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ABSTRACT 

 

Lichens are unique organisms widely known for their ability to tolerate extreme 

environmental conditions due to the symbiotic relationship between a fungus and algae or 

cyanobacteria. This includes the ability to synthesise melanins to protect themselves from 

ultraviolet radiation and high light. Melanins are found in different forms, the eumelanins 

(DOPA), often synthesised by Peltigeralean lichens while the non-Peltigeralean produce dark 

pigments that appear not to be DOPA melanins. Increased levels of UV and high light affect 

the physiology of many organisms, as a result this study investigates the effects of the 

photoprotective pigment, melanin on the photosynthetic apparatus of both chlorophycean 

and cyanobacterial bionts. The first aim of this thesis was to study the effect of using different 

light regimes to induce melanins. The second aim was to compare the properties of melanin 

between different lichens with those from free-living fungi. Lastly, the effect of melanisation 

on the photosynthesis was investigated. Results presented here suggest that melanins are 

insoluble in organic solvents, except DMSO and strongly absorb in the UVB and UVA 

wavelengths. The induction of melanin was slow and was better induced beneath the screens 

that transmitted UV. Transplanting nonmelanised Lobaria pulmonaria, to an open site for four 

weeks induced melanic pigments. Melanised thalli had normal chlorophyll contents and 

normal maximum rates of photosynthesis. Chlorophyll fluorescence analysis showed that the 

maximum quantum yield and relative electron transfer rates were similar to those of non-

melanised thalli. However, at light levels lower than 100 µmol photons m-2 s-1 melanisation of 

the upper cortex of the lichen reduced rates of CO2 fixation by more than 40%. Melanic thalli 

also had a higher chlorophyll a/b ratio and more xanthophyll cycle pigments. In Lobaria 

retigera, the +UV screen decreased the photosynthetic rate more than other light treatments. 

Photoinhibition of wet thalli was rapid compared to dry, though complete recovery was 

reached after a day. From these results, it can be confirmed that melanisation has a protective 

action against high light as melanised thalli were more tolerant to excess light. While 

protecting photobionts from high light, melanisation reduced photosynthetic efficiency and 

protects lichens from photoinhibition in both the wet and dry states.  
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CHAPTER 1: LITERATURE REVIEW 

 

Lichens  

Lichens are comprised of fungal, algal and yeast partners. For about 140 years, lichens were 

defined as an association of a mycobiont (95%) and a photobiont (5%)  (Molnár and Farkas, 

2010; Solhaug and Gauslaa, 2012) but more recently it was realized that many species contain 

an additional layer of a basidiomycete yeast (Spribille et al., 2016). The significance of this 

second mycobiont is not well-known, but it may serve a pathogen defense function. There 

are more than 17 000 species of lichens which includes 16 750 of lichenized Ascomycetes, 200 

Deuteromycetes and c. 50 Basidiomycetes. Bacteria often found in lichens are mainly from 

genera such as Actinobacteria, Verrucomicrobia, Acidobacteria, Firmicutes, Proteobacteria 

and Planctomycetes (Bates et al., 2011). Lichens can either have a “blue-green” or 

cyanobacterial component or a green alga. The green algal partners are mostly from the 

Chlorococcales (Friedl, 1995), and the most cyanobacterial photobionts come from the 

genera  Nostoc, Gloeocapsa, Scytonema, or Calothrix (Ahmadjian, 1993; Huneck, 1999). This 

association improves the longevity of  the individual bionts (Kranner et al., 2005). An 

important difference between green and cyanobacterial photobionts is that cyanobacteria 

lack the xanthophyll cycle. There are four morphological forms of lichens namely crustose, 

fruticose, foliose and gelatinous (Watson, 1929).  

Lichens can either be broadly taxonomically grouped as Peltigeralean or non-Peltigeralean 

species. The Peltigeralean lichens are often differentiated from non-Peltigeralean species by 

having unstalked apothecia (Miadlikowska and Lutzoni, 2000). They often grow on trees, 

although a few species are terricolous or muscicolous. Many Peltigeralean lichens  have 

cyanobacterial photobionts (Miadlikowska and Lutzoni, 2000; Hodkinson et al., 2014) and can 

therefore fix nitrogen (Hodkinson et al., 2014). Non-Peltigeralean lichens generally have 

chlorophycean photobionts (Hale, 1967). Some Peltigerales are defined by the absence of the 

lower cortex e.g. Leptogium and Peltigera (Miadlikowska and Lutzoni, 2000). Peltigeralean 

lichens tend to display higher activities of redox enzymes such as tyrosinase and laccase  

(Laufer et al., 2006).  
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Lichen distribution 

Lichens dominate on about 10% of the terrestrial biosphere (Ahmadjian, 1993), often in areas 

characterized by high stress e.g. high light/radiation, temperature extremes and low water 

availability. They have a remarkable ability to adapt to extreme environments and conditions 

(Kappen, 1973; Rothschild and Mancinelli, 2001; Sapmak et al., 2015), and commonly found 

growing on soil, tree trunks, and rock substrata (Cannon and Kirk, 2007).  Lichens grow well 

in both shady and light-exposed habitats.  

 

Synthesis of lichen substances 

The review of Huneck and Yoshimura (1996) indicates that about 700 lichen substances have 

been isolated and identified. They belong to different groups which are further differentiated 

based on the color, solubility and whether they are an acid or phenolic. These physico-

chemical properties were described by Shibata (1963). Common examples of lichen 

substances include, usnic acid, parietin, atranorin, chloroatranorin, salazinic acid, lecanoric 

acid, 7-chloroemodin (Huneck and Yoshimura, 1996), perlatolic acid and physodic acid (Reddy 

et al., 2016). 
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Figure 1.1: Classes of lichen substances and their reaction pathways (Huneck, 1999). 

 

Screening roles of secondary metabolites 

Cockell and Knowland (1999) list four criteria that should be fulfilled to confirm a specific light 

screening role to pigments such as secondary metabolites and melanins, and these criteria 

can be generalized to include other roles of pigments in stress tolerance. The criteria are: 
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1. The compound must be shown in the laboratory to have the properties that protect 

against the stress; 

2. The compound should be induced or boosted by the stress; 

3. A role in stress tolerance should be demonstrated in vivo e.g. by comparing the stress 

tolerance of melanised and pale individuals; 

4. The compound should protect against ecologically relevant stress levels. 

As it will become clear in the remaining sections of this review, the only reasonably safe 

deductions on the role of melanin and other secondary metabolites in the biology of at least 

some lichens are that first, they protect the mycobiont from high UV, and second, they protect 

the photobiont against high PAR. While it seems likely that compounds play other roles in the 

tolerance of lichens to a diversity of biotic and abiotic stresses, this needs to be confirmed by 

more work. 

Screening the mycobiont from UV 

A recent short-term experiment using growth chambers with and without UVB radiation 

showed that while UVB did not affect pure photobiont responses, it substantially reduced 

growth driven by both symbionts together (Chowdhury et al., 2016). The implication is that 

the mycobiont is more sensitive to UVB than the photobiont. As discussed in more detail 

below, lichens produce a range of secondary metabolites that also effectively screen both 

symbionts from UV  (Solhaug and Gauslaa, 2012; Nguyen et al., 2013). However, a key role of 

these compounds appears to be to protect the fungus rather than the photobiont from the 

harmful effects of UV radiation. 

Protection of the alga from UV and high PAR 

Protection from UV 

In contrast to the fungus, apparently photobionts do not need secondary metabolites to 

protect them from UV radiation. For example, in Lobaria pulmonaria, even an intact 

unmelanised upper cortex protects the underlying algal layer from UV-induced 

photoinhibition (Gauslaa et al., 2017). While removing the upper cortex of this lichen 

(exposing the algal-layer) renders the photobionts sensitive to UV, if the upper cortex is left 



8 
 

 
 

intact even high doses of UV have no effect on photosynthesis. The implication is that a 

normal upper cortex can protect the photobiont against UV. 

Protection from PAR 

High PAR probably has little effect on the mycobiont, except possibly indirectly by causing 

heat stress. By contrast, in the photobiont high PAR may cause oxidative stress and temporary 

or permanent photoinhibition. Photoinhibition is caused, directly or indirectly, by the 

stimulation of the production of reactive oxygen species (ROS) that occurs when 

photosystems cannot use the light energy they are absorbing, and this energy rather activates 

oxygen (Gururani et al., 2015; Pospíšil, 2016). The D1 protein, a key component of 

photosystem II, is believed to be most sensitive to damage during photoinhibition. Some 

damage appears to occur even in under moderate light intensities, and photosynthesizing 

organisms must therefore, continuously repair the damage to this protein. The “PSII repair 

cycle”, occurring in chloroplasts and in cyanobacteria, involves degrading and synthesis of the 

D1 protein, followed by activation of the reaction centre. Recent studies of photoinhibition 

have suggested that light may directly damage PSII, and the resulting ROS that are produced 

inhibit D1 protein repair (Nishiyama and Murata, 2014). Convincing evidence exists that 

photoinhibition regularly occurs in lichens in field situations (Leisner et al., 1997; Jairus et al., 

2009), and will reduce the ability of lichen photobionts to photosynthesize. 

Plants have several mechanisms to reduce photoinhibition. For example, ROS formation can 

be reduced by converting the excess light energy into thermal energy, a process termed non-

photochemical quenching (NPQ). NPQ occurs by a variety of mechanisms such as the 

xanthophyll cycle, and the transfer of energized electrons to O2 which is then used in 

photorespiration and the Mehler peroxidase reaction (Nishiyama and Murata, 2014; Duffy 

and Ruban, 2015; Gururani et al., 2015). Lichens, in addition to these mechanisms, reduce 

photoinhibition by synthesizing cortical compounds (Solhaug and Gauslaa, 2012). Apart from 

melanins, the most widespread cortical pigments are the classic lichen substances such as 

usnic acid, atranorin and parietin (Solhaug and Gauslaa, 2012); the synthesis of these 

compounds is also induced by UV light. In addition to reducing UV, although most of these 

compounds are only marginally pigmented, their crystalline structure reflects PAR, 

significantly reducing light intensities in algal layer (Solhaug et al., 2010).  
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Melanisation is a highly effective way of protecting lichen photobionts again high PAR. For 

example, in a field study, McEvoy et al. (2007) transplanted Lobaria pulmonaria to three sites 

with low, medium and high light levels for 100 d. Lichens at the site with highest light level 

became significantly melanised. Thalli from each of these sites were then transplanted to a 

highly-exposed area for 12 d. The melanised thalli displayed a much smaller reduction in Fv / 

Fm than the material that had been in the more shaded sites. While other mechanisms may 

have been involved, results strongly suggest that melanins are involved in photoprotection. 

Further suggestion that melanins play protective roles came from the study of Färber et al. 

(2014)  on pendulous lichens that dominate canopies of boreal forests. Typically, dark Bryoria 

species grow in the upper canopy, and pale Alectoria and Usnea species in lower canopy. 

Exposing these lichens under controlled conditions to a light level of 400 µmol m-2 s-1 for 7 d 

caused much less photoinhibition in the melanised Bryoria species than the non-melanised 

Alectoria and Usnea. 

Another class of a sun screening pigment was discovered in the genera Collema, 

Gonohymenia and Peltula (Büdel et al., 1997b), from which they were isolated from the 

bacterium Nostoc commune in the fungi (Böhm et al., 1995), namely scytonemin (Garcia‐

Pichel and Castenholz, 1991). Based on phylogenetic evidence, scytonemin is the oldest UV 

related pigment dating from the Precambrian period common in extracellular cyanobacterial 

sheaths. It was found in heterocystous and unicellular Gloeothece groups. During the 

Precambrian period UVC was an important environmental stress factor. UVC at 250 nm 

caused direct damage of cellular contents (Proteau et al., 1993; Dillon and Castenholz, 1999). 

The synthesis of this pigment is induced in organisms that inhabit high latitudes with 

increased photosynthetic photon flux density and UV. Scytonemin absorbs UVA and UVB 

wavelengths. It directly prevents about 85 to 90% of incident UVA radiation from penetrating 

the cells (Garcia‐Pichel and Castenholz, 1991; Garcia‐Pichel et al., 1992; Proteau et al., 1993). 

Evidently, at blue-UVA scytonemin functions as a passive sunscreen though radiation may 

cause mutations or inhibitions of growth and enzyme activity. A study supporting UV sun 

screening in a cyanobacterium Chlorogloeopsis spp. Strain O-89-Cgs (1) suggests that UVB 

absorption assists in protecting cells (Garcia‐Pichel et al., 1992). Here, scytonemin will be 

quantified to investigate whether it plays a role in photoprotection in lichens.  
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Melanin 

The word “melanin” comes from the ancient Greek, melanos, meaning “dark,” and in a 

general sense refers to dark pigments that occur throughout all domains of life (Solano, 2014). 

They are found within all phyla of the fungi. Melanins are difficult to define due to their 

structural complexity, but in fungi mostly belong to either the eumelanin or allomelanin 

groups. Shared properties include broadband absorption spectra, paramagnetism, charge 

transport and remarkable structural stability. It is therefore perhaps not surprising that 

melanins have been suggested to have many roles in fungal biology (Cordero and Casadevall, 

2017). The biosynthesis of fungal melanins was recently reviewed by (Belozerskaya et al., 

2015). Briefly, most fungal melanins are generated from the polymerization of either tyrosine 

(DOPA or eumelanins) using tyrosinase or in some case laccases, or 1, 8-

dihydroxynaphthalene (DHN or allomelanins) using polyketide synthases. During melanin 

synthesis, the phenolic precursors undergo multiple oxidation and reduction steps, which can 

occur enzymatically or passively by spontaneous polymerizations. Melanins appear to 

aggregate to form spherical to rather disordered particles which have been termed “melanin 

granules”. These granules may be contained at the cell surface or released into the 

extracellular space. The exact location of melanin granules at the cell surface varies between 

fungal species. Granules can occur between the plasma membrane and the innermost part of 

the cell wall or within or at the surface of the cell wall matrix. Some fungal species are 

constitutively melanised while others melanise facultatively only under specific 

developmental phases (e.g. conidia, yeast filamentous growth), in response to environmental 

queues, and/or in the presence of phenolic melanin precursors. Perhaps surprising, there 

appears to have been no attempt to review the occurrence and roles of melanic pigments in 

lichenized ascomycetes.  

