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Abstract 

Fusaric acid (FA), a common contaminant of maize and other cereal grains, is produced by several 

species of the Fusarium genus. The mechanism by which FA elicits its toxicity include chelation of 

divalent cations, disruption of mitochondrial function, promoting Reactive Oxygen Species (ROS) 

generation and activating cell death. The antioxidant response is regulated by the transcription 

factor, Nuclear erythroid 2-related factor 2 (Nrf2), which facilitates the transcription of numerous 

antioxidant and cytoprotective genes. Oxidative stress, a condition defined by insufficient 

antioxidant response, can result in damage to macromolecules which promotes cell death. We 

investigated the effects of FA on endogenous antioxidant and DNA repair pathways in human 

embryonic kidney cells (HEK293). 

Cell viability was determined using the MTT assay, following a 24 hour incubation with a range of 

FA concentrations (0-500µg/ml). Intracellular ATP concentrations, glutathione levels and caspase 

activity were evaluated using luminometry. The oxidative status was assessed by quantifying MDA 

levels using the TBARS assay. Protein expression of total Nrf2, phosphorylated Nrf2, p53 and 

PARP-1 was determined by western blotting. The mRNA levels of GPx, CAT and OGG1 were 

measured using qPCR. DNA damage was assessed by utilizing the comet assay. Necrosis was 

determined by quantifying LDH levels. 

FA caused a dose-dependent decrease in cell viability (IC50 = 137.9µg/ml) with an increase in lipid 

peroxidation (p < 0.005) and a reduction in GSH (p < 0.05) and ATP (p < 0.005) levels. FA 

dampened the antioxidant response as evidenced by decreased total Nrf2 protein expression (p < 

0.05), however a significant increase in phosphorylated-Nrf2 (p < 0.05) was also noted. Down-

stream antioxidant genes were decreased (GPx (p < 0.05) and CAT (p < 0.0001)). FA induced DNA 

damage (p < 0.0001) with a concomitant decrease in p53 (p < 0.05) and Parp-1 (p < 0.005) protein 

expression and OGG1 (p < 0.005) gene expression. Caspase activity (caspase 8 and 9; p < 0.05, 

caspase 3/7; p < 0.005) and LDH levels (p < 0.001) were increased in FA-exposed cells, indicative 

of cell death. These results suggest that FA induces cytotoxicity in HEK293 cells by down-

regulating the Nrf2-mediated antioxidant response, compromising genomic integrity and inducing 

cell death.  
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Chapter 1 

1.1. Introduction 

Fusaric acid (FA) is a common contaminant of various cereal grains used for livestock feed and 

other agricultural commodities. It is ubiquitously produced by fungal species of the Fusarium genus 

[1]. Rural populations in developing countries are at particular risk, as grain (maize, wheat and 

barley) forms a staple part of their diet. Many of these communities lack proper storage facilities for 

harvested crops, which leads to increased fungal contamination and exposure to FA [2]. 

 

Fusaric acid is predominantly found in corn-based foods, wheat, barley, other cereal grains and 

animal feeds worldwide [3, 4]. A recent study found that FA was the most prevalent and in the 

highest concentration of mycotoxins produced in corn [5]. However, FA is often overlooked with 

respect to research, in favour of more potent mycotoxins [6]. As a result, FA is not monitored or 

regulated in food intended for human and animal consumption and the exact mechanism of toxicity 

remains poorly understood. 

 

Metabolism of FA showed that there is significant retention of this fusariotoxin in the plasma as 

albumin conjugates, as well as kidney and liver [7]. The kidney is highly susceptible to damage by 

environmental toxins, due to the increased toxin uptake and the concentrating ability of the kidney 

which results in increased toxin exposure [8, 9].  As a vital excretory organ, the kidney is rich in 

mitochondria to ensure a constant supply of ATP for efficient removal of toxic compounds [10]. 

These highly metabolic processes increase vulnerability to toxic insult through mitochondrial 

dysfunction and altered oxidative status [9-11].  

 

A consequence of normal cellular metabolism is the production of reactive oxygen species (ROS) 

formed by the partial reduction of molecular oxygen. The main cellular source of ROS is the 

mitochondrial respiratory chain [12]. Under physiological conditions, these oxidants are produced 

in a controlled manner and play a role in intracellular signaling. Reactive oxidants are 
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counterbalanced by intricate antioxidant defense systems which maintain the redox homeostasis in 

the cell. Environmental stresses, such as exposure to certain toxins can promote uncontrolled 

production of ROS, disturbing redox homeostasis [13]. 

 

Oxidative stress is a condition of imbalance between enhanced ROS production and / or reduced 

cellular antioxidant capacity. The induction of oxidative stress has previously been implicated as a 

contributing factor in FA-mediated toxicity [14, 15]. Under oxidative conditions, cellular 

macromolecules such as lipids, proteins and DNA are prone to oxidative modification which alter 

their structure and function. This can facilitate activation of cell death pathways such as apoptosis 

and necrosis [16]. 

 

The body possesses innate survival mechanisms, which counterbalance cellular stressors and restore 

homeostasis. One of the fundamental adaptive stress responses that combats oxidative stress is the 

activation of the Kelch like-ECH associated protein 1(Keap1)/ Nuclear erythroid 2-related factor 2 

(Nrf2)/ Antioxidant response element (ARE) pathway [13, 17]. This mechanism facilitates the 

transcriptional induction of an entire array of cytoprotective proteins (known as phase 2 antioxidant 

enzymes). Nrf2 is an important stress response transcription factor that is activated in response to 

reactive oxygen and electrophilic species [17]. 

 

Nrf2 levels are regulated by its cytosolic repressor - Keap1, which when bound promotes Nrf2 

degradation by the ubiquitin proteasome pathway. The Nrf2/Keap1 complex senses oxidative stress 

when excess free radicals disrupt critical cysteine residues in Keap1, resulting in Nrf2 being freed 

from the complex [18]. Unbound Nrf2 then translocates into the nucleus, where it heterodimerizes 

with a small Maf protein, which possess a leucine zipper domain that is required for complex 

formation thereby facilitating binding to the ARE in the upstream promoter region of many anti-

oxidative genes, where it initiates their transcription [18, 19]. 

 

When cellular ROS production overwhelms the antioxidant detoxifying capacity, then the resulting 

damage to macromolecules leads to chromosome instability, genetic mutation, and/or aberrant cell 
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growth that may result in cancer [20]. The cellular stress responses act by upregulating repair 

mechanisms to restore molecular function or activate cell death for efficient removal [21]. The 

DNA damage response is robust and sophisticated, involving several systems that detect DNA 

damage, signal its presence and mediate its repair [22]. The base excision repair (BER) pathway is 

of greatest significance to the repair of single base aberrations. In BER, a damaged base is often 

recognized by a DNA glycosylase enzyme that mediates base removal before nuclease, polymerase 

and ligase enzymes complete the repair [22, 23]. Efficient repair of damaged DNA is integral to 

maintaining genomic stability and preventing carcinogenesis. 

 

Failure of attempts to repair damage and restore homeostasis can promote cell death [16]. Apoptosis 

is an energy-dependent process that uses caspases, a group of cysteine aspartic proteases, as the 

driving force to execute this form of programmed cell death. The alternative to apoptosis is 

necrosis, characterised by disorganised and passive cellular disintegration. Several studies have 

demonstrated FA’s ability to induce cell death in various cell models [24-26]. In plants, FA has 

demonstrated potential to exhibit apoptotic and necrotic cell death [24, 26], whereas in human cell 

cancer lines fusaric acid has induced apoptosis [15, 25, 27].  

 

Fusaric acid has been found to alter mitochondrial integrity and redox status as well as promote 

genetic instability. However the exact mechanism of FA-induced cytotoxicity is relatively 

unknown. We investigated the effects of FA on the antioxidant response and the DNA damage 

stress response in HEK293 cells after acute exposure (24 hours). 

 

Aims and objectives 

Aim: To determine the effect of FA exposure on cellular stress response pathways in human 

embryonic kidney (HEK293) cells.  

 

Objectives: 

This study was conducted to determine the following: 



4 
 

 The effect of Fusaric acid on HEK293 cell viability. 

 The oxidative status in HEK293 cells exposed to FA.  

 The effects of FA on antioxidant response signaling in HEK293 cells.  

 The effect of FA on genomic integrity in HEK293 cells by assessing DNA damage and 

associated repair mechanisms.  

 The cell death pathways activated in HEK293 cells when treated with FA. 
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1.2. Literature review 

1.2.1. Mycotoxins 

Mycotoxins are low molecular weight, secondary metabolites produced by fungi. Mycotoxins are a 

group of naturally occurring chemical compounds that exhibit varied toxicological and chemical 

effects. These compounds have no involvement in primary metabolic processes, however they are 

capable of causing adverse effects in plants, animals and humans [28, 29]. Mycotoxins that exhibit 

phytotoxic abilities possess a variety of biological activities and cause morphological, physiological 

and metabolic effects, including necrosis, chlorosis, growth inhibition, wilting and inhibition of 

seed germination. Whereas, mycotoxins affect human and animal health by acting as carcinogenic 

agent, causing immune suppression, hindering normal developmental processes, altering 

metabolism and function of vital organs systems and in severe cases resulting in death.   

 

Exposure to mycotoxins occurs via fungal infection of crops mainly cereal grains (corn, wheat, 

barley, oats, sorghum, etc.) that are consumed directly or used as livestock feed. Other food items 

that are contaminated by mycotoxins include spices, peanuts, fruit, coffee, and even meat and 

animal products (milk and eggs) obtained from animals that have consumed contaminated feed [30].  

 

The term mycotoxin was coined in 1962 following an incident of a mass death of approximately 

100 000 turkey poults in England caused by what was called turkey X disease [31]; it was later 

discovered that the toxigenic agent was aflatoxin which contaminated the groundnut meal that was 

fed to the turkey poults [32].   

 

This was the first discovery of a multitude of other mycotoxins, which exhibited a variety of 

biological effects and were produced by a vast number of different fungal species [33]. Presently, 

there are more than 400 different mycotoxin documented, with new ones still being identified [33].  

 

The disease condition associated with a fungal toxin is termed mycotoxicosis. Mycotoxicosis occurs 

globally, but is more prevalent in developing countries. Incidences of mycotoxicosis increase when 
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environmental, social and economic conditions combine with climatological conditions (humidity, 

temperature) to favour the growth of moulds [28, 34]. These factors coupled with poor agricultural 

practices, improper storage, handling and shipping of crops promote the growth of mould [30]. 

According to the Food and Agriculture Organization of the United Nations (FAO), it is estimated 

that approximately 25% of the world’s crop is contaminated with mycotoxins, thus emphasizing the 

need to implement strict food safety regulations to protect consumers from the harmful effects of 

these mycotoxins [35]. The mycotoxins that have regulatory limits and are of greatest concern from 

a public health and agro-economical perspective include aflatoxins (AFT), trichothecenes such as 

deoxynivalenol (DON), fumonisins, ergot alkaloids, ochratoxin A (OTA), patulin (PAT) and 

zearolenone (ZEN)[30] (Figure.1.1).  

 

 
Figure 1.1: Mycotoxins that have regulatory standards in food in Africa (Taken from Worldwide 

regulations of mycotoxins in food and feed in 2003 from FAO.org [35]). (Note: ZEN- Zearolenone, 

PAT- Patulin, OTA- Ochratoxin A, AFG1- Aflatoxin G1, AFM1- Aflatoxin M1, AFB1- Aflatoxin 

B1 and AFT- Aflatoxin). 
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1.2.1.1. Mycotoxin Toxicity  

Toxicity varies among individual mycotoxins based on various factors, including, target organ/s, 

absorption, dose and time period of exposure. The chemical and structural attributes of the different 

mycotoxins significantly affect toxicity. Within the cell, the interaction of the mycotoxin with 

cellular components alter structure and function of macromolecules, metabolic pathways and induce 

cell death activity [36].  

The exposure period to the toxin greatly impacts the negative effects seen in human health. Acute 

exposure results in a rapid onset and an obvious toxic response following a single exposure to the 

toxin, whereas chronic exposure is characterised by several low dose exposures over a long time 

period causing irreversible adverse effects. The greatest threat to human and veterinary health is 

thought to be related to chronic exposure resulting in cancer, kidney-toxicity and immune 

suppression. However, the best known mycotoxin incidences have arose following acute exposure, 

such as human ergotism, turkey X disease and stachybotryotoxiscosis [30].  Moreover, the effect on 

each person or animal varies as well depending on the individual’s immune system [36, 37]. 

 

1.2.1.2. Fusaric acid 

Fusaric acid is a host non-specific mycotoxin, produced by various Fusarium species such as F. 

moniliforme and F. oxysporum [1]. Numerous surveys of several types of cereal grain, mixed 

livestock and poultry feed indicated that FA is a natural contaminant of these food and feed grains 

[38]. This was validated by a study carried out by Smith and Sousadias, 1993 [3], where it was 

shown that approximately 79-100% of grain and animal feed samples on farms were contaminated 

with FA. The most common route of exposure is through oral consumption of contaminated foods 

[33, 39]. 

