DEDICATION

This work is dedicated to my son

Teshan

who is suffering from Duchene Muscular Dystrophy

A Comparative Study of Solvent Extraction, Soxhlet Extraction, Steam Distillation, Headspace Analysis and Headspace Solid Phase Microextraction for the Extraction of Volatile Terpenoid Compounds in the Curry Leaf Plant *(Murraya koenigii)*

by

Hogantharanni Govender

Submitted in partial fulfilment of the academic requirements for the degree of Master of Science in the School of Chemistry, Faculty of Science and Agriculture, University of KwaZulu-Natal, Durban

December 2010

As the candidate's supervisors we have approved this thesis for submission.

Signed: ----- Date:----- Date:-----

Signed: ----- Date: ----- Date: -----

ABSTRACT

A comparative study was undertaken of different extraction methods for the isolation of volatile organic compounds from *Murraya koenigii* (curry leaf plant). The techniques studied included the traditional methods of extraction, namely, Soxhlet and solvent extraction as well as steam distillation. The solvent–free extraction techniques of headspace analysis and headspace solid phase micro-extraction (HS-SPME) were also investigated. In the evaluation of SPME, two different fibre coatings, poly(dimethylsiloxane) and poly(acrylate), were compared. Preliminary work to determine the effect of extraction parameters, such as extraction time, was carried out.

The volatile oils in the fresh leaves of *Murraya koenigii* were isolated by the abovementioned extraction methods and analysed by gas chromatography-mass spectrometry. The main aroma contributing compounds were identified by comparison of their retention times with those of standards and their mass spectra with those of known compounds contained in the National Institute of Science and Technology Standard Reference Database 1A (NIST 98).

The essential oil contained mainly terpenes: monoterpene and sesquiterpene hydrocarbons. The constituents were identified and only the five selected analytes of interest, α -pinene, β -pinene, α -phellandrene, β -caryophyllene and α -caryophyllene were quantified in three of the methods, namely solvent extraction, soxhlet extraction and steam distillation.

From the quantitative determination of the compounds of interest, steam distillation favoured the extraction of β -caryophyllene. The solvent and Soxhlet extractions showed no significant differences between the quantities obtained for α - and β -caryophyllene. The steam distillation and Soxhlet methods showed similar quantities of α -caryophyllene extracted. The extraction of the monoterpenes, α -pinene, β -pinene, and α -phellandrene, was favoured by the Soxhlet method of extraction. Quantification was difficult with HS-SPME and headspace analysis.

Headspace analysis proved effective in the detection of the very volatile analytes. Headspace-SPME combined with GC-MS was found to be suitable for the identification of both monoterpenes and sesquiterpenes of *M. koenigii*.

From this study, solvent extraction and Soxhlet extraction were found to be superior to the other methods studied for the characterisation and quantitation of the volatile organic compounds in essential oils of *Murraya koenigii*.

PREFACE

The experimental work described in this thesis was conducted in the School of Chemistry, University of KwaZulu-Natal, Durban, under the supervision of Professor B.S. Martincigh and Professor A. Kindness.

These studies represent original work by the author and have not been submitted in any other form to another university. Where use was made of the work of others it has been duly acknowledged in the text.

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to the following people for their contributory role in this study and to whom I am indebted to:

Firstly, my supervisors, Prof. B. S. Martincigh and Prof. A. Kindness, for their invaluable expertise, meticulous guidance and advice throughout the duration of this project.

Also, I thank Prof. S. Baijnath for the identification of the curry leaf trees and Dr D. H. Pienaar for his contributory role in this project.

I would like to extend my gratitude to Mr S Naidoo for his encouragement and proofreading of my thesis.

Mr B Parel for the training on the GC/MS.

Mr A Bissessur for his encouragement and support.

Research Administration of the University of KwaZulu-Natal for financial assistance towards this project and Dr S. Singh.

My colleagues in the School of Chemistry for their assistance, more especially Mrs T Naidoo, Mrs V Reddy and Mrs R Moodley.

My late father for being an inspiration in my life. My mother, brothers and sister for their constant moral support and encouragement.

Finally, my husband Thagaraj and my sons Teshan and Sherwyn Chester for their love and sacrifice. I thank both Thagaraj and Sherwyn for helping to take care of Teshan in my absence and most importantly, to Teshan, for his patience and understanding.

FACULTY OF SCIENCE AND AGRICULTURE DECLARATION 1 - PLAGIARISM

I, Hogantharanni Govender, declare that

- 1. The research reported in this thesis, except where otherwise indicated, is my original research.
- 2. This thesis has not been submitted for any degree or examination at any other university.
- 3. This thesis does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.
- 4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:
 - a. Their words have been re-written but the general information attributed to them has been referenced.
 - b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced.
- 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the References sections.

Signed

.....

TABLE OF CONTENTS

List of Figures	xiii
List of Tables	xviii
Abbreviations	xxii

INT	TRODUCTION		1		
1.1	Curry	Curry leaf, Murraya koenigii			
	1.1.1	Societal value	3		
	1.1.2	Phytochemistry	4		
	1.1.3	Compounds that give rise to aroma	6		
	1.1.4	The biogenesis of terpenes in plants	7		
		1.1.4.1 Biogenesis of monoterpenes	8		
		1.1.4.2 Biogenesis of sesquiterpenes	10		
1.2	The d	etermination of volatile organic compounds in M. koenigii	10		
1.3	Samp	le preparation	12		
1.4	Extra	ction techniques used in this study	13		
	1.4.1	Solvent extraction	13		
	1.4.2	Soxhlet extraction	14		
	1.4.3	Steam distillation	15		
	1.4.4	Gas phase extraction	15		
		1.4.4.1 Headspace analysis	15		
		1.4.4.2 Solid phase microextraction (SPME)	18		
1.5	Other	extraction methods	23		
	1.5.1	Supercritical fluid extraction (SFE)	23		
	1.5.2	Membrane extractions	24		
	1.5.3	Sorbent extraction	25		
	1.5.4	Solid-phase extraction (SPE)	25		
	1.5.5	Stir bar sorptive extraction	25		
	1.5.6	Microwave distillation-solid-phase microextraction	26		

	1.5.7	Microwave-assisted solvent extraction	26
	1.5.8	Microwave accelerated steam distillation (MASD)	26
1.6	Gas ch	nromatography	26
	1.6.1	The gas chromatographic system	27
		1.6.1.1 Carrier gas	28
		1.6.1.2 Sample injection	28
		1.6.1.3 Types of columns	28
		1.6.1.4 Oven	29
		1.6.1.5 Detectors	30
1.7	Gas ch	romatography-mass spectrometry analysis	31
	1.7.1	Brief overview of the gas chromatograph-mass spectrometer	31
	1.7.2	Inlets	33
	1./.3	Ion sources	33
		1.7.3.1 Electron impact ion source	33
		1.7.3.2 Chemical ionization source	34
	1.7.4	Mass analyser	35
	1.7.5	Ion detectors	36
		1.7.5.1 Electron multipliers	36
1.8	Mass s	spectra of the terpenes	37
	1.8.1	Fragmentation	37
		1.8.1.1 Factors influencing the fragmentation of an ion	38
	1.8.2	The mass fragmentation patterns	39
		1.8.2.1 Acyclic terpenes	39
		1.8.2.2 Cyclic terpenes	41
		1.8.2.3 Sesquiterpenes	45
	1.8.3	Identification of compounds using the mass spectral library	45
1.9	The ac	lvantages of using GC-MS	46
1.10	Outlin	e of this project	47

EXP	ERIME	NTAL	48		
2.1	Mater	Materials and equipment 2			
2.2	Sampl	le collection	48		
2.3	Prelin	ninary work	48		
	2.3.1	Choice of fresh or frozen leaves	49		
	2.3.2	Solvent choice for solvent and Soxhlet extraction	50		
	2.3.3	Headspace analysis and headspace solid phase microextraction	50		
		2.3.3.1 Equilibration time	50		
		2.3.3.2 Desorption time	51		
		2.3.3.3 Fibre coating	51		
2.4	Extrac	Extraction and isolation of the volatile oils			
	2.4.1	Extraction time	52		
	2.4.2	Procedure for solvent extraction	53		
	2.4.3	Procedure for Soxhlet extraction	53		
	2.4.4	Steam distillation	55		
	2.4.5	Vapour enrichment procedure	55		
	2.4	4.5.1 Extraction temperature	56		
	2.4	4.5.2 Headspace analysis procedure	56		
	2.4	4.5.3 HS-SPME analytical procedure	56		
2.5	GC-MS parameters				
	2.5.1	GC-MS sampling technique	58		
		2.5.1.1 Liquid phase	58		
		2.5.1.2 Vapour phase	58		
	2.5.2	Quantitative determinations	59		
	2.5.3	Data analysis	60		
	2.5.4	Component identification	61		
2.6	Summ	nary of conditions	63		

RESU	JLTS A	AND DISCUSSION	64
3.1	Orgar	nisation of results	64
3.2	Prelin	ninary study	64
3.2.1	Identi	fication of the volatile components in M. koenigii	66
3.2.2	Choic	e of solvent for solvent and Soxhlet extractions	68
	3.2.2.	1 Solvent extraction	68
	3.2.2.	2 Soxhlet extraction	71
3.2.3	Heads	space and HS-SPME extraction conditions	72
	3.2.3.	1 Equilibration time	73
	3.2.3.	2 Fibre desorption time	75
	3.2.3.	3 PDMS and PA fibre coating	76
3.3	Essen	tial oil analysis by solvent and Soxhlet extraction	84
	3.3.1	Extraction period	84
		3.3.1.1 Extraction period for solvent extraction	84
		3.3.1.2 Extraction period for Soxhlet extraction	88
		3.3.1.3 Sequential Soxhlet extraction	93
3.4	Steam	n distillation technique	96
	3.4.1	Method precision	99
3.5	Heads	space and HS-SPME extraction	102
	3.5.1	Effect of temperature	102
	3.5.2	HS-SPME (PDMS fibre coating)	104
	3.5.3	HS-SPME (PA fibre coating)	105
	3.5.4	Headspace technique	106
	3.5.5	Extraction efficiency	107
		3.5.5.1 Influence of temperature	107
		3.5.5.2 Extraction profile	111
	3.5.6	Method reproducibility	112
		3.5.6.1 HS-SPME	112
		3.5.6.2 HSA	114
3.6	Fragn	nentation and identification of components of extracts	117
	3.6.1	Fragmentation pattern of bicyclic terpenes	118

	3.6.2	Fragmentation pattern of monocyclic terpenes	120
	3.6.3	Comparison of mass spectra of detected compounds	122
	3.6.4	Limonene	123
	3.6.5	Simple β -fission initiated by an aromatic system	124
	3.6.6	Retro-Diels-Alder	124
3.7	Terper	noid profile of the essential oil in M. koenigii	127
	3.7.1	Comparison of the oil extracted using solvent, Soxhlet and steam	
		distillation methods	127
	3.7.2	The terpenoid profile of the oil with headspace analysis and	
		HS-SPME	130
	3.7.3	Comparison of the composition of the essential oil obtained	
		by different methods	134
3.8	Calibra	ation	140
3.9	Quanti	tation of the volatile compounds	155
	3.9.1	Quantification of the volatiles in the essential oil obtained from the	e
		solvent, Soxhlet and steam distillation techniques	156
	3.9.2	Statisical evaluation	163
3.10	Compa	arison of the methods of extraction	166
	3.10.1	Solvent and Soxhlet extraction methods	166
	3.10.2	Steam distillation method	168
	3.10.3	Headspace analysis and HS-SPME	168

CONCLUSIONS	170
FUTURE WORK	172
REFERENCES	174

APPENDICES

Appendix A	-	Materials	189
Appendix B	-	Equipment	190
Appendix C	-	Chromatograms and Mass Spectra	191
Appendix D	-	Chromatograms	211
Appendix E	-	Raw Data	226
Appendix F	-	Area Percent Reports	263
Appendix G	-	Presentation	310

LIST OF FIGURES

Figure 1.1	Curry leaf tree with small white flowers	2
Figure 1.2	Spice scented leaves	3
Figure 1.3	The structure of β-caryophyllene	4
Figure 1.4	The structure of α -pinene	4
Figure 1.5	The structure of β -pinene	4
Figure 1.6	The structure of isoprene from which terpenoids are formed	8
Figure 1.7	The mevalonate pathway	9
Figure 1.8	The structure of gurjunene	10
Figure 1.9	Schematic drawing of a solid phase microextraction device	19
Figure 1.10	The three extraction modes of SPME	20
Figure 1.11	A schematic diagram of a gas chromatographic instrument	
	and its components	27
Figure 1.12	Schematic diagram of a typical capillary column gas	
	chromatograph-mass spectrometer	32
Figure 1.13	A quadrupole mass analyser consisting of the source, the rods and	
	the detector	36
Figure 1.14	Mass spectrum of myrcene	40
Figure 1.15	Mass spectrum of allo-ocimene	40
Figure 1.16	Fragmentation of camphene	41
Figure 1.17	Mass spectrum of limonene	43
Figure 1.18	Extraction methods employed in this study	47
Figure 2.1	A schematic diagram of the Soxhlet apparatus	54
Figure 2.2	Headspace sampling with a SPME device	57
Figure 2.3	Library search results for α -phellandrene	62
Figure 3.1	An overlay chromatogram for the essential oil obtained from the	
	fresh and frozen leaves at 40 °C for the HS-SPME (PDMS fibre)	
	extraction	65
Figure 3.2	Total ion chromatogram of the oil obtained from the steam	
	distillation method	67

Figure 3.3	Total ion chromatogram for the essential oil obtained from the	
	solvent extraction with hexane	69
Figure 3.4	Total ion chromatogram for the essential oil obtained from the	
	dichloromethane solvent extraction	69
Figure 3.5	Total ion chromatogram for the essential oil obtained from the	
	solvent extraction with ethyl acetate	70
Figure 3.6	Total ion chromatogram for HS-SPME (PDMS coating) at 40 $^\circ$ C -	1
	desorption run.	76
Figure 3.7	Total ion chromatogram for a standard mixture at room	
	temperature for HS-SPME-PDMS fibre coating	77
Figure 3.8	Total ion chromatogram for a standard mixture at room	
	temperature for HS-SPME-PA fibre coating	78
Figure 3.9	Total ion chromatogram for a standard mixture at room	
	temperature for HSA	79
Figure 3.10	Comparison of the peak areas of the individual standards vs the	
	adsorption capacity of the combined standards for HS-SPME	
	(PDMS coating)	81
Figure 3.11	Comparison of the peak areas of the individual standards and the	
	peak areas of the combined standards for HS-SPME (PA coating)	82
Figure 3.12	Comparison of the peak areas of the individual standards and	
	the peak areas of the combined standards for HSA	82
Figure 3.13	Total ion chromatogram for the essential oil obtained from the	
	48 hour solvent extraction	85
Figure 3.14	Total ion chromatogram for the essential oil obtained from the	
	48 hour Soxhlet extraction	89
Figure 3.15	Total ion chromatogram for the first Soxhlet extraction, with	
	300 mL of dichloromethane	93
Figure 3.16	Total ion chromatogram for the second Soxhlet extraction	94
Figure 3.17	Total ion chromatogram for the third Soxhlet extraction	95
Figure 3.18	Total ion chromatogram for the essential oil obtained from the	
	steam distillation	96

Figure 3.19	Extraction profile for the selected hydrocarbons for the	
	HS-SPME (PDMS coating) method	104
Figure 3.20	The extraction profile of the target analytes in the HS-SPME	
	(PA coating) present at the different temperatures	105
Figure 3.21	Extraction profile of the five analytes present in the headspace	
	of M. koenigii at various temperatures	106
Figure 3.22	The effect of temperature on the headspace composition of	
	α-pinene	108
Figure 3.23	The influence of temperature on the headspace composition of	
	β-pinene	109
Figure 3.24	The influence of temperature on the headspace composition of	
	α-phellandrene	109
Figure 3.25	The influence of temperature on the headspace composition of	
	β-caryophyllene	110
Figure 3.26	The influence of temperature on the headspace composition	
	of α -caryophyllene	110
Figure 3.27	Total ion chromatogram for the headspace analysis at 60 $^{\circ}$ C	115
Figure 3.28	Comparison of mass spectrum of standard α -pinene with the mass	
	spectrum contained in the NIST library	119
Figure 3.29	Comparison of the mass spectrum of α -phellandrene with the	
	spectrum in the NIST library	121
Figure 3.30	Mass spectrum of standard α -pinene	122
Figure 3.31	Mass spectrum of standard β-pinene	123
Figure 3.32	The terpenoid profile of the oil composition from solvent and	
	Soxhlet extraction as well as steam distillation	129
Figure 3.33	An overlay chromatogram of the essential oil obtained during	
	steam distillation, solvent and Soxhlet extraction	129
Figure 3.34	An overlay chromatogram of the essential oil obtained with	
	headspace analysis and HS-SPME with both the PDMS and	
	PA fibre coatings	130
Figure 3.35	The relative distribution of the hydrocarbons in the essential oils	
	from the headspace and HS-SPME analyses	133

Figure 3.36	Comparison of the relative percentages of the hydrocarbons for	
	all the extraction methods studied	134
Figure 3.37	Typical ion chromatogram of a standard mixture consisting of the	
	five selected compounds and the internal standard	142
Figure 3.38	Calibration curve for α -pinene	146
Figure 3.39	Residual plot for the calibration curve of α -pinene	146
Figure 3.40	Calibration curve for β-pinene	147
Figure 3.41	Residual plot for the calibration curve of β -pinene	147
Figure 3.42	Calibration curve for α -phellandrene	148
Figure 3.43	Residual plot for the calibration curve of α -phellandrene	148
Figure 3.44	Calibration curve for β -caryophyllene	149
Figure 3.45	Residual plot for the calibration curve of β -caryophyllene	149
Figure 3.46	Calibration curve for α -caryophyllene	150
Figure 3.47	Residual plot for the calibration curve of α -caryophyllene	150
Figure 3.48	Calibration curve for α -pinene	152
Figure 3.49	Calibration curve for β-pinene	153
Figure 3.50	Calibration curve for α -phellandrene	153
Figure 3.51	Calibration curve for β-caryophyllene	154
Figure 3.52	Calibration curve for α -caryophyllene	154
Figure 3.53	Total ion chromatogram for the essential oil obtained from the	
	solvent extraction with the internal standard added at the start	
	of the extraction	157
Figure 3.54	Expanded chromatogram of Figure 3.53 showing the internal	
	standard, D	158
Figure 3.55	Total ion chromatogram for the essential oil obtained from the	
	solvent extraction with the internal standard added at the end	
	of the extraction	158
Figure 3.56	Total ion chromatogram for the essential oil obtained from the	
	Soxhlet extraction with the internal standard added at the start	
	of the extraction	159

Figure 3.57	Total ion chromatogram for the essential oil obtained from		
	the Soxhlet extraction with the internal standard added at the		
	end of the extraction	159	
Figure 3.58	Total ion chromatogram for the essential oil obtained from the		
	steam distillation extraction with the internal standard added at		
	the start of the extraction	160	
Figure 3.59	Total ion chromatogram for the essential oil obtained from the		
	steam distillation extraction with the internal standard added at		
	the end of the extraction	160	
Figure 3.60	A typical total ion chromatogram for the solvent extraction after		
	the 48 hour extraction	167	
Figure 3.61	A typical total ion chromatogram for the HS-SPME		
	(PDMS fibre coating) at 60 °C	169	

LIST OF TABLES

Table 1.1	Some physical properties of selected compounds and the internal	
	standard	5-6
Table 1.2	Aroma qualities of some terpenes found in dried fruits of	
	Xylopia aethiopica	7
Table 1.3	The principal mass spectral ion fragments and the relative	
	abundance of the cyclic terpenes	44
Table 2.1	A summary of the variables studied for the different	
	extraction techniques	63
Table 2.2	Summary for the GC-MS analysis conditions	63
Table 3.1	Peak labels for compounds of interest	67
Table 3.2	Peak areas for the compounds in <i>M. koenigii</i> from solvent	
	extraction	70
Table 3.3	Peak areas for the aroma components in M. koenigii obtained	
	From the Soxhlet method for a single analysis	72
Table 3.4	Peak areas for the five standards extracted by HS-SPME	
	(PDMS coating) at room temperature for two different	
	extraction periods	73
Table 3.5	Area percent report for HS-SPME (PDMS fibre coating) at	
	room temperature -15 mins	74
Table 3.6	Area percent report for HS-SPME (PDMS fibre coating) at	
	room temperature – 70 mins	75
Table 3.7	Area percent report for HS-SPME (PDMS fibre coating) for	
	standard mixture	78
Table 3.8	Area percent report for HS-SPME (PA fibre coating) for	
	standard mixture	79
Table 3.9	Area percent report for HSA for standard mixture	80
Table 3.10	Comparison of peak areas of individual standards and the	
	combined standards for the headspace methods	81

: 48
86
ion
88
48 hour
90
raction
92
steam
97
99
ation
100
ation
100
ation
101
nethod 102
f
103
of the
<i>i</i> leaves
113
acts
116
<i>igii</i> 118
120

Table 3.26	Relative percentage distribution of the terpene compounds	
	in the essential oil in the fresh leaves of M. koenigii	128
Table 3.27	Relative percentage distribution of the terpene compounds	
	in the different headspace methods at room temperature and	
	at 40 °C	131
Table 3.28	Relative percentage distribution of the terpene compounds	
	in the different headspace methods at 60 °C and 80 °C	132
Table 3.29	Volatile constituents tentatively identified in fresh leaves of	
	M. koenigii	136
Table 3.30	Concentration of compounds in of a standard mixture consisting	
	of the five selected compounds and the internal standard	142
Table 3.31	Calibration data for the determination of α -pinene	144
Table 3.32	Calibration data for the determination of β -pinene	144
Table 3.33	Calibration data for the determination of α -phellandrene	144
Table 3.34	Calibration data for the determination of β -caryophyllene	145
Table 3.35	Calibration data for the determination of α -caryophyllene	145
Table 3.36	Calibration data for the determination of α -pinene	151
Table 3.37	Calibration data for the determination of β -pinene	151
Table 3.38	Calibration data for the determination of α -phellandrene	151
Table 3.39	Calibration data for the determination of β -caryophyllene	151
Table 3.40	Calibration data for the determination of α -caryophyllene	152
Table 3.41	Average peak area ratios with the standard deviation and RSD	
	for solvent extraction	161
Table 3.42	Average peak area ratios with the standard deviation and RSD	
	for Soxhlet extraction	161
Table 3.43	Average peak area ratios with the standard deviation and RSD	
	for steam distillation	162
Table 3.44	Concentration of the five volatile compounds determined in the	
	essential oil of M. Koenigii by steam distillation, Soxhlet	
	extraction and solvent extraction with the internal standard added	
	at the start and at the end of the extraction.	162

Table 3.45	Statistical evaluation using the ONE-WAY ANOVA for		
	comparison between the methods	164	
Table 3.46	Statistical analysis for the mean concentrations of the essential		
	oils with the various extraction methods	165	
Table 3.47	Method comparison for the quantitation of compounds with		
	different volatilities	169	

ABBREVIATIONS

GC	gas chromatography
GC-MS	gas chromatography-mass spectrometry
HS-SPME	headspace solid phase microextraction
HSA	headspace analysis
MAHD	microwave-assisted hydrodistillation
MASD	microwave-assisted steam distillation
MS	mass spectrometry
NIST	National Institute of Standards and Technology
PA	polyacrylate
PDMS	polydimethylsiloxane
mg L ⁻¹	parts per million
RT	room temperature
SBSE	stir bar sorptive extraction
SD	steam distillation
SFE	supercritical fluid extraction
SPE	solid phase extraction
SPME	solid phase microextraction
VOCs	volatile organic compounds

INTRODUCTION

In this work different extraction methods for volatile organic compounds, namely terpenes, in *Murraya koenigii* (curry leaves) were studied. Headspace analysis, headspace solid phase microextraction, Soxhlet and solvent extraction, as well as steam distillation, were used to isolate terpenes from fresh curry leaves.

The use of *Murraya koenigii* (*M. koenigii*), containing terpene compounds, in flavouring foods has become common practice in South Africa. High temperature extraction of herbs is of interest, because extraction around 100 °C is similar to the extraction of the aroma contributing compounds during the cooking process. Thus the identity (and possibly quantity) of the compounds extracted with steam distillation may closely resemble that which is present in a cooked meal (Yang *et al.*, 2007).

The aim of this project was the comparison of the five extraction methods for the determination of volatile organic compounds. The different extraction methods were compared in order to determine the relative sensitivities, reproducibility and efficiency of these techniques for the analysis of volatile organic compounds in essential oils. Optimization of the extraction conditions was also investigated. The work involved identifying the methods' strengths and weaknesses by ensuring that the methods which were studied are reproducible, time effective and cost effective under the given conditions. This study also involved the identification and characterization of the aroma contributing components present in the essential oil of *M. koenigii* obtained from the different extraction techniques.

In general, a sample preparation method should have the following analytical performance characteristics: It should be efficient, selective, applicable to various compounds and matrices, allow for simple automated use and field analysis, easy to use, inexpensive, compatible with a large number of analytical instruments, fast, use a minimum amount of solvent or be solvent-free and have few steps (Steffen and

Pawlisyn, 1996).

This thesis consists of four chapters. Chapter 1 contains a general introduction and the purpose of the study. It also introduces the different techniques employed in this work. The techniques involved include headspace analysis (HSA), headspace solid microextraction (HS-SPME) with two different fibre phase coatings, polydimethylsiloxane (PDMS) and polyacrylate (PA); Soxhlet (SOX) and solvent extraction (SE), as well as steam distillation (SD). Chapter 2 gives details of the experimental procedures undertaken in this study. In Chapter 3 the results obtained from this study and their discussion is presented. Chapter 4 provides a conclusion of the work undertaken.

1.1 Curry leaf, Murraya koenigii

The genus *Murraya*, named after John Andrew Murray, which in turn belongs to the plant family *Rutaceace* (Bailey, 1958), consists of 11 species (Ranade *et al.*, 2006). This genus of small trees is found throughout tropical and subtropical Asia from China and India to New Caledonia and North-eastern Australia (Li *et al.*, 1988). It is also found in various areas throughout South Africa, for example, Phoenix, Chatsworth and Reservoir Hills. The curry leaf is a small tree with small white flowers (Figure 1.1) and spice-scented leaves (Figure 1.2) and fruit.

Figure 1.1 Curry leaf tree with small white flowers (<u>http://www.plantoftheweek.org/week129.shtml</u>).

Figure 1.2 Spice scented leaves (<u>http://www.healthy-lifestyle.most-effective-solution.com/wp-content/uploads/2007/04/curry-leaf.jpg</u>).

1.1.1 Societal value

The curry leaf has been used in Asian-Indian cooking for its characteristic flavour and aroma (Fiebig *et al.*, 1985). Greater interest has been generated in the use of the plant since its antioxidant and anti-carcinogenic potential has been reported (Palaniswamy *et al.*, 2002).

This plant has important medicinal properties. The leaves have been shown to be effective for the control of dysentery, diarrhoea and vomiting (Rahman and Gray, 2005; Walde *et al.*, 2006). The extracts of the bark and leaves have been utilised for poisonous animal bites (Aman, 1996). Fruit juice has been administered to patients with kidney conditions and the leaf extracts have been used effectively against fungi which cause ringworm (Walde *et al.*, 2006). *M. koenigii* has been used in Ayurveda (the traditional Indian herbal medicine system) in the West Indies and parts of Asia due to its hypoglycaemic activity (Bhattacharyya and Chakraborty, 1984). The plant has also been used in the system of indigenous medicine (Ranade *et al.*, 2006). This species

has been included for the treatment of ailments such as rheumatism and for analgesia (Adesina *et al.*, 1988). Malmuthuge *et al.* (2007) showed in their work that the use of *M. koenigii* decreased the blood cholesterol level of mice.

1.1.2 Phytochemistry

Indian workers have carried out a number of studies on the leaf composition and qualities of *M. koenigii* which have been reported in literature (MacLeod and Pieris, 1982; Paranagama *et al.*, 2002). MacLeod and Pieris (1982) reported that a study undertaken earlier by Mitra obtained ca. 2.6 % of essential oil by means of steam distillation and Prakash and Natarajan (1974) identified the presence of caryophyllene (Figure 1.3), α -pinene (Figure 1.4) and β -pinene (Figure 1.5) in the volatile oil.

Figure 1.3 The structure of β - caryophyllene.

Figure 1.4 The structure of α -pinene.

Figure 1.5 The structure of β -pinene.

According to Bhattacharyya and Chakraborty (1984), *M. koenigii* was known to be the richest source of carbazole alkaloids reported. Mukherjee *et al.* (1983) isolated mukonicine, a carbazole alkaloid, from the leaves of *M. koenigii*. Studies on other parts of the plant have been done mostly on trees growing in India (Reisch *et al.*, 1994). In the root extract of the curry leaf plant, murrastifoline-F was found to exist as a 56:44 mixture in favour of the *M*-enantiomer (Bringmann *et al.*, 2001).

Some physical properties of selected compounds investigated in this study, including the internal standard, dodecane are shown in Table 1.1.

Compound	Molar mass/g mol ⁻¹	Boiling point/°C	Density/ g mL ⁻¹	Structure
α-pinene	136	154-156	0.858	
β-pinene	136	164-169	0.859	
α-phellandrene	136	171-174	0.840	
β-caryophyllene	204	262-264	0.902	H

Table 1.1 Some physical properties of selected compounds and the internal standard.

Compound	Molar mass/g mol ⁻¹	Boiling point/°C	Density/ g mL ⁻¹	Structure
α-caryophyllene	204	266-268	0.889	
Dodecane	170	215-217	0.748	

Table 1.1 Contd. Some physical properties of selected compounds and the internal standard.

1.1.3 Compounds that give rise to aroma

Compounds that contribute to the aroma of the *Murraya* species are found mainly in the volatile fraction designated the essential oils. The fresh leaves of *M. koenigii* containing these aroma compounds are an important ingredient in Indian food thereby imparting a flavour to the food. The essential oil composition is made up of mixtures of volatile substances: terpenes, sesquiterpenes and oxygenated derivatives which are usually present in low concentrations (Deng *et al.*, 2006; Diaz-Maroto *et al.*, 2002). The aroma is determined by those compounds which are released into the surrounding atmosphere, due to their vapour pressure. Thus, this gas phase composition can be characterized by using headspace gas chromatography. However, an important consideration is that the aroma producing compound can be present in concentrations near or well below the limit of gas chromatographic detection (Kolb, 1982).

Since the constituent compounds are volatile, the essential oils can be analysed by gas chromatography and gas chromatography-mass spectrometry (GC-MS). However,

since there is very little structural difference between the compounds, the mass spectra obtained from the GC-MS are similar, which makes identification of the compounds difficult (Oprean *et al.*, 2001). Studies on the composition of the essential oils have been done which has led to the identification of the key aroma contributing components (Clery, 2006). Different blends of compounds are responsible for the production of an aroma, e.g. some common terpenes found in *M. koenigii* leaves are also found in dried fruits of *Xylopia aethiopica* and their aroma qualities, as reported in the work of Tairu *et al.* (1999), are listed in Table 1.2.

Table 1.2 Aroma qualities of some terpenes found in dried fruits of *Xylopia aethiopica* (Tairu *et al.*, 1999).

Aroma Compound	Aroma Quality
α-thujene	sweet, terpeny
α-pinene	terpeny
camphene	spicy, fruity
β-pinene	terpeny
α-phellandrene	light minty
limonene	light, lemon-like
trans-β-ocimene	flowery
β-phellandrene	terpeny
α-farnesene	sweet, flowery
sabinene	terpeny

1.1.4 The biogenesis of terpenes in plants

The terpenes are the most diverse group of plant secondary products (King *et al.*, 2004). Experimental studies have been performed on the biosynthesis within these organisms, and the structure and configuration of some major terpenes has been established (Bernfeld, 1967).

The terpenoids, which belong to a large and diverse group of natural products, are formed from the formation of C_5 (isoprene) units (Figure 1.6). Leopold Ruzicka proposed the *isoprene rule*: joining of isoprene units linked together in a head-to-tail manner (Sarker and Nahar, 2007). They are modified further by cyclization reactions and specific re-arrangements involving oxidation, reduction and hydroxylation.

Figure 1.6 The structure of isoprene from which terpenoids are formed.

Although isoprene occurs naturally, in rubber as well as in plant and animal sources (Morrison and Boyd, 1987), it is the biochemically active isoprene units formed from acetate metabolism by way of mevalonic acid (MVA) and identified as the diphosphate (pyrophosphate) esters, dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP), that are involved in the formation of these compounds (Figure 1.7) (Dewick, 1997). Typical structures, shown in Figure 1.7, contain carbon skeletons, with the monoterpenes represented by C_{10} and the sesquiterpenes represented by C_{15} (Haagen-Smit, 1953).

1.1.4.1 Biogenesis of monoterpenes

Ruzicka suggested a series of ionic mechanisms for the formation of cyclic monoterpenes from geraniol (or linalool or myrcene) or a radical mechanism for cyclization of the hydrocarbons ocimene or myrcene. The basis for these suggestions was the cyclization of an acyclic precursor to a cyclic form which, by re-arrangements, forms more complex cyclic terpenes. According to Gascoigne (Bernfeld, 1967), the bicyclic monoterpenes are likely to be formed in a single reaction from an acyclic prototype rather than from a monocyclic hydrocarbon. In Croteau *et al.* (1986), it was reported that relevant model systems for the biogenesis of the bicyclic monoterpenes have not, to date, been realised.

Figure 1.7 The mevalonate pathway (Dewick, 1997).

1.1.4.2 Biogenesis of sesquiterpenes

This group of compounds, may occur in acyclic, bicyclic and tricyclic forms and can be divided into three isopentane units connected head-to-tail (Bernfeld, 1967). One such example of these terpenes is gurjunene (Figure 1.8). Farnesol serves as a precursor for a large number of sesquiterpenes (Bernfeld, 1967).

Figure 1.8 The structure of gurjunene.

1.2 The determination of volatile organic compounds in *M. koenigii*

A classical technique for the determination of essential oils and aromas from plants or spices utilises two steps: extraction (steam distillation, hydro-distillation, simultaneous distillation–extraction) and analysis (gas chromatography (GC) or GC-MS). The extraction step can last for up to several hours, while the analysis step is usually short (Chemat *et al.*, 2006).

Various extraction techniques have been reported for the extraction of essential oils from curry leaves (Li *et al.*, 1988; MacLeod and Peiris, 1982; Paranagama *et al.*, 2002; Wong and Tie, 1993). In the study undertaken by MacLeod and Pieris (1982), the leaves (100 g) from Sri Lanka were chopped, mixed with 500 mL of water and extracted for four hours in a modified Likens and Nickerson distillation-extraction apparatus with trichlorofluoromethane as the extracting solvent. The main aroma contributing

constituents of *M. koenigii*, namely, β -caryophyllene, β -gurjunene, β -elemene, β -phellandrene and β -thujene, were identified by GC-MS.

The essential oil from *M. koenigii* found in Malaysia was extracted by means of a conventional steam distillation technique by Wong and Tie (1993), and analysed by GC-MS. In their work, fresh whole leaves were steam distilled for four hours. This was followed by extraction of the steam distillate with dichloromethane. After solvent removal, 0.23% (m/m) of light yellow oil with an aroma characteristic of the leaves was obtained. Sixty-two components were identified in the oil. The major constituents identified by GC-MS were α -pinene (17.5%), β -phellandrene (24.4%), β -caryophyllene (7.3%) and terpinen-4-ol (6.1%).

In the work carried out by Li *et al.* (1988), the samples from China were extracted by concurrent steam distillation-solvent extraction for three hours in a Likens and Nickerson apparatus with diethyl ether as the solvent. The oil was analysed by GC-MS and showed α -pinene to be the most abundant compound present.

Paranagama *et al.* (2002) isolated the volatile oil in the fresh leaves of *M. koenigii* grown in Sri Lanka. They used a method similar to that of MacLeod and Pieris (1982), described above, but used isopentane (20 mL) instead of trichlorofluoromethane to trap the volatiles. The extract was concentrated to 2.0 mL, dried over anhydrous sodium sulfate and evaporated to almost dryness. Individual constituents were identified by GC-MS. The terpenoid profile of the oil obtained from this study was reported to be different from the earlier study of MacLeod and Pieris (1982), which showed the presence of 16% monoterpenes and 80% sesquiterpenes. They found 44.6% monoterpene and 37.3% sesquiterpene hydrocarbons.

The monoterpene hydrocarbons have been widely studied whilst the study of the sesquiterpenes has been hindered by separation problems since most plants have complex matrices which produce compounds with similar mass spectra (Andersen and Falcone, 1969). Therefore, the need for successful separation prior to the analytical determination arises when dealing with complex mixtures (Morrison and Freiser, 1957).

Even though GC-MS can be used in the interpretation of the plant aroma profile, the problem of extraction and concentration of the aroma constituents, before GC analysis, has not been resolved (Guerrero *et al.*, 2006).

1.3 Sample preparation

'The goal of any sample preparation step is to yield the target analytes in a form and concentration that can be readily analyzed' (Wang, 1997). The factors that should be taken into account to achieve this goal are determined by the nature of the sample, including its matrix, the information required, the time available for the analysis as well as qualitative and quantitative factors (Jennings and Rapp, 1983).

The main goal of sample preparation procedures is the isolation of the analytes (Romanik *et al.*, 2007). Each step in the procedure can result in the loss of analyte, which becomes important when the amounts of isolated substances are present in small quantities. The procedure for the determination of compounds in plants includes three steps: the preliminary sample preparation, followed by the extraction of the target analytes and finally the analyte enrichment step.

The preliminary sample preparation requires collection and homogenization of the plant material. The collection of representative plant material is problematic due to variability of individual plants among a species or variety. The analyte enrichment stage involves the use of techniques such as steam distillation, solvent and Soxhlet extraction, as well as headspace and headspace microextraction.

Essential oils are a collection of volatile compounds that gives the distinct aroma. The objective of this study was to extract all the volatile compounds from the leaves of *M. koenigii*, without losing them, while at the same time eliminating all the non-volatile compounds. A large amount of research has been carried out on the study of volatile organic compounds from complex matrices.

According to Mamede and Pastore (2006), when the volatile fraction is to be studied, it is usually necessary to combine different extraction methods to obtain a total extraction profile of the volatile analytes, which would be a true representation of the sample aroma. Mamede and Pastore (2006) reported that several extraction methods, each with its own advantages and limitations, have been developed and used. However, as reported by Gomez and Witte (2001), many of these methods require long extraction periods and a sufficient quantity (in grams) of sample. Ortega-Heras *et al.* (2002) also found that different extraction methods were complementary for the characterisation of aroma composition.

1.4 Extraction techniques used in this study

The different techniques employed for the extraction of the volatile compounds in the essential oils of the leaves of *M. koenigii* are discussed in Sections 1.4.1 to 1.4.2.4.

1.4.1 Solvent extraction

Solvent extraction is an important part of an analysis and is widely used in the study of natural products. The method is used to isolate the analyte from any interferences that may be present with the analyte (Hargis, 1988). In this technique, the volatile analytes are extracted from an aqueous matrix into an organic solvent. The basic principle of this method involves the partitioning of the solute between an organic phase and an aqueous phase. Due to the immiscibility of the two phases, two layers are formed, with the denser layer settling at the bottom. After the extraction process, the solute is present in both phases (Harvey, 2000). The correct choice of solvent concentrates the analyte preferentially in one phase, thereby improving the extraction efficiency of the method.

The solvent used in this method of extraction needs to meet the following requirements:

i) It must have a low solubility in water.
- ii) It has to have the chemical properties that will induce the analytes to have a greater affinity for the extracting solvent than water.
- iii) The volatility of the extraction solvent must be taken into account if an additional concentration step is required (Grob, 1995a).

A disadvantage of this technique is that it is non-discriminatory, i.e. all compounds, the volatiles, semi-volatiles and non-volatiles, are extracted during the same extraction step. Also, during the evaporation step, loss of the highly volatile compounds can take place (Diaz-Maroto *et al.*, 2002).

1.4.2 Soxhlet extraction

This is one of the traditional methods used for the isolation of metabolites from plant material. Analytes that have medium and low volatility (which may play a role for the aroma and quality of oil extracted from the plant material) are extracted with this technique (Romanik *et al.*, 2007). The correct choice of solvent is important in order to obtain a good yield from the extraction as well as to prevent the loss of volatiles. The solvent used with this method is indicative of the polarity of the compounds extracted. This technique is a continuous extraction process and is described in Chapter 2, Section 2.4.2.

The extraction is usually carried out for a long period. The disadvantage of this technique is that, due to the long heating period, the analytes are exposed to high temperatures, which may lead to thermal degradation of some compounds (Grob, 1995a). The recovered sample is dilute and has to be concentrated further (Jennings and Shibamoto, 1980), by evaporation. It is during this step that loss of volatiles can take place.

1.4.3 Steam distillation

Steam distillation involves passing a steady flow of steam through the sample material to isolate water-insoluble volatile compounds (Mann and Saunders, 1960). It has been widely used to isolate volatile compounds, such as essential oils, from plants (Romanik *et al.*, 2007). The oil that is obtained usually has an odour characteristic of the original plant (Strietwieser *et al.*, 1992). However, this method of extraction has limitations. Due to the extraction being carried out at high temperature (100 °C), thermal decomposition of the substances may occur (Romanik *et al.*, 2007). The monoterpenes have also been reported to be vulnerable to chemical changes when steam distillation is used and loss of the compounds with high volatility can take place during the evaporation step (Diaz-Maroto *et al.*, 2002).

1.4.4 Gas phase extraction

In this sample preparation method, the analytes are partitioned into the gas phase. During this process, the non-volatile compounds are eliminated, simplifying the analysis, e.g. preventing contamination of the gas chromatographic column (Pawliszyn, 1997). Despite this technique being less time-consuming and solvent free when compared to solvent extraction and steam distillation, it still has limitations, such as lack of sensitivity when compared to liquid phase extraction.

This sample preparation method is classified further into headspace and supercritical fluid extraction methods (discussed in Section 1.5.1). The headspace sampling method has been widely used for the analysis of volatile compounds (Kolb and Ettre, 2006).

1.4.4.1 Headspace analysis

This solvent free sample preparation method has shown potential for the development of enrichment techniques for the analysis of volatile organic compounds (Tolgyessy and Hrivnak, 2006). Headspace analysis combined with GC is an indirect method used to determine the volatile components in the vapour phase which are in equilibrium with the sample to be analysed. It is employed mainly for the determination of trace components in samples which cannot be handled by conventional GC analysis. It is used for samples which undergo decomposition when the sample is vaporized and for samples which form dissociation products during sampling (Hachenberg and Schmidt, 1986).

The headspace concentration of a solute is influenced by several factors. The amount of component *i* in the headspace is determined by its partial pressure, p_i . The partial pressure itself depends on the following:

- i) the vapour pressure of the pure component, $i(p_{io})$,
- ii) the concentration of $i(x_i)$, and
- iii) the activity coefficient of *i* in the sample to be analysed (y_i) , which is given by equation (1.1)

$$p_i = x_i y_i p_{io} \tag{1.1}$$

Since the peak area (F_i) gives a measure of the amount of component *i* in the headspace and $F_i = (p_i)$, the peak area is then given by:

$$F_i = f(x_i, y_i, p_{io}) \tag{1.2}$$

The concentration of the analyte in the headspace is affected by temperature and equilibration time. Since the vapour pressure is temperature dependant, the precision of temperature control becomes important. Also, the time required to reach the vapour pressure equilibrium, which is dependent on the nature of the sample, needs to be taken into account (Jennings and Rapp, 1983).

There are two methods of headspace analysis: static and dynamic.

i) Static headspace analysis

In this method, a small volume of the sample is injected into the GC, after it has reached equilibrium with its headspace.

At equilibrium, the partition coefficient, K, is given by the following equation:

$$K = \frac{C_s}{C_g} \tag{1.3}$$

where C_s is the concentration of the analyte in the sample phase and C_g is the concentration of the analyte in the gas phase.

The gas phase (headspace) lies above the sample phase which contains the compounds of interest. Since the method is not an exhaustive extraction, except for very volatile gases, it lacks a concentrating effect and therefore the sensitivity obtained is low. This technique has applications in the analysis of volatile organic compounds (VOCs) in food, beverage, clinical, and frequently in field analysis (Pawliszyn, 1997a).

The prepared sample obtained from the headspace method must have the maximum concentration of volatile components present in the headspace, while at the same time, eliminating contaminants from other compounds in the sample matrix. By adjusting the temperature of the extraction process, the volatility of the analyte changes and this improves the transfer of volatile compounds from the sample material into the headspace of the flask. Equilibration times may vary due to the different physical characteristics of the sample matrix. This equilibration can be achieved quickly, if the flask is shaken or vibrated. By increasing the headspace sample size and temperature, the sensitivity of the method can be improved (Hachenberg and Schmidt, 1986).

ii) **Dynamic headspace**

This technique uses multiple processes. One such example is the purge and trap method. In the first step of this approach an inert carrier gas is bubbled through a liquid and removes the volatiles from the matrix. In the second step, the stripped volatiles are then collected quantitatively by using a cold or a sorbent trap. After adsorption onto a sorbent, the compounds are then desorbed by heating in the injection port of the GC. A disadvantage of this technique is carryover from a previous determination (Pillonel *et al.*, 2002) which can lead to incorrect results.

1.4.4.2 Solid phase microextraction (SPME)

This technique, developed by Pawliszyn in 1989, has been used as an alternative to the dynamic headspace method as a sample pre-concentration technique before gas chromatographic analysis (Vichi *et al.*, 2007). It was developed to overcome the limitations of solid phase extraction (SPE) and has been used for the analysis of polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pesticides and more recently for the analysis of a new group of organic pollutants, brominated flame retardants (Polo *et al.*, 2006). This technique is environmentally-friendly because it is a solvent-free determination, i.e. it does not make use of any organic solvent (Guillen *et al.*, 2004).

(For a more comprehensive study of this technique see Pawliszyn, 1997).

i) **Basic principles of SPME**

This method makes use of a simple apparatus, the SPME device, illustrated in Figure 1.9, for the extraction of the analytes from a sample. In this process, the coated fibre is exposed to the sample or its headspace. This is followed by partitioning of the analytes from the sample matrix into the fibre coating. Once equilibrium between the sample matrix and the fibre coating has been

established, the extraction is complete and the fibre containing the concentrated extract is thermally desorbed into an analytical instrument where separation and quantitation occurs (Pawliszyn, 1997b).

Figure 1.9 Schematic drawing of a solid phase microextraction device (Vas and Vekey, 2004).

The choice of the fibre coating can improve the selectivity of the analysis as a suitable stationary phase can be selected appropriate to the target analytes (Steffen and Pawliszyn, 1996). The selection of the appropriate fibre in an analysis is important since the type and quantity of compounds extracted from the sample is dependent on the properties of the fibre stationary phase and also on the film thickness. The extraction of the analyte into the fibre makes use of the principle of 'like dissolves in like' and there are specific coatings available for different applications (Garcia-Estabana *et al.*, 2004).

Thus far, the most commonly used fibre coating for the analysis of nonpolar compounds is poly(dimethylsiloxane) with a thickness of 100 μ m and for the analysis of polar compounds, polyacrylate with 85 μ m thickness and carbowax/polyethylene glycol-divinylbenzene with a film thickness of 65 μ m (Wang, 1997). The coating thickness of the fibre influences the quantity of the analyte extracted and the equilibration time is also affected which in turn is affected by temperature. However, by increasing the extraction temperature there is an an increase in the diffusion coefficient and a decrease in the distribution constant which results in more analyte being extracted and faster determinations (Pawliszyn, 1997c). An advantage of this method is that sampling, extraction and concentration can be performed in one step (Lompart *et al.*, 1998).

ii) **SPME sampling**

There are three modes of SPME sampling: direct extraction, headspace SPME, and membrane-protected SPME as shown in Figure 1.10.

Figure 1.10 The three extraction modes of SPME: a) direct extraction,

b) headspace SPME, (c) membrane-protected SPME (Pawlisyzn, 1997d).

Direct extraction

In this mode, there is direct insertion of the coated fibre into the gaseous or aqueous sample. This facilitates the transport of the analytes directly from the sample matrix into the extracting phase. Once equilibrium between the sample matrix and the fibre coating has been established, the extraction is complete and the partition coefficient can be defined as:

$$K_{fs} = \frac{C_f}{C_s} \tag{1.4}$$

where K_{fs} is the partition coefficient, C_f is the equilibrium concentration of analyte in the fibre coating and C_s is the equilibrium concentration of analyte in the sample.

In the case of direct sampling, the mass of the analyte can be determined from equation (1.5) below:

$$n = \frac{K_{fs}V_{f}C_{o}V_{s}}{K_{fs}V_{f} + V_{s}}$$
(1.5)

where C_o is the initial concentration of the analyte in the matrix and V_f and V_s are the volume of the coating and matrix, respectively.

Headspace mode

Since the analytes are transported through the air before they reach the coating, the fibre coating is protected from damage by high molar mass and other nonvolatile interferences present. If the sample and headspace volume is kept constant, then the amount of analyte extracted into the coating using direct and headspace sampling are the same. This is due to the fact that the equilibrium concentration is independent of fibre location in the sample/headspace system. If this condition is not satisfied, a significant difference between the direct and headspace methods exists only for very volatile analytes. This method makes provision for the modification of the sample matrix, such as change in pH (Pawliszyn, 1997d).

In the headspace mode, volatiles are extracted faster than semi-volatiles since they are at a higher concentration in the headspace. Equilibration times are shorter in headspace SPME than for direct extraction under similar conditions. Headspace SPME is applicable to medium to high volatiles and has applications in food and pharmaceuticals, environmental, as well as clinical and forensic studies. In the case of food quality control, HS-SPME was found to be the most common and easiest technique as reported by Bosch-Fuste *et al.* (2007).

Membrane-protected SPME

In this method of analysis, the fibre is is separated from the sample with a selective membrane, which allows the analytes to diffuse through. In this way, the fibre is protected by the membrane against damage, especially when dirty samples are used. However, the extraction is hindered as the analytes need to diffuse through the membrane before reaching the coating. This can be overcome by using thin membranes and increasing the extraction temperature. This method proves to be useful for the determination of analytes having low volatility.

iii) Selection of an extraction mode

When selecting an extraction mode the sample matrix, analyte volatility and its affinity for the matrix, need to be taken into consideration. Direct sampling can be done for clean matrices. The headspace should be selected for samples which

contain substances that can damage the fibre coating. As stated earlier, the quantity of analyte extracted into the coating from the same vial with the direct or headspace mode is the same as long as sample and gaseous headspace volumes are kept constant. The headspace is the preferred method for the high volatile analytes, because of faster equilibration times. The equilibration time of aqueous samples is determined by the effectiveness of the agitation technique (Pawliszyn, 1997d). For compounds with low volatility, the membrane-protected SPME method is found to be suitable.

1.5 Other extraction methods

A brief discussion on other extraction methods used for the isolation of volatile compounds, but not used in this work, follows in Sections 1.5.1 to 1.5.8.

1.5.1 Supercritical fluid extraction (SFE)

This method uses compressed carbon dioxide as an extracting phase to remove less volatile compounds at ambient temperature. In addition to CO_2 obtaining supercritical conditions readily, its properties, namely, non-toxic, non-flammable, chemically stable with no retention of solvent residue, makes it a suitable extracting phase. By regulating the pressure and temperature conditions, the dissolving power of supercritical fluids can be adjusted thus making SFE an alternative to conventional extraction procedures. The final composition of the extract will be affected by the extraction pressure and temperature range because the solubility of all the components in the fluid will depend on these parameters (Diaz-Maroto *et al.*, 2002).

SFE can employ static, dynamic or static-dynamic modes of extraction. In the case of the **static** mode, a fixed amount of CO_2 is used to interact with the matrix in a sealed

vessel. When the **dynamic** extraction mode is used, a more exhaustive extraction occurs as fresh CO_2 is continuously pumped through the sample. The **static-dynamic** mode is used when CO_2 is required to diffuse through the matrix. The extractants are generally recovered in a cooled liquid solvent or by solid trapping and are analysed off-line via GC-MS or HPLC-MS (Jublot *et al.*, 2004).

A supercritical fluid extraction of the volatile and semivolatile compounds from commercial cigarettes, undertaken by Xu and Zhang, (2004), showed that in addition to the working temperature of this technique being low, it uses less solvent and the extraction period is shorter. A disadvantage of CO_2 in SFE extraction is its low polarity which limits the dissolution of polar analytes. Although the compounds become difficult to extract, addition of polar modifiers such as methanol can overcome this (Cao *et al.*, 2007). The elevated pressure as well as the high cost of the equipment used with this technique therefore disadvantages it as a method of choice.

1.5.2 Membrane extractions

This method of extraction consists of two processes: analytes from the sample matrix are extracted by the membrane material, and at the same time the stripping phase extracts the analytes from the membrane. In addition to volatile compounds, this method can also be used for the extraction of high molar mass compounds by using higher temperatures or micro-porous membranes with various pore diameters, and has been applied to the analysis of semi-volatile compounds by using a high pressure stripping gas (Pawlisyzn, 1997).

1.5.3 Sorbent extraction

This process involves using an adsorbent material, a sorbent, to extract and concentrate trace organic compounds from various matrices such as water, air and soil (Pawliszyn, 1997b).

1.5.4 Solid–phase extraction (SPE)

In this method, the compounds from an aqueous sample are extracted from a liquid phase, partitioned and/or adsorbed onto a stationary phase (sorbent). When a flat membrane (disk) is used, the liquid matrix is passed through the disk containing sorbent dispersed on a particulate support to extract analytes together with interfering compounds (Pawliszyn, 1997b). To allow extraction of different classes of compounds, the extracting phase is varied (Christian, 2000). For the reversed phase extraction of nonpolar or compounds with medium polarity such as caffeine, drugs and pesticides, C-18 (octadecylsilane) can be used.

The proper selection of solvent is dictated by the polarity of the target analyte of interest, i.e. whether it is polar or non-polar. This technique is used mainly for the extraction of semi-volatiles and non-volatiles from a liquid matrix. Hence it could not be used in this work since highly volatile components were extracted from a solid matrix.

1.5.5 Stir bar sorptive extraction

The mechanism of this technique is similar to SPME. To increase the rapid transfer of analytes to the polymer coating, a magnetic stir bar coated with polydimethylsiloxane (PDMS) is added to the sample. The analytes are desorbed in the GC injector once the extraction period is complete (Guerrero *et al.*, 2006).

1.5.6 Microwave distillation-solid-phase microextraction

A study undertaken by Deng *et al.* (2006) on traditional Chinese medicines combined microwave distillation with SPME. The extraction, isolation and concentration of the oils was done in a single step, requiring little sample and no organic solvent and water.

1.5.7 Microwave-assisted solvent extraction

The application of microwave heating for the isolation of essential oils from plant material has generated interest. An advantage of this technique is the reduction of extraction time and reduced use of organic solvent (Deng *et al.*, 2006).

1.5.8 Microwave accelerated steam distillation (MASD)

The extraction of the essential oil with this technique is a one step process which uses microwaves and steam distillation (SD). During this process, the essential oil is released from plant material and is then evaporated by steam. The extracted oils can be analyzed using GC-MS. Although the extraction temperature for SD and MASD is the same, 100 °C, the yields obtained after a shorter extraction period are comparable to the yields obtained using SD (longer extraction time), thus indicating the rapidity of MASD (Chemat *et al.*, 2006).

1.6 Gas chromatography

The mixture to be separated and analysed in this work is the essential oils from the fresh leaves of *M. koenigii*. Two criteria which are extremely important in any analysis are that the data must be accurate and precise and be obtained within the shortest period of time (Grob, 1995b). Since the components present in the essential oils cover a wide range of volatiles, the use of gas chromatography (GC) combined with a suitable

detector, such as a mass spectrometer, as an analytical technique would be appropriate. This combined GC-MS analytical technique has been used to obtain both qualitative and quantitative information and has been widely used in the analysis of volatile compounds.

1.6.1 The gas chromatographic system

In gas chromatography, a sample is vaporised and the components are separated as a result of partitioning that takes place between the mobile gas phase and the stationary phase. The mobile phase is referred to as the carrier gas. The stationary phase can be either a liquid or solid, packed in the column. The vaporised sample is injected into the column and the compounds are eluted with the mobile phase. A schematic illustration of a gas chromatograph is shown in Figure 1.11.

There are two types of gas chromatography: gas-liquid chromatography (GLC), commonly called gas chromatography and gas-solid chromatography (GSC) but only GLC and its aspects relevant to this study will be discussed.

Figure 1.11 A schematic diagram of a gas chromatographic instrument and its components (Kindness, Practical Manual, Chem 340, University of KwaZulu-Natal, 2009).

1.6.1.1 Carrier gas

The most commonly used mobile-phase is helium for GC-MS, although argon, nitrogen and hydrogen can be used as well. Nitrogen, which is less expensive is generally used for GC. The carrier gas should be inert to prevent interaction with the sample. It should also be readily available, pure and inexpensive.

1.6.1.2 Sample injection

The sample size must be appropriate when injected as a "plug" of vapour. If too much sample is injected or it is injected slowly, band broadening can occur. With the aid of a microsyringe, the sample is injected through a rubber septum into a heated port situated at the head of the column.

To ensure that the sample is vaporised completely, the injector temperature is set at 50 °C higher than the least boiling component. To prevent the sample from overloading the column, i.e by injecting a large sample size which can hinder column performance, capillary split and splitless injectors can be used. Once the sample is injected, it is mixed with the carrier gas in the injection chamber and the gas is purged. In the case of split injection, only a small amount of the sample is transported by the carrier gas and enters the column. By means of the splitless mode, a larger amount of the sample enters the column (http://en.wikipedia.org/wiki/Gas-liquid_chromatography).

1.6.1.3 Types of columns

There are two basic types of columns which have been used generally in gas chromatography: packed and capillary (open tubular) columns. The packed columns are made from glass or metal tubing and are 2 to 3 m in length. They are densely packed with a solid support which is coated with a thin layer of the stationary liquid phase. There are two types of capillary columns: wall-coated open tubular (WCOT),

constructed earlier of stainless steel, copper or plastic and later glass, with a thin layer of the stationary phase and support-coated open tubular (SCOT) columns, where the inner surface is lined with a thin film of support material such as diatomaceous earth onto which the stationary phase is absorbed. Currently, the most widely used capillary columns are the fused-silica open tubular (FSOT) columns. These columns are much thinner and give a better separation. Also, the separation of the FSOT column is greater than that of the WCOT, SCOT and the packed column. The FSOT column is a new type of WCOT column. In the WCOT column the walls are coated with a liquid stationary phase and in the FSOT column the walls, which are much thinner, are coated with polyimide. The FSOT column has a fused silca tube and a chemically bonded which added flexibility stationary phase gives it strength and (http://teaching.shu.ac.uk/hwb/chemistry/tutorials/chrom/gaschrm.htm).

The most common liquid stationary phase used for the separation of nonpolar phases, hydrocarbons and polynuclear aromatics is polydimethyl siloxane whilst 50% cyanopropyl-polydimethyl siloxane is used for the separation of polyunsaturated fatty acids, free acids and alcohols (Skoog *et al.*, 2004). The separation of compounds is based on the boiling points of the different components. Compounds with low boiling points (the high volatile compounds) will pass through the column faster than the compounds with high boiling points (the compounds of low volatility) (http://orgchem.colorado.edu/hndbksupport/GC/GC.html).

1.6.1.4 Oven

Since the column temperature plays a key role in obtaining a good separation, the column is placed inside a thermostated oven. The boiling points of the solute govern the choice of the temperature program. Therefore, the temperature of the oven is set below that of the lowest boiling solute and thereafter increased uniformly (Harvey, 2000).

1.6.1.5 Detectors

In the selection of the suitable detector, several requirements need to be met. Some of these are:

- i) The detector should display adequate sensitivity. Detectors which are currently available lie in the 10^{-8} to 10^{-15} g solute/s sensitivity range.
- ii) It should afford good stability and reproducibility.
- iii) A linear response should be obtained for solutes which are present over several orders of magnitude.
- iv) It should have a similar response towards all solutes which are present, or a predictable and selective response towards one or more of the solutes belonging to the same class.

No single detector satisfies all these criteria. Although there are different types of detectors available, only two detectors will be discussed in this work: these are the flame ionization detector (discussed briefly) and the mass spectrometer (discussed in Section 1.7).

Flame ionization detector

This is the most widely used detector for gas chromatographic analysis. With this detector, the effluent from the column is pyrolyzed in an air/hydrogen flame. Organic compounds produce ions and electrons during this process and detection involves monitoring the current produced during the collection of these ions and electrons. A voltage applied between the burner tip and a collector electrode serves to collect the ions and electrons and the resulting current is then measured (McNair and Bonelli, 1968).

The use of the flame ionisation detector for the identification of the volatiles from the retention times of the compounds has long been in existence. However, this detector is limited in its use, as the sample is destroyed and no futher detection of the ions can be

done. A disadvantage of this detector is that it is not selective, i.e it responds to almost all organic compounds, producing peaks but does not tell us the nature of the compound. The identification of the compounds is based on the comparison of retention times with known compounds.

The greatest value of the retention information would serve as a complimentary criterion for the accurate identification of the compound. When the GC-MS produces similar mass spectra for the structurally related compounds, positive identification can be difficult. Thus, the retention times of the compounds can be used together with the mass spectra to positively identify the unknown compound. The sesquiterpene hydrocarbon is a good example of this. Once the compound has been identified as a sesquiterpene hydrocarbon, using the precise retention times from the use of an authentic sample, a more accurate identification of the sesquiterpene can be done (Jennings and Shibamoto, 1980).

