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Abstract

In this dissertation, we studied the generation of squeezed states induced by a time-

dependent interaction and the influence of temperature on the strength of the squeezing

in a condensed matter model. The model studied comprised two quantum harmonic os-

cillators, with a time-dependent, non-linear coupling between them. The influence of the

thermal bath on the non-equilibrium dynamics of the model was represented in terms of

non-Hamiltonian thermostats and a collection of independent harmonic oscillators with

Ohmic spectral density. The equations of motion were studied in the Wigner representa-

tion, which introduces a phase space description for the model. The representation of the

system in quantum phase space allowed us to investigate the difference between purely

classical evolution and the relative importance of quantum corrections with respect to the

dynamics. The dynamics was studied by means of computer simulation techniques. The

numerical simulation of the non-equilibrium statistical mechanics of both time-dependent

and non-linear interactions allowed us to investigate conditions beyond those in recent

literature [1, 2].
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Chapter 1

Introduction

Computational physics is the study of physics which forms a bridge between experimental

and theoretical physics. We can construct a model which represents processes which occur

in nature. The model does not mimic the entire process, however the essential features of

the system are captured. The dynamics of the model are then simulated under conditions

which are similar to those of the natural system. Following this, we can compare the nu-

merical results with theoretical predictions, derived from approximated theories. Of equal

importance is the comparison with experimental results. If these results are in agreement,

then we can extend the model to study the behaviour of a system under conditions which

are not feasible to recreate in the laboratory [3]. Also, the model can be used to gain

further insights into how processes evolve at a molecular level, which is impossible to do

in an experiment. A schematic representation of the relationship between theoretical, ex-

perimental and computational physics is shown in fig. 1.1.

In condensed matter physics, we construct models of natural systems which are studied

on a microscopic scale. Through the calculation of statistical averages, it is then possible

to make inferences about the system on a macroscopic scale. These models can be used

to improve our understanding of the behaviour of natural systems, and the parameter

ranges under which they exhibit interesting behaviour. Quantum mechanics is the fun-

damentally accepted theory used to describe condensed matter physics. It is generally

thought that quantum features are strong in a low temperature environment, and are

wiped out, due to decoherence and dissipation, in a high temperature environment. How-

ever, recent experiments on biological systems, which have exhibited certain inherently

quantum characteristics, have called for the reassessment of the importance of quantum

1
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Figure 1.1: Schematic representation of the relationship between theoretical, experimental
and computational physics.

coherence in non-equilibrium systems [4, 5]. The physical problem which we want to in-

vestigate is the role of time-dependent processes in nature, by studying systems which

are in a condensed phase at non-equilibrium. Some of these important time-dependent

processes include charge transfer, transfer of energy in light harvesting complexes, trans-

port in quantum systems, protein modeling, driven systems and generation of squeezed

states [6, 7, 8, 9, 10, 11, 12]. By studying time-dependent processes in our model, we

may get further insight of quantum coherence in non-equilibrium systems. The work pre-

sented in this dissertation will focus on how a time-dependent interaction can be used a

source of generating a squeezed state, a subset of time-dependent processes. The influ-

ence of temperature on the amount of squeezing we can generate, will also be investigated.

The usefulness of squeezing in condensed matter models, is best understood by consider-

ing the speculative molecular mechanism of the motion of a proton passing through an

ion channel. Figure 1.2 provides an illustration of this process. It is possible that the

proton requires an accurate position, in order to pass through the channel. The accuracy

of the position of the proton can be improved, if its position is squeezed. By generat-

ing a squeezed state, we can limit the fluctuations in the values of the proton’s position.

However, this effect of squeezing the position, is performed at the expense of increasing

the fluctuations of the proton’s momentum. In this mechanism, the speed at which the

proton moves through the channel is not of high importance. It may even aid in the rate
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Figure 1.2: Schematic representation of the motion of a proton as it passes through an
ion channel.

of the reaction. It is possible that a state in which the position of the proton is squeezed,

can be generated by introducing a time-dependent interaction between the proton and

the channel, with non-linear effects. Another example where squeezing may be useful in

condensed matter is in molecular recognition, where reactions take place based on the lock

and key model [13]. It should be noted that the examples discussed here are preliminary,

and are presented to demonstrate the importance of squeezed states in condensed matter

models. Squeezed states have widespread applications, especially in experiments which are

limited by quantum noise. The control of quantum fluctuations can be used to limit the

sensitivity of quantum experiments. Some of these applications can be found in condensed

matter [14, 15, 16], spectroscopy [17], quantum information [18] and gravitational wave

detection [19].

The formal definition of a squeezed state arises from the Heisenberg uncertainty principle.

In 1927 Heisenberg developed the indeterminacy principle, where he related the uncer-

tainties of the position and momentum of a free particle [20]. He presented the idea that

there is a limit to the accuracy with which we can know both the particle’s position and
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momentum, simultaneously. The more accurately the position of the particle is known,

the less accurately the momentum of the particle is known, and vice versa. Thus, the

operators can not be specified with unlimited accuracy. This relation provided a physical

interpretation of quantum mechanics and became an integral part in the development of

quantum theory [21]. The measurement of the particle’s position changes its momentum

by an unknown amount. Therefore, the information we gain from the measurement is

limited by the uncertainty relation.

In classical mechanics, if the exact position and momentum of a particle is known then

it is possible to accurately predict the future position and momentum of the particle,

provided the forces acting on the particle are known. However, when the system is given

a quantum treatment, it is impossible to make this prediction. Instead of accurate values

for the future coordinates, the coordinates can take on a range of values with a certain

probability. Conjugate variables are subject to the Heisenberg uncertainty principle and

have fluctuations associated with them. Consider two operators, Â and B̂, which satisfy

the commutation relation

[
Â, B̂

]
= iĈ . (1.1)

From the Heisenberg uncertainty relation, which governs the product of the variances of

these operators and limits the measurement of both variables in the same state, we obtain

〈(
∆Â

)2〉〈(
∆B̂

)2〉
≥ 1

4

∣∣∣〈Ĉ〉∣∣∣2 . (1.2)

If Â and B̂ have an equal amount of uncertainty and the product of their uncertainties is

at a minimum the system is said to be in a coherent state or minimum uncertainty state

[22]. A consequence of eqn. (1.2) is that the variance of both operators can not be less

than 1
2

∣∣∣〈Ĉ〉∣∣∣ simultaneously. However, it is possible to reduce the fluctuations in one of

the variables,

〈(
∆Â

)2〉
<

1

2

∣∣∣〈Ĉ〉∣∣∣ or

〈(
∆B̂

)2〉
<

1

2

∣∣∣〈Ĉ〉∣∣∣ . (1.3)

When this occurs, the system is said to be in a squeezed state [23]. A consequence of a

squeezed state is that one of the operators will have less fluctuations than it would in a
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coherent state. To ensure that the uncertainty relation is not violated, the fluctuations in

the conjugate variable must be increased.

The study presented in this dissertation uses a model comprising two quantum harmonic

oscillators with a time-dependent, non-linear interaction between them. This model does

not have an analytical solution. The influence of the thermal bath on the non-equilibrium

dynamics of the model was represented in terms of non-Hamiltonian thermostats and a

collection of independent harmonic oscillators with Ohmic spectral density. Initially, the

system of oscillators are in a thermal state. After time t = 0, the time-dependent interac-

tion is switched on. This drives the oscillators into a non-equilibrium state.

The equations of motion are solved using the Wigner-Heisenberg representation of quan-

tum mechanics by means of computer simulation. This formalism allows us to avoid

complex matrix calculations, since we represent operators of the Hilbert space as func-

tions of phase space. In this representation, the quantum dynamics of harmonic systems

reduces to purely classical evolution. We consider the canonical ensemble, since we want

to control the temperature at which the simulation is performed. It is easier to control

the temperature of the system, in an experiment, rather than its energy. In the canonical

ensemble, we can derive the analytical form of the Wigner function in the initial thermal

state. The quantum initial conditions are sampled from this distribution function. To

simulate the dynamics of the coupled oscillators in contact with a thermal bath, we can

use the partial Wigner transform over the bath degrees of freedom. This will allow us to

treat the bath classically while the coupled oscillators are given a full quantum treatment.

Our objective is then to solve the quantum non-equilibrium statistical mechanics of the

model. To simulate the dynamics of the Wigner function, we map the Wigner function as

a cloud of points. We can propagate these points as trajectories and calculate the averages

of an observable over the time evolved Wigner function. The dynamics of the system can

be numerically integrated by using the symmetric Trotter factorization of the Liouville

operator. Having outlined the procedure to calculate the dynamics, we first verify that

the time-dependent interaction generates of a squeezed state. Since we are interested in

condensed matter physics, the sensitivity of temperature to the amount of squeezing which

can be generated will be investigated. The influence of temperature is given importance,
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since it is the most convenient control parameter in experimental studies. The temper-

ature of the environment acts as a source of energy when it interacts with the system,

depending on whether the reaction taking place is endothermic or exothermic.

This dissertation is organized as follows. In Chapter 2, the Wigner formulation of quantum

mechanics is introduced. This is followed by a discussion on how the quantum dynamics

of a system of N harmonic oscillators can be reduced to classical evolution, within the

Wigner formalism. Next, a brief discussion on Hamiltonian and non-Hamiltonian theory

is provided. Using non-Hamiltonian theory, it is then shown how it is possible to simulate

an environment with only a few degrees of freedom. Extended system dynamics are then

introduced along with a procedure for calculating the quantum corrections of such systems

in Wigner quantum dynamics. Chapter 3 encompasses how a computer simulation of the

Wigner function is performed. It is then shown how the initial conditions are sampled

using normal mode coordinates. Finally, the numerical evolution of the Wigner function is

discussed. In Chapter 4, the results of the study are shown. Using the calculated variances

and marginal distribution of the normal modes, it is shown how squeezed states are gener-

ated by using a time-dependent interaction. The temperature dependence on the strength

of squeezing is also shown. In Chapter 5, a summary of the work performed in this dis-

sertation is provided. Conclusions and perspectives are elucidated, with a brief discussion

on possible future work. The Appendices contain the derivation of the Wigner function in

the initial thermal state, an explanation as to why there is no analytical solution to the

equations of motion, the transformation from Cartesian to normal mode coordinates and

the derivation of the time-reversible numerical algorithms.



Chapter 2

Wigner formulation of quantum

mechanics

In this chapter, a discussion on the form of the Wigner function, its derivation from

the Weyl function and its interpretation as a quasiprobability distribution function will

be provided. Through the use of the Wigner function, it will be shown how we can treat

the quantum dynamics of N decoupled quantum harmonic oscillators by classical means.

Non-hamiltonian theory and extended system dynamics will be introduced as a method of

controlling the temperature of a system in the Wigner formulation. Lastly, quantum cor-

rection terms of thermostat schemes will be calculated.

In classical mechanics, the Hamiltonian equations of motion show a correlation between

the position and momentum of a particle

q̇ =
∂

∂p
H(q, p, t) (2.1)

ṗ = − ∂

∂q
H(q, p, t) . (2.2)

The description of the particle in phase space requires the use of a joint probability distri-

bution function, f(q, p). In order for a complete classical description to emerge from the

quantum case, it is necessary to have a quantum description of the particle in phase space

[24]. In providing this phase space representation of a quantum system, we must ensure

that Heisenberg’s uncertainty principle is not violated.

7
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2.1 Quantum mechanics in phase space

Prior to the formulation of quantum mechanics in phase space, quantum mechanics had

been treated in the formalism of wave functions or operators. In 1932, Eugene Wigner

was amongst the first to provide a formulation of quantum mechanics in phase space,

equivalent to the Heisenberg and Shrödinger formulations [25]. In his formulation, he

made use of a quasiprobability distribution function, known as the Wigner function. This

quasiprobability distribution function does not hold all of the properties of a probabil-

ity distribution function, however its usefulness lies in the way the quantum average of

an observable is calculated in phase space. We can gain a deeper understanding of the

relationship between classical and quantum mechanics by comparing the methods in cal-

culating observable averages.

For a complete description of the Wigner function, it is necessary to begin by defining the

Weyl transform of an operator. The Weyl transform of an arbitrary operator, χ̂, in the

position basis is defined as [26]

χ̃(x, p) =

∫ +∞

−∞
e−

ipy
~

〈
x+

y

2

∣∣∣ χ̂ ∣∣∣x− y

2

〉
dy . (2.3)

In the momentum basis, it is given by

χ̃(x, p) =

∫ +∞

−∞
e−

ixz
~

〈
p+

z

2

∣∣∣ χ̂ ∣∣∣ p− z

2

〉
dz . (2.4)

A tilde is used to denote the Weyl transform. The transform allows us to interpret an

operator of the Hilbert space as a function of phase space. The representation is useful in

constructing and implementing numerical algorithms to simulate the dynamics of a quan-

tum system. We avoid complex matrix calculations and complications with commutator

brackets.

One of the properties of the Weyl transform required in future calculations, is the Weyl

transform of the identity matrix

1̃ =

∫ +∞

−∞
e−

ipy
~

〈
x+

y

2

∣∣∣ 1̂ ∣∣∣x− y

2

〉
dy

=

∫ +∞

−∞
e−

ipy
~ δ(y)dy = 1 . (2.5)
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Another property of the Weyl transform, to be used later on, is that the trace of two

operators, Â and B̂, is equivalent to the integral over phase space of the product of the

Weyl transforms of both operators [27]

Tr
[
Â, B̂

]
=

1

h

∫ +∞

−∞

∫ +∞

−∞
Ã(x, p)B̃(x, p)dxdp . (2.6)

Having defined the Weyl transform, we now introduce the Wigner function. It is defined

as the Weyl transform of the density matrix divided by Planck’s constant [26]

W (x, p) =
ρ̃

h
. (2.7)

Like the Weyl transform, the Wigner function may be expressed in both the position and

momentum basis

W (x, p) =
1

h

∫ +∞

−∞
e−

ipy
~

〈
x+

y

2

∣∣∣ ρ̂ ∣∣∣x− y

2

〉
dy (2.8)

=
1

h

∫ +∞

−∞
e−

ixz
~

〈
p+

z

2

∣∣∣ ρ̂ ∣∣∣ p− z

2

〉
dz . (2.9)

The state of a system is described by the density matrix, ρ̂. Quantum statistical averages

may be calculated through use of this operator as

〈χ〉 = Tr (ρ̂χ̂) . (2.10)

Equation (2.6) allows us to rewrite the right hand side in terms of phase space functions

〈χ〉 =
1

h

∫ +∞

−∞

∫ +∞

−∞
ρ̃(x, p)χ̃(x, p)dxdp (2.11)

=

∫ +∞

−∞

∫ +∞

−∞
W (x, p)χ̃(x, p)dxdp (2.12)

where we have used the definition of the Wigner function. This result can be interpreted

by making a comparison to the calculation of statistical averages in classical mechanics

[28]. Equation (2.12) has the form of the average of a quantity χ̃(x, p) in phase space,
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where the Wigner function is the probability distribution function.

For a function to be characterized as a probability function, it needs to be normalized and

non-negative. To check that the Wigner function is normalized, we calculate the trace of

the density matrix using eqn. (2.6)

Tr
(
ρ̂1̂
)

=
1

h

∫ +∞

−∞

∫ +∞

−∞
ρ̃(x, p)1̃dxdp

=

∫ +∞

−∞

∫ +∞

−∞
W (x, p)dxdp = 1 . (2.13)

From eqn. (2.13), we see that the Wigner function is normalized. We now proceed to check

that it is non-negative. To perform this check, consider two orthogonal states of a system,

|φ1〉 and |φ2〉. Each state has a density matrix associated to it, ρ̂1 and ρ̂2 respectively.