 

Occurrence of melanins in lichens 

There has been no attempt to review the taxonomic distribution of melanins in lichens, 

although they appear to occur in all lichenized orders. Gostincar et al. (2012) suggest that the 

earliest lichens were derived from oligotrophic black fungi growing on surfaces e.g. bare rock 

with almost no usable organic-carbon. Part of the lichen colonized by black fungi benefits 



11 
 

 
 

from the aromatic polyketide secondary substances that are probably involved directly or 

indirectly in the synthesis of melanin. Such fungi inevitably attempted to improve their carbon 

supply by attaching to microscopic algae. Rock-inhabiting fungi tend to develop into 

“lichenoid structures” within months when co-cultured with lichen algae (Gorbushina et al., 

2005; Brunauer et al., 2007). Recently, Siletti et al. (2017) reviewed the phylogenetic 

distribution of fungal melanin concentrations across fungal genomes. These concentrations 

are correlated with melanin protein precursors involved in melanin biosynthesis. He further 

predicted that, the production of melanin not be correlated with the species growth. Because 

increased growth rates are possible when melanin is inhibited (Fernandez and Koide, 2014). 

This inverse relationship increases the role of soil C storage.  Also, Gorbushina and Broughton 

(2009) interpreted the rock surface as a kind of “symbiotic playground,” where competitive 

interactions between species are probably rare. It seems likely that the transition from a rock-

inhabiting to a lichenized lifestyle in early ascomycetous evolution was driven by the high 

stress of their habitat. Desiccation and high levels of UV and PAR increase the formation of 

reactive oxygen species in both fungi and algae, but the lichen symbiosis increases the 

efficiency of the protective mechanisms compared to isolated symbiotic partners (Kranner et 

al., 2005). These mechanisms involve the glutathione redox system, which is also known from 

black fungi (Jurgensen et al., 2001). In addition, small protective molecules that accumulate 

in black fungi as stress-responsive osmolytes could be involved in the transition from rock-

inhabiting to the lichen life style. Polyols such as ribitol, sorbitol, and erythritol, as well as 

glucose, provided by algae and cyanobacteria, respectively, are taken up by lichen fungi as 

food molecules and transformed to mannitol (Friedl and Budel, 2008). Efficient osmolyte 

metabolism, as found in oligotrophic black fungi, might serve as a pre-adaptation to facilitate 

the transition to a lichen symbiotic life style. A close relationship between lichens and black 

fungi is also suggested by molecular phylogenetic studies. Rock-inhabitants are basal to the 

large lichenized lineages of Arthoniomycetes and Verrucariales (Gueidan et al., 2008; Ruibal 

et al., 2009).  

In extant lichens, black pigments may be synthesized constitutively as part of development, 

e.g. the cilia of Heterodermia, in the lower cortex of genera such as Parmelia, or throughout 

the whole thallus in genera such as Bryoria.  In other cases, melanins are environmentally 

induced, for example by UV in the upper cortex of genera such as Lobaria (Solhaug and 
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Gauslaa, 2012). Melanins are now common in many species of lichens that live in a variety of 

habitats.  

 

Structure of lichen melanins 

The chemical nature of lichen melanins remains complex and unclear as this pigment 

generally consists of aromatic rings and several carboxylic groups (Fernandez and Koide, 

2014). However, the melanins of Lobaria pulmonaria (Matee et al., 2016) behave as classic 

DOPA melanins; they are extracted with NaOH, and precipitated with HCl. The resulting black 

precipitate readily dissolves in DMSO, and has an absorption spectrum resembling that of 

commercially available melanins. The low C: N ratio of these melanins (10:1) indicates that, 

as in humans, they were almost certainly synthesized from L-DOPA rather than hydroxylated 

naphthalene-derived molecules that produce “allomelanins” with a C: N ratio close to 100:1  

(Loganathan and Kalyanasundaram, 1999; Solano, 2014). Matee et al. (2016) suggest that this 

is a consequence of L. pulmonaria containing N2-fixing cephalodia that supply thalli with N. 

Interestingly, melanisation was accompanied by an increase in laccase rather than tyrosinase 

activity, suggesting that in L. pulmonaria DOPA may be polymerized by laccase, but more work 

is needed to confirm the melanin biosynthetic pathway in the species.  

The nature of melanins in non-Peltigeralean lichens remain uncertain, particularly in species 

that appear to synthesize constitutively high concentrations of melanins. While the pigments 

from some species for example, the very dark genus Bryoria, can readily be extracted by 

NaOH, they are not precipitated by acidification, making their chemistry difficult to study. 

Addition of FeCl3 to acidic solutions does however induce precipitation, and the C: N ratio of 

these precipitates is typically around 100:1, typical for allomelanins. This is consistent with 

these species containing green algae rather than N2 fixing cyanobacterial photobionts, and 

therefore having less available nitrogen to synthesize protective molecules. While similar 

soluble melanins are known from bacteria (Aghajanyan et al., 2005; Aghajanyan et al., 2011), 

it is premature to speculate on the nature of the darkly coloured pigments that occur in non-

Peltigeralean lichens. It is possible that they may differ significantly in chemical structure from 

other recognized fungal melanins. 
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Melanins compared with other light screening pigments 

The roles of secondary metabolites in light-screening was discussed above. Melanisation is 

particularly common in lichens growing in high stress environments  (Gostincar et al., 2012), 

and therefore intuitively, it seems likely that melanins will play a role in tolerance to high light. 

However, anecdotal observations suggest that lichens may use classic lichen substances such 

as usnic acid, atranorin and parietin more frequently than melanins to protect themselves 

against the effects of high light (Solhaug and Gauslaa, 2012). Interestingly, lichens with lichen 

substances or melanic compounds often coexist in open habitats, and some lichens with 

atranorin or usnic acid such as Cetraria and Cladonia additionally produce melanic 

compounds under very sun-exposed conditions (Solhaug and Gauslaa, 2012). The more 

widespread occurrence of secondary metabolites may be because they can play other roles 

in lichen biology e.g. as a result of their antibiotic properties (Molnár and Farkas, 2010). 

Another reason for the more widespread occurrence of secondary metabolites rather than 

melanins may be that melanisation can increase thalli temperature by up to 3 °C (McEvoy et 

al., 2007), possibly inducing heat stress. Secondary metabolites reflect rather than absorb 

PAR, and therefore have less effect on the heat balance of lichens. However, more work is 

needed to understand the relative advantages and disadvantages of melanins and secondary 

metabolites as sun screens in lichens. 

 

Lichens and thermoregulation 

There is some evidence that in free-living fungi melanins may protect lichens against heat 

stress. Examples include melanin-deficient mutants of Monilinia fructicola producing conidia 

that are more susceptible to high temperatures (Rehnstrom and Free, 1996) and in 

Cryptococcus neoformans, melanisation increasing tolerance to heat and cold stress (Rosas 

and Casadevall, 1997). Exactly why melanin reduces temperature stress is unknown, although 

it has been suggested that it reduces stress-induced ROS formation (Cordero and Casadevall, 

2017). It is currently unknown whether melanins increase the heat tolerance of lichens.  

It is important to distinguish the effects of temperature stress, and the effect of high light 

levels on thallus temperature. As discussed above, melanins are very effective at absorbing 

solar radiation and dissipating it “radiationlessly” in the form of heat. While this may reduce 
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ROS formation in the fungus, and shade the algae from high levels of PAR, a potential 

disadvantage of melanisation is that it increases thalli temperature  

 

Oxidative Stress 

A common property of all biological pigments is their ability to accept and neutralize 

exogenous free radicals  (McGraw, 2005). Melanins are powerful antioxidants. While no data 

is available on lichens, in free-living fungi they contribute to virulence by interfering with host 

defence factors, e.g. by neutralizing the oxidative burst of phagocytic cells (Schnitzler et al., 

1999). Fungal melanins can also protect from hypochlorite, permanganate and hydrogen 

peroxide (Jacobson et al., 1995). However, it is perhaps unlikely that mycobiont melanins can 

scavenge ROS from a photobiont. In future experiments, the effects of ROS generating agents 

on mycobiont and photobiont health in melanised and non-melanised thalli should be tested. 

 

Protection against desiccation 

Arguably, what makes lichens special, and what separates them from most other eukaryotic 

organisms, is their ability to tolerate desiccation, and then rapidly recover activity when 

rewetted (Beckett et al., 2008). Surprisingly, there has been no attempt to determine whether 

melanins contribute to desiccation tolerance in lichens. In the free-living fungus Cenococcum 

geophilum, inhibiting melanin synthesis increases susceptibility to osmotic stress and 

desiccation (Fernandez and Koide, 2014). Presumably, melanins increase desiccation 

tolerance by scavenging desiccation-induced ROS as discussed above, toughening cell walls, 

or by reducing the rate of drying by decreasing cell wall porosity. In lichens, melanins probably 

have trivial effect on desiccation tolerance in the photobiont. However, given our knowledge 

of free-living fungi, and the correlation of melanisation in fungi and lichens growing in 

extreme habitats (Gostincar et al., 2012), future studies should test the effect of melanisation 

on desiccation tolerance of the mycobiont. 

 

Protection against grazing 
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A wide range of invertebrates are known to feed on lichens (Gerson and Seaward, 1977). It is 

often considered that the main herbivore deterrents in lichens are the classic lichen 

substances such as usnic acid and atranorin (Solhaug and Gauslaa, 2012). However, in free-

living fungi, melanins can deter insect grazing by grazing. Scheu and Simmerling (2004) fed 

melanised (wild type) and pale mycelia of the ascomycete Aspergillus fumigatus to 

Collembola (“Springtails”). Growth and reproduction of the Collembola were low when 

feeding on the wild type but high when feeding on the melanin-deficient form, showing that 

melanin synthesis strongly affects the food quality of fungi for fungal feeding invertebrates. 

Collembola are also well known to graze lichens (Hale, 1972), and although not tested it seems 

likely that melanised lichen thallus will also be of lower quality than unmelanised. However, 

it remains unknown whether melanisation has any effect on the lichen grazing preference of 

lichens, or whether grazing stimulates melanin synthesis in lichens. More work is needed to 

assess the importance of melanisation in grazing resistance in lichens. 

 

Protection against pathogen attack 

The importance for melanisation in the resistance of lichens to attack by microbial pathogens 

is unknown. Recent research has shown that lichens are far more than a single fungus and a 

single cyanobacterium or green algae living together. Rather, it is better to view lichens as a 

micro-ecosystem inhabited by a variety of microorganisms in addition to the main photo- or 

mycobionts (Grube and Wedin, 2016). For example, Grube et al. (2015) reported that the 

lichen Lobaria pulmonaria contains 800 species of bacteria. Some bacteria and fungi that are 

regularly found on lichens appear to be beneficial, while others are harmful. There appear to 

have been no comparisons between the microbial flora of melanised and pale lichens. Also, 

it is unknown whether melanisation has any effect on the susceptibility of lichens to fungal or 

bacterial attack, or whether attack by pathogens stimulates melanin synthesis in lichens. 

However, studies carried out with free-living fungi suggests that melanisation may increase 

the resistance of lichen fungi. For example, melanisation increases the resistance of cell walls 

to hydrolytic enzymes capable of digesting the cell wall component (Potgieter and Alexander, 

1966; Bloomfield and Alexander, 1967; Kuo and Alexander, 1967). This implication is that if 

potentially harmful microorganisms are secreting hydrolytic enzymes, then melanised hyphae 

will be more resistant. Melanisation is also known to increase mechanical strength of fungal 
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cells walls (Nosanchuk et al., 2015), and will therefore increase the resistance of hyphae to 

e.g. physical attack by penetration pegs from pathogenic fungi. Clearly, more work is needed 

to assess the importance of melanisation in pathogen resistance in lichens. 

 

Tolerance to heavy metals 

Given the aromatic composition of fungal melanins, it is not surprising that they can form 

molecular interactions with many metals (Cordero and Casadevall, 2017). In free-living fungi, 

it has therefore been suggested that melanins are involved in heavy metal tolerance. 

Melanins exhibit both high binding affinity and capacity to many different metal ions. Metal 

binding involves interactions with carboxyl, amine, and hydroxyl functional groups of the 

pigment. Mg, Ca, and Zn, are coordinated preferentially by carboxyl, Cu by hydroxyl groups 

and iron by hydroxyl, amine, imine and acetate groups. It is likely that melanins are 

responsible for binding metals in lichens. For example, Williamson et al. (2004) used X-ray 

element mapping across a lichen-rock interface to show that in the lichen Trapelia involuta 

melanins are the likely molecules responsible for binding U, Fe, and Cu. However, there are 

no studies that show melanised lichens are more common on metal rich sites, or that metals 

can induce melanin biosynthesis. While Spagnuolo et al. (2011)  found that lichens suspended 

in a metal polluted area became melanised, this was more likely caused by exposure to high 

light. In addition, Siletti et al. (2017) showed that melanins tend to prevent fungal growth by 

scavenging heavy metals. Therefore, the significance for melanins in heavy metal tolerance 

requires further investigation. 