 

 The IUPAC name for FA is 5-butylpyridine-2-carboxylic acid and it has a molecular weight of 

179.2157g/mol. FA is one of the oldest known mycotoxins and was first identified by Yabuta et al., 

(1934) during the lab culture of Fusarium heterosporum Nees which was found to exhibit 

phytotoxic effects on rice seedlings [40].  
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Fusaric acid was found to be the most prevalent and in the highest concentration of mycotoxins 

produced in corn [5]. It is often neglected and overlooked with regards to research in favour of more 

potent mycotoxins [6]. As a result, the exact mechanism of toxicity of FA is poorly understood and 

its threat to food security is underestimated. This is validated by the fact that FA is not regulated by 

health or safety standards in food and animal feed [3, 41]. 

 

1.2.1.2.1. Structural and chemical properties of fusaric acid 

Fusaric acid is a picolinic acid (PA) derivative [42] (Figure.1.2). Picolinic acid is a powerful 

bidentate chelating agent [43]. Additionally, it is a membrane permeating weak acid that acts as a 

proton conductor within the electron transport chain (ETC) causing loss of the mitochondrial 

electrochemical gradient [44]. The structure of FA is similar to that of its parent molecule with the 

addition of a butyl side chain, therefore the properties of PA are conserved [44].  

 

The butyl tail on FA increases the lipophilicity of the compound and facilitates entry into the 

cellular interior [44]. The structure consists of a pyridine ring linked to a carboxylic acid moiety 

(Figure.1.2). The chelating effect of FA on divalent cations is attributed to the two adjacent atoms in 

the 2-pyridinecarboxylic acid moiety namely, the nitrogen atom in the pyridine ring and the oxygen 

atom in the carboxylic group [45, 46].  

 

 

Figure 1.2: The chemical structure of picolinic acid (C6H5NO2) (A) and its derivative, fusaric acid 

(C10H13NO2) (B). 
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1.2.1.2.2. Toxicity of fusaric acid 

Fusaric acid is considered to be low to moderately toxic to animals and humans [1, 38]. Fusaric acid 

is however, produced in conjunction with numerous other mycotoxins that are associated with 

higher levels of toxicity and these synergistic interactions are likely to increase toxicity [1, 6]. A 

study conducted by Bacon et al., (1995) in the chicken egg, showed co-administration of equal 

concentration of Fumonisin B1 (FB1) and FA (5µg/egg) resulted in enhanced toxicity compared to 

the individually treated eggs with FB1 or FA [42]. Similarly, DON and FA (0 or 200mg) 

demonstrated a synergistic toxicity in immature swine that were fed grain containing a combination 

of DON and FA and each mycotoxin separately. It was found that the combined effect of both 

mycotoxins resulted in a significant decrease in growth and feed consumption [47]. These 

observations were made following sacrifice of the animals at 4.5, 9, 18 and 36 hour intervals. It was 

also shown that a synergistic relationship exists with FA and trichothecene [48, 49]. 

On the contrary, some studies have shown that no synergistic effect exists between FA and other co-

occurring Fusarium mycotoxins. Studies carried out using FA (0-400mg FA/kg of feed) and T-2 

toxin, a trichothecene mycotoxin, co-administration in broiler chicks and turkey poults showed no 

synergism in toxicity [50]. Another study, using FA (0-400ppm) and FB1 (3.4-437ppm)  

individually and a combination of both, illustrated similar results in rats [51]. The kidney and liver 

were removed for analysis and effects observed in these organs were consistent with FB1 toxicity. It 

was concluded that FA exerted no synergistic, additive or antagonistic effects in vivo with FB1. 

Therefore, the role of FA in toxic responses in vivo appears to produce unpredictable results.   

 

1.2.1.2.2.1. Phytotoxic effects - a wilt toxin 

Fusaric acid was one of the first mycotoxins implicated in plant pathogenesis [52]. Fusaric acid was 

found to be the causative agent of wilt disease in many plants [53]. Fusaric acid mediates its toxicity 

by altering cell membrane permeability and subsequently modifying mitochondrial membrane 

potential, increasing electrolyte leakage, inhibiting mitochondrial activity and oxygen uptake, 

decreasing ATP production and inhibiting root growth in several plant species. It was also shown 

that FA induced apoptotic and necrotic cell death in certain plants [26, 54, 55]. 
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1.2.1.2.2.2.  Cytotoxicity of fusaric acid in cultured cells 

Fusaric acid has demonstrates potent cytotoxic activity in vitro. The effects of FA on the growth and 

viability of various human cancer cell lines have demonstrated the potent anti-cancer activity in 

vitro. Fusaric acid has been shown to arrest cell proliferation and inhibit DNA synthesis, with a 

consequential reduction in tumour growth in head and neck squamous cell carcinomas and 

adenocarcinoma cells [56-58]. The concentration of FA at which these effects were observed ranged 

between 1.4-500mM. Additionally, FA is actively involved in DNA damage and prevention of 

DNA repair by interfering with the catalytic DNA-associated metalloproteins. Therefore FA 

facilitates cytotoxicity seen in these cells that prime them for cell death [46].  

 

Fusaric acid is commonly recommended as a therapeutic intervention in various cancers. This is 

evidenced by studies that have demonstrated FA is beneficial in the treatment of head and neck 

squamous carcinomas (0.1-0.5mM- in vitro model, 1.395mM- in vivo model), colorectal and 

mammary adenocarcinomas and phaeochromocytomas [25, 46, 56, 57, 59, 60].  

 

Conversely, FA is also cytotoxic to normal cells, as illustrated by Fernandez- Pol et al., (1993) 

using human WI-38 fibroblasts. FA (500mM) caused a cytostatic effect in these cells, however an 

increased sensitivity to the toxin was seen in cancerous cells lines [56]. The information available 

with respect to the effect of FA in non-cancer cell lines is limited.  

 

1.2.1.2.2.3. Effects in animals and humans 

FA has been associated with moderate toxicity in animals [4, 61]. Fusaric acid is a 

pharmacologically active compound that biochemically inhibits the enzymatic action of dopamine β 

hydroxylase (DBH) in vivo and in vitro [3, 38, 62]. Dopamine β hydroxylase is a regulatory enzyme 

in the biosynthesis of norepinephrine from dopamine. Norepinephrine is an endogenous 

catecholamine and the body’s primary adrenergic neurotransmitter. Norepinephrine is also required 

for the synthesis of epinephrine, therefore FA acts to lower the levels of both endogenous hormones 

in the brain, heart, spleen and adrenal gland. This inhibitory effect on DBH has allowed for FA to 
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be used as a hypotensive agent, as a decrease in norepinephrine results in a decrease in blood 

pressure [63]. Studies conducted in rats and dogs demonstrated a decline in blood pressure 

following administration of FA [38]. Similarly, the effects of a calcium salt of FA was tested in 

elderly hypertensive Japanese patients, which found that there was a reduction in the systolic and 

the diastolic blood pressures [38]. Furthermore, neurochemical alterations occurred in the brain and 

pineal gland due to dysregulation of hormones affected by FA, namely serotonin, tyrosine, 5- 

hydroxyindoleacetic acid and dopamine, resulting in neurotoxic effects in mammals [61, 64].  

 

The study conducted by Smith and MacDonald (1991), also showed that FA enhanced vomiting and 

feed refusal in pigs administered with trichothecenes [64]. FA is also associated with developmental 

changes, such as a reduction in weight gain observed in immature swine and rats being fed FA 

contaminated feed. The absence of the egg pip in chicken eggs incubated with FA, further 

highlights developmental abnormalities elicited by FA [38]. A more recent study has demonstrated 

that FA exposure causes notochord malformation as seen in zebrafish [41].  

 

1.2.1.2.3. Mechanism of action of fusaric acid 

1.2.1.2.3.1. Oxidative stress 

Like many other mycotoxins, FA employs the mechanism of excessive ROS generation in 

mediating its cytotoxicity [36]. ROS is a collective term used to describe an array of free radicals 

derived from molecular oxygen that are chemically reactive in nature. In aerobic cells, ROS is 

produced as a by-product of oxidative metabolism, where it is plays an integral role in signaling 

pathways to maintain cellular homeostasis [36].  

 

Under normal cellular conditions, basal levels of ROS levels are maintained by endogenous 

antioxidant defence mechanisms which work efficiently to detoxify potentially harmful radicals and 

ensure maintenance of the redox homeostasis [65]. A disruption to redox homeostasis favouring a 

pro-oxidant environment, due to either an increased generation of free radicals and/or a reduced 

detoxifying capacity of the antioxidant systems, is known as oxidative stress [66]. 
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Oxidative stress promotes cellular damage, due to the interaction of ROS with intracellular targets 

such as lipids, DNA and proteins, that affect their structure and function. These alterations lead to 

loss of structural integrity of the cell (lipid peroxidation of membrane), genetic mutations, protein 

malfunction, and even complete enzyme inactivation that affect overall cell signaling processes. 

The ROS mediated modifications compromise cell viability, which can have potentially detrimental 

effects on the cell [66].  

 

Approximately 90% of total oxygen uptake in cells is processed by the ETC. The ETC is localised 

in the inner mitochondrial membrane and consists of protein complexes (complex I-V) [67]. The 

ETC comprises of two synchronized processes; 1) the passage of electrons through the complexes 

into the intermembrane space of the mitochondria to generate an electrochemical proton gradient 

and 2) the phosphorylation of ADP via ATP synthase as protons are channelled back into the 

mitochondrial matrix through complex V (Figure.1.3). The end product of the ETC and oxidative 

phosphorylation is cellular energy in the form of ATP [68]. 

 

Under normal cellular function, molecular oxygen is reduced to water via a 4 electron mechanism 

(Figure.1.3). However, about 1-3% of the oxygen consumed is leaked from the system, mostly at 

complex I and III after undergoing incomplete reduction, therefore producing superoxide anion 

radicals (•O2
−) [67]. Studies have shown that FA altered mitochondrial function by suppressing the 

ETC and subsequently reducing activity of the ATPase complex [69, 70]. 
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Figure 1.3: Production of superoxide radicals in the electron transport chain, located on the inner 

mitochondrial membrane (Taken from McEwan et al., (2011) [71]). 

The •O2
− radicals act as precursors for the formation of other forms of ROS. The dismutation of 

•O2
− by superoxide dismutases (SODs) results in hydrogen peroxide (H2O2) production. Subsequent 

processing of the H2O2 in the Fenton reaction (in the presence of Fe2+) produces hydroxyl radicals 

(OH-).  Fusaric acid involvement in Fenton reactions has also been documented; it is thought that 

chelation of the iron ion enhances the progression of Fenton reactions (Figure.1.4), fundamentally 

increasing the overall generation of ROS [45]. 

 

Figure 1.4: Production of hydroxyl radicals by the Fenton reaction [72]. 

 

1.2.1.2.3.2. Chelation 

Fusaric acid has been identified as a chelating agent with specificity for divalent cations. Chelation 

of the essential metal ions (Zn2+, Cu2+, Fe2+, Mn2+, etc.) rob metalloproteins of their catalytic core. 

This changes their three dimensional structure and therefore impairs or disables their functional 

activity and facilitates the activation of cell death mechanisms [46].  
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Fusaric acid has the ability to chelate Zn2+, Fe2+, Cu2+ and Mn2+ ions, which affects important 

structural and functional components in numerous proteins associated with cell proliferation, 

differentiation, and protection against free radicals such as the transcriptionally active zinc finger 

proteins, heme-containing (Fe2+ ion at its core) complexes and the Zn2+/Cu2+ and Mn2+ containing 

superoxide dismutase (SOD) enzymes [44, 46]. 

 

A study conducted by Fernandez-Pol et al. (1993) implicated FA in the inhibition of ribonucleotide 

reductase (zinc-,copper-and iron-requiring enzyme) activity, a rate limiting enzyme in DNA 

synthesis, due to chelation of metal ion cofactors [56]. Another study showed FA induced copper 

chelation hindered the function of (copper dependent) lysyl oxidase, leading to malformation of 

notochords in zebrafish [41]. 

 

1.2.1.2.3.3. Fusaric acid as a nicotinic acid derivative  

Fusaric acid and its parent compound, PA are derivatives of Nicotinic acid (NA). Nicotinic acid, 

also known as vitamin B3 (niacin), is a water-soluble vitamin. Nicotinamide is the derivative of 

niacin and is used by the body as building blocks in the synthesis of the coenzymes nicotinamide 

adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP) [73]. 

Catabolic processing of macronutrients utilises NAD+ in various energy-producing reactions. 

Nicotinamide adenine dinucleotide is of great importance in redox reactions, especially within the 

mitochondria, where it acts as a carrier of electrons with reducing potential that is required for 

function of the Krebs cycle and the electron transport system. Non-redox reactions also require 

NAD, were it is utilised as a cofactor for catalytic activity of enzymes. Sirtuins (silent mating type 

information regulation 2 homolog - SIRTs) are a NAD+-dependent class of enzymes, which act as 

deacetylases or mono- ADP ribosyl transferases involved in post-translational modification of 

proteins that alter their activity [74]. Another group of enzymes that require NAD+ are Poly-ADP-

Ribose Polymerases (PARP), which catalyse the transfer of polymers of ADP from NAD+ to 

acceptor proteins. PARPs are involved in DNA repair and stress responses, thus NAD+ is critical for 

genome stability. Nicotinamide, which is a NAD+ precursor, often has an inhibitory effect on NAD+ 

requiring enzymes. The structural similarity of FA with nicotinamide could affect reactions that 

require NAD+ through competitive inhibition [15].  
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Previous studies conducted by Telles-Pupulin et al., (1996 & 1998) [69, 70], demonstrated that FA 

treatment resulted in inhibition of α-ketoglutarate dehydrogenase and succinate dehydrogenase in 

the Krebs cycle. These enzymes utilise NAD and produce NADH, which are used as reducing 

equivalents in the ETC. Therefore, FA alters the metabolic function of the energy-producing 

reactions and facilitates mitochondrial dysfunction as a mechanism of toxicity.  
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1.2.2. Cellular stress responses 

Cells are often exposed to a vast array of mutagens, potential carcinogens, environmental and man-

made toxicants all of which cause adverse health effects in humans and animals. Evolutionary 

development of the eukaryotic cell has allowed for the acquisition of several defence mechanisms 

which aid in counteracting and adapting to stressful stimuli [16], which is referred to as the cellular 

stress response. The cellular stress response is a reaction to fluctuations in extracellular conditions, 

which cause damage to the structure and function of macromolecules [75]. However, exposure to 

certain stressors can result in irreversible damage to the cell, thus triggering cell death mechanisms 

[16].    

