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ABSTRACT 

Rheumatoid arthritis (RA) is an autoimmune disease which causes synovial damage. 

Persistence of inflammatory cells in synovial tissue may be related to defects in 

apoptosis. Chronic inflammation may lead to oxidative damage and mitochondrial 

defects in peripheral lymphocytes (PL) and this may alter apoptotic mechanisms. The p53 

tumour-suppressor protein plays an integral role in apoptosis by acting as a pro-apoptotic 

transcriptional regulator, or by altering mitochondrial membrane potential (.1\j1m). 

Polymorphisms at codon 72 of p53 confers differences in mitochondrial translocation and 

apoptosis inducing capabilities of p53 in vitro. This study investigated PL apoptosis and 

its association with clinical parameters in RA. In addition cytotoxicity, oxidative stress 

and mitochondrial membrane integrity was also examined. Since the p53 codon 72 

polymorphism affects apoptosis and mitochondrial membrane dynamics, the genotype at 

this locus was determined. Fifty South African black RA patients (HIV-) were recruited 

into the study. Total, CD4+ and CD19+ PL apoptosis was investigated using the 

Annexin-V assay. Further, PL receptor mediated apoptosis (CD95IFas) as well as 

activation-induced-cell-death (AICD) (CD69) were determined by flow cytometry. 

Capase activity was measured by luminometry . Heat-shock -protein-70 (HSP70) levels 

were determined by intra-cellular flow cytometry and confirmed by western blots. The 

JC-l assay was used to assess ~\jIm. Cytotoxicity and oxidative stress was measured using 

the lactate dehydrogenase (LDH) and the thiobarbituric acid reactive substances 

(TBARS) assays respectively. Genotypic differences in the p53 gene were determined by 
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polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). 

Statistical differences in these parameters were investigated according to genotype. 

Correlations between apoptosis, L1'Vm and clinical parameters were tested for statistical 

significance. RA-PL showed signs of elevated apoptosis which seemed to depend on 

CD95IFas mediated signals. However, low levels of the CD69 marker suggested that this 

was not associated with immune activation. Although caspase activities (caspase-317, 

caspase-9) were increased, no DNA fragmentation was observed in RA-PL. This may be 

related to elevated levels of HSP70. No statistically significant associations between 

apoptosis and clinical parameters were found. Cytotoxicity (p=0.OO80) and lipid 

peroxidation (p=0.0030) were significantly elevated in RA. A significantly higher 

percentage of circulating PL contained depolarised mitochondria (p=0.0003) which 

correlated with disease activity and C-reactive protein levels in patients. Collapse of L1'Vm 

also negatively correlated to absolute lymphocyte counts (r=-0.4041; p=0.0197). The 

p53 genotype distribution did not differ significantly between RA patients and controls 

(Arg/Arg, ArglPro, ProlPro: 12%,46%, 42% versus 3%, 34%, 63%; Chi-square statistic= 

2.104, 1 degree of freedom; p = 0.1469), despite significantly higher frequency of the 

Arg72 allele in patients (Chi-square statistic = 4.191 , 1 degree of freedom; p = 0.0406). 

There was no significant difference in PL apoptosis (p=0.1573) and mitochondrial 

depolarisation (p=0.8127) based on p53 codon 72 genotype. In addition, clinical markers 

of disease activity were not significantly different between genotypes. The results 

suggest that while apoptosis may be initiated in RA-PL, they may lack commitment to 

fully executing the apoptotic program. This hypothesis is supported by the observation 
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that absolute lymphocyte counts did not correlate with apoptosis. Correlation between 

disease activity and ~'l'm suggest a possible role for mitochondrial membrane alterations 

in the pathology of RA. The p53 codon 72 genotype does not influence PL apoptosis or 

mitochondrial depolarisation, and is not associated with clinical markers of disease in 

black South African RA patients. 
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INTRODUCTION 

Rheumatoid arthritis (RA) is a debilitating autoimmune disease affecting approximately 

1 % of the world's population. Disease aetiology is not clearly understood and no 

concrete genetic associations have yet been identified. There is however substantial 

association with human-leukocyte-antigen (HLA) genes and currently the HLA-DR~ 1 is 

a reliable indicator of RA susceptibility and a good predictor of disease severity (Mody et 

aI., 1989). HLA profiles in South African populations are associated with more severe 

forms of RA. This, combined with late diagnosis and initiation of treatment, due to 

constraints on public health care systems, usually means poorer prognosis and frequently, 

irreversible joint damage. To effectively treat RA, the disease needs to be diagnosed 

early and rigorous treatment must be initiated promptly. There is a clear and essential 

need for basic science research to better understand disease mechanisms and identify new 

disease biomarkers. This is particularly necessary in South African populations since 

treatment strategies and diagnostic guidelines are based on those developed in the 

western world and may not necessarily apply to local populations (Mody and Cardiel, 

2008). 

The disease is characterised by chronic inflammation of synovial joints and synovial 

hyperplasia. Uncontrolled, invasive growth of synovial tissue causes destruction of bone 

and cartilage. The persistence of inflammatory cells in the synovium leads to chronic 

generation of pro-inflammatory signals which perpetuates infiltration of lymphocytes into 

the synovium. In the normal inflammatory response infiltrating leukocytes are cleared 

1 



from inflammatory sites by apoptosis (programmed cell death) after they have performed 

their relevant functions (Serhan and Savill, 2005). Cells in the inflamed RA synovium 

are protected from apoptosis and the pathogenic tendencies of these cells parallel those of 

cells found in tumours (Muller-Ladner et aI., 1995). 

It is currently unclear whether the deficiencies in lymphocyte apoptosis are inherent in 

RA or are induced by complex cellular interactions upon infiltration into the synovium. 

The biology of circulating lymphocytes has not been comprehensively investigated in 

RA, especially within the context of apoptosis. Although the clinical manifestation of 

RA presents as destructive joint disease, there is a significant, but poorly understood 

systemic component. Deficient and/or aberrant apoptosis in B and T lymphocytes may 

contribute to the subtle and often elusive systemic pathologies of RA. 

Apoptosis is an essential biological mechanism used to regulate tissue micro-

environments and maintain · homeostasis. The immune system relies heavily on 

apoptosis to orchestrate the removal of unwanted and pathogenic cells. Apoptotic 

pathways are tightly regulated and breaches of regulatory mechanisms may be associat~d 

with pathogenesis. Several recent reports suggest a strong correlation between apoptosis 

and autoimmunity through several mechanisms, namely: 

a) impairment of apoptotic pathways; 

b) ineffective removal of apoptotic cells; 

c) autoantigen presence in apoptotic bodies; 

d) aberrant antigen presentation by apoptotic cells; 
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e) abnormal activation of innate immunity and macrophages by apoptotic cells; 

t) apoptotic bodies acting as specific B lymphocyte autoantigens (Lleo et aI., 2(08). 

Autoimmunity and apoptosis exist in a paradoxical relationship, since apoptotic signals 

have been associated with increased expression of anti-inflammatory cytokines in order 

to minimize tissue stress and prevent inflammation. It is unknown whether loss of 

immune tolerance during the development of autoimmunity in RA occurs due to faulty 

antigen processing as a result of defective apoptosis in circulating Band T lymphocytes. 

In RA, circulating lymphocytes exist in a milieu of chronic inflammatory signals and are 

thus subject to chronic cellular stress. In addition, chronic inflammation is associated 

with increased production of reactive oxygen species (ROS) and nitrogen species (RNS) 

which are potentially damaging to lymphocytes in peripheral circulation (Hitchon and El­

Gabalawy, 2004). Two important proteins which function in cellular stress response 

pathways are the tumour suppressor protein, p53, and the molecular chaperone, heat­

shock-protein-70 (HSP70). Both proteins are important regulators of apoptosis. p53 

detects DNA damage and responds primarily by transcriptional regulation of genes which 

halt the cell-cycle and promote apoptosis. HSP70 in contrast promotes cell survival by 

correcting abnormally folded proteins and inhibiting the activity of proteolytic enzymes 

which operate during apoptosis. Heat shock proteins have long been associated with 

autoimmunity through molecular mimicry mechanisms because of their highly conserved 

sequence homology across species (Baier et aI., 2003; Vousden and Lu, 2(02). 

Breakdown of the p53 tumour suppressor pathways may account for the strong parallels 
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between autoimmunity and carcinogenesis. The roles of these proteins and their relation 

to apoptosis have not been studied in RA. 

Apoptosis represents a relevant therapeutic target for autoimmune diseases. Specifically 

in the RA synovium, promoting apoptosis of actively proliferating cells may alleviate 

inflammation and joint damage. With respect to the systemic components of RA, while 

the biology of apoptotic pathways in circulating lymphocytes have not been 

comprehensively studied, current evidence clearly indicates that apoptosis may play an 

important role in pathogenesis. However, in order to harness therapeutic potentials of 

apoptosis in the periphery, our knowledgebase of cell death and its regulation in 

circulatory lymphocytes needs to vastly increase. It is therefore essential to conduct 

studies in this area and it is imperative that such work pertains to local populations who 

are subject to vastly differing socio-economic and environmental stressors. 
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STUDY RATIONALE AND AIMS 

The study of apoptosis is gradually providing novel clues to better understand the subtle 

underlying mechanisms of autoimmunity, it is therefore necessary to examine this 

biological phenomenon in local patients suffering from autoimmune diseases. 

Specifically in RA where the genetic backgrounds of local patients contribute to more 

debilitating forms of the disease, study of apoptosis may provide new means to measure 

disease progression and response to treatment. 

This study was designed to measure apoptosis in peripheral lymphocyte subsets from 

local RA patients and to investigate the roles of the inducible cell stress proteins p53 and 

HSP70. The study focused on circulating lymphocytes since the biology of cells already 

recruited to the RA synovium may be obscured due to the inflammatory and oxidative 

environment. 

The relationship between peripheral lymphocyte apoptosis, disease activity and markers 

of .inflammation is currently unknown in RA. This study served to investigate the 

relationship between these important parameters. 

In addition, it was necessary to examine oxidative stress and its impact on mitochondrial 

function in peripheral lymphocytes. The mitochondrion is integral in apoptotic pathways 

and previous studies have shown by computational methods that mitochondrial proteins 

may act as autoantigens in RA (Da Sylva et aI., 2005). They did not however, establish 
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how the internal mitochondrial contents exit the cell. Aberrant apoptosis may explain 

how mitochondrial autoantigens gain access to the extracellular compartment. 

No other study to date has measured apoptosis ex vivo in South African RA patients. It 

was therefore necessary to establish baseline measurements for local populations. 

Additionally, no study has considered the effects of p53 and HSP70 on apoptosis and 

their relation to RA. Moreover, the impact of oxidative stress on mitochondrial function 

and apoptosis in circulating lymphocytes has not previously been elucidated. 

Since there are parallels between autoimmunity and carcinogenesis it is necessary to 

examine the functional integrity of p53. A non-conservative polymorphism occurs at 

codon 72 of p53 where there is an arginine to proline transition. The polymorphic 

variants of p53 differ in their biological activity and hence in their ability to induce 

apoptosis. There are two reports to date which have examined this polymorphism in RA 

cohorts, but no study has examined the influence of the polymorphism on peripheral 

lymphocyte apoptosis in autoimmunity. The genotype at this locus is also unknown for 

South African RA patients. 
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CHAPTER 1 

LITERA TURE REVIEW 

1.1 Overview of rheumatoid arthritis 

Rheumatoid arthritis is a systemic autoimmune disease with chronic inflammation of 

synovial joints. General symptoms of the disease include joint pain and swelling. This is 

often accompanied by impaired movement and debilitating fatigue. Chronic joint 

inflammation may lead to bone and cartilage destruction, resulting in deformities and 

disabilities. The clinical spectrum of RA is wide and ranges from mild joint 

inflammation to severe systemic inflammation which can contribute to extra-articular 

symptoms such as pericarditis, pulmonary insufficiency and vasculitis. While the 

primary clinical manifestation of RA is destructive joint disease, there is a significant, but 

poorly understood systemic component. The systemic autoimmune manifestations of RA 

are perpetuated in part by circulating auto-reactive Band T lymphocytes. Pro­

inflammatory signals cause these cells to infiltrate and persist in the rheumatoid 

synovium. The normal inflammatory response is ameliorated by apoptotic clearance of 

the lymphocyte infiltrate. In RA it is unknown whether circulating lymphocyte biology is 

compromised prior to synovial recruitment or whether infiltrating lymphocytes acquire 

abnormalities upon adopting a stationary phenotype in the rheumatoid synovium 

(Karouzakis et aI., 2(06). 
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1.2 Epidemiology of rheumatoid arthritis 

The prevalence of RA is estimated to range between 0.5-1 % worldwide and is one of the 

most common autoimmune diseases. It occurs in women more frequently with a female 

to male ratio of approximately 3: 1 (Alamanos and Drosos, 2005; Alamanos et aI., 2(06). 

There is considerable variation in prevalence between population groups. Higher 

frequencies of RA have been reported in populations of European ancestry 

(approximately 1 %) than in Asians and Africans (Abdel-Nasser et aI., 1997). In South 

Africa the prevalence of RA is estimated to range between 0.1- 0.9%, and there are 

considerable disparities between rural (0.1 %) and urban (0.9%) disease populations 

(Beighton et aI., 1975; Meyers et aI., 1977; Solomon et aI., 1975). These studies were 

however conducted with small sample sizes and may also reflect differences in access to 

primary health care. 

1.3 Clinical manifestations of rheumatoid arthritis 

The disease is characterized by symmetrical pain and swelling of the joints (figure 1.1). 

Chronic synovitis leads to destruction of major joints including the cervical spine, 

cricoarytenoid joints, temperomandibular joints, sternoclavicular joints, elbow and most 

commonly the wrists, hands, hips and knees (Smolen and Aletaha, 2009). 
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Figure 1.1 Comparison between normal (a) and rheumatoid (b) joints (Strand et ai., 

2007). 

Specific symptoms of RA in these joints include: 

Pain 

The major symptom of RA is joint pain. Elevated intra-articular pressure in the 

rheumatoid synovium creates stress on periarticular structures which leads to pain. 

Arthritic pain usually peaks in the morning and persists throughout the entire duration of 

the day (Smolen and Aletaha, 2009). 

9 



Swelling 

Proliferation of the synovial lining, in addition to accumulation of intra-articular fluid and 

increased fluid tension contribute to joint swelling in RA. 

Jointtelnperature 

Interestingly, joint temperature in RA is elevated and there are tactile differences between 

the joint and surrounding tissue (Oosterveld and Rasker, 1994a, 1994b). The elevated 

joint temperature in RA has been attributed to the breakdown of collagen in the 

rheumatoid synovium. 

Joint stiffness 

During sleep, rheumatoid joints become oedematous and lose mobility as a consequence. 

Accumulation of fluid results in morning joint stiffness which typically lasts between one 

to three hours. During this time, RA patients are immobile and experience peak level 

pain upon movement (Arnett et aI., 1988). 

Ilnpaired lnobility 

The range of joint motion is severely impaired in RA. Early in arthritis, the limitation of 

joint mobility may be reversible if treatment is initiated promptly. More than 50% of RA 

patients have impaired mobility prior to first clinic consults. In patients with chronic RA, 

25-35% of joints lose their mobility due to proteolytic degradation of cartilage and bone 

(Eberhardt and Fex, 1995). 
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Muscle weakness 

In patients with mild arthritis, the strength of muscles associated with large joints is 

reduced to approximately 70% of the norm. In patients with long standing RA, the upper 

limit of muscle strength is approximately 40%. Muscle weakness is thought to arise as a 

result of atrophy, but more recently the severe muscle strength reduction observed in 

established arthritis is thought to occur as an adverse reaction to chronic treatment 

(Ekdahl and Broman, 1992). 

Although RA is most commonly associated with poly-articular joint destruction, there are 

significant extra-articular symptoms which are often misunderstood. These are due in 

part, to the elusive systemic components of RA. Extra-articular manifestations are most 

common in, but not limited to, the heart and lungs. Pericardial effusions are found in 

more than 20% of RA patients (Anaya et aI., 1995). Pericarditis is present in more than 

50% of patients, but coronary insufficiency is difficult to diagnose since RA patients have 

low exercise tolerance due to impaired joint mobility (Bonfiglio and Atwater, 1969). 

