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General Introduction 

 

With the narrow margin of profit in the broiler enterprise, how can producers increase 

profit potential? It is not an easy task to answer this question since the net financial return 

depends on many factors; some are related to the animal, some to the feed, some to the 

environment and others are outside the production system, like availability and cost of 

labour and capital. Many researchers have attempted to improve the efficiency of the 

system using alternative management strategies and to develop a unified theory that could 

simultaneously evaluate all the relevant factors and the interactions between them.  

Simulation models are seen as the most promising means of moving this subject forward.  

 

Geneticists are continually improving the potential growth rate of broilers, yet there has 

been little change in feed specifications for these birds over the past few decades. Only 

recently has it been possible to make use of simulation models to optimise the feeds and 

feeding programs of modern broiler strains at a commercial level, but little testing of these 

programs has been carried out. What is needed is a thorough investigation of these models, 

which at present are based on an individual, as opposed to a population response.  

Modelling plays an increasingly important part in animal science and research as a way of 

organizing and evaluating the large body of existing knowledge. With the use of an 

accurate description of the potential growth rates of broiler genotypes, it is possible to 

make more efficient use of growth models which are becoming more abundant in the 

industry and which, in turn, enable the nutritionist or producer to predict the performance 

of animals when subjected to a given feed or feeding programme.  

 

The predictions made by most of the growth models now available are based on individual 

animals, and the results obtained may be inadequate in optimising the nutrient 

requirements of a broiler population because of the variation that exists in these 

populations. Variation in performance traits in broilers may be the result of variation in the 

genotype, in the environmental conditions within the house, and in the composition of the 

feed offered to the birds, and these sources of variation cannot all be accommodated in a 

model that simulates the food intake and growth of just one bird.  But if variation is to be 

incorporated into growth models, it is necessary to ascertain the effects of variation in the 

various genetic parameters on the mean response of the population.  A sensitivity analysis 
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is useful in accomplishing this objective.  Similarly, it is important to know what the 

optimum size of a simulated population should be, that takes account both of the accuracy 

of the simulation and the time taken to complete the exercise.  This is especially important 

when optimisation routines are followed, as such calculations are time consuming. 

 

As a means of addressing these issues, simulation exercises were conducted using EFG 

Broiler Growth Model version 6 and EFG Broiler Optimiser Model version 1 (EFG 

Software, 2006) to determine: 

(a) whether it is worth generating a population when optimising feeds and feeding 

programs for broilers, rather than using the average individual,  

(b) the size of the population required to obtain an accurate estimate of the population 

response when optimising the feeding program for different objective functions,  

(c) the effect of changing the value of genetic parameters such as mature protein weight, 

rate of maturing, feathering rate and the maximum lipid:protein ratio in the gain on the 

optimum amino acid contents and nutrient densities of broiler feeds, and  

(d) the effect of variation in nutrient composition of different batches of feed, which have 

the same nutrient profile but different qualities of the main protein source, on broiler 

performance.  

 

A review of sources of variation in the nutrient content of poultry feed was conducted, and 

simulation exercises were carried out to determine to what extent broiler performance is 

affected by the segregation or breakage of pellets into small pieces at the time of delivery 

and along the feed conveyor within the broiler house, by the change in nutrient quality that 

might occur along the conveyor, and by the microclimates that develop in a longitudinally 

ventilated broiler house. 

 

The tendency in broiler marketing in most parts of the world is to sell broilers cut up, as 

portions or deboned after evisceration, rather than selling whole birds.  Estimation of the 

growth rates of carcass parts is therefore of considerable importance if simulation models 

are to be useful in optimising the feeds and feeding programmes of broilers under different 

conditions.  Allometric equations are used in the EFG broiler growth model to predict the 

weights of these carcass parts from the weight of body protein at the time.  These equations 

are based on data collected many years ago, and it would be useful to determine whether 

they are still relevant in the face of announcements by the major broiler breeding 
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companies that tremendous strides have been made in improving breast meat yield, for 

example, by judicious selection.  For the purpose of this investigation it was important to 

determine to what extent the weights of the physical parts varied at the same body protein 

weight, thereby enabling a more accurate estimation of the variation that could be expected 

in these weights when developing a population response model.  Towards this end, 

experiments were conducted to determine the effect of dietary protein content on the 

performance of Cobb and Ross broilers, including mortality and uniformity, and on the 

allometric relationships between the physical and chemical components of the body and 

body protein.   

 

The overall objective of these exercises was to address issues relating to the use of 

simulation models in predicting food intake and growth of broilers, in optimising the 

amino acid contents and nutrient densities of feeds for broilers, and in representing a 

population of broilers when the performance of only one bird is simulated at a time. 
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Chapter 1 

 

Modelling and optimising feeding programs of broilers 

 

1.1 Introduction  

 

Maximization of profit is the main objective of modern broiler production. The net 

financial return depends on many factors; some are related to the animal, some to the feed, 

some to the environment and others are outside the production system, like availability and 

cost of labour and capital. Since feed is the largest item of production cost, the 

determination of the most profitable feeding programme in relation to broiler 

characteristics becomes the essential components driving production efficiency.  

 

The problem faced by nutritionists and broiler producers in formulating a feeding system 

for growing broilers include making decisions about  the minimum bounds of each of the 

essential nutrients in each of these feeds, deciding when each feed should be replaced by 

the next in the series, whether males and females should be fed similar feeds and for the 

same length of time, how to account for strain differences in potential growth rate, and 

whether the feeding programme should remain the same irrespective of the price of 

ingredients. These and many other questions based on biology and on economics just 

cannot be solved with the knowledge of experimental results. The solutions can only be 

found with the use of simulation models (Gous, 1998, 2002). This can be of considerable 

help to nutritionists and broiler producers in improving the basis on which nutritional 

decisions are made, thereby improving the profitability of a broiler enterprise.  

 

Models can be developed for different production priorities. However, if the overall goal of 

a model is to optimise the operation, many of the above factors will need to be 

incorporated into the model if it is to be of use: genetic potential, sex differences, lean 

tissue deposition, intake patterns, feedstuff digestibility, environmental conditions, bird 

variation, parts yield, and other factors (e.g. disease) (Firman, 1994; Gous, 2002).  

 

Variation in the performance of traits in broilers may be the result of variation in a number 

of factors that influence the trait. There are at least three sources of variation in any broiler 

house: variation in individual genotypes, variation in environmental conditions within the 
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house, and variation in the composition of the feed brought about by ingredients used and 

by separation of feed in the feed trucks during transportation, and along conveyors within 

the house. However, several models have been developed at a single bird level, for 

instance genotype-specific models that consider an individual animal as being 

representative of a population of broilers. This model is considered a fixed effect model 

because there is no random effect associated with mature weight and as a result, it is not 

satisfactory to optimise the feeding program of a population of boilers.  Population models 

should be developed in order to predict both the expected value and the overall probability 

distribution of the parameter. 

 

For models that are too complex for investigation of their properties by formal 

mathematics, simulation is an important tool verifying that model performs as intended 

(Brown and Rothery, 1994). Simulation may be used for both deterministic and stochastic 

models. According to Brown and Rothery (1994), the difference between the two types of 

models: one simulation is adequate for a deterministic model, whereas many simulations 

(each one corresponding to an independently selected random choice for the stochastic 

elements) are usually necessary for a stochastic model.  

 

This review will focus on information gathered for the development of a population 

optimisation model; it will investigate the important parameters for proper optimisation 

procedures and discuss the theories and principles of bioeconomic growth models. 

 

1.2 Types of models 

 

Models can be defined broadly as static or dynamic, deterministic or stochastic and as 

either empirical or mechanistic (Black, 1995a). Dynamic models describe time explicitly 

as opposed to static models that represent the state of a system for only one instant in time. 

Computer simulation models are by their nature dynamic. The state of the system is 

continually predicted over time. 

 

Deterministic models produce only outcomes from a calculation whereas with stochastic 

models there is a range of possible outcomes representing natural variability. The majority 

of animal simulation models that are currently available are deterministic. That is, they 

predict the outcome for one animal that is assumed to represent the mean of a group of 
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similar animals. A stochastic model considers probability distributions, such as those that 

relate to variation and covariation (Knap, 1995). The Reading model used for predicting 

nutrient responses (Fisher et al., 1973); the EFG Broiler Growth Model for predicting 

broiler performance and economic analysis (Emmans et al., 2003); to predict nutrient 

requirement or to economically optimise swine production system (Pomar et al., 2003) are 

examples of such models.  

 

Empirical models are based on equations that describe correlations and associations 

between two or more variables and which imply nothing about the underlying mechanisms 

controlling operations within the system (Zoons et al., 1991; Black, 1995a). Mechanistic 

models describe relationships between dependent and independent variables by a pathway 

representing the biological process. Emmans (1981a and b) concluded that the Gompertz 

function is frequently chosen as a means of describing the potential growth rate of an 

individual in mechanistic models for its mathematical properties, biological meaning of 

parameters and its reasonable fit. The limitation of empirical models is that the model 

describes only a mathematical relationship between a dependent variable and an 

independent variable without further explanation of the biological processes involved 

(Zoons et al., 1991; Black, 1995a). As a result, when these relationships are incorporated 

into computer simulation models, predictions are frequently inaccurate.  

 

In addition to the above broad classification, models differ from one other in the problems 

that they recognise and in the solutions that they give to these problems (Emmans, 1995).  

 

1.3 Evolution of models 

 

The first animal growth models were static models (Whittemore, 1980; Black, 1995a). 

Gompertz (1825) as cited by Parks (1982) published some of the first work in animal 

growth and nutritional requirement. The calculations of nutrient requirements of animals at 

specific body weights were based on factorial representations. Later research was mostly 

limited to developing prediction equations and standard growth curves for various animals 

that reflected responses to management, genetic selection and dietary treatment (Fisher et 

al., 1973; Macleod, 2000). Emmans (1981b, 1987) and Emmans and Fisher (1986) utilised 

Gompertz growth curves of the maximum genetic potential for broilers and later on 

commercialised for personal computers as the FORTEL
TM

 model, with improvements in 
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the theoretical aspects. Hurwitz and his colleagues at Hebrew University developed 

another model (Hurwitz et al., 1978; Talpaz et al., 1986; Talpaz et al., 1991). This model 

is available under the name of CHICKOPTTM (Oviedo-Rondon and Waldroup, 2002).  

 

Subsequently, broiler growth models were prepared by several groups, including Pesti et 

al. (1986); Ivey Growth model (IGM®) (Harlow and Ivey, 1994); Bromely Park Hatcheries 

Limited growth model (BPHL) (King, 2001); Liebert and coworkers (2000) as cited by 

Oviedo-Rondon and Waldroup (2002), have been working on a model to evaluate the 

utilisation of limiting amino acids and derivation of requirements. Each of these models 

contained various combinations of empirical and mechanistic equations and all were 

designed to be practical use for solving whole animal problems. EFG Software (2006) of 

Kwazulu-Natal, South Africa has developed a model to estimate the optimum 

concentration of amino acids and energy to determine the economical feeding program for 

broilers and other species (Fisher and Gous, 2000; Gous, 2001). This program makes use 

of the theoretical concepts developed by Emmans (1981a and b); Emmans and Fisher 

(1986); Emmans (1987a and b). The details of the new version of this model will be 

discussed further in the thesis. 

 

Generally, with the help of modern computer data processors, growth models are improved 

from time to time with minimum prediction error. However, they have had limited 

utilisation by nutritionist. This is partly due to the incomplete description of the animal, the 

environmental conditions and other factors (e.g. the effect of marginal deficiencies of 

amino acids on the performance of different strains, down-grading, etc.), which affect the 

optimisation program. 

 

1.4 Modelling process 

 

The word ‘model’ implies a mechanism for the simulation of real animal responses: it 

requires inputs, a means of processing them, and delivers outputs (Whittemore, 1980). The 

major steps in the process of modeling a whole animal are outlined in Figure 1.   

 

The animal is a physiological system with measurable features (physiological data) and 

biological process (physiological pathways). The first step in modeling is to collect the 

relevant basic data that explain the whole system. The physiological processes and the 
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control of the system are then developed from this information. The concepts and data are 

transformed into mathematical equations by algorithms that can be solved rapidly by 

computer programs in a quantitative and dynamic approach.  

 

            

            

            

            

            

            

            

            

            

            

            

            

            

        

 

 

 

Figure 1.1: An outline of the major steps in the modelling process (adapted from Black et 

al., 1993).  

The next step is to check the validity of the model with regard to pathways and 

information, by comparing simulations outputs with the experimental results. The process 

of validation continues until the model outputs and actual observations agree over a wide 

range of different situation. Otherwise, the modeling process begins again whenever there 

is a considerable difference between the predictions and the actual results.  
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1.5 Testing and evaluation of models 

 

Testing and evaluation of models is a long and on-going process (Stilborn et al., 1994; 

Black, 1995b). Model evaluation is concerned with establishing the appropriateness and 

accuracy of predictions over a wide range of simulated conditions. The first step in 

evaluating a model is to know how the model will be used (Harlow and Ivey, 1994). Most 

of the evaluation processes include examining the general behaviour of the model, 

identifying the variables and equation parameters to which the model outputs are highly 

sensitive (Black, 1995b; Berhe, 2004), determination of accuracy, its precision and its bias 

(Harlow and Ivey, 1994). 

 

The existence of accurate results from experiments and complete description of 

experimental conditions to which the model is sensitive determine the evaluation results. 

Some of the available growth models evaluated by different researchers: Chickopt
TM

 

model was evaluated for broilers (Hurwitz et al., 1980); growing turkeys (Hurwitz et al., 

1983a; Hurwitz et al., 1983b); Ivey Growth Model (IGM®) and EFG nutrition optimiser 

has been tested for accuracy by Harlow and Ivey (1994) and Gous (2001; 2002) 

respectively.  

 

A model may be accurate and precise but for various reasons may not predict the response 

of broilers to changes in a feeding program, e.g. because the growth curves, efficiency of 

feed utilisation and resistance to stress differ between strains (Harlow and Ivey, 1994). 

However, it is important to understand the strengths and weaknesses of any model in order 

to obtain the maximum commercial benefit from that model.  

 

1.6 Applications and limitations of models  

 

Models help to identify those aspects of the animal that are covered by assumptions and 

which need experimentation. The use of models has been discussed in depth by Harlow 

and Ivey (1994), Hruby et al. (1994), Ferguson (1996), Schinckel et al. (2003), Hermesch 

et al. (2003) and Moughan (2003). Furthermore, models can be useful in preventing time 

and money being wasted on further experimentation that will produce information that is 

already known, and to identify areas of future research (Black, 1995a). Results of 
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experiments allow an individual or producer to make decisions by considering the risks 

associated with biological production system (Gous, 2002).  

 

A major limiting factor in the application of animal growth models is lack of an adequate 

description of the conditions within commercial enterprises (Black, 1995b). A description 

of the potential growth rate of different genotypes is a first step in using simulation models, 

either to predict requirements or to predict the effects of different feeding programs and 

environmental conditions, on the performance of broiler (Stilborn et al., 1994; Hancock et 

al., 1995; Gous et al., 1999). Some of the available models are based exclusively on 

empirical observations, such as direct relationships between daily lysine and energy intake, 

and average daily gain in growing animals, established using multiple regression (Birkett 

and de Lange, 2001). However, considering the major objective of any animal production 

enterprise, which is maximizing the margin over feed cost, there is no better way to obtain 

the optimum economic feeding strategy than by the use of simulation models (Gous, 1998, 

2002). 

 

1.7 Modelling broiler growth 

 

The general problem in animal production is that of predicting growth rate, body 

composition and feed intake (Emmans and Fisher, 1986; Emmans and Oldham, 1988; 

Ferguson and Gous, 1993). It is widely believed that the composition of the body will 

change systematically, in both chemical and physical terms, when potential growth is 

attained (Emmans, 1995) and a sufficient description of potential performance must deal 

with such changes (Gous et al., 1999). Zoons et al. (1991) described growth as a complex 

phenomenon determined by both genetic and environment factors. The problem of 

predicting growth rate, which is crucial in nutrition (Emmans and Fisher, 1986), can be 

approached in one of three ways: 

• The prediction of the growth of the empty body as a whole; 

• The separate prediction of the growth of the four chemical components and 

• The prediction of one component with the remaining three considered in 

relation to this component. 

 

Emmans (1981b) mentioned that growth is made up of two components: normal growth 

(protein, ash, water and some minimum amount of lipid) and fat growth. Armsby and 
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Moulton (1925) as cited by Emmans and Fisher (1986) suggested that the body of an 

animal can be considered as gut fill and the empty body weight 

 

1.7.1 The empty body weight and its components 

 

The empty body weight can be defined as the plucked body weight minus the gut fill. The 

body tissue can be considered as the sum of the weight of protein, ash, water and lipid with 

small amount of carbohydrate being ignored. Most of the available model (Emmans, 

1981b; Emmans and Fisher, 1986; Emmans et al., 2002) use the third approach, protein as 

a base component from which the remaining three components are calculated. The lipid-

free dry matter can be considered as a homogenous component (Emmans and Oldham, 

1988). Protein in the body can be described by means of a growth function, and strict 

relationships between weights of the body components in the potential growth (Emmans 

and Fisher, 1986; Emmans and Oldham, 1988; Emmans, 1989) can be used to determine 

the growth of water, ash and lipid. Therefore, body protein is the driving variable in most 

of the models, with moisture and ash contents, and rates of growth, determined by their 

allometric relationships that exist with protein (Emmans, 1981b; 1987a; 1989; Emmans 

and Fisher, 1986; Hancock et al., 1995; Gous et al., 1999 and Emmans et al., 2002).  If two 

components of the body have the same value for the rate parameter B then an allometric 

relationship is expected (Emmans, 1988).  However, Hancock et al. (1995) and Gous et al. 

(1999) reported that there was a problem in estimating the mature lipid weight after 56d of 

growth in females using a simple allometric relationship, due to rapid increases in lipid 

deposition after 56d of age. Imbalanced feed, the digestibility of the feed, feed restriction 

and sex can alter the rate of lipid deposition in relation to protein deposition, so the 

allometric relationship that exists between these components can be applied only when the 

animal is growing at its potential in a thermoneutral environment (Emmans and Oldham, 

1988).  Gous et al., 1990 and Gous (1998) suggested that a free-choice feeding systems 

should be applied when evaluating the growth parameters and allometric relationships of 

broiler strains, to obtain a more accurate estimate of the mature lipid to protein content of 

the strains.  

 

On the other hand, some researchers had a different suggestion about the relationship 

between the empty body components. Eits et al. (2002) suggested that the constant 
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relationship between water or ash and protein will only exist if the animals are growing 

according to their potential growth curve under the conditions of ad libitum consumption 

of balanced diets. According to these authors, the ash to protein ratio was strongly affected 

by nutrition, at extreme protein ratios. Kyriazakis and Emmans (1992) assumed that, in 

case of limited growth, deposition rates of water and protein are assumed to decrease in 

line with their inherent allometric relationship. However this assumption was not supported 

by Eits et al. (2002) findings at certain protein weights. Therefore, the theory of Kyriazakis 

and Emmans (1992) may not be generally valid across all genotypes or degrees of maturity 

(Eits et al., 2002). 

 

There are different methods of estimating lipid and protein during model development. 

Emmans (1981b) predicted lipid retention as a function of the current state of the animal 

rather than as a function of the energy surplus consumed by the animal. This is because 

lipid content of the growth of birds can be dramatically affected by the composition and 

bulkiness of feed, environmental condition and the ability of the bird to lose heat 

(Emmans, 1981b; 1987a, b). Kyriazakis and Emmans (1991) have demonstrated 

conclusively that animals and birds will make use of lipid reserves as an energy source 

when the dietary protein supply is sufficiently abundant, and when the lipid content of the 

animal is in excess of the genetically determined lipid to protein ratio in the body, brought 

about by feeding excessive amounts of energy. A more sensible approach to modeling 

growth would be to describe the potential growth rate of the animal before considering the 

effects of nutrition (Emmans and Fisher, 1986). As a result, food intake can then be 

predicted without any feedback effect.  

 

The first requirement for modelling is breed description, characterized by mature body 

weight, mature fat content, and rate of maturing for body and feather protein (Stilborn et 

al., 1994). From this information, it is possible to derive the genetic parameters (for 

instance, mature protein, lipid to protein ratio, etc.). For instance, the genetic parameters 

required for the Edinburgh growth model (Emmans 1981a) were mature protein weight, 

rate of maturity, the time at which body weight gain was maximal (t*), the minimum lipid 

to protein ratio at maturity.  Subsequently, as in the case of the EFG broiler growth model 

(Emmans et al., 2002) initial body weight, feathering rate and maximum lipid in the gain 

were added to the above parameters. These parameters had a significant effect on the 

performance of broilers and the effect varied depending on the feed composition (Berhe, 
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2004; Berhe and Gous, 2004).  Because of the difficulty in obtaining the values of the 

parameters used to describe the potential growth rate of broilers, the EFG model allows the 

user to describe a minimum number of variables, from which the parameters of the 

Gompertz growth curve are derived for both males and females. Once the genotype is 

described, the feed composition and the environmental variables should be incorporated to 

make the prediction output more realistic.  

1.7.2 Physical body composition of the growing broiler 

 

Gut fill (GF) represents the difference between the empty and the live body weight. It is 

clear that GF can be affected by feeding level, feed characteristics and time of feeding. In 

order to determine the feather-free body weight gains from the growth rate of the empty 

body, the amount of gut fill must be predicted or known. In most poultry growth models, 

gut fill is either regarded as a constant proportion of live weight or is ignored, and this 

could be considered as a weakness in growth model development. Emmans (1989) 

described in detail the growth of the physical body of turkey.  He considered the meat, 

skin, giblets, abdominal fat, evisceration losses, blood and feather and total carcass bone. It 

is difficult to construct a mathematical relationship between these parameter since there is 

considerable variation due to differences within and between eviscerators when separating 

these parts from the carcasses, in addition to the genetic differences that exist. According 

to Emmans (1989), carcass bone weight may be taken as the physical measure of size as 

that of body protein weight is used as the chemical measure of size. According to his 

report, the relationship between these two measures of size were consistent, with both 

carcass bone and body protein weight following a Gompertz function.  

 

Breast meat represents the largest portion of carcass weight. Gous et al. (1999) found that 

the value of the rate parameter for pectoralis major and minor, and for their sum, was the 

same as for the empty feather-free body for all the genotypes tested. That is, the 

assumption of a simple allometry between the two tissues is justified (Emmans, 1988). 

Therefore, it is possible to estimate breast meat from the empty feather-free body weight.  
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The growth of feathers    
 

Considerable attention has been given to predicting feather growth from either body 

protein or empty feather-free body weight (Emmans, 1989; Hruby et al., 1994; Stillborn et 

al., 1994; Hruby et al., 1995) because of the difficulties in describing the growth of feather. 

Hancock et al. (1995) and Gous et al. (1999) found that the rate parameter, B, for feathers 

was greater than that for either body protein or that for the total feather-free body. 

Therefore, there was no justification for using an allometric analysis (Emmans, 1988). 

Moreover, some description of mature feathering is needed, in addition to the rate 

parameter for feathers (Gous et al., 1999). 

 

Rate of feather growth is a useful measure when comparing genotypes (Emmans et al, 

2002; Berhe, 2004; Berhe and Gous, 2004). It should be included in any broiler growth 

model since the difference in the rate of feather development during different stages of 

growth, as well as between sexes, would contribute to a change in the response to amino 

acid supply. 

 

 In general, the relationships between nutrient intake and chemical and physical body 

composition are affected by a range of factors associated with nutrition, genotype, 

environment, and stage of maturity (Hruby et al., 1994; Gous, 1998; de Lange et al., 2003). 

In order to identify practical means of manipulating production efficiency, an 

understanding of these relationships is required. Simulation of body weight gain or 

chemical body composition solely based on protein deposition might be accurate in case of 

animals with ad libitum consumption of balanced diets but can induce systematic errors in 

the simulations in case of low food intakes or extreme protein to energy ratios. This is 

because the values of other variables in models, such as maintenance, heat loss, ad libitum 

food intake and physical body weight, may have a significant impact on the accuracy of 

predictions by such models (Emmans and Kyriazakis, 1995).  

 

1.7.3 Predicting food intake 

 

Accurate predictions of food intake are important for production systems due to the low 

profit margins inherent in such systems. In order to predict the amount of food that the 
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animal will consume under ad libitum conditions, it is necessary first to be able to predict 

the rate of intake in a non-limiting environment and on a balanced feed (Gous, 2002). 

According to Emmans and Fisher (1986) this rate of intake is termed the ‘desired food 

intake’ and is that which will allow the potential growth rate to be attained, since the 

animal is assumed to eat to satisfy its requirement for the first limiting feed resource. This 

theory of food intake is discussed by Emmans and Fisher (1986).  

 

The idea of ‘eating to requirement’ has been remarkably successful in predicting the 

voluntary food intake of growing animals (Emmans, 1997). This requirement model 

assumes that an animal consumes feed in order to meet its genetic potential, subject to 

constraints such as gut volume, where genetic potential is defined as an animal’s growth 

rate given that its environment has never been a limiting factor (Emmans, 1981b; Gous, 

1998, 1999; Yearsley et al., 2001). An animal’s total food intake requirement is therefore 

determined by the sum of its maintenance and its growth requirements. A detailed 

description of the requirements model is presented by Emmans and Kyriazakis (2001).  In 

the case where food intake is constrained, the accuracy of the model’s prediction is 

determined by the accuracy with which the constraints can be specified (Yearsley et al., 

2001). 

 

Once food intake is known, it is possible to predict many variables, e.g. body protein 

growth rate, all chemical and physical component, income and cost of feeding. 

 

1.8 Optimising the feeding program for broilers 

 

Broiler production is a highly competitive enterprise, characterized by small margins. The 

optimum feeding program for broilers is that which results in the highest profit for the 

enterprise. In this context, maximizing economic efficiency is crucial because feed is the 

largest production cost in the enterprise.  Determining the optimum nutrient density, the 

optimum concentrations of amino acids relative to energy in each feed, and the optimum 

length of time that each feed should be fed, is therefore both a nutritional and an 

economical decision (Gous, 1998, 2002). Furthermore, various studies (De Lange and 

Schreurs, 1995; Moughan et al., 1995) have shown that maximizing technical criteria does 

not always yield the highest net return. 
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Optimising the feeding of commercial broilers during their growing period is not an easy 

mission. The traditional approach to predicting performance has been to carry out 

experiments in which different nutrient contents are fed and the outcome is resolved, or 

using experience as an accurate means of predicting the consequences of different courses 

of action, but these approaches are not sustainable (Gous, 2002). For instance, the dietary 

amino acid content producing the maximum growth response is often regarded as being the 

requirement for that amino acid.  However, Fisher et al. (1973) have shown that 

requirements of animals are not fixed but are variable. According to Gous (2002; 2004) it 

is important to understand the interaction between the bird, the environment and feed and 

feeding programme used before the optimum economic feeding schedule can be 

determined. This needs extremely complex experiments to test all combinations of these 

factors; and then because of the changes that take place in the genotypes themselves these 

experiments would have to be repeated at regular intervals. Therefore, experiments should 

be used to measure the numbers that will make a theory work, or to test the theory, or to 

allow the nutritionists and/or the producers to choose between two theories (Gous, 2002; 

2004). He recommended that it is only through the development of a plausible theory, and 

the advent of computers, that it has been possible to integrate all of these factors into a 

workable form. 

 

Considerable attention has been given to the development of mathematical models 

representing the growth of broilers to evaluate the response of any change in the 

production strategies and to improve profitability. There is no defensible way of estimating 

the nutrient requirements of growing animals or of optimising the feeding of broilers, other 

than by the use of simulation models (Gous, 2002; 2004).  

 

1.8.1 Parameters need to be considered for simulation of optimisation models 

 

As modelling becomes a more important tool for optimising the feeding program of 

animals, it is crucial to identify and quantify the information required for optimisation. 

However, different models use different approaches although they have similar basic 

principles.  These include the most significant factors, such as genotype, feeding program 

or diet composition, and environmental aspects (Bailleul et al., 2000; Gous, 2001). 

According to Gous (2002; 2004), the information required for optimisation consists of feed 
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costs at different levels of amino acid provision, a description of all the relevant details of 

revenue for slaughter house variables (eviscerated yield, rejects, etc.), carcass composition 

and further processing. He explained that the feed costs for any nutritional specification are 

readily calculated by linear programming. This will take account of feed ingredient 

availability, to which transportation and processing costs may be added. Then, the problem 

of optimisation will be in the definition of animal response (Gous, 2004). In order to fill 

the gap which is missed in the optimisation procedures, Gous (2002; 2004) suggested that 

the following information would be necessary to determine the potential protein growth 

rate of the genotype; differences between individuals at a time and within individuals over 

time; the effect of nutrient content and energy-to- protein ratio on food intake, carcass 

composition and protein gain; the effect of genotype on the amount of excess energy that 

may be stored as body lipid, and the maximum rate at which this can take place; the effects 

of high or low environmental temperatures on all of the above; and the constraints placed 

on the animal by the environment and by the feed, which prevent the birds from consuming 

the necessary amount of a feed to grow at their potential. Considering the above 

information, it will be easy to apply both nutritional and economical decisions in any 

broiler production. However, again, this will be achievable only with the use of an accurate 

simulation model (Gous, 1998; 2002; 2004). 

 

Some of the available poultry optimisation models include the ‘Reading’ model, which 

determines the optimum amino acid intake of a flock of laying hens to maximize profit, 

based on the relationship between the marginal cost of the amino acid and the marginal 

revenue for eggs, as well as the standard deviations of egg output and body weight in the 

flock (Curnow, 1973; Fisher et al., 1973); the ChickoptTM program, which consists of an 

optimizer tied to a compartmental growth model based upon a Gompertz growth curve 

(Harlow and Ivey, 1994); the OmniPro® ll model in which amino acid estimations are 

based on a sum of maintenance and weight gain for body tissues and feathers, divided by 

the efficiency of absorption (Oviedo-Rondón et al., 2003), a theoretical idea proposed by 

Hurwitz et al. (1978); and the Pesti et al. (1986) model, which is based on the quadratic 

response of the birds to feed, where feed cost is determined as a variable of the profit 

maximization model. This implies that the complexity or the type of information required 

would depend on the level of organization at which the optimisation is to be made.  
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1.8.1.1 Approach used in the EFG Broiler nutrition optimiser  

 

EFG Broiler nutrition optimiser has recently been developed by EFG Software1.  It can be 

defined as a dynamic, deterministic and mechanistic optimisation model. The integrated 

optimisation system comprises: 

1. a feed formulation program, WinFeed 2  

2. a broiler growth model 

3. an optimisation routine 

The flow of information is presented in Figure 2. The optimiser defines nutritional 

constraints for practical broiler feeds. These are passed to the feed formulation program 

where the least-cost feed that meets these constraints is determined. The characteristics of 

this formulated feed are then passed, as input, to the broiler growth model. The 

performance expected from this feed when given to a defined flock of broilers in a given 

environment is predicted by the model, and this predicted performance is then passed to 

the optimiser to complete the cycle.   

 

The next cycle starts by the optimiser modifying the feed specifications according to some 

inherent rules, to an optimum. The objective function to be optimised can be defined in 

terms of any output from the broiler growth model, but realistically would be an economic 

index of some sort. 

 

The broiler growth model calculates revenues from any mixture of whole-bird sales or 

processing. Typical economic variables are included although these are readily customised 

to fit with individual enterprises. The key to this approach clearly lies in the ability of the 

broiler growth model to reflect accurately the performance expected under commercial 

conditions.  

 

 

 

 

 

                                                
1
 EFG Software (KwaZulu-Natal), 25 Fairfield Ave., Pietermaritzburg 3201, South Africa,  

   Tel: +27 33 260 6805, Fax: +27 33 260 6806, e-mail: gous@ukzn.ac.za 
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Figure 1.2: Flow of information in optimising the feeding program of a broiler chicken 

(adapted from Gous, 2002). 

The feed formulator, WinFeed2, takes account of all the basic information (including feed 

prices, feed and nutrient constraints etc.) and passes the necessary information (digestible 

amino acid content, ME, digestible protein and lipid content) to the broiler growth model. 

 

Currently, the EFG Broiler nutrition optimiser optimises, independently, three aspects of a 

commercial broiler feeding programme:  

• it  optimises amino acid contents in each feed, given a feeding schedule;  

• it optimise the nutrient density of each feed in the feeding schedule, and  

• given feeds of a fixed composition, the optimum feeding schedule is determined. 