1.2.2.1. The Nrf2-antioxidant response element signaling pathway 

Nuclear erythroid 2- related factor 2 (Nrf2) is a member of the Cap’ n’ Collar subfamily of basic 

region leucine zipper (bZip) transcription factors. Nrf2 is considered to be the master switch that 

regulates redox homeostasis [18], as it modulates the expression of over 600 gene targets, where the 

protein products are antioxidants and xenobiotic metabolizing enzymes. Induction of these 

detoxifying enzymes lead to neutralization of potential oxidative damage caused by reactive oxygen 

and/or nitrogen species to cellular components that are sensitive to redox change [17]. 

 

Under normal unstressed conditions, Nrf2 interacts with the cytosolic- actin bound Kelch-like ECH-

associated protein 1 (Keap1). Keap1, a negative regulator of Nrf2, sequesters Nrf2 in the cytoplasm 

where it acts as a substrate adapter protein for the Cullin 3- Rbx1-E3 ubiquitin ligase (Cul3-E3 

ligase), which is a multiprotein complex that recognises and targets substrates for ubiquitin-

dependent degradation. The interaction between Nrf2 and Keap1 targets Nrf2 for ubiquitination and 

subsequent degradation via the 26s proteasome [76], thus maintaining low basal levels of Nrf2 [17]. 

Keap1 acts as a sensor of oxidative stress, as the cysteine-rich residues in the amino acid sequence 

undergo modification when intracellular ROS levels increase. Subsequently, the Cul3-E3 ligase 

complex is inhibited, facilitating the efficient up-regulation of Nrf2 to enable an adaptive 

antioxidant response to counteract the ROS and maintain homeostasis [13]. Nrf2 is stabilized and 

translocates to the nucleus where it accumulates and dimerizes with small Maf proteins, which then 

bind to the ARE leading to the transcriptional activation of protective genes (Figure.1.5) [17, 18]. 
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Figure 1.5: Schematic representation of the regulatory pathway of Nrf2 mediated by ROS (Adapted 

from Espinosa-Diez et al., (2015) [77]). 

1.2.2.2. The antioxidant defence system 

The antioxidant defence system is initiated by the ARE upon activation by Nrf2. The association of 

Nrf2 with the ARE within the nucleus facilitates the transcription of genes that encode phase II 

detoxifying enzymes and antioxidant enzymes, such as Glutamate-cysteine ligase-catalytic (GCLC), 

Glutamate-Cysteine ligase-modifier (GCLM), NAD(P)H Quinone Oxidoreductase 1 (NQO1), 

Heme Oxygenase-1 (HO-1), Glutathione Peroxidase (GPx), and glutathione S-transferases (GST),  

that serve to protect the cell from oxidative insult. Prolonged exposure to oxidants alters cell 

signaling outcomes resulting in mutation, carcinogenesis and even cell death due to ROS interaction 

with biological molecules. Maintaining a balance between the pro-oxidants and antioxidants is 

integral to cell survival. Therefore despite the constant generation of ROS by various processes in 

the body, the endogenous antioxidant defence systems work efficiently to counterbalance oxidising 

agents. Antioxidants perform their function by scavenging free radicals, decomposing peroxides, 

donating electrons and hydrogen and/or binding pro-oxidant metal ions [78].  
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The antioxidant enzymes that are necessary to maintain cellular health are superoxide dismutase, 

catalase and glutathione peroxidase, which function cohesively for optimum detoxification of ROS 

and maintenance of redox state (Figure.1.6) [65]. 

 

Figure 1.6: The network of antioxidants that act to detoxify ROS (Adapted from Hermes-Lima, 

(2004) [79]) (Note: NO•- nitric oxide, •O2
—superoxide radicals, ONOO—peroxynitrite, •OH- 

hydroxyl radicals, H2O2- hydrogen peroxide, CAT- catalase, SOD- superoxide dismutase, GSH- 

reduced glutathione, GSSG- glutathione disulphide, GR- glutathione reductase, GPx- glutathione 

peroxidase). 

 

1.2.2.2.1. Superoxide dismutases 

Superoxide dismutases are a closely related class of metalloenzymes which catalyse the conversion 

of superoxide anion radicals (•O2
−) to molecular oxygen and hydrogen peroxide. Superoxide 

dismutases exist in several isoforms, which differ in the metal/s present in their active site, amino 

acid composition, cofactors and localisation within the cell [66].  
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In humans, there are 3 known isoforms of SOD. SOD1 (Cu, Zn-SOD) is located in the cytoplasm 

and exists as a dimer whereby each of the subunits contain a dinuclear metal cluster made up of 

copper and zinc at the active site. SOD2 is found in the mitochondrial matrix and is a homotetramer 

that contains one manganese atom per subunit. SOD3 is located extracellularly as a tetramer that 

also requires copper and zinc ions in its reactive centre. In mammals, SOD3 is regulated by 

cytokine levels and has little influence on the adaptive response to oxidative stress [68]. 

 

Cu, Zn-SOD and Mn-SOD are thought to act as bulk scavengers of •O2
− radicals. The product of the 

SOD reaction is hydrogen peroxide which is also potentially toxic and therefore requires efficient 

removal [72]. In mammalians cells, there are 2 enzyme families which act to carry out the 

detoxification of hydrogen peroxide namely, GPx and CAT [66]. 

 

1.2.2.2.2. Catalase 

Catalase is a ubiquitous heme-containing peroxisomal enzyme that is present in aerobic cells. The 

function of catalase is to catalyse the decomposition of hydrogen peroxide into water and gaseous 

oxygen. Catalase is a tetramer of four polypeptide chains, with a porphyrin heme (iron) present in 

each subunit, which facilitates the reactivity of the enzyme with hydrogen peroxide, thereby 

mitigating its toxic effects [72]. 

 

1.2.2.2.3. The glutathione network 

The glutathione system constitutes several enzymes which include glutathione (non-enzymatic 

thiol) (GSH), GPx, glutathione reductase (GR) and GST that work in conjunction with each other to 

detoxify and eliminate toxic electrophilic metabolites and xenobiotics [78]. 

 

Glutathione peroxidases are a family of tetrameric selenium-requiring enzymes which uses GSH as 

the reducing equivalent to catalyse the conversion of hydrogen peroxide or hydroperoxides to water 

and alcohol while simultaneously oxidizing GSH [68]. 



20 
 

Glutathione S-transferases is a family of cytosolic multifunctional enzymes. They catalyse the 

conjugation of GSH with a variety of reactive electrophilic compounds, thereby neutralizing their 

active electrophilic sites and subsequently making the parent compound more water-soluble [78].  

 

Glutathione, is a major non-enzymatic thiol in living organisms, which plays an essential role in 

coordinating the body’s antioxidant defence processes in response to oxidative stress [72]. This 

ubiquitous intracellular tripeptide is made up of glutamate, cysteine and glycine which is 

responsible for the maintenance of cellular redox state [68]. Glutathione is synthesised in the cell by 

2 ATP-requiring enzymes, γ -glutamylcysteine synthetase (also called glutamate cysteine ligase-

GCL) and glutathione synthetase [80]. The GCL catalysed reaction results in the formation of γ-

glutamylcysteine and is the rate limiting step in de novo glutathione synthesis. Glutathione is 

implicated in a feedback loop to inhibit GCL and in doing so, regulates cellular concentrations of 

GSH [81]. The next step is the addition of glycine to the C-terminal of γ-glutamylcysteine, 

catalysed by glutathione synthethase. The cysteine residue is the rate limiting factor and the 

sulfhydryl group of cysteine acts as a proton donor; therefore cysteine is responsible for the 

biological activity of GSH. Glutathione exerts its antioxidant effects by directly scavenging radicals 

or by participating in reactions catalysed by enzymes that use GSH as an electron donor (GPx and 

GST) [80]. 

 

Glutathione reductase is a ubiquitous flavoenzyme that exists as a homodimer, containing 1 flavin 

adenine dinucleotide (FAD) and NADPH binding site per subunit that catalyses the reduction of 

oxidised glutathione (GSSG) to GSH that is essential for the continuation of the glutathione redox 

cycle by regenerating reduced form of GSH that has antioxidant capacity [82]. The GSH/GSSG 

ratio is a major determinant of oxidative stress. In healthy cells, the glutathione pool consists of 

approximately 98% of GSH. However, exposure to oxidative stress causes an accumulation of 

GSSG, decreasing the ratio of reduced to oxidised glutathione [83]. These enzymes function to 

prevent ROS-induced damage in the cell, nonetheless, in times of excessive stress these 

mechanisms are inadequate and oxidative damage occurs [81]. 
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1.2.2.3. Macromolecular damage   

When macromolecules are subjected to oxidative modification due to failure of the antioxidant 

system, the function and structure are altered, ultimately affecting cellular processes and even 

viability. Oxidative stress can induce radical-mediated damage to cellular membranes resulting in 

lipid peroxidation, which converts unsaturated lipids into polar lipid hydroperoxides. Lipid 

peroxidation was the first type of oxidative damage to be investigated [66] and is particularly 

damaging to the cell due to its facile propagation of free radical reactions [65].  

 

Lipid peroxidation results in the formation of a variety of oxidised products including reactive 

electrophiles such as epoxides and aldehydes, which are capable of modifying DNA, protein and 

other macromolecules. Malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE) are examples 

of such, whereby MDA can react with nucleic acid bases and form adducts, that are mutagenic. 

These lipid peroxidation products are commonly used as indirect measures of oxidative stress [84]. 

Oxidative damage to lipids may compromise cell function by increasing membrane permeability 

and inactivating membrane bound receptors and enzymes [72].  

 

Oxidative damage to proteins can significantly affect cellular homeostasis by altering cell 

signalling, cell structure, and enzymatic processes [84]. Protein oxidation is regarded as covalent 

modifications made to a protein by ROS directly or by secondary products of oxidative damage. 

The effect that ROS has on proteins include: oxidation of amino acid side chains that result in 

fragmentation of peptide chains, alterations to physical properties of the protein such as electrical 

charge and formation of protein-protein or protein-DNA crosslinks [85]. All amino acids are subject 

to oxidation, however cysteine and methionine are most vulnerable to ROS-mediated modification 

due to the high reaction susceptibility of the sulphur groups within these amino acids [85].  

 

 

DNA is also prone to oxidative modifications, which can lead to genomic instability. Oxidative 

damage to DNA causes alteration to bases, single- (ss) or double-stranded (ds) DNA breaks, purine, 

pyrimidine or sugar-bound modifications, mutations, deletions or translocations, and cross-linking 

with proteins [72]. Guanine is the most susceptible DNA base because of its low oxidation 
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potential, thereby producing 8-oxoguanine (8-oxoG), which is the most abundant, stable and well 

documented DNA oxidation product [84]. It is often utilised as a biomarker of oxidative stress. 

These lesions are strongly promutagenic, as it promotes the mismatched incorporation of dATP 

instead of dCTP opposite the lesion during replication, leading to a guanine: cytosine to thymine: 

adenine transversion [86].  

 

1.2.2.4. Cellular repair pathways  

Cells are not defenseless against oxidative damage, as they can adapt to either overcome damage by 

initiating various sophisticated repair mechanisms or induce cellular death if damage is too 

extensive [66].  

 

The major fate of most oxidised proteins is degradation by proteasome or lysosomal pathways 

where they undergo complete catabolism to form its constitutive amino acids. Thereafter new 

replacement protein molecules are synthesised de novo using recycled amino acids [87].  

 

The primary repair mechanism for oxidative base lesions including 8-oxoG, is base excision repair 

(BER). Base excision repair is responsible for recognition and repair of oxidised bases, abasic (AP) 

sites, DNA ss-breaks, alkylated bases, deaminated bases, and base mismatches [84]. The repair 

process begins with the identification and subsequent removal of the damaged or incorrect base by 

the DNA glycosylase. This results in the formation of an AP site, which are cleaved by AP 

endonucleases. The gap that remains in the DNA backbone is filled in by the action of a DNA 

deoxyribose phosphodiesterase, a DNA polymerase and a DNA ligase [23, 66]. 

  

The major glycosylase employed in carrying out the first step of the BER process in mammals, is 8 

– oxoguanine glycosylase 1 (OGG1). Human OGG1 also recognises and excises several other 

oxidative lesions, including 2,6-diamino-4-oxo-5-formamidopyrimidine (FapyG) and 7,8-

dihydroxy-8-oxo-2’-deoxyadenine (8-oxoA) [84]. OGG1 is ubiquitously expressed and exists in 2 

isoforms due to the alternative splicing of the single mRNA gene product, whereby α-OGG1 
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(OGG1 type 1a) is located in the nucleus and β- OGG1 (type 2a) is found in the mitochondria. 

