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Abstract. Volatile compounds in nectar may influence the behavioural responses of animal 
flower visitors, and thus have fitness consequences for both animal and plant mutualists. 
Rodents may use certain volatiles associated with sugar fermentation or protein degradation 
as a cue to locate food. Plants pollinated by rodents may thus emit these volatiles to 
enhance their attractiveness to rodents. However the presence of certain compounds in 
nectar may also indicate reward degradation, reducing its attractiveness to potential 
pollinators. The effects of these compounds on small mammal flower visitors are largely 
unknown and the consequences of nectar degradation by microorganisms for small mammal 
flower visitors need investigation. The present study examines the responses of a known 
rodent pollinator, the Namaqualand rock mouse Micaelamys namaquensis, an occasional 
floral visitor, the four-striped field mouse Rhabdomys pumilio, and a closely-related 
congener, the mesic four-striped field mouse Rhabdomys dilectus towards four compounds - 
ethanol, ethyl acetate, acetic acid and dimethyl disulphide - that are associated with the 
degradation of sugars and proteins. The study aimed to: (i) Identify if fermentation and 
protein degradation volatiles act as behavioural cues for small mammals, and have the 
potential to assist in the finding of food resources; and (ii) to determine the responses of 
rodents to the taste of volatiles in nectar.   

In chapter 1, I investigated whether fermentation and protein degradation volatiles elicit a 
behavioural response in small mammals, using a traditional Y-maze choice apparatus. 
Rodent species differed in their responses to the four volatiles tested. Ethanol emerged as 
an attractant for all of the species, with the strongest response seen at the 0.3 % ethanol 
concentration, while only R. dilectus responded positively to dimethyl disulphide. Acetic acid 
and ethyl acetate were generally not attractive.   

In chapter 2, the palatability of fermentation and protein degradation compounds at varying 
concentrations in experimental nectars was tested. A paired choice test analysis was used to 
determine if animals altered their choice with the addition of volatiles to sucrose solutions 
(0.73 and 1.46 M). Rodents showed a dose-dependent response towards the volatile 
concentrations presented to them. Both M. namaquensis and R. pumilio preferred medium 
(0.3 %) concentrations of ethanol in high sugar concentration diets, but found this compound 
distasteful in lower sugar concentration diets. Acetic acid and ethyl acetate were generally 
not preferred by any species at either sugar concentration. Dimethyl disulphide was 
preferred by all species when present in greater sugar concentrations (1.46 M) and at low 
volatile concentrations (0.003 %). These results suggest that rodents do alter their choice of 
nectar in relation to the tested compounds. 

I conclude that certain compounds associated with sugar fermentation or protein degradation 
have the potential to act as behavioural cues in rodent pollination and that further studies to 
reveal the effect of nectar degradation by microorganisms are needed to help in 
understanding plant-pollinator interactions.  

Key words:  Microorganisms, Ethanol, Dimethyl disulphide, Pollination, Behavioural response 
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The importance of pollinators in the diversification and radiation of angiosperms was 

first addressed by Darwin (1862; Friedman 2009). Subsequent explanations however 

focused on the contribution of abiotic factors (eg rainfall, topography, soils and fire 

regimes) to angiosperm diversity and distributions (Goldblatt 1978; Linder 2003). 

From the late twentieth century to the present there has been a revival of interest in 

the importance of plant-pollinator interactions for the angiosperm radiation (Grant 

and Grant 1965; Johnson 1996; Raguso 2004; Johnson 2010). This has been 

sparked by compelling evidence for the role of adaptation to pollinators in shaping 

floral divergence among species. A classic example is the evolution of dull-coloured 

geoflorous yeasty-scented inflorescences in many different ancestrally bird-

pollinated clades of Proteaceae in the Cape mountain region (Johnson 2006). These 

flowers are pollinated by small rodents (Wiens and Rourke 1978). Is this an example 

of pollinator driven speciation through the radiation of floral characteristics? If so, 

could the shift from bird to rodent pollinators in these lineages have initially been 

promoted by attraction of rodents to the smell of fermenting nectar?  

 

Pollination syndromes  

When a set of unrelated plants undergoes floral adaption to a particular suite of 

pollinators, a common outcome is patterns of convergent floral evolution (pollination 

syndromes) among these plants. These syndromes reflect the sensory preferences, 

physiology and morphology of pollinators (Faegri and van der Pijl 1971; Rourke and 

Wiens 1977). Syndromes encompass a wide range of floral traits including shape, 

size, colour, floral anthesis and odour, and rewards such as nectar and pollen. For 

example, the floral syndrome associated with beetle pollination is associated with 

robust, bowl shaped flowers with strong fruity scent, large pollen loads and copious 

amounts of nectar (Bernhardt 2000; Shuttleworth and Johnson 2010; Steenhuisen 

and Johnson 2012), whereas that associated with rodent pollination involves dull 

coloured robust flowers, situated at ground level, coupled with strong yeast-like 

odours and nocturnal floral anthesis (Wiens et al. 1983; Johnson et al. 2001; 2011). 

Further still, the floral syndrome associated with bird pollination involves colourful, 

often red, flowers, which produce very dilute nectar (Stiles 1978; Rebelo et al. 1984; 

Manning 2009). Syndromes themselves may be subdivided in a hierarchical fashion, 
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an example being flowers pollinated by sunbirds and hummingbirds which have 

more concentrated nectar, richer in sucrose, than nectar in flowers pollinated by 

opportunistic generalist birds (Johnson and Nicolson 2008).  

To understand the evolution of floral syndromes in animal-pollinated plants, it is 

necessary to investigate the underlying causal factors involved in selection by 

animals. Sensory differences among animals may account for the emission of 

particular volatiles by a plant or its nectar (Pichersky and Gershenzon 2002; Raguso 

2004; Wright and Schiestl 2009; Schiestl 2010). Taste preferences could explain the 

evolution of the sugar composition of nectar or secondary compounds that are 

present in nectar (Omura and Honda 2003; Irwin et al. 2004; Irwin and Adler 2008). 

Body size and activity patterns of animals may be linked with the amount and type 

and timing of secretion of rewards offered by a plant (van Tets 1997; Fleming and 

Nicolson 2002; Davies et al. 2003).  

Almost all animal pollinators have acute olfactory senses that assist in finding 

mates, foraging and defending territories. Therefore volatiles emitted by plants, often 

in combination with visual cues, function to enhance pollinator attraction over 

distances and ensure fitness in plant-pollinator interactions (Pichersky and 

Gershenzon 2002; Raguso 2008; Wright and Schiestl 2009). The use of scent could 

be an invaluable cue for pollinators in night active pollination systems (Raguso 2004; 

Johnson et al. 2011). For example, bat pollination often relies on flowers which utilize 

strong sulphur containing fragrances to attract pollinators when visual cues would be 

less effective (von Helversen et al. 2000). Another example is that of plants 

pollinated by moths, such as Silene species (Caryophyllaceae), whose floral volatiles 

include linalool and benzyl alcohol, which are released during nocturnal floral 

anthesis when pollinators are most active (Ellis and Ellis-Adam 1993; Jürgens et al. 

2002; Young 2002).  

Taste is another floral cue utilized by floral visitors and can be a decisive factor in 

flower selection (Baker and Baker 1982; 1983; Nicolson and van Wyk 1998; Johnson 

et al. 2006; Zhang et al. 2012). Critical nectar components related to floral selection 

include the type, relative contributions and concentrations of sugars, all of which 

dictate how long a visitor will remain at a particular plant before moving on in search 

of its next floral reward (Baker and Baker 1983). However in certain cases other 

compounds may be used to ensure frequent floral visitation (Baker and Baker 1982). 
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For example, amino acids in nectar may contribute to pollinator attraction and 

feeding in female cabbage white butterflies (Pieris rapae) and honey bees (Apis 

mellifera) (Alm 1990).  

Additionally floral visitation by pollinators could be due to the presence of alternate 

resources offered by flowers. These include pollen, waxes, resins and oils, all of 

which have been documented as utilized during pollinator visitation (van Tets 1997; 
Johnson et al. 1999; Davies et al. 2003; Irwin et al. 2004; Singer and Koehler 2004). 

Rodents, for example, show increased visitation and utilization of pollen during the 

later winter periods when certain Proteaceae species commence flowering (Wiens et 

al. 1983; Fleming and Nicolson 2002; Turner et al. 2011). Stingless bees, the main 

pollinator for the genus Maxillaria (Roubik 2000), collect wax and resin like 

secretions from multicellular trichomes which are used as food for larvae or as nest-

building material (Singer and Koehler 2004). Secretion of oils by flowers of some 

Orchidaceae has facilitated pollination by oil-collecting bees in South Africa (Steiner 

1989; Johnson 1992).   

 

Mammal pollination 

Mammal pollination was first discussed over 80 years ago by Porsch (1934). 

However substantial evidence for pollination by nonflying mammals was only 

gathered 50 years later, through studies of South African protea species (Wiens and 

Rourke 1978). This discovery stimulated further research into mammal pollination 

and the recognition of distinct systems of bat and non-flying mammal pollination 

(Wiens et al. 1983; Carthew and Goldingay 1997).  

Bat pollination or chiropterophily is characterised by dark red to creamy pink 

flowers with strong sulphur containing fragrances released during nocturnal floral 

anthesis when pollinators are most active (Harris and Baker 1958; Bestmann et al. 

1997; von Helversen et al. 2000). Flowers are often large, bell shaped and produce 

copious amounts of dilute nectar (Faegri and van der Pijl 1971; Baker and Baker 

1983). In Africa there have been studies of bat pollination in trees Kigelia africana 

and Adansonia digitata (Harris and Baker 1958), but chiropterophily is more 

widespread among neotropical plants (Hopkins 1984; Fleming and Muchhala 2008).  
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Non-flying mammal pollination or therophily is characterised by dull coloured 

flowers, geoflorous in nature, coupled with strong “pungent” or “yeasty” aromas 

associated with nocturnal floral anthesis (Wiens and Rourke 1978; Wiens et al. 1983; 

Carthew and Goldingay 1997). Non-flying mammal pollination was initially described 

in Australian Proteaceae species and has since been documented in the proteas of 

the Western Cape of South Africa and other plant families, including Leucospermum 

arenarium and Protea foliosa (Proteaceae; Johnson and Pauw 2014; Melidonis and 

Peter 2015), Massonia depressa (Hyacinthaceae; Johnson et al. 2001) and parasitic 

plants (Cytinaceae; Johnson et al. 2011; Hobbhahn and Johnson 2013). Other 

examples of plants attracting rodents are Cajophora coronata from Argentina and 

Nepenthes rajah from Borneo (Cocucci and Sersic 1998; Greenwood et al. 2011; 

Wells et al. 2011).  

 

Sugar and protein degradation in nectar  

Pollination systems have the potential to be altered by a third party interaction (de 

Vega et al. 2009). These third party players include microorganisms such as nectar-

inhabiting yeasts and bacteria, both of which have been found to modify nectar 

composition in terms of sugar proportions and overall concentrations (Herrera et al. 

