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Preface 

I believe geographical information systems (GIS) have considerable application for health 

research and planning in Africa. My overall goal for this thesis was to demonstrate some of 

this potential by applying GIS to the most pressing health issues in Africa using a range of 

different GIS techniques. I accomplished this through a series of six papers that have been 

submitted to international journals for publication. Except for stylistic standardisation and 

references to appendices, the papers remained unchanged to those submitted. Taken 

together, they are intended to form a coherent, significant instalment to the potential 

applications of GIS to infectious diseases and health systems in Africa. In line with recent 

scientific writing trends (Brown, 1997), I have written the papers that make up the thesis 

using the first person. If the reader bears in mind that some of the papers were submitted 

by multiple authors then it will be clear why I have left the corresponding chapters in the 

first person plural. There is some repetition of the descriptions of the study area and 

methods of data collection between chapters. This was to maintain the integrity of the 

publications. 

Hlabisa district was selected for the location for a demographic surveillance system (DSS). 

The primary objective of the system is to collect detailed vital event data for a typical rural 

South African population of 100,000 people and to monitor the demographic impact of the 

HIV epidemic. The mapping of the facilities and homesteads in the district provided the 

foundation on which to build the DSS and was therefore part of a more detailed research 

agenda. It also presented an excellent opportunity to conduct district-level GIS research by 
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linking the spatial data with existing facility-based infectious disease data. Detailed 

demographic data was not collected during the homestead mapping and interview exercise 

because the DSS will collect this type of data. 

Chapter one commences with a brief introduction to the history of medical geography and 

an introduction to GIS. This is followed by an overview of the current major health 

priorities in Africa. The chapter then examines previous GIS research that has been 

undertaken in Africa and, in light of the existing research deficits and Africa's disease 

burden, concludes with a summary of the objectives of the research. 

Chapter two deals with the setting up of the GIS platform and methods of data collection. 

This chapter is included because I wasn't able to go into sufficient detail in the papers 

regarding the data collection process. The chapter describes the rationale behind 

differential global positioning systems (GPS) and the mapping of homesteads and facilities 

throughout the district. Quality control measures and the hardware, software and 

additional datasets used are described. 

The third chapter is intended to demonstrate the utility of GIS in health systems research. 

This chapter fulfils two main purposes: Firstly, it provides an overview of primary health 

care in Hlabisa. Secondly, it demonstrates the application of distance calculations, kernel 

filtering, distance (theissen) polygons, contouring, buffering and thematic maps to the 

analysis of mode clinic utilisation patterns. These techniques are then brought together to 

produce spatial indices that quantify clinic usage in the district. 
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Chapters four and five use homestead positions obtained partly from differential GPS and 

partly from geo-corrected aerial photography. This was because the mapping of 

homesteads had not yet been 'completed for the whole district. Chapter four comprises two 

papers that investigate the spatial implications ofthe tuberculosis directly observed 

treatment (DOT) strategy using GIS. Raster surfaces are used to calculate the distance of 

every homestead in the district to nearest supervision point. The study presents quantitative 

spatial evidence for the shift in strategy from hospital to community-based. 

Chapter five uses GIS to explore one of the possible reasons for heterogeneity in HIV 

prevalence in Hlabisa. Raster surfaces are used to measure the mean distance between 

nearest road and homesteads in each of the 11 clinics operating in the district in 1997. The 

results are then compared against HIV prevalence in pregnant women attending each of the 

clinics. 

Chapter six focuses on a heterogeneous subsection of the district where the demographic 

DSS is being set up. The DSS uses a large number offieldworkers on foot to interview 

homestead residents. Significant problems exist in the estimation and equitable distribution 

of fieldworker workload in the area. A number of physical factors are brought together in 

the GIS to estimate inter-homestead walking time. Techniques used include surface 

interpolation, fuzzy logic and kernel filtering. The physical factors are then married to 

social factors and workload is equitably distributed among fieldworkers. The study is 

important for three reasons: Firstly, it is an example of a practical application of GIS to 

health research. Secondly, the study makes use of a variety of novel modelling techniques 

(most notably fuzzy logic) and uses a large number of datasets (including satellite 
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imagery). Thirdly, and importantly, the study has a large number of potential applications 

to improving the effectiveness of health systems in rural Africa. 

Chapter seven focuses on the application of GIS to model malaria seasonality across 

Africa. The study uses long term raster surfaces of rainfall and temperature to identify 

malaria transmission 'windows'. Advanced Boolean logic in association with temporal 

smoothing is used to produce the seasonality images. The model is compared against 

historical maps and existing case data. The model is also compared against malaria surveys 

conducted across Africa to establish the relationship between predicted length of malaria 

season and transmission intensity. The impact of simple climatic change scenarios on 

malaria seasonality are evaluated. 

The final chapter reviews the major research findings and their implications for health 

policy and directions for future research. This is followed by general conclusions 

regarding the application of GIS to health in Africa. 
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Abstract 

The health sector has not yet begun to explore the full potential of geographical infonnation system 

(GIS) technology for health research and planning. The goal ofthis thesis is to demonstrate this 

potential in Africa through the application of GIS to the most important health issues in the continent. 

In excess of 23,000 homesteads are mapped and interviewed throughout Hlabisa district, Kwa-Zulu 

Natal using differential global positioning systems (GPS). I use the GIS to analyse mode health care 

usage patterns. 87% of homesteads use the nearest clinic and travel an average distance of 4.72 Ian to 

do so. There is a significant logarithmic relationship between distance from clinic and usage by the 

homesteads (~= 0.774, p<O.OOOl). I propose the distance usage index (DUI) as a composite spatial 

measure of clinic usage. The index is the sum of the distances from clinic to all actual client 

homesteads divided by the sum of the distances from clinic to all homesteads within its 

distance-defined catchment. The index encompasses inclusion, exclusion and strength of patient 

attraction for each clinic. The DUI highlights significant disparities in clinic usage patterns across the 

district (mean = 110%, SD =43.7). The results of the study have important implications for health 

planning in Africa. 

I use GIS/GPS technology to quantify the spatial implications of a shift towards community-based 

treatment of tuberculosis using the DOTs strategy in Hlabisa. The mean distance from each 

homestead in the district to nearest supervision point is measured using a GIS. The shift in treatment 

strategy from hospital to community-based between 1991-1996 reduces the mean distance to 

treatment point from 29.6 Ian (94% of the population> Sian) to l.SIan (entire population < Sian). 

GIS effectively documents and quantifies the impact of community-based tuberculosis treatment on 

access to treatment. 
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I produce the first quantifiable evidence of a relationship between distance to roads and HIV 

prevalence using a GIS. HIV prevalence was measured through anonymous surveillance among 

pregnant women in Hlabisa and stratified by clinic attended. Assuming women attend the nearest 

clinic, the mean distance from homesteads to a primary or secondary road for each clinic catchment is 

strongly correlated with HIV prevalence (r = 0.66; P = 0.002). Further research is needed to better 

understand this relationship both at ecological and individual levels. 

I develop a methodology that has numerous applications to health systems provision in developing 

countries where limited physical access to primary health care is a major factor contributing to the 

poor health of populations. I use an accessibility model within a GIS to subdivide an area into units of 

equal workload using a range of physical and social variables. The methodology could be used to 

ergonomically design programmes for home-based care and tuberculosis directly observed treatment. 

It could also be used as a basis for more efficient distribution of community health workers. 

I use high-resolution long-term rainfall and temperature data to produce the first malaria seasonality 

(length, start and end of transmission season(s)) maps for Africa. I relate the model to population data 

and estimate the population exposure in a variety of transmission settings. I investigate the 

relationship between predicted length of transmission season and parasite ratio from 2335 geo­

referenced studies of children < 10 years across Africa. The research is the first to correlate actual 

malaria survey data with model predictions at a continental scale. The seasonality model corresponds 

well with historical expert opinion maps and case data. A significant logarithmic relationship is 

detected between predicted length of transmission season and parasite ratio (r=0.712, p=O.OOl). I 

recompute the changes in the disease likely to occur as a result of global warming. The seasonality 

model constitutes an important first step towards an estimate of continental intensity of transmission. 
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Chapter One: 

Introduction 

"The spatial distribution of diseases remains one of the oldest of puzzles and yet one of the 

most contemporary ..... " (Cliff and Haggett, 1988). 

Health and ill-health have always had a spatial dimension. The idea that place and location 

can influence health is a very old and familiar concept. As far back as the time of 

Hippocrates, physicians have observed that certain diseases seem to occur in certain places 

and not in others (Smith, 1994). Hippocrates himself (commenting on what was later to be 

known as malaria) made reference to the relationship between proximity to marshes and 

enlargement of the spleen (Bruce-Chwatt, 1999). People have also been aware of the 

process of disease diffusion across geographic regions for centuries (during the black 

death, for example), even during times when the aetiology of the disease was not 

understood (Marks, 1971). 

More than a century ago, physicians began to explore the potential of maps for 

understanding the spatial dynamics of disease. One of the most famous examples is that of 

the English physician John Snow in 1854. Snow hypothesised that cholera might be spread 

by contaminated water. Using maps showing the geographical distribution of cholera 

deaths in the Soho area of London, Snow was able to demonstrate a striking geographical 

distribution of cholera deaths around contaminated water supplies (Snow, 1855). 
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1.1 GEOGRAPHICAL INFORMATION SYSTEMS (GIS) 

Despite the realisation (dating back to historic times) that diseases and space are intimately 

related, the tools to understand, analyse and predict these relationships have not been 

available. GIS are an innovative, new technology that may have considerable potential in 

analysing the spatial dimensions of disease and in health research in general. A number of 

definitions of GIS have been proposed with variations that depend on the perspective of the 

author, the specific application, the software available at a given time and the level of 

complexity appropriate for the intended audience (Richards et al., 1999) GIS is thought of 

as both a technology and a science (Reader, 1994). In the former case GIS is viewed as a 

technological tool that helps the analyst to use hislher knowledge and insight to study 

substantive issues. In the latter case GIS is viewed as the science of geographic or spatial 

information that possesses its own set of research questions (Rhind et al., 1991). 

Alternatively, GIS has been termed the technological component of geographic information 

science (Goodchild, 1992). From a technological perspective, geographical information 

systems are "automated systems for the capture, storage, retrieval, analysis and display of 

spatial data" (Clarke, 1995). 

GIS data types 

Data can be stored and analysed in a GIS in two ways: in raster format and in vector 

format. The raster format stores geographic data or graphic images as a matrix of evenly 

divided grid cells. The position of the cell in the matrix provides information about 

location. Additional information about attributes is stored within each grid cell. Raster 

data can be scanned from maps or obtained from photographs or remotely sensed data (e.g. 

from satellites). At their most simplistic raster data allows point disease phenomena (e.g. 
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distribution or incidence) to be interpolated into a single continuous surface without gaps. 

They also provide a basis whereby spatially continuous models of disease phenomena can 

be verified against data which consist of spatially heterogenous point events. Raster data 

facilitate easy image overlay modelling procedures. 

Vector data consist of strings of coordinates and are represented in a GIS by three types of 

features: points, lines, or polygons (areas). A point is represented by a single x, y 

coordinate in a Cartesian coordinate system that is geographically referenced. Lines are 

represented by the X,y coordinates of their beginning and ending points, with intermediate 

points or vertices defining the shape of the line. Areas are represented as a boundary made 

up of a series of connecting line segments. Vector data is suited to the displaying of 

thematic maps of disease distributions and to accurate distance and area measuring 

operations. It is also suited to aggregating, and subsequently displaying and analysing 

disease data using various areal units e.g. district, province and nation. 

Spatial Analysis using a GIS 

The term spatial analysis encompasses a wide range of techniques for analysing, 

computing, visualising and theorising about geographic data. Spatial analysis refers to the 

"ability to manipulate spatial data into different forms and extract additional meaning as a 

result" (Bailey, 1994). Methods of spatial analysis can be as simple as taking 

measurements from a map or as sophisticated as complex geocomputational procedures 

based on numerical analysis. Gattrell and Bailey (1995) describe three general types of 

spatial analysis tasks: visualisation, exploratory data analysis and model building. 

Visualisation includes the production of thematic maps, basic map overlay operations, 
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animation and exploring the results of traditional statistical analysis. Exploratory spatial 

analysis allows the analyst to sift meaningfully through spatial data, identify 'unusual' 

spatial patterns and formulate hypotheses to guide future research. Modelling includes 

procedures for testing hypotheses about the causes of disease and the nature and processes 

of disease transmission. 

1.2 HEALTH PRIORITIES IN AFRICA 

The physical and ecological structure of Africa is as varied as its social, political and 

demographic characteristics (Kalipeni, 2000). Major biomes in the continent include 

tropical rainforest, montane forest, moist and dry savanna, semi-desert and desert and 

temperate grasslands (Stock, 1995). The political environment, poverty and generally low 

levels of well-being for the majority ofthe people in the region combine with the varied 

climatic conditions, vegetation and biogeography to explain the prevalence of disease­

causing organisms, or pathogens such as bacteria, viruses and worms (Kloos and Zein, 

1993). 

If the potential for GIS to contribute to health research and planning in Africa is to be 

properly evaluated then the technology must be applicable to the most pressing health 

problems in the continent. HIV, malaria and tuberculosis are among the major public health 

threats in Africa. The diseases all rank in the top six infectious diseases in the continent 

(WHO, 2000) defined on the basis of disease burden using disability adjusted life years 

(Murray and Lopez, 1997). I therefore sought to apply GIS to various components of these 

diseases as well as the analysis and improvement of health systems that must assist in the 

attenuation and control of Africa's diseases. 
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HIV/AIDS 

HIV I AIDS is the leading cause of mortality and morbidity in Africa (WHO, 2000). Since 

its appearance 15-20 years ago human immunodeficiency virus (HIV) has spread to almost 

every country in the world affecting an estimated 34 million people (World Bank 2000a). 

Nearly 24 million people in Africa currently live with HIV/AIDS and the epidemic 

continues to ravage the development prospects for millions of Africans throughout the 

continent. In 1999, about 3.8 million Africans were infected with HIV during that year, and 

a total of 10.7 million children were estimated to be orphaned by it (World Bank, 2000b). 

The 21 countries with the highest HIV prevalence are in Africa. In South Africa, Botswana 

and Zimbabwe, one in four adults is infected. A child born in Zambia or Zimbabwe today 

is more likely than not to die of AIDS. In many other African countries, the lifetime risk of 

dying of AIDS is greater than one in three (World Bank, 2000b). While prevalence in many 

west and central African countries has remained relatively low and stable, eastern and 

southern Africa have experienced explosive epidemics with HIV prevalence exceeding 

40% among pregnant women in some regions. Around 5 million new infections are 

currently occurring annually worldwide, over 90% in developing countries (World Bank, 

2000a). 

One ofthe reasons for the severity of Africa's HIV/AIDS epidemic is the high prevalence 

of other sexually transmitted infections (STIs) and the inadequacy of STI services. Another 

reason for the recent rise in HIV in Africa is the gradual adaptation to new environments, 

for example, as people migrate from rural to urban areas in search of work. However, the 

spread of sexually transmitted diseases can also be sharply intensified by crises such as 

natural disasters, social disintegration, armed conflict and mass population movements 
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(UNAIDS, 1998). HIV is especially burdensome as the infection and resultant disease 

primarily affects young and mature adults in their most productive years (15-25) when 

older and younger family members are dependent on them. The global HIV pandemic is 

composed of a series of several smaller epidemics. Even within Africa, where levels of 

infection are the highest in the world, there is substantial heterogeneity of levels of 

infection. 

Tuberculosis 

Tuberculosis is the leading infectious cause of death worldwide, killing more people aged 

over 5 years of age than AIDS, malaria, diarrhoea and all other tropical diseases combined. 

The World Bank estimate that the disease accounts for 26% of all avoidable adult deaths in 

less-developed countries (World Bank, 1993). So serious is the threat of tuberculosis that 

in 1993, the World Health Organisation took the unprecedented step of declaring this 

disease a global emergency (WHO, 1994). HIV infection renders a person infected by 

Mycobacterium tuberculosis much more likely to develop overt tuberculosis, and the 

evolution of the disease is considerably accelerated. About 20% of tuberculosis cases in 

Africa are believed to be related to HIV infection (Raviglione et al., 1997). WHO has 

calculated that, unless urgent action is taken the annual global number of deaths could rise 

from 3 million to 4 million by the year 2004. The need for effective intervention is 

compelling because tuberculosis treatment is one of the most cost-effective of all health 

interventions. In response to this re-emerging epidemic, the World Health Organisation is 

promoting the DOTS control strategy (directly observed therapy, short course) with 

community based treatment at its core (WHO, 1997). 

6 



Malaria 

In the last decade, in Africa, the incidence of malaria has been escalating at an alanning 

rate. Cases in Africa account for 90% of malaria cases in the world (WHO, 1996). Until 

recently, malaria was ranked as the leading disease in tenns of disease burden (World 

Bank, 1993). It is now estimated that only HIV has a larger impact on the health of the 

African population than that of malaria (WHO, 2000). Malaria is estimated to cause 

disease in 400 million individuals in Africa and is responsible for 20-50% of all hospital 

admissions. Mortality associated with cerebral malaria has not improved in the past 30 

years (Anderson et al., 1996) and severe malaria anaemia is on the increase (Marsh and 

Snow, 1999). Snow et al. (1999b) used the first truly empirical approach to estimating 

malaria mortality. The researchers estimated that during 1995,0.75 to 1.3 million deaths 

resulted from malaria in Africa and that approximately 80% of these occurred in children < 

5 years of age. 

The development of drug-resistant strains of the malaria parasite Plasmodiumfalciparnm 

has been one of the greatest obstacles to controlling the disease (Trape et al., 1998). Drugs 

such as chloroquine, which were once highly effective, are now almost useless for treating 

malaria in many parts of the world (Krishna, 1997). Frequent anned conflicts, migration of 

non-immune populations, changing climatic patterns, adverse socioeconomic patterns (e.g. 

gross inadequacies of funds for drugs), high birth rates and changes in the behaviour of the 

vectors are also responsible for the upsurge (Nchinda, 1998). The upsurge has also been 

attributed in part to the declining nutritional status of individuals in both urban and rural 

areas (Stock, 1995). Malaria and underdevelopment are closely intertwined. The disease 

causes widespread premature death and suffering, imposes financial hardship on poor 
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households, and holds back economic growth and improvements in living standards. 

Malaria flourishes in situations of social and environmental crisis, weak health systems and 

disadvantaged communities (WHO, 2000). 

Health Systems 

Health systems in Africa face increasingly diverse and complex health problems, rapidly 

growing populations, and severe resource constraints. Improving the performance of health 

systems has been identified as a major global health priority (WHO, 2000). Health systems' 

performance makes a profound difference to the quality, as well as the length of the lives of 

the billions of people they serve. Ifhealth systems are poorly constituted and managed, 

life-enhancing interventions cannot be delivered effectively to those in need. Malaria and 

tuberculosis are examples of diseases that thrive in the absence of well constituted, 

effective health systems. This is particularly pertinent for Africa where health systems 

often perform poorly and are unreliable. 

1.3 GIS IN HEALTH 

Despite the rapid and productive adoption of GIS by sectors such as agriculture, natural 

resources, demography and urban planning, the health sector has not begun to explore the 

full potential of GIS for health research and planning (de Savigny et al., 1994). GIS 

technology is a tool of great potential for health researchers. As health is largely 

determined by environmental factors (including the sociocultural and physical 

environment, which vary greatly in space), it always has an important environmental and 

spatial dimension. The spatial modelling capacity offered by GIS is directly applicable to 

understanding the spatial variation of disease, and its relationship to environmental factors 
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and the health care system (Loslier, 1994). Public health practice needs timely information 

on the course of disease and other health events to implement appropriate actions. GIS are 

an innovative technology for generating this type of information. 

Unfortunately, the importance of the spatial distribution of the disease has been too often 

overlooked (Scholten and de Lepper, 1991). Kabel (1990) uses the example of AIDS; in 

order to be of use to resource planners, predictions of AIDS should include a spatial 

component. Kabel's argument is that modelling the geographical distribution of AIDS can 

contribute to both educational intervention and the planning of health care delivery 

systems. Studies incorporating GIS technology (and the potential applications of GIS) 

have been critiqued by numerous authors (Mayer, 1983; Gesler, 1986; Twigg, 1990; 

Marshal, 1991; Scholden and de Lepper, 1991;Walter, 1993; Briggs and Elliot, 1995; 

Clarke et at., 1996;Vine, 1998; Moore and Carpenter, 1999). The authors all agree that 

GIS has significant potential for health but that its full potential is far from realised. 

Despite the fact that the database constraints of the early 90s have lessened considerably, 

the primary bottleneck in the implementation of a GIS is the development of GIS 

databases. This can account for as much as 70% of the time and resources necessary to 

conduct spatial research (Briggs and Elliot, 1995). 

Current applications of GIS to Africa's health priorities 

There is little known about the relationship between space and disease. The spatial :} 

dynamics of tuberculosis, HIV and malaria are different because of the different modes of 

transmission and differing relationships to the environment. For example, tuberculosis 

(transmitted by respiratory droplets) and HIV (transmitted largely through sexual contact) 
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rely on close human contact for transmission. Malaria however is transmitted by mosquito 

and the flight distance of mosquitos in one vector species has been measured at a 

maximum distance of 1.8Ian (Charlwood and Bryan, 1987). Other spatial factors such as 

human density are also important (Bruce-Chwatt, 1999). Climatic factors playa large part 

in determining the distribution of malaria, whereas HIV and tuberculosis are affected more 

by the social environment. These differences will necessarily affect the types of GIS 

methodologies used to understand the various spatial components of these diseases. 

GIS research undertaken in Africa, specifically in malaria, HIV, tuberculosis and health 

systems is summarised (Table 1.1). Whereas in the West a large number of GIS studies 

have concentrated on cluster analyses of rare cancers (e.g. Openshaw et al., 1988), in 

Africa diseases affecting the lives of millions of people have not been spatially analysed to 

any great degree (Table 1.1). 

Table 1.1: Published studies that have applied GIS to malaria, BIV, tuberculosis and health 
systems in Africa. 

Application Number References 

Malaria 20 Martens et at., 1995; Smith et at., 1995; Ribeiro et at., 1996; 
Thomson et at., 1996a; Thomson et at., 1996b; Hay et al., 1998; 
Hightower et aI., 1998; Lindsayet aI, 1998; Omumbo et at., 1998; 
Schellenberg et at., 1998; Snow et aI, 1998; Chadee and Kitron, 
1999; Craig et ai., 1999; Snow et al., 1999a,b; Thomson et al., 
1999; Coetzee et at., 2000; Kleinschmidt et at., 2000; Hay et al., 
2000a; Thomas and Lindsay, 2000 

Tuberculosis 2 Beyers et at., 1996; van,Rie et at., 1999 

mv 

Health 
Systems 

1 Zwarenstein et at., 1991 
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The literature search only located two studies that applied GIS to tuberculosis and one 

study that applied GIS to health systems in Africa. Although several studies analysing 

geographic variations in HIV in Africa have been conducted (Amat-Roze, 1993; Remy, 

1993a,b; Sokal et aI., 1993; Killewo et at., 1994), no published studies could be located 

that applied GIS to the analysis ofHIV. Only one additional GIS study conducted outside 

Africa, in each of tuberculosis (Bishai et at., 1998) and HIV (Latkin et at., 1998) was 

found. A number of studies have applied GIS to health systems in the West (e.g. 

McLafferty, 1988; Walsh et at., 1997; Parker and Campbell, 1998). Several studies have 

applied GIS to malaria in Africa. However, diseases which operate within ill-defined 

environmental parameters (such as tuberculosis and HIV) also have an important spatial 

dimension. 

1.4 OBJECTIVES 

Goal 

To demonstrate the potential of GIS to be an effective, relevant and powerful tool for 

health research and development in Africa. 

General objectives 

To demonstrate this potential through specific innovations in the application of GIS to the 

most important health issues in Africa; namely malaria, tuberculosis, HIV and the 

improvement of health systems. 
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Specific objectives 

Tuberculosis 

• Quantify and display the spatial implications of the shift towards the tuberculosis 

HIV 

DOT strategy through a community-based programme in Hlabisa.district, Kwa­

Zulu Natal, South Africa. 

• Investigate possible reasons for the spatial heterogeneity in HIV prevalence among 

pregnant women in Hlabisa. 

Malaria 

• Produce a continental model of malaria seasonality in Africa (this includes start, 

end and length of transmission season). 

• Estimate the population exposed to malaria in Africa in a variety of transmission 

settings. 

• Explore the relationship between length of malaria transmission season and parasite 

ratio data from geo-referenced surveys across Africa. 

• Evaluate the impact of simple climatic change scenarios on the temporal, spatial 

and population exposure aspects of malaria. 

Health Systems 

• Develop new indices to spatially analyse and quantify clinic usage patterns in 

Hlabisa. 
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• Evaluate and quantify the relationship between distance from clinic and usage in 

Hlabisa. 

• Develop a methodology for equitably distributing fieldworker workload across a 

heterogeneous landscape in a large rural health survey and suggest potential uses 

for the methodology in improving health systems in Africa. 
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Chapter Two: 

Creation of GIS Platforms and Data Collection 

The research in this thesis includes studies at both a district and a continental level. The 

HIV, tuberculosis and health systems components of the research are conducted at a district 

level using homestead and clinical data from the district ofHlabisa, South Africa. The 

malaria component of the research is conducted at a continental level using climatic and 

parisitological data from across the continent of Africa. The primary purpose of this 

chapter is to describe the data collection and setting up of the district-level GIS platform 

since it involved a large amount of primary data collection. Existing spatial data sets used 

at both the district and continental levels are also described. The chapter concludes with a 

description of the hardware and software used in the research. 

