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ABSTRACT

The interplay between graphs and designs is well researched. In this dissertation we connect
designs and graphs entirely through their associated matrices — the incidence matrix for designs
and the adjacency matrix for graphs. The properties of graphs are immediately adopted by their
associated designs, and the linear algebra of the common matrix, will apply to both designs and
graphs sharing this matrix.

We apply various techniques of finding the eigenvalues of the matrices associated with
graphs/designs, to determine the eigenvalues of well-known classes of graphs, such as complete
graphs, complete bipartite graphs, cycles, paths, wheels, stars and hypercubes.

Graphs which are well connected, or edge-balanced, in terms of a centrally defined set of
vertices, appear to give rise to a conjugate pair of eigenvalues.

The association of integers, conjugate pairs and edge-balance with the eigenvalues of graphs
provide the motivation for the new concepts of eigen-sum and eigen-product balanced
properties of classes of graphs and designs. We combine these ideas by considering eigen bi-
balanced classes of graphs, where robustness and the reciprocity of the eigen-pair a,b allowed

for the ratio of the eigen-pair sum a+b to the eigen-pair product ab, and the asymptotic

behaviour of this ratio (in terms of large values of the size of the graph/designs). The product of
the average degree of a graph with the Riemann integral of the eigen bi-balanced ratio of the
class of graphs is introduced as the area of a class of graphs/designs associated with the eigen-
pair. We observe that unique area of the class of complete graphs appears to be the largest. Also,
the interval of asymptotic convergence of the eigen bi-balanced ratio, of uniquely eigen-bi-

balanced classes of graphs, appears to be [— 1,0]

We construct a new class of graphs, called g-cliqued graphs, involving g maximal cliques of
size g, connected, and hence edge-balanced, to a central vertex. We apply the eigenvector
method to find a general conjugate eigen-pair associated with the g-cliqued graphs and then
determine the eigen-pair characteristics above for this class of graphs. The eigen-bi-balanced
ratio associated with a conjugate pair of eigenvalues of the class of g-cliqued graphs, is the same
as the eigen-bi-balanced ratio of the class of the complements of these graphs.

The g-cliqued graphs are also designs, and we use the case q=10 as an application of a

hypothetical entomological experiment involving 10 treatments and 10 blocks. We use the
design’s graphical characteristics to determine a possible scheduling situation which involves
the chromatic number of its associated graph.
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1.1

CHAPTER 1

INTRODUCTION AND DEFINITIONS

Introduction

The interplay between graphs and designs is well documented (see e.g. Rudvalis [42],
Bose [9], and Haemers [28]). In this dissertation we connect designs and graphs entirely
through their associated matrices — the incidence matrix for designs and the adjacency
matrix for graphs. The properties of graphs are immediately adopted by their associated
designs, and the linear algebra of the common matrix then applies to both designs and
graphs sharing this matrix.

The purpose of Chapter 1 is to define the important terms that will be required in this
thesis. We define some basic terms in graph theory and design theory, and then connect
graphs and designs through their matrices. We finally define some basic linear algebra of
matrices. Terms not defined in this chapter will be defined in subsequent chapters as they
are required.

In Chapter 2, we apply various techniques of finding eigenvalues of a matrix to determine
the eigenvalues of well-known classes of graphs, namely graphs with circulant adjacency
matrices, complete graphs, cycles, paths, complete bipartite graphs, graphs which are the
join of two graphs whose adjacency matrices are both circulant matrices, wheel graphs,
star graphs, graphs with a pendant vertex, and hypercubes. In some cases, we use more
than one technique to verify the eigenvalues.

In Chapter 3, we define eigen-sum and eigen-product balanced properties, as well as
eigen-bi-balance, critically eigen-bi-balanced, and the eigen-bi-balanced ratio associated
with classes of graphs. We then investigate the asymptotic behaviour of the eigen-bi-
balanced ratio, and define the area and density of classes of graphs/designs. We consider
these attributes for the common classes of graphs as in Chapter 2.

In Chapter 4, we define the construction of the class of g-cliqued graphs, and prove that
these graphs are design graphs. We determine various characteristics and ratios for this
class of graphs, and investigate the associated Laplace matrix. We finally review the
linear algebra of the distance matrices of reduced g-clique design graphs.
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In Chapter 5, we determine the general form of a conjugate eigen-pair of the g-cliqued
graphs as defined in Chapter 4. We determine the eigen-bi-balanced ratio and area of the
class of g-cliqued graphs. We finally determine that the complement of the g-cliqued
graph is connected, and that the class of the complement of the g-cliqued graph has the
same eigen-bi-balanced ratio as the class of g-cliqued graphs.

In Chapter 6, we apply the 3-colouring of the 3-cliqued design graph associated with the
3-cliqued-block graph, to an entomological experiment which involves the study of the
interaction between insects and plants.

In Chapter 7, we present a summary of the findings of this research thesis, and suggest
areas for future research.

We now define the important terms that will be used in this thesis:

Graph theory
1.2.1 Graphs

We shall use the notation of Harris, Hirst and Mossinghoff [30], to define a graph
G. Agraph G =(V, E) consists of a finite non-empty set V of elements called

vertices, and a (possibly empty) set E of 2-element subsets of V called edges. The
number n of elements in V is called the order and the number m of elements in E is
called the size of G. All graphs which we shall consider will be finite, simple and
undirected.

If G has only one vertex, then G is trivial; otherwise G is non-trivial.

Let e= {u,v}e E(G). Then we say u and v are adjacent, while e is incident with u
and v. We also say that e joins u and v. Instead of writing e = {u,v}, we can also
write e =Uv.

The degree of a vertex v in G, denoted deg(v), is the number of edges incident with
v. By deg(G) we mean a listing of the degrees of the graph G in descending order.
A vertex of degree 1 is called an end-vertex. A k-regular graph is a graph where
each vertex has degree k.

The maximum (minimum) degree A(G) =A (6(G) = 8) of G is the maximum
(minimum) of the degrees of the vertices in G.

The neighbourhood N, (v) of a vertex V €V, is the set of all adjacent vertices to v
in G.



1.2.2

G\x is obtained from G by removing vertex x, and G\xy is obtained from graph G
by removing adjacent vertices x and y.

Complement, complete, bipartite and sub-graph

The complement G ofa graph G is a graph whose vertex set is the same as G,
but if there is no edge between vertices u and v in G, then there is an edge

between u and v in G.

The complete graph is a graph in which every pair of vertices in G is adjacent in
G.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in V; that is, U and V are
each co-cliques of G. A complete bipartite graph (or bi-clique) is a special kind of
bipartite graph where every vertex of the first set is connected to every vertex of
the second set.

A sub-graph of a graph G is a graph whose vertex set is a subset of that of G,
and whose adjacency relations are a subset of that of G, restricted to the vertices
in this subset.

1.2.3 Walk, trail, path, cycle, circuit, length and tree

A walk Win agraph G is an alternating sequence W :v,,e,,v;,€,,...,V, ;,€,,V,

of vertices and edges (not necessarily distinct) such that e, =v, ,v, for i=1...r.

Since the vertices that appear in a walk determine the edges in the walk, we can
omit the edges in the description of a walk, and denote the walk W by
Vo, Vy,e Vg, VY, - We say that r is the length of W, and that W begins at v, and

V-1 Vr

endsat v, .

If all the edges of the walk are distinct, then the walk is called a trail. If all the
vertices of the walk are distinct, then the walk is called a path. Therefore every
path is a trail, but not every trail is a path.

A closed path or cycle is a path V,,V,,...,V, ;,V,, for k>3, together with edge
v, v,. Similarly, a trail that begins and ends at the same vertex is called a closed

trail or a circuit. The length of a path (or trail, cycle or circuit) is its number of
edges, including any repetitions.

A tree is a connected graph, which does not contain a cycle as a sub-graph.


http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Disjoint_sets
http://en.wikipedia.org/wiki/Edge_(graph_theory)
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1.2.4

1.2.5

Connectivity

The distance between two vertices uand v, d(u,V), is the length of the shortest
u—v pathin G.

A graph G is connected if every pair of vertices of G is joined by a path and a
component of G is a maximal connected sub-graph of G. If there is no path
connecting the two vertices, i.e., if they belong to different connected components,
then conventionally the distance is defined as infinite. In this thesis, all graphs are
assumed to be connected, unless otherwise stated.

A cut-vertex of a connected graph G is a vertex whose removal from V increases
the number of components in G.

A block of a connected graph G is a maximal sub-graph of G that does not have a
cut-vertex.

The eccentricity, eccG(u), of a vertex u of G is the maximum distance between u
and any other vertex of G.

The radius, rad(G), of G is the minimum of all the eccentricities of the vertices
of G and the diameter, diam(G), is the maximum of all eccentricities of the
vertices of G.

A central vertex in a graph of radius r is a vertex whose eccentricity is r - that is, a
vertex that achieves the radius.

The centre of G is the collection of vertices whose eccentricities equal the radius
of G, while periphery of G is the collection of vertices whose eccentricities equal
the diameter of G.

Clique, maximal clique, strong cliques, co-cliques and colouring

A complete sub-graph of a graph G is called a clique of G. The order of the
largest clique in G is called the clique number of G.

A maximal clique of a graph G, is a clique of G, which is not a subset of a larger
clique of G.

A strong clique is a sub-graph of G which is a maximal clique and has at least one
cut-vertex.


http://en.wikipedia.org/wiki/Connected_component_(graph_theory)

1.2.6

1.2.7

A set of vertices of G which are non-adjacent in G is a co-clique of G. The order
of the largest co-clique of G is called the co-clique number of G.

A proper colouring of the vertices of a graph G is an assignment of colours to the
vertices so that no two adjacent vertices receive the same colour. The least number
of colours required to form a proper colouring of a graph is called the chromatic
number of G and is denoted by y(G).

Clique (or chromatic) invariance

A graph on n vertices with clique number d (or chromatic number d) is clique (or
chromatic) invariant if:

n-1
—=d.
d
For example, the path on 5 vertices is clique invariant since its clique number is 2
and
n-l 5-1 5y
d 2

It is also chromatic invariant since its chromatic number is 2.

Also, the star graph on 5 vertices has clique number and chromatic number 2 and

n-1_5-1_, 4
d 2

so that it is clique and chromatic invariant.
Co-clique invariance

A graph on n vertices with clique number g and co-clique number c is said to be
co-clique invariant if:

n+2q
C

C.

For example, the path on 5 vertices has clique number g =2 and co-clique number
c=3 sothat

n+2q 5+4
c 3

3.

So, P, is co-clique invariant — but this graph is not regular nor a design-graph,
which will defined later.



The star graph on 5 vertices has clique number 2 and co-clique number 4 so that

n+2q9 _5+4_, ¢
c 4

and S is not co-clique invariant.

1.2.8 Adjacency matrix

The adjacency matrix of a graph G, denoted by A(G), is an nxn matrix where the

ijth entry of A(G) is 1 if vertices v; v;are adjacentin G, or 0 otherwise. A(G)
is symmetric, and has 0 in each entry in its main diagonal.

1.2.9 Laplace and signless Laplace matrix

Given agraph G with n vertices, the degree matrix D(G) is an nxn diagonal
matrix defined as

B {deg(vi) if i=j

0 otherwise

The Laplace matrix of G is defined as the nxn matrix L(G), where

i.e., it is the difference between the degree matrix D(G ) and the adjacency matrix
A(G) of the graph. From the definitions it follows that:

deg(v;) if i=j

lj =1-1if i# ], and v adjacent to v,
I

0 otherwise
where deg(v; ) is degree of the vertex v, .

The matrix A(G)+ D(G) is called the signless Laplace matrix.


http://en.wikipedia.org/wiki/Diagonal_matrix
http://en.wikipedia.org/wiki/Diagonal_matrix
http://en.wikipedia.org/wiki/Degree_matrix
http://en.wikipedia.org/wiki/Adjacency_matrix

1.2.10 Join of graphs

Let G and H be two graphs, not necessarily connected. Then the join of G and H,
denoted by G @ H, is formed when every vertex in G is joined to every vertex in
H.

1.2.11 Class of graphs

A class of graphs is a collection of graphs that satisfies a well-defined property. For
example, the class of complete graphs is a class of graphs where each graph in the
class has the property that each and every pair of vertices is adjacent. We are
interested in classes of graphs, whose significant property can be described in
terms of their order n.

1.2.12 Strongly regular graphs

A strongly regular graph with parameters (v, &, 4, 1) (often denoted by
srg(v, k, 2, @) is a simple graph of order n satisfying:

(i)  each vertex is adjacent to k (1 <k <n — 2) vertices;
(if)  for each pair of adjacent vertices there are A vertices adjacent to both; and
(iii)  for each pair of non-adjacent vertices there are u vertices adjacent to both.

1.3 Design theory
1.3.1 Block designs

We will consider block designs D, which can take on one or more of the following

descriptions: incomplete, proper, equireplicate, binary and symmetric block
designs - see Dey [21].

We let the number of treatments of the design be v, where the treatments are
elements of V ={v,,v,,...V,}; V=2. The number of blocks b; (subsets of V) is b,
with no treatment repeated in any block, and each block has size k; = v
(incomplete) and each treatment v; occurs r; times in the design. The design is
proper if k; =k and equireplicate if r, =r.

We associate the incidence matrix N = N,,, with this block design where n;; is the
number of times the ith treatment appears in the jth block. A block design is called
binary if nj =0 or 1. The block design is said to be symmetric of size v if b=v so
that r=k (see section 1.3.1.2).



1.3.1.1 Full design and trivial design

If we take all possible blocks of maximum size v —1 (called the full design)
we will create the incidence matrix of size vxv called the full maximum

Q

incidence matrix Ny~ which is the square VXv binary matrix with 0’s

down the main diagonal and 1’s everywhere else.
The full design, with v=2 treatments, is called the trivial design.

We shall omit v from the notation of this matrix in its general form. Note
that each treatment occurs r =v —1 times in the design, and that each block
has sizek =v —1. This incidence matrix is symmetric.

The incidence matrix N of the full block design D (v>3) is the same as
the adjacency matrix A of the complete graph G on Vv vertices. Any two
blocks of the full design intersect in A =v—2 treatments, this is equivalent
to given any pair of vertices of G, both these vertices are joined to 4

vertices. This is the balance factor of the complete graph.
1.3.1.2 Symmetric designs

If the design is symmetric it does not necessarily mean that N is symmetric:

01010
00110
N=[0 1 0 0 1
10001
101 0 0]

is a non-symmetric incidence matrix of a design on 5 treatments, with 5
blocks, each treatment occurring twice in the design and each block having
size2sothat r=k=2.

The transpose of N above is an incidence matrix of the dual of the original

design. If N and N T are the same, then the design is self-dual. The full
matrix is self-dual.

In Koolen and Moultron [35], the incidence graph of a design is defined as
the graph with (v+b)x(v+b) symmetric adjacency matrix

ol
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Strongly symmetric or PIEBS designs

For the purposes of this dissertation we connect the incidence matrix of a self-dual
design directly to an adjacency matrix of a graph by introducing the following:

A strongly symmetric design will imply:

(1) Nissymmetric,sothat v=b and N=NT:
n; =1 or O respectively <> n; =1or 0 respectively, i # ]
and v; eb; < v eb;;

(2)  v; ¢b;Vi (zero diagonal condition) and

(3) The number of treatments v and block size k cannot both be odd together.
(Note that (1) implies this condition)

If all the above conditions hold, the design is said to be a PIEBS (proper,
incomplete, equireplicate, binary and symmetric) design, or simply strongly
symmetric design.

There is a great interest in Intra-Block Analysis to experimental situations - see
Dey [21].

The Laplace and signless Laplace matrix of a strongly symmetric or PIEBS
block design

The Laplace matrix of a strongly symmetric or PIEBS block design is defined as:
r fori=j

Lij=1-1if vj is in Db;
0 otherwise

1<i<vand 1< j<b (v=h)

i.e., L=D—N where D is the diagonal matrix with diagonal entry i being the
sum of the ith row of A.

The signless Laplace matrix is
r for i=j
Qij=111if vj is in b;
0 otherwise

for1<i<vand 1< j<h.

i.e, Q=D+N.
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1.3.4 C-matrix associated with PIEBS designs

In this section, we use standard matrix definitions and notation — refer to Anton [3],
or any other standard linear algebra text book.

Using our PIEBS designs, the following linear model is defined

Definition 1.3.4.1
Yiju =U+T; +ﬂ] +€ij

where
- Yij .18 the observable random variable corresponding to the uth observation in

the (i,j)th cell defined by the ith treatment and the jth block;
- M isageneral mean;

- ;s the effect of the ith treatment;
- Pjis the effect on the jth block; and

- & is the random error component, assumed to be mutually uncorrelated, with

zero means and constant finite variance 2.

See Dey [21].

If ng; =0 for some pair (i, j) then there is no observation in that cell.

If we let n= kv, (noting that v=b), then D, (respectively, D,) denotes the vxn
(respectively bxn) treatments (respectively, blocks) versus the observational
incidence matrix, i.e., the (z, 8)th element of D, (respectively D, ) is 1 if the

[ th observation comes from the « th treatment (respectively, « th block), and is
zero otherwise.

We rewrite Definition 1.3.4.1 as
Y = T T
=yl +D7+D, B +¢
where AT is the transpose of A and 1, is the nx1 vector of 1’s.

Note that:

17 Y is the general total of observations.
B =D,Y is the vector block totals.

T =D,Y is the vector treatment totals.
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It can be verified that:
DlDlT =R=diag(r,r,....,r) the diagonal matrix of replication numbers (r=k for
our designs)

D, D; =K =diag(k,k,....,k) the diagonal matrix of block sizes.

Thus R=K and KT =K.,

Also, DlDTz =N, which is the symmetric incidence matrix of the design, i.e.,
N=NT.

We define C = K —NK ™N, which is referred to as the ‘C-matrix’ of the design.

The C-matrix is of fundamental importance in the analysis of block designs, and is
also referred to as the information matrix. The row sums are zero for each row in

the C-matrix. Note thatCz =T — NK B, which is referred to as the vector of
adjusted treatment totals. Refer to Dey [21] for more detail on the C-matrix.

The definition of the C-matrix is relevant in this thesis, as we determine the
eigenvalues of the C-matrix in Section 2.12.

Balanced PIEBS designs

If we introduce balance into a PIEBS block design, i.e., each pair of distinct
treatments occurs in exactly A blocks, then we have a symmetric balanced
incomplete block (BIB) design, denoted by A — (v, b, k). This is equivalent to any
2 blocks intersecting in exactly A treatments - see Dey [21]. The value A is
referred to as the balance factor of the design.

We can describe balance in the PIEBS design as follows:
vr=bk; A(v-1)=r(k-1)

k(k-1)
v-1
must be symmetric, with 0’s down the main diagonal, this imposes strong

constraints on the design.

Since v=b,r=k and 1 = , both v and k cannot be odd. Also, since N

For example, does a2 — (7,7,4) strongly symmetric design exist? This question can
be answered by considering regular graphs as in Bose and Shrikhande [10].

For this dissertation, we shall focus on PIEBS designs, with the balanced designs
the full designs (see section 1.3.1.1) so that the designs become graphic designs.
This type of design lends itself to the ideas of adjacency and connectivity.
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Since the designs will have an associated symmetric incidence matrix, i€ bj =

jeb;, i= ], by and bjare adjacent in the design via the edge €; ;, i+ ],

when the ijth entry of the incidence matrix is 1, otherwise they are non-adjacent.

The set of edges in a design is denoted by E. A (b;,b,)-walk in a design is a
sequence of (not necessarily distinct) blocks: by,b,,...,b, such that edges €, ;,,

exist for i=12,....k -1, b, and by are the end vertices of the walk. If the blocks
are all distinct then the walk is called a (b;,b, ) -path. If the edges of the walk are

distinct the path is called a (b;, by ) -trail. The length of the walk, path or trail is the
number of edges, counting repetitions.

Two blocks b; and b; are (block) connected in the design if there is a (b;,b;) -path
in the design, and the length of its shortest (b;,b;) -path is the distance between the
two blocks.

Once we have the idea of adjacency and that of distance between blocks, we can
apply the graph-theoretical definitions of the degree of a block and the
completeness, sub-design, radius, diameter, girth, chromatic number, tightness of
the first and second type of strongly symmetric designs.

A complete sub-design of a strongly symmetric design is called a clique of the
design and the clique number is the size of the largest clique in the design, and a
maximal proper sub-collection of q blocks in a connected design whose elements
are pairwise non-adjacent is called a g-co-clique (g-independent vertex set) of the
design and g the co-clique number.

Note that if N is the incidence matrix of a PIEBS design with each block having
size k and balance factor A then:

K 2 A - A

k ﬂ ,1
NNT=N%2=[2 A4 k - A
A 1 A4 K]

A is also the number of different walks of length 2 between blocks
b; and b;.
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This matrix is the same as the product of the incidence matrix and its transpose
mentioned in Bruck and Ryser [13] and Chowla and Ryser [14], with A =1. In this
paper, if 7 is a finite projective plane, then there exists a positive integer Q such
that each line of 7 contains exactly Q +1 distinct points, and each point of 7 is

incident with exactly Q+1 distinct lines. Moreover 7 has exactly Q2 +Q+1

distinct points and Q2 +Q +1 distinct lines. N is the incidence matrix of a finite

projective plane defined in this paper. This projective plane has at least 3 point on a
line, the ith point on the jth line implying the jth point is on the ith line and the ith

point is not incident with the ith line. The product of N with its transpose N T
yields the same result as the incidence matrix of our PIEBS design with Q +1=K,

Q2 +Q+1=v=Db,and A2 =1. Thus the existence or non-existence of such
projective planes would imply the existence or non-existence of our PIEBS design.

Also the C matrix is

C =K-NKINT

~K-N?K™
) o _100 0
k 0 0k/1/1-,1k1
0 k 0 ol |4 k 2 AOEO 0
=0 k 0l-l4 A4 k A 1
. 0 0 = 0
: k
000 k| |4 4 k : i
) - 1o 0 0 =
L k|
L A A A
'k 0 0 01 k k k
ko Oili-i
K k K
=10 0 k 0—/1/11 A
: k k| k
000 kKl |2 4 J :
) R (A 1
Lk k k i
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k-1 -4 -4 -1
K k
O -4
k k K
g [EACR R "
kK K 5
A T
L k k k |
So, each row sum of C is, with ﬂ,:kflk_ll),
) (v-1) _k(k_l)j
e e e v

1.3.6 K-lantern property of designs

Since the blocks of the design are distinct, no two blocks can be adjacent to the
same k-collection of blocks. This is equivalent to excluding the case where 2 rows
(columns) of the incidence matrix of the design are identical, which we shall relate
to a structure which we shall refer to as a k-lantern structure (see definition of a g-
lantern sub-graph below).

1.4 Graphs and designs connected through matrices

1.4.1 Lantern graph

A k-lantern (denoted by S(G)), is a sub-graph of a k-regular graph, where S(G) is

a tri-partite graph with 3 disjoint sets of vertices — u (singleton), S (set of k vertices)
and v (singleton) — u and v are non-adjacent and each is adjacent to the k vertices in
S. The vertices in S can be adjacent in G.

S(G) = k-set of vertices

Figure 1.4.1.1: K-lantern sub-graph S(G)
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If a regular graph G does not have a g-lantern sub-graph, then no two rows (or
columns) of its adjacency matrix will be identical. The vertices u and v are also
called twin vertices (see Kotlov and Lov’asz [36]). This property is necessary for
the matrix to be that of a design (see Theorem 1.4.2.1).

There is a need to construct designs (see Dey [21]) and in this dissertation we use
graphs to construct a large class of designs via their adjacency matrices with the
advantage that any property of the graphs can be inherited by the associated design
— especially the linear algebra of their associated matrices.

1.4.2 Graphic designs and design graphs
We want the incidence matrix of a PIEBS block design on v treatments, each block
containing k treatments, to be identical to the adjacency matrix of a graph G — such
designs are called graphic designs and the associated graph G of the adjacency

matrix is called the design graph.

We need the condition v =b, and the size k of each block is the same as the
number of times each treatment occurs in the design.

Using the adjacency matrix, we have a design condition D1:

D1. Each treatment i cannot occur in block i =b; (0’s down main diagonal in
both matrices).

Using the design, each row has k entries, thus a graph restriction is:
G1. The graph G must be regular of degree k.

Thus from the adjacency matrix of G:

D2. v.k =2m where the right hand side is twice the number of edges of G so
that D2 implies both n and k cannot be odd.

The incidence matrix is symmetric, and D1 shows that n.k must be even, so that
D1 implies D2. Since the blocks of the design must be distinct, we have another

graph condition which is necessary for constructing the blocks from the graph’s

vertex adjacency relationships (see below):

G2. No two non-adjacent vertices of G can have the same neighbour set, i.e., G
must not have a k-lantern sub-graph.
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These are the conditions we will need to establish a one-to-one correspondence
between the adjacency matrix of a k-regular graph G on n vertices, with the
incidence matrix of a PIEBS design, with v=n treatments, and each block
containing k treatments.

The only graphic designs on 2 or 3 treatments are the full designs. On 4 treatments
we have only the trivial and the full design - see argument below and on 5
treatments, we have the full design and the design associated with the 5-cycle (see
arguments after Theorem 1.4.2.1).

Once we have the incidence matrix of a PIEBS design we have the adjacency
matrix of some k-regular graph.

How do we go from a graph to a design?

The paper on graphs and polarities of designs by Rudvalis [42], looks at a one-to-
one correspondence between graphs and incomplete designs. We shall show how
we can associate a regular graph with a PIEBS design through matrices.

Let G be aregular graph of degree k on v vertices which does not contain a k-
lantern sub-graph. We label the vertices 1,2,...,v. We associate with each vertex i

the neighbourhood block of i, denoted by NB(i), which is the set of labels
{i_i5,....i,} which are the labels of the vertices adjacent to vertex |, i.e., the

neighbourhood of i. Obviously, no two adjacent vertices will have the same
neighbourhood, and we insist that two non-adjacent vertices do not have the same
neighbourhood so that all the NB(i) are distinct, i.e., G does not have a k-lantern

sub-graph. This is called the exclude-k-lantern condition:
NB(i) = NB(j), i#].

Clearly i ¢ NB(i) and furthermore:

jeNB(i) <ieNB())

which is called the adjacency condition.

The corresponding adjacency matrix of G will be a vXxv symmetric matrix with k
entries in each row and column and 0’s down the main diagonal.

Since v.k is twice the number of edges and hence both v and k cannot be odd
together.
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We now create the block matrix BM(G) of G as follows: The labels 1,2,...,v are
the rows (treatments) and the columns will be (blocks) NB(1), NB(2),...,NB(v). We
inserta 1linentryi,jif j € NB(i) < i€ NB(]), 0 otherwise. Since i ¢ NB(i) and
the adjacency condition holds, along with the exclude-k-lantern condition (no two
columns are the same), BM(G) is a symmetric matrix with 0’s down the main
diagonal.

BM (G) is therefore an incidence matrix of some strongly symmetric design D
with treatments 1,2,3,...,v and blocks NB(i) with the condition i ¢ NB(i) for all i

(similar to the absolute polarity condition of Hubaut [32]).

Such a design associated through such a graph is called a graphic design.
Note that the graph we use to construct the design is not the same as the
concurrence graph constructed in Bailey and Cameron [7].

If a design with treatments i and blocks b; has its incidence matrix satisfying i¢b;
for all i, we say the design is non-absolute. Thus:

Theorem 1.4.2.1

A connected k-regular graph G has an associated graphic design D (strongly
symmetric) iff G has no k-lantern sub-graph.

Given a PIEBS design with treatments i =12,...,v and blocks b; of size k (with

the conditions i ¢b; for all i, and jeb; < ieb; andvand k not both being

odd together), there is a regular graph (the design graph) associated with the design
where the treatments are the vertices and in which the ith block b; associated with

this vertex (i=vertex) denotes the adjacency to the k neighbours of i; i.e., the
adjacency matrix of this block graph is the same as the incidence matrix of the
design it was constructed from.

If we apply the results to a design on 4 treatments, with blocks of size 2, it is
impossible to construct a symmetric matrix of size 4 with 2 entries in each row and
column with 0’s down the main diagonal; i.e., no such non-absolute design exists
and therefore no graph exists.

The only regular graph of degree 2, on 4 vertices, is isomorphic to the cycle. Note
that the adjacency matrix will have columns 2 and 4 being identical - i.e., two
vertices 2 and 4 are adjacent to the same neighbour vertices 1 and 3 which will not
allow for the formation of a design associated with the graph.

The cycle on 5 vertices labelled 1,2,3,4,5,1 translates to the design with treatments
1,2,3,4 and 5: vertex 1 has neighbours b, = 2,5, vertex 2 neighbours b, =1,3,



143

18

vertex 3 neighbours b; = 2,4, , vertex 4 neighbours b, = 3,5, and vertex 5 has

neighbours 1,4= by =1,4. The incidence matrix of this design is identical to the
adjacency matrix of the 5 cycle.

Since one cannot have a 3-regular graph on 5 vertices the only other graphic design
is the full design on 5 vertices.

The spectrum of a design D, written Spec(D), is the spectrum of the associated
incidence matrix. If all designs which have the same spectrum as a design D are
isomorphic, then the design D is said to be determined by its spectrum (DS ) - see
Dam and Haemers [20].

Once a graph is determined to be a design graph then all the properties of the graph
are inherited by the associated design, such as diameter, radius, and chromatic
number.

We can introduce balance into the full design and the associated block graph as
follows. Any 2 blocks of the design must intersect in A treatments which is
equivalent to the associated block graph having every pair of vertices being
adjacent to the same A vertices. This must not violate the condition that 2 non-
adjacent vertices must not have the same neighbourhood set.

For a graph with general “balance” see Bose [9].

Graphs which cannot be design graphs

We want a k-regular sub-graph on (k + 2) vertices which has k-lantern sub-graphs:

Fork =2  we get the cycle on 4 vertices which is a 2-lantern graph.

For k=3 itis not possible, as we have 5 vertices and a 3-regular graph so that
5.3=15, which is not even.

For k =4 we have a 4-regular graph on 6 vertices — add edges to the middle set
S on the tri-partition of the 4-lantern graph to get a 4-regular graph

with a 4-lantern sub-graph.

For k=5 G ison 7 vertices — not possible.

So we can construct a k-regular graph on (k + 2)vertices, where k is even, as
follows:
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Let v and W be a pair of vertices, and connect each of v and w toaset S
consisting of k disconnected vertices. Then v and w will have degree k and all the

k(k—2)
2

so that each vertex in S has degree k . The resulting graph is k-regular, and has a k-
lantern sub-graph, so cannot be a design graph.

vertices in S will have degree 2. Add edges between the vertices in S,

The complete bipartite graph, on n+n=2n vertices, is not a design graph as it
contains an n-lantern sub-graph.

1.5 Linear algebra of matrices
1.5.1 Inverse of N

We now determine the inverse of N*, entirely in terms of N and Iy, - We use

this inverse to create a quadratic equation, for which N is a solution. This
quadratic equation has significance in terms of finding the eigenvalues of N <.

Theorem 1.5.1.1

The inverse of N is

1
;

r_

(N?)™ = N® Y where r=v—landv>2.
r

v,v?

Proof

(N®)* —(r—)N*

1 -1 1 01
10
=110 -+ 1{|1 10 - 1|-(r=D1 1
111 0|1 11 0] 1 11 0]
[v—1 v-2 v-2 v—2] 0 1 1
v—-2 v-1 v-2 V-2 0
=|v-2 v-2 v-1 v—-2

~(v-2)[1 1
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v-1 0 0 0
0 v-1 0 0
= 0 0 v-1 0
| 0 0 0 v-1]
=rl

So (N?)? —=(r-)DN® =rl,,
= N(N® = (r=D)1,,)=r11,,

1 (r-2
= N9 =N® - L, =1
(r r V,Vj YA
:>(NQ)‘1=%NQ—(“_1)|V,v g

Corollary 1.5.1

From the above theorem, we determine the quadratic:
r-1

NQ(NQ)_l = NQ(ENQ__IVV): Ivv
. , ,
= (N®)2=(r-D)N®-rl,, =0

where r=v-1=K.

Minor, cofactor, cofactor of A, orthogonal, orthonormal and diagonal
matrices

The minor of the entry in the i-th row and j-th column (also called the (i,j) minor,
or a first minor) is the determinant of the sub-matrix formed by deleting the i-th
row and j-th column of A. This number is often denoted M;;. The (i,j) cofactor is
obtained by multiplying the minor by (—1)**/.

The cofactor of A, denoted by cof (A), is the sum of the cofactors of each entry of
A.

An orthogonal matrix A is a symmetric matrix, where Al=AT ,Where the
columns are orthogonal, and have unit length.


http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Submatrix
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A diagonal matrix A is a square matrix, such that if there are any non-zero entries,
they will only occur on the main diagonal, and is denoted by

diag(ay;, a5 8nn ).
Characteristic polynomial

The characteristic polynomial of matrix A(G) is denoted by P)(4), and is
expressed in terms of A.

Pyo)(4) =det(Al - A)

where A is the adjacency matrix of graph G and det(Al — A) is the determinant of
(U -A).