Pleural lesions are also common in more that 50% of patients and contribute to poor 

performance in pulmonary function tests (Csuka and Hanson, 1996). 

1.4 The rheumatoid synovium 

The synovium is a layer of soft tissue that lines non-cartilaginous surfaces of diarthrodial 

joints and provides nutrients to avascular connective tissue. It consists of a thin intimal 
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layer, usually between one to three cell layers thick and a synovial sublining which 

merges with the joint capsule (Henderson and Pettipher, 1985). The intimal layer 

normally contains tissue macrophages, often referred to as type-A synoviocytes. In 

addition it contains fibroblast-like-synoviocytes (FLS) also known as type-B 

synoviocytes. The synovial sublining is vascularised and contains scattered fibroblasts 

and fat cells. The synovium is in direct contact with synovial fluid which permeates 

articular cartilage and serves as a joint lubricant. In RA, the synovium becomes 

hypertrophic and oedematous. Uncontrolled proliferation of cells at the synovium­

cartilage junction leads to growth of a cell mass known as the pannus. The pannus 

invades cartilage and bone leading to joint erosion. The rheumatoid intimal layer 

becomes hyperplastic and the synovial sublining is infiltrated by inflammatory cells 

including T and B lymphocytes, macrophages and mast cells. These cells persist in the 

rheumatoid synovium long after infiltration. Recruitment of inflammatory cells, local 

retention and the promotion of cell proliferation contribute to the increased cellularity of 

the rheumatoid synovium (Henderson and Pettipher, 1985; Palmer, 1995). Normal 

histological architecture is drastically altered in RA and the synovium adopts features of 

lymphoid tissue. RA is distinct from other organ-specific autoimmune diseases since the 

target tissue is not destroyed, but instead the inflammatory process induces proliferation 

of synovial tissue (Muller-Ladner et aI., 2007). 
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1.5 Molecular and cellular basis of joint damage 

The inflamed synovium consists of diverse cell populations. These interact with each 

other in a contact-dependant manner and leads to the secretion of soluble factors which 

ultimately result in both persistence of inflammation and destruction of joint connective 

tissue (figure 1.2); (Karouzakis et aI. , 2006). 

The major cellular contributors to chronic inflammation and joint destruction include B 

lymphocytes, T lymphocytes, macrophages and synovial fibroblasts (SF). Complex 

interactions between these cell types facilitate proliferation of synovial tissue and 

production of pro-inflammatory cytokines (Muller-Ladner, 1996). In RA, SF plays a 

major role in joint destruction by secretion of matrix degrading enzymes in addition to 

stimulation of pro-inflammatory cytokine production. They are mainly found in the 

synovial sublining and possess an aggressive and invasive behaviour which resembles 

metastatic cancer cells (Fassbender, 1983). Synovial fibroblasts are able to adhere to 

cartilage and initiate degradation of the extracellular matrix. 

13 



IL-1, IL-6, TNF 
IL-15,IL-32 
GM-CSF 
oncostatin M 
M-CSF, VEGF 
Chemokines 
adipokines 
HMGB1 
IL-10 

_ ....... autoantibodies + 
/ immune complexes 

IL:1 .J 
RANKL TNF MMP 

TNF J IL-1 ADAM 
onco- ADAM-TS 

M-CSF statin M 
OPG PGE

2 

osteoclasts chrondrocyte 

features of inflammation 
and repair 

.-- tissue response ~ 

Figure 1.2 Contact-dependant interaction of cells in the rheumatoid synovium 

(Cope, 2008). 
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Destruction of cartilage by SF seems to be independent of immune involvement. When 

implanted into severe combined immuno-deficiency (SCID) mice models of RA, SF 

maintained their proliferative, invasive and destructive nature (Muller-Ladner et aI. , 

1996). Proliferation of SF in RA may be due to increased expression of growth factors 

such as platelet derived growth factor (PDGF), basic fibroblast growth factor (BFGF) and 

transforming growth factor ~ (TGF~) (Allen et aI., 1990; Butler et aI., 1989; Melnyk et 

aI., 1990; Qu et aI., 1994). In addition, proto-oncogenes, such as ras and c myc are 

abundantly expressed in these cells (Muller-Ladner et aI., 1995). 

Proliferation of these cells may also depend on factors secreted by other cells resident in 

the rheumatoid synovium. Inhibition of macrophage inhibitory factor (MIF) for instance, 

was shown to ameliorate SF proliferation (Lacey et aI., 2003; Leech et aI., 2003). 

Invasiveness and uncontrolled proliferation of SF may be related to impaired apoptosis. 

Although Fas and Fas ligand are abundantly expressed in the rheumatoid synovium, 

infiltrating immune cells and invasive SF appear to be resistant to death receptor induced 

apoptosis (Baier et aI., 2003). Anti-apoptotic molecules such as Sentrinl have been 

shown to modulate death receptor induced apoptotic pathways, and are specifically 

expressed in SF which invade cartilage and bone (Franz et aI., 2000). Secreted factors 

such as MIF can also modulate apoptotic pathways and thus contribute to SF proliferation 

(Leech et aI., 2003). Synovial hyperplasia however, is related not only to SF hyper­

proliferation, but also to invasion and persistence of inflammatory cells. 
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The rheumatoid synovium contains diffuse populations of inflammatory cells which 

include B lymphocytes, T lymphocytes, macrophages and dendritic cells. Synovial 

biopsies show that T lymphocytes play an integral role in chronic immune activation in 

RA (Duke et aI., 1982). The resulting synovitis and adoption of lymphoid architecture in 

the rheumatoid synovium is directed by elevated expression of chemokines and cytokines 

such as lymphotoxin-al~2 and B lymphocyte chemokines (Takemura et aI., 2001a; 

Takemura et aI., 2oo1b). The inflamed synovium typically contains clusters of lymphoid 

follicular aggregates with germinal centers and secondary follicles (Duke et aI., 1982; 

Schroder et aI., 1996; Weyand et aI., 2001). This type of lymphoid architecture supports 

the processing and presentation of antigen to T lymphocytes within the synovium, and 

may explain the reactivity to joint specific antigens such as collagen type II. 

Gene expression profiles of lymphoid tissue in synovial germinal centers show elevated 

levels of CXCL13, CXCLI2, CC chemokine ligand (CCL)19, CCL21, CXC chemokine 

receptor (CXCR)4, CXCR5 and CC chemokine receptor (CCR)7 (Timmer et aI., 2007). 

Analysis of gene ontology pathways suggested that these are involved in Janus 

kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathways 

associated with T lymphocyte receptor stimulation as well as interleukin 2/interleukin 7 

(IL-2IIL-7) co-stimulatory pathways (Timmer et aI., 2007). These pathways are 

important for the cellular interactions which maintain the organizational structure of 

lymphoid-like tissue and the persistence of inflammation in the rheumatoid synovium. 
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1.6 Genetics of rheumatoid arthritis 

The development and pathogenesis of RA has been attributed to a genetic predisposition 

based on twin and sibling studies. These studies have shown higher concordance rates of 

disease among monozygotic twins compared to dizygotic twins. In addition, siblings of 

RA patients have an increased susceptibility to RA than the general population 

(MacGregor et aI., 2000; Seldin et aI., 1999). No single RA susceptibility gene has yet 

been identified. However there is considerable association between the HLA-DR~1 gene 

and RA susceptibility in many population groups (Deighton et aI. , 1989). The HLA­

DR~ 1 gene is highly polymorphic and thus has a profound impact on individual immune 

responses and modulation of immune signals (Fernando et aI., 2007; Fernando et aI., 

2008). As a consequence of the variability of this gene, several sUbtypes have been 

identified. Specific sUbtypes of the HLA-DR~ 1 gene have been associated with 

susceptibility in RA populations despite ethnic differences in the specific genes involved. 

In RA patients of European ancestry for instance, the HLA-DR~ 1 *0401 and HLA­

DR~1 *0404 are the most common alleles (Newton et ai., 2004), while in East Asian 

populations the HLA-DR~1 *0405 allele is most frequently associated with RA 

susceptibility (Newton et aI., 2004). In South Africa, significant associations between 

RA and the HLA-DR~4 gene have been reported in African Blacks, Whites and 

populations of mixed ancestry (Mody et aI. , 1989). Interestingly, RA is uncommon in 

Nigerian populations and may be related to the low frequency (approximately 1 %) of 

HLA-DR~4 observed in this population (Okoye et aI., 1989; Ollier et aI., 1989). Despite 
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differences in the specific versions of HLA genes associated with RA, they are all similar 

at the third hyper-variable region which codes for the QKlRAA amino acid motif 

commonly referred to as the shared epitope (Gregersen et at, 1987). Functional 

significance of the 'shared epitope' in RA is uncertain, however recent studies have 

shown that citrullination of proteins confer high-affinity peptide interactions with HLA 

molecules which contain the shared epitope (Hill et al., 2003; Huizinga et at, 2005). 

Citrullination occurs when arginine residues in polypeptide chains are deiminated to 

citrulline by calcium dependant cytosolic peptidyl-arginine deiminianses (PAD). 

Citrullinated proteins are recognised as non-self and thus illicit a strong immune response 

(Gyorgy et at, 2006). Immune recognition of citrullinated proteins may also be attributed 

to unregulated apoptosis and inefficient clearance of apoptotic cell fragments. Antibodies 

to citrullinated proteins are highly specific (approximately 99%) for RA and are currently 

the most powerful diagnostic marker of the disease (Lundberg et at, 2005; 

Makrygiannakis et at, 2006; Yoshida et at, 2006). Apoptosis may result in increased 

PAD activity due to intra-cellular calcium fluxes and thus increase protein citrullination 

events. Uncontrolled apoptosis may also promote leakage of post-translationally modified 

proteins into the extracellular compartment where they may be intercepted by the 

immune system (Gyorgy et aI., 2006; Yoshida et aI., 2006). 

Several non-HLA genes have been identified and associated with RA through genome 

wide association studies (Frazer et at, 2007). While these are inconsistent among 

different population groups, strong associations with RA susceptibility have been 
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described for the protein tyrosine phosphatase non-receptor type 22 (PTPN22) and 

PADI4 genes. Susceptibility studies in European RA populations have confirmed the 

role of PTPN22 polymorphisms in disease pathogenesis. These polymorphisms however, 

are infrequent in Asian populations. PADI4 polymorphism studies have been replicated 

in many Asian populations and confirm the association with RA susceptibility and 

severity. However, these are inconsistently observed in other populations (Gagnon et aI., 

2007; Goeb et aI., 2008; Lee et aI., 2009; Pazar et aI., 2008; Stark et aI., 2009). Much of 

our understanding of RA susceptibility genes come from genome wide association 

studies in large European or Asian patient cohorts, primarily due to the efforts of the 

International HapMap Project (IHMP) and Wellcome Trust Case Control Consortium 

(WTCCC). African blacks are under-represented in these data repositories and thus 

genetic associations arising from these projects may not necessarily be applicable to local 

RA patients. A further confounding factor is the inconsistency between specific genetic 

risk factors and different population groups. While there is compelling evidence for 

genetic risk factors in RA, which can also provide information regarding susceptibility 

and severity, they are currently not clearly defined. 

1.7 Overview of cell death 

Cell death is a critical process during development and homeostasis of the immune 

system. Dysregulation of cell death mechanisms have been associated with numerous 

pathologies (Lleo et aI., 2008). Each cell in the body has innate self-destruct 

programmes, which may be initiated in the event of cellular integrity being compromised, 
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or when cells are no longer required. Deletion of certain cell groups within tissues may be 

necessary for structural development, as is evident during embryogenesis. Compromised 

cells, such as those harbouring genetic aberrations, need to be eliminated in order to halt 

the growth and propagation of faulty cells. Cell death is also induced upon infection, as 

part of immunological defence mechanisms. The major types of cell death include 

apoptosis, necrosis, autophagic cell death and pyroptosis (Duprez et aI., 2009; Elmore, 

2007). 

1.8 Apoptosis 

Apoptosis is a term used to describe a physiologically regulated mode of programmed 

cell death. It flrst appeared in scientiflc literature during the 1970s (Kerr, 2002; Kerr et 

aI., 1972). Based on morphological, biochemical and molecular criteria, apoptosis is 

distinct from alternate modes of cell death. Much of our understanding of mammalian 

cell apoptosis is derived from studies which investigated developmental stages of the 

nematode, Caenorhabditis elegans (Horvitz, 1999). In this organism, 131 distinct cells 

undergo programmed cell death at particular points in the development process in order 

to generate 1090 somatic cells, which eventually form the adult organism (Gumienny et 

aI., 1999). Accuracy of the cell death process is emphasised by the observation that the 

cells which die and the timing of cell death during development is identical between 

individual organisms (Maurer et aI., 2007). Apoptosis is thus recognised as a genetically 

determined biological programme which results in co-ordinated elimination of cells. It is 

essential both in development and in the homeostatic control of mammalian cell turnover. 
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Apoptosis may be triggered by various physiological stimuli, as well as pathological 

stimuli such as infectious agents. It is critically important for shaping of the immune 

system and in amelioration of inflammation. Aberrations in the regulatory mechanisms of 

apoptosis have been implicated in the development of autoimmune diseases (Haanen and 

Vermes, 1995; Munoz et aI., 2008). 

1.9 Morphological features of apoptotic cells 

Morphologically, apoptosis is characterized primarily by cytoplasmic shrinkage, 

chromatin condensation and membrane blebbing. Early during apoptosis, the cytoplasm 

becomes dense and organelles are tightly packed. As a result, cell size is significantly 

reduced and they appear round or oval under light microscopy (Hacker, 2000). In the 

nucleus, chromatin is condensed and usually aggregates peripherally under the nuclear 

membrane. This leads to pyknosis and condensation of nuclear material. The nucleus is 

then fragmented during a process known as karyorrhexis (Hacker, 2000). The plasma 

membrane is drastically altered during apoptosis, due to loss of membrane asymmetry 

(Bratton et aI., 1997). As a consequence, the plasma membrane begins to 'bleb' and 

cells undergoing apoptosis disintegrate into smaller fragments known as apoptotic bodies. 

Despite structural disruptions, plasma membrane integrity of apoptotic bodies remains 

intact (Fadok and Chimini, 2001). Condensed cytoplasmic and nuclear constituents of the 

dying cell are contained within apoptotic bodies, and are thus not exposed to the extra­

cellular environment. Apoptotic bodies are subsequently recognized and engulfed by 
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surrounding cells and phagocytes (Ashman et aI., 1995). Tissue macrophages in 

particular, play an important role in disposing of apoptotic cells. Upon engulfment of 

apoptotic bodies, these cells release anti-inflammatory factors, thus clearing apoptotic 

cells without evoking an inflammatory response and with minimal physiological trauma 

(Fadok et aI., 1998b; Hoffmann et aI., 2001). 

1.10 Molecular mediators of apoptosis 

The main molecular mediators of apoptosis are members of the evolutionary conserved 

Bcl-2 protein family, and the cysteinyl aspartate-specific proteases (caspases). The Bcl-2 

proteins are associated with control of mitochondrial membrane integrity and thus the 

flow of molecular traffic between the cytoplasm and mitochondrial inter-membrane space 

(Suen et aI., 2008; Youle and Strasser, 2008). They were first identified in B-cell 

lymphoma, hence the Bel designation (Tsujimoto et aI., 1985). The Bcl-2 protein family 

is categorized into three functional groups based on sequence homology (figure 1.3). 

Group I Bcl-2 members contain four conserved Bcl-2 homology domains (BH1-BH4) 

and a hydrophobic tail at the C-terrninal. This facilitates localization to the outer 

mitochondrial surface. Members of group I which include Bcl-2 and Bcl-XL, all possess 

anti-apoptotic activity. Group II members lack the BH4 domain, but are otherwise 

structurally similar to group I members. Despite structural similarity, these proteins are 

functionally divergent from group I members, in that they are largely pro-apoptotic. 

Members of group II include Bax and Bak proteins. The BH3 domain is the only 
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common structural feature in members belonging to group m. This group is comprised 

of proteins which share very little sequence homology and are equally functionally 

diverse (Adams and Cory, 1998; Antonsson and Martinou, 2000; Antonsson et aI., 2000; 

van Delft et aI., 2006). 

