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SUMMARY

An overview of the historical developments of the paradigms of classical mechanics,

the free particle, oscillator and the Kepler problem, is given ita (in terms of) their

conserved quantities.

Next, the orbits of the three paradigms are found from quadratic forms. The

quadratic forms are constructed using first integrals found by the application of

Poisson's theorem. The orbits are presented ita expanding surfaces defined by the

quadratic forms.

The Lie and Noether symmetries of the paradigms are investigated. The free

particle is discussed in detail and an overview of the work done on the oscillator and

Kepler problem is given. The Lie and Noether theories are compared from various

aspects.

A technical description of Lie groups and algebras is given. This provides a basis

for a discussion of the historical development of the paradigms of mechanics ita their

group properties.

Lastly the paradigms are discussed ita of Quantum Mechanics.
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PREFACE

The notion of conserved quantities was around long before differential equations

were defined. This approach was entirely geometric in nature and became less effec­

tive as the systems studied became more complicated. By way of example consider

the Kepler problem which was solved by use of its conserved quantities. Once the

problem was modelled ito a differential equation, the results obtained by considera­

tion of conserved quantities were confirmed.

Differential equations provided the required breakthrough since any system could

be expressed in this form and one could then look to find a method of solution, many

of which were devised in an ad hoc fashion. However, there was no general method

of solution.

Lie recognised the close relationship between conserved quantities and infinitesi­

mal transformations when he set out to find a general method of solution of differ­

ential equations. He limited his discussion to geometrically based transformations

ie point and contact transformations and introduced the concept of symmetry of a

differential equation.

The limitation on the type of infinitesimal transformation has since been removed.

This has led to generalised symmetries and nonlocal symmetries. A symmetry may be

described as the generator of infinitesimal transformations which leave the differential

equation invariant. In turn, the infinitesimal transformations are associated with

conserved quantities and, in this way, the symmetries of a differential equation are

closely related to the conserved quantities of the associated physical system.

Lie's work on symmetries was neglected for several decades until L V Ovsiannikov

extended the theory to partial differential equations of arbitrary order.

Emmy Noether formulated her celebrated theorem in the framework of Lagrangian

Mechanics. She considered infinitesimal transformations which leave the integral of

the Lagrangian (an Action Integral) invariant. This led her to Noether symmetries

together with an explicit formula which gives, for each symmetry, an associated first

integral.

The next major development in the study of physical systems (and of differential
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equations) was with the introduction of group theoretical considerations. The set

of first integrals of a system may be viewed ita of a Lie group or algebra. The

group properties inform us of the global characteristics of a system whereas algebraic

properties may only be interpreted locally. In classical mechanics the Lie algebra

is defined with the Poisson Bracket as multiplication operator. The transition to

Quantum Mechanics requires that we use the Dirac Commutator instead.

Symmetry groups of dynamical systems have been extensively studied in the lit­

erature. The early discussions were concerned with purely geometric symmetry eg

rotational invariance. However, the apparent geometric symmetry did not explain

the existence of degeneracies in spectra. This led to so called dynamical symmetry

groups which were not obviously geometric in nature.

A set of integrals with zero Poisson Bracket (or commutator in Quantum Mechan­

ics) with the Hamiltonian of a system is referred to as an invariance algebra. The

group realisation (in the cases it exists) is called an invariance group. Dynamical

symmetry groups are of this type. Invariance groups attracted most of the attention

until the importance of larger groups, naninvariance groups, became apparent. A

noninvariance group contains the invariance group of a Hamiltonian. However, it

also contains integrals which have nonzero Poisson Bracket with the Hamiltonian

and hence explicitly depend on time. Invariance groups provide us with the orbit

while noninvariance groups yield the time~evolutionof a system (provided there are

sufficiently many first integrals).

A symmetry exhibited by a physical system may be described by the invariance of

the equation of motion under the corresponding transformation group. Hence much

attention has been given to complete symmetry groups: the largest symmetry group

of transformations admitted by the equation of motion. Furthermore, the group

(and algebraic) properties of a differential equation provide a means of solution and,

more importantly, facillitate the classification of differential equations on the basis

of group theoretical properties.

There is no real relation between the group that the symmetries form and that of

the first integrals of the associated physical system. Nonetheless, the group theoret-
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ical approach plays a very important role in both applications.

Initially the applications of Lie's theory were confined to point transformations

and, in rarer cases, velocity dependent transformations. It is only quite recently that

some authors have questioned the artificial constraints on the type of transformation

used.

With each new development in the methods of solution, the paradigms of me­

chanics have been intensively re-investigated. It is for this reason that we limit our

discussion to the Kepler problem, oscillator and free particle. The free particle and

oscillator are the paradigms of linear systems and the Kepler problem the paradigm

of nonlinear systems.

Applications of group theory in Quantum Mechanics are legion. Due to the close

link between quantum systems and their classical counterparts, the study of classical

systems has often led to solutions in quantum mechanics.
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Chapter 1

Historical Development of the

Paradigms of Mechanics

1.1 Introduction

Due to the apparent simplicity of the free particle, there is relatively little reference to

it in the literature [35, 14, 1]. Despite the simplicity of this problem, we will later show

that it has much in common with the other paradigms, both in terms of its conserved

quantities and group theory considerations. However, there is much to be said about

the Kepler problem and oscillator. In the early development of the solutions to these

problems the focus was on finding the respective conserved quantities. For the Kepler

problem the important conserved quantities are the angular momentum and Laplace­

Runge-Lenz (hereafter termed LRL) [6, 13, 20, 49, 30] vector. The oscillator has an

LRL type tensor known as the Jauch-Hill-Fradkin tensor 1. According to Goldstein

[9, 10] the earliest mention of angular momentum was by Laplace in 1798/9. However,

angular momentum is implicit in Kepler's laws of planetary motion. We now describe

the paths to the discovery of these vectors.

lOnce the general nature of the LRL became apparent attempts were made to generalise it to a

conserved quantity for all central force problems[8].)
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1.2 The Kepler Problem

Kepler based his studies of the motion of the planets on Tycho Brahe's and his own

observations. In 1609 he published his first two laws governing planetary motion in

his Astronomia Nova. The third law appeared in Harmonice Mundi [17, 18] in 1619.

Kepler's monumental achievements 2 laid the foundations upon which Newton could

construct his mechanics which would in turn verify Kepler's observational laws.

In the August of 1684 Newton accepted Christopher Wren's challenge [51] to derive

the shape of the planets' orbits. Newton's quest for the solution led him to his three

laws of motion and of universal gravitation. In the span of two years his work had

evolved into his masterpiece Philosophia; Naturalis Principia Mathematica. Newton

used these laws to show that the centripetal force holding a planet in its orbit is

inversely proportional to the square of its distance from the sun. In this he confirmed

Kepler's laws. Newton is, however, falsely credited for proving the converse of the

above ie that an inverse square law leads to orbits which are conic sections [52, 53].

In 1785 Coulomb's discovery of the inverse square law describing electrostatic forces

reaffirmed Newton's gravitational law.

The earliest study of the direct method for finding the orbits given an inverse

square law appears to have been by Jakob Hermann3 [13] (a disciple of the Bernoullis)

in 1710. Hermann related his results in a letter to Bernoulli , who in turn generalised

Hermann's results to allow for an arbitrary orientation of the orbit in the plane. His

results led him to the first integral of motion which is today generally known as the

Laplace-Runge-Lenz (LRL) vector.

Laplace rediscovered the LRL vector in his Traite de Mecanique Celeste of 1799

2Kepler's genius is often grossly understated. He was on the forefront of virtually every field

in which he worked. He wrestled with the concept of infinitesimals, long before Newton, while

developing his first law (the areal velocity of a planet in its orbit is a constant). Although he was

preceded by Archimedes (a fact he admits), he was the first to recognise the use of infinitesimals in

physics.

3The spelling of the name varies in the literature. There are at least three different versions:

Hermann, Herman and Ermano.
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[20]. He derived seven first integrals for the Kepler problem. Three of them were

the components of the LRL vector, another three were the components of the angu­

lar momentum and the remaining one was related to the energy. He realised that

there could be only five independent conserved quantities and found two relation­

ships between the seven integrals. He also showed that the conservation of angular

momentum explained why the motion was confined to a plane.

In July 1847 Hamilton [12] published his discovery of a new conserved vector

which is perpendicular to the LRL vector.

The solution of the Kepler problem can be described ito Hamilton's vector, the

LRL vector and the angular momentum. Conservation of angular momentum defines

the plane in which the motion takes place while Hamilton's vector and the LRL vector

are in the directions of the latus rectum and major axis respectively.

Gibbs was the first to present the LRL vector in the form in which we know it

today. It appeared in modern vector notation in the Gibbs and Wilson textbook

Vector Analysis of 1901. Interest in the vector was revived in 1924 in a paper by

Lenz [30]. Lenz forged the connection between the LRL vector and Quantum Me­

chanics when he calculated the energy levels of the perturbed Kepler problem using

nonrelativistic quantum mechanics.

1.3 The Oscillator

According to legend Galileo's attention was caught by a swinging lamp whilst at­

tending Mass in Pisa. Using his pulse as a timing device he noticed that, even though

the amplitude of the oscillations diminished, the period of the oscillation remained

constant.

The oscillator next appeared in the literature in 1670 when Robert Hooke discov­

ered the law of elasticity (stating that the stretching of a body is directly proportional

to the force applied). This law was later restated ito the harmonic oscillator.

Newton treated the oscillator in the context of central force problems in his Prin­

cipia (1687) [41]. In the next two centuries improvements were made in the mathe-
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matical formulation of the equation of motion and in its solution in terms of para­

metric functions. Another important advance was made in 1880 when the quantal

oscillator was used to model atomic spectra. This was before quantum mechanics

was invented!

In 1901 Planck explained the observed distribution of energy in the black-body

radiation spectrum. His theory was based on a statistical distribution of energy

amongst a set of simple linear harmonic oscillators. The idea that the energies of the

oscillators take on a discrete set of values (as opposed to varying continuously) gave

rise to quantum theory. More than a decade later (1913) Bohr applied these ideas

to the Rutherford model of the hydrogen atom using a Kepler-Coulomb potential.

He arrived at a theoretical formula (which agreed with his observations) for the

wavelengths of the atomic spectrum.

The time-dependent harmonic oscillator with equation of motion

was first notably introduced at the 1911 Solvay Conference [36, 54] during which

Lorentz conjectured that
'2

!:= L+ wq2
wt

was an adiabatic invariant (provided w(t) was a slowly varying function of time).

Littlewood [36, 37] proved the conjecture 50 years later. The study of the one­

dimensional time-dependent oscillator was greatly advanced by Lewis [31] when he

found the exact invariant 4 (using Kruskal's asymptotic method [19])

where p is any solution of the Ermakov-Pinney equation [5, 45]

4This is a term often used in the physics literature to describe a function with the property that

its total derivative wrt (with respect to) time is zero when the equation of motion is taken into

consideration.
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His interpretation of the invariant was that it is, up to an arbitrary multiplicative

constant, the most general homogeneous quadratic invariant possible5 for the Hamil­

tonian of the form

Giinther and Leach [11] generalised the Lewis invariant for the three-dimensional

time-dependent harmonic oscillator (TDHO).

In 1940 Jauch and Hill [15] discovered four components of a conserved tensor

for the two dimensional isotropic harmonic oscillator. Fradkin [7] generalised this

composite invariant to the three-dimensional case and it is now known as the Jauch­

Hill-Fradkin tensor. This tensor is the oscillator analogue of the LRL vector in the

Kepler problem in the sense that its contraction with the angular momentum is zero

and that both these vectors lead to the respective orbits. Giinther and Leach [11]

provided a class of invariants for the 3-D TDHO which is a generalisation of the

Jauch-Hill-Fradkin tensor for the time-independent case.

1.4 The Laplace-Runge-Lenz Vector

Since the Jauch-Hill-Fradkin tensor may be considered as the oscillator analogue of

the LRL vector for the Kepler problem, the question arises whether there is a general

LRL-type conserved quantity for all central potential problems. Peres [44] attempted

a generalisation by postulating a general form for the LRL vector. His result reflected

what Fradkin [7] had known before him which was that any generalisation of the

LRL vector could be only 'piecewise conserved'. In particular Peres found that his

'conserved quantity' was singular and changed direction at the turning points of

the orbit6
• None the less, both Fradkin and Peres remained convinced that their

5It has since been shown that this is not the case [23]. The one dimensional autonomous

oscillator has three quadratic invariants, It = ~ (p2 + q2) ,12 = ~ (p2 - q2) cos 2t + pq sin 2t and

13 = ~ (p2 _ q2) sin 2t - pq cos 2t. Since the one dimensional time-dependent oscillator is related to

the autonomous oscillator by Q =q/p, P = pp - pq it must also have three quadratic invariants.
6The Kepler problem was the exception since the perihelion, aphelion and centre of force are

collinear.
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generalisations of the LRL vector were truly first integrals. Fradkin justified this

belief by the fact that the Poisson Bracket of his generalised LRL vector with the

Hamiltonian was zero.

