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ABSTRACT 

The purpose of this study was to develop a framework to assess irrigation design and operating 

strategies. This objective was achieved successfully and the framework was applied to 

formulate guidelines to increase farm profitability whilst using scarce resources, such as water 

and electricity, effectively. The study was targeted at sugarcane irrigated with semi-permanent 

irrigation systems.   

 

“ZIMsched 2.0”, a water balance and crop yield prediction model and the “Irriecon V2” 

economic assessment model were available at the start of the study. The missing link, however, 

was a relatively cost effective and efficient method to design and cost irrigation hardware 

alternatives. Irrigation hardware impacts on both the agronomic and economic performance of 

systems, for example, through different peak design capacities and associated operating 

limitations.  Thus, a novel, spreadsheet-based irrigation design tool, with an automated costing 

component, was developed to complete the framework. 

 

The framework was used to investigate the costs and benefits of potential design and operating 

solutions to a selection of irrigation issues, including: over-irrigation on shallow soils, the 

opportunity to shift electricity use out of expensive peak periods and, the opportunity to 

demonstrate the benefits of deficit irrigation strategies.  

 

For shallow soils, the increase in system hardware costs, needed to better match water 

application to soils, increased margins due to more effective water use. Innovative deficit 

designs and operating strategies allowed for reductions in water and electricity costs. The 

reduced costs, however, did not always offset yield penalties and revenue loss resulting from 

water stress. The financial benefits of deficit irrigation strategies were shown when water 

savings were used to convert dry land cane into irrigated cane. This highlighted the differences 

between the direct and opportunity costs of water.  

 

Finally, a field work component, relating to the precise monitoring of irrigation strategies and 

corresponding crop responses was included in this study. Systems which enabled soil water 

potential and stalk extension to be monitored remotely via the internet were considered useful 

for the successful implementation of an optimum irrigation strategy. The easily accessible data 

allows for effective decision making and more importantly, reassures famers of the current state 

of their crop.  
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1. INTRODUCTION 

 

Wallace (2000) reported that the world population is projected to increase by 65 % over the next 

50 years. Wallace (2000) further reported that almost all of the world‟s population increase will 

occur in developing countries, with a 50 % increase occurring in the next 25 to 30 years. A 

major consequence of the projected increase in population is the increased demand for food and 

an associated increased demand on the limited water resource for food production (Fisher et al., 

2007). Furthermore, the increasing world population is projected to exacerbate adverse climate 

changes, especially in Africa, highlighting the vulnerability of agricultural production and 

increasing pressure on water resources (Benhin, 2006).  

 

South Africa is a water scarce country with a low average annual precipitation and a 

comparatively high evaporation rate. The mean annual precipitation in South Africa is 450 mm, 

well below the world‟s average of 860 mm (NWRS, 2004). The rainfall in South Africa is 

unevenly distributed and irregular in occurrence (Perret, 2002). Irrigated agriculture is reported 

to utilise 62 % of the country‟s stored water resources (NWRS, 2004) while generating less than 

4 % of the Gross Domestic Product and employing 14 % of the labour force (Perret, 2002). 

Schmidt (1998) reported that approximately 412 000 hectares of land in South Africa was under 

sugarcane production, of which approximately 21 % (87 000 hectares) was irrigated. In the 

Northern areas such as Pongola and Mpumalanga, where irrigation is a necessity, sugarcane 

production was linked to the generation of R0,6 billion in revenues as well as the creation of 32 

000 employment opportunities. In these areas, as a result of increased competition for water 

resources from other economic sectors, the pressure on the sugar industry to justify its use of 

irrigation water was escalating (Schmidt, 1998).  

 

Recognising that water is a finite resource and to mitigate the imbalance between availability 

and demand, the then Department of Water Affairs and Forestry (DWAF) launched several 

campaigns to ensure water use was lawful, equitable, efficient and sustainable. These campaigns 

included Compulsory Registration and Licensing, the Water Allocation and Reform (WAR) 

Program and the Water Conservation and Water Demand Management (WCWDM) Program 

(DWAF, 2008). As a consequence of the above, irrigation water use has come under scrutiny. 

The focus has been to produce more agricultural goods with less water input (Playan and 

Mateos, 2005).  

 

From a grower‟s perspective, using less water to produce more agricultural goods may be in 

alignment with maximising profitability because decreasing water input will reduce water and 
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electricity overheads (English, 2002). Electricity contributes largely to the operating costs of an 

irrigation system. In the South African context, the start of the electricity crisis in 2008 has 

adversely impacted on farmers. The imbalance between electricity demand and supply has 

resulted in power outages and load shedding. Hence irrigation systems may have been unable to 

operate during critical periods resulting in yield and profit losses. Furthermore, in order to fund 

remedial programmes, a 34 % increase in electricity tariffs was enforced in 2008 (NERSA, 

2007) and a further 34 % in 2009 (Eskom, 2009), thus contributing to the pressure on irrigation 

farmers to utilise resources more sparingly and efficiently. 

 

Increasing water and electricity tariffs coupled with increasing inflation, interest rates, diesel 

prices and chemical (fertiliser and herbicide) costs, impacts on the financial viability of farmers 

and their ability to remain profitable. In addition, farmers irrigating by means of sprinkler 

irrigation, constituting 60 % of the area under irrigation in South Africa (Van der Stoep, 2008), 

are faced with issues such as theft and operational difficulties relating to labour and correct and 

timely movement of sprinklers. Sprinklers are often not moved, moved to the incorrect position 

or moved at the wrong time. These issues have resulted in increased maintenance costs, 

inefficient use of water and declining yields whilst increasing operating costs (Lecler et al., 

2008).  

 

The above discussion summarizes the context in which growers struggle to remain profitable. 

The question then posed was what options or alternatives can be developed to help overcome 

the many challenges faced in these economic times? What solutions can irrigation consultants 

and experts offer a grower? The intentions for this work was to identify some of the major 

challenges or opportunities facing irrigation designers, consultants and farmers in the sugar 

industry and to investigate various solutions in order to provide acceptable or better guidelines 

for alternative irrigation practices. A review of profit optimising strategies and tools are 

presented in Chapter 2. This review assisted in highlighting the current status of irrigation 

strategies and the availability of irrigation analytical tools. This information was used in the 

development of the project objectives. The objectives of this study were as follows: 

 

Objective 1: To develop a framework with the appropriate tools to, holistically, assess 

alternative irrigation design and operating practices. 

 

The literature review in Chapter 2 revealed an absence of a relatively efficient and holistic 

approach to assess alternative irrigation design and operating practices. Individual tools were 

available but often used in isolation. In addition, means to quickly design and cost irrigation 

hardware were lacking. For this reason, existing tools as identified in Chapter 2, were integrated 
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into a proposed “irrigation assessment framework”. This is described in Chapter 3. Furthermore, 

the development of a novel, spreadsheet-based irrigation design and costing tool, in order to 

complete the “irrigation assessment framework” is also presented in Chapter 3. Development of 

such a framework provided the ideal platform to rapidly assess alternative solutions. Objective 

2, as explained below, therefore provides the opportunity to apply and test the framework while 

researching potential solutions to current industry problems.  

 

Objective 2: To investigate potential solutions for: over irrigation on shallow soils and 

increasing electricity tariffs, and to assess the potential benefit of deficit irrigation 

strategies, by applying the decision support framework. 

 

Sixty percent of the sugar plantations in South Africa are on  grey soils. Grey soils have a rating 

of moderate to poor suitability for irrigation, largely attributed to the shallow nature of the soil 

(SASEX, 1999). To compound matters, shallow soils are often irrigated, inappropriately, with 

dragline sprinkler systems due to the low costs of the system (ARC-ILI, 2004 and Hoffman et 

al., 2007). It is often difficult to apply small amounts of water frequently with dragline systems 

as required for shallow soils. The framework was used to develop and assess innovative designs 

to irrigate shallow soils with sprinkler irrigation. This was reported in Section 4.1. 

 

As pointed out above, significant increase in electricity tariffs has adversely impacted on 

farmers. The electricity service provider in South Africa, Eskom, provides many tariff structure 

options to consumers. Examples of these options are Landrate, which represents a fixed tariff, 

and Ruraflex, which rewards for use during low demand period with lower tariffs while 

penalises for consumption during high demand periods with relatively higher tariffs. Very little 

research investigating the cost implications of different tariff options has been conducted in 

South Africa in the context of irrigation. Complex tariff structures with differing incentives and 

opportunities create uncertainty as to which tariff option a grower should select. Hence the 

opportunity was taken to use the framework to assess alternative electricity tariff options and is 

presented in Section 4.2. The aim in Section 4.2 was to provide a better understanding of 

complex tariff structures, before attempting to develop deficit irrigation strategies to optimise 

use of water and electricity in Section 4.3.  

  

Deficit irrigation is an optimising strategy that targets maximum profits as opposed to maximum 

yields. In agricultural production in South Africa, water is generally the limiting resource and 

the benefits of a deficit irrigation strategy are attributed to realising the opportunity cost of 

water. Water savings from under irrigation can be used to irrigate additional area thereby 

increasing water use efficiency. In addition, reducing irrigation in deficit irrigation strategies 
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provides the opportunity to keep irrigation out of expensive electricity peak periods. An 

increasing amount of work has been conducted for deficit strategies on various crops around the 

world, but less on sugarcane and for sugarcane in the South African context. In Section 4.3, the 

framework was used to assess deficit irrigation strategies, specifically for the South African 

Context. 

 

Objective 3: To field test and refine a prototype continuous monitoring system in order to assess 

the potential value as a decision support mechanism for irrigation farmers. 

 

Finally, one of the big challenges facing the irrigation industry at present was the lack of 

monitoring or evaluation at a field level to ensure that an irrigation system or strategy was 

performing well. The precise nature of deficit irrigation, coupled with small tolerances for error 

suggests that monitoring tools would be pivotal to successful implementation. The challenge 

was, on completion of research such as this, how would one assess the performance of any 

recommended irrigation strategies at a field level? Hence the objective of Chapter 5 was to 

research the continuously changing face of infield irrigation monitoring tools in order to 

compile and field test a continuous monitoring system to assess the field performance of 

irrigation strategies on sugarcane. 

 

At this stage it must be noted that the work reported in this document was specific to the 

sugarcane industry. In addition, the irrigation scenarios assessed in the study were limited to a 

semi-permanent irrigation system. Many experts, at the time, perceived that the large areas 

irrigated by dragline were not performing well and semi-permanent systems were deemed to be 

an appropriate replacement/upgrade (Lecler et al., 2008). The structure of the dissertation is 

summarized in Figure 1.1 below, clearly illustrating the link between development of the 

framework in Chapter 3, application of the framework in Chapter 4 and the development of 

monitoring strategies for field assessment in Chapter 5. 
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Figure 1.1 Dissertation layout 
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2. PROFIT OPTIMISING IRRIGATION STRATEGIES AND 

TOOLS 

 

Worldwide, standard procedures for determining irrigation design capacity, and scheduling to a 

certain degree, have focused on meeting the peak crop water demands to maximise crop yields 

or limit crop stress (English and Raja, 1996). English (2002) suggested that a profit maximising 

strategy, namely deficit irrigation, as opposed to a yield maximising strategy, derives more 

benefits in terms of water savings, food security and reduced environmental degradation. This 

chapter explores the potential to implement deficit irrigation strategies on a sugarcane crop to 

increase profitability. As pointed out many times before, farm profitability was pertinent in the 

current economic climate. Also included in this Chapter is a review of irrigation analytical tools 

that were available in the sugar industry. These tools were considered vital for the further 

research into deficit irrigation strategies. 

 

2.1 Deficit Irrigation 

 

This section is broken down into two sub-sections. The first is a review of fundamental deficit 

irrigation concepts and the second sub-section deals with the sugarcane crop in the context of 

deficit irrigation 

 

2.1.1 Review of deficit irrigation concepts 

 

This section was included to help the reader understand the dynamics and mechanisms of deficit 

irrigation. These include the interactions between irrigation, crop yield and the economics. The 

relationship between crop yield and applied water and crop yield and transpiration is illustrated 

in Figure 2.1.  
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Figure 2.1 Schematic of the general form of crop production (Lecler 2004a, adopted from 

English, 1990) 

 

As shown in Figure 2.1, the yield benefit from increasing water applications is linear up to a 

point. Increasing the water application further, however, still increases yield but at a reduced 

rate, as shown by the curvilinear slope, until the optimum yield point is reached. The optimum 

yield point represents the peak crop water required, and is the capacity figure traditionally 

designed for, as discussed above. At this stage the efficiency of water use is reduced as the 

increased application often contributes to increased losses from surface evaporation, runoff and 

deep percolation. Applying water beyond the optimum yield point often reduces yield due to 

leaching of nutrients, diseases and anaerobic soil conditions associated with excessive irrigation. 

As a result of increased water losses and higher capital and operating costs to apply more water, 

maximum profitability is seldom attained when applying water sufficient to achieve maximising 

yields (English, 1990; English and Raja, 1996; Lecler, 2004a; Fereres and Soriano, 2007).  

 

English (1990) reported that profits could be maximised by employing a deficit irrigation 

strategy. Deficit irrigation aims to increase water use efficiency by applying reduced amounts of 

irrigation water. Crop stress and reduced yields due to the smaller amounts of irrigation can be 

offset by reduced capital and operating costs (Lecler, 2001). This is illustrated in Figure 2.2 and 

is explained further, below.  
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Figure 2.2  Schematic of cost and revenue functions (Lecler 2004a after English 1990) 

 

In the cost and revenue functions shown in Figure 2.2, revenue is determined as the product of 

the crop yield and a constant crop price, and therefore takes the same shape as the crop yield 

function for applied water shown in Figure 2.1.  The cost function is shown as a straight line 

where the intercept and the slope represent capital and operating costs, respectively. 

Profitability is determined as the difference between the revenue and cost functions and is 

shown by distances B1 or B2 in Figure 2.2. For the cost and revenue functions shown in Figure 

2.2, the maximum net return occurs at reduced levels of applied water, to the left of the 

optimum yield point. Furthermore, the system with the lower design capacity is probably less 

able to meet peak crop water requirements but, due to lower capital and operating costs has the 

ability to attain almost double the net returns compared to the system with a larger system 

capacity (English 1990, English and Raja, 1996, cited by Lecler 2004a). English and Nuss 

(1982) reported that designing an irrigation system explicitly for deficit strategies allows for the 

departure from design norms and standards and may result in substantially reduced capital costs, 

more so than the cost of water and energy.  Furthermore, if water is the limiting resource and 

not land, water savings from a deficit strategy could be used to irrigate a larger area and 

contribute further to profit margins. This is referred to as the opportunity cost of water (English, 

1990).  

 

Risks associated with deficit irrigation include the possibility of equipment failure and the 

consequent financial implications due to excessive crop stress (English and Raja, 1996). 

Furthermore, the theory discussed above is subject to accurately predicted crop yields for given 
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levels of applied water. This may prove difficult considering the dependency on unpredictable 

climate and the complex interaction with soil fertility and threat of pests and diseases (English, 

1990). Other concerns include increased salinity levels in the soil due to reduced irrigation 

volumes which do not meet the leaching requirements (English 1990).  

 

The risks and concerns associated with deficit irrigation can be mitigated to a certain degree 

through management practices and highlight the need for skilled management and supportive 

advisory and extension services (English 2002). Nevertheless, deficit irrigation appears to be an 

attractive strategy for the South African context. In the next section, the target crop, sugarcane 

is reviewed to assess its suitability to a deficit irrigation strategy. 

 

2.1.2 Sugarcane in the context of deficit irrigation 

 

A sugarcane crop responds differently to water deficits during different crop growth stages. In a 

situation where water is limited, knowledge of critical crop growth stages and associated 

responses to water stress will aid management decisions regarding the timing of irrigation and 

help identify potential periods for deficit or reduced irrigation (Inman-Bamber and Smith, 

2005). The aim of this section is to demonstrate the physiological characteristics of sugarcane 

and the related potential to implement deficit irrigation. 

 

The ability to model and predict crop yield and growth responses is valuable for applications in 

planning, design and operation of irrigation schemes. Equation 2.1 was developed by 

Doorenbos and Kassam (1979) in order to quantify the impact of soil water stress on crop 

yields. During the course of this project, the FAO Aquacrop model (Raes et al., 2009), with 

improvements to Doorenbos and Kassam‟s (1979) approach was released. To the best of the 

author‟s knowledge, however, crop parameters and model calibration, specifically for 

sugarcane, were not available at the time (Raes et al., 2009). Hence the Doorenboss and Kassam 

(1979) approach as shown in Equation 2.1 was used. This will be discussed further in Section 

2.2.1 

 

1-Ya/Ym = Ky(1-ETa/ETm) Eq 2.1 

where 

Ya  = yield under water deficit conditions (t/ha), 

Ym = maximum yield under full irrigation (t/ha), 

ETa = actual evapotranspiration under water deficit conditions (mm), 

ETm = maximum evapotranspiration under full irrigation (mm), and 
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Ky = yield response factor. 

 

In Equation 2.1, the response of yield to water is quantified through the yield response factor, 

Ky, which relates the relative decrease in yield, (1-Ya/Ym), to a relative deficit in total 

evaporation, (1-ETa/ETm), (Doorenbos and Kassam, 1979).  

 

The Ky values for sugarcane for different growth stages, as shown in Table 2-1, were determined 

from numerous experiments and trials. Sugarcane goes through four different growth stages, 

comprising of establishment, vegetative growth, yield formation and maturation or ripening 

(Doorenbos and Kassam, 1979). The yield response factors, in Table 2-1 illustrate that 

sugarcane is most sensitive to water stress during the vegetative growth stage immediately 

before and after crop canopy establishment and then during the grand growth or yield formation 

stage. Table 2-1 also illustrates that the yield response to water stress in the late maturation 

stage is insignificant. 

 

Table 2-1 Yield response factors for sugarcane for a high producing variety well adapted to the 

growing conditions (Doorenbos and Kassam, 1979)  

Crop Establishment 

Phase 

Vegetative 

Phase 

Yield 

Formation 

Phase 

Maturation and 

Ripening Phase 

Total 

Growing 

Period 

Sugarcane - 0.75 0.5 0.1 1.2 

 

In the following paragraphs, experiments and trials are presented to corroborate the yield 

response factors as presented in Table 2-1 by Doorenbos and Kassam (1979).   

 

Inman-Bamber and Smith (2005) and Olivier et al. (2006) clearly indicated that water stress 

during the maturity and ripening phase beneficially resulted in water savings and an increase in 

sucrose content. In South Africa under various “drying off” treatments, Robertson and 

Donaldson (1998) demonstrated increases in sucrose content up to 18%. For this reason a 

common management practice is to stop irrigation and “dry off” the crop prior to harvest. Not 

only does “drying off” increase sucrose content and saves water but also results in reduced 

biomass and beneficially reduced transport and haulage costs (Inman-Bamber and Smith, 2005). 

In a rain shelter experiment, well watered cane yielded a sucrose content of 11.8 t/ha while cane 

denied water for 5 months yielded a sucrose content of 10.7 t/ha. In the latter treatment 

however, cane yield was reduced from 108 t/ha to 75 t/ha showing an increase in sucrose 

content from 10.9% to 14.3% (Inman-Bamber and De Jager, 1998). “Drying off” the sugarcane 
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crop is a practice which provides opportunity for water savings, increased sucrose contents and 

reductions in harvesting and haulage costs. 

 

Opportunities to save water also exist in the early stages of the crop growth cycle. Robertson et 

a.l (1999) reported on past experiments conducted by Roberts et a.l (1990) that illustrated an 

apparent compensatory growth and fairly good recovery after experiencing water stress in the 

early growth stages, provided crop water requirements were met thereafter. Robertson et al. 

(1999) conducted trials in order to analyse the physiological impact of early and mid season 

water deficits on sugarcane growth and yield. In the early season water deficit treatment, 

irrigation was withheld for almost five months after the crop received one establishment 

irrigation. No significant differences in the biomass and sucrose yield between the well watered 

control and early season water deficit treatment led Robertson et al. (1999) to conclude that 

sugarcane has the ability to recover from water deficit early in the season provided water 

requirements are met thereafter. In addition, evaporation from the soil surface prior to canopy 

cover was reported to be as high as 39% of the total evapotranspiration (Inman-Bamber and 

Smith, 2005). Water loss from the bare soil surface is non-beneficial and should be minimised. 

Resistance to water stress in the early crop growth stages allows for reduced irrigation and 

therefore reduced evaporation losses from the bare soil surface.  

 

Contrary to the early season water deficit treatment, water stress during the canopy 

establishment and grand growth phases resulted in severe yield and sucrose reductions 

(Robertson et al., 1999, Inman-Bamber, 2002, and Inman-Bamber and Smith, 2005). In a 

similar experiment, Pene and Edi (1999) also found that sugarcane was far more sensitive to 

water stress during stem elongation as compared to tillering and recommended the use of a 

deficit irrigation strategy during tillering rather than stem elongation. Chaudhry and Leme 

(1996) also found that percentage yield reduction due to water stress was highest (35%) after 

establishment of full canopy cover and second highest (30%) just before full canopy was 

established.  

 

In summary, the schematic shown in Figure 2.3 below, illustrates the periods most sensitive to 

water stress in the sugarcane lifecycle. In this section, it has therefore been made clear that the 

potential existed to implement deficit irrigation on a sugarcane crop within specific growth 

stages. 
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Figure 2.3 Schematic illustrating sugarcane resilience to water stress for different crop 

growth stages 
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2.2 Decision Support and Analytical Design Tools 

 

In order to provide decision support to a farmer in moving from conventional to deficit 

irrigation, analytical tools to evaluate and demonstrate the potential benefits are required. 

Determining and optimising the benefits of deficit irrigation requires the ability to assess the 

tradeoffs and consequent impacts of various irrigation strategies and the associated limitations 

on yield, system costs and profitability. In this chapter, existing and required irrigation 

assessment tools are reviewed. 

 

2.2.1 Water balance and crop yield prediction models 

 

A detailed literature review by Greaves (2007) pointed out that a number of water balance and 

crop yield prediction models existed and were successfully used to assess the performance of 

sugarcane irrigation practices. These models included ZIMsched 2.0 (Lecler, 2003 and Lecler, 

2004a), SAsched (Lecler, 2004b), CANESIM (Singels et al., 1998 and Singels and Smit, 2006) 

and ACRUcane (Moult et al., 2006). Of these models, the ZIMsched 2.0 model was found to be 

the most appropriate for this study.  

 

The ZIMsched 2.0 model forecasts the crop yield based on algorithms developed by Doorenbos 

and Kassam (1979). In ZIMsched 2.0 the overall yield response factor (Ky) of 1.2, as shown in 

Table 2-1, is used, up until the maturation and ripening period (Lecler, 2004a). The yield 

response factor for the maturation and ripening phase, however, was changed from 0.1 to -0.01 

in the model. This change allowed the model to better predict crop yield and was based on field 

trial data that showed that stress during the maturation and ripening phase does not inhibit 

sucrose yield (Lecler, 2004a).  

 

During the course of this project the new AquaCrop model (Raes et al., 2009), which improves 

on the work reported by Doorenbos and Kasam (1979) was released. The AquaCrop model 

differs from the Doorenbos and Kassam (1979) approach in two ways. Firstly, 

evapotranspiration is separated into evaporation from the soil and crop transpiration. “This 

separation was important to avoid the confounding effect of non-productive consumptive use of 

water” (Raes et al., 2009). It is important to note that, prior to development of the AquaCrop 

model, this modification was also completed in the ZIMSCHED 2.0 model by Lecler (2004a). 

The second difference was related to the final yield. The final yield was separated into a 

biomass component and a harvest index component. This separation was important to better 
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model the functional relations between the crop and the environment (Raes et al., 2009). In this 

regard, various parameters such as those shown for maize, in Appendix A are required to run 

the AquaCrop model. Even though AquaCrop appears to be a better and improved model, 

calibration of the model for the sugarcane crop is apparently outstanding. Crop parameters, such 

as those shown in Appendix A, were available for cotton, maize, soya beans and sugar beet. To 

the author‟s knowledge, these parameters were not yet available for sugarcane. Hence the 

ZIMsched 2.0 model was used. 

 

“The ZIMsched 2.0 model was developed to predict how field derived indices of irrigation 

performance, such as the coefficient of uniformity (CU) impacted on yields and the water 

balance” (Lecler, 2003). The model was unique in that it possessed the ability to account for 

irrigation systems performing at different levels of uniformity. This was important when 

accounting for the impact of irrigation hardware and strategies on yield (Moult et al., 2006). In 

ZIMsched 2.0, “the complexities of water budgeting were integrated in the form of robust 

algorithms based on leading research by, inter alia, Schulze (1995) and Allen et al. (1998)”.  

Processes such as: 

 evaporation from the soil surface and transpiration (in relation to atmospheric 

evaporative demand, available soil water, crop and rooting characteristics and irrigation 

system type), and 

 surface runoff and deep percolation (as impacted on by rainfall effectiveness and 

uniformity or non-uniformity of irrigation water applications) 

 are all accounted for (Lecler 2004a).  

 

The inputs into the model are not exhaustive and include the following: agronomics details such 

as planting date and length of season, irrigation system constraints including irrigation 

frequency and depth, soil and climate characteristics such reference evaporation and rainfall, 

amongst others (Greaves, 2007).  The outputs include the water use and corresponding yield or 

soil water deficit for irrigation scheduling purposes. The yields and water use simulated by 

ZIMsched 2.0 can therefore be used to assess the performance of various irrigation strategies, 

including deficit strategies. 

 

2.2.2 Economic assessment model 

 

Irriecon v2 is a spreadsheet based tool used to assess different irrigation strategies through 

determining detailed capital, operating and marginal costs (Armitage et al., 2008). As shown in 
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Figure 2.4 below, the specific costs associated with sugarcane farming practices such as the 

application of fertilizer and herbicide, planting, harvesting and haulage together with irrigation 

systems, water and electricity costs are accounted for (Armitage et al., 2008). The tool was 

developed based on cost estimation procedures for irrigation systems as presented by 

Oosthuizen et al. (2005).  
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Figure 2.4 Schematic of the Irriecon V2 model 

 

An example of the application of the model is profitability assessment of irrigated versus dry 

land sugarcane farming (Armitage et al., 2008). Other applications include comparison of 

systems (e.g. sprinkler versus drip) and different irrigating strategies such as more frequent 

smaller water applications versus less frequent larger applications, when used in conjunction 

with a model such as ZIMsched 2.0 (Armitage et al., 2008). The model was a suitable tool for 

determining optimum irrigation strategies for different systems and contexts which take into 

consideration economic aspects, including water costs, various electricity tariff options, 

irrigation design, irrigation constraints, agronomic practices and associated crop yield 

expectations. Irriecon v2, however, must be used in conjunction with yield and water use data, 

which may be simulated using water balance and crop prediction models such as ZIMsched 2.0. 
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2.2.3 Irrigation design evaluation and costing tool 

 

The water balance and crop prediction model and the economic assessment tool existed and had 

already been used successfully as described above. The missing link, however, was a tool to 

quickly generate irrigation designs and associated costs of hardware that are representative of 

the constraints used in ZIMsched 2.0. For example, in ZIMsched 2.0, “system A” might 

represent a lower coefficient of uniformity due to sprinklers operating at a wider spacing and 

lower operating pressure, while “system B” may have higher coefficient of uniformity as a 

result of smaller spacing and correct operating pressure. When comparing, “system A” may 

require less pipes to cover the same area and therefore have lower capital costs. System “A”, 

however, may generate lower yields and revenue due to non uniform application of water 

(Benami and Ofen, 1984). Hence, in order to assess the tradeoffs between yield penalties and 

reduced system costs, a design and costing component was required to provide capital and 

operating costs of irrigation systems. 

 

To the author‟s knowledge, options to cost irrigation hardware for alternative designs are 

limited to outsourcing to irrigation consultants, an option used by Oosthuizen et al.(2005) or 

purchasing commercially available design tools, such as Model Maker (2009). Outsourcing was 

considered too expensive and inflexible. Although purchasing Model Maker was a potential 

option, it was decided to rather develop a spreadsheet-based design and costing tool for the 

following reasons: 

 there were budget limitations – Model Maker was priced at R 16, 200 (Model Maker, 

2009) 

 developing a spreadsheet-based tool allowed for a high degree of flexibility   

 and developing a tool ensured all design procedures and implications were well 

understood. 

The design and costing tool will be further discussed in Chapter 3. 

 

2.3 Conclusions 

 

In a time of financial strain, deficit strategies appear to be the best bet profit optimising strategy 

for growers. In addition the sugarcane crop‟s response to water stress, during different growth 

stages, provides opportunities to implement deficit strategies. In order to encourage the uptake 

of these strategies, further research demonstrating and quantifying the benefits were required.  
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This presented an opportunity to use simulation models and analytical tools to formulate and 

assess various deficit irrigation strategies specifically for the South African context. Appropriate 

tools and assessment methods, however, were vital for further research. Existing tools that were 

successfully used in the past were reviewed in order to gauge their appropriateness for this 

study. The ZIMsched 2.0 and Irriecon V2 models were found to be well suited. Irrigation design 

and costing tools, however, were not easily accessible or well suited. In the next chapter, the 

manner in which these tools will be used is illustrated via the development of an irrigation 

assessment framework. In addition, a detailed description of the spreadsheet-based irrigation 

design and costing tool is presented.  



 18 

3. IRRIGATION ASSESSMENT METHODS 

 

Irrigation can be broken down into two large components. Firstly the planning and design of an 

irrigation system and secondly the operation, management and maintenance of the irrigation 

system after it has been installed. Analytical tools are typically used in the planning and design 

phase to assess scenarios and optimise systems before implementation. Agricultural production, 

however, is a complex system and assessment of an irrigation system in the planning phase 

should include three components, namely engineering, agronomic and economic performance.  

 

The first component is the engineering design and performance which to a large degree dictates 

the capital and operating costs of the system. More uniform, and therefore effective, systems 

involve a trade off between increased capital expenditure on equipment and the benefits of 

reduced water application associated with high uniformity (Brennan, 2008). For example, 

sprinkler “A” has to be operated at 12 x 12m spacing at 250 kPa in order to perform at the 

acceptable uniformity level. The sprinkler and lateral spacing will dictate the number of 

sprinklers and pipes required, while the pressure requirements will be used to determine the size 

of pipes and pumps. Hence, the design impacts on both the capital and electricity costs. A 

poorly designed system, for example sprinkler “A” operated at a wider 15 x 15m spacing and 

200 kPa, may have lower costs but will result in non uniform application of water. Hence a 

direct relationship exists between system hardware costs and engineering performance. 

 

The second component is the agronomic performance of the crop in terms of yield and is largely 

dependent on the capability of the irrigation system and management. Finally, the third 

component is the economic performance which is both a function of irrigation design to 

determine costs and crop yield to determine revenue generated by the irrigation system.  

 

It is easy to see that these three components are inter-related and need to be accounted for 

concurrently to holistically asses an irrigation strategy. In practice, however, even though the 

analytical tools to assess the three components exist, it appears that they are not frequently used 

conjunctively. Irrigation designers often generate and implement irrigation designs that simply 

meet the recommended and widely accepted engineering standards and norms. Optimising and 

refining a design is considered too costly an exercise in terms of tools required and more 

importantly the perceived lack of benefit for the time consumed. This chapter, therefore, focuses 

on the development of an efficient and relatively quick method to generate and assess 

alternative irrigation strategies. It was envisaged that researchers would use the framework to 
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assess alternatives and develop recommendations for practical and real problems faced by 

irrigation designers and practitioners.  