Eigenvalues, eigenvectors and conjugate pairs

An eigenvector of a square matrix A, associated with a graph and/or design G, is a
non-zero vector v that, when the matrix is multiplied by v, yields a constant

multiple of v, the multiplier being commonly denoted by A. That is:
Av = Av

The number A is called the eigenvalue of A corresponding to the eigenvector v . Let
CSET(A) denote a complete set of eigenvectors of matrix A which contains n
independent eigenvectors of A. If Q is the matrix, whose columns are the
orthonormal eigenvectors of A, then QflAQ =diag(4, 4y,...,4,) where

A, A,..., Ay are the (not necessarily distinct) eigenvalues of A.

The eigenvalues are therefore the solution to the characteristic polynomial
PA(G)(/l) =det(Al — A)=0. The Cayley Hamilton theorem states that the matrix A

is also a solution of this characteristic equation - See Brouwer and Haemers [12].

If G is k-regular then the largest eigenvalue of the adjacency matrix is k, and if d is
the diameter of any graph G, then the number of distinct eigenvalues is at least

(d +1), with equality for a certain class of graphs - see Cohen, Brouwer and
Neumaier [15]. The chromatic number, ¥(G) <A +1, where A is the largest
eigenvalue of the adjacency matrix of G — see Brouwer and Haemers [12].

It is a well-known result that the complete graph on n vertices has eigenvalues n-1
and —1 - see Brouwer and Haemers [12]. The spectral radius of a graph G is the
largest of all the absolute values of the eigenvalues of the adjacency matrix


http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Vector_(mathematics)
http://en.wikipedia.org/wiki/Matrix_multiplication
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associated with the graph, and therefore the spectral radius of the complete graph
on n vertices is (n—1). Since the complete graph is (n —1)-regular, its largest

eigenvalue is (n—1), and hence this value is the largest of all spectral radii

associated with regular graphs. In general, the spectral radius is at most n—1,
where n—1 is the maximum degree of a vertex of a graph on n vertices.

There is also interest in the second largest eigenvalue of a k-regular graph - see
Lubotzky, Phillips and Sarnak [39].

There is a relationship between the largest eigenvalue and the clique number g of a
graph as in Nikiforov [40]:

1P < m

q
A conjugate eigenpair is a pair of eigenvalues which are of the form A =a =+ Jb
where a,b R, b>0.The 4 stands for the pair of eigenvalues 4, and A,.

Regarding the conjugate pairs as roots of a quadratic equation, it is a well-known
result, that if the roots of the quadratic equation x?+cx+d =0 are eandf, then
the sum (e + f )= —cand product (ef )=d.

Spectrum of A

We list the eigenvalues of a matrix (the spectrum) in descending order, and their
multiplicity as follows: (14,)™,(4,)™,...

The spectrum of a graph G, written Spec(G), is the spectrum of the associated
adjacency matrix. If all graphs which have the same spectrum as a graph G are
isomorphic, then the graph G is said to be determined by its spectrum (DS for
short) — see Dam and Haemers [20].

For example paths, cycles, complete graphs and complete bipartite graphs on 2n
vertices and their complements are all DS.

Tightness of the first and second type of G

If G has diameter d and maximum vertex degree A, largest eigenvalue 4, and
f distinct eigenvalues, then:

- Thetightness of G of the first type is fA ; and
- The tightness of G of the second type is (d +1)4;
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In the recent literature it was suggested that graphs with a small tightness of the
first type are good models for certain networks - see Cvetkovi and Davidsovi [18].

“Tightness” in the general sense shall refer to the strength of “connectivity” of
graphs such as its robustness (see definition below).

Eigen-co-cliqued ratio

The diameter of a graph is used as a bound on the number of distinct eigenvalues of
matrices associated with graphs (see Brouwer and Haemers [12]) while the number
of end-points of a tree are used as a bound for the multiplicity of eigenvalues of a
tree (see Brouwer [11]). In Dam [21], the Delsarte (Hoffman) ratio (bound) is
considered involving a k-regular graph’s co-clique number, the order of the graph,
an eigenvalue and k. We consider the multiplicities of eigenvalues and introduce
our own ratio definition involving the co-clique of a graph and obtain equality for
some graphs.

The eigen-co-cliqued ratio of the multiplicity of an eigenvalue A of classes of the

matrices associated with the graphs (designs) with co-clique number ¢ is A :
c
This ratio is strict if we have equality with the multiplicity of the eigenvalue,

otherwise non-strict.

For example, the complete bipartite graph on 2n vertices has co-clique number n
and eigenvalue —n (of multiplicity 1). Therefore the eigen-co-clique ratio is
2n—n

n

=1, which is the same as its multiplicity, so that its ratio is strict.

The 5-cycle (which has an associated design) has eigenvalue 2 of multiplicity 1 and
co-clique number 2. The eigen-co-clique ratio is % =1.5 which does not equal

the multiplicity of the eigenvalue 2. Therefore the eigen-co-clique ratio for the
eigenvalue 2 is non-strict, but is greater than its multiplicity.
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Circulant matrices

For any given ag,ay,...,a,4 €C, the circulant matrix C = (aiyj )nxn is defined by

q :ajfi(modn) for1<i<nand1<j<n.

ag a & an

an—l a-0 a1 an—Z

C=la,, ag an_3
a a, ag Qo

If C is the adjacency matrix of an associated graph, then C is symmetric, so that
an71 = al; an72 = az, ee s al == anil.

Other linear algebra definitions can be found in Brouwer and Haemers [12].

Robustness or tightness of networks and the reciprocal of eigenvalues

Denoting the eigenvalues of the Laplace matrix associated with a graph G by
6, <6, <..<6,, wenote that G is connected if and only if 6, =0=6,. Thusa

connected graph G always has a Laplace eigenvalue equal to 0, and &, >0.

There are many complex networks in large-scale engineering, biological, and social
systems. The second smallest eigenvalue of the Laplace matrix €, > 0 is called the

algebraic connectivity of a graph, and is a measure of speed of solving consensus
problems in networks — see Olfati-Saber [41].

We have the inequality &, < v(G) <7(G),where v(G) denotes the vertex
connectivity (the minimum number of vertices required to be removed to
disconnect graph G) and 77(G) denotes the edge connectivity (the minimum

number of edges required to be removed to disconnect G). According to this
inequality, a network with a relatively high algebraic connectivity is necessarily

robust to both vertex (node) failures and edge failures and &, is a lower bound on
this degree of robustness.

Assuming that the time delay in all links in a network (represented by a graph G)

is equal to 7, it can be shown that 7 < ——, so that the higher 6, is, the smaller
n

the time delay. The the reciprocal of the eigenvalue 6, is a measure of robustness
to delay for reaching a consensus in a network.
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If G is k-regular then 6, = (k —l), where A is an eigenvalue of the adjacency
matrix of G. Thus measure of robustness to delay is associated with the reciprocal
of the difference (k - /1). For example, the eigenvalues of the adjacency matrix of
the complete graph G, are -1 and n—1. Thus the time delay 7 satisfies

< il -
Bl 2[((n-1)—-(-1] 2n

where —1 is an eigenvalue of the adjacency matrix of G, and k=n-1.

For large n we have n~=n-1 so that the reciprocal of the largest eigenvalue
n-1 of G affects the time delay, and hence robustness, of the large associated
network - see Olfati-Saber [41].

The above ideas and results provide the motivation for the idea of area of a graph
as defined in Chapter 3.

1.6 Conclusion

This concludes the general definitions required for this thesis. Specific definitions are
included in the chapters that follow.
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CHAPTER 2

TECHNIQUES FOR FINDING EIGENVALUES

The history of the linear algebra of matrices associated with graphs/designs is a colourful one,
and many techniques, both elegant and novel, have evolved for finding the eigenvalues of
different types of graphs. In this chapter, we illustrate a few techniques of finding eigenvalues
for graphs by applying them to determine the eigenvalues of the following classes of graphs:

o Graphs where their adjacency matrix is a circulant matrix;

o Complete graphs;

o Cycle graphs;

o Path graphs;

o Complete bipartite graphs;

o Eigenvalues of the adjacency matrix associated with a graph which is the join of two
graphs whose adjacency matrices are both circulant matrices;

o Wheel graphs;

o Star graphs;

o Graphs with a pendant vertex; and

o Hypercube graphs.

This section is a combination of original work and work referenced from other sources. Where
there is no specific reference given, the associated theorems and proofs are original. In many
cases, the external source has stated a specific result, and the proof has been developed during
this research thesis.

The software packages Bluebit Matrix calculator and Mathematica were used extensively in
the research and verification of the characteristic polynomial and the eigenvalues of numerous
graphs. These packages were used to verify certain conjectures for specific examples of
graphs.

The application of eigenvalues to the real world is vast. One of the examples, is the Hckel
method or Hiickel molecular orbital method (HMO), proposed by Erich Hiickel as far back as
1930. Within HMO theory, the total energy of 7 -electrons is equal to the sum of the energies
of all 7 -electrons in the considered molecule, and can be calculated from the eigenvalues of
the underlying molecular graph. See Adiga, Bayad, Gutman and Srinivas [1].


http://en.wikipedia.org/wiki/Erich_H%C3%BCckel

27

A benzene molecular ring can be “mapped” onto a graph consisting of a cycle with 6 vertices
— the vertices represent the atoms, and the edges the bonds between the atoms. Hiickel
molecular theory then allows the energy of the ring to be associated with the sum of the
absolute value of each the eigenvalues which arise from the adjacency matrix associated with
the graph.

We will use various methods of finding the eigenvalues of the graphs, and in some cases, more
than one method, to determine the eigenvalues for classes of graphs. However, we first need
Lemmas 2.1, 2.2 and 2.3. These lemmas give us insight into the characteristic polynomial of
the union of two disjoint graphs, the characteristic polynomial of a graph in terms of removing
a vertex, and finally a specific case of the characteristic polynomial of a graph in terms of
removing a vertex of degree one.

Lemma 2.1

Let GIIH denote the disjoint union of graphs G and H.

Then
PA(GHH)(ﬂ) = PA(G)(ﬂ“)'PA(H)(/?’)

i.e., the characteristic polynomial of the union of disjoint graphs is the product of the
characteristic polynomial of each of the disjoint graphs.

See Averbouch [5].

Proof

A O
Note that det(0 BJ =det(A).det(B) for any square matrices A and B, not necessarily of the
same order. Now the characteristic polynomial of G[] H is obtained as follows:
PA<GHH)(/1) =det(Al —(GLIH))

B AU -G 0

| 0 AI-H

= det (A1 —G). det (A1 —H)
= A(G)(ﬂ')'PA(H)(/I)
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Lemma 2.2

Let G be a tree, and let x be a vertex of G. Then the characteristic polynomial of G is obtained
by,

PA(G)(A) = ﬂPA(G\x)(/%)_ Z PA(G\xy)(ﬂ“)

all x adj y
for all vertices y of G, where x is adjacenttoy in G.

See Brouwer and Haemers [12].

Lemma 2.3

Let x; be a vertex of degree one in the graph G on n vertices, and let x; be the vertex adjacent

to X;. Let G, be the sub-graph obtained from G by deleting the vertex x;, and let G, be the
sub-graph obtained from G by deleting both vertices x; and x;. Then

PA(G)(ﬂ’) = /1PA(GI)(/I) - PA(GZ)(/?’)

See Bian [8].
Proof

Without loss of generality, let i<j, so row i comes before row j in P,,(1) = det(A1 — A(G)).

Then we have,

(A -A@G)), =4
(/U _A(G))i,j =-1
(Al =A@G)), =0 for 1<k <nand k #iandk # |

Expand the determinant of (Al — A(G))along the ith row, where there are only two non-zero
entries as defined above. Then

PA(G)(/’L) = (_1)i+i (A)Mi,i det(Al — A(G1) + (_1)i+j (—1)Mi,j
Now M;; = det(Al — A(G, ), so

PA(G)(;t) = /IPA(Gl)(ﬂ“)_F (_ 1)i+j+1 M

i,]j
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Now expand M ; along the ith column, which only has one non-zero entry of -1 in the (j-1)th

row as x; has degree one and is only adjacent to X;. So,

Pac)(1) = APy ) (A)+(=21)" ™ (=1) 7 (-1) det(Al — A(G,))
= ﬂPA(q)(l) - PA(GZ)(A)
2.1 Eigenvalues of graphs having circulant adjacency matrices
The following Lemmas 2.1.1 — 2.1.5 are required for the proof of the main theorem on
eigenvalues of adjacency matrices of graphs, where the adjacency matrices are of the
form of a circulant matrix, as defined in section 1.5.8. Lemma 2.1.1 is a well known

result and is merely stated, whereas Lemma 2.1.2 — Lemma 2.1.5 comprise original
work.

Lemma2.1.1

Let ne Z be an integer such that n>0.

Let zeC be a complex number such that z" =1.

Then

27
U, :{e n,0< < n—l}where U, is the nth roots of unity and i =+/—1.

24 44 2(n-1) 7
Thatis ze<l,e" ,e" ,..,e " .

Thus for every positive integer n, the number of nth roots of unity is n.
27
Theroot e ™ is known as the first nth root of unity.
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Lemma 2.1.2

Let W be the (nxn) circulant matrix with the first row (0100 ... 0),

010 --0
001 .--0
000 -0
W=, . . . .
0 0 1
1 00
L dnxn

Then W™ is obtained from W by shifting each ‘1” entry in each row by (m-1) steps to
the right, for m > 2.

Proof
W2 =WxW
0 1 0] 0 1 0]
0 1 0 0 1 0
|00 0 |00 0
0 0 1 0O 1
100 ---0 10 0 ---
L Jnxn L Jnxn
0 0 1 0]
00 0
{000 0
1 o - 0
L 1 O ) O_nxn

For this step, W % is found from W by shifting each ‘1° entry in each row to the right by
one step.

Assume the hypothesis it true for k <m, i.e., that W¥ is obtained from W by shifting
each ‘1” entry in each row to the right by (k —1) steps for k <m.
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Then
0 00 - 0 1 0]
000 -0 0
Wk = 000 - 00 0
0 0 0 - 00 1
000 10 - 0]

Where a,,,, =1, a,,,, =1, etc.

Then WHK=W*w

0 0O 010 0 01 0
0 0 0 01 0 0 1
B 0 0 0 0O 0 00
0 0O 00 1 0 0
000100 - 0] |[100 - 0]

- —nxn

where a,,,, =1, a,,.; =1, etc. This is equivalent to taking W and shifting each ‘1’

entry in each row to the right by k steps.

Therefore, Lemma 2.1.2 is proved by induction.
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LetF, bea (nxn) matrix, for n> 2, where

A -1
0 A
=) ?
0 0
0 0

0
-1

Thendet(F, ) = A"

Proof

For n=2, we have F, :[

0

Then det(F,) = (1) —0= 4

Forn=k, F, =

2
0
0

-1 0
A -1
0 4
0 O
0 O

A -1
0 4

kxk

Assume the hypothesis it true for k <n, i.e., det(F ) = ¢ for k <n.

Now F,_; is the matrix as follows:

A -1
0 4
0 0
Fk+1: . .
0 0
0 0

0
-1
A

0
0
0

(k+1)x(k+1)
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A -1 0 0
0 4 -1 0
0 0 2 0
Thendet(F,,,)=det| . . .
0O 0 O -1
o0 0 - ’1_(k+1)x(k+1)
0 -1 0 - 0]
o 4 -1 .- 0
o 0o 2 - 0
:idet(Fk)—(—l)det: : - .
0 0 O -1
0 0 2],
=2 +1.0
:/lk+l

We have therefore proved by induction that det(F,) = A" forall n>2.

Lemma?2.1.4

Let R, be a (nxn) matrix, for n > 2, where

[0 -1 0 - 0
0 4 -1 - 0
=D 0 )
0 0 0 - -1
10 0 - A

Then det(R,) =-1.
Proof

0 -1
Forn=2, R, =

Then det(R,) =0—(-1)°
=1
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‘0 -1 0 - 0]

0o 4 -1

o 0o 4 - 0
For n=k, R, =| . . L. .

o o o .- -1

-1 0 0 - 2],

Assume the hypothesis it true for k <n, i.e., det(R,) =—1 for k <n.

Now Ry, is the matrix as follows:

0 -1 0 - 0
o 4 -1 - 0
o o 4 - 0
Rk+1: . . . . .
o o o - -1
-1 0 0 - /1_(k+1)x(k+1)
0 -1 0 - 0]
o 4 -1 -0
o 0o 42 -~ 0
Then det(R,,,)=det| . . . . .
o o o - -1
-1 0 0 - ﬂ'_(k+1)x(k+1)

Then expanding along the first row, with all zeroes other than the second column, we
get

0 -1 0 - O]
o 2 -1 .-+ 0
0 o 4 -+ 0
det(R.,) =(-1)-Ddet| . . T . ]
0 0 o -.- -1
_—1 o o - /I_kxk
=det(R,)
=-1

We have therefore proved by induction that det(R ) =-1 where n> 2.
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Lemma 2.1.5

Let W be the (nxn) circulant matrix, for n > 2, with the firstrow (0100 ... 0),

0 1 .0
0 0 0
0 0 0
W
0 1
—1 0 O -nxn

Then the eigenvalues of W are the n roots of A" =1.

Proof

A -1
For n=2, det(1l —W) =det{ }
-1 2

=2 -1
To find the eigenvalues, we set
A2 -1=0
=12 =1
— A=41

To find the eigenvalues of W, we calculate

A -1 0 - 0]
o 4 -1 .- 0
o 0o 24 - 0
det(Al —-W,) =| . . . .
0 0 O -1
10 0 - i),
A -1 0 0| [0 -1 0
0 -1 0 0o 1 -1
o 0 4 - 0 0O 0 2
=Adet| © . | —(-1)det ,
0O 0 O -1 0O 0 O
0 0 - A, -1 0 0

kxk
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Then from Lemma 2.1.4 and Lemma 2.1.5

det(Al —W,) =Adet(F,,)+det(R,,)
=M -1
=2 -1

To find the eigenvalues of W, , we set det(1l —W, ) =0

So AX-1=0
= =1
=1 =1

We have therefore proved that, in the general case, the eigenvalues of W, are the nth

roots of A" =1, for n> 2.

The following theorem is a key result to be used in the determination of the eigenvalues
of the adjaceny matrix associated with a number of types of graphs, for example,
complete graphs and cycle graphs.

Theorem 2.1.1

a, Q a, n-1

a,, a, a -

Let A=|a,, a,;, a, - a,,
L a4 a, az - & nxn

be a (nxn) circulant matrix, for n > 2.

Then the eigenvectors of the circulant matrix A are given by:

\ﬁ = (1,pj ,pjz,...,pjnfl)T , J=01..,n-1

where p; :exp(ﬂJ are the nth roots of unity and i =+—1 is the imaginary unit.
n

The corresponding eigenvalues are then given by

A

2 n-1 -
j=a tapj+apj” +..+a,,p; ,J=0..,n-1

See Gray [27].
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Proof

1. Let W be the (nxn) circulant matrix with the first row (010...0) and let
aW)=ayl

0" n,n

+aW +a,W?+...+a, ,W"™" where a,, a,,...,a, ,are the entries

in the first row of circulant matrix A above.

Then, using Lemma 2.1.2 above,

aO a1 az an—l
a,, a, & -
A = A, Ay 8 g
L & a a - 8 |
0 0] 0 0 0]
0 1 0 00 0
00 -~ 0 000 ---0
=aply,+ay|. . . . |Fay. . L et
0 0 1 1 0 0
1 0 0 - 0 010 0]
0 0 0 -+ 1]
1 00
1 0 - 0
an—l i . .
0 0O 0
0 00 0

2 n-1
= aolnyn +alW +a2W + .. +an_1W

=qW).
2. If\is an eigenvalue of W, then 1" is an eigenvalue of W"

If  Wx=Ax then

W2 x =W (Wx)=WAx = AW X = A(Ax) = X
and
WX =W W x) =W 2 ax = AW x)= . = A4 (Ax) = 2 x
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If A is an eigenvalue of W with corresponding eigenvector x, then

Then

Ax  =qW)x
= (aolnln +aW +a,W? +...+an_1W”’l)>_<
=ayX+aWx+aW2x+..+a, W"*x
=g X+ A AX+ A, P X +...+a, A" X
-~ (ao Fad+a A% +..+ an_lﬂ”‘l)>_<

= q(A)x

So, q(2) is an eigenvalue of g(W )= A
Now A=qW)=agl,, +aW +a,W?* +..+a, W""

and p; = exp(ﬂj, j=0, ... ,n=1 isaneigenvalue of W, by Lemma 2.1.5.
n

Then from 1, 2 and 3 above,

i =dlp;)

= a.o +a1pj +a2p12 +...+an_1pjn_l, j :O,l,...,n_l

is an eigenvalue of A = q(W ).

\T .
Let \Qz(l,pj,pjz,...,pj”’l) , J=01..,n=1.Thenfor 0< j<n-1,we

have
- a, a g | 1
1
a1 Q an_ Pij
2
AV_ =lan2 a1 an_3 Pj
n-1
B al 8.2 3.3 ao _nxn_pj
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1 2 n-1
1 2 n-1
a1 +a0pj +a1pj +...+an_2pj

_ t t+1 n—t
= an_t+...+a0pj +a1pj +...+an_(t+1)pj

1 2 n-1
From 2 row of Av;, factorise out p; to get

1 -1 1 2 n—2
P1 (Pl anqtag+a o a0+, 50 )

274 (-1) 2 (n-1)2 j
Now pj'=e " =e " =e " =pi*

since _—12j7r = (MJZM = n—_12j7r—2j7r _ D=1 because of
n n n n

27 periodicity.

Thus, the second row of Av i has been reduced to
1 -1 1 2 -2
:pj(pj A,y +ay +a 0] +AP] .8y 0] )
1( n1 1 2 -2
=P (PT 8y 8y + A P] + APt AP )
=p}(1$t row of Avj)

1 S|
= pj (1" row of A\Q)'

Generally, from the (t +1)th row of Av;

1 t t+1 t+2 n-1
(anit +an7(t71)pj...+a0pj +a.1pj +a2pJ ...+an7(t+1)pj )

t -t 1-t 1 —(t+1
=P (an_tpj +ay qq)P] et FAP] ot 4y (+))

2y [P g 2T
=e n n

Since p;' =e " j = p{™" so that

p;t Z,OJr'H :>p}7t :pjf(tfl) :p?f(tfl) etc.
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Hence the (t +1)th row
= p| (I row of Av,).

= pjli
Therefore we have

2, 2 1
PiAs PiA; Pi
A = Pl | =] PiA | =] AT =AY
L

Therefore, we have shown that v; is an eigenvector of A with eigenvalue A4; for

1<j<n m

The result of this key theorem allows us to easily calculate the eigenvalues of many
circulant matrices which are adjacency matrices of corresponding graphs.

Corollary 2.1.1

Let \ﬁ:[l,pj ,pjz,...,pjn_l]T, j=0.1,...,n—1 be the eigenvector as defined in

n-1
Theorem 2.1.1. Then pr =0; j=0.
k=0

Proof

It is a well-known result, and proved in 4 different ways in Section 2.2, that an
eigenvalue of the complete graph is -1 for j = 0, with eigenvector

\QT :b,pj,pjz,...,pjn_l] j=0.

Therefore A(Kn)b,pj ,pjz,---,/?jn_l]T = (—1)£L,Dj ’sza---uojn_l]T
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n-1
Expanding the first row of LHS we get: Zp']‘ ;] #0 since the first row of A(K)

k=1

n-1
is (0111...111). The first row of RHS is -1, so Zp'f =-1, j#0. Adding 1 to both
k=1

n-1
sides, we get Y p¥ =0; j=0.

k=0

Eigenvalues of complete graphs

In this section, we use four different techniques to find the eigenvalues of the complete
graph K, , on n vertices, namely:

Induction;

Proof using J, , matrix;

n
Proof using diagonalisation method; and
Inverse method.

The following example is a complete graph K, on 6 vertices. Note that each vertex is

joined to every other vertex in the complete graph.

Figure 2.2.1: Complete graph Kg
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The following lemma is an important result, as it is used in the proof of Theorem 2.2.1
using the induction method. In this lemma, we calculate the determinant of the matrix
which is used in the expansion of the determinant of the adjacency matrix of the
complete graph. It enables us to use the inductive method for the proof of the
eigenvalues of the adjacency matrix of the complete graph. (This proof is entirely
original work).

Lemma2.1.1
(-1 -1 -1 ... -1]
-1 42 -1 -~ -1
fH,={-1 -1 A .- —=1| , where H_ isa nxn matrix, with n>2,
-1 -1 -1 -+ A
L nxn
-1 -1 -1 .. —1]
-1 4 -1 -1
then detH, =det| -1 -1 4 -.- -1
_1 _l _1 o ﬂJan

= (DA +D)".

Proof (by induction)

-1 -1
Forn=2,H, =

-1 2
det(H,)=-41-1
=—(1+1)
=—(1+D*
-1 -1 -1
det(H,) =|-1 4 -1
-1 -1 A
A - -1 - -1 2
= —det + det —det
-1 A -1 2 -1 -
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A - -1
+ det
_ 1 ll‘ _

= —1det

-1 4
-1 -

_W—da
1 2

=12 1)+ 2(- A-1)

= (1+1)(1-1)-2(1+1)
=—(1+1)1-1+2)
=—(1+1)

-1 -1 -1 -1
-1 4 -1 -1
-1 -1 2 -1
-1 -1 -1 4

A -1 -
-1 A -1{+3det

-1 -1 A

= —det

-1 -1 -
-1 1 =
-1 -1 4

= —(Adet(A(K,))+2det(H, ))+3det(H,)
= (a2 —1)-2(2+2))+ 3(2 +1)

= (U2 +1(2-1)-2(2+1))+3(A+1)

= (412 - 2—2)+ 3(A+1)
=—(A+1)2+1)21-2)+3(1+1)
=—(1+1(2-2)+3)

=~(2+1)

det(H;) = —det(A(K,)+4det(H,)

= —(Adet A(K;) +3det(H,)) +4det(H,))
=—(1 (ﬂ,detA(Kz)+2det(H2))+3det(H3))+4det(H4)
=~

= —det(A(K, )+ 3det(H,)

p

(/1 12 1 22(2+1)—3det(1 +1) j—4(z+1)
(1+1 3det(/1+1) j 42 +1)°

A+1)AA+1) 2 -2)—-3det(2 +1)]- 42 +1)°
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— (2 + 127 —22-3]- 4(2 +2)?
=—(A+1f[(A+1)2-3)]- 42 +1)°

(
(

——(2+1)

Assume the hypothesis it true for all k <n, i.e., det(H,) =—(1+1)*forall k <n.

Then, for n=k +1,

-1 -1
-1 2
detH, , =det| -1 -1
-1 -1

1 ...
—1 ...

A

—1 ...

Then, expanding along the first row,

-1 ...

detH, ,
A -1 -1 -
-1 2
=(-1)det| -1 -1 2
-1 -1 -1 -

The first term is obtained from the expansion of the first column (in the first row) and

—11
-1
-1

kxk

A+1P3(1-3)-4(1+1)°
A+1P3(1-3+4)
=—(1+1°(1+1)

J(k+2)x(k+1)

+(=1)-2)(k +1)—1]det

-1 ...

-1 -1 -1 -
-1 2

-1 -1 2
-1 -1 -1 -

the second terms is from the ((k +1)—1) identical terms obtained from the expansion of
the 2™ to ((k +1)—1)th columns.

kxk
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2 -1 -1 -1
-1 2 -1 -1
Let det(A )=Al -A(K,)=|-1 -1 4 - -1| and
__1 -1 -1 ﬂ’_kxk
(-1 -1 -1 - 1]
-1 1 -1 -1
Ho=-1 -1 14 -1
-1 -1 -1 A

Then,

det(H,.,)
= (—1)det(A(K, ))+k det(H, )

= (—1}{1det(A(K,_;))+ (k —1) det(H, )} + kdet(H, )
= (-1){A(Adet(A_,) + (k —2)det(H, ,))+ (k —1)det(H, , )} + kdet(H, )
= (—2)}? det(A_,) + A(k —2)det(H, , )+ (k —1)det(H, , )}+kdet(H,)

= (—)}2(Adet(A, 5 )+ (k —3)det(H, 4 ))+ A(k —2) det(H, )+ (k —1)det(H, , )}
+kdet(H,)

= ()22 det(A_5)+ 22 (k —3)det(H, ;) + A(k —2)det(H,_, )+ (k —1)det(H, , )}
+kdet(H,)

Now, the leading A must have power (k —2)so that we get det(Ak_(k_z)) and

det(H K—(k—2) )which are both known. So, continuing,

det(Hk+1)
= (1) A2 det(A_gz )+ A 22det(H,)+ A *3det(Hy )+ X S4det(H, )+ ..
+ 2%(k —3)det(H,_;)+ A(k —2)det(H,_,)+ (k —1)det(H, ) ]+kdet(H,)
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Substituting det(A(K, ))= (22 —1): (2+1Y2-1) and det(H, )=—(4+1)* *for all
k <n, we get

det(Hk+1)
= (-1 22 +1)2-1)- 2222 +1)- 232 +1)* - 242 +1)° +...
~ A2k =3)A+D) " — Ak —2)(A+1) P = (k—D)(A+1)? |-k(2+2)

Factorising (/1 +1) out of the k terms in the square brackets, we get

det(Hy..)
= (1A +2) ( AP(A-1)- A2 2*3(A+1) —AFAA+1 +...
~22(k=3)A+D)° Ak —2)(A+1) T —(k-D(A+1) ) |-k(2+2)*

Working with the first two terms in square brackets, we get

dEt(HkH)
=(-Da+1) ( A< (/12 _A)-AR2 - A1) — AP AA 1)
~22(k=3)A+D)° Ak —2)(A+1) " —(k-D(A+1) ) |-k(2+2)*

— (A2 (A2 —A—2)- A13(A+1) - A AA 1) + ..
~ 22k =3)A+D)° Ak -2)(A+1) " —(k-D(2+1) ) |-k(2+2)*

=(-1A+) (A P(A+2)2-2)- A3 +1) — A P4 (A +1)" +...
22 (k=3 A+1)° Ak -2)(A+1) " —(k-D(2+2)2 ) |-k(2+1)"

Taking out the next factor of (4 +1) from inside the square brackets, we get

det(H,.,)
= (1A +2°[ ( A3(2-2)-A*3-2%4(2+1)+...
— A2k =3) A+ — Ak —2)(A+1)° —(k-D(A+1)* ) ]-k(2+1)*
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Working with the first two terms in square brackets, we get (1)

det(H,,,)
= (AP (22 —24)- 23— 2B a2 +1)+ .
—22(k=3) A+ — Ak —2)(A+1)° —(k-D(A+1)* ) -k(2+1)"

= (XA (A2 —24-3)- A5 a(2+1)+ ..
—ﬂ?(|<—3)(,1+1)k P _Ak-2)(A+1) T —(k-D(A+1) " ) -k(2+2)T

= (D) +2°[ ( A (A+1)(2-3)- 242 +1)+...
—22(k=3) A+ — Ak —2)(A+1)° —(k-D(A+1)* ) ]-k(2+1)"

Note that the first term in the square brackets comprises of (4 +1)4“* (1 —(t —1)).

We do the step (1) above a total of (k —3)times, taking out the factor (A +1)k_3 to get

det(H,.,)
= ()2 +2)°[ A1 +1)2—-(k-2))-(k—D)(2+1) |-k(2+2)*

Note that the power of lambda in the first term in the square brackets is
(k —2)—(k —3) =1 and the power of (4 +1) in the second term in the square brackets

is also (k —2) — (k —3) = 1. Simplifying, we get

= (1A + D) (A+1)22 - Ak —2)- (k—1)) ]-k(2+ 1)
=(—1)(ﬂu+1)k‘2 (22 - Ak - ) (k-1)) -k (/1+1)“
(

—(D)A+1) (A-(k- 1))] (l+1)k1
—()A+) (A-(k-1)+k) ]
= (-)2+21) (2+1) ]

This concludes the proof, by induction, that det H, = (-1)(A +1)"*, forall n>2. o

This is a key result to be used in the inductive proof of Theorem 2.2.1 below.
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Theorem 2.2.1

Let A(K,,) be the adjacency matrix of the complete graph K, on n vertices.

011 -1
101 -1
Then A(K,)=|1 1 0 -+ 1
111 -0

L -nxn

has eigenvalue (n—1) with multiplicity 1, and eigenvalue -1 with multiplicity (n—1).

Hence det(Al — A(K, )= (1 +1)"" {1 - (n-1)}

Proof of Theorem 2.2.1 (by induction)

01
Forn=2,A(K2):{1 O}

Note that the eigenvalues of A(K;) are A = -1 (1 time) and A=1 (once).

Assume the hypothesis it true for k <n, i.e.,

(2 -1 -1 - -1

-1 2 -1 - -1
det(Al —A(K,)) =det{-1 -1 2 - -1

-1 -1 -1 -« A,

=(A+1) M {a—(k-1)} for k<n

ie, A=—1 (k—1)times,and A = (k —1) once.