Using eqns. (2.6) and (2.7), the trace of the density matrices is given by

Tr [ρ̂1, ρ̂2] =

∫ +∞

−∞

∫ +∞

−∞
W1(x, p)W2(x, p)dxdp .

=
1

h
〈φ1 |φ2〉 . (2.14)

However, for orthogonal states we have 〈φ1 |φ2〉 = 0, which implies that

∫ +∞

−∞

∫ +∞

−∞
W1(x, p)W2(x, p)dxdp = 0 . (2.15)

This is only possible if either W1(x, p), W2(x, p) or both, have negative values for some

region of space. The violation of positiveness is caused by quantum interference [29]. As

such, we can not call the Wigner function a probability function. Instead, we interpret it

as a quasiprobability distribution function [24].

A useful property of the Wigner function, required for future calculations, is the Wigner

transform of the product of two arbitrary operators, Â and B̂. It is defined as [30]

(
ÂB̂
)
W

= AW (R,P )e
i~
2

←−
∂ jBjk

−→
∂ kBW (R,P ) (2.16)

= BW (R,P )e−
i~
2

←−
∂ jBjk

−→
∂ kAW (R,P ) , (2.17)

where we have introduced the antisymmetric matrix B [31], which is defined in a different
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way depending on the type of dynamics we want to generate. In the notation used, W

is a subscript to denote the Wigner transform and we have used a double summation to

sum over elements of B. Written explicitly, in canonical coordinates, the exponent is the

Poisson bracket

←−
∂ jBjk

−→
∂ k =

N∑
i=1

(←−−
∂

∂Ri

−−→
∂

∂Pi
−
←−−
∂

∂Pi

−−→
∂

∂Ri

)
(2.18)

where the gradient is the derivative in phase space. The arrows above the derivatives

indicate the direction in which the derivative acts.

Partial Wigner representation

The partial Wigner representation is a widely used tool in molecular dynamics simula-

tions [32, 33, 34]. It is a powerful technique, in particular, for treating quantum systems

in contact with an environment. If a system is placed in contact with a thermal bath,

an infinte number of degrees of freedom is required to model the bath in a fully quantum

way. However, it is possible to use an approximation technique to simulate the evolution

of the total system, called the quantum-classical (QC) approximation. In the QC approx-

imation, the system of interest is given a full quantum treatment while the bath degrees of

freedom are treated classically. This approximation allows us to simulate a thermal bath

with a finite number of degrees of freedom, and is generally used when the bath particles

are much heavier than the system.

The partial Wigner transform involves taking the Weyl transform over only the bath

degrees of freedom. We then have a Hamiltonian which contains both operators of the

Hilbert space as well as functions of phase space,

Ĥ
(
q̂, R̂, p̂, P̂

)
→ HW (q̂, R, p̂, P ) ,

where the subscript W now denotes a partial Wigner transform. Coordinates (q̂, p̂) are

that of the quantum system of interest, while (R,P ) are the coordinates of the bath.

For a bath of N degrees of freedom, the partial Wigner transform of the density matrix is
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defined as [30]

ρW (R,P ) =
1

(2π~)3N

∫
dze

iPz
~

〈
R− z

2

∣∣∣ ρ̂ ∣∣∣R+
z

2

〉
. (2.19)

Since we are considering the motion of particles in 3 dimensions, the vectors have dimen-

sions 3N . Also, the factor 1
(2π~) becomes 1

(2π~)3N .

For an arbitrary operator, χ̂, the partial Wigner transform is

χW (R,P ) =

∫
dze

iPz
~

〈
R− z

2

∣∣∣ χ̂ ∣∣∣R+
z

2

〉
. (2.20)

This transform is used when implementing the QC approximation.

2.2 Quantum dynamics of harmonic systems

In this section, we will consider the evolution in time of decoupled harmonic oscillators.

In order to get the form of the Hamiltonian such that the oscillators are decoupled, we use

normal mode coordinates instead of Cartesian coordinates. The derivation of the equa-

tions used to perform the transformation between normal mode and Cartesian coordinates

may be found in Appendix B.

Consider now a Hamiltonian operator comprising N harmonic, decoupled oscillators, ex-

pressed in normal mode coordinates,

Ĥ =
N∑
n=1

(
1

2m
P̂ 2
n +

1

2
mω2

nR̂
2
n

)
. (2.21)

Here P̂n, R̂n and ωn are the momentum, position and frequency of mode n respectively.

Without loss of generality, all normal modes are given equal mass m. We are interested

in calculating the statistical average of an arbitrary observable, χ. The evolution of an

operator χ̂, corresponding to the observable χ, is given by the Heisenberg equation of

motion

∂χ̂

∂t
=

i

~

[
Ĥ, χ̂

]
. (2.22)
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We now introduce the Wigner function which will allow us express quantum mechanical

expectation values as averages over phase space. In doing so, we avoid complex matrix

algebra, which is computationally demanding, in calculating the dynamics of the system.

Using eqn. (2.17), we take the Wigner transform of eqn. (2.22) to get the equation of

motion of χW

∂χW
∂t

=
i

~

(
HW e

i~
2

←−
∂ jBjk

−→
∂ kχW − χW e

i~
2

←−
∂ jBjk

−→
∂ kHW

)
=

i

~

(
HW e

i~
2

←−
∂ jBjk

−→
∂ kχW −HW e

− i~
2

←−
∂ jBjk

−→
∂ kχW

)
=

i

~
HW

(
e

i~
2

←−
∂ jBjk

−→
∂ k − e−

i~
2

←−
∂ jBjk

−→
∂ k

)
χW

=
2i× i
~

HW

(
e

i~
2

←−
∂ jBjk

−→
∂ k − e−

i~
2

←−
∂ jBjk

−→
∂ k

)
2i

χW

∂χW
∂t

=
2

~
HW sin

(
~
2

←−
∂ jBjk

−→
∂ k

)
χW , (2.23)

where we have introduced the canonical antisymmetric matrix, B [31] and used Einstein

notation to sum over repeated indices. Using the Moyal bracket [35], eqn. (2.23) is shown

to be equivalent to Heisenberg’s equation of motion. It is the equation of motion for the

Wigner transformed operator. The difference in formulation can be seen in the evolu-

tion of the observable. Equation (2.23) expresses the evolution of an observable in terms

functions of phase space while Heisenberg’s equation expresses the evolution in terms of

operators of the Hilbert space.

To simplify eqn. (2.23), the sine term is expressed in the form of a Maclaurin series.

sin

(
~
2

←−
∂ jBjk

−→
∂ k

)
=

~
2

←−
∂ jBjk

−→
∂ k −

(
~
2

←−
∂ jBjk

−→
∂ k

)3
3!

+ · · ·

=
~
2

←−
∂ jBjk

−→
∂ k −

~3

48

(←−
∂ jBjk

−→
∂ k

)3
+ · · · (2.24)

Since the Hamiltonian only contains quadratic terms in both position and momentum,

and none of the terms contain both position and momentum, third order or higher terms

of ~ have no effect on the Hamiltonian. Thus we can ignore higher order terms, which

means

sin

(
~
2

←−
∂ jBjk

−→
∂ k

)
=

~
2

←−
∂ jBjk

−→
∂ k . (2.25)
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The evolution of an observable in the Wigner picture is then given by

∂χW
∂t

= HW

(←−
∂ jBjk

−→
∂ k

)
χW

= HW

[
N∑
i=1

( ←−
∂

∂Ri

−→
∂

∂Pi
−
←−
∂

∂Pi

−→
∂

∂Ri

)]
χW . (2.26)

where we observe that the time evolution of an observable of an arbitrary operator reduces

to classical propagation [28]. Thus, without any approximations, the quantum dynamics

of harmonic systems look purely classical to first order of ~.

The importance of this result lies in the fact that it allows us to simulate the quantum

dynamics of a harmonic system via classical methods. This simplifies our numerical task

while allowing us to investigate quantum phenomena. We will be able to distinguish

between classical and quantum behaviour by our choice of initial conditions. Since the

dynamics of the system looks classical, all quantum effects are in the initial conditions.

It is therefore imperative that we study the distribution functions used to generate both

classical and quantum initial conditions, and interpret their differences. A detailed dis-

cussion on this topic can be found in the next chapter.

2.3 Temperature control in the Wigner formulation

The Hamiltonian formalism is the fundamentally accepted theory used in molecular dy-

namics simulations [36, 3]. In what follows, the properties constituting a Hamiltonian

theory are discussed. Non-Hamiltonian theory is then introduced together with explana-

tions of why this formalism is preferred over Hamiltonian theory. Finally, a description

of extended system dynamics, in the canonical ensemble, which follows non-Hamiltonian

theory, is provided.

Changing the way molecular dynamics trajectory samples phase space dynamically, al-

lows us to choose an ensemble which allows the greatest insight into the behaviour of

condensed matter systems for various thermodynamic constraints [37]. Non-Hamiltonian

dynamics generates various statistical ensembles under which experiments are performed,
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such as canonical (NV T ) and isothermal-isobaric (NPT ) ensembles. These ensembles are

generated by using extended systems. Within the extended system framework, there is

an exchange of energy between the system and its environment. One of the ways we can

create an extended system is by using non-Hamiltonian dynamics.

2.3.1 Non-Hamiltonian dynamics and extended systems

A theory is considered to be Hamiltonian if its bracket algebra constitutes a Lie algebra

[28]. Consider the following elements of a mathematical space {α, β, γ}, and a complex

number c. The mathematical space then constitutes a Lie algebra, if the following axioms

are satisfied

(α, β) = −(β, α) (2.27)

c(α, β) = (cα, β) = (α, cβ) (2.28)

(α+ β, γ) = (α, γ) + (β, γ) , (2.29)

as well as the Jacobi relation,

J = ((α, β), γ) + ((γ, α), β) + ((β, γ), α) = 0 . (2.30)

In the properties above, a generic bracket, (..,..), has been used. In classical mechanics

the bracket would be Poissonian whereas in quantum mechanics it would be commutative.

Equation (2.27) shows the anti-commutative nature of the elements and is crucial in defin-

ing time evolution. Linearity between elements of the mathematical space and complex

number, c, is evident in equations (2.28) and (2.29). The Jacobi relation, J = 0, ensures

invariance of the algebra under time translation [38].

A theory becomes non-Hamiltonian when the Jacobi relation is no longer fulfilled, i.e.

J 6= 0, while eqns. (2.27) to (2.29) are satisfied. Thus, the algebra of non-Hamiltonian

theory is not left invariant under time translation. This problem is overcome by the ad-

vantages of using the non-Hamiltonian formalism to represent an environment around our

system [37]. In order to simulate an environment in Hamiltonian theory, one requires an

infinite number of degrees of freedom. From a computational perspective, this method is
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very demanding due to restrictions in the amount of memory which can be stored during

a simulation and the time spent to perform the simulation. However, if one makes use of

non-Hamiltonian theory, an environment can be simulated with a few degrees of freedom.

In this regard, non-Hamiltonian theory is favoured to Hamiltonian theory.

A key feature in solving problems theoretically or numerically is being able to compare

results with those calculated experimentally. It is thus of utmost importance to be able

to control certain thermodynamic properties of a system while simulating its dynamics.

Experimentally, it is easier to control properties such as temperature and pressure, instead

of the energy of a given system. To this end, we need to chose the correct ensembles which

gives us this control. Using extended system thermostat schemes allows us to control the

temperature of the system while still being able to simulate an environment with a few

degrees of freedom. A discussion of such schemes follows.

Nosé-Hoover thermostat

The Nosé-Hoover (NH) thermostat was first introduced in [39] to simulate an environment

in contact with a system of interest, using few degrees of freedom. The method of simu-

lating an environment through thermostats works by forming an extended system through

the introduction of fictitious variables. This extended system is formed in the canonical

ensemble, thus allowing us to control the temperature of the system by mimicking an

infinite bath.

The Hamiltonian of the NH extended system is

HNH =
P 2

2M
+ V (R) +

P 2
η

2mη
+ gkBTextη (2.31)

where P and R are the phase space variables of particle M , and V (R) its potential. Here η

is the fictitious Nosé variable with associated conjugate momentum Pη and mass mη . g is

the number of degrees of freedom in the system to which the thermostat is attached, kB is

the Boltzmann constant and Text is the temperature of the environment. The Hamiltonian

is a conserved quantity and we can calculate it to verify that the numerical integration of

the equations of motion is accurate.
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The phase space point of the extended system is defined as

x = (R, η, P, Pη) . (2.32)

We can use the antisymmetric matrix, BNH , to express the equations of motion as [31]

ẋ = {x,HNH}

=
∂x

∂xj
BNHjk

∂HNH

∂xk
. (2.33)

The antisymmetric matrix for this extended system is

BNH =


0 0 1 0

0 0 0 1

−1 0 0 −P

0 −1 P 0

 . (2.34)

Written explicitly, the equations of motion are

Ṙ =
P

M
(2.35)

Ṗ = −∂V (R)

∂R
− Pη
mη

P (2.36)

η̇ =
Pη
mη

(2.37)

Ṗη =

(
P 2

M
− gkBText

)
, (2.38)

and the NH Liouville operator is

iLNH = BNHjk
∂HNH

∂xj

∂

∂xk

=
P

M

∂

∂R
+
Pη
mη

∂

∂η
+

(
−∂V (R)

∂R
− Pη
mη

P

)
∂

∂P
+

(
P 2

M
− gkBText

)
∂

∂Pη
(2.39)

It is impossible to see the form of the coupling between the system of interest and the ther-

mostats from the Hamiltonian. However, from eqn. (2.38) we can see that the thermostat

acts as a feedback mechanism between the kinetic energy of the system it is attached to

and the external temperature, such that the temperature of the system tends toward the
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temperature of the bath [40].

In order to produce canonically distributed positions and momenta, the NH thermostat

assumes that the dynamics of the system is ergodic. However, this assumption does not

hold for all systems. We can overcome this by using a chain of thermostats, called the

Nosé-Hoover Chain thermostat [41].

Nosé-Hoover Chain thermostat

The Nosé-Hoover Chain (NHC) thermostat was first introduced as an extension of the

already established NH thermostat [41]. Like the NH thermostat, this method of sim-

ulating an environment works by forming an extended system through the introduction

of fictitious variables. The NHC is preferred to the NH thermostat since it allows us to

generate a canonical distribution without imposing constraints on the ergodicity of the

system. However, in order to maintain accuracy in the numerical integration of the NHC

equations of motion, a higher order algorithm is required [42].

The NHC can consist of multiple thermostats. For the purposes of this work, will consider

a chain comprised of two thermostats. The Hamiltonian of the NHC extended system is

then

HNHC =
P 2

2M
+ V (R) +

P 2
η1

2mη1

+
P 2
η2

2mη2

+ gkBTextη1 + kBTextη2 (2.40)

where P and R are the phase space variables of particle M , and V (R) is it is potential.

Here η1 and η2 are the fictitious variables with associated conjugate momentum Pη1 and

Pη2 , and masses mη1 and mη2 respectively. g is the number of degrees of freedom in the

system to which the thermostats are attached, kB is the Boltzmann constant and Text is

the temperature of the bath. The Hamiltonian is a conserved quantity and we can calcu-

late it to verify that the numerical integration of the equations of motion is accurate.