OGG1 contains critical thiol moieties that are essential for catalytic activity. OGG1 protein contains 

2 distinct DNA-binding motifs namely, a helix-hairpin-helix domain and a Cys-Cys-His-His (C2H2) 

classical zinc finger domain [88].  

 

It has been shown that diminished OGG1 reduces the DNA repair capacity leading to an increase in 

base mutations [86, 88]. As the 8-oxoG lesions have mutagenic potential, OGG1 activity is crucial 

in preventing mutations that propagate carcinogenesis [86].  

 

Another repair protein integral to the BER process is PARP-1, which is a chromatin-associated 

enzyme that catalyses the post-translational modification of proteins [73]. Poly ADP-Ribose 

Polymerase-1  activity is regulated by interaction with DNA strand breaks and is involved in other 

cellular processes in addition to DNA repair, which include cell cycle control, transcriptional 

regulation and apoptotic cell signalling [21, 89]. 

 

Poly ADP-Ribose Polymerase-1 acts downstream of OGG1 and binds to the ss-DNA breaks 

through its zinc finger motif, where it modifies it and other proteins by long branched polymers of 

ADP-ribose, which in turn recruit downstream DNA repair proteins and chromatin remodelling 

factors to complete the DNA repair process [90]. High levels of DNA damage saturates cellular 

repair capacity, therefore genomic integrity is compromised, resulting in apoptosis. It has been 

shown that the tumour suppressor, p53 is an important regulator of the cellular response to ROS-

induced DNA damage [84]. The p53 protein is a homotetrameric transcription factor that is located 

in the nucleus and induces transcription of target genes involved in cell cycle arrest, DNA repair 

and apoptosis. Oxidative stress acts as a potent inducer of p53 activity [91]. Exposure to low levels 

of oxidative stress cause p53 to exhibit antioxidant properties to ensure cell survival. However, in 

response to high levels of oxidative stress, p53 acts as a pro-oxidant to further increase ROS, 

leading to cell death [92].  

 
Studies have shown the involvement of p53 in detecting oxidative DNA damage and subsequently 

modulating the BER function in response to oxidative stress [93]. Under conditions of oxidative 
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stress, high levels of DNA damage cause an ongoing cycle of p53 activation and accumulation that 

mediates the initiation of apoptosis in damaged cells, thereby maintaining genetic integrity. The 

functional activity of p53 being integral in the prevention of cancer is well documented.  Therefore, 

it has been shown that decreased repair will result in elevated lesions and an increased risk of 

disease. Hence the DNA repair capacity of a cellular system, is seen as potential marker for cancer 

susceptibility [86]. 

 

1.2.2.5. Cell death  

The adaptive capacity of a cell ultimately determines its fate. Therefore, when cellular defence 

mechanisms and pro-survival strategies are unsuccessful, cell death programs are activated to 

eliminate these damaged cells from the organism. The energy status plays a pivotal role in dictating 

the manner in which a cell dies [94]. The two major mechanisms of cell death are apoptosis and 

necrosis (Figure.1.7).  

 

 

Figure 1.7: The main morphological changes seen in apoptotic and necrotic cell death (Adapted 

from Van Cruchten and Van Den Broeck, (2002) [95]). 
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Apoptosis, a form of programmed cell death, is vital for both developmental processes and 

maintenance of cellular homeostasis. Apoptosis is characterised by distinct morphological changes 

that involve a series of highly regulated energy-dependent biochemical mechanisms that leads to 

cell destruction and disintegration [96]. The core component of the apoptotic machinery is a 

proteolytic system involving a group of aspartate-specific cysteinyl proteases referred to as 

caspases. Caspases are widely expressed as inactive zymogens in most cells and once activated can 

often activate other procaspases, allowing initiation of a protease cascade [97]. All caspases contain 

a cysteine residue at their active site and cleave their target proteins at specific aspartic acids [98]. 

Caspases involved in apoptosis have been classified by their mechanism of action and are either 

initiator caspases (caspase-8 and -9) or executioner caspases (caspase-3, -6, and -7) [97]. The 

morphological changes seen in cells undergoing apoptosis include cell shrinkage, 

hypercondensation of chromatin, chromosomal cleavage into nucleosomal fragments, blebbing of 

plasma membrane and packaging of cellular contents into apoptotic bodies-membrane enclosed 

vesicles (Figure.1.7.) [96, 99]. 

 

There are two major apoptotic pathways that exist in mammalian cells: the extrinsic death receptor-

mediated and intrinsic mitochondria-mediated pathways [100]. Both pathways are tightly regulated 

and controlled by a host of regulatory molecules, which will be highlighted further on.  The 

extrinsic pathway of apoptosis, also called the death receptor pathway, is triggered by ligation of 

death receptors belonging to the tumour necrosis factor (TNF) family [16]. They are characterised 

by cysteine rich extracellular subdomains which allow highly specific ligand recognition, 

subsequent trimerization, and activation of the death receptor [21]. TNF receptors contain an 

intracellular death domain, which interacts with adapter molecules within the cytoplasm to form the 

death inducing signalling complex (DISC), that facilitates the recruitment of procaspase-8 to the 

DISC [96]. This results in the accumulation of procaspase-8 at the DISC that leads to autocatalytic 

activation and subsequent release of active caspase-8 which activates effector caspases 3, 6 and 7 

resulting in cell death (Figure.1.8) [96, 100].  

 

The intrinsic, or the mitochondrial, pathway is activated by developmental cues upon cellular 

stresses such as reduced oxygen levels, increased levels of ROS and DNA damage. This pathway is 

regulated by the Bcl2 family of proteins which comprise of both anti-apoptotic family members, for 
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example, Bcl-2, Bcl-XL, and Mcl-1, and pro-apoptotic molecules such as Bax, Bak, and BH3 

domain only molecules [101]. Accumulation of pro-apoptotic (Bax and Bak) proteins on the 

mitochondrial outer membrane results in oligomerization which allows for pore formation and 

initiates the permeabilisation of the outer mitochondrial membrane [100]. This facilitates the release 

of proteins located in the intermembrane space such as Cytochrome c (Cyt c). Cytochrome c binds 

Apaf-1 (Apoptotic protease activating factor-1), and couples with procaspase 9 to form the 

apoptosome [101]. The oligomerization of procaspase-9 in apoptosome formation facilitates the 

activation of caspase-9 which in turn cause proteolytic activation of the effector procaspases-3, -6, 

and -7, resulting in the execution of cell death (Figure.1.8) [96, 100]. 

 

 

Figure 1.8: The sequence of events leading to the activation of the intrinsic and extrinsic apoptotic 

pathway (prepared by author). 

 

The alternative to apoptotic cell death is necrosis, whereby cellular injury results in an energy-

independent mode of death caused by environmental perturbations such as toxins, heat and reduced 

oxygen. Some of the major morphological changes seen in cells undergoing necrosis include 



27 
 

cellular swelling, aggregation of DNA, distended endoplasmic reticulum, formation of cytoplasmic 

blebs; swelling of mitochondria, disrupted organelle membranes; swollen and ruptured lysosomes; 

and eventually disruption of plasma membrane integrity which are characteristics that are 

recapitulated by ATP depletion (Figure.1.7) [96]. 

This loss of cell membrane integrity results in the release of the cytoplasmic contents into the 

surrounding environment and therefore mediates inflammation. However, apoptotic cells do not 

release their cellular constituents into the surrounding environment and are quickly phagocytosed 

by macrophages or adjacent normal cells, thus there is essentially no inflammatory reaction [96]. 
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Chapter 2 

Materials and methods 

2.1.  Materials  

The Human Embryonic Kidney 293 cell line (HEK293) was purchased from Highveld Biologicals 

(Johannesburg, South Africa). Cell culture reagents were purchased from Lonza Biowhittaker 

(Basel, Switzerland). Fusaric acid (FA), phosphate buffered saline (PBS) tablets and bicinchoninic 

acid (BCA) reagents were purchased from Sigma Aldrich (St Louis, Missouri, United States). 

Luminometry Kits and reagents (CellTitre-Glo™, GSH-Glo™ Glutathione and Caspase-Glo® 

assay kits) were purchased from Promega (Madison, Wisconsin, United States). Reagents for 

western blot and quantitative-PCR (qPCR) were purchased from Bio-Rad (Hercules, California, 

United States). Quantitative-PCR primer sequences were obtained from Inqaba Biotechnologies 

(Pretoria, South Africa). Antibodies for western blots were purchased from Santa Cruz 

Biotechnologies (Dallas, Texas, United States), Cell Signalling Technology (Beverly, 

Massachusetts, United States) and Abcam (Cambridge, United Kingdom). All other reagents and 

consumables were purchased from Merck (Darmstadt, Germany), unless otherwise specified.  

 

2.2. Cell culture 

The HEK293 cell line is derived from primary human embryonic kidney cells obtained from a 

healthy aborted foetus. The HEK293 cell line is thought to be of epithelial origin. HEK293 cells are 

an adherent cell line that has been transformed with sheared adenovirus 5 DNA [102]. The HEK293 

cell line is one of the most used lines, second to HeLa cells in cell biology studies. Its highly 

metabolic nature, in addition to its quick and easy reproduction and maintenance make it a popular 

choice. Due to its popularity, it provides a means for complementary biochemical/cell biological 

evaluation of expressed proteins to be performed in concert with functional analyses to establish 

detailed profiles for the action of various compounds.  

The HEK293 cells were cultured using Dulbecco’s Modified Eagle’s Medium (DMEM), 

supplemented with 1% L-glutamine (an energy source for highly metabolic cells, supports synthesis 

of proteins and nucleic acids by acting as a nitrogen source), 1% Penicillin/Streptomycin/Fungizone 
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(antibiotic/anti-fungal), 10% foetal bovine serum (delivers growth factors, nutrients, essential 

minerals and trace elements, transport and attachment proteins to the cells) and 2.5% 4-(2-

hydroxyethyl)-1-piperazineethanesulphonic acid (HEPES) buffer (zwitterionic buffer to maintain 

physiological pH). The cultures were maintained at 37°C in a humidified incubator supplied with 

5% CO2.  

Cells were cultured in 25cm3 flasks and washed regularly using 0.1M PBS. Cells were grown to 

90% confluency prior to treatment. Cells were removed from flasks by agitating flasks to dislodge 

cells. Cell counting was carried out using the Trypan blue exclusion method. Trypan blue is a vital 

dye used to determine number of viable cells in a cell suspension. The principle of the method is 

based on the ability of living cells to exclude the dye, whereas non-viable cells allow the dye to 

permeate its cell membrane. Therefore light microscopic examination of cells suspended in culture 

media containing trypan blue can be used to determine, viable cells (unstained) from non-viable 

cells (appear blue) [103]. Viable cells were counted and cell numbers adjusted according to the 

assay requirement.  

 

2.3. Preparation of fusaric acid treatment 

Fusaric acid, produced by Gibberella fujikuroi, was supplied as a white powder (Product no. F6513; 

Sigma Aldrich, St Louis, Missouri, United States). A stock solution (1mg/ml) was prepared in 0.1M 

PBS. Cells were treated with a range of concentrations of FA (0-500µg/ml) to obtain a half maximal 

inhibitory concentration (IC50) following a 24 hour incubation. 

 

2.4. Cell viability 

2.4.1. 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay  

2.4.1.1. Principle 

The MTT assay is a colorimetric assay used to assess cell viability and cytotoxicity. MTT is a 

water-soluble, yellow tetrazolium salt that is reduced to insoluble purple formazan crystals in the 

mitochondria of metabolically active cells [104]. Tetrazolium salts accept electrons from oxidised 

substrates (NADH and NADPH) and suitable enzymes (NAD (P)-dependent oxidoreductases). 
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MTT is specifically reduced at the site of ubiquinone and Cytochrome b and c of the electron 

transport chain and is the result of succinate dehydrogenase enzyme activity [105]. 

An organic solvent, dimethyl sulphoxide (DMSO), is used to solubilize the insoluble formazan 

product, which can then be measured spectrophotometrically (Figure 2.1). The intensity of the 

resulting coloured solution is proportional to the cell viability [106]. This calculation was carried 

out by equating the mean OD for each concentration to the mean OD treatment blank (no FA added) 

to determine percentage viability. 

 

2.4.1.2. Protocol 

For the MTT assay, approximately 10000 cells/well were seeded into a 96-well microtitre plate and 

allowed to attach overnight. The following day, the cells were incubated with a range of FA 

concentrations (0-500µg/ml) in triplicate (300µl/well) for 24 hours (37˚C, 5% CO2). After the 

incubation period, cells were rinsed twice with 0.1M PBS, followed by the addition of 20µl MTT 

(5mg/ml in 0.1M PBS) and 100µl complete culture media (120µl/well). The plate was incubated for 

a further 4 hours (37˚C, 5% CO2). Thereafter, the supernatant was removed and 100µl DMSO was 

added to each well and incubated for 1 hour (37˚C, 5% CO2). The optical density (OD) of the 

formazan product was measured at 570nm with a reference wavelength of 690nm using a 

spectrophotometer (Bio-Tek µQuant; Winooski, Vermont, United States) (Appendix A). 