Group I 

Group II 

pili 

BcJ-2 

Sax 

Bid 

Figure 1.3 Classification of Bcl-2 proteins according to sequence homology 

(Hengartner, 2000). 

Caspases belong to a large family of evolutionary conserved proteases, many of which 

are involved in apoptotic initiation signals or mediate the execution phase of apoptosis. 

They are responsible for the controlled proteolytic breakdown of cellular structures 

(Fuentes-Prior and Salvesen, 2004). These proteases characteristically contain cysteine 

residues within their active sites and cleave protein substrates at aspartic acid residues 

(Earnshaw et aI., 1999). Approximately twelve caspases are known to be involved in 
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apoptosis and either posses initiator (caspase 2,-8,-9,-10) or executioner (caspase 3,-6,-7) 

functions (Thornberry and Lazebnik, 1998). They are synthesized as enzymatically inert 

zymogens known as pro-caspases. They contain three distinct domains, namely an N­

terminal pro-domain, a large p20 subunit and a small pi 0 C-terminal subunit (Earnshaw 

et ai., 1999). Between each domain are proteolytic cleavage sites which contain aspartic 

acid residues. Certain caspases (such as caspase 3), may be activated by autocatalytic 

activation or by upstream caspases which cleave at the inter-domain aspartic acid 

residues. This initiates the characteristic caspase activation cascade during apoptosis 

(Nicholson and Thornberry, 1997; Thornberry et ai., 1997). In addition, caspase 

activation may occur via proximity induced activation, when pro-caspases are forced to 

aggregate at particular cellular locales. Caspase 8, for instance, is activated upon 

aggregation of several pro-caspase 8 molecules at cytoplasmic domains of death 

receptors, following Hgation of these receptors (Salvesen and Dixit, 1999). A more 

complex activation mechanism is observed for caspase 9. Autocatalytic activity or 

upstream proteolytic cleavage is insufficient for activation of this caspase. Instead, the 

proteolytic activity of this caspase is regulated by formation of a complex with apoptotic­

protease-activating-factor (Apaf-1). Upon activation, mature caspases adopt hetero­

tetrameric conformations which are comprised of two pI O/p20 hetero-dimers. Each 

mature enzyme thus contains two active sites (Rodriguez and Lazebnik, 1999). Cells 

may initiate apoptosis and thus cause caspase activation via two distinct biological 

pathways, namely the intrinsic or extrinsic apoptotic pathways (figure 1.4). 
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Figure 1.4 Apoptotic signalling pathways (Hengartner, 2000). 

1.11 Intrinsic mitochondrial apoptotic pathway 

The intrinsic pathway is initiated primarily by stimuli which cause irreparable damage to 

cellular structures, or those which cause DNA damage. The central effectors of intrinsic 
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apoptotic signals are mitochondria. These signals converge on mitochondria and induce 

opening of mitochondrial permeability transition pores (MPTP) (Brenner and Mak, 2009; 

van Gurp et aI., 2003). As a consequence, mitochondrial transmembrane potential is 

disrupted and pro-apoptotic proteins, which are normally sequestered in the 

mitochondrial inter-membrane space, are released into the cytoplasm (Saelens et aI., 

2004). In normal cells, mitochondrial membrane polarity is strictly controlled. It is 

maintained in a polarized state to facilitate normal metabolic functions, but also to 

regulate molecular cross-talk between the cytoplasm and mitochondrial inter-membrane 

space. During homeostatic conditions, Bc1-2 regulatory proteins (primarily group I 

members) maintain integrity of the mitochondrial membrane by inhibiting Bax and Bak. 

During cellular stress, group ill Bc1-2 proteins containing only the BH3 domain 

antagonize Bc1-2 and thus inhibition of Bax and Bak is relieved. This promotes their 

oligomerization and facilitates formation of MPTP and the loss of mitochondrial 

transmembrane potential (Kang and Reynolds, 2009). Two groups of proteins which are 

normally sequestered within mitochondria are released into the cytoplasm through 

MPTP. The first group is directly involved in activation of the caspase cascade and 

consists of cytochrome c (cyt c) and second-mitochondrial activator of caspases/direct­

Inhibitor-of-apoptosis-binding-protein-with-low-PI (SmacIDIABLO) (Cai et aI., 1998; 

Garrido and Kroemer, 2004). 

In the cytoplasm, association of cyt c with Apaf-1 forms a protein scaffold, known as the 

apoptosome, which recruits pro-caspase 9. Binding pro-caspase 9 and Apaf-1 in the 

apoptosome stabilizes and activates caspase 9. Assembly of the apoptosome complex is 

complete upon activation of caspase 9 (figure 1.5), which thereafter activates downstream 
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executioner caspases, particularly caspase 3,-6 and -7 (Riedl and Salvesen, 2007). 

Inhibitor-of-apoptosis-proteins (IAP), such as XIAP, are normally found in complex with 

executioner caspases causing their inhibition (LaCasse et aI., 2008). Once in the 

cytoplasm, SmaclDIABLO antagonize IAP and thus relieve their inhibitory interaction 

with executioner caspases (Shaw et aI., 2008). 

c 

Figure 1.5 Activation and assembly of the apoptosome (Hen gartner, 2000). 

1.12 Extrinsic receptor mediated apoptotic pathway 

The extrinsic apoptotic pathway is initiated upon activation of death receptors, which are 

transmembrane proteins located on the cell surface. Death receptors belong primarily to 

27 



the tumour necrosis factor (TNF) super-family and common death ligands include TNF­

n, CD95IFas and TNF-related apoptosis-inducing ligand (TRAIL) (Peter and Krammer, 

2003). Structurally, death receptors contain extracellular cysteine-rich domains and 

cytoplasmic death domains composed of approximately 80 amino acids. Binding of the 

death receptor by its appropriate ligand causes receptor clustering and adapter proteins 

are recruited to the cytoplasmic death domain. Ligation of CD95IFas for instance 

induces recruitment of Fas associated death domain (FADD) which then associates with 

pro-caspase 8, following dimerization of the death domains. The complex formed by 

association of these molecules is known as the death-inducing signalling complex 

(DISC), which facilitates autocatalytic activation of procaspase-8 (Moxley et aI., 2009). 

Engagement of TNF receptor 1 (TNFRl) results in formation of two sequential protein 

complexes, i.e. complex I and II (Wilson et aI., 2009). Complex I is formed at the plasma 

membrane by association of TNFRl, TNFR-associated death domain (TRADD), TNF 

receptor associated factor 2 (TRAF2), receptor interacting protein 1 (RIPl) and cellular 

lAP 1 and 2 (clAPl; cIAP2). Complex I is associated with TNF-induced activation of 

mitogen activated protein kinases (MAPK) and nuclear factor KB (NFKB). Endocytosis 

of TNFRl is followed by the formation of complex II, which is functionally similar to the 

DISC. This complex activates caspase 8 which leads to activation of downstream 

executioner caspases. Extrinsic apoptotic signals are amplified by caspase 8-mediated 

cleavage Bid which antagonizes regulatory Bcl-2 proteins and initiates the intrinsic 

mitochondrial apoptotic pathway (Wang et aI., 2008; Wilson et aI., 2009). 
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1.13 Stress response proteins and apoptosis 

One of the key regulators of apoptosis is the tumour suppressor protein, p53 (Green and 

Kroemer, 2009). It is normally expressed at low levels and has a short half-life, but 

rapidly accumulates under conditions of cellular stress. p53 acts as a transcription factor 

that regulates cell cycle progression, mediates DNA repair, and if necessary, initiates the 

apoptotic programme (Adimoolam and Ford, 2003; Levine and Oren, 2009; Vousden and 

Prives, 2009). Apoptosis directed by p53 may occur via: 

a) p53-mediated transcription of pro-apoptotic genes (Oren, 2003), 

b) non-transcription events such as p53-mediated activation of executioner caspases 

(Vaseva and Moll, 2009). 

Mutations in the p53 gene have been associated with many tumours, and recently, the 

alterations in the p53 status of RA patients have come into focus. Both over-expression 

of the protein and mutations in the p53 gene were described for RA. Evidence suggests 

that the molecular profile in RA fibroblasts is associated with the ethnicity of patients. 

Whilst p53 mutations were detected in clones from three RA synovial fibroblast cell lines 

from the USA, the same mutations were absent in fibroblasts from German RA patients 

(Kullmann et ai. , 1999; Muller-Ladner and Nishioka, 2000). 
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The p53 mutational and expression status in inflammatory autoimmune disease has not 

been comprehensively investigated, and whilst evidence for p53 aberrations in cells 

harvested from the RA synovium accumulates, research investigating the same 

parameters in peripheral immune components is lacking. 

Apart from p53, heat shock proteins (HSP) and heat shock transcription factors (HSF), 

have been implicated in the pathogenesis of RA. The HSPs are widely distributed and 

are among the most highly conserved molecules in nature. Heat shock proteins are 

encoded by genes whose expression is rapidly increased during conditions of cellular 

stress such as, metabolic disruptions, oxidative stress and inflammation. They have a 

broad array of functions and increase cell survival by acting as molecular chaperones. 

They are able to protect cells from executing and completing the apoptotic program. 

High levels of HSP70 have been detected in the serum and synovial tissue of RA patients. 

Over-expression of HSP70 may contribute to the resistance to apoptosis observed in cells 

of the RA synovium (Beere, 2004; Kamradt et aI., 2005; Liuzzo et aI., 2005). 

Both HSPs and p53 are important biological molecules in RA and the induction of 

apoptosis may rely on the net effect of these two proteins (figure 1.6). Heat shock 

proteins intimately interact with the p53 tumour suppressor by: 

a) acting as molecular chaperones that potentially mediate p53 conformation. 

b) playing a role in the stabilization and localization of mutant p53. 

c) participating in the cytoplasmic sequestration of wild type (Walerych et aI., 2009). 
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Figure 1.6 Apoptosis is regulated in part by the net effect of p53 and HSP70. 

Both p53 and HSP70 influence apoptosis and abnormalities in these protein systems 

(whether at the gene or protein level) may result in severe defects in apoptosis and may 

be associated with the pathogenesis of RA. 
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CHAPTER 2 

CYTOTOXICITY, MITOCHONDRIAL DEPOLARISATION AND OXIDATIVE 

STRESS IN RHEUMATOID ARTHRITIS 

2.1 Introduction 

There is accumulating evidence to show that mitochondrial damage may play a 

significant role in the pathogenesis of RA. Synoviocyte mitochondrial DNA (mtDNA) 

was shown to contain twice the amount of somatic mutations compared to osteoarthritic 

controls (Da Sylva et aI. , 2005). Somatic mutations in protein coding segments of 

mtDNA contribute to pathogenesis by elevating expression of major histocompatibility 

complex (MHC) class I molecules (Gu et aI. , 2003). Both MHC class I and II are able to 

present peptides derived from aberrant mtDNA, thus promoting immunological responses 

which may result in loss of tolerance (Kita et aI. , 2002). 

Chronic inflammation is associated with elevated levels of both ROS and RNS. Various 

investigations have recently cited oxidative stress as a major contributor to RA 

pathogenesis with high levels of oxidative enzyme activity observed in synovial fluid 

(Dabbagh et aI. , 1993; De Leo et aI., 2002; Seven et aI. , 2008). Free radicals may also act 

as second messengers which stimulate NFKB dependant expression of pro-inflammatory 

cytokines (Miesel et aI., 1996). 
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Dietary intake of antioxidants was associated with lower incidence of RA and higher 

levels of circulating antioxidants were shown to ameliorate inflammation (Bae et aI., 

2003; Cerhan et aI., 2003; Hagfors et aI., 2003). There is also evidence for oxidative 

damage to synovial connective tissue and proteins (Dai et aI., 2000; DaIle-Donne et aI., 

2003; Grootveld et aI., 1991). Miesel et ai. showed that production of mitochondrial 

derived free radicals correlated with plasma TNF-a. levels in RA (Miesel et aI., 1996). In 

addition, the clinically beneficial changes produced by infliximab (anti-TNF-a.) therapy 

in RA were related to changes in plasma redox status in conjunction with its anti­

inflammatory effects (Lemarechal et aI., 2006). 

Mitochondrial machinery is particularly susceptible to oxidative damage. Proximity of 

mtDNA and proteins to the free radical-producing oxidative phosphorylation process, 

combined with limited mtDNAIprotein repair mechanisms, confers substantial oxidative 

burden. Cells of synovial origin are most vulnerable to oxidative damage due to chronic 

synovial inflammation in RA. Mitochondrial integrity of circulating PL, which 

perpetuates chronic inflammation however, has not been fully investigated to date. 

This study therefore aimed to assess cytotoxicity and mitochondrial membrane potential 

(~'I'm) as a marker of mitochondrial damage in circulating PL from South African black 

RA patients. In addition, the extent of lipid peroxidation was measured as an indicator of 

oxidative stress. 
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2.2 Materials and Methods 

2.2.1 Ethical approval 

This study was approved by the Faculty of Health Sciences, Research, Ethics and Higher 

Degrees Committee, University of KwaZulu-Natal - protocol number: H109/04. 

Informed consent was obtained for each patient enrolled in the study. Informed consent 

documents were available in both English and isiZulu (appendix 1) depending on patient 

preference. Details of the study were explained to each patient by the clinic nurse prior to 

recruitment. 

2.2.2 Patient recruitment and assessment 

Fifty South African black RA patients (female:male ratio 6:1) attending the rheumatology 

clinic at Inkosi Albert Luthuli Central Hospital (Durban, South Africa) were recruited 

into the study. All patients fulfilled the American College of Rheumatology (ACR) 

criteria for RA (appendix 2) (Arnett et aI., 1988). 

Patients were at various stages of treatment when sampled. They were distributed among 

three treatment categories, namely, patients on methotrexate (MTX) alone (n = 13), MTX 

together with steroidal drugs (n = 29) and those on other disease-modifying-anti­

rheumatic-drugs (DMARD, n = 8). 
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The patients reported no recent/chronic infection or history of other chronic inflammatory 

diseases. All patients were HIV negative. The HIV status of every patient attending the 

rheumatology clinic is routinely determined since HIV status impacts on the type of 

therapy and clinical management. The rheumatology clinic is equipped with the 

necessary facilities for pre- and post-test counseling. 

Following recruitment, patients were assessed by clinic rheumatologists. Clinical and 

laboratory parameters (mean number of swollen joints and tender joints; erythrocyte 

sedimentation rate, ESR; C reactive protein, CRP; absolute lymphocyte counts) were 

recorded for all the patients. In addition, each patient completed health assessment 

questionnaires (HAQ) , from which HAQ scores were generated. The HAQ is a patient 

reported outcome which provides knowledge about a patient's general health, functional 

status, and quality of life. 

In order to determine disease severity, disease activity scores (DAS28) were determined 

for each patient. This score is a mathematical function of the number of swollen and 

tender joints out of 28 clinically assessed joints. In addition to laboratory parameters, i.e. 

ESR and CRP, the DAS28 also incorporates the patients general health measured on a 

visual analogue scale. 

For the experimental parameters measured in this study, heparinized whole blood (lOml) 

and serum (5ml) was collected from each patient through the antecubital vein by a 

qualified phlebotomist. Healthy race matched control samples were sourced from the 
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South African National Blood Services following routine screening. 

2.2.3 Peripheral lymphocyte preparation 

Buffy coats containing PL were extracted from heparinized whole blood by differential 

centrifugation. Briefly, whole blood collected from each subject, was layered onto 

equivolume Histopaque® 1077 (Sigma) in 15ml polypropylene tubes. Histopaque® 1077 

is a polysucrose solution containing sodium diatrizoate which is adjusted to a density of 

approximately 1.077 glml. The solution at this density facilitates the recovery of 

mononuclear cells from whole blood. Polysucrose facilitates aggregation of erythrocytes 

and granulocytes which rapidly sediment during centrifugation. Mononuclear cells such 

as PL are contained within the buffy coat at the plasma-Histopaque® interface (figure 

2.1). Layered blood was centrifuged at 400 x g for 30 minutes. Buffy coats were 

aspirated into new polypropylene tubes and washed twice in phosphate buffered saline 

(PBS) (400 x g, 10 minutes). PL density was adjusted to 1 x 106 cells/ml with the trypan 

blue exclusion test. 
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Figure 2.1 
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Schematic illustration of peripheral lymphocyte preparation by density 

gradient centrifugation (Sigma-Aldrich, 2003). 

