}. By uniqueness of the homomorphism $i^{\prime} \phi^{\prime}$, we have that $i^{\prime} \phi^{\prime}=I_{F}$. Thus $F=\operatorname{Im}\left(I_{F}\right)=\operatorname{Im}\left(i^{\prime} \phi^{\prime}\right)=\operatorname{Im}\left(\phi^{\prime}\right) \subseteq H$. Since H is a subgroup of F, we must have $F=H$ and hence X generates F.

Lemma 5.1.3 Let G be a group generated by a subset Y and let X be any set in a bijective correspondence $\alpha: X \longrightarrow Y$, with Y. Then there exists a homomorphism β from the group F with basis X, onto G such that $\beta(x)=\alpha(x)$ for all $x \in X$.

Proof. Since $\langle Y\rangle=G$ and $\alpha: X \longrightarrow G$, there exists a unique homomorphism $\beta: F \longrightarrow G$ such that $\beta(x)=\alpha(x)$ for all $x \in X$. We need to show that $\operatorname{Im}(\beta)=G$.

$$
\begin{aligned}
\operatorname{Im}(\beta) & =\{\beta(f) \mid f \in F\} \\
& \supseteq\{\beta(x) \mid x \in X\} \\
& \supseteq\{\alpha(x) \mid x \in X\}=Y, \text { since } \alpha \text { is a bijection. }
\end{aligned}
$$

So $\operatorname{Im}(\beta) \supseteq Y$ and hence $\operatorname{Im}(\beta) \supseteq<Y>==G$. Since $\operatorname{Im}(\beta) \subseteq G$, we must have $\operatorname{Im}(\beta)=Y$. Hence β is onto.

Proposition 5.1.4 Every group is isomorphic to a factor group of some free group.

Proof. Given a group G, let X be a set of generators of G. Let F be the free group generated by X. Let $\phi^{\prime}: F \longrightarrow G$, be the extension of the inclusion $\phi: X \longrightarrow G$. Then

$$
\begin{aligned}
\operatorname{Im}\left(\phi^{\prime}\right) & =\left\{\phi^{\prime}(f) \mid f \in F\right\} \\
& \supseteq\left\{\phi^{\prime}(x) \mid x \in X\right\} \\
& \supseteq\{\phi(x) \mid x \in X\}=X
\end{aligned}
$$

Thus $\operatorname{Im}\left(\phi^{\prime}\right) \supseteq<X>=G$ and since $\operatorname{Im}\left(\phi^{\prime}\right) \subseteq G$ we have that $\operatorname{Im}\left(\phi^{\prime}\right)=G$. Now if we let $\operatorname{Ker}\left(\phi^{\prime}\right)=K$, then we have that $F / K \cong \operatorname{Im}\left(\phi^{\prime}\right)=G$.

Definition 5.1.5 Let X be a set and F be a free group on X, that is, X generates F and we have no relations in the set $X^{ \pm}=\left\{x, x^{-1} \mid x \in X\right\}$. Let $R \subseteq F$ and let Δ_{R} denote the normal closure of R in F (that is, Δ_{R} is the normal subgroup of F generated by R). We say that G is a group generated by X with relations $\left\{r_{j}=e \mid r_{j} \in R\right\}$ if $G \cong F / \Delta_{R}$. We denote this by $G=\langle X \mid R\rangle$ and we say that $\langle X \mid R\rangle$ is a presentation for G.

Remark 5.1.6 If $|X|<\infty$ and $|R|<\infty$, then we say that G is finitely presented.

Theorem 5.1.7 Let F, G and H be groups, $\beta: F \longrightarrow G$ and $\alpha: F \longrightarrow H$ be homomorphisms such that $\operatorname{Im}(\beta)=G$ and $\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}(\alpha)$. Then there exists a homomorphism $\sigma: G \longrightarrow H$ such that $\sigma \beta=\alpha$.

Proof. We wish to prove the existence of $\sigma \in \operatorname{Hom}(G, H)$, such that the diagram

commutes.

Given $g \in G$, choose $f \in F$, such that $\beta(f)=g$ and define $\sigma(g)=\alpha(f)$. Such an f exists since $\operatorname{Im}(\beta)=G$ and σ is well defined because $\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}(\alpha)$.

$$
\begin{aligned}
\beta\left(f^{\prime}\right)=\beta(f) & \Leftrightarrow \beta\left(f^{\prime} f^{-1}\right)=1_{G} \\
& \Leftrightarrow f^{\prime} f^{-1} \in \operatorname{Ker}(\beta) \\
& \Rightarrow f^{\prime} f^{-1} \in \operatorname{Ker}(\alpha), \text { since } \operatorname{Ker}(\beta) \subseteq \operatorname{Ker}(\alpha) \\
& \Rightarrow \alpha\left(f^{\prime} f^{-1}\right)=1_{H} \\
& \Rightarrow \alpha\left(f^{\prime}\right)=\alpha(f) .
\end{aligned}
$$

Thus $\alpha(f)$ is independent of $f \in \beta^{-1}(g)$.
Now let $g, g^{\prime} \in G$ and $f, f^{\prime} \in F$, such that $\beta(f)=g$ and $\beta\left(f^{\prime}\right)=g^{\prime}$. Since β is a homomorphism, we have $\beta\left(f f^{\prime}\right)=\beta(f) \beta\left(f^{\prime}\right)=g g^{\prime}$ and

$$
\begin{aligned}
\sigma\left(g g^{\prime}\right) & =\alpha\left(f f^{\prime}\right), \text { by the definition of } \sigma \\
& =\alpha(f) \alpha\left(f^{\prime}\right), \text { since } \alpha \text { is a homomorphism } \\
& =\sigma(g) \sigma\left(g^{\prime}\right), \text { by the definition of } \sigma .
\end{aligned}
$$

Proving that σ is a homomorphism. Finally, for each $f \in F$ we have $(\sigma \beta)(f)=\sigma(\beta(f))=$ $\alpha(f)$ by definition of σ. Hence $\sigma \beta=\alpha$.

Proposition 5.1.8 (Substitution test) [20] Suppose that we are given a presentation $G=<X \mid R>$, a group H and a mapping $\phi: X \longrightarrow H$. Then ϕ extends to a homomorphism $\phi^{\prime \prime}: G \longrightarrow H$, if and only if for all $s \in X$ and $r \in R$ the result of substituting $\phi(x)$ for x in r yields the identity of H.

Proof. Let $G=<X \mid R>$ and consider the commutative diagram

where σ and i are inclusions and β is the natural homomorphism with $\operatorname{Ker}(\beta)=\Delta_{R}$ and $\beta(x)=x$ for all $x \in X$. Since F is free on X, we have that ϕ extends to a unique homomorphism $\phi^{\prime}: F \longrightarrow H$.

Assume that for all $x \in X$ and $r \in R$, the result of substituting $\phi(x)$ for x in r yields the identity of H. Then for $r \in R$ with $r=x_{i}^{m} x_{j}^{n} \cdots x_{k}^{l}$ we have

$$
\begin{aligned}
\phi^{\prime}(r) & =\phi^{\prime}\left(x_{i}^{m} x_{j}^{n} \cdots x_{k}^{l}\right) \\
& =\left[\phi^{\prime}\left(x_{i}\right)\right]^{m}\left[\phi^{\prime}\left(x_{j}\right)\right]^{n} \cdots\left[\phi^{\prime}\left(x_{k}\right)\right]^{l} \\
& =\left[\phi\left(x_{i}\right)\right]^{m}\left[\phi\left(x_{j}\right)\right]^{n} \cdots\left[\phi\left(x_{k}\right)\right]^{l} \\
& =1_{H} .
\end{aligned}
$$

Thus $r \in \operatorname{Ker}\left(\phi^{\prime}\right)$ and hence $R \subseteq \operatorname{Ker}\left(\phi^{\prime}\right)$. Now $\Delta_{R}=<R>=\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}\left(\phi^{\prime}\right)$, and then by Theorem 5.1.7 there exists $\phi^{\prime \prime}$ such that $\phi^{\prime \prime} \beta=\phi^{\prime}$. Since ϕ^{\prime} is an extension of ϕ, for all $x \in X$ we have $\phi(x)=\phi^{\prime}(x)=\left(\phi^{\prime \prime} \beta\right)(x)=\phi^{\prime \prime}(\beta(x))=\phi^{\prime \prime}(x)$. So $\phi^{\prime \prime}$ is an extension of ϕ on X.

Conversely assume that ϕ extends to a homomorphism $\phi^{\prime \prime}: G \longrightarrow H$, we show that the result of substituting $\phi(x)$ for x in r yields the identity of H. Let $f \in \operatorname{Ker}(\beta)$. Then $\beta(f)=1_{G}$ and hence $\phi^{\prime \prime}(\beta(f))=\phi^{\prime \prime}\left(1_{G}\right):=1_{H}$. Then $f \in \operatorname{Ker}\left(\phi^{\prime \prime} \beta\right)$ and hence $\operatorname{Ker}(\beta) \subseteq$ $\operatorname{Ker}\left(\phi^{\prime \prime} \beta\right)$. Now, $\operatorname{Ker}(\beta) \subseteq \operatorname{Ker}\left(\phi^{\prime \prime} \beta\right)$ implies that $R \subseteq \operatorname{Ker}\left(\phi^{\prime}\right) \quad(*)$. Let $r \in R$ then
$r=x_{i}^{m} \cdots x_{j}^{n}$ and by $\left({ }^{*}\right)$ we have that $\phi^{\prime}(r)=1_{H}$, so

$$
\begin{aligned}
1_{H} & =\phi^{\prime}\left(x_{i}^{m} \cdots x_{j}^{n}\right)=\left[\phi^{\prime}\left(x_{i}\right)\right]^{m} \cdots\left[\phi^{\prime}\left(x_{j}\right)\right]^{n} \\
& =\left[\phi\left(x_{i}\right)\right]^{m} \cdots\left[\phi\left(x_{j}\right)\right]^{n}, \text { since } \phi^{\prime}(x)=\phi(x) \forall x \in X .
\end{aligned}
$$

Note 5.1.9 In Proposition 5.1.8, if $\phi^{\prime \prime}$ exists then it must be unique. Assume $\phi^{\prime \prime}$ and $\phi_{1}^{\prime \prime}$ are two homomorphisms such that $\phi^{\prime \prime} \beta=\phi^{\prime}$ and $\phi_{1}^{\prime \prime} \beta=\phi^{\prime}$. Then

$$
\begin{aligned}
\left(\phi^{\prime \prime} \beta\right)(x)=\left(\phi_{1}^{\prime \prime} \beta\right)(x) & \Rightarrow \phi^{\prime \prime}(\beta(x))=\phi_{1}^{\prime \prime}(\beta(x)) \\
& \Rightarrow \phi^{\prime \prime}(x)=\phi_{1}^{\prime \prime}(x), \text { for all } x \in X .
\end{aligned}
$$

Thus $\phi^{\prime \prime}=\phi_{1}{ }^{\prime \prime}$.

Remark 5.1.10 $\phi^{\prime \prime}$ is an epimorphism if and only if $\langle\phi(X)\rangle=H$.

Proof. Suppose that $\phi^{\prime \prime}$ is an epimorphisrn. Then we have $\phi^{\prime \prime}(G)=H$. Hence $\phi^{\prime \prime}(<X>)=H$, so that $\left\langle\phi^{\prime \prime}(X)\right\rangle=H^{I}$. Since $\phi^{\prime \prime}$ is an extension of ϕ on X, we have $\phi^{\prime \prime}(X)=\phi(X)$. Thus $H=<\phi(X)>$. Conversely, assume that $H=<\phi(X)>$. We have $H=<\phi^{\prime \prime}(X)>=\phi^{\prime \prime}(<X>)=\phi^{\prime \prime}(G)$. This implies that $\phi^{\prime \prime}$ is onto.

Proposition 5.1.11 If H and K are given by presentations $H=<X \mid R>$ and $K=\langle Y| S>$, then $H \times K=\langle X, Y| R, S,[X, Y]>$ (*) where

$$
[X, Y]=\{[x, y] \mid x \in X, y \in Y\}=\left\{x y x^{-1} y^{-1} \mid x \in X, y \in Y\right\} .
$$

Proof. Let G be the group presented by (*). By Proposition 5.1.8 the inclusions $i: X \longrightarrow G$ and $j: Y \longrightarrow G$ extend to homomorphisms $\alpha: H \longrightarrow G$ and $\beta: K \longrightarrow G$ respectively. Since $(h, e)(e, k)$ and $(e, k)(h, e)$ are both equal to (h, k), then the groups H and K centralize one another in G, and we have a homomorphism $\sigma: H \times K \longrightarrow G$ defined by $(h, k) \longmapsto \alpha(h) \beta(k)$ such that $\sigma(h, e)=\alpha(h) \beta(e)=\alpha(h) 1_{G}=\alpha(h)=i(h)=h$ and $\sigma(e, k)=\alpha(e) \beta(k)=1_{G} \beta(k)=\beta(k)=j(k)=k$ for all $h \in X$ and $k \in Y$.

On the other hand, the mapping $\phi: X \cup Y \longrightarrow H \times K$ sending x to (x, e) and y to (e, y), extends to a homomorphism $\rho: G \longrightarrow H \times K$. Since $\sigma \rho: G \longrightarrow G$ and $\rho \sigma: H \times K \longrightarrow H \times K$ both fix generating sets (in $H \times K$ and G respectively), it follows that σ and ρ are mutually inverse, hence σ is an isomorphism.

5.2 Presentation of a group extension

Consider the extension $\left\{1_{N}\right\} \rightarrow N \xrightarrow{\alpha} \mathrm{G} \stackrel{\beta}{\beta} \mathrm{H} \rightarrow\left\{1_{H}\right\}$. Assume that H and N are given by the presentations $H=<X \mid R>$ and $N=<Y \mid S>$ respectively. We need to find a presentation for G using these presentations. We introduce for this effect the following notations:
$\bar{Y}=\alpha(Y)=\{\bar{y} \mid \bar{y}=\alpha(y), y \in Y\} \subseteq G$,
$\bar{S}=$ the set of all words in \bar{Y} obtained from S by replacing each y by $\bar{y}=\{\bar{s} \mid s \in S\}$,
$\bar{X}=\{\bar{x} \mid x \in X\}$ to be a set of liftings of $\{x \mid x \in X\}$ obtained by β, then \bar{X} is a transversal for $\operatorname{Im}(\alpha)$ in G. We can see that if $x \in H$ then there exists $\bar{x} \in G$, such that $\beta(\bar{x})=x$. Also, let \bar{R} be the set of all words in \bar{X} obtained from R by replacing each x in R by \bar{x}.

Lemma 5.2.1 (i) $\alpha(N)$ is generated by \bar{Y},
(ii) $\forall r \in R$ we have $\bar{r} \in \operatorname{Im}(\alpha)$.

Proof. (i) N is generated by Y, implies that $\alpha(N)$ is generated by $\alpha(Y)=\bar{Y}$.
(ii) Let $r=w(x \mid x \in X)$ be a word in X. Then $\bar{r}=w(\bar{x} \mid \bar{x} \in \bar{X})$ is a word in \bar{X}. Since $\beta(\bar{r})=1_{H}$, by Proposition 5.1 .8 we have that $\bar{r} \in \operatorname{Ker}(\beta)$. Now $\operatorname{Im}(\alpha)=\operatorname{Ker}(\beta)$ implies that $\bar{r} \in \operatorname{Im}(\alpha), \quad \forall r \in R$.

Note 5.2.2 Lemma 5.2.1 implies that each $\bar{r} \in \bar{R}$ can be written as a word v_{r} in \bar{Y}, since $\operatorname{Im}(\alpha)=\alpha(N)$ is generated by \bar{Y}. Let $\widetilde{R}=\left\{\bar{r}\left(v_{r}\right)^{-1} \mid r \in R\right\}$. Since $\operatorname{Im}(\alpha) \unlhd G$ and $\operatorname{Im}(\alpha)$ is generated by \bar{Y}, we have that $\forall \bar{x} \in \bar{X}$ and $\forall \bar{y} \in \bar{Y}, \bar{x} \bar{y}(\bar{x})^{-1} \in \operatorname{Im}(\alpha)$. So $\bar{x} \bar{y}(\bar{x})^{-1}$ is a word in \bar{Y}, say $w_{x, y}$. Now let $\bar{T}=\left\{\bar{x} \bar{y}(\bar{x})^{-1} w_{x, y}^{-1} \mid x \in X, y \in Y\right\}$. Then we have the following result.

Theorem 5.2.3 [20] If G is an extension of N by H, where $N=<Y \mid S>$ and $H=\langle X \mid R\rangle$, then G has the presentation $G=\langle\bar{X}, \bar{Y} \mid \widetilde{R}, \bar{S}, \bar{T}\rangle$.(*)

Proof. Let F be the group given by the presentation (*). Since all the relations in (*) hold in G, by applying Proposition 5.1.8 to $\left\{F, G, i, i^{\prime}\right\}$ where $i: \bar{X} \longrightarrow G$ and $i^{\prime}: \bar{Y} \longrightarrow G$ are inclusions we deduce that there is a homomorphism

$$
\begin{aligned}
\phi: F & \longrightarrow G \\
\bar{x} & \longmapsto \bar{x} \\
\bar{y} & \longmapsto \bar{y} .
\end{aligned}
$$

The restriction of ϕ to the subgroup $\langle\bar{Y}\rangle$ of F gives rise to a homomorphism

$$
\begin{aligned}
\phi^{\prime}=\phi \mid\langle\bar{Y}\rangle:<\bar{Y}> & \longrightarrow \operatorname{Im}(\alpha) \cong N \\
\bar{y} & \longmapsto y .
\end{aligned}
$$

Since the defining relations S of N (with each y replaced by \bar{y}) hold in $\langle\bar{Y}\rangle \leq F$, we have $\operatorname{Ker}\left(\phi^{\prime}\right)=\left\{\bar{y} \in\langle\bar{Y}>| y=1_{N}\right\}=\left\{1_{F}\right\}$ and $\operatorname{Im}\left(\phi^{\prime}\right)=<y \mid y \in N>=N$. Thus ϕ^{\prime} is a bijection. Now the presence of the relations \bar{T} in $\left({ }^{*}\right)$ means that $\langle\bar{Y}\rangle$ is a normal subgroup of F. Since $\phi(\langle\bar{Y}\rangle) \leq \operatorname{Im}(\alpha), \phi$ induces a homomorphism

$$
\begin{aligned}
\phi^{\prime \prime}: & F /<\bar{Y}> \\
\bar{x}<\bar{Y}> & \longrightarrow G / \operatorname{Im}(\alpha) \cong H \\
& \longmapsto x .
\end{aligned}
$$

The relations R defining H all hold (with x replaced by $\bar{x}\langle\bar{Y}\rangle$) in $F /\langle\bar{Y}\rangle$, so $\phi^{\prime \prime}$ must be a bijection. Thus we have a commutative diagram

with exact rows. Since ϕ^{\prime} and $\phi^{\prime \prime}$ are isomorphisms, it follows from Lemma 3.1.8 that ϕ is also an isomorphism. Hence the theorem is proved.

The following is a very useful result in finding a presentation for a split extension.

Corollary 5.2.4 [20] Let $N=\langle Y| S>$ and $H=\langle X| R>$ be groups. Let $\varphi: H \longrightarrow \operatorname{Aut}(N)$ be a homomorphism such that $\varphi_{x}(y)=w_{x, y}$ is a word in $Y^{ \pm}(x \in X, y \in Y)$. Then the semidirect product $N:^{\varphi} H$ of N by H has the following presentation

$$
G=N:^{\varphi} H=<X, Y \mid R, S, x y x^{-1} w_{x, y}^{-1}, x \in X, y \in Y>
$$

Proof. Since $G=N:^{\varphi} H$ is an extension of $N=\langle Y \mid S\rangle$, by $H=\langle X \mid R\rangle$, by the Theorem 5.2.3 the group G has the presentation $G=<\bar{X}, \bar{Y} \mid \tilde{R}, \bar{S}, \bar{T}>$ where $\bar{T}=\left\{\bar{x} \bar{y}(\bar{x})^{-1} w_{x, y}^{-1} \mid x \in X, y \in Y\right\}$. Now since the extension splits, there exists a homomorphism $\sigma: H \longrightarrow G$ such that $\beta \sigma=I_{H}$. So we can choose the generators of \bar{X} to be $\{\sigma(x) \mid x \in X\}$. Then for each $r \in R$ we have $\sigma(r)=\bar{r}=1_{G}$, and since each $\bar{r} \in \bar{R}$ is a
word in \bar{Y} written as v_{r}, all the v_{r} are equal to e in \tilde{R}. Identifying $\bar{X}=\{(x, e) \mid x \in X\}$ with X and $\bar{Y}=\{(e, x) \mid y \in Y\}$ with Y, we have the presentation

$$
G=<X, Y \mid R, S, x y x^{-1} w_{x, y}^{-1}, \quad x \in X, y \in Y>
$$

Example 5.2.5 (Metacyclic groups) Consider the group $G=N: H$ where $N \cong C_{n}$ and $H \cong C_{m}$ subject to the homomorphism φ. Let $N=\langle y| y^{n}=e>$ and $H=\left\langle x \mid x^{m}=e\right\rangle$. We know that $\operatorname{Aut}(N)$ is an abelian group with $|\operatorname{Aut}(N)|=\phi(n)$ where ϕ is the Euler totient function. Assume that $\varphi_{x}(y)=y^{k}, 0 \leq k \leq n-1$. Then it can be shown that $k^{m} \equiv 1(\bmod n)$. Now application of Corollary 5.2 .4 yields that

$$
\begin{aligned}
G & =<x, y\left|x^{m}=y^{n}=e, x y x^{-1}\left(y^{k}\right)^{-1}=e\right\rangle \\
& =<x, y \mid x^{m}=y^{n}=e, x y x^{-1}=y^{k}>
\end{aligned}
$$

Remark 5.2.6 (i) In the above example if $k=1$, then $G=N \times H$.
(ii) For $n=3$ and $m=2$, we have two different split extensions.
(1) $\varphi_{x}(y)=y$. So $k=1$ and hence $G=C_{3} \times C_{2}=C_{6}$.
(2) $\varphi_{x}(y)=y^{2}=y^{-1}$. So $k=2$ and hence

$$
G=<x, y \mid x^{2}=y^{3}=1, x y x^{-1}=y^{-1}>\cong S_{3} .
$$

Chapter 6

Groups of order $p q, p^{2} q$ and p^{3}

The structure of a non-abelian group of order $p q$ where p and q are distinct primes is well known. The existence of such groups is often demonstrated by constructing the group using group extensions. In this chapter we study the non-abelian groups of order $p q, p^{2} q$ and p^{3}. We exhibit two examples of groups of order $p q$, one in terms of permutations and the other in terms of matrices. In this chapter p and q are distinct primes.

6.1 Groups of order $p q$

Proposition 6.1.1 [1] Let H be a cyclic group and let N be an arbitrary group. If θ and ϑ are monomorphisms from H to $A u t(N)$ such that $\theta(H)=\vartheta(H)$, then we have $N:^{\theta} H \cong N:^{\vartheta} H$.

Proof. Let $H=\langle x\rangle$. Since $\theta(H)=\vartheta(H)$ by hypothesis, we have that $\theta(x)$ and $\vartheta(x)$ generate the same cyclic subgroup of $\operatorname{Aut}(N)$. Hence we can find $a, b \in \mathbb{Z}$ such that $[\theta(x)]^{a}=\vartheta(x)$ and $[\vartheta(x)]^{b}=\theta(x)$. As H is cyclic we have that $\theta\left(h^{a}\right)=\vartheta(h)$ and $\vartheta\left(h^{b}\right)=\theta(h)$ for any $h \in H$. Now define $\rho: N:{ }^{\vartheta} H \longrightarrow N:{ }^{\theta} H$ by $\rho(n h)=n h^{a}$. Then we have

$$
\begin{aligned}
\rho\left(n_{1} h_{1} n_{2} h_{2}\right) & =\rho\left(n_{1} \vartheta\left(h_{1}\right)\left(n_{2}\right) h_{1} h_{2}\right) \\
& =n_{1} \vartheta\left(h_{1}\right)\left(n_{2}\right)\left(h_{1} h_{2}\right)^{a} \\
& =n_{1} \theta\left(h_{1}^{a}\right)\left(n_{2}\right) h_{1}^{a} h_{2}^{a}, \text { since } H \text { is abelian } \\
& =n_{1} h_{1}{ }^{a} n_{2} h_{1}{ }^{-a} h_{1}{ }^{a} h_{2}^{a}=n_{1} h_{1}^{a} n_{2} h_{2}^{a} \\
& =\rho\left(n_{1} h_{1}\right) \rho\left(n_{2} h_{2}\right)
\end{aligned}
$$

which shows that ρ is homomorphism.

Similarly it can be checked that the map $\sigma: N:^{\theta^{\theta}} H \longrightarrow N:^{\vartheta} H$ defined by $\sigma(n h)=n h^{b}$ is a homomorphism. Now it suffices to show that ρ and σ are mutually inverses. The map $\rho \circ \sigma$ sends $n h \in N:^{\theta} H$ to $n h^{a b}$. But $\theta(x)=[\vartheta(x)]^{b}=\left([\theta(x)]^{a}\right)^{b}=\theta\left(x^{a b}\right)$ and θ is a monomorphism, therefore $x^{a b}=x$ and hence $h^{a b}=h$, for all $h \in H$. Therefore $\rho \circ \sigma$ sends $n h$ to $n h$, and so $\rho \circ \sigma$ is the identity map on $N:{ }^{\theta} H$. In a similar way it can be checked that $\sigma \circ \rho$ is the identity map on $N: \vartheta^{\vartheta} H$. Hence the result.

Lemma 6.1.2 Every group of order pq, has a normal subgroup.

Proof. Let G be a group of order $p q$ with p and q distinct primes. Without loss of generality, assume that $p>q$. Let $P \in S y l_{p}(G)$, then by Sylow's Theorem we have $n_{p} \equiv$ $1(\bmod p)$ and $n_{p} \mid q$, where n_{p} is the number of Sylow p-subgroups of G. So $n_{p}=1+k p$ and $q=k^{\prime} n_{p}$ for some $k, k^{\prime} \in \mathbb{Z}$. Then $q=k^{\prime}(1+k p)$. Since q is a prime, we have $\{1+k p=q$ and $\left.k^{\prime}=1\right\}$ or $\left\{1+k p=1\right.$ and $\left.k^{\prime}=q\right\}$. But $p>q$ implies that $1+k p=q$ is not possible, so $1+k p=1$ and hence $k=0$. Therefore $n_{p}=1$, so that $P \unlhd G$.

Theorem 6.1.3 If G is a finite group of order $p q$, where $p>q$. Then either G is cyclic or $G=<x, y>$ with relations $x^{p}=y^{q}=1$ and $y x y^{-1}=x^{i}$, where $i \not \equiv 1(\bmod p), i^{q} \equiv 1(\bmod p)$ and $q \mid p-1$.

Proof. Let G be a group of order $p q$. By Cauchy's Theorem there exist $x, y \in G$, such that $o(x)=p$ and $o(y)=q$. Let $P=\langle x\rangle$, then $P \in S y l_{p}(G)$. By Lemma 6.1.2 we have that $P \unlhd G$. Similarly if $Q=<y>$, then $Q \in \operatorname{Syl}_{q}(G)$ and using the same argument as that of Lemma 6.1.2 we get $n_{q}=1+k^{\prime} q$ where $k^{\prime}=0$ or $n_{q}=p$.

Case 1: If $k^{\prime}=0$, then $n_{q}=1$ and hence $Q \unlhd G$. Since P and Q are normal subgroups of G and $P \cap Q=\left\{1_{G}\right\}$ and $P Q=G$, we have $G=P \times Q \cong C_{p q}$.

Case 2: If $n_{q}=p \neq 1$, then $p \equiv 1(\bmod q)$, and so $q \mid p-1$. Then Q is not normal in G. Since $P \unlhd G, y x y^{-1}=x^{i}$ for some i. If $i \equiv 1(\bmod p)$, then we have that $x^{i}=x$ and so $y x y^{-1}=x$. Hence G is abelian and this shows that $Q \unlhd G$ which is a contradiction. So $i \not \equiv 1(\bmod p)$. Now $y x y^{-1}=x^{i}$ implies that $y^{q} x y^{-q}=x^{i^{q}}$, so that $x=x^{i^{q}}$. Thus $i^{q} \equiv 1(\bmod p)$. Hence G is given by the presentation

$$
G=<x, y \mid x^{p}=y^{q}=1, y x y^{-1}=x^{i}>
$$

where i and q satisfy relations $i^{q} \equiv 1(\bmod p), i \not \equiv 1(\bmod p)$ and $q \mid p-1$.

Proposition 6.1.4 There exists a non-abelian split extension of the form $C_{p}: C_{q}$ if and only if q divides $p-1$; and when this is the case the extension is uniquely determined (up to isomorphism).

Proof. If q divides $p-1$, the existence of the non-abelian split extension of the form $C_{p}: C_{q}$ has been dealt with in Theorem 6.1.3. We now show that if there exists a non-abelian split extension of order $p q$ of the form $C_{p}: C_{q}$, then $q \mid p-1$. We also prove the uniqueness of such extensions. Consider the split extension $C_{p}: C_{q}$. If $p<q$, then C_{q} acts trivially on C_{p} and hence $C_{p}: C_{q} \cong C_{p} \times C_{q}$ contradicting the assumption that $C_{p}: C_{q}$ is non-abelian. Thus $p>q$.