Holas and March [14] resolved the issue by pointing out that Fradkin's result did

not determine the derivative at the turning points of the orbit and hence the quantity

was only piecewise conserved. Furthermore they showed that the assumption that

the generalised LRL vector is a first integral (in the normal sense) leads to a closed

orbit. Conversely, for closed orbits which have n perihelions and aphelions, the n

perihelion vectors and their corresponding nth-rank tensor are all invariants of the

motion.
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Chapter 2

The Orbits of the Paradigms of

Mechanics

Summary The orbits of the free particle, oscillator and Kepler problem are found

from quadratic forms which are constructed using first integrals found by the application

of Poisson's theorem.

2.1 Introduction

Treatments of the orbits of the two great paradigms of mechanics, the Kepler problem

and the simple harmonic oscillator, are often given in terms of conserved vectors in

the case of the former and conserved rank two tensors in the case of the latter.

The oscillator, with equation of motion

r = -r, (2.1.1)

(w 2 can be taken to be one without loss of generality) has conserved angular mo­

mentum tensor

(2.1.2)

and Jauch-Hill-Fradkin tensor [15, 7]

(2.1.3)
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(amongst others). The orbit equation is given by the quadratic form

(2.1.4)

where E is the energy (= ~Tr (A) ).

The algebraic properties of the two problems are characterized by the Poisson

bracket relationships of the conserved quantities. The invariance algebras are well

known to be 80(4) for the Kepler problem (for E < 0; for E > 0 it is 80(3,1) and for

E = 0 it is e(3)) and 8u(3) for the oscillator.

The value of the conserved quantities for each problem made the construction of

similar quantities for all central force problems an attractive proposition although

the utility of the results is not so obvious [8, 44, 14, 2].

Although one does not normally do so, the equations of motion of the Kepler

problem and the oscillator can be considered as the equation for a free particle with a

(presumably) symmetry breaking term attached. This suggests that the free particle

should have similar conserved vectors and tensors. In this chapter we examine the

properties of these conserved quantities and a few more, the construction of which is

suggested naturally. We find a relation between the conserved vectors and tensors.

2.2 The Free Particle

2.2.1 The Conserved Quantities

The free particle has equation of motion

and Hamiltonian

H = ~p. p,

where p = r. The natural analogue of Hamilton's vector is

8
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and the corresponding LRL vector is

J 1 = P xL.

However, there is a second vector of Hamilton's type

K 2 = tp - r

for which the LRL vector is

J 2 = (tp - r) x L.

The Poisson Bracket of two quantities A and B is defined as

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)[A B] '= BA BB _ BA BB
, . Bqa Bpa Bpa Bqa

(where summation over the 0: is implied). Poisson's theorem 1 [55] states that if A

and B are two conserved quantities of a system, then the quantity C given by

C = [A,B]

is also a constant of the motion. In this way Poisson's theorem potentially provides a

method for finding new conserved quantities for a system. Note that the theorem does

not guarantee that the quantity C is functionally independent of existing integrals

ie that we will find a new first integral.

The Poisson Brackets of the components of the Hamilton-like vectors are

[K
1i

, K
1j

] = BK1i BK1j _ BK1i BK1j

Bqa Bpa Bpa Bqa
BK1j BK1i=0----0
Bpa Bpa

= 0,

=0

1Poisson discovered this theorem in 1809 and it first appeared in Journal de l' Ecole polytechnique

VIII (1809) p266. Poisson used the theorem to find new integrals from known ones. Some thirty

years later Hamilton stated the theorem ita his mechanics.

9



and

[I<li, I<2j] = -OiOl( -OjOl)

= Oij.

Similarly for the LRL vectors, we have

[J1i, J1j] = (2E) EijkLk

[J2i , J2j] = 13 Eijk L k

[J1i , J2j] = 2L
2

oij + 12EijkXiPj - LiLj ,

where E is the value of the Hamiltonian (2.2.1) and the conserved quantities 12 and

13 are defined below. For the 1(s and Jis we have

[I<li, J1j] = Aj - 2Eoij

[I<2i, J1j] = B ij - 120ij + ~EijkLk

[I<li, J2j] = B ij - 120ij - ~EijkLk

[I<2i, J2j ] = Cij - 130ij ,

where

Aj = PiPj

B ij = tPiPj - t (XiPj + XjPi)

Cij = t
2
piPj - t (XiPj + XjPi) + XiXj

are the components of the rank two conserved tensors and

12 = Tr (B ij )

13 = Tr (Cij ) .

The tensor Aij has the form of the Jauch-Hill-Fradkin tensor of the oscillator.

Tensors similar to Bij and Cij were reported for the oscillator by Leach [23]. It

is interesting that the conserved tensors follow from the application of Poisson's

theorem to the conserved vectors.

10



2.2.2 Conserved Quantities and the Orbit

Since the angular momentum is conserved, the orbit is in a plane and may be de­

scribed in terms of plane polar co-ordinates, (r,O). If 0 is measured from Jl, the

scalar product of J 1 with r gives the orbit equation

L 2

r=--­
J1 cos 0

(a straight line) just as the LRL vector does for the Kepler problem. It is well-known

that the Jauch-Hill-Fradkin tensor is used to give the orbit of the oscillator in terms

of the quadratic form [8]

(2.2.7)

It so happens that the same result applies for the free particle. In order to find the

quadratic form we calculate

(2.2.8)

Since

=(rxp)·(rxp)

= r . [p X (r x p)]

= r· [(p. p) r - (p. r) p]

2 2 ( )2=rp-r·p

we have

(2.2.9)

which is just the same form as (2.2.7).

To simplify the quadratic form

(2.2.10)

(where c is a constant) we define new coordinates in the following way. An n X n

matrix M is always diagonisable if it is real symmetric or Hermitian. In these cases

11



there are n linearly independent eigenvectors Vi corresponding to the eigenvalues Ai

and

p-I MP = diag(AI, ... ,An) = D,

where

p = (VI, ... ,Vn ) .

Solving for M from (2.2.11) and substituting into (2.2.10) we find that

With the definition of the new coordinates by

(2.2.12) becomes

QTDQ = c

(since P is orthonormalised ie p-I = pT).

The new coordinates are given by

(2.2.11)

(2.2.12)

(2.2.13)

Q=

Vn·q

ie the new coordinates are the projections of q onto the eigenvectors. This means

that the new coordinate axes are in the direction of the eigenvectors.

The Conserved Tensor Aj

The eigenvalues of the matrix in (2.2.7) are 2E, 2E and O. The two eigenvectors

corresponding to the repeated eigenvalue, 2E, are vectors u such that

(2EI - A)u = (2E)u

which means that

Au =0

12



ze

i = 1,3

(where summation over j is implied). This gives

U' P = 0

ie the eigenvectors are any two linearly independent vectors in the plane normal

to p (and so may be taken as mutually perpendicular). The third eigenvector,

corresponding to the eigenvalue zero, is p (= KI). In terms of the new coordinates

the quadric surface is given by

which is a cylinder with axis of symmetry given by K 1 . The orbit is the intersection

of this surface with the plane defined by the constancy of the angular momentum

and is, naturally, a straight line (see Fig 2.1).

The Conserved Tensor B ij

The quadratic form associated with B is found from

r
T

Br = 'T'iBij'T'j = 'T'i (tPiPj - ~('T'iPj + 'T'jPi)) 'T'j

2 1
=t(r'p) - -[(r·r)(r·p)]

2
= t (r· p)2 - (r· r)(r. p)

= t ('T'2 p2 - L2) - 'T'2 (r . p) - 'T'2 (r . p)

= (tp2 - r . p) 'T'2 - tL2

= 12'T'2 - tL2.

Hence

ie the quadric surface expands in time. The eigenvalues are ~ (12 ± VT.J. +L2) and

12 • The eigenvector corresponding to the third of these is L. Those corresponding

13



Figure 2.1: Since the eigenvectors corresponding to the eigenvalues 2E are any two

vectors perpendicular to p, we may choose one of them to be L. Conservation of the

magnitude of angular momentum defines a plane perpendicular to L. The orbit is

given by the intersection of the plane and cylinder ie two straight lines. The initial

conditions will determine which line the particle is on.
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to the first two are

u± =-

iL3L1 + ~ (-12 ± Jr1 + L2) B13

~L3L2 + ~ (-12 ± Jr#, +L2) B23

~ (L~ - L2) + ~ (-h ± J1i +L2) B33

(2.2.14)

and are in the plane normal to L. In terms of principal axes the quadric surface is

or
Q~ Q~

2 (12 +J1'1 + L2) 2 (h - JIi + L2)

The presence of Q3 is only nominal as that axis is in the direction of L and the

motion is normal to it. Consequently it is easier to picture the evolution in time

of the intersection of the quadric surface with the Q1 - Q2 plane. Three stages are

depicted in the figures (see Figs 2.2-2.8). For t > 0 (2.2.14) represents an hyperboloid

of one sheet and for t < 0 an hyperboloid of two sheets. For t = 0 it represents a

cone.

The Conserved Tensor Cij

In the case of C the quadric surface is

with eigenvalues 13 , h and zero. The eigenvectors corresponding to the double

eigenvalue are given by the two linearly independent vectors, u, in the plane defined

by u . K 2 = O. The third vector is in the direction of K 2 . In terms of principal axes

we have

Q2 Q2 _ t2L2
1 + 2 - 1

3
.

The surface represents a cylinder with axis of symmetry given by K 2 • The radius of

the cylinder increases linearly in time so that the particle is always on its surface.

15



Figure 2.2: t = 0 The plane is defined by the constancy of the magnitude of angular

momentum. It separates the cone into two symmetric parts.
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Figure 2.3: t

lines.

o The intersection of the plane and cone consists of two straight

17



Figure 2.4: t < 0 The plane is defined by the constancy of the magnitude of angular

momentum. It separates the hyperboloid of two sheets into two symmetric parts.
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Figure 2.5: t < 0 The intersection of the plane and the hyperboloid of two sheets

consists of two branches of an hyperbola with the Q2-axis as axis of symmetry.
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Figure 2.6: t > 0 The plane is defined by the constancy of the magnitude of angular

momentum. It separates the hyperboloid of one sheet into two parts.
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Figure 2.7: t > 0 The intersection of the plane and the hyperboloid of one sheet

consists of two branches of an hyperbola with the Ql-axis as axis of symmetry.
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Figure 2.8: Both branches of the hyperbola move towards the asymptotes as positive

time tends to zero and become coincident with the asymptotes when t = O. They

pass through the asymptote into the upper branches of the hyperbola. Hence for

t < 0 the particle is on (say) the left branch of the hyperbola, at t = 0 the hyperbola

degenerates to its asymptotes and for t > 0 the particle is on (say) the upper branch

of the hyperbola.
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2.2.3 Discussion

The first integrals of rank two tensor form of the free particle arise naturally from

he conserved vectors once the analogues of the LRL vector are introduced. While

the scalar products of the Hamilton and LRL type vectors lead to the quadratic

integrals E, 12 and h, it is the Poisson Bracket relations which give rise to the

conserved tensors. Although the tensors yield the orbit of the free particle in a

nonstandard way, the method we use is both natural and general. The Poisson

Bracket relations among the tensors Aij , Bij and Cij yield nothing new as the brackets

close. In fact the real pivot of the connection of the vectors and tensors is the

introduction of the LRL analogues.

2.3 The Oscillator

2.3.1 Introduction

Summary

The two classes of explicitly time-dependent conserved second order tensors for the au-

tonomous isotropic oscillator are both shown to give rise to orbit equations of the form

of pulsating hyperbolGe. The noninvariance algebra of these two sets of integrals is the

noncompact su(2, 1) in contrast to the compact su(3) of the invariance algebra generated

by the components of the angular momentum and the Jauch-Hill-Fradkin tensor.

It is well-known that the orbit of the time-independent isotropic oscillator can be

described [7] in terms of a quadratic form constructed out of the elements of the

Jauch-Hill-Fradkin tensor [15, 7] and the angular momentum, viz

Lk - C'_ -kq-P-- '-'ZJ Z J'

The Hamiltonian of the system, which is the conserved energy, is

1
H = E = -Tr(A--)2 ZJ •
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The invariance group of the oscillator, SU3 (for three dimensions), can be found from

a consideration of the algebra of these first integrals under the operation of taking the

Poisson Bracket [7]. The time-dependent isotropic oscillator has the same properties

[11] except that the algebra is not an invariance algebra of the Hamiltonian (since

81
8t =I o:::} [1,H] =I 0)

but of the Ermakov-Lewis invariant [5,31].