2008; 2009; Vannette et al. 2012). These nectar-inhabiting microorganisms may 

weaken plant-pollinator mutualisms by decreasing floral attractiveness through 

reduced rewards for pollinators, thereby resulting in a decrease in fitness for plants 

and their pollinators (Raguso 2004; Herrera et al. 2008). The density of 

microorganisms in nectar appears to be related to the type of pollinator, with larger 

pollinators being associated with greater microorganism densities in their nectars (de 

Vega et al. 2009). The presence of microorganisms in the nectars of various plant 

species has stimulated interest among pollination biologists in finding out if the 

associated volatile compounds have the potential to alter plant-pollinator interactions 

(Herrera et al. 2008; Vannette et al. 2012; Records 2012).  

Nectar characteristics altered through the presence of third party players in nectar 

include not only a reduction of sugars in floral nectars but also the production of 

volatiles indicative of sugar degradation - such as ethanol, acetic acid, and ethyl 
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acetate - under aerobic conditions (Janzen 1977; Goodrich et al. 2006; Madigan and 

Martinko 2006). These volatiles indicative of “nectar degradation” have been 

repeatedly observed in the nectars consumed by insects (Chakir et al. 1993; Milan et 

al. 2012; Omura and Honda 2003); as well as in vertebrate pollination systems, such 

as birds (Eriksson and Nummi 1982; Prinzinger and Hakimi 1996; Mazeh et al. 2008; 

Steenhuisen 2012; Records 2012); bats (Sanchez et al. 2004, 2006, and 2008) and 

non flying mammals (Wiens et al. 2008). The effect of fermentative volatiles in the 

nectars of various pollination systems needs investigation to determine if these 

volatiles either deter or attract pollinators. 

Certain volatiles released by the food of rodents have been documented in seed 

detection, where rodents use the volatile emissions from seeds as scent cues to aid 

in seed locating (Hollander et al. 2012; Paulsen et al. 2013). Desert hamsters 

(Phodopus roborovskii) were found to use seed volatiles – likely to be ethanol, acetic 

acid and sulphur compounds – to effectively locate buried seeds under laboratory 

conditions (Paulsen et al. 2013). Volatile compounds associated with sugar and 

protein degradation have also been found in the floral bouquet of plants which are 

pollinated by rodents (Balmer 2013). These volatiles may be the reason that flowers 

of rodent-pollinated species have been described as being perceived by the human 

nose as “yeasty” or “pungent” smelling (Wiens et al. 1983; Johnson et al. 2001). This 

has led to interest in identifying if volatiles associated with sugar and protein 

degradation of nectar are indicative of diminished rewards for rodent pollinators, or if 

they are selected for in rodent pollination as a floral cue. Could volatile compounds 

indicative of fermentation be used as a cue in nectar selection by rodents? If plants 

could emit these compounds from floral parts and thus increase the signal of sugar 

and protein degradation, would this increase the rate of rodent visitation? If these 

compounds were present in nectar, would rodents be attracted or repelled by the 

taste?  

The effects of these compounds on small mammal flower visitors are largely 

unknown and the influence of nectar degradation by microorganisms on small 

mammal flower visitors needs investigation. I investigated the behavioural effect of 

three volatiles indicative of nectar degradation - ethanol, ethyl acetate, acetic acid - 

and one indicative of protein degradation - dimethyl disulphide - on three rodent 

species: a well-known pollinator, the Namaqualand rock mouse Micaelamys 

namaquensis (Wiens and Rourke 1978; Wiens et al. 1983), an occasional floral 
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visitor,  the four-striped field mouse Rhabdomys pumilio (Rourke and Wiens 1977; 

Wiens et al. 1983) and a closely-related congener, the mesic four-striped field mouse 

Rhabdomys dilectus, which is not a well known floral visitor (Johnson et al. 2011). 

 

 

Rodent study species 

 

Micaelamys namaquensis 

The Namaqualand rock mouse M. namaquensis is distributed throughout southern 

Africa except the Namib Desert (Nowak 1999) and is commonly found in open 

woodland and rocky outcrops (Skinner and Chimimba 2005). Body mass of the 

animals used in these experiments was around 57 g (males, n = 7, 56.1 ± 3.7 g; 

females, n = 6, 58.8 ± 5.4 g). Individuals are nocturnal in habit, with activity periods 

peaking between 19h00 and 05h00 (Wiens et al. 1983). They feed predominantly on 

grains, but are known visitors of Protea species, having been recorded foraging on 

flowering heads of Protea species in the Cape (Wiens et al. 1983; van Tets 1997; 

Nowak 1999).  

 

Rhabdomys pumilio 

This taxon, the four-striped field mouse, is geographically limited to the western part 

of South Africa (Roberts 1951; Nowak 1999; Skinner and Chimimba 2005). Mass of 

the animals used in the study differed between sexes (males, n = 4, 43.4 ± 4.4 g; 

females, n = 3, 27.4 ± 1.5 g). Animals are crepuscular, with periods of high activity in 

early morning (06h00 - 08h00) and evening (16h00 - 18h00) (Wiens et al. 1983; 

Skinner and Chimimba 2005). They are generalist omnivores, feeding on the nectar 

and pollen of flowers (Rourke and Wiens 1977), vegetable matter, sometimes seeds 

and insects (De Graaff 1981; Nowak 1999). They have been reported as floral 

visitors in several studies (Wiens et al. 1983; Hobbhahn and Johnson 2013; Johnson 

and Pauw 2014; Melidonis and Peter 2015).  
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Rhabdomys dilectus 

The second taxon of Rhabdomys used in experiments was the mesic four-striped 

field mouse R. dilectus, which is considered distinct from Rhabdomys pumilio on the 

basis of molecular evidence (Rambau et al. 2003). R. dilectus inhabits the moist 

eastern grasslands of South Africa, although its distribution tends to be patchy and 

discontinuous (Nowak 1999; Skinner and Chimimba 2005; Schradin and Pillay 

2005). The body mass of the individuals used in the study differed between sexes 

(males, n = 5, 49.2 ± 4.1 g; females, n = 4, 42.3 ± 1.9 g). Animals in the wild are 

generally diurnal, however due to the grass habitat structure they have been found to 

be active throughout the day, as cover in the moist grassland biome can allow for all 

day foraging (Mackay 2011). They are generalist omnivores feeding on nectar from 

flowers, seeds, fallen fruits and insects (De Graaff 1981; Nowak 1999; Johnson et al. 

2011).   

 

 

Study sites 

 

Ukulinga 

Rhabdomys dilectus was trapped at Ukulinga, a farm belonging to the University of 

KwaZulu-Natal Pietermaritzburg (270 67’ 12” S, 300 40’ 27” E, elevation 680 m). The 

grass field in which the study took place is a savanna type ecozone scattered with 

trees (Acacia karroo, A. nilotica and A. sieberiana) and is located on a south facing 

slope (pers. observation). Rodent traps were placed within the study site at locations 

along a fence line and were spaced at 5 m intervals. Sherman traps (80 x 90 x 230 

mm) were used for capturing rodents. Forty traps were laid out in two locations along 

the fence lines within the area, and left for a 24 hour period from mid-morning till 

mid-morning. The traps were cleared out if a rodent was caught, re-baited and then 

re-set in order to accumulate an adequate sample size. A mixture of rolled oats and 

peanut butter was the chosen bait.  
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Houw Hoek and Sir Lowry’s Pass 

Rodent trapping in the Western Cape was carried out to acquire individuals of 

Micaelamys namaquensis and Rhabdomys pumilio needed for experiments. Two 

sites were identified for trapping, Houw Hoek pass (340 12’ 49” S, 190 10’ 02” E; 

elevation, 340 m) and Sir Lowry’s pass (340 08’ 59” S, 180 55’ 42” E; elevation, 480 

m). Rodent traps were laid out between the rocky outcrops that were distributed 

throughout these passes. Sherman traps were spaced apart at 5 m intervals. Forty 

traps were laid out in two locations at each pass, and left for a 24 hour period from 

mid-morning till mid-morning. Traps were baited with rolled oats and peanut butter, 

and nesting material, grass twigs and leaves, was added to the traps for safety of the 

rodents. The traps were cleared out if a rodent was caught, re-baited and then re-set 

in order to accumulate an adequate sample size.  

 

 

Rodent maintenance 

All animals were transported under permit (permit number: 0011-AAA007-00670) 

and were housed in an animal house facility in a constant environment room with the 

temperature maintained at 25 ºC ± 1 ºC and a photoperiod of 14 L: 10 D. Rodents 

were individually housed in 30 × 30 × 50 cm glass aquaria with galvanized steel grid 

lids (Fig. 1). Maintenance diets were made up of a combination of seed mix, 

commercially available rodent pellets (AVI products, Kloof, South Africa), grated 

seasonal fruits and vegetables, and a combination of larval and adult mealworms. All 

diets were portioned and unique for each species of rodent depending on diet 

preferences in the wild and in relation to the weight of individuals. Food was provided 

in a stainless steel bowl placed in the cage every afternoon to maintain natural 

behavioural cycles in the animals. Water was provided ad libitum in a stainless steel 

bowl, cleaned and replaced daily. Liquid activated wood pellets were provided as 

bedding and nesting material (AVI products, Kloof, South Africa). Shredded paper, 

egg cartons and cardboard rolls were offered bimonthly for enrichment. Rodent 

enclosures were set up with wooden dowels or tree branches to encourage 

exploration and ensure well-being of animals.  
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Figure 1: Glass aquaria with galvanized steel grid lids where rodents were individually 

housed (30 × 30 × 50 cm). Enclosures were set up with tree branches to encourage 

exploration and allow for gnawing. Liquid activated wood pellets were provided as bedding 

and nesting material included shredded paper and egg cartons. Water was provided ad 

libitum in a stainless steel bowl.   
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Thesis outline: specific research questions and aims 

This thesis is presented in two chapters that cover two different research questions 

related to the responses of rodents to compounds arising from sugar and protein 

degradation. These questions are:  

1. Could the volatiles arising from sugar and protein degradation be used as 

behavioural cues by small non-flying mammals? 

2. Do these volatile compounds in nectar influence the palatability of nectar to 

rodents, leading either to increased or decreased consumption?  

 

Chapter 2: Behavioural responses of rodents to the scent of volatile signals 
arising from sugar and protein degradation. 

 

Plants visited by rodents are described as having “pungent” and “yeasty” aromas, 

released during nocturnal floral anthesis, hinting at the potential for the volatiles to be 

used as behavioural cues by small mammal pollinators in locating nectar or pollen 

rewards (Wiens and Rourke 1978; Wiens et al. 1983; Johnson et al. 2001). The 

attraction of rodents to volatiles associated with fermentation is not well understood 

and nor to my knowledge has a behavioural response towards these volatiles been 

explored using known flower visitors, apart from one study of the responses of 

rodents to ketones produced by flowers of a parasitic plant species (Johnson et al. 

2011). It was hypothesised that an attraction towards the volatiles which arise from 

sugar and protein degradation would be seen for all species, as plants pollinated by 

rodents may emit these volatiles to enhance their attractiveness to rodents. The aim 

was to identify if fermentation volatiles act as behavioural cues for small mammals, 

and thus have the potential to assist in finding food resources. 
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Chapter 3: The effects of associated fermentation and protein degradation 
volatiles on nectar consumption by rodents. 