 

3.1 A Framework to Assess Alternative Irrigation Design and Operating 

Practices 

 

Optimising the use of water for irrigation will inevitably involve the use of tools to analyse and 

assess the performance of various strategies. These tools are often referred to as decision 

support tools. As described above, assessment of irrigation strategies should include the 

engineering, agronomic and economic performance. Shown in Figure 3.1 below is the 

framework proposed to holistically asses alternative irrigation strategies. Figure 3.1 graphically 

illustrates the tools used to assess each component and there interacting relationships.  

 

 

Figure 3.1 Framework for assessing alternative design and operating strategies 

 

In Figure 3.1, the first tool on the top left hand corner is an irrigation design and costing tool. 

This tool would be used to generate a series of alternative irrigation designs and assess the cost 

implications of differing irrigation hardware. The engineering performance of the irrigation 

system, in terms of uniformity, would form part of the minimum design criteria. The second 

tool is the water balance and crop yield prediction model. This model would be used to assess 
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the agronomic performance in terms of crop yield for a given irrigation regime and its 

constraints. And the final tool is the economic assessment tool. The effectiveness of this 

framework, however, is dependent on the availability, suitability, cost and ease of use of the 

individual models used to assess each component. In the context of the South African Sugarcane 

Industry, the ZIMsched 2.0 and Irriecon v2 models, reviewed in the previous chapter, appeared 

to be ideal for use within the framework. The missing link, however, was the design and costing 

tool.  

 

3.2 Development of an Irrigation Design and Costing Tool for Semi-permanent 

Sprinkler Irrigation  

 

The decision was taken to develop a spreadsheet-based tool which would allow for transparency 

regarding system design and selection processes. In addition, a spreadsheet based tool allows for 

a high degree of flexibility to modify and change design algorithms easily. It was assumed that 

this tool would be used predominantly by researchers who are knowledgeable with irrigation 

design procedures. Shown in Figure 3.2, is a schematic of the different components in the 

design and costing tool.  

 

 

Figure 3.2 Components of the design and costing tool 

 

The tool constitutes four components, namely, sprinkler selection, field layout & operation, pipe 

design and finally, the bill of quantities and costing. Figure 3.2 demonstrates the logical 

sequence with which the tool was designed. It should be noted that the development of the 

design and costing tool formed a pivotal role in this project. Without the design and costing 

tool, the analysis in Chapters 3, 4 and 5 would not have been a simple task. In this chapter, the 

reader will be led through the above sequence, in order to understand how the tool was 

developed. Due to the significant role of the tool, description of thought processes and 

justification of methods used during development are also presented. 
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3.2.1 Sprinkler selection for a target system capacity – component 1 

 

The role of an irrigation designer is to identify, with the help of the end user, the desired result 

and then select and specify, taking into account existing resources, the equipment and operating 

rules required to meet the desired result. For sprinkler irrigation, this is illustrated in Figure 3.3. 

 

Climate

Cycle LengthStand Time

Sprinkler Package

- Nozzle Diam. & Spacing

- Application Rate & Pressure

- Associated Layout & Hardware

 

Figure 3.3 Illustration of irrigation parameters to be selected for sprinkler irrigation 

 

 In Figure 3.3, the crop, climate and soil, on the outer ring, represents existing or fixed 

parameters that would be used to determine the crop water requirements and accordingly the 

target depth. The irrigation designer would then select the sprinkler package, the cycle length 

and stand time in conjunction with one another to meet the target depth. This is best explained 

with an example. Say for instance the target depth of application is 4.4 mm/day. One would then 

select, say sprinkler X with a 4 mm nozzle operated at 350 kPa delivering 1.2 m
3
/hr. If sprinkler 

X was laid out at 18 x 18 m spacing, the area covered by one sprinkler is 324m
2
.  

Hence application rate for this instance =   

=  = 0.0037 m/hr × 1000  

= 3.7 mm/hr.  

One now needs to select an appropriate stand time and cycle length. In this case, if the sprinkler 

was operated for 12 hours once every 10 days, i.e stand time = 12 hours and cycle length = 10 

days, depth of application = 3.7 mm/hr × 12 hrs  

= 44.4 mm every 10 days  

= 4.4 mm/day  



 22 

Referring back to Figure 3.3, it must be noted that the parameters in the triangle; i.e. sprinkler 

package, cycle length and stand time, are interdependent and can be determined or chosen in 

any order. For this reason, more than one combination may provide an acceptable solution. For 

instance, in the example above, for the same sprinkler package, a stand time of 7 hours and a 

cycle length of 6 days returns the application depth = 3.7 mm/hr × 7 hrs  

  = 25.9 mm every 6 days  

= 4.32 mm/day 

In this case, the farmer may have indicated that no irrigation would take place on Sundays and 

for this reason the cycle length of 6 days may have been selected first. Both sets of operating 

rules meet the targeted depth. The choice of either option has an implication on the agronomic 

performance and cost of the system. The user should ensure that only the most suitable option is 

selected. For example, the user should ensure that the water application is well matched to the 

soil.  

 

As described above, Figure 3.3 adequately encapsulates the criteria for selecting the systems 

target peak capacity. For this reason, Figure 3.3 formed the basis of the first design component. 

In the next section Figure 3.3 was transformed into a spreadsheet-based tool were the necessary 

parameters were used to select the appropriate sprinkler package and operating rules. 

 

3.2.1.1 Matching system application depth to target depth  

 

In Table 3-1 below, the tool was set up were the target depth could be matched to the system 

application depth by selecting an appropriate combination of the sprinkler package, cycle length 

and stand time. The target depth represents the desired target in terms of mm water application 

per day, while the system application depth is the actual application capacity that a system can 

deliver for the selected sprinkler, stand time and cycle length. In Table 3-1, the user is required 

to enter, in any order, appropriate values into the shaded cells, which represent, either, the 

sprinkler package, the cycle length or the stand time. Non shaded cells are calculated 

automatically as specified in ARC-ILI (2004).  The sprinkler information had to be obtained 

from sprinkler laboratory test data. This is discussed further, below. 
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Table 3-1 Demonstration of the first section of the design tool were sprinkler packages and 

operating rules are selected to achieve a desired target  

Sprinkler Information
1
   

 
Target Depth mm/day 5.00 

Brand/ type VYRSA 35 

    Nozzle diameter 4.4 mm Area per sprinkler m
2
 378 

Nozzle material Brass 

 

Gross Applic. Rate mm/h 4.30 

Operating pressure 300 kPa 

   Sprinkler spacing 18 m 

   Lateral spacing 21 m Cycle Length
2 days 10.00 

Application rate 4.3 mm/hr Stand Time
2 h 12 

 Discharge rate 1.6254 m
3
/h Sets per day

2 no 2 

Coefficient of Uniformity 87 % 

   Distribution Uniformity 83 % 
Application Depth 

mm/cycle 51.6 

   

mm/day 5.16 
1 – Sprinkler data obtained from ARC sprinkler test data (ARC-ILI, 2008) 

2 – Cycle length, stand time and sets per day adjusted to match target depth to application depth for a given sprinkler package. 

 

One of the challenges faced by users was how does one select an appropriate sprinkler? This 

was because sprinkler manufacturers provide very little information regarding the performance, 

in terms of uniformity, for varying operating pressures and spacing. This implied that a user, if 

depending on sprinkler manufacturers catalogues, would often have trouble filling in the shaded 

cells under sprinkler information in Table 3-1. Sprinkler catalogues typically only provide the 

corresponding application rate for popular sprinkler spacing, such as 18 x 18m or 12 x 12m, and 

varying combinations of operating pressures and nozzles (HOI, 2008). Combinations of 

sprinkler and lateral spacing and corresponding uniformities are almost never available. Hence, 

sprinkler test data was sourced from ARC-ILI (2008) in order to develop a sprinkler database 

query utility. 

 

3.2.1.2 Sprinkler database query utility 

 

Mr. Adrian van Niekerk (ARC-ILI, 2008), over many years, had tested several sprinklers with 

an indoor single leg sprinkler testing facility. The test data allowed one to assess the 

performance of a specific sprinkler in terms of application rate and uniformity for varying 

combinations of spacing and operating pressures. An example of the sprinkler test data is 

provided in Appendix B. The test data for every sprinkler, however, was saved onto a different 

Microsoft Excel file in a format not suitable for selecting sprinklers. This implied that one 

would have to sift through a multitude of files and sprinkle spacing and operating pressure 

combinations in order to find a suitable sprinkler for a specific application. The author, for this 
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reason, compiled a database query utility. The utility consisted of a database of all the sprinkler 

test data that was acquired from the ARC. It must be noted that the sprinkler database query 

utility is not comprehensive as it was limited to only the sprinklers and nozzles tested at the 

ARC facility. This data base is a work in progress and new sprinkler test data can be added at 

any given time. Furthermore, the tool was set up where an advanced filter function in Microsoft 

Excel allows a user to select sprinkler options according to pre determined criteria. For 

example, a user could specify criteria such as: an application rate greater than 3.8 but less than 

4.2 mm/hr, sprinkler and lateral spacing greater the 15 x 15m, operating pressure less than 350 

kPa and a coefficient of uniformity greater than 80%. The advanced filter function is then used 

to search through the database. Sprinkler options that match the criteria are copied and pasted 

into an output table where the user can analyse and determine which option is the most 

appropriate. Data for the selected sprinkler is then manually entered into the irrigation design 

and costing tool under the sprinkler information section as shown in Table 3-1. 

 

Completing Table 3-1 appropriately, provides insight as to what sprinkler package and 

operating rules are required to meet the desired irrigation application depth. The next step in the 

design tool was to determine how the hardware would be laid out and operated in the field. How 

many sprinklers would be used? How would the sprinklers move across a field? What lengths of 

laterals are required? What area could be irrigated by the selected hardware? These types of 

questions are addressed in the next section of the design and costing tool.  

 

3.2.2 Field layout and operation – component 2 

 

This section consisted of three aspects, namely, sprinkler movement in the field, optimum 

mainline and sub mainline layout and finally quantifying field dimensions. These are discussed 

below. 

 

3.2.2.1 Sprinkler movement in the field 

 

One of the many challenges facing traditional dragline systems was the movement of sprinklers 

across the field. In many instances, if proper records were not kept, it was very difficult for a 

famer to tell if the sprinkler was moved to the correct position at the correct time. It was clear 

that the success of a well designed irrigation system, even for semi-permanent systems in this 

case, was dependent on how easy it was to operate and manage. For this reason, a systematic 



 25 

and logical method of moving the sprinklers in the field was selected for the irrigation design 

and costing tool. This is illustrated in Figure 3.4 below. Shown in Figure 3.4 is a mainline, 

running up the slope, with 4 laterals, parallel to the contours. All laterals and mainlines are 

permanent and buried. Only the sprinklers are mobile and dependent on labour. The numbers on 

the 2 top laterals represent hydromatic valves where a sprinkler can be placed. In this example, 

the sprinkler starts at position 1. The grey shade indicates that a sprinkler is located and 

operating at that point. The sprinkler would then move from position 1 to 2, 2 to 3, 3 to 4, all the 

way through in a loop to position 10.  

 

 

Figure 3.4 Layout and movement of sprinklers in the field 

 

In this system, every alternative lateral is equipped with 2 sprinklers. The sprinklers are placed 

at position 1 on either side of the sub mainline. By operating the sprinklers on either side of the 

sub mainline, the flows are split. Hence, each lateral is designed for the flow of a single 

sprinkler. The major advantage of this was reduced capital costs since relatively small pipe 

diameters were required. In addition, since the flows were relatively small, water hammer 

would not be a concern and the sprinklers could be moved without having to switch off the 

pump. Furthermore, all active sprinklers would be well aligned. Hence, if the grower drove 

along the field edge, it will be easy to see if a sprinkler was not operating in the correct position. 

Finally, the looping movement also helps get the sprinkler back to the starting position. Hence, 

the design tool made use of this simple operating rule for sprinklers. All systems were designed 

to incorporate sprinkler movement as described above.  
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3.2.2.2 Optimum layout for mainline and sub mainlines 

 

The second issue was related to field layout? The author wanted to ensure that the most cost 

effective layout was used as the template in the design and costing tool. Hence, alternative field 

layouts as shown in Figure 3.5 were investigated. In Figure 3.5, the assumptions were as 

follows. The field was located 20 m away from a river. The slope from the river up the field was 

consistent and fixed at 2%, in this instance. The option, however, to alter the slope does exist in 

the tool. The cross slope, parallel to the river was assumed to be 0. Hence any given lateral was 

assumed to be consistently on the same level, except in system B. The different layouts are 

described below. 

 

 

Figure 3.5 Alternative field layouts that were investigated. M = mainline, S M = Sub 

Mainline, L = Laterals 

 

As shown, in system A, the mainline only runs for 20 m up to the field‟s edge before it splits 

into two sub mains which then feed into the laterals. When designing system A, the minimum 

sprinkler pressure requirements must be met for the laterals at the top of the field. Invariable this 

implies that too high pressures are supplied to sprinklers on the lower laterals resulting in non 

uniform applications. The alternatives were to either make use of pressure regulating valves or 

consider options shown in system B and C. Pressure regulator valves would have to be installed 

on every lateral since sprinklers will be operating on a number of laterals at any time. This may 

prove to be expensive. Systems B and C on the other hand have main lines that run all the way 

to the top of the hill and either laterals (system B) or sub mains (system C) that run down the 

hill. The theory was that by running the laterals or sub mainlines down the slope, the gain in 

pressure due the increasing gravity head could be balanced by friction. Hence in designing the 

pipe line, appropriate diameters are selected to maintain the pressure variation within the 

allowable standards. This eliminates the need for pressure regulator valves, except for when 

there are steep slopes. The main lines, however, will have significantly higher costs since the 
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water volume for the entire system will have to be pumped to the highest point in the field. This 

implies larger diameter and higher class pipes will be required. 

 

As an aside matter, the above discussion is a great demonstration of questions an irrigation 

designer might pose and not necessarily have the tools or time to answer. This illustrates the 

usefulness and potential value of the irrigation design and costing tool. Since the tool was 

spreadsheet based, modifications in the tool to assess each option were relatively easy. With that 

being said, the tool was used to assess the above alternative field layouts. Separate spreadsheets 

were configured for each of the above systems and the costs were determined. System A, made 

use of the Senniger pressure regulating valves and worked out to be cheaper than the 

alternatives. The cost breakdown and percentage increase of each system is shown in Table 3-2 

below. 

 

Table 3-2 Cost break down for the alternative field layouts that were investigated 

Area = 53.49 ha System A System B System C 

Sprinkler package R  73, 385 R  73, 385 R 73, 385 

Laterals R 303, 710 R 680, 126 R 303, 710 

Sub Mains R  84, 867 R    33, 783 R 109, 177 

Main Line R    4, 082 R  111, 914 R   108, 107 

Valves R    8, 845 -- R         800 

Crosses / Tees / Hydrants R  66, 310 R  31, 974 R   63, 848 

Trenching R 212, 592 R 228, 048 R 218, 016 

Total R 753, 792 R 1, 159, 230 R 877, 043 

% increase in costs from 

System A 
0% 54% 16% 

 

As shown in Table 3-2, system A was the cheapest and for this reason system A was used as the 

template field layout for the design and costing tool.  

 

3.2.2.3 Quantification of field dimensions 

 

The next step was to quantify the details pertaining to the field layout. These included 

determining the number of laterals, lateral length, field area and number of sprinklers. Before 

getting into the detail, it is important to note that the tool was designed to provide representative 

irrigation hardware costs for easy comparison of various scenarios and irrigation systems. 
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Hence, the field layout was hypothetical and based on simplifying assumptions. The field was 

always assumed to be rectangular in shape. In addition, for reasons that will be discussed below, 

target design areas, for example 50 hectares, were not always achievable. Hence, when 

comparing irrigation systems that covered varying areas, the costs were reduced to Rand per 

hectare. This provided fairly representative system costs and allowed for easy comparison. In 

the following paragraphs, the rationale and calculations for determining the field dimensions 

and area are presented. 

 

Only three bits of information were required for this section i.e. the length of the sub mainline, 

the number of sub mainlines and the number of sprinkler positions per lateral. These data were 

entered into the shaded cells in the Table in Figure 3.6. As shown in Figure 3.6, 700 m was 

selected for the first parameter, the sub mainline length. The criteria for selecting the sub 

mainline length, in this case, were related to achieving a realistic pumping head and obtaining a 

fairly square field. Take note, when preparing a number of designs for comparison purposes, the 

sub mainline length and therefore the pumping head should be kept constant to allow for 

sensible comparison. In this case, a 2% slope of 700 m equated to a 14 m pumping head. 

Furthermore, a 700 m sub mainline, when targeting 50 hectares, delivered a field length and 

width of 710 and 720 m, respectively. See below for the explanation of how these dimensions 

were calculated. 

 

 

Figure 3.6 Illustration of field layout and table where data required for this component is 

entered  

 

Having already selected the sprinkler package, the sprinkler and lateral spacing was already 

known and was used to determine the number of laterals. In Table 3-1, the lateral spacing was 
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21 m. Hence a 700 m sub mainline, shown in Figure 3.6, can be divided into thirty three 21 m 

segments. Hence the number of laterals per sub mainline for this example was 33.  

 

Next, the user was required to enter the number of sub mainlines that were to be used. In this 

case, as shown in Figure 3.6, 2 sub mainlines were used. The number of sub mains “input” was 

used to prevent the system from having too long laterals. Longer laterals, with fewer sub 

mainlines would have higher mainline flows and frictions losses resulting in higher pumping 

costs. The other factor that was used to determine the length of laterals was the number of 

sprinkler positions per lateral. This input, however, required special attention. As explained in 

Figure 3.4, the system was designed so that the sprinklers could be moved in a looping manner. 

Hence, for this mechanism to work, the number of sprinkler positions on a lateral had to be a 

multiple of the cycle length. For example, in this case the cycle length was 10 days, therefore 20 

sprinkler positions was entered into the shaded cell. Similarly if a 7 day cycle length was used, 

the values entered into the shaded cells would be limited to 7, 14, 21 or 28 sprinkler positions. If 

this rule was not adhered to, the sprinklers would either not complete the loop in time or 

complete the loop too early. This would disrupt the logical movement of the sprinklers.  

 

In addition, adhering to this rule limited the flexibility with which lateral lengths and therefore 

design areas where selected. For this reason, as mentioned above, target areas such as 50 

hectares were not always achieved. Nevertheless, this was overcome by optimally designing for 

areas that were still within the same scale and reducing the costs to Rand per hectare. 

 

Having selected the number of sub mainlines and the number of sprinkler positions, the lateral 

length was then easily determined as a function of the sprinkler spacing. The lateral and sub 

mainline lengths were then used to determine the field width and length respectively. The 

distance from the edge of the field to the sub mainline or sprinkler was fixed at half the lateral 

or sprinkler spacing, respectively. The area was then simply determined as the product of the 

field length and width. Take note, if designing for a target area, say 50 hectares. One would 

have to enter the correct combination of sub mainline length, number of sub mains and number 

of sprinkler positions into the shaded cells to match the target area, as close as possible.  

 

Next, the number of sprinklers was also determined as a function of the number of laterals and 

number of sub main lines. In this case, 1 sprinkler was operated per lateral. Therefore the 

number of sprinklers was equal to the number of laterals i.e. 33 laterals × 2 sub mainlines = 66 

sprinklers required. Finally, the total system flow rate was the product of the number of 

sprinklers and the flow for a single sprinkler.  
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3.2.3 Pipeline design – component 3 

 

The next step was the hydraulic design and sizing of the pipes. In this section all methods and 

design rules were according to the Irrigation Design Manual (ARC-ILI, 2004). It was assumed 

that the user would be fairly knowledgeable with regards to irrigation design and for this reason 

the basics are not described in great detail. Instead, the aim of this section was to describe how 

the tool was set up and to demonstrate the ease with which the necessary calculations can be 

completed. 

 

 A spreadsheet was set up as shown in Table 3-3. The table was set up for point to point design. 

In other words, the calculations would begin at a point and pressure or flow values, for example, 

would be carried over to the next point. In this case, as shown in Table 3-3, the calculations 

were started at point AB1. AB1 represented the sprinkler position at the end of a lateral in the 

field. This is shown as position 1 in Figure 3.4. The calculations would then proceed from the 

end of the lateral through to AB2 and AB3 and so on, working towards the sub main line. In this 

case, Table 3-3 shows the design of one half of the lateral, starting at the end sprinkler position, 

AB1, and moving in 18 m segments to the next sprinkler position for 10 segments/sprinkler 

positions. Since the other half of the lateral was a mirror image due to the splitting of flows, the 

design for the first half was exactly the same as the second half. Similarly, all laterals were 

identical, in terms of slope, number of sprinklers (flow rate) and length. Therefore only a single 

lateral was sized and applied to the others.  

 

Table 3-3 Lateral design worksheet showing example of hydraulic pipe design 
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/s m m m 

 

m m/s m m kPa m kPa 

  

0 

       

300 0 

 AB1 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 304.00 0 304 

AB2 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 308.01 0 308 

AB3 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 312.01 0 312 

AB4 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 316.01 0 316 

AB5 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 320.01 0 320 

AB6 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 324.01 0 324 

AB7 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 328.02 0 328 

AB8 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 332.02 0 332 

AB9 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 336.02 0 336 

AB10 0.00045 18 0.27 0.03 32&9 0.03 0.68 0.40 0.42 340.03 0 340 

 

Sum 180 2.7 

  

Allowable pressure variation 60 

Hf = Friction loss in the pipe. 
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Two methods were made available for pipe sizing. The first was to restrict the friction loss to 

less than 1.5% of the length of the pipe. This value was shown in the column with the title 

“allowable Hf”. The second option was to select pipe diameters to ensure that pressure variation 

in the pipeline was less than 20% of the sprinkler operating pressure. Both methods are in 

accordance with SABI norms (ARC-ILI, 2004). The second option was less conservative and 

therefore used to design the lateral. Essentially, in most cases, this allowed for the same pipe 

diameter to be used for the entire length of the lateral, making implementation much easier. This 

is demonstrated in Table 3-3 above. As before, a user was only required to input values in the 

grey shaded cells, i.e. pipe diameter and class of pipe. All other values are either determined or 

carried forward from previous tables in the tool. For example, since only one sprinkler operated 

per lateral, the flow rate for all segments in the lateral was equal to that of a single sprinkler and 

was carried forward from the sprinkler information in Table 3-1. Similarly, the sprinkler spacing 

of 18 m was carried forward from Table 3-1 to the length column in Table 3-3. In the case of the 

internal diameter, the pipe diameter and class was used in conjunction with a lookup table to 

bring forward the corresponding values. 

 

In the tool, the Hazen Williams formula (ARC-ILI, 2004) was used to calculate the pipe friction 

loss. In addition the General Exponential Equation (ARC-ILI, 2004) was also presented as a 

check. In Table 3-3, the first value in the “pressure required to overcome friction” column was 

300 kPa, representing the operating pressure of the sprinkler. Hence the allowable pressure 

variation was 20% of 300 kPa which was equal to 60 kPa. In designing the lateral, as is the case 

in Table 3-3, the pipe diameters and classes were selected to ensure that the pressure variation 

did not exceed 60 kPa. In this case, 32 mm class 9 pipes incurred a pressure increase from 300 

kPa up to 340 kPa. The resultant 40 kPa pressure variation was below the allowable 60 kPa and 

therefore acceptable. Take note, only class 9 pipes were available in the 32mm diameter range 

and 32 mm class 9 pipes were cheaper than 40 mm pipes. See Table 3-5. Hence 32 mm pipes 

were used for all laterals. The next step was to design the sub main lines. As shown in Table 3-

4, a similar approach was used. The design started at lateral 1 on the top of the hill and worked 

its way down the sub mainline in 21 m segments. Table 3-4 is only an extract, showing 5 

segments, of the complete sub main line design. 
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Table 3-4 Sub main line design worksheet showing an example of hydraulic design  
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m m/s m m kPa m kPa 

   

  

    

  

 

340.03 14.40 

 1 0.0009 21 0.315 0.05 50&4 0.05 0.52 0.16 0.16 341.64 14.40 341 

2 0.0009 21 0.315 0.05 50&4 0.05 0.52 0.16 0.16 343.24 13.98 347 

3 0.001806 21 0.315 0.063 63&4 0.06 0.63 0.18 0.18 345.00 13.56 349 

4 0.001806 21 0.315 0.063 63&4 0.06 0.63 0.18 0.18 346.77 13.14 350 

5 0.002709 21 0.315 0.063 63&4 0.06 0.96 0.37 0.36 350.50 12.72 354 

Hf = Friction loss in the pipe. 

 

Once again, the user only needs to select appropriate pipe diameters and classes. Values, such as 

the pressure were brought forward from the lateral design sheet. Unlike the lateral design, 

however, the pressure variation rule was not used to design the sub mainlines. Instead the 

allowable friction loss was determined as 1.5% of the pipe length for each segment. This more 

conservative approach was used for the sub main line and main lines since higher flows were 

encountered. Higher flows can result in increased velocities and water hammer problems if not 

designed carefully.  Hence pipe sizes and classes were selected to ensure that the friction as 

determine by the Hazen Williams formula (ARC-ILI, 2004) was less than the allowable friction. 

For example, in position one in Table 3-4, the allowable friction was 0.315 m and the Hazen 

Williams friction was 0.1649 m for the 21m length of pipe and specified flows and diameter. 

This was acceptable. In position 5, however, the Hazen Williams friction, 0.3596 m was greater 

than the allowable 0.315 m. Hence the selected 63 mm pipe was too small and must be changed 

to the next bigger diameter. As before, on completion of the sub mainline design, relevant 

information was then carried forward in to another table for the main line design. The process in 

terms of sizing pipes and minimising friction within allowable limits was the same as for the 

sub mainline and is therefore not shown here. 

 

3.2.4 Bill of quantities and costing – component 4 

 

The final component in the design tool was to prepare a bill of quantities and the associated 

costs. As reported previously, this design tool was required to provide systems costs. System 

costs which would be used as inputs in the Irriecon V2 model for economic assessment of a pre-

designed strategy. The objective was to have the costing portion automated in the tool, so that 
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no input or effort was required from the user. This would allow for quick and easy generation of 

adequately designed systems and the associated system costs. This objective was achieved as 

follows.  

 

A template with costs for all pipe sizes and classes was set up on a different worksheet. Shown 

in Table 3-5 is an extract of the template with only three pipe diameters, namely 32, 40, and 50 

mm. As explained previously, three separate worksheets within the same Excel file were used to 

design the lateral, sub main and main lines. This was done purposefully. A separate bill of 

quantities table was then set up for the lateral, sub main and mainline so that the cost for each 

component can be determined individually. The unit costs for the irrigation hardware were 

sourced from Incledon (2009), Agrinet (2009) and Irrigation Unlimted (2009). It must be noted 

that in practice, discounts, pending on the volume purchased, are usually applied to these prices. 

Hence the prices, as they appear in Table 3-5, may be higher than those typically obtained. 

Nevertheless, all designs will be priced from the same database and will therefore be adequate 

for comparison purposes. In addition, the unit prices in Table 3-5 should be updated 

periodically. 
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Table 3-5 Extract of bill of quantities with unit cost for pipes  

Laterals Sub main lines Main line 
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32mm 

Diam. 

 

        

32mm 

Diam.         

 32mm 

Diam.        

 

 Class 9 m 23760 R 9.17 R 217,879  Class 9 m 0 R 9.17 R 0.00  Class 9 m 0 R 9.17 R 0 

 Class 12 m 0 R 10.73 R 0  Class 12 m 0 R 10.73 R 0.00  Class 12 m 0 R 10.73 R 0 

 Class 16 m 0 R 13.19 R 0  Class 16 m 0 R 13.19 R 0.00  Class 16 m 0 R 13.19 R 0 

40mm 

Diam. 

 

        

40mm 

Diam.         

 40mm 

Diam.        

 

 Class 6 m 0 R 11.88 R 0  Class 6 m 0 R 11.88 R 0.00  Class 6 m 0 R 11.88 R 0 

 Class 9 m 0 R 13.35 R 0  Class 9 m 0 R 13.35 R 0.00  Class 9 m 0 R 13.35 R 0 

 Class 12 m 0 R 16.81 R 0  Class 12 m 0 R 16.81 R 0.00  Class 12 m 0 R 16.81 R 0 

 Class 16 m 0 R 20.86 R 0  Class 16 m 0 R 20.86 R 0.00  Class 16 m 0 R 20.86 R 0 

50mm 

Diam. 

 

        

50mm 

Diam.         

 50mm 

Diam.        

 

 Class 4 m 0 R 16.35 R 0  Class 4 m 84 R 16.35 R 1,373  Class 4 m 0 R 16.35 R 0 

 Class 6 m 0 R 18.40 R 0  Class 6 m 0 R 18.40 R 0.00  Class 6 m 0 R 18.40 R 0 

 Class 9 m 0 R 21.34 R 0  Class 9 m 0 R 21.34 R 0.00  Class 9 m 0 R 21.34 R 0 

 Class 12 m 0 R 25.95 R 0  Class 12 m 0 R 25.95 R 0.00  Class 12 m 0 R 25.95 R 0 

 Class 16 m 0 R 34.10 R 0   Class 16 m 0 R 34.10 R 0.00  class 16 m 0 R 34.10 R 0 
1 Counter function programmed into this column to search through the lateral design worksheet and count the number of lengths, if pipe diameter and pressure/class of pipe correspond. 

2 Unit costs sourced from Incledon (2009), in this case.  
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All the calculations were programmed into the quantity column of Table 3-5. The tool 

essentially needed to quantify what length of pipes, in their respective diameters and classes, 

were required. The mechanism used was a “countif” function in Microsoft Excel. The “countif” 

function has the ability to count the number of times specific criteria are met within a range of 

cells. In this application the criteria were the pipe diameter and the total pressure, which was 

used to determine the class of pipe required.  

 

For example, consider the 50 mm, class 4 pipe in the “sub main lines” section of Table 3-5. Pipe 

class is a function of pressure and in this case if the pressure was less than 400 kPa, it was 

matched to a class 4 pipe. Hence, in the quantity cell in Table 3-5, the countif function was 

programmed to search through two columns in the “sub main line” worksheet. The two columns 

were the pipe diameter and total pressure columns, as shown in Table 3-4. The countif function 

counted the number of times the selected columns matched the criteria. In this example the 

“countif” function was used to count how many times a 50 mm class 4 pipe was required. The 

answer in this example was two. Hence two 21 m segments (42 m) of 50 mm class 4 pipes were 

used per sub mainline. Since in this design there were two sub mainlines, the total length of 50 

mm class 4 pipes required was 84 m. This was reflected correctly in Table 3-5. Also shown is 

the cost of these pipes amounting to R 1, 373.  

 

It should be noted that the criteria for each countif function differed and had to match the pipe 

diameter and class for which the count was being completed. In the above example, the criteria 

were a 50 mm pipe diameter and pressure less than 400 kPa. If the next class, class 6, was 

considered, the “countif criteria” would change and the pressure range searched for would now 

be between 400 and 600 kPa. The result was that a unique set of criteria had to be programmed 

for each quantity cell in the lateral, sub main line and main line components. Hence setting up 

the template for each pipe diameter and class required a bit of effort. Nevertheless, once set up, 

the database and counting mechanism proved extremely valuable. Similar to the pipes, 

determining the number of sprinklers, pressure reducing valves and cross pieces were all 

automatic. These results were then carried forward to a summary table reflected in Table 3-6 

below.  
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Table 3-6 Summary of irrigation system costs  

No Description   Costs  Costs/ha 

  Area (ha) 50.65     

1 Sprinkler Package
1 

  R   52, 645.56 R   1, 039.36 

 2 Underground pipes   R 356, 956.61  R    7, 047.24 

2.1 Laterals R 217, 879.20   R   4, 301.49 

2.2 Sub Mains R   90, 376.09   R   1, 784.26 

2.3 Mainline R     4, 082.08   R 80.59 

2.4 Pressure regulating valves R     6, 345.24   R        25.27 

2.5 Cross pieces at lateral junction R   38, 274.00   R      755.63 

   

3 Trenching costs    R 157, 536.00  R   3, 110.16 

  Laterals @ R6 per meter R 142, 560.00    R   2, 814.50 

  

Mains and Sub mains @ R8 per 

meter R   14, 976.00   R     295.66 

  

Total R 567, 138.17 R 11, 196.76 
1 sprinkler package consists of 3m tripod, sprinkler, nozzle and connecting components that plug into hydromatic valve. 