1.7 Gas chromatography-mass spectrometry analysis

Gas chromatography when combined with mass spectrometry (GC-MS) is a powerful tool for the separation and structural elucidation of components of volatile mixtures (Jennings and Shibamoto, 1980). The mass spectrometer is a sensitive, universal detector and when combined with a gas chromatograph has been widely used for the analysis of foods, petroleum products and pharmaceuticals products.

1.7.1 Brief overview of the gas chromatograph-mass spectrometer

The essential features of a gas chromatograph-mass spectrometer are presented in Figure 1.12 and only certain aspects relevant to this study are discussed briefly in Sections 1.7.2 to 1.7.5.1.

After the sample is injected into the capillary GC and separated, the effluent from the GC enters the inlet of a quadrupole mass spectrometer. Once the sample is ionized in the ion source, the ions are propelled out of the chamber towards an exit slit by the application of a low positive potential. On exiting the ion chamber, the ions are accelerated through a high potential and passed into the analyser for separation according to their mass-to-charge ratio. A dynode electron multiplier is used to detect the ions. The amplified signals from the electron multiplier are passed to a computer which evaluates the incoming data and prints out the required information (Hoffmann *et al.*, 1996).

The analysis of the data can be performed in different ways. In one approach, the ion abundances in each spectrum can be summed and plotted as a chart called the total ion chromatogram, with the ion current on the y-axis versus time on the x-axis. In another approach, a single ion can be selected and monitored and this is called selected ion-monitoring (Skoog *et al.*, 2004). In this latter mode the mass spectrometer becomes a very selective detector and the chromatograms are greatly simplified.

Figure 1.12 Schematic diagram of a typical capillary column gas chromatograph-mass spectrometer (Fowlis 1998).

1.7.2 Inlets

Sample introduction into the mass spectrometer is dependent on its phase (whether it is a gas, liquid, solid or solution) and the ionisation technique used. The effluent from the column of a gas chromatograph passes directly into the source of a mass spectrometer (Henderson, 2005b).

1.7.3 Ion sources

Detection using a mass spectrometer can be significantly affected by both the amount and the chemical nature of the compound. This is due, in part, to the ionization potential of the specific compound. The selected method of ionization depends on the type of analysis which is needed as well as on the type of compound. There are a number of methods for ionizing compounds, the commonest is electron impact (EI) (Johnstone, 1972).

The method used to ionize a substance affects the mass spectrum. The mass spectrum shows the *molecular ion* ($M^{+\bullet}$) resulting from the ionization of a molecule as well as the most intense peak in the mass spectrum, the base peak, which is assigned an intensity of 100% (Carey, 2007).

Although there are several ion sources available, only the two sources commonly used with GC-MS will be discussed briefly. These are the electron impact ion source, which was developed first and which is used commonly in most organic analyses, and the chemical ionization (CI) source.

1.7.3.1 Electron impact ion source

After the sample is injected into the capillary GC, the effluent enters the ion source where the molecules are ionized. The ion source consists of a heated filament giving off electrons which are accelerated towards the anode and collide with the gaseous analyte molecules (Hoffmann *et al.*, 1996). Once the sample is ionized in the ion source, the ions are propelled out of the chamber towards an exit slit by the application of a low positive potential. On exiting the ion chamber, the ions are accelerated through a high potential and passed into the analyzer. Some of the advantages of the use of this ionization source include its stability, lack of contamination problems and relatively high sensitivity, which makes it a popular choice (Chapman, 1993). However, the shortcomings of this ionization are that the sample must be thermally volatile and the molecular ion may be weak or not present for many compounds (Henderson, 2005a).

1.7.3.2 Chemical ionization source

In electron ionisation mass spectra, the abundance of the molecular ion is frequently Thus structural identification becomes difficult due to the lack of molecular low. weight information. This problem can be overcome by using a softer ionization technique called chemical ionization (CI) which is more suited for the analysis of polar compounds (http://www.cee.vt.edu/ewr/environmental/teach/smprimer/ms/ms.html). In chemical ionization mass spectrometry, the sample molecules react with reagent ions from the reagent gas, e.g. methane, to produce an analyte ion through the transfer of a charged species (which is usually a proton) between reactants. At low pressure, methane is ionised and the molecular ion (resulting from the ionisation of the molecule) is formed, $CH_4^{+\bullet}$. At higher pressures collision of these molecular ions with other methane molecules take place to form carbonium ions, CH_5^+ . If a substance M is present, it will collide with the carbonium ions to form a pseudomolecular ion. MH⁺ through the transfer of a proton, H⁺. In this process the ions do not fragment as easily as during the electron impact mode. The spectrum produced is simpler with a few fragment ions (Henderson, 2005a), which makes it good for producing the molecular ion, however, the problem is that very few fragments are produced and therefore accurate identification of the compound can be problematic. The electron impact spectrum run on the same compound will have to be obtained to provide complementary information.

1.7.4 Mass analyzer

After the ions have been produced, separation according to their mass has to take place. There are several types of mass analyzer units available to separate the ions according to their mass-to-charge ratio. These include a sector field mass analyzer, the time-of-flight analyzer, as well as the quadrupole mass filter (Figure 1.13) and the ion trap (Pare and Yaylayan, 1997). The quadrupole analyzer, invented by W. Paul, consists of four cylindrical rods and only ions with a selected mass to charge ratio go between the rods. The ions are separated according to their m/z ratio.

Since the mass spectrometer used in this work was equipped with a quadrupole mass analyzer, this mass filter will be emphasised. In a quadrupole analyzer a voltage is applied between the adjacent rods. There is an electrical connection between the opposite rods. Once the ions have been injected within the filter with a small voltage, they start to oscillate within the electric field. The ions with the masses which fall within the stable oscillating region will continue on the same path within the rods and reach the detector. The ions with the masses which are present in the unstable oscillation region are lost on the rod assembly. This is how mass separation takes place in a quadrupole analyzer (Chapman, 1993). In the case of the ion trap instrument, all the ions present inside the trap are expelled according to their mass (Hoffmann *et al.*, 1996).

Figure 1.13 A quadrupole mass analyser consisting of the source, the rods and the detector (<u>http://ael.gsfc.nasa.gov/saturnGCMSMass.shtml</u>).

1.7.5 Ion detectors

The most widely used detector, the electron multiplier, which was used in this study to detect the ions which were produced, will be discussed.

1.7.5.1 Electron multipliers

After the separation in the analyzer, the ion currents with different intensities reach the detector. An electron multiplier used to detect the energetic ions causes the emission of several secondary particles when a positive or negative ion reaches the plate, also known as the conversion dynode. Thereafter, these secondary particles pass into the continuous-dynode electron multiplier. They then strike the cathode, dislodging electrons during the collision. As they pass further into the electron multiplier, more electrons are produced, thereby amplifying the signal. The amplified signals from the

electron multiplier are passed to a computer which evaluates the incoming data and prints out the required information. Once a mass spectrum is obtained, the problem arises of meaningful interpretation of the recorded data which consists of a large number of peaks of varying intensities. The following section (Section 1.8) will discuss this aspect for the compounds of interest in this work.

1.8 Mass spectra of terpenes

The mass spectra obtained for some of the compounds (the isomers) in the essential oils in this study were very similar which made positive identification difficult. Therefore, a brief discussion follows on the fragmentation of an ion, the factors influencing it and the fragmentation patterns of representative terpenes.

The interpretation of the mass spectrum can be problematic (Biemann, 1962). The spectra contained in the mass spectral library may have been obtained by different methods of ionization. Spectra obtained by chemical ionization are not suitable for matching the unknown spectrum with the spectra in the library due to variation in experimental conditions. Therefore, a standard of the compound of interest has to be used so that the mass spectrum of the unknown compound can be compared with that of the known standard (Johnstone, 1972).

1.8.1 Fragmentation

A *molecular ion* $(M^{+\bullet})$ resulting from the ionization of a molecule may contain sufficient internal energy to fragment by ejection of a neutral particle (N) with the formation of a *fragment ion* $(A^{+\bullet} \text{ or } A^{+})$. A neutral molecule gives a radical-cation as the molecular ion, and the fragment ion may be a cation or a radical-cation. The ejected neutral particle (N) may be a radical or neutral molecule.

$$M \xrightarrow{-e} M^{+\bullet} \longrightarrow A^{+} + N^{\bullet}$$

$$M \xrightarrow{-e} M^{+\bullet} \longrightarrow A^{+\bullet} + N$$

Further decomposition may occur, if the fragment ion (e.g. A^+) has sufficient internal energy. New fragment ions (B^+ , C^+ , etc.) are then formed, until there is insufficient internal energy for further reaction to take place.

$$M^{+} \xrightarrow{-N^{\bullet}} A^{+} \xrightarrow{-N_{a}} B^{+} \xrightarrow{-N_{b}} C^{+} etc$$

Such a series of decompositions contained in a mass spectrum is a *fragmentation pathway*. The molecular ion $(M^{+\bullet})$ and any of the fragment ions $(A^+, B^+, C^+, \text{etc.})$ may decompose by more than one pathway. The different fragmentation pathways together comprise a *fragmentation pattern* characteristic of the compound which is being investigated. A fragmentation pattern consisting of only one pathway will produce a simple spectrum. On the other hand, if the fragmentation pattern contains more than one pathway, a complex spectrum is produced. The extent of fragmentation depends on the amount of internal energy imparted to the molecular ion $(M^{+\bullet})$, its structure, as well as the time allowed between ion formation and detection. As a result, the mass spectrum obtained is due to the appearance of the fragmentation pattern at specified energies and times (Rose and Johnstone, 1982).

1.8.1.1 Factors influencing the fragmentation of an ion

Fragmentation of the molecular ion takes place in the ion source. The molecule is bombarded with a high energy (70 eV), in order to ionize it. The energy transferred to the molecule is sufficient to break a bond or more than one bond. In the mass spectrum that is produced, numerous peaks are present (Biemann, 1962). Some peaks are intense, whereas others are weak or barely visible. The preferential formation of ions is due to three main factors:

- i) the molecule's tendency to break some of the bonds rather than others,
- ii) the stability of the fragmentation products (which predominates), and
- iii) the relative spatial arrangement of the atoms (Frigerio, 1974).

1.8.2 The mass fragmentation patterns

The mass fragmentation patterns of terpenes have been widely studied. The mass spectra of only those terpenes relevant to this study are discussed briefly in this Section and in Chapter 3, Sections 3.10 to 3.10.6. The fragmentation patterns for representative terpenes are presented here and suggested fragmentation patterns are shown in Chapter 3, Schemes 1 and 2.

1.8.2.1 Acyclic terpenes

The formation of terpenes is based upon the polymerization of an isoprene unit. Isoprene has an abundant parent molecular ion, with the base peak corresponding to the loss of a single hydrogen atom. Dimerization of isoprene leads to the monoterpenes. These may be acyclic, monocyclic or possess two rings. The acyclic members representative of the series are myrcene and allo-ocimene. Although myrcene and allo-ocimene have the same molar mass of 136, they differ structurally, and the mass spectra shown in Figures 1.14 and 1.15 respectively, also differ. However, a closer examination of the mass spectra still needs to be done for positive identification.

Figure 1.14 Mass spectrum of myrcene (http://webbook.nist.gov, date accessed: 16/09/2003).

Figure 1.15 Mass spectrum of allo-ocimene (http://webbook.nist.gov, date accessed: 16/09/2003).

Close examination of the strucutures of both compounds show that they contain three double bonds and each terminates in an isopropenyl group. Myrcene has a single bond

which is doubly allylic. This feature correlates well with the low abundance (8%) of the parent molecular ion 136 in Figure 1.14. This is absent in allo-ocimene and thus the molecular ion 136^+ , shown in Figure 1.15, is more abundant (51%). Myrcene undergoes decomposition more readily than other compounds in its group (Reed, 1966).

The loss of a methyl group in allo-ocimene, results in a base peak at m/z = 121 (M-15). The three methyl groups present are attached vinylically to double bonds and even in such circumstances a methyl can be lost (Ryhage and von Sydow, 1963). In comparison, the base peak in myrcene corresponds to the ion m/z = 41 (Figure 1.14). However, this is not readily derived without re-arrangement or at least extensive bond migration.

1.8.2.2 Cyclic terpenes

A series of cyclic monoterpenes including camphene, the isomeric pinenes, and the menthadienes, one of which α -1, 8(9)-p-menthadiene known as *d*-limonene, have been studied. The base peak 93⁺ in the case of the pinenes, and camphene (Figure 1.16), is clearly the loss of the di-substituted bridge carbon. Thus, for camphene the sequence (Reed, 1966) is shown in Figure 1.16.

Camphene

m/z 93

Figure 1.16 Fragmentation of camphene.

In the menthadienes, there is no bridge across the ring and the corresponding base peak is m/z = 93. The loss of the isopropyl group cannot be clearly explained. In the case of 1,4-*p*-menthadiene, it is assumed that double bond migration occurs. A conjugated double bond system will be more stable than a non-conjugated system (Reed, 1966).

The sequence is, therefore (Reed, 1966)

In the case of *d*-limonene, the rupture of two of the allylic bonds takes place via the fission process. Two isoprene molecules are formed, one of which carries the positive charge (Biemann, 1962).

In the mass spectrum of limonene, a strong peak representing the formation of the base peak at 68 (shown in Figure 1.17) is observed.

Figure 1.17 Mass spectrum of limonene (http://webbook.nist.gov).

The principal ions in the group together with the relative abundance are shown in Table 1.2. From this table four compounds, α -pinene, β -pinene, camphene and α -fenchene, have a base peak at 93. This would make complete identification extremely difficult.

To overcome this difficulty, the selected ion monitoring (SIM) mode, which is more sensitive than the full scan mode, should be used. In this mode, the mass spectrometer obtains data for selected masses unique to that compound.

	Compound (% Abundance)						
m/z	camphene	α-pinene	β-pinene	α-fenchen	d-limonene	p-methene	pinane
27	44.1	21.1	31.4	44.0	32.46	36.28	58.72
29	14.7	9.44	10.9	15.8	12.68	15.25	34.11
39	51.4	23.7	33.2	49.0	44.29	31.60	59.17
40	10.4	-	-	-	12.02	-	9.75
41	58.6	23.2	63.9	58.9	34.68	42.24	100.0
43	-	-	-	-	-	11.79	16.51
53	15.3	10.5	14.0	21.4	28.23	18.27	24.29
55	-	-	-	-	-	25.71	86.24
67	33.7	-	-	-	40.19	40.19	49.35
68	24.5	-	-	-	100.0	55.06	33.72
69	-	-	46.7	-	-	16.81	49.29
77	23.0	22.1	18.3	30.9	15.87	11.12	-
79	37.5	17.7	19.9	62.6	25.18	14.98	10.50
80	12.2	9.81	10.4	47.0	10.18	-	-
81	-	-	-	27.7	10.54	26.22	44.90
82	-	-	-	-	-	14.96	57.24
83	-	-	-	-	-	-	53.88
91	21.8	21.2	13.2	26.2	14.52	-	-
92	-	29.7	-	16.1	16.33	-	-
93	100.0	100.0	100.0	100.0	53.36	-	-
94	16.7	-	13.5	30.3	18.77	10.19	-
95	21.9	-	-	-	-	100.0	74.42
96	-	-	-	-	-	16.48	29.13
107	29.2	-	-	25.3	14.48	-	-
121	62.6	13.2	-	39.1	16.69	-	-
123	-	-	-	-	-	13.52	19.96
136	14.2	80.5	7.01	23.7	19.35	-	-
137	1.5	0.85	0.76	2.58	2.16	-	-
138	-	-	-	-	-	26.73	4.52
139	-	-	-	-	-	3.46	0.65

Table 1.2 The principal mass spectral ion fragments and the relative abundance of the cyclic terpenes (Reed, 1966).

1.8.2.3 Sesquiterpenes

This $C_{15}H_{24}$ group includes acyclic, monocyclic, bicyclic and tricyclic compounds. Little information of their cracking patterns is known.

1.8.3 Identification of compounds by using the mass spectral library

Prediction of the mass spectrum of most molecules (except for simple molecules) from first principles is difficult. This is because of the complex processes that take place during the dissociation of the molecule. For example, dissociation of complex ions can occur through a series of consecutive and competitive pathways. Also, rearrangement of the ions can result, making it difficult to assign the fragment ion to a distinct structural unit in the original molecule. Therefore, the mass spectra of unidentified compounds are compared to the mass spectra of known compounds which are contained in a reference library.

In the evaluation of each spectrum, during comparison, the assigned name, structural drawing and the spectrum should be consistent. In addition, the most characteristic peaks for the molecular structure must be present and an in-depth knowledge of established rules of fragmentation is required (Ausloos *et al.*, 1999). The mass spectral reference library, however, cannot be used as a unique and absolute criterion for the identification of chromatographic peaks. This is due mainly to the vast number of mass spectra contained in the library which have been recorded under different conditions and which can lead to incorrect results (Oprean *et al.*, 2001).

For unequivical identification of the compound, the 'unknown' spectrum is compared with the spectrum of the known compound. If the mass spectrum of the unknown is identical to the standard, then it is highly likely that the substances are identical (Leathard and Shurlock, 1970). The most reliable reference spectrum is that which is produced from the same mass spectrometer under the same operating conditions. Although some isomers give closely related spectra, those spectra that are identical with respect to both mass and relative abundance data will in most cases demand identical molecular structures, except in the case of optical isomers (McLafferty, 1966).

In addition, spectra containing errors can be corrected. Some categories of errors are:

- i) Peaks due to impurities: These peaks result from foreign compounds. One such example is that of "column bleed" from compounds previously determined in the mass spectrometer. A base-line subtraction should be done in this case.
- ii) Transcription errors: One or more peaks may be displaced from their expected position. These errors can be commonly found in old mass spectra before computerized mass spectrometers were developed. Any ambiguity in the spectra can be corrected.
- iii) Spurious peaks: Such peaks arise because of instrument noise and are simply disregarded (Ausloos *et al.*, 1999). These peaks can contribute to the making of false identifications (Stein, 2005).

1.9 The advantages of using GC-MS

The GC-MS analysis used in this study can be readily adaptable to most laboratories performing volatile and semi-volatile analyses. Unique hydrocarbon distributions can be critically evaluated by using mass spectral analysis in order to determine the nature of the compounds present. Furthermore, the availability of the full-scan GC-MS data allows one to perform a mass spectral analysis and to evaluate unusual (or differing) hydrocarbon distributions in terms of unknown and tentatively identified compounds. The availability of the GC-MS data coupled with a competent mass spectral analysis can provide enough information to discern the nature of the organic material in the sample.

1.10 Outline of this project

The different sample preparation techniques according to the extracting phases employed in this work are shown in Figure 1.18. For the traditional methods of solvent and Soxhlet extraction, the solvent choice, as well as different extraction periods were studied to determine the optimium extraction conditions. In the case of the HSA and HS-SPME, extraction temperature, extraction time, desorption time and fibre coating were investigated to determine the optimium extraction conditions of volatile organic compounds. According to my knowledge, there has been no reported literature for the headspace and HS-SPME analysis of the essential oil in *M. Koenigii* thus far. A comparison of all the methods, including steam distillation was undertaken to identify the shortcomings and advantages of each technique.

Figure 1.18 Extraction methods employed in this study.

The experimental procedures undertaken in this work are presented in Chapter 2 and Chapter 3 provides a discussion of the results obtained from the various experiments.

CHAPTER 2

EXPERIMENTAL

This chapter details the experimental procedures of the different extraction techniques that were used to extract the volatile components from the fresh leaves of *M. koenigii*. It includes details of the subsequent GC-MS analysis of these extracts.

2.1 Materials and equipment

The materials and equipment used for the various experimental procedures are listed in Appendix A.

2.2 Sample collection

The leaves of *M. koenigii* were collected from a garden in the Shannon Drive area of Reservoir Hills, Durban, South Africa. The tree from which the leaves were cut was identified by Emeritus Professor H. Baijnath of the School of Biological and Conservation Sciences, University of KwaZulu-Natal (Westville Campus).

2.3 Preliminary work

Different variables with major and minor effects have been found to affect plant growth. Some of these factors are environmental factors such as temperature and rainfall (seasonal variation), insufficent water or nutrients, plant diseases (Jackson, 1986) and soil conditions. Therefore differences occur when the final complex plant extract is analysed. However, in this work certain fundamental aspects needed to be studied first before any studies on reproducibility could be performed. Therefore, preliminary work had to be done in order to ascertain the broad parameters used in extraction techniques and to obtain a reasonable starting point.

2.3.1 Choice of fresh or frozen leaves

An initial study was undertaken to determine whether there was any difference in the amount and proportion of volatile components between fresh and frozen leaves. This initial work was carried out by means of HS-SPME with a 15 minute equilibration period and the SPME fibre with the PDMS coating.

Prior to the extraction process, fresh as well as frozen leaves (~25 g) were milled to an average size of approximately 1 mm by means of a blender, in order to increase the surface area and thereby increase the extraction efficiency. The leaves were taken from the same tree. The sample was milled for the same time period (15 mins), weighed accurately and the mass recorded.

Five compounds, α -pinene, β -pinene, α -phellandrene, α -caryophyllene and β caryophyllene, were tentatively identified and selected for the initial studies. The results of these preliminary studies are discussed in Chapter 3, Section 3.2, showed that extraction yields were greater for the highly volatile compounds (the monoterpenes) at a temperature of 40 °C, when frozen leaves were used, and a greater yield was obtained for the sesquiterpenes when fresh leaves were used. Consequently, for the reason stated in Section 3.2, and since most studies on *M. koenigii* have been performed on fresh leaves (MacLeod and Pieris, 1982; Paranagama, *et al.*, 2002; Wong and Tie, 1993), all analyses in this work were performed on fresh leaf samples. Also, due to the widespread interest in the analysis of volatiles released from food whilst fresh (Pare and Yaylayn, 1997), the essential oils in this work were extracted from fresh leaves. The study of the frozen leaves could lend itself to future work by examining the effect of freezing on the stability of the compounds.
2.3.2 Solvent choice for solvent and Soxhlet extraction

Although there are many factors that affect the yield from solvent and Soxhlet extraction methods, the two most important factors, extraction time and solvent choice, were evaluated in this work. The most suitable solvent to be used was investigated in a preliminary study and the extraction time was investigated in subsequent work.

Three solvents, namely, hexane, dichloromethane and ethyl acetate, were investigated for their ability to extract the aroma compounds, the terpenes, from the fresh leaves of *M. koenigii*. These results are discussed in Chapter 3, Section 3.2.2. The results showed that the largest yields for the five selected analytes were obtained when dichloromethane was used. In addition, Barra *et al.* (2007) reported in their work on the flavour components from French beans (*Phaseous vulgaris* L.), that it is the most suitable solvent for the extraction of a large class of flavour compounds.

2.3.3 Headspace analysis and headspace solid phase microextraction

Since sampling conditions could affect extraction efficiencies, the following parameters were investigated in a preliminary study: equilibration time for both headspace analysis and HS-SPME, and the fibre desorption time for HS-SPME. The adsorption capacity of the compounds with the two different fibre coatings: poly (dimethylsiloxane) (PDMS) and poly (acrylate) (PA), was investigated at room temperature. The headspace technique (no fibre present) was also investigated in this study.

2.3.3.1 Equilibration time

In the case of SPME, the fibre with the PDMS coating was exposed to the headspace of the fresh sample at room temperature for the following equilibration times: 15 and 70 minutes. From the results obtained, shown in Chapter 3, Section 3.2.3.1, it was observed that nothing was gained after the 15 minute equilibration period, since the

headspace extraction of analytes is an equilibrium technique and not an exhaustive extraction method. Fifteen minutes appears to be long enough for equilibrium to take place. Therefore, this 15 minute equilibration period was chosen for all the extractions in the headspace mode. Bichi *et al.* (2007) reported that non-equilibrium conditions are usually selected for the analysis of complex mixtures, and particularly for natural products.

2.3.3.2 Desorption time

Different fibre desorption times from 30 seconds to 5 minutes were investigated. A desorption time of 5 minutes (discussed in Section 3.2.3.2, page 75), which was also used by Flores *et al.* (2006) in their investigation of volatile compounds in food, was found to be sufficient for the quantitative desorption of all the analytes studied in this work.

2.3.3.3 Fibre coating

According to Hamm *et al.* (2003), for a matrix with a large number of compounds, a competition exists for the active sites on the SPME fibre coating. A preliminary investigation was therefore undertaken to examine which type of fibre would provide the most efficient sorption of the target analytes. Two different types of fibre coatings were investigated: PDMS with 100 μ m thickness and PA with 85 μ m thickness coating. The stationary phase thickness and the distribution constant determines the amount of analyte that can be adsorbed onto the fibre (Povolo and Contarini, 2003).

Standard mixtures of nine compounds as well as individual standards of some of the compounds were analysed. It needs to be pointed out that the concentrations of these compounds analysed differed from the concentrations of the components present in the oil and compounds other than those analysed were also present in the oil. The results of the selected compounds of interest are reported in Chapter 3, Table 3.10, page 81.

Results showed that a larger amount was extracted for the individual standards and a smaller amount for the compounds present in the combined mixture for the monoterpenes for both the fibre coatings. In comparison, a larger amount of the sesquiterpenes was extracted for the combined standard mixture than when the compounds were present on their own. However, the amount of the selected hydrocarbons extracted was larger when the PDMS fibre coating was used and smaller when the PA coating was used. Further discussion of these results can be found in Chapter 3, Section 3.2.3.3, page 76.

2.4 Extraction and isolation of the volatile oils

The experimental procedures for the various techniques can be found in Sections 2.4.2 through to 2.4.5.3.

2.4.1 Extraction time

In both the solvent and Soxhlet extractions, three separate replicate samples were used. The different time periods studied were: 24, 48 and 72 hours. These results can be found in Chapter 3, Section 3.3.1.

A sequential Soxhlet extraction with dichloromethane was conducted to extract the volatile compounds. After the first 24 hour extraction, solvent was removed and a second 300 mL aliquot of dichloromethane was added to the same 24 hour sample. The results showed that the sesquiterpenes, β -caryophyllene, α -caryophyllene, β -selinene and valencene were still being extracted even after the further 24 hour extraction period was over, i.e. after 48 hours. A third extraction on the same 24 hour period sample indicated that the extraction process was complete, and no further compounds were extracted after 48 hours. Analyses of the results also showed that the optimium extraction period for the five selected compounds, was found to be 48 hours. The same extraction periods were used for solvent extraction.

2.4.2 Procedure for solvent extraction

The extraction of the organic components was carried by adding 300 mL of dichloromethane to 25 g milled leaves (weighed accurately) contained in a 500 mL Erlenmeyer flask. The flask was then stoppered and placed on a mechanical shaker for extraction of the analytes by agitating the milled leaves. The extraction process was conducted at room temperature. The extracts obtained were dried with anhydrous Na_2SO_4 . This was followed by reducing the volume of the extracts with a rotary evaporator and transferring them to a 5 mL volumetric flask.

2.4.3 Procedure for Soxhlet extraction

Soxhlet extraction was conducted according to the standard method (Furniss *et al.*, 1989) with similar apparatus as illustrated in Figure 2.1. The thimble (Advantec 30 x 100 mm) was first extracted with dichloromethane and dried. Subsequently, a 25 g (accurately weighed) sample of milled leaves was placed in the thimble. Extraction of the leaves was carried out by using 600 mL of dichloromethane. During this process the solvent is vaporised and condenses on the solid sample contained in the thimble and the soluble compounds are extracted. When the liquid level rises to the top of the extractor, it is siphoned back into the flask. This process occurrs continously for the required extraction period. After the extraction period, the samples were treated in a similar manner as described in Section 2.4.2.

Figure 2.1 A schematic diagram of the Soxhlet apparatus, 1: round-bottom flask,2: solid sample contained in the thimble, 3: siphon, 4: condensor (http://en.wikipedia.org/wiki/Soxhlet_extractor).

2.4.4 Steam distillation

A 25 g sample of accurately weighed milled leaves, done in triplicate, was placed in 300 mL water in a 500 mL round-bottom flask and a steady flow of steam was blown in from a steam generator via a glass inlet tube. The material to be steam-distilled was then heated, by means of a heating mantle, and the vapour (containing the volatile organic compounds mixed with steam) was passed through a condenser and collected in the receiver flask (Mann and Saunders, 1960). The duration of the steam distillation process was 3 hours. The condensate (approximately 500 mL) was divided into two fractions. Each 250 mL fraction was extracted with 3 x 50 mL aliquots of dichloromethane. The combined extracts were dried with anhydrous Na₂SO₄ and evaporated to dryness with a rotary evaporator. The isolated oils were weighed and the masses obtained are recorded in Table 3.16 which can be found in Chapter 3, Section 3.4.

In order for the samples to be injected into the gas chromatograph they must be present at an appropriate concentration level. When the concentration level of the analyte is too low, a good signal cannot be obtained whilst a high concentration level will cause the separation to degrade. To overcome these problems, the oil (with individual masses of 0.43, 0.50 and 0.59 g) was transferred to separate volumetric flasks and brought up to the 2 ml mark with dichloromethane so that the sample was be present at the appropriate concentration thereby rendering the analysis possible.

2.4.5 Vapour enrichment procedure

For extraction of compounds in the vapour phase, for both the headspace analysis and HS-SPME, a sample of fresh milled leaves (~ 25 g) was placed in a 500 mL roundbottom flask. The flask was sealed with a polytetrafluoroethylene septum and evacuated for 30 seconds. The evacuated flask was then immersed in an oil bath at the extraction temperatures: room temperature (~ 22), 40, 60 and 80 °C, selected for the experiment. Triplicate analysis was done on three separate samples for all the headspace extractions.

2.4.5.1 Extraction temperature

To determine the effect of temperature and the most suitable extraction temperature, the following temperatures were used for both headspace analysis and HS-SPME: room temperature (\sim 22), 40, 60 and 80 °C. A discussion of these results can be found in Chapter 3, Section 3.5.5.1.

2.4.5.2 Headspace analysis procedure

In the case of headspace analysis, a vapour phase sample was injected into a gas chromatograph after a 15 min equilibration time at the various temperatures. The syringe used to transfer the sample was flushed with air after each injection to prevent sample carryover from inside the syringe.

2.4.5.3 HS-SPME analytical procedure

Prior to usage, the SPME fibre was conditioned according to the manufacturer's instructions. The PDMS fibre was inserted for 60 min in the GC injection port at 250 °C while the PA fibre was inserted in the injection port at 300 °C for 120 min (Teixeira *et al.*, 2007). After the conditioning process, the fibre was desorbed by inserting into the GC injection port at 250 °C to ensure that the fibre was clean (Pena-Alvarez *et al.*, 2006). This conditioning process was only performed when the fibres were used for the first time. Further conditioning after each sample was not required as the fibre was desorbed for five minutes after each run to eliminate sample carryover from one run to the other and at the same time preventing distortion of the results obtained.

The clean fibre was then immersed into the headspace of the flask containing the ground sample (similar to the experimental set-up in Figure 2.2) and the flask was then placed in a bath containing Julabo oil. After 15 minutes at the different temperatures studied, the fibre was retracted and removed. The analytes were immediately thermally desorbed by inserting the fibre into the GC injection port for 5 minutes. The injections were carried out in the split mode with a ratio of 1:75. Blank runs were carried out before each injection to avoid sample carryover. The precision of the HS-SPME method was also investigated. For this investigation, triplicate extractions were performed at room temperature ~22 °C, 40 °C and 60 °C. The peak areas of the compounds in the *M. koenigii* leaves were used to calculate their relative standard deviation (RSD) values, to express the method precision.

Figure 2.2 Headspace sampling with a SPME device (Tholl et al., 2006).

2.5 GC-MS parameters

The analyses of the compounds in *M. koenigii* were carried out on an Agilent 6890 series gas chromatograph, a model 5973 mass selective detector and a G1701CA MSD Productivity Chemstation Software data system. The GC column was a non-polar DB-5 (methyl phenyl siloxane) capillary column, manufactured by Agilent JW Scientific, with a film thickness of 0.25 µm, a length of 30 m and an internal diameter of 0.25 mm.

The oven temperature was run isothermally at 100 °C for the first 10 minutes, followed by an increase of 20 °C min⁻¹ to 200 °C for the next 5 minutes and thereafter remaining at 200 °C at a helium flow rate 0.7 cm³ min⁻¹. Mass spectra were obtained at 70 eV ionization energy with the electron impact mode, using total ion current monitoring over the 35 to 550 m/z scan range. In this investigation, the sample was injected in the split mode with a ratio of 1:75. Rana *et al.* (2004) also used the split mode for their work on the volatile oil of *M. koenigii* leaves. The split mode is usually selected when the analytes are present at a high concentration and to prevent column overload. All samples were injected manually in the GC injection port at a temperature of 250 °C and the volumes employed are reported in the section which follows.

2.5.1 GC-MS sampling technique

Since different extraction methods were used, different sample introduction techniques for the liquid and vapour phase with an appropriate sample size were used and this is mentioned below.

2.5.1.1 Liquid phase

Liquid phase samples were transferred to the GC by using 1 μ L injections with the aid of a Hamliton syringe.

2.5.1.2 Vapour phase

The split mode with a ratio of 1:75 was used for headspace analysis and HS-SPME.

Headspace analysis

Headspace vapour phase samples at the various temperatures investigated were removed with the aid of a 1 mL SGE gas-tight syringe. A volume of 0.1 mL was taken. The syringe was not pre-heated.

Headspace solid phase microextraction

For the solid phase microextraction technique, a Supelco TM solid phase microextraction device with different fibre coatings, PDMS and PA, was used. The fibres were desorbed for 5 mins in the injection port of the GC at a temperature of 250 °C.

2.5.2 Quantitative determinations

Quantitative analysis was performed for the steam distillation, Soxhlet extraction and solvent extraction methods only. Quantification of the headspace methods was not performed, since according to Tholl *et al.* (2006), quantification by SPME can be both difficult and impractical when dealing with compounds present with a broad range of volatility. Further discussion on this can be found in Chapter 3, Section 3.10. The concentrations of five selected aroma compounds: α -pinene, β -pinene, α -phellandrene, β -caryophyllene and α - caryophyllene, were determined in this study. These compounds were chosen since earlier work done on the leaves of *M. Koenigii* by Prakash and Natarajan (1974), MacLeod and Pieris (1982), and Paranagama *et al.* (2002) identified these compounds as the main aroma-contributing compounds. Also, preliminary work performed here confirmed this.

Working solutions of the standards in the concentration range of 3.36 mg L⁻¹ to 1.80×10^4 mg L⁻¹ were prepared in dichloromethane directly from the pure compounds. The internal standard was prepared from a standard stock solution. The internal standard dodecane was used by Kalua *et al.* (2006) in their study of the volatile profile

of olive oil and was used in this work for the quantitative determination of the volatile components.

The same internal standard was used to check both the extraction and analytical efficiency. The extraction and analytical efficiency were investigated in the following ways respectively:

- a) By adding the internal standard at the start of the extraction stage to account for any physical and chemical losses in the amount of the terpenes during the extraction process (Biermann and McGinnis, 1989).
- b) By addition of the internal standard at the end of the extraction period, i.e. just before injection. The addition of the internal standard after the extraction process does not account for any losses during the extraction process but was added to serve as a point of reference for peak area measurements so that any variations in both the injection technique and the volume injected can be cancelled out since both the the internal standard and the analyte will be affected by the same variations (Kenkel, 2003).

The results of the quantitative determinations are presented in Chapter 3, Section 3.9.1.

2.5.3 Data analysis

In this work, the data was analysed from the total ion chromatograms which were produced. This method was selected because a large range of compounds were present in the *M. koenigii* leaves. The mass spectra of these compounds were closely related and showed that most of the compounds had a common base peak at m/z 93. The selected ion monitoring (SIM) mode could not be used, since this is more selective as only ions of certain masses are recorded and not the entire spectrum as compared to the total ion chromatogram which shows many components of a mixture (Herbet and Johnstone, 2003).

2.5.4 Component identification

For the analysis of the volatile compounds, spectra were obtained with the electron impact mode since these spectra contain more fragment ions which can be useful for the structural characterisation of the compounds. Also, under the electron impact conditions, due to a lack of selectivity, a wide range of compounds can be studied, (Chapman, 1993) which made it suitable for this analysis.

Identification of the unknown compounds was made by comparison with their retention times and mass spectra with those of the pure standards available. Further comparison was done with the mass spectra of known compounds contained in the National Institute of Science and Technology Standard Reference Database 1A (NIST 98). After the chromatogram was obtained (Figure 2.3 (a)), the selected peak of interest was represented on the screen together with the mass spectrum. Figure 2.3 shows the chromatogram for the comparison of the mass spectrum of the unknown compound (b) with the known spectrum (c) contained in the NIST library. Also, identification of the compounds was performed by visual interpretation of the fragmentation patterns of the compounds, i.e. by examining the peak intensities.

Identification of some of the main aroma-contributing compounds was also done with a comparison based on the retention times of the standard compounds (α -pinene, β -pinene, α -phellandrene, α -caryophyllene and β -caryophyllene) with the unknowns, run under the same experimental conditions, similar to the procedure used by Flores *et al.* (2006) in their work.

Figure 2.3 Library search results for α-phellandrene: (a) chromatogram(b) mass spectrum (c) mass spectrum contained in the NIST library.

2.6 Summary of conditions

Tables 2.1 and 2.2 provide a summary of the variables investigated with the various extraction techniques and the GC-MS analysis conditions used in this work respectively.

Table 2.1 A summary of the variables studied for the different extraction techniques.

	Extraction Method								
Variables	Solvent extraction	Soxhlet extraction	Steam distillation	Headspace analysis HS-SPME (PDMS and PA coating)					
solvent choice	dichloromethane	dichloromethane		solvent–free analysis					
extraction time/hrs	24, 48, 72	24, 48, 72	3	0.25					
extraction temperature/°C	room temperature ~22	40	100	room temperature (~22), 40, 60, 80					

Table 2.2 Summary of the GC-MS analysis conditions.

Variables	GC-MS Analysis Conditions
stationary phase	5% diphenyl, 95% methylpolysiloxane (DB-5)
mobile phase	helium
injector temperature	250 °C
column temperature	isothermally at 100 °C for 10 mins, followed by an increase of
	20 °C min ⁻¹ to 200 °C for the next 5 mins and thereafter remaining at
	200 °C
helium flow rate	$0.7 \text{ cm}^3 \text{ min}^{-1}$
scan range	35 to 550 <i>m/z</i>
ionization energy	70 eV
detector temperature	280 °C
mode	Electron impact

The results of this experimental work are presented and discussed in Chapter 3.

CHAPTER 3

RESULTS AND DISCUSSION

In this chapter the results obtained from the different extraction methods as well as a discussion of the results are presented.

3.1 Organisation of results

The results are organised into different sections, namely, calibration data, calibration curves, and chromatograms with their corresponding mass spectra and raw data. The calibration data and the curves can be found in Section 3.9. A comparison of the mass spectra of the standard compounds and those obtained in the mass spectral library associated with the software of the GC-MS can be found in Appendix C. The fragments in the mass spectra of some monoterpenes detected in *M. koenigii* are summarized in Table 3.25 (Section 3.6.1). Representative chromatograms of the essential oil analysis for the different methods adopted are in Appendix D and the raw data in Appendix E. The area percent reports can be found in Appendix F.

3.2 Preliminary study

An initial investigation was undertaken for the extraction of the analytes from fresh and frozen *M. koenigii* leaves. This experiment was performed on a single analysis at 40 °C. The volatile components present consisted mainly of monoterpenes and sesquiterpenes.

The study on the fresh leaves of *M. koengii* for headspace-SPME (with PDMS fibre coating), showed greater extraction yields for the less volatile compounds (sesquiterpenes) compared to the highly volatile compounds (monoterpenes). In comparison, the amount of the volatile compounds extracted from the frozen leaves was found to be greater for the monoterpenes than the sesquiterpenes.

A representative overlay chromatogram showing the differences in the amounts of the compounds extracted (40 °C) from both the fresh leaves and frozen leaves is shown in Figure 3.1. The area percent reports can be found in Appendix F, Tables F1 and F2. The run time for this chromatogram was 70 minutes with the earlier GC method. In the earlier GC method, the oven temperature was run isothermally at 100 °C for the first 40 minutes, followed by an increase of 10 °C min⁻¹ to 200 °C for the next 10 minutes and thereafter remaining at 200 °C. After all the preliminary work revealed which components were present, the GC method was modified (refer to Section 2.5) so that all the compounds could be separated in 20 minutes.

This preliminary study indicated that it is preferable to extract the less volatile compounds from fresh leaves and the highly volatile compounds from frozen leaves. Since the low volatile compound, the sesquiterpene β -caryophyllene, was found to be present in a larger amount in the fresh leaves, it can be concluded that it was the main aroma contributing compound and therefore all other work was performed on the fresh

leaves of *M. koenigii*. Also, there was no way of knowing the stability of the compounds on freezing, so it was decided to use fresh leaves. It has been reported by Stashenko *et al.* (2004) that the freshness of a plant can affect the volatile profile, more especially the headspace fraction.

3.2.1 Identification of the volatile components in *M. koenigii*

The compounds in the essential oil of *M. koenigii* were identified from GC-MS analysis. Identification of the target analytes was performed by comparing the retention time and mass spectrum of each component in the sample with those of standard compounds and the mass spectra contained in the NIST Library run under similar conditions. However, where standards were unavailable, identification was done by comparison of the mass spectrum of the component with the mass spectra contained in the NIST library, as well as applying some basic knowledge of mass spectral fragmentations. Some compounds had very similar spectra which made the library search difficult to positively identify the peaks and thus a tentative identification was done. The identification process has been explained in Chapter 2, Section 2.5.4. Some of the compounds identified in the essential oil from the leaves were α -pinene, β -pinene, α -phellandrene, β -caryophyllene and α -caryophyllene.

For convenience, the selected compounds of interest on the chromatograms are labelled with an alphabetical letter (A to F) as indicated in Table 3.1. Compound D refers to the internal standard, dodecane, which was not added to the above sample and therefore is not seen in the chromatogram in Figure 3.2. A more comprehensive list of compounds obtained from the combined extraction methods is shown in Table 3.29.

Compound	Alphabet
α-pinene	А
β-pinene	В
α-phellandrene	С
dodecane (internal standard)	D
β-caryophyllene	E
α -caryophyllene	F

Table 3.1 Peak labels for compounds of interest.

A representative chromatogram of the oil obtained from the steam distillation method for the five selected compounds is shown in Figure 3.2.

Figure 3.2 Total ion chromatogram of the oil obtained from the steam distillation method.

3.2.2 Choice of solvent for solvent and Soxhlet extractions

The choice of the extracting solvent is important for the extraction of the compounds of interest as well as for eliminating or reducing those components that can interefere in an analysis (Teixeira *et al.*, 2007). Three solvents, namely, hexane, dichloromethane and ethyl acetate, were investigated to determine which was the most suitable solvent for the extraction of the volatile organic compounds. The results obtained from the investigation to determine the most suitable solvent for the solvent and Soxhlet extraction of the five selected aroma components in *M. koenigii* is presented in this section.

3.2.2.1 Solvent extraction

The chromatograms of the solvent extraction of the aroma compounds of *M. koenigii* leaves obtained with hexane, dichloromethane, and ethyl acetate, after 68 hours, are shown in Figures 3.3 to 3.5 respectively. The peak areas of the selected analytes for a single extraction and analysis are shown in Table 3.2.

It needs to be mentioned that although the peak due to α -caryophyllene in Figure 3.4 (labelled F) is poorly-shaped the peak areas for the selected compounds of interest were manually integrated in order to account for baseline correction.

Figure 3.3 Total ion chromatogram for the essential oil obtained from the solvent extraction with hexane.

Figure 3.4 Total ion chromatogram for the essential oil obtained from the dichloromethane solvent extraction.

Figure 3.5 Total ion chromatogram for the essential oil obtained from the solvent extraction with ethyl acetate.

Table 3.2 Peak areas for the compounds in *M. koenigii* from solvent extraction.

Compound	Hexane	Dichloromethane	Ethyl acetate		
α-pinene	1.99×10^{5}	1.54×10^{6}	2.24×10^{5}		
β-pinene	ND*	ND*	ND*		
α -phellandrene	ND*	ND*	ND*		
β-caryophyllene	3.40×10^6	6.61×10^{6}	3.34×10^6		
α -caryophyllene	6.05×10^5	$8.49 imes 10^6$	5.94×10^5		

*ND - not detected

A comparison of the peak areas for the compounds of interest, in Table 3.2, showed that the greatest extraction yield was obtained when dichloromethane was used as the extracting solvent. It needs to be pointed out that the compounds which were present in a low concentration, i.e. β -pinene and α -phellandrene, could not be seen in the chromatogram, as the sample was introduced in its diluted form for this investigation, directly from the extraction flask, i.e. without preconcentration.

From the abundances obtained from the chromatograms shown in Figures 3.3 to 3.5, it can be seen that there is a preferential extraction of compounds depending on the polarity of the solvent, i.e. a larger number of compounds were extracted when dichloromethane was used, since due to its polarity, it was able to extract the hydrocarbons more efficiently. Hexane did not efficiently extract the compounds as a smaller amount of the target analytes were obtained when this solvent was used. Although ethyl acetate also extracted the same amount of the target analytes as hexane, it also extracted other compounds leading to a "noisy" or "complicated" chromatogram. The presence of too many compounds hinders the separation and a complex chromatogram will be obtained. Therefore balancing the number of compounds extracted against the target analytes extracted shows dichloromethane to be solvent of choice. Also, taking into account the peak areas of the compounds, it can be clearly seen that the dichloromethane showed a better extraction efficiency for the target compounds and was therefore, selected for all subsequent studies.

3.2.2.2 Soxhlet extraction

In this investigation, a trend similar to the results presented for solvent extraction was observed. Gas chromatographic analysis was performed immediately after the extraction. The peak areas for the selected compounds extracted with either hexane, dichloromethane or ethyl acetate are contained in Table 3.3. Once again, the compounds which were present in a low concentration, i.e. β -pinene and α -phellandrene, could not be observed in the chromatogram, as the sample was introduced into the GC-MS without concentration.

Compound	Hexane	Dichloromethane	Ethyl acetate	
α-pinene	1.19×10^{6}	1.34×10^{6}	3.89×10^{5}	
β-pinene	ND*	ND*	ND*	
α -phellandrene	ND*	ND*	ND*	
β-caryophyllene	$4.47 imes 10^6$	$8.99 imes 10^6$	7.61×10^6	
α -caryophyllene	$9.98 imes 10^5$	9.65×10^{5}	$1.36 imes 10^6$	

Table 3.3 Peak areas for the aroma components in *M. koenigii* obtained from the Soxhlet method for a single analysis.

*ND - not detected

From the data shown in Table 3.3, it can be observed that for the extraction with dichloromethane, the yields were relatively higher for two of the compounds, α -pinene (a monoterpene) and β -caryophyllene (a sesquiterpene). This investigation, also showed that dichloromethane was the most appropriate solvent for the extraction of the volatile compounds because of its physical properties, i.e. its volatility and ability to dissolve a wide range of organic compounds (http://en.wikipedia.org/wiki/Dichloromethane).

3.2.3 Headspace and HS-SPME extraction conditions

According to Monje *et al.* (2002), there are many variables which affect HS-SPME. Some of these factors are: extraction temperature, adsorption time, choice of fibre and desorption conditions (Sostaric *et al.*, 2000). The sensitivity of the HS-SPME technique is dependent on these factors (Teixeira *et al.*, 2007).

In initial studies, equilibration time, desorption time and fibre coating were investigated. The headspace mode was selected instead of the direct extraction mode for this study because, according to Demeestere *et al.* (2007), equilibration times for volatile compounds are shorter in the headspace mode than in direct extraction and the fibre is protected from any adverse effects caused by other substances present in the matrix.

3.2.3.1 Equilibration period

The plant material in this work consisted of high, medium and low volatility compounds. According to Torrens *et al.* (2004), a short extraction period would be required for highly volatile compounds and a longer extraction time for compounds with low volatility. Hamm *et al.* (2003) mentioned in their work that the extraction period of the compounds is dependent on the volatility of the compounds. Stashenko and Martinez (2007) reported in their work that, for samples with a large number of components, some compounds will reach equilibrium before others and will compete for sites on the fibre coating. Stashenko *et al.* (2004) used a 15 minute equilibration period in their study of the Mill, *Lippia Alba* plant.

Taking into consideration some of the findings reported in earlier work, two different extraction times were investigated with the PDMS fibre coating at room temperature: 15 and 70 minutes. The results obtained for the 15 and 70 minute extractions (single analysis) performed at room temperature are given in Table 3.4. The area percent reports can be found in Table 3.5 to 3.6.

Table 3.4 Peak areas for the five standards extracted by HS-SPME (PDMS coating) at room temperature for two different extraction periods.

Compound	15 mins	70 mins		
α-pinene	2.39×10^{7}	1.56×10^{7}		
β-pinene	$2.79 imes 10^6$	1.39×10^6		
α -phellandrene	2.35×10^{6}	1.19×10^{6}		
β-caryophyllene	4.94×10^7	3.59×10^{7}		
α -caryophyllene	5.94×10^{6}	$4.27 imes 10^6$		

From the results in Table 3.4, it was observed that there was a slight decrease in the amounts of all the selected compounds extracted with an increase in the equilibration

time. The results indicated that the 15-minute period was adequate for the analysis of the selected compounds.

Table 3.5 Area percent report for HS-SPME (PDMS fibre coating) at room temperature -15 mins.

SPMERT1 Area Percent Report Data File : C:\MSDCHEM\1\DATA\171209\SPMERT1.D Acq on : 5 Feb 2007 11:48 vial: 27 Operator: Patricia Samiple : spme fresh sample2 roomtemp. 15 min Inst Instrumen Multiplr: 1.00 Misc : spme room temp. 15 minutes Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC peak R.T. first max last peak corr. corr. % of PK min scan scan scan height total # TY area % max. ___ ____ ___ 0.700% 1 2.344 7 45 56 BV 8 17323 1330041 2.69% 1.706% 2 2.620 56 92 134 PB 9 41562 3241092 6.56% 3 3.348 167 216 237 BV 3 341519 23872261 48.33% 12.563% 4 3.895 267 309 330 BV 4 41746 2786391 5.64% 1.466% 5 4.288 330 376 395 VV 4 33767 2353129 4.76% 1.238% 26479804 6 4.764 395 457 467 PV 3 328243 53.61% 13.936% 506 VB 6 479 7 4.894 467 138569 7605993 15.40% 4.003% 1313 1407 1495 BV 6 8957242 8 10.346 55153 18.13% 4.714% 4690 4797 4829 BV 6 9 30.264 11167 1129280 2.29% 0.594% 10 30.464 4829 4831 4836 VV 6 2535 36101 0.07% 0.019% 11 35.687 5613 5720 5809 BV 6 276811 49396222 100.00% 25.996% 12 39.683 6337 6400 6403 BV 6 27056 2681759 5.43% 1.411% 13 39.706 6403 6404 6466 VB 8 25324 2018393 4.09% 1.062% 6759 6828 6875 PB 6 72304 14 42.198 5938346 12.02% 3.125% 0.478% 15 43.749 7054 7092 7103 PV 6 14722 908754 1.84% 1300517 16 43,913 7103 7120 7136 VV 6 20299 2.63% 0.684% 7198 7218 7261 VV 4 262760 24.86% 6.464% 44.489 12282250 17 7261 7281 7300 VV 3 7394 7413 7424 BV 3 551407 44.859 46.57% 1.23% 12.108% 18 23006146 19 45.635 13137 606793 0.319% 47.744 7760 7772 7807 VV 2 217303 14,42% 3.749% 20 7122831 68226 6.22% 21 49.442 8036 8061 8100 VV 3 3072389 1.617% 8286 8330 8341 PV 5 22 51.023 15242 230459 0.47% 0.121% 23 51.546 8404 8419 8434 PV 4 75863 2689315 5.44% 1.415% 8621 8645 8674 BV 5 23035 0.509% 24 52.874 967964 1.96% Sum of corrected areas: 190013471

Table 3.6 Area percent report for HS-SPME (PDMS fibre coating) at room temperature

– 70 mins.

Dat Acq Sam Mis	a File J On Iple SC Integra	: C:\I : 5 : spm : spm ation	MSDCHI Feb 20 e fres ne roo Params	EM\1\1 007 : sh san om ten s: au	DATA 13:0 mple mp. toin	Ar \\1 2 70 t1	SPME ea Percer .71209\SPM roomtemp minutes e	RT1A nt Report MERT1A.D . 70 min	Oper Inst Mult Sample Ame	vial: 27 ator: Patric : Instrum iplr: 1.00 ount: 0.00	ia men
Met Tit	hod 1e	: c:\I	ISDCHI	EM\1\I	МЕТН	OC	S/DEFAUL	Т.M (Chems	station I	ntegrator)	
sig	Inal	: TIC									
peak #	R.T. min	first scan	max scan	last scan	PK TY		peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	2.361 2.655 3.366 3.930 4.318	36 84 191 302 360	48 98 219 315 381	83 134 251 345 405	VB BV BV VV VV	3 3 3 2	20521 37251 616503 45566 36928	661211 1400398 15567064 1388998 1185273	1.89% 4.00% 44.52% 3.97% 3.39%	0.587% 1.243% 13.820% 1.233% 1.052%	
6 7 8 9 10	4.635 4.794 4.929 30.640 35.746	414 439 473 4824 5628	435 462 485 4861 5730	439 473 511 4910 5821	PV VV VV PV PV	4 3 3	9417 361978 140575 11325 199251	279227 12492474 4575134 1507746 34966632	0.80% 35.73% 13.08% 4.31% 100.00%	0.248% 11.091% 4.062% 1.339% 31.043%	
11 12 13 14 15	39.753 42.227 42.985 43.755 43.925	6353 6803 6918 7078 7109	6412 6833 6962 7093 7122	6477 6880 6992 7109 7141	PV BV BV VV VV	3 7 7 7 7 7	21534 53182 7975 10078 12034	3810776 4271011 570989 484981 543101	10.90% 12.21% 1.63% 1.39% 1.55%	3.383% 3.792% 0.507% 0.431% 0.482%	
16 17 18 19 20	44.501 44.871 45.047 45.658 45.764	7200 7266 7303 7397 7427	7220 7283 7313 7417 7435	7250 7303 7333 7427 7444	PV VV PV PV VV	6 5 5 10	196476 440511 8635 10746 6545	8873863 18972451 415592 477647 195857	25.38% 54.26% 1.19% 1.37% 7 0.56%	7.878% 16.843% 0.369% 0.424% 0.174%	
Sum of corrected areas: 112640425											

3.2.3.2 Fibre desorption time

After the chromatogram was obtained from the first desorption, the fibre was desorbed a second time to verify that the first desorption was complete and that there were no traces of sample carryover. A representative chromatogram of the PA fibre desorption run can be found in Figure 3.6. As can be seen from the chromatogram, none of the compounds identified in this work can be seen in the chromatogram, thus confirming that there was no sample carryover from run to run and that the five minute desorption period was adequate for the desorption of the analytes.

Figure 3.6 Total ion chromatogram for HS-SPME (PDMS coating) at 40 °C - desorption run.

3.2.3.3 PDMS and PA fibre coating

According to Contini and Esti (2006), it is difficult to determine which components cause the displacement of the compounds for adsorption sites on the fibre and also which compounds they displace. They also reported competition effects between analytes as well as linearity deviations (probably due to saturation of adsorption sites on the fibre) in relation to the sample matrix composition.

Therefore an investigation of the adsorption capacity of the compounds with the two different fibre coatings was conducted at room temperature. In this work, the individual standards for the selected compounds as well as a mixture comprising of the five chosen analytes as well as four other standard compounds, *p*-cymene, *d*-limonene, gurjunene

and camphene were investigated. The same sample size, namely, a volume of $20 \ \mu l$ was used. In addition, a sample in a headspace vessel, in which no fibre was present was also analysed and the results are discussed here.

The chromatograms of the combined standard mixture for the different headspace techniques are shown in Figures 3.7 to 3.9. The area percent reports for the combined standard mixture for this investigation can be found in Tables 3.7 to 3.9. A representative area percent report for the individual standard can be found in Appendix F, Table F3.

Figure 3.7 Total ion chromatogram for a standard mixture at room temperature for the HS-SPME-PDMS fibre coating.

PDSTDRT Area Percent Report								
Data File Acq On Sample Misc	: C:\GOVENDER\PATRICIA\PDSTDRT.D Vial: 1 : 29 May 2007 11:01 Operator: Patricia : sample -standard -room temp. Inst : Instrumen : PDMS coating Multiplr: 1.00	Vial: 1 Operator: Patricia Inst : Instrumen Multiplr: 1.00						
MS Integr	ation Params: autoint1.e							
Method Title	: C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) :							
Signal	: TIC							
peak R.T. # min	first max last PK peak corr. corr. % of scan scan scan TY height area % max. total							
1 3.371 2 3.589 3 3.947 4 4.312 5 4.646	191 220 242 BV 8932212 221833330 53.72% 13.679% 242 257 283 VB 6238395 169444314 41.03% 10.449% 305 318 344 BB 6685882 174615889 42.28% 10.767% 361 380 397 BB 1936742 46199454 11.19% 2.849% 420 437 444 BV 9026945 282660492 68.45% 17.430%							
6 4.729 7 14.576 8 14.876 9 14.982 10 16.210	444 451 463 VB 4079461 96514430 23.37% 5.951% 2114 2127 2134 BV 8517317 179814658 43.54% 11.088% 2170 2178 2183 VV 2 1052639 28956728 7.01% 1.786% 2183 2196 2206 VV 2 11110391 412972854 100.00% 25.465% 2394 2405 2417 BB 440576 8686166 2.10% 0.536%							
	Sum of corrected areas: 1621698316							

Table 3.7 Area percent report for HS-SPME (PDMS fibre coating) for standard mixture.

Figure 3.8 Total ion chromatogram for a standard mixture at room temperature for the HS-SPME-PA fibre coating.

Table 3.8 Area percent report for HS-SPME (PA fibre coating) for standard mixture.

PA1STDRT Area Percent Report Data File : C:\GOVENDER\PATRICIA\PA1STDRT.D vial: 31 Acq On : 1 Jun 2007 10:22 Operator: Patricia np. Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Sample : Pa coating standard mixture room temp. : PA1 Misc MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC peak R.T. first max last PK peak corr. corr. % of height min total # scan scan scan TY area % max. 336675 9.54% 4.707% 1 3.360 210 218 243 BB 7585656 2 3.096% 4989664 6.28% 3.583 244 256 276 BB 190804 3 316 340 BB 10.66% 3.936 306 334981 8474830 5.259% 4 379 399 BB 2.907% 4.306 369 176706 4684457 5.89% 5 4.617 420 432 441 BV 987103 26034072 32.76% 16.156% 6 4.711 441 448 475 VB 412990 12964394 16.31% 8.045% 2114 2122 2133 BB 2167 2173 2179 BV 8.800% 14.547 945619 14180043 17.84% 7 8 14.847 179594 3.47% 1.710% 2756169 2179 2187 2203 VV q 14.929 4763965 79474874 100.00% 49.319% Sum of corrected areas: 161144159 Abundance A \mathbf{F} 14 92 3.36 700000

Figure 3.9 Total ion chromatogram for a standard mixture at room temperature for HSA.

Table 3.9 Area percent report for HSA for standard mixture.

HSSTDRT Area Percent Report Data File : C:\GOVENDER\PATRICIA\HSSTDRT.D vial: 1 : 31 May 2007 11:17 : headspace standard room temp. Operator: Patricia Acq On Inst : Instrumen Multiplr: 1.00 Sample : 0.1 mL injection Misc Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC peak R.T. first max last PK peak corr. corr. % of min height total # scan scan scan TY area % max. ____ 704522 16326060 100.00% 1 3.354 206 217 232 BB 19.338% 2 3.577 239 255 270 BB 323622 8953281 54.84% 10.605% 315 3 3.930 303 330 BB 520708 13128958 80.42% 15.551% 4 4.306 367 379 395 BB 79164 2096654 12.84% 2.484% 5 415 10855544 431 439 BV 66.49% 12.859% 4.611 392593 4.705 439 447 471 VB 2 527091 6 15302297 93.73% 18.126% 2089 2097 2113 VB 2117 2123 2133 BB 2 6617450 7 14.400 405503 40.53% 7.838% 14.553 8 720585 4,41% 0.854% 50065 9 14.923 2178 2186 2192 PV 740685 10421892 63.84% 12.345% Sum of corrected areas: 84422721

The results obtained for the peak areas of the individual standards (20 μ l) as well as the combined standards consisting of 20 μ l of each standard for the headspace methods are shown in Table 3.10 and these areas are represented graphically in Figures 3.10 to 3.12. The concentrations (in mg L⁻¹) of the individual standards and the combined standards are the same and are also shown in Table 3.10.

Compound	Concentration/ mg L ⁻¹	HSA STD	HSA STD mixture	PDMS STD	PDMS STD mixture	PA STD	PA STD mixture
α-pinene							
	$8.58 imes 10^5$	6.66×10^{7}	1.64×10^7	4.20×10^8	2.21×10^8	2.61×10^7	$7.59 imes 10^6$
β-pinene							
	8.59×10^5	2.28×10^7	1.31×10^7	5.71×10^8	1.76×10^8	$2.95 imes 10^7$	8.48×10^6
α-phellandrene							
	$8.40 imes 10^5$	1.35×10^7	2.10×10^6	3.46×10^8	4.62×10^7	5.06×10^7	4.68×10^6
β-caryophyllene							
	$9.02 imes 10^5$	1.58×10^6	6.62×10^6	7.44×10^7	1.80×10^8	6.92×10^6	1.42×10^7
α-caryophyllene	8.89×10^{5}	1.69×10^{6}	1.04×10^{7}	8.82×10^{7}	4.13×10^{8}	1.16×10^{7}	7.95×10^{7}

Table 3.10 Comparison of peak areas of individual standards and the combined standards for the headspace methods.