 

Volatile compounds associated with sugar fermentation and protein degradation 

have been found in the volatile bouquet of plants that are pollinated by rodents 

(Balmer 2013). In many cases the nectar itself is the source of volatile emissions, 

suggesting that volatiles are present in solution in nectar. This has implications for 

the palatability of nectar. It was hypothesised that all rodent species would avoid 

consuming nectar with high volatile concentrations, either because of its 

unpalatability or because it would be indicative of reduced rewards due to 

fermentation by microorganisms. The palatability of nectar with volatiles was 

predicted to increase in nectar with greater sugar concentrations. The aim of this 

chapter was to determine how the presence of fermentation and protein degradation 

compounds in nectar of two differing sugar concentrations affected its consumption 

by rodents.  
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Abstract. Volatiles associated with sugar fermentation or protein degradation have been 

recorded in floral headspace samples and may thus function as a cue for pollinators. It has 

been reported that rodents use certain fermentation and protein degradation volatiles to find 

seeds and other food sources, making it plausible that these volatiles could be deployed as 

attractive signals by plants that rely on rodents for pollination. The present study examines 

the response of three rodent species (a well-known pollinator, the Namaqualand rock mouse 

Micaelamys namaquensis, an occasional floral visitor, the four- striped field mouse 

Rhabdomys pumilio, and a congener, the mesic four-striped field mouse Rhabdomys 

dilectus) to the fermentation volatile compounds ethanol, ethyl acetate and acetic acid, and 

the protein degradation volatile dimethyl disulphide. A traditional Y-maze choice apparatus 

was used to analyse the behavioural responses of rodents to these volatiles diluted at varying 

concentrations (0.003 – 3.0 %) in water. Rodent species differed in their responses to the 

four volatiles tested. Ethanol emerged as an attractant for all of the species, with the 

strongest response seen at the 0.3 % concentration, while only R. dilectus responded 

positively to dimethyl disulphide. Acetic acid and ethyl acetate were generally not attractive to 

rodents. I conclude that ethanol released through sugar fermentation has the potential to act 

as a behavioural cue for rodent foraging and that further studies which reveal the effect of 

nectar degradation by microorganisms are needed to help in understanding plant-pollinator 

interactions.  
 

 

Plants employ a variety of sensory signals that manipulate the behaviour of potential 

pollinators in order to maximize the pollination function of flowers (Faegri and van 

der Pijl 1979; Johnson 2006; Wright and Schiestl 2009). These signals usually elicit 

food-seeking behaviour by animals, although other behaviours, associated with 

seeking sexual partners and oviposition sites, are also exploited by some plants 

(Schiestl 2005; Johnson 2006). Visual signals, including size, colour and shape, 

reflect the visual systems of pollinators (Manning 1956; Dafni and Kevan 1997). 

Additionally plants exploit the olfactory preferences of pollinators by emitting volatiles 

that attract pollinators from a distance (Faegri and van der Pijl 1979; Wright and 

Schiestl 2009). Volatiles can be combined with visual cues to enhance pollinator 

attraction and ensure that pollinators efficiently disperse pollen among plants both 

within and between populations (Pichersky and Gershenzon 2002; Raguso 2008).  
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The significance of plant volatiles is perhaps best seen in night-active pollination 

systems when visual cues become less reliable (Jürgens et al. 2002; Raguso and 

Willis 2002). For example, plants pollinated by moths, such as Silene species 

(Caryophyllaceae), produce floral volatiles, including linalool and benzyl alcohol, that 

are released during nocturnal floral anthesis when moth pollinators are most active 

(Ellis and Ellis-Adam 1993; Jürgens et al. 2002; Young 2002). Similarly flowers 

pollinated by rodents release pungent yeasty odours during nocturnal floral anthesis, 

exploiting the nocturnal activities of rodents (Wiens and Rourke 1978; Wiens et al. 

1983).  

Past research has identified a wide variety of volatiles released by plants that 

exploit innate preferences of pollinators (Raguso 2001, 2008; Wright and Schiestl 

2009; Schiestl 2010). In particular, these volatiles exploit pre-existing biases, such as 

the responses of males to female sex pheromones that are exploited by sexually 

deceptive orchids (Schiestl 2005). Steenhuisen et al. (2012a) justified scent as a 

reason for pollination shifts in the proteas of South Africa. Specific reference was 

made to rodent pollination and the presence of dimethyl disulphide, a known 

component in the urine of mice (Singer et al. 1976; Lin et al. 2005), in headspace 

analysis of protea flowers visited by rodents (Steenhuisen et al. 2012a).  

Scent recognition in pollinators is an effective cue during plant-pollinator 

interactions as the scent of a plant can be attractive to a pollinator and provide 

information about a plant’s condition. For example, volatile compounds could warn 

potential pollinators about reward degradation, as in the case of infection of nectar 

by microorganisms (Herrera et al. 2008; Vannette et al. 2012). Unicellular organisms, 

such as yeasts and bacteria, metabolise sugars and possibly proteins in nectar and 

in doing so they release volatiles (Herrera et al. 2008; Vannette et al. 2012). Volatiles 

associated with sugar and protein degradation include volatile acids, esters, alcohols 

and sulphur-containing compounds (Wood 1961; Janzen 1977; Madigan and 

Martinko 2006).  

Historical and current investigations have provided insight into how certain 

volatiles could be influencing animal foraging behaviours (Janzen 1977; Herrera et 

al. 2008; Vannette et al. 2012; Paulsen et al. 2013), as microorganisms colonise the 

food of a variety of animals; insects (Omura and Honda 2003), birds (Eriksson and 

Nummi 1982; Mazeh et al. 2008) and bats (Sánchez et al. 2004, 2006). Recent 

studies have found certain fermentation compounds to be present in the aromatic 
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bouquets of plants visited by rodents, potentially influencing plant-pollinator 

interactions (Wells et al. 2011; Steenhuisen et al. 2012a; Balmer 2013). Plants 

pollinated by rodents are described as having “pungent” and “yeasty” aromas, 

released during nocturnal floral anthesis, hinting at the potential for fermentation 

volatiles to be used as behaviour cues by small mammal pollinators for locating 

nectar or pollen rewards (Wiens and Rourke 1978; Wiens et al. 1983; van Tets 1997; 

Johnson et al. 2001). The attraction of rodents solely to volatiles associated with 

fermentation is not well understood and little of the behavioural response towards 

these volatiles is known. Could the fermentation volatiles arising from sugar and 

protein degradation be used as behavioural cues by small non-flying mammals?   

 

The present study examines the behavioural response of three rodent species 

(Micaelamys namaquensis, Rhabomys pumilio and R. dilectus) to varying 

concentrations of four fermentation volatiles - ethanol, ethyl acetate, acetic acid and 

the protein degradation volatile dimethyl disulphide. It was hypothesised that an 

attraction to volatiles which arise from sugar and protein degradation would be 

evident for all species, as plants pollinated by rodents may emit these volatiles to 

enhance their attractiveness to rodents. I also hypothesized that any attraction of 

rodents to fermentation or protein degradation volatiles would be reduced at high 

volatile concentrations as greater concentrations of these volatiles in nature would 

be associated with reduced rewards due to the conversion of sugars or proteins by 

microorganisms. The aim was to identify if fermentation volatiles act as behavioural 

cues for small mammals, and have the potential to assist in finding food resources. 
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Materials and methods  

Study species 

The present study examines the response of three rodent taxon. First, the 

Namaqualand rock mouse Micaelamys namaquensis is a known rodent pollinator 

(Wiens and Rourke 1978; Wiens et al. 1983; van Tets 1997; Wester et al. 2009; 

Hobbhahn and Johnson 2013). It is distributed throughout southern Africa except for 

the Namib Desert (Nowak 1999) and is commonly found in open woodland and rocky 

outcrops (Skinner and Chimimba 2005). Second, the “Cape” four-striped field mouse 

Rhabdomys pumilio is an occasional floral visitor (Rourke and Wiens 1977). This 

species is geographically limited to the western part of South Africa (Roberts 1951; 

Nowak 1999; Skinner and Chimimba 2005). A second taxon of Rhabdomys was also 

used in experiments: R. dilectus is similar to R. pumilio but is considered a separate 

species on the basis of molecular evidence (Rambau et al. 2003). It is a seldom 

documented floral visitor (Johnson et al. 2011), and inhabits the moist eastern 

grasslands of South Africa, although its distribution tends to be patchy and 

discontinuous (Nowak 1999; Skinner and Chimimba 2005; Schradin and Pillay 

2005). 

 

 

Rodent capture and maintenance 

Nine R. dilectus (male, n = 5; female, n = 4) were caught using baited Sherman traps 

at Ukulinga (270 67’ 12” S, 300 40’ 27” E; elevation, 680 m), the University of 

KwaZulu-Natal experimental farm. Forty traps were laid out and left open for 24 h for 

three nights in March 2013. Captured mammals were placed into individual carrier 

crates lined with hay and paper tissue for transportation. 
Thirteen M. namaquensis (male, n = 6; female, n = 7) and seven R. pumilio 

(male, n = 4; female, n = 3) were caught using baited Sherman traps at Houw Hoek 

pass (340 12’ 49” S, 190 10’ 02” E; elevation, 340 m) and Sir Lowry’s pass (340 08’ 

59” S, 180 55’ 42” E; elevation, 480 m), Western Cape Province. Forty traps were 

laid out in each of the two locations. Traps were left open for 24 h for five nights in 
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July 2014. Captured mammals were placed in individual carrier crates lined with hay 

and paper tissue and fed full maintenance diets during transportation over two nights 

in August 2014 (Cape Nature permit number: 0011-AAA007-00670; KZN Wildlife 

permit number: OP 5166/2014). Water was provided via an overhead water feeder 

each night along with maintenance diet: water feeders were removed during 

transportation. 

All animals  were housed in an animal house facility, in a constant environment 

room with the temperature maintained at 25 ºC ± 1 ºC and a photoperiod of 14 L: 10 

D. Rodents were individually housed in 30 × 30 × 50 cm glass aquaria with 

galvanized steel grid lids. Maintenance diets consisted of a combination seed mix, 

commercially available rodent pellets (AVI products, Kloof, South Africa), grated 

seasonal fruits and vegetables, and a combination of larval and adult meal worms. 

Diets were provided via a stainless steel bowl placed into the cage each evening and 

water was provided ad libitum via a stainless steel bowl, cleaned and replaced daily. 

Liquid activated wood pellets were provided as bedding and nesting material (AVI 

products, Kloof, South Africa). Shredded paper, egg cartons and cardboard rolls 

were offered to rodents bimonthly for enrichment. Experiments began a minimum of 

two weeks after capture, allowing rodents to acclimatise to the captive environment.  

 

 

Procedure 

To establish if volatiles associated with sugar and protein degradation elicit a 

behavioural response in small mammals, a traditional Y-maze choice apparatus was 

used (Fig. 1). Experimental volatiles consisted of varying concentrations of four 

volatile compounds in distilled water: ethanol (EtOH), ethyl acetate (EtOAc), and 

acetic acid (AcAc) each at 0.03, 0.3, and 3.0 % concentrations and dimethyl 

disulphide (DMDS) at 0.003, 0.03, and 0.3 % concentrations.  

During the experimental trial, a mouse was placed in a glass tank (7 x 7 x 30 

cm), which was attached to the Y-maze choice apparatus (Fig. 1).  The Y-maze 

consisted of a glass tube (20 cm length, 6 cm diameter) that split into two separate 

arms (50 ° between each arm) (Fig. 1). The arm compartments were large enough to 
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allow the rodent to enter, where a fine polyester gauze separated the rodent from an 

experimental vial containing a control (distilled water) or an experimental volatile. A 

fan attached at the end of each arm blew air through the arms of the Y-maze choice 

apparatus (Fig. 1). 