 

The percentage cell viability for each concentration of FA was calculated and used to determine an 

IC50 value by plotting a concentration response curve using GraphPad Prism V5.0 statistical 

software (GraphPad Software Inc., San Diego, California, United States). The experimental cells in 

all subsequent assays were treated using the IC50 concentration. 
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Figure 2.1: The process of MTT salt reduction and subsequent quantification steps (Adapted from 

Barahuie et al.,(2014)[107]). 

2.4.2.  ATP quantification assay 

2.4.2.1. Principle 

Luminometry is an analytical technique used to measure chemiluminescent and bioluminescent 

reactions. Chemiluminescence occurs when an exothermic chemical reaction releases energy to 

generate electromagnetic radiation in the visible light spectrum. Bioluminescence is a type of 

chemiluminescence which is based on the production and emission of light by living organisms. 

Fireflies exhibit bioluminescence and possess the biomolecule luciferase, which is exploited for 

scientific purposes. The light-producing reaction is catalysed by luciferase, using ATP, Mg2+ and 

oxygen as cofactors in the presence of its substrate, luciferin. The mono-oxygenation of luciferin 

produces oxyluciferin in an unstable electron excited state. Excited oxyluciferin releases its energy 

in the form of photons of light producing a glow. When all energy has been released, it returns to a 
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ground state and becomes inactive [108]. The principle of the CellTitre Glo™assay is based on the 

use of ATP as a cofactor in the reaction. Therefore, the intensity of the light emitted is proportional 

to the intracellular ATP concentration (Figure 2.2). 

 

 

Figure 2.2: Luciferase catalyses ATP-dependent oxidation of D-luciferin to produce light (Adapted 

from Held, (2006)[109]). 

2.4.2.2. Protocol 

To determine ATP concentrations, the CellTitre Glo™ assay (Promega; Madison, Wisconsin, 

United States) was carried out as per manufacturer’s guideline. Cells (20000 cells in 50µl PBS/well) 

were aliquoted in an opaque 96-well microtitre plate to which the ATP CellTitre Glo™ reagent 

(50μl) was added and allowed to react in the dark (30 minutes, room temperature). Following 

incubation, the luminescent signal produced was detected with a Modulus™ microplate 

luminometer (Turner Biosystems; Sunnyvale, California, United States). Results were expressed as 

mean relative light units (RLU).  

2.5.  Oxidative status 

2.5.1.  Glutathione assay 

2.5.1.1. Principle 

 

Reduced glutathione (GSH) is considered one of the most abundant endogenous antioxidants. GSH 

acts as a free radical scavenger by donating an electron to free radicals, thereby detoxifying ROS. 

This results in two electron donating GSH molecules forming oxidised GSSG. ROS has the capacity 

to deplete GSH stores by oxidation or reactivity with the thiol group [77]. Additionally, exacerbated 

production of ROS by toxigenic agents can cause increased demand for GSH, which exceeds GSH 
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replenishing mechanisms that can further reduce GSH availability. GSH is tightly regulated by a 

number of enzymes governing its production and functioning. Glutathione-S-transferase and GPx 

are enzymes that use GSH to catalyse detoxification reactions of electrophilic compounds. GSH is 

recycled by the action of glutathione reductase (GR) using NADPH as a reducing equivalent [77]. 

Glucose-6-phosphate dehydrogenase (G6PD) maintains the level of NADPH, which maintains the 

level of GSH in cells (Figure.2.3). 

 

 
Figure 2.3: The glutathione network of detoxifying enzymes (Adapted from Weydert et al., (2010) 

[110]. 

 

Therefore, a change in GSH levels is important in determining toxicological responses in cells and 

is often used an indicator of oxidative stress. The GSH-Glo™ Assay was used to quantify 

intracellular GSH levels in the cell. This assay is based on the conversion of the luciferin derivative 

in the presence of GSH, which is catalysed by a GST enzyme. The luciferin formed is detected in a 

coupled reaction utilizing the Ultra-Glo™ Recombinant Luciferase. The resulting luminescence is 

proportional to the amount of GSH present in the cell. 

2.5.1.2.  Protocol 

The Glutathione-GloTMAssay (Promega, Madison, Wisconsin, United States) was carried out as 

outlined in the manufacturer’s guidelines in order to quantify cellular GSH content. After removing 

cells from treatment, the cells were counted (20000 cells in 50µl PBS/well) and plated in triplicate 

in a white 96-well microtitre plate. GSH standards ranging 0-50µM were prepared from a 5mM 

stock solution, which was serially diluted (two fold) using de-ionised water. Thereafter GSH 
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standards were plated in triplicate (50µl/well). The GSH-Glo™ reagent (1µl Luciferin-NT, 1µl 

Glutathione-S-transferase, 48µl GSH-Glo™ Reaction buffer) was added to all wells (50µl/well) and 

incubated in the dark for 30 minutes at room temperature. Reconstituted Luciferin Detection 

Reagent (50µl) was added to each well and incubated for a further 15 minutes at room temperature. 

Luminescence was measured using a Modulus™microplate luminometer (Turner Biosystems; 

Sunnyvale, California, United States). A standard curve was constructed using the GSH standards 

and GSH concentration in the samples were extrapolated and reported as µM concentrations 

(Appendix B). 

2.5.2.  Lipid peroxidation –MDA quantification 

 

2.5.2.1. Principle 

Reactive oxygen species have a relatively short half-life, making direct quantification difficult. A 

common method employed to quantify redox status is the measurement of oxidised 

macromolecules, which can be used to indirectly quantify ROS. Lipid peroxides, by-products of 

lipid interaction with ROS, are often used as biomarkers of oxidative stress [111].  

Lipid peroxidation occurs when unsaturated fats are oxidised by ROS which give rise to additional 

free radicals as well as other toxic byproducts in a chain reaction mechanism. Polyunsaturated fatty 

acids (PUFA) are most prone to oxidative damage due to the presence of double bonds between 

adjacent carbon atoms, which have the ability to react and form lipid peroxides [111].  

 

The chain reaction mechanism of lipid peroxidation is initiated by oxidizing free radicals 

abstracting hydrogen (H+) atoms from methylene groups in the PUFA. This results in the formation 

of unstable fatty acid radicals which react with molecular oxygen and form peroxyl radicals. These 

peroxyl radical intermediates are also unstable and react with adjacent lipid molecules abstracting a 

H+ atom and forming another fatty acid radical and hydroperoxide, thus creating a chain reaction 

(Figure 2.4) [111]. The hydroperoxides are further reduced to form reactive aldehydes such as 

MDA, 4-hydroxynonenal (4-HNE) and isoprostanes by-products. This process is terminated when 2 

radicals react forming non-radicals or with the addition of antioxidants which act as hydrogen 

donors. MDA levels are routinely measured as a biomarker of oxidative stress [112].  
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Figure 2.4: The mechanism of lipid peroxidation (Adapted from Basu,(2007) [113]). 

Malondialdehyde levels were measured using the thiobarbituric acid reactive substances (TBARS) 

assay. The TBARS assay is a colorimetric assay that is based on the quantification of the MDA- 

thiobarbituric acid (TBA) adduct. This adduct is formed by MDA reacting with TBA molecules in a 

1:2 ratio under acidic conditions at a high temperature (100°C). The resulting chromophoric 

complex absorbs maximally at 532nm, and therefore can be measured using a spectrophotometer 

(Figure 2.5) [114]. 
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Figure 2.5: The reactivity of MDA with TBA producing a pink coloured product (Adapted from 

Janero,(1980) [114]). 

 

2.5.2.2. Protocol  

The thiobarbituric reactive substances (TBARS) assay was used to measure extracellular MDA 

levels. The TBARS assay was conducted as per the method described by Abdul et al., (2016) [15]. 

Extracellular MDA was quantified using the supernatant from the FA-treated cells and the untreated 

control. In addition to the treatment samples, a blank (3mM HCl) and positive control (1µl MDA), 

both containing no cells were also prepared (Appendix D). The sample blank was included to 

account for any background interference that may affect the sample measurement. The positive 

control contained MDA, as it is known to produce an effect, to which experimental treatments can 

be compared and in doing so also assesses the reactivity of the reagents.  

 

 Briefly each of the following was added to clean glass test tubes in addition to 400µl of 

supernatant: 200µl 2% phosphoric acid (H3PO4), 200µl 7% H3PO4, 400µl TBA/ butylated 

hydroxytoluene (BHT) and 200µl 1M HCl. The blank contained all the above mentioned reagents 

except the TBA/BHT indicator.  

All test tubes were then vortexed and placed in a water bath pre-set at 100°C for 15 minutes. 

Samples were allowed to cool and 1.5ml butanol was added to each test tube, vortexed for 10 

seconds and left to separate into two distinct phases. Thereafter 100µl of the upper butanol phase 
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was transferred to a 96-well microtitre plate in triplicate. The OD was measured using a 

spectrophotometer (Bio-Tek µQuant; Winooski, Vermont, United States) at 532nm/ reference 

600nm. Concentrations of MDA (µM) were determined by calculating the mean OD of replicates 

per treatment and subtracting the mean blank OD from each. This value was then divided by the 

extinction coefficient (156mM-1) and results were expressed as µM concentrations. 

 

2.6.  DNA damage - comet assay 

2.6.1. Principle 

The Comet Assay, also known as Single Cell Gel Electrophoresis, is a simple technique used to 

quantify and analyse DNA strand breaks at the level of the individual cell. This method was first 

described by Ӧstling and Johanson (1984) [115], and was later modified by Singh et al., (1988) 

[116]. These modifications involved treatment of cells embedded in agarose on a microscope slide, 

with a hypertonic lysis solution and non-ionic detergent under alkaline conditions. The comet assay 

is based upon the movement of nuclear DNA through an agarose gel when an electric current is 

applied. The theory is that undamaged DNA exists in the nucleus in a highly organised form in 

association with matrix proteins, referred to as DNA supercoils. However, when DNA is damaged 

the integrity of this level of organization is disrupted [117].   

 

During electrophoresis, the strands of damaged DNA unwind and are drawn out of the nucleus into 

the agarose suspension. This occurs due to the attraction of the DNA, which carries a negative 

charge conferred by its phosphate backbone, towards the positively charged anode. The DNA that 

has maintained its structural integrity does not migrate, and remains within the nucleus [117]. 

Conversely, damaged DNA migrates out of the nucleus, resulting in the formation of a DNA tail. 

Collectively, the DNA tail and the undamaged DNA resemble a comet [117]. The longer and 

brighter comet tails are indicative of more extensive DNA damage.  
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2.6.2.  Protocol 

The assay was carried out as per the method used by Raghubeer et al., (2014) [118]. Following 

treatment of cells in a 6-well cell culture plate, cells were washed twice with 0.1M PBS. Thereafter 

the plate was agitated to dislodge and remove cells, which were subsequently counted. The cells in 

suspension were adjusted to 10000 cells per 25µl 0.1M PBS. Three slides for each treatment (FA 

and untreated control) was prepared. Low melting point agarose (LMPA) was used to make the 

gels. The 3 layer gel was formed on a frosted microscope slide and comprised of: the first layer - 

700µl 2% LMPA, followed by the second layer that contained 0.5µl 5x concentration of gel red 

dye, 25µl cell suspension and 175µl 1% LMPA and finally a third layer of 200µl 1% LMPA. For 

each gel layer, coverslips were added and slides were incubated at 4°C for 10 minutes, followed by 

the removal of the coverslip and addition of the next gel layer. After the third layer solidified, 

coverslips were removed and slides were submerged in cold cell lysis buffer [2.5M sodium chloride 

(NaCl), 10mM Tris (pH 10), 100mM ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100 

and 10% DMSO] and incubated in the dark for 1 hour at 4°C.  

 

The slides were transferred to an electrophoresis tank filled with electrophoresis buffer [300mM 

sodium hydroxide (NaOH), 1mM disodium ethylenediaminetetraacetic acid (Na2EDTA) (pH 13) 

and allowed to equilibrate for 20 minutes. The tank was then sealed and a constant voltage of 25V 

was applied for 35 minutes at room temperature, using the Bio-Rad Compact power supply. After 

electrophoresis was complete, slides were washed thrice with neutralization buffer [0.4M Tris (pH 

7.4)] for 5 minutes each. Slides were viewed using an Olympus IX5I inverted fluorescent 

microscope (510–560nm excitation, 590nm emission filters) (Figure.2.6). Images of approximately 

50 comets were taken per treatment (3 replicates) and the comet tail lengths were measured using 

the analySIS Image Processing Software (Novell; Provo, Utah, United States) and expressed in µm.  
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Figure 2.3: The process used in the comet assay. 

 

2.7. Quantitative-polymerase chain reaction 

2.7.1. Principle 

PCR is a technique used in molecular biology to exponentially amplify a small segment of DNA or 

RNA. This technique was developed by an American biochemist, Kary Mullis in 1984. PCR 

simulates the process of DNA replication within the cell whereby a DNA polymerase synthesises a 

new strand of DNA complementary to the starting template strand [119]. The components required 

for PCR include: DNA template, DNA polymerase, nucleotides, forward and reverse primers and a 

buffer system containing Mg2+ ions. The primers bind the 3’ ends of each DNA template thereby 

flanking the target region. Thereafter the thermostable DNA polymerase (Thermus aquaticus (Taq) 

polymerase) incorporates the deoxynucleotide triphosphates (dNTPs), the building blocks of the 

new DNA strand, in a stepwise manner to the 3’ ends the primers [120]. There are 3 distinct steps in 

each PCR cycle: 
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1. Denaturation involves separation of the 2 strands of the target DNA. This step takes 

place at 90°C, which allows for breakage of weak hydrogen bonds that exist between 

nucleotides and enables the target sequence to be made accessible. 