The phase space point of the extended system is defined as

x = (R, η1, η2, P, Pη1 , Pη2) . (2.41)
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We can use the antisymmetric matrix [37], BNHC , to express the equations of motion as

ẋ = {x,HNHC}

=
∂x

∂xj
BNHCjk

∂HNHC

∂xk
. (2.42)

The antisymmetric matrix for this extended system is

BNHC =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 −P 0

0 −1 0 P 0 −Pη1
0 0 −1 0 Pη1 0


. (2.43)

Written explicitly, the equations of motion are

Ṙ =
P

M
(2.44)

Ṗ = −∂V (R)

∂R
− Pη1
mη1

P (2.45)

η̇1 =
Pη1
mη1

(2.46)

η̇2 =
Pη2
mη2

(2.47)

˙Pη1 =

(
P 2

M
− gkBText

)
− Pη1

Pη2
mη2

(2.48)

˙Pη2 =
P 2
η1

mη1

− kBText . (2.49)

and the NHC Liouville operator is

iLNHC = Bjk
∂HNHC

∂xj

∂

∂xk
(2.50)

=
P

M

∂

∂R
+
Pη1
mη1

∂

∂η1
+
Pη2
mη2

∂

∂η2
+

(
−∂V (R)

∂R
− Pη1
mη1

P

)
∂

∂P

+

(
P 2

M
− gkBText

)
∂

∂Pη1
− Pη1

Pη2
mη2

∂

∂Pη1

+

(
P 2
η1

mη1

− kBText

)
∂

∂Pη2
(2.51)

It is impossible to see the form of the coupling between the system of interest and the NHC
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from the Hamiltonian. However, from eqns. (2.48) and (2.49) we can see that thermostat

one acts as a feedback mechanism between the kinetic energy of the system it is attached

to and the temperature of the bath. The function of thermostat two is to control the

fluctuations of thermostat one [41].

Both the NH and NHC thermostat schemes can be extended to the quantum case. It will

be shown in the next section, only for the NH extended system. However an explanation

of how we can generalize these calculations for NHC dynamics, will be provided

2.3.2 Nosé-Hoover in Wigner quantum dynamics

To describe a thermostat scheme in Wigner quantum dynamics, we need to calculate the

quantum corrections arising in the new equations of motion. This calculation is not origi-

nal work and is outlined in [40]. It is performed in this study for completeness of the theory.

We begin by introducing the Moyal operator, as defined in [40],

−→
M = HW exp

[
i~
2

(←−
∂jBNHjk

−→
∂k

)
+
←−
∂j (∂kBNHjk )

]
−HW exp

[
−i~

2

(←−
∂jBNHjk

−→
∂k

)
+
←−
∂j (∂kBNHjk )

]
. (2.52)

Using eqn. (2.52), we can write down the equation of motion of the Wigner function in

Wigner quantum dynamics

∂fW
∂t

= − i
~
−→
MfW . (2.53)

From this equation of motion, we will calculate the quantum corrections.

Consider now the Hamiltonian of the NH extended quantum system

HNH
W = ĤNH (2.54)

where we have taken the Wigner transform to represent the system in phase space.

Now by substituting the antisymmetric matrix, defined in eqn. (2.34), into the Moyal
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operator, the equation of motion reduces to

∂fW
∂t

= − i
~
−→
MfW (2.55)

= − i
~

{
HNH
W exp

[
i~
2

(←−
∂jBNHjk

−→
∂k

)
+
←−
∂j (∂kBNHjk )

]
−HNH

W exp

[
−i~

2

(←−
∂jBNHjk

−→
∂k

)
+
←−
∂j (∂kBNHjk )

]}
fW (2.56)

=
2

~
HNH
W sin

[
~
2

(←−
∂jBNHjk

−→
∂k

)
+
←−
∂j (∂kBNHjk )

]
fW . (2.57)

A Taylor series expansion is now used to expand the sine term

∂fW
∂t

= HNH
W

←−
∂jBNHjk

−→
∂kfW +HNH

W

←−
∂j (∂kBNHjk )fW

+
∑

n=3,5,7,...

1

n!

(
i~
2

)n−1
HNH
W

[(←−
∂jBNHjk

−→
∂k

)
+
←−
∂j (∂kBNHjk )

]n
fW . (2.58)

By using the antisymmetric property of BNH , defining the phase space compressibility as

κ =
(
∂kBNHkj

)
∂jH

NH
W (2.59)

and using the definition of the Nosé-Hoover Liouville operator, defined in eqn. (2.39), the

equations of motion can be rewritten as

∂fW
∂t

= −iLNHfW − κfW +
∑

n=3,5,7,...

1

n!

(
i~
2

)n−1
HNH
W

[(←−
∂jBNHjk

−→
∂k

)
+
←−
∂k(∂jBNHjk )

]n
fW .

(2.60)

If we only consider zero order terms of order of ~, the equations of motion represents

classical evolution. Thus, all quantum correction terms can be found from evaluating

HNH
W

[(←−
∂jBNHjk

−→
∂k

)
+
←−
∂k

(
∂jBNHjk

)]
fW . (2.61)

However, recalling that the only terms in BNH containing elements of the extended phase
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space point are BNH34 and BNH43 , results in

∂BNH

∂x1
=

∂BNH

∂R
= 0 (2.62)

∂BNH

∂x2
=

∂BNH

∂η
= 0 (2.63)

∂BNH

∂x4
=

∂BNH

∂Pη
= 0 (2.64)

while

∂BNH34

∂x3
=

∂(−P )

∂P
= −1 (2.65)

∂BNH43

∂x3
=

∂P

∂P
= 1 . (2.66)

This allows us to simplify
←−
∂j

(
∂kBNHjk

)
←−
∂j (∂kBNHjk ) =

←−−
∂x4

(
∂BNH43

∂x3

)
=

←−−
∂

∂Pη
. (2.67)

Considering only non zero elements of BNH , allows us to simplify
←−
∂jBNHjk

−→
∂k

←−
∂jBNHjk

−→
∂k =

←−−
∂

∂R

−−→
∂

∂P
+

←−
∂

∂η

−−→
∂

∂Pη
−
←−−
∂

∂P

−−→
∂

∂R
−
←−−
∂

∂P
P

−−→
∂

∂Pη
−
←−−
∂

∂Pη

−→
∂

∂η
+

←−−
∂

∂Pη
P

−−→
∂

∂P

(2.68)

Substituting the results of eqns. (2.67) and (2.68) into eqn. (2.61), the quantum correction

terms are given by

∑
n=3,5,7,...

1

n!

(
i~
2

)n−1
HNH
W

[←−−
∂

∂R

−−→
∂

∂P
+

←−
∂

∂η

−−→
∂

∂Pη
−
←−−
∂

∂P

−−→
∂

∂R
−
←−−
∂

∂P
P

−−→
∂

∂Pη
−
←−−
∂

∂Pη

−→
∂

∂η
+

←−−
∂

∂Pη
P

−−→
∂

∂P

]n
fW .

(2.69)

By analysing the form of HNH
W , it becomes possible to find the quantum correction terms
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which are not equal to zero. These terms are

HNH
W

←−−
∂n

∂xnj

−−→
∂n

∂xnk
fW = V (r)

←−−
∂n

∂Rn

−−→
∂n

∂Pn
fW (2.70)

HNH
W

(
−
←−−
∂

∂P
P

−−→
∂

∂Pη

)n
fW 6= 0 (2.71)

HNH
W

(←−−
∂

∂Pη
P

−−→
∂

∂P

)(
−
←−−
∂

∂P
P

−−→
∂

∂Pη

)n−1
fW 6= 0 (2.72)

HNH
W

(←−−
∂

∂Pη
P

−−→
∂

∂P

)2(
−
←−−
∂

∂P
P

−−→
∂

∂Pη

)n−2
fW 6= 0 (2.73)

HNH
W

(
−
←−−
∂

∂P

−−→
∂

∂R

)2(
−
←−−
∂

∂P
P

−−→
∂

∂Pη

)n−1
fW 6= 0 (2.74)

HNH
W

(
−
←−−
∂

∂P
P

−−→
∂

∂R

)2(
−
←−−
∂

∂P
P

−−→
∂

∂Pη

)n−2
fW 6= 0 . (2.75)

Thus, all quantum correction terms can be calculated by evaluating

∑
n=3,5,7,...

1

n!

(
i~
2

)n−1
HNH
W

{←−−
∂n

∂Rn

−−→
∂n

∂Pn
+

[
−
←−−
∂

∂P

(−−→
∂

∂R
− P
−−→
∂

∂Pη

)
+

←−−
∂

∂Pη

(
−
−→
∂

∂η
+ P

−−→
∂

∂P

)]n}
fW .

(2.76)

While the extension of the NHC in quantum dynamics is not shown, the quantum correc-

tion terms can also be calculated for the NHC, by substituting the antisymmetric matrix

BNHC instead of BNH in eqn. (2.57) and following the procedure outlined here.



Chapter 3

Computer simulation of the

dynamics of the Wigner function

This chapter contains the procedure to derive a general time reversible algorithm using the

symmetric Trotter factorization of the Liouville operator. The various condensed matter

models, used to study the generation of squeezed states and the influence of temperature

on the amount of squeezing, are introduced. An explanation of how the initial conditions

of the system are sampled, is provided. The treatment of the numerical evolution of the

Wigner function is discussed.

3.1 Time reversible algorithms and the Liouville-Trotter fac-

torization

In the discussion of non-Hamiltonian theory, it was shown that the Jacobian relation,

eqn. (2.30), no longer holds. Thus, the algebra of non-Hamiltonian theory is not left

invariant under time translation. In deriving a numerical algorithm for the integration of

non-Hamiltonian equations of motion, it is then of utmost importance that other laws of

symmetry are not violated. One such property is that of time reversibility. An algorithm is

time reversible if the equations of motion are left invariant under a change of sign in time.

This ensures that the behaviour of microscopic systems is independent of the direction of

the flow of time [43, 44].

In [42, 45, 46] it is shown how a time reversible algorithm can be derived, by making

24



25

use of the symmetric Trotter factorization of the Liouville propagator. In deriving a time

reversible algorithm, we begin by stating the form of the Liouville operator in terms of

bracket algebra

iLx = {x,H}B (3.1)

=
∂x

∂xj
Bjk

∂H

∂xk
. (3.2)

where x is the extended phase space point and H is the extended system Hamiltonian.

This allows us to write the equations of motion as

ẋ = iLx (3.3)

with formal solution

x(t) = exp (iL∆t)x(0) (3.4)

where ∆t is time discretization, x(0) is the initial state of the system and exp (iL∆t) is

the classical propagator which evolves the system forward in time.

The classical propagator may be written as

U(t) = exp (iL∆t) , (3.5)

where U(t) is a unitary operator, i.e. U(−t) = U−1(t).

By using the Hermitian property of the Liouville operator L† = L [47], we can verify both

the unitary property of U(t)

U †(t)U(t) = exp
(
−iL†∆t

)
exp (iL∆t)

= exp (−iL∆t) exp (iL∆t)

= 1 , (3.6)
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and the time reversibility of the equations of motion

x(t) = U(t)x(0)

U(−t)x(t) = U(−t)U(t)x(0)

= exp (−iL∆t) exp (iL∆t)x(0)

= x(0) . (3.7)

The solution given by eqn. (3.4) is not useful in solving the equations of motion, since

evaluating the right hand side is equivalent to integrating the classical equations of motion.

However, the solution is known in a few simple cases. The Liouville operator may be

decomposed into n non-commuting operators

iL =

n∑
j=1

iLj

= iL1 + iL2 + iL3 + · · ·+ iLn (3.8)

where n represents the number of elements in the phase space point. Consider now a

system which has a 2-dimensional phase space point, x = (r, p). The Liouville operator of

this system may thus be written as

iL = iL1 + iL2 (3.9)

where [L1, L2] 6= 0. The non-commutative property of the operators implies that

exp (iL∆t) = exp [i (L1 + L2) ∆t]

6= exp (iL1∆t) exp (iL2∆t) . (3.10)

Thus, to expand the evolution operator it is necessary to use the Trotter factorization [36].

The Trotter theorem is defined as

e(A+B) = lim
N→∞

[
eA/2NeB/NeA/2N

]N
. (3.11)

This equation is formally correct for an infinite value of N. However, for sufficiently large
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but finite value of N, we can rewrite the theorem as

e(A+B) =
(
eA/2NeB/NeA/2N

)N
eO(1/N

2) (3.12)

This theorem is then applied to the system of interest by identifying

A

N
=

iL2t

N
B

N
=

iL1t

N
. (3.13)

Substituting these results back into eqn. (3.12), we obtain

e(iL1+iL2)
t
N ≈

(
eiL2/2eiL1eiL2/2

) t
N
. (3.14)

We can interpret the above equation as the approximate propagation of the system over a

small time interval. Using a time discretization h = t/N , we can then write the propagation

of the system over the discretization as

ei(L1+L2)h ≈ eiL2h/2eiL1heiL2h/2 . (3.15)

where we have approximated the result to second order of h

eiLh = eiL2h/2eiL1heiL2h/2 +O(h3) . (3.16)

The importance of the above result lies in it is implementation to produce a numerical

algorithm. When the evolution operator, eiLh, acts on the system, each individual propa-

gator acts sequentially. First eiL2h/2, then eiL1h and finally eiL2h/2. This process is known

as the direct translation technique [47]. The results of each action of the individual prop-

agator feeds into the next action.

Two mathematical properties which will be needed further on in deriving a time reversible

algorithm are

exp

[
c
∂

∂x

]
f(x) = f(x+ c) (3.17)

exp

[
cx

∂

∂x

]
f(x) = f(xec) . (3.18)
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3.2 Physical models

In this section, a discussion of different physical models used in our numerical study is

provided. The equations of motion of each model are discussed. Liouville operators are

constructed which will allow us to apply the symmetric Trotter factorization of the Li-

ouville operators to generate time-reversible algorithms for each model. We begin by

discussing a system of two coupled oscillators with a time-dependent interaction between

them. Reasons as to why this model can not be solved analytically are discussed. Finally

a thermal bath, used to simulate an environment, is attached to the system of coupled os-

cillators. Two different types of thermal baths are studied. First a bath of N independent

harmonic oscillators is used and then we use the Nosé-Hoover Chain thermostat.

3.2.1 Coupled, driven oscillators

We studied numerically a model comprising two quantum harmonic oscillators with an

oscillatory, time-dependent, non-linear coupling between them. The Hamiltonian of the

driven, coupled oscillators is

H =
p21
2m

+
p22
2m

+
K

2
q21 +

K

2
q22 +

mω2(t)

2
(q2 − q1)2 (3.19)

where

ω(t) = ω0 sin (ωdt) =

√
K(t)

m
. (3.20)

Here p1 and p2 are the momenta of the oscillators, m is the mass of both oscillators, q1

and q2 are the displacement of the oscillators from their equilibrium positions, K is the

spring constant of both oscillators, ω(t) is the time-dependent frequency used to couple

the oscillators, ω0 is the amplitude of the frequency, ωd is the driving frequency and K(t)

is the coupling function between the oscillators. The general nature of the coupling func-

tion used to model the interaction between the oscillators, will make this model easier to

generalize to other systems of interest.