All experimental volatiles including controls were mixed, pipetted into a 

microcentrifuge tube (200 µl), sealed, and frozen for use on a trial day, then thawed. 

During trials a control was placed randomly into an arm of the Y-maze choice 

apparatus, with the vial containing an experimental volatile in the remaining arm, and 

dispersed through the apparatus. Behaviour was then recorded only if the mouse 

entered an arm of the Y-maze within 5 min after the scent was introduced. A positive 

response was recorded if the mouse’s behaviour resulted in it passing an a priori 

marker point on an arm of the Y-maze and spending a minimum of 5 seconds 

investigating the scent. A negative response was defined as the same behaviour for 

the control arm of the Y-maze choice apparatus. A mouse was exposed to each 

experimental volatile four times, in order to reduce the effect of side bias (Jackson et 

al. 1998), with animals and experimental volatiles used in random order (i.e. 29 

animals x 12 scents x 4 replicates).  
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Figure 1: Y-maze apparatus set up with a volatile compound presented to a rodent in one of 

the arms, with a control (distilled water) in the other arm. (A) Rodents were introduced to the 

apparatus through the use of a holding chamber; (B) A glass sliding door was removed as 

the trial began, to allow the rodent access to the apparatus, Bar = 50 mm; (C) A 

microcentrifuge tube contained either a control or experimental volatile compound in one of 

the Y-maze arms; (D) Fine polyester gauze was used to stop rodents from coming into 

contact with the experimental volatiles, Bar = 50 mm.   

A          

B           

D           C           
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Statistics 

The response of rodents to volatile compounds was compared using generalized 

estimating equations (GEEs) to account for repeated measures of the same rodent 

and to accommodate non-Gaussian data in a generalized linear modelling 

framework. Means represented the proportion of the responses (animals that moved 

into the y maze) in favour of the scented arm of the Y-maze. Models for these 

proportions were based on a binomial distribution. Volatile concentration was treated 

as a covariate with volatile, species and sex as fixed effects. Interactions between 

these predictors were included to test whether volatile preference by a rodent 

species is dependent on the type of volatile or volatile concentration. Models 

incorporated an exchangeable correlation matrix and significance of effects was 

tested using Wald statistics.  

Post-hoc comparisons were conducted using the sequential Sidak method. I 

used 95 % confidence intervals to assess whether the mean positive response 

towards fermentation volatiles differed significantly from 50:50 ratio (equal choice). 

The slope of rodent response to volatile concentration as a covariate assisted in 

identifying significant reduction in preference at varying concentrations. All statistical 

analyses were performed in SPSS 22 (IBM Corp.).  
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Results 

M. namaquensis, R. pumilio and R. dilectus differed significantly in their responses to 

the volatile compounds presented to them during Y-maze choice experiments 

(Species, χ2 = 28.55, df = 2, p < 0.001). The overall response of rodents towards a 

volatile was not affected by its concentration (Concentration, χ2 = 1.49, df = 1, p = 

0.222), or the sex of the rodents (Sex, χ2 = 0.203, df = 1, p = 0.653), but differed 

significantly according to the type of volatile offered to the rodent (Volatile, χ2 = 

40.11, df = 3, p < 0.001; Fig. 2), the interaction between the type of volatile and its 

concentration (Volatile × Concentration, χ2 = 18.16, df = 4, p < 0.001; Fig. 3) and the 

interaction between the species, the type of volatile and its concentration (Species × 

Volatile × Concentration, χ2 = 13.55, df = 6, p < 0.05; Table 1). 

All species were found to respond uniquely to the experimental volatiles 

presented to them (Species × volatile, χ2 = 150.42, df = 11, p < 0.001; Fig. 3). 

Ethanol emerged as an attractant for all of the species (Fig. 2), with the strongest 

response seen at the 0.3 % ethanol concentration (EtOH, β = - 0.118, χ2 = 2.317, df 

= 1, p = 0.128; Fig. 3a). Rhabdomys dilectus showed the greatest preference for 

ethanol, selecting higher ethanol concentrations (β = +0.210, χ2 = 6.092, df = 1, p < 

0.05), followed by M. namaquensis and R. pumilio respectively. Unlike ethanol, ethyl 

acetate was not preferred by all species, at all concentrations (Figs 2 and 3c). 

Although an overall increase in preference for higher concentrations was found 

(EtOAc, β = + 0.123, χ2 = 6.471, df = 1, p < 0.05), M. namaquensis was significantly 

deterred when presented with the higher concentrations of ethyl acetate (β = - 0.171, 

χ2 = 4.110, df = 1, p < 0.05; Figs 2 and 3c).  

An overall drop in attractiveness of dimethyl disulphide at higher concentrations 

was found (DMDS, β = - 0.033, χ2 = 0.323, df = 1, p = 0.570; Fig. 3d). Only one of 

the rodent species – R. dilectus – responded positively towards dimethyl disulphide 

at the lowest 0.003 % concentration (Fig. 3d), while M. namaquensis avoided the 

lowest 0.003 % and highest 0.3 % concentrations of dimethyl disulphide. Acetic acid 

at higher concentrations was generally found to be preferred by rodents (AcAc, β = + 

0.251, χ2 = 8.881, df = 1, p < 0.005; Fig.3b), however the apparent avoidance of M. 

namaquensis at higher concentrations of acetic acid is an interesting result (β = - 

0.447, χ2 = 15.225, df = 1, p < 0.001; Fig. 3b).  
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Figure 2: Marginal means (± 95 % CI) data for volatile sensitivity of all species during Y-

maze experiments. Data represent the number of times all of the rodents passed an a 

priori marker point on an arm of the Y-maze containing a volatile compound at all of its 

concentrations; Ethyl acetate (EtOAc), Acetic acid (AcAc), Dimethyl disulphide (DMDS) or 

Ethanol (EtOH). Confidence intervals that lie above the 50% line indicate overall selection for 

volatile by rodents.  
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Figure 3: Marginal means (± 95 % CI) data for volatile sensitivity of M. namaquensis (n=13, 

grey circles), R. pumilio (n=7, black triangles) and R. dilectus (n=9, white squares) during Y-

maze experiments. Data represent the number of times a rodent passed an a priori 

marker point on an arm of the Y-maze containing an experimental volatile. Rodents were 

offered a choice of a Low (0.03 %), Medium (0.3 %) or a High (3.0 %) concentration for (a) 

Ethanol (β = - 0.118, χ2 = 2.317, df = 1, p = 0.128), (b) Acetic acid (β = + 0.251, χ2 = 8.881, 

df = 1, p < 0.005) and (c) Ethyl acetate (β = + 0.123, χ2 = 6.471, df = 1, p < 0.05). Three 

additional concentrations of Low (0.003 %), Medium (0.03 %) or High (0.3 %) were tested for 

(d) Dimethyl disulphide (β = - 0.033, χ2 = 0.323, df = 1, p = 0.570). Horizontal line shows 50 

%, indicating no selection for a volatile compound.   
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Table 1: Summary of the full statistical model used, indicating interaction between species 

and volatile, species and volatile concentration, volatile and volatile concentration, and 

species, volatile and volatile concentration for Y-maze experiments. Volatile concentration is 

always analyzed as a covariate. Bold indicates a significant difference. 

Source Wald χ² df Sig. 

Species 11.92 2 <0.05 
Volatile  36.13 3 <0.01 
Concentration Covariate 1.56 1 0.212 

Species × Volatile  25.98 6 <0.001 
Species × Concentration 2.57 2 0.277 

Volatile × Concentration 15.29 3 <0.005 
Species × Volatile × Concentration 13.55 6 <0.05 

 

  



38	
	

Discussion 

This study shows that rodents respond positively to a subset of the volatiles arising 

from sugar and protein degradation (Fig. 2). Ethanol at varying concentrations 

emerged as an attractant for all species, with the most significant attraction seen at 

the 0.3 % concentration, while only R. dilectus responded positively to dimethyl 

disulphide, with attraction seen at the 0.003 % concentration (Fig. 3).  

The prediction that lower concentrations of volatile would be favoured by rodents 

is not supported; instead rodent responses to volatile concentrations depended on 

the type of volatile. Volatiles released by the food of rodents are well documented in 

seed detection, where rodents use the volatile emissions from seeds as scent cues 

to aid in seed location (Hollander et al. 2012; Paulsen et al. 2013). Desert hamsters 

(Phodopus roborovskii) were found to use seed volatiles – assumed to be ethanol, 

acetic acid and sulphur compounds – to effectively locate buried seeds under 

laboratory conditions (Paulsen et al. 2013). The attraction for rodents of ethanol, 

acetic acid and dimethyl disulphide at varying concentrations supports the possibility 

that rodents could be using volatile compounds arising from nectar degradation as a 

potential indicator of food resources. This is possible as the presence of these 

volatiles in nectar is indicative of rewards, although reduced (Herrera et al. 2008).  

Recent insights into third-party interactions have described the microorganisms 

in nectars as being disruptive to plant-pollinator mutualisms (Herrera et al. 2008; 

Vannette et al. 2012). The presence of fermentation volatiles in a floral bouquet is 

associated with the metabolic processes of microorganisms converting 

carbohydrates into gases and alcohols under anaerobic conditions (Reece et al. 

2011). Therefore the emission of a volatile indicative of fermentation may indicate a 

potential reward for the rodents, but could also indicate that much of the reward has 

been consumed by microorganisms. However, although floral resources may be 

reduced, the flowering of these plants during the winter season when other food 

resources are scarce may be enough to instigate the investigation of the volatiles by 

rodents (Rebelo 2001; Manning 2009).  

Over all rodents did not select for dimethyl disulphide (with the exception of R. 

dilectus which was attracted to dimethyl disulphide at the lowest 0.003 % 

concentration). This was unexpected, as dimethyl disulphide is emitted by flowers of 

rodent-pollinated plants such as Protea amplexicaulis and P. humiflora (Steenhuisen 
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et al. 2012b; Balmer 2013). Earlier studies looking at the social behaviour of mice 

found that dimethyl disulphide is a component in the urine of male mice, as well as 

being a component in female vaginal secretions of golden hamsters Mesocricetus 

auratus (Singer et al. 1976; Lin et al. 2005). Both studies suggest the potential for 

dimethyl disulphide to play a role in mammalian social behaviour. A later revaluation 

of the bioassays employed by Petrulis and Johnston (1995) suggested that earlier 

findings were due to an inaccurate biological bioassay and concluded that M. 

auratus was not attracted to dimethyl disulphide alone (Johnston 2003). Current 

findings suggest that dimethyl disulphide attraction may also be concentration 

dependant, but more importantly is dependent on the presence of other compounds 

enhancing overall attraction (Johnston 2003; Steenhuisen et al. 2012a; Balmer 

2013).  