PDMS – polydimethylsiloxane fibre PA – polyacrylate fibre

HSA - headspace analysis STD - individual standard

STD mixture – combined standards

Figure 3.11 Comparison of the peak areas of the individual standards and the peak areas of the combined standards for HS-SPME (PA coating).

Figure 3.12 Comparison of the peak areas of the individual standards and the peak areas of the combined standards for HSA.

Examination of the results in Table 3.10, and the graphs in Figures 3.10 to 3.12, indicated that, for the monoterpenes, a larger amount of the compound was extracted for the individual standards and a smaller amount when present in the combined mixture. In contrast, for the sesquiterpenes β - and α -caryophyllene, larger amounts were extracted when the compounds were present in the combined mixture than when they were present individually.

For the HS-SPME analysis, these differences could be due to the adsorption capacity of the fibre as well as competition effects. However, this inconsistency is not unsual, since other researchers also found discrepancy in their results. Contini and Esti (2006) pointed out that competition between the compounds resulted in a loss in linearity for the compounds present in low concentration which led to distortion of the results for quantitative evaluation. Kalua *et al.* (2006) mentioned in their work that, due to the phenomenon of competition for the adsorption sites on the fibre, the results obtained will be greatly skewed. The results from this investigation indicated that competition exists between the compounds for the adsorption sites on the fibre, and the use of a single component standard to construct a calibration curve would not be recommended as it is not representative of the actual sample to be analysed which contains many components (Stashenko and Martinez, 2007). This needs to be taken into consideration for all future work. In this work a single component standard was used since the solvent, soxhlet and steam distillation methods were quantified only and not the headspace methods.

For the headspace analysis, the adsorption of high molar mass volatiles onto walls of the flask resulted in the loss of the sesquiterpenes. This problem can be circumvented by modifying the surface of the glass (e.g. polyethylene glycol to increase hydrophilicity) or by using headspace containers of other materials (Hachenberg and Schmidt, 1986).

3.3 Essential oil analysis by solvent and Soxhlet extraction

In this section the extraction of the essential oil with solvent and soxhlet extraction is discussed.

3.3.1 Extraction period

Three different extraction times were used in this investigation and these were: 24, 48 and 72 hours.

3.3.1.1 Extraction period for solvent extraction

The total ion chromatograms from the GC-MS analysis of the essential oil for the solvent extraction method are shown in Appendix D, Figures D3 to D8. A representative total ion chromatogram of the solvent extraction for the 48 hour extraction period and its area percent report is shown in Figure 3.13 and Table 3.11 respectively.

Figure 3.13 Total ion chromatogram for the essential oil obtained from the 48 hour solvent extraction.
DCMSE481 Area Percent Report Data File : D:\PATRICIA\DCMSE481.D Vial: 50 Acq On 1 Apr 2009 15:04 Operator: Patricia DCM SOLVENT EXT. SAMPLE - 48 HOURS Instrumen Sample Inst Inst : Inst Multiplr: 1.00 Misc Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC peak R.T. first max last PK % of peak corr. corr. TΥ height % max. total area # min scan scan scan ____ ----_____ _____ ___ ____ ____ _____ _____ 0.14% 0.030% 5 63760 774060 1 2.144 11 13 BV 2 2.191 13 19 28 VV 2 225966 4580178 0.85% 0.175% 85 PV 2 202 PV 3 2.467 49 66 778570 19345859 3.58% 0.741% 5603421 122086931 4 3.149 165 182 22.60% 4.676% 5 225 VV 6 37786 3.354 202 217 1506245 0.28% 0.058% 237 254 6 3.572 260 VV 2 49637 1225198 0.23% 0.047% 271 295 VV 7 3.672 260 415912 10767699 1.99% 0.412% 4.048 320 335 358 VV 161111 4640575 0.86% 0.178% 8 9 4.347 368 386 389 VV 2 33336 815013 0.15% 0.031% 4.435 403 VV 2 10 389 401 393473 10599766 1.96% 0.406% 4.506 403 413 423 VV 3096496 89978574 11 16.66% 3.446% 2063250 12 4.629 423 434 448 VV 58264353 10.78% 2.232% 483 VV 3 13 4.764 448 457 64355 3499618 0.65% 0.134% 14 5.940 647 657 670 VV 4 45955 1467272 0.27% 0.056% 8.231 1019 1047 1073 BV 4 15 26866 1318410 0.24% 0.050% 1319 1333 1365 VV 6 1747 1753 1761 VV 0.093% 9.911 41079 2416710 0.45% 160.046% 12.379 1208157 0.22% 17 62777 1890 1899 1903 BV 1903 1907 1917 VV 13.237 18 151269 2541655 0.47% 0.097% 19 13.284 287817 4698006 0.87% 0.180% 1924 1936 1942 PV 20 13.454 172789 3048738 0.56% 0.117% 1968 1976 1985 VV 1985 1990 1997 VV 3 1997 2005 2011 VV 0.109% 13.689 127147 2835054 0.52% 21 0.056% 77099 22 13.772 1471637 0.27% 23 13.860 300843 1.04% 5618742 0.215% 0.332% 24 13.924 2011 2016 2024 VV 501964 8658655 1.60% 25 14.018 2024 2032 2040 VV 7993361 121883845 22.56% 4.668% 26 14.083 2040 2043 2048 VV 4 104645 2216984 0.41% 0.085% 27 14.142 2048 2053 2060 VV 7 102382 3230604 0.60% 0.124% 2060 2070 2072 VV 7 28 14.242 133543 4133768 0.77% 0.158% 2072 2076 2088 VV 2088 2100 2107 VV 29 14.277 2 246026 7154727 1.32% 0.274% 30 14.418 22992682 540249030 100.00% 20.692% 2107 2112 2122 VV 2 4384073 2122 2125 2127 VV 2 211274 2127 2131 2135 VV 780011 2135 2139 2150 VV 1634290 2150 2162 2167 VV 9869668 2.651% 14.489 69215941 31 12.81% 14.565 3243334 0.60% 0.124% 32 14.600 2.44% 33 13171605 0.504% 14.647 34 34362420 6.36% 1.316% 35 14.782 9869668 160459218 29.70% 6.146% 36 14.829 2167 2170 2174 VV 792886 17864679 3.31% 0.684% 2174 2186 2190 VV 3 2190 2193 2199 VV 2199 2202 2205 VV 2205 2218 2222 VV 37 14.923 1960672 58458479 10.82% 2.239% 7.32% 1.515% 14.964 1829725 39554900 38 20538660 39 15.017 1016331 3.80% 0.787% 11167634 216507177 40 15.111 40.08% 8.292% 2222 2229 2238 VV 2 20293825 415100516 2238 2240 2245 VV 796560 15295043 15.899% 41 15.176 76.84% 42 2.83% 15.241 0.586% 2245 2255 2258 VV 1.155% 43 15.329 957886 30169062 5.58%

Table 3.11 Area percent report for the essential oil obtained from the 48 hour solvent

extraction.

44 15 297	2258 2265 2276	DCMSE	481	1 35.0%
44 15.387 45 15.487	2276 2282 2290	VV 4 916746 VV 3 604018	20251014 3.75%	0.776%
46 15.558 47 15.675	2290 2294 2303 2303 2314 2327	VV 407219 VV 855343	13273188 2.46% 27812397 5.15%	0.508% 1.065%
48 15.781 49 15.834 50 15.858	2327 2332 2330 2336 2341 2343 2343 2345 2350	VV 6 213667 VV 6 216556	4630571 0.86% 5044244 0.93%	0.177% 0.193%
51 15.952 52 16.057	2350 2361 2372 2372 2379 2393	VV 7 458766 VV 5 469789	22868236 4.23% 21581190 3.99%	0.876% 0.827%
53 16.163 54 16.275 55 16.386	2393 2397 2407 2407 2416 2423 2423 2435 2438	VV 9 186956 VV 4 182614 VV 1125494	7606869 1.41% 7713352 1.43% 26109833 4.83%	0.291% 0.295% 1.000%
56 16.416 57 16.457	2438 2440 2444 2444 2447 2454	VV 2 858414 VV 2 544584	14809616 2.74% 11743648 2.17%	0.567% 0.450%
58 16.563 59 16.604 60 16.851	2460 2465 2467 2467 2472 2486 2493 2514 2523	VV 2 367667 VV 672543 VV 2274880	6549911 1.21% 20834285 3.86% 65578005 12.14%	0.251% 0.798% 2.512%
$ \begin{array}{r} 61 & 16.933 \\ 62 & 16.968 \end{array} $	2523 2528 2532 2532 2534 2540	VV 5 368500 VV 6 299925	9520870 1.76% 5903328 1.09%	0.365%
63 17.039 64 17.209 65 17 303	2540 2546 2554 2569 2575 2581 2581 2591 2599	VV 5 235530 VV 9 121119	8032774 1.49% 3676010 0.68% 4598306 0.85%	0.308% 0.141% 0.176%
66 17.479	2614 2621 2626	VV 10 56793	1818953 0.34%	0.070%
67 17.632 68 17.779	2636 2647 2662 2662 2672 2683	VV 10 126624 PV 10 53809	6934905 1.28% 2533697 0.47%	0.266%
69 17.949 70 18.631	2683 2701 2718 2793 2817 2827	BV 10 59189 BV 10 30152	4045832 0.75% 851536 0.16%	0.155%
71 18.789 72 18.878	2827 2844 2848 2848 2859 2905	PV 5 73530 VV 4 1410097	2722536 0.50% 74888207 13.86%	0.104% 2.868%
73 19.295 74 19.641	2913 2930 2949 2966 2989 3029	VV 3 257021 VV 3 396812	12706438 2.35% 21147753 3.91%	0.487% 0.810%
	Sum	of corrected a	areas: 2610929033	

Table 3.12 shows the average peaks areas for a single extraction of the essential oil during the solvent extraction for the different extraction periods as well as the relative standard deviations for the triplicate injections. The raw data can be found in Appendix E, Tables E11 to E15.

Table	3.12	Peak	areas	for	the	selected	compounds	for	solvent	extraction	with
dichlo	rometl	hane fo	or diffe	rent	extra	ction peri	ods.				

Extraction period/hours	24	48	72
α-pinene	$9.8 \times 10^7 (1.2)$	$1.2 \times 10^8 (2.9)$	$9.5 \times 10^7 (0.4)$
β-pinene	$9.2 imes 10^{6} (0.9)$	$1.0 \times 10^7 (3.2)$	$8.7 imes 10^{6} (2.3)$
α -phellandrene	5.3×10^{6} (4.2)	$4.4 \times 10^{6} (4.5)$	$3.0 \times 10^{6} (1.8)$
β-caryophyllene	5.2×10^8 (1.7)	$5.3 \times 10^{8} (2.7)$	4.8×10^8 (3.4)
α -caryophyllene	$1.5 \times 10^8 (3.5)$	$1.6 \times 10^8 (1.9)$	1.4×10^8 (4.7)

Figures in parentheses are % RSD.

The results in Table 3.12 showed that the extraction after the 48 hour period produced the largest amount of the compounds of interest. This investigation was conducted on three separate samples. The results showed a decrease in the amounts of compounds extracted after 72 hours. It should be noted that this experiment was conducted on an orbital shaker on a bench top and was exposed to light. Therefore, this decrease could be due to the limited chemical stability of the terpenes due to photolysis, oxidation and other reactions as reported in literature. Work undertaken by Augusto *et al.* (2003) showed that the atmospheric chemical lifetime of monoterpenes during daylight conditions was found to be less than 5 minutes for α -terpinene to three hours for α -pinene, β -pinene and sabinene. Thus, to prevent loss in the amounts obtained, the flasks should be covered with foil in future investigations.

3.3.1.2 Extraction period for Soxhlet extraction

The total ion chromatograms obtained for the oil from the Soxhlet extraction method are shown in Appendix D, Figures D3 to D8. A representative total ion chromatogram of the Soxhlet extraction for the 48 hour extraction period together with its area percent report is shown in Figure 3.14 and Table 3.13 respectively.

Figure 3.14 Total ion chromatogram for the essential oil obtained from the 48 hour Soxhlet extraction.

Table 3.13 Area percent report for the essential oil obtained from the 48 hour Soxhlet

extraction.

	DSXS2486 Area Percent Report								
Data File : D:\PATRICIA\DSXS2486.D							IOURS	V	ial: 34
Acq On : 26 Mar 2009 15:38								Opera	tor: PATRICIA
Sample : DCM SOX. EXT. SAMPLE 2 48 HOURS								Inst	: Instrumen
Misc :								Multi	plr: 1.00
MS	Integr	ation	Param	s: au	toint	1.e		Sampre Amo	unt: 0.00
Me Ti	thod tle	: C:\ :	MSDCH	EM\1\I	метно	DS\DEFAU	T.M (Chem	station In	tegrator)
Si	gnal	: TIC							
pea	k R.T.	first	max	last	PK	peak	corr.	corr.	% of
#	min	scan	scan	scan	TY	height	area	% max.	total
1	2.138	4	10	14	BV	245845	3259103	0.65%	0.115%
2	2.191	14	19	26	VV	192244	3713517	0.74%	0.131%
3	2.255	26	30	47	VV	117466	1579452	0.31%	0.056%
4	2.455	47	64	84	PV 2	917744	19752914	3.92%	0.699%
5	3.148	171	182	200	PV	4240338	90851725	18.03%	3.216%
6	3.360	207	218	231	VV	32584	1536408	0.30%	0.054%
7	3.571	244	254	261	VV	69892	2230917	0.44%	0.079%
8	3.671	261	271	282	VV	352459	8920841	1.77%	0.316%
9	4.041	318	334	355	VV	108213	3306111	0.66%	0.117%
10	4.341	355	385	390	PV	67979	1722374	0.34%	0.061%
11	4.500	390	412	422	VV	2952790	91121034	18.08%	3.226%
12	4.623	422	433	443	VV	1765037	47417132	9.41%	1.679%
13	4.735	443	452	473	VV 3	111471	4931677	0.98%	0.175%
14	5.898	621	650	671	PV 7	114364	8055949	1.60%	0.285%
15	6.051	671	676	703	VV 7	33803	1876858	0.37%	0.066%
16	9.829	1303	1319	1333	PV 5	38056	1759574	0.35%	0.062%
17	10.716	1446	1470	1530	BV 2	87531	7503339	1.49%	0.266%
18	12.350	1724	1748	1756	PV	49821	1114484	0.22%	0.039%
19	12.902	1832	1842	1853	VV 3	36398	1150778	0.23%	0.041%
20	13.225	1880	1897	1900	VV 3	121531	2737885	0.54%	0.097%
21 22 23 24 25	13.272 13.384 13.442 13.654 13.795	1900 1919 1928 1963 1981	1905 1924 1934 1970 1994	1919 1928 1947 1981 1997	VV VV VV VV VV 2	291398 38553 200589 156928 110423	5235931 774093 3906368 3629774 3849879	1.04% 0.15% 0.78% 0.72% 0.76%	0.185% 0.027% 0.138% 0.128% 0.136%
26	13.848	1997	2003	2008	VV	350496	7181032	1.43%	0.254%
27	13.907	2008	2013	2021	VV	571251	9968757	1.98%	0.353%
28	14.001	2021	2029	2037	VV	8273397	128948396	25.59%	4.565%
29	14.077	2037	2042	2045	VV 4	155427	3679681	0.73%	0.130%
30	14.124	2045	2050	2058	VV 3	178195	6095283	1.21%	0.216%
31	14.200	2058	2063	2066	VV 3	159697	4106702	0.81%	0.145%
32	14.265	2066	2074	2085	VV 3	266329	10970016	2.18%	0.388%
33	14.400	2085	2097	2103	VV	2346343	503919913	8 100.00%	17.839%
34	14.476	2103	2110	2119	VV 2	4038848	65095957	12.92%	2.304%
35	14.588	2119	2129	2132	VV 2	951921	25227291	5.01%	0.893%
36 37 38 39 40	14.635 14.764 14.823 14.905 14.952	2132 2147 2164 2171 2188	2137 2159 2169 2183 2191	2147 2164 2171 2188 2196	VV VV VV VV VV VV	1683352 9154847 1237030 2233024 1872064	41759501 151449347 24849438 98371717 42810481	8.29% 30.05% 4.93% 19.52% 8.50%	1.478% 5.361% 0.880% 3.482% 1.515%
41	14.999	2196	2199	2203	VV	1320760	28650997	5.69%	1.014%
42	15.093	2203	2215	2219	VV	9772229	189605136	37.63%	6.712%
43	15.152	2219	2225	2242	VV 2	17858382	2 358990584	4 71.24%	12.708%

44 45	15.311	2242 2252	2258 V	/V 2 /V 3	DSXS2 1062251 971083	2486 39815805 29604328	7.90%	1.409%
46 47 48 49 50	15.469 15.540 15.652 15.787 15.940	2272 2279 2287 2291 2297 2310 2324 2333 2345 2359	2287 V 2297 V 2324 V 2345 V 2366 V	/V 4 /V 3 /V /V 3 /V 3 /V 5	677699 489298 910009 539660 643844	26242052 14050453 37949948 28547085 31155664	5.21% 2.79% 7.53% 5.67% 6.18%	0.929% 0.497% 1.343% 1.011% 1.103%
51	16.022	2366 2373	2384 V	/V 4	681783	25591119	5.08%	0.906%
52	16.133	2384 2392	2396 V	/V 10	274145	10649259	2.11%	0.377%
53	16.175	2396 2399	2404 V	/V 4	251010	6104191	1.21%	0.216%
54	16.245	2404 2411	2416 V	/V 4	256108	9334520	1.85%	0.330%
55	16.304	2416 2421	2424 V	/V 2	259213	6539210	1.30%	0.231%
56	16.357	2424 2430	2433 V	/V	1012717	21533213	4.27%	0.762%
57	16.386	2433 2435	2440 V	/V 3	887259	16092028	3.19%	0.570%
58	16.427	2440 2442	2448 V	/V	551351	11048058	2.19%	0.391%
59	16.492	2448 2453	2455 V	/V 5	239804	5873331	1.17%	0.208%
60	16.574	2455 2467	2481 V	/V	840221	35942739	7.13%	1.272%
61	16.815	2488 2508	2517 V	/V	2111833	66865763	13.27%	2.367%
62	16.903	2517 2523	2526 V	/V 4	417363	10315701	2.05%	0.365%
63	16.938	2526 2529	2534 V	/V 3	426392	9876363	1.96%	0.350%
64	16.997	2534 2539	2545 V	/V 3	395403	11349872	2.25%	0.402%
65	17.062	2545 2550	2562 V	/V 3	240922	10721053	2.13%	0.380%
66	17.173	2562 2569	2580 V	/V 6	226640	10382081	2.06%	0.368%
67	17.279	2580 2587	2609 V	/V 8	198052	14671729	2.91%	0.519%
68	17.444	2609 2615	2620 V	/V 9	129372	4219736	0.84%	0.149%
69	17.502	2620 2625	2629 V	/V 7	150855	4206334	0.83%	0.149%
70	17.602	2629 2642	2653 V	/V 7	245326	16028070	3.18%	0.567%
71	17.720	2653 2662	2673 V	/V 4	222981	12686397	2.52%	0.449%
72	17.831	2673 2681	2687 V	/V 4	154215	7257734	1.44%	0.257%
73	17.884	2687 2690	2693 V	/V 5	148516	3077645	0.61%	0.109%
74	18.584	2798 2809	2821 V	/V 5	70157	4120403	0.82%	0.146%
75	18.866	2821 2857	2909 V	/V 3	1620345	100798698	20.00%	3.568%
76	19.271	2909 2926	2947 V	/V 6	261134	14447176	2.87%	0.511%
77	19.441	2947 2955	2961 V	/V 6	38602	1920279	0.38%	0.068%
78	19.712	2961 3001	3045 V	/BA2	1882065	142223158	28.22%	5.035%
			Sum c	of co	orrected	areas: 282	4859551	

A discussion of the Soxhlet extraction performed for the different extraction periods is presented here. The peaks areas for the essential oil obtained from Soxhlet extraction for the various extraction periods are indicated in Table 3.14. Also included in this table are the relative standard deviations (RSD) for the triplicate injections. The raw data is contained in Appendix E, from Tables E16 to E20.

Extraction period/hours	24	48	72
α-pinene	$6.6 \times 10^7 (4.1)$	$9.3 imes 10^7$ (4.0)	$9.0 \times 10^7 (2.9)$
β-pinene	$5.4 \times 10^{6} (4.1)$	$8.7 \times 10^{6} (3.2)$	$8.2 \times 10^{6} (4.0)$
α -phellandrene	$1.8 \times 10^{6} (2.4)$	$3.3 \times 10^6 (1.6)$	2.6×10^{6} (4.7)
β-caryophyllene	3.8×10^8 (4.8)	$5.1 \times 10^8 (1.6)$	4.6×10^8 (2.0)
α -caryophyllene	$9.1 \times 10^7 (2.1)$	1.6×10^8 (2.3)	$1.3 \times 10^8 (1.1)$

Table 3.14 Peak areas for the essential oil obtained from Soxhlet extraction with dichloromethane for differing extraction periods.

Figures in parentheses are % RSD.

The average peak areas obtained for the essential oils in the fresh leaves of *M. koenigii* was the highest for the 48 hour extraction period for the selected compounds. The extraction was exposed to light since it was not covered with foil and therefore the decrease in the terpenes after 72 hours could be due to the same reasons already discussed in Section 3.3.1.1. In addition, the decrease could be due to thermal degradation. McGraw *et al.* (1999) showed in their work that the percent thermal degradation of β -pinene in a 72 hour extraction with heating at 120 °C, was 36%. Although McGraw *et al.* (1999) used a different technique, in our case the extraction took place at the boiling point of the solvent, 40 °C and a loss of ~6% for β -pinene indicated that thermal degradation possibly took place. Therefore to verify that the 48 hour period extracted the largest amount of analytes and to ensure that the compounds are not exposed to high temperatures for 72 hours, a sequential Soxhlet extraction was undertaken with dichloromethane and the results for this investigation are discussed in the next section.

3.3.1.3 Sequential Soxhlet extraction

In this study, Soxhlet extraction was performed for the verification of the optimium extraction period and the chromatograms for these extractions are displayed in Figures 3.15 to 3.17. After the first extraction with 300 mL of dichloromethane for a 24 hour period, the chromatogram in Figure 3.15 was obtained.

Figure 3.15 Total ion chromatogram for the first Soxhlet extraction, with 300 mL of dichloromethane, i.e. after 24 hours of extraction.

After the first 24 hour extraction period was complete, the dichloromethane extract was removed and a second 300 mL aliquot of dichloromethane was added to the same sample of leaves for a further 24 hour extraction (i.e 48 hours extraction on the same sample) and the chromatogram shown in Figure 3.16 was obtained.

Figure 3.16 Total ion chromatogram for the second Soxhlet extraction, i.e the leaves were extracted for a total of 48 hours, with fresh dichloromethane on the same leaves as previously extracted.

The chromatogram in Figure 3.16 showed that β -caryophyllene (E) and α -caryophyllene (F) as well as the sesquiterpenes, β -selinene (15.08 min retention time) and valencene (15. 14 min) were still being extracted when the second aliquot of dichloromethane was added after the first 24 hour period, even though most hydrocarbon terpenes are extracted within 24 hours. This indicated that the 24 hour extraction was not complete. The peak at a retention time of 19.62 min is indicative of the compound, phytol.

After the second extraction process, a third 300 mL of dichloromethane was added to the same sample of leaves for a further 24 hour extraction (i.e. a total of 72 hours of extraction on the same sample) and the chromatogram in Figure 3.17 was produced.

Figure 3.17 Total ion chromatogram for the third Soxhlet extraction, i.e the leaves were extracted for a total of 72 hours, with fresh dichloromethane on the same leaves as previously extracted.

The chromatogram in Figure 3.17 showed that although fresh solvent was used no compounds of interest were left after the 48 hour extraction, as no further hydrocarbons were being extracted. Other compounds identified are indicated in the above chromatogram. The presence of the large peak due to phytol, indicates that leaving the extraction period for longer periods can result in the hydrolysis of chlorophyll a to phytol (Krautler, 2002).

From these results as well as the results obtained for the earlier Soxhlet extraction in Table 3.14, the optimium extraction period for the five selected compounds was found to be 48 hours. All quantitation was performed for this extraction period for both solvent and Soxhlet extraction.

3.4 Steam distillation technique

The total ion chromatogram of the extraction of the leaves by steam distillation and its area percent report can be found in Figure 3.18 and Table 3.15 respectively.

Figure 3.18 Total ion chromatogram for the essential oil obtained from the steam distillation.

									A	SDS4 rea Perce	R1 nt Report		
Da Ac Sa Mi	ta q <u>(</u> mp sc	F Dn le	ile		D:\ 9 stea 1 u	PATRIO Feb 20 am dis l injo	CIA\SI 009 stilla ection	DS41 12:4 ation	R1 46 on	.D run 1	c	V Opera Inst Multi	'ial: 1 tor: PATRICIA : Instrumen plr: 1.00
MS	I	۱t	egra	at	ion I	Param	s: au	toi	nt:	1.e		ampre Amo	unc. 0.00
Me Ti	the tle	bd 2		:	C:\I	MSDCHI	EM\1\I	ИЕТІ	HOI	DS\DEFAUL	T.M (Chems	tation In	tegrator)
Si	gna	al		:	TIC								
pea #	k	R m	.T. in	f	irst scan	max scan	last scan	PI T	K Y	peak height	corr. area	corr. % max.	% of total
1 2 3 4 5		2.2.2.	191 455 490 937 072		4 68 134 164	19 64 70 146 169	27 68 96 164 174	BV PV VV PV VV	3 3 5 5	98454 1072403 579542 32536 10406	1723699 20499169 12356374 1345054 237590	0.59% 7.04% 4.24% 0.46% 0.08%	0.126% 1.495% 0.901% 0.098% 0.017%
6 7 8 9 10		3. 3. 3. 4.	154 683 894 053 347		174 265 290 323 375	183 273 309 336 386	204 290 323 353 390	VV VV VV VV PV	2 2 3	496121 80051 8188 73950 11089	10842140 1898630 283762 1891245 244046	3.72% 0.65% 0.10% 0.65% 0.08%	0.791% 0.138% 0.021% 0.138% 0.018%
11 12 13 14 15		4. 4. 5.	435 505 629 281 657		390 405 425 530 589	401 413 434 545 609	405 425 453 581 629	VV VV BB BV	3	114370 803034 644921 7953 13545	3013617 20916518 16896283 355993 446788	1.03% 7.18% 5.80% 0.12% 0.15%	0.220% 1.525% 1.232% 0.026% 0.033%
16 17 18 19 20		5. 5. 7. 8.	916 098 856 473 178		629 669 799 888 1010	653 684 813 918 1038	669 701 842 933 1072	VV VV VV BV BV	2 2 4 5 2	67806 9775 32269 21567 33159	2579430 556930 1284425 856571 1714950	0.89% 0.19% 0.44% 0.29% 0.59%	0.188% 0.041% 0.094% 0.062% 0.125%
21 22 23 24 25	10 12 12).). 2. 2.	124 817 463 120 344		1187 1298 1415 1702 1734	1199 1317 1427 1709 1747	1234 1365 1447 1717 1755	VV PV VV PV BV	6 7 9 6	20769 67754 7865 5784 49648	1093804 4025028 384470 140048 986467	0.38% 1.38% 0.13% 0.05% 0.34%	0.080% 0.294% 0.028% 0.010% 0.072%
26 27 28 29 30	12 12 13 13 13	2.	426 896 072 225 272		1755 1822 1847 1883 1901	1761 1841 1871 1897 1905	1776 1847 1883 1901 1918	VB VV VV VV VV	6 7 7	10112 6868 7729 80386 98805	227331 182414 325599 1351230 1606900	0.08% 0.06% 0.11% 0.46% 0.55%	0.017% 0.013% 0.024% 0.099% 0.117%
31 32 33 34 35	$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	3. 3. 3. 3.	442 765 848 906 000		1928 1982 1996 2009 2023	1934 1989 2003 2013 2029	1946 1996 2009 2023 2036	VV PV VV VV	3	67539 34907 120636 219666 3881945	1072046 661212 2260920 3375228 55424516	0.37% 0.23% 0.78% 1.16% 19.03%	0.078% 0.048% 0.165% 0.246% 4.042%
36 37 38 39 40	$14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\$	1. 1. 1. 1.	071 124 235 271 400		2036 2047 2059 2071 2085	2041 2050 2069 2075 2097	2047 2059 2071 2085 2103	 VV <	6 9 3	54733 22093 55995 95666 14465705	1518075 662052 1302132 2503804 291303001	0.52% 0.23% 0.45% 0.86% 100.00%	0.111% 0.048% 0.095% 0.183% 21.243%
41 42 43	$14 \\ 14 \\ 14$	4. 4. 4.	476 588 641		2103 2119 2133	2110 2129 2138	2119 2133 2150	VV VV VV	2	2093347 472383 808582	31915624 9500149 19307587	10.96% 3.26% 6.63%	2.327% 0.693% 1.408%

Table 3.15 Area percent report for the essential oil obtained from the steam distillation.

44	14.764	2150 2159	2164 VV		SDS 6486061	4R1 94102364	32.30%	6.862%
45 46	14.811	2164 2167	2172 VV 2188 VV	3	359565 1205683	8022905 31205482	2.75%	0.585% 2.276%
47 48 49 50	14.952 14.999 15.093 15.152	2188 2191 2197 2199 2202 2215 2219 2225	2197 VV 2202 VV 2219 VV 2236 VV	2 2	898950 370024 7386193 13362035	18943279 6161153 129379350 5 252908389	6.50% 2.12% 44.41% 86.82%	1.381% 0.449% 9.435% 18.443%
51 52 53 54 55	15.228 15.311 15.369 15.469 15.528	2236 2238 2243 2252 2257 2262 2272 2279 2286 2289	2243 VV 2257 VV 2272 VV 2286 VV 2296 VV	2 4 4	323460 629342 499651 158713 94370	5197548 11299497 8558732 4474622 2121746	1.78% 3.88% 2.94% 1.54% 0.73%	0.379% 0.824% 0.624% 0.326% 0.155%
56 57 58 59 60	15.651 15.757 15.875 15.928 16.027	2304 2310 2322 2328 2343 2348 2352 2357 2363 2374	2322 VV 2343 VV 2352 VV 2363 VV 2385 VV	3 4 3 2	601672 255859 153574 347775 704215	10697331 7317059 3096878 6514282 20252666	3.67% 2.51% 1.06% 2.24% 6.95%	0.780% 0.534% 0.226% 0.475% 1.477%
61 62 63 64 65	16.121 16.233 16.280 16.345 16.409	2385 2390 2401 2409 2415 2417 2421 2428 2434 2439	2401 VV 2415 VV 2421 VV 2434 VV 2445 VV	5 2	328979 347647 83773 1811149 929577	7233840 7869964 1680749 32280734 17712863	2.48% 2.70% 0.58% 11.08% 6.08%	0.528% 0.574% 0.123% 2.354% 1.292%
66 67 68 69 70	$\begin{array}{r} 16.468 \\ 16.562 \\ 16.662 \\ 16.715 \\ 16.791 \end{array}$	2445 2449 2459 2465 2477 2482 2485 2491 2494 2504	2452 VV 2477 VV 2485 VV 2494 VV 2514 VV	5 4 4	208603 212079 94942 321671 5071446	4413101 8879057 2164971 6174011 107236784	1.51% 3.05% 0.74% 2.12% 36.81%	0.322% 0.647% 0.158% 0.450% 7.820%
71 72 73 74 75	16.885 16.997 17.326 17.438 17.567	2514 2520 2531 2539 2588 2595 2605 2614 2625 2636	2531 VV 2555 VV 2605 VV 2625 VV 2648 VV	3 3 3 5	429075 133098 31602 22470 90606	11440728 5226354 1205866 1065687 3240092	3.93% 1.79% 0.41% 0.37% 1.11%	0.834% 0.381% 0.088% 0.078% 0.236%
76 77 78	17.655 17.825 18.924	2648 2651 2672 2680 2849 2867	2664 VV 2710 BV 2906 PV	5 5 5	17091 19496 15102	491814 716942 929199	0.17% 0.25% 0.32%	0.036% 0.052% 0.068%
			Sum of	co	orrected	areas: 13	71288887	

The steam distillate obtained during this extraction displayed a crystalline form when recovered in its cold state. This crystalline form was obtained for all the extractions performed with a simple steam distillation set-up. The essential oil extracted from the steam distillation method was pale yellow in colour. The yields of the oil which were obtained in this work are recorded in Table 3.16.

Sample number	1	2	3
Mass of milled leaves/g	25.6	25.6	25.1
Yield of extract/g	0.50	0.43	0.59
Percentage of extract/%	1.94	1.67	2.37

Table 3.16 Yields of extracts of *M. koenigii* obtained from the steam distillation extraction.

The results obtained in Table 3.16 were lower for samples 1 and 2 compared to the amount obtained by Mitra (2.6%) (MacLeod and Pieris, 1982), but for sample 3 the amount obtained was close to the yield reported in literature. Studies done by other researchers, Rana *et al.* (2004), Paranagama *et al.* (2002) and Wong and Tie (1993) on *M. koenigii* leaves showed that the yield of oil obtained was in the range 0.23 % (m/m) to 0.42%(m/m). These differences in yield could be due to geographical location, environmental factors and seasonal variation. The variability in the results could also be due to the problems inherent with the steam distillation technique such as the vulnerability of the monoterpenes to steam distillation and loss of volatiles during the evaporation step.

3.4.1 Method precision

The precision was determined for the triplicate extractions (done in parallel) of the same batch of leaves and these results including the average peak areas and corresponding standard deviations are shown in Tables 3.17 to 3.19. The peak area, standard deviation as well as the RSD values for the individual samples can be found in Appendix E, Tables E21 to E25.

Table 3.17 Peak areas, standard deviation and relative standard deviation for the triplicate injections of the essential oil obtained from the steam distillation method for sample 1.

Sample	1						
Compound	Average ± STD Deviation (n = 3)	RSD/%					
α-pinene	$(4.8 \pm 0.1) \times 10^5$	2.6					
β-pinene	$(2.20 \pm 0.06) \times 10^5$	2.8					
α-phellandrene	$(2.5 \pm 0.1) \times 10^5$	4.4					
β-caryophyllene	$(2.64 \pm 0.03) \times 10^8$	1.3					
α-caryophyllene	$(9.1 \pm 0.1) \times 10^7$	1.8					

Table 3.18 Peak areas, standard deviation and relative standard deviation for the triplicate injections of the essential oil obtained from the steam distillation method for sample 2.

Sample	2	
Compound	Average ± STD Deviation (n = 3)	RSD/%
α-pinene	$(5.34 \pm 0.09) \times 10^6$	1.6
β-pinene	$(1.20 \pm 0.02) \times 10^{6}$	2.1
α -phellandrene	$(1.09 \pm 0.02) \times 10^6$	1.5
β-caryophyllene	$(2.65 \pm 0.01) \times 10^8$	0.5
α-caryophyllene	$(8.4 \pm 0.2) \times 10^7$	1.9

Table 3.19 Peak areas, standard deviation and relative standard deviation for the triplicate injections of the essential oil obtained from the steam distillation method for sample 3.

Sample	3	
Compound	Average ± STD Deviation (n = 3)	RSD/%
α-pinene	$(1.05 \pm 0.03) \times 10^7$	3.0
β-pinene	$(1.90 \pm 0.002) \times 10^6$	0.1
α -phellandrene	$(1.84 \pm 0.05) \times 10^6$	3.0
β-caryophyllene	$(2.86 \pm 0.05) \times 10^8$	1.6
α-caryophyllene	$(9.1 \pm 0.2) \times 10^7$	2.4

From the tables, the percent relative standard deviation (%RSD) values obtained for the trplicate injections of the essential oils were found to be between 0.1 and 3.0%.

The reproducibility of the steam distillation method on the same batch of leaves, given by the percent relative standard deviation (%RSD) values obtained in Table 3.20 for the analysis of the sesquiterpenes (β -caryophyllene and α -caryophyllene), in the essential oils were found to be the same, i.e. 4.6%. The RSDs for the monoterpenes, however, were found to be high and this could be due to the loss of monoterpenes during the extraction step, as well as during the back extraction of the compounds into the organic phase using dichloromethane. As already mentioned in Chapter 1, Section 1.4.3, the monoterpenes are vulnerable to steam distillation and loss of the compounds can occur (Diaz-Maroto *et al.*, 2002). Also, concentrating the oil by removing the solvent on the rotary evaporator could have resulted in the decrease of the monoterpenes during this evaporation step. Given that it was the same batch of homogenised leaves which was used it is unlikely to have any variation in the plants.

Compound	Average ± STD Deviation (n = 3)	RSD/%
α-pinene	$(5.5 \pm 5.0) \times 10^{6}$	92.3
β-pinene	$(1.10 \pm 0.8) \times 10^6$	76.2
α -phellandrene	$(1.1 \pm 0.8) \times 10^{6}$	74.6
β-caryophyllene	$(2.7 \pm 0.1) \times 10^8$	4.6
α -caryophyllene	$(8.9 \pm 0.4) \times 10^7$	4.6

Table 3.20 Statistics for the reproducibility of the steam distillation method.

More discussion on the terpenoid profile of the oil follows in Section 3.7.

3.5 Headspace and HS-SPME extraction

3.5.1 Effect of temperature

According to researchers, Wang *et al.* (2004) and Pellati *et al.* (2005), temperature affects the equilibrium of analytes between the sample matrix and the coating of the fibre. Wang *et al.* (2004) maintained that the optimum temperature chosen for a complex matrix would depend on the analytes of interest or the compounds that need the most sensitivity, a finding which was also mentioned by Monje *et al.* (2002). The influence of temperature on the volatiles for HS-SPME and headspace analysis was investigated. For both the headspace analysis and HS-SPME, approximately 25 g milled curry leaves were extracted at four different temperatures: room temperature (~22 °C), 40 °C, 60 °C and 80 °C. These temperatures were also chosen since it has been reported previously in literature that some terpenes, e.g. β -caryophyllene, can be oxidised at high temperatures (Hamm *et al.*, 2003).

The average peak area counts and the percent relative standard deviation (%RSD) of the selected hydrocarbons for the HS-SPME and headspace analysis of *M. koenigii* at different temperatures are recorded in Table 3.21. Each result shows the mean for three separate sample analyses. The individual results for the mean, standard deviation and RSDs are shown in Appendix E, Tables E29 to E43.

Compound and	E					
Extraction	EXIFACTION Temperature					
method	RT (~22 °C)	40 °C	60 °C	80 °C		
	Average peak	Average peak	Average peak	Average peak		
α-pinene	areas	areas	areas	areas		
PDMS	$2.1 \times 10^7 (9.2)$	$5.3 \times 10^7 (9.5)$	$1.9 \times 10^8 (7.7)$	3.4×10^8 (16.9)		
РА	$3.5 \times 10^5 (3.3)$	$2.0 \times 10^{6} (3.6)$	$1.2 \times 10^7 (7.7)$	$7.1 \times 10^7 (18.1)$		
HSA	$2.6 \times 10^{6} (9.2)$	$7.0 \times 10^{6} (13.1)$	$4.0 \times 10^7 (38.2)$	$9.7 \times 10^7 (52.8)$		
β-pinene						
PDMS	$1.6 \times 10^{6} (9.9)$	$3.7 \times 10^{6} (4.3)$	$2.4 \times 10^7 (8.5)$	$7.9 \times 10^7 (14.1)$		
РА	$2.6 \times 10^4 (4.3)$	$2.2 \times 10^5 (7.3)$	$1.7 \times 10^{6} (3.3)$	$1.0 \times 10^7 (16.3)$		
HSA	$8.3 \times 10^4 (13.2)$	2.1×10^5 (8.8)	$1.9 \times 10^{6} (13.1)$	$6.8 \times 10^6 (79.6)$		
α-phellandrene						
PDMS	$9.6 \times 10^5 (4.3)$	$2.6 \times 10^{6} (5.1)$	$1.5 \times 10^{7} (2.8)$	$5.7 \times 10^7 (19.7)$		
РА	$4.6 \times 10^4 (6.5)$	$2.0 \times 10^{5}(6.2)$	$1.2 \times 10^{6} (2.8)$	$7.4 \times 10^{6} (14.6)$		
HSA	$5.3 \times 10^4 (17.8)$	$1.4 \times 10^{5}(15.3)$	$1.0 \times 10^{6} (6.5)$	$7.4 \times 10^{6} (71.5)$		
β-caryophyllene						
PDMS	$1.1 \times 10^8 (6.3)$	$1.3 \times 10^8 (9.5)$	$2.9 \times 10^8 (5.4)$	$8.9 \times 10^8 (7.0)$		
РА	$7.0 \times 10^{6} (17.4)$	$1.7 \times 10^7 (19.0)$	$7.2 \times 10^7 (9.8)$	$2.4 \times 10^8 (17.7)$		
HSA	$1.7 \times 10^{6} (14.2)$	$2.8 \times 10^{6} (62.6)$	$1.4 \times 10^7 (21.7)$	$4.1 \times 10^7 (90.7)$		
α-caryophyllene						
PDMS	$2.0 \times 10^7 (4.0)$	$2.1 \times 10^7 (8.1)$	$5.4 \times 10^7 (9.0)$	$2.3 \times 10^8 (7.4)$		
PA	$1.6 \times 10^6 (18.4)$	$3.0 \times 10^{6} (17.1)$	$1.2 \times 10^7 (9.7)$	$4.1 \times 10^7 (22.2)$		
HSA	$2.4 \times 10^5 (11.8)$	$2.8 \times 10^5 (57.5)$	$1.5 \times 10^{6} (27.9)$	$5.4 \times 10^{6} (95.6)$		
PDMS – polydimethylsiloxane fibre		HSA - headspace analysis				

Table 3.21Average area count for HSA and HS-SPME extraction of the essential oilin M. koenigii.[†]

PA – polyacrylate fibre

HSA - headspace analysis **RT** - room temperature

[†] The numbers in parentheses refer to the % RSD.

In order to examine the extraction efficiency for the selected compounds present in *M. koenigii*, the peak areas in Table 3.21 for the HS-SPME and HSA extractions are represented graphically in Figures 3.19 to 3.21.

3.5.2 HS-SPME (PDMS fibre coating)

For the HS-SPME extraction with the PDMS coating, the results in Table 3.21 are illustrated in Figure 3.19.

Figure 3.19 Extraction profile for the selected hydrocarbons for the HS-SPME (PDMS coating) method.

From Figure 3.19 as well as the peak areas in Table 3.21, it can be observed that there is a general increase in analyte enrichment into the fibre coating with an increase in

temperature, with the largest amount observed at 80 °C. Also, for the extraction of the sesquiterpene, β -caryophyllene, a relatively larger amount was extracted as compared to the other compounds and this could also be an indication that it may be one of the major components. A similar observation was noted from the results of the solvent extraction. Taking into account the RSD values in Table 3.21, a temperature of 60 °C will be most suitable for the extraction of these compounds, since it is a compromise between extraction efficiency and precision.

3.5.3 HS-SPME (PA fibre coating)

For the HS-SPME extraction with the PA coating, the results in Table 3.21 are represented graphically in Figures 3.20.

Figure 3.20 The extraction profile of the target analytes extracted by HS-SPME (PA coating) at different temperatures.

From Figure 3.20, as well as Table 3.21, a similar trend to the PDMS fibre coating was observed for the HS-SPME method with the PA coating, i.e. a general increase in the extraction efficiency with an increase in temperature. Comparing the extraction of β -caryophyllene, the amount extracted was relatively lower than the amount obtained when the PDMS coating was used. The most favourable temperature was found to be 60 °C.

3.5.4 Headspace technique

For the HSA extraction, the results in Table 3.21 are represented graphically in Figure 3.21.

Figure 3.21 Extraction profile of the five analytes present in the headspace of *M*. *koenigii* at various temperatures.

From Figure 3.21, it can be seen that the largest amount extracted at a temperature of 80 °C was for the highly volatile monoterpene, α -pinene. These results differ from the results obtained for the HS-SPME with the PDMS and PA coatings, even though the same equilibration time and temperatures were used. The HS-SPME extractions showed a higher amount extracted for β -caryophyllene. The headspace method under these experimental conditions seems to favour the extraction of the more volatile compounds, e.g. α -pinene at a temperature of 80 °C. These results seem to be consistent with the findings of Manura and Overton (1999). According to them, headspace analysis is useful for the analysis of highly volatile organic compounds at the mg L⁻¹ level, but less favourable for the analysis of higher boiling analytes. It should be noted that a comparison of the total amount of compounds extracted for the different headspace analysis and for HS-SPME, a fibre (1 cm in length) was desorbed into the GC-MS for analysis. Since no internal standard was added in these experiments, comparison can therefore only be based on the trends which were observed.

3.5.5 Extraction efficiency

In this section, the results for the investigation of the effect of temperature on extraction efficiency are discussed. Also included in this section is a discussion on the extraction profile of HS-SPME.

3.5.5.1 Influence of temperature

In order to examine the influence of temperature on the headspace composition and the extraction efficiency, the peak areas in Table 3.21 (Section 3.5.1.) for the selected compounds were plotted at the various temperatures and this can be seen in Figures 3.22 to 3.26.

The results shown in Figures 3.22 to 3.26 and in Table 3.21 indicated that the concentration of the selected hydrocarbons in the headspace and HS-SPME analyses increased with an increase in temperature and the extraction efficiency was the highest at 80 °C (as also observed in similar work investigated by Camara *et al.* (2006)).

Figure 3.22 The effect of temperature on the headspace composition of α -pinene.

Figure 3.23 The influence of temperature on the headspace composition of β -pinene.

Figure 3.24 The influence of temperature on the headspace composition of α -phellandrene.

Figure 3.25 The influence of temperature on the headspace composition of β -caryophyllene.

Figure 3.26 The influence of temperature on the headspace composition of α -caryophyllene.

In the present study, the increase in the hydrocarbons in the headspace at high temperatures was due to the increase of the concentration of compounds with low volatility (e.g. β -caryophyllene) in the gas phase. A similar reasoning was suggested by Castro *et al.* (2004). Also, the higher temperatures did not show any decomposition of the volatile compounds as no decomposition products could be seen in the chromatogram and this could be due to the short equilibration times used in this study. A similar trend was obtained by Pellati *et al.* (2005) in their work conducted on the aroma compounds of the *Evodia* fruit as well as by Castro *et al.* (2004). The results obtained for this investigation indicated that temperature is an important parameter for the extraction of the volatile organic compounds and that extraction increases with an increase in temperature.

3.5.5.2 Extraction profile

Headspace SPME involves the equilibration of the analytes between the fibre coating, headspace and sample matrix. The analyte enrichment of the fibre relies on the mass transfer from the matrix to the vapour phase and from this phase to the polymer coating (Bicchi *et al.*, 2007). In this work, for optimum HS-SPME conditions, two different fibre coatings, PDMS and PA, were studied. Both fibres' performance was determined from the results of three individual samples. After the exposure of the fibres to the headspace above the milled leaves, at the temperatures mentioned earlier, namely, room temperature (~22 °C), 40 °C, 60 °C and 80 °C, the analytes were extracted into the fibre coating.

From the results shown in Table 3.21 and in Figures 3.22-3.26, it can be seen that the peak areas for the analytes with the PDMS coating obtained were greater than those with the PA coating. The smaller amount extracted for the fibre with PA coating is expected as it is known to be more suitable for polar compounds and the compounds extracted here are nonpolar.

According to work done by Alpendurada (2000), the diffusion constants in the PA coating are much smaller than the PDMS fibre coating, and therefore a longer extraction time is necessary for the adsorption of the analytes. Also, the partition coefficients are different and this explains why (in this study), the yields for the PA fibre are much smaller than for the fibre with the PDMS coating. The results for the extraction with the PDMS coating showed better extraction efficiency for the selected compounds.

3.5.6 Method reproducibilty

For a method to be acceptable, it needs to provide scientific proof of consistency in the results obtained, within reasonable limits. One way in which this can be demonstrated is by examining the reproducibility of the peak areas, expressed in terms of its precision (RSD value) for each of the headspace methods investigated. Replicate analysis with the same fiber can produce reproducible results, with a 20% variation in peak areas being reported. Also the differences in the results obtained for the HS-SPME with the different fibres is due to affinity of the compounds for the adsorption sites on the fibre.

In the analysis with the HS-SPME fibres, the fibres were exposed for a 15 minute duration, during which time the compounds was adsorbed onto the fibre coating and thereafter desorbed into the injection port of the GC-MS, whilst for the headspace analysis, a sample was taken out with the aid of a syringe after 15 minutes. Therefore, the differences in the results obtained could be due to this experimental difference. It has been reported that it is a lack of precision that has become problematic for quantitative determination when using SPME and headspace analysis (Stashenko and Martinez, 2007).

3.5.6.1 HS-SPME

The reproducibility values, expressed as percent relative standard deviations, of the HS-SPME methods with the different coatings are compared in Table 3.22. The results

were determined from the peak areas obtained from three separate experiments, which can be found in Appendix E, Tables E29 to E43.

Compound	PDMS Fibre RSD/%				PA RS	Fibre D/%		
	RT	40 °C	60 °C	80 °C	RT	40 °C	60 °C	80 °C
α-pinene	9.2	9.5	7.7	16.9	3.3	3.6	7.7	18.1
β-pinene	9.9	4.3	8.5	14.1	4.3	7.3	3.3	16.3
α-phellandrene	4.3	5.1	2.8	19.7	6.5	6.2	2.8	14.6
β-caryophyllene	6.3	9.5	5.4	7.0	17.4	19.0	9.8	17.7
α-caryophyllene	4.0	8.1	9.0	7.4	18.4	17.1	9.7	22.2

Table 3.22 Comparative percent relative standard deviation (%RSD) of the peak areas for Headspace-SPME extraction of *M. koenigii* leaves at different temperatures.

RT – room temperature

From Table 3.22, it can be seen that the precision obtained for the HS-SPME extraction with the PDMS fibre coating did not exceed 10% up to a temperature of 60 °C (ranging from 2.8 to 9.9%). According to Stashenko and Martinez (2007), the RSDs for HS-SPME are usually below 10%, however, RSDs below 20% have been obtained for aroma compound determinations. The RSDs in this work were higher at 80 °C for the monoterpenes and lower for the sesquiterpenes.

For the extraction with the PA fibre coating, the RSDs for the monoterpenes at room temperature and at 40 °C were lower than the RSDs for the sequiterpenes. The RSDs' at 60 °C were all below 10%; and the precision at 80 °C, was between 14.6 and 22.2%. The reproducibility obtained in this study compares well with work done by other researchers with the same fibre coating. In a study of flavour volatiles conducted by Steffen and Pawliszyn (1996) the percent relative standard deviation values for the fibre with the PA coating ranged between 1 and 18%.

The RSDs for α -pinene, β -pinene, and β -caryophyllene obtained in this work are comparable to the RSDs obtained for the same compounds from the analysis of sage leaves. Extraction of these compounds by Bicchi *et al.* (2007) using HS-SPME with the PDMS fibre coating at 50 °C showed that the RSDs obtained for these compounds were in the following ranges: α -pinene (3.3-9.3%), β -pinene (3.2-9.8%) and β -caryophyllene (3.2-8.4%). Examination of the RSDs for the same compounds in Table 3.22 at 40 °C and 60 °C shows that the RSDs were all within this range, even though the sage leave extraction time was 30 minutes with sample agitation every 10 minutes. The precision of the results are in agreement with what has been reported for similar systems.

In this work, for the extraction of the compounds with the PDMS coating, it can be seen that room temperature, 40 °C and 60 °C could be used, but since temperature affects the extraction efficiency (discussed earlier in Section 3.5.5.1.), the more suitable temperature would be 60 °C and this could also probably be the optimum temperature for the extraction of the volatile compounds with the PA coating.

Further discussion on the terpenoid profile of the essential oil in *M. koenigii* can be found in Section 3.7.2.

3.5.6.2 HSA

The chromatograms obtained by the headspace method used for the extraction of the essential oils from the leaves of *M. koenigii* can be found in Appendix D, Figures D18 to D21. A representative chromatogram obtained for the headspace analysis at 60 $^{\circ}$ C is shown in Figure 3.27.

Figure 3.27 Total ion chromatogram for the headspace analysis at 60 °C.

In this study, the reproducibility of the headspace analysis was poor between replicates as can be seen from the high relative standard deviations for the method, shown in Table 3.23. From the examination of the RSDs, headspace analysis appears to be more precise for the extraction of the high volatiles e.g. α -pinene. The precision was better at a lower temperature. The headspace GC shows a better response for the more highly volatile

analytes than those of lesser volatility and this can be seen by examining the terpenoid profile of the essential oils in Section 3.8.2.

Compound	HSA RSD/%			
	RT	40 °C	60 °C	80 °C
α-pinene	9.2	13.1	38.2	52.8
β-pinene	13.2	8.8	13.1	79.6
α-phellandrene	17.8	15.3	6.5	71.5
β-caryophyllene	14.2	62.6	21.7	90.7
α-caryophyllene	11.8	57.5	27.9	95.6

Table 3.23 Relative standard deviation (RSD) for the headspace extracts of the leaves of *M. koenigii* at the various temperatures.

The high RSD values in Tables 3.22 and 3.23 for HS-SPME and headspace analysis can be accounted for. In the case of headspace analysis condensation inside the barrel of the syringe was observed for the extraction at 80 °C and this could play a contributory role to the poor RSD values obtained. This problem can be overcome in future work, by making use of a heated syringe for sample injection into the GC-MS. In HS-SPME, the high RSDs are also due to condensation on the SPME fibres. However the condensation in HS-SPME will be lower (due to competition of compounds) than headspace analysis and the syringe can also be heated before a sample is obtained for GC-MS analysis. Since the PDMS coating is non-polar, better RSD values were obtained than for the polar PA coating due to less condensation on the PDMS fibre coating.

Also, due to the low concentration of some of the compounds present, the loss of volatile organic compounds could be due to sample collection and handling and

measuring errors become unavoidable, as reported by Barbier et al. (2004) in their work.

Since the flask was sealed with a rubber septum, the reproducibility and accuracy of the analysis could be affected, since a large amount of trace components can be absorbed by rubber septa (Hachenberg and Schmidt, 1986), as well as adsorptive losses onto walls of the flask.

3.6 Fragmentation and identification of components of extracts

Before the different extraction methods could be compared in terms of the terpenoid profile extracted, the various components needed to be identified. This was done by comparing the retention time and mass spectrum of each component in the sample with those of standard compounds as explained earlier in Section 3.2.1. In this section a discussion of the fragmentation patterns observed in this work is given and how they led to the identification of the compounds extracted.

From the fragmentation patterns in Table 3.24, it would appear that compounds belonging to two different types of terpenes, the monoterpenes and sesquiterpenes were present. It should be added that the mode of fragmentation was very similar except that the base peak was formed via different routes for the terpenes mentioned.

Compound	Molar mass/g mol ⁻¹	B.P./°C	Base peak <i>m/z</i>	Main fragment ions <i>m/z</i>
α-pinene	136	154-156	93	93, 77, 41, 121
camphene	136	159-160	93	93, 121, 79, 41, 107
β-pinene	136	164-169	93	93, 41, 69, 121,107,55
β-myrcene	136	164-169	93	41, 93, 69, 27, 53
α -phellandrene	136	171-174	93	93, 77, 121, 55, 107,39
<i>d</i> -limonene	136	176	68	68, 93, 41, 79, 136
copaene	204	246-251	119	119, 105, 161, 93, 41
β-elemene	204	251-253	93	81, 93, 68, 41, 107
β-caryophyllene	204	262-264	93	93, 41, 69, 133, 107
α-farnesene	204	260-262	93	41, 93, 69, 55, 107
α-caryophyllene	204	266-268	93	93, 79, 41, 121, 79,107
γ-elemene	204	257-259	121	121, 93, 41, 107, 67

Table 3.24 Mass spectra of some hydrocarbons identified in *M. koenigii*.

B.P.- boiling point (http://www.thegoodscentscompany.com/data/rw1014751.html., http://en.wikipedia.org/wiki/Limonene).

3.6.1 Fragmentation pattern of bicyclic terpenes

The fragmentation pattern of α - and β -pinene closely resembled that of the bicyclic terpenes (refer to Scheme 1 on page 125). A representative mass spectrum of α -pinene, in comparison to the mass spectrum in the NIST library, is shown in Figure 3.28.

Figure 3.28 Comparison of mass spectrum of standard α -pinene with the mass spectrum contained in the NIST library.

For α -pinene, a bicyclic terpene containing a gem-dimethyl group, it was likely that the breakdown reaction $136^+ \rightarrow 93^+ + 43$ arises through the expulsion of the propylene group (C₃H₅ + 2H⁺, i.e. 43 mass units) and the second reaction $93^+ \rightarrow 91^+ + 2$ is not clearly interpreted (Ryhage and von Snydow, 1963; Budzikiewicz *et al.*, 1964). Thereafter, the fragmentation pattern of these bicyclic compounds is very similar to that

of the monoterpenes (see Schemes 1 and 2 on pages 125 and 126). It should be mentioned that the Schemes are merely suggested pathways, with various parts of the routes extracted from Hill (1969), Reed (1966), Ryhage and von Snydow (1963) and Budzikiewicz *et al.*, (1964). The structural features of bicyclic terpenes were such that once forty three mass units were lost the resulting monocyclic moiety which rearranged again produced strong peaks at 79 and 77 pointing to the formation of conjugated systems. Some common fragment ions are listed in Table 3.25.

m/z	Fragment
136	M^+
121	M-15
93	C ₇ H ₉
91	Tropylium ion, C ₇ H ₇
79	C ₆ H ₇
77	Phenyl, C ₆ H ₅
65	$C_5H_5^+$ retro-Diels-Alder of 91 (C_2H_2)
51	$C_4H_3^+$ retro-Diels-Alder of 77 (C_2H_2)
43	$C_3H_7^+$
41	$C_3H_5^+$
39	$C_3H_3^+$
29	$C_2H_5^+$
27	$C_2H_3^+$
15	CH_3^+

Table 3.25 Mass composition table of some common fragment ions.

3.6.2 Fragmentation pattern of monocyclic terpenes

The second fragmentation pattern resembles those belonging to the monocyclic terpenes similar to that of the phellandrenes (refer to Scheme 2 on page 126). In addition, it

suggested that the detected monoterpenes contained a conjugated system (e.g. phellandrene) or a conjugated system which was easily formed by rearrangement within the mass spectrum as indicated by strong peaks at 79, 77. The mass spectrum of α -phellandrene is shown in Figure 3.29 and includes the mass spectrum in the NIST library.

Figure 3.29 Comparison of the mass spectrum of α -phellandrene with the spectrum in the NIST library.
3.6.3 Comparison of mass spectra of detected compounds

Comparison of the mass spectra of the similar terpene compounds detected, showed that there was a striking similarity amongst all the spectra (shown below for the monoterpenes in Figures 3.30 and 3.31), which made positive identification difficult. However, some interesting patterns of fragmentation are mentioned in Sections 3.6.4 to 3.6.6.

Figure 3.30 Mass spectrum of standard α -pinene.

Figure 3.31 Mass spectrum of standard β -pinene.

3.6.4 Limonene

A further interesting point concerning fragmentation arises in the spectrum of α -1.8(9)*p*-menthadiene (limonene, one of the compounds identified in this work), namely the formation of the ion m/z = 68 (as shown below), which was also the base peak of the spectrum (Reed, 1966). None of the spectra of the compounds detected produced this type of fragmentation pattern that suggested that the isopropyl substituent rather than the isopropylene moiety was present in the detected monocylic terpenes.

Certain fragmentation patterns, like the retro-Diels-Alder reaction, in Section 3.6.6, occurred repeatedly in the mass spectra of the compounds detected. This can be seen from the main fragment ions of, for example, α -pinene, β - pinene, *d*- limonene and α -phellandrene in Section 3.6, Table 3.24, as well as in Schemes 1 and 2.

3.6.5 Simple β-fission initiated by an aromatic system

When a substituent is present on an aromatic system, or when an aromatic nucleus is part of a large cyclic system, fission of the bond β to the aromatic system is favoured. The driving force for " β -fission" in this case - appears to be the high stability of the resulting aromatic ion (Hill, 1969). This reaction has been discussed in Chapter 1, Section 1.8.2.2.

3.6.6 Retro-Diels-Alder

A double bond in a cyclic system could migrate, if it was suitably positioned to produce energetically favourable fragments by the retro-Diels-Alder process, (Hill, 1969). This is represented as follows:

This process has been useful in rationalizing the spectra of terpenes of all classes.

Examination of the mass spectrum of *d*-limonene, shows that the formation of the ion at m/z = 68 is the diene fragment formed as a result of this reaction (Donald *et al.*, 2009).

Scheme 1 Proposed fragmentation pattern for α -pinene.

Scheme 2 Proposed fragmentation pattern for α -phellandrene.

3.7 Terpenoid profile of the essential oil in *M. koenigii*

The volatile profile of the essential oil depended on the different methods of extraction used. For HS-SPME, the terpenoid profile depended on the fibre coating which was used. Different proportions were observed for the different compounds and this is discussed in Sections 3.7.1 and 3.7.2.

3.7.1 Comparison of the oil extracted by means of solvent, Soxhlet and steam distillation methods

The relative percentage distribution of the terpene compounds in the essential oil (listed in order of elution) obtained for the 48 hour solvent and Soxhlet extractions as well as the steam distillation, is shown in Table 3.26. The results are displayed graphically in Figure 3.32. The results were evaluated by using the ratio of the area of each peak to the total peak area calculated as a percentage. Individual results for the different extraction methods can be found in Appendix E, Tables E41 to E43.

An overlay chromatogram for the comparison of the essential oil obtained by steam distillation and the 48 hour solvent and Soxhlet extractions methods is shown in Figure 3.33.