2. Annealing occurs at a lowered reaction temperature of 50-60°C, which is optimal for 

the binding of the primers to complementary sites flanking the target region. 

3. Extension takes place at an increased reaction temperature of 72°C, which is the 

optimal temperature for Taq Polymerase activity. During this phase of the reaction, the 

new DNA strand is synthesised by the addition of dNTPS to the 3’ end of the primers 

catalysed by the DNA polymerase. 

 

This process is repeated for 30 to 40 cycles, resulting in an exponential amplification of the 

template DNA (Figure 2.7). 

 

Figure 2.4: The stepwise procedure used to amplify a gene of interest using PCR (prepared by 
author). 

Conventional PCR is a reliable method for amplifying DNA, and is able to measure the amount of 

accumulated PCR product at the end of the cycles. One major drawback of conventional PCR is that 
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it is not able to efficiently and accurately quantify the starting amount of DNA. Real-time PCR, also 

known as qPCR enables quantification of PCR products as it occurs [121]. Data collection occurs 

during the exponential growth (log) phase of PCR, when the quantity of the PCR product is directly 

proportional to the amount of template DNA. The process of qPCR begins with the isolation of 

RNA from cells, which are subsequently reverse transcribed to single-stranded (ss) complementary 

DNA (cDNA). Complementary DNA is used as the starting material for qPCR [120]. 

 

Quantitative PCR does not differ much from conventional PCR, except for the addition of a 

fluorescent dye called SYBR green to the reaction mix. SYBR green binds to the minor groove of 

the double-stranded (ds) DNA amplicons. The unbound dye exhibits very little fluorescence, 

however, fluorescence is greatly enhanced upon DNA-binding [122]. Progression of PCR allows for 

product accumulation. The SYBR green binds to all the dsDNA present, therefore the resulting 

increase in fluorescence is proportional to the amount of PCR product produced which is 

systematically relayed at the end of each cycle. A curve is plotted with fluorescent emission over 

time from which the initial amount of DNA present in the sample is obtained. Expression of a 

house-keeping gene was simultaneously quantified to normalize target gene expression.  

 

2.7.2. Protocol 

2.7.2.1. RNA isolation 

Following the incubation of the cells with the relevant treatment, cells were washed twice with 

0.1M PBS. The total RNA was isolated using an in-house protocol described by Chuturgoon et al., 

(2014) [123]. Briefly, 500µl PBS and 500µl Triazol was added to the flask and incubated at room 

temperature for 5 minutes. Thereafter the flasks were scraped and the contents were transferred to 

1.8ml micro-centrifuge tubes and stored at -80ºC overnight.  

 

Thereafter, 100µl chloroform was added to the thawed samples and mixed vigorously for 15 

seconds. The samples were incubated at room temperature for 3 minutes. The micro-centrifuge 

tubes were then centrifuged (12000 x g, 4˚C for 15 minutes), and the upper aqueous layer was 
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transferred to a new 1.8ml micro-centrifuge tube, which was placed on ice. Subsequently, 250µl 

isopropanol was added to each sample and incubated on ice for 2 hours before being returned to -

80ºC overnight.  

 

Samples were thawed again and centrifuged (12000 x g, 4ºC for 20 minutes). The resulting pellet 

contained the total RNA and was washed with 500µl cold 75% ethanol. Samples were then 

centrifuged again (7400 x g, 4ºC for 15 minutes). All ethanol was discarded and the pellet was left 

to air-dry, before re-suspending in 15µl RNase-free water. RNA samples were incubated at room 

temperature (3 minutes) and thoroughly mixed, before being quantified (Figure 2.8). 

 

 

Figure 2.5: The procedure of isolating RNA using the Triazol method (prepared by author). 

 

2.7.2.2. Quantification and standardization 

Accurate quantification of nucleic acids remains a critical step prior to performing downstream 

processes such as qPCR. The use of the Thermo Scientific™ Nanodrop 2000 (Thermo Fisher 
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Scientific; Johannesburg, South Africa) allowed for the quality and quantity of the isolated RNA to 

be determined. The absorbance ratio of 260nm/280nm was used to determine purity of samples 

(~2). RNA samples were standardized to a concentration of 1000ng/μl with RNase-free water and 

stored at -80°C until required. 

 

2.7.2.3. Complementary DNA synthesis 

RNA was reverse transcribed to cDNA as per manufacturers’ guidelines using the iScript™ cDNA 

Synthesis kit (Bio-Rad; 107-8890):- a 20µl reaction volume containing, 1µl iScript™ reverse 

transcriptase, 4µl 5X iScript™ reaction mix and the RNA template (2000ng) made up in nuclease 

free water. Thermocycler conditions were set to 25°C for 5 minutes, 42°C for 30 minutes, 85°C for 

5 minutes and a final hold at 4°C.  

 

Gene expression was analyzed using the iQ™ SYBR Green Supermix (Bio-Rad; 170-880), 

according to the manufacturer’s instructions. Briefly, 1.5µl cDNA template, 1µl sense primer, 1µl 

antisense primer, 5x iScript reaction mix and nuclease free water was made up to a reaction volume 

of 25µl.  The genes of interest were CAT [forward 5’-TAAGACTGACCAGGGCATC-3’; reverse 

5’-CAACCTTGGTGAGATCGAA-3’(58 °C)], GPx [forward 5’-

GACTACACCCAGATGAACGAGC-3’; reverse 5’-CCCACCAGGAA CTTCTCAAAG-3’ (58 

°C)] and OGG1 [forward 5’-GCATCGTACTCTAGCCTCCAC-3’; reverse 5’ -

AGGACTTTGCTCCCTCCAC-3’ (60°C)]. All primers were obtained from Inqaba Biotechnologies 

(Pretoria, South Africa). 

 

All qPCR experiments were conducted using the CFX Touch™ Real Time PCR Detection System 

(Bio-Rad; Hercules, California, United States). The assay was run with three replicates per 

treatment. 18s [forward 5’- ACAGGGACAGGATTGACAGA -3’; reverse 5’-CAAATC 

GCTCCACCAACCTAA -3’] was used as a housekeeping gene and was amplified simultaneously 

under the same conditions as the treatment samples. The reaction was subjected to an initial 

denaturation (95°C, 4 minutes), followed by 37 denaturation cycles (95°C, 15 seconds), an 

annealing phase (specific to each primer, 40 seconds), and an extension phase (72°C, 30 seconds).  
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The data obtained was analyzed using the method described by Livak and Schmittgen (2001) [124], 

which is represented as fold-change in mRNA expression (2-∆∆CT) relative to the control. 

 

2.8. Western blotting  

2.8.1. Principle  

2.8.1.1. Protein preparation 

Cells are treated with a lysing reagent to digest cell membranes and facilitate release of proteins into 

solution. The BCA protein assay is a quantification method that allows for the colorimetric 

detection of the total protein present in a sample. The principle of this assay is formulated on the 

basis that in an alkaline medium, a Cu2+protein complex forms which is then followed by a Cu2+ to 

Cu1+ reduction reaction, known as the biuret reaction [125]. The Cu1+ ion is then detected by a 

reaction with BCA in a 1:2 ratio to produce a water-soluble purple coloured product which absorbs 

maximally at 562nm (Figure 2.9).  The intensity of the colour produced is proportional to the 

protein concentration within the sample [126].  

 

Figure 2.6: The principle of the BCA protein quantification assay (prepared by author).  

 

2.8.1.2. SDS-PAGE and transfer 

Sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE) is a technique that is 

often utilised to facilitate separation of proteins. Polyacrylamide gels are a crosslinked polymer 

network composed of monomers of acrylamide and bisacrylamide (“bis,” N, N’-methylene 
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bisacrylamide). The polymerisation reaction requires the addition of the polymerising agent, 

ammonium persulfate (APS). TEMED (N, N, N, N’-tetramethylethylenediamine) catalyses the 

polymerisation reaction by promoting the production of free radicals by APS [127]. Polyacrylamide 

gels are inert in nature and therefore will not interfere with the proteins during migration. Sodium 

dodecyl sulphate is an anionic detergent that binds to positive charges in the protein, thereby 

conferring a uniform negative charge. Additionally, SDS aids denaturation of proteins (unfolding) 

by breaking hydrogen bonds within and between molecules. Removal of intrinsic protein charges 

and linearizing of proteins allows for separation in SDS-PAGE to be based on molecular weight 

(Figure. 2.10).  

 

 

Figure 2.7: An Overview of the protein preparation and SDS-PAGE process (prepared by author). 

 

Following protein standardisation, samples are prepared with sample buffer (Laemmli buffer). The 

constituents of the buffer include: SDS, bromophenol blue- a tracker dye to visualise the dye front, 

β-mercaptoethanol- strong reducing agent that cleaves intra -and inter- disulphide bonds to allow 

unfolding of tertiary protein structures, and glycerol – increase density of the sample and facilitate 
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migration. Thereafter samples are loaded on SDS-PAGE gels which are subjected to electrophoresis 

[128]. These gels consist of a stacking and separating (resolving) layer. The stacking gel has a high 

porosity to enable the stacking of protein at the interface of the 2 gel layers. This allows proteins to 

begin migrating through the separating gel from the same place. The resolving gel has a lower 

porosity which has a sieving action and therefore protein samples are separated according to 

molecular weight (Figure. 2.11). The lower the molecular weight of the protein, the faster it will 

migrate through the gel matrix [127]. 

 

 

Figure 2.8: An example of an SDS- polyacrylamide gel (prepared by author). 

 

Once electrophoresis is completed, the gel containing protein bands is electro-transferred onto a 

nitrocellulose membrane. This process involved the sandwiching of the gel and nitrocellulose 

membrane between fibre pads. Protein transfer from the gel to the membrane is achieved by 

applying a high intensity electric field produced by electrode plates at a right angle to the sandwich 

(Figure. 2.12) [128]. 
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Figure 2.9: The setup of the apparatus for the electro-transfer process (prepared by author). 

 

2.8.1.3. Immunoblotting 

 The immunoblotting technique exploits the interaction between an antibody and antigen to enable 

detection of a protein of interest in a mixture of other proteins. Prior to exposure to antibodies, the 

membranes are first blocked to prevent non-specific binding of the antibody to the hydrophobic 

binding sites with a protein solution [128]. Membranes are incubated with primary antibody that has 

been specifically raised against the protein of interest. The secondary antibody is conjugated to a 

detection enzyme, which binds to the primary antibody that has reacted with target proteins [128]. 

The detection process involves a substrate reacting with the enzyme that is bound to the secondary 

antibody leading to the generation of a chemiluminescent signal that can be measured (Figure 2.13). 

One of the most extensively utilised enzyme detection tags is horseradish peroxidase (HRP), which 

is used in enhanced chemiluminescent detection. Horseradish peroxidase, in the presence of 

hydrogen peroxide, oxidises luminol (luminescent substrate) with concomitant generation of light 

[129]. The use of chemical enhancers results in a 1000-fold increase in the intensity of light, which 

is detected by a photographic film [130]. The intensity of light produced is proportional to the 

expression of the protein of interest. Target proteins are evaluated by locating the visible protein 

band which correlates with the relevant molecular weight on the molecular weight ladder and 

carrying out densitometric analysis of the respective band.   
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Figure 2.10: An overview of the immunoblotting reactions that allows visualization of protein bands 

(prepared by author). 

 

2.8.2.  Protocol 

Protein expression of total Nrf2, phosphorylated Nrf2 (ser40), p53 and Parp1 were evaluated using 

western blots. Cytobuster™ reagent (Novagen, San Diego, California, United States) supplemented 

with protease and phosphatase inhibitors (Roche, Mannheim, Germany; 05892791001 and 

04906837001) was used for protein isolation. Cytobuster™ (200µl) was added to cell culture flasks 

following treatment of cells and incubated on ice for 10 minutes. Thereafter flasks were scraped and 

Cytobuster™ mixture containing lysed cells were transferred to a new 1.8ml micro-centrifuge tube. 

The cell lysates were centrifuged (10000 x g, 4°C, 10 minutes) to obtain crude protein. All protein 

samples were quantified using the BCA assay and standardized to 1.5mg/ml (Appendix C). 

Thereafter, 50µl 5x Laemmli buffer (0.5M Tris-HCl (pH 6.8), glycerol, 10% SDS, β-

mercaptoethanol, 1% bromophenol blue) was added to 200µl standardized protein before samples 

were boiled at 100°C for 5 minutes. The prepared protein was stored at -20°C until required.  

 

Protein samples (25µl) and a molecular weight marker (5µl) (Bio-Rad; Precision Plus Protein Dual 

Colour Standard) were loaded into the wells of the SDS-PAGE gel (4% stacking, 10% 

resolving/separating), which was then subjected to electrophoresis (1 hour, 150V) using a Bio-Rad 

compact power supply. Prior to electrotransfer, membranes, gels and fibre pads were soaked for 10 
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minutes in transfer buffer (25mM Tris, 192mM glycine and 20% methanol). The protein transfer 

sandwich was assembled with the gel placed on the nitrocellulose membrane with a fibre pad on 

either side (Figure.2.13). Separated proteins on SDS-PAGE gel were then transferred onto 

nitrocellulose membranes using the Trans-Blot® Turbo Transfer system (Bio-Rad, Hercules, 

California, United States; 170-4155) (30 minutes, 400mA).  