 

Table 3-6 is broken into three components, the sprinkler package, underground pipes and 

trenching. For the trenching costs, the sub main and mainline trenches were assumed to costs R8 

per meter while the smaller lateral trenches were assumed to cost R6 per meter (Lecler et al., 

2008). The table also shows the costs of the full system and the cost break down per hectare. In 

this case, the capital investments for the 50.65 hectares amounted to R 567, 138.17 or R 11, 

196.76 per hectare. R11, 196.76 per hectare appears to be low for a semi-permanent irrigation 

system but it was also important to note that this did not include pumping costs. The design and 

costing tool, does not size and cost the required pumping system. This was completed manually 

and the associated pumping costs were entered directly into Irriecon V2. The design and costing 

tool, however, did determine the total flow and pumping head required, which in turn informed 

the pump selection process. At this stage, it must be reported that there is room for refinement in 

the design tool. Components such as local friction losses, air and other control valves and pump 

selection are not addressed. The design and costing tool, however, was still adequate and 

extremely valuable for the work required in this project.  
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3.2.5 Summary and conclusions 

 

The development of the design and costing tool now implied that the framework, as represented 

in Figure 3.1, was in place allowing for relatively quick and efficient assessment for varying 

irrigations scenarios and strategies. The next three chapters demonstrate how the framework can 

be applied to assess potential solutions to challenges facing the sugarcane and irrigation 

industry. 

 

Prior to writing up this work, Armitage et al. (2008) made use of part of this framework to 

assess dry land production versus irrigation, as well as sprinkler versus drip versus travelling big 

gun irrigation systems. In addition, different system capacities were also evaluated. Refer to 

Appendix C. In that case, however, irrigation consultants were used to generate the designs and 

costs for the different systems. This proved a costly and relatively inflexible exercise, but 

nevertheless, illustrated the potential of a complete framework which included the hardware 

design and costing component. The design and costing tool and therefore, the framework in this 

project were applied specifically to semi-permanent irrigation systems. It must be noted, 

however, that the design and costing tool is spreadsheet based and therefore can quite easily be 

modified for other systems.  

 

Summarizing: the design and costing tool was developed for a knowledgeable person to quickly 

generate alternative irrigation designs and associated system costs. This tool completed the 

missing link in a holistic irrigation assessment framework. The assessment framework now 

provides the platform for easy analysis of alternative solutions for various irrigation challenges 

facing the industry. In the next three chapters, some of the major problems facing the industry 

were explored and analysed using the irrigation assessment framework.  
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4. APPLICATION OF DECISION SUPPORT FRAMEWORK 

 

In this chapter, the irrigation assessment framework was used to assess three current and major 

issues facing the irrigated sugarcane industry in South Africa. These included over irrigation on 

shallow soils, the electricity crisis and increasing tariffs, and efficient use of water through 

deficit irrigation. The first issue, over irrigation on shallow soils, is addressed in Section 4.1 

below, followed by the background to electricity tariff options and deficit irrigation strategies in 

Section 4.2 and 4.3, respectively. 

 

4.1  Irrigation Design and Operating Strategies for Shallow Soils 

 

As pointed out in the introduction, sixty percent of the sugarcane farming in South Africa is 

practised on grey soils. Grey soils have a rating of moderate to poor suitability for irrigation, 

largely attributed to the shallow nature of the soil (SASEX, 1999). Irrigating shallow soils 

efficiently generally requires small applications on a frequent basis. This is because the shallow 

depth limits the volume of water that maybe stored in the soil profile and application of too 

much water is lost through runoff and deep percolation. Hence, effective irrigation of shallow 

soils requires application of smaller amounts of water more frequently. The concern is that a 

large portion of this area is irrigated by overhead sprinkler dragline systems which are not suited 

to apply small amounts frequently.  

 

The reasoning is as follows: Draglines systems are cheap and therefore very popular. Draglines 

systems are cheap because, typically, a limited amount of hardware is used to irrigate a large 

area. This is achieved by using sprinklers and dragline hoses to irrigate an area over a selected 

stand time and then moving the hardware to irrigate the next area. Hardware selection and use 

of time is critical. If, for example, the same sprinklers and draglines can be used thrice within 

the same day, three times the area can be irrigated for the costs of one set of sprinklers and 

draglines. For this reason, systems are designed to make use of the 24 hours available in a day.  

 

The limitation, however, is that labour is used to move sprinklers and it is impractical to move 

sprinklers at night. A common dragline strategy, therefore, is to irrigate for 12 hours during the 

day, then move the sprinklers while still bright and irrigate again for the next 12 hours during 

the night. The sprinklers can then be moved to the next position in the morning when there is 

enough light again (Zadrazil, 1990 and Reinders, 2001). A 12 hour application, however, 
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applies too much water for most shallow soils. The trade off for most growers was a cheaper 

irrigation system but poor use of water.  

 

For this reason, a lot of dragline sprinkler systems are operating inefficiently resulting in over 

irrigation on a large portion of the sugar industry (Lecler et al., 2008). Automating the irrigation 

system so that sprinkler applications could be better matched to the soil and operated on, say, an 

8 hour stand time would help solve this problem. Automation of draglines is practically 

impossible. For this reason, an alternative semi-permanent (hop along) system was considered. 

In this chapter a typical “12 hour stand time system” was compared to an innovative, better 

matched, semi automated “8 hour system”. The framework, as described in Chapter 3.1 was 

used to cost and assess the performance of these two systems. The hypothesis was that the yield 

improvement from more effective use of water will offset the additional costs for partially 

automating the 8 hour system.  

 

4.1.1  Engineering design, operation and costing of alternative irrigation systems 

 

Before designing the systems, the following important criteria were selected. The targeted 

irrigation depth was set at 5 mm/day, in this instance representative of the Komatipoort area. 

The soil was assumed to be a 0.6 m deep Sandy Clay Loam with a “Total Available Water” 

content (TAW) of 57 mm as shown in Figure 4.1. Again, this was fairly representative of a 

shallow soil. It was assumed that 60 % of the TAW would be allowed to deplete before an 

irrigation event was triggered. Hence the depth of water required from irrigation to refill the 

depleted amount was 34 mm (60% of 57 mm).  
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Figure 4.1 Illustration of soil criteria selected for irrigation design 

 

Using the sprinkle database query utility and irrigation design tool, two irrigation designs were 

generated. In the 1
st
 system, a stand time of 12 hours, similar to current practices, was used. The 

details of this system are as follows. A VYRSA 35 sprinkler with 4 mm brass nozzle was 

selected. This sprinkler was capable of delivering 4.3 mm/hour with a coefficient of uniformity 

of 87 % if operated at 300 kPa and sprinkler and lateral spacing of 18 × 21 m. Running the 

sprinkler on a 12 hour stand time will deliver 51.6 mm (4.3mm/hr × 12hrs) every 10 days. This 

translates into an equivalent of 5.16 mm/day, which is well matched to the target depth of 5 

mm/day. Applying 51.6 mm per irrigation event, however, exceeds the 34 mm refill depth. This 

is illustrated in part A of Figure 4.2. In this figure it is easy to see how application of excess 

water is lost. 

 

 

Figure 4.2 Illustration of poorly matched irrigation application to the soil 
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For the 2
nd

 system, however, the same sprinkler package, spacing and operating pressure was 

now operated on an 8 hour stand time and a 6 day cycle. Hence, 34.4 mm (4.3mm/hr × 8hrs) 

was applied every 6 days, translating into 5.73 mm/day. The 8 hour system, demonstrated in 

part B of Figure 4.2, was better matched to the soil and still met the target depth of 5 mm/day. 

The challenge, however, was how does one automate and operate a sprinkler system so that 

labour was not required to move the sprinklers at night? Before describing the innovative 8 hour 

design, the commonly occurring 12 hour system (Reinders, 2001) is first described in Figure 4.3 

below.  

 

In Figure 4.3, the numbers along the two laterals in the figure represent sprinkler positions, 

where the 1
st
 digit represents the day in the cycle. A cycle length of 10 days represents 10 

sprinkler positions. The 2
nd

 digit represents the number of moves for that day. In other words, 

6.2 refers to the 2
nd

 move on day 6. Also, as indicated in Figure 4.3, the numbers in black 

indicate sprinkler moves that occur in the morning for irrigation during the day and the numbers 

in grey indicate sprinkler moves that occur in the afternoon for irrigation during the night. 

Furthermore, in Figure 4.3, only the left portion of lateral A and B are shown. The right portion 

was a mirror image but designed to operate independently. The system would operate as 

follows. The sprinkler would begin in position 1.1 and operate for the day in that position. At 

the end of the day, labour would then move the sprinkler to position 1.2, where it will operate 

for the evening. The cycle would continue, similarly, on day 2 and over the next 10 days.  

 

 

Figure 4.3 Field operation of sprinkler for the 12 hour system 

 

Figure 4.3 above illustrates the layout and sprinkler operation of 2 laterals with 2 sprinklers in a 

12 hour system. The 12 hour system was designed to use 66 sprinklers and 66 laterals to irrigate 
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an area of 50.65 hectares. The 8 hour system, however, required some modification. This 

system required for a sprinkler to be operated in three different positions within 24 hours. This 

implied that labour would have to work in the dark, if operated traditionally. Instead, an 

additional set of sprinklers was introduced to the system. The additional sprinkler would be 

placed on a lateral which is then isolated during traditional operation in the day. Hence, when 

the time for operation at night arrived, the isolated sprinkler could be switched on via a valve 

and the lateral that was working during the day would now be switched off. Hence, instead of 

having to move sprinklers at night, an irrigation supervisor would simply walk or drive along 

the sub main and switch the appropriate laterals on and off. This is demonstrated in Figure 4.4 

below.  

 

As in Figure 4.3, the 1
st
 digit was the day in the cycle; the 2

nd
 digit was the number of moves in 

the day and the black equals day moves whilst grey equals night moves. In this case, for the 2
nd

 

digit, 1 represent a move in the morning, 2 represents a move in the afternoon and 3 represents a 

move in the evening. Each lateral, both on the left and right was equipped with a simple gate 

valve on a hydrant type set up. Unlike the 12 hour system, each lateral was also equipped with a 

sprinkler. Hence, for 66 laterals, 132 sprinklers were used. The system was designed to operate 

as follows. A sprinkler would be placed at position 1.1 and 1.3, on lateral A and B respectively. 

In the morning, lateral A would be switched on and lateral B switched off. The sprinkler at 1.1 

would operate here for 8 hours, after which labour would move the sprinkler to position 1.2. 

The sprinkler at 1.2 on lateral A would then operate for 8 hours into the evening. At the end of 

the 8 hours, the irrigation supervisor would venture out in the dark to simply switch lateral A off 

and Switch on lateral B, activating the sprinkler at 1.3. The sprinkler at 1.3 would then irrigate 

until the next morning. 

  

 

Figure 4.4 Field operation of sprinkler for the 8 hour system 
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The next morning, labour would move the both the sprinklers on lateral A and B from 1.2 to 2.3 

and 1.3 to 2.1 respectively. Lateral B would remain open and irrigation would proceed at 2.1, 

while lateral A remains closed but ready for the next night move. The operation of the system 

would continue in this manner to the end of the cycle on day 6. At the end of day 6, all 

sprinklers would be returned to the original starting positions. Take note that this system was 

only semi-automated since labour was still required to move sprinklers. The innovation, 

however, allows for easy irrigation at night at an increased cost. The first task was to quantify 

what the costs differences were for each system. The newly developed irrigation design and 

costing tool was used to optimally size the pipes and cost both systems. The summary of costs is 

provided in Table 4-1.   

 

Table 4-1 Summary of system costs per hectare for 12 and 8 hour stand time designs 

Description 12 Hour (R/ha)  8 Hour (R/ha) 

Sprinkler package  R  1, 039  R  2, 309  

Laterals R  4, 301  R  4, 301  

Sub Mains R  1, 779 R  1, 967  

Mainline  R        81  R        90  

Senniger Valves  R      125  R      139  

Crosses/Tees/Hydrants  R      758  R  2, 407  

Trenching  R  3, 110  R  3, 143  

Total  R  11, 193  R  14, 356  

% increase in costs 100%  128%  

 

Table 4-1 illustrates that the 8 hour system costs 28% more than the 12 hour system. This 

translates into an additional R 3, 163 per hectare. The difference, as expected, was largely due 

to the additional set of sprinklers and the components required for the hydrants and valves at 

each lateral for the 8 hour system. Marginal differences were also accounted for in the cost of 

sub mains and mainlines. These were due to varying pipe diameters and classes to balance and 

optimise friction losses. At this stage it should also be noted that the pumping requirements of 

both systems were very similar. The 12 hour system required an 18.43 KW pump to pump 

107.28 m
3
/hr at a head of 44.54m while the 8 hour system required an 18.60 KW pump to 

107.28 m
3
/hr at a head of 44.13m. Hence for all intents and purposes, the capital and operating 

costs for both pumping systems were assumed to be the same. This will be discussed further in 

the economic analysis section. The next task was to assess the agronomic performance of the 

different irrigation regimes.  
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4.1.2 Agronomic assessment 

 

Looking back to the hypothesis, it was anticipated that the 8 hour system would deliver a better 

yield. The ZIMsched 2.0, water balance and crop prediction, model was configured to simulate 

the performance of both systems over 12 seasons from 1988 until 1999. The following 

parameters were selected or assumed in the model: 

 0.6 m deep Sandy Clay Loam with a “Total Available Water” content (TAW) of 57 mm 

 poor drainage conditions 

 10 % of total applied water was assumed to be lost by wind drift and spray evaporation 

(after McNaughton (1981), Tolk et al. (1995) and Thompson et al. (1997) 

 planting date on 30 March 

 coefficient of uniformity of 87 % as per ARC sprinkler test  

 weather data for Komatipoort was obtained from the South African Sugarcane Research 

Institute‟s (SASRI‟s) meteorological database to drive the model. These include 

maximum and minimum daily temperatures, daily FAO evapotranspiration and rainfall 

 irrigation scheduling rules were as follows:  

 No irrigation was to take place during the crop maturation and ripening phase. 

i.e. during the “dry off period”. The start of the “dry off” period was calculated 

as the amount of time required to deplete 85.5 mm of soil water (1.5 × TAW) 

from the end of the cropping cycle. 

 Successive irrigation events could only take place provided the minimum cycle 

time had passed.  

 Using the soil water budget, irrigation was applied when 34 mm of soil water 

was depleted (60% × TAW). Hence if rainfall refilled the soil water levels, 

irrigation was delayed until the soil water was depleted to the specified level.  

 system operation rules: 12 hour system 

 Gross application = 51.6 mm 

 Cycle length = 10 days  

 Peak application depth = 5.16 mm/day 

 system operation rules: 8 hour system 

 Gross application = 34.4 mm 

 Cycle length = 6 days 

 Peak application depth = 5.73 mm/day 
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The results obtained are represented in Figures 4.5, 4.6 and 4.7, below. Figure 4.5 illustrates the 

seasonal water applications for both systems. Due to similar system capacities, both systems 

applied very similar amounts of water over the 12 year period. The slightly higher capacity “8 

hour system” was able to apply marginally more water in the drier years of 1995, 1996 and 

1997.  On average both systems applied in the region of 1400 mm of water per a season. These 

systems were not optimized in terms of water use, as shown by Lecler and Jumman (2009) in 

Appendix D, but were fairly representative of high yielding systems for Komatipoort. At this 

stage, an 8 hour system which costs more but applies similar amounts of water appears less 

attractive. 

 

 

Figure 4.5 Time series of seasonal water application for 12 and 8 hour systems 

 

Interestingly, Figure 4.6 below shows that the 8 hour system performs significantly better in 

terms of yield compared to the 12 hour system for similar water applications. The average yield 

for the 12 hour system was 128 tons/ha with a maximum of 139 tons/ha in the 1992 season. The 

8 hour system, however, for the same rainfall and similar water applications on average yielded 

138 tons/ha with a maximum of 148 tons/ha in 1992.  
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Figure 4.6 Time series of seasonal yield for 12 and 8 hour systems 

  

To better understand why the 8 hour system yields so much higher one needs to consider Figure 

4.2 again. In Figure 4.2, the application of water by the 12 hour system beyond the soils water 

holding capacity is demonstrated. This implies that excess water applied cannot be stored in the 

soil and was therefore not available to the crop. The excess water was lost through runoff and 

deep percolation. This is shown in Figure 4.7. The 8 hour system, however, was better matched 

to the soil. Hence a larger portion of the applied water can be stored in the soil and is therefore 

available to the crop. So even though similar amounts of water are applied, the 8 hour system 

delivers better yields because it allows for more effective use of water.  

 

 

Figure 4.7 Time series of deep percolation and runoff losses for the 12 and 8 hour systems 

 

In Figure 4.7, the deep percolation losses, abbreviated as DP in the legend, are similar for both 

systems and considerably smaller when compared to the runoff losses. This was attributed to the 
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assumption of poor drainage conditions in the model and was also representative of sprinkler 

irrigation. Over irrigation by an overhead sprinkler system was more likely to result in increased 

runoff then deep percolation. On average, the 12 hour system lost an additional 100 mm of 

water to runoff, annually, compared to the 8 hour system. With the help of the ZIMsched 2.0 

model, the agronomic assessment revealed that the 8 hour system outperformed the 12 hour 

system in terms of yield. The next task was to assess if the revenue gained from the increase in 

yield was enough to balance the additional costs of the 8 hour system. 

 

4.1.3 Economic assessment 

 

The Irriecon v2 model was used to conduct the economic assessment. The model was 

configured with the necessary input information: Presentation and discussion of all model inputs 

are not relevant to this study and therefore not included. Examples of relevant information used 

include: 

 Seasonal water use and cane yield as predicted by the ZIMsched  2.0 model, 

 Irrigation system and pumping costs determined by the design and costing tool. These 

costs were important to represent the 28% increase in capital investment for the 8 hour 

system, 

 2007/2008 cost of electricity on the land rate tariff option (ESKOM, 2007), 

 Water tariffs, obtained from DWAF (2008), were 4.06 c/m
3
, 

 Following Hoffman et al. (2007), labour requirements for sprinkler systems were set at 

1.65 hrs/ 1000 m
3
, where cost of labour was R 6.88/hour. The labour cost for switching 

valves in the 8 hour systems was considered negligible. 

 RV Price of cane at the time was R 1583.12/ton, 

 And finally, an annual inflation of 7 % and interest rate of 13.5 % was assumed to 

calculate the interest and depreciation costs of the equipment. 

 

In certain instances, the costs for both systems were fairly similar if not identical. These 

included the mainline operating costs largely consisting of electricity and the planting and 

ratooning costs as shown in Table 4-2. The mainline operating costs were similar as a result of 

identical pumping systems and similar water applications per season for both systems, as 

pointed out previously. The agronomic, harvesting and transport costs for both systems, shown 

in Table 4-2, were represented but are not discussed in great detail here due to the lack of direct 

relevance to this work. It should be noted, however, that costs associated to harvesting and 

transport are dependent on yield and yield in turn dependent on irrigation. Hence, consideration 
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of these costs was important for holistic assessment of the systems. The major differences 

between the two systems were the revenue generated for cane yields and the mainline and 

system fixed costs.  

 

Table 4-2 Irriecon V2 results presented as the average over 12 years in units Rand per hectare 

REVENUE   12 hour (average) 8 hour (average) 

  Cane sales 23,618.17 25,427.88 

  

 

  

  IRRIGATION COSTS 

    Mainline costs 

    Mainline fixed costs 1,065.33 1,241.63 

  Mainline operating costs 1,310.94 1,323.11 

  Total mainline costs 2,376.27 2,564.74 

  System costs 

    System fixed costs 141.45 314.31 

  System variable costs 869.64 1,012.58 

  Total system costs 1,011.09 1,326.89 

  Total irrigation costs 3,387.35 3,891.63 

  

 

  

  OTHER DIRECT COSTS 

    Planting costs 942.93 942.93 

  Ratooning costs 3,289.92 3,289.92 

  Harvesting costs 1,493.95 1,608.42 

  Haulage costs 4,065.36 4,376.86 

  Total other direct costs 9,792.15 10,218.13 

  

 

  

  NET MARGIN 10,438.66 11,318.12 

 

Systems variable costs also differed significantly. This was due to the cost of repairs and 

maintenance, which was calculated as 2% of the systems fixed cost (Oosthuizen et al., 2005). 

Hence, the 8 hour system, having an additional set of sprinklers, was likely to cost more in 

terms of repairs and maintenance. The information most sort after from this assessment was the 

net margins above allocated cost. The economic assessment revealed that the 8 hour system 

generated better net margins on average when compared to the 12 hours system. In Table 4-2, 

the average net margins for the 12 and 8 hour systems were R 10, 438.66 and R 11, 318.12 per 

hectare, respectively. This implies an average gain of R 879.46 per hectare, amounting to an 8% 

improvement in returns, for the 8 hour system. The annual net margins for both systems are 

shown in Figure 4.8 below. Figure 4.8 reflects the seasonal variation for both weather and yields 

for both systems 
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Figure 4.8 Partial net margins in Rand per hectare for the 12 and 8 hour systems 

 

Figure 4.8 clearly reflects the better performance of the 8 hour system in all years, irrespective 

of the seasonal variation. In addition the degree of performance, for the 8 hour system, improves 

in 1995, 1996 and 1997 were rainfall was less than 230 mm.  This confirms the hypothesis that 

the additional costs of the 8 hour system was offset by the increase in yields due to more 

effective use of water.  

 

4.1.4  Conclusions  

 

In this chapter, strategies to better irrigate shallow soils with semi-permanent sprinkler systems 

were investigated. Traditionally, normal practices made use of a 12 hour stand time to prevent 

the use of labour during the evening and to make use of the full 24 hours in a day. 12 hour stand 

times, however, often applied more water than what could be stored in the soil profile. This 

resulted in losses through runoff and deep percolation. A new and innovative method to irrigate 

in shorter intervals was developed and assessed. In this case, the new system applied water over 

an 8 hour stand time and was compared to the traditional 12 hour stand time. As a result of the 

modifications, the 8 hour systems cost 28 % more in fixed costs. The 8 hour system, however, 

performed better than the 12 hour system, both in terms of yield and profit generation. In 

addition, the 8 hour system used similar amounts in terms of water and electricity resources.  

 

This was significant in the context of this study. The increased investment to modify and 

partially automate an irrigation system, to match the application of water to the soil profile, 
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proved to be beneficial economically. On average the 8 hour system returned an 8% 

improvement in profits compared to the 12 hour system.  

 

In addition, the 12 hour system resulted in more runoff. Not only does this result in ineffective 

use of water but also has serious environmental impacts (Perry, 2007). Runoff often carries with 

it, valuable top soil and nutrients. Over a period of time, the loss of soil and nutrients can have 

significant impacts on crop yield. The economic impact of this was not determined but such 

environmental impacts add to the motivation for farmers to invest in systems that are better 

matched to the soil. Farmers and irrigation designers are therefore recommended to ensure that 

irrigation systems are well matched to soils. The economic and environmental benefits of well 

designed and operated systems appear to outweigh the additional investments for such systems. 

Moreover, this highlights the importance of considering the water budget during the design 

phase. The fate of the various fractions of water applied should be considered (Burt et al., 1997) 

 

Furthermore, the use of the “Irrigation Assessment Framework” was demonstrated. If this 

assessment was stopped at the 1
st
 stage where the alternative systems were only designed and 

priced, it would have appeared that the 12 hour system was the better option since it was 

cheaper. However, looking beyond into the agronomic assessment, the 8 hour system proved to 

deliver better yields for similar water use. The economic assessment then confirms that the 8 

hour system is indeed a better system. Firstly, this emphasizes the importance of assessing 

alternate strategies holistically and secondly, highlights the role of the framework and tools 

described in Chapter 3. In the next chapter, the frame work is used to explore the more current 

and burning topic of electricity tariffs in the context of irrigation.  
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4.2 Electricity Tariff Assessment 

 

In previous years, the cost of electricity in South Africa was rated amongst the cheapest in the 

world (FIN24, 2007). This has changed in recent times. Due to the increase in population, the 

increase in costs for fossil fuels and difficulties with infrastructure, the countries energy 

supplier, Eskom, has struggled to meet the electricity demands (ESKOM, 2007). As a result, a 

number of increases in the electricity tariffs have been affected to mitigate the situation. 

Increases included: 14.2% effective from 1
st
 April 2008, 34.4% effective from 1

st
 July 2008 and 

finally a further 33.6% increase on 1
st
 July 2009 (ESKOM, 2007, 2008 & 2009). The increase in 

2009 also included an environmental levy of 2c per Kilo Watt hour (ESKOM, 2009). In light of 

the economic climate, largely attributed to the cost of fuel and agrochemicals, the increase in 

electricity tariffs has significantly impacted the profitability of farmers. For this reason this 

chapter aims to explore how irrigators can reduce their electricity costs. This section focuses 

largely on a better understanding of the electricity tariff structure, while the next section will 

focus on strategies to reduce electricity consumption and therefore costs. 

 

4.2.1 South African tariff options available to farmers 

 

ESKOM, guided by the National Electricity Regulator of South Africa (NERSA), have designed 

a number of tariff options for electricity users. In this work, only the rural tariff options 

applicable to farmers were considered. These consisted of the Landrate, Ruraflex and Nightsave 

options.  

 

All tariff options included a fixed cost, for the use of infrastructure irrespective of whether 

electricity was used or not, and variable costs for the actual consumption of electricity. The 

Landrate option consists of a flat rate, dependant on the size of supply, for both fixed and 

variable costs. The Ruraflex and Nightsave options, however, were designed to promote the use 

of electricity during low demand season and off peak hours. For this reason the variable costs 

for energy consumption are differentiated according to the time of use. In other words use of 

electricity during low demand and off-peak periods were rewarded with lower tariffs and 

charges. The various tariffs for each option, for the 2008/2009 season, are displayed below in 

Table 4-3. Table 4-3 only represents a summary of the cost breakdown and is presented to 

demonstrate the tariff structure for a pre-selected supply size. The full list of tariffs and charges 

can be obtained from Eskom (2008). 

 



 52 

Table 4-3 Break down of electricity tariffs for the Landrate, Ruraflex and Nightsave options for 2008/2009 (Eskom, 2008) 

Options Supply Fixed Charges Variable Charges 

Landrate 
 Network Access Service   Active Energy   

25 KVA R 9.04/day R8.60/day   40.63 c/kWh   

R
u

ra
fl

ex
 

Supply Administration Service Network Access 
Reactive 

Energy 
Active Energy 

Voltage 

Surcharge 

Transmission 

Surcharge 

<100 

KVA 
R8.11/day R5.54/day R5.56/KVA 

2.82 

c/Kvarh 

Peak 

c/kWh 

Standard 

c/kWh 

Off-

Peak 

c/kWh 

10.07% 1% 

    139.84 39.16 19.22 High Demand 

    38.74 23.63 16.45 Low Demand 

N
ig

h
ts

a
v

e 

Supply Fixed Charges Variable Charges 

 Administration Service 
Network 

Access 

Energy 

Demand 

Reactive 

Energy 
Active Energy 

Voltage 

Surcharge 

Transmission 

Surcharge 

<100 

KVA 
R7.92/day R5.54/day R4.22/KVA  -  10.07% 1% 

 High Demand R85.79/KVA - 19.60c/kWh   

 Low Demand R56.50/KVA - 13.50c/kWh   

Notes: Voltage Surcharge – Determined as a percentage of network access and active energy charges dependent on supply voltage.   

  Transmission Surcharge – Determined as percentage of network access, active and reactive energy charges dependent on the distance from a 

central point in Johannesburg  

High Demand Season – June to August  

Low Demand Season – September to May 
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In addition to low and high demand periods, Eskom have also designated peak, standard and 

off-peak periods. These periods are illustrated, for the Ruralflex and Nightsave options in Figure 

4.9 below. 

 

 

Figure 4.9 Designated periods for peak, standard and off-peak consumption of electricity 

(ESKOM, 2008) 

 

Table 4-3 and Figure 4.9 both provide insight into the complexity facing irrigation farmers and 

designers. How does one decide which electricity tariff option to register on, in order to 

minimise costs? Manually determining the electricity costs for a given irrigation system with 

specific constraints is time consuming and tedious. Hence assessing a number of options and 

alternative scenarios is not always practical. The recently developed Irriecon V2 model, 

however, allows one to quickly calculate and assess the electricity costs for various designs and 

strategies.  

 

For this reason, the irrigation assessment framework was used to assess the cost of electricity 

for a given system. At this stage, it must be pointed out that Irriecon V2, was developed 

following Oosthuizen et al. (1998), and did not include the algorithms to calculate electricity 

tariffs on the Nightsave option. This implied that the framework could only be used to compare 

the Landrate and Ruraflex options. This proved to be a short fall. Nonetheless, value could still 

be obtained from comparing the Landrate and Ruraflex options. The remainder of the chapter 

investigates the cost implications of using the Landrate tariff option versus the Ruraflex tariff 

option
1
.  

                                                      

1 Subsequent to the writing of this dissertation, the author built into Irriecon V2 algorithms for the Nightsave option. 

The analysis for the Nightsave option was completed and reported on by Jumman and Lecler 2010.  See Appendix F 
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4.2.2 Landrate versus Ruraflex  

 

The aim of this section was to better understand and demonstrate the differences between the 

Landrate and Ruraflex electricity tariff structure. The procedure to achieve this was as follows. 

A hypothetical irrigation system was assessed, using Irriecon V2, as if it was operated on the 

Landrate option first, and then on the Ruraflex option. The irrigation design and costing tool and 

ZIMsched 2.0 was used to provide the costing and agronomic input for the economic assessment 

in Irriecon V2. In this way: the capital costs of the irrigation system, the seasonal water 

applications and crop yields are all identical for both scenarios. The only variation therefore will 

be in the operating costs due to the different electricity tariff options.  

 

4.2.2.1 Methodology and model configuration 

 

The irrigation system was designed to apply 48 mm in 10 days on a 12 hour stand time. This 

translated into the equivalent application of 4.8 mm/day, which was a pre-selected capacity 

appropriate for a 1.2 m deep sandy clay loam in the Heatonville area. The total available water 

(TAW) for the soil was calculated as 114 mm. A VYRSA 35 sprinkler with a 4.4 mm brass 

nozzle was selected. The sprinklers were spaced at 21 × 21 m and operated at 352 kPa at a 

coefficient of uniformity of 88%. For the designed 60 hectares, the pumping system was 

required to pump a flow of 116.42 m
3
/hr at a head of 50.39 m, and a power rating of 25.38 KW. 

The total capital investment required was R 687 750 which equated to R 11 638/ha. 

 

The ZIMsched 2.0 model was configured with the system constraints as described above and 15 

years of weather data for Heatonville, ranging from 1985 to 1999. As in the previous chapter, 

10% of total applied water was assumed to be lost by wind drift and spray evaporation.  

Irrigation scheduling rules as described on page 42 in the previous Chapter were applied. 

Running the ZIMsched 2.0 model for the 15 year period returned the following results. 