 

Introduction to the study 

The aims of the present study were as follows. First, an attempt was made to determine which 

kinds of melanins lichens contain. It was hypothesised that Peltigeralean lichens may 

synthesize high N-containing eumelanins because their photobionts are cyanobacterial, and 

they therefore having an excess of nitrogen from atmospheric nitrogen fixation. Other species 

may need to synthesize low N-containing allomelanin-like pigments. The second aim was to 

confirm that melanins do protect lichens from the high light stress. A range of lichens were  
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surveyed, comparing the sensitivity to high light of pale and melanised thalli from the same 

species growing close to each other. It was predicted that melanic thalli should be much more 

resistant to short term photoinhibition than pale thalli. 

Finally, we tested the “cost” of melanisation in Lobaria. While melanisation screen light, 

offering photoprotection, it was hypothesised that the efficiency of photosynthesis in 

melanised thalli could be reduced.  The implication of this would be that melanised lichens 

would be at a significantly disadvantage if light levels return to lower values, more typical for 

those habitats in which this shade adapted lichen is most abundant. The overall aim of the 

work described here was to increase our understanding of the role of melanins in lichen 

biology. 
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

__________________________________________________________________________ 
 

The general methods and techniques used for the collection and preparation of lichens, 

measuring of photosynthetic performance, and quantification of scytonemin are detailed 

below. Specific details on experiments carried out are given in the relevant Chapters. 

 

2.1 Lichen species and collection  

Lichen material was collected at various locations between June 2015 and May 2017. Only 

healthy thalli were selected for all experiments. Material of Lobaria pulmonaria was stored at 

-18 ℃ for c. 4 months before use. All the other lichen material was kept at – 20 ℃, typically 

for up to two weeks, until needed. Table 2.1 illustrates the description of study species and 

collection locality.  

Table 2.1: Location and brief description of study lichens. SA-South Africa. 

 

 

 

Taxonomic Order Species Collection locality 

Lecanorales Cetraria islandica (L.) Willd Langangen, Norway 

Lecanorales Parmelia cetrarioides Fort Nottingham reserve, SA  

Peltigerales Leptogium furfuraceum (Harm) 
Sierk. 

Monks Cowl, Fort Nottingham reserve, 
SA  

Peltigerales Lobaria pulmonaria (L.) Hoffm. Langangen, Norway 

Peltigerales Lobaria retigera (Bory) Trevis Monks Cowl, SA 

Peltigerales Peltigera aphthosa (L.) Ach Ås, Norway 

Peltigerales Peltigera membranaceae (Ach) 
Nyl 

Ås, Norway 

Peltigerales Pseudocyphellaria aurata (Ach) 
Vein. 

Monks Cowl, Fort Nottingham reserve, 
SA 

Peltigerales Pseudocyphellaria gilva (Ach) 
Malme 

Monks Cowl, Fort Nottingham reserve, 
SA 

Peltigerales Sticta sublimbata (J. Steiner) 
Swinscow and Krog 

Fort Nottingham reserve, SA 

Teloschistales Heterodermia speciosa (Wulfen) 
Trevis. 

Fort Nottingham reserve, SA 
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Figure 2.1a: Species used in this study. (A) Cetraria islandica (B) Heterodermia speciosa (C) 

Leptogium furfuraceum (D) Lobaria pulmonaria (E) Lobaria retigera and F) Parmelia 

cetrarioides collected from various locations. Copyright reserved (Kok van Herk, Adrea 

Aptroot, Mike, Papp Beata, Lokos Laszlo and Stephen Sharnoff). 
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Figure 2.1b: Species used in this study (continued). (G) Peltigera aphthosa (H) Peltigera 

membranaceae (I) Pseudocyphellaria aurata (J) Pseudocyphellaria gilva and (K) Sticta 

sublimbata. Copyright reserved (Kok van Herk, Adrea Aptroot and Stephen Sharnoff). 
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2.2 Induction of melanin  

Induction of melanin was attempted at two localities. The first locality was the Botanical 

Gardens, UKZN, Pietermaritzburg for a period of 3 to 6 weeks, as shown in Fig. 2.2. Initially, 

to acclimate lichens to high light, thalli (2-8 g) were exposed to 50% of ambient light for two 

weeks and then moved to 70% ambient light. In total, 120 thalli were used; 15 thalli were 

attached in each frame and each treatment consisted of two frames; in addition, thalli were 

kept in the freezer as a control. In a second experiment, thalli were treated with different light 

intensities in an open site where they were exposed to full sunlight, with no filter, placed 

beneath a neutral acrylic screen to test for the effect of the physical presence of the screen 

(+UV, 1.82 x 0.72 m, 3 mm thick), and beneath a polycarbonate screen (-UV, 1 x 1 m, 3 mm 

thick). In both experiments, the screens were placed 5 cm above the wooden frames where 

thalli were attached. The lichens were attached to a mesh net on the frames (47.5 x 54.5 cm) 

with black cotton thread.  

At the second locality, thalli of Lobaria pulmonaria were placed in an open site in Ås, Norway 

for four weeks to induce melanic pigments. Whole thalli (N=15) for both melanic, (exposed to 

open site) and non-melanic thalli (kept in the freezer, control) were attached with a cotton 

thread to wooden frames (15.9 × 15.9 cm2) covered with nylon mesh netting.  In experiments 

conducted in Pietermaritzburg, thalli were hydrated daily with distilled water before sunrise 

and after sunset. In Ås, thalli were sprayed with deionized water every morning at about 9:00 

a.m. and evening after sunset. Thalli were not watered on rainy days. In all experiments, 

replicate thalli were randomly attached in each frame and the treatments were randomized. 

The thalli were covered with a thin mesh wire to deter birds. The control treatment was kept 

in the freezer. 
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Figure 2.2: Experiment setup beneath normal light (control, no screen put above material), a 

+UV acrylic screen and a -UV polycarbonate screen to induce melanins.  

 

 

2.3 Quantification of lichen substances 

2.3.1 Melanins  

Thalli (1 g) were cleaned and placed in 25 ml Beckman centrifuge tubes. Exactly 20 ml 2 M 

NaOH was added, tubes left at room temperature overnight and then centrifuged twice for 

20 min at 5000 x g (Beckman Coulter, Avanti® J. E, centrifuge) and the pellet was discarded. 

The pH of the supernatant was reduced to pH 1 using 5 M HCl and melanins left to precipitate 

overnight. When acid precipitation was unsuccessful, melanins were precipitated using 0.1% 

FeCl3. In both cases, tubes were centrifuged at 5000 x g for 20 min and the supernatant 

discarded. The pellets were then washed successively with 5 ml of distilled water, chloroform, 

ethyl acetate and acetone. The pellets were dried at 60 °C and then for the melanins that did 

not require FeCl3, 15 - 25 mg re-dissolved in 1 ml DMSO. The method was conducted according 

to Ellis and Griffiths (1974) with modifications. 

 

2.3.2 Quantification of scytonemin using HPLC 
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Scytonemin was quantified on a 1200 Series HPLC with a 1040 M diode-array detector and a 

fraction collector G1364C (Agilent Technologies, Waldbronn, Germany) according to Garcia‐

Pichel et al. (1992) and Büdel et al. (1997a) with modifications . Approximately 10 - 20 mg of 

fine powder of L. retigera was ground with a ball mill (Retsch model MM400, Retsch GmbH 

Hann, Germany), and then transferred to an Eppendorf tube with 1.5 ml acetone. 

Subsequently, the samples were sonicated (VWR, ultrasonic cleaner) for 30 min at 30 ℃, 

centrifuged (Epperndorf, Centrifuge 5417 C) at 5000 x g for 3 min and 1 ml of supernatant 

collected. Then, 1.5 ml acetone added to the supernatant, sonicated for 15 min and 

centrifuged. The extracts were left to dry in a vacuum (Eppendorf, Concentrator plus) for 45 

min at 30 ℃, re-dissolved with 1 ml acetone, sonicated for 3 min, and then filtered using a 

syringe filter (13 mm, VWR International, (w/0.45 µm) PTFE membrane) with a 2 ml syringe 

(BD Plastipak™) into 1.5 ml pill vials. Samples (20 µl) were injected into the HPLC. Scytonemin 

was eluted by a binary gradient system of degassed solvents and was observed at 385 nm. 

Separation was achieved on an ODS Hypersil 4.6250 mm column (Agilent Technologies). 

Absorption spectra were recorded between 350 and 600 nm on the HPLC-separated peaks. 

Solvent A was distilled water, whereas solvent B consisted of 75% acetonitrile, 15% methanol 

and 10% tetrahydrofuran. The run started with 70% B for 11 min before increasing solvent B 

to 100% for 15 min. At the end of the run, solvent B was reduced to 85% within 1 min and the 

column flushed with 15% B for 5 min before the next run. A standard scytonemin solution 

collected from Collema was prepared using the fraction collector to collect the scytonemin 

peak from five HPLC runs with 50 µl injected each time. The scytonemin concentration was 

measured with a Shimadzu UV2001 PC spectrophotometer using the extinction coefficient 

112.6 L g-1 cm-1 at 384 nm. 

 

2.4 Determination of absorption spectra and nitrogen content 

Melanins from Peltigeralean and non-Peltigeralean species (Lobaria retigera, 

Pseudocyphellaria aurata, Heterodermia speciosa and Parmelia cetraioides) were prepared 

as per section 2.3.1. To determine the absorption spectra for melanins from Peltigeralean 

lichens, 15- 25 mg pellets were re-dissolved in 1 ml DMSO. The absorbance was read over 250 

and 700 nm (Cary 60 UV-Vis, Agilent Technologies). The measured spectra was compared to 

that of standard melanin published by Meeßen et al. (2013). To determine the C: N ratio of 
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the samples, three replicates of 0.6 - 1 mg were then packed in a foil and analyzed using the 

vario MICRO cube Elementar.  

 

2.5 Measurements of Photosynthesis 

Comparisons were made between pale (non-melanic) and melanic thalli at different light 

intensities. A few randomly selected thalli are shown below. 

 

Figure 2.3: Differences in non-melanic (row A, C) and melanic (row B, D) thalli of Lobaria 

pulmonaria (A, B) and Lobaria retigera (C, D).  
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2.5.1 Gas-exchange measurements 

Before all photosynthetic measurements, thalli were moistened with distilled water and 

acclimated at 15 ℃ under low light (c. 10 μmol m-2 s-1) until the next day. Photosynthetic O2 

evolution was measured using an O2 electrode chamber (model LD2, Hansatech, King’s Lynn, 

Norfolk, UK) with a red LED light source (model LH36/2R, Hansatech) at 20 ℃ and 5% CO2. 

Photosynthetic CO2 uptake was measured with a portable infrared gas-analyzer (LI-6400XT, 

LiCor, Lincoln, NE, USA) with a LiCor 6400-24 bryophyte chamber and a LI-6400-18 RGB LED 

light source. In all gas-exchange measurements white light, derived from a mixture of red, 

green and blue LEDs was used. Before measurement, thalli were acclimated for 10 min at 

room temperature at 200 μmol m-2 s-1 from an LED light-source panel (Model SL-3500, Photon 

System Instruments, Brno, Czech Republic) with equal irradiances from blue, green and red 

light. They were then fully hydrated by spraying with distilled water and blotted with filter 

paper to remove superficial water. CO2 uptake was measured at 200 μmol m-2 s-1 until stable 

and optimal thallus water contents were reached (assessed by typical maximal rates of 

photosynthesis). Unless indicated otherwise, measurements were made at a flow rate of 200 

ml min-1 of 400 ppm CO2 at a light level of 200 photons m-2 s-1. 

 

2.5.2 The effect of temperature and thallus water content on photosynthetic CO2 uptake 

Thalli were equilibrated for 10 min after each change in temperature before measurements 

were taken. Rates of photosynthesis at 15, 20, 25 and 30 ℃ were 2.11 ± 0.75, 1.68 ± 0.54, 

1.63 ± 0.50 and 1.46 ± 0.45 μmol CO2 m-2 s-1 (n = 5). While the optimum temperature for 

carbon fixation was thus 15 ℃, the temperature inside the IRGA cuvettes was much easier to 

control at 20 ℃ and rates were only slightly lower than those at 15 ℃. Furthermore, 

occasional condensation occurred in the leaf chamber at 15 ℃. Therefore, all subsequent 

carbon fixation measurements were carried out at 20 ℃. To measure the effect of thallus 

water content on photosynthesis, thoroughly wetted thalli (c. 4 cm2) were blotted to remove 

excess water, weighed to obtain the maximum water content, and then put into the IRGA 

cuvette. After stabilization, three measurements were made at 10 s intervals, and then thalli 

removed from the cuvette and again weighed. This was repeated until the thalli displayed no 

net photosynthesis, at which point they were dried overnight at 70 ℃ and weighed. The 
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relative water contents (RWC) of the thalli at each sampling interval were calculated as 

described by Beckett (1995). 

 

 

2.5.3 Determination of the light response curves of photosynthetic CO2 uptake  

For O2 production, each thallus was exposed to irregular increasing irradiances in steps of 1 

min from 0 to 500 μmol photons m-2 s-1, and O2 production measured during the last 30 s of 

each step. For CO2 uptake, thalli were placed into the cuvette, and when net photosynthesis 

(A) was stable at 200 μmol photons m-2 s -1, they were exposed to light levels of 0, 25, 50, 75, 

100, 200, 400 and 600 μmol photons m-2 s -1. CO2 uptake was logged when A was stable, 

typically about 2 - 3 min after changing the light level. Quantum yield (QY) of CO2 uptake was 

estimated with the Photosynthesis Assistant (Dundee Scientific Ltd., Scotland, UK) software. 