 

The membranes were blocked with 3% bovine serum albumin (BSA) in Tween 20-Tris buffered 

saline (TTBS; 25mM Tris (pH 7.5), KCl, 150mM NaCl, 0.05% Tween 20) for 2 hours at room 

temperature on a shaker. Membranes were then incubated with primary antibody (anti-Nrf2 

(phospho-ser40) (ab76026, rabbit monoclonal); anti-Nrf2 (cs8882, rabbit monoclonal); anti-p53 

(sc6243, rabbit polyclonal); anti-parp1 (sc1561, goat polyclonal); 1:1000 dilution in 1% BSA in 

TTBS (5µl antibody:4995µl 1% BSA)) for 1 hour at room temperature and then overnight at 4°C. 

The membranes were washed with TTBS (5 x 10 minutes each) before being incubated in HRP-

conjugated secondary antibody (goat anti-rabbit IgG HRP (sc2004) and donkey anti-goat IgG HRP 

(sc2020); 1:10000 dilution in 1% BSA in TTBS (0.5µl antibody: 4999.5µl 1% BSA)) for 1 hour at 

room temperature. Membranes were washed again with TTBS (5 x 10 minutes each). Thereafter 

clarity western enhanced chemiluminescence (ECL) substrate (400µl) (Bio-Rad) was added to the 

membrane and images were captured using the Chemidoc XRS system (Bio-Rad). The Image 

Lab™ software (Bio-Rad) was used to analyse protein expression. 

 

Membranes were stripped with 5% hydrogen peroxide (30 minutes, 37°C), rinsed twice in TTBS 

(10 minutes each), incubated in blocking solution (3% BSA in TTBS; room temperature) for 1 hour, 

and probed with HRP-conjugated housekeeping antibody, β-actin (A3854, 1:5000 dilution in 1% 

BSA in TTBS, 30 minutes). The relative band intensity was normalized against house-keeping 

protein, β-Actin. Results were expressed as relative band density (RBD). 
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2.9. Assessment of cell death parameters 

2.9.1. Caspase activity assay 

2.9.1.1. Principle 

Caspases are a family of intracellular proteases that are responsible for the organised breakdown of 

a cell into apoptotic bodies during apoptosis. Caspases exist as inactive pro-enzymes that are 

activated by proteolytic cleavage which leads to execution of cell death [98]. Luminometry was 

used to assess caspase activity. This assay consisted of a proluminescent caspase-specific luciferin 

substrate, which is cleaved by caspases. This facilitates luciferin release, which is processed by the 

luciferase enzyme, generating a luminescent signal that correlates with caspase activity (Figure 

2.14).  

 

Figure 2.11: The luminometric reaction used to determine caspase activity (prepared by author). 
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2.9.1.2.  Protocol 

Caspase-3/-7, -8 and -9 activities were detected with Caspase-Glo® assays (Promega, Madison, 

Wisconsin, United States). Following treatment of cells, cells were washed twice with 0.1M PBS, 

counted and adjusted (20000 cells in 50µl 0.1M PBS per well, 3 replicates). As per manufacturer’s 

protocol, Caspase-Glo®-3/-7, -8 and -9 reagents (Peptide-conjugated aminoluciferin were 

synthesised for each caspase substrate: Z-DEVD-aminoluciferin for caspase 3/7, Z-LETD-

aminoluciferin for caspase 8 and Z-LEHD-aminoluciferin for caspase 9) were reconstituted and 

added to the wells of a white 96-well microtitre plate (20µl caspase reagent per well). The plate was 

then incubated in the dark for 30 minutes at room temperature. Luminescence was measured using 

the Modulus™ microplate luminometer (Turner Biosystems; Sunnyvale, California, United States). 

Caspase-3/-7, -8 and -9 activities were expressed as relative light units (RLU). 

 

2.9.2.  Lactate dehydrogenase cytotoxicity assay 

2.9.2.1. Principle 

Necrotic cell death is characterised by swelling of the cell, followed by cell lysis and leakage of 

intracellular contents. It is the increase in cell membrane permeability in necrotic cells that can be 

assessed by measuring the extracellular levels of the cytosolic enzyme lactate dehydrogenase 

(LDH). Measurement of this enzyme in the supernatant of the cells can serve as a measure of 

cytotoxicity [131]. The principle of this assay is based on the ability of LDH to catalyse the 

reduction of NAD+ to NADH by oxidising lactate to pyruvate. In the second step of the reaction, 

diaphorase reduces a tetrazolium salt (in the presence of NADH) to a coloured formazan product 

that can be measured with a spectrophotometer (Figure.2.15) [131]. 
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Figure 2.12: The Principle of the Lactate Dehydrogenase Cytotoxicity (adapted from Forest et 
al.,(2015) [132].   

2.9.2.2. Protocol 

The method used to carry out the LDH cytotoxicity assay was described by Nagiah et al.,(2016) 

[133]. After cells were incubated with the respective treatment for 24 hours, 100µl supernatant was 

added to each well in triplicate in a 96-well microtiter plate. Thereafter 100µl substrate mix (Roche; 

Mannheim, Germany), containing the catalyst (diaphorase) and dye solution (sodium lactate/ 

Iodonitrotetrazolium (INT)), was added to each well. The plate was then incubated at room 

temperature for 25 minutes in the dark. The OD was measured at 500nm and results were reported 

as mean OD. The intensity of the coloured product produced is proportional to the amount of the 

LDH present in the supernatant. 

 

2.10.  Statistical analysis  

Statistical analysis was performed using the Students’ T-test (Nonparametric- Mann-Whitney test) 

on the GraphPad Prism Version 5.0 Software (GraphPad Software Inc., San Diego, California, 

United States). All data is expressed as mean ± standard deviation. All experiments were conducted 

independently with 3 replicates in each test. The level of statistical significance was established at a 

p value of < 0.05.  
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Chapter 3 

Results 

3.1 Cell viability  

3.1.1.  MTT assay / IC50 determination 

A dose response curve was determined using a range of FA concentrations (0-500µg/ml) in 

HEK293 cells over 24 hours (Figure.1). Analysis of the dose-response curve showed that 

137.9µg/ml of FA was sufficient to cause 50% reduction in HEK293 cell viability (IC50) (Figure 

3.1). This concentration of FA was used in all subsequent assays.  

 

 
Figure 3.1: A dose-dependent decline in HEK293 cell viability following FA treatment. 

 

3.1.2.  ATP assay 

 

Intracellular ATP levels were assessed using the CellTitre Glo™ assay. FA caused a significant 

reduction (p = 0.0048) in ATP levels (0.74 ± 0.19 x 106RLU) compared to the untreated control 

(2.96 ± 0.19 x 106RLU) (Figure 3.2).   
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Figure 3.2: Luminometric assessment of ATP levels in HEK293 cells decreased 4-fold after 24 hour 
exposure to FA (**p < 0.005). 

 

3.2.  Oxidative status 

The GSH-Glo™ Assay was used to assess GSH concentrations, as a marker of intracellular 

antioxidant capacity. The data illustrated a significant decrease (p = 0.0136) in GSH levels in cells 

treated with FA (28.33 ± 3.68µM) relative to the control cells (51.93 ± 1.97µM) (Figure.3.3 (A)). 

Furthermore, levels of MDA, a byproduct of lipid peroxidation, was observed to be higher (p = 

0.0048) in FA treated cells (14.07 ± 0.64 x 10-1µM) compared to the control cells (8.98 ± 0.39 x 10-

1µM) (Figure.3.3 (B)).  

 

 

 

 

** 
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Figure 3.3: Fusaric acid exposure resulted in the induction of oxidative stress as shown by a 1.8-fold 

decrease in reduced glutathione levels (*p < 0.05), with a concomitant 1.5-fold increase in MDA 

levels (**p < 0.005). 

 

3.3.  Assessment of DNA damage and repair  

3.3.1. The comet assay   

The genotoxic effects of FA were assessed using the comet assay. Comet tail lengths were 

measured as an indication of DNA damage. The data showed that FA significantly (p < 0.0001) 

increased DNA damage as noted by the longer comet tail lengths seen in FA treated cells (13.26 ± 

1.07µm) compared to the control cells (6.30 ± 1.06µm) (Figure.3.4). 

 

 

A 

** 

* 

B 



56 
 

     

 

        

 

 
Figure 3.4: FA induced a 2.1-fold increase in DNA comet tail length (C). Comparison of Comet tail 

length (µm) between FA (B) with the untreated control cells (A) (***p < 0.0001) (10x). 

 

3.3.2.  DNA repair  

The effect of FA on DNA damage and the associated base excision repair response was assessed by 

determining mRNA levels of OGG1 (qPCR) and protein expression of Parp1 and p53 (western 

blotting). FA significantly decreased (0.49 ± 0.10; p = 0.0049) the mRNA level of OGG1, a DNA 

glycosylase enzyme, in relation to untreated control cells (1.01 ± 0.11) (Figure.3.5 (A)).  

 

Evaluation of Parp1 (FA: 0.15 ± 0.01 vs. control: 0.26 ± 0.03; p = 0.0079) (Figure.3.5 (B)) and p53 

(FA: 0.05 ± 0.01 vs. control: 0.10 ± 0.02; p = 0.0136) (Figure.3.5 (C)) by densitometric analysis 
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showed reduced expression of these proteins in cells that were exposed to FA compared to untreated 

cells.  

  
  

                                    

                                    
                                      

                                        

                  

 
 

 

Figure 3.5: FA diminishes DNA repair responses resulting from oxidative damage. (A) The fold 

change analysis of OGG1 mRNA expression indicated a 2-fold decrease post FA exposure relative to 

control cells (p < 0.005). Western blot images and protein expression of DNA repair proteins, Parp1 

(B) and p53 (C) in HEK293 cells reported as relative band density following exposure to FA (**p < 

0.005; *p < 0.05).  
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3.4. The antioxidant response 

The protein expression of Nrf2, a key regulator of the antioxidant response, and phosphorylated 

Nrf2 was evaluated using western blotting. The expression of the total Nrf2 protein was 

significantly decreased (p = 0.0117) (2-fold) by FA compared to the untreated control (FA: 0.65 ± 

0.21 vs control: 1.31 ± 0.28) (Figure3.6 (A)). Conversely, FA induced a 1.8-fold increase in 

phosphorylation of Nrf2 relative to the control (FA: 1.41 ± 0.27 vs. control: 0.93 ± 0.09; p = 

0.0136), indicating increased activation of Nrf2 (Figure3.6 (B)). The associated antioxidant gene 

expression was significantly reduced with respect to GPx (FA: 0.49 ± 0.03 vs control: 0.82 ± 0.05; p 

= 0.0136) and CAT (FA: 0.18 ± 0.00 vs control: 1.00 ± 0.09; p < 0.0001) relative to normalized 

control (Figure3.6 (C)).  
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Figure 3.6: FA altered the Antioxidant response in HEK293 cells. Protein expression reported as 

relative band density and western blot images for Total Nrf2 (A) and phosphorylated Nrf2 (ser40) 

(B) following acute treatment with FA (**p < 0.005 relative to control). (C) mRNA quantification 

of antioxidant genes, reported as relative fold change, showed a decrease in GPx (*p < 0.05) and 

CAT (***p < 0.001) compared to untreated control cells. 

 

* 

*** 

A 

 

A
A 

B 

C 

Total Nrf2  

β-actin Total Nrf2  
pNrf2 (ser40) 

* 

* 

Control  FA Control  FA 

Control 

FA 



60 
 

3.5.  Analysis of cell death parameters 

3.5.1.  Caspase activity 

Caspase-Glo® assays were used to determine caspase activity. FA significantly increased the 

activity of initiator caspases 8 (control: 4.61 ± 0.26 x 105 vs. FA: 5.12 ± 0.39 x 105RLU; p = 

0.0298) and 9 (control: 2.58 ± 0.49 vs. FA: 3.78 ± 0.34 x 105RLU; p = 0.0136) as well as 

executioner caspases-3/-7 (control: 8.77 ± 0.57 vs. FA: 11.44 ± 1.27 x 104RLU; p = 0.0048) 

compared to the control (Figure.3.7). Therefore, this indicates activation of apoptotic cell death. 

 

 

Figure 3.4: Luminometric assessment of the initiator caspases 8 (1.1-fold) and 9 (1.4-fold) and      

executioner caspases 3/7 (1.3-fold) showed increased activity in response to FA exposure (*p < 

0.05; **p < 0.005). 
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3.5.2.  Lactate dehydrogenase cytotoxicity  

The leakage of the cytosolic enzyme LDH is used as an indicator of cytotoxicity. HEK cells treated 

with to FA demonstrated significantly increased extracellular LDH compared to control cells 

(control: 0.77 ± 0.02 vs. FA 1.67 ± 0.10OD; p = 0.0009), which is indicative of loss of membrane 

integrity and necrotic cell death (Figure.3.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Spectrophotometric analysis of LDH leakage in FA treated cells resulted in a 2.1-fold 

increase compared to control cells (p = 0.0009). 

*** 
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Chapter 4 

Discussion 

Fusaric acid is a ubiquitous mycotoxin that frequently contaminates cereal grains used for human 

and animal consumption. Previous studies have identified FA primarily as a potent phytotoxin [55], 

however FA has been shown to exhibit low to moderate toxic effects in humans and animals [1, 38]. 