Alcohol and sulphur containing compounds have been found in the volatile 

components of Nepenthes rajah, whose scent was described as resembling the 

odour of cabbage (Wells et al. 2011). These pitchers are cryptic in nature, often 

hidden within dense grassy vegetation, and are visited by small mammals who 

defecate into the pitchers as they feed from extrafloral nectar on the pitcher lids 

(Greenwood et al. 2011; Wells et al. 2011). The cryptic and pungent smelling 

structures suggest similarities between rodent visitation of the Bornean pitcher plants 

and rodent pollination in South Africa (Wiens et al. 1983; Johnson et al. 2001; 

Greenwood et al. 2011; Wells et al. 2011). However the interaction between 

mammals and N. rajah is described as being one of resource exchange on a 

mutualistic basis – plant nectar for small mammal droppings – providing the plant 

with much of its nitrogen and phosphorus requirements, not for pollination 

(Greenwood et al. 2011). Although the similarities in scent between rodent pollinated 

proteas and N. rajah hint at the potential that small mammals could be using the 

volatiles arising from protein degradation as an indicator of food resources 

(Greenwood et al. 2011; Wells et al. 2011; Steenhuisen et al. 2012a), the role of 

dimethyl disulphide in the floral bouquet of rodent-pollinated plants remains 

something of a mystery.  

The results also showed that rodents were significantly repelled by ethyl acetate 

and that it was the least preferred compound for all species (Figs 2 and 3c). This 

result is potentially linked to the formation of ethyl acetate, which is produced at a 

later stage of fermentation. Ethyl acetate is an ester of ethyl alcohol and acetic acid 
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and can only form once both are present (Swiegers et al. 2005; Reece et al. 2011). 

Therefore ethyl acetate, a volatile present in beetle pollinated proteas, may be 

indicative of a later stage of fermentation and may suggest to rodent visitors that a 

further reduction in rewards will be found (Bernhardt 2000; Steenhuisen and 

Johnson 2012; Steenhuisen et al. 2012c).  

Whilst conducting the Y-maze experiments I was interested to note the frequent 

similarity in the behavioural responses of M. namaquensis and R. pumilio to 

fermentation compounds. This is of interest as previous studies have found that M. 

namaquensis is a frequent floral visitor and pollinator of certain Protea species 

(Wiens et al. 1983; van Tets 1997), whereas R. pumilio is an occasional floral visitor 

quite destructive in its floral visitation (Rourke and Wiens 1977). However both 

species have been recorded visiting rodent pollinated flowers: they may come into 

contact with these or similar fermentation compounds more often than current 

research shows (Biccard and Midgley 2009; Steenhuisen et al. 2012b; Balmer 2013).  

Rhabdomys dilectus showed the strongest attraction towards all the fermentation 

volatiles presented to them during the Y-maze experiments. This finding may be 

related to the foraging habit and food resource utilization of these animals. 

Rhabdomys dilectus has been documented feeding on the nectar of flowers 

(Johnson et al. 2011), however is more commonly noted as being a generalist 

omnivore, feeding on a wide range of plants including the fruit pods of certain trees 

(Skinner and Chimimba 2005). The fruits that R. dilectus feeds on may be fermented 

to some degree (Janzen 1977; Knudsen et al. 2006), resulting in the trends seen 

during the Y-maze experiments.  

The role of volatiles released by flowers and fruits which arise from sugar and 

protein degradation is surprisingly poorly investigated for small non-flying mammals 

compared to bats or invertebrates (Bestmann et al. 1997; Bernhardt 2000; 

Steenhuisen and Johnson 2012; Steenhuisen et al. 2012c), even though small 

mammals are well studied in terms of their olfactory system (Tirindelli et al. 2009; 

Paulsen et al. 2013). Von Helversen et al. (2000) tested how nectar-feeding bats 

would respond to single floral volatiles from bat pollinated plants. They found that 

bats were able to successfully orientate themselves during food location guided only 

by scent. Sulphur compounds, specifically dimethyl disulphide, proved to be 

especially important in bat orientation, providing insight into why over 70 % of bat 
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pollinated plant nectars are known to contain sulphur compounds (Knudsen and 

Tollsten 1995; Bestmann et al. 1997).  

Considering the functional role of a volatile compound in a rodent pollinated 

plant, only one study has conclusively shown that a single volatile compound can be 

attractive to rodent pollinators. Johnson et al. (2011) looked at the volatile 

components of a parasitic plant (Cytinus visseri), and found that the ketone 3-

hexanone, one of the three major volatile components that made up the scent of the 

flower, was attractive to R. dilectus in Y-maze experiments.  

In summary, ethanol was found to be attractive to all rodent species and greater 

selecton for this volatile is seen at medium concentrations. Volatiles indicative of 

later stage fermentation were avoided by all species, and only R. dilectus showed a 

positive response towards dimethyl disulphide. The differences seen in rodent 

responses to volatile compounds between the two Rhabdomys species support the 

justification for a key biological difference between R. dilectus and R. pumilio. The 

importance of ethanol and dimethyl disulphide as a potential behavioural cue needs 

further attention as it has the potential for evolutionary understanding of rodent 

pollination and this could be essential for future studies. I conclude that certain 

compounds released through sugar fermentation or protein degradation have the 

potential to act as behavioural cues in rodent pollination and that further studies 

which reveal the effect of nectar degradation by microorganisms are needed to help 

in understanding plant-pollinator interactions.  
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Abstract. Nectar degradation by microorganisms has the potential to alter the interactions 

between animal and plant mutualists, as compounds produced through sugar degradation in 

nectar may be perceived either as a signal of reduced rewards for flower visitors or as a 

signal for a food source itself. Furthermore, if present in nectar, volatiles associated with 

sugar and protein degradation may alter its palatability.  Rodents are known to respond to 

fermenting food sources and to visit flowers with a scent containing fermentation and protein 

degradation volatiles. The present study examines the effects of four of these volatiles 

(ethanol, ethyl acetate, acetic acid, and dimethyl disulphide) on nectar consumption by three 

rodent species (a well-known pollinator, the Namaqualand rock mouse Micaelamys 

namaquensis, an occasional floral visitor, the three striped field mouse Rhabdomys pumilio, 

and a congener, Rhabdomys dilectus).  Paired choice tests were used to identify rodent 

responses to experimental solutions containing volatiles. The study was designed to analyse 

the preference of rodents for solutions containing volatiles at varying concentrations (0.003 - 

3.0 %) and sucrose at two concentrations (0.73 and 1.46 M). Both M. namaquensis and R. 

pumilio preferred medium (0.3 %) concentrations of ethanol in high sugar concentration 

diets, but found this compound distasteful in lower sugar concentration diets. Acetic acid and 

ethyl acetate were generally not preferred by any species, in either sugar concentration. 

Dimethyl disulphide was preferred by all species only when present in higher sugar 

concentrations (1.46 M) and at low volatile concentrations (0.003 %). Results suggest that 

rodents alter their choice of diet in relation to the type and concentration of compounds in an 

experimental diet. I conclude that emission of volatiles from experimental diet is an honest 

signal of nectar amount may be limited by the effects of these volatiles on nectar palatability, 

and that these effects are dependent on sugar concentrations in nectar. 
 

 

Plants benefit from offering rewards that are attractive to prospective animal visitors 

(Wright and Schiestl 2009). Successful attraction is accomplished through the ability 

of plants to communicate with their animal pollinators by using various signals 

(Faegri and van der Pijl 1979; Johnson et al. 2011). These cues are effective when 

they are interpreted by animal visitors as being associated with rewards. Cues 

exploit visual or olfactory senses of pollinators in an attempt to guide floral visitors to 

embark on behaviour that is beneficial to pollination. Morphological cues include 

colour and size of flowers (Manning 1956; Lunau and Maier 1995) and physiological 

cues include sugar concentration or the volatiles emitted by flowers (Pichersky and 

Gershenzon 2002; Raguso 2008; Wells et al. 2011). 
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Potential rewards advertised by plants entice floral visitors to return (foraging 

constancy).  Pollinator return could be linked to the taste of a nectar (Omura and 

Honda 2003; Irwin et al. 2004; Irwin and Adler 2008), or to other rewards offered by 

a plant (van Tets 1997; Fleming and Nicolson 2002; Davies et al. 2003). Rewards 

utilized by floral visitors for food and as building materials include nectar, pollen, 

waxes and resins all of which are advertised as being on offer by flowers (van Tets 

1997; Johnson et al. 1999; Davies et al. 2003; Singer and Koehler 2004; Fenster 

2006; Yuan et al. 2007; Wells et al. 2011). The taste of a nectar reward offered to 

floral visitors could act as a pollinator cue and has the potential to be a decisive 

factor in floral selection by pollinators (Baker and Baker 1982; 1983; Johnson et al. 

2006; Zhang et al. 2012). Components of floral nectar include the type, relative 

contributions and concentrations of sugar, all of which dictate how long a visitor will 

remain at a particular plant before moving on in search of its next floral reward 

(Baker and Baker 1983). However in certain cases other compounds may be used to 

influence floral visitation (Baker and Baker 1982). For example, amino acids in 

nectar could potentially contribute to pollinator attraction and or feeding in female 

cabbage white butterflies Pieris rapae (Alm 1990). In other cases, it has been shown 

that the function of secondary compounds is not to attract pollinators, but rather to 

repel unwanted flower visitors (Johnson et al. 2006; Zhang et al. 2012).  

Sometimes the rewards offered in plant-pollinator interactions are degraded by a 

third party, as shown in the infection of floral nectars by microorganisms (Herrera et 

al. 2008; Vannette et al. 2012). These third party players which include yeasts and 

bacteria degrade floral nectars, altering sugar composition and concentration, and 

the compounds in nectar through the release of fermentation volatiles as metabolic 

waste (Wood 1961; Madigan and Martinko 2006; Herrera et al. 2008; Vannette et al. 

2012). Therefore plant-pollinator mutualisms are being altered through a reduction in 

floral attractiveness due to diminished floral rewards for effective pollinators and 

through the production of volatile compounds that are potentially unattractive, thus 

resulting in reduced fitness for plants and pollinators (Raguso 2004; Herrera et al. 

2008). Recent insight into the effect third party players may be having on plant-

pollinator mutualisms has stimulated pollination biologists to identify how the 

compounds arising from sugar or possible protein degradation in nectar may be 

influencing plant-pollinator interactions (Herrera et al. 2008; Vannette et al. 2012; 

Records 2012).  
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Fermentation compounds associated with sugar and protein degradation of 

nectar have been found in the volatile bouquet of plants that are pollinated by 

rodents (Balmer 2013). These volatile bouquets have been described in studies of 

rodent pollination as being perceived by humans as “yeasty” or “pungent” smelling 

(Wiens et al. 1983; Johnson et al. 2001). Several fermentation volatiles as well as 

the protein degradation product dimethyl disulphide have been isolated from the 

scent of flower parts and nectar of rodent-pollinated plant species in South Africa 

(SD Johnson, unpublished data). This has led to interest in identifying if volatiles in 

nectar associated with sugar and protein degradation are perceived as being 

indicative of diminished rewards for rodent pollinators, or if they are perceived as 

being a cue for actual food sources. To my knowledge no fermentation volatile 

compounds identified in the nectar of a rodent pollinated plant are known to influence 

flower selection during rodent plant-pollinator interactions, although a recent study 

did identify a functional role for ketones (which can be indicative of fat degradation) 

in the scent of a rodent-pollinated parasitic plant (Johnson et al. 2011). However, no 

study has included a test of the responses of rodents to volatiles in the nectar that 

they consume. Therefore, could fermentation volatile compounds influence nectar 

consumption and how could this influence plant-pollinator interactions involving 

rodents? 

The present study examines the choices, measured in terms of consumption, 

among experimental diets containing four fermentation volatiles of varying 

concentrations – ethanol, ethyl acetate, acetic acid and dimethyl disulphide – by 

three rodent species (Micaelamys namaquensis, Rhabomys pumilio and R. dilectus). 