 

2.5.4 Chlorophyll fluorescence measurements (for comparison of pale and melanised 

thalli) 

Chlorophyll fluorescence was measured using the red version of the Imaging PAM fluorimeter 

(Walz, Effeltrich, Germany). To determine the effect of light level on ETR, six thalli, three 

controls and three melanised, were measured simultaneously. Thalli were hydrated for c. 24 

h in dim light (10 μmol photons m-2 s -1) and then acclimated for 5 to 10 min at 200 μmol 

photons m-2 s-1 red light from an LED panel (Model SL-3500, Photon System Instruments, Brno, 

Czech Republic). Rapid light response curves of ETR were then measured by increasing the 

actinic light in 14 small steps over 7 min from 0 to 400 μmol photons m-2 s-1 with saturating 

flashes at the end of exposure to each light level. ETR was calculated as: 

ETR = ∅ PSII x light intensity x 0.5 

To determine maximal efficiency of PSII, (Fv/Fm), and for quenching analysis, thalli were 

initially dark-adapted at room temperature for 10 min. At the start of a run, a saturating flash 

was applied to determine Fv/Fm. An actinic light of 186 μmol photons m-2 s-1 was then turned 

on, and saturating flashes was applied every 30 s for 12 min until fluorescence yields had 
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stabilized. The actinic light was then turned off, and relaxation measured for 15 min with 

saturating flashes given at increasing intervals. NPQ was calculated after 12 min using the 

formula suggested by Bilger et al. (1995): 

NPQ = (Fm - F’m)/F’m 

 

2.5.5 Determination of chlorophyll content 

Chlorophylls were extracted as described by Palmqvist et al. (1998). All steps were done under 

dim light. Dry thalli (10 - 20 mg) were homogenized in a ball mill (Retsch model MM400, 

Retsch GmbH Hann, Germany). Weighed samples were extracted with 1.5 ml DMSO in an 

Eppendorf tube. The Eppendorf tube was then sonicated in a VWR Ultrasonic water bath 

(Ultrasonic cleaner, USC 200TH) at 60 ℃ for 40 min and then centrifuged at 16 400 x g for 3 

min. The absorbance of the supernatant was then measured. The chlorophyll content was 

determined using the formulae of Wellburn (1994).   

 

2.5.6 Determination of xanthophyll cycle (VAZ) pigments 

Thalli were stored at -80 ℃ until extraction, and then 50 - 100 mg put into 1.5 ml of DMSO in 

Eppendorf tubes and extracted for 48 h in darkness. The solution was filtered and analyzed 

by HPLC (Agilent 1100 HPLC system, Diode array detector) with an ODS Hypersil 250 x 4.6 mm 

column according to the method of Niinemets et al. (1998). Standards were made by 

separating chloroplast pigments on TLC. Violaxanthin was scraped off the TLC plate, dissolved 

in ethanol, and the concentration of measured spectrophotometrically as described by (Hager 

and Meyer-Bertenrath, 1966) This pure violaxanthin extract was used as a standard in the 

HPLC for the other xanthophylls because violaxanthin, antheraxanthin and zeaxanthin have 

very similar extinction coefficients (Hager and Meyer-Bertenrath, 1966). 

 

2.6 Measurement of the photoinhibitory response 

2.6.1 Sample preparation 
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A day before each experiment, 2 cm disks were cut, or for small thalli, thallus fragments 

selected. Lichens were stored overnight on wet filter paper in petri dishes under dim lighting 

(5 µmoles m-2 s-1) at a cool temperature (15 ℃, thermostatically controlled room). Before high 

light treatment, chlorophyll fluorescence parameters were measured, and then material 

either slowly dried for 4 h, or used immediately. 

 

2.6.2 Chlorophyll fluorescence measurements (for assessing effects of photoinhibition) 

Chlorophyll fluorescence was measured using the red version of the PAM 2000 fluorometer 

(Walz, Effeltrich, Germany) in Norway and the FMS2 chlorophyll fluorometer in 

Pietermaritzburg (Hansatech instruments, King’s Lynn, England). To determine maximal 

efficiency of PSII, (Fv/Fm) and φPSII or ETR, thalli were initially dark-adapted at room 

temperature for 10 min. At the start of a run, a saturating flash was applied to determine 

Fv/Fm. Thalli were then exposed to PAR at 30 µmoles m-2 s-1 for 10 min, and then another 

saturating flash applied to estimate ɸPSII.  

 

2.6.3 High light stress 

High light stress was given using a white LED light-source panel (Model SL-3500, Photon 

System Instruments, Brno, Czech Republic). The light was given at 800 - 1000 µmoles m-2 s-1 

until the maximum quantum yield of PSII photochemistry (Fv / Fm) was reduced from values 

of around 0.5 - 0.7 to 0.2 - 0.4, with each species needing different times. 

Chlorophyll fluorescence measurements were made in moist material before high light 

treatment (“time zero”), at the end of the high light treatment, and then at intervals for up to 

24 h. Thalli exposed to high light in the dry state were rapidly hydrated following exposure by 

placing them on moist filter paper and spraying with distilled water. During recovery, lichens 

were maintained at room temperature (20 ℃) and dim lighting (5 µmoles m-2 s-1) as 

recommended by Gauslaa et al. (2017). 
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2.7 Reflectance measurements to estimate melanin content 

Reflectance spectra of the upper cortex were recorded on dry thalli as described by Solhaug 

et al. (2003). Briefly, an integrating sphere (model ISP-50-REFL OceanOptics, NL-6961 LL 

Eerbeek, The Netherlands) was pressed against the thalli, and the thalli then illuminated by a 

halogen lamp (model DH2000, OceanOptics) through a 600 μm optical fibre (thick) connected 

to the input port of the integrating sphere. Reflectance (400 - 1050 nm) was measured with 

a spectrometer (model SD2000, OceanOptics) connected to the output port of the sphere 

with a 400 μm fibre. Reflection was calculated relative to a reference spectrum derived from 

a white reference tile (WS-2, OceanOptics). BRI, calculated as (1/R550 - 1/R700)/R750) 

(Chivkunova et al., 2001), was used as a quantitative estimate of melanic compounds. 

 

2.8 Statistical analysis 

The best-fit curve for the effect of relative water content on photosynthesis were determined 

using SigmaPlot version 11. Quantum yields of photosynthetic CO2 uptake and O2 evolution 

were estimated with the software Photosyn Assistant version 1.1, Dundee Scientific. Light 

response curves for O2 evolution were also fitted with Photosyn Assistant. All contrasts 

between melanised and control thalli were tested with ANOVA. The rest of the experiments 

were statistically analysed using regression analysis and t-tests. The statistics were performed 

using IBM SPSS statistic v24. 
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CHAPTER 3: THE EFFECT OF THE VARIOUS LIGHT REGIMES ON THE 

INDUCTION OF MELANINS AND THE STUDY OF MELANIN PROPERTIES 

__________________________________________________________________________ 

 

3.1 Introduction 

The structure and roles of fungal melanins were reviewed in Chapter 1. Perhaps the only 

specifically lichen melanin to be investigated in detail is that of Lobaria pulmonaria (Matee et 

al., 2016). As discussed in Chapter 1, L. pulmonaria possesses a chlorophycean photobiont 

with cyanobacterial cephalodia, and melanin is synthesized by the mycobiont, mainly in 

response to UVB. Chemical analysis of purified melanin from the species strongly indicated 

that it was “eumelanin”. The aim of the experiments described in this chapter was to test if 

cyanobacterial and green algal lichens possess different types of melanins, specifically 

eumelanins (derived from 3, 4- dihydroxyphenylalanine) and allomelanins (derived from 1, 8-

dihydroxynaphthalene) respectively. The properties of lichen melanins were compared to 

those from free-living fungi. The ability of various light regimes to induce melanins in several 

lichens were also tested. Lastly, the presence of scytonemin, a compound that screens UV, 

was tested (Büdel et al., 1997b). 

 

3.2 Methods 

3.2.1 Sample preparation to determine melanin properties 

Melanised material of Leptogium furfuraceum, Pseudocyphellaria gilva, Heterodermia 

speciosa and Parmelia cetrarioides were collected directly from their natural habitat at Fort 

Nottingham and Monks Cowl, KwaZulu Natal. A fresh mass of 1 g was extracted for   melanins 

as described by Ellis and Griffiths (1974) with slight modifications as described in Chapter 2. 

In Lobaria retigera and Pseudocyphellaria aurata, melanins were induced in a transplant 
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experiment as described below. The nitrogen content was determined after the melanins 

were extracted, using three replicates of 0.6-1 mg in the vario MICRO cube Elementar. 

Furthermore, samples were dissolved in DMSO and the absorption spectrum  measured 

according to Meeßen et al. (2013). 

3.2.2 Transplant experiment to induce melanin   

The aim of the experiment was to acclimatize the lichens Pseudocyphellaria aurata and 

Lobaria retigera to high light conditions to induce melanin as described in Chapter 2, section 

2.2. Initially, 20 whole thalli were randomly selected. The thalli were fastened with cotton to 

wooden frames (two replicate frames for each treatment) covered with a nylon mesh net. 

Each frame (47.5 x 54.5 cm) had 10 thalli attached. The thalli were initially exposed to 50% 

ambient light and then 70% ambient light under shade cloth.  For both P. aurata and L. 

retigera, thalli were exposed for three weeks to 50% ambient light and for six weeks to 70% 

ambient light. Before moving the material to 70% ambient light, chlorophyll fluorescence was 

measured. In a second experiment, new thalli of Lobaria retigera were prepared as described 

above. The thalli were exposed to full sunlight (normal ambient light), beneath a +UV acrylic 

screen and beneath a -UV polycarbonate screen for three weeks. In both experiments, the 

control treatment were thalli kept in a freezer at -20 ℃. Lichens were sprayed daily in the 

mornings and evenings with distilled water, except on rainy days. Measurements of 

chlorophyll fluorescence parameters were taken at the start and at the end of the 

experiments. Thereafter, scytonemin was quantified as explained in Chapter 2, 2.4.2. 

 

3.3 Results  

3.3.1 Properties of melanin 

The properties of melanins from the lichens screened are given in Table 3.1.  The melanins in 

Peltigeralean lichens were synthesized along the thalli margins and lichen body while in non-

Peltigeralean lichens, the lower cortex and cilia were pigmented. In Peltigeralean lichens, 

melanins were precipitated by the addition of HCI, while Heterodermia speciosa and Parmelia 

cetrarioides precipitation required FeCl3. Only melanins of the Peltigeralean group could be 

re-dissolved in DMSO. The melanins from Leptogium furfuraceum and Pseudocyphellaria 

aurata absorbed light strongly from 280 to 380 nm (Figure 3.1).  
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Table 3.1: General properties of melanised Peltigeralean and non-Peltigeralean lichens. 
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Species Pigmentation 
Location 

Precipitate  
solution 

Solubility 
(d.H2O,  
chloroform, ethyl 
acetate acetone) 

Pigment 
colour 

Peltigerales     

Leptogium furfuraceum lichen body HCl insoluble pale green 

Lobaria retigera Marginal HCl insoluble dark green 

Pseudocyphellaria aurata Marginal HCl insoluble 
 

green 

Pseudocyphellaria gilva lichen body HCl insoluble brown 

Non-Peltigerales     

Heterodermia speciosa 
 

Cilia FeCl3 insoluble brown/ 
black 

Parmelia cetrarioides 
 

lower cortex FeCl3 insoluble brown/ 
black 
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Figure 3.1: Absorption spectra (250 nm – 700 nm) of melanins extracted from 

Pseudocyphellaria aurata and Leptogium furfuraceum.  

3.3.2 The induction of melanin  

Table 3.2 gives the visual observations recorded during the experiment. Thalli of L. retigera 

melanised slowly, although some thalli seemed to experience photooxidation as they 

melanised. Increasing the light intensity to 70% of ambient light induced melanisation in P. 

aurata after four weeks. 

 

Table 3.2: Morphological changes observed in Pseudocyphellaria aurata and Lobaria retigera 

during exposure to different light intensities. Light treatments were: 50% ambient light, 70% 

ambient light, full sunlight (normal ambient light), -UV (lichens placed below a polycarbonate 

screen) and a +UV (lichens placed beneath an acrylic screen).  

Species Light 
treatment 

Period of exposure 
(weeks) 

Observation 

P. aurata    

Experiment 1 50% 0 - 3 No changes 
 70% 0 - 4 Slow browning of the thalli margins, thalli 

appeared healthy 
  5 - 6 Thalli started to bleach 

L. retigera    

Experiment 1 50%  0 - 3 Slow browning observed at centre of thalli 
body 

 70% 0 - 5 
 

Browning of the thalli margins, after fifth week 
50 % of the thalli appeared damaged. 

  6 80 % of the thalli damaged 
Experiment 2    
 Full sun  0 - 3 60 % of the thalli appeared brown, 40 % 

bleached 
 +UV  0 - 3 Rapid browning of the thalli margins, thalli 

appeared healthy 
 -UV 0 - 3 Browning started after the second week 
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Exposure to 70% ambient light reduced ETR in P. aurata, while NPQ increased (Figure. 3.2a). 

In L. retigera, thalli exposed to 50% and 70% ambient light behaved similarly, however, at c. 

320 µmol m-2 s-1, ETR in material exposed to 70% ambient light increased (Figure 3.2b). 
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Figure 3.2a: The ETR and non-photochemical quenching (NPQ) of Pseudocyphellaria aurata. 

