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ABSTRACT 

The present investigation can be divided into two main sections: the first dealing with the 

post-shedding embryogenesis of Encephalartos natalensis and the second concerned with the 

cell wall properties of immature and mature embryos of this species. 

Development of the embryo of E. natalensis from a rudimentary meristematic structure 

approximately 700 μm in length, extends over six months after the seed is shed from the 

strobilus. Throughout its development the embryo remains attached to a long suspensor. 

Differentiation of the shoot meristem flanked by two cotyledonary protuberances occurs over 

the first two months, during which peripheral tannin channels become apparent. Tannins, 

apparently elaborated by the endoplasmic reticulum, first accumulate in the large central 

vacuole and ultimately fill the channel. By the fourth month of development the root 

meristem is apparent and procambial tissue forming discrete vascular bundles can be 

discerned in the elongating cotyledons. Between four and six months, mucilage ducts 

differentiate, and, after six months when the seed becomes germinable, the embryo is 

characterised by cotyledons far longer than the axis. Shoot and root meristem cells remain 

ultrastructurally similar throughout embryo ontogeny, containing small vacuoles, many well-

differentiated mitochondria and ER profiles, abundant polysomes, plastids containing small 

starch deposits and Golgi bodies. Unusually however, Golgi bodies are infrequent in other 

cells including those elaborating mucilage which is accumulated in distended ER and 

apparently secreted into the duct lumen directly by ER-derived vesicles. The non-

meristematic cells accumulate massive starch deposits to the exclusion of any protein bodies, 

and only very sparse lipid, features which are considered in terms of the prolonged period of 

embryo development and the high atmospheric oxygen content of the Carboniferous Period, 

when cycads are suggested to have originated. 

With regard to plant cell walls, the present investigation employed immunofluorescence 

microscopy and immunocytochemistry to characterise the cell walls of immature and mature 

embryos of the recalcitrant-seeded E. natalensis to determine wall composition and potential 

changes with development. These techniques, together with cryo-scanning- and transmission- 

electron microscopy (TEM) were used to analyse potential changes in the cell walls of mature 

embryos upon desiccation. Immature cell walls appeared to be composed of low- and high 

methyl esterified epitopes of pectin, rhamnogalacturonan-associated arabinan, and the 

hemicellulose xyloglucan, while partially-esterified epitopes of pectin appear to have a 
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punctuate distribution in the wall. Arabinogalactan protein recognised by the LM2 antibody, 

along with rhamnogalacturonan-associated galactan and the hemicellulose xylan, were not 

positively localised using immunological probes, suggesting that the embryo of the current 

species does not possess these epitopes. Interestingly, mature embryos appeared to be 

identical to immature ones with respect to the cell wall components investigated, implying 

that these may not change during the protracted post-shedding embryogeny of this species. 

Analysis of the monosaccharide composition of the walls by gas liquid chromatography 

complemented the immuno-labelling work. However, there appeared to be abnormally high 

levels of glucose (Glc), which may indicate the presence of Glc-rich polymers not accounted 

for by the antibodies used in the current study. Preliminary Glc-normalised data revealed that 

there may be considerable quantities of arabinose polymers in the wall comparable to that 

found in desiccation tolerant plants. Drying appeared to induce some degree of cell wall 

folding in mature embryos, correlating with their possession of wall plasticisers such as 

arabinose polymers, but this was limited, due to the abundance of amyloplasts, which filled 

the cytoplasmic space. From the results of this study, it is proposed that the embryo cell walls 

of E. natalensis are constitutively prepared for the flexibility required during cell growth and 

expansion, which may facilitate the observed moderate cell wall folding in mature embryos 

upon drying. This, together with an abundant supply of amyloplasts in the cytomatrix may 

provide sufficient mechanical stabilisation during desiccation even though the seeds of this 

species are highly desiccation sensitive.  

Overall, this study has been a relatively comprehensive coverage of histological and 

ultrastructural aspects of embryogenesis in E. natalensis. This work will form a pivotal basis 

for future studies, which may ultimately lead to the successful germplasm cryopreservation 

and in vitro production on a commercial scale of these, and other, endangered cycad species. 

Furthermore, the work on cell walls in this investigation has provided improved 

comprehension of the responses of seed cell walls to dehydration.  
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CHAPTER 1   

INTRODUCTION    

1.1. The cycads 

Cycads are the most primitive extant spermatophytes (Brenner et al. 2003). The members of 

this family, the Zamiaceae, possess a combination of features that give them the appearance 

of being a synthetic group of vascular plants (Vashishta 1995). In certain respects its 

members resemble the ferns and the pteridosperms; in others they resemble the Bennittitales, 

Pentoxylales, Cordaitales and Ginkgoales (Vashishta 1995). Some cycads bear a resemblance 

to ferns due to the appearance of the large frond-like leaves (that may be up to 3 m long in 

Cycas circinalis [Vashishta 1995]), but most modern cycads bring to mind palm-trees in 

having a stout trunk with a crown of pinnate fronds at the apex (Sporne 1965). However, 

while they may have a general appearance which is readily identifiable by most people, they 

are usually wrongly linked to ferns and palms (e.g. ‘Sago palm’), when, in fact, they are not 

related to either. Cycads actually constitute a unique assemblage of plants and although they 

are grouped with the gymnosperms they are considered to be unrelated to any group of living 

plants (Jones 1993) and may represent a transitional stage between ferns and other 

gymnosperms (Bhatnagar and Moitra 1996).  

Nevertheless, cycads are true gymnosperms in that their seeds are naked and borne on 

modified leaves, the sporophylls (Bhatnagar and Moitra 1996). These plants are dioecious 

and vary in height from a few centimetres to several metres (Vovides et al. 2003). Cycads are 

mostly unbranched, but in some species there are occasional adventitious branches. Several 

species attain a height of 10 to 15 m, e.g. Dioon spinulosum and Microcycas calocoma, while 

the tallest of all is Macrozamia hopei at 18 m; some have subterranean stems which are short 

and tuberous and which branch in an irregular manner, e.g. Stangeria and Bowenia and 

several species of Zamia, Macrozamia and Encephalartos (Sporne 1965), while one species, 

Zamia pseudoparasitica, is epiphytic (Arnold 1953) on tropical rainforest trees in Panama 

(Vovides et al. 2003).    

Members of the Cycadaceae are typically slow-growing and have very long life spans e.g. a 

1.8-2 m tall plant of Dioon has been estimated to be one thousand years old (Vashishta 1995); 

a plant of Macrozamia takes about 100 years to reach a height of 1 m (Schuster 1932), while 

Encephalartos takes 200-300 years to grow to a height of 1.5-1.75 m (Biswas and Johri 
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1997). Their slow growth has been suggested to be due to their xerophytic habit (Vashishta 

1995), with all species showing strong xeromorphic structures (even those that grow in dense 

forests).  

Some of the xeromorphic features that cycads possess include a heavily cutinised epidermis 

and deeply sunken stomata (Sporne 1965) and tuberous, underground stems or more usually 

short and unbranched aerial stems with persistent leaf bases, which, combined with a thick 

cortex, are considered to insulate the trunk effectively (Bhatnagar and Moitra 1996). These 

xeromorphic features adapt cycads well against environmental stresses such as drought and 

fire, as well as protecting against predators and pathogens. It is thought that their secondary 

chemical compounds may also contribute to their tolerance of such threats (Fosberg 1964; 

Brenner et al. 2003).  

Compared with spermatophytes generally, cycads display other unusual and some unique 

features, e.g. motile antherozoids, cyanobacterial symbionts and elaboration of particular 

toxins (Ikeno 1896; Osborne et al. 1988; Osborne 1995): these, and their morphological 

features, are considered to be related to their ancient lineage (Vashishta 1995). 

1.1.1. Origins 

Paleontological investigations have placed cycads in the first diverging group of 

spermatophytes, the Cycadophytes (Brenner et al. 2003). It was believed that the earliest 

relatives of cycads may have arisen as early as in the Pennsylvanian subdivision of the 

Carboniferous Period (Norstog and Nicholls 1997; Hermsen et al. 2006), approximately 300 

million years ago (MYA) (Chaw et al. 2005). However, after recent analyses, the identity of 

many fossil cycads appears doubtful and it has been suggested that these probably represent 

intermediates in the evolutionary process (Osborne 2002). The contemporary belief is that 

while cycads have a substantial fossil record dating back at least 70 MYA (Rai et al. 2003), 

the fossil record of the living Cycadales extends only to the Tertiary Period (Brenner et al. 

2003). However, while the cycads of today are a mere remnant of a family that once 

dominated the Earth’s vegetation (Bhatnagar and Moitra 1996), they still represent the oldest 

surviving lineage of spermatophytes and hence play a significant role in our understanding of 

the evolution of morphological characters in plants (Brenner et al. 2003).  

 

 



3 
 

1.1.2. Diversity and distribution 

The extant cycads are restricted to the subtropical and tropical regions of the world with ca 

289 species (Whitelocke 2002). However, it is believed that the number of species may reach 

as many as 400 with the completion of taxonomic studies and when all possible cycad 

habitats have been explored (Vovides et al. 2003).  

All extant cycad genera were initially classed in a single family, the Cycadaceae. Later, 

cycads were divided into three families (Chaw et al. 2005) with Cycas placed in the suborder 

Cycadineae, and Stangeriaceae and Zamiaceae assigned to the suborder Zaminiineae 

(Stevenson 1992).  

Currently, the Cycadaceae has one genus (Cycas), found along the West African coast, 

Madagascar, Asia, northern Australia and many islands of the Pacific Ocean. The 

Stangeriaceae has two genera: Stangeria being the one genus in Africa, and Bowenia with 

two species endemic to Australia. The largest family is the Zamiaceae with 202 species in 

eight genera (Hill et al. 2004). The Zamiaceae is also the most diverse cycad family with 

respect to geographical distribution (Donaldson et al. 2003), suggesting that the grouping 

may have existed before fragmentation of the super continent, Pangaea. Encephalartos, 

which is the only genus of the Zamiaceae occurring in Africa (Goode 2001), is the second 

largest cycad genus with 65 species (Hill et al. 2004), although Cooper and Goode (2004) 

recently documented 70 species. Thirty eight species of Encephalartos are found in South 

Africa (Donaldson et al. 2003). The greatest diversity of cycads is found in Australia (ca 78 

species), Mexico (ca 45 species), and South Africa (ca 40 species) (Vovides 2000).  

Cycads of today have a fragmented distribution and form an inconspicuous part of the 

vegetation, which may further allude to their antiquity (reviewed by Vashishta 1995; 

Bhatnagar and Moitra 1996). However, while cycads have survived for a long period, their 

numbers have declined steadily in recent years and many species face the risk of extinction 

(Brenner et al. 2003). 

1.1.3. Conservation status  

Cycads are now a group of global conservation significance and are included in the red data 

book (Golding and Hurter 2003). While the 1997 IUCN Red List of Threatened Plants placed 

12.5% of the world’s vascular plants in one of the threatened categories (Walter and Gillett 

1998), more than 80% of cycad species were recognised as threatened (Donaldson et al. 
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2003). According to van Schalkwyk (2007), as many as 71% of the critically endangered 

plants in South Africa are cycads. Eleven of the 38 cycad taxa represented in South Africa are 

critically endangered, while six are endangered, two are vulnerable and 15 are protected (van 

Schalkwyk 2007). New species of cycads have also been discovered in Africa, especially in 

areas of southern Africa to the north of the Limpopo River, but many of these are on the 

verge of extinction in their natural habitat (Goode 2001; Donaldson et al. 2003). Moreover, at 

least two African species, Encephalartos woodii and E. relictus, are confirmed as extinct in 

the wild (Dyer 1965; Osborne 1986).  

1.1.4. Reasons for decline  

The reasons for the decline in cycad numbers are many and varied. While there are some 

species that are dying out naturally, two main reasons have been cited for the decline in 

numbers: 1) the removal of plants from their habitat by traders, landscapers and collectors 

because of their monetary value and aesthetic appeal; and 2) the disturbance and destruction 

of natural habitat for the building of dams and roads, agricultural development, commercial 

forestation, as well as urban and rural housing developments (Osborne 1995; Donaldson et al. 

2003; Vovides et al. 2003).  

Other factors, such as the collection of cycads by traditional healers for medicinal purposes 

and alleged magical properties, and ecological disturbances like fire regime and invasive 

alien plants have also been implicated in the diminishing cycad populations (Jones 1993). It 

has also been demonstrated that pollinator survival may be related to the composition and 

size of cycad populations and that decreasing cycad population sizes could lead to decreasing 

pollinator populations and vice versa (Donaldson 2004). Thus decreasing numbers in 

specialist cycad pollinator populations may also contribute to the decline of cycad numbers.  

Cycads usually display a comparatively high degree of endemism (Dyer 1965; Schneider et 

al. 2003) and while the plants may produce large numbers of seeds, reproductive failure 

appears to be a concern as there is comparatively little germination in the field with very few 

seedlings being observed (Forsyth and van Staden 1983; Giddy 1990). According to Tang 

(1987), about 90% or more of young cycad plants may succumb to stress, competition and 

attack by predators.  In addition, cycads may take up to 15 years to reach sexual maturity 

(Tang 1990; Vogel et al. 1995; Norstog and Nicholls 1997). Hence, cycad populations grow 

naturally at a relatively slow rate and in order to avert the complete loss of these plants, the 

majority of cycads are now protected by law (Giddy 1995).             
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1.1.5. Legislation 

Cycads in South Africa are protected under the National Environment: Biodiversity Act of 

2004 (van Schalkwyk 2007). Internationally, trade in cycads is censored by the Convention in 

International Trade in Endangered Species of Flora and Fauna (CITES). Both Encephalartos 

and Stangeria are included in Appendix 1 of the CITES schedules. This implies that no trade 

is allowed in plants or seed collected from the wild.  Trade is restricted to licensed cycad 

nurseries and, while CITES permits trade in garden-produced Appendix 1 seeds, The SA 

Management Authority has instructed the provinces of South Africa not to issue CITES 

export permits for Encephalartos and Stangeria seeds on the grounds that it is difficult to 

distinguish between seed of wild and garden origin (Giddy 1995). More than one-third of 

South African species are subject to the most severe protective legislation, while the rest 

(including their seeds) are protected by a second class of restrictions (Schlegel 1991).  

However, while protective legislation has been implemented, surprisingly little research has 

been undertaken on cycad seeds in spite of the apparent need for the conservation of these 

plants (Vorster 1995).  

1.1.6. Reasons for lack of research on cycad seeds 

Cycads have received little consideration from morphologists, systematists and seed 

biologists since the major studies by Chamberlain (1935); however, a deficiency of interest 

cannot be blamed for lack of research. One of the main reasons for the dearth of research on 

cycad seeds has been a lack of availability of suitable material in sufficient quantities for 

experimental purposes (Dehgan and Schutzman 1989; Stevenson 1990). The plants are 

generally rare and usually encountered as prized specimens in botanical gardens (Stevenson 

1990), so acquiring seeds for experimental purposes is not easy.  In addition, more than one-

third of known species are subject to the most severe protective regulations (as mentioned 

previously), and the remaining, including their seeds, are governed by the second category of 

restrictions (Schlegel 1991). 

It is also extremely difficult to ascertain whether cycad seeds are fertilised or not. In 

angiosperms, reserve deposition in the seed happens after fertilisation and is accompanied by 

growth to physiological maturity, at which stage mature angiosperm seeds are shed and, 

unless dormant, will germinate when conditions are favourable (Bewley and Black 1994). 

However, cycads are gymnosperms, and in most cases their ovule morphology differs very 
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little, if at all, from that of the fertilised seed (e.g. Woodenberg 2009). In some gymnosperm 

species, e.g. Encephalartos natalensis Dyer and Verdoorn, the subject of the present study, 

all the necessary reserves are laid down in the megagametophyte before fertilisation, and 

when shed the propagules may not contain an embryo (personal observation). This is a 

challenge in cycad seed research, because unless pollination by hand has been undertaken, 

there is always great variability in the number of fertilised seeds, or there are low actual seed 

numbers because of the inefficiency of natural pollination in garden settings (personal 

observation).  

The seeds of most cycad species also need several months to germinate (Dehgan 1983, 1984; 

Forsyth and van Staden 1983). At least three, and possibly four, simultaneous dormancy 

mechanisms add to their delayed germination. These include a fleshy sarcotesta that may 

contain unspecified inhibitors (Brown 1966); a thick and ‘stony’ sclerotesta; and, in many 

species, an immature embryo at seed-shed (Dehgan 1983; Dehgan and Johnson 1983; Dehgan 

and Schutzman 1983; Dehgan and Yeun 1983). Nicolaeva (1977) has referred to such 

dormancy as “morphophysiological complex dormancy”.  

Despite – or because – of the aforementioned challenges that have restricted investigations on 

cycad seed research previously, much research is needed to characterise seed development 

and for the preservation of cycad germplasm, ultimately for the restoration of cycad 

populations via improved propagation.   

1.2. Seeds  

A seed possesses all the information necessary to yield an entire plant of its species. In 

addition, seeds provide vital intraspecific genetic variability. Hence, they are considered to be 

the most important propagatory unit of plants (Berjak and Pammenter 2004). 

The seeds of most species pass through three main phases of development; the first is 

histodifferentiation, which is characterised by rapid mitosis, cell development and tissue 

differentiation (Adams and Rinne 1980). This phase is started by fertilisation – and while it 

leads to the creation of an embryo and its nutritive tissue in angiosperms – in gymnosperms, 

here exemplified by the cycads, formation of the nutritive tissue is not a consequence of 

fertilisation, but is maternal and constituted by the female gametophyte.  In angiosperms, 

histodifferentiation is followed by the second phase, which is characterised by a substantial 

accumulation of reserves, cell expansion and increasing fresh and dry mass of the seed 
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(Bewley and Black 1994). The third phase is usually characterised by a deceleration and 

ultimate termination of dry mass accumulation, with a noticeable decline in fresh mass and is 

aptly known as maturation drying as the seed may lose up to 90% of the water it originally 

contained (Adams and Rinne 1980).  

The following is a description of the morphological and anatomical aspects of the first two 

phases of seed development (mainly embryogenesis) across angiosperms and gymnosperms, 

before a discussion of the third phase and its implications in the present investigation.  

1.2.1. Embryogenesis 

One of the main differences between early embryogenesis of angiosperms and gymnosperms 

is that the latter usually display a free-nuclear phase, whereas in angiosperms generally, wall 

formation follows division of the zygote (Johansen 1950). However, exceptions do occur in 

both groups. Among the gymnosperms such as Sequoia, Gnetum, and Welwitschia, mitosis of 

the zygote is followed by cell wall formation (Buchholz 1939; Maheshwari and Vasil 1961), 

and among the angiosperms Paeonia appears to have a free-nuclear phase (Wunderlich 

1966).  

1.2.1.1.Angiosperms 

A characteristic feature of fertilisation in angiosperms is the participation of two male nuclei 

in what is termed double fertilisation (reviewed by Bewley and Black 1994). In this process, 

one nucleus exits the pollen tube and fuses with the egg nucleus forming a diploid zygote, 

while the other fuses with two polar nuclei to give rise to a triploid nucleus (pentaploid 4n + 

n in Lilium). While double fertilisation in this way is unique to angiosperms, a somewhat 

similar double fusion has now been found in a gymnosperm, Ephedra (Friedman 1990), as 

will be discussed later.  

The diploid zygote of an angiosperm develops into an embryo, while the polyploid 

endosperm cell undergoes a series of mitoses to form a tissue known as the endosperm. This 

tissue is nutritive in function and will be used by the embryo in further growth towards 

germination (Bewley and Black 1994). In some seed-types, the endosperm remains a major 

component and is used by the embryo only at germination (e.g. Zea mays); however, in other 

seed-types, (e.g. Phaseolus vulgaris), all of the endospermic nutrients are transferred to the 

cotyledons of the growing embryo, which therefore become very large (Vijayaraghavan and 

Prabhakar 1984; Lopes and Larkins 1993).  
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Two sub-divisions exist in the angiosperms named for the number of cotyledons of their 

members: The Monocotyledonae (monocotyledons [monocots]) and Dicotyledonae 

(dicotyledons [dicots]) (reviewed by Bewley and Black 1994), which have one and two 

cotyledons, respectively, and since embryogenesis has been found to differ between the two 

divisions, they will be discussed separately here.  