The effects observed following FA exposure has been associated with mitochondrial dysfunction 

[15, 54, 69, 70], induction of increased ROS generation [14, 54] and activation of cell death [134]; 

however little is known regarding the effect of FA on cellular stress response mechanisms that 

mediate these outcomes. 

 

In this study, evidence was presented to demonstrate that FA induces cytotoxicity in human 

embryonic kidney (HEK) 293 cells by inhibiting cellular antioxidant and DNA repair responses, 

thereby facilitating cell death. Previous studies have proposed that FA toxicity is linked to 2 

biochemical properties, which include FA’s ability to act a weak acid and a chelator of divalent 

cations [45, 46].  

 

Weak acids disrupt mitochondrial function by depolarizing mitochondrial membranes, which can 

compromise the integrity of the mitochondrial membrane. This mediates changes in permeability 

and subsequently causes mitochondrial dysfunction. Furthermore, weak acids can interrupt 

processes that take place within the mitochondria, such as ETC activity by dissipating the proton 

gradient between the mitochondrial matrix and intermembrane space, which is responsible for ATP 

synthesis [135]. Fusaric acid can also cause structural and functional alterations to heme structures, 

iron-sulphur clusters and copper proteins that are present in ETC complexes through its chelating 

activity. Fusaric acid not only causes mitochondrial dysfunction but compromises metabolic activity 

by impeding reactions catalysed by oxidoreductases within the Krebs cycle (mitochondrial matrix), 

that produces reducing equivalents [69, 70]. Fusaric acid acts as a nicotinamide analog, and 

competitively inhibits NAD+-requiring reactions. These actions culminate in a compromised 

metabolic state and a loss of mitochondrial integrity, which is observed following FA exposure 

[15]. Impaired mitochondrial function was confirmed by the dose dependent decline in cell viability 
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under increasing concentrations of FA (Figure.3.1), demonstrated as a decrease in formazan 

production (decrease in reducing potential of mitochondrial oxidoreductases) and the decreased 

ATP levels (Figure.3.2) post FA exposure.  

 

The induction of ROS generation by FA has been reported previously in both human-derived cancer 

cell and plant models [14, 15, 24, 136]. It is likely that inhibition of the ETC is associated with the 

increased production of ROS. Mitochondrial electron transport generates •O2
- as a by-product at 

complex I and complex III [12, 137]. Other studies have shown that, under mitochondrial 

dysfunction, there is increased leakage of electrons to molecular oxygen producing •O2
- [138-141]. 

Fusaric acid can also act alone to exacerbate ROS production in the form of hydroxyl radicals by 

promoting the Fenton reaction [45].  

 

The data strongly suggests that FA exposure results in a change in oxidative status. This claim is 

supported by the significant decline in cellular GSH concentrations (Figure.3.3 (A)) with an 

accompanying increase in extracellular MDA levels (Figure.3.3 (B)), a lipid peroxidation by-

product indicative of oxidative stress, following treatment with FA. Reduced glutathione is the most 

abundant endogenous antioxidant and is a critical regulator of redox homeostasis [142, 143]. Upon 

exposure to external factors such as FA, oxidative challenge to cells is increased resulting in rapid 

utilization of GSH stores, which reduces the detoxifying capacity of the cell. This creates an 

imbalance caused by excessive ROS production and limited antioxidant defences, referred to as 

oxidative stress [144]. Oxidative stress promotes ROS-mediated damage to cellular 

macromolecules. Due to the abundance of long chain polyunsaturated fatty acids present in kidney 

cells [145], lipid peroxidation is one of the likely outcomes of oxidative insult. The cell possesses 

several intrinsic mechanisms that are activated when exposed to increasing levels of stress. The 

pathway central to mounting a response against oxidative stress is the Nrf2/ARE pathway [13].  

 

Under homeostatic conditions, Nrf2 is sequestered in the cytosol by its repressor, Keap1 which 

facilitates ubiquitination and proteasomal degradation of Nrf2.  Keap1 is a cysteine-rich protein, 

which undergoes conformation changes in response to oxidative stress, thereby leading to the 

liberation of Nrf2 [146]. Nrf2 is then available to translocate to the nucleus, where it binds to the 
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ARE resulting in transcriptional induction of several phase II enzymes and antioxidant proteins [76, 

146].  

 

The activation of Nrf2 has also been shown to be regulated through phosphorylation [76]. Protein 

Kinase C (PKC) phosphorylates unbound Nrf2 in its NEH2 domain at serine 40, which disrupts 

association between Nrf2 and Keap1 and thus promotes transport of Nrf2 to the nucleus [147]. 

Fusaric acid appears to exhibit an inhibitory effect on the Nrf2 mediated response to oxidative 

stress. It is postulated that this could be due to the chelation of zinc ions that are required for Nrf2 

expression and transcriptional function [148]. The findings of this study show that FA exposure 

resulted in a decrease in Nrf2 expression (Figure.3.6 (A)), however phosphorylation at serine 40 

was significantly increased (Figure.3.6 (B)). The increased phosphorylation can be attributed to the 

increased activation of PKC in response to oxidative stress, however phosphorylation of Nrf2 does 

not influence the stabilization of Nrf2, accumulation in the nucleus or transcriptional activation of 

ARE-mediated genes in response to Nrf2 interaction [149]. This provides a plausible explanation as 

to why, despite increased phosphorylation, the overall expression of Nrf2 was diminished. The 

downstream implications of this, would result in reduced transactivation of the target cytoprotective 

proteins and antioxidant enzymes, which correlate with our findings of significantly reduced 

expression of the GPx and CAT genes (Figure.3.6 (C)). The reduced capacity to mount an 

antioxidant stress response, would inadvertently have detrimental repercussions for the cell, were it 

will be subjected to increased oxidative insult that perpetuates DNA damage and cell death.  

 

The data supports a mechanism of genotoxicity induced by FA in cells. The increased level of DNA 

damage, as observed by the increased comet tail lengths (Figure.3.4), is in agreement with other 

studies illustrating increased DNA damage following FA treatment [25, 60]. Damage to DNA can 

be caused by electrophilic and reactive oxygen species. It has been shown that genomic integrity 

can be severely compromised by ROS which produces a number of DNA lesions. These lesions 

include base modifications, strand breaks, inter-and intra- strand crosslinks and DNA-protein 

crosslinks, all of which affect structure and function [150]. Malondialdehyde, an endogenous 

electrophile, has also been found to react with nucleotide bases in DNA forming adducts, which 

have mutagenic potential that promote carcinogenesis [151, 152].  
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ROS accumulation and the concomitant DNA damage activates cell death pathways. Previous 

studies have shown FA can induce apoptosis by activation of both intrinsic and extrinsic pathways 

as well as through independent activation of caspase 3 [15, 24, 25, 27, 134]. The data obtained in 

this study show that FA increases caspase activation in kidney cells (Figure.3.7). The signal 

transduction of apoptosis involves a cascade of initiator and executioner caspases, which form the 

machinery that drive apoptosis [153]. The findings of this study support both intrinsic and extrinsic 

pathway activation, which is shown by the significantly increased the activities of caspases-3/-7, -8 

and -9. 

 

This cellular response is possibly linked to ATP depletion, which has been shown to abrogate 

caspase activation and subsequent apoptotic events in damaged cells [154, 155]. It is known that 

apoptotic cell death is an ATP-requiring process, and it is suggested that the level of intracellular 

ATP determines which cell death mechanism is activated [94, 155]. There are multiple early stage 

events in apoptosis that drastically increase ATP demand, such as the proteolytic cleavage and 

activation of the caspase cascade and apoptosome formation, resulting in rapid depletion of ATP 

levels. Apoptosis may be initiated following FA treatment, however as ATP levels are depleted, the 

cell switches to the passive form of cell death, necrosis. This is validated by the increased presence 

of the cytosolic enzyme LDH in the extracellular medium (Figure.3.8), indicating loss of cell 

membrane integrity, which is characteristic of necrosis. 

 

The data also provides evidence of impaired DNA repair in cells exposed to FA. This has been 

demonstrated previously whereby it was proposed that FA inactivates zinc finger proteins, involved 

in the DNA repair process by chelation of their zinc ions [46, 156]. In this study, FA caused a 

significant decrease in PARP-1 and p53 protein expression (Figure.3.5 (B) and (C)). Activation of 

PARP-1 and p53 represents two of the earliest DNA damage responses that trigger various cellular 

functions involved in maintaining genome stability [157]. PARP-1 is a nuclear protein, whose 

catalytic activity is enhanced by binding to DNA strand breaks via either of its two zinc finger 

motifs (N-terminal), bringing about conformational changes through its third zinc finger to increase 

catalytic activity(C-terminal). This causes post-translational modification (poly (ADP-ribosyl)ation) 

of itself and other acceptor proteins using NAD+, causing its dissociation from the DNA and 

recruitment of BER enzymes to the repair site [89]. Fusaric acid exhibits structural similarities to 
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nicotinamide, which is a natural inhibitor of PARP-1 and therefore could act through competitive 

inhibition to reduce PARP-1 function [73]. It is also probable that FA could alter the zinc finger 

domains of PARP-1, therefore hindering its ability to carry out its function. However, PARP-1 

(116kDa) is a major substrate of activated caspase 3, and thus the reduced levels of PARP-1 is 

likely due to its cleavage into a 24kDa and 89kDa fragment [158].  

 

The p53 protein acts downstream of PARP-1 in the DNA damage signalling pathway [157], and is 

responsible for checkpoint control of the cell cycle, in addition to DNA repair and apoptosis 

induction [159]. PARP-1 and p53 have been shown to work together to promote DNA repair via 

physical interactions with the BER multiprotein complex [160]. The reduced p53 levels (Figure.3.5 

(C)) could have been caused by an altered PARP-1 response to DNA damage mediated by FA or 

related to chelation of the zinc ion present in the conserved central DNA binding domain of its own 

structure.   

 

Therefore, it is fair to assume that due to inactivation of the proteins that stimulate the DNA damage 

response, further downstream events were not initiated. This was confirmed by decreased mRNA 

expression of OGG1 (Figure.3.5 (A)), a DNA glycosylase, in cells treated with FA. Other studies 

have demonstrated that other aspects of this pathway are also inhibited by FA, such as the activity 

of the DNA polymerase, whereby FA exhibited inhibitory effects on DNA synthesis in both cancer 

and normal cell models [56, 60].  
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Chapter 5 

Conclusion 

This study provides evidence of FA induced cytotoxicity in the HEK293 cell line. Collectively, 

these results provide insight into the mechanism of action of FA, which shows that FA induces 

oxidative stress and promotes cellular damage and subsequent cell death by impairing the 

antioxidant and DNA repair responses. 

These findings highlight the need to conduct further studies to ascertain if the effect of FA is 

consistent in other non-cancer based cell models.  These damaging effects were observed after a 

short term exposure, which brings into question the potential threat posed by this mycotoxin 

following chronic exposure. In addition, this study emphasizes the need for the implementation of 

safety standards to regulate FA concentration in commercially produced goods.   

One limitation of the study was the use of HEK293 cells which provided an overview of the 

sensitivity of kidney cells to FA toxicity. However, for future work, it would be beneficial to make 

use of a specialised kidney cell line or possibly even an in vivo model.   
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Appendix A 
 

Table 1: Raw data obtained in calculating FA IC50 

Concentration 
(µg/ml) 

 

Log 

Concentration 

OD1 OD2 OD3 Mean OD Percentage 

Viability 

0 0.000 0.821 1.067 0.821 0.903 100.000 
30 1.477 0.892 0.548 0.666 0.702 77.741 
35 1.544 0.769 0.764 0.699 0.744 82.392 

40 1.602 0.849 0.900 0.760 0.836 92.617 

50 1.699 0.708 0.694 0.840 0.747 82.761 
100 2.000 0.512 0.398 0.415 0.442 48.911 
150 2.176 0.435 0.399 0.463 0.432 47.877 

200 2.301 0.391 0.369 0.439 0.400 44.260 

250 2.398 0.364 0.367 0.322 0.351 38.870 
300 2.477 0.267 0.24 0.233 0.247 27.316 
400 2.602 0.141 0.127 0.164 0.144 15.947 
500 2.699 0.127 0.119 0.139 0.128 14.212 
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Appendix B 
 

Table 2: Raw luminometry data for GSH standards 

GSH Standards 
Concentration 

(μM) RLU 1 RLU 2 RLU 3 Mean 
10 374279 297727 356326 342777.333 
20 514615 497342 458765 490240.667 
30 742065 706014 716944 721674.333 
40 957788 950115 987295 965066 
50 1383410 1037300 1245430 1222046.667 
60 1795650 1777780 1625420 1732950 

 

 

Figure 1: Standard curve generated from GSH standards 
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Appendix C 
 

 

Figure 2: Standard curve using known concentrations of BSA to determine the unknown 
concentrations of protein samples in the BCA assay. 

 

Table 3: Calculations for protein standardization of samples  

Sample OD1 OD2 Average 

OD 

Protein 

Concentration 

(mg/ml) 

Protein 

Volume 

(µl) 

Cytobuster 

Volume 

(µl) 

Control 1.707 1.859 1.783 2.925 102.564 97.436 
FA 1.384 1.368 1.376 2.204 136.116 63.884 
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Appendix D 
 

Table 4: Raw data obtained for positive and negative control in TBARS assay 

 Absorbance (532nm) 
Control 3.333 

 

3.358 3.359 

FA 0.005 0.003 0.002 

 