Values are given ±S.E., n =15. Treatments were the control (closed circle), 50% ambient light 

(open square) and 70% ambient light (closed triangle).  
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Figure 3.2b: The electron transport rate of Lobaria retigera at different light regimes. Values 

are given ±S.E., n =15. Treatments were the control (closed circle), 50% ambient light (open 

square) and 70% ambient light (closed triangle).  
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In the second experiment, exposure of L. retigera to different light regimes was studied. All 

treatments sharply reduced the ETR, however values for thalli beneath +UV ETR were slightly 

higher than -UV, Figure 3.3. 
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Figure 3.3: Electron transport rate of Lobaria retigera acclimatised at different light regimes. 

Values are given ±S.E., n =15. Treatments were the control with untreated thalli (closed circle), 

full sun (open square), beneath a screen that allowed +UV light through (closed triangle), and 

beneath a screen that blocked -UV light (closed square).  

 

3.3.3 Determination of nitrogen content in lichen melanins 

The melanins from Peltigeralean lichens had much higher nitrogen contents than those from 

non-Peltigeralean lichens (Table 3.3). 
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Table 3.3: Comparison of carbon to nitrogen content in the melanins from Peltigeralean and 

non-Peltigeralean lichens.  

Species  C: N 

Peltigerales  

Lobaria retigera 6.80 

Pseudocyphellaria aurata 10.69 

Non-Peltigerales  

Parmelia cetraioides 222.62 

Heterodermia speciosa 155.30 

 

 

3.3.4 Quantification of scytonemin in Lobaria retigera 

Scytonemin was present in very low amounts in L. retigera. The HPLC only showed traces of 

scytonemin compared with extracts from the lichen Collema. During the test runs, there 

appeared copious amounts of chlorophyll and a few unknown lichen substances. The amount 

of scytonemin under a -UV polycarbonate screen was increased compared to when exposed 

to full sun. It was lowest when exposed to +UV acrylic screen. 
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Figure 3.4: HPLC illustration of scytonemin content extracted from Lobaria retigera with a 

retention time of ± 6 min. The standard was prepared from a Collema spp. at 385 nm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Scytonemin content in Lobaria retigera.  Values are given ±S.E., n = 15. Treatments 

were the control (kept in the freezer), full sunlight (normal ambient light), a -UV 

polycarbonate screen and a +UV acrylic screen.  
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3.4 Discussion 

Melanins prepared here were insoluble in organic solvents, except melanins from 

Peltigeralean lichens which solubilized only in DMSO (Table 3.1). The absorption spectra of 

these melanins showed that they absorbed light strongly from 280 to 380 nm, corresponding 

to the UVB and a portion of UVA wavelengths. The solubility and spectral properties of 

melanin are similar to those reported by  Meeßen et al. (2013) from  Buellia frigida and 

Rhizocarpon geographicum.  

The ETR data from experiment 1 (Figure 3.2a, b) show that thalli were damaged by exposure 

to 50% and then 70% light, although for P. aurata NPQ did increase, possibly due to the 

synthesis of xanthophyll cycle pigments. The pool size of xanthophyll cycle pigments is often  

positively correlated with NPQ (Baker, 2008). Exposure of L. retigera to 70% light slightly 

reduced ETR (Figure 3.3). At this light intensity, L. retigera melanised more strongly than 

following exposure to 50% light. Success in inducing melanins here was probably a 

consequence of hydration in the morning and evening following the recommendations of 

Gauslaa and Solhaug (2001). In experiment 2, exposure of L. retigera to various light regimes 

all greatly reduced ETR (Figure 3.3). This is probably due to damage to the photosystem II, 

and suggests that alternative ways need to be found of studying the induction and effects of 

melanisation in this species. 

The low C: N ratio of the melanins from the two Peltigeralean species studied here (c. 10:1) 

(Table 3.3) indicates that, as in humans, they were almost certainly synthesized from L-DOPA 

rather than hydroxylated naphthalene-derived molecules that produce “allomelanins” with a 

C: N ratio close to 100:1  (Loganathan and Kalyanasundaram, 1999; Solano, 2014). Results 

were consistent with those obtained by Matee et al. (2016)  with L. pulmonaria. Matee et al. 

(2016) suggest that ability of Peltigeralean lichens to synthesise eumelanins is a result of their 

containing N2-fixing cyanobacteria to boost the supply of N to the thalli. The much lower N 

contents of the melanins from the non-Peltigeralean species suggests that they were probably 

allomelanins, although more work is required to confirm this. 
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Only very small quantities of scytonemin were found in L. retigera, and it is clear that this 

lichen substance is not the main sunscreen (Figures 3.4 and 3.5). In some cyanobacteria, 

scytonemin does play a photoprotective role (Büdel et al., 1997b; Rastogi et al., 2013). Rather, 

it seems likely that melanin is the main photoprotectant, although to confirm this more work 

is needed. Interestingly, L. retigera has been reported to synthesize the secondary metabolite, 

thelephoric acid (Shukla et al., 2014), although its photoprotective role in lichens is not 

known.  

 

3.5 Conclusion 

It can be concluded that in South Africa the transplant method used was not a successful way 

of studying melanin induction. Chlorophyll fluorescence measurements showed that 

transplanting lichens often caused severe stress. Results contrasted with the similar 

experiment of Matee et al. (2016) and Chapter 4, where melanins were successfully induced 

in Lobaria pulmonaria in Norway, presumably because conditions were less harsh. However, 

in the South African studies some melanins synthesis was induced, and it was possible to 

study their properties. In the Peltigeralean species, melanins were extracted by alkaline 

solutions and precipitated by HCl, consistent with them being DOPA melanins. This was also 

supported by their high N content. The type of melanins possessed by non-Peltigeralean 

lichens remains unclear, although they could be DHN melanins.  
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CHAPTER 4: MELANISATION IN THE OLD FOREST LICHEN LOBARIA PULMONARIA (L) 

HOFFM. REDUCES THE EFFICIENCY OF PHOTOSYNTHESIS 

 

4.1 Introduction 

Lichens with classic lichen substances or melanic compounds often coexist in open habitats, 

and some lichens with atranorin or usnic acid such as Cetraria and Cladonia additionally 

produce melanic compounds under very sun-exposed conditions (Solhaug and Gauslaa, 

2012). While lichens appear able to effectively protect themselves against high light, very little 

information is available on the resulting metabolic cost. There is some evidence that synthesis 

of classic lichen substances may reduce the efficiency of photosynthesis. In X. parietina, the 

quantum yield of photosynthetic O2 evolution in blue light was lower in control thalli than in 

parietin-free thalli, although under red light the quantum yield did not differ between control 

and parietin-free thalli (Solhaug and Gauslaa, 1996). However, the cost to lichens of 

synthesising cortical melanins is unknown.  

The aim of the work presented here was to study the cost of photo-protection by melanic 

pigments in the lichen Lobaria pulmonaria. The species has a wide distribution in Europe, Asia, 

North America and Africa, preferring damp habitats with high rainfall, especially in coastal 

areas (McCune and Geiser, 1997). L. pulmonaria normally grows in relatively shaded habitats. 

The average light level throughout the whole year for the habit where the L. pulmonaria 

grows can be as low as 14 μmol m-2 s-1, although it is ten times higher on the exposed side of 

tree trunks (Gauslaa and Solhaug, 2000). However, at times lichens may be exposed to higher 

light levels, for example following leaf fall in autumn. Lichens will receive more light when 

openings in forests occur, for example because of tree fall, or where local conditions such as 

avalanches, poor soils, or fire damage create semi-permanent clearings. While L. pulmonaria 

upregulates NPQ and xanthophyll cycle pigments in response to increased exposure to PAR 

and UV  (MacKenzie et al., 2002), the most important adaptation is probably the synthesis of 

cortical melanin pigments (Solhaug et al., 2003) Here, a variety of techniques were used to 

compare photosynthetic performance in melanised and nonmelanised thalli. We were 

particularly interested in studying the effect of melanisation on the efficiency of 

photosynthesis at lower light levels i.e. the “quantum yield.”  
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4.2 Materials and Methods 

4.2.1 Lichen Material  

L.  pulmonaria was collected from the trunks of oak trees c. 5 m above the ground in an old 

oak forest at Langangen, Norway (59° 06 43 N, 9° 50 05 E, 140 m above sea level) in June 2015 

and April 2016. After storage at -18 ℃ for c. 4 months, half of the thalli were placed in an 

open site in Ås for four weeks to induce melanic pigments. They were sprayed with distilled 

water on days without rain. The other half of the thalli remained in the freezer as controls. 

Non-melanic (control) and melanic thalli with ten replicates each, were randomized within 

the two groups before start of experiments.  

 

4.2.2  Comparison of melanised and non-melanised thalli 

Light response curves were measured with infra-red gas analysis, the O2 electrode chamber, 

and chlorophyll fluorescence as described in Chapter 2. Initially, the effect of temperature 

and thallus water content on photosynthetic CO2 uptake was determined to ensure optimal 

conditions were used. Reflectance spectra of the upper cortex (dry thalli), the chlorophyll 

content, and the concentrations of VAZ pigments were measured in melanised and non-

melanised thalli as described in Chapter 2. 

4.2.3 Statistical analysis 

Best-fit curve for the effect of relative water content on photosynthesis were determined 

using SigmaPlot version 11. Quantum yields of photosynthetic CO2 uptake and O2 evolution 

were estimated with the software Photosyn Assistant version 1.1, Dundee Scientific. Light 

response curves for O2 evolution were also fitted with Photosyn Assistant. All contrasts 

between melanised and control thalli were tested with t-tests carried out with the “R” open 

source programming language 

 

4.3 Results 

4.3.1 Measure of photosynthetic efficiency using Infra-red gas analysis 

The optimum RWC for carbon fixation was between 30 and 60% (Figure 4.1). Carbon fixation 

in both non-melanised and melanised thalli increased linearly from 0 to 75 μmol photons m- 

2 s-1 (Figure 4.2). The quantum yield of photosynthetic CO2 uptake, assessed as the initial slope 
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of the graph, was more than 40% lower in melanised thalli (Table 4.1). However, maximum 

rates (at c. 400 μmol photons m-2 s-1) did not differ significantly between non-melanised and 

melanised thalli. 
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Figure 4.1: Photosynthetic CO2 uptake at 200 μmol photons m-2 s-1 as a function of relative 

water contents in four thalli of Lobaria pulmonaria during dehydration. 
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Figure 4.2: Light response curves for photosynthetic CO2 uptake for melanic (closed symbols) 

and control (open symbols) thalli of Lobaria pulmonaria. Each curve is the mean of light 

response curves for 15 thalli and error bars show ±SE. 

 

4.3.2 Photosynthetic O2 evolution 

The quantum yield of photosynthetic O2 evolution was more than 40% lower in melanised 

thalli (Table 4.1), whereas maximum rates of O2 uptake were not significantly different (Figure 

4.3). 
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Figure 4.3: Light response curves for photosynthetic O2 evolution for melanic (closed symbols) 

and control (open symbols) thalli of Lobaria pulmonaria. Each curve is the mean of light 

response curves for six thalli and error bars show ±SE. 

 

4.3.3 Chlorophyll Fluorescence measurements 

Fv/Fm was similar in both non-melanised and melanised thalli, and NPQ was about 20% lower 

in melanised thalli (Table 4.1). The relative ETR of non-melanised and melanised increased 

with irradiance in a same way; at irradiances higher than 200 μmol photons m-2 s-1 relative 

ETR started to decline (Figure 4.4). 
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Figure 4.4: Light response curves of electron transport rate (circles) and PSII yield (squares) 

for melanic (closed symbols) and control (open symbols) thalli of Lobaria pulmonaria. Each 

curve is the mean of light response curves for 15 thalli and error bars show ±SE. 

 

4.3.4 Reflectance measurements 

Melanic thalli had lower reflectance compared with the non-melanic thalli across most 

wavelengths, particularly in the red and infra-red portions of the spectrum (Figure 4.5, Table 

4.1). Overall, thalli used in 2015 were more melanised than those used in 2016. 
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Figure 4.5: Percent reflectance from melanic (black lines) and pale control (grey lines) thalli of 

Lobaria pulmonaria. Each line is the mean of 15 thalli and the dotted lines show ±95% 

confidence intervals. 

 

4.3.5 Chlorophylls and VAZ pigments 

There was a tendency for higher contents of the pool size of VAZ pigments in melanised thalli 

(P=0.078, t-test). The chlorophyll a/b ratio was higher in melanised thalli than in pale control 

thalli (Table 4.1), whereas there were no differences in the concentrations of chlorophyll. 
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Table 4.1: Effect of melanisation by high light exposure on various parameters in Lobaria 

pulmonaria. Values shown are mean values ±SE and n=6 to n=15. Different letters on control 

and melanic mean values indicate significant differences analysed by t-test (P > 0.05). 