49

Then, forn=k +1,

det[41 - A(K., )]

A -1 -1 - -1] -1 -1 -1 - —1]

-1 4 -1 - -1 -1 A -1 - -1
=Adetf-1 -1 A -~ -1| +kdetj-1 -1 A4 - -1

-1 -1 -1 - 2], -1 -1 -1 - 4],
= Adet(A(K, ))+kdet(H,)

Now applying the inductive hypothesis for det(A(K,)), and Lemma 2.1.1 for
det(H, ), we get

detfil - A(Ky1)] =22 +D) A - (k=D +k(-2)(2 +1)
= ()2 2k 1)k
— (+ ) (412 —K)
= (1+1 (2-K)

i.e., A=-1 ktimesand A =Kk once.

So we have proved that the eigenvalues of the adjacency matrix of the complete graph
A(K,)are A=—-1and A=n-1, and that the characteristic polynomial is

PA(KH)(i) =(A+1)""(A—(n—1)). The two factors (1+1) and (1—(n—1)) give rise

to the quadratic 4> —(n—2)4—(n—1) which has the associated conjugate pairs

(h-2), [2-n) +4(n-1)
=5 _\/

4
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Proof of Theorem 2.2.1 (using J , matrix)

n

The complete graph K|, has adjacency matrix A(K,)=J,, — I, . Therankof J,  is

1i.e., there is one nonzero eigenvalue for J =~ equal to n (with an eigenvector

n n
1 =@1..D". As X 4 =tr(3)=>_J;; =n, all the remaining eigenvalues are 0.
o i=1 i=1
Hence, the eigenvalues of J, ~aren (once)and O (n—1) times.

With eigenvalue n, and eigenvector x =1" ,

AKX =0 = 10X

With eigenvalue 0, and eigenvector x

A(Kn))_( = (‘]n,n - In,n))_(
:Jn,n)_(_ In,n)_(

=X

Therefore, the eigenvalues of A(K,) are (n—1) (with multiplicity 1) and -1 (with
multiplicity (n—1).
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Proof of Theorem 2.2.1 (using diagonalisation method)

Let Q be the orthogonal matrix, which diagonalises J ,
then QJ,,Q =diag(n,0,0,...,0).

Then, since A(K,)=J,, |

QAKIR  =Q (I, —1ha R
=Q"J,,Q-Q7",,Q
=diag(n,0,0,...,0) —diag(L11,...,1)
=diag(n-1,-1-1...-1)

which implies that Q diagonalises A(K,) with eigenvalues (n —1) once, and —1
repeated (n—1) times.

Proof of Theorem 2.2.1 (inverse method)

Since A(Kn) is the same as the full matrix N* of a strongly symmetric design of v
treatments, with v = n, we get from section 1.5.1

(NQ)&:}NQ_r_—ll
r r

and hence we obtain the quadratic

, r=v-1

(N2 —(r—-1)N®-rl,, =0
Hence, in terms of graphs we have
(A(Kn))2 —(r _l)A(Kn)_ r‘Iv,v =0

Letting r =n—1, the roots of the above quadratic are

(n-2)x(n-2F +4(n-1) _(n-2)+n’
2 2
Thus the two roots are (n—1) and —1.

From the Cayley-Hamilton theorem, these roots are the eigenvalues of A(K,). The rank
of the adjacency matrix of the complete graph is n, and since the rank is equivalent to
the number of non —zero eigenvalues, the matrix must therefore have n non zero
eigenvalues. Since the complete graph is n—21regular, there can only be one eigenvalue
of value (n —1). Therefore, the multiplicity of the remaining eigenvalue of value —1 is

(n—1).
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2.3 Eigenvalues of cycles

Let C, be acycle graph on n vertices. Then, Cgis an example of a cycle graph.

Figure 2.3.1: Cycle graph Cg4

We first need Definition 2.3.1 and Lemma 2.3.1 as follows:
Definition 2.3.1: Order d linear homogeneous recurrence relation

An order d linear homogeneous recurrence relation with constant coefficients is an
equation of the form

X, =C;X; +C,X, +...+Cy X,

where the d coefficients c; (for all i) are constants.

Lemma 2.3.1

The linear homogeneous recurrence relation with constant coefficients
Xii + Xjig =AX; for 2<i<n-1

and initial conditions xy = x,, and Xp,; =%;

has solutions

A; =2cos(2—ﬂ]j; 0<j<=n-1.
n
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Proof

Xiq + Xiq = A%

Replacing i-+1 with n, we get:

Xn_p + Xy = X4

= X, = Xy — Xno

sothat c,; =4 and c,_, =-1 asin Definition 2.3.1.

More precisely, this is an infinite list of simultaneous linear equations, one for each
n> (d —1). A sequence which satisfies a relation of this form is called a linear

recurrence sequence or LRS. There are d degrees of freedom for LRS, i.e., the initial
values c,,...,c, can be taken to be any values but then the linear recurrence determines

the sequence uniquely.

The same coefficients yield the characteristic polynomial (also "auxiliary polynomial™)
p(t)=t* —ct** —ct*? —...—c,

whose d roots play a crucial role in finding and understanding the sequences satisfying
the recurrence. If the roots 1y, 1»,... are all distinct, then the solution to the recurrence

takes the form
Thus for X, = AX,,; —X,», wehave d =2, ¢, =Aand c, =—1.

Then p(t) =t? —At+1

A+12 -4

with roots r;,r, = >

Thus we have
; . A2 -4
X, =k, +k,r,” with r,,r, =
By calculation, the sum of the roots of the quadratic p(t) = t2 —At+1 is A and the
product of the roots of this quadratic is 1. Therefore,


http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://en.wikipedia.org/wiki/Characteristic_polynomial
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rn+r, =4 and nr, =1. Q)
Then from (1) we have

n+r =41

I 1
Substituting r, = —we get
n

1
n+—=41
n
The initial conditions give:

L X=X

=r"=landr," =1

n n

=r"=landr," =1

Recalling from Lemma 2.1.1, that if r" =1 then the solutions are

27k
Un—{en —wﬂ&mﬁdﬁdam)O<k<n—@>wmmt%ismenmrwtm
unity and 1 = J-1

Therefore, ;" =1 has solution set

27 24 24
U, _{e n :cos(Tn]jHSin(Tﬂ]j; 0<j< n—l} where U is the n th root of

1.

Then from (1) we have

1
ﬂ’k = I’l +—
I



27ij 27
=e" +e " ;0

o2t
cos( j
{0

Theorem 2.3.1

-1

o)l
it )

+
—+

isin
isin

()
(5

|/\

Let C,, be a cycle graph on n vertices. Then the adjacency matrix A(Cn) is
01 0 - 1]
101 -0

AC,)=|0 1 0 - 0

and has eigenvalues

lj =2COS(2—ﬂ]j; 0<j<n-1 andfor n>3.
n

Proof of Theorem 2.3.1 (using circulant matrices)

A(C,,) is a circulant matrix, so as per Theorem 2.1.1, the eigenvalues of A(C,,)are

2 =dlp;)
24
=0+1p; +0pf +...+1p] " where p; =e " , 0< j<n-1
24
=p; +p]", where p; =e " and n>3.

Therefore,

274 2(n-D)ij

A, =e M 4e O

]
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=c05(2774' +,s,n[ jms(zm— )’“jﬂs.n[z(”;””jj

18 )31

ool el ol ) o5 o )

({22202
{

| +O}+i(sin(zTrzij+{o+(—1)S‘”[zTﬂjj}]

So, we have shown that, the eigenvalues of the adjacency matrix of the cycle graph
AC,), are

/1j =2cos(2—ﬂ]j; 1<j<n-1
n

To illustrate specific examples, we have for j=0 and all n>3:

270 2(n-1)7i.0
Ag=€ " +e N
=1+1
=2 forall n>3.

Also, for n=3, we have
ﬂ,o = 2

A = cos(z—ﬂj +1 sin(z—”) + 005(4—”] + isin[4—”)
3 3 3 3

=—0.5+§i—0.5—§i
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=1

A\ . . (4rx 87\ . . (8«
A, =2c0S| — |[+isin| — |+ cos| — |+isin| —
3 3 3 3

_ 05 0543,
2 2
=1

Thus the eigenvalues of the adjacency matrix associated with the cycle graph on 3
vertices are A =(—1) twice, and 4 =2 once.
Proof of Theorem 2.3.1 (eigenvector method)

For n=3, C, is the cycle graph on 3 vertices. The adjacency matrix A(C;)of cycle C,
is:

01
AlC3)=|1 0
11

o KR K

The eigenvalues of A(C3) are 2 and -1 (by calculation using Bluebit Online Matrix
Calculator).

Now for j=01,2
Zcos[z—ﬂlJ is:

3
2c0s(0)=2
2COS(2—EJ

3

(4

3
For n=4,then C, is the cycle graph on 4 vertices. The adjacency matrix, A(C4 ) of
C, is:

2c0s

oL, O R
[ = T S =
o r O O
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The eigenvalues of A(C,) are 2, 0 (twice) and -2 (by calculation using Bluebit Online
Matrix Calculator).

Now for j=0,12,3

2COS[2—7Z]J is:
4

For the general case, C,is the cycle graph on n vertices. The adjacency matrix of C, is:

(01000 0 0 1]
10100 000
01010 000
00101 000
AC,)=| . S .
00000 10
0000 1
10000 - 01 0

Let X, = (X, X,,..., X, ) be the eigenvector.

Then, AC, )X, =An X,

01000 0 01 Xq X1
10100 0 0 O] % X,
01010 0 0 O] Xg Xg
001001 0 0 0] x4 X4
=1 . S C =]
00000 - 010X Xn_p
0 00O 1 0 1]|X,4 Xpg
1 00 00 0 1 0] X | | Xy |
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XZ + Xn X1
Xl + X3 X2
X2 + X4 X3
X2+ X X
— 3 . 5 _ ﬂ'n .4
Xn—3 + Xn—l Xn—2
Xn—2 + Xn Xn—l
_X1+Xn71_ _Xn_

i.e, X, +X, =A%, for1<i<nand xy=x, and x4 =X

n“t

From Lemma 2.3.1, this linear homogeneous recurrence relation with constant
coefficients has solution

A; :2003(27721}; 0<j<n-1

Therefore, the eigenvalues of the adjacency matrix of the cycle graph C, on n vertices

are
A :2008(2—721); 0<j<n-1lforn>3.
n

Eigenvalues of paths

Let P, be a cycle graph on n vertices. Then, P is an example of a path graph.

Figure 2.4.1: Path graph P;

We first need Lemma 2.4.1. The proof of this lemma is similar to that of Lemma 2.3.1,
but the solutions are different as there are different initial conditions.
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Lemma 2.4.1

The linear homogeneous recurrence relation with constant coefficients
Xia  Xisg = AX;
for 2<i<n-1,and X, =0 and X, =0

has solutions

Aj = 2C05(ij, j=1..,n
n+1

Proof

The initial conditions have X, =0 and X, =0 to indicate that the path starts and

ends with x,and X, respectively.

Refer to Lemma 2.3.1 to obtain the following:

A+12 -4

X, =k + k1" with ", r) = 5

By calculation, the sum of the roots of the quadratic p(t) =t> —At+1 is A and the
product of the roots of this quadratic is 1. Therefore,

rn+r, =4 and nr, =1. (1)
Then from (1) we have

n+r =41

N 1
Substituting r, = —we get
n

n
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The initial conditions give:

= k" +k,r," =k, +k, =0
=k, =k,
=X, =k (" -r,"); k, #0

2. X 0

n+l =

= k1r1n+l + k2r2n+l = 0
N rln+1 _ I’2 n+1 =0

n+1 n+1

From nr, =1
= (rlrz )n+1 = 1n+1 = 1

1 1
= r1n+ r2n+ =1n+l =1

— I,_1n+1r1n+1 =1

— rl2n+2 -1

i.e., 1, isthe (2n+ 2)th root of unity.
Recalling from Lemma 2.1.1, that if r" =1 then the solutions are
27k
U,=1e " =cos(2zk)+isin(27k), 0<k <n—1twhere U, is the nth root of
unity and i =~/—1.

2n+2 )
"< =1 has solution set

27k
U,,., =122 =cos 27K +isin( 27K j; 0<k<n-1:whereU,,,, isthe
2n+2 2n+2

(2n +2)th root of 1.

Therefore, 1}




62

Then from (1) we have

1
ﬂ’k = I’l +—
I

27k 2z

=22 4o 2142 - 0<k<n-1
27k \ . . ( 27k — 27K ) 27K
= COS +isin +C0S +1sin
2n+2 2n+2 2n+2 2n+2
; 0<k<n-1
27k \ . . ( 27k 27K ) . 27K
= Cos +isin +COS —18In
2n+2 2n+2 2n+2 2n+2
; 0<k<n-1
:2(305( 27k j, 0<k<n-1
2n+2

:Zcos(ﬂj :0<k<n-1.
n+1

Setting j =k +1, we get

A; = Zcos(ij ;1< j<n
n+1

Theorem 2.4.1

Let P, be a path graph on n vertices. Then the adjacency matrix A(P,) is

10 -0
101 -0
)=|0 1.0 --- 0

0O 00 -0

and has eigenvalues

A; =2cos(ij; 1<j<n and n>2.
n+1
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Proof (eigenvector method)

For n=2, let P, be the path graph on 2 vertices. The adjacency matrix A(P, )of path
P, is

The eigenvalues of A(Pz) are 1 and -1 (by calculation using Bluebit Online Matrix
Calculator).

Now 2COS(%], where j=12is:

2 cos(zj =1
3

2 cos(z—ﬂj =-1
3

For n=3, P, is the path graph on 3 vertices. The adjacency matrix A(P;)of Pj is

A(P3):

o - O
=
o = o

The eigenvalues of A(P,)are +v2, -v/2 and 0 (by calculation using Bluebit Online
Matrix Calculator ).

Now 2C08(%j, where j=1,2,3is:
2C0s zj =2
2C0S

2C0s
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For n=4, P, is the path graph on 4 vertices. The adjacency matrix A(P, )of P, is

o O -
O Fk O
o O O

The eigenvalues of A(P, )are 1.618034, 0.618034, -0.618034, and -1.618034 (by
calculation using Bluebit Online Matrix Calculator).

Now Zcos(%j, where j=1234is:

205 %j —1.618034

2C0S 2?7[) =0.618034

2¢0s %j =-0.618034

ZCOS(%ZJ =-1.618034

For the general case, P,, is the path on n vertices. The adjacency matrix of P, is:

01 000D 0 0O
1 0100 0 0O
01 010 0 0O
0 01 01 0 0O
AP)=|. . T . .
0 00 OO 1 0
0 00 0O 1 1
00000 1 0]

Let X, =(X, X,,...,X, ) be the eigenvector.
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(01 000 0 0 0] Xq ] i X4 i
1 0100 0 0O Xy Xy
01010 0 00 X3 X3
001001 0 0 0] x4 X4
=, ... C =]
0 00O0O - 01 Xp_o Xn_2
0 00 0O -~ 10 1||Xyy Xpgq
000O0O0 - 01 0)]x, | Xy |
X, | x|
Xp + X3 X,
Xy + Xy X3
| % + Xs | _ A X'4
Xn—3 + Xn—l Xn—2
Xn—2 + Xn Xn—l
anl L Xn B

= Xi_3 + Xjz1 =4AnX;, for 1<i<n and X, =0 and X, =0.

From Lemma 2.4.1, this linear homogeneous recurrence relation with constant
coefficients has solution

A :Zcos(i} j=1..,n
n+1

Therefore, the eigenvalues of the adjacency matrix of the cycle graph P, on n vertices
are
A= Zcos(ij; j=1..,nn>2

n+1

From Lemma 2.2, where x; is an end vertex of P, , we also get

PA(Pn)(ﬂ’) = iPA(Pn,l)(/I) - PA(Pn,z)(ﬂ“)
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Py, J(2)= 2" -1 by calculation of det(Al — A(P,))
Pyp(2)= 24 -22 by calculation of det(l — A(P,))
Pae)(4) = APyp,)(4) = Pys)(4)

= A2 —22)-(# -1)

=132 +1
Pun)(4) = APys) (1) = Py (1)

= A2 =347 +1)- (- 24)

= P3P+ A-R+2A

=P 43 +32
PA(PG)(A’) = APy (4) = Pyy(4)

= A — a2 +34)- (1 —32 +1)

=42 43R - +37 -1

=2 -5 +61° -1 etc.

Also, from Theorem 2.4.1,

Pap,)(4)= f[(/l -2 co{niHD

=t

= ,qrj(ﬁ - ZCOS(%jJ - ij(l B Zcos(ni—-lD

So for n=4,

PA(P )(2')

LG RICES)
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_ Ma -2 COSGD(@ -2 COS(ZTED@ B COS(%M
. K/z - ZCOS(%DP - ZCOS(Z?”M

— (Al -v2)a-0)\a++2))- (1 -1(2+1))
= (Al —v2)a-0)\a+v2)-(2-1)(2+1))

= (7 —2)-(#-1)

=132 +1
2.5 Eigenvalues of bipartite graphs

Let Ky, be the complete bipartite graph on (s +t)vertices, with partition (A, B), where

|A=s and [B|=t. Then, K, , is an example of a bipartite graph.

Figure 2.5.1: Bipartite graph K3,
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Theorem 2.5.1

The eigenvalues of K are 0, with multiplicity s +t—2, and + Jst and — /st .
See Fox [24].

Proof

We can write the adjacency matrix of K, as the block matrix

0 J
37

This matrix has rank 2, since the first s rows are the same, the last t rows are the same,
and the first and last rows are linearly independent. Thus K, has nullity (s+t-2),

and hence has eigenvalue 0 with multiplicity s +t — 2. See Anton [3].

Now let v € R ™ be the vector whose first s entries are x and last t entries are y, i.e.,
V= (x, Xyeen X, Y, y,...y) with x occurring s times, and y occurring t times. The edges

joining the two partitions of the bipartite graph are significant in determining the
eigenvalues, and suggest the splitting of the eigenvector into two parts relating to the

bipartition. This definition of v facilitates finding the eigenvalues as follows

(ty,....ty, X,...,5x) with ty occurring x times, and sx

0 J
sheake| 7 o
occurring t times. To get eigenvlaues, we solve Av = Av. So,
(tY,ees Y, 5%,y SX) = AXye0 X, Yooy Y) = (MK, AX, Y. AY)
with Ax occurring s times, and Ay occurring t times.

Therefore ty = Axand sx =y

So t(zj = AX
A

= )’ =st
:/Izi\/&

Hence the eigenvalues of K . are 0 with multiplicity s+t -2, and ++/st and —/st ,
each with multiplicity 1.
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2.6 Eigenvalues of the adjacency matrix associated with a graph
which is the join of two graphs whose adjacency matrices are
both circulant matrices

The following theorem gives the eigenvectors and eigenvalues of a matrix which is the
adjacency matrix of the join of two graphs, whose adjacency matrices are both circulant
matrices. This proof is key, as it can be applied to easily obtain the eigenvalues of a
number of different graphs, which are made up of the join of two graphs whose
adjacency matrices are circulant matrices, for example, the join of the complement of
the complete graph on one vertex and a cycle (the wheel graph), the join of the
complement of the complete graph on more than one vertex and a cycle (the generalised
wheel graph) and the join of the complement of the complete graph on more than one
vertex and a complete graph (the generalised complete wheel graph).

Theorem 2.6.1

Let UL =fioh, P2k o PO and VT =ppt, 02, . AU
27 27
where p,, =e ™ forl<k<m-land p,;=e" forl<j<n-1

Let square matrices A=[a;,a,,....a,,| and B=[by,b,,...,.b,] be two circulant matrices.
Then
J

A mn:|
nm B

2. CSET(A®B)={W,;,W,,...\W,,.,,}

1. A@B={
J

where
w, =lo,,. v/ |if 1<k <n-1;
wl, =[50, ]if1<k<m-1

W7 W= { 3y ] [0 + a(dy ~dg) -m=0},

where dy=a; +a, +...+a,
and dg =b; +b, +...+Db,
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3. Theeigenvalues A, of A@ B are given by:

A =b, +0,pf +b,p% +...+b, p" D" for 1<k <n-1;

n

Aok =a, +a,pk +a,p2 +..+a,p" " for 1<k <m-1;

{2} =1 N +d,| na? +a(d, —dg) -m =0}
See Lee and Yeh [37].

Proof

To show that W, = [01’m VkTJ is not an eigenvector for k =0, we let

A I,
C=A®B= so that
‘]nm
o
0] m 0]
A J A ] 191 |- 0
owi {2 g loui b 5 F | dbosln
nm nm
_1 db
Ly |

which means m = 0, which is impossible. Therefore W, = [Olym,VkT] is not an

eigenvector for k = 0.

Toshowthat W' =0, VT |=[000..001p%, o2, .. pP[;1<j<n-1
is an eigenvector of C consider:

A ] =
CWjT:L g”}[ooo..mpﬁ,j Pai o P

nm
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n-1 n-1 n-1
The first m rows look like: D" pf . > i, ..>" pk ;. Then, from Corollary 2.1.1,

k=0 k=0 k=0
n-1
pr'fy j =0, so the first m rows of CWJ-T are 0.
k=0
The next n rows look like: by +b, o5 ; + byplj+ ... +b,p{P;1<j<n-1

which, from Theorem 2.1.1, is the eigenvalue corresponding to eigenvector

[l,pﬁ’j, pri. ,prﬁf‘j_l)] for 1< j<n-L1.

Thus we have proved that

W =[o,.vT ]=[o0o..001p, p2, .. ptA) 1<j<n-1
is an eigenvector of C = A® B.

Applying the same method, we can show thatW,, . = [UJT ,Olyn] for 1< j<m-—1 are

n+j

eigenvectors of C = A®B.

.
To determine the first set of eigenvalues of A® B, we set v = (Ol,m,>_<T ) where

X" =(X,,-Xp,..., X, ) and solve for (A@® B)v = Av. We specifically select v to be of this
form as we understand the join of sub-graphs A and B and this vector isolates the edges in B.

Solving (A@ B)v = Av, we get
|:Am,m ‘]m,n:| {Om,l:| _ /I_Om,lj|
‘Jn,m Bn,n )_(n,l _)_(n,l

PN |: ‘]m,n)_(n,l :| _ A|:Onx1_
B, X X

mn,n 2n,1 2nxl |

Solving Bx = AX we get the eigenvalues of B, which are, as per Theorem 2.1.1,
A =b +byp; +byp® +.+byp ", 1<k <n-L.

-
To determine the next set of eigenvalues of A® B, we set v = QT ,Ol,n) where

)_(T = (xl,.xz,..., xm’) and solve for (A@ B)\_/ = AV . We specifically select Vv to be of this

form as we understand the join of sub-graphs A and B, and this vector isolates the edges in A.
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Solving (A@ B)v = Av, we get
|:Am,m Jm,n:| |:)_(m,1:| _ i|:)_(m,1:|
‘]n,m Bn,n 0n,1 On,l

Am,m)_(m,l )_(m,l
= =1
J n,m )_(m,l On,l
Solving AX = AX we get the eigenvalues of A, which are, as per Theorem 2.1.1,

Anik =3 +3,0; +a3,oj2 +...+ampjm*1, 1<k<m-1

To find the eigenvalues 4, and A,,,0of A@® B, we solve: (A@® B)v = Av, where

V= (Jl,m oy )T . The edges between the two graphs A and B, which form the join

between the sub-graphs, are significant in the determination of the conjugate eigen-pair
of the adjacency matrix of the resultant graph. We use the factor of « in the vector v to
assist in obtaining the conjugate eigenvalues as follows:

_Am,m ‘]m,n} |:me1}:i{]m,li|
_‘]n,m Bin Cnx1 Ona
[(dp+n@) s 2 Ima
_(m+adB)n,1 a‘Jn,l

dA+na:/1
m+Och=ﬂa

Therefore,

na® +a(dy —dg)—m=0

—(dp—dg)£+/(dp —dg)? +4nm
a:
2n

So, the conjugate pair of eigenvalues are

—(d,—dg)£/(d, —dy)? +4nm »

A=
2n

A
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2.7 Eigenvalues of wheel graphs
2.7.1 Wheel graph

Let W,, be a wheel graph on n vertices, with (n —1) spokes, and with the central
vertex labelled v, and the outer vertices v,,Vs,...,V,.

Figure 2.7.1.1: Wheel graph C,4

Then the adjacency matrix of W, is

— A J
A(Wn) =K, ®C,, :[ T l,nl}

‘]l,n—l B
where
e Aisalxl matrix of a single vertex (the number zero), so m =1 in this
example

e Bisan (n—1)x(n—1) adjacency matrix of a cycle on (n—1) vertices.
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So, from Theorem 2.6.1, W, has eigenvalues:

A =b +b,pf +b,p* +..+b p" P for l<k<n-2;

= pX + p{" DK where p, —exp(zm),
n

e = ta,pfrap’ +. . +a pm for i<k <m-1;
which gives no eigenvaluesas m—1=0

{ﬂ“n l’ﬂ“ }
= {(n_l)a+dA}

where (n—1)a” +a(d, -d;)-1=0 and d, =0,d, =2

ie,(n—1)a? -2a-1=0

2+ J4+4(n-1)

2(n-1)

= a=

Therefore,

Ao At ={0-Da+d,}

22 Jardn-D)
2(n-1)
:{ +J4+4(n- D}

2

= fi+n|
Example 2.7.1.1

For the case n=4, we have the adjacency matrix of W, as
AW, )

=
=T ==
[ I N =



The eigenvalues of W, are

27

A = p3k +,o32k where p, :exp(?j; forl1 <k<2

A =pstps
Lol 5]
ool o)
i:?5+aa—05—aa

A= pPi +ps
ool (=[5
s rm(5) ()

V3 V3

=-05-—i-05+—i
2 2

{13114} - {li\/Z}
= {3-1}.

So W, has eigenvalues 3 (of multiplicity 1) and (-1) of multiplicity 3.
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2.7.2 Generalised wheel graph

Let X,,., be a generalised wheel graph on (m + n) vertices, with (mn) spokes.

m+n

Then X,n = K_m ®C,,, and X,,5is an example of a generalised wheel graph.

Figure 2.7.2.1: Generalised wheel graph X,

Let the central vertices be labelled vy,v,,...,v,, and the outer vertices form a
cycle on n vertices labelled Vi1, Vinsi2,-sVinen -

Then the adjacency matrix of X, is

AXpin) = AlK, ®C,) {J AT g}

m,n

where
e Aisan mxm matrix of 0’s; and
e B isan nxn matrix of a cycle on n vertices.

So, from Theorem 2.6.1, A(X,,.,,)has eigenvalues

A =b +b,pf +b,p2 +..+b p" V¥ for 1<k <n-1
= p& + plt DK where p,, = exp(z—mj
n

Aok = +a,08 +a,p2 +...+a, p" D" for i<k <m-1
=0 for 1I<k<m-1
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{4 Apom } = fna+d, } where na® +a(d, —dg)—m=na’® —2a-m=0.

n+m

So, na®—-2a—-m=0

o - 2+ +4+4mn
2n
_1£J1+mn
—
Therefore,

{ﬁ‘n ’ﬂ’n+m } = b‘i V (1+ mn)}
Example 2.7.2.1

For the case m=2 and n=4, we have the adjacency matrix of X,,, as A(X 2+4)

0 1111

0
0 01
110
A(X2+4):K2®C4 = 1 1 1
110
111

O Fr O B

1
0
1
0
1

O Fr O L B

The eigenvalues of A(X,,,)are

A :plj +p2k where p, :exp(Zij, k=123

M =pi+p;
=0

A = pi +ps
=2

A3 = pa+ps
=0
15=0
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So A(X2+4) has eigenvalues 4 (of multiplicity 1), 0 (of multiplicity 3), and -2
(of multiplicity 2).

2.7.3 Generalised complete wheel graph

Let Y., be ageneralised complete wheel graph on (m + n) vertices, consisting

of mn spokes. Then Y., = K_m @K, and Y;,5 is an example of a generalised
complete wheel graph.

Figure 2.7.3.1: Generalised complete wheel graph Y, 5

Label the centre m vertices v,v,,...,V,,, and let the outer vertices form a

Vi

complete graph on n vertices, labelled v_ ,,V

m+17 m+2""’vm+n

. Then the adjacency

matrix Y, IS

_ A J
A(Ym+n): A(Km ® Kn): E] T gn:|

m,n

Where
e Aisanmxm matrix of 0’s
e B is an nxn matrix of a complete graph on n vertices.

So, from Theorem 2.6.1 A(Y,,,,, ) has eigenvalues

A =b +b,pf +b,p2 +..+b p" ¥ for 1<k<n-1;

=K+ p2X 4.+ p{" DK where p, = exp(z—mj
n
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Ao =8+, +a,p? +...+a, p™ % for i<k <m-1;

=0 for1<k<m-1

n+k

{ﬂ’n’ﬂ’m}z ha+d,}

where na? +a(d, —dg)-m=0 and m=0,n=0,d, =0 and

So na® +af0-(n-1)]-m=0
=na’—(n-La-m=0

. (n=1) £ (n=1)7% +4nm

2n

Therefore,

AL A b= =n*
{n m} {nowdA n on

(n-1) £+ (n=1%+4mn +O}

_ {n[(n ~1)+/(n-1)* +4mn]}

2n

2

_ {(n ~-D+(n-1%+ 4mn}

Example 2.7.3.1

For the case m = 2 and n = 4, we have the adjacency matrix of Y,,,as

A(Y2+4): Kz ® K4

|
Il
e = =)
e = =)
e =
=T
= = =S = =
= B S S o
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The eigenvalues of A(Y,,,) are:

M = pi+pi+ pl where p, :exp(ZTﬂij; for 1 <k<3
X =pi+pitps
— oo 22 ) oo 2] [ e 22)]
4 4 4
=0+i)+(-1+0)+(0-1i)
—1

2 6
Ao = pi + pi + p3

~|1 P2 ®1 ®1 3
=(-1+0)+@+0)+(-1+0)
-1

Ay =pi+pi+pi

oo ol ol

=0-1D)+(-1+0)+(0+1i)

{/1 /1}_ 3+4V9+4.24
4176 ) T f

|3+ a1
]2

So A(Y,,,) has eigenvalues -1 (of multiplicity 3), 0 (of multiplicity 1) and

3+4/41
2

(each of multiplicity 1).
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2.8 Eigenvalues of star graphs

In this section, we determine the eigenvalues of the adjacency matrices of various
examples of star graphs. In section 2.8.1, we use the fact that the star graph with m rays
of length 1, is also a bipartite graph, to determine the eigenvalues of the adjacency
matrix of this graph. In section 2.8.2, we use the determinant method, and expand the
determinant to determine the eigenvalues of the adjacency matrix of a star graph with m
rays of length 2. Finally, in section 2.8.3, we remove a vertex, and apply Lemma 2.2 to
determine the eigenvalues of the adjacency matrix of the star graph with m rays of
length 2. We obtain the same results as in section 2.8.2 and show that there is often
more than one method to obtain the eigenvalues of the adjacency matrix of a graph.

2.8.1 Star graph with m rays of length 1

Take m copies of the path P,;, join the paths at their end vertices, in the central

vertex u: denote the graph on km+1 verticesby S, g ., 3 mM>2,k>2

Figure 2.8.1.1: Star graph S, gp,

If k=1and m>3, then we get the star graph K, ,, with m rays of length 1

which has eigenvalues of 0 (multiplicity m—1) and +/m (from section 2.5
above).
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2.8.2 Star graph with m rays of length 2

If k=2and m>2, we have the star graph S, ,n,, Where S, gp, is drawn below.

Figure 2.8.2.1: Star graph S, gp,

We label the vertices of the star graph S, j,p, with m rays of length 2 on 2m+1
vertices as follows:

The central vertex is called u, the sets of m vertices a distance 1 and 2
respectively from u are labelled V; ={Vi,v3,...v~}and V, ={v/,v3,...,vi}
respectively.

For constructing the adjacency matrix A of the S, we label the central vertex u
as vy, the vertices of V, and V,as V,={v,,v,,..,v,,} and

V, ={Vii2:Vinizs- Vomaa b reSpectively.

For k =2,m=2 we have the path P; with adjacency matrix

A(Sl,Z P3) =

o O - kB O
O B O O -
_ O O O -
o O O +» O
o O » O O
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The characteristic polynomial is

A -1 -1 0 O]
-1 12 0 -1 0
det(Al —A(S,,,)) =detf -1 0 4 0 -1
0 -1 0 4 O
0 0 -1 0 2]

and expanding using the first row,

A 0 -1 0/ -1 0 -1 O

0 4 0 -1 |1 2 0 -
det(Al — A(S =1 +
( Gizr)) -1 0 4 0l |0 0 4 O

0 -1 0 4 0 -1 0 24

1 2 -1 0
10 0 -
lo -1 4 of
0 0 0 A

Now expanding the last 2 determinants about the 3rd and 4 th rows respectively,
we get

A0 -1 0

0 4 0 -1 0 o LA -

det(Al — AS,,p)) = 4 a1t 4 —d-4-1 o ol
A I N

o -1 4l lo -1 2
0 -1 0 4

Finally, expanding the last two determinants about the 1% and 2™ rows
respectively, we get

A 0 -1 0

0o 4 0 -1 |2 - A -
. = - ) .
det(l ~AGSL D=4 o, o z|_1 2‘1 ‘_1 j
0 -1 0 2
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The first determinant involves the circulant matrix with solutions:
. 2
27) iyl -
[exp (T)} =exp(dj); j=0123.
The second determinant involves the circulant matrix with solutions:

27 L
(1) =ep (i); j =01

Thus the characteristic polynomial is:
AA-D2(1+D)2 =221 -D)(A +1)
=AA-D(1+)[1-D(A1+D) -2]

= 2UA-1)(A+1)(# -3)

So, the eigenvalues of the adjacency matrix of a star graph, with 2 rays of length
2,are 0, 1, —1, ++/3, each of multiplicity 1.