 

 The average crop yield over the 15 years was 125.25 tons/ha with an average annual rainfall of 

918.6 mm and an average seasonal irrigation application of 734.98 mm. The crop yields and the 

irrigation water applications were then input into the Irriecon V2 model together with the 

system capital costs and other relevant data such as water tariffs, etc. Irriecon V2 was 

configured for two scenarios, namely Landrate and Ruraflex. In addition, both scenario were 

analysed using electricity tariffs from the 2007/08, 2008/09 and 2009/10 years. This was 
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included to demonstrate the impact of increasing electricity tariffs on farmers and their 

profitability.  

 

4.2.2.2  Results and discussion 

 

Presented in Table 4-4 below are the results obtained from the economic analysis from the 

Irriecon V2 model. Take note that the values presented in Table 4-4 are in units Rand per area 

under cane. Furthermore, the tabulated values are the averages for the 15 cropping seasons. 

Presented in the second row is the year for which the electricity tariffs were used. i.e 07/08 

indicates that the electricity tariffs for the year 2007/2008 were applied for all 15 cropping 

seasons. 

  

Table 4-4 Output from Irriecon V2 model, expressed as an average in units R/area under cane, 

for scenario A and B. 

Revenue Landrate Ruraflex Landrate Ruraflex Landrate Ruraflex 

 Tariff years (07/08) (07/08) (08/09) (08/09) (09/10) (09/10) 

Cane sales R 23,066 R 23,066 R 23,066 R 23,066 R 23,066 R 23,066 

Irrigation Costs 

      Mainline costs 

      Mainline fixed costs R 976 R 1,000 R 1,002 R 1,036 R 1,024 R 1,030 

Mainline operating 

costs R 588 R 480 R 754 R 609 R 984 R 921 

Total mainline costs R 1,564 R 1,480 R 1,756 R 1,645 R 2,008 R 1,952 

System costs 

      System fixed costs R 121 R 121 R 121 R 121 R 121 R 121 

System variable costs R 490 R 490 R 490 R 490 R 490 R 490 

Total system costs R 612 R 612 R 612 R 612 R 612 R 612 

Total irrigation 

costs R 1,935 R 1,851 R 2,127 R 2,014 R 2,379 R 2,322 

Other Direct Costs 

      Planting costs R 943 R 943 R 943 R 943 R 943 R 943 

Ratooning costs R 3,290 R 3,290 R 3,290 R 3,290 R 3,290 R 3,290 

Harvesting costs R 1,459 R 1,459 R 1,459 R 1,459 R 1,459 R 1,459 

Haulage costs R 3,970 R 3,970 R 3,970 R 3,970 R 3,970 R 3,970 

Total other direct 

costs R 9,662 R 9,662 R 9,662 R 9,662 R 9,662 R 9,662 

Net Margin R 11,228 R 11,312 R 11,036 R 11,148 R 10,784 R 10,841 
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Table 4-4 clearly shows that, with the exception of the mainline costs, all other costs were 

identical. This was as expected, since the irrigation system, watering regime and crop yield were 

all identical. Interestingly, for both scenarios the actual electricity consumed was the same, but 

the mainline costs reflected a difference. This difference reflected the variation in the tariff 

structure between the Landrate and Ruraflex options.  

 

The mainline fixed costs comprised of interest and depreciation of equipment, insurance and 

electricity fixed costs, not shown in Table 4-4. Similarly mainline operating costs consisted of 

electricity and repairs and maintenance costs. As described before, all components were 

identical except for the electricity fixed and operating costs. As shown in Table 4-4, in the 

mainline fixed costs section, the Ruraflex option was generally more expensive then the 

Landrate option for all tariff years (07/08, 08/09 and 09/10). Inversely, for the mainline 

operating costs, the landrate option appeared to be more expensive then the Ruraflex option. In 

total, the Ruraflex option was cheaper than the Landrate option. Also, when looking at the 

landrate option only, the increase in tariffs and resultant decrease in net margins from the 

2007/08 season to the 2009/10 season was evident. The same applies for the Ruraflex option.  

 

To better gauge the impact of tariff hikes, the actual charges for a season are presented in Table 

4-5, below. The electricity tariffs represented in Table 4-5 were simulated by the Irriecon V2 

model for the 1998/99 crop season. In that season, irrigation application as determined by 

ZIMsched 2.0 amounted to 807.84 mm. Irriecon V2 predicted that 97, 932 kWh of electricity 

was required to pump the required volume of water to the 60 hectare field. Table 4-5, therefore, 

illustrates how the electricity tariffs for a farmer with the above system would have varied for 

the different tariff options and the electricity tariff hikes.  
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Table 4-5  Break down of Model predicted electricity costs for irrigation on 60 ha in the Heatonville area during the 1998/1999 cropping season  

Ruraflex 
 

 
   

Landrate 
  

Fixed Costs 
 

 
   

Fixed Costs 
  

 
Service Admin. Network 

 
Total Basic Network Total 

2007/2008 R 1,507 R 2,205 R 2,490 
 

R 6,202 R 2,340 R 2,460 R 4,800 

2008/2009 R 2,022 R 2,960 R 3,336 
 

R 8,318 R 3,096 R 3,254 R 6,350 

2009/2010 R 2,683 R    767 R 4,560 
 

R 8,009 R 3,449 R 4,212 R 7,661 

  
 

      
Variable Costs 

 
 

   
Variable Costs 

  

 
Reactive 

Active  Voltage 

Surcharge 

Transmission 

Surcharge 
Total Active 

 
Total 

2007/2008 R 403 R 21, 925 R 3,829 R 264 R 26,421 R 31,506 
 

R 31,506 

2008/2009 R 541 R 29, 423 R 5,138 R 354 R 35,456 R 42,276 
 

R 42,276 

2009/2010 R 689 R 47, 601 R 8,301 R 570 R 57,161 R 57,228 
 

R 57,228 

 
  

      
Total costs   

  
Ruraflex 

  
Landrate 

2007/2008   
  

R 32,623 
  

R 36,306 

2008/2009   
  

R 43,774 
  

R 48,626 

2009/2010   
  

R 65,170 
  

R 64,889 
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There are three important things to point out in Table 4-5. The first was that the mainline fixed 

costs were higher, while the variable costs were cheaper, for the Ruraflex option. Since the 

variable costs were considerably higher than the fixed costs, the Ruraflex option, as shown 

before, was cheaper overall except for when the 09/10 tariffs were applied. This was the first 

deviation from the trends demonstrated by the average values in Table 4-4. This will be 

discussed later.  

 

The second aspect to point out was the impact of increasing the tariffs from 2007/08 up to 

2009/10. If the farmer was operating on the Landrate option, the electricity bill was predicted to 

increase from R 36, 306 to R 64, 889, an increase of 78%. Similarly, if the farmer was operating 

on the Ruraflex option, the bill was expected to increase from R 32, 623 to R 65, 170, an 

increase of 99%. This was worrying considering that the revenue from cane sales remained 

constant while these costs were inflating at such significant levels. This clearly highlights the 

need to develop innovative irrigation strategies to reduce the cost of irrigation and will be 

discussed in more detail in the next chapter.  

 

The third and probably most significant point was related to the deviation in trends for the 09/10 

tariff year when comparing the average values in Table 4-4 to the values for a single season as 

shown in Table 4-5. To recap, Table 4-4 with the averages, showed that the Landrate option was 

more expensive. Table 4-5 with single season values, on the other hand, showed that for the 

09/10 prices, Landrate was cheaper. Relating to this was the inconsistency in the percentage 

increases for the Landrate and Ruraflex options. Why did the increase for Landrate amount to 

78% while the increase for Ruraflex was 99%. It appears that the differences between Landrate 

and Ruraflex for the 07/08 and 08/09 were relatively big, but as result of the latest tariff hikes, 

these differences have almost disappeared. This is better demonstrated in Figure 4.10 below. 

Figure 4.10 is simply a graphical representation of the total electricity costs shown Table 4-5. 
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Figure 4.10 Graphical display of the total electricity costs for the 1998/99 crop season 

 

From Figure 4.10, the difference between the Landrate and Ruraflex options for 2007/08 and 

2008/09 were R 3, 683 and R 4, 852, respectively. The difference for 2009/10, however, was 

only R 281. This implies that the cost of electricity since the 2009/10 tariff increases reflected a 

better representation of the timing of energy consumption. 

 

This concept is discussed in more detail below. In this exercise, the irrigation system was 

designed to operate for 24 hours a day. Hence the timing of electricity use, be it high or low 

demand or peak or off-peak periods, was identical for both scenarios. In addition, the actual 

electricity consumption was also identical for both systems. Hence, it would be expected that 

both scenarios would yield similar electricity costs.  

 

The results demonstrate that prior to the 2009/10 tariff hike, the Ruraflex option was cheaper. 

The Ruraflex option, however, was designed to provide incentives for users to shift the use of 

electricity into off-peak periods. In other words, it was intended that users should be rewarded 

with lower tariffs if electricity use was shifted into low demand and off-peak periods. The 

results of this study, however, indicate that farmers may have been incorrectly rewarded for 

simply switching onto the Ruraflex option without shifting the timing of the electricity use. This 

appears to have been corrected for in the 2009/10 tariff hike.  
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4.2.3 Conclusions 

 

Bringing this work back into the context of irrigation, the decision as to whether to operate on 

the Ruraflex or Landrate option is dependent largely on the timing of use of electricity and the 

actual quantity of consumption. Ruraflex has higher fixed costs but is balanced out by the lower 

variable costs component. At the present time, if timing and consumption are identical, both 

Ruraflex and Landrate yield similar costs.  

 

This study, however, has highlighted the opportunities to reduce costs by shifting use of 

electricity into low demand and off-peak periods on the Ruraflex option. In terms of irrigation 

this implies reducing pump operating hours into standard and off-peak periods. Two strategies 

can be adopted. The first requires one to increase the system capacity so that the same volume 

of water can be applied over a shorter period of time. This option would have implications of 

capital investment since bigger pumps and pipes would be required. In addition, care must be 

taken to ensure water applications are well matched to the soils infiltration and water holding 

characteristics.  

 

The second option, however, appeared more attractive and was investigated further. The second 

strategy was to simply reduce pump operation during the high demand and peak periods in order 

to decrease electricity tariffs. This, however, would result in reduced water applications and 

potentially yield penalties due to water stress. So the question posed is does the benefit of 

reduced electricity and water costs outweigh the penalties for yield loss? This question ties in 

with the concept of deficit irrigation and is explored further in the next chapter. 

 

 

 

 

  



 61 

4.3 Design and Operating Strategies for Deficit Irrigation  

 

Once again, the “irrigation assessment framework” provided the ideal platform to analyse and 

assess deficit irrigation strategies. The strength of the “assessment framework” was largely 

attributed to the ease with which tradeoffs between various parameters such as watering 

regimes, associated costs and yields could be quantified and assessed. In this chapter, a fairly 

well designed conservative system, assumed to be already installed in the field, was used to 

generate a number of deficit irrigation strategies by altering the systems hardware or operating 

rules. The “irrigation assessment framework” was then used to assess the performance of each 

strategy. 

 

4.3.1 Description of approach and methodology 

 

For this chapter, a high capacity irrigation system, with the ability to meet the crop water 

requirements during the peak summer growing months was designed for the Heatonville area. 

The system served as the base system and was designed to ensure that the crop experienced no 

water stress during the season. This base system served as the benchmark against which other 

deficit strategies could be compared. The base system made use of the VYRSA 35 sprinkler 

with a 4.4 mm brass nozzle. The sprinklers were designed to operate: at 21 m spacing, on a 12 

hour stand time, with 352 kPa of pressure, delivering 48 mm on a 7 day cycle. This was 

equivalent to an application of 6.9 mm a day. The “114 mm TAW” soil from the previous 

chapter was used. 

 

It should be noted that the crop water requirements and therefore the target depth (gross 

irrigation requirement) was determined following the methods laid out in the commonly used 

South African Irrigation Design Manual (ARC-ILI, 2004). The methods included traditionally 

accepted norms and commonly used equations for determining the net irrigation requirement 

from climate, crop and soils data. The problem, however, sets in when the Irrigation Design 

Manual recommends converting from net, to gross irrigation requirement using system 

efficiency. Generic system efficiencies, such as 80% for sprinkler systems, were recommended 

in the design manual. This implies that system capacity is increased from net to gross in order to 

apply more water to compensate for inefficiencies of the system. As pointed out in the literature 

review, traditional design methods, such as the one used in the base system, are conservative 

and aim to design for a high enough capacity so that no water stress is experienced. This was 

confirmed when the 6.9 mm base system was simulated in the ZIMsched 2.0 model. The soil 
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water balances for a dry and wet year, as simulated by the ZIMsched 2.0 model, are shown in 

Figure 4.11 below.  

 

 

Figure 4.11 Soil water balance for the 6.9 mm base system for a specific season. A) Wet 

Year. B) Dry Year 

 

Graph A in Figure 4.11, represents a wet year where 1225 mm of rainfall was received in 1990. 

In 1992, only 388 mm of rainfall was received and is depicted as the dry year in Graph B. As 

shown in Figure 4.11, the soil water depletion curve very rarely drops below the stress curve for 

both the wet and dry years, indicating no stress. For this reason the high capacity “base system” 

was assumed to be typical of what would be used on a farm for this particular soil and 

geographical location.  

 

The idea then was to develop and assess deficit strategies with reduced watering capacities. It 

was assumed that the 6.9 mm system already existed and was operating successfully in the field. 

Hence, the development of deficit strategies was limited to those strategies which would make 

use of the existing hardware already in the field. This step was considered important so as to 

ensure that only implementable, realistic and appropriate strategies were developed for a 

grower. Furthermore, as concluded in the previous chapter, opportunities existed to reduce 

electricity costs on the Ruraflex option. Hence the Ruraflex option, based on 2009/10 prices was 

applied for all strategies. Essentially, two components were targeted. The first component 

addressed the design of irrigation systems and the use of hardware. The second component 

explored irrigation operating rules such as stand times and the potential to take advantage of off-

peak pumping.  

 

First consider the design component. As described in the literature review, deficit strategies 

allows for more flexible irrigation designs and variation from design norms.  For this reason, 
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variations of the 6.9 mm system, as described above, were developed and are shown in Table 4-

6. 

 

Table 4-6 Summary of systems developed to implement deficit irrigation 

 System 1 System 2 System 3 

Peak application associated with 

system strategy (mm/day) 
6.9 4.8 4.0 

Application per cycle (mm) 48 48 48 

Cycle length (days) 7 10 12 

Stand Time (hours) 12 12 12 

No of sets/day 2 2 2 

 

Three systems were developed. System 1, represent the base system as described in detail 

above. The major differences between System 1, System 2 and System 3 were the cycle length 

as highlighted in Table 4-6. Basically, all systems make use of the same sprinkler package and 

therefore apply the same amount of water per cycle, 48 mm.  The difference in peak 

applications was therefore the result of applying the same amount of water over different 

periods. For example, in System 1, 48 mm applied once in 7 days equates to 6.9 mm a day, 

whilst for System 2, 48 mm applied once in 10 days equates to 4.8 mm a day.  Implementing 

System 2, however, involved adding to the existing hardware of system 1. By increasing the 

cycle length, additional sprinkler positions on the laterals were required. System 2 was achieved 

by simply adding 3 lengths of lateral to the 6.9 mm system to create the sprinkler positions for 

the 3 additional days. This is shown in Figure 4.12, where the positions marked X and the 

shaded area represents the system hardware additions. 

  

 

Figure 4.12 Illustration of modifications to the base system to obtain system 2 

 

Similarly, system 3, involved increasing the cycle length to 12 days reducing the 48 mm 

application to a 4 mm a day system. Since these systems were designed to operate with one 
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sprinkler per lateral, increasing the length of laterals did not have major impacts on the pipe 

hydraulics in terms of flow, friction, pipe diameter and required pressure. This implies that for 

the same pump, mainline, sub mainline and sprinklers, a much larger area can be irrigated by 

altering the cycle length and inserting the additional length of laterals as required. Systems 2 

and 3 were therefore expected to cost less per hectare than system 1. These can be summarized 

diagrammatically as shown in Figure 4.13.  

 

 

Figure 4.13 Schematic of conceptual variations between systems 1, 2 and 3 

 

In this case, the base system made use of 66 sprinklers to apply 6.9 mm/day on 44.32 hectares at 

a cost of R 11 515 per hectare. The modified 4.8 mm system, uses 66 sprinklers to apply 4.8 

mm/day on 62.05 hectares at a cost of R 10 439 per hectare. This resulted in a reduction in 

capital costs per hectare since the hardware was now spread over a greater area. Therefore, in 

Figure 4.13, System 2 was depicted with lower capital costs on the y intercept compared to 

system 1. In addition, the slope for System 2 was gentler due to anticipated reduction in water 

and electricity tariffs per hectare. Similarly, System 3 had lower capital and operating costs 

compared to both system 1 and 2. Systems 2 and 3, therefore, achieved the target of making use 

of the existing hardware from System 1, while applying a deficit irrigation strategy with reduced 

fixed and operating costs. 

 

The next component explored irrigation operating rules and the opportunity to take advantage of 

off-peak pumping. Four strategies were developed and are presented in Table 4-7 below.  
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Table 4-7 Summary of strategies developed to implement deficit irrigation 

 System 1 

Strategy A B C
1 

D
2 

Peak application associated with 

system strategy (mm/day) 
6.9 4.6 6.9 & 4.6 deficit 

6.9 mm fixed winter and 

summer cycle 

Application per cycle (mm) 48 32 
off-peak = 32 and 

Peak = 48 

Winter = 32 

Summer = 48 

Cycle length (days) 7 7 7 7 

 

Stand Time (hours) 12 8 

 

8 (germination + tillering) 

& 12 (Yield Formation) 

 

Winter = 8 & 

Summer = 12 

No of sets/day 2 2 2 2 
1 For strategy C, system operated on two 8 hour stand times per day during germination and tillering, and two 12 hour stand times per day during the 

yield formation phase. 

2 For strategy D, system operated on fixed cycle (i.e. with no scheduling) with two 8 hour and two 12 hour stand times in winter and summer, 

respectively 

 

It should be noted upfront, that strategies A, B, C and D all make use of exactly the same 

system hardware, in this instance System 1. The difference, as highlighted in Table 4-7, was that 

the stand time for each strategy was varied. Altering the stand time therefore reduces water 

application and operating costs. This is shown in Figure 4.14, where all systems have the same y 

intercept, indicating identical capital costs but varying slopes to indicate varying water and 

electricity tariffs. The rationale for the strategies was as follows: Strategy A was designed to 

operate on a 12 hour cycle utilising the full capacity of the system. Hence strategy A, as shown 

in Figure 4.14, was anticipated to apply the most water and achieve the highest yields, provided 

no anaerobic conditions were created.  
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Figure 4.14 Schematic of conceptual variations between strategies A, B and C 

 

Strategy B, made use of the same hardware as A, but only operates for two 8 hour sets in a day 

instead of two 12 hour sets. This allowed for shifting the use of electricity into standard and off-

peak hours. Considering the Ruraflex option in Figure 4.9 from the previous section, the first 8 

hour set can take place during the standard period between 10h00 and 18h00. The second 8 hour 

set can run during the off-peak period between 22h00 and 06h00. Reducing the stand time, 

however, reduces the system capacity to 4.6 mm/day, thereby incurring crop stress and loss of 

revenue from yield losses.  

 

Strategy C consisted of a combination of strategy A and B. As explained previously, for the 

sugarcane crop, water stress in the establishment phase during tillering did not impact 

significantly on final yields. Hence strategy C aimed to make use of strategy B during the 

establishment phase and the higher capacity strategy A in the vegetative and yield formation 

phases. In general, the sugarcane crop requires 30 days for emergence and a further 90 days for 

tillering (FAO, 2009). Hence reduced irrigation can occur for 120 days from planting without 

significantly impacting on final yields. In addition, if the crop was planted in April, the low crop 

water requirements in the germination and tillering phase partially coincide with the electricity 

high demand period, from June to August. Hence reduced applications and pumping costs 

during periods of elevated electricity costs will be of greater benefit. This is shown in Table 4-8, 

below. 
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Table 4-8 Timeline illustrating deficit strategy during specific crop phases and expensive high 

energy demand periods  

Apr May June July Aug Sep Oct Nov Dec Jan Feb March 

Emergence + Tillering Canopy development + yield formation Maturation 

   High Demand Season Low Demand Season 

4.6 mm strategy B 6.9 mm strategy A 

 

Hence, as shown in Table 4-8, it was decided that strategy B was used until the end of the high 

demand period. The ZIMsched 2.0 model was, therefore, configured to apply strategy B for the 

first 150 days, until the end of August, and strategy A for remaining period until dry off. In 

other words, this translated into operating the system on two 8 hour sets for the first 150 days 

and then on two 12 hour sets for the remainder of the irrigating season. This was also 

represented in Figure 4.14, where strategy C was anticipated to deliver an intermediate water 

application and yield for the same system fixed costs. 

 

Finally, strategy D was developed to illustrate the importance of scheduling. In strategy D, the 

irrigation was applied on a fixed summer and winter cycle, as shown in Table 4-7. In strategy D, 

irrigation was applied in accordance with cycle length irrespective of soil water depletion and 

crop stress levels. No scheduling was used except, irrigation was delayed when rainfall, greater 

than 10 mm was received. Shown in Figure 4.15, was the anticipated result if strategy D was 

applied with systems 1 and 2.  As shown in Figure 4.15, this strategy was anticipated to incur 

high costs whilst irrigating excessively. 

 

 

Figure 4.15 Schematic of irrigation strategy D with no scheduling for two different systems 

with different peak design capacities, namely 4.8 mm/d and 6.9 mm/day 
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The combination of the proposed deficit irrigation systems and strategies are summarized in 

Table 4-9, below. The idea was to assess the significance of the reduced watering capacity and 

resultant yield loss versus the reduction in capital and operating costs.  

 

As was completed in Chapter 4.2, the ZIMsched 2.0 model was configured with 15 years of 

weather data for the Heatonville area. The performance of each scenario was simulated for the 

15 cropping seasons. The water and yield outputs were then entered into the Irriecon V2 model 

together with the other relevant costs, to determine the economic performance of each strategy. 

A dry land (no irrigation) scenario was also simulated in order to quantify the impact of 

converting dry land area into irrigated area by using water savings from the deficit irrigation 

strategies. This will be discussed in more detail later. The results are presented below. 
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Table 4-9 Summary of irrigation strategies developed to implement the deficit concept  

 System 1 System 2 System 3 

Strategy A B C D A B C D A B C 

Peak 

application 

associated with 

system strategy 

(mm/day) 

6.9 4.6 
6.9 & 4.6 

deficit 

6.9 mm fixed 

summer and 

winter cycle 

4.8 3.2  
4.8 & 3.2 

deficit 

4.8 mm fixed 

summer and 

winter cycle 

4.0 2.7 4.0 & 2.7 deficit 

Application 

per cycle (mm) 
48 32 

Peak = 48 or 

off-peak = 

32 

Summer = 48 

Winter = 32 
48 32 

peak = 48 or 

off-peak = 

32 

Summer = 48 

Winter = 32 
48 27 

peak = 48  or 

off-peak = 32 

Cycle length 

(days) 
7 7 7 7 10 10 10 10 12 12 12 

Stand Time 

(hours) 
12 8 12 or 8 12 or 8 12 8 12 or 8 12 or 8 12 8 12 or 8 

No of sets/day 2 2 2 2 2 2 2 2 2 2 2 
Strategy A – 2 × 12 hour stand times per day 

Strategy B – 2 × 8 hour stand times per day → same hardware, no peak pumping 

Strategy C – 2 × 12 hour stand time in low demand off-peak period and 2 × 8 hour stand time in high demand peak period (Same hardware) 

Strategy D – Fixed winter & summer cycle irrigation → no scheduling except for rainfall delay calculation 

System 1 – 7 day cycle with 14 sprinkler positions on lateral 

System 2 – 10 day cycle with 20 sprinkler positions → longer lateral → greater areas covered for same sub mainline, mainline and pump. 

System 3 – 12 Day Cycle with 24 sprinkler positions → longer lateral → even greater area covered for same sub mainline, mainline and pump. 
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4.3.2  Results  

 

The average annual irrigation applications and yields as predicted by the ZIMsched 2.0 model 

are shown in Table 4-10. As expected, the fixed cycle system with no scheduling used the most 

water. Not surprisingly, these systems also delivered lower yields, indicating crop stress due to 

over irrigation and potentially anaerobic conditions. The 6.9 mm fixed cycle system (1D), on 

average used 1318 mm annually. This strategy far exceeded what was representative, in terms 

of water application, for the Heatonville area (Greaves, 2007). For this reason the strategy 1D 

was considered impractical and discarded. The base system (1A) delivered on average 140 

ton/ha for an average annual water use of 855 mm.   

 

Table 4-10 Summary of the average irrigation water applications and yield  

System & Strategy  

(as per Table 4-9) Average annual water (mm) 

Average yield  

(ton/ha) 

6.9 mm fixed cycle (1D) 1318 136.00 

4.8 mm fixed cycle (2D) 937 133.49 

6.9 mm (1A) 855 140.98 

6.9 & 4.6 deficit (1C) 785 140.51 

4.8 mm (2A) 783 139.11 

4.8 & 3.2 mm deficit (2C) 759 138.75 

4.0 mm (3A) 745 136.96 

4.0 & 2.7 mm deficit (3C) 712 136.18 

4.6 mm (1B) 705 137.61 

3.2 mm (2B) 636 132.24 

2.7 mm (3B) 593 127.35 

 

Conversely, the 2.7 mm strategy delivered the lowest yield for the lowest water application. The 

difference between the base 6.9 mm and 2.7 mm strategies amounted to a yield loss of 13.63 

tons/ha for a water savings of 262 mm of water. So the crucial question was: would the cost 

savings for not applying the 262 mm of water make up for the 13 tons/ha yield loss? The answer 

is provided in the economic analysis in Table 4-11, below. 
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Table 4-11 Economic performance for each scenario expressed as an average of the 15 cropping seasons in units Rand per area under cane.  

System System 1 – 7 day cycle System 2 – 10 day cycle System 3 – 12 day cycle 

Dry 

land 

Strategy A B C A B C D A B C 

 
6.9 mm 4.6 mm 

6.9 & 

4.6 mm 
4.8 mm 3.2 mm 

4.8 & 3.2 

mm 

Fixed 

Cycle 
4.0 mm 2.7 mm 

4.0 & 2.7 

mm 

Revenue     

Cane sales 25, 974 25, 336 25, 863 25, 594 24, 354 25, 544 24, 563 25, 201 23, 434 25, 054 13,815 

Irrigation Costs     

Mainline costs    
  

  
    

Mainline fixed costs
1 

1, 118 1, 118 1, 118 981 981 981 981 927 927 927 0 

Mainline operating 

costs
2 984 681 918 988 653 916 1, 105 968 627 874 0 

Total mainline costs 2, 102 1, 799 2, 037 1, 969 1, 634 1, 897 2, 086 1, 894 1, 554 1, 800 0 

System costs    
  

  
    

System fixed costs
3 

162 162 162 115 115 115 115 97 97 97 0 

System variable costs
4 

541 471 523 522 425 506 624 497 397 475 0 

Total system costs 702 632 685 637 540 622 739 594 494 572 0 

Total irrigation costs 2, 805 2, 432 2, 721 2, 606 2, 174 2, 519 2, 825 2, 488 2, 047 2, 372 0 

Other Direct Costs     

Planting costs 943 943 943 943 943 943 943 943 943 943 943 

Ratooning costs 3, 290 3, 290 3, 290 3, 290 3, 290 3, 290 3,290 3, 290 3, 290 3, 290 3,290 

Harvesting costs 1, 643 1, 643 1, 643 1, 643 1, 643 1, 643 1,517 1, 643 1, 643 1, 643 874 

Haulage costs 4, 471 4, 471 4, 471 4, 471 4, 471 4, 471 4,129 4, 471 4, 471 4, 471 2,378 

Total other direct costs 10, 347 10, 347 10, 347 10, 347 10, 347 10, 347 9,879 10, 347 10, 347 10, 347 7,485 

NET MARGIN 12, 822 12, 708 12, 821 12, 730 12, 215 12, 780 11, 723 12, 548 11, 638 12, 551 6,330 
1 = Interest, depreciation and insurance on all underground pipes and pumping system + electricity fixed costs 

2 = Electricity variable costs + repairs and maintenance (repairs and maintenance expressed as percentage of fixed cost) 

3 = Interest and Depreciation on sprinkler package only 

4 = Water tariffs + labour + repairs and maintenance (repairs and maintenance expressed as percentage of fixed cost)



 72 

The answer to the above question is no. The cost savings for not applying the 262 mm of water 

does not make up for the yield loss. As shown in Table 4-11, the net margin for the 2.7 mm 

system was lower than that for the 4.8 mm fixed cycle system. Even though both fixed and 

operating costs for irrigation were much lower for the 2.7 mm system, the cost of yield loss was 

much greater. This trend applied for all scenarios.  

 

Fixed costs - hardware 

Elaborating further, system 1, irrespective of the applied strategies, has the same mainline and 

system fixed costs since all of the strategies (1A, 1B, 1C and 1D) make use of the exact same 

hardware. Similarly, this applies to systems 2 and 3. As was anticipated in Figure 4.13, system 3 

and 2 were cheaper in units Rand per area under cane since the same sprinklers, sub mainlines 

and mainlines were used to irrigate a larger area by increasing the cycle length. In this case, the 

mainline fixed cost for 12 day “system 3” cost R 927 per area under cane, compared to the 10 

day “system 2” and 7 day “system 1”, which cost R 981 and R 1, 118 per area under cane, 

respectively. Similar trends apply for the system fixed costs.  

 

Operating costs – water and electricity 

Unlike the fixed costs though, the operating/variable costs for each scenario varies. The 

mainline operating costs were dependent on the use of electricity while the system variable cost 

was a function of water tariffs. As expected, systems applying more water on a 12 hour stand 

time, incurred higher mainline operating and system variable costs. For example the mainline 

operating costs for the 6.9 mm and 4.6 mm system were R 984 and R 681 per area under cane, 

respectively. This demonstrates the economic benefit of shifting electricity use to lower costing 

standard and off-peak hours. Similarly, the system operating costs for the 6.9 mm system and 

4.6 mm system was R 541 and R 471 per area under cane, respectively. This demonstrated the 

impact of reduced water applications and therefore reduced water tariffs. Also made apparent in 

this analysis was the fact that the cost of electricity was higher than the cost of water. 

 

Saving irrigation costs versus losing revenue from yield loss 

The impact of the irrigation costs appears to be smaller than revenue from yields. For example, 

when comparing the 6.9 mm base system to the 2.7 mm system, the water savings was 262 mm 

and the yield loss was 13.63 tons/ha. The difference in irrigation costs, from Table 4-11, 

amounts to R 757 per area under cane. The difference in revenue from cane sales, however, 

amounts to R 2, 540 per area under cane. This implies that the direct costs of water and 

electricity are considerably smaller in comparison to cost of yield losses. At this stage it appears 

that applying a deficit strategy to conserve water and reduce costs, while incurring yield loss, 

does not benefit a grower financially. The exception in this case was for strategy C, were water 
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was held back at non critical growth stages. This resulted in water savings with minimal crop 

stress and therefore reasonably high yields and net margins.  

 

Opportunity cost of water 

The concept of deficit irrigation, however, cannot be ruled out. The value of a deficit strategy 

can be realised in the opportunity cost of water. In other words, increased profits can be realised 

if water savings from a deficit strategy is used to convert dry land cane into irrigated cane, 

assuming that land is not limiting. This is demonstrated in Table 4-12 below.  