Dicotyledons 

Schnarf (1929), Johansen (1945) and Maheshwari (1950) recognised five main categories of 

early stage embryo development among dicotyledons: (1) the Crucifer or Onagrad type; (2) 

the Asterad type; (3) the Solanad type; (4) the Caryophyllad type; and (5) the Chenopodiad 

type. For a more detailed review of the five categories the reader is referred to a publication 

by Sharma (2009); however, an overall summary of dicot embryogenesis reads as follows. 

After numerous mitotic divisions of the zygote, a sphere of cells is formed. This is referred to 

as the globular stage of embryogenesis, which is also characterised by the onset of tissue 

differentiation. While the outer layer of cells, known as the protoderm in the globular stage, 

yields the epidermis, the inner cells differentiate to give rise to the procambium and ground 

meristem of the embryo. Subsequent development by cell division and cell expansion then 

ensues and the embryo transforms into what is described as the heart stage of embryogenesis. 

The shape of the heart stage is brought about by the differentiation and elongation of the 

cotyledonary primordia. The cotyledons grow by further mitoses and expansion of the 

primordial cells, along with some additional development by cell division and growth of all 

the other cells of the embryo. The whole embryo consequently elongates, which gives rise to 

this stage being referred to as the torpedo stage of embryogenesis. After this, the axis tissue 

continues to differentiate, such that the apical shoot meristem (bearing cotyledons on either 

side) is evident, as is the radicle, which terminates in the root apical meristem. These two 

apical meristems separate from one another as a result of division and elongation of the cells 

between them, while the cotyledons continue to elongate substantially. When these events 

have occurred, histodifferentiation ceases and the embryo is considered to be fully formed. 

Monocotyledons 

A number of noteworthy publications by Souéges (see Maheshwari 1950) gave valuable 

insight into the embryogenesis of various monocots, viz. Luzula forsteri (1923); Poa annua 
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(1924); Sagittaria (1931) and Muscari comosum (1932). From these and other studies, the 

following information has been formalised. 

The early stages of embryogenesis are basically similar in monocots and dicots. The initial 

mitosis of the zygote forms an apical and basal cell, which are precursors of the embryo 

proper and the suspensor, respectively. The account below typifies embryogenesis in the 

Poaceae. 

Division of the apical cell results in a sphere of cells, as occurs in dicots, following which the 

embryo is regarded as being in the globular stage. However, there appears to be no clear 

demarcation of the sphere of cells of the pro-embryo from the suspensor, since the latter is 

not stalk-like. This gives a conical shape to the whole pro-embryo. Further mitoses, 

differentiation and development occur such that, in the late globular stage, the epidermis is 

distinguishable, along with a group of smaller, compact cells to one side of the pro-embryo. 

These compact cells are the initials that give rise to a root-shoot continuum forming the 

embryonic axis. Apart from the suspensor, the rest of the pro-embryo develops into a single 

cotyledon – known as the scutellum. In the succeeding stage of embryogenesis, the scutellum 

expands substantially, while differentiation takes place in the axis. Hence, this stage is 

referred to as the scutellar stage. These events continue into the next stage of embryo 

development called the coleoptilar stage. In this stage, the axis differentiates to form shoot 

(plumule) and root (radicle) termini, as well as ensheathing structures around each terminus. 

The shoot tip becomes ensheathed by the coleoptile (hence the name of the stage), whereas 

the coleorhiza ensheaths the radicle.   

1.2.1.2.Gymnosperms 

According to a review by Biswas and Johri (1997), gymnosperm embryogenesis can be 

divided into three phases: 

(A) Pro-embryogenesis: Development from division of the zygote to the stage prior to 

elongation of the suspensor. There is heterogeneity in the formation of the pro-embryo in 

gymnosperms and four basic types can be distinguished (in the order of most to least 

advanced): (i) Gnetum and Welwitschia type, (ii) Ephedra and Sequoia type (iii) Conifer 

type, and (iv) Cycad and Ginkgo type (the subject of the present study). 
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(B) Early embryogenesis: This phase, which varies in details depending on the taxona, 

comprises elongation and proliferation of the suspensor and ends in the formation of a young 

embryonic mass. 

(C) Late embryogenesis: Includes embryo ontogeny after the elongation of the suspensor and 

the formation of polar meristems, i.e. those of the root and shoot.  

Gnetum and Welwitschia type 

Early development of the zygote appears to vary in different species of Gnetum (Maheshwari 

and Vasil 1961; Martens 1971). In G. gnemon (Madhulata 1960), the zygotes typically occur 

in pairs. The zygote may form a small protuberance into which the nucleus passes (Lotsy 

1899), or it may divide into two cells and one or both cells may form a tube (Fig. 1A). 

Otherwise, it leads to the formation of a branched tube with the nucleus passing into one of 

the branches. The tubes have been called either pro-embryonal tubes or suspensor tubes, or 

primary suspensor tubes. Here they will be called primary suspensor tubes to distinguish 

them from the secondary suspensor. The tubes become septate, substantially elongated, and 

coiled, growing into the megagametophyte. The primary suspensor tubes generally grow 

towards the chalazal end of the megagametophyte; however, some may be observed growing 

outside of the megagametophyte through the micropylar region. Embryogenesis begins at the 

tips of a few of these primary suspensor tubes as a small cell is cut off. This cell undergoes 

division both transversely and longitudinally to give rise to a quartet where subsequent 

divisions lead to the production of a globular embryo (Figs 1B-E). Cells at the primary 

suspensor tube end divide and elongate substantially to form a long, coiled secondary 

suspensor that serves to push the growing embryo deeper in the megagametophyte (Figs 1F-

H). In G. africanum, the zygote and its products give rise to a row of cells each of which 

forms a primary suspensor tube.  

There is some debate regarding the pro-embryogenesis of G. ula (Vasil 1959; Swamy 1973). 

According to Vasil (1959), division of the zygote is followed directly by wall formation. The 

two daughter cells elongate forming suspensor tubes, which undergo further divisions. The  
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Fig. 1 Gnetum ula (et, embryonal tubes). A Tip part of primary suspensor tube. B Same, 

demonstrating peculiar cell. C, D. Peculiar cell divides to form two, four and eight cells; in D, the 

primary suspensor tube nucleus is persistent. E Showing a mass of cells produced by the peculiar cell. 

F, G. Upper cells of the cellular mass enlarge and undergo division giving rise to a secondary 

suspensor (embryonal tubes); note the persistent nucleus of the primary suspensor tube. H, Young 

embryo depicting primary suspensor tube with a long, coiled multicellular secondary suspensor. A 

few cells of the secondary suspensor elongate to yield long tubes that grow on the sides of the primary 

suspensor tube (after Vasil 1959; Diagrams & captions copyright © Bhatnagar and Moitra 1996; 

published by V.S. Johri for New Age Publishers, New Delhi, and reproduced by permission [29th 

November, 2013] of the Rights Department, New Age Publishers) 
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resultant daughter cells elongate forming a group of uninucleate primary suspensor tubes that 

grow in different directions within the megagametophyte. However, as Swamy (1973) 

demonstrated, the zygote in G. ula enlarges and undergoes free-nuclear divisions initially. 

Following the four-nucleate stage, two short processes are seen at one pole of the pro-

embryo, which grow towards the chalaza. The tubular processes branch, and at the eight- and 

16-nucleate stages the nuclei move into the tubes. This gives rise to a number of uninucleate 

primary suspensor tubes that penetrate the core of the megagametophyte in the chalazal 

direction. 

According to Swamy (1973), the nucleus of the primary suspensor tube then moves to the tip 

and undergoes mitosis to form two nuclei of different size. The smaller of the two nuclei gets 

cut off by a thin wall growing in the direction of the tube. This is known as the ‘peculiar cell’ 

because of the various shapes it adopts and the lack of information on its development 

(Swamy 1973) (Figs 1B-D). However, when the peculiar cell is ‘pyriform’, it divides to form 

a globular mass that develops into a mature embryo. Morphologically, therefore, it is a cell of 

the embryo.  

As reviewed by Bhatnagar and Moitra (1996), once the peculiar cell has been cut off by the 

wall, the primary suspensor tube wall thickens except in the peculiar cell region. The latter 

becomes rounded and undergoes two divisions producing four cells (Fig. 1C). A subsequent 

division forms eight cells. Further divisions are irregular giving rise to a mass of cells, the 

uppermost of which form the secondary suspensor, while compact cells at the tip of the 

secondary suspensor form the embryo proper (Vasil 1959) (Fig. 1F). The secondary 

suspensor becomes quite large and has the appearance of a folded plate of cells (Fig. 1H). 

Some of these cells elongate giving rise to long tubes developing on the sides of the primary 

suspensor, which ultimately stops functioning. Bhatnagar and Moitra (1996) mentioned that 

only one or two of the primary suspensor tubes grow to a stage where embryonal cells 

proliferate, while the rest degenerate.  

Those authors also stated that the developing embryo displays a conical mass of cells bearing 

the shoot apex at the tip, and that the cells on the sides of the shoot tip divide actively to give 

rise to two cotyledons that cover the central region of the shoot apex. According to the same 

workers, the root tip differentiates at the opposite end – the root cap cells being contiguous 

with the relatively large secondary suspensor.  
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After the shoot and the root apices differentiate, a small extension emerges in the area 

between the two apices. This is the initiation of the so-called ‘feeder’ (see Sanwal 1962), 

which differentiates into epidermis, cortex, vascular bundles and pith. The feeder is a very 

prominent component of the mature embryo, is usually longer than the hypocotyl, and 

reportedly functions by absorbing nutrients from the megagametophtyte for the growth and 

development of the embryo. 

In Welwitschia, formation of the pro-embryo is not known in much detail; however, it 

appears similar to Gnetum (Pearson 1929; Martens and Waterkeyn 1974). As in Sequoia and 

Gnetum, mitosis of the zygote is followed directly by the formation of cell walls. Division of 

the zygote leads to the production of a long suspensor cell and a small embryonal cell. The 

embryonal cell undergoes division or cuts off a progression of embryonal suspensors, which 

elongate while remaining within a cavity in the megagametophyte, sometimes referred to as a 

prothalial tube (Bhatnagar and Moitra 1996). The single embryonal cell initially undergoes 

vertical followed by transverse division to give rise to four cells making up two tiers 

(Martens and Waterkyn 1974). Eight cells are formed in a single tier when the upper two 

cells undergo anticlinal division. As pointed out by Bhatnagar and Moitra (1996), these eight 

cells elongate to form embryonal tubes or secondary suspensors, while the lower two cells 

divide vertically to form a quadrant. These quadrant cells divide by the formation of oblique 

anticlinal walls, followed by transverse walls which give rise to an inner and outer group of 

cells. 

The outer layer of cells elongates to give rise to the cap; however, all the cap cells become 

meristematic in later stages and are added to the embryonal mass. The peripheral cells of the 

embryonal mass develop and contribute to the secondary suspensor resulting in it becoming 

relatively large (Martens and Waterkeyn 1974). Those researchers also showed that a feeder 

exists in the embryo of Welwitschia, which appears as a collar or annular bulge in the 

embryonic axis of the mature embryo, and as Singh and Johri (1972) reviewed, simple and 

cleavage polyembryony are both regular features in the Welwitschia and Gnetum type. 

Ephedra and Sequoia type 

Embryogenesis has been studied in only a few species of Ephedra (including E. foliata; [Figs 

2C, E-F]; Khan 1943). Double fertilisation was demonstrated in E. nevadensis and E. trifurca 

(Friedman 1990b, 1991), where two sperm cells unite with the egg cell and ventral canal cell 
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of the megagametophyte, respectively, ultimately giving rise to two pro-embryos (Friedman 

1992). 

Division of the zygote nucleus occurs in situ; the two nuclei separate occasionally and move 

to the two poles of the zygote. Two more nuclear divisions follow, resulting in eight nuclei 

(Figs 2A & B). Each nucleus is enclosed in a cytomatrical sheath that radiates strands and 

appears dense (Lehmann-Baerts 1967) (Fig. 2B). A wall develops around each of the eight 

nuclei, which is followed by cleavage resulting in eight units. According to Foster and 

Gifford (1959), this is a precocious type of polyembryony and only one embryo reaches 

maturity.  

A tubular outgrowth then extends from each cell of the pro-embryo (e.g. Khan 1943) (Figs 

2C & D). The nucleus divides occasionally before the outgrowth forms, or it may pass into 

the tube and divide. A transverse wall is formed, giving rise to an embryonal cell and a 

suspensor cell, which elongates (Fig. 2D). A periclinal mitosis in the embryonal cell is 

followed by one in the longitudinal plane in the lower cell which gives rise to three cells (Fig. 

2E). Subsequent divisions lead to the formation of the embryo-proper and a multicellular 

secondary suspensor forms contiguous with the suspensor cell (Figs 2F-H). Two cotyledons 

and a shoot apex are formed at the lower end of the embryo, while a root cap of column 

(horizontally arranged cells in the central region) and pericolumn (peripheral cells inclined 

sharply or almost vertically) cells differentiates (Deshpande and Bhatnagar 1961). 

Sequoia differs in that there is a total absence of the free nuclear stage – wall formation 

following the first mitosis of the zygote nucleus (Buchholz 1939). According to the review by 

Bhatnagar and Moitra (1996), the two independent cellular units that arise from the first 

mitosis divide again to give rise to four independent units that each put out a tubular 

extension. The nucleus of each unit divides giving rise to an embryonal cell and an 

embryonal suspensor, which elongates.  

The rest of the development occurs as follows (Bhatnagar and Moitra 1996): Elongation of 

the suspensor tier thrusts the embryonal tier cells deep into the megagametophyte. Numerous 

young embryos are formed due to the fertilisation of many egg cells in the same archegonial 

complex. Cleavage polyembryony is common in Sequoia and is brought about by the 

independent development of embryonal units. It is usually the deep and centrally seated 

embryo which grows to maturity. The embryonal cells undergo three divisions; the first 

division is oblique, while the second and third are perpendicular to the first. The next 
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divisions are irregular giving rise to a group of embryonal cells. The upper cells of the 

embryonal mass form embryonal tubes, which are elongated cells bearing a thin cytomatrix 

(Buchholz 1939). The shoot apex differentiates by anticlinal and periclinal  

 

Fig. 2 Pro-embryogenesis in Ephedra (e, embryonal cell; emb, embryo; Es, embryonal suspensor). A 

Eight-nucleate pro-embryo, four (from fusion of the ventral canal nucleus and second male gamete) in 

the upper and four (from zygote) in lower region of the archegonium. Cell walls start to separate the 

upper four nuclei. B At a later stage illustrating eight pro-embryonal units; each nucleus is surrounded 

by radiating cytomatrix. C The embryonal units elongate, while nuclei in three of them divide. Few 

jacket nuclei are also evident (arrow). D A later stage showing elongation of the embryonal suspensor 

and an embryonal cell. E Embryonal cell has divided into three cells. F-H. Subsequent stages in 

embryo development. (A-B, D, after Lehmann-Bearts 1967; C, E-F, after Khan 1943; G, H, after 

Narang 1956; Diagrams & captions copyright © Bhatnagar and Moitra 1996; published by V.S. Johri 

for New Age Publishers, New Delhi, and reproduced by permission [29th November, 2013] of the 

Rights Department, New Age Publishers)  
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mitoses of the cells near the chalazal end, while the root apex and root cap are formed at the 

other end of the embryo. The cells between the shoot and the root apices appear elongated 

and are organised parallel to the longitudinal axis of the embryo. Four cotyledons develop on 

either side of the shoot apex, while two vascular traces can be found in the hypocotyl region. 

These vascular traces divide before entering the cotyledons. 

Conifer Type 

The first mitosis of the zygote is usually intranuclear with the resulting nuclei formed in the 

nucleoplasm (Camefort 1968) (Figs 3A & B). Subsequent mitoses give rise to four nuclei that 

move to the base of the archegonium where further synchronous nuclear divisions occur 

(Bhatnagar and Moitra 1996) (Figs 3C & D). The free nuclei come to lie at the chalazal pole 

of the zygote which has dense cytoplasm known as ‘neocytoplasm’ (Camefort 1969). The 

number of free nuclei prior to wall formation varies e.g., four in Athrotaxis; eight in Pinus; 16 

in Cephalotaxus; 32 in Podocarpus andinus; and 64 in Agathis (Chowdhury 1962).  

After wall formation, a lower group of mostly embryonal cells develops, while an upper 

single layer of cells, the open tier (also known as the primary upper tier), is formed (Dogra 

1967) (Figs 3E-G). As stated by Biswas and Johri (1997) in their review, the open tier cells 

have no walls on their upper side, implying that they are continuous with the cytomatrix of 

the pro-embryo. All the cells then divide resulting in double the number of lower tier cells 

(binucleate cells are found in podocarps), which now become known as the embryonal tier. 

The open tier cells divide transversely to give rise to an upper tier and a lower dysfunctional 

suspensor tier (usually called the rosette tier). There is no elongation in the cells of the 

suspensor tier but they divide to give rise to lobes of an evanescent mass of cells called 

‘rosette embryos’. However, because these masses do not form an embryo, usage of this term 

seems inappropriate (Doyle 1963; Dogra 1967). The distal embryonal tier usually assumes 

the function of the suspensor. According to Singh and Johri (1972), the upper tier cells 

ultimately degenerate, the suspensor elongates, while the cells of the embryonal tier divide to 

form a mass (Figs 3H & I). The distal cells of the mass elongate, which gives rise to a 

massive suspensor, known as the secondary suspensor, to which more cells of the embryonal 

mass are added. 

Minor deviations of this basal plan of ontogeny were described for Actinostrobus, Athrotaxis, 

Callitris, Cupressus sempevirens, Flitzroya, Torreya, and Widdringtonia (Doyle 1963). 
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However, as Singh and Johri (1972) pointed out, these deviations have been resolved 

interpreting the embryogenesis in all to conform to the basal plan. 

 

Fig. 3 Pinus wallichiana (dS, dysfunctiional suspensor; E, embryonal group; pE, primary embryonal 

tier; pU, primary upper tier; U, upper tier). A Archegonium demonstrating zygote nucleus in 

metaphase. B-C Two- and four-nucleate pro-embryos. D Portion enlarges from C depicting migration 

of nuclei towards the base prior to final division. E, F Index figures of G and H, respectively. G 

Eight-celled pro-embryo arranged into primary upper (pU) and primary embryonal (pE) tiers, of four 

cells each. H Primary upper tier undergoes division internally to give rise to upper (U) and 

dysfunctional suspensors (dS) tiers; pE tier undergoing internal division. I Pro-embryo constituted by 

an upper (U) and dysfunctional suspensor (dS) and embryonal group (E) of two tiers (after Konar and 

Ramchandani 1958; Diagrams & captions copyright © Bhatnagar and Moitra 1996; published by V.S. 

Johri for New Age Publishers, New Delhi, and reproduced by permission [29th November, 2013] of 

the Rights Department, New Age Publishers)   
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Embryogenesis in araucarians, on the other hand, appears to differ markedly from the basal 

plan. The free nuclei persist in the centre of the pro-embryo, with wall formation resulting in 

a central group of cells enclosed by a peripheral jacket of cells (Eames 1913; Burlingame 

1915). The cells proximal to the jacket mature into cap cells; the distal cells develop into the 

suspensor; while the central cells form the embryonal mass. The cap cells may elongate 

slightly and appear prominent but they ultimately degenerate (reviewed by Singh and Johri 

1972).  

Most conifers display both simple and cleavage polyembryony. The latter is usually a result 

of differing rates in the elongation of suspensor or secondary suspensor components, such 

that a suspensor cell or a group of them having one or a few embryonal cells separate from 

the embryo system and grow independently (Singh and Johri 1972). 

Cycad and Ginkgo Type 

The zygote nucleus divides in situ followed by many free-nuclear divisions (Figs 4A-C). The 

nuclei disperse evenly throughout the entire pro-embryo and on some occasions, evanescent 

walls appear to develop during the free-nuclear period (Chamberlain 1910; Favre-Ducharte 

1956). In later stages, while the free nuclei are distributed evenly in Ginkgo, these become 

concentrated at the base of the pro-embryo in cycads. The upper part of the cycad pro-embryo 

contains far fewer nuclei in a thin cytomatrix – considered an “advanced” trend over pro-

embryos with evenly distributed nuclei (cf. conifers, see Dogra 1992). Subsequently, nuclei at 

the base of the pro-embryo divide whilst the upper nuclei display signs of degeneration 

(Bryan 1952). 