We generalize this finding to the adjacency matrix of the star graph on
2m+1 vertices with m rays of length 2. For m>2and k =2 we have 2m+1
vertices:

U Vi, V3000V, V4 V5 ... Vi , and the star graph S, o,

The adjacency matrix is

01,1 ‘Jl,m 01,m
A(Sl,mPg) = ‘]m,l Om,m m,m
Om,l I m,m MM _{(2m+1)x(2m+1)

The characteristic polynomial is

det(Al — A(S, )

A - ‘]1,m Ol,m
=det -J,, A, —-l.n
Omvl B Im~m Al (2m+1)x(2m+1)
2 -1 - ‘Jl,m—l 0 ol,m—l |
-1 A 01,m—1 -1 Ol,m—l
==det| = Jna1 Opas Apama Oman —lhoama
0 -1 Ol,mfl A 0mfl,l
L Om—l,l Om—l,l — | m-1,m-1 0m—l,l Al m-1m-1 |
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Expanding the determinant using the first row, we get:

det(Al — AS, up,))

-1 Ol,m—l -1 01,m—1

— 2det Al mm Im,m + mdet - ‘]m—l,l Al m-1,m-1 0m—1,1 - Im—l,m—l
- Im,m Al mm Jomx2m 0 Ol,m—l A Om—l,l

0m—l,l -1 m-1,m-1 Om—l,l Al m-1,m-1

There are m occurrences of the second term in the expression above, as the
expansion of all the m non-zero entries in the first row yield the same minor as
above, with alternating signs.

Now expanding the determinant of the second term using the (m+1)th row, we
get:

det(Al — A(S, )

-1 O1ma O1ms
mq emL)™ ™ det 3, Al
2mx2m

m,m

-1
Al

=1 m-1,m-1

Al
= ﬂdet{ mm

|
m,m —
, 0 | Al
m-1,1 m-1,m-1 m-1m-1 Joym_12m1

Now expanding the determinant in the second term using the first row, we get:

det(Al — A(S, )

Al —1 Moama = lmam
=Adet| = ™" m,m + m(—l)m+l+m+1ﬂ,(—l)det m-1,m-1 m-1,m-1
“lom A 2mx2m “lnams Almama M-2.2m-2
Al —1 Al —1
= ﬂdet m,m m,m -mAi det m-1,m-1 m-1,m-1
“lom Anm 2mx2m “lnama Almama om-2.2m-2

The determinant in the first term comes from the circulant matrix with
eigenvalues

27 \"
exp(—lj ; 0<j<2m-1],
2m

which yields eigenvalues 4 =1 repeated m times and eigenvalue 4 =-1
repeated m times.
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The determinant in the second term comes from the circulant matrix with
eigenvalues

[op(2Aym o< j<om-1,
2m-—2

which yields eigenvalues 4 =1 repeated (m —1)times and eigenvalue 4 =-1
repeated (m —1)times.

This yields the characteristic polynomial:

det(Al — A(S, p))

=AA-D"(A+D)" —mA(A-D)" (A +D)™
= 2A-D)" A+ -1) (A +1)—m]

= AA-D)" A+ "2 - (m+1)]

Thus the eigenvalues of the adjacency matrix A(Slympg) of a star graph with m
rays of length 2, are:

- A =1with multiplicity m—1;

- A =-1 with multiplicity m—1;

- A =0 with multiplicity 1; and

- A=+Jm+1, each with multiplicity 1.

2.8.3 Star graph with m rays of length 2 (removing a vertex)

Let G be a star graph with central vertex x and m rays of length 2. Let x be
adjacenttoy.
From Lemma 2.2, we get

PA(G)(ﬂ’) = ﬂ“PA(G\x)(j“)_ Z PA(G\xy)(ﬂ’)

all x adj y

If we remove x from G, we get m copies of K,, each having eigenvalues 1 and -
1. So
A PA(G\X) (ﬂ) =AA-D)"(A+D)"

If we remove x and its adjacent vertex y from G, we get m—1copies of K, and a
single vertex. Thus, since there are m vertices adjacent to x, we get

Z PA(G\xy) (/1) =mA(1-1) m-1 (A1+1) m-1

Therefore,
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PA(G)(/I)
=2A-D)"(A+D)" —mA(A-)" (2 +™?
=2A-D)"*A+D)" (A -D(A+1) —m]
= 2(A-D)"HA+D" A —1—-m]

=2A-D" (A +D™ 2 —(m+1)]

Thus the eigenvalues of a star graph on (2m +1) vertices of length 2 are:
- A =1with multiplicity m—1;

- A =-1 with multiplicity m—1;

- A =0 with multiplicity 1; and

- A=+Jm+1, each with multiplicity 1.

The star graph on (m+1) vertices with m rays of length 2, can be extended to the
star graph with m rays of length k. This is not included in this thesis.

2.9 Eigenvalues of graphs with a pendant vertex

Using Lemma 2.3, we can easily obtain the characteristic polynomial of a cycle graph
which is connected to a pendant vertex via a single edge. Let G, be a graph on n

vertices, such thatG,, is obtained from a cycle C,, ; on (n—1)vertices, connected to a
pendant vertex x, via a single edge. Then, from Lemma 2.3,

PA(Gn)(/l) = ﬁ“PA(CH)(ﬂ‘)_ PA(PH,Z)()“)-

Applying Theorem 2.3.1 and Theorem 2.4.1, we get

n-2 27Z] n-2 7K
P A)=A4 A-=-2c0s — | |- A—2cos| — ||
en?) H{ tn—lﬂ { (n—lﬂ
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2.10 Eigenvalues of hypercubes

The class of p-regular hypercubes H , on 2 P vertices and p2 -1 edges, can be

obtained as the one-dimensional skeleton of the geometric hypercube; for instance, Qj; is
the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. The
hypercube has eigenvalues:

(&)
(p—2k)\"/;k=012,..,p.
See Brouwer and Haemers [12].

2.11 Eigenvalues of the complement of G

It is interesting to determine the eigenvalues of the complement of a graph. In
particular, we look at the the eigenvalues of the complement of the k-regular graph, but
first we need Lemma 2.11.1 and Lemma 2.11.2.

Lemma 2.11.1
If A is symmetric, and Q is orthogonal, then Q1AQ is symmetric.
Proof

If A is symmetric, then AT = A and if Q is othogonal, then QT =Q*. Also if Q is

orthonormal, then so is Q %, and then (Q’l)T = (Q’l)_l =Q.

So,
Q*AQ) =Q"A" (@) =Q*AQ

Therefore, we have proved that Q1 AQ is symmetric.


http://en.wikipedia.org/wiki/Skeleton_(topology)
http://en.wikipedia.org/wiki/Hypercube
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Lemma 2.11.2

Let G agraph of order n which is regular of degree k, and let the eigenvalues of G be
Anyeodo, 4 =K. Let A(G) be the adjacency matrix of G . Then there is an orthogonal

matrix Q of eigenvectors of A(G), where the first column is

i(l,l,...,1)= pd,.. ,where p = % such thatQ " A(G)Q = diag (k, Ay, A, ,..., 4,).
n

Jn

Then Q also diagonalises J,, , and Q*J,, ,Q =diag(n,0,...0).

Proof

Let G be the compliment of G, and let A (6) be the adjacency matrix of G. Then
AG)=3,,-1,,-A@G)

and

QAGR=0"3,,Q-1,,—~Q'AGK

As Gis n—1—k regular, the sum of the entries in each row of A'(G) is (n—l—k),

and the sum of the entries in each column of A'(é) is (n -1- k). Therefore, the first
entry of LHS is

1 41..0a0)

1
N (1,1,...,1)=En(n—1—k):(n—1—k).

1
Jn
The first entry of I, , is 1, and the first entry of Q *A(G)Qis k, so then the first entry
of Q713,,Q is n.

For n=3,
p ad
letQ=|p b e
p c f

Since Q is orthogonal, Q' =Q" = where p=—.

o o o
@ T ©
ol
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Then
p p pl|l11l|p a d p p p||3p a+b+c d+e+f
QYJ,Q=la b c||1 1 1]|p b e|=la b c||3p a+b+c d+e+f
d e f||111j|p c f d e f||3p a+b+c d+e+f

Since (a,b,c) and (d,e, ) are perpendicular to (p, p, p) we have p(a+b+c)=0 and
p(d +e+ f)=0, therefore

P p P
Q,.Q =la b c|[3p 0 O
d e f

3p(3p) 00
=| 3p(a+b+c) 0 O
| 3p(d+e+f) 0 O

9p®> 0 0
=l 0 00
0 00
30 0
=0 0 0
000

Since the first entry in the matrix is 3, (as shown above), we have proved the result for
n=3.

This approach can be generalised for all n.

Let Q be an orthogonal matrix of eigenvectors of A, with the first columns p.J n,lT such

that Q'AQ =diag(k,4,,...,4,).



91

Q2 Qg3 - Oin
Qo2 Q23 - Uon

Let Q=P Q32 0Oz3 - Qn

p Qn,z qn,3 Qn,n

p p
U2 o2
and then, since Q is orthogonal, Q_1 :QT =013 O3
_ql,n q2,n
Then
Q1J,.Q
‘P p D p T 11

U2 U22 Q32 - On2
=|0Oy3 O23 Os33 - Op3|(l 1 1 --- 1||Pp

_ql,n Qon QGzn - qn,n_ 1111 1)|p

PP p o P Ya, Dldis
G2 922 Gz2 - Un2| | NP ZQi,z qu?,
=03 U3 Q33 - Qu3 || NP ZQi,z ZQi,a

_ql,n q2,n q3,n qn,n_ np ZQi,z Zqi,S

Since the vectors in Q are perpendicular to J MT we have

D 62 =0, 0i3=0.....>_di, =0, and therefore

p p p - p|np 0O
Gho Oz2 Qz2 - On2 PP O O
Qfl‘] nn@=|0s O3 O3 - Oz |np 0 O

ql,n q2,n q3,n qn,n_ np 00

U3z
O3

Q3

012
0z
U3z

qn,2

qn,Z

qn,3 '

Unn

Qi3
023
Us3

qn,3

Zqi,n_
zqi,n
Zgi,n

Sa

Q1,n
Uz
U3 n

G
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-

S
M
o
o

o O
o O
o O

Q_l‘] n,nQ = npz q1,3

o
- O
o

o
o
o

I 1 .
Substituting p = T we have proved the result for the general case, i.e.,
n

n 0 0

0 --- 0

Q1,,Q=|0 0 - 0
000 - 0

i.e., Q diagonalises J,, suchthat Q'J, .Q =diag(n,0,0,...,0)

Theorem 2.11.1

If G is of order n, and is k-regular, and has eigenvalues k, 4, 4,,...,4,,_4 then the

eigenvalues of its complement graph, G are:n-1-k and —1-4; i=12,...,n-1.

See Fox [24].

Proof

Since G has n vertices, and is k-regular, then G isn-1-k regular, and has
eigenvalue n—1—kas any k-regular graph has k as an eigenvalue.

Let A(G) be the adjacency matrix of G , then (J,, — I, — A(G)) s the adjacency

matrix of G .
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There is an orthogonal matrix Q of eigenvectors of A(G), with first column
1

Jn

pd,.; where p=—=,suchthat Q A(G)Q =diag(k, A, A, Anq)-

Then, from Lemma 2.11.2,

Q_l(‘]n,n - In,n - A(G))Q
=Q,,Q-Q",,Q-Q*A(GR

=diag(n,0,0,...,0) -1, , —diag(k, 4, A,,..., 4, 41)
=diag(n—-1-k,~1- 4,1 A,,...—1- 1, ,)

2.12 Eigenvalues of the C-matrix

As per Section 1.3.4, the C-matrix is defined as C = K — NK IN.

For design graphs, the eigenvalues of N are the same as the eignevalues of the
adjacency matrix A(G) of the associated graph G.

. K—lzlln’n

n,n?

K =Kkl

Now let Q diagonalise N, i.e., Q*NQ = diag (4, Ay,..., 4,).

Therefore,
Q'cQ
=Q(K-NK™N)Q
=QkI,,Q-Q Nk I, ,NQ
=kl,, —k™1,,Q"NQQ'NQ
=kl —k 1, diag (Ag, Ay ...y Ag)-diag (A, A eens An)
=kl —k M, o [diag (4%, 4,7 407)]
212 2 2 y) 2

=diag(k -~ k - =2, k- ="
lag (k == " )

So, the eigenvalues of the C-matrix are (k g k _T""’k —%) .
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2.13 Conclusion

In this chapter, we presented different techniques for finding eigenvalues for certain
classes of graphs. Some methods use known results, whilst others hinge on the
definition of the eigenvalue of the adjacency matrix of a graph. One obviously prefers
the shorter, more elegant proofs; however some of the longer proofs illustrate the
combinatorial aspects associated with determining eigenvalues of adjacency matrices
associated with graphs.

The most significant technique is that of the eigenvector method. In this method, the
choice of the form of the eigenvector is often determined by the edge connectivity of the
graph involved, and results in determining a pair of conjugate eigenvalues. For the

complete graph, each vertex is connected to every other vertex and the K, graph is
(n —1) regular. It is noted that (n —1) is also one of the conjugate eigenvalues of the

adjacency matrix associated with the graph K. When considering the complete

bipartite graph, the strong connectivity between the two partite sets suggested dividing
the eigenvector into two separate parts to mimic this characteristic. We noted the
following interesting observations:

o For the complete graph K., all vertices are of maximum degree of (n—1). We can

therefore regard each vertex as a central vertex, and it appears that this gives rise to
the conjugate pair of eigenvalues;

o For the bipartite graph, the two disjoint sets of vertices are ‘strongly’ connected to
each other, so that each set can be regarded as a central aspect of the graph
contributing to its conjugate eigen-pair;

o For the wheel graph, the connectivity of the central vertex to every other vertex led
to the formation of a vector that resulted in a conjugate pair of eigenvalues;

o For the join of two graphs, these graphs, by definition of the join of two graphs,
involve a ‘strong” connection between the two graphs. This connection allowed for
the generation of the conjugate eigen-pair; and

o For the star graph, the central vertex is at the end of each of the rays of the graph and
there is a conjugate pair of eigenvalues of the adjacency matrix associated with the
star graph.

For each of the classes of graphs above, there exists a conjugate pair of eigenvalues
whose sum and product are integral. Graphs which are well connected, or edge-
balanced, in terms of a centrally defined set of vertices, appear to give rise to a
conjugate pair of eigenvalues. This significant characteristic is used in the definitions in
the next chapter. The edges incident with the vertex/vertices having the ‘central vertex’
attribute appear to stabilize or ‘balance’ the graph; hence the idea of balance was
adopted in Chapter 3.

Also note that the cycle graphs and the path graphs are not well connected, and do not
have a central vertex. They also do not have a conjugate pair of eigenvalues.
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CHAPTER 3

INTEGRAL EIGEN-PAIR BALANCED CLASSES OF
GRAPHS

In this chapter, the significance of integers and eigenvalues allows us to define eigen-sum and
eigen-product balanced properties of classes of graphs and designs involving a non-zero pair
(a,b) of eigenvalues. Using the non-zero property of the eigen-pair, and the idea of robustness,
we consider the ratio of the eigen-pair sum to the eigen-pair product, and the asymptotic
behaviour of this ratio (in terms of large values of the order of the graph/designs). This may
have significance in networks as they involve a large number of vertices.

The product of the average degree of a graph with the Riemann integral of the eigen-bi-balanced
ratio is introduced as the eigen-bi-balanced ratio area of classes of graphs/designs providing a
further dimension to the robustness associated with graphs. We observe that the area of the class
of complete graphs appears to be the largest. Also, the interval of asymptotic convergence of the

unique eigen-bi-balanced ratio of classes of graphs appears to be [— 1,0].

We also define new concepts of eigen-bi-balanced density, energy and asymptotes, and finally
define a matrix eigen-bi-balanced ratio.

The definitions of the above eigen-bi-balanced properties of classes of graphs are original, and
therefore this section comprises original work. In most of the examples, the eigenvalues as
determined in Chapter 2 have been used to determine the associated eigen-bi-balanced
properties of the associated classes of graphs.

3.1 Integers, conjugate pairs and eigenvalues of a graph

There has been much work done in the analysis of eigenvalues of matrices which are
adjacency matrices of associated graphs. The following are some examples of these
findings, with the references as specified:

o There has been interest in classes of graphs whose pairs of eigenvalues satisfy certain
conditions. In Sarkar and Mukherjee [43], graphs are considered with reciprocal pairs

of eigenvalues (A, %) whose product is the integer 1;
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Pairs of eigenvalues (1,-1), summing to 0, and whose product is -1, are considered in
Dias [23];

Summing the eigenvalues of the adjacency matrix of a graph is connected to the
energy of physical structures - see Aimei and Feng [2]; and

In the paper by van Dam [19], on regular graphs with 4 eigenvalues, he considers the

a+b

eigenvalue pair of real conjugates and shows that if a matrix has an

a+b a—+b
2 2

, then it has an eigenvalue

eigenvalue of the same multiplicity, and

vice versa. Adding the pair of conjugates , We obtain the integer a.

o g 2

a’-b

Their product is which is integral, provided the numerator is a multiple of 4.

The paper shows that there are graphs whose matrices have conjugate pairs of
eigenvalues whose sum does not necessarily sum to the same integer a.

The following references show other areas of research which, together with the results on
eigenvalues, provide motivation for the new definitions which are contained in this
chapter.

There has been interest in the importance of pairs of numbers, whose sum and product
produce the same integral constant, and this exists outside the linear algebra of
matrices - see, for example, Dettmann and Morris [22];

In Brouwer and Haemers [12], integral trees (where the eigenvalues of trees are
integral) are investigated,;

In the cryptography article, Hamada [29] considers the conjugate code pair consisting
of linear codes [n, k'] and [n, k"] satisfying the constant (integral) sum term

k'+Kk"” =n+k where n is the dimension of the vector space involved and k is the k-
digit secret information sent;

In the paper by Kadin [34], he investigates the Cooper pair of opposite wave vectors
k and —k which balance by summing to 0 and whose product is —k?:

Hinch and Leal [31] consider the notion of an isolated particle in the absence of rotary
Brownian motion, under the condition that the hydrodynamic and external field
couples exactly balance one another; and

Armstrong [4] investigates the importance of the quadratic part of a characteristic

equation which has the form: X2 —X+3. This quadratic gives rise to the two
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+Vr% -4 :
eigenvalues a,b = % The sum and product (7, and o respectively), are
often referred to as the eigen-pair, but we shall focus on the pair of eigenvalues (a, b)
as the eigen-pair.

Generally, there often exist two eigenvalues (associated with the adjacency matrix of a
graph) whose sum or product is integral. In chapter 2, we found conjugate eigen-pairs
associated with the adjacency matrix of certain classes of graphs, such as complete
graphs, wheel graphs and complete bipartite graphs. Adding or multiplying the pair of
eigenvalues results in an integer. It is therefore possible to get the same integer when
adding or multiplying two distinct, non-zero eigenvalues. This integer is either a fixed
constant, or a function of an inherent property of the graph, for all graphs belonging to a
certain class of graphs. For example, complete graphs K,, on n vertices, have a pair of

eigenvalues with sum of f(n)=n-2, and product of g(n)=1—n foreach n>2, and

the complete bipartite graphs K, ,, on n vertices have eigen-pair sum (of non-zero
22
eigenvalues) of 0 and product of 4

Definition 3.1.1: Function f (p) of a member of a class of graphs

We define a function of a member belonging to a class of graphs, as a real function f(p)
of an inherent property p of the member in the class, such as the number of vertices or
the cligue number of a graph, etc.

In this chapter, we combine the ideas of a pair of eigenvalues and their balanced integral
sum and product with respect to a class of graphs, to introduce a definition which is a
form of integral-eigenvalue balance associated with classes of graphs. We investigate

classes of graphs on n vertices with pairs (a, b) of distinct non-zero eigenvalues such that

a+b=s or ab=t where s,t are the same integer (respectively) for each graph in the
class or the same function for each graph in the class.

Integral sum eigen-pair balanced classes of graphs
Definition 3.2.1: Sum*(s)*eigen-pair (integral) balanced

The class 3 of connected graphs on n elements is said to be sum*(s)*eigen-pair
(integral) balanced if there exists a pair (a, b) of distinct non-zero eigenvalues of the
matrices associated with each class of the structures such that a+b=s is the same
integer as a fixed constant for each member in the class, or s is the same integer as a

function of each member in the class. The sum balance is exact, if s is the same integer
as a fixed constant for each member in the class, or otherwise it is non-exact.



98

The following are some examples of such classes of graphs, noting that
sum(a,b)=a-+b in the examples below.

3.2.1

3.2.2

3.2.3

Complete graphs

As per Theorem 2.1.1, the distinct eigenvalues of the complete graph K, are —1
and (n—1), with the sum of the eigenvalues being (n — 2). Therefore the class of
complete graphs K, is non-exact sum* (n — 2)*eigen-pair balanced, for n>3.

Complete graphs are also design graphs.
Complete bipartite graphs

As per Theorem 2.5.1, the class of complete bipartite graphs K, ;on n=2p

vertices has as its associated eigenvalues p,—p and O, so it is exact
sum*(0)*eigen-pair balanced.

The class of complete bipartite graphs K pk ON P+ k vertices, p =k, have
eigenvalues —+/ pk, +/pk, O (as per Theorem 2.5.1), so it is exact

sum*(0)*eigen-pair balanced (this includes the star graphs with radius 1).

For the case p =k the complete bipartite graph is not a design graph as it contains
a p-lantern sub-graph. For the case p # k , the complete bipartite graph is not a
design graph as it is not p-regular or k-regular.

Cycle graphs
As per Theorem 2.3.1, the cycle C,, on n vertices and n edges has eigenvalues

ZCOS(Z—HJJ, 0<j<n-1
n

The 3-cycle (complete graph on 3 vertices) has distinct eigenvalues -1 and 2.

The 4-cycle has distinct eigenvalues 2, 0, -2.
-1+ \/E -1- \/g
2 '

The 5-cycle has distinct eigenvalues 2, >

The 6-cycle has distinct eigenvalues 2, 1, -1, —2.

The 7-cycle has distinct eigenvalues 2, 1.247, -0.445, -1.802.
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For the 4- and 5-cycle, there exist two distinct non-zero eigenvalues whose sum is
0. For the 3- and 6-cycle, there exist two distinct non-zero eigenvalues whose sum
is 1. For the 7-cycle, there are no two distinct eigenvalues whose sum is 0 or 1.
Therefore, the class of cycles is neither sum*(0)*eigen-pair balanced nor
sum*(1)*eigen-pair balanced.

However, even cycles are sum*(0)*eigen-pair balanced, since if n = 2Kk,

2cos(2—ﬂ]j = 2COS(%), 0<j<2k-1.
n

Then j=0 and j =Kk yield eigenvalues
(a,b)=| 2cos 701 5 cos k)2 (2,-2)
k k
Andsum(a,b)=2-2=0.
All cycle graphs, except for the one on 4 vertices, are design graphs.
3.2.4 Path graphs

As per Theorem 2.4.1, the path P, on n>2 vertices and (n —1) edges has
eigenvalues

2C0$(ij, 1<j<n.
n+1

Note that:
14 T T . . T T
co§ —— |=c09 7 ——— |=Cc0Sxr Cco§ —— |+Sin 7 sIN| —— [=—Cc0y ——
{n-‘:—l) { n+1j {n-ﬁ-lj (n+1) s(nJrlj

So that the non-zero pair, with j=nand j=1,

(a b)=(2005(;_ij’zcos(niﬂj]

has the sum
sum(a,b)=2cos| " | +2cos| —*— | =—2cos| —Z- | +2cos| *—
n+1 n+1 n+1 n+1

So, the class of path graphs is exact sum*(0)*eigen-pair balanced.

0

Path graphs are not design graphs, as they are not k-regular.
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3.2.5 Graph which is the join of two graphs whose adjacency matrices are both
circulant matrices

As per Theorem 2.6.1, the conjugate eigenvalues of the join of two circulant
matrices of graphs are

_ _ + _ 2
(ap)—r| — 2 dg)=+/(d, —dg)? +4nm vd..
2n

So the sum of the eigenvalues is:

—(dp—dg)++/(d, —dg)? +4nm
2n

Sum(a,b) =n +d,

da

—(da—dp)—+/(ds—dr)>+4
+n{(A B) \/énA B)+nm+

- 2atal] o,
2n

—(dp—dg)+2d,
d,+d;

so the class of graphs, which are the join of two graphs whose adjacency matrices
are circulant, are sum* (d, + d )*eigen-pair balanced.

3.2.6 Wheel graphs
3.2.6.1 Cycle wheel graphs

As per section 2.7.1, the cycle wheel graph W,, on n vertices, and with (n —1)
spokes, has conjugate eigenvalues

(a,b)= 2+,/4+4(n-1) .

2

The sum of the conjugate eigenvalues is therefore

(@) =2+,/4+4(n—1) N 2-J4+4(n-1)

2 2

sum

=2

so the class of cycle wheel graphs is exact sum*(2)*eigen-pair balanced.
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3.2.6.2 Generalised cycle wheel graphs

As per section 2.7.2, the generalized cycle wheel graph X ., on (m + n) vertices
and with mn spokes has conjugate eigenvalues

)= 2+~v4+4mn
— 5

(a,b

The sum of the conjugate eigenvalues is therefore

B 2++J4+4mn N 2—+4+4mn
2

sum(a,b) = 5

1
N N

so the class of generalized cycle wheel graphs is exact sum*(2)*eigen-pair
balanced.

3.2.6.3 Generalised complete wheel graphs

As per section 2.7.3, the generalized complete wheel graph Y,,,,on (m+n)
vertices and with mn spokes has conjugate eigenvalues

(ab) (n-1)++/(n-1)%+4mn

2

The sum of the conjugate eigenvalues is therefore

s
b) - 2 2
2

so the class of generalized complete wheel graphs is non-exact sum* (n —1)*eigen-
pair balanced.
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3.2.7 Strongly regular graphs

Theorem 3.2.7.1

If a connected regular graph G of degree K is strongly regular (as per section
1.2.12), then A(G) has at least 3 different eigenvalues. The eigenvalues are:

(=)= pf ~alk=pr) (=)= (2~ pf 4k~

ka
2 2

See Spielman [44].
Proof

We will consider the adjacency matrices of strongly regular graphs. Let A be the

adjacency matrix of a strongly regular graph with parameters (k, 4, x). We already
know that A has an eigenvalue of k with multiplicity 1. We will now show that A

has just two other eigenvalues.

To prove this, first observe that the (u; v) entry of A? is the number of common
neighbours of vertices u and v. For u =V, this is just the degree of vertex u. We

will use these facts to write A? as a linear combination of A, | and J.

The adjacency matrix of the complement of A is (J nn = lnn— A).

So,
Az =ZA+;U(‘]n,n - In,n - A)+ kIn,n

:(ﬂ“—;u)A"':u‘]n,n +(k_;u)|n,n'

For every vector v orthogonal to 1,
AZ\_/ = (ﬂ'_/u)A\_/"'/u“]nn\_/"_(k _;u)ln,n\_/
= (ﬂ,—ﬂ)A\_/-‘r (k _/u)ln,n\_/'

So, every eigenvalue 0 of A, other than k, satisfies
6% = (A—)0+(k— ).

The eigenvalues of A, other than k, are those 6 that satisfy this quadratic equation,
and so are given by

o =)= ) 4k - )
2
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The complement of an srg(v,k, 4, z) is also strongly regular. It is an
srg(v,v—k-1Lv—2—-2k+ 1,v—2k + A).

Note that if we ignore the largest eigenvalue k of strongly regular graphs, adding
the remaining two eigenvalues yields the integer (/1 - ,u) so the class of strongly
regular graphs with parameters (v, &, 4, x) is non-exact sum*( A-p)*eigen-pair
balanced - see Godsil and Royle [25] for more on strongly regular graphs.
Strongly regular graphs are not design graphs.

Divisible design graphs

Definition 3.2.8.1: Divisible design graph

A k-regular graph is a divisible design graph if the vertex set can be partitioned
into m classes of size n, such that two distinct vertices from the same class have
exactly 2, common neighbours, and two vertices from different classes have

exactly 1, common neighbours.

The eigenvalues of divisible design graphs are provided in Haemers [28] — there
are 5 distinct eignvalues. Two of the eigenvalues are

(a,b)=+/k—4 ,

so the sum of the eigen-pair is

sum(a,b)z( k—ﬂi)+(— k—ﬂi)=0.

Therefore, the class of divisible design graphs is exact sum*(0)*eigen-pair
balanced.

Bipartite graphs with four distinct eigenvalues

The incidence graphs of symmetric 2 —(v,k,1) designs are examples of bipartite

graphs with four distinct eigenvalues. It is proven by Cvetkovic, Doob and Sachs
[17] that these are the only examples, i.e., a connected bipartite regular graph with
four distinct eigenvalues must be the incidence graph of a symmetric 2—(v,k.1)

design. Moreover its spectrum is:
()", (Vk=2)" (—Vk=2)", (k)"

Note that this class of graphs are exact sum*(0)*eigen-pair balanced.


http://en.wikipedia.org/wiki/Complement_graph
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3.2.10 Hypercube graphs

As per section 2.10, the p-regular hypercube on 2P vertices and p2p‘1 edges has
eigenvalues

(p—2k)('g); 0<k<p.

Using the eigenvalues p and p— 2k, for p# 2K and k = 0, this class of graphs
will be sum* (2p — 2k) *eigen-pair balanced.

3.2.11 Eigenvalue pair of real conjugates

By Z[x] and Q[x] we denote the rings of polynomials over the integer and rational
numbers, respectively.

Lemma 3.2.11.1

If a monic polynomial p(x)e Z[x] has a monic divisor q(x)e Q[x], then also
a(x)e z[x].

Lemma 3.2.11.2

If (a + \/B) with a,beQ, is an irrational root of a polynomial p(x)e Q[x], then so
is (a - \/B) with the same multiplicity.

The characteristic polynomial PA(G)(A) of the adjacency matrix of a graph is

monic and has integral coefficients. Using Lemmas 3.2.11.1 and 3.2.11.2 we now
obtain the following results.

Corollary 3.2.11.1
Every rational eigenvalue of a graph is integral.

Corollary 3.2.11.2

if 2 +2\/B is an irrational eigenvalue of a graph, for some a,beQ, then

SO is , with the same multiplicity, and a,beZ.

a-+b
2

See van Dam [20 ].
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a+vb a—+b
2 2

integer a. Therefore, if the real conjugate pairs are eigenvalues associated with the
adjacency matrix of all graphs belonging to a class of graphs, then the class of
graphs is sum* (a) *eigen-pair balanced.

Adding the pair of real conjugates (a, b) = ( J we obtain the

3.3 Integral product eigen-pair balanced classes of graphs
Definition 3.3.1: Product*(t)*eigen-pair (integral) balanced

Aclass 3 of connected graphs on n elements is said to be product*(t)*eigen-pair
(integral) balanced if there exists a pair of (a, b) of distinct non-zero eigenvalues

(counting eigenvalues only once i.e., ignoring multiplicities) of the matrices associated
with each class of the structures such that (ab = t)is the same integer as a fixed constant

for each member in the class, or t is the same integer as a function of each member in the
class. The product balance is exact, if t is the same integer as a fixed constant for each
member in the class, otherwise it is non-exact.

The following are some examples of such classes of graphs, noting that
product(a,b) = ab in the examples below.

3.3.1 Complete graphs

As per Theorem 2.2.1, the complete graph K, has distinct eigenvalues —1 and
(n —1) for n > 3. Therefore, the class of complete graphs K, is non-exact

product* (1— n)*eigen-pair balanced for n > 3.

3.3.2 Complete bipartite graphs

As per Theorem 2.5.1, the class of complete bipartite graphs K, ,on n=2p

vertices, has as its associated eigenvalues p, —p and 0, so that they are non-exact

product* (— pz)*eigen-pair balanced.

As per Theorem 2.5.1, the class of complete bipartite graphs K pk ON (p + k)

vertices, p #k, has distinct eigenvalues — -/ pk,+/ pk, and 0, so that it is non-

exact product* (— pk)*eigen-pair balanced (this includes the star graphs with radius
1).
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Cycle graphs

As per Theorem 2.3.1, cycles graphs on n vertices have associated eigenvalues

Zcos[z—ﬂjj, 0<j=<n-1.
n

C; on 3 vertices, has eigenvalues 2 and -1 so that the eigen-pair product is -2.

C, on 4 vertices, has eigenvalues 2, 0 and -2 so that the eigen-pair product is -4.

C; on 5 vertices, has eigenvalues 2, with conjugate eigen-

—1++45 -1-45
2 2
pair product -1.

Cg on 6 vertices, has eigenvalues 2, 1, -1 and -2. Possible eigen-pair products are -
2,1,-2,and -4,

The 7-cycle has eigenvalues 2, 1.247, -0.445, -1.802. No product of two
eigenvalues yields an integer!