 

In Table 4-12, the irrigable area ratio is an indicator of the additional dry land area that can be 

irrigated with water savings. For example, in Table 4-10, the “fixed cycle”, 2D, and “2.7 mm” 

strategies on average used 937 mm and 593 mm per annum, respectively. Hence, for every 

hectare converted from the fixed cycle to the 2.7 mm strategy, a water savings of 262 mm 

would be realised. An irrigable area ratio was then used to determine what dry land area could 

be converted with the water savings. This is shown in Table 4-12. The net margins, including 

dry land margins, from Table 4-11 are carried through to Table 4-12. The irrigable area ratio 

was then applied to the net margins above dry land to determine the relative potential increase 

in net margins when dry land cane was converted to irrigated area with the water savings. 
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Table 4-12 Potential increase in net margins if dry land cane is irrigated with water savings from deficit strategies in units Rand per area under cane  

Systems System 2 System 1 System 2 System 3 
 

Strategies D A B C A B C A B C 
 

 

Fixed 4.8 mm summer 

& 3.2 mm winter cycle  

6.9 

mm 

4.6 

mm 

6.9 & 4.6 

mm 

4.8 

mm 

3.2 

mm 

4.8 & 3.2 

mm 

4.0 

mm 

2.7 

mm 

4.0 & 

2.7 mm 

Dry 

land 

Net Margin  11,723 12,822 12,708 12,821 12,703 12,215 12,780 12,548 11,638 12,551 6,330 

Net partial margin 

above dry land (R) 
5,392 6,492 6,377 6,491 6,400 5,884 6,450 6,218 5,307 6,221 0 

Irrigable area ratio
1
 1 1.10 1.33 1.19 1.20 1.47 1.23 1.26 1.58 1.32 0 

Relative potential 

increase in margin 

obtained by converting 

dry land cane area to 

irrigated cane area 

with water savings
2
 

(R) 

0 617 2,091 1,258 1,261 2,786 1,507 1,605 3,069 1,966 0 

Net margin totals after 

converting dry land 

area to irrigated with 

water savings (R) 

11,723 13,439 14,799 14,079 13,991 15,001 14,287 14,153 14,707 14,517 6,330 

% increase 0% 14.6% 26.2% 20.1% 19.3% 28.0% 21.9% 20.7% 25.5% 23.8% 
 1

 For example, the fixed cycle strategy uses 937 mm so the irrigable area ratio is 937/937 = 1, whereas the 2.7 mm strategy uses 593 mm so the equivalent ratio is 

937/593 = 1.58 (See Table 4-10 for average water use of each strategy).  

2
The relative potential increase in net margins from converting dry land cane was determined as follows: 
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As shown in Table 4-12, an increase in profits can be realised by using water savings to convert 

dry land cane into irrigated cane. This was only applicable, however, if area was not limiting. In 

most cases in South Africa, water is usually the limiting resource, not land. Continuing with the 

previous example, for every hectare converted from the fixed cycle to the 2.7 mm strategy, the 

262 mm water savings could be used to irrigate an additional area of 0.58 ha. This translated 

into an increase in net margins by R 3, 069. Hence, the 2.7 mm strategy has the ability to 

generate a relative increase in net margin to R 14, 707 compared to R 11, 723 for the fixed cycle 

strategy. Similarly the other strategies also possess the ability to generate increases in net 

margins ranging from a 14.6 % to a 28 % increase. In this case study, the 3.2 mm strategy (2B) 

returned the highest relative increase in net margins amounting to R 15, 001.   

 

The irrigable area ratio indicates that the systems and strategies applying the smallest amount of 

water have the ability to benefit the most from converting dry land cane into irrigated cane. In 

this case, that corresponds to strategy B for each system, i.e. the 4.6 mm, 3.2 mm and 2.7 mm 

strategies. These systems save more water and were therefore able to convert larger dry land 

areas as shown by the relatively higher irrigable area ratios in Table 4-12. These systems, 

therefore also realised the highest final net margins after factoring in the dry land conversion. In 

this particular exercise, for these circumstances, the 3.2 mm system yielded the highest net 

margin after realising the opportunity cost of water. This was an interesting result considering 

that strategy B applied the lowest amount of water and therefore incurred the most stress and 

delivered the lowest yields. Not only did strategy B achieve higher profits, but it also possesses 

the potential to reduce the country‟s electricity load during peak hours. Strategy B operated on 

two 8 hour stand times and therefore avoided pumping during peak periods, saving the grower 

in terms of electricity costs and benefiting the country at a time when energy conservation was 

crucial. 
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4.3.3 Conclusions 

 

In the above exercise, the direct cost of water and electricity versus the cost of yield loss was 

clearly illustrated. To summarise, reducing the cost of water and electricity by under irrigating 

had a big impact on yield and therefore profit margins. In South Africa, the direct cost of 

electricity and water appear to be small in comparison to the cost of yield losses. Hence, cost 

savings from applying less water did not offset yield losses. The opportunity cost of water, 

however, can justify the implementation of deficit strategies. In other words, the financial 

benefits of deficit strategies were only realised when the water savings were used to convert dry 

land cane into irrigated cane. This was only applicable when land was not limited, as is the case 

on most farms in South Africa. Hence, provided the opportunity cost of water is realised, deficit 

strategies can help conserve water and electricity while yielding higher profits.   

 

The strength and value of the irrigation assessment framework and the individual analytical 

models was again clearly demonstrated. In this chapter, various solutions/alternatives for a 

specified context were assessed with relative ease. Other scenarios and contexts could just as 

easily be analysed.  

 

Finally, deficit systems which applied the least amount of water yielded the highest increase in 

net margins after realising the opportunity cost of water. Reduced water applications results in 

crop stress and this suggests that it may prove difficult to convince farmers to implement deficit 

strategies. The implementation of deficit strategies, due to the precise nature and narrow 

margins for error, would require precise irrigation scheduling and monitoring of the soil and/or 

crop responses. Monitoring tools will not only help to implement these strategies, but will also 

assist to gauge the performance of such strategies. Proof of performance, through near real time 

monitoring, will help instil confidence in growers. These issues are addressed in the next 

chapter 
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5. IN-FIELD MONITORING AND EVALUATION TOOLS 

 

Thus far, the focus has been on the innovative design and operation of irrigation strategies and 

systems to utilise water and energy more efficiently. This chapter was included to provide tools 

to a farmer in order to monitor and evaluate the performance of irrigation strategies. The 

question posed was, if a recommended strategy from a previous chapter was to be implemented, 

how would the performance of the strategy be assessed at a field scale? It was envisaged that the 

successful implementation of any irrigation strategy was largely correlated to the ability to 

manage and monitor the implementation of the strategy. In addition to monitoring and assessing 

irrigation strategies, monitoring systems also have value as decision support mechanisms for 

irrigation scheduling. Tools informing the timing and volume of water application can prevent 

excess irrigation and therefore save on water and electricity costs. For these reasons, irrigation 

monitoring tools were researched and investigated. The intention was to refine and field test a 

prototype system.  

 

In this chapter, three systems are evaluated. The first system was a continuous soil moisture 

monitoring system comprising a hobo data logger and watermark soil water potential sensors.  

This section focused largely on tools used to monitor the soil water balance. The next two 

systems presented were the Alti4 and Campbell Scientific systems. These systems followed a 

more holistic approach where sensors were used to monitor the atmosphere, the crop and the 

soil water balance simultaneously. The work completed included: 

 Identification and researching data logger and sensor combinations, 

 calibrations, where necessary, 

 construction and synthesis of housing units for field installation,  

 costing of systems, 

 to a certain degree field installation, testing and assessment.  

The criteria for assessing the systems, in order of priority, were as follows: ease of use, cost, 

robustness and accuracy. In the subsequent sections, a technical description of the components 

and the merits and challenges of each system is presented, starting with the “Continuous Soil 

Moisture Monitoring System”.  
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5.1 Continuous Soil Moisture Monitoring System 

 

As specified above the objective was to refine and field test a prototype system. Below is the 

methodology or path that was undertaken to achieve this task: 

 Review existing soil moisture monitoring tools and select appropriate sensor based on 

the review, 

 find a suitable data logger, 

 calibrate the logger and sensor combination, 

 source appropriate apparatus to house the data loggers in the field and protect them 

from the elements,  

 install the monitoring system in farmer‟s fields, 

 download and evaluate the data. 

 

5.1.1 A review of soil water measurement and applicable sensors 

 

A detailed review of soil water sensors is given by IAEA (2008). Pertinent aspects of the review 

are summarised here as follows.  In the irrigation sector, soil water status may be measured in 

terms of volumetric water content or soil water potential. Soil water content is a description of 

how much water is present in a given volume or depth of soil, expressed typically in m
3
 water 

per m
3
 soil (White, 2003). The Neutron Probe, capacitance sensors and Time and Frequency 

Domain Reflectometers can be used to measure soil water content. The Neutron Probe and Time 

Domain Reflectometers (TDR) are very accurate methods of monitoring soil water status. The 

equipment, however, is relatively expensive and requires specialized knowledge to both record 

measurements and interpret the data.  Furthermore, in the case of the Neutron Probe it is time 

consuming and labour intensive to gather the data from the fields. The Neutron Probe also 

makes use of radioactive materials and therefore a strict safety programme regarding the 

operation, transporting and storage of the equipment is necessary. In addition the Neutron Probe 

cannot accurately measure the soil water content in the top 20 cm of the soil layer (White, 

2003). Capacitance sensors are relatively inexpensive compared to Neutron Probes and TDR 

instruments and are becoming increasingly more popular. The IEAE (2008) stated, however, 

that the volume of soil sensed by capacitance sensors is so small that it may not be 

representative. A universal challenge with measuring soil water content is to determine whether 

the water content measured is too wet, i.e. above the drained upper limit (DUL), or too dry, i.e. 

below the water content at which the plant experiences stress (Charlesworth, 2000).  
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Soil water potential, on the other hand, is a measure of the suction energy required by the crop 

to extract water, and is, therefore, a more direct indicator of potential crop stress and whether or 

not the soil is above the DUL. Tensiometers and porous type instruments such as gypsum 

blocks and Watermark sensors can be used to monitor soil water potential. Tensiometers are 

limited to soil water potentials above -85 kPa (White, 2003). Should the soil dry out to water 

potentials below -85 kPa, air enters the device breaking the vacuum with which the tensiometer 

operates. For this reason, tensiometers are high maintenance apparatus. Gypsum blocks are  

inexpensive but a major problem is that the gypsum block breaks down and dissolves over a 

period of time and for this reason the calibration relationship between gypsum block readings 

and soil water potential is not fixed.. 

 

“The Watermark is a granular matrix sensor, similar to a gypsum block. It consists of two 

concentric electrodes embedded in a porous reference matrix material, which is surrounded by a 

synthetic membrane for protection against deterioration. A stainless steel mesh and rubber outer 

jacket makes the sensor more durable than a gypsum block. The porous sensor exhibits a water 

retention characteristic in the same way, as does a soil. So, as the surrounding soil wets and 

dries, the sensor also wets and dries. Movement of water between the soil and the sensor results 

in changes in electrical resistance between the electrodes in the sensor. The electrical resistance 

can then be converted to soil water potential through a calibration equation” (Chard, 2008). It 

should be noted that the Watermark sensor is sensitive to soil temperature and soil temperature 

needs to be monitored and accounted for in the calibration equation (Shock et al., 1998).  

Watermark sensors, however, are compact, robust, easy to use, relatively inexpensive and 

widely accepted by irrigation scientists for their ability to account for changing soil moisture 

conditions (Vellidis et al., 2008). Furthermore, watermark sensors operate over a broader range 

when compared to tensiometers and are more robust than gypsum blocks.  

 

From the above assessment of soil moisture sensors, the Watermark soil water potential sensor 

was selected for use. The next step was to find an appropriate logger data logger. 

 

5.1.2 H8 Hobo data logger and Watermark combination 

 

The „H8 Hobo‟ four-channel data loggers from the Onset Computer Corporation were selected 

following the already completed work on Watermark sensors reported by Allen (2000).  The H8 

Hobo loggers were readily available and provided a relatively inexpensive source of continuous 
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hourly data. Furthermore, the loggers were small, inconspicuous and require only a small 

watch-type battery and therefore are not likely to be tampered with or stolen. The Onset Hobo 

Logger uses DC current to excite the sensor. The Watermark sensors, however, are more suited 

to high frequency AC excitation. DC excitation can cause polarisation over time by causing the 

cations or anions to migrate to the electrodes. The Hobo excites all sensors simultaneously and 

then proceeds to read each channel in succession, completing readings in as little as 10 to 40 

milliseconds. Hence, very little time exists for migration to occur and polarisation is unlikely to 

be a problem (Allen, 1999).  

 

Electrolysis, however, occurs at the electrodes of sensors when the excitation lingers for more 

than 2 milliseconds. Electrolysis results in formation of micro gas bubbles that alter the 

resistance of the water medium and therefore the sensor reading. In the case of the H8 Onset 

Hobo logger, the channels are excited for different periods of time and the associated formation 

of the micro gas bubbles affects the resistance readings of the different channels. Nevertheless, 

for most practical purposes, any resulting bias in the readings can be addressed by using a 

different calibration relationship for each channel (Allen, 1999).  

 

5.1.3 Calibration 

 

Three watermark soil water potential sensors and a soil temperature sensor were attached to the 

Onset H8 Hobo Data logger. All sensors were then placed in a saturated soil medium in a 

pressure plate chamber in a laboratory at the University of KwaZulu-Natal in South Africa. The 

pressure plate chamber was then used to systematically exert pressure on the soil forcing water 

to drain from the soil. The pressure plate chamber provided a controlled environment in which 

the soil water potential was determined and compared to the voltages logged by the Onset Hobo 

logger. Using regression methods, relationships were developed to relate soil water potential to 

voltage readings for each channel, taking into account the soil temperature. The regression 

relations, together with the recorded data, are illustrated in Figure 5.1 below. 
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Figure 5.1 Calibration curve of Onset Hobo Logger and Watermark sensor.  CH1, CH2 

and CH3 refer to Channels 1 to 3 of the Hobo Logger and PP refers to data 

from the pressure plate apparatus 

 

As illustrated in Figure 5.1, higher voltage responses were recorded for channels 2 and 3 when 

compared to channel 1 for the same capillary pressure head.  This illustrates the variable 

resistance in the water medium due to electrolysis and hence the need for calibration of each 

channel separately.  The accuracy of the calibrations can also be assessed by referring to Figure 

5.1.  Whilst there is potential to refine the calibration relationships, especially for channel 2, the 

relationships were considered to be adequate for the study objectives.   

 

5.1.4 System housing and costs 

  

A general purpose, weather resistant electrical box (code: RL1 – HP) was sourced from ARB 

Electrical Wholesalers (Pty) Ltd. (2008) to house the data logger. The box was 150 x 150 x 100 

mm deep with a hinged screw on lid as shown in Figure 5.2.  A 20 mm hole was drilled into a 

side wall to allow for the cables from the Watermark sensors to be connected to the data logger.  
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Figure 5.2 General purpose box used to house Onset Hobo data logger (ARB Electrical 

Wholesalers (Pty) Ltd., 2008) 

 

The total cost of the soil water potential monitoring system was R 3450 as shown in Table 5-1 

 

Table 5-1 Cost break down of soil water potential monitoring system in 2007  

Description Quantity Cost 

Watermark Sensors 3 R 1, 770 

Soil Temperature Probe 1 R   340 

Onset Hobo Logger 1 R 1, 200 

General Purpose Box 1 R   140 

Total R 3, 450 

 

5.1.5 Installation of soil moisture monitoring system  

 

In order to assess the hypothesis of under irrigation from a previous benchmarking study 

(Greaves, 2007), the continuous water potential monitoring system was installed in two farms. 

Three watermarks were installed in the cane row at depths of 15cm, 30 cm and 60 – 80 cm, 

dependant on site conditions. A standard soil auger was used to auger a hole to the required 

depth. The soil removed from the hole was sieved to remove rocky material, leaves and grass 

and mixed with water to obtain a thick slurry.  The slurry mixture was then poured into the hole, 

approximately 5 cm deep, to create a seat for the deepest Watermark sensor. A PVC pipe was 

fitted around the collar of the Watermark sensor and used to locate the sensor snugly into the 

slurry at the correct depth. The PVC pipe was removed and the slurry mixture and soil were 

then backfilled into the hole in layers until the required depth for the next sensor was attained. 

The backfill was firmly tapped in using the handle of an old broomstick to ensure good contact 

between the sensor and the soil. The remaining 2 sensors were placed in the same hole in the 
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same manner at 30 cm and 15 cm depths. The Soil Temperature Probes were placed in the same 

hole just above the 30 cm Watermark sensor. The cables were then threaded through the hole in 

the housing unit and connected to the Onset Hobo logger. Silicone was used to fix the cables in 

place and seal any gaps in order to protect the logger from water. Finally, the lid of the housing 

unit was screwed on and the box was placed on the ground in between the sugarcane, out of 

harm‟s way. 

 

5.1.6  Results 

 

The system was used to record field data for the 2007/08 season and the detailed description of 

the findings are presented by Jumman and Lecler (2008) in Appendix E. Shown in Figure 5.3 is 

the soil water potential data captured for this study. In Figure 5.3, the water potential is 

represented in kPa on the Y-Axis, where a higher kPa value indicates a drier soil.  Inman-

Bamber (2002) reported that the threshold water potential for stress in sugarcane is 

approximately 100 kPa. Studying Figure 5.3, it can be seen that the stress threshold of 100 kPa 

is exceeded for large periods of time. 

  

 

Figure 5.3 Time series of soil water potentials for each depth and average of all depths
1
  

1: The average soil water potential was calculated as the average of the three values obtained from the different depths. 
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 The concluding remarks for this study are summarized as follows. The Watermark soil water 

potential sensors proved to be a valuable tool in substantiating Greaves‟s (2007) hypothesis of 

under-irrigation. Availability of continuous soil water potential data assisted farmers to monitor 

the performance of their irrigation strategies and identify areas for improvements.  

 

The Watermark sensor and Onset Hobo data-logger combination provided a relatively cheap 

and robust system to capture valuable soil water potential data. Downloading data, however, can 

be tedious and time consuming if data are required on a frequent basis, as required, for example, 

to make irrigation application decisions. A user was required to travel to the logger and use a 

laptop with appropriate cables to download the data. Remote access to data, via GPRS, for 

example, was not available for the hobo loggers at the time of the study but would have been 

preferred. Nevertheless, monitoring systems such as the one described, can provide valuable 

information, for as little as R 3 450, to inform irrigation management decisions and contribute to 

optimising the use of water for crop production. This will be of great benefit to individual 

farmers and the wider community. 

 

In the next section, systems allowing for remote access to data were investigated. These systems 

followed a holistic approach where components of the atmosphere crop and soil moisture were 

monitored. These systems were compiled, priced and tested for robustness and ease of use. 

Installation and gathering of field data for a cropping cycle, however, was beyond the scope of 

this project.  

 

5.2 Alti 4 Sugarcane Monitoring Growth Station  

 

Effective and accurate monitoring, in order to maximise water use efficiency, is considered to 

be best achieved by physically monitoring the integrated soil-plant-atmosphere continuum 

(Hoffman and Martin, 1992). Smit (2006), following Inman Bamber (1995), developed the first 

growth monitoring station for sugarcane at the South African Sugarcane Research Institute. In 

comparison to the Watermark and Hobo logger system, the growth station offers a more holistic 

approach. The growth station was designed to measure and capture important crop, soil and 

climatic data for field trials in the research environment. In previous versions of the growth 

station the main use of this tool was to understand crop physiology and reactions to 

environmental constraints in a research environment. In this version, however, the focus was 

more on monitoring the irrigation water balance with an emphasis on assessment criteria, such 

as ease of use, cost and robustness. It was envisaged that the tool would be used by farmers for 
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irrigation management (Kennedy, 2008). In the context of deficit irrigation or precision 

engineering, where strategies are susceptible to dry conditions and tolerances for error are small, 

real time data from monitoring tools will assist to verify recommendations from scheduling 

models and instil confidence in farmers. Hence, the development and enhancement of the 

growth station was important. The main modification to the growth station was the inclusion of 

a new Alti 4 data logger supplied by Kennedy Besproeiing (Kennedy, 2008).  

 

5.2.1  Data logger 

 

The Alti 4 data logger comprised 4 analogue and two pulse channels with a lithium ion battery 

pack consisting of two batteries rated at 3.6 volts @ 12 Amp hours each. The logger is capable 

of logging at 5 minute time intervals at the maximum capacity. For this project a one hour 

logging interval was used. Each analogue channel provides 2.5 volts at 50 milliamps for 50 

milliseconds, for sensor excitation. The lithium ion battery pack was also used to provide power 

for remote communication/transfer of data. The Alti 4 data logger makes use of GSM/GPRS 

facilities to transfer data, once a day, to a central server which then could be accessed from 

anywhere in the world via the world wide web. A monthly subscription fee is payable for this 

service. The life expectancy of the battery if operated as described above is 5 years (Kennedy, 

2008). This is a substantial advantage over many other loggers which typical make use of more 

expensive solar panels or cumbersome rechargeable batteries (CS Africa, 2009). The trade off 

for alternative logging options is either cheaper lower power requirements with no remote 

access to data, as demonstrated by the Hobo data logger in the previous section, or more 

expensive higher power requirements for remote access. The Alti 4 loggers appear to have the 

competitive edge with the correct balance between cost and power requirements for remote 

access to data. This will be elaborated on further in the costing section. The Alti 4 data logger 

hardware, including sim card and battery, was encased and sealed from water in a 60 mm 

diameter × 330 mm long hard plastic tube as shown in Figure 5.4.  
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Figure 5.4 Alti 4 data logger 

 

The Alti 4 logger, shown above, is compact, robust and inconspicuous because the battery and 

hardware components are sealed and hidden within the casing. As noted above, several sensors 

were connected to the Alti 4 data logger to monitor the soil-plant-atmosphere continuum. 

Presented below is a description of the importance of each monitoring component and, technical 

information of the instruments if unique or new.   

 

5.2.2  Temperature and rainfall 

 

The upper limit of crop production is set by the climatic conditions and genetic potential of the 

crop (Doorenbos and Kasam, 1979). Monitoring the relevant climatic parameters, therefore, 

provides insight as to what the potential for crop growth was. The two major atmospheric 

components that are generally monitored are air temperature and rainfall. Air temperature serves 

as an indicator of solar radiation energy available for growth and vapour pressure deficits to 

drive evapotranspiration (Schulze 1995). Lower temperatures are indicative of slower growth 

due to natural, uncontrollable, constraints in the field. Reduced growth, however, may also be 

experienced during high temperature periods when the plants experience water stress. Rainfall 

contributes to determining the soil water balance and, therefore, real time rainfall data is 

significant to managing and implementing irrigation strategies. For these reasons, measurement 

of air temperature and rainfall was incorporated into the Alti 4 growth Station. The technical 

specifications for air temperature sensors and rainfall gauges are not discussed as they are easily 

accessible “off the shelf components” from companies such as Campbell Scientific (CS Africa, 

2009). 
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5.2.3  Plant growth 

 

Inman-Bamber (1995) reported that leaf and stalk extension rate are the best indicators of crop 

water status in sugarcane. The extension of stalks and leaves shut down before photosynthesis 

stopped on the onset of stress. Stalk extension contributed to the process of yield development 

and was, therefore, reported to be more relevant then leaf extension (Inman-Bamber, 1995).  

In a study in Australia, mini-pans were used to calibrate the evaporation from these pans to the 

crop water requirements via stalk extension rates for a given soil type and time of year (Attard, 

2002). Hence robust scheduling techniques were developed by measuring stalk extension and 

relating it to the evaporation from mini pans.  

 

Furthermore, monitoring the extension rate of sugarcane stalks allows one to determine the 

allowable degree of water deficits before yields are significantly penalised. In Australia, in order 

to achieve maximum yields, the relative stalk extension rate is allowed to drop to 50% of the 

maximum stalk extension rate before irrigation is applied. Inman-Bamber (2003) and (2005) 

indicated that if irrigation was applied when relative stalk extension rate dropped to 30% of the 

maximum, less water will be applied resulting in decrease in cane yields but not sucrose 

content. Hence, in the context of irrigation optimisation and precision engineering, the ability to 

continuously monitor stalk extension is important.  

 

In the past stalk extension was laboriously measured with a ruler (Inman-Bamber, 1995). 

Inman-Baber (1995) used a growth transducer (potentiometer) to automatically measure and log 

plant elongation. Limitations of this system, however, included extensive rigging to mount in 

the field, wind disturbances and technical problems with the data logger (Smit et al., 2005). 

Smit (2006) improved on this system and registered a patent titled “Apparatus for measuring the 

growth of a plant”. This instrument, referred to as the Potentiometer, was used in the Alti 4 

growth station as shown in Figure 5.5.  

 

The potentiometer consisted of a Spectrol 10 K  10-turn potentiometer mounted on a light 

weight, 10 mm aluminium tubing that clamps onto the cane stalk. A fishhook was secured to the 

youngest visible node of stalk and an 80 g brass counterweight inside the tubing keeps the non-

stretchable dial cord under constant tension. Winding over a pully on the potentiometer was 

enough to allow approximately 300 mm travel. The system works such that, as the stalk 

extends, the hook and the dial cord extends causing the pulley and shaft of the potentiometer to 

rotate. This rotation in turn alters the position of the variable resistor. Hence as the stalk 

extends, voltage output as a result of varied resistance changes. Hence for a fixed input voltage 
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of 2.5 volts, the linear displacement of the cord (stalk extension) can be related to the output 

voltage of the potentiometer.  

 

 

Figure 5.5 A) Spectrol 10 KΩ potentiometer. B) Non stretch Dial chord mounted on pulley 

which in turn is mounted on Potentiometer shaft. C) Plant growth measuring 

device with Alumium tubing mounted on sugarcane stalks 

 

Limitations of the apparatus include susceptibility to rust. Nevertheless, as will be shown in a 

costing section, the sensor was relatively cheap to replace when required. In addition, there was 

a need to re-attach the hook on the new node of stalk as the crop grew. This proved a time 

consuming and laborious exercise and room does exist for improvement. Furthermore, only one 

stalk was monitored at any given time and questions were posed regarding how representative 

would a single stalk be of the entire field? Nevertheless, the apparatus still provides valuable 

data and was to be used until better options were available. 

 

5.2.4  Soil moisture 

 

As before, the Watermark sensor was preferred to measure soil water potential. Migration and 

electrolysis issues, however, pertaining to DC loggers and Watermark sensors were discussed in 

Section 5.1.2. These issues were brought back into question with the growth station and the new 

Alti 4 logger combination. The time period between excitation and logging and hence, the 

interference due electrolysis and/or migration on data for the Alti 4 logger was unknown. For 
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this reason, the newly launched MPS-1 water potential sensor, illustrated in Figure 5.6, was 

used.  Similar to the Watermark, the MPS-1 sensor makes use of porous ceramic disks, with a 

water retention characteristic that wets and dries out as the soil wets and dries out (Decagon, 

2008). In the case of the MPS-1, however, the dielectric permittivity of the porous ceramic 

plates was measured. This was different from the watermark sensor which measured the 

electrical conductance of the porous material. For this reason, electrolysis, the formation of 

micro gas bubbles which alters electrical resistance, was not a concern for the MPS-1 sensor. 

The MPS-1 sensor therefore appears to be better suited to the Alti 4 data logger.     

 

 

Figure 5.6 Illustration of the new Dielectric MPS-1 Water Potential Sensor (Decagon, 

2008) 

 

“Water content and water potential are related by a relationship unique to a given material. The 

ceramic used with the MPS-1 has a wide pore size distribution and is consistent between disks. 

So, if the water content of the ceramic is measured accurately, along with a measurement of 

actual water potential, then a calibration curve is generated that will give a standard calibration 

for the MPS-1 in terms of water potential. This calibration is not dependent on the type of soil 

into which the MPS-1 was installed” (Decagon, 2008). This was attractive to the author bearing 

in mind the ease of use of the MPs-1 sensor and reduced complexity of data processing for 

farmers.  

 

In addition, when compared to the Watermark sensor, the MPS-1 measures soil water potential 

from -10 kPa at saturation down to -500 kPa (Decagon, 2008), which is significantly more than 

the -200 kPa achieved by the Watermark and Hobo logger combination in the pressure plate 

chamber (Jumman and Lecler 2008). The MPS-1 also appeared fairly robust and accurate with a 
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resolution of 1 kPa from -10 to -100 kPa and 4 kPa from -100 -500 kPa (Decagon, 2008). 

Furthermore, the MPS-1 sensitivity to temperature and salinity is negligible in the context of 

irrigation. “The MPS-1 does exhibit some sensitivity to temperature change. This was primarily 

due to changes in the dielectric permittivity of the ceramic and water due to temperature change. 

For most field applications (i.e. installation depth > 15 cm) this sensitivity is negligible. For 

shallower applications or lab studies over highly variable temperature ranges, a temperature 

correction may be desirable” (Decagon, 2008). Similarly, MPS-1 sensors demonstrated a, low, 2 

% sensitivity to changes in salinity ranging from 0.01 dS/m to 10 dS/m (Decagon, 2008). The 

MPS-1, therefore, appears to be a better suited sensor for the Alti 4 logger.  

 

5.2.5  Alti 4 Growth Station - configuration and cost 

 

The configuration of the Alti 4 Growth Station is shown in Figure 5.7, below. It was important 

for the system to be robust and well protected against the environmental elements. These 

included protection against theft, rodents/pests and climatic factors such as wind and the suns 

UV rays. The configuration and attributes are described below. 

 

 

Figure 5.7 Configuration of the Alti 4 Growth Station 

 

The growth station was configured such that the logger was housed in a 1.5m long × 63mm 

diameter PVC plumbing vent pipe, which was painted green and planted vertically amongst the 

sugarcane. This allowed for all cables running from sensors to the logger to be housed within 

the pipe. A second pipe, 3.5 m long × 63 mm diameter, planted immediately next to the logger, 
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was used to mount the antennae, rain gauge and temperature sensors at canopy level for a fully 

grown crop. Sensors were fixed on the pipe using hose clamps, thus allowing for easy 

adjustment of vertical position during different crop growth stages. It was important for the 

antenna, rain gauge and temperature sensor to be mounted at canopy level. The antenna – to 

ensure maximum opportunity for cell phone signal, rain gauge – to prevent interception losses 

and capture rainfall records correctly, and air temperature – to accurately capture the potential 

energy available for growth and evapotranspiration. The 3.5 m PVC vent pipe was also painted 

green and proved to be very steady and, for security reasons, blended in well with the 

environment. The MPS1 soil water potential sensors were installed in the ground as shown in 

Figure 5.7. Furthermore, the stalk extension potentiometers were mounted on the sugarcane 

stalks. This is not shown in Figure 5.7. The costs of the Alti 4 growth station were broken down 

as follows. 