In addition to the autonomous integrals of angular momentum and Jauch-Hill­

Fradkin tensor the time-independent isotropic oscillator has the explicitly time­

dependent conserved rank two tensors [23]

B ij = (PiPj - qiqj) sin 2t - (qiPj +qjPi) cos 2t

Cij = (PiPj - qiqj) cos 2t + (qiPj +qjPi) sin 2t

(2.3.4)

(2.3.5)

which have no particular names. It is convenient to introduce the scalar integrals

1
J = -Tr (Bij )

2

J{ = ~Tr (C··)2 lJ .

(2.3.6)

(2.3.7)

These time-dependent tensors have nonzero Poisson Brackets with the Hamiltonian

and so make no contribution to the invariance algebra of the isotropic oscillator.

However, it was reported [23] that they do play roles in the invariance algebras

for repulsors which are obtained from (2.3.3) by means of a time-dependent linear

canonical transformation.

In this section we show that the quadratic forms associated with B ij and Cij

provide information about the orbit in configuration space.

2.3.2 The Conserved Tensor B ij

A quadratic form is associated with Bij by double contraction with r. We see that

= Jr2
- L 2 sin 2t,
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where £ is the magnitude of the angular momentum. Hence

(2.3.9)

is the quadratic form associated with B. The eigenvalues of the matrix (J I - B)

are J and ~ (J ± J J2 +4£2) . The eigenveetor of the eigenvalue, J, is Land

we use the constancy of the angular momentum to write the quadratic form in

two-dimensions using the principal axes given by the eigenveetors corresponding to

~ (J ± J J2 +4£2) as

[J - J J2 +4£2] 01
2+ [J + J J2 +4£2] 02

2
= 2£2sin 2t

which, in a more standard form, becomes

(2.3.10)

J + JJ2 +4£2

- 2
2Q2 .

--=--~::======::=::= = sm 2t.
J - JJ2 +4£2

(2.3.11)

(2.3.12)

(We have used the notation (01, (2) for the variables along the principal axes for

(2J I - B) in the plane of the motion. We reserve Q1 and Q2 for the principal axes

of (2EI - A) which gives the orbit as

Q1 2 Q22 _ 1
E +JE2 - £2 + E - JE2 - £2 - ,

the standard equation of a geometric centred ellipse.)

Since the surface defined by (2.3.11) is much the same as the one defined by

(2.2.14), we omit the description. Note, however, that although the curve specified

by (2.3.11) is instantaneously an hyperbola, the path taken by the particle is in

conformity with the elliptical orbit of (2.3.12).

2.3.3 The Conserved Tensor Cij

The quadratic form associated with (Cij ) leads to the equation

r T (I{ I - C) r = £ 2 cos 2t. (2.3.13)

The eigenvalues of the matrix (J{ I - C) are J{ and ~ (J{ ± J J{2 +4£2). The eigen­

vector corresponding to J{ is L. In terms of principal axes (01, 02) in the plane of
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the motion the orbit is given by

K +JK2 +4L2

= 2
2Q2

-::-----r.;:::;:;:==~ = cos 2t.
K - JK2 +4L2

(2.3.14)

For fixed t, t =J 1r /4, (2.3.14) describes an hyperbola. For t = 1r/4 it represents two

straight lines. (The situation is much the same as described by Figs 2.2-2.8.) The

hyperbola pulsates in the same way as that corresponding to (Bij ) except that the

phase with respect to principal axes appropriate to (Cij ) is out compared with that

for (Bij ) and its principal axes. The manner of pulsating of the hyperbolre is the

same as for (Bij ) and the actual orbit is as described in the previous section.

2.3.4 Noninvariance Algebra

Under the operation of taking the Poisson Bracket the components of L possess the

Lie algebra, 50(3), representing rotations in three dimensions. When the elements of

the Jauch-Hill-Fradkin tensor, A ij , are added, the Hamiltonian (2.3.3) possesses the

eight element invariance algebra, 5u(3). (The number of elements of A independent

of H is five since H = !Tr (Aij )).

Without writing down the details of the Poisson Brackets we use the notation

[X, Y] ~ Z to indicate that the Poisson Bracket of an integral of type X with one

of type Y gives a linear combination of type Z integrals. Thus for the invariance

algebra we have

[L, L] = L [L,A] = A [A, A] = L (2.3.15)

and this is 5u(3). It is not possible to introduce (Bij ) into (Li ) and (Aij ) by itself.

(Cij ) must also be introduced because the bracket relations are

[A,B] = C [B, C] = A [C,A] = B. (2.3.16)

The elements of L, A, Band C constitute the noncompact algebra su(3, 2) under the

operation of taking the Poisson Bracket.

However, if B (or C) replaces A, there is a closed algebra since

[L, L] = L [L,B] = B
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and

[L, Ll = L [L,Cl = C rC, Cl = L. (2.3.18)

In both cases the algebra is the noncompact su(2, 1).

2.3.5 Discussion

The three classes of quadratic first integrals for the isotropic oscillator plus the an­

gular momentum provide orbit equations for the classical motion of the particle.

Angular momentum and the Jauch-Hill-Fradkin tensor provide the conventional el­

liptical orbit and the integrals have the compact algebra su(3). The orbit is equally

obtainable using the time-dependent integrals, (BiJ or (Cij ), and the angular mo­

mentum. The 'pulsating hyperbolce' which Band C generate are orbit equations.

In fact in extended configuration space they would provide the actual trajectory

whereas the J auch-Hill-Fradkin tensor gives a right elliptical cylinder on which the

particle moves, but further information is required to locate the precise position of

the particle.

The contrasting nature of the orbits given by A on the one hand and Band C

on the other is reflected in the algebras of (L, A) and (L, B or C). The former is the

compact su(3) and the latter is the noncompact su(2, 1). The compact algebra is

associated with the geometrically compact ellipse and the noncompact algebra with

the geometrically unconfined hyperbola.

2.4 The Kepler Problem

2.4.1 The Conserved Quantities, Energy and Orbits

The Kepler problem, with equation of motion

.. J-lr
r=-­

3 'r

has conserved angular momentum vector

L = r X r
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(as do all central force problems) which implies a planar orbit.

In plane polar coordinates Hamilton's vector has the form

f.L ~

K = r - -0.
L

In coordinate-free form it is

K = r-.1!:-L x r.
rL2

The LRL vector [6, 13, 20, 49, 30] is related to K and L by

J=KxL

If () is the angle between J and the radius vector, the equation ofthe orbit,

r= ,
f.L + J cos ()

follows from the scalar product of J with r.

The energy
1 f.L

E = 2P ' P --:;:

is related to the LRL and Hamilton's vectors by

2

J{2 = 2E + f!­
L2

J2 = 2EL2+ f.L2.

(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

From (2.4.6) we see that E < 0 implies that J < Jl and hence (2.4.4) represents

an ellipse. For E = 0 (J = f.L) the orbit is a parabola and for E > 0 (J > f.L) an

hyperbola. Note that we have a bound orbit only when E < O.

2.4.2 Poisson Bracket Relations

We consider the group structures of the conserved quantities. The components of

the angular momentum, the energy E (=H) and the LRL vector have the Poisson
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Bracket relations

[Li, Lj] = CijkLk

[Li, Jj] = CijkJk

[Li,H] =0

[Ji, H] = 0

[Ji, Jj] = (-2E)cijk Lk'

The algebra depends on the value of the energy in the sense that for E > 0 the

algebra is 80(3,1) ,for E < 0 it is 80(4) and for E = 0 it is e(3).

For Hamilton's vector we have

[Li, Lj] = CijkLk

[Li, K j] = CijkKk

[L i , H] = 0

[Ki , H] = 0

[Ki,Kj] = (~:)CijkLk

which is isomorphic to the algebra 80(4). Fradkin [8] obtained this result in a similar

fashion. It is interesting that he did not point out that the algebra is independent of

the energy. This is in stark contrast to the LRL vector for which the algebra differs

depending on the value of the energy (and hence the type of orbit). Interesting as

the result may be, the geometry suggests that it should not be too surprising. (See

Fig 2.9.)

For the oscillator we obtained new conserved quantities from Poisson's Theorem.

A similar approach for the Kepler problem leads to a conserved tensor which follows

from the Poisson Brackets of the components of K and J. From the Poisson Brackets

[Ki,Kj] = (~:)CijkLk
[Ki, Lj]= CijkKk

we may calculate [Ki , J j ] from
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Figure 2.9: The particle is in the plane perpendicular to L. The orbits are shown

for different values of the energy E. K intersects the orbits at two points for all

values of the energy. The LRL vector intersects the ellipse twice and the parabola

and hyperbola once. The geometry strongly supports the result that the group

properties of the LRL vector should depend upon the value of the energy whereas

those of Hamilton's vector do not.
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The result yields the conserved tensor

R;; := (~: ~ f{') 0;; +f{;f{; - (~:) L;L;.

2.4.3 The Conserved Tensor R ij

As for the oscillator we seek a quadratic form which will produce the orbit.

rT Rr = riRijrj

= (~: _ f{') r' + (r . K)'

gives the quadratic form

(2.4.7)

where

N = (p2 - 2E).

It would make more sense if we could write N in terms of the orbit r(t) so that the

quadratic form would depend on time implicitly. This can be done since

1 /-lE = -p. p --.
2 r

This gives

N = 2/-l.
r

The dependence on time is through the displacement r(t) of the particle from the

origin. For any given time we have a curve, a geometric centred ellipse for E < 0, to

which the particle is confined. As the curve evolves with time the particle remains

on the curve, but describes a focus centered ellipse. To illustrate this we need to

write the quadratic form ita principal axes.

It is usefull to first define
1

S = "2Tr(R).

Then the eigenvalues of the matrix in (2.4.7) are N - S, N _/-l2 / L2 and N + f{2 and

hence depend on time through r(t). One may expect that the eigenveetors may also
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be implicitly time-dependent and hence the transformation to priciple axes will vary.

However, this is not the case since the dependence on r(t) in the matrix in (2.4.7)

occurs in the diagonal terms only.

The eigenvalues turn out to be the triad of J, K and L. The corresponding

eigenvalues are N - 5, N - /12/ L2 and N + f{2 respectively. Since L is conserved, we

may neglect the corresponding coordinate and write the new quadratic form as

(2.4.8)

Depending upon the value of r, (2.4.8) represents either an ellipse, hyperbola or two

straight lines. When r < 2L2
/ /1 the instantaneous curve is an ellipse, for r > 2L2 / /1

it is an hyperbola and when r = 2L2
/ /1 it represents two lines parallel to the y-axis.

Figs 2.10-2.17 illustrate how we may obtain the Kepler orbit from (2.4.8).
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Figure 2.10: E < O. The dashed curve is a circle which indicates the distance from

the origin. The other curve is the instantaneous ellipse given by the quadratic form

where r has the value of the radius of the circle and r < L 2
/ fL.

33



Figure 2.11: The Kepler orbit for the previous figure has been inserted. The points

illustrate the intersection of the instantaneous ellipse and the circle (ie the positions

on the instantaneous ellipse which are at a distance r from the origin). Note that the

intersection points coincide with the orbit. This is so since the orbit may be defined

by the instantaneous ellipses.
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Figure 2.12: Several instantaneous ellipses have been plotted where r < L 2//1. The

quadratic form gives the straight line for r = L2 / /1. This value of r is reached at the

point furthest from the origin. Hence there are no hyperbolre necessary to describe

the Kepler orbit for E < O.
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Figure 2.13: E = o. The Kepler orbit is now a parabola. As for the E < 0 case

the instantaneous ellipse coincides with the orbit at a distance r. The instantaneous

curve in the figure is an ellipse since r < L 2
/ fl.
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Figure 2.14: Several instantaneous ellpises have been added to the previous figure.

The value of r is less than L 2 j f-l for all of them.
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Figure 2.15: At r = L2 / J.l the instantaneous curve is a straight line. The instanta­

neous hyperbolas for several values of r > L2 / J.l are also indicated.
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Figure 2.16: E > o. The Kepler orbit is now an hyperbola. The figure shows only

the left branch since the instantaneous curves do not give the right branch. All three

types of instantaneous curves are indicated.
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Figure 2.17: Several instantaneous ellipses illustrate how the orbit (for the sake of

an uncluttered graph we show only instantaneous ellipses) may be found from the

quadratic form.
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Chapter 3

Lie and N oether Symmetries

3.1 Part I: Lie and Noether Symmetries

3.1.1 Lie Symmetries

Consider the general nth order ordinary differential equation

E ( I (nl) - 0x,y,y, ... ,y -. (3.1.1)

We are interested in those infinitesimal transformations which leave the equation

invariant. The general infinitesimal point transformation may be written as

i = x + te(x,y)

y = y + t1] ( X , y) . (3.1.2)

For the following discussion we need not specify the variable dependence form of 1]

and e. However, we do need to investigate how the derivatives transform. As a first

step consider the transformed first derivative

dy d(y + c1])

di d(x +cO
dy +cd1]

dx +cde

4u+c~_ dx OX

- 1+c~
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= (y' +C:7]')(l +c:(r
1

= (y' + C:7]') (1 - c:( + c:2(2 ...)