Therefore, the class of cycles is not eigen*(k)*product balanced for any integer k.

However, the class of even cycles is product*(-4)*eigen-pair balanced, since if

n=2k then: 2COS(2—7Z]J = 2cos(22—7sj; 0<j<2k-1,
n

so that for j=0 we get eigenvalue 2 and j =k we get eigenvalue -2, with eigen-
pair product -4.

Path graphs

As per Theorem 2.4.1, paths graphs on n vertices have eigenvalues

2COS(1), 1< j<=n.
n+1

T

7n
From section 3.2.4, COS(—) = —cos(
n

n+1

ol o 2o )

j, so that with j=1and j=n,
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product(a,b) = 2COS(L:J. - ZCOS(LJ

n+ n+1

~{=)

which is a function of n but is not integral in general.

3.3.5 Graph which is the join of two graphs whose adjacency matrices are both
circulant matrices

As per Theorem 2.6.1, the conjugate eigenvalues are

—(dA_dB)i\/(dA_dB)2 +4nm

(a,b)=n o

+d,.

So the product of the eigenvalues is:

—(dy—dg)++/(ds—dg)%+4nm
product(a,b) ={n (0a~0s) \/;nA °) +dp

n{—(dA—dB)—\/;dA—dB)z +4nm]+dA
n

n{(dA ~de)° - [, ~dy)’ *4”’“]}-2%(% ~dg)+(d, )

4n?

{@}_mm—dm(d;\)z

=—mn—2d,(dn —dg)+(da)?
so the class of graphs whose adjacency matrix is the join of two graphs whose

adjacency matrices are circulant matrices is non-exact product*
(- mn—2d,(d, —dg) +(d , )? )*eigen-pair balanced.
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3.3.6 Wheel graphs
3.3.6.1 Cycle wheel graphs

As per section 2.7.1, the cycle wheel graph W,, on n vertices, and with
(n—1) spokes has conjugate eigenvalues

(a,b):2i1/4+4(n—1).

2

The product of the conjugate eigenvalues is:

product(a,b) {

24+44+4(n-1) | | 2—/4+4(n-1)
2 2

_ 4-[4+4(n-1)]

- 4

-(n-1

so the class of cycle wheel graphs is non-exact product* (1— n)*eigen-pair
balanced.

3.3.6.2 Generalised cycle wheel graphs

As per section 2.7.2, the generalized cycle wheel graph X, on (m+n)
vertices and with mn spokes has conjugate eigenvalues

2+~+4+4mn
(ab)= =S

The product of the conjugate eigenvalues is

2 2

_4—(4+4mn)
4
=—-mn

product(a,b) ={2+M} {Z—M}

so the class of generalized wheel graphs is non-exact product* (— mn)
*eigen-pair balanced.
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3.3.6.3 Generalised complete wheel graphs

As per section 2.7.3, the generalized complete wheel graph Y,,,, on
(m + n)vertices and with mn spokes has conjugate eigenvalues

(a.b) (N—1) £~/ (=12 +4mn

2

The product of the conjugate eigenvalues is

product(a,b)

_(n—1)+w/(n ~1)? +4mn] {(n—l)—w/(n ~1)? +4mn]
2

2

]n—Dz—kn—Dz+4md
=_ 4
=—4mn

4
=—mn

so the class of generalized complete wheel graphs is non-exact product®
(— mn)*eigen-pair balanced.

3.3.7 Strongly regular graphs

As per Theorem 3.2.7.1, the conjugate eigen-pair of strongly regular graphs is

(a,b)= (/1—%1)1\/(1—2#)2 —4(k—ﬂ)_

If we multiply the two conjugate pairs of strongly regular graphs we obtain the
integer (y - k), so that the class of strongly regular graphs is non-exact product*
(1 —k) *eigen-pair balanced.

3.3.8 Divisible design graphs

As per Section 3.2.8, two fo the eigenvalues of a divisible design graph are

(a,b)=%k-4,.

This class of graphs has eigen-pair product
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product(a,b) = (Vk— 2 ) (k=7 )=~(k— )= 2, —k

Therefore, the class of divisible design graphs is non-exact product* (/11 — k)
*balanced.

Bipartite graphs with four distinct eigenvalues

As per Section 3.2.9, the eigenvalues of a bipartite graph with four distinct
eigenvalues are

(a,b)=2vk -2 and (c,d)= k.
Then product (a,b)=—(k — 1) and product(c,d )= —k?.

Therefore, incidence graphs of symmetric 2-(v, k, I) designs are product *t*eigen-
pair balanced for t = (1 —k)and t =—k? of the non-exact kind.

3.3.10 Hypercube graphs

As per Section 2.10, the class of p-regular hypercubes on 2P vertices and p2 p-1
edges has eigenvalues:

(£)
(p—2k)*"/, 0<k<p.
Using the eigenvalues p and p— 2k, for p =2k, k #0, this class of graphs is
product* ( p2 — 2pk) *eigen-pair balanced.

3.3.11 Eigenvalue pair of real conjugates

++vb a-b

The product of the real conjugate pair of eigenvalues a 5 and 5 is

a’-b

. This is integral, provided the numerator is a multiple of 4.

Therefore, if the real conjugate pairs are eigenvalues associated with the adjacency
matrix of all graphs belonging to a class of graphs, then the class of graphs is
2

a
product*[ ]*eigen-pair balanced, provided a’-bisa multiple of 4.
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Eigen-bi-balanced classes of graphs

Definition 3.4.1: Eigen-bi-balanced classes of graphs

Classes of graphs, which are both sum and product eigen-pair balanced, are said to be
eigen-bi-balanced with respect to the eigen-pair (a, b). If this pair is unique to the class,
then it is uniquely eigen-bi-balanced. For example, the class of complete graphs is
uniquely eigen-bi-balanced with respect to the eigen-pair (n —L—l).

The largest eigenvalue occurs in the eigen-pair associated with some classes of graphs
discussed above. We observe the following:

- The only regular eigen-pair balanced graphs on 2 and 3 vertices are K, and Kj;
- The 4-cycle is the same as the complete bipartite graph K, ,, which is sum and product

eigen-pair balanced,
- The only other regular graph on 4 vertices is K, ;

_1++5) (-1-45
2 ’ 2

product eigen-pair balanced when the largest eigenvalue is included in the eigen-pair;
and
- The only other regular graph on 5 vertices is Ks.

2
- The 5-cycle has eigenvalues (2)1,( J which is not sum or

Thus we have the following theorem:

Theorem 3.4.1

The only regular graphs on n vertices, where 2 < n <5, belonging to eigen-pair balanced
classes of graphs, where the eigen-pair contains the largest eigenvalue, are

Ky, Kz, Ky, Kgand K ,.

Eigen-bi-balanced classes of graphs — criticality, ratios,
asymptotes and area

If a class of graphs 3 are both sum and product eigen-pair balanced with respect to the
eigen-pair (a, b), they have been defined above as eigen-bi-balanced with respect to
(a, b). The class of complete graphs G is eigen-bi-balanced with the property that the
removal of any vertex v from G results in a complete graph, which belongs to the same
class of complete graphs, which is eigen-bi-balanced. The same holds for complete

bipartite graphs except for star graphs. Such graphs are said to be stable eigen-bi-
balanced.
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Definition 3.5.1: Critically eigen-bi-balanced classes of graphs

If G belongs to a class 3 of eigen-bi-balanced graphs, and there exists a vertex v of G,

such that G —v belongs to a class 3 of graphs which is not eigen-bi-balanced, we say
that 3 is critically eigen-bi-balanced with respect toV.

Wheels on p spokes are eigen-bi-balanced and the removal of the central vertex results

in p-cycles, which are not eigen-bi-balanced. Therefore, the class of wheel graphs are
critically eigen-bi-balanced with respect to their central vertex. This suggests that the
central vertex is essential to the eigen-bi-balanced characteristic of wheels.

The reciprocals of eigenvalues are connected to the idea of robustness or tightness of
graphs - see section 1.5.9 and Brouwer and Haemers [12]. Since a and b are non-zero, the
sum of their reciprocals is defined. Therefore we have the following definition.

Definition 3.5.2: Eigen-bi-balanced ratio of classes of graphs

The eigen-bi-balanced ratio of the class of graphs (with respect to the eigen-pairs (a, b))
is
1 1 a+b

r@3b)=—+-=—-—
( ) b a ab

As a and b are non-zero, the product ab is never zero, and so this ratio will always be
defined.

Definition 3.5.3: Eigen-bi-balanced ratio asymptote of classes of graphs

If this ratio is a function f (n) of the order n of the graph, and has a horizontal asymptote,
we call this asymptote the eigen-bi-balanced ratio asymptote with respect to the eigen-
pair (a,b) and is denoted by:

r(a3b)” or asymp(r(adb)).

This asymptote can be seen as describing the behavior of the ratio as the order of the
graph becomes increasingly large.

The “area” term n? can be found in the following relation involving spanning trees. Let
D be the matrix composed of the degrees of G in the main diagonal — form D’ by adding
1 to each entry of D. We then form the shadow number of a graph defined by



113

shad(G) = det(D’'— A), where A is the adjacency matrix of G . We then have the
combinatorial result

» shad(G) det(D'-A)
t(G) t(G)
where t(G)is the number of spanning trees of a connected graph G.

Also, the number of spanning trees of a connected graph G is associated with the
Laplacian eigenvalues, 6, > 6,4 >...> 6 =0, of the graph by the following:

n

[1¢; =nt©G).

j=2
This excludes the first Laplacian eigenvalue. Thus, as in the case of the complete graph,
the eigenvalue n—1 of the adjacency matrix associated with G will not be taken into

account when considering spanning trees.

Eigenvalues have been associated with the expansion of graphs (see Brouwer and
Haemers [12]), which motivates the idea of areas associated with a class of graphs.

If the eigen-bi-balanced ratio of a class of graphs is a function of n, then we are able to
integrate it with respect to n, which leads to the following definition.

Definition 3.5.4: Eigen-bi-balanced ratio area of classes of graphs

We define the eigen-bi-balanced ratio area of the class of graphs with respect to the
eigen-pair (a,b) as:

2m aLbdn if a+b=0
n ab
Ar(3)*P =
b
M fdn = 2Mj2b) if a+b=0
n 2 n

where m is the number of edges and n is the number of vertices,
and Ar(3)*" =0when n=0,1 or 2.

Now we define breadth, denoted by B, as

2m . .
B =— i.e., the average degree of the vertices in G,
n

and define height, denoted by H, as
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Ia—+bdn if a+b=0
ab
H=
o 2m
Idn:T|2b| if a+tb=0
a

so Ar(3)** =B.H.

If there is more than one pair giving rise to such area, then the area of the class is
max Ar(3)*" for all pairs (ai b, ) If there is only one eigen-pair associated with the
class of graphs that gives rise to the area, then the area is unique.

The height involves binding the sum of the reciprocals of the eigen-pair by its integration,
and we multiply this height by the average degree. This involves one of the most basic,

yet important combinatorial aspects of the graph, and results in the term n? appearing in
the eigen-bi-balanced ratio area of some classes of graphs.

Examples of eigen-bi-balanced classes of graphs

When we refer to a graph G having eigen-pair balanced properties such as sum, product,
bi-balanced, ratio, asymptote, etc. we imply that G belongs to a class of graphs having
such eigen-pair properties. We will now look at various examples of eigen-bi-balanced
classes of graphs:

3.6.1 Complete graphs

The complete graph on n vertices has the unique eigen-bi-balanced ratio of:

-9+
r(n-YK,(-1) = m

—N

>
N

[EEN

This depends on the order of the graph and has the unique eigen-bi-balanced ratio
asymptote:

r(n-DK,(-1)" =-1

and eigen-bi-balanced ratio area:
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Ar(K,) " 2_mj_2‘
~nfP1-n
n(n-1)
2= I
- ]dn
n-1 n-1
=(n- 1)‘][———]01‘
=(n-1)B

IZ n-1 1|

where B = dn=n-Inn-1+c.
n-1 n-1 n- 1|

When n=0 we have A=0 so ¢=0 so that its area is
Ar(K ) =(n=1)(n-In(n-1)) = (n—1)H.

Note that the length of the longest path for the complete graph is n—1, so that H
in the above expression can be regarded as the height of the graph. Also, the term
In(n —1) occurs as part of the upper bound of the diameter of a graph involving
the second largest eigenvalue - see Brouwer and Haemers [12].

Is this area the maximum for all classes of eigen-bi-balanced graphs?
3.6.2 Complete bipartite graphs

The complete bipartite graph K, on s+t vertices has the eigen-bi-balanced ratio
of

r(JstK,, —/st) =@=o

which is independent of the size of the graph.

Its area is:

Ar(K, )V = 2lp st

(s+1)

3
2

_4(st)
S+t
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This attains its maximum when s =t :%,then the graph (the complete split

bipartite graph on n vertices) is s-regular and the area is

Ar(K

3.6.3 Wheel graphs

Wheels on n vertices, containing (n—1) spokes and 2(n—1)edges, have eigen-bi-
balanced ratio

r[2+,/4+4{n—1)w 2 4+4n—1] -2
_(

2 ! 2 n-1)

This depends on the size of the graph, so they have an eigen-bi-balanced ratio
asymptote of 0 and eigen-bi-balanced ratio area of:

2+/4+4(n-1) 2—,/4+4(n-1)

, 2m|ca+b
Ar 2 2 =—/||——dn
w,) 2P
ni{*1l-n
= M(In|n ~1+c)
n
_4h=D) (Inn—1+c)
n
2+./4+4(n-1) 2—/4+4(n-1)
Now Ar(W,) 2 2 =0whenn=2so that c=0.

2+/4+4(n-1) 2—\[4+4(n-1)

So Arw,) 2z 2 =4(“n_1)(|n|n—14).
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3.6.4 Star graphs

As per section 2.8.2, star graphs with m rays of length 2 have eigenvalues

0, -1 1, +Vm+1.

Using the pair (a,b)=(~11) we obtain the ratio
0

and using the pair (a, b) = (\/m +1,—/m +1) we get

0

)

r( M+1S; e, — m+1):

Using the class of graphs where (m+1)=t2, and eigen-pair (a,b)= (\/ m +1,1)
we have the ratio

( /—m+131,m%1)=\/m+1+1=t+1 .

m+1 t

Therefore the class of star graphs with m rays of length 2 does not have a unique
eigen-bi-balanced ratio.

The area with respect to the pair (a,b)=(~11) is
2m 2.2m 8m
T|2b| " 2m +1|2| T 2m+1

Ar (Sl,mP3 )=

and with respect to the pair (c,d)= (\/ m+1,—/m +1) is
Jmid,—Jmsl _ 2M 4m
Ar(S ’ =—|2b|= 2vm+1
Sime;) n [2d 2m+1
(n-1)
2

_ 8m _4(n-1) _4(n-Y and
2m+1 n-1+1 n

Since m= , the areas are, respectively:

Ar (S, e, )

Ar(s, )i _ Am o e 2n-1), n;1=2\/§(n—1)\/n—+1
o, J : |

2m+1 n

The greater of the two gives the area of the class of graphs, i.e.,

Ar(S, m%)—mvm - m,/n 1
’ n
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3.6.5 Hypercube graphs

p
The p-regular hypercube has eigenvalues A = (p — 2k)(k); 0<k<np,

and eigen-bi-balanced ratio (k fixed, nvarying, p = 2k and k #0):

Inn _
2p—2k _5 In2

2 T2 e
p—2pk Inzn_ZKM
In“2 In2

Inn-klIn2

=2In2 5
InN“n-2kIn2Ilnn

. Inn
where, since n=2", we have p = Y
n

Then asymp(zzp—_%j =0.
p* —2pk

Fork =1and using the eigenvalue pair p and p-2 , the eigen-bi-balanced ratio area
is

_ 2p-2
Ar(3)""7 = | 5——d(2")
Ip2—2p
Inn-In2
=2In2 dn 1
j IN2n—2In2Inn @

Setting U =In?n—2In2Inn and re-arranging, we get

INn—2In2Inn—u=0

_2In2+4/(2In2)% +4u

Solnn =
2

=In2++IN?2+u

2 2
—n= eIn 2+\/In 2+u — Ze\/ln 2+u

=€

v In2 2+U — g (2)
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Also, for u=1In?n—2In2Inn, we have

du .2Inn 2In2 g

_—[___]:
n n n

= Inn—In2
= (Inn-1In2)

= du :%(Inn—ln 2)dn

Now substituting above results into (1), we get

Inn=In2
IN>n—2In2Inn

Ar(3)PP? =2In2|
n
IZInZIZdU
n
=In2|—d
n2f "y
eln2+\jln22+u

=In 2.[—” du (3)

u=In?n-2In2Inn,

In2+\/In2 2+u

Now U >1and e <eY so that:

In2+\/In2 2+u

2
InZJ.e du<|n2.[e“duzln2e“:In2eIn n-2in2inn
u

Although this is not a good approximation for the area of a hypercube class of
graphs, it may suggest that the area of such a class of graphs is greater than that of
complete graphs.

Join of two graphs

Taking the join of the complement of the complete graph on 2 vertices and the
complete graph on n vertices, we get from section 2.7.3, that the resulting
adjacency matrix of the graph has the conjugate pair of eigenvalues

n—1)+./(n-1)%+8n
()= M-DEV(-D

2
so that their eigen-bi-balanced ratio is
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2

an+Jmnz+&J+(anmnz+&q
2

r o=
[}nn+wknnz+8n][3nbwKnDZ+8n]
2 2
2(n-1)
_ 2
(n-1)* —=(n—1)*—8n
4
=g§% which tends to -1/2.

3.6.7 Cycle graphs
Conjecture 3.6.7.1

The only class of regular graphs which are neither sum nor product eigen-pair
balanced are cycles.

3.6.8 Dumbbell graphs

Note that cycles are neither sum nor product eigen-pair balanced. Are there any
other classes of graphs which are neither sum nor product eigen-pair balanced?

Let us consider the dumbbell graphs D, (two copies of K joined by a single
edge).

For n=3, let D5be the dumbbell graph with 2 copies of K5, joined by a single
edge. Then Djis

Figure 3.6.9.1: Diagram of dumbbell D,
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Then the adjacency matrix of Djis

N N = o)
=
o P

011
101
I 11 0]

with all blank entries containing zero. Then A(DS) has eigenvalues -0.41421 and
2.41421, whose sum is 2, and whose product is -1.

For n=4, let D,be the dumbbell graph with 2 copies of K,, joined by a single
edge. Then Dyis

Figure 3.6.9.2: Diagram of dumbbell D,

Then the adjacency matrix of Dy is

=)
=
=
[ N

=

N =

=

O Kk

with all blank entries containing zero. Then A(D, ) has eigenvalues 3 and -1, whose
sum is 2, and whose product is -3.
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For n =5, let Dgbe the dumbbell graph with 2 copies of K, joined by a single
edge.

Then, the adjacency matrix of Dg has eigenvalues 3.82843 and -1.82843 whose
sum is 2, and whose product is -7.

So this class of graphs may be sum eigen-pair balanced, but is not product eigen-
pair balanced.

3.7 Eigen-bi-balanced properties of the class of complements of
graphs

Theorem 3.7.1

Let 3 be a class of eigen-bi-balanced, k-regular graphs with eigen-pair a,b; a,b=k or
—1. Let 3 be the class of graphs consisting of the complement, 6, of graphs G e 3,
where G is connected. Then for all G e 3, G is (n—l—k)-regular, eigen-bi-balanced
with eigen-pair (C, d ) = (—1— a,—1-— b), and the eigen-bi-balanced ratio of 3 is

c+d _ —-2—(a+b)
cd l1l+(a+b)+ab

r(c3d) = . Therefore, the class 3 of graphs is eigen-bi-balanced.

Proof

As per Theorem 2.11.1, if a,b are eigenvalues of G , and a,b =k, or -1, then
c=(-1-a),and d =(-1—b) are eigenvalues of G .

Therefore,

Sum of the eigen-pair (c,d) of G~ =c+d
=(-1-a)+(-1-b)
=2-(a+b)

Product of the eigen-pair (c,d) of G =cd
=(-1-a)x(-1-b)
=1+(a+b)+ab

Since G € 3 is eigen-bi-balanced, then (a +b) and (ab) are constant integers. Therefore,

G e Jis eigen-bi-balanced.
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Therefore,

c+d —-2-(a+b)

rc3d) = =
(cxd) cd 1+(a+b)+ab

= ratio of integers

Therefore the class 3 of graphs is eigen-bi-balanced. o

Corollary 3.7.1

Let S be a class of eigen-bi-balanced, k-regular graphs with eigen-pair a,b; a,b =k or

-1. Let I be the class of graphs consisting of the complement, 6, of graphs Ge 3,

where G is connected. If the asymptote of the ratioa—er =t; a,b#k or—1 and

ab
lim ab = then
N—o0
r(c3d)” =asymp(r(ci:sd))=_—t.
t+1
Proof
r(c3d) _c+d
cd
_ —2—(a+b)
1+(a+b)+ab
-2 (a+h)
__ab ab
i+(a+b)+1
ab ab
Now lim ab=o0
n—o0
— — ;Z_t —t
= r(c3d)” = asymp(r(c3d)) = lim 1ab = o
R N | t+1
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Corollary 3.7.2

Let 3 be a class of eigen-bi-balanced k-regular graphs with eigen-bi-balanced ratio
asymptote f(t) =t with respect to pair a,b where a,b =k or-1. Let 3 be the class of

graphs consisting of the complement, 6, of graphs G e 3, where G is connected. Then

the eigen-bi-balanced ratio asymptote of 3 with respect to eigen-pair (c,d), is

g(t) = % \which is an involution,
t+1
Proof

As per Corollary 3.7.1, letg(t) = asymp(r(cfs’d )): t__tl .
+

Then,

So that g[g(t)]=twhich implies that g(t)=g(t).

Functions, which are equal to their own inverse, are called involutions, so that g(t) is an
involution. o

Corollary 3.7.3

The involution g(t) = g is a solution of the differential equation

+1)
dg(t) _ 1 . -1~
Sdt o t(t+D)’ 9=t
Proof
Since
, _—1(t+1)+t= -1
90= t+D)2  (t+1)?
then

-1

g'(g(t)= ——— =—(t+D)? )

-t +1
(t+1)



125

—t
AISO, g(t) = Tl )

=t+(@t+)g(t)=0
= f{t)+@{t+Dg()=0

Differentiating both sides, we get
f'O+9'Ot+)+9®)=0 @

Since g(t)is an involution, g(g(t))=t, so differentiating both sides and recalling
f(t)=twe get

g'(gM)g'®=f'®) =1 ®)

Substituting (1) and (3) into (2), we get:

f'®)+g'O+1)+g(t)=0
=g'(g®)g'®) +g'(t)(t+)+g(t)=0
= —(t+1)%g't)+g'()(t+1) +g(t)=0

= g'()[-t+1D* +(t+D]+g(t)=0

= g'Ott+D)]+g(®) =0

dg(t) _ g(t)
d  t(t+1)
dy dt
voott+D’ @

where y = g(t).

Solving this variable separable equation we get:

11 It
|n|y| = I[E—m%t = |n|t|—|n|t+l|+C = Inm"'c
=>y= kﬂ is a general solution of (4).
t+1

If t<0 and t+1>0 then the solution is:
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—kt

y= t+l

and if y(_?ljzl then k =1, so

y=_—4
t+1

Recall from Section 3.6.6, that —% is the eigen-bi-balanced ratio asymptote of the class

of graphs comprising of the join of the complement of the complete graph on 2 vertices,
and the complete graph on n vertices.

Note: There are other possible solutions of the general differential equation

do® _ 1

at i 1); g(p)=a.

For example, when t>0=1t+1>0 so that y = t is a solution of the differential

t+1
dg(t) _

equation
dt t(t 1)’

;9@ =—
Properties of eigen-bi-balanced classes of graphs

Theorem 3.8.1

If a class of non-complete graphs 3 is eigen-bi-balanced with respect to the eigen-pair

(a,b), and (a, b) are conjugate eigen-pairs arising from the quadratic: A2 +sA+t', with
at least one of a,b positive and of the form n+c (n an integer and ¢ negative), and the

a+b
ratio r(aSb) = “ab is a function of n, then t’ is negative and the eigen-pair balanced
a

ratio asymptote lies on the interval [-1,0].

Proof

Let the conjugate eigen-pair (a, b) arise from the roots of the quadratic A2 +sA +1';

—s++/s2 -4t

ie, a,b=
2
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Assume t’ > 0, then s > 24t

= t'>0and s>0
= a<0and b <0 which is a contradiction of the assumption that at least one of a,b
is positive.

Therefore, we have shown that t’ <0.
If t" =0, then

sl
2

a,

— either a=0o0r b =0, which is not allowed.
Therefore, we have shown that t’ < 0.
So let t'=—t ;where t > 0.

We have a<n-1 and b <n-1 (as these are conjugate eigenvalues of the class of non-
a+b s

complete graphs ), and a+b =—s; and ab =-tand r(a3b)= b 1 1)
a
. a+b . - a+b .
If a=—b then the ratio r = b 0. However, we are given that r(adb) = “ab isa
a a

function of n, so then we must have a = —b.

If a and b are both fixed constants, then the ratio is not a function of n, so we can’t
have a and b both fixed constants.

From (1) above, r :%. Ift= f(n), and f(n) is of order n, and s is a fixed constant c,
then asymp(r(aSb))=asym pG) = asym p(ﬁ} =

If s=a+b isafunctionof n, sowill t = —(ab) be a function ofn.

If both a and b are functions of n then a+b is O(nP) and abhasO(n%) where
q=p.

Therefore, asymp(r(aSh))=0.
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Now let us assume that a=n+c >0 and b =k, k negative (as per conditions in
Theorem 3.8.1).

Thenif s=n+c'; t=kn+c"; (k<0); c',c" are constant.

= asymp(r(a3b)) =% <0

Since a isan integer, b =k must be an integer too (as they are conjugate pairs), so
therefore k < —1. Therefore,

asymp(r(aSh)) = % > 1.

So we have proved that —1 < asymp(r(aJh)) <O0.

We have therefore shown separately that asymp(r(aSb))=0and
—1< asymp(r(a3b)) < Ounder different conditions.

Therefore asym p(r(aSb)) e[-10]. O

For the complete graph K, the quadratic for the complete graph, with eigenvalues
(-1,n—1), sum = n—2 and product —(n—1), is:

_(1-2)%4(1-2)? +4(n-1)

2Z-n-2i-(n-) =1 ;

n-2
-(n-1)

So, asymp(r(-1K,n-1))=

So the eigen-bi-balanced ratio asymptote of the complete graphs is -1, which is the same
as one of the eigen-pairs. If a class of graphs is eigen-bi-balanced with respect to the pair
(a, b) and its asymptote is the same as one of the eigen-pairs, then it is said to be

asymptotically closed with respect to the pair (a, b). Therefore, the class of complete
graphs is asymptotically closed with respect to the pair (— 1n —1).

Theorem 3.8.2

The eigen-bi-balanced ratio areas of complete bipartite graphs, wheel graphs and star
graphs with rays of length 2, are each bounded above by the area of the complete graph.

Proof

As per Section 3.6.1, the eigen-bi-balanced ratio area of the complete graph is
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Ar(K,) ™" = (n—-1)(n—In(n-1)).

As per Section 3.6.2, the eigen-bi-balanced ratio area of the split complete bipartite graph
is

nn
2'2 2

A{Kn n} _n
22 2

As per Section 3.6.3, the eigen-bi-balanced ratio area of the wheel graph is

2+,/4+4(n-1) 2-.[4+4(n-1)
awy 22 =0

As per Section 3.6.4, the eigen-bi-balanced ratio area of the star graph with rays of length
21is

Ar(Slmps)m"m =m\/n +1, where ng and n>3.
' n

1. Considering the eigen-bi-balanced ratio area of the complete graph and the
complete split bipartite graph, we get

N Complete graph Complete split bi-partite graph
2 2 2

3 4.61 4.5

4 8.7 8

5 14.45 12.5

100 9445.08 5000
1000 992 100.15 500 000
10 000 99 897 906.81 50 000 000

Table 3.8.1: Eigen-bi-blanced area of complete and complete split bi-partite graphs
for values on n

Now, for large values of n,

Ar(K, )" = (n—=1)(n—In(n—1)), behaves like n? and is an increasing

function of n, and
nn

22 2
A{Kn n] L
22 2
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So we can conclude that

Ar(K, )" > Ar[Kn HJ for large n.

22
i.e., the area of the complete graphs is greater than or equal to the area of the split
complete bipartite graph.

Considering the eigen-bi-balanced ratio area of the complete graph and the wheel
graph for N> 3, we get

N Complete graph Wheel graph
3 4.61 1.85
4 8.7 3.3
5 14.45 4.4
100 9445.08 18.2
1000 992 100.15 27.6
10 000 99 897 906.81 36.84

Table 3.8.2: Eigen-bi-blanced area of complete and wheel graphs for values on n

Now, for large values of n,

Ar(K, )™ =(n—1)(n—In(n-1)), behaves like n® and is an increasing

function of n, and

2+ [4+4(n-1) 2—[4+4(n-1)

Ar(\Nn) 2 ’ 2 =

So we can conclude that

4(nn_1) (Inn-1) <n.

2+,/4+4(n-1) 2-,/4+4(n-1)
Ar(K "> Arw,) 20 2 for large n.

i.e., The eigen-bi-balanced ratio area of the complete graphs is greater than the area
of the wheel graph for n> 3.
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3. Considering the eigen-bi-balanced ratio area of the complete graph and the star
graph with rays of length 2, for n > 3, we get

N Complete graph Star graph with rays of lenth 2
3 4.61 3.77
5 14.45 5.54
7 31.25 6.86
101 9639.48 28.28
1001 99 4092.24 89.44
10001 999 17896.60 282.84

Table 3.8.2: Eigen-bi-blanced area of complete and complete split bi-partite graphs
for values on n

Now, for large values of n,

Ar(K, ) ™" =(n-1)(n—In(n—1)), behaves like n® and is an increasing
function of n, and

Ar(S; mp‘J))*‘/ﬁ"/ﬁ = m\/n +1, where m= @ behaves like
’ n

2+/2n and is an increasing function of n.

So we can conclude that

Ar(K, )" > Ar(SLm%)_m'm, where m = _(n;l)

i.e., the eigen-bi-balanced ratio area of the complete graph is greater than the area
of the star graph with rays of length 2, for n > 3.

So we can conclude that the eigen-bi-balanced areas of complete bipartite graphs, wheel
graphs and star graphs with rays of length 2, are each bounded above by the area of the
complete graph. o
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Theorem 3.8.3

If a class of graphs has eigen-bi-balanced ratio
a+b

ab

thenar #land br =1.

r=r(adb) =

. . . . 1
Also, if r is non-zero, the elements of the eigen-pair (a,b) cannot both be =.
r

Proof

+
Leta b

=r(al3b)=r = a+b=rab.

If welet ab=y, weget a+b=rab=ry

SO

, for ar =1.
ar-—1

Swopping the roles of a and b we get the desired result.

The following theorem can be derived from Lee and Yeh [37]:
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Theorem 3.8.4

Define the class of graphs

where k is fixed, and n, which varies and is greater than 1.

(n-1) ++/(n=1)% + 4nk

Then this class has eigen-pair a,b = 5

n-1

with eigen-bi-balanced ratio r(a3b)= =

with eigen-bi-balanced ratio asymptote asymp(r(aSb))= _Tl

and area Ar(3)*° = (wj (E _1 In(n +1)j
n+k k k

Proof

From section 2.7.3, the eigenvalue conjugate pair associated with this join is:

(a.b)= (n—-1) £/ (n—1)* + 4nk

2

Then sum(a,b) = 2(n2— D_ (n—1) and

—4nk — _kn.

and product (a,b) =
and r(a3b)=——=

and asymp(r(aSb)):_?1 as n becomes increasingly large.

The eigen-bi-balanced ratio area is (with average degree B):
[ 4+ k)‘
kn

_ n(n—1)+2kn
(n+k)

Ar(3)* =B

1 1
JE = d]
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_n(n-1+2k)(n 1
=Tk (k kInnJrcj )

With k =1, the area must be that of the complete graph on (n+1) vertices, which is, as
per section 3.6.1,

Ar(K,..) """ =(n+1-1)(n+1-In(n+1-1))
= (N)(n+1-In(n)).

Hence, from (1) withk =1,

Ar(3)2° = MG —% Inn+ cj = Ar(K,,) ™" = (n)(n+1-In(n))

n+1

— %(n ~Inn+c) =(n)(n+1-In(n))

nn+1) _ B
== (n—Inn+c) =(n)(n—In(n) +1)
=c=1
So,
Ar ()2 =(Wj (E—%(In n)+1j .

Note that the complement G of any G € 3 above, is not connected, and therefore cannot

be eigen-bi-balanced as per the definition. Hence the class of graphs GeJ isnot eigen-
bi-balanced. This result applies for the class of complete graphs, complete bipartite
graphs, wheels and star graphs.