2.1 CREATION OF A DISTRICT-LEVEL GIS PLATFORM 

Study area 

Hlabisa district is located in the North East of South Africa in the province of 

KwaZulu-Natal (Figure 2.1), is 1430 km2 in size and has a resident population of21O, 000 

people. The district is located between the geographical coordinates of 31 ° 47'E; 27° 55'S 

and 32°24'E; 28° 28'S. The most salient characteristics ofthe area are that it is 

Zulu-speaking and predominantly rural (although there are pockets of urban and peri-urban 

populations in the southern part of the district near the market town ofMtubatuba). The 

population, with an annual per capita income ofUS$ 1730, relies mainly on migrant labour 
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remittances, subsistence farming, and pensions for its support and livelihood (Department 

of National Health, 1996). The rural population is scattered throughout the district and is 

not concentrated into villages or compounds as is the case in many other parts of Africa. 

o 300 

Kilometers 

600 

NORTHERN CAPE 

NORTHERN PROVINCE 

EASTERN CAPE 

• Hlabisa Health District 

Figure 2.1: The location of the Hlabisa district in South Africa 
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Mapping Methodology 

Global Positioning Systems (GPS) 

All mapping and data collection were achieved using hand-held GPS units. The GPS 

system owned by the United States Department of Defence, comprises a constellation of24 

satellites that orbit the Earth every 12 hours. A GPS establishes the coordinates of the user 

on the ground by calculating the distance from a minimum of three satellites. Each satellite 

transmits two carrier signals termed Ll and L2 respectively. Modulated onto the Ll signal 

are two pseudo-random binary code sequences known as the coarse acquisition (CIA) code 

and the precise (P) code. The use of pseudo-random binary code sequences enable all 

satellites to transmit on the same frequency without creating a garbled mess of radio 

interference. The CIA code is intended to assist with the acquisition of the P code for 

approximate position measurements and civilian use1
, whereas the P code is intended for 

the military and is more precise by an order of magnitude (Koh and Edwards, 1996). The 

intentional error introduced in the CIA code is known as selective availability. ' 

GPS accuracy 

Ard6 and Pilesj6 (1992) demonstrated that the maximum error encountered was 44m from 

a known fixed point using a single GPS. This error is unacceptable in the study area where 

homesteads are sometimes < 10m apart. I therefore used a technique known as differential 

correction to overcome this error. By plotting the errors over time of a fixed GPS (base­

station) of known location, it is possible to subtract these errors from a roving GPS in the 

field. Differential correction can occur in real time (by means of a radio link between the 

I CIA code was abolished by the United States government on the 1"1 May 2000. 
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stationary and roving GPS) or subsequent to data collection (post-processing). I used the 

post-processing method of differential correction using data from base-stations in Durban 

and Dundee (both approximately 200km away). This involves computing corrections to the 

range of each satellite. The base-station computes the correct range (based on the 

satellite's ephemeris and knowledge of the precise geodetic location) and rate-of-change to 

each satellite being tracked. These data are then used in the differential correction process. 

To ensure that the base-station GPS units use the same satellites as the roving GPS units I 

set the elevation mask to 15° (i.e. the roving GPS units will not use satellites below an 

azimuth of 15°). I compared the differential GPS coordinates against 10 trigonometric 

beacons found in the study area whose precise coordinates are known. In all cases errors 

were < 2m and in 90% of cases errors were <1m. Other important settings on the GPS are 

given in Table 2.1. Position dilution of precision (PDOP) is a measure of the accuracy of 

the GPS reading (that takes into account the spread and azimuths of available satellites). 

The higher the PDOP the lower the accuracy of the reading. Once the PDOP > 6.0, the 

GPS units will not record coordinates and the fieldworker will have to wait (typically about 

20 minutes) until the PDOP falls below 6.0 again (Table 2.1). There are a maximum of two 

such occurrences every day in the southern hemisphere at different times and 

approximately 20 minutes in duration. 

Table 2.1: Important GPS settings. 

Setting Value 

Datum Cape 

Elevation Mask 15° 

Signal to Noise Ratio (SNR) Mask 5.0 

PDOP Mask 6.0 

Feature logging (points, lines/area) 5, 1 seconds 

Minimum number of positions recorded 10 
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Data collection using a GPS 

GPS also have the capacity to capture other descriptive information pertaining to the 

feature, through the use of a data dictionary. A GPS data dictionary is a GPS-resident data 

storage facility that enables attribute data, to control the capture of features (objects) and 

attributes (information about those objects). A data dictionary includes a list of features 

that are captured in the field and, for each feature, a list of attributes that describe that 

feature. 

Mapping of facilities and key homesteads 

My first objective was to map all facilities and key homesteads in Hlabisa and to collect 

selected attribute data pertaining to each. I trained three fieldworkers in the use of 

differential GPS for both mapping and data collection. All mapped facilities and key 

homesteads (e.g. community health workers) and associated attribute data are given (Table 

2.2). A complete list of all data collected (some of which was not used directly in this 

research) for each facility/key homestead are given in Appendix 1. 
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Table 2.2: Data collected for all facilities and key homesteads mapped in Hlabisa district 

FacilitylKey homestead 

Fixed clinic or hospital 

Mobile clinic point 

Community health worker (CHW) 

Shop 

School 

Church 

Induna2 

Traditional Healer 

Attribute data 

Name, location 

Name, location 

Name, location 

Name, location, Tuberculosis 
supervision point (YIN) 

Name, location, TB supervision 
point (YIN) 

Name, location, TB supervision 
point (YIN) 

Name, location 

Name, location 

Mapping of homesteads across the district 

Homestead definition 

Number 

12 

31 

131 

162 

178 

62 

55 

348 

Prior to the start of homestead mapping an extensive piloting exercise was undertaken to 

determine what constituted a mapable definition of homestead. The definition had to be 

consistent spatially as well as socially. In rural areas the boundaries of a homestead are 

easy to identify; however, in the peri-urban informal settlement around KwaMsane in the 

South East of the study area, it becomes more difficult. In rural KwaZulu-Natalland is 

allocated to an individual by an Induna. Homesteads are thus defined on the basis of 

ownership by one person. 

2 A tribal chief 
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A homestead is a discrete set of structures, bounded or otherwise which 
must have residential function and fall under the ownership of one person. 

The term homestead (the location of the buildings in which the family resides) should not 

be confused with the term household (family group(s) within a homestead). 

Constitution of mapping teams and data collection in the field 

Prior to commencing the mapping of homesteads, ethical clearance was obtained from the 

Uni~ersity of Natal Ethics Committee. In addition, meetings were conducted with 

traditional leaders and civic associations in the area to obtain community consent. 

I trained an additional 14 fieldworkers in the use of differential GPS. I then divided the 

fieldworkers into four teams (three 'mapping teams' of four members and one 'backup 

team' of two members). Each mapping team was assigned a supervisor (previously 

fieldworkers from the mapping of facilities), given a portion of the district to map and a set 

of maps covering the district. The maps contained approximate positions of all homesteads 

occurring in the district (obtained from aerial photographs). The supervisors were 

responsible for coordinating the movements of the fieldworkers. A number of homestead 

categories were defined and a list of questions generated (Table 2.3). A complete list of all 

data collected some of which are not directly relevant to this study are given in Appendix 

2. 

Each member of a mapping team was assigned one GPS and a unique block of 5000 

numbers to identify homesteads. Unique data dictionaries (only allowing entry of the 

unique block of 5000 numbers) were uploaded to each fieldworker's GPS (Appendix 3). 
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Table 2.3: Homestead type (defined for mapping purposes), number mapped and associated 
data collected by fieldworkers. 

Homestead Definition Associated Data Number 
Type mapped 

Ordinary A homestead where a ID, location, owner name, number of 23202 
senior resident of the residents, tenants (YIN), fixed clinic 
homestead is present who preference, mobile clinic preference, 
can give the fieldworker CHW name, tag affixed (YIN), 
authority to map the fieldworker name, date, time 
homestead 

Absent A homestead where ID, location, fieldworker name, date, 948 
residents are not present at time 
the time of mapping OR 
the residents present are 
not able to give authority 
for mapping 

Refusal A homestead where ID, location3
, fieldworker name, date, 86 

residents of the homestead time 
refuse the fieldworker 
permission to map and 
interview the homestead 

Under- A homestead which is in 10, location, fieldworker name, date, 552 
construction the process of being built time 

for residential purposes 
but does not serve any 
residential function at 
present 

Abandoned4 A homestead where none location, fieldworker name, date, time 1811 
of the buildings are used 
for residential or any other 
purpose. 

3 The GPS reading was taken immediately outside the homestead perimeter 

4 The purpose of mapping abandoned homesteads is to reconcile them with homesteads 
obtained from aerial photographic data. 
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The data dictionaries allowed the fieldworkers to perform collection of all attribute data 

using the GPS units. Supervisors were issued with the PDOP graph (Appendix 4) for the 

current day so that breaks in work could be planned to correspond to high PDOP times. 

Fieldworkers only affixed identification tags and collected information about the 

homestead if there was a senior resident present who could give the fieldworker permission 

to map (an ordinary homestead). The reading was taken in the middle of the homestead. 

The 'backup team' were responsible for visiting absentee homesteads and collecting the 

associated attribute data and affixing tags. Residents of some homesteads were not present 

after numerous visits by the 'backup team' and were therefore never converted to ordinary 

homesteads. Once the fieldworkers returned from the field the data were downloaded to 

computers. Differential correction occurred the subsequent day. The entire mapping 

exercise took approximately 1 year to complete at an average of 8 homesteads per 

fieldworker per working day. A map showing all homesteads and facilities mapped in 

Hlabisa is given (Figure 2.2). 

Quality control 

I applied the following measures to ensure a good quality of data collection and 

comprehensive coverage of the district: 

• 

• 

Supervisors were responsible for accompanying each member of the team to several 

homesteads during the field operation to ensure that proper data collection 

procedures were followed. 

Supervisors were responsible for checking through data collected at each 

homestead once the files had been downloaded to the computer at the end of the 
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day. Erroneous data was either corrected by the supervisor in consultation with the 

fieldworker or the fieldworker visited the homestead on the subsequent day to 

recollect the information. 

• Random standard deviation of position checks were conducted to confirm that 

fieldworkers were not moving around whilst positioning a homestead. 

• A 'quality control team' composed of senior Zulu-speaking staff performed random 

visits to homesteads to compare the information obtained against information 

collected by the fieldworker. Exact data matches were obtained in excess of 90% 

cases. Most of the differences observed were due to the questions being obtained 

from different informants or were due to temporal changes in the data (e.g. number 

of residents per homestead). 

• Daily reports and checks (e.g. duplicate IDs) were generated by the database. 

Fieldworkers were sent to rectify these errors the subsequent day. 

• Once areas had been completed, mapped homesteads were compared against 

homesteads obtained from aerial photographs to confirm that sections of the area 

had not been missed. If such areas were identified, a mapping team was deployed to 

complete the area. 

The above measures ensured a good quality of data collection as well as comprehensive 

coverage of the district. Nevertheless, despite these measures a small number of 

homesteads were inadvertently not mapped. In a subsequent intensive questionnaire 

exercise covering approximately 11 000 homesteads in a contiguous geographic area, 1.7% 

of randomly distributed homesteads were found to have not been mapped. This small 

number is unlikely to affect any of the results in this thesis. 
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Figure 2.2: Map of all facilities and homesteads mapped in Hlabisa 
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Additional data used 

GIS data 

The additional GIS data sets used in the district-level GIS are given (Table 2.4). 

Table 2.4: Additional GIS data sets used at a district level. 

Data 

Magisterial boundaries, tribal 
boundaries, nature reserve 
boundaries, rivers, lakes, roads 

Elevation contours 

Normalised difference vegetation 
index (NDVI) 

ScalelResolution Source 

1: 50 000 Digitised from topographical maps. 

20m Purchased from the director of 
survey and mapping 

1.1 km (1999) Advanced very high resolution 
radiometer (A VHRR) satellite 
imagery 

Homesteads ( approximate positions) 1: .30 000 (1996) Digitised from aerial photographs 
and subsequently geometrically 
corrected 

Clinical data 

The clinical data sets used in Hlabisa comprise HIV seroprevalence data for pregnant 

women in Hlabisa and tuberculosis treatment data from Hlabisa hospital registers. These 

data are described in the relevant chapters and do not warrant repeating here. 

2.2 A CONTINENTAL GIS PLATFORM 

One of the objectives of the research was to generate a continental model of malaria 

seasonality. The data used in this component of the thesis are listed here. 
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GIS data 

The continental GIS data sets used in the research are given (Table 2.5). 

Table 2.5: Continental GIS data sets used in the research. 

Data 

long-term (1920 - 1980) monthly 
mean, minimum, maximum 
temperature and rainfall raster data 

Raster population data, 1995 

Cities, towns and villages in Africa 

Parisitological data 

ScalelResolution Source 

3 minutes Hutchinson et at., 1995 

2.5 minutes Deichmann, 1996 

1:250000 WRl, 1995 

The parisitological data used in the continental component of the research comprise 

malaria surveys conducted across Africa. These data are described in chapter seven. 

2.3 HARDWARE AND SOFTWARE USED 

12 Trimble Geo-explorer II differential GPS units were used for mapping and data 

collection in Hlabisa. I used Pathfinder Office 2.11 to create and upload all data 

dictionaries onto the GPS units. On completion of data collection in the field, the GPS data 

were downloaded directly from the GPS into Pathfinder Office and all positions 

differentially corrected using the post-processing method. The data were then exported to 

MapInfo 5.5 where the data were stored, manipulated and analysed in a vector GIS 

environment. I used Idrisi 2.0 and 32 to analyse the GPS data in conjunction with various 

raster surfaces (e.g. aerial photographs, satellite data and elevation data) in a raster 

environment. The GPS data were archived in Microsoft Access 2000. 
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I conducted all image overlay procedures to produce the continental model of malaria 

seasonality in Idrisi. I also used Vertical Mapper 2.5 in the vector to raster conversion and 

in the interrogation of the raster data. I used SPSS 9.0 and BMDP 7.0 to statistically 

analyse the data. All data processing and analysis took place on a desktop computer 

(Pentium II 300 MHz, 128 Mb Ram) within a Windows environment. 
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Chapter Three: 

New approaches to spatially analyse primary health care usage 

patterns 

Tanser et al. (2000a) Submittedfor publication 

3.1 ABSTRACT 

Introduction Knowledge and understanding of health care usage and population 

distribution is vital for health resource allocation and planning. There is a need for indices 

that enable the large-scale spatial usage patterns of health facilities to be quantitatively 

assessed. 

Methodology We map and interview in excess of23,000 homesteads (approximately 

200,000 people) in the Hlabisa district, South Africa and spatially analyse their modal 

primary health usage patterns using a geographical information system. We generate 

contour maps of health service usage. We quantify the relationship between actual clinic 

catchments and distance-defined catchments using inclusion and exclusion error. We 

propose the distance usage index (DUI) as an overall spatial measure of clinic usage. The 

index is the sum of the distances from clinic to all actual client homesteads divided by the 

sum of the distances from clinic to all homesteads within its distance-defined catchment. 

The index encompasses inclusion, exclusion, and strength of patient attraction for e~ch 

clinic. 

Results 87% of homesteads use the nearest clinic. Residents of homesteads travel an 

average Euclidean distance of 4.72 km to attend clinics. There is a significant logarithmic 
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relationship between distance from clinic and usage by the homesteads (r= 0.774, 

p<O.OOOI). The DUI values range between 31 and 198% (mean = 110%, SD =43.7) for 12 

clinics and successfully highlight clinic usage patterns across the district. 

Conclusions The DUI proves to be a powerful and informative composite measure of 

clinic usage. The results of the study have important implications for health care provision 

in developing countries. 

3.2 INTRODUCTION 

Proximity to primary health care has long been considered a major factor contributing to 

the health of populations (Perry and Gesler, 2000). Knowledge and understanding of 

health service usage and population distribution are therefore vital for health resource 

allocation and planning (Joseph and Phillips, 1984). Good health system management 

depends on informed decisions regarding resource allocation. Unfortunately, these 

decisions often occur in the absence of data that allow the pattern of resource allocation to 

be assessed. 

Physical accessibility of health services is determined by the geographical location of client 

homesteads in relation to available facilities, by physical and topographical barriers and by 

the modes of transport that are available to reach these destillations. The effect of distance 

on patient travel to health care facilities and the estimation of critical distance thresholds 

for different levels of health care have been subjects of extensive study (Morrill and 

Earickson, 1968; Morrill and Earickson, 1970; Shannon and Dever, 1974). There is ample 

evidence to suggest that physical accessibility of services is a major factor influencing 

patient choice of health care facility (Shannon et al., 1969) and that attendance rates at 
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health facilities decline markedly with distance (Rahaman et al., 1982; Stock, 1983; Kloos, 

1990; Muller et al., 1998). In developing countries where health facilities are relatively 

sparse and access often achieved on foot (Stock, 1985) it has been assumed that patients 

will preferentially use nearest health facilities and that there is a finite limit to the distance 

that patients will travel for health care. These assumptions may not hold in countries like 

South Africa in which well resourced facilities of reasonable quality are available and 

where public transport may increase access to facilities some distance away from home. 

Accessibility is also influenced by social and cultural factors such as knowledge and 

information, and by economic factors since the use of different forms of transport and 

access to channels of communication are usually associated with some monetary cost 

(Deichmann, 1997). Various social factors affecting choice and usage of health services in 

deVeloping countries have been studied (Habib and Vaughan, 1986; Egunjobi, 1983; Van 

der Stuyft et al., 1996). These factors include quality of care, perceived level of sickness, 

income, transport availability, religion, occupational status, relationships to health facility 

staff and proximity of relatives to health facility. Although social factors are important 

determinants of health service usage, these factors will vary from household to household 

and are difficult to measure. They are therefore less readily available to health planners 

than physical space, which has provided the traditional basis for macro planning of health 

services and for which there are increasingly sophisticated spatial analytical tools. It is also 

held that improvements in health care usage can be quickly realised by the simple 

expedient of relocating health centres or improving the road network (Airey, 1992). 

To the best of our knowledge, large-scale usage patterns of multiple primary health care 
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services across an integrated health unit have never been spatially investigated. Health care 

systems in the developing world face increasingly diverse and complex health problems. 

There is a need for methods that enable the large-scale spatial usage patterns of health 

facilities to be quantitatively assessed (Joseph and Phillips, 1984). These data are needed to 

inform resource allocation methodologies in developing countries. We interviewed in 

excess of23,000 geo-referenced homesteads (approximately 200,000 people) and analyse 

their modal usage patterns using a geographical information system (GIS). We map facility 

usage across the district, analyse the effect of distance on facility usage and develop indices 

that quantify the relative patient attraction and repulsion by the different health facilities. 

We develop a new index as an overall spatial measure of facility usage in relation to the 

size of the facility's distance-defined catchment. 

3.3 METHODS 

Study area 

Hlabisa district is located in northern KwaZulu-Natal, South Africa and is 1430 km2 in 

size. The resident population of 21 0, 000 people is Zulu-speaking and predominantly rural 

(although there are pockets of urban and peri-urban populations in the southern part ofthe 

district near the market town ofMtubatuba). This population, with an annual per capita 

income ofUS$ 1730, relies mainly on migrant labour remittances, subsistence farming and 

pensions for its support and livelihood (Department of Health, 1996). The rural population 

is scattered throughout the district and is not concentrated into villages or compounds as is 

the case in many other parts of Africa. 

The district is transected by a nature reserve and bounded by hard boundaries in the form of 
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large perennial rivers, nature reserves, forestry areas and commercial farmland (Figure 2.2). 

This makes Hlabisa district a geographically discrete unit with minimal cross boundary 

population flow, and is therefore ideal for a study of this nature. KwaZulu-Natal has the 

highest HIV prevalence in South Africa (Department of Health, 1996). HIV infection has 

spread rapidly in Hlabisa, and HIV prevalence among pregnant women increased from 

4.2% in 1992 to 14% in 1995 (Coleman and Wilkinson, 1997) and to 41.2% in 1998 

(Wilkinson et at., 1999). 

Primary health care in Hlabisa district 

A community hospital and 11 satellite fixed clinics provide primary health care in the 

Hlabisa district. The hospital and one of the fixed clinics (KwaMsane) provide 24 hour 

clinical cover, the remainder only function during the day. This district with its health 

infrastructure is typical of many similar rural health systems in South Africa and functions 

as a semi-autonomous unit at the third tier of a national health system. In addition to 

providing emergency and curative care for the entire district, Hlabisa hospital also serves as 

a clinic for the surrounding population and is therefore equivalent, for the purposes of this 

study, to the other fixed clinics in the district. The clinics handle minor ailments, family 

planning, antenatal and postnatal care, deliveries, treatment of sexually transmitted 

diseases, child immunization, tuberculosis directly observed therapy (DOTs), chronic 

illnesses (such as diabetes and hypertension) and emergencies. The clinics are staffed by 

nurses; some of whom have advanced training in midwifery and primary health care, and 

are visited monthly by medical officers from the hospital. In comparison with the rest of 

Africa, clinics are well resourced; most have telephones, running water and are relatively 

accessible to the local population. 
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In addition to the fixed clinics, there are 31 mobile clinic points throughout the district, that 

are visited twice monthly. The mobile clinics offer family planning, child immunization, 

treatment of chronic illness and antenatal care. The district is also serviced by 

131 community health workers (CHW), each of whom is expected to regularly visit a group 

of assigned homesteads. The CHWs are responsible for health education, nutritional 

support, first aid and, in selected cases for HIV home-based care. They are also responsible 

for the dispensing of tuberculosis DOTs and for directing obviously ill patients to the 

clinics or district hospital. The CHWs work 16 days a month and on average should visit 

each of their allotted homesteads once a month but frequency varies between CHWs. In 

addition to the community health workers there are approximately 90 community 

volunteers disseminating tuberculosis DOTs. The spatial configuration of the tuberculosis 

DOTs programme has been described (Tanser and Wilkinson, 1999, this thesis). 

Location of homesteads 

All 24,236 homesteads in the study area were positioned using global positioning systems 

(GPS) (Trimble Geoexplorer II) between June 1998 and June 1999. The GPS system, 

owned by the United States Department of Defence, introduces an intentional error to the 

system, typically around 50-100m. This error is unacceptable in the study area where some 

homesteads are only 10m apart. We differentially corrected for this and other errors against 

a local base station. By plotting the errors over time, it is possible to subtract these errors 

from a roving GPS in the field. Differential correction occurred subsequent to positioning 

in the field. Comparison with trigonometric beacons in the district revealed all positions to 

be accurate within 2m. 
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Creating the primary health care GIS 

We obtained GPS coordinates for the hospital, fixed clinics, mobile clinic points and for all 

CHW homesteads. All homesteads in the district were uniquely numbered and a dataset 

collected about the usage of health and educational services. Our objective was to perform 

a geographical analysis of modal primary health care usage patterns across the entire 

district at a homestead level. At each homestead we therefore asked a single informant 

'which fixed clinic/mobile clinic most people in the homestead normally use'. Informants 

were also asked whether the homestead was visited by a CHW. All data were collected in 

the field using the GPS data dictionary facility. We could not obtain information in some 

homesteads due to the residents being absent (3.9%) or refusing to answer questions 

(0.4%). These point locations were superimposed on a base map consisting of a series of 

geographical layers of the district (including magisterial and tribal areas, nature reserve 

boundaries, roads and rivers) digitised from 1:50000 topographical maps using Maplnfo 

(Maplnfo Corporation, New York). 

Analysing clinic and community health worker usage across the district 

We produced contour usage maps for fixed clinics, mobile clinics and CHWs. All 

homesteads were superimposed onto a 20m raster grid in Idrisi 32 (the Idrisi project, Clark 

University, Worcester, MA, USA). We then passed a moving lkm x lkm filter across the 

image which calculated the percentage of homesteads that made use of clinics and CHWs 

in the filter window. In the resulting images the value of each pixel is the percentage of 

homesteads that make use of primary health care facilities in the surrounding lkm x lkm 

neighbourhood. The images were then converted into vector format and exported to 

Maplnfo (Figure 3.2). 
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Spatial indices to quantify clinic usage 

We plotted all homesteads occurring in the study area on the GIS and colour coded them by 

actual clinic used. We constructed distance (theissen) polygons for each of the fixed clinics 

in MapInfo and superimposed them onto the homesteads. Distance polygons divide space 

such that any particular home is allocated to its geographically nearest clinic. 

Cross-tabulations of predicted clinic usage (on the basis of distance) and actual clinic usage 

were used to generate an error matrix. We defined the terms exclusion error (the proportion 

of homesteads from a particular distance clinic catchment who use other clinics) and 

inclusion error (the proportion of homesteads from other distance clinic catchments who 

use a particular clinic) to assess discrepancies. In epidemiological terms (using distance as 

the predictor of actual clinic catchments) exclusion and inclusion error are equal to i- the 

positive predictive value and i-sensitivity respectively. A clinic with a strong attraction of 

patients from within other distance clinic catchments will have a high inclusion error, 

whilst those with a high proportion of homesteads within their distance catchments who 

use other clinics will have a high exclusion error. There is some interaction between the 

indices for neighbouring clinics. Patients not using their closest clinics will increase 

exclusion errors in their origin distance catchment and increase inclusion errors in their 

destination clinic. Variation in exclusion and inclusion errors does not necessarily indicate 

discrepancies in standard of service delivery. The differences may be a function of the 

relative accessibility (e.g. by public transport) of the health facilities. 

We calculated the average Euclidean distance that patients will travel to use each clinic as 

another measure of the strength attraction of a clinic. However, clinics with large distance 

clinic catchments will be predisposed to having patients travel longer distances to seek 
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primary health care and it is because of necessity and not relative attraction of a particular 

clinic that patients will travel longer distances. We therefore propose a new measure which 

we have termed the distance usage index (DUI) as an overall measure of inclusion, 

exclusion and the strength of patient attraction (using distance travelled). The denominator 

of the index is the sum of the distances between all homesteads within a distance clinic 

catchment and the clinic. The numerator of the DUI is the sum of the distances between all 

homesteads actually using a particular clinic and the clinic itself. The index is expressed as 

a percentage. Thus a clinic which attracts a large number of patients from great distances 

(from outside its own distance clinic catchment) and has a good attendance within its own 

distance catchment, will have a DUI of greater than 100%. Conversely a clinic which only 

attracts patients from short distances and has a poor attendance within its own distance 

clinic catchment will have a DUI value ofless than 100%.The concepts are illustrated 

using a simple map (Figure 3.1). We also applied the above methodology to mobile clinic 

points and compared the values obtained with the fixed clinic results. 