Let $C_{p}=<x>=\left\{1, x, x^{2}, \cdots, x^{p-1}\right\}=<x^{2}>=\cdots=<x^{p-1} \quad>$ and $C_{q}=<y>=$ $\left\{1, y, \cdots, y^{q-1}\right\}$. Then $C_{p} \cap C_{q}=\{1\}$. Define $f_{i}: C_{p} \longrightarrow C_{p}$ by $f_{i}(x)=x^{i}$ with $1 \leq i \leq p-1$. So that

$$
\operatorname{Aut}\left(C_{p}\right)=\left\{f_{i} \mid f_{i}(x)=x^{i}, \quad 1 \leq i \leq p-1\right\} \cong C_{p-1}
$$

Let $\varphi: C_{q} \longrightarrow \operatorname{Aut}\left(C_{p}\right) \cong C_{p-1}$ be given by $\varphi_{y}=f_{i}$. Then $\varphi_{y}=f_{1}$, or $\varphi_{y}=f_{i}$ and $2 \leq i \leq p-1$.

Suppose that $\varphi_{y}=f_{1}$. Then $\varphi_{y}(1)=f_{1}(1)=1, \varphi_{y}(x)=x, \cdots, \varphi_{y}\left(x^{p-1}\right)=f_{1}\left(x^{p-1}\right)=$ x^{p-1} and multiplication is defined by $x_{1} y_{1} x_{2} y_{2}=x_{1} y_{1} x_{2} y_{1}^{-1} y_{1} y_{2}=x_{1} x_{2}^{y_{1}} y_{1} y_{2}=x_{1} x_{2} y_{1} y_{2}$. Hence $C_{p}: C_{q}=C_{p} \times C_{q} \cong C_{p q}$. This contradicts the assumption that C_{p} : C_{q} is non-abelian. Hence we must have $\varphi_{y}=f_{i}$ where $2 \leq i \leq p-1$.

Let $\varphi_{y}=f_{i}$ where $2 \leq i \leq p-1$. Then. $\varphi_{y}(1)=f_{i}(1)=1, \varphi_{y}(x)=x^{i}, \cdots, \varphi_{y}\left(x^{p-1}\right)=$ $f_{i}\left(x^{p-1}\right)=\left(x^{p-1}\right)^{i}$. Since φ is an automorphism, we have that $\varphi_{y^{q}}=f_{i}^{q}=1_{\text {Aut }\left(C_{p}\right)}$. So $\varphi_{y^{q}}(x)=f_{i}^{q}(x)=x$ and $x^{i^{q}}=x$. Thus $x^{i^{q-1}}=1$ and $i^{q} \equiv 1(\bmod p)$. Now $2 \leq i \leq p-1$, implies that $x^{i} \neq x$, and so $i \not \equiv 1(\operatorname{modp})$. Also, since φ is a homomorphism from C_{q} into $\operatorname{Aut}\left(C_{p}\right)$, we have $\operatorname{Ker}(\varphi) \unlhd C_{q}$. Therefore $|\operatorname{Ker}(\varphi)| \mid q$ and so $\operatorname{Ker}(\varphi)=\{1\}$ or $\operatorname{Ker}(\varphi)=C_{q}$. If $\operatorname{Ker}(\varphi)=C_{q}$, then $\varphi=f_{1}$ which is a contradiction since $i>1$. Therefore $\operatorname{Ker}(\varphi)=\{1\}$. By the first isomorphism theorem, we have that $C_{q} / \operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi) \leq$ $\operatorname{Aut}\left(C_{p}\right)$ and hence C_{q} is isomorphic to a subgroup of $\operatorname{Aut}\left(C_{p}\right)$. Thus $q \mid p-1$ and we have that G is given by the presentation

$$
G=<x, y \mid x^{p}=y^{q}=1, y x y^{-1}=x^{i}, 1<i \leq p-1>
$$

with i and q satisfying relations $i \not \equiv 1(\bmod p), i^{q} \equiv 1(\bmod p)$ and $q \mid p-1$.
To show the uniqueness, assume that there exists another monomorphism from C_{q} to $\operatorname{Aut}\left(C_{p}\right)$. Let ψ be such a monomorphism. Since $\operatorname{Aut}\left(C_{p}\right)$ is a cyclic group of order $p-1$ and $q \mid p-1$ we have that $\operatorname{Aut}\left(C_{p}\right)$ contains a unique subgroup of order q. Let K be such a subgroup. Then we must have that $\varphi\left(C_{q}\right)=K=\psi\left(C_{q}\right)$. Now by Theorem 6.1.1 we have $C_{p}:{ }^{\varphi} C_{q} \cong C_{p}: \psi C_{q}$ and hence the result.

In the following we give two examples of non-abelian groups of order $p q$, one in term of permutations and the other in term of matrices.

Example 6.1.5 Let i, q and p satisfy relations $i \not \equiv 1(\bmod p), i^{q} \equiv 1(\bmod p)$ and $q \mid p-1$. Let x be the cyclic permutation (123 $\cdots p$) and y be the permutation

$$
y=\left(\begin{array}{ccccc}
1 & 2 & \cdots & p-1 & p \\
i+1 & 2 i+1 & \cdots & (p-1) i+1 & p i+1
\end{array}\right)
$$

where each of the integers $i+1,2 i+1, \cdots, p i+1$ is to be taken modulo p if it exceeds p. Then x and y generate a non-abelian group of order $p q$. For, it can be easily seen that $x^{p}=1$ and

$$
y x=x^{i} y=\left(\begin{array}{ccccc}
1 & 2 & \cdots & p-1 & p \\
2 i+1 & 3 i+1 & \cdots & p i+1 & i+1
\end{array}\right)
$$

so that $y x y^{-1}=x^{i}$. Now let $1 \leq k \leq p$. The permutation y^{q} maps k to the integer $k i^{q}+i^{q-1}+\cdots+i+1$ modulo p if it exceeds p. But $i^{q}-1=(i-1)\left(i^{q-1}+\cdots+i+1\right)$, and since $i^{q} \equiv 1(\bmod p)$ and $i \not \equiv 1(\bmod p)$, it follows that $i^{q-1}+\cdots+i+1 \equiv 0(\bmod p)$. Thus $y^{q}=1$.

Example 6.1.6 Let $x=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $y=\left(\begin{array}{cc}i & 0 \\ 0 & 1\end{array}\right)$ be 2×2 matrices over the field $\mathbb{F}=G F(q)$ of p elements, where i is to be taken modulo p if it exceeds p. We have that

$$
x^{p}=\left(\begin{array}{ll}
1 & p \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2} \quad \text { and } y^{q}=\left(\begin{array}{cc}
i^{q} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2}
$$

Let $G=\langle x, y\rangle$. Then $y x y^{-1}=\left(\begin{array}{cc}1 & i \\ 0 & 1\end{array}\right)=x^{i}$, and hence G is a non-abelian group of order $p q$.

6.2 Groups of order $p^{2} q$

In this section we will study the non-abelian groups of order $p^{2} q$ of type $C_{p^{2}}: C_{q}$ where p and q are primes and $p>q$. Before we embark into a more detailed discussion of the subject we need the following properties.

Remark 6.2.1 Similar to the argument used in Lemma 6.1.2 it can be shown that every group of order $p^{2} q$ has a normal subgroup of order p^{2}.

Proposition 6.2.2 Let p be a prime integer and let G be an elementary abelian p-group of order p^{n}, so that G is the direct product of n copies of C_{p}. The automorphism group of G is isomorphic to the group $G L(n, p)$ of invertible $n \times n$ matrices over the field \mathbb{Z}_{p}.

Proof. See Proposition 22.4 of [18].

Theorem 6.2.3 If p and q are two distinct prime integers such that $p>q$, then there are only two classes of non-isomorphic non-abelian groups of order $p^{2} q$ namely $C_{p^{2}}: C_{q}$ and $\left(C_{p} \times C_{p}\right): C_{q}$.

Proof. Let G be a group of order $p^{2} q$. Let N be a subgroup of order p^{2} in G. Then $N \unlhd G$. Let $H \in S y l_{q}(G)$, then $H \cong C_{q}$ and $H \cap N=\left\{1_{G}\right\}$ so $G=N H$ and hence $G=N: H$, a semidirect product of N by H. Since $|N|=p^{2}$, we have that N is either cyclic or isomorphic to $C_{p} \times C_{p}$.

Case 1 : Let N be a cyclic group of order p^{2} generated by x. Define $f_{i}: C_{p^{2}} \longrightarrow C_{p^{2}}$ by $f_{i}(x)=x^{i}$ with $1 \leq i \leq p(p-1)$, then

$$
\operatorname{Aut}\left(C_{p^{2}}\right)=\left\{f_{i} \mid f_{i}(x)=x^{i}, 1 \leq i \leq p^{2},\left(i, p^{2}\right)=1\right\} \cong C_{p^{2}}^{*} \cong C_{p} \times C_{p-1}
$$

Let $H=<y>$ and let $\varphi: H \longrightarrow \operatorname{Aut}\left(C_{p^{2}}\right) \cong C_{p} \times C_{p-1}$ given by $\varphi_{y}=f_{i}$. Since φ is a homomorphism, we have that $\varphi_{y^{q}}=f_{i}^{q}=1_{\operatorname{Aut}\left(C_{p^{2}}\right)}$. $(*)$ Then $\varphi_{y^{q}}(x)=f_{i}^{q}(x)=x$. So $x^{i^{q}}=x$ so that $i^{q} \equiv 1\left(\bmod p^{2}\right)$. Now $(*)$ implies that $f_{i}=1$ or $o\left(f_{i}\right)=q$. If $o\left(f_{i}\right)=q$ then we have that $q \mid p(p-1)$. Since q and p are primes, we deduce that $q \mid p-1$.

If $q=2$, we have that $i^{2} \equiv 1\left(\bmod p^{2}\right)$, so $p^{2} \mid i^{2}-1$, and hence $i \equiv 1\left(\bmod p^{2}\right)(1)$ or $i \equiv-1\left(\bmod p^{2}\right)$ (2) or $p \mid i+1$ and $p \mid i-1$. (3) Condition (3) implies that $p \mid 2$ so $p=2$ which is a contradiction since $p>q$. From condition (1) we have that $y x y^{-1}=x$, so that G is an abelian group. However condition (2) implies that G is a non-abelian group given by

$$
G=<x, y \mid x^{p^{2}}=y^{q}=1, y x y^{-1}=x^{-1}>.
$$

If $q \neq 2$, we have $G=<x, y \mid x^{p^{2}}=y^{q}=1, y x y^{-1}=x^{i} \quad 1<i \leq p^{2}>$ where i and q satisfy relations $i^{q} \equiv 1 \bmod p^{2}$ and $q \mid p-1$.

Now we will show that the split extension $C_{p^{2}}: C_{q}$ is unique up to isomorphism. Since $\varphi: H \longrightarrow \operatorname{Aut}\left(C_{p^{2}}\right)$, is a homomorphism we have that $\operatorname{Ker}(\varphi) \unlhd H$. So $\operatorname{Ker}(\varphi)=\{1\}$ or $\operatorname{Ker}(\varphi)=H$. The latter case implies that $\varphi_{y}=1_{\operatorname{Aut}\left(C_{p^{2}}\right)}$, hence G is abelian and $G \cong C_{p^{2}} \times C_{q}$. If $\operatorname{Ker}(\varphi)=\{1\}$ then φ is a monomorphism and we get that $H \cong \operatorname{Im}(\varphi) \leq$ $\operatorname{Aut}\left(C_{p^{2}}\right)$. Hence H is isomorphic to a subgroup of $\operatorname{Aut}\left(C_{p^{2}}\right)$. So, $q \mid p(p-1)$ and hence
$q \mid p-1$. Now assume that ψ is another monomorphism from $\psi: H \longrightarrow \operatorname{Aut}\left(C_{p^{2}}\right)$, given by $\psi_{y}=f_{j}$ for some $1<j \leq p(p-1)$. Then since $C_{q} \cong H \cong \varphi(H) \leq \operatorname{Aut}\left(C_{p^{2}}\right)$ and $C_{q} \cong H \cong \psi(H) \leq \operatorname{Aut}\left(C_{p^{2}}\right)$, we have that $\psi(H)=H=\varphi(H)$. Now the Proposition 6.1.1 implies the uniqueness of the split extension in this case.

Case 2: Let $N \cong C_{p} \times C_{p}=<x_{1}, x_{2}>$ and let $H \cong C_{q}$, with $H=<y>$. Let $f: C_{p} \times C_{p} \longrightarrow C_{p} \times C_{p}$, be given by $f\left(x_{1}\right)=x_{1}^{a} x_{2}^{c}$ and $f\left(x_{2}\right)=x_{1}^{b} x_{2}^{d}$, where $a, b, c, d \in \mathbf{Z}_{p}$. Then it is not difficult to show that $f \in \operatorname{Aut}\left(C_{p} \times C_{p}\right)$ if and only if $a d-b c \neq 0$. Hence

$$
\begin{aligned}
\text { Aut }\left(C_{p} \times C_{p}\right) & =\left\{f \mid f\left(x_{1}\right)=x_{1}^{a} x_{2}^{c}, \quad f\left(x_{2}\right)=x_{1}^{b} x_{2}^{d}, a d-b c \neq 0, a, b, c, d \in \mathbb{Z}_{p}\right\} \\
& \cong\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c \neq 0, a, b, c, d \in \mathbb{Z}_{p}\right\}=G L(2, p) .
\end{aligned}
$$

Now consider the group $G=N:^{\varphi} H$ where $\varphi: H \longrightarrow A u t\left(C_{p} \times C_{p}\right)$ is given by $\varphi_{y}\left(x_{1}\right)=$ $x_{1}^{a} x_{2}^{c}$ and $\varphi_{y}\left(x_{2}\right)=x_{1}^{b} x_{2}^{d}$ with $a, b, c, d \in \mathcal{Z}_{-} p$ and $a d-b c \neq 0$. Then the group G has the following presentation

$$
G=<x_{1}, x_{2}, y \mid x_{1}^{p}=x_{2}^{p}=y^{q}=1,\left[y, x_{1}\right]=x_{1}^{a-1} x_{2}^{c},\left[x_{1}, x_{2}\right]=1,\left[y, x_{2}\right]=x_{1}^{b} x_{2}^{d-1}>.
$$

Using the same argument as in case 1, it can be shown that the non-abelian split extension $\left(C_{p} \times C_{p}\right): C_{q}$ is unique up to isomorphism.

Example 6.2.4 Let $G=\left(C_{p} \times C_{p}\right):^{\varphi} C_{q}$ where φ is given by $\varphi_{y}\left(x_{1}\right)=x_{1} x_{2}$ and $\varphi_{y}\left(x_{2}\right)=$ x_{2}. Then G has the following presentation

$$
G=<x_{1}, x_{2}, y \mid x_{1}^{p}=x_{2}^{p}=y^{q}=1,\left[y, x_{1}\right]=x_{2},\left[x_{1}, x_{2}\right]=\left[y, x_{2}\right]=1>.
$$

6.3 Groups of order p^{3}

We now study the non-abelian groups of order p^{3} with p prime. We will assume the results mentioned in Lemma 6.3.2.

Lemma 6.3.1 Let $|G|=p^{n}$, where p is a prime integer. If $0 \leq k \leq n$, then there exist $N \unlhd G$ such that $|N|=p^{k}$.

Proof. Let $|Z(G)|=p^{m}$ where $1 \leq m \leq n$. Let $x \in Z(G)$ such that $o(x)=p$. Let $H=\langle x\rangle$. Then since $H \leq Z(G)$, we have that $H \unlhd G$ and hence G / H is a group of order p^{n-1}. We use induction on n to prove the result. Let $1 \leq k \leq n$. Let $k^{\prime}=k-1$. Since $0 \leq k^{\prime} \leq n-1$, by induction hypothesis there exists $W \unlhd G / H$ such that $|W|=p^{k^{\prime}}$. Hence $W=N / H$ for some $N \unlhd G$ such that $N \supseteq H$. Thus $|N|=|W| \cdot|H|=p^{k^{\prime}} . p=p^{k^{\prime}+1}=p^{k}$.

Lemma 6.3.2 If G is a non-trivial p-group of order p^{n} and N is a non-trivial normal subgroup of G, then $N \cap Z(G) \neq\left\{1_{G}\right\}$.

Proof. See Theorem 1, page 73 of [1].

Lemma 6.3.3 If G is a non-abelian group of order p^{3}, then $|Z(G)|=p$.

Proof. Since G is a non-abelian group, $G / Z(G)$ cannot be cyclic. Thus $|G / Z(G)| \neq p$ and hence $|Z(G)|=p$.

Lemma 6.3.4 Let G be a group and let $s, y \in G$. If $[x, y] \in Z(G)$, then $\left[x^{n}, y\right]=[x, y]^{n}$ and $x^{n} y^{n}=(x y)^{n}[x, y]^{\frac{n(n-1)}{2}}$ for any $n \in \mathbb{N}$.

Proof. Consider the first statement. We use induction on n to prove the result. Assume that the statement is true for $n \in \mathbb{N}$, then we have

$$
\begin{aligned}
{\left[x^{n+1}, y\right] } & =x^{n+1} y x^{-(n+1)} y^{-1}=x x^{n}\left(y^{-1} y\right) x^{-1} y^{-1}=x\left(x^{n} y x^{-n} y^{-1}\right) y x^{-1} y^{-1} \\
& =x\left[x^{n}, y\right] y x^{-1} y^{-1}=x[x y]^{n} y x^{-1} y^{-1}, \text { by induction hypothesis } \\
& =[x, y]^{n} x y x^{-1} y^{-1}, \text { since }[x, y] \in Z(G) \\
& =[x, y]^{n}[x, y]=[x, y]^{n+1}
\end{aligned}
$$

Now we consider the second statement. Again we use induction on n. Assume that the statement is true for $n \in \mathbb{N}$. Then we have

$$
\begin{aligned}
x^{n+1} y^{n+1} & =x x^{n} y\left(y x^{n}\right)^{-1} y x^{n} y^{n}=x\left(x^{n} y x^{-n} y^{-1}\right) y x^{n} y^{n} \\
& =x\left[x^{n}, y\right] y x^{n} y^{n}=x[x, y]^{n} y x^{n} y^{n}, \text { by the previous statement } \\
& =[x, y]^{n} x y x^{n} y^{n}=[x, y]^{n} x y(x y)^{n}[x, y]^{\frac{n(n-1)}{2}}, \text { by induction hypothesis } \\
& =[x, y]^{n}[x, y]^{\frac{n(n-1)}{2}}(x y)^{n+1}=(x y)^{n+1}[x, y]^{\frac{n(n+1)}{2}}
\end{aligned}
$$

Theorem 6.3.5 Let p be an odd prime. Then there is exactly one isomorphism class of non-abelian groups of order p^{3} having elements of order p^{2}.

Proof. Assume that G is a non-abelian group of order p^{3}. Let $x \in G$ such that $o(x)=p^{2}$ and let $N=\langle x\rangle$. Then N is a maximal subgroup of G and hence $N \unlhd G$. Let $y \in G-N$. Then we have that $o(y)=p$ or $o(y)=p^{2}$.

Case 1: Assume that $o(y)=p$. Let $H=\langle y\rangle$. We claim that $N \cap H=\left\{1_{G}\right\}$. Suppose that $N \cap H \neq\left\{1_{G}\right\}$. Let $y^{k} \in N$ for some $1 \leq k \leq p-1$. Since $(k, p)=1$, there exists $\alpha, \beta \in \mathbb{Z}$ such that $\alpha p+\beta k=1$. This implies that $y=y^{\alpha p+\beta k}=\left(y^{p}\right)^{\alpha} .\left(y^{k}\right)^{\beta}=\left(y^{k}\right)^{\beta} \in N$ which is a contradiction. Thus $N \cap H=\left\{1_{G}\right\}$ and $G=N: H$. So $G \cong C_{p^{2}}: C_{p}$.

Case 2: Assume that $o(y)=p^{2}$. Since N and $\langle y\rangle$ are non-trivial normal subgroups of G, we must have $N \cap Z(G) \neq\left\{1_{G}\right\} \neq<y>\cap Z(G)$ by Lemma 6.3.2. Since $|Z(G)|=p$ by Lemma 6.3.3, we must have $Z(G)=N \cap Z(G)=<y>\cap Z(G)$ and hence $Z(G)=<$ $x^{p}>=<y^{p}>$. So $y^{p}=x^{k p}$ for some $1 \leq k \leq p-1$. Let $x_{1}=x^{-k}$. Then $y \notin<x_{1}>$, $o\left(x_{1}\right)=p$ and $y^{p}=x_{1}{ }^{-p}$. Since $G / Z(G)$ is an abelian group, we have $\left\{1_{G}\right\} \neq G^{\prime} \subseteq Z(G)$ and hence $G^{\prime}=Z(G)$. So, in particular, $\left[x_{1}, y\right] \in Z(G)$ and hence $\left[x_{1}, y\right]^{p}=1_{G}$. Now by Lemma 6.3.4 we have

$$
x_{1}{ }^{p} y^{p}=\left(x_{1} y\right)^{p} \cdot\left[x_{1}, y\right]^{\frac{p(p-1)}{2}}=\left(x_{1} y\right)^{p}\left(\left[x_{1}, y\right]^{p}\right)^{\frac{p-1}{2}}=\left(x_{1} y\right)^{p},
$$

since $\frac{p-1}{2} \in \mathbb{Z}$. Now $x_{1}{ }^{p} y^{p}=x_{1}{ }^{p} x_{1}{ }^{-p}=1_{G}$ implies that $o\left(x_{1} y\right) \in\{1, p\}$. Since $\left.y \notin<x_{1}\right\rangle$, $o\left(x_{1} y\right) \neq 1$ and hence $o\left(x_{1} y\right)=p$. Now let $H=\left\langle x_{1} y\right\rangle$. Then $H \cong C_{p}$ and we can easily see that $N \cap H=\left\{1_{G}\right\}$. Hence $G=N: H \cong C_{p^{2}}: C_{p}$.

In both the above cases the uniqueness of the group G, up to isomorphism follows from Proposition 6.1.1.

Lemma 6.3.6 [1] Let N and H be groups, let $\psi: H \longrightarrow \operatorname{Aut}(N)$ be a homomorphism and let $f \in \operatorname{Aut}(N)$. If \bar{f} is the inner automorphism of $\operatorname{Aut}(N)$ induced by f, then $N:{ }^{\cdot \bar{f} \circ \psi} H \cong$ $N:{ }^{\psi} H$.

Proof. Define $\theta: N:{ }^{\psi} H \longrightarrow N:{ }^{\bar{f} \circ \psi} H$ by $\theta(n h)=f(n) h$. We have

$$
\begin{aligned}
\theta\left(n_{1} h_{1} n_{2} h_{2}\right) & =\theta\left(n_{1} \psi\left(h_{1}\right)\left(n_{2}\right) h_{1} h_{2}\right)=f\left(n_{1} \psi\left(h_{1}\right)\left(n_{2}\right) h_{1} h_{2}\right) \\
& =f\left(n_{1}\right) f\left(\psi\left(h_{1}\right)\left(n_{2}\right)\right) h_{1} h_{2}=f\left(n_{1}\right)\left[f \circ \psi\left(h_{1}\right) \circ f^{-1} \circ f\right]\left(n_{2}\right) \cdot h_{1} h_{2} \\
& =f\left(n_{1}\right)(\bar{f} \circ \psi)\left(h_{1}\right)\left(f\left(n_{2}\right)\right) \cdot h_{1} h_{2}=f\left(n_{1}\right) h_{1} f\left(n_{2}\right) h_{2}=\theta\left(n_{1} h_{1}\right) \theta\left(n_{2} h_{2}\right),
\end{aligned}
$$

which shows that θ is a homomorphism. But the homomorphism sending $n h \in N:{ }^{\prime} \circ \psi H$ to $f^{-1}(n) h \in N ः^{\psi} H$ is the inverse of θ, and therefore θ is an isomorphism.

Theorem 6.3.7 Let p be an odd prime. Then there is exactly one isomorphism class of non-abelian groups of order p^{3} having no elements of order p^{2}.

Proof. Let G be a non-abelian group of order p^{3} with no elements of order p^{2} by Lemma 6.3.1, there exists $N \unlhd G$ such that $|N|=p^{2}$. Obviously $N \cong C_{p} \times C_{p}$. Let $x \in G-N$. Then
we must have $o(x)=p$ and $H=\langle x\rangle$ is a cyclic group of order p. It is easy to see that $N \cap H=\left\{1_{G}\right\}$ and $G=N: H$. Thus $G \cong\left(C_{p} \times C_{p}\right): C_{p}$. Let ψ and φ be monomorphisms from C_{p} to $\operatorname{Aut}\left(C_{p} \times C_{p}\right) \cong G L(2, p)$. Then $\varphi\left(C_{p}\right)$ and $\psi\left(C_{p}\right)$ are subgroups of order p in $G L(2, p)$. Since $|G L(2, p)|=p(p-1)^{2}(p+1), \varphi\left(C_{p}\right)$ and $\psi\left(C_{p}\right)$ are Sylow p-subgroups of $\operatorname{Aut}\left(C_{p} \times C_{p}\right)$. Then $\varphi\left(C_{p}\right)$ and $\psi\left(C_{p}\right)$ are conjugate in $\operatorname{Aut}\left(C_{p} \times C_{p}\right)$ and hence there exists $f \in \operatorname{Aut}\left(C_{p} \times C_{p}\right)$ such that $\varphi\left(C_{p}\right)=f \psi\left(C_{p}\right) f^{-1}$.

Let \bar{f} be the inner automorphism of $\operatorname{Aut}\left(C_{p} \times C_{p}\right)$ induced by f. Then we have $\varphi\left(C_{p}\right)=$ $(\bar{f} \circ \psi)\left(C_{p}\right)$ and hence $\left(C_{p} \times C_{p}\right): \psi C_{p} \cong\left(C_{p} \times C_{p}\right) \cdot \bar{f} \circ \psi C_{p} \cong\left(C_{p} \times C_{p}\right):{ }^{\varphi} C_{p}$ by Proposition 6.1.1 and Lemma 6.3.6.

Remark 6.3.8 Let $N=\langle x\rangle \cong C_{p^{2}}$. As we have seen in the proof of Theorem 6.2.3 (case 1)

$$
\operatorname{Aut}\left(C_{p^{2}}\right)=\left\{f_{i} \mid f_{i}(x)=x^{i}, \quad 1 \leq i \leq p^{2},\left(i, p^{2}\right)=1\right\} \cong C_{p} \times C_{p-1}
$$

Consider the non-abelian extension $N:^{\varphi} H$ where $H=<y>\cong C_{p}$ and $\varphi: H \longrightarrow \operatorname{Aut}(N)$ is a homomorphism given by $\varphi_{y}=f_{i}$ with. $1 \leq i \leq p(p-1)$. Then $\varphi_{y}{ }^{p}=f_{i}^{p}=1_{A u t\left(C_{p^{2}}\right)}$ and hence we deduce that $x^{i^{p}}=x$ for all $x \in N$. So that $i^{p} \equiv 1\left(\bmod p^{2}\right)$. Now the group $N:{ }^{\varphi} H$ has the following presentation :

$$
N:^{\varphi} H=<x, y \mid x^{p^{2}}=y^{p}=1, y x y^{-1}=x^{i}, 1<i \leq p^{2},\left(i, p^{2}\right)=1, i^{p} \equiv 1\left(\bmod p^{2}\right)>
$$

If p is odd, then the above extension is unique, up to isomorphism by Theorem 6.3.5.
If $p=2$, then $p^{2} \mid i^{p}-1$ implies that $4 \mid i^{2}-1$. Since $1 \leq i \leq 4$ and $(i, 4)=1$, we have $i \in\{1,3\}$. If $i=1$ then $y x y^{-1}=x$, and $N:^{\varphi} H \cong C_{p^{2}} \times C_{p}$. If $i=3$, then

$$
N:^{\varphi} H=<x, y \mid x^{4}=y^{2}=: 1, y x y^{-1}=x^{3}=x^{-1}>\cong D_{8} .
$$

Remark 6.3.9 Let $N=<x_{1}, x_{2}>\cong C_{p} \times C_{p}$. As we have seen in the proof of Theorem 6.2.3 (case 2)

$$
\begin{aligned}
\operatorname{Aut}\left(C_{p} \times C_{p}\right) & =\left\{f \mid f\left(x_{1}\right)=x_{1}^{a} x_{2}^{c}, \quad f\left(x_{2}\right)=x_{1}^{b} x_{2}^{d} \quad a d-b c \neq 0, a, b, c, d \in \mathbf{Z}_{p}\right\} \\
& \cong G L(2, p) .
\end{aligned}
$$

Consider the extension $N:^{\varphi} H$ where $H=<y>\cong C_{p}$ and $\varphi: H \longrightarrow \operatorname{Aut}(N)$ is a homomorphism given by $\varphi_{y}\left(x_{1}\right)=x_{1}^{a} x_{2}^{c}$ and $\varphi_{y}\left(x_{2}\right)=x_{1}^{b} x_{2}^{d}$ with $a, b, c, d \in \mathbb{Z}_{p}$ and $a d-b c \neq 0$, . Then

$$
N:^{\varphi} H=<x_{1}, x_{2}, y \mid x_{1}^{p}=x_{2}^{p}=y^{p}=1, y x_{1} y^{-1}=x_{1}^{a} x_{2}^{c}, y x_{2} y^{-1}=x_{1}^{b} x_{2}^{d},\left[x_{1}, x_{2}\right]=1>.
$$

By Theorem 6.3.7, the non-abelian group of the above type is unique up to isomorphism.
For example, if $p=2$, and we let $\varphi_{y}\left(x_{1}\right)=x_{1}, \varphi_{y}\left(x_{2}\right)=x_{1} x_{2}$ we get the following presentation

$$
<x_{1}, x_{2}, y \mid x_{1}^{2}=x_{2}^{2}=y^{2}=1, x_{1} x_{2}=x_{2} x_{1}, y x_{1} y^{-1}=x_{1}, y x_{2} y^{-1}=x_{1} x_{2}>
$$

which produces a group isomorphic to D_{8}.