  

The optimum feeding schedule would differ depending on the amino acid content and the 

nutrient density in each of the feeds in the feeding schedule, so ideally, all of these 

variables should be optimised simultaneously. The complete approach of this optimiser 

with examples was described in Gous (2001; 2002). 

 

 

Feed formulation: 

WinFeed 2 

Broiler performance: 

Broiler Model 

Optimiser 

Outcome 

Feed specification 

Feed composition 
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1.9 Dealing with populations rather than with individual broilers 

 

Almost all broiler and pig growth models (referenced above) have been developed at the 

level of one animal, yet commercially it is populations that are being managed and fed. 

Individual models assume that all broilers have equal growth potentials and are at the same 

stage of growth. Therefore it is not entirely satisfactory when optimising the feeding of a 

population of broilers using such models. However, in order to predict nutrient 

requirements of a population over time, it is important to understand first how an 

individual within the population will respond, at a time, to increasing dietary 

concentrations of the nutrient (Emmans and Fisher, 1986). The efficiency of an animal 

production system results from the efficiency of individual animals (Knap, 1995). For 

instance, the Reading model (Fisher et al., 1973) is based on the assumption of a simple 

linear-plateau relationship between amino acid intake and the output characteristics for an 

individual. The response of a group of birds is then derived as the average of the individual 

responses. 

 

Emmans (1995) and Ferguson et al. (1997) suggested that the problem of predicting the 

growth of a population of birds was best approached by considering firstly the growth of 

an individual and then the variation between the individuals that comprise the population 

(Figure 3). The approach is discussed in Emmans and Fisher (1986).  

 

Knap (1995) outlined the reasons for considering variation between animals in growth 

models when simulating different systems:  

• The profitability of the systems may be affected to a large extent by the amount of 

variation in the production traits; 

• The change from one system to another may have small effects on average levels 

but large effects on variation; 

• Differences between systems can be discovered more readily when variation is 

made visible; and 

• In order to study the relationships between traits, covariance should be created, 

which requires variation (Emmans and Fisher, 1986). 

According to Gous (2002) differences between treatment means are generally meaningless 

when the difference cannot be compared to the amount of variation within treatments. 
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 Individual at a time 

 

         Effect over time 

            

Figure 1.3: Analysis of the problem of predicting the performance of a flock (adapted 

from Emmans, 1995).  

 

There are also models that predict the performance of a population taking into account the 

different maintenance requirements and maximum production potential, e.g. The Reading 

Model (Fisher et al., 1973), EFG Broiler Growth Model (Emmans et al., 2003), Pig Model 

(Pomar et al., 2003). The Reading model has shown how the response of individuals 

(laying hens) is very different when these responses are combined into a population 

response. Whereas the response of an individual hen to an increasing supply of an amino 

acid is linear up to a point and then a plateau is reached where no further increase in 

response can be measured, the population response is a continuous curve with no abrupt 

threshold. This is the result of combining the responses of a range of individuals at a time. 

In growing animals there are differences in the same animal over time as well as between 

animals at a time, making the need for a population model of broiler growth even more 

important (or critical) than in the case of laying hens, which are in a relatively steady state. 

 

Pomar et al. (2003) and Berhe and Gous (2004) simulated a population of pigs and broilers 

respectively, using a similar technique and reported that maximum protein deposition 

occurred when there was no variation in the populations of pigs or broilers and that the 

degree of curvature of the transition zone increased with the population variability. They 

illustrated that less protein was deposited and there was a greater degree of curvature in the 

response in more variable populations. 

Flock over time 

Individual 

variation 

Individual over time 
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Most nutrition-growth models use amino acids as a stochastic parameter in the simulation 

exercise considering the cost and important role in the feed formulation and animal 

performance. However, the relationship between protein retention and supply has been 

represented in many ways; such as constant efficiency (Zhang et al., 1984), as two phase 

linear (Taylor et al., 1979), as curvilinear (Fuller and Garthwaite, 1993), or by linear 

plateau (Campbell et al., 1984). The linear plateau model is most commonly used in 

growth response models. However, most researchers suggest that efficiency of protein is 

not constant but decreases gradually as protein increases or energy intake decreases (ARC, 

1981). The adequacy of the linear plateau model is not supported by experimental results 

and some concerns have been raised in relation to its suitability when representing a 

population of pigs or broilers (Moughan, 1999). According to Curnow (1973), Fisher et al. 

(1973) and Fuller and Garthwaitte (1993), a curvilinear response of protein deposition to 

protein intake, at the level of the population, might result from variation in individual 

animal responses. The simulation results of Pomar et al. (2003) and Berhe (2004) indicate 

that the linear plateau model for individual animal is compatible with observations made in 

experiments, which result in a curvilinear response in protein gain to increases in protein 

intake within a population.  

 

1.10 Discussion  

 

Over the last decades many models have attempted to integrate theories and observations 

into a sound framework that can be useful for both conceptual and computational purposes. 

Currently, the few optimisation models available to researchers and producers vary in the 

amount of information considered as inputs to the model, with stochasticity being totally 

neglected in most models. 

 

In a situation where the population is infinite, it is impossible to sample the whole 

population. It is very difficult to decide upon an efficient method of generating a 

population considering the extent of variation between the parameters and time taken to 

simulate the performance of each individual. The generated individuals should be as 

representative as possible of the population. Gous (1998) and Berhe (2004) used 500 and 

100 males and females separately to represent the population, respectively. Both authors 

reported that the response of the average individual differed from that of the mean of the 

population but the difference between the two responses was greater in the simulation 
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results of Gous (1998). In pigs, 465, 500 and 2,500 individuals or replicates were used by 

Ferguson et al., 1997; Knap (2000) and Pomar et al. (2003), respectively, to account for 

individual  variations in their simulation exercises. There is no consensus in the literature 

of the optimum number of individuals that will adequately represent the population when 

optimising the feeds and feeding programme of broilers. Considering that the time taken to 

simulate a population increases with the number of individuals it is worthwhile 

determining the optimum number of individuals to use when simulating a population 

response.  

 

Poor uniformity reduces revenue and increases waste, and therefore optimisation programs 

should account for the most important factors that may influence uniformity. A marginally 

deficient feed is one of many factors that affect the uniformity of the flock. This is due to 

the capability of some birds to consume more than others; these birds benefit from the 

extra feed and grow faster than those whose intake is constrained by gut capacity or the 

inability to lose sufficient heat to the environment.  Some strains have been observed to 

exhibit increased mortality on marginally deficient feeds, the cause of which is not yet 

known. This has important implications when optimising the feeds and feeding programme 

of broilers. 

 

This review indicates that there are crucial knowledge gaps with regard to development of 

comprehensive population growth models. This project is concerned with simulating the 

consequence of different degrees of genetic and feed variation with a view to optimising 

the feeding of broiler at the population level. 
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Chapter 2 
 

Effects of feed protein content on the performance, uniformity and 

mortality of Cobb and Ross broilers in the period to 21d of age 

 

Abstract 

An experiment was conducted to determine the response of two broiler strains available in 

South Africa to different dietary protein levels on performance including uniformity and 

mortality percentage. 480 Cobb and 480 Ross day-old sexed broiler chickens were housed 

in cages. Ninety-six cages were used with 10 chickens per pen and with males and females 

being reared separately. Two basal feeds, one high (H) and the other low (L) in protein 

were formulated to contain equal contents of ME and major minerals, using a well 

balanced amino acid mixture. These two feeds were blended (20H:80L, 40H:60L, 

60H:40L, 80H:20L) to produce four additional levels of protein. Food intake and body 

weight of individual birds in each pen was measured at weekly intervals up to 21d.The 

highest body weight gain and feed conversion efficiency (FCE, g gain/ kg food), were 

recorded in the Cobb strain, with a correspondingly higher food intake. Dietary protein 

content had a quadratic effect (P<0.001) on all measures of performance, but not in the 

slopes of the response between the two strains.  The body weight gain of the Cobb strain 

was 1.7g/d greater than the Ross strain and the FCE was 34.5g gain/kg feed consumed 

greater than the Ross strain. There were no interactions between the treatments in any of 

the parameters measured.  In general, a variation of individual body weights was similar 

between the two strains. There was a higher mortality in the Cobb strain relative to Ross, 

especially at low protein contents, but the trend was not consistent across the feed protein 

contents. In conclusion, the two strains used in this trial, to 21d, exhibited similar 

responses to changes in dietary protein content, although the Cobb strain consumed more 

food and hence grew faster at all protein contents than did the Ross strain. 

 

2.1 Introduction 

 
Considerable attention has been focussed on determining the responses to dietary protein in 

broilers using the common measures of performance such as body weight gain, food 

consumption and conversion, and even carcass composition (Cahaner et al., 1987; Cabel 
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and Waldroup, 1991; Smith and Pesti, 1998; Swatson et al., 2000; Rezaei et al., 2004). 

These variables are often used as a means of evaluating bird performance and strain 

differences. However, little attention has been given to the assessment of mortality and 

flock uniformity when strains are given marginally deficient feeds, yet these measures of 

performance are important when optimising the protein content in feeds for broilers. 

 

Poor uniformity reduces revenue and increases waste, and optimisation programs therefore 

need to take account of any factors that may influence uniformity. It is well known that 

individuals in a flock of broilers exhibit different tendencies to overconsume feed when 

faced with a marginally deficient feed. Emmans and Fisher (1986) reported that the 

performance of a broiler population depends largely on the inherited genotype of an 

individual in the population and the extent to which the genotype varies between 

individuals. It is likely therefore that marginally deficient feeds will affect uniformity, as 

some birds will eat more than others, and benefit from the extra feed. Another factor that 

may be influenced by protein supply is mortality, although evidence of this is somewhat 

equivocal, but nevertheless mortality is also an important criterion when determining 

profitability, and if the feed quality has an effect on mortality then this should also be 

accounted for in an optimisation routine. 

 

This study is directed towards determining whether mortality and the amount of variation 

within and between strains of broilers are influenced by the amount of dietary protein in 

feeds given to these birds.  

 

2.2 Materials and methods 

 

2.2.1 Animal and Housing 

 
480 Cobb and 480 Ross day-old sexed broiler chickens were housed in the brooder room at 

University of KwaZulu-Natal, Ukulinga research farm. Ninety-six cages were used with 10 

chickens per pen and with males and females being reared separately.  Two nipple drinkers 

were available in each cage. Birds were supplied with heat through a gas blower. Body 

weight of individual birds in each pen was measured at weekly intervals up to 21d.   
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2.2.2 Feeds and feeding procedure  

 

Two basal feeds, one high (H) and the other low (L) in protein were formulated to contain 

equal contents of metabolisable energy (ME) and major minerals, using a well balanced 

amino acid mixture (Tables 2.1 and 2.2). These two feeds were blended (20H:80L, 

40H:60L, 60H:40L, 80H:20L) to produce four additional levels of protein. Troughs were 

placed inside the brooder cages for the first 10 days of the experimental period and, 

thereafter, outside the cage. The two basal feeds were sampled after mixing and these 

samples were analysed for apparent metabolisable energy (AME), crude protein (CP) and 

amino acid contents (Table 2.2). Feed and water were offered ad libitum throughout the 

trial. Food intake was measured once a week by subtracting food left over from that 

offered. 

 

Table 2.1: Composition (g/kg) of the two basal feeds used in the trial  

Ingrdient                             High protein content                       Low protein content  

Yellow maize 400 702 

Soyabean full fat 300 129 

Soyabean 44 197  

Fish meal 65 28.3  

L-lysine HCl 3.7 2.2 

DL-methionine  1.1 0.3 

L-threonine 0.1  

Vit + min premix 1.5 1.5 

Filler  72.0 

Limestone 14.5 18.4 

Salt 2.1 2.9 

Monocalcium phosphate 14.2 17.2 

Sodium bicarbonate 4.5 4.6 

Oil-sunflower 33.1 50.0 
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Table 2.2: Calculated nutrient composition (g/kg) of high protein (H) and low protein (L) 

diets  

*Digestible amino acids; AME = Apparent metabolisable energy; TME = True 

metabolisable energy 

 

2.2.3 Experimental design and statistical analysis  

 

The factorial experimental consisted of six dietary protein levels, two breeds and two sexes 

(6x2x2). Each treatment was replicated four times. Data were subjected to statistical 

analysis using Analysis of Variance and regression procedures of Genstat (2005) in order 

to compare the treatment effects and to determine the response in the measures of 

performance to protein content. Food intake and body weight were recorded weekly and 

mortality was recorded whenever this occurred.  Food intake values reported were adjusted 

Nutrient Calculated (H) Analysed (H) Calculated (L) Analysed (L) 

AME (MJ/kg) 12.90 13.22 12.90 12.57 

TME (MJ/kg)  13.63  12.98 

Protein (g/kg) 253 268   110 124 

Dry matter 887 910 872 895 

amino acids*      

Lysine 1.60 1.54 0.60 0.46 

Threonine 0.84 1.90 0.35 0.29 

Valine 1.07 1.33 0.55 0.47 

Isoleucine 1.02 1.31 0.39 0.42 

Leucine 1.88 2.31 1.08 0.99 

Histidine 0.60 0.69 0.28 0.30 

Arginine 1.58 0.65 0.59 0.56 

Calcium 1.0  1.0  

Avail. Phosphorus 0.5  0.5  

Sodium 0.25  0.25  

Chloride 0.25  0.25  
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to mortality. Mortality percentage was transformed in order to normalise the variability 

over the treatments. 

 

2.3 Results 

 
Food intake (g/d), feed conversion efficiency (FCE, g gain/ kg food), average daily gain 

(g/d), coefficient of variation  (CV) of body weight (%) and mortality (%) over the period 

from 0 to 21d are given in Tables 2.3, 2.4 and 2.5; Figures 2.1, 2.2, 2.3 and 2.4. Linear and 

quadratic regression coefficients are presented in Tables 2.6 and 2.7. There was a 

difference (P<0.001) between the Cobb and Ross strains in all measures of performance. 

The highest body weight gain and FCE were recorded in the Cobb strain, with a 

correspondingly higher food intake (Table 2.3). There was no significant effect of dietary 

protein content on mortality in either strain (Table 2.5).  Dietary protein content had a 

quadratic effect (P<0.001) on all measures of performance, there being the difference 

(P<0.001) was in the constant terms but not in the slopes of the response between the two 

strains.  The body weight gain of the Cobb strain was 1.7g/d greater than the Ross strain 

and the FCE was 34.5g gain/kg feed consumed greater than the Ross strain (Table 2.6). 

There were no interactions between the treatments in any of the parameters measured.  In 

general, the CV of individual body weights was similar between the two strains (Table 2.4 

and Figure 2.4). There was a higher mortality in the Cobb strain relative to Ross, especially 

at low protein contents, but the trend was not consistent across the feed protein contents. 
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Table 2.3: Mean food intake, feed conversion efficiency (FCE) and average daily gain from 0 to 21 d old Cobb and Ross broilers 

 Food intake (g/d) FCE (g gain/kg feed) Average daily gain (g/d) 

 Cobb Ross Cobb Ross Cobb Ross 

Protein F M M/F F M M/F F M M/F F M M/F F M M/F F M M/F 

1 (low) 36.1 35.3 35.7 35.8 33.8 34.8 427 410 419 406 407 407 15.4 14.5 14.9 14.5 13.7 14.1 

2 40.7 41.8 41.2 39.1 38.7 38.9 518 501 510 472 467 470 21.1 20.9 21.0 18.5 18.1 18.3 

3 42.5 40.8 41.7 41.2 39.2 40.2 559 534 546 522 522 522 23.7 24.2 23.9 22.8 20.7 21.7 

4 40.7 41.8 41.2 38.9 38.6 38.7 582 578 580 586 538 562 23.8 21.8 22.8 21.5 20.5 21.0 

5 40.6 38.9 39.7 39.9 39.1 39.5 610 614 612 592 549 571 24.8 23.9 24.3 23.6 21.5 22.5 

6 (high) 37.7 38.1 37.9 39.1 36.9 38.0 707 645 676 604 605 605 26.6 24.6 25.6 23.6 22.3 23.0 

 

 LSD SEM P-value   LSD SEM P-value  LSD SEM P-value 

Protein 1.19 0.60 < 0.001    20.02 14.20 < 0.001   0.94 0.47 < 0.001 

Strain 0.69 0.34 < 0.001    11.56 8.20 < 0.001   0.54 0.27 < 0.001 

Sex 0.69 0.34 0.027    11.56 8.20 0.003   0.54 0.27 < 0.001 
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Table 2.4: The coefficient of variation of Cobb and Ross broilers, as a measure of 

uniformity, at increasing dietary protein contents for each week (W) and throughout the 

experimental period   

 Coefficient of variation (%) 

 Cobb Ross 

Protein* W0 W1 W2 W3 W0-3 W0 W1 W2 W3 W0-3 

1 (low) 6.7 9.3 11.3 10.5 13.6 6.9 7.8 10.8 8.8 14.8 

2 8.0 10.9 13.5 11.9 15.0 6.6 10.3 14.6 15.8 14.7 

3 7.8 11.5 19.2 17.3 16.1 6.4 11.1 16.6 15.9 16.5 

4 7.4 12.0 18.3 18.0 16.0 6.8 13.0 19.7 16.9 14.6 

5 8.3 11.1 17.3 16.7 12.1 6.7 11.1 17.8 15.1 13.6 

6 (high) 8.2 13.2 12.0 15.5 10.4 7.2 10.5 16.7 17.1 9.1 

*Protein content of the diet. 

 

Table 2.5: Effect of feed protein content on mortality (%) in Cobb and Ross broilers from 

0 to 21d of age 

 Mortality (%) 

Protein
* 

Cobb Ross 

1 (low) 10.18 4.53 

2 7.87 0.01 

3 4.53 6.42 

4 4.53 0.01 

5 0.01 4.53 

6 (high) 4.53 7.87 

*Protein content of the diet. 
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Table 2.6: Regression coefficients of food intake and feed conversion efficiency (FCE) on 

feed protein content from 0 to 21d, with strain as a group  

 Food intake FCE 

Source Coefficient S.E P value Coefficient S.E P value 

Constant 12.71 2.95 < 0.001 131.7 50.4 0.01 

Protein  0.306 0.034 < 0.001 3.338 0.581 < 0.001 

Protein x Protein -0.0008 0.0001 < 0.001 -0.005 0.0016 0.002 

Strain Ross
1 

-1.237 0.381 0.002 -34.51 6.51 < 0.001 

1  Constant term for Ross strain differs significantly from that of Cobb strain. 
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Figure 2.1: Food intake as influenced by dietary protein content in Cobb (�, regression 

line─) and Ross (�, regression line ----) broilers from 0 to 21d, with fitted curves  
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Figure 2.2: Feed conversion efficiency (FCE) of Cobb (�, regression line─) and Ross (�, 

regression line ----) broilers over the period 0 to 21d, with fitted curves, as influenced by 

dietary protein content 

 

Table 2.7: Regression coefficients of gain in weight (g/d) on protein intake (g/d) over the  

Period 0 to 21d, with strain as a group 

 

 Gain in weight 

Source Coefficient S.E P value 

Constant 0.44 1.68 0.794 

Protein in (Pin) 4.817 0.517 < 0.001 

Pin x Pin -0.234 0.0376 < 0.001 

Strain Ross1 -1.661 0.267 < 0.001 

1 Constant term for Ross strain differs significantly from that of Cobb strain. 
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Figure 2.3: Effect of protein intake on weight gain of Cobb (�, regression line─) and Ross 

(�, regression line ----) broilers over the period 0 to 21d, with fitted curve. 

 

(Cobb) y = -0.1605x2 + 3.8857x - 7.5945

R2 = 0.92

(Ross) y = -0.1474x2 + 3.7237x - 7.5362

R2 = 0.92
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Figure 2.4: Effect of feed protein content on flock uniformity of Cobb (�, regression 

line) and Ross (�, regression line----) broilers from 0 to 21d of age 
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2.4 Discussion 

 
It is well recognized that feed protein content can affect significantly the growth rate and 

food intake of broilers (Cabel and Waldroup, 1991; Smith and Pesti, 1998; Smith et al., 

1998; Swatson et al., 2000; Rezaei et al., 2004). These authors reported that body weight 

gain and FCE were significantly increased when the dietary protein contents of the feed 

were increased, and the results of this experiment have confirmed these earlier reports. 

However, very little information is available in the literature concerning the extent of these 

effects on uniformity and mortality especially for different strains of broilers. Thus, this 

study focused on the response of the two most common strains of broilers in South Africa, 

namely, Cobb and Ross, to feeds varying in protein content, specifically in relation to the 

effects on uniformity and mortality. 

 

Results from this experiment showed that Cobb broilers performed better than the Ross 

strain over the range of protein levels included in the experimental feeds. This was due 

either to the higher potential growth rate or to the apparently greater capacity of the Cobb 

strain to consume greater quantities of feed at all protein contents, resulting in higher 

intakes and hence greater weight gains and FCE’s than with the Ross strain on all these 

feeds. Strains differ in their ability to deposit protein or lipid as a result body weight and 

the maximum amount of food intake to maximize the growth rate varied (Orr et al., 1984; 

Smith and Pesti, 1998; Smith et al., 1998; Dozier and Moran 2001). This justified the 

variation observed between strains as illustrated in Table 2.3. Of interest was the similarity 

in the shape of these responses, these being almost identical in both strains. Although 

mortality (Table 2.5) was not significantly different (P>0.05) among the treatments groups 

or between strains, there was a tendency for the Cobb strain to exhibit higher mortality on 

the low protein feeds, which may be due to the fast growth rate relative to the Ross strain, 

but could also be a result in some way of the high intake of a low quality food. Classen 

(2000) suggested that rapid growth has produced problems not seen in slower growing 

birds. He mentioned skeletal and cardiovascular disease (sudden death syndrome, ascites) 

as examples of growth-related problems. Therefore, further research is justified to 

investigate the real effect of feed protein content on mortality in the two strains of broilers.  

It was noted that mortality was, in many cases, not related to treatment effect (for instance, 

there were cases of deaths due to legs being trapped in the cage floor overnight). Similar 

results were reported by Rezaei et al. (2004). 
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Variation in body weight within a population is an important criterion when optimising the 

feed and feeding programme of a population of broilers as it relates to the spread of 

product yield from the processing plant. Uniformity is directly related to quality: the more 

uniform the product, the greater the value, as this implies a reduction in downgrades and 

hence an increase in profitability.  The type of feed and the environmental conditions to 

which broilers are exposed both affect uniformity. According to the results of this 

experiment, uniformity was greatest in both strains when they were given feeds of the 

highest protein content. As the protein content declined uniformity deteriorated but 

increased slightly on the lowest protein feeds, the response being significantly quadratic. 

This type of experiment needs to be repeated a number of times to corroborate the results 

obtained here. Once an accurate estimate of the effects of protein content on uniformity 

and mortality within each of the two strains are known, such information would be usefully 

included in models designed to optimise the feeds and feeding programmes of broilers. 

 

2.5 Conclusions 

 
The two strains used in this trial, to 21d, exhibited similar responses to changes in dietary 

protein content, although the Cobb strain consumed more food and hence grew faster at all 

protein contents than did the Ross strain. Accounting for increased mortality and decreased 

uniformity in a simulation model would necessarily need to be empirical until the reasons 

for these changes with dietary protein content and strain are understood, after which a 

mechanistic approach to these changes could be used. 
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Chapter 3 
 

Effect of dietary protein content on the allometric relationships between 

carcass portions and body protein in Cobb and Ross broilers 

 

Abstract 

 
This study was designed to examine the effect of dietary protein content on the 

performance and the allometric relationships between physical and chemical components 

of the body with body protein. Broilers were fed starter feed for three weeks and finisher 

feed thereafter to six weeks. Six levels of protein were used in both feeding programs. 

1680 Cobb and 1680 Ross day old sexed broilers were used, with 70 chicks being placed in 

each of 48 pens. Three birds per pen were randomly selected at 14, 28, 35 and 42 d for 

carcass analysis. In the slaughtering process, the feathers were removed; breast meat, 

drum, thigh and wing were weighed and the feather-free body minced. The water, protein 

and energy contents of each carcass were measured. Food intake, body weight, feed 

conversion efficiency, uniformity and mortality served as criteria for performance 

evaluation.  

 

Cobb broilers performed better than Ross on all feeds and feeding programmes, and in 

addition exhibited increases in food intake as dietary protein content decreased, whereas 

food intake in the Ross bird declined, implying that the optimum dietary protein content 

for these two strains would differ. The highest uniformity was observed at the highest 

dietary protein content in both strains. There was no nutritional effect on mortality, but the 

Cobb strain had a higher mortality (P<0.01) over all feeds than the Ross strain. Small but 

significant deviations from the mean allometric relationships between the physical 

components and body protein occurred with drum weight (influenced by feed protein 

content) and breast meat yield (influenced by strain and sex), these possibly resulting from 

differential amounts of body lipid being deposited in these tissues in the different 

genotypes.  The ability of genotypes to deposit lipid in different parts of the body needs to 

be researched in more detail. 

 

It can be concluded that although variation exists in the growth rate of broilers differing in 

strain and sex, and when offered feeds differing in protein content, nevertheless the 
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allometric relationships between the carcass components (other than feathers and body 

lipid) and body protein are not influenced by any of these factors.  Consequently, when 

predicting the growth rate of any of the physical parts of the body, the same allometric 

relationship may be used in all cases.   

 

3.1 Introduction 

 

Allometric relationships between the weights of the chemical components and body 

protein may be used to describe potential growth (Emmans and Fisher, 1986; Emmans, 

1988, 1989).  Whereas the relationship between water and protein in the body of broilers at 

maturity has been regarded as being the same between genotypes (Emmans 1988; Wang et 

al., 1999), Eits et al. (2002) reported that low or high levels of ideal protein-to-protein-free 

energy ratios had a considerable effect on the weight of water at a given protein weight 

compared with feeds having an average nutrient composition. Because of this disagreement 

in the literature, more evidence of the effect of feed protein content on the allometric 

relationships between carcass components is needed. Furthermore, the relationships 

between carcass portions (such as breast meat, drum meat, thigh, etc.) and body protein 

have not been extensively investigated, especially when feeds differing in protein content 

have been fed. 

 

Traditionally, the major criteria for assessing the performance of broiler strains have been 

growth rate and feed conversion efficiency, and less frequently, carcass composition, but 

there is circumstantial evidence that some strains show higher mortalities and a greater 

variability in final body weight than others when high or low-protein feeds are fed.  Such 

information is crucial when optimising the feeds for different strains.  In this study, 

therefore, flock uniformity and mortality rate were added to the performance variables 

studied. 

 

The objectives of this study were therefore to determine the effect of dietary protein on the 

allometric relationships between the carcass components and body protein, and on the 

performance, including mortality and uniformity, of two strains of broilers available in 

South Africa. 
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3.2 Materials and methods 

3.2.1 Birds and Housing   

 

The experiment was conducted at Ukulinga Research farm using 1680 Cobb and 1680 

Ross sexed day-old broiler chickens. 48 floor pens (1.5mx2m) were used with 70 chickens 

being placed per pen, and with males and females being reared separately. The experiment 

was terminated when the broilers were six weeks old.  The temperature in the tunnel-

ventilated broiler house was maintained at close to predetermined levels, starting at 31OC 

and reducing to 21OC by 21d, then maintaining that temperature to 42d. 

 

3.2.2 Feeds and feeding procedure 

 

Chicks were fed a crumbled starter feed for the first three weeks, and a pelleted grower 

feed for the remaining three weeks. Two basal starter feeds, one high (H) and the other low 

(L) in protein were formulated (Table 3.1) containing equal contents of AME and major 

minerals, using a well balanced amino acid mixture (WinFeed 22). All the essential amino 

acids were supplied at their requirements, relative to lysine. The two basal feeds were fed 

alone and as blends (20H:80L, 40H:60L, 60H:40L, 80H:20L) thereby producing six levels 

of protein in total. Feed and water were supplied ad libitum throughout the trial. 

 

3.2.3 Measurements 

 

All surviving birds were group weighed by pen at weekly interval with food consumption 

being determined at the same time. Twenty broilers were randomly selected from each pen 

and weighed individually on days 1, 21 and 42 to measure variation. Three birds per pen 

were randomly selected at 14, 28, 35 and 42 d for carcass analysis. In the slaughtering 

process, the feathers were removed from the birds by dry plucking and the carcasses were 

reweighed to obtain a feather-free weight. The skin from the breast, thighs and drum were 

removed before these parts (meat and bone) were weighed. All parts were then returned to 

                                                
2 EFG Software (Natal) 25 Fairfield Ave, Pietermaritzburg 3201 South Africa Tel: +27 33 260 5477                       

   Fax: +27 33 260 5067 e-mail: gous@ukzn.ac.za 
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the carcass, which was then minced and mixed thoroughly before taking 300 g samples for 

laboratory analysis. The water content of each carcass was determined by freeze-drying a 

known weight of minced carcass. The freeze-dried sample was then milled for further 

analysis. The milled samples were freeze-dried again, after this procedure, to remove any 

moisture that may have accumulated during this process. The crude protein content of each 

carcass was calculated as nitrogen x 6.25, where nitrogen content of the dry matter was 

determined on a LECO nitrogen analyzer (LECO Africa (Pty) Limited, P.O. Box 1439, 

Kempton Park, South Africa). The lipid content of the samples was determined using the 

equation L (%) dry basis = -.08756 + 0.04754 GE (Gous, unpublished), where L (%) as is 

= (L (%) dry basis x (100-Moist %)) / 100. 

 

3.2.4 Statistical analysis 

 

All the measures of performance data were subjected to analysis of variance and regression 

procedure using SAS Version 8 (SAS Institute, 2000). Treatment means were compared 

and regression analysis using GLM was conducted to evaluate linear and quadratic effect 

of protein content and protein intake on animal performance. The effects of strain and 

protein content on carcass portions and chemistry were also analysed using the GLM 

procedure and SAS version 8 (SAS Institute, 2000) to compare statistically the response of 

the birds on each treatment on the allometric relationships between the chemical and 

physical body characteristics and body protein content. Carcass protein weight was 

calculated by multiplying protein content in the carcass by the carcass weight. 

 

The lipid to protein ratio was calculated from the natural logarithms of total body protein 

and total body lipid weights. Angular transformation was used to normalise mortality 

percentage. Lines were fitted using a power function (allometric model) which describes 

the log-log linear relationship of two body components (ln (Br) = ln a + b x ln (P)), in 

which: ln = natural logarithm, Br = breast meat weight (g), a = scale parameter, b = 

allometric slope, P = body protein weight (g).  
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Table 3.1: Ingredient composition (g/kg) of the basal feeds used in the starter and finisher 

feed trial. 

 Starter Finisher 

Ingredient  
LP HP LP HP 

 Yellow maize  400 400 600 494 

 Wheat bran  160  62.2  

 Soybean full fat  282 300 196 350 

 Soybean 44   119   

 Sunflower 37   50.0 33.5 72.4 

 Fish meal 65  100 100 40.0 40 

 L-lysine HCL   1.4   

 DL methionine     0.5 

 Vit+min premix  1.5 1.5 1.5 1.5 

 Limestone  11.5 9.6 15.5 14.0 

 Salt  0.2 0.1 1.9 1.9 

 Monocalcium phosphate  5.0 7.9 12.0 12.9 

 Sodium bicarbonate  2.9 3.2 3.4 1.0 

 Oil - sunflower  36.9 7.3 34.4 11.5 

Nutrient composition*      

AME (MJ/kg) 12.6 12.6 13.0 13.0 

Crude protein 197 248 149 199 

Lysine 11.9 16.0 7.9 11.0 

M + C 6.6 7.9 5.4 7.0 

Threonine 7.5 9.4 5.6 7.4 

Tryptophan 2.1 2.7 1.5 2.2 

Calcium 1.0 1.0 1.0 1.0 

Avail. Phosphorous 0.5 0.5 0.5 0.5 

*Digestible amino acids; M+C= Methionine + Cystine, Avail = Available 
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3.3 Results 

 
Growth performance 

 
The effect of dietary protein content on food intake (g/d), feed conversion efficiency (g 

gain/kg feed) and weight gain (g/d) is presented in Tables 3.2 and 3.3; Figures 3.1 and 3.2. 