Alternatively, we could have formed the join (with n vertices) 3 = K_k ® K,y , which,

by substituting n with (n—k) into Theorem 3.8.4, has conjugate pairs

_ n—k —1%/(n—k -1)2 + 4k(n—k)
2

(a.b)

with ratio

r(a’b)— k+1-n _ —(n—k)+l
“k(n=k)  k(n—k)

which has asymptote as before asymp(r(aJh)) = —.
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The area is

~\a 1 1
Ar(\S) b = B‘J.[—Edn'Fm]dn

:B(E—%In(n—k)+c)

:((n—k)(n—k—1)+2k(n—k)j [E—lln(n—k)+cj
k k

n
When k =1, we must get the area the of the complete graph on n vertices, so that,

Ar(K )" =(n-1)(n—In(n-1))

:[(n—l)(n—1—1)+2(n—1)j [E—}In(n—lﬂcj
11

n

n

:[(n—l)(n—2)+2(n—1)j (n—In(n—1)+c)

(n—1)n—In(n—1) +c) which gives ¢ = 0.

Hence A(3)” :((n—k)(n—k—1)+2k(n—k)j (E—%(In(n—k))j

n
where 3 = K_k DK, .

Conjecture 3.8.1

The maximum eigen-bi-balanced ratio area of classes of graphs on at least 6 vertices is
that of the complete graph and is equal to(n—1) (n—In(n-1)).

Remark: The height H = n of the complete split bipartite graph is greater than the height
H=n- In(n —1) of complete graphs. However multiplying by the average degree results
in the complete graph having the greater area

ie, Ar(K) ™" =(n-1)(n—In(n-1)) > % = Ar(K

)

NS
NS

nn
2'2
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A trivial association with spanning trees and areas is given below:

From section 3.6.2, the complete split-bipartite graph has area:
2

Ar(G) _n"_ shad(G)

2 2t(G)

From section 3.6.1, for the complete graph the area, in respect of the eigenvalues -1 and
n-1,is:
Ar(K)™*" = (n-1)(n—In(h-1))

=n?-nin(n-1)—n+In(n-1)

<n?+In(n-1)

Now In(n—1)<In(n)<n<2n+1,
shad(K..;)

so Ar(K )" <n?+2n+1=(n+1)?%=
" t(KnJrl)

Note that for wheels with n spokes, the conjugate eigen-pair, as per Section 2.7.1, is

(a,b)= Zi# so that
2+4+4an  2-Ja+4an| [244+4an 24+ an|
la+b+[ab] = + + :
2 2 || 2 2 |
=2+n

For the join of two cycles of length n, there exists a pair of eigenvalues (a,b): 2+n so
that

|a+b|+|ab|
=2+n+2-n/+|2+n)2-n)
=4+4-n’)

:n2

See Lee and Yeh [37].
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Note that for c(d) respectively being the maximum (minimum) degrees of the vertices in

the respective graphs, the wheel graph above has [a+b|+|ab| = (2+n)<3(n—1)=cd

and the join of two cycles of length n has |a+ b| +|ab| =n®< (n + 2)2 =cd. This

suggests part (i) of the following conjecture.
For star graphs with m rays of length 2, we have eigen-pair (a,b)= (\/ m+1,—vm +1),
and [a+hb|= ‘\/m+1—\/m +1‘ =0 and [ab| = ‘(\/m +1X—\/m +1l =(m+1). Also

ab
c=mand d =1,s0 |d_| = mT+1 =cC+1. So, the star graph with m rays of length 2,

suggests part (ii) of the conjecture below.

Conjecture 3.8.2

If a class of non-complete graphs, is eigen-bi-balanced with associated eigen-pair (a, b)

of a member of the class, the member having maximum (minimum) degree c(d)
respectively, then

(i) if a+b =0 then [a+b|+|ab|<cd

ab
(i) if a+b=0 then |d—|£c+1.

Eigen-bi-balanced classes of graphs — density

Definition 3.9.1: Eigen-bi-balanced density

The interval [-1,0] is more convenient if it is a positive interval: we define the eigen-bi-
balanced density of a class of eigen-bi-balanced graphs with asymptote asymp(r(a3b))
as

Q, (3) =|asymp(r(aJb))|

so that the complete graph has eigen-bi-balanced density 1, which we propose is the
largest density of all possible eigen-bi-balanced graphs (the maximum density of a class
of graphs will be the largest of its densities over all its possible ratios).
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Conjecture 3.9.1

The asymptotic eigen-bi-balanced ratio of uniquely eigen-bi-balanced classes of graphs
lies in the interval [-1,0] and the complete graph is the only graph which is asymptotically
closed with respect to its unique eigen-pair. The density lies on the interval [0,1] with the
largest density that of complete graphs, which equals 1.

3.10 Eigen-bi-balanced classes of graphs — energy and asymptotes

There is much research on the energy of a graph - it is related to the total w-electron
energy in a molecule represented by a (molecular) graph.

Definition 3.10.1: Energy of a graph

The energy of a graph with adjacency matrix A with eigenvalues 4, >4, >...>2 4, is:

n
EA = |4
i=1
See Stevanovig [45].

If we have a class of eigen-bi-balanced graphs, is there a way of determining if the
asymptotic ratio has an effect on the energy of a graph? It may be possible by assigning
this asymptotic value to the vertices of the graph as, for example, a weight of a loop on a
vertex — see Adiga, Bayad, Gutman and Srinivas [1]. This suggests the following
definition:

Definition 3.10.2: R-asymptotic eigen-bi-balanced matrix

The r-asymptotic eigen-bi-balanced matrix C,” = (c;;), associated with the adjacency

matrix A= (a;)of G on n vertices with an eigen-bi-balanced ratio asymptote r(aJ3b)”,

is defined as:

;1 # ]
C.:. =
P |deg(a;)+r(a3b)”; i=
If G isk-regularand A haseigenvalues k=4 >4, >...2 4,,

then the eigenvalues of C.” are:
2k +r(a3b)= 4 > 4, +k+r(aJb)>...> 4, +k +r(aJb)

In particular, if r=0 the C; is the signless Laplacian matrix.
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Definition 3.10.3: R-asymptotic eigen-bi-balanced matrix

The energy of the r-asymptotic eigen-bi-balanced matrix C.” =C, associated with the
graph G on n vertices and m edges, with eigenvalues of C.° = C being

2> s

4 —2m
n

ECT = Z

i=1

See Stevanovig [45].

If r =0 then we get the energy of the signless Laplacian matrix.

1y

If r =0, such as for the complete graph K, on n vertices and n(% edges, then its

(-1)-asymptotic eigen-bi-balanced energy is found as follows:

As per Theorem 2.2.1, the eigenvalues of K, are (n —1)1; (—1)”‘l so that the eigenvalues

of C% are:

2, =2(n-1)-1=2n-3 once
Ay ==1+(n-1)-1=n-3  (n—1)times

so that the r-asymptotic eigen-bi-balanced energy of G (with eigen-pair (a, b)) is:

OO

,1__

_lon oy 2N(n-1) \(n 2y 2n(n-1)
_‘(Zn 3)- 20D s 0-gfin-3)- 21

=|2n-3)-(n-D|+(n-1)(n-3)~ (n-1)
=|(n-2)+(n-1)(~2)

=n-2+2n-2

=3n—-4

This energy is greater than the normal energy E A=2n-20fa complete graph on a large
number of vertices. This asymptotic energy can be regarded as the eigen-pair balanced
energy associated with the graph G as the order of G becomes increasingly large.
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3.11 Eigen-bi-balanced classes of graphs — matrix ratio
Definition 3.11.1: Matrix eigen-bi-balanced ratio equation

Let A be the adjacency matrix of a graph G € 3, where 3 is a eigen-bi-balanced class of
graphs. If the eigenvectorsv,, v, , associated with the eigen-pair (a,b), have unit length,

then we have the matrix eigen-bi-balanced ratio equation:

VA Y, A, ath

v Avv, Ay,  ab

For example, if Jis the class of complete graphs, K,,, then as per Theorem 2.1.1,
A(Kn)has eigenvalues n—1and -1, with eigenvectors of unit length

v, = i (1,1,...,1) and Vv, (which is the unit eigenvector associated with the second

7n

eigenvalue of -1), then

VAV 4V, A, o1 (-1)

v Ay Ay, (n-1)-1)

This is an original definition, and is interesting, along with other ratios of matrices which
have been defined and investigated over time, for example, the Rayleigh ratio of

i
R(H, )= 21X
X

, for any (hxh) matrix H and any (hx1) vector x .

3.12 Conclusion

In this chapter, we used the ideas of integral eigenvalues and conjugate eigen-pairs to
introduce the new idea of eigen-sum and eigen-product balanced properties of graphs,
involving a pair of non-zero distinct eigenvalues a and b. The fact that these attributes
were non-zero, together with the idea of robustness, provided the motivation for the
definition of the eigen-bi-balanced ratio of classes of graphs, which allowed for the
definitions of area and asymptotic ratio of classes of graphs. We found areas and
aysmptotes of known classes of graphs and it appears that complete graphs have the
largest area and the asymptotes of all graphs may belong to the interval [-1,0].

Since, in this chapter, we considered known classes of graphs, such as complete graphs,
bipartite graphs, wheel graphs, it is natural to determine other classes of graphs which are
eigen-bi-balanced. In Chapter 4, we construct a new class of g-regular graphs (called g-
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cliqued graphs) on (q2 +1) vertices, involving exactly q cliques, each of order g, together
with a central vertex. In Theorem 5.1 we show that its conjugate eigenvalues are a

~1+ /1+4(q-1)
2

balanced properties of the new class of g-cliqued graphs.

functionof g, i.e., A = . We shall then determine the eigen-bi-

Since this chapter contains new eigen-bi-balanced definitions, the work and results in this
chapter are entirely original.
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CHAPTER 4

Q-CLIQUED GRAPHS/DESIGNS

There is much interest in considering graphs which have sub-graphs of a particular kind, such as
cliques — see Babat and Sivasubramaniam [6], Graham and Hoffman [26], and Liazi, Milis,
Pascual and Zissimopoulos [38]. In this chapter, we consider graphs which have cliques of order
g as sub-graphs, and which are also design graphs. We will define the construction of a class of

graphs called g-cliqued graphs on g2 +1 vertices, and then prove that these g-cliqued graphs

are design graphs. We determine various characteristics of g-cliqued graphs, namely chromatic
number, co-clique number, radius, diameter, etc. Finally, we investigate linear algebra of
distance matrices of reduced g-cliqued design graphs.

This chapter consists entirely of original work, and contains the general construction of g-
cliqued graphs. The g-cliqued graphs are constructed and illustrated specifically for the cases
g =2,3,4, and 5, and then the generalised construction is defined. A number of characteristics

of the g-cliqued graph are then determined.

This entire chapter is original work, applying the definitions in Chapter 1 to the newly defined
g-cliqued graph.

4.1 Construction of g-cliqued graphs

In this section, for q > 2, we construct a g-clique design graph, labelled GKq » and find

its associated adjacency matrix. We take g copies of the complete graph on g vertices
K, together with a single vertex v . Generally, we label the vertices of the ith copy of

(Kg)' s Vi, Vs,...,v, ,for 1<i<q.

411 For q=2,the graph G, :

For q=2, take 2 copies of K,, namely (Kz)i ; 1 =1,2 together with a single
vertex v. Joinv to V,; i=12,sothat v has degree 2. More generally, join v

to v{; 1<1i<q. so that v has degree g generally.
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1 2
V V.
°! ° 'S
Vv
1
(K3) (Ky)?
.V% V% [ ]

Figure 4.1.1.1: Construction of GKZ* - (a)

Finally, join vertices v5 and v3 of (K,)'and (K,)? to form a 5-cycle.

1 2
V. V.
°! P °
Vv
(Ky)! (Ky)?
V% V5
° o

Figure 4.1.1.2: Construction of GKZ* - (b)
Label vertex v as vertex v,, and then for each sub-clique, label the vertices
starting from v} = v,, v} = v;, and v? = v,, v? = vs.

This graph does not contain a 2-lantern sub-graph so it is a design graph,
namely a 2-cliqued design graph.

*

Then the 5x5 adjacency matrix of GK2 , Where the rows are v;,...,vs and the

columns are vi,...,Vs, is:

A(GKZ*):

o O+ O
o O b O -
O O F— O
O O O K-
O B B O O
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By definition of det(ll — A(GKZ*)), the characteristic polynomial of

A(GKZ*) is 15 —52% +51-2.

The eigenvalues of this adjacency matrix are: 2 (once); _1; V5 (twice) and
-1- -1+
! 2‘/5 (twice). The conjugate eigen-pairs are 1; V5 . The diameter is 2,

the tightness of type 1 and tightness of type 2 is 6. This graph and its associated
design are DS, as they are cycles.

For q=3, the graph Gy, :

For q =3, we take 3 copies of K, namely (K;)', (K3)? , and (Kj)*together

with a single central vertex v. Join v to vli; i=123:
(K3)1 (K3)2
o
(K;)?

Figure 4.1.2.1: Construction of GK; - (@)
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Join the remaining vertices of the 3 copies of K, to form 3 5-cycles. i.e., vé and

2,2 3.3 1
V. V3 and vy; V3 and v;.

Figure 4.1.2.2: Construction of GKB* - (b)

Label central vertex v as vertex v;, and then for each sub-clique, label the
vertices starting from v; =v,, v% = V3, V% =V,,and v12 = Vs, v12 = Vg,

VE =Vvy,and V2 =Vg, VP =Vg, Vi = V.
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Vg

V10

Figure 4.1.2.2: Construction of GKS* - (b)

This is called the 3-cliqued-block-design graph.

*

Then the 10x10 adjacency matrix of GK3 , Where the rows are vy ,V,,...,Vyg

and the columns are vy ,V,,...,vyg is:

010 1 1
1 0 1
1 0 1
11 1
* 1 1
A(GK3 ): 1 0
1 1
1 1
1 0
- 1 1 -

All blank elements are zero. Since no two columns are the same, the exclude 3-
lantern condition holds.
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The characteristic polynomial of the adjacency matrix for g =3 is:

A0 158 64" + 7528 +482° —1441* —114° + 751% + 684 +12

The eigenvalues of this adjacency matrix are: 3, 1, -2, -2, 1.879, 1.879, -0.347,
0.347, -1.532, -1.532..

The conjugate eigen-pair is

The number of distinct eigenvalues is 6, and the number of integer eigenvalues
is 4. The radius is 2, and the diameter (maximum eigenvalue) is 3, the tightness
of type 1 is 18, and tightness of type 2 is 12.

For q=4, the graph GK4* :

For q =4, take 4 copies of K, namely (K,)', (K,)?, (K,)3, and (K,)*,
together with a central vertex v. Join v to vi; i=1,2,3,4. Label each of the
vertices within each copy of K, clockwise, starting with

R T T P
Vi;VyiVgiVy; 1=1234.

Figure 4.1.3.1: Construction of GK4* - (a)
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Join vertices v} tovy™ for 1<i<nwhere vj* = v} to form 4 5-cycles. Join

vertex vj tové*lfor 1<i<n whereiis odd.

Figure 4.1.3.1: Construction of GK4* - (b)

Label vertex v as vertex v, , and then for each sub-clique, label the vertices
clockwise for each sub-clique, starting from vi =v,, vé = Vg, vé =Vy,
Vi =Vsand V2 =V, V5 =V,, V3 =Vg, V5 =Vg, and V; =V, Vs = V5,

3 _ 3 _ 4 _ 4 _ 4 _ 4 _
V3 =Vip, Vg =Vi3, and Vy =V, Vy =Vis, Vg = Vg, Vg = V7.
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Vs

VU3 172 Ve
V1
v
V17 10
V14
' 4 '
(Ky)
V15 v13

Figure 4.1.3.1: Construction of GK4* - (c)

Vg

(Ky)?

V11

(K4)®

V12
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*

Then the 17x17 adjacency matrix of Gg 4 @ Where the rows are vy,v,,...,Vq7

and the columns arev,,v,,...,v;7 Is:

01 1 1 1
10111
1011 1
1101 1
1110 1
1 0111
110011
1 1101
A(GK4*J: 1110 1
1 0111
11011
1101 1
1110 1
1 0111
110011
1 1101
] 1 11 1 0]

All blank entries are zero. The eigenvalues for this adjacency matrix are:

-2.303, 1.303, 4, 3.403, 2.935, 2.303, -0.463, -0.684, -1.303, -1.719, -1.473, -2,

-1+
-2,-2,0, 0, 0. The conjugate eigen-pair is %ﬁ . The number of distinct
eignvalues is 13, and the number of integer eigenvalues is 7. The radius is 2,

and the diameter (maximum eigenvalue) is 4, the tightness of type 1 is
13x4=52, and tightness of type 2 is (4 +1)>< 4 =20.
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Label vertex v as vertex vy, and then for each sub-clique, label the vertices

clockwise starting from v}, 1< j <5, VJ?, 1< <5, V?, 1< <5,

vi, 1< j<5, v3, 1< j <5.The resultant 26x26 adjacency matrix of G

where the rows are vy,vs,...,Vos and the columns are v;,Vvs,...,Vyg iS:

0 1 1 1 1 1
101111
10111
11011
11101 1
11110 1
1 01111
110111
1 11011
11101 1
11110 1
1 01111
. 110111
A(GK5)= 1 11011
11101 1
11110 1
1 01111
110111
1 11011
11101
11110 1
1 01
110
1 11
1 11
I 1 11

All blank entries are zero.

N =T
R = = S
= I S N
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Eigenvalues for q=5:

-2.562, 1.562, 5.00, 4.381, 4.381, 3.447, 3.447, -1.662, -1.662, -1.272, -1.272,

-0.719, -0.719, -0.174, -0.174,0,0, 0, 0, 0, -2, -2, -2, -2, -2, -2 . The conjugate
1+417

eigen-pair is _T . The number of distinct eignvalues is 11, and the

number of integer eigenvalues is 3. The radius is 2, and the diameter (maximum
eigenvalue) is 5, the tightness of type 1 is 11x5 =55, and tightness of type 2 is

(4+1)x5 =25,
415 For g=n, the general construction of graph GKn :

The general construction of the (1+ n? )x(1+ n2) adjacency matrix of GKn

where the rows are vy,V,,...,v., and the columns are v;,v,,....v  ,isas
1+n 1+n

follows:

a; =0; 1sis(1+ n2)

Joinvto v}; 1<i<n:

1,01 =L 0<4<n-1

Qi1 =L 0<A<n-1

Sub-cliques:

ik =0 0<A<n-1 1<k<n; 1<I<n; k=I
ik 1eans =L 0<A<n-1 1<k<n; 1<l<n; k=I

vl of clique i (the nth vertex in clique i) joins to v5* (the 2nd vertex in

clique (i +1)):
Atz =L 0<A<n-1
A1+ (A+1)n+2,1+An+n =L 0<A<n-1

vj of clique i (the jth vertex in clique i) joins to v}'} (the (j-1)th vertex in

clique (i+1)):
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Qs jarne(j-y) =L 0SA<n-1 4<j<n-1 ] even

A1 (pne(j-)ean+j, =5 0sA<n-1 4<j<n-1 ] even

vij of clique i (the jth vertex in clique i) joins to vij*l (the jth vertex in

clique (i+1)), j=n—1 n even, j odd, i odd:
a1+/”Ln+j,1+(/1+1)n+j =L 0<A<n-1 j=n—1, A even

A ()ns+jasand] =L 0<A<n-1 j=n-1 Aeven

If for a; i>(1+ n2) then i=i —(1+ nz) and if for

aj. | j>(1+n2) then j=j—(1+n2)
a; j =0; 1sis(1+ nz) 13]3(1+ nz) otherwise.

The results of this general definition of the construction of a g-cliqued graph
have been verified using a generic Excel spreadsheet, for the cases q = 4,5,

and 6.
4.2 Q-cliqued graphs are design graphs

Theorem 4.2.1

The g-cliqued graphs, denoted by GKq » and as constructed in Section 4.2, (for
g=2), are design graphs, that is

1. They are g-regular;
The number of vertices (q2 +1) and g cannot both be odd; and

The blocks of the design must be distinct i.e., no two non-adjacent vertices
in the graph are adjacent to the same set of vertices, i.e., the graph does not
contain a g-lantern sub-graph.

Proof:
1. By definition of construction, the g-cliqued graphs are g-regular.
2. The number of vertices in a g-cliqued graph is g% +1. If q is even, then

q% +1 is odd, and if q is odd, then g2 +1 is even. So condition 2 holds for
all g=>2.
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3. The condition 3 is true for g = 2,3,4, and 5since the constructed graphs do

not contain g-lantern sub-graphs. This is also evident from the associated
adjacency matrices, as no two columns are the same.

For g=n,n>6, consider the following cases of pairs of non-adjacent

*
matrices in GKn :

- Take two non-adjacent vertices v{ and th) where v{ and th) belong to
different complete sub-graphs (each of order q) K, and K, of GKn .

Then v{ isadjacentto q—1 verticesin K, i.e., v is adjacent to

vg; 1<k <q, where k=i, and vg is adjacentto q —1 vertices in

K, ie, vﬁ-’ is adjacent to all vlb; 1<1<q, where | # j. Also, by

*

definition of the construction of GKn » V& in K, is not adjacent to
ALL vP; 1<1<q, where | # j, and vﬁ-’ in K, is not adjacent to ALL
vg; 1<k <q, where k =i. From this, v2 and v? do not have the

same neighbourhood set in GKn . Therefore v and v? do not form

*

twin vertices of a g-lantern sub-graph of GKn .

- Take two non-adjacent vertices v@ and v?where vl 1<i<q, isa

vertex in the complete sub-graph K, of order g, and v is the central

vertex of GKn . Then v& isadjacentto q—1 verticesin K, ie v{

is adjacent to vf; 1<k <q, where k=i, and by construction, v is

only adjacent to one of v&'; 1<k <q, where k =i . Therefore, v{ and

*

v do not have the same neighbourhood set in GKn . Therefore

v and th) do not form the twin vertices of a g-lantern sub-graph of

*

GKn .

Therefore the 3 conditions required for GKn to be a design graph, have been

met, so our g-cliqued graphs as defined in Section 4.1 are design graphs. m
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4.3 Chromatic number of g-cliqued graphs

Theorem 4.3.1

The chromatic number of g-cliqued graphs GKq is g, where q>3.

Proof

For g=3, GK3* Is:

Figure 4.3.1: Colouring of GK3*

Colour the central vertex v with colour 1 (purple), and v{; i =1,2,3 with the second

colour ( ). Colour viz; i =1,2,3with the third colour (red), and colour vg; i=123

with the first colour (purple). No two adjacent vertices have the same colour, and no
fewer than 3 colours could have been used (as each sub-clique requires at least 3 unique

colours). So the chromatic number of GK3 is 3.
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For q=4, GK4* is:

Figure 4.3.2: Colouring of GK4*

Colour the central vertex v with colour 1 (purple), and vli; i =1,2,3,4 with the second
colour ( ). Colour viz; i =1,2,3,4 with the third colour (green) and colour

vi; i=1,2,3 4 with the fourth colour (red). Colour v}; i=1,2,34with the first colour

(purple). No two adjacent vertices have the same colour, and no fewer than 4 colours
could have been used (as each sub-clique requires at least 4 unique colours). So the

*

chromatic number of Gy, is 4.
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Colour the central vertex v with colour 1 (purple), and v{; i =1,2,3,4,5with the second
colour ( ). Colour vi2; i =1,2,3,4,5with the third colour (green), colour
vé; i =1,2,3,4,5 with the fourth colour (red), colour VL; i =1,2,3,4,5with the fifth colour

(black), and vﬁ-,; i =1,2,3,4,5 with the first colour (purple). No two adjacent vertices have
the same colour, and no fewer than 5 colours could have been used (as each sub-clique

requires at least 5 unique colours). So the chromatic number of GK5 is 5.



160

Figure 4.3.4: Colouring of G Ke*
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Colour the central vertex v with colour 1 (purple), and v{; i=12,34,5,6 with the second
colour ( ). Colour viz; i=1,2,3,4,5,6 with the third colour (green), colour
vl 1=1,2,3,4,56 with the fourth colour (red), colour v}; i=12,34,56 with the fifth
colour ( ).
o For i odd, and colour vé; 1<i <6 with the sixth colour (black) and colour

vé; 1<i < 6with the first colour (purple).
o For i even, and colour vi5; 1<i <6 with the first colour (purple) and colour

Vg; 1<i <6with the sixth colour (black).

No two adjacent vertices have the same colour, and no fewer than 6 colours could have
been used (as each sub-clique requires at least 6 unique colours). So the chromatic

number of GKe* is 6.

*

For g=n, we take GKn . Colour the central vertex with colour 1. Colour

vli; 1<i < n with the 2nd colour, viz; 1<i < n, with the third colour, and continue

sequentially until you colour v\ ,; 1<i < n, with the (n—1)th colour,

If nis even, then:

nas 1<1<n, with the nth colour and colour

. when i is odd, colour v
v,i1; 1<i < n, with the 1st colour.
J where i is even, colour vL_l; 1<i < n, with the 1st colour and colour

vl: 1<i < n,with the nth colour.
If nis odd, then:

o for all i, colour v:]_l; 1<i < n, with the nth colour and colour v,i1; 1<i<n, with
the 1st colour .

With the above colouring, no two adjacent vertices will have the same colour (by the

construction of the colouring). As it is not possible to colour the GKn graph with fewer

than n colours (since GKn* containes n cliques) such that all adjacent vertices have

*

different colours, then the chromatic number of GKn isn. ]
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4.4 Co-cligue number of g-cliqued graphs

Theorem 4.4.1

*

The co-clique number of g-cliqued graphs GKq is g+1, for q>3.
Proof

For q=3, Gy, is:

Figure 4.4.1: Co-clique number of GK3*

From Figure 4.4.1, the largest set of non-adjacent vertices are shaded in red, and therefore
the co-clique number of GK3* is 4. The shaded vertices are vg; 1<i <3, together with

the central vertex. The co-clique number is therefore equal to q +1.
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For q=4, GK4* is:

Figure 4.4.2: Co-clique number of GK4*

From Figure 4.4.2, the largest set of non-adjacent vertices are shaded in red, and therefore
the co-clique number of Gy 4* is 5. The shaded vertices are v}; 1<i <4, together

with the central vertex. The co-clique number is therefore equal to q+1.
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From Figure 4.4.3, the largest set of non-adjacent vertices are shaded in red, and therefore
the co-clique number of GKS* is 6. The shaded vertices are VL; 1<i<5, aswell as the

central vertex. The co-clique number is therefore equal to q +1.

In the general case of GKn*, where n >4, the largest set of non-adjacent vertices will be
obtained as follows:

Shade the vertices VL; 1< < n, together with the central vertex. The shaded vertices
are all non-adjacent and this is a set of non-adjacent vertices of GKn*. The co-clique

number is therefore equal to at least (n +1).

We shall now prove that there is no set of (q + 2) vertices, which are a subset of GKq ,

and which are disconnected. You can only select one vertex from each of the cliques, as
each cligue is a complete sub-graph, and therefore each vertex is connected to every other

*

vertex in the clique. Therefore, as there are g cliques in GKq y at most (q +1) vertices

can be selected i.e., one vertex from each clique together with the central vertex.

Therefore, there is no set of (q+2) vertices which is a subset of GKq and which is

disconnected.

We have therefore proved that the co-clique number of g-cliqued graphs GKq* is q+1,

for g > 3. O

Radius, diameter and tightness of g-cliqued graphs
Theorem 4.5.1
Let G be a g-cliqued graph. Then:

Each g-cliqued design graph has a 5-cycles incident with its central vertex.
The largest eigenvalue of a g-cliqued graph is g.

The radius of g-cliqued graphs is 2.

The diameter of g-cliqued graphs is:

e For q=2, diameter = 2;

Howbhe

e For gq=3, diameter = 3; and
e For q>4, diameter = 4.
5. Tightness of type 2 = 5q; for q > 4.
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Proof

1. By construction, each g-cliqued design graph contains 5-cycles incident with its
central vertex.

2. Ak-regular graph has k as its largest eigenvalue with a corresponding eigenvector
Jr =(1....1)". Since a g-cliqued graph is g-regular, the largest eigenvalue is g.

3. The central vertex v of the g-cliqued graph has eccentricity 2, as the distance
between v and any other vertex in the g-cliqued graph is at most 2. This is the
minimum eccentricity of all vertices in G, and therefore it is the radius of G .

4, Forq =2, the central vertex of a g-cliqued graph has eccentricity 2. There is no
other vertex with an eccentricity greater than 2, and therefore the diameter is 2.

For q=3, the vertices in the sub-cliques which are not connected to the central

vertex, have eccentricity 3. There is no other vertex with an eccentricity greater
than 3, and therefore the diameter is 3.

For g > 4, the vertices in the sub-cliques which are not connected to the central

vertex, have eccentricity 4. There is no other vertex with an eccentricity greater
than 4, and therefore the diameter is 4.

5. As per Section 1.5.6, the tightness of type 2 for q >4 is

(d+)A=(4+1)g=5q. o

Ratios of g-cliqued graphs

As defined in Section 1.2.6 and Section 1.2.7, the g-cliqued graphs are important in that

they are associated with non-balanced designs. The fact that these are on (q2 +1) vertices

lends itself to the idea of ratio invariance of their properties such as clique number,
chromatic number and co-clique number.

n-1 g?°+1-1 q?
As per Section 1.2.6, q = 9 + = L =, where d is the clique number, so

q

g-cliques are clique number invariant.

. n-1 g*’+1-1 q° _ :
As per section 1.2.6, " _4 9 g where d is the chromatic number, so

q
g-cliques are chromatic invariant.
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n+2q q*+1+2q (q+1)°
c g+1 g+1
number, so g-cliques are co-clique invariant.

As per Section 1.2.7, =(+1, where c is the co-clique

4.7 Eigen-co-cliqued ratio

The eigenvalue of -2 is associated with the g-cliqued graphs for q=3,4,5. As per Section
1.5.7, the eigen-co-cliqued ratio of the g-cliqued class of graphs for (l = —2) is

2 2
n+4 = (q +l)+( 2) = Q-1 = —1, where c is the co-clique number.
c (q+2) q+1
For g =3, the eigen-co-cliqued ratio is equal to the multiplicity of the eigenvalue of -2,
and hence the ratio is strict.

4.8 Laplace and signless Laplace matrix of g-cliqued graphs

As per Section 1.5.9, the largest eigenvalue of the Laplacian matrix associated with a
graph, is used in the definition of the robustness to delay for reaching consensus in a
network. Also, as per Section 3.5, the eigenvalues of the Laplacian matrix are used in
determining the number of spanning trees of a connected graph. In this section, we
determine the Laplace matrix associated with the g-cliqued graph, for q=3.

3 -1 0 0 -1 0 0 -1 0 0
13 -1-10 0 0 0 0 0

0 -1 3 -1 0 0 0 0 0 -1

0 -1 -13 0 -1 0 0 0 0
L(GK*)_—lo 0 0 3 -1 -10 0 0
3/7lo 0 0 -1 -1 3 -1 0 0 0
0 0 0 0 -1 -1 3 0 -1 0

-1 0 0 0 0 0 0 3 -1 -1

0 0 0 0 0 0 -1 -1 3 -1

0 0 -1 0 0 0 0 -1 -1 3|

The eigenvalues of the Laplace matrix of the 3-cliqued graph are:
(5)?,(4.532)%,(3.347)%,(2),(1.121)%,(0).
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See Theorem 5.2.1 (6) for the general form of the eigenvalues of the Laplace matrix of g-
cliqued graphs.

The signless Laplace matrix is:

O OO r kP W o o o
O r O W EFrk Pk O o o o
P P WO O O o o O -
R Wk, PO O O O o o
W Bk O OO0 o Frr O o

O O kP O O Pk O O F,r W
O O O O OO Fr P Wtk
R O O O O O Fr wk+rLk o
O O OO r O WP B+, o
O O o r Wk +r O o o

and has eigenvalues (6),(4.879),(4),(2.653)%,(1.468), (1)*.

See Theorem 5.2.1 (6) for the general form of the eigenvalues of the signless Laplace
matrix of g-cliqued graphs.

The linear algebra of distance matrices of reduced g-cliqued
design graphs

Definition 4.9.1: Distance matrix

We define the distance matrix of a graph G by first assigning the weight 1 to each edge of
G, i.e., w(e)=1 for all edges e of G. The distance d;  from v; to v, s defined as:

dj= Enin)w(P(vivj)) where P(v;v;) ranges over all paths from v; to v;. The distance
P(vivj

matrix D(G) of a graph G is the square matrix which has d;; as its (i,j)th entry.
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Theorem 4.9.1

If G is a connected graph with r strong cliques G;, which have adjacency matrices
A(G; ).and D(G) is the distance matrix of G and D(G; ) is the distance matrix of the

strong clique G;, then, recalling definitions in Section 1.5.2 and Section 1.5.3, we get

cof (D(G)) = ﬁcof (D(G;)
and

det(D(G)) = gdet(D(Gi ) f[cof (b(G; )

j=L, i

See Graham [26].

For example, G; are copies of K, so we can use the alternate form:

o) ZCENIrPE) e

_ =i _ Zr: (D(G; .
cof (D(G)) lL[COf (D(Gi )) ig cof (D(Gi ))

Since the distance matrix for K, is
01
D(K,) = [1 O} so that det(D(K, ))=—1, and cof (D(K, ))=—2, if we consider

the tree G = T,, with n vertices, n—Ledges, and distance matrix D(G), we have,

cof (D(T, ) = cof (D(K, )" = (=2)"%,
det(D(Tn )) = cof (A(G ))nz_i%((zl)))) =(-2) n71(n —1)% =(-1) n-1 (2) n-2 (n—1)

1
which is independent of the structure of the tree.