Initially the system is at thermal equilibrium before being driven to a non-equilibrium

state through a time-dependent interaction. In [1] and [2] analytical solutions to similar
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models have been found. However, our system differs in the non-linearity and time depen-

dence of the interaction between the oscillators. In Appendix C, we show that there is no

analytical solution to our system. In trying to solve the equations of motion of the system,

we find a Mathieu differential equation. This equation has no analytical solution in terms

of known functions, only in terms of infinite series with recurring coefficients, because

of the time-dependent frequency used to couple the oscillators. Floquet theory can be

used to establish certain properties of the differential equation, however some numerical

approximation must be taken to find a solution [48].

Having shown that this system can not be solved analytically, we solve the equations of

motion numerically by deriving a time reversible algorithm. To derive the algorithm, we

require the Liouville operators. From the equations of motion, the total Liouville operator

is

L =
2∑
i=1

Li (3.21)

where the individual operators are

L1 =
p1
m

∂

∂q1
+
p2
m

∂

∂q2
(3.22)

L2 = [−Kq1 +K(t) (q2 − q1)]
∂

∂p1
+ [−Kq2 −K(t) (q2 − q1)]

∂

∂p2
. (3.23)

The derivation of the algorithm can be found in Appendix D.1.

3.2.2 Coupled, driven oscillators attached to a harmonic bath

Thus far, the model which we have considered has been an idealized one. In reality the

driven oscillators will interact with their environment. The first type of environment

which we will consider is a thermal bath of N independent harmonic oscillators. The bath

is coupled to the driven oscillators via a bilinear coupling. Since the system is made up of

harmonic oscillators, we can describe the evolution of the system via classical means. The

total Hamiltonian is made up of contributions of the Hamiltonians of the driven system

HS , the bath that is coupled to the subsystem HB, and the coupling between the system
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and bath HSB, and is given by

HT = HS +HB +HSB (3.24)

=
p21
2m

+
p22
2m

+
K

2
q21 +

K

2
q22 +

K(t)

2
(q2 − q1)2

+
N∑
j=1

(
P 2
j

2mj
+

1

2
mjω

2
jR

2
j

)
−

2∑
α=1

N∑
j=1

qαcjRj , (3.25)

where

ωj = −ωcln
(

1− j ω0

ωc

)
(3.26)

ω0 =
ωc
N

[
1− exp

(
−ωmax

ωc

)]
(3.27)

cj =
√
ξ~ω0mjωj . (3.28)

Equation (3.26) shows that each oscillator in the bath has a different frequency. The form

of ωj , ω0 and cj allows us to efficiently represent an environment made up of an infinite

bath of oscillators with Ohmic spectral density [32]. ξ and ωc characterize the spectral

density of the bath. The Kondo parameter, ξ, is a measure of the strength of the coupling

between the subsystem and bath where the coupling between each oscillator in the bath

and the subsystem is specified by cj . The initial values of Rj and Pj are sampled from

the distribution function

ρW (Rj , Pj , β) =

N∏
j=1

{
1

π~
tanh

(
~ωj
2
β

)
exp

[
− 2

~ωj
tanh

(
~ωj
2
β

)(
1

2mj
P 2
j +

1

2
mjω

2
jR

2
j

)]}

derived in Appendix A, using the values of ωj .
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The equations of motion, of the total system are

q̇1 =
∂HT

∂p1
=
p1
m

(3.29)

q̇2 =
∂HT

∂p2
=
p2
m

(3.30)

Ṙj =
∂HT

∂Pj
=
Pj
mj

(3.31)

ṗ1 = −∂HT

∂q1
= F1 + FSB (3.32)

ṗ2 = −∂HT

∂q2
= F2 + FSB (3.33)

Ṗj = −∂HT

∂Rj
= Fj (3.34)

where we have introduced the forces

F1 = −Kq1 +K(t)(q2 − q1) (3.35)

F2 = −Kq2 −K(t)(q2 − q1) (3.36)

Fj = −mjω
2
jRj + cj

2∑
α=1

qα (3.37)

FSB =
N∑
j=1

cjRj . (3.38)

From the equations of motion we can construct Liouville operators which will allow us to

derive a time reversible algorithm. The total Liouville operator is made up of 4 individual

operators

L =

4∑
i=1

Li (3.39)
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where the individual operators are

L1 =
2∑

α=1

pα
mα

∂

∂qα
(3.40)

L2 =
2∑

α=1

(Fα + FSB)
∂

∂pα
(3.41)

L3 =
N∑
j=1

Pj
mj

∂

∂Rj
(3.42)

L4 =

N∑
j=1

Fj
∂

∂Pj
(3.43)

The derivation of the algorithm can be found in Appendix D.2.

3.2.3 Coupled, driven oscillators attached to a Nosé-Hoover Chain ther-

mostat

While the harmonic bath of oscillators does accurately represent an environment for the

driven system, we would like to be able to represent the environment with a minimal

number of degrees of freedom. To this end, we make use of the Nosé-Hoover Chain (NHC)

thermostat. The theory and advantages of the NHC thermostat are discussed in detail in

section 2.3.

For the purposes of this work, we chose to use a chain consisting of 2 thermostats. This

allows to write the explicit form of B while limiting the tensorial notation [37]. The total

Hamiltonian of the system then consists of the driven system, the harmonic bath and the

2 thermostats. Its form is given by

HNHC =
p21

2m1
+

p22
2m2

+
K

2
q21 +

K

2
q22 +

K(t)

2
(q2 − q1)2

+
P 2
0

2M
+

1

2
Mω2

0R
2
0 − c0R0 (q1 + q2)

+
P 2
η1

2mη1

+
P 2
η2

2mη2

+ gkBTextη1 + kBTextη2 (3.44)

P0 and R0 are the phase space variables of the bath oscillator having mass M and fre-

quency ω0. A bilinear interaction is used to model the behaviour between the bath and

driven system. η1 and η2 are the fictitious Nosé variables with associated conjugate mo-

mentum Pη1 and Pη2 , and masses mη1 and mη2 respectively. The number of degrees of
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freedom in the bath to which the thermostats are attached is given by g, kB is the Boltz-

mann constant and Text is the temperature of the bath.

To derive the algorithm to include the extended system, we begin by writing the equations

of motion using matrix notion [37]

ẋ =
∑
i,j

BNHCij

∂HNHC

∂xj
(3.45)

where the phase space vector is

x = (q1, q2, R0, η1, η2, p1, p2, P0, Pη1 , Pη2) . (3.46)

Written explicitly, the antisymmetric matrix is

BNHC =



0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 −P0 0

0 0 0 −1 0 0 0 P0 0 −Pη1
0 0 0 0 −1 0 0 0 Pη1 0



. (3.47)
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Performing the multiplication, the equations of motion may be explicitly written as

q̇1 =
∂HT

∂p1
=

p1
m1

(3.48)

q̇2 =
∂HT

∂p2
=

p2
m2

(3.49)

Ṙ0 =
∂HT

∂P0
=
P0

M
(3.50)

η̇1 =
∂HT

∂Pη1
=
Pη1
mη1

(3.51)

η̇2 =
∂HT

∂Pη2
=
Pη2
mη2

(3.52)

ṗ1 = −∂HT

∂q1
= −Kq1 +K(t) (q2 − q1) + c0R0 (3.53)

ṗ2 = −∂HT

∂q2
= −Kq2 −K(t) (q2 − q1) + c0R0 (3.54)

Ṗ0 = −∂HT

∂R0
− P0

Pη1
mη1

= −Mω2
0R0 + c0 (q1 + q2)− P0

Pη1
mη1

(3.55)

˙Pη1 =

(
P 2
0

M
− gkBText

)
− Pη1

Pη2
mη2

(3.56)

˙Pη2 =
P 2
η1

mη1

− kBText (3.57)

In constructing the Liouville operator associated with the equations of motion, terms that involve

the driven system (L1 + L2) are separated from those that involve the NHC thermostat, LNHC .

This allows us to write the total Liouville operator as

L = L1 + L2 + LNHC (3.58)

where

L1 =
p1
m1

∂

∂q1
+

p2
m2

∂

∂q2
+
P0

M0

∂

∂R0
(3.59)

L2 = (F1 + c0R0)
∂

∂p1
+ (F2 + c0R0)

∂

∂p2
+ F0

∂

∂P0
(3.60)

and

LNHC = −P0
Pη1
mη1

∂

∂P0
+
Pη1
mη1

∂

∂η1
+
Pη2
mη2

∂

∂η2

+

(
FPη1 − Pη1

Pη2
mη2

)
∂

∂Pη1
+ FPη2

∂

∂Pη2
. (3.61)
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The following forces have been introduced

F1 = −Kq1 +K(t) (q2 − q1) (3.62)

F2 = −Kq2 −K(t) (q2 − q1) (3.63)

F0 = −Mω2
0R0 + c0 (q1 + q2) (3.64)

FPη1 =

(
P 2
0

M0
− gkBText

)
(3.65)

FPη2 =
P 2
η1

mη1

− kBText . (3.66)

By using a generalization of the Trotter factorization, we can write the evolution of the system as

exp (hL) = exp
{
h
[
(L1 + L2) + LNHC

]}
(3.67)

= exp

(
h

2
LNHC

)
exp [h (L1 + L2)] exp

(
h

2
LNHC

)
. (3.68)

Using the Trotter factorization once again on exp [h (L1 + L2)], we get

exp (hL) = exp

(
h

2
LNHC

)
exp

(
h

2
L2

)
exp (hL1) exp

(
h

2
L2

)
exp

(
h

2
LNHC

)
. (3.69)

We apply exp
(
h
2LNHC

)
to change the thermostat variables and the momentum of the bath. Then

exp [h (L1 + L2)] implements the velocity-Verlet procedure to change the driven system and bath

variables. The output of this step feeds into exp
(
h
2LNHC

)
, which updates the thermostat variables

and the momentum of the bath.

In order to improve the accuracy of the numerical trajectories, a higher order algorithm is required.

This is achieved by applying of the Yoshida weight scheme and a multiple time step procedure to

the NHC part of the propagator [42]. This scheme is defined as

exp

(
iLNHC

h

2

)
=

Nc∏
i=1

Nys∏
j=1

exp

(
iLNHC

wjh

2Nc

) . (3.70)
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Expanding the right hand side of eqn. (3.70), produces

exp

(
iLNHC

wjh

2Nc

)
= exp

(
wjh

4Nc
FPη2mη2

∂

∂Pη2

)
exp

(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
×

×exp
(
wjh

4Nc
FPη1mη1

∂

∂Pη1

)
exp

(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
×

×exp
(
−wjh

2Nc

[
Pη1
mη1

PQ
∂

∂PQ

])
×

×exp
(
wjh

2Nc

[
Pη1
mη1

∂

∂η1
+
Pη2
mη2

∂

∂η2

])
×

×exp
(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
exp

(
wjh

4Nc
FPη1mη1

∂

∂Pη1

)
×

×exp
(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
×exp

(
wjh

4Nc
FPη2mη2

∂

∂Pη2

)
. (3.71)

where Nc is the number of multiple time steps and Nys is the number of Yoshida weights. To avoid

a singularity within the algorithm, we follow the prescription detailed in [42], and make use of a

higher order Maclaurin series to evaluate the action of Pη1 . Applying the direct translation tech-

nique to eqn. (3.69), allows us to obtain the pseudo code to implement the numerical integration.

Details of this procedure can be found in Appendix D.3.

3.3 Normal modes and sampling initial conditions

In order to calculate the motion of a system in phase space as a superposition of normal modes, we

need to diagonlize the Hamiltonian of said system. Once diagonlized, we can view the Hamiltonian

as a sum of independent modes. By introducing the concept of normal modes, we can decompose

the differential equations which govern the motion of the oscillators. The behaviour of the nor-

mal modes is then analogous to that of a simple harmonic oscillator, which becomes simple to solve.

The Hamiltonian of the driven, coupled oscillators is

H =
p21
2m

+
p22
2m

+
K

2
q21 +

K

2
q22 +

mω2(t)

2
(q2 − q1)

2
. (3.72)

The derivation of the normal mode coordinates and equations used to transform between Cartesian

and normal mode coordinates is shown in Appendix B.
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The new set of coordinates allows to diagonlize the Hamiltonian, which is now the sum of 2 modes

HN =

2∑
k=1

HN
k (3.73)

where

HN
k =

(
P 2
k

2m
+

1

2
mω2

kR
2
k

)
(3.74)

is the Hamiltonian of oscillator k, given in normal mode coordinates. Pk and Rk are the normal

mode coordinates and momenta of oscillator k and ωk its associated normal mode frequency.

In terms of Cartesian coordinates, the normal mode coordinates are defined as

R1 =
1√
2

(q1 + q2) (3.75)

R2 =
1√
2

(q1 − q2) . (3.76)

Normal mode 1 is the sum of the motion of the oscillators, which can be interpreted as the motion

of the centre of mass of the system. The centre of mass for a two particle system represents the

average of the displacement of both particles. Normal mode 1 can be thought of as a single particle

having mass 2m with frequency ω1. Normal mode 2 is the difference between the oscillators, which

can be interpreted as their relative displacement. The motion of the relative displacement always

leaves the centre of mass unchanged.

It was shown that the normal mode frequencies of each mode are

ω1 =

√
K

m
(3.77)

ω2 =

√
K + 2K(t)

m
. (3.78)

ω1 and ω2 are called the eigenfrequncies or characteristic frequencies. For ω1, the amplitudes of

the oscillators are the same and they are in phase with each other. The frequency ω1 is the fre-

quency of the oscillators if they were not coupled. For ω2, the amplitudes of the oscillators are the

same and they are out of phase with each other. A new frequency has been introduced because

of the coupling between the oscillators. It is important to note that the new frequency, ω2, is

always larger than the frequency of the oscillators if they were not coupled, ω1. From the motion

of the coupled oscillators, we have introduced a system where the motion is governed by a set of

decoupled linear differential equations. The normal mode corresponding to the sum of the two

variables oscillates at the frequency which the particles would oscillate if they were decoupled. We
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have another normal mode which oscillates at a higher frequency. Normal mode 2 is a faster mode

than normal mode 1.

Now that we have the Hamiltonian in the form of decoupled normal modes, we can calculate the

initial conditions of the system. The initial conditions are sampled from the Wigner function in

the initial thermal state.

ρW =

2∏
k=1

{
1

π~
tanh

(
~ωk

2
β

)
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
HN
k

]}
. (3.79)

The complete derivation of this distribution function is shown in Appendix A. Substituting eqn.