Cobb broilers consumed significant more food (P<0.001) and grew significantly faster 

(P<0.001) than Ross broilers in the starter period (Table 3.2) but the response in food 

intake to dietary protein content was similar in both strains, with food intake remaining 

relatively constant on all except at the lowest protein feed (Figure 3.1). As a result, FCE 

was similar in both strains. In the finisher period the Ross birds consumed significantly 

more than the Cobb broilers (Table 3.3) but in this case there was no difference in growth 

rate between the two strains, resulting in a significantly poorer FCE for the Ross strain 

(487 vs. 522 g gain/kg feed; P<0.001). The pattern of food intake in the finisher period also 

differed between the two strains (Figure 3.1): the Cobb birds increased their food intake as 

the dietary protein content was decreased, but food intake decreased with protein content in 

the Ross strain. Regression coefficients of feed intake (g/d) and FCE (g gain/kg feed) on 

protein content (g/kg) and average daily gain (g/d) on protein intake (g/bird, d) are 

presented in Tables 3.4, 3.5 and 3.6. These coefficients are for a linear effect except where 

a quadratic effect was significant (P<0.05), in which case the linear and quadratic 

coefficients are included in the Tables. The effect of dietary protein in the starter period 

had a quadratic response for all the measures of performance but a linear response in the 

finisher feeds. There was an interaction between protein level and strain on food intake in 

the finisher period and also on average daily gain in the starter feeding program. 

Furthermore, there was an interaction between sex and strain on the above responses and 

feeding programs (Table 3.5 and 3.6). The effect of increasing protein content of feed was 

more sensitive in the starter feeding period, i.e. higher regression coefficients. Variation in 

live weight within a treatment decreased in both strains as the feed protein content 

increased (Table 3.7), and whilst there was no nutritional effect on mortality (Table 3.7), 

mean overall mortality was twice as high in the Cobb strain (0.78 vs. 0.38%), this 

difference being statistically significant (P<0.01). 
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Carcass analysis 

 

Effect of dietary protein content on the carcass components at 42 d of age is given in 

Tables 3.8 and 3.9. There was no significant effect of dietary treatment on the carcass 

portions except on breast meat (P<0.001) and wing (P<0.05). There was no significant 

difference between the two strains in most of the carcass portion except breast (P<0.001) 

and thigh meat weight (P=0.01). However, the weight of all carcasses was increased with 

increasing protein content of the feed. Parameter estimates for the allometric relationships 

for carcass portion and body component with body protein weight are presented in Tables 

3.10a and b and Figures 3.3, 3.4, 3.5 and 3.6. There was no treatment effect on the 

allometric relationship between carcass portions and body protein content except on lipid, 

lipid to protein ratio and drum when body protein was as a continuous variable in the 

independent variables.  Strains and sex had significantly (P<0.01) affected the allometric 

equations between the total breast meat and the body protein weight. All the relationships 

with body protein weight were linear. The allometric relationship gave accurate 

descriptions based on the coefficient of determination (R2) (Tables 3.10a and b). 
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Table 3.2: Mean food intake (g/d), average daily gain (g/d) and feed conversion efficiency, FCE (g gain/ kg feed consumed) of broilers from 

0 to 21d (n = 48). 

 

 Food intake (g/d) Average daily gain (g/d) FCE (g gain/kg feed) 

 Cobb Ross Cobb Ross Cobb Ross 

Protein1 F M M/F F M M/F F M M/F F M M/F F M M/F F M M/F 

219.5 45.5 45.4 45.4 39.4 40.5 40.0 34.6 32.6 33.6 29.3 29.2 29.3 760 721 740 743 722 732 

220.4 46.4 48.6 47.5 43.7 43.6 43.7 36.3 38.2 37.2 33.4 34.3 33.9 782 785 783 765 788 776 

221.4 46.7 48.5 47.6 45.5 42.5 44.0 36.7 37.9 37.3 34.9 33.4 34.2 788 781 784 771 786 778 

222.3 46.3 47.9 47.1 43.3 43.5 43.4 37.2 37.8 37.5 33.0 34.2 33.6 805 788 797 770 778 774 

223.3 47.0 47.6 47.3 43.6 42.8 43.2 38.0 36.9 37.4 33.7 33.3 33.5 796 785 791 774 778 776 

224.2 47.2 48.4 47.8 44.3 43.4 43.9 37.8 37.2 37.5 34.0 33.9 34.0 801 770 785 775 791 783 

Mean 46.5 47.7 47.1 43.3 42.7 43.0 36.7 36.7 36.7 33.0 33.0 33.0 789 772 780 766 774 770 

RMS   2.51      0.903      748    

 Prot2 Strain  Sex  Prot Strain  Sex  Prot Strain  Sex  

P-value 0.005  <.001  <.001  <.001  <.001  ns  0.011  ns  ns  

1Feed protein content (g/kg); 2Protein 

M/F = Average sex value, n = number of observations, ns = Non significant, RMS =  Residual mean square.            
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Table 3.3: Mean food intake (g/d), average daily gain (g/d) and feed conversion efficiency, FCE, (g gain/ kg feed consumed) for broilers from 

21 to 42 d (n=48)  

1Feed protein content (g/kg); 2Protein 

M/F = Average sex value, n = number of observations, ns = Non significant, RMS =  Residual mean square.           

 Food intake (g/d) Average daily gain (g/d) FCE (g gain/kg feed consumed) 

 Cobb Ross Cobb Ross Cobb Ross 

Protein1 F M M/F F M M/F F M M/F F M M/F F M M/F F M M/F 

166.5 115 127 121 119 127 123 57.7 61.4 59.6 57.0 62.0 59.5 501 483 492 478 489 484 

176.9 111 125 118 123 129 126 54.8 63.5 59.1 58.7 63.1 60.9 492 508 500 480 489 484 

187.3 111 123 117 122 130 126 56.7 65.5 61.1 59.0 63.5 61.3 511 535 523 481 490 486 

197.6 113 121 117 122 131 127 57.7 66.4 62.0 59.1 65.5 62.3 512 548 530 483 501 492 

208.0 108 123 116 123 132 127 56.9 67.4 62.2 58.3 66.6 62.5 525 547 536 475 507 491 

218.4 108 123 116 125 131 128 58.4 68.0 63.2 59.4 65.5 62.5 546 551 548 476 500 488 

Mean 111 124 117 122 130 126 57.0 65.3 61.2 58.6 64.4 61.5 515 529 522 479 496 487 

RMS   19.46      12.84      1057    

 Prot2 Strains Sex Strain x Sex   Prot Strains Sex    Prot Strains Sex   

P-value Ns <.001 <.001 0.055   ns ns <.001    Ns <.001 ns   
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Figure 3.1: Effect of feed protein content on food intake (g/d) (bottom) and feed 

conversion efficiency, FCE, (g gain/kg feed) (top) of Cobb (�, response relationship ─) 

and Ross (□, response relationship – –) broilers from 0 to 21d and 21 to 42d of age.   

 

 

 

 



 

 46

28

30

32

34

36

38

W
ei

g
h
t 

g
ai

n
 -

 0
-2

1
d
 (

g
/d

)

59

60

61

62

63

64

W
ei

g
h
t 

g
a i

n
 -

 2
1

-4
2

d
 (

g
/d

)

8.8 9.6 10.4
Protein intake (g/bird, d)

20 22 24 26 28
Protein intake (g/bird, d)

 

Figure 3.2: Effect of feed protein intake on weight gain of Cobb (�, response relationship 

─) and Ross (□, response relationship – –) broilers from 0 to 21d and 21 to 42d of age.   

 

Table 3.4: Regression coefficients of food intake (g/d) and feed conversion efficiency (g 

gain/ kg feed) on protein content feed over the period of 0 to 21d, with strain as a group 

Food intake (g/d)  FCE (g gain/kg feed)  

Variables Estimates  SE P-value Estimates  SE P-value 

Constant -12146 4919 0.018 -189390 78890 0.021 

Protein (P) 109.5 44.3 0.018 1706 711 0.021 

P x P -0.2456 0.1 0.018 -3.83 1.6 0.021 

Sex (M) 0.279 0.46 Ns -4.7 7.3 Ns 

Strain R -4.162 0.46 <0.001 -8.32 7.3 Ns 

R 2 68   37   

SE =Standard error, ns = Non significant, M = Male, R = Ross broilers, R2 = coefficient of 
determination,  
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Table 3.5: Regression coefficients of on food intake (g/d) and feed conversion efficiency 

(g gain/ kg feed) on protein content feed over the period of 21to 42d, with strain as a group 

Food intake (g/d)  FCE (g gain/kg feed)  

Variables Estimates  SE P-value Estimates  SE P-value 

Constant 116.19 8.4 <.001 379.1 44.5 <.001 

Protein (P) -0.0915 0.042 0.035 0.624 0.221 0.007 

P x P       

Sex (M) 12.58 1.47 <.001 14.82 7.75 0.062 

Strain R (S) -17.4 11.9 ns -35.21 7.75 <.001 

P x  (S) 0.1755 0.0593 0.005    

Sex x S -5.13 2.08 0.018    

R 2 78.6   39   

SE =Standard error, ns = Non significant, M = Male, R = Ross broilers, R
2
 = coefficient of 

determination,  

 

Table 3.6: Regression coefficients indicating the change of weight gain (g/d) on protein 

intake over the period of 0 to 21d and 21 to 42d, with strain as a group 

 0 to 21d    21 to 42d  

 Daily gain (g/d)  Daily gain (g/d)  

Variables Estimates  SE P-value Estimates  SE P-value 

Constant 73.7 42.7 Ns 39.08 3.82 <.001 

Protein intake (P) -10.98 8.26 Ns 0.596 0.181 0.002 

P x P (P2) 0.729 0.405 0.07    

Sex (M) -1.251 0.512 0.019 5.78 0.902 <.001 

Strain R -149.8 53 0.007 -0.878 0.889 Ns 

P x Strain R  30.4 10.5 0.006    

P2 x Strain R  -1.571 0.529 0.005    

Sex x Strain R 1.61 0.682 0.023    

R 
2
 82.4   62.2   

SE =Standard error, ns = Non significant, M = Male, R = Ross broilers, R2 = coefficient of 
determination,  
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Table 3.7: Mean coefficient of variation, CV, (%) and Mortality (%) of Cobb and Ross 

broilers from 0 to 42 days.  Transformed values are in parentheses. 

 CV (%) Mortality (%)
2 

Protein
1
 Cobb Ross  Cobb     Ross 

1(Low) 10.5 11.1 0.78 (4.89) 0.46 (3.66) 

2 9.1 9.2 0.20 (3.20) 0.39 (3.01) 

3 9.1 9.4 0.91 (5.15) 0.26 (1.99) 

4 8.4 9.4 0.45 (3.80) 0.32 (2.18) 

5 8.5 9.0 1.20 (6.09) 0.32 (2.67) 

6(High) 8.8 9.4 1.15 (5.91) 0.52 (4.06) 

1
Feeding program from 0 to 42 d of age. 

2There was no dietary effect on mortality (%) but there is a difference between 

strains (P<0.01). 
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Table 3.8: Effect of dietary protein content on carcass portions of female (F) and male (M) broilers of Cobb and Ross strains at 42d1 

 Total breast meat Drum meat Feather weight Thigh meat Wing meat 
 Cobb Ross Cobb Ross Cobb Ross Cobb Ross Cobb Ross 

Protein2 F M F M F M F M F M F M F M F M F M F M 

1 (Low) 236 256 253 217 161 192 170 179 101 99 99 95 184 210 188 202 148 165 158 169 

2 253 279 247 242 162 196 172 191 100 96 86 95 193 237 196 206 158 182 156 161 

3 290 326 261 253 171 214 169 189 103 123 86 86 197 232 190 204 172 189 168 163 

4 267 269 246 284 167 186 163 212 95 120 99 120 202 208 184 215 156 163 159 182 

5 296 314 276 284 171 201 163 206 109 107 109 101 204 235 188 210 167 183 158 175 

6 (High) 341 302 280 305 178 192 183 202 107 108 107 122 212 220 205 220 171 177 160 186 

RMS 1472 393 767 611 265 

CV (%) 14 11 26 12 10 

 Protein S Sex Protein S Sex Protein S Sex Protein S Sex Protein S Sex 

P-value <.001 <.001 ns ns ns <.01 ns ns ns ns 0.01 <.001 0.025 ns <.001 
1All the measurements are in grams, 2Feeding program from 0 to 42 d of age. CV = Coefficient of variation, ns = Non significant,  

RMS = Residual mean square, S = Strain 

 

 

 

 



 

 50

Table 3.9: Effects of feed protein content on the weights of water (g), lipid (g) and protein (g) at 42 d in Cobb and Ross broilers. 

 Water Lipid Protein 

 Cobb  Ross Cobb  Ross Cobb  Ross 

Protein1 Female Male Female Male Female Male Female Male Female Male Female Male 

1 (Low) 1129 1255 1115 1168 352 387 387 370 274 305 275 289 

2 1133 1381 1164 1213 341 397 349 348 278 333 287 302 

3 1194 1464 1202 1281 373 400 348 344 295 359 292 310 

4 1122 1219 1140 1317 354 330 329 350 275 316 281 341 

5 1238 1406 1226 1373 345 339 319 333 305 354 305 350 

6 (High) 1292 1316 1261 1326 353 361 319 306 329 331 309 346 

RMS  15036    3404    1080   

CV (%)  9.8    16.8    10.6   

 Protein Strain Sex  Protein Strain Sex  Protein Strain Sex  

P-value <0.001 Ns <0.001  ns 0.009 ns  <0.001 ns <0.001  

        1Feeding program from 0 to 42 d of age. CV = Coefficient of variation, ns = Non significant, RMS = Residual mean square 
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Table 3.10a: Log1 linear regression estimates and goodness of fit criteria for the allometric 

relation between physical and chemical components of the carcass and body protein for 

Cobb and Ross strains and sex 

   Females Males 

Pooled SE 

 

Variables  Cobb Ross Cobb Ross R
2 

Body water ln(a)  1.776
a 

1.768
a 

1.792
b 

1.891
b 

0.065 

0.996   b 0.940a 0.941a 0.937b 0.918b 0.013 

Thigh meat ln(a) -0.605a -0.559a -0.596a -0.415b 0.091 

0.993   b 1.039a 1.031a 1.037a 1.003b 0.018 

Wing meat ln(a) -0.406
a 

-0.376a -0.315
b 

-0.290
b 

0.071 

0.995   b 0.971a 0.965a 0.949b 0.946b 0.014 

Total breast ln(a) -1.431a -0.975b -1.090c -0.783d 0.082 

0.995 Meat  b 1.248a 1.155b 1.166b 1.100c 0.016 

a-d 
values within a row with no common superscript differ significantly (P<0.01) 

1Natural logarithm, ln (y) = ln(a) + b × ln(x), where ln = natural logarithm, y = any variable 
(g), a = scale parameter, b = allometric slope and x = protein weight (g).  SE = standard 
error, R

2
 = Coefficient of determination 

 

Table 3.10b: Dietary protein effect on the allometric relationships of body lipid, lipid to 

protein ratio (LP:PR) and drum with body protein.  

 Body lipid LP:PR Drum meat 

Protein ln(a) SE b SE ln(a) SE b SE ln(a) SE b SE 

1(Low) -1.620
a 

0.213 1.343
a 

0.042 -0.264
a 

0.064 0.302
a 

0.013 -1.026
a 

0.189 1.103
a 

0.037 

2 -1.617a 0.221 1.322a 0.043 -0.235b 0.108 0.286b 0.021 -1.047a 0.071 1.097a 0.014 

3 -1.481b 0.308 1.285c 0.060 -0.273c 0.092 0.245c 0.018 -0.938b 0.091 1.075b 0.018 

4 -1.442b 0.116 1.276c 0.023 -0.220b 0.034 0.226d 0.007 -0.992b 0.080 1.084b 0.015 

5 -1.181c 0.136 1.213d 0.026 -0.011d 0.080 0.198e 0.015 -0.795c 0.158 1.044c 0.031 

6(High) -1.116
d 

0.127 1.200
d 

0.025 -0.174
d 

0.045 0.204
e 

0.009 -0.716
c 

0.103 1.030
c 

0.020 

a-e values within a row with no common superscript differ significantly (P<0.01) 

1 
Natural logarithm, ln (y) = ln(a) + b × ln(x), where ln = natural logarithm, y = any 

variable (g), a = scale parameter, b = allometric slope and x = protein weight (g).  SE = 
standard error, R2 (coefficient of determination) was 0.99 for all the power functions. 
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Figure 3.3: Allometric relationships for water and feather weights with protein weight in 

carcass of female Cobb, FC (X), male Cobb, MC (O), female Ross, FR (∆) and male Ross, 

MR (+) broilers fed six levels of balanced protein and slaughtered at 14, 28, 35 and 42d of 

age. There was no dietary effect on the relationships, therefore, values represent pooled 

mean of dietary treatments. 

0.8

1.2

1.6

L
ip

id
 t

o
 p

ro
te

in
 r

at
io

 (
ln

) 
g

3.6

4.0

4.4

4.8

5.2

5.6

6.0

B
o

d
y

 l
ip

id
 (

ln
) 

g

4.0 4.4 4.8 5.2 5.6 6.0

Body Protein (ln) g

3.6 4.0 4.4 4.8 5.2 5.6 6.0

Body Protein (ln) g

T1

T2

T3

T4

T5

T6

 

Figure 3.4: Effect of dietary treatments on allometric relationships for lipid to protein ratio 

and body lipid with protein weight in carcass of broilers fed six levels of balanced protein 

and slaughtered at 14, 28, 35 and 42d of age. Values represent pooled mean of both strains 

of female and male broilers.  
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Figure 3.5: Allometric relationships for total breast meat and wing meat weights with 

protein weight in carcass of female Cobb FC (X), male Cobb, MC (O), female Ross, FR 

(∆) and male Ross, MR (+) broilers fed six levels of balanced protein and slaughtered at 

14, 28, 35 and 42d of age. There was no dietary effect on the relationships, therefore, 

values represent pooled mean of dietary treatments.  
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Figure 3.6: Relationships for thigh meat weight with body protein (left) in carcass of 

female Cobb, FC (X), male Cobb, MC (O), female Ross, FR (∆) and male Ross, MR (+) 

broilers; and effect of dietary treatment on the relationships between drum meat weight and 

body protein (right) in carcass of broilers fed six levels of balanced protein and slaughtered 

at 14, 28, 35 and 42d of age.  
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3.4 Discussion 

 

One of the basic purposes of a body composition experiment is to investigate the 

relationships between components under different situations (genotype, nutrition and 

environment). Wang et al. (1992) reported that the stability of these relationships is of 

fundamental scientific interest. These allometric relationships may be used in growth 

models to predict the weights of different body parts (Emmans, 1981b, Emmans and 

Fisher, 1986; Emmans, 1988; Hancock et al., 1995; Gous et al., 1999). However, it is not 

clear whether the level of protein might influence these relationships in broilers. In the 

present study, the effect of protein level on the allometric relationships and the 

performance of Cobb and Ross strains were evaluated. 

 

Growth performance  

 

The effect of feed protein content on food intake was a quadratic response for both strains 

and this is in agreement with Skinner et al., 1992; Smith and Pesti (1998); Smith et al., 

1998. That is, food intake was reduced when the protein content of the diet was very low 

and high.  In the finisher period, there was no dietary effect on food intake but mean intake 

differed significantly between the two strains (17.4 g/d, Table 3.5) and the pattern of 

response also differed. This is because strains differ in their ability to deposit protein or 

lipid as a result of food intake level (Orr et al., 1984; Smith and Pesti, 1998; Smith et al., 

1998; Dozier and Moran 2001). Furthermore, this is partly due to the feathering effect of 

the strains. According to the results of this study, Cobb strains have greater feather cover 

than Ross broilers. Rapid feathering reduces food intake more than does slower feathering 

rate (Berhe and Gous, 2004) especially at high temperatures. However, in the starter period 

feather cover was not enough to affect the food intake of Cobb relative to Ross strains. 

Also, Cobb broilers might have a potentially higher food intake capacity than Ross 

broilers. The interaction between nutrition and strain for food intake (Table 3.4) and 

weight gain (Table 3.5) implies that the protein requirement for each strain varied and this 

subsequently influenced performance. Considering the overall performance, weight gain 

and feed conversion efficiency for Cobb broilers was higher than for Ross broilers 

regardless of the feeding programs. That is, Cobb broilers can perform better than Ross at 

low protein content of the feed as well as at high protein content with less food intake. It 
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can be concluded from these results that the feed and feeding programme of broilers should 

be both strain and sex specific (Emmans, 1995; Smith and Pesti, 1998).  

 

Uniformity is a measure of the variability of, for example, bird size in a flock. It is an 

important measure of performance when optimising the feeds and feeding programme of a 

population of broilers, as it relates to the spread of product yield in the processing plant. 

According to the results of this experiment, uniformity was greatest in both strains when 

they were fed the highest protein feeds, with this declining as the protein level decreased. 

This is in agreement with the results of Corzo et al. (2004). These authors suggested that 

reduced variability in live production, ready to cook whole carcasses, or cut-up parts for 

supermarkets or fast food restaurants is desirable. Concerning mortality, there was no 

significant difference among the feed treatments, but there was a significant difference 

between strains (P<0.01), with a higher mortality in the Cobb strain, especially at low and 

high protein contents. Both Rezaei et al. (2004) and Kemp et al. (2005) have published 

similar results. This might be due to heat stress arising from feeding bulky feed to satisfy 

the nutrient requirements at low protein levels, and the heat stress might be aggravated due 

to the higher feathering rate of the Cobb strain.  Furthermore, there may be some 

inexplicable effect on mortality of having a high intake of a low quality food. On the other 

hand, feeds with a high protein content support rapid growth, which Classen (2000) 

suggests might result in problems not seen in slower growing birds, such as skeletal and 

cardiovascular disease (sudden death syndrome, ascites). 

 

Carcass analysis 

 

It is well recognized that feed protein content can significantly affect the weight of the 

carcass portions and chemical components of the body (Bartov and Plavnik, 1998; Smith 

and Pesti, 1998; Smith et al., 1998). These authors reported that all these variables except 

body fat content were significantly increased when dietary protein content was increased, 

and the results of this experiment confirmed these reports using modern broilers. Simple 

power functions provided good descriptions of relationships between physical and 

chemical components with body protein (Tables 3.10a and b), with dietary treatment 

having no effect on the allometric relationships of carcass portions with body protein 

except in the case of drum meat weight. This implies the rate parameter for carcass 

portions and body protein is the same. Gous et al. (1999) reported that the value of the rate 
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parameter for the total breast muscles were essentially the same as those for the empty 

feather-free body. This helps to support the assumption of a simple allometry between the 

physical parts of the body and body protein content, reported by Emmans (1988).  

 

Some differences in the allometric coefficients were evident, i.e. between strain and sex in 

breast meat yield, and between dietary protein contents in drum weight.  The preliminary 

explanation for these differences is that lipid deposition occurs differentially between the 

strains, sexes and dietary protein contents used in this trial, and the weights of the affected 

carcass parts would have been influenced by the different amounts of lipid deposited.  The 

partitioning of energy and protein in different parts of the body in different strains and 

sexes, and on different feed protein contents should be studied further so that models can 

account for these differences in allometry. 

 

There was no effect of strain, sex or dietary protein level on the allometric relationship 

between body water and body protein content. This is in agreement with Emmans (1988) 

and Wang et al. (1999).  Kyriazakis and Emmans (1992) suggested that under conditions 

that limit growth, the water to protein ratio in a given component is not changed compared 

with that seen in normal growth. However, Eits et al. (2002) reported that when birds were 

given feeds with a high or low ideal protein to energy ratio, there was a considerable 

difference in the weight of water at a given protein weight. The allometric regression 

coefficients in this trial ranged from 0.918 to 0.941, values that are similar to those of Gous 

et al. (1999) (0.897 to 0.917), Eits et al. (2002) (0.945) and Gous (unpublished) (0.910 to 

0.946). It is clear that there is no marked difference among the allometric slopes. As Eits et 

al. (2002) pointed out, discrepancies in results of such studies are partly related to 

differences in animal characteristics, nutritional treatments, length of the experimental 

period and data analysis. For instance, Eits et al. (2002) sampled birds at target weights, 

whereas in the current trial birds were selected randomly for carcass analysis at 

predetermined ages.  

 

It is well known that dietary treatments may have a significant effect on the deposition of 

lipid (Gous et al., 1990; 1999) and that this would alter the allometric relationship with 

body protein. In this study, the allometric exponents between body lipid and body protein 

weight differed significantly between genotypes, sexes and dietary protein contents. 

However, these changes can be accounted for by assuming that a bird has an inherent body 
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lipid to protein allometry which it strives to maintain, but that deviations from this will 

occur when the bird is offered a feed that requires it to overconsume energy in order to 

obtain sufficient of the first limiting nutrient in the feed (Gous et al., 1990).   There is good 

evidence to prove that the bird will utilise this excess energy when circumstances permit 

this to happen (Kyriazakis and Emmans, 1991). 

 

 3.5 Conclusions 

 

Three important points emerged from this experiment.  The first is that the response in 

food intake to dietary protein differed markedly between the Ross and Cobb strains, 

especially in the finisher period, implying that the optimum dietary protein content for 

these two strains would differ.  The second point is that uniformity in body weight, an 

important quality criterion, is significantly influenced by feed protein content, and that 

uniformity is highest on feeds containing high protein contents. Finally, it was concluded 

that although variation exists in the growth rate of broilers differing in strain and sex, and 

when offered feeds differing in protein content, nevertheless the allometric relationships 

between the carcass components (other than feathers and body lipid) and body protein are 

not influenced by any of these factors.  Consequently, when predicting the growth rate of 

any of the physical parts of the body, the same allometric relationship may be used in all 

cases.  The small differences in the allometry for drum weight and breast meat yield can be 

accounted for by assuming that differential amounts of lipid are stored in these components 

as a consequence of feeding marginally deficient or unbalanced feeds to different strains 

and sexes, and these differences need to be addressed in future research. 
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Chapter 4 

 

Effect of nutrition on growth, uniformity and mortality  

in three broiler strains 

 

Abstract 

 

The objective of this trial was to gather further evidence on the effect of feed protein level 

on uniformity and mortality on three broiler strains. Ross 788, Ross 308 and Cobb 500 

day-old sexed broiler chickens (1120 of each strain) were housed, with males and females 

being reared separately. Broilers were fed starter feed for three weeks and finisher feed 

thereafter to six weeks. Four levels of protein were used in both feeding programs. Food 

intake, body weight, feed conversion efficiency, uniformity and mortality were recorded. A 

simulation exercise was conducted to determine the variation in individual live weight 

between males and females of two hypothetical broiler strains (A and B) using the EFG 

broiler growth model.  

 

Cobb strains consumed more food and grew faster than the other two strains in the starter 

period. However, in the finisher period, the Ross 308 broilers had a higher food intake but 

were less efficient than the Cobb strains. There were no interactions between any of the 

factors in any of the measures of performance. Dietary protein level influenced mortality 

(%) (P = 0.05) in the starter period but not in the growing period. Broilers fed a high 

protein diet exhibited a higher mortality than those on low protein diet, irrespective of 

strain. Dietary protein content significantly affected the uniformity of individual body 

weight in both feeding periods. The effect of strain on flock uniformity was observed only 

in the starter period and there was a protein level x strain interaction (P = 0.044) at 42 d. 

The simulation exercise confirmed a higher uniformity in broilers given feeds high in 

protein. It can be concluded that food intake, weight gain, uniformity and mortality, as 

influenced by feed protein content, differ between broiler strains suggesting that optimal 

dietary protein contents will differ between the strains. 
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4.1 Introduction 

 

Cross breeding and selection programmes have resulted in improved broiler growth and 

feed efficiency as evidenced by the fact that broilers 50 years ago took more than twice as 

long and consumed more than twice as much food to reach the required market weight as 

they do today.  These changes have raised issues regarding the way in which broilers 

should be fed to maximise profitability, and some progress has been made in this regard 

with the advent of simulation models and optimisation routines that address this issue.  But 

there is more to optimisation than simply addressing the response of the average individual 

in a population to feeds differing in nutrient density or amino acid-to-energy ratio; 

evidence has been presented above that the feed protein content has an effect on the 

uniformity of growth in a population, and that mortality rates differ between strains and 

sometimes between feed protein levels (Kemp et al., 2005). The trial reported here was 

designed to address these latter issues by gathering further evidence of the effects of feed 

protein level on uniformity and mortality.  

 

The stocking density, environmental temperature, experimental period, materials and 

methods were the same as the experiment described in Chapter 3 but in the present 

experiment, three strains were used. Moreover, a wider range of dietary protein levels was 

used in order both to confirm the previous results and to obtain better estimates of the 

performance of commercial broilers over a broad range of protein levels.  

 

4.2 Materials and methods 

 

In this experiment, 1120 Ross 788, 1120 Ross 308 and 1120 Cobb day-old sexed broiler 

chickens were housed in the broiler house facility at Ukulinga Research Farm, University 

of KwaZulu-Natal. A total of 48 pens were used with 70 chickens initially placed in each 

pen, and with males and females being reared separately.  

 

4.2.1 Feeds and feeding procedure 

 

Chicks were fed a crumbled starter feed for the first three weeks and a pelleted grower feed 

from three to six weeks. Two basal starter feeds were formulated, one high and the other 

low in protein (Table 4.1), with equal contents of ME and major minerals and using a well-
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balanced amino acid mixture (WinFeed 23). These two feeds were blended to produce two 

additional levels of protein (33H:67L and 67H:33L). Feed and water were offered ad 

libitum throughout the trial. 

 

4.2.2 Measurements 

 

The body weight of a representative sample of birds in each pen was measured at weekly 

intervals up to 42d with food consumption determined at the same time. Twenty broilers 

from each pen were weighed individually at 1, 21 and 42d. Mortality was monitored and 

recorded. Food intake values reported were adjusted for mortality. The mortality 

percentage was transformed in order to normalise variability over the treatments.  

 

4.2.3 Experimental design 

 

The study was conducted as a completely randomised design with a factorial arrangement 

of main effects consisting of three strains, four protein levels and two sexes. Each 

treatment was replicated twice. Data were subjected to statistical analyses using the 

analysis of variance and linear regression procedures of Genstat (2005) in order to compare 

the treatment effects and to determine the response in the measure of performance to 

protein content. Where the effect of sex did not differ significantly in the analysis, both 

sexes were combined. Unless otherwise noted, statements of significant differences are 

based on P<0.05. 

 

 

 

 

                                                
3 EFG Software (Natal) 25 Fairfield Ave, Pietermaritzburg 3201 South Africa Tel: +27 33 260 

6805, Fax: +27 33 260 6806 e-mail: gous@ukzn.ac.za. 
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Table 4.1: Ingredient composition (g/kg) of high (H) and low (L) protein (P) feeds used in 

the trial 

 Starter Finisher 

Ingredient     LP    HP     LP    HP 

Maize 532 405 630.2 484.6 

Soybean full fat 266 470 265 380.5 

Soybean 48 127    

Sunflower 37  33.4  22.8 

Fish meal 65  55.5   

Limestone 16.9 12.4 17.6 16.9 

L-lysine HCL 1.0 0.5 0.5 0.9 

DL methionine 1.7 3.4 1.3 0.2.7 

L-threonine  0.6  0.4 

Vit+min premix 2.5 2.5 2.5 2.5 

Choline chloride 60 0.7  7.6 12.9 

Virbacox/Salinomycin 0.5 0.5 0.5 0.5 

Zinc Bacitracin 15%   0.3 0.3 

Salt 3.0 2.0 1.4  

Monocalcium phosphate 16.6 11.6 16.8 16.6 

Sodium bicarbonate 3.0 2.5 6.7 8.4 

Oil – soya 30.0  50.0 50.0 

Calculated composition*     

AME (MJ/kg) 12.6 12.6 13.5 13.5 

Crude protein 206.5 261.2 153.1 194.1 

Dry matter 88.7 89.0 88.7 89.3 

Lysine 10.2 14.0 7.4 10.1 

Methionine 4.5 7.2 3.5 5.3 

M + C 7.4 10.3 5.8 7.9 

Threonine 6.8 9.2 5.0 6.7 

Tryptophan 2.0 2.5 1.4 1.9 

Arginine 12.8 16.0 9.0 11.9 

*Digestible amino acids; M+C = Methionine + Cystine 
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4.2.4 Simulation exercise: effect of feed protein on live weight uniformity  

 

A simulation exercise was conducted to determine the variation in individual live weight 

between males and females of two broiler strains (A and B) using the EFG broiler growth 

model (EFG Software, KwaZulu-Natal). These two theoretical strains differed only in the 

maximum lipid:protein ratio in the gain (MLG). This parameter refers to the maximum 

amount of lipid that a bird can deposit in one day in relation to the rate of body protein 

growth. The higher the value of MLG, the more lipid may be deposited, and the less heat 

that needs to be lost from the body. Hence, a bird with an MLG of 1.8 would be capable of 

depositing 1.8 times as much lipid as protein in the gain, and would thus be capable of 

growing faster on poor quality feed, especially at high temperatures, than would a bird with 

an MLG of 1.0. According to the results of Berhe and Gous (2005) and the present 

experiment (not shown in the text), the Cobb strain has shown a higher lipid deposition 

potential than that of Ross broilers.  