 2015 experiment 2016 experiment 
 Control Melanic Control Melanic 

QY CO2 uptake   0.025 ± 0.001a 0.014 ± 0.001b 
QY O2 evolution 0.071±0.07a 0.041±0.05b   
Chl a+b mg g-1     1.76 ± 0.05a 1.54 ± 0.04b 
Chl a+b mg m-2 82.30 ± 4.52a 84.46 ± 5.56a   
Chl a/b    2.90 ± 0.06a 3.06 ± 0.05b 3.07 ± 0.02a 3.16 ± 0.03b 
VAZ mg g-1   0.19 ± 0.02a 0.25 ± 0.03a   
Fv/Fm   0.672 ± 0.003a 0.661 ± 0.005a 
NPQ   4.26± 0.15a 3.47 ± 0.18b 
BRI   2.91 ± 0.68a 15.55 ± 2.50b 
Reflectance VIS    14.54 ± 0.65a 9.75 ± 0.46b 
Reflectance NIR   63.53 ± 1.31a 50.06 ± 1.83b 

 

 

4.4 Discussion 

The lichen Lobaria pulmonaria typically grows in rather wet habitats, often in coastal areas, 

and on the more shaded sides of trees (McCune and Geiser, 1997). As discussed earlier, when 

exposed to high light, L. pulmonaria is well known to protect itself by synthesising cortical 

melanins  (Matee et al., 2016). Various parameters indicate that the photobionts of melanised 

thalli are healthy. Chlorophyll contents and maximum rates of photosynthesis are high (Table 

4.1, Figure 4.2), while chlorophyll fluorescence analysis showed that the maximum quantum 

yield and relative electron transfer rates are similar in non-melanised and melanised thalli 

(Table 4.1, Figure 4.3). However, at light levels lower than 100 μmol photons m- 2 s-1, 

melanisation reduces CO2 fixation by more than 40% (Table 4.1, Figures 4.2, 4.3). The main 

conclusion of the data presented in this chapter is that although melanisation effectively 

reduces high-light stress in lichen photobionts, should light availability fall e.g. by seasonal 

changes, canopy closure or re-growth of plants surrounding the host tree, it is highly likely 

that growth will be reduced. 
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Optimal conditions for photosynthesis  

Preliminary experiments were carried out to determine the optimum conditions for CO2 

fixation. For the material used in the present experiment, the optimal RWCs were between 

30 and 60% (Figure 4.1). This is very similar to the optimum absolute water content of 100% 

reported by Scheidegger et al. (1995), the only other published study on the effect of water 

content on photosynthesis in L. pulmonaria. At higher water contents photosynthesis was 

depressed, presumably because “oversaturation” reduces the rate that CO2 can diffuse to the 

photobionts (Cowan et al., 1992). The temperature optimum for photosynthesis in a given 

lichen is remarkably plastic (Domaschke et al., 2013), but for the present material was 15oC. 

However, as discussed in Materials and Methods (Chapter 2), photosynthesis at 20oC was only 

slightly lower, and for practical considerations, this temperature was used in subsequent 

experiments. 

Melanisation in L. pulmonaria 

Cortical melanins in L. pulmonaria are produced following exposure to high light, and here 

were quantified by spectral reflectance in the 400 – 1050 nm region (Figure 4.5, Table 4.1). 

The “browning index” or BI increased by more than five times in melanic thalli. Recently, 

Matee et al. (2016) identified the melanins in L. pulmonaria as being of the DOPA melanin 

type. In Chapter 3, DOPA melanins were identified in L. retigera, based on the C: N ratio, 

suggesting that DOPA melanins are common in this genus. 

Effect of melanisation on photobiont health 

A variety of measurements indicated that photobiont health is normal in melanised thalli. 

Chlorophyll fluorescence analyses showed that the maximum efficiencies of PS II (Fv/Fm) are 

similar in non-melanised and melanised thalli (Table 4.1). Total chlorophylls were slightly 

lower in melanised thalli, while the ratio of Chl-a/b showed a small but significant increase 

(Table 4.1). These changes are typical responses of photobionts to high light; similar results 

have been obtained from comparisons shade and sun (but not melanised) thalli of L. 

pulmonaria (Pannewitz et al., 2002). Taken together, results suggest that melanins effectively 

protected the photobionts against the effects of high light. 

Effect of melanisation on photobiont carbon fixation 
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While the photobiont cells showed no evidence of damage, measurements made with IRGA 

and the O2 electrode showed that at light levels up to 100 μmol m-2 s-1 melanisation reduced 

the quantum yield of photosynthesis by more than 40% (Figures 4.2 and 4.3). While ETR 

estimates derived by chlorophyll fluorescence suggest that the quantum yields of non-

melanised and melanised thalli are the same (Table 4.1), this is an artefact of chlorophyll 

fluorimetry. ETR estimates from chlorophyll fluorescence are calculated as the product of light 

intensity and the quantum yield of PSII during exposure to light (ΦPSII), with ΦPSII being the 

ratio (Fm’ - Ft)/Fm’. A true estimate of ETR by chlorophyll fluorescence would need to consider 

the reduced level light reaching the photobiont in melanised thalli. Without knowing how 

much light is actually absorbed by the photobionts, calculation of “ETRabs” in lichens is not 

possible (Solhaug et al., 2010). While the ETR estimates confirm that the photobionts are in 

good health, more direct measurements of photosynthetic activity by IRGA and the O2 

electrode clearly show that when light levels are below about 100 μmol m-2 s-1 melanised 

thalli will display significantly lower rates of carbon fixation. 

Effect of melanisation on NPQ and xanthophyll cycle pigments 

Apparent higher NPQ in non-melanised thalli than in melanised thalli (Table 4.1) is probably 

caused by less light reaching the photobiont in melanised thalli with measurements at the 

same level of incident light. Therefore, the same type of artefact is present for NPQ as for a 

true estimate of ETR. However, the tendency for melanised thalli to have a higher pool size of 

xanthophyll cycle pigments in (Table 4.1) indicates that high light adapted thalli actually have 

a higher capacity for NPQ, because the xanthophyll cycle is probably the main component of 

NPQ (Baker, 2008). 

The “clearcut anomaly”  

As discussed in the Introduction, melanisation will be of particular benefit to a lichen if there 

is a sudden increase in light level. An example of a situation when this may occur is following 

the clearcutting of the forest surrounding the tree on which a lichen is growing. A clearcut is 

created when many trees in an area are uniformly cut down, for example to promote even 

age stands. Lobaria pulmonaria it normally considered a shade-adapted lichen with no or little 

melanin (Gauslaa and Solhaug, 2000). Rather surprisingly,  Gauslaa et al. (2006) showed that 

L. pulmonaria growing in areas subject to clearcutting synthesize melanins and may have 
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higher growth rates than specimens from normal shaded habitats. A logical deduction from 

these results is that the realized niche L. pulmonaria should extend into microhabitats with 

higher light levels than those in which this species is normally found, giving rise to the 

“clearcut anomaly”. However, most likely reason that L. pulmonaria is quite rare or absent in 

exposed, high light sites is that such habitats experience occasional, variable extreme weather 

conditions that damage the thalli. The transplantation experiment of Gauslaa et al. (2006) 

was carried out in southern Norway from July to October, and growth rates were probably 

high because rain was quite frequent during this particular period. Under such conditions, 

with both frequent rain and light above saturation level, first, melanins will reduce high light 

stress and second, damage caused by photoinhibition can be readily repaired when thalli are 

moist and metabolically active. However, there would be no possibility to repair photo-

inhibitory damage if lichens remain for long periods in the dry state exposed to high light 

(Gauslaa and Solhaug, 2000; Gauslaa et al., 2012). Although a sudden increase in light 

availability of L. pulmonaria may increase growth rates, eventually stressful conditions are 

likely to occur, resulting in lethal stress, and the normal absence of this species in such sites. 

Thus, while melanisation may allow survival for a short period, lichens are only likely to survive 

if light levels are soon reduced, but then melanisation will reduce photosynthetic rates. 

 

4.5 Conclusion 

Melanisation, at least in the short term, is an effective strategy to protect lichen photobionts 

from high light. However, the main conclusion of the work presented here is that melanised 

thalli will be disadvantaged should light levels fall below about 100 μmol m-2 s-1. Falling light 

levels may occur for several reasons e.g. reductions in light availability during autumn, 

development of leaves in branches above lichens or by the growth of plants surrounding the 

host tree. The latter is realistic, as Lobaria species can live over 20 y (Rhoades, 1983; Larsson 

et al., 2009; Gustafsson et al., 2013). Furthermore, there is no evidence that melanins can be 

broken down. Under shaded conditions, melanisation will reduce carbon fixation by up to 

40%, which will result in a decline in growth rate. A further potential disadvantage of 

melanisation will be that it will increase thalli temperature by up to 3 °C (McEvoy et al., 2007), 

possibly inducing heat stress. Increases in thallus temperature may explain why it appears 

that more lichens use classic secondary metabolites as sun shields rather than melanins. 
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Secondary metabolites appear as effective as melanins in reducing the transmission of PAR 

(Solhaug et al., 2010), but reflect rather than absorb PAR, and therefore have less effect on 

the heat balance of lichens. However, more work is clearly needed to understand the relative 

advantages and disadvantages of melanins and secondary metabolites as sun screens in 

lichens. 
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CHAPTER 5: THE EFFECT OF HIGH LIGHT ON THE PHOTOSYNTHETIC 

PERFORMANCE IN LOBARIA RETIGERA 

___________________________________________________________________________ 

 

5.1 Introduction    

The aim of the work presented here was to complement that of Chapter 4, and to study the 

cost of photo-protection by melanic pigments in the cyanolichen Lobaria retigera. Anecdotal 

observations suggest that L. retigera prefers even damper, wetter habitats than Lobaria 

pulmonaria. Like L. pulmonaria, L. retigera can at times be exposed to higher light levels, for 

example following leaf fall in autumn, or when light when openings in forests occur, for 

example, because of tree fall. Little is known about the biochemical adaptations of L. retigera 

to high light stress, but like L. pulmonaria the most important adaptation is probably the 

synthesis of cortical melanin pigments (Solhaug et al., 2003), particularly as cyanobacteria 

lack the xanthophyll cycle found in green algal lichens (Campbell et al., 1998). Unfortunately, 

the treatments designed to induce melanisation proved too stressful for the lichens (Chapter 

3), and resulted in severe damage to the photosynthetic apparatus. As a result, more work is 

required to establish whether melanisation reduces efficiency of photosynthesis in 

cyanobacterial lichens.  

 

5.2 Methods 

Exposure to ambient light 

In the first experiment, the effect of different types of light on the photosynthetic 

performance of L. retigera was tested. Fifteen thalli each treatment was treated with normal 

ambient light (full sun), an acrylic screen (+UV, to test for the physical presence of the screen), 

and a polycarbonate screen (-UV, removes UV). Control thalli were kept in the freezer at - 20 

°C. Each treatment had two wooden frames (47.5 x 54.5 cm) with shade cloth mesh netting 

to attach thalli with a total fresh mass of about 4 g. The lichen material was collected from 

trees at in Monks Cowl, KwaZulu Natal. Of the two frames, one frame had 7 thalli attached 

while the other had 8 thalli. The frames were randomly placed in the exposure site (Botanical 

Gardens, UKZN, Pietermaritzburg) and left for three weeks. The treatments were watered 
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daily with distilled water before sunrise and at sunset, except on rainy days to keep them 

photosynthetically active. After three weeks, thalli were harvested for analyses of 

photosynthetic activities in Norway. 

In the second experiment, photoinhibition was measured in nonmelanised and melanised 

lichen thalli collected directly from their natural habitats. Thalli were collected from their host 

tree, Leucosidea sericea, and cleaned. The treatments were wet and dry thalli that were 

nonmelanised and melanised. Ten thalli for each treatment were cut into 2 cm discs and 

hydrated for 24h to 72 h to measure time zero (initial) Fv/Fm and PS II yield. Thereafter, wet 

thalli were given 1000 µmol m-2 s-1 for 1.5 h. The thalli for the dry treatment were left to 

dehydrate in a bench at room temperature. The thalli were given 800 µmol m-2 s-1 for 10 h. 

Recovery was recorded at time intervals, 1, 2, 3, 4 ,5 and 24 h.  

 

5.3 Results 

5.3.1 Measurement of photosynthetic performance 

Placing lichens into the field reduced the photosynthetic quantum yield of CO2 uptake to 

approximately one third, Table 5.1.  However, the lichens under the polycarbonate filter had 

slight higher yields that the other two treatments. The BRI of thalli in full sun was greatest, 

although those under the acrylic filter (which transmits UV) were significantly greater than 

the controls, and the lichens under the polycarbonate filter which blocks UV.  
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Table 5.1: The effect of exposure to high light on the quantum yield of carbon fixation and the 

browning reflectance in Lobaria retigera. The control represents thalli kept in the freezer. 

Values are given ±S.E., n =15 and within each column the values with the same letter do not 

differ significantly (P > 0.05).  