	Solvent	Soxhlet	Steam
Method	extraction	extraction	distillation
	(SE)/%	(SOX)/%	(SD)/%
Compound			
α-pinene	4.16	3.41	0.42
β-pinene	0.37	0.32	0.09
α -phellandrene	0.16	0.12	0.09
<i>d</i> -limonene	0.36	0.26	0.20
β-phellandrene	3.02	3.21	1.32
Z-(β)-ocimene	1.95	1.79	1.00
Total monoterpenes	10.0	9.11	3.12
copaene	3.93	4.81	2.19
β-caryophyllene	18.4	18.6	20.9
(E)-α-bergamotene	2.41	2.35	2.59
β-farnesene	0.51	1.32	2.12
α-caryophyllene	1.24	5.70	1.26
γ-selinene	5.54	1.18	6.62
α-guaiene	2.39	2.61	2.20
(+)-epi-bicyclosesquiphellandren	1.83	1.47	0.98
sesquiterpene hydrocarbon	1.11	1.00	13.5
β-selinene	7.83	7.05	17.4
valencene	14.3	13.3	1.08
cadinene	1.31	1.23	2.25
sesquiterpene hydrocarbon	1.40	0.96	2.26
sesquiterpene hydrocarbon	—	1.05	1.18
sesquiterpene hydrocarbon	1.23	0.85	6.61
caryophyllene oxide	1.11	1.01	—
α-farnesene	0.81	1.11	—
sesquiterpene hydrocarbon	1.06	1.27	—
sesquiterpene hydrocarbon	0.62	2.41	_
sesquiterpene hydrocarbon	2.60	—	—
Total sesquiterpenes	69.6	69.3	83.1
Other	19.4	21.5	13.8

Table 3.26 Relative percentage distribution (peak area) of the terpene compounds in the essential oil in the fresh leaves of *M. koenigii*.

Figure 3.32 The terpenoid profile of the oil composition from solvent and Soxhlet extraction as well as steam distillation.

Figure 3.33 An overlay chromatogram of the essential oil obtained during steam distillation (—) solvent (—) and Soxhlet extraction (—).

Discussion on the comparison of the terpenoid profile of the essential oil obtained from the steam distillation, solvent and Soxhlet extractions can be found in Section 3.7.3.

3.7.2 The terpenoid profile of the oil with headspace analysis and HS-SPME

An overlay chromatogram showing the oil obtained by headspace analysis and HS-SPME with each of the two fibres is shown in Figure 3.34.

Figure 3.34 An overlay chromatogram of the essential oil obtained with headspace analysis (—) and HS-SPME with both the PDMS (—) and PA fibre coatings (—).

The average percentage distribution of the terpene compounds in the essential oil extracted at the various temperatures for the headspace and HS-SPME methods is shown in Tables 3.27 to 3.28 and in Figure 3.35. The results for the individual samples

can be found in Appendix E, Table E44 to E55. The results were evaluated by using the ratio of the area of each peak to the total peak area.

Table 3.27 Relative percentage distribution (peak area) of the terpene compounds in the different headspace methods at room temperature and at 40 °C.

Temperature		RT			40 °C	
Method	HSA/%	PDMS/%	PA/%	HSA/%	PDMS/%	PA/%
Compound						
α-pinene	35.9	7.31	1.47	47.2	12.5	3.93
β-pinene	1.17	0.55	0.11	1.40	0.90	0.44
α -phellandrene	0.84	0.33	0.19	1.10	0.63	0.41
d-limonene	1.05	0.51	0.17	1.38	1.01	0.53
β-phellandrene	7.67	3.44	1.92	9.98	6.32	4.26
Z-(β)-ocimene	5.74	3.28	2.27	8.31	6.03	5.84
Total monoterpenes	52.3	15.4	6.12	69.3	27.4	15.4
δ-elemene	9.79	_	_	_	_	_
copaene	1.39	-	_	_	-	_
β-elemene	2.00	12.6	18.8	1.28	9.89	13.3
β-caryophyllene	22.8	36.1	28.0	17.5	31.4	32.8
(E)-α-bergamotene	2.25	-	_	_	-	_
α-gurjunene	2.46	3.35	3.18	1.38	3.54	3.22
β-farnesene	1.35	1.00	_	_	0.91	_
α -caryophyllene	3.28	6.71	6.53	1.79	5.06	5.80
isocaryophyllene	1.53	-	1.19	_	-	_
β-selinene	2.45	4.73	6.76	1.52	4.08	5.15
cadinene		_	_	-	-	_
γ-elemene	6.14	13.0	19.8	3.98	10.7	14.4
Total sesquiterpenes	44.6	77.4	85.1	27.5	65.6	74.6
Other	3.06	7.10	8.76	2.90	6.64	8.58

RT – room temperature

Temperature		60 °C			80 °C	
Method	HSA/%	PDMS/%	PA/%	HSA/%	PDMS/%	PA/%
Compound						
α-pinene	44.3	16.9	5.51	39.7	9.25	8.54
β-pinene	2.20	2.05	0.82	2.48	2.18	1.25
α -phellandrene	1.29	1.29	0.57	1.54	1.56	0.90
d-limonene	1.78	1.94	0.96	2.09	1.40	1.40
β-phellandrene	11.5	10.9	6.69	12.9	11.4	9.03
Z-(β)-ocimene	10.9	11.0	9.30	12.7	10.7	11.8
Total monoterpenes	71.9	44.1	23.8	71.4	36.5	32.9
δ-elemene	_	-	_	_	-	_
copaene	_	-	_	_	-	_
β-elemene	1.04	5.83	8.82	1.56	7.09	6.78
β-caryophyllene	15.6	25.7	34.1	14.0	24.5	28.9
(E)-α-bergamotene	_	-	_	_	-	_
α-gurjunene	1.20	3.20	3.28	1.11	2.06	2.86
β-farnesene	_	0.77	_	-	-	_
α -caryophyllene	1.74	4.70	5.49	1.80	6.39	4.83
isocaryophyllene	_	-	_	-	-	_
β-selinene	1.73	2.83	3.94	1.74	1.15	3.70
cadinene	_	-	_	-	4.98	_
γ-elemene	3.34	6.75	10.0	4.00	8.96	8.64
Total sesquiterpenes	23.8	49.8	65.6	23.7	55.1	55.7
Other	4.21	6.2	10.4	4.5	8.03	11.3

Table 3.28 Relative percentage distribution (peak area) of the terpene compounds in the different headspace methods at 60 °C and 80 °C.

Figure 3.35 The relative distribution of the hydrocarbons in the essential oils from the headspace and HS-SPME analyses.

Although the qualitative profile of the essential oil showed a similar range of compounds for the headspace and HS-SPME methods, the relative abundances showed differences. A similar observation was reported by Pourmortazavi *et al.* (2005), for the essential oil analysis of black cumin. According to Pourmortazavi *et al.* (2005), as well as other researchers mentioned in their work, extracts obtained from natural products utilising different methods showed differences in their composition.

From Figure 3.35, it can be seen that the HS-SPME extraction with the PA fibre at room temperature favoured the extraction of high molar mass compounds, the sesquiterpenes (85%), but these were the lowest for headspace extraction at a temperature of 80 °C. The amount of monoterpenes extracted were greatest for the headspace analysis at all the different temperatures studied, ranging from 52% to 72%. More discussion on the comparison of the terpenoid profile of the essential oil obtained from the HS-SPME and headspace analysis is in Section 3.7.3.

3.7.3 Comparison of the composition of the essential oil obtained by different methods

The differences between the different extraction methods can be seen from an examination of the terpenoid content, shown in Figure 3.36. In this figure, only the headspace extractions at 60 °C are shown as this temperature was found to be most reproducible for the extraction of the highly volatile compounds.

Figure 3.36 Comparison of the relative percentages of the hydrocarbons for all the extraction methods studied.

The terpenoid profile of the oil in *M. koenigii* leaves differed from that found in earlier studies. In the oil obtained from the leaves in China and North India, the main component was α -pinene whereas β -phellandrene was the main component in the leaves from Malaysia (Paranagama *et al.*, 2002). In the oil from the leaves found in Sri Lanka, β -caryophyllene was the main component. In these earlier studies, different methods and solvents were used. Paranagama *et al.* (2002) used a modified Likens and Nickerson apparatus and isopentane to trap the volatiles. In the extraction of the essential oils from the leaves in China, Wong and Tie (1993) used the method of steam

distillation, followed by back extraction with dichloromethane. These differences, as reported by Paranagama *et al.* (2002), could be due to genetic variation as well as changes in the environment.

In this study the main aroma component was β -caryophyllene, since it was present in the highest amount. Its presence also gives an indication of the freshness of the leaves, (post harvest), as reported in the work of Paranagama *et al.* (2002). Other major constituents identified in this work include α -caryophyllene, α -pinene, and β - and γ -elemene.

A comprehensive list of compounds identified in the fresh leaves of *M. koenigii* from all the extraction methods is shown in Table 3.29. The retention times are recorded in a range as the column was cut twice during the course of this work and hence the retention times differed slightly. The compounds are listed according to the names contained in the NIST Library (contained in the software of the instrument), as well as the their matching natural product name to be found in reference http://www.thegoodscentscompany.com/data/rw1014751.html, date accessed: 30/11/2009.

Elution Order	Retention Time	Compound (Natural product name)	Compound (NIST Library)
1	2.349-2.37	hexanal	Hexanal ^a
2	2.455	3-hexen-1-ol	3-hexen-1-ol
3	2.49	2-hexen-1-ol	2-hexen-1-ol
4	2.626-2.67	2-hexenal,(E)	2-hexenal ^{<i>a</i>}
5	2.679	1-hexanol	1-hexanol
6	3.243	α-thujene	α-thujene
7	3.148-3.360	α-pinene	α -pinene ^a
8	3.58	camphene	camphene ^a
9	3.64	myrcene	myrcene
10	3.677-3.901	β-pinene	β-pinene ^a
11	3.81	β-thujene (sabinene)	β -thujene (sabinene) ^{<i>a</i>}
12	4.041-4.300	α -phellandrene	α -phellandrene ^{<i>a</i>}
13	4.623-4.635	<i>p</i> -cymene	1,4- dimethyl benzene ^{<i>a</i>}
14	4.714-4.723	<i>d</i> -limonene	<i>d</i> -limonene ^{<i>a</i>}
15	4.782-4.784	β-phellandrene	β-phellandrene ^a
16	4.917-4.92	Z-(β)-ocimene	1,3,6 octatriene,3,7-dimethyl- $(Z)^{a}$ -
17	5.305	γ-terpinene	gamma terpinene ^a
18	5.904	linalool	1,6- octadien-3-ol-3,7-dimethyl-
19	6.004	α-terpinolene	cyclohexene,1-methyl-4-(1-methylethylidene)- ^{<i>a</i>}
20	6.844	3-terpinenol	4-isopropyl-1-methyl-3-cyclohexen-1-ol
21	8.178	cis-sabinene hydrate	4-(hexen-1-ol,5-methyl-2-(1-methylethyl)-(R)
22	9.124	terpinen-4-ol	3-cyclohexen-1-ol,4-methyl-1-(1-methylethyl)-
23	10.387	(+)-α-terpineol	p-menth-1-en-8-ol
24	12.338	monoterpene	monoterpene ^a
25	13.23	α-terpinene	1,3-cyclohexadiene,1-methyl-4-(1-methylethyl)
26	13.272	δ-elemene	cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)- ^{<i>a</i>}
27	13.454	isoterpinolene	isoterpinolene
28	13.442-13.625	α-cubebene	α-cubebene ^a
29	13.765	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon ^a
30	13.848	6-epi-β-cubebene	1H-cyclopenta(1,3)cyclopropa(1,2)benzene,octahyd ^a
31	13.91-13.995	β-elemene ^{<i>a</i>}	cyclohexane, 1-ethenyl-1-methyl-2, 4-bis-(1-methylethenyl) ^a
32	13.94	ylangene	ylangene ^a
33	14.024	copaene	copaene ^a
34	14.071	isocaryophyllene	bicyclo [5.3.0.] decane, 2-methylene-5-(1-methylvinyl)
35	14.13	α-selinene	sesquiterpene hydrocarbon ^a
36	14.23	α-gurjunene	1H-cycloprop(e)azulene,1a,2,3,4,4a,5,6,7b-octahyd ^a

Table 3.29 Volatile constituents tentatively identified in fresh leaves of *M. koenigii*.

Table 3.29 Contd. Ve	olatile constituents t	tentatively identified	in fresh leaves of M	1. koenigii.
----------------------	------------------------	------------------------	----------------------	--------------

Elution Order	Retention Time	Compound (Natural product name)	Compound (NIST Library)
37	14.388-	β-caryophyllene	caryophyllene ^{<i>a</i>}
38	14.482-14.84	(E)-α-bergamotene	bicyclo [3.1.1.] hept-2-ene, 2, 6-dimethyl-6-(4-methylpent-3-en-1-yl) ^{a}
39	14.57	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon ^{<i>a</i>}
40	14.582	β-farnesene	1,6,10 dodecatriene,7,11-dimethyl-3-methylene-(Z)- ^{<i>a</i>}
41	14.635	γ-bisabolene	cyclohexene-3-(1,5-dimethyl-4-hexenyl)-6-methylen
42	14.758-14.99	α-caryophyllene	α -caryophyllene ^{<i>a</i>}
43	14.817	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
44	14.905	γ-selinene	naphtalene,decahydro-4a-methyl-1-methylene-7-(1-)
45	14.952	α-guaiene	azulene,1,2,3,4,5,6,7,8-octahydro-1,4-dimethyl-7-
46	14.98	(+)-epi- bicyclosesquiphellandrene	(+)-epi-bicyclosesquiphellandrene ^a
47	15.076	β-selinene	eudesma-4(14),11-diene
48	15.164	valencene	naphthalene-1, 2, 3, 4, 4a, 5, 6,8a-octahydro-4a-b-dimethyl ^a
49	15.228	longifolene	longifolene ^a
50	15.311	cadinene	naphthalene-1,2,3,4,4a,5,6,8a-hexahydro-4,7- dimethyl
51	15.320	γ-elemene	gamma elemene ^{<i>a</i>}
52	15.425	muurolene	naphthalene-1, 2, 3, 4, 4a,-7-hexahydro-1, 6-dimethyl-4
53	15.369	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
54	15.469	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
55	15.528	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
56	15.646	(+)-nerolidol	1,6,10 dodecatrien-3-ol,3,7,11-dimethyl-(E)-
57	15.763	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
58	15.875	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon ^a
59	15.998	caryophyllene oxide	caryophyllene oxide
60	16.027	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
61	16.122	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
62	16.227	α-farnesene	α-farnesene ^a
63	16.286	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
64	16.339	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
65	16.41	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon
66	16.55	bicyclo (4, 4, and 0) dec-1-ene, 2-isopropyl-5-methyl-9- methylene	bicyclo (4, 4, and 0) dec-1-ene, 2-isopropyl-5-methyl-9- methylene
67	16.56	sesquiterpene hydrocarbon	sesquiterpene hydrocarbon $(204)^a$
68	16 656	unknown	unknown
69	16.715	unknown	unknown

Elution Order	Retention Time	Compound (Natural product name)	Compound (NIST Library)
70	16.785	unknown	unknown
71	16.885	unknown	unknown
72	16.797	unknown	unknown
73	17.138	unknown	unknown
74	17.22	unknown	unknown
75	17.33	unknown	unknown
76	17.4	unknown	unknown
77	17.57	unknown	unknown
78	17.67	unknown	unknown
79	17.83	unknown	unknown
80	19.33	unknown	unknown

Table 3.29 Contd. Volatile constituents tentatively identified in fresh leaves of *M. koenigii*.

^{*a*} - Refers to compounds identified in HS-SPME.

In the present study, the oil composition from the solvent and Soxhlet extractions was similar. For the solvent extraction the amounts extracted at room temperature for both the monoterpenes and sesquiterpenes were 10.0% and 70.7% respectively. This method was also both time- and cost-saving. In comparison, Soxhlet extraction showed a 9.11 % monoterpene and 69.3 % sesquiterpene distribution. In the oil from the dichloromethane extractions, a total of 51 compounds were tentatively identified.

In the oil obtained from steam distillation, the sesquiterpenes (83.1%) were the major fraction present, containing 20.9% β -caryophyllene. MacLeod and Pieris (1982), obtained 80.2% sesquiterpenes from their steam distillation-extraction of the leaves. The yield of β -caryophyllene in this work was slightly lower when compared to earlier work done by other researchers. Previous work carried out by Paranagama *et al.* (2002) and MacLeod and Pieris (1982) showed β -caryophyllene to be one of the major components, with 23.3% and 28% respectively. Steam distillation carried out by Walde *et al.* (2006) also yielded 26.3% β -caryophyllene. Comparing the oil from the steam distillation with the oil obtained from the solvent and Soxhlet extractions, it was observed that the amount of β -selinene from the steam distillation (17.4%) was proportionately higher than the amount obtained with the other two methods (7.05-7.83%).

In the steam distillation, the amount of monoterpenes extracted relative to the sequiterpenes was proportionately low (3.12%), indicating the vulnerability of the monoterpenes to this technique. A similar finding was observed in the work of Diaz-Maroto *et al.* (2002). Also this low yield of the monoterpenes could be due to the fact that loss of the low molar mass compounds could take place when removing the solvent during the evaporation step. This is consistent with studies done by other researchers using this method of extraction (Barra *et al.*, 2007). A study undertaken by Orav *et al.* (2001) showed variation in the composition of the essential oil of *Matricaria recutita* L. In their work, the monoterpenes and other volatile compounds showed a decrease in content with time during a 3-hour distillation.

In the HS-SPME extraction with the PDMS fibre, the compounds which were found to be absent at room temperature and 40 °C, namely, γ -terpinene, α -terpinolene, ylangene, (+)-epi-bicyclosesquiphellandrene, were found to be present in the extraction at 60 °C. This demonstrated the effect of temperature on the extraction of the compounds. Also the loss of the monoterpenes, *p*-cymene and *d*-limonene at 80 °C demonstrates the vulnerability of some of the monoterpenes to high temperatures. Thirty-five compounds were separated and tentatively identified in the headspace analysis at 60 °C and fiftyfive compounds were detected in the HS-SPME extract (refer to Table 3.29).

Examining the headspace analysis, it can be seen from Figure 3.36, that the headspace analysis showed a much greater response for the more volatile analytes, the monoterpenes (71.9%) at a temperature of 60 °C than for the sesquiterpenes. In this work, the total monoterpenoid fraction obtained at the various temperatures, in Tables 3.19 and 3.20, as well as the corresponding graphs, for the headspace analysis was greater than that from the PDMS and PA extractions.

The PDMS extraction of monoterpenes was relatively greater when compared to the extraction with the PA coating. In contrast, the total amount of extracted sesquiterpenes was relatively greater for the extraction with the PA fibre coating (despite it being a polar coating), than the PDMS extraction. This result was unexpected as the PDMS coating is more sensitive to non-polar compounds and should be more efficient for the

total extraction of the hydrocarbons but it appears that the polar PA coating was much more efficient for the total extraction of the terpenes. In addition, the PDMS coating is 100 μ m in thickness and is more suited for the retention of the highly volatile compounds when compared to the PA coating which is 85 μ m in thickness. This can only be explained with respect to the equilibration times, i.e. thinner coatings require a shorter equilibration period (in this work 15 mins was used) and thicker coatings, a longer period (Stashenko and Martinez, 2007). However, since the coating thickness was not investigated in this work, it could form the basis for future work.

Comparing HS-SPME to the steam distillation, it can be seen that HS-SPME was more favourable for the extraction of the monoterpenes than the steam distillation extraction. This could be due to the loss of the more highly volatile compounds during the evaporation step in the steam distillation (Garcia-Estebana *et al.*, 2004).

One must also keep in mind that these slight differences in the composition of the oil could be due to the fact that although the fresh leaves were collected from the same garden, they are variable in nature (Barbieri *et al.*, 2004). It has also been reported by Stashenko *et al.* (2004) that the freshness of the plant plays a role in the volatile profile and more especially in the case of the headspace profile.

3.8 Calibration

Quantification by GC-MS can be problematic because of the significant differences in detector response as a function of the chemistry of the analytes. Quantification using mass spectrometry is usually done only when there is a specific standard for the compound of interest (Rose and Johnstone, 1982).

In this work, calibration curves were obtained for the selected analytes at two concentration ranges, a lower calibration range (3.4 to 173 mg L^{-1}) in order to quantify the compounds present in low amounts and a higher range (330 to 1.80×10^4 mg L^{-1}) for the major components.

The internal standard method was used for the quantitative analysis of the chosen volatile compounds. Dodecane, a non terpenoid volatile, was chosen as the internal standard to avoid interference with the terpenes, as reported in the study by Lluisa and Penuelas (2000). The response factor was determined from the ratio of the peak areas of the standards and the internal standard. The peak areas of the five selected analytes and the internal standard were integrated manually, whilst the other compounds were integrated automatically by the software contained in the instrument.

The calibration data for the five compounds quantified in this work is presented in Tables 3.31 to 3.35 which contain the data for the standards in the concentration range from 3.4 to 173 mg L⁻¹ and Tables 3.36 to 3.40 which contains the data in the range from 330 to 1.80×10^4 mg L⁻¹. The working solutions of the standards were prepared in dichloromethane. The calibration curves were obtained by plotting the area ratios versus the concentration (mg L⁻¹) of the target analytes and regression analysis was used to analyse the results. The calibration curves are shown in Figures 3.38 to 3.47 together with the residual plots for the compounds present in the low concentration range and in Figures 3.48 to 3.52 for the compounds in the high concentration range.

The chromatograms and mass spectra of the individual standards as well as the standard mixtures can be found in Appendix C. The area percent reports can be found in Appendix F, Tables F1 to F10. A representative chromatogram of a standard mixture is shown in Figure 3.37 and the corresponding concentrations for the five selected compounds are shown in Table 3.30. The concentration of the other standard mixtures can be found in Appendix C, Tables C1 to C10.

Table 3.30Concentration of compounds in of a standard mixture consisting of the fiveselected compounds and the internal standard.

Compound	Concentration/mg L ⁻¹
α-pinene	13.7
β-pinene	13.7
α-phellandrene	13.4
dodecane	29.9
β-caryophyllene	14.4
α-caryophyllene	14.2

Figure 3.37 Typical total ion chromatogram of a standard mixture consisting of the five selected compounds and the internal standard.

The calibration curves for the standards in the lower concentration range showed linearity, whilst the graphs for standards in the higher concentration range were nonlinear. The correlation coefficients for the analytes in the lower range were between 0.996 and 0.999, except for α -phellandrene which had a correlation coefficient of 0.970 when all five sets of data points were plotted. The residual plot for the data points also confirmed that there was bias in the data and the data points for the 80.6 mg L⁻¹ standard were outliers which led to the distortion of the results. However, a plot of the concentration versus peak area only without the internal standard showed a correlation coefficient of 0.984 for α -phellandrene. This meant that the α -phellandrene standard was not added carefully in the 80.6 mg L⁻¹ standard. Therefore a calibration curve and a residual plot of the area ratios of the 3.4 mg L⁻¹, 13.4 mg L⁻¹, 40.3 mg L⁻¹ and 161 mg L⁻¹ standards were constructed and is shown in Figures 3.42 and 3.43 respectively. The correlation coefficient obtained with these four standards for α -phellandrene was 0.999. Also, from the examination of the data in Table 3.25, it can be observed that a fairly good reproducibility was obtained.

The values obtained for the response factor covered a wide range. The variation in the response factor for the standards present in the low concentration range was smaller when compared to the variation of the response factor for the compounds present in the high concentration range. This variation could be due to peak tailing which was evident in the total ion chromatogram in Figure 3.37. The peak tailing, seen by the sloping baseline, was also observed in the chromatograms in Appendix C, Figures C13 to C17, although it is not as pronounced in Figure C17 when compared to Figure 3.37.

The non-linearity for the higher concentration range was due to the fact that the detector used in this study was an ion trap mass spectrometer which has a limited dynamic range (Pawliszyn, 1997e). This is as a result of the decomposition of the primary ions which are produced from the analyte due to secondary reactions which occur in the ion trap (Pawliszyn, 1997e). The RSDs for the compounds in the lower concentration range were all below 5%. The relative standard deviations for the compounds in the concentration range up to 9.02×10^3 mg L⁻¹ were below 5%, but above this concentration, the RSDs were higher than 5% but did not exceed 10%.

Concentration/mg L ⁻¹		3.4	13.7	41.2	82.4	165
Area Ratio	1	0.14	0.43	1.24	2.71	5.29
	2	0.15	0.47	1.26	2.57	5.27
	3	0.14	0.44	1.35	2.57	5.41
Mean		0.14	0.45	1.29	2.60	5.32
Std Dev		0.0061	0.0170	0.0602	0.0961	0.0752
RSD/%		4.3	3.8	4.7	3.7	1.4
Response Factor		0.82	1.03	1.07	1.06	1.03
Regression line	y = 0.032x - 0.006					
R	0.	999				

Table 3.31 Calibration data for the determination of α -pinene.

Table 3.32 Calibration data for the determination of β -pinene.

Concentration/mg L ⁻¹		3.4	13.7	41.2	82.5	165
Area Ratio	1	0.13	0.41	1.17	2.71	5.32
	2	0.12	0.41	1.23	2.52	5.32
	3	0.12	0.38	1.27	2.60	5.41
Mean		0.12	0.40	1.22	2.61	5.35
Std Dev		0.0044	0.0168	0.0489	0.0935	0.0499
RSD/%		3.6	4.2	4.00	3.6	0.9
Response Factor		0.93	1.15	1.13	1.06	1.03
Regression line	y = 0.032x - 0.051					
\mathbf{R}^2	0.	998				

Table 3.33 Calibration data for the determination of α -phellandrene.

Concentration/mg L ⁻¹		3.4	13.4	40.3	80.6^{\dagger}	161
Area Ratio	1	0.12	0.38	1.13	1.61	4.32
	2	0.12	0.41	1.14	1.51	4.29
	3	0.12	0.38	1.21	1.51	4.40
Mean		0.12	0.39	1.16	1.54	4.34
Std Dev		0.0018	0.0140	0.0463	0.0583	0.0547
RSD/%		1.5	3.6	4.00	3.8	1.3
Response Factor		0.95	1.15	1.16	1.75	1.24
Regression line	y = 0.025x - 0.035					
\mathbf{R}^2	0.	970				

[†] - The values in this column were not used in the construction of the calibration curve.

Concentration/mg L ⁻¹		3.6	14.4	43.3	86.6	173
Area Ratio	1	0.12	0.39	1.19	2.70	5.75
	2	0.12	0.40	1.24	2.54	5.47
	3	0.12	0.39	1.29	2.56	5.81
Mean		0.12	0.39	1.24	2.60	5.68
Std Dev		0.0043	0.0097	0.0519	0.0870	0.182
RSD/%		3.5	2.5	4.2	3.4	3.2
Response Factor		0.99	1.23	1.17	1.11	1.02
Regression line	y = 0.032x - 0.109					
\mathbf{R}^2	0.	.996				

Table 3.34 Calibration data for the determination of β -caryophyllene.

Table 3.35 Calibration data for the determination of α -caryophyllene.

Concentration/mg L ⁻¹		3.6	14.2	42.7	85.3	171
Area Ratio	1	0.15	0.52	1.50	3.50	7.32
	2	0.15	0.53	1.58	3.32	6.90
	3	0.14	0.50	1.65	3.33	7.39
Mean		0.15	0.51	1.58	3.38	7.21
Std Dev		0.0012	0.0162	0.0714	0.0998	0.268
RSD/%		0.8	3.1	4.5	3.0	3.7
Response Factor		0.82	0.92	0.91	0.84	0.79
Regression line	У	= 0.042 x ·	- 0.122			
\mathbf{R}^2	0.	996				

The calibration curves and the residual plots used in this investigation are shown in Figures 3.38 to 3.47

Figure 3.38 Calibration curve for α -pinene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.39 Residual plot for the calibration curve of α -pinene.

Figure 3.40 Calibration curve for β -pinene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.41 Residual plot for the calibration curve of β -pinene.

Figure 3.42 Calibration curve for α -phellandrene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.43 Residual plot for the calibration curve of α -phellandrene.

Figure 3.44 Calibration curve for β-caryophyllene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.45 Residual plot for the calibration curve of β -caryophyllene.

Figure 3.46 Calibration curve for α -caryophyllene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.47 Residual plot for the calibration curve of α -caryophyllene.

Concentration/mg L ⁻¹		330	858	2.57×10^3	8.58×10^3	1.72×10^4
Area Ratio	1	14.3	39.1	73.2	98.1	98.5
	2	13.8	39.9	73.3	96.5	99.1
	3	13.8	39.6	73.8	99.1	107
Mean		13.9	39.5	73.4	97.9	102
Std Dev		0.26	0.39	0.35	1.30	5.00
RSD/%		1.9	1.0	0.5	1.3	4.9
Response Factor		0.79	0.73	1.17	2.93	5.64

Table 3.36 Calibration data for the determination of α -pinene.

Table 3.37 Calibration data for the determination of β -pinene.

Concentration/mg L ⁻¹		330	859	2.58×10^{3}	8.59×10^{3}	1.72×10^4
Area Ratio	1	14.5	45.2	82.3	105	107
	2	14.1	46.0	82.6	111	111
	3	14.0	45.5	83.4	114	117
Mean		14.2	45.6	82.8	110	112
Std Dev		0.27	0.42	0.57	4.25	5.15
RSD/%		1.9	0.9	0.7	3.9	4.6
Response Factor		0.78	0.63	1.04	2.60	5.13

Table 3.38 Calibration data for the determination of α -phellandrene.

Concentration/mg L ⁻¹		323	840	2.52×10^3	8.40×10^{3}	1.68×10^4
Area Ratio	1	11.8	45.0	64.0	92.9	97.8
	2	11.2	45.7	64.0	92.1	98.5
	3	11.2	45.2	64.3	94.9	106
Mean		11.4	45.3	64.1	93.3	101
Std Dev		0.32	0.38	0.13	1.42	4.64
RSD/%		2.8	0.8	0.2	1.5	4.6
Response Factor		0.95	0.62	1.31	3.01	5.57

Table 3.39 Calibration data for the determination of β -caryophyllene.

Concentration/mg L ⁻¹		346	902	2.71×10^{3}	9.02×10^{3}	1.80×10^{4}
Area Ratio	1	15.3	42.4	70.4	79.2	89.5
	2	14.8	42.5	71.9	76.1	92.9
	3	14.9	43.1	70.3	79.9	96.4
Mean		15.0	42.7	70.9	78.4	92.9
Std Dev		0.28	0.38	0.92	2.02	3.45
RSD/%		1.9	0.9	1.3	2.6	3.7
Response Factor		0.77	0.71	1.28	3.85	6.49

Concentration/mg L ⁻¹		341	889	2.67×10^{3}	8.89×10^3	1.78×10^4
Area Ratio	1	18.7	57.7	88.3	124	128
	2	18.1	58.0	90.4	119	133
	3	18.2	58.4	88.9	124	137
Mean		18.3	58.0	89.2	123	133
Std Dev		0.34	0.31	1.07	2.69	4.60
RSD/%		1.8	0.5	1.2	2.2	3.5
Response Factor		0.62	0.51	1.00	2.42	4.48

Table 3.40 Calibration data for the determination of α -caryophyllene.

Figure 3.48 Calibration curve for α -pinene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.49 Calibration curve for β -pinene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.50 Calibration curve for α-phellandrene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.51 Calibration curve for β -caryophyllene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

Figure 3.52 Calibration curve for α-caryophyllene. The chromatographic conditions used were: a non-polar DB-5 (methyl phenyl siloxane) capillary column, injection volume – 1µL.

3.9 Quantitation of the volatile compounds

Quantification was performed for the liquid phase extracts obtained by steam distillation, Soxhlet extraction and solvent extraction only and these results are discussed in Section 3.10. The concentrations of the five selected aroma compounds, α -pinene, β -pinene, α -phellandrene, β -caryophyllene, and α -caryophyllene, were determined in this study.

Even though HS-SPME has many advantages when compared to other extraction methods, quantitative studies using this method of extraction have been difficult. In the study discussed earlier in Section 3.5.5.2 it was observed that competition for the adsorption sites on the PDMS and PA fibres exist. According to Pino *et al.* (2002), the competition for the sites on the fibre could be due to the low volatiles displacing the high volatiles. They also reported that there may be headspace depletion of some low volatiles without reaching equilibrium and concluded that the use of SPME for the quantification of complex systems may be limited. However, they did mention that that quantitation may be possible for some matrices if biases due to competition are controlled. Although Contini and Esti (2006) performed quantitation in their work by ensuring that the slopes which were obtained were consistent, they maintained that selecting analytical conditions for the highest amount of the compounds extracted, without proper controls may lead to errors in quantitation.

Tholl *et al.* (2006) also reported that in order to obtain reproducible quantitative results, the analytes must reach equilibrium. Since the volatile fraction present in the curry leaves is complex and the compounds are present in a wide range, true equilibrium was difficult to establish. Since it was the pre-equilibrium period that was used in this work, quantification during this extraction period would therefore be inaccurate. According to Bichi *et al.* (2007), pre-equilibrium conditions must be used when working with aromatic plants with a complicated matrix, since equilibrium for all the components will be difficult to attain for compounds of varying polarity and volatility. Moreover, they maintained that due to the unavailability of a standard matrix, results, in the case of solid samples, cannot be accurately quantified.

Also, according to Vas and Vekey (2004), SPME was applied primarily for compound identification and screening purposes. According to Howard, Mike and Riesen (2005) SPME analysis has not been devoid of problems. They make mention of the competition of the volatiles for the sites on the fibre with the low molar mass compounds being displaced by the high molar mass compounds and that sometimes there may be a depletion of some high molar mass components, even before equilibrium has been reached. They also found that when different standardisation methods were used, the results obtained were not consistent and concluded that SPME is limited in its use for the quantification of complex systems. Furthermore, due to the lack of available certified reference materials to be used as standards for direct analysis, the quantification of solid samples is problematic.

Therefore, the headspace methods were not quantified since a broad range of volatiles were studied and according to Tholl *et al.* (2006), quantification by SPME can be both difficult and impractical when dealing with compounds present in a large range with varying distribution constants. A similar finding was reported by Ferreira *et al.* (1996) in their analysis of wine volatiles.

3.9.1 Quantification of the volatiles in the essential oil obtained from the solvent, Soxhlet and steam distillation techniques

The chromatograms in Figures 3.53 to 3.59 are representative of the solvent and Soxhlet extractions and steam distillation, with the addition of the internal standard, dodecane, at the start of the extraction procedure and at the end of extraction. The addition of the internal standard at the start of the extraction procedure was done to look at the performance of the extraction technique relative to the analytical procedure. The area percent reports can be found in Appendix F, Tables F37 to F42.

For the compounds which were present in a low concentration range, a 29.9 mg L^{-1} concentration of the internal standard was used so as not to suppress the ionization of the analytes present in the lower region. It has been reported that molecules with higher

mass cause the supression of the signal of compounds present in a smaller amount (Annesley, 2003). The peak in the chromatograms, due to the internal standard, dodecane, is small relative to the compounds in the high concentration range as shown in Figure 3.53. To overcome this problem, for future work, a second internal standard should be employed for the analytes present in the high concentration range. In Figure 3.54, the abundance scale has been adjusted to show the peak due to the internal standard, labelled D, in expanded form.

Figure 3.53 Total ion chromatogram for the essential oil obtained from the solvent extraction with the internal standard added at the start of the extraction.

Figure 3.54 Expanded chromatogram of Figure 3.53 showing the internal standard, D.

Figure 3.55 Total ion chromatogram for the essential oil obtained from the solvent extraction with the internal standard added at the end of the extraction.

Figure 3.56 Total ion chromatogram for the essential oil obtained from the Soxhlet extraction with the internal standard added at the start of the extraction.

Figure 3.57 Total ion chromatogram for the essential oil obtained from the Soxhlet extraction with the internal standard added at the end of the extraction.

Figure 3.58 Total ion chromatogram for the essential oil obtained from the steam distillation extraction with the internal standard added at the start of the extraction.

Figure 3.59 Total ion chromatogram for the essential oil obtained from the steam distillation extraction with the internal standard added at the end of the extraction.

Tables 3.41 to 3.43 show the average with the standard (STD) deviation and the percent relative standard deviations of the peak area ratios of the five selected aroma contributing compounds in curry leaves for the three extraction methods with the internal standard added at the start of the extraction and at the end of the extraction. The data shown are the mean values of three injections. The concentrations of the five compounds are shown in Table 3.44.

	Solvent Ex	straction_in	ternal (Solvent Ex	straction_i	inte	rnal
extraction.							
Table 3.41 Average	ge peak area r	ratios with the	he standard	deviation	and RSD	for	solvent

-

Compound	Solvent Extraction-internal standard added at start of extraction		Solvent Extrac standard add extrac	tion-internal ed at end of tion
	Average ± STD Deviation (n = 3)	RSD/%	Average ± STD Deviation (n = 3)	RSD/%
α-pinene	10.1 ± 0.4	4	9.3 ± 0.2	2
β-pinene	1.20 ± 0.01	1	1.18 ± 0.04	3
α -phellandrene	1.05 ± 0.03	3	1.01 ± 0.03	3
β-caryophyllene	122 ± 4	3	120 ± 1	1
α -caryophyllene	30.1 ± 0.7	2	30.6 ± 0.9	3

Table 3.42 Average peak area ratios with the standard deviation and RSD for Soxhlet extraction.

Compound	Soxhlet Extraction-internal standard added at start of extraction		Soxhlet Extraction-intern standard added at end of extraction	
	Average ± STD Deviation (n = 3)	RSD/%	Average ± STD Deviation (n = 3)	RSD/%
α-pinene	11.9 ± 0.4	3	10.0 ± 0.4	4
β-pinene	1.55 ± 0.01	1	1.70 ± 0.06	3
α-phellandrene	1.32 ± 0.02	1	1.88 ± 0.02	1
β-caryophyllene	138 ± 1	1	135 ± 3	3
α-caryophyllene	46.5 ± 2.2	5	46.7 ± 1.9	4

Compound	Steam Distillation-internal standard added at start of extraction		Steam Distillation-interna standard added at end of extraction	
	Average ± STD Deviation (n = 3)	RSD/%	Average ± STD Deviation (n = 3)	RSD/%
α-pinene	0.13 ± 0.003	2	0.39 ± 0.003	1
β-pinene	0.10 ± 0.002	2	0.19 ± 0.01	4
α-phellandrene	0.15 ± 0.002	1	0.25 ± 0.002	1
β-caryophyllene	63.4 ± 1.3	2	80.7 ± 0.8	1
α -caryophyllene	15.3 ± 0.6	4	19.1 ± 0.1	0.3

Table 3.43 Average peak area ratios with the standard deviation and RSD for steam distillation.

Table 3.44 Concentration of the five volatile compounds determined in the essential oil of *M. Koenigii* by steam distillation, Soxhlet extraction and solvent extraction with the internal standard added at the start and at the end of the extraction.

Compound	Solvent Extraction		Soxhlet Extraction		Steam Distillation	
	Concentration/ mg kg ⁻¹ (n = 3)		$\begin{array}{c c} \text{ntion/} & \text{Concentration/} \\ & \text{mg kg}^{-1} \\ & (n=3) \end{array}$		Concentration/ mg kg ⁻¹ (n = 3)	
	Α	В	Α	В	Α	В
α-pinene	46.7 ± 2.0	42.9 ± 0.9	54.6 ± 1.8	46.3 ± 1.7	1.02 ± 0.02	2.32 ± 0.02
β-pinene	7.39 ± 0.09	7.27 ± 0.23	9.51 ± 0.09	10.5 ± 0.4	0.73 ± 0.02	1.30 ± 0.05
α -phellandrene	10.7 ± 0.3	10.3 ± 0.3	8.86 ± 0.11	13.6 ± 0.2	1.33 ± 0.03	1.65 ± 0.01
β-caryophyllene	4609 ± 152	4551 ± 45	5204 ± 38	5115 ± 129	1838 ± 41	1803 ± 18
α-caryophyllene	90.0 ± 2.2	91.3 ± 2.8	271 ± 13	272 ± 11	71.9 ± 1.6	68.9 ± 0.2

A - refers to samples in which the internal standard was added at the start of extraction.

B - refers to samples in which the internal standard was added at the end of extraction

The qualitative composition of the oil obtained from the different methods was almost similar, but the relative concentrations for some compounds shown in Table 3.36 differed.

The oil obtained from the Soxhlet extraction (Table 3.44) showed the highest amount of β -caryophyllene (5204 mg L⁻¹) followed by solvent extraction (4609 mg L⁻¹) and with steam distillation giving the lowest yield (1803 mg L⁻¹). Once again, Soxhlet showed a higher amount of compound extracted when compared to solvent extraction. This could be due to the compounds being extracted at a higher temperature in the Soxhlet extraction when compared to the solvent extraction which was conducted at room temperature. The Soxhlet extraction showed a higher yield of oil extracted when compared to steam distillation, since Soxhlet extraction is an exhaustive process whilst steam distillation is not.

Although the extraction of the highly volatile compounds with the steam distillation was low, the results are consistent with work done by other researchers. Results obtained by MacLeod and Pieris for the steam distillation-extraction technique on the fresh leaves of *M. koenigii* showed the presence of the following amounts for the high volatile compounds: β -pinene, 66.1 ppb; α -phellandrene, 52.3 ppb, and for the low volatile, β caryophyllene, 2563.2 ppb.

A statistical analysis to determine whether the results obtained from the different extraction methods are significantly different for the five compounds in which the internal standard was added at the start of the extraction and at the end of the extraction is given in the next section.

3.9.2 Statisical evaluation

The results in Table 3.44 were subjected to an analysis of variance (ANOVA) test, by using Microsoft Excel. Comparison between the methods was performed with the

ONE-WAY ANOVA procedure (Hibbert and Gooding, 2006) and the results are shown in Table 3.45.

Table 3.45 Statistical evaluation using the ONE-WAY ANOVA for comparison between the methods.

Compound	Sum of Squares	Degrees of Freedom	Mean Square	F _{exp}	P-value	F _{crit}
α-pinene	8669.57	5	1733.91	981.58	3.08 ×10 ⁻¹⁵	3.11
β-pinene	257.51	5	51.50	1583.87	1.76×10^{-16}	3.11
α-phellandrene	387.14	5	77.42	1993.20	4.43×10^{-17}	3.11
β-caryophyllene	38219923	5	7643985	1012.12	2.56×10^{-15}	3.11
α-caryophyllene	146857.9	5	29371.57	575.65	7.47×10^{-14}	3.11

The F-experimental value (F_{exp}) was compared to the F-critical (F_{crit}) value at the 95% confidence level to establish if the null hypothesis can be accepted or rejected, i.e. if there is a significant difference between the extraction methods and also the compounds being extracted.

The results in Table E86 showed that F_{exp} was greater than F_{crit} . The F_{exp} value together with its associated probability values from Table E86 in Appendix E, indicated that the null hypothesis may be rejected at the 95 % level and thus, it can be deduced that there was a significant difference (p<0.05) between the different extraction methods. Although the ONE-WAY ANOVA showed that there was a significant difference between the methods, it did not indicate which means (average values) for which compounds and methods were different and therefore further statistical evaluation was done.

Further statistical treatment of the results was carried out with Duncan's Multiple Range test using the SAS Program (Statistical Analysis System, Version 9.1, SAS Institute

Inc., Cary, NC, USA). This test was used to determine whether the results obtained from the different extraction methods are similar for the five compounds in the absence and presence of the internal standard. The results obtained with the Duncan's Test are shown in Table 3.46.

Compound α -caryophyllene **α**-pinene **β-pinene** α-phellandrene **β-caryophyllene** Method Solvent Extraction A 46.7 b 7.39 c 10.7 b 4609 b 90.0 b Solvent Extraction B 42.9 c 7.27 c 10.3 c 4551 b 91.3 b Soxhlet Extraction A 54.6 a 9.51 b 271 a 8.86 d 5204 a Soxhlet Extraction B 46.3 b 10.5 a 13.6 a 5115 a 272 a Steam Distillation A 71.9 c 1.02 d 0.73 e 1.33 e 1838 c Steam Distillation B 2.32 d 1.30 d 1.65 e 1803 c 68.9 c

Table 3.46 Statistical analysis for the mean concentrations (in mg kg⁻¹) of the essential oils with the various extraction methods.

A - refers to samples in which the internal standard was added at the start of extraction. B - refers to samples in which the internal standard was added at the end of extraction Least squares mean values marked with the same letter in the same column are not significantly different (p<0.05) according to the Duncan's Multiple Comparison Test (Barrera-Necha, *et al.*, 2008).

The results in Table 3.46 indicate that no significant difference in the mean concentrations existed in the case of α -pinene for the steam distillation method in which the internal standard was added at the start of the extraction and at the end of the extraction as well as for the solvent extraction in which the internal standard was added at the start of the extraction and at the end of the extraction. For β -pinene, there was no significant difference in the results obtained for the solvent extraction with the internal standard added at the start of the extraction and at the end of the extraction. For the internal standard added at the start of the extraction and at the end of the extraction. For the internal standard added at the start of the extraction and at the end of the extraction. For the extraction of β -pinene with steam distillation, there was a significant difference in the results, within experimental error, when the internal standard was added at the start and

end of the extraction. Also, the steam distillation technique was not an efficient technique as it did not extract as much as Soxhlet and solvent extraction, since the lowest amounts for all the compounds were obtained with this procedure. For α -phellandrene, the steam distillation with the internal standard added at the start of the extraction as well as after the extraction did not show any significant difference. All the methods, namely, steam distillation, solvent and Soxhlet extractions with the internal standard added at the start and at the end of the extraction showed no significant difference in the amounts extracted for the sesquiterpenes, α - and β -caryophyllene. This indicated that the addition of the internal standard at the start of the extraction and at the end of the extraction made no difference and that satisfactory results were obtained for both these compounds. The data in Table 3.46 also showed that the Soxhlet method was suitable for the extraction of all the compounds investigated, since a relatively larger amount was extracted with this technique. Taking these results into consideration, quantitation can be performed for any of the above three methods.

3.10 Comparison of the methods of extraction

In this section the different analytical methods adopted for the determination of the volatile organic compounds are compared. The results obtained from the different methods have been presented and discussed in Sections 3.2 to 3.9, pages 64 to 166.

3.10.1 Solvent and Soxhlet extraction

The Soxhlet extraction technique, according to Naude *et al.* (1998), is not environmentally friendly, as it produces toxic fumes which adds to pollution. It requires a large amount of a hazardous substance which is not ideal for 'green chemistry' (Demeestere *et al.*, 2007). To make use of more "greener" processes, instead of hazardous substances, supercritical CO_2 extraction can be used instead, as reported by Wenqiang *et al.* (2007).

Also the exposure of fellow co-workers to hazardous dichloromethane and the high cost of solvent removal have to be taken into account. It is also a time-consuming process with more sample handling and the extraction times are long. The disadvantage of this technique is the loss of solvent during the extraction process which can lead to errors in the analysis. However, based on analyte volatility it does not discriminate, as the results obtained have shown that compounds of high volatility (the monoterpenes). medium and low volatility (the sesquiterpenes) can be extracted.

An advantage of solvent extraction (with a typical chromatogram shown in Figure 3.60) is that the extraction can be carried out at a low temperature, i.e. at room temperature, with no high energy consumption required, unlike steam distillation and Soxhlet extraction. However, there can be co-extraction of non-volatile compounds and attempts to clean the sample can result in the loss of volatile analytes (Teixeira *et al.*, 2007).

Figure 3.60 A typical total ion chromatogram for the solvent extraction after the 48 hour extraction.

3.10.2 Steam distillation method

In this work, the monoterpenes were found to be vulnerable to steam distillation demonstrated by the loss of the light volatiles. Due to the steam distillate being subjected to further liquid-liquid extraction, followed by evaporation and concentration of the organic phase, further loss of analytes occurred during this multi-step process and therefore, the sample preparation step contributes to the major source of error. This trend was similar to the observation by Alpendurada (2000). Also, extraction at a high temperature (100 °C) could cause thermal decomposition of some compounds, resulting in a change in some components of the essential oil and ultimately a change in aroma (Romanik *et al.*, 2007). In addition, this technique lacks efficiency.

However, the pale yellow oil obtained is much purer than the extracts from the solvent and Soxhlet extractions which contained chlorophyll, making it more selective than solvent and Soxhlet extraction. The presence of chlorophyll could be seen in the solvent and Soxhlet extraction chromatograms, i.e the peak at retention time 19.60 corresponding to phytol, making these methods non-discriminatory.

3.10.3 Headspace analysis and HS-SPME

This method of analysis as used in this work was a solvent free determination, thereby eliminating solvent contamination of the samples. Sample preparation was performed with ease which therefore makes this a cost- and time-saving method. Also, since the headspace was used, there was a reduction in sample interference and GC contamination was eliminated.

The advantage of using SPME is that no preconcentrion step is required as the analytes are enriched directly into the fibre coating (Steffen and Pawliszyn, 1996). Due to the simple experimental set-up used, both headspace analysis and HS-SPME is useful for the qualitative determination of aroma compounds as shown by a typical ion chromatogram in Figure 3.61.

Figure 3.61 A typical total ion chromatogram for the HS-SPME (PDMS fibre coating) at 60 $^{\circ}$ C.

From the above discussion, for the selection of the appropriate technique consideration should be given to the quantitation levels obtained from each of these techniques for the compounds with different volatilities as outlined in Table 3.47.

Table 3.47 Method comparison for the quantitation of compounds with different volatilities.

Method	Extraction period	Extraction of compounds		Quant	itation
		Low	High		
		volatility	volatility	Low levels	High levels
Solvent extraction	48 hours	good	good	satisfactory	poor
Soxhlet extraction	48 hours	good	good	satisfactory	poor
Steam distillation	3 hours	satisfactory	poor	poor	poor
HS-SPME (PDMS coating)	15 mins	good	good	difficult	difficult
HS-SPME (PA coating)	15 mins	satisfactory	satisfactory	difficult	difficult
Headspace analysis	15 mins	satisfactory	good	difficult	difficult

The conclusions drawn from this study are discussed in Chapter 4.

CHAPTER 4

CONCLUSIONS

The aim of the project was to compare the different extraction methods for the analysis of volatile compounds of *M. koenigii* by using the GC-MS analytical technique.

Results from this work have shown that the volatile profile of the essential oil in *M. koenigii* was dependent on the extraction technique employed. According to Cao *et al.* (2007), different extraction techniques used for natural products exhibit different efficiencies. In this work, the solvent and Soxhlet extractions showed no difference between the quantities obtained for α -pinene and either technique can be used for the extraction of this compound. The Soxhlet extraction was generally favourable for the extraction of the compounds studied, i.e. α -pinene, β -pinene, α -phellandrene as well as α - and β -caryophyllene. The results have also shown that the extraction yield is determined by the solvent used for the extraction, the extraction temperature as well as the duration of the heating period. A similar finding has been reported Zhu *et al.* (2006).

Of the different techniques studied for the extraction of volatile compounds in *M. koenigii* leaves, Soxhlet extraction was the most efficient technique. This extraction technique can be used for a wide range of volatile and semi-volatile organics. A disadvantage of the Soxhlet extraction is that it can be a costly and time-consuming technique. It can also be difficult to obtain a product with the required characteristics with this method (Castro *et al.*, 2004). This means that a further step in sample preparation would be needed. These important considerations weigh heavily against the selection of this extraction technique and perhaps, solvent extraction could be used instead, since a large amount of effort can be saved. According to Malundo *et al.* (1997), steam distillation, Soxhlet and solvent extraction might produce other compounds and artefacts that do not contribute to the aroma. According to Wenqiang *et*

al. (2007), thermal degradation, hydrolysis and water solubility of some constituents of essential oils are found to occur during these extraction processes.

The steam distillation method showed much lower extraction efficiency for the monoterpenes as compared to the Soxhlet and solvent extraction methods. A disadvantage of this method was that further solvent extraction was required to recover the essential oils.

As reported by Miller and Stuart (1999), the headspace technique lacks the sensitivity for adequate performance. However, it proved effective in the detection of the lowest boiling analytes and is a good technique for the detection of the very volatile analytes. It was also cost-effective as simple apparatus can be employed for the extraction process.

The use of HS-SPME combined with GC-MS can be used for the analysis of volatile organic compounds. The PDMS fibre coating was found to be superior for the compounds which were present in larger amounts, the monoterpenes, and this result could be due to the equilibration period used.

No sample preparation step was necessary for HS-SPME as the analytes adsorbed into the fibre were sufficient for direct analysis to be done. A temperature of 60 °C was found to be suitable for compounds present at a low concentration. Headspace-SPME combined with GC-MS is a simple, quick method used for the extraction and identification of monoterpenes and sesquiterpenes of *M. koenigii*.

However, the use of headspace gas chromatography for the quantitative determination of volatile compounds is limited (Zhu and Chai, 2005). In the quantitative analysis for the HS-SPME of complex matrixes, such as food products, it is essential that the method utilises the correct conditions, taking into consideration the fibre coating, the competition that exists between the components for adsorption sites on the fibre, as well as the number of components which are present. Quantitation errors can result if conditions without using proper and appropriate controls are selected (Contini and Esti, 2006).

The results from this study have shown that there is no single optimal method that exists for the extraction of volatile organic compounds present in a wide concentration range and, therefore, it may be necessary to use a combination of methods for the extraction of all the volatile constituents. A similar finding was observed by Mamede and Pastore (2006). Various factors have to be considered in the selection of an optimal technique. Some of these factors are the physical properties of the sample, the sample matrix, the number of analytes of interest present in the sample, interfering compounds, the thermal stability of the sample, the cost and range of the equipment available, and the cost and time of the analysis (Manura and Manura, 1998).

FUTURE WORK

In future studies, multiple headspace solid-phase microextraction, for the quantification of the analytes present in the headspace of a complex mixture, can be investigated. This solvent-free method, based on the exhaustive extraction of the analytes, can be used to quantify volatile organic compounds in solid samples. In this method of analysis the total peak area is determined by adding the areas of each individual extraction for the respective compounds. The method can be employed only if the following three criteria are met:

- i) The relationship between the peak area and the amount extracted must be linear over the range of volatiles studied.
- ii) The distribution constants between the sample, coating and headspace must be constant.
- iii) The equilibrium must be established for the analytes (Ezquerro *et al.*, 2003).(More information about this method can be found in Ezquerro *et al.* (2003).

Also, future studies can be conducted to investigate the use of two internal standards to improve the analysis of the quantitative determination of analytes present in a wide concentration range. A better choice of internal standard would be one for the compounds with high volatility, the monoterpenes and one for the compounds with a high molar mass, the sesquiterpenes.

REFERENCES

Adesina, S. K., Olatunji, O.A., Bergenthal, D., Reisch, J., 1988, New Biogenetically-Significant Constituents of *Clausena Anisata* and *Murraya Koenigii*, *Pharmazie*, 43, 221-222.

Alpendurada, M. d. F., 2000, Solid-Phase Microextraction: A Promising Technique for Sample Preparation in Environmental Analysis, *Journal of Chromatography A*, 889, 3-14.

Aman, O. L. S. P., 1996, Medicinal Secrets of Your Food, World Copyright Publishers, 339.

Andersen, N. H., Falcone, M. S., 1969, The Identification of Sesquiterpene Hydrocarbons from Gas-Liquid Chromatography Retention Data, *Journal of Chromatography*, 44, 52-59.

Annesley, T. M., 2003, Ion Suppression in Mass Spectrometry *Clinical Chemistry*, 49, 1041-1044.

Augusto, F., Lopes, A. L., Zini, C. A, 2003, Sampling and Sample Preparation for Analysis of Aromas and Fragrances *Trends in Analytical Chemistry*, *22*, 160-169.

Ausloos, P., Clifton, C. L., Lias, S.G., Mikaya, A. I., Stein, S. E., Tchekhovskoi, D. V., Sparkman, O. D., Zaikin, V., Zhu, D., 1999, The Critical Evaluation of a Comprehensive Mass Spectral Library, *Journal of the American for Mass Spectrometry 10*, 287-299.

Bailey, L. H., 1958, The Standard Encyclopaedia of Horticulture, 2706.

Barbieri, S., Elustondo, M., Urbicain, M., 2004, Retention of Aroma Compounds in Basil Dried with Low Pressure Superheated Steam, *Journal of Food Engineering* 65, 109-115. Barra, A., Baldovini, N., Loiseau, A. M., Albino, L., Lesecq, C., Cuvelier, L.L., 2007, Chemical Analysis of French Beans (*Phaseolus Vulgaris* L.) by Headspace Solid Phase Microextraction (HS-SPME) and Simultaneous Distillation/Extraction (SDE), *Food Chemistry*, 101, 1279-1284.

Barrera-Necha, L. L., Bautista-Banos, S., Flores-Moctezuma, H.E., Estudillo, A. R., 2008, Efficacy of Essential Oils on the Conidial Germination, Growth of Colletotrichum Gloeosporioides (Penz.) and Control of Postharvest Diseases in Papaya (*Carica Papaya L.*), *Journal of Plant Pathology*, *7*, 174-178.

Bernfeld, P., 1967, Biogenesis of Natural Compounds Pergamon Press, 843-863.

Bhattacharyya, P., Chakraborty, A., 1984, Mukonal, A Probable Biogenetic Intermediate of Pyranocarbazole Alkaloids from *Murraya Koenigii*, *Journal of Phytochemistry*, 23, 471-472.

Bicchi, C., Cordero, C., Liberto, E., Sgorbini, B., Rubiolo, P., 2007, Reliability of Fibres in Solid-Phase Microextraction for Routine Analysis of the Headspace of Aromatic and Medicinal Plants, *Journal of Chromatography A*, *1152*, 138-149.

Biemann, K., 1962, Mass Spectrometry Organic Chemical Applications, McGraw-Hill Book Company Inc., 46.

Biermann, C. J., McGinnis, G.D, 1989, Analysis of Carbohydrates by GLC and MS, CRC Press, 94.

Bosch-Fuste, R. A., J., Guadayol, J. M., Caixach, J., Lopez-Tamames, E., Buxaderas, S., 2007, Volatile Profiles of Sparkling Wines Obtained by Three Extraction Methods and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis, *Journal of Food Chemistry*, *105*, 428 -435.

Bringmann, G., Tasler, S., Endress, H., Kraus, J., Messer, K., Wohlfarth, M., Lobin, W., 2001, Murrastifoline-F: First Total Synthesis, Atropo-Enantiomer Resolution, and Stereoanalysis of an Axially Chiral *N*, *C*-Coupled Biaryl Alkaloid, *Journal American Chemical Society*, *123*, 2703-2711.

Budzikiewicz, H, Djerassi, C., Williams, D. H., 1964, Structure Elucidation of Natural Products by Mass Spectrometry, Holden-Day Inc., 146-148.

Camara, J. S., Marques, J. C., Perestrelo, R. M., Rodrigues, F., Oliveira, L., Andrade, P., Caldeira, M., 2006, Evaluation of Volatile Constituents Profile in Scotch Whisky by SPME/GC-ITMS, Congress of Food Science & Technology 727-734.

Cao, H., Xiao, J.B., Xu, M., 2007, Comparison of Volatile Components of *Marchantia Convoluta* Obtained by Supercritical Carbon Dioxide Extraction and Petrol Ether Extraction, *Journal of Food Composition and Analysis*, 20, 45-51.

Carey, F., 2007, Organic Chemistry, McGraw-Hill.

Castro, R., Natera, R., Benitez, P., Barroso, C.G., 2004, Comparative Analysis of Volatile Compounds of 'Fino' Sherry Wine by Rotatory and Continuous Liquid–Liquid Extraction and Solid-Phase Microextraction in Conjunction with Gas Chromatography-Mass Spectrometry, *Analytica Chimica Acta 513*, 141-150.

Chapman, J. R., 1993, Practical Organic Mass Spectrometry: A Guide for Chemical and Biochemical Analysis, John Wiley & Sons Publishers, 9-10.

Chemat, F., Lucchesi, M.E., Smadja, J., Favretto, L., Colnaghi, G., Visinoni, F., 2006, Microwave Accelerated Steam Distillation of Essential Oil from Lavender: A Rapid, Clean and Environmentally Friendly Approach, *Analytica Chimica Acta*, 555, 157-160.

Christian, G. D., 2000, Modern Analytical Chemistry, McGraw Hill, 215, 567-569.

Clery, R., 2006, Natural Product Analysis in the Fragrance Industry, Royal Society of Chemistry 214-216.

Contini, M., Esti, M., 2006, Effect of the Matrix Volatile Composition in the Headspace Solid-Phase Microextraction Analysis of Extra Virgin Olive Oil, *Journal of Food Chemistry* 94, 143-150.

Croteau, R., Wheeler, C. J., Aksela, R., Oehlschlager, A. C, 1986, Inhibition of Monoterpene Cyclases by Sulfonium Analogs of Presumptive Carbocationic Intermediates of the Cyclization Reaction, *The Journal of Biological Chemistry 261*, 7257-7263.

Demeestere, K., Dewulf, J., De Witte, B., Van Langenhove, H., 2007, Sample Preparation for the Analysis of Volatile Organic Compounds in Air and Water Matrices, *Journal of Chromatography A*, *1153*, 130-144.

Deng, C., Xu, X., Yao, N., Li, N., Zhang, X., 2006, Rapid Determination of Essential Oil Compounds in Artemisia Selengensis Turcz by Gas Chromatography-Mass Spectrometry with Microwave Distillation and Simultaneous Solid-Phase Microextraction, *Analytica Chimica Acta*, *556*, 289-294.

Dewick, P. M., 1997, Medical Natural Products a Biosynthesis Approach, Wiley, 153.

Diaz-Maroto, M. C., Perez-Costello, M. S., Cabezudo, M.D., 2002, Supercritical Carbon Dioxide Extraction of Volatiles from Spices. Comparison with Simultaneous Distillation-Extraction, *Journal of Chromatography A*, 947, 23-29.