 

Table 5-2 Cost break down of Alti 4 Growth Station  

 Description Unit Price Quantity Total 

1 Alti4 data logger + Alti two cell battery 

pack + antenna 

R 4, 891.00 1 R 4, 891.00 

3 Ech20 air temperature sensor with gill 

screen 

R 1, 891.00 1 R 1, 891.00 

4 Panoramic professional 0.2mm rainfall 

gauge  

R 3, 100.00 1 R 3, 100.00 

5 Stalk extension potentiometer R     200.00 1 R     200.00 

6 Decagon MPS1 soil water potential sensors R 1, 428.00 2 R 2, 856.00 

7 Housing (PVC plumbing pipe) R     193.00 1 R      193.00 

 Total (excl. VAT)   R 13, 131.00 

  

As shown in Table 5-2, the capital investment for the system is R 13, 131. In addition, a 

monthly subscription fee is payable for the remote transfer of data. This consists of a R50 and R 

160 sim card and web server hosting fee, respectively. Hence, the operating costs amount to R 

210 per month. The Alti 4 logger made use of the General Packet Radio Service (GPRS) 

transmission technology to transfer the data via the cell phone network. In this project, data 

were logged every hour and only transferred to the website once a day. If GPRS was not 

available, however, a backup sms system was on hand. The backup system used the Global 

System for Mobile (GSM) communication where the data were transferred via sms at a charge 

of 50 cents per sms.  
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5.2.6 Installation and preliminary results 

 

The Alti 4 logger, antenna, rain gauge, two potentiometers and two MPS-1 sensors together 

with the upright pipes, as shown in Figure 5.7, were installed at the Automatic Short Furrow 

(ASF) trial at Ukulinga in Pietermaritzburg. Installation of the MPS-1 sensor proved to be 

relatively easy. After digging the hole, with an auger, the soil was simply wetted and packed 

around the ceramic plates. As described in Section 5.1.4 for the Watermarks, a PVC pipe was 

fitted around the collar of the sensor and was used to seat the MPS-1 snugly at the bottom of the 

hole. Sensors were placed in between the furrow and cane row at depths of 20 cm and 60 cm. A 

mixture of soil and water was backfilled and lightly compacted into the hole. Preliminary soil 

water potential results from the ASF trial in Ukulinga are shown in Figure 5.8 below. 

 

 

Figure 5.8 Preliminary results from MPS-1 sensors and rain gauge from the Automatic 

Short Furrow trial in Pietermaritzburg 
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As shown in Figure 5.8, the MPS-1 sensors responded relatively well to both rainfall and 

irrigation. The sensors also detected the dry off period before harvest in September sufficiently 

well. In addition the remote transfer of data via the website proved useful and was often used to 

verify irrigation scheduling as determined by a different scheduling model. Gathering stalk 

extension data from the potentiometers proved difficult even though they were developed and 

tested by Smit et al. (2005). This was because a person was needed on site to reattach the dial 

chord after it became fully extend from stalk growth. This can be problematic on remote sites, 

for example, as was the case for this study. Nevertheless, the system is relatively easy to install. 

Remote access to data increases the ease of use for growers and irrigation advisors. The system 

also proved to be relatively robust and well suited to the harsh agricultural environment.  

 

One of the concerns with the Alti 4 growth station was the dependency on Kennedy Besproeiing 

and more specifically, Mr. James Kennedy. In the event of logger software failure or technical 

problems with the web page, for example, Mr. Kennedy at the time of this study was the only 

available/appropriate person who could address such problems. This could prove problematic if 

Mr Kennedy, say for instance, was not in the country. Considering, that adoption of irrigation 

scheduling tools in South Africa was largely inhibited by perceived complexity and lack of 

support services (Stevens, 2006), dependency on a single individual may prove to be risky in 

business terms for farmers. For this reason, an alternative Campbell scientific monitoring 

system was investigated. This is presented in the next section.   

 

5.3 Campbell Scientific Growth Station 

 

Campbell Scientific inc., established in 1974 in the United States of America (CS Africa, 2009), 

is a prominent company that manufactured data loggers, data acquisition systems and 

monitoring and measuring instruments. In addition to being well established and reputable in 

South Africa, Campbell Scientific Inc. have also demonstrated excellent technical support with 

researchers from SASRI for several years. Hence, a Campbell Scientific logger was purchased 

and investigated as an alternative to the Alti 4 logger. The temperature sensor, rain gauge, 

potentiometer and MPS-1 sensors were all used as in the Alti 4 system. Only the data logger and 

data transfer mechanisms changed. Below is a description of: 

 the characteristics and practical configuration of the selected logger, 

 system costs, 
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 and merits and challenges of the system. 

 

5.3.1 CR200 Campbell Scientific data logger and sensor configuration 

 

The primary reason for selecting the CR200 logger was that it was the lowest cost data logger in 

the Campbell Scientific range (CS Africa, 2009). In addition, the CR200 channel configuration 

and small size was well suited for this application. The CR200 consisted of 2 excitation 

channels, 5 individually configured single ended output channels and 2 pulse channels. The 

excitation channel range was programmable for either 2.5 or 5 volts, while the analogue output 

voltage range was 0 – 2500 mVolts. Other specifications included a 12 bit A/D converter, 

maximum scan rate of once per second, measurement resolution of 0.6 volts, 1 switched battery 

port and 2 control ports, battery voltage range 7 – 16 Volts DC, an on board 12 Volt DC, 7 amp 

hour, lead acid battery charger and communications options via RS 232 (CS Africa, 2009). The 

only limitation of the CR200 was that the 2 excitation channels were not adequate to provide 

power for exciting all the sensors. Figure 5.9 below, illustrates the configuration of the sensors 

and the CR200 data logger. Due to only two excitation channels being available in this logger, 

two MPS-1 sensors had to be connected to Excitation channel 1 as indicated in Figure 5.9. The 

limitation occurs in that the MPS-1 sensor requires a minimum of 25 milliamps for excitation 

and the CR200 cannot provide this for both sensors simultaneously. 

 

 

Figure 5.9 Schematic of CR 200 and Sensor configuration 
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For this reason, a relay switch was used. The relay switch allows the data logger to excite one 

MPS-1 sensor at a time, sequentially. In other words, the relay switch was used to activate and 

scan, say, the shallow MPS-1 only. On completion of scanning, the shallow MPS-1 was 

deactivated and the deep MPS-1 activated and scanned. In this way the power requirements of 

each MPS-1 sensor was met and the limitation dealt with. The remaining excitation channel was 

used to connect to and excite the air temperature sensor and the potentiometer. The power 

requirements of the potentiometer and temperature probe were not as high as the MPS-1 sensors 

and therefore could be excited simultaneously. Finally, the panoramic 0.2 mm rain gauge was 

connected to the impulse channel. Hence, an impulse channel and a single ended output channel 

were still available for future additions such as wind speed if required.  

 

The other limitation with the Campbell Scientific system is the relationship between costs, 

battery life and remote communication of data. The CR200 logger, for this application, made 

use of a 12 volt rechargeable battery rated at 12 amp hours. Unlike the Alti 4 system, GPRS and 

GSM options were available independently. For both GPRS and GSM options, two modems 

were required. A field and an office bound modem. In this case a Meastro 100 GSM/GPRS 

modem was used as the field unit and a SAMBA 75 GPRS/GSM modem was proposed for the 

office. Hence, in addition to the powering up the sensors, the battery was also used to power the 

Meastro 100 GSM/GPRS modem.  

 

The data logger was programmed to scan and log sensor readings every hour and then transfer 

the data via GSM/GPRS once a day. Operating in this manner implied that the battery would 

have to be recharged periodically. The battery life before recharging was required was 

determined theoretically to be 8 months (Hoy, 2009). In terms of “ease of use”, this system was 

less attractive as maintenance/labour/time requirements to recharge batteries were relatively 

higher when compared to the Alti 4 system. In addition, the costs of the system as shown in 

Table 5-3 were also higher when compared to the Alti 4 system.  
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Table 5-3 Cost break down of Campbell Scientific Growth Station 

 Description Unit Price Quantity Total 

1 CR200 data logger + Antenna  R 5, 083.50 1 R 5, 083.50 

2 12V sealed rechargeable battery R     210.60 1 R     210.60 

3 Meastro 100 GSM/GPRS modem R 2, 011.50 1 R 2, 011.50 

4 Ech20 Air Temperature Sensor with 

Gill Screen 
R 2, 266.66 1 R 2, 266.66 

5 Panoramic Professional 0.2mm 

Rainfall Gauge  
R 2, 776.95 1 R 2, 776.95 

6 Stalk Extension Potentiometer R     200.00 1 R     200.00 

7 Decagon MPS1 Soil Water Potential 

Sensors 
R 1, 581.25 2 R 3, 162.50 

8 Campbell Control Relay R       95.00 1 R       95.00 

9 Housing (PVC plumbing pipe + 

general purpose electrical box) 
R     411.32 1 R      411.32 

10 Samba 75 set Falcom modem + sim 

card set up fee 
R 2, 802.09 1 R 2, 802.09 

11 LoggerNet Software R 4, 366.00 1 R 4, 366.00 

 Total (excl. VAT)   R 23, 386.12 

 

The capital investment required for this system was R 23, 386.12, significantly higher than the 

Alti 4 system. The difference was largely attributed to the additional costs of the CR 200, the 

office based Samba modem and the LoggerNet software. It should also be noted that, as in the 

case of the Alti 4 system, the PVC vent pipe was used as a frame to mount the sensors and/or 

house the cables. Due to the size of the CR200 logger, however, a general electrical box, 

mounted onto the PVC pipe, was required to house the data logger, the modem and the battery. 

The dimensions of the box were 32 cm long × 28 cm wide × 150 cm deep, at a cost of R 218.32. 

 

As mentioned previously, remote communication via GSM or GPRS was available. For the 

GSM option, a fax modem via a landline in the office can be used to communicate to the field 

unit. The operating costs for GSM, however, were considered too high and therefore only the 

GPRS option was accounted for in Table 5-3. In addition to the capital costs for the Samba 75 

modem, operating costs for the GPRS system were also allocated. The operating costs consisted 

of a 24 month cell phone data bundle subscription charged at R 152.62/month. The Campbell 

Scientific system appears to be a reliable and robust system. The major challenge, however, was 

the additional capital costs when compared to the Alti 4 system.   
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5.4 Conclusions 

 

In this chapter three monitoring systems were evaluated. The first system was a continuous soil 

water potential monitoring system consisting of the Hobo logger and Watermark sensors. The 

second and third systems were more holistic and aimed to monitor the atmosphere – plant – soil 

continuum. The Watermark and Hobo combination proved to be relatively easy to use, cheap 

and robust. Field testing of the system also allowed for the gathering of valuable continuous 

data which substantiated the hypothesis that farmers were under irrigating. The challenge for 

this system was related to the effort associated with manually downloading data since no remote 

access was available.  

 

For this reason options such as the Alti 4 and CR200 logger which allowed for remote access to 

data were investigated. Field testing and gathering of data for an entire season, for Alti 4 and 

Campbell Scientific systems, was beyond the scope of this project. Nevertheless, both systems 

were compiled, priced and assessed with a relatively small degree of field testing of the Alti 4 

system. Both systems proved to be robust and very easy to use. The Campbell Scientific system, 

however, was disadvantaged in that battery life spans were shorter and batteries would have to 

be recharged periodically. Furthermore, the capital cost for the Campbell Scientific system was 

considerably larger than the Alti 4 system. In short, the combination of low cost, good battery 

life, remote access to data and holistic monitoring provided the Alti 4 system with the 

competitive edge. Development and assessment of these tools now provide the platform for 

precise irrigation monitoring and management, as was desired. 



 98 

6.  DISCUSSION AND CONCLUSIONS  

 

In the context of the current water shortages, rapidly increasing electricity tariffs and increasing 

strain on farmers to remain profitable, the primary focus of the work reported in this dissertation 

was to: 

 Develop a decision support framework with analytical tools to holistically assess the 

performance of alternative irrigation scenarios, both from a design and operating 

perspective.  

 Apply the framework to investigate potential solutions for: over irrigation on shallow soils, 

increasing electricity tariffs, and to assess the potential benefit of deficit irrigation 

strategies. 

 Develop infield monitoring tools for easy implementation of irrigation strategies that 

require precise management. 

Descriptions of how well the objectives were achieved and the major outcomes of the study are 

presented below. 

 

6.1  Framework development 

 

Sugarcane was the target crop and for this reason, the existing ZIMsched 2.0 and Irriecon V2 

models, with the algorithms specific to sugarcane were selected as components of the 

framework to simulate the water budget and holistically assess the economics, respectively. In 

terms of water balance and crop yield prediction models, many options such as ACRUcane, 

SAsched and CANESIM were available. ZIMsched 2.0, however, was selected for its ability to 

account for different levels of uniformity and the impact of over and under irrigation on yield. 

An irrigation design and costing tool was then developed in order to prepare irrigation hardware 

costs that were representative of the irrigation constraints simulated in the ZIMsched 2.0 model. 

Finally, Irriecon V2, an economic assessment tool, was used to determine the net margins above 

allocated costs for the various scenarios and irrigation strategies.  

 

The synthesis of these tools into a decision support framework provided the platform for rapid 

and efficient generation and assessment of irrigation scenarios, strategies and solutions. The 

assessment framework followed a holistic approach since interacting parameters were 

accounted for. These included irrigation system capability in terms of water use and yield and 

the associated irrigation costs. The irrigation costs included capital costs for systems hardware 
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and operating costs such as labour, maintenance and water and electricity tariffs. A holistic 

approach was considered important since it allows for sensible assessment of the trade-offs 

between system uniformity, watering capability and the associated irrigation system costs 

versus revenue from yield. In addition the cost for agronomic practices such as planting, 

herbicide and fertiliser application and harvesting, transport and haulage costs were also 

accounted for.   

 

All three of the tools were spreadsheet-based allowing for a high degree of transparency and 

flexibility. This flexibility was vital for the generation of unique scenarios and strategies such as 

those that were required for the deficit strategies. The ZIMsched 2.0 model, in particular, 

allowed for easy programming to control water applications during peak and off-peak electricity 

tariff periods and “high” and “low” irrigation demand periods. In addition, the graphic 

illustration of the soil water budget in the ZIMsched 2.0 model, proved to be useful when 

comparing and understanding the dynamics between strategies. For example, visual 

representation of the water budget allowed for easy identification of the excess runoff for the 12 

hour stand time system in the shallow soils investigation. 

 

Irriecon V2, in contrast required intensive input data from many different disciplines. These 

include data relating to herbicides and fertiliser application, as well as sugarcane planting, 

harvesting, haulage and transport in addition to irrigation.  For this reason, the tool is relatively 

complex and potentially limited to only very knowledgeable users. The tool, however, once 

configured correctly, is valuable and relatively easy to apply. Other potential users such as 

agricultural/irrigation consultants could obtain assistance from SASRI to furnish the model with 

the necessary input data/information. Irriecon V2 also provided the economic assessment output 

in units of Rand per area under cane. This functionality allowed for easy comparison of systems 

designed for slightly different sized areas but of a similar scale.  

 

Finally, the development of the irrigation design and costing tool formed a pivotal component in 

the framework. Accounting for the cost of irrigation hardware was an essential component in 

assessing the performance of any irrigation strategy. The tool provided a relatively quick and 

efficient method to generate alternative irrigation designs and representative costs for these 

design options. The versatility of a spreadsheet-based tool also allowed for easy modifications 

to designs. This was particularly useful for the shallow soils investigation, where an additional 

set of sprinklers and hydrant control valves were incorporated to convert the 12 hour stand-

times in an initial design to 8 hour stand times, and the deficit chapter, where cycle length and 

accordingly lateral length was increased to reduce the peak design capacity.  
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The irrigation assessment framework provided an ideal platform to research and investigate 

potential solutions for some of the current and crucial issues in the South African irrigated 

sugarcane industry. 

 

6.2  Application of Framework 

 

The framework and associated tools were used to assess potential solutions, for a specific set of 

conditions, to some of the current and major issues facing the industry. In the process, the 

strength and significance of the assessment framework were highlighted. Below is a more 

detailed description of the outcomes for each section. 

 

6.2.1 Shallow soils 

 

Considering that a large portion of the industry constitutes shallow soils and in the context of 

increasing demand for more effective and efficient use of water, poorly matched irrigation 

systems, even though cheaper, need to be improved upon. Traditionally shallow soils were 

irrigated with sprinkler systems were labour was required to move sprinklers. Since it was 

impractical for labour to move sprinklers at night, a 12 hour stand time was typically used. This, 

however, often results in excess water application per cycle.  

 

 The irrigation assessment framework was used to demonstrate that a 28% increase in capital 

costs in order to modify the system hardware and better match water application to the soil, 

delivered higher net margins compared to the typically cheaper system. This was primarily the 

result of reduced runoff from a better matched system and therefore more water infiltrating into 

the soil to become available to the crop. In this case, the stand time was reduced to 8 hours in 

order to match water application to the soil profile. The irrigation system was equipped with an 

additional set of sprinklers and shut-off valves at every lateral allowing for an irrigation 

supervisor to simply drive along a sub-mainline and activate or deactivate the appropriate 

sprinklers for the night move. Hence, no labour was required to move sprinklers at night. This 

highlighted the importance of considering impacts of the water balance on crop yields during 

the design phase, in order to show the potential value of more “expensive” systems. 

 

It is therefore recommended, that the trade-off between system costs for automation or semi-

automation in this case and effective water application be well investigated. A better matched 
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system can increase profitability and, potentially more importantly, reduce the environmental 

impacts of over irrigation and runoff. The usefulness of the irrigation assessment framework to 

conduct such investigations was also clearly demonstrated.  

 

6.2.2 Electricity tariffs 

 

In South Africa, many electricity tariff options are available to farmers in South Africa. The 

difference in tariff structures, however, is complex and determining the best option can be 

difficult for irrigation designers, consultants and farmers. In this study, the Irriecon V2 model 

was used to investigate the differences between the Ruraflex and Landrate options.  

 

The Ruraflex option had higher fixed costs, but also provided opportunity for significant 

savings if electricity use was shifted into off-peak and standard periods. At the time of the 

investigation, if the irrigation system was operated continuously for 24 hours, both the Ruraflex 

and Landrate options incurred similar electricity costs. This however, was only true for the 

2009/2010 tariff prices. It appears that in the past, irrigators may have been incorrectly 

rewarded for operating on the Ruraflex option without shifting use of electricity into off-peak 

and standard periods.  

 

In addition, tariff increases over the last three years, for this specific scenario would have 

increased the electricity bill in excess of 70%. This was concerning, considering that revenues 

from cane sales were not increasing. It also highlighted the need for irrigation strategies that 

reduce electricity use during peak and high demand periods, and therefore take advantage of the 

incentives provided by the Ruraflex option. 

 

6.2.3 Deficit irrigation 

 

Highlighted in this study was how commonly accepted design norms and standards can be 

conservative. Typically, generic design procedures deliver irrigation systems with peak design 

capacities that prevent the crop from experiencing water stress. A deficit approach allowed for 

deviation from these norms and illustrated how peak system design capacities, associated 

system costs and system operating rules can be manipulated to reduce costs. The trade-off, 

however, was reduced water applications, crop stress and therefore reduced revenues from cane 

sales. 
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In this study it was shown that the direct cost savings of water and electricity were small in 

comparison to revenue loss for a range of deficit irrigation strategies. This implied that deficit 

strategies were only feasible if the opportunity cost of water was realized by using water savings 

to convert dry land cane into irrigated cane. This was only applicable if land was not limiting. In 

this study, the increase in relative profitability, after the dry land conversion, ranged from 14 to 

28 %. In addition, deficit strategies made use of water and electricity resources efficiently. 

Water application, in some instances, was kept out of the electricity peak periods. Such 

strategies could prove to be of great benefit to the country, especially in the current context of 

increasing demands for energy conservation.   

 

Deficit irrigation is precise in nature and implementation of deficit irrigation strategies requires 

a high level of management and monitoring. The author recommends that these be well thought-

out during the planning phase. Monitoring tools such the growth stations with soil water 

potential sensors and stalk extension potentiometers should be considered to monitor the soil 

water budget and crop growth/stress status. In addition, crop production functions and optimum 

water applications for the specific region, climate and soils should be well understood before 

irrigation hardware, peak design capacities and deficit strategies are selected. Misinformed 

designs, in the form of excessive peak system capacities leading to high capital and operating 

costs, could limit the potential benefit a deficit irrigation strategy can deliver.     

 

It appears that farmers will require a large amount of support in order to successfully implement 

a deficit strategy. In the author‟s opinion, this is because deficit strategies incur substantial crop 

stress which will not be easy on the grower‟s eye. Investment in innovative methods will be 

required to communicate and increase the understanding of these concepts and mechanisms. 

This may also include improving the knowledge and understanding of extension staff as well. In 

the sugar industry at present, extension officers serve as the channel for dissemination of 

research to the growers. Extension officers, however, are more focused on advice relating to 

pest and diseases, variety choices and fertiliser and herbicide requirements rather than irrigation 

practices. Understanding of irrigation principles and the ability to give irrigation advice is often 

lacking. Hence, as the primary advisors to farmers, extension officers will play a vital role in the 

implementation of deficit irrigation strategies.  

 

Furthermore, a stressed sugarcane crop will be more susceptible to pests and diseases. In 

addition, thought must be given to fertiliser application rates. Theoretically, if stress is going to 

be induced in the crop, therefore limiting crop growth, fertilize requirements should also be 

reduced. In other words, savings could be realised if fertilisers are applied for a reduced yield 
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potential. Hence deficit irrigation strategies may have far reaching consequences and highlights 

the need for holistic assessment. The desktop study completed in this document proves that the 

fundamental concepts provide opportunities to use scarce resources more wisely and improve 

the grower‟s profitability. Field trials, however, may be required to capture the impacts of pests 

and diseases as well as explore the opportunities to reduce fertiliser applications. 

 

6.3  Monitoring Systems 

 

Implementation of deficit irrigation strategies requires precise management. Easy to use, robust 

and relatively cheap monitoring tools were perceived to be vital for the successful 

implementation and management of deficit irrigation strategies. It was envisaged that 

monitoring tools will provide data to reassure farmers of the status of their crop, irrespective of 

visual appearance. In this section, three monitoring systems were developed and assessed.  

 

The first system was a continuous soil water potential monitoring system which made use of the 

Watermark sensors and H8 four-channel Hobo data logger. This system proved to be relatively 

cheap and very robust. The system, however, required the user to travel out to site and 

download the data manually. This was considered an expensive and tiresome exercise, 

especially if data were required frequently for decision making. For this reason, this system was 

considered better suited for long term monitoring. The Watermark system was installed on two 

farms and provided valuable evidence of under-irrigation, at a relatively small cost. 

 

The next two systems were the Alti 4 and Campbell Scientific growth stations. These systems 

followed a more holistic approach where temperature, rainfall, plant stalk extension and soil 

water potential were monitored. The only difference between the two systems was the data 

loggers. The Cr 200 data logger was used for the Campbell Scientific system. Both systems, 

however, had relatively high capital and operating costs. The Alti 4 system was the cheaper of 

the two, amounting to a capital investment of R 13 131 and an operating cost of R 210/month. 

In addition, the Alti 4 appeared to have the competitive advantage by striking the better balance 

between battery life, remote communication and costs.  

 

In conclusion, the configuration for both the Alti 4 and Campbell system was robust and well 

suited to the agricultural environment. A PVC pipe installed vertically provided a steady frame 

for mounting of sensors and housing for the cables. In addition, by painting the pipe green, the 

system was fairly inconspicuous and, for security reasons, blended in well with the sugarcane. 
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Furthermore, both systems were relatively easy to use since data could be accessed remotely via 

either GPRS or GSM. Remote access to data was very attractive in terms of easy decision 

making and irrigation monitoring. These tools are envisaged to encourage more precise 

management of irrigation systems. 

 

6.4 Recommendations 

 

In this section, recommendations for future work that were beyond the scope of this study are 

presented. They are as follows: 

 

 To refine the existing design and costing tool to account for local losses and to cost, in more 

detail, the sundry components such as compression couplings for pipes, foot valves and 

block valves. 

 Use design and costing tool to evaluate sensitivity of the alternative irrigation layouts, as 

discussed in Section 3.2.2.2, to steeper slopes and differing soils. 

 Modification of the irrigation design and costing tool or development of similar tools to 

design and cost other types of irrigation systems, for example drip systems. In this way, the 

appropriate design tool could be substituted into the framework when needed. This would 

allow for easy comparison of strategies for different irrigation systems. For example, 

Sprinkler versus drip versus travelling big gun as was completed by Armitage et al. (2008) in 

Appendix C. 

 Incorporate the Nightsave electricity tariff option in to the Irriecon V2 model. This would 

then allow for further investigation of the Nightsave option. 

 Investigate the potential to reduce peak pumping hours by increasing irrigation system 

capacity. Increasing the system capacity will allow for the required water volumes to be 

applied in shorter time intervals. In this way, pumping and therefore the use of electricity are 

restricted to within the off-peak and standard time periods. Concerns with this approach, 

however, include possibly applying water in excess of the soil infiltration rate resulting in 

loss through runoff. Furthermore, higher capital costs for the increased system capacity may 

prove to be a barrier for implementation. It is recommended that these issues be investigated 

further. 

 Research and test different battery options for the Campbell Scientific growth station. The 

opportunity may exist for lithium-ion batteries, such as those used for the Alti 4 logger, to be 

used in the Campbell Scientific system. 
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 In addition, strategies for implementation and use of the infield monitoring tools need to be 

developed. For example, the monitoring system will only be representative of a point in the 

field. How does one decide where to install the unit and how many units are required for a 

specified area. One option was to install the unit in a position which was fairly representative 

of the soils of the entire field. This unit could then be used to increase the understanding of 

the irrigation strategy taking into account the soils and crop response. This could potentially 

include calibration of stress and refill points in the soil profile. Once adequate knowledge 

and understanding is gained, the monitoring unit could be moved to a different part of the 

field or to a new field altogether. Further work is required to develop a plan of how best 

these tools can be used. 

 Furthermore, the crop growth station provides many opportunities to capture growth 

responses to various treatments in the research environment. For example, relationships 

between soil types, stalk growth, time of year and irrigation requirements can be developed 

by monitoring the water balance over a period of time together with crop growth rates. 

Similar work was completed in Australia, were mini-pans were used to calibrate the 

evaporation from these pans to the crop water requirements via stalk extension rates for a 

given soil type and time of year (Attard, 2002). Similarly, the growth stations can be used to 

gather data in order to develop robust scheduling techniques, for different regions and soil 

types in South Africa. 

  

Another example could be using the tool to measure the impact on stalk growth rate and 

water extraction in a compacted soil compared to an un-compacted soil. The applications of 

these growth stations are far and wide and could prove extremely valuable to the research 

fraternity for the collection of data and generation of knowledge about crop response to 

different environments and management.  

 

Concluding, all objectives of the project were achieved. This work now provides the 

irrigated sugarcane industry with a platform of computer-based tools and methods to 

generate and assess potential irrigation solutions for a range of scenarios and contexts. 

Application of the tools within this study provided valuable opportunities to research, 

develop and assess irrigation solutions for challenges such as over irrigation on shallow soils 

and rapidly increasing electricity tariffs. In addition, the computer-based tools were also used 

to assess deficit irrigation strategies. Finally, in-field monitoring tools were also assessed to 

allow for easy management and assessment of strategies when implemented.   
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APPENDIX A:  AQUACROP PARAMETERS FOR MAIZE 
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I.2  Maize 
1
 

 

1. Crop Phenology 

Symbol Description Type 
(1), (2), (3), (4)

 Indicative values / ranges 

1.1 Threshold air temperatures 

Tbase Base temperature (°C) Conservative 
(1)

 8.0 

Tupper Upper temperature (°C) Conservative (1) 30.0 

1.2 Development of green canopy cover 

 Soil surface covered by an individual seedling at 90% emergence (cm2/plant) Conservative 
(2) 

6.50 

 Number of plants per hectare Management 
(3) 

50000 - 100000 

 Time from sowing to emergence (growing degree day) Management 
(3) 

50 - 100 

CGC Canopy growth coefficient (fraction per growing degree day) Conservative (1) 0.012 - 0.013 

CCx Maximum canopy cover (%) Management (3) Almost entirely covered 

 Time from sowing to start senescence (growing degree day) Cultivar 
(4) 

Time to emergence + 1200 - 1500 

CDC Canopy decline coefficient (fraction per growing degree day) Conservative 
(1) 

0.010  

 Time from sowing to maturity, i.e. length of crop cycle (growing degree day) Cultivar 
(4) 

Time to emergence + 1450 - 1750 

1.3 Flowering  

 Time from sowing to flowering (growing degree day) Cultivar (4) Time to emergence + 600 - 900 

 Length of the flowering stage (growing degree day) Cultivar 
(4) 

150 - 200 

 Crop determinacy linked with flowering Conservative 
(1) 

Yes 

 Excess of potential fruits (%) Conservative 
(2) 

Very small 

1.4 Development of root zone 

Zn Minimum effective rooting depth (m) Management 
(3)

 0.30 

Zx Maximum effective rooting depth (m) Management (3) Up to 2.80 

 Shape factor describing root zone expansion Conservative 
(1) 

1.3 

 Time from sowing to maximum rooting depth (growing degree day) Cultivar 
(4) 

Environment 
(3) 

Function of root expansion rate: 

1.5 - 2.5 cm/day 

                                                 
1 Table generated directly from the calibration reported by Hsiao et al., 2009. AquaCrop — the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. (in press). 
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I.2  Maize   continued 
 

2. Crop transpiration 

Symbol  Type 
(1), (2), (3), (4)

 Indicative values / ranges 

Kcbx Crop coefficient when canopy is complete but prior to senescence Conservative 
(1) 

1.03 

 Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, 

etc. 

Conservative (1) 0.30 

 Effect of canopy cover on reducing soil evaporation in late season stage Conservative 
(1)

 50 

3. Biomass production and yield formation 

3.1 Crop water productivity 

WP* Water productivity normalized for ETo and CO2 (gram/m
2
) Conservative 

(1) 
33.7 (2000) 

 Water productivity normalized for ETo and CO2 during yield formation (as 

percent WP* before yield formation) 

Conservative (1) 100 

3.2 Harvest Index 

HIo Reference harvest index (%) Cultivar 
(4) 

48 - 52 

 Building up of HI (period in growing degree days) Cultivar 
(4) 

Until 10% green canopy remains  

 Possible increase (%) of HI due to water stress before flowering Conservative 
(1) 

None 

 Coefficient describing positive impact of restricted vegetative growth during 

yield formation on HI 

Conservative (1) Small 

 Coefficient describing negative impact of stomatal closure during yield 

formation on HI 

Conservative 
(1) 

Strong 

 Allowable maximum increase (%) of specified HI Conservative 
(1) 

15 
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I.2  Maize   continued 
 

4. Stresses 

Symbol  Type 
(1), (2), (3), (4)

 Indicative values / ranges 

4.1 Soil water stresses 

pexp,lower Soil water depletion threshold for canopy expansion - Upper threshold Conservative (1) 0.14 

pexp,upper Soil water depletion threshold for canopy expansion - Lower threshold Conservative
 (1)

 0.72 

 Shape factor for Water stress coefficient for canopy expansion Conservative
 (1)

 2.9 

psto Soil water depletion threshold for stomatal control - Upper threshold Conservative
 (1)

 0.69 

 Shape factor for Water stress coefficient for stomatal control Conservative
 (1)

 6.0 

psen Soil water depletion threshold for canopy senescence - Upper threshold Conservative (1) 0.69 

 Shape factor for Water stress coefficient for canopy senescence Conservative (1) 2.7 

 Sum(ETo) during stress period to be exceeded before senescence is triggered Conservative
 (1)

 0 

ppol Soil water depletion threshold for failure of pollination - Upper threshold Conservative
 (1)

 0.80 (Estimate) 

 Vol% at anaerobiotic point (with reference to saturation) Cultivar
 (4) 

Environment 
(3) 

Moderately tolerant to water 

logging 

4.2 Soil fertility stress 

  (calibration)  

4.3 Air temperature stress 

 Minimum air temperature below which pollination starts to fail (cold stress) 

(°C) 

Conservative
 (1)

 10.0 (Estimate) 

 Maximum air temperature above which pollination starts to fail (heat stress) 

(°C) 

Conservative
 (1)

 40.0 (Estimate) 

 Minimum growing degrees required for full biomass production (°C - day) Conservative (1) 15.0 (Estimated) 

 

(1) Conservative generally applicable 

(2) Conservative for a given specie but can or may be cultivar specific 

(3) Dependent on environment and/or management 

(4) Cultivar specific 
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APPENDIX B:  AN EXAMPLE OF ARC SPRINKLER TEST DATA 

 

  



Page: 1 of 2
Report no: S04001

MAIN NOZZLE: 4.4 mm SPREADER: 2.4 mm Date: 2004

Pressure (P) and discharge (Q) relationship:

Discharge formula: Q   = 114.94 x    P 0.4498

Maximum spacing for CU>=84%, DU>=75%
and application rate >=3mm/h:
Test pressure: 300 kPa
Type of spacing: Triangular
Maximum sprinkler spacing: 30 m
Maximum lateral spacing: 15 m
Average application rate: 3.6 mm/h
Maximum radius: 16.25 m
Rotation test 1st 1/4 2nd 1/4 3rd 1/4 4th 1/4

Time (s) 6.42 6.49 6.32 6.30
RPM 2.34 2.31 2.37 2.38

Test pressure: 352 kPa
Type of spacing: Triangular
Maximum sprinkler spacing: 30 m
Maximum lateral spacing: 15 m
Average application rate: 3.9 mm/h
Maximum radius: 16.00 m

Rotation test 1st 1/4 2nd 1/4 3rd 1/4 4th 1/4

Time (s) 6.59 6.79 6.36 6.31
RPM 2.28 2.21 2.36 2.38

Test pressure: 400 kPa
Type of spacing: Triangular
Maximum sprinkler spacing: 30 m
Maximum lateral spacing: 15 m
Average application rate: 4.2 mm/h
Maximum radius: 16.25 m

Rotation test 1st 1/4 2nd 1/4 3rd 1/4 4th 1/4

Time (s) 6.85 6.96 6.73 6.49
RPM 2.19 2.16 2.23 2.31

1701

(l/h)

1377

50
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1495
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1246

Private Bag X 519, Silverton, 0127 . Tel. (012) 842 4000.  Fax. (012) 804 0753.