Treatment Quantum yield of 

 CO2 uptake 

Browning 

Reflectance Index 

Control 0.108 ± 0.017
a
 0.002 ± 0.02

d
 

Full sun 0.032 ± 0.007
c
 0.583 ± 1.68

a
 

‐ UV, polycarbonate screen 0.037 ± 0.006
b
 0.004 ± 0.03

c
 

+ UV, acrylic screen 0.030 ± 0.009
d
 0.048 ± 0.04

b
 

   

5.3.2 Chlorophyll (CHL) content  

Exposure to light significantly reduced the chlorophyll content (Figure 5.1).  
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Figure 5.1: The effect of high light on the chlorophyll content of Lobaria retigera.  Values are 

given ± S.E., n = 15, and columns with the same number on top do not differ significantly (P > 

0.05).  
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5.3.3 Measurement of the state of the photosynthetic apparatus 

Exposure to all combinations of light in the field significantly decreased the rate of 

photosynthesis compared with the control, although lichens grown without UV light had 

slightly higher rates of photosynthesis than those grown with UV (Figure 5.2). 
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Figure 5.2: Photosynthetic CO2 uptake of Lobaria retigera at varying irradiances. Values are 

given ±S.E., n = 15. Treatments were the control (thalli not light treated, closed circle), full 

sunlight (open square), + UV (closed triangle) and -UV (closed square).  
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Initial values of Fv / Fm and φPSII were similar in melanised and unmelanised thalli (Figure 

5.3). In the hydrated state, melanisation greatly reduced the effects of an exposure to a 

photoinhibitory light intensity. After 24 h, although Fv / Fm measurements suggested that 

PSII had fully recovered in both melanised and nonmelanised thalli, estimates of φPSII 

indicated that recovery was not complete in pale thalli. In dry thalli, melanisation had little 

effect of the resistance of thalli to photoinhibition, although the reduction Fv / Fm was initially 

slightly lower in melanised than pale thalli. 
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Figure 5.3: The effect of a photoinhibitory exposure to light on Fv / Fm and φPSII in Lobaria 

retigera. The wet thalli were given 800 µmol m-2 s-1 for 10 h and dry thalli exposed to 1000 

µmol m-2 s-1 for 1.5 h. Values are given ±S.E., n =10. The non-melanised thalli are represented 

by open symbols, while melanised thalli have closed symbols. 
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5.4 Discussion  

The effect of exposure to different types of light on the photosynthetic performance of L. 

retigera 

Placing the shade-adapted lichen L. retigera into the sun in the open or under the various 

frames caused severe stress, as indicated by the photosynthetic light response curves of 

material from different treatments in Figure 5.2 and their quantum yields in Table 5.1. Results 

differed from those obtained with L. pulmonaria (Matee et al., 2016), which appeared to 

suffer little stress following transplantation as discussed in Chapter 3. This was probably 

because the experiment with L. retigera was carried out in South Africa, while the 

experiments with L. pulmonaria were carried out in Norway. Presumably, the much higher 

ambient light levels in South Africa compared to Norway were too stressful for the lichen, 

although possibly L. retigera is inherently less tolerant to high light than L. pulmonaria. Only 

the thalli exposed to full sunlight (without any filters) significantly melanised, suggesting that 

unlike L. pulmonaria, UV alone is insufficient to cause melanisation. Exposing thalli to full 

sunlight apparently induces a signal that initiates melanisation that is absent in thalli under 

filters, even those that transmit UV. The nature of this signal remains unclear. The chlorophyll 

contents of sun exposed thalli were reduced (Figure 5.1), and because of the stress caused by 

the high light treatments (Figure 5.2), it was not possible to deduce whether melanisation 

reduced the photosynthetic efficiency of L. retigera in the same way that it does for L. 

pulmonaria.  

Melanin provides protection to hydrated thalli exposed to high light. Lange et al. (1999) shows 

a similar trend for a dry cyanobacteria due to lack of the xanthophyll cycle to dissipate energy 

in wet thalli as these are very sensitive.  The dry thalli are more resistant to high light than 

wet for reasons discussed in Chapter 6. When thalli are dry they are inactive, and any light-

induced production of reactive oxygen species will be reduced; however, photoinhibition 

eventually occurs. For reasons that remain unclear, melanins are less rather than more 

effective at protecting dry thalli as compared to the results presented for species discussed 

in Chapter 6, where melanins protect both dry and wet thalli. 

 

5.5 Conclusion 

Much information is available about melanisation in the green algal lichen Lobaria pulmonaria 

Matee et al. (2016), but relatively little is known about this process in cyanobacterial species 
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in general. Therefore, L. retigera was chosen for further study because it is closely related to 

L. pulmonaria, but has a cyanobacterial photobiont. Unfortunately, probably because 

experiments were carried out in Pietermaritzburg rather than Norway, our treatments 

designed to induce melanisation resulted in severe damage to the photosynthetic apparatus. 

Therefore, whether melanisation reduces the quantum yield of photosynthesis as with L. 

pulmonaria (Chapter 4) could not be fully investigated. It is recommended that the 

experiments described here be repeated in a place with lower light levels, for example, 

Norway. However, results from naturally melanised L. retigera (collected from its natural 

habitat) showed that, at least in the moist state, melanised thalli are most resistant to 

photoinhibition than pale thalli.   
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CHAPTER 6: MELANINS PROTECT HYDRATED AND DESICCATED LICHENS 

FROM PHOTOINHIBITION 

 

6.1 Introduction 

The main of the aim of the work presented in this Chapter was to systematically test under 

controlled conditions whether melanin synthesis increases the tolerance to photoinhibition 

in Lobaria pulmonaria and a range of other lichens, species with chlorophycean and 

cyanobacterial species, and that grow in shaded or more exposed habitats.  A further aim of 

the present study was to test whether melanisation is more effective in protecting dry or wet 

thalli. It is well known that lichens suffer light stress even when desiccated (Kershaw and 

Macfarlane, 1980). The reasons for this remain unclear, as it is difficult to image how 

photoinhibition occurs in dry thalli. It may be relevant that changes in gene expression and/or 

protein synthesis have been observed in dry seeds of Nicotiana (Bove et al., 2005; Leubner-

Metzger, 2005) and Arabidopsis (Cadman et al., 2006; Chibani et al., 2006). These results have 

been interpreted as indicating the existence of hydrated pockets in which ROS formation 

could occur, and possibly these pockets occur in lichens. Even if only small amounts of ROS 

are produced, when thalli are desiccated normal mechanisms that repair DNA and other 

biomolecules do not take place (Buffoni Hall et al., 2003). In L. pulmonaria cortical 

transmittance to PAR is typically between one third and one half lower in the air-dry 

compared with the hydrated state (Gauslaa and Solhaug, 2001). Melanisation significantly 

reduces transmittance, and interestingly the transmittance of the upper cortex of melanised 

thalli to PAR is about 40% lower than pale thalli when the thalli are dry, but only about 30% 

lower when the thalli are wet. We therefore hypothesized that melanisation may give greater 

photoprotection when the thalli are air-dry.  

 

6.2 Methods 

6.2.1 Plant Material 

Lichen material was collected from the localities indicated in Table (6. 1). For each species, 

melanised and pale thalli were selected from exposed and shaded individuals from the same 

population, never more than 5 m apart. If collected wet, material was slowly dried at room 
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temperature. Material was stored at -20 oC until ready for experimentation for a maximum of 

two weeks. One day before each experiment, 2 cm disks were cut, or for small thalli, thallus 

fragments selected. Lichens were stored overnight on wet filter paper in petri dishes under 

dim lighting (5 µmoles m-2 s-1) at a cool temperature (15 oC, thermostatically controlled room). 

Before high light treatment, chlorophyll fluorescence parameters were measured, and then 

material either slowly dried for 4 h, or used immediately. 

Table 6. 1: Expanded details on species from Table 2.1 used in this Chapter, their photobiont 

types and an indication of light availability in their typical habitat. 

Species Collection Locality Photobiont Shade / Sun 
species 

Cetraria islandica (L.) Ach. Soil, Langangen, Norway Chlorophycean Sun 
Lobaria pulmonaria (L.) Hoffm. Oak trees, Langangen, 

Norway 
Chlorophycean Shade 

Peltigera aphthosa (L.) Willd. Soil, outskirts of Ås, Norway Chlorophycean Sun 
Peltigera membranacea (Ach.) Nyl. Soil, outskirts of Ås, Norway Cyanobacterial Sun 
Pseudocyphellaria gilva (Ach.) Malme Leucosidea sericea trees, Fort 

Nottingham, RSA 
Cyanobacterial Shade 

Sticta sublimbata (J. Steiner) 
Swinscow & Krog 

Leucosidea sericea trees, Fort 
Nottingham, RSA 

Cyanobacterial Shade 

 

6.2.2 Chlorophyll fluorescence  

Chlorophyll fluorescence for some species was measured using the red version of the PAM 

2000 fluorimeter while for other the Hansatech FMS 2 was used. The maximal efficiency of 

PSII, (Fv/Fm) and the operating efficiency of PSII (∅PSII) were measured. Thalli were initially 

dark-adapted at room temperature for 10 min. At the start of a run, a saturating flash was 

applied to determine Fv/Fm. Thalli were then exposed to PAR at 30 µmoles m-2 s-1 for 10 min, 

after which fluorescence had reached a stable value. Another saturating flash was then 

applied, and ∅PSII was calculated as: 

∅PSII = (Fm’ - Ft)/Fm’ 

where Ft is the stable fluorescence signal in the light, and Fm’ is the maximum fluorescence 

when a saturating pulse is given in the light. 
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6.2.3 High light stress 

High light stress was given using a white LED light-source panel (Model SL-3500, Photon 

System Instruments, Brno, Czech Republic). Light was given at 800 or 1500 µmoles m-2 s-1 until 

the maximum quantum yield of PSII photochemistry (Fv / Fm) was reduced from values of 

around 0.7 to 0.3 - 0.4, with each species needing different times as indicated in Table (6. 2). 

 Table 6.2: Light intensity and time of exposure used to induce photoinhibition. 

 

Chlorophyll fluorescence measurements were made in moist material before high light 

treatment at “time zero” as indicated above, at the end of the high light treatment, and then 

at intervals for up to 40 h. Photoinhibition in thalli exposed to high light in the dry state was 

measured at intervals following the hydration of replicate samples. When sufficient inhibition 

had occurred, they were immediately hydrated following exposure by being placed on moist 

filter paper and then sprayed with additional distilled water. During recovery, lichens were 

maintained at room temperature (20 oC) and dim lighting (5 µmoles m-2 s-1) as recommended 

by Solhaug (2017). Reflectance spectra of the upper cortex were recorded on dry thalli as 

described in Chapter 2. The results were analysed using a two-way ANOVA, with melanisation 

and time as the two factors. 

 

6.3 Results 

Table (6.2) presents the times and light levels needed to photoinhibit the lichens. Lichens 

were more tolerant to high light when dry; much longer exposures were needed to create 

similar photoinhibition than for wet thalli. In general, lichens collected from open habitats 

required longer times or high light levels to create similar levels of photoinhibition compared 

with species from more shaded localities.  

Species Dry Wet 
 Time (h) Light Intensity 

(µmol m-2 s-1) 
Time (h) Light Intensity 

(µmol m-2 s-1) 

Cetraria islandica 36 800 3 1500 
Lobaria pulmonaria 12 800 8 800 
Peltigera aphthosa 12 800 5 1500 
Peltigera membranacea 12 800 12 800 
Pseudocyphellaria gilva 6 800 5 800 
Sticta sublimbata 4 800 2 800 
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Measurement of thallus reflection indicated that the extent of melanisation varied greatly 

between different lichen species (Table 6. 3). For example, in Pseudocyphellaria gilva the BRI 

of melanised thalli was only 20% higher than pale thalli, while in Cetraria islandica 

melanisation the BRI was more than one hundred times greater (Table 6. 3). 

Table 6. 3: Browning reflectance index (BRI) of the lichens used in this study. Figures are given 

±1 s.d., n = 12. BRI was calculated as described by Solovchenko et al. (2001). 

Species BRI BRI  

 Non-melanised 
thalli 

Melanised thalli Increase in BRI in 
melanised thalli 

Pseudocyphellaria gilva 7.5 ± 1.9 9.3 ± 1.9 1.2 

Sticta sublimbata 8.2 ± 2.6 24.8 ± 4.0 3.0 

Lobaria pulmonaria 4.4 ± 1.1 48.4 ± 42.4 11.0 

Peltigera membranacea 2.8 ± 0.5 31.6 ± 4.1 11.3 

Peltigera apthosa 2.1 ± 2.1 24.8 ± 15.6 11.8 

Cetraria islandica 0.6 ± 0.8 87.9 ± 27.1 146.5 

 

Figures 6.1, 6.2 and 6.3 show the effects on Fv/Fm and ∅PSII of a photoinhibitory exposure of 

light to wet and dry thalli of six lichen species. Initial values of Fv / Fm and ∅PSII were very 

similar in melanised and pale thalli. In most cases, 24 h after the photoinhibitory stress almost 

all lichens had fully recovered, although the recovery was not complete in some cases e.g. 

unmelanised C. islandica (Figure 6.1B, D) and wet Peltigera membranacea (Figure 6.2E, F) and 

Pseudocyphellaria gilva (Figure 6.3B). In all cases, melanisation significantly reduced 

photoinhibition in both wet and dry thalli (ANOVA analyses not shown). The protective effect 

of melanisation was correlated with the relative increase in BRI between pale and melanised 

thalli. For example, the greatest protective effect of melanisation occurred in C. islandica 

(Figure 6.1A, B, C, D), the species that showed the greatest increase in BRI (Table 6.3). By 

contrast, melanised thalli of Pseudocyphellaria and Sticta had BRI values only slightly greater 

than those of pale thalli, and in these two species melanins conferred only slight (but 

significant) photoprotection (Figure 6.3). In general, ∅PSII appeared to be a more sensitive 

indicator of recovery from photoinhibition than Fv/Fm. For example, in C. islandica Fv/Fm 

indicated that after 24 h pale thalli had completely recovered from photoinhibition (Figure 

6.1A, C), while ∅PSII measurements showed that recovery was incomplete (Figure 6.1B, D). 



64 
 

 
 

 

 

Figure 6.1: Photoinhibitory response of wet and dry nonmelanised (open symbols) and 

melanised (closed symbols) thalli of Cetraria islandica (A, B, C, D) and Lobaria pulmonaria (E, 

F, G, H). In this Figure 6.1, 6.2 and Figure 6.3, values are given ±SE of the mean, and n = 10 to 

15. 
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Figure 6.2: Photoinhibitory response of wet and dry nonmelanised (open symbols) and 

melanised (closed symbols) thalli of Peltigera aphthosa (A, B, C, D) and Peltigera 

membranaceae (E, F, G, H).  
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Figure 6.3: Photoinhibitory response of wet and dry nonmelanised (open symbols) and 

melanised (closed symbols) thalli of Pseudocyphellaria gilva (A, B, C, D) and Sticta sublimbata 

(E, F, G, H). 