Note 6.3.10 From the above results we can deduce that unlike all other groups of order p^{3} the quaternion group Q cannot be writsen non-trivially as a semidirect product.

Chapter 7

Frattini Extensions

7.1 Frattini Extensions

In this section we give an account of the study of the Frattini extensions. For the study of Frattini extensions we have extensively used $[[2],[3],[6],[17]]$. In order to accomplish our study we need the following definitions.

Definition 7.1.1 (G-Module) Given a (multiplicativelly written) group G, a G-module is an (additivelly written) abelian group A together with an action of G on A such that the following axioms hold for all $a, b \in A, g, h \in G$.
(i) $(a+b) g=a g+b g$
(ii) $a(g h)=(a g) h$
(iii) $a 1_{G}=a$.

Definition 7.1.2 (Submodule) A subset B of $a G$-module A is said to be a submodule if B is a subgroup of A, and is closed under the action of G, that is, bg $\in B$ for all $b \in B$ and $g \in G$.

Remark 7.1.3 Abelian groups can be regarded as \mathbb{Z} - modules. Elementary abelian p groups can be regarded as modules over $G F(p)=\mathbb{Z} / p \mathbb{Z}$ (the naturally induced action is well defined as every element is annihilated by every multiple of p). Since \mathbf{Z}_{p} is a field, elementary abelian groups are in fact vector spaces.

Definition 7.1.4 Let G be a group. An extension (G, ϵ) is called a Frattini extension if the Kernel of ϵ is contained in the Frattini subgroup $\Phi(G)$ of G.

Here we use (G, ϵ) as a shortened representation for $\left\{1_{N}\right\} \rightarrow N \rightarrow \mathrm{G} \xrightarrow{\epsilon} \mathrm{H} \rightarrow\left\{1_{H}\right\}$.
Theorem 7.1.5 gives a useful characterization of the Frattini extensions for finite groups.

Theorem 7.1.5 Let G be an extension of N by H and assume that G is finite. Then G is a Frattini extension of N by H if and only if $G / \Phi(G) \cong H / \Phi(H)$.

Proof. Assume that G is a Frattini extension of N by H. Since $N \leq \Phi(G)$ and $G / N \cong H$, we have $\Phi(G) / N=\Phi(G / N) \cong \Phi(H)$. Thus $H / \Phi(H) \cong(G / N) / \Phi(G / N) \cong(G / N) / \Phi(G) / N \cong$ $G / \Phi(G)$.

Conversely assume that $G / \Phi(G) \cong H / \Phi(H)$. Then $G / \Phi(G) \cong(G / N) / \Phi(G / N)$, since $H \cong G / N$. Since $\Phi(G / N) \supseteq \Phi(G) N / N \cong \bar{\Phi}(G) / N \cap \Phi(G)$, we have

$$
\begin{aligned}
\frac{|G|}{|\Phi(G)|} & =\frac{|G|}{|N|} \times \frac{1}{|\Phi(G / N)|} \leq \frac{|G|}{|N|} \times \frac{|N \cap \Phi(G)|}{|\Phi(G)|} \\
& \Rightarrow 1 \leq \frac{|N \cap \Phi(G)|}{|N|} \\
& \Rightarrow|N| \leq|N \cap \Phi(G)| \\
& \Rightarrow|N|=|N \cap \Phi(G)| \\
& \Rightarrow N=N \cap \Phi(G) \\
& \Rightarrow N \leq \Phi(G) .
\end{aligned}
$$

The following Lemma [Lemma 7.1.6] is a stated problem by D.Holt and W.Plesken in [17]. We give a detailed proof for this Lemma and derive some new properties of the Frattini extensions.

Lemma 7.1.6 [17] Let (G, ϵ) be an extension in which $\operatorname{Ker}(\epsilon)$ is a finite G-module. If L is a maximal subgroup of G which does not contain $\operatorname{Ker}(\epsilon)$, then (L, α) is an extension with $\alpha=\left.\epsilon\right|_{L}$ and $\operatorname{Ker}(\alpha)$ a maximal G-submodule of $\operatorname{Ker}(\epsilon)$.

Proof. Let $\left\{1_{N}\right\} \rightarrow N \rightarrow \mathrm{G} \xrightarrow{\epsilon} \mathrm{H} \rightarrow\left\{1_{H}\right\}$ be the given extension where $N=\operatorname{Ker}(\epsilon)$. We need to show that:
(i) (L, α) is an extension.
(ii) $\operatorname{Ker}(\alpha)$ is a maximal G-submodule of $\operatorname{Ker}(\epsilon)$.
(i) Since $N \not \leq L$ and L is a maximal subgroup of $G, L<L N \leq G$. But L is maximal in G implies that $L N=G$. Now, since (G, ϵ) is an extension we have that $G / N \cong H$, so $L N / N=G / N \cong H$. But $L N / N \cong L / N \cap L \cong H$ implies that L is an extension of $N \cap L$ by H. Also note that

$$
\begin{aligned}
\operatorname{Ker}(\alpha) & =\left\{l \mid l \in L, \alpha(l)=1_{G}\right\}=\left\{l \mid l \in L, \epsilon(l)=1_{G}\right\} \\
& =\{l \mid l \in L, l \in \operatorname{Ker}(\epsilon)\}=L \cap \operatorname{Ker}(\epsilon)=L \cap N .
\end{aligned}
$$

(ii) Suppose to the contrary, that is, $\operatorname{Ker}(\alpha)=N \cap L$ is not a maximal G-submodule of $\operatorname{Ker}(\epsilon)$. Then there exists a G-submodule K of N such that $N \cap L<K<N$. Since $N \not \subset L$, we deduce that $L<L K<G$. This contradicts the maximality of L in G. Hence $N \cap L$ is a maximal G-submodule of $\operatorname{Ker}(\varepsilon)$.

Now if $\operatorname{Ker}(\epsilon)$ is an irreducible G-module we use Lemma 7.1.6 to prove the following result.

Theorem 7.1.7 Let $\operatorname{Ker}(\epsilon)$ be an irreducible G-module. Then (G, ϵ) is a Frattini extension if and only if it is non-split.

Proof. Suppose that $\left\{1_{N}\right\} \rightarrow N \rightarrow \mathrm{G} \xrightarrow{\epsilon} \mathrm{H} \rightarrow\left\{1_{H}\right\} \quad(*) \quad$ is a non-split extension. We need to show that $N=\operatorname{Ker}(\epsilon)$ is a subgroup of $\Phi(G)$. If $N \not \leq \Phi(G)$, then there exists L a maximal subgroup of G such that $N \not \subset L$ and so by Lemma 7.1.6 we have that (L, α) is an extension, with $\alpha=\left.\epsilon\right|_{L}$. Moreover, $\operatorname{Ker}(\alpha)$ is a maximal G-submodule of $\operatorname{Ker}(\epsilon)$ and since $\operatorname{Ker}(\epsilon)$ is irreducible as a G-module we have that $\operatorname{Ker}(\alpha)=N \cap L=\left\{1_{G}\right\}$ or $\operatorname{Ker}(\alpha)=N$. If $\operatorname{Ker}(\alpha)=N$ we have that $N \leq L$ which is a contradiction. Hence $\operatorname{Ker}(\epsilon)=\left\{1_{G}\right\}$ and therefore α is a monomorphism. But α is an epimorphism, since (L, α) is an extension. Hence α is an isomorphism, and so $\alpha^{-1}: H \longrightarrow L$ is also an isomorphism. Since $L \leq G$, we have that $\alpha^{-1}: H \longrightarrow G$ is a monomorphism. Now for all $h \in H$ we have

$$
\begin{aligned}
\left(\epsilon \alpha^{-1}\right)(h)=\epsilon\left(\alpha^{-1}(h)\right) & =\epsilon(l) \quad \text { where } \alpha^{-1}(h)=l \text { for some } l \in L \\
& =\alpha(l)=h .
\end{aligned}
$$

Hence $\left(\epsilon \alpha^{-1}\right)=I_{H}$, and so $\left(^{*}\right)$ splits, which is a contradiction.
Conversely, suppose that (G, ϵ) is a Frattini extension. We need to show that (*) is non-split. Suppose that ($*$) splits. Then there exists a homomorphism say ϕ from H into G such that $\epsilon \phi=I_{H}$, and so ϕ is a monomorphism and therefore $H \cong \operatorname{Im}(\phi)$. Hence $\phi: H \longrightarrow \operatorname{Im}(\phi)$ is an isomorphism. Also, we have that $\operatorname{Im}(\phi) \leq G$ and $\operatorname{Ker}(\epsilon) \leq G$. It is easy to show that $G=\operatorname{Ker}(\epsilon) \cdot \operatorname{Im}(\alpha)$ and $\operatorname{Ker}(\epsilon) \cap \operatorname{Im}(\alpha)=\left\{1_{G}\right\}$. Thus $G=\operatorname{Ker}(\epsilon): \operatorname{Im}(\phi)$ is a split extension. Since $\operatorname{Im}(\phi) \nsupseteq \operatorname{Ker}(\epsilon), \operatorname{Im}(\phi)$ is not a maximal subgroup of G. Thus
there exists L a maximal subgroup of G such that $\operatorname{Im}(\phi)<L<G$. But maximality of L implies that $L \supseteq \Phi(G) \supseteq \operatorname{Ker}(\epsilon)$. Now, $\operatorname{Ker}(\epsilon) \leq L$ and $\operatorname{Im}(\phi)<L$ implies that $L \supseteq \operatorname{Ker}(\epsilon) \operatorname{Im}(\phi)=G$, which is contradiction.

Remark 7.1.8 A simplest example of a Frattini extension is a non-split extension with $\operatorname{Ker}(\epsilon)$ an irreducible G-module.

Corollary 7.1.9 If (G, ϵ) is a Frattini exiension, then (G, ϵ) is non-split.

Proof. The proof follows from the argument used in the second part of the proof of Theorem 7.1.7 or alternatively we can use Lemma 2.4.16.

Theorem 7.1.10 If (G, ϵ) is a Frattini extension, then $(\Phi(G), \epsilon)$ is also a Frattini extension.

Proof. Since (G, ϵ) is an extension, we have $G / \operatorname{Ker}(\epsilon) \cong H$, and so $\Phi(G / \operatorname{Ker}(\epsilon)) \cong \Phi(H)$. By Lemma 2.4.14 (ii), we have that $\Phi(G / \operatorname{Ker}(\epsilon))=\Phi(G) / \operatorname{Ker}(\epsilon)$ and hence $\Phi(G)=$ $\operatorname{Ker}(\epsilon) \Phi(H)$.

Theorem 7.1.11 [17] Let G be a finite group and let (G, ϵ) be a Frattini extension of N by H with H a perfect group. Then G is perfect.

Proof. Suppose that G is not perfect. Since H is perfect we have that $H=H^{\prime}$ and since G is an extension we have that $G / \operatorname{Ker}(\epsilon) \cong H$. Set $N=\operatorname{Ker}(\epsilon)$. Thus we have that $G / N \cong H$. Now $(G / N)^{\prime} \cong H^{\prime}=H$ imply that $(G / N)^{\prime} \cong G / N$. (*) Since $G^{\prime} N \leq G$ and $G^{\prime} N \supseteq N$, we have $(G / N)^{\prime}=G^{\prime} N / N \leq G / N$. So by $\left({ }^{*}\right)$ we have that $G^{\prime} N / N=G / N$. Since G is finite and $G^{\prime} N \leq G$, we have that $\left|G^{\prime} N\right|=|G|$. Hence $G^{\prime} N=G$. Since $N \leq \Phi(G)$, then by Lemma 2.4.16 we get a contradiction. Hence G is perfect.

In [6] J.Cossey, O. Këgel and L. Kovács stated the following results (Theorem 7.1.12, Proposition 7.1.13 and Theorem 7.1.14) about Frattini extensions to which we give detailed proofs.

Theorem 7.1.12 [6] If $\epsilon: L \longrightarrow M$ is an epimorphism of finite groups and G is minimal among the subgroups of L, with $\epsilon(G)=M$, then $\left(G,\left.\epsilon\right|_{G}\right)$ is a Frattini extension.

Proof. Let K be a maximal subgroup of G such that $\operatorname{Ker}\left(\left.\epsilon\right|_{G}\right) \nsubseteq K$ then we have $K<\operatorname{K.Ker}\left(\left.\epsilon\right|_{G}\right) \leq G$. Now maximality of K implies that $\operatorname{K.Ker}\left(\left.\epsilon\right|_{G}\right)=G$. Also we
have that $\operatorname{Ker}(\epsilon) \unlhd L, \operatorname{Ker}(\epsilon) \supseteq \operatorname{Ker}\left(\left.\epsilon\right|_{G}\right)$ and $K \leq L$. Thus $K \leq G=\operatorname{K.Ker}\left(\left.\epsilon\right|_{G}\right) \leq$ $K . \operatorname{Ker}(\epsilon) \leq L$. (1) Let $W=\operatorname{K.Ker}(\epsilon)$, then

$$
\begin{aligned}
\epsilon(W) & =\{\epsilon(k x) \mid k \in K \quad \text { and } x \in \operatorname{Ker}(\epsilon)\} \\
& =\{\epsilon(k) \epsilon(x) \mid k \in K \quad \text { and } x \in \operatorname{Ker}(\epsilon)\}=\{\epsilon(k) \mid k \in K\}=\epsilon(K) .
\end{aligned}
$$

Now by (1) we have that $\epsilon(G) \leq \epsilon(W) \leq \epsilon(L)$, that is $M \leq \epsilon(W) \leq M$. Thus $\epsilon(W)=M$ and hence $\epsilon(K)=M$. Since $K<G$ and $\epsilon(K)==M$, minimality of G produces a contradiction. It follows that $\operatorname{Ker}\left(\left.\epsilon\right|_{G}\right)$ is contained in every maximal subgroup of G and hence in the Frattini subgroup of G. Therefore $\left(G,\left.\epsilon\right|_{G}\right)$ is a Frattini extension.

Proposition 7.1.13 [6] If (G, α) is a Frattini extension and $\beta: F \longrightarrow G$ is a homomorphism, such that $\alpha \beta$ is surjective, then β is surjective.

Proof. Let $K=\operatorname{Im}(\beta)=\beta(F)$. Since $\alpha \beta$ is surjective, we have that $G=(\alpha \beta)(F)=$ $\alpha(\beta(F))=\alpha(K)$. So for any $g \in G$, there exists $k \in K$ such that $\alpha(g)=\alpha(k)$. We have

$$
\begin{aligned}
\alpha(g)=\alpha(k) & \Rightarrow \alpha\left(g k^{-1}\right)=1_{G} \\
& \Rightarrow g k^{-1} \in \operatorname{Ker}(\alpha) \\
& \Rightarrow g \in \operatorname{Ker}(\alpha) K, \forall g \in G \\
& \Rightarrow G \subseteq \operatorname{Ker}(\alpha) K . \quad \text { (1) }
\end{aligned}
$$

Now $K \leq G$ and $\operatorname{Ker}(\alpha) \unlhd G$ implies that $\operatorname{Ker}(\alpha) K \leq G$. Hence by (1) we have that $G=\operatorname{Ker}(\alpha) K$. Since $\operatorname{Ker}(\alpha) \leq \Phi(G)$, by Lemma 2.4.16 we deduce that $K=G$ and hence β is surjective.

Theorem 7.1.14 [6] Composites of Frattini extensions are Frattini extensions.

Proof. Consider $\{1\} \rightarrow \operatorname{Ker}(\alpha) \rightarrow \mathrm{G} \xrightarrow{\alpha} \mathrm{H} \rightarrow\{1\}$ with α an epimorphism and $\operatorname{Ker}(\alpha) \leq$ $\Phi(G)$ and let $\{1\} \rightarrow \operatorname{Ker}(\beta) \rightarrow \mathrm{H} \xrightarrow{\beta} \mathrm{M} \rightarrow\{1\}$ with β an epimorphism and $\operatorname{Ker}(\beta) \leq \Phi(H)$. We need to show that $\beta \alpha$ is an epimorphism and that $\operatorname{Ker}(\beta \alpha) \leq \Phi(G)$.
(i) $\beta \alpha$ is an epimorphism: Since $h \in H$, then there exists $g \in G$ such that $\alpha(g)=h$. If $m \in M$, then there exists $h \in H$ such that $\beta(h)=m$. Hence $(\beta \alpha)(g)=\beta(\alpha(g))=\beta(h)=$ m.
(ii) $\operatorname{Ker}(\beta \alpha) \leq \Phi(G):$ Since $\alpha(G)=H$ by Remark 2.4.5 we have that $\alpha(\Phi(G))=$ $\Phi(\alpha(G))=\Phi(H)$. Thus $\Phi(G)=\alpha^{-1}(\Phi(H))$, the inverse image of $\Phi(H)$. But,

$$
\operatorname{Ker}(\beta \alpha)=\left\{g \mid(\beta \alpha)(g)=1_{M}, g \in G\right\}
$$

$$
\begin{aligned}
& =\left\{g \mid \beta(\alpha(g))=1_{M}, g \in G\right\} \\
& =\{g \mid \alpha(g) \in \operatorname{Ker}(\beta), g \in G\} \\
& =\left\{g \mid g \in \alpha^{-1}(\operatorname{Ker}(\beta))\right\} .
\end{aligned}
$$

Since $\operatorname{Ker}(\beta) \leq \Phi(H)$, we have that $\alpha^{-1}(\operatorname{Ker}(\beta)) \leq \alpha^{-1}(\Phi(H))=\Phi(G)$. Hence $\operatorname{Ker}(\beta \alpha) \leq$ $\Phi(G)$.

The following theorem is a straightforward consequence of Theorem 2.4.27.

Theorem 7.1.15 Let N be a finite abelian group. Then there exists a Frattini extension (G, ϵ) with $\operatorname{Ker}(\epsilon)=N$.

Proof. Since N is abelian, $\operatorname{Inn}(N)=\left\{1_{G}\right\}$ and hence $\operatorname{Inn}(N) \leq \Phi(\operatorname{Aut}(N))$. Now by Theorem 2.4.27 we deduce that there exists a finite group G with $N \unlhd G$ and $N \leq \Phi(G)$. If ϵ is the natural homomorphism from G into G / N, then $\operatorname{Ker}(\epsilon)=N$. Hence (G, ϵ) is a Frattini extension with $\operatorname{Ker}(\epsilon)=N$.

Now if G is a p-group we will show that; $\Phi(G)$ is an extension of G^{\prime} by $\Phi\left(G / G^{\prime}\right)$.

Theorem 7.1.16 If G is a p-group, then $\Phi(G)$ is an extension of G^{\prime} by $\Phi\left(G / G^{\prime}\right)$.

Proof. Since G is a p-group, G is nilpotent and hence $G^{\prime} \leq \Phi(G)$. Also $G^{\prime} \unlhd G$ therefore $G^{\prime} \unlhd \Phi(G)$. Since $\Phi\left(G / G^{\prime}\right)=\Phi(G) / G^{\prime}$ by Lemma 2.4.14, we deduce that $\Phi(G)$ is an extension of G^{\prime} by $\Phi\left(G / G^{\prime}\right)$.

Remark 7.1.17 The extension given in Theorem 7.1.16 is not a Frattini extension in general. For example take $G=Q$, the group of quaternions or $G=D_{8}$. It can be easily checked that $G^{\prime}=\Phi(G) \cong C_{2}$ and $\Phi(\Phi(G))=\left\{1_{G}\right\}$. Thus $G^{\prime} \not \leq \Phi(\Phi(G))$ and hence the extension $\Phi(G)$ of G^{\prime} by $\Phi\left(G / G^{\prime}\right)$ is not a 1 rattini extension.

In the following we determine all the non-abelian groups of order 16 and 32 for which $G^{\prime} \leq \Phi(\Phi(G))$, respectively.

Example 7.1.18 From the library of small groups of GAP4 [33] we found that there are 14 non-isomorphic groups of order 16. Only 9 of these groups are non-abelian. We consider these non-abelian groups and label them as G_{i} with $1 \leq i \leq 9$ as listed in the first column of Table 1. The remaining columns of Table 1 have been computed by using GAP. It can be observed from Table 1 that the group G_{3} is the only non-abelian group of order 16 for which $\Phi(G)$ is a Frattini extension of G^{\prime} by $\Phi\left(G / G^{\prime}\right)$.

Table 1: Non-abelian groups of order 16

G	$\Phi(G)$	G^{\prime}	$\Phi(\Phi(G))$
G_{1}	V_{4}	C_{2}	$\left\{1_{G}\right\}$
G_{2}	V_{4}	C_{2}	$\left\{1_{G}\right\}$
G_{3}	C_{4}	C_{2}	C_{2}
G_{4}	C_{4}	C_{4}	C_{2}
G_{5}	C_{4}	C_{4}	C_{2}
G_{6}	C_{4}	C_{4}	C_{2}
G_{7}	C_{2}	C_{2}	$\left\{1_{G}\right\}$
G_{8}	C_{2}	C_{2}	$\left\{1_{G}\right\}$
G_{9}	C_{2}	C_{2}	$\left\{1_{G}\right\}$

Similarly there are 51 non-isomorphic groups of order 32 . Only 44 of these are nonabelian and are labeled as G_{i} with $1 \leq i \leq 44$. These groups are listed in the first column of Table 2. As in Table 1, we completed the remaining columns of Table 2. We observe that there are 6 possible candidates among $G_{i}, 1 \leq i \leq 44$ for which we may have $G^{\prime} \leq \Phi(\Phi(G))$, namely $G_{2}, G_{3}, G_{10}, G_{14}, G_{32}$ and G_{33}. It is clear that G_{14}, G_{32} and G_{33} satisfy the condition $G^{\prime} \leq \Phi(\Phi(G))$. Further investigation eliminates G_{3} and G_{10}. Hence G_{2}, G_{14}, G_{32} and G_{33} are the only non-abelian groups of order 32 for which $\Phi(G)$ is a Frattini extension of G^{\prime} by $\Phi\left(G / G^{\prime}\right)$.

Table 2 : Non-abelian groups of order 32

G	$\Phi(G)$	G^{\prime}	$\Phi(\Phi(G))$
G_{1}	$C_{2^{3}}$	C_{2}	$\left\{1_{G}\right\}$
G_{2}	$C_{4} \times C_{2}$	C_{2}	C_{2}
G_{3}	$C_{4} \times C_{2}$	C_{2}	C_{2}
G_{4}	$C_{2^{3}}$	V_{4}	$\left\{1_{G}\right\}$
G_{5}	$C_{4} \times C_{2}$	V_{4}	C_{2}
G_{6}	$C_{4} \times C_{2}$	V_{4}	C_{2}
G_{7}	$C_{4} \times C_{2}$	C_{4}	C_{2}
G_{8}	$C_{4} \times C_{2}$	C_{4}	C_{2}
G_{9}	$C_{4} \times C_{2}$	C_{4}	C_{2}
G_{10}	$C_{4} \times C_{2}$	C_{2}	C_{2}
G_{11}	$C_{4} \times C_{2}$	C_{4}	C_{2}
G_{12}	$C_{4} \times C_{2}$	C_{4}	C_{2}
G_{13}	$C_{4} \times C_{2}$	C_{4}	C_{2}
G_{14}	C_{8}	C_{2}	C_{4}
G_{15}	C_{8}	C_{8}	C_{4}
G_{16}	C_{8}	C_{8}	C_{4}
G_{17}	C_{8}	C_{8}	C_{4}
G_{18}	V_{4}	C_{2}	$\left\{1_{G}\right\}$
G_{19}	V_{4}	C_{2}	$\left\{1_{G}\right\}$
G_{20}	V_{4}	C_{2}	$\left\{1_{G}\right\}$
G_{21}	V_{4}	C_{2}	$\left\{1_{G}\right\}$
G_{22}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{23}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{24}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{25}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{26}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{27}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{28}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{29}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{30}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{31}	V_{4}	V_{4}	$\left\{1_{G}\right\}$
G_{32}	C_{4}	C_{2}	C_{2}
G_{33}	C_{4}	C_{2}	C_{2}
G_{34}	C_{4}	C_{4}	C_{2}

Table 2 : Non-abelian groups of order 32(continued)

G	$\Phi(G)$	G^{\prime}	$\Phi(\Phi(G))$
G_{35}	C_{4}	C_{4}	C_{2}
G_{36}	C_{4}	C_{4}	C_{2}
G_{37}	C_{4}	C_{4}	C_{2}
G_{38}	C_{4}	C_{4}	C_{2}
G_{39}	C_{4}	C_{4}	C_{2}
G_{40}	C_{2}	C_{2}	$\left\{1_{G}\right\}$
G_{41}	C_{2}	C_{2}	$\left\{1_{G}\right\}$
G_{42}	C_{2}	C_{2}	$\left\{1_{G}\right\}$
G_{43}	C_{2}	C_{2}	$\left\{1_{G}\right\}$
G_{44}	C_{2}	C_{2}	$\left\{1_{G}\right\}$

Definition 7.1.19 A group G is called a minimal Frattini extension of N by H, if it is a Frattini extension of N by H and N is a minimal normal subgroup of G.

Lemma 7.1.20 Let N be a minimal normal subgroup of G. If N has a complement in G, then $N \cap \Phi(G)=\left\{1_{G}\right\}$.

Proof. If N is complemented in G then $G=N H$ and $N \cap H=\left\{1_{G}\right\}$ for some proper subgroup H of G. Since $N \unlhd G$ and $\Phi(G) \leq G$, we have $N \cap \Phi(G) \unlhd G$. Now $N \cap \Phi(G) \leq N$ and minimality of N implies that $N \cap \Phi\left(G_{F}\right)=\left\{1_{G}\right\}$ or $N \cap \Phi(G)=N$. If $N \cap \Phi(G)=N$ then $N \subseteq \Phi(G)$ and hence $N H \subseteq \Phi(G) H_{\text {s }}$ so that $G=\Phi(G) H$ and therefore $H=G$ by Corollary 2.4.9 which is not possible. Thusi $N \cap \Phi(G)=\left\{1_{G}\right\}$ as required.

We use Lemma 7.1.20 to give a full proof for the following theorem which was stated as Lemma 4.6 by Eick in [3].

Theorem 7.1.21 [3] Let G be an extension of N by H. Then G is a minimal Frattini extension of N, if and only if N is a minimal non-complemented normal subgroup of G.

Proof. Let N be a minimal normal subgroup of G. Suppose that N does not have a complement in G. Then $N \leq \Phi(G)$ by Lemma 2.4.16 and therefore G is a minimal Frattini extension. Conversely, if N is a complemented minimal normal subgroup of G, then by Lemma 7.1.20 we have that $N \cap \Phi(G)=\left\{1_{G}\right\}$ and hence N is not a subgroup of $\Phi(G)$. Hence G is not a Frattini extension.

Remark 7.1.22 The minimal Frattini extensions of H are exactly the non-split extensions of H by an irreducible H-module M. See |3].

To construct the minimal Frattini extensions of H we have to consider all suitable irreducible H-modules M. Based on the theory of Frattini extensions, in [3] Bettina Eick and Hans Besche described a method to compute the minimal Frattini extensions. This method together with other related methods has been implemented in GAP4 [33] in order to classify the groups of order at most 1000, except the groups of order 512 and 768.

Chapter 8

Commutator extensions

8.1 Commutator extensions

In this chapter we intend to give an account on the study of the commutator extensions. By first reducing the study to the case in which N is an elementary abelian p-group we then build up to the necessary and sufficient conditions for the existence of a split commutator extension.

Definition 8.1.1 Let N and H be groups. An extension G of N by H is said to be a commutator extension if N is the commutator subgroup G^{\prime} of G.

Remark 8.1.2 (i) Since G is an extension we have $G / N \cong H$. But $G / N=G / G^{\prime}$ is abelian, so in order that there exists a commutator extension of N by H, H must be abelian. On the other hand, if N^{\prime} is the commutator subgroup of N then N / N^{\prime} is abelian. We may assume that N / N^{\prime} is also finite. Henceforth, we may assume that H is abelian and finite.
(ii) The commutator subgroup N^{\prime} of N is normal not only in N, but also in every extension of N. Since N^{\prime} is a characteristic subgroup of N and $N \unlhd G$, we have that $N^{\prime} \unlhd G$.

Theorem 8.1.3 [28] G is a commutator extension of N by H if and only if G / N^{\prime} is a commutator extension of N / N^{\prime} by H.

Proof. From the isomorphism $G / N \cong\left(G^{Y} / N^{\prime}\right) /\left(N / N^{\prime}\right)$, it follows that G is an extension of N by H if and only if G / N^{\prime} is an extension of N / N^{\prime} by H. Now if $N=G^{\prime}$, we have
$\left(G / N^{\prime}\right)^{\prime}=G^{\prime} N^{\prime} / N^{\prime}=N N^{\prime} / N^{\prime}=N / N^{\prime}$. Thus G / N^{\prime} is a commutator extension of N / N^{\prime} by H.

Conversely if G / N^{\prime} is a commutator extension of N / N^{\prime} by H, then $N / N^{\prime}=\left(G / N^{\prime}\right)^{\prime}$. Now $N / N^{\prime}=G^{\prime} N^{\prime} / N^{\prime}$ and since $N^{\prime} \leq G^{\prime}$, we have that $N / N^{\prime}=G^{\prime} / N^{\prime}$. Therefore $N=G^{\prime}$. Hence G is a commutator extension of N by H.