(3.74) into eqn. (3.79), eqn. (3.79) becomes

ρW =

2∏
k=1

{
1

π~
tanh

(
~ωk

2
β

)
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)(
P 2
k

2m
+

1

2
mω2

kR
2
k

)]}

=

2∏
k=1

{
1

π~
tanh

(
~ωk

2
β

)
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)(
P 2
k

2m

)]
× exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)(
1

2
mω2

kR
2
k

)]}
=

2∏
k=1

{
1

π~
tanh

(
~ωk

2
β

)
exp

[
−P

2
k

2

(
2

~ωkm

)
tanh

(
~ωk

2
β

)]
× exp

[
−R

2
k

2

(
2mωk
~

)
tanh

(
~ωk

2
β

)]}
=

2∏
k=1

{
1

π~
tanh

(
~ωk

2
β

)
exp

[
− P 2

k

2σ2
Pk

]
exp
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where we have introduced

σ2
Pk

=

[(
2

~ωkm

)
tanh

(
~ωk

2
β

)]−1
(3.81)

and σ2
Rk

=

[(
2mωk
~

)
tanh

(
~ωk

2
β

)]−1
(3.82)

∴ σPk =
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)
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2
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)]− 1
2

(3.83)

σRk =

[(
2mωk
~

)
tanh

(
~ωk

2
β

)]− 1
2

. (3.84)

Equation (3.80) has the form of the product of two gaussian distribution functions. This allows

us to sample the initial conditions from a gaussian distribution function and then normalize them

using eqns. (3.83) and (3.84). The initial conditions we obtain from this distribution function

describe the initial quantum state of the system. Since we know that the dynamics of our system

looks purely classical, these initial conditions characterize the quantum behaviour of the system.
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We now consider the high temperature limit, (T →∞, β → 0). In this limit we can expand tanh(x)

in terms of exponents, to first order,

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(3.85)

≈ 1 + x− (1− x)

1 + x+ 1− x
(3.86)

= x+O(x2) (3.87)

Identifying x = ~ωk
2 β and using the limit of high temperature allows us to simplify eqn. (3.79),
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2
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(3.88)

This expression is the classical canonical distribution function, which will used to sample the

classical initial conditions.

ρW =

N∏
k=1

{
βωk
2π
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]
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where we have introduced

σ2
Pk

=
m

β
(3.90)

and σ2
Rk

=
1

mβω2
k

(3.91)

∴ σPk =
√
mkBT (3.92)

σRk =

√
kBT

mω2
k

(3.93)

Thus, by changing how we sample the initial conditions of the system, we can study differences

between the classical and quantum behaviour of the system.

3.4 Numerical evolution of the Wigner function

Our objective is to solve the non-equilibrium statistical mechanics of the model. This is done by

using the Wigner approach to quantum mechanics and Monte-Carlo sampling of the initial condi-

tions [3]. The initial conditions of the system are sampled, in terms of normal mode coordinates,
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from the Wigner function in the initial thermal state, given by eqn. (3.79). In the initial state, the

oscillators have not started to interact. The coordinates are then transformed from normal mode

to Cartesian coordinates, which are propagated as a cloud of points. A schematic representation

of the evolution of the Wigner function can be seen in fig. 3.1.

Figure 3.1: Illustration of the numerical evolution of the Wigner function, over a finite
time.

After time t = 0, we no longer have the analytical form of the density matrix to describe the

system. Instead, we have a cloud of points. We numerically simulate the propagation of the

Wigner function, using time reversible algorithms. In the Wigner representation, we calculate

statistical averages over the time evolved Wigner function. The average of a desired observable, χ,

is given by

< χ̂ > =

∫
τ

dNR dNP ρW (R,P, t)χW (R,P ) . (3.94)

Equation 3.94 can be applied to calculate the average of the variance of the normal mode coordi-

nates in the Wigner representation, to verify if our system is squeezed or not. Recall from Chapter

1, that if two operators satisfy the relation
[
Â, B̂

]
= iĈ, then we have a squeezed state if

〈(
∆Â
)2〉

<
1

2

∣∣∣〈Ĉ〉∣∣∣ or

〈(
∆B̂

)2〉
<

1

2

∣∣∣〈Ĉ〉∣∣∣ . (3.95)

In the case of normal mode coordinates, their commutation relation is
[
R̂, P̂

]
= i~. In the case of

dimensionless coordinates, ~ is equal to 1. Thus, we have squeezing in one of the normal modes, if

〈(
∆R̂

)2〉
<

1

2
or

〈(
∆P̂

)2〉
<

1

2
. (3.96)
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Using eqn. (3.94), we can calculate the variance of each normal mode coordinate,

σ2
χ = < χ̂2 > − < χ̂ >2 (3.97)

=

∫
τ

dNqdNp ρW (q, p, t)χ2
W (q, p)−

[∫
τ

dNqdNp ρW (q, p, t)χW (q, p)

]2
. (3.98)

We can then compare the calculated variance, given by eqn. (3.98), to the threshold for squeezing,

which in this case is given by eqn. (3.96).

We can also use another method to visualize squeezing in our system. Since we evolve the Wigner

function as a cloud of points, and consequently do not have an analytical form after time t = 0,

we can construct the histograms of the marginal distribution functions of each normal mode,

W (R1, P1, t) =

∫
dR2dP2W (R1, R2, P1, P2, t) (3.99)

W (R2, P2, t) =

∫
dR1dP1W (R1, R2, P1, P2, t) . (3.100)

The histograms will also give us an intuitive idea of how squeezing may be useful. We should be

able to clearly visualize squeezing in our system if our system is in a squeezed state.



Chapter 4

Numerical Results

In this chapter, the results of the numerical study are shown together with their interpretation.

Firstly, a comparison between classical and quantum sampled initial conditions is made by analysing

the different shapes in the distributions of the initial positions and momenta of each normal mode.

We then consider the dynamics of the coupled oscillators without an environment. The stability of

the numerical algorithm to solve the equations of motion is shown in the form of the conservation

of the Hamiltonian in the absence of driving. Next, the generation of a squeezed state is shown by

comparing the variance of each normal mode coordinate to the threshold for squeezing. To visualize

the squeezing effect, the marginal distribution of each normal mode is plotted at the initial and a

later time. Two different types of environments are then added to the coupled oscillators. The

results of these simulations are shown, together with an explanation of the influence of temperature

and coupling strength on the strength of squeezing.

4.1 Initial conditions

To illustrate the differences between the classical and quantum initial conditions, we plot the sam-

pled initial values of the momentum and position of a normal mode. We show the results of normal

mode 1, however the same behaviour is observed in normal mode 2. The classical initial conditions

are sampled from the classical canonical distribution function given by eqn. (3.88), while the quan-

tum initial conditions are sampled from the analytical form of the Wigner function in the initial

thermal state, given by eqn. (3.79). Figures 4.1a and 4.1b show the classical and quantum initial

conditions of normal mode 1, respectively. In each plot, we used the same set of parameters to

generate the initial conditions. For the classical case, the initial values were seen to be localised at

the origin. However, for the quantum case, we observe a delocalisation where the initial conditions

are spread over a wider region.
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(a) Classical initial conditions of normal mode 1.

(b) Quantum initial conditions of normal mode 1.

Figure 4.1: Classical and quantum initial values of the position and momentum of normal
mode 1. Parameters used in this simulation: m = 1.0, K = 1.25 and T1 = T2 = 1.0. 10
000 points were sampled in each case.
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4.2 Coupled oscillators

In this section, we present the results of the simulation of the system of coupled, driven oscillators

whose Hamiltonian is given by eqn. (3.19). For all further simulations of the dynamics, we used a

time-step of 0.01, 25 000 molecular dynamics steps, 10 000 Monte-Carlo steps, dimensionless co-

ordinates and scaled units. In order to check that the time-reversible algorithm used is numerically

stable, we ensure that the Hamiltonian of the system is conserved, in the absence of driving. See

fig. 4.2a. The standard deviation of each point is also calculated to ensure that the results do not

depend on the seed used to generate the random numbers. We then look at the Hamiltonian when

driving is introduced to the system in fig. 4.2b. As expected, the driving violates the conserva-

tion of the Hamiltonian as we observe large fluctuations. The strength of the fluctuations in the

Hamiltonian is proportional to the amplitude of the time-dependent frequency, while the period of

oscillations depends on the driving frequency.

The variance of each normal mode co-ordinate is shown in fig. 4.3a. The coordinates of normal

mode 1 maintain a constant value even when driving is switched on between the oscillators. How-

ever, we observe a decrease and increase in the variance of the position and momentum of normal

mode 2 respectively. We observe a change in the variance of only normal mode 2 because of the

form of the normal mode frequencies, see eqns. (3.77) and (3.78). Only the frequency of normal

mode 2 contains a time-dependence, while the frequency of normal mode 1 has a constant value.

In fig. 4.3b, the variance of the position of normal mode 2 is shown to be below the threshold

for squeezing. As a result of the time-dependent interaction, the system is driven from a thermal

state into a squeezed state. The inset in fig. 4.3b showing the short time simulation of the dynam-

ics, indicates that the process of generating a squeezed state is a fast one. However it is not an

instantaneous one, as there are initially points lying above the threshold for squeezing, after the

time-dependent interaction is switched on at time t=0.

To improve our intuitive understanding of how squeezing occurs in our system, we plotted 2-

dimensional surface plots of the marginal distributions at the initial time when the system was

in a thermal state, for each normal mode. These plots were then compared to a later time, to

verify if we observe squeezing in the normal mode. To study these effects, we used quantum initial

conditions to generate the marginal distribution functions. From figs. 4.4a and 4.4b, normal mode

1 was seen to maintain its circular distribution, after the time-dependent interaction had been

introduced, indicating that it is not squeezed. However, in figs. 4.5a and 4.5b, we see a change in

the distribution for normal mode 2. Starting in a thermal state where the distribution is circular,

the distribution becomes elliptical, after the time-dependent interaction is switched on. Figure

4.5b shows squeezing in the position and elongation in the momentum of normal mode 2, which is

consistent with the results obtained in fig. 4.3a.
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(a) Normalized Hamiltonian without driving between the oscillators.

(b) Normalized Hamiltonian with driving between oscillators.

Figure 4.2: Normalized Hamiltonian in the absence of driving (a) and when the driving
is introduced to the system (b). Parameters used in this simulation: m = 1.0, K = 1.25,
T1 = T2 = 1.0, ω0 = 2.50 and ωd = 0.45.
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(a) Variance of each normal mode coordinate. The red, green, blue and
purple lines represent the variances of R1, R2, P1 and P2 respectively.

(b) Variance of normal mode coordinate R2, indicated by the red line,
below the threshold for squeezing, indicated by the green line. The inset
shows the short time simulation of the variance of R2, represented by red
points.

Figure 4.3: Variance of all normal mode coordinates (a) and variance of R2 below the
threshold for squeezing together with an inset of the short time simulation (b). Parameters
used in this simulation: m = 1.0, K = 1.25, T1 = T2 = 0.1, ω0 = 2.50 and ωd = 0.45.
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(a) Marginal distribution function of normal mode 1 at t=0.

(b) Marginal distribution function of normal mode 1 at t=200.

Figure 4.4: Two-dimensional surface plots of the marginal distribution functions of normal
mode 1 at t=0 (a) and t=200 (b). Parameters used in this simulation: m = 1.0, K = 1.25,
T1 = T2 = 0.1, ω0 = 2.50 and ωd = 0.45.
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(a) Marginal distribution function of normal mode 2 at t=0.

(b) Marginal distribution function of normal mode 2 at t=200.

Figure 4.5: Two-dimensional surface plots of the marginal distribution functions of normal
mode 2 at t=0 (a) and t=200 (b). Parameters used in this simulation: m = 1.0, K = 1.25,
T1 = T2 = 0.1, ω0 = 2.50 and ωd = 0.45.
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4.3 Coupled oscillators attached to a harmonic bath

We now introduce an environment of a bath of N = 200 harmonic oscillators, bi-linearly coupled

to the system of coupled, driven oscillators. The Hamiltonian of this system is given by eqn.

(3.25). 200 oscillators were used since it corresponds to the minimum number of oscillators that

can describe an infinite bath and be in agreement with linear response theory [49, 50]. To check

that the numerical algorithm used to solve the system is stable, we calculated the Hamiltonian

of the total system in the absence of driving. Figure 4.6 shows that this quantity is conserved

which implies that the algorithm is stable. This calculation was performed using weak and strong

coupling strength to the bath (ξ = 0.007, 0.3), with low, medium and high temperature values of

the bath (Tb = 0.1, 1.0, 10.0). All sets of parameter values yielded results which were in agreement

with each other. For these simulations we set ωc to 1.0 and ωmax to 3.0.

Figure 4.6: Normalized Hamiltonian of coupled oscillators, in the absence of driving,
attached to a harmonic bath. Parameters used in this simulation: m = 1.0, K = 1.25,
T1 = T2 = 0.1 Tb = 1.0 and ξ = 0.007.
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In fig. 4.7a the variance of each normal mode coordinate is shown. We only observe a change in

fluctuations of normal mode two, when driving is introduced to the system. The variance of the

position decreases at the expense of an increase in the variance of its momentum. This occurs as

a result of the time-dependent interaction between the oscillators. In fig. 4.7b, we show that the

variance of the position of normal mode two is indeed below the threshold for squeezing which

indicates that the system has been driven from a thermal to a squeezed state. The inset in fig.

4.7b shows that even when an environment is attached to the system of coupled oscillators, the

time taken for the system to go from a thermal to a squeezed state does not change.

Following this, a study to investigate the influence of temperature on the strength of squeezing

was performed. In fig. 4.8, four different temperatures of the bath, which differ by an order of

magnitude (Tb = 0.01, 0.1, 1.0, 2.0), were used. We found that as we decrease the temperature

of the bath, we obtained stronger squeezing. However, there is a limit to which we can squeeze

normal mode two. If we use a value of 0.01 for Tb, then we generate exactly the same amount

of squeezing as we would using a value of 0.1 for Tb. An increase in temperature, caused weaker

squeezing in normal mode two, eventually resulting in not being able to generate a squeezed state.
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(a) Variance of each normal mode coordinate. The red, green, blue and
purple lines represent the variances of R1, R2, P1 and P2 respectively.

(b) Variance of normal mode coordinate R2, indicated by the red line,
below the threshold for squeezing, indicated by the green line. The inset
shows the short time simulation of the variance of R2, represented by red
points.

Figure 4.7: Variance of all normal mode coordinates (a) and variance of R2 below the
threshold for squeezing together with an inset of the short time simulation (b). Parameters
used in this simulation: m = 1.0, K = 1.25, T1 = T2 = 1.0, ω0 = 2.50, ωd = 0.45, Tb = 1.0
and ξ = 0.007.
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Figure 4.8: Variance of normal mode coordinate R2, with four different temperatures of
the bath. The red, green, blue and purple lines are for temperatures of the bath 0.01, 0.1,
1.0 and 2.0 respectively. Parameters used in this simulation: m = 1.0, K = 1.25, and
ξ = 0.007.



53

4.4 Coupled oscillators attached to a NHC and harmonic

oscillator

Using a bath of N = 200 harmonic oscillators to represent an environment, requires the simulation

of many degrees of freedom. By introducing the NHC thermostat following non-Hamiltonian

dynamics, we have shown that it is possible to simulate an environment with fewer degrees of

freedom. This alternative way of representing an environment drastically reduces the time taken

to perform the full simulation. The results of this study will be presented. For these simulations,

we used η1 = 0, η2 = 0, Pη1 = 0 and Pη2 = 1.0

Figure 4.9: Normalized Hamiltonian of coupled oscillators, in the absence of driving,
attached to NHC thermostat. Parameters used in this simulation: m = 1.0, K = 1.25,
T1 = T2 = 1.0 Tb = 1.0 and ξ = 0.007.
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It was first important to verify that the numerical algorithm, used to solve the system, is stable.

This algorithm is not a simple generalization of the Velocity-Verlet. We have used a Yoshida weight

scheme and multiple time-step procedure. In the Yoshida scheme, we used 3 weights where the

weights are given by w1 = 1
2−21/3 , w2 = 1 − 2w1 and w3 = w1. For the multiple time-step proce-

dure, we used a 3 fold time step. Thus the time discretization used in the algorithm changes from

∆t to wi∆t/3. In fig. 4.9, the conserved Hamiltonian indicates that the algorithm implemented is

stable.