 



67 
 

 
 

6.4 Discussion 

The work presented in this Chapter indicate that melanisation effectively reduces 

photoinhibition in lichens, and can protect both desiccated and hydrated lichens. Perhaps 

surprisingly, apart from the field experiment of McEvoy et al. (2007) with just one species 

(Lobaria pulmonaria), the present study is the first to show directly that melanisation 

increases tolerance to photoinhibition in lichen photobionts. In general, the effectiveness of 

melanisation is greatest in those species with the largest difference in BRI between melanised 

and pale thalli. For example, melanins provide the greatest protection in C. islandica (Figure 

6.1A, B, C, D), the species with largest difference in BRI between pale and melanised thalli 

(Table 6.3). By contrast, for species in which differences in BRI are less e.g. Pseudocyphellaria 

gilva and Sticta sublimbata (Table 6.3) melanins are much less effective in providing 

photoprotection (Figure 6.3). Collectively, results show that melanins provide 

photoprotection in species that grow in both high and more shaded habitats, and that possess 

either green or cyanobacterial photobionts. 

Roles of melanins in lichens 

Melanins probably play different roles in the mycobiont and the photobionts. The fungal 

symbiont is responsible for melanin synthesis, and the trigger for synthesis is UV light (Matee 

et al., 2016). As discussed in Chapter 1, fungi apparently need more protection from UV that 

the photobionts, as elevated UV affects overall lichen growth more than purely photobiont 

responses such as chlorophyll content and the quantum yield of photosynthesis (Chowdhury 

et al., 2016). Interestingly, photobionts may be tolerant to UV levels that greatly exceed those 

currently being experienced by lichens in the field, as even in un-melanised thalli the cortex 

effectively blocks transmittance of light with wavelengths less than 325 nm (Gauslaa et al., 

2017). However, while not needing UV protection, results presented here show that 

melanisation increases photobiont tolerance to photoinhibition by high PAR. Therefore, the 

although the mycobiont benefits directly from melanin synthesis by having increased UV 

protection, protecting the photobionts from high PAR indirectly benefits the mycobiont by 

increasing the supply of photosynthates to the whole thallus. 
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Melanin effectively protects dry lichens from photoinhibition 

Melanisation effectively protects both wet and dry thalli from photoinhibition. Lichens are 

more tolerant of light stress when dry, but eventually become photoinhibited when exposed 

to even moderate light intensities (Table 6.2). This is perhaps surprising, as at low thallus 

water contents metabolism is almost inactive, presumably reducing light-induced ROS 

formation and the resulting photoinhibition. Furthermore, the cortical transmittance to PAR 

is much lower (between one third and one half lower) in air-dry compared with hydrated thalli 

(Gauslaa and Solhaug, 2001). While more research is needed to understand the mechanism 

of photoinhibition in dry lichens, recovery may take many hours (Figures 6.1, 6.2 and 6.3), 

reducing carbon fixation for the symbiosis. Interestingly, comparing wet and dry lichens, 

melanisation is sometimes more effectively at preventing photoinhibition when thalli are dry 

(for example, compared Figure 6.1F with 6.1G, Figure 6.3A with 6.3C and Figure 6.3E with 

6.3G). One explanation for this result is that melanisation has different effects on cortical 

transmittance in wet and dry lichens. While in wet thalli the transmittance of the upper cortex 

of melanised thalli of L. pulmonaria to PAR is about 30% lower than pale thalli, in dry thalli 

the reduction is about 40% (Gauslaa and Solhaug, 2001). Assuming a similar difference occurs 

in other lichens, a greater reduction in cortical transmittance when lichens are dry thalli may 

explain why melanisation can be more effective at reducing photoinhibition in these thalli. 

∅PSII can be a more sensitive indicator of photoinhibition than Fv/Fm 

For some lichens, measuring the operating efficiency of PSII (∅PSII) can give a more sensitive 

measure of the effects of high light stress than simply measuring maximum quantum yield of 

PSII photochemistry (Fv / Fm).  Fv / Fm can be quickly and easily measured, and is therefore 

commonly used in photoinhibition studies (Míguez et al., 2017; Solhaug, 2017). However, 

∅PSII can be also readily derived from chlorophyll fluorescence measurements. Measurement 

of ∅PSII takes longer than Fv / Fm, as an actinic light must be switched on and fluorescence 

must reach a stable value (Ft) before a saturating pulse is given and Fm’ measured. ∅PSII is 

calculated as the ratio (Fm’ - Ft)/Fm’, and then the rate of electron transport between PSII 

and PSI (ETR) can be calculated as follows: 

ETR = ∅PSII x PAR x Abs x 0.5  
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where PAR is incident irradiance and Abs is the fraction of incident irradiance absorbed by the 

photobiont. A strong linear relationship often exists between ETR and carbon fixation, 

although discrepancies may occur under certain stress conditions (Fryer et al., 1998). In this 

Chapter, recovery from photoinhibition is presented using ∅PSII rather than ETR, as 

melanisation decreases Abs by an unknown amount making it difficult to compare ETR in 

melanised and pale thalli (see Chapter 4 for more discussion on this point). However, in some 

cases measuring ∅PSII can give a better indication of the effects of stress on the 

photosynthetic apparatus than Fv / Fm. For example, in both wet and dry unmelanised C. 

islandica (Figure 6.1) and wet Pseudocyphellaria gilva (Figure 6.3) simply measuring Fv / Fm 

would indicate that lichens had almost completely recovered from photoinhibition (Figure 

6.1A, C and Figure 6.3A), while ∅PSII shows that some residual effects remain (Figure 6.1B, C 

and Figure 6.3B). In general, for all species tested, ∅PSII measurements show that 

melanisation facilitates a faster and more complete recovery from photoinhibition than Fv / 

Fm, which underestimates the protective effect of melanisation. Therefore, although more 

time consuming to measure, ∅PSII can be a more sensitive indicator of high light stress. 

In the present study, recovery from photoinhibition was measured under low light (30 µmoles 

m-2 s-1). In the field, lichens may need to recover under higher light levels. If we had used 

higher light levels during recovery here, photosynthesis would have been saturated. As a 

result, any reduction in “Abs” caused by melanisation would have had little effect on ETR. By 

comparison, under low light pale the photobiont absorbs a higher fraction of incident light 

thalli, and therefore will have relatively higher rates of ETR and photosynthesis. It seems likely 

that, providing light levels are not high enough to cause further photoinhibition, melanisation 

will be even more effective in facilitating recovery from photoinhibition when light levels are 

high. 

 

6.5 Conclusions 

Results presented in this Chapter clearly show that melanisation is an effective strategy to 

protect lichen photobionts from high light. As discussed in Chapter 1, melanisation is not the 

only mechanism of photoprotection, and more work is needed to compare the importance 

and efficiency of melanisation with, for example, other lichen secondary metabolites and non-

photochemical quenching. Melanisation may not invariably be beneficial for lichens. As 
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discussed in Chapter 4, melanisation reduces the efficiency of photosynthesis at low light 

levels, and can increase thalli temperatures possibly inducing heat stress. However, should 

light levels remain high, melanisation is likely to significantly reduce the time that lichens are 

photoinhibited in the field. 
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CHAPTER 7: GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

This study examined the effects of melanisation induced by high light on the photosynthetic 

apparatus of green-algal and cyanobacterial lichens. Based on these findings, the following 

conclusions can be drawn. 

Climate change increases solar radiation (Caldwell et al., 2007) which in turn affects lichen 

physiology. Over  the past years, some studies have shown that lichens have started to 

develop  signs of sensitivity, such as damage or death of thalli, a decrease or inhibition of 

metabolic activities (Bjerke et al., 2003). Some organisms are unable to withstand the 

detrimental effects of increased radiation (Caldwell et al., 2007). However, lichens, alpine and 

desert species are amongst the unique organisms as they have developed strategies to 

minimise or tolerate high light stress (Gauslaa and Solhaug, 1999; Korner, 2003). One of the 

strategies employed to resist or protect from high light is the synthesis of melanins in the 

upper cortex or in some species, in the lower cortex and cilia. In this study, results suggest 

that melanins are of different forms between lichen groups. Tentatively, results suggest that 

Peltigeralean lichens make eumelanin (DOPA) while non-Peltigeralean lichens synthesise 

allomelanin (DHN). This research improves our understanding of the photoprotective 

mechanisms used by chlorophycean and cyanobacterial lichens in general. It is hoped that 

this work will prompt more research on the effects of climate change on the physiology of 

lower and higher plants. 

In Chapter 3, the induction of melanin at different light regimes was investigated in the 

cyanobacterial lichen Lobaria retigera. Initially, acclimatization experiments were conducted 

under low ambient light conditions (50% and 70% ambient light) and thereafter an 

experiment carried out where lichens were placed under normal ambient light (full sunlight), 

beneath a -UV polycarbonate screen and an +UV acrylic screen (Figures 3.2, 3.3). Here, the 

acclimatization strategy was not effective, presumably due to harsh conditions compared 

with other studies (Matee et al., 2016); however, for some thalli melanins were slowly 

induced. Interestingly, NPQ in Pseudocyphellaria aurata increased showing a photoprotective 

role of dissipating excess light energy. In L. retigera ETR decreased after a three weeks 
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exposure, almost certainly because of photooxidation. Thalli of Lobaria pulmonaria in a 

transplant site synthesised melanins for four weeks (Matee et al., 2016) , while melanin in L. 

retigera was induced after three weeks.  

In Chapter 4, the effect of melanisation on the photosynthetic performance of L. pulmonaria 

was studied. Here, results showed that while melanins protect the photobionts from high 

light, melanisation clearly reduces the photosynthetic efficiency. Melanised thalli will be 

significantly disadvantaged if light levels return to lower values, more typical for those 

habitats in which this shade adapted lichen is most abundant. A similar study in Chapter 5 was 

conducted in a cyanobacterial L. retigera, Unfortunately, as discussed above, conditions were 

too stressful, and conclusions could not be drawn about whether melanisation reduces the 

efficiency of photosynthesis in L. retigera. However, experiments with naturally melanised L. 

retigera showed that melanisation can protect against the photoinhibition. In Chapter 6, 

photoinhibition was studied in a range of lichens of pale and melanised thalli from the same 

population. Selectively, pale and melanised thalli were exposed to short term high light stress. 

In all cases, melanised thalli were significantly less sensitive to photoinhibition, sometimes 

very markedly so, for example Cetraria islandica. Overall, it was concluded that melanins play 

key roles in the adaptation of lichens to high light, and the results confirm that melanisation 

protects lichens from photoinhibition in both the wet and dry states. 

 

Recommendations for future work 

Role of melanins in cyanobacterial lichens 

As discussed above, there is now excellent evidence that melanisation protects the 

chlorophycean lichen L. pulmonaria from high light stress, but can reduce photosynthesis at 

low light levels. However, experiments reported there with the cyanobacterial lichen L. 

retigera were unsuccessful. To study the roles of melanins in cyanobacterial species 

experiments will need to be carried out under less stressful conditions, e.g. in a temperate 

climate. Alternatively, melanised and pale thalli could be collected from the same population 

and compared.  
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Cost of melanisation 

Although data presented in Chapter 4 clearly indicate that melanisation reduces 

photosynthetic efficiency in L. pulmonaria under low light levels, further work is needed to 

test whether this could result in a lower rate of growth should light levels fall. This would 

involve inducing melanisation in a lichen by exposing it to high light, and then reducing the 

light level e.g. to 100 µmol m-2 s-1, and then measuring the growth rates of both pale and 

melanised thalli at low light levels. It could be predicted that melanised thalli may grow more 

slowly. The effect of melanisation on the heat balance of lichens needs much more study. It 

remains to be tested whether the small (3oC) increase in temperature of melanised thalli 

reported by McEvoy et al. (2007) in L. pulmonaria is typical for other lichens, and what effect 

this will have on the energy budget of lichens e.g. photosynthesis, respiration or ultimately 

growth rates. 

Further studies on melanisation in lichens 

Further studies on the role of melanisation in lichens could include testing whether, once 

synthesised, melanins can be broken down. This question is particularly relevant for Lobaria 

species, which, as discussed in Chapter 4, can live for twenty years or more. This could involve 

inducing melanisation, and then growing thalli under low light and then measuring any 

changes in BRI over a time course. We still have little idea about which enzymes are 

responsible for melanin synthesis. Although currently extremely difficult to do, in future, it 

should be possible to use e.g. CRISPR technology to edit the mycobiont genome to remove 

certain genes e.g. tyrosinase, and then test if the modified lichens have lost the ability to 

melanise. Work described in this thesis has focussed on the roles of melanins in 

photoprotection. However, and discussed in detail in Chapter 1, melanins may play other 

roles in lichens e.g. protection against pathogens or grazing.  Future work on melanisation in 

lichens needs to study other potential roles of melanins in lichen biology. 

Other adaptations to high light and UV 

Melanins are certainly not the only way lichens can adapt to high light. Apart from the well-

known xanthophyll cycle (present in chlorophycean algae but not cyanobacteria), lichens 

synthesise secondary metabolites such as usnic acid (Solhaug and Gauslaa, 2012). Possibly, 

lichen substances may have less effect on the heat balance of lichens as they reflect rather 
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than absorb light. Furthermore, lichen substances can undergo seasonal variations in 

concentrations, implying that they can be broken down in the winter when light levels are 

low, and enhanced penetration of the cortex by light may increase photosynthesis. More 

work is needed to establish the relative advantages of lichen substances compared with 

melanins. Furthermore, the role of more recently discovered screening pigments such as 

scytonemin and mycosporines needs further study (Nguyen et al., 2013). Mechanisms to 

protect or repair light-induced DNA damage that have been reported to exist in other 

desiccation tolerant organisms (Takuma and Takekazu, 2017) should also be investigated in 

lichens. 
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