 

A theoretical flock of 100 broilers of each strain and sex were randomly generated based 

on the mean and CV (%) of the genetic parameters used in the EFG broiler growth model 

(Table 4.2). The mean values of the parameters were derived from the results of different 

experiments or publications (such as Emmans and Fisher, 1986; Hancock et al., 1995; 

Gous et al., 1999). The CVs used were those suggested by Emmans and Fisher (1986) 

while for those not found in the literature, the results of the present study were used. The 

response of the same (generated) individuals to the six lysine-limiting starter and finisher 

feeds was simulated. The feeds were formulated in the range from 0.80 to 1.20 of the Ross 

specifications (Aviagen, 2002). The broilers were fed a starter feed from 0 to 21 d and 

finisher feed from 22 to 42 d. This range of feed protein contents includes the actual feed 

used in the present study. The simulation exercise was conducted at the normal 

environmental temperature of 31
˚
C for two days and was then decreased daily by 0.5˚C to 

20˚C, remaining constant thereafter. The stocking density was 17 birds/m2. No mortalities 

occurred over the simulation period. A total of 120 simulations (5 feeds, 2 strains, 2 sexes 

and 2 feeding periods with 3 replications) was conducted. Individual live weight at 21 d 

and 42 d was recorded for males and females. Data were subjected to a descriptive 

statistics procedure using Genstat (2005) and CV (%) was calculated. 
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Table 4.2: Distribution of stochastic parameters and feeding schedules for both starter and 

finisher growth periods in the simulation exercise  

 Mean  Lysine (g/kg) 

Parameters Strain A Strain B CV (%) 0 to 21d 21 to 42d 

Rate of maturing, B* (/d) 0.046 0.046 6.0 1.0 0.74 

Feathering rate, Fr (/d) 1.23 1.23 15.0 1.16 0.84 

Mature protein weight, Pm (kg) 1.42 1.42 7.0 1.26 0.91 

Lipid-to protein ratio at 

maturity, LPRm (g/g) 
0.64 0.64 4.0 1.40 1.01 

Maximum lipid gain, MLG 

(g/g) 
1.0 1.8 15.0 1.54 1.20 

Initial body weight, Wo (g) 50.0 50.0 7.0   

B* is a scaled rate of maturing parameter = B. Pm
 0.27 and is uncorrelated with Pm. 

 

4.3 Results  

 

The effect of feed protein content on the growth of three broiler strains of females and 

males is presented in Tables 4.3 and 4.4. All of the main effects significantly affected the 

food intake, weight gain and feed conversion efficiency (FCE) of the three strains of 

broilers in the starter period but in the finisher period, feed protein level and strain had no 

effect on food intake or weight gain. The Cobb strains consumed more food and grew 

faster than the other two strains in the starter period. However, in the finisher period, the 

Ross 308 broilers had a higher food intake but were less efficient than the Cobb strains. 

Sex had a significant effect on food intake, weight gain and FCE in both feeding periods, 

in that males benefited from the extra feed intake. There was no interaction of the main 

effects for all measures of performance. The regression coefficients for food intake, FCE 

and weight gain on feed protein content are shown in Tables 4.5. As the protein level 

increased, food intake and weight gain responses were quadratic but the FCE response was 

linear in the starter period. In the finisher period, only weight gain response was linear. The 

main effects of the various factors, and their interactions are presented in Tables 4.3 to 4.6. 
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Table 4.3: Mean food intake (g/d), weight gain (g/d) and feed conversion efficiency (FCE) 

of three strains of broilers from 0 to 21d (n = 48) 

  

Food intake 

 (g/d) 

Weight gain  

(g/d) 

FCE 

 (g gain/kg feed) 

Strain Feed1 F M F M F M 

Cobb 195.2 53.0 55.1 41.4 43.8 781 797 

 211.7 54.0 58.1 42.8 47.3 794 815 

 228.7 54.1 58.5 44.4 49.4 821 846 

 245.2 53.9 56.8 45.3 48.8 839 860 

Ross 308 195.2 47.9 51.4 36.8 38.9 769 756 

 211.7 50.9 52.2 39.3 42.5 773 813 

 228.7 50.8 53.6 40.7 44.1 802 808 

 245.2 50.3 52.9 40.9 44.4 812 839 

Ross 788 195.2 47.5 48.5 35.0 37.1 739 765 

 211.7 48.0 51.0 38.3 41.5 773 815 

 228.7 49.1 54.0 39.6 43.5 806 806 

 245.2 48.8 51.1 40.2 44.2 823 842 

RMS  3.008  1.152  485.1  

Source of variation P-value  P-value  P-value  

Strain  <0.001  <0.001  0.01  

Feed  0.005  <0.001  <0.001  

Sex  <0.001  <0.001  0.006  

1Protein content of the feed (g/kg), 

n = number of observations, RMS = residual mean square. 

 

Dietary protein level affected mortality (%) (P = 0.05) in the starter period but not in the 

growing period. Broilers fed a high protein diet had a higher incidence of mortality than 

those on low protein diet, irrespective of strain. There was a tendency of interaction (P = 

0.051) between the sexes and strains in the starter period and higher mortality in the 

growing period. There were no mortality differences among the strains throughout the 

growing period but males had a higher mortality overall. The regression coefficients of 

mortality (%) of broilers are presented in Table 4.7. Dietary protein content had linear and 

quadratic effects on mortality in the starter and finisher feeding periods respectively.  
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Table 4.4: Mean food intake (g/d), weight gain (g/d) and feed conversion efficiency (FCE) 

of three strains of broilers from 21 to 42d (n = 48) 

  Food intake (g/d) Weight gain (g/d) FCE (g gain/kg feed) 

Strain Protein1 F M F M F M 

Cobb 147.8 141.0 157.9 69.2 78.5 490.6 496.1 

 160.6 142.2 163.3 73.4 88.7 516.1 542.7 

 173.9 143.7 162.6 72.8 92.7 507.6 570.6 

 186.7 138.7 158.0 72.0 86.3 519.6 545.4 

Ross 308 147.8 151.2 180.1 70.6 84.7 467.0 469.9 

 160.6 157.9 179.6 74.2 90.2 469.7 502.0 

 173.9 157.8 183.0 74.8 90.9 473.4 499.9 

 186.7 149.5 172.2 71.6 89.2 478.8 518.4 

Ross 788 147.8 151.2 169.8 73.5 81.5 486.2 480.4 

 160.6 153.0 170.9 74.1 87.0 484.4 508.9 

 173.9 154.6 181.4 74.1 90.2 478.8 497.9 

 186.7 145.4 174.9 71.5 86.7 492.0 497.2 

RMS  60.0  16.1   294.5 

Source of variation P-value   P-value  P-value 

Strain  <0.001   ns  <0.001 

Feed  ns   0.005  0.003 

Sex  <0.001   <0.001  <0.001 

1
Protein content of the feed (g/kg) 

n = number of observations, ns = non-significant, RMS = residual mean square. 
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Table 4.5: Regression1 coefficients of food intake, feed conversion efficiency (FCE) and weight gain on feed protein content in both feeding periods for 

three broiler strains 

 Food intake FCE Weight gain  

 0-21d  21–42d  0–21d  21–42d  0–21 d  21–42 d  

Variables Estimates S.E. Estimates S.E. Estimates S.E. Estimates S.E. Estimates S.E. Estimates S.E. 

Constant -45.25 26.71 -273.82 156.2 515.9 32.94 -342.85 315.61 29.87 3.25 50.73 4.88 

Protein (P) 0.870 0.244 5.01 1.873 1.33 0.147 9.682 4.98 0.505 0.53 0.906 0.206 

P x P -0.0019 0.0006 -0.0151 0.005   -0.027 0.015 0.054 0.023   

Ross 308 -4.163 0.52 15.5 2.349 -22.53 6.743 -38.93 6.25 -2.767 0.388 -0.8 1.39 

Ross 788 -5.488 0.52 11.737 2.349 -22.84 6.743 -32.73 6.25 -3.338 0.394 -1.2 1.35 

Sex 2.85 0.43 22.313 1.918 19.19 5.506 21.77 5.10 2.257 0.306 11.18 1.32 

R2 0.82  0.82  0.72  0.65  0.93  0.83  

Variables P-value  P-value  P-value  P-value  Variables P-value P-value  

Constant ns  ns  <0.001  ns  Constant <0.0001 <0.0001  

Protein (P) 0.0009  0.0275  <0.001  0.0413  Pin ns 0.0001  

P x P 0.014  0.0265    0.054  Pin x Pin 0.0233   

Ross 308 <0.0001  <0.0001  0.0017  <0.0001  Ross 308 <0.0001 ns  

Ross 788 <0.0001  <0.0001  0.0015  <0.0001  Ross 788 <0.0001 ns  

Sex <0.0001  <0.0001  0.0011  0.0001  Sex <0.0001 <0.0001  

1Cobb strains used as a reference in the analysis; Pin = protein intake; ns = non-significant; R2 = coefficient of determination; S.E. = standard error. 
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Figure 4.1: Effect of feed protein content on food intake (g/d) of Cobb (�, response 

relationship ─), Ross 308 (□, response relationship – –) and Ross 788 (■, response 

relationship – - –) broilers from 0 to 21d (left) and 21 to 42d (right) of age.   

 

Dietary protein content significantly affected the uniformity of individual body weight in 

both feeding periods (Table 4.8). The effect of strain on flock uniformity was observed 

only in the starter period. There was a protein level x strain interaction (P = 0.044) at 42 d. 

The regression coefficients of individual live weight variation (%) on dietary protein 

content for the three strains are presented in Table 4.9. As the protein level increased, CV 

(%) decreased linearly in both feeding periods. In general, there was less variation in body 

weight in the Cobb strain than in the other two strains. 
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Table 4.6: Effect of feed protein content on mortality (%) in three broiler strains at 

different growth periods (n = 48) 

  Weeks 0–3 Weeks 3–6 Weeks 0–6 

Strain Feed F M F M F M 

Cobb 1 (Low) 3.0 0.4 6.7 7.9 5.4 5.4 

 2 3.6 5.7 9.2 10.7 7.1 8.5 

 3 3.0 3.1 3.9 12.2 3.4 9.0 

 4 (High) 6.3 2.2 5.9 9.2 6.9 6.5 

Ross 308 1 (Low) 2.2 4.9 0.4 10.2 1.7 7.8 

 2 4.9 5.0 5.7 8.0 5.7 7.2 

 3 0.4 6.6 7.4 12.5 5.0 9.6 

 4 (High) 3.7 7.5 4.3 8.3 4.4 7.9 

Ross 788 1 (Low) 2.2 2.2 3.3 3.2 3.6 2.7 

 2 0.4 6.4 9.4 9.7 6.3 8.1 

 3 4.9 4.0 4.0 8.6 5.1 7.3 

 4 (High) 5.7 6.3 4.4 6.9 5.1 6.6 

RMS  5.67  38.45  13.95  

Source of variation P-value  P-value  P-value  

Strain (S)  ns  ns  ns  

Feed  0.05  ns  ns  

Sex  ns  ns  0.05  

S x sex  0.051  ns  ns  

1Protein content of the feed (g/kg) 

n = number of observations, ns = non-significant, RMS = residual mean square. 



 

 69

Table 4.7: Regression coefficient of mortality (%) on dietary protein content for three 

strains of broilers 

 Mortality (%) 

 0–21d 21–42d 0–42d 

Variables Estimates S.E. Estimates S.E. Estimates S.E. 

Constant -8.5 4.8 -212.8 72.8 -132.8 50.9 

Protein (P) 0.046 0.021 2.58 0.88 1.38 0.53 

P x P   -0.0076 0.0026 -0.0035 0.0014 

Ross 308 0.99 0.96 -1.11 1.07 -0.36 0.73 

Ross 788 0.60 0.96 -2.02 1.07 -0.93 0.73 

Sex 1.17 0.78 3.57 0.87 2.24 0.60 

R2 25.4  51.4  47.1  

Variables P-value  P-value  P-value  

Constant ns  0.009  0.018  

Protein (P) 0.04  0.009  0.018  

P x P   0.009  0.02  

Ross 308 ns  ns  ns  

Ross 788 ns  ns  ns  

Sex ns  <0.001  0.001  

1Cobb strains used as a reference in the analysis; ns = non-significant; R2 = coefficient of 

determination; S.E. = standard error. 
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Table 4.8: Effect of feed protein content on coefficient of variation (%) of three broiler 

strains (n = 960) 

  Coefficient of variation (%) 

  Week 0 Week 3 Week 6 

Strains Feed1 Female Male Female Male Female Male 

Cobb 1 (Low) 6.5 5.8 7.3 7.9 7.2 7.6 

 2 6.5 5.8 9.1 8.4 7.1 7.1 

 3 6.5 5.8 6.5 7.3 8.3 6.9 

 4 (High) 6.5 5.8 6.9 6.1 6.7 6.6 

Ross 308 1 (Low) 7.2 6.7 11.6 11.2 8.2 9.7 

 2 7.2 6.7 9.0 11.8 8.7 8.0 

 3 7.2 6.7 6.8 10.3 6.1 6.6 

 4 (High) 7.2 6.7 8.0 7.7 6.5 6.3 

Ross 788 1 (Low) 6.6 6.9 7.4 9.9 9.3 10.7 

 2 6.6 6.9 7.1 8.9 7.8 7.8 

 3 6.6 6.9 7.8 7.0 8.3 6.6 

 4 (High) 6.6 6.9 5.4 7.9 6.8 6.4 

RMS    1.6  0.42  

Source of variation  Probability 

Strain    0.012 ns 

Feed     0.027 <0.001 

Strain x Feed   ns 0.044 

1Protein content of the feed  

n = number of observations, ns = non-significant, RMS = residual mean square. 
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Table 4.9: Regression coefficient of coefficient of variation (%) on dietary protein content 

and three strains of broilers 

 Coefficient of variation (%) 

 0–21d 21–42d 

Variables Estimates S.E. Estimates S.E. 

Constant 16.67 2.61 9.42 2.87 

Protein (P) -0.049 0.011 -0.013 0.015 

Ross 308 2.11 0.52 10.54 4.06 

Ross 788 0.24 0.52 12.09 4.06 

Sex 0.96 0.42   

P x Ross 308   -0.061 0.024 

P x Ross 788   -0.068 0.024 

R2 63  65.2  

Variables P-value  P-value  

Constant 0.001  0.004  

P <0.001  ns  

Ross 308 <0.001  0.017  

Ross 788 ns  0.017  

Sex 0.036    

P x Ross 308   0.02  

P x Ross 788   0.011  

1Cobb strains used as a reference in the analysis; ns = non-significant; R2 = coefficient of 

determination; S.E. = standard error. 

 

Simulations: effect of feed protein content on flock uniformity 

 

The mean + standard error (S.E.) and CV (%) of individual live weight of males and 

females of the two strains is presented in Table 4.10. The response in live weight was 

similar to the actual experiment, that is, there was a quadratic pattern of effect as the lysine 

level of the feed increased for both strains of broilers. As the level of lysine content of the 

feed increased, uniformity in body weight at 42d of age showed a quadratic response. 

There was greater variation in strain A relative to strain B broilers. There was also higher 

uniformity at a high lysine (protein) level in the feed irrespective of the strains.  
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Table 4.10: Predicted mean + S.E. of live weight (g) and coefficient of variation (%) at 21 and 42d of age in females and males of Cobb and 

Ross broiler strains using EFG Broiler Growth Model    

Live weight (g, 21d) Coefficient of variation (%, 21d) 

 Cobb Ross Cobb Ross 

Lysine (%) Fem Male Fem Male Fem Male M/F Fem Male M/F 

1.0 704 + 6.5 796 + 6.9 642 + 5.4 699 + 4.6 8.6 9.3 8.9 8.4 6.6 7.5 

1.16 754 + 7.7 861 + 8.4 711 + 7.7 805 + 6.2 9.8 10.2 10.0 10.8 7.7 9.2 

1.26 773 + 8.8 887 + 10.3 748 + 8.7 867 + 8.1 11.7 11.4 11.5 11.7 9.4 10.6 

1.4 781 + 8.7 892 + 9.9 766 + 8.1 884 + 8.7 11.2 11.1 11.1 10.5 9.8 10.2 

1.54 779 + 8.7 892 + 9.7 769 + 8.1 889 + 9.0 11.1 10.9 11.0 10.5 10.1 10.3 

 

Live weight (g, 42d) Coefficient of variation (%, 42d) 

0.74 2384 + 28.5 2682 + 26.5 2011 + 24.8 2075 + 20.2 11.9 9.8 10.9 12.3 9.8 11.0 

0.84 2406 + 28.8 2948 + 29.1 2115 + 31.4 2481 + 25.8 12.1 9.9 11.0 14.6 10.4 12.5 

0.91 2421 + 28.9 2976 + 31.0 2232 + 30.5 2682 + 25.8 12.0 10.4 11.2 13.7 9.6 11.6 

1.01 2424 + 28.4 2929 + 29.9 2256 + 27.1 2754 + 24.7 11.7 10.2 11.0 12.0 9.0 10.5 

1.20 2422 + 26.9 2906 + 28.9 2265 + 26.7 2759 + 24.8 11.1 9.9 10.5 11.8 9.0 10.4 

    Fem =  female,  M/F = average males and females, S.E. = standard error. 
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4.4 Discussion  

 

Dietary protein content affects weight gain and feed efficiency of broilers, but also has a 

marked effect on flock uniformity and mortality (Corzo et al., 2004; Kemp et al., 2005). 

Uniformity is of paramount importance in the broiler industry firstly because processing 

equipment is automated, hence any abnormal sized birds may not be processed well 

because they do not conform to the size the equipment is designed to handle, and secondly 

because marketing of the product is less complicated if all birds are the same size. 

Variation in the weight of the end-product may be caused by many factors, such as disease, 

overstocking and generally poor management, but has been shown here to be due also to 

changes in dietary protein content and genotype. The influence of dietary protein content 

on uniformity and mortality has implications when optimising the feeding of broilers, and 

was thus the objective of this study. 

 

The results of this study generally agree with several investigations in that increased 

dietary protein content resulted in improved growth performance (Jackson et al., 1982a, b; 

Smith and Pesti, 1998; Rezaei et al., 2004). Food intake decreased quadratically as protein 

levels increased, a result that corresponds with Pesti and Fletcher (1984), Skinner et al. 

(1992) and Smith and Pesti (1998). Comparing the results of this study with the previous 

trial reported in Chapter 3, besides the broilers consuming more feed in this study; the 

pattern of food intake in finisher period seems different. However, considering the 

response of the broilers at the same range of protein content of the feed, Cobb strains 

perform almost similarly in both experiments, (i.e. food intake increased as the protein 

content of the feed decreased) whereas Ross broilers exhibited a different pattern of food 

intake to the corresponding range of protein levels. This is in agreement with the 

illustration of patterns of feed intake in response to a range of dietary protein contents in 

two hypothetical broiler strains differing in the dietary protein content required to meet 

their potential growth (Gous, 2007). He explained that the range of nutrient contents used 

in a response trial will determine the pattern of food intake of broiler strains. On the other 

hand, broilers used in the present experiment may not be identical to those in the previous 

experiment and as a result they may show different patterns of response due to differences 

in their nutrient requirements.  
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Birds receiving the highest protein feed in both feeding periods had the best feed 

conversion efficiency irrespective of strain. The maximum body weight response of both 

Ross broiler strains was on the highest protein feeds, which agrees with the Ross feed 

recommendations (Aviagen, 2002), as the high protein feeds fell within the recommended 

range. The Ross 308 birds consumed more feed than the Ross 788 birds in both feeding 

periods and they benefited from the extra intake. The Cobb broilers benefited from the 

extra food intake in the starter period by having a higher weight gain with less food intake 

relative to the other two strains in the finisher period. This pattern was similar to the 

previous experiments described in Chapters 2 and 3. However, higher body weights were 

observed in this trial compared with the previous experiments using the same strains.  This 

might be due to more favourable environmental conditions that prevailed in the present 

study.  

 

Males and females responded significantly differently (P<0.001) to dietary protein in both 

growing periods. Thus, rearing male and female broilers separately would allow producers 

to capitalise on the natural growth and developmental differences between the sexes and to 

modify their nutritional programmes accordingly. It would also enable different 

requirements for broilers within the same market to be met more efficiently and, by 

reducing variation within each broiler house, would improve the quality of the product. 

Different responses among the strains, therefore, imply that producers need to find the 

point of maximum economic efficiency for the strain of broiler they are using.  

 

The effect of dietary protein level on uniformity was similar to that in the previous 

experiments (Chapters 2 and 3) in that all of the strains demonstrated poor uniformity 

when given feeds of low protein content. In general, variation decreased as dietary protein 

content increased and the highest uniformity was observed at the highest dietary protein 

content. This may be due to the birds depositing the least amount of lipid in the body, 

whereas at all other protein levels, the amount of lipid would differ depending on the 

ability of each bird to overconsume energy. This result is in agreement with the findings of 

Corzo et al. (2004) and Kemp et al. (2005). Less variation and higher body weight 

occurred in the Cobb than in the Ross 788 strain, which implies that rapid growth rate 

might improve uniformity. However, Corzo et al. (2004) suggested that rapid body tissue 

deposition is not synonymous with reduced flock variability since they found that 

uniformity was higher in females in spite of their growing slower than males. Rearing 
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sexes separately may contribute to increased body weight uniformity as nutrient and 

stocking density can be adjusted for faster growing and more efficient males (Veerapen 

and Driver, 1999). In this study, there was no significant effect of sex on flock uniformity 

although this was numerically higher in females. Dietary protein content appeared to affect 

uniformity more severely in the starter than in the finisher period, but differences between 

strains were more pronounced in the finisher period. This suggests that flock uniformity is 

influenced by both genotype and nutrition.   

 

The effect of dietary protein on mortality (%) in the starter period was similar to that 

reported by Corzo et al. (2004) and Kemp et al. (2005), namely, that as the level of protein 

increased, mortality also increased for all strains.  However, in the finisher period, broilers 

exhibited highest mortality on the intermediate feeds.  Mortality rates were higher in this 

latest trial compared to the experiments discussed in Chapters 2 and 3. This might be 

explained by the more rapid growth of the birds in this study, especially males, and the 

negative correlation with mortality. Animals with high growth rates experience a higher 

risk of mortality than animals with low growth rates according to Classen (2000) and 

Mangel and Stamps (2001). They illustrated that high growth rates may lead to the 

formation of bodies that are more vulnerable to a variety of sources of mortality. This 

implies that there is some way of associating mortality with the genetic make-up of the 

strain.  The season in which the experiments were conducted might be another factor 

causing variation in response as the present study was conducted in summer whereas the 

other experiments were carried out in spring. However, the temperature in the tunnel-

ventilated broiler house was maintained at close to pre-determined levels in all 

experiments.  

 

Broilers selected for high growth rate may be more susceptible to a variety of pathogens 

than strains selected for other traits such as high rates of egg production (Nestor et al., 

1996; Reddy, 1996; Bayyari et al., 1997). Considering both feeding periods in the present 

study, high, medium and low mortality levels were recorded in the Cobb, Ross 308 and 

Ross 788 broilers respectively, these being correlated with the rates of growth of these 

three strains suggesting that there is a trade-off between growth and mortality. The cause 

of the mortality experienced here was not investigated, so it is not possible to ascribe this 

to infectious or metabolic causes; nevertheless it can be concluded that there is an 
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association between dietary protein content and mortality rate, and that this is influenced 

by strain of broiler.  

 

Simulations: effect of feed protein content on flock uniformity 

 

The simulated patterns of uniformity and body weight gain at 21d and 42d of age were 

similar to the experimental results obtained in this study except that uniformity increased 

also on the lowest protein feed. The probable cause of decreased uniformity on feeds 

marginally deficient in an essential nutrient is the variation in the ability of broilers to 

overconsume energy when faced with a deficiency.  This characteristic will enable the 

successful birds to show little reduction in growth, whereas the food intake of others, 

without the capacity to deposit as much lipid, could be severely constrained, resulting in 

poor growth in all cases.  Furthermore, the simulation exercise suggests that at both high 

and low (limiting) concentrations of dietary protein uniformity increases, the requirements 

of all individuals in the one case being met, and in the other, all individuals being similarly 

constrained.  So it is on marginally deficient feeds that uniformity is compromised to the 

greatest extent, a situation that is likely to occur frequently in commercial broiler 

operations.  Thus, uniformity in a population of birds, caused by feeds varying in essential 

nutrient content, may be simulated mechanistically.   

 

Variation in final body weight may be caused by many factors other than the nutrient 

content of the feed.  Such factors would include variation in chick weight, feed uniformity, 

micro-climates surrounding the birds and in the ventilation system employed in the broiler 

house, among others (Gous and Berhe, 2006).  Where differences exist in the 

environmental temperature at either end of a tunnel ventilated broiler house in summer, 

broilers fed a marginally deficient feed would perform better in the cooler end of the house 

because they would be capable of overconsuming more of the limiting feed than would 

hotter broilers. Because of such interactions between nutrient content and these non-

nutritional causes of variation, it would be rewarding to make use of a population response 

model when predicting responses to nutrients.  Issues related to the use of population 

response models are raised and discussed in Gous and Berhe (2006). 
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4.5 Conclusions 

 

Broiler strains appear to be affected differently by feed protein levels in terms of food 

intake, weight gain, uniformity and mortality. That is, they require different levels of 

dietary protein to maximise margin over feed cost and to express their genetic potential. In 

the trial reported here, Cobb broilers performed better than the Ross strains irrespective of 

the level of dietary protein although this has not been the case in some of the trials in 

which such comparisons have been made. It appears to be possible to simulate 

mechanistically the effect of feed protein level on flock uniformity by assuming that on 

very low protein contents the growth of all broilers is similarly constrained; on high protein 

levels all birds will be able to attain their potential growth rate; but that on intermediate, or 

marginally deficient levels of protein, some birds will be able to overconsume energy and 

grow better than those whose ability to deposit body lipid is constrained genetically, thus 

reducing uniformity in the flock.   

 

There is inconsistency in the effect of dietary protein content on the rate of mortality in 

broiler strains, but because some strains often suffer from a higher mortality when growth 

rate is increased through feeding a higher protein feed, this has led to suggestions that 

growth rate should be slowed down in fast-growing strains through the use of lighting 

programs (Classen, 1990), the use of mash rather than pellets (Decuypere et al., 2000), and 

the use of feed restriction (Decuypere et al., 2000).   Mortality cannot at this stage be 

accounted for mechanistically, as there is no mechanistic explanation for the observations 

made.  However, it is clear that responses need to be strain-specific if these are to be of 

value when predicting performance with a view to optimising poultry feeds, and until a 

mechanistic approach has been discovered, mortality will have to be dealt with empirically. 
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Chapter 5 

 

Modelling populations for the purpose of optimisation 

 

Abstract 

A number of exercises were conducted to compare individual and population 

responses when optimising the dietary amino acid contents and nutrient densities of feeds 

for broilers. The first exercise was designed to examine the consequences of using a 

population of 100 individuals, rather than the average individual. The optimum size of a 

population was then researched, in which different population sizes were simulated and 

their responses measured. Finally, a sensitivity analysis was conducted to determine the 

relative impact of altering each of the parameters describing the genotype of the broiler.   

In all cases a three-stage feeding programme was used, with starter (0 – 10 d), 

grower (11 –25 d) and finisher (26 – 42 d) feeds being offered.  For the first exercise, 

individuals making up six populations of 100 broilers were created using a Monte Carlo 

random normal distribution method, based on the mean and CV of each genetic parameter 

for each strain. Margin over feed cost and margin/m
2
.annum were used as objective 

functions to optimise the amino acid contents and nutrient densities of the three feeds used 

in the feeding programme, for each of the strains. The results differed for the deterministic 

(single bird) and stochastic (population) models, the largest differences being the result of 

a high rate of feathering, which constrains the amount of heat that may be lost from the 

bird resulting in a lower feed intake especially on marginally deficient feeds and at high 

environmental temperatures. 

Populations of 50, 100, 250, 500 and 750 individuals were generated using the 

means and CVs of the parameter values of one of the strains used in the previous exercise. 

When group size was increased from 50 to 750, the difference in the optimal dietary lysine 

content and nutrient density within the simulated group was small; it was only significant 

relative to the average individual.  Consequently, there is no benefit in increasing the size 

of the population above 50 as long as no correlations between parameters are considered.  

To determine the extent to which variation in mature body protein weight (Pm) and 

rate of maturing of the body (B) and of the feathers (Bfr) influenced the optimum amino 

acid content in each feed, body weight, feed conversion ratio (FCR), breast meat yield and 

margin over feed cost (or margin/m2.annum), each of the three genetic parameters was 

reduced in turn by 10 and 20 %, and then increased by the same amounts.  Whereas 
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variation in B and Pm produce means similar to those obtained from the response of an 

individual, variation in the rate of feather growth causes a non-linear response in 

performance in a population, resulting in a reduction in performance in those birds that 

feather more rapidly, because they are unable to lose sufficient heat to the environment to 

enable them to consume sufficient of the feed required to grow at their potential. The 

consequence is that the resultant mean response is always lower than that of an individual 

when variation in the rate of feather growth is included in a population model.  A useful 

means of determining the spread in the weights of the body and its component parts in a 

broiler flock at harvesting would be to simulate a population of 50 individuals in which 

just B and Pm are made stochastic.  Variation in the maximum lipid:protein in the gain is 

useful in simulating the observed differences between strains available to the broiler 

Industry at present. 

These exercises are useful in determining whether or not to simulate a population 

of broilers rather than the more common method of using the mean individual in the 

population only, and of deciding which parameters to include when describing the 

population. 

 

 

5.1 Introduction 

 

Considerable attention has been given to the assessment of the amino acid requirements of 

broiler chickens and to the definition of optimal dietary amino acid balance (D’Mello, 

1979). As models have been developed and applied, the traditional empirical approach to 

estimating nutrient requirements, such as those given by National Research Council, NRC, 

(1994), has been shown to be severely limiting in that it considers only the conditions 

under which the requirements were established. As soon as any one of the many important 

variables that affect nutrient requirements changes, new requirements should be 

established. Some researchers have made a great effort to integrate this knowledge into a 

unified theory. 

 

Various methods are available for determining the optimal amino acid content and nutrient 

density of feeds. The most common approach is simply to make use of tables of nutrient 

requirements, which are usually based on the empirical evaluation of broiler performance 

as a function of graded levels of a particular amino acid.  The approach used to measure 
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responses of broilers to nutrient levels is discussed in Gous and Morris (1985), and an 

analysis of the way in which such results are interpreted is in Morris (1999). However, 

fixed requirement values fail to take into consideration genetic variation within and 

between commercial broiler strains (Gous, 1986; 1998). Furthermore, each time an 

experiment is conducted, different conditions prevail in the research facility, and different 

genotypes are used.  Interactions between the birds, the environment and the feed used are 

of great importance and cannot be resolved in any one experiment.  Broiler genotypes are 

constantly changing not only in growth rate but also in important characteristics such as in 

their response to dietary balanced protein (Kemp et al., 2005; Gous et al., 2006).  Hence, 

feeding programmes should be strain-specific (Emmans, 1995; Smith and Pesti, 1998). 

According to a review by Oviedo-Rondón and Waldroup (2002), single fixed numbers of 

requirements are not useful to apply in an accurate cost-benefit analysis. Because the 

responses of birds to dietary energy, protein and amino acids are a diminishing-returns 

phenomenon, they should be evaluated as such to estimate economic optimum levels, 

rather than as biological maxima (Fisher et al., 1973; Fawcett, 1986; Pesti and Miller, 

1997). Gous (1986; 1998) suggested that simulation modelling techniques are the only 

defensible way in which nutritionists can optimise the feeds and feeding programmes for 

broilers. 

 

Simulation models allow the effects of a range of environmental and other variables on 

animal performance to be considered simultaneously in a way that would otherwise require 

enormous resources by way of research facilities and in some cases would not be possible 

by direct experimentation. As a result, the limiting factors within a system can be identified 

by such models and areas needing further research highlighted. However, most of the 

broiler growth models available have been developed at the level of the individual bird 

whereas commercially, it is whole populations that are being managed and fed. That is, 

making a decision (such as on nutrient content of the feed supplied during the growth 

period and the length of each feeding time in the feeding program) based on the output 

from a deterministic model may not be entirely satisfactory when optimising the feeding of 

a population of broilers. It would be useful therefore to distinguish between the response of 

the average bird and that of the population. The average bird is defined as that individual 

having the average characteristics of the population and the response of the average 

individual is therefore that of a single broiler. The population response is the mean of all 

the individuals within the population.  
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The optimum feeding programme for broilers is that which results in the highest profit for 

the enterprise, so the choice of nutrient levels in the feeds offered is an economic decision. 