The effect of distance on clinic usage 

We wanted to establish the effect of distance from clinics on usage. We therefore 

constructed 500m buffers around each of the fixed and mobile clinics and calculated usage 

within each of the buffers. We then plotted the relationship between distance from clinic 

and usage within each distance clinic catchment. 
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Figure 3.1: Illustrative map and associated equations to demonstrate the concepts of inclusion error, exclusion error 
and distance usage index. The outer polygons define the respective distance catchments for clinics 1 and 2. 
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3.4 RESULTS 

Contour usage maps for fixed clinics, mobile clinics and CHWs are shown (Figure 3.2).93 

% of homesteads use fixed clinics (64% use fixed clinics only); 34% use mobile clinics 

(5.0% use mobile clinics only); 29% use both fixed and mobile clinics and 1.7% used 

neither. From a spatial perspective, the proposed location (obtained by independent means) 

by the Provincial Department of Health (Figure 3.2a) of a new clinic is optimal, given the 

low clinic usage and population of the surrounding area. It is striking that the mobile 

clinics service all of the areas of low fixed clinic usage. In addition, they service those 

areas with high homestead densities that are a significant distance from the fixed clinics 

(Figure 3.2b,d). 36% of homesteads reported regular visits by CHWs. The community 

health worker distribution reveals a large gap in service in the middle of the largest of the 

four tribal areas (Figure 3.2c). 

There is a large amount of congruence between actual clinic usage and those predicted by 

distance (Figure 3.3). In some cases (e.g. Nkundusi) major public transport routes appear to 

have had a'distorting' effect on the shape of a clinic catchment providing greater 

accessibility to patients living in close proximity to these routes. 

The error matrix and associated spatial indices of actual versus distance-predicted fixed 

clinic usage are given (Table 3.1). The horizontal axis shows actual clinic usage whilst the 

vertical axis shows the nearest clinic on the basis of Euclidean distance. For example, 261 

of the 269 homesteads that actually used Esiyembeni clinic came from within its distance 

catchment and only 8 homesteads came from the neighbouring catchment of Machibini 

(inclusion error = 3%). 
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Figure 3.2: Fixed clinic (a), mobile clinic (b) and community health worker (c) mode usage (%) and 

homesteads (d) in Hlabisa district. The proposed location of a new fixed clinic is shown as a white cross. 
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Figure 3.3: Comparison between actual fixed clinic usage and nearest clinic in Hlabisa district. 
The solid black boundaries represent distance polygons and the dots represent all homesteads 
in the district colour-coded by actual fixed clinic usage 
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Table 3.1: Error matrix ofthe relationship between actual fixeddinic usage and nearest clinic. Exclusion error, inclusion error, mean Euclidean 
distance travelled by residents of homesteads to attend clinic and the distance usage index (DUI) are displayed for each clinic 
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0 '00 co ..r:::. :l: co co co co 0.. ..l<: 0 0 0 s::: >< Q) ::J -NAME z w I c ~ :2: :2: :2: :2: :2: z z (f) I- ::J W :!: c 
Esiyembeni 79 261 0 0 22 0 45 0 0 15 0 0 109 531 8 50.8 2.4 30.9 
Hlabisa 146 o 2,818 61 43 0 0 0 0 0 0 0 0 3,068 46 8.1 5.7 109.5 

u Inhlwathi 111 0 255 1,501 3 67 0 1 4 0 0 0 0 1,942 113 22.7 5.9 84.9 
Z KwaMsane 167 0 0 o 2,721 0 0 0 0 7 1 0 7 2,903 217 6.3 3.9 198.0 
....I Macabuzela 20 0 0 25 o 1,052 0 0 76 0 0 3 0 1,176 134 10.5 4.8 121.7 
U Machibini 283 8 0 0 8 1 738 0 0 48 0 0 163 1,249 29 40.9 3.0 44.9 
I- Madwaleni 61 0 0 0 75 0 2 1,741 0 49 406 31 125 2,490 95 30.1 4.0 60.1 
(/) Makhowe 7 0 0 106 0 117 0 0 573 0 0 0 0 803 97 28.6 3.6 72.1 
W Mpukunyoni 36 0 0 0 246 1 0 11 o 1,669 0 0 142 2,105 69 20.7 4.1 121.9 
c:: Nkundusi 119 0 0 0 20 0 0 12 0 1 3,032 124 1 3,309 129 8.4 5.4 113.6 
~ Ntondweni 430 0 0 0 8 20 1 11 0 53 7 1,180 132 1,842 60 35.9 4.9 66.8 
z Somkhele 98 0 0 0 54 0 11 1 0 87 0 4 1,529 1,784 37 14.3 5.0 170.4 

TOTAL 1,557 269 3,073 1,693 3,200 1,258 797 1,777 653 1,929 3,446 1,342 2,208 23,202 1,034 18.9 4.7 110.3 
Inclusion error (%) 3.0 8.3 11.3 15.0 16.4 7.4 2.0 12.3 13.5 12.0 12.1 30.8 13.0 
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However, a large proportion of homesteads whose nearest clinic is Esiyembeni used other 

clinics/didn't use clinics (exclusion error = 51 %). Inclusion error can be used as a measure 

of attraction whilst exclusion error can be used as a measure of repulsion. There is an 

overall inclusion error of 13% (i.e. 87% of homesteads making use of clinics used the 

nearest clinic) across the district. The results show that distance to primary health care 

centre is a major factor influencing clinic choice. 

Exclusion and inclusion error, average distance travelled and the DUI are displayed for all 

fixed clinic distance catchments in the form of thematic maps (Figure 3.4). There is 

substantial variation in these indices across the district. The largest proportion of 

homesteads not using the closest clinic/not using clinics, occur within Esiyembeni 

(exclusion error = 51 %) and Machibini (exclusion error = 41 %) distance catchments. 

Somkhele clinic (inclusion error =31 %) attracted the largest proportion of patients from 

outside its own distance catchment. The clinics with the largest exclusion and inclusion 

errors are adjacent, as a large number of patients from the distance clinic catchment of 

Esiyembeni use Somkhele clinic. Inclusion errors are similar for both mobile and fixed 

clinics (although there was more variation in mobile clinics). Exclusion error, DUI and 

average distance travelled differ markedly as would be expected (Table 3.2). 
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Figure 3.4: Inclusion error, exclusion error, average Euclidean distance travelled to clinic and distance 
usage index (DUI) for all fixed clinics in Hlabisa district 
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Table 3.2: Weighted average (min - max; standard deviation) spatial indices and average 
Euclidean distance travelled to clinic for fixed and mobile clinics in Hlabisa. 

Variable Fixed Clinics Mobile Clinics 

Usage (%) 93.3 (77 - 99; 6.7) 34.3 (7 - 96; 24.6) 

Inclusion error (%) 13.0 (3 - 31; 6.9) 14.6 (1 - 34; 11.9) 

Exclusion error (%) 18.9 (8 - 51; 12.1) 71.5 (19 - 95; 19.8) 

Mean distance travelled (km) 4.72 (2.4 - 5.9; 0.85) 2.42 (0.8 - 3.9; 1.06) 

Distance usage index (%) 110.3 (31 - 198; 43.7) 26.8 (2 - 157; 41.6) 

Inhlwathi clinic (5.9 km) and Hlabisa hospital (5.7 km) recorded the largest average 

distance travelled by homesteads to attend clinics. The DUI indicated that the clinics with 

the strongest attraction, and least repulsion relative to catchment size are KwaMsane 

(198%) and Somkhele (170%). In other words, the sum of Euclidean distances between all 

client homesteads and KwaMsane clinic is approximately double that of all homesteads 

within its distance clinic catchment. KwaMsane (198%) and Nkundusi (113%) are 

characterised by similar inclusion and exclusion errors and therefore similar net influx of 

patients from other distance clinic catchments. The DUI shows however, that KwaMsane 

has a greater magnitude of attraction (attracts patients from a greater distances) relative to 

the size of its distance catchment. 

The graph for the individual fixed clinics is given (Figure 3.5a). A large variation in decay 

curves is evident between the fixed clinics. For example, KwaMsane clinic shows almost 

no reduction in clinic usage 7 km from the clinic, whereas Esiyembeni clinic shows 0% 

usage 6 km from the clinic. Some clinics for example, Mpukunyoni show a decrease in 

usage until a point whereafter usage increases. This apparent paradox is explained by the 

fact that distance catchments are sometimes surrounded by clinics at differing distances and 
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differing strengths of attraction. For example, Somkhele and KwaMsane (which are the 

closest clinics to Mpukunyoni) attract large numbers of patients from the West and South 

of Mpukunyoni's distance catchment respectively. However, almost all patients in other 

parts ofthe distance catchment use Mpukunyoni, irrespective of distance (Figure 3.3). The 

combined graphs for fixed and mobile clinics are given (Figure 3.5b). The results reveal 

that mobile clinic usage decreases to 0% at approximately 8 kIn from mobile point, whilst 

at the same distance fixed clinic usage is still approximately 58%. The relationship 

between distance from clinic and usage was logarithmic and highly significant (p<0.0001) 

in both fixed (r= 0.774) and mobile (r=0.874) clinics. The logarithmic graph best 

represented the shape of the decay curve and has been described in other rural settings 

(Miiller et al., 1998). The relative increase in clinic usage after 8kIn from a fixed clinic 

(Figure 3 .5b) is a function of the fact that only a small number of clinics have distance 

catchments exceeding 8kIn and within these clinic catchments, usage is good at these 

distances .. 
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Figure 3.5: Graph showing the decay in usage with increasing distance from clinics for each of the 
frxed clinics (a) and for the combined frxed clinic (log relationship; r2 = 0.774, p<O.OOOl) and combined 
mobile clinic points (log relationship; r2 = 0.874, p<O.OOOl) in Hlabisa district (b). The usage 

frgures have been subjected to a moving 1500m weighted average to spatially smooth the data. 
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3.5 DISCUSSION 

We have used GIS/GPS technology to map the modal primary health care patterns of 

approximately 23,000 homesteads. Our study has shown that there is a significant 

relationship between actual and distance clinic catchments in a typical rural South African 

setting. We propose the DUI as a composite spatial measure of inclusion error, exclusion 

error and strength of attraction. 

The results show that coverage of the district by the health service is good. Only 1.7% of 

randomly distributed homesteads reported using neither fixed nor mobile clinics. A map 

showing how the mobile clinics close the gaps in health service coverage would thus be 

meaningless. 5% of homesteads used mobile clinics only and this figure is therefore 

unlikely to impact significantly on the fixed clinic DUI values. Disparities between actual 

and distance clinic catchments near the extremities of the distance polygons can probably 

be explained to a large degree by proximity to major public transport (in the form of 

minibus taxis) routes. Clinics sited on or at the intersection of major public transport routes 

attract large numbers of patients from other clinic catchments. For example, Somkhele 

clinic is sited at the intersection of two public transport routes and attracts 30% of its 

patients (inclusion error) from the neighbouring clinics of Esiyembeni, Madwaleni and 

Machibini. A detailed analysis of the reasons behind clinic choice went beyond the 

primary objectives of this research. However, we identified contiguous groupings of 

homesteads whose actual and distance-predicted clinic usage differed (near the extremities 

of distance polygons) and conducted informal interviews with residents of20 homesteads 

in these areas. In all cases respondents reported that availability of public transport had 

determined their choice of clinic. This suggests that public transport access is an important 
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detenninant of clinic choice at the margins of distance catchments. All clinics situated 

along major public transport routes had DUI values of> 100%. Conversely, availability of 

public transport in the northern part of Machibini has deflected usage towards Somkhele 

along the secondary road (Figure 3.3). Future research will focus on increasing the 

accuracy of the indices by the construction of polygons obtained from cost surfaces. The 

cost surfaces should incorporate variables such as public transport access, rivers and terrain 

into their boundaries (Deichmann, 1997). We are unable to do this at present because 

public transport in the area is non-regulated, highly variable and unreliable and 

incorporating its effects would constitute a major data collection exercise in its own right. 

The situation is made even more complex by the fact that persons use walking as their 

primary mode of transport and the average threshold distance is at which public transport is 

utilised needs to be researched. KwaMsane is a 24 hour clinic as well as having good 

transport access via the national road and these factors may have contributed to its elevated 

DUI value. Somkhele clinic is the only clinic bordered on all sides by other clinic 

catchments. This centrality may have contributed to its increased DUI value. Some 

topographically complex areas (e.g. Macabuzela clinic) are characterised by large DUI 

values, whilst some areas with small variations in altitude (e.g. Esiyembeni, Machibini) are 

characterised by small DUI values (Appendix 5a & 5b), suggesting that topography is not 

an important or consistent barrier to usage in this topographical setting. Esiyembeni is the 

newest of the clinics but had been in operation for one yeaL prior to the mapping exercise 

and this factor is therefore not likely to affect usage. 

The DUI values indicate that Esiyembeni and Machibini clinic are not well used for , 

example. An analysis of health-seeking behaviour should be conducted within their 
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respective distance catchments to detennine the reasons for this. There is additional 

complexity in the interpretation of mobile clinic spatial indices from a primary health care 

perspective because mobile clinics are likely to rank lower in the primary health care 

preference hierarchy because of the limited services offered and lower frequency of 

availability. A high exclusion error and low DUI in a fixed clinic indicates that the clinic is 

underutilised relative to its distance catchment. The same values for a mobile clinic may 

simply indicate that the mobile clinic point is effectively servicing those homesteads within 

its distance clinic catchment that are unable to attend fixed clinics. The results are still 

useful however, as they reveal mobile clinics that are used by their entire respective 

distance catchments (and beyond) and are thus indispensable. For example, three mobile 

clinic points have DUI values of approximately 150% and exclusion errors of only 20 -

30%. These mobile clinic points are further from the fixed clinics than their higher 

exclusion error/ lower DUI counterparts. Conversely, patients only utilising mobile clinics 

will necessarily lower their nearest fixed clinic DUI. Although the DUI is a single index 

expressing both inclusion error, exclusion error and strength of patient attraction, it cannot 

replace entirely its 'constituent' indices. This is because the spatial indices will need to be 

accessed independently to allow health planners to more fully understand the spatial 

dynamics of facility usage. 

It was not possible to compare our distance decay data against previous studies in 

developing countries as these studies have incorporated a frequency component (i.e. 

number of clinic attendances per person per year) into their usage data. The results of these 

studies are worth mentioning however, as they were conducted in similar rural settings. 

The distance from health facility at which 50% of potential attendances are lost has been 
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measured at 3.5km (Muller et al., 1998),3.2 km (Jolly and King, 1966) and 3.4 km (Stock, 

1983) in Papua New Guinea, Uganda and Nigeria respectively. 

Distances travelled to clinics and clinic choice will differ by age, sex and diagnosis (Stock, 

1983) and possibly season. We have examined modal usage patterns of homesteads and 

have therefore deliberately masked out deviant usage behaviour by individuals. This may 

take the form of different facility choice by an individual to that of the homestead or may 

be brought about by a change in an individual's health status. We did not obtain this 

information for this study because collection of this data for a population of 200,000 

people would have been logistically impossible and fell outside the objectives of this 

research. We are currently conducting a study of 10,000 homesteads (95,000 people) in 

five of the clinic catchments in the district and will use the indices to investigate health 

care usage patterns (including frequency and temporal variations) at an individual level. 

There is an argument that Euclidean distance is a sub-optimal measure of accessibility 

(Shannon et al. , 1973; Deichmann, 1997), since it ignores physical barriers such as hills, 

rivers, the transport system and social factors. Accessibility can be determined by a 

complex inter-linkage of both physical and human factors in addition to distance to clinics 

(Fiedler, 1981). The magnitude of the agreement between nearest clinic and actual clinic 

usage (87%) and the fact that a large number of people use walking as their primary mode 

of transport suggests that Euclidean distance is an adequate measure of accessibility for the 

purposes of this study and in this rural setting. Although the study area was selected on the 

strength of its geographic integrity, a limited amount of inter-district clinic usage will 

occur. This will increase attendances and average distance travelled to receive treatment. 

The spatial indices are unlikely to be affected significantly (as they are essentially ratios), 
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as the external clinic's distance catchments do not impinge on our existing catchments. 

How can these results contribute to health provision and resource allocation in the 

developing world? Some may argue that the indices are oflittle use to district health 

services who are unlikely to have the resources to survey every homestead in a prescribed 

geographical area. However, geographically stratified sampling techniques of small 

populations can be successfully employed to facilitate calculation of the indices. 

Alternatively, patients using clinics over a specified time period could be geo-Iocated. This 

method would ensure that the sample was weighted by frequency of clinic attendance as 

well as geographic distribution. 

At a district level, health managers should strive towards low exclusion and inclusion 

errors and DUI values close to 100% at all health facilities. This indicates that the facilities 

are evenly distributed, patients are generally using their closest facility and attendance is 

good. Clinics exhibiting low DUI values should be further investigated to determine 

whether quality of service differs from other clinics or whether the differences are merely a 

function of physical accessibility. The fact that homesteads which commonly use a 

particular clinic can be predicted with a small margin of error in a rural South African 

setting is exceedingly useful for health care planning. There is more data required for 

successful health planning than the indices alone can provide. The indices need to be 

combined with demographic profiles and detailed health-seeking behaviour data to 

facilitate optimal positioning of the health services. 
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Research in a rural district approximately 200 km north of Hlabisa has shown that our 

results are not dissimilar to other rural populations in South Africa and that the percentage 

of people using the nearest clinic in our area may even be lower than the rural average. In a 

survey of7,160 homesteads, it was found that 97.6% of homesteads attended the nearest 

clinic defined on the basis of Euclidean distance (J. Tsoka,pers comm). Both of these rural 

health districts make use of a similar integrated health system model. 

It is not clear whether these results are transferable to other settings in the developing 

world outside Southern Africa. For example, in a study of 859 patients in Nigeria, it was 

found that although distance was the leading factor in determining hospital choice, it 

accounted for only 31.8% of the total responses (Egunjobi, 1983). Social factors accounted 

for the remaining 68.2%. The above comparison may not be strictly valid however, because 

hospitals offer a comprehensive range of services and are therefore more likely to be 

influenced by social factors than are clinics. Though it is better resourced than similar 

models elsewhere in sub-Saharan Africa the elements of many African health systems are 

similar and many of these spatial principles could well be applicable to other district health 

systems in scattered rural populations in the sub-continent. Future research should focus on 

the calculation of the DUI in different settings and stratified at an individual level, by age, 

sex and diagnosis. The indices should be weighted by frequency of clinic attendances. 

There is likely to be an increase in the indices with the shift from a homestead to an 

individual level as more deviant usage behaviour is revealed. 
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The world health report of2000 (WHO, 2000) was dedicated to improving the 

performance of health systems. Health systems performance make a profound difference to 

the quality, as well as the length of the lives of the billions of people they serve. However, 

an important omission from the report was the spatial aspect of health systems research. 

The DUI provides a composite index of clinic usage and inter-clinic catchment interaction. 

Our study has shown how integrated health systems can be effectively spatially analysed 

and has highlighted the potential of GIS to playa key role in rational and more cost­

effective health service planning and resource allocation in developing countries. 
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Chapter Four: Tuberculosis treatment and space 

A. The spatial implications of the tuberculosis directly observed 

treatment (DOT) strategy 

Tanser and Wilkinson, 1999 Tropical Medicine and International Health (4) 10,634-8. 

4.1 ABSTRACT 

We used GIS/GPS technology to document and quantify improved access to tuberculosis 

treatment through a community-based programme in Hlabisa, South Africa. We plotted 

tuberculosis supervision points used by the district health system in 1991 (programme's 

first year) and 1996 (programme fully established), and quantified access by using GIS to 

measure mean distance from each homestead in the district to the hospital, clinics, 

community health workers (CHW), and volunteer supervisors. While tuberculosis caseload 

increased 3-fold, the number of community supervision points used increased from 37 in 

1991 to 147 in 1996. Adding clinics and then CHWs to the hospital as treatment points 

reduced mean distance from homesteads to treatment point from 29.6km to 4.2km and to 

1.9km respectively. Adding volunteers further reduced the distance to 800m. GIS/GPS 

effectively documents and quantifies the impact of community based tuberculosis treatment 

on access to treatment. 
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4.2 INTRODUCTION 

GIS and GPS technology has a wide range of applications in health, many of which are 

only emerging now (Clarke et at., 1996). GIS/GPS has been applied to environmental 

health, health system management, and a range of communicable diseases (Clarke et al., 

1996). In tuberculosis, the communicable disease that kills more adults each year than any 

other (World Bank, 1993), GIS/GPS has been linked to molecular epidemiological 

techniques in order to understand aspects of transmission dynamics (Bishai et al., 1998). 

Tuberculosis caseload is increasing rapidly in Africa, largely due to the HIV epidemic (De 

Cock et al., 1992). Several countries report a 3-400% increase in the number of patients 

with tuberculosis and traditional treatment strategies based on hospitalisation (Graff, 1994) 

are no longer feasible or cost-effective (Floyd et al., 1997). In response to this re-emerging 

epidemic, the World Health Organisation is promoting the DOTS control strategy (directly 

observed therapy, short course) with community based treatment at its core (WHO, 1997). 

Although community-based therapy has long been known to be safe and effective 

(Tuberculosis Chemotherapy Centre Madras, 1959), there is limited modern experience 

with it (Bayer and Wilkinson, 1995). In the Hlabisa district, South Africa, the tuberculosis 

control programme started using community-based treatment in 1991 (Wilkinson, 1994) 

and high levels of treatment adherence (Wilkinson et aI., 1996) and cure (Wilkinson et aI., 

1998) have been achieved. In 1998 a district-wide GIS was established. 

We have used this combination of experience to demonstrate and quantify how much 

access to tuberculosis treatment increases through a community based programme, and 

consider the further application of GIS/GPS technology to tuberculosis research, service 
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development and programme management in developing countries. 

4.3 METHODS 

Setting 

Hlabisa district is situated in northern KwaZulu-Natal, South Africa and is home to 

210,000 largely Zulu-speaking people who rely on subsistence farming, migrant labour and 

pension remittances. Annual per capita income is US$1730, the literacy rate 69%, and life 

expectancy averages 63 years. HIV infection has spread rapidly in South Africa, and HIV 

prevalence among adults with tuberculosis in Hlabisa increased from 36% in 1993 

(Wilkinson and Moore, 1996) to 66% in 1997 (Wilkinson, 1999). Consequent upon this, 

annual tuberculosis caseload has increased substantially (Wilkinson and Davies, 1997a). 

Tuberculosis Control Programme 

The control programme has been described before (Wilkinson, 1994). Briefly, all 

tuberculosis suspects are admitted to hospital for evaluation. Treatment starts in hospital 

with an average length of stay of2-3 weeks, and approximately 90% of patients are then 

treated in the community, with treatment given twice weekly under direct observation. The 

remaining 10% are too sick for discharge. In 1991, when the programme first started, we 

initially used available health system resources as treatment points, with nurses in village 

clinics and community health workers (CHW) supervising treatment. It soon became 

apparent that the distance to clinics was too great for many patients, and that many parts of 

the district lacked CHWs, so we started recruiting volunteer supervisors. Most volunteers 

are storekeepers, though we have also used schools and churches (Wilkinson and Davies, 

1997b). The programme maintains a computerised database that records all demographic, 
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clinical and programme management details, including type and location of supervisor. 

The IDabisa GIS 

A series of geographical layers of the district (including magisterial and nature reserve 

boundaries) were digitised from 1 :50000 topographical maps using Maplnfo (Maplnfo 

Corporation, N ew York, 1998). 

Locating homesteads 

Two methods were used to obtain the geographical position of every homestead in the 

district. The 16 583 homesteads in the largest of the four tribal authorities that make up the 

Hlabisa district were positioned by GPS (Trimble Geoexplorer II). The GPS system owned 

by the United States Department of Defence introduces an intentional error to the system, 

typically around 50-100m (Ardo and Pilesjo, 1992). We differentially corrected for this and 

other errors against a local base station. By plotting the errors over time, it is possible to 

subtract these errors from a roving GPS in the field. Differential correction occurred 

subsequent to homestead positioning in the field. Comparison with trigonometric beacons 

in the district revealed all positions to be accurate within 2m. 

The 7 741 homesteads occurring in the remainder of the district were digitised from 1 :30 

000 aerial photographs captured in 1996. The digitised points were corrected for geometric 

distortions. Comparison with differential GPS co-ordinates showed the average error to be 

30m with a maximum error of 5Orn5• 

5 Although the positional errors are on average 30m, the positions of the homesteads do not 
change significantly relative to each other. 
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Locating tuberculosis treatment points 

We attempted to obtain differential GPS co-ordinates for all treatment points in the district. 

We omitted patients supervised outside the new district boundaries (defined in 1998) as the 

GIS does not extend to them. Patients supervised by employers in the main town 

(south-east comer of the district; Figure 4.1) were given one set of co-ordinates (centre of 

town). Some CHWs share identical surnames and we were unable to accurately locate 5% 

of patients. Such patients were allocated equally to the CHWs with identical surnames. 

Creating the tuberculosis GIS 

Tables generated from the programme database containing the geographical location of the 

supervision points and the number of patients supervised per year were converted into 

MapInfo version 5.0 format. Raster images ofthe supervision points in 1991, 1996 and 

potential supervision points (all clinics, community health workers' homes, shops, 

churches, schools and the hospital) were created (pixel resolution of 20m) in Idrisi version 

2.0 (Clark Laboratories, Mass., 1998). 

Analysis 

The number of patients and the distribution of supervision points in 1991 (the first year) 

was compared against 1996 (programme fully established) in MapInfo. Euclidean distance 

images for each of the supervision point categories were computed in Idrisi. All 24, 324 

homesteads were overlaid onto the distance images and the distance of each homestead to 

the nearest supervision point in each category extracted. Average distances of homesteads 

to each of the supervision points in use in 1991 and 1996, as well as the potential 

supervision points available in 1998 were calculated. We were unable to calculate the 
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distance from individual patient's homes to actual supervision points as treatment had been 

completed before the district GIS was created in 1998. 

4.4 RESULTS 

Despite a substantial increase in caseload between 1991 and 1996, the proportion of 

patients treated in hospital (Figure 4.1) decreased from 19% (50/268) to 13% (1001773; 

p=O.Ol). The number of treatment points in the community increased from 37 in 1991 to 

147 in 1996 (Figures 4.1 and 4.2). Whilst the number of cases have increased the apparent 

'over-concentration' of treatment points in some areas is simply a function of the 

underlying population density. 

Between 1991 and 1996, the proportion of patients supervised by volunteers increased 

from 16% to 41 % (p<0.0001), and by CHWs from 9% to 24% (p<0.0001), while the 

proportion supervised at clinics fell from 56% to 24% (p<0.0001), (Figures 4.1 and 4.2). 