By the time walls are formed, there are approximately 256 free nuclei in Ginkgo, 512 in 

Cycas circinalis (Rao 1963), and 512 or 1024 in Dioon. The resultant cells fill the entire pro-

embryo in Ginkgo; in cycads, however, newly-formed cells are found only in the lower part 

of the pro-embryo (Fig. 4D) (Biswas and Johri 1997). In Encephalartos friderici-guiliemi, E. 

villosus and Macrozamia spiralis, segmentation of almost the whole egg cell gives rise to the 

formation of a primary pro-embryo having a dense, active basal area. In M. reidlei, formation 

of the walls occurs throughout the pro-embryo apart from a small region in the centre that 

possesses free nuclei. This area disintegrates later on giving rise to a central cavity. In Cycas, 

cellularisation is restricted to the peripheral and basal regions. In Stangeria, Zamia and 

Bowenia, pro-embryonal cells form basally only (as in conifers; Dogra 1992). 
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Once walls have been formed, the basal cells divide and function as primary embryonal cells, 

while the cells of the upper region elongate to give rise to a massive suspensor. The primary 

embryonal region comprises compact, dense, actively dividing, uniform cells concentrated at 

the tip (Figs 4E & F). This forms the meristematic cell region of the embryo (Biswas and 

Johri 1997). These cells continue adding to the elongating suspensor which pushes the 

embryonal cells deep into the centre of the megagametophyte (Singh and Johri 1972). 

However, there appears to be no well-defined suspensor in Ginkgo apart from a micropylar 

region of elongated cells (Biswas and Johri 1997). 

In Zamia and Cycas (and probably in other cycad genera) the first layer of embryonal cells 

elongates slightly to give rise to a noticeable cap around the group of meristematic cells (Figs 

1E & F) (Bryan 1952; Maheshwari 1960). The cap cells persist for a while; however, they 

ultimately degenerate and do not add to the anatomy of the mature embryo. Several young 

embryos may be found in some seeds, which usually arise when more than one zygote is 

formed (simple or archegonial polyembryony) (Singh and Johri 1972). Cleavage 

polyembryony has not been found in the cycads (Biswas and Johri 1997), and while the 

mature embryo has two cotyledons, three have been found on some occasions (Biswas and 

Johri 1997).  
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Fig. 4 Illustration of pro-embyogenesis in Cycas (A-E) and Zamia (F). A-C Two-, eight, and thirty-

two nucleate pro-embryos are depicted. Remnants of sperm can still be observed in the upper end of 

the archegonium. D Wall formation has begun at the basal end of the pro-embryo. E Later stages 

demonstrating the outer layer of ‘cap cells’, embryonic cells and suspensor cells. F Developing 

embryo illustrating free nuclear zone, buffer zone, suspensor, embryonic mass and cap cells. (bz, 

buffer zone; c, cap cells; e, embryonic mass; fnz, free nuclear zone; s, suspensor). (Diagrams & 

captions copyright © Bhatnagar and Moitra 1996; published by V.S. Johri for New Age Publishers, 

New Delhi, and reproduced by permission [29th November, 2013] of the Rights Department, New Age 

Publishers) 
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1.2.2. The third phase of seed development 

As stated previously, the third main phase of seed development in angiosperms and 

gymnosperms is known as maturation drying. This phase, which follows histodifferentiation 

and accumulation of reserves in the angiosperm embryo, is associated with a decline in seed 

metabolic activity to low levels (Lynch and Clegg 1986) and – depending on the species – the 

seed usually passes into a state of quiescence or dormancy. Seeds that undergo maturation 

drying display what has been termed ‘orthodox’ post-harvest behaviour (Roberts 1973).   

Orthodox seeds are, or can be, dried to low water contents, which is a result of the acquisition 

of tolerance to desiccation relatively early in development, before being shed from the parent 

plant (Pammenter and Berjak 1999). At low water contents, such seeds may be stored without 

loss of quality for predictable periods under defined storage temperature and relative 

humidity conditions, their life-span, within limits, increasing logarithmically with lowered 

water content of the seed (Ellis and Roberts 1980).  

However, not all seeds are tolerant of desiccation. Such desiccation-sensitive seeds do not 

undergo maturation drying as part of their pre-shedding development; their water contents 

remain high throughout ontogeny to germination and they do not become metabolically 

quiescent (Berjak and Pammenter 2008). Since they cannot be desiccated – and their 

metabolism grades imperceptibly from development to germination at the shedding water 

content – such seeds are able to be stored only in the short- to medium-term, the period 

varying with the species (Berjak and Pammenter 2008).  

Such seeds are categorised as being recalcitrant – a term coined by Roberts (1973) for seeds 

that cannot be stored at low water contents. Recalcitrant seeds are most commonly produced 

by species of tropical trees (Farrant et al. 1986, 1993); some aquatic grasses (Probert and 

Longley 1989); a variety of amaryllids (Sershen et al. 2008) and a few woody species from 

temperate climates e.g. oak and sycamore (Hong and Ellis 1991; Pritchard 1991; Hendry et 

al. 1992). In the context of the present study, seeds of Encephalartos spp. have been 

established as being recalcitrant (Woodenberg et al. 2007; Woodenberg 2009)  

While orthodox and recalcitrant seeds display contrasting postharvest behaviour, Ellis and 

Hong (1990) defined an intermediate group of seeds to include those that can tolerate drying, 

but not to the same degree as orthodox types. Seeds displaying intermediate post-harvest 

behaviour may also be chilling-sensitive (especially those of tropical origin), particularly 
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after dehydration (Ellis and Hong 1990; Hong and Ellis 1996). While there appear to be three 

distinct categories of postharvest seed behaviour, studies on a wide variety of species, 

particularly those of tropical and sub-tropical origin, have led to the suggestion that there is 

open-endedness to the three categories (Pammenter and Berjak 1999). It has therefore been 

proposed that the post-harvest behaviour of seeds should be viewed as a continuum rather 

than three discrete entities, with the highest degree of orthodoxy and recalcitrance at either 

extreme with gradations between the two (Berjak and Pammenter 1997, 2001). 

A spectrum of mechanisms has been proposed to confer, or contribute to, the ability of seeds 

to tolerate desiccation. The lack or ineffectual manifestation of one or more of these 

mechanisms may govern the relative degree to which seeds of individual species can be 

dried.  

Some of the mechanisms (reviewed by Vertucci and Farrant 1995; Pammenter and Berjak 

1999) that have been implicated in conferring desiccation tolerance include the following: 

Intracellular physical characteristics viz. a reduction in the degree of vacuolation, the quantity 

and constitution of insoluble reserves accumulated, reaction of the cytoskeleton, and 

conformation of the DNA, chromatin and nuclear structure; intracellular de-differentiation 

that results in the minimisation of membrane surface area and presumably also of the 

cytoskeleton; ‘switching off’ of metabolism; presence, and effective operation, of 

antioxidants; accumulation of putatively protective molecules including Late Embryogenesis 

Abundant proteins (LEAs) and small heat shock proteins (inter alia), sucrose and certain 

oligosaccharides or galactosyl cyclitols; the existence and operation of repair mechanisms 

upon rehydration (Berjak and Pammenter 2008; Leprince and Buitink 2010). Desiccation 

tolerance also involves strategies which overcome the mechanical stress associated with a 

loss of turgor upon desiccation (Walters et al. 2002).  It is postulated that these mechanisms 

act collectively to give rise to seed ‘orthodoxy’. 

While much work has been done investigating the role of various mechanisms in the 

acquisition of desiccation tolerance in seeds and vegetative tissue (reviewed by Pammenter 

and Berjak 1999; Berjak 2006; Leprince and Buitink 2010), comparatively little attention has 

been paid to mechanical stress, particularly in seeds.  
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1.2.2.1. Mechanical stress 

When plant tissue dries, the cytomatrix of the component cells shrinks creating tension 

between the plasmalemma and the more rigid cell wall (Walters et al. 2002). According to 

those authors, the tension created between the plasmalemma and cell wall can result in 

tearing of the plasmalemma and thus irreversible damage to the cells of desiccation-sensitive 

plant tissue.  

Support for the idea of such mechanical stress came from a number of ultrastructural studies 

on desiccation-sensitive seeds which showed severed plasmodesmatal connections, 

plasmalemma discontinuities, vesiculation of the membrane, and separation of the 

plasmalemma and cell wall upon drying (e.g., Webster and Leopold 1977; Sargent et al. 

1981; Fincher and Leopold 1982). However, Wesley-Smith (2001) demonstrated that much 

of this type of apparent damage associated with desiccation is likely to be due to the 

characteristics of aqueous aldehyde fixation rather than desiccation damage per se. According 

to that author, when plant material is dehydrated, the aldehydes used in aqueous fixatives 

cross-link with membrane proteins, causing the plasmalemma (and other membranes) to 

become relatively rigid, while they do not similarly affect the cell wall, which expands as it 

becomes hydrated. The use of freeze-substitution on the other hand, presents a superior 

alternative to aqueous fixation for dehydrated plant tissue – the evidence showing that there is 

much better preservation of tissues in the dried state (Wesley-Smith 2001). As demonstrated 

by that same author, membrane damage and plasmalemma-cell wall separation was evident in 

both desiccation-sensitive and tolerant tissues following aqueous fixation of dried samples; 

however, when freeze-substitution was employed, the cells appeared shrunken, but displayed 

varyingly-folded cell walls and similar damage was not evident (Wesley-Smith 2001). 

Mechanical stabilisation 

Orthodox seeds appear to achieve mechanical stabilisation upon drying predominantly 

because of extensive subcellular accumulation of insoluble reserves (Webb and Arnott 1982). 

Interestingly, the timing of maximum reserve accumulation is generally coincident with the 

attainment of maximal desiccation tolerance in the axes of most seeds (reviewed by Vertucci 

and Farrant 1995).   

Depending on the species, embryos of recalcitrant seeds may accumulate little by way of 

insoluble reserves, while others accumulate somewhat more. In such seeds the proportion of 
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water loss tolerated appears to be correlated with the degree of reserve accumulation (e.g. 

Farrant and Walters 1998; reviewed by Farrant et al. 2012). The lack of mechanical 

stabilisation provided by accumulated insoluble reserves, therefore, could be one factor 

underlying desiccation sensitivity in recalcitrant seeds. 

Mechanical stabilisation has also been found to coincide with flexibility of the cell wall in 

desiccation tolerant plant tissue (Webb and Arnott 1982; Moore et al. 2013). While 

moderately folded cell walls have been seen in orthodox seeds (Webb and Arnott 1982), in-

depth work on resurrection plants has suggested the possible role of cell wall folding in 

conferring mechanical stabilisation upon dehydration (Vicré et al. 1999, 2004a, 2004b; 

Moore et al. 2006, 2007, 2012). It has been proposed that cell wall folding is a strategy 

exhibited by some plants, which avoids tearing of the plasmalemma from the cell wall during 

dehydration, thus allowing cell integrity to be maintained (Farrant and Sherwin 1997). It has 

also been suggested that the extent and manner of folding is dependent upon the chemical 

composition and structure of the cell wall (Webb and Arnott 1982). However, there have 

since been very few, if any, studies on the composition of seed embryo cell walls. Such 

studies that have been done on cell walls of seeds have mostly explored their function as 

storage reserve sites (reviewed by Buckeridge et al. 2000), rather than the compositional and 

conformational changes during development and upon drying. 

Effects of water removal from cell walls 

The cell wall is made up of over 60% water (Brett and Hillman 1985), and this essential, 

although often forgotten, component, is a crucial and integral constituent of the structure and 

functioning of the wall. As reviewed by Moore et al. (2008), one obvious consequence of 

water removal from the wall is that polymers typically separated in the hydrated state come to 

be in close association with each other resulting in polymer adhesion. Polysaccharides form 

non-covalent bonds usually through hydrogen bonding and, upon the removal of water, this 

bonding is significantly enhanced, causing irreversible interaction between polymers and 

leading to altered wall biophysical properties and severely impaired growth (Moore et al. 

2008).  

1.3. Cell walls 

Early cell walls arose in an aqueous environment and the cell wall is considered to have 

evolved as a strategy related to osmotic problems (Gerhart and Kirschner 1997). The cell wall 
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is now one of the major characteristics of plants, the majority of which survive in a terrestrial 

environment (Popper and Fry 2004). It is apparent that there are dynamic relationships 

between membrane-bound living cells and their surrounding cell walls, and with each other, 

possibly through the wall (Kohorn 2000). This extracellular matrix may influence almost 

every facet of cell function primarily because of its location and physical characteristics 

(Kohorn 2000).  

Cell walls are categorised as primary or secondary. The primary wall is produced throughout 

cell division and expansion, and material deposited on the primary wall once growth has 

stopped constitutes the secondary wall (Cosgrove 1997). Neighbouring cell walls sandwich 

an intercellular layer, the middle lamella, which is apparently continuous with the matrix of 

the primary cell wall (Moore et al. 1986). 

Cell walls are dynamic entities that play crucial roles in plant morphology, growth and 

ontogeny (Albersheim et al. 1994; Penell 1998). The main roles of the cell wall are the 

provision of physical strength to the plant and protection against the external environment 

(Harholt et al. 2010). Walls are also involved in facilitating plant reactions to pathogenic and 

environmental stresses e.g. osmotic stress (Wakabayashi et al. 1997; Fujikawa et al. 1999; 

Kubacka-Zebalska and Kacperska 1999; Stefanowska et al. 1999); acclimation to cold 

(Weiser et al. 1990); tolerance of drought (Zwiazek 1991); invasion by pathogens (Boudart et 

al. 1998); wounding (Cardemil and Riquelme 1991); saline stress (Iraki et al. 1989) and 

desiccation (Zwiazek 1991; Ha et al. 1997). 

The fundamental characteristics of cell walls are determined by their chemical constituents 

and the three-dimensional organisation of these constituents. Hence, studying the structure of 

cell walls is fundamental to understanding how they function.  

Primary walls are laid down during cell growth, and are required to be both mechanically 

strong yet sufficiently flexible to allow cell expansion while counteracting cell rupture from 

turgor pressure. Primary cell walls consist primarily of polysaccharides that can be classified 

generally as cellulose, the cellulose-binding hemicelluloses, and pectins. The latter two 

groups of cell wall constituents are often known as matrix polysaccharides. These are 

produced in Golgi cisternae, while cellulose is assembled at the plasmalemma as 

paracrystalline microfibrils (Reiter 2002). Apart from polysaccharides, plant cell walls 

possess an abundance of various proteins. Many of these proteins are thought of as 

‘structural’, while others play a role in remodelling the wall (Reiter 2002).   
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Cellulose is a polymer of glucose residues connected end to end by β (1→4)-glycosidic 

bonds to form a linear chain. The abundance and ordered arrangement of the hydroxyl groups 

on each chain permits the side by side hydrogen-bonding of several such chains to give rise to 

a linear, semicrystalline structure called a microfibril. These microfibrils ultimately comprise 

the main structural constituent of plant cell walls (Lloyd 2006). 

The individual cellulose microfibrils cross-link via another type of carbohydrate polymer, the 

crosslinking glycans (commonly referred to as hemicellulose). These polymers give rise to a 

filamentous network united by hydrogen bonds, which extends throughout the cell wall. 

Around these cross-linked fibrils, which form a structural core, are the pectins, another type 

of complex carbohydrate. The branched structure of pectins make them highly hydrated, 

thereby forming a gel matrix around the cellulose (Lloyd 2006).  

Lignins and other organic compounds may also be deposited on this matrix conferring 

mechanical strength and rigidity to the secondary wall (Reiter 1994).  

1.3.1. Hemicellulose 

Hemicellulose is a term that describes a family of polymers rich in glucose, xylose, or 

arabinose that, unlike cellulose, have extensive side groups that frequently include xylose, 

galactose, and fucose. The dicots and monocots vary considerably in the composition of their 

hemicellulose and complete descriptions appear in various reviews (Carpita and Gibeaut 

1993; Reiter 1994; Cosgrove 1997). The structure of the hemicelluloses allows these complex 

carbohydrates to rest upon the surface of, and possibly intercalate within, the bundles of 

cellulose, giving rise to a linked matrix.  

Commonly encountered hemicelluloses include xylans, xyloglucans, arabinoxylans, 

mannans, arabinogalactans, glucomannans, and galactoglucomannans (Timell 1964, 1965; 

Whistler and Richards 1970). Xyloglucan is the main hemicellulose in the primary walls of 

the majority of higher plants, and typically consist of a 1→4-β-D-glucan backbone bearing 

1→6-α-D-xylose moieties on three successive glucose residues (Reiter 2002). Xylans are also 

the principal noncellulosic polysaccharides of plant cell walls and are particularly copious in 

secondary cell walls (McCartney et al. 2005).  
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1.3.2. Pectins  

Pectins constitute a family of polygalacturonic acids that may differ in their side chains, 

which are usually arabinose, galactose, or a complex branched organisation of 

monosaccharides (Cosgrove 1997). Pectins are made up of homogalacturonans (HGs) 

comprising contiguous, unbranched, 1→4-linked-α-D-galacturonic acid residues 

intermingled with rhamnose and specific branched polymers that include 

rhamnogalacturonans (RG-I and RG-II).  

A significant functional factor that characterises HGs is their degree of methyl esterification. 

As a result, HGs are often labelled as low- or high-methylesterified pectins (Jauneau et al. 

1998). The unbranched and low-esterified HGs may aggregate via calcium bridges which 

form junction zones that hold them together (Grant et al. 1973; Rees 1977; Jarvis 1984; Brett 

and Waldron 1990). When pectins bind to cations like calcium, the gel stiffens and therefore 

contributes to the strength of the wall (Lloyd 2006). Calcium-mediated cross-linking may be 

controlled by the masking of pectic negative charges via the addition of methyl esters 

(Kačuráková et al. 2000).  

Pectic fractions characteristically possess a neutral polysaccharide that is mostly covalently 

attached to the main chain of acidic rhamnogalacturonan (Aspinall 1970). The precise nature 

of this neutral polysaccharide differs from species to species; however, it has been observed 

to be either an arabinan or a galactan, or a combination of the two (Aspinall 1970). 

Arabinans (and galactans) may function as spatial regulators of the closeness of HG domains 

(Harholt et al. 2010). They are extremely mobile polymers compared with other pectin 

constituents – their mobility being impacted upon by the hydration of the cell wall. Arabinan 

and galactan are thus the first polymers to become mobile during the hydration of dry cell 

walls (Tang et al. 1999). Similarly, arabinan and galactan maintain mobility longer than other 

cell wall polymers during dehydration and appear to fill the cavities caused by the physical 

rearrangement of cell wall constituents (Harholt et al. 2010).  

Pectic polysaccharides have been located in every higher plant cell wall investigated 

(Talmadge et al. 1973). They are one of the most fundamental constituents of the cell wall 

matrix, playing a role in cell adhesion through their gel-like characteristics (Jarvis 1984), and 

in cell wall architecture (Brett and Waldron 1990; Vian and Roland 1991; McCann et al. 

1993; McCann and Roberts 1994) and contributing to the mechanical strength of the cell wall 
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(Van Buren 1991). Pectins also control the porosity of cell walls (Carpita et al. 1979; Baron-

Epel et al. 1988; McCann and Roberts 1991). Hence, they are considered to be responsible 

for physical arrest of the enzymes in the apoplasmic space (Jauneau et al. 1998).  

1.3.3. Cell wall protein 

As Kohorn (2000) pointed out, it may not be beneficial to refer to a protein as a “cell wall” 

constituent, but rather to deal with this large group of secreted proteins from a functional 

viewpoint. It is conceivable that proteins may extend considerably into the carbohydrate 

matrix and might even make contact with proteins or carbohydrates on an adjoining cell 

surface (Kohorn 2000). Hence, to avoid the exclusion of several proteins, that author 

suggested that it may be best to see the carbohydrates as constituting the cell wall, with 

proteins being influential visitors.  