It was hypothesised that all species would show a increased selection for lower 

volatile concentrations in their experimental solutions, avoiding higher concentrations 

because they are either distasteful or perceived as indicative of reduced rewards. I 

also hypothesise that all species will increase their preference for volatiles and 

higher volatile concentrations when these are paired with greater sugar 

concentrations. 
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Materials and methods 

Study species 

The present study involved three rodent species. The Namaqualand rock mouse 

Micaelamys namaquensis (Wiens and Rourke 1978; Wiens et al. 1983; van Tets 

1997; Wester et al. 2009; Hobbhahn and Johnson 2013) is distributed throughout 

southern Africa except the Namib Desert (Nowak 1999) and is commonly found in 

open woodland and rocky outcrops (Skinner and Chimimba 2005). The “Cape” four-

striped striped field mouse Rhabdomys pumilio (Roberts 1951; Rourke and Wiens 

1977) is an occasional floral visitor and geographically limited to the western part of 

South Africa (Roberts 1951; Nowak 1999; Skinner and Chimimba 2005). The eastern 

striped field mouse R. dilectus is similar to R. pumilio but has been suggested a 

separate species (Rambau et al. 2003). It is a seldom documented floral visitor 

(Johnson et al. 2011), and inhabits the moist eastern grasslands of South Africa 

(Nowak 1999; Skinner and Chimimba 2005; Schradin and Pillay 2005). 

 

 

Rodent capture and maintenance 

Thirteen Micaelamys namaquensis and seven Rhabdomys pumilio were caught 

using baited Sherman traps at Houw Hoek pass (340 12’ 49” S, 190 10’ 02” E; 

elevation, 340 m) and Sir Lowry’s pass (340 08’ 59” S, 180 55’ 42” E; elevation, 480 

m), Western Cape Province. Nine Rhabdomys dilectus (male, n = 5; female, n = 4) 

were caught using baited Sherman traps at Ukulinga (270 67’ 12” S, 300 40’ 27” E; 

elevation, 680 m), the University of KwaZulu-Natal experimental farm.  
 Only nine M. namaquensis (male, n = 5; female, n = 4) were used in taste 

experiments due to feeder equipment limitations, and six of the original R. pumilio 

(male, n = 3; female, n = 3) were used as one animal died before experiments could 

begin.   

All animals  were housed in an animal house facility, where they remained in a 

constant environment room with the temperature maintained at 25 ºC ± 1 ºC and a 

photoperiod of 14 L: 10 D. Rodents were individually housed in 25 × 45 × 25 cm 

plastic tub cages with stainless steel grid lids. Maintenance diets were made up of a 
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combination seed mix, commercially available rodent pellets (AVI products, Kloof, 

South Africa), grated seasonal fruits and vegetables, and a combination of larval and 

adult meal worms. Diets were provided via an overhead feeder and a seed tray 

placed into each rodent cage and water was provided ad libitum from inverted water 

bottles. Liquid activated wood pellets were provided as bedding and nesting material 

(AVI products, Kloof, South Africa). Shredded paper, egg cartons and cardboard rolls 

were offered to rodent’s bimonthly for enrichment. Experiments began a minimum of 

two weeks after moving rodents into plastic tub cages, allowing rodents to 

acclimatise to the new environment.  

 

 

Experimental diets 

To investigate whether the preference of M. namaquensis, R. pumilio and R. dilectus 

for artificial diet containing volatile compounds was dependent on sugar 

concentration, two sucrose concentrations similar to common rodent pollinated 

plants were used: 0.73 M (20 % w/w) and 1.46 M (40 % w/w) (Wiens et al. 1983). 

Experimental diets contained varying concentrations of: ethanol (EtOH), ethyl 

acetate (EtOAc), and acetic acid (AcAc) each at 0.03, 0.3, and 3.0 % concentration 

and dimethyl disulphide (DMDS) at 0.003, 0.03, 0.3 % concentration for both sugar 

concentrations. Preference for an experimental diet is expressed as the ratio of 

solution with volatiles consumed to total solution consumed (control + experimental 

diet): a ratio of 50 % indicates no difference in rodent preference. 

Each rodent received one diet pair, an experimental diet and a control at a 

matched sugar concentration. The experiment was then repeated for all 

experimental diets at both sucrose concentrations, each rodent receiving a total of 

24 paired solutions in random order. The aim was to present each rodent with a 

different diet on the same night, however due to rodent numbers several rodents 

would have received the same diet pair on any given night.  
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Feeders 

Throughout experiments rodents had access to two feeders, constructed from 200 

ml inverted rodent glass water bottles. Bottles were sealed off using neoprene 

tubing, and stainless steel rodent drinking sippers (AVI products, Kloof, South Africa) 

were inserted through the tubing to create the rodent sipper (Fig. 1). Drinking spouts 

extended 20 mm into cages (Fig. 2). To protect the feeders from being chewed by 

rodents, a 20 mm diameter steel washer was placed on the cage lid through which 

the spouts were inserted (Tordoff and Bachmanov 2003). The design of the feeder 

ensured that evaporation losses were negligible.   
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Figure 1: Rodent feeder construction. (A) a complete rodent feeder, with rodent sipper 

attachment; (B) The rodent sipper attachment; (C) Stainless steel rodent sipper (AVI 

products, Kloof, South Africa), protruded into the cage about 20 mm; (D) 20 mm neoprene 

stopper; (E) 20 mm diameter steel washer, to protect stopper from gnawing.   

A           B           C           D           E           
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Procedure 

On a trial day, experimental solutions and their paired controls were mixed, placed in 

rodent feeders, weighed, and placed through the stainless steel grid lids on the 

plastic tub cages at 15h00 (Fig. 2). Experiments started 4 h before and ended 4 h 

after the dark cycle, due to the crepuscular and nocturnal nature of the rodents 

(Skinner and Chimimba 2005). Rodent sippers of experimental diets and control 

solutions were separated by a 5 cm gap (Fig. 2). The trial lasted 18 h. To limit the 

effects of side bias, the feeder positions were reversed at 9 h: in order to reduce 

disturbance only one switch was performed under red light conditions (Jackson et al. 

1998). After the 18 h experimental period the feeders containing experimental 

solutions and their paired controls were reweighed to obtain intake for each rodent. 

Trials were separated by at least one maintenance day; during this time rodents 

were fed full maintenance diets and water was provided ad libitum from inverted 

water bottles.  
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Figure 2: Rhabdomys pumilio feeding from a rodent sipper containing an experimental 

solution, with a paired control rodent sipper to the right. The rodent feeders were placed 

through the stainless steel grid lids on the plastic tub cages. Note that the experimental and 

control solutions are separated by a 5 cm gap.  
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Statistics 

Preference for the solution containing volatiles was calculated as the proportion of 

total sugar solution consumption that was contributed by consumption of the solution 

with volatiles. As these values were non-binomial proportional values, the values 

were logit transformed and then compared using a generalized estimating equation 

(GEEs) to account for repeated measures of the same rodents in a generalized 

linear modelling framework (Warton and Hui 2011). A Gaussian distribution and 

identify link function was used, and rodent ID was used as a repeated measure. 

Volatile concentration was treated as a covariate with sugar concentration, species 

and sex of rodents as fixed effects. Interactions between these predictors were 

included to test whether consumption of volatile compounds was dependent on 

sugar concentration and/or volatile concentration. Models incorporated an 

exchangeable correlation matrix and significance of effects was tested using Wald 

statistics. Since the analysis of continuous proportions is known to be statistically 

challenging (Warton and Hui 2011) I also tested various alternative data 

transformations and distribution models, including models which used logit 

transformed data (with Gaussian distribution and identity link), arcsine transformed 

data (with Gaussian distribution and identity link), original data using a Gamma 

distribution and a log link function, or a beta distribution (with a link function using 

SAS) (Appendix Table 1). 

Post-hoc comparisons were conducted using the sequential Sidak method. I 

used 95 % confidence intervals (calculated by back-transformation from the logit 

scale) to assess whether the mean positive response towards fermentation volatiles 

differed significantly from a 50:50 ratio (equal choice). Volatile concentration as a 

covariate was used in the comparison to assess the overall effect of volatile 

concentration on preference. All statistical analyses were performed in SPSS 22 

(IBM Corp.).   
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Results  

All species differed significantly in their response to the volatile compounds 

presented to them during taste experiments (Species, χ2 = 7.15, df = 2, p < 0.05). 

Species diet selection was influenced by the type of volatile compounds (Species × 

Volatile, χ2 = 371.27, df = 9, p < 0.001), volatile concentrations (Species × Volatile 

concentration, χ2 = 1677.96, df = 6, p < 0.001) and the sugar concentration (Species 

× Sugar concentration, χ2 = 215.50, df = 3, p < 0.001) of the experimental diets 

presented during taste choice experiments. Micaelamys namaquensis showed the 

greatest preference towards volatile compounds added to an experimental diet, while 

R. dilectus and R. pumilio were similar in their selection preferences.  

The palatability of an experimental diet was not affected by the sex of the 

rodents (Sex, χ2 = 0.13, df = 1, p = 0.716), but was influenced by the type of volatile 

(Volatile, χ2 = 73.96, df = 3, p < 0.001), the concentration of a volatile (Volatile 

concentration, χ2 =292.54, df = 2, p < 0.001) as well as the interaction between 

volatile and volatile concentration (Volatile × Volatile concentration, χ2 = 46.44, df = 

6, p < 0.001) of the experimental diets presented to the rodents. Rodents showed an 

increased consumption of experimental diets containing lower concentrations of 

volatiles (β = - 0.390, χ2 = 25.82, df = 1, p < 0.001). 

The sugar concentration of an experimental diet influenced rodent choice (Sugar 

concentration, χ2 = 147.29, df = 1, p < 0.001), with increased selection towards 

volatiles when volatiles were combined with the higher 1.46 M sugar concentration 

(Volatile × Sugar concentration, χ2 = 13.88, df = 3, p < 0.005). The interaction 

between sugar concentration and volatile concentration (Sugar concentration × 

Volatile concentration, χ2 = 843.95, df = 5, p < 0.001) had a significant effect on 

rodent preference (β = 0.610, χ2 = 147.29, df = 1, p < 0.001), as well as the 

interaction between volatile, volatile concentration and sugar concentration of an 

experimental diet (Volatile × Volatile concentration × Sugar concentration, χ2 = 

220.54, df = 17, p < 0.001). Increased consumption was seen for experimental diets 

containing low volatile concentrations paired with high sugar concentrations.  
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As the volatile concentration in rodent experimental diets increased, preference 

for an experimental diet containing volatile compounds decreased at both sugar 

concentrations (β = - 0.111; χ2 = 51.14, df = 9, p <0.001; Fig. 3; Table 1), with an 

exception seen for ethanol at the medium 0.3 % concentration for M. namaquensis 

and R. pumilio (Fig. 3a). 