The average distance from homesteads to supervisors used in the tuberculosis programme 

fell from 23km in 1991 (Figure 4.1) to 1.5km in 1996 (Figure 4.2). Table 4.1 shows the 

increase in access to treatment that occurs when all levels of the health system are included 

in the tuberculosis programme. Mean distance from hospital to homesteads was 29. 7km. 

This fell to 5.5km in 1991 when clinics were included as treatment points, and fell further 

to 4.6km in 1996 due to the opening of2 new clinics. Adding CHWs improves access even 

further, with mean distance being 2km if all CHWs are included as potential supervisors. 

Finally, adding volunteers (stores, schools and churches) potentially reduces distance to 

800m. 
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Figure 4.1: Treatment and supervision of tuberculosis patients in Hlabisa district, 1991 
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Figure 4.2: Treatment and supervision of tuberculosis patients in Hlabisa district, 1996 
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Table 4.1: Mean distance (km) from homestead to nearest actual and potential tuberculosis treatment points 

Tuberculosis treatment point 1991 actual 1996 actual Potential supervision 
(mean. SD) suoervision ooints suoervision ooints _ noints 

Hospital 29.7 (17.4) 29.7 (17.4) 29.7 (17.4) 

Hospital and clinics 5.5 (3.7) 4.6 (2.7) 4.2 (2.7) 

Hospital, clinics and CHW s 4.7 (3.7) 2.7 (2.2) 2.0 (1.8) 

Hospital, clinics, CHWs and volunteers 2.3 (1.7) 1.5 (1.0) 0.8 (0.6) 
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4.5 DISCUSSION 

These data further demonstrate the potential value of GIS/GPS technology in health and 

health research (Clarke et al., 1996). We have documented and quantified substantial 

changes in the pattern of community treatment for tuberculosis over time in a health 

district. As greater use is made of more peripheral health facilities (clinics in addition to the 

hospital) and of truly community-based health services (community health workers), 

potential access to tuberculosis treatment increases substantially. Furthermore, a shift 

outside of the health system utilising community resources through the use of non-health 

worker volunteers potentially increases access even further. If all stores, churches and 

schools were used as treatment points, the average distance from any homestead in the 

district to a treatment point would be only 800m. 

Our data has some limitations. Most importantly we were unable to geographically locate 

homesteads of patients with tuberculosis, and link them to their supervisors, because the 

GIS was established later than the tuberculosis programme. Instead' we considered the 

relationship between each homestead in the district and the supervision points actually used 

in .1991 and 1996, and all potential points in 1996. A prospective study is underway to 

document actual proximity to treatment supervision among a large cohort of patients. Also, 

the GIS is limited to the new district boundaries, excluding approximately 15% of patients 

from the analysis. We were also unable to accurately locate 5% of patients to their 

supervisors because some CHWs had identical surnames. 

Although used in various health fields (Clarke et aI., 1996), especially communicable 

diseases, GIS/GPS has been little used in the study and control of tuberculosis. With recent 
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advances in software and hardware, and with falling prices (Clarke et al., 1996), GIS/GPS 

is no longer exclusively a research tool, but may be a cost-effective technology that can be 

used to drive development and health care provision in developing countries. In South 

Africa, for example, electricity supply companies use GIS to route pylons and to determine 

supply need, district boundaries are being plotted by GIS across the country, and the 

location of new primary care clinics is being guided by GIS. 

Our experience suggests that GIS/GPS could have an important role to play in tuberculosis 

control programme management, service development, and research. In terms of planning 

and managing the service, how many supervision points should there be? How far apart 

should they be? How much choice is needed? There is likely to be some tension between 

increasing access and supervising and managing these supervision points (Wilkinson and 

Davies, 1997b). As the number of points grow, it may become more difficult for the 

programme to monitor all of them. Much remains to be understood about tuberculosis 

transmission dynamics in developing countries (Wilkinson et al., 1997) and GIS/GPS will 

be a useful addition to molecular techniques and conventional epidemiology, in elucidating 

transmission pathways, and clusters of multi-drug resistant cases for example. 

What lessons might there be for tuberculosis control in general? It is now widely 

recognised that community-based treatment is important if we are to cope with this 

re-emerging epidemic (Maher et al. ,1997). GIS/GPS might help rational development of 

community based care by providing maps, by locating potential supervision points, and by 

focussing on areas of particular need. In settings where this technology is not available, 

hand drawn maps, produced with the help of the community through participatory rural 

64 



appraisal techniques could yield similarly helpful data. GIS/GPS can also be used to locate 

cases and identify epidemics or localised outbreaks. Finally, further research will be needed 

to fully understand how important "reducing distance" is to "improving access to 

treatment". In addition to locating treatment points close to patients' homes or workplaces, 

the acceptability of particular supervisors is also likely to affect access. 
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B. GIS / GPS technology to document increased access to 

tuberculosis treatment 

Wilkinson and Tanser (1999) Lancet (354) 9176, 394-5. 

Effective community based tuberculosis treatment (Maher et al., 1997) is likely to be 

necessary if the World Health Organisation's DOTS strategy (WHO, 1997) is to be 

successful, especially in view of the dramatic increase in tuberculosis caseload secondary 

to the HIV epidemic that has made institution based therapy untenable (Floyd et al., 1997). 

Although long known to be safe and effective there is little modem experience with 

community based treatment strategies (Maher et al., 1997). A district-wide community 

based treatment programme has produced high treatment completion rates in Hlabisa, 

South Africa, since 1991 (Wilkinson, 1994). Here, we report the novel use of geographical 

information system (GIS) and global positioning system (GPS) technology to measure the 

effect that developing a community based programme has on access to treatment. 

The Hlabisa GIS comprises a series oflayers digitised from 1 :50 000 topographical maps 

using Maplnfo (Maplnfo Corporation, New York, 1998). Most homesteads (16,583; 68%) 

were located using differential GPS (Clarke et al., 1996) to an accuracy of 2m and the rest 

were digitised from aerial photographs to an average accuracy of 30m. All health facilities, 

homes of community health workers, and potential volunteer tuberculosis treatment 

supervisors (stores, schools and churches (Wilkinson, 1994» were located with differential 

GPS. 
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Figure 4.3a shows that 94% of district homesteads are located 5km or more from the district 

hospital(red and green areas). In Figure 4.3b, in which village clinics are included as treatment 

points, 36% of homesteads are located 5km or more away. Adding community health workers to 

the figure (c) as treatment supervisors ensures that only 3% of homesteads are 5km or more from 

treatment. Finally, with volunteers (Wilkinson, 1994) added, 68% of homesteads are within lkm 

of tuberculosis treatment, and all are within 5km of treatment (d). 

Figure 4.3: Image (a) represents the Hlabisa health district, with boundaries outlined in black and 
transect~d by a nature reserve. Major roads are in red, and the hospital is to the top left. 
In all 4 Images blue represents parts of the district O-O.9km from a tuberculosis treatment point, 

yellow 1-4.9km, red ~-9.9km, and green >=lOkm from a treatment point. In Image (b) village clinics 
are added to the hospItal as treatment points, in Image (c) community health workers are added 
and in Image (d), volunteers are added. ' 
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There is more to adherence to tuberculosis therapy than Euclidian distance between 

homestead and supervision point. Steep, vegetation-dense areas crossed by large rivers are 

more inaccessible than flat, open savannah with transport services. Furthermore, 

geographical accessibility alone will ensure neither access nor adherence: if the local clinic, 

community health worker, or volunteer is unable or unwilling to provide a user friendly 

service, proximity may be irrelevant. However, proximity of treatment is likely to be one 

important factor in promoting adherence to treatment. GIS/GPS may therefore have an 

important role to play in the rational design and management of community based 

tuberculosis programmes, as well as associated operational research. In Hlabisa, using an 

intermittent drug regimen and developing a network of supervisors, most of whom are 

volunteers (Figure 4.2d), a cost-effective and sustainable community based treatment 

service has been developed (Floyd et aI. , 1997). 
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Chapter Five: 

HIV heterogeneity and transport networks 

Tanser et al., (2000b) Tropical Medicine and International Health (5) 1,40-46. 

5.1 ABSTRACT 

Objective: To describe heterogeneity of HIV prevalence among pregnant women in rural 

South Africa and to correlate this with proximity of homestead to roads 

Setting: Hlabisa district, South Africa 

Methods: HIV prevalence measured through anonymous surveillance among pregnant 

women and stratified by local village clinic. Polygons were created around each clinic, 

assuming women attend the clinic nearest their home. A geographical information system 

(GIS) calculated the mean distance from homesteads in each clinic catchment to nearest 

primary (l0) and to nearest primary or secondary (2°) road. 

Results: Marked HIV heterogeneity by clinic catchment was observed (range 19-31 % 

(p<O.OOI). A polygon plot demonstrated lower HIV prevalence in catchments remote from 

1 ° roads. Mean distance from homesteads to nearest 1 ° or 2° road varied by clinic 

catchment from 1623 to 7569 metres. The mean distance from homesteads to 1 ° or 2° road 

for each clinic catchment was strongly correlated with HIV prevalence (i=0.44; p=0.002). 

Conclusions: The substantial HIV heterogeneity in this district is closely correlated with 

proximity to 1 ° or 2° road. GIS is a powerful tool to demonstrate and to start to analyse this 

observation. Further research is needed to better understand this relationship both at 

ecologic and individual levels, and to develop interventions to reduce the spread of HI V 

infection. 
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5.2 INTRODUCTION 

The global HIV pandemic is composed of a series of several smaller epidemics (UNAIDS, 

1998). Even within Africa, where levels of infection are the highest in the world, there is 

substantial heterogeneity of levels of infection (UNAIDS,1998). While prevalence in many 

west and central African countries has remained relatively low and stable, eastern and 

southern Africa have experienced explosive epidemics with HIV prevalence exceeding 

40% among pregnant women in some parts (UNAIDS, 1998). Within countries there may 

also be substantial heterogeneity: in Uganda for example the demographic impact of HIV is 

far from uniform geographically (Low-Beer et al., 1997). The reasons for such marked 

variation are not fully understood, but both individual level risk factors (such as differing 

rates of unprotected sex with multiple partners) and ecologic or societal factors (such as the 

varying proportion of rural men who migrate for work) are likely to be important. 

Even within regions and districts of a country infection levels may vary. In Uganda HIV 

prevalence was considerably higher in trading centres and roadside villages than more 

remote rural settings (Wawer et al., 1991). These differences have been attributed, at least 

in part, to levels of sex work (Pickering et al., 1997), and sexual networks that may be 

quite separate socio-geographically (Pickering et al., 1996). In the rural district of Hlabisa, 

South Africa, 41.2% of pregnant women were HIV infected in late 1998 (Wilkinson et al., 

1999). We have observed substantial geographical heterogeneity of HI V infection in the 

district (Coleman and Wilkinson, 1997). Here, we report the use of a geographical 

information system (GIS) to display and to start to determine reasons for this heterogeneity. 

In particular we explore the relationship between HIV prevalence and the proximity of 

homesteads to primary (10) and to primary or secondary (2°) roads. An exploration of the 
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causes of HI V heterogeneity is important as it may infonn control efforts (Lurie et ai., 

1997). 

5.3 METHODS 

Setting 

Hlabisa district is situated in northern KwaZulu-Natal, South Africa and is home to 

210,000 largely Zulu-speaking people who rely on migrant labour remittances, subsistence 

farming, and pensions. Annual per capita income is US$1730, the literacy rate 69%, and 

life expectancy averages 63 years. Approximately 90% of the homesteads in the district 

have at least one male resident who spends most nights away from home and therefore who 

is classed as a migrant worker (V Hosegood, Africa Centre for Population Studies and 

Reproductive Health, personal communication). Most men travel to the mines around 

Johannesburg, but others travel to the major ports of Durban and Richards Bay (Figure 5.1, 

(Lurie et ai., 1997)). 

Figure 5.1: Diagrammatic representation of migrant worker 
destinations among men resident in Hlabisa. 
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HIV infection has spread rapidly in South Africa, and HIV prevalence among pregnant 

women in Hlabisa increased from 4.2% in 1992 to 14% in 1995 (Coleman et aI., 1997) and 

to 41.2% in 1998 (Wilkinson et al., 1999). 

HIV prevalence survey 

Antenatal care is provided by the local district hospital and its village clinics. 

Approximately 95% of pregnant women in the district receive antenatal care at these 

facilities (Wilkinson et al., 1997). At their first antenatal visit women have blood taken to 

test for syphilis. For the HIV seroprevalence survey personal identifiers were removed 

from remaining serum and stored at 4°C until being frozen at -20°C within 48 hours. Data 

on the name of the clinic attended, age, marital status, and whether the woman's partner is a 

migrant were collected in the 1997 survey. Results of surveys done in 1992, 1993 and 1995 

have been reported (Lurie et al., 1997). 

Two different ELISA tests were used to test for antibodies to HIV. Specimens were 

deemed HIV positive ifboth ELISAs were positive or if one positive ELISA was 

confirmed with an immunofluorescent assay. Confidential and voluntary HIV counselling 

and testing was available for women who requested it following the HIV education that is a 

routine part of antenatal care. Ethical approval for the study was given by the University of 

Natal Ethics Committee. 

The IDabisa GIS 

A series of geographical layers of the district (including magisterial and nature reserve 

boundaries, roads and rivers) were digitised from 1 :50000 topographical maps using 
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Maplnfo (Maplnfo Corporation, New York, 1998). Primary roads (1°) are defined as 

national {N} roads and secondary (2°) roads are defined as regional {R} roads, remaining 

roads are tertiary (3°) roads. 

Locating homesteads 

Two methods were used to obtain the geographical position of every homestead in the 

district. The 16,583 homesteads in the largest ofthe four tribal authorities that make up the 

Hlabisa district were positioned by global positioning system (GPS). The United States 

Department of Defence introduce an intentional error to the system, typically around 

30-10Om (Clarke et at., 1996). We differentially corrected for this against a local base 

station. By plotting the errors over time, it is possible to subtract these errors from a roving 

GPS in the field (Ard6 and Pilesj6, 1992). Differential correction occurred subsequent to 

homestead positioning in the field. Comparison with trigonometric beacons in the district 

revealed all positions to be accurate within 2m. The 7741 homesteads occurring in the 

remainder of the district were digitised from 1 :30 000 aerial photographs (captured in 

1996) and corrected for geometric distortions. Comparison with differential GPS 

co-ordinates showed the average error to be 30m with a maximum error of 5Om. 

Creating the HIV GIS 

We created raster images of all clinics used in the study as well as all 1 0 , 2° and 3 ° roads in 

the district (pixel resolution of 20m) in Idrisi version 2.0 (Clark Laboratories, Worcester, 

1998). 
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Analysis 

We first stratified HIV prevalence data by clinic attended. We then created polygons for 

these clinics, dividing space such that any particular home is allocated to its geographically 

nearest clinic. We then created distance images for the categories 10
, 20 and 30 roads. All 

24,324 homesteads were overlaid onto the distance images and the distance of each 

homestead to the nearest road category in each clinic catchment extracted. Results are 

reported as mean (SD) distance per clinic catchment. 

A simple regression analysis measured the correlation between mean distance from 

homesteads to roads and HIV prevalence, and a scatter plot was produced (BMDP, BMDP 

Statistical Software, 1994, Los Angeles, USA). A regression analysis weighted for sample 

size in each clinic catchment did not substantially differ from the crude analysis and hence 

here we report the crude analysis. Previous analyses have demonstrated that there is no 

statistically significant association between clinic catchment HIV prevalence and age, 

marital status, or partner status (submitted for publication), hence here we report 

unadjusted correlation between HIV prevalence and proximity to roads. We have analysed 

correlation of HI V prevalence with 10 roads alone, and with 10 or 20 roads. 

5.4 RESULTS 

Serum samples were available from 2013 women attending antenatal clinics between 

January and April 1997. For a 2 week period when approximately 350 specimens were 

collected, demographic data were inadvertently not obtained. HIV prevalence varied from a 

low of 19% among women attending one of the more rural clinics, to 31 % (Chi square test, 

p<O.OOI) among women attending a clinic that serves a large township next to a major 

national road (Table 5.1). 
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Table 5.1: Clinic-specific HIV prevalence among pregnant women in Hlabisa, and mean distance from homesteads to roads by clinic catchment. 

Clinic NumberHIV Number HIV prevalence Mean (SD) distance (m) Mean (SD) distance (m) 
positive tested % (95%CI) from homesteads to 10 from homesteads to 10 

or 2 0 r2ads roads 
1. Nhlwathi 18 95 19 (12-28) 4,574 (2,620) 27,538 (6,334) 

2. Ntondweni 13 68 19 (11-30) 7,569 (2,665) 14,397 (5,531) 

3. Madwaleni 24 105 23 (16-32) 3,965 (3,031) 4,705 (3,423) 

4. Hlabisa hospital 26 106 25 (17-33) 3,239 (2,631) 43,791 (7,038) 

5. Mpukunyoni 44 168 26 (20-33) 1,623 (1,433) 3,001 (2,094) 

6. Somkhele 25 93 27 (19-37) 3,192 (3,111) 11,467 (3,016) 

7. Nkundusi 75 272 28 (23-33) 2,433 (2,540) 4,127 (3,353) 

8. Makhowe 11 39 28 (16-44) 2,054 (1,704) 10,191 (4,805) 

9. Machibini 11 36 31 (17-47) 2,498 (2,498) 20,720 (4,708) 

10. Macabuzela 24 78 31 (21-42) 2,553 (1,898) 20,698 (3,145) 

I1.K waMsane 112 363 31 (26-36) 1,822 (2,271) 5,220 (2,267) 
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As reflected in Figure 5.2, HIV prevalence tended to be highest in those clinic catchments 

through which the national (1 0
) road runs. Lowest HIV prevalence is observed in those 

clinic catchments through which neither 10 nor 2 0 roads run. 

We measured a wide range of mean distance from homesteads to 10 and to 10 or 2 0 roads 

for the various clinic catchments (Table 5.1). For 10 or 2 0 roads the shortest mean distance 

was 1623 metres, reflecting the population and household density in this area, and its 

proximity to the national road. The greatest mean distance (7569 metres) was measured for 

a catchment around the relatively more isolated Ntondweni clinic (Figure 5.2; {2}). 

Interestingly, although no 10 or 2 0 roads pass through this catchment, parts of it are only a 

few kilometres from the national road. 

A scatter plot of mean distance from home to 10 or 2 0 road versus HIV prevalence (Figure 

5.3) demonstrates a strong correlation between these two variables. We measured a r of 

0.44, (p=0.002). For 10 roads alone the r was 0.05 (p=0.45). 
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Figure 5.2: HIV prevalence among pregnant women by clinic catchment, Hlabisa district, 1997 
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Figure 5.3: HIV prevalence versus average distance to primary and secondary roads by clinic catchment 
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Figure 5.4 illustrates the variation between clinic catchments, in levels of proximity to 10 

or 2 0 roads. For example, the clinic catchments to the east of the district show high levels 

of proximity, whereas the more central and western catchments show much lower levels of 

proximity. Figure 5.4 also demonstrates substantial variation in proximity to 10 or 2 0 roads 

within each clinic catchment, but as we are unable to geo-Iocate individual pregnant 

women within their respective clinic catchments we are unable to explore this relationship 

further. 

5.5 DISCUSSION 

We have shown that HIV prevalence among pregnant women varies substantially within 

this district, when stratified by clinic catchment. Further, we have shown a close 

correlation between proximity of homesteads to 10 or 20 roads and HIV prevalence: those 

catchments with homesteads that are closer, on average, to 10 or 20 roads are more likely to 

have higher HIV prevalence. These findings support observations made in other parts of 

Africa (Wawer et at., 1991; Killewo et at., 1994; Soderberg et ai., 1994) and suggest that 

communities with better access to transport and transport routes are at higher risk ofHIV. 

These observations may have implications for HIV prevention efforts. 

There are some limitations to our data. Firstly we assumed that women attending a 

particular clinic also live within that clinic's catchment. We also assumed that geographic 

catchments, as defined by polygons, are equivalent to functional clinic catchments. 

Through the further refinement of the demographic surveillance system being developed in 

the district we have been able to test these assumptions and have found that they hold well. 

79 



+ Clinic 

~ Hospital 

D <0.70 

• 0.71 -1.42 
• 1.43-2.13 

• 2.14 - 2.85 

• 2.86 - 3.56 
• 3.57-4.28 

• 4.29-4.99 
• 5.00 - 5.70 

• 5.71 - 6.42 
• 6.43-7.13 
• 7.14-7.85 

Figure 5.4: Proximity (kilometres) to primary and secondary roads by clinic catchment, Hlabisa district 
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Among 13,000 homesteads, 88% of respondents reported using the geographically nearest 

clinic, and preliminary analyses suggest that functional catchments are highly correlated 

with geographically defined catchments (unpublished data)6. We measured direct distances 

from homesteads to roads, but this may not accurately reflect actual ease of access to roads, 

especially in hilly parts of the district, and in those parts crossed by rivers. However, as the 

most populous parts of the district are quite flat and accessible this assumption may not 

affect our data too much. Lastly, we gave equal weight to proximity to 10 and 20 roads, and 

it is unlikely that this assumption is reasonable: further research is underway to determine 

what weighting should be applied. 

Why does proximity to 10 and 20 roads confer HIV risk to communities? It may be that 

men living in such communities are more likely to be migrant workers. These men may 

migrate to different towns from their more rural counterparts, and may also find it easier to 

return home more frequently. This may then confer greater risk to their rural partners. 

Alternatively, or in addition, it may be that there is more sex work close to the major roads, 

especially the national road that crosses the east of the district, than in the more rural parts 

ofHlabisa. This national road is a major trucking route from the large coastal ports of 

Durban and Richards Bay to Swaziland, Mozambique and beyond. Although there are no 

major truck stops within the Hlabisa district, there is a small truck stop near the township 

(near KwaMsane clinic; Figure 5.2). It seems likely that the type of traffic carried by 

different roads, its volume, and whether it stops or not, are factors which might influence 

the relationship between proximity and HIV that we have described. We are working with 

6 Subsequently submitted for publication in Tanser et al. (2000a, this thesis) 
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the Department of Transport to add traffic count, and traffic type, data to the GIS and to 

further explore these relationships. 

Why was the correlation with 10 roads alone weaker than with 10 and 20 roads? Firstly 

there is only one 10 road in the district and as most residents will need to travel along it to 

reach home, there is little opportunity for discrimination in analysis. Further, this road only 

traverses a small proportion of the district. As noted above, the type of traffic on a road and 

its stopping frequency may be more important than road size: most of the traffic on this 

road does not stop in the district. It is possible that 10 roads act as important conduits for 

traffic to reach secondary roads, and that these roads then determine to a greater extent the 

penetration of HI V into more rural, isolated settings. 

It has been shown that the risk of HIV in this area is highest amongst migrant men and their 

partners (Colvin et aI., 1995), and in a similar setting, it has been shown that people who 

had most recently moved into an area were more likely to be HIV infected (Abdool Karim 

et at., 1992). These observations support similar ones made in Uganda (Wawer et at., 

1991) and elsewhere, and seem to suggest that within rural communities at least, sexual 

networks are relatively constrained (Pickering et at., 1997). If they were not, we would 

expect there to be much less heterogeneity across the district. 

What are the 'implications ofthese observations for HIV prevention? Although prevalence 

is high (and is rising rapidly) in all parts of this district, it seems that prevention efforts 

might usefully be targeted to certain areas. It seems reasonable to suggest that HIV was 

introduced to the district through transport routes. There are a small number of 
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well-defined transport nodes where the minibus taxis and bus services that operate in the 

area are based. It might be prudent to focus some of the limited human and financial 

resources that are available for prevention, at these sites. Already a few minibus taxis carry 

HIV prevention posters, but this could be enhanced to include distribution of written health 

educational material and condoms on the taxis and buses as well as at ticket and booking 

offices, for example. Furthermore, outreach efforts perhaps including clinics offering 

voluntary HIV counselling and testing and sexually transmitted disease treatment, sited at 

these transport nodes might be considered. When an epidemic has established itself in a 

district, localised prevention efforts may have a smaller role to play than at the start of an 

epidemic. 

We have found GIS to be a powerful tool to display and to start to analyse reasons for HIV 

heterogeneity in this setting, further supporting its potentially important role in health, 

health services management and in research (Clarke et al,1996). 
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Chapter Six: 

The equitable distribution of fieldworker workload in a large, rural 

health survey 

Tanser (2000) Submitted for publication 

6.1 ABSTRACT 

A methodology is presented that has numerous applications to health systems provision in 

developing countries where limited physical access to primary health care is a major factor 

contributing to the poor health of populations. An accessibility model within a 

geographical information system (GIS) is used to predict average inter-homestead walking 

times and subdivide the study area into units of equal completion time. The methodology 

could be used to ergonomically design home-based care and tuberculosis DOT 

programmes and inform the siting of health facilities. The paper highlights the use of GIS 

technology as a powerful tool in developing countries. 
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6.2 INTRODUCTION 

Geographical information system (GIS) technology has a wide range of applications in 

health, many of which are only emerging now. GIS has been applied to environmental 

health (Snowet al., 1998), health system management (Wilkinson and Tanser, 1999, this 

thesis), and a range of communicable diseases (Clarke et al., 1996), but its full potential 

remains largely unrealised. Accessibility can be defined as the ability for interaction or 

contact with sites of economic or social opportunity (Deichmann, 1997). Accessibility 

measures within a GIS have traditionally been used in measuring proximity to health care 

(Walsh et al., 1997; Parker and Campbell, 1998; Tanser and Wilkinson, 1999, this thesis; 

Perry and Gesler, 2000). Limited physical access to primary health care is a major factor 

contributing to the poor health of populations in developing countries. In reality 

accessibility is determined by a complex inter-linkage of both physical and human factors 

in addition to mere proximity to target locations. 