For our g-cliqued graphs G;q , they are not strong clique graphs, as they do not contain

cut-vertices. The removal of the inserted edges E between the cliques in our construction
results in the cliques of the new graph G — E becoming strong cliques. This graph is

denoted by (G:;q )" and has adjacency matrix A((G:;q )') :
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For example, for g =2 remove the edge e joining vertices v; and v from the 2-cliqued
graph.

51
® ®
123 Vy

S .

U3 Vs

Figure 4.9.1: Diagram of GKZ*

This results in the following path on 5 vertices:

Figure 4.9.2: Diagram of (G Kz*)

Assigning weight 1 to each edge and applying Theorem 4.9.1 to the distance matrix
D(G) of (GE2 ) which is a tree.

01212
10123
D((G;z)'j 2103 4
12301
23410

cof (D((Gr,)) = (cof (A(K, )
— (_2)571

=16
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i) -t 21

_16(5 —1)(:—3

=32

For g = 3, remove the edges between the sub-cliques.

V3 Vy Ve Ly

Vg

Figure 4.9.3: Diagram of GKS*
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Remove the edges between vertices 4,6 and 3,10 and 7,9 to get (G Ks ) .

U3 Vy Ve 12

1 2

(Ks) (Ks)

Vs
172 V1
Vg
3
(Ks)

V10 Yo

Figure 4.1.2.2: Diagram of (GK;j

Assign weight 1 to the remaining edges to get the distance matrix

0122122122
1011233233

2 101344344

2 110344344
A'=D((G;)')=1233011233
3/)712 344101 3 4 4
2344110344
12332330011

2 344344101

2 34434411 0]

The reduced 3-cliqued graph (GKg j , has 3 blocks consisting of 3 copies of Kzand 3

blocks consisting of 3 copies of K.

The determinant of the distance matrix of Ksis 2 and of K, is -1, and the cof (K3): 3
and cof (K, )=-2 so that from Theorem 4.9.1:
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i
z—det(D(Gi)):g+z+g+__1+__l+__lzz
~cof(DG;) 3 3 3 -2 -2 -2 2

and cof (D((G;3)' D ~ T oof (A) = 3°(-2)° = (27)(-8) = 216
i=1

So that:

det(D((G;3 ) D — cof (D[(G;3 ) D i; %@)ﬁ —(- 216)(9 — 756

Using the result of Theorem 4.9.1, we now determine the determinant and cofactor of the
complete graph Kq on q vertices.

Theorem 4.9.2

For the complete graph on g vertices,

1 det(A(K, )= (q-1(-1)"*
2. cof (A(Ky))=a(-1)"*

Proof
1. To prove: det(A(Kq )): (q-1)-2)**
For g=1:

det(A(K,))

=-1 by calculation
=(2-1f-1""
=(a-1(-1**

Let us assume that

det(A(K, ))=(k —1(-1)"=detj/1 1 0 .- 1| forallk<q. 1)

i 0]
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Then, by expanding the determinant along the first row,

11
1
RHSof (1) =Oxdet/1 1 0
111 O
S _
0 1
—1detjl 1 O
A Yoy
- .
1 1
+1det|1 1 1
111 0 k-1)x(k)
SV i
0 1
—.(-1)"detj1 1 0
A o
S _
0 1
=(-1)k -1)detj1 1 0
111 - O_(k—l)x(k—l)

as all k —1terms can be expressed in terms of det|1
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So, comparing LHS and RHS of (1), we have

1
detj1 1 0 - 1 = (-1,
111 0 -1)x(k)

SoletS, =1 1 0 - 1| . Thendet(S,)=(-1)"

B ik

Now, by expanding the determinant of det(A(KkJr1 )) along the first row,

o0 1 1 _
01
det(A(K,,;))=det{1 1 0
R [y o

=0xdetfl 1 0 --- 1 —1detf1 1 0 .- 1 +1det|1 1

i ik I ik |
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=(-1)k)det{1 1 0

L T Pk ... as this can be simplified to k
identical terms

= (—2)k )~ 1)“‘l ... by the inductive hypothesis
_ (k)-1).

So we have proved det(A(Kq )): (q-1)(- 1)q_1 by induction.

To prove: cof (A(Kq )) _g(-1)**
For g =1, we have

cof (A(K,))
-2

_ 2(_ 1)2—1
=q(-1)""

Now for k > 2 we have, by definition of cof (A(K,,, ))as per Section 1.5.2, and
by definition of K,

cof (A(Kk+1 ))
0 1 1 - 1]
1 01
=coff1 1 O
(111 0pke)

= (k +1){det(A(K, ))— {(k +1) —1}det(S, )} by definition of cof (A)
= (k +1){<k _1)(_ l)k_l - k(— 1)k_1} by Theorem 4.9.2 (1)

= (k+2)-2) k-1~ k|
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~ (-2 (c+)

So we have proved that cof (K, )=q(~1)"%, for > 2. o

We now apply the above result, together with Theorem 4.9.1, to determine the

determinant of the distance matrix of (GKq ) , without knowing the actual format of this

distance matrix!
Theorem 4.9.3

For our g-cliqued graphs on q2 +1 vertices, and for (GKq ) as defined above, let

D((G Ka ) ] be the distance matrix of (G:;q ), and let D(Kq) be the distance matrix of

Proof

(GKq*j is a connected graph with g copies of K and g copies of K, . Then from

Theorem 4.9.1,
{ef(o) o ofle ) Emrer-Eatbicd)

Also, from Theorem 4.9.2,

q

cof(o((%*j]j - Teof (DK, )T Teof (DI )
-y E2p.
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For the q blocks of Kq,

For the q blocks of K,

S o) 5s

So,

o] e tofgr 42
~Lagyf|-0-2+ ]
-l zq(_l)Q—l]q{—qur 2} ]

4.10 Conclusion

We constructed the g-cliqued graphs specifically for g=2,3,4 and 5, and then defined the
general construction for all g-cliqued graphs. We proved that g-cliqued graphs are design
graphs, and then determined a number of properties of the g-cliqued graphs. In Chapter 6,
we will apply the chromatic number of the 3-cliqued graph to solve a potential scheduling
problem in a hypothetical entomological experiment.

We noticed that the g-cliqued graphs have a central vertex joined to g sub-cliques. The
wheel and the star graphs have a central vertex, and the class of the wheel graphs and the
class of the star graphs are eigen-bi-balanced. This suggests that the class of g-cliqued
graphs could also be eigen-bi-balanced.

In the next chapter, we will determine three specific eigenvalues of the adjacency matrix
of the g-cliqued graph, (including a conjugate eigen-pair), without determining ALL the
eigenvalues — we will use the eigenvector method to do so. We will then determine the
associated eigen-bi-balanced properties for the class of g-cliqued graphs. Finally, we will
investigate the class of complements of the g-cliqued graphs and obtain an interesting
result!

The construction and results in this chapter are entirely original.
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CHAPTER S

EIGENVALUES OF Q-CLIQUED GRAPHS AND EIGEN-
BI-BALANCED PROPERTIES

In this chapter, we focus on the g-cliqued graphs as constructed in Chapter 4. We show that the
g-cliqued graphs have eigenvalue q and conjugate eigen-pairs

P -1+.1+4(q-1
= 5 _
The determination of the conjugate eigen-pairs is equivalent to showing that the cubic

R-2@-)-29-2q-D+q(q-) =A-q)#+21-(q-1)

is a factor of the characteristic equation determined by A(Gk*)>_< = AX where A(Gk*) is the

adjacency matrix of the g-cliqued graph. The proof requires a number of specific definitions of
vertices within the g-clique graph, and we use the connectivity between the first clique, the
second to last clique, and the last clique in the proof of the conjugate eigen-pairs. The central

vertex also plays a key role in this proof, as each sub-clique of Kq is connected to the central

vertex. The proof of determining the conjugate eigen-pairs and the associated eigenvectors, is
first determined explicitly for the cases g=3,4, and 5, and then generalized for the g-cliqued
graph.

Once we have proved the conjugate eigen-pairs of the g-cliqued graph, we then determine the
eigen-bi-balanced properties of the class of g-cliqued graphs associated with this eigen-pair. The
values of all the newly defined eigen-bi-balanced properties, as defined in Chapter 3, are easily
determined for this class of graphs. We finally investigate the eigen-bi-balanced properties of
the class of the complement of the g-cliqued graphs, and show that the class of g-cliqued graphs
and the class of the complement of the g-cliqued graphs have the same eigen-bi-balanced ratio

This chapter consists entirely of original work, and contains some of the key results of the
creative work done during this research thesis. The eigenvalues of the g-clique graphs for the
cases g=3,4, and 5 were verified using Bluebit online matrix calculator and Mathematica, and
then the general form of the conjugate eigen-pairs was hypothetised and proved.
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The results in this chapter for g-cliqued graphs and for the eigen-bi-balanced properties for the
class of g-cliqued graphs associated with the conjugate eigen-pair are indeed fascinating!

5.1 Conjugate eigen-pair of g-cliqued graphs
Theorem 5.1

The g-cliqued graphs, as constructed in Chapter 4, have eigenvalues A =q (and the g-
cliqued graph is g-regular) and conjugate eigen-pairs

L _—lElva@-1)

2

The conjugate pairs arise out of the “tightness” of the connection between the central
vertex and the cliques, and between two adjacent cliques — for convention we chose the
second last and last clique.

Proof of Theorem 5.1

We will illustrate Theorem 5.1 for q = 2,3,4, and 5, and then give the proof for all
g > 6. First, we need the following definitions.

5.1.1 Vertex notation convention

Several vertices will be important in the proof, and hence we will give them special
labels as follows:
1. First vertex (central vertex), X, ;

2. Second vertex, X,;

3. Third vertex, Xs;

4. Vertices in first clique = {x2'x3,..., Xq xq+1k

5. Anchor vertex of each clique = vertex in each clique which is joined to the
first vertex x;

o

Anchor vertex of the last clique, X, =Xy, 4(g-1);
7. Switching pair of vertices, XqZ,l = X|_, (third last vertex) and xqz =X

(second last vertex);

8. Lastvertex, X, =X , .
q°+1
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The following definitions are also required for this proof:

and T'= {the set of vertices of the second last clique which are adjacent to vertices
in the last clique}.

Then T' = {xkl,xkz,...,xkt ﬁwhere t:qT_l, qodd, ort = % q even, and

S = the generating set of vertices

=TuT'’
K
Also, if S = {X;, Xy,..., X ), then we define >°S =" x;.
i

The two main equations that generate the conjugate eigen-pairs

We will use the relationship Ax = Ax to determine the two main equations that
generate the conjugate eigen-pairs:

DS =% —ax (1)

and

28 =(@-D)D S+(a-1x

N ZS _(g-Dx

“-@-1) @

Substituting (2), into (1) we get:

(a-1)Ax,

LI AR Ry VAN X, A#0g-1
2—(q-1) 1 —aX q

so that:
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@-Di=2(A-(-1))-a(A-(q-1)
= 2 -20@-)-94+q(@-1)-A(q-)=0
= (A-q)(#+21-(q-1))=0

This gives us three eigenvalues:

e A=qQ;and

~1%,1+4(q-1)

e the conjugate eigen-pair 4 = > :

5.1.3 The case =2

We first take the case g = 2, and determine the eigenvalues of the 2-cliqued graph,
using the eigenvector method. So,

Aoy, = 2x
001 0 1 O] [x]| [x]
1 01 0 0]]x X
=0 1 0 0 1] |X3[=4|X3
1 00 0 1] (x4 X4
1001 1 0][x]| |Xs5]

This gives the following simultaneous equations:

Xo + Xq =A%
Xy + X3 = AXy
Xy + X5 = AX3
X + X5 = AXy

Xg + X4 = AXs.

Taking the neighbours of x5 and x, we get
(X2 +X5) + (X +X5) = A(X3 + X4)
= (X + Xp) + 2%5 = A(AX5)

Let S = {x;, X, }. Then we get
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This verifies equation (1) of Section 5.1.2 for the case g = 2.
Taking the neighbours of the vertices in S = {x,, X, } we get

(X + Xg) + (% + X5) = (% + X,)
= (X +X)+ (X3 +X4) =A(X +X5)
= (X +X) + X5 =A% + %)

= (A-1)(% +Xp) = AXs

= (X +X;) = X5

A-1

A
= E S=—-—X 2
A-1° (2)
This verifies equation (2) of Section 5.1.2 for the case g = 2.

Substitute (2) into (1) to get

AX

ﬂ_1=12x5—2x5; A#1

— A=2(A-1)-2(1-1)
= B-12-31+2=0
= (A-2)(F+1-1)=0

So, solving this equation, we have eigenvalues A = 2, (which is the same as the
degree of the vertices in the g-cliqued graph), and the conjugate eigen-pairs
-1+v1+4

—

A=

5.1.4 The case =3

We now take the case g = 3, and determine the eigenvalues of the 3-cliqued graph,
using the eigenvector method. So,

Gy, = 2x
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010010010 0] [% ]| [X+xX5+xg] Xy
101 10000O0O0 Xy X1 + X3 + Xy X
01 0100O0O0O0T1 X3 Xy + X4 + X X3
01 100100O0°@P0 X4 Xy + X3 + Xg X4
_ 1000011000 X5 | | Xp+Xg +Xg _2 X5
0001101000 Xg X4 + Xg + X7 Xg
0000110010 X7 X5 + Xg + Xg X7
1 00000O0O0CT11 Xg X1 + Xg + Xqg Xg
0000O0OO011O001 Xg X7 + Xg + Xqo Xq
001 0000 1 1 0f [Xp] [Xg+Xg+Xg | |Xp]|

This gives the following equations taking the neighbours of X, :
= (X X+ Xg0) +(Xg + Xg + Xg0) + (X7 + Xg + X30) = AA(Xy))

= Xy Xy + Xy + X7 +(Xg + Xg) = A2 Xy — 3%y

Let S = {xl, Xy, X7 } Set X, =—Xgand Xy = 0, then we get

= > S =A% —3Xy 1)
This verifies equation (1) of Section 5.1.2 for the case g = 3.

Taking the neighbours of the vertices in S = {xl, X5, x7} we get

(Xo + X5 + Xg) + (X + X3 + Xg) + (X5 + Xg + Xg) = A%y + Xy + X7)

Set X, =—Xgand X4 = 0, from above, and set

Xg = %13 Xy = 0; Xg = 2X;; X5 = AXyg.

Then (2%, +2X, +2X; +2X5) = A(X; + X, + X7)
= 2(X Xy +X7)+ 2% = A(X + Xy +X7)
2%
A-2
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This verifies equation (2) of Section 5.1.2 for the case g = 3.

Substitute (2) into (1) to get

22X
Tl;):/lleo_gxlo; i?ﬁl
—  2A=22(1-2)-3(1-2)
= 2-222-51+6=0
= (A-3)(1*+1-2)=0
-1+J1-(4.-2) -
= A=30ordl= ( ): 149

2 2

So, solving this equation, we have eigenvalues A = 3, (which is the same as the
degree of the vertices in the 3-cliqued graph), and the conjugate eigen-pairs
~1+4/9

—

2’:

Let X = [X;, Xy, X0 |- Then A(GK3*)>_< = AX gives

X, + X5 + Xg | Xy
X, + Xz + X, X,
Xy + X4 + Xgo X5
X, + X3 + Xg X,
Xp+Xg+%7 | 5 Xs
X4 + X5 + X5 X
X5 + Xg + Xg X,
X7 + Xg + X0 Xq
X5 + Xg + Xq X10

With the values set as above, this becomes
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AXqo + Xg X, 3
2X; — Xg 0 4
— Xg + Xyqo Xq )
Xy + 2% — Xg 6
X1 +3X; _ X0 7
— Xg + AXyp + X7 2X; 8
2X; + AXqyo X7 9
X, + Xq0 Xg 10
X7 + Xg + X0 0 11
X, + Xg 1 | X | 12

We will now verify equations (1) and (2) in this section, using the definition of the
eigenvector above.

We use the generating set S ={X;, X,, X;} with its sum
D> S=> % +X, +X;. Now, using equations (3), (4) and (9) in the above, and

noting that the variable x, is 0:

DTS = AKX+ Xy +Xg)
= (AXy0 +Xg) + (2% = Xg) +(2X7 + AXyp)
= 2% + 2.0+ 2%; + 2%,
=2) S +22x
22X
= »s="L 13
2.8="", (13)

This is the same result as equation (2) above.

We now verify equation (1) above using the definition of the eigenvector.

Using equation (12), AAXy, = AX; + AXg, and using equation (5) and (10) in RHS:
PXyy =M+ AXg

= (—Xg +X0) + (X + Xyp) (14)
We need an X; so we use equation (11) to substitute for Xg which gives us

Substituting (15) into (14) gives us:
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2
A X0 = (X7 + X0 +Xq9) + (% +Xq0)
= X =X + Xy + X 4+ 3%

= .S = x4 —3% (16)
This is the same result as equation (1) above.

So we have verified both equations (1) and (2) by using the definition of the
eigenvector.

The case q=4

Step 1: Write down first equation using last vertex:

Expand left hand side with their neighbors to get vertices belonging to set S:

(X5 + X4 + X5 + X7) + (X + Xg5 + Xg6 + Xg7) +
(Xq3 + Xg + Xgg + Xg7) + (Xg + Xgg + X5 + Xg7)
= A(Xg + X4 + X35 + X46)

X+ Xo +Xg + X5 +2(X4 + Xi5 + Xgg) + X2 + X3 +4%7 = A(A%7)

Step 2: Put X;5 = —X;5 (second and third largest have opposite signs and are

called the switching pair) — this guarantees X;s, X;g & S.

Set T ={x;, X, } and T’ ={all vertices in S that belong to the second last clique,
and which are neighbours of the last clique }= {Xl2 » X3 } Then the generating set

S=TUT ={x, XZ}U{X127X13}={X1' X2, X192, %43}
Then we have

Xp 4 Xp + Xg + Xg +2(Xpg) + Xpp + Xgg +4X%7 = A(AXy7)
Step 3: Set X4 = X5 = X4 =0;

_ 12
Xy + Xy + Xpp + X3 +4X;; = A%y



188

This verifies equation (1) of Section 5.1.2 for the case = 4.

Step 4: Taking the neighbours of the verticesin S = {xl, Xy, X1, x13} we get

(Xo +Xg +Xqg +Xqa) + (X + X3 + X4 + X5) +

(Xag + %41 + X33+ X46) + (X0 + X41 + Xq2 + Xg5) = A(Xg + Xp + Xgp + Xg3)
X + Xg + Xq0 + X1 + X3+ Xqg + Xq1 + Xq3 + X0 + X1 + X =0

Set X].O = ﬂ/X]J;

Set X3 =2%;
Set X;1 =X,
X2 =0

Set 2x13 =X

Xq 4 Xo + 2% +3A%7 + 2%y 4+ 3Xqp +3X3 = A(X + X + X2 + X43)

3(Xq + Xy + Xqp + Xq3) + 3% 7 = A(X + Xo + X1 + X43)

= X, +X, + Xpo + X _ 3y
1 2 12 13 2_3
34X
S="AL 2
= > P (2)

This verifies equation (2) of Section 5.1.2 for the case ¢ = 3.

Step 5: Substitute (2) into (1) to we get

?j—ilg = /12x17 —4X7
= P (A-3)Xy — A —3)%; =34y
= By —322%7 — 4 +12X; —32%; =0
= Xy —3%Xy; — TAXy +12X;; =0
= (A-4A+1-3)x;=0
= /1=4or/1:_1i\/1_ﬁx__3):_11“/E

2 2
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So, solving this equation, we have eigenvalues A = 4, (which is the same as the
degree of the vertices in the 4-cliqued graph), and the conjugate eigen-pairs
~1+413

—

A=

Let X =[X;,Xy,..., X7 |- Then A(GK4*)>_<:/1>_< gives

[ X, + Xg + Xy + Xy X,
Xg + X4 + Xg + X X,
Xy + X4 + X5 + Xy X
Xg + Xg + Xo + Xg X,
Xy + X3 + X4 + Xy Xs
X; + X7 + Xg + Xg Xg
X + Xg + Xg + Xg X4
Xy + Xg + X7 + Xg Xg

Xg + X7 +Xg+ X1 |=4] Xg

X+ X+ X + X3 X10
Xg + X109 + X2 + %13 X1
X10 + X1 + %13 + X4 X1z
X10 + X1+ X2 + X15 X13
X+ Xi5 + %16 T X7 X14
X131+ %14 T %36 + X17 X15
Xip +Xyq + %15 + Xg7 X16

| X3 1+ Xg + X5 + Xg6 | X7 |
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[ X, + 2Xy3 + AX; + 0] X 4
2% +0+0+ X% X, 5

Xy +0+0+ X 2% 6
2%, +0+ X, + Xg 0 7

Xy + 2% +0+X; 0 8

X, + X7 + Xg + Xg 2X%qy3 9
0+ 2Xy3 + X5 + Xg X7 10
0+ 2Xy53 + X; + Xg Xg 11

=| 2X3+ X+ Xg + X, =4 X 12
Xp + Xy + X3 AXqy7 13

Xg + AXy7 + Xq3 X5 14
AXg7 + Xy + X3 + Xgg 0 15
AXq7 + X5 + 0= X6 X3 16
X +0+ X, 0 17

X153 + 0+ X5 + X47 — X6 18

— X6 + X7 Xi6 19

2%, +0+0 1| %7 20

Step 6: We will now verify equations (1) and (2) in this section, using the
definition of the eigenvector above.

We use the generating set S ={X;, X,, X5, X;3} with its sum

ZS = X; + X, + X3, + Xq3. Now, using equations (4),( 5) and (15) and(16) in the

above, and noting that the variable x, is 0:

DTS = AKX+ Xy +X3)
= (X, + 2Xg3 + AXg7 )+ (2%, + X )+ (X7 + Xo + Xg3 + X4
+ (/1)(17 X~ X16)
=3(X + Xy + Xqp + X13) +3A%7
=335 +24x,;

= Zsz‘%ﬁ (21)

This is the same result as equation (2) above.

Step 7: We now verify equation (1) in this section, using the definition of the
eigenvector above.



191

Next: equation 20 and 6 gives:
X7 = A(2%) = X9 + %7 +0+0+0+0
Equation 17 gives X, + X;; =0 and 18 +19 gives: X3 +2X;; =0and X;, =0, so

that:

This is the same result as equation (1) above.

So we have verified both equations (1) and (2) by using the definition of the
eigenvector.

5.1.6 The case q=5

Step 1: Write down first equation using last vertex:
Xg 4 Xop + Xoz + Xog + Xo5 = AXpg

Expand left hand side with their neighbors to get vertices belonging to set S:
(X + Xy + X5 + Xg + Xog ) + (X + Xog + Xog + Xo5 + Xpg )

+(Xgg + Xgp + Xoq + Xo5 + Xpg ) + (Xzo T Xy + X3 + X5 + Xze)

+ (X4 T Xgp T Xp3 + X4 + Xze)

= X + Xg + Xo3 + Xpg + Xp5)

Xp + Xy +2X, + Xg 4 Xg + Xog 4 Xo1 +3Xyp +3Xy5 +3Xyy +3Xo5 4+ 5Xog
= ﬂ(/Ixzes)

Step 2: Put x,5 =—X,, (second and third largest have opposite signs and are called

the switching pair) — this guarantees no X, , Xo5 & S.

Set T = {xl, xz} and T’ ={all vertices in S that belong to the second last clique,
and which are neighbours of the last clique } = {Xzo ) le}- Then the

generating set S =T UT' ={Xy, X, }U {Xo0, X1 } ={X1, X5, Xo0, X1 }

Then we have
Y
Xq 4 Xo + 2%, + X5 4+ Xg + Xog + Xo1 +3Xpp +3Xog +5Xp5 = A" Xyg
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Step 3: Put
Xg = X5 =0; Xg = —3Xp0; X3 =0

a2
Xy + Xy + Xog + Xo1 +5Xog = A" Xog

This verifies equation (1) of Section 5.1.2 for the case = 4.

Step 4: Taking the neighbours of the vertices in S = {Xl, X5, Xog s x21} we get

(X + Xy + Xgp + X7 + Xop ) +(Xy +Xg + X, +Xg +Xg )
+(X17 + Xig + Xgg + Xp1 + X24)Jr (X17 + Xig + X9 + Xpg +)(23)

= (X + Xo + Xog + Xo1)

Switching pair: X,, =—X,5 and set X, = X5 = 0;Xg =—3X55; X3 =0

X3 = 3)(2

3
Xig = = X0, Xig = = X
18 =5 X200 %10 =5 %21

(X2 + 3%, +4Xo6 +0+X22)+(x1+3x2 +0+0—3xy,)
+ 0+§x +§x + X1 + Xog |+ O+§x +§x + X0 +0
2 20 2 21 21 24 2 20 2 21 20

Therefore

4X o5

4x
S50

2)
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This verifies equation (2) of Section 5.1.2 for the case = 4.

Step 5: Substitute (2) into (1) to we get

Aji(zj = A*Xg5 — 5%y
= P (A—4)Xy —5(A —A) Xy = 41Xpg
= Xy — 44 Xo5 —5AXyg + 20Xy — X5 =0
= PXpg — 44 X5 — 9Ky + 20X, =0
= (A-5)(P+A-4)%, =0
T 1-(4.-4 _ -1x17

2 2

So, solving this equation, we have eigenvalues A =5, (which is the same as the
degree of the vertices in the 5-cliqued graph), and the conjugate eigen-pairs

~1+17
—

A=

Let X = [X;, Xy .y Xog || - Then A(GK5*)>_< = AX gives



Xy + X7 + Xgp + X7 + X5
X, + X3 + X4 + Xg + Xg
X, + X4 + Xs + Xg + Xpg
X, + X3 + Xg + Xg + Xog
X, + X3 + X4 + Xg + Xg
X, + X3 + X4 + X5 + Xg
X, + Xg + Xg + Xy + Xqq
Xg + X7 + Xg + X9 + Xgq
Xs + X7 + Xg + Xgg + Xqq
X7 + Xg + Xg + X1 + X4
X7 + Xg + Xg + X + X3
X1 + X3 + X4 + X5 + X4
Xpp T X2 + Xgq + X5 + X6
X190 + X2 + X3 + Xg5 + X
X12 + X3 + X1g4 + Xg6 + X9
X1p + X3 + X4 + Xg5 + X
X1 + Xig + X9 + Xyg + Xoq
X16 + X7 + X19 + X0 + X3
X15 + X7 + X8 + Xp0 + X1
Xp7 + X8 + Xgg + X1 + X4
X17 + X1 + X19 + Xg0 + X33
X; 4 Xog + Xpu + Xo5 + Xog
X1 Xgp + X + Xo5 + Xog
X0 + Xa2 + Xog + Xo5 + Xpp
Xg + Xpp + Xog + Xog + Xog

194

Xy + 3% + 44X + Xop

3

3 3
— Xpp + = Xp1 + Xo1 + 2X5,
2 2

3x +3x + Xon +0

S R0 T 5 A2 20

2 2

X, + 0+ Xog

Xo1 + Xop + 0+ Xy

Xog + Xop + 2X55 + Xog

X3+ X +0+0+0
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Xy +3Xy + 4406 + Xop ) .
X, + 3%, — 3%y, X 4
Xy — 3Xpy + Xog X2 5
X3 6
X4 7
X5 8
Xg 9
X7 10
Xg 11
Xg 12
X10 13
X11 14
X2 15
_2 Xi3 16
X14 17
X15 18
X16 19
X17 20
X5 + 0+ g Xo0 + Xop + Xo1 2: ;;
gxzo + g Xo1 + Xo1 4+ 2X50 Xy 23
§x +§x + X, +0 Yot 2
9 720 Ty M2l T 20 o 25
X, + 0+ Xog 0 26
Xo1 + Xgp + 0+ Xy X 27
Xop + Xop + 2X50 + Xog X5 08
04 X9y —2X5y + Xog X6 29

| X3 +X; +0+0+0 |

Step 6: We will now verify equation (2) in this section, using the definition of the
eigenvector above.

We use the generating set S ={X;, X5, Xo1, X5, } With its sum
ZS = X1 + X5 + Xp1 + Xop. NOw, using equations (4), ( 5), (23) and (24) in the

above, and noting that the variable x, =0:

EZS = A(Xy + Xp + Xop + X9p)
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= (X + 3%, + 4 2Xy5 + Xgp )+ (X, + 3%, — 3y, )+ G Xp0 + g Xp1 + Xop + ZXZZJ

3 3
+ EXZO +§X21+X20 +0
= A(X, + Xy + Xog + Xop )+ 4 AXog
=4>"S + 4%y

44X
= > S= sz (30)

This is the same result as equation (2) above.

Step 7: We now verify equation (1) in this section, using the definition of the
eigenvector above.

(24) +(25) yield:

Xo0 + 2Xpy + 2Xps =0 (31)
From (29) we get

X3+ Xop = A Xog

= 1 Xog = X3 + Aoy

Substituting (6) and (25), we get

AXas = (Xp =3z +Xg5)+ (X +0+ Xg5) (32)
Adding (31) and (26) to (32) we get

/12x26 = (Xz —3Xyp + X26)+(X1 +0+ X26)+(X20 +2X%pp + 2X26) +

(Xa1 + Xz +0+Xp5)
= (X + Xy + X + Xy )+ 5Xog
= DS = Xy —5Xyg (33)
This is the same result as equation (1) above.

So we have verified both equations (1) and (2) by using the definition of the
eigenvector.
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5.1.7 Eigenvalues of general case

Refer to Section 5.1.1 for the vertex notation and definitions. We require the
following additional definitions to clarify the proof for the general case, where
g = 6.

o o M w D E

10.

11.

12.

13.

14.
15.

X, Is the first vertex (central vertex);

X, is the second vertex;

X5 is the third vertex;

Vertices in first clique = {xzyx?,,..., X xqﬂk

Vertices in last clique = {xa’xaﬂ,..., X1_3s Xi_2s X1_1, X };

Anchor vertex of clique is the vertex in each clique which is joined to the
first vertex Xq;

Anchor vertex of the last clique, X, = X5, 4(q-1)

Switching pair of vertices are XqZ,l = X|_, (third last vertex) and
xqz = X;_; (second last vertex);
X =X 5 is the last vertex;

g+l

AX, is the sum of the neighbours of X i.e.

AX| = Xg + Xy +Xgpq + Xgpo +ooXZ3 X + X

Q is the set of vertices in the last clique which give ’0”’ equations, i.e.,

Q ={Xa1 Xarz0 X3} and X5, %,4,% }£Q

Neighbours of X, = {xl, X|_2s X|_15 X| } and all other neighbours of X, from

from Q (which are 0)
Neighbours of X, = N(x)

_ A1 2 q
RV
= {Xa 1 Xar Xai1r Xap2 00 X35 XI—Z’XI—l}

The sum of the neigbours of x; 1<i < qis AA%,)
Theset T' consists of vertices from /1(/1x| ) which belong to the second last

((q —1)th) clique, which are neighbours of the vertices from the last (g th)
clique

q_—l; g odd

e, T'= {xkl,xk2 oo Xig };where t=

q.
—; g even
> q
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16. T ={X, %X, }

17. Let S =the generating set of vertices then S =T UT".

18. P = the set of vertices in the second last clique, excluding the anchor
vertex, which are not neighbours of the last clique, and are therefore
not in T'as defined above

q_—l; g odd
ie, P= ixpl,xpz,...,qu_l_t kwhere t=
%; g even

19. Q' isasubset of Q, whose vertices join backwards to vertices of T". All
vertices in Q'are in the last clique.

K
20. If S = {X,Xp,..., X, J, then we define > S =" x;.
i

Step 1- write down the first equation using the last vertex:

=X central vertex
+ X +Xg + X5+ + X + Xy all vertices in first clique

+ (q - Z)Xa + (q - 2)Xa+l’ (q - 2)Xa+2 +.o.t+ (q - 2)Xa+t +o.+ (q - 2)XI—3

H(A=2)Xo +(A=2)X 4 +a%; + Xy + Xy, +o X )

+ (xpl +Xp, Fot quiH)
Step2:  Set X3 =—X_, switching vertices
Step3:  Put X, =Xs=..=X,=0; Q={00,..,0};

Xg1 = —(9- Z)Xa;

Then,

22X = X +X+0+0+..+0
+0+0+...+40+0
+(Ad=2)X_, —(A—2)X_, +0x
+ (X + Xy o X,
+(0+0+...+0)

= 12X =X + Xy + 0% + (X + Xy oo F X )
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= 12X —OX =X + X, +(xk1 + Xy, +---+th)
:>ﬂ~2X| _qX| =ZS

Step 4:

Now we look at the neighbors of the generating set S:
S=TUT ={x, X} {X,, Xy s Xi 3

where t =qT_1,q odd,and t = % g even.