Ethanol and dimethyl disulphide were avoided by all species at both sucrose 

concentrations, which was less pronounced for the lower volatile concentrations; 

however a significant increase in preference was seen at the higher 1.46 M sugar 

concentration (χ2 = 13.88, df = 3, p = 0.003). At the higher sucrose concentration diet 

M. namaquensis and R. pumilio showed a preference for ethanol for the intermediate 

concentration and for a low concentration of dimethyl disulfide (Fig. 3a). All species 

showed a preference for the low 0.003 % dimethyl disulphide solution added to the 

greater 1.46 M sugar experimental diet (β = - 0.697, χ2 = 130.22, df = 1, p < 0.001; 

Fig. 3d). This volatile was repellent in greater concentrations for both sugar 

concentrations (Fig. 3d).  

Ethyl acetate and acetic acid were not preferred by any species at both sucrose 

concentrations, however a significant increase in preference was seen at the lower 

volatile concentrations for acetic acid (AcAc, β = - 0.341, χ2 = 30.68, df = 1, p < 

0.001) and ethyl acetate (β = - 0.258, χ2 = 11.36, df = 1, p = 0.001; Fig. 3c). All 

concentrations of ethyl acetate were significantly rejected by all rodent species at the 

low 0.73 M sugar concentration experimental diets (Fig. 3c).  

Additional data transformations and distribution models showed that the logit, 

arcsine and gamma distribution models gave very similar results, but the beta 

distribution showed some contrasting results. In particular, the overall model for the 

beta distribution differed from the others in being not being significant (χ2 = 504, df = 

18, p = 0.0753), but most of the individual effects were congruent with the other 

models (Appendix table 1). 
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Figure 3: The mean (± 95 % CI) preference of rodents for sugar solutions	containing	a	volatile	

compound for M. namaquensis (n=9, grey circles), R. pumilio (n=6, black triangles) and R. 

dilectus (n=9, white squares) during taste experiments. Rodents were offered a choice of a 

low (0.73 M) or a high (1.46 M) sucrose solution with or without a Low (0.03 %), Medium (0.3 

%) or a High (3.0 %) concentration for (a) Ethanol, (b) Acetic acid and (c) Ethyl acetate. 

Three additional concentrations of Low (0.003 %), Medium (0.03 %) or a High (0.3 %) were 

tested for (d) Dimethyl disulphide. A preference value of 50 %, indicated by the dotted line,  

indicates no discrimination between the sugar solutions	containing	a	volatile	 compound	and	a	

control	sugar	solution.   
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Table 1: Summary of the full statistical model used of logit transformed data, indicating all 

interactions for taste choice test experiments. Bold indicates a significant difference. 

Source Wald χ2 df Significance 

Species 7.145 2 <0.05 

Volatile 123.844 3 <0.001 

Volatile Concentration 631.478 2 <0.001 

Sugar Concentration 201.192 1 <0.001 

Species × Volatile 142.386 6 <0.001 

Species × Volatile Concentration 44.821 4 <0.001 

Species × Sugar Concentration 11.508 2 <0.001 

Volatile × Volatile Concentration 95.237 6 <0.001 

Volatile × Sugar Concentration 28.869 3 <0.001 

Sugar Concentration × Volatile Concentration 2.703 2 0.259 

Species × Volatile × Volatile Concentration 123.598 12 <0.001 

Species × Sugar Concentration × Volatile 35.857 6 <0.001 

Species × Sugar Concentration × Volatile Concentration 5.928 4 0.205 

Species × Sugar Concentration × Volatile × Volatile Concentration 139.728 17 <0.001 
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Discussion 

The functional roles of volatile compounds in the nectar of rodent pollinated plants 

remain little investigated. This study shows how a subset of the volatiles associated 

with the degradation of nectar by microorganisms could influence nectar 

consumption by rodent floral visitors. The diet choice of rodents were dependant on 

the type and concentration of volatile compounds added to experimental diets of 

varying sugar concentrations (Fig. 5). Despite not functioning as a long distance 

attractant for M. namaquensis and R. pumilio (Chapter 2), dimethyl disulphide at 

varying concentrations was preferred by all species when added to the higher 

concentration (1.46 M) experimental diet. Both M. namaquensis and R. pumilio 

responded positively to ethanol, with the greatest preference seen at the 0.3 % 

concentration added to the greater sucrose concentration (Fig. 5).  

The occurrence of microorganisms in floral nectar is a consequence of floral 

visitors transferring various unicellular organisms between nectars (de Vega and 

Herrera 2012). As a result the sugar concentration and composition of floral nectars 

are modified by these microorganisms and this could potentially influence pollinator 

behaviour (Goodrich et al. 2006; Madigan and Martinko 2006; Herrera et al. 2008; 

2009). The presence of volatiles associated with nectar and protein degradation in 

nectar alters the taste of experimental diets, therefore having the potential to act as a 

pollinator cue, and may be a decisive factor in floral selection during pollination 

(Johnson et al. 2006; Zhang et al. 2012). This is in accordance with previous studies 

which have shown that the function of certain secondary compounds in nectar is not 

to attract pollinators, but rather to repel unwanted flower visitors (Johnson et al. 

2006; Zhang et al. 2012). The taste experiments showed that rodents avoided lower 

volatile concentrations less than volatiles greater in concentrations. This suggests 

that rodents may perceive that floral visitation has already taken place and rewards 

may be reduced due to microorganism activity (Madigan and Martinko 2006; Herrera 

et al. 2008; Vannette et al. 2012). On the other hand, it may be a simple 

consequence of rodents finding the volatiles distasteful. 

Sugar concentrations in the nectar of rodent pollinated plants are greater than 

those found in bird pollination systems (Wiens et al. 1983; Johnson and Nicolson 

2008), and a reduction in sugar concentration due to microorganism infection has the 

potential to significantly alter rodent floral visitation. Rodent pollinated Proteaceae 
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have high sucrose in their nectars (Nicolson and van Wyk 1998) so there is more 

potential for degradation from sucrose to hexose, and rodents may not enjoy hexose 

sugars in their nectar (Maller and Kare 1965; Feigin et al. 1987; Johnson et al. 

1999). The taste experiments showed that sugar concentration had a significant 

effect on rodent responses to volatile compounds, with the preference for volatiles 

increasing at greater sugar concentrations of the experimental diets. This could be 

an indication that mice use the taste of their nectar as a cue to the state of microbial 

infection. More importantly greater sugar concentrations were able to increase 

rodent preference for a volatile: this can be compared with the response of nectar-

feeding birds to nicotine in different sucrose concentrations (Lerch-Henning and 

Nicolson 2013). Consequently the taste of a volatile compound in dilute nectars 

enables rodents to reject flowers due to reward degradation by microorganisms.  De 

Vega et al. (2009) showed that there is a negative correlation between yeast density 

and sugar concentration in floral nectars. Additionally, Herrera et al. (2008) found 

that yeast cell density increased as flowers progressed through floral stages and that 

the presence of yeasts caused intraspecific patchiness of nectar characteristics, with 

the potential to alter pollinator behaviour. greater sugar concentrations in the 

presence of volatile compounds should therefore increase the preference for 

degraded nectars as high sugar concentration is indicative of lower microorganism 

densities. Therefore rodent preference for lower concentrations of volatile 

compounds paired with greater sugar concentrations in experimental nectars could 

be linked to their perception of floral nectar quality.  

The type of volatile compound had a significant effect on diet preference, with 

rodents showing an increased preference for diets containing ethanol or dimethyl 

disulphide over those with acetic acid and ethyl acetate. Balmer (2013) considered 

the scent of three nonflying mammal pollinated proteas and found that alcohols and 

dimethyl disulphide made up the majority of their floral bouquets. Her results suggest 

that rodents may be adapted to ethanol and dimethyl disulphide at varying 

concentrations in their nectars (Steenhuisen et al. 2012; Balmer 2013), as has been 

suggested for other elements of the diet of rodents (Paulsen et al. 2013). The 

presence of certain volatiles in the nectars of rodent pollinated plants may be related 

to the exploitation of a pre-existing bias (Schiestl 2005; Johnson 2006). A study 

looking at the social behaviour of golden hamsters Mesocricetus auratus found that 

dimethyl disulphide is a component in the urine of male mice, as well as being 
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present in female vaginal secretions (Singer et al. 1976; Lin et al. 2005). This 

supports the potential of flowers adapting to rodent attraction through the exploitation 

of an existing role of dimethyl disulphide in mammalian social behaviour and now in 

pollinator attraction. However the role of dimethyl disulphide in floral nectars of 

rodent-pollinated plants is still something of a mystery. It seems more likely that 

increased consumption of nectar with this volatile is related to its signalling of protein 

sources (e.g. seeds) than signalling of potential mates.   

Volatiles released by the food of rodents are well documented in seed detection, 

where rodents use the volatile emissions from seeds as scent cues to aid in seed 

locating (Hollander et al. 2012; Paulsen et al. 2013). Desert hamsters (Phodopus 

roborovskii) were found to use seed volatiles – likely to be ethanol, acetic acid and 

sulphur compounds – to effectively locate buried seeds under laboratory conditions 

(Paulsen et al. 2013). Although the studies did not consider the consumption of 

these volatiles or test them individually, their trace presence in headspace samples 

from seeds suggests that rodents consume these compounds at negligible 

concentrations. The rejection of acetic acid and ethyl acetate in experimental diets at 

varying concentrations supports the prediction that rodents may be using the 

volatiles arising from nectar degradation as a potential indicator of food resources. 

Ethyl acetate in nature is an ester of ethyl alcohol and acetic acid and can only form 

once both are present (Reece et al. 2011), thereby the presence of ethyl acetate in 

floral nectars is potentially indicative of further reduction in reward quality.  

As yeasts are common in a variety of floral nectars, various pollinators are 

known to come in contact with ethanol in their foods. Mazeh et al. (2008) conducted 

an experiment to identify if the presence of ethanol in food influenced the food intake 

of frugivorous yellow-vented bulbul (Pycnonotus xanthopygos). The bulbuls 

decreased their food intake at higher concentrations of ethanol, suggesting that the 

result is due to natural selection against ingestion of fruit containing potentially 

intoxicating levels of ethanol (Mazeh et al. 2008). Similarly a study looking at the 

response of frugivorous bats to varying ethanol concentrations in fruit found that bats 

were not attracted to high ethanol concentrations, supposedly due to the associated 

drop in fruit palatability and energetic value (Sanchez et al. 2006). More recently a 

study considering the effect of ethanol on passerine birds, white-bellied sunbirds 

(Cinnyris talatala) and Cape white-eyes (Zosterops virens) identified that birds show 

a dose-dependent response to ethanol in nectar. Both bird species tolerated ethanol 
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in their diets at low concentrations (0.01 and 0.03 %). However, the generalist Z. 

pallidus was found to be more tolerant to ethanol in comparison to the specialist C. 

talatala (Records 2012). This suggests that birds may use the taste of ethanol in 

nectar as a cue to identify nectar quality and that birds are able to tolerate low 

concentrations of ethanol in their food. Plants which are adapted to limit microbial 

activity in nectar by means of antibiotic compounds may be selected for (Records 

2012). Lastly a paper by Wiens et al. (2008) found that tree shrews (Ptilocerus lowii), 

in a west Malaysian rainforest consumed ethanol at relatively high concentrations in 

relation to previous studies (Dudley 2002). Unlike the previously mentioned study 

these animals chose to consume fermented nectar and showed signs of inebriation, 

suggesting the potential of a coevolved relationship between ethanol consumption in 

tree shrews and pollination of the Bertam palm (Weins et al. 2008).  