Conducting health surveys in heterogeneous, remote areas can be problematic. Social, 

physical and spatial heterogeneities pose a major challenge to the estimation of fieldworker 

requirements, cost, completion time and equitable distribution oflabour. THese problems 

are especially pronounced in longitudinal surveys where an inequitable division of a study 

area will have long-term consequences and will result in a decrease in overall labour 

productivity. Studies in Bangladesh have shown a substantial decrease in community health 

worker performance for every 1 sq. km increase in catchment size (Ali et al., 1999). The 

authors conclude that health worker performance can be significantly improved by defining 

catchments through the use of GIS techniques and that without knowledge of the spatial 

distribution of population and the physical barriers to movement, allocating a fixed number 
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of clients per health worker may not be the most efficient approach. The dearth ofliterature 

on the equitable allocation oflabour across an area, suggests that adjusting for the variable 

characteristics of a study area is often ignored or at best is done on a subjective basis. 

A demographic surveillance system of an extremely heterogeneous area (both physically 

and socially) is being set up in a remote area in rural South Africa. The aim of the system is 

to collect demographic and epidemiological data on a population of75,000 people and to 

monitor the effects of the HIV epidemic on the population longitudinally (Hosegood, 

1998). The methodology of the system required that fieldworkers walk to every homestead 

in the study area every 60 working days and administer questionnaires to the occupants of 

the homesteads. The population is dispersed throughout the study area and is not 

concentrated into villages or compounds as in many other parts of Africa where similar 

work is being undertaken (Sauerborn et al., 1996). The heterogeneities in the study area 

and the dispersed population present significant problems to the estimation and equitable 

distribution oflabour. I use a fuzzy accessibility model within a GIS to adjust for the 

variable social and physical characteristics of the study area and produce an equitable 

subdivision of the area into sub-units (fieldworker areas) of equal completion time. 

6.3 METHODS 

Setting 

The study area is located in the Hlabisa district in northern KwaZulu-Natal, South Africa 

and is 435 Km2 
in size. The population is approximately 75,000 Zulu-speaking people who 

rely on migrant labour remittances, subsistence farming, and pensions. Annual per capita 

income is US$1730, the literacy rate 69%, and life expectancy averages 63 years. The area 
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is characterised by large variations in population density (0-6500 people per km2
), altitude 

(20-300 m.a.s.l), terrain (flat to undulating to mountainous), vegetation (sparse grassland to 

thick forest) and proximity to transport networks. Socially, large variations in homestead 

size (1-100 people), access to electricity and municipal water and levels of west em is at ion 

exist. 

Location of homesteads 

All10275 homesteads occurring in the study area were positioned by global positioning 

systems (OPS) (Trimble Geoexplorer II). The OPS system, owned by the United States 

Department of Defence, introduces an intentional error to the system, typically around so-

100m. For the purposes of the study this error was unacceptable as some homesteads are 

only 10m apart. I differentially corrected for this and other errors against a local base 

station. By plotting the errors over time, it is possible to subtract these errors from a roving 

OPS in the field. Differential correction occurred subsequent to homestead positioning in 

the field. Comparison with trigonometric beacons in the district revealed all positions to be 

accurate within 2m. All homesteads were uniquely numbered and a dataset collected 

around facility usage and data pertaining to the homestead itself, including the number of 

residents and the presence of tenants. 

Factors affecting accessibility 

By observing the progress of 12 fieldworkers during the homestead mapping exercise and 

in consultation with them, a number of factors emerged as having an impact on time taken 

to walk between homesteads. Homestead density is an important factor affecting inter­

homestead walking time. The closer the homesteads are to each other the less the time 

87 



taken to walk between them. Terrain also contributes to walking time. Areas characterised 

by steep uneven terrain are more problematic and take longer to navigate than their flat 

counterparts and the most direct route between homesteads is often not available. Although 

the homesteads are negotiated on foot, the fieldworkers reported that road networks were 

an important variable affecting walking time. Roads provided conduits for the fieldworkers 

to traverse their allotted areas and the majority of homesteads tended to be located near the 

transport routes. A final factor affecting walking time was vegetation. The fieldworkers 

reported that in dense vegetation they had difficulty locating homesteads. In addition, the 

thick vegetation prevented the use of the most direct route and fieldworkers were often 

forced to use roundabout routes to reach some homesteads. 

Preparation of data to be used in the accessibility model 

A series of geographical layers of the district (including magisterial and nature reserve 

boundaries) were digitised from 1 :50000 topographical maps using MapInfo (MapInfo 

Corporation, New York, 1998). 

To calculate an elevation image 20m contours in digital format were purchased and 

imported into Idrisi 2.0 (the Idrisi project, Clark University, Worcester, MA, USA). I 

superimposed the contours onto a blank raster surface (resolution = 20m) and interpolated 

the data into a continuous raster surface using a modified CONSURF algorithm (Eastman, 

1997). 

Elevation values do not have an impact on the time taken to walk between homesteads per 

se; rather it is the variations in elevation around each homestead that will affect travel time. 
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I therefore passed a moving 1km x 1km standard deviation filter across the elevation 

image. The end result is an image (with the same resolution as the original elevation 

image) which measures elevation variations in a 1km x 1km neighbourhood around each 

pixel. 

I used a similar technique to calculate a homestead density image. I created a raster image 

of number of homesteads per pixel. I then passed a moving 1km x 1km filter across the 

image which summed the number of homesteads in the filter window and assigned the total 

to the central pixel. The result is a homestead density image in which the value of each 

pixel is the total number of homesteads in the surrounding 1km x 1km block. 

The normalised difference vegetation index (NDVI) is a satellite-derived index that has 

been used to estimate green biomass by numerous authors (Tucker et at., 1985; Bedard and 

LaPointe, 1987). High NDVI values are characteristic of densely vegetated areas, e.g. 

forests, sparsely vegetated areas by contrast, e.g. urban areas, result in low NDVI values. 

NDVI is based on the fact that growing vegetation has a high near infra-red reflectance due 

to internal reflectances involving green leaves coupled with low red reflectance due to 

absorption by chlorophyll and other plant pigments. I obtained geometrically and 

radiometrically corrected Advanced Very High Resolution Radiometer (A VHRR) NDVI 

imagery for the study area for June 1998 at a 1.1 km resolution. The data were collected by 

the AVHRR on board the National Oceanic and Administration's NOAA-II satellite 

(Cracknell, 1997). I selected the June 1998 (winter) NDVI image to ensure that the grass 

contribution to the overall NDVI spectral reflectance was negligible. I resampled the NDVI 

image to the same resolution as the other images (20m). 
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I obtained all pt level (national), 2nd level (regional) and 3rd level (district) roads in 

Maplnfo fonnat from the department of roads. In addition, all 4th level roads in the study 

area were mapped using a differential GPS. I defined 4th level roads as additional roads 

which were of significant longitudinal length and were serviced by the minibus taxis in the 

area. I created raster images of all 1st 
- 4th level roads in Idrisi and created a 'distance to 

nearest road' image. 

Estimating walking time 

I scaled the variables between zero and one along a fuzzy sigmoidal ( cosine) curve (Figure 

6.1) to produce accessibility maps of fractions between zero (highly inaccessible threshold 

= 1) and one (highly accessible threshold = A). The thresholds used as the fuzzy cut-offs 

represent values above or below which no significant difference in accessibility is likely to 

result. The thresholds were selected using a combination of knowledge and aggregated 

analyses of the homestead mapping exercise data. The sigmoidal membership function 

(Schmucker, 1982) is one ofthe most commonly used functions in fuzzy set theory. The 

shape of the curve mimics the relationship of the independent variable to accessibility. As 

the threshold limits are approached the fuzzy value /accessibility increases slowly in 

relation to the independent variable, but in the middle of the continuum, accessibility 

increases rapidly. 
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Figure 6.1: Graphs showing the fuzzy transformation of independent variables used to 
estimate average inter-homestead walking time. 

The sigmoidal curve is defined as: 

[
X-A ,,] 

y= cos2 --x-
A-I 2 

where y is the fuzzy suitability of accessibility value x. In the decreasing curve (applied to 

standard deviation of elevation, distance to roads and NDVI), fuzzy value is equal to y, in 

the increasing curve (applied to homestead density) it is (1 - y). A fuzzy value of zero in a 

particular variable represents a very low accessibility and is therefore conducive to a long 

walking time (i.e. thick vegetation, low homestead density, large variations in altitude or a 

large distance from the nearest road), whereas a value of one represents a high accessibility 

or short walking time. Fuzzy values located along the accessibility gradient (between zero 

and one) lie somewhere b'etween highly inaccessible and highly accessible. 
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I grouped homesteads mapped across the study area into actual number of homesteads 

mapped per fieldworker per day (n=920 fieldworker days). I extracted the values of the 

independent fuzzy variables for each homestead and calculated the average fuzzy values 

for each group of homesteads mapped per fieldworker per day. I performed a multiple 

regression analysis on the average fuzzy variables to predict the number of homesteads 

mapped per fieldworker per day. The resulting equation was then applied to the fuzzy 

variables and an image produced of 'predicted number of homesteads mapped per 

fieldworker per day'. I then converted the resulting output to average inter-homestead 

walking time by dividing the average daily time spent working in the field (6 hours) by the 

resulting image and subtracting the average time taken to establish the coordinates of a 

homestead (12 minutes). I also applied the above methodology to the raw variables 

(without fuzzy scaling) for comparative purposes. 

Validation of the accessibility model 

The accuracy of the accessibility model is likely to be over-estimated if analysed using the 

original data used to build the regression equation. In addition, lack of recorded start and 

completion times in the input data would mitigate against an accurate validation. I 

therefore selected three areas (ranging between 16.44 km2 and 2.64 km2 in size and each 

containing between 189 and 245 homesteads) of contrasting physical and social 

characteristics to conduct an independent validation of the accessibility model. The areas 

comprised a peri-urban, semi rural and a deep rural area. I assigned each area to a group (of 

similar estimated average walking speed) of five fieldworkers and asked each group to 

walk to every homestead (as a group) in the assigned area in any chosen sequence and 

record inter-homestead walking times (n = 630 homesteads). I then compared the predicted 
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average daily walking time (the average of the predicted walking times for all homesteads 

visited by the group in a day) against actual average daily walking time (n = 16 days) and 

statistically analysed the results. 

Estimating interview time 

Pilot studies revealed that an average time of 45 minutes was required to administer a 

questionnaire within one family unit in each homestead and that each family unit consisted 

of an average of 6 residents. I therefore assigned an estimated interview time of 45 minutes 

per 6 people in a homestead. An additional 45 minutes interview time were assigned if the 

estimated number of family units was one but the homestead included tenants. The 

presence of tenants would require the administration of another set of questionnaires. Some 

homesteads were in the process of being built (2.2 %) or respondents were not available for 

interviewing (3.1 %). In such instances, I used the average homestead interview time (54 

minutes) across the study area. 

Creating hard areas 

The fieldworker areas had to be enclosed by features observable on the ground to facilitate 

easy allocation of new homesteads to fieldworker areas. I considered using polygons such 

as the census enumerator areas, Izigodi and local areas. However, these were often not 

delimited by hard boundaries as well as being too large. 

I imported all roads (level 1-4) and rivers into Idrisi and superimposed them on a blank 

raster surface. I then subjected the resulting raster line features to an enclosed-area 

detection algorithm (written in Idrisi macro language) to identify areas which were 
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completely enclosed by any number of roads or rivers (Appendix 6). The algorithm 

identified contiguous groupings of pixels (excluding diagonal neighbours) of the same 

value. Cells belonging to the same contiguous grouping are given a unique integer 

identifier, numbered consecutively in the order found. I then filtered out the original line 

features using a 3 x 3 mode (majority) filter and removed insignificant areas ofless than 50 

pixels and replaced them with the value of the adjoining pixels. In this way I identified a 

number of significant areas that were fully bounded by roads and rivers. The resulting areas 

were converted to vector fonnat and exported to Maplnfo. 

Creating the fieldworker areas 

I superimposed all homesteads on the predicted average inter-homestead walking time 

image and extracted the average walking times for each homestead. Although an individual 

walking time is assigned to each homestead, in reality this value reflects the average inter­

homestead walking time for the surrounding lkm x lkm neighbourhood. I then adjusted 

the walking times to account for the required members of the homesteads not being present 

at the time of interviewing, requiring a subsequent revisit by the fieldworker. Using data 

from the mapping of homesteads, I estimated that the increase in visits coupled with the 

extra distance the fieldworker had to walk to reach these homesteads would result in a 

100% increase in total walking time. I therefore doubled all inter-homestead walking times 

to account for this combined effect, viz. revisits constitute half of the total walking time. 

By summing all walking and interview times for all homesteads in the study area, I 

estimated that it would take one fieldworker in excess of 1,900 working days to complete 

the entire study area. I was therefore able to recommend that 48 fieldworkers should be 

used in each 60 working day cycle at an average completion time of 40.2 days per 
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fieldworker area. A 20 day cushion was incorporated to account for the growth of the 

number of homesteads over time, complete days lost to weather and to allow for the 

introduction of additional questionnaires at a later stage if required. The required number 

of fieldworkers computed by the model confirmed previous estimations using aggregated 

statistical methods. 

I calculated a completion time for each area (enclosed by roads and rivers) by summing the 

interview and walking time (doubled to account for homestead revisits) of all homesteads 

that fell within the area. I then combined adjacent areas until a total within 5 hours of the 

40.2 day average was reached. In densely populated areas, I used rivers in preference to 

roads where possible because they provide more definite separations (with less margin for 

error). This is because homesteads are seldom sited within 50m of a river (because of the 

danger of flooding) whereas they tend to be densely clustered along roads. In certain 

fieldworker areas ergonomics were sacrificed in favour of equitable workload distribution 

and due to the limited availability of hard boundaries. However, I attempted to make the 

fieldworker areas as non-elongated as possible to ensure the fieldworker was never 

excessively far from anyone location within the fieldworker area. I didn't allocate a 

fieldworker area across more than one major river catchment. This prevented more than 

one major watershed feature, e.g. a mountain range, being allocated to a single fieldworker 

area. Once the preliminary fieldworker areas had been constituted, I identified isolated 

homesteads at the extremities of fieldwork areas and altered the boundaries (along roads 

and rivers) so that the homesteads were allocated to a neighbouring area where they were 

more ergonomically accessible. Once the final areas had been constituted, I digitised the 

new boundaries on-screen by 'snapping' them to the relevant roads and rivers. This 

smooths the 'jagged' appearance of the raster-derived boundaries and prevents the 
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misallocation of homesteads (occurring near the boundaries ofthe fieldworker area) to the 

incorrect area. 

6.4 RESULTS 

The fuzzy variables used to calculate the accessibility model are shown (Figure 6.2). The 

heterogenous nature of the study area is clearly illustrated. 

The resulting rec1assed outcome of the multiple regression equation (predicted average 

inter-homestead walking time) is shown (Figure 6.3). Homestead density proved to be the 

most significant factor in predicting inter-homestead walking time (40%), however NDVI 

(27%) and standard deviation of elevation (22%) also contributed notably. Distance to the 

nearest road was the least significant factor (11 %). 

The relationship between predicted and actual (independently recorded) average daily inter­

homestead walking times (2=0.864, p<O.OOI) is shown (Figure 6.4). The predicted daily 

walking time between homesteads is more than double the actual walking time. This is to 

be expected as the predicted walking time is calculated using a regression equation derived 

from data that included stoppages for rain and waiting for respondents. The independent 

validatory data included no time for stoppages and contained walking time only. Since 

fieldworkers will encounter similar stoppages once the survey is underway the predicted 

walking time provided by the accessibility equation is a more realistic estimation of 

walking time. The relationship of predicted walking times, derived from the raw variables, 

to actual walking times was poor (2 =0.14). The application of fuzzy scaling to the raw 

variables therefore significantly improved the final result (p<O.OOl). 
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Figure 6.2: Fuzzy input images used to predict average inter-homestead walking time. A=standard 
deviation of elevation, b=NDVI, C=distance to roads, D=homestead density. A fuzzy value of zero is 

considered to be highly inaccessible and a value of one highly accessible. A nature reserve constitutes the 
western boundary and the main roads are superimposed for ease of reference. 
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Figure 6.4: Predicted versus actual (derived from the accessibility 
model) average daily inter-homestead walking times in three 
physically and socially contrasting areas in the study area (p<O.OOl, 
x2=O.864) 

The roads and rivers (Figure 6.5a), the resulting areas computed using the enclosed-area 

detection algorithm (Figure 6.5b) and the final workload-efficient fieldworker area 

delineation with homesteads superimposed (Figure 6.5c) are shown (mean completion time 

= 40.2 days, standard deviation = 3.8 hours). 

The larger fieldworker areas contain fewer, more sparsely distributed homesteads than their 

smaller counterparts due to the greater amount of walking time involved. The number of 

homesteads in each fieldworker area ranges from 189 to 275 (average = 214 homesteads) 

with the highest number of homesteads allocated to fieldworkers in the most accessible 

urban/peri-urban areas. Average walking time in inaccessible areas can be up to 220% 

greater than their accessible counterparts. 
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Figure 6.5: Stages in the delineation of 48 workload-equivalent fieldworker areas. A =All rivers and roads (level 1-4) in the study area. B = All significant 
polygons completely enclosed by roads and rivers (detected using a raster algorithm) . C= The final workload-equivalent fieldworker area delineation with all 
homesteads superimposed. 
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6.5 DISCUSSION 

I have used a fuzzy accessibility model to estimate average inter-homestead walking time 

in a heterogeneous, rural area. In addition, I estimated questionnaire administration time 

based on homestead composition. These two components were used to estimate completion 

time in a number of 'hard' areas which were combined to constitute fieldworker areas of 

equal workload/completion time. By employing a methodology that encompasses other 

equally important social and physical dimensions in addition to mere proximity to target 

locations, I have been in a position to estimate, cost and equitably distribute fieldworker 

workload across a heterogeneous landscape. 

The concept of accessibility within a GIS has been applied to numerous health issues. It has 

been used to redefine sub-areas for the management of primary health care in England 

(Bullen et al., 1996). The study used focal points of service provision, barriers to 

movement and various accessibility data such as journey to work, school and family doctor 

surgeries. GIS has been used by numerous authors to calculate the accessibility of patients 

to health services. In the KwaZulu-Natal province of South Africa GIS has been used to 

document the decrease in distance to nearest tuberculosis DOT dissemination point 

(Wilkinson and Tanser, 1999, this thesis), quantify a relationship between road 

accessibility and HIV prevalence (Tanser et al., 2000b, this thesis) and calculate population 

per clinic bed ratios (Zwarenstein et al., 1991). GIS has been used to assess and optimise 

ambulance response performance (Peters and Hall, 1999). Using a GIS, studies have 

measured the impact of travel time and visit frequency on the probability of receiving 

quality treatment for depression. Travel time was significantly associated with making 

fewer visits and a lower likelihood of receiving care (Fortney et al., 1999). 
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A particularly encouraging aspect of the methodology has been the accurate prediction of 

inter-homestead walking times (r = 0.864) across a wide range of varying social and 

physical landscapes, despite the fact that a homestead visit sequence was not imposed on 

the fieldworkers. It is this aspect of the methodology that makes it more robust and 

computationally-efficient than 'travelling salesman' (Voudouris and Tsang, 1999) 

algorithms, with or without 'genetic' optimisations. These computationally intensive 

algorithms determine the most optimal visit sequence of homesteads. However, this 

requires that a pre-determined visit sequence be imposed on the fieldworker. While this 

may theoretically allow the fieldworkers to complete their areas in slightly quicker times, it 

is neither practical nor necessary. Using this methodology the fieldworker is relatively free 

to decide her own visit sequence 7. One of my assumptions therefore is that the fie1dworker 

will make intelligent choices regarding this sequence. 

It is important to note that the model is predicting average inter-homestead walking time 

and not actual inter-homestead walking times (as this would require a predetermined visit 

sequence). The model works on the simple premise that areas with low homestead 

densities, thick vegetation, uneven terrain and which are far from roads (fuzzy values 

approaching zero) are predisposed to having a high inter-homestead walking time whilst 

those areas with characteristics near the other end of the fuzzy scale will be predisposed to 

having a short inter-homestead walking time. The model only indirectly considers distance 

between homesteads (in the form of a wide area average of homestead density). Each pixel 

7 The fieldworker areas were subsequently divided into 12 sub-units. Fieldworkers have to 
complete the sub-units in a prescribed sequence but have freedom to choose the visit sequence of 
homesteads within an individual sub-unit. 
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is a product of the characteristics of its surrounding lkm x lkm neighbourhood and it is 

therefore unnecessary to engage in any form of complex route analysis. Thus, although an 

inter-homestead walking time is assigned to each homestead, this represents an average 

walking time for the surrounding lkm x lkm neighbourhood. For example, in an 

inaccessible area (fuzzy values approaching zero) of 1 km x 1 km size which contains two 

homesteads directly next to each other, the model may assign approximately 20 minutes 

estimated walking time to each homestead. In reality the fieldworker may actually walk 40 

minutes to the first homestead and under a minute from the first homestead to the next. The 

integrity of the wide area average technique is preserved as the average walking time is still 

approximately 20 minutes. 

A shortcoming of the model is that walking times may be under-computed for isolated 

homesteads occurring at the periphery of fieldworker areas as a result of an over­

exaggerated homestead density calculation. This may arise where a group of homesteads is 

split between two fieldworker areas with the vast majority occurring in one. However, by 

identifying these isolated homesteads and reassigning them to a neighbouring fieldworker 

area by adjusting the boundary (using roads and rivers) this problem is largely overcome. 

The travel time between the fieldworker's residence and work (most reside in their 

respective fieldworker areas) is only partially accounted for in the model (only the time 

taken to travel between the last homestead of the current day and the first homestead of the 

following day offsets this travel time). Fieldworkers in larger areas will therefore have 

greater travel times to and from work. However, all fieldworkers are expected to start and 

finish work at the same time, so this effect will not affect total completion times. When 

combining discrete segments to make up fieldworker areas, I considered optimal 
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regionalisation algorithms (Macmillan and Pierce, 1994). However, a manual combination 

method gave me greater control over the final form of the fieldworker areas and allowed 

me to preserve social identities within a fieldworker area. 

The formula used to calculate walking time in this research is not universally applicable. 

The fuzzy thresholds, the relative contribution of each variable and the variables 

themselves may differ depending on physical characteristics, mode of transport used, and 

settlement patterns ofthe study area. For the same methodology to be applied to rural areas 

elsewhere, a sample survey (similar to the one used in the validation of walking time) must 

be conducted (in contrasting areas) to build the accessibility-walking time relationship. 

The fieldworker area delineation has now been implemented at the study site. The 

fieldworkers have since completed their fieldworker areas in the prescribed 60 days and 

initial indications are good. The performance of the model is difficult to accurately judge 

however, because questionnaire administration in the initial round is substantially longer 

than in subsequent rounds (for which the model was configured). This means that 

accessible areas with a greater number of homesteads will take longer to complete in the 

first round than their more inaccessible counterparts. Assessment of the model will take 

place in subsequent rounds. 

In addition to the accurate estimation of cost, labour (and optimal allocation of that labour) 

and time in large rural health surveys, a host of potential applications exist relating to 

accessibility in the planning of health service provision in remote, rural areas. Limited 

physical access to primary health care is a major factor contributing to the poor health of 
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populations in developing countries (Perry and Gesler, 2000). The methodology could be 

used to ergonomically create community health worker areas, site tuberculosis DOT 

supervisors or constitute home-based care catchments. It could also be extended to 

determine actual walking times to nearest health care facility and could thus inform the 

siting of new facilities. I am working with the National Malaria Control Programme to 

divide a neighbouring area into surveillance units of equal residual spraying time. The 

methodology could also be employed at larger scales, for example, it could be used to 

demarcate national census tracts. 

Some may argue that rural health services are unlikely to afford such technology or have 

access to the data required. The accuracy of GPS has now improved by an order of 

magnitude since the 151 May 2000 when the intentional error previously imposed by the 

United States government was abolished. Relatively inexpensive GPS units are now 

capable of mapping to a very high accuracy and location of homesteads in developing 

countries can be carried out significantly more cheaply. All other data used in this research 

may be inexpensively obtained. This study is a practical example of the ability of GIS to 

integrate disparate data sets to answer a spatial question. With recent advances in software 

and hardware, and with falling prices (Clarke et al., 1996), GIS is no longer exclusively a 

research tool, but may be a cost-effective technology that can be used to design health care 

provision in developing countries. 
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Chapter Seven: 

Malaria seasonality and population exposure in Africa 

Tanser et al. (2000c) Submitted/or publication 

7.1 ABSTRACT 

Background Until recently malaria was the single largest cause of mortality in Africa. 

Cases in Africa account for approximately 90% of malaria cases in the world. Knowledge 

of malaria seasonality is particularly important for malaria control. 

Methods We use high-resolution long-term rainfall and temperature data to produce the 

first malaria seasonality (length, start and end of transmission season(s» maps for Africa. 

We relate the model to population data and estimate the population exposure in a variety of 

transmission settings. We investigate the relationship between length of transmission 

season and parasite ratio from 2335 geo-referenced studies of children < 10 years across 

Africa. We recompute the model to estimate the potential temporal, spatial and population 

exposure changes in the disease likely to occur as a result of global warming. 

Findings The seasonality model corresponds well with historical expert opinion maps and 

case data. A significant logarithmic relationship was detected between predicted length of 

transmission season and parasite ratio (r=0.712, p=O.OOI). The model predicts that during 

1995, a total of approximately 440 million people (80 million children; 0-4 years of age) 

were living in malarious areas. Assuming a static population, a continental temperature 

increase of 1 °C/3.5°C would result in an additional 25/58 million people being exposed to 

the disease, many of whom live in highland areas. 
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Interpretation The seasonality model constitutes an important first step towards an 

estimate of continental intensity of transmission and provides a powerful tool to inform 

current malaria control strategies and provide a framework to plan future control measures 

in the face of global climatic change. 

7.2 INTRODUCTION 

Until recently malaria was the single largest cause of mortality in Africa. Cases in Africa 

account for approximately 90% of malaria cases in the world (WHO, 1996). Control of 

malaria is becoming increasingly difficult and manifestations of the disease appear to be 

more severe than in the past. An upsurge of malaria in endemic areas coupled with 

explosive epidemics in 14 countries of sub-Saharan Africa between 1994-1996 caused a 

high number of deaths, many in areas previously free of the disease (OAU, 1997). 

Changing climatic patterns, spread of malaria parasite drug resistance and changes in 

vector behaviour coupled with complex social factors (e.g. migration of non-immune 

populations, civil strife, high birth rates) are responsible for the upsurge (Nchinda, 1998). 

In addition, availability and quality of malaria mortality and morbidity statistics in Africa 

are notoriously poor and variable. 