, (' 'C')=y+C:7]-yr" , (3.1.3)

where we disregard terms of O(c:2 ) since c: is an infinitesimal. For the second deriva­

tive we have

d2
y _ ~ (dY)

dx2 - dx dx

d [y' + c: (7]' - y'e')]
d(x + c:e)

dy' + c:d (7]' - y'e')
dx + c:de

d' d
~ +C:ax (7]' - y'e')

1 + c:e'

= [y" + c: (7]" - y"( - y'(')] [1 +c:(r
1

= y" + c: (7]" - 2y"( - y'(').

In general we have the recursive formula

dn -
-.J!... = y(n) +Erdxn ,>n,

where

(3.1.4)

(3.1.5)

n2:1

and (0 = 7]. The' denotes the total derivative wrt x. The complexity of the derivative

obviously depends on the forms that 7] and e take. In the case of dependence on x

and y only, we have point symmetries. When derivatives are included, we have Lie­

Backlund symmetries. If the coefficient functions depend on integrals, the associated

symmetries are known as nonlocal symmetries.

The requirement for the equation

E ( , (n)) - 0x,y,y, ... ,y -
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to be invariant under the transformation (3.1.2) is

(3.1.6)

(3.1.7)

(3.1.8)

to O(E), ie

(3.1.9)

where G[n] is given by

[n] _ a ~.~ )
G - eax + t:o (, ay(i)' (3.1.10

It is important to note that the equation itself must brought into consideration when

calculating the symmetries of that equation.

We say that
a a

G = e- +1]-
ax ay

(3.1.11)

is the generator of the infinitesimal transformation (3.1.2). The generator of an

infinitesimal transformation which leaves a quantity invariant is called a symmetry

of that quantity. Furthermore, a generator is a symmetry of a quantity only if the

associated transformation leaves the quantity invariant. Thus the terms generator

and symmetry are not interchangeable.

The generalisation to higher dimensions is quite straightforward. An n-dimensional

system (of sodes)

E(t,r,r,r) = 0

has the symmetry
a a

G = e- +1]i-
at ari

if

G[2] = e~ +1]i~ + (1]~ - (r/)~ + (1]" - 2(r~' - Cr~) ~
at ari' ari" , , art

applied to (3.1.12) gives zero when (3.1.12) is taken into into account.

Example
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Returning to the one dimensional case we consider the free particle with equation

of motion

x = o.

Eq (3.1.9) now gives (we use '.' for derivatives of time and '" for space derivatives)

" 2 .. c' . c" - 0T/ - X" - X" -

which becomes (we consider only point transformations)

[PT/ • 82
T/ 82

T/ .2 . (82~ . 82~ 82~ .2)
8t2 + 2x 8t8x + 8x2X = X 8t2 +2x 8t8x + 8x2X .

Separation by coefficients of distinct powers of x gives

The first equation gives

T/ = a(x)t + b(x)

and the third yields

~ = a(x)t2+c(x)t +d(x).

From the two remaining determining equations we find that

a(x) = Aa +A1x

b(x) = (2A3 +A2)x +A4x2+ A7

c(x) = A3 + A4 x

d(x) = As +A6 x.

Substituting these into ~ and T/ and setting, in turn, each of the arbitrary constants

to unity while setting the remaining ones to zero, we find the 8 symmetries

28 8
G1 = t - +xt-

8t 8x
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a a
G2 =t-+2x-

at ax
a 2a

G3 =xt-+x-
at ax

a
G4 =­

at
a

Gs=x­
ax
a

G6 =x­
at
a

G7 =t­
ax
a

G8 =-·
ax

Determination of First Integrals

In general a scalar ordinary differential equation of the nth order

E( I (n)) - 0x,y,y, ... ,y -

has a first integral

I j( I (n-l))= x,y,y, ... ,y

associated with the symmetry

a a
G = e- +1]-

ax ay

if

G[n-l]j = 0

and

~~IE=O = o.
The dependence of j on y(n-l) must be nontrivial.

The general conclusion is that associated with a symmetry of an nth order dif­

ferential equation there exist (n - 1) first integrals. The action of the symmetry

requires that
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which has the associated Lagrange's system

and this has n characteristics UI, U2, ... ,Un' The first integral requirement is

u' of +u' of +... +u' of = 0
I aUI 2 a U 2 nOUn

with associated Lagrange's system

-=-= ... =--
U'I U~ U'n

in which y(n) is replaced from E = O. This leads to n-l characteristics VI, V2, ... , Vn-I·

Since the characteristics are independent, we are guaranteed that the integrals are

all independent.

For a system of n second order equations

E(t,r,r,r) = 0

a similar result holds. Associated with a symmetry

there are 2n - 1 independent first integrals. Even if there are more symmetries,

the number of independent integrals does not exceed 2n. It may be that there is a

repetition of integrals Of, more commonly, that there are functional relations between

the integrals. There is, of course, no guarantee that one can actually integrate the

first order equation to find explicit formulre for the first integrals. This is a definite

disadvantage of the Lie method.

Example

Consider the simple, yet relevant, example concerning the free particle in one

dimension

x=O

which has the symmetry

G=~at
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(due to the equation of motion being invariant under time translation). We seek the

associated first integral of the form

I=f(t,x,x).

The first requirement is that

G[llf = 0

ze

8f = 0
8t

which has the associated Lagrange's system

dt dx dx
1 0 0 .

This system has the characteristics

u=x

This means our integral is of the form

v = x.

I=f(x,x).

The second requirement for I is

. 8f. 8f.
1= -u+-v=O

8u 8v

which has the associated Lagrange's system

du dv

x 0

ze

1= f(x).

We may take the arbitrary function f to be the identity so that the integral is

1= x.
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3.1.2 Noether's Theorem

Calculus of Variations

Consider the functional

l
XI

A = L(x, y, y')dx,
XQ

where x is the independent variable and y the dependent variable and L is an analytic

function of x, y and y'. The value of A depends upon the functional dependence of

y upon x. We seek the function y = y(x) such that A takes a stationary value.

Suppose that y is varied infinitesimally

y=y+c((x),

where ((xo) = 0 and ((Xl) = 0 (so that there is no variation at the endpoints). Then

the variation in A is

l
XI lxl8A = L(x, y, y')dx - L(x, y, y')dx.

XQ XQ

The transformed Lagrangian is

L(x, y, y') = L(x, y +cc, y' + cC')

L( ') aL ,aL
= x, y, y +c( ay +c( ay'

to the leading term in c. The variation of the functional A becomes

{Xl (aL aL)
8A = JXQ c( ay +cC' ay' dx

[
{Xl aL {Xl aL ]

= c JXQ (ay dx + JXQ C' ay,dx

[
{Xl aL ( aL) Xl {Xl d (aL) ]

= c JXQ (ay dx + (ay' XQ - JXQ (dx ay' dx

=c {XI({aL _~(a~)}dX.
JXQ ay dx ay

For A to take a stationary value we must have 8A = 0 ie

l
XI

{ aL d (aL ) }( - - - --, dx = 0
XQ ay dx ay
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(3.1.14)

and that this be true for arbitrary (. This gives the Euler-Lagrange equation of the

Calculus of Variations

aL _~ (a~) = o.ay dx ay
Note that this equation follows from the requirement that the functional take a

stationary value while the nature of the stationary value was not specified.

The nature of the stationary value is determined by the second order term in the

variation. This is

The sign of the 82A depends upon the Hessian matrix

If it is positive definite, the stationary value is a minimum. If it is negative definite,

it is a maximum. If it is indefinite, there is a saddle point.

Maupertius believed [3] that the functional A was the functional which nature

sought to minimise. In his own words, "It is the quantity of action which is Nature's

true storehouse, and which it economises as much as possible in the motion of light.".

Although he verified his postulate for the Newtonian law of propagation and the law

of refraction, he was convinced that he had discovered the one action which was the

underlying quantity to be minimised in all motions.

Formulation of Noether's Theorem

Instead of transforming only the y as

y(x) ---+ y(x) +cry(x),

consider the more general transformation

x---+ x + ce
y---+ y + cry,
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where e is again the parameter of smallness. We make no assumptions about the

forms of the functions eand 1]. In the previous section we transformed only the de­

pendent variable and obtained Lagrange's equation of motion. In this case, however,

we transform the independent variable also and obtain an equation which involves e,
1] and the Lagrangian. This equation defines the Noether symmetries of the system

at hand.

Our aim is to find functions eand 1] such that under the infinitesimal transforma­

tion the value of A is changed by a constant, ie

l
X1 lXlL(x,y,y')dx - L(x,y,y')dx = eC,

Xo Xo

where cC represents an infinitesimal constant1 . We observe that

L(x, y, y')dx = L(x +ee, y +e1], y' +e()d(x +cO

(
, aL aL aL)

L(x, y, y ) +et ax + e1] ay +e( ay' (dx +et'dx)

[L++:~ +~ :~ +(:~ H'L) ] dx

to O(e) where ( = 1]' - ty'. Then (3.1.15) is

l
X1

[ ( aLaL aL ) ] lX1
Xo L +e t ax + 1] ay +(ay' + t'L dx - Xo Ldx = cC

l Xl ( aLaL aL )
{=} t - + 1] - +(-, +t'L dx = C

Xo ax ay ay

(3.1.15)

which means that the integrand is a total derivative ie it makes zero contribution to

the variation. Hence
aL aL aL , ,
~- +1]- +(- +~ L = fax ay ay'

where

l
X1

f'dx = C.
Xo

The function f is called the guage function.

Example

(3.1.16)

1We require that it be infinitesimal so that the identity infinitesimal transformation is the true

identity.
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Consider as an example the oscillator with Lagrangian

L _ 1('2 2)- - Y -y .
2

Assume that ~ and "l depend upon x and y only (ie we consider only point transfor­

mations). Now we have

(
a"l .a"l). (a~ .a~)'2 1('2 2)(a~ .a~) af .af-"lY + - +y- y - - +y- y +- y - y - +y- = - +y-.
ax ay ax ay 2 ax ay ax ay

In the same manner as with the Lie method, we separate by coefficients of powers of

y, mz

i/ :

i/ :
From (3.1.17)(a) we have

and from (3.1.17)(b)

Then (3.1.17)(c) becomes

ze

and (3.1.17)(d) yields

~ = a(x)

1 .
"l = 2"a(x)y + b(x).

af I" b'- = -,-ay +
ay 2

f = ~ay2 + by +c(x)

=0

=0
(3.1.17)

( 1. + b) 1 2· 1 ... 2 bOO •- 2"ay y - 2"Y a = 4 a y + y + c.

Separation by powers of y gives

y2 : ...
+4<i =0a

yl : b+b =0

yO : c = o.
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Eq (3.1.18)(c) implies

C = Ca

which can be ignored since it is an additive constant to 1 and does not appear in

the ~ and 1]. From (3.1.18)(a) we have

a = Aa +Al sin 2x + A 2cos 2x

and from (3.1.18)(b)

b = El sin x +E 2cos x.

This gives

~ = Aa + Al sin 2x + A 2cos 2x

1] = Aly cos 2x - A 2y sin 2x +El sin x +E 2cos x

1 = ElY cos x - E 2y sin x - A ly2sin 2x - A 2y2 cos 2x.

The five Noether symmetries are

a
1=0Aa: GI =-

ax

AI: G . 2 a a 1 = _y2 sin 2x2 = SIll X ax + y cos 2x ay

A 2 : G a. a 1 = _y2cos 2x3 = cos 2x ax - y SIll 2x ay

El: G . a 1 = ycosx4 = SIll X ay

E 2 :
a

Gs = cosx ay 1 = -ysinx

in contrast to the eight Lie symmetries obtained by the Lie analysis.

Recall the defining equation for the Noether symmetries

Taking total derivatives to the left side we obtain

aL aL aLl' = ~- +1]- + (1]' - y'()- +(L
ax ay ay'

l' - (CL)' = _c ( ,aL + "aL) +( '_ 'c,)aL + aL
1". I" Y ay y ay' 1] y I" ay' 1] ay
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Again taking more total derivatives to the left side we have

[
OL]' , oL , ) d (OL)l' - (eL)' - (ry - y'O oy' = (ry - ye) oy - (ry - y edx oy'

, (OL d (OL))=(ry-YO --- -,
oy dx oy

=0

due to the Euler-Lagrange equation. Hence

ze

I = f - [(eL) + (ry - y'0 ~~]

is a first integral. We now have a precise expression for the first integral associated

with a Noether symmetry. We may now formulate Noether's theorem as follows.

If the functional

l
Xl

A = L(t, y, y')dx
Xo

is varied by an infinitesimal constant under the transformation generated by the sym­

metry
o 0

G = eot + ry oy ,

then Lagrange's equation of motion admits the first integral

An interesting property of a Noether transformation is that it leaves the corre­

sponding first integral invariant [38]. This manifests itself in the form

G[IlI = o.
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The same result applies to Lie symmetries. However, in the Lie case it is obvious

since this is partly the definition of the associated first integral. It is interesting that

the result also holds for Noether symmetries considering the very different approach.