Remark 8.1.4 Theorem 8.1.3 reduces the discussion to the case in which N is finite abelian. If N is trivial, then every extension of N by H is a commutator extension. For if $N=\left\{1_{G}\right\}$ then $N=G^{\prime}=\left\{1_{G}\right\}$. So $G /\left\{1_{G}\right\}=G \cong H$ is abelian. We may assume that N is a non-trivial finite abelian group. This lead us to the study of extensions of N by H where N and H are both finite abelian groups.

In order for us to elaborate in the study of other properties of the commutator extensions we need some concepts from the theory of extensions of N by H where N and H are both finite abelian groups .

Definition 8.1.5 Let G be an extension of N by H, so that $G / N \cong H$. Let $\varphi: G \longrightarrow H$ be the epimorphism whose kernel is N. An element $\bar{u} \in G$ is called a representative of $u \in H$ if $\varphi(\bar{u})=u$.

Definition 8.1.6 Let $\left(z_{1}, z_{2}, \cdots, z_{s}\right)$ be a basis of H, and let n_{i} be the order of z_{i}. An s-tuple $S=\left(\overline{z_{1}}, \overline{z_{2}}, \cdots, \overline{z_{s}}\right)$ is called a set representative of the basis if each $\overline{z_{i}}$ is a representative of z_{i}.

Definition 8.1.7 Given a pair (G, S) we define a triple (X, B, M) where $X=\left(x_{1}, x_{2}, \cdots, x_{s}\right)$, $B=\left(b_{1}, b_{2}, \cdots, b_{s}\right), M=\left(b_{i j}\right)(1 \leq i \leq s 1 \leq j \leq s)$ by the conditions
(1) $a^{x_{i}}=\overline{z_{i}} a \overline{z_{i}}{ }^{-1}$, for all $a \in N$,
(2) $z_{i}{ }^{m_{i}}=b_{i} \in N$,
(3) $\overline{z_{i}} \overline{z_{j}}{\overline{z_{i}}}^{-1}{\overline{z_{j}}}^{-1}=b_{i j} \in N$,
the mappings $a \longmapsto a^{x_{i}}$ of N onto itself are automorphisms of N. Since $N \unlhd G$, we have that $a^{x_{i}}=\overline{z_{i}} a \overline{z_{i}}-1 \in N$.

Lemma 8.1.8 Let G be a commutator extension of N by H. A subgroup K of N is normal in G if and only if K is invariant under X.

Proof. Assume that $K \unlhd G$. Then $g k g^{-1} E K$ for all $g \in G$ and $k \in K$. Now let $x_{i} \in X$ and $k \in K$. Then $k^{x_{i}}=\overline{z_{i}} k \overline{z_{i}}-1 \in K$, for all i, since $z_{i} \in G$. Hence K is invariant under X.

Conversely if $k^{x_{i}} \in K$ for all $x_{i} \in X$ we have that $\overline{z_{i}} k{\overline{z_{i}}}^{-1} \in K$ for all i. We show that $g \mathrm{~kg}^{-1} \in K$ for all $g \in G$ and $k \in K$. Since G is a commutator extension we have that $G / N=G / G^{\prime}=H$ is a finite abelian group. So $g n \in H=<z_{1}, z_{2}, \cdots, z_{s}>$ and $g n=z_{1}{ }^{\alpha_{1}} . z_{2}{ }^{\alpha_{2}} \cdots z_{s}{ }^{\alpha_{s}}$. On the other hand
$\left(\overline{z_{1}}\right)^{\alpha_{1}} \cdot\left(\overline{z_{2}}\right)^{\alpha_{2}} \cdots\left(\overline{z_{s}}\right)^{\alpha_{s}} N=\left(\overline{z_{1}}\right)^{\alpha_{1}} n \odot\left(\overline{z_{2}}\right)^{\alpha_{2}} n \odot \cdots \odot\left(\overline{z_{s}}\right)^{\alpha_{s}} n=z_{1}{ }^{\alpha_{1}} . z_{2}{ }^{\alpha_{2}} \cdots z_{s}{ }^{\alpha_{s}}=g n$.

Hence $g=\left(\overline{z_{1}}\right)^{\alpha_{1}}\left(\overline{z_{2}}\right)^{\alpha_{2}} \cdots\left(\overline{z_{s}}\right)^{\alpha_{s}} n$. Now

$$
\begin{aligned}
g k g^{-1} & =\left(\overline{z_{1}}\right)^{\alpha_{1}}\left(\overline{z_{2}}\right)^{\alpha_{2}} \cdots\left(\overline{z_{s}}\right)^{\alpha_{s}} n k\left[\left(\overline{z_{1}}\right)^{\alpha_{1}}\left(\overline{z_{2}}\right)^{\alpha_{2}} \cdots\left(\overline{z_{s}}\right)^{\alpha_{s}} n\right]^{-1} \\
& =\left(\overline{z_{1}}\right)^{\alpha_{1}}\left(\overline{z_{2}}\right)^{\alpha_{2}} \cdots\left(\overline{z_{s}}\right)^{\alpha_{s}} n k n^{-1}\left(\overline{z_{s}}\right)^{-\alpha_{s}} \cdots\left(\overline{z_{2}}\right)^{-\alpha_{2}}\left(\overline{z_{1}}\right)^{-\alpha_{1}} \\
& =\left(\overline{z_{1}}\right)^{\alpha_{1}}\left(\overline{z_{2}}\right)^{\alpha_{2}} \cdots\left(\overline{z_{s}}\right)^{\alpha_{s}} k^{\prime}\left(\overline{z_{s}}\right)^{-\alpha_{s}} \cdots\left(\overline{z_{2}}\right)^{-\alpha_{2}}\left(\overline{z_{1}}\right)^{-\alpha_{1}}, \text { since } K \unlhd N .
\end{aligned}
$$

Since K is invariant under X we have that $g k g^{-1} \in K$ for all $z_{i} \in G$ so that $K \unlhd G$.

Lemma 8.1.9 If G is a commutator extension of N by H, then for each subgroup K of N invariant under $X, G / K$ is a commutator extension of N / K by H.

Proof. Assume that G is a commutator extension of N by H. Then $N=G^{\prime}$. Also, let K be an X-invariant subgroup of N. Then by the Lemma 8.1.8 we have that $K \unlhd G$. We need to show that $(G / K)^{\prime}=N / K$. But

$$
\begin{aligned}
(G / K)^{\prime}=G^{\prime} K / K & =N K / K, \text { since } G \text { is a commutator extension } \\
& =N / K, \text { since } K \leq N .
\end{aligned}
$$

Hence G / K is a commutator extension of N / K by H.

Lemma 8.1.10 Suppose that $N=N_{1} \times N_{2}$ and that $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, where n_{1} and n_{2} are the orders of N_{1} and N_{2} respectively. If there exists commutator extensions of N_{1} and N_{2} by H, then there exists a commutator extersion of N by H.

Proof. See Lemma 2 of [28].

Lemma 8.1.11 Let N and H be finite abelian groups. There exists a commutator extension of N by H if and only if for each Sylow subgroup N_{p} of N, there exists a commutator extension of N_{p} by H.

Proof. Since N is a finite abelian group, we have that N is the direct product of its Sylow subgroups. Let $N=N_{1} \times N_{2} \times \cdots \times N_{r}$, where the N_{i} are Sylow p-subgroups of N. If
$n_{1}, n_{2}, \cdots, n_{r}$ are respectively the orders of the $N_{i}^{\prime} s$, then $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$, for all $i \neq j$. Now if for each Sylow p-subgroup N_{i} of N there exists a commutator extension of N_{i} by H, then by Lemma 8.1.10 we have that there exists a commutator extension of N by H.

Conversely assume that G is a commuator extension of N by H. Since N is a finite abelian group we have $N=N_{1} \times N_{2} \times \cdots \times N_{r}$ with each N_{i} a Sylow p-subgroup of N. Thus use of Lemma 8.1.9 yields that for each such a Sylow p-subgroup $N_{i}, G / N_{i}$ is a commutator extension of N / N_{i} by H and the proof follows by the Theorem 8.1.3.

Theorem 8.1.12 Let N be a finite abelian p-group, and let H be a finite abelian group. G is a commutator extension of N by H if and only if G / N^{p} is a commutator extension of N / N^{p} by H.

Proof. Since $N^{p}=\left\{x^{p} \mid x \in N\right\}$, it can be easily checked that N^{p} is a characteristic subgroup of N. Hence N^{p} is a normal subgroup of G. So G / N^{p} is a group. Now, since G is a commutator extension of N by H and $N^{p} \unlhd G$, by the Lemma 8.1.9 we obtain that G / N^{p} is a commutator extension of N / N^{p} by H.

Conversely assume that G / N^{p} is a commutator extension of N / N^{p} by H. Since G / N^{p} a commutator extension of N / N^{p} by H, we have that $N / N^{p}=\left(G / N^{p}\right)^{\prime}$. So $N / N^{p}=$ $G^{\prime} N^{p} / N^{p}$ and hence we have $N=G^{\prime} N^{p}$. Since N is a finite p-group we have that $\Phi(N)=$ $N^{\prime} N^{p}$. But N abelian implies that $N^{\prime}=\left\{1_{G}\right\}$ so $\Phi(N)=N^{p}$. Now $\Phi(N)=N^{p}$ and $N=G^{\prime} N^{p}$ imply that $N=G^{\prime}$. Thus G is a commutator extension of N by H.

Remark 8.1.13 (i) If N is a finite abelian p-group, then N / N^{p} is an elementary abelian p-group. For if $x \in N / N^{p}$ we have $x=n N^{p}$ for some $n \in N$, and

$$
\begin{aligned}
x^{p}=\left(n N^{p}\right)^{p} & =n^{p} N^{p} \\
& =N^{p}, \text { since } n^{p} \in N^{p} \\
& =1_{N / N^{p}} .
\end{aligned}
$$

(ii) N / N^{p} is an elementary abelian p group of the same rank as N.

Note 8.1.14 Theorem 8.1.12 and Remark 8.1.13 reduce the study to the case in which N is an elementary abelian p-group.

Theorem 8.1.15 establishes the conditions under which a commutator extension splits.

Theorem 8.1.15 [28] Let N be an elementary abelian p-group of order p^{n}, and let H be a finite abelian group of order m. Let $q_{1}, q_{2}, \cdots, q_{h}$ be the distinct prime divisor of m different from p, and let $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{h}$ be the orders of $p \bmod q_{1}, \cdots, q_{h}$, respectively. Then an extension of N by H is a split commutator extension if and only if

$$
n=r_{1} \gamma_{1}+r_{2} \gamma_{2}+\cdots+r_{h^{\prime} \gamma_{h}}\left(r_{i} \text { nonnegative integers }\right)
$$

is solvable for r_{i}. In particular, $h \geq 1$.

Proof.

See Theorem 4 of [28].

Remark 8.1.16 If $\operatorname{gcd}(m, p)=1$, then by Theorem 4.1.15 every extension of N by H splits over N and so the solvability of the equation given in the Theorem 8.1.15 is a necessary and sufficient condition for the existence of a commutator extension of N by H. Furthermore, Theorem 8.1.15 asserts that if H is also a p-group then there is no split commutator extension of N by H.

Chapter 9

Extensions of non-abelian groups

In the Theorem 9.1.1 we prove that a finite group G splits over an abelian normal subgroup N if its Frattini subgroup $\Phi(G)$ intersects N trivially. However when N is a non-abelian nilpotent normal subgroup of G the condition $\Phi(G) \cap N=\left\{1_{G}\right\}$ cannot be satisfied and hence it has to be modified. We study some similar type of conditions for G to split over N when the restriction of N being an abelian normal subgroup is removed. Also, we study a characterization of the split extensions of N in which every subgroup splits over its intersection with N.

9.1 Extensions of non-abelian groups

Although our aim is the study of extensions of non-abelian groups, the following result which is related to abelian groups is the key point for our discussion.

Theorem 9.1.1 (Gaschutz) [30] Let G be a finite group and N be an abelian normal subgroup of G. Then G splits over N if $\Phi(G) \cap N=\left\{1_{G}\right\}$.

Proof. Let $H \leq G$ be minimal subject to $G=H N$. Since $N \unlhd G$, we have that $H \cap N \unlhd H$. Also, since N is abelian we have that $H \cap N \unlhd N$. Therefore $H \cap N \unlhd H N=G$. If $H \cap N \leq \Phi(H)$, then by part (i) of Lemma 2.4.19 we have that $H \cap N \leq \Phi(G) \cap N=\left\{1_{G}\right\}$. Thus, we may assume that $H \cap N \nsubseteq \Phi(H)$. So there is a maximal subgroup M of H such that $H \cap N \not \subset M$. Now since $M<M(H \cap N) \leq H$, we get $M(H \cap N)=H$. But $G=H N$ implies $G=M(H \cap N) N=M N$. Hence we obtain a contradiction, since H is minimal by the assumption.

Lemma 9.1.2 If N is an abelian minimal normal subgroup of a finite group G, then either $N \leq \Phi(G)$ or G splits over N.

Proof. Suppose that $N \nsubseteq \Phi(G)$. Then there exists a maximal subgroup say M of G such that $N \not 又 M$. Now $N \unlhd G$ and $M \leq G$, implies that $N M \leq G$. Since $M<N M \leq G$ and M is maximal in G, we have $N M=G$. Now $M \cap N=\left\{1_{G}\right\}$ follows immediately from the fact that $N \not 又 M$ with M maximal in G and the minimality of N in G. Thus M is a complement of N in G. Hence G splits over N.

In the Theorem 9.1.1 we have that a finite group G splits over an abelian normal subgroup N if its Frattini subgroup $\Phi(G)$ intersects N trivially. In the following we study the cases when N is either a non-abelian normal nilpotent subgroup or a non-abelian normal solvable subgroup of G.

Remark 9.1.3 If N is a non-abelian nilpotent subgroup of G, we have that $\Phi(G) \cap N \neq$ $\left\{1_{G}\right\}$.

Proof. Since N is non-abelian, we have that $N^{\prime} \neq\left\{1_{G}\right\}$. Since N is nilpotent, we have $N^{\prime} \leq \Phi(G)$. Therefore $\left\{1_{G}\right\} \neq N^{\prime} \leq \Phi(G)$. Now since $N^{\prime} \leq N$ and $N^{\prime} \leq \Phi(G)$, we have that $\left\{1_{G}\right\} \neq N^{\prime} \leq \Phi(G) \cap N$. Hence $\Phi(G) \cap N \neq\left\{1_{G}\right\}$.

Lemma 9.1.4 Let N be a nilpotent normal subgroup of G and L be any subgroup of G. If $\Phi(L) \cap N=\left\{1_{G}\right\}$, then $L \cap N$ is abelian.

Proof. Assume that $\Phi(L) \cap N=\left\{1_{G}\right\}$. Let $M=L \cap N$. Since N is nilpotent and $M \leq N$, then M is nilpotent. Hence M is a nilpotent subgroup of L. Now $\Phi(L) \cap M=$ $\Phi(L) \cap(L \cap N)=\Phi(L) \cap N=\left\{1_{G}\right\}$. Thus M is abelian by the Remark 9.1.3.

Theorem 9.1.5 [36] Let N be a nilpotent normal subgroup of G. Then G splits over N if and only if G contains a subgroup L such that $G=L N$ and $\Phi(L) \cap N=\left\{1_{G}\right\}$.

Proof. Assume that G splits over N. Then we need to show that there exists a subgroup L of G such that $G=L N$ and $\Phi(L) \cap N=\left\{1 .{ }_{G}\right\}$. Since G splits over N, N has a complement in G. Let L be such a complement. Then $G=L N$ and $L \cap N=\left\{1_{G}\right\}$. Now $\Phi(L) \leq L$ implies that $\Phi(L) \cap N \leq L \cap N=\left\{1_{G}\right\}$. Thus $\Phi(L) \cap N=\left\{1_{G}\right\}$.

Conversely if $G=L N$ and $\Phi(L) \cap N:=\left\{1_{G}\right\}$, we need to show that G splits over N. Since $\Phi(L) \cap N=\left\{1_{G}\right\}$ by Lemma 9.1.4 we have that $L \cap N$ is abelian. So by Theorem
9.1.1 we deduce that G splits over $L \cap N$. Now if M is a complement of $L \cap N$ in L, we will show that M is also a complement of N in G. That is $M \cap N=\left\{1_{G}\right\}$ and $M N=G$. Since $M \cap(L \cap N)=\left\{1_{G}\right\}$ and $M(L \cap N\}=L$, we have $G=L N=M(L \cap N) N=M N$ and $\left\{1_{G}\right\}=M \cap(L \cap N)=(M \cap L) \cap N=M \cap N$, since $M \leq L$. So M is a complement of N in G and hence G splits over N.

Lemma 9.1.6 [35] If a non-trivial group G is solvable, then G contains a characteristic subgroup which is abelian and different from $\left\{1_{G}\right\}$.

Proof. We may take the last term of the derived series which is different from $\left\{1_{G}\right\}$.

Theorem 9.1.7 Let N be a solvable nornal subgroup of G. Then G splits over N if and only if G contains a subgroup L, minimal with respect to $G=L N$ such that $\Phi(L) \cap N=$ $\left\{1_{G}\right\}$.

Proof. Assume that G splits over N. Then N has a complement L in G. Then we have that $G=L N$ and $L \cap N=\left\{1_{G}\right\}$. We need to show that L is minimal with respect to $G=L N$ and that $\Phi(L) \cap N=\left\{1_{G}\right\}$. But L is a complement of N in G implies that L is minimal with respect to $G=L N$. Now since $\Phi(L) \leq L$, we have $\Phi(L) \cap N \leq £ \cap N=\left\{1_{G}\right\}$. So that $\Phi(L) \cap N=\left\{1_{G}\right\}$.

Conversely let $M=L \cap N$. Since $N \unlhd G$; we have that $M \unlhd L$. Also since N is solvable, M is a solvable subgroup of L. Therefore M is a normal solvable subgroup of L. Assume that M is a solvable group of length $r \geq 1$. Then by Lemma 9.1 .6 we have that the $(r-1)$ th derived subgroup $M^{(r-1)}$ is abelian and non-trivial. Also $M^{(r-1)}$ is a characteristic subgroup of M, hence normal in M. So we have that $M^{(r-1)}$ is an abelian normal subgroup of M. Since $M^{(r-1)}$ is abelian, by the Remark 9.1.3 we have that $\Phi(L) \cap M^{(r-1)}=\left\{1_{G}\right\}$. Now by the Theorem 9.1.1 we have that L splits over $M^{(r-1)}$. Hence there exists $H \leq L$ with $L=H M^{(r-1)}$ and $H \cap M^{(r-1)}=\left\{1_{G}\right\}$. Since $G=L N=H M^{(r-1)} N=H N$ and since L is minimal with respect to $G=L N$, we mus: have that $\left\{1_{G}\right\}=H \cap M^{(r-1)}=L \cap M^{(r-1)}=$ $M^{(r-1)}$ which is a contradiction. Thus $r=0$ so that $M=L \cap N=\left\{1_{G}\right\}$. Hence G splits over N.

Using a similar argument to that in the proof of Theorem 9.1.7, with convenient changes, the following result can be proved.

Theorem 9.1.8 [36] If N is a normal subgroup of G such that there exists a solvable subgroup L of G minimal with respect to $G=L N$, and $\Phi(L) \cap N=\left\{1_{G}\right\}$, then G splits over N.

Theorem 9.1.9 [16] A subgroup H of a finite group G is a complement for the extension G over N if and only if H is minimal with respect to the property $G=N H$ and there exists for each prime p a p-Sylow subgroup S of G, and a complement of $N \cap S$ in S which is part of H.

Proof. See Theorem 1 of [16].

Theorem 9.1.10 G splits over a normal subgroup N if and only if G contains a subgroup L, minimal with respect to $G=L N$ such that for each prime p there exists a Sylow p subgroup P of L such that $\Phi(P) \cap N=\left\{1_{G}\right\}$.

Proof. Assume that G splits over N. Since G splits over N, N has a complement in G. Let L be such a complement of N. Then $L N=G$, and $L \cap N=\left\{1_{G}\right\}$. Since L is a complement of N, L is minimal with respect to $G=L N$. Now let $P \in S y l_{p}(L)$. Then we have that $\Phi(P) \leq L$ and that $\Phi(P) \cap N \leq L \cap N=\left\{1_{G}\right\}$. Hence $\Phi(P) \cap N=\left\{1_{G}\right\}$.

Conversely let L be minimal with respect to $G=L N$ and let $M=L \cap N$. Let $P \in$ $\operatorname{Syl}_{p}(M)$ and $Q \in S y l_{p}(L)$ such that $P \subseteq Q$. Since for each p there exists a Sylow p subgroup S of L such that $\Phi(S) \cap N=\left\{1_{G}\right\}$ and since Sylow p-subgroups of L are conjugate, it follows that $\Phi(Q) \cap N=\left\{1_{G}\right\}$. Since $Q \cap N$ is a p-subgroup of M and $Q \cap N \supseteq P$, we have $Q \cap N=P$. Thus P is a nilpotent normal subgroup of Q. Now $\Phi(Q) \cap P \leq \Phi(Q) \cap N=\left\{1_{G}\right\}$ implies that $\Phi(Q) \cap P=\left\{1_{G}\right\}$. Hence by the Theorem 9.1 .5 we have that Q splits over P, that is $Q=T P$ for some T complement of P in Q. Now let $R \in S y l_{p}(N)$ containing P. It can be seen that Q and R generate a Sylow p-subgroup V of G and that $V \cap N=R$. Moreover $V=T R$ and $T \cap R=\left\{1_{G}\right\}$. Thus T is a complement of $V \cap N$ in V. Now $T \subseteq Q \subseteq L$ and L is minimal with respect to $G=L N$. By the Theorem 9.1.9 we have that G splits over N. Therefore L is a complement of N in G.

Remark 9.1.11 In general the minimality of L with respect to $G=L N$, does not necessarily mean that L is a complement of N, even in the case when N is abelian. In Theorem 9.1.12 we will see that if N is a nilpotent normal subgroup of G, then the minimality of L with respect to $G=L N$ is characterized by $L \cap N \subseteq \Phi(L)$.

Theorem 9.1.12 [36] Let N be a nilpotent normal subgroup of G. L is minimal with respect to $G=L N$ if and only if $L \cap N \subseteq \Phi(L)$.

Proof. Let L be a minimal with respect to $G=L N$. Let $L \cap N=M$ and $K=\Phi(L) \cap M$, then $K=\Phi(L) \cap L \cap N=(\Phi(L) \cap L) \cap N=\Phi(L) \cap N$. Now $\Phi(L) \unlhd L$ and $M=L \cap N \unlhd L$,
so $\Phi(L) \cap M \unlhd L$. Hence $K \unlhd L$. Also since $K=\Phi(L) \cap M$, with $\Phi(L) \unlhd L$ and $M \leq L$, we have that $\Phi(L) \cap M \unlhd M$. Thus $K \unlhd M$. Let $\bar{L}=L / K$ and $\bar{M}=M / K$. Since $K \leq \Phi(L)$ we have that $\Phi(\bar{L})=\Phi(L / K)=\Phi(L) / K$. Therefore $\Phi(\bar{L}) \cap \bar{M}=(\Phi(L) / K) \cap(M / K)=$ $(\Phi(L) \cap M) / K=K / K=\left\{1_{G}\right\}$. However M is a nilpotent normal subgroup of L, (since N is a nilpotent normal subgroup of G) and we have that $M^{\prime} \leq \Phi(M) \leq \Phi(L)$. Therefore $M^{\prime} \leq \Phi(L) \cap N=K$. Since $M^{\prime} \leq K$ and $K \unlhd M$, we get $\bar{M}=M / K$ is abelian. Application of the Theorem 9.1.1 yields that \bar{L} splits over \bar{M}. Let \bar{A} be a complement of \bar{M} in \bar{L}. Then $\bar{A} \cap \bar{M}=\{1\}$ and $\bar{L}=\bar{A} \bar{M}$. Let A be the set of all preimages of \bar{A} in L. If $\bar{M} \neq\{1\}$, then A is a proper subgroup of L and $G=A N$ contradicting the minimality of L with respect to $G=L N$. Thus $\bar{M}=\{1\}$ and hence $M=N$. Thus $L \cap N=\Phi(L) \cap M$ so that $M=L \cap N \subseteq \Phi(L)$.

Conversely if $L \cap N \subseteq \Phi(L)$ we will show that L is minimal with respect to $G=$ $L N$. Suppose that H is any subgroup of L such that $G=H N$. Let $K=\Phi(L) \cap N$ we have that $K \unlhd G$. Let $\bar{G}=G / K, \bar{L}=L / K$ and $\bar{N}=N / K$. Then $\bar{G}=G / N=$ $L N / K=(L / K)(N / K)=\bar{L} . \bar{N}$ with $\bar{L} \cap \bar{N}=\{1\}$. Since $G=H N$, we have $\bar{G}=H N / K=$ $(H K / K) .(N / K)$. Let $\bar{H}=H K / K$. Then $\bar{G}=\bar{H} . \bar{N}=\overline{H N}$. But $\bar{H} \subseteq \bar{L}$ implies that $\bar{H} \cap \bar{N}=\{1\}$. Hence $\bar{H}=\bar{L}$. Since $H K / K \cong H / H \cap K$, we deduce that $L=H K$. Now $K \subseteq \Phi(L)$ implies that $L=H$. This completes the proof.

9.2 Hereditarily non-Frattini subgroups

Remark 9.2.1 In general if a group G splits over a normal subgroup N the subgroups of G may not necessarily split over their intersections with N. We will see next a characterization of normal subgroups of G with the property that every subgroup H of G splits over $H \cap N$.

Definition 9.2.2 A subgroup N of G is said to be hereditarily non-Frattini in G if, for every non-trivial subgroups H of $G, N \cap H \nsubseteq \Phi(H)$ unless $N \cap H=\left\{1_{G}\right\}$.

Lemma 9.2.3 Let G be a finitely generated group and N be a normal subgroup of G such that $N \nsubseteq \Phi(G)$. Then G splits over N if every maximal subgroup M of G splits over $M \cap N$.

Proof. See Lemma 2.2 of [36].

Theorem 9.2.4 Let G be a finite group and N be a normal subgroup of G. Then every subgroup H of G splits over $H \cap N$ if and only if N is hereditarily non-Frattini in G.

Proof. Suppose that every subgroup H of G splits over $N \cap H$. Then $N \cap H \notin \Phi(H)$ unless $N \cap H=\left\{1_{G}\right\}$ (since otherwise, because $N \cap H \unlhd H$ and $N \cap H \leq \Phi(H)$ imply that there exists no L a subgroup of H such that $(N \cap H) L=H$, which is a contradiction with the fact that H splits over $N \cap H$). Hence N is hereditarily non-Frattini in G.

Conversely if N is hereditarily non-Frattini in G, then we show that G splits over N. We apply induction on the order of G. Let H be any proper subgroup of G and let $N \cap H=M$. Moreover since N is hereditarily non-Frattini in G, it follows that M is hereditarily nonFrattini in H. Since H is a proper subgroup of G, by induction every subgroup K of H splits over $K \cap M$. In particular H splits over M. Thus every maximal subgroup of G splits over its intersection with N. Since $N \nsubseteq \Phi(G)$, by the Lemma 9.2 .3 we get that G splits over K.

Chapter 10

Affine Subgroups

In this chapter we will discuss the general linear group $G L(n, \mathbb{F})$ and the symplectic group $S P(2 n, \mathbb{F})$ as well as their corresponding affine subgroups. We construct the affine subgroups and prove that they are split extensions. Further properties of these subgroups will also be investigated. For further reading and information on the general linear and symplectic groups, readers are encouraged to consult [9], [13], [14], [18],,[19],,[24],[26], [27]and [31].

10.1 The General Linear Group

Definition 10.1.1 Let F be a filed. For any positive integer n, the general linear group, denoted by $G L(n, \mathbb{F})$ is the set of all invertible $n \times n$ matrices over \mathbb{F}, under the matrix multiplication. If $\mathbb{F}=G F(q)$, the finite field of order q, then we denote $G L(n, \mathbb{F})$ by $G L(n, q)$.

Proposition 10.1.2 The order of the general linear group $G L(n, q)$ is $\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right)$.

Proof. See Proposition 23.3 of [18].

Definition 10.1.3 The special linear group, denoted by $S L(n, \mathbb{F})$ is the subgroup of the group $G L(n, \mathbb{F})$ consisting of those matrices whose determinant is 1 .

Proposition 10.1.4 Let n be a positive integer and \mathbb{F} a field. Then $G L(n, \mathbb{F})$ splits over $S L(n, \mathbb{F})$.