The effect of climate on malaria-distribution is well-known (Martens et at., 1995; Lindsay 

and Birley, 1996). Prior to the advent of geographical information systems (GIS) some 

examples of maps defining the global distribution of malaria exist (Lysenko and Beljaev, 

1968; Lysenko and Semashko, 1969). More recently, several authors have used climatic 

models to estimate distributions of malaria vectors and parasites (Hay et at., 1998; Snowet 

at., 1998; Craig et at., 1999). A number of studies have also examined the implications of 
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climate change on these distributions (Loevinsohn, 1994; Jetten et ai., 1996; Lindsay and 

Martens, 1998; Rogers and Randolf, 2000). However, high resolution climatic models have 

never been applied in the estimation of onset, completion and length of malaria 

transmission season at a continental scale. Knowledge of malaria seasonality has important 

implications for optimising control programme operations, such as vector spraying 

regimens, dipping of insecticide-treated bednets and optimal and timely allocation of finite 

resources. 

GIS technology is a powerful tool ideally suited to the manipulation of climatic data and to 

the modelling of infectious disease patterns (Clarke et al. , 1996). The primary objective of 

the research was to use a GIS to produce the first climate-based seasonality model of 

malaria transmission in Africa. We use the model to investigate the relationship between 

length of transmission season and actual parasite ratio data and to estimate population 

exposure within different seasonality classes. The international panel for climate change 

predict that the mean surface temperature of the earth will increase by around 1-3.5°C over 

the coming century (IPCC, 1996). The phenomenon of climate change is likely to hit 

hardest in Africa, even though the continent produces only about 7% of the world's green 

house gases. Greater rainfall variability will result in more floods and more drought, thus 

greater food insecurity and problems with environmental diseases such as malaria (World 

Bank, 2000b). Understanding of seasonality of disease is particularly important in the 

accurate prediction of the effects of climate change on disease distribution and incidence 

(McMichael et al. , 1996). We provide the first spatial, temporal and population exposure 

change estimates within different seasonality classes that will occur under simple global 

temperature increase scenarios. 

108 



7.3 METHODS 

The effect of climate on malaria 

The relationship between climate and malaria distribution has been described before 

(Macdonald, 1957; Detinova, 1962). Briefly, sustained transmission depends on favourable 

environmental conditions for both vector and parasite. The effect of temperature on the 

duration of the sporogonic cycle of the malaria parasite and vector survival (Onori and 

Grab, 1980; Molineaux, 1988) is particularly important. The higher the temperature, the 

shorter the duration of the sporogonic cycle of the malaria parasite and the higher the 

proportion of vectors surviving sporogeny. For example, at a temperature of 22°C, 

sporogeny ofthe Plasmodium falciparum parasite is completed in less than three weeks 

and mosquito survival is sufficiently high (15%), whereas at 18°C sporogeny takes eight 

weeks with mosquito abundance being limited by the long larval duration (Detinova, 

1962). 

In addition, it is important that average temperatures be sustained close to or above the 

required temperature threshold to facilitate transmission. A sporadic month of 'suitable' 

climatic conditions (bordered by unsuitable months) is not adequate for malaria 

transmission. We defined stable malaria using an adaption of Bruce-Chwatt's (1999) 

definition. Malaria is described as stable when there is a measurable incidence both of 

cases and of natural transmission throughout the year and over a succession of years. Our 

analysis of stable and seasonal climatic profiles revealed that lower monthly temperatures 

can sustain transmission of malaria in stable malarious areas. These differences are a 

function of the annual variations in temperature. In seasonal areas (higher latitudes and 

altitudes) vector and parasite popUlations need to be fully regenerated after the cold winter 
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months to facilitate transmission. In stable areas (lower latitudes and altitudes) 

temperatures hover around the threshold mark for much of the year, therefore lower 

temperatures can sustain transmission on account of the existing 'parasite reservoir'. The 

effect of frost on vector populations is also important. Once minimum temperatures 

approach freezing, African vector populations are effectively obliterated (Leeson, 1931; De 

Meillon, 1934; Stuckenberg, 1969). 

Studies of anopheline mosquitos have shown a close association between breeding site 

availability and precipitation (Sloof, 1961; Bouma, 1995). In addition, rainfall is intimately 

related to soil moisture status, an important factor in mosquito survival (Molineaux and 

Gramiccia, 1980). However, a significant lag can exist between a precipitation event and 

suitable soil moisture status being attained. It is possible for suitable vector breeding sites 

to occur in an area that has recorded a low (or nil) rainfall value for the current month on 

the strength of preceding precipitation events. Conversely, latent moisture levels are likely 

to be depressed during a month of average rainfall but preceded by low rainfall conditions. 

Several authors (Hay et aI., 1998; Patz et ai., 1998) have confirmed this 'lag-effect' by 

showing that preceding moisture condition is a good predictor of current malaria cases. 

Our analysis of climatic profiles in both seasonal and stable malaria areas has revealed the 

need for a catalyst month (unpublished data). A month of highly suitable rainfall conditions 

is required to provide adequate vector breeding sites and regenerate the vector population. 
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Climate data 

We utilised long-tenn mean monthly rainfall and temperature climate data as the basis for 

the seasonality model (Hutchinson et aI., 1995). The raster (composed of pixels) surfaces 

were based on weather station data from between 1920 to 1980 and have a spatial 

resolution of 5 x 5 km. The temperature data have standard errors of O.5°C and monthly 

mean precipitation data have errors of 10-30%. 

Computing the seasonality model 

We used the geographical infonnation system (GIS) IDRISI (version 32, Clark 

Laboratories, Clark University, Worcester, MA, USA) to compute the seasonality model. 

We adopted a 3-month preceding moving-average approach (e.g. the value of March is the 

average of January, February and March) for both temperature and rainfall inputs into the 

model to temporally smooth the data, eradicate sporadic fluctuations and account for the 

time lag between suitable climatic conditions and the occurrence of malaria. This approach 

also accounts for the need for temperature consistency by ensuring that near-suitable 

temperature conditions are maintained for three months before malaria-status will be 

assigned. Similarly, the approach allows rainfall from the previous two months to 

contribute to a more accurate moisture-status estimate in the current month. 

We calculated a differential temperature cut-off across the entire continent of Africa that 

takes into account the annual variations in temperature (Table 7.1). At a consistent 

temperature of 19.5°C, the duration of the sporogonic cycle is 32 days with 4% of the total 

vector cohort surviving (Detinova, 1962). The other thresholds used to generate the 

seasonality model are given (Table 7.1). The thresholds are designed to delimit high-
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probability malarious areas as the use of long-term mean data precludes the delimitation of 

occasional epidemic areas. All requirements (moving average temperature, minimum 

annual temperature and moving average rainfall and the presence of a catalyst month) had 

to be met for a pixel to be classed as malarious in a particular month. In areas where the 

climatic suitability thresholds predicted a one month transmission interruption (e.g. 

between two malaria seasons), the errant month was assigned transmission status on the 

strength of the climatic suitability of the bordering months and the existing parasite 

reservoir. This rule was applied irrespective ofthe climatic characteristics of the month. 

Table 7.1: Criteria used to compute months suitable for malaria transmission in Africa. 

Simulated effect Variable 

Parasite development & vector Moving average temperature 
survival 

Threshold 

~ (19.5' C + annual 
standard deviation of 
average monthly 
temperature) 

Frost Minimum annual temperature ~ 5' C 

Availability of vector breeding Moving average rainfall ~ 60 mm 
sites 

Catalyst Month Moving average rainfall At least one month ~ 80 
mm 

Parasite reservoir 
(also simulated by the differential 
temperature thresholds imposed across the 
continent) 

1 month interruption in 
transmission (as predicted by 
climatic thresholds) 

Automatically assigned 
transmission status 

The final model was used to calculate the onset and completion month of the malaria 

season(s) and the total number of malarious months in an average climatic year. Isolated 

pixels predicted as having two malaria seasons were replaced with the majority 

transmission pattern of the surrounding pixels (isolated pixels of markedly different 
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transmission patterns to their neighbours are unlikely to exist in the real world and are of 

no value from a continental control perspective). The Idrisi macro used to calculate the 

seasonality model is given (Appendix 7). 

Validation of the seasonality model 

We compared our model against existing historical maps (South Africa, Zimbabwe, 

Botswana, Namibia, Kenya and Tanzania) to ascertain its accuracy in terms of raw 

distribution, transmission season length (Eastern Africa) and transmission intensity (using 

predicted number of suitable months as a proxy) (Southern Africa). The expert opinion 

maps for East Africa (Wilson, 1956; Nelson, 1959) were derived from knowledge of 

malaria transmission in populated areas and rainfall patterns in remote areas. Although the 

validity of the historical maps is questionable in certain instances, they nevertheless 

provide a reasonable comparison base. The Southern African maps are based on 

unpublished expert opinion from case data (Namibia and Zimbabwe), district level 

microscope-confirmed case data (Botswana) and historical maps (South Africa). 

Analysis 

2335 parasite ratio studies (of328,325 children <lO years) conducted across Africa were 

collected from a variety of published and unpublished studies (Figure 7.1). The data were 

geo-referenced using the Africa Data Sampler (WRI, 1995) and other methods to match the 

study locations and extract the co-ordinates (MARA, 1998). We plotted the mean parasite ' 

ratio (weighted by total cohort size) against the predicted number of months suitable for 

transmission (as calculated by the seasonality model) and tested the statistical significance 

of the relationship. 
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Cohort size 

Figure 7.1: Geographical distribution and size of2335 parasite ratio surveys (total of 328,325 children <10 years tested) across Africa. The diameter of the 
data point is logarithmically proportional to the cohort size. 
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Estimation of population exposure 

We superimposed an interpolated population surface8 (Deichmann, 1996) on the 

seasonality maps to establish the total and childhood (0-4 years) population exposed to 

malaria in each length of season class. The paucity of accurate mortality data in different 

transmission settings mitigated against realistic mortality estimates. 

The implications of climate change on malaria distribution and seasonality 

The seasonality model provides a useful tool for evaluating the distributional and 

seasonality changes that will occur as a result of global warming. We recomputed the 

model using a simple laC and 3.5°C rise in average temperature (lPCC, 1996).We 

investigated the effects of such an increase on the distribution and length of transmission 

season of malaria as well as the concomitant increase in population exposure (assuming a 

static population) within different seasonality classes. The primary objective of this 

approach is to demonstrate the utility of the model in computing changes in exposure and 

distribution of the disease given a change in climate and not to give a definitive answer 

regarding the effect of global climatic scenarios on malaria. Clearly the effect of global 

warming is more complex than the scenario we have modelled but predicting the effects of 

complex global warming scenarios on malaria would constitute a valid study in its own 

right. 

8 The population surface was interpolated using a spatial interaction model which 
incorporated information on the location and size of major towns, transport infrastructures and 
uninhabited areas. Overall, uncertainty in these population estimates is likely to be significant but 
remains within the usual error bounds associated with census figures for developing countries (Snow 
et al., 1999a). 
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7.4 RESULTS 

The predicted onset (Figure 7.2a) and completion (Figure 7.2b) of the malaria season(s), as 

calculated by our seasonality model is shown. It is important to distinguish between a 

bimodal transmission pattern and two discrete malaria transmission periods. Whereas a 

bimodal transmission pattern refers to the existence of two definite peaks in transmission 

intensity, our model shows those areas in which two complete breaks (:c2 months) in 

annual transmission exist. It is possible for a bimodal situation to exist within one complete 

transmission period (season). The reclassed image of transmission season length is shown 

(Figure 7.3). 

A comparison between predicted transmission season length and historical maps is shown 

for Eastern and Southern Africa (Figure 7.4). Although there is clearly some category 

mismatch in Southern Africa, the resemblance is striking, both in terms of raw distribution, 

transmission season length (Eastern Africa) and season length as a proxy for transmission 

intensity (Southern Africa). We have omitted any occasionally epidemic categories from 

the historical maps, as comparison with our model, which uses long term climatic data, 

would be meaningless. 

There was a significant relationship between mean parasite ratio and the log of 

transmission season length (r=O.712, p=O.OOl) (Figure 7.5). When the data are aggregated 

into weighted two monthly groups to increase sample size the fit of the regression is 

improved (r=O.931). We also performed a linear regression for comparative purposes. The 

relationship was not as significant (r=O.651, p=O.004) and is not as plausible biologically. 
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Figure 7.2: The onset month (a) and completion month (b) of the malaria transmission season(s) in Africa. The onset and completion month of areas 
characterised by two discrete malaria seasons (each malaria seas em bordered by transmission interruptions ~ 2 m0nths) are shown as insets. Isolated pixels 
predicted as having two malaria seasons were replaced with the majerity transmission pattern of the surrounding pixels (as they are of no value from a 
continental control perspective). 
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Figure 7.3: Predicted number of months suitable for malaria transmission in Africa. 
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Figure 7.4: Comparison between the seasonality model (b & d) and historical maps and case data (a & 
c) for Eastern and Southern Africa. 
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Figure 7.5: Mean parasite ratio (weighted by cohort size) from 2335 studies across Africa (total number 
children <10 years tested = 328,325) plotted against the log of predicted transmission season length 
(r=O.712, p=O.OOI). Two standard errors either side of the mean are shown. 
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The changes in distribution and length of season, following a 1°C and 3.5°C rise in average 

monthly temperature (IPCC, 1996) are shown (Figure 7.6). Selected populated centres in or 

close to affected areas are labelled. Areas depicted as having had 'no change' as a result of 

the temperature increase may still have shown an increase in season length within a class. 

Previously malaria-free, large highland cities such as Harare (Zimbabwe) would be affected 

by the temperature increase. Lack of immunity in these populations could lead to a high 

mortality rate in such areas. 

The 1995 disease population exposure estimates in each of the seasonality categories 

(under current climatic conditions and after a global rise in average temperature) are shown 

(Table 7.2). During 1995, a 1°C and 3.5°C rise in average temperature would have resulted 

in an additional 25 million (6%)and 58 million (13%) people respectively being exposed to 

the disease. The global temperature increase would result in a decrease in the population 

exposed in the 1-3 month zone (although this is partly a function of our assumption that 

there will be no change in minimum annual temperature), thus, the overall mortality rate is 

likely to increase under such conditions. 
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Figure 7.6: Changes in malaria distribution and length of transmission season associated with a IOC (a) and 3.5°C (b) rise in average monthly temperature. 
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Table 7.2: Estimated total (childhood; 0-4 years) population (millions) exposed to malaria in 
Africa in 1995 under current climatic conditions and after a 1°C and 3.5°C rise in average 
temperature. 

Length of Current climatic 1°C increase in 3.5°C increase in 
transmission conditions monthly average monthly average 

season temperature temperature 

< 3 months 45.79 (8.12) 38.82 (6.82) 25.40 (4.51) 

4-6 months 154.08 (27.79) 170.09 (30.60) 180.34 (32.51) 

> 6 months 238.16 (43.44) 254.02 (46.37) 290.10 (52.76) 

Total 438.03 (79.35) 462.93 (83.79) 495.84 (89.78) 

7.5 DISCUSSION 

We have produced the first high-resolution model to estimate the onset, completion and 

length of malaria transmission season in Africa and related it to transmission intensity and 

population exposure at a large scale. Our model compared well with historical maps both 

in terms of raw distribution, predicted length of transmission season and predicted length 

of transmission season as a proxy for transmission intensity. We established a significant 

relationship between parasite ratio and length of transmission season (p=0.001). The model 

was extended to produce the first estimates within different seasonality classes of changes 

in distribution and popUlation exposure associated with a global rise in average 

temperature. Assuming a median childhood mortality rate of 9.4 per 1000 per year, across 

the entire continent (Snow et al., 1999b), the increase in average temperature would have 

lead to an approximate increase in childhood deaths from 746 000 (current conditions) to 

788000 (l°C increase) to 844 000 (3.5°C increase) during 1995. 
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Recently there have been a number of attempts at modelling the distribution and 

occurrence of malaria as well as a large amount of debate regarding the effect of global 

warming on malaria distribution (Reiter, 1998). Authors have estimated that by the latter 

half of the century, the percentage of people living within the potential malaria 

transmission zone will have increased from 45% to 60% given a 3°C rise in temperature 

(Martens et aI., 1995). Rogers and Randolph (2000) used a multivariate approach to 

estimate the impact of climate change (using global circulation models) on the global 

distribution of malaria. The authors estimated that by the year 2050 the difference in 

distribution of malaria to that of the present day would only be of the order of 1 %. The 

study used low resolution data and used a crude expert opinion map to validate their model. 

Snow and colleagues performed a discriminant analysis on a combination of long-term 

climatic (temperature and rainfall) and the normalised difference vegetation index (NDVI) 

data to discriminate between three stable malaria endemicity categories (on the basis of 

childhood parasite prevalence) in Kenya (Snow et at., 1998). The number of months of 

malaria risk in Kenya have been estimated by calculating the number of times a year a 

monthly fourier processed NDVI threshold was exceeded (Hay et at., 1998). Common to 

both these studies was their limited applicability at a larger scale. A fuzzy classification of 

long-term temperature and rainfall data has however been used to model the probability of 

occurrence of malaria in sub-Saharan Africa (Craig et at., 1999). The model showed a good 

resemblance to historical expert opinion maps. 

In contrast to previous attempts at malaria seasonality modelling, our model is robust 

enough to be applied across the entire continent of Africa. We achieved this by applying a 

differential temperature threshold across the continent. In addition, we were able to 
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overcome a number of the disadvantages associated with static Boolean-type models (that 

do not make allowance for temporal interactions) by integrating temporal smoothing into 

the model (to account for the lag effect associated with soil moisture retention as well as 

the need for temperature consistency) and the need for a catalyst month. We extended the 

model to compute not only the transmission season length but also the onset and 

completion dates and related our model to parasite ratio data at a continental level. Our 

model uses all 12 months of data to produce the final result and does not only focus on 

fixed-length 'transmission windows'. Understanding of malaria seasonality is critical to the 

accurate prediction of the effects of global warming (McMichael et aI., 1996). Our model 

therefore provides a more robust and informative method of determining these changes 

than previous attempts. 

Recent attempts at the modelling of malaria distribution have had to define zones (within 

which different rules are applied) to account for the continental discrepancies between 

malarious areas. For example, Craig and colleagues incorporated an artificial boundary 

(based on latitude) separating those areas where 3/5 months of suitable conditions were 

required to facilitate malaria transmission (Craig et aI., 1999). Using the same model to 

estimate burden of disease, Snow and colleagues defined a discontinuity (using country 

boundaries) where a fuzzy value of ~0.2hO.5 defined areas of stable Plasmodium 

Jalciparum transmission in stable/Southern African areas respectively (Snow et aI., 1999b). 

It is our belief that a smooth mathematically facilitated transition should be incorporated 

into such models as abrupt discontinuities do not exist in the real world. 
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The basis for our model is climatic, and in this regard it has some limitations. For example, 

areas adjacent to perennial water bodies may fail to meet the required monthly rainfall 

threshold, but may provide good vector breeding grounds. An example of such an area is 

the Limpopo valley (the border between South Africa and Zimbabwe). We make no 

attempt to take local demographic and socioeconomic circumstances into account nor make 

provision for the impact of malaria control on transmission intensity. In estimating the 

population exposure changes that are likely to occur as a result of a global temperature 

increase, we assume a static population distribution. This is unlikely to be the case as an 

increase in transmission intensity will cause population movements to malaria-free areas. 

Consequently, our 'population exposure' estimates are to be interpreted as 'potential' 

rather than 'actual'. 

Parasite ratio is believed to be a crude approximation of transmission intensity (Metselaar 

and van Theil, 1959). However, the relationship between parasite ratio and the log of 

season length (r=0.712, p=O.OOI) yielded good results. There is likely to be some bias in 

parasite ratios on account of most surveys being carried out during high transmission 

months (this effect will be greatest in areas with a low number of months suitable for 

transmission). Although there was some scatter within each length of season class (on 

account of the small area and temporal variation) the results show that length of 

transmission season is an important variable in the prediction of transmission intensity. Our 

findings are in agreement with recent research that has shown a significant logarithmic 

relationship between Entomological inoculation rate (an accurate measure of transmission 

intensity) and parasite ratio (Beier et at., 1999). Other factors that are not incorporated into 
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our model, such as the amount by which the climatic threshold value is regularly exceeded 

are also important in the prediction oftransmission intensity. 

Both the duration and the start and end of the malaria season(s) are important in informing 

malaria control efforts. The duration of the season will affect the dynamics of transmission 

with longer seasons allowing more intense transmission and higher levels of infection in 

the human population. Short duration exposure periods lend itself to a waning immune 

response and fatal outcomes. Duration of the transmission season is an important factor in 

informing suitable control strategies. For example, in an area with seven months of 

transmission, impregnation of insecticide treated bednets needs to be carried out just prior 

to the onset of the season and with a residual effect of at least seven months: In addition, it 

is often important to know not only the number of months of risk but also the timing. In the 

above example an area characterised by one malaria season of seven month duration would 

require a very different strategy from an area consisting of two distinct malaria seasons of 

four and three months respectively. Malaria control (in the form of residual spraying) is 

carried out in six countries in Southern Africa. Studies have shown that such control 

measures are only effective if one treatment is applied prior to the malaria season onset and 

has an effective residual life for the entire malaria season (Sharp and Ie Sueur, 1996). A 

continental temperature increase may therefore render such measures cost-ineffective in 

certain areas. There is a current trend towards the judicious use of pesticides and their 

application at the appropriate time. The seasonality model will help in the correct planning 

of such measures. 
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The global malaria strategy recently adopted by WHO recognised the need to improve 

understanding of how climate-related and other ecological factors affect the spread and 

severity of malaria (WHO, 1993). We believe that seasonality maps should form an 

integral component ofthis strategy. The seasonality model constitutes an important first 

step towards an estimate of continental intensity of transmission. Once a better 

understanding of global climate dynamics is achieved, the model provides a robust tool for 

determining the malaria distributional and seasonality changes that will occur in the face of 

complex global climatic change scenarios. 
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Chapter Eight: 

Conclusions 

The overall goal of this thesis was to demonstrate the potential of GIS to be an effective, 

relevant and powerful tool for health research and development in Africa. I have 

accomplished this through the achievement of the research objectives outlined in chapter 

1.4. In this conclusion I review the major research findings and their implications for health 

policy and suggest some directions for future research. I then complete this chapter with 

some general conclusions regarding the status and future of GIS health research in Africa. 

8.1 TUBERCULOSIS 

I used GIS technology to document and quantify improved access to tuberculosis treatment 

through a community-based programme in the face of a tuberculosis epidemic (chapter 4). 

GIS effectively documented and quantified the impact of community-based tuberculosis 

treatment on physical access to treatment. 

The results of the study suggest that GIS could have an important role to play in 

tuberculosis control programme management, service development, and research. In terms 

of planning and managing the service, GIS can assist in the planning of the number and 

distribution of the supervision points. Proximity of treatment is one important factor in 

promoting adherence to treatment. Further research will be needed to fully understand how 

important "reducing distance" is to "improving access to treatment". Much remains to be 
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understood about tuberculosis transmission dynamics in developing countries (Wilkinson 

et al., 1997) and GIS will be a useful addition to molecular techniques and conventional 

epidemiology, in elucidating transmission pathways, and clusters of multi-drug resistant 

cases for example. 

8.2 HIV 

I used GIS to produce quantifiable evidence of a relationship between proximity to roads 

and HIV prevalence (chapter 5). The mean distance from homesteads to a primary or 

secondary road in each clinic's distance catchment was strongly correlated with HIV 

prevalence. Further research is needed to better understand this relationship both at 

ecologic and individual levels, and to develop interventions to reduce the spread of HI V 

infection. 

Although prevalence is high (and is rising rapidly) in all parts of Hlabisa the results 

indicate that prevention efforts might usefully be targeted in certain areas. It seems 

reasonable to suggest that HIV was introduced to the district through transport routes. 

There are a small number of well-defined transport nodes where the minibus taxis and bus 

services that operate in the area are based. It might be prudent to focus some of the limited 

human and financial resources that are available for prevention, at these sites. Furthermore, 

outreach efforts perhaps including clinics offering voluntary HIV counselling and testing 

and sexually transmitted disease treatment, sited at these transport nodes might be 

considered. It seems likely that the type of traffic carried by different roads, its volume, and 

whether it stops or not, are factors which might influence the relationship between 

proximity and HIV that has been described. Future research should incorporate traffic 
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count, and traffic type, data into GIS models to improve predictions. GIS has been a 

powerful tool to display and to start to analyse reasons for HIV heterogeneity in Hlabisa, 

further supporting its potentially important role in the study of the spread of infectious 

diseases in Africa. 

8.3 MALARIA 

I produced the first malaria seasonality (length, start and end of transmission season(s» 

model for Africa using high-resolution long-term rainfall and temperature data within a 

GIS (chapter 7). The variable temperature threshold (that took into account annual 

temperature variations) used in the model was a significant improvement on earlier malaria 

modelling work. The seasonality model corresponded well with historical expert opinion 

maps and case data. A significant logarithmic relationship was detected between predicted 

length of transmission season and parasite ratio in studies conducted on children < 1 0 years 

of age across Africa. Although there was some scatter within each length of season class 

(on account of the small area and temporal variation) the results showed that length of 

transmission season is an important variable in the prediction of transmission intensity. The 

findings are in agreement with recent research that has shown a significant logarithmic 

relationship between entomological inoculation rate (an accurate measure of transmission 

intensity) and parasite ratio (Beier et al., 1999). The research is the first to correlate actual 

malaria survey data with model predictions at a continental scale. I related the model to 

popUlation data and estimated population exposure in a variety of transmission settings. I 

recomputed the model to estimate the potential temporal, spatial and population exposure 

changes in the disease likely to occur under simple global warming scenarios. 
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Knowledge of both the duration and the start and end ofthe malaria season(s) are important 

in informing malaria control efforts. The duration of the season will affect the dynamics of 

transmission with longer seasons allowing more intense transmission and higher levels of 

infection in the human population. Short duration exposure periods lends itself to a waning 

immune response and fatal outcomes. Duration of the transmission season is an important 

factor in informing suitable control strategies. For example, in an area with seven months 

of transmission, impregnation of insecticide treated bednets needs to be carried out just 

prior to the onset of the season and with a residual effect of a least seven months. In 

addition, it is often important to know not only the number of months of risk but also the 

timing. In the above example an area characterised by one malaria season of seven month 

duration would require a very different strategy to an area consisting of two distinct malaria 

seasons of four and three months respectively. 