Such choices include determining the optimal concentration of amino acids relative to 

energy in each feed, the optimal nutrient density, and the optimal length of time for each 

feeding period. This idea replaces the concept that broilers have characteristic requirements 

which should be met under all conditions. Consequently, the information required for 

optimisation consists of feed costs at different levels of amino acid provision, a description 

of all the relevant responses, both fixed and variable costs affecting the production system, 

and details of revenue (Gous, 2002). These variables are then combined to calculate 

optimal nutrient density or concentration of amino acids to energy in each feed that will 

maximise profit.  

 

In this chapter, two simulation exercises are described, these being designed to examine 

whether it is necessary to generate a population, rather than using the average individual, 

when optimising feeds and feeding programmes for broilers, and if so, what the optimum 

size of this population should be.   

 

5.2 Simulation exercises 

5.2.1 Description of genetic parameters and feeds used 

  

The EFG Broiler Optimiser (EFG Software, Natal) requires the broiler genotype to be 

described, for the male only, in terms of mature empty body weight, mature lipid content, 

rate of maturing, rate of feathering and whether or not the genotype is feather sexable. The 

model then derives the following parameters for each of the sexes: mature protein (Pm), 

mature lipid-to-protein ratio (LPRm), mature lipid, water, ash and feathers, rates of 

maturing of body protein (BBP) and feather protein (BFP), and lipid allometry (b), the latter 

being the slope of the allometric relationship between body lipid and protein. The value 

MLG (maximum lipid:protein in the gain) is a constant in the program, but for these 

exercises it was possible to modify its value. 

 

Base values of W0, Pm, LPRm, BBP and Fr  used in these simulations were derived from 

publications (Emmans and Fisher, 1986; Emmans, 1988; Hancock et al., 1995; Gous et al., 

1999), but the mean MLG was derived by a process of iteration, making use of food 
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intakes measured on marginally deficient feeds. CVs used were those suggested by 

Emmans and Fisher (1986), and for MLG and Fr, by Gous (unpublished).  

 

A three-stage feeding programme was used, with starter (0–10 d), grower (11–25 d) and 

finisher (26–42 d) feeds being used. Revenue was generated on a dressed basis only, at 

R12/kg. Feed ingredient availability and price were set at the current South African 

conditions.  It was assumed that the clean-out period between batches would be seven 

days, and that the fixed production costs were R21/m2/year and variable costs 

R6.6/bird/cycle. Mortality was set at 4%. The simulation exercise was conducted at a 

normal environmental temperature, 31˚C for three days, then decreasing every day by 

0.5˚C to 20.5˚C, remaining constant thereafter. The stocking density was 17 birds/m
2
. 

These inputs were maintained for all simulations.  

 

The optimiser predicts the amino acid content of each of the feeds in the feeding 

programme specified that will either maximise or minimise the objective function 

specified, by considering the potential protein growth rate of the broiler, the feeding 

schedule, environmental temperature, stocking density, the fixed and variable costs and 

revenue. The process followed by the optimiser is to calculate the income and expenditure 

for an array of feeds, as defined by the user, and then to choose the combination of feeds 

that maximise (or minimise) the objective function. The array consists of a range of lysine 

contents or nutrient densities within each feeding period, making up a grid that defines the 

number of simulations required. The interval size and number of points is user-defined.  

 

5.2.2 Comparing the average individual with the mean of a population of 100 broilers 

 

Six parameters were used to describe the genotypes of six ‘strains’ of broilers using 

different combinations of values for these parameters (Table 5.1).  The rate of maturing 

parameter, B, was scaled to Pm to produce the scaled rate parameter B*, which was given 

three values, 0.0439, 0.0444 or 0.0461; Pm was given two values, namely, 1.224 and 

1.416; the two values for Fr were 0.049 and 0.052, and the two values for MLG were 1.0 

and 1.8 (see Chapter 4).  Single values were used to describe initial body weight (Wo) and 

lipid-to-protein ratio at maturity (LPRm). These six parameters were regarded as being 

uncorrelated. 
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Individuals making up the six populations of 100 broilers were created using a Monte 

Carlo random normal distribution method, based on the mean and CV of each genetic 

parameter for each strain in Table 5.1. No covariance terms were introduced when 

generating the population. Two base populations were generated for each strain and sex, 

and these were maintained throughout the simulation exercises.  

 

Margin-over-feed cost and margin/m2/annum were used as objective functions to optimise 

the amino acid contents and nutrient densities of the three feeds used in the feeding 

programme, for the six strains. This resulted in a total of 96 simulations (6 strains x 2 

replications of each strain x 2 objective functions x 2 optimisations x 2 sexes). 

 

5.2.3 Population size 

 

In the exercise above, a population of 100 broilers was generated in order to compare the 

response of the average individual in the population with the mean of the population when 

optimising the feeds for broilers.  In this exercise populations of five different sizes were 

used to determine the effect of increasing numbers of individuals making up the population 

on the optimum amino acid content and nutrient density in the feeds (Table 5.2).  

Populations of 50, 100, 250, 500 and 750 individuals were generated using the means and 

CVs of parameter values for Strain 1 in Table 5.1.  Three populations of each size were 

generated to increase the number of replications, using the technique described above.  

Once again, margin over feed cost and margin/m2/annum were used as objective functions.  

This resulted in a total of 120 simulations (5 population sizes x 3 replications x 2 sexes x 2 

objective functions x 2 optimisations).   

 

5.2.3 Sensitivity analysis 

 

The technique proposed by Morris (1991) of varying one factor at a time was used to 

determine to what extent variation in Pm, B, and Fr would influence the optimum amino 

acid content in each feed, the final body weight, feed conversion ratio (FCR), breast meat 

relative to body weight and margin over feed cost (or margin/m
2
.annum). Each of the three 

genetic parameters was reduced in turn by 10 and 20 %, and then increased by the same 

amounts. For the sensitivity analysis, the exercises were conducted at a normal temperature 
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profile, 31˚C for three days, then decreasing every day by 0.5˚C to 20.5˚C, remaining 

constant thereafter  and at hot temperature, 32˚C for three days decreasing each day by 

0.4˚C to 25˚C, remaining constant thereafter. The responses and genetic parameters of 

strains 3 and 4 (Table 5.1) were used as a reference for the sensitivity analysis exercise. In 

order to complete the exercise, 256 simulations were conducted.  

 

 

5.3 Results 

5.3.1 Comparison between individual and population response 

 

The results of the nutrient density (ND) optimisation for the average individual and the 

mean of the population for the two objective functions are in Tables 5.3 and 5.4. The 

predicted optimum nutrient density differed for the deterministic and stochastic models, 

although in some cases the difference was small. This difference was observed in the 

optimum nutrient density of the grower diet, where this was lower for the average 

individual than for the population. The optimum nutrient density in the finisher diet was in 

all cases lower than that in the starter and grower diets. The performance of the average 

individual was higher, with a lower abdominal fat percentage, than the population 

performance at the optimum ND’s. 

 

The results of the optimisation of the amino acid contents in the starter, grower and finisher 

diets for the average individual and for the mean of the population, using different 

objective functions, are in Tables 5.5 and 5.6. The optimum lysine contents and the 

production parameters were marginally different for the two groups. In general, the lysine 

contents were higher, especially for the grower and finisher phases, for the mean of the 

population than for the average individual. As a result, profit margins were higher for the 

average individual. This difference depended on the objective function and genotype of the 

birds. 
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Table 5.1: Genetic parameters used to simulate six populations of male and female broiler, with coefficients of variation (CV) 

 Strain 1 Strain 2 Strain 3 Strain 4 Strain 5 Strain 6 CV (%) 

Parameters Male Female Male Female Male Female Male Female Male Female Male Female  

B* (/d) 0.0461 0.0429 0.0461 0.0429 0.0444 0.0412 0.0444 0.0412 0.0439 0.0409 0.0439 0.0409 6.0 

Pm (kg) 1.416 1.007 1.416 1.007 1.224 0.870 1.224 0.870 1.416 1.007 1.416 1.007 7.0 

Fr (/d) 0.052 0.055 0.052 0.055 0.052 0.055 0.052 0.055 0.049 0.053 0.052 0.053 15.0 

MLG (g/g) 1.0 1.0 1.8 1.8 1.0 1.0 1.8 1.8 1.0 1.0 1.8 1.8 15.0 

LPRm (g/g) 0.636 1.272 0.636 1.272 0.636 1.272 0.636 1.272 0.636 1.272 0.636 1.272 4.0 

Wo (g) 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 7.0 

 
B* = scaled rate of maturing (B*=BPm0.27), Pm = mature protein weight, Fr = rate of maturing of feathers, MLG = maximum lipid:protein in gain, LPRm = 
lipid-to-protein ratio at maturity, Wo = initial body weight, CV = coefficient of variation. 
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5.3.2 Effect of population size 

 

The average time taken to determine the optimum amino acid contents in the grower and 

finisher feeds, and the optimum nutrient density in the starter, grower and finisher feeds, 

for different group sizes, is presented in Table 5.2. As group size increased, the time taken 

to complete each optimisation increased significantly in both cases: for a 15 % increase in 

population size, the average optimisation time increased by 12.5 %. The effect of 

population size on predicting the optimum energy content of starter, grower and finisher 

feeds is presented in Tables 5.7a and 5.7b. The sizes of the populations were significantly 

affecting the optimum energy values. These values were altered when the objective 

functions and sexes changed. For instance, the optimum requirements for the three feeding 

phase program (starter, grower and finisher) were varied significantly with the size of the 

populations when MFC was objective functions but only grower feeding phase varied 

significantly for the case of margin/m2/annum. In general, the optimum energy 

requirements were lower when the population size was represented by the average 

individual (one bird) and the predicted responses at this optimum values were significantly 

higher irrespective of the objective functions. Besides, the optimum feeding programme 

for the average individual was the same irrespective of the objective function but when 

there was variation among the birds (50, 100, 250, 500 and 750), the feeding programme 

changed with the objective function. The optimum energy and production parameters at the 

optimum levels were almost similar as the population size increased. In general, the margin 

(margin over feed cost and margin/m2/annum) decreased as the size of the population 

increased. There was an interaction between different-sized populations and sexes on 

abdominal fat percentage for both objective functions.  

 

In the case of the amino acid optimiser, the simulation was designed to determine the effect 

of population size on grower and finisher feeds and the response at the optimum level of 

these feeds, as there was no effect on starter feeds (Tables 5.4 and 5.5). The results of this 

exercise are presented in Tables 5.8a and 5.8b. The size of the population has significantly 

affected the optimum level when the objective function was marging/m2/annum, but not 

for MFC. The model optimises different optimum level for females and males irrespective 

of the objective functions. Incase of the production performance at the optimum level, the 

model predicted a better performance for one bird. However, the optimum level was higher 
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when the model optimises for 500 and 750, although the difference was not economically 

important comparing that of the other group-sizes. In general, the optimum lysine 

percentage and production performance at the optimum level were similar when the model 

optimises for group of individuals, except not for one individual bird, irrespective of the 

objective functions.  

 

5.3.3 Sensitivity analysis  

 

The results of the sensitivity analysis for B, Pm and BFr at normal and hot environmental 

temperatures are presented in Tables 5.9a and b, 5.10a and b, 5.11a and b, 5.12a and b. 

Only the statistically significant results of the sensitivity analysis are shown in these tables. 

The majority of responses were linear with increases in the values of genetic parameters, 

although the responses to changes in B and BFr were in some cases significantly quadratic, 

irrespective of the objective function. In general, responses to changes in the genetic 

parameters were higher when the objective function was margin/m2.annum. All responses 

to changes in Pm were linear throughout the simulation exercise for both strains and sexes. 

The regression coefficients indicated that the responses by the two strains were not the 

same. In general, the responses by Strain 3 were greater than by Strain 4 for most of the 

simulation outputs. The effect of changing the genetic parameters was greater when the 

environmental temperature was normal for all measures of performance and lysine 

requirements. For instance, the effects on the optimum lysine content in the grower feed, 

and on FCR, of changing B were considerably lower at high than at normal temperatures. 

Margin over feed cost increased with increasing values of B, but decreased with increasing 

values of BFr. Furthermore, the ranking in sensitivity of the stochastic parameters and the 

patterns of response were similar for both strains and sexes.  

 

Breast meat yield increased significantly with an increase in B, the response in some cases 

slowing down at higher B values.  Conversely, yield decreased with increases in both Pm 

and BFr, the effect of the latter being significantly greater, and in many cases becoming 

increasingly more severe at higher BFr values; the effect was even greater at high 

temperatures. These patterns were not affected by the objective function chosen. The 

overall R2 values of the regression analysis ranged from 0.45 to 0.99.  
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Table 5.2: The average time taken to optimise amino acid contents of grower and finisher 

feeds, and nutrient density of starter, grower and finisher feeds, for five group sizes  

 Time (hours) 

Group size 

Amino acid 

optimisation 

Nutrient density 

optimisation 

50 0.5 2.0 

100 1.1 6.0 

250 2.6 11.0 

500 5.0 15.5 

750 7.3 24.0 

 

Regression coefficient for  

Group size 0.010** 0.029* 

SE 0.0001 0.003 

R
2
 99.9 96.7 

*P<0.01, **P<0.001, ns = non significant, SE = Standard error, R2 = Coefficient of 

determination. Data were pooled from both sexes since there was no significant difference 

between sexes.   

 



 

 89

Table 5.3: Optimum nutrient density (measured by AME) in starter, grower and finisher 

feeds to 42d for, and performance of, the mean individual (Ind) and mean of the population 

(Pop) of males and females of six simulated strains of broiler. The objective function was 

to maximise margin over feed cost 

Factors Optimum AMEn (MJ/kg) Mean performance 

Strain Sex Method S G F BWT FCR BRM ABF MFC 

1 F Ind 11.08 11.2 11.5 2758 2.09 18.2 2.00 2499 

1 F Pop 11.07 12.3 11.5 2130 2.11 17.8 1.60 1876 

1 M Ind 11.08 12.1 11.5 3291 1.93 18.0 0.90 2963 

1 M Pop 11.07 12.3 11.5 2643 1.97 17.6 0.90 2339 

2 F Ind 11.15 11.18 11.50 2754 2.09 18.2 2.00 2497 

2 F Pop 11.15 12.26 11.50 2321 2.07 17.7 1.70 2053 

2 M Ind 11.08 11.00 11.50 3362 1.93 18.0 1.40 3062 

2 M Pop 11.12 12.26 11.50 2876 1.92 17.4 1.10 2565 

3 F Ind 11.08 11.22 11.00 2466 2.21 18.3 2.00 1867 

3 F Pop 11.07 11.00 11.00 2100 2.25 17.7 1.60 1559 

3 M Ind 11.08 11.22 11.00 2944 2.07 18.0 0.90 2218 

3 M Pop 11.07 11.22 11.00 2600 2.08 17.5 0.90 1936 

4 F Ind 11.18 11.22 11.00 2466 2.21 18.3 2.00 1868 

4 F Pop 11.14 12.29 11.00 2314 2.13 17.6 1.80 1727 

4 M Ind 11.08 11.3.0 11.00 2996 2.01 18.0 1.30 2288 

4 M Pop 11.27 12.30 11.00 2871 1.96 17.4 1.20 2158 

5 F Ind 11.08 11.22 11.00 2576 2.15 18.0 1.90 1950 

5 F Pop 11.07 12.33 11.00 2106 2.17 17.7 1.70 1564 

5 M Ind 11.08 11.22 11.00 3070 2.03 17.7 0.90 2305 

5 M Pop 11.07 11.24 11.00 2601 2.08 17.5 0.90 1937 

6 F Ind 11.18 11.22 11.00 2576 2.14 18.0 1.90 1951 

6 F Pop 11.11 12.27 11.00 2316 2.13 17.6 1.80 1729 

6 M Ind 11.08 11.45 11.00 3139 1.97 17.7 1.30 2393 

6 M Pop 11.27 12.33 11.00 2874 1.96 17.4 1.20 2162 

 
F = female, M = male, Ind = individual, Pop = population, S = starter, G = grower, F = 
finisher, BWT = body weight (g), FCR = feed conversion ratio (g feed/g gain), BRM = breast 
meat (%), ABF = abdominal lipid (%), MFC = margin over feed cost.  
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Table 5.4: Optimum nutrient density (as measured by AME) in the starter, grower and 

finisher feeds, and performance of the average individual (Ind) and mean of the population 

(Pop) for males and females of six ‘strains’. The objective function used was to maximise 

margin/m2/annum 

Factors Optimum AME (MJ/kg) Mean performance 

Strain Sex Method S G F BWT FCR BRM ABF Margin 

1 F Ind 11.08 11.23 11.23 2756 2.13 18.2 2.00 2225 

1 F Pop 11.07 12.33 11.00 2104 2.17 17.7 1.60 1650 

1 M Ind 11.08 11.20 11.00 3289 2.02 17.9 0.90 2646 

1 M Pop 11.07 11.22 11.00 2600 2.08 17.5 0.90 2050 

2 F Ind 11.08 11.25 11.50 2754 2.08 18.2 2.00 2228 

2 F Pop 11.09 12.22 11.50 2313 2.07 17.6 1.80 1826 

2 M Ind 11.10 11.25 11.50 3371 1.94 17.9 1.50 2746 

2 M Pop 11.16 12.25 11.50 2871 1.92 17.4 1.20 2289 

3 F Ind 11.08 11.25 11.50 2452 2.14 18.3 2.10 2482 

3 F Pop 11.07 12.25 11.50 2116 2.13 17.8 1.70 2125 

3 M Ind 11.08 11.25 11.50 2930 2.02 18.0 1.00 3016 

3 M Pop 11.07 11.25 11.50 2621 2.04 17.6 0.90 2677 

4 F Ind 11.18 11.22 11.00 2466 2.21 18.3 2.00 1979 

4 F Pop 11.18 12.33 11.00 2314 2.12 17.6 1.80 1827 

4 M Ind 11.08 11.24 11.00 2996 2.02 18.0 1.30 2429 

4 M Pop 11.09 11.00 11.00 2868 2.03 17.4 1.20 2288 

5 F Ind 11.08 11.22 11.00 2576 2.15 18.0 1.90 2068 

5 F Pop 11.07 12.33 11.00 2106 2.17 17.7 1.70 1653 

5 M Ind 11.08 11.22 11.00 3070 2.03 17.7 0.90 2447 

5 M Pop 11.07 11.22 11.00 2601 2.08 17.5 0.90 2051 

6 F Ind 11.09 11.26 11.00 2576 2.14 18.0 1.90 2069 

6 F Pop 11.11 11.00 11.00 2310 2.19 17.6 1.80 1824 

6 M Ind 11.18 11.22 11.00 3139 1.98 17.7 1.30 2540 

6 M Pop 11.03 11.75 11.00 2874 1.99 17.4 1.20 2293 

 
F = female, M = male, Ind = individual, Pop = population, S = starter, G = grower, F = 
finisher, BWT = body weight (g), FCR = feed conversion ratio (g feed/g gain), BRM = breast 
meat (%), ABF = abdominal fat (%).1Margin = margin/m2/annum.  
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Table 5.5: Optimum lysine content in the starter, grower and finisher feeds, and 

performance of the average individual (Ind) and mean of the population (Pop) for males 

and females of six ‘strains’ of broilers to 42 d of age. The objective function was to 

maximise margin over food cost 

Factors Optimum lysine content (%) Mean performance 

Strain Sex Method S G F BWT FCR BRM ABF MFC 

1 F Ind 1.23 1.00 0.92 2682 1.79 18.2 2 2409 

1 F Pop 1.24 1.04 0.90 2523 1.83 18.0 1.7 2231 

1 M Ind 1.23 1.14 1.10 3199 1.61 17.9 0.9 2847 

1 M Pop 1.24 1.18 1.10 3073 1.64 17.8 0.8 2702 

2 F Ind 1.23 1.00 0.90 2704 1.78 18.2 2.0 2440 

2 F Pop 1.24 1.00 0.90 2541 1.82 18.0 1.9 2261 

2 M Ind 1.24 1.00 0.90 3413 1.75 17.9 2.0 3076 

2 M Pop 1.24 1.04 0.90 3208 1.74 17.7 1.7 2865 

3 F Ind 1.25 1.13 0.90 2394 1.84 18.3 2.1 2162 

3 F Pop 1.25 1.22 0.94 2522 1.81 18.0 1.7 2248 

3 M Ind 1.23 1.24 1.07 2863 1.65 18.0 1.0 2556 

3 M Pop 1.25 1.27 1.12 3070 1.62 17.8 0.8 2720 

4 F Ind 1.25 1.18 0.90 2409 1.83 18.3 2.1 2178 

4 F Pop 1.25 1.18 0.90 2538 1.81 18.0 2.0 2281 

4 M Ind 1.25 1.18 0.90 3017 1.74 18.0 1.8 2732 

4 M Pop 1.25 1.18 0.90 3195 1.73 17.7 1.7 2873 

5 F Ind 1.23 1.14 0.90 2504 1.8 18.0 1.9 2252 

5 F Pop 1.24 1.22 0.90 2123 1.86 17.9 1.8 1880 

5 M Ind 1.23 1.23 1.07 2990 1.62 17.7 0.9 2661 

5 M Pop 1.24 1.27 1.08 2632 1.67 17.7 0.8 2317 

6 F Ind 1.24 1.04 0.90 2518 1.79 18.0 1.9 2275 

6 F Pop 1.24 1.04 0.90 2198 1.87 18.0 2.1 1970 

6 M Ind 1.24 1.09 0.90 3172 1.75 17.7 1.9 2861 

6 M Pop 1.24 1.09 0.90 2773 1.78 17.8 1.6 2484 

 
F = female, M = male, Ind = individual, Pop = population, S = starter, G = grower, F = 
finisher, BWT = body weight (g), FCR = feed conversion ratio (g feed/g gain), BRM = breast 
meat (%), ABF = abdominal fat (%), MFC = margin over feed cost.  



 

 92

Table 5.6: Optimum lysine content in starter, grower and finisher feeds, and performance 

of the average individual (Ind) and mean of the population (Pop) of males and females of 

six ‘strains’ of broiler to 42d. The objective function was to maximise margin/m
2
.annum 

Factors Optimum lysine (%) Performance 

Strain Sex Method S G F BWT FCR BRM ABF Margin1 

1 F Ind 1.24 1.20 1.00 2685 1.77 18.2 2.0 2421 

1 F Pop 1.24 1.20 1.00 2525 1.8 18.0 1.7 2246 

1 M Ind 1.23 1.24 1.12 3199 1.59 17.9 0.9 2868 

1 M Pop 1.24 1.27 1.11 3072 1.63 17.8 0.8 2723 

2 F Ind 1.24 1.09 0.90 2704 1.77 18.2 2.0 248 

2 F Pop 1.24 1.04 0.90 2545 1.83 18.0 2.1 2294 

2 M Ind 1.24 1.09 0.90 3398 1.75 17.9 2.0 3084 

2 M Pop 1.24 1.13 0.90 3200 1.74 17.7 1.7 2880 

3 F Ind 1.24 1.20 1.00 2398 1.83 18.3 2.1 2150 

3 F Pop 1.24 1.20 1.00 2127 1.84 17.9 1.7 1875 

3 M Ind 1.23 1.21 1.08 2863 1.65 18.0 1.0 2556 

3 M Pop 1.23 1.27 1.08 2633 1.67 17.7 0.8 2318 

4 F Ind 1.24 1.00 0.80 2463 1.89 18.3 2.6 2251 

4 F Pop 1.24 1.00 0.80 2213 1.92 17.9 2.4 1996 

4 M Ind 1.24 1.09 0.89 3040 1.77 18.0 1.9 2756 

4 M Pop 1.24 1.09 0.89 2775 1.79 17.8 1.7 2485 

5 F Ind 1.24 1.20 1.00 2507 1.78 18.0 1.9 2381 

5 F Pop 1.24 1.20 1.00 2127 1.84 17.9 1.7 1987 

5 M Ind 1.24 1.20 1.07 2988 1.62 17.7 0.9 2828 

5 M Pop 1.23 1.27 1.08 2633 1.67 17.7 0.8 2461 

6 F Ind 1.24 1.00 0.80 2605 1.86 18.0 2.6 2525 

6 F Pop 1.24 1.00 0.80 2357 1.89 17.7 2.3 2248 

6 M Ind 1.23 1.09 0.88 3178 1.76 17.7 1.9 3045 

6 M Pop 1.24 1.09 0.89 2926 1.76 17.4 1.7 2777 

 
F = female, M = male, Ind = individual, Pop = population, S = starter, G = grower, F = 
finisher, BWT = body weight (g), FCR = feed conversion ratio (g feed/g gain), BRM = breast 
meat (%), ABF = abdominal fat (%). 1Margin = margin/m2/annum.  

 

 



 

 93

Table 5.7a: Optimum nutrient density (as measured by AME) in starter, grower and finisher 

feeds, and performance of male and female broilers of six simulated population sizes. 

Objective function was to maximise margin over feed cost (MFC, c/bird) 

  Optimum AME (MJ/kg) Performance 

Sex Size S G F BWT FI BRM ABF MFC 

F 1 11.6 10.4 11.4 2665 5745 18.1 1.90 1617 

F 50 12.1 11.7 11.0 2374 5076 17.7 1.60 1419 

F 100 12.0 12.2 11.2 2314 4834 17.6 1.60 1380 

F 250 11.2 11.7 11.5 2265 4708 17.6 1.55 1349 

F 500 11.8 11.6 10.9 2532 5247 17.4 1.20 1510 

F 750 11.4 12.0 11.3 2299 4806 17.6 1.55 1370 

M 1 11.5 9.3 10.1 3155 6980 17.8 0.85 1915 

M 50 12.0 10.8 9.7 2881 6300 17.4 0.80 1730 

M 100 11.7 11.0 11.0 2796 5648 17.4 0.90 1672 

M 250 11.5 11.0 11.5 2816 5568 17.4 0.85 1682 

M 500 11.4 11.2 10.9 2778 5624 17.3 0.90 1658 

M 750 11.7 11.0 11.0 2790 5662 17.4 0.90 1668 

RMS  0.085 0.087 0.09 11711 49272 0.003 0.017 4262 

CV (%)  2.5 2.6 2.7 4.1 4 0.3 10.6 4.1 

    P-Value    

Size  0.04 <0.001 0.005 0.003 <0.001 <0.001 ns 0.001 

Sex (S)  ns <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 

Size x Sex ns ns 0.02 0.458 ns 0.109 0.034 0.445 

 
RMS = residual mean square, CV = coefficient of variation, ns = non significant at 5% level, 
BWT = body weight (g), Cum FI = Cumulative feed food intake (g), BRM = breast meat 
percentage, ABF = abdominal fat percentage. 
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Table 5.7b: Optimum nutrient density (as measured by AME) in starter, grower and finisher 

feeds, and performance of male and female broilers of six simulated population sizes. 

Objective function was to maximise margin/m2.annum (Margin, Rand). 

Factors Optimum AME (MJ/kg) Performance 

Sex Size S G F BWT Cum FI BRM ABF Margin 

F 1 11.6 11.0 11.4 2665 5639 18.1 1.90 1941 

F 50 11.5 12.1 11.8 2313 4672 17.6 1.60 1653 

F 100 11.6 12.1 10.9 2373 5082 17.7 1.55 1697 

F 250 11.2 11.7 11.6 2252 4650 17.6 1.55 1603 

F 500 12.0 12.0 11.2 2276 4756 17.6 1.55 1623 

F 750 11.8 12.1 11.5 2298 4726 17.6 1.55 1640 

M 1 11.5 9.3 10.1 3155 6994 17.8 0.80 2321 

M 50 11.3 10.1 9.4 2795 6491 17.3 0.65 2013 

M 100 11.5 10.8 10.7 2833 5868 17.4 0.85 2050 

M 250 11.5 10.9 10.7 2806 5798 17.4 0.85 2031 

M 500 11.5 11.1 11.0 2776 5610 17.4 0.85 2004 

M 750 11.7 11.1 11.0 2792 5654 17.4 0.90 2017 

RMS  0.096 0.271 0.381 1378 55742 0.005 0.007 868 

CV (%)  2.7 4.7 5.6 1.4 4.3 0.4 6.7 1.6 

    P-value    

Size  ns 0.019 Ns <0.001 <0.001 <0.001 0.044 <0.001 

Sex (S)  ns <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 

Size x Sex ns ns Ns ns ns ns 0.011 ns 

 
RMS = residual mean square, CV = coefficient of variation, ns = non significant at 5% level, 
BWT = body weight (g), Cum FI = Cumulative feed food intake (g), BRM = breast meat 
percentage, ABF = abdominal fat percentage. 
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Table 5.8a: Optimum lysine content (%) in grower (G) and finisher (F) feeds, and 

performance of male and female broilers of six simulated population sizes. Objective 

function was to maximise margin over feed cost (MFC, c/bird)                        

Factors 

Optimum lysine 

content (%) Mean performance 

Sex Size G F BWT Cum FI BRM ABF MFC 

F 1 1.161 0.898 2645 4894 18.10 2.00 1600 

F 50 1.188 0.929 2328 4348 17.75 1.70 1380 

F 100 1.169 0.872 2390 4469 17.85 1.75 1427 

F 250 1.165 0.866 2345 4404 17.75 1.75 1397 

F 500 1.225 0.900 2311 4274 17.70 1.70 1373 

F 750 1.203 0.883 2324 4324 17.70 1.70 1382 

M 1 1.233 1.080 2108 5122 17.80 0.90 1863 

M 50 1.250 1.075 2890 4814 17.55 0.75 1710 

M 100 1.250 1.075 2843 4714 17.50 0.80 1682 

M 250 1.250 1.075 2848 4730 17.50 0.75 1686 

M 500 1.255 1.076 2858 4742 17.55 0.80 1691 

M 750 1.255 1.075 2870 4760 17.50 0.80 1699 

RMS  0.0004 0.00050 1154 3216 0.0038 0.0017 506 

CV (%)  1.6 2.3 1.3 1.2 0.3 3.2 1.4 

   P-value   

Size  0.07 ns <0.001 <0.001 <0.001 <0.001 <0.001 

Sex   <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Size x Sex ns ns ns 0.028 ns 0.038 ns 

 
RMS = residual mean square, CV = coefficient of variation, ns = non significant at 5% 
level, BWT = body weight (g), Cum FI = Cumulative feed food intake (g), BRM = breast 
meat percentage, ABF = abdominal fat percentage. 
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Table 5.8b: Optimum lysine content (%) in grower (G) and finisher (F) feeds, and 

performance of male and female broilers of six simulated population sizes. Objective 

function was to maximise margin/m2.annum (Margin, Rand) 

Sex Size G F BWT Cum FI BRM ABF Margin 

F 1 1.163 0.894 2645 4898 18.1 2.0 1920 

F 50 1.260 0.939 2289 4225 17.7 1.7 1618 

F 100 1.167 0.832 2341 4473 17.8 1.8 1665 

F 250 1.221 0.895 2350 4343 17.8 1.7 1673 

F 500 1.188 0.900 2312 4280 17.7 1.7 1645 

F 750 1.217 0.897 2326 4312 17.7 1.7 1655 

M 1 1.217 1.087 3107 5114 17.8 0.9 2256 

M 50 1.260 1.076 2818 4679 17.5 0.8 2013 

M 100 1.260 1.077 2837 4730 17.5 0.8 2026 

M 250 1.260 1.075 2866 4745 17.5 0.8 2054 

M 500 1.255 1.069 2845 4723 17.5 0.8 2036 

M 750 1.260 1.075 2842 4706 17.5 0.8 2034 

RMS  0.0003 0.0009 1084 1444 0.004 0.004 806 

CV (%)  1.4 3.0 1.3 0.8 0.4 4.8 1.5 

     P-value    

Size  <0.001 0.2940 <0.001 <0.001 <0.001 <0.001 <0.001 

Sex (S)  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Size x S  0.019 ns ns 0.003 ns ns ns 

 
F = female, M = male, BWT = body weight (g), FCR = feed conversion ratio (g food/g 
body weight), BRM = breast meat percentage, ABF = abdominal fat percentage, ns = non 
significant at 5% level. 
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Table 5.9a: Regression coefficients describing the change in optimum lysine content in grower and finisher feeds, and in breast meat yield, 

with changes in value of the genetic parameters B, Pm and BFr, in male and female broilers of Strain 3, at normal and hot environmental 

temperatures when the objective function was to maximise margin over feed cost 

 Grower Finisher Breast meat 

 Male Female Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot 

B 
0.49* 0.11ns 0.389*** 0.153** 0.42** 0.096ns 0.16* -0.129ns 0.24*** 0.158* 0.230*** 0.138*** 