Proof. We will show that $G L(n, \mathbb{F})=S L(n, \mathbb{F}): \mathbb{F}^{*}$. Let $\varphi: G L(n, \mathbb{F}) \longrightarrow \mathbb{F}^{*}$ given by $\varphi(A)=\operatorname{det}(A)$ for all $A \in G L(n, \mathrm{~F})$. Then since $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$ for all A and $B \in G L(n, \mathbb{F})$, we have that $\varphi(A B)=\varphi(A) \varphi(B)$. Hence φ is a homomorphism. If $a \in \mathbb{F}^{*}$, then $\varphi\left(\begin{array}{cc}a & 0 \\ 0 & I_{n-1}\end{array}\right)=a$. Hence φ is onto. Thus $\operatorname{Im}(\varphi)=\mathbb{F}^{*}$. So $G L(n, \mathbb{F}) / \operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi)=\mathbb{F}^{*}$. But

$$
\operatorname{Ker}(\varphi)=\left\{A \mid A \in G L(n, \mathbb{F}), \operatorname{det}(A)=1_{\mathbb{F}}\right\}=S L(n, \mathbb{F})
$$

implies that $G L(n, \mathbb{F}) / S L(n, \mathbb{F}) \cong \mathbb{F}^{*}$. Now let

$$
H=\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & I_{n-1}
\end{array}\right) \right\rvert\, a \in \mathbb{F}^{*}\right\}
$$

Then $H \leq G L(n, \mathbb{F})$. Now

$$
\begin{aligned}
H \cap S L(n, \mathbb{F}) & =\left\{\left.\left(\begin{array}{cc}
a & 0 \\
0 & I_{n-1}
\end{array}\right) \right\rvert\, a=1_{\mathbb{F}}\right\} \\
& =\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & I_{n-1}
\end{array}\right)\right\}=\left\{I_{n}\right\} .
\end{aligned}
$$

Since $S L(n, \mathbb{F}) \unlhd G L(n, \mathbb{F}), S L(n, \mathbb{F}) . H \leq G L(n, \mathbb{F})$. Let $A \in G L(n, \mathbb{F})$.
Then $\operatorname{det}(A) \neq 0_{\mathbb{F}}$ and hence $\left(\begin{array}{cc}\operatorname{det}(A) & 0 \\ 0 & I_{n-1}\end{array}\right)$ is an element of H. If we let $B=$ A. $\left(\begin{array}{cc}1 / \operatorname{det}(A) & 0 \\ 0 & I_{n-1}\end{array}\right)$, then $B \in G L(n, \mathbb{F})$ with $\operatorname{det}(B)=\operatorname{det}(A) \frac{1}{\operatorname{det}(A)}=1$.

So $B \in S L(n, \mathbb{F})$. Now since $A=B .\left(\begin{array}{cc}\operatorname{det}(A) & 0 \\ 0 & I_{n-1}\end{array}\right)$ we deduce that $G L(n, \mathbb{F})=$ $S L(n, \mathcal{F}) . H$. Thus $G L(n, \mathbb{F})$ is a semidirect product of $S L(n, \mathbb{F})$ and H.

Proposition 10.1.5 $|S L(n, q)|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right) /(q-1)$.

Proof. By Proposition 10.1.4 we have $|G L(n, \mathbb{F})|=|S L(n, \mathbb{F})| \times\left|\mathbb{F}^{*}\right|$ where $\mathbb{F}=$ $G F(q)$. Hence $|G L(n, q)|=|S L(n, q)| \times(q-1)$. Now the proof follows from Proposition 10.1.2.

We shall see next in the Proposition 10.1.6 and its subsequent Corollary a characterization of the group $G L(n, \mathbb{F})$ as the direct product of $S L(n, \mathbb{F})$ and \mathbb{F}^{*}

Proposition 10.1.6 Let \mathbb{F} be a field and n be a positive integer. Suppose that for each $a \in \mathbb{F}$, there is a unique $b \in \mathbb{F}$, such that $b^{n}=a$. Then $G L(n, \mathbb{F}) \cong S L(n, \mathbb{F}) \times \mathbb{F}^{*}$. (In particular this is true when $\mathbb{F}=\mathbb{R}$ and n is odd).

Proof. Let $K=\left\{a I_{n} \mid a \in \mathbb{F}^{*}\right\}$. Then $K=Z(G L(n, \mathbb{F}))$ and hence $K \unlhd G L(n, \mathbb{F})$. Obviously $K . S L(n, \mathbb{F}) \leq G L(n, \mathbb{F})$. Now let $A \in G L(n, \mathbb{F})$. If $\operatorname{det}(A)=a$, then $a \in$ F^{*} and $a^{-1} A \in S L(n, \mathbb{F})$. Now since $A=\left(a I_{n}\right)\left(a^{-1} A\right)$, we deduce that $G L(n, \mathbb{F})=$ $K . S L(n, \mathbb{F})$. Now for $A=a I_{n} \in K$ we have

$$
A \in K \cap S L(n, \mathbb{F}) \Leftrightarrow \operatorname{det}(A)=1 \Leftrightarrow a^{n}=1 \mathrm{~F} .
$$

Since for $1_{\mathbb{F}} \in \mathbb{F}$, by the assumption there is only one element $a \in \mathbb{F}$ such that $a^{n}=1_{\mathbb{F}}$. Since $\left(1_{\mathbb{F}}\right)^{n}=1_{\mathbb{F}}$, we must have $a=1_{\mathbb{F}}$. Thus $K \cap S L(n, \mathbb{F})=\left\{I_{n}\right\}$. Hence $G L(n, \mathbb{F})$ must be a direct product of K and $S L(n, \mathbb{F})$. Since $K \cong \mathbb{F}^{*}$, the proof follows.

Lemma 10.1.7 If $n=2$ and $q=2^{m}$, with $m \geq 1$ then $K \cap S L\left(2,2^{m}\right)=I_{2}$. In general we have that $G L\left(2,2^{m}\right)=S L\left(2,2^{m}\right) \times K$ where $K \cong C_{2^{m}-1}$.

Proof. In this case it is easy to see that $K=\left\langle\alpha I_{2}\right\rangle$ where $\mathbb{F}^{*}=\langle\alpha\rangle$ with $\alpha^{q-1}=1 \mathbb{F}^{\text {. }}$ Now let $A \in K$. Then $A=\alpha^{k} I_{2}$ where $0 \leq k \leq q-1$.

$$
\begin{aligned}
\operatorname{det}(A) & =\alpha^{2 k}=1 \\
& \Leftrightarrow(q-1) \mid 2 k \\
& \Leftrightarrow(q-1) \mid k, \text { because } q-1 \text { is odd } \\
& \Leftrightarrow k=0, \text { because } 0 \leq k \leq q-1 \\
& \Leftrightarrow A=I_{2} .
\end{aligned}
$$

Hence $K \cap S L\left(2,2^{m}\right)=\left\{I_{2}\right\}$ and the proof follows.

Example 10.1.8 Using Lemma 10.1.7 we have $G L\left(2,2^{3}\right)=S L\left(2,2^{3}\right) \times C_{7}$. Also we know by Proposition 10.1.4 that $G L\left(2,2^{3}\right)=S L\left(2,2^{3}\right): H$, where $H \cong C_{7}$. Let

$$
H=\left\{\left.\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) \right\rvert\, a \in F^{*}\right\}
$$

where $\mathrm{F}^{*}=\left\{1, \alpha, \alpha^{2}, \cdots, \alpha^{6}\right\}$ and $\alpha^{7}=1$. Then if $y=\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)$ we have $H=<y>\cong$ C_{7}.
Now, if $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L\left(2,2^{3}\right) \quad$ then $a d-b c=1$ and

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{y}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
\alpha^{6} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha a \alpha^{-1} & \alpha b \\
c \alpha^{-1} & d
\end{array}\right)
$$

Let $K=\left\langle\alpha I_{2}>\right.$. Then by Lemma 10.1 .6 we have that $G L\left(2,2^{3}\right)=S L\left(2,2^{3}\right) \cdot K=$ $S L\left(2,2^{3}\right) \times K$ where $K \cong C_{7}$.

10.1.1 The Affine Subgroup of the General Linear Group

Let \mathbb{F} be a field and let \mathbb{F}^{n} be the n dirnensional vector space consisting of row vectors over the field \mathbb{F}. The group $G L(n, \mathbb{F})$ of all $n \times n$ invertible matrices over \mathbb{F} acts on \mathbb{F}^{n} by left multiplication as follows: $(x, A) \longmapsto x A$ for $x \in \mathbb{F}^{n}$ and $A \in G L(n, \mathbb{F})$. We can see that
(i) $\left(x, I_{n}\right) \longmapsto x I_{n}=x$,
(ii) $\left(x, A_{1} A_{2}\right) \longmapsto x\left(A_{1} A_{2}\right)=\left(x A_{1}\right) A_{2}$, since matrix multiplication is associative.

Remark 10.1.9 We have seen that the elements of $G L(n, \mathbb{F})$ act on \mathbb{F}^{n} as automorphisms (ie invertible linear transformations) as the equation $(\lambda x+\beta y) A=\lambda x A+\beta y A$ for all $\left(\lambda, \beta \in \mathbb{F}, x, y \in \mathbb{F}^{n}\right)$ says, and in fact; all automorphisms of \mathbb{F}^{n} are obtained in this way. Let V be any n-dimensional vector space over \mathbb{F}. Choose a basis $v_{1}, v_{2}, \ldots, v_{n}$ for V. Then with respect to this basis each element v of V has a unique expression as a linear combination $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{r_{1}}$ for suitable $\alpha_{i} \in \mathbb{F}, 1 \leq i \leq n$. Consequently the map $\phi: V \longrightarrow \mathbb{F}^{n}$ defined by $\phi(v)=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)^{t}$ is well defined and obviously is a bijection. For if

$$
\phi(v)=\phi\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}\right)=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right)^{t}
$$

and

$$
\phi\left(v^{\prime}\right)=\phi\left(\beta_{1} v_{1}+\beta_{2} v_{2}+\cdots+\beta_{n}\right)=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)^{t}
$$

then

$$
\begin{aligned}
\phi(v)=\phi\left(v^{\prime}\right) & \Leftrightarrow\left(\alpha_{1}, a_{2}, \cdots, \alpha_{n}\right)^{t}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right)^{t} \\
& \Leftrightarrow \alpha_{i}=\beta_{i}, \forall i .
\end{aligned}
$$

For any $x \in F^{n}$, if $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{t}$, then let $v=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. Now $\phi(v)=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{t}=x$.

Moreover, if f is a linear transformation of V, then

$$
f\left(v_{i}\right)=\sum_{j} a_{i j} v_{j}, 1 \leq i \leq n
$$

for uniquely determinable scalars $a_{i j}$, and if f is invertible, then the matrix ($a_{i j}$) lies in $G L(n, \mathbb{F})$. The map $h: \operatorname{Aut}(V) \longrightarrow G L(n, \mathbb{F})$ given by $f \longmapsto\left(a_{i j}\right)$ is an isomorphism,
and the pair (ϕ, h) is an equivalence between the permutation groups ($V, \operatorname{Aut}(V)$) and ($\mathbb{F}^{n}, G L(n, \mathbb{F})$). For if

$$
v=\sum_{i} \alpha_{i} v_{i} \in V
$$

and $f \in \operatorname{Aut}(V)$ then

$$
\begin{aligned}
\phi(f(v)) & =\phi\left(f\left(\sum_{i} \alpha_{i} v_{i}\right)\right)=\phi\left(\sum_{i} f\left(\alpha_{i} v_{i}\right)\right) \\
& =\phi\left(\sum_{i} \alpha_{i}\left(\sum_{j}^{\prime} f\left(v_{i}\right)\right)\right)=\phi\left(\sum_{i} \alpha_{i}\left(\sum_{j} a_{i j} v_{j}\right)\right) \\
& =\phi\left(\sum_{j}\left(\sum_{i} \alpha_{i} a_{i j}\right) v_{j}\right) \\
& =\left(\sum_{i} \alpha_{i} a_{i 1}, \sum_{i} \alpha_{i} a_{i 2}, \cdots, \sum_{i} \alpha_{i} a_{i n}\right)^{t}
\end{aligned}
$$

whereas,

$$
[h(f)](\phi(v))=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & a_{i j} & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\sum_{i} \alpha_{i} a_{i 1}, \sum_{i} \alpha_{i} a_{i 2}, \cdots, \sum_{i} \alpha_{i} a_{i n}\right)^{t}
$$

Definition 10.1.10 Let \mathbb{F} be an arbitrary field, and let $V=\mathbb{F}^{n}$ be the n-dimensional vector space consisting of row vectors over the field \mathbb{F}. Given $A \in G L(n, \mathbb{F})$ and $b \in \mathbb{F}^{n}$, define $T_{A, b}: V \longrightarrow V$ by $x \longmapsto x A+b$. We can see that for $A, A^{\prime} \in G L(n, \mathbb{F})$ we have

$$
\begin{aligned}
T_{A, b}=T_{A^{\prime}, b^{\prime}} & \Leftrightarrow(x)\left(T_{A, b}\right)=(x)\left(T_{A^{\prime}, b^{\prime}}\right), \forall x \in V \\
& \Leftrightarrow x A+b=x A^{\prime}+b^{\prime}, \forall x \in V \\
& \Leftrightarrow x A-x A^{\prime}=b^{\prime}-b, \forall x \in V \\
& \Leftrightarrow(x)\left(A-A^{\prime}\right)=b^{\prime}-b, \forall x \in V \\
& \Leftrightarrow(x)\left(A-A^{\prime}\right)+\left(b-b^{\prime}\right)=0_{V}, \forall x \in V \\
& \Leftrightarrow(x)\left(A-A^{\prime}\right)=0_{V} \text { and } b-b^{\prime}=0_{V}, \forall x \in V \\
& \Leftrightarrow A-A^{\prime}=0_{V} \text { and } b-b^{\prime}=0_{V}, \\
& \Leftrightarrow A=A^{\prime} \text { and } b=b^{\prime} .
\end{aligned}
$$

These mappings are known as the affine transformations of V. They constitute the affine group, to which we denote

$$
A G L(n, \mathbb{F})=\left\{T_{A, b} \mid A \in G L(n, \mathbb{F}), b \in \mathbb{F}^{n}\right\} .
$$

Note 10.1.11 $A G L(n, \mathbb{F}) \supseteq G L(n, \mathbb{F})$, since $T_{A, 0}=A$.

Lemma 10.1.12 $T_{A, b}$ is a bijection.

Proof. For $x_{1}, x_{2} \in \mathbb{F}^{n}$ we have

$$
\begin{aligned}
\left(x_{1}\right)\left(T_{A, b}\right)=\left(x_{2}\right)\left(T_{A, b}\right) & \Rightarrow x_{1} A+b=x_{2} A+b \\
& \Rightarrow x_{1} A_{1}=x_{2} A \\
& \Rightarrow\left(x_{1}-x_{2}\right) A \\
& \Rightarrow x_{1}-x_{2}=0_{V}, \text { since } A \in G L(n, \mathbb{F}) \\
& \Rightarrow x_{1}=x_{2} .
\end{aligned}
$$

Therefore $T_{A, b}$ is one to one. We can easily check that $T_{A, b}$ is onto, since for any $x^{\prime} \in V$ we can find $x \in V$, such that $(x)\left(T_{A, b}\right)=x^{\prime}$. To find $x \in V$, notice that

$$
\begin{aligned}
(x)\left(T_{A, b}\right)=x^{\prime} & \Rightarrow x^{\prime}=x A+b \\
& \Rightarrow x^{\prime}-b=x A \\
& \Rightarrow x=\left(x^{\prime}-b\right) A^{-1} .
\end{aligned}
$$

Now $\left(x^{\prime} A^{-1}-b A^{-1}\right)\left(T_{A, b}\right)=\left(x^{\prime} A^{-1}-b A^{-1}\right) A+b=x^{\prime}-b+b=x^{\prime}$.

Lemma 10.1.13 The set $A G L(n, \mathbb{F})$ is a group under the composition of functions.

Proof. (i) $A G L(n, \mathbb{F})$ is closed under the composition: For all $x \in V$ we have $(x)\left(T_{A, b} T_{C, d}\right)=(x A+b)\left(T_{C, d}\right)=(x A+b) C+d=x A C+b C+d$, thus $T_{A, b} T_{C, d}=$ $T_{A C, b C}+d$.
(ii) $(x)\left(T_{I_{n}, 0}\right)=x$, for all $x \in V$, implies that $T_{I_{n}, 0}=1_{A G L(n, F)}$.
(iii) By part (ii) we have $\left(T_{A, b}\right)\left(T_{A^{\prime}, b^{\prime}}\right)=T_{A A^{\prime}, b A^{\prime}+b^{\prime}}$. Now

$$
\begin{aligned}
\left(T_{A, b}\right)\left(T_{A^{\prime}, b^{\prime}}\right)=T_{I_{n}, 0} \mathbb{F} & \Leftrightarrow A A^{\prime}=I_{n} \text { and } b A^{\prime}+b^{\prime}=0 \\
& \Leftrightarrow A^{\prime}=A^{-1} \text { and } b^{\prime}=-b A^{-1}
\end{aligned}
$$

thus $\left(T_{A, b}\right)^{-1}=T_{A^{\prime}, b^{\prime}}=T_{A^{-1},-b A^{-1}}$.

Note 10.1.14 Lemmas 10.1 .12 and 10.1.13 show that $A G L(n, \mathbb{F}) \leq S_{V}$ where S_{V} is the Symmetric group on V.

Note 10.1.15 In general $(x+y)\left(T_{A, b}\right) \neq(x)\left(T_{A, b}\right)+(y)\left(T_{A, b}\right)$ for $x, y \in V$.

Remark 10.1.16 The set $\operatorname{Tr}(V)=\left\{\tau_{b}=T_{I_{n}, b} \mid b \in \mathbb{F}^{n}\right\}$ of all translations $\tau_{b}: V \longrightarrow V$ given by $(x) \tau_{b}=x+b$, is an abelian subgroup of $A G L(n, \mathbb{F})$. Note that if $|\mathbb{F}|<\infty$ then $|\operatorname{Tr}(V)|=\left|\mathrm{F}^{n}\right|$.

Lemma 10.1.17 The group $\operatorname{Tr}(V)$ is isomorphic to the additive group of V.

Proof. Define $\rho: V \longrightarrow S_{V}$ by $(b) \rho=\tau_{b}$ for all $b \in V$. We show that ρ is a monomorphism.
ρ is a homomorphism: We note that for all $x \in V$,

$$
(x)\left(\tau_{b} \circ \tau_{b^{\prime}}\right)=\left((x) \tau_{b}\right) \tau_{b^{\prime}}=(x+b) \tau_{b}^{\prime}=(x+b)+b^{\prime}=x+\left(b+b^{\prime}\right)=(x) \tau_{b+b^{\prime}},
$$

so $\tau_{b} \circ \tau_{b^{\prime}}=\tau_{b+b^{\prime}}$. The fact that ρ is a homomorphism, then follows since $(b) \rho \circ\left(b^{\prime}\right) \rho=$ $\tau_{b} \circ \tau_{b^{\prime}}=\tau_{b+b^{\prime}}=\left(b+b^{\prime}\right) \rho$.
ρ is one to one:

$$
\begin{aligned}
\operatorname{Ker}(\rho) & =\left\{b \in V \mid(b) \rho=1_{S_{V}}\right\}=\left\{b \in V \mid \tau_{b}=1_{S_{V}}\right\} \\
& =\left\{b \in V \mid(x) \tau_{b}=x, \text { for all } x \in V\right\} \\
& =\{b \in V \mid x+b=x, \text { for all } x \in V\}=\left\{0_{V}\right\} .
\end{aligned}
$$

So ρ is a monomorphism from V into S_{V}. Also

$$
\operatorname{Im}(\rho)=\{(b) \rho \mid b \in V\}=\left\{\tau_{b} \mid b \in V\right\}=\operatorname{Tr}(V)
$$

Since $V / \operatorname{Ker}(\rho) \cong \operatorname{Im}(\rho)$, we have $V \cong \operatorname{Tr}(V)$.

Remark 10.1.18 Let $\varphi=T_{A, b} \in A G L(n, \mathbb{F})$, then φ is of the form $\varphi=\tau \circ A$, where $A \in G L(n, \mathbb{F})$ and $\tau \in \operatorname{Tr}(V)$. Hence $A G L(n, \mathbb{F})=\langle G L(n, \mathbb{F}), \operatorname{Tr}(V)>=\operatorname{Tr}(V)$. $G L(n, \mathbb{F})$. Also the stabilizer of the zero vector in $\operatorname{AGL}(n, \mathbb{F})$ is

$$
\begin{aligned}
{[A G L(n, \mathbb{F})]_{0_{V}} } & =\left\{T_{A, b} \mid\left(T_{A, b}\right)\left(0_{V}\right)=0_{V}, A \in G L(n, \mathbb{F}), b \in \mathbb{F}^{n}\right\} \\
& =\left\{T_{A, b} \mid b=0 \mathbb{F}^{n} \text { and } A \in G L(n, \mathbb{F})\right\} \\
& =\left\{T_{A, 0} \mid A \in G L(n, \mathbb{F})\right\}=G L(n, \mathbb{F})
\end{aligned}
$$

Theorem 10.1.19 The group $A G L(n, \mathcal{F})$ is the semidirect product of $\operatorname{Tr}(V)$ by $G L(n, \mathbb{F})$.

Proof. (i) $\operatorname{Tr}(V) \unlhd A G L(n, \mathbb{F})$: Let $A \in A G L(n, \mathbb{F})$ and $\tau=\left(T_{I_{n}, b^{\prime}}\right) \in \operatorname{Tr}(V)$. Then $\left(T_{A, b}\right)^{-1} \circ T_{I_{n}, b^{\prime}} \circ T_{A, b}=T_{I_{n}, A^{-1} b^{\prime}} \in \operatorname{Tr}(V)$. Hence $\operatorname{Tr}(V) \unlhd A G L(n, \mathbb{F})$.
(ii) $\operatorname{Tr}(V) \cap G L(n, \mathbb{F})=\left\{I_{n}\right\}:$ Let $T_{I_{n}, b} \in \operatorname{Tr}(V) \cap G L(n, \mathbb{F})$. Then $T_{I_{n}, b}=A=T_{A, 0_{V}}$, for some $A \in G L(n, \mathbb{F})$. Hence $A=I_{n}$ and $b=0_{V}$, so $T_{I_{n}, b}=T_{I_{n}, 0}=I_{n}$. Therefore $\operatorname{Tr}(V) \cap G L(n, \mathbb{F})=\left\{I_{n}\right\}$.

Remark 10.1.20 Since, $A G L(n, \mathbb{F})=\operatorname{Tr}(V): G L(n, \mathbb{F})$, we have $A G L(n, \mathbb{F}) / \operatorname{Tr}(V) \cong G L(n, \mathbb{F})$. Since $V=\mathbb{F}^{n}$ and $\operatorname{Tr}(V) \cong V$, we have that $\operatorname{AGL}(n, \mathbb{F}) \cong F^{n}: G L(n, \mathbb{F}) \cong \mathbb{F}^{n}: \operatorname{Aut}\left(\mathrm{F}^{n}\right)=\operatorname{Hol}\left(\mathrm{F}^{n}\right)$, where $\operatorname{Hol}\left(\mathrm{F}^{n}\right)$ is the holomorph of \mathbb{F}^{n}. The Theorem 10.1.19 shows that if $|\mathbb{F}|=q^{n}$, then $|A G L(n, \mathbb{F})|=$ $q^{n} \times|G L(n, \mathbb{F})|$.

Theorem 10.1.21 The affine group $A G L(n, F)$ is isomorphic to a subgroup of $G L(n+1, \mathbb{F})$.

Proof. Define $\psi: A G L(n, \mathbb{F}) \longrightarrow G L(n+1, \mathbb{F})$ by

$$
\psi\left(T_{A, b}\right):=\left(\begin{array}{cc}
A & 0 \\
b & 1
\end{array}\right)
$$

We claim that ψ is an monomorphism.
(i) ψ is a homomorphism:

$$
\begin{aligned}
\psi\left(T_{A, b} \circ T_{A^{\prime}, b^{\prime}}\right) & =\psi\left(T_{A A^{\prime}, b A^{\prime}+b^{\prime}}\right)=\left(\begin{array}{cc}
A A^{\prime} & 0 \\
b A^{\prime}+b^{\prime} & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
A & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{ll}
A^{\prime} & 0 \\
b^{\prime} & 1
\end{array}\right)=\psi\left(T_{A, b}\right) \circ \psi\left(T_{A^{\prime}, b^{\prime}}\right) .
\end{aligned}
$$

(ii) ψ is one to one:

$$
\begin{aligned}
\operatorname{Ker}(\psi) & =\left\{T_{A, b} \left\lvert\,\left(\begin{array}{cc}
A & 0 \\
b & 1
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & 1
\end{array}\right)\right., A \in G L(n, \mathbb{F})\right\} \\
& =\left\{T_{A, b} \mid A=I_{n}, b=0\right\}=\left\{T_{I_{n}, 0}\right\}=\left\{1_{A G L(n, \mathbb{F})}\right\} .
\end{aligned}
$$

Hence ψ is monomorphism. Thus
$A G L(n, \mathbb{F}) \cong \operatorname{Im}(\psi)=\left\{\left.\left(\begin{array}{cc}A & 0 \\ b & 1\end{array}\right) \right\rvert\, A \in G L(n, \mathbb{F}), b \in \mathbb{F}^{n}\right\} \leq G L(n+1, \mathbb{F})$.

Let $V=<e_{1}, e_{2}, \cdots, e_{n}>$ and $W=<e_{1}, e_{2}, \cdots, e_{n}, e_{n+1}>$. Then

$$
\left(\begin{array}{cc}
A & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right) \Rightarrow\left(\begin{array}{cc}
A & 0 \\
b & 1
\end{array}\right) e_{n+1}=e_{n+1}
$$

Thus

$$
H=\left\{\left.\left(\begin{array}{cc}
A & 0 \tag{1}\\
b & 1
\end{array}\right) \right\rvert\, A \in G L(n, \mathbb{F}), b \in \mathbb{F}^{n}\right\} \leq[G L(n+1, \mathbb{F})]_{e_{n+1}} .
$$

Now let $T \in[G L(n+1, \mathbb{F})]_{e_{n+1}}$, then $T\left(e_{e_{n+1}}\right)=e_{n+1}$ and suppose that

$$
\begin{aligned}
T\left(e_{1}\right) & =a_{11} e_{1}+a_{21} e_{2}+\cdots+a_{n 1} e_{n}+b_{1} e_{n+1} \\
T\left(e_{2}\right) & =a_{12} e_{1}+a_{22} e_{2}+\cdots+a_{n 2} e_{n}+b_{2} e_{n+1} \\
\vdots & \\
T\left(e_{i}\right) & =a_{1 i} e_{1}+a_{2 i} e_{2}+\cdots+a_{n n} e_{n}+b_{i} e_{n+1} .
\end{aligned}
$$

Then

$$
T=\left(\begin{array}{cc}
A & 0 \\
b & 1
\end{array}\right)_{(n+1) \times(n+1)}, \text { where } A=\left(a_{i j}\right)_{n \times n}
$$

Therefore, $T \in H$ and hence $[G L(n+1, \mathcal{F})]_{e_{n+1}} \subseteq H \quad$ (2). Now (1) and (2) imply that $H=[G L(n+1, \mathcal{F})]_{e_{n+1}}$.

We also deduce that $\operatorname{Hol}\left(\mathrm{F}^{n}\right) \cong \operatorname{AGL}(n, \mathbb{F}) \cong[G L(n+1, \mathbb{F})]_{e_{n+1}}$. In particular if $\mathbb{F}=G F(q)$, we have $\left|G L(n+1, \mathbb{F})_{e_{n+1}}\right|=|A G L(n, \mathbb{F})|=q^{n} \times|G L(n, q)|$.

In what follows we give some examples of isomorphisms between the affine group and the symmetric group.

Lemma 10.1.22 The Affine group $A G L(n, \mathbb{F})$ which is defined as a subgroup of $S \mathbb{F}^{n}$ produces the following isomorphisms
(i) $A G L(1,2) \cong S_{2}$, (ii) $A G L(1,3) \cong S_{3}$
(iii) $A G L(1,4) \cong A_{4}$, (iv) $A G L(2,2) \cong S_{4}$.

Proof. Recall that $A G L(n, \mathbb{F})$ is defined to be the group of all transformations $T_{A, b}$ of the vector space \mathbb{F}^{n} where $A \in G L(n, \mathbb{F}), b \in \mathbb{F}^{n}$, and $T_{A, b}: x \longmapsto x A+b$ for all $x \in \mathbb{F}^{n}$. We write $A G L(n, q)$ to denote $A G L(n, \mathbb{F})$ when $\mathbb{F}=G F(q)$. Note that $A G L(1, q)$ is the group of all transformations of the form $x \longmapsto x a+b$ with $a, b \in \mathbb{F}$ and $a \neq 0_{\mathbb{F}}$, and therefore $|A G L(1, q)|=q(q-1)$.
(i) $A G L(1,2)$ is a subgroup of S_{2} of order 2 . Therefore $A G L(1,2) \cong S_{2}$.
(ii) $A G L(1,3)$ is a subgroup of S_{3} of order 6 , and so $A G L(1,3) \cong S_{3}$.
(iii) Now $A G L(1,4)$ is a subgroup of \mathscr{S}_{4} of order 12 . To see that $A G L(1,4) \cong A_{4}$ we either quote the fact that A_{4} is the only subgroup of S_{4} of order 12 or we examine each element of $A G L(1,4)$ and check that it is an even permutation.
(iv) The order of $G L(2,2)$ is 6 . Thus there are 6 possibilities for A and 4 possibilities for b. Therefore we have 24 transformations $T_{A, b}$ in $A G L(2,2)$. Since $A G L(2,2) \leq S_{4}$ and $\left|S_{4}\right|=24$, we have $A G L(2,2) \cong S_{4}$, as required.

10.2 Symplectic Groups

In this section we will discuss the Symplectic Group and consequently its affine subgroup. We give a construction for the affine subgroup of $S P(4,2)$ and find its conjugacy classes.

10.2.1 Symplectic Forms

Definition 10.2.1 Let V be a finite dimensional vector space over a field \mathbb{F}. A function f from the set $V \times V$ of ordered pairs in V to \mathbb{F} is called a bilinear form on V if for each $v \in V$, the functions $f(v$,$) and f(, v)$ are linear functionals on V. In this case we say that (V, f) is an inner product space.

If f is a bilinear form on V such that for each non-zero $x \in V$, there exists $y \in V$ for which $f(x, y) \neq 0$, then f is said to be non-degenerate.