The Noether symmetry
a a

G=e-+TJ-at ay
has associated conserved quantity

I = f - [eL + (TJ - ey) ~~] .

Assuming the identity

and the equation

it is easy to show that

G[IlI = 0

when expanding the derivatives

Returning to our example we calculate the associated first integrals. They are

11 = y2 + y2

12 = (y2 _ y2) sin 2x - 2yy cos 2x

13 = (y2 _ y2) cos 2x + 2yy sin 2x

14 = - 2y sin x +2y cos X

Is = -2ycosx - 2ysinx.
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Derivative Dependent Symmetries

In the formulation of Noether's theorem there is no comment made about the vari­

ables appearing in e and 'fJ. The examples so far have contained just x and y and

so the symmetries have been point symmetries. For a Lagrangian, L(x, y, y'), which

leads to an Euler-Lagrange equation of second order it is possible to include y' in e
and 'fJ.

The equation for the symmetry separates into y" and non-y" terms. The y" part

IS

and the rest is

aj +y,aj = eaL + 'fJ aL + (a'fJ + y,a'fJ _ y,ae _ y'2 ae) a~ + (ae+y,ae)L.
ax ay ax ay ax ay ax ay ay ax ay

The formula for the integral remains unchanged. The problem is that one cannot

separate by powers of y' and hence there are infinitely many symmetries and no

systematic method of finding them. One solution to this problem is to postulate a

form for the symmetries. We will return to derivative dependent transformations

when we investigate the paradigms of mechanics.

The Gauge Function

In some statements of Noether's theorem the gauge function is taken to be zero. We

now calculate the Noether symmetries of the oscillator (L = Hy,2 - y2)) disregarding

the gauge function.

The defining equation for the symmetries is

Expanding the derivatives and assuming point symmetries we have
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Separation by powers of y' yields

y~ e = a(x)

y,2 7] = ~a(x)y +b(x)

y' 0 = ~a(x)y + h(x)
1 20eo = -7]y - -y -.
2 ox

The third equation gives

a(x) = Aa +AIx

b(x) = Ba

and the coefficient of the zeroth power of y' gives

a(x) = Al

b(x) = 0

ie there is only one symmetry instead of the five we get when the gauge function is

present. The surviving symmetry is

G=~ox
and corresponds to the Noether symmetry (found from the normal calculation with

nonzero gauge function) for which the gauge function is zero.

Clearly it makes no sense to leave out the gauge function [27].

The Euler-Lagrange Equation for a Higher Order Functional

Consider the functional

l
X1

A = L(x, y, y', y")dx
XQ

which depends on the function y(x). We transform y as

fj = y + c(,
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where c is an infinitesimal and ((x) is a differentiable function which is zero at the

endpoints. Then the variation in A is

hA= {Xl {L(x,y+cCy'+c(',y"+c(")-L(x,y,y',y")}dx
Jxo

l xl { [aL ,aL "aL] }= L+ c (- +( -, +( -" - L dx
xo ay ay ay

{Xl [aL ,aL "aL]d
= c JXo (ay +( ay' + (ay" x.

We note that

l XI aL ( aL) Xl l XI d (aL)('-,dx = (-, - (- --, dx
q ay ay q dx ay

Xo

{Xl "aL ( , aL) IXI (Xl, d (aL)
Jxo ( ay"dx = (ay" Xo - Jxo (dx ay" dx

(
aL) Xl (d (aL)) Xl Xl d2

(aL)
= (' ay" Xo - ( dx ay" Xo +10 (dx2 ay" dx

(Xl d
2 (aL)

= Jxo (dx2 ay" dx,

where we require that

('(Xo) = 0

ie the functions y(x) and y(x) are tangential at the endpoints. Then

The function y(x) for which the functional takes a stationary value is that for which

hA = O. This implies

which is the Euler-Lagrange equation for L(x, y, y', y"). In general the equation is

aL_.i-(a~)+ ... +(_tdn (aL)=o
ay dx ay dxn ay(n)

for the Lagrangian L(x, y, y', ... , y(n)).
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N oether's Theorem for Higher Order

To the second order in the dependent variable, the infinitesimal transformations are

x = x + ee
y = y + eT]

y' = y' + eC1,

-" " ry = y +e"2,

The transformed functional is

r ' ,1:'"1 = T] - y <,

r - " 2"1:' , 1:""2 - T] - Y <, - Y <, •

- 13:1

A = _ L(x, y, y', y")dx.
Xo

We require that the end points be unchanged ie that Xo

functional transforms as

to first order in e. Hence for the variation

to be a constant infinitesimal we require that

where l' denotes the total derivative of a function f. This is the condition for

l
X1

A = L(x, y, y', y")dx
Xo

to possess a Noether symmetry.

The generalisation is simple. For the transformations

x = x +ee
y = y +eT]
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i = 1,n

-, ,+ t"Y = Y 6':>1

-/I /I + et"y = y "',:>2

to leave the functional

l
X1

, (n)A= L(x,y,y, ... ,y )dx
XQ

invariant we require

aL aL aL aL"
~ aX + TJ ay + (1 ay' +... + (n ay(n) + ~ L = f ,

where

(1 = TJ'-(y'

(n = (~-1 - (y(n).

Higher Dimensional Systems

Noether's theorem applies to Lagrangians of systems of more than one degree of

freedom. For an n-dimensional system the equation for the symmetries and gauge

function is

, aL aL (' ") aL ,f = ~-a +TJi-a + TJi - Yi~ -a' + ~ L
X Yi Yi

if the Lagrangian is of the form L(x, y, y). The first integral associated with the

symmetry

is given by

1= f - [~L + (TJi - y:~) ~~] ,

where repeated indices indicate summation.

Example

Consider the free particle (in two dimensions) with the Lagrangian

L = ~(X2 + '1/).
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The determining equation for point symmetries is

al .al .al _ (aT/ . aT/ + .aT/ _ . (ae+ .ae + .ae)) .
at +xax +Yay - at +xax Yay x at xax Yay x

(
a( .a( .a( . (ae . ae .a~)) .+ -+x-+y--y -+x-+y- y,at ax ay at ax ay

where "11 = "I and "12 = (.
Separation by powers of x and iJ at the third order gives

·3Y :

ae
--=0ax

ae
--=0ay
_a~ = 0

ax
a~

--=0ay

which imply that e= a(t). Next consider the squares. The coefficient of x2 gives

TJ = ax +b(y, t),

that of xiJ gives ( as
ab

( = - ay x+c(y, t)

and that of iJ2 gives

So far we have

c = ay +d(t)

e= a(t)

b = e(t)y +g(t).

"I = ax + ey + 9

( = -ex + ay + d.

The coefficient of x gives 1 as

1
1 = 2"ax2 + exy + !Jx +K(y, t).
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The coefficient of if requires

aK . .. d·
ex + - = -ex + ay +

ay

which implies that

K = ~ay2 +dy + h(t).
2

The remaining term requires

1 ... 2 .. 1 ... 2 .. .
- a x + gx + - a y + dy + h = 0
2 2

which gives

9 = Go +Glt

d = Do +Dlt

h = Ho

(we ignore h as it is an additive constant to 1).

The coefficient functions are

~ = Ao +Al t + A2t
2

'TJ = (AI + 2A2t)x + EoY + Go + Glt

( = -Eox + (AI + 2A2t)y + Do + Dlt

and the gauge function is

We obtain three symmetries from a, viz

a
GI =­

at
a a a

G2 = t- +x- +y-
at ax ay

G 2a (a a)3 = t - +2t x- +y-
at ax ay
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which form the algebra 8£(2, R), one from e, viz

a a
G4 = y- -x­ax ay

which is 80(2), and four from 9 and d, viz

a
Gs =­ax

a
G6 =t­ax

a
G7 =­ay

a
Gs=t­ay

which is 4A1 .

3.2 Part 11: The Paradigms of Mechanics

The oscillator is the paradigm of linear systems and the free particle the simplest.

The Kepler problem is the paradigm of nonlinear systems.

Several methods have been devised to calculate the symmetries and first integrals

of these systems. The different methods are based on different ideas of what the

basic definition of a dynamical system is. Three possible formulations of a dynamical

system are

• Newton's equation of motion,

• the Lagrangian formulation and

• the Hamiltonian formulation.

Noether's theorem deals with those transformations which leave the functional

invariant. The Lie method is more general in the sense that it may be formulated

ito any of the above mentioned expressions for dynamical systems.

N ewtonian Formulation
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The commonest formulation of the Lie method is that for the Newtonian equa­

tion of motion. Here we are simply interested in those transformations that leave

the equation of motion invariant ie we have to consider how the second derivative

transforms. We say that
8 8

G=~-+"l-
8t 8q

is a symmetry of

E(t, q, q, ij) = 0

if
[2] t 8 8 ( . t·) 8 (.. 2t .. t.) 8G = 1,- +"l- + "l - I,q -. + "l - I,q - I,q - ..

8t 8q 8q 8q

applied to E gives zero when E = 0 is taken into account.

Lagrangian Formulation

The Lagrangian formulation deals with those transformations which transform the

Lagrangian in such a way as to leave the form of the equation of motion unchanged

in the sense that [38]

d (8L) 8L . [d (8L) 8L]
dT 8Q - 8Q = M(Q,Q,T) dT 8Q - 8Q .

(The approach should not be confused with Noether's Theorem in which the Action

Integral, rather than the equation of motion, is transformed.) Since we transform

the Lagrangian, we need only include the first extension of the symmetry G. This

simplifies only the initial part of the calculation since the system of partial differential

equations that arises is the same as for the standard Lie calculation.

Hamiltonian Formulation

Leach [26] proposed the following formulation of the Lie method ita a Hamiltonian

framework 2 The operator

2Leach does not allow for ~ and TJi to depend on the momentum Pi. This restriction is not

necessary and we do not impose it here.
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is a (contact) symmetry of the system

. aH
qi=­

api

Pi = - aH (3.2.1)
aqi

if it leaves (3.2.1) invariant. The momenta are considered as independent variables

and the symmetries are contact symmetries of the associated Newtonian equations

of motion. We need only consider the first extension of G to include Pi and qi.

3.2.1 The Lie Symmetries of the Free Particle

Lie [35] calculated the symmetries for the free particle in one dimension. Consider

the free particle in n dimensions. The Lie symmetries are

i =/:-j and i,j = 1,n

i = 1,n

i = 1,n.

i = 1,n

i = 1, n

i = 1, n

. a
G1 =­

at
aG2 =t­
at

a (n a )G3 = t 2
_ +t Lqj-
at j=l aqj

a
G4i =­

aqi
a

GSi = t­
aqi
a

G6i = qi at

a (n a )G7i = tqi
at

+qi ~qj~
J=l qJ

a
Gij = qi-

aqj

a
Gii = qi-

aqi

There are n2 + 4n + 3 symmetries and· the algebra is sf (n + 2, R).

Recall that the conserved vectors are

L = r x r

K 2 = tp - r, J 2 = (tp - r) x L.
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We now determine which of these integrals IS associated with each of the given

symmetries.

Consider the symmetry
a

G1 =-.at
The associated first integral 1= f (t, q, q) is defined by

1=0.

The first equation has the associated Lagrange's system

i = 1,n.

The characteristics are

Vi = Pi·

The second condition I = 0 is

with associated Lagrange's system

i = 1,n

ze

At this stage, for the sake of simplicity, we discard the general approach and revert

to three dimensions. The characteristics are

Pi i = 1,3

In general I is of the form

I = f (L (less one component), p) .
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The third symmetry

Hence the integrals associated with Cl are

L (less one component).

The conserved quantities associated with

a
C2 =t­at

are

K 2 = tp - r

and (n - 1) integrals of the form
Pi

Pj

a (n a)C3 = t 2
-a + t Lqj-a.

t j=l q~

leads to K 2 and L (less one component). Note the similarity with Cl which is to be

expected since they are related by a simple transformation, viz T = -lit, Qi = qi/t,

which leaves r = 0 invariant. C4i is associated with

K 2 = tp - r (less one component).

CSi gives K 2 and K l less one component.

CBi gives (K2)i, L (less one component) and Pi (where i =1= j).
Pi

The calculation for G7i is a fine illustration of the fact that finding the first inte-

grals associated with a Lie symmetry can be quite nontrivial. The symmetry is

i = 1,n.

We consider the n = 2 case first. One of the symmetries (G71 ) is then
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The associated Lagrange's system of

G[1ll = 0

IS

dt dx dy dx dy
tx = ;Z = xy - X(x - tx) - x (y - ty) .

The two obvious characteristics are

x
U=-

t
y

v -­- t·

The first and fourth parts of (3.2.2) give

dt dx
tx x(x-tx)

dx
xt (u - x)

ze

dt u .

t . ( . )dxx u - x

= (~+ _1_.) dx.
x u- x

Integration yields

x
w = ---,---

t(u-x)
x

x - tx·

The first and fifth parts of (3.2.2) give

dt dy

tx x (y - ty)
dy

xt(v - y)

ze

dt u .

t . ( .) dy.x v-y
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From (3.2.3) we have
. xw
x=

1 +wt

and together with x = ut the equation becomes

dt = (1 +wt)u dy
t utw(v - y)

or
dyw dt= __.