Traditionally, cell wall proteins have been categorised by their relationship with one or a few 

of the complex carbohydrates deposited in the walls (Kohorn 2000). These comprise the 

abundant hydroxyproline-rich glycoproteins (HRGPs; Showalter 1993), proline-rich proteins 

(PRPs; Showalter 1993), glycine-rich proteins (GRPs, Keller 1993), arabinogalactan proteins 

(AGPs; Oxley and Bacic 1999; Majewska-Sawka and Nothnagel 2000), wall-associated 

kinases (WAKs; He et al. 1996, 1999), lectins (Herve et al. 1999), and expansins (Cosgrove 

1997). However, according to Showalter (1993), the list is more extensive, including 

(amongst others) peroxidases, methyltransferases, galactosidases, glycanases, and proteases.  

Arabinogalactan proteins are encoded by a large gene family in an assortment of 

angiosperms. Up to 90% of the mass of an individual AGP may be composed of carbohydrate 

that is added in the endomembrane system (Kohorn 2000). Various family members can be 

expressed in patterns specific to certain tissues. This suggests that AGPs may play pivotal 

roles in the growth and development of plants. Since AGP types vary in their constituents 

they tend to have different wall binding capabilities and may well also assist in defining cell 

location (Roberts 1990; Showalter 1993; Oxley and Bacic 1999). Some AGPs may also 

contain signals for adding a carboxy-terminal glycosyl phosphatidyl inositol (GPI) anchor, so 

that upon secretion, AGPs persist on the side of the plasmalemma exposed to the cell wall 

(Oxley and Bacic 1999; Majewska-Sawka and Nothnagel 2000).  
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1.3.4. Immunological probes for cell wall research 

The primary cell wall has been observed to vary among vascular plants at both 

monosaccharide and polysaccharide levels (Popper and Fry 2004). As Knox (1992) 

highlighted, the exact deposition of cell wall polymers influences the anatomy and form of 

plants. These wall constituents are also imperative for determining the structural and 

functional characteristics of the plant cell surface. It is thus essential to determine the 

distribution and localisation of these cell wall components within various tissues and in 

conjunction with individual cells. In light of this need, the recent production and utilisation of 

immunocytochemical probes for the recognition of different epitopes of cell wall 

carbohydrates has been invaluable for the location of these polysaccharides (reviewed by 

Knox 1997).  

A number of immunocytochemical studies have utilised antibodies specific to certain 

complex polysaccharides to localise their characteristic epitopes not only in different tissues, 

but in different regions of the cell wall (Moore et al. 1986; Vian and Roland 1991; Lynch and 

Staehelin 1992, 1995; Marty et al. 1995; Freshour et al. 1996; His et al. 1997; Jauneau et al. 

1997) and cisternal compartments of the Golgi body (Lynch and Staehelin 1992; Zhang and 

Staehelin 1992).  More specifically, immunocytochemical studies of the primary cell wall 

constituents of plants have been accomplished by the use of polyclonal and monoclonal 

antibodies specific to purified xyloglucans and pectic polymers (Moore et al. 1986; Moore 

and Staehelin 1988; Northcote et al. 1989; Knox et al. 1990; Ruel et al. 1990). Similarly, 

antibodies that recognise and bind to certain AGP-associated epitopes have been employed to 

reveal their cell-type specific location in different plant cells (Stacey et al. 1990; Knox et al. 

1991; Dolan et al. 1995; Schindler et al. 1995).  

Enzyme-gold labelling, a method introduced by Bendayan (1984), has also been used for the 

localisation of cell wall polysaccharides (Vian et al. 1983; Ruel and Joseleau 1984; 

Benhamou and Oulette 1986; Vian et al. 1987; Berg et al. 1988; Ruel et al. 1990). However, 

progress has been restricted by the limited supply of sufficiently purified enzymes with 

restricted specificity (Vian et al. 1991). 

In combination, however, the results show that the production, secretion, and localisation of 

cell wall components are controlled in a manner specific to the cell type (Vicré et al. 1998). 
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1.4. The present study 

There has been comparatively little research on the ontogeny of desiccation-sensitive 

(recalcitrant) seeds, with the exception of a few investigations, e.g. on Quercus alba (Bonner 

1976), Guilfoylia monostylis (Nkang and Chandler 1986), Podocarpus henkelii (Dodd et al. 

1989), Acer pseudoplatanus (Hong and Ellis 1991) and Quercus robur (Finch-Savage 1992; 

Finch-Savage et al. 1992; Grange and Finch-Savage 1992), as well as on Avicennia marina 

(Farrant et al. 1992). In the context of the present study, most of the descriptive work on 

cycad embryos was done in the early 1900s (e.g. Chamberlain 1910) and centred on the early 

stages of embryogenesis, i.e. development of the pro-embryo. Those investigations also, were 

undertaken before the advent of modern electron microscopes, while later studies in the 

1950s and ’60s (Bryan 1952; Favre-Ducharte 1956; Maheshwari 1960; Rao 1963) took place 

before the possibility of sophisticated methodology like immunocytochemistry (ICC) and 

immunofluorescence microscopy. Thus many questions pertaining to the ultrastructure and 

development of cycad embryos remain to be answered.  

While there have been few studies on cycad seeds to date, there seemed to be a general 

understanding that they may be recalcitrant (Forsyth and van Staden 1983; Dehgan and 

Schutzman 1989) largely due to the fact that the seeds are ‘wet’. However, after showing the 

loss of viability upon drying, Woodenberg et al. (2007) have since demonstrated that 

Encephalartos natalensis and E. gratus seeds are recalcitrant. This is not surprising as the 

embryos of the two species continue to develop after the seeds drop from the cones, attaining 

a size where they are capable of germination only four to six months after seed-shed (Giddy 

1984). However, more detailed assessments are required to define details and ultimately to 

develop useful storage protocols for cycad seeds or germplasm – specifically for the long-

term conservation of different species (Berjak and Pammenter 2004). Therefore, 

understanding cycad seed recalcitrance, and more specifically, post-harvest embryo 

development, is of major scientific and practical importance: hence the present study. 

This investigation can be divided into two main sections: The first concentrates on the 

histological and ultrastructural development of the E. natalensis embryo after seed-shed, 

while the other is concerned with the composition and conformation of the embryo cell walls 

of this desiccation-sensitive-seeded species in relation to development and drying. The 

present study therefore attempts ultimately to make a contribution to cycad embryology and 

germplasm conservation research using E. natalensis, while it also endeavours to address the 
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paucity of information in the literature on the composition and conformation of cell walls in 

desiccation-sensitive seeds. 

Encephalartos natalensis R.A. Dyer and Verdoorn is a relatively large cycad endemic to 

South Africa. It has a wide distribution in KwaZulu-Natal in such districts as Port Shepstone, 

Howick, Kranskop, and Vryheid amongst others (Fig. 5) (Giddy 1984). This species 

generally has an erect trunk that may be as tall as 6 m, with a diameter of 0.4 m. It grows 

commonly as a solitary, single-stemmed tree; however, it may produce offsets and basal 

suckers and thereby form clumps of up to 11 stems (Giddy 1984). The glossy, bright green 

leaves are 1.5 to 3 m in length with a straight midrib. The median leaflets are 150 to 250 mm 

long and 25 to 40 mm broad, with one to four teeth on one or both margins, and the leaflets 

are characteristically reduced to a series of prickles towards the base of the midrib (Giddy 

1984; Jones 1993). Adult female plants of E. natalensis may produce up to five deep golden-

yellow strobili and as many as 250 bright orange-red seeds per strobilus (personal 

observation). While it is one of the more common South African cycad species, E. natalensis 

has nevertheless been classified as protected (van Schalkwyk 2007). 
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Fig. 5 An illustration of the widespread distribution of districts in KwaZulu-Natal where E. natalensis 

is found (inset: the province of KwaZulu-Natal is illustrated as a component of South Africa). 

Mapping by S3 Technologies & The Picturebox, Pietermaritzburg, KwaZulu-Natal. 
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Since development of the E. natalensis embryo is largely a post-shedding phenomenon, one 

of the major objectives of the present investigation was to observe the morphological and 

anatomical aspects of embryogenesis from seed-shed to six months after shedding – when the 

seeds were readily able to germinate. To this end, light microscopy and histochemistry were 

employed to monitor development of cells and tissues, with ultrastuctural parameters being 

characterised by transmission electron microscopy (TEM). 

The present study also aimed at comparing the conformation and composition of the cell 

walls of mature E. natalensis embryos in both the hydrated and dehydrated states. While 

immunofluorescence microscopy was used to determine whether or not certain epitopes of 

wall components were present, immunocytochemistry in conjunction with TEM was used to 

compare the distribution of the epitopes in muro, of both immature (at seed-shed) and mature 

(six months after shedding) embryos.  

Aqueous fixation was employed for preparation of hydrated embryos for microscopy, while 

freeze-substitution was used to preserve the ultrastructure of the embryo in the dried state. 

The latter was carried out in order to observe whether or not cell wall folding occurred in a 

dried desiccation-sensitive seed embryo – in this case, that of E. natalensis. The impact of 

desiccation on the ultrastructural integrity of the embryo cells of this species was also 

assessed using Cryo-SEM, thereby providing verification of whether or not cell wall folding 

occurred upon drying. 

In summation, the present investigation represents the first in-depth microscopy-based study 

on the post-shedding embryogenesis of a cycad, specifically Encephalartos natalensis. 

Similarly, this study may be the first to shed light on the conformation and composition of 

cell walls in the embryo of a desiccation-sensitive seeded species in relation to development 

and drying. 

 

 

 

 

 



34 
 

References 

Adams CA, Rinne RW (1980) Moisture content as a controlling factor in seed development 

and germination. International Review of Cytology 68: 1–8   

Albersheim P, An J, Freshour G, Fuller MS, Guillen R, Ham KS, Hahn MG, Huang J, O'Neill 

M, Whitcombe A (1994) Structure and function studies of plant cell wall polysaccharides. 

Biochemical Society Transactions 22: 374–378  

Arnold CA (1953) Origin and relationships of the cycads. Phytomorphology 3: 51–65    

Aspinall GO (1970) Pectins, plant gums, and other plant polysaccharides In: Pigman W, 

Horton D (Eds) The carbohydrates, Vol IIB. Academic Press, New York, pp 515-536 

Baron-Epel O, Gharyl PK, Schindler M (1988) Pectins as mediators of wall porosity in 

soybean cells. Planta 175: 389–395  

Bendayan M (1984) Enzyme-gold electron microscopic cytochemistry: A new affinity 

approach for the ultrastructural localisation of macromolecules. Journal of Electron 

Microscopy Technique 1: 349–372  

Benhamou N, Oulette GTB (1986) Use of pectinases complexed to colloid gold for the 

ultrastructural localisation of polygalacturonic acids in the cell walls of the fungus Ascocalyx 

abietina. Histochemical Journal 18: 95–104  

Berg RH, Erdos GW, Gritzali M, Brown RD Jr (1988) Enzyme-gold affinity labelling of 

cellulose. Journal of Electron Microscopy Technique 8: 371–379  

Berjak P (2006) Unifying perspectives of some mechanisms basic to desiccation tolerance 

across life forms. Seed Science Research 16: 1–15  

Berjak P, Pammenter NW (1997) Progress in the understanding and manipulation of 

desiccation-sensitive (recalcitrant) seeds. In: Ellis RH, Black M, Murdoch AJ, Hong TD 

(Eds) Basic and Applied Aspects of Seed Biology. Kluwer Academic Publishers, Dordrecht, 

Netherlands, pp 689–703  

Berjak P, Pammenter NW (2001) Recalcitrance – Current perspectives. South African 

Journal of Botany 67: 79–89   



35 
 

Berjak P, Pammenter NW (2004) Recalcitrant seeds. In: Benech-Arnold RL, Sanchez RA 

(Eds) Seed Physiology: Applications to Agriculture. Haworth Press Inc., New York, pp 1–24  

Bewley JD, Black M (1994) Seeds: Physiology of Development and Germination, Second 

Edition. Plenum Press, New York 

Bhatnagar SP, Moitra A (1996) Gymnosperms. New Age International Limited, New Delhi 

Biswas C, Johri BM (1997) The Gymnosperms. Springer-Verlag, Narosa Publishing House, 

New Delhi 

Bonner FT (1976) Maturation of Shumard and white oak acorns. Forest Science 22: 149–154  

Boudart G, Lafitte C, Barthe JP, Frasez D, Esquerré-Tugayé (1998) Deferential elicitation of 

defence response in bean seedlings. Planta 206: 86–94  

Brenner DE, Stevenson W, Twigg RW (2003) Cycads: Evolutionary innovations and the role 

of plant-derived neurotoxins. Trends in Plant Science 8: 446–452   

Brett CT, Hillman JR (1985) Biochemistry of Plant Cell Walls. Cambridge University Press, 

Cambridge 

Brett CT, Waldron K (1990) Physiology and biochemistry of plant cell walls. In: Black M, 

Chapman J (Eds) Topics in Plant Physiology, no. 2. Unwin Hyman, London, pp 6–57   

Brown CL (1966) Growth and development of Zamia embryos in vitro. American Society of 

Plant Physiology Southern Section, Proceedings of the Association of Agricultural Workers 

(ASAW), Jackson, Mo p. 283 (Abstr.) 

Bryan GS (1952) The cellular embryo of Zamia and its cap cells. American Journal of Botany 

39: 433–443  

Buckeridge MS, dos Santos HP, Tiné MAS (2000) Mobilisation of storage cell wall 

polysaccharides in seeds. Plant Physiology and Biochemistry 38: 141–156  

Burlingame LL (1915) The morphology of Araucaria brasiliensis 3. Fertilisation, the embryo 

and the seed. Botanical Gazette 59: 1–39  



36 
 

Camefort H (1968) Sur l’organisation du neocytoplasme dans les proembryons tetranuclees 

du Larix decidua Mill. (L. Europa D.C.) et l’origine des mitochondries et des plastes de 

l’embryon chez cette espece. Comptes Rendus de l’Académie des Sciences, Paris 266: 88–91   

Camefort H (1969) Fecondation et proembryogenese chez les Abietacees (notion de 

neocytoplasme). Revue de Cytologie et de Biologie Végétales 32: 253–271 

Cardemil L, Riquelme A (1991) Expression of cell wall proteins in seeds and during early 

seedling growth of Araucaria araucana is a response to wound stress and is developmentally 

regulated. Journal of Experimental Botany 42: 415–421  

Carpita N, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: 

consistency of molecular structure with the physical properties of the walls during growth. 

The Plant Journal 3: 1–30  

Carpita NC, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of 

cell walls of living plant cells. Science 205: 1144–1147  

Chamberlain CJ (1910) Fertilisation and embryogeny in Dioon edule. Botanical Gazette 50: 

415–429  

Chamberlain CJ (1935) Gymnosperms: Structure and Evolution. Chicago University Press, 

Chicago 

Chaw S-M, Walters TW, Chang C-C, Hu S-H, Chen S-H (2005) A phylogeny of cycads 

(Cycadales) inferred from chloroplast matK gene, trnK, and nuclear rDNA ITS region. 

Molecular Phylogenetic Evolution 37: 214–234  

Chowdhury CR (1962) The embryogeny of conifers: A review. Phytomorphology 12: 313–

338   

Cooper MR, Goode D (2004) The Cycads and Cycad Moths of KwaZulu-Natal. Peroniceras 

Press, New Germany  

Cosgrove DJ (1997) Assembly and enlargement of the primary cell wall in plants. Annual 

Review of Cellular Developmental Biology 13: 171–201  

Dehgan B (1983) Propagation and growth of cycads – a conservation strategy. Proceedings of 

the Florida State Horticultural Society 96: 137–139  



37 
 

Dehgan B (1984) Germination of Nandina domestica seeds as influenced by GA3 and 

stratification. Proceedings of the Florida State Horticultural Society 97: 311–313  

Dehgan B, Johnson CR (1983) Improved seed germination of Zamia floridana (sensu lato) 

with H2SO4 and GA3. Scienta Horticulturae 19: 357–361  

Dehgan B, Schutzman B (1989) Embryo development and germination of Cycas seeds. 

Journal of the American Society for Horticultural Science 114: 125–129  

Dehgan B, Yeun CKKH (1983) Seed morphology in relation to dispersal, evolution, and 

propagation of Cycas L. Botanical Gazette 144: 412–418  

Deshpande BD, Bhatnagar P (1961) Apical meristems of Ephedra foliata. Botanical Gazette 

122: 279–284  

Dodd MC, van Staden J, Smith MT (1989) Seed development in Podocarpus henkelii Stapf.: 

An ultrastructural and biochemical study. Annals of Botany 64: 297–310  

Dogra PD (1967) Seed sterility and disturbances in embryogeny in conifers with particular 

reference to seed testing and breeding in Pinaceae. Studia Forest Suecica 45: 1–87  

Dogra PD (1992) Embryogeny of primitive gymnosperms Ginkgo and cycads – proembryo – 

basal plan and evolutionary trends. Phytomorphology 42: 157–184  

Doyle J (1963) Proembryogeny in Pinus in relation to that in other conifers – a survey. 

Proceedings of the Royal Irish Academy 62: 181–216  

Dolan L, Linstead P, Roberts K (1995) An AGP epitope distinguishes a central metaxylem 

initial from other vascular initials in the Arabidopsis root. Protoplasma 189: 149–155  

Donaldson JS (2004) Extinction of cycad pollinators - Do generalists or specialists survive 

cycad decline? In: Lindstrom AJ (Ed) The Biology, Structure and Systematics of the 

Cycadales, Proceedings of the Sixth International Conference on Cycad Biology.  

International Academic Publishers, Thailand, p 154  

Donaldson JS, Hill KD, Stevenson DW (2003) Cycads of the World: An Overview. In: 

Donaldson JS (Ed) Cycads. IUCN - The World Conservation Union. Charlesworth & Co 

Ltd., Huddersfield, UK, pp 3–8   

Dyer RA (1965) The cycads of Southern Africa. Bothalia 8: 405–515  



38 
 

Eames AJ (1913) The morphology of Agathis australis. Annals of Botany 27: 1–38  

Ellis RH, Hong TD (1990) An intermediate category of seed storage behaviour? I. Coffee. 

Journal of Experimental Botany 41: 1167–1174  

Ellis RH, Roberts EH (1980) Improved equations for the prediction of seed longevity. Annals 

of Botany 45: 13–30  

Farrant JM, Sherwin HW (1997) Mechanisms of desiccation tolerance in seeds and 

resurrection plants. In: Taylor AG, Huang XL (Eds) Progress in Seed Research – 

Proceedings of the Second International Conference on Seed Science and Technology. 

Communication Services of the New York State Agricultural Experiment Station, Geneva, 

NY, USA, pp 109–120   

Farrant JM, Walters C (1998) Ultrastructural and biophysical changes in developing embryos 

of Aesculus hippocastanum in relation to the acquisition of tolerance to drying. Physiologia 

Plantarum 104: 513–524  

Farrant JM, Pammenter NW, Berjak P (1986) The increasing desiccation sensitivity of 

recalcitrant Avicennia marina seeds with storage time. Physiologia Plantarum 67: 291–298  

Farrant JM, Pammenter NW, Berjak P (1992) Development of the recalcitrant 

(homoiohydrous) seeds of Avicennia marina: Anatomical, ultrastructural and biochemical 

events associated with development from histodifferentiation to maturation. Annals of Botany 

70: 75–86  

Farrant JM, Berjak P, Cutting JGM, Pammenter NW (1993) The role of plant growth 

regulators in the development and germination of the desiccation-sensitive (recalcitrant) 

seeds of Avicennia marina. Seed Science Research 3: 55–63  

Farrant JM, Cooper K, Nell H (2012) Desiccation tolerance. In: Shabala S (Ed) Plant Stress 

Physiology. CAB International, Hobart, Australia, pp 238–265    

Favre-Ducharte M (1956) Contribution a l’etude de la reproduction chez Ginkgo biloba. 

Revue de Cytologie et de Biologie Vegetales 17: 1–218   

Fincher CJ, Leopold AC (1982) Ultrastructural changes of membranes with hydration in 

soybean seeds. American Journal of Botany 69: 623–633  



39 
 

Finch-Savage WE (1992) Seed development in the recalcitrant species Quercus robur L.: 

germinability and desiccation tolerance. Seed Science Research 2: 17–22  

Finch-Savage WE, Clay HA, Blake PS, Browning G (1992) Seed development in the 

recalcitrant species Quercus robur L.: water status and endogenous abscisic acid levels. 