   -0.014** -0.009*  -0.0094*  -0.002* -0.083** -0.0024* -0.004** 

Pm 
0.154* -0.119ns 0.105** 0.097ns 0.316** 0.118ns 0.241* 0.285* -0.04** -0.083** -0.03* -0.056** 

            

BFr 
0.109*** 0.074ns 0.241* -0.197* 0.321** 0.0ns 0.148ns -0.333* -0.05* -0.131** -0.155ns -0.238** 

  0.0108*      -0.003* -0.006**  -0.009* 

 
B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering.  
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the base value, whilst holding the remaining two 

genotype parameters constant. 
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Table 5.9b: Regression coefficients describing the changes in feed conversion ratio and 

margin over feed cost with changes in value of the genetic parameters B, Pm and BFr, in 

male and female broilers of Strain 3, at normal and hot environmental temperatures when 

the objective function was to maximise margin over feed cost 

 Feed conversion ratio Margin over feed cost 

 Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot 

B 
-0.271** -0.01ns -0.134* 0.039ns 1.092 ns 0.717ns 1.22* 0.632ns 

0.009**  0.008*      

Pm 
-0.295** -0.131ns -0.231** -0.242** 0.549 ns 0.357ns 0.575ns 0.435 ns 

        

BFr 
-0.341** -0.053ns -0.383* -0.025ns -0.156 ns -0.693* -0.432ns -0.943 ns 

     -0.0339*   

B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering 
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the 

base value, whilst holding the remaining two genotype parameters constant.  
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Table 5.10a: Regression coefficients describing the change in optimum lysine content in grower and finisher feeds, and in breast meat yield, 

with changes in value of the genetic parameters B, Pm and BFr, in male and female broilers of Strain 4, at normal and hot environmental 

temperatures when the objective function was to maximise margin over feed cost 

 Grower Finisher Breast meat 

 Male Female Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot 

B 
0.205 ns 0.099ns -0.085ns -0.051ns 0.122ns 0.28ns -0.222 ns 0.084ns 0.24*** 0.152** 0.23*** 0.144* 

        -0.002* -0.005** -0.003*  

Pm 
-0.017 ns 0.147* -0.141ns -0.081ns 0.22ns 0.372** 0.0 ns 0.427* -0.04** -0.068** -0.025* -0.079** 

            

BFr 
0.026ns -0.214* -0.084ns -0.131ns 0.405* 0.065ns 0.0 ns 0.0ns -0.05* -0.181* -0.114* -0.244* 

        -0.002*  -0.0059*  

B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering.  
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the base value, whilst holding the remaining two 

genotype parameters constant. 
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Table 5.10b: Regression coefficients describing the change in feed conversion ratio and 

margin over feed cost with changes in value of the genetic parameters B, Pm and BFr, in 

male and female broilers of Strain 4, at normal and hot environmental temperatures when 

the objective function was to maximise margin over feed cost 

 Feed conversion ratio Margin over feed cost 

 Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot 

B 
-0.115ns -0.059ns 0.003ns 0.005ns 1.262* 0.627ns 1.403* 0.67 

  0.018*      

Pm 
-0.193* -0.259** -0.148ns -0.215* 0.684ns 0.415 0.798ns 0.495 

        

BFr 
-0.309* 0.004ns -0.232* -0.035ns -0.174ns -0.761 -0.347ns -1.048 

        

 
B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering.  
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the 

base value, whilst holding the remaining two genotype parameters constant. 
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Table 5.11a: Regression coefficients describing the change in optimum lysine content in grower and finisher feeds, and in breast meat yield, 

with changes in value of the genetic parameters B, Pm and BFr, in male and female broilers of Strain 3, at normal and hot environmental 

temperatures when the objective function was to maximise margin/m2.annum 

 Grower Finisher Breast meat 

 Male Female Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot 

B 
0.565*** 0.11ns 0.39*** 0.119** 0.687* 0.096ns 0.157* 0.074ns 0.24*** 0.158* 0.23*** 0.144** 

-0.008*   -0.017**   -0.01**  -0.002*  -0.0024* -0.005* 

Pm 
0.186* -0.123ns 0.119ns 0.088ns 0.282ns 0.137ns 0.243ns 0.263* -0.035ns -0.078* -0.03* -0.051* 

0.005ns            

BFr 
0.112** 0.0ns 0.253* -0.197* 0.322** 0.0ns 0.141ns -0.334* -0.05* -0.14* -0.115ns -0.238** 

        -0.003* -0.006**  -0.009* 

 
B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering.  
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the base value, whilst holding the remaining two 

genotype parameters constant. 
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Table 5.11b: Regression coefficients describing the changes in feed conversion ratio and 

margin over feed cost with changes in value of the genetic parameters B, Pm and BFr, in 

male and female broilers of Strain 3, at normal and hot environmental temperatures when 

the objective function was to maximise margin/m2/annum 

 Feed conversion ratio Margin over feed cost 

 Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot 

B 
-0.436ns -0.019ns -0.136** -0.025ns 1.65** 0.677ns 1.311** 0.937ns 

  0.009**  -0.019*    

Pm 
-0.259* -0.124ns -0.214ns -0.212ns 0.604ns 0.359ns 0.615ns 0.41ns 

        

BFr 
-0.342** -0.048ns -0.382* -0.023ns -0.041ns -0.663ns -0.464ns -1.014ns 

        

 
B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering.  
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the 

base value, whilst holding the remaining two genotype parameters constant. 
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Table 5.12a: Regression coefficients describing the change in optimum lysine content in grower and finisher feeds, and in breast meat yield, 

with changes in value of the genetic parameters B, Pm and BFr, in male and female broilers of Strain 4, at normal and hot environmental 

temperatures when the objective function was to maximise margin/m2/annum 

 Grower Finisher Breast meat 

 Male Female Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot Normal Hot 

B 
0.324ns 0.112ns 0.0 ns -0.071ns 0.086ns 0.328ns 0.0ns 0.076ns 0.24*** 0.155* 0.318* 0.135* 

      -0.036*      

Pm 
0.014ns 0.146* 0.0 ns -0.06ns 0.203ns 0.463** 0.0ns 0.329* -0.04* -0.068** -0.037* -0.078* 

       0.039**     

BFr 
-0.028ns -0.241ns -0.10ns -0.149ns -0.09ns -0.09* 0.0ns 0.448ns -0.052* -0.184** -0.114* -0.243** 

          -0.006* -0.008* 

 
B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering.  
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the base value, whilst holding the remaining two 

genotype parameters constant. 
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Table 5.12b: Regression coefficients describing the changes in feed conversion ratio and 

margin over feed cost with changes in value of the genetic parameters B, Pm and BFr, in 

male and female broilers of Strain 4, at normal and hot environmental temperatures when 

the objective function was to maximise margin/m2.annum 

 Feed conversion ratio Margin over feed cost 

 Male Female Male Female 

Parameters1 Normal Hot Normal Hot Normal Hot Normal Hot 

B 
-0.089ns -0.052ns -0.081 ns 0.016ns 1.747** 0.886* 1.3* 0.67ns 

  0.019**      

Pm 
-0.186* -0.252** -0.144** -0.218** 0.681ns 0.420ns 0.771ns 0.494ns 

   -0.008**     

BFr 
-0.278 ns -0.023ns -0.224** -0.031 ns -0.241 ns -0.241ns -0.34ns -1.043ns 

        

 
B = rate of maturing, Pm = mature protein weight at maturity, BFr = rate of feathering.  
*
P<0.05, **

P<0.01, 
***

P<0.001 and ns
 = non-significant. 

1
each of three genetic parameters was decreased and increased by 10% and 20% from the 

base value, whilst holding the remaining two genotype parameters constant. 
 

 

5.4 Discussion 

 

Broiler producers aim at maximising the return on their investment. The net return depends 

on many factors associated with the bird, feed, environment, the available capital and 

labour, and the interaction between these variables. Determining the nutrient content of 

feeds for broilers is one of the main challenges affecting the profitability of the production 

system. The amino acid requirements of broilers (NRC, 1994) and the prediction of 

performance for various combinations of factors have been documented (Jackson et al., 

1982a; Skinner et al., 1992; Smith and Pesti, 1998; Corzo et al., 2004). However, with this 

fixed list of requirements it is impossible to optimise feeds and feeding programmes for 

broilers due in part to changes in the genotypes available and producers’ preferences. 

Moreover, the optimum nutrient contents in feeds for broilers are probably at variance with 

the objective functions of the enterprise. Oviedo-Rondon and Waldroup (2002) reviewed 

intensively the problem of determining accurately the amino acid requirements for broilers. 

According to these authors, the optimum feeding programme for broilers could be 
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determined using simulation models. Based on the reports of Gous (1998), Oviedo-Rondon 

and Waldroup (2002), and Gous and Berhe (2006), it is apparent that estimates of the 

nutrient requirements of a population of animals using dynamic, stochastic and mechanistic 

models are more meaningful than those in which deterministic models are used. However, 

what has not yet been determined is the extent of variation between the various models 

when predicting optimum amino acid requirements and nutrient density for broilers, 

especially when the objective function is varied. Two simulation exercises were conducted, 

these being designed to examine whether it is necessary to generate a population, rather 

than using the average individual, when optimising feeds and feeding programmes for 

broilers, and if so, what the optimum size of this population should be.   

 

According to the results of the first exercise, the difference in response when comparing 

the deterministic (single bird) and stochastic (population) models depended almost entirely 

on the CV of the rate of feathering (see Sensitivity Analysis below). The population 

responses in food intake, live-weight gain, margin over feed cost and margin/m2.annum 

were in virtually all cases lower than for the mean individual, and this difference was 

greater at high temperatures. If the population were fed according to the average 

individual, half the birds would try to increase their food intake to satisfy their 

requirements, if the temperature allowed them to do so. As a result, both the biological and 

economic performances of the population would differ from the performance expected of 

the individual. This result is in agreement with the findings of Gous (1998) and Pomar et 

al. (2003) that variation among individuals affects the optimal nutrient content. Where 

nutrient density was optimised, there was no significant difference between the average 

individual and the mean of the population in the starter and finisher feeds, but the optimum 

energy content of the grower feed varied for the two responses, resulting in a significant 

difference between the two responses in economic performance. Concerning the objective 

functions, there were no important economic differences in optimum feeding programmes 

and production parameters between the two objectives used in this study.  

 

Determining the number of individuals that describes a population of broilers during 

simulations of a stochastic model is a very important task because samples that are too 

large may waste time when running the simulations, while samples that are too small may 

lead to inaccurate results. Based on the results of the simulation exercise, the number of 

individuals that describes a population has an interesting effect on the optimal amino acid 
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concentration in the grower and finisher feeds when the starter feed is fixed for all 

population sizes (Tables 5.8a and b). The optimal amino acid contents in the grower and 

finisher feeds for the different group sizes were greater than for the average individual for 

both objective functions, which supports the above conclusion that the average individual 

underestimates the optimal value. However, when the group size was increased from 50 to 

750, the difference in optimal lysine content between the simulated groups was small; it 

was only significant relative to the average individual (one bird). The time taken to 

simulate the optimum lysine contents and nutrient densities for a group size of 750 

individuals was 24 and 12 times of that of 50 individuals, respectively. It is clear that it is 

unnecessary to use more than 50 individuals in order to account for variation within a 

strain with a view to optimising the feeding of a population of broilers.  

 

In case of nutrient density optimisation, the model predicted almost the same optimum 

AME contents when the population size increased from 50 to 750 individuals, resulting in 

similar performance responses at these optimum levels. Abdominal fat content showed the 

largest difference between the two population sizes, with females always having higher fat 

weights at small population sizes, as well as larger differences over the range of population 

sizes used, whilst males showed little difference in abdominal fat weight at different 

population sizes, and in some cases showing a higher weight of fat at higher population 

sizes.  This might be due to the nature of randomly-generated individual distribution within 

a population, for instance, the live weight at 42d of age of 50 individuals was negatively 

skewed compared to that of 750 individuals. The random generating process could result in 

a bigger difference between the maximum and minimum values within the population. 

This could affect the optimal amino acid and energy values and the effects of such 

variation may be more pronounced for body composition. Pomar et al (2003) reported that 

variation among pigs has little effect on the feed intake of a population of pigs but there 

was a significant effect on body composition. 

 

The size of the population does appear to affect the optimal amino acid contents and the 

optimum nutrient density in broiler feeds.  However, as will be revealed below, this 

difference is the result of the constraining effect of a high rate of feathering on food intake 

on marginally deficient feeds, especially at high temperatures.   
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Sensitivity analysis 

 

The sensitivity analysis indicated that the parameter having the greatest effect on the 

simulated performance of the broilers was the rate of maturing parameter, B.  However, 

because the change in response was linear in most cases, the mean response would remain 

largely the same no matter what coefficient of variation was used in describing this 

parameter.  A slight reduction in performance would result from the significant but small 

negative second-order term describing the response in some cases (breast meat yield, for 

example), and a small reduction in performance at higher temperatures.  Similarly, changes 

in Pm resulted in equal and opposite changes in the optimal lysine contents of starter, 

grower and finisher diets and the economic responses, irrespective of the temperature and 

economic objectives. This suggests that these genetic parameters do not contribute 

substantially to variations in optimal amino acid contents and economic performance of a 

population. However, increasing and decreasing the effects of Fr resulted in totally 

different responses in optimal lysine contents for grower and finisher diets as well as 

biological and economical responses.  

 

Changes in feathering rate do not result in linear responses in performance.  Low 

feathering rates appear to have little effect on performance: it is assumed that the bird will 

require more energy for maintenance if kept in low temperature conditions, but as long as 

food is supplied ad libitum the bird will be able to achieve potential performance, which 

will not change with feathering rate.  However, as feathering rate increases so it becomes 

increasingly difficult for the bird to lose heat to the environment, resulting in an 

increasingly severe decrease in performance.  This decline in performance is particularly 

evident at higher temperatures.  These observations are in agreement with the findings of 

Gous and Berhe (2006) who showed that the consequence of this was that the response of 

the population was always lower than that of an individual. This begs the question of what 

mean and CV are appropriate for a population, given that the mean of a simulated 

population should be closer to that of the average individual than was demonstrated here.  

 

The effect, on the optimum amino acid content and nutrient density of feeds for broilers, of 

differences in the maximum amount of lipid in the gain was measured by comparing the 

responses of Strain 3 (equivalent to a lean strain) and 4 (equivalent to a fat strain).  The 

optimal lysine content in the feeds, and their economic performance, except for breast meat 
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yield, differed between the two strains.  In general, the change in optimum dietary lysine 

content was greater in Strain 3 than in Strain 4, implying that leaner broilers are more 

sensitive to changes in the parameters than fatter strains.  Birds from the fatter strain 

consumed more feed and were hence able to perform adequately on feeds of a lower lysine 

content and they benefited from this extra intake with higher body weights, margin over 

feed cost and margin/m2.annum.  Abdominal fat content was, as a result, higher for Strain 

4 considering their greater potential to deposit lipid. This observation was reported 

previously (Berhe and Gous, 2005).  

 

The differences in response, and in the optimum dietary amino acid contents, of the two 

strains differing only in maximum lipid: protein ratio in the gain implies that the manner in 

which these two strains should be fed for maximum profitability differs between the 

strains.  Strain 3 should be fed a higher protein feed throughout their lives as they would 

benefit from this additional dietary protein because of their inability to overconsume 

energy on lower protein feeds, which would otherwise enable them to consume sufficient 

protein to grow at their potential.  On the other hand, the protein content of feeds offered to 

Strain 4 could be reduced increasingly over time, reducing feed cost, imposing less 

nutritional stress on the birds and thus increasing the profitability of the enterprise. 

However, from the results presented here, there is still considerable variation between the 

sexes within the same strain, which makes it difficult to optimise the feeding of a mixed 

population of broilers. Body composition has been regarded as being the key to predicting 

whether different broiler strains have different amino acid requirements (Peisker, 1999), 

but it would appear that their ability to overconsume energy in the face of a marginally 

deficient feed is an equally important criterion.  

 

The optimal feeding programme for broilers is that which results in maximum profitability 

for the enterprise.  Because so many interacting factors have to be considered before the 

optimal feeds and feeding programme can be determined, the use of simulation models 

should be encouraged to make these biological and economic decisions both rapidly and 

accurately (Gous, 1998). 
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5.5 Conclusions 

 

A population model, used to simulate performance of broilers and to determine the 

optimum amino acid contents and nutrient densities in feeds for these birds, that considers 

variation in the rate of maturing parameter, B, and the mature protein weight, Pm, will 

produce means similar to those obtained from the response of an individual.  In addition, a 

spread of responses will be obtained that will give a reasonable estimate of the variation 

that can be expected in flock performance.  This is a useful way of determining the spread 

in the weights of the body and its component parts in a broiler flock at harvesting.  

Variation in the rate of feather growth, however, causes a non-linear response in 

performance in a population, resulting in a reduction in performance in those birds that 

feather more rapidly, because they are unable to lose sufficient heat to the environment to 

enable them to consume sufficient of the feed required to grow at their potential. The 

consequence is that the resultant mean response is always lower than that of an individual 

when variation in the rate of feather growth is included in a population model.   

 

By altering the maximum permissible lipid:protein in the gain, close approximations to 

realistic differences can be simulated of the ability of strains to overconsume energy when 

faced with feeds marginally deficient in an amino acid.  Where this ratio is low, the 

optimum amino acid content in feeds is higher, and body lipid content is lower, than where 

birds are able to store more body lipid in the gain.  This mechanism enables model users to 

simulate observed differences between strains available to the broiler Industry at present. 

 

Considering the time taken to simulate populations of different sizes and to predict the 

optimum dietary amino acid contents and nutrient densities, it may be concluded from the 

exercise to determine the optimum size of a simulated population, that 50 individuals 

adequately represent the variation within a strain when no correlations between traits are 

considered.   

 

The exercises in this chapter have assisted in determining whether or not to simulate a 

population of broilers rather than the more common method of using the mean individual 

in the population only, and of deciding which parameters to include when describing the 

population. 
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Chapter 6 

 

Variation in the nutrient content of poultry feed:   

A review 

 

Abstract 

 

Uniformity is of considerable importance in all production processes. This review will 

address the variation in the day-to-day levels of nutrients consumed by a broiler, brought 

about by the procedure for analysing the nutrient content of the ingredient, mixing 

efficiency, efficiency of delivery of the mixed feed and pellet quality. Each case 

contributes different levels of variation in the completed mixed feed. Considering the 

complexity of the experiment required to determine the effect of the above sources of 

variation, use of simulation models is the most appropriate way of estimating the effect and 

optimising the feeding program accordingly.  

 

 

6.1 Introduction 

 

Uniformity is of considerable importance in all production processes. It was Deming 

(1986) who first suggested that it was crucial to have a good understanding of customer 

needs, because that knowledge is essential if the production process is to be improved, as 

opportunities for improving quality are determined by the difference between a customer’s 

needs and what a business provides.  He emphasised the importance of the system or 

process with reference to achieving quality, stressing the importance of a proper 

understanding of variation, because its measurement and analysis were fundamental to 

controlling and improving both quality and performance of all systems.  All systems 

display variation over time, which Deming described under two headings; the first, 

inherent or common cause variation, arising from the natural spread in the process, which 

only changes when the system is changed either by design or some other cause.   The 

second, he described as a non-random cause, or special cause variation, which has an 

identifiable cause that can be corrected, but seldom eliminated.  Special cause variation 

arises from variation in factors such as operator performance, husbandry routines, machine 
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or equipment calibration and adjustment, machine maintenance, etc. and is not the subject 

of discussion here.   

 

Common cause variation refers to the many sources of variation that are inherent in the 

process: in the case of broiler production this variation might be in genotype, shed design 

and layout, feeding and drinker equipment, the system of ventilation, environmental 

control equipment, nutrient specifications, and hygiene and health programmes.   

Differences in variation arising in this manner may be large or small, but they are always 

present.    When considered as a group the variation among individuals in a population can 

be described statistically, with a mean and variance.   Inherent variation is built into the 

system, and can only be reduced by management action: no amount of adjustment by farm, 

hatchery, sales or office staff will either reduce, or remove it.   According to Deming 

(1986) common cause variation is responsible for about eighty to ninety percent of quality 

problems, and can only be reduced if management modify or alter the system.  This 

chapter deals with common cause variation in relation to the quality of feed being 

presented to broilers in a commercial rearing unit. 

 

It is well documented that variation exists in the physical and chemical characteristics of 

grains used in poultry feeds, sources of which include variety, seasonal effects, growth 

sites (Metayer et al., 1993), crop treatment and grain fumigants, post-harvest storage 

conditions and period of storage and processing (Dale, 1996; Hughes and Choct, 1999), 

rainfall and environmental temperature patterns during the period of grain maturation, 

genetic effects, level of fertiliser usage (Metayer et al., 1993; Hughes and Choct, 1999) and 

inclusion rate (Senkoylu and Dale, 1999). 

 

Poultry nutritionists spend much of their time formulating feeds to meet certain 

predetermined nutrient specifications, and then attempting to ensure that the mixed feed 

conforms to those specifications.  Because of the variation in quality mentioned above, 

incoming feedstuffs are analysed in various ways and the results are used to predict the 

quality of these raw materials.  Sampling procedures and the prediction equations used will 

introduce some degree of error in the predicted composition, and this will be compounded 

when the final mixture is made. Feed may then be treated in various ways, such as being 

heated and/or pelleted (McCracken et al., 1997), which in itself can affect its nutrient 

uniformity (Reece et al., 1986; Behnke, 1996), before being transported to the broiler farm 
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during which time some separation of ingredients may take place.  The methods used to 

transfer feed from the transport vehicle to the bulk tanks and from there into the feeder 

lines will cause different degrees of separation of feed particles, as will the feeder lines 

themselves. The composition of feed consumed by the broiler may thus bear little 

resemblance to that formulated earlier, and the composition of the feed at one end of the 

house may well differ from that at the other.   

 

Nutrient variability is a common problem for feed manufacturing enterprises. This 

variability has different sources which result in inconsistent nutrient levels in the 

completed mixed feed. It is valuable to examine this variation especially if the nutrient 

distribution is not normal. Much research has been conducted assuming a normal 

distribution of nutrients within feed ingredients.  

 

The Animal and Poultry Science nutrition laboratory at the University of KwaZulu-Natal 

collected and analysed a large number of samples of feedstuffs commonly used in broiler 

feeds, from 1993 to 2001, and these analyses may be used to determine the extent of 

variation in the nutritive value of ingredients. Twelve ingredients were chosen for this 

study and analysed using Genstat (2005) (Table 6.1). In general, the ingredients varied 

remarkably; the coefficient of variation (CV) being greater than 10% over the sampling 

period. According to the results, some of the nutrients were not normally distributed: for 

instance, protein was positively or negatively skewed in wheat middlings, wheat bran, soya 

oil cake, full-fat soya, maize and groundnut oil cake. 

 

Kirby et al. (1993) tested the distribution of protein in some of the common ingredients 

(such as corn, meat and bone meal, and soybean) and found that protein content in corn as 

well as meat and bone meal was not normally distributed. This agrees with the results 

presented in Table 6.1. That is, feed formulation programmes that assume normality may 

not be appropriate for formulating least cost rations.  
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Table 6.1: Uniformity and normality tests of a variety of feed ingredients 

Feedstuff Nutrient1 N Mean SEM CV Min Max Skewness P-value2 

WM Protein 51 16.40 0.13 5.62 15.00 19.57 1.12 0.034 
 Threonine 51 0.53 0.01 8.59 0.41 0.64 0.00 0.280 
 Methionine 51 0.21 0.00 10.56 0.16 0.28 0.29 0.030 
 Lysine 51 0.73 0.01 10.40 0.56 0.92 0.62 0.054 

 Arginine 51 1.05 0.02 12.69 0.71 1.53 0.66 0.116 
 Moisture 51 10.14 0.23 16.53 7.20 14.10 0.41 0.225 
 AME 51 9.14 0.20 15.36 7.18 16.86 3.60 <0.005 
FM Protein 123 64.11 0.33 5.70 52.28 74.50 -0.26 0.205 
 Threonine 121 2.63 0.02 9.84 1.91 3.29 -0.50 0.056 
 Methionine 118 1.90 0.02 13.38 0.68 2.75 -1.49 0.005 
 Lysine 118 5.01 0.06 12.30 2.26 6.69 -1.39 0.005 
 Arginine 118 3.71 0.04 10.88 2.75 4.86 0.34 0.460 

 Moisture 118 8.81 0.14 17.68 3.40 13.35 -0.12 0.186 
 AME 111 13.14 0.12 10.01 8.38 16.08 -1.38 0.005 
Gluten 60 Protein 45 65.75 0.50 5.06 56.75 72.55 -0.33 0.801 
 Threonine 45 2.08 0.03 8.38 1.54 2.34 -0.77 0.221 

 Methionine 45 1.65 0.02 9.96 1.36 1.99 0.07 0.472 
 Lysine 45 1.07 0.01 8.68 0.85 1.27 0.07 0.812 
 Arginine 45 1.98 0.03 11.48 1.53 2.80 0.95 0.038 
 Moisture 45 7.29 0.20 18.63 3.90 11.15 0.24 0.019 

 AME 42 15.92 0.11 4.60 14.61 18.58 1.12 0.035 
WB Protein 14 13.59 0.32 8.87 11.11 14.73 -1.30 0.015 
 Threonine 21 0.48 0.01 9.65 0.38 0.56 -0.10 0.658 
 Methionine 21 0.19 0.00 11.70 0.15 0.24 -0.10 0.904 

 Lysine 21 0.65 0.02 13.94 0.39 0.79 -1.40 0.022 
 Arginine 21 1.00 0.03 15.87 0.72 1.26 0.13 0.270 
 Moisture 14 10.93 0.57 19.68 6.85 16.15 0.70 0.313 
 AME 14 9.21 0.30 12.29 7.65 11.93 1.36 0.025 

SOC Protein 79 38.62 0.31 7.23 31.01 44.08 -0.50 0.064 
 Threonine 81 1.37 0.02 10.05 1.02 1.70 -0.25 0.305 
 Methionine 81 0.64 0.01 16.49 0.39 0.99 0.32 0.147 
 Lysine 81 1.53 0.02 9.64 1.19 1.97 0.45 0.015 

 Arginine 81 3.09 0.04 10.31 2.23 3.77 -0.06 0.892 
 Moisture 77 8.33 0.17 17.88 4.90 12.35 0.17 0.135 
 AME 72 8.54 0.14 13.59 6.39 13.84 1.65 <0.005 
SFF Protein 144 36.64 0.16 5.50 29.41 42.36 -0.52 <0.005 

 Threonine 152 1.39 0.01 8.29 0.70 1.64 -1.41 <0.005 
 Methionine 152 0.41 0.00 10.60 0.32 0.54 0.53 0.01 
 Lysine 152 2.41 0.02 9.32 0.69 2.79 -3.63 <0.005 
 Arginine 152 2.67 0.02 10.80 1.01 3.18 -2.11 <0.005 

 Moisture 120 8.25 0.17 23.77 3.20 14.34 -0.27 <0.005 
 AME 110 14.72 0.08 6.19 11.77 17.29 0.14 0.342 

1All values are in percentages. 2 The distribution of nutrients was tested at a 95% confidence level. 
 WM = wheat middling, FM = fishmeal, WB = wheat bran, SOC = soya oil cake, SFF = full-fat 
soya 
 



 

 114

Table 6.1: (continued) 

 

Feedstuff Nutrient N Mean SEM CV Min Max Skewness P-value 

Sorghum Protein 38 8.47 0.24 17.32 5.67 10.86 -0.07 0.698 

 Threonine 39 0.29 0.01 18.54 0.21 0.46 0.88 0.376 

 Methionine 39 0.13 0.00 19.59 0.08 0.19 0.20 0.279 

 Lysine 39 0.21 0.01 20.16 0.11 0.38 1.20 <0.005 

 Arginine 39 0.34 0.02 30.13 0.23 0.86 3.81 <0.005 

 Moisture 37 10.63 0.21 12.04 7.80 13.65 -0.13 0.713 

 AME 35 13.82 0.10 4.32 12.46 15.28 -0.32 0.174 

Maizea  Protein 28 9.60 0.17 9.24 7.16 11.97 0.09 0.122 

 Threonine 31 0.37 0.01 7.87 0.30 0.43 -0.18 0.393 

 Methionine 31 0.14 0.00 13.88 0.09 0.18 -0.34 0.265 

 Lysine 31 0.44 0.01 12.36 0.32 0.55 -0.47 0.187 

 Arginine 31 0.55 0.01 14.56 0.38 0.75 -0.01 0.66 

 Moisture 27 10.62 0.42 20.71 4.75 15.85 -0.46 0.234 

 AME 27 12.52 0.20 8.50 10.43 14.57 0.02 0.788 

Maize Protein 129 7.95 0.08 11.79 5.61 11.77 0.79 0.014 

 Threonine 106 0.29 0.00 13.38 0.21 0.45 0.72 0.106 

 Methionine 106 0.15 0.00 18.33 0.06 0.21 -0.30 0.094 

 Lysine 106 0.27 0.00 16.43 0.17 0.45 1.42 <0.005 

 Arginine 106 0.40 0.01 19.58 0.26 0.62 1.17 <0.005 

 Moisture 129 10.36 0.18 19.55 5.25 15.28 -0.30 0.02 

 AME 121 14.13 0.06 4.49 10.95 15.69 -1.60 0.005 

Lupins Protein 53 33.11 0.48 10.56 27.32 42.91 0.46 0.088 

 Threonine 57 1.06 0.02 11.25 0.83 1.34 0.26 0.814 

 Methionine 57 0.19 0.00 15.60 0.15 0.29 0.84 0.005 

 Lysine 57 1.68 0.04 19.42 1.33 3.86 5.42 <0.005 

 Arginine 57 3.41 0.07 15.84 2.05 4.55 0.08 0.237 

 Moisture 53 7.09 0.27 28.03 3.25 12.65 0.16 0.394 

 AME 51 11.28 0.21 13.59 7.41 14.56 0.09 0.134 

GOC Protein 29 44.87 0.68 8.20 30.92 51.52 -1.93 <0.005 

 Threonine 29 1.17 0.02 9.37 0.89 1.37 -0.37 0.517 

 Methionine 29 0.40 0.01 12.86 0.21 0.50 -1.73 0.014 

 Lysine 29 1.55 0.03 10.19 1.26 1.94 0.15 0.855 

 Arginine 29 4.73 0.11 12.08 3.27 5.67 -0.85 0.14 

 Moisture 29 7.41 0.31 22.80 4.00 10.73 -0.38 0.168 

 AME 29 11.75 0.40 18.27 8.84 20.12 2.11 0.006 

BG Protein 32 25.01 0.62 14.16 16.33 30.09 -0.87 0.071 

 Threonine 32 0.89 0.02 14.48 0.63 1.24 0.24 0.325 

 Methionine 32 0.38 0.01 22.29 0.20 0.54 -0.38 0.525 

 Lysine 32 0.75 0.04 32.11 0.29 1.16 -0.24 0.015 

 Arginine 32 0.98 0.04 21.78 0.53 1.30 -0.36 0.181 

 Moisture 32 8.23 0.28 19.63 5.75 11.95 0.72 0.007 

 AME 28 10.04 0.32 17.09 7.06 16.12 1.39 0.034 
aMaize germ 10% fat, GOC = groundnut oil cake, BG = brewers grain.  
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Roush et al. (1996) stated that this type of variation may be dealt with in the formulation 

process through non-linear stochastic programming. They explained that the stochastic 

method evaluates feed ingredients based on variability, reduces the waste associated with 

over-formulation by linear programming, reduces variation in meeting the requested 

nutrient levels in a formulated ration and lowers the cost of feed when compared to the 

linear programme with adjusted mean values. However, the level of nutrients in the 

formulated feed may also vary from day to day due to variation in ingredients for the feed 

mix, in mixing quality, analytical procedures, weighing errors, pellet quality, and 

efficiency in delivery of mixed feed from the mixing point to the birds. This kind of 

variation would need to be modelled differently. There is presently insufficient published 

material on the effects of these sources of variation on feed manufacturing and bird 

performance. Fawcett et al. (1992) suggested that enhanced descriptions of variability are 

valuable because they could facilitate predictions of the consequences of fractionation 

before investing in the necessary equipment. 