1 + tw v - Y
Integration yields

s = (1 + tw) (v - y)

( t±) (Y .)= 1+ . --y
x - tx t

= ( x .) (Y - t
y)

x - tx t

= (~) (Y - t~) .
t x - tx

The first integral is now of the form

I=I(u,v,w,s).

(~ _~) y - ty'
t t 2 x - t±

ds
1 .

- t2 (y - ty)

dsdv dw

Y Y 0---
t t 2

x x

t t2

In simpler form this is

du dv dw

1( ')- 1( .)-0-- x - tx -- Y - ty
t 2 t 2

The second and fourth parts lead to

The condition j = 0 yields

du

q=v-s
xy - xy

x - t±
w is again a characteristic and from parts one and four we have

du = (x - t~) ds
y - ty

ds
=-u

s
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so that

s
r =­

u
y - tiJ
x - t±

The first integrals are

X
III = "x -tx

Y - tiJ
112 = "

X - tx

I
_ xy - xy

13 - " "x - tx

Instead of generalising this result using direct methods we use the following approach"

Theorem: The first integrals associated with

are

i = 1, n

j =I i

j =I i,

where

Proof: Clearly these expressions are first integrals in the sense that

We now have to show that

G(l] j .. = G(l]/"" - G(l] I"'" . - 0
I 11 I IJ - I IJ-
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ie that Gi leaves the integrals invariant. For 1;; the calculation is

[1] (a a ) a) Pi
Gi h = tqi at +qiqj aqj +Pi(qj - tPj apj qi - tPi

[
PT ] 2 -Pi [(qi - tPi) - Pi( -t)]

= tqi ( . .)2 +qi ( . _ t .)2 +Pi (qi - tPi) ( . _ t .)2qz - tpz qz pz qz pz

tqiPT - q;Pi + qiPi (qi - tPi)
(qi- tpi)2

= o.

For I ij we have

[1] (a a ) a ) qj - tPjGi I ij = tqi
at

+qiqk-
a

+Pi(qk - tPk -a t
qk Pk qi - Pi

t [
-Pj(qi-tPi)-(qj-tPj)(-Pi)] + 2-(qj-tPj)

- q' q.
- z (qi- tpi)2 z (qi- tpi)2

1 t(qj-tPj) -t
+qiqj .-t . +Pi(qi-tp;)( ·-t .)2 +Pi(qj-tPj )( ·-t .)qz pz qz pz qz pz

= ( 1t )2 [(Piqj - qiPj )tqi - q;(qj - tPj) +qiqj(qi - tPi)
qi - Pi

+ tPi(qi - tPi)(qj - tPj) - tPi(qj - tPj)(qi - tPi)]

= o.

The third calculation is much the same and is therefore omitted. Lastly we point

out that there are (2n - 1) (independent) integrals associated with Gi and hence we

have listed all possible first integrals.

Returning to the other symmetries we note that Gii is associated with n - 1

components of p, the integral

and n - 1 integrals of the form

Lj

Pi
j = 1, nand j =F i.

The final set of symmetries Gij (i =F j) lead to the angular momentum component

p and K 2 •

It is interesting to note that some integrals yield physically significant conserved

quantities (the last symmetry for instance) and others do not (eg G2 ).
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3.2.2 The Noether Symmetries of the Free Particle

The free particle has Lagrangian

For the sake of simplicity we consider the one-dimensional case. The Lagrangian is

and the equation determining the Noether point symmetries is

where the symmetry we seek is of the form

When we expand the total derivatives, the defining equation becomes

Separation by powers of x yields

The third equation gives

x:
a", at
at ax
a", 1 ae
ax 2 at
ae = 0
ax
at
at = o.

e= a(t).

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

Upon substitution into (3.2.5) we have

", = ~a(t)x +b(t).

The first equation now yields

t = ~a(t)x2 +h(t)x +c(t)
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and from (3.2.7)

a(t) = C1t2 + C2t + C3

b(t) = C4t +Cs

C(t) = CB.

This leads to the functions

~ = C1t 2 +C2t +C3

1
TJ = C1tx + 2C2X +C4t +C5

1 21 = -C1 x +C4 x +CB.
2

The five Noether symmetries are

G1 =
2a a 1 = ~x2t at + tx ax'

a 1 a 1=0G2 = t-+ -x-
at 2 ax'

G3 = a 1=0t at'

G4 = a
f=xt ax'

Gs = a
f = o.

ax
,

The first integrals associated with these symmetries are given by

I= f - [~L +(~ - x~) ~~]

and for the above symmetries we have

1 '211 =-x
2

I 2=(x-tx)x

1 (. )213 = - tx - x
2

14 = X

15 = X - tx.

Note that of these five integrals only two are independent.
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In general the symmetries we seek are of the form

a a
G=e-+11°-at aq

and are determined by the equation

oL oL (. ..) aL 0 0e- + 11 . - + 11 - eq . -. +eL = f (t, q)ot oq oq
and the corresponding first integrals given by

In n dimensions the symmetries are

The first three symmetries form the algebra 8£(2, R). G4i and GSi are solution symme­

tries and G6ij is associated with the angular momentum. There are !n(n -1)+2n +3

Noether symmetries compared to the n2 +4n +3 Lie symmetries. The first integrals

take the forms

1
11 = _p 0 P

2

12 = (q - tp) . P

1
13 = -(tp - q) . (tp - q)

2

1Si = (tp - q)i

16ij = L.
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Noether's theorem produces the physically significant integrals quite neatly and per­

forms reasonably well when compared with the Lie method. As we shall see, this

good show does not persist as the physical systems become more complicated. The

Noether theory has the advantage of producing the integrals by use of an explicit

formula. The Lie method produces more symmetries, but finding the associated first

integrals can be nontrivial. An easily overlooked limitation of Noether's theory is

that the system at hand must have a Lagrangian formulation. However, this does

not prove to be a problem in practice.

The Lie method is clearly superior to the Noether one. The following table com­

pares the two methods symmetry by symmetry (the cases where not all of the com­

ponents of a conserved vector were found for the Lie method are not indicated here).

Lie Generators Noether

L,p
a 1

at
2P ' P

K 2,L 2 a L a Htp - q) . (tp - q)t -+t q'-
at J aqj

K 2,p
a

aqi
Pi

K 2,K1
a

(tp - q)it-
aqi

Pi K 2i L· a a a 1 a
K 2,-,p,-, J

t at ' qj aq -+ t at +2qj~ (q - tp) . P
Pj Pi Pi J qJ

L ij = qiPj - qjPi
a a a

qia -+ qia - qja L
qj qj qi

3.2.3 The Lie and Noether Symmetries of the Oscillator

The time independent case
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The basic dynamical expressions for the time-independent oscillator are

• the Newtonian equation of motion

q+q = 0,

• the Lagrangian

and finally

• the Hamiltonian

Lie Symmetries

1 (.. )L=- q.q-q.q
2

1
H = - (p . p +q . q) .

2

(3.2.8)

(3.2.9)

Anderson and Davidson [1] found the eight Lie symmetries for the one-dimensional

oscillator. The algebra and global Lie group was later identified by Wulfman and

Wybourne [56] who found that the algebra was a noncompact realisation of Cartan's

A2 algebra and that it contained a 3-parameter compact subalgebra which generates

the compact group 50(3). Since Cartan's A2 algebra can only generate the three

Lie groups 5U(3), 5U(2, 1) and 5L(3, R) and since only 5L(3, R) is both noncom­

pact and contains an 50(3) subgroup they concluded that the global Lie group was

5L(3, R).

Noether Symmetries

Lutzky [38] showed that Noether's theorem (with point symmetries) produces a

five parameter subgroup of 5L(3, R). Although there is no need for the group of

Noether symmetries to be a subgroup of the Lie symmetries, it happens to be the

case here. The three symmetries omitted by Noether's theorem proved to be neces­

sary for describing certain features of the motion. These symmetries leave Lagrange's

equations of motion invariant but not the functional. In order to investigate how the

Lagrangian transforms under those transformations not produced by Noether's the­

orem, Lutzky recalculated the Lie symmetries of the oscillator using the Lagrangian
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formulation of the Lie method. He found three alternative Lagrangians for the os­

cillator which were equivalent (ie differ only by a total derivative of time) to the

standard Lagrangian.

It has been shown that the group of Lie symmetries produce all of the useful (in

the sense of producing the orbit) conserved quantities. In particular this includes

the angular momentum

and the Jauch-Hill-Fradkin tensor

Noether's theorem, however, does not produce the Jauch-Hill-Fradkin tensor from

point transformations. When velocity dependent transformations are considered,

Noether's theorem does produce the Jauch-Hill-Fradkin tensor [29].

The time-dependent case

The time-dependent oscillator, described by any of

•
q +w 2(t)q = 0, (3.2.10)

•
L = ~ (q .q - w2(t)q . q) or (3.2.11)

•
H = ~ (p .P +w 2(t)q . q) (3.2.12)

was approached quite differently.

Lewis [31] applied Kruskal's asymptotic method [19] to construct the exact invari­

ant

(3.2.13)
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(for the one-dimensional time-independent harmonic oscillator), where p satisfies the

Ermakov-Pinney equation [5, 45]

.. 2(t) -3p+w p=p.

Note that the Lewis invariant is equally valid for the Lagrangian and Hamiltonian

(one need only replace qby p). Both Eliezer [4] and Lutzky [39] obtained the Lewis

invariant from Noether's Theorem. Lewis and Reisenfeld [34] extended the applica­

tion of the Lewis invariant to quantum mechanics.

Giinther and Leach [11] generalised the work of Lewis and Reisenfeld [34] and

found an invariant for the three-dimensional time-dependent harmonic oscillator by

use of a time-dependent linear canonical transformation from (3.2.12) to the time­

dependent Hamiltonian (3.2.9). The generalised invariant is given by

which reduces to the Jauch-Hill-Fradkin tensor for time-independent systems. To­

gether with the angular momentum

1mn provides a representation for the Lie algebra su(3). The group SU(3) is a

noninvariance symmetry group for the three-dimensional time-dependent harmonic

oscillator. Hence 1mn has the same role as the Jauch-Hill-Fradkin tensor for time­

independent systems.

The Lie symmetries and s1!(3, R)

Leach [24] was the first to make a study of the complete symmetry group and

invariants of the one-dimensional time-dependent harmonic oscillator. The term

complete indicates that the group is the largest admitted by the problem. His ap­

proach was Hamiltonian and we describe it briefly. Recall that 1 is considered an

invariant of the Hamiltonian H if

. a1
1 = [1, H]pB + at = 0
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(this means that I may well depend on time). In practice, however, this does not

provide us with enough information to determine the integrals. In order to calcu­

late the integral, one has to also postulate a form for it. This method led Leach

to five integrals for the time-independent case. Using the time-dependent canoni­

cal transformation of [11], he transformed these integrals to their time-dependent

counterparts. For each of these integrals he calculated the corresponding group gen­

erators. These generators were the same as the five Noether symmetries found by

Lutzky [38] for the time-independent case. The remaining three symmetries were

those leaving the Newtonian equations of motion invariant. These symmetries have

the same commutator relations as those found for the time-independent case (leaving

Lagrange's equations of motion invariant). The complete group of eight symmetries

has the same commutator properties as the Lie symmetries for the time-independent

case, which we already know to be 3L(3, R).

Prince and Eliezer [47] considered the complete symmetry group of the n-dimensional

oscillator and found that it was 3L(n +2, R). Noether's theorem gives Hn 2 +3n +6)

symmetries and the Lie method (n2 +4n + 3), the difference being tn(n +5) (the

same result as for the free particle).

Leach [26] calculated the Lie symmetries of the three dimensional time-independent

harmonic oscillator by casting the Lie method in a Hamiltonian framework. The sym­

metries he found form the group 3L(3 + 2, R), the same as for the time-dependent

oscillator. The time-invariance symmetry a/at is both a Lie and Noether symmetry.

The difference in the two approaches is illustrated by the integrals each of them

associate with this symmetry. Noether's theorem associates the energy E with this

symmetry while the Lie method produces a far richer result. Instead of simply the

energy the Lie method gives the Jauch-Hill-Fradkin tensor

which contains the energy in the sense that

1
E = -Tr(A··)2 tJ .
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The symmetry is furthermore associated with the angular momentum

Noether's theorem is constrained by the fact that it can produce only one integral

(albeit easily) per symmetry while the Lie method does not suffer from this restriction

and produces a set of (2n - 1) integrals. One should point out though that we are

merely interested in those conserved quantities that produce the trajectory and not

every possible integral. The Jauch-Hill-Fradkin tensor of the orbit-producing variety

and hence the fact that Noether's theorem does not produce it cannot be overlooked.

produced.