In the current study the strongest preference for volatile compounds in 

experimental diets was seen in M. namaquensis. Micaelamys namaquensis is a 

known rodent pollinator of flowers which emit distinctive yeast-like odours (Protea 

amplexicaulis, P. humiflora and P. nana), and therefore is adapted to feeding on 

nectar that could be degraded by some degree by microorganisms (Rourke and 

Wiens 1977; Wiens et al. 1983; Herrera et al. 2008; Biccard and Midgley 2009; 

Steenhuisen et al. 2012). These studies also record floral visitation by R. pumilio, 

which supports current findings of the increased preference seen for ethanol by M. 

namaquensis and R. pumilio when compared to R. dilectus. This is contrary to the 

conclusions of recent studies of third-party interactions considering insects and birds, 

which have described the presence of microorganisms in nectars as being disruptive 

to plant-pollinator mutualisms (Herrera et al. 2008; Vannette et al. 2012). Instead 

current findings suggest the presence of microorganisms in nectars as not being 

disruptive in rodent pollinated plants as they inform rodents about nectar quality. 

Rodents altered their choice of experimental diet in relation to the type and 

concentration of volatiles in their experimental diets. As volatile concentration 

increased in experimental diets, preference decreased. Rodents showed the 

increased selection for diets that contained low concentrations of volatiles at a high 

sugar concentration. The relationship between preference and volatile concentration 

could be attributed to the rodents’ use of taste to reject flowers that had their nectars 

degraded by microorganisms. The presence of volatile compounds arising from 

sugar and protein degradation in the nectars of rodent pollinated plants is potentially 
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indicative of previous floral visitation and therefore provides information to pollinators 

about the quality of nectar.  

I conclude that emission of volatiles from nectar as an honest signal of nectar 

quality may be limited by the effects of these volatiles on nectar palatability, and that 

these effects are dependent on sugar concentrations in nectar. Therefore selection 

might favour adaptations such as secretion of compounds associated with sugar and 

protein degradation in the nectar of rodent-pollinated species. This may occur even if 

nectar is not actually degraded by micro-organisms. Investigations are needed into 

how alterations in floral characteristics, such as those caused by microorganisms, 

influence plant pollinator interactions for rodent pollinated plants. To this end, further 

studies of actual ethanol and other compound concentration and microorganisms in 

the nectar of plants are needed.  
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Appendix  

Table 1: Summary of various alternative statistical approaches to the analyses of the continuous proportions 

obtained in the rodent experimental diet consumption trials. All interactions are indicated for taste choice test 

experiments. Bold indicates contrasting results in the over all model for the beta distribution.  

Source 

Logit 
Transformation   

Arcsine 
transformation   

Gamma with log 
link   Beta distribution 

Wald χ2 df Sig. 
 

Wald χ2 df Sig.   Wald χ2 df Sig.   F Stat df Sig. 
 
Species 
 

7.145 2 <0.05  6.756 2 <0.05  6.992 2 <0.05  3.00 2 0.0505 

Volatile 
 123.844 3 <0.001  148.527 3 <0.001  115.375 3 <0.001  31.29 3 <0.001 

Volatile Concentration 
 631.478 2 <0.001  638.352 2 <0.001  567.995 2 <0.001  97.16 2 <0.001 

Sugar Concentration 
 201.192 1 <0.001  205.074 1 <0.001  143.854 1 <0.001  127.79 1 <0.001 

Species × Volatile × 
Volatile Concentration 
 

142.386 6 <0.001  94.677 12 <0.001  170.750 12 <0.001  2.23 12 <0.01 

Species × Sugar Concentration 
× Volatile 
 

44.821 4 <0.001  35.409 6 <0.001  40.159 6 <0.001  0.94 6 0.4656 

Species × Sugar Concentration  
× Volatile Concentration 
 

11.508 2 <0.001  4.819 4 0.31  4.257 4 0.37  0.58 4 0.6758 

Species × Volatile 
 95.237 6 <0.001  145.205 6 <0.001  99.431 6 <0.001  12.64 6 <0.001 

Species × Volatile Concentration 
 28.869 3 <0.001  44.263 4 <0.001  47.223 4 <0.001  3.41 4 <0.01 

Species × Sugar Concentration 
 2.703 2 0.259  18.537 2 <0.001  10.107 2 <0.01  4.73 2 <0.01 

Volatile × Volatile Concentration 
 123.598 12 <0.001  119.664 6 <0.001  104.795 6 <0.001  12.22 6 <0.001 

Sugar Concentration × Volatile 
 35.857 6 <0.001  36.255 3 <0.001  9.674 3 <0.05  3.19 3 <0.05 

Sugar Concentration ×  Volatile 
Concentration 
 

5.928 4 0.205  0.488 2 0.78  6.339 2 <0.05  0.46 2 0.6325 

Species × Sugar 
Concentration  × Volatile × 
Volatile Concentration 
 

139.728 17 <0.001  147.307 17 <0.001  143.781 17 <0.001  504 18 0.0753 
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In this study I attempted to discover how certain volatiles associated with sugar 

fermentation or protein degradation may act as potential behavioural cues during 

rodent pollination. Two volatile compounds, ethanol and dimethyl disulphide, were 

highlighted as being influential to rodent pollination behaviour and the potential for 

them to act as behavioural cues during rodent pollination needs further attention.  

The role that fermentation volatiles play in mammal pollinator-plant interactions 

is poorly studied. Previous studies have focused on two different aspects: on the 

presence of certain third party players in floral nectars, highlighting the role they play 

in reducing pollinator attractiveness through decreased reward quality, thus having a 

negative effect on plant pollinator mutualists (Madigan and Martinko 2006; Herrera et 

al. 2008; de Vega and Herrera 2012; Vannette et al. 2012); or alternatively the 

presence of certain volatiles associated with sugar and protein degradation in the 

foods of various animals (Steenhuisen et al. 2012a; Balmer 2013) and the effect of 

these compounds on animal social behaviour (Singer et al. 1976; Johnston 2003; Lin 

et al. 2005). Few studies have considered the potential for the volatiles associated 

with sugar fermentation and protein degradation to act as behavioural cues during 

foraging by flower-feeding rodents (Hollander et al. 2012; Paulsen et al. 2013), and 

no research to my knowledge has considered the potential for volatiles associated 

with sugar fermentation and protein degradation to influence the palatability of nectar 

to rodents (Table 1). 

When considering rodent behavioural responses towards volatiles released by 

rodent pollinated plants, previously only one study has conclusively shown that a 

single volatile released by a plant can be attractive to rodent pollinators (Johnson et 

al. 2011). In chapter 2, ethanol emerged as being selected for by all three species, 

with the strongest response seen at the 0.3 % concentration, suggesting that 

concentration has an effect on rodent perception of a volatile. Studies considering 

the concentration of ethanol in nectar are therefore needed to better understand the 

relationship between rodent pollinators and this volatile. 
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Table 1: Rewards consumed by rodents and the potential chemical attractants exploited as 

indicators of potential rewards.  

 Rewards Species attracted Chemical attractant/s References 

        
    

Seeds Phodopus roborovskii Alcohols, Sulfur 
containing compounds 
and Acetic acid 

Hollander et al. 2012; 
Paulsen et al. 2013 

Nectar Tupaia montana and Rhabdomys 
baluensis 

Alcohols and Sulfur 
containing compounds 

Greenwood et al. 2011;  
Wells et al. 2011 

Nectar Rhabdomys pumilio and 
Elephantulus brachyrhynchus 

Aliphatic ketone Johnson et al. 2011 

Nectar and pollen Gerbillurus paeba, Acomys 
subspinosus and Micaelamys 
namaquensis 

Unknown Johnson et al. 2001 

Nectar and pollen Acomys subspinosus and 
Micaelamys namaquensis 

Unknown Flemming and Nicolson 
2002 

Nectar and Invertebrates Elephantulus edwardii Unknown Flemming and Nicolson 
2002; 2003 
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Additional volatiles associated with sugar and protein degradation were tested 

and only R. dilectus responded positively to dimethyl disulphide, while acetic acid 

and ethyl acetate were generally not attractive to rodents (Chapter 2). Paulsen et al. 

(2013) found that desert hamsters (Phodopus roborovskii) used seed volatiles – 

likely ethanol, acetic acid and sulphur compounds – to effectively locate buried 

seeds under laboratory conditions. Therefore better data on the volatiles released by 

rodent pollinated flowers could assist in understanding which volatiles could be 

attractive to rodents and possibly give insight into how they may alter rodent 

behavioural responses towards resources.  

The presence of volatiles associated with nectar and protein degradation in 

nectar alters the taste of experimental nectars, therefore having the potential to act 

as a pollinator cue, and may be an essential decisive factor in floral selection during 

pollination (Johnson et al. 2006; Zhang et al. 2012). Taste experiments revealed that 

both M. namaquensis and R. pumilio selected the medium (0.3 %) concentrations of 

ethanol in high sugar concentration diets, but found this compound distasteful in 

lower sugar concentration diets. Dimethyl disulphide was prefered by all species only 

when present in greater sugar concentrations (1.46 M) and at low volatile 

concentrations (0.003 %). The selection for volatile compounds at low concentrations 

in high sugar concentrations solutions suggest that third party interactions could be 

negatively influencing the fitness of plants that rely on rodent pollination; however, 

rodents still chose those solutions with low volatile concentrations over that of the 

control solutions.  These findings could be important for a greater understanding of 

how third party interactions could potentially influence the fitness of plants that rely 

on rodent pollination. Further studies are needed to examine the effect of similar 

volatiles at various concentrations in floral nectars. These studies could determine 

the potential synergistic or antagonistic effects of these volatiles on rodent floral 

visitation.   

Little is known about the effect of rodent selection for nectar with regards to 

monosaccharides and disaccharide sugars (Feigin et al. 1987; Johnson et al. 1999), 

and thus the effect that a yeast community that influences sugar composition may 

have on rodent visitation to flowers. More studies on how microorganisms in nectar 

alter sugar concentrations and proportions and the nectar chemistry of rodent 
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pollinated plants are needed. An example of a potential future study is the 

inoculation of previously sterilized protea flowers with microorganisms to establish 

which part of the scent comes from microorganisms and which comes from the 

flowers. This study could build on findings from Silene caroliniana, a “scentless 

flower”, with emphasis for future investigations identifying the potential implications 

for alternate pollination systems (Golonka et al. 2014).  

In summary, more data is needed on the assortment of volatiles emitted by 

rodent pollinated flowers. The little that is known about the volatiles emitted by 

rodent pollinated flowers has made my preliminary studies possible (Steenhuisen et 

al. 2012a; Balmer 2013; SD Johnson, unpublished data). Field observations and field 

studies are needed to examine the responses of rodents to volatiles, as these 

studies are essential in identifying key trends for future research in the study of the 

rodent pollination syndrome.  

I conclude that certain compounds released through sugar fermentation or 

protein degradation have the potential to act as behavioural cues in rodent 

pollination and that further studies that reveal the effect of nectar degradation by 

microorganisms are needed to help in understanding plant-pollinator interactions. 

Emission of volatiles from nectar as an honest signal of nectar amount may be 

limited by the effects of these volatiles on nectar palatability, and by the dependence 

of these effects on sugar concentrations in nectar. The answer to the question of 

whether a shift from bird to rodent pollinators in the Proteaceae of the Cape 

mountain region could have been the result of the attraction of rodents to the smell of 

fermenting nectar remains elusive, but this study has shed some new light on this 

important question. 
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