 

This review will address the variation in the day-to-day levels of nutrients consumed by a 

broiler, brought about by the procedure for analysing the nutrient content of the ingredient, 

mixing efficiency, efficiency of delivery of the mixed feed and pellet quality. 

 

6.2 Variation in feed mixing efficiency 

 

The objective of mixing is to create a completely homogenous blend. Although insufficient 

mixing time is often implicated as a source of variation in complete feeds, numerous other 

factors may have an influence. Particle size and shape, ingredient density and static charge, 

sequence of ingredient addition, amount of ingredients mixed, mixer design, cleanliness of 

the mixer, wear or maintenance of the mixer, over- and under-filling could all affect the 

performance of the mixing system (Behnke, 2005). According to a study by Cromwell et 

al. (2003), neither the mixer nor mixer capacity influenced blending uniformity. However, 

each variable or step contributes a different source of variation during the mixing process. 

Mixer performance can be tested using micro ingredients such as salt or sodium (McCoy et 

al., 1994), synthetic amino acids (Wicker and Poole, 1991), phytase (Johnston and 

Southern, 2000), coloured iron filings (McCoy et al., 1994) or crude protein (Duncan, 

1988). These authors found that feed variability showed a quadratic response (P<0.001) as 

the mixing time increased. The results of a study by Wicker and Poole (1991) showed that 
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only half of the feed tested would be of satisfactory uniformity (CV<10%). About 30% had 

a CV of 10 to 20% and the remaining 20% of the feed samples had a CV of >30%. Stark et 

al. (1991), cited by Behnke (1996), conducted a similar experiment but with a different test 

ingredient (salt) and found that 42% of the samples had a CV of <10%, 46% between 10 to 

20% and 12% >20%. Recently, a study was conducted to assess the degree of uniformity 

of feed blending at 25 stations, analysed by three laboratories (Cromwell et al., 2003). It 

was found that crude protein varied from 11.8 to 14.6% (P<0.001), Zinc by 71 to 182 ppm 

(P<0.001), Calcium by 0.52 to 0.85% (P<0.001) and Phosphorus ranged from 0.47 to 

0.58% (P<0.001). 

 

Despite an extensive review of the literature, little quantitative data documenting the 

effects of feed uniformity on broiler performance could be found. McCoy et al. (1994) 

reported that mixing time, which influences feed uniformity, affected feed conversion ratio 

(P<0.09) in the 24-day growth study but had no effect on average daily gain. In the finisher 

period, quadratic responses were observed for average daily gain (P<0.04), and feed 

conversion ratio (P<0.07) increased as mixing treatment was increased from poor to 

intermediate, with no further increase as the mixing treatment increased from intermediate 

to adequate. They concluded that optimal growth performance in broiler chicks could be 

supported even when the CV in the feed was as high as 23%. On the other hand, Johnston 

and Southern (2000) reported that increasing phytase CV from zero to 103% had little 

effect on growth performance, whereas bone ash and breaking strength decreased only at 

the most extreme level.  It is not possible to draw useful conclusions from these two trials, 

although it does appear that CVs as high as 20% (twice the current industry 

recommendation) may be adequate for maximum growth performance in broiler chicks. 

                                        

A more systematic approach to the problem would be to address the issue by simulation: 

create feeds differing in quality (different levels of amino acids, for example) and allocate 

these randomly, and for varying lengths of time, to a simulated flock of broilers and predict 

performance of the flock.  Such an exercise is used in the following chapter. 

  

6.3 Variation in efficiency of delivery of mixed feed 

 

The benefits of providing a well-balanced diet may be lost if adequate care is not taken in 

its delivery to the feed trough. The nutrient content of the feed can vary due to ingredient 
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separation after mixing and during transportation. Ingredient segregation can occur when 

particles of different sizes and bulk densities are blended together and transported or 

handled. Fawcett et al. (1992) suggested that particle separation might occur prior to 

pelleting and that this would contribute another source of variability that cannot be 

segregated from random residual variation without a properly designed statistical 

investigation. Whenever feed is conveyed either by chain or by blower, fine particles 

separate from coarse particles, particularly when the feed is conveyed in a mash form, and 

when the quality of pellets is poor with a high proportion of fine particles. Many feed 

pellets are damaged by loading, storage, augering or transferring to feed pans. Recently, 

Tang et al. (2006) conducted an experiment to determine feed segregation on the 

performance and egg quality of laying hens, and they found that two segregation patterns 

occurred while mash feed was delivered through the drag-chain feed trough, when there 

were no birds in the house: the first pattern consisted of fine and dense particles 

percolating to the bottom of the trough, whereas larger and less dense particles rose to the 

top. The second pattern: side -to-side segregation where larger particles moved to the sides 

of the feed trough, whereas smaller particles stayed at the centre. According to these 

authors, segregation leads to non-homogenous distribution of nutrients along the trough in 

the direction of feed delivery. Thus, the bird’s daily nutrient requirements may not be met, 

depending on selection and consumption of larger or small particles. Besides, the degree of 

segregation effect varies between the delivery systems (auger vs. drag-chain) 

 

According to Gous and Berhe (2006), this latter type of variation is likely to be systematic: 

if pellets are of a poor quality the consequence could be that birds at the start of the feeder 

line would be presented with whole pellets, but these would deteriorate whilst being 

transported such that only mash would be available towards the end of the feeder track.  

Because birds spend more time consuming mash than pellets (Jensen et al., 1962) the 

maintenance requirements of birds at the far end of the feeder line would be higher and 

hence their feed conversion efficiency would be worse.  Because this kind of variation is 

systematic it may be quantified and either eliminated or at least reduced. Depending on the 

extent to which this source of variation influences the performance of broilers, a decision 

could be taken by management to invest in an alternative system that will result in less 

variation in performance, thereby increasing profit.   
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6.3.1 Pellets and crumbles 

 

Broilers are generally supplied with pelleted or crumbled feed because of the positive 

effect of this feed form on growth rate and feed efficiency (Hussar and Robblee, 1962; 

McNaughton and Reece, 1984; Plavnik et al., 1997). However, the benefits of pelleted feed 

depend on the quality of the pellet. Soft pellets can easily break during the feeding process, 

resulting in the segregation of micro ingredients from macro ingredients. According to Nir 

et al. (1994), large particle sizes in pellets provide natural breaking points. As a result, the 

nutrient content of each bite will be different. Growth and performance has been shown to 

decrease as the proportion of fine particles increases (Proudfoot and Hulan, 1982; Moran, 

1989, Tang et al., 2006).  This is not the result of the heat generated during pelleting, 

which is sometimes regarded as being responsible for improved feed efficiency when 

comparing mash and pellets, as these researchers compared whole and re-ground pellets.  

Pellets can break into small pieces during road transportation, when being transferred from 

the truck to the silo, from the silo into the feeder system, and along conveyor belts within 

the broiler house.  

 

6.3.2 Simulation exercise: effect of ingredient segregation along conveyer belt-type 

feeding systems on broiler performance   

 

One of the advantages of simulation modelling is being able to identify those aspects of the 

animal that are covered by assumptions and which need experimentation. Fawcett (1992) 

attempted to determine the response of birds to different degrees of variation in feed 

nutrient content using growth model and bivariate probability distribution. However, this 

approach does not simulate the day-to-day variation in feed nutrient content to which 

broilers are subjected in practice, where nutrient composition varies throughout the rearing 

period. Stochastic programming (SP), which accounts for such variation, would be useful 

in feed formulation and for predicting responses although it needs adjustment for 

systematic variation in nutrient content brought about by separation during road, rail, auger 

and chain transportation. According to D’Alfonso et al. (1992; 1993) linear programming 

with a margin of safety (LPMS) and SP are commonly used to account for nutrient 

variability. Although the SP method was the most profitable and has been recommended 

by many investigators, including D’Alfonso et al. (1992; 1993) and Roush et al. (1996), it 
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is not until recently that it has been available for commercial use. Surprisingly, no mention 

has been made in the literature of the sources of variation brought about by ingredient 

segregation during transportation and on conveyer belt-type feeding systems. Thus, a great 

deal of research is required to determine the effects of these variables on the level of 

uniformity and the knowledge obtained could be useful when formulating feeds and 

optimising feed and feeding programmes for birds. 

 

A simulation exercise was conducted to determine the effects of variation in environmental 

temperature, dietary protein content and the proportion of ‘fines’ (the extent to which 

pellets break up into mash as a result of abrasion and damage) on broiler performance.  

This was accomplished by simulating the conditions that might prevail in three sections 

(front, middle and back) of a longitudinally ventilated broiler house. At the front (air inlet) 

end of the house birds were subjected to a cold temperature profile, to the highest dietary 

protein content and to a pelleted feed with 0 % fines.  At the far end (back) of the house, 

the environmental temperature was assumed to be higher, the feed protein content was 

assumed to be lowest, and the pellets had been reduced to mash (100 % fines).  Conditions 

in the centre of the house were intermediate in all three respects.  To account for the 

interaction between the three sources of variation, at each position, a factorial arrangement 

was used in the simulation exercise.     

 

A theoretical flock of 50 male and female broilers was randomly generated, based on the 

mean and CV (%) of the genetic parameters used in the EFG broiler growth model (Table 

4.2, Chapter 4). The mean values of the parameters were derived from the results of 

different experiments or publications (such as Emmans and Fisher, 1986; Hancock et al., 

1995; Gous et al., 1999). The CVs used were those suggested by Emmans and Fisher 

(1986) while for those not found in the literature, the results of this project were used. The 

same simulated population was used for each of the simulated treatments.   

 

To account for the change in dietary protein content along the length of the house, starter 

crumbles (0-10 d), grower pellets (11-25 d) and finisher pellets (26-42 d) were formulated 

to contain dietary ideal protein that was either 0.1 higher (high protein) or 0.1 lower (low 

protein) than the recommended reference levels of digestible lysine (Aviagen, 2002).  It 

was assumed that birds near the front of the house chose pellets of the highest quality, 

containing the highest protein content.  
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In the case of environmental temperature, the low temperature profile (front of house) 

started at 25oC, decreased every second day by 0.5 to 18.0oC, and remained constant 

thereafter; the normal profile (middle) started at 30oC, decreasing daily by 0.5 to 20oC, 

remaining constant thereafter; whilst the high temperature profile decreased from 34oC at 

the same rate as the normal profile, until it reached 24oC after which it remained constant. 

The stocking density used was 16 birds/m2 and this was maintained throughout the 

simulation period (no mortalities).  To summarise, the factorial experiment consisted of 

three dietary protein levels, two feed forms, three environmental temperature profiles and 

two sexes. A total of 36 simulations was conducted on broilers between the ages of 0 and 

21d and from 22 to 42d.  In each simulation food intake, weight gain, protein gain, final 

body lipid content and feed conversion efficiency (FCE) were recorded.  

 

As there was no significant effect of the proportion of fines along the feed trough on 

broiler performance, values for this variable were not included in the tables of means. The 

effects on food intake, weight gain and FCE of the horizontal temperature gradient in the 

house, and deviations of dietary protein content from the specification due to segregation 

of ingredients in the feed trough in male and female broilers in the earlier growth period (0 

– 21d) and later growth period (22 – 42d), are presented in Table 6.2, and the effects on 

body protein gain and final lipid content in Table 6.3.  

 

Statistically, there were highly significant (P<0.001) effects of location within the house on 

all measures of performance, influenced by both environmental temperature and feed 

protein content. Average daily food intake during both feeding periods increased linearly 

as dietary protein content decreased where birds were subjected to the low temperature 

profile, but under normal temperature conditions food intake decreased when protein 

intake was both increased and decreased from the normal level.  At the far end of the 

house, where the temperature profile was hot, food intake decreased with protein level in 

the young broilers, and increased then decreased as protein content was decreased in the 

older birds.  These interactions are illustrated in Fig. 6.1.  Broilers are expected to decrease 

food intake as temperature increases (Yahav et al., 1996; Furlan et al., 2004) and to 

increase food intake as dietary protein content declines, but the significant interaction 

between protein content and temperature is of considerable importance.  As a consequence 

of the changes in food intake, weight gain (Fig. 6.2) and FCE (Fig 6.3) were similarly 

significantly affected by trough position in both sexes. A similar experiment was 
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conducted on commercial laying hens by Tang et al. (2006), who reported that bird weight 

and egg weight were not significantly different depending on the birds’ location but there 

was a significant difference in albumen height, Haugh unit and shell thickness. They 

suggested that body weight-related nutrients may be distributed uniformly along the feed 

trough, whereas egg quality-related nutrients were not uniformly distributed, but did not 

comment on which nutrients were involved in either process.  

  

In spite of the significant interaction between feed trough location (dietary protein content) 

and environmental temperature in food intake and weight gain, no interactions were 

evident in body protein gain or final lipid content during either feeding period (Table 6.3). 

Body protein gain decreased linearly with protein content whilst body lipid content 

increased. The inhibitory effect of low feed protein content on protein gain was greatest on 

the high temperature profile. The results of this simulation exercise agree with those of 

Furlan et al. (2004) who reported that high environmental temperature has a significant 

deleterious effect on bird performance and carcass quality. Of particular interest here was 

the observation that high environmental temperature had an even greater negative effect on 

broiler performance when low protein diets were fed, demonstrating the inability of 

broilers at high temperatures to overconsume energy in an attempt to obtain sufficient of 

the amino acids required for growth. Small differences in environmental temperature have 

been shown to have significant negative effects on bird performance at the end of the 

production cycle (Al Homidan et al., 1997). 
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Figure 6.1: The relative effect on daily food intake (g/d) in female and male broilers 

during 0 to 21d and 22 to 42d of age, fed on a lysine limiting feed in which the protein 

content was increased or decreased by 10% to simulate the segregation of ingredients 

along the feed trough, while the temperature increased from cold to normal and then hot in 

the longitudinal ventilated broiler house.  

Protein content (variation from specification, %) 
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Table 6.2: Effect of dietary protein content and environmental temperature due to ingredient segregation along the feeder line and due to 

temperature gradients along the length of the broiler house on food intake (g/d), weight gain (g/d) and feed conversion efficiency (FCE, g 

gain/kg feed) in female and male broilers from 0 to 21 d and from 22 to 42 d of age.   

  Food intake (g/d) Weight gain (g/d) FCE (g gain/kg feed) 

  Female Male Female Male Female Male 

Temp Protein 0 - 21d 22 - 42d 0 - 21d 22 – 42d 0 - 21d 22 - 42d 0 – 21d 22 - 42d 0 - 21d 22 - 42d 0 - 21d 22 - 42d 

Cold 10% 56.8 192 62.4 211 38.1 85.7 44.9 106 670 447 720 504 

 Normal 57.5 193 63.4 216 37.7 85.7 44.5 107 657 444 702 494 

 -10% 58.6 195 64.8 226 35.3 84.0 40.2 101 603 431 620 448 

Normal 10% 51.6 176 56.8 194 37.5 82.5 44.4 104 726 470 781 535 

 Normal 52.0 177 58.3 201 36.6 82.8 43.2 105 704 468 741 520 

 -10% 47.3 174 50.2 195 29.2 79.7 31.8 90.5 618 457 635 465 

Hot 10% 40.9 143 44.5 163 32.4 73.6 38.1 94.3 792 514 856 579 

 Normal 39.5 145 43.3 170 29.5 74.0 33.5 93.4 748 511 773 551 

 -10% 31.3 138 32.3 137 19.9 66.5 21.1 66.8 637 484 653 487 

         

  FI (0-21d) FI (22-42d) WG (0-21d) WG (22-42d) FCE (0-21d) FCE (22-42d) 

 RMS 0.085 1.497 0.0378  1.246  12.5  29.47  

 Temp <0.001 <0.001 <0.001  <0.001  <0.001  <0.001  

 Protein (P) <0.001 <0.001 <0.001  <0.001  <0.001  <0.001  

 Sex (S) <0.001 <0.001 <0.001  <0.001  <0.001  <0.001  

 Temp x P x S  <0.001 <0.001 <0.001  <0.001  0.002  ns  

RMS = residual mean square, Temp = Temperature, ns = not significant. 
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Table 6.3: Effect of dietary protein content and environmental temperature due to 

ingredient segregation along the feeder line and temperature gradient along the length of 

the house on daily protein gain (g/d) and final body lipid content in female and male 

broilers from 0 to 21 d and from 22 to 42 d of age. 

  Protein gain (g/d) Body lipid (%) 

  Female Male Female Male 

Temp Protein 0 - 21 22 - 42 0 - 21 22 - 42 0 - 21 22 – 42 0 - 21 22 - 42 

Cold 10% 5.9 13.8 7.1 18.5 6.0 11.9 4.6 7.7 

 Normal 5.9 13.7 7.1 18.3 6.3 12.6 4.8 8.7 

 -10% 5.4 13.1 6.1 16.7 7.2 14.0 6.2 10.4 

Normal 10% 5.9 13.5 7.1 18.1 6.0 11.4 4.6 7.5 

 Normal 5.7 13.3 6.8 17.8 6.3 12.4 5.2 9.0 

 -10% 4.4 12.3 4.8 14.6 7.3 14.3 6.1 10.9 

Hot 10% 5.1 12.5 6.1 16.6 5.4 9.2 4.4 6.5 

 Normal 4.5 12.0 5.1 15.6 6.5 11.2 5.9 9.6 

 -10% 2.9 10.0 3.1 10.4 7.0 14.4 6.2 11.1 

          

 RMS 0.002 0.013 0.005 0.150 

 Temp  ns <0.001 Ns 0.002 

 Protein (P) <0.001 <0.001 <0.001 <0.001 

 Sex (S) <0.001 <0.001 <0.001 <0.001 

 Temp x P x S <0.001 <0.001 <0.001 ns 

RMS = residual mean square, Temp = Temperature, ns = non significant  
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Figure 6.2: The relative effect on daily weight gain (g/d) in female and male broilers 

during 0 to 21d and 22 to 42d of age, fed on a lysine limiting feed in which the protein 

content was increased or decreased by 10% to simulate the segregation of ingredients 

along the feed trough, while the temperature increased from cold to normal and then hot in 

the longitudinal ventilated broiler house.  

 

Protein content (%, variation from the specification) 
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Figure 6.3: The relative effect on feed conversion efficiency (FCE, g gain/Kg feed) in 

female and male broilers during 0 to 21d and 22 to 42d of age, fed on a lysine limiting feed 

in which the protein content was increased or decreased by 10% to simulate the 

segregation of ingredients along the feed trough, while the temperature increased from cold 

to normal and then hot in the longitudinal ventilated broiler house.  

6.4 Effect of friction in the feed trough on pellet quality  

 

To measure the effect of friction in a chain feeding system on pellet quality along the feed 

trough, feed was sampled in the feed delivery vehicle, and then at the beginning, middle 

and end of a chain feeder (90m x 20cm) in a broiler house. These samples were shaken 

Protein content (%, variation from the specification) 
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over a 1.4 mm sieve to determine the proportion of pellets and crumbles that remained 

intact.  The results are presented in Table 6.4.  

 

Compared with the initial pellet quality, the proportions of broken pellets increased by 4.1, 

10.24 and 18.9 %, at the beginning, centre and far end of the chain feeder, respectively. 

The equivalent values for the crumbled feed were 7.2, 15.4 and 17.6 %, respectively. The 

initial drop in quality would have been caused by the abrasive nature of augers and hoppers 

whilst the feed was being delivered to the broiler houses. In addition, the increase in the 

proportion of broken particles as the feed advanced along the open chain feeder track 

would have been due to the abrasive nature of the chain feeder, but also if birds preferred 

to consume high quality rather than broken pellets. The distribution of large particles 

decreased along the length of the feed trough, and as a result the CV increased with 

distance from the feed hopper.   

Table 6.4: Proportion of pellets and crumbles remaining on a 1.4mm sieve in feed samples 

taken at three positions along a chain feeder line in a broiler house.  

  Pellets
 

Crumbles
 

Position in 

feeder line1 

Mean 

(%) 

CV 

(%) 

Mean 

(%) 

CV 

(%) 

Beginning 90.9 4.47 61.2 14.51 

Centre 84.8 6.55 53.0 8.39 

Far end 76.1 10.47 50.8 20.66 

RMS 36.9  69.6  

P-value2 <0.001  0.05  

n 63  24  

 

1The coarse percentages for pellet and crumble feed at the factory were 95.0% and 68.4% 

respectively. 

2The level of significance = P<0.05 

CV = coefficient of variation; n = number of batches of feed tested.   

 

According to these results, crumbled feeds are more sensitive to these sources of variation 

than pelleted feeds, although the feed quality towards the end of the feeder was 
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significantly lower for both feed forms. The performance of birds housed at different 

stages along the feeder line within the broiler house is bound to differ as a result of these 

differences in pellet quality. The problem could be addressed by changing the feeder 

design, so that birds do not have open access to the feed as it passes down the line, as with 

pan feeders being supplied through a closed pipe, or by using high speed feeders where it 

is impossible for birds to eat whilst the feeder is distributing feed. Pellet durability is also 

of importance in reducing this source of common cause variation. 

 

6.5 Variation in analytical procedures 

 

Although great progress has been made in standardising methods, laboratories may use 

different analytical techniques to measure nutrients. The variation among laboratory 

analyses could be assumed to be fixed because laboratories claim to be using the same 

analytical procedure; the procedures are often assumed to be identical or stated, however, 

within a laboratory could be considered random. The above idea is supported by Rymer et 

al. (2005). Besides, they reported that it may be possible to develop mathematical 

correlations to account for the differences between laboratories and the composition of 

feeds determined by different laboratories. Differences in available equipment, reagents 

and facilities, as well as efforts at simplification, lead to significant changes in the original 

procedure (Robinson et al., 1990). That is, it is possible to measure the error difference 

between laboratories.  

 

Sampling and analytical errors become relatively small when large numbers of samples are 

analysed. Most feed manufacturers use the CV to measure mixer performance and feed 

uniformity. The CV is calculated as the standard deviation divided by the mean. A CV of 

10% has become the accepted degree of variation separating uniform from non-uniform 

mixes (Fei, 2000). However, the magnitude of an acceptable CV will vary depending on 

the analytical precision used in measuring the ingredient and ingredient ratio in the diet. 

Nutrient analyses of feeds by experiment station laboratories have been shown to be more 

variable than the same ingredients grown on various sites (Cromwell et al., 1999; 2000; 

2003). According to a study by Cromwell et al. (2003), the CV among laboratories was 

3.6, 12.5, 10.7, and 11.1 % for CP, Ca, P and Zn respectively. They explained that this 

variation could be due to certain laboratories not routinely conducting mineral assays. 

Robinson et al. (1990) highlighted the importance of accurate description of procedures, 
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especially modifications of original procedures, and the value of inter-laboratory testing in 

allowing critical evaluation of numerical values used in quantitative modelling efforts.  

Further research is required to determine the conditions that may need to be standardised 

among laboratories in order to enable successful inter and/or intra-laboratory comparisons 

of data.  

 

Weighing and analytical errors in the context of dynamic accuracy and variation in the 

nutrient content of the feed cannot be ignored. McCoy et al. (1994) reported that 12 to 23% 

of the total variation in a completed diet is brought about by analytical errors. Errors in the 

nutrient analysis of feed ingredients can result from poor sampling techniques on the farm, 

infrequent feed sampling and testing or random error in nutrient analysis (D’Alfonso et al., 

1993). The interaction of weighing error with net raw material variation will account for a 

significantly greater proportion of the variability in the reported contents of the product 

(Fawcett, 1992).  

 

In general, frequent analysis of final feed will help producers determine the quality of feed. 

Laboratory analysis is the first step in problem-solving for feed manufacturers.  

 

6.6 Conclusion 

 

If performance in the broiler house is to reflect the potential of the broilers being reared 

there, the essential nutrients in the feed should be present at the prescribed concentrations 

throughout the house, and the quality of the pellets should be the same throughout the 

house. If such feed uniformity is not achieved, uniformity in performance will suffer, and 

this will lead to the production of a poorer quality product.  Feed manufacturers need to be 

aware of the causes of variation in feed quality in order to eliminate or reduce this. 

Simulation models may be used to assess the consequences of variation in feed nutrient 

quality, feed form and in the environment (Gous, 2002), as has been demonstrated here.   
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Chapter 7 
 

Variation in nutrient composition and its impact on 

animal performance: simulation  

 

Abstract 

 

The EFG Broiler Growth Model version 6 (EFG Software, Natal) was used to simulate the 

effects on broiler performance of varying nutrient composition resulting from an inaccurate 

evaluation of the quality of ingredients used in the manufacture of broiler feeds. Soybean 

oilcake meal, with a crude protein content of 440 g/kg feed (soy 440) was used as the 

major source of protein in the basal starter, grower and finisher feeds. Four additional feeds 

were produced from each of these three basal feeds by replacing the soy 440 in each feed 

with soy 380, 420, 460 or 500.  Regression equations (Degussa Feed Additives, 1996 and 

2001) were used to determine the amino acid composition and apparent metabolisable 

energy contents of the soybean oilcake meals used in the trial. The rationale used in 

designing the treatments was that soybeans containing higher or lower protein contents 

than expected may inadvertently be substituted for the expected ingredient, and that this 

may occur with any of the feeds used.  Consequently, 12 treatments were designed and 

compared with a control treatment in which the expected, or standard, soybean meal (soy 

440) was used throughout the period. Four of these treatments involved the substitution of 

the four alternative soybean oilcakes in the starter period only, four involved the 

substitution in the grower feed only, and the remaining four were substitutions made to the 

finisher feed only. The simulation exercise was conducted at two environmental 

temperature regimes (normal vs. random fluctuation) in the broiler house.  

 

Weight gain increased with protein content in the grower phase, but decreased in the starter 

and finisher periods. Food intake decreased when dietary protein content increased, 

irrespective of the feeding phase, environmental temperature or sex, the rate of change 

being significantly greater among males than females. FCE also increased at all stages of 

growth for both sexes and environmental temperatures as protein content increased. Body 

protein gain increased with increasing lysine intake in males in all phases, and in females 

only in the finisher phase.  Body lipid content decreased with increasing dietary lysine 

contents. Differences in protein content of soybean oilcake meal result in significant 

changes in biological and economic responses. 
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7.1 Introduction 

 

It is common practice when feeding broilers to use a number of feeds, usually 

progressively decreasing in protein content, for different stages of the growing period.  

Each of these feeds is formulated to meet the nutrient requirements of the broiler at least 

cost for the specified phase of growth.  Depending on the accuracy of the weighing 

equipment and the mixing process used in the feed mill, and the quality of the ingredients 

used, the composition of the feed delivered to the broilers may vary considerably from that 

intended. Broiler performance will reflect this variation in feed composition (Duncan, 

1988; Roush, 2004) and may be used to evaluate the efficiency of the system employed at 

the feed mill, but it is difficult to isolate this source of variation from all the others that 

impact on performance. Thus, simulating the effect of such variation on performance 

provides a useful tool to a broiler producer, as it is possible to identify and quantify the 

effect of each type of variation independently of any others. There are no data in the 

literature that describe the effects of day-to-day nutrient variation on animal performance.  

 

Based on the review of sources of nutrient variation in poultry feeds in the previous 

chapter (Chapter 6), it is evident that all broiler operations are faced with the problem of 

day-to-day variation in nutrient composition. Various approaches have been used to 

address the problem, some dealing with the accuracy of feed mill equipment used, while 

others rely on statistical and computational methods to account for this variation when 

formulating the feeds.  This latter approach, known as stochastic programming, has been 

suggested as a method for dealing with both intrinsic and extrinsic variation in order to 

meet the required nutrient concentrations (D’Alfonso et al., 1992; Cravener et al., 1994; 

Roush et al., 1996). Naturally, this programme is only effective when the mean and 

standard deviations of nutrients in the ingredients included in the feed formulation are 

known.  But none of these approaches enables the nutritionist or the broiler producer to 

predict the extent to which these interventions will influence performance and hence 

profitability.  Simulation modelling can provide this information. 

 

Simulation models are being used increasingly in animal production to predict the effects, 

for example, of feed (Emmans, 1981b; Sakomura et al., 2005), environment (Verstegen et 

al., 1995; Blanco and Gous, 2006) and social conditions (Wellock et al., 2003) on 

performance. In the present study, the EFG Broiler Growth Model version 6 (EFG 
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Software, Natal) was used to simulate the effects on broiler performance of varying 

nutrient composition resulting from an inaccurate evaluation of the quality of ingredients 

used in the manufacture of broiler feeds. 

 
 

7.2 Material and methods 

 

7.2.1 Simulation setting 

 

The values of the genetic parameters used in this exercise are the same as those used in the 

previous exercise (see Chapter 6) and are reproduced in Table 7.1. 

Table 7.1: Stochastic distribution of genetic parameters 

Parameters Male Female CV (%) 

B* (/d) 0.0453 0.0421 6.0 

Pm (kg) 1.32 0.94 7.0 

Fr (/d) 0.052 0.055 15.0 

MLG (g/g) 1.4 1.4 15.0 

LPRm (g/g) 0.64 1.27 4.0 

Wo (g) 50.0 50.0 7.0 

 

Where B* = scaled rate of maturing (B* = BPm0.27), Pm = matured protein weight, Fr = rate 

of feathering, MLG = maximum lipid in gain, LPRm = lipid to protein ratio at maturity,  

Wo = initial body weight, CV = coefficient of variation. 

  

7.2.2 Feeds and feeding procedure 

 

The feed specifications and feeding schedules suggested in the Ross Broiler Management 

Manual (Aviagen, 2002) were applied to formulate a starter (0–14 d), grower (15–28 d) 

and finisher (29–42 d) feed at least cost, using WinFeed (EFG Software, Natal). Soybean 

oilcake meal, with a crude protein content of 440 g/kg feed (soy 440) was used in the basal 

feeds as the major source of protein, as is common practice in most broiler producing 

companies in the world. Chemical composition (g/kg) of starter, grower and finisher feeds 
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used as a reference feeds in the simulation exercise is presented in Table 7.2.  Four 

additional feeds were produced from each of these three basal feeds by replacing the soy 

440 in each feed with soy 380, 420, 460 or 500: the feeds were not reformulated at least 

cost, thus due to the substitution process the amino acid and energy contents of each feed 

were altered.  

 

The amino acid composition of the soybeans of different protein content was determined 

using regression equations 1 to 9, Table 7.3 (Degussa Feed Additives, 1996 and 2001), 

whilst their apparent metabolisable energy contents, corrected to zero N-retention on an as- 

is basis (AMEn), were determined using the European Table of Energy Values for Poultry 

Feedstuffs, equation 10. A calculated AME and amino acids content of the five soybean 

oilcake meals is shown in Table 7.4. The amino acid digestibility coefficients were 

assumed to be the same for all soybean sources.  The dietary treatments contained the same 

vitamins, minerals, crude fibre and crude fat contents. The nutrient composition of the 

feeds used in the simulation exercise is presented in Table 7.5.   

 

7.2.3 Simulation design 

 

The following assumptions were made when designing the simulation exercises. Feed 

storage facilities on the farm were in units of six tonnes of feed, supplying a broiler house 

with a capacity of 30,000 broilers via a belt or screw conveyor. Based on an EFG Broiler 

Growth Model (EFG Software) prediction, this amount of feed is enough for 7 d in the 

starter growth period, 3 d in the first weeks of the grower feeding period, 1.5 d in the 

second week of the grower period, or 1 d in the finisher period. This implies that in order 

to complete one cycle, the poultry manager should order 2, 7 and 14 times this amount for 

the starter, grower and finisher feeds, respectively.  

 

In this study, 12 treatments were designed to determine the effect of substituting soybean 

oilcake meal of higher or lower protein content than that used in the formulation on 

performance of broilers to 42 d of age.  These 12 treatments were compared with a control 

treatment in which the expected, or standard, soybean meal (soy 440) was used throughout 

the period.  
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Table 7.2: Composition (g/kg) of starter, grower and finisher feeds used as reference feeds 

in the simulation exercise.   