Remark 10.2.2 A bilinear form f is called alternating (symplectic) on V if $f(x, x)=0$ for all $x \in V$.

Let V be a vector space over a field \mathbb{F} and f be a symplectic form on V. If $\operatorname{char}(\mathbb{F}) \neq 2$ then we obtain that for all $x, y \in V$,

$$
0=f(x+y, x+y)=f(x+y, x)+f(x+y, y)=f(x, x)+f(y, x)+f(x, y)+f(y, y) .
$$

However, since $f(x+y, x+y)=f(x, x)==f(y, y)=0$ we have that $f(x, y)=-f(y, x)$. Conversely if f is a bilinear form for which $f(x, y)=-f(y, x)$ for all $x, y \in V$, then in particular for $x \in V$ we have $f(x, x)=-f(x, x)$. This implies that $2 f(x, x)=0$ and so $f(x, x)=0, \forall x \in V$.

10.2.2 Symplectic Spaces

Definition 10.2.3 Let V be a vector space over a field \mathbb{F}. Let $f: V \times V \longrightarrow \mathbb{F}$ be a bilinear form on V such that
(i) $f(x, x)=0, \quad \forall x \in V$
(ii) $f(x, y)=-f(y, x), \quad \forall x, y \in V$.

Then we say that (V, f) is a symplectic space over the field \mathbb{F}.

Remark 10.2.4 If $\operatorname{char}(\mathbb{F}) \neq 2$, then the properties (i) and (ii) in the above definition are equivalent.

Let (V, f) and (U, g) be symplectic spaces over \mathbb{F}, then we say that $V \cong U$ if there exists an isomorphism $T \in L(V, U)$ such that $\forall x, y \in V$ we have $f(x, y)=g(T(x), T(y))$.

Definition 10.2.5 Let (V, f) be a symplectic space. If $x, y \in W$, then x and y are orthogonal if $f(x, y)=0$. If W is a subspuce of V then the orthogonal complement of W is defined by

$$
W^{\perp}=\{y \in V \mid f(x, y)=0, \forall x \in W\} .
$$

Note that for all $x \in W$ we have $f(0, x)=f(x-x, x)=f(x, x)-f(x, x)=0-0=0$, so that $0 \in W^{\perp}$. Now if $x, y \in W^{\perp}$, then for any $\alpha, \beta \in F$ and $z \in W$ we have

$$
f(\alpha x+\beta y, z)=f(\alpha x, z)+f(\beta y, z)=\alpha f(x, z)+\beta f(y, z)=\alpha 0+\beta 0=0
$$

therefore $\alpha x+\beta y \in W^{\perp}$, and hence W^{\perp} is a subspace of V.
Let (V, f) be a symplectic space and define $R(V)$ by $R(V)=V^{\perp}$. Then we call $R(V)$ the radical of V. We can easily see that (V, f) is non-degenerate if and only if $R(V)=\left\{0_{V}\right\}$. (See [27].)

Definition 10.2.6 Consider (V, f) with f bilinear. If $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is an ordered basis of V, then the inner product matrix of f relative to this basis is given by an $n \times n$ matrix

$$
A=\left[f\left(v_{i}, v_{j}\right)\right]_{n \times n} .
$$

Remark 10.2.7 It is clear that f is completely determined by an inner product matrix, for if $u=\sum \alpha_{i} v_{i}$ and $v=\sum \beta_{j} v_{j}$ then $f(u, v)=\sum_{i, j} \alpha_{i} \beta_{j} f\left(v_{i}, v_{j}\right)$.

Lemma 10.2.8 Let V^{*} be the dual space of V. If (V, f) is a non-degenerate inner product space, then for every linear functional $g \in V^{*}$, there exists a unique $x \in V$, with $g=f(x$,$) .$

Proof. We first prove that if $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis of V, then $\left\{f\left(v_{1},\right), f\left(v_{2},\right), \cdots, f\left(v_{n},\right)\right\}$ is a basis of V^{*}. Since $\operatorname{dim} V^{*}=n$, it suffices to show that these n linear functionals are linearly independent. If there are scalars, λ_{i} not all zero, with $\sum \lambda_{i} f\left(v_{i}\right)=0$ then $0=\sum \lambda_{i} f\left(v_{i}\right)(y)=f\left(\sum \lambda_{i} v_{i}, y\right) \forall y \in V$. Thus $\sum \lambda_{i} v_{i}=0$, because f is non-degenerate, and this contradicts the independence of the v_{i}. Let $g \in V^{*}$. Then there exists $\mu_{i} \in \mathbb{F}$ with $g=\sum \mu_{i} f\left(v_{i},\right)$. Now let $x=\sum \mu_{i} v_{i}$. Then for all $v \in V$ we have

$$
\begin{aligned}
g(v) & =\left[\sum \mu_{i} f\left(v_{i},\right)\right](v) \\
& =\sum \mu_{i} f\left(v_{i}, v\right) \\
& =f\left(\sum \mu_{i} v_{i}, v\right)=f(x, v)
\end{aligned}
$$

Thus $g=f(x$,$) . To prove the uniqueness of x$, suppose that $f(x, v)=f(y, v)$ for all $v \in V$. Then $f(x-y, v)=0 \quad \forall v \in V$. So non-degeneracy of f implies that $x-y=0_{V}$ and hence $x=y$.

Lemma 10.2.9 Let (V, f) be an inner product space. Then (V, f) is non-degenerate if and only if the inner product matrices of f are non-singular.

Proof. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis for V. If an inner product matrix A of f is singular, then there is a non-zero column vector Y with $A Y=0$. Therefore if $Y=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)$ where $\mu_{i} \in \mathbb{F}$ then $u=\sum \mu_{i} v_{i}$ is a non-zero vector with $f(v, u)=X^{t} A Y=0$, for all $v=\sum \lambda_{i} v_{i}$, where $X=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$. Conversely if u is a non-zero vector satisfying $f(u, v)=0$ for all $v \in V$, then $f\left(u, v_{i}\right)=0$ for all v_{i}. This implies that if $u=\sum \mu_{j} v_{j}$, then $\sum_{j} \mu_{j} f\left(v_{j}, v_{i}\right)=0$. Let $Y=\left(\mu_{1}, \mu_{2}, \cdots, \mu_{n}\right)^{t}$ be the column vector of u. Then $Y \neq 0$ and $A Y=0$, hence A is singular.

Remark 10.2.10 Let (V, f) be a non-degenerate inner product space. If W is a subspace of V then it is possible that the restriction $f \downarrow(W \times W)$ is degenerate. For example let $V=\langle x, y\rangle$ be a two dimensional space over a field F and let f be a bilinear form having the following inner product matrix relative to the basis $\{x, y\}$

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Then f is symmetric and non-degenerate. However, if $W=\langle x\rangle$, then the restriction $f \downarrow(W \times W)$ is zero and hence degenerate.

Lemma 10.2.11 [31] Let (V, f) be a symplectic space and let W be a subspace of V.
(i) If $f \downarrow(W \times W)$ is non-degenerate, then $V=W \oplus W^{\perp}$.
(ii) If (V, f) is a non-degenerate space and $V=W \oplus W^{\perp}$, then $f \downarrow\left(W^{\perp} \times W^{\perp}\right)$ is non-degenerate.

Proof. (i) If $x \in W \cap W^{\perp}$, then $f(x, w)=0$ for all $w \in W$ and so by the non-degeneracy of f we have $x=0_{V}$. If $v \in V$, then the restriction $g=f(v,) \downarrow W$ is a linear functional on W and so by Lemma 10.2 .8 there is a unique $w_{0} \in W$ such that $g=f\left(w_{0},\right)$. Now for all $w \in W$ we obtain that $g(w)=f(v, w)=f\left(w_{0}, w\right)$. But $v=w_{0}+\left(v-w_{0}\right)$ and $f\left(v-w_{0}, w\right)=f(v, w)-f\left(w_{0}, w\right)=0 \mathbb{F}^{\text {imply } v-w_{0} \in W^{\perp} .}$
(ii) If $\left\{v_{1}, v_{2}, \cdots, v_{r}\right\}$ is a basis of W and $\left\{v_{r+1}, v_{r+2}, \cdots, v_{n}\right\}$ is a basis of W^{\perp}, then the inner product matrix of f relative to the basis $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ has the form

$$
A=\left(\begin{array}{cc}
B & 0 \\
0 & C
\end{array}\right)
$$

so that $\operatorname{det} A=\operatorname{det}(B) \operatorname{det}(C)$. Since A is non-singular by Lemma $10.2 .9, C$ is also nonsingular. Hence the restriction of f to $W^{\perp} \times W^{\perp}$ is non-degenerate by Lemma 10.2.9.

Definition 10.2.12 An isometry of a non-degenerate space (V, f) is a linear transformation $T: V \longrightarrow V$, such that $f(T(x), T(y))=f(x, y)$ for all $x, y \in V$.

Lemma 10.2.13 If (V, f) is a non-degenerate space, then every isometry is non-singular, and so the set of all isometries denoted by $\operatorname{Isom}(V, f)$ form a subgroup of $G L(V)$.

Proof. If T is an isometry and $T(x)=0_{V}$, for some $x \in V$ then $f(x, y)=f(T(x), T(y))=$ $f\left(0_{V}, T(y)\right)=0_{V}$, for all $y \in V$. Since f is non-degenerate, it follows that $x=0_{V}$ and T is injective. Since V is finite dimensional, T is non-singular and so $\operatorname{Isom}(V, f) \leq G L(V)$.

Remark 10.2.14 (i) The product of isometries is also an isometry: For if T_{1} and T_{2} are two isometries, we have $f\left(T_{1}(x), T_{1}(y)\right)=f(x, y) \quad \forall x, y \in V$ and $f\left(T_{2}(x), T_{2}(y)\right)=$ $f(x, y) \quad \forall x, y \in V$. Then

$$
f\left(T_{1} T_{2}(x), T_{1} T_{2}(y)\right)=f\left(T_{1}\left[T_{2}(x)\right], T_{1}\left[T_{2}(y)\right]\right)=f\left(T_{2}(x), T_{2}(y)\right)=f(x, y)
$$

Hence $T_{1} T_{2}$ is an isometry.
(ii) The identity map is an isometry: Because $f\left(I_{V}(x), I_{V}(y)\right)=f(x, y) \quad \forall x, y \in V$.
(iii) An isometry T has an inverse T^{-1} and T^{-1} is also an isometry: Because $f\left(T^{-1}(x), T^{-1}(y)\right)=f\left(T T^{-1}(x), T T^{-1}(y)\right)=f\left(I_{V}(x), I_{V}(y)\right)=f(x, y)$.

Lemma 10.2.15 Let (V, f) be a non-degenerate space. Let A be the inner product matrix of f relative to an ordered basis $B=\left\{v_{1}, y_{2}, \cdots, v_{n}\right\}$ of V, and let T be a linear transformation on V. Then T is an isometry if and only if its matrix $M=\left(m_{i j}\right)$ relative to B satisfies $M^{t} A M=A$. If T is an isometry, then $\operatorname{det}(M)= \pm 1$.

Proof. Since $f\left(T\left(v_{i}\right), T\left(v_{j}\right)\right)=f\left(\sum_{k} m_{k i} v_{k}, \sum_{r} m_{r j} v_{r}\right)=\sum_{k, r} m_{k i} f\left(v_{k}, v_{r}\right) m_{r j}$, we have that $f\left(T\left(v_{i}\right), T\left(v_{j}\right)\right)=f\left(v_{i}, v_{j}\right)$ if and only if $M^{t} A M=A$. If T is an isometry, then $M^{t} A M=A$ and we have
$\operatorname{det}(A)=\operatorname{det}\left(M^{t} A M\right)=\operatorname{det}\left(M^{t}\right) \operatorname{det}(A) \operatorname{det}(M)=(\operatorname{det}(M))^{t} \operatorname{det}(M) \operatorname{det}(A)=(\operatorname{det} M)^{2} \operatorname{det} A$.
Non-degeneracy of (V, f) gives non-singularity of A and $\operatorname{sotet}(M)= \pm 1$.

Remark 10.2.16 The group $G L(V)$ acts on $\mathcal{F}(V)$, the set of all functions $V \times V \longrightarrow \mathbb{F}$ in the following way. If f is a function and $P \in G L(V)$, define

$$
f^{P}(x, y)=f\left(P^{-1}(x), P^{-1}(y)\right) .
$$

If $Q \in G L(V)$, then $f^{P Q}=\left(f^{Q}\right)^{P}$, since

$$
\begin{aligned}
f^{P Q}(x, y) & =f\left((P Q)^{-1}(x),(P Q)^{-1}(y)\right)=f\left(Q^{-1} P^{-1}(x), Q^{-1} P^{-1}(y)\right) \\
& =f\left(Q^{-1}\left(P^{-1}(x)\right), Q^{-1}\left(P^{-1}(y)\right)\right)=f^{Q}\left(P^{-1}(x), P^{-1}(y)\right)=\left(f^{Q}\right)^{P}(x, y)
\end{aligned}
$$

If f is symplectic, then so is f^{P}. Because

$$
f^{P}(x, y)=f\left(P^{-1}(x), P^{-1}(y)\right)=-f\left(P^{-1}(y), P^{-1}(x)\right)=-f^{P}(y, x) \quad \forall x, y \in V
$$

and $f^{P}(x, x)=f\left(P^{-1}(x), P^{-1}(x)\right)=0 \quad \forall x \in V$.

Theorem 10.2.17 [31] Let V be a vector space over a field \mathbb{F}. Let f be a bilinear form on V. If f is symplectic, then the stabilizer of f in $G L(V)$, under the action of $G L(V)$ on $\mathcal{F}(V)$, is $\operatorname{Isom}(V, f)$. Moreover, if g is in the orbit of f, then $\operatorname{Isom}(V, g)$ is isomorphic to $\operatorname{Isom}(V, f)$.

Proof. The stabilizer $G L(V)_{f}$ of f is $G L(V)_{f}=\left\{P \in G L(V), \mid f^{P}=f\right\}$. Hence

$$
\begin{aligned}
P \in G L(V)_{f} & \Leftrightarrow f^{P}(x, y)=f(x, y) \quad \forall x, y \in V \\
& \Leftrightarrow f\left(P^{-1}(x), P^{-1}(y)\right)=f(x, y) \quad \forall x, y \in V \\
& \Leftrightarrow P^{-1} \in \operatorname{I} \cdot \operatorname{som}(V, f) \\
& \Leftrightarrow P \in \operatorname{Isom}(V, f)
\end{aligned}
$$

Hence $G L(V)_{f}=\operatorname{Isom}(V, f)$.

$$
\text { If } g=f^{P} \text { for some } P \in G L(V) \text {, then }
$$

$$
\begin{aligned}
\operatorname{Isom}(V, g)=G L(V)_{f^{P}} & =\left\{Q \in G L(V) \mid\left(f^{P}\right)^{Q}=f^{P}\right\}=\left\{Q \in G L(V) \mid f^{P Q}=f^{P}\right\} \\
& =\left\{Q \in G L(V) \mid\left(f^{Q P}\right)^{P^{-1}}=f\right\}=\left\{Q \in G L(V) \mid f^{P^{-1} Q P}=f\right\} \\
& =\left\{Q \in G L(V) \mid P^{-1} Q P \in G L(V)_{f}\right\} \\
& =\left\{Q \in G L(V) \mid Q \in P G L(V)_{f} P^{-1}\right\} \\
& =P G L(V)_{f} P^{-1}=P \operatorname{Isom}(V, f) P^{-1} .
\end{aligned}
$$

Definition 10.2.18 Two elements $f, g \in \mathcal{F}(V)$ are called equivalent if $g=f^{P}$ for some $P \in G L(V)$.

Remark 10.2.19 From Theorem 10.2 .17 we deduce that equivalent symplectic forms determine isomorphic groups of isometries.

Definition 10.2.20 Let (V, f) be a symplectic space and $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ be a set of subspaces of V such that

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{n}
$$

and $f\left(y_{i}, y_{j}\right)=0$ for all $y_{i} \in V_{i}, y_{j} \in V_{j}$ for which $i \neq j$. Then we say that V is an orthogonal sum of the subspaces $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ and we denote this by writing

$$
V=V_{1} \perp V_{2} \perp \ldots \perp V_{n} .
$$

Remark 10.2.21 Let (V, f) be a symplectic space and W be a subspace of V. Then it can be shown that (see [19]):
(1) $\operatorname{dim}\left(W^{\perp}\right) \geq \operatorname{dim}(V)-\operatorname{dim}(W)$.
(2) If V is finite dimensional non-degenerate, then $\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)$.
(3) If V is non-degenerate, then there exists a linear isomorphism $\theta: V \longrightarrow V^{*}$ given by $u^{\theta}(v)=f(u, v)$.
(4) If W is non-degenerate, then $V=W \perp W^{\perp}$.

Note 10.2.22 Assume that (V, f) is a non-degenerate symplectic space. If f is not identically zero, there are vectors x and y with $f(x, y)=\alpha \neq 0$. Replacing x by $\alpha^{-1} x$ if necessary, we may assume that $f(x, y)=1$. If $\operatorname{dim} V=2$, then its inner product matrix is thus

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Definition 10.2.23 Let (V, f) be a symplectic space and $x, y \in V$ such that $f(x, y)=1$. Then the vectors $x, y \in V$ are called a hyperbolic pair and the 2-dimensional subspace of V generated by $\{x, y\}$ is called a hyperbolic plane.

Remark 10.2.24 We can easily show that every hyperbolic plane is non-degenerate. If $H=\langle x, y\rangle$ is an hyperbolic plane in V, then $f \downarrow(H \times H)$ is a bilinear form on H. Let
$u=\lambda_{0} x+\mu_{0} y \in H$. We need to show that if $f(u, v)=0, \forall v \in H$ then $u=0$. Consider an arbitrary element $v=a x+b y$ of H. Then $0=f(u, v)=f\left(\lambda_{0} x+\mu_{0} y, a x+b y\right)=$ $\lambda_{0} a+\mu_{0} b, \forall a, b \in \mathbb{F}$ imply that $\lambda_{0}=\mu_{0}=0$. Hence $u=0$.

Theorem 10.2.25 [9] Let (V, f) be a non-degenerate finite dimensional symplectic space over a field \mathbb{F}. If W is a subspace of V such that $W \cap W^{\perp}=0$, then $V=W \oplus W^{\perp}$.

Proof. Since V is finite dimensional, then W is finite dimensional. Let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a basis for W. Then W^{\perp} will be the collection of all vectors $y \in V$ for which $f\left(x_{i}, y\right)=$ $0,1 \leq i \leq k$. Since V is non-degenerate, then $\operatorname{dim}\left(W^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)$ and thus we obtain that $\operatorname{dim}(V)=\operatorname{dim}\left(W^{\perp}\right)+\operatorname{dim}(W)$. Since $W \cap W^{\perp}=0$, then we obtain that $V=W \oplus W^{\perp}$.

Theorem 10.2.26 Let (V, f) be a symplectic space over a field \mathbb{F} such that $\operatorname{dim}(V)=n$ and $\operatorname{dim}(R(V))=r$. Then we have

$$
V=H_{1} \perp H_{2} \perp \ldots \perp H_{m} \perp R(V)
$$

where $H_{i}, 1 \leq i \leq m$ are hyperbolic planes. Furthermore $n-r=2 m$.

Proof. We have that $R(V)$ is a subspace of V. However if $R(V)=V$, then $m=0$ and thus $n-r=0=2 \times 0$ and the proof is complete. Thus, without loss of generality, suppose that $R(V) \neq V$. Let $x \in V-R(V)$. Since $x \notin R(V)$, there $\exists z \in V$ such that $f(x, z) \neq 0$. Thus we can choose $y \in V$ such that $f(x, y)=1$ and hence $\{x, y\}$ is a hyperbolic pair. This is true, since if $f(x, z)=\alpha \neq 0$, then for $y=\frac{1}{\alpha} z$ we have $f(x, y)=1$. Now suppose that H_{1} is the hyperbolic plane generated by $\{x, y\}$ and that $H_{1}^{\perp}=V_{1}$. Since H_{1} is a hyperbolic plane, then it is non-degenerate and thus we have that $V=H_{1} \perp V_{1}$ and we also have that $R\left(H_{1}\right)=0$. Hence $R(V)=R\left(H_{1}\right) \perp R\left(V_{1}\right)=R\left(V_{1}\right)$.

We now apply induction on $\operatorname{dim}(V)=n$. Since $H_{1}=\langle x, y\rangle$, then $\operatorname{dim}\left(H_{1}\right)=2$ and so we have that $\operatorname{dim}(V)=n=\operatorname{dim}\left(H_{1}\right)+\operatorname{dim}\left(V_{1}\right)$. Thus, $\operatorname{dim}\left(V_{1}\right)=n-2<\operatorname{dim}(V)$ and so by induction hypothesis we obtain

$$
V_{1}=H_{2} \perp H_{3} \perp \ldots \perp H_{m} \perp R\left(V_{1}\right)
$$

where $H_{i}, 2 \leq i \leq m$ are hyperbolic planes and that $2(m-1)=n-2-r$. So we get $2 m=n-r$. Since $R\left(V_{1}\right)=R(V)$ and $V=H_{1} \perp V_{1}$, then we also obtain that

$$
V=H_{1} \perp H_{2} \perp H_{3} \perp \ldots \perp H_{m} \perp R(V) .
$$

The result that follows shows that the dimension of a non-degenerate symplectic space must be even.

Corollary 10.2.27 Let (V, f) be a non-degenerate symplectic space of dimension n over a field \mathbb{F}. Then

$$
V=H_{1} \perp H_{2} \perp \ldots \perp H_{m}
$$

where $H_{i}, 1 \leq i \leq m$ are hyperbolic planes and $n=2 m$.

Proof. By the above theorem, we obtain that $V=H_{1} \perp H_{2} \perp \ldots \perp H_{m} \perp R(V)$. However V is non-degenerate and thus $R(V)=0$.
Hence we obtain that $V=H_{1} \perp H_{2} \perp \ldots \perp H_{m}$ and $\operatorname{dim}(V)=n=2 m$.

Theorem 10.2.28 Let (V, f) be a non-degenerate symplectic space and $\left\{u_{1}, \ldots, u_{r}\right\}$ be a linearly independent set of elements of V such that $f\left(u_{i}, u_{j}\right)=0 \forall i, j$. Then there is a linearly independent set $\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ of elements of V such that

$$
V=H_{1} \perp H_{2} \perp \ldots \perp H_{r} \perp V_{1}
$$

where V_{1} is a subspace of V and $H_{i}, 1 \leq i \leq r$ are hyperbolic planes and $2 r \leq \operatorname{dim}(V)$.

Proof. Since V is non-degenerate, $R(V)=0$. Hence $u_{1} \notin R(V)$ and there is $v_{1} \in V$ such that $f\left(u_{1}, v_{1}\right)=1$. Let $H_{1}=\left\langle u_{1}, v_{1}\right\rangle$. Then H_{1} is a hyperbolic plane. Since H_{1} is non-degenerate, $V=H_{1} \perp H_{1}^{\perp}$. Now $0=R(V)=R\left(H_{1}\right) \perp R\left(H_{1}^{\perp}\right)$ implies that $R\left(H_{1}^{\perp}\right)=0$. Hence H_{1}^{\perp} is non-degenerate. Since $f\left(u_{1}, u_{i}\right)=0$ for $2 \leq i \leq r, u_{i} \in H_{1}^{\perp}$. Hence $\left\{u_{2}, u_{3}, \ldots, u_{r}\right\} \subseteq H_{1}^{\perp}$. Since $\operatorname{dim}\left(H_{1}^{\perp}\right)=\operatorname{dim}(V)-2 \leq \operatorname{dim}(V)$, by induction there exists $\left\{v_{2}, v_{3}, \ldots, v_{r}\right\} \subseteq H_{1}^{\perp}$ such that

$$
H_{1}^{\perp}=H_{2} \perp H_{3} \perp \ldots \perp H_{r} \perp V_{1}
$$

where $H_{i}=\left\langle u_{i}, v_{i}\right\rangle, 2 \leq i \leq r$. Since $V=H_{1} \perp H_{1}^{\perp}$, we have

$$
V=H_{1} \perp H_{2} \perp H_{3} \perp \ldots \perp H_{r} \perp V_{1} .
$$

Also $\operatorname{dim}(V)=2 r+\operatorname{dim}\left(V_{1}\right)$ and hence $2 r \leq \operatorname{dim}(V)$.

Theorem 10.2.29 [19] Let (V, f) be a roon-degenerate symplectic space and W_{1}, W_{2} be two subspaces of V and $T: W_{1} \longrightarrow W_{2}$ be an isometry. Then there exists an isometry $S: V \longrightarrow V$ such that $S \downarrow_{W_{1}}=T$.

Proof. We have that $W_{1}=H_{1} \perp H_{2} \perp \ldots \perp H_{m} \perp R\left(W_{1}\right)$, where $H_{i}, 1 \leq i \leq m$ are hyperbolic planes. Thus we obtain that

$$
W_{2}=T\left(W_{1}\right)=T\left(H_{1}\right) \perp T\left(H_{2}\right) \perp \ldots \perp T\left(H_{m}\right) \perp T\left(R\left(W_{1}\right)\right) .
$$

If $H_{i}=\left\langle x_{i}, y_{i}\right\rangle$, then we obtain that

$$
T\left(H_{i}\right)=T\left(\left\langle x_{i}, y_{i}\right\rangle\right)=\left\langle T\left(x_{i}\right), T\left(y_{i}\right)\right\rangle=H_{i}^{\prime}
$$

and H_{i}^{\prime} is a hyperbolic plane in W_{2}. Since $T\left(R\left(W_{1}\right)\right)=R\left(T\left(W_{1}\right)\right)=R\left(W_{2}\right)$, we have

$$
W_{2}=H_{1}^{\prime} \perp H_{2}^{\prime} \perp \ldots \perp H_{m}^{\prime} \perp R\left(W_{2}\right)
$$

Now let

$$
H=H_{1} \perp H_{2} \perp \ldots \perp H_{m} \quad \text { and } \quad H^{\prime}=H_{1}^{\prime} \perp H_{2}^{\prime} \perp \ldots \perp H_{m}^{\prime}
$$

Then we get

$$
W_{1}=H \perp R\left(W_{1}\right) \quad \text { and } \quad W_{2}=H^{\prime} \perp R\left(W_{2}\right)
$$

Since H_{i} and $H_{i}^{\prime}, 1 \leq i \leq m$, are hyperbolic planes, they are non-degenerate and hence $R\left(H_{i}\right)=R\left(H_{i}^{\prime}\right)=0, \quad 1 \leq i \leq m$. Thus we obtain that $R(H)=R\left(H^{\prime}\right)=0$ and hence H, H^{\prime} are non-degenerate. Therefore $V=H \perp H^{\perp}=H^{\prime} \perp\left(H^{\prime}\right)^{\perp} \quad$. However since V is non-degenerate, then $R(V)=0$. Thus

$$
0=R(V)=R(H) \perp R\left(H^{\perp}\right)=R\left(H^{\prime}\right) \perp R\left(\left(H^{\prime}\right)^{\perp}\right)
$$

and hence we obtain that $R\left(H^{\perp}\right)=R\left(\left(H^{\prime}\right)^{\perp}\right)=0$. Therefore $H^{\perp},\left(H^{\prime}\right)^{\perp}$ are non-degenerate. Since $H \subseteq W_{1}$ and $H^{\prime} \subseteq W_{2}, R\left(W_{1}\right) \subseteq H^{\perp}$ and $R\left(W_{2}\right) \subseteq\left(H^{\prime}\right)^{\perp}$. Let $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ be a basis for $R\left(W_{1}\right)$. Then $f\left(u_{i}, u_{j}\right)=0 \quad \forall^{\prime} i, j$. Thus by Theorem 10.2.28, there exists a linearly independent set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ such that

$$
H^{\perp}=K_{1} \perp K_{2} \perp \ldots \perp K_{k} \perp L
$$

where L is a subspace of H^{\perp} and $K_{i}=\left\langle u_{i}, v_{i}\right\rangle$ such that $f\left(u_{i}, v_{i}\right)=1$. Since T is an isometry, $\left\{T\left(u_{1}\right), T\left(u_{2}\right), \ldots, T\left(u_{k}\right)\right\}$ is a linearly independent set in $T\left(R\left(W_{1}\right)\right)=R\left(W_{2}\right)$. We also obtain that $0=f\left(u_{i}, u_{j}\right)=f\left(T\left(u_{i}\right), T\left(u_{j}\right)\right)$. Again by Theorem 10.2.28 there exists a linearly independent set $\left\{v_{1}^{\prime}, v_{2}^{\prime} \ldots v_{k}^{\prime}\right\}$ such that

$$
\left(H^{\prime}\right)^{\perp}=K_{1}^{\prime} \perp K_{2}^{\prime} \perp \ldots \perp K_{k}^{\prime} \perp L^{\prime}
$$

where $K_{i}^{\prime}=\left\langle T\left(u_{i}\right), v_{i}^{\prime}\right\rangle$ such that $f\left(T\left(u_{i}\right), v_{i}^{\prime}\right)=1$. Now we have

$$
\begin{aligned}
V & =H_{1} \perp H_{2} \ldots \perp H_{m} \perp K_{1} \perp K_{2} \ldots \perp K_{k} \perp L \\
& =H_{1}^{\prime} \perp H_{2}^{\prime} \ldots \perp H_{m}^{\prime} \perp K_{1}^{\prime} \perp K_{2}^{\prime} \ldots \perp K_{k}^{\prime} \perp L^{\prime}
\end{aligned}
$$

with $R(L)=R\left(L^{\prime}\right)=0$ and $\operatorname{dim}(V)=2(m+k)+\operatorname{dim}(L)=2(m+k)+\operatorname{dim}\left(L^{\prime}\right)$. Thus we obtain that $\operatorname{dim}(L)=\operatorname{dim}\left(L^{\prime}\right)$. Hence there exists an isometry $M: L \longrightarrow L^{\prime}$. Define a linear transformation $S: V \longrightarrow V$ by

$$
\begin{gathered}
S(h)=T(h) \forall h \in H, S\left(u_{i}\right)=T\left(u_{i}\right) \quad 1 \leq i \leq k \\
S\left(v_{i}\right)=v_{i}^{\prime} \quad 1 \leq i \leq k, S(\ell)=M(\ell) \forall \ell \in L .
\end{gathered}
$$

Then S is an isometry on V and $S \downarrow_{W_{1}}=\Gamma$.