2.2.4 Lactate dehydrogenase (LDH) cytotoxicity assay 

The LDH cytotoxicity detection kit (Roche) was used to measure cell death/damage in all 

study participants. LDH is a stable cytosolic enzyme which is rapidly released from 

damaged or dying cells. A colorimetric assay was used for the quantification of cell death 

or cell lysis based on the measurement of LDH activity in the serum of all study 

participants. The assay is a two step enzymatic reaction where NAD+ is reduced to 

NADHIH+ by the conversion of lactate to pyruvate. Thereafter, a diaphorase catalyst 

transfers H/H+ from NAD~ to a tetrazolium salt to yield a formazan product (figure 

2.2). To measure LDH activity, serum (200111) was transferred into microtitre plates in 

triplicate. Thereafter, substrate mixture (l001l1) containing catalyst (diaphoraseINAD+) 

and dye solution (INT/sodium lactate) from the kit was added to serum and allowed to 
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react at ambient temperature for 25 minutes. Optical density of the resulting formazan 

product was measured at 500nm with an ELISA plate reader (Bio-Tek uQuant). 
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2.2.5 Mitochondrial membrane potential 

The J C-l (5,5',6,6' -tetrachloro-l, 1 ',3,3' -tetraethylbenzimidazolcarbocyanine iodide) 

Mitoscreen assay (BD Biosciences) was used to assess il'l'm in PL. JC-l is a membrane­

permeable lipophilic cationic fluorochrome. The fluorescence emission spectrum of JC-l 

is dependent on its concentration in cellular compartments, which is determined in part 

by il'l'm. At low concentrations, JC-1 molecules exist as monomers which exhibit green 

fluorescence. At higher concentrations however, JC-1 monomers form aggregates which 

emit red fluorescence. In healthy cells, mitochondrial uptake of JC-1 is driven by 

polarized il'l'm. This results in high concentrations of JC-1 within the mitochondria and 

facilitates the formation of JC-1 aggregates. In cells with compromised mitochondria, 

JC-l molecules are sparsely distributed in the cytoplasm and remain as monomers. 

Healthy cells can thus be differentiated from unhealthy cells by examining fluorescence 

shifts in the red and green spectra. 

To assess il'l'm. approximately 1 x 105 PL were transferred into 5ml polystyrene 

cytometry tubes. The JC-1 dye (150!!1) was added to PL and allowed to incubate at 37°C 

for 10 minutes. Thereafter, PL were washed twice in JC-1 wash buffer and re-suspended 

in 200!!1 flow cytometry sheath fluid. Labelled PL were enumerated by flow cytometry 

using a 4-colour FACS Calibur (BD Biosciences) flow cytometer. Data was recorded for 

green and red fluorescent channels from 50 000 events for each sample. Analysis was 
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performed with FlowJo 7.1 (Tree Star Inc.) software. 

2.2.6 Lipid peroxidation assay 

Lipid peroxidation is a major indicator of oxidative stress. In order to measure lipid 

peroxidation and thus gauge the extent of oxidative stress in PL, the thiobarbituric acid 

reactive substance (TBARS) assay was performed. Oxidative damage to lipids produces 

lipid hyper-peroxides and malondialdehyde (MDA). Thiobarbituric acid (TBA) can react 

with MDA to form adducts which absorb light maximally at 532nm (figure 2.3). MDA 

production, and thus the amount of MDAffBA adduct formed is directly related to the 

extent of lipid peroxidation, which can be measured spectrophotometrically. 

HS 0 0 

V 
TBA MOA roduct 

Figure 2.3 Reaction of thiobarbituric acid and malondialdehyde. 

For the TBARS assay, approximately 1 x 106 PL were homogenized in 1 % H3P04. 400!l1 

of the PL homogenate was transferred into clean glass tubes. For a positive method 

control, 400~1 of 1 % malondialdehyde bis(dimethyl acetal) was used in place of PL+ 
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homogenates. To this, 400111 TBA (1 %, w/v)/O.lmM butylated hydroxy toluene (BHT) 

mixture was added. The solution was adjusted to pH 1.5 and heated to 100°C for 15 

minutes. Butanol (1.5m1) was added to the mixture after cooling and thereafter 

centrifuged (10 000 x g) for 6 minutes to separate organic phases. Aliquots (3001l1) of the 

butanol phase were transferred into microtitre plates and optical density was measured at 

532nm. 

2.2.7 Statistical analysis 

All statistical analyses were performed with the GraphPad Prism version 5 software 

package (GraphPad Software Inc.). 
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2.3 Results 

2.3.1 Clinical evaluation revealed elevated disease activity 

Patients recruited into this study fulfilled the ACR criteria for RA and had active disease 

with elevated numbers of swollen joints, tender joints and high DAS28 scores (table 1). 

More than half of the patients (n=27) in this study cohort obtained DAS28 scores higher 

than the mean (6.1 ± 1.3). DAS28 scores for all patients exceeded the index (3.7) 

stipulated for high levels of disease activity (Prevoo et aI., 1995). Routine laboratory 

markers, i.e. ESR and CRP, were consistent with expected high values for chronic 

inflammation. 
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Table 2.1 Summary of clinical and laboratory paraineters in RA patients. 

Female: male ratio 6: 1 

Mean age & range 50.7 years (18-75 years) 

Mean duration of disease 13.3 ± 9.5 years 

Mean number of swollen joints 12 ± 6.7 

Mean number of tender joints 13 ± 8.7 

ESR 42.3 ± 28.5 mmIhr 

CRP 19.59 ± 20.5 mglml 

HAQ score 1.9 ± 0.7 

DAS28 score 6.1 ± 1.3 

Mean white blood cell count 6.9 ± 2.7 x 109 /1 

Mean lymphocyte count 1.9 ± 0.8 x 109 / 1 
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2.3.2 Cytotoxicity studies 

LOR activity in the extra-cellular compartment is a reliable indicator of cytolysis and 

cytotoxicity. LOR activity was significantly elevated in sera of RA patients as compared 

to controls (figure 2.4). These results were not unexpected as chronic inflammation may 

lead to the release of LOR through cytolytic events either at inflammatory sites or by 

breach of plasma membrane integrity of circulating PL. 
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Figure 2.4 Elevated lactate dehydrogenase activity in rheumatoid arthritis patient 

serum. Mean optical density (+ SD) of formazan product formed in the 

LDH reaction is shown (n = 50). * Statistical significance was 

determined by the unpaired t-test with Welch correction, p=0.0080. 

2.3.3 Mitochondrial membrane potential 

To determine whether PL were intact and metabolically viable, changes in L1'1'm were 

investigated. There were significantly higher numbers of circulating PL with depolarised 

mitochondria in RA patients than in controls (47.5% vs. 29.85%; figure 2.5). 
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lymphocytes with depolarised mitochondria was higher in the patient 

cohort. Data represents mean + standard error of the mean (SEM) for 50 

patients and race-matched controls. *Differences in means were 

extremely significant (p = 0.0003; unpaired t-test with Welch correction). 

2.3.4 Mitochondrial integrity and clinical parameters 

In order to investigate the clinical relevance of mitochondrial depolarisation, ~"'m was 

correlated with DAS28 scores. The proportion of PL with depolarised mitochondria 

significantly correlated with the DAS28 disease activity index (r = 0.3286; 95% 

confidence interval, 0.06667 to 0.5482; two tailed p value = 0.0153; Pearson r linear 

correlation; figure 2.6A). 

When laboratory components of the DAS28 score were considered separately, the data 

showed that loss of PL ~"'m correlated significantly with CRP but not ESR, (CRP: r = 

0.2740; 95% confidence interval, 0.09314 to 0.5028; two tailed p value = 0.0492; figure 

2.6B; ESR: r = 0.1461; 95% confidence interval, -0.1240 to 0.3961; two tailed p value = 

0.2870; Pearson r linear correlation; figure 2.6C). 
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Figure 2.6 
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The HAQ scores, as well as disease duration (13.3±9 years), did not significantly relate to 

depolarised mitochondria (HAQ: r = 0.08656; 95% confidence interval, -0.1856 to 

0.3464; two tailed p value = 0.5337; Disease duration: r = 0.2269; 95% confidence 

interval, -0.04906 to 0.4707; two tailed p value = 0.1057; Pearson r linear correlation). 

Interestingly, a strong statistically significant negative correlation between mitochondrial 

depolarisation and absolute PL counts was observed (figure 2.7). 

To investigate whether different treatment regimens affected PL ~"'m, patients were 

grouped according to treatment regimens and differences in PL ~"'m were statistically 

tested. No significant difference in mitochondrial depolarisation was observed when 

compared across different treatments. A slightly lower level of mitochondrial 

depolarisation was however noted in patients who were MTX naIve (figure 2.8). 
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Figure 2.7 Absolute lymphocyte count negatively correlated with mitochondrial 

depolarisation in patients (n = 33). Correlation co-efficient r = -0.4041 ; 

two tailed P value = 0.0197; Pearson r linear correlation. 
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Figure 2.8 Proportion of circulating peripheral lymphocytes with depolarised 

mitochondria in patients grouped according to treatment (One-way 

ANOV A P = 0.1179). 

In order to determine whether mitochondrial damage and cytotoxicity were related to 

oxidative stress, the level of lipid oxidation products was measured in PL. The TBA 

assay showed significantly higher amounts of lipid peroxidation in RA patients (Figure 

2.9). 
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Figure 2.9 Oxidative damage in rheumatoid arthritis patients. Data shows mean 

optical density (+ SD) of lipid oxidation products formed in the TBARS 

assay, (n=50). 

*Difference between means was statistically significant, p=0.OO30 

(unpaired t-test with Welch correction). 

51 



2.4 Discussion 

Cytolysis as a result of critical cellular damage causes release of intra-cellular 

macromolecules into plasma. These molecules, such as DNA and protein are not 

normally found in the extra-cellular compartment and may not necessarily escape 

immune surveillance. Hajizadeh et aI. reported that intra-articularly injected mtDNA 

induced arthritis in mice (Hajizadeh et aI. , 2003). Data from this study provides evidence 

for cytolytic damage in RA as indicated by elevated levels of serum LDH activity. 

Metabolic analysis of synovial fluid in active RA showed elevated concentrations of 

lactate, diminished glucose concentrations and high levels of ketone bodies which 

suggested an increased dependence on lipids as a fuel source (Naughton et aI., 1993). 

Early experiments showed that glucose metabolism was impaired in RA and was related 

to insulin resistance (Paolisso et aI., 1991). More recently, RA was associated with a 

higher prevalence of metabolic syndrome and coronary atherosclerosis independent of 

age or gender (Chung et aI. , 2008). Chronic inflammation is thought to promote insulin 

resistance through the pro-inflammatory actions of TNF-a (Hehlgans and Pfeffer, 2005; 

O'Connor et aI., 2008) and that metabolic syndrome may be a mechanism that contributes 

to atherosclerosis in an inflammatory environment. Impaired glucose metabolism and 

insulin resistance may contribute to elevated LDH expression in inflammatory 

environments where there is a shift toward lactate metabolism. 
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Within the paradigm of autoimmune arthritis, cytolytic injury at chronically inflamed 

joints may account for high plasma LDH activity. However, circulating PL may 

themselves become compromised prior to activation and recruitment to inflammatory 

sites. Lymphocyte metabolism is largely associated with oxidation of ketone bodies, 

which serves to elevate cellular pools of acetyl co-enzyme A (Ac-Co A), reserved for 

metabolism following stimuli for clonal expansion (Newsholme et aI., 1986). Combined 

with ketone oxidation and impaired glucose utilization in an inflammatory background, 

metabolic machinery may be skewed toward the production of oxidative free radicals. 

Cellular metabolic strategies regulate immune signaling and consequently the switch 

between "immune- privilege" and "immune-sensitivity". Inflammation is associated with 

localized changes in metabolism. Cells which rely on glucose as a primary fuel source 

exhibit elevated expression of MHC and co-stimulatory molecules. They contain highly 

polarized mitochondria and are known to be immuno-sensitive. In contrast, immuno­

priviledged cells depend on lipid derived fuels and typically contain depolarised 

mitochondria. Flow of electrons along the mitochondrial electron transport chain is 

facilitated by oxygen complexes capable of forming ROS. Increases in the levels of 

intracellular free radicals modulate the surface expression of MHC class II molecules 

hence altering sensitivity of immune cells. Immuno-sensitivity is tightly regulated and 

cellular metabolic strategies substantially contribute to immune recognition and response. 

The switch between glucose and lipid oxidation is controlled partly by uncoupling 

proteins (UCP) which dissipate the mitochondrial proton gradient, confers protection 
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from ROS and lowers ~"'m (Newell et aI., 2006; Skulachev, 1998). 

Anti-inflammatory effects of DMARDs such as MTX, were shown to depend on the 

production of ROS (Newell et ai., 2004; Phillips et ai., 2003) and surface expression of 

co-stimulatory molecules such as CD80/86 (Bhushan et ai., 1998). Uncoupling, within 

the perspective of autoimmunity, may be a compensatory metabolic mechanism to reduce 

immune sensitivity by switching to lipid oxidation. The lowered ~"'m observed in our 

cohort could possibly be a symptom of UCP action but may however not offset MTX­

induced production of free radicals. 

A likely mechanism by which circulating mononuclear cells may become damaged is 

through oxidative stress. There is substantial evidence showing oxidative damage to 

lipids and proteins in RA. Lemarechal et ai. reported that free radical damage to serum 

proteins was linked to inflammation in RA. In addition, there was a marked increase in 

albumin and heavy chain immunoglobulin (lg) oxidation (Lemarechal et ai., 2006). 

Oxidative stress may also cause non-enzymatic damage of Ig where lysine and/or 

arginine residues are involved in glyoxidation reactions to form advanced-glycation-end­

products (AGE). Auto-antibodies to AGE-damaged Ig were observed in patients with 

early synovitis and were shown to be specific to RA (Newkirk et ai., 2003; Newkirk et 

aI., 1998). 

Polyunsaturated fatty acids found in membranes are highly susceptible to damage by 
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ROS, leading to lipid peroxidation and formation of multiple end-products including 

MDA. Consistent with previous reports (Gambhir et aI. , 1997; Winyard et aI., 1993), our 

investigation showed significantly higher levels of lipid peroxidation in RA patients than 

healthy subjects indicating substantial oxidative burden in patients. 

While chronic inflammation has been linked to increased production of cytotoxic 

metabolites such as ROS, endogenous antioxidant systems offer protection against 

oxidative cellular damage. As a prototype antioxidant, glutathione is involved in cell 

protection from the noxious effect of excess oxidant stress, both directly and as a cofactor 

of glutathione peroxidases (Pompella et aI., 2003). The importance of endogenous 

antioxidant systems in chronic inflammation is highlighted by the observation that 

genetic polymorphisms which modify the enzyme conjugation capacity of glutathione S­

transferases, are associated with higher disease activities in RA patients (Bohanec Grabar 

et aI., 2009). 

Mitochondrial metabolic processes such as oxidative phosphorylation, which generate 

free radical species, make the organelle considerably vulnerable to oxidative damage. 

Yakes and Van Routen reported persistent and extensive mtDNA lesions following 

oxidative stress (Yakes and Van Routen, 1997). Endogenously oxidized mtDNA was 

shown to induce inflammatory responses both in vivo and in vitro. High quantities of 

extra-cellular mtDNA was found in RA synovial fluid and implicated in the perpetuation 

of chronic joint inflammation (Rajizadeh et aI., 2003). Discharge of mtDNA into the 

extra-cellular compartment may occur as a result of membrane damage due to lipid 
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peroxidation. 

Mitochondrial integrity was investigated by examining changes in ~"'m using the cationic 

membrane permeable JC-l fluorochrome. The dye is sensitive to changes in ~"'m and its 

emission spectra depend on its relative concentrations in cellular compartments. Healthy 

mitochondria have electronegative membrane gradients due to the oxidative respiratory­

chain reactions and thus ~"'m is referred to as being polarized. Uptake of JC-l into the 

mitochondrial matrix is driven by polarized ~"'m and results in a red spectral shift. 

Depolarised ~"'m is an indication of altered mitochondrial function (Gravance et aI., 

2000; Petit et aI., 1995; Salvioli et ai., 1997). 