Malaria control (in the form of residual spraying) is carried out in six countries in Southern 

Africa. Studies have shown that such control measures are only effective if one treatment is 

applied prior to the malaria season onset and has an effective residual life for the entire 

malaria season (Sharp and Ie Sueur, 1996). A continental temperature increase may 

therefore render such measures cost-ineffective in certain areas. There is a current trend 

towards the judicious use of pesticides and their application at the appropriate time. The 

seasonality model will help in the correct planning of such measures. The model 

constitutes a repeatable, rational and transparent product that can infonrt current malaria 

control strategies and provide a framework to plan future control measures in the face of 

global climatic change. It also represents an important first step towards a continental 

estimate of intensity of transmission. The model has been disseminated in hard copy form 
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to a number of Ministries of Health throughout the continent. Feedback so far has been 

extremely positive. There is a possibility that the model could be improved on by 

incorporating satellite-derived indices of moisture status (e.g. the normalised difference 

vegetation index (NDVI». However, indices such as the NDVI are not without caveats 

(Tanser and Palmer, 1999). The chapter showed GIS to be a powerful tool for identifying 

infectious disease 'suitability windows' and evaluating 'what if scenarios. 

8.4 HEALTH SYSTEMS 

My investigation of large-scale usage patterns of multiple primary health care services 

across an integrated health unit was the first to be undertaken in Africa (chapter 3). I 

presented new approaches to the spatial analysis of primary health care usage patterns. This 

included the development ofthe distance usage index (DUI) which is a composite spatial 

measure of facility usage in relation to the size of facility's distance-defined catchment. 

The DUI proved to be a powerful and informative composite measure of clinic usage and 

can contribute significantly to health provision and resource allocation in Africa. The 

results showed that in a rural South African setting, mode clinic usage patterns can be 

predicted with a strong degree of accuracy using proximity to clinic and that there is a 

logarithmic decline in usage with increasing distance from a clinic. This is an exceedingly 

useful finding for health planning. It is unclear whether these findings are applicable to 

other settings in the developing world. 

Geographically stratified sampling techniques of small populations can be employed by the 

health services to facilitate calculation of the indices. Alternatively, patients attending 

clinics over a specified time period could be geo-Iocated. This method would ensure that 
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the sample was weighted by frequency of clinic attendance as well as geographic 

distribution. Health managers should strive towards DUI values close to 100% at all health 

facilities. Clinics exhibiting low DUI values should be further investigated to detennine 

whether quality of service differs from other clinics or whether the differences are merely a 

function of physical accessibility. There are more data required for successful health 

planning than spatial indices alone can provide and they should be combined with 

demographic profiles and detailed health-seeking behaviour data. Future research should 

focus on the calculation ofthe DUI in different settings and stratified at an individual level, 

by age, sex and diagnosis. The indices should be weighted by frequency of clinic 

attendances. There is likely to be an increase in the indices with the shift from a homestead 

to an individual level as more deviant usage behaviour is revealed. The indices could be 

improved by the construction of polygons which incorporate other factors affecting 

physical accessibility (e.g. public transport access) into their boundaries. 

In chapter six I presented a methodology that has numerous applications to health systems 

provision in developing countries. Limited physical access to primary health care is a 

major factor contributing to the poor health of populations and walking is often the primary 

mode of transport. An accessibility model was used to predict average inter-homestead 

walking times and subdivide the study area into units of equal completion time. The 

methodology could be extended to ergonomically design home-based care and tuberculosis 

directly observed treatment (DOT) programmes and infonn the siting of health facilities. 

The methodologies employed in this thesis suggest that GIS could have a significant role to 

play in the analysis and improvement of health systems in Africa. 
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8.5 GENERAL CONCLUSIONS 

I used GIS to analyse primary health care patterns, measure patient access to tuberculosis 

treatment, quantify a relationship between HIV prevalence and proximity to transport 

networks, equitably distribute fieldworker workload in a large rural health survey and 

produce a continental model of malaria seasonality. The diversity of the research 

undertaken and the results obtained demonstrate the considerable promise of GIS as a 

research and planning tool and for providing a basis for intervention in infectious diseases 

in Africa. 

Africa is generally held to be in crisis and the quality of life for the majority of the 

continent's inhabitants has been declining in both relative and absolute terms (World 

Bank, 2000b). The health problems are different to those in the developed world and if GIS 

is to be used for the health challenges facing Africa, then it must respond to these realities 

and priorities. Due to infrastructural and cost constraints, there is a lack of reliable 

statistics and disease reporting in Africa. Where data do exist, they tend to be clinically (as 

opposed to diagnostically) based. Disease estimates in Africa can therefore range between 

educated guesses and wild speculation (Snow et al., 1999b). GIS can help significantly in 

this area by filling the gaps through empirical disease modelling techniques. 

GIS trends relevant to Africa 

GIS is largely technologically (as opposed to research) driven. Some of these global 

technological trends are irrelevant to health research in Africa at the present time. 

However, some global trends (both technological and non-technological) are of significant 

relevance to Africa's health crisis. 
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There has been significant debate regarding the definition of GIS a tool versus a science 

(Goodchild, 1992; Wright et aI., 1997). This is due in part to the wide range of possible 

applications of GIS as well as the lack of agreement about what exactly constitutes a 

science. It is my view that although GIS started out as a technological tool, it is rapidly 

evolving into a science in its own right, albeit in embryonic form. At present it lies 

somewhere along the continuum between the two. As software becomes increasingly 

powerful and new datasets become available and GIS is increasingly used to understand 

and forecast the dynamics of (particularly environmental) disease, this evolution is likely 

to continue. A parallel exists between GIS and epidemiology. In the same way that 

epidemiology is only recently evolving into a science in its own right (Rothman, 1986), 

GIS is beginning to be recognised as a science. Like epidemiology its tenets have been 

established piecemeal (Rothman, 1986) with contributions coming from a number of 

different disciplines, in particular the earth sciences. It is now time to draw the different 

facets of GIS together under the umbrella of geographic information science. 

Computer hardware is becoming increasingly cheaper and more powerful, so that even 

complex analyses of GIS and image data can be carried out on a desktop computer. At the 

same time, commercial software has been developed into stand-alone solutions capable of 

performing increasingly complex tasks through increasingly user-friendly interfaces. 

Whilst there is an increasing amount of free software, the commercially available 

comprehensive packages remain expensive (Clarke et at., 1996). 

Since the 1 st May 2000 the accuracy of off-the-shelf global positioning systems (GPS) has 

improved by an order of magnitude. Low cost units can now perform tasks that they 
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previously weren't suitable for. This development is likely to result in a sharp increase in 

the number of geo-referenced health projects making use of GPS technology in the near 

future. 

Obstacles to the advancement of GIS in health in Africa 

The paucity of qualified staff, which has prevented many GIS projects from surviving the 

donor involvement phase, is a major problem in Africa (Taylor, 1991). GIS applications in 

Africa are often found to be initiatives funded or supported by international aid agencies 

and many are pilot or research projects as opposed to operational systems. They also tend 

to be controlled by outsiders, not by African scientists (Nijkamp and De long, 1987). If 

GIS are to be useful and effective, then they must be introduced by local scientists who 

understand both the technological and the socio-economic context in which the systems are 

to operate. Training creates capacity and leads to an increase in needs in terms of data 

needs. It however also provides the capacity to fulfill these needs and the new products that 

result are often of value to many other sectors. Capacity development of African staff 

should therefore be prioritised. 

In addition to lack of capacity, a lack of suitable GIS data sets is a major impediment to the 

growth of GIS in Africa. The access to spatial data (which are fundamental to any GIS 

application) continues to be difficult and expensive (Briggs and Elliot, 1995). This is not 

specific to health but to all sectors that utilise GIS. There are similarities in the field 

requirements for using GIS between forestry, ecology, archeology and epidemiology that 

could provide substantial benefits by the sharing of experiences and the pooling of 

resources (Clarke et at., 1996). However, much of the spatial data collection efforts within 
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Africa have been conducted in a decentralised and uncoordinated manner. Inter-sectoral 

collaboration initiatives should therefore be encouraged and receive funding priority. 

African data sets used in this research include the African data sampler (WRI, 1995), long­

term rainfall and temperature (Hutchinson et at., 1995) and population data (Deichmann, 

1996). In addition to these, a large number of remotely sensed data sets, which have been 

already used extensively in health are available free of charge or at nominal cost. 

Development of such data sets are of paramount importance to ensure the growth of all 

sectors of GIS in Africa. With the emergence of new technologies and techniques within 

remote sensing, there is likely to be a great improvement in the quality of such data sets 

and parallel improvement of GIS and related research products (Hay et at., 2000b). 

Nevertheless, it is also true to say that so far, our ability to extract meaning and make 

useful decisions from remotely-sensed data has not kept pace with the developments in this 

field. 

Further development is needed in the creation of digital data sets, for example, the 

digitalisation of 1 :250 000 and 1: 50 000 cartographic maps for countries that have them 

should be a priority. Similarly, national geo-referenced health facility databases should be 

established. Widespread availability of small scale digital data « 1: 50 000) for many 

countries within Africa is unlikely to ever become a reality. The most cost-effective and 

appropriate method to examine disease patterns at small scales is the establishment of geo­

referenced sentinel surveillance sites (such as the Hlabisa demographic surveillance 

system). This will enable the elucidation of small-scale disease patterns (e.g. diffusion 

dynamics) that could be modelled using coarser resolution data and the coverage extended. 
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For example, the HIV heterogeneity exposed across the Hlabisa district (chapter five) will 

be examined at a much higher resolution using the surveillance system. 

The issue of scale is one that is poorly understood in the disease arena. Diseases patterns 

and processes evident at one scale are not necessarily evident at another. Moreover, 

correlations between explanatory variables and outcomes may even be (seemingly) 

reversed at different scales. This has led to a significant amount of confusion when 

hypotheses are rejected at one scale and not at another. Sometimes it is advisable to use 

coarser resolution data to mask out small scale heterogeneity. For example, the malaria 

seasonality component of this thesis was conducted using 5km resolution data. Higher 

resolution satellite data (sub kilometre) may obscure continental malaria patterns by 

exposing unnecessary small area variation. Ideally the resolution of the data should be 

driven by the application. However, given Africa's geographic data deficits, future 

research is needed to establish how applicable coarse resolution data sets are to modelling 

high resolution disease-specific dynamics and vice-versa. The above issues are as 

applicable to temporal resolution as they are to spatial resolution. 

Another obstacle remaining to the growth of GIS in health in Africa is to convince role 

players (often from cash-strapped organisations) of the potential uses and cost­

effectiveness of GIS in the health arena. GIS costlbenefit analyses within different 

organisations have demonstrated that at the very least the technology gives a full return on 

the investment (benefit/cost ratio = 1: 1), but when extensively used has given a large return 

on the investment (benefit/cost ratio = 7:1) (Korte, 1996). Even amongst the international 

scientific community, significant scepticism still exists surrounding the use of GIS 
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technology in health. This problem will diminish in size as GIS continues to evolve. The 

parallel with epidemiology again warrants mentioning: In the same way that scepticism 

greeted epidemiologists who hypothesised that a relationship existed between smoking and 

lung cancer in the 1950s (Rothman, 1986), so to will scepticism continue to plague GIS 

until it is firmly established as a science. 

The 'mapping malaria risk in Africa' (MARA) research collaboration is an African 

research endeavour that makes extensive use of GIS technology. The collaboration has 

been highly successful in collating malaria data from around the continent, and producing 

a large number of scientific publications on a limited budget. The collaboration overcame 

significant data deficits by creating its own base data sets and created a significant amount 

of GIS capacity in its five regional centres throughout the continent. During the setting up 

of the collaboration, significant scepticism was expressed by influential malaria scientists 

as to the ultimate value of a GIS approach, its logistical feasibility and cost effectiveness 

(Le Sueur, 1998). The collaboration is a testament to the fact that successful GIS initiatives 

can be undertaken in Africa. 

Viable GIS health applications in Africa 

The current software and hardware trends in combination with the realities faced in Africa 

have given rise to essentially, two broad categories of long-term feasible GIS health 

applications in Africa. ,The outputs of the categories will inform one another and are not 

mutually exclusive and may overlap. The first category involves the use of GIS as a 

research tool. These applications should seek to provide new insights into the spatial 

dimensions of disease and new methodologies to more cost-effectively allocate resources 
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to health services. These types of applications will normally use high-end systems with 

significant analytical functionality and will usually involve a significant amount of 

additional data collection. An example of such an application is the equitable distribution 

of fieldworker workload methodology (chapter six). 

The second category of long-term viable GIS application concerns the use of GIS as a 

health planning and management tool and for exploratory data analysis. Generally 

speaking this kind of system will involve a low-end GIS. The primary goal of such a 

system will be to simply display and overlay basic health data concerning both health care 

facilities and disease patterns. These systems (normally vector-based) permit rapid 

manipulations of spatial data and display of the results so that the decision maker can use 

them for policy decisions. A further step could involve limited spatial queries and analysis 

such as buffering. The display of tuberculosis directly observed treatment supervisors and 

the number of associated patients (chapter four), for example would be a useful tool for the 

programme manager. 

The outputs of the different categories of application will inform one another. As the data 

is geographically displayed using a management GIS and research questions are derived, 

collaborations can be initiated with institutions undertaking GIS research to test hypotheses 

and model disease distributions. Similarly, research GIS applications will inform GIS 

management applications. For example a variant of the workload distribution model 

(chapter six), calculation of the distance usage index (chapter three) and malaria 

seasonality model (chapter seven) could be instituted on management GIS systems to 

inform optimal resource allocation and intervention strategies respectively. 
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The nature of Africa's disease burden 

The results of the case-studies in this thesis combined with the review of the health 

literature in Africa revealed the GIS bias towards so called 'environmental' diseases. In 

certain diseases, such as the vector borne diseases (e.g. malaria, schistosomiasis, human 

helminth infections and trypanosomiasis) the environmental component in the 

determination of factors such as transmission intensity is extremely high. In other diseases, 

especially in the non-communicable category (e.g. multiple sclerosis) links to the 

environment are weak or non-existent. Some infectious diseases such as HIV and 

tuberculosis have moderately strong links to the environment. Not only does Africa have 

the highest burden of disease of all the continents (WHO, 2000), but it is the continent in 

which the greatest component of the burden is contributed by so called 'environmentally 

dependent' diseases. In addition, the phenomenon of climate change is likely to hit hardest 

in Africa (World Bank, 2000b) on account of its greater rainfall variability and the 

proportion of 'ecothermic infectious diseases'. This makes the potential applications of 

GIS in health particularly relevant to Africa, i.e. GIS in health has greater relevance and 

inherent potential in Africa than it does in the United States or Europe for example. 

Unfortunately, this reality is not reflected in the literature or in practice. Thus there exists 

a continuum of diseases, on the one end there are those diseases in which GIS has little or 

no application and on the other there are those in which GIS is highly applicable. This 

continuum does not relate to the availability of ancillary data sets but rather to the inherent 

nature of the disease itself. 

The ability to map spatial and temporal variation in disease risk is more important than 

ever given the ever-increasing disease burden in Africa. GIS allows the planning of control 

142 



strategies and the delivering of interventions where the need is greatest, and sustainable 

success is most likely. This thesis has demonstrated that despite some obstacles, GIS holds 

considerable promise for health research and development in Africa. The global trend 

towards faster, more powerful computers, user-friendly software and falling prices 

combined with the magnitude and nature of Africa's disease burden and lack of reliable 

disease statistics makes it a viable, relevant and powerful technology for health research 

and management in Africa. 
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Appendix 1: Attribute data collected at each facility 

Facility Type 

Fixed clinic or 
hospital 

Mobile clinic 
point 

Community 
health worker 
(CHW) 

Shop 

School 

Church 

Induna 

Traditional 
Healer 

Data Collected 

Name, location, sister in charge, names of other clinic staff, telephone 
number, isigodi9

, 24 hour service (YIN), ambulance access, antenatal service 
(YIN), number of antenatal attendanceslO

, number of deliveries, well baby 
clinic (YIN), number of family planning visits, waiting mothers area (YIN) 

Name, location, sister in charge, names of other clinic staff, isigodi, number 
of antenatal attendances, family planning service (YIN), number of family 
planning visits 

Name, location, name of household head, Isigodi where CHW works, 
Isigodi where CHW lives 

Name, location, owner, telephone number 

Name, location, circuit, telephone, principal, enrolments for grade 0 - 12 

Name, location, denomination, name of leader, number of congregants, 
telephone number 

Name, location, isigodi, tribal authority, telephone, contact person 

Name, location, type of healer, registered (YIN), name of healer's 
association, telephone 

9 The geographical area that falls under a tribal chief (Induna) 

IO All data incorporating a frequency component is measured per annum 
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Appendix 2: Attribute data collected at each homestead 

Homestead Attribute data 

ID, location, owner's name, number of people, non-migrant couples 
(yIN), associated facility (e.g. shop, church), fixed clinic preference, 
mobile clinic preference, secondary school preference, primary 
school preference, CHW name, isigodi, local name (neighbourhood), 
tag affixed (YIN), fie1dworker name, date, time 
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Appendix 3: A data dictionary fIle 

Ordinary Homestead (point) 
ID (numeric, 0, 10000, 14999, 10000, required) 
Address (text, 30) 
Owner's family name (menu) 

Other family name (text, 30) 

Owner's First Name (text, 30) 
Number In Homestead (numeric, 0, 1,99, 10, required) 
Non-migrant couples? (menu, required) 

Yes 
No, default 
Don't know 

Associate feature(s) (menu, required) 

Isigodi (menu, required) 

Local Name (text, 30) 
Clinic preference (menu, required) 

Mobile preference (menu, required) 

CHW name (menu, required) 

Sec school pref (menu, required) 

Prl school pref (menu, required) 

tag affixed? (menu, required) 
yes, default 
no 

Mapped By (menu, required) 

Date (date, auto, dmy) 
Time (time, auto, 24) 

Absent Home (point) 
ID (numeric, 0, 10000, 14999, 10000, required) 
Address (text, 30) 
Mapped By (menu, required) 

Date (date, auto, dmy) 
Time (time, auto, 24) 

Refusal Home (point) 
ID (numeric, 0, 10000, 14999, 10000, required) 
Address (text, 30) 
Mapped By (menu, required) 

Date (date, auto, dmy) 
Time (time, auto, 24) 

Under Construction (point) 
10 (numeric, 0, 10000, 14999, 10000, required) 
Address (text, 30) 
Mapped By (menu, required) 

Date (date, auto, dmy) 
Time (time, auto, 24) 

Abandoned Home, point 
Mapped By (menu, required) 

Date (date, auto, dmy) 
Time (time, auto, 24) 
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Appendix 4: A PDOP graph 

14 

12 

10 

6 

4 

2 

o 
8:30 10:30 12:30 14:30 

Time: Major tick marks = 2 Hours. (Sampling 10 Minutes) 

159 

16:30 



Appendix Sa: Orthogra,pbic comp,a,rison of topogra'phy in each d'istance clinic catchment 
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Appendix 5b: Topographic cross-section across each distance clinic 
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Appendix 6: Idrisi enclosed area detection algorithm 

REM PRODUCE LINE IMAGE 
REM 'inilial x poly 1 1 0 1 poly ID' 
LlNERAS X rivers aU'POL Y 
LlNERAS X ROAD 1'POL Y 
LlNERAS X ROAD - 2WL Y 
LlNERAS X ROAD - 3'POL Y 
LlNERAS X ROAD - 4'POL Y 
RECLASS X IWLY"TEMP'2'1'1'1 00000'·9999 
COPY X TEMP.rst'POLY.rst 
COpy X TEMP.rdc'POLY.rdc 
OVERLAY X 3'POL Y'DSS MPK"TEMP 
COpy X TEMP.rst'POLY.rst 
COpy X TEMP.rdc'POLY.rdc 
LlNERAS X DSS_MPKWLY 

REM PRODUCE GROUP IMAGE 
GROUP X POL Y'WGROUP 

REM REMOVE LINES 
FILTER X GROUP'GRP MD 3' 3 
OVERLAY X 3'POLY'GRP MD 3'COVER 
OVERLAY X 7'COVEWGROUP"TEMP 
GROUP X TEMP'WGROUP 

REM FILTER OUT SMALL AREAS OF PIXELS 
FILTER X GROUP'GRP MD 1'3'7 
AREA X GROUP'1 '1 'AREA -
OVERLAY X 3'AREA'DSS MPK"TEMP 
COpy X TEMP.rst'AREA.rSi 
COPY X TEMP.rdc'AREA.rdc 
RECLASS X I'AREA'AREA REC'2'1'1'50'0'SO'100000'·9999 
OVERLAYX3'AREA REC·GRP MD 1'COVER 
OVERLAY X 7'COVER'GROUP"TEMP 
OVERLAY X 3"TEMP'DSS MPK'GROUP 
GROUP X GROUP'Y"TEMP 
COpy X TEMP.rst'GROUP.rst 
COpy X TEMP.rdc'GROUP.rdc 

AREA X GROUP'1'1'AREA 
OVERLAY X 3'AREA'DSS MPK"TEMP 
COpy X TEMP.rst'AREA.rSt 
COpy X TEMP.rdc'AREA.rdc 
RECLASS X I'AREA'AREA REC'2'O'1 '20"1 '20"1 00000"·9999 
OVERLAY X 3'AREA REC·GROUP"TEMP 
GROUP X TEMP"WGROUP 

REM PERFORM ANOTHER 2 LOOPS OF THE ABOVE 
FILTER X GROUP"GRP MD 7"3'7 
AREA X GROUP"1 "1 'AREA -
OVERLAY X 3"AREA"DSS MPK"TEMP 
RECLASS X I"TEMp·AREA·2"0"100000*9000000".9999 
RECLASS X I' AREA" AREA REC"2"1"1 "SO"0"SO"1 00000".9999 
OVERLAY X 3"AREA REC·GRP MD rCOVER 
OVERLAY X rCOVER"GROUP"TEMP 
OVERLAY X 3"TEMP"DSS MPK"GROUP 
GROUP X GROUP'Y"TEMP 
COpy X TEMP.rst"GROUP.rst 
COpy X TEMP.rdc"GROUP.rdc 

FILTER X GROUP"GRP MD 7"3"7 
AREA X GROUP"1 "1 "AREA -
OVERLAY X 3"AREA'DSS MPK"TEMP 
RECLASS X I"TEMP"AREA"2"0"100000"9Q00000".9999 
RECLASS X I'AREA'AREA REC"2'1'1"SO'O"SO"100000".9999 
OVERLAY X 3"AREA REC·GRP MO rCOVER 
OVERLAY X 7"COVER'GROUP"TEMP 
OVERLAY X 3"TEMP'OSS MPK"GROUP 
GROUP X GROUP'Y"TEMP 
COPY X TEMP.rst'GROUP.rst 
COpy X TEMP.rdc"GROUP.rdc 

REM PROOUCE VEC FILE ANO EXPORT 
POL YVEC X GROUP"GROUPVER'Y·O"N 
MIFIORIS X 2"GROUPVEWGROUPVEWS·IO"4'O 
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Appendix 7: Idrisi malaria seasonality macro 

rem calculate the 3 month moving rainfall images m_rain01 etc (march_rain = Oan + feb + march)/3) 
rem calculate the 3 month moving tempr images m_tavg01 etc (march_tempr = Oan + feb + march)/3) 
rem calculate annual standard deviation of tavg and name the resulting image sd_tempr 
rem name the frost image tminmin 
rem produce values files 1-12 "01.val = 11" "02.val = 1 2" elc 
rem produce a values file "13.val" contaning "O 13" 

rem calculate rain and temp suitable temperatures 
RECLASS X I'M RAIN01'R RAIN01'2'0'0'60'1'60"9000'-9999 
RECLASS X I'M - RAIN02'R - RAIN02'2'0'0'60'1'60'9000' -9999 
RECLASS X I'M - RAIN03'R - RAIN03'2'0'0'60'1'60'9000'-9999 
RECLASS X I'M - RAIN04'R - RAIN04'2-o' 0'60'1'60"9000' -9999 
RECLASS X I'M - RAINOS"R - RAINOS'2'O-o'60'1'60'9OOQ"-9999 
RECLASS X I"M-RAIN06"R - RAIN06"2-o'0'60'1"60"9000"-9999 
RECLASS X I"M - RAIN07"R - RAIN07"2'0"0'60"1'60"9000"-9999 
RECLASS X I"M - RAINOS"R - RAINOS"2'0"0'60"1'60"9000"-9999 
RECLASS X I"M - RAIN09'R - RAIN09'2'0"0'60'1"60"9000"-9999 
RECLASS X I'M - RAIN1 O'R - RAIN1 0"2"0'0"60'1 "60'9000"-9999 
RECLASS X I'M - RAIN11'R - RAIN11"2"O-o"60'1"60'9000"-9999 
RECLASS X I'M:::RAIN12"R:::RAIN12"2"0"0"60'1"60'9000"-9999 

OVERLAY X 2"M TAVG01'SO TEMPR"SO M TAVG01 
OVERLAY X 2'M - TAVG02'SO - TEMPR'SO - M - TAVG02 
OVERLAY X 2"M - TAVG03'SO - TEMPR'SO - M - TAVG03 
OVERLAY X 2"M - TAVG04"SO - TEMPR'SO - M - TAVG04 
OVERLAY X 2"M - TAVGOS"SO - TEMPR"SO - M - TAVGOS 
OVERLAY X 2"M - TAVG06"SO - TEMPR"SO - M - TAVG06 
OVERLAY X 2'M - TAVG07"SO - TEMPR"SO - M - TAVG07 
OVERLAY X 2'M - TAVGOS'SO - TEMPR"SO - M - TAVGOS 
OVERLAY X 2"M - TAVG09"SO - TEMPR"SO - M - TAVG09 
OVERLAY X 2"M - TAVG10'SO -TEMPR"SO-M - TAVG10 
OVERLAY X 2"M - TAVG11"SO -TEMPR"SO - M-TAVG11 
OVERLAY X 2"M:::TAVG12"SO:::TEMPR"SO:::M:::TAVG12 