Journal of Experimental Botany 43: 671–679  

Forsyth C, van Staden J (1983) Germination of cycad seeds. South African Journal of Science 

79: 8–9  

Fosberg FR (1964) Resume of the Cycadaceae. Federation Proceedings 23: 1340–1342  

Foster AS, Gifford EM Jr (1959) Comparative morphology of vascular plants. WH Freeman, 

San Francisco 

Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn MG (1996) 

Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of 

Arabidopsis thaliana roots. Plant Physiology 110: 1413–1429  

Friedman WE (1990) Sexual reproduction in Ephedra nevadensis (Ephedraceae): Further 

evidence of double fertilisation in a non-flowering seed plant. American Journal of Botany 

77: 1582–1598  

Friedman WE (1991) Double fertilisation in Ephedra trifurca, a non-flowering seed plant: the 

relationship between fertilisation events and the cell cycle. Protoplasma 165: 106–120 

Friedman WE (1992) Evidence of a pre-angiosperm origin of endosperm: implications for the 

evolution of flowering plants. Science 255: 336–339   

Fujikawa S, Kuroda K, Jitsuyama Y, Sano Y, Ohtani J (1999) Freezing behaviour of xylem 

ray parenchyma cells in softwood species with differences in the organisation of cell walls. 

Protoplasma 206: 31–40  

Gerhart J, Kirschner M (1997) Cells, Embryos and Evolution: Towards a Cellular and 

Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability.  

Blackwell Science Inc., Malden, MA, USA 

Giddy C (1984) Cycads of South Africa. 2nd Edition. Struik Publishers, Cape Town  



40 
 

Giddy C (1990) Conservation through cultivation. Memoirs of the New York Botanical 

Gardens 57: 89–93  

Giddy C (1995) Legislation: needs and implementation with special reference to CITES. In: 

Donaldson J (Ed), Cycad Conservation in South Africa. Issues, Priorities and Actions. Cycad 

Society of South Africa, South Africa, pp 14–16  

Golding JS, Hurter JH (2003) A red list account of Africa's cycads and implications of 

considering life-history and threats. Biodiversity Conservation 12: 507–528  

Goode D (2001) Cycads of Africa. Struik Publishers, Winchester 

Grange RI, Finch-Savage WE (1992) Embryo water status and development of the 

recalcitrant species Quercus robur L.: Determination of water relations parameters by 

pressure-volume analysis. Journal of Experimental Botany 43: 657–662 

Grant GT, Morris ER, Rees DA, Smith PJS, Thom D (1973) Biological interactions between 

polysaccharides and divalent cations: egg-box model. FEBS Letters 32: 195–198  

Ha MA, Apperley DC, Jarvis MC (1997) Molecular rigidity in dry and hydrated onion cell 

walls. Plant Physiology 115: 593-598 

Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiology 153: 

384–395 

He ZH, Fujiki M, Kohorn BD (1996) A cell wall-associated, receptor-like protein kinase. 

Journal of Biological Chemistry 271: 19789–19793  

He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall associated receptor 

kinase genes, WAK1-5, are expressed in specific organs of Arabidopsis. Plant Molecular 

Biology 39: 1189–1196  

Hendry GAF, Finch-Savage WE, Thorpe PC, Atherton NM, Buckland SM, Nilsson KA, Seel 

WE (1992) Free radical processes and loss of seed viability during desiccation in the 

recalcitrant species Quercus robur L. New Phytologist 122: 273–279  

Hermsen EJ, Taylor TN, Taylor EL, Stevenson DW (2006) Cataphylls of the middle Triassic 

cycad Antarcticycas schopfii and the new insights into cycad evolution. American Journal of 

Botany 93: 724–738   



41 
 

Herve C, Serres J, Dabos P, Canut H, Barre A, Rouge P, Lescure B (1999) Characterisation 

of the Arabidopsis lecRK-a genes: Members of a superfamily encoding putative receptors 

with an extracellular domain homologous to legume lectins. Plant Molecular Biology 39: 

671–682  

Hill KD, Stevenson DW, Osborne R (2004) The world list of cycads. In: Lindstrom AJ (Ed) 

The Biology, Structure and Systematics of the Cycadales. Proceedings of the Sixth 

International Conference on Cycad Biology. International Academic Publishers, Thailand, pp 

195–212   

His I, Driouich A, Jauneau A (1997) Distribution of cell wall matrix polysaccharides in the 

epidermis of flax hypocotyl seedlings: Calcium-induced acidification of pectins. Plant 

Physiology and Biochemistry 35: 631–644  

Hong TD, Ellis RH (1991) A comparison of maturation-drying, germination and desiccation-

tolerance between developing seeds of Acer pseudoplatanus L. and Acer platanoides L. New 

Phytologist 116: 589–596  

Hong TD, Ellis RH (1996) A protocol to determine seed storage behaviour. In: Engels JMM, 

Toll J (Eds) IPGRI Technical Bulletin No. 1. International Plant Genetic Resources Institute, 

Rome 

Ikeno S (1896) Das spermatozoid von Cycas revoluta. Botanical Magazine 10: 367–368  

Iraki NM, Bressan RA, Hasegawa PM, Carpita NC (1989) Alteration of the physical and 

chemical structure of the primary cell wall of growth-limited plant cells adapted to osmotic 

stress. Plant Physiology 91: 39–47  

Jarvis MC (1984) Structure and properties of pectin gels in plant cell walls. Plant, Cell and 

Environment 7: 153–164  

Jauneau A, Quentin M, Driouich A (1997) Microheterogeneity of pectins and calcium 

distribution in the epidermal and cortical parenchyma cell walls of flax hypocotyls. 

Protoplasma 198: 9–19   

Jauneau A, Roy S, Reis D, Vian B (1998) Probes and microscopical methods for the 

localisation of pectins in plant cells. International Journal of Plant Science 159: 1–13  



42 
 

Johansen DA (1945) A critical survey of the present status of plant embryology. Botanical 

Review 11: 87–107   

Johansen DA (1950) Plant Embryology. Waltham, Massachusettes 

Jones DL (1993) Cycads of the World: Ancient Plants in Today’s Landscape. Reed, 

Chatswood NSW, Australia 

Kačuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of 

plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydrate 

Polymers 43: 195–203  

Keller B (1993) Structural cell wall proteins. Plant Physiology 101: 1127–1130  

Khan R (1943) Contributions to the morphology of Ephedra foliata Bioss. II. Fertilisation 

and embryogeny. Proceedings of the National Academy of Science, India 13: 357–375  

Knox JP (1992) Cell adhesion, cell separation and plant morphogenesis. The Plant Journal 2: 

137–141  

Knox JP (1997) The use of antibodies to study the architecture and developmental regulation 

of plant cell walls. International Review of Cytology 171: 79–120   

Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially 

regulated both within cell walls and developing tissues of root apices. Planta 181: 512–521  

Knox JP, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Developmentally regulated 

epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern 

formation. The Plant Journal 1: 317–326  

Kohorn BD (2000) Plasma membrane-cell wall contacts. Plant Physiology 124: 31–38  

Kubacka-Zebalska M, Kacperska A (1999) Low temperature-induced modifications of cell 

wall content and polysaccharide composition in leaves of winter oilseed rape (Brassica napus 

L. var. oleifora L.). Plant Science 148: 59–67  

Lehmann-Baerts M (1967) �tudes  sur les Gnétales-XII. Ovule, gamétophyte femelle et 

embryogenése chez Ephedra distachya L. Cellule 67: 53–87   



43 
 

Leprince O, Buitink J (2010) Desiccation tolerance: From genomics to the field. Plant 

Science 179: 554–564  

Lloyd C (2006) Plant cell biology. In: Lewin B, Cassimeris L, Lingappa VR, Plopper G (Eds) 

Cells. Jones and Bartlett, Boston  

Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. The Plant Cell 

5: 1383–1399  

Lotsy JP (1899) Contributions to the life history of the genus Gnetum. I. The grosser 

morphology of reproduction in Gnetum gnemon. Annales du Jardin Botanique de Buitenzorg 

1: 46–114  

Lynch RM, Clegg JS (1986) A study of metabolism in dry seeds of Avena fatua L. evaluated 

by incubation with ethanol-1-14C. In: Leopold AC (Ed) Membranes, Metabolism and Dry 

Organisms. Cornell University Press, Ithaca, pp 50–58  

Lynch MA, Staehelin AL (1992) Domain-specific and cell type-specific localisation of two 

types of cell wall matrix polysaccharides in the clover root tip. Journal of Cell Biology 118: 

467–479  

Lynch MA, Staehelin AL (1995) Immunocytochemical localisation of cell wall 

polysaccharides in the root tip of Avena sativa. Protoplasma 188: 115–127  

Madhulata S (1960) Morphology and embryology of Gnetum gnemon L. Ph.D. Thesis, 

University of Delhi 

Maheshwari P (1950) An Introduction to the Embryology of Angiosperms. McGraw-Hill, 

New York 

Maheshwari P (1960) Morphology and Embryology of Cycas. M.Sc. Thesis, University of 

Delhi  

Maheshwari P, Vasil V (1961) Gnetum (Bot Monogr No1). Council of Scientific and 

Industrial Research, New Delhi 

Majewska-Sawka A, Nothnagel EA (2000) The multiple roles of arabinogalactan proteins in 

plant development. Plant Physiology 122: 3–10   

Martens P (1971) Les Gnetophytes. Gebruder Borntraeger, Berlin, Stuttgart 



44 
 

Martens P, Waterkeyn L (1974) �tudes sur les Gnétales-XIII. Recherches sur Welwitschia 

mirabilis-V. �volution ovulaire et embryogénése. Cellule 70: 163–258   

Marty P, Goldberg R, Lieberman M, Vian B, Berteau Y, Jouan B (1995) Composition and 

localisation of pectic polymers in the stems of two Solanum tuberosum genotypes. Plant 

Physiology and Biochemistry 33: 409–417  

McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (Ed) The 

Cytoskeletal Basis of Plant Growth and Form. Academic Press, London, pp 109–129 

McCann MC, Roberts K (1994) Changes in cell wall architecture during cell elongation. 

Journal of Experimental Botany 45: 1683–1691 

McCann MC, Stacey NJ, Wilson R, Roberts K (1993) Orientation of macromolecules in the 

walls of elongating carrot cells. Journal of Cell Science 106: 1347–1356  

McCartney L, Marcus SE, Knox PJ (2005) Monoclonal antibodies to plant cell wall xylans 

and arabinoxylans. Journal of Histochemistry and Cytochemistry 53: 543–546  

Moore PJ, Staehelin LA (1988) Immunogold localisation of cell wall matrix polysaccharides 

rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis in Trifolium 

pratense L., implication for secretory pathways. Planta 174: 433–445  

Moore PJ, Darvill AG, Albersheim P, Staehelin AL (1986) Immunogold localisation of 

xyloglucan and rhamnogalacturonan I in the cell walls of suspension-cultured sycamore cells. 

Plant Physiology 82: 787–794  

Moore JP, Nguema-Ona E, Chevalier L, Lindsey GG, Brandt WF, Lerouge P, Farrant JM, 

Driouich A (2006) Response of the leaf cell wall to desiccation in the resurrection plant 

Myrothamnus flabellifolia. Plant Physiology 141: 651–662 

Moore JP, Farrant JM, Lindsey GG, Brandt WF (2007) An overview of the biology of the 

desiccation tolerant resurrection plant Myrothamnus flabellifolia. Annals of Botany 99: 211–

217  

Moore JP, Farrant JM, Driouich A (2008) A role for pectin-associated arabinans in 

maintaining the flexibility of the plant cell wall during water deficit stress. Plant Signalling 

and Behaviour 3: 102–104  



45 
 

Moore JP, Nguema-Ona EE, Vicré-Gibouin M, Sørensen I, Willats WGT, Driouich A, 

Farrant JM (2013)  Arabinose-rich polymers as an evolutionary strategy to plasticise 

resurrection plant cell walls against desiccation. Planta 237: 739–754. DOI 10.1007/s00425-

012-1785-9 

Nicolaeva MG (1977) Factors controlling the seed dormancy pattern. In: Khan AA (Ed) The 

Physiology and Biochemistry of Seed Dormancy and Germination. North Holland, 

Amsterdam, Netherlands, pp 51–74    

Nkang A, Chandler G (1986) Changes during embryogenesis in rainforest seeds with 

orthodox and recalcitrant viability characteristics. Journal of Plant Physiology 126: 243–256  

Norstog KJ, Nicholls TJ (1997) The Biology of the Cycads. Cornell University Press, Ithaca, 

USA  

Northcote DH, Davey R, Lay J (1989) Use of antisera to localise callose, xylose and 

arabinogalactan in the cell-plate, primary and secondary walls of plant cells. Planta 178: 

353–366  

Osborne R (1986) Cycad research in the 80's. Encephalartos 6: 26–34  

Osborne R (1995) An overview of cycad conservation in South Africa. In: Donaldson J (Ed) 

Cycad Conservation in South Africa, Issues, Priorities and Actions. Cycad Society of South 

Africa, South Africa, pp 1–7  

Osborne R (2002) Cycad fossils. Encephalartos 69: 4–13   

Osborne R, Grobbelaar N, Vorster P (1988) South African cycad research: Progress and 

prospects. South African Journal of Science 84: 891–896  

Oxley D, Bacic A (1999) Structure of the glycosyl-phosphatidylinositol membrane anchor of 

an arabinogalactan protein from Pyrus communis suspension-cultured cells. Proceedings of 

the National Academy of Science, USA 6: 14246–14251 

Pammenter NW, Berjak P (1999) A review of recalcitrant seed physiology in relation to 

desiccation-tolerance mechanisms. Seed Science Research 9: 13–37  

Pearson HHW (1929) Gnetales. Cambridge University Press, Cambridge 



46 
 

Penell R (1998) Cell walls: structures and signals. Current Opinion in Plant Biology 1: 504- 

510     

Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and 

spermatophytes. New Phytologist 164: 165–174  

Pritchard HW (1991) Water potential and embryonic axis viability in recalcitrant seeds of 

Quercus rubra. Annals of Botany 67: 43–49  

Probert RJ, Longley PL (1989) Recalcitrant storage physiology in three aquatic grasses 

(Zizania palustris, Spartina anglica and Porteresia coarctata). Annals of Botany 63: 53–63  

Rai SH, O’Brien HE, Reeves PA, Olmstead RG, Graham SW (2003) Inference of higher-

order relationships in the cycads from a large chloroplast data set. Molecular Phylogenetics 

and Evolution 29: 350–359   

Rao LN (1963) Life history of Cycas circinalis L. Part 2. Fertilisation, embryogeny and 

germination of the seed. Journal of the Indian Botanical Society 42: 319–332  

Rees DA (1977) Polysaccharide shapes: Outline studies in biology series. Chapman & Hall, 

London, pp 1–80  

Reiter W-D (1994) Structure, synthesis, and function of the plant cell wall. In: Meyerowitz 

EM, Somerville CR (Eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring 

Harbor, New York, pp 955–988  

Reiter W-D (2002) Biosynthesis and properties of the plant cell wall. Current Opinion in Cell 

Biology 5: 536–542  

Roberts EH (1973) Predicting the storage life-span of seeds. Seed Science and Technology 1: 

499–514  

Roberts K (1990) Structures at the plant cell surface. Current Opinion in Cell Biology 2: 920–

928  

Ruel K, Joseleau JP (1984) Use of enzyme-gold complexes for the ultrastructural localisation 

of hemicelluloses in the plant cell wall. Histochemistry 81: 573–580  



47 
 

Ruel K, Joseleau JP, Franz G (1990) Aspects cytoligiques de la formation des xyloglucanes 

dans les cotyledons des grains de Tropaelum majus L. (Capucine). Comptes Rendus 

l’Académie des Sciences 310: 89–95   

Sanwal M (1962) Morphology and embryology of Gnetum gnemon. Phytomorphology 12: 

243–264   

Sargent JA, Mandi SS, Osborne DJ (1981) The loss of desiccation tolerance during 

germination: An ultrastructural and biochemical approach. Protoplasma 105: 225–239  

Schindler T, Bergfeld R, Schopfer P (1995) Arabinogalactan protein in maize coleoptiles: 

Developmental relationship to cell death during xylem differentiation but not to extension 

growth. The Plant Journal 7: 25–36  

Schlegel H (1991) Domestic growing of cycads from seed to houseplant size. Encephalartos 

26: 2–25  

Schnarf K (1929) Embryologie der Angiospermen. Borntraeger, Berlin 

Schneider H, Manz B, Westhoff M, Mimietz S, Szimtenings M, Neuberger T (2003) The 

impact of lipid distribution, composition and mobility on xylem water refilling of the 

resurrection plant Myrothamnus flabellifolia. New Phytologist 159: 487–505   

Schuster J (1932) Cycadaceae. In: Engler A (Ed) Das Pflanzenreich, 4. Leipzig 

Sershen, Berjak P, Pammenter NW (2008) Desiccation sensitivity of excised embryonic axes 

of selected amaryllid species. Seed Science Research 18: 1–11  

Sharma HP (2009) Plant Embryology: Classical and Experimental. Alpha Science 

International Ltd, Oxford, UK 

Showalter AM (1993) Structure and function of plant cell wall proteins. The Plant Cell 5: 9–

23  

Singh H, Johri BM (1972) Development of gymnosperm seeds. In: Kozlowski TT (Ed) Seed 

Biology, Volume 1, Importance, Development, and Germination. Academic Press, New York 

and London, pp 21–75  

Souéges R (1923) Embryogénie des Joncacées. Développement de l’emryon chez le Luzula 

forsteri DC. Comptes Rendus de l‘Académie des Sciences, Paris 177: 705–708  



48 
 

Souéges R (1924) Embryogénie des Graminées. Développement de l’embryon chez le Poa 

annua L. Comptes Rendus de l’Académie des Sciences, Paris 178: 1307–1310  

Souéges R (1931) L’embryon chez le Sagittaria sagittifolia L. Le cône végétative de la tige et 

l’extrémite radiculaire chez le monocotylédones. Annales des Sciences Naturelles Botanique 

13: 353–402  

Souéges R (1932) Recherches sur l’embryogénie des Liliacées (Muscari comosum L.). 

Bulletin de la Société Botanique de France 79: 11–23  

Sporne KR (1965) The Morphology of Gymnosperms. Hutchinson, London  

Stacey NJ, Roberts K, Knox JP (1990) Patterns of expression of the JIM4 arabinogalactan-

protein epitope in cell cultures and during somatic embryogenesis in Daucus carota. Planta 

180: 285–292  

Stefanowska M, Kuras M, Kubacka-Zebalska M, Kacperska A (1999) Low temperature of 

leaf growth and structure of cell walls in winter oilseed rape (Brassica napus L., var. oleifera 

L.). Annals of Botany 84: 313–319  

Stevenson DW (1990) Chigua, a new genus in the Zamiaceae with comments on its 

biogeographic significance. Memoirs of the New York Botanical Garden 57: 169–172  

Stevenson DW (1992) A formal classification of the extant cycads. Brittonia 44: 220–223  

Swamy BGL (1973) Contributions to the monograph on Gnetum. I. Fertilisation and 

proembryo. Phytomorphology 23: 176–182  

Talmadge KW, Keegstra K, Bauer WD, Albersheim P (1973) The structure of plant cell 

walls. 1. The macromolecular components of the walls of suspension-cultured sycamore cells 

with a detailed analysis of the pectic polysaccharides. Plant Physiology 51: 158–173  

Tang W (1987) Insect pollination in the cycad Zamia pumila (Zamiaceae). American Journal 

of Botany 74: 90–99  

Tang W (1990) Maturity in cycads. Encephalartos 24: 24–27  

Tang H, Belton PS, Ng A, Ryden P (1999) 13C MAS NMR studies of the effects of 

hydration on the cell walls of potatoes and Chinese water chestnuts. Journal of Agricultural 

and Food Chemistry 47: 510–217 



49 
 

Timell TE (1964) Wood hemicelluloses: Part I. Advances in Carbohydrate Chemistry and 

Biochemistry 19: 247–302  

Timell TE (1965) Wood hemicelluloses: Part II. Advances in Carbohydrate Chemistry and 

Biochemistry 20: 409–483  

Van Buren JP (1991) Function of pectin in plant tissue structure and firmness. In: Walter RH 

(Ed) The Chemistry and Technology of Pectin. Academic Press, San Diego, Calif, pp 1–22   

van Schalkwyk M (2007) National environmental management: Biodiversity act, 2004 (Act 

10 of 2004): Publication of lists of critically endangered, endangered, vulnerable and 

protected species. Government Notices, Department of Environmental Affairs and Tourism, 

South Africa 

Vashishta PC (1995) Gymnosperms: Botany for Degree Students, Volume 5. Chand S and 

Company LTD, New Delhi 

Vasil V (1959) Morphology and embryology of Gnetum ula Brongn. Phytomorphology 9: 

167–214  

Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation tolerance. In: Kigel J 

and Galili G (Eds) Seed Development and Germination. Marcel Dekker Press Inc. New York, 

pp 237–271   

Vian B, Roland JC (1991) Affinodetection of the sites of formation and of the further 

distribution of polygalacturnonans and native cellulose in growing plant cells. Biology of the 

Cell 71: 43–55   

Vian B, Brillouet JM, Satiat-Jeunemaitre B (1983) Ultrastructural visualisation of xylans in 

cell walls of hardwood by means of xylanase-gold complex. Biology of the Cell 49: 179–182  

Vian B, Reis D, Mosiniak M, Roland JC (1987) The glucuronoxylans and the helicoidal shift 

in cellulose microfibrils in linden wood: cytochemistry in muro and on isolated molecules. 