Neighbours of X, : X3, Xa,.q, Xo12q+++X21g(g-1) = Xa

Neighbours of X; : X3, X3, X4 1+, Xq41

Sum of neighbours of T' = (t —1)ZT' +t P+>Q’

Then the sum of the neighbors of the elements of S:
/IZS :(X2+X2+q +X2+2q +....+X2+q(q_1))

+ (X + X3+ X+t Xg +Xgu1)
+E-DDT +tD P+>Q

From before:
Put X, =X =..=X%;=0; Q ={0,0,...,0}; Xq1 = —(0—2)X4; X1 = —X|_2,

/IZS :(XZ +X2+q +X2+2q +....+X2+q(q_1))
+ (X + X +0+...+0-(g—2)X,)
+E-DDT +tD P+x_,

+E-DD T +tD P+x_,

Set
X3 = (q—2)Xy;
Xo1q = (0—2)%
Xo12q = (A=D1 AX
Xa-q = X24q(q-2) =0
X2 =(0=3)Xy ==X 4
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AP =X+ X (A= 2% — (4 2)X, + (A —2)% + (4 -1 Ax, +
+0+X, +(t-DD T +t> P+ (q-3)x,
=(q-Dx +(@-DX, +(q—DAx +(t-DD T +tD P

Set
_9q-t
Xp, = " Xiq »
_q-t
Xy t Xk
_9q-t
Pt t th
and
Xp(an) = Oif g is even, as P has one more vertex than T'when g is even.
Then,

A28 =(@-Dx+(@-Dx+(@q-Dx

—t
+(t=D(X + Xy, +oot X)) +t{qT(xk1 + Xy ot xkt)}

=(@=D)x +(q-Dx; + (@D +(@=D) (X + Xy, +--+ X )

=(q-D (X, + X, + Xig + Xy F o Xig )+ (a—-DAx,
=(9-1>_S+(q-1x
~(@-1))> s =(q-1)1x

q 1 ﬂx,
S =
=> p )
Substituting (2) into (1), we get
(q —1)ZX| — 22X| _ qX|
A-q

22 (A—(a-D)x —a(A—-(a-1)x =(q-1)Ax,

Ax = (q-DAx% —gax +a(q-1)x —(q-1)Ax =0
2% —(@-DA*% —(20-1) A% +a(q-1)x =0
(A-a) (2> +2—(q-1))x =0

R

(2)
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~1+1-(-4(q-1) -1 1+4(q-1)

= A=qordA= =
q 2 2

So, solving this equation, we have eigenvalues A = q, (which is the same as the
degree of the vertices in the g-cliqued graph), and the conjugate eigen-pairs

i:—1i1/1+4(q—1)

2

General eigenvector

T
Let X = [xl, xz,...xqzﬂ} be an eigenvector of GKq . Then, from applying the

construction of the g-cliqued graphs and the anaylsis in the preceding sections, we
have:

Xl :X2+X2+q+X2+2q +....+Xa_q +Xa
=(q-Dx,

XgsXgyeees Xq =0
Xq1 = (A0 —=2)X,
Xorq = (A=1)X
Xo12q = AMA-1)X

Xa = X|7(qfl) = Xl + Xa+1 + Xa+2 +....+ Xa+t +...+ X|72 + X|7l + X|
_g-t .
Xp = " Xiy
_9g-t
XPZ t XkZ
_ag-t
Xy t Xy
and
X =0if g is even, as P has one more vertex than T"when q is even.
p(t+1)
X =X
2 -2

=X, +(q=3)X, + X, + X =X _5,

where x, eT' and is connected to switching vertex X,_,



519

202

X =X
q2 1-1
=X, —(q=3)X, + X

X =(q=3)Xy ==X 4

X1 ==X
X =X
@ N
= X3 + Xa

The general eigenvector will have g —4 —(t —1) entries which contain
Xq + X + X1 + Xo-

Zero equations (obtained from all vertices in the last clique, which connect
backwards to the (q—1) clique, i.e., to the vertices of T'\{x,}. (t —1) of these
such equations

Xa + X5 + Xy +X0) + X =X, + Xy + 0+ x, (t—1)of these such equations
where 1< S <t,and Xig 7 X

Sum of generating set T” without X, :
(t=2)T X F+ C-DP+(t DX, q =X

Equation for X, in generating set: TWX 3+ P+Xe g+ X2,

The final general equations

As in the specific cases for q =4 and 5, we need to verify the following two
equations using the values of the entries in the eigenvector:

>'S = Ax —ax. (1)
and
42,8 =(@-D2 S+(a-Dx @

We shall now prove that equation (1) holds for values of the eigenvector:

The last equation in A(GKH*)>_< = AXyields

Xg + X5 = AX,
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= MXg + AX, = 12X,
Substituting ath and 3" equations of A(GKH*)>_< = AX we get
2
X = AXg + AX
:(XZ +X4 +X5 +X6 +...+Xq+1+X|)
A+ (Xy X g+ Xgp et X o F Xy g F X g+ X))

(X g+ Xy oot Xy g ot Xy + X +2%)

Setting X, = X5 =...= X, =0, and X;,; =—(q—2)x,, we get

2
22X =X+ X = (Q=2)Xg + (Xaug + Xayp F oot Xy F oot Xp_p + Xy +2X,)

Now, adding the switching vertices, we get
X1+ X 0= (X; = (@=3)%, +X)+ (X, +(q—=3)X, + X, +X)=0

= 2X, + X, +2% =0

Adding the 0 equations yields: (t —1)X, +(t =1)X +X, 4 + X5 5 ++.+ X5 (11
Adding the other 0 equations yield: q—4—(t —1) of X, +X,

This all yields:
2% =% +%X—(q-2)X,

- (Xgag + X oo Xgg o Xpp + X g +2%)

a+t
+2X, + X, +2X,
+(t-D)X, +(t D)X +Xgq +Xgp +..F Xa(t-1)
+(q-4-(t-D)[x, +%]

=X, + X, —(Q—2)X, + 2%, +2X, + X, +2X
+(t-D)X, +(t D)X +Xgq +Xgp +..F Xa(t-1)
+(q-4-(t-D)[x, +%]

= sum of elements from generating set + Qx|

Therefore,
Z S = lzx, —0X, , which is equation (1) above.
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Using the vector values as per 5.1.8, and referring to section 5.1.7, we have verified
that

q 1ﬂbxI

2
A—(q-1) @

=>S=

So we have verified both equations (1) and (2) by using the general definition of
the eigenvector. Substituting (2) into (1), we solve for the conjugate eigen-pair as
per section 5.1.7. O

This concludes the proof of the conjugate eigen-pair of the adjacency matrix associated
with the g-cliqued graphs, as constructed in section 4. It is interesting to note that the
conjugate eigen-pairs are a function of the clique number of the graph.

In the next section, we determine the eigen-bi-balanced properties of g-cliqued graphs

~1+ 1+ 4(q-1)

2

associated with the conjugate eigen-pair A =

Eigen-bi-balanced properties of g-cliqued graphs

Now that we have determined the conjugate eigen-pair for the class of g-cliqued graphs,
we can determine the eigen-bi-blanced properties as defined in Chapter 3, for this newly
defined class of graphs. We recall from Section 5.1 that the conjugate eigen-pair is

e 2
determine the eigen-bi-balanced properties of the class of g-cliqued graphs, associated
with this conjugate eigen-pair. We note the importance of the central vertex, which is
connected to the anchor vertex of each of the g sub-cliques in the g-cliqued graphs.

for all g-cliqued graphs as defined in Section 4.1. We will

Theorem 5.2.1

For the class of g-cliqued graphs and the conjugate eigen-pair

)= 1t J1+4(q-1)

2

1. The class of g-cliqued graphs is sum*(-1)*eigen-pair balanced with respect to the

12 i 4D

conjugate eigen-pair (a, b) = > ;
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The class of g-cliqued graphs is product* (1— q)*eigen-pair balanced with respect

~1+./1+4(q-1)

to the conjugate eigen-pair (a,b)= > :

The class of g-cliqued graphs has eigen-bi-balanced ratio

-1+,1+4(q-)) «—1-\1+4(q-1) 1
r Gk = :
2 a 2 (q-1)

with eigen-bi-balanced ratio asymptote

— _ —1- 1)
{ 1+ 1+ 4(q D 14144 )J 0. ang

2 “ 2
density
x —1+1+4(q-1 «—1-/1+4(q-1
Qr(GKq)_asymp(r[ * ;(q )GKq ;(q )B‘_O;

The class of g-cliqued graphs has eigen-bi-balanced ratio area
\“1+/1+4(g-1) —1-/1+4(q-1)

Ar(GKq) 2 2 =\/n_—1(4\/n_—1+4|n‘\/n_—1—q); and

The class of g-cliqued graphs has |a +b|+[ab| = q with respect to the conjugate

~1+ 1+ 4(q-1)

eigen-pair (a,b)= >

The eigenvalues of the Laplace matrix of the g-cliqued graphs are

R

2

and the eigenvalues of the signless Laplace matrix of the g-cliqued graphs are

(e, f)=q+(_1im}

2
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Proof

1. The sum of the conjugate eigen-pair (a,b) is

Sum(—um me
’ 2

2
_-1+y1+4(@-D)  -1-/1+4@@-D
2 2
=1

Therefore, the class of g-cliqued graphs is exact sum*(-1)*eigen-pair balanced. It is
interesting that it is the conjugate pair of eigenvalues that satisfy the
sum*(-1)*eigen-pair balanced criteria.

2. The product of the conjugate eigen-pair (a,b) is

~1+,1+4(q-1) -1- 1+4«y—nj

product( ,

2 2

(-1)? - (L+4(q-D)
4

-(q-9

We have shown that the product of the conjugate eigen-pair is an integral function
ofqi.e., f(q)=—(q—1) where q—1 is also the degree of the vertices in a complete

graph of order q. These eigenvalues are therefore non-exact product* (1— q) *eigen-
pair balanced.

3. The eigen-bi-balanced ratio is

r(—1+JTIZEF356 L=1- 1+4m-4>}

2 Kq 2

-1
-(-1
B
(9-1)
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Note that the eigen-bi-balanced ratio is equal to the negative of the reciprocal of the
product of the conjugate pairs. The asymptote of this ratio is 0, as the value of g

increases. So

r[_l+‘/1+4(q_1)e P—1- 1+4(q—1)J 0. and

2 Kq 2

Qr (GKq*) =

[(1+m6 1 1+4(q1>D‘=0.
2 ,

asymp| r Kq 5

The eigen-bi-balanced ratio area is

\“l+/1+4(g-1) —1-\/1+4(g-1)

el | Y

ja+b ‘

_Q(q +1)
R ‘I —(q—l)d”‘

1
=2q|| ———dn
qJ‘\/n—l—l
=4q|| — —du
q u-— 1+u 1

= Vn—1lavn—1+amn-1-1)+c

When n=1 we have Ar =0 sothat c=0.

So

\“l+/1+4(g-1) —1-/1+4(q-1)

aley,) 2 2 = Jn-a@n-i+amin-i-1)
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la-+b|+|ab|

~1+.1+4(q-1) . ~1- 1+ 4(q-1) % +|—1+,/1+ 49-1) , -1-1+4(q-1)
2 2 2

2 |

-2| [1-(+4@a-D)
2| 4

=1+(q-1)

=q

Then, as per Conjecture 3.8.2, |a+b|+|ab|=q<qg? =cd for g > 2,where c is
the maximum degree in GKq*and d is the minimum degree in GKq* ie.,

c=d=q.

Recall the definition of the Laplace matrix and the signless Laplace matrix from
Section 1.2.9, and note that g-cliqued graphs are g-regular. We also note from
Brouwer and Haemers [12], that if G is k-regular and has eigenvalues

4. Ay, A5, Ay, then the Laplace matrix has eigenvalues
kK—A4,k—=1,,k—=4;,....k— 4, and the signless Laplace matrix has eigenvalues
K+A4,k+4,,k+4;,...kK+ A4,. Soitfollows that

2

.d)=q _[—1i,/1+4(q —1)}

are eigenvalues of the Laplace matrix of the g-cliqued graphs and that

0. f)= q+(—li,/1+ 4(q —1)}

2

are eigenvalues of the signless Laplace matrix of the g-cliqued graphs. O
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Conjecture 5.2.1

The class of g-cliqued graphs is not critically eigen-bi-balanced with respect to the central
vertex.

If we take q =2, and remove the central vertex from the g-cliqued graph GKZ*, we

obtain a connected graph G', on 4 vertices.

Figure 5.2.1: G, on 4 vertices

This is equivalent to the path on 4 vertices, i.e. P,. As per section 2.4, the eigenvalues of
the adjacency matrix of P, are 1.618034, 0.618034, -0.618034, and -1.618034. The pair
of eigenvalues (1.618034, -0.618034) has sum of 1 and product of -1, therefore G' is

sum*(1)*eigen-pair balanced and product *(-1)*eigen-pair balanced with respect to the
eigen-pair (1.618034,-0.618034).

If we take =3, and remove the central vertex from the g-cliqued graph GKS* , We

obtain a connected graph G'; on 9 vertices.
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Figure 5.2.2: Diagram of G} on 9 vertices

G'; has adjacency matrix

0 1 _
0 1
1 1
11
AG;)= 1 01
10 1
01
110
1 110

where all blanks are zero in the above matrix. This matrix has eigenvalues (2.73205),
(1.87939)2, (—0.34730)2, (—0.73205), (—1.53209)2, (—2). The pair of eigenvalues
(2.73205,-0.73205) has sum of 2 and product of -2, therefore G'is sum*(2)*eigen-pair
balanced and product *(-2)*eigen-pair balanced with respect to the eigen-pair (2.73205,
-0.73205).
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If we take q =4, and remove the central vertex from the g-cliqued graph GK4* , we

obtain a connected graph G, on q2 =16 vertices.

Figure: 5.2.3: Diagram of graph G, on 16 vertices
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G', has adjacency matrix:

0111
1011 1
1101 1
1110 1
0111
110011
1 1101
1110 1
A(a): 0111
11011
1101 1
1110 1
0111
110011
1 1101
1 1110

where all blanks are zero in the above matrix. This matrix has eigenvalues (3.791288),
(-0.791288) whose sum is 3 and whose product is -3. Therefore G' is sum*(3)*eigen-pair
balanced and product *(-3)*eigen-pair balanced with respect to the eigen-pair (3.791288),
(-0.791288).

We suspect that the removal of the central vertex from the g-cliqued class of graphs,
results in a connected graph G', on g 2 vertices, which is sum* (q —1)*eigen—pair
balanced and product* (1— q)*eigen—pair balanced, as the examples for g=2,3 and 4 above
show.

Therefore the g-clique graphs may not be critically eigen-bi-balanced with respect to the
central vertex.
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5.3 Complement of g-cliqued graphs

The complement of a g-cliqued graph is easily defined as per the definition in section
1.2.2, and the class of the complements of g-cliqued graphs provides interesting analysis
in terms of the eigen-bi-balanced characteristics. In the following theorem, we determine
the conjugate eigen-pair of the complement of the g-cliqued graphs, and calculate the
eigen-bi-balanced ratio of the class of the complements of g-cliqued graphs.

Theorem 5.3.1

Let G Kq . be the complement of the g-cliqued graph GKq ,for g>2. Then

1. G Kq* is connected;

~1+./1+4(q-1)

2

2. Theeigenvalues of Gk, are

3. The class of graphs 6Kq* has eigen-bi-balanced ratio , Which is the same

1
(9-1)

as that of the class of g-cliqued graphs GKq*.

Proof

1. In EKq*, the central vertex V is adjacent to all vertices
vij 1<i<qg,i=#land 1< j<q, and has degree q(q —1). Each vertex in a sub-
clique, vlj 1< j<q, is connected to vik A1<i<q,j#kl<k<q.So vlj is connected
to the central vertex via a path of length 2 via all vertices in the sub-cliques other
than vlj ,1<i<q.Hence we can deduce that this graph is connected i.e., all vertices
are connected to the central vertex via a path of length 1 or 2. Also note that by
definition éKq*, any two vertices are connected to each other via a path of

maximum length 2.

2. Let(ab)= — “1;4@'_1)

be the conjugate eigen-pairs of GKq*. Then,

from Theorem 3.7.1, the eigenvalues of G, are

c=-1-a

_ 1 -1+1+4(q-1)
B 2

B -1-\1+4(q-2)

2
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and

d=-1-b

I S C )
B 2
_—1+1+4(q-1

- 2

i.e., we have been able to determine the eigenvalues of the adjacency matrix
associated with the complement of the g-cliqued graph, without determining the
adjacency matrix of the complement of the g-cliqued graph!

From Theorem 3.7.1, the eigen-bi-balanced ratio of (_BKq* is

—1-1+4(q-1) = ~-1+.1+4(q-12)
r( 5 GKq >
__—2-(a+b)
1+(a+b)+ab
_ —2-(-1
1+(-1)+(1-q)

-1

1-a)
1

(9-1)

which is the same as the eigen-bi-balanced ratio of the class of graphs GKq*for the

~1+.1+4(q-1)

)

conjugate eigen-pair

2
. [—1+,/1+4(q—1)— R 1+4(q—1)J
1.e., r > GKq >
__ 1
(a-1)
_r[—l— L+4@-1) *—1+\/WJ
- 2 “q 2 '

Therefore we have proved that the eigen-bi-balanced ratio associated with a

conjugate eigen-pair of eigenvalues of the class of graphs GKq*, is the same as the
eigen-bi-balanced ratio of the class of its complements, associated with the

corresponding conjugate eigen-pair of éKq*- O



5.4

215

The above result is very interesting, given that we have not even constructed the
adjacency matrix of the complement of the g-cliqued graph!

Conclusion

Having constructed the g-regular g-cliqued graphs, we noticed that they have a central
vertex joined to cliques. Wheels and star graphs also have central vertices, and they are
eigen-bi-balanced. This suggested that our g-cliqued graphs could also be eigen-bi-
balanced.

In this chapter, we used the eigenvector method and the connectivity of the central vertex
to form a cubic equation to find the eigenvalue of g, and a conjugate pair of eigenvalues.
We analysed the specific cases for q = 2,3,4, and 5, and then provided the generalized

proof for finding these eigenvalues for all g-cliqued graphs. We also defined some of the
values of the entries in the associated eigenvectors. The conjugate eigen-pair provides
sum and product eigen-bi-balance of this class of graphs.

In this chapter, we calculated some of the eigen-bi-balanced properties of the class of g-
cliqued graphs, and determined some properties of the class of complements of the g-
cliqued graphs. The results of the eigen-bi-balanced properties of the class of complement
of the g-cliqued graphs are very interesting!

The work and results in this chapter are entirely original.
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CHAPTER 6

ENTOMOLOGICAL EXPERIMENT

The study of the interaction between insects and host-specific plants is important in bio-control
situations and is well documented - see Jans and Nylin [33]. Many such experiments use block
designs (see, for example, Coll [16]) and optimal scheduling would be advantageous when there
is the occurrence of large number of treatments and blocks. Since we have a graph which is a
block design graph, any application of graph theory to our graphs can be applied to its
associated design, and in particular to experiments where block designs can be used to study the
interaction of insects and plants. One of the important studies in graph theory is vertex
colourings of graphs. It can be shown that a graph’s chromatic number is greater or equal to the
order of its largest clique, since a complete graph on n vertices requires n colours for a proper
colouring.

Thus for our g-cliqued block graphs, their chromatic number is greater than or equal to g. We
showed in Theorem 4.3.1 that;((GKq*) =( . We apply 3-colouring to the design associated with

the 3-cliqued block graph relating to an entomological experiment as follows:

6.1 Experiment

We investigate the effect of 3 different species of insects on 10 different types of leaves
(plants). We will have 10 cages containing the leaves and the insects, and they will be
labelled as Cage 1, ..., Cage 10.

We have 3 sets of leaves, each containing 10 different leaves. These leaves are to be
divided (arbitrarily) into 10 cages, each cage labelled Cage 1, Cage 2, ..., Cage 10. Thus
each type of leaf must appear 3 times in the experiment so that we need 3 sets of the 10
leaves.

The effect of the insects (using 10 insects per species) on the leaves in each cage will be
studied. The application of the 3 different insects to the mini-groups (cages) must be done
in the smallest number of time sessions, such that the following conditions hold:
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Al. Each mini-group of triple leaves must be exposed to 3 different insects.
A2. An arbitrary mini-group of leaves will be called the central-trial set or central

cage, and denoted by V; .

A3. There must be 3 groups of 3-cliques P, Q and R of cages not containing the central
trial set.

A4. Each cage in a clique cannot receive insects at the same time.

A5. Exactly one member from each different cliqgue must receive a 3-set of insects at
the same time, as well as not at the same time as the central cage receives its 3-set
of insects.

A6. Exactly one member of each different clique, different from the cages in A5, must
not receive a 3-set of insects at the same time.

A7. The three clique groups receiving the insects must be interchangeable (permutable)
so that each clique can be exposed to all 3 insects other than the control.

These requirements can be depicted in a 3-cliqued graph, where its central vertex is the
central-trial set. The 10 vertices (labeled 1 to 10) represent the 10 cages each containing
a set of 3 leaves, the 3 leaves in each cage (vertex) having their labels from the neighbour
of the vertex (this is the block of the associated design).

The edges (adjacent cages) of the 3-cliqued graph represent tubes connected to the cages
(vertices) with the condition that the tube cannot be open at both ends at the same time -
forcing the insect into only one cage incident with the edge at a time.

The 3-cligued graph has 15 edges, each vertex incident with 3 edges so that three
different insect sets of 10 insects will be used. The proper colouring of the graph will
refer to the time sessions when the insects can be released subject to conditions Al — A7.

The chromatic number 3 refers to the condition where we require the smallest number of
time sessions so that conditions A1 — A7 hold.

The 10 blocks containing 3 different leaves from the 10 different leaves will be:

1. {258} 2. {134}
3. {2410} 4. {236}
5. {167} 6. {457}
7. {569} 8. {1,910}

9. {7,810} 10. {3.8,9}.
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V3 2

Uy

Figure 6.1: 3-cliqued graph with 3-colouring

Put 3 colours red, green and blue — vertex 1 coloured blue, vertices 2,5,8 coloured ,
vertices 4,7,10 coloured blue, vertices 3,6,9 coloured red.

Label the insects i(1), i(2)....,i(30), and allocate them as follows:

1. The trial-set is the (arbitrary) block 1={2,5,8} — this block contains leaves 2,5 and
8 and is coloured blue . The other blocks which are coloured blue are: block
4={2,3,6}; block 7={5,6,9}; block 10={3,8,9}. We release insects i(1), i(2), i(3)
into cage 1, i(4), i(5), i(6) into cage 4, i(7), i(8), i(9) into cage 7 and i(10), i(11),
i(12) into cage 10 (we only open the side incident with these vertices).

2. For the vertices 2={1,4,3}; 5={1,6,7}; 8={1,9,10} coloured we release the
next 9 insects (3 per vertex): i(13) to i(21).

3. For the remaining 3 vertices 3={2,4,10%}; 6={4,5,7}; 9={7,8,10} coloured red,we
release the remaining 9 insects (3 for each vertex): i(22) to i(30).

With this assignment of colours in GK;, we will now show that the 7 conditions are

satisfied.

We have now released all the insects in the least number of time sessions of 3, each cage
being exposed to 3 different insects, satisfying Al.
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The central cage receives insects at a different time from a block from each clique, and
these respective blocks receive insects at the same time, satisfying A5.

The 3 cliques P, Q and R each do not have their 3 blocks receiving insects at the same
time (all blocks are adjacent in each clique) and do not contain the central cage, satisfying
conditions A3 and A4.

The edges between the cliques allow condition A7 to be satisfied.

Three 5-cycles through the central cage are each coloured with 3 colours representing the
central cage not receiving insects at the same time as required in A5. 2 cages from 2
separate cligues do receive insects at the same time and 2 cages from the same separate
cliques do not.

Once we have applied the insects with 3 different time sessions, we keep the vertices
fixed and rotate the vertices (cages) of each clique once keeping the edges (tubes) fixed
releasing 27 (fresh insects other than those released into vertex 1). For example, the block
represented by vertex 2 with colour has edges (insects) i(13), i(14), and i(15).
These insects remain connected to the tubes when we rotate, but vertex 4 will replace
vertex 2 or vertex 3 will replace vertex 2. This rotation allows each block of the clique to
receive each of the 3 (edges of the triangle) of the clique. Keeping the edges fixed of each
clique and rotating the vertices of each clique (not the colours of the vertices), and doing
this for two sessions on 3-time intervals, each block of each clique will then have been
exposed to the 9 insects connected to each clique.

After the first two time sessions, we fix the edges (tubes) and we move the whole cliques
(as vertices) around without changing the vertex colouring, so that conditions A1, A2 still
hold, and each block other than the trial block, is exposed to all 27 insects involved in the
3 cliques. Thus condition A5 holds without violating any other condition.

To determine the C matrix from C = K — NK INT = K — N2K ™, we first determine

o O Fr OO0k, O o+, O
O O O O OO Pk + O Bk
R O O O O O+ O PF O
O O O Ok, O O Pk, +» O
O O O P P O O O O B
O OO r O, kP O o o
O r OO kP B OO O o
P P, O O O O O O O =
O Rk, kP O O O O O O
O r b O O O O P+ O o
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So,
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This C matrix is the information matrix of the design. Note that the row sums are all 0.

The eigenvalues of N are: 3, 1, -2, -2, 1.879, 1.879, -0.347, -0.347, -1.532, -1.532 , which

includes the eigen-pair
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Recalling from Section 2.12,

Q7CQ =Q(K-NK™N)Q
=Q 'kl ,Q—-Q'Nk 1, ,NQ
=kl,, k™1, ,Q"NQQ 'NQ
=Kl —k 7, ndiag (A, A,y An)-diag (A, Ay, ey An)
=kl —k M, o[diag (47, 47 ey A00)]
2,° 2,7

: A \
=d K—— k——",. k-
iag (k - = : =)

The eigenvalues of C are: 0, 2.667, 1.667 (twice), 2.959 (twice), 2.217 (twice) and 1.823
(twice). These indeed satisfy the formula above for the calculation of the eigenvalues of
C, given the eigenvalues of N.

2
So, to determine eigenvalues of C, we determine k — % for all eigenvalues A of N,

namely, 3, 1, -2, -2, 1.879, 1.879, -0.347, -0.347, -1.532, -1.532.

2
3-3 ¢

3

2
3-L _ 2667

3

2
3- —(_32) =1.667

1.879°

3 =1.823

(-0.347)f

3- =2.959

(-1.532)

3- =2.217

Note that the eigenvalues of C are either zero, or all positive, and non-integral.

Let the eigen-pair (a,b) be the conjugate eigen-pair {

~1+49 -1-49
2 2 J=Q:ﬂ

Then, from Theorem 5.2, the eigen-bi-balanced ratio area of the design above relative to
the conjugate eigen-pair (1,—2) is:
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AI"(C—]K;)L_2 =4/N —1(4'\/ n-1+ 4In‘\/ n-1 —1‘) wheren =10
= J10—1(4J10—1+4|n\\/1o_1_q)
=3(4.3+4In[3-1))

=3(12+4In2)
= 44.317

The sum of all the eigenvalues of A(GK3*), energy, is

EACKS) 042,667 +1.667+1.667 +1.823+1.823+ 2.950 + 2.959
+2.217+2.217
-20

. *\1,-2
A(GK3 ) < A(GK3 )

We observe that E .., the energy is less than half the eigen-bi-

balanced ratio area of the class of 3-cliqued graphs.

Conclusion

In this chapter, we used the case of q=3 for a hypothetical application of an entomological
experiment, using the graph theoretical property of graph colouring to solve a possible
scheduling problem in this experiment. We also investigated some other aspects of this 3-
cliqued graph, such as the matrix C from design theory, and its energy.
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CHAPTER 7

CONCLUSION

7.1 Summary

We began this thesis with the discussion of graphs and designs, linking these two
structures together via matrices, so that we could apply graph-theoretical results to
designs.

In Chapter 2, we presented different methods for finding eigenvalues of adjacency
matrices associated with graphs, with the purpose of identifying some characteristic of the
graph connected with the method and/or the resulting eigenvalues. The most significant
technique is that of the eigenvector method. In this method, the choice of the form of the
eigenvector is often determined by the edge connectivity of the graph involved, and
results in determining a pair of conjugate eigenvalues.

We recall from Chapter 2, that:

e For the complete graph K., all vertices are of maximum degree of (n —1). We can

therefore regard each vertex as a central vertex, and it appears that this gives rise to
the conjugate pair of eigenvalues;

o For the bipartite graph, the disjoint sets of vertices are ‘strongly’ connected to each
other, so that each set can be regarded as a central aspect of the graph contributing to
its conjugate eigen-pair;

e For the wheel graph, the connectivity of the central vertex to every other vertex led to
the formation of a vector that resulted in a conjugate pair of eigenvalues;

o For the join of two graphs, these graphs, by definition of a join of two graphs, involve
a ‘strong’ connection between the two graphs. This connection allowed for the
generation of the conjugate eigen-pair; and

o For the star graph, the central vertex is at the end of each of the rays of the graph and
there is a conjugate pair of eigenvalues of the adjacency matrix associated with the
star graph.

Hence we noted that for the classes of the complete graphs, the complete bipartite graphs,
the wheel graphs, the star graphs, and the join of two graphs, there is a form of a ‘central
vertex’, which is well connected to other vertices, which gives rise to a conjugate pair of
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eigenvalues whose sum and product are integral. The sum and product being integral
provided the motivation for the definitions of sum and product balance in Chapter 3.

We also noted that the cycle graphs and the path graphs are not well connected, and do
not have a central vertex. They also do not have a conjugate pair of eigenvalues.

Classes of graphs, which are both eigen-sum-balanced and eigen-product-balanced with
respect to eigen-pair (a, b) are significant, and were defined as eigen-bi-balanced. The

non-zero property of the pair (a, b) of conjugate eigenvalues, belonging to a class of

eigen-bi-balanced graphs, together with the possible association of robustness to the
reciprocal of each of the members of the pair of eigenvalues of the adjacency matrix of

graphs, allowed for the development of the eigen-bi-balanced ratio (L?j associated
a

with the class of eigen-bi-balanced graphs. This new idea led to the development of
eigen-bi-balanced ratio asymptote of classes of graphs which may have relevance to
networks on a large number of vertices. The eigen-bi-balanced ratio area of classes of
graphs was introduced to possibly provide a further dimension to the robustness
associated with eigen-bi-balanced classes of graphs.

These newly defined eigen-bi-balanced definitions were applied to known classes of
graphs such as complete graphs, complete bipartite graphs, wheel graphs, star graphs, etc.
We believed that it was necessary to have another class of graphs, different to the well-
known classes of graphs discussed above, which is eigen-bi-balanced. We hence
constructed a new class of graphs, called g-cliqued graphs, which have the desired
property of a central vertex, which is well connected to an anchor vertex of each of the
sub-cliques. We used the eigenvector method, focused on the connectivity of the central
vertex, to determine a conjugate pair of eigenvalues which are both sum and product
balanced. This class of graphs is significant in that each member of the pair of the
conjugate eigenvalues is a function of the clique number of the graphs belonging to this
class.

We found the eigen-bi-balanced ratio area, asymptotes, etc. and showed that a
complement of a graph belonging to this class was connected and also eigen-bi-balanced.

We showed these graphs are also design graphs and used the case g=3 for a hypothetical
application of an entomological experiment, using the graph theoretical property of
colouring to solve a possible scheduling problem involved with this experiment. We also
investigated some other aspects of this 3-cliqued graph, such as the C-matrix from design
theory and its energy.
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7.2 Future research

During this research thesis, the following questions have been posed:

1.

The eigen-bi-balanced ratio area of complete graphs was found to be greater that the
area of other well known classes of graphs. Is this the upper limit for all classes of
eigen-bi-balanced graphs?

The eigen-bi-balanced ratio asymptote appears to lie on the interval [0,1]. This needs
to be verified.

The asymptote -1 of complete graphs belongs to the eigen-pair associated with this
class of graphs — is this the only class of graphs with this “closed” property?

Are cycles the only regular class of graphs which are neither sum or product eigen-
balanced?

Does the eigen-bi-balanced ratio asymptote contribution to the energy of eigen-bi-
balanced graphs result in compete graphs having maximum such energy compared to
all other classes of eigen-bi-balanced graphs?

Which other classes of graphs exist, which have the property that the class of the
complement of each graph in the class, is also eigen-bi-balanced? In this thesis, we
have found this to be true for the class of g-cliqued graphs.

Is the class of g-cliqued graphs the only class whose eigen-bi-balanced ratio asymptote
is the same as the eigen-bi-balanced ratio asymptote of the class comprising of the
complement of each of the graphs in that class?

The energy of the complete graph K, is E Kn = (2n — 2) and the eigen-bi-balanced
ratio area is Ar(Kn )_1’”_1 = (n—1)(n—In(n—1)) Thus, for large n, the energy
behaves like 2n and the eigen-bi-balanced ratio area like n2. Does this mean that the

. . . . n
eigen-bi-balanced ratio area is always greater than the energy by a factor of E?

The complete split-bipartite graph has energy 2+2 =n and eigen-bi-balanced ratio

2
n _ n . .
area el Multiplying energy by > gives us area, as in the case of the complete

graph. Does this factor % have any significance, when considering the energy and

eigen-bi-balanced ratio area of other eigen-bi-balanced classes of graphs?

The research required to answer these questions could form the basis for additional
research on topics covered in this thesis.
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