 

Ingredient Starter Grower Finisher 

Maize 432.2 525.6 586.1 

Soybean 440 437.2 336.9 250.6 

Oil – soya 77.8 72.0 74.0 

Soybean full fat  20.0  

Monocalcium phosphate 18.5 16.6 15.3 

Sunflower 370 2.5  46.7 

Limestone 17.3 15.7 15.2 

DL-methionine 3.4 02.9 1.9 

L-lysine HCL 2.0 3.1 3.0 

L-threonine 0.6 0.6 0.5 

Salt 2.5 2.3 2.2 

Sodium bicarbonate 3.6 1.9 1.9 

Vitamin + mineral premix 2.5 2.5 2.5 

AMEn (MJ/kg) 12.60 13.30 13.50 

EE (MJ/kg) 11.44 12.04 12.38 

Crude protein 226.7 179.5 170.3 

Lysine 12.7 11.8 11.1 

Methionine 6.3 5.5 4.5 

Methionine + Cystine 9.4 8.4 7.2 

Threonine 8.0 7.0 6.1 

Arginine 14.7 12.5 10.9 

Leucine 17.5 16.0 14.6 

Phenyl.+ Tyrosine 19.1 16.4 14.1 

Crude fibre 42.7 37.9 40.1 

Crude fat 89.2 89.6 90.2 

Calcium 10.0 9.0 8.5 

Available phosphorous 5.4 4.9 4.6 

AMEn = apparent metabolisable energy; EE = effective energy; Phenyl = phenylalanine. 
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In all treatments the standard starter feed was provided until the age of 7 d with 

substitutions being made only after this age: in the first four treatments, the four alternative 

soybean meals (S380, S420, S460 and S500) (Table 7.6) were substituted for the control 

feed without changing the standard grower and finisher feeds. Treatments 5 to 8 involved 

the grower feeds, broilers being fed the normal starter and finisher feeds but the four 

alternative grower feeds (G380, G420, G460 and G500) from 15 to 28 d of age. The final 

four treatments involved feeding birds from 29 to 42d of age one of the four alternative 

soybean varieties (F380, F420, F460 and F500).  

 

Table 7.3: The amino acid composition of the soybeans of different protein content was 

determined using regression equations and coefficient of determination, R
2 

(Degussa Feed 

Additives, 1996 and 2001) 

Equation no. Amino acid (%) Equation R2 

1 Methionine 0.0171*CP% - 0.163 61 

2 Methionine + Cystine 0.0321*CP% - 0.164 65 

3 Lysine 0.0508*CP% + 0.432 67 

4 Threonine 0.0368*CP% + 0.090 77 

5 Tryptophan 0.0118*CP% + 0.058 59 

6 Arginine  0.0679*CP% + 0.290 67 

7 Isoleucine 0.0455*CP% + 0.003 74 

8 Leucine 0.0603*CP% + 0.699 77 

9 Valine 0.0405*CP% + 0.321 63 

 

59.15*NFE72.35*Cfat15.15*CP)kg/kJ(MEnA ++= ………Equation 10

    

Where CP = crude protein, Cfat = crude fat (g/kg) and NFE = nitrogen free extract (g/kg), 
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Table 7.4: A calculated AME and amino acids content (g/kg) of the five soybean oilcake 

meals (Soy) used in the simulation exercise. 

 

 Soy 380 Soy 420 Soy 440 Soy 460 Soy 500 

Arginine 28.7 31.4 32.8 34.1 36.9 

Isoleucine 17.3 19.1 20.1 21.0 22.8 

Leucine 29.9 32.3 33.5 34.7 37.1 

Lysine  23.6 25.7 26.7 27.7 29.7 

Methionine 4.9 5.6 5.9 6.2 6.9 

Methionine + Cystine 10.6 11.8 12.5 13.1 14.4 

AME (MJ/kg) 8.5 9.0 9.3 9.6 10.1 

 

The simulation exercise was conducted at two environmental temperature regimes in the 

broiler house. The first regime started at 31˚C for the first three days and decreased daily 

by 0.5 to 20.5˚C, remaining constant thereafter. The second regime involved a random 

daily fluctuation of 0 to 2˚C above or below the first temperature sequence. For this 

purpose, the random temperatures were generated as follows using Excel:  

4*)(Rand4)*)(Rand(T +−+
°C .  

 

The experimental design consisted therefore of a control feeding treatment, four alternative 

nutrient compositions for each stage of growth (12 treatments), two sexes and two 

environmental temperature regimes (13 x 2 x 2) resulting in a total of 52 simulations being 

conducted to determine the effects of different qualities of soybean oilcake meal on 

performance.  

 

Simulations were conducted using the calculated amino acid contents of each of the feeds 

in the feeding programmes described above, and all weekly outputs from the model were 

saved for further analysis. The data were subjected to statistical analysis using the 

regression procedures of Genstat (2005) to determine the mean responses in food intake, 

weight gain, protein gain, final body lipid content and feed conversion efficiency (g 

gain/kg feed) to the various treatments. These variables were regressed against either the 

lysine content of the feed treatment or the lysine intake by birds on the various treatments. 
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Table 7.5: Comparison of chemical composition (g/kg) of diets as soybean meal crude protein percentage varied (38 to 50) in each feeding 

phase in the simulation exercises         

  Starter  Grower Finisher 

Nutrient 38 42 46 50 38 42 46 50 38 42 46 50 

AMEn 12.23 12.48 12.72 12.96 13.02 13.21 13.39 13.58 13.24 13.41 13.59 13.76 

EE 11.10 11.32 11.54 11.76 11.77 11.94 12.11 12.28 12.10 12.26 12.42 12.57 

Crude protein 203.1 220.3 237.4 254.6 161.4 173.2 184.9 196.7 159.3 170.2 181.2 190.4 

Dry matter 895.7 895.7 895.7 895.7 891.4 891.4 891.4 891.4 889.6 889.6 889.6 889.6 

Lysine 11.5 12.3 13.1 13.8 10.9 11.5 12.1 12.7 9.1 9.7 10.3 10.8 

Methionine 5.9 6.2 6.4 6.7 5.2 5.4 5.6 5.8 4.2 4.4 4.5 4.7 

Methionine+cystine 8.7 9.2 9.7 10.1 7.9 8.2 8.6 8.9 6.7 7.0 7.4 7.7 

Threonine 7.2 7.7 8.2 8.8 6.4 6.8 7.2 7.6 5.5 5.9 6.3 6.7 

Tryptophan 2.1 2.2 2.4 2.6 1.8 1.9 2.0 2.2 1.6 1.7 1.9 2.0 

Arginine 3.1 14.2 15.2 16.4 11.3 12.1 12.9 13.8 10.3 11.1 11.9 12.7 

Isoleucine 7.8 8.5 9.2 9.9 6.8 7.3 7.9 8.4 6.3 6.8 7.3 7.8 

Leucine 16.1 17.0 18.0 18.9 14.9 15.6 16.4 17.1 14.4 15.0 15.7 16.3 

Phenyl.+tyrosine 19.2 19.2 19.2 19.2 16.4 16.4 16.4 16.4 15.3 15.3 15.3 15.3 

Valine 8.5 9.1 9.7 10.3 7.6 8.1 8.5 9.0 7.1 7.6 8.0 8.4 

Crude fibre 42.5 42.5 42.5 42.5 37.9 37.9 37.9 37.9    . 

Crude fat 89.2 89.2 89.2 89.2 89.6 89.6 89.6 89.6 90.0 90.0 90.0 90.0 

Calcium 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 8.5 8.5 8.5 8.5 

Avail. Phosphorous 5.4 5.4 5.4 5.4 4.9 4.9 4.9 4.9 4.6 4.6 4.6 4.6 

 AMEn = apparent metabolisable energy, EE = effective energy, Avail = available, Phenyl = Phenylalanine. 
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Table 7.6: Feeding schedule used in the simulation exercise over a 42d growth period    

 

Treatment 0 to 7 d 8 to 14 d 15 to 28 d 29 to 42 d 

Control S 440 S 440 G 440 F 440 

1 S 440 S 380 G 440 F 440 

2 S 440 S 420 G 440 F 440 

3 S 440 S 460 G 440 F 440 

4 S 440 S 500 G 440 F 440 

5 S 440 S 440 G 380 F 440 

6 S 440 S 440 G 420 F 440 

7 S 440 S 440 G 460 F 440 

8 S 440 S 440 G 500 F 440 

9 S 440 S 440 G 440 F 380 

10 S 440 S 440 G 440 F 420 

11 S 440 S 440 G 440 F 460 

12 S 440 S 440 G 440 F 500 

S = starter soybean meal, G = grower soybean meal, F = finisher soybean meal. 

 

7.3 Results 

 

The results of the simulations, in terms of mean food intake and weight gain to 42 d, feed 

conversion efficiency (FCE) (g gain/kg feed), protein gain and final body lipid content  for 

males and females subjected to the 13 dietary treatments and two temperature profiles, are 

given in Table 7.7. Performance was affected equally by the two temperature regimes, so 

the results of only the normal temperature profile are illustrated for FCE, protein gain and 

lipid content in Figures 7.1, 7.2 and 7.3 respectively.   

 

All treatments exhibited the same mean growth rate over the 42 d growing period (Table 

7.7), although the rates of change brought about by the inadvertent use of soybean oilcake 

meals that differed from that used in the formulations differed in the three phases and 

under the two environmental profiles. Under the normal temperature profile (Table 7.8), 

weight gain increased with lysine intake (P<0.001) in the grower and finisher phases, but 

in the starter phase only the males showed a significant (P<0.05) response and this was 
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negative. Under the fluctuating temperature profile (Table 7.9) weight gain increased 

significantly (P<0.01) in all three phases for males, but only in the first and third phases for 

females.  Food intake decreased (P<0.001) as the levels of dietary protein increased in all 

phases, irrespective of environmental temperatures or sex, but the rate of change was 

greater in all cases for males than for females (Table 7.7, 7.10 and 7.11), and FCE 

increased in all three stages of growth (P<0.001) in both sexes and under both 

environmental temperatures regimes as the soya protein (and hence, lysine) content 

increased (Tables 7.7, 7.10 and 7.11). Again, the response in FCE was in most cases more 

pronounced for males than for females.  The responses in FCE are illustrated in Figure. 

7.1. 
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Figure 7.1:  Simulated feed conversion efficiencies (g gain/kg feed) resulting from altering 

the quality of soybean oilcake meal of the control feed (Ο), during the starter, grower and 

finisher phases of growth, in male and female broilers reared on a normal temperature 

profile. 
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Table 7.7. Mean food intake, weight gain, food conversion efficiency (FCE), protein gain and final body lipid content of male and female 

broilers in response to the use of alternative soybean qualities over the 42-d growing period, using two environmental temperature regimes 

   At normal temperature With fluctuating temperatures 

Feed 
type 

Lysine 
(g/kg) Sex 

Food intake 
(g/d) 

Weight 
gain (g/d) FCE 

Protein 
gain (g/d) 

Lipid 
content % 

Food intake 
(g/d) 

Weight 
gain (g/d) FCE 

Protein 
gain (g/d) 

Lipid 
content % 

Control 12.7 Female 96.9 52.4 541 8.55 12.3 96.2 52.2 543 8.55 12.4 

  Male 111.9 65.3 584 11.12 9.4 111.2 65 585 11.10 9.4 

S 380 11.5 Female 97.2 52.4 539 8.55 12.3 96.4 52.1 540 8.52 12.4 

  Male 112.1 65.1 581 11.07 9.4 111.3 64.7 581 11.05 9.5 

S 420 12.3 Female 97.0 52.4 540 8.55 12.3 96.3 52.2 542 8.55 12.4 

  Male 112 65.2 582 11.12 9.4 111.3 65 584 11.10 9.4 

S 460 13.1 Female 96.8 52.4 541 8.55 12.3 96.2 52.2 543 8.55 12.3 

  Male 111.7 65.3 585 11.12 9.4 111.1 65 585 11.12 9.4 

S 500 13.8 Female 96.6 52.4 542 8.55 12.3 96.0 52.2 544 8.55 12.3 

  Male 111.4 65.2 585 11.12 9.3 110.9 65.1 587 11.12 9.4 

G 380 10.9 Female 98.0 52.4 535 8.52 12.5 97.4 52.2 536 8.52 12.5 

  Male 113.5 65.0 573 11.05 9.6 112.8 64.7 574 11.00 9.7 

G 420 11.5 Female 97.2 52.4 539 8.55 12.4 96.6 52.2 540 8.52 12.4 

  Male 112.4 65.2 580 11.10 9.5 111.7 65 582 11.07 9.5 

G 460 12.1 Female 96.6 52.4 542 8.55 12.3 95.9 52.2 544 8.55 12.3 

  Male 111.4 65.3 586 11.14 9.3 110.7 65 587 11.12 9.3 

G 500 12.7 Female 95.9 52.4 546 8.57 12.2 95.3 52.2 548 8.55 12.2 

  Male 110.4 65.3 591 11.14 9.2 109.7 65 593 11.14 9.2 

F 380 9.1 Female 98.8 52.5 531 8.50 12.7 98.0 52.3 534 8.48 12.7 

  Male 115.7 65.1 563 10.93 10.1 115 64.8 563 10.90 10.1 

F 420 9.7 Female 97.4 52.5 539 8.55 12.4 96.7 52.2 540 8.52 12.4 

  Male 113.1 65.3 577 11.07 9.6 112.4 65 578 11.05 9.7 

F 460 10.3 Female 96.4 52.4 544 8.57 12.2 95.8 52.2 545 8.55 12.3 

  Male 110.7 65.2 589 11.17 9.2 110.1 65 590 11.14 9.2 

F 500 10.8 Female 95.5 52.4 549 8.60 12.0 94.9 52.2 550 8.60 12.1 

  Male 108.6 65.1 599 11.21 8.7 108 64.9 601 11.21 8.8 

S = starter soybean oil cake, G = grower soybean oil cake, F = finisher soybean oil cake, FCE = feed conversion efficiency (g gain/kg feed). 
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Figure 7.2: The simulated effect of lysine intake on body protein gain (g/d) as a result of 

altering the quality of soybean oilcake meal in the control feed (Ο) during the starter (A), 

grower (B) or finisher (C) phases, in male and female broilers reared on a normal 

temperature profile. 
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Figure 7.3: The simulated effect of dietary lysine content on final body lipid content 

resulting from altering the quality of soybean oilcake meal of the control feed (Ο) during 

the starter, grower or finisher phases of growth, in male and female broilers reared on a 

normal temperature profile.  
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Table 7.8: Linear regression coefficients reflecting the changes in weight gain (g/d) and protein gain (g/d) as dietary lysine intake was 

changed in response to the use of soybean meals differing in protein content, during the starter, grower and finisher phases, in male and female 

broilers reared on a normal temperature profile. 

 0 to 14 (g/d) 15 to 28 (g/d) 29 to 42 (g/d) 

 

Weight gain 

(g/d) 

Protein gain 

(g/d) 

Weight gain 

(g/d) 

Protein gain 

(g/d) 

Weight gain 

(g/d) 

Protein gain 

(g/d) 

Parameter B P-Value b P-Value b P-Value B P-Value b P-Value b P-Value 

Lysine intake (L) -0.003 n.s. 0.00001 n.s. 0.0715 <0.001 0.017 0.006 0.0654 <0.001 0.025 <0.001 

L x Sex M1 -0.009 0.024 0.0499 0.001   0.030 0.003   0.076 <0.001 

Pooled SE 0.059  0.184  3.3  0.373  4.25  0.333  

R2 99.9  99.8  83.5  99.9  86.4  99.99  

b = coefficient of regression, M = male, SE = standard error, R2 = coefficient of determination. 
1  Using simple linear regression with Groups, the regression coefficient for males differs significantly from that for females. 
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Table 7.9: Linear regression coefficients reflecting the changes in weight gain (g/d), protein gain (g/d) as dietary lysine intake was changed in 

response to the use of soybean meals differing in protein content, during the starter, grower and finisher phases of growth, in male and female 

broilers reared on a fluctuating  temperature profile. 

 
 0 to 14 (g/d) 15 to 28 (g/d) 29 to 42 (g/d) 

 

Weight gain 

(g/d) 

Protein gain 

(g/d) 

Weight gain 

(g/d) 

Protein gain 

(g/d) 

Weight gain 

(g/d) 

Protein gain 

(g/d) 

Parameter B P-Value B P-Value b P-Value B P-Value b P-Value b P-Value 

Lysine intake (L) 0.060 0.008 0.134 0.006 -0.001 Ns 0.026 0.004 0.065 <0.001 0.021 <0.001 

L x Sex M1     0.006 0.029 0.031 0.011   0.076 <0.001 

Pooled SE 1.260  2.100  0.127  0.488  4.29  0.222  

R 2 55.2  70.2  99.9  99.90  85.9  99.9  

b = coefficient of regression, M = male, SE = standard error, R2 = coefficient of determination. 
1  Using simple linear regression with Groups, the regression coefficient for males differs significantly from that for females. 
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Table 7.10: Linear regression coefficients reflecting the changes in food intake (g/d), feed conversion efficiency (FCE) (g gain/kg feed) and 

body lipid content (%) as dietary lysine content was changed in response to the use of soybean meals differing in protein content, during the 

starter, grower and finisher phases, in male and female broilers reared on a normal temperature profile. 

 Food intake (g/d) FCE (g gain/ kg feed) Body lipid (%) 

Parameter B P-Value SE R2 b P-Value SE R2 b P-Value SE R2 

Starter (S) -0.90 <.001 0.065 99.6 26.58 <.001 1.92 97.4 -0.29 0.002 0.046 92.8 

S x Sex M1 -0.45 0.013 0.092      -0.18 0.034 0.066  

 

Grower (G) -3.33 <.001 0.180 99.9 18.17 <.001 1.24 99.7 -0.34 <.001 0.033 99.6 

G x Sex M -2.17 <.002 0.255  10.67 <.001 1.76      

 

Finisher (F) -5.80 <.001 0.214 99.9 15.09 <.001 0.831 99.8 -0.40 <.001 0.029 99.9 

F x Sex M -8.25 <.002 0.303  18.12 <.001 1.18  -0.40 <.001 0.040  

b = coefficient of regression, M = male, SE = standard error, R
2
 = coefficient of determination. 

1
  Using simple linear regression with Groups, the regression coefficient for males differs significantly from that for females. 
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Table 7.11: Linear regression coefficients reflecting the changes in food intake (g/d), feed conversion efficiency (FCE) (g gain/kg feed) and 

body lipid content (%) as dietary lysine content was changed in response to the use of soybean meals differing in protein content, during the 

starter, grower and finisher phases, in male and female broilers reared on a fluctuating temperature profile. 

 Food intake (g/d) FCE (g gain/ kg feed) Lipid (%) 

Parameter B P-Value SE R 2 b P-Value SE R 2 B P-Value SE R 2 

Starter (S) -0.82 <0.001 0.048 99.8 21.39 <0.001 1.53 99.1 -0.301 <0.001 0.0312 95.8 

S x Sex M1 -0.44 <0.001 0.069  9.05 0.006 2.16  -0.140 0.037 0.0525  

 

Grower (G) -3.53 <0.001 0.167 99.9 18.83 <0.001 1.07 99.8 -0.217 0.002 0.0403 99.7 

G x Sex M -2.08 <0.001 0.236  13.33 <0.001 1.51  -0.217 0.009 0.0569  

 

Finisher (F) -5.94 <0.001 0.187 99.9 14.56 <0.001 0.69 99.9 -0.333 <0.001 0.0329 99.9 

F x Sex M -7.30 <0.001 0.264  18.11 <0.001 0.97  -0.439 <0.001 0.0465  

b = coefficient of regression, M = male, SE = standard error, R
2
 = coefficient of determination. 

1
  Using simple linear regression with Groups, the regression coefficient for males differs significantly from that for females. 
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Body protein gain increased with lysine intake in both sexes in all three phases of growth, 

but the male response was greater than that in females in all cases (Tables 7.8 and 7.9, and 

Figure 7.2). Conversely, body lipid content decreased as the lysine content in the feed was 

increased (Tables 7.10 and 7.11, and Figure 7.3), with males again showing a greater 

response than females, except in the grower period where the responses were the same 

under the normal temperature profile. 

 

7.4 Discussion 

 

Successful broiler production depends on a sound feeding program, which requires, 

amongst others, that the protein content of the feed is reduced at intervals throughout the 

growing period. The protein (or amino acid) content of each feed, and the amount that is 

allocated are under the control of the nutritionist.  However, the capacity of the feed 

storage bin allocated to each broiler house constrains the amount that can be fed from the 

same batch of feed in a specific feeding schedule. Although the composition of the feed 

obtained from a feed mill should remain constant from batch to batch, mistakes are 

sometimes made, and the quality of the feed may differ from the previous batch obtained 

from the feed mill. Broilers are then subjected to a feed that differs in specification from 

the expected, and often this error is not discovered. This simulation exercise was designed 

to determine the consequences on performance of inadvertently using a soybean oilcake 

meal that differs from the assumed or expected.  In a practical situation, such a switch 

could occur in any of the phases of growth, and if only one batch of feed is mistreated in 

this way the consequence will differ depending on the stage of growth when this occurred.  

In the starter period, for example, because of the relatively low daily intake of feed by each 

chick, the birds would be subjected to the incorrect formulation for a longer period of time 

than if this occurred just prior to harvesting the birds, when a feed storage bin may last for 

only one or two days. 

 

The results suggest that such inadvertent changes in the protein content of broiler feeds 

have little or no overall effect on the growth of broilers, yet when the respective growth 

rates were regressed against dietary lysine intake within each period, these responses were 

as would be expected, namely, that growth rate, and especially body protein gain, 

responded positively to an increase in lysine intake (Gous et al., 1990; Smith and Pesti, 
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1998).  In spite of the lack of an overall effect on weight gain, FCE to 42 d was 

significantly affected through an increase in food intake and hence body lipid content as 

the protein content of the feed was reduced.   

 

Differences between the highest and lowest dietary lysine contents were 2.3, 1.8 and 1.7 

g/kg of feed for the starter, grower and finisher feeds respectively. In spite of these small 

differences, differences in food intake and FCE between treatments were considerable. 

Males were affected to a greater extent than females, possibly because the amino acid 

contents in the control feed were more than adequate for females, and hence the small 

changes did not result in the same degree of deficiency for the females as for the males.  

Food intake is generally increased in an attempt by each bird to consume sufficient of the 

limiting nutrient to meet its requirement for that nutrient, but the limit to which food intake 

can be increased is dictated by the amount of heat that the bird can lose to the environment 

(Emmans and Fisher, 1986; Gous, 1998).  If the amino acid contents in the control feed 

had been lower, it is likely that the females would have shown a higher rate of increase in 

food intake as the protein content declined. 

 

This simulation exercise assumed all the SBM varieties used had the same amino acid 

digestibilities, fibre contents and lack of anti-nutritional compounds.  Had these additional 

qualities been taken into consideration in the simulation exercise, the effect of dietary 

treatment on final performance would have been more pronounced.  In reality, these 

quality characteristics do vary between SBM samples.  Thus, profitability of the enterprise 

is likely to vary significantly when one type of SBM is substituted for another. On the 

other hand, the consequence of over-formulated feed could have a significant negative 

impact on the performance of the animal: for instance, high protein feeds increase 

mortality percentage as a result of fast growth rate (Classen, 2000); chick diets containing 

surplus protein can lead to impaired utilisation of the first-limiting amino acid (Morris, 

2004); and nitrogen excretion would increase significantly because very little of this excess 

protein would be used for body protein deposition.  Excess dietary protein increases water 

excretion especially when SBM is used as a protein source since SBM is rich in potassium 

which can lead to increased water intake. Besides, excess nitrogen is excreted as uric acid 

and this breaks down into water and ammonia, which could result in ideal conditions for 

disease organisms to multiply in broiler houses. Although broilers grown on high nutrient 

concentrations generally perform better than those grown on low concentrations, excessive 
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levels of some nutrients resulting from the incorrect formulation of feeds could cause 

performance to decrease, by reducing the efficiency of utilisation of essential nutrients, 

resulting in the build up of unfavourable environmental conditions in the broiler house.   

  

The changes in the daily environmental temperature resulting from random fluctuations 

made to this profile had very little effect on mean performance, with no interactions being 

evident between temperature and dietary protein content.  Presumably, fluctuations would 

need to be greater than those used in this simulation exercise before meaningful changes 

would be evident in performance.   

 

In conclusion, small and short term differences in nutrient content, brought about by the 

inadvertent use of soybean oilcake meals differing from the expected in dietary protein 

content, result in changes in biological and economic responses in broiler production, even 

though market weight is little affected at 42 d of age. Larger differences could be found in 

practice, compared with those in this simulation exercise, as many of the factors that vary 

between SBM samples were not taken into account in this simulation exercise. The result 

of this exercise demonstrates the importance of quality control in a feed mill: feed mill 

managers should keep accurate information on the nutrient composition of all ingredients 

entering and being stored in the feed mill, and they should work closely with nutritionists 

to coordinate this information with the feeds being formulated and mixed.  
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General Discussion 

 

The general problem in animal production is that of predicting growth rate and body 

composition (Emmans and Fisher, 1986; Emmans and Oldham, 1988; Ferguson and Gous, 

1993). Simulation models have been developed that predict food intake and growth of 

broilers (EFG Software, 2007) and are becoming increasingly sophisticated in that it is 

now possible to optimise the feeds and feeding programme of broilers of a given genotype 

in a given environment, given the cost and availability of raw materials and the value of 

the product being sold. However, in most animal growth models, weight of body lipid and 

body protein are key state variables that can be related quantitatively to chemical and 

physical body composition for predicting growth response and characteristics (Emmans, 

1981; Gous et al., 1999; de Lange et al., 2003, Pomar et al., 2003). The allometric 

relationships need to be defined if these components are to be estimated from protein 

weight. Emmans (1988) suggested that there is a strict relationship between water or ash 

and body protein, at maturity, independent of genotype. However, due to uncontrolled 

genetic selection this relationship might be affected by the current strains of broilers. 

Therefore, re-evaluation of these relationships among the modern genotype is a 

prerequisite to improve the model and to predict a realistic response. Furthermore, almost 

all broiler growth models have been developed at the level of one bird, yet commercially it 

is populations that are being managed and fed. The optimal nutrient requirement and food 

intake might differ between populations with different degrees of genetic variation.  

 

In the exercise conducted in this thesis, three experiments were conducted to determine the 

effect of dietary protein on the performance, including mortality and uniformity and on the 

allometric relationships between the carcass components and body protein, of two strains 

of broilers available in South Africa. In all experiments, the effect of feed protein content 

on food intake was of a quadratic form and almost identical in both strains (starter period, 

0 to 21d), with intake first increasing as protein content was reduced, and then decreasing.  

This tendency to increase food intake as the limiting nutrient (in this case, protein) is 

reduced is a corollary to the theory of food intake regulation of Emmans (1981) 

incorporated into the EFG Broiler Growth Model (EFG Software, 2007) and has been 

confirmed in experiments by Gous et al. (1990), Skinner et al. (1992), Smith & Pesti 

(1998) and Smith et al. (1998).  However, in the finisher period, the two strains differed in 
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their response to dietary balanced protein, Ross birds reduced food intake as dietary protein 

was decreased, which is contrary to Emmans’ (1981) theory of food intake regulation and  

confirming the similar observation by Kemp et al. (2005).  

  

The Ross strain has been selected for improved growth and feed efficiency using high 

protein feeds.  Such selection results in leaner carcasses (Pym & Solvyns, 1979) and 

perhaps a reduced ability to fatten when faced with feeds marginally deficient in an 

essential nutrient.  If this were the case then such strains would be incapable of increasing 

food intake on marginally deficient feeds, as a prerequisite for this is to be able to store the 

excess energy consumed as body lipid unless the environmental temperature were 

sufficiently low as to allow the birds to lose the excess energy as heat. In the EFG Broiler 

Growth Model, the potential growth rate is described using a Gompertz growth curve 

(three parameters) and the lipid-to-protein ratio at maturity is an additional parameter used 

to describe a genotype.  These are insufficient to describe the differences in food intake in 

the latter part of the growing period in response to dietary balanced protein observed by 

Kemp et al. (2005) and here.  Some theoretical arguments are put forward by Gous (2007) 

to explain these differences, but as yet no satisfactory solution to the problem has been 

found. 

 

An increasingly important characteristic of broiler production is the uniformity of body 

weight and conformation of birds when harvested, since consumers have become more 

sophisticated, demanding highly uniform whole birds and portions.  According to the 

results of all experiments and the simulation exercise described by Gous and Berhe (2006),  

uniformity decreases as the feed becomes marginally deficient in protein and this is in 

agreement with  Corzo et al. (2004). Results of the simulation exercise suggest that at both 

high and low (limiting) concentrations of dietary protein uniformity increases, the 

requirements of all individuals in the one case being met, and in the other, all individuals 

are similarly constrained.  At the lowest protein levels, uniformity in the first experiment 

was higher than on the intermediate protein levels, probably because all birds were equally 

constrained by the severely deficient protein content of the feed offered.  Because the feeds 

were not as deficient in protein in the second trial, i.e. none was severely deficient, 

uniformity diminished linearly throughout the range of protein levels used. Uniformity is 

clearly compromised as dietary protein content is reduced, a situation that is likely to occur 
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frequently in commercial broiler operations. Thus, uniformity in a population of birds, 

caused by feeds varying in essential nutrient content, may be simulated mechanistically.    

 

In the case of the allometric relationships measured here, it is interesting that there was no 

effect of strain, sex or dietary protein level on most of the relationships between the 

physical and chemical components with body protein.  The exceptions were drum and 

breast meat weight. This justifies the assumption of a simple allometry between the body 

components and body protein (Emmans, 1988).  The discrepancy for drum and breast meat 

weight could be due to variation in the potential for lipid deposition between strains, which 

become more obvious on marginally deficient feeds. It is, therefore, important to consider 

the lipid deposition potential of different strains in future model development.  

 

In the first simulation exercise, the response of the simulated population was lower that 

that of a single bird, indicating that the optimal levels of intake will differ between 

populations depending on the degree of genetic variation in the population. In the 

sensitivity analysis conducted by Gous and Berhe (2006), in which six genetic parameters 

were increased or decreased by 0.05, 0.1, 0.15 or 0.2 whilst holding the five remaining 

genetic parameters constant, it was evident that feathering rate was the only parameter that 

resulted in a non-linear response in food intake to a feed limiting in lysine.  Therefore, the 

extent of variation in any of the genetic parameters other than feathering rate will not 

influence the mean response of a population, but where feathering rate is included as a 

stochastic parameter the resultant mean response will always be lower than that of an 

individual.  This is because birds with a higher feathering rate are unable to lose sufficient 

heat to the environment to enable them to consume sufficient of a feed limiting in an 

essential nutrient, whereas the slow feathering birds in the population cannot grow faster 

than their potential, resulting in a curvilinear response to a limiting nutrient.  Interestingly, 

the optimum lysine content and nutrient density of only the grower feed was significantly 

different between the population and individual model responses. The inconsistent 

variation in optimum value of lysine and nutrient density probably reflects the variation in 

the responses to different populations that were simulated for each optimisation.  

Once the advantage of using a population model has been verified, it is important to 

determine the size of the population to account for the genetic variation between broilers 

during the optimisation process. Based on the genetic parameters that were varied in the 

simulation exercise, the size of the population only marginally affected the optimal amino 



 

 153

acid contents and the optimum nutrient density in broiler feeds. Considering the time taken 

to simulate the optimum levels of amino acids content of broiler feeds and nutrient density 

for a population of 50, 100, 250, 500 and 750 individuals, and the negligible differences in 

the results among these population sizes, a population of 50 individuals would be adequate 

to represent the variation within a strain.  

 

Finally, several models have been developed to optimize the feeds and feeding program of 

animals but there is no means of assigning estimates to ingredient segregation along 

conveyer belt-type feeding systems and day-to-day variation of nutrient composition 

resulting from an inaccurate evaluation of the quality of ingredients used in the 

manufacture of broiler feeds. The last two simulation exercises conducted in this thesis 

addressed the above two sources of variation in the broiler production process.  The result 

was that the performance of birds reared at the two extreme sides of the house differed 

markedly. Furthermore, day-to-day variations in the nutrient content of feed (resulting 

from, for instance, variation in the protein content of soybean oilcake meal) resulted in 

significant changes in biological and economic responses. Little attention has been given to 

quantifying the variation of feed quality along the feeding track and incorporating these 

effects into a broiler growth simulation model. This area of study should be the next step in 

future model development.  

 

Implication for industry  

 

The use of tables of nutrient requirements when formulating feeds for different classes of 

livestock is outdated.  It is far more instructive to use some kind of theory  to determine the 

effect of either increasing or decreasing the concentration of nutrients in the feed on 

growth, food intake, carcass composition or profitability of the enterprise.  Models are now 

available that unify all the major factors (e.g. animal, feed and environment) affecting the 

production process. However, appropriate descriptions and quantifications of the variables 

that influence productivity, as well as of the genetic parameters describing the animal 

being simulated, are crucial for accurate model predictions. Similarly, when optimising the 

way in which a population of animals should be fed, it is essential to take account of 

genetic variation in the population, variation in raw material composition and the changes 

that take place to finished feeds during transportation, as well as the microclimates to 

which broilers are subjected in a broiler house.  All this is possible with simulation models.  
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