The results shown in figs. 4.10a and 4.10b are in agreement with the results presented in figs

4.7a and 4.7b. As a result of the time-dependent interaction between the oscillators, we obtain

squeezing in the position of normal mode two. This occurs at the expense of an increase in the

fluctuations of the momentum of normal mode two. The influence of the temperature of the bath

on the squeezing was studied using four different values which differ by an order of magnitude

(Text = 0.01, 0.1, 1.0, 2.0) in fig. 4.11. A decrease in temperature increased the strength of squeez-

ing. However, there is a limit to which we can squeeze the system, since temperatures 0.01 and 0.1

produced exactly the same amount of squeezing. An increase in temperature limits the amount of

squeezing which eventually removes it completely.
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(a) Variance of each normal mode coordinate. The red, green, blue and
purple lines represent the variances of R1, R2, P1 and P2 respectively.

(b) Variance of normal mode coordinate R2, indicated by the red line,
below the threshold for squeezing, indicated by the green line. The inset
shows the short time simulation of the variance of R2, represented by red
points.

Figure 4.10: Variance of all normal mode coordinates (a) and variance of R2 below the
threshold for squeezing together with an inset of the short time simulation (b). Parameters
used in this simulation: m = 1.0, K = 1.25, T1 = T2 = 1.0, ω0 = 2.50, ωd = 0.45, Tb = 1.0
and ξ = 0.007.
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Figure 4.11: Variance of normal mode coordinate R2, with four different temperatures of
the bath. The red, green, blue and purple lines are for temperatures of the bath 0.01, 0.1,
1.0 and 2.0 respectively. Parameters used in this simulation: m = 1.0, K = 1.25, and
ξ = 0.007.



Chapter 5

Conclusions and perspectives

This chapter contains a summary of the work presented in this dissertation. The formalism used to

perform the calculations and main results of this study are highlighted. Next, concluding remarks

and perspectives are elucidated. Finally, future studies extending from this work are discussed.

Recently, there have been many papers designated to understanding a variety of time-dependent

processes in quantum systems. Such processes include charge transfer, transfer of energy in

light harvesting complexes, transport in quantum systems, protein reactions and driven systems

[6, 7, 8, 9, 10, 11, 12]. The importance of time-dependent processes in systems which are in a

condensed phase was highlighted in Chapter 1. If a process is time-dependent, then the system of

interest is in a non-equilibrium state. Non-equilibrium quantum dynamics are much more inter-

esting to study compared to equilibrium dynamics, since it is possible to have many processes in

a non-equilibrium system.

A subset of these time-dependent processes, which we were interested in studying, is the generation

of squeezed states. Since systems which are in a condensed phase are of interest to us, we wanted

to investigate the influence of temperature on the process. In particular, we wanted to understand

what effect temperature has on the amount of squeezing which can be generated. To understand

the usefulness of squeezing in condensed matter systems, we considered a speculative model of

the motion of a proton as it passes an ion channel. It was shown that if the proton’s position

was squeezed in space, then it would increase the probability of the proton passing through the

channel. The squeezing of the proton’s position occurs at the expense of increasing the proton’s

momentum. However, we were not interested in the speed at which the proton moved through the

channel. It may be possible that increasing the proton’s speed aids in allowing it to pass through

the channel. A possible source of generating a state in which the proton’s position is squeezed,

is the time-dependent interaction between the proton and the channel. Squeezed states were also

shown to have applications in the control of quantum fluctuations, as well as in experiments which
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are sensitive to quantum noise.

Having in mind that we were interested in studying temperature dependence in the generation of

a squeezed state, we chose to study a model comprising two quantum harmonic oscillators with

a time-dependent, non-linear coupling between them. The influence of the thermal bath on the

non-equilibrium dynamics of the model was represented in terms of non-Hamiltonian thermostats

and a collection of independent harmonic oscillators with Ohmic spectral density. Initially, the

oscillators are decoupled and are in a thermal state. The coupling is switched on after time t = 0,

at which point the oscillators are driven out of equilibrium as a result of the interaction. By intro-

ducing normal mode coordinates, it was shown that there is no simple analytical solution to the

equations of motion of the system. Our model differs from those recently studied in [1] and [2],

where analytical solutions have been found. The difference occurs in the form of the coupling used

between the oscillators. The coupling we used is both non-linear and time-dependent.

The quantum equations of motion were studied in the Wigner representation, and integrated nu-

merically by means of computer simulation. The Wigner representation proved to be advantageous

in numerically solving our system since it allowed us to avoid complex matrix calculations, and use

techniques and algorithms from molecular dynamics simulations. To calculate the quantum dy-

namics of the system, we used the Heisenberg equation of motion. Using normal mode coordinates,

we were able to represent the Hamiltonian of our system as a sum of individual modes. The Wigner

representation of the Heisenberg equation of motion then allowed us to reduce the quantum dy-

namics our system to classical evolution, since the Hamiltonian contained only quadratic terms in

position and and momentum. This implied that all quantum effects were in the initial conditions.

We were able to derive the analytical form of the Wigner function in the initial thermal state,

which allowed us to sample the quantum initial conditions of each normal mode. In the limit of

high temperature, the Wigner function was shown to reduce to the classical canonical distribution

function. This distribution function was used to sample the classical initial conditions, and allowed

us to make comparisons between the initial classical and quantum thermal state.

To reduce the computational effort required in simulating an environment, we used the partial

Wigner transform over the bath degrees of freedom. This allowed us to give the bath a classical

treatment while the system of driven oscillators were still given a full quantum treatment. Since

the quantum dynamics of harmonic oscillators looks classical, we were able to perform a full quan-

tum simulation using the partial Wigner transform, on the collection of independent harmonic

oscillators. However, this method of representing an environment required the simulation of many

degrees of freedom. To improve the efficiency of the computer simulation of the environment, we

introduced a thermostat scheme called the Nosé-Hoover Chain thermostat. In this scheme, the
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environment was simulated by forming an extended system, comprising few degrees of freedom,

which follows non-Hamiltonian theory. The extended system comprised of a single harmonic oscil-

lator and chain of two thermostats which control the temperature of the bath.

To simulate the dynamics of the Wigner function, we mapped the Wigner function as a cloud of

points and used Monte-Carlo sampling of the initial conditions. We then propagated these points

as classical trajectories and calculated the average of any desired observable over the time evolved

Wigner function. Averages of the normal mode coordinates were then calculated and compared

to the threshold condition for squeezing, to verify if a squeezed state had been generated. To vi-

sualize the squeezing effect in our system, we constructed histograms of the marginal distribution

functions of each normal mode.

In investigating the differences between the initial classical and quantum state, we found the clas-

sical coordinates to be localised at the origin while the quantum initial values were more spread

out, see figs. 4.1a and 4.1b. This is to be expected, as the quantum initial conditions are subject

to the Heisenberg uncertainty relation. They have probabilities associated with their values, and

as a results will be defined over a larger range. However, the classical initial conditions are known

with unlimited accuracy. Therefore, they are expected to be well defined within a small region.

Using the symmetric Trotter factorization of the Liouville operator, we derived time reversible

algorithms for each model to numerically integrate the equations of motion. To check that the

algorithms are stable, we plotted the total normalized Hamiltonian for the closed system and with

the two different types of environments, when there is no driving between the oscillators. In the

absence of driving, the Hamiltonian is a conserved quantity. This was shown, in figs. 4.2a, 4.6 and

4.9. In each system, the Hamiltonian was conserved up to the sixth decimal place. The driving

was then switched on between the oscillators. We found that the amplitude of the frequency and

driving frequency were proportional to the size of the fluctuations and period of oscillations, re-

spectively. See fig. 4.2b.

Having verified that the numerical algorithm was stable, we proceeded to check if generating a

squeezed state was possible. This was done by plotting the variance of each normal mode coordi-

nate, and comparing them to the threshold for squeezing. See figs. 4.3a, 4.7a and 4.10a. It was

found that, as a result of the time-dependent interaction between the oscillators, the position of

normal mode 2 was squeezed. The squeezing of the position occurred at the expense of an increase

in the fluctuations of the momentum of normal mode 2. Normal mode 1 did not experience fluctua-

tions in its coordinates because the time dependence only appears in the frequency of normal mode

2. The frequency of normal mode 1 is a constant value. In figs. 4.3b, 4.7b and 4.10b the short
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time simulation of the dynamics is shown. These plots illustrate that the process of generating

a squeezed state is a fast one, however not an instantaneous one, since there are initially points

above the threshold for squeezing after the time dependent interaction is switched on. Also, we

notice that the speed at which the system is driven into a squeezed state does not change when

the system is in contact with a thermal bath.

To obtain a better visualization of squeezing with our system, and thus gain an intuitive under-

standing, the marginal distributions of each normal mode are shown in figs. 4.4a, 4.4b, 4.5a and

4.5b. A comparison for each normal mode is made, from the initial time when the oscillators are

decoupled, to a later time after the interaction has been switched on. The marginal distribution is

constructed via the formation of histograms. Initially, both normal mode 1 and 2 are in a thermal

state and their distributions are circular. However, at a later time, the distribution of normal

mode 1 remains the same while for normal mode 2 it becomes elliptical. This indicates that the

position of normal mode 2 has been squeezed and consequently, its momentum is elongated. This

behaviour was consistent with results obtained by comparing the variances of the normal modes

to the threshold for squeezing. The marginal distributions were only shown for the closed system.

However, when the system was in contact with the bath, the same results were obtained.

Having verified that the time-dependent interaction does generate a squeezed state, we investigated

the influence of the temperature of the environment on the amount of squeezing which can be gen-

erated. Using different temperatures, we plotted the variance of the position of normal mode 2 in

figs. 4.8 and 4.11. It was found that as the temperature decreased, we obtained stronger squeez-

ing. However, we reached a point where the amount of squeezing would not change regardless

of whether the temperature was decreased. This indicated that there is a limit to which we can

squeeze the position of normal mode 2. As we increased the temperature of the bath, we found

that the strength of squeezing decreased. It eventually resulted in removing all squeezing effects

from the system. Thus, the level of squeezing can be controlled by changing the temperature of

the bath, but there is a lower limit to which we can squeeze the system.

In future work I will continue my study of the generation of squeezed states, and investigate the

limits of quantum to classical transitions. Additionally, I plan on quantifying entanglement in our

system.



Appendix A

Derivation of the Wigner function

in the initial thermal state for an

ensemble of N independent

harmonic oscillators

This appendix contains the derivations of the Wigner function in the initial thermal state for N

independent harmonic oscillators in the canonical ensemble.

In order to calculate the quantum initial conditions of our system in the canonical ensemble, we

require a distribution function which describes our system in its initial thermal state. This function

is given by the analytical form of the Wigner function for an ensemble of N independent harmonic

oscillators at temperature T . This distribution function is derived in [51], however I performed the

derivation to further my understanding of the theory.

Let ρ̂ denote the normalized density matrix, Ω̂ the un-normalized density matrix and the temper-

ature parameter β = 1/kBT . In the canonical ensemble, we can write ρ̂ as

ρ̂ =
1

Z(β)
Ω̂ (A.1)

=
1

Z(β)
e−βĤ (A.2)
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where Ĥ is the Hamiltonian operator of the system and Z(β) is the canonical partition function,

Z(β) = Tr(e−βĤ). (A.3)

The un-normalized density matrix Ω̂ then satisfies the Bloch Equation,

∂Ω̂

∂β
= −ĤΩ̂ = −Ω̂Ĥ , (A.4)

provided it satisfies the initial condition Ω̂(β = 0) = Î, where Î is the identity operator.

We introduce the notation of a symplectic matrix, B, which in its canonical form reduces
←−
∂aBab

−→
∂b

to the Poisson bracket [31]. The arrows above the derivatives indicate the direction in which the

derivative operates, and we have used Einstein’s notation of summation over repeated indices.

Now, using the identity for the Wigner function of two operators, defined in eqn. (2.17), the

Wigner transform of the Bloch equation is then

∂ΩW (Rk, Pk)

∂β
= −HW (Rk, Pk)e

i~
2

←−
∂aBab

−→
∂bΩW (Rk, Pk) (A.5)

= −ΩW (Rk, Pk)e
i~
2

←−
∂aBab

−→
∂bHW (Rk, Pk) . (A.6)

Applying the identity defined in eqn. (2.17) to eqn. (A.6), we find

∂ΩW (Rk, Pk)

∂β
= −HW (Rk, Pk)e−

i~
2

←−
∂aBab

−→
∂bΩW (Rk, Pk) . (A.7)

However, this is possible if only even powers of the expansion of e
−i~
2

←−
∂aBab

−→
∂b are taken into account.

Therefore, the Wigner transform of the Bloch equation can be written as

∂ΩW (Rk, Pk)

∂β
= −HW (Rk, Pk)cos

(
~
2

←−
∂aBab

−→
∂b

)
ΩW (Rk, Pk). (A.8)

The Hamiltonian of our system consists of 2 independent harmonic oscillators, however we derive

the Wigner transform of the density matrix for the general case of N independent harmonic oscilla-

tors. Consider the Hamiltonian of a system of N independent harmonic oscillators, in the Wigner

representation,

HW =

N∑
n=1

(
1

2mn
P 2
n +

1

2
mnω

2
nR

2
n

)
. (A.9)

The Wigner-Bloch equation is then

∂ΩW
∂β

=

[(
1

2mn
P 2
n +

1

2
mnω

2
nR

2
n

)
cos

(
~
2

[←−−
∂

∂Rk

−−→
∂

∂Pk
−
←−−
∂

∂Pk

−−→
∂

∂Rk

])]
ΩW . (A.10)

We now perform a Taylor series expansion of cos(x) up to second order, since higher order terms
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will yield zero when acting on the Hamiltonian,

cos

(
~
2

[←−−
∂

∂Rk

−−→
∂

∂Pk
−
←−−
∂

∂Pk

−−→
∂

∂Rk

])
= 1− 1

2

(
~
2

)2
[←−−

∂

∂Rk

−−→
∂

∂Pk
−
←−−
∂

∂Pk

−−→
∂

∂Rk

]2
. (A.11)

We now write the explicit form of the square of the derivatives appearing in the equation above

(←−−
∂

∂Rk

−−→
∂

∂Pk
−
←−−
∂

∂Pk

−−→
∂

∂Rk

)2

=

(←−−
∂

∂Rk

−−→
∂

∂Pk
−
←−−
∂

∂Pk

−−→
∂

∂Rk

)
×

(←−−
∂

∂Rl

−−→
∂

∂Pl
−
←−−
∂

∂Pl

−−→
∂

∂Rl

)

=

←−−
∂

∂Rk

−−→
∂

∂Pk

←−−
∂

∂Rl

−−→
∂

∂Pl
−
←−−
∂

∂Rk

−−→
∂

∂Pk

←−−
∂

∂Pl

−−→
∂

∂Rl

−
←−−
∂

∂Pk

−−→
∂

∂Rk

←−−
∂

∂Rl

−−→
∂

∂Pl
+

←−−
∂

∂Pk

−−→
∂

∂Rk

←−−
∂

∂Pl

−−→
∂

∂Rl

=

←−−−−−
∂2

∂Rk∂Rl

−−−−−→
∂2

∂Pk∂Pl
−
←−−−−−
∂2

∂Rk∂Pl

−−−−−→
∂2

∂Pk∂Rl

−
←−−−−−
∂2

∂Pk∂Rl

−−−−−→
∂2

∂Rk∂Pl

←−−−−−
∂2

∂Pk∂Pl

−−−−−→
∂2

∂Rk∂Rl
. (A.12)

Substituting eqn. (A.12) into eqn. (A.10), the Wigner-Bloch equation becomes

∂ΩW
∂β

= −
(
P 2
n

2mn
+

1

2
mnω

2
nR

2
n

)
ΩW +

~2

8

(
P 2
n

2mn
+

1

2
mnω

2
nR

2
n

)
×

(←−−−−−
∂2

∂Rk∂Rl

−−−−−→
∂2

∂Pk∂Pl
−
←−−−−−
∂2

∂Rk∂Pl

−−−−−→
∂2

∂Pk∂Rl
−
←−−−−−
∂2

∂Pk∂Rl

−−−−−→
∂2

∂Rk∂Pl
+

←−−−−−
∂2

∂Pk∂Pl

−−−−−→
∂2

∂Rk∂Rl

)
ΩW

= −
(
P 2
n

2mn
+

1

2
mnω

2
nR

2
n

)
ΩW +

(
P 2
n

2mn

←−−−−−
∂2

∂Pk∂Pl

−−−−−→
∂2

∂Rk∂Rl
+

1

2
mnω

2
nR

2
n

←−−−−−
∂2

∂Rk∂Rl

−−−−−→
∂2

∂Pk∂Pl

)
ΩW .