RESULTS OF TESTS ON THE VYRSA 35 BRASS
SPRINKLER, EQUIPPED WITH THE FOLLOWING NOZZLES:
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Vyrsa 35 Brass Main nozzle: 4.4 mm Spreader: 2.4 mm Page: 2 of 2
Report no: S04001
Date: 2004

Test pressure = 300 kPa Test pressure = 352 kPa Test pressure = 400 kPa
Appl. Appl. Appl.

Spr. Lat. rate Spr. Lat. rate Spr. Lat. rate

m m mm/h CU% DU% CU% DU% m m mm/h CU% DU% CU% DU% m m mm/h CU% DU% CU% DU%

15 7.5 13.4 90 83 93 89 15 7.5 14.7 91 85 94 91 15 7.5 16.1 91 86 94 91
15 9 11.7 88 81 96 92 15 9 12.7 90 85 96 93 15 9 13.9 91 86 96 93
15 12 8.9 87 82 90 85 15 12 9.7 90 86 92 89 15 12 10.6 90 87 92 90
15 15 7.2 89 83 91 84 15 15 7.7 92 88 92 86 15 15 8.5 93 88 93 88
15 18 6.0 91 87 87 78 15 18 6.5 93 91 90 83 15 18 7.1 94 91 91 84
15 21 5.1 90 84 85 77 15 21 5.5 89 85 87 81 15 21 6.1 89 86 87 81
15 24 4.5 80 70 80 74 15 24 4.8 80 69 80 72 15 24 5.3 79 70 79 73
15 27 4.0 72 58 72 63 15 27 4.3 69 55 69 58 15 27 4.7 68 55 68 57
15 30 3.5 62 44 62 43 15 30 3.8 58 39 58 38 15 30 4.2 57 39 57 38

18 9 9.8 88 83 94 91 18 9 10.6 91 88 95 92 18 9 11.6 91 88 95 93
18 12 7.5 89 85 90 85 18 12 8.1 92 88 91 87 18 12 8.9 92 89 92 89
18 15 6.0 93 89 87 78 18 15 6.5 95 92 90 83 18 15 7.1 95 92 91 84
18 18 5.0 92 85 87 77 18 18 5.4 92 86 90 82 18 18 5.9 93 89 90 84
18 21 4.3 85 78 87 83 18 21 4.6 86 78 88 85 18 21 5.1 87 80 88 85
18 24 3.7 79 66 82 74 18 24 4.0 79 67 80 73 18 24 4.4 79 68 79 73
18 27 3.3 72 58 72 57 18 27 3.6 68 57 69 55 18 27 3.9 68 56 68 55
18 30 3.0 60 47 60 45 18 30 3.2 57 40 57 39 18 30 3.5 57 40 57 39
21 12 6.4 88 80 86 80 21 12 6.9 90 83 87 82 21 12 7.6 91 85 87 83
21 15 5.1 92 85 85 77 21 15 5.5 93 88 87 81 21 15 6.1 93 89 87 81
21 18 4.3 89 84 87 83 21 18 4.6 89 86 88 85 21 18 5.1 91 87 88 85
21 21 3.7 85 77 90 85 21 21 4.0 86 80 88 81 21 21 4.3 86 80 88 82
21 24 3.2 79 65 81 68 21 24 3.5 79 68 79 67 21 24 3.8 78 69 78 68
21 27 2.8 70 62 70 55 21 27 3.1 68 59 68 53 21 27 3.4 67 59 67 53
21 30 2.5 60 47 59 44 21 30 2.7 57 39 57 37 21 30 3.0 57 39 56 37
24 12 5.6 86 76 79 71 24 12 6.1 89 82 79 72 24 12 6.7 90 83 78 72
24 15 4.5 89 82 80 74 24 15 4.8 91 85 80 72 24 15 5.3 91 86 79 73
24 18 3.7 86 81 82 74 24 18 4.0 87 82 80 73 24 18 4.4 88 83 79 73
24 21 3.2 81 70 81 68 24 21 3.5 83 75 79 67 24 21 3.8 83 77 78 68
24 24 2.8 76 65 73 59 24 24 3.0 76 68 74 58 24 24 3.3 75 69 74 58
24 27 2.5 68 64 67 53 24 27 2.7 66 57 66 49 24 27 2.9 66 57 65 48
24 30 2.2 59 43 59 40 24 30 2.4 56 35 56 34 24 30 2.6 56 35 55 33
27 15 4.0 88 85 72 63 27 15 4.3 90 85 69 58 27 15 4.7 90 85 68 57
27 18 3.3 84 72 72 57 27 18 3.6 84 75 69 55 27 18 3.9 84 75 68 55
27 21 2.8 76 65 70 55 27 21 3.1 78 69 68 53 27 21 3.4 77 71 67 53
27 24 2.5 72 69 67 53 27 24 2.7 71 67 66 49 27 24 2.9 70 66 65 48
27 27 2.2 66 61 63 46 27 27 2.4 63 51 61 40 27 27 2.6 62 50 61 39
27 30 2.0 59 36 59 33 27 30 2.1 55 30 54 26 27 30 2.3 54 30 53 27
30 15 3.6 89 82 62 43 30 15 3.9 87 80 58 38 30 15 4.2 86 80 57 38
30 18 3.0 78 66 60 45 30 18 3.2 78 66 57 39 30 18 3.5 78 66 57 39
30 21 2.5 71 66 59 44 30 21 2.8 71 63 57 37 30 21 3.0 70 62 56 37
30 24 2.2 69 65 59 40 30 24 2.4 65 56 56 34 30 24 2.6 64 55 55 33
30 27 2.0 64 50 59 33 30 27 2.1 58 40 54 26 30 27 2.3 56 41 53 27
30 30 1.8 57 25 56 20 30 30 1.9 49 20 48 15 30 30 2.1 48 22 47 18

ARC-INSTITUTE FOR AGRICULTURAL ENGINEERING

spacing spacing spacing spacing spacing

LNR-INSTITUUT VIR LANDBOU-INGENIEURSWESE
Private Bag X 519, Silverton, 0127 . Tel. (012) 842 4000.  Fax. (012) 804 0753.

spacing

Triangular Rectangular

Results of the coefficient of uniformity (CU), distribution uniformity (DU)
and application rate tests for various pressures and sprinkler spacings.

Spacing Spacing SpacingTriangular Rectangular Triangular Rectangular
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Abstract 
 
Irriecon V2 is a spreadsheet-based tool that can be used to determine detailed capital, 
operating and marginal costs of various irrigation scenarios. Cost implications relating to 
affected farming practices, including fertiliser, herbicide, planting, harvesting and haulage 
operations, are incorporated in the tool. In this paper, the costs of and net returns to three 
different irrigation systems that are being evaluated in the Empangeni area, namely big gun, 
dragline and drip, are described. Farm level data were obtained from interviews with local 
farmers. Irrigation system design parameters and investment cost data were based on detailed 
and representative system designs and bills of quantities. Predicted crop yield and irrigation 
water use information for the various irrigation systems were simulated using the ZIMsched 
2.0 irrigation systems model. Infield performance characteristics of the various irrigation 
systems, for example, the distribution uniformity of applied water, which is used as an input 
variable in ZIMsched 2.0, were based on data derived from Mobile Irrigation Laboratory 
evaluations. The results have applicability to irrigation system selection and design, farm 
management decision making, and for policy makers when assessing the economic impact of 
changing an irrigation system to drive irrigation water use efficiency in agriculture. 
 
Keywords: irrigation, systems, economics, model, modelling 
 

Introduction 
 
Sugarcane farmers are coming under increasing pressure to demonstrate that they are 
managing the water used for irrigation efficiently and effectively. In many catchments the 
bulk of the available water is diverted to irrigated agriculture, and savings in this sector are 
viewed as a primary source for meeting competing demands. Recommendations to change or 
upgrade irrigation and/or water management systems need to be assessed from both a 
hydrological and an economic perspective. Prior to the development of Irriecon V2 there was 
no easily available tool that could be used either to refute or demonstrate the economic 
consequences of existing and/or proposed irrigation scenarios at the detailed, on-farm level.  
 
A project was thus initiated at the South African Sugarcane Research Institute (SASRI) to 
develop a detailed economic analysis tool to assess farm specific scenarios related to 
irrigation, such as system design specifications, repairing/upgrading irrigation systems, 
comparing various Eskom tariff structure options, and/or changing farm and water 
management approaches relating to irrigation. The tool developed, Irriecon V2, is 
complementary to the original Irriecon decision support programme (DSP). Irriecon was 
designed for the ‘broad-brush’ assessment of irrigation feasibility, whereas Irriecon V2 is a 
much more detailed cost calculator. Irriecon V2 is based on the integration of: 
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• rigorous farm specific irrigation costing procedures developed at the University of the 
Free State during a Water Research Commission funded project (Oosthuizen et al., 2005), 

• procedures to assess related farming costs which were developed for the Economics of 
Trashing (EOT) DSP (Wynne and van Antwerpen, 2004). 

 
The outcome is a spreadsheet-based tool which can be used to determine detailed capital, 
operating and marginal costs of various irrigation scenarios. Cost implications relating to 
associated/affected farming practices, including fertiliser, herbicide, planting, harvesting and 
haulage operations are incorporated in the tool. In this paper, application of Irriecon V2 to 
assess various irrigation strategies and systems for potential irrigation development in the 
Empangeni area is reported. 
 

Methodology 
 

Yield simulations 
A combination of field-derived information on irrigation systems performance and 
simulations with an irrigation system/crop yield simulation model, were used to predict crop 
response to various irrigation systems, system constraints, soils, seasonal climates and 
watering strategies. The ZIMsched 2.0 irrigation system/crop yield simulation model was used 
for the study. ZIMsched 2.0 can be used to evaluate the impact on crop production of different 
irrigation strategies by taking into account the effects of different water application targets, 
scheduling practices, irrigation systems and irrigation system performance measures, using 
commonly available data and information (Lecler, 2004). 
 

The irrigation systems scenarios that have been simulated were selected based on information 
derived from, amongst others, Mobile Irrigation Laboratory evaluations in the Empangeni 
area and are described in Table 1. 
 

Table 1. Summary of assumptions used in the big gun, dragline and 
drip irrigation systems with different irrigation strategies. 

Parameter Big gun Dragline Drip 
Gross application (mm) 53 27 42 42 3.5 5.83 
Minimum cycle (days) 10 10 10 15 1 1 
Soil texture SaLm* SaLm SaLm SaLm SaLm SaLm 
Soil drainage Good Good Good Good Good Good 
Soil depth (m) 1.5 1.5 1.5 1.5 1.5 1.5 
Soil TAM** (mm) 144 144 144 144 144 144 
Evaporation losses 15% 15% 15% 15% 0% 0% 
% TAM at which an 
irrigation application was 
initiated4 

50% 50% 50% 50% 50% 50% 

Uniformity index CU1 55 CU1 55 CU2 80 CU2 80 SU3 88 SU3 88 

*SaLm = sandy loam, **TAM = total available moisture 
1Coefficient of Uniformity (CU) – values based on infield evaluations conducted by some of the authors. 
2Coefficient of Uniformity (CU) – values assumed are for top performing systems (Reinders, 2001). 
3Statistical Uniformity (SU) – values assumed are for top performing systems (Reinders, 2001). 
4Irrigation applications only took place provided the accumulate time since the previous irrigation application 
exceeded the minimum cycle time. 

 
A high potential, deep and well drained sandy loam soil representative of the Empangeni east 
area was used in the different irrigation system simulations. Ten years (1997 to 2006) of 
weather data from the Felixton automatic weather station were used in the simulations. Water 
applications were simulated to take place when 50% of the total available moisture (TAM) 
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had been depleted for all of the different systems provided the minimum irrigation cycle time 
constraints were satisfied. This is a more aggressive deficit system than is generally employed 
for drip irrigation systems. For the purpose of this research a deficit of 50% was used for the 
drip systems to maintain a relatively drier soil profile, reduce losses through deep percolation 
and runoff, and at the same time ensure that evaporative demand was met by rainfall and 
irrigation water. 
 
The CU for sprinkler systems was proposed by Christiansen (1942). It is a measurement of 
the uniformity of the depth of water application across the irrigated area. A CU of 55 was 
assumed for the big gun systems, reflecting a relatively low uniformity in water application. 
Infield evaluations of big gun systems had shown that CUs ranged from 29 to 83 but were 
generally below 60. The values obtained were highly dependent on windspeed and the 
orientation of the system travel path in relation to the wind direction. A CU of 80 was 
assumed for the dragline systems representing a high uniformity in water application by a top 
performing system. The SU is used to describe the uniformity of a drip irrigation block, 
because water is not applied to the whole field area (Pitts et al., 1996; Koegelenberg and 
Breedt, 2002). For the sub-surface drip systems a SU of 88 was assumed for a top performing 
system. 

 
Irrigation system designs 
In order to determine the costs of the various irrigation system options for the economic 
analysis, representative irrigation designs for the various irrigation systems were undertaken 
by Zululand Irrigation (Pty) Ltd. The irrigation designs for the various irrigation systems and 
irrigation strategies were based upon the optimisation of irrigation system performance and 
irrigated area. Although this resulted in different irrigation areas between the various systems, 
it permits comparisons between the irrigation systems to be undertaken on the basis that the 
irrigation system fixed costs are allocated over the optimum cane area matched to the system 
design specifications. The designs included a detailed bill of quantities and associated costs, 
and were undertaken assuming the Suid-Afrikaanse Besproeiings Instituut (South African 
Irrigation Institute) (SABI) design norms. A summary of the various system design 
parameters is presented in Tables 2, 3 and 4. 

 
Analysis of irrigation system economic margins 
The Irriecon V2 model was applied to the yield simulation results obtained from ZIMsched 
2.0 in order to assess the economic margins associated with the various options. Irriecon V2 
is a program developed by SASRI and SA Cane Growers’ Association. It is based on 
irrigation costing methods reported in Water Research Commission Report No. 974/1/05 
(Oosthuizen et al., 2005), but also includes utilities to account for other farming costs (e.g. 
crop establishment, ratoon maintenance, harvesting and transport) that may be impacted on by 
various irrigation strategies. It must be noted that the economic margins reported in this paper 
reflect only partial cane margins after rewarding all production factors that may be directly 
impacted on by changes in irrigation systems or irrigation strategies. Other fixed and variable 
costs not directly affected by irrigation are ignored in this paper, as are foreign factor costs 
such as management, rent, leases and interest on capital for land acquisition. 
 

The Irriecon V2 model is designed to capture detailed fixed and variable irrigation input costs 
and fixed and variable agronomic input costs that may be impacted upon by changing 
irrigation practices. A summary of the main irrigation inputs used in the model is presented in 
Table 5. 
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Table 2. Summary of the costs of the various big gun irrigation system options. 
 

Component 
Big gun 

53 mm/10 
(54 ha) (R) 

Big gun 
27 mm/10 
(72 ha) (R) 

Insurance 
(%)1 

Main- 
tenance 

(%)2 

Salvage 
value 
(%)3 

Expected 
life 

(yrs) 

Mainline and hydrants 176 584 97 581  0.2 30 20 

Trench costs 10 147 12 247    20 

Travellers 4417 000 5310 500  2 10 10 

Pump unit 75 992 72 175 0.83 2 15 15 

Delivery and field work 2 000 2 000 

Subtotal 681 723 494 503 

Total per ha 12 625 6 868 

1,3% of purchase price  2% of purchase price/1 000 hours per year 
4Travellers (Model 90/300 × 3) 5Travellers (Model 100/300 × 2) 
 
 
 

Table 3. Summary of the costs of the various dragline irrigation system options. 
 

Component 
Dragline 
42 mm/10 

(63.63 ha) (R) 

Dragline 
42 mm/15 

(95.45 ha) (R) 

Insurance 
(%)1 

Main- 
tenance 

(%)2 

Salvage 
value 
(%)3 

Expected 
life 

(yrs) 

Mains and sub-mains 275 796 362 979  0.2 30 20 

Trench costs 61 210 89 894    20 

Flexible risers 11 864 17 680  2  10 

Tripod assembly 44 639 44 639  2  10 

Pump station 84 785 84 785 0.83 2 15 15 

Subtotal 478 294 599 977 

Total per ha 7 517 6 286 

1,3% of purchase price  2% of purchase price/1 000 hours per year 
 
 
 

Table 4. Summary of the costs of the various drip irrigation system options. 
 

Component 
Drip 

3.5 mm/1 
(R) 

Drip 
5.8 mm/1 

(R) 

Insurance 
(%)1 

Main- 
tenance 

(%)2 

Salvage 
value 
(%)3 

Expected 
life 

(yrs) 

Mains and sub-mains 167 941 219 892  0.2 30 20 

Trench costs 40 076 42 148    20 

Micro distribution 
equipment: 

505 982 507 263  1.5  7 

Filter bank: 64 383 83 633 0.6 5  10 

Pump station: 44 252 48 047 0.83 2 15 15 

Sub total: 822 634 900 983 

Total per ha 16 453 18 020 

1,3% of purchase price  2% of purchase price/1 000 hours per year 
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Table 5. Summary of irrigation system inputs for the different 
irrigation systems and irrigation strategies used in Irriecon V2. 

 

Parameter 
Big gun 

53 mm/10 
Big gun 

27 mm/10 
Dragline 
42 mm/10 

Dragline 
42 mm/15 

Drip 
5.83 mm/1 

Drip 
3.5 mm/1 

Electricity       
Landrate 100% 100% 100% 100% 100% 100% 
Landrate option 2 2 2 2 2 1 
Basic charge (R/month) 192.30 192.30 192.30 192.30 192.30 192.30 
Network charge (R/month) 310.80 310.80 310.80 310.80 310.80 202.20 
Energy charge (R/kWh) 0.3028 0.3028 0.3028 0.3028 0.3028 0.3028 
Absorbed power (kW) 41.63 25.83 50.89 50.89 26.56 18.56 
Power factor of the motor (h) 0.9 0.9 0.9 0.9 0.9 0.9 
Pump rate design value (m3/h) 165 86 160 160 120 74 
Water       
Water charge (cents/m3) 3.44 3.44 3.44 3.44 3.44 3.44 
WRM* charge (cents/m3) 0.62 0.62 0.62 0.62 0.62 0.62 
Research levy (R/ha) 3.68 3.68 3.68 3.68 3.68 3.68 
Other       
Irrigated area (ha) 54.0 72.0 63.6 95.5 50.0 50.0 
Labour hours/1 000 m3 ** 0.68 0.68 1.65 1.65 0.40 0.40 

*WRM = water resource management,  **Hoffman et al. (2007). 
 
The estimation of repairs and maintenance costs of the differing systems were based on a 
percentage of purchase per 1 000 hours irrigation, as suggested by Oosthuizen et al. (2005). 
The capital recovery method for estimating depreciation and interest costs was employed in 
this study. 
 

The costing of other farming activities was based on information obtained from local growers 
and prices published in July 2007. A summary of the costings is presented in Table 6. 
 

Table 6. Summary of agronomic costs for the different irrigation systems 
and irrigation strategies used in Irriecon V2. 

 

Cost Measure Big gun Dragline Drip 
Planting costs 9 429 9 429 9 724 

Ratoon maintenance costs 
R/ha 

3 155 3 155 2 509 

Harvesting costs 12.02 12.02 12.02 

Transport costs 
R/ton 

47.69 47.69 47.69 

 
Irriecon V2 is designed to provide an estimate of the total farm margin after accounting for all 
costs that may be affected by changes in irrigation systems or combinations of irrigation 
systems. However, for the purpose of this paper the Irriecon V2 model was used to evaluate 
the economic performance of each irrigation system separately. As explained above, the 
irrigated area of the different irrigation systems varied according to the optimisation of the 
system design for a given capacity, and for this reason it was possible to apply only a set cost 
per ton for the harvesting and transport cost components of the analysis, as these would 
otherwise be affected by economies of scale and capacity utilisation. 
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Results 
 

Results obtained include simulations of irrigation water applied, runoff and deep percolation 
losses, crop yields and economic margins of the associated irrigation systems and 
management strategies. 
 
Irrigation water applied 
The amounts of irrigation water applied simulated for the Big gun, dragline and Drip systems 
for the different scenarios are shown in Figure 1. 
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Figure 1. Simulated irrigation water applied by big gun (BG), dragline (Drag) and drip 
irrigation systems with different irrigation strategies, over the period 1997 to 2006. 

 
 
It can be seen in Figure 1 that there was wide variation in required water application rates 
between the various irrigation systems according to their design capacity. The big gun system 
applying 53 mm in 10 days and the dragline systems required the highest water application 
rates, while the drip irrigation systems were the most effective water saving technology of the 
three systems, and also exhibited the lowest variation between water application requirements. 
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Runoff and deep percolation losses 
The runoff and deep percolation losses simulated for the big gun, dragline and drip systems 
for the different scenarios are shown in Figure 2. 
 
The choice of irrigation system and irrigation strategy was shown to have a substantial 
influence on runoff and deep percolation. These were particularly high for the big gun system 
capable of applying 53 mm in 10 days, while the losses in the big gun system applying 27 mm 
in 10 days were also high relative to the total amount of irrigation water applied. The high 
range in these losses highlights the importance of selecting an appropriate management 
strategy with big gun systems. Overall, the losses simulated under the drip systems were least 
sensitive to the system design capacity. 
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Figure 2. Simulated runoff and deep percolation losses for the big gun (BG), 
dragline (Drag) and drip irrigation systems with different irrigation strategies, 

over the period 1997 to 2006. 
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Crop yields 
The cane yields simulated for the big gun, dragline and drip systems for the different 
scenarios are shown in Figure 3. 
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Figure 3. Simulated cane yields for the big gun (BG), dragline (Drag) and drip 

irrigation systems with different irrigation strategies, over the period 1997 to 2006. 
 
Simulated crop yields were highest for the dragline system with a capacity of 42 mm in 10 
days, for the drip system with a capacity of 5.83 mm per day and to a lesser extent for the drip 
system with a capacity of 3.5 mm per day. The simulated big gun systems yields were 
relatively lower despite their higher irrigation water application levels, with the higher 
capacity big gun system having comparable yields to the lower capacity drip irrigation 
system. These results need to be viewed in the context of assumptions regarding the soils and 
climate, i.e. a deep sandy clay loam with a TAM of 144 mm and average rainfall for the 
seasons simulated a relatively high 1 132 mm/annum. Simulations on shallow soils and in 
regions of less rainfall will show markedly different trends. 
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Table 7 provides a summary of the average annual water application, losses and crop yields 
for the different irrigation systems and irrigation strategies. 
 

Table 7. Summary average irrigation water application, losses and cane yields for the 
big gun, dragline and drip irrigation systems with different irrigation strategies. 

 

System 
Maximum 
capacity 

Average annual 
irrigation 

(mm) 

Average annual 
runoff and deep 

percolation losses 
(mm) 

Average annual 
cane yield 
(tons/ha) 

Big gun 53 mm in 10 days 704.6 421.2 130 

Dragline 42 mm in 10 days 607.6 299.7 133 

Drip 5.83 mm per day 475.1 249.4 133 

Big gun 27 mm in 10 days 467.1 270.4 124 

Dragline 42 mm in 15 days 521.4 275.5 128 

Drip 3.5 mm per day 414.4 226.1 130 

 
A separate simulation completed under dryland conditions indicated that estimated rainfed 
yields in the study area would have been on average 97 tons cane/ha/annum1 over the 10-year 
period. All of the irrigation systems simulations show a considerable yield response over 
rainfed conditions, and the viability of these yield responses was tested using the Irriecon V2 
model. The results are discussed in the following section. 
 
Financial results 
The financial results simulated for the big gun, dragline and drip systems for the different 
scenarios are shown in Table 8. 
 
The results from Table 8 show that simulated partial cane margins for the dragline systems 
were higher than the big gun and drip systems. The dragline system with a capacity of 42 mm 
in 10 days achieved the highest cane margin of R11 278/ha, some R263/ha higher than the 
dragline system with a capacity of 42 mm in 15 days. The higher simulated profitability of the 
dragline systems is attributable to their relatively higher cane yields and lower fixed irrigation 
system costs compared to the other systems. 
 
The big gun system cane margins were similar between the two different irrigation strategies. 
The lower capacity strategy applying 27 mm in 10 days achieved a slightly better partial cane 
margin than the higher capacity strategy applying 53 mm in 10 days. This underscores the 
importance of selecting an appropriate management strategy with this type of system. 
 

 
 
 
 
 
 
 
 
 
 

                                                 
1It must be noted that the study area is considered to be a high potential cane production area, and the simulated 
yield results reported in this paper are therefore not representative of the average industry cane producer. 
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Table 8. Summary of financial results for the big gun, dragline and drip irrigation systems with 
different irrigation strategies, and for a dryland simulation in the study area. 

 
Big gun Dragline Drip 

Revenue/Costs 
53 mm/10 27 mm/10 42 mm/10 42 mm/15 5.83 mm/1 3.5 mm/1 

Dryland 

 

REVENUE R/ha R/ha R/ha R/ha R/ha R/ha R/ha 
  Cane sales 23 870 22 876 24 477 23 667 24 459 23 851 17 852 
                  

IRRIGATION COSTS               
  Mainline costs               
  Mainline fixed costs 575 341 663 541 865 690 – 
  Mainline operating costs 616 514 671 581 539 563 – 
  Total mainline costs 1 191 855 1 333 1 122 1 404 1 252 – 
  System costs               
  System fixed costs 963 554 121 89 1 837 1 832 – 
  System variable costs 680 554 367 319 512 609 – 
  Total system costs 1 643 1 108 488 408 2 349 2 440 – 
  Total irrigation costs 2 835 1 963 1 821 1 530 3 753 3 693 – 
                  

OTHER DIRECT COSTS               
  Planting costs 943 943 943 943 972 972 928 
  Ratooning costs 2 741 2 741 2 741 2 741 2 180 2 180 2 773 
  Harvesting costs 1 510 1 447 1 549 1 497 1 548 1 509 1 130 
  Haulage costs 5 992 5 743 6 145 5 941 6 140 5 987 4 481 
  Total other direct costs 11 186 10 874 11 377 11 123 10 840 10 649 9 312 

                  
NET PARTIAL MARGIN 9 849 10 039 11 278 11 015 9 866 9 508 8 539 
Index (Dryland = 100) 115.3 117.6 132.1 129.0 115.5 111.3 100.0 
 
Partial cane margins were lowest for the smaller capacity drip system while the higher 
capacity drip system yielded a partial margin similar to the higher capacity big gun system. 
The relatively lower drip system returns are due largely to their significantly higher fixed 
irrigation costs compared to the other systems. Fixed costs in the drip systems were  
R1 164 to R1 627/ha higher than the big gun systems, and R1 892 to R1 918/ha higher than 
the dragline systems respectively, due to their higher annual ownership costs. 
 
A further financial analysis was undertaken assuming that the availability of water was 
limited relative to availability of land, as is likely to be the case in many of the water stressed 
catchments. For this analysis the area which could be irrigated using the same amount of 
water for each system was determined. The margins shown in Table 8 were then multiplied by 
these area ratios to indicate what the total returns could be on a relative basis if the same 
quantity of water was used on different areas with each system. The results are shown in 
Table 9. 
 
Analysis of the results in Table 9 indicate that in a water stressed situation the smaller 
capacity big gun and dragline systems irrigating a larger cane area are more profitable than 
the larger capacity systems using the same quantity of water but irrigating a smaller cane area, 
and the balance of the area being farmed as dryland cane. The extra capital costs of the larger 
capacity systems would not be warranted under such circumstances as the availability of 
water would limit the ability of a grower to use the additional irrigation system capacity and 
add more water. The opportunity cost of water is shown to be much greater than the direct 
costs of water. However, the opposite is found to be true for the drip system, where a higher 
total margin would be achieved by employing the higher capacity irrigation system on a 
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smaller cane area, with the balance of the area remaining as dryland.  The reason for this is 
that the difference between the irrigation costs for the large and small capacity drip systems 
was relatively small.  Furthermore, the pump selected by the designers for the smaller 
capacity drip system operated at a lower efficiency relative to the pump used on the larger 
capacity drip system.  
 

Table 9. Summary of financial results for the different irrigation systems 
where the area irrigated using each strategy was adjusted so that the same 

volume of water was used for each strategy. 
 

Big gun Dragline Drip 
Parameter 

53 mm/10 27 mm/10 42 mm/10 42 mm/15 5.83 mm/1 3.5 mm/1 

Net partial margin above dryland (R/ha) 1 310 1 500 2 739 2 476 1 327 969 

Relative irrigable area1 1 1.51 1.16 1.35 1.48 1.7 
Relative potential increase in margin 
obtained by converting dryland cane 
area to irrigated cane area for a given 
amount of water (R) 

1 310 2 265 3 177 3 343 1 964 1 647 

1For example, the 53 mm 10-day cycle big gun system uses 705 mm, so the irrigable area ratio is 705/705 = 1, 
whereas the 3.5 mm per day drip system uses 414 mm, so the equivalent ratio is 705/414 = 1.7 (see Table 7 for 
average water use of each strategy). 

 
 

Conclusion 
 
Results shown in this paper are for a specific context where different irrigation systems and 
strategies were compared assuming relatively good soils and high mean annual precipitation. 
Thus the potential differences in the performance of the systems from an agronomic 
perspective were largely negated and overshadowed by the economic considerations. The 
relatively inexpensive dragline systems resulted in the highest returns per hectare. Due to 
labour and theft issues with dragline irrigation, many growers are considering big gun 
irrigation systems as a preferred option; however, the potential margin for these systems was 
less than for the dragline systems. 
 