3.2.4 The Lie and Noether Symmetries of the Kepler Prob­

lem

Just as Noether's theorem (with point symmetries) does not provide [26] the Jauch­

Hill-Fradkin tensor for the oscillator, it does not produce the LRL vector for the

Kepler problem. In order to overcome this shortcoming it was proposed that velocity

dependent transformations be used.

N oether symmetries

LeBlond [29] considered the transformation

(3.2.14)

and devised what he called a 'generalised' form for Noether's theorem. At first it may

appear that he did not understand Noether's paper [42] at that stage since he made

no mention of transforming the independent variable. It made be shown, however,

that there is no loss of generality when time is not transformed. His approach led to

the LRL vector and we briefly describe it. For the functional to be 'conserved' (under

a transformation of the dependent variable and its derivatives) the Lagrangian must

be transformed into an equivalent Lagrangian ie
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In general the Lagrangian varies by

aL aL.
8L = -8qi + -.8qi

aqi aqi

(
aL)" aL.

= aqi 8qi + aqi 8qi

[~~ 8ql

Since

8L = cF,

we have

(LEOM)

[
aL ].
aqi 71i - F = 0

and the first integral associated with the transformation (3.2.14) is

aL
1= -."'i-F.

aqi

The classical Kepler problem has Lagrangian (in suitable units)

L
1.. -1

= -q. q +q
2

and equation of motion
.. q
q=--.

q3

Consider the particular velocity dependent transformation given by the variation

i = 1,2,3 and k fixed

i = 1,2,3 and k fixed.

and the corresponding variation of the velocities

r . 1 (.. .. r qiqk 8ik)
uqi ="2c qiqk - q . q Uik - -;j3 +q

It turns out that the Lagrangian variation is indeed a total derivative given by

[. .]qk q. q
8L = c - - -- qk

q q3

=c:t(~)

80



and hence the generalised Noether's theorem is applicable and yields the conserved

quantity
• • •. qk

Jk = q . q qk - q . q qk - ­
q

This is the Laplace-Runge-Lenz vector

k = 1,2,3.

J = q x (q x q) - (~).
q

Lie Symmetries

In the already mentioned paper by Leach [26] he also calculated the Lie symmetries

of the Kepler problem using the Hamiltonian formulation described earlier.

The classical Kepler problem has Hamiltonian

1 f1H = -p. p --.
2 r

The symmetries were calculated as

i=/-j=I,3.

There are five symmetries since the third is skew symmetric. Y3ij is associated with

the integrals

Lij = qiPj - qjPi

1 f1E = H = -p . p - -.
2 r

The second symmetry Y2 corresponds to the LRL vector given component wise by

The first symmetry is the generator of time-translations and is therefore the one

which yields all of the time-independent integrals. For the Kepler problem a/at
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leads to
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Chapter 4

Lie AIgebras and Groups

4.1 Introduction

In the first chapter we discussed the historical development of the paradigms of

mechanics ito of the conserved quantities used in their solution. We did not dwell

on the group theoretical aspect of their development since such a discussion would

assume knowledge of Lie groups and algebras. A brief overview is now presented on

which we base an overview of the historical development of the paradigms ito group

theoretical considerations.

4.2 Lie Groups and Algebras: A Brief Course

In the literature the theory of Lie groups and algebras is invariably presented in the

context of manifold theory. For our purposes this is an unnecessarily complicated

framework in which to convey the relevant ideas. The following discussion makes

use of the concepts of group, vector space and algebra. Their definitions are given

below.
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4.2.1 Abstract Groups, Vector Spaces and AIgebras

Groups

A group G is a set of elements on which a binary operation (which we will call

addition) + is defined such that:

Gl Closure: If a, bEG, then so is a + b.

G2 Associativity: If a, band eEG, then

a + (b +c) = (a + b) +c.

G3 Identity: There exists an element 0 of G such that for all a E G we have 0+a = a.

G4 Inverse: For all a E G there exists an element denoted by -a such that

a + (-a) = O.

A subgroup H of G is a subset of G with the properties that H +H is mapped into

H and every element in H has an inverse in H. By defining scalar multiplication on

an abelian (a + b = b+a) group we obtain a vector space.

Vector Spaces

A vector space V over a field F 1 consists of the set V, which forms an abelian

group under addition, together with scalar multiplication defined on the set V such

that:

for all a, b E V and a, f3 E F we have

Vl aa E V

V2 a(f3a) = (af3)a

V3 (a + f3)a = aa + f3a

V4 a(a + b) = aa + ab

V5 la = a where 1 is the multiplicative identity of the field F.

1For our purposes we do not require the rigorous definition of a field since we shall simply use

the set of reals with the normal operations of addition and multiplication.
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By defining a 'multiplication operator' on a vector space we obtain an algebra.

AIgebras

An algebra consists of a vector space V over a field (of scalars) F together with a

binary operation2 of multiplication on the set of vectors such that for all a E F and

x, y, ZE V we have

Al (ax)y = a(xy) = x(ay)

A2 (x+y)z = xz+yz

A3 x(y + z) = xy + XZ.

4.2.2 Groups of Transformations

A discrete set of transformations is one that is denumerable ie may be labeled by

the set of integers. An example is the set with elements

x = x +n, (4.2.1)

where n is an integer.

In order to have a group of transformations we need to define a binary operation

on the set. Let the binary operation on two transformations be successive application

of the transformations. Hence the set of transformations (4.2.1) forms a group with

identity x = x and inverse -x = x - n. Gl and G2 follow from the fact that the set

of integers forms a group under addition.

Lie Groups

A Lie group is a continuous group of transformations. We impose continuity on a

set of transformations by defining continuity on the set of parameters. In the above

example the set of parameters is the set of integers and hence continuity makes no

sense here. Consider the set of transformations with elements

x = x + r,

2The definition of a binary operation states that the set on which the operation acts be closed

under the operation. (With this definition G1 is redundant.)
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where r is any real number. We can define continuity on the set by letting the

distance between two transformations be the absolute difference of their parameters.

Hence the above set forms a Lie group.

4.2.3 Infinitesimal Transformations

The general one-parameter Lie group3 has elements

x = f(x, a), (4.2.2)

where f is an analytic function of the parameter a. Let the identity element be given

by the value ao ie

x = f(x, ao).

Variation of the parameter a by the infinitesimal c gives

x=f(x,a+c).

(4.2.3)

Since f is an analytic function of the parameter, we may expand f in the neighbour­

hood of ao so that

x = f(x, ao) +cJ'(x, ao) +O(c2
).

Ignoring infinitesimals of order two and above and applying (4.2.3) we have

x=x+ce(x),

where

e(x) := f'(x, ao).

(4.2.4)

The transformation (4.2.4) is the infinitesimal transformation associated with the

one-parameter Lie group (4.2.2).

In general for an n-parameter Lie group with elements

(4.2.5)

3In order to simplify the discussion we consider only finite point transformations.
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there is an associated set, {id, of n infinitesimal transformations

ii = x + cei(X) i = 1,n, (4.2.6)

where
at

(4.2.7)ei(X) = -
aai

ai=aiO

The set of infinitesimal transformations does not form a group since there is no guar­

antee that the inverse of any transformation is in the set. However, using the notation

of infinitesimal operators, we will show that the set of infinitesimal transformations

may be enlarged to form a group.

4.2.4 Infinitesimal Operators

It is of interest to find those functions left invariant under the infinitesimal transfor-

mation (4.2.6). Referring to §3.1.1, we know that a function t is left invariant under

the transformation iff

Gd=O,

where

(4.2.8)

Hence the infinitesimal transformation

is associated with the infinitesimal operator (or symmetry) (4.2.8) by

We now return to the issue of forming a group from the set {id associated with

the n-parameter Lie group (4.2.5). Due to more convenient notation we will rather

show how the set of infinitesimal operators, {Gd , may be enlarged to form a group.

If we define the operation of addition on the set {Gd as
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then the binary operation on two transformations may be expressed ito the associated

symmetries as

Xi 0 Xj = (x +eei) 0 (x +eej)

=x+e(ei+ej)

= (l+e(Gi+Gj))x

(where we have neglected O(e2
)). This means that the operation of successive appli­

cation of infinitesimal transformations is abelian and clearly also admits associativity.

Since the sum of two symmetries corresponds to the successive transformations of

the associated infinitesimal transformations, the operation of addition of symmetries

is abelian and associative ie the set {Gd obeys

Gi +Gj = Gj +Gi

(Gi +Gj) +Gk = Gi + (Gj +Gk )

under the operation of addition. Note that there is no guarantee of closure under

addition.

We define scalar multiplication on {Gd by

(where a is any real number). Then the inverse of Gi is simply (-l)Gi (since Gi ­

Gi = 0, G corresponds to the identity transformation).

Consider the set V of all linear combinations of {Gi } . By definition, V is closed

under addition and contains the identity element and the inverse of each of its ele­

ments. Hence V is an abelian group under the operation of addition. Furthermore,

it is a vector space with scalar multiplication defined as above.

Lie algebra

In order to turn V into an algebra we need to define a multiplication operator on

the set. This leads us to the Lie Bracket of two symmetries defined by
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The Lie Bracket satisfies AI-A3 ie

[aGi , Gj ] = a [Gi , Gj ] = [Gi , aGj ]

[Gi +Gj , Gk] = [Gi, Gk] + [G j , Gk]

[Gi ,Gj +Gk] = [Gi , Gj ] + [Gi , Gk].

Furthermore, it may be shown that the Lie Bracket of two symmetries may be ex­

pressed as a linear combination of symmetries in {Gi } , ie

This means that the Lie Bracket is a binary operation. Hence the vector space V,

together with the Lie Bracket defined on it, forms a Lie algebra.

The constants Ci~' referred to as the structure constants of the Lie algebra, com­

pletely define the algebra and obey Jacobi 's Identity ie

and

These identities serve as constraints on the form that a Lie algebra can have.

We have shown4 that for every Lie group (of finite continuous transformations)

there exists a Lie algebra (of infinitesimal transformations) which describes the group

locally in a neighbourhood of the identity element.

4.2.5 Exponentiation

Given the n-parameter Lie group

we can find the associated Lie algebra from the infinitesimal transformations defined

by

~i(X) = _8f
8ai a=ao

4The results generalise in a natural way to n parameters and higher dimensions.
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Consider the inverse problem of finding the Lie group given the Lie algebra or, equiv­

alently, finding the function f given ei. We cannot use (4.2.9) since the derivative

on the RHS is evaluated at a point. Even in cases for which

af af
aa- aai

t a=ao

we would need to write ai = ai(x) to find f ie we would need the Lie group!

Fortunately there is another route one can follow. Given the infinitesimal trans­

formation

we can find a one-parameter Lie group from the calculation (where we have substi­

tuted c = da)

dx = eida

(Xdx
Jx T = a - aQ. (4.2.10)

The process of finding the continuous transformation from the infinitesimal trans­

formation is known as exponentiation. The integration in (4.2.10) can be done when

the transformations are of point or contact type. However, for more general transfor­

mations, success is not guaranteed. This means that an infinitesimal transformation

may not have an associated continuous transformation and hence a Lie algebra may

not have an associated Lie group.

The structure constants of the Lie algebra describe the Lie group locally in the

neighbourhood of the identity element. Since this is not the case for more general

transformations, one should be careful when inferring group (global) properties from

algebraic (local) properties.

A physical interpretation of this would that the set of continuous transformations

which leave a system invariant can often (not always) be represented by infinitesimal

transformations of some abstract Lie group.
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4.3 The Paradigms of Mechanics

4.3.1 Introduction

Given a set of first integrals we can form a group (under normal addition) in the

same way as we did for infinitesimal transformations. Using the Poisson Bracket as

multiplication operator we can extend the group to an algebra. As in the case of

infinitesimal transformations, the algebra describes a system locally whereas a group

is a global property.

When considering group and algebraic properties of the paradigms it is natural

to include both the Classical and Quantum cases in the discussion. The strength of

the group theoretical approach became apparent in the study of Quantum Mechan­

ical systems, when it was realised that the problem of degeneracy is related to the

existence of groups of transformations which leave the Hamiltonian invariant [15].

These transformations each have associated integrals which represent the symmetry

of a system ito the Poisson Bracket. Since for a first integral we have

. a1
1 = [1, H] + at = 0,

if an integral does not explicitly depend on time it will have zero Poisson Bracket

with the Hamiltonian.

If all the integrals in a set have zero Poisson Bracket with the Hamiltonian, then

we refer to an invariance group (or algebra). Initially, invariance groups took centre

stage in the investigation of group theoretical properties of physical systems.

Later on more consideration was given to larger symmetry groups, known as non­

invariance [40, 22, 11] groups. A noninvariance group contains the usual invariance

group as a subgroup ie the symmetry group of the Hamiltonian in a proper subgroup.

The time-evolution of a system may be expressed ito its time-dependent integrals.