Donald L. Pavia, Gary M. Lampman, George S. Kriz, 2009, Introduction to Spectroscopy, Cengage Learning, 457.

Ezquerro, O., Pons, B., Tena, M.T., 2003, Multiple Headspace Solid-Phase Microextraction for the Quantitative Determination of Volatile Organic Compounds in Multilayer Packagings, *Journal of Chromatography A*, 999, 155-164.

Ferreira, V., Sharman, M., Cacho, J.F., Dennis, J., 1996, New and Efficient Microextraction/Solid-Phase Extraction Method for the Gas Chromatographic Analysis of Wine Volatiles, *Journal of Chromatography A*, 731, 247-259.

Fiebig, M., Pezzuto, J. M., Soejarto, D.D., Kinghorn, A.D., 1985, Koenoline, A Further Cytotoxic Carbazole Alkaloid from *Murraya Koenigii*, *Journal of Phytochemistry*, *24*, 3041-3043.

Flores, G., del Castillo, M. L. R., Blanch, G.P., 2006, Effect of Sample Freezing on the SPME Performance in the Analysis of Chiral Volatile Compounds in Foods, *Journal of Food Chemistry*, *96*, 334-339.

Fowlis, I. A., 1998, Gas Chromatography, Wiley, 150-154.

Frigerio, A., 1974, Essential Aspects of Mass Spectrometry, Spectrum Publications Inc., 49-66.

Furniss, B. S., Hannaford, A.J, Smith, P. W. G., Tatchell, A. R., 1989, Vogel's Textbook of Practical Organic Chemistry, New York, USA, 164-165.

Garcia-Estebana, M., Ansorenaa, D., Astiasarána, I., Ruizb, J, 2004, Study of the Effect of Different Fiber Coatings and Extraction Conditions on Dry Cured Ham Volatile Compounds Extracted by Solid-Phase Microextraction (SPME) *Talanta*, *64*, 458-466.

Gomez, N. E., Witte, L., 2001, A Simple Method to Extract Essential Oils from Tissue Samples by Using Microwave Radiation, *Journal of Chemical Ecology*, *27*, 2351-2359.

Grob, R. L., 1995a, Modern Practice of Gas Chromatography, John Wiley & Sons Inc., 788.

Grob, R. L., 1995b, Modern Practice of Gas Chromatography John Wiley & Sons Inc., 4.

Guerrero, E. D., Marin, R. N., Mejias, R.C., Barroso, C. G., 2006, Optimisation of Stir Bar Sorptive Extraction Applied to the Determination of Volatile Compounds in Vinegars, *Journal of Chromatigraphy A*, *1104*, 47-53.

Guillen, M. D., Ibargoitia, M.L., Sopelana, P., Palencia, G., Fresno, M., 2004, Components Detected by Means of Solid-Phase Microextraction and Gas Chromatography/Mass Spectrometry in the Headspace of Artisan Fresh Goat Cheese Smoked by Traditional Methods, *Journal of Dairy Science* 87, 284-299.

Haagen-Smit, A. J., 1953, The Biogenesis of Terpenes, Annual Review of Plant Physiology, 4 305-324.

Hachenberg, H., Schmidt, A.P., 1986, Gas Chromatographic Headspace Analysis, John Wiley & Sons 3-10.

Hamm, S., Lesellier, E., Bleton, J., Tchapla, A., 2003, Optimization of Headspace Solid Phase Microextraction for Gas Chromatography/Mass Spectrometry Analysis of Widely Different Volatility and Polarity Terpenoids in *Olibanum, Journal of Chromatography A*, 1018, 73-83.

Hargis, L. G., 1988, Analytical Chemistry Principles and Techniques, Prentiss-Hall, Inc., 479.

Harvey, D., 2000, Modern Analytical Chemistry, McGraw Hill, 215, 567-569.

Henderson, H., McIndoe, J. S, 2005a, Mass Spectrometry of Inorganic and Organometallic Compounds, Tools-Techniques-Tips, John Wiley & Sons Ltd, 54-55.

Henderson, H., McIndoe, J. S, 2005b, Mass Spectrometry of Inorganic and Organometallic Compounds, Tools-Techniques-Tips, John Wiley & Sons Ltd, 1-2.

Herbert, C. G., Johnstone, R.A.W., 2003a, Mass Spectrometry Basics, CRC Press, 267.

Herbert, C. G., Johnstone, R.A.W., 2003b, Mass Spectrometry Basics, CRC Press, 267.

Hibbert, D. B., Gooding, J. J., 2006, Data Analysis for Chemistry, Oxford University Press, Inc., 109-111.

Hill, H. C., 1969, Introduction to Mass Spectrometry Heydon and Son Ltd., 59-60, 72.

Hoffmann, E., Charette, J., Stroobant, V., 1996, Mass Spectrometry Principles and Applications, John Wiley & Sons Publishers, 51.

Howard, K. L., Mike, J.H., Riesen, R., 2005, Validation of a Solid-Phase Microextraction Method for Headspace Analysis of Wine Aroma Components *American Journal of Enology and Viticulture*, *56*, 37-45.

http://teaching.shu.ac.uk/hwb/chemistry/tutorials/chrom/gaschrm.htm,Accessed 22.11.10.

http://en.wikipedia.org/wiki/Dichloromethane, Accessed 01.12.09.

http://en.wikipedia.org/wiki/Soxhlet_extractor, Accessed 08.12.09.

http://orgchem.colorado.edu/hndbksupport/GC/GC.html,date Accessed 07.01.10.

http://webbook.nist.gov,Accessed 16.09.03.

http://www.cee.vt.edu/ewr/environmental/teach/smprimer/ms/ms.html,Accessed 07.12.09.

http://www.sisweb.com/referenc/applnote/app-39.htm, Accessed 29.10.09.

http://www.thegoodscentscompany.com/data/rw1014751.html., Accessed 30.11.09.

Jackson, R. D., 1986, Remote Sensing of Biotic and Abiotic Plant Stress, *Annual Review of Phytopathology*, 24, 265-287.

Jennings, W., Shibamoto, T., 1980, Qualitative Analysis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatography, Academic Press, 1-2.

Jennings, W. G., Rapp, A., 1983, Sample Preparation for Gas Chromatographic Analysis, Heidelberg; Basel; New York: Huthig, 19.

Johnstone, R. A. W., 1972a, Mass Spectrometry for Organic Chemists, Cambridge University Press, 56-57.

Johnstone, R. A. W., 1972b, Mass Spectrometry for Organic Chemists, Cambridge University Press, 120-121.

Jublot, L., Linforth, R.S.T., Taylor, A.J., 2004, Direct Coupling of Supercritical Fluid Extraction to a Gas Phase Atmospheric Pressure Chemical Ionisation Source Ion Trap Mass Spectrometer for Fast Extraction and Analysis of Food Components, *Journal of Chromatigraphy A*, 1056, 27-33.

Kalua, C. M., Bedgood Jr, D.R., Prenzler, P. D., 2006, Development of a Headspace Solid Phase Microextraction-Gas Chromatography Method for Monitoring Volatile Compounds in Extended Time-Course Experiments of Olive Oil, *Analytica Chimica Acta*, 556, 407-414.

Kenkel, J., 2003, Analytical Chemistry for Technicians, 379.

Kindness, P. A., 2009, Practical Manual, Chem 340. University of KwaZulu-Natal.

King, D. J., Gleadow, R. M., Woodrow, I. E., 2004, Terpene Deployment in *Eucalyptus Polybractea*; Relationships with Leaf Structure, Environment Stresses, and Growth, *Functional Plant Biology*, *31*, 451-460.

Kolb, B., 1982, Analysis of the Odorous Quality of Spices and Spice Mixtures Using Headspace Chromatography, 80.

Kolb, B., Ettre, L.S., 2006, Static Headspace-Gas Chromatography: Theory and Practice, John Wiley and Sons Inc, 11.

Krautler, B., 2002, Unravelling Chlorophyll Catabolism in Higher Plants, *Biochemical Society Transactions*, *30*, 625-630.

Leathard, D. A., Shurlock, B.C., 1970, Identification Techniques in Gas Chromatography, John Wiley & Sons Ltd., 231.

Li, Q., Zhu, L-F., But, P. P-H., Kong, Y-C., Chang, H-T., Waterman, P.G., 1988, Monoterpene and Sesquiterpene Rich Oils from the Leaves of *Murraya* Species: Chemotaxonomic Significance, *Biochemical Systematics and Ecology*, *16*, 491-494.

Llusià, J., Peñuelas, J., 2000, Seasonal Patterns of Terpene Content and Emission from Seven Mediterranean Woody Species in Field Conditions *American Journal of Botany*, 87, 133-140. Lompart, M., Li, K., Fingas, M., 1998, Headspace Solid-Phase Microextraction for the Determination of Volatile and Semi-Volatile Pollutants in Water and Air, *Journal of Chromatography A*, 824, 53-61.

MacLeod, A. J., Peiris, N. M., 1982, Analysis of the Volatile Essential Oils of *Murraya Koenigii* and *Pandanus Latifolius, Journal of Phytochemistry*, *21*, 1653-1657.

Malmuthuge, N. S. P., Vidanarachchi, J.K., Himali, S.M.C., Sivakanesan, R., Cyril, H.W., 2007, Effect of Curry Leaf (*Murraya Koenigii*) in Beef Sausage on Blood Cholesterol Level of Mice, Peradeniya University Research Sessions, 12, Sri Lanka, 9-11.

Malundo, T. M. M., Baldwin, E.A., Moshonas, M.G., Baker, R.A., Shewfelt, R. L., 1997, Method for the Rapid Headspace Analysis of Mango (*Mangifera Indica L.*) Homogenate Volatile Constituents and Factors Affecting Quantitative Results, *Journal of Agricultural Food Chemistry* 45, 2187-2194.

Mamede, M. E. O., Pastore, G.M., 2006, Study of Methods for the Extraction of Volatile Compounds from Fermented Grape Must, *Journal of Food Chemistry*, *96*, 586-590.

Mann, F. G., Saunders, B. C., 1960, Practical Organic Chemistry, Longman Inc., New York, 33-34.

Manura, D. J., Manura, J. J., 1998, Comparison of Various GC/MS Techniques for the Analysis of Black Pepper (*Piper Nigrum*), PittCon 98, New Orleans, LA.

McGraw, G. W., Hemingway, R. W., Ingram, L. S., Canady, C. C., McGraw, W.B., 1999, Thermal Degradation of Terpenes: Camphene, 3-Carene, Limonene, and Gamma-Terpinene, *Environ. Sci. Technol.*, *33*, 4029-4033.

McLafferty, F. W., 1966, Interpretation of Mass Spectra, W.A. Benjamin, Inc., New York, 101-102.

McNair, H. M., Bonelli, E.J, 1968, Basic Gas Chromatography, Varian, 16-17.

Miller, M. E., Stuart, J. D., 1999, Comparison of Gas-Sampled and SPME-Sampled Static Headspace for the Determination of Volatile Flavor Components, *Analytical Chemistry* 71, 23-27.

Monje, M. C., Privat, C., Gastine, V., Nepveu, F., 2002, Determination of Ethylphenol Compounds in Wine by Headspace Solid-Phase Microextraction in Conjunction with Gas Chromatography and Flame Ionization Detection, *Analytica Chimica Acta*, *458* 111-117.

Morrison, G. H., Freiser, H., 1957, Solvent Extraction in Analytical Chemistry, John Wiley & Sons, Inc., 3-4.

Morrison, R. T., Boyd, R. N., 1987, Organic Chemistry, Allyn and Bacon Inc., 409.

Mukherjee, M., Mukherjee, S., Shaw, A.K., Ganguly, S. N., 1983, Mukonicine, A Carbazole Alkaloid from Leaves of *Murraya Koenigii*, *Journal of Phytochemistry*, *22*, 2328-2329.

Naudé Y., d. B., W. H. J., Jooste, S., van der Merwe, L., van Rensburg, S. J., 1998, Comparison of Supercritical Fluid Extraction and Soxhlet Extraction for the Determination of DDT, DDD and DDE in Sediment, *Water SA 24*, 205-214.

Oprean, R., Oprean, L., Tamas, M., Sandulescu, R., Roman, L, 2001, Essential Oils Analysis. Mass Spectra Identification of Terpene and Phenylpropane Derivatives, *Journal of Pharmaceutical and Biomedical Analysis*, *24*, 1163-1168.

Orav, A., Kailas, T., Ivask, K., 2001, Volatile Constituents of *Matricaria Recutita* L. from Estonia, *Proc. Estonian Acad. Sci. Chem.*, *50*, 39-45.

Ortega-Heras, M., Gonzalez-SanJose, M. L. Beltran, S., 2002, Aroma Composition of Wine Studied by Different Extraction Methods, *Analytica Chimica Acta*, *458*, 85-93.

Palaniswamy, U. R., Stuart, J. D., Caporuscio, C. A., 2002, Effect of Storage Temperature on the Nutritional Value of Curry Leaf, ASHS Press, Alexandria, VA., 567-569. Paranagama, P. A., Wimalasena, S., Jayatilake, G. S., Jayawardena, A. L., Senanayake,
U. M., Mubarak, A. M., 2002, Analysis of Volatile Oil in the Leaves of *Murraya Koenigii, Journal of Tropical Medicinal Plants*, *3*, 187-189.

Pare, J. R. J., Yaylayan, V, 1997, Mass Spectrometry: Principles and Applications, Elsevier, 239-245.

Pawliszyn, J., 1997a, Solid Phase Microextraction Theory and Practice Wiley-VCH, Inc., 4.

Pawliszyn, J., 1997b, Solid Phase Microextraction Theory and Practice Wiley-VCH, Inc., 7.

Pawliszyn, J., 1997c, Solid Phase Microextraction Theory and Practice Wiley-VCH, Inc., 24-25.

Pawliszyn, J., 1997d, Solid Phase Microextraction Theory and Practice Wiley-VCH, Inc., 17.

Pawliszyn, J., 1997e, Solid Phase Microextraction Theory and Practice Wiley-VCH, Inc., 131-132.

Pellati, F., Benvenuti, S., Yoshizaki, F., Bertelli, D., Rossi, M. C., 2005, Headspace Solid-Phase Microextraction-Gas Chromatography–Mass Spectrometry Analysis of the Volatile Compounds of *Evodia* Species Fruits, *Journal of Chromatography A*, 1087, 265-273.

Pena-Alvarez, A., Capella, S., Juarez, R., Labastida, C., 2006, Determination of Terpenes in Tequila by Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry, *Journal of Chromatography A*, *1134*, 291-297.

Pillonel, L., Bosset, J.O., Tabacchi, R., 2002, Rapid Preconcentration and Enrichment Techniques for the Analysis of Food Volatiles. A Review, *Lebensm-Wiss, u-Technol*, *35*, 14.

Pino, J. A., Marbot, R., Bello, A., 2002, Volatile Compounds of *Psidium Salutare* (H.B.K.) Berg. Fruit, *Journal of Agricultural and Food Chemistry* 50, 5146-5148.

Polo, M., Casas, V., Llompart, M., Garcia-Jares, C., Cela, R., 2006, New Approach on Solid-Phase Microextraction to Estimate Polydimethylsiloxane Fibre Coating-Water Distribution Coefficients for Brominated Flame Retardants, *Journal of Chromatography A 1124*, 121-129.

Pourmortazavia, S. M., Ghadirib, M., Hajimirsadeghi, S. S., 2005, Supercritical Fluid Extraction of Volatile Components from *Bunium Persicum Boiss*. (Black Cumin) and *Mespilus Germanica L*. (Medlar) Seeds, *Journal of Food Composition and Analysis 18*, 439-446.

Povolo, M., Contarini, G., 2003, Comparison of Solid-Phase Micro-Extraction and Purge and Trap Methods for the Analysis of the Volatile Fraction in Butter, *Journal of Chromatography A*, 985, 117-125.

Prakash, V., Natarajan, C. P., 1974, Studies on Curry Leaf (*Murraya Koenigii* L), *Journal of Food Science and Technology*, *11*, 284-286.

Rahman, M. M., Gray, A.I., 2005, A Benzoisofuranone Derivative and Carbazole Alkaloids from *Murraya Koenigii* and their Antimicrobial Activity, *Phytochemistry* 66, 1601-1606.

Rana, V. S., Juyal, J. P., Rashmi, Blazquez, M. A, 2004, Chemical Constituents of the Volatile Oil of *Murraya Koenigii* Leaves, *The International Journal of Aromatherapy 14*, 23-25.

Ranade, S. A., Rana, T. S., Srivastava, A. P., Nair, K. N., 2006, Molecular Differentiation in *Murraya Koenigii (L.)* Species in India Inferred through ITS, RAPD and DAMD Analysis, Current Science, 90.

Reed, R. I., 1966, Application of Mass Spectrometry to Organic Chemistry, Academic, Press Inc. (London) Ltd., 100.

Reisch, J., Adebajo, A. C., Kumar, V., Aladesanmi, A. J., 1994, Two Carbazole Alkaloids from *Murraya Koenigii*, *Journal of Phytochemistry*, *36*, 1073-1076.

Riffle, M. S., Waller, G. R., Murray, D. S., 1991, Composition of Essential Oil from *Proboscidea Louisianica* (Martyniaceae), Proceedings of the Oklahoma Academic of Science, 71, Oklahoma, 35-42.

Romanik, G., Gilgenast, E., Przyjazny, A., Kaminski, M., 2007, Techniques of Preparing Plant Material for Chromatographic Separation and Analysis, *Journal of Biochemical and Biophysical Methods* 70, 253-261.

Rose, M. E., Johnstone, R. A. W., 1982, Mass Spectrometry for Chemists and Biochemists, Cambridge University Press, 1-2.

Ryhage, R., von Sydow, E., 1963, Mass Spectrometry of Terpenes I. Monoterpene Hydrocarbons, *Acta Chemica Scandinavica*, *17*, 2025-2035.

Sarker, S. D., Nahar, L., 2007, Chemistry for Pharmacy Students General, Organic and Natural Product Chemistry, John Wiley & Sons Ltd., 331.

Skoog, D. A., West, D. M., Holler, F. J., Crouch, S. R., 2004, Fundamentals of Analytical Chemistry, Chemistry: David Harris, 957.

Sostaric, T., Boyce., M. C., Spickett, E. E., 2000, Analysis of the Volatile Components in Vanilla Extracts and Flavorings by Solid-Phase Microextraction and Gas Chromatography, *Journal of Agricultural Food Chemistry*, *48*, 5802-5807.

Stashenko, E. E., Jaramillo, B. E., Martinez, J. R., 2004, Comparison of the Different Extraction Methods for the Analysis of Volatile Secondary Metabolites of *Lippia Alba* (Mill), Grown in Colombia, and Evaluation of its in Vitro Antioxidant Activity, *Journal of Chromatography A*, *1025*, 93-103.

Stashenko, E. E., Martinez, J. R, 2007, Sampling Volatile Compounds from Natural Products with Headspace/Solid-Phase Micro-Extraction, *Journal of Biochemical and Biophysical methods*, 70, 235-242.

Steffen, A., Pawlisyn, J., 1996, Analysis of Flavour Volatiles using Headspace Solid-Phase Microextraction, *Journal of Agricultural Food Chemistry* 44, 2187-2193.

http://chemdata.nist.gov/mass-spc/amdis/method.pdf, Accessed 13.05.05.

Strietwieser, A., Heathcock, C. H., Kosower, E. M., 1992, Introduction to Organic Chemistry, Macmillan Publishing Company, 1247.

Tairu, A. O., Hoffmann, T., Schieberle, P., 1999, Characterization of the Key Aroma Compounds in Dried Fruits of the West African Peppertree *Xylopia Aethiopica* (Dunal)
A. Rich (Annonaceae) using Aroma Extract Dilution Analysis, *Journal of Agricultural Food Chemistry*, 47, 3285-3287.

Teixeira, S., Mendes, A., Alves, A., Santos, L., 2007, Simultaneous Distillation-Extraction of High-Value Volatile Compounds from *Cistus Ladanifer* L., *Analytica Chimica Acta* 584, 439-446.

Tholl, D., Boland, W., Hansel, A., Loreto, F., Rose, U. S. R., Schnitzler, J. P., 2006, Practical Approaches to Plant Volatile Analysis, *The Plant Journal 45*, 540-560.

Tolgyessy, P., Hrivnak, J., 2006, Analysis of Volatiles in Water Using Headspace Solid-Phase Microcolumn Extraction, *Journal of Chromatography A*, *1127*, 295 -297.

Torrens, J., Riu-Aumatell, M., Lopez-Tamames, E., Buxaderas, S., 2004, Volatile Compounds of Red and White Wines by Headspace-Solid-Phase Microextraction using Different Fibres, *Journal of Chromatograpic Science*, *42*, 310-316.

Vas, G., Vekey, K., 2004, Solid-Phase Microextraction: A Powerful Sample Preparation Tool Prior to Mass Spectrometric Analysis, *Journal of Mass Spectrometry*, *39*, 233-254.

Vichi, S., Guadayol, J. M.Caixach, J. Lopez-Tamames, E., Buxaderas, S., 2007, Comparative Study of the Different Extraction Techniques for the Analysis of Virgin Olive Oil Aroma, *Journal of Food Chemistry*, *105*, 1171-1178. Walde, S. G., Jyothirmayi, T., Prabhakara Rao, P. G., Srinivas, P., 2006, Flavour Volatiles of Flowers and Stalks of *Murraya Koenigii L, Journal Flavour and Fragrance*, *21*, 581-584.

Wang, L., Xu, Y., Zhao, G., Li, J., 2004, Rapid Analysis of Flavour Volatiles in Apple Wine Using Headspace Solid-Phase Microextraction, *Journal of the Institute of Brewing*, *110*, 57-65.

Wang, Y., 1997, Sample Preparation /Concentration for Trace Analysis in GC/MS (a Study of Solid Phase Microextraction and Headspace Sampling), Chemistry, Phd in Chemistry. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1.

Wenqiang, G., Shufen, L., Ruixiang, Y., Shaokun, T., Can, Q., 2007, Comparison of Essential Oils of Clove Buds Extracted with Supercritical Carbon Dioxide and other Three Traditional Extraction Methods, *Food Chemistry*, *101*, 1558-1564.

Wong, K. C., Tie, D.Y., 1993, The Essential Oil of the Leaves of *Murraya Koenigii* Spreng, *J. Essential Oil Research*, *5*, 371 - 374.

Xu, Z., Zheng, L., 2004, Comparison of Volatile and Semivolatile Compounds from Commercial Cigarette by Supercritical Fluid Extraction and Simultaneous Distillation Extraction, *J. Zhejiang Univ SCI*, *5*, 1528-1532.

Yang, Y., Kayan, B., Bozer, N., Pate, B., Baker, C., Gizir, A. M., 2007, Terpene Degradation and Extraction from Basil and Oregano Leaves using Subcritical Water, *Journal of Chromatography A*, *1152*, 262-267.

Zhu, J. Y., Chai, X. S., 2005, Some Recent Developments in Headspace Gas Chromatography, *Current Analytical Chemistry*, *1*, 79-83.

Zhu, X., Qingde, S., Cai, J., Yang, J, 2006, Optimization of Microwave-Assisted Solvent Extraction for Volatile Organic Acids in Tobacco and its Comparison with Conventional Extraction Methods, *Analytica Chimica Acta*, *579*, 88-94.

APPENDIX A

MATERIALS

The chemicals used in this work, are shown below, together with the manufacturer's details and grade of the chemical.

A1 Chemicals used for the quantitation of the volatile compounds.

Dichloromethane	(99%)	-	BDH HiperSolv TM Chemicals, Ltd.
α-pinene	(98.5%)	-	Sigma-Aldrich
β-pinene	(99%)	-	Sigma-Aldrich
α -phellandrene	(95%)	-	Sigma-Aldrich
β-caryophyllene	(98.5%)	-	Sigma-Aldrich
α-caryophyllene	(98.0%)	-	Sigma-Aldrich

A2 Chemicals used for Gas Chromatography-Mass Spectrometry

Helium (99.999%) - Afrox

APPENDIX B

EQUIPMENT

All equipment used in this study is indicated below.

B1 Equipment

AB 204 Mettler Toledo balance

Labcon Orbital shaker (3100U)

Julabo MD with Labotec bath

Heidolph Rotary Evaporator and a Memmert water- bath

Hamliton syringe, extended barrel, 1800 series, 1801N

SGE gas tight syringe

Supelco TM solid phase microextraction assembly

Agilent 6890 Series GC System together with a Hewlett Packard Kayak XM600 Microsoft Windows NT system

Agilent 5973 Network Mass Selective Detector

APPENDIX C

CHROMATOGRAMS AND MASS SPECTRA OF STANDARDS

In this section the representative chromatograms of the individual standards, including the internal standard, and their corresponding mass spectra together with the mass spectra contained in the library are shown in Figures C1 to C12. Also included in this section are the chromatograms for the standard mixtures shown in Figures C13 to C22. The concentrations of the compounds in the various standard mixtures are shown in Tables C1 to C10. The concentration of the internal standard, dodecane, was the same in all the standard mixtures, 29.9 mg L⁻¹.

Compound	Concentration/mg L ⁻¹
α-pinene	3.43
β-pinene	3.44
α -phellandrene	3.36
β-caryophyllene	3.61
α-caryophyllene	3.56

Table C1 Concentration of compounds in standard mixture 1.

Table C2 Concentration of compounds in standard mixture 2.

Compound	Concentration/mg L ⁻¹
α-pinene	13.7
β-pinene	13.7
α-phellandrene	13.4
β-caryophyllene	14.4
α-caryophyllene	14.2

Compound	Concentration/mg L ⁻¹
α-pinene	41.2
β-pinene	41.2
α -phellandrene	40.3
β-caryophyllene	43.3
α-caryophyllene	42.7

Table C3 Concentration of compounds in standard mixture 3.

Table C4 Concentration of compounds in standard mixture 4.

Compound	Concentration/mg L ⁻¹
α-pinene	82.4
β-pinene	82.5
α-phellandrene	80.6
β-caryophyllene	86.6
α -caryophyllene	85.3

Table C5 Concentration of compounds in standard mixture 5.

Compound	Concentration/mg L ⁻¹
α-pinene	165
β-pinene	165
α-phellandrene	161
β-caryophyllene	173
α -caryophyllene	171

Compound	Concentration/mg L ⁻¹
α-pinene	329
β-pinene	330
α -phellandrene	323
β-caryophyllene	346
α -caryophyllene	341

Table C6 Concentration of compounds in standard mixture 6.

Table C7 Concentration of compounds in standard mixture 7.

Compound	Concentration/mg L ⁻¹
α-pinene	858
β-pinene	859
α-phellandrene	840
β-caryophyllene	902
α-caryophyllene	889

Table C8 Concentration of compounds in standard mixture 8.

	Concentration/mg L ⁻¹
Compound	$(\times 10^{3})$
α-pinene	2.57
β-pinene	2.58
α -phellandrene	2.52
β-caryophyllene	2.71
α -caryophyllene	2.67
	Concentration/mg L ⁻¹
------------------------	----------------------------------
Compound	$(\times 10^{3})$
α-pinene	8.58
β-pinene	8.59
α -phellandrene	8.40
β-caryophyllene	9.02
α-caryophyllene	8.89

Table C9 Concentration of compounds in standard mixture 9.

Table C10 Concentration of compounds in standard mixture 10.

	Concentration/mg L ⁻¹
Compound	(× 10 ⁴)
α-pinene	1.72
β-pinene	1.72
α -phellandrene	1.68
β-caryophyllene	1.80
α-caryophyllene	1.78

Figure C1 Total ion chromatogram and corresponding mass spectrum of α -pinene.

Figure C2 Total ion chromatogram and corresponding mass spectrum of β -pinene.

Figure C3 Comparison of mass spectrum of standard β -pinene with the spectrum contained in the NIST library.

Figure C4 Total ion chromatogram and corresponding mass spectrum of α -phellandrene.

Figure C5 Total ion chromatogram and corresponding mass spectrum of βcaryophyllene.

Figure C6 Comparison of mass spectrum of β -caryophyllene with the mass spectrum in the software library.

Figure C7 Total ion chromatogram and corresponding mass spectrum of α -caryophyllene.

Figure C8 Comparison of mass spectrum of α -caryophyllene with the mass spectrum contained in the NIST library.

Figure C9 Total ion chromatogram and corresponding mass spectrum of the internal standard, dodecane.

Figure C10 Comparison of mass spectrum of internal standard, dodecane, with the mass spectrum in the NIST library.

The representative chromatograms of the standard mixtures together with the internal standard are shown in Figures C13 to C22. For convenience, the selected peaks of interest on some of the chromatograms are labelled with an alphabet (A to F) as points of reference for the compounds as indicated in Table C11.

Compound	Alphabet
α-pinene	А
β-pinene	В
α -phellandrene	С
dodecane	D
β-caryophyllene	Е
α -caryophyllene	F

Table C11 Peak labels for compounds of interest

Figure C11 Typical total ion chromatogram of a standard mixture 1.

Figure C12 Typical total ion chromatogram of a standard mixture 2.

Figure C13 Total ion chromatogram for a standard mixture 3.

Figure C14 Total ion chromatogram for a standard mixture 4.

Figure C15 Total ion chromatogram for a standard mixture 5.

Figure C16 Total ion chromatogram for a standard mixture 6.

Figure C17 Total ion chromatogram for a standard mixture 7.

Figure C18 Total ion chromatogram for a standard mixture 8.

Figure C19 Total ion chromatogram for a standard mixture 9.

Figure C20 Total ion chromatogram for a standard mixture 10.

APPENDIX D

CHROMATOGRAMS

Representative chromatograms for the essential oil obtained from the different extraction methods shown in Figures D1 to D21 are presented in this section.

Figure D1 Total ion chromatogram for the essential oil obtained from the 24 hour solvent extraction.

Figure D2 Total ion chromatogram for the essential oil obtained from the 72 hour solvent extraction.

Figure D3 Total ion chromatogram for the essential oil obtained from the 24 hour Soxhlet extraction.

Figure D4 Total ion chromatogram for the essential oil obtained from the 72 hour Soxhlet extraction.

Figure D5 Total ion chromatogram for HS-SPME (PDMS fibre coating) at room temperature.

Figure D6 Total ion chromatogram for HS-SPME (PDMS fibre coating) at 40 °C.

Figure D7 Total ion chromatogram for HS-SPME (PDMS fibre coating) at 60 °C.

Figure D8 Total ion chromatogram for HS-SPME (PDMS fibre coating) at 80 °C.

Figure D9 Total ion chromatogram for HS-SPME (PA fibre coating) at room temperature.

Figure D10 Total ion chromatogram for HS-SPME (PA fibre coating) at 40 °C.

Figure D11 Total ion chromatogram for HS-SPME (PA fibre coating) at 60 °C.

Figure D12 Total ion chromatogram for HS-SPME (PA fibre coating) at 80 °C.

Figure D13 Total ion chromatogram for the headspace analysis at room temperature.

Figure D14 Total ion chromatogram for the headspace analysis at 40 °C.

Figure D15 Total ion chromatogram for the headspace analysis at 80 °C.

APPENDIX E

RAW DATA FOR THE ESSENTIAL OILS

Tables E1 to E10 show the peak areas obtained for the five standard compounds.

Data for standards (range 3.36 – 173 mg L⁻¹)

1	

Table E1 α -pinene

Concentration /mg L ⁻¹		3.43	13.7	41.2	82.4	165
Peak Area	1	2.98×10^5	1.06×10^{6}	3.10×10^6	6.71×10^6	1.01×10^{7}
	2	3.31×10^{5}	1.07×10^{6}	3.10×10^6	6.16×10^{6}	1.14×10^{7}
	3	3.02×10^5	1.07×10^{6}	3.10×10^6	6.54×10^6	1.15×10^{7}
Mean		3.10×10^5	1.07×10^{6}	3.10×10^6	6.47×10^6	1.10×10^{7}
Std Dev		$1.78 imes 10^4$	5.88×10^3	3.87×10^3	2.78×10^5	7.90×10^{5}
RSD/%		5.8	0.6	0.1	4.3	7.2

Table E2 β-pinene.

Concentration/mg L ⁻¹		3.44	13.7	41.2	82.5	165
Peak Area	1	2.78×10^{5}	1.00×10^6	2.92×10^6	$6.70 imes 10^6$	1.01×10^{7}
	2	2.75×10^5	9.38×10^5	3.03×10^6	6.15×10^6	1.15×10^7
	3	2.66×10^{5}	9.21×10^{5}	2.90×10^{6}	$6.62 imes 10^6$	1.15×10^7
Mean		2.73×10^{5}	9.54×10^5	2.95×10^6	6.49×10^6	1.10×10^7
Std Dev		6.47×10^{3}	4.35×10^4	7.16×10^4	2.96×10^5	7.92×10^5
RSD/%		2.4	4.6	2.4	4.6	7.2

Table E3 α -phellandrene.

Concentration/mg L ⁻¹		3.36	13.4	40.3	80.6	161
Peak Area	1	2.55×10^5	9.39×10^5	$2.80 imes 10^6$	3.98×10^6	8.22×10^6
	2	2.63×10^{5}	9.36×10^5	2.81×10^6	3.67×10^6	9.27×10^6
	3	2.68×10^{5}	9.27×10^5	2.77×10^{6}	3.85×10^6	9.34×10^6
Mean		2.62×10^{5}	9.34×10^5	2.79×10^6	3.84×10^6	$8.95 imes 10^6$
Std Dev		6.21×10^{3}	5.83×10^3	1.95×10^4	1.55×10^5	6.27×10^5
RSD/%		2.4	0.6	0.7	4.1	7.1

Table E4 β -caryophyllene.

Concentration/mg L ⁻¹		3.61	14.4	43.3	86.6	173
Peak Area	1	2.54×10^5	9.65×10^5	2.96×10^6	6.68×10^{6}	1.09×10^{7}
	2	2.77×10^5	9.28×10^5	3.05×10^6	6.20×10^{6}	1.18×10^{7}
	3	2.77×10^{5}	8.84×10^5	2.95×10^{6}	6.50×10^{6}	1.23×10^{7}
Mean		2.69×10^5	9.26×10^{5}	2.99×10^{6}	6.46×10^{6}	1.17×10^{7}
Std Dev		1.36×10^4	4.03×10^4	5.35×10^4	2.42×10^{5}	7.09×10^{5}
RSD/%		5.1	1.0	1.8	3.8	6.1

Table E5 α -caryophyllene.

Concentration/mg L ⁻¹		3.56	14.2	42.7	85.3	171
Peak Area	1	3.17×10^5	1.27×10^6	3.75×10^6	8.65×10^6	1.39×10^7
	2	3.29×10^5	$1.22 imes 10^6$	3.88×10^6	8.09×10^6	1.49×10^7
	3	3.20×10^5	1.21×10^{6}	3.76×10^{6}	8.46×10^6	1.57×10^7
Mean		3.22×10^{5}	1.23×10^6	3.80×10^6	8.40×10^6	1.48×10^7
Std Dev		6.22×10^{3}	3.37×10^4	7.26×10^4	2.82×10^5	8.88×10^5
RSD/%		1.9	2.7	1.9	3.4	6.0

Data for standards (range $323 - 1.80 \times 10^4 \text{ mg L}^{-1}$)

Table E6 α-pinene.

Concentration/mg L ⁻¹		329	858	2.57×10^3	8.58×10^3	1.72×10^4
Peak Area	1	2.61×10^{7}	1.11×10^8	2.21×10^8	4.52×10^8	6.26×10^8
	2	2.53×10^{7}	1.16×10^{8}	1.95×10^8	4.29×10^8	6.12×10^8
	3	2.79×10^{7}	1.19×10^8	1.71×10^8	4.42×10^8	5.73×10^8
Mean		2.64×10^{7}	1.15×10^8	1.95×10^8	4.41×10^8	6.04×10^8
Std Dev		1.37×10^6	$3.97 imes 10^6$	2.51×10^{7}	1.14×10^7	2.74×10^7
RSD/%		5.2	3.5	12.9	2.6	4.5

Table E7 β -pinene.

Concentration/mg L ⁻¹		330	859	2.58×10^3	8.59×10^3	1.72×10^4
Peak Area	1	2.66×10^{7}	$1.28 imes 10^8$	2.49×10^8	4.87×10^8	6.81×10^8
	2	2.58×10^{7}	1.33×10^8	2.19×10^8	4.95×10^8	6.88×10^8
	3	2.84×10^{7}	1.37×10^8	1.93×10^8	$5.07 imes 10^8$	6.26×10^8
Mean		2.69×10^{7}	1.33×10^8	2.20×10^8	4.96×10^8	6.65×10^8
Std Dev		1.36×10^{6}	4.38×10^{6}	2.78×10^7	1.04×10^{7}	3.39×10^7
RSD/%		5.1	3.3	12.6	2.1	5.1

Table E8 α -phellandrene.

Concentration/mg L ⁻¹		323	840	2.52×10^3	8.40×10^3	1.68×10^4
Peak Area	1	2.16×10^{7}	$1.28 imes 10^8$	1.93×10^8	4.28×10^8	6.22×10^{8}
	2	2.04×10^7	1.33×10^8	$1.70 imes 10^8$	4.10×10^8	6.08×10^8
	3	2.28×10^7	1.36×10^8	$1.49 imes 10^8$	4.23×10^8	5.66×10^8
Mean		2.16×10^{7}	1.32×10^8	1.71×10^8	4.20×10^8	$5.99 imes 10^8$
Std Dev		1.18×10^{6}	4.12×10^{6}	2.24×10^7	9.60×10^{6}	2.89×10^7
RSD/%		5.5	3.1	13.1	2.3	4.8

Table E9 β-caryophyllene.

Concentration/mg L ⁻¹		346	902	2.71×10^3	9.02×10^3	1.80×10^4
Peak Area	1	2.80×10^7	$1.20 imes 10^8$	2.13×10^8	3.65×10^8	5.69×10^8
	2	2.70×10^{7}	1.23×10^8	1.91×10^8	3.39×10^8	5.73×10^8
	3	3.02×10^{7}	1.29×10^8	1.63×10^8	3.56×10^8	5.14×10^8
Mean		2.84×10^7	1.24×10^8	1.89×10^8	3.53×10^8	5.52×10^8
Std Dev		1.62×10^{6}	4.70×10^{6}	2.51×10^{7}	1.36×10^{7}	3.30×10^7
RSD/%		5.7	3.8	13.3	3.8	6.0

Table E10 α -caryophyllene.

Concentration/mg L ⁻¹		341	889	2.67×10^3	8.89×10^3	$1.78 imes 10^4$
Peak Area	1	3.44×10^7	1.64×10^{8}	2.67×10^8	5.71×10^8	8.14×10^8
	2	3.31×10^{7}	1.68×10^{8}	2.40×10^8	5.31×10^8	8.20×10^8
	3	3.69×10^7	1.75×10^8	2.06×10^8	$5.54 imes 10^8$	7.32×10^8
Mean		3.48×10^7	1.69×10^{8}	$2.37 imes 10^8$	5.52×10^8	$7.88 imes 10^8$
Std Dev		$1.93 imes 10^6$	5.78×10^{6}	3.05×10^7	1.97×10^7	4.91×10^7
RSD/%		5.5	3.4	12.9	3.6	6.2

Tables E11 to E25 contain the data for the different extraction methods.

Solvent extraction

Table E11 α-pinene.

Sample/hours	24	48	72
Peak Area	9.94×10^{7}	1.22×10^8	9.53×10^{7}
	9.84×10^{7}	1.16×10^8	9.45×10^{7}
	9.70×10^{7}	1.17×10^8	9.52×10^{7}
Mean	9.83×10^{7}	1.18×10^{8}	9.50×10^{7}
Std Dev	1.19×10^6	3.41×10^{6}	4.21×10^{5}
RSD/%	1.2	2.9	0.4

Table E12 β -pinene

Sample/hours	24	48	72
Peak Area	9.11×10^{6}	1.08×10^{7}	$8.48 imes 10^6$
	9.29×10^6	1.01×10^{7}	$8.87 imes 10^6$
	9.22×10^6	1.03×10^{7}	8.65×10^6
Mean	9.21×10^{6}	1.04×10^{7}	8.67×10^6
Std Dev	8.65×10^4	3.31×10^5	1.97×10^5
RSD/%	0.9	3.2	2.3

Table E13 α -phellandrene.

Sample/hours	24	48	72
Peak Area	4.56×10^{6}	4.64×10^6	3.01×10^{6}
	4.23×10^{6}	4.28×10^6	3.08×10^6
	4.27×10^{6}	4.31×10^{6}	$2.98 imes 10^6$
Mean	4.36×10^{6}	4.41×10^{6}	3.02×10^6
Std Dev	1.83×10^{5}	2.00×10^5	5.35×10^4
RSD/%	4.2	4.6	1.8

Table E14 β -caryophyllene.

Sample/hours	24	48	72
Peak Area	5.05×10^8	5.40×10^8	$4.78 imes 10^8$
	5.22×10^8	5.20×10^8	4.92×10^8
	$5.17 imes 10^8$	5.14×10^8	4.60×10^{8}
Mean	5.15×10^8	5.25×10^8	4.77×10^8
Std Dev	$8.83 imes 10^6$	1.39×10^7	1.64×10^{7}
RSD/%	1.7	2.7	3.4
Table E15 α -caryophyllene.

Sample/hours	24	48	72
Peak Area	1.45×10^8	1.60×10^{8}	1.35×10^8
	$1.54 imes 10^8$	1.58×10^8	1.48×10^8
	$1.53 imes 10^8$	1.54×10^8	1.43×10^8
Mean	1.51×10^8	1.58×10^8	1.42×10^8
Std Dev	5.24×10^6	3.03×10^{6}	6.66×10^{6}
RSD/%	3.5	1.9	4.7

Soxhlet extraction

Table E16 α -pinene.

Sample/hours	24	48	72
Peak Area	6.32×10^{7}	9.71×10^{7}	8.77×10^7
	6.74×10^{7}	9.06×10^{7}	9.30×10^{7}
	6.84×10^{7}	9.09×10^{7}	9.04×10^{7}
Mean	6.63×10^{7}	9.28×10^{7}	9.04×10^{7}
Std Dev	2.71×10^{6}	3.71×10^{6}	2.66×10^{6}
RSD/%	4.1	4.00	2.9

Table E17 β-pinene.

Sample/hours	24	48	72
Peak Area	$5.25 imes 10^6$	8.89×10^6	7.86×10^6
	$5.34 imes 10^6$	8.42×10^6	8.31×10^{6}
	5.67×10^{6}	8.92×10^6	$8.49 imes 10^6$
Mean	5.42×10^6	8.74×10^6	8.22×10^6
Std Dev	2.21×10^{5}	2.79×10^5	3.26×10^5
RSD/%	4.1	3.2	4.0

Table E18 α -phellandrene.

Sample/hours	24	48	72
Peak Area	$1.79 imes 10^6$	3.31×10^6	2.46×10^{6}
	1.81×10^6	3.22×10^6	2.69×10^6
	1.87×10^6	3.31×10^{6}	2.64×10^{6}
Mean	1.82×10^6	3.28×10^6	2.59×10^6
Std Dev	4.43×10^4	$5.24 imes 10^4$	1.22×10^{5}
RSD/%	2.4	1.6	4.7

Table E19 β -caryophyllene.

Sample/hours	24	48	72
Peak Area	3.60×10^{8}	$5.16 imes 10^8$	4.56×10^8
	3.70×10^8	5.01×10^8	4.60×10^{8}
	3.96×10^{8}	5.04×10^8	4.73×10^8
Mean	3.75×10^8	$5.07 imes 10^8$	4.63×10^{8}
Std Dev	1.82×10^{7}	8.13×10^6	9.22×10^{6}
RSD/%	4.8	1.6	2.0

Table E20 α -caryophyllene.

Sample/hours	24	48	72
Peak Area	8.91×10^7	1.58×10^8	1.32×10^8
	9.04×10^7	1.56×10^{8}	1.31×10^8
	9.30×10^{7}	1.51×10^{8}	1.34×10^8
Mean	9.08×10^7	1.55×10^8	1.32×10^8
Std Dev	1.95×10^{6}	3.52×10^6	1.42×10^6
RSD/%	2.1	2.3	1.1

Steam distillation

Sample	1	2	3
Peak Area	4.97×10^{5}	5.28×10^{6}	1.08×10^{7}
	4.81×10^{5}	5.44×10^{6}	1.06×10^{7}
	4.73×10^{5}	5.29×10^{6}	1.02×10^{7}
Mean	4.84×10^5	$5.34 imes 10^6$	1.05×10^{7}
Std Dev	1.24×10^4	$8.70 imes 10^4$	3.17×10^{5}
RSD/%	2.6	1.6	3.0

Table E21 α -pinene.

Table E22 β -pinene.

Sample	1	2	3
Peak Area	2.14×10^{5}	1.17×10^{6}	$1.90 imes 10^6$
	2.21×10^{5}	1.22×10^{6}	1.90×10^6
	2.26×10^{5}	1.21×10^{6}	$1.89 imes 10^6$
Mean	2.20×10^5	1.20×10^{6}	$1.90 imes 10^6$
Std Dev	6.21×10^{3}	2.53×10^4	2.16×10^3
RSD/%	2.8	2.1	0.1

Table E23 α -phellandrene.

Sample	1	2	3
Peak Area	2.67×10^{5}	2.67×10^5 1.07×10^6	
	2.51×10^{5}	1.10×10^{6}	1.83×10^{6}
	2.45×10^{5}	1.10×10^{6}	1.78×10^{6}
Mean	2.55×10^{5}	1.09×10^{6}	1.84×10^{6}
Std Dev	1.13×10^4	1.68×10^4	5.42×10^4
RSD/%	4.4	1.5	3.0

Table E24 β-caryophyllene.

Sample	1	2	3
Peak Area	2.65×10^8	2.65×10^8 2.66×10^8	
	2.60×10^8	2.66×10^{8}	2.85×10^8
	2.66×10^{8}	2.64×10^8	2.82×10^8
Mean	2.64×10^8	2.65×10^{8}	2.86×10^8
Std Dev	3.48×10^6	1.28×10^{6}	4.67×10^{6}
RSD/%	1.3	0.5	1.6

Table E25 α -caryophyllene.

Sample	1	2	3
Peak Area	9.17×10^{7}	8.34×10^7	9.41×10^{7}
	8.91×10^7	8.60×10^{7}	9.08×10^7
	9.21×10^{7}	8.31×10^7	8.98×10^7
Mean	9.10×10^{7}	8.42×10^7	9.16×10^{7}
Std Dev	1.64×10^{6}	1.61×10^{6}	2.24×10^{6}
RSD/%	1.8	1.9	2.4

The following tables show the peak areas of the five selected compounds for the headspace extraction methods.

HS-SPME (PDMS fibre coating)

Tables E26 to E30 show the peak areas obtained for the five selected compounds during the HS-SPME (PDMS fibre coating) analysis.

Table E26 α-pinene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	1.91×10^7	5.43×10^7	2.09×10^8	3.08×10^8
	2.29×10^7	4.69×10^{7}	1.79×10^{8}	3.00×10^8
	2.20×10^7	5.63×10^{7}	1.95×10^{8}	4.02×10^8
Mean	2.13×10^7	5.25×10^7	1.94×10^{8}	3.37×10^8
Std Dev	1.97×10^{6}	4.96×10^{6}	1.49×10^{7}	5.69×10^7
RSD/%	9.2	9.5	7.7	16.9

Table E27 β -pinene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	1.42×10^{6}	3.72×10^6	2.58×10^7	7.41×10^{7}
	1.66×10^{6}	3.55×10^6	2.23×10^7	7.13×10^{7}
	1.71×10^{6}	3.87×10^6	2.24×10^{7}	9.19×10^{7}
Mean	1.60×10^{6}	3.72×10^6	2.35×10^7	7.91×10^{7}
Std Dev	1.58×10^5	1.59×10^5	$2.00 imes 10^6$	1.12×10^{7}
RSD/%	9.9	4.3	8.5	14.1

Table E28 α -phellandrene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	9.26×10^{5}	2.75×10^{6}	1.46×10^{7}	4.81×10^{7}
	9.39×10^5	2.50×10^{6}	1.44×10^{7}	5.29×10^{7}
	1.00×10^{6}	2.56×10^{6}	1.52×10^{7}	6.94×10^{7}
Mean	9.56×10^{5}	2.61×10^{6}	1.47×10^{7}	5.68×10^{7}
Std Dev	4.11×10^{4}	1.32×10^{5}	4.09×10^5	1.12×10^{7}
RSD/%	4.3	5.1	2.8	19.7

Table E29 β -caryophyllene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	9.94×10^{7}	1.38×10^8	2.93×10^8	8.95×10^8
	1.04×10^{8}	1.17×10^8	2.80×10^8	8.21×10^8
	1.13×10^8	1.39×10^8	3.11×10^8	9.44×10^8
Mean	1.05×10^{8}	1.31×10^8	2.94×10^8	8.87×10^8
Std Dev	6.68×10^{6}	1.25×10^{7}	1.58×10^7	6.20×10^{7}
RSD/%	6.3	9.5	5.4	7.00

Table E30 α -caryophyllene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	1.87×10^7	2.29×10^7	5.83×10^{7}	2.50×10^8
	1.99×10^{7}	1.95×10^7	5.45×10^{7}	2.20×10^8
	2.01×10^{7}	2.09×10^7	4.87×10^{7}	2.21×10^8
Mean	1.96×10^{7}	2.11×10^{7}	5.38×10^{7}	2.30×10^8
Std Dev	7.72×10^{5}	1.71×10^{6}	4.84×10^{6}	1.71×10^{7}
RSD/%	4.00	8.1	9.00	7.4

HS-SPME (PA fibre coating)

Tables E31 to E35 show the peak areas obtained for the five selected compounds during the HS-SPME (PA fibre coating) analysis.

Table E31 α-pinene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	3.56×10^5	$1.94 imes 10^6$	1.26×10^{7}	7.43×10^7
	3.62×10^{5}	2.06×10^6	1.15×10^{7}	5.67×10^7
	3.39×10^5	1.93×10^6	1.08×10^{7}	8.17×10^{7}
Mean	3.52×10^5	$1.98 imes 10^6$	1.16×10^{7}	7.09×10^7
Std Dev	$1.17 imes 10^4$	$7.07 imes 10^4$	8.91×10^5	1.28×10^7
RSD/%	3.3	3.6	7.7	18.1

Table E32 β-pinene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	$2.50 imes 10^4$	2.37×10^5	1.72×10^{6}	1.02×10^{7}
	2.67×10^4	2.07×10^5	1.77×10^6	$8.74 imes 10^6$
	2.47×10^4	2.14×10^{5}	1.66×10^{6}	1.21×10^{7}
Mean	2.55×10^4	2.19×10^5	1.72×10^6	1.03×10^{7}
Std Dev	1.09×10^3	1.59×10^4	5.63×10^4	1.68×10^6
RSD/%	4.3	7.3	3.3	16.3

Table 33 α -phellandrene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	4.41×10^{4}	2.16×10^{5}	1.22×10^6	6.61×10^{6}
	4.91×10^4	1.92×10^{5}	1.19×10^6	$7.00 imes 10^6$
	4.39×10^4	1.98×10^5	1.16×10^{6}	8.64×10^{6}
Mean	4.57×10^4	2.02×10^5	$1.19 imes 10^6$	7.42×10^6
Std Dev	2.96×10^{3}	1.24×10^4	3.30×10^4	1.08×10^6
RSD/%	6.5	6.2	2.8	14.6

Table E34 β -caryophyllene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	6.62×10^6	1.56×10^{7}	7.99×10^7	2.34×10^8
	8.31×10^6	2.05×10^7	6.98×10^7	2.01×10^8
	5.96×10^{6}	1.45×10^{7}	6.63×10^{7}	2.85×10^8
Mean	6.96×10^{6}	1.68×10^{7}	7.20×10^7	$2.40 imes 10^8$
Std Dev	1.21×10^{6}	3.21×10^{6}	7.06×10^6	4.25×10^{7}
RSD/%	17.4	19.0	9.8	17.7

Table E35 α -caryophyllene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	$1.39 imes 10^6$	2.72×10^{6}	1.29×10^7	4.25×10^{7}
	1.95×10^{6}	3.55×10^6	1.09×10^7	3.16×10^{7}
	1.50×10^{6}	2.64×10^{6}	1.10×10^7	4.98×10^7
Mean	1.61×10^{6}	$2.97 imes 10^6$	1.16×10^{7}	4.13×10^{7}
Std Dev	2.96×10^5	5.07×10^5	1.13×10^{6}	9.17×10^6
RSD/%	18.4	17.1	9.7	22.2

HSA

Tables E36 to E40 show the peak areas obtained for the five selected compounds during the headspace analysis.

Table E36 α -pinene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	2.30×10^6	$5.98 imes 10^6$	3.25×10^{7}	6.06×10^{7}
	2.75×10^{6}	7.16×10^{6}	5.75×10^{7}	7.52×10^{7}
	2.65×10^6	7.76×10^{6}	2.98×10^{7}	1.56×10^{8}
Mean	2.57×10^6	6.97×10^6	3.99×10^{7}	9.73×10^{7}
Std Dev	2.36×10^5	9.09×10^{5}	1.53×10^{7}	5.14×10^{7}
RSD/%	9.2	13.1	38.2	52.8

Table E37 β-pinene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	9.15×10^4	1.86×10^{5}	1.86×10^{6}	3.73×10^{6}
	$8.67 imes 10^4$	2.19×10^5	2.18×10^{6}	3.63×10^6
	7.06×10^4	2.16×10^{5}	1.68×10^{6}	1.31×10^7
Mean	8.29×10^4	2.07×10^5	1.91×10^6	6.82×10^6
Std Dev	1.09×10^4	$1.82 imes 10^4$	2.50×10^5	5.43×10^{6}
RSD/%	13.2	8.8	13.1	79.6

Table E38 α -phellandrene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	7.21×10^4	1.86×10^{5}	1.15×10^6	$2.50 imes 10^6$
	$5.52 imes 10^4$	1.52×10^5	1.13×10^{6}	$2.28 imes 10^6$
	$5.25 imes 10^4$	1.39×10^5	1.02×10^6	7.42×10^6
Mean	5.99×10^4	1.59×10^{5}	1.10×10^{6}	4.06×10^6
Std Dev	1.06×10^4	2.44×10^4	$7.10 imes 10^4$	2.91×10^6
RSD/%	17.8	15.3	6.5	71.5

Table E39 β-caryophyllene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	$1.51 imes 10^6$	$1.85 imes 10^6$	1.01×10^{7}	1.71×10^{7}
	1.51×10^{6}	4.83×10^{6}	1.46×10^{7}	2.18×10^{7}
	1.92×10^{6}	1.73×10^{6}	1.57×10^{7}	8.32×10^7
Mean	1.65×10^{6}	2.81×10^{6}	1.35×10^{7}	4.07×10^7
Std Dev	2.34×10^5	1.76×10^{6}	2.92×10^6	3.69×10^7
RSD/%	14.2	62.6	21.7	90.7

Table E40 α -caryophyllene.

Sample temperature	RT	40°C	60°C	80°C
Peak Area	2.55×10^{5}	1.91×10^5	1.03×10^6	1.74×10^{6}
	2.03×10^5	4.73×10^{5}	$1.78 imes 10^6$	3.15×10^6
	2.47×10^{5}	1.89×10^5	1.74×10^{6}	1.13×10^7
Mean	2.35×10^{5}	2.84×10^5	1.52×10^{6}	5.39×10^6
Std Dev	2.77×10^4	1.63×10^{5}	4.22×10^{5}	5.15×10^6
RSD/%	11.8	57.5	27.9	95.6

Terpenoid profile of the essential oil

Tables E41 to E43 show the terpenoid profile of the essential oil in *M. koenigii* leaves for the steam distillation, solvent and Soxhlet extraction methods.

Table E41 Terpenoid profile of the essential oil by means of the solvent extraction method for the 48 hour extraction.

	1	2	3	average
Compound/%				
α-pinene	4.68	3.83	3.97	4.16
β-pinene	0.41	0.34	0.35	0.37
α -phellandrene	0.18	0.14	0.15	0.16
<i>d</i> -limonene	0.41	0.34	0.34	0.36
β-phellandrene	3.45	2.76	2.84	3.02
Z-(β)-ocimene	2.23	1.78	1.84	1.95
Total monoterpenes/%	11.4	9.18	9.49	10.0
copaene	4.67	3.69	3.44	3.93
β-caryophyllene	20.7	17.2	17.4	18.4
(E)-α-bergamotene	2.65	2.28	2.29	2.41
β-farnesene	1.32	1.08	1.32	1.24
α -caryophyllene	6.15	5.24	5.24	5.54
γ-selinene	0.68	0.74	0.78	0.73
α-guaiene	2.24	2.28	2.65	2.39
(+)-epi-bicyclosesquiphellandrene	1.52	1.86	2.10	1.83
sesquiterpene hydrocarbon	0.79	1.30	1.25	1.11
β-selinene	8.29	7.66	7.54	7.83
valencene	15.9	13.4	13.4	14.3
cadinene	1.16	1.37	1.40	1.31
sesquiterpene hydrocarbon	1.26	1.41	1.52	1.40
sesquiterpene hydrocarbon	_	1.12	_	-
sesquiterpene hydrocarbon	1.07	1.31	1.33	1.23
sesquiterpene hydrocarbon	0.88	1.24	1.21	1.11
α-farnesene	0.83	0.53	1.06	0.81
sesquiterpene hydrocarbon	1.00	1.09	1.08	1.06
sesquiterpene hydrocarbon	0.80	1.08	0.00	0.62
sesquiterpene hydrocarbon	—	—	1.58	-
sesquiterpene hydrocarbon	2.51	2.70	2.60	2.60
Total sesquiterpenes/%	74.4	68.6	69.2	70.7
Other/%	14.4	22.4	21.4	19.4

	1	2	3	average
Compound/%				
α-pinene	3.38	3.22	3.62	3.41
β-pinene	0.31	0.32	0.33	0.32
α-phellandrene	0.12	0.12	0.12	0.12
<i>d</i> -limonene	0.36	0.06	0.37	0.26
β-phellandrene	3.08	3.23	3.32	3.21
Z-(β)-ocimene	1.78	1.68	1.91	1.79
Total monoterpenes/%	9.03	8.62	9.68	9.11
copaene	4.85	4.57	5.03	4.81
β-caryophyllene	18.7	17.8	19.3	18.6
(E)-α-bergamotene	2.33	2.30	2.43	2.35
β-farnesene	1.27	1.48	1.21	1.32
α -caryophyllene	5.83	5.36	5.91	5.70
γ-selinene	1.67	0.88	0.98	1.18
α-guaiene	2.16	3.48	2.19	2.61
(+)-epi-bicyclosesquiphellandrene	1.48	1.52	1.43	1.47
sesquiterpene hydrocarbon	1.02	1.01	0.96	1.00
β-selinene	7.10	6.71	7.34	7.05
valencene	13.4	12.7	13.8	13.3
cadinene	1.21	1.41	1.08	1.23
sesquiterpene hydrocarbon	0.97	1.05	0.87	0.96
sesquiterpene hydrocarbon	0.97	1.34	0.84	1.05
sesquiterpene hydrocarbon	0.86	1.01	0.68	0.85
caryophyllene oxide	1.02	1.10	0.91	1.01
α-farnesene	1.35	0.76	1.21	1.11
sesquiterpene hydrocarbon	1.32	1.27	1.22	1.27
sesquiterpene hydrocarbon	2.46	2.37	2.42	2.41
Total sesquiterpenes/%	70.0	68.2	69.8	69.3
Other/%	21.0	23.2	20.2	21.5

Table E42 Terpenoid profile of the essential oil using Soxhlet extraction after the 48 hour extraction period.

	1	2	3	average
Compound/%				
α-pinene	0.42	0.43	0.41	0.42
β-pinene	0.09	0.10	0.09	0.09
α-phellandrene	0.08	0.09	0.09	0.09
<i>d</i> -limonene	0.20	0.21	0.20	0.21
β-phellandrene	1.30	1.35	1.30	1.32
Z-(β)-ocimene	0.99	1.03	0.98	1.00
Total monoterpenes/%	3.08	3.21	3.07	3.12
copaene	2.20	2.18	2.19	2.19
β-caryophyllene	20.9	21.2	20.6	20.9
(E)-α-bergamotene	2.60	2.58	2.59	2.59
β-farnesene	1.88	2.30	2.17	2.12
α -caryophyllene	6.56	6.84	6.47	6.62
γ-selinene	1.21	1.27	1.31	1.26
α-guaiene	2.21	2.19	2.21	2.20
(+)-epi-bicyclosesquiphellandren	0.98	0.98	0.99	0.98
sesquiterpene hydrocarbon	1.07	1.08	1.10	1.08
β-selinene	17.5	17.3	17.3	17.4
valencene	13.5	13.6	13.4	13.5
cadinene	2.28	2.22	2.26	2.25
sesquiterpene hydrocarbon	2.30	2.22	2.26	2.26
sesquiterpene hydrocarbon	1.20	1.16	1.19	1.18
sesquiterpene hydrocarbon	6.76	6.46	6.61	6.61
caryophyllene oxide	_	-	_	-
α-farnesene	_	-	_	-
sesquiterpene hydrocarbon	_	-	_	_
Total sesquiterpenes/%	83.1	83.5	82.6	83.1
Other/%	13.8	13.3	14.4	13.8

Table E43. Terpenoid profile of the essential oil by means of the steam distillation method.

Tables E44 to E47 show the terpenoid profile of the essential oil in *M. koenigii* leaves for the headspace extraction and HS-SPME at the different temperatures.