Circulating leukocytes are comprised of heterogeneous groups of mononuclear and 

polymorphonuclear cells. Combined with the JC-l assay, flow cytometry permitted 

examination of ~"'m changes in intact circulating PL separately as a homogenous cell 

population. Data from this study revealed that RA patients had significant losses in ~"'m, 

indicating that a large proportion of PL contained mitochondria which have lost the 

capacity to function optimally. Mitochondrial perturbations were related to disease 

activity as suggested by strong positive correlation with the DAS28 index. Specifically, 

correlation between mitochondrial depolarisation and acute-phase CRP suggests a 

substantial link with chronic inflammatory responses in this study cohort. Moreover 
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damaged mitochondria may contribute to PL death and explain the negative correlation 

between Ll'l'm and absolute lymphocyte counts in the study cohort. Mitochondrial 

depolarisation may initiate apoptotic signal cascades through the release of cyt c. 

Atypical cell death signals may cause expulsion of immunogenic cytoplasmic contents as 

a result of membrane disruptions. Citrullinated proteins, which are specific to RA, are 

thought to enter the extra-cellular compartment via similar mechanisms (Gyorgy et aI., 

2(06). 

Free radical damage to the mitochondria may induce structural remodelling of the 

membrane which can cause depolarisation. In the context of autoimmune arthritis, it is 

likely that damaged mitochondrial contents as a result of ROS attack, is expelled into the 

cytoplasmic compartment due to collapsed Ll'l'm. In the cytoplasm, these potentially 

immunogenic contents may be processed by MHC machinery for antigen presentation. 

Another likely scenario which may account for depolarised Ll'l'm observed in our RA 

patient cohort is a compensatory response to curb ROS production. It has been suggested 

that protection from oxidative stress would involve uncoupling reactions and shifts 

toward NADPH production catalysed by NADP transhydrogenase ultimately leading to 

depolarised Ll'l'm and decreased ROS production. 

There is compelling evidence for the potential role of oxidative stress in RA (Hitchon and 

El-Gabalawy, 2004). Particularly, mtDNA damaged by ROS attack, was shown to be 

strongly immunogenic (Hajizadeh et aI., 2003). In addition, computational modelling 
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showed that altered protein products of mutated genes associated with respiratory-chain 

complex I could be coupled to MHC molecules for antigen presentation (Da Sylva et a!., 

2005). In conclusion, this study provides evidence for oxidative stress in South African 

black RA patients. Furthermore, the data shows shat mitochondrial integrity is 

compromised in these patients and suggests that impaired mitochondrial function may be 

related to disease activity. 

58 



CHAPTER 3 

PERIPHERAL LYMPHOCYTE APOPTOSIS IN RHEUMATOID ARTHRITIS 

3.1 Introduction 

Bone and cartilage erosion occur during the natural progression of RA as a result of 

subtle underlying abnormalities in immune regulation and function . Accumulation and 

persistence of the lymphocyte infiltrate in the rheumatoid synovium are characteristic 

features ofthe disease (Firestein, 1991). In normal inflammatory responses, lymphocytes 

are eliminated, upon cessation of function, by initiation of apoptotic cascades (Serhan and 

Savill, 2005). Apoptosis is the major mechanism of programmed cell death and is 

necessary for regulation of tissue growth and homeostasis. In particular, the immune 

system relies heavily on apoptosis to ameliorate inflammation in order to prevent 

misdirected damage to normal tissue (Feig and Peter, 2007). 

Several lines of evidence in RA suggest that malfunctions in apoptosis are responsible 

not only for the persistence of synovial lymphocytes, but also for the invasive nature of 

fibroblast-like-synoviocytes (FLS) (Baier et aI., 2003; Pap et aI., 2000). Interactions 
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between these cell types either through cellular contact or by secretion of soluble factors 

contribute to impaired apoptosis and chronic inflammation of the synovial membrane 

(Salmon et aI., 1997). 

In murine models of proteoglycan induced arthritis, T-Iymphocyte apoptosis was shown 

to be defective despite high expression levels of CD95IFas and was related to impaired 

downstream CD95IFas signaling pathways (Zhang et aI., 2001). Elevated levels of anti­

apoptotic Bel-2 proteins conferred resistance to CD95/Fas-induced apoptosis in CD4+ T 

lymphocytes from RA patients (Schirmer et aI., 1998). Furthermore, it was shown that 

RA-FLS synthesize high quantities of stromal-cell-derived-factor-1u (SDF1u), a ligand 

for lymphocyte CXCR4, which induces migration of CD4+ T-Iymphocytes to the 

synovium. Interestingly, SDF1u also inhibits T lymphocyte apoptosis by interfering with 

MAPK pathways (Nanki et aI., 2000). 

In addition to T lymphocytes, there is growing interest in B-Iymphocyte biology within 

the context of autoimmunity (Yanaba et aI., 2008). The recent success of anti-B 

lymphocyte therapies support the notion that breakdown of normal B-Iymphocyte 

function contributes to the pathogenesis of RA (Venkateshan et aI., 2009). Indeed, there 

is accumulating evidence for impaired B lymphocyte apoptosis in the rheumatoid 

synovium (Tolusso et aI., 2009). B lymphocytes are enriched in the RA synovial 

membrane and are bound to FLS, which act as follicular dendritic cells (Lindhout et aI., 

1999). In co-culture with RA synovial stromal cells, B-Iymphocytes up-regulate 

expression of Bel-xL, which inhibits mitochondrial pro-apoptotic signals (Hayashida et 
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aI., 2(00). Inhibition of B-Iymphocyte apoptosis by FLS was shown to occur in a cell­

contact dependant manner via vascular-cell-adhesion-molecule-l (VCAMl) (Reparon­

Schuijt et aI., 20(0). These data suggest that cell-contact interactions contribute to the 

pathophysiology ultimately leading to destruction of the rheumatoid synovium. 

While synovial joints are the primary sites of inflammation in RA, there is a significant, 

but poorly understood systemic inflammatory component of the disease. Immuno­

pathologies in RA are not limited to synovium sensitive cells but also involve the 

majority of circulating PL. GIant et al (2001) proposed that defective apoptosis may lead 

to accumulation of T lymphocytes in peripheral circulation (Zhang et aI., 2001). It is 

likely that this may perpetuate the often elusive systemic complications of RA. There is 

compelling evidence to show that dysregulation of PL apoptosis is critical in the 

pathogenesis of various systemic autoimmune diseases such as systemic lupus 

erythematosus (SLE), Sjogrens syndrome and systemic sclerosis (Bijl et aI. , 2001; 

Stummvoll et aI., 2(00). Apoptosis in RA-PL however, has not been comprehensively 

investigated. 

Defects in RA-PL apoptosis could clearly underlie some of the characteristic 

immunologic phenomena seen in RA patients. It is therefore imperative to investigate the 

apoptotic status of circulating PL in RA, especially since they exist in a milieu of 

inflammatory mediators such as TNF-a. and CRP (Liuzzo et aI., 2005). It is generally 

accepted that the autoimmune manifestations of RA are due, in part, to impaired 

lymphocyte apoptosis. Whether these defects are related to failures in executing the 

apoptotic program at inflammatory sites, or as a result of inherent defects in lymphocyte 
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apoptotic machinery prior to recruitment to these sites remain to be elucidated. 

Inflammatory signals result in the activation of lymphocytes which can lead to activation 

induced cell death (AICD) via apoptosis. Lymphocyte activation plays an essential role in 

both central and peripheral tolerance and is critical for immune homeostasis. In PL 

AICD is caused by the expression and ligation of the CD95/Fas receptor. Activation of 

PL induces the expression of CD69 surface glycoprotein. It is the earliest detectable 

surface marker during lymphoid activation and is involved in lymphocyte proliferation 

(Cambiaggi et aI., 1992). The CD95IFas receptor is expressed on cells primed for 

apoptosis and engagement of this receptor initiates the extrinsic apoptotic signaling 

pathway. Apoptotic signals may be modulated by cell stress proteins such as HSP70. 

The apoptotic status of circulating lymphocytes in RA may be a useful indicator of 

underlying pathological processes or disease activity. A better understanding of PL 

biology, and indeed PL apoptosis, may provide clues to how immunological tolerance is 

breached in RA. The aim of this study was to assess PL apoptosis in South African black 

RA patients ex vivo. In addition, the activation status and expression of CD95IFas was 

investigated in PL. Since HSP70 may be involved in the modulation of apoptotic 

signaling, expression of HSP70 was also investigated in PL. 
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3.2 Materials and methods 

3.2.1 Patients and peripheral lymphocytes 

Patient recruitment and PL preparation is described in sections 2.2.2 and 2.2.3 

respectively. 

3.2.2 Detection of phosphatidylserine on outer membrane of peripheral 

lymphocytes 

The annexin-V-fluorescein apoptosis detection kit (Roche) was used to label apoptotic 

PL with translocated phosphatidylserine (PS) residues on the outer plasma membrane. 

During the early stages of apoptosis, PS is translocated to the external surface of the 

plasma membrane (figure 3.1). Despite alteration of plasma membrane architecture, it 

remains intact. Phagocytic cells, such as macrophages are able to distinguish apoptotic 

cells by recognition of exposed PS. In this assay, annexin-V, which is conjugated to a 

fluorescent marker, fluorescein-isothiocyanate (FITC), was used to label apoptotic cells. 

Annexin-V is a calcium dependant phospholipid binding protein and has high affinity for 

PS. Since necrotic cells can also expose PS due to loss of membrane integrity, these were 
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distinguished by the use of propidium iodide (PI). PI is a fluorescent dye which rapidly 

enters cells with damaged plasma membranes and intercalates with DNA. It is unable to 

penetrate apoptotic cells and thus apoptotic cells were differentiated by the incorporation 

of annexin-V, but the exclusion of PI. Annexin-V -FITC labelling solution was prepared 

by combining 20lll of annexin-V-FITC with 20111 PI, in Iml calcium containing buffer. 

These reagents were supplied in the kit and labelling solution prepared as described was 

sufficient for 10 tests. The annexin-V-FITC labeling solution (1001l1) was added to 1 x 

106 PL in cytometry tubes and allowed to incubate for 15 minutes in the dark at room 

temperature (RT). Following incubation, two separate aliquots of the annexin-Iabeled PL 

were prepared in order to assess apoptosis in B- and T-Iymphocyte SUb-popUlations. 

Allophycocyanin (APC)-labeled anti-CD4 and anti-CDl9 (Pharmingen) was added (Sill) 

to the respective PL aliquots 10 minutes prior to enumeration by flow cytometry. 
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Figure 3.1 Schematic diagram ofthe Annexin-V assay. 

3.2.3 Detection of the CD69 activation marker and CD95IFas on peripheral 

lymphocytes 

To investigate PL AICD and CD95IFas expression, aliquots of approximately 1 x 105 PL 

were transferred into cytometry tubes containing monoclonal anti-CD95lFas (1:100; 

Sigma). The mixture was allowed to react for 20 minutes and PL were thereafter washed 

in PBS (400 x g, 10 minutes). To detect labeled PL by flow cytometry, APC-Iabeled 

secondary antibody (Sigma) was added to cells at a final dilution of 1: 1 000 and allowed 

to react for 15 minutes. In order to determine the activation status of circulating 

lymphocytes in RA patients, 1 x 105 PL were incubated with 101l1 fluorescein­

isothiocyanate (FITC) labeled anti-CD69 (BD Biosciences) for 15 minutes prior to 

analysis by flow cytometry. 

3.2.4 Intra-cellular detection of heat shock protein 70 

For each sample, 1 x 105 PL were transferred into cytometry tubes. Cells were then fixed 

(100JlI Caltag reagent A fixative medium; Caltag Laboratories) for 15 minutes at RT. 

After fixation, PL were washed in PBS supplemented with 0.1 % sodium azide and 5% 

fetal bovine serum (300 x g, 5 minutes). Thereafter, PL were re-suspended in 

permeabilization medium (lOOJll, Caltag reagent B permeabilization medium; Caltag 
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Laboratories) containing monoclonal anti-HSP70 (1:1 000; BD Biosciences Pharmingen) 

for 30 minutes. Following permeabilization and incubation with primary antibody, PL 

were washed twice as previously described. Samples were then incubated with APC­

conjugated anti-mouse secondary antibody (1:10 000; BD Biosciences Pharmingen) for 

20 minutes at RT in the dark. After an additional wash step, labeled PL were re­

suspended in sheath fluid for detection by flow cytometry. 

3.2.5 Flow cytornetry 

Labeled lymphocytes in the assays above were enumerated by flow cytometry using a 4-

colour FACS Calibur (BD Biosciences) flow cytometer. Data was acquired with 

CellQuest Pro software (BD Biosciences) from 100 000 events for each assay. Analysis 

was performed with FlowJo 7.1 software (Tree Star Inc). 

3.2.6 Apoptotic protease activity 

Luminometry assays determined the activities of apoptotic initiator caspase 9 and 

executioner caspases 317. Separate aliquots of PL (1 x 105
) were transferred into 

luminometry-quality white microtitre plates. 100~1 of caspase substrate (Caspase-Glo 317, 

Caspase-Glo 9; Promega) was added to PL and allowed to react for 30 minutes at RT. 

Luminescent signals were then measured with the Modulus microplate luminometer 

(Turner Biosystems) and expressed as relative light units. 
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3.2.7 Detection of HSP70 by Western blot 

Protein extraction 

Total PL protein was extracted from each sample using Cytobuster™ (Calbiochem) 

reagent, supplemented with protease inhibitors. Cytobuster™ reagent (500rd) was added 

to approximately 1 x 105 PL. This mixture was vortexed for 1 minute and thereafter 

incubated on ice for 15 minutes in order to lyse cel1s. The lysed mixture was then 

centrifuged (450 x g; 10 minutes) and the supernatants containing crude protein extracts 

were transferred into clean 1.5ml tubes and kept on ice until use. 

Protein quantification and standardisation 

Protein concentration was determined by the bicinchoninic acid assay (BCA; Sigma). The 

total protein concentration was based on a colour change of the sample solution from 

green to purple in proportion to protein concentration. The principle of the BCA assay is 

based on two reactions. The fIrst involving the reduction of Cu2+ ions to Cu1+ by peptide 

bonds in proteins where the amount of Cu2
+ reduced is proportional to the amount of 
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protein present in the solution. The second reaction involves two molecules of BCA 

which chelate each Cu 1+ ion to form a purple-coloured product. This resulting purple 

compound absorbs light at a wavelength of 562nm. The concentration of protein in each 

sample was determined by comparison to a protein of known concentration, bovine 

serum albumin (BSA), which was serially diluted (0, 0.2, 0.4, 0.6, 0.8 and 1.0mg/ml) in 

order to construct a standard curve (Appendix 3). The assay was performed in duplicate 

using a 96-well microtitre plate. The supernatant from each sample (25111) and the 

relevant standards (BSA) were added to appropriately labelled wells. The BCA working 

solution (202111, 4111 CUS04 and 198111 BCA) was thereafter aliquoted into each well and 

the plate was incubated (37°C, 30min). After incubation, the absorbance of each sample 

was read at 562nm using a spectrophotometer. Using the absorbencies of the standards 

(BSA), a standard curve was constructed, from which the protein concentration of each 

sample was extrapolated. All samples were then diluted using storage buffer [O.lM 

KH2P04 (PH 7.4), 0.5mM K2EDTA, O.lmM DTT and 0.25M sucrose] and standardised 

to a final protein concentration of 250J..lg/ml prior to electrophoresis. 

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 

The Mini-PROTEAN 3 SDS-PAGE apparatus (Bio-Rad) was used for electrophoresis of 

extracted PL proteins. A 12% resolving gel [dH20, 1.5M Tris-HCl (PH 8.8), 10% (w/v) 

SDS, 30% Acrylamideibis, 10% APS (freshly prepared daily), TEMED] was prepared 

and caste between clean glass plates and allowed to polymerize for 40 minutes. 

Following which, a 4% stacking gel [dH20, 0.5M Tris-HCl (PH 6.8), 10% (w/v) SDS, 
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30% Acrylamidelbis, 10% APS, TEMED] was layered over the resolving gel and allowed 

to polymerize for 30 minutes. The gel cassette sandwich was then transferred to the 

electrode assembly, and placed in a tank filled with 2x electrode buffer (deionised water, 

Tris, glycine, SDS; pH 8.3). 