Protoplasma 131: 185–199  

Vian B, Nairn J, Reid JSG (1991) Enzyme-gold cytochemistry of seed xyloglucans using two 

xyloglucan-specific hydrolases: importance of prior heat-deactivation of the enzymes. 

Histochemical Journal 23: 116–124  



50 
 

Vicré M, Jauneau A, Knox PJ, Driouich A (1998) Immunolocalisation of β-(1→4) and β-

(1→6)-D-galactan epitopes in the cell wall and Golgi stacks of developing flax root tissues. 

Protoplasma 203: 26–34  

Vicré M, Sherwin HW, Driouich A, Jaffer MA, Farrant JM (1999) Cell wall characteristics 

and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a 

microscopical study. Journal of Plant Physiology 155: 719–726  

Vicré M, Farrant JM, Driouich A (2004a) Insights into the cellular mechanisms of 

desiccation tolerance among angiosperm resurrection plant species. Plant, Cell and 

Environment 27: 1329–1340  

Vicré M, Lerouxel O, Farrant J, Lerouge P, Driouich A (2004b) Composition and 

desiccation-induced alterations in the cell wall of the resurrection plant Craterostigma 

wilmsii. Physiologia Plantarum 120: 229–239  

Vijayaraghavan MR, Prabhakar K (1984) The endosperm. In: Johri BM (Ed) Embryology of 

Angiosperms. Springer-Verlag, Berlin, pp 319–376  

Vogel JC, van der Merwe H, Grobbelaar N (1995) The use of radiocarbon for determining 

the growth rate of arborescent cycads. In: Vorster P (Ed) Proceedings of the Third 

International Conference on Cycad Biology. Cycad Society of South Africa, Stellenbosch, 

South Africa 

Vorster P (1995) Aspects of the reproduction of cycads. 1. Pollinating mechanisms and the 

association of Amorphocerus (Curculionidae) with Encephalartos. In: Vorster P (Ed) 

Proceedings of the Third International Conference on Cycad Biology. Cycad Society of 

South Africa, Stellenbosch, pp 367–389   

Vovides AP (2000) México: Segundo lugar mundial en diversidad de cicadas. Biodiversitas 

6: 6–10  

Vovides AP, Pérez-Farrera MA, Gonzáles-Astorga J, González D, Gregory T, Chemnick J, 

Iglesias C, Octavio-Aguilar P, Avedaño S, Bárcenas C (2003) An outline of our current 

knowledge on Mexican cycads (Zamiaceae, Cycadales). Current Topics in Plant Biology 4: 

159–174  



51 
 

Wakabayashi K, Hoson T, Kamisaka S (1997) Osmotic stress suppresses cell wall stiffening 

and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles. Plant 

Physiology 113: 9–13 

Walter KS, Gillett HJ (1998) 1997 IUCN red list of threatened plants. World conservation 

monitoring centre, Gland, Switzerland and Cambridge, UK (loc. Cit. Donaldson [2003]) 

Walters C, Farrant JM, Pammenter NW, Berjak P (2002) Desiccation stress and damage. In: 

Black M, Pritchard HW (Eds) Desiccation and Survival in Plants. CABI Publishing, 

Wallingford, UK, pp 263–291  

Webb MA, Arnott HJ (1982) Cell wall conformation in dry seeds in relation to the 

preservation of structural integrity during desiccation. American Journal of Botany 69: 1657–

1668  

Webster BD, Leopold AC (1977) The ultrastructure of dry and imbibed cotyledons of 

soybean. American Journal of Botany 64: 1286–1293  

Weisser RL, Wallner SJ, Waddell JW (1990) Cell wall and extension mRNA changes during 

cold acclimation of pea seedlings. Plant Physiology 93: 1021–1026  

Wesley-Smith J (2001) Freeze-substitution of dehydrated plant tissues: artefacts of aqueous 

fixation revisited. Protoplasma 218: 154-167. 

Whistler RL, Richards EL (1970) Hemicelluloses. In: Pigman W, Horton D (Eds) The 

carbohydrates, Vol IIA. Academic Press, New York, pp 447–469  

Whitelocke LM (2002) The Cycads. Timber press, Inc., Portland, Oregon 

Woodenberg WR, Erdey D, Pammenter NW, Berjak P (2007) Post-shedding seed behaviour 

of selected Encephalartos species. Abstracts from the 5th International Workshop on 

Desiccation Tolerance and Sensitivity of Seeds and Vegetative Plant Tissues. South African 

Journal of Botany 73: 496 

Woodenberg WR (2009) Some aspects of megagametophyte development and post-shedding 

seed behaviour of Encephalartos natalensis (Zamiaceae). Master’s thesis, University of 

KwaZulu-Natal, Durban, South Africa 



52 
 

Wunderlich R (1966) Zur Deutung der eigenartigen Embryoentwicklung von Paeonia. 

Öesterreichische Botanische Zeitschrift 113: 395–407  

Zhang GF, Staehelin LA (1992) Functional compartmentalisation of the Golgi apparatus of 

plant cells: an immunochemical analysis of high pressure frozen and freeze substituted 

sycamore maple suspension-cultured cells. Plant Physiology 99: 1070–1083  

Zwiazek JJ (1991) Cell wall changes in white spruce (Picea glauca) needles subjected to 

repeated drought stress. Plant Physiology 82: 513–518   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 
 

CHAPTER 2 

Development of cycad ovules and seeds. 2. Histological and ultrastructural aspects of 

ontogeny of the embryo in Encephalartos natalensis (Zamiaceae) 

Introduction 

Cycads (Class Cycadopsida; family Zamiaceae), which are cone-bearing gymnosperms with 

large, compound leaves, are the most primitive spermatophytes in the world today (Brenner 

et al. 2003). Although the present-day cycads are a mere remnant of a family that once 

dominated the earth’s vegetation in the Mesozoic Era, ~200 million years ago (Bhatnager and 

Moitra 1996; Pooley 1993), their antiquity renders them a significant role-player in our 

understanding of the evolution of morphological characters in plants (Brenner et al. 2003).  

Only 11% of the 36 species of Encephalartos in South Africa are categorised as being of least 

concern (National Red List 2009), most other species being noted in that document as near 

threatened, vulnerable, endangered, critically endangered or extinct in the wild. However, 

surprisingly little research has been undertaken on cycad seeds in spite of the pressing need 

for the conservation of these plants (Vorster 1995). Cycad embryology has received little 

consideration from morphologists and systematists since the major studies by Chamberlain 

(1935); however, a deficiency of interest cannot be blamed for lack of research. The reasons 

for the dearth of research on cycad seeds are, in particular, the lack of availability of suitable 

research material in sufficient quantities for experimental purposes (Dehgan and Schutzman 

1989; Stevenson 1990) and the severe protective regulations that govern the acquisition of 

cycad seeds (Schlegel 1991), amongst others (Woodenberg et al. 2007; 2009). 

Despite – or because of – the challenges that have delayed cycad seed research to date, 

considerable investigation is required for the preservation of cycad germplasm and 

ultimately, the restoration of cycad populations by means of improved propagation. 

Fundamental to the improvement of propagation using seeds is a thorough understanding of 

embryogenesis in cycads. Hence the present investigation was undertaken, which aims to 

make a contribution to the body of knowledge on cycad embryo ontogeny, using 

Encephalartos natalensis Dyer and Verdoorn (a near threatened species [National Red List 

2009]) as a case study. 

From published work (reviewed by Bhatnagar and Moitra 1996; Biswas and Johri 1997), it 

has become apparent that there are similarities between the embryo ontogeny of cycads and 
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Ginkgo – especially during early embryogenesis. Hence, these two plant groups form what is 

referred to as the ‘Cycad and Ginkgo type’ of gymnosperm embryo development. While the 

reader is referred to the above-mentioned reviews for detailed accounts of embryogenesis in 

other gymnosperms, the Cycad and Ginkgo type of embryo development is described as 

follows.   

The zygote nucleus divides in situ followed by many free-nuclear divisions. The nuclei 

disperse evenly throughout the entire pro-embryo and on some occasions, evanescent walls 

appear to develop during the free-nuclear period (Chamberlain 1910; Favre-Ducharte 1956). 

In later stages, while the free nuclei are distributed evenly in Ginkgo, they become 

concentrated at the base of the pro-embryo in cycads. The upper part of the cycad pro-embryo 

contains considerably fewer nuclei in a thin cytoplasm – considered to be an “advanced” 

trend over pro-embryos with evenly distributed nuclei (cf. conifers, see Dogra 1992). 

Subsequently, nuclei at the base of the pro-embryo divide whilst those in the upper part 

display signs of degeneration (Bryan 1952). 

By the time walls are formed, there are approximately 256 free nuclei in Ginkgo (Singh 

1978), 512 in Cycas circinalis (Rao 1963), and 512 or 1024 in Dioon (Chamberlain 1910). 

The resultant cells fill the entire pro-embryo in Ginkgo; however, in cycads, newly-formed 

cells are found only in the lower part of the pro-embryo (Biswas and Johri 1997). In 

Encephalartos friderici-guiliemi, E. villosus and Macrozamia spiralis, segmentation of 

almost the whole egg cell gives rise to the formation of a primary pro-embryo having a dense, 

active basal area (Sedgwick 1924; Brough and Taylor 1940). In M. reidlei, formation of the 

walls occurs throughout the pro-embryo apart from a small region in the centre characterised 

by free nuclei (Baird 1939). This area disintegrates later, giving rise to a central cavity. In C. 

circinalis, cellularisation is restricted to the peripheral and basal regions (Swamy 1948); 

while in Stangeria sp., Zamia spp. and Bowenia spp., pro-embryo cells form only basally 

(Bryan 1952; Chamberlain 1916; Lawson 1926; as in conifers; Dogra 1992). 

Once walls have been formed, the basal cells divide and function as primary embryo cells, 

while the cells of the upper region elongate to give rise to a massive suspensor. The region 

designated the primary embryo comprises compact, dense, actively dividing, uniform cells 

concentrated at the tip (Biswas and Johri 1997). This forms the meristematic cell region of 

the embryo, the derivatives of which contribute to the elongating suspensor that pushes the 

mass of embryo cells deep into the centre of the megagametophyte (Singh and Johri 1972). 
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However, there appears to be no well-defined suspensor in Ginkgo apart from a micropylar 

region of elongated cells (Biswas and Johri 1997). 

In Zamia and Cycas (and probably in other cycad genera) cells of the outermost layer of the 

embryo elongate slightly to give rise to a noticeable cap around the group of meristematic 

cells, which probably occurs in other cycad genera as well (Bryan 1952; Maheshwari 1960). 

The cap cells persist for a while; however, they ultimately degenerate and do not add to the 

anatomy of the mature embryo (Bryan 1952). A few young embryos may be found in some 

seeds, which usually arise when more than one zygote is formed (simple/poly-

zygotic/archegonial polyembryony) [Singh and Johri 1972]. Cleavage polyembryony (several 

embryos derived from a single zygote) has not been found to occur in the cycads (Biswas and 

Johri 1997). As a contrasting example, in the conifer, Araucaria angustifolia, both types of 

polyembryony occur (with mono-zygotic predominating), but generally only one embryo 

survives (Agapito-Tenfen et al. 2011). Generally in cycads, the mature embryo is 

dicotyledonous, but three cotyledons have been found on some occasions (Biswas and Johri 

1997).  

From the studies outlined above, it is evident that most of the descriptive work on cycad 

embryogenesis thus far has centred on the early stages, i.e., development of the pro-embryo. 

Presently, many questions pertaining to the histology and ultrastructure of cycad embryos in 

particular remain unanswered. In this regard, the present investigation seeks to provide an in-

depth microscopical account of some aspects of the embryo ontogeny of E. natalensis. Since 

development of the embryo of this species is largely a post-shedding phenomenon, one of the 

major objectives of the present investigation was to observe the morphological and 

anatomical aspects of embryogenesis from seed-shed to six months after shedding – when the 

seeds were readily able to germinate. To this end, light microscopy, histochemistry and 

transmission electron microscopy were employed to monitor development of cells and 

tissues.  

 

Materials and Methods 

Plant material 

As a mandatory requirement, application was made and a permit granted for scientific 

research on a species, Encephalartos natalensis, listed as threatened or protected (ToPS) in 
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terms of the National Environmental Management: Biodiversity Act of South Africa. Male 

and female E. natalensis plants used were accessed on the Howard College Campus (29° 52′ 

07.28″ S; 30° 58′ 49.52″  E) of the University of KwaZulu-Natal in Durban. Since it is very 

easy to mistake futile ovules for fertilised seeds in E. natalensis (Woodenberg 2009), and 

because natural pollination often yields low actual seed numbers in garden settings where 

male and female cones are far apart (personal observation), hand pollination was undertaken 

during the period when male E. natalensis plants were shedding pollen (i.e. May-June). To 

this end, a few scales from the top of the female cone were removed using a scalpel blade so 

that a part the axis of the cone was exposed; freshly-collected, dry pollen was then blown into 

the opening created in the female cones using a drinking straw. This procedure was 

performed at three-day intervals as long as fresh pollen was being shed. Following hand 

pollination, seeds were collected in December of the same year from E. natalensis plants, 

upon the disintegration of the female cone. The seeds were prepared by removal of the 

sarcotesta with a sharp scalpel blade, and rinsing with water before surface decontamination 

by soaking in a 2.5% solution of sodium hypochlorite (NaOCl) for 10 min. The seeds were 

then rinsed three times with distilled water, blotted dry, dusted with Benlate® (benzimidazole, 

500 g kg-1), placed in brown paper bags and stored at 16°C until required. Embryos were 

removed from longitudinally sectioned, newly-shed seeds and monthly from stored seeds for 

morphological examination and tissue processing. The observations incorporated in the 

present contribution derive from embryos excised at seed-shed, and from seeds stored for 2, 4 

and 6 months. 

Imaging of the morphology of intact embryos 

Images of the external appearance of whole, intact embryos viewed with a Nikon AZ100 

stereo microscope, were captured using NIS Elements D 3.0 imaging software over the 0 – 4 

month developmental stages, while mature embryos (6 months after seed-shed) were 

photographed using a Canon EOS 350D digital camera equipped with a Canon EF 100 mm 

f/2.8 Macro USM lens. 

Tissue processing for microscopy  

Processing for light microscopy 

For histology, dissected embryo segments (c.5x5x5 mm) were fixed overnight in 4% 

paraformaldehyde buffered at pH 7.2 with 0.1 M phosphate buffer. The segments were then 
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rinsed briefly in the buffer, dehydrated in a graded ethanol series diluted with phosphate-

buffered saline (PBS), after which they were infiltrated under vacuum in a 37°C oven with 

Steedman’s (1960) wax. Sections, 12 µm thick, were cut using an American Optical 8209 

rotary microtome, mounted on Haupt’s adhesive-coated slides (Jensen 1962) and de-waxed as 

described below before being subjected to histological staining. Toluidine blue, as a 1% 

solution (pH unknown), made up as follows: 60ml 1% sodium bicarbonate, 40ml glycerol, 1 

g Toluidine blue, was used for routine staining. 

Histochemistry 

Sections were de-waxed first by placing the slides on a hot tray until the wax melted and then 

briefly exposing them to xylene. The presence of protein in air-dried sections was tested for 

by staining with eosin dye (BDH Chemicals, England) according to James and Tas (1984) or 

mercuric bromophenol blue (MBB: [BDH Chemicals, England]) after Mazia et al. (1953), 

while lipids were visualised histochemically using Sudan Black B (Sigma-Aldrich, Germany) 

according to McManus (1946). The application of these methods (excluding MBB) to cycad 

tissues is fully described in Woodenberg et al. (2010). For MBB staining, de-waxed sections 

were treated with mercuric bromophenol blue for 15 min, followed by 20 min in 0.5% acetic 

acid and brief immersion in distilled water. The sections mounted in distilled water were then 

viewed immediately with the light microscope. Carbohydrate histochemistry was performed 

by treating de-waxed sections with Lugol’s solution (Jensen 1962) for the detection of starch, 

which stained dark brown/black. In all cases sections were compared with those not subjected 

to specific histochemical staining.  

Tannins were detected with vanillin-HCl according to Pizzolato and Lillie (1973). Dewaxed 

sections were immersed for 5 min in a solution containing 10% (w/v) vanillin (Carlo Ertia, 

Rome) dissolved in a mixture of 100% ethanol and concentrated HCl of equal proportions. 

Sections were mounted in the same reagent and viewed immediately with the microscope. 

Tannins stained red.  

Ducts, lined by epithelial cells, were checked for the presence of mucilage using a modified 

(addition of toluidine blue) version of Mace and Howell’s (1974) protocol for the staining of 

mucins. Sections were de-waxed using xylene and treated with a 5% solution of tannic acid in 

water for 10 min, followed by rinsing briefly in distilled water for c. 15 s, after which the 

sections were flooded with 0.08 M (2%) ferric chloride for 1 min, washed briefly in distilled 
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water, stained with 1% toluidine blue, rinsed again with water, and viewed microscopically. 

Mucilage stained pale blue. 

Because the regular Mace and Howell (1974) protocol did not yield the characteristic pink 

stain in the mucilage ducts another histochemical test was carried out to ascertain the 

presence of acidic polysaccharides, like mucilage. De-waxed sections were treated for 10 min 

with aqueous Ruthenium red diluted 1:5000. Excess stain was rinsed off with water and the 

sections viewed. Mucilage stained pink.  

Tissue processing for TEM 

Small cubes (1-2 mm3) were excised from embryos using a sharp scalpel blade and subjected 

to the following infiltration and embedding protocol: 

Samples were fixed overnight in 2.5% glutaraldehyde buffered at pH 7.2 with 0.1 M 

phosphate buffer containing 1% caffeine, washed in 0.1 M phosphate buffer, post-fixed in 

0.5% phosphate-buffered osmium tetroxide for 2 h, and washed again in 0.1 M phosphate 

buffer before dehydration. Samples were dehydrated in a graded ethanol series (25-75%), 2 x 

10 min each, and left in 75% ethanol overnight. The samples were then block-stained with a 

saturated solution of uranyl acetate in 75% ethanol for 45 min, dehydrated further in 100% 

ethanol, followed by 2 x 10 min changes in propylene oxide. The dehydrated samples were 

then placed in a 1:1 mixture of propylene oxide:epoxy resin (Spurr 1969), rotated on a 

vertical turntable overnight at room temperature, placed in full resin (Spurr 1969) for another 

24 h and thereafter embedded in fresh resin for polymerisation at 80°C for 8 h.  

Microtomy and microscopy 

The resin-embedded samples were sectioned using a Reichert-Jung Ultracut E microtome. 