Room Temperature				average
Compound/%				
α-pinene	7.17	7.82	6.94	7.31
β-pinene	0.53	0.57	0.54	0.55
α -phellandrene	0.35	0.32	0.32	0.33
<i>d</i> -limonene	0.44	0.57	0.52	0.51
β-phellandrene	2.94	3.83	3.54	3.44
Z -(β)-ocimene	2.65	3.47	3.72	3.28
Total monoterpenes/%	14.1	16.6	15.6	15.4
β-elemene	12.1	12.5	13.1	12.6
β-caryophyllene	37.3	35.6	35.5	36.1
α -gurjunene	3.26	3.39	3.38	3.35
β-farnesene	1.04	1.01	0.94	1.00
α-caryophyllene	7.00	6.79	6.34	6.71
β-selinene	4.87	4.57	4.76	4.73
γ-elemene	13.3	12.7	13.1	13.0
Total sesquiterpenes/%	78.7	76.5	77.1	77.4
Other/%	7.15	6.92	7.23	7.10

Table E44 Terpenoid profile of the essential oil with the HS-SPME (PDMS fibre coating) method at room temperature.

Temperature/40 °C				average
Compound/%				
α-pinene	12.1	13.2	12.3	12.5
β-pinene	0.83	1.00	0.87	0.90
α -phellandrene	0.62	0.71	0.58	0.63
<i>d</i> -limonene	0.89	0.97	1.18	1.01
β-phellandrene	5.30	6.28	7.39	6.32
Z-(β)-ocimene	4.63	5.45	8.00	6.03
Total monoterpenes/%	24.4	27.6	30.3	27.4
β-elemene	10.4	9.53	9.72	9.89
β-caryophyllene	30.8	32.9	30.3	31.4
α-gurjunene	3.74	3.35	3.54	3.54
β-farnesene	1.06	0.84	0.84	0.91
α -caryophyllene	5.12	5.50	4.57	5.06
β-selinene	4.63	3.75	3.86	4.08
γ-elemene	12.1	9.99	10.1	10.7
Total sesquiterpenes/%	67.9	65.9	62.9	65.6
Other/%	6.89	6.24	6.80	6.64

Table E45 Terpenoid profile of the oil with the HS-SPME (PDMS fibre coating) at 40 $^{\circ}\mathrm{C}.$

Temperature/60 °C				average
Compound/%				
α-pinene	18.0	16.1	16.8	16.9
β-pinene	2.22	2.01	1.93	2.05
α -phellandrene	1.26	1.30	1.31	1.29
<i>d</i> -limonene	1.92	1.98	1.91	1.94
β-phellandrene	10.4	11.2	11.0	10.9
Z-(β)-ocimene	9.69	10.6	12.6	11.0
Total monoterpenes/%	43.4	43.2	45.5	44.1
β-elemene	5.87	6.04	5.59	5.83
β-caryophyllene	25.2	25.2	26.7	25.7
α -gurjunene	3.17	3.43	3.00	3.20
β-farnesene	0.81	0.82	0.66	0.77
α -caryophyllene	5.02	4.91	4.19	4.70
β-selinene	3.06	2.89	2.52	2.83
γ-elemene	7.15	6.94	6.16	6.75
Total sesquiterpenes/%	50.3	50.2	48.9	49.8
Other/%	6.29	6.57	5.65	6.17

Table E46 Terpenoid profile of the essential oil employing the HS-SPME (PDMS fibre coating) method at 60 $^{\circ}$ C.

Temperature/80 °C				average
Compound/%				
α-pinene	8.67	8.97	10.1	9.25
β-pinene	2.09	2.13	2.31	2.18
α -phellandrene	1.36	1.58	1.75	1.56
<i>d</i> -limonene	1.94	2.11	0.15	1.40
β-phellandrene	9.13	10.6	14.5	11.4
Z-(β)-ocimene	8.52	9.86	13.6	10.7
Total monoterpenes/%	31.7	35.2	42.4	36.5
β-elemene	7.51	7.10	6.65	7.09
β-caryophyllene	25.2	24.5	23.7	24.5
α-gurjunene	2.39	2.16	1.63	2.06
α -caryophyllene	7.04	6.58	5.55	6.39
β-selinene	1.38	1.22	0.85	1.15
cadinene	5.84	5.14	3.97	4.98
γ-elemene	9.84	9.17	7.86	8.96
Total sesquiterpenes/%	59.2	55.9	50.3	55.1
Other/%	8.19	8.86	7.03	8.03

Table E47 Terpenoid profile of the oil with the HS-SPME (PDMS fibre coating) at 80 $^{\circ}$ C.

Tables E48 to E51 show the terpenoid profile of the essential oil in *M. koenigii* leaves for the HS-SPME (PA fibre coating) analysis at the different temperatures.

Room Temperature				average
Compound/%				
α-pinene	1.83	1.10	1.47	1.47
β-pinene	0.13	0.08	0.11	0.11
α -phellandrene	0.23	0.15	0.19	0.19
<i>d</i> -limonene	0.33	0.19	0.00	0.17
β-phellandrene	2.48	1.47	1.79	1.92
Z-(β)-ocimene	3.10	1.35	2.35	2.27
Total monoterpenes/%	8.10	4.34	5.92	6.12
isocaryophyllene	-	1.16	1.22	1.19
β-elemene	15.3	18.8	22.3	18.8
β-caryophyllene	33.0	25.2	25.9	28.0
α -gurjunene	-	3.48	2.87	3.18
γ-selinene	1.18	1.27	0.98	1.14
α -caryophyllene	7.17	5.92	6.49	6.53
valencene	1.19	1.14	1.05	1.12
β-selinene	6.76	7.69	5.84	6.76
γ-elemene	18.7	22.5	18.2	19.8
Total sesquiterpenes/%	83.3	87.2	84.9	85.1
Other/%	8.62	8.47	8.91	8.67

Table E48 Terpenoid profile of the essential oil using the HS-SPME (PA fibre coating) method at room temperature.

Temperature/40 °C				average
Compound/%				
α-pinene	4.43	3.10	4.27	3.93
β-pinene	0.54	0.31	0.48	0.44
α -phellandrene	0.49	0.29	0.44	0.41
<i>d</i> -limonene	0.53	0.49	0.55	0.53
β-phellandrene	4.38	4.05	4.34	4.26
Z-(β)-ocimene	4.94	5.38	7.21	5.84
Total monoterpenes/%	15.3	13.6	17.3	15.4
β-elemene	12.0	13.2	14.7	13.3
β-caryophyllene	35.5	30.9	32.1	32.8
α -gurjunene	3.40	3.40	2.87	3.22
α -caryophyllene	6.19	5.36	5.85	5.80
β-selinene	5.07	5.99	4.38	5.15
γ-elemene	14.0	16.6	12.6	14.4
Total sesquiterpenes/%	76.1	75.5	72.4	74.6
Other/%	8.63	10.9	9.52	9.69

Table E49 Terpenoid profile of the essential oil employing the HS-SPME (PA fibre coating) method at 40 $^{\circ}\mathrm{C}.$

Temperature/60 °C				average
Compound/%				<u>_</u>
α-pinene	5.45	5.62	5.48	5.51
β-pinene	0.75	0.87	0.84	0.82
α -phellandrene	0.53	0.58	0.59	0.57
<i>d</i> -limonene	1.10	0.92	0.85	0.96
β-phellandrene	7.55	6.54	5.97	6.69
Z-(β)-ocimene	9.10	8.93	9.88	9.30
Total monoterpenes/%	24.5	23.5	23.6	23.8
β-elemene	7.78	8.09	10.6	8.82
β-caryophyllene	34.5	34.2	33.5	34.1
α -gurjunene	3.57	3.31	2.97	3.28
α -caryophyllene	5.58	5.35	5.54	5.49
β-selinene	3.79	4.24	3.78	3.94
γ-elemene	9.50	10.7	9.78	10.0
Total sesquiterpenes/%	64.8	65.9	66.2	65.6
Other/%	10.5	10.6	10.3	10.4

Table E50 Terpenoid profile of the essential oil with the HS-SPME (PA fibre coating) method at 60 $^{\circ}$ C.

Temperature/80 °C				average
Compound/%				
α-pinene	9.20	8.36	8.08	8.54
β-pinene	1.26	1.29	1.20	1.25
α -phellandrene	0.82	1.03	0.86	0.90
<i>d</i> -limonene	1.31	1.50	1.39	1.40
β-phellandrene	8.55	9.89	8.65	9.03
Z -(β)-ocimene	9.39	13.0	13.0	11.8
Total monoterpenes/%	30.5	35.1	33.2	32.9
β-elemene	6.93	5.36	8.04	6.78
β-caryophyllene	29.0	29.6	28.2	28.9
α-gurjunene	3.02	2.78	2.77	2.86
α -caryophyllene	5.27	4.65	4.57	4.83
β-selinene	4.06	3.25	3.78	3.70
γ-elemene	9.57	7.61	8.75	8.64
Total sesquiterpenes/%	57.8	53.3	56.1	55.7
Other/%	11.7	11.7	10.5	11.3

Table E51 Terpenoid profile of the essential oil by means of the HS-SPME (PA fibre coating) method at 80 $^{\circ}$ C.

Tables E52 to E55 show the terpenoid profile of the essential oil in *M. koenigii* leaves for the headspace analysis at the different temperatures.

Room Temperature				average
Compound/%				0
α-pinene	33.7	41.1	32.8	35.9
β-pinene	1.34	1.30	0.87	1.17
α -phellandrene	1.06	0.82	0.65	0.84
d-limonene	1.16	1.40	0.58	1.05
β-phellandrene	7.64	9.50	5.86	7.67
Z-(β)-ocimene	8.02	6.87	2.33	5.74
Total monoterpenes/%	52.9	61.0	43.10	52.3
δ-elemene	-	-	9.79	9.79
copaene	-	-	1.39	1.39
β-elemene	2.23	1.74	2.03	2.00
β-caryophyllene	22.1	22.6	23.7	22.8
(E)-α-bergamotene	-	-	2.25	2.25
α-gurjunene	2.74	1.75	2.88	2.46
β-farnesene	1.35	-	-	1.35
α-caryophyllene	3.73	3.04	3.06	3.28
isocaryophyllene	1.53	-	-	1.53
β-selinene	2.62	2.16	2.55	2.45
γ-elemene	5.95	5.63	6.83	6.14
Total sesquiterpenes/%	42.3	36.9	54.5	44.6
Other/%	4.80	2.09	2.29	3.06

Table E52 Terpenoid profile of the essential oil with headspace method at room temperature.

Temperature/40 °C				average
Compound/%				
α-pinene	48.2	37.1	56.17	47.2
β-pinene	1.50	1.14	1.56	1.40
α -phellandrene	1.50	0.79	1.01	1.10
<i>d</i> -limonene	1.42	1.28	1.44	1.38
β-phellandrene	10.1	9.01	10.8	9.98
Z-(β)-ocimene	9.86	8.48	6.60	8.31
Total monoterpenes/%	72.6	57.8	77.6	69.3
β-elemene	1.50	1.53	0.83	1.28
β-caryophyllene	14.9	25.1	12.5	17.5
α-gurjunene	1.24	1.81	1.08	1.38
α -caryophyllene	1.54	2.45	1.37	1.79
β-selinene	1.21	2.08	1.27	1.52
γ-elemene	3.10	5.46	3.39	3.98
Total sesquiterpenes/%	23.5	38.4	20.5	27.5
Other/%	3.30	3.76	1.65	2.90

Table E53 Terpenoid profile of the essential oil using the headspace method at 40 °C.

Table E54 Terpenoid profile of the essential oil with headspace methods at 60 °C.

Temperature/60 °C				average
Compound/%				
α-pinene	43.8	49.8	39.2	44.3
β-pinene	2.51	1.88	2.21	2.20
α -phellandrene	1.55	0.98	1.34	1.29
<i>d</i> -limonene	1.97	1.54	1.82	1.78
β-phellandrene	13.0	10.2	11.2	11.5
Z-(β)-ocimene	13.42	9.42	9.96	10.9
Total monoterpenes/%	76.3	73.8	65.7	71.9
β-elemene	-	1.07	1.01	1.04
β-caryophyllene	13.7	12.6	20.6	15.6
α-gurjunene	0.99	1.13	1.49	1.20
α -caryophyllene	1.39	1.54	2.29	1.74
β-selinene	-	1.69	1.78	1.73
γ-elemene	2.00	3.81	4.19	3.34
Total sesquiterpenes/%	18.1	21.9	31.4	23.8
Other/%	5.58	4.12	2.94	4.21

Temperature/80 °C				average
Compound/%				
α-pinene	42.6	44.5	32.0	39.7
β-pinene	2.63	2.15	2.68	2.48
α -phellandrene	1.76	1.35	1.52	1.54
<i>d</i> -limonene	2.11	1.59	2.55	2.09
β-phellandrene	13.8	10.9	14.0	12.9
Z-(β)-ocimene	15.3	9.52	13.4	12.7
Total monoterpenes/%	78.3	70.0	66.1	71.4
β-elemene		1.72	1.40	1.56
β-caryophyllene	12.0	12.9	17.1	14.0
α-gurjunene	0.73	1.22	1.39	1.11
α -caryophyllene	1.23	1.86	2.31	1.80
β-selinene	0.72	2.19	2.33	1.74
γ-elemene	1.72	5.16	5.12	4.00
Total sesquiterpenes/%	16.4	25.0	29.6	23.7
Other/%	4.45	4.89	4.09	4.48

Table E55 Terpenoid profile of the essential oil using the headspace method at 80 °C.

The following results are for quantitation.

Solvent extraction with internal standard

Table E56 α-pinene.

Sample	at start of extraction	at end of extraction
Peak Area	4.31×10^7	4.26×10^{7}
	4.95×10^7	4.34×10^7
	4.40×10^{7}	4.47×10^7
Peak Area Ratio	10.6	9.41
	10.2	9.42
	9.70	9.08
Mean	10.1	9.30
Std Dev	0.42	0.19
RSD/%	4.2	2.1

Table E57 β -pinene.

Sample	at start of extraction	at end of extraction
Peak Area	4.88×10^{6}	5.26×10^6
	5.93×10^6	5.63×10^{6}
	5.41×10^{6}	5.71×10^{6}
Peak Area Ratio	1.19	1.16
	1.22	1.22
	1.19	1.16
Mean	1.20	1.18
Std Dev	0.01	0.04
RSD/%	1.2	3.1

Table E58 α -phellandrene.

Sample	at start of extraction	at end of extraction
Peak Area	4.39×10^6	4.47×10^{6}
	$5.17 imes 10^6$	4.79×10^{6}
	$4.58 imes 10^6$	4.93×10^{6}
Peak Area Ratio	1.07	0.99
	1.06	1.04
	1.01	1.00
Mean	1.05	1.01
Std Dev	0.03	0.03
RSD/%	3.2	2.8

Table E59 β-caryophyllene.

Sample	at start of extraction	at end of extraction
Peak Area	5.16×10^8	$5.49 imes 10^8$
	$5.75 imes 10^8$	5.55×10^8
	$5.49 imes 10^8$	5.86×10^8
Peak Area Ratio	126	121
	118	121
	121	119
Mean	122	120
Std Dev	4.01	1.19
RSD/%	3.3	1.00

Table E60 α -caryophyllene.

Sample	at start of extraction	at end of extraction
Peak Area	1.20×10^8	1.43×10^8
	1.48×10^8	1.40×10^8
	1.39×10^8	1.47×10^8
Peak Area Ratio	29.3	31.6
	30.4	30.4
	30.7	29.8
Mean	30.1	30.6
Std Dev	0.72	0.92
RSD/%	2.4	3.0

Soxhlet extraction with internal standard

Table E61 α-pinene.

Sample	at start of extraction	at end of extraction
Peak Area	6.05×10^{7}	4.30×10^7
	5.03×10^{7}	4.86×10^{7}
	5.13×10^7	4.32×10^7
Peak Area Ratio	12.3	10.4
	11.8	9.66
	11.5	10.1
Mean	11.9	10.0
Std Dev	0.39	0.36
RSD/%	3.3	3.6

Table E62 β-pinene.

Sample	at start of extraction	at end of extraction
Peak Area	$7.53 imes 10^6$	7.29×10^6
	6.67×10^{6}	8.27×10^{6}
	6.87×10^6	7.33×10^6
Peak Area Ratio	1.53	1.76
	1.56	1.64
	1.55	1.71
Mean	1.55	1.70
Std Dev	0.01	0.06
RSD/%	0.9	3.4

Table E63 α -phellandrene.

Sample	at start of extraction	at end of extraction
Peak Area	6.48×10^{6}	7.86×10^6
	5.73×10^{6}	9.49×10^6
	5.81×10^{6}	$7.94 imes 10^6$
Peak Area Ratio	1.32	1.89
	1.34	1.89
	1.31	1.86
Mean	1.32	1.88
Std Dev	0.02	0.02
RSD/%	1.2	1.1

Table E64 β-caryophyllene.

Sample	at start of extraction	at end of extraction
Peak Area	6.75×10^8	5.74×10^8
	$5.85 imes 10^8$	6.62×10^{8}
	6.17×10^{8}	5.80×10^8
Peak Area Ratio	137	138
	137	132
	139	136
Mean	138	135
Std Dev	1.01	3.42
RSD/%	0.7	2.5

Table E65 α -caryophyllene.

	at start of	at end of
Sample	extraction	extraction
Peak Area	2.26×10^8	2.02×10^8
	2.09×10^8	2.26×10^{8}
	1.98×10^8	1.99×10^8
Peak Area Ratio	45.9	48.7
	48.9	44.9
	44.5	46.4
Mean	46.5	46.7
Std Dev	2.23	1.90
RSD/%	4.8	4.1

Steam distillation with the addition of the internal standard

Table E66 α -pinene.

Sample	at start of extraction	at end of extraction
Peak Area	6.78×10^{5}	2.21×10^6
	7.38×10^{5}	2.17×10^{6}
	7.18×10^5	2.03×10^{6}
Peak Area Ratio	0.13	0.39
	0.13	0.39
	0.13	0.39
Mean	0.13	0.39
Std Dev	0.003	0.003
RSD/%	2.1	0.9

Table E67 β -pinene.

Sample	at start of extraction	at end of extraction
Peak Area	5.33×10^5	1.09×10^6
	5.81×10^5	1.13×10^{6}
	5.51×10^5	9.83×10^{5}
Peak Area Ratio	0.10	0.19
	0.10	0.20
	0.10	0.19
Mean	0.10	0.19
Std Dev	0.002	0.01
RSD/%	2.2	3.6

Table E68 α -phellandrene.

Sample	at start of extraction	at end of extraction
Peak Area	8.01×10^{5}	1.42×10^{6}
	8.56×10^5	1.37×10^6
	8.28×10^5	$1.27 imes 10^6$
Peak Area Ratio	0.15	0.25
	0.15	0.25
	0.15	0.25
Mean	0.15	0.25
Std Dev	0.002	0.002
RSD/%	1.2	0.7

Table E69 β-caryophyllene.

Sample	at start of extraction	at end of extraction
Peak Area	3.27×10^8	4.61×10^{8}
	3.55×10^8	4.45×10^{8}
	3.47×10^8	4.21×10^8
Peak Area Ratio	61.9	80.6
	64.2	80.0
	64.0	81.6
Mean	63.4	80.7
Std Dev	1.30	0.79
RSD/%	2.1	1.0

Table E70 α -caryophyllene.

	at start of	at end of
Sample	extraction	extraction
Peak Area	7.69×10^{7}	$1.09 imes 10^8$
	8.59×10^7	1.06×10^{8}
	8.51×10^7	9.80×10^7
Peak Area Ratio	14.5	19.1
	15.5	19.1
	15.7	19.0
Mean	15.3	19.1
Std Dev	0.62	0.06
RSD/%	4.1	0.3

The concentrations of the five volatile compounds determined in the essential oil of *M. koenigii* by steam distillation, Soxhlet extraction and solvent extraction with the internal standard added at the start and end of the extraction are shown in Tables E71 to E85.

Solvent Extraction

Table E71 α-pinene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	48.6	43.3
	46.9	43.4
	44.7	41.8
Mean	46.7	42.9
Std Dev	1.95	0.90
RSD/%	4.2	2.1

Table E72 β -pinene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	7.34	7.14
	7.50	7.53
	7.34	7.14
Mean	7.39	7.27
Std Dev	0.09	0.23
RSD/%	1.2	3.1

Table E73 α -phellandrene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	10.9	10.1
	10.8	10.6
	10.3	10.2
Mean	10.7	10.3
Std Dev	0.34	0.29
RSD/%	3.2	2.8

Table E74 β-caryophyllene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	4771	4588
	4469	4564
	4586	4501
Mean	4607	4551
Std Dev	152	45.1
RSD/%	3.3	1.0

Table E75 α -caryophyllene.

Sampla	at start of	at end of
Sample		CAU action
Concentration/mg kg ⁻¹	87.5	94.3
	90.8	90.9
	91.6	88.9
Mean	90.0	91.3
Std Dev	2.15	2.75
RSD/%	2.4	3.0

Soxhlet Extraction

Table E76 α -pinene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	56.6	47.8
	54.1	44.5
	53.1	46.5
Mean	54.6	46.3
Std Dev	1.81	1.7
RSD/%	3.3	3.6

Table E77 β-pinene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	9.42	10.8
	9.59	10.1
	9.51	10.5
Mean	9.51	10.5
Std Dev	0.09	0.36
RSD/%	0.9	3.4

Table E78 α -phellandrene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	8.83	13.7
	8.98	13.7
	8.77	13.4
Mean	8.86	13.6
Std Dev	0.11	0.15
RSD/%	1.2	1.1

Table E79 β-caryophyllene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	5192	5238
	5173	4980
	5247	5128
Mean	5204	5115
Std Dev	38.2	130
RSD/%	0.7	2.5

Table E80 α -caryophyllene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	268	284
	285	262
	259	271
Mean	271	272
Std Dev	13.0	11.1
RSD/%	4.8	4.1

Steam Distillation

Table E81 α -pinene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	1.04	2.30
	1.00	2.32
	1.02	2.34
Mean	1.02	2.32
Std Dev	0.02	0.02
RSD/%	2.0	0.9

Table E82 β -pinene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	0.74	1.28
	0.71	1.36
	0.73	1.27
Mean	0.73	1.30
Std Dev	0.02	0.05
RSD/%	2.1	3.8

Table E83 α -phellandrene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	1.36	1.66
	1.30	1.64
	1.32	1.65
Mean	1.33	1.65
Std Dev	0.03	0.01
RSD/%	2.3	0.6

Table E84 β -caryophyllene.

<u> </u>	at start of	at end of
Sample	extraction	extraction
Concentration/mg kg ⁻¹	1.88×10^{3}	1.80×10^{3}
	1.80×10^{3}	1.79×10^{3}
	1.83×10^{3}	1.82×10^{3}
Mean	1.84×10^{3}	1.80×10^{3}
Std Dev	41.0	17.7
RSD/%	2.2	1.0

Table E85 α -caryophyllene.

Sample	at start of extraction	at end of extraction
Concentration/mg kg ⁻¹	73.6	69.1
	70.4	68.9
	71.8	68.6
Mean	71.9	68.9
Std Dev	1.60	0.22
RSD/%	2.2	0.3

APPENDIX F

AREA PERCENT REPORTS

In this section, the area percent reports for each of the extraction methods are presented.

Table F1 Area percent report for SPME extraction with frozen leave
--

Area Percent Report Vial: 27 Data File : C:\MSDCHEM\1\DATA\SPMERT2.D Acq On : 5 Feb 2007 14:10 Operator: Patricia Sample : spme frozen sample2 40 C -15 min Inst : Instrumen Multiplr: 1.00 Misc : spme 40 C 15 minutes Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title : TIC Signal peak R.T. first max last PK % of peak corr. corr. min scan scan scan TY height # area % max. total ---------- - --------- ---- -------------78 VV 3 56268 1351758 1.73% 1 2.361 35 48 0.538% 144 PV 2 146113 2 2.643 78 96 4934372 6.31% 1.963% 219 251 BV 1457314 3 3.366 176 34676871 44.34% 13.792% 356357 257 283 VV 4 3.589 251 8814 0.46% 0.142% 5 3.812 283 295 301 VV 5 8274 215552 0.28% 0.086% 5.11% 6 3.924 301 314 341 VV 148981 3999720 1.591% 4.11% 1.14% 7 4.312 364 380 401 VV 106743 3212854 1.278% 4.629 419 434 439 PV 2 30976 891924 0.355% 8 9 4.794 439 462 473 VV 1083073 35788616 45.76% 14.234% 10 4.923 473 484 539 VV 489300 15005310 19.19% 5.968% 693 716 740 BV 9 11 6.286 9668 435352 0.56% 0.173% 30.652 4809 4863 4941 BB 9 19817 2981206 3.81% 12 1.186% 5629 5745 5864 BB 9 443083 78211045 100.00% 31.107% 13 35.834 39.759 6326 6413 6528 BB 9 49810 8936740 11.43% 14 3.554% 10.85% 6794 6835 6876 BV 5 107947 15 42.239 8485807 3.375% 42.967 6876 6959 6995 PV 5 16 15627 1126077 1.44% 0.448% 43.449 6995 7041 7060 PV 5 10662 561096 0.72% 0.223% 17 7060 7093 7107 VV 9 922170 43.755 18 18104 1.18% 0.367% 7107 7122 7141 VV 9 21687 975798 1.25% 7188 7221 7262 BV 6 330747 15143045 19.36% 19 43.925 0.388% 20 44.507 6.023% 21 44.871 7262 7283 7303 VV 3 764957 31094331 39.76% 12.367% 0.225% 564663 22 45.053 7303 7314 7332 PV 3 12749 0.72% 7387 7416 7428 BV 3 23 45.652 14651 685961 0.88% 0.273% 7428 7436 7446 VV 3 24 45.770 9893 366518 0.47% 0.146% 25 45.882 7446 7455 7488 VB 7 11560 504676 0.65% 0.201% Sum of corrected areas: 251427818

Table F2 Area percent report for SPME extraction with fresh leaves.

Area Percent Report Data File : C:\MSDCHEM\1\DATA\SPMERTB1.D Vial: 27 : 6 Feb 2007 13:07 Operator: Patricia Acq On : spme fresh sample 40C- 15 mins. Sample Inst : Instrumen Multiplr: 1.00 : spme 40C -15 mins Misc Sample Amount: 0.00 MS Integration Params: autoint1.e : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Method Title Signal : TIC corr. peak R.T. first max last PK peak # min scan scan scan TY height ° s of corr. area % max. total ------------------73 BB 4 7191 202040 169 BB 4 128129 6540792 0.13% 1 2.367 42 49 0.051% 104 169 BB 4 128129 6540752 220 252 BV 1052512 21842373 13.91% 233746 0.21% 77 2 2.690 1.664% 183 220 3 3.372 5.558% 296 306 BV 2 14974 315 343 VV 2 114185 276 0.21% Δ 3.818 0.085% 5 3,930 306 315 2851005 1.82% 0.725% 2328980 1.48% 381 405 VV 2 87966 6 4.318 362 0.593% 425 435 439 BV 3 439 462 476 VV 7 4.635 425 15659 382800 0.24% 0.097% 899671 26927340 17.14% 6.852% 8 4.794 476 485 541 VV 9 4.929 1045548 27993783 17.82% 7.123% 10 6.298 689 718 738 BB 7820 334841 0.21% 0.085% 11872 1432174 11 21.968 3336 3385 3434 BV 0.91% 0.364% 29.365 4579 4644 4714 BB 30.711 4767 4873 4976 BB 2292920 12 15605 1.46% 0.583% 260786 38598915 24.58% 13 9.822% 836365 157062959 100.00% 39.966% 35.940 5584 5763 5880 BB 14 15 39.783 6317 6417 6528 BB 51990 9589369 6.11% 2.440% 42.245 6798 6836 6880 BV 7 259949 21138252 13.46% 16 5.379% 6922 6959 7010 BB 10 30385 2056199 1.31% 42.967 0.523% 17 7012 7042 7060 BV 9 18 43.455 10419 636997 0.41% 0.162% 7078 7096 7111 VV 9 43.772 19 23130 1412354 0.90% 0.359% 43.925 7111 7122 7138 VV 9 0.90% 1411699 20 26086 0.359% 21 44.125 7138 7156 7170 VV 9 10471 637812 0.41% 0.162% 7197 7221 7251 BV 5 343014 16404874 10.44% 22 44.507 4.174% 23 7264 7284 7303 VV 3 1023573 7303 7314 7332 VV 3 27100 43524235 27.71% 1648513 1.05% 44.877 11.075% 1.05% 24 45.053 0.419% 45.194 7332 7338 7347 VV 3 25 13748 539353 0.34% 0.137% 45.329 7347 7361 7387 VB 3 0.257% 26 1011866 0.64% 22598 7392 7416 7427 BV 10 29719 7427 7436 7446 VV 10 13873 1388989 0.88% 0.34% 0.353% 27 45.652 45.770 28 527495 0.134% 7446 7455 7482 VB 5 45.882 27657 29 977466 0.62% 0.249% 30 46.234 7491 7515 7525 BV 6 10195 223486 0.14% 0.057% 31 47.027 7637 7650 7668 BV 6 6404 211367 0.13% 0.054% 32 48.520 7843 7904 7913 BV 6 11203 241714 0.15% 0.062% 33 49.336 8006 8043 8055 BV 6 10228 284825 0.18% 0.072% Sum of corrected areas: 392991532

Table F3 Area percent report for HS-SPME (PDMS fibre coating) for α -pinene.

ALPPINPD Area Percent Report Vial: 1 Operator: Patricia Inst : Instrumen Multiplr: 1.00 Data File : C:\GOVENDER\PATRCIA1\ALPPINPD.D Acq On : 6 Jun 2007 13:11 : 6 Jun 2007 13:11 : alpha pinene PDMS room temp. Sample Misc Sample Amount: 0.00 MS Integration Params: autoint1.e : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Method Title Signal : TIC peak R.T. first max last PK peak corr. corr. % of min scan scan scan TY height area % max. total # 11761961 419768441 100.00% 3,401 225 248 VV 94.065% 1 210 3.607 3.948 248 260 288 VB 4 2.47% 307977 10382020 2.326% 300 318 330 BB 0.64% 3 127186 2685381 0.602% 0.59% 422 434 443 BV 2 2475481 4 4.629 106334 0.555% 922 BB 2 5 7.350 879 897 163873 6650451 1.58% 1.490% 6 10.887 1486 1499 1520 BB 2 110560 4291902 1.02% 0.962% Sum of corrected areas: 446253675

Table F4 Area percent report for standard mixture 1.

```
STD152
                                 Area Percent Report
 Data File : D:\PATRICIA1\STD152.D
                                                                Vial: 50
 Acq On : 26 May 2009 12:31
Sample : STD MIX. 1UL/5ML - 1UL DODECANE -STOCK
                                                            Operator: D:\PATRICIA1\
                                                      OCK Inst : Instrumen
Multiplr: 1.00
Sample Amount: 0.00
 Misc
 MS Integration Params: autoint1.e
 Method
            : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator)
 Title
 Signal
            : TIC
      R.T. first max last
peak
                              PK
                                                                   % of
                                    peak
                                                corr.
                                                         corr.
             scan scan scan TY
                                   height
                                                                   total
      min
                                                         % max.
  #
                                                area
 ___
      ____
            ____
                  ____
                        ____
                              ___
                                               ____
                                                         _____
                                    _____
                                                                  _____
                   184
278
 1
2
                         200 BB 4
                                      12450
                                                297761
                                                         13.71%
                                                                   8.330%
     3.160
              166
      3.713
              262
                         295 BB 2
                                      10089
                                                278389
                                                         12.81%
                                                                   7.788%
 3
     4.071
              320
                    339
                         356 BB 4
                                       8591
                                                255261
                                                         11.75%
                                                                   7.141%
 4
     9.953
             1312 1340 1383 BB 5
                                      38661
                                               2172620 100.00%
                                                                  60.783%
 5
   14.424
             2093 2101 2113 BV 6
                                      14003
                                                253516
                                                        11.67%
                                                                  7.093%
                                                316823 14.58%
 6
   14.800 2160 2165 2181 BB 2
                                     17975
                                                                   8.864%
                         Sum of corrected areas:
                                                         3574370
```
Table F5 Area percent report for standard mixture 2.

STD455 Area Percent Report Data File : D:\PATRICIA1\STD455.D Vial: 50 Acq On : 26 May 2009 15:44 Operator: D:\PATRICIA1\ Sample : STD MIX. 4UL/5ML - 1UL DODECANE -STOCK Inst : Instrumen Misc : Multiplr: 1.00 Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC first max last PK peak scan scan scan TY height peak R.T. first corr. corr. % of # min area % max. total _ ___ ____
 166
 184
 201
 BB

 238
 277
 291
 BV 2

 326
 338
 355
 BB

 1318
 1340
 1384
 BB 4

 2050
 2101
 2115
 BB
 44.17% 37.95% 38.19% 46680 3.160 1072604 14.416% 1 3.707 12.385% 12.464% 32.636% 38363 33495 921477 927366 2 34 4.065 9.953 45194 100.00% 2428297 5 14.424 55156 884187 36.41% 11.884% 6 14.800 2158 2165 2181 PB 73627 1206516 49.69% 16.216% 7440446 Sum of corrected areas:

Table F6 Area percent report for standard mixture 3.

STD125 Area Percent Report Data File : D:\PATRICIA1\STD125.D V Acq On : 26 May 2009 11:38 Opera Sample : STD MIX. 12UL/5ML - 1UL DODECANE -STOCK Inst Vial: 50 Operator: D:\PATRICIA1\ GTOCK Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Misc MS Integration Params: autoint1.e : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Method Title Signal : TIC peak R.T. first max last PK % of peak corr. corr. scan scan scan TY # min height area % max. total ____ _____ _ _ ____ ____ ____ _____ _____ ____ 201 BB 292 BB 2 82.64% 77.89% 166 184 244 278 1 2 3.160 138053 3095093 17.187% 3.712 119439 2917236 16.200% 101760 2802994 3 4.071 320 339 359 BB 2 74.84% 15.565% 1313 1341 1372 BB 3 4 9.958 46658 2490642 66.50% 13.831% 2086 2101 2121 BB 2956801 78.95% 16.419% 5 14.424 182199 6 14.800 2158 2165 2183 PB 230994 3745115 100.00% 20.797% Sum of corrected areas: 18007882

STD2458 Area Percent Report Data File : D:\PATRICIA1\STD2458.D Acq On : 28 May 2009 12:38 Sample : STD. MIX. 24UL/5ML DCM Vial: 50 Operator: D:\PATRICIA1\ Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Misc MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC peak R.T. first max last PK peak corr. corr. % of min scan scan scan TY height % max. total # area ____ 300906 1 3.166 166 185 209 BB 6707016 77.57% 18.037% 2 259 279 304 BB 270294 6698554 77.47% 18.014% 3.719 340 46.71% 3 4.077 316 360 148313 4038718 M 10.861% 411 BB 392 4 4.383 372 38993 1191195 3.203% 13.78% 27.40% 9.958 1326 1341 1364 47792 5 M3 2368666 6.370% 14.424208321012126BB14.800215821652190VB16.063236423802398BB3 406037 6677413 77.23% 17.957% 6 533248 8646226 100.00% 23.252% 8 36515 857810 9.92% 2.307% Sum of corrected areas: 37185598

Table F7 Area percent report for standard mixture 4.

Table F8 Area percent report for standard mixture 5.

STD4852 Area Percent Report Vial: 50 Operator: D:\PATRICIA1\ Inst : Instrumen Multiplr: 1.00 Data File : D:\PATRICIA1\STD4852.D Acq On : 27 May 2009 10:14 Sample : STD. MIX. 48UL/5ML DCM Misc Sample Amount: 0.00 MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC R.T. first max last peak PK peak corr. corr. % of scan scan scan TY total # min height area % max. 17.510% 17.602% 1 2 186 211 BB 464740 10066159 3.172 166 72.27% 258 3.724 280 305 BB 412030 10119094 72.65% 3 4.083 320 341 369 BB 298311 8223947 59.05% 14.305% 4 4.388 374 393 410 BB 34062 1045363 7.51% 1.818% 1901602 9.958 1326 1341 1361 М4 39857 13.65% 3.308% 5 2088 2101 2131 BB 2158 2165 2197 VB 10941675 78.56% 13927968 100.00% 19.033% 14.424 687678 6 14.800 860328 24.228% 16.063 2363 2380 2399 BB 2 8 53947 1262256 9.06% 2.196% Sum of corrected areas: 57488064

Table F9 Area percent report for standard mixture 6.

STD9655 Area Percent Report Data File : D:\PATRICIA1\STD9655.D Acq On : 27 May 2009 15:20 Sample : STD. MIX. 96UL/5ML DCM Vial: 50 Operator: D:\PATRICIA1\ Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Misc MS Integration Params: autoint1.e : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Method Title Signal : TIC peak R.T. first max last PK % of peak corr. corr. # min scan scan scan TY height area % max. total 214 BB 184 278 1068830 25250904 76.24% 17.999% 1 3.160 162 25761932 3.713 256 315 BB 956311 77.78% 18.364% 376 BB 412 BB 3 4.071 315 339 692915 20415763 61.64% 14.553% 4 4.371 376 390 91880 2920631 8.82% 2.082% 9.953 1316 1340 1368 BB 4 1829514 5 32169 5.52% 1.304% 2084 2101 2132 BV 1648404 2145 2153 2158 PV 2 55649 2158 2165 2183 VV 2043761 6 7 26998040 14.424 81.51% 19.245% 14.729 871536 2.63% 0.621% 2043761 23.609% 8 14.800 33120941 100.00% 16.069 2364 2381 2399 BB 2 137083 3118399 9.42% 2.223% Sum of corrected areas: 140287661

Table F10 Area percent report for standard mixture 7.

STD113 Area Percent Report Data File : D:\PATRICIA1\STD113.D Vial: 50 : 29 May 2009 12:07 : STD. MIX 1UL/1ML DCM Acq On Operator: D:\PATRICIA1\ Sample Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Misc MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title : TIC Signal R.T. first max last PK peak peak corr. corr. % of # min scan scan scan TY height area % max. total ____ _ 186 4708909 110929694 214 BV 1 3.172 151 67.75% 16.365% 2 3.724 265 280 326 PV 4716394 128025394 78.19% 18.887% 3 4.089 326 342 380 VV 4366671 127608741 77.94% 18.826% 4 4.388 380 393 414 VV 223858 7137556 4.36% 1.053% 5 1317 1343 1382 BB 3 46529 9.970 2835831 1.73% 0.418% , 555504 120150216 73.38% 17.725% 10016792 163732011 100.00% 24.1559 780863 17419492 10.64% 2.570% 14.430 2078 2102 2133 PV 14.806 2158 2166 2184 VV 16.069 2370 2381 2404 PV 6 24.155% 8 Sum of corrected areas: 677838934

Table F11 Area percent report for standard mixture 8.

	STD311 Area Percent Report										
Data File Acq On Sample Misc	Data File : D:\PATRICIA1\STD311.D Vial: 50 Acq On : 29 May 2009 16:32 Operator: D:\PATRICIA1\ Sample : STD. MIX 3UL/1ML DCM Inst : Instrumen Misc : Multiplr: 1.00 Sample Amount: 0.00										
MS Integr	S Integration Params: autoint1.e										
Method Title	Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title :										
Signal : TIC											
peak R.T. # min	first scan s	max last scan scan	PK TY	peak height	corr. area	corr. % max.	% of total				
1 3.172 2 3.730 3 4.089 4 4.388 5 9.976	174 266 326 380 1319 1	186 215 281 326 342 380 393 415 1344 1389	BV PV VV VV BB 6	9046758 8795211 6354578 573514 39003	194695985 219359805 169991460 16560411 2655138	81.16% 91.44% 70.86% 6.90% 1.11%	18.197% 20.502% 15.888% 1.548% 0.248%				
6 14.430 7 14.812 8 16.069	2092 2 2159 2 2370 2	2102 2134 2167 2184 2381 2403	BV VV PV	11611014 14813020 1611097	190951488 239896977 35818696	79.60% 100.00% 14.93%	17.847% 22.422% 3.348%				
		Sum	of co	orrected	areas: 100	59929960					

Table F12 Area percent report for standard mixture 9.

STD1015 Area Percent Report Vial: 50 Operator: Patricia Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Data File : D:\PATRICIA1\STD1015.D Acq On : 1 Jun 2009 15:11 Sample : STD. MIX 10UL/1ML DCM WITH DODECANE Misc MS Integration Params: autoint1.e : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) : Method Title Signal : TIC peak R.T. first max last PK peak corr. corr. % of scan scan scan TY height # min area % max. total ____ ____ ____ ____ ---- ----_____ _____ ____ ____ 186 282 343 205 BB 302 BB 23455594 441613397 22975323 507255618 19145062 422795253 174 250 326 3.172 3.736 4.094 79.67% 17.702% 1 20.334% 16.948% 1.369% 91.52% 76.28% 6.16% 3 363 BB 4 4.388 383 393 408 BB 1476326 34158887 9.976 1333 1344 1374 64731 4456246 0.80% 5 M8 0.179% 22097254 355979020 64.22% 29020939 554280937 100.00% 6 14.435 2089 2103 2121 BB 14.270% 14.823 2160 2169 2184 VV 16.075 2371 2382 2403 BB 22.219% 8 8405294 174113011 31.41% 6.979% Sum of corrected areas: 2494652368

Table F13 Area percent report for standard mixture 10.

STD2015 Area Percent Report Data File : D:\PATRICIA1\STD2015.D Acq On : 2 Jun 2009 13:06 Sample : STD. MIX. 20UL/1ML DCM Vial: 50 Operator: PATRICIA Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Misc MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title Signal : TIC peak R.T. first max last PK # min scan scan scan TY --- ---- ---peak corr. % of corr. height % max. total area ____ 214 PV 76.95% 83.68% 1 3.178 175 187 28476119 626168702 16.770% 325 VV 366 VV 417 VV 2 3.742 269 283 27067554 680975665 18.238% 4.100 76.41% 9.76% 3 325 344 25264907 621758320 16.652% 325 344 383 394 4 3302895 79430230 2.127% 5 10.064 1330 1359 1391 BV 5 66170 6357823 0.78% 0.170% 14.447 2094 2105 2114 VV 14.829 2160 2170 2184 VV 16.075 2371 2382 2403 VV 27933014 568947716 69.92% 31915647 813753925 100.00% 15.238% 21.794% 6 7 8 15485765 336434044 41.34% 9.010% Sum of corrected areas: 3733826424

 Table F14 Area percent report for the essential oil obtained from the 24 hour solvent extraction.

					A	DCMS rea Perce	E241 ent Report				
Dat Acq Sam Mis	a File On ple C	: D:\\ : 31 : DCM :	PATRIO Mar 20 SOLVI	CIA\D 009 : ENT EX	CMSE2 16:25 KT. S	41.D AMPLE - 2	24 HOURS	۷ Opera Inst Multi Sample Amo	/ial: 34 ttor: Patricia : Instrumen plr: 1.00 punt: 0.00		
MS	Integra	ation	ion Params: autoint1.e								
Met Tit	hod 1e	: C:\/	MSDCH	EM\1\/	METHO	DS\DEFAU	LT.M (Chems	station Ir	itegrator)		
Sig	nal	: TIC									
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total		
1 2 3 4 5	2.144 2.191 2.461 3.154 3.577	5 13 48 168 245	11 19 65 183 255	13 30 85 201 262	BV 2 VV 2 BV 2 PV BV 2	29781 238725 751025 4927662 46992	258492 4697890 16582608 99423693 1038517	0.05% 0.93% 3.28% 19.68% 0.21%	0.011% 0.207% 0.730% 4.378% 0.046%		
6 7 8 9 10	3.677 4.047 4.441 4.511 4.629	262 327 389 405 424	272 335 402 414 434	293 343 405 424 449	VB VV 2 VV VV	384981 192567 376501 2903810 1992083	9114404 4564756 9988405 76762177 52195077	1.80% 0.90% 1.98% 15.19% 10.33%	0.401% 0.201% 0.440% 3.380% 2.298%		
11 12 13 14 15	4.764 5.927 9.876 12.367 13.231	449 646 1279 1731 1888	457 655 1327 1751 1898	481 667 1358 1760 1902	VV 5 VV 3 BB 6 PV PV 2	41785 42891 38300 60670 144131	2013688 1325767 2372565 1152364 2603439	0.40% 0.26% 0.47% 0.23% 0.52%	0.089% 0.058% 0.104% 0.051% 0.115%		
16 17 18 19 20	13.278 13.448 13.654 13.771 13.854	1902 1929 1964 1983 1997	1906 1935 1970 1990 2004	1915 1948 1983 1997 2010	VV VV VV VV 2	301069 165953 72308 66646 280689	4900284 2889680 1647960 1295618 5023637	0.97% 0.57% 0.33% 0.26% 0.99%	0.216% 0.127% 0.073% 0.057% 0.221%		
21 22 23 24 25	13.918 14.012 14.083 14.200 14.235	2010 2023 2039 2057 2065	2015 2031 2043 2063 2069	2023 2039 2057 2065 2071	VV VV VV 6 VV 4 VV 4	502261 7951476 100506 50610 92167	8048307 115802705 3743907 1177407 1680582	1.59% 22.92% 0.74% 0.23% 0.33%	0.354% 5.099% 0.165% 0.052% 0.074%		
26 27 28 29 30	14.271 14.412 14.482 14.559 14.594	2071 2087 2105 2121 2126	2075 2099 2111 2124 2130	2087 2105 2121 2126 2134	VV VV VV 2 VV 2 VV	200791 2226048 4090010 175837 681286	5355127 505183372 61902032 2691001 11486806	1.06% 2 100.00% 12.25% 0.53% 2.27%	0.236% 22.245% 2.726% 0.118% 0.506%		
31 32 33 34 35	14.641 14.770 14.823 14.911 14.958	2134 2149 2166 2174 2189	2138 2160 2169 2184 2192	2149 2166 2174 2189 2197	VV VV VV VV 3	1517760 9354928 698196 1728572 1582510	31139126 144545653 18193499 49784068 33198579	6.16% 28.61% 3.60% 9.85% 6.57%	1.371% 6.365% 0.801% 2.192% 1.462%		
36 37 38 39 40	15.005 15.099 15.164 15.234 15.317	2197 2204 2220 2236 2243	2200 2216 2227 2239 2253	2204 2220 2236 2243 2259	VV VV VV 2 VV VV 2	892131 9896201 1934298 695224 852336	18400128 188199542 4 377115769 12480757 28233796	3.64% 37.25% 74.65% 2.47% 5.59%	0.810% 8.287% 16.606% 0.550% 1.243%		
41 42 43	15.375 15.475 15.540	2259 2275 2288	2263 2280 2291	2275 2288 2301	VV 3 VV 2 VV 3	804228 477916 307292	21371981 13593051 9261534	4.23% 2.69% 1.83%	0.941% 0.599% 0.408%		
	Datq Sams MS METI Sig k Peak Fill Sig k Fill Sig k Fill Sig k Fill Sig k Fill Sig k Fill Sig k Fill Sig k Fill Sig k Fill Sig k Fill Sig Sak Fill Sig Sak Fill Si	Data File Acq On Sample Misc MS Integra Method Title Signal peak R.T. # min 	Data File : D:\\ Acq On : 31 Y Sample : DCM Misc : MS Integration M Method : C:\Y Title : Signal : TIC peak R.T. first # min scan 	Data File : D:\PATRI Acq On : 31 Mar 20 Sample : DCM SOLV Misc : MS Integration Params Method : C:\MSDCH Title : Signal : TIC peak R.T. first max # min scan scan 	Data File : D:\PATRICIA\DO Acq On : 31 Mar 2009 : Sample : DCM SOLVENT E Misc : MS Integration Params: au Method : C:\MSDCHEM\1\Y Title : Signal : TIC peak R.T. first max last # min scan scan scan 1 2.144 5 11 13 2 2.191 13 19 30 3 2.461 48 65 85 4 3.154 168 183 201 5 3.577 245 255 262 6 3.677 262 272 293 7 4.047 327 335 343 8 4.441 389 402 405 9 4.511 405 414 424 10 4.629 424 434 449 11 4.764 449 457 481 12 5.927 646 655 667 13 9.876 1279 1327 1358 14 12.367 1731 1751 1760 15 13.231 1888 1898 1902 16 13.278 1902 1906 1915 17 13.448 1929 1935 1948 18 13.654 1964 1970 1983 19 13.771 1983 1990 1997 20 13.854 1997 2004 2010 21 13.918 2010 2015 2023 22 14.012 2023 2031 2039 23 14.083 2039 2043 2057 24 14.200 2057 2063 2065 25 14.235 2065 2069 2071 26 14.271 2071 2075 2087 27 14.412 2087 2099 2105 28 14.482 2105 2111 2121 29 14.559 2121 2124 2126 30 14.594 2126 2130 2134 31 14.641 2134 2138 2149 32 14.770 2149 2160 2166 25 14.235 2065 2069 2071 26 14.271 2071 2075 2087 27 14.412 2087 2099 2105 28 14.482 2105 2111 2121 29 14.559 2121 2124 2126 30 14.594 2126 2130 2134 31 14.641 2134 2138 2149 32 14.770 2149 2160 2166 33 14.823 2166 2169 2174 34 14.911 2174 2184 2189 35 14.958 2189 2192 2197 36 15.005 2197 2200 2204 37 15.099 2204 2216 2220 38 15.164 2220 227 2263 39 15.234 2236 2239 2243 40 15.317 2243 2253 2259 41 15.375 2259 2263 2275 42 15.475 2275 2280 2288 43 15.540 2288 2291 2301	A Data File : D:\PATRICIA\DCMSE2 Acq on : 31 Mar 2009 16:25 Sample : DCM SOLVENT EXT. S Misc : MS Integration Params: autoint Method : C:\MSDCHEM\1\METHO Title : Signal : TIC peak R.T. first max last PK # min scan scan scan TY 1 2.144 5 11 13 BV 2 2 2.191 13 19 30 VV 2 3 2.461 48 65 85 BV 2 4 3.154 168 183 201 PV 5 3.577 245 255 262 BV 2 6 3.677 262 272 293 VB 7 4.047 327 335 343 M 8 4.441 389 402 405 VV 2 9 4.511 405 414 424 VV 10 4.629 424 434 449 VV 11 4.764 449 457 481 VV 5 12 5.927 646 655 667 VV 3 13 9.876 1279 1327 1358 BB 6 14 12.367 1731 1751 1760 PV 2 15 13.231 1888 1898 1902 PV 2 16 13.278 1902 1906 1915 VV 17 13.448 1929 1935 1948 VV 18 13.654 1964 1970 1983 VV 19 13.771 1983 1990 1997 VV 2 20 13.854 1997 2004 2010 VV 21 13.918 2010 2015 2023 VV 22 14.012 2023 2031 2039 VV 23 14.083 2039 2043 2057 VV 6 24 14.200 2057 2063 2065 VV 4 25 14.235 2065 2069 2071 VV 4 26 14.271 2071 2075 2087 VV 27 14.412 2087 2099 2105 VV 28 14.482 2105 2111 2121 VV 2 29 14.559 2121 2124 2126 VV 30 14.594 2126 2130 2134 VV 31 14.641 2134 2138 2149 VV 31 14.641 2134 2138 2149 VV 33 14.083 2039 2043 2057 VV 6 34 14.200 2057 2063 2065 VV 4 25 14.235 2065 2069 2071 VV 4 26 14.271 2071 2075 2087 VV 27 14.412 2087 2099 2105 VV 28 14.482 2105 2111 2121 VV 2 30 14.594 2126 2130 2134 VV 31 14.641 2134 2138 2149 VV 33 14.654 124 2138 2149 VV 34 14.911 2174 2184 2189 VV 3 35 14.958 2189 2192 2197 VV 36 15.005 2197 2200 2204 VV 37 15.099 2204 2216 2220 VV 38 15.164 2220 2277 2236 VV 2 41 15.375 2259 2263 2275 VV 3 42 15.475 2259 2263 2275 VV 3 43 15.540 2288 2291 2301 VV 3 44 15.540 2288 2291 2301 VV 3 35 14.958 2189 2192 2197 VV 36 15.040 2288 2291 2301 VV 3 37 15.099 244 2268 2291 2301 VV 3 37 15.099 244 2268 2291 2301 VV 3 37 15.099 244 2268 2291 2301 VV 3 37 15.090 248 2288 2291 2301 VV 3 37 15.091 248 2288 2291 2301 VV 3 37 15.091 248 2288	DCMS Area Perce Data File : D:\PATRICIA\DCMSE241.D Acq On : 31 Mar 2009 16:25 Sample : DCM SOLVENT EXT. SAMPLE - 3 Misc : MS Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAUL Title : Signal : TIC peak R.T. first max last PK peak # min scan scan scan TY height 1 2.144 5 11 13 BV 2 29781 2 2.191 13 19 30 VV 2 238725 3 2.461 48 65 85 BV 2 751025 4 3.154 168 183 201 PV 4927662 5 3.577 245 255 262 BV 2 46992 6 3.677 262 272 293 VB 384981 7 4.047 327 335 343 M 192567 8 4.441 389 402 405 VV 2 376501 9 4.511 405 414 424 VV 2903810 10 4.629 424 434 449 VV 1992083 11 4.764 449 457 481 VV 5 41785 12 5.927 646 655 667 VV 3 42891 13 9.876 1279 1327 1358 BB 6 38300 14 12.367 1731 1751 1760 PV 60670 15 13.231 1888 1898 1902 PV 2 144131 16 13.278 1902 1906 1915 VV 301069 7 13.448 1929 1935 1948 VV 165953 18 13.654 1997 2004 2010 VV 280689 21 13.918 2010 2015 2023 VV 502261 22 14.012 2023 2031 2039 VV 7951476 23 14.083 2039 2043 2057 VV 6 100506 24 14.200 2057 2063 2065 VV 4 50610 25 14.235 2065 2069 2071 VV 4 92167 26 14.271 2071 2075 2087 VV 200791 27 14.412 2087 2099 2105 VV 200791 27 14.412 2087 2099 2105 VV 200791 27 14.412 2087 2099 2105 VV 2226048 31 14.641 2134 2138 2149 VV 1651276 33 14.823 2166 2169 2174 VV 681286 31 14.641 2134 2138 2149 VV 1517760 26 14.271 2071 2075 2087 VV 200791 27 14.412 2087 2099 2105 VV 2226048 31 14.641 2134 2138 2149 VV 1517760 23 14.083 2039 2043 2057 VV 4 92167 26 14.271 2071 2075 2087 VV 200791 27 14.412 2087 2099 2105 VV 226048 31 14.641 2134 2138 2149 VV 1517760 32 14.599 2121 2124 2126 VV 2 175837 30 14.594 2126 2130 2134 VV 681286 31 14.641 2134 2138 2149 VV 1517760 32 14.770 2149 2160 2267 VV 892131 37 15.099 2204 2216 220 VV 892131 37 15	DCMSE241 Area Percent Report Data File : D:\PATRICIA\DCMSE241.D Acq on : 31 Mar 2009 16:25 Sample : DCM SOLVENT EXT. SAMPLE - 24 HOURS Misc : MS Integration Params: autointl.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chem: Title : Signal : TIC peak R.T. first max last PK peak corr. # min scan scan scan TY height area 	DCMSE241 Area Percent Report Data File : D:\PATRICIA\DCMSE241.D Acq On : 31 Mar 2009 16:25 Sample : DCM SOLVENT EXT. SAMPLE - 24 HOURS Inst : Sample Amc Ms Integration Params: autoint1.e Operations Sample Amc Ms Integration Params: autoint1.e Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Ir Title : Signal : TIC Corr. F min scan scan scan TY height Sample Amc Ms Integration Params: autoint1.e Corr. Corr. F min scan scan scan TY height Sample Amc Max. Sample Amc Max. Sample Amc Max. Sample Amc Max. Sample Amc Ms Integration Params: Sample Amc Ms Integration Params: Sample Amc Ms Integration Params: Sample Amc Max. Ms Integration Params: Sample Amc Max. Sample Amc Ms Integration Params: Sample Amc Max. Sample Amc Ms Integration Params: Sample Ama Max. Sample Amc Max. Sample Amc Mam		

4.4	15 657	2201 2211	2224 144	DCMS	E241	2 0 4 9/	0 9559
44	15.769	2301 2311	2324 VV 2334 VV	4 164591	4210335	3.84%	0.855%
	10.000	2521 2550	2001.11	. 10.001	1210555	0105/0	0.100,0
46	15.804	2334 2336	2346 VV	10 128303	3 4514779	0.89%	0.199%
47	15.945	2346 2360	2368 VV	6 319230	14855328	2.94%	0.654%
40	16 051	2306 2374	2388 VV	4 314013	7044767	1 39%	0.342%
50	16.139	2388 2393	2404 VV	4 124716	5127539	1.01%	0.226%
51	16.251	2404 2412	2418 VV	4 136043	4689472	0.93%	0.206%
52	16.315	2418 2423	2426 VV	4 100308	2510740	0.50%	0.111%
53	16 432	2420 2432	2440 VV	J 1034909 A28510	20933000	3.73%	1.2/3%
55	16 492	2440 2445	2449 00	6 114465	2550181	0.50%	0.112%
55	10.452	2445 2455	2430 **	0 114405	2550101	0.30%	0.112/0
56	16.539	2456 2461	2463 VV	3 218654	4230932	0.84%	0.186%
57	16.580	2463 2468	2482 VV	2 390645	12154585	2.41%	0.535%
58	16.738	2489 2495	2497 VV	3 153415	2970911	0.59%	0.131%
59	16.821	2497 2509	2518 VV	1990037	48538189	9.61%	2.137%
60	16.909	2518 2524	2535 VV	6 293451	1016/335	2.01%	0.448%
61	17 015	2535 2542	2551 VV	5 187333	6301511	1 25%	0 277%
62	17.179	2563 2570	2576 VV	6 76511	2069498	0.41%	0.091%
63	17.273	2576 2586	2595 VV	4 69612	3102380	0.61%	0.137%
64	17.596	2631 2641	2657 VV	8 92787	4776691	0.95%	0.210%
65	18.777	2828 2842	2846 PV	6 69911	2478947	0.49%	0.109%
66	18 877	2846 2859	2908 VV	4 1176246	72039505	14 26%	3 172%
67	19.277	2914 2927	2943 VV	5 195770	9875036	1.95%	0.435%
68	19.394	2943 2947	2974 VV	5 57875	4088495	0.81%	0.180%
69	19.629	2974 2987	3013 VV	3 312166	15216464	3.01%	0.670%
			Sum of	corrected	areas: 227	1022077	

Table F15 Area percent report for the essential oil obtained from the 72 hour solvent extraction.

						A	DCMS Area Perce	E72B ent Report		
	Data Acq Sam Miso	a File On ple c	: D:\ : 2 / : DCM :	PATRIO Apr 20 SOLVI	CIA\D 009 : ENT EX	CMSE7 L6:12 KT. S	2B.D AMPLE -72	HOURS	V Opera Inst Multi Sample Amo	/ial: 50 ttor: Patricia : Instrumen plr: 1.00 punt: 0.00
	MS :	Integra	ation	Param	s: aut	toint	1.e		sempre rune	
	Met Tit	hod 1e	: C:\/	MSDCH	EM\1\/	ИЕТНО	DS\DEFAUL	T.M (Chem	station Ir	itegrator)
	Sig	nal	: TIC							
	peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total
	1 2 3 4 5	2.144 2.197 2.473 3.149 3.360	4 14 50 169 203	11 20 67 182 218	14 50 85 203 224	BV 2 VV 2 PV 3 PV PV PV 9	48572 151805 683296 4438117 17566	487989 2953139 17290752 95338760 425821	0.10% 0.62% 3.62% 19.96% 0.09%	0.020% 0.119% 0.698% 3.851% 0.017%
	6 7 8 9 10	3.572 3.677 4.053 4.353 4.441	243 260 321 372 390	254 272 336 387 402	260 290 358 390 405	BV 2 VV VV VV 2 VV 2	35686 324821 102244 30145 299234	760561 8475510 3012654 735756 8146146	0.16% 1.77% 0.63% 0.15% 1.71%	0.031% 0.342% 0.122% 0.030% 0.329%
	11 12 13 14 15	4.512 4.635 4.800 5.957 9.976	405 425 450 651 1330	414 435 463 660 1344	425 450 481 677 1370	VV VV VV 4 VV 3 VB 8	2279673 1551277 61996 35062 28462	67871533 44201804 3273355 1304457 1736953	14.21% 9.25% 0.69% 0.27% 0.36%	2.741% 1.785% 0.132% 0.053% 0.070%
	16 17 18 19 20	12.409 13.249 13.290 13.460 13.742	1751 1890 1904 1931 1978	1758 1901 1908 1937 1985	1769 1904 1924 1949 1989	PV PV 2 VV VV VV VV 2	49660 101775 215750 152396 96221	969607 1774885 4070977 2790273 2230800	0.20% 0.37% 0.85% 0.58% 0.47%	0.039% 0.072% 0.164% 0.113% 0.090%
	21 22 23 24 25	13.783 13.866 13.930 14.024 14.089	1989 2000 2012 2026 2042	1992 2006 2017 2033 2044	2000 2012 2026 2042 2050	VV 4 VV VV VV VV VV 5	100549 264881 404207 6016455 116329	2595766 5500845 7502006 95712448 2571763	0.54% 1.15% 1.57% 20.04% 0.54%	0.105% 0.222% 0.303% 3.866% 0.104%
	26 27 28 29 30	14.283 14.424 14.494 14.571 14.612	2057 2089 2108 2123 2128	2077 2101 2113 2126 2133	2089 2108 2123 2128 2136	VV 2 VV VV 2 VV 2 VV 2 VV	244701 21436198 3687178 234894 686652	13382840 47762590 62166443 3721892 12158935	2.80% 2 100.00% 13.02% 0.78% 2.55%	0.541% 19.292% 2.511% 0.150% 0.491%
	31 32 33 34 35	14.653 14.788 14.841 14.929 14.976	2136 2152 2169 2177 2191	2140 2163 2172 2187 2195	2152 2169 2177 2191 2199	VV VV VV VV 2	1363229 8014537 774460 1705317 1746213	32122991 134561517 18828063 52862387 38688068	6.73% 28.17% 3.94% 11.07% 8.10%	1.298% 5.435% 0.761% 2.135% 1.563%
	36 37 38 39 40	15.035 15.117 15.182 15.252 15.335	2199 2207 2224 2240 2246	2205 2219 2230 2242 2256	2207 2224 2240 2246 2261	VV 4 VV 2 VV 2 VV	1618995 9376331 18185503 874548 953082	38546682 215950707 36456290 16999138 35986973	8.07% 45.21% 1 76.33% 3.56% 7.53%	1.557% 8.723% 14.726% 0.687% 1.454%
	41 42 43	15.393 15.499 15.581	2261 2278 2295	2266 2284 2298	2278 2295 2309	VV 3 VV 4 VV 3	961872 600887 438892	38086038 25454124 17349340	7.97% 5.33% 3.63%	1.538% 1.028% 0.701%
- 1										

		D CH CE 73D	
44 15.693	2309 2317 2328	VV 781540 26474275	5.54% 1.069%
45 15.787	2328 2333 2340	VV 10 258086 9767749	2.05% 0.395%
46 15.987	2348 2367 2377	VV 8 451764 31510168	6.60% 1.273%
47 16.110	2377 2388 2397	VV 8 426152 22862189	4.79% 0.923%
48 16.204	2397 2404 2412	VV 8 270331 11801924	2.47% 0.477%
49 16.304	2412 2421 2430	VV 5 215181 11876578	2.49% 0.480%
50 16.410	2430 2439 2443	VV 911566 22103055	4.63% 0.893%
51 16.451	2443 2446 2450	VV 4 735665 16586928	3.47% 0.670%
52 16.486	2450 2452 2465	VV 3 511084 15481585	3.24% 0.625%
53 16.633	2465 2477 2498	VV 587482 31520263	6.60% 1.273%
54 16.886	2498 2520 2529	VV 1687842 58313748	12.21% 2.355%
55 16.968	2529 2534 2538	VV 7 315520 8289538	1.74% 0.335%
56 17.003	2538 2540 2546	VV 53079687793906VV 52143806767444VV 51344126030075VV 71181387334445VV 61166833840750	1.63% 0.315%
57 17.068	2546 2551 2558		1.42% 0.273%
58 17.250	2572 2582 2589		1.26% 0.244%
59 17.326	2589 2595 2612		1.54% 0.296%
60 17.661	2644 2652 2657		0.80% 0.155%
61 17.714	2657 2661 2673	VV 6 102678 3152346	0.66% 0.127%
62 17.926	2673 2697 2699	PV 6 92298 4246111	0.89% 0.172%
63 17.973	2699 2705 2737	VV 6 101511 7806105	1.63% 0.315%
64 18.913	2837 2865 2903	PV 3 1699985 108939328	22.81% 4.400%
65 19.142	2903 2904 2914	VB 10 19508 316213	0.07% 0.013%
66 19.330	2914 2936 2959	BV 5 259570 13582971	2.84% 0.549%
67 19.665	2975 2993 3013	PV 2 414440 20046642	4.20% 0.810%
68 19.912	3013 3035 3045	PBA3 773934 38482965	8.06% 1.554%
	Sum	of corrected areas: 247	5716797

Table F16 Area percent report for the essential oil from the 24 hour Soxhlet extraction.