Laemmli (Laemmli, 1970), sample buffer [dH20, 0.5M Tris-Hel (PH 6.8), glycerol, 10% 

SDS, ~-mercaptoethanol, 1 % bromophenol blue] was thereafter added (1:1) to the protein 

samples, and then boiled for 5 minutes in order to denature protein samples. The protein 

samples (20""g) were then loaded into separate wells in the electrophoresis gels. 

Samples were then allowed to resolve by electrophoresis (150V, 45 minutes). 

Western blotting 

Separated proteins were then electro-transfered to polyvinylidene difluoride membranes 

(PVDF). The electrophoresed gels were removed from the SDS-PAGE apparatus and 

placed in transfer buffer (25mM Tris, 192mM glycine, 20% v/v methanol; pH 8.3), for 

10 minutes (to allow the gel and proteins to equilibrate). The PVDF membrane, fibre 

pads and filter paper were prepared by wetting with deiomsed water and then soaking in 

transfer buffer until they were ready to be used. The gel sandwich was assembled by first 

placing a fibre pad on the gel cassette holder, followed by filter paper and then the 

equilibrated SDS-PAGE gel. The PVDF membrane was placed over the SDS-PAGE gel, 

followed by a second filter paper and fibre pad. The gel cassette holder was then firmly 

closed and placed into the transfer module and then into the tank filled with transfer 
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buffer. The apparatus was sealed and the tank was then placed in a container filled with 

ice. Resolved proteins were then electro-transfered at a constant current of 400mA for 1 

hour. 

After the transfer, the PVDF membrane was removed and blocked overnight (4°C) with 

5% (5g) non-fat dry milk in TTBS [lOOml; Tris-buffered saline (TBS) containing 0.5% 

Tween20] in order to reduce non-specific binding by antibodies. The non-fat dry milk 

was discarded after the overnight blocking step and each membrane was then incubated 

(room temperature) for 1 hour with anti-mouse Hsp70 antibody. Primary antibody was 

diluted 1: 1 000 in 1 % BSA in TIBS. After incubation, the primary antibody was 

removed and the membrane was thoroughly washed thrice with TIBS (10 minutes). The 

membrane was then exposed to secondary antibody (anti-mouse-horse-radish-peroxidase 

(HRP)-conjugate; 1:10 000; Bio-Rad) for 1 hour at RT. Anti-~-actin-HRP (Sigma) was 

utilized for internal loading controls. The secondary antibody was thereafter removed 

and the membrane was again washed thrice with TTBS (10 minutes). 

Antigen-antibody complexes were detected by chemiluminescence using the Immune­

star™ HRP substrate kit (Bio-Rad). Chemjlumjnescent signals were detected with the 

Chemi-doc XRS gel documentation system. Images were acquired and analyzed with 

Quantity-one™ image analysis software (Bio-Rad). Data is represented as peak band 

intensity for each sample. 

70 



3.2.8 DNA fragmentation assay 

Genomic DNA was extracted from PL (l x 105
) for each sample. Cells were transferred 

to SOOJ.ll lysis buffer containing O.S% sodium dodecyl sulfate (SDS), ISO mM NaCl, 10 

mM ethylenediaminetetraacetic acid (EDTA), and 10 mM Tris-HCl (PH 8.0). To this 

RNase A (lOOJ.lg/ml; DNase-free) was added and the solution was incubated at 3rC for 

1 hour. Subsequently proteinase K (200J.lglml) was added to the solution and incubated 

for a further 3 hours at SO°c. Protein contaminants were then precipitated by addition of 

0.1 volume SmM potassium acetate and centrifugation (S 000 x g; IS minutes). 

Supernatants containing genomic DNA were transferred to fresh tubes and extracted with 

100% isopropanol on ice, and thereafter washed with 70% ethanol. DNA samples were 

then dissolved in 10 mM Tris and 0.1 mM EDTA (pH 7.4) at 4°C overnight. 

Concentration of each sample was determined spectrophotometrically. To prepare a 

positive control for the DNA fragmentation assay, apoptosis was induced in control PL 

samples by treating with camptothecin (4J.lglml, 12 hours) in vitro. DNA was extracted 

and quantified as described above. Equal amounts of DNA (300ng) were electrophoresed 

(IS0V; SO minutes) on a 1.8% agarose gel containing O.S mg/ml ethidium bromide. DNA 
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bands were visualized by UV light and digitally photographed using a gel documentation 

system and Quantity-one™ image analysis software (Bio-Rad). 

3.3 Results 

3.3.1 Elevated phosphatidylserine externalization in patient peripheral 

lymphocytes 

Translocation of PS residues from the inner leaflet of the plasma membrane to the 

exterior is an early apoptotic event. Annexin-V is a specific and strong PS-binding 

protein (Fadok et aI., 1998a) that detects cells undergoing apoptosis. Flow cytometry 

was used to enumerate PL with translocated PS. Forward and side scatter dot plots were 

generated for each study subject and used to identify/gate PL based on morphology 

(figure 3.2A). Thereafter, green (Annexin-V) and red (PI) fluorescent scatter plots were 

used to determine the percent of apoptosis and necrosis in gated cell populations (figure 

3.2B). 

The Annexin-V assay showed that apoptosis was significantly higher (p < 0.05) in RA PL 

than in healthy controls ex vivo. When analyzed separately, apoptosis in RA CD4+ PL 

was approximately 3.5-fold higher than controls. The highest apoptosis values were 
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recorded in the RA CD19+ PL which were approximately 4-fold higher than controls 

(table 3.1). Necrotic or late stage apoptotic cells were distinguished from PL which were 

exclusively positive for Annexin-V by using PI. The percent of RA PL positive for PI 

was extremely low (0.4%±O.10) and did not differ significantly from controls (O.2±O.03; 

p=0.1085, unpaired t test). 
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Flow cytometry scatter plots for the Annexin-V assay. A: Peripheral 

lymphocytes were identified and gated based on forward and side scatter 

properties. B: Scatter plots for green and red fluorescence channels were 

used to measure Annexin-V and prpidium iodide positivity respectively. 
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Table 3.1 Annexin-V analysis of apoptosis in peripheral lymphocyte sub­

populations from South African rheumatoid arthritis patients and race­

matched controls ex vivo. 

Cell population 

Total PL 

CD4+PL 

CD19+ PL 

Patients [Mean % (SEM)] 

30.0 (1.5)* 

26.3 (1.6)* 

60.5 (7.4)* 

Controls [Mean % (SEM)] 

7.2 (0.9) 

7.6 (0.8) 

16.1 (1.9) 

* Significant difference (p<0.05; Mann-Whitney test). CD4, cytotoxic T-lymphocyte 

marker; CDI9, pan B-lymphocyte marker. 
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3.3.2 Apoptosis and clinical parameters 

To examine the effect of elevated apoptosis on the number of circulating lymphocytes in 

RA patients, total PL apoptosis was statistically correlated with absolute lymphocyte 

counts. No statistically significant relationship between total PL apoptosis and absolute 

lymphocyte counts was observed (figure 3.3). 
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Figure 3.3 Absolute lymphocyte counts did not correlate with peripheral lymphocyte 

apoptosis in rheumatoid arthritis patients. Correlation co-efficient r = -

0.08956; p value = 0.5362; 95% confidence interval, -0.3590 - 0.1937; 

Pearson r correlation. 

In order to determine whether disease duration affected apoptosis in RA, total PL 

apoptosis was correlated with disease duration. It was found that apoptosis did not 

correlate with disease duration (Spearman rank correlation, r = -0.1539, P = 0.2962, 

figure 3.4). 

Patients were then grouped, i.e. patients with RA for <10 years (n = 22) and> 10 years (n 

= 28). Although total PL apoptosis was slightly higher in patients with RA for less than 

10 years (30.6% vs. 27.8%), disease duration did not significantly affect levels of 

apoptosis in the patient cohort (p = 0.6843; unpaired t test with Welch correction). 
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Figure 3.4 Relationship between apoptosis and disease duration in rheumatoid 

arthritis. 

Since patients were at various stages of treatment when sampled (section 2.2.2), the effect 

of treatment regimens on total PL apoptosis was investigated. There was no significant 

difference in PL apoptosis (p=O.6967, one way ANOVA; figure 3.5) when compared to 

different treatments. 
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Figure 3.5 The effect of treatment on total peripheral lymphocyte apoptosis in 

rheumatoid arthritis. 

3.3.2 Higher percentage of rheumatoid arthritis peripheral lymphocytes with 

CD95IFas on plasma membrane 

To determine whether the elevated apoptosis measured in the study cohort was associated 

with receptor mediated apoptosis-inducing signals, the presence of CD95/Fas on PL 
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surface was examined by flow cytometry. The proportion of PL expressing CD95IFas 

was significantly higher in RA patients compared to controls (p = 0.0317; Mann Whitney 

test; figure 3.6.). 
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Figure 3.6 Percent CD95IFas positive peripheral lymphocytes from South African 

rheumatoid arthritis patients and healthy race-matched controls. Peripheral 
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lymphocytes were analyzed by flow cytometry. Data is represented as 

mean percent + standard error of the mean. * Significant difference, p = 

0.0317; Mann Whitney test. 

3.3.3 Rheumatoid arthritis peripheral lymphocytes showed low levels of activation 

Since CD95/Fas is associated with AICD in lymphocytes, the activation status of 

circulating lymphocytes was examined in the study cohort by monitoring the proportion 

of PL positive for the CD69 activation marker. Low levels of activation were observed in 

both patient and control subjects. Interestingly, despite high apoptosis levels, RA patients 

had a lower percent of PL positive for CD69 compared to controls. There was no 

statistically significant difference in activation status between RA-patients and controls (p 

< 0.05; Mann Whitney test; figure 3.7). 
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Figure 3.7. Activation status of peripheral lymphocytes were monitored by examining 

presence of CD69 on cell surface. Data is represented as mean percent + 

standard error of the mean. No statistical significance was established 

between patients and control subjects (p < 0.05; Mann Whitney test). 

3.3.4 Elevated caspase activity in rheumatoid arthritis peripheral lymphocytes 

Despite low luminescent signals recorded for executioner caspase 3/7 activity, there was 

approximately 3-fold higher activity in RA PL compared to healthy controls. This 
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difference in activity reached statistical significance (p < 0.01; Mann-Whitney test; figure 

3.8A). Caspase-9 activity produced strong luminescent signals and although not 

statistically significant, was higher in patients (figure 3.8B). 

Figure 3.8 
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Apoptotic protease activity in peripheral lymphocytes. A: Higher caspase 

317 activity in patient peripheral lymphocytes despite low luminescent 
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signals. B: Initiator caspase 9 activity was higher in both study groups but 

not significantly different. Data is expressed as mean relative light units + 

standard error of the mean. * Significant difference, p<O.Ol; Mann­

Whitney test. 

3.3.5 Elevated HSP70 in rheumatoid arthritis peripheral lymphocytes 

Since HSP70 is an inducible protein which can modulate apoptosis signals, the levels of 

HSP70 in PL were examined. Using an intra-cellular flow cytometry staining technique, 

PL with high or low levels of intra-cellular HSP70 were distinguished as a function of 

mean fluorescence intensity (Figure 3.9A). The data showed that the proportion of PL 

with detectable levels of intra-cellular HSP70 was significantly higher in RA patients 

compared to controls (p = 0.0001; Mann-Whitney test; figure 3.9B). To confirm these 

data, western blot analysis for HSP70 was performed on total PL protein (Figure 3.9C). 

Band analyses showed that HSP70 levels were significantly elevated in RA patients (p = 

0.0090; unpaired t-test; Figure 3.9D). 
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Detection of HSP70 in peripheral lymphocytes. A: Mean fluorescence 

intensity histogram for intra-cellular detection of HSP70 by flow 

cytometry. B: Proportion of peripherallympbocytes with detectable levels 

of HSP70 was higber in rheumatoid arthritis patients (*p = 0.0001; Mann-

Whitney test). C: Representative western blot analysis of HSP70 in total 

PL protein. D: HSP70 levels significantly elevated in rheumatoid arthritis 

patients (* p = 0.0090; unpaired t-test). 
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3.3.6 No DNA fragmentation in rheumatoid arthritis peripheral lymphocytes 

DNA fragmentation, a typical molecular feature of apoptosis, occurs due to nuclease 

mediated cleavage of genomic DNA into oligonucleosomal fragments in multiples of 

approximately 200 base pairs. Nuclease activity is induced towards the latter stages of 

apoptosis by upstream apoptosis mediators such as caspase-3. The characteristic 

apoptosis DNA fragmentation pattern was not observed in patient or control samples 

following agarose gel electrophoresis. All DNA bands were of high molecular weight 

and intact with no signs of apoptosis-induced DNA damage (figure 3.10). 
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Figure 3.10 DNA fragmentation assay in peripheral lymphocytes by agarose gel 

electrophoresis. M: molecular weight marker; lane 1: control PL DNA; 

lane 2: positive control; lane 3,4,5: rheumatoid arthritis peripheral 

lymphocyte DNA. 
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3.4 Discussion 

The fine balance between cell survival and cell death is essential for homeostasis in 

multi-cellular organisms. Apoptosis is the major mechanism of physiological cell death 

which facilitates deletion of unwanted or damaged cells. It plays a central role in the 

immune system in both the maintenance of self-tolerance and homeostatic control of 

lymphocyte populations (Feig and Peter, 2007). The immune system relies on apoptosis 

for its functional integrity at multiple levels, and consequently, stringent regulation of 

these pathways is imperative. Immunological tolerance is promoted by carefully directed 

apoptosis in self-reactive T-Iymphocyte clones during their maturation in the thymus 

(Sprent and Kishimoto, 2001). Immune learning continues while lymphocytes are in 

peripheral circulation, since not all antigenic combinations are encountered in the 

thymus. The precise mechanisms of peripheral immune learning are unknown, but may 

also involve deletion of self-reactive lymphocytes by apoptosis whilst in circulation 

(Hoyne et aI., 2000). It is likely that defects in peripheral immune learning may lead to 

autoimmunity. Lymphocyte death is tightly regulated and there are detrimental 

consequences when regulatory mechanisms are compromised. For instance, abnormal 

increases in apoptosis can cause immunodeficiency (Gougeon and Piacentini, 2009); 

while a failure to undergo apoptosis can lead to development of autoimmunity 

(Cacciapaglia et aI., 2009). 

In RA, there is compelling evidence to show that a compromise in lymphocyte apoptosis 

contributes to the persistence of these cells at inflamed joints (Pap et aI., 2000). 
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Inflammation is normally resolved by carefully directed apoptosis of invading immune 

cells (Feig and Peter, 2007). In RA however, the molecular interactions between 

synovial cells and infiltrating lymphocytes have been shown to protect against apoptosis 

in the synovium (Zhang et aI. , 2001). 

Little is known about the biological status of circulating lymphocytes prior to synovial 

recruitment in RA. This study therefore focused on circulating lymphocytes which 

perpetuate the autoimmune manifestations of RA. PL apoptosis was assessed, since they 

are exposed to a myriad of pro-inflammatory cytokines and acute-phase proteins. This 

may compromise functional integrity before the PL adopt a stationary phenotype in the 

rheumatoid synovium. Our data showed that total lymphocyte apoptosis was elevated in 

RA patients. This trend was mimicked in CD4+ lymphocytes, but more so in CD19+ B­

lymphocytes; where more than half of this lymphocyte population showed apoptotic 

features whilst in circulation. This suggests that abnormalities in the regulation of 

lymphocyte apoptosis may occur early in RA, prior to synovial infiltration. 

The high levels of mitochondrial membrane depolarisation and CD95/Fas on 

lymphocytes, indicated that both mitochondrially-mediated, as well as death receptor­

induced cell death pathways may be active in RA-PL. The elevated levels of PL 

apoptosis observed in our patient cohort was not associated with AICD, since only a 

small percentage of lymphocytes showed detectable levels of the CD69 activation 

marker. CD69 is a transiently expressed membrane receptor early during lymphocyte 

activation, but is also selectively expressed in chronic inflammation (Rueda et aI. , 2008). 
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Interestingly, engagement of the CD69 receptor was shown to trigger apoptosis in 

multiple cell types (Walsh et aI., 1996), but despite persistent expression in chronic 

inflammatory infiltrates, lymphocyte apoptosis was inhibited. Evidence from molecular 

and cellular studies showed that T -lymphocyte activation was altered in RA (Fernandez­

Gutierrez et aI., 1995). This may account for the high levels of RA-PL apoptosis 

observed in our patients where signs of early lymphocyte activation were relatively 

absent. 