The Wigner transformed Bloch equation for N independent harmonic oscillators becomes

∂ΩW
∂β

= −
(
P 2
n

2mn
+

1

2
mnω

2
nR

2
n

)
ΩW +

~2

8

(
1

mk

−−−−−→
∂2

∂Rk∂Rl
+mkω

2
k

−−−−−→
∂2

∂Pk∂Pl

)
ΩW

= −
(
P 2
n

2mn
+

1

2
mnω

2
nR

2
n

)
ΩW +

~2

8

(
1

mk

∂2ΩW
∂Rk∂Rl

+mkω
2
k

∂2ΩW
∂Pk∂Pl

)
. (A.13)

To solve this equation, we make the ansatz

ΩW (Rk, Pk) = e−A(β)HW+B(β) (A.14)

where A and B are subject to the initial conditions, A(0) = B(0) = 0.

We now find the second order spatial derivatives with respect to ΩW and substitute them into eqn.
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(A.13)

∂ΩW
∂Rk

= ΩW

(
−A ∂H

∂Rk

)
= ΩW

(
−Amkω

2
kRk

)
∂2ΩW
∂Rk∂Rl

=
∂ΩW
∂Rl

[
−Amkω

2
kRk

]
−AΩWmlω

2
l

=
(
−Amkω

2
kRk

)2
ΩW −AΩWmkω

2
k

=
[
A2
(
mkω

2
kRk

)2 −Amkω
2
k

]
ΩW (A.15)

∂ΩW
∂Pk

= ΩW

(
−A ∂H

∂Pk

)
= −ΩWA

(
Pk
mk

)
∂2ΩW
∂Pk∂Pl

= −A ∂2H

∂Pk∂Pl
ΩW −A

∂H

∂Pk

∂ΩW
∂Pl

= −A
(

1

mk

)
ΩW +A2

(
Pk
mk

)(
Pl
ml

)
ΩW

= −A
(

1

mk

)
ΩW +A2

(
Pk
mk

)2

ΩW . (A.16)

Upon substituting the calculated derivatives, eqns. (A.15) and (A.16), into eqn. (A.13), the Wigner

transformed Bloch equation becomes

∂ΩW
∂β

= −HΩW (Pk, Rk) +
~2

8

(
1

mk

∂2ΩW
∂Rk∂Rl

+mkω
2
k

∂2ΩW
∂Pk∂Pl

)
ΩW

[
−∂A
∂β

H +
∂B

∂β

]
= −HΩW (Pk, Rk) +

~2

8

(
1

mk

∂2ΩW
∂Rk∂Rl

+mkω
2
k

∂2ΩW
∂Pk∂Pl

)
. (A.17)

Consider the second term on the right hand side of eqn. (A.17)

~2

8

(
1

mk

∂2ΩW
∂Rk∂Rl

)
=

~2

8

{
1

mk

[
A2
(
mkω

2
kRk

)2 −Amkω
2
k

]}
ΩW

=
~2

8

[
A2mk

(
ω2
kRk

)2 −Aω2
k

]
ΩW . (A.18)

Now consider the third term on the right hand side of eqn. (A.17)

~2

8
mkω

2
k

(
∂2ΩW
∂Pk∂Pl

)
=

~2

8
mkω

2
k

[
−A 1

mk
ΩW +A2

(
Pk
mk

)2
]

ΩW

=
~2

8

[
−Aω2

k +A2 1

mk
(Pkωk)

2

]
ΩW . (A.19)
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We now simplify eqn. (A.17)

−∂A
∂β

HW +
∂B

∂β
= −HW +

~2

8

[
A2mk

(
ω2
kRk

)2 −Aω2
k −Aω2

k +A2 1

mk
(Pkωk)

2

]
−∂A
∂β

HW +
∂B

∂β
= −HW +

~2

4

[
−ω2

kA+A2ω2
kHW

]
−∂A
∂β

HW +HW = −∂B
∂β

+
~2

4

[
−ω2

kA+A2ω2
kHW

]
[
−∂A
∂β

+ 1−
(
~ωkA

2

)2
]
HW = −∂B

∂β
−

[(
~ωk

2

)2

A

]
.

This equation must hold for every value of Rk and Pk. Since all terms in the square bracket are

independent of Rk and Pk, each bracket must equal 0 independent of each other

dA

dβ
− 1 +

(~ωk)2

4
A2 = 0 (A.20)

∂B

∂β
+

(
~ωk

2

)2

A = 0 (A.21)

dA

dβ
= 1−

(
~ωk

2

)2

A2 (A.22)

dA

1−
(~ωk

2

)2
A2

= dβ (A.23)

Consider the derivative of ln
(

1+x
1−x

)
d

dx
ln

(
1 + x

1− x

)
=

1− x
1 + x

d

dx

(
1 + x

1− x

)
(A.24)

=
1

1 + x
+

1

1− x
(A.25)

=
1− x+ 1 + x

1− x2
(A.26)

=
2

1− x2
. (A.27)

Therefore, we have the identity

1

2

d

dx
ln

(
1 + x

1− x

)
=

1

1− x2
. (A.28)

Now, identifying

x =
~ωk

2
A (A.29)

dA =
2

~ωk
dx , (A.30)
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we can integrate equation (A.23)

∫
dA

1−
(~ωk

2

)2
A2

=

∫
dβ (A.31)

2

~ωk

∫
1

1− x2
= β + C (A.32)

2

2~ωk

∫
dx

d

dx
ln

(
1 + x

1− x

)
= β + C (A.33)

1

~ωk
ln

(
1 + x

1− x

)
= β (A.34)

β =
1

~ωk
ln

[
1 + ~ωk

2 A

1− ~ωk
2 A

]
. (A.35)

Inverting this equation gives

~ωkβ = ln

[
1 + ~ωk

2 A

1− ~ωk
2 A

]
(A.36)

e~ωkβ =
1 + ~ωk

2 A

1− ~ωk
2 A

(A.37)

e~ωkβ
(

1− ~ωk
2
A

)
= 1 +

~ωk
2
A (A.38)

e~ωkβ − e~ωkβ ~ωk
2
A− 1 =

~ωk
2
A (A.39)

e~ωkβ − 1 =
~ωk

2

(
e~ωkβA+A

)
(A.40)

=
~ωk

2

(
e~ωkβ + 1

)
A . (A.41)

We can now write A as

A =
2

~ωk

(
e~ωkβ − 1

e~ωkβ + 1

)
(A.42)

=
2

~ωk

(
e

~
2ωkβ − e ~

2ωkβ

e
~
2ωkβ + e

~
2ωkβ

)
(A.43)

A =
2

~ωk

(
e

~
2ωkβ − e ~

2ωkβ

e
~
2ωkβ + e

~
2ωkβ

)
(A.44)

=
2

~ωk
tanh

(
~ωk

2
β

)
. (A.45)

We now use equation (A.21) to find B

0 =
∂B

∂β
+

(
~ωk

2

)2

A (A.46)

0 =
∂B

∂β
+

(
~ωk

2

)2
2

~ωk
tanh

(
~ωk

2
β

)
(A.47)

B = −~ωk
2

∫
dβ tanh

(
~ωk

2
β

)
(A.48)
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Using tanhx = sinhx/ coshx, we can construct the identity

tanhx =
d

dx
ln (coshx) . (A.49)

Identifying

x =
~ωk

2
β (A.50)

dx =
~ωk

2
dβ (A.51)

allows us to solve for B

B = −~ωk
2

2

~ωk

∫
dx tanhx (A.52)

= −
∫
dx

d

dx
ln(coshx) (A.53)

= −ln(coshx) (A.54)

B = −ln

[
cosh

(
~ωk

2
β

)]
. (A.55)

From

ΩW = e−AHW+B = e−AHW eB , (A.56)

the un-normalized density matrix is

ΩW = exp

[
−ln

[
cosh

(
~ωk

2
β

)]]
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
HW

]
(A.57)

= exp

[
ln

[
cosh

(
~ωk

2
β

)]−1]
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
HW

]
(A.58)

=
1

cosh
(~ωk

2 β
) exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
HW

]
. (A.59)

To complete the derivation, we need to normalize ΩW

Z(β) =

∫
dRkdPkΩ (A.60)

ρ̂ =
Ω̂

Z(β)
(A.61)

Substituting the un-normalized density matrix into the form of the partition function, we get

Z(β) =
1

cosh
(~ωk

2 β
) ∫ dRkdPk exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)(
P 2
k

2mk
+

1

2
mkω

2
kR

2
k

)]
=

1

cosh
(~ωk

2 β
) ∫ dPk exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
P 2
k

2mk

]
∗
∫
dRk exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
mkω

2
kR

2
k

2

]
(A.62)
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where we have split the integral over the positions and momenta. Now, using the Gaussian integral

∫
e−ax

2

=

√
π

a
, (A.63)

we can solve for each integral

∫
dpk exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
p2k

2mk

]
=

√
π

1
~ωkmk tanh

(~ωk
2 β

) (A.64)

∫
dqk exp

[
−mkωk

~
tanh

(
~ωk

2
β

)
q2k

]
=

√
π

mkωk
~ tanh

(~ωk
2 β

) . (A.65)

Thus, the partition function is

Z(β) =
1

cosh
(~ωk

2 β
) π

tanh
(~ωk

2 β
) 1√

1
~ωkmk

mkωk
~

(A.66)

=
π~

cosh
(~ωk

2 β
) sinh

(
~ωk
2 β

)
cosh

(
~ωk
2 β

)
(A.67)

=
π~

sinh
(~ωk

2 β
) (A.68)

Z(β) =
π~

sinh
(~ωk

2 β
) . (A.69)

Finally, we divide ΩW by Z(β), to find the Wigner function in the initial thermal state

ρW =
sinh

(~ωk
2 β

)
π~

exp
[
− 2

~ωk tanh
(~ωk

2 β
)
H
]

cosh
(~ωk

2 β
)

=
1

π~
tanh

(
~ωk

2
β

)
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
H

]
=

1

π~
tanh

(
~ωk

2
β

)
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

) N∑
k=1

(
1

2mk
P 2
k +

1

2
mkω

2
kR

2
k

)]

ρW (Rk, Pk, β) =

N∏
k=1

{
1

π~
tanh

(
~ωk

2
β

)
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)(
1

2mk
P 2
k +

1

2
mkω

2
kR

2
k

)]}

=

N∏
k=1

{
1

π~
tanh

(
~ωk

2
β

)
exp

[
− 2

~ωk
tanh

(
~ωk

2
β

)
HW

]}
.



Appendix B

Transformation to Normal Mode

Coordinates

This appendix contains the derivation of equations used to transform the Hamiltonian of coupled

oscillators to a sum of normal modes.

Consider a system of two, coupled, driven, harmonic oscillators with a time-dependent, non-linear

interaction between them. The Hamiltonian of such a system is given by eqn. (3.19). In this form,

the system is expressed in Cartesian coordinates. An alternative representation of the Hamiltonian

can be formed which allows us to express the Hamiltonian as a sum of individual modes. This

is done by introducing normal mode coordinates. We also require the Hamiltonian to have the

form of decoupled modes, in order to sample the quantum initial conditions of the system from

the Wigner function in the initial thermal state.

The equations used to transform between Cartesian and normal mode coordinates, can be found

by solving the set of Euler-Lagrange equations [28]. To this end, we begin by writing down the

Lagrangian of the system,

L =
p21
2m

+
p22
2m
− K

2
q21 −

K

2
q22 −

K(t)

2
(q2 − q1)

2
. (B.1)

The equations of motion are then given by

∂L

∂q1
− d

dt

∂L

∂q̇1
= −Kq1 +K(t)(q2 − q1)−mq̈1 = 0 (B.2)

∂L

∂q2
− d

dt

∂L

∂q̇2
= −Kq2 −K(t)(q2 − q1)−mq̈2 = 0 . (B.3)
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These equations can be recast as a system of two coupled differential equations

mq̈1 + (K +K(t))q1 −K(t)q2 = 0 (B.4)

mq̈2 + (K +K(t))q2 −K(t)q1 = 0 . (B.5)

To solve the above equations, we assume an oscillatory form of motion

q1 = A1e
iωt (B.6)

q2 = A2e
iωt , (B.7)

where ω is the frequency of oscillation, and A1 and A2 are the amplitudes of each coordinate.

Substituting the trial solutions, eqns (B.6) and (B.7), into the set of differential equations, and

dividing by eiωt, we obtain

−mA1ω
2 + (K +K(t))A1 −K(t)A2 = 0 (B.8)

−mA2ω
2 + (K +K(t))A2 −K(t)A1 = 0 . (B.9)

This set of equations can be recast in the form of matrices as −mω2 + (K +K(t)) −K(t)

−K(t) −mω2 + (K +K(t))

 ·
 A1

A2

 =

 0

0

 (B.10)

Here we notice that eqn. (B.10) has the form of an eigenvalue problem, where ω is the eigenvalue

and the amplitudes form the eigenvector.

A non-trivial solution is obtained when the determinant of the matrix of co-coefficients is 0, i.e.

when

det

∣∣∣∣∣∣ −mω
2 + (K +K(t)) −K(t)

−K(t) −mω2 + (K +K(t))

∣∣∣∣∣∣ = 0 (B.11)

(
−mω2 +K +K(t)

) (
−mω2 +K +K(t)

)
−K(t)2 = 0 (B.12)

ω4m2 − ω2 (2mK + 2mK(t)) +
(
K2 + 2KK(t)

)
= 0 . (B.13)

The characteristic equation reduces to solving an algebraic equation of second degree for ω2, with

solution

ω2 =
(K +K(t))±

√
K(t)2

m
. (B.14)

Thus, the frequencies of the normal modes are
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ω1 =

√
K

m
(B.15)

ω2 =

√
K + 2K(t)

m
. (B.16)

In order to obtain the equations for the transformation from Cartesian to normal mode coordinates,

we require a rotation matrix [28]. The columns of the rotation matrix consist of the eigenvectors,

which in this case are the amplitudes A1 and A2. The eigenvectors can be found by substituting the

normal mode frequencies, eqns. (B.15) and (B.16) into eqn. (B.8). For ω1 we find A1 = A2, and

for ω2 we find A1 = −A2. To avoid arbitrary constants appearing, we subjecting the amplitudes

to the normalization condition, A2
1 +A2

2 = 1. Thus, the eigenvectors are

(A1, A2) =
1√
2

(1, 1) (B.17)

(A1, A2) =
1√
2

(1,−1) , (B.18)

corresponding to ω1 and ω2 respectively.