					1	DSXS Trea Perce	124B nt Report			
Da Ac Sa Mi	Data File : D:\PATRICIA\DSXS124B.D Vial: 34 Acq On : 24 Mar 2009 14:23 Sample : DCM SOX. EXT. SAMPLE 1- 24 HOURS Misc : SAMPLE- 5ML Inst : Instrumer Multiplr: 1.00 Sample Amount: 0.00									
MS	Integra	ation	Param	s: au	toint	1.e				
Me Ti	thod tle	: C:\ :	MSDCH	EM\1\/	ИЕТНО	DS\DEFAUL	T.M (Chems	tation In	tegrator)	
Si	gnal	: TIC								
pea	k R.T.	first	max	last	PK	peak	corr.	corr.	% of	
#	min	scan	scan	scan	TY	height	area	% max.	total	
1	2.143	3	11	15	BV	195442	2417705	0.67%	0.170%	
2	2.196	15	20	27	VV	105019	1819339	0.51%	0.128%	
3	2.261	27	31	48	VV	95351	1364498	0.38%	0.096%	
4	2.461	59	65	86	VV	582743	11064507	3.08%	0.776%	
5	2.972	127	152	171	PV 8	8 18125	667274	0.19%	0.047%	
6	3.154	171	183	199	PV	3852368	63247470	17.58%	4.435%	
7	3.360	211	218	224	VV 3	18360	360016	0.10%	0.025%	
8	3.577	247	255	265	PV 2	36704	850922	0.24%	0.060%	
9	3.677	265	272	283	VV	248646	4713680	1.41%	0.356%	
10	4.047	319	335	353	PV 2	67555	1510855	0.49%	0.124%	
11	4.341	376	385	390	PV	47683	1047769	0.29%	0.073%	
12	4.429	390	400	405	VV	250637	5904612	1.64%	0.414%	
13	4.500	405	412	424	VV	1986895	45077461	12.53%	3.161%	
14	4.623	424	433	445	VV	1255216	28341238	7.88%	1.988%	
15	4.770	445	458	487	VV	59039	2804424	0.78%	0.197%	
16	5.898	636	650	663	VV	28717	1004478	0.28%	0.070%	
17	9.782	1286	1311	1340	BV	23596	1288804	0.36%	0.090%	
18	12.332	1737	1745	1751	PV	25117	445976	0.12%	0.031%	
19	13.148	1877	1884	1889	PV	15976	329854	0.09%	0.023%	
20	13.219	1889	1896	1899	VV	70289	1208340	0.34%	0.085%	
21	13.260	1899	1903	1913		179416	2768307	0.77%	0.194%	
22	13.436	1925	1933	1942		109683	1806933	0.50%	0.127%	
23	13.624	1959	1965	1976		25436	705737	0.20%	0.049%	
24	13.754	1980	1987	1994		38005	696472	0.19%	0.049%	
25	13.842	1994	2002	2007		153504	2668711	0.74%	0.187%	
26	13.901	2007	2012	2021	VV	373442	5672765	1.58%	0.398%	
27	13.995	2021	2028	2036	VV	5887756	82434771	22.91%	5.781%	
28	14.065	2036	2040	2045	VV 4	55498	1262156	0.35%	0.089%	
29	14.194	2059	2062	2065	VV 4	36149	645541	0.18%	0.045%	
30	14.224	2065	2067	2069	VV 3	43449	597328	0.17%	0.042%	
31	14.259	2069	2073	2084	VV 2	2 121311	2894886	0.80%	0.203%	
32	14.394	2084	2096	2102	VV	19990872	359806778	100.00%	25.233%	
33	14.470	2102	2109	2115	VV 2	2394449	34531028	9.60%	2.422%	
34	14.512	2115	2116	2118	VV 2	101224	1185220	0.33%	0.083%	
35	14.541	2118	2121	2123	VV 2	120691	1717313	0.48%	0.120%	
36	14.576	2123	2127	2131	VV 2	402677	7234166	2.01%	0.507%	
37	14.629	2131	2136	2146	VV	826209	17334112	4.82%	1.216%	
38	14.705	2146	2149	2151	VV 2	231316	3907054	1.09%	0.274%	
39	14.752	2151	2157	2163	VV	5735396	84361611	23.45%	5.916%	
40	14.805	2163	2166	2171	VV	425188	10326415	2.87%	0.724%	
41	14.899	2171	2182	2186	VV 2	2 1045322	32486694	9.03%	2.278%	
42	14.946	2186	2190	2194	VV	945925	19651405	5.46%	1.378%	
43	14.993	2194	2198	2201	VV	602890	12959899	3.60%	0.909%	

	15 093	1201 2212	7717 \		DSXS	L24B	20 264	7 2234
44	15.140	2217 2223	2235 V	vv 2 :	12257304	211746842	58.85%	14.849%
46 47	15.223	2235 2237 2241 2251	2241 V 2255 V	N N	281001 496528	4502567 12480846	1.25%	0.316% 0.875%
48 49 50	15.364 15.458 15.522	2255 2261 2272 2277 2284 2288	2272 V 2284 V 2296 V	VV 2 VV 3 VV	225344 154657	6645409 3808773	1.85% 1.06%	0.466% 0.267%
51 52	15.640 15.751	2296 2308 2322 2327	2314 v 2330 v	/V /V 5	343095 86964	9038781 1995012	2.51% 0.55%	0.634% 0.140%
53 54	15.798 15.916	2330 2335 2341 2355 2361 2368	2341 V 2361 V 2379 V	VV 10 VV 5	77043 292364 331145	2621620 11466464 10914147	0.73% 3.19% 3.03%	0.184% 0.804% 0.765%
56	16.104	2379 2387	2392 V	/v 7	101958	3526374	0.98%	0.247%
57 58	16.157 16.221 16.274	2392 2396 2407 2412 2412	2400 V 2412 V	N 7 N 4	77388 88107	2001354 2676524	0.56%	0.140% 0.188% 0.172%
59 60	16.274	2412 2416 2421 2427	2421 V 2434 V	VV 4 VV 6	623219	15934900	4.43%	1.117%
61 62	16.398 16.462	2434 2437 2443 2448	2443 v 2451 v	/v 2 /v 6	261548 103435	5262151 2298575	1.46% 0.64%	0.369% 0.161%
63 64	16.509 16.545	2451 2456 2458 2462	2458 V 2477 V	v 4 v 2	168554 358165	2913623 11559572	0.81%	0.204% 0.811%
65	16.703	2483 2489	2491 V	W 3	132724	2494654	0.69%	0.1/5%
66	16.780	2512 2518	2512 V 2521 V	vv 4 vv 4	167392	3794500	1.05%	0.266%
68	16.903	2529 2534	2529 V 2542 V	vv 3 vv 4	148110	4463284	1.24%	0.313%
70	17.138	2000 2003	2570 V		37507	1121112	0.45%	0.124%
72	17.308	2576 2582 2592	2500 V 2601 V	VV 8	33189	1043028	0.29%	0.073%
73 74	17.467 17.567	2623 2636	2623 V 2657 V	VV 8 VV 8	27408 79871	4700200	1.31%	0.330%
75	18.754	2823 2838	2840 F	PV 6	17679	504688	0.14%	0.035%
76 77	18.848 19 247	2840 2854	2893 V	VV 2	561145 94740	31373170 4892155	8.72% 1.36%	2.200% 0.343%
78	19.600	2962 2982	3045 P	PBA5	446746	33006132	9.17%	2.315%
			Sum c	of co	rrected	areas: 142	25965367	

Table F17 Area percent report for the essential oil obtained from the 72 hour Soxhlet extraction.

					А	DSX rea Perce	726 ent Report		
Dat Acq Sam Mis	a File On ple c	: C:\(: 30 f : DCM :	GOVENI Mar 20 SOX.	DER\P 009 : EXT S	ATRIC 16:25 SAMPL	IA\DSX720 E 3 - 72	5.D HOURS	V Opera Inst Multi Sample Amo	/ial: 50 utor: Patricia : Instrumen plr: 1.00 punt: 0.00
MS	Integra	ation	Param	s: aut	toint	1.e			
Met Tit	hod 1e	: C:\I	ISDCHI	EM\1\/	ИЕТНО	DS\DEFAUI	LT.M (Chem	station Ir	itegrator)
Sig	nal	: TIC							
peak #	R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.138 2.191 2.255 2.455 3.143	3 15 24 48 174	10 19 30 64 181	15 24 48 84 187	BV VV VV PV 2 M	1023271 170337 697839 954311 4899938	15025750 2993285 10406926 19902227 93028680	3.27% 0.65% 2.26% 4.33% 20.24%	0.585% 0.117% 0.405% 0.775% 3.625%
6 7 8 9 10	3.354 3.566 3.666 4.036 4.335	208 235 262 320 350	217 253 270 333 384	232 262 282 350 389	PB 8 BV VV PV PV PV	30436 55210 360467 92432 77524	902275 1359975 8309128 2686787 1872148	0.20% 0.30% 1.81% 0.58% 0.41%	0.035% 0.053% 0.324% 0.105% 0.073%
11 12 13 14 15	4.424 4.494 4.617 4.741 5.898	389 402 422 443 619	399 411 432 453 650	402 422 443 476 670	VV VV VV VV 2 PV 7	356698 2920450 1770920 112551 73863	9102135 75832297 44473665 5376773 3720348	1.98% 16.50% 9.67% 1.17% 0.81%	0.355% 2.955% 1.733% 0.209% 0.145%
16 17 18 19 20	9.829 10.752 12.350 12.908 13.225	1306 1451 1740 1833 1880	1319 1476 1748 1843 1897	1334 1505 1755 1853 1900	VB 6 BV 2 VV 2 VV 2 VV 2 VV 2	33950 29943 46682 31920 85238	1592254 2021927 847457 1000059 1895093	0.35% 0.44% 0.18% 0.22% 0.41%	0.062% 0.079% 0.033% 0.039% 0.074%
21 22 23 24 25	13.272 13.384 13.443 13.519 13.584	1900 1913 1928 1944 1949	1905 1924 1934 1947 1958	1913 1928 1944 1949 1963	VV VV 4 VV VV 4 VV 4	194828 50013 208429 51732 59216	3302575 1337296 4699127 945378 2540755	0.72% 0.29% 1.02% 0.21% 0.55%	0.129% 0.052% 0.183% 0.037% 0.099%
26 27 28 29 30	13.654 13.766 13.848 13.913 14.007	1963 1980 1994 2009 2019	1970 1989 2003 2014 2030	1980 1994 2009 2019 2036	VV 2 VV 4 VV 3 VV VV	216018 139450 369591 493734 6839043	6851100 5109967 10287923 9719179 108198784	1.49% 1.11% 2.24% 2.11% 23.54%	0.267% 0.199% 0.401% 0.379% 4.216%
31 32 33 34 35	14.089 14.265 14.406 14.477 14.553	2036 2068 2086 2104 2120	2044 2074 2098 2110 2123	2068 2086 2104 2120 2124	VV VV 3 VV VV 2 VV 2	532318 378073 2144159 3609526 273658	48042084 18524716 1 45972692 59648725 4077849	10.45% 4.03% 1 100.00% 12.97% 0.89%	1.872% 0.722% 17.912% 2.324% 0.159%
36 37 38 39 40	14.588 14.635 14.765 14.817 14.911	2124 2133 2148 2165 2173	2129 2137 2159 2168 2184	2133 2148 2165 2173 2188	VV VV VV VV VV 2	842166 1363553 8237327 681395 1759102	15580751 31514909 130933637 16210044 52639824	3.39% 6.86% 28.48% 3.53% 11.45%	0.607% 1.228% 5.101% 0.632% 2.051%
41 42 43	14.953 15.005 15.094	2188 2196 2203	2191 2200 2215	2196 2203 2220	VV VV 2 VV	1479864 951836 9731191	31666857 20659000 178438235	6.89% 4.49% 38.81%	1.234% 0.805% 6.952%

		DSX726	
44 15.158	2220 2226 2243 V	/ 2 16800170 320474520 69.71%	12.486%
45 15.317	2243 2253 2258 V	/ 2 856092 31667638 6.89%	1.234%
46 15.376	2258 2263 2272 V	<pre>/ 2 812856 22703797 4.94%</pre>	0.885%
47 15.476	2272 2280 2287 V	/ 4 541142 19506080 4.24%	0.760%
48 15.540	2287 2291 2298 V	/ 3 372277 10608584 2.31%	0.413%
49 15.658	2298 2311 2319 V	/ 736175 23851639 5.19%	0.929%
50 15.799	2325 2335 2346 V	/ 3 389995 19517934 4.25%	0.760%
51 15.951	2346 2361 2367 V	<pre>/ 4 756573 27684519 6.02%</pre>	1.079%
52 16.028	2367 2374 2385 V	/ 3 810039 26338765 5.73%	1.026%
53 16.139	2385 2393 2405 V	/ 9 227691 13030641 2.83%	0.508%
54 16.251	2405 2412 2418 V	/ 5 207261 7600027 1.65%	0.296%
55 16.316	2418 2423 2425 V	/ 2 231951 5533931 1.20%	0.216%
56 16.363	2425 2431 2434 V	y 953098 18612101 4.05% y 2 884988 16667130 3.63% y 2 506551 10022160 2.18% y 5 281100 6616597 1.44% y 3 482194 9030825 1.96%	0.725%
57 16.392	2434 2436 2441 V		0.649%
58 16.433	2441 2443 2449 V		0.390%
59 16.498	2449 2454 2457 V		0.258%
60 16.539	2457 2461 2463 V		0.352%
61 16.580	2463 2468 2489 V	<pre>/ 826878 29052670 6.32%</pre>	1.132%
62 16.821	2489 2509 2518 V	/ 2 1873637 60730758 13.21%	2.366%
63 16.909	2518 2524 2535 V	/ 7 402134 17962646 3.91%	0.700%
64 17.009	2535 2541 2547 V	/ 5 307835 9757995 2.12%	0.380%
65 17.068	2547 2551 2563 V	/ 3 193116 8443064 1.84%	0.329%
66 17.179	2563 2570 2576 V	/ 5 188370 6259292 1.36% / 4 173642 7788030 1.69% / 3 153771 7579719 1.65% / 9 120218 3989489 0.87% / 7 147082 4259622 0.93%	0.244%
67 17.273	2576 2586 2593 V		0.303%
68 17.344	2593 2598 2610 V		0.295%
69 17.450	2610 2616 2621 V		0.155%
70 17.514	2621 2627 2631 V		0.166%
71 17.602	2631 2642 2654 V	/ 8 297982 15948215 3.47%	0.621%
72 17.732	2654 2664 2676 V	/ 4 206912 12418064 2.70%	0.484%
73 17.843	2676 2683 2689 V	/ 4 135276 6431915 1.40%	0.251%
74 17.920	2689 2696 2732 V	/ 4 138871 12591455 2.74%	0.491%
75 18.313	2749 2763 2785 V	/ 4 108571 9036015 1.97%	0.352%
76 18.866	2821 2857 2893 V	/ 3 1364719 84818750 18.45%	3.305%
77 19.242	2893 2921 2960 V	/ 2 2067969 132350074 28.79%	5.157%
78 19.612	2960 2984 3021 V	/ 3 386713 24716256 5.38%	0.963%
	Sum of	f corrected areas: 2566605746	

Table F18Area percent report for HS-SPME (PDMS fibre coating) at room

temperature.

						Aı	PDMS rea Perce	S4RT ent Report		
Da Ac Sa Mi	ta File q On mple sc	: C:\ : 26 : MK	MSDCH Mar 2 samp	EM\1\1 007 : le 4	DATA 10:4 PDMS	A\1 43 5 (PDMSS4RT	.D - room ten	Opera np. Inst Mult	Vial: 90 ator: patricia : Instrumer iplr: 1.00
MS	Integr	ation	Param	s: au	toir	nti	L.e		Sample Amo	bunt: 0.00
Me Ti	thod tle	: C:\ :	MSDCH	EM\1\1	ИЕТН	10[DS\DEFAU	_T.M (Chen	station I	ntegrator)
Si	gnal	: TIC								
pea #	k R.T. min	first scan	max scan	last scan	Pk T\	((peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.367 2.661 3.360 3.577 3.806	16 81 209 247 265	49 99 218 255 294	81 139 247 265 304	BV PV BV VV VV	2 4 3 4	31528 19651 1181431 4658 9920	755657 799559 22896118 105843 211182	7 0.73% 0.77% 3 21.99% 0.10% 2 0.20%	0.258% 0.273% 7.821% 0.036% 0.072%
6 7 8 9 10	3.918 4.306 4.629 4.711 4.782	304 372 419 438 452	313 379 434 448 460	350 386 438 452 473	PV PV VV VV	2 12 3 2	64071 43719 3278 68747 437832	1661312 938546 77995 1667060 11213038	2 1.60% 5 0.90% 5 0.07% 9 1.60% 8 10.77%	0.567% 0.321% 0.027% 0.569% 3.830%
11 12 13 14 15	4.917 13.260 13.413 13.454 13.624	473 1889 1916 1933 1959	483 1903 1929 1936 1965	540 1916 1933 1959 1985	VV BV PV VV VB	6	361708 5377 92329 63854 25560	10142742 107994 1562379 1100942 450143	2 9.74% 4 0.10% 9 1.50% 2 1.06% 8 0.43%	3.465% 0.037% 0.534% 0.376% 0.154%
16 17 18 19 20	13.942 14.018 14.083 14.171 14.241	1996 2026 2037 2050 2067	2019 2032 2043 2058 2070	2026 2037 2050 2067 2075	BV VV VV VV VV	7 2 7	6260 38384 158694 2492019 9128	129324 664380 2491960 36561364 191394	4 0.12% 0 0.64% 0 2.39% 4 35.11% 4 0.18%	0.044% 0.227% 0.851% 12.489% 0.065%
21 22 23 24 25	14.435 14.564 14.641 14.752 14.799	2086 2113 2131 2148 2160	2103 2125 2138 2157 2165	2113 2131 2148 2160 2178	 VV <	2 3	32841 6130171 659691 51132 143097	804927 104141448 9931883 1038037 2969575	7 0.77% 3 100.00% 3 9.54% 7 1.00% 5 2.85%	0.275% 35.574% 3.393% 0.355% 1.014%
26 27 28 29 30	14.923 15.070 15.117 15.164 15.258	2178 2202 2215 2223 2231	2186 2211 2219 2227 2243	2202 2215 2223 2231 2247	 VV <	3 2	1306141 112233 99095 58023 746992	19880015 2475180 1768612 1104203 13389942	5 19.09% 0 2.38% 2 1.70% 8 1.06% 2 12.86%	6.791% 0.845% 0.604% 0.377% 4.574%
31 32 33 34 35	15.311 15.405 15.481 15.552 15.651	2247 2264 2273 2287 2303	2252 2268 2281 2293 2310	2264 2273 2287 2303 2328	 VV <	2 2 2 5	2012832 54677 56131 49664 16936	37101038 935484 1195591 960088 640805	35.63% 0.90% 1.15% 0.92% 0.62%	12.673% 0.320% 0.408% 0.328% 0.219%
36 37 38 39	15.845 15.951 16.556 17.020	2335 2354 2458 2526	2343 2361 2464 2543	2354 2374 2472 2555	VV VV PV BV	5 5 7 7	5081 9821 9058 5104	169575 203714 170337 139221	0.16% 0.20% 0.16% 0.13%	0.058% 0.070% 0.058% 0.048%
				Sum	of	c	orrected	areas:	292748479	

Table F19 Area percent report for HS-SPME (PDMS fibre coating) at 40 °C.

						Aı	PDMSS rea Perce	5440A ent Report		
Dat Acc Sar Mis	ta File q On mple sc	: C:\/ : 26 MK : MK	MSDCHI Mar 20 samp	EM\1\1 007 : le 4	DATA 11:3 PDMS	4 5 (PDMSS440. coating -	.D - temp 4	Oper 40C Inst Mult Sample Am	Vial: 90 ator: patricia : Instrumer iplr: 1.00 ount: 0.00
MS	Integra	ation I	Param	s: au	toin	it:	1.e			
Me Ti	thod tle	: C:\/	ISDCH	EM\1\	МЕТН	10[DS\DEFAUL	T.M (Chem	station I	ntegrator)
Sig	gnal	: TIC								
peal #	k R.T. min	first scan	max scan	last scan	PK TY		peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.367 2.655 2.696 3.366 3.589	39 93 103 208 249	49 98 105 219 257	74 103 135 249 268	BV PV VV PV VV	332	42147 41204 22951 2417344 9683	933508 789360 798154 46878933 220870	0.80% 0.68% 0.68% 40.14% 0.19%	0.263% 0.222% 0.225% 13.213% 0.062%
6 7 8 9 10	3.818 3.924 4.318 4.635 4.723	287 305 357 427 440	296 314 381 435 450	305 346 404 440 454	PV VV BV PV VV	2 2 2	21094 144449 97026 10378 137384	462113 3554169 2500757 242409 3445044	0.40% 3.04% 2.14% 0.21% 2.95%	0.130% 1.002% 0.705% 0.068% 0.971%
11 12 13 14 15	4.793 4.923 13.266 13.413 13.454	454 475 1897 1920 1933	462 484 1904 1929 1936	475 519 1912 1933 1949	VV VV PV VV VV	5	874727 729999 5231 86391 50856	22267984 19326667 100835 1481001 887620	19.07% 16.55% 0.09% 1.27% 0.76%	6.276% 5.447% 0.028% 0.417% 0.250%
16 17 18 19 20	13.624 13.942 14.024 14.083 14.171	1959 2003 2026 2038 2051	1965 2019 2033 2043 2058	1979 2026 2038 2051 2067	VV VV VV VV VV	2 5	37033 9540 55939 147707 2255600	659665 208619 955948 2327379 33809126	0.56% 0.18% 0.82% 1.99% 28.95%	0.186% 0.059% 0.269% 0.656% 9.529%
21 22 23 24 25	14.241 14.435 14.476 14.565 14.641	2067 2085 2108 2114 2131	2070 2103 2110 2125 2138	2076 2108 2114 2131 2148	VV VV VV VV VV	6 4	10940 39282 6437 6593497 789738	235423 945592 96068 116778576 11872182	0.20% 0.81% 0.08% 100.00% 10.17%	0.066% 0.267% 0.027% 32.915% 3.346%
26 27 28 29 30	14.717 14.753 14.800 14.923 14.976	2148 2153 2161 2178 2192	2151 2157 2165 2186 2195	2153 2161 2178 2192 2204	VV VV VV VV VV	4 3 2	15391 61086 142001 1319982 39092	209405 992227 2983221 19499507 929902	0.18% 0.85% 2.55% 16.70% 0.80%	0.059% 0.280% 0.841% 5.496% 0.262%
31 32 33 34 35	15.070 15.117 15.164 15.258 15.317	2204 2215 2223 2231 2247	2211 2219 2227 2243 2253	2215 2223 2231 2247 2265	VV VV VV VV VV	3 2 2	119441 98502 54078 739021 1937584	2447911 1747416 989862 13302360 35429273	2.10% 1.50% 0.85% 11.39% 30.34%	0.690% 0.493% 0.279% 3.749% 9.986%
36 37 38 39 40	15.405 15.481 15.552 15.652 15.845	2265 2273 2287 2303 2338	2268 2281 2293 2310 2343	2273 2287 2303 2318 2355	VV VV VV VV VV	2 2 5 6	52336 53029 47929 16757 6271	927547 1172839 920126 504901 192406	0.79% 1.00% 0.79% 0.43% 0.16%	0.261% 0.331% 0.259% 0.142% 0.054%
41 42 43	15.951 16.204 16.556	2355 2397 2458	2361 2404 2464	2376 2414 2471	VV VV BV	7 7 3	9903 4005 12260	204507 116997 222760	0.18% 0.10% 0.19%	0.058% 0.033% 0.063%

44 17.021 2526 2543 2556 PV 7 8166 214389 0.18% 0.060% Sum of corrected areas: 354785559 Table F20 Area percent report for HS-SPME (PDMS fibre coating) at 60 °C.

	PDMSS460 Area Percent Report
Data File Acq On Sample Misc	: C:\MSDCHEM\1\DATA\PDMSS460.D Vial: 90 : 26 Mar 2007 12:28 Operator: patricia : MK sample 4 PDMS coating - temp 60C Inst : Instrumen : Multiplr: 1.00 Sample Amount: 0.00
MS Integra	ation Params: autointi.e
Method Title	: C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) :
Signal	: TIC
peak R.T. # min	first max last PK peak corr. corr. % of scan scan scan TY height area % max. total
$\begin{array}{ccccccc} 1 & 2.361 \\ 2 & 2.637 \\ 3 & 2.678 \\ 4 & 3.242 \\ 5 & 3.366 \end{array}$	39 48 84 VV 150455 2735667 0.98% 0.246% 84 95 99 PV 222249 3744295 1.34% 0.337% 99 102 149 VV 2 162351 4762388 1.70% 0.429% 191 198 207 VV 4 5249 114366 0.04% 0.010% 207 219 248 PV 7778861 178935384 64.01% 16.110%
6 3.583 7 3.642 8 3.806 9 3.912 10 4.153	248 256 263 VV 54166 1151670 0.41% 0.104% 263 266 282 VV 10 5760 184413 0.07% 0.017% 282 294 304 VV 135836 2817554 1.01% 0.254% 304 312 342 VV 957013 22304294 7.98% 2.008% 342 353 366 VV 8304 429012 0.15% 0.039%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	366379402VV573075143833605.15%1.295%402409422VV4151044284070.15%0.039%422432437VV9308421991270.79%0.198%437448453VV774846219526757.85%1.976%453462473VV459969912447623044.53%11.207%
164.929175.299186.004196.280207.238	473485536VV449078511819081042.28%10.641%536548586VV4154666515670.23%0.059%649668697BV3176566554970.23%0.059%704715738VV4179886832910.24%0.062%866878905PV433271802240.06%0.016%
21 8.671 22 10.369 23 12.561 24 12.632 25 13.260	109811221162BV465004042910.14%0.036%138614111434PV946072531790.09%0.023%177017841791PV86331942790.07%0.017%179117961808VV83667931260.03%0.008%188719031919PV2137202676130.10%0.024%
26 13.413 27 13.454 28 13.624 29 13.942 30 14.024	191919291933VV20631936464251.30%0.328%193319361953VV9788416475720.59%0.148%195319651985VV18768531374051.12%0.282%201120192026VV3452379048960.32%0.081%202620332038VV225195744529091.59%0.401%
3114.0833214.1773314.2473414.2943514.447	2038 2043 2051 VV 305916 5155244 1.84% 0.464% 2051 2059 2066 VV 4220392 67087554 24.00% 6.040% 2066 2071 2076 VV 2 34773 712417 0.25% 0.064% 2076 2079 2086 VV 3 17226 397914 0.14% 0.036% 2086 2105 2115 VV 3 109022 3876392 1.39% 0.349%
3614.5883714.6473814.7173914.7534014.794	211521292134VV29342179279534406100.00%25.167%213421392149VV25385253803800313.61%3.425%214921512153VV474056234090.22%0.056%215321572161VV220148630000071.07%0.270%216121642179VV247728491327533.27%0.822%
41 14.929 42 14.976 43 15.070	217921872193VV36615205448146719.49%4.905%219321952203VV210690520761980.74%0.187%220322112215VV231596763679782.28%0.573%

	45 447	2215 2210 2		PDMS	s460	1 5 000	0.0070
44	15.117	2215 2219 2	2224 VV	253825	4406219	1.58%	0.397%
45	15.164		2231 VV 2	124572	2273012	0.81%	0.205%
46	15.258	2231 2243 2	2247 VV	1804288	32122335	11.49%	2.892%
47	15.317	2247 2253 2	2264 VV 3	4072750	77080956	27.57%	6.940%
48	15.399	2264 2267 2	2273 VV	111465	1919566	0.69%	0.173%
49	15.481	2273 2281 2	2287 VV	94285	2057396	0.74%	0.185%
50	15.552	2287 2293 2	2303 VV 2	94264	1742861	0.62%	0.157%
51	15.652	2303 2310 2	2319 VV 4	27553	851178		0.077%
52	15.716	2319 2321 2	2336 VV 4	7768	283777		0.026%
53	15.840	2336 2342 2	2355 VV 7	9425	320000	0.11%	0.029%
54	15.951	2355 2361 2	2377 VV 4	15021	352307	0.13%	0.032%
55	16.204	2396 2404 2	2421 VV 4	6177	210514	0.08%	0.019%
56	16.556	2456 2464 24	2471 VV 4	13930	288365	0.10%	0.026%
57	16.627	2471 2476 24	2490 VB 4	3684	99522	0.04%	0.009%
58	17.021	2526 2543 2	2554 PV 9	10340	259718	0.09%	0.023%
		:	Sum of co	orrected	areas: 11	10733395	

						Aı	PDMS rea Perce	4480 ent Report		
Dat Acq Sam Mis	a File On ple c	: C:\/ : 26 / : MK :	MSDCH Mar 20 samp	EM\1\1 007 : le 4	DATA 13:2 PDMS	\ 9 0	PDMS4480 coating ·	.D - temp 8	Oper 30C Inst Mult Sample Am	Vial: 90 ator: patricia : Instrumen iplr: 1.00 ount: 0.00
MS	Integra	ation	Param	s: au	toin	t	L.e			
Met Tit	hod le	: C:\I :	MSDCH	EM\1\	МЕТН	0[DS\DEFAU	_T.M (Chems	station I	ntegrator)
Sig	nal	: TIC								
peak #	R.T. min	first scan	max scan	last scan	PK TY		peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.249 2.361 2.637 2.684 2.984	10 40 80 98 149	29 48 95 103 154	40 80 98 141 168	BV VV PV VV VV	3 2 4	10999 248053 530516 570081 12735	158693 4291305 8814290 14023315 463526	0.02% 0.52% 1.07% 1.71% 0.06%	0.005% 0.128% 0.263% 0.419% 0.014%
6 7 8 9 10	3.248 3.378 3.589 3.812 3.924	184 207 249 280 304	199 221 257 295 314	207 249 280 304 338	VV VV VV VV VV	2	16672 8973993 168022 355691 2992101	467432 300342822 4203790 7615859 71289838	0.06% 36.59% 0.51% 0.93% 8.68%	0.014% 8.973% 0.126% 0.228% 2.130%
11 12 13 14 15	4.141 4.312 4.488 4.629 4.735	338 366 401 424 438	351 380 410 434 452	360 401 424 438 455	VV VV VV VV VV	6 3	34191 2053202 78428 242821 2173543	1341604 52907624 2116178 6280820 70755599	0.16% 6.45% 0.26% 0.77% 8.62%	0.040% 1.581% 0.063% 0.188% 2.114%
16 17 18 19 20	4.829 4.976 5.299 5.616 6.004	455 476 537 591 656	468 493 548 602 668	476 537 572 633 690	VV VV VV VB PV	2 8 2	8655479 8345737 104695 17095 99132	354264279 329890771 3194617 759002 3343197	43.16% 40.19% 0.39% 0.09% 0.41%	10.584% 9.856% 0.095% 0.023% 0.100%
21 22 23 24 25	6.180 6.268 6.439 6.685 7.255	690 703 732 773 864	698 713 742 784 881	703 732 773 818 896	VV VV VV VB PV	7 2 4 3 8	8742 146344 30961 12615 13927	296382 5083166 1685332 602323 829425	0.04% 0.62% 0.21% 0.07% 0.10%	0.009% 0.152% 0.050% 0.018% 0.025%
26 27 28 29 30	8.648 8.948 9.523 9.664 10.334	1093 1154 1256 1276 1390	1118 1169 1267 1291 1405	1154 1209 1276 1330 1459	BV VV VV VV VV	3 6 8 5 3	103090 25119 8022 26248 94908	5123928 1581944 396456 1614495 4665200	0.62% 0.19% 0.05% 0.20% 0.57%	0.153% 0.047% 0.012% 0.048% 0.139%
31 32 33 34 35	12.549 12.637 12.931 13.078 13.266	1763 1791 1833 1862 1894	1782 1797 1847 1872 1904	1791 1822 1861 1883 1917	BV VB BB BV VV	2 4 6 2	98602 23110 7888 13007 61931	2022542 544158 143203 373578 1302052	0.25% 0.07% 0.02% 0.05% 0.16%	0.060% 0.016% 0.004% 0.011% 0.039%
36 37 38 39 40	13.419 13.454 13.625 13.771 13.948	1917 1934 1952 1984 2012	1930 1936 1965 1990 2020	1934 1952 1977 2003 2027	VV VV VV VV VV	9 2	934143 512266 714353 8867 190943	18546335 8657238 12865742 278523 4211181	2.26% 1.05% 1.57% 0.03% 0.51%	0.554% 0.259% 0.384% 0.008% 0.126%
41 42 43	14.030 14.089 14.200	2027 2039 2052	2034 2044 2063	2039 2052 2070	VV VV VV		960152 1225032 9002997	20027731 26176235 237628796	2.44% 3.19% 28.95%	0.598% 0.782% 7.100%

Table F21 Area percent report for HS-SPME (PDMS fibre coating) at 80 °C.

	14.205	2070	2074	2070		-	PDMS	4480			0.0070
44	14.265	2070	2074	2079		4	218991	324156	0 0.1 9 0.8	39% 81%	0.097%
		2000									
46	14.500	2105	2114	2117		3	286564	1106696	7 1.3	35%	0.331%
48	14.811	2157	2167	2181	Ŵ	ž	3128888	7214468	1 8.7	79%	2.155%
49	14.958	2181	2192	2206	W	2	9480877	22019157	26.8	32%	6.579%
50	15.082	2206	2213	2217	vv	2	2102973	4090344	9 4.3	10%	1.222%
51	15.129	2217	2221	2226	VV		1421920	2538309	0 3.0	09%	0.758%
52	15.1/0	2220	2229	2233	VV VV		7009213	1721/6/6	1 20 0	00% 07%	0.383%
54	15 358	2251	2260	2266	ŵ	4	10059739	3070685	74 37	41%	9 174%
55	15.411	2266	2269	2274	ŵ		857293	1279451	5 1.	56%	0.382%
	15 400	2274					710244	1057060			0.40.00
56	15.493	2274	2283	2288	vv	2	/19244	1357968	1.0	25%	0.406%
27	15.552	2288	2293	2303	vv	4	585695	1169925	6 1.4	13%	0.350%
50	15.007	2303	2221	2227	VV VV	5	52247	12208/		15%	0.171%
60	15 834	2335	2321	2327	Ŵ	5	157064	339360		11%	0.037%
00	13.034	2555	2341	2334	••		157004	333300	· · · ·	11/0	0.101/6
61	15.951	2354	2361	2376	VV		120610	257934	6 0.3	31%	0.077%
62	16.081	2376	2383	2387	VV	8	15400	40467	3 0.0	05%	0.012%
63	16.128	2387	2391	2397	VV	3	300/1	6/102	8 0.0	08%	0.020%
64	16.204	2397	2404	2421	vv	5	61662	198484	0.4	24%	0.059%
65	10.333	2421	2420	2435	vv	6	12801	40672	0.0	J5%	0.012%
66	16.445	2435	2445	2450	vv	5	21838	52237	2 0.0	06%	0.016%
67	16.556	2457	2464	2471	VV	2	165750	321210	9 0.3	39%	0.096%
68	16.627	2471	2476	2482	vv	3	42063	94480	0.1	12%	0.028%
69	16.786	2497	2503	2516	VV	8	10432	38947	0 0.0	05%	0.012%
70	17.015	2532	2542	2554	vv	2	139025	336275	0.4	¥1%	0.100%
71	17.121	2554	2560	2572	vv	8	17268	45142	0.0	05%	0.013%
				Sum	of	c	orrected	areas:	3347012	7703	
						-					

Table F22 Area percent report for HS-SPME (PA fibre coating) at room temperature.

							Ar	PA19 ea Perce	57RT ent Report		
Da Ac Sa Mi	ta F q On mple sc	ile	: C:\ : 11 / : sam :	MSDCHI Apr 20 ple 7	EM\1\1 007 : Pa1	DAT/ 10:1 roor	A\P 16 n t	AT-HS-2(emp.	007\PA1S7R	T.D Opera Inst Mult Sample Amo	vial: 1 ator: Patricia : Instrumen iplr: 1.00 punt: 0.00
MS	Int	egra	ation	Param	s: au	toir	nt1	.e			
Me Ti	thod tle		: C:\ :	MSDCH	EM\1\1	IETI	HOD	S\DEFAUL	.T.M (Chem	station In	ntegrator)
Si	gnal		: TIC								
pea #	k R	.T. in	first scan	max scan	last scan	Pł די	K Y I	peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2. 2. 2. 3. 3.	384 725 896 366 930	47 95 135 209 306	52 110 139 219 315	79 135 142 241 318	VV PV VV PV VV	5 3 7	2098 2704 1312 13606 1160	90262 218087 23494 339126 24709	1.51% 3.66% 0.39% 5.69% 0.41%	0.392% 0.947% 0.102% 1.472% 0.107%
6 7 8 9 10	3. 4. 4. 6.	959 317 793 940 350	318 366 440 478 713	320 381 462 487 727	327 389 478 528 738	VV VV PV VV PV	7 10 2 2 2	1155 1377 11354 12110 774	22451 4387 412913 541901 33818	0.38% 0.74% 6.92% 9.09% 0.57%	0.097% 0.190% 1.793% 2.353% 0.147%
11 12 13 14 15	13. 13. 13. 14. 14.	278 419 454 030 083	1890 1919 1933 2016 2037	1906 1930 1936 2034 2043	1919 1933 1961 2037 2052	VV PV VV BV VV	2 6 4 3	1174 6207 7697 1468 16682	41004 135126 171056 22531 279978	0.69% 2.27% 2.87% 0.38% 4.70%	0.178% 0.587% 0.743% 0.098% 1.216%
16 17 18 19 20	14. 14. 14. 14. 14.	171 429 553 647 758	2052 2094 2112 2132 2151	2058 2102 2123 2139 2158	2088 2112 2132 2151 2163	 VV <	2 10	321043 1990 390070 35753 2663	5138424 45611 5962657 661649 8870	86.18% 0.76% 100.00% 11.10% 7 1.49%	22.309% 0.198% 25.888% 2.873% 0.385%
21 22 23 24 25	14. 14. 15. 15. 15.	811 929 076 117 170	2163 2180 2205 2216 2224	2167 2187 2212 2219 2228	2180 2205 2216 2224 2231	<pre>>>> >>> >>> >>> >>>> >>>>>>>>>>>>>>></pre>	7 5 5 6	6803 84115 9923 8065 5459	224511 1495109 240781 179728 112487	3.77% 25.07% 4.04% 3.01% 1.89%	0.975% 6.491% 1.045% 0.780% 0.488%
26 27 28 29 30	15. 15. 15. 15. 15.	258 317 411 487 557	2231 2247 2266 2276 2289	2243 2253 2269 2282 2294	2247 2266 2276 2289 2304	 VV <	2 3 7 5 5	74709 208341 6631 7100 5913	1344023 4200701 147746 173416 140015	22.54% 70.45% 2.48% 2.91% 2.35%	5.835% 18.238% 0.641% 0.753% 0.608%
31 32 33 34 35	15. 15. 15. 15. 16.	651 728 863 957 121	2304 2319 2339 2355 2379	2310 2323 2346 2362 2390	2319 2333 2355 2371 2397	 VV <	5 5 5 5 5	2460 1731 1513 1611 1631	95511 47934 51016 40995 45772	1.60% 0.80% 0.86% 0.69% 0.77%	0.415% 0.208% 0.221% 0.178% 0.199%
36 37 38	16. 16. 17.	215 568 038	2397 2460 2528	2406 2466 2546	2419 2485 2558	VV VV PV	5 5 5	1410 2960 2319	53887 92198 49671	0.90% 1.55% 0.83%	0.234% 0.400% 0.216%
					Sum	of	co	rrected	areas:	23032880	

							Ar	PA1S ea Percer	740 nt Report		
Da Ac Sa Mi	ta Fil q On mple sc	e	C:\\ 11 / samp	MSDCHE Apr 20 ple 7	EM\1\I 007 : Pa1	DAT/ 11:(ter	A\P 06 mp.	A1S740.D -40C		Opera Inst Mult Gample Amo	Vial: 1 ator: Patricia : Instrumen iplr: 1.00 punt: 0.00
MS	Integ	rat	1 on I	Params	s: au	toii	nt1	.e			
Me Ti	thod tle	-	C:\/	ISDCH	EM\1\N	METI	HOD	S\DEFAULT	F.M (Chems	station In	ntegrator)
Si	gnal	:	TIC								
pea #	k R.T min	. f	irst scan	max scan	last scan	PI די	K Y I	peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.37 2.67 2.70 3.36 3.53	3 2 2 6 6	45 86 102 206 246	50 101 106 219 248	69 102 133 246 252	VV PV VV VV VV	4 5 2 4	7342 11645 16280 79190 1484	226730 211473 828321 1925779 26030	1.57% 1.46% 5.73% 13.32% 0.18%	0.503% 0.469% 1.836% 4.269% 0.058%
6 7 8 9 10	3.81 3.93 4.31 4.64 4.72	.8 6 .7 1 3	283 306 372 429 440	296 316 381 436 450	300 334 407 440 454	PV VV PV PV VV	9 4 3 6 4	1199 6398 5954 1174 10083	33383 214456 197777 25555 248964	0.23% 1.48% 1.37% 0.18% 1.72%	0.074% 0.475% 0.438% 0.057% 0.552%
11 12 13 14 15	4.78 4.92 6.30 8.71 13.26	8 9 3 2 0	454 476 712 1118 1891	461 485 719 1129 1903	476 525 721 1130 1909	VV VV PV PV PV	2 3 7 8 10	63616 86333 454 601 1084	1959096 3252376 5263 8766 28782	13.55% 22.49% 0.04% 0.06% 2 0.20%	4.343% 7.210% 0.012% 0.019% 0.064%
16 17 18 19 20	13.31 13.41 13.45 13.62 13.94	.3 .9 4 4 2	1909 1924 1933 1962 2009	1912 1930 1936 1965 2019	1918 1933 1950 1977 2027	 VV <	6 4 4 4	967 8771 9680 2036 1100	15193 166175 208862 50467 38864	0.11% 1.15% 1.44% 0.35% 0.27%	0.034% 0.368% 0.463% 0.112% 0.086%
21 22 23 24 25	14.02 14.08 14.17 14.43 14.49	4 3 1 5 4	2027 2037 2051 2095 2111	2033 2043 2058 2103 2113	2037 2051 2086 2111 2115	VV VV VV VV	8 3 8 3	3786 20612 415921 4091 1482	74386 374273 6627870 108577 17161	0.51% 2.59% 45.84% 0.75% 0.12%	0.165% 0.830% 14.693% 0.241% 0.038%
26 27 28 29 30	14.55 14.64 14.75 14.81 14.92	3 1 2 1 9	2115 2133 2150 2162 2180	2123 2138 2157 2167 2187	2133 2150 2162 2180 2206	VV VV VV VV VV	2 9 4	933786 77051 5658 10230 156187	14458365 1293756 145443 338828 2638861	100.00% 8.95% 1.01% 2.34% 18.25%	32.053% 2.868% 0.322% 0.751% 5.850%
31 32 33 34 35	15.07 15.11 15.17 15.25 15.31	6 7 0 8 7	2206 2216 2225 2232 2247	2212 2219 2228 2243 2253	2216 2225 2232 2247 2266	VV VV VV VV VV	6 3 5 2 2	14832 14535 8607 107989 288510	348766 297667 166441 1974445 5671579	2.41% 2.06% 1.15% 13.66% 39.23%	0.773% 0.660% 0.369% 4.377% 12.573%
36 37 38 39 40	15.41 15.49 15.55 15.64 15.86	1 3 7 6 9	2266 2277 2289 2305 2344	2269 2283 2294 2309 2347	2274 2289 2301 2319 2351	 VV <	6 5 6 10 6	7066 8717 6584 3132 1587	144694 206589 150778 107480 28967	1.00% 1.43% 1.04% 0.74% 0.20%	0.321% 0.458% 0.334% 0.238% 0.064%
41 42 43	15.96 16.11 16.21	3 .6 .6	2357 2386 2399	2363 2389 2406	2366 2399 2415	VV VV VV	8 8 8	1729 1488 1607	39102 42836 50287	0.27% 0.30% 0.35%	0.087% 0.095% 0.111%

Table F23 Area percent report for HS-SPME (PA fibre coating) at 40 °C.

44 45	16.568 17.032	2460 2538	2466 2545	2474 2553	vv vv	8 8	PA1S740 3016 2203	73804 54284	0.51% 0.38%	0.164% 0.120%
				Sum	of	corr	ected are	as:	45107548	

						PA1S Area Perce	760 nt Report		
Da Ac Sa Mi	ta Filo q On mple sc	e : C:\ : 11 : sam :	MSDCH Apr 2 ple 7	EM\1\I 007 : Pa1	DATA 12:0 tem	\PA1S760.D 2 p60C		Oper Inst Mult Sample Am	Vial: 1 ator: Patricia : Instrumer iplr: 1.00 ount: 0.00
MS	Integ	ration	Param	s: au	toin	t1.e			
Me Ti	thod tle	: C:\ :	MSDCH	EM\1\	METH	ODS\DEFAUL	T.M (Chem	station I	ntegrator)
Si	gnal	: TIC							
pea	k R.T	. first	max	last	PK	peak	corr.	corr.	% of
#	min	scan	scan	scan	TY	height	area	% max.	total
1	2.27	3 26	33	39	PV	8 2319	68726	0.10%	0.035%
2	2.36	7 39	49	75	VV	31485	817637	1.23%	0.413%
3	2.64	9 86	97	100	PV	3 79133	1330301	2.01%	0.672%
4	2.69	0 100	104	151	VV	118876	4274471	6.45%	2.160%
5	3.36	5 210	219	254	VV	430207	10834562	16.34%	5.475%
6 7 8 9 10	3.58 3.81 3.92 4.31 4.63	3 254 2 285 4 306 8 365 5 421	256 295 314 381 435	285 306 356 406 439	VV VV VV VV	4666 4 7502 2 48041 33977 3 9942	194671 214835 1656875 1158465 256228	0.29% 0.32% 2.50% 1.75% 0.39%	0.098% 0.109% 0.837% 0.585% 0.129%
11	4.71	7 439	449	453	VV	3 61751	1675720	2.53%	0.847%
12	4.78	8 453	461	475	VV	399463	11818416	17.83%	5.973%
13	4.92	3 475	484	536	VV	599048	19547780	29.49%	9.879%
14	5.64	5 589	607	609	VV	1380	63352	0.10%	0.032%
15	6.01	5 656	670	688	PV	2042	98593	0.15%	0.050%
16	6.29	8 707	718	748	PV	9 7181	390030	0.59%	0.197%
17	6.48	5 748	750	766	VV	9 866	31413	0.05%	0.016%
18	8.70	7 1115	1128	1131	BV	9 1628	47606	0.07%	0.024%
19	8.75	4 1131	1136	1146	VV	9 1268	35291	0.05%	0.018%
20	10.41	5 1404	1419	1453	PV	9 1867	153686	0.23%	0.078%
21	12.58	4 1772	1788	1796	PV	9 1190	53518	0.08%	0.027%
22	13.26	5 1896	1904	1922	VV	9 2426	90973	0.14%	0.046%
23	13.41	9 1922	1930	1934	VV	3 29574	590024	0.89%	0.298%
24	13.45	4 1934	1936	1958	VV	2 25811	579353	0.87%	0.293%
25	13.63	0 1958	1966	1978	VV	4 11180	260804	0.39%	0.132%
26	13.94	2 2013	2019	2027	VV	9 4308	111688	0.17%	0.056%
27	14.02	4 2027	2033	2038	VV	19836	371232	0.56%	0.188%
28	14.08	3 2038	2043	2051	VV	2 74205	1321017	1.99%	0.668%
29	14.17	1 2051	2058	2075	VV	1272289	20934563	31.58%	10.580%
30	14.29	4 2075	2079	2089	VV	10 4371	14591	2 0.22%	0.074%
31	14.43	5 2089	2103	2113	VV	20362	556382	0.84%	0.281%
32	14.55	9 2113	2124	2133	VV	4105443	66289211	100.00%	33.500%
33	14.64	1 2133	2138	2149	VV	360821	5866754	8.85%	2.965%
34	14.71	7 2149	2151	2153	VV	3 8546	128360	0.19%	0.065%
35	14.75	8 2153	2158	2161	VV	4 25421	432912	0.65%	0.219%
36 37 38 39 40	14.80 14.92 15.07 15.11 15.17	5 2161 9 2180 5 2203 7 2216 0 2224	2166 2187 2212 2219 2228	2180 2203 2216 2224 2232	VV VV VV VV	2 65531 673938 4 64184 2 54430 2 29584	1586405 10959875 1456211 1060803 583277	2.39% 16.53% 2.20% 1.60% 0.88%	0.802% 5.539% 0.736% 0.536% 0.295%
41	15.25	8 2232	2243	2247	VV	406437	7483370	11.29%	3.782%
42	15.31	7 2247	2253	2265	VV	2 1017164	19358621	29.20%	9.783%
43	15.41	1 2265	2269	2274	VV	3 24206	493716	0.74%	0.250%

Table F24 Area percent report for HS-SPME (PA fibre coating) at 60 °C.

					PA1S76	50		
44 45	15.487 15.558	2274 228 2288 229	2 2288 VV 4 2305 VV	23	24382 21790	586533 494773	0.88% 0.75%	0.296% 0.250%
46 47 48 49 50	15.652 15.863 15.957 16.116 16.216	2305 231 2339 234 2354 236 2380 238 2398 240	0 2327 VV 6 2354 VV 2 2380 VV 9 2398 VV 6 2422 VV	9 9 9 9 9 9	7628 3173 4432 2517 3730	349972 130826 195755 115439 157825	0.53% 0.20% 0.30% 0.17% 0.24%	0.177% 0.066% 0.099% 0.058% 0.080%
51 52 53 54 55	16.574 16.633 17.032 17.126 19.101	2460 246 2474 247 2535 254 2557 256 2886 289	7 2474 VV 7 2490 VV 5 2557 VV 1 2576 VV 7 2903 PV	9 9 9 10 9	5140 2016 4230 1684 888	141439 82110 146132 70328 23284	0.21% 0.12% 0.22% 0.11% 0.04%	0.071% 0.041% 0.074% 0.036% 0.012%
			Sum of	cor	rected ar	eas: 19	7878057	

						PA1S Area Perce	780 ent Report		
Dat Acq Sam Mis	a File 1 On 1ple 5c	: C:\ : 11 / : sam :	MSDCHI Apr 20 ple 7	EM\1\I 007 : Pa1	DATA 12:59 temp	\PA1S780.[9 080C)	Opera Inst Multi	Vial: 1 ator: Patricia : Instrumen iplr: 1.00 punt: 0.00
MS	Integra	ation	Param	s: aut	toin	t1.e		ampre Am	June: 0.00
Met Tit	hod 1e	: C:\/	MSDCH	EM\1\/	МЕТН	DDS\DEFAUL	T.M (Chems	tation In	ntegrator)
Sig	jnal	: TIC							
peak	R.T.	first	max	last	PK	peak	corr.	corr.	% of
#	min	scan	scan	scan	TY	height	area	% max.	total
1	2.249	19	29	42	PV	3 15595	465397	0.16%	0.046%
2	2.361	42	48	79	VV	108295	2243301	0.79%	0.221%
3	2.637	84	95	98	PV	2 432402	6922308	2.43%	0.682%
4	2.684	98	103	140	VV	2 668955	17582635	6.16%	1.733%
5	3.366	208	219	252	VV	3454584	81687927	28.64%	8.052%
6	3.583	252	256	264		4 30281	839868	0.29%	0.083%
7	3.642	264	266	286		4 11729	479239	0.17%	0.047%
8	3.812	286	295	305		52421	1273208	0.45%	0.126%
9	3.918	305	313	345		454547	12080685	4.24%	1.191%
10	4.153	345	353	367		10130	414384	0.15%	0.041%
11	4.312	367	380	403	VV	307128	8644034	3.03%	0.852%
12	4.488	403	410	424	VV	4 9182	269393	0.09%	0.027%
13	4.629	424	434	438	PV	69067	1586650	0.56%	0.156%
14	4.717	438	449	453	VV	470180	14033010	4.92%	1.383%
15	4.793	453	462	475	VV	3040705	87442783	30.66%	8.619%
16	4.929	475	485	539	VV	4485099	131530646	46.11%	12.965%
17	5.299	539	548	570	VV	4 13470	487787	0.17%	0.048%
18	5.475	570	578	580	PV	8 3791	81371	0.03%	0.008%
19	5.610	594	601	615	VV	8 7427	280560	0.10%	0.028%
20	6.016	655	670	685	BV	5 15734	635612	0.22%	0.063%
21	6.180	691	698	703	VV	5 7020	212907	0.07%	0.021%
22	6.274	703	714	737	VV	3 113972	4722269	1.66%	0.465%
23	6.468	737	747	776	VV	3 11599	866774	0.30%	0.085%
24	7.279	870	885	896	PV	3 7861	372203	0.13%	0.037%
25	7.937	987	997	1016	PV	3 3709	174770	0.06%	0.017%
26	8.665	1106	1121	1161	PV	3 56772	3539382	1.24%	0.349%
27	8.971	1161	1173	1189	VV	3 6624	429772	0.15%	0.042%
28	9.529	1257	1268	1270	VV	10 4529	9 98771	0.03%	0.010%
29	9.688	1279	1295	1314	VV	10 8862	2 530066	0.19%	0.052%
30	10.352	1394	1408	1443	PV	5 56922	2985402	1.05%	0.294%
31	12.561	1765	1784	1793	PV	4 17856	471583	0.17%	0.046%
32	12.643	1793	1798	1814	VV	5 5450	165995	0.06%	0.016%
33	13.266	1897	1904	1920	VV	4 9920	302799	0.11%	0.030%
34	13.419	1920	1930	1934	VV	156905	3090294	1.08%	0.305%
35	13.454	1934	1936	1949	VV	3 123508	2388478	0.84%	0.235%
36	13.630	1958	1966	1983		82721	1603532	0.56%	0.158%
37	13.948	2013	2020	2027		3 26923	606424	0.21%	0.060%
38	14.024	2027	2033	2038		2 135552	2508712	0.88%	0.247%
39	14.083	2038	2043	2051		348348	6084267	2.13%	0.600%
40	14.177	2051	2059	2069		4831417	81281826	28.50%	8.012%
41	14.247	2069	2071	2076	VV	3 26261	481495	0.17%	0.047%
42	14.300	2076	2080	2089	VV	5 13342	394334	0.14%	0.039%
43	14.412	2089	2099	2100	VV	3 38326	670027	0.23%	0.066%

Table F25 Area percent report for HS-SPME (PA fibre coating) at 80 °C.

44 45	14.441 14.582	2100 2104 2115 2128	2115 VV 2134 VV	PA1S7 3 79599 12985302	780 2120473 285233004	0.74% 100.00%	0.209% 28.116%
46	14.647	2134 2139	2149 VV	1814307	28041030	9.83%	2.764%
47	14.717	2149 2151	2154 VV	2 41170	590096	0.21%	0.058%
48	14.758	2154 2158	2161 VV	158622	2427031	0.85%	0.239%
49	14.800	2161 2165	2179 VV	434738	8736068	3.06%	0.861%
50	14.929	2182 2187	2193 M	3599628	49774136	17.45%	4.906%
51	14.982	2194 2196	2203 VV	110155	2310664	0.81%	0.228%
52	15.076	2203 2212	2216 VV	2 381187	7914673	2.77%	0.780%
53	15.117	2216 2219	2224 VV	2 261617	4904017	1.72%	0.483%
54	15.170	2224 2228	2231 VV	2 128026	2432220	0.85%	0.240%
55	15.264	2231 2244	2248 VV	2081475	38242731	13.41%	3.770%
56	15.322	2248 2254	2265 VV	2 4644262	88395848	30.99%	8.713%
57	15.405	2265 2268	2274 VV	111112	1893852	0.66%	0.187%
58	15.487	2274 2282	2288 VV	112977	2430955	0.85%	0.240%
59	15.552	2288 2293	2304 VV	3 105636	2005129	0.70%	0.198%
60	15.657	2304 2311	2319 VV	4 33750	953648	0.33%	0.094%
61	15.716	2319 2321	2334 VV	4 10683	357638	0.13%	0.035%
62	15.845	2334 2343	2356 VV	3 17746	596501	0.21%	0.059%
63	15.951	2356 2361	2370 VV	5 18770	413354	0.14%	0.041%
64	16.133	2388 2392	2398 VV	9 5804	141668	0.05%	0.014%
65	16.210	2398 2405	2421 VV	10 13183	419125	0.15%	0.041%
66	16.568	2459 2466	2473 VV	3 26959	570666	0.20%	0.056%
67	16.633	2473 2477	2485 VV	10 6552	170419	0.06%	0.017%
68	17.026	2527 2544	2554 PV	5 19248	455755	0.16%	0.045%
			Sum of	corrected	areas: 10	14493578	

Table F26 Area percent report for the headspace analysis at room temperature.

		HSMM Area Perc	KS7RT ent Report	
Data File Acq On Sample Misc	: C:\MSDCHEM\1 : 12 Apr 2007 : sample 7 hea :	\DATA\HSMKS7RT 10:07 dspace Mk room	.D V Opera temp. Inst Multi Sample Amo	ial: 1 tor: Patricia : Instrumen plr: 1.00 unt: 0.00
MS Integr	ation Params: a	utoint1.e	Stamp re 74110	une: 0.00
Method Title	: C:\MSDCHEM\1	\METHODS\DEFAU	LT.M (Chemstation In	tegrator)
Signal	: TIC			
peak R.T. # min	first max las scan scan sca	t PK peak n TY height	corr. corr. area % max.	% of total
1 2.361 2 2.666 3 3.354 4 3.918 5 4.306	43 48 8 95 100 12 209 217 24 302 313 32 335 379 39	0 VV 5 4335 4 VV 5 2388 7 PV 113511 4 PV 5 3411 1 BV 4 2376	120592 5.24% 115321 5.01% 2300421 100.00% 91451 3.98% 72106 3.13%	1.767% 1.689% 33.698% 1.340% 1.056%
6 4.711 7 4.782 8 4.917 9 14.171 10 14.553	440 448 45 452 460 47 474 483 54 2041 2058 206 2112 2123 213	2 VV 8 3191 4 VV 3 18005 5 VB 3 16078 8 BV 5 9019 3 PV 2 101763	79365 3.45% 521618 22.67% 547785 23.81% 151944 6.61% 1511485 65.70%	1.163% 7.641% 8.024% 2.226% 22.141%
11 14.641 12 14.805 13 14.923 14 14.982 15 15.258	2133 2138 215 2153 2166 216 2178 2186 219 2192 2196 220 2226 2243 224	3 VV 5 7545 9 VV 5 2007 2 VV 2 14365 7 VV 2 2625 7 VV 2 6968	187196 8.14% 91836 3.99% 254798 11.08% 104168 4.53% 178907 7.78%	2.742% 1.345% 3.732% 1.526% 2.621%
16 15.317 17 18.160	2247 2253 229 2713 2737 275	1 VV 3 18918 1 PV 2 2001	405914 17.65% 91578 3.98%	5.946% 1.342%
	Su	n of corrected	areas: 6826486	

Table F27 Area percent report for the headspace analysis at 40 °C.