Since it is these integrals that yield the noninvariance group (as they have nonzero

Poisson Bracket with the Hamiltonian), we say that the time-evolution of a system

is given by its noninvariance algebra (provided there are sufficiently many integrals).

The largest symmetry group admitted by a physical system is referred to as the
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complete symmetry group of the system. Interest in such groups gained popularity

[24, 25] soon after the uses of noninvariance groups were established. Leach [25]

showed that the complete symmetry group of an n-dimensionallinear system, without

damping, forcing or coupling terms, is sR(n + 2, R). The nonlinear Kepler problem

has the complete symmetry group 50(3) +A2 [26].

In order to gain a better understanding of the more complicated Quantum Me­

chanical systems, the Classical and Quantum paradigms were extensively re-investigated.

Results for the free particle are sparse and we concentrate on the Kepler problem

and the oscillator.

4.3.2 The Kepler Problem and SO(4)

Leach [26] calculated the Lie symmetries of the Kepler problem using a Hamiltonian

formulation. The classical Kepler problem has Hamiltonian

The symmetries are

i =f. j = 1,3.

There are five symmetries (since the third is skew symmetric) and they form the

algebra so(3) +A2 • The associated integrals are the angular momentum, energy and

the LRL vector

In two dimensions the Kepler problem has rotational symmetry 50(3) (for bound

states) [15]. In three dimensions the angular momentum L also has the symmetry
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group SO(3). Fradkin [8] showed that the LRL vector provides additional symmetry

and, together with the angular momentum, they generate an algebra 0(4)5 which re­

alises to the invariance Lie group 0(4). The Lie algebra is given ito Poisson Brackets

(in Quantum Mechanics we use commutators). In the Quantum Mechanical case,

the additional symmetries given by the LRL tensor give rise to extra degenera;cies in

the quantal solutions [14]. It may be shown that the Classical and Quantum cases

have the same additional invariance.

4.3.3 The Oscillator

The time-independent case

The Jauch-Hill-Fradkin[15, 7] tensor (which applies to the three-dimensional case)

provides symmetry additional to that given by the angular momentum alone and, to­

gether with the angular momentum, gives a suitable representation for the invariance

algebra 8u(3) [7]. The infinitesimal operators associated with these two tensors form

the Lie group SU(3). Since the invariants for the oscillator are isomorphic to the

infinitesimal transformations of the SU(3), we have a direct physical interpretation

of the transformations ito a physical system.

In n dimensions [11] the invariance group for the time-independent harmonic

oscillator is SU(n).

The time-dependent case

Lewis [31] applied Kruskal's asymptotic method [19] to construct the exact invari-

ant

1= ! [q2 + (pi] _ pq)2]
2 p2

(for the one-dimensional time-dependent harmonic oscillator), where p satisfies the

5It is alarming how indiscriminately the algebras 0(4) and so(4) have been used in the literature.

The's' indicates the special group of rotations in four dimensions. It is special in the sense that

the determinant of the matrix representation is 1. For 0(4) it can be -1 also.
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Ermakov-Pinney equation [5, 45]

.. 2(t) -3p+w p=p.

Lewis and Reisenfeld [34] extended the application of the Lewis invariant to quantum

mechanics.

Giinther and Leach [11] generalised the work of Lewis and Reisenfeld [34] and

found an invariant for the three-dimensional time-dependent harmonic oscillator

given by

Imn = ~ [p- 2qmqn + (PPm - pqm) (PPn - pqn)] .

It is a generalisation of the Jauch-Hill-Fradkin tensor for the time-independent case

and plays a similar role ito the symmetry group of the oscillator. Together with the

angular momentum,

Imn provides a suitable representation for the Lie algebra su(3).

The group SU(3) (compact) or SU(2, 1) (noncompact) is the noninvariance sym­

metry group for the three-dimensional time-dependent harmonic oscillator [40, 50].

The noninvariance group contains the invariance group S(U(2) EB U(I)) which also

happens to be the maximal compact subgroup.

The generalisation to n dimensions [11] is as expected. For the n-dimensional

time-dependent harmonic oscillator the noninvariance group SU(n) or SU(n - 1,1)

has maximal compact subgroup S(U(n -1) EB U(l)) which is the invariance group of

the Hamiltonian.

The Lie symmetries and s£(3, R)

The algebra and global Lie group for the one-dimensional time-independent os­

cillator was identified by Wulfman and Wybourne [56] who found that the global

Lie group was SL(3, R). Lutzky [38] showed that Noether's theorem (with point

symmetries) produces a five parameter subgroup SL(3, R) of symmetries. The three

symmetries omitted by Noether's theorem leave Lagrange's equations of motion in­

variant, but not the Action integral.
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Leach [24] was the first to make a study of the complete symmetry group and in­

variants of the one-dimensional time-dependent harmonic oscillator. A Hamiltonian

approach led Leach to five integrals for the time-independent case. The associ­

ated symmetries have the same commutator relations as those found for the time­

independent case (leaving Lagrange's equations of motion invariant). The complete

group of eight symmetries has the same commutator properties as the Lie symmetries

for the time-independent case, ie the group is SL(3, R).

Prince and Eliezer [47] generalised the results of Leach by considering the complete

symmetry group of the n-dimensional oscillator. They found that it was SL(n+2, R).

4.3.4 Discussion

The LRL vector for the Kepler problem and the Jauch-Hill-Fradkin type tensor for

the oscillator both extend the symmetry of the respective problems.

Fradkin [8] proposed the existence of a generalisation of the LRL vector and Jauch­

Hill-Fradkin tensor valid for all central potential problems. He found a quantity

which was piecewise conserved and proceeded to show that it produced, together

with the conserved angular momentum, suitable representations for the algebras 0(4)

and su(3) for all central force problems. In the literature these algebras are often

associated with the observation that the problem at hand has closed orbits. As we

showed in Chapter 2, this is not the case since, for the Kepler problem, Hamilton's

vector gives the invariance algebra 0(4) for all values of the energy.

Since Fradkin was dealing with algebras, which mayor may not lead to a realisa­

tion of the associated group ito finite continuous transformations, one cannot infer

any group properties for central force problems from his results.

Bacry [2] clarified the matter by showing that so(4) and su(3) are both symmetry

algebras for all problems with three degrees of freedom, even if the Hamiltonian is not

associated with a central potential. His result follows from the fact that an invariance

algebra of a Hamiltonian on a six-dimensional phase space is an invariance algebra

for any other Hamiltonian. From this fact one may infer that all three-dimensional

problems have the so(3) symmetry algebra since any central force problem has this
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as invariance algebra. However, it is obvious that not all three-dimensional problems

have rotational symmetry! It is important to distinguish between the group (a global

property) and algebraic (a local property) symmetry of a problem.

Bacry defines a dynamical symmetry group as a group of transformations which

acts on a set of motions of a given energy. For different values of the energy the

groups may either be isomorphic or distinct. For example the oscillator has the

dynamical symmetry group 5U(3) for all values of the energy whereas for the Kepler

problem the group depends on the energy. The groups are 50(4) (E < 0,50(3,1)

(E > 0) and the Euclidian group e(3) (E = 0).

Finally, Bacry states that the only spherical potential with 50(4) as symmetry

group is the Kepler potential.
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Chapter 5

Symmetry in Quantum Mechanics

5.1 Introduction

In the study of an atomic system we are interested in the symmetry group of the

Hamiltonian invariant. The existence of a symmetry group raises the possibility of

degeneracy!. Hence consideration of the symmetry group of a quantum mechanical

system reveals to us a great deal about the degeneracy to be expected.

In quantum mechanics a physical system is described ita the quantum mechanical

states that it can occupy. The state of a system can change under the influence of

external forces. These changes of state are represented by operators which act on

the states. We may say that these operators represent the variables and conserved

quantities of Classical Mechanics.

In Classical Mechanics we define a Lie algebra (consisting of a set of integrals)

using the Poisson Bracket as multiplication operator. The Poisson Bracket of two

quantities is defined by

In Quantum Mechanics the commutator plays the role of the Poisson Bracket in Clas­

sical Mechanics. In fact, the commutator and Poisson Bracket are directly related

1Degeneracy occurs when several states of a system leads to the same energy value.
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by

where A and B are classical quantities and A and B their Quantum Mechanical

counterparts (ie operators). This provides a means of obtaining the quantum con­

ditions in the case of operators that have classical analogues. (There are of course

many quantum mechanical systems for which there are no classical analogues. In

such cases one has to revert to more general methods.)

Poisson's Theorem [55] states that the the a set of invariants is closed under the

operation of the Poisson Bracket ie

where there is summation over repeated indices and Cjk are constants. In order that

there be an algebraic correspondence with the classical case, we require that the

same result holds for the commutator of Quantum Mechanics. It is anticipated the

constants have the same value as in the classical case [15].

In Classical Mechanics we may define a first integral, I, by

. aI
I = at + [I, H] .

It may be shown that the associated operator, i, is also an invariant ie

where the square brackets denote the commutator.

The overlap of two Quantum Mechanical states represents an amplitude and the

probability of any of those states occurring is given by the square of the amplitude. A

fundamental characteristic of Quantum Mechanics is that one can merely predict the

possibility of a measurement yielding a result. This is in stark contrast with Classical

Mechanics where it is possible to predict the state of a system accurately.

Physical quanti ties (or observables) that can be simultaneously determined corre­

spond to Quantum Mechanical operators that commute wrt the commutator. Hence

uncertainty in measurement arises only when two operators do not commute. It is an
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important problem in Quantum Mechanics to find all of the compatible observables

(ie those that can be measured simultaneously).

Consider the classical Poisson Bracket relations

[qi, qj] = 0

[Pi, Pj] = 0

which give

[qi, qj] = 0

[Pi, Pj] = 0

[qi,Pj] = in8ij .

The implications of this is quite profound since it implies that

ie that position and momentum cannot be simultaneously determined. Also, from

the Classical Poisson Brackets

we infer that in Quantum Mechanics one cannot determine different components of

angular momentum simultaneously. However, since

one can measure the total angular momentum and one component simultaneously.

The above examples illustrate why the study of the group properties of physical

quantities in Classical Mechanics (ito the Poisson Bracket) is of great consequence

in Quantum Mechanics.

If l' is a symmetry operator of a system and commutes with the Hamiltonian,

[1', if] = 0,
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then T is a constant of the motion. This implies that constants of motion 2 are

compatible (ie can be measured simultaneously) with the energy of a system.

Despite their fundamental differences, a close analogy can be established between

the quantum and classical models of a physical system.

5.2 The Paradigms in Quantum Mechanics

The use of invariance in the solution of problems in Quantum Mechanics has been well

founded [34,50,40]. Lewis [31,32,33] illustrated that the invariants of a system may

be used to solve the time-dependent Schrodinger equation for that system. Closely

related to this is the topic of symmetry groups of dynamical systems. Initially the

discussions pertained to purely geometrical symmetries eg the rotational symmetry

group. When the need arose to explain the existence of degeneracies in spectra (which

could not be explained by geometrical symmetries alone), the discussion widened to

include symmetries which do not have an obvious geometrical basis3
.

Jauch and Hill [15] showed that degeneracy in Quantum Mechanics is related to

groups of transformations which leave the Hamiltonian invariant. Holas and March

demonstrates that oscillator (time-independent case), Coulomb (Kepler problem)

and constant (free particle) potentials are special cases of the class of problems with

rotationally invariant time-independent potentials in the sense that their degeneracy

algebras are all larger than 0(3). They are, respectively, su(3), o(4) and su(3).

The classical results for the paradigms, listed in the previous chapter, carry over

2Note that a constant of motion is not necessarily a first integral.
31t is often apparent in the literature that the concept of the geometric nature of a transformation

was not well understood. Some authors considered a transformation to be geometric as long as it

did not contain velocity (and higher derivatives of position) and yet it has been shown that velocity

dependent transformations yield well known conserved quantities [29]. However, care needs to

be taken with this idea since, for example, the LRL vector which is commonly regarded as the

cause of a dynamical symmetry [50] is equally associable with the point symmetries 0/at and

to/at + 2/3 r 0/or [26]. The point is that in some cases point and dynamical symmetries provide

us with the same conserved quantities.
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to Quantum Mechanics quite naturally and with no surprises. The transcription to

Quantum Mechanics requires replacing first integrals by their operator counterparts

and the Poisson Bracket by the commutator.

For example, the conserved quantity

of Giinther and Leach [11] becomes a tensor operator with the same form. The

function p is the same as the classical function. I mn has the same algebraic properties

as the classical invariant.

In Classical Mechanics the noninvariance group transforms orbits with one energy

into orbits with different energies while invariance groups transform orbits into other

orbits of similar energy. On the other hand, in Quantum Mechanics, the concept of

invariance groups is meaningful in the sense that it describes those operators which

can be measured simultaneously with the energy.

As a final note we mention the importance of group theory in the classification

of elementary particles and the quantisation of Quantum Mechanical systems. A

brief survey of these applications would not be informative given the vast amount of

published work on the matter.
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