Under normal conditions, healthy mitochondria have polarized electronegative 

transmembrane gradients due to oxidative phosphorylation reactions. Loss of 

transmembrane potential alters mitochondrial permeability which results in the release of 

proteins such as cyt c and SmaclDIABLO into the cytoplasm (Adrain et aI., 2001). In the 

cytoplasm, cyt c binds to Apaf-l and pro-caspases, leading to ATP-dependant formation 

of the apoptosome (Bao and Shi, 2007). The apoptosome is a potent activator of initiator 

caspases, in particular caspase-9. Activated caspase-9 in turn facilitates activation of 

executioner caspases (primarily caspase-3 and caspase-7), which co-ordinate proteolytic 

breakdown of apoptotic cells. Engagement of CD95IFas with its ligand leads to 

activation of caspase-8 following recruitment of FADD. This can signal apoptosis via 

two well-described pathways: (i) direct activation of caspase-3; or (ii) alteration of 

mitochondrial transmembrane potential via Bcl-2 homology-3 interacting-death-domain 

(BID) agonist, which initiates the mitochondrial apoptosis cascade (Siegel et aI., 2003; 

Wallach et aI., 1999). The CD95IFas signaling pathway ultimately culminates in the 

activation of executioner caspases which is a molecular hallmark of apoptosis. Increased 
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caspase-9 activity observed in our patient cohort, combined with mitochondrial 

depolarisation suggests that the mitochondrial-apoptosome-caspase-9 apoptosis signal 

axis was functionally efficient. Although caspase-3/7 activity was significantly higher in 

RA patients, these activities remained relatively low. This suggests that there may be 

perturbations in the signaling pathways which activate executioner caspases in these 

cells. A possible mechanism may involve HSP mediated interference between apoptosis 

initiator signals and their down-stream targets. Despite an unclear delineation of their 

specific roles, HSPs have been repeatedly implicated as key participators in the 

pathogenesis of RA (Rajaiah and Moudgil, 2009). With respect to apoptosis, numerous 

mechanisms of HSP-mediated inhibition of cell death have been described (Beere et aI., 

2000; Takayama et aI., 2003). Activation of caspase-3 for instance, is suppressed by 

HSP27 since it binds to pro-caspase-3, thus preventing its activation by caspase-9 

(Pandey et aI., 2000). Alternatively, HSP27 may sequester cytochrome c from Apaf-l, 

thus preventing assembly of the apoptosome (Bruey et aI., 2000; Garrido et aI., 1999). In 

addition the small HSP a~ crystalline, suppresses cytochrome c-mediated autoactivation 

of caspase-3, by direct interaction with the enzyme to prevent its complete processing 

(Kamradt et aI., 2005). HSP70 has been implicated in the inhibition of apoptosome 

formation (Beere et aI., 2000; Saleh et aI., 2000), but may also inhibit caspase-dependent 

events that occur later in apoptosis (Jaattela et aI., 1998). Chromosomal DNA is digested 

by caspase-activated-DNaseIDNA fragmentation factor 40 (CADIDFF40) during the final 

stages of apoptosis, upon activation by caspase-3 (Elmore, 2007). The enzymatic activity 

and structural integrity of CADIDFF40 was reported to be regulated by HSP70 and 

HSP40 (Sakahira and Nagata, 2002). Over-expression of these HSPs may prevent 
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nuclear degradation regardless of up-stream pro-apoptotic events. We have recently 

reported in the same population of patients that RA-PL sustain significant damage due to 

oxidative stress (Moodley et aI., 2008). This may induce cellular stress responses which 

increase the expression of HSPs, which could possibly modulate apoptotic signal 

cascades. This may have contributed to the lack of lymphocyte DNA fragmentation 

observed in our patient cohort, despite early signs of apoptosis. Earlier studies by 

Szodoray et al (2003) examined nuclear condensation as a measure of apoptosis in 

circulating RA T-lymphocytes bearing typical apoptotic markers (CD95IFas, Bax, Bcl-2 

and TNF receptor) (Szodoray et aI., 2003). These investigations showed decreased levels 

of nuclear condensation in T-Iymphocytes and were thus interpreted to have decreased 

rates of CD95IFas mediated apoptosis. In addition, lymphocytes positive for Bax protein 

also showed decreased apoptosis frequency. The study concluded that the reduced 

susceptibility to CD95-mediated apoptosis may contribute to the expansion of an 

activated CD4+ lymphocyte sub-population and thus to the maintenance of peripheral 

autoreactive T-cell clones in RA (Szodoray et aI., 2003). 

Furthermore, the molecular features of apoptosis measured in RA-PL did not translate to 

reduced numbers of circulating lymphocytes in our patient cohort. This was indicated by 

a lack of statistically significant correlation between absolute lymphocyte counts and 

total PL apoptosis. This observation supports the notion that the apoptotic program may 

not be fully executed despite early molecular signs of apoptosis in RA-PL. Albeck et al 

(2008) recently reported that although cells may exhibit molecular hallmarks of 

apoptosis, they may not be committed to fully executing the program and may recover 
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from pro-apoptotic signals (AI beck et aI., 2008a). Although the mechanisms of apoptosis 

recovery are not fully understood, caspase inhibition via the XIAP and proteosomal 

degradation of executioner caspases seem to play a role (Albeck et aI., 2008b) . 

Interestingly, Rehm et al (2006) also described a state in which cells may exist with 

partial caspase-dependent degradation of their proteomes without outward manifestations 

of apoptotic features (Rebm et aI., 2006). In RA, it is likely that although apoptosis is 

initiated in circulating lymphocytes, these cells may not be committed to executing the 

molecular program fully and cellular interactions at the synovium exacerbate their anti­

apoptotic phenotype. In addition, chronically elevated lymphocyte counts may occur as a 

result of apoptosis induced compensatory proliferation. Recent studies have elucidated 

non-apoptotic functions of both initiator and executioner caspases. These are involved in 

generating growth stimulation and compensatory cell proliferation signals via alternate 

MAPK cascades (Yi and Yuan, 2009). Death receptors have also been implicated in non­

cytotoxic responses which include regulation of cell proliferation, growth stimulation and 

production of pro-inflammatory chemokines. Evidence already indicates that 

engagement of death receptors in the rheumatoid synovium promotes cell proliferation 

instead of cell death (Morel et aI., 2005). Although not fully understood, similar 

mechanisms may operate and contribute to the maintenance of autoreactive lymphocyte 

clones in autoimmune diseases where apoptosis is elevated in peripheral circulation. 

In conclusion, data from this study provides evidence that RA-PL apoptosis is impaired 

whilst in circulation prior to synovial recruitment. Although chronic inflammatory 

signals may provide the stimuli to initiate apoptosis, RA-PL may lack the ability to fully 

execute the apoptotic programme. 
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CHAPTER 4 

FUNCTIONAL ANALYSIS OF THE P53 CODON 72 POLYMORPIDSM IN 

RHEUMATOID ARTHRITIS 

4.1 Introduction 

The p53 tumour-suppressor protein plays an integral role in cellular responses to 

detrimental stimuli such as oxidative damage and genotoxic stress. It functions at the 

centre of intricate biological networks which control cellular fate by inducing either cell­

cycle arrest or apoptosis. The cell cycle arrest arm of the p53 pathway largely depends 

on its ability to transactivate p21, a cyclin-dependant-kinase inhibitor. This facilitates 

cell-cycle arrest at the 01 checkpoint where DNA repair mechanisms may be initiated 

(Vousden and Lu, 2002). 

When cellular damage is irreparable, p53 initiates the apoptotic cascade which eliminates 

unwanted cells, thereby maintaining tissue integrity. Transcriptional activity of p53 is 

important for the induction of apoptosis since many pro-apoptotic genes have p53 

responsive transactivation elements. There is however, compelling evidence for non­

transcriptional roles of p53 in apoptosis (Vousden, 2006). Early studies by Caelles et al 

(1994) showed that p53-dependant apoptosis occurred in the absence of transcriptional 

activation of p53-target genes (Caelles et aI. , 1994). Furthermore, mutant versions of the 

protein, lacking transactivation function were shown to possess potent apoptosis inducing 
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activity in vitro (Haupt et ai., 1995). These transcription-independent activities of p53 

predominantly relate to its ability to alter mitochondrial membrane dynamics (Vaseva 

and Moll, 2(09). Cytoplasmic p53 rapidly translocates to the mitochondria in response to 

apoptosis inducing signals. It interacts with pro- and anti-apoptotic Bcl-2 family 

members, which ultimately results in mitochondrial depolarisation and initiation of the 

apoptotic caspase cascade (Marchenko et ai., 2000). 

Mitochondrial targeting and apoptosis inducing capabilities of p53 seem to be associated 

with its proline-rich domain. The 43 amino acid domain (residues 58-10 1) is located at 

the N-terminus, between the transactivation and DNA binding domains of p53. Deletion 

of this domain markedly impairs the proteins ability to induce apoptosis, but maintains 

it's transcriptional and transactivation functions (Matlashewski et ai., 1987; Sakamuro et 

ai., 1997; Walker and Levine, 1996). A common sequence polymorphism occurs within 

the proline-rich domain at position 72 (Matlashewski et ai., 1987). The polymorphism 

arises from a single base-pair substitution (CCC to CGC) and results in a non­

conservative transition from proline (Pro72) to arginine (Arg72) (Harris et ai., 1986). 

This transition confers structural alterations and thus affects the functional activities of 

p53 (Buchman et ai., 1988). 

The Arg72 variant was shown to be more susceptible to degradation induced by human 

papillomavirus (HPV) E6 protein, which may alter tumour suppressor activities of p53 

(Storey et ai., 1998). In contrast, this variant was reported to possess an increased ability 

to suppress oncogene-induced transformation of certain primary cell lines (Thomas et ai., 
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1999). The Pr072 variant was shown to exhibit higher binding efficiency to 

transcriptional machinery, namely TAFFII32 and TAFII170 (Thomas et aI., 1999). 

Interestingly, Dumont et al. (2003) showed that the Arg72 variant was able to induce 

apoptosis more efficiently in vitro. This was related to a greater potential of this variant 

for mitochondrial translocation, which was accompanied by release of cyt c (Dumont et 

aI., 2003). Release of cyt c into the cytoplasm is preceded by mitochondrial 

depolarisation during intrinsic apoptotic signalling (Elmore, 2007). 

We recently reported that mitochondrial depolarisation was elevated in PL from South 

African black RA patients. This directly correlated with disease activity, suggesting a 

possible role for mitochondrial membrane alterations in the pathogenesis of RA 

(Mood ley et aI., 2008). Elevated PL apoptosis was also observed in RA patients, and was 

associated with mitochondrial depolarisation. Since the p53 codon 72 polymorphism 

significantly alters mitochondrial membrane potential and apoptosis in vitro, this study 

investigated whether the polymorphism influenced mitochondrial membrane dynamics 

and PL apoptosis in local RA patients. 

Only two studies have previously investigated whether the p53 codon 72 polymorphism 

was associated with susceptibility to RA (Lee et aI., 2001; Macchioni et aI., 2007). Both 

studies found no significant association between p53 genotype and RA susceptibility. 

These reports however, did not clarify the biological effects of the p53 genotype in 

cellular mediators of autoimmunity. This polymorphism has not been examined in black 

South Africans with RA. 
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4.2 Materials and methods 

4.2.1 Study samples 

Patient recruitment is described in section 2.2.2 and PL preparation is described in 

section 2.2.3. The method used to extract genomic DNA from PL is described in section 

3.2.7. 

4.2.1 Genotyping of p53 codon 72 

Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was 

used to determine the p53 codon 72 genotype. A 131 base-pair PCR product was 

amplified using 15pmol of forward and reverse primer in a 25JlI reaction containing 200 

JlM of each dNTP, 2.5mM MgCh, IX Green GoTaq® Flexi buffer (Promega), 0.5U 

GoTaq® DNA polymerase (Promega) and lOOng genomic DNA template. Primer 

sequences were: Forward: 5' TTGCCGTCCCAAGCAATGGATGA-3 '; Reverse: 5'­

TCTGGGAAGGGACAGAAGATGAC-3' . 

Following an initial denaturation step at 96°C for 12 minutes, amplification was carried 

out by 35 cycles of denaturation at 94°C for 30 seconds, annealing at 55°C for 30 seconds 

and extension at 72°C for 1 minute. This was followed by a final extension at 72°C for 5 

minutes. 

96 



Presence of the polymorphic restriction site at codon 72 was analyzed by restriction 

endonuclease (Bsh1236I; Fermentas) digestion of the PCR amplification product. 

Overnight digestion at 37°C was performed in a total volume of 25/l1, containing 15/l1 of 

the PCR product, 4.5/ll Buffer R (10 mM Tris-HCI (pH 8.5 at 37°C), 10 mM MgCh, 100 

mM KCI, O.lmglml BSA) and O.5/ll (5U) Bsh12361 restriction endonuclease. Restriction 

fragments were electrophoresed on a 3% agarose gel containing O.5mglml ethidium 

bromide and visualized as described previously (section 3.2.7). 
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4.3 Results 

4.3.1 p53 codon 72 genotype in rheumatoid arthritis patients and controls 

Polymorphic variation at codon 72 of the p53 gene was investigated in RA patients and 

control samples using RFLP-PCR. The reaction produced a 131 bp PCR amplification 

product, which was digested with Bsh1236I restriction endonuclease. Samples which 

were homozygous for the Pro72 allele did not contain the restriction endonuclease 

consensus sequence remained undigested, and therefore produced no restriction 

fragments. Amplification products from samples homozygous for the Arg72 allele were 

completely digested and resulted in two distinct restriction fragments of 81 bp and 50 bp. 

Digestion of heterozygous samples containing both alleles produced three restriction 

fragments of 131 bp, 81 bp and 50 bp. Figure 4.1 shows representative results for the p53 

codon 72 genotype from RA patients and controls. 
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Pro/Pro Arg/Pro Arg/Arg 

131 bp 

81 bp 

50bp 

Figure 4.1 Representative results of the p53 codon 72 genotype by restriction 

fragment length polymorphism-polymerase chain reaction. 

The genotype frequencies observed in our study cohort did not deviate from those 

predicted by Hardy-Weingberg statistics (p = 0.99, RA patients; p = 0.98 controls; chi­

square test). Genotype distributions of p53 codon 72 did not differ significantly between 

RA patients and controls (Arg/Arg, Arg/Pro, ProlPro: 6,23,21 vs 2,17,31) respectively. 

There was however, a statistically significant difference between allele frequencies 

calculated for each group. The Arg72 allele was observed more frequently in RA 

patients, in contrast to contro] samples in which the Pro72 allele was more frequent 

(Table 4.1). 
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Table 4.1 Genotype and allelic distribution of the p53 codon 72 polymorphism in 

rheumatoid arthritis patients and controls. 

RA patients Controls 

n = 50 n = 50 

Genotype frequencies* 

ArgiArg 6 (12%) 2 (3%) 

ArglPro 23 (46%) 17 (34%) 

ProlPro 21 (42%) 31 (63%) 

Allele frequencies** 

Arg 35 (35%) 21 (21%) 

Pro 65 (65%) 79 (79%) 

* Chi-square test for heterogeneity between RA patient and control genotype distribution. 

Chi-square statistic = 2.104, 1 degree of freedom; p = 0.1469. 

** Chi-square test for heterogeneity between RA patients and controls allele frequency. 

Chi-square statistic = 4.191, 1 degree of freedom; p = 0.0406. 
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4.3.2 Mitochondrial depolarisation and p53 codon 72 genotype 

Since polymorphic variation at codon 72 alters the ability of p53 to translocate to and 

alter mitochondrial membrane potential, mitochondrial depolarisation in the different p53 

codon 72 genotypes was investigated. No statistically significant difference in 

mitochondrial depolarisation between genotypes were found in patients (p = 0.8127, one 

way-ANOV A; figure 4.2). 
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Arg/Arg Arg/Pro Pro/Pro 

Figure 4.2 Peripheral lymphocyte mitochondrial depolarisation and p53 codon 72 

116 139 
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genotype in rheumatoid arthritis patients. 