HSMKS740 Area Percent Report Data File : C:\MSDCHEM\1\DATA\HSMKS740.D Acq On : 12 Apr 2007 10:58 Sample : sample 7 headspace Mk temp. - 40C Vial: 1 Operator: Patricia Inst : Instrumen Multiplr: 1.00 Sample Amount: 0.00 Misc MS Integration Params: autoint1.e : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Method Title Signal : TIC peak R.T. first max last PK peak corr. corr. % of ΤY height total # min scan scan scan area % max. ____ ___ ____ ---____ ____ -----_____ ____ ____ 1 2 2.373 50 70 PV 6 3393 93739 1.57% 2.22% 0.755% 36 139 PV 6 238 BV 273 VV 2.714 97 108 2194 132691 1.069% 3.360 5977910 100.00% 37764 0.63% 318896 3 198 247 218 255 48.151% 4 1143 0.304% 5 3.806 303 PV 6 46942 0.79% 283 294 1792 0.378% 323 M3 404 VV 3 453 VV 4 475 VV 532 VV 3 6 3.918 307 313 7390 186075 3.11% 1.499% 7 4.312 369 380 5909 186469 3.12% 1.502% 440 453 449 2.95% 21.04% 20.47% 1.421% 10.132% 9.855% 4.717 4.788 176368 1257931 8 9 6879 461 46605 4.923 475 35244 1223473 10 484 1954 1967 1971 PV 9 2039 2043 2050 VV 8 2050 2058 2075 PV 3 2116 2123 2132 VV 2132 2138 2152 VV 4 0.40% 1113.636 864 23766 0.191% 0.40% 0.26% 3.11% 31.00% 2.57% 874 10614 14.083 14.171 14.553 12 13 15827 0.127% 1.496% 14.925% 185697 128672 1852951 14 15 14.641 7766 153823 1.239% 2152 2156 2162 VV 9 2162 2168 2178 VV 9 2181 2186 2191 M3 2206 2212 2215 VV 8 14.747 14.817 14.923 988 1054 23363 34959 0.39% 0.58% 3.20% 16 0.188% 0.282% 17 18 13606 191487 19 15.076 1695 43856 0.73% 0.353% 20 15.117 2215 2219 2224 VV 8 1619 35039 0.59% 0.282% 2231 2243 2247 VV 7 2247 2253 2274 VV 3 2.51% 7418 150168 1.210% 15.258 21 22 15.317 18216 384538 6.43% 3.097% Sum of corrected areas: 12414837

Table F28 Area percent report for the headspace analysis at 60 °C.

Dat Acc San Mis	a File 1 On 1ple 5c	: C:\M : 12 / : samp : 0.1	ASDCHE Apr 20 Dle 7 mL in	EM\1\0 007 heads nject	DAT/ 11:5 spacion	A\H 53 ce	HSMKS760 mk temp	.D 60C	Opera Inst Mult	/ial: 1 ator: Patricia : Instrume iplr: 1.00
MS	Integra	ation A	Params	s: aut	toir	nti	L.e		Sample Am	June: 0.00
Met Tit	hod le	: C:\M :	ISDCH	EM\1\M	METH	10[DS\DEFAUL	T.M (Chem	station I	ntegrator)
Sig	mal	: TIC								
oeak #	R.T. min	first scan	max scan	last scan	Pł T\	K Y	peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.279 2.367 2.661 2.690 3.360	28 41 89 101 207	34 49 99 104 218	41 65 101 136 238	VV VV PV VV VV	8 2 4 5	843 13032 14060 18301 1617277	20935 298154 237789 804743 32513138	0.06% 0.92% 0.73% 2.48% 100.00%	0.028% 0.402% 0.321% 1.085% 43.831%
6 7 8 9 10	3.577 3.806 3.918 4.306 4.482	242 286 304 363 400	255 294 313 379 409	265 304 341 400 417	 VV <	6 2 9	6536 11547 68548 40987 1185	167456 261461 1857897 1146702 35018	0.52% 0.80% 5.71% 3.53% 0.11%	0.226% 0.352% 2.505% 1.546% 0.047%
11 12 13 14 15	4.623 4.711 4.782 4.911 6.016	423 437 452 472 667	433 448 460 482 670	437 452 472 503 678	 VV <	3 2 8	5723 55455 355893 349632 578	136796 1463739 9630402 9956642 13374	0.42% 4.50% 29.62% 30.62% 0.04%	0.184% 1.973% 12.983% 13.423% 0.018%
16 17 18 19 20	13.413 13.624 13.936 14.024 14.083	1921 1956 2014 2026 2039	1929 1965 2018 2033 2043	1942 1970 2026 2039 2051	PV PV VV VV VV	8 4 9 7 9	1203 3073 1045 3758 2727	43819 57476 23182 73808 47211	0.13% 0.18% 0.07% 0.23% 0.15%	0.059% 0.077% 0.031% 0.100% 0.064%
21 22 23 24 25	14.171 14.247 14.377 14.429 14.553	2051 2069 2089 2095 2114	2058 2071 2093 2102 2123	2069 2076 2095 2107 2132	PV VV BV VV VV	2 6 5 5	41850 1224 1226 2592 713372	635052 14946 15440 53505 10149304	1.95% 0.05% 0.05% 0.16% 31.22%	0.856% 0.020% 0.021% 0.072% 13.682%
26 27 28 29 30	14.641 14.753 14.811 14.929 14.976	2132 2153 2163 2181 2193	2138 2157 2167 2187 2195	2153 2163 2181 2193 2203	 VV <	7 7 9	44860 3696 3444 67965 3460	730632 83827 136104 1028695 87000	2.25% 0.26% 0.42% 3.16% 0.27%	0.985% 0.113% 0.183% 1.387% 0.117%
31 32 33 34 35	15.070 15.117 15.170 15.258 15.317	2203 2216 2225 2232 2247	2211 2219 2228 2243 2253	2216 2225 2232 2247 2266	 VV <	8 6 3 2	6695 6066 2790 33292 79762	173864 125298 60285 595759 1486673	0.53% 0.39% 0.19% 1.83% 4.57%	0.234% 0.169% 0.081% 0.803% 2.004%
36	15.552	2288	2293	2296	PV	7	1142	12026	0.04%	0.016%
				Sum	of	c	orrected	areas:	74178153	

Table F29 Area percent report for the headspace analysis at 80 °C.

	HSMKS780 Area Percent Report									
Da Ac Sa Mi	ta File q On mple sc	: C:\MSDCHEM\1\DATA\HSMKS780.D Via : 12 Apr 2007 12:51 Operato : sample 7 headspace mk temp 80C Inst : Multipl Sample Amoun						Vial: 1 ator: Patricia : Instrumen iplr: 1.00 ount: 0.00		
MS	Integra	ation	Param	s: aut	toin	t1	.e		апрте Ап	June: 0.00
Me Ti	thod tle	: C:\/	MSDCH	EM\1\/	ИЕТН	OD:	S\DEFAULT	Г.M (Chems	station I	ntegrator)
Si	gnal	: TIC								
pea #	k R.T. min	first scan	max scan	last scan	PK TY	I	peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.267 2.302 2.361 2.608 2.649	24 36 43 82 91	32 38 48 90 97	36 43 72 91 99	VV VV VV VV VV	9 4 2 5 2	1595 1221 19740 1600 38174	43966 18004 436416 16036 640365	0.07% 0.03% 0.72% 0.03% 1.06%	0.031% 0.013% 0.307% 0.011% 0.451%
6 7 8 9 10	2.684 2.984 3.236 3.360 3.583	99 147 191 208 248	103 154 197 218 256	121 161 208 240 274	VV VV VV PV BV	3	60975 2380 1423 3242582 12335	1782733 85149 44951 60588924 259519	2.94% 0.14% 0.07% 100.00% 0.43%	1.254% 0.060% 0.032% 42.626% 0.183%
11 12 13 14 15	3.806 3.918 4.041 4.124 4.153	282 304 333 343 351	294 313 334 348 353	304 333 343 351 356	PV VV VV VV VV	9 7 4	21475 152967 1615 1304 1478	436427 3734569 38430 24753 18232	0.72% 6.16% 0.06% 0.04% 0.03%	0.307% 2.627% 0.027% 0.017% 0.013%
16 17 18 19 20	4.306 4.488 4.623 4.711 4.782	366 401 425 437 452	379 410 433 448 460	398 421 437 452 472	VV VV VV VV VV	8 3 2	97866 3105 9924 120657 775103	2496320 97781 234983 3212675 19635603	4.12% 0.16% 0.39% 5.30% 32.41%	1.756% 0.069% 0.165% 2.260% 13.814%
21 22 23 24 25	4.917 5.293 6.021 6.292 8.712	472 540 658 707 1127	483 547 671 717 1129	520 558 680 731 1132	VV VV VV PV PV	4	825184 3874 2328 2822 406	21807761 144673 88519 124414 2895	35.99% 0.24% 0.15% 0.21% 0.00%	15.342% 0.102% 0.062% 0.088% 0.002%
26 27 28 29 30	10.363 10.399 12.573 13.413 13.454	1405 1412 1784 1924 1934	1410 1416 1786 1929 1936	1412 1425 1789 1934 1941	PV VV VV PV VV	5 9 4 7 6	620 1107 625 1711 1432	8000 21112 6771 35616 19364	0.01% 0.03% 0.01% 0.06% 0.03%	0.006% 0.015% 0.005% 0.025% 0.014%
31 32 33 34 35	13.624 13.936 14.024 14.083 14.171	1957 2013 2025 2039 2051	1965 2018 2033 2043 2058	1971 2025 2039 2048 2066	VV VV VV VV VV	5 8 6 2	5022 1845 5882 4331 76411	87745 34207 115987 75537 1136230	0.14% 0.06% 0.19% 0.12% 1.88%	0.062% 0.024% 0.082% 0.053% 0.799%
36 37 38 39 40	14.241 14.429 14.553 14.641 14.717	2066 2089 2114 2132 2149	2070 2102 2123 2138 2151	2076 2110 2132 2149 2153	VV VV VV VV VV	6 10 3	1908 3803 1176363 65272 2206	40138 113788 17096903 1035657 30379	0.07% 0.19% 28.22% 1.71% 0.05%	0.028% 0.080% 12.028% 0.729% 0.021%
41 42 43	14.752 14.811 14.923	2153 2162 2180	2157 2167 2186	2162 2180 2193	VV VV VV	6 10	6384 5985 117841	118207 203560 1742334	0.20% 0.34% 2.88%	0.083% 0.143% 1.226%

					HSMKS	780		
44	14.976	2193 2195	2201 VV	5	4550	100724	0.17%	0.071%
45	15.070	2205 2211	2216 VV	7 1	0644	254618	0.42%	0.179%
46	15.117	2216 2219	2224 VV	5	7694	164691	0.27%	0.116%
47	15.164	2224 2227	2231 VV	6	3575	75119	0.12%	0.053%
48	15.258	2231 2243	2247 VV	2 5	4916	1017250	1.68%	0.716%
49	15.317	2247 2253	2267 VV	2 12	9004	2440532	4.03%	1.717%
50	15.411	2267 2269	2274 VV	6	2348	39140	0.06%	0.028%
51	15.487	2274 2282	2289 VV	6	2271	70584	0.12%	0.050%
52	15.552	2289 2293	2303 VV	6	1825	41686	0.07%	0.029%
			Sum of	corre	cted a	ireas:	142139977	

Table F30 Area percent report for the essential oil obtained from the solvent extraction

with the internal standard added at the start of the extraction.

DCMSEA1 Area Percent Report									
Da Ac Sa Mi	Data File : D:\PATRICIA1\DCMSEA1.D Vial: 42 Acq On : 18 Jun 2009 11:01 Operator: Patricia Sample : dcm solvent ext. a- int.std. added at st Inst : Instrumen Misc : solvent ext.a int.std. added at start of Multiplr: 1.00 Sample Amount: 0.00								
MS	MS Integration Params: autoint1.e								
Me Ti	thod tle	: C:\/	ISDCH	EM\1\/	МЕТНО	DS\DEFAUL	T.M (Chems	tation In	tegrator)
Si	gnal	: TIC							
pea #	k R.T. min	first scan	max scan	last scan	PK TY	peak height	corr. area	corr. % max.	% of total
1 2 3 4 5	2.197 2.461 3.154 3.683 4.059	4 50 171 261 321	20 65 183 273 337	28 87 207 296 355	BV 5 PV 2 PV VV PV	45398 409740 2063288 185118 154946	717274 10644107 43131175 4876948 4390974	0.14% 2.06% 8.37% 0.95% 0.85%	0.028% 0.423% 1.712% 0.194% 0.174%
6 7 8 9 10	4.359 4.512 4.635 4.788 5.928	373 391 425 452 648	388 414 435 461 655	391 425 452 490 665	PV 2 VV VV VV 7 VV 7	37016 2223500 1341324 50245 18318	907931 72211886 40370526 2739733 522694	0.18% 14.01% 7.83% 0.53% 0.10%	0.036% 2.867% 1.603% 0.109% 0.021%
11 12 13 14 15	8.207 9.888 12.173 12.361 12.749	1025 1300 1687 1728 1810	1043 1329 1718 1750 1816	1076 1366 1728 1759 1826	BB 6 BV 4 PV 7 PV VV 8	15401 73318 20444 71848 11795	819163 4089172 718092 1469893 280673	0.16% 0.79% 0.14% 0.29% 0.05%	0.033% 0.162% 0.029% 0.058% 0.011%
16 17 18 19 20	12.914 13.008 13.243 13.284 13.401	1826 1850 1889 1905 1915	1844 1860 1900 1907 1927	1850 1864 1905 1915 1930	VV 8 VV 9 VV 2 VV 2 VV 2 VV 2	13431 17036 109207 36090 14469	324587 318757 2057363 605364 354061	0.06% 0.06% 0.40% 0.12% 0.07%	0.013% 0.013% 0.082% 0.024% 0.014%
21 22 23 24 25	13.454 13.666 13.777 13.860 13.924	1930 1966 1985 1998 2013	1936 1972 1991 2005 2016	1949 1985 1998 2013 2025	VV 2 VV 3 VV 3 VV 2	171915 79364 73401 319245 87092	3159135 2493578 1761437 6835958 2133587	0.61% 0.48% 0.34% 1.33% 0.41%	0.125% 0.099% 0.070% 0.271% 0.085%
26 27 28 29 30	14.012 14.083 14.130 14.277 14.318	2025 2038 2048 2059 2081	2031 2043 2051 2076 2083	2038 2048 2059 2081 2088	VV VV 4 VV 5 VV 2 VV 5	1473537 129859 56156 236407 112287	22309856 2613360 1555646 8248760 2087774	4.33% 0.51% 0.30% 1.60% 0.40%	0.886% 0.104% 0.062% 0.328% 0.083%
31 32 33 34 35	14.412 14.488 14.559 14.600 14.647	2088 2106 2122 2126 2135	2099 2112 2124 2131 2139	2106 2122 2126 2135 2151	VV 2 VV 2 VV 2 VV 2 VV 2	26179448 4940550 188925 1182722 1517488	515590408 76027553 2684261 17880048 31280341	100.00% 14.75% 0.52% 3.47% 6.07%	20.471% 3.019% 0.107% 0.710% 1.242%
36 37 38 39 40	14.776 14.829 14.917 14.964 15.111	2151 2167 2177 2190 2203	2161 2170 2185 2193 2218	2167 2177 2190 2203 2222	VV VV 2 VV VV	8130570 377886 1735867 1287628 13203869	119897867 9042939 35447995 28109385 236273206	23.25% 1.75% 6.88% 5.45% 45.83%	4.760% 0.359% 1.407% 1.116% 9.381%
41 42 43	15.170 15.240 15.329	2222 2237 2245	2228 2240 2255	2237 2245 2260	VV 2 VV VV 2	23014258 888527 1085636	447510451 18271390 36187406	86.80% 3.54% 7.02%	17.768% 0.725% 1.437%

44 15.387 45 15.487	2260 2265 2276 2276 2282 2289	DCMSEA1 VV 3 1091334 31483250 VV 3 604487 19030725	6.11% 1.250% 3.69% 0.756%
46 15.552	2289 2293 2304	VV 5 432404 16524617	3.20% 0.656%
47 15.669	2304 2313 2326	VV 847503 25095709	4.87% 0.996%
48 15.775	2326 2331 2334	VV 5 205184 5181599	1.00% 0.206%
49 15.816	2334 2338 2347	VV 5 211785 7792508	1.51% 0.309%
50 15.957	2347 2362 2370	VV 4 620769 24625629	4.78% 0.978%
51 16.063	2370 2380 2390	VV 2 635308 27398700	5.31% 1.088%
52 16.151	2390 2395 2405	VV 7 212995 8654222	1.68% 0.344%
53 16.257	2405 2413 2420	VV 3 265720 8952503	1.74% 0.355%
54 16.322	2420 2424 2427	VV 5 177672 4033457	0.78% 0.160%
55 16.374	2427 2433 2440	VV 1502861 34375486	6.67% 1.365%
56 16.439	2440 2444 2450	VV 3 580337 12579509	2.44% 0.499%
57 16.504	2450 2455 2458	VV 5 189950 4553169	0.88% 0.181%
58 16.551	2458 2463 2465	VV 4 264866 5458492	1.06% 0.217%
59 16.586	2465 2469 2483	VV 2 450206 14270759	2.77% 0.567%
60 16.692	2483 2487 2491	VV 6 95200 2347378	0.46% 0.093%
61 16.750	2491 2497 2499	<pre>VV 3 181409 3933966</pre>	0.76% 0.156%
62 16.833	2499 2511 2520	VV 2901092 65954132	12.79% 2.619%
63 16.921	2520 2526 2536	VV 6 319490 11501541	2.23% 0.457%
64 17.021	2536 2543 2562	VV 7 202756 10463858	2.03% 0.415%
65 17.185	2562 2571 2578	VV 7 93765 3588042	0.70% 0.142%
6617.2916717.3736817.4796917.6147017.961	2578 2589 2597	VV 7 72528 4023016	0.78% 0.160%
	2597 2603 2612	VV 7 62358 2542974	0.49% 0.101%
	2612 2621 2625	VV 10 41501 1476259	0.29% 0.059%
	2633 2644 2658	VV 8 96383 4742904	0.92% 0.188%
	2670 2703 2764	VV 8 111410 18794438	3.65% 0.746%
71 18.372	2764 2773 2794	VV 8 28472 1808871	0.35% 0.072%
72 18.560	2794 2805 2812	VV 8 18962 542799	0.11% 0.022%
73 18.895	2824 2862 2915	PV 2 2349798 166890512	32.37% 6.626%
74 19.300	2915 2931 2951	VV 4 363334 21537734	4.18% 0.855%
75 19.441	2951 2955 2975	VV 4 87569 5891545	1.14% 0.234%
76 19.647	2975 2990 2996	VV 3 595987 24908619	4.83% 0.989%
77 19.776	2996 3012 3078	VV 2 1128730 98711063	19.15% 3.919%
	Sum	of corrected areas: 251	8622696

Table F31 Area percent report for the essential oil obtained from the solvent extraction with the internal standard added at the end of the extraction.

DCMSEB1 Area Percent Report								
Data File : D:\PATRICIA1\DCMSEB1.D Vial: 42 Acq On : 18 Jun 2009 14:02 Operator: Patricia Sample : dcm sol. ext. b- int.std. added at start Inst : Instrume Misc : sol. ext.a int.std. added at start of in Multiplr: 1.00 Sample Amount: 0.00								
MS Integr	MS Integration Params: autoint1.e							
Method Title	: C:\MSDCHEM\ :	1\METHODS\DEFAU	LT.M (Chemstation In	ntegrator)				
Signal	: TIC							
peak R.T. # min	first max la scan scan sc	st PK peak an TY height	corr. corr. area % max.	% of total				
1 2.196 2 2.461 3 3.154 4 3.677 5 4.053	14 20 50 65 170 183 2 260 272 2 317 336 3	27 VV 5 47004 86 BV 2 478049 04 PV 2008662 90 VV 201294 57 BV 160778	806298 0.15% 11773926 2.14% 42630473 7.76% 5258771 0.96% 4470680 0.81%	0.027% 0.396% 1.434% 0.177% 0.150%				
6 4.359 7 4.447 8 4.511 9 4.635 10 4.788	377 388 3 391 403 4 405 414 4 425 435 4 451 461 4	91 BV 40662 05 VV 296195 25 VV 2441169 51 VV 1454606 72 VV 5 41103	998687 0.18% 7900752 1.44% 69984609 12.74% 41235161 7.51% 1814063 0.33%	0.034% 0.266% 2.355% 1.388% 0.061%				
11 9.899 12 12.179 13 12.379 14 13.248 15 13.290	1281 1331 13 1704 1719 17 1726 1753 17 1893 1901 19 1905 1908 19	81 BV 5 77676 26 PV 8 22119 761 PV 84761 105 PV 108990 115 VV 2 39542	4532024 0.82% 617699 0.11% 1720360 0.31% 1916926 0.35% 666747 0.12%	0.152% 0.021% 0.058% 0.065% 0.022%				
16 13.460 17 13.695 18 13.783 19 13.865 20 13.930	1925 1937 19 1970 1977 19 1986 1992 20 2000 2006 20 2014 2017 20	52 VV 171667 86 VV 2 107628 900 VV 4 86089 914 VV 340972 926 VV 5 101892	3597371 0.65% 2772095 0.50% 2092304 0.38% 7394060 1.35% 2680977 0.49%	0.121% 0.093% 0.070% 0.249% 0.090%				
21 14.024 22 14.089 23 14.136 24 14.253 25 14.283	2026 2033 20 2040 2044 20 2048 2052 20 2061 2072 20 2074 2077 20	40 VV 1580247 48 VV 2 143102 61 VV 2 79615 74 VV 4 206739 82 VV 292004	24215944 4.41% 2957196 0.54% 2969339 0.54% 5265852 0.96% 6105310 1.11%	0.815% 0.100% 0.100% 0.177% 0.205%				
26 14.329 27 14.424 28 14.494 29 14.565 30 14.606	2082 2085 20 2089 2101 21 2107 2113 21 2123 2125 21 2128 2132 21	89 VV 3 157147 07 VV 2782076 23 VV 2 5258845 28 VV 2 325778 36 VV 1325978	3277643 0.60% 7 549369164 100.00% 85088954 15.49% 5374238 0.98% 22131026 4.03%	0.110% 18.486% 2.863% 0.181% 0.745%				
31 14.653 32 14.788 33 14.841 34 14.929 35 14.970	2136 2140 21 2151 2163 21 2168 2172 21 2175 2187 21 2191 2194 22	51 VV 1884535 68 VV 8785895 75 VV 2 1001393 91 VV 3 2943331 05 VV 2 2338687	418161627.61%14309333226.05%235428794.29%10040507418.28%7353871213.39%	1.407% 4.815% 0.792% 3.379% 2.474%				
36 15.117 37 15.187 38 15.246 39 15.334 40 15.393	2205 2219 22 2223 2230 22 2238 2241 22 2246 2256 22 2262 2266 22	23 VV 1416077 38 VV 2 2492054 46 VV 2 1120908 62 VV 2 1189555 78 VV 3 1245227	2 269587589 49.07% 6 476287520 86.70% 25337570 4.61% 45608248 8.30% 42460304 7.73%	9.071% 16.026% 0.853% 1.535% 1.429%				
41 15.493 42 15.563 43 15.681	2278 2283 22 2291 2295 23 2306 2315 23	91 VV 3 801962 06 VV 4 580335 28 VV 1065140	26359794 4.80% 23812887 4.33% 38514614 7.01%	0.887% 0.801% 1.296%				

44 15.787 45 15.834	2328 2333 2337 2337 2341 2343	DCM5 VV 5 338383 VV 4 324479	SEB1 9398054 1.71% 6882469 1.25%	0.316% 0.232%
46 15.869 47 15.922 48 15.981 49 16.063 50 16.086	2343 2347 2351 2351 2356 2358 2358 2366 2374 2374 2380 2382 2382 2384 2395	VV 2 340255 VV 5 389928 VV 3 740048 VV 2 717427 VV 5 742908	8060283 1.47% 9732838 1.77% 26247486 4.78% 15976947 2.91% 21459007 3.91%	0.271% 0.327% 0.883% 0.538% 0.722%
51 16.180	2395 2400 2408	VV 7 338198	13182692 2.40% 15669132 2.85% 4692522 0.85% 40195358 7.32% 14809729 2.70%	0.444%
52 16.280	2408 2417 2425	VV 3 358761		0.527%
53 16.345	2425 2428 2430	VV 4 268817		0.158%
54 16.392	2430 2436 2445	VV 2 1435897		1.353%
55 16.468	2445 2449 2454	VV 3 637535		0.498%
56 16.574	2462 2467 2469	VV 6 354781	7656826 1.39%	0.258%
57 16.615	2469 2474 2487	VV 2 536252	18668633 3.40%	0.628%
58 16.774	2494 2501 2503	VV 5 240470	6259687 1.14%	0.211%
59 16.862	2503 2516 2525	VV 2 2714244	69521325 12.65%	2.339%
60 16.944	2525 2530 2540	VV 8 363505	15374805 2.80%	0.517%
61 17.044	2540 2547 2556	VV 6 253897	10687227 1.95% 5076588 0.92% 7561078 1.38% 41121990 7.49% 1755095 0.32%	0.360%
62 17.220	2570 2577 2583	VV 6 138966		0.171%
63 17.649	2638 2650 2666	VV 6 114986		0.254%
64 17.943	2666 2700 2741	VV 6 295599		1.384%
65 18.190	2741 2742 2750	VV 8 63503		0.059%
66 18.689	2805 2827 2829	VV 8 68465 VV 2 621627 VV 3 624211 VV 3 2284549 VV 3 108227	2893239 0.53%	0.097%
67 18.801	2829 2846 2848		18757455 3.41%	0.631%
68 18.824	2848 2850 2853		10427272 1.90%	0.351%
69 18.912	2853 2865 2908		160790126 29.27%	5.410%
70 19.224	2908 2918 2924		4936274 0.90%	0.166%
71 19.318	2924 2934 2964	VV 3 329315	18377663 3.35%	0.618%
72 19.665	2964 2993 3003	PV 2 539771	30651254 5.58%	1.031%
73 19.811	3003 3018 3045	VBA2 1480094	103071020 18.76%	3.468%
	Sum	of corrected	areas: 297187740	7
Table F32 Area percent report for the essential oil obtained from the Soxhlet extraction

 with the internal standard added at the start of the extraction.

DSOXAA7 Area Percent Report											
Data File : D:\PATRICIA1\DSOXAA7.D Vial: 1 Acq On : 26 Jun 2009 12:46 Operator: PATRICIA Sample : DCM SOXA.I.S. ADDED AT START Inst : Instrumen Misc : INT. STD. ADDED AT START OF EXTRACTION Multiplr: 1.00 Sample Amount: 0.00											
MS 1	MS Integration Params: autoint1.e										
Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title :											
Sig	nal	: TIC									
peak	R.T.	first	max	last	PK	peak	corr.	corr.	% of		
#	min	scan	scan	scan	TY	height	area	% max.	total		
1 2 3 4 5	2.191 2.461 2.984 3.154 3.407	4 49 146 166 214	19 65 154 183 226	27 86 166 203 235	BV 4 PV 2 VV 2 PV PV PV 5	109938 683431 48468 2563370 49014	1711429 16708592 1286219 51295625 1706657	0.21% 2.05% 0.16% 6.29% 0.21%	0.035% 0.343% 0.026% 1.052% 0.035%		
6	3.507	235	243	251	VV 3	25733	1169895	0.14%	0.024%		
7	3.683	258	273	285	VV	245450	6873617	0.84%	0.141%		
8	4.059	322	337	359	BV	215871	5814372	0.71%	0.119%		
9	4.359	377	388	392	BV 2	40221	972404	0.12%	0.020%		
10	4.447	392	403	407	VV	332282	8899523	1.09%	0.182%		
11	4.517	407	415	426	VV	2728356	75582347	9.26%	1.550%		
12	4.641	426	436	451	VV	1557266	42066113	5.15%	0.863%		
13	4.899	472	480	489	VV 4	37061	1417173	0.17%	0.029%		
14	5.087	505	512	531	VV 3	40040	1497592	0.18%	0.031%		
15	5.857	630	643	652	PV 5	23880	857253	0.11%	0.018%		
16	6.051	652	676	739	VV 3	280185	19986264	2.45%	0.410%		
17	9.917	1287	1334	1358	BV 7	70512	4445088	0.54%	0.091%		
18	10.869	1467	1496	1520	BV 3	56679	2641389	0.32%	0.054%		
19	12.185	1691	1720	1730	PV 3	25816	833554	0.10%	0.017%		
20	12.391	1730	1755	1763	VV	100239	2091597	0.26%	0.043%		
21 1	12.479	1763	1770	1777	VV	8070	207625	0.03%	0.004%		
22 1	12.696	1796	1807	1814	PV	13932	455658	0.06%	0.009%		
23 1	12.778	1814	1821	1826	VV 8	11267	259283	0.03%	0.005%		
24 1	12.943	1826	1849	1856	PV 2	70629	1631141	0.20%	0.033%		
25 1	13.013	1856	1861	1867	VV 8	26010	654253	0.08%	0.013%		
26	13.119	1867	1879	1883	VV 8	14084	611910	0.07%	0.013%		
27	13.254	1893	1902	1906	VV	104558	1974182	0.24%	0.040%		
28	13.296	1906	1909	1915	VV 4	56131	1186091	0.15%	0.024%		
29	13.466	1915	1938	1956	VV 2	211130	7233445	0.89%	0.148%		
30	13.630	1956	1966	1972	VV 2	48153	2454026	0.30%	0.050%		
31 1	13.713	1972	1980	1988	VV	226228	5752270	0.70%	0.118%		
32 1	13.789	1988	1993	1999	VV 4	122414	3638077	0.45%	0.075%		
33 1	13.871	1999	2007	2015	VV	411645	10068900	1.23%	0.206%		
34 1	13.936	2015	2018	2026	VV 5	161921	5091406	0.62%	0.104%		
35 1	14.024	2026	2033	2040	VV	1767223	28361865	3.48%	0.582%		
36	14.095	2040	2045	2049	VV 3	220128	5465195	0.67%	0.112%		
37	14.147	2049	2054	2058	VV 6	154018	4518480	0.55%	0.093%		
38	14.288	2058	2078	2083	VV 3	426344	21670466	2.66%	0.444%		
39	14.335	2083	2086	2089	VV 4	335759	7310176	0.90%	0.150%		
40	14.430	2089	2102	2108	VV 4	30637217	616710586	75.57%	12.646%		
41 1	14.500	2108	2114	2124	VV 2	5818027	105813954	12.97%	2.170%		
42 1	14.612	2124	2133	2137	VV	1848339	45934653	5.63%	0.942%		
43 1	14.659	2137	2141	2153	VV	2504748	76622252	9.39%	1.571%		

44 1 45 1	14.788 14.847	2153 2 2169 2	163 2169 173 2175	VV VV	DSOX 10751057 1722452	AA7 198001690 32108773	24.26% 3.93%	4.060% 0.658%
46 1	14.935	2175 2:	188 2192	VV 3	4924614	183853919	22.53%	3.770%
47 1	14.982	2192 2:	196 2198	VV 3	5969927	128547111	15.75%	2.636%
48 1	15.058	2198 2:	209 2215	VV 2	8101118	401948224	49.26%	8.242%
49 1	15.123	2215 2:	220 2224	VV 2	17276028	338169276	41.44%	6.934%
50 1	15.187	2224 2:	231 2250	VV 2	27414680	816037403	100.00%	16.734%
51 1	L5.334	2250 22	256 2261	VV 2	2099537	68231798	8.36%	1.399%
52 1	L5.399	2261 22	267 2278	VV 3	1889799	83606875	10.25%	1.714%
53 1	L5.499	2278 22	284 2292	VV 2	1471417	58870022	7.21%	1.207%
54 1	L5.575	2292 22	297 2310	VV 4	1203664	62217660	7.62%	1.276%
55 1	L5.687	2310 23	316 2330	VV	1659125	64895180	7.95%	1.331%
56 1 57 1 58 1 59 1 60 1	15.787 15.875 15.934 15.992 16.069	2330 2 2339 2 2353 2 2363 2 2376 2	333 2339 348 2353 358 2363 368 2376 381 2384	VV 4 VV 4 VV 8 VV 4 VV 4 VV	737409 803289 784081 1158783 1058160	21531442 35241138 25604245 37832473 24914302	2.64% 4.32% 3.14% 4.64% 3.05%	0.442% 0.723% 0.525% 0.776% 0.511%
61 1	16.104	2384 2	387 2392	VV	1036840	22463124	2.75%	0.461%
62 1	16.204	2392 24	404 2414	VV	826674	56614055	6.94%	1.161%
63 1	16.286	2414 24	418 2432	VV 5	848879	42934731	5.26%	0.880%
64 1	16.404	2432 24	438 2447	VV	1933967	56701515	6.95%	1.163%
65 1	16.474	2447 24	450 2456	VV 2	941175	22964239	2.81%	0.471%
66 1	16.539	2456 24	461 2464	VV 6	464081	12058540	1.48%	0.247%
67 1	16.586	2464 24	469 2471	VV 5	544925	12260134	1.50%	0.251%
68 1	16.621	2471 24	475 2488	VV 2	759674	29258475	3.59%	0.600%
69 1	16.874	2488 25	518 2526	VV	3647676	114913060	14.08%	2.356%
70 1	16.956	2526 25	532 2542	VV 8	550995	23771323	2.91%	0.487%
71 1 72 1 73 1 74 1 75 1	17.056 17.132 17.232 17.303 17.655	2542 2 2556 2 2574 2 2583 2 2635 2	549 2556 562 2574 579 2583 591 2614 651 2665	VV 5 VV 9 VV 7 VV 7 VV 7 VV 7	442789 388685 297248 294762 253178	18701477 21591504 9049772 26406689 22271562	2.29% 2.65% 1.11% 3.24% 2.73%	0.383% 0.443% 0.186% 0.541% 0.457%
76 1	17.796	2665 20	675 2678	VV 5	440295	16353508	2.00%	0.335%
77 1	17.908	2678 20	694 2716	VV 6	677818	62270168	7.63%	1.277%
78 1	18.102	2716 2	727 2757	VV 6	263862	30380549	3.72%	0.623%
79 1	18.801	2827 20	846 2851	VV 3	413777	17882643	2.19%	0.367%
80 1	18.901	2851 20	863 2901	VV 3	2632139	176465165	21.62%	3.619%
81 1	19.148	2901 29	905 2922	VV 3	141155	7295675	0.89%	0.150%
82 1	19.312	2922 29	933 2970	VV 6	477169	28186742	3.45%	0.578%
83 1	19.659	2970 29	992 3003	PV 4	734270	34176846	4.19%	0.701%
84 1	19.853	3003 30	025 3045	VBA2	3712458	228589428	28.01%	4.687%
			Sum	of co	orrected	areas: 487	6655050	

 Table F33 Area percent report for the essential oil obtained from the Soxhlet extraction

 with the internal standard added at the end of the extraction.

					A	DSOX Area Perce	BB1 nt Report		
Dat Acc Sar Mis	ta File q On mple sc	: D:\ : 26 : DCM : INT	PATRIO Jun 20 SOXB . STD	CIA1\0 009 : .I.S . ADD	DSOXE 13:36 . ADD ED BE	B1.D DED BEFORE FORE INJE	INJ CTION	V Opera Inst Multi Sample Amo	vial: 1 tor: PATRICIA : Instrume plr: 1.00 punt: 0.00
MS Integration Params: autoint1.e									
Met Tit	thod tle	: C:\I	MSDCHI	EM\1\I	МЕТНО	DS\DEFAUL	T.M (Chems	station Ir	itegrator)
Sig	gnal	: TIC							
peal	k R.T.	first	max	last	PK	peak	corr.	corr.	% of
#	min	scan	scan	scan	TY	height	area	% max.	total
1	2.191	4	19	26	BV 3	73050	1319524	0.18%	0.024%
2	2.461	50	65	86	PV 3	713904	19349976	2.58%	0.348%
3	2.984	145	154	167	VV 2	55516	1565994	0.21%	0.028%
4	3.148	167	182	204	PV	2159641	48584000	6.48%	0.874%
5	3.413	212	227	235	PV 3	49467	1696272	0.23%	0.031%
6	3.507	235	243	259	VV 4	46070	2887844	0.39%	0.052%
7	3.671	259	271	286	VV	258478	8265498	1.10%	0.149%
8	3.830	286	298	317	VV 3	53705	3511632	0.47%	0.063%
9	4.053	317	336	357	VV	288997	9491204	1.27%	0.171%
10	4.441	375	402	404	PV 2	335610	10014266	1.34%	0.180%
11	4.512	404	414	425	VV	2717576	83990738	11.21%	1.511%
12	4.635	425	435	449	VV	1798208	53861729	7.19%	0.969%
13	4.770	449	458	473	VV 2	79210	3291332	0.44%	0.059%
14	5.857	627	643	651	VV 6	28520	1048973	0.14%	0.019%
15	5.957	651	660	665	VV 6	32007	1059372	0.14%	0.019%
16	6.116	665	687	747	VV 3	561923	43732199	5.84%	0.787%
17	6.539	747	759	789	VB 5	29774	1805605	0.24%	0.032%
18	9.899	1294	1331	1363	BV 6	71662	5029668	0.67%	0.091%
19	10.881	1467	1498	1544	BV 2	135434	8441332	1.13%	0.152%
20	12.179	1693	1719	1737	PV 5	40996	1277268	0.17%	0.023%
21	12.391	1737	1755	1764	PV 2	112986	2546415	0.34%	0.046%
22	12.479	1764	1770	1782	VV 2	11047	384622	0.05%	0.007%
23	12.608	1782	1792	1798	VV 2	8968	256930	0.03%	0.005%
24	12.696	1798	1807	1810	PV 9	12686	302373	0.04%	0.005%
25	12.784	1810	1822	1827	VV 9	13804	396512	0.05%	0.007%
26 27 28 29 30	12.955 13.014 13.108 13.254 13.401	1827 1858 1869 1881 1919	1851 1861 1877 1902 1927	1858 1869 1881 1919 1929	VV 2 VV 4 VV 4 VV 9	88861 45396 24126 168306 29187	2615278 1173402 797674 6740687 1001046	0.35% 0.16% 0.11% 0.90% 0.13%	0.047% 0.021% 0.014% 0.121% 0.018%
31	13.466	1929	1938	1944	VV	279097	5823458	0.78%	0.105%
32	13.519	1944	1947	1951	VV 5	46591	1052650	0.14%	0.019%
33	13.636	1951	1967	1972	VV 5	56398	3441972	0.46%	0.062%
34	13.730	1972	1983	1989	VV	266993	7556880	1.01%	0.136%
35	13.789	1989	1993	2001	VV 5	152583	4703613	0.63%	0.085%
36 37 38 39 40	13.877 13.936 14.030 14.095 14.153	2001 2015 2027 2041 2050	2008 2018 2034 2045 2055	2015 2027 2041 2050 2060	VV VV VV VV VV VV	479321 7 197720 1927706 261957 7 184147	12207831 6849159 34162348 6406882 5860818	1.63% 0.91% 4.56% 0.85% 0.78%	0.220% 0.123% 0.615% 0.115% 0.105%
41	14.289	2060	2078	2083	VV	474151	23015052	3.07%	0.414%
42	14.336	2083	2086	2090	VV	380977	8842076	1.18%	0.159%
43	14.430	2090	2102	2108	VV	32120040	661831403	L 88.31%	11.909%

	14 500	2100 21	14 2122	10/	DSO)	KBB1	16 70%	2 262%
44 45	14.500	2108 21 2123 21	.14 2123 .27 2129	VV VV 2	921941	17144102	2.29%	0.308%
46	14.618	2129 21	.34 2137	VV	2250671	42672281	5.69%	0.768%
47	14.659	2137 21	.41 2153	VV	3139769	87840544	11.72%	1.581%
48	14.794	2153 21	.64 2170	VV	12179900	5 225732497	30.12%	4.062%
49	14.853	2170 21	.74 2176	VV 2	1794229	38637835	5.16%	0.695%
50	14.935	2176 21	.88 2192	VV 3	5159745	178284209	23.79%	3.208%
51 52 53 54 55	14.988 15.076 15.129 15.193 15.264	2192 21 2199 22 2216 22 2225 22 2240 22	97 2199 12 2216 21 2225 32 2240 44 2261	VV 2 VV 3 VV VV 2 VV 2 VV 3	5880617 8460441 19075162 29441917 5809511	130405074 404247823 2 373873460 7 749442570 300884420	17.40% 53.94% 49.89% 100.00% 40.15%	2.347% 7.274% 6.728% 13.486% 5.414%
56	15.399	2261 22	67 2277	VV 4	2391095	97021865	12.95%	1.746%
57	15.505	2277 22	85 2294	VV 3	1590991	73387475	9.79%	1.321%
58	15.581	2294 22	98 2311	VV 3	1355709	68787253	9.18%	1.238%
59	15.693	2311 23	17 2329	VV	1984238	74714901	9.97%	1.344%
60	15.793	2329 23	34 2340	VV 2	976388	29834516	3.98%	0.537%
61	15.893	2340 23	51 2355	VV 2	1038309	46635170	6.22%	0.839%
62	15.940	2355 23	59 2364	VV 8	1018174	32178986	4.29%	0.579%
63	16.004	2364 23	70 2378	VV 3	1269432	45734135	6.10%	0.823%
64	16.110	2378 23	88 2398	VV 2	1138395	56211159	7.50%	1.011%
65	16.204	2398 24	04 2408	VV 8	676888	22006652	2.94%	0.396%
66	$\begin{array}{r} 16.298 \\ 16.410 \\ 16.486 \\ 16.592 \\ 16.633 \end{array}$	2408 24	20 2429	VV 5	985509	59475491	7.94%	1.070%
67		2429 24	39 2448	VV	2200553	68483720	9.14%	1.232%
68		2448 24	52 2460	VV 4	1032667	29504078	3.94%	0.531%
69		2466 24	70 2473	VV 5	512406	11436149	1.53%	0.206%
70		2473 24	77 2490	VV 3	658969	29127879	3.89%	0.524%
71	16.733	2490 24	94 2497	VV 6	361032	8405522	1.12%	0.151%
72	16.886	2497 25	20 2528	VV	4074232	120649083	16.10%	2.171%
73	16.962	2528 25	33 2545	VV 7	601053	26954043	3.60%	0.485%
74	17.068	2545 25	51 2558	VV 6	453015	18284802	2.44%	0.329%
75	17.156	2558 25	66 2575	VV 9	350798	20652408	2.76%	0.372%
76	17.250	2575 25	82 2586	VV 8	352424	11697716	1.56%	0.210%
77	17.297	2586 25	90 2618	VV 10	0 348372	L 30484714	4.07%	0.549%
78	17.532	2626 26	30 2637	VV 9	182754	5951567	0.79%	0.107%
79	17.661	2637 26	52 2659	VV 10	0 244309	5 15533872	2.07%	0.280%
80	17.720	2659 26	62 2667	VV 7	202819	5858926	0.78%	0.105%
81	17.914	2667 26	95 2716	VV 6	816390	93300047	12.45%	1.679%
82	18.049	2716 27	18 2726	VV 9	267991	9202712	1.23%	0.166%
83	18.131	2726 27	32 2772	VV 9	276265	27683380	3.69%	0.498%
84	18.919	2828 28	66 2922	VV 2	3598603	268074838	35.77%	4.824%
85	19.330	2922 29	36 2972	VV 3	593888	35083630	4.68%	0.631%
86	19.671	2972 29	94 3007	PV 2	1046031	45925399	6.13%	0.826%
87	19.870	3007 30	28 3045	VBA2	4338725	285916618	38.15%	5.145%
			Sum	of c	orrected	areas: 559	57306440	

 Table F34
 Area percent report for the essential oil obtained from the steam distillation

extraction v	with the	internal	standard	added a	at the	start of	the e	extraction.

	SDSAA2 Area Percent Report										
Dat Acc San Mis	ta File 1 On nple sc	: D:\ : 30 : : STE/ :	PATRI Jun 20 AM DI	CIA1\9 009 STILL	SDSA/ 13:4(. IN	А2 0 Т.	.D STD ADD	ED AT STAR	V Opera T Inst Multi ample Amo	'ial: 1 tor: PATRICIA : Instrumer plr: 1.00 ount: 0.00	
MS	MS Integration Params: autoint1.e										
Met Tit	thod tle	: C:\/	MSDCHI	EM\1\I	МЕТН	OD	S\DEFAUL	T.M (Chems	tation In	tegrator)	
Sig	gnal	: TIC									
peak #	R.T. min	first scan	max scan	last scan	PK TY		peak height	corr. area	corr. % max.	% of total	
1 2 3 4 5	2.273 2.455 2.496 2.954 3.154	25 45 68 133 174	33 64 71 149 183	45 68 86 162 188	PV PV VV PV PV	2 2 10 2	20029 370843 243735 13626 34610	428053 8088258 5413656 691172 677721	0.13% 2.47% 1.65% 0.21% 0.21%	0.034% 0.648% 0.433% 0.055% 0.054%	
6 7 8 9 10	3.677 4.059 4.447 4.517 4.641	256 322 370 406 425	272 337 403 415 436	289 347 406 425 450	VV PV VV VV VV	2 2 8	18042 29881 54608 358280 342298	533163 800610 2203725 9811110 10017879	0.15% 0.24% 0.67% 3.00% 3.06%	0.039% 0.064% 0.176% 0.786% 0.802%	
11 12 13 14 15	4.764 5.687 5.857 5.945 6.909	450 589 622 649 797	457 614 643 658 822	472 622 649 701 852	VV PV VV VV BB	5 9 6 3 3	20582 14417 18142 44213 53337	808771 490275 795490 1808299 2086209	0.25% 0.15% 0.24% 0.55% 0.64%	0.065% 0.039% 0.064% 0.145% 0.167%	
16 17 18 19 20	7.537 8.231 9.083 9.206 9.917	891 1027 1177 1200 1311	929 1047 1192 1213 1334	961 1083 1200 1249 1398	BV BV VV VV VV	7 5 9 8	32757 27545 6973 17666 83979	1387330 1431112 309737 949160 5290629	0.42% 0.44% 0.09% 0.29% 1.62%	0.111% 0.115% 0.025% 0.076% 0.424%	
21 22 23 24 25	10.546 11.022 11.268 12.179 12.373	1425 1512 1553 1707 1741	1441 1522 1564 1719 1752	1466 1552 1606 1730 1762	BV PB BV PV VV	6 6 2 2	14573 6964 11100 26054 79171	654335 440506 863241 691780 1655508	0.20% 0.13% 0.26% 0.21% 0.51%	0.052% 0.035% 0.069% 0.055% 0.133%	
26 27 28 29 30	12.461 12.761 12.955 13.013 13.248	1762 1811 1832 1856 1895	1767 1818 1851 1861 1901	1776 1832 1856 1870 1905	VV VV VV VV	10 4 7 3 2) 9482 11411 14281 23995 26863	215878 276375 596783 536100 431914	0.07% 0.08% 0.18% 0.16% 0.13%	0.017% 0.022% 0.048% 0.043% 0.035%	
31 32 33 34 35	13.290 13.466 13.789 13.871 13.930	1905 1931 1985 2000 2015	1908 1938 1993 2007 2017	1921 1948 2000 2015 2020	VV VV PV VV VV	9 2 3 2 4	12662 46139 28461 108756 19155	240927 755777 551361 2278503 285782	0.07% 0.23% 0.17% 0.70% 0.09%	0.019% 0.061% 0.044% 0.182% 0.023%	
36 37 38 39 40	13.965 14.024 14.095 14.253 14.283	2020 2026 2039 2060 2074	2023 2033 2045 2072 2077	2026 2039 2060 2074 2081	VV VV VV VV	5 7 3	12687 627693 62861 76674 94982	207915 8539701 1779901 1537765 1587286	0.06% 2.61% 0.54% 0.47% 0.48%	0.017% 0.684% 0.143% 0.123% 0.127%	
41 42 43	14.330 14.412 14.494	2081 2089 2107	2085 2099 2113	2089 2107 2123	vv vv vv	4	49933 21290972 2061023	939802 327397197 31516842	0.29% 100.00% 9.63%	0.075% 26.216% 2.524%	

		696442	
44 14.612 45 14.653	2123 2133 2136 2136 2140 2153	SUSAA2 VV 707488 11943788 3.65% VV 2 639863 15286826 4.67%	0.956% 1.224%
46 14.782	2153 2162 2168	VV 5492774 76939689 23.50% VV 3 143238 3005240 0.92% VV 2 896515 16973600 5.18% VV 2 588865 10925549 3.34% VV 7309217 122128737 37.30%	6.161%
47 14.835	2168 2171 2177		0.241%
48 14.929	2177 2187 2191		1.359%
49 14.976	2191 2195 2204		0.875%
50 15.117	2204 2219 2223		9.779%
51 15.176	2223 2229 2248	VV 14893012 242414728 74.04% VV 415839 8616518 2.63% VV 2 432183 8936125 2.73% VV 3 169520 4413142 1.35% VV 4 73827 1595558 0.49%	19.411%
52 15.334	2248 2256 2261		0.690%
53 15.393	2261 2266 2275		0.716%
54 15.493	2275 2283 2290		0.353%
55 15.558	2290 2294 2298		0.128%
56 15.599	2298 2301 2306	VV 7 54761 1337388 0.41% VV 749413 13943214 4.26% VV 2 179314 3635820 1.11% VV 2 186034 4928643 1.51% VV 3 179885 4146588 1.27%	0.107%
57 15.675	2306 2314 2326		1.117%
58 15.787	2326 2333 2336		0.291%
59 15.828	2336 2340 2349		0.395%
60 15.910	2349 2354 2359		0.332%
61 15.975	2359 2365 2372	VV 3 773363 14856787 4.54% VV 2 1052879 29718215 9.08% VV 328486 8057479 2.46% VV 409713 9189627 2.81% VV 2 136732 2925010 0.89%	1.190%
62 16.075	2372 2382 2393		2.380%
63 16.169	2393 2398 2409		0.645%
64 16.274	2409 2416 2422		0.736%
65 16.333	2422 2426 2429		0.234%
66 16.386	2429 2435 2441	VV 1727071 30326345 9.26% VV 4 797309 17004480 5.19% VV 4 194843 4152233 1.27% VV 3 206838 4643061 1.42% VV 5 293559 10148305 3.10%	2.428%
67 16.457	2441 2447 2453		1.362%
68 16.515	2453 2457 2460		0.332%
69 16.551	2460 2463 2467		0.372%
70 16.603	2467 2472 2485		0.813%
71 16.709	2485 2490 2494	VV 5 98770 2310308 0.71% VV 2 223973 4680999 1.43% VV 3956192 88997157 27.18% VV 4 368207 10670593 3.26% VV 6 149014 7479793 2.28%	0.185%
72 16.768	2494 2500 2502		0.375%
73 16.850	2502 2514 2523		7.126%
74 16.932	2523 2528 2538		0.854%
75 17.032	2538 2545 2564		0.599%
76 17.203	2570 2574 2580	VV 8 38653 1098442 0.34% VV 8 41979 2271564 0.69% VV 8 29501 1225175 0.37% VV 10 38756 2170470 0.66% VV 6 80439 3110605 0.95%	0.088%
77 17.309	2580 2592 2600		0.182%
78 17.385	2600 2605 2614		0.098%
79 17.497	2614 2624 2638		0.174%
80 17.638	2638 2648 2666		0.249%
81 17.878	2680 2689 2699	VV 6 20078 835063 0.26%	0.067%
82 18.307	2748 2762 2769	PV 8 7219 233090 0.07%	0.019%
83 19.788	2984 3014 3045	PBA6 51708 3599453 1.10%	0.288%
	Sum	of corrected areas: 1248828946	

Table F35 Area percent report for the essential oil obtained from the steam distillation extraction with the internal standard added at the end of the extraction.

	SDSBBB5 Area Percent Report										
Da Ac Sa Mi	ta File q On mple sc	: D:\ : 1 : STE/ :	PATRIO Jul 20 AM DIS	CIA1\9 009 E STILL	SDSBB 16:06 . INT	B5.D . STD BE	FORE INJEC	V Opera T. Inst Multi	/ial: 1 ktor: Patricia : Instrumen plr: 1.00		
MS	MS Integration Params: autoint1.e										
<pre>Method : C:\MSDCHEM\1\METHODS\DEFAULT.M (Chemstation Integrator) Title :</pre>											
Si	gnal	: TIC									
pea	k R.T.	first	max	last	PK	peak	corr.	corr.	% of		
#	min	scan	scan	scan	TY	height	area	% max.	total		
1	2.191	4	19	25	BV 4	79338	1544156	0.34%	0.088%		
2	2.273	25	33	43	PV 2	65460	1261779	0.27%	0.072%		
3	2.461	43	65	94	PV 5	1382583	42505662	9.23%	2.423%		
4	2.661	94	99	107	VV 6	15540	383197	0.08%	0.022%		
5	2.931	131	145	162	PV 8	46232	1752959	0.38%	0.100%		
6	3.078	162	170	175	VV 4	20142	469350	0.10%	0.027%		
7	3.154	175	183	189	VV	104441	2205388	0.48%	0.126%		
8	3.242	189	198	214	VV 5	24793	1086018	0.24%	0.062%		
9	3.530	235	247	265	VV 4	32855	1677036	0.36%	0.096%		
10	3.683	265	273	288	VV 3	38954	1090830	0.24%	0.062%		
11 12 13 14 15	4.059 4.271 4.359 4.447 4.517	324 349 383 392 407	337 373 388 403 415	349 383 392 407 426	PV 2 VV VV 2 VV 2 VV 2 VV	54006 134934 18913 91306 663024	1421756 3869751 491639 2875033 18013379	0.31% 0.84% 0.11% 0.62% 3.91%	0.081% 0.221% 0.028% 0.164% 1.027%		
16	4.641	426	436	460	VV	588208	16914169	3.67%	0.964%		
17	5.311	531	550	583	VB	13841	689892	0.15%	0.039%		
18	5.687	590	614	626	BV 8	11952	486067	0.11%	0.028%		
19	5.845	626	641	648	VV 8	11125	536586	0.12%	0.031%		
20	5.945	648	658	677	VV 4	54404	1980298	0.43%	0.113%		
21	6.157	677	694	711	VV 4	9119	499636	0.11%	0.028%		
22	6.915	807	823	869	VB 4	62375	2607338	0.57%	0.149%		
23	7.543	908	930	953	BV 5	33379	1350267	0.29%	0.077%		
24	8.237	1030	1048	1083	PV 4	29082	1433692	0.31%	0.082%		
25	9.089	1175	1193	1202	VV 4	6873	344268	0.07%	0.020%		
26	9.212	1202	1214	1234	VV 7	13836	755813	0.16%	0.043%		
27	9.917	1315	1334	1393	VV 7	95504	5713113	1.24%	0.326%		
28	10.552	1427	1442	1479	BB 3	13427	626062	0.14%	0.036%		
29	11.033	1484	1524	1540	BV 3	5806	230053	0.05%	0.013%		
30	11.280	1550	1566	1590	BV 2	6564	370366	0.08%	0.021%		
31	12.150	1706	1714	1731	BB 2	8480	218670	0.05%	0.012%		
32	12.373	1731	1752	1763	BV	97093	1931674	0.42%	0.110%		
33	12.461	1763	1767	1779	VV 1	0 7673	216759	0.05%	0.012%		
34	12.761	1809	1818	1833	PV 4	13554	352577	0.08%	0.020%		
35	12.937	1833	1848	1869	PV 8	13456	632987	0.14%	0.036%		
36 37 38 39 40	13.249 13.290 13.466 13.789 13.871	1887 1905 1927 1987 2000	1901 1908 1938 1993 2007	1905 1919 1951 2000 2015	BV 2 VV 3 VV VV 3 VV 3 VV 3 VV	45379 16153 74035 38920 166150	798088 293228 1268027 753528 3475856	0.17% 0.06% 0.28% 0.16% 0.75%	0.045% 0.017% 0.072% 0.043% 0.198%		
41	13.930	2015	2017	2026	VV 5	35758	826589	0.18%	0.047%		
42	14.024	2026	2033	2040	VV	933745	13123931	2.85%	0.748%		
43	14.095	2040	2045	2061	VV 4	86108	2374804	0.52%	0.135%		

44 45	14.253 14.283	2061 2072 20 2074 2077 20	74 VV 82 VV	5DSBBB5 108214 2 143995 2	121831 0 483447 0	.46% (.54% (D.121% D.142%
46	14.330	2082 2085 20	90 VV 3	71544 1	358378 0	.29% 0	0.077%
47	14.418	2090 2100 21	07 VV	26047438 46	0717303 10	0.00% 2	26.262%
48	14.494	2107 2113 21	23 VV	3290079 49	335649 10	.71% 2	2.812%
49	14.571	2123 2126 21	28 VV	135973 1	986427 0	.43% 0	0.113%
50	14.612	2128 2133 21	37 VV	1049026 15	080854 3	.27% 0	0.860%
51	14.653	2137 2140 21	53 VV 2	1046540 22	745496 4	.94% 1	L.297%
52	14.788	2153 2163 21	68 VV	7956038 109	217402 23	.71% 6	5.226%
53	14.835	2168 2171 21	79 VV 2	212512 5	175970 1	.12% 0	D.295%
54	14.929	2179 2187 21	91 VV 2	1301123 24	931809 5	.41% 1	L.421%
55	14.976	2191 2195 22	04 VV	881457 16	410760 3	.56% 0	D.935%
56	15.117	2204 2219 22	23 VV	10933793 18	2523501 3	9.62% 1	L0.404%
57	15.182	2223 2230 22	39 VV 2	20787625 35	4939424 7	7.04% 2	20.232%
58	15.246	2239 2241 22	48 VV	468144 8	835557 1	.92% 0	0.504%
59	15.334	2248 2256 22	61 VV	617890 13	028466 2	.83% 0	0.743%
60	15.393	2261 2266 22	76 VV 3	637041 12	708736 2	.76% 0	0.724%
61	15.493	2276 2283 22	90 VV 2	262472 5	972533 1	.30% 0	0.340%
62	15.558	2290 2294 23	06 VV 3	151213 4	609215 1	.00% 0	0.263%
63	15.675	2306 2314 23	27 VV	922300 17	131619 3	.72% 0	0.977%
64	15.787	2327 2333 23	36 VV	213782 4	331879 0	.94% 0	0.247%
65	15.828	2336 2340 23	49 VV 2	199936 5	379690 1	.17% 0	0.307%
66	15.910	2349 2354 23	59 VV 5	209484 5	006854 1	.09% 0	D.285%
67	15.975	2359 2365 23	72 VV 3	824359 16	443822 3	.57% 0	D.937%
68	16.075	2372 2382 23	93 VV 2	1095693 33	523022 7	.28% 1	L.911%
69	16.169	2393 2398 24	08 VV 2	306424 7	832226 1	.70% 0	D.446%
70	16.274	2408 2416 24	22 VV	422774 10	014684 2	.17% 0	D.571%
71	16.333	2422 2426 24	29 VV 2	159191 3	383548 0	.73% (D.193%
72	16.386	2429 2435 24	41 VV	1961330 34	898475 7	.57% 1	L.989%
73	16.457	2441 2447 24	53 VV 3	850855 18	197166 3	.95% 1	L.037%
74	16.515	2453 2457 24	60 VV 4	216047 4	740267 1	.03% (D.270%
75	16.551	2460 2463 24	67 VV 4	225260 5	022253 1	.09% (D.286%
76	$16.604 \\ 16.703 \\ 16.768 \\ 16.844 \\ 16.933$	2467 2472 24	85 VV 5	352355 11	810567 2	.56% 0	D.673%
77		2485 2489 24	93 VV 4	105076 2	501916 0	.54% 0	D.143%
78		2493 2500 25	02 VV 3	233448 4	837318 1	.05% 0	D.276%
79		2502 2513 25	23 VV	4314397 95	260364 20	.68% 5	5.430%
80		2523 2528 25	38 VV 3	391618 11	676211 2	.53% 0	D.666%
81	17.038	2538 2546 25	63 VV 5	164732 7	752551 1	.68% (0.442%
82	17.203	2569 2574 25	79 VV 8	45419 1	323733 0	.29% (0.075%
83	17.309	2579 2592 26	00 VV 8	45624 2	665475 0	.58% (0.152%
84	17.379	2600 2604 26	12 VV 8	30646 1	124257 0	.24% (0.064%
85	17.485	2612 2622 26	36 VV 8	61940 3	378387 0	.73% (0.193%
86	17.632	2636 2647 26	82 VV 9	89295 4	809626 1	.04% (0.274%
87	17.867	2682 2687 27	18 VV 9	21061 1	571590 0	.34% (0.090%
88	18.302	2748 2761 27	88 VV 9	9854	802326 0	.17% (0.046%
89	19.794	2987 3015 30	45 PBA9	49230 3	248806 0	.71% (0.185%
		S	um of c	orrected are	as: 17543	03663	

APPENDIX G

PRESENTATION

A portion of this work was presented at the Faculty of Science and Agriculture Research Day, University of KwaZulu-Natal (Westville Campus), 2004.