Sections, 1 µm thick, were stained with 1% toluidine blue and viewed with a Nikon Eclipse 

80i light microscope equipped with NIS Elements F Package imaging software. Ultrathin 

sections were cut for TEM analysis and stained with lead citrate (Reynolds 1963) for 10 min. 

A maximum of five sections was viewed on each grid using a Jeol JEM 1010 transmission 

electron microscope and iTEM Soft Imaging System GmbH imaging software. The following 

stages were sectioned and viewed: at seed-shed and 2, 4 and 6 months after this stage (n = 6). 
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Results and discussion 

At the time of seed-shed, the embryo of Encephalartos natalensis was found to be a 

rudimentary structure subtended by a long, coiled suspensor (Fig. 1a). The embryo was 

observed to undergo considerable growth and development in the months after seed-shed 

(Figs 1a-d) eventually reaching its full length and becoming naturally germinable six months 

later (Fig. 1d). Immature embryos at seed-shed are not unique to E. natalensis having been 

found in other cycads such as Cycas rumphii (De Silva and Tambiah 1952) and C. revoluta 

(Dehgan and Schutzman 1989). However, according to the latter authors, other cycad taxa 

e.g. Zamia fischeri and Z. loddigesii germinate readily upon seed-shed, which is an indication 

that they are in a much more advanced stage of development compared with E. natalensis. 

Similarly, Vorster (1995), noticed that some, but not all, of E. transvenosus and E. 

manikensis seeds may germinate shortly after they are shed (see also Grobbelaar 1990). 

It is not surprising that the seeds of E. natalensis are unable to germinate immediately they 

are shed as microscopy in the present study revealed that the embryos at this time were 

composed only of numerous undifferentiated, meristematic cells (Figs 2a-f). The embryo 

tissue, as is typical of meristems, had no intercellular spaces. The cells were bounded by thin 

walls, had prominent nuclei, along with numerous small vacuoles, amyloplasts, mitochondria 

of active appearance, and short profiles of endoplasmic reticulum (ER), while few Golgi 

bodies were seen (Figs 2b-f).  

The suspensor tissue, on the other hand, appeared translucent at low magnification (Fig. 2a), 

and was composed of elongated, highly vacuolated cells that contained a few amyloplasts 

(Fig. 2b). According to Chamberlain (1919), cycad suspensors are the longest in the plant 

kingdom and function to thrust the embryo into the corrosion cavity of the megagamatophyte. 

In addition, it has been suggested that the suspensor may provide nutrients and growth 

regulators for the embryo during the early phases of embryogenesis (Beers 1997; Schwartz et 

al. 1997; Wredle et al. 2001). The suspensor was observed in the present investigation to 

remain attached to the growing embryo right through the six month period (Figs 1a–d); 

although at six months after seed-shed it appeared shrivelled and dehydrated (Fig. 1d). 

While embryos in the present investigation seemed to be at the same developmental stage 

when they were shed from the parent plant, their subsequent development appeared to be 

asynchronous in the months after seed-shed. Dehgan and Schutzman (1989) observed similar 

asynchrony in the ontogeny of Cycas seeds stored at 22°C, while embryos of cold-stored  
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Fig.1 The external appearance of E. natalensis embryos at various stages of post-shedding seed 

development is illustrated. a At seed-shed where the embryo (E) is miniscule and attached to a long, 

coiled suspensor (S). b The now-ovoid embryo (E) two months after seed-shed at the end of the 

suspensor (S). c Shows the torpedo shape of the embryo still attached to the suspensor (S) in the 

fourth month after seed-shed. d The mature embryo (E), which is considerably larger than it was at 

seed-shed, still attached to a dried, shrivelled suspensor; bar = 2 mm 
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Fig. 2 Histology and ultrastructure of the embryo shortly after seed-shed. a The embryo (E) stained 

darkly with toluidine blue compared with the suspensor (S); bar = 500 µm. b The cells of the 

suspensor (S) can be seen to be much longer and with a considerably more translucent cytomatrix 

compared with the cells of the embryo (E); bar = 100 µm. c The structure of the embryo cells is 

depicted. These cells are isodiametric, compact, with no intercellular spaces, and have a relatively 

large nucleus (N) to cell area ratio; bar = 50 µm. d Illustrates the ultrastructure of the embryo cells, 

having relatively thin cell walls (CW), small amyloplasts (Am) and vacuoles (Vac), abundant 

mitochondria (M) and crescentic, partially-dilated profiles of the endoplasmic reticulum (ER) 

scattered in the cytomatrix; bar = 1 µm. e Mitochondria (M) displayed dense matrices and well-

defined cristae, while only a few Golgi bodies (G) and lipid bodies (L) occurred; bar = 0.5 µm. f Short 

profiles of endoplasmic reticulum (ER) were also prevalent between mitochondria (M) and other 

organelles in the peripheral region of the cytomatrix, which exhibited an abundance of polysomes; bar 

= 0.5 µm  
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(5°C) seeds displayed equally well-developed embryos over the same 24 week period. 

Asynchronous embryo development may be a strategy used by plants to lower the risk of 

losing an entire crop of seeds under non-conducive environmental conditions at the time 

when some seeds are ready to germinate. Given the asynchronous nature of embryo 

development in the current species, micrographs currently presented are of the most 

representative embryos at each stage. 

The embryos of the next stage observed in this study (i.e. two months after seed-shed) had 

undergone a measure of morphological, histological and cellular differentiation (Figs 3a-f). 

The acropetal region observed at the earlier stage had remained meristematic, now 

constituting the shoot meristem, while two flanking cotyledonary protuberances were now 

evident (Fig. 3a). These developing cotyledons appeared to have originated from two groups 

of cells, one on either side of the shoot meristem as described previously for Ginkgo biloba 

(Lyon 1904), and, as Saxton (1910) suggested, is probably the case for all gymnosperms. As 

illustrated by Chamberlain (1919), differentiation of the cotyledonary protuberances of 

cycads seems to occur as follows: The rapid growth of the undifferentiated embryo becomes 

somewhat retarded acropetally, while growth of the region around it is accelerated. This 

causes what that author describes as a depression surrounded by a ring of cotyledonary tissue. 

The cotyledonary ring is not fully complete and consists of two equally crescentic parts that 

nearly touch each other at their ends (Chamberlain 1919).  

In the current study of embryos two months after seed-shed, while the cotyledonary 

protuberances were a major feature, a few tannin channels were also now evident near the 

periphery of the embryo growing in the direction of its longitudinal plane (Figs 3a-c).  The 

structures presently termed tannin channels have been seen in previous studies on cycad 

germplasm, and while they have been referred to as tannin cells in most reports (Dorety 1909; 

1919; Sanchez-Tinoco and Engelman 2004; Saxton 1910), they have also been called canals 

(Saxton 1910), tannin idioblasts, and gold cells (Vovides 1991; Vovides et al. 1993, 

respectively).  

The tannins in the current investigation appeared amorphous in wax-embedded embryo 

material (e.g. Figs 3a & b); but was sometimes condensed or perhaps precipitated in material 

embedded in resin (e.g. Fig. 3c). Sanchez-Tinoco and Engelman (2004) have also observed 

two manifestations of tannin in the seed coat of another cycad, Ceratozamia mexicana. This 

may be an indication of two types of tannins or other phenolic compounds, or it may indicate 
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poor penetration into the tannins by resin. From the present study, the latter explanation is 

considered to be more likely, as the dual appearance of the tannins was consistent with the 

embedding medium used.  

Non-tanniniferous embryo cells at two months after seed-shed contained large vacuoles as 

illustrated in Figs 3c, d & e, while relatively small amyloplasts, few discrete lipid bodies and 

Golgi bodies, mitochondria with dense matrices, and short profiles of ER were a common 

feature of the cytomatrix (Figs 3d & e), but generally few Golgi bodies were observed. 

Mitochondria exhibited well-developed cristae and relatively dense matrices and clusters of 

polysomes were a consistent feature (Fig. 3f). These intracellular features are congruent with 

the on-going metabolism that accompanies embryogenesis. The cell walls now also appeared 

more substantial than the previous stage and nascent intercellular spaces (not illustrated) were 

sometimes observed indicating that the embryo was no longer composed of meristematic 

cells only.  

In the early stages of channel formation, the tannin appeared to be contained within vacuoles 

in cells also showing the occurrence of amyloplasts and nuclei (Fig. 4a). Subsequently, the 

channels elongated considerably (Figs 4b & d), although there was no evidence of prior 

coenocyte formation, as was observed by Zobel (1985) in shoots of Sambucus racemosa, an 

angiospermous species. The contents of the tannin channels were amber/brown-coloured in 

unstained sections (see Figs 12a & e-g); and light to very dark blue in sections stained with 

toluidine blue (Figs 4c & d). Transmission electron microscopy confirmed tannin 

accumulations within vacuoles (Figs 4e-h) following internalisation of vesicles containing 

small condensations (Fig 4g). There was evidence of the vesicles being ER-derived (Fig. 4f), 

suggesting the origin of the tannins to be from the endoplasmic reticulum. This is in 

agreement with views that tannins originate in the ER prior to being accumulated 

intravacuolarly (Zobel 1985; Rao 1988; Evert 2006).  

The embryo at the next stage, i.e. four months after seed-shed (Figs 5-7), consisted of a shoot 

and root meristem that appeared to be separated by a short hypocotyl region (Fig. 5a).  When 

viewed in cross section, the root meristem displayed radiating rows of cells (Fig. 5b), which 

suggested that new meristematic cells in this tissue are formed mostly by anticlinal mitoses 

from centripetal initials. The root meristem appears to be endogenous in the E. natalensis 

embryo (as it is in Dioon spinulosum; [Dorety 1919]), since it is surrounded by differentiated 

cells that are interspersed with tannin channels (Figs 5a & b). Those differentiated cells had  
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Fig. 3 Some histological and ultrastructural aspects of the embryo at two months after seed-shed are 

shown. a Two cotyledons (C), which are seen in the early stages of their development, flank the shoot 

meristem (SM) of the embryo, while the cells of the suspensor (S) show no visible change compared 

with the earlier stage. A few tannin channels (TC) were now apparent near the periphery of the 

embryo; bar = 500 µm. b The tannin channels (TC) appeared to develop parallel with the longitudinal 

plane of the embryo, while the procambium (PC), appearing as bands of elongated meristematic cells, 

was also now apparent; bar = 100 µm. c Demonstrates a tannin channel (TC) in cross-section, in 

which the contents appear condensed peripherally, while non-tanniniferous cells display darkly-

stained nuclei (N) and large vacuoles (Vac); bar = 50 µm. d The cytomatrix between the vacuoles 

(Vac) typically displayed long profiles of endoplasmic reticulum (ER), small amyloplasts (Am), 

mitochondria (M) and occasional lipid bodies (L) near the cell wall (CW); bar = 0.5 µm. e Occasional 

Golgi bodies (G) were seen in the periphery of the cytomatrix where other organelles like the 

mitochondrion (M) illustrated, were found; bar = 0.5 µm. f Mitochondria (M) had relatively dense 

matrices and clearly-defined cristae, and clusters of polysomes were apparent; bar = 0.5 µm 
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Fig. 4 Optical and electron micrographs demonstrating tannin channels. a A cross section showing 

early stages of tannin channel (TC) formation with the tannins apparently contained in vacuoles. 

Amyloplasts (Am) and nuclei (N) can also be resolved; bar = 50 µm. b Longitudinal section of a 

resin-embedded embryo showing a tannin channel (TC) during development. This channel appears 

considerably longer than the surrounding cells and contains darkly-staining deposits and a few 

amyloplasts; bar = 50 µm. c Tannin channels (TC) in a cross section of wax-embedded embryo tissue 

at a later stage of development, displaying relatively uniform tannin content filling the entire channel; 

bar = 50 µm. d A tannin channel sectioned longitudinally showing tannin drawn away from the walls, 

while no organelles can be discerned; bar = 50 µm. e Early stages of tannin channel formation 

showing tannin (T) accumulations in the tonoplast and small, electron-opaque deposits (asterisk) 

between  the plasmalemma (PM) and cell wall (CW); bar = 0.5 µm. f Nascent vesicles apparently 

originating from the endoplasmic reticulum (ER, arrowed) and incorporating small electron-opaque 

deposits can be seen between the tannin vacuole (TV) and plasmalemma; bar = 1 µm. g ER-derived 

vesicles bearing small, electron-opaque deposits (asterisk) appeared to be internalised by the tannin 

vacuole (TV); bar = 1 µm. h A large, central tannin vacuole, the predominant organelle in a 

developing tannin channel, is illustrated; bar = 5 µm       
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considerably larger, multifaceted amyloplasts (Figs 5c & d) than seen in the previous stages. 

Similar amyloplasts have been observed previously in the megagametophyte of E. natalensis, 

where they were in such abundance that other organelles and the nuclei appeared exceedingly 

compressed (Woodenberg et al. 2010). The differentiated cells were also highly vacuolated 

(Figs 5d-f) which further compressed the ground cytomatrix, in which long profiles of ER, 

the occasional lipid bodies (Fig. 5e) and mitochondria (Fig. 5f) occurred. A striking feature of 

these cells also, was the abundance of polysomes (Figs 5e & f), contributing further to the 

dense appearance of the cytomatrix.   

The region of differentiated cells between the root meristem and suspensor has been observed 

previously in other cycad embryos and has been called either the coleorhiza (Chamberlain 

1910; 1919; Dehgan and Schutzman 1989; Hooft 1970) or root cap (Chavez et al. 1995; 

Saxton 1910). Regardless of the nomenclature, this tissue reportedly acts as a hard sheath that 

protects the root meristem from injury when the germinating embryo penetrates the woody 

sclerotesta (Chamberlain 1919; Sporne 1965).  

While some cellular differentiation was seen in the hypocotyl region of the embryo four 

months after the seeds had been shed, the cells of the root and shoot meristems remained 

undifferentiated (Figs 6a-d) and appeared essentially similar to the cells of the embryo at 

seed-shed, i.e. small, compact cells each containing a prominent nucleus (Figs 6c & d), many 

small vacuoles and plastids showing only relatively small starch deposits (Fig. 6d). Profiles 

of ER and a few lipid bodies were seen (Fig. 6e). There were numerous mitochondria (Fig. 

6f), but only occasional Golgi bodies (Fig. 6g). One of the most striking features of the 

meristem cells was frequency of both cytomatrical and membrane-associated polysomes (Fig. 

6h), attesting to intensive protein synthesis. Although the ultrastructure of the cells of both 

the root and shoot meristems remained essentially consistent across the developmental stages 

of the embryos, the overall size of these meristems had increased as the embryos developed 

(Fig. 6a, cf. Fig. 3a). In the case of the meristematic region of the shoot, it is probable that the 

cellular proliferation was partially directed towards the considerable growth and development 

of the cotyledons (Fig. 6a) which ultimately became far longer than the axis of the embryo 

itself. 

While the cotyledons were observed to be separate from each other (Fig. 5a) at this stage of 

ontogeny, in some sections they could be seen to be in close contact, at least laterally (Fig. 

7a). In cross section, there appeared to be some seven vascular bundles (Fig. 7a) forming an  



71 
 

 

 

 

 

 

 

Fig. 5 Showing the histology and ultrastructure of the embryo four months after seed-shed. a 

Longitudinal section demonstrating the root meristem (RM) and shoot meristem (SM), the latter 

flanked by the two cotyledons (C), which are longer than at the previous stage. The procambium (PC) 

and tannin channels (TC) can be seen in each cotyledon; bar = 500 µm. b A cross-section of the 

embryo depicting the root meristem (RM) with radiating rows of meristematic cells; bar = 200 µm. c 

Tannin channels (TC) appeared to have condensed, poorly-preserved contents in cross-section in 

resin-embedded material, while the surrounding cells can be seen to be dominated by amyloplasts; bar 

= 50 µm. d The non-meristematic cells were extensively vacuolated (Vac) and typified by large 

amyloplasts (Am) each containing a considerable amount of starch, while other organelles and the 

nucleus (N) occurred in the dense cytomatrix; bar = 5 µm. e A few lipid bodies (L) as well as 

numerous long and short profiles of endoplasmic reticulum (ER) were apparent in the dense 

cytomatrix; bar 0.5 µm. f Mitochondria (M) were a common feature of the cytomatrix, its density 

being ascribed to the occurrence of many polysomes (arrowheads); bar = 20 µm 
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Fig. 6 Structure and ultrastructure of the meristematic regions of the embryo four months after seed-

shed. a Longitudinal section of the root meristem (RM) and shoot meristem (SM), which appeared to 

be separated from each other by a region of larger, vacuolated cells; bar = 200 µm. b The root 

meristem (RM) in longitudinal section displayed a gentle arc (asterisk) of meristematic cells between 

its centre and coleorhiza region (Co); bar = 200 µm c A resin-embedded shoot apex sectioned 

longitudinally illustrating the meristem, in which the peripheral tunica (T) overlies the corpus (C); bar 

= 50 µm. d Cells of both root and shoot meristems displayed similar ultrastructure that seemed 

unchanged from the previous stage, typified by a relatively large nucleus (N), numerous small 

vacuoles (Vac) and plastids (P) containing only small starch deposits; bar = 2 µm. e As is typical for 

meristems, no intercellular spaces were evident at cell wall (CW) junctions, while a few, relatively 

darkly-staining lipid bodies and short profiles of endoplasmic reticulum (ER) were seen; bar = 5 µm. f 

Mitochondria (M) were numerous and showed well-defined cristae and dense matrices; bar = 0.5 µm. 

g Golgi bodies (G) also occurred, particularly near the cell periphery, while plastids (P) displayed 

varying numbers of relatively small, electron-translucent starch inclusions and scattered plastoglobuli 

(Pg); bar = 0.5 µm. h The cytomatrix was typified by the occurrence of polysomes, many of which 

were clearly ER-associated (arrows); bar = 0.2 µm   

 

 

 

 

 

 

 



74 
 

 

 

 

 

 



75 
 

arc in the central region of each cotyledon. Longitudinal or tangential sections revealed that 

one or two tracheids had now differentiated centripetally in the developing vascular tissue 

(Figs 7b & c). These tracheids, when viewed in cross section had much thicker walls than the 

surrounding cells and displayed clear lumina (Fig. 7c), suggesting that they may be 

potentially functional at this stage in the transport of water contributing to cotyledon 

expansion during intra-seminal embryo ontogeny. Presently, however, this is only 

conjectural, as the tracheids that develop in this stage may become fully operational only 

during and after germination, and seedling establishment.  

While tracheids could be unequivocally identified in the cotyledons at this stage, other than 

the procambium, the majority of the cotyledonary cells were similar to the differentiated cells 

of the hypocotyl region, with a notable abundance of amyloplasts (Figs 7c & d), polysomes 

(Fig. 7d) and well-developed mitochondria (inset, Fig. 7d). The starch deposited in these 

amyloplasts, and in those of the axis cells had to have been built up from hydrolysed starch 

reserves of the megagametophyte (Woodenberg et al. 2010) since all contact with the female 

strobilus was lost very early in embryo ontogeny. The starch was progressively accumulated 

seemingly without dimunition in the developing embryo. It is probable that it functions as the 

carbohydrate reserve during germination and seedling establishment, rather than during in 

ovulo growth of the embryo which is suggestedly sustained by continuous importation from 

the megagametophyte. While the content of the few discrete lipid bodies found in the embryo 

cells may also be utilised at germination, protein bodies such as those which were common in 

the megagametophyte cells of this species (Woodenberg et al. 2010) were entirely absent 

from the cells of the embryo (see later), despite the frequency of polysomes (Fig. 7d). 