The opportunity cost of water can, however, have a substantial influence on the selection of 
an appropriate irrigation strategy. Irrigation systems and strategies that use less water relative 
to competing systems allow a relatively larger area to be irrigated. Depending on the increase 
in margin over dryland margins, this may result in a low water use system being the most 
profitable system. For example, the low capacity big gun system resulted in similar cane 
margins to the high capacity Big gun system where water was unlimited. However, if 
availability of water limited the area that could be converted to irrigation, the lower capacity 
big gun system could be used to irrigate a relatively larger area and this would result in higher 
farm profit than the higher capacity big gun system. Selection of an irrigation system with 
appropriate capacity was shown to have major profitability implications under both land and 
water limited production constraints. 
 

Although the drip systems had the best performance from an agronomic perspective they 
yielded the lowest margins, and conversion to drip irrigation in this situation would have been 
the least profitable option. 
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Abstract 
 
With the ongoing implementation of the 1998 National Water Act in South Africa, irrigation 
water requirements of sugarcane are coming under increasing scrutiny. To provide some 
perspective to the many questions being posed, irrigated sugarcane production functions are 
presented in this paper. The production functions are unique in that they show not only the 
response of sugarcane to various levels of irrigation water applied, but include the impacts of 
irrigation systems that are either well or poorly maintained as indicated by the irrigation 
distribution uniformity. It was shown that poor irrigation distribution uniformities cannot be 
corrected by simply increasing the amount of water applied. Thus, the typical practice of 
increasing irrigation water application amount to account for low irrigation uniformities in net 
to gross irrigation water requirement calculations, can lead to substantial wastage. The 
impacts of reduced irrigation water allocations on crop yields should not be generalised, even 
for a specific location. For the case studies reported, near maximum crop yields in 
Komatipoort required at least 1 150 mm of irrigation water on shallow, 0.6 m deep sandy clay 
loam soils compared with only 900 mm on 1.2 m deep sandy clay loam soils. 
 
Keywords: irrigated sugarcane, crop yields, deficit irrigation, distribution uniformity 
 

Introduction 
 
With the ongoing implementation of the 1998 National Water Act in South Africa, and the 
associated initiatives to potentially re-allocate water, the irrigation water requirements of 
sugarcane are coming under increasing scrutiny. There are also uncertainties surrounding 
conversion of net irrigation water requirements to gross irrigation water requirements (Burt 
and Styles, 2007), i.e. water contributing to crop evapotranspiration requirements and yield 
versus water withdrawn from a source. To provide some perspective on these issues, irrigated 
sugarcane production functions which relate crop yield response to the gross amount of 
irrigation water exiting sprinkler nozzles or emitters, are presented in this paper. The 
production functions show the response of sugarcane to various levels of irrigation water 
applied and are for either well or poorly maintained irrigation systems and for deep and 
shallow soils. 
 

Methodology 
 
A sugarcane yield and irrigation systems simulation model named ZIMsched 2.0 was used for 
the analysis. ZIMsched 2.0 was developed by Lecler (2004) to predict how field derived 
indices of irrigation systems performance, such as the coefficient of uniformity (CU) 
(Koegelenberg and Breedt, 2003), impacted on sucrose yields and the various components of 
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the water balance. The model has been verified against trial data for a range of soil conditions, 
seasonal climates, and irrigation scheduling strategies. 
 
Fourteen years (1985-1999) of daily climate data from the Komatipoort (Tenbosh) weather 
station (25°22'S, 31°55'E) were used for the study reported here. Gross irrigation water 
applications of 42 mm, i.e. the amount of water exiting the sprinkler nozzles expressed as a 
depth equivalent value, were simulated to take place at various soil water depletion levels 
and/or irrigation cycle times in order to reflect different irrigation scheduling strategies and 
degrees of water stress. A sandy clay loam soil with a depth of 0.6 m and total available water 
content (TAWC) of 57 mm was assumed for the shallow soil scenario. A 1.2 m deep profile 
with a TAWC of 114 mm was assumed for the deep soil scenario. Poor system design and 
maintenance was represented by a CU of 60% and ideal system design and maintenance was 
represented by a CU of 80%. Based on research results reported by McNaughton (1981), Tolk 
et al. (1995) and Thompson et al. (1997) it was assumed that 10% of the water exiting the 
sprinkler nozzles was lost to non-beneficial spray evaporation and wind-drift. 
 

Results 
 
The results reported reflect the sugarcane response to the gross amounts of irrigation water 
exiting the sprinkler nozzles. Any conveyance losses within a field or between the field and 
the irrigation water source are not accounted for. Polynomial trend lines were fitted to the data 
using standard Microsoft Excel functionality. The simulated relationships between seasonal 
water applications either as the total amount of irrigation and rain water, or irrigation water 
only, and predicted sucrose yields, expressed as a percentage of the maximum potential 
sucrose yield, are shown in Figure 1. 
 
There were substantial differences in sucrose yields for different uniformities and soil depths, 
for the same water application amount. For instance, a seasonal water application of 1 100 
mm on the shallow soil resulted in 90% and 80% of the potential sucrose yield for well and 
poorly maintained sprinkler irrigation systems respectively. On a deep soil, the corresponding 
maximum sucrose yield was 98% and 85%. In both soils, a well maintained system, 
represented by a more uniform application of water, i.e. a CU of 80%, resulted in substantial 
gains in crop yield relative to the system with a CU of 60%. The impacts of uniformity were 
not as great on the deep soils relative to the shallow soils. 
 
Increasing the amount of irrigation water applied to compensate for non-uniform water 
application is a common practice or even recommendation (Burt and Styles, 2007). The 
results shown in Figure 1 illustrate that this practice resulted in only small increments of yield 
gain for a large amount of additional irrigation water. Furthermore, no matter how much 
additional water was applied, the yield potential of the irrigation system with a CU of 80% 
was never attained by the system with a CU of 60%. It is likely that, with poor uniformities, 
portions of a field that are receiving relatively low amounts of water and which benefit from 
increasing water applications are offset by yield losses on other parts of the field which then 
receive excessive water and suffer due to increasingly anaerobic soil conditions. 
 
For the shallow soil scenarios, sucrose yields declined rapidly when irrigation water 
applications were reduced to below approximately 1 150 mm. For the deep soil scenarios, the 
corresponding irrigation threshold was approximately 900 mm. This illustrates that crop 
response to water applications cannot be generalised and differences in crop response to 
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specific environments should be considered in assessing potential economic impacts of water 
allocations. 
 
The variation in the sucrose yield response to applied water increased when irrigation water 
applications were reduced. This highlights the increasing risk of economic losses with lower 
water applications when drought conditions occur. 
 

 
Figure 1. Sugarcane crop production functions for Komatipoort. The information shown is for 

sprinkler irrigation for soils with a TAWC of 57 mm and 112 mm and for irrigation uniformities 
represented by a CU of 60% and a CU of 80%. Irrigation and rain amounts are gross amounts. 

 
 

Conclusions 
 
The typical practice of simply increasing the amount of irrigation water applied to 
compensate for irrigation systems with a low CU was shown to be largely ineffective. Thus, 
when converting net irrigation water requirements to gross irrigation water requirements, no 
adjustment for low irrigation uniformities should be made. Low irrigation uniformity should 
be specifically addressed through better design, evaluation and maintenance practices. 
Improving the uniformity of irrigation water applications was shown to have substantial crop 
yield benefits, particularly on the relatively shallow soils. 
 
Crop yield response to irrigation cannot be generalised into one production function, even for 
a specific location. Thus, an allocation of water which may be suitable for a particular farm 
and soil may result in substantial yield penalties for another farm with a different soil, even 
where both farms are in the same climatic region. 
 
The production functions shown here are for different soils and irrigation uniformities, but for 
only one type of irrigation system. Application of appropriately representative crop yield and 
irrigation water balance simulation models such as ZIMsched 2.0 should be extended to 
investigate crop responses to different types of irrigation systems and operating strategies. 
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The results of such simulations provide the information necessary to determine optimum 
strategies for making the most effective and efficient use of water, and can be used in re-
allocation scenarios as part of the water licensing process. 
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Abstract 

 

In this study, the application of a relatively inexpensive continuous soil water monitoring 

system to assess crop model predictions of under- or over-irrigation was investigated. Three 

Watermark soil water potential sensors and a soil temperature sensor were linked with a 

relatively inexpensive „Hobo‟ data-logger capable of recording hourly measurements.  These 

measurement systems were installed in four sugarcane fields with the Watermark sensors at 

three depths, namely: 15 cm, 30 cm and 60-80 cm, dependent on site conditions. Prior to 

installation the Watermark sensors were calibrated using pressure plate apparatus in a 

laboratory.  In-field data were recorded from August 2007 to July 2008, a period covering the 

sugarcane growing season. Continuous monitoring of the soil water potential provided strong 

evidence to support the hypothesis that the fields were under-irrigated at certain critical times 

and adequately or possibly over-irrigated at other times. At one site, the crop experienced water 

stress for as much as 50% of the critical summer growth period. Early in the season, when 

sugarcane water requirements are relatively low, soil water potential was less than 50 kPa, 

indicating adequate water for almost 100% of the early growth period. Monitoring systems such 

as the one described, can add value in providing information to inform irrigation management 

decisions and contribute to optimising the use of water for crop production to the benefit of 

individual farmers and the wider community. 

 

Keywords: Soil Moisture Monitoring, Soil Water Potential, Watermark Sensors, Irrigation 

assessment, Sugarcane. 
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Introduction  

 

In an irrigation benchmarking study undertaken by Greaves (2007), farm water use and 

corresponding crop yield observations were compared to a range of simulated irrigation water 

requirements and crop yields. Greaves‟s (2007) study, which was undertaken on a prominent 

sugarcane irrigation scheme in KwaZulu-Natal provided strong evidence that farmers in the 

scheme were under-irrigating and that there was potential to improve crop yields by increasing 

irrigation water applications. It was further concluded, through field evaluations, that the peak 

design capacity of the irrigation systems were not the cause of reduced irrigation applications. 

Greaves (2007) recommended the use of in-field soil water monitoring to substantiate the 

hypothesis of under-irrigation.  

  

In the broader context, scarce water resources and increasing competition for water from other 

sectors (NWRS, 2004) has increased the pressure on irrigators to use water more efficiently. 

Development and application of tools to monitor soil water status in order to assess the 

performance of irrigation systems and scheduling practices could become increasingly 

important.  In the study reported in this paper, the application of a relatively inexpensive 

continuous soil water monitoring system to assess Greaves‟s (2007) crop model predictions of 

under-irrigation on farms was investigated. Typically, stakeholders, including the Department of 

Water Affairs and Forestry (DWAF), do not often perceive that farmers would be under-

irrigating and the validity of the crop model benchmarks reported by Greaves (2007) were under 

debate. 

 

Soil Water Measurement 

A detailed review of soil water sensors is given by IAEA (2008). Pertinent aspects of the review 

are summarised here as follows.  In the irrigation sector, soil water status may be measured in 

terms of volumetric water content or soil water potential. Soil water content is a description of 

how much water is present in a given volume or depth of soil, expressed typically in m
3
 water 

per m
3
 soil. The Neutron Probe, capacitance sensors and Time and Frequency Domain 

Reflectometers can be used to measure soil water content. The Neutron Probe and Time Domain 

Reflectometers (TDR) are very accurate methods of monitoring soil water status. The 

equipment, however, is relatively expensive and requires specialized knowledge to both record 

measurements and interpret the data.  Furthermore, in the case of the Neutron Probe it is time 

consuming and labour intensive to gather the data from the fields. The Neutron Probe also 

makes use of radioactive materials and therefore a strict safety programme regarding the 

operation, transporting and storage of the equipment is necessary. Capacitance sensors are 

relatively inexpensive compared to Neutron Probes and TDR instruments and are becoming 
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increasingly more popular. The IEAE (2008) stated, however, that the volume of soil sensed by 

capacitance sensors is so small that it may not be representative. A universal challenge with 

measuring soil water content is to determine whether the water content measured is too wet, i.e. 

above the drained upper limit (DUL), or too dry, i.e. below the water content at which the plant 

experiences stress (Charlesworth, 2000).  

 

Soil water potential, on the other hand, is a measure of the suction energy required by the crop 

to extract water, and is, therefore, a more direct indicator of potential crop stress and whether or 

not the soil is above the DUL. Tensiometers and porous type instruments such as gypsum 

blocks and Watermark sensors can be used to monitor soil water potential. Tensiometers are 

limited to soil water potentials above -75 kPa. Should the soil dry out to water potentials below 

-75 kPa, air enters the device breaking the vacuum with which the tensiometer operates. For this 

reason, tensiometers are high maintenance apparatus. Gypsum blocks are  inexpensive but a 

major problem is that the gypsum block breaks down and dissolves over a period of time and for 

this reason the calibration relationship between gypsum block readings and soil water potential 

is not fixed.. 

 

“The Watermark is a granular matrix sensor, similar to a gypsum block. It consists of two 

concentric electrodes embedded in a porous reference matrix material, which is surrounded by a 

synthetic membrane for protection against deterioration. A stainless steel mesh and rubber outer 

jacket makes the sensor more durable than a gypsum block. The porous sensor exhibits a water 

retention characteristic in the same way, as does a soil. So, as the surrounding soil wets and 

dries, the sensor also wets and dries. Movement of water between the soil and the sensor results 

in changes in electrical resistance between the electrodes in the sensor. The electrical resistance 

can then be converted to soil water potential through a calibration equation” (Chard, 2008). 

Watermark sensors are compact, robust, easy to use, relatively inexpensive and widely accepted 

by irrigation scientists for their ability to account for changing soil moisture conditions (Vellidis 

et al., 2008). Furthermore, watermark sensors operate over a broader range when compared to 

tensiometers and are more robust than gypsum blocks. It should be noted that the Watermark 

sensor is sensitive to soil temperature and soil temperature needs to be monitored and accounted 

for in the calibration equation (Shock et al., 1998).   

 

Methodology 

 

Based on the assessment of soil water measurement options, Watermark sensors were selected 

as the best option for measuring soil water status in this project. The next steps were to: 

 find a suitable data logger, 
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 calibrate the logger and Watermark sensor combination to relate the readings to soil 

water potential, 

 source appropriate apparatus to house the data loggers in the field and protect them 

from the elements,  

 install the Watermark-based soil water potential system in farmer‟s fields, 

 download and evaluate the water potential data.  

 

The „H8 Hobo‟ four-channel data loggers from the Onset Computer Corporation were selected 

following the work reported by Allen (2000).  The H8 Hobo loggers were readily available and 

relatively inexpensive. Furthermore, the loggers were small, inconspicuous and require only a 

small watch-type battery and therefore are not likely to be tampered with or stolen. The Onset 

Hobo Logger uses DC current to excite the sensor. The Watermark sensors, however, are more 

suited to high frequency AC excitation. DC excitation can cause polarisation over time by 

causing the cations or anions to migrate to the electrodes. The Hobo excites all sensors 

simultaneously and then proceeds to read each channel in succession, completing readings in as 

little as 10 to 40 milliseconds. Hence, very little time exists for migration to occur and 

polarisation is unlikely to be a problem (Allen, 1999). Electrolysis, however, occurs at the 

electrodes of sensors when the excitation lingers for more then 2 milliseconds. Electrolysis 

results in formation of micro gas bubbles that alter the resistance of the water medium and 

therefore the sensor reading. In the case of the H8 Onset Hobo logger, the channels are excited 

for different periods of time and the associated formation of the micro gas bubbles affects the 

resistance readings of the different channels. Nevertheless, for most practical purposes, any 

resulting bias in the readings can be addressed by using a different calibration relationship for 

each channel (Allen, 1999).  
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Calibration 

Three watermark soil water potential sensors and a soil temperature sensor were attached to the 

Onset H8 Hobo Data logger. All sensors were then placed in a saturated soil medium in a 

pressure plate chamber in a laboratory at the University of KwaZulu-Natal in South Africa. The 

pressure plate chamber was then used to systematically exert pressure on the soil forcing water 

to leave the soil. The pressure plate chamber provided a controlled environment in which the 

soil water potential was determined and compared to the voltages logged by the Onset Hobo 

logger. Using regression methods, relationships were developed to relate soil water potential to 

voltage readings for each channel, taking into account the soil temperature. The regression 

relations, together with the recorded data, are illustrated in Figure 1 below. 

 

 

Figure 1 Calibration curve of Onset Hobo Logger and Watermark sensor.  CH1, CH2 and CH3 

refer to Channels 1 to 3 of the Hobo Logger and PP refers to data from the pressure plate 

apparatus. 

 

As illustrated in Figure 1, higher voltage responses were recorded for channels 2 and 3 when 

compared to channel 1 for the same capillary pressure head.  This illustrates the variable 

resistance in the water medium due to electrolysis and hence the need for calibration of each 

channel separately.  The accuracy of the calibrations can also be assessed by referring to Figure 

1.  Whilst there is potential to refine the calibration relationships, especially for channel 2, the 

relationships were considered to be adequate for the study objectives.   

 

A general purpose, weather resistant electrical box (code: RL1 – HP) was sourced from ARB 

Electrical Wholesalers (Pty) Ltd. (2008) to house the data logger. The box was 150 x 150 x 100 

mm deep with a hinged screw on lid as shown in Figure 2.  A 20 mm hole was drilled into a side 

wall to allow for the cables from the Watermark sensors to be connected to the data logger.  
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Figure 2 General purpose box used to house Onset Hobo data logger (ARB Electrical 

Wholesalers (Pty) Ltd., 2008) 

 

The total cost of the soil water potential monitoring system was R 3450 as shown in Table 1. 

 

Table 1 Cost break down of soil water potential monitoring system 

Description Quantity Cost 

Watermark Sensors 3 R 1770 

Soil Temperature Probe 1 R   340 

Onset Hobo Logger 1 R 1200 

General Purpose Box 1 R   140 

Total R 3450 

 

Installation  

Two sugarcane farmers, within the same irrigation scheme, agreed to participate in this project.  

A total of 4 sites, 2 on each farm, were selected. All the selected fields were irrigated by 

dragline sprinkler irrigation systems. The watermarks were installed in the cane row at depths of 

15cm, 30 cm and 60 – 80 cm, dependant on site conditions. A standard soil auger was used to 

auger a hole to the required depth. The soil removed from the hole was sieved to remove rocky 

material, leaves and grass and mixed with water to obtain a thick slurry.  The slurry mixture was 

then poured into the hole, approximately 5 cm deep, to create a seat for the deepest Watermark 

sensor. A PVC pipe was fitted around the collar of the Watermark sensor and used to locate the 

sensor snugly into the slurry at the correct depth. The slurry mixture first and the soil later were 

then backfilled into the hole in layers until the required depth for the next sensor was attained. 

The backfill was firmly tapped in using the handle of an old broomstick to ensure good contact 

between the sensor and the soil. The remaining 2 sensors were placed in the same hole in the 

same manner at 30 cm and 15 cm depths. The Soil Temperature Probes were placed in the same 

hole just above the 30 cm Watermark sensor. The cables were then threaded through the hole in 

the housing unit and connected to the Onset Hobo logger. Silicone was used to fix the cables in 

place and seal any gaps in order to protect the logger from water. Finally, the lid of the housing 

unit was screwed on and the box was placed on the ground in between the sugarcane, out of 

harm‟s way. 
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Results 

 

The Watermark soil water potential sensors were used to record measurements from August 

2007 to July 2008. This period coincided with the growing season of the sugarcane crop. The 

time series for the Watermark data for two sites, namely 1A and 1B, from two different fields 

are shown in Figure 3 and Figure 4. The time series for sites 2A and 2B which were in different 

parts of the same field showed no significant differences or new information, except a drier 

trend, and are, therefore not presented in this paper. In Figures 3 and 4, the water potential is 

represented in kPa on the Y-Axis, were a higher kPa value indicates a drier soil.  

 

In Figure 3, it can be observed that in the early season (September to November), the soil at site 

1B reflects a wetter pattern at all depths of the profile compared to site 1A shown in Figure 4. 

The 15 cm and 30 cm graphs, in Figure 4, illustrate more root extraction activity. The crop 

response to water, at site 1A and 1B, in terms of root activity after the dry winter was expected 

to be similar, even though the crops were of slightly different ages. Both sites are in close 

vicinity to each other and would have received similar amounts of rainfall. Site 1B, however, is 

located on land which is relatively flat, and poor drainage coupled with irrigation and high 

rainfall in September and October may have resulted in anaerobic conditions. Soil conditions at 

site 1B were therefore not as conducive to root growth and activity compared to site 1A. 

 

Furthermore, during November and December the root extraction activity at the 15 cm and 30 

cm depths was fairly high at 1B and even though the shallower layers had been depleted, there 

was relatively little activity at the deeper depth, indicating limited root growth. Extraction at the 

deeper depth only started in mid December even though water was available earlier in the 

season. At site 1A, the roots at the 60 – 80cm depth began extracting water early in November 

much sooner than at site 1B and the shallower layers were not as dry.  This indicates that soil 

conditions at site 1A were more conducive to root growth/activity and this may have 

contributed to less stress compared to site 1B.   
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Figure 3 Time series of soil water potentials for each depth and average of all depths for Site 1B 
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Figure 4 Time series of soil water potentials for each depth and average of all depths for Site 1A 
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Inman-Bamber (2002) reported that the threshold water potential for stress in sugarcane is 

approximately 100 kPa. Studying Figures 3 and 4, it can be seen that the stress threshold of 100 kPa is 

exceeded for large periods of time between November and February and again between May and July. 

This also holds true for sites 2A and 2B. The “stress” during May to July is not as critical as during 

November to February because during the winter period the temperatures are generally too low to 

drive major growth. Furthermore, the crop at site 1A was harvested in July. Hence, no irrigation 

occurred after April in order to dry-off the crop for harvesting and potentially increase the sucrose 

content.  

 

In the summer months between November 2007 and February 2008, the average soil water potential 

over the profile often exceeded the 100 kPa stress threshold. Growth over this period is rapid due to 

the availability of ample radiant energy and, water stress over this period has a substantial impact on 

the final crop yield (Doorenbos and Kassam 1979). To illustrate the timing of water stress 

experienced by the crop on the participating farms, the percentage distribution of the average soil 

water potential for different growth stages is shown in Figure 5. 
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Figure 5 Percentage Distribution of average soil water potential 

 

For the sites on both farms the soil is very wet in the early growth stage, between August and 

November, and the opportunity does exist for saving water by reducing irrigation. However, a large 

amount of water stress was experienced during the critical growth period of the year, particularly on 

the farm where sites 2A and 2B were located. At sites 2A and 2B, the crop experiences water stress 

for as much as 50% of the critical summer growth period between November and February. This 

information substantiates Greave‟s (2007) hypothesis that farmers within the irrigation scheme were 

under-irrigating and that there is potential to improve crop yields by increasing irrigation water 

applications. In general the Watermark soil water potential sensors only represent a small area on the 

farm and spatial variation of irrigation performance may be questioned. However, the selection of 

sites for this project was done in collaboration with the farmers and was purportedly representative of 

the typical conditions on the farm as a whole.  
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Conclusions and Recommendations 

 

The Watermark soil water potential sensors proved to be a valuable tool in substantiating Greaves‟s 

(2007) hypothesis of under-irrigation. The data provided evidence of substantial water stress during 

critical growth periods but also provided evidence that there was potential to save water early in the 

growing season. Availability of soil water potential data should, therefore, assist farmers to monitor 

the performance of their irrigation strategies and make improvements. Furthermore, near-real-time 

soil water potential data could be utilized to trigger the timing of irrigation applications.  

 

The Watermark sensor and Onset Hobo data-logger combination provided a relatively cheap and 

robust system to capture valuable soil water potential data. Downloading data can, however, be 

tedious and time consuming if data is required on a frequent basis, as required, for example, to make 

irrigation application decisions. Remote access to data, via GPRS, for example, is an area which 

should be explored. Nevertheless, monitoring systems such as the one described, can add value in 

providing relatively inexpensive information to inform irrigation management decisions and 

contribute to optimising the use of water for crop production.  This will be of great benefit to 

individual farmers and the wider community. 
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Abstract 

 

Until recently the cost of electricity in South Africa was arguably rated amongst the cheapest in the 

world. However, there have been recent tariff increases, including: 14.2% effective from 1
st
 April 

2008, 34.4% effective from 1
st
 July 2008 and finally a further 33.6% increase on 1

st
 July 2009. In 

addition, a 25% increase each year over the next three years starting on 1
st
 April 2010 was approved 

subsequent to this study. The hypothesis investigated in this communication was that the increase in 

electricity tariffs has impacted substantially on the profitability of farmers and poses a serious threat 

to irrigators. The Irriecon V2 decision support tool was used to quantify the impact of the electricity 

tariff increases. A semi-permanent sprinkler irrigation system, capable of delivering 48 mm on a 10 

day cycle, was designed for 60 ha block. Heatonville weather data, for the 1998/99 cropping season, 

were used in the ZIMsched 2.0 model to generate a soil water balance with realistic irrigation 

applications. The cost of electricity for the simulated irrigation applications was then determined for 

the past three electricity tariff increases for the Landrate, Ruraflex and Nightsave Rural options. The 

electricity bill for the 60 ha field would have increased from R 74 889 to R 134 971 on the Landrate 

option. Similar increases were obtained for the Ruraflex and Nightsave Rural options.  

 

 

Keywords: Irrigation, electricity tariffs, irrigation operating expenses  
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Introduction 

 

In previous years, the cost of electricity in South Africa was arguably rated amongst the cheapest in 

the world. This has changed in recent times. The countries energy supplier, Eskom, has struggled to 

meet the electricity demands. As a result, a number of increases in the electricity tariffs have been 

affected to mitigate the situation. Increases in tariffs included: 14.2% effective from 1
st
 April 2008, 

34.4% effective from 1
st
 July 2008 and finally a further 33.6% increase on 1

st
 July 2009. In addition, 

Eskom submitted a Multi Year Price Determination (MYPD) proposal to the National Energy 

Regulator of South Africa (NERSA), requesting for a 45 % tariff increase per annum for the next 

three years (www.eskom.co.za/tariffs). Subsequent to this study, a 25% tariff increase, each year for 

the next three years, effective from 1
st
 April 2010, has been approved. In light of the economic 

climate, the past and pending increase in electricity tariffs are expected to impact, substantially, on 

farm profitability. This study was aimed at quantifying, for a specific scenario, the increase in the 

electricity bill over the last three tariff increases.  

 

 

Materials and Method 

 

A hypothetical semi-permanent irrigation system was designed for a 60 hectare field in the 

Heatonville area in Northern KwaZulu-Natal. The irrigation system was capable of delivering 48 mm 

of water on a 10 day cycle and was fairly representative of the Heatonville area. For the designed 60 

hectares and 1000 m main line, the pumping system was required to pump a flow of 116.42 m
3
/hr at a 

head of 90.74 m which requires a power rating of 45.7 KW. It was assumed that a 50 kVA, 3 phase 

transformer was installed on the farm. Irrigation applications occurred in two 12 hours sets per a day. 

 

ZIMsched 2.0, a daily soil water balance model was used to determine seasonal irrigation amounts 

(Lecler, 2004) assuming a soil with a total available water content (TAW) of 76 mm was refilled 

when 45.6 mm was depleted (60% of TAW). A gross irrigation application of 48 mm was reduced by 

10% to account for wind drift and evaporative spray losses. In this case, weather data for the 1998/99 

cropping season was obtained from the Pogela weather station in Heatonville. The combination of the 

system pumping specifications and annual irrigation demand was then used in the Irriecon V2 

(Armitage et al., 2008) model to determine the cost of electricity for the prescribed irrigation 

applications as determined by ZIMsched 2.0. The annual electricity costs were determined with tariff 

prices for the 2007/08, 2008/09 and 2009/10 years in order demonstrate the impact of increasing 

electricity tariffs on farmers. In addition, electricity costs were determined for the Landrate, Ruraflex 

and Nightsave options. 

   

http://www.eskom.co.za/tariffs
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Results 

 

755 mm of rainfall was recorded for the 2004/05 crop season. The ZIMsched 2.0 model predicted that 

the annual irrigation demand, taking into account rainfall, was an additional 998 mm. A management 

factor of 0.7 was applied to the simulated yields and the resultant cane yield was predicted to be 89.6 

tons/ha. Applying 807.84 mm of irrigation water over 60 ha translated into the pumping of 589 671 

m
3 

of water per annum which consumed 231 472 Kilowatt hours. The fixed, variable and total cost of 

electricity for this system within the specified conditions is shown in Table 1. The variable costs 

refers to the Rands charged per Kilowatt hour for the energy actually consumed while fixed costs is a 

levy charged for the use of infrastructure. It should be noted that fixed costs are payable irrespective 

of whether electricity was consumed or not. 
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Table 1 Break down of model predicted electricity costs for irrigation on 60 ha in the Heatonville area based on weather data from the 1998/1999 cropping 

season  

Ruraflex 

 

Landrate 

 

Nightsave Rural 

Fixed 

Costs1  
 

   
Fixed 

Costs1   
Fixed 

Costs1     

 
Service Admin. Network 

 
Total Service Network Total Service Admin Network  Total 

2007/2008 R 1,507 R 2,205 R 2,490 
 

R 6,202 R 2,340 R 2,460 R 4,800 R 1,507 R 2,157 R 1,890  R 5,555 

2008/2009 R 2,022 R 2,960 R 3,336 
 

R 8,318 R 3,096 R 3,254 R 6,350 R 2,022 R 2,891 R 2,532  R 7,445 

2009/2010 R 2,683 R    767 R 4,560 
 

R 8,009 R 3,449 R 4,212 R 7,661 R 2,683 R    767 R 3,258  R 6,707 

  
 

      
     

Variable 

Costs2  
 

   

Variable 

Costs2   

Variable 

Costs2     

 

Reactive 

Energy 

Active 

Energy 

Voltage 

Surcharge 

Transmission 

Surcharge 
Total 

Active 

Energy  
Total 

Energy 

Demand 

Active 

Energy 

Voltage 

Surcharge 

Transmission 

Surcharge 
Total 

2007/2008 R   896 R 47,636 R 8,277 R    570 R 57,380 R  70,090 
 

R  70,090 R 22,231 R 25,791 R 8, 635 R     499 R 57,156 

2008/2009 R 1,203 R 63,925 R 11,107 R    765 R 77,000 R  93,978 
 

R  93,978 R 29,836 R 34,637 R 11, 592 R     670 R 76,736 

2009/2010 R 1,532 R 103,517 R 17,974 R 1,234 R 124,257 R 123,310 
 

R 123,310 R 42, 327 R 60,952 R 18, 431 R 1, 065 R 122,775 

Ruraflex Landrate Nightsave Rural 

Total 

costs3   
      

     

2007/2008   
  

R   63,582 
  

R 74,889     R  62,710 

2008/2009   
  

R  85,318 
  

R 100,329     R  84,181 

2009/2010   
  

R 132,266 
  

R 134,971     R 129,483 

1 Fixed costs – Infrastructure costs that are charged irrespective of whether electricity is consumed or not. 

2 Variable costs – Cost of actual energy consumed charged in Rand per Kilowatt hour 

3 Total costs – Sum of fixed and variable costs   
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As shown in Table 1, the electricity bill for the 60 ha block would have increased from R 63 

582 to R 132 266 on the Ruraflex option. Similarly the increase for the Landrate and Nightsave 

Rural options were R 74 889 to R 134 971 and R 62 710 to R 129 483, respectively. On 

average, the cost of electricity was increased from R 0.32 per Kilowatt hour to R 0.58 per 

Kilowatt hour. The results indicate that under these constraints, the electricity bill for a 60 ha 

farm would have almost doubled in a space of three years.  

 

Conclusion 

 

In light of the above findings, and in the context of the further increases in electricity tariffs in 

the near future, the profitability of irrigated farms with low margins is under threat These 

preliminary findings highlight the need to develop and implement strategies to assist growers to 

overcome these difficult times.  
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