4.3.3 Apoptosis and p53 codon 72 genotype 

The apoptosis inducing ability of p53 codon 72 polymorphic variants are known to differ 

in vitro. Genotypic differences in apoptosis were investigated in RA patients. Higher 

levels of PL apoptosis were recorded in patients homozygous for the Pro72 allele 

compared to Arg72 homozygotes (33.0% vs 21.3%). Apoptosis in heterozygote patients 

(30.1 %) was higher than Arg72 homozygotes, but less than Pro72 homozygotes. These 

data suggest that presence of the Pro72 allele increased the propensity for PL to undergo 

apoptosis. These differences however, did not reach statistical significance (p = 0.1573, 

one way-ANOV A; figure 4.3). 
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Figure 4.3 

Arg/Arg Arg/Pro Pro/Pro 

Peripheral lymphocyte apoptosis and p53 codon 72 genotype in 

rheumatoid arthritis patients. 

4.3.4 Clinical markers of inflammation and p53 codon 72 genotype 

Differences in clinical markers of inflammation were investigated between p53 codon 72 

genotypes in RA patients. There were no statistically significant differences in clinical 

parameters between genotypes (one way-ANOVA; Table 4.2). 

103 



Table 4.2 Clinical analysis of rheumatoid arthritis patients according to p53 codon 

72 genotype. 

Arg/Arg ArglPro ProlPro p value 

Mean number of swollen joints 12.9±1.4 12.3±1.4 12.3±3.0 0.9782 

Mean number of tender joints 14.8±2.0 12.5±1.8 10±2.7 0.5066 

ESRmmlhr 43.2±5.2 37.1±5.4 37.6±8.7 0.4964 

CRPmg/ml 16.8±4.4 18.8±3.8 23.5±6.8 0.3618 

Mean lymphocyte count (x109/ml) 6.03±O.52 7.40±0.63 8.07±1.1O 0.2187 

DAS28 score 6.29±O.23 5.88±O.29 6.26±O.45 0.3994 

Data is represented as mean ± SEM 
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4.4 Discussion 

Rheumatoid arthritis is a chronic inflammatory autoimmune disease, characterized by 

synovial hyperplasia and lymphocyte infiltration of the synovium (Gay et aI., 2002). 

Invasive growth of synovial tissue leads to destruction of articular cartilage. The changes 

seen in the synovium resemble typical features of transformed cells (Hamilton, 1983). 

These include expression of oncogenes, angiogenesis and uncontrolled proliferation of 

synovial fibroblasts (Muller-Ladner et aI., 1995). 

Defects in p53 tumour suppressor mechanisms are strongly associated with pre-neoplastic 

cellular transformation (Yee and Vousden, 2005). There is evidence to implicate p53 

dysfunction in RA (Firestein et aI., 1996), but the precise role of the p53 gene in disease 

pathogenesis is not clearly understood. Studies to date have confirmed the presence of 

various p53 point mutations in the rheumatoid synovium (Firestein et aI., 1997). These 

mutations are however, infrequent when compared to other human tumours and there is a 

high degree of variability between RA patient populations (Hainaut et aI., 1998; Hainaut 

et aI., 1997). In some RA popUlations, these mutations are absent despite ge9graphic 

propinquity of ethnically matched study groups (Kullmann et aI., 1999). These data 

suggest that mutational defects in p53 may not account for the tumuor-like properties of 

invasive synovial tissue and may not be a reliable predictor of disease susceptibility or 

pathogenesis. Some studies suggest that the random and variable genetic mutations 

detected in the rheumatoid synovium may be due to oxidative DNA damage as a result of 

chronic inflammation (Tak et aI., 2000). Mutational studies in the rheumatoid synovium 
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may not be able to address mechanisms of systemic manifestations of the disease, which 

are perpetuated in part, by circulating lymphocytes. 

It is therefore necessary to examine the role of genetic polymorphisms in RA, which are 

heritable, and often result in functionally distinct proteins. Common polymorphisms in 

the pS3 gene have been associated with certain cancers (Dai et aI., 2009; SuI et aI., 2006) 

but have not been comprehensively investigated in autoimmune diseases. The pS3 

protein plays a central role in cell proliferation, apoptosis and mitochondrial membrane 

permeability. Dysregulation of these biological functions may contribute to RA 

pathogenesis. 

The polymorphic CCC to CGC transition at pS3 codon 72 results in a non-conservative 

amino acid substitution where proline (an imino acid) is replaced with arginine (Harris et 

aI., 1986). Both amino acids are biochemically distinct. Proline contains an aliphatic 

side chain which is bound to both the nitrogen and a-carbon atoms of the amino group, 

forming a cyclic structure. Arginine is a basic amino acid with a large hydrophilic side­

chain. This guanido side chain of arginine has a pKa of 12.48 as compared to the proline 

side chain which has a pKa of 1O.0S. In addition, the amine group in proline is a 

secondary amine as compared to primary amine in arginine. Taken together, these 

biochemical differences may severely alter the functionality of pS3 when either amino is 

substituted. Interchanging these amino acids drastically alters pS3 structure and thus 

influences its function. The polymorphic variants of pS3 codon 72 were shown to differ 

biochemically and differences in their biological function were confirmed in vitro 
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(Thomas et aI., 1999). Several lines of evidence suggest that the Arg72 variant was able 

to induce apoptosis more efficiently (Biros et aI., 2002; Bonafe et aI., 2002; Bonafe et aI., 

2004). This was related to an increased efficiency for mitochondrial translocation and its 

ability to influence molecular traffic between the mitochondrial inter-membrane space 

and cytoplasm (Vaseva and Moll, 2009). In addition the Arg72 variant was also shown 

to respond to oxidative stress and induce apoptosis to a higher extent than the Pro72 form 

(Salvioli et aI., 2005). 

We recently reported that mitochondrial depolarisation was significantly elevated in RA­

PL and was directly correlated with disease activity (Moodley et aI., 2008). In addition, 

RA-PL sustained significant oxidative damage. Data also showed that PL apoptosis was 

elevated in RA (Chapter 3). Since p53 affects mitochondrial membrane potential and 

plays a central role in apoptosis, influence of the codon 72 polymorphism on the outcome 

of these parameters was investigated in RA patients. 

This study on the p53 codon 72 polymorphism in South African RA patients did not 

show any significant difference in genotype distribution between patients and controls, 

but noted that the Arg72 variant occurred more frequently in patients. Only two studies 

have investigated this polymorphism in other RA popUlations previously. Lee et al 

(2001) were the first to report on the p53 codon 72 polymorphism in a Korean RA cohort. 

No association was found between genotype and clinical features of RA (Lee et aI., 

2001). Similarly, Macchioni et al (2007) found no association between polymorphic 

variation and RA susceptibility in Italian patients; however, the Pr072 variant was 
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associated with higber degrees of joint erosion and structural damage at five year follow­

up (Macchioni et aI., 2007). Data from this study is in agreement with these previous 

reports, since no significant difference was found between clinical markers of disease 

activity and genotype distribution. In addition there were no significant differences in 

mitochondrial depolarisation and apoptosis based on genotype in our patient cohort. 

Interestingly, although the Arg72 variant was shown to induce apoptosis more efficiently 

in vitro, patients bomozygous for the Arg72 allele in this RA cohort showed the least 

amount of PL apoptosis. 
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CHAPTERS 

CONCLUSION 

This data provides evidence for a possible mechanism by which damaged internal 

mitochondrial contents traverses the otherwise stringently regulated mitochondrial 

membrane to enter the cytoplasm. The fate of mitochondrial contents in the cytoplasm is 

varied. They may be targeted for proteosomal degradation, but in the context of RA, they 

may be processed for antigen presentation which may produce immunogenic stimuli. 

PL showed signs of elevated apoptosis in the RA patient cohort, more so in CD19+ B­

lymphocytes. Elevated apoptosis seems to be associated with CD951Fas, but is not 

necessarily related to lymphocyte activation. Although upstream markers of apoptosis 

were observed in PL, the lack of DNA fragmentation suggests that apoptosis was not 

fully executed. Further evidence of aberrant apoptosis was noted in the elevated levels of 

HSP70 in RA PL. It is likely that HSP70 modulates upstream apoptotic signals in RA PL. 

Taken together this data suggests that apoptosis may be initiated in RA PL but not fully 

executed. 

While genotypic variation of p53 at codon 72 confers functional differences in vitro, data 

from this study suggests that dysregulation of mitochondrial function and apoptosis 

observed in this patient cohort is not related to p53 genotype. Furthermore, the p53 codon 

polymorphism is not associated with RA susceptibility in black South African patients. 
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APPENDIX 

Appendix 1 

INFORMATION AND CONSENT FOR STUDY PARTICIPANTS 

INFORMATION FOR PATIENTS 

An investigation of apoptosis and p53 polymorphisms in Black South African 

Rheumatoid Arthritis patients. 

We, (Mr D. Moodley, Prof. A.A. Chuturgoon, Prof. G.M. Mody, Dr N. Patel), are doing 

research on Rheumatoid Arthritis. Research is just the process to learn the answer to a 

question. In this study we want to learn about some of the different ways in which pain 

and swelling occurs in rheumatoid arthritis. We can compare results of normal people 

without arthritis and people with arthritis in other parts of the world. The research is not 

part of your normal management, but the findings may improve our understanding of 

how and why the swelling develops. 

We are asking you to participate in this study. Your identity will not be revealed outside 

this clinic and all records will be kept confidential. If the results of this study are 

published, your identity will remain anonymous. Approximately 50 patients with 
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arthritis and 50 normal people will be studied. 

Your treatment will not be effected by the results of this study. Your participation is 

voluntary and you may refuse or withdraw at any time, and you will not be treated 

differently. 

In order to do the research we will need to collect 15 mis of blood (3 small 5 mi tubes) 

from a vein in your arm. The blood will be processed in the lab, thereafter, it will be 

frozen and stored for use in this study and for future analysis, should the need arise. Apart 

from slight pain and discomfort associated with the prick by the needle there are no other 

side effects. If you have a large swelling of your knee joint we need to remove the fluid 

from your knee as part of your normal management. Normally the fluid is thrown away 

but will be kept and tested later. The stored samples i.e. blood and/or synovial fluid, will 

be used for future research pertaining to rheumatoid arthritis. Samples will be stored in an 

identifiable format and therefore any participant may choose to withdraw his/her sample 

from storage at any time. We will also examine you in the normal way and record the 

results of blood tests and x-rays which were done as part of your normal management. 

The examination and the blood tests will only be done once. 

This study has received ethics approval from the University of Kwa-Zulu Natal, Nelson 

R. Mandela School of Medicine, Research Ethics Committee No. 

You are required to sign an Informed Consent form and are free to ask any questions at 
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any time. 

Researchers contact details: 

Prof. A.A. Chuturgoon / Mr D. Moodley -

Mycotoxins Research Unit, Doris Duke Medical Research Institute, Nelson R. Mandela 

School of Medicine, University of Kwa-Zulu Natal. (031 - 260 4718) 

Prof. G.M. Mody / Dr N. Patel-

Department of Rheumatology, Nelson R. Mandela School of Medicine, University of 

Kwa-Zulu Natal. (031 - 260 4284) 

Thank you 

INFORMATION FOR CONTROLS 

Rheumatoid arthritis is a disease which causes pain, swelling and damage of the joints. 

You do not have rheumatoid arthritis, but we would like to take blood samples from you. 

We are doing a research project to try and understand why rheumatoid arthritis patients 

develop swelling of the joints. We will need to collect 15 mls of blood (3 small 5 ml 

tubes) from a vein in your arm. The blood will be processed in the lab, thereafter, it will 

be frozen and stored for use in this study and for future analysis, should the need arise. 

Apart from slight pain and discomfort associated with the prick by the needle there are no 

other side effects. We will also need to record your age and sex and whether you are 

suffering from any infections or any other sickness. The results from your blood will be 
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compared to results obtained from blood taken from rheumatoid arthritis patients. 

You are free to decide whether you wish to take part in this research or not. Your 

identity and all records will be kept confidential. If the results of this study are published, 

your identity will remain anonymous. Approximately 50 patients with arthritis and 50 

normal people will be studied 

This study has received ethics approval from the University of Kwa-Zulu Natal, Nelson 

R. Mandela School of Medicine, Research Ethics Committee No. 

You are required to sign an Informed Consent form and are free to ask any questions at 

any time. 

Researchers contact details: 

Prof. A.A. Chuturgoon I Mr D. Moodley -

Mycotoxins Research Unit, Doris Duke Medical Research Institute, Nelson R. Mandela 

School of Medicine, University of Kwa-Zulu Natal. (031 - 260 4718) 

Prof. G.M. Mody I Dr N. Patel-

Department of Rheumatology, Nelson R. Mandela School of Medicine, University of 

Kwa-Zulu Natal. (031 - 260 4284) 
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INFORMED CONSENT 

This study has received ethics approval from the University of Kwa-Zulu Natal, Nelson 

R. Mandela School of Medicine, Research Ethics Committee No. 

I, __________________ , am giving consent to have blood 

and/or synovial fluid samples taken for use in a study on factors involved in rheumatoid 

arthritis. I have been informed by the clinic staff of the nature of this study and have read 

the information given to me. 

I understand that I am free to ask questions and can obtain additional information with 

respect to the ethical aspects of this study from the Research Ethics Committee. I am 

aware that the samples taken may be used for additional related research in future, should 

the need arise. 

Medical Research Administration - Tel: 0312604495, Fax: 031 2604410 

Participant: ________ _ 

Signature: Date: 

Witness: 

Signature: Date: 
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Contact details: _____________________ _ 
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Appendix 2 

CRITERIA FOR THE CLASSIFICATION OF RHEUMATOID ARTHRITIS a 

Criterion 

1. Morning stiffness 

2. Arthritis of three or more joint areas 

3. Arthritis of hand joints 

4. Symmetric arthritis 

Definition 

Morning stiffness in and around the joints, lasting at 

least 1 hour before 

maximal improvement 

At least three joint areas simultaneously have had 

soft tissue swelling or fluid 

(not bony overgrowth alone) observed by a 

physician. The 14 possible areas 

are right or left PIP,MCP, wrist, elbow, knee, ankle, 

and MTP joints 

At least one area swollen (as defined above) in a 

wrist, MCP, or PIP joint 

Simultaneous involvement of the same joint areas 

(as defmed in 2) on both 

sides of the body (bilateral involvement of PIPs, 

MCPs, or MTPs is acceptable 

without absolute symmetry) 
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5. Rheumatoid nodules 

6 . Serum rheumatoid factor 

7. Radiographic changes 

Subcutaneous nodules, over bony prominences, or 

extensor surfaces, or in 

juxtaarticular regions, observed by a physician 

Demonstration of abnormal amounts of serum 

rheumatoid factor by any 

method for which the result has been positive in 

<5% of normal control subjects 

Radiographic changes typical of rheumatoid arthritis 

on posteroanterior hand 

and wrist radiographs, which must include erosions 

or unequivocal bony 

decalcification localized in or most marked adjacent 

to the involved joints 

(osteoarthritis changes alone do not qualify) 

a For classification purposes, a patient shall be said to have rheumatoid arthritis if he/she 

has satisfied at least four of these seven criteria. Criteria 1 through 4 must have been 

present for at least 6 weeks. Patients with two clinical diagnoses are not excluded. 

Designation as classic, definite, or probable rheumatoid arthritis is not to be made. 
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Appendix 3 

PROTEIN QUANTIFICATION 

BCA Reagent (Sigma) 

The BCA reagent is made up using 19m1 reagent A and 380111 reagent B. 

Constituents of BCA reagents 

Reagent A ReagentB 

Bicinchoninic acid Copper (II) sulphate 

Sodium carbamate Pentahydride 4% (w/v) 

Sodium tartrate 

Sodium bicarbonate 

Bovine serum albumin (BSA) standards 

The following volumes were used to make the BSA standard protein concentration series. 
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BSA standard constituents 

Volume (J.1L) 

BSA 0 20 40 60 80 100 

Distilled H2O 100 40 60 40 20 0 

Protein 0 0.2 0.4 0.6 0.8 1.0 

Concentraion 

(mg/mL) 
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eSA Standard Curve (eCA - 595nm) 
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