Having obtained the eigenvectors, the rotation matrix is then given by

U =
1√
2

 1 1

1 −1

 (B.19)

The determinant of the rotation matrix is 1, and the inverse of the rotational matrix is equal to

the transpose of the rotational matrix.

UT = U−1

=
1√
2

 1 1

1 −1

 (B.20)

To find the transformation from Cartesian to normal mode coordinates, we perform a similarity

transformation. Given a matrix A in the Cartesian basis, its representation in the normal basis is

A’ given by

A′ = UTAU. (B.21)
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We then define matrix R, which is our representation of position in normal mode coordinates.

R = U · q

=
1√
2

 1 1

1 −1

 ·
 q1

q2


=

1√
2

 q1 + q2

q1 − q2

 . (B.22)

Solving for q1 and q2, we can simply get the transformation from normal mode to Cartesian

coordinates for position

q =
1√
2

 R1 +R2

R1 −R2

 . (B.23)

Similarly, we define matrix P, which is our representation of momentum in normal mode coordinates

P = U · p

=
1√
2

 1 1

1 −1

 ·
 p1

p2


=

1√
2

 p1 + p2

p1 − p2

 . (B.24)

We then solve for p1 and p2, to obtain the transformation from normal mode coordinates for

momentum

p =
1√
2

 P1 + P2

P1 − P2

 . (B.25)

Equations (B.22) and (B.24) define the transformation from Cartesian to normal mode coordinates,

while eqns. B.23) (B.25) define the transformation from normal mode to Cartesian coordinates for

our system.

If the matrix of coefficients, appearing in eqn. (B.10) was not symmetric, then we would be

required to diagonlize it. This is done to ensure that the eigenvectors are orthogonal. However, in

this case the matrix of coefficients is symmetric and we can now express the Hamiltonian in normal

mode coordinates. Substituting the transformation from Cartesian to normal mode coordinates,
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appearing in eqns. (B.22) and (B.24), the Hamiltonian becomes

H =
p21
2m

+
p22
2m

+
K

2
q21 +

K

2
q22 +

K(t)

2
(q2 − q1)

2
(B.26)

=
(P1 + P2)

2

4m
+

(P1 − P2)
2

4m
+
K

4
(R1 +R2)

2
+
K

4
(R1 −R2)

2

+
K(t)

4
[(R1 −R2)− (R1 +R2)]

2
(B.27)

=
1

2m
P 2
1 +

1

2
P 2
2 +

K

2
R2

1 +
K +K(t)

2
R2

2 (B.28)

=
1

2m
P 2
1 +

1

2
P 2
2 +

1

2
mω2

1R
2
1 +

1

2
mω2

2R
2
2 (B.29)

=

2∑
n=1

(
1

2
P 2
n +

1

2
mω2

nR
2
n

)
, (B.30)

where we have substituted the normal mode frequencies ω1 and ω2 appearing in eqns. (B.15) and

(B.16) respectively.



Appendix C

No analytical solution to system of

coupled, driven oscillators

This appendix shows why there is now analytical solution to the system of coupled oscillators with

a time-dependent interaction between them.

Consider the Hamiltonian given by eqn. (3.19). To show why the system can not be solved

analytically, we begin by stating the Hamiltonian equations of motion

q̇1 =
∂H

∂p1
=
p1
m

(C.1)

q̇2 =
∂H

∂p2
=
p2
m

(C.2)

ṗ1 = −∂H
∂q1

= −Kq1 +K(t) (q2 − q1) (C.3)

ṗ2 = −∂H
∂q2

= −Kq2 −K(t) (q2 − q1) , (C.4)

where we have introduced the coupling function

K(t) = mω2(t) . (C.5)

The four coupled first order differential equations can be recast into a system of two coupled second

order differential equations

q̈1 = −Kq1 +K(t) (q2 − q1) (C.6)

q̈2 = −Kq2 −K(t) (q2 − q1) . (C.7)
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Taking the sum and difference of the second order differential equations, we obtain

q̈1 + q̈2 = −K (q1 + q2) (C.8)

q̈2 − q̈1 = −K (q2 − q1)− 2K(t) (q2 − q1) . (C.9)

Equations (C.8) and (C.9) can be interpreted as the equations of motion of the centre of mass

and relative displacement coordinates, respectively. In the equations of motion, it is important to

notice the centre of mass has no driving while the relative motion between the oscillators is driven.

Now, using the transformation from Cartesian to normal mode coordinates, defined in Appendix

B,  R1

R2

 =
1√
2

 q1 + q2

q2 − q1

 , (C.10)

equations (C.8) and (C.9) can be rewritten as

R̈1 +KR1 = 0 (C.11)

R̈2 + [K + 2K0 sin (ωdt)]R2 = 0 . (C.12)

Equation (C.11) is a second order differential equation with a simple, analytical solution,

R1 = C1 exp
(
i
√
Kt
)

+ C2 exp
(
−i
√
Kt
)
. (C.13)

Equation (C.12) is known as a Mathieu differential equation. This type of differential equation

does not have any analytical solutions in terms of known functions, only in terms of infinite series

with recurrent coefficients. The difficulty in producing an analytical solution, arises because of the

time-dependent frequency appearing in eqn. (C.12). It is possible to use Floquet theory to estab-

lish some properties of this solution, however for practical purposes some numerical approximation

must be incorporated [48].



Appendix D

Algorithm derivations

This Appendix contains all the mathematical details required to generate a time-reversible algo-

rithm. These algorithms are used to numerically integrate the equations of motion. First, we will

consider a closed system of two, coupled, harmonic oscillators with a time-dependent coupling be-

tween them. Next, the coupled oscillators are attached to a collection of harmonic oscillators with

Ohmic spectral density. Lastly, the coupled oscillators are attached to a single harmonic oscillator

and NHC thermostat.

D.1 Coupled, driven oscillators

Consider the Hamiltonian for the system of coupled, driven oscillators in eqn. (3.19). The Liouville

operators of the coupled oscillators are

L1 =
p1
m

∂

∂q1
+
p2
m

∂

∂q2
(D.1)

L2 = F1
∂

∂p1
+ F2

∂

∂p2
, (D.2)

where we have introduced forces

F1 = −Kq1 +K(t) (q2 − q1) (D.3)

F2 = −Kq2 −K(t) (q2 − q1) . (D.4)

Using the symmetric Trotter factorization, the evolution operator of the system is given by

eiLh = eiL2h/2eiL1heiL2h/2 (D.5)
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where h is time step used in the simulation. Applying the direct translation technique to the total

propagator of the system,

U(h) = U2

(
h

2

)
U1 (h)U2

(
h

2

)
, (D.6)

where Ui(h) = exp(hLi), we can obtain the pseudo-code of the time reversible algorithm. The

algorithm is then given by

p2 → p2 + h
2F2

p1 → p1 + h
2F1

 : U2

(
h

2

)
(D.7)

q2 → q2 + hp2m

q1 → q1 + hp1m

 : U1

(
h

2

)
(D.8)

Re-calculate F1 and F2

p2 → p2 + h
2F2

p1 → p1 + h
2F1

 : U2

(
h

2

)
(D.9)

where we have used the identities appearing in eqns. (3.17) and (3.18) to apply the direct trans-

lation technique to obtain the algorithm.

D.2 Coupled, driven oscillators attached to a harmonic bath

Consider the Hamiltonian given in eqn. (3.25). We can split the the total Liouville operator into

a sum of four operators

L =

4∑
i=1

Li (D.10)



78

where the individual operators are

L1 =

2∑
α=1

pα
mα

∂

∂qα
(D.11)

L2 =

2∑
α=1

(Fα + FSB)
∂

∂pα
(D.12)

L3 =

N∑
j=1

Pj
mj

∂

∂Rj
(D.13)

L4 =

N∑
j=1

Fj
∂

∂Pj
. (D.14)

where we have defined the forces

F1 = −Kq1 +K(t)(q2 − q1) (D.15)

F2 = −Kq2 −K(t)(q2 − q1) (D.16)

Fj = −mjω
2
jRj + cj

2∑
α=1

qα (D.17)

FSB =

N∑
j=1

cjRj . (D.18)

In order to obtain a numerical algorithm, we consider a small time step h and use the symmetric

Trotter formula:

ehL ≈ eh(L1+L2+L3+L4) (D.19)

= eh[(L1+L3)+(L2+L4)] (D.20)

= e
h
2LBehLAe

h
2LB . (D.21)

We have combined commuting operators by introducing

LA = L1 + L3 (D.22)

LB = L2 + L4 . (D.23)

Now, using the identities defined in eqns. (3.17) and (3.18), we can apply the direct translation

technique to eqn. (D.21) to the total propagator of the system,

U(h) = UB

(
h

2

)
UA (h)UB

(
h

2

)
, (D.24)

where Ui(h) = exp(hLi. In doing so, we obtain the pseudo-code to implement the time-reversible

algorithm
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p2 → p2 + h
2 (F2 + FSB)

p1 → p1 + h
2 (F1 + FSB)

Pj → Pj + h
2Fj

 : UB

(
h

2

)
(D.25)

q2 → q2 + hp2m

q1 → q1 + hp1m

Rj → Rj + h
Pj
Mj

 : UA

(
h

2

)
(D.26)

Re-calculate F1, F2, FSB and Fj

p2 → p2 + h
2 (F2 + FSB)

p1 → p1 + h
2 (F1 + FSB)

Pj → Pj + h
2Fj

 : UB

(
h

2

)
(D.27)



80

D.3 Coupled, driven oscillators attached to a NHC thermo-

stat

Consider the Hamiltonian given in eqn. (3.44). In section 3.2.3, it was shown that by using the

symmetric Trotter factorization, the evolution operator of the system is

exp (hL) = exp

(
h

2
LNHC

)
exp

(
h

2
L2

)
exp (hL1) exp

(
h

2
L2

)
exp

(
h

2
LNHC

)
, (D.28)

where

exp

(
iLNHC

h

2

)
=

Nc∏
i=1

Nys∏
j=1

exp

(
iLNHC

wjh

2Nc

) . (D.29)

Expanding the right hand side of eqn. (D.29), produces

exp

(
iLNHC

wjh

2Nc

)
= exp

(
wjh

4Nc
FPη2mη2

∂

∂Pη2

)
exp

(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
×

× exp

(
wjh

4Nc
FPη1mη1

∂

∂Pη1

)
exp

(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
×

× exp

(
−wjh

2Nc

[
Pη1
mη1

PQ
∂

∂PQ

])
×

× exp

(
wjh

2Nc

[
Pη1
mη1

∂

∂η1
+
Pη2
mη2

∂

∂η2

])
×

× exp

(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
exp

(
wjh

4Nc
FPη1mη1

∂

∂Pη1

)
×

× exp

(
−wjh

8Nc

Pη2
mη2

Pη1
∂

∂Pη1

)
× exp

(
wjh

4Nc
FPη2mη2

∂

∂Pη2

)
. (D.30)

The Liouville operators are given by

L1 =
p1
m1

∂

∂q1
+

p2
m2

∂

∂q2
+
P0

M0

∂

∂R0
(D.31)

L2 = (F1 + c0R0)
∂

∂p1
+ (F2 + c0R0)

∂

∂p2
+ F0

∂

∂P0
(D.32)

and

LNHC = −P0
Pη1
mη1

∂

∂P0
+
Pη1
mη1

∂

∂η1
+
Pη2
mη2

∂

∂η2

+

(
FPη1 − Pη1

Pη2
mη2

)
∂

∂Pη1
+ FPη2

∂

∂Pη2
, (D.33)
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where the following forces have been introduced

F1 = −Kq1 +K(t) (q2 − q1) (D.34)

F2 = −Kq2 −K(t) (q2 − q1) (D.35)

F0 = −Mω2
0R0 + c0 (q1 + q2) (D.36)

FPη1 =

(
P 2
0

M0
− gkBText

)
(D.37)

FPη2 =
P 2
η1

mη1

− kBText . (D.38)

By using the identities defined in eqns. (3.17) and (3.18), we can apply the direct translation

technique to the evolution propagator of the system. In doing so, we obtain the pseudo code to

implement the time-reversible algorithm

h → h× ωj
Nc

FPη2 → (1/mη2)×
(
P 2
η1

mη1
− kB × Text

)
Pη2 → Pη2 + 0.25× h× FPη2 ×mη2

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

FPη1 → (1/mη1)× (P 2
0 /M − g × kB × Text)

Pη1 → Pη1 + 0.25× h× FPη1 ×mη1

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

η1 → η1 + 0.5× h× (Pη1/mη1)

η2 → η2 + 0.5× h× (Pη2/mη2)

P0 → P0 × exp(−0.5× h× Pη1/mη1)

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

FPη1 → (1/mη1)× (P 2
0 /M − g × kB × Text)

Pη1 → Pη1 + 0.25× h× FPη1 ×mη1

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

FPη2 → (1/mη2)×
(
P 2
η1

mη1
− kB × Text

)
Pη2 → Pη2 + 0.25× h× FPη2 ×mη2



: exp

(
ih

2
LNHC

)
(D.39)

p1 → p1 + 0.25× h× (F1 + c0R0)

p2 → p2 + 0.25× h× (F2 + c0R0)

P0 → P0 + 0.5× h× F0

 : exp

(
h

2
L2

)
(D.40)



82

q1 → q1 + 0.5× h× p1/m

q2 → q2 + 0.5× h× p2/m

R0 → R0 + h× P0

M

 : exp (hL1) (D.41)

Re-calculate F1, F2 and F0

p1 → p1 + 0.25× h× (F1 + c0R0)

p2 → p2 + 0.25× h× (F2 + c0R0)

P0 → P0 + 0.5× h× F0

 : exp

(
h

2
L2

)
(D.42)

h → h× ωj
Nc

FPη2 → (1/mη2)×
(
P 2
η1

mη1
− kB × Text

)
Pη2 → Pη2 + 0.25× h× FPη2 ×mη2

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

FPη1 → (1/mη1)× (P 2
0 /M − g × kB × Text)

Pη1 → Pη1 + 0.25× h× FPη1 ×mη1

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

η1 → η1 + 0.5× h× (Pη1/mη1)

η2 → η2 + 0.5× h× (Pη2/mη2)

P0 → P0 × exp(−0.5× h× Pη1/mη1)

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

FPη1 → (1/mη1)× (P 2
0 /M − g × kB × Text)

Pη1 → Pη1 + 0.25× h× FPη1 ×mη1

Pη1 → Pη1 × exp(−0.125× h× Pη2/mη2)

FPη2 → (1/mη2)×
(
P 2
η1

mη1
− kB × Text

)
Pη2 → Pη2 + 0.25× h× FPη2 ×mη2



: exp

(
h

2
LNHC

)
(D.43)
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