RECLASS X I'SO M TAVG01"R TAVG01'2"0'-1000"19S"1"19S"90000"-9999 
RECLASS X I'SO - M - TAVG02'R - T AVG02"2"0" -1 000"19S"1"19S"90000" -9999 
RECLASS X I"SO - M - T AVG03'R - T AVG03"2'0" -1OOO"19S'1"19S"90000" -9999 
RECLASS X I"SO - M - TAVG04"R - TAVG04 "2'0"-1 000"19S"1"19S'90000" -9999 
RECLASS X I"SO - M - TAVGOS"R - TAVGOS"2'0'-1000'19S'1"19S"90ooo' -9999 
RECLASS X I"SO - M - TAVG06'R - TAVG06"2"0'-1 000"19S"1'19S"90000' -9999 
RECLASS X I"SO - M - T AVG07'R - T AVG07"2'0" -1 000'19S"1'19S"90000' -9999 
RECLASS X I'SO - M - T AVGOS"R - T AVGOS'2'0" -1000'19S"1"19S"90000' -9999 
RECLASS X I"SO - M - TAVG09'R - TAVG09'2"0' -1000"19S"1"19S'90000" -9999 
RECLASS X I"SO - M - TAVG1 O'R - TAVG1 0'2'0"-1 000"19S'1"19S"90000"-9999 
RECLASS X I'SO- M -TAVG11"R -TAVG11"2"0'-1000'19S"1 "19S"90000'-9999 
RECLASS X I"SO:::M::: T AVG 12"R::: TAVG12"2"0" -1 000"19S"1'19S'90000" -9999 

rem calculate frost suitability 
RECLASS X I"TMINMIN"FRST _MSK"2' 0"-1 000'SO'1"SO'1 0000'-9999 

rem suitability image rainfall suitability" temp suitability' frost suitability 
OVERLAY X 3"R RAIN01'R TAVG01"TEMP 
OVERLAY X 3"TEMP"FRST - MSK'SUIT01 
OVERLAY X 3"R RAIN02'R-TAVG02"TEMP 
OVERLAY X 3"TEMP'FRST - MSK"SUIT02 
OVERLAY X 3"R RAIN03'R-TAVG03"TEMP 
OVERLAY X 3"TEMP'FRST - MSK' SUIT03 
OVERLAY X 3'R RAIN04"R-TAVG04"TEMP 
OVERLAY X 3"TEMP'FRST - MSK'SUIT04 
OVERLAY X 3'R RAINOS"R-TAVGOS"TEMP 
OVERLAY X 3"TEMP"FRST - MSK'SUITOS 
OVERLAY X 3"R RAIN06"R-TAVG06"TEMP 
OVERLAY X 3"TEMP'FRST -MSK'SUIT06 
OVERLAY X 3'R RAIN07"R-TAVG07"TEMP 
OVERLAY X 3"TEMP"FRST - MSK'SUIT07 
OVERLAY X 3' R RAINOS"R - TAVGOS"TEMP 
OVERLAY X 3"TEMP'FRST - MSK' SUITOS 
OVERLAY X 3"R RAIN09'R-TAVG09"TEMP 
OVERLAY X 3"TEMP"FRST - MSK'SUIT09 
OVERLAY X 3'R RAIN10"R-TAVG10"TEMP 
OVERLAY X 3"TEMP"FRST - MSK"SUIT10 
OVERLAYX3"R RAIN11"R-TAVG11"TEMP 
OVERLAY X 3"TEMP"FRST - MSK"SUIT11 
OVERLAY X 3"R RAIN12'R-TAVG12"TEMP 
OVERLAY X 3"TEMP"FRST':::MSK' SUIT12 

REM calculate reverse suitabilities 
RECLASS X I"SUIT01'R_ SUIT01 "2"0"1"2"1 "0"1 "-9999 
RECLASS X I"SUIT02"R_SUIT02'2"0"1 "2"1 "0"1 "-9999 
RECLASS X I"SUlT03"R_SUIT03"2"0"1 "2"1 "0"1 "-9999 
RECLASS X I"SUIT04"R_SUIT04"2"Q"1'2"1-o"1'-9999 
RECLASS X I'SUITOS"R_SUITOS"2'0"1'2'1 -0"1'-9999 
RECLASS X I'SUIT06'R_SUIT06'2"0' 1"2'1'0'1'-9999 
RECLASS X I"SUIT07'R_SUIT07"2'0'1 "2"1 "0'1 "-9999 
RECLASS X I'SUITOS'R_SUITOS"2"0"1'2"1'0"1"-9999 
RECLASS X I'SUIT09'R_SUIT09'2'0'1"2'1'0'1'-9999 
RECLASS X I"SUIT1O"R_SUIT1 0'2'0"1"2"1'0"1'-9999 
RECLASS X I'SUIT11"R_SUIT11"2'0"1"2"1"0'1"_9999 
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RECLASS X I"SU 1T12"R_ SU IT12"2"0"1 "2"1 "0"1 " -9999 

REM Calculate 1 month break in transmission 
OVERLAY X 3"SUIT01 "R SUIT02"TEMP 
OVERLAY X 3"TEMP"SUIT03"C SUIT02 
OVERLAY X 3"SUIT02"R sumi3"TEMP 
OVERLAY X 3"TEMP"SUIT04"C SUIT03 
OVERLAY X 3"SUIT03"R SUIT04"TEMP 
OVERLAY X 3"TEMP"SUITOS"C SUIT04 
OVERLAY X 3"SUIT04"R SUIT05"TEMP 
OVERLAY X 3"TEMP"SUIT06"C SUITOS 
OVERLAY X 3"SUITOS"R SUIT06"TEMP 
OVERLAY X 3"TEMP"SUIT07"C SUIT06 
OVERLAY X 3"SUIT06"R SUIT07"TEMP 
OVERLAY X 3"TEMP"SUITOS"C SUITO? 
OVERLAY X 3"SUITOrR SUIT08"TEMP 
OVERLAY X 3"TEMP"SUIT09"C SUITOS 
OVERLAY X 3"SUITOS"R SUIT09"TEMP 
OVERLAY X 3"TEMP"SUIT10"C SUIT09 
OVERLAY X 3"SUIT09"R SUITiO"TEMP 
OVERLAY X 3"TEMP"SUIT11"C SUIT1 0 
OVERLAY X 3"SUIT10"R SUITil"TEMP 
OVERLAY X 3"TEMP"SUIT12"C SUIT11 
OVERLAY X 3"SUIT11 "R SUIT12"TEMP 
OVERLAY X 3"TEMP"SUIT01"C SUIT12 
OVERLAY X 3"SUIT12"R SUIT01"TEMP 
OVERLAY X 3"TEMP"SUIT02"C_SUIT01 

REM assign the 1 month break, transmission status 
OVERLAY X 9"SUIT01"C SUIT01 "TEMP 
COPY X TEMP.RST"SUIT01 .RST 
COpy X TEMP.ROC"SUIT01.ROC 
OVERLAY X 9"SUIT02"C SUIT02"TEMP 
COPY X TEMP.RST"SUIT02.RST 
COPY X TEMP.ROC"SUIT02.ROC 
OVERLAY X 9"SUIT03"C SUIT03"TEMP 
COPY X TEMP.RST"SUIT03.RST 
COPY X TEMP.ROC"SUIT03.ROC 
OVERLAY X 9"SUIT04"C SUIT04"TEMP 
COpy X TEMP.RST"SUIT04.RST 
COPY X TEMP.ROC"SUIT04.ROC 
OVERLAY X 9"SUITOS"C SUIT05"TEMP 
COPY X TEMP.RST"SUIT05.RST 
COPY X TEMP.ROC"SUIT05.ROC 
OVERLAY X 9"SUIT06"C SUIT06"TEMP 
COpy X TEMP.RST"SUIT06.RST 
COPY X TEMP.ROC"SUIT06.ROC 
OVERLAY X 9"SUITOrc SUITO?"TEMP 
COpy X TEMP.RST"SUIT07.RST 
COPY X TEMP.ROC"SUITO? .ROC 
OVERLAY X g"SUITOS"C SUITOS"TEMP 
COPY X TEMP.RST"SUITOS.RST 
COPY X TEMP.ROC"SUITOS.ROC 
OVERLAY X 9"SUIT09"C SUIT09"TEMP 
COpy X TEMP.RST"SUIT09.RST 
COpy X TEMP.ROC"SUIT09.ROC 
OVERLAY X 9"SUIT10"C SUIT10"TEMP 
COPY X TEMP.RST"SUIT10.RST 
COPY X TEMP.ROC"SUIT1 O.ROC 
OVERLAY X 9"SUIT11"C SUIT11 "TEMP 
COPY X TEMP.RST"SUIT11 .RST 
COpy X TEMP.ROC"SUIT11 .ROC 
OVERLAY X 9"SUIT12"C SUIT12"TEMP 
COPY X TEMP.RST"SUIT12.RST 
COpy X TEMP .ROC"SUIT1 2.ROC 

REM calculate months of risk 
OVERLAY X 1"SUIT01"SUIT02"TEMP 
OVERLAY X 1 "SUIT03"TEMP"TEMP1 
OVERLAY X 1 "SUIT04"TEMP1 "TEMP 
OVERLAY X 1 "SUIT05"TEMP"TEMP1 
OVERLAY X 1 "SUIT06"TEMP1"TEMP 
OVERLAY X 1 "SUIT07"TEMP"TEMP1 
OVERLAY X 1 "SUITOS"TEMP1 "TEMP 
OVERLAY X 1"SUIT09"TEMP"TEMP1 
OVERLAY X 1 "SUIT10"TEMP1 "TEMP 
OVERLAY X 1"SUIT11 "TEMP"TEMP1 
OVERLAY X 1"SUIT1 2"TEMP1 "MON_RISK 

RECLASS X I"MON_RISK"MSK_RSK"2"1"1 "2Q"-9999 

rem suitability images changed to month values 
copy X SUIT01 .rst"month01 .rst 
copy x suit01.rdc"month01.rdc 
ASSIGN X SUIT02"MONTH02"02"3 
ASSIGN X SUIT03"MONTH03"03"3 
ASSIGN X SUIT04"MONTH04"04"3 
ASSIGN X SUITOS"MONTH05"05"3 
ASSIGN X SUIT06"MONTH06"06"3 
ASSIGN X SUITO?"MONTH0700?"3 
ASSIGN X SUITOS"MONTHOS"OS"3 
ASSIGN X SUIT09"MONTH09"09"3 
ASSIGN X SUIT10"MONTH10"10'3 
ASSIGN X SUIT11"MONTH11 "11"3 
ASSIGN X SUIT12"MONTH12"12"3 
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REM produce reverse suitability images 0 = 1 1 = 0 
RECLASS X I'SUIT01 *R SUIT01'2'0'1'2'1'0'1'-9999 
RECLASS X I'SUIT02'R - SUIT02'2'0'1 '2'1 '0'1 '-9999 
RECLASS X I'SUIT03*R - SUIT03'2'0'1'2'1'0'1'-9999 
RECLASS X I'SUIT04'R - SUIT04'2'0'1 '2'1 '0'1 '-9999 
RECLASS X I'SUIT05'R - SUIT05'2'0'1'2'1'0'1'-9999 
RECLASS X I'SUITOS'R - SUITOS'2'0'1 '2'1 '0'1 '-9999 
RECLASS X I'SUIT07'R - SUIT07'2'0'1 '2'1 '0'1 '-9999 
RECLASS X I'SUITOS'R - SUITOS'2'0'1 *2'1'0'1'-9999 
RECLASS X I'SUIT09*R-SUIT09'2'0'1 '2'1 '0'1 '-9999 
RECLASS X I'SUIT10'R - SUIT10'2'O'1'2'1'O'1'-9999 
RECLASS X I'SUIT11'R - SUIT11'2'0'1'2'1'O'1'-9999 
RECLASS X I'SUIT12*R=SUIT12'2'0'1'2'1'0'1'-999g 

REM produce starting months 
OVERLAY X 3'SUIT01'R SUIT12*TEMP 
OVERLAY X 3*TEMP'MONTH01'START01 
OVERLAY X 3'SUIT02'R SUIT01*TEMP 
OVERLAY X 3*TEMP'MQ-NTH02'START02 
OVERLAY X 3'SUIT03'R SUIT02*TEMP 
OVERLAY X 3*TEMP'MONTH03'START03 
OVERLAY X 3'SUIT04'R SUIT03*TEMP 
OVERLAY X 3*TEMP'MONTH04'START04 
OVERLAY X 3'SUIT05'R SUIT04*TEMP 
OVERLAY X 3*TEMP'MO-NTH05'START05 
OVERLAY X 3'SUITOS'R SUIT05*TEMP 
OVERLAY X 3*TEMP'MONTHOS'STARTOS 
OVERLAY X 3'SUIT07*R SUITOS*TEMP 
OVERLAY X 3*TEMP"MONTH07'START07 
OVERLAY X 3'SUITOS'R SUIT07*TEMP 
OVERLAY X 3*TEMP'MO-NTHOS'STARTOS 
OVERLAY X 3'SUIT09'R SUITOS*TEMP 
OVERLAY X 3*TEMP'MONTH09'START09 
OVERLAY X 3'SUIT10'R SUIT09*TEMP 
OVERLAY X 3*TEMP'MONTH10'START10 
OVERLAY X 3'SUIT11'R SUIT10*TEMP 
OVERLAY X 3*TEMP"MONTH11'START11 
OVERLAY X 3'SUIT12'R SUIT11 *TEMP 
OVERLAY X 3*TEMP'MONTH12'START12 

REM produce ending months 
OVERLAY X 3'SUIT01'R SUIT02*TEMP 
OVERLAY X 3*TEMP'MO-NTH01'END01 
OVERLAY X 3'SUIT02'R SUIT03*TEMP 
OVERLAY X 3*TEMP*MQ-NTH02'END02 
OVERLAY X 3'SUIT03'R SUIT04*TEMP 
OVERLAY X 3*TEMP"MONTH03'END03 
OVERLAY X 3'SUIT04'R SUIT05*TEMP 
OVERLAY X 3*TEMP'MONTH04'END04 
OVERLAY X 3'SUIT05'R SUITOS*TEMP 
OVERLAY X 3*TEMP'MONTH05'END05 
OVERLAY X 3'SUITOS'R SUIT07*TEMP 
OVERLAY X 3*TEMP'MO-NTHOS'ENDOS 
OVERLAY X 3'SUIT07'R SUIT08*TEMP 
OVERLAY X 3*TEMP'MQ-NTH07'END07 
OVERLAY X YSUITOS'R SUIT09*TEMP 
OVERLAY X 3*TEMP'MONTHOS'ENDOS 
OVERLAY X 3'SUIT09'R SUIT10*TEMP 
OVERLAY X 3*TEMP'MONTH09'END09 
OVERLAY X 3'SUIT10'R SUIT11*TEMP 
OVERLAY X 3*TEMP'MONTH10'END10 
OVERLAY X 3'SUIT11 *R SUIT12*TEMP 
OVERLAY X 3*TEMP'MONTH11'END11 
OVERLAY X 3'SUIT12'R SUIT01*TEMP 
OVERLAY X 3*TEMP'MO-NTH12'END12 

REM produce 2nd season starting month 
OVERLAY X 9'START01'START02*TEMP 
OVERLAY X 9'START03*TEMP*TEMP1 
OVERLAY X 9'START04*TEMP1*TEMP 
OVERLAY X 9'START05*TEMP*TEMP1 
OVERLAY X 9'STARTOS*TEMP1 *TEMP 
OVERLAY X 9'START07*TEMP*TEMP1 
OVERLAY X 9'STARTOS*TEMP1 *TEMP 
OVERLAY X 9'START09*TEMP*TEMP1 
OVERLAY X 9'START1 0*TEMP1 *TEMP 
OVERLAY X 9'START11*TEMP*TEMP1 
OVERLAY X 9'START12*TEMP1'2_START 

REM produce 2nd season ending month 
OVERLAY X 9'END01'END02*TEMP 
OVERLAY X 9'END03*TEMP*TEMP1 
OVERLAY X 9'END04*TEMP1*TEMP 
OVERLAY X 9'END05*TEMP*TEMP1 
OVERLAY X 9'ENDOS*TEMP1*TEMP 
OVERLAY X 9'END07*TEMP*TEMP1 
OVERLAY X 9'ENDOS*TEMP1 *TEMP 
OVERLAY X 9'END09*TEMMEMP1 
OVERLAY X 9'END1 O*TEMP1 *TEMP 
OVERLAY X 9'END11 *TEMP*TEMP1 
OVERLAY X 9'END12*TEMP1'2_END 

REM assign 13-->0 start and end 
ASSIGN X START01 *TEMP'13'3 
COpy X TEMP.RSrSTART01 .RST 
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COpy X TEMP.ROC*START01.RDC 
ASSIGN X START02*TEMP*13*3 
COpy X TEMP.RST*START02.RST 
COpy X TEMP.RDC*START02.RDC 
ASSIGN X START03*TEMP*13*3 
COpy X TEMP.RST*START03.RST 
COpy X TEMP.RDC*START03.RDC 
ASSIGN X START04*TEMP*13*3 
COpy X TEMP.RST*START04.RST 
COpy X TEMP.RDC*START04.RDC 
ASSIGN X START05*TEMP*13*3 
COpy X TEMP.RST*START05.RST 
COpy X TEMP.RDC*START05.RDC 
ASSIGN X START06*TEMP*13*3 
COpy X TEMP.RST*START06.RST 
COpy X TEMP .ROC*ST ART06.RDC 
ASSIGN X START07*TEMP*13*3 
COpy X TEMP.RST*START07.RST 
COpy X TEMP.ROC*START07.RDC 
ASSIGN X STARTOS*TEMP*13*3 
COPY X TEMP.RST*STARTOS.RST 
COPY X TEMP.RDC*STARTOS.RDC 
ASSIGN X START09*TEMP*13*3 
COPY X TEMP.RST*START09.RST 
COPY X TEMP.RDC*START09.RDC 
ASSIGN X START10*TEMP*13*3 
COpy X TEMP.RST*START10.RST 
COpy X TEMP.RDC*START10.RDC 
ASSIGN X START1l *TEMP*13*3 
COPY X TEMP.RST*START1l .RST 
COPY X TEMP.RDC*START1l.RDC 
ASSIGN X START12*TEMP*13*3 
COpy X TEMP.RST*START12.RST 
COPY X TEMP.RDC*START12.RDC 

ASSIGN X END01*TEMP*13*3 
COpy X TEMP.RST*END01.RST 
COPY X TEMP.RDC*END01.RDC 
ASSIGN X END02*TEMP*13*3 
COPY X TEMP.RST*END02.RST 
COPY X TEMP.RDC*END02.RDC 
ASSIGN X END03*TEMP*13*3 
COpy X TEMP.RST*END03.RST 
COPY X TEMP.RDC*END03.RDC 
ASSIGN X END04*TEMP*13*3 
COPY X TEMP.RST*END04.RST 
COPY X TEMP.ROC*END04.RDC 
ASSIGN X END05*TEMP*13*3 
COpy X TEMP.RST*END05.RST 
COPY X TEMP.RDC*END05.ROC 
ASSIGN X END06*TEMP*13*3 
COpy X TEMP.RST*END06.RST 
COPY X TEMP.RDC*END06.RDC 
ASSIGN X END07*TEMP*13*3 
COPY X TEMP.RST*END07.RST 
COPY X TEMP.RDC*END07.RDC 
ASSIGN X ENDOS*TEMP*13*3 
COPY X TEMP.RST*ENDOS.RST 
COPY X TEMP.RDC*ENDOS.RDC 
ASSIGN X END09*TEMP*13*3 
COPY X TEMP.RST*END09.RST 
COPY X TEMP.RDC*END09.RDC 
ASSIGN X END 1 O*TEMP*13*3 
COPY X TEMP.RST*END10.RST 
COpy X TEMP.ROC*END10.RDC 
ASSIGN X ENDll *TEMP*13*3 
COpy X TEMP.RST*ENDll .RST 
COpy X TEMP.RDC*ENDll.RDC 
ASSIGN X END12*TEMP*13*3 
COPY X TEMP.RST*END12.RST 
COPY X TEMP.ROC*END12.RDC 

REM produce 151 season starting month 
OVERLAY X S*START01*START02*TEMP 
OVERLAY X S*START03*TEMP*TEMPl 
OVERLAY X S*START04*TEMP1*TEMP 
OVERLAY X S*START05*TEMP*TEMPI 
OVERLAY X S*START06*TEMPI *TEMP 
OVERLAY X S*START07*TEMP*TEMPl 
OVERLAY X S*STARTOS*TEMPI *TEMP 
OVERLAYX S*START09*TEMP*TEMPl 
OVERLAY X S*START10*TEMP1*TEMP 
OVERLAY X S*STARTll *TEMP*TEMPl 
OVERLAY X S*START12*TEMP1*1_START 

OVERLAY X 3*1 START*MSK RSK*TEMP 
COPY X TEMP.RST*l START-:-RST 
COPY X TEMP.RDC*(START.RDC 

REM produce 151 season ending months 
OVERLAY X S*END01*END02*TEMP 
OVERLAY X S*END03*TEMP*TEMPI 
OVERLAY X S*END04*TEMP1*TEMP 
OVERLAY X S*END05*TEMP*TEMPl 
OVERLAY X S*END06*TEMPl *TEMP 
OVERLAY X S*END07*TEMP*TEMPI 
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OVERLAY X S"ENDOS"TEMP1"TEMP 
OVERLAY X S"END09"TEMP"TEMP1 
OVERLAY X S"END1 0"TEMP1"TEMP 
OVERLAY X S"END11"TEMP"TEMP1 
OVERLAY X S"END12"TEMP1"1_END 

OVERLAY X 3"1 ENO"MSK RSK"TEMP 
COPY X TEMP.RST"1 ENo":RST 
COpy X TEMP.ROC"CENO.ROC 

REM mask out 1 season months from 2 season 
OVERLAY X 2"2-ENO"1 ENO"TEMP -
RECLASS X I"TEMP"2 MASK"2"0"-15"-12"1"-12"0"1"1"13"0"13"20"-9999 
OVERLAY X 3"2 MASi("2 START"TEMP 
COpy X TEMP.RST"2 START.RST 
COpy X TEMP.ROC"2- START.ROC 
OVERLAY X 3"2 MASi("2 ENO"TEMP 
COpy X TEMP.RST"2 EN-O.RST 
COpy X TEMP.ROC"2-:::'ENO.ROC 

REM reverse 1 end and 2 end of pixels where end <start in both seasons 
OVERLAY X 2*1 ENO"1 START"TEMP 
RECLASS X I"TEMP"1 REVOZ"1"-SOOO"0"0"0"5000"-9999 
OVERLAY X 2"2 ENO*2 START"TEMP 
RECLASS X I"TEMP"2 REV"2"1"-5000"0"0"0"5000"-9999 
OVERLAY X 3"1 REV*2 REV-REV 
OVERLAY X 3"RSr2 ENO"2 REV 
OVERLAY X 3"REV"(ENO"(REV 

OVERLAY X 7"2 REV"1 ENO"TEMP 
COpy X TEMP.RST"1 ENO.RST 
COPY X TEMP.RDC"1- END. ROC 
OVERLAY X 7"1 REv*2 ENO"TEMP 
COpy X TEMP.RST"2 ENO.RST 
COpy X TEMP.ROC"2-:::'ENO.RDC 

REM calculate months of risk 
OVERLAY X 1"SUIT01"SUIT02"TEMP 
OVERLAY X 1 "SUIT03"TEMP"TEMP1 
OVERLAY X 1 "SUIT04"TEMP1 "TEMP 
OVERLAY X 1 "SUIT05"TEMP"TEMP1 
OVERLAY X 1"SUITOS"TEMP1"TEMP 
OVERLAY X 1 "SUIT07"TEMP"TEMP1 
OVERLAY X 1"SUITOS"TEMP1"TEMP 
OVERLAY X 1 "SUIT09"TEMP"TEMP1 
OVERLAY X 1 "SUIT10"TEMP1 "TEMP 
OVERLAY X 1"SUIT11"TEMP"TEMP1 
OVERLAY X 1"SUIT12"TEMP1"SUIT 

rem calculate catalyst rain mask 
RECLASS X I"m rain01"R RAIN01"2"0"0"SO"1"S0"9000"-9999 
RECLASS X I"m -rain02"R-RAIN02"2"0"0"SO"1"S0"9000"-9999 
RECLASS X I"m - rain03"R -RAIN03"2"0"0"SO"1"S0"9000"-9999 
RECLASS X I"m - rain04"R - RAIN04"2"0"0"SO"1 "80"9000"-9999 
RECLASS X I"m - rain05"R - RAIN05"2"OOO"SO"1 "80"9000"-9999 
RECLASS X I"m -rainOS"R -RAINOS"2"0"0"80"1"S0"9000"-9999 
RECLASS X I"m -rain07"R-RAIN07"2"0"0"SO"1"S0"9000"-9999 
RECLASS X I"m -rainOS"R - RAINOS"2"0"0"SO"1"SO"9OQO"-9999 
RECLASS X I"m - rain09"R - RAIN09"2"0"0"SO"1"S0"9000"-9999 
RECLASS X I"m -rain10"R - RAIN1 0"2"0"0"SO"1 "S0"9000"-9999 
RECLASS X I"m -rain11"R - RAIN11"2"0"0"80"1"S0"9000"-9999 
RECLASS X I"m -rain 12"R - RAIN12"2"0"0"SO"1"SO"9000" -9999 
ndvicomp x 1 "rain_mSk"12'R_RAIN01"R_RAIN02"R_RAIN03"R_RAIN04"R_RAIN05"R_RAINOS"R_RAINOrR_RAINOS"R_RAIN09"R_RAIN10"R_RAIN11"R_RAIN12 

RECLASS X I"SUlT*temp"2"1"1"20"-9999 
overlay x 3"temp"rain_msk"con_msk 

OVERLAY X 3"1 START"CON MSK"1 STARTR 
OVERLAY X 3"2-START"CON - MSK"2 - STARTR 
OVERLAY X 3"1-ENO"CON MSK"1 END R 
OVERLAY X 3"1-END"CON - MSK"1-END - R 
OVERLAY X 3"MON RISK"CON MSK"TEMP 
COpy X TEMP.RST'MON RISK:-RST 
COpy X TEMP.ROC"MON-:::'RISK.ROC 

RECLASS X I"MON_RISK"MON_RSKR"2"1"1 "4*2"4'7*3"r20"-9999 
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