10.2.3 Symplectic Groups

Definition 10.2.30 Let (V, f) be a non-degenerate symplectic space of dimension $2 n$ over a field \mathbb{F}. Then by Lemma 10.2.13 $\operatorname{Isom}(V, f)$ is a subgroup of $G L(V)$. The group $\operatorname{Isom}(V, f)$ is denoted by $S P(2 n, \mathbb{F})$, and is called the symplectic group of degree $2 n$ over \mathbb{F}.

Note 10.2.31 If $\mathbb{F}=G F(q)$ is a Galois field of q elements, where $q=p^{k}$ for some k with p a prime, we denote $S P(2 n, \mathbb{F})$ by $\leftrightarrows P(2 n, q)$. We further obtain that $\operatorname{Isom}(V, f)=$ $S P(2 n, \mathbb{F}) \leq G L(2 n, \mathbb{F})$. We shall see in Theorem 10.2 .33 that this group (within isomorphism) is independent of the choice of f.

Definition 10.2.32 Let (V, f) be a non-degenerate symplectic space of dimension $2 m$. Let $B=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{m}, y_{m}\right\}$ be a basis for V such that $\left\{x_{i}, y_{i}\right\}$ is a hyperbolic pair for all $1 \leq i \leq m$ with $f\left(x_{i}, x_{j}\right)=0=f\left(y_{i}, y_{j}\right)$ for all i, j and $f\left(x_{i}, y_{j}\right)=\delta_{i j}=-f\left(y_{j}, x_{i}\right)$, where $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$. Then we say that the set B is a hyperbolic basis for V.

Thus all inner product are 0 except $f\left(x_{i}, y_{i}\right)=1=-f\left(y_{i}, x_{i}\right)$ for all i.

Theorem 10.2.33 [31] Let (V, f) be a non-degenerate symplectic space of dimension $2 m$. (i) V has a hyperbolic basis $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \cdots, x_{m}, y_{m}\right\}$.
(ii) The inner product matrix A of f relative to this ordered basis is the matrix J which is the direct sum of 2×2 blocks $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
(iii) If $u=\sum_{i}\left(\alpha_{i} x_{i}+\beta_{i} y_{i}\right)$ and $v=\sum_{i}\left(\lambda_{i} x_{i}+\mu_{i} y_{i}\right)$, then $f(u, v)=\sum_{i}\left(\alpha_{i} \mu_{i}-\beta_{i} \lambda_{i}\right)$.
(iv) All non-degenerate symplectic forms on V are equivalent and the symplectic group $\operatorname{Isom}(V, f)$, up to isomorphism, do not depend on the choice of f.

Proof. (i) Since V is the orthogonal direct sum of hyperbolic planes H_{i} by Corollary 10.2.27, the union of the bases of $H_{i}, 1 \leq i \leq m$ produces hyperbolic basis of V.
(ii) By simple calculations we can see that the matrix of f with respect to the above basis is

$$
J=\left(\begin{array}{cccccccc}
0 & 1 & & & & & & \\
-1 & 0 & & & & & & \\
& & 0 & 1 & & & & \\
& & -1 & 0 & & & & \\
& & & & & & & \\
& & & & \cdot & & & \\
& & & & & \cdot & & \\
& 0 & & & & & & \\
& & & & & & & 0 \\
& & & & & & \\
& & & & & & 0
\end{array}\right)
$$

which is the direct sum of 2×2 blocks $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
(iii) Let $u=\sum_{i}\left(\alpha_{i} x_{i}+\beta_{i} y_{i}\right)$ and $v=\sum_{i}\left(\lambda_{i} x_{i}+\mu_{i} y_{i}\right)$, then

$$
\begin{aligned}
f(u, v) & =f\left(\sum_{i}\left(\alpha_{i} x_{i}+\beta_{i} y_{i}\right), \sum_{i}\left(\lambda_{i} x_{i}+\mu_{i} y_{i}\right)\right) \\
& =\sum_{i, j} \alpha_{i} \lambda_{j} f\left(x_{i}, x_{j}\right)+\sum_{i, j} \alpha_{i} \mu_{j} f\left(x_{i}, y_{j}\right)+\sum_{i, j} \beta_{i} \lambda_{j} f\left(y_{i}, x_{j}\right)+\sum_{i, j} \beta_{i} \mu_{j} f\left(y_{i}, y_{j}\right) \\
& =\sum_{i} \alpha_{i} \mu_{i}+\sum_{i}(-1) \beta_{i} \lambda_{i}=\sum_{i}\left(\alpha_{i} \mu_{i}-\beta_{i} \lambda_{i}\right) .
\end{aligned}
$$

(iv) If g is a non-degenerate symplectic form, then there exists a hyperbolic basis of V relative to g, so that any inner product matrix of g is also congruent to J, and hence to any inner product matrix of f. Therefore, by Theorem 10.2.17 the isometry group $\operatorname{Isom}(V, f)$ does not depend on the choice of f. Thus up to isomorphism there is a unique class of symplectic groups on V.

Note 10.2.34 The result of part (iii) ir Theorem 10.2.33 implies that the symplectic forms are sums of 2×2 determinants. If a hyperbolic basis is reordered so that all the x_{i} precede all the y_{i}, then the matrix J is congruent to $\left(\begin{array}{cc}0 & I_{m} \\ -I_{m} & 0\end{array}\right)$. In this case we say that $\left\{x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{m}\right\}$ is a reordered hyperbolic basis of V.

Definition 10.2.35 If (V, f) is a non-degenerate space, then the adjoint of a linear transformation T, denoted by T^{*}, is a linear transformation on V for which $f(T(x), y)=$ $f\left(x, T^{*}(y)\right) \quad \forall x, y \in V$.

Lemma 10.2.36 Let (V, f) be a non-degenerate symplectic space and let T be a linear transformation on V having an adjoint T^{*}. Then T is an isometry if and only if $T^{*} T=I_{V}$.

Proof. If T has an adjoint with $T^{*} T=I_{V}$. Then for all $x, y \in V$ we have $f(T(x), T(y))=$ $f\left(x, T^{*} T(y)\right)=f(x, y)$, hence T is an isometry. Conversely assume that T is an isometry. Then for all $x, y \in V$ we have $f\left(x, T^{*} T(y)--y\right)=f\left(x, T^{*} T(y)\right)-f(x, y)=f(T(x), T(y))-$ $f(x, y)=0$. Since f is non-degenerate, we must have $T^{*} T(y)-y=0_{V}$ for all $y \in V$. That is $\left(T^{*} T-1_{V}\right)(y)=0_{V}$ for all $y \in V$. Hence $T^{*} T=I_{V}$.

Theorem 10.2.37 [31] Let (V, f) be a non-degenerate symplectic space. Let $T \in G L(V)$, and let $\left\{x_{1}, x_{2}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{m}\right\}$ be a reordered hyperbolic basis of V. If the matrix Q of T with respect to this basis is decomposed into $m \times m$ blocks $Q=\left(\begin{array}{cc}A & C \\ B & D\end{array}\right)$ then T^{*} exists and has a matrix

$$
Q^{*}=\left(\begin{array}{cc}
D^{t} & -C^{t} \\
-B^{t} & A^{t}
\end{array}\right)
$$

moreover, $Q \in S P(2 n, q)$ if and only if $Q^{*} Q=I_{2 m}$.

Proof. Assume that T^{*} exists. If $T\left(x_{i}\right)=\sum_{k}\left(\alpha_{k i} x_{k}+\beta_{k i} y_{k}\right)$, then

$$
\begin{aligned}
f\left(x_{i}, T^{*}\left(x_{j}\right)\right) & =f\left(T\left(x_{i}\right), x_{j}\right)=f\left(\sum_{k}\left(\alpha_{k i} x_{k}+\beta_{k i} y_{k}\right), x_{j}\right) \\
& =f\left(\sum_{k} \alpha_{k i} x_{k}, x_{j}\right)+f\left(\sum_{k}^{\prime} \beta_{k i} y_{k}, x_{j}\right)=\sum_{k} \alpha_{k i} f\left(x_{k}, x_{j}\right)+\sum_{k} \beta_{k i} f\left(y_{k}, x_{j}\right) \\
& =-\beta_{j i} .
\end{aligned}
$$

On the other hand if $T^{*}\left(x_{j}\right)=\sum_{r}\left(\lambda_{r j} x_{r}+\mu_{r j} y_{r}\right)$, then

$$
\begin{aligned}
f\left(x_{i}, x_{j}\right) & =f\left(x_{i}, \sum_{r} \lambda_{r j} x_{r}+\mu_{r j} y_{r}\right) \\
& =f\left(x_{i}, \sum_{r} \lambda_{r j} x_{r}\right)+f\left(x_{i}, \sum_{r} \mu_{r j} y_{r}\right)=\sum_{r} \lambda_{r j} f\left(x_{i}, x_{r}\right)+\sum_{r} \mu_{r j} f\left(x_{i}, y_{r}\right) \\
& =\mu_{i j} .
\end{aligned}
$$

Hence $-\beta_{j i}=\mu_{i j}$, and so it follows that the matrix of T^{*} is $Q^{*}=\left(\begin{array}{cc}M & X \\ N & Y\end{array}\right)$ where $N=-B^{t}$. Similar calculations give the other three blocks, that is, $M=D^{t}, X=-C^{t}$ and $Y=A^{t}$. For the existence of T^{*} we can see that the matrix construction defines a linear transformation that behaves as the adjoint must. Now from Lemma 10.2.36 we deduce that T is an isometry if and only if $T^{*} T=I_{V}$. Hence $Q \in S P(2 n, q)$ if and only if $Q^{*} Q=I_{2 m}$.

Note 10.2.38 Notice that by Lemma 10.2.15, symplectic matrices have determinant ± 1. It can be shown, in fact that every symplectic matrix has determinant 1 ; that is $S P(2 n, \mathbb{F}) \leq$ $S L(2 n, F)$.

Theorem 10.2.39 $S P(2 n, \mathbb{F})$ is a transitive permutation group on the set of all hyperbolic pairs.

Proof. $S P(2 n, \mathbb{F})$ has a permutation representation on the set of all hyperbolic pairs $\{x, y\}$ given by $T \mapsto T_{1}$, where $T \in S P(2 n, \mathbb{F})$ and

$$
T_{1}=\binom{\{x, y\}}{\{T(x), T(y)\}}
$$

Let $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}$ be two hyperbolic pairs. Then we have that $f\left(x_{1}, y_{1}\right)=f\left(x_{2}, y_{2}\right)=1$. Thus there is a linear automorphism T such that $T\left(x_{1}\right)=x_{2}$ and $T\left(y_{1}\right)=y_{2}$. Let

$$
H_{1}=\left\langle x_{1}, y_{1}\right\rangle \quad \text { and } \quad H_{2}=\left\langle x_{2}, y_{2}\right\rangle
$$

Then we observe that $T: H_{1} \longrightarrow H_{2}$ is an isometry. By Theorem 10.2 .29 , there is an isometry $S \in S P(2 n, \mathbb{F})$ such that $S \downarrow_{H_{1}}=T$. Hence $S P(2 n, \mathbb{F})$ is transitive on the set of all hyperbolic pairs.

Theorem 10.2.40 [19] Let (V, f) be a non-degenerate symplectic space of dimension $2 n$ over $G F(q)$. Then the number of hyperbolic pairs of V is $q^{2 n-1} .\left(q^{2 n}-1\right)$.

Proof. We observe that $|V|=q^{2 n}$. Let $\{x, y\}$ be a hyperbolic pair. Then we have that $f(x, y)=1$ and hence $x \neq 0_{V}$. Thus we have that $\operatorname{dim}(\langle x\rangle)=1$ and hence we obtain that $\operatorname{dim}\left(\langle x\rangle^{\perp}\right)=2 n-1$. Therefore the number of elements of V which are not in $\langle x\rangle^{\perp}$ is $q^{2 n}-q^{2 n-1}$. Since $\left|\mathbb{F}^{*}\right|=q-1$, the number of elements $y \in V$ for which $f(x, y)=1$ is given by $\frac{2^{2 n}-q^{2 n-1}}{q-1}$. Thus the number of hyperbolic pairs is given by

$$
\left(q^{2 n}-1\right) \cdot\left(\frac{q^{2 n}-q^{2 n-1}}{q-1}\right)=\left(q^{2 n}-1\right) \cdot q^{2 n-1}\left(\frac{q-1}{q-1}\right)=q^{2 n-1} \cdot\left(q^{2 n}-1\right) .
$$

Theorem 10.2.41 [g] Let (V, f) be a non-degenerate symplectic space of dimension $2 n$ over $G F(q)$. Then

$$
|S P(2 n, q)|=q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)
$$

Proof. Since V is non-degenerate, there is a hyperbolic basis for V. Let $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \cdots, x_{n}, y_{n}\right\}$ be a fixed hyperbolic basis for V. Let $T \in S P(2 n, q)$. Since T is an isometry, $\left\{T\left(x_{1}\right), T\left(y_{1}\right), T\left(x_{2}\right), T\left(y_{2}\right), \ldots, T\left(x_{n}\right), T\left(y_{n}\right)\right\}$ is a hyperbolic basis for V. Thus we obtain that $|S P(2 n, q)|$ is the number of hyperbolic bases for V. We apply induction on n, to count the number of ways of choosing hyperbolic bases for V. There are $q^{2 n-1} .\left(q^{2 n}-1\right)$ ways of choosing a hyperbolic pair $x_{1}, y_{1} \in V$. Let $H_{1}=\left\langle x_{1}, y_{1}\right\rangle$, then the restriction \bar{f} of f to H_{1}^{\perp} is non-degenerate and thus making (H_{1}^{\perp}, \bar{f}) into a non-degenerate symplectic space. Thus the remaining vectors of the hyperbolic basis for V may be chosen as a hyperbolic basis for $\left(H_{1}^{\perp}, \bar{f}\right)$. Since $\operatorname{dim}\left(H_{1}^{\perp}\right)=2 n-2$, the number of hyperbolic bases for $\left(H_{1}^{\perp}, \bar{f}\right)$ is equal to $|S P(2 n-2, q)|$. Hence we obtain that

$$
\begin{aligned}
|S P(2 n, q)| & =q^{2 n-1} \cdot\left(q^{2 n}-1\right) \cdot|S P(2 n-2, q)| \\
& =q^{2 n-1} \cdot\left(q^{2 n}-1\right) \cdot q^{(n-1)^{2}} \prod_{i=1}^{n-1}\left(q^{2 i}-1\right) \\
& =q^{n^{2}} \prod_{i=1}^{n}\left(q^{2 i}-1\right)
\end{aligned}
$$

Note 10.2.42 If V is a $2 n$-dimensional non-degenerate symplectic space over a field F , and $S P(2 n, \mathbb{F})$ is the symplectic group of isometries of V, then the centre $Z(S P(2 n, \mathbb{F})$ of $S P(2 n, \mathbb{F})$ consists of the transformations $T=k I$, where $k= \pm 1$. The factor group $S P(2 n, \mathbb{F}) / Z(S P(2 n, \mathbb{F}))$ is called the projective symplectic group and is denoted by $\operatorname{PSP}(2 n, \mathrm{~F})$. The projective symplectic groups are simple except for $\operatorname{PSP}(2,2)=$ $P S L(2,2), \operatorname{PSP}(2,3)=P S L(2,3)$ and $P S P(4,2)$. If $\mathbb{F}=G F(q)$, is the Galois field of q elements, then $S P(2 n, \mathbb{F})$ and $P S P(2 n, \mathbb{F})$ are denoted by $S P(2 n, q)$ and $P S P(2 n, q)$ respectively, and we have

$$
\begin{aligned}
& Z(S P(2 n, q))=\{I\} \quad \text { if } \operatorname{char}(\mathbb{F})=2 \text { and } \\
& Z(S P(2 n, q))=\left\{I_{1}-I\right\} \text { if } \operatorname{char}(\mathbb{F}) \neq 2
\end{aligned}
$$

We also have

$$
\begin{aligned}
|P S P(2 n, q)| & =\frac{1}{(2, q-1)} \times|S P(2 n, q)| \\
& =\frac{q^{n^{2}}}{(2, q-1)} \prod_{i=1}^{n}\left(q^{2 i}-1\right) .
\end{aligned}
$$

Definition 10.2.43 If V is a vector space of dimension n and H is a subspace of V of dimension $n-1$, then we say that H is a hyperplane of V. If $\mathbb{F}=G F(q)$ and H is a hyperplane in V, then H contains q^{n-1} points.

Definition 10.2.44 Let V be a non-degenerate symplectic space over a field \mathbb{F} and $T \in S P(2 n, \mathbb{F}), T \neq I$ such that for some hyperplane H of V, we have
(i) $T(h)=h \quad \forall h \in H$,
(ii) $T(u)-u \in H \quad \forall u \in V-H$. Then T is called symplectic transvection of V.

Theorem 10.2.45 [19] Let T be a symplectic transvection with hyperplane H. Then there is a non-zero $z \in V$ such that $H=\langle z\rangle^{\perp}$ and for all $y \in V$ we have $T(y)=y+k f(z, y) z$ for $k \in \mathbb{F}$. Conversely for $z \neq 0, z \in V$ and $0 \neq k \in \mathbb{F}$ define $T: V \longrightarrow V$ by $T(y)=y+k f(z, y) z$ for all $v \in V$. Then T is a symplectic transvection with hyperplane $\langle z\rangle^{\perp}$.

Proof. Let $u \in V-H$. Since T is non-identity, $T(u)-u \neq 0$. Let $v \in H$ such that $v \neq 0$ and $T(u)-u=v$. Since H is a hyperplane and $u \notin H, V=\langle u\rangle \oplus H$. Then $\operatorname{dim}\left(H^{\perp}\right)=1$ and hence $H^{\perp}=\langle z\rangle$ for some $z \neq 0, z \in V$. Define $\phi: V \longrightarrow \mathbb{F}$ by $\phi(y)=\phi(\lambda u+h)=\lambda$ and it can be shown that ϕ is a linear functional, so there is $w \in V$ such that $w^{\theta}=\phi$, where $\theta: V \longrightarrow V^{*}$ is the linear isomorphism given in Remark 10.2.21 part 3. For all $y \in V, \phi(y)=w^{\theta}(y)=f(w, y)$,

$$
\begin{aligned}
T(y) & =T(\lambda u+h)=\lambda T(u)+T(h)=\lambda T(u)+h=\lambda(v+u)+h \\
& =\lambda v+\lambda u+h=y+\lambda v=y+\phi(y) v=y+f(w, y) v .
\end{aligned}
$$

Now, for all $h \in H, f(h, u)=f(T(h), T(u))=f(h, u+v)=f(h, u)+f(h, v)$. So $f(h, v)=0$ for all $h \in H$, that is $v \in H^{\perp}$. Since $H=\langle z\rangle^{\perp}$ then $v \in\langle z\rangle$, so that $v=k_{1} z$ for some $k_{1} \in \mathbb{F}$. Since $v \neq 0$, then $k_{1} \neq 0$. Therefore $T(y)=y+k_{1} f(w, y) z$. Since $0=\phi(h)=f(w, h)$ for all $h \in H, w \in H^{\perp}$ and thus $w=k_{2} z$ for some $k_{2} \in \mathbb{F}$. Hence $T(y)=y+k_{1} k_{2} f(z, y) z$.

Conversely for $0 \neq k \in \mathrm{~F}$ and $0 \neq z \in V$, define $T: V \longrightarrow V$ by $T(y)=y+k f(z, y) z$ for all $y \in V$. It can be shown that $T \in S P(2 n, \mathbb{F})$. Let $H=\langle z\rangle^{\perp}$ then for $h \in H$, $T(h)=h+k f(z, h) z=h+0=h$ and if $y \in V$ then $T(y)-y=k f(z, y) z=a z$ for some $a \in F$. Since $\langle z\rangle \subseteq\langle z\rangle^{\perp}$, then $T(y)-y \in\langle z\rangle^{\perp}=H$. Therefore T is a symplectic transvection with the hyperplane $H=\langle z\rangle^{\perp}$.

If T is a transvection, then by Theorem 10.2 .45 there exists $k \in F^{*}$ and $z \in V^{*}$ such that $T=T_{k, z}$. For $T=T_{k, z}$ we say that T is a transvection in the direction z. Let X be the set of all symplectic transvections of V. Then it can be shown that $\langle X\rangle$ is transitive on $V-\left\{0_{V}\right\}$ and on hyperbolic pairs.

Theorem 10.2.46 [19] SP(2n, $\mathbb{F})$ is generated by the set of all symplectic transvections.

Proof. For $n=1$, we obtain that $S P(2, \mathbb{F}) \cong S L(2, \mathbb{F})$ and that $S L(V)=\langle X\rangle$ and the proof is complete. Suppose that $n>1$ and let $\{u, v\}$ be a hyperbolic pair and $S \in S P(2 n, \mathbb{F})$. Then $\{S(u), S(v)\}$ is also a hyperbolic pair. Since $\langle X\rangle$ is transitive on hyperbolic pairs, then there exists $T \in\langle X\rangle$ such that $T(u)=S(u)$ and $T(v)=S(v)$. Let $P=T^{-1} S:\{u, v\} \longrightarrow\{u, v\}$ and $H=\langle u, v\rangle$. Then $V=H \perp H^{\perp}$. Since P fixes H, then $P\left(H^{\perp}\right)=H^{\perp}$ and thus P also fixes H^{\perp}. Thus by Theorem 10.2 .29 we obtain that $P \downarrow_{H^{\perp}}=P^{\prime}$ is an isometry on H^{\perp}. Now suppose the result is true for all symplectic spaces whose dimensions are less than $2 n$. Since $\operatorname{dim}\left(H^{\perp}\right)=2 n-2$, then by the induction hypothesis

$$
P^{\prime}=\prod_{i} T_{i}^{\prime}
$$

where T_{i}^{\prime} 's are symplectic transvections of H^{\perp}. Now we define $T_{i}: V \longrightarrow V$ by $T_{i}\left(h+h^{\prime}\right)=$ $h+T_{i}^{\prime}\left(h^{\prime}\right) \forall h \in H, h^{\prime} \in H^{\perp}$ and all indices i. If T_{i}^{\prime} is a transvection with hyperplane $\left\langle h_{i}^{\prime}\right\rangle^{\perp} \cap H^{\perp}$, where $h_{i}^{\prime} \in H^{\perp}$, then T_{i} will also be a transvection with hyperplane $H^{\perp}\left(\left\langle h_{i}^{\prime}\right\rangle^{\perp} \cap H^{\perp}\right)$. Since

$$
P^{\prime}=\prod_{i} T_{i}^{\prime} \quad \text { and } \quad P=T^{-1} S
$$

then we obtain that

$$
S==\prod_{i} T T_{i}
$$

and thus $S \in\langle X\rangle$.

Corollary 10.2.47 $S P(2 n, \mathbb{F})$ is transitive on $V-\left\{0_{V}\right\}$.

Proof. The result follows immediately since $S P(2 n, \mathbb{F})$ is generated by the set of all symplectic transvections of V.

10.2.4 The Affine Subgroup of the Symplectic Group

Since $S P(2 n, q)$ is transitive on the non-zero vectors of V, we consider the subgroup of $S P(2 n, q)$ which is a stabilizer of a non-zero vector of V and study its structure.

Definition 10.2.48 Let (V, f) be a non-degenerate symplectic space of dimension $2 n$ over $\mathbb{F}=G F(q)$, where $q=p^{k}$ for some primie p. Let $B=\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}$ be a basis for V and $f: V \times V \longrightarrow \mathbb{F}$ defined by $f\left(e_{i}, e_{j}\right)=\delta(i, 2 n+1-j)$, where $i \leq j$. Let T be an isometry of (V, f) and

$$
G(n)=S P(2 n, q)=\{T \mid f(T(x), T(y))=f(x, y) \forall x, y \in V\} .
$$

Since $G(n)$ acts transitively on $V-\left\{0_{V}\right\}$, let $\alpha \in V-\left\{0_{V}\right\}$ and $A(n)$ be the stabilizer of α in $G(n)$ then we have that

$$
A(n)=\{T \in G(n) \mid T(\alpha)=\alpha\}
$$

Thus $A(n) \leq G(n)$. The group $A(n)$ is called the affine subgroup of $G(n)$.

Remark 10.2.49 Since $A(n)$ is the stabilizer of $\alpha \in V-\left\{0_{V}\right\}$ in $G(n)$, we have that $[G(n): A(n)]=\left|V-\left\{0_{V}\right\}\right|=q^{2 n}-1$. Now since $G(n)$ acts transitively on $V-\left\{0_{V}\right\}$, then we let $A(n)$ to be the stabilizer of e_{1} in $G(n)$. That is $A(n)=\left\{T \in G(n) \mid T\left(e_{1}\right)=e_{1}\right\}$.

Remark 10.2.50 If P is a p-group. Then $P^{\prime} \leq \Phi(P)$. We say that P is a special p-group if we have that $Z(P)=P^{\prime}=\Phi(P)$ is elementary abelian.

Lemma 10.2.51 Let $a \in G F(q)$, with char $(G F(q))=p$ and $(n, p)=1, n \in \mathbb{N}$. Then there exists $b \in G F(q)$ such that $n b=a$.

Proof. If $a=0$, then let $b=0$. Suppose $a \neq 0$. Let $(G F(q))^{*}=<x>$ where $o(x)=q-1$. Then $a \in(G F(q))^{*}$ implies that $a=x^{m^{\prime}}, 1 \leq m^{\prime} \leq q-1$. Since $(n, p)=1, n x \neq 0$. Thus $n x \in(G F(q))^{*}$ and hence $n x=x^{m}$ where $1 \leq m \leq q-1$. Let $b=x^{m^{\prime}-m+1}$. Then $b \in(G F(q))^{*}$ and $n b=n x^{m^{\prime}-m+1}=(n x) x^{m^{\prime}-m}=x^{m} \cdot x^{m^{\prime}-m}=x^{m^{\prime}}=a$.

Definition 10.2.52 We define $P(n)$ to be the subgroup of $A(n)$ consisting of elements $T \in G(n)$, such that

$$
\begin{gathered}
T\left(e_{1}\right)=e_{1} \\
T\left(e_{i}\right)=\alpha_{i} e_{1}+e_{i}, \quad 2 \leq i \leq 2 n-1
\end{gathered}
$$

and

$$
T\left(e_{2 n}\right)=\sum_{i=1}^{2 n} \beta_{i} e_{i}
$$

with $\beta_{2 n}=1$ and

$$
\alpha_{j}= \begin{cases}-\beta_{2 n+1-j} & 2 \leq j \leq n \\ \beta_{2 n+1-j} & n<j \leq 2 n-1\end{cases}
$$

If $x \in P(n)$, then x is represented by the following matrix, with respect to the basis B given in Definition 10.2.48:

$$
\left(\begin{array}{cccccc}
1 & -\beta_{2 n-1} & -\beta_{2 n-2} & \cdots & \beta_{2} & \beta_{1} \\
0 & 1 & 0 & \cdots & 0 & \beta_{2} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \beta_{2 n-1} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

It is convenient to describe $P(n)$ as an abstract group P in the following manner: Let (V, f) be a non-degenerate symplectic space of dimension $2 n-2$ over $G F(q)$ and consider the pairs $[v, a]$, where $v \in V$ and $a \in G F(q)$. Define a multiplication on such pairs by $[v, a][u, b]=[u+v, a+b+f(v, u)]$. It is clear that $|P|=q^{2 n-2} \times q=q^{2 n-1}$.

Lemma 10.2.53 [13] If $\operatorname{char}(\mathbb{F})=p$ where p is an odd prime, then the group P is a non-abelian special p-group of order $q^{2 n-1}$ isomorphic to $P(n)$.

Proof. It is not difficult to see that P is a non-abelian group of order $q^{2 n-1}$ under the multiplication defined above, with $\left[0_{V}, 0\right]=1_{P}$ and $[v, a]^{-1}=[-v,-a]$.
(i) P is non-abelian: Since

$$
[v, a][u, b]=[u+v, a+b+f(v, u)] \text { and }[u, b][v, a]=[u+v, a+b+f(u, v)],
$$

it suffices to show that $f(u, v) \neq f(v, u)$. Now, since f is symplectic we have that $f(u, v)=$ $-f(v, u) \neq f(v, u)$, thus P is non-abelian.
(ii) P is special: We need to show that $Z(P)=P^{\prime}=\Phi(P)$. Now

$$
\begin{aligned}
{[v, a] \in Z(P) } & \Leftrightarrow[v, a][u, b]=[u, b][v, a] \quad \forall u \in V \text { and } \quad \forall a, b \in G F(q) \\
& \Leftrightarrow f(u, v)=f(v, u) \quad \forall u \in V \\
& \Leftrightarrow f(u, v)=f(v, u)=-f(u, v) \quad \forall u \in V \\
& \Leftrightarrow 2 f(u, v)=0 \quad \forall u \in V \\
& \Leftrightarrow f(u, v)=0 \quad \forall^{\prime} u \in V \\
& \Leftrightarrow v=0_{V} .
\end{aligned}
$$

Thus $Z(P)=\left\{\left[0_{V}, a\right] \mid a \in G F(q)\right\} \cong G F(q)$ and $|Z(P)|=|G F(q)|=q$. Now

$$
\begin{aligned}
P^{\prime} & =<[v, a],[u, b] \mid u, v \in V, a, b \in G F(q)> \\
& =\left\{[v, a][u, b][v, a]^{-1}[u, b]^{-1} \mid u, v \in V, a, b \in G F(q)\right\} \\
& =\left\{[v, a][u, b]([u, b][v, a])^{-1} \mid u, v \in V, a, b \in G F(q)\right\} \\
& =\left\{\left[0_{V}, 2 f(u, v)\right] \mid u, v \in V, a, b \in G F(q)\right\} .
\end{aligned}
$$

Hence $P^{\prime} \subseteq Z(P)$. Conversely we need to show that $Z(P) \subseteq P^{\prime}$. By Lemma 10.2.51, if $\left[0_{V}, a\right] \in Z(P)$, with $a \in G F(q)$ we can find $b \in G F(q)$ such that $2 b=a$. Now let $v=e_{1}$ and $u=b e_{2 n}$, then $f(v, u)=f\left(e_{1}, b e_{2 n}\right)=b \delta_{11}=b$, so $2 f(v, u)=2 b=a$. Hence $\left[0_{V}, a\right]=\left[0_{V}, 2 f(v, u)\right] \in P^{\prime}$, which implies that $Z(P) \subseteq P^{\prime}$. Thus $P^{\prime}=Z(P)$. Therefore $P^{\prime}=\left\{\left[0_{V}, a\right] \mid a \in G F(q)\right\}$. Since $P=\{[v, a] \mid v \in V, a \in G F(q)\}$, we have

$$
P^{p}=<x^{p}\left|x \in P>=<[v, a]^{p}\right| v \in V, a \in G F(q)>
$$

But

$$
\begin{aligned}
{[v, a]^{p} } & =[p v, p a+\underbrace{f(v, v)+\cdots+f(v, v)}_{(p-1) \text { times }}] \\
& =[0_{V}, \underbrace{f(v, v)+\cdots+f(v, v)}_{(p-1) \text { times }}]=\left[0_{V}, c\right] \in P^{\prime}, \text { where } c=\underbrace{f(v, v)+\cdots+f(v, v)}_{(p-1) \text { times }},
\end{aligned}
$$

implies that $[v, a]^{p} \in P^{\prime}$ and hence $P^{p} \subseteq F^{\prime}$. Since $\Phi(P)=P^{\prime} P^{p}$, we have that $\Phi(P)=P^{\prime} P^{p}=P^{\prime}$. Thus P is a special p-group.
(iii) $P(n)$ is isomorphic to P : Define $\phi: P(n) \longrightarrow P$ given by $\phi(x)=[v, a]$, where $x \in P(n)$ has the form

$$
x=\left(\begin{array}{cccccc}
1 & -\beta_{2 n-1} & -\beta_{2 n-2} & \cdots & \beta_{2} & \beta_{1} \\
0 & 1 & 0 & \cdots & 0 & \beta_{2} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \beta_{2 n-1} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

and $v=\left(-\beta_{2 n-1},-\beta_{2 n-2}, \cdots, \beta_{3}, \beta_{2}\right)$ with $a=\beta_{1}$ (see Definition 10.2.52). We need to show that ϕ is a one to one and onto homomorphism.
ϕ is a homomorphism: Let $x, y \in P(n)$ such that

$$
x=\left(\begin{array}{cccccc}
1 & -\beta_{2 n-1} & -\beta_{2 n-2} & \cdots & \beta_{2} & \beta_{1} \\
0 & 1 & 0 & \cdots & 0 & \beta_{2} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \beta_{2 n-1} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

and

$$
y=\left(\begin{array}{cccccc}
1 & -\beta_{2 n-1}^{\prime} & -\beta_{2 n-2}^{\prime} & \cdots & \beta_{2}^{\prime} & \beta_{1}^{\prime} \\
0 & 1 & 0 & \cdots & 0 & \beta_{2}^{\prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \beta_{2 n-1}^{\prime} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right) .
$$

If $v=\left(-\beta_{2 n-1},-\beta_{2 n-2}, \cdots, \beta_{3}, \beta_{2}\right)$ and $v^{\prime}=\left(-\beta_{2 n-1}^{\prime},-\beta_{2 n-2}^{\prime}, \cdots, \beta_{3}^{\prime}, \beta_{2}^{\prime}\right)$ then we have that $\phi(x y)=\left[v+v^{\prime}, \beta_{1}-\beta_{2 n-1} \beta_{2}^{\prime}-\beta_{2 n-2} \beta_{3}^{\prime}-\cdots+\beta_{3} \beta_{2 n-2}^{\prime}+\beta_{2} \beta_{2 n-1}^{\prime}+\beta_{1}^{\prime}\right]$. Since $\phi(x)=\left[v, \beta_{1}\right]$ and $\phi(y)=\left[v^{\prime}, \beta_{1}^{\prime}\right]$, we have $\phi(x) \phi(y)=\left[v+v^{\prime}, \beta_{1}+\beta_{1}^{\prime}+f\left(v, v^{\prime}\right)\right]$. So it suffices to show that $-\beta_{2 n-1} \beta_{2}^{\prime}-\beta_{2 n-2} \beta_{3}^{\prime}--\cdots+\beta_{3} \beta_{2 n-2}^{\prime}+\beta_{2} \beta_{2 n-1}^{\prime}=f\left(v, v^{\prime}\right)$. Now direct calculations show that $f\left(v, v^{\prime}\right)=-\beta_{2 n-1} \beta_{2}^{\prime}-\beta_{2 n-2} \beta_{3}^{\prime}-\cdots+\beta_{3} \beta_{2 n-2}^{\prime}+\beta_{2} \beta_{2 n-1}^{\prime}$, and hence we have that $\phi(x y)=\phi(x) \phi(y)$.
ϕ is one-to-one:

$$
\begin{aligned}
\phi(x)=\phi(y) & \Rightarrow\left[v, \beta_{1}\right]==\left[v^{\prime}, \beta_{1}^{\prime}\right] \\
& \Rightarrow v=v^{\prime} \text { and } \beta_{1}=\beta_{1}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \beta_{i}=\beta_{i}^{\prime} \text { and } \beta_{1}=\beta_{1}^{\prime} \quad 2 \leq i \leq 2 n-1 \\
& \Rightarrow \quad \beta_{i}=\beta_{i}^{\prime} \forall i \quad 1 \leq i \leq 2 n-1 \\
& \Rightarrow x=y .
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{Im}(\phi)=\{\phi(x) \mid x \in P(n)\} & =\left\{\left[v, \beta_{1}\right] \mid v \in V, \beta_{1}=a \in G F(q)\right\} \\
& =\{[v, a] \mid v \in V, a \in G F(q)\}=P .
\end{aligned}
$$

Hence ϕ is onto, so $P(n) \cong P$.
We know that

$$
P(n)=\left\{\left(\begin{array}{cccccc}
1 & -\beta_{2 n-1} & -\beta_{2 n-2} & \cdots & \beta_{2} & \beta_{1} \\
0 & 1 & 0 & \cdots & 0 & \beta_{2} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \beta_{2 n-1} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right), \quad \beta_{i} \in G F(q), \quad i=1,2 \cdots, 2 n-1\right\} .
$$

Since the entries above the main diagonal are arbitrary elements of $G F(q)$ and there are exactly $2 n-1$ places above the diagonal, we have that $|P(n)|=q^{2 n-1}$.

Remark 10.2.54 If $p=2$, then $P(n)$ is an elementary abelian 2-group. Let $x \in P$, then $x=[v, a]$ where $v \in V$ and $a \in G F(q)$. Since $p=2$ we have that $x^{2}=[v, a]^{2}=[2 v, 2 a]=$ $\left[0_{V}, 0\right]=1_{P}$. Thus P is an elementary abelian 2-group. Since $P(n) \cong P$, then $P(n)$ is also an elementary abelian 2 -group.

Lemma 10.2.55 [24] Let H be the subgroup of $A(n)$ which fixes $e_{2 n}$. Then H fixes both e_{1} and $e_{2 n}$ and acts on $W=\left\langle e_{2}, e_{3}, \ldots, e_{2 n-1}\right\rangle$ as $G(n-1)$. Moreover $H \cong G(n-1) \cong$ $S P(2 n-2, q)$.

Proof. Follows immediately from Theoren 10.2.41.

Theorem 10.2.56 [13] Let q be a power of an odd prime p. Then $A(n)$ is a split extension of $P(n)$ by H where $H \cong G(n-1) \cong S P(2 n-2, q)$. That is

$$
A(n)=P(n): H=P(n): S P(2 n-2, q)
$$

Proof. We need to show that H is a complement of $P(n)$ in $A(n)$. This is equivalent to show the following:
(i) $P(n) \cap H=\left\{1_{A(n)}\right\}$
(ii) $P(n) \cdot H=A(n)$
(iii) $P(n) \unlhd A(n)$.
(i) Let $T \in P(n)$ then $T\left(e_{2 n}\right)=\beta_{1} e_{1}+\beta_{2} e_{2}+\cdots+\beta_{2 n-1} e_{2 n-1}+e_{2 n}$. If $T \in H$, then $T\left(e_{2 n}\right)=e_{2 n}$ and hence we must have $\beta_{i}=0 \quad 1 \leq i \leq 2 n-1$ and $\beta_{2 n}=1$. Hence $\alpha_{i}=0, \quad 2 \leq i \leq 2 n-1$. Thus $T\left(e_{i}\right)=e_{i} \quad \forall i$, so that $T=I_{A(n)}$.
(ii) Since $G(n)$ acts transitively on $V--\left\{0_{V}\right\}$, we have that $|G(n)|=\left|V^{*}\right||A(n)|$.

So

$$
\begin{aligned}
|A(n)| & =\frac{q^{n^{2}}\left(q^{2 n-2}-1\right)\left(q^{2 n-4}-1\right) \cdots\left(q^{4}-1\right)\left(q^{2}-1\right)\left(q^{2 n}-1\right)}{q^{2 n}-1} \\
& =q^{n^{2}}\left(q^{2 n-2}-1\right)\left(q^{2 n-4}-1\right) \cdots\left(q^{4}-1\right)\left(q^{2}-1\right) .
\end{aligned}
$$

Now

$$
|P(n) \cdot H|=\frac{|P(n)||H|}{|P(n) \cap H|}=|P(n)||H| .
$$

Since $H \cong S P(2 n-2, q)$, we have that

$$
|H|=q^{(n-1)^{2}}\left(q^{2 n-2}-1\right)\left(q^{2 n-4}-1\right) \cdots\left(q^{4}-1\right)\left(q^{2}-1\right) .
$$

Thus

$$
\begin{aligned}
|P(n)||H| & =q^{2 n-1} q^{(n-1)^{2}}\left(q^{2 n-2}-1\right) \cdots\left(q^{4}-1\right)\left(q^{2}-1\right) \\
& =q^{n^{2}}\left(q^{2 n-2}--1\right) \cdots\left(q^{4}-1\right)\left(q^{2}-1\right) \\
& =|A(n)| .
\end{aligned}
$$

Since $P(n) \cdot H \subseteq A(n)$, we must have $P(n) \cdot H=A(n)$.
(iii) If $A \in A(n)$, then $A=p_{0} T_{0}$ where $p_{0} \in P(n)$ and $T_{0} \in H$. To show that $P(n) \unlhd$ $A(n)$, let $p \in P(n)$. Then

$$
p_{0} T_{0} p\left(p_{0} T_{0}\right)^{-1}=p_{0} T_{0} p T_{0}^{-1} p_{0}^{-1}=p_{0}\left(T_{0} p T_{0}^{-1}\right) p_{0}^{-1}
$$

Hence it suffices to show that $T p T^{-1} \in P(n) \quad \forall T \in H, \forall p \in P(n)$. If $B^{\prime}=\left\{e_{1}, e_{2}, \cdots, e_{n}, e_{2 n}, e_{2 n-1}, e_{2 n-2}, \cdots, e_{i n+2}, e_{n+1}\right\}$ is the ordered basis obtained from B, then the action of $T \in H$ on the vectors of B^{\prime} is described by

$$
T\left(e_{1}\right)=e_{1}, T\left(e_{2 n}\right)=e_{2 n}
$$

and

$$
\begin{gathered}
T\left(e_{i}\right)=\sum_{j=1}^{n} \lambda_{j i} e_{j}+\sum_{j=n+1}^{2 n} \lambda_{j i} e_{3 n+1-j}, \quad 2 \leq i \leq n, \\
T\left(e_{i}\right)=\sum_{j=1}^{n} \lambda_{j 3 n+1-i} e_{j}+\sum_{j=n+1}^{2 n} \lambda_{j 3 n+1-i} e_{3 n+1-j}, \quad n<i \leq 2 n-1 .
\end{gathered}
$$

Hence T can be represented by the following matrix, with respect to B^{\prime}

$$
\left(\begin{array}{cccccccc}
1 & \lambda_{12} & \cdots & \lambda_{1 n} & 0 & \lambda_{1 n+2} & \cdots & \lambda_{12 n} \\
0 & \lambda_{22} & \cdots & \lambda_{2 n} & 0 & \lambda_{2 n+2} & \cdots & \lambda_{22 n} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \lambda_{n 2} & \cdots & \lambda_{n n} & 0 & \lambda_{n n+2} & \cdots & \lambda_{n 2 n} \\
0 & \lambda_{n+12} & \cdots & \lambda_{n+1 n} & 1 & \lambda_{n+1 n+2} & \cdots & \lambda_{n+12 n} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \lambda_{2 n 2} & \cdots & \lambda_{2 n n} & 0 & \lambda_{2 n n+2} & \cdots & \lambda_{2 n 2 n}
\end{array}\right)=\left(\lambda_{i j}\right)_{2 n \times 2 n} .
$$

Since T is an isometry, then the adjoint of T exists and its action on the vectors of B^{\prime} is given by

$$
T^{*}\left(e_{1}\right)=e_{1}, \quad T^{*}\left(e_{2 n}\right)=e_{2 n}
$$

and

$$
\begin{aligned}
& T^{*}\left(e_{i}\right)=\sum_{j=1}^{n} \mu_{j i} e_{j}+\sum_{j=n+1}^{2 n} \mu_{j i} e_{3 n+1-j}, \quad 2 \leq i \leq n, \\
& T^{*}\left(e_{i}\right)=\sum_{j=1}^{n} \mu_{j} 3 n+1-i e_{j}+\sum_{j=n+1}^{2 n} \mu_{j 3 n+1-i} e_{3 n+1-j}, \quad n<i \leq 2 n-1 .
\end{aligned}
$$

Using the definition of adjoint of T, we find the entries of the first and the $(n+1)$-th rows of the matrix of T^{*} with respect to B^{\prime}. For example, entries in the first row of the matrix of T^{*} are obtained as follows:

$$
\begin{aligned}
f\left(T\left(e_{2 n}\right), e_{1}\right) & =f\left(e_{2 n}, T^{*}\left(e_{1}\right)\right)=f\left(e_{2 n}, e_{1}\right)=1, \quad \text { so } \quad \mu_{11}=\lambda_{n+1 n+1}=1 \\
f\left(T\left(e_{2 n}\right), e_{2}\right) & =f\left(e_{2 n}, T^{*}\left(e_{2}\right)\right), \quad \text { so } \mu_{12}=\lambda_{n+2 n+1}=0 \\
\vdots & \\
f\left(T\left(e_{2 n}\right), e_{n}\right) & =f\left(e_{2 n}, T^{*}\left(e_{n}\right)\right), \quad \text { so } \mu_{1 n}=\lambda_{2 n n+1}=0 \\
f\left(T\left(e_{2 n}\right), e_{2 n}\right) & =f\left(e_{2 n}, T^{*}\left(e_{2 n}\right)\right)=: f\left(e_{2 n}, e_{2 n}\right)=0, \quad \text { so } \mu_{1 n+1}=\lambda_{1 n+1}=0 \\
\vdots & \\
f\left(T\left(e_{2 n}\right), e_{n+1}\right) & =f\left(e_{2 n}, T^{*}\left(e_{n+1}\right)\right), \quad \text { so } \quad \mu_{12 n}=\lambda_{n n+1}=0 .
\end{aligned}
$$

Similar calculations give the entries of the $(n+1)$-th row of the matrix of T^{*}. Now by using the Theorem 10.2.37, we can easily see that T and T^{*} have the following matrix representations (with respect to B^{\prime}) respectively

$$
\left(\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & \lambda_{22} & \cdots & \lambda_{2 n} & 0 & \lambda_{2 n+2} & \cdots & \lambda_{22 n} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \lambda_{n 2} & \cdots & \lambda_{n n} & 0 & \lambda_{n n+2} & \cdots & \lambda_{n 2 n} \\
\hline 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \lambda_{n+22} & \cdots & \lambda_{n+2 n} & 0 & \lambda_{n+2 n+2} & \cdots & \lambda_{n+22 n} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \lambda_{2 n 2} & \cdots & \lambda_{2 n n} & 0 & \lambda_{2 n n+2} & \cdots & \lambda_{2 n 2 n}
\end{array}\right)=\left(\begin{array}{cc}
A & C \\
B & D
\end{array}\right)
$$

and

$$
\left(\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & \lambda_{n+2 n+2} & \cdots & \lambda_{2 n n+2} & 0 & -\lambda_{2 n+2} & \cdots & -\lambda_{n n+2} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & \lambda_{n+22 n} & \cdots & \lambda_{2 n 2 n} & 0 & -\lambda_{22 n} & \cdots & -\lambda_{n 2 n} \\
\hline 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & -\lambda_{n+22} & \cdots & -\lambda_{2 n 2} & 0 & \lambda_{22} & \cdots & \lambda_{n 2} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & -\lambda_{n+2 n} & \cdots & -\lambda_{2 n n} & 0 & \lambda_{2 n} & \cdots & \lambda_{n n}
\end{array}\right)=\left(\begin{array}{cc}
D^{t} & -C^{t} \\
-B^{t} & A^{t}
\end{array}\right) .
$$

Since $T \in P(n) \subseteq S P(2 n, q)$, by Theorem 10.2.37 we have that $T^{*} T=I_{2 n}$. Using this fact we obtain the following relations

$$
\sum_{k=2}^{n}\left(\lambda_{n+k n+i} \lambda_{k j}-\lambda_{k n+i} \lambda_{n+k j}\right), \quad 2 \leq i \leq n, \quad 2 \leq j \leq 2 n
$$

and

$$
\sum_{k=0}^{n-2}\left(-\lambda_{i+k i-n} \lambda_{l j}+\lambda_{l i-n} \lambda_{i+k}\right), \quad n+2 \leq i \leq 2 n, \quad 2 \leq j \leq 2 n, \quad 2 \leq l \leq n
$$

Now if $p \in P(n)$, then p can be represented (with respect to B^{\prime}) by the following matrix

$$
\left(\begin{array}{cccccccc}
1 & -\beta_{2 n-1} & -\beta_{2 n-2} & \cdots & -\beta_{n+1} & \beta_{1} & \cdots & \beta_{n} \\
0 & 1 & 0 & \cdots & 0 & \beta_{2} & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & \beta_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \beta_{n} & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & \beta_{2 n-1} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \beta_{n+1} & \cdots & 1
\end{array}\right)
$$

Using the above relations obtained for the entries of T we deduce that $T^{-1} p T$ has the following matrix representation

$$
\left(\begin{array}{cccccccc}
1 & -\beta_{2 n-1}^{\prime} & -\beta_{2 n-2}^{\prime} & \cdots & -\beta_{n+1}^{\prime} & \beta_{1}^{\prime} & \cdots & \beta_{n}^{\prime} \\
0 & 1 & 0 & \cdots & 0 & \beta_{2}^{\prime} & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & \beta_{3}^{\prime} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & \beta_{n}^{\prime} & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 & \beta_{2 n-1}^{\prime} & \cdots & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \beta_{n+1}^{\prime} & \cdots & 1
\end{array}\right) .
$$

Thus $T^{-1} p T \in P(n)$, so that $P(n) \unlhd A(n)$.

10.2.5 The group $A(2)=2^{3}: S P(2,2)$

Here $P(2)$ is an elementary abelian group of order 8 , so $P(2) \cong V_{3}(2)$, the vector space of dimension three over the field of two elements. Let $H \cong S P(2,2)$, we determine the conjugacy classes of the group $A(2)=P(2): H \cong 2^{3}: S P(2,2)$, where H acts naturally on $P(2)$.

Let $P(2)$ be generated by $\left\{\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right\}$, according to the Definition 10.2.52, where

$$
\epsilon_{1}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \epsilon_{2}=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \epsilon_{3}=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and $\epsilon_{i}^{2}=1$, for $1 \leq i \leq 3$. Hence $P(2)=\left\{1, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \epsilon_{1} \epsilon_{2}, \epsilon_{1} \epsilon_{3}, \epsilon_{2} \epsilon_{3}, \epsilon_{1} \epsilon_{2} \epsilon_{3}\right\}$. Let $H=<\alpha, \beta>$, where

$$
\alpha=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } \beta=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

with $o(\alpha)=2 \quad$ and $\quad o(\beta)=3$. Then the group $A(2)$ is generated by two 4×4 matrices over $G F(2)$, namely

$$
x=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } y=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $o(x)=6 \quad$ and $\quad o(y)=2$.

10.2.6 The conjugacy classes of $A(2)=2^{3}: S P(2,2)$

We have used GAP3 [32] to compute the conjugacy classes of the group $A(2)$, and we found that $A(2)$ has 10 conjugacy classes. We use Atlas [5] notation to list the conjugacy classes of $A(2)$. We also give class representatives in terms of 4×4 matrices over $G F(2)$. The information is given in the Table 9.1.

Table 9.1: The conjugacy classes of elements of $2^{3}: S P(2,2)$

$[g]_{G}$	M	$\left\|[g]_{G}\right\|$	$[g]_{G}$	M	$\left\|[g]_{G}\right\|$
1 A	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$	1	$2 A$	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$	6
$2 B$	$\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$	3	$2 C$	$\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$	6
$2 D$	$\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$	1	$2 E$	$\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$	3
3 A	$\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$	8	4 A	$\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$	6
$4 B$	$\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$	6	$6 B$	$\left(\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1\end{array}\right)$	8

Lemma 10.2.57 The group $A(2)$ is isomorphic to the generalised symmetric group $2^{3}: S_{3}$.

Proof. In the generalized symmetric group $2^{3}: S_{3}, S_{3}$ acts on 2^{3} naturally producing four orbits of lengths $1,1,3$ and 3 respectively. Using Table 9.1 we can see that for the group $A(2)=P(2): S P(2,2)$ we have $P(2)=\{1 A\} \cup[2 B] \bigcup[2 E] \cup[2 D]\}$, where $|[1 A]|=1$, $|[2 B]|=|[2 E]|=3$ and $|[2 D]|=1$. Hence $S^{\prime} P(2,2)$ has 4 orbits of lengths $1,1,3$ and 3 on $P(2)=2^{3}$. Since $S P(2,2) \cong S_{3}$, the proof follows.

Remark 10.2.58 Using the technique of the Fischer-Clifford matrices, Mpono in [27] has determined the conjugacy classes and constructed the character table of the affine group $A(3)=2^{5}: S_{6} \cong 2^{5}: S P(4,2)$ which is maximal in the group $S P(6,2)$ of index 63 . For a more detailed and thorough account on the subject the reader is submitted to a reading of [26] and [27].

Bibliography

[1] J. L. Alperin and R. B. Bell, Groups and Representations, Springer-Verlag, New York, Inc., 1995.
[2] H. U. Besche and B. Eick, The groups of order at most 1000, except 512 and 768, J. Symb. Comput. 27(4) (1999), 405-4:3.
[3] H. U. Besche and B. Eick, Construction of finite groups, J. Symb. Comput. 27(4) (1999), 387-404.
[4] N. Biggs, Finite Groups of Automorphisms, London Mathematical Society Lecture Note Series 6, Cambridge University P?ress, London, 1971.
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
[6] J. Cossey, O. H. Këgel and L. G. Kovács, Maximal Frattini extensions, Archiv Der Mathematik 35 (1980), 210-217.
[7] M. R. Darafsheh and A. Iranmanesh, Construction of the character table of the hyperoctahedral group, Riv. Mat. Pura Appl. 17 (1996), $71-82$.
[8] M. Deaconescu, Frattini-like Subgroups of Finite Groups, Mathematical Reports, Harward Academic publishers GmbH, London, 1986, Vol 2, 385-498.
[9] J. D. Dixon, The Structure of Linear Groups, Van Nostrand Reinhold Company, New York, 1971.
[10] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
[11] B. Eick, The converse of a theorem of W. Gaschutz on Frattini subgroups, Math Z. 224 (1997), 103 - 111.
[12] D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.
[13] R. Gow, Some characters of affine subgroups of classical groups, J. London Math. Soc. 2 (1976), 231-238.
[14] L. C. Grove, Groups and Characters, John Willey and Sons, Inc., 1997.
[15] M. Hall, Jr., The Theory of Groups, The Macmillan Company, New York, 1959.
[16] D. G. Higman, Remarks on splitting extensions, Pacific J. Math. 4 (1954), 545-555.
[17] D. F. Holt and W. Plesken, Perfect Groups, Oxford University Press, New York, 1989.
[18] J. F. Humphreys, A Course in Group Theory, Oxford University Press, Oxford, 1996.
[19] B. Huppert, Eindliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, 1967.
[20] D. L. Johnson, Presentations of Groups, Cambridge University Press, Second Edition, 1997.
[21] Y. K. Leong and T. A. Peng, On non-abelian groups of order pq, Bull. Singapore Math. Soc. (1973), 19-23.
[22] J. Moori, Representation Theory, Lecture Notes, University of Natal, Pietermaritzburg.
[23] J. Moori, Presentations of group extensions, Article presented at the 8th Kwazulu Natal Conference, University of Natal, Pietermaritzburg, 1996.
[24] J. Moori, On the affine subgroups of the symplectic groups, Article presented at the 9th Kwazulu Natal Conference, University of Durban-Westville , 1997.
[25] J. Moori, Generalized symmetric groups, Article presented at the 11th Kwazulu Natal Conference, University of Natal, Durban, 1999.
[26] J. Moori and Z. E. Mpono, The Fischer-Clifford matrices of the group $2^{6}: S P(6,2)$, Quaestiones Mathematicae, to appear.
[27] Z. E. Mpono, Fischer Clifford Theory and Character Tables of Group Extensions, PhD Thesis, University of Natal, Pietermaritzburg, 1998.
[28] H. Onishi, Commutator extensions of finite groups, Illinois Math. Journal 4 (1968) 119-126.
[29] D. J. S. Robinson, A Course in Group Theory, Springer-Verlag, New York, Inc., 1982.
[30] J. S. Rose, A Course on Group Theory, Dover Publications, Inc., New York, 1978.
[31] J.J. Rotman, An Introduction to the Theory of Groups, 4th Edition, Springer-Verlag, New York, Inc., 1995.
[32] M. Schönert et al., GAP - Groups, Algorithms, and Programming. Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 5th edition, 1995.
[33] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.1, Aachen, St Andrews, 1999 (http://ww-gap.dcs.st-and.ac.uk/~gap).
[34] W. R. Scott, Group Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1964.
[35] M. Suzuky, Group Theory I, Springer-Verlag, New York, 1982.
[36] C. Y. Tang, Notes on splitting extensions of groups, Canadian Math. Bull. 11 no. 3, (1968).
[37] N. S. Whitley, Fischer Matrices and Character Tables of Group Extensions, MSc Thesis, University of Natal, Pietermaritzburg, 1994.
[38] H. J. Zassenhaus, The Theory of Groups, Chelsea Publishing Company, New York, Second Edition, 1958.

Index

abelian extension, 17
adjoint, 90
affine group, 75
affine subgroup of $G(n), 96$
affine transformations, 75
alternating
symplectic, 80
automorphism group, 4
bilinear form, 80
central extension, 17
commutator, 5
commutator extension, 60
commutator subgroup
derived subgroup, 6
conjugation homomorphism, 19
cyclic extension, 17

Dedekind's Lemma, 10
derived series, 6
equivalent extensions, 16
Euler totient, 39
exact sequence, 15
extension, 14
finitely presented, 34
Fischer-Clifford, 104
five lemma, 16
Frattini subgroup, 7
free group, 32

G-module, 50
Galois field, 89
Gaschutz Theorem, 65
general linear group, 71

Hall subgroup, 23
hereditarily non-Frattini, 69
holomorph, 23
hyperbolic basis, 89
hyperbolic pair, 85
hyperbolic plane, 85
hyperoctahedral group, 31
hyperplane, 93
inner product matrix, 81
inner product space, 80
isometry, 83

Metacyclic groups, 39
minimal Frattini extension, 58
nilpotent group, 7
non-degenerate, 81
non-generator, 8
orthogonal, 81
orthogonal complement, 81
orthogonal sum, 85
permutation matrix, 28
permutation wreath product, 28
presentation, 34
radical, 81
rank of a free group, 32
relative holomorph, 23
represenative, 61
semidirect product, 18
set representative, 61

INDEX 109
short exact sequence, 15
solvable group, 6
special p-group, 96
special linear group, 71
split extension, 17
submobule, 50
Substitution test, 35
symplectic group, 89
symplectic space, 81
symplectic transvection, 94
triple, 61