The predominance of starch in the mature embryo is in agreement with observations on 

Dioon edule (Chamberlain 1910) and whole seeds of Ginkgo (Singh et al. 2008). However, it 

is in marked contrast to most other gymnosperm species, e.g., conifers, which typically 

accumulate lipid as the primary storage reserve (Ching 1966; Gifford 1988; Krasowski and 

Owens 1993). However, according to Haines (1983), some Araucaria species viz. A. 

angustifolia, A. hunstei, A. araucana accumulate mostly carbohydrates, while carbohydrates 

constitute the total food storage component of A. bidwillii seeds. Apart from the situation in 

Araucaria, the preponderance of starch as a major storage product in the embryo appears to 

be a comparatively primitive trait, with lipid- and protein-dominant embryos representing the 

more advanced condition amongst the gymnosperms.  In terms of the basal evolutionary 

position of the cycads in gymnosperm phylogeny, it could be suggested that starch was the  
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Fig. 7 Some aspects of the histology and ultrastructure of the cotyledons at four months after seed-

shed are demonstrated. a Cross section showing the orientation of vascular bundles (arrows) in each 

of the two cotyledons; bar = 500 µm. b A tangential section through a vascular bundle, which appears 

to be made up primarily of procambial tissue with one or two tracheids (arrow) apparent. Tannin 

channels (TC) were located peripherally; bar = 200 µm. c At higher magnification, occasional 

tracheids (arrow) can be seen in the developing vascular bundle. The solitary tracheid has a typically 

thickened wall, compared with the surrounding cells, in which amyloplasts (Am) can clearly be 

resolved; bar = 50 µm. d Cells contained numerous, relatively large amyloplasts (Am) and vacuoles 

(Vac), many polysomes, a few lipid bodies (L) and mitochondria (M) with well-defined cristae (inset; 

bar = 0.5 µm); bar = 1 µm 
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first reserve to be accumulated generally in embryos of seed plants of ancient lineage. The 

accumulation of massive starch deposits initially in the gametophyte of E. natalensis 

(Woodenberg et al. 2010) with subsequent sucrose transport into, and starch synthesis in, the 

developing embryo is biochemically far less complicated than would be a system involving 

lipids (pers. comm. M. Black, King’s College, London).     

Furthermore, the predominance of starch as opposed to lipid as the major storage reserve in 

the E. natalensis embryo is not surprising given the relatively long period (c. 12 months) of 

embryo development from fertilisation to germination. Lipids are known to be vulnerable to 

oxidation (McDonald 2004), which may lead to a loss of viability during the protracted 

development of the embryo in the current species. This may have been especially important 

considering that cycads are suggested to have originated in the Carboniferous Period 

(Schwendemann et al. 2009) when atmospheric oxygen concentrations may have been as 

high as 35% (Berner and Canfield 1989). A further salient feature may be that seeds of E. 

natalensis and other species (Woodenberg et al. 2007) and those of Araucaria angustifolia 

(Farrant et al. 1989); A. hunsteinii (Pritchard and Prendergast 1986), A. araucana (Royal 

Botanic Gardens Kew 2008) and A. bidwillii (Del Zoppo et al. 1998) are desiccation-

sensitive, thus requiring them to remain hydrated throughout development to germination. It 

is suggested that lipid would be more prone to oxidative degradation in metabolically active 

tissue which remains hydrated for relatively prolonged periods, than in, desiccation-tolerant 

(orthodox) seed tissues of e.g. most of the conifers.   

At six months after seed-shed, the root meristem region of the embryo had increased in 

overall size (Figs 8a & b). A conspicuous feature of the embryo at this stage was the 

development of the mucilage ducts (Fig. 8c). These ducts were lined by epithelial cells and 

while the one demonstrated in Fig. 8c appears to have retained its contents, the lumina of 

most appeared clear (illustrated later). The evidence that these mucilage ducts were lined by 

intact cells suggested that they may have been formed schizogenously, i.e. by separation of 

parenchyma cells from each other (Esau 1953; Evert 2006). According to those authors, after 

a few divisions, the cells that separate from each other come to line the duct, effectively 

forming an epithelium. Duct-lining epithelial cells have been described as producing 

hydrophilic mucilaginous polysaccharides intracellularly before transferring the secretion into 

the duct (Romberger 1993): however, in E. natalensis embryos it is suggested that they 

elaborate glycoproteins/mucopolysaccharides, as has been suggested for fruit tissue of 

Mangifera indica (Joel and Fahn 1980). The epithelial cells in the current study were 
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characterised ultrastructurally by numerous profiles of variously-distended ER (Figs 8d & e) 

that appeared to give rise to many vesicles (Fig. 8e). Some of those vesicles appeared to fuse 

with the plasmalemma (Fig. 8e) and are suggested to be involved in the secretion of 

mucopolysaccharides into the lumen of the mucilage duct. Since Golgi bodies were observed 

extremely infrequently in the epithelial cells, it appeared that the endoplasmic reticulum is the 

intracellular system involved in the manufacture and secretion of mucopolysaccharides in the 

current species. The apparent non-involvement of Golgi bodies in mucilage secretion in 

developing E. natalensis embryos was an unexpected feature: however, it is in keeping with 

observations on early cellularisation of the megagametophyte in this species, where ER-

derived vesicles were found to elaborate and export cell wall material without intermediary 

involvement of Golgi bodies, which were rarely observed (Woodenberg et al. 2010). Core 

glycosylation of nascent polypeptides/proteins is an ER-mediated process, and it could be 

argued that this process suffices in the production of mucopolysaccharide mucilage in 

embryos of E. natalensis.  Golgi bypass in secretory pathways has been described and 

debated for animal tissues (Grieve and Rabouille 2011) and described for maturing pumpkin 

seeds (Hara-Nishimura et al. 1998) and storage protein in rice endosperm (Takahashi et al. 

2005). Although unusual, Golgi bypass in plants seems likely (Hawes 2005), but is not 

uncontestable (Tian et al. 2013). However, to our knowledge no such studies have been 

carried out on seeds of plants of ancient lineage, as represented by the cycads.  

According to the review by Bhatnagar and Moitra (1996), mucilage ducts in cycads may act 

as water reservoirs, as a xerophytic characteristic. At this stage also, six months after the E. 

natalesis seeds were shed, intercellular spaces had developed in the hypocotyl tissue (Fig. 8f) 

the cells of which were characterised by many amyloplasts and large vacuoles, mitochondria, 

ER and numerous polysomes (Figs 8f & g).   

Another conspicuous feature of the embryo six months after seed-shed was the appearance of 

developing leaf primordia (Figs 9a & b). While the shoot meristem appeared generally 

similar to that of the earlier developmental stage, leaf primordia that were not seen previously 

could now be discerned in some cases as slight bulges, and in others as substantial structures, 

associated baso-laterally with the shoot meristem in longitudinal and cross section (Figs 9a & 

b, respectively). The development of these primordia coincided with the time the seeds were 

able to germinate readily (Woodenberg 2009), i.e. when the embryos could be considered to 

be mature.  
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Fig. 8 Illustrates the structure and ultrastructure of the hypocotyl region of the embryo six months 

after the seeds were shed. a The root meristem (RM) in longitudinal section, which stained densely 

with toluidine blue appears very broad in relation to the width of the embryo; bar = 500 µm. b The 

hypocotyl in cross-section demonstrating the central position of the root meristem (RM); bar = 500 

µm. c Mucilage ducts (MD) lined by a layer of epithelial cells were observed for the first time at this 

stage of development. These ducts were positioned between the meristem and tannin channel (TC) 

regions of the hypocotyl; bar = 50 µm. d Ultrastructure of mucilage duct epithelial cells displayed 

many, variously-distended lengths of endoplasmic reticulum (ER) amongst relatively small 

amyloplasts (Am); bar = 1 µm. e Numerous vesicles (Ves) were also a common feature of the 

cytomatrix and were sometimes observed to join with the plasmalemma (asterisk), while undistended 

(arrowheads) and a grossly-distended profile of the endoplasmic reticulum (ER) are also depicted. 

The surface of cell walls (CW) facing the lumen (Lu) displayed small, dark protrusions as illustrated; 

bar = 1 µm.  f The hypocotyl region other than the root meristem had relatively large intercellular 

spaces (asterisk), while the cells, bounded by relatively thin walls (CW) contained numerous large 

vacuoles (Vac) and abundant amyloplasts (Am) and mitochondria (M); bar = 10 µm. g The cytomatrix 

also contained abundant profiles of endoplasmic reticulum (ER) and polysomes; bar = 0.5 µm.  
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Apart from the developing leaf primordia, the cells of the shoot meristem (Figs 9c & d) 

appeared unchanged from that seen at the 4-month developmental stage, with the clear 

appearance of the tunica and corpus regions (Fig. 9c, cf. Fig. 6c). Some indications of the 

plane of division of these cells could be seen (Fig. 9c). While most of the tunica cells of the 

shoot meristem seemed to undergo periclinal divisions, some cells in this external layer were 

observed to divide anticlinally (Fig. 9c). Both anticlinal and periclinal planes of division were 

observed in the sub-apical cells of the corpus (Fig. 9c). 

Cells of the root and shoot meristems were essentially similar at six months after seed-shed 

(Fig. 9d) compared with previous stages of ontogeny. The cells were dominated by large 

nuclei, while plastids containing only a little starch and small vacuoles were common and 

occasional lipid bodies occurred (Fig. 9d). Mitochondria were prominent (Fig. 9e) and Golgi 

bodies were far more common in the cells of both root and shoot meristems (Fig. 9f) than in 

cells of all other regions of the embryonic axes where their occurrence was sparse. As in the 

earlier developmental stages, polysomes were abundant (Fig. 9f).  

The most striking feature of the embryos in the sixth month after seed-shed, was the 

differentiation which had occurred in the cotyledons (Figs 10a-d). Numerous mucilage ducts 

lined by cells which stained pink with toluidine blue and having translucent contents had 

formed in the central region of each cotyledon (Figs 10a & b), while the primary vascular 

tissue was also prominent toward the adaxial surface of the cotyledon in cross section (Fig. 

10a). This arrangement contrasts with that observed in Microcycas calocoma (Dorety 1909), 

where cotyledonary traces were found to alternate with mucilage ducts. Each of the primary 

vascular bundles observed in the present study was surrounded by a few tannin channels 

(Figs 10a & b), while more of these structures were abundant in the peripheral regions of 

each cotyledon (Fig. 10a). 

More tracheids also appeared to have differentiated in the primary vascular tissue when 

compared with the previous stage (Fig. 10c) although this vascular tissue was still dominated 

by procambial cells (Fig. 10d). This indicated that although the embryo was at a stage of 

ontogeny considered to be mature, the vascular tissue appeared still to be in an immature state 

overall and may well be equipped to be fully functional only later on in development, i.e. 

during germination and subsequent stages of seedling growth. 

The cotyledons were seen in the earlier stages to develop as discrete structures (ref. Figs 5a, 

6a & 7a). However, in the mature embryos they were tightly adpressed as demonstrated by  
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Fig. 9 Histological and ultrastructural situation of the shoot and root meristems six months post-

shedding. a Longitudinal section of the root meristem (RM) and shoot meristem (SM) with what 

appears to be the initiation of a leaf primordium (arrow); bar = 500 µm. b Shoot meristem in cross-

section (arrow) in relation to a well-developed leaf primordium (asterisk); bar = 200 µm. c 

Isodiametric cells of the shoot meristem with newly-divided cells (arrowed) in the tunica (T) and 

corpus (C) are apparent; bar = 50 µm. d The ultrastructure was consistent with previous stages, with 

meristem cells showing a relatively large nucleus (N) with numerous plastids (P)  containing little 

accumulated starch, vacuoles (Vac), lipid bodies (L), and dense mitochondria (M) in the cytomatrix 

that was bound by a relatively thin cell wall (CW); bar = 1 µm. e The cytomatrix contained 

mitochondria (M) with dense matrices and well-defined cristae; bar = 0.5 µm. f Golgi bodies (G) were 

also seen in the cytomatrix as were numerous polysomes; bar = 0.5 µm  
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the close association of the adjacent adaxial epidermal layers of the two cotyledons (Fig. 

10e). Such closely-associated cotyledons have also been seen in studies on other cycad 

embryos (Dorety 1909; 1919; Saxton 1910; Webb et al. 1984), and it was suggested by those 

authors that the cotyledons were fused. According to Dorety (1909) for example, when the 

cotyledons of Microcycas calocoma were examined microscopically, no trace could be found 

of the characteristic seam expected if the adaxial epidermal layers had become adpressed. 

Although cotyledon fusion may appear to have occurred in the cycad species investigated by 

those authors, the seam alluded to by Dorety (1909) was evident in the present investigation 

on E. natalensis embryos. In this regard, Monnier and Norstog (1986) found that while the 

cotyledons of Zamia sp. remained closely adpressed in situ, they grew separately when 

embryos were cultured in vitro. Those authors proposed that the cotyledons of that species 

may be closely associated in the seed because of the pressure exerted on them by the 

surrounding megagametophyte tissue. This is probably also true for E. natalensis, as bisected 

seeds showed the embryo enlarging in a tight space provided by the corrosion cavity in the 

centre of the comparatively large and fairly rigid megagametophyte tissue (Woodenberg 

2009). 

Cotyledons of mature embryos examined in the present study, had tannin channels with 

contents that consistently displayed oblique striations when longitudinal sections were 

viewed (Fig. 10f). While these may be artefacts of sectioning, they occurred repeatedly in a 

similar pattern, which may be an indication of an underlying ridging of the channel wall. On 

a few occasions where the embryo had appeared to be injured before fixation, tannin from the 

surrounding channel(s) seemed to infiltrate the wound (Fig. 10g). This is suggestive of the 

manner in which the tannins may function in the prevention of pathogen entry upon 

wounding (Wood 1967; Goodman et al. 1967), and/or provision of antioxidant activity (Esau 

1953), as wounding is known to be associated with a surge of reactive oxygen species (ROS) 

(Bolwell 1999). The position revealed by the present investigation of tannin channels near the 

periphery and vital tissues of the embryo, viz. the vascular tissue and shoot meristem, are 

suggested to provide defence against external threats including pathogen invasion and 

physical trauma. The cotyledonary ground tissue in which intercellular spaces were evident, 

was comprised of starch-containing, vacuolated, rounded parenchymatous cells (Fig. 10h).  

In the current study, the embryo was found to produce only two cotyledons. This situation 

has been observed in some other cycads e.g. Microcycas calocoma (Dorety 1909), Zamia 

spp. (Monnier and Norstog 1984), Encephalartos friderici-guilielmi (Saxton 1910), while  
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Fig. 10 Histology of the cotyledons six months after seed-shed. a Cross section displaying the 

position of numerous mucilage ducts (arrows) in the central region of the cotyledon, while three 

vascular bundles (V) and many blue-staining tannin channels can be seen; bar = 200 µm. b 

Demonstrating a relatively large mucilage duct (MD) with a translucent cavity lined by epithelial 

cells, and developing vascular tissue each surrounded by a few tannin channels (arrows); bar = 100 

µm. c A vascular bundle in cross section displaying a small cluster of thick-walled tracheids (arrows), 

rather than the solitary structures seen four months after seed-shed; bar = 50 µm. d The procambium 

(PC) was seen in longitudinal sections to be composed of relatively elongated, thin-walled cells, the 

cytomatrix of which stained mauve to pink with toluidine blue; bar = 100 µm. e  The two cotyledons 

were closely adpressed in some places (asterisk); bar = 50 µm. f Tannin channels (TC) near the 

peripheral region of the cotyledons displayed striations as illustrated in this longitudinal section; bar = 

100 µm. g Tannins (T) presumably from tannin channels appeared to have seeped into a wound that 

was presumably created before fixation; bar = 100 µm. h Showing a cross section of numerous cells 

that were packed with amyloplasts, and were rounded with concomitant development of intercellular 

spaces (arrows); bar = 50 µm  
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Dorety (1919) found that Dioon spinulosum could have from two to four cotyledons 

(although the number was commonly two). In addition, Dorety (1908) demonstrated that 

while Ceratozamia species may appear to have one cotyledon, the second cotyledon is in fact 

present, but its growth is substantially inhibited in that genus.                 

Aside from vascular tissue, resin ducts and tannin channels, the cells of the cotyledons in the 

current study were dominated by large amyloplasts containing substantial amounts of starch, 

vacuoles, a considerable number of mitochondria, the limited occurrence of lipid bodies (Figs 

11a & b) and only occasional Golgi bodies. Together, the vacuoles and bulky amyloplasts 

compressed the ground cytomatrix and other organelles mostly against the cell periphery 

(Fig. 11b). The compression of the polysome-rich ground cytomatrix was so great that 

although the mitochondria and ER (Figs 11c & d) could be resolved, the effect was almost 

one of negative staining. While the general intracellular situation of the cotyledonary ground 

tissue was essentially similar to that in the mature megagametophyte cells of E. natalensis, 

what was remarkably different was the absence of the dense protein bodies which were 

prevalent in the latter tissue (Woodenberg et al. 2010). The absence of similar substantial 

protein deposits in the embryo tissues was confirmed by the lack of specific staining 

histochemically (see below).  

In the current study, mucilage ducts were positively identified by staining with a modified 

version of the protocol of Mace and Howell (1974) for the location of mucins. Initial results 

using the standard protocol outlined by those authors yielded no staining in the 

schizogenously-formed ducts; however, indications of their contents were obtained 

serendipitously when toluidine blue was applied to sections already stained using the Mace 

and Howell (1974) method (Fig. 12a). The ducts displayed pale blue staining when this was 

done indicating that they might not be empty. Staining of these structures was also evident 

when Ruthenium red was employed for the detection of acidic polysaccharides typical of 

mucilage (Fig. 12b), where the epithelial cells stained red and the duct contents appeared a 

light pink. The constituents such as amyloplasts and vacuoles of other cells remained 

unstained. These two results seem to complement one another and strongly suggest that the 

structures investigated are, in fact, mucilage ducts. 
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Fig. 11 Ultrastructure of the cotyledonary cells six months after seed-shed. a Cells were dominated by 

abundant, relatively large amyloplasts (Am) and vacuoles (Vac); bar = 5 µm. b Ultrastructure of one 

of those cells demonstrating the size of the abundant, starch-filled amyloplasts (Am) compared with 

the mitochondria (M) shown compressed in the peripheral cytomatrix and the few lipid bodies (L) that 

were present in the cells; bar = 20 µm. c The mitochondria (M) that were present had well-defined 

cristae and patchily-dense matrices; bar = 0.2 µm. d Relatively short profiles of endoplasmic 

reticulum (ER) were also prevalent in some areas of the dense cytomatrix, which displayed an 

abundance of polysomes as seen in other stages of development; bar = 0.2 µm 
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When vanillin-HCl was applied, positive bright red staining indicated the presence of tannins 

in discrete locations (Fig. 12c), serving to confirm that these are in all likelihood, the tannin 

channels. The amyloplasts, which constituted a large proportion of the contents of the 

majority of cells tested positive for starch with the use of Lugol’s stain (Fig. 12d). As 

indicated by transmission electron microscopy, lipid was confirmed to be sparsely present in 

the cells as a few, very small, discrete entities when Sudan Black B was used (Fig. 12e); 

however, use of that stain also indicated the presence of a layer of lipid, probably wax, 

covering the exterior of the embryo (Fig. 12f). Effectively, this would constitute a cuticle and 

be a further adaptation (additional to the relatively impermeable sclerotesta) to retard the loss 

of water from these embryos, which have been shown to be desiccation-sensitive 

(Woodenberg et al. 2007; 2009).      

Protein histochemistry in the present investigation yielded an unexpected interesting result. 

According to Woodenberg et al. (2010), many of the vacuoles of the megagametophyte cells 

of E. natalensis displayed considerable amounts of a relatively dense, granular material that 

stained positively for protein when eosin dye was used. When the same stain was utilised in 

the current study, vacuoles did not stain positively (Figs 10g & h), and no similar dense, 

granular material was observed with the TEM or light microscope. However, some staining 

for protein did occur, but confined to the nuclei, when mercuric bromophenol blue was 

utilised (Fig. 12h). The embryo appears, therefore, not to accumulate any significant amount 

of reserve protein as protein bodies compared with the megagametophyte, but it suggestedly 

obtains the required amino acids directly from the protein reserves of the megagametophyte 

tissue. From the prevalence of polysomes throughout embryogenesis, there can be no doubt 

that active protein synthesis is on-going. However, this presumably is directed towards 

synthesis of structural proteins of e.g. membranes and the cytoskeleton, as well as of 

enzymes.      

Concluding remarks 

The present investigation has revealed some important aspects of the post-shedding 

development of the E. natalensis embryo that further understanding of the recalcitrant post-

shedding behaviour of these seeds (Woodenberg 2009). Seeds of this species are shed from 

the parent plant when the embryo is rudimentary and decidedly physiologically immature; its 

development has been shown to be a continuous process after seed-shed that ultimately  
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Fig. 12 Histochemistry of secondary metabolites and storage products accumulated in the mature 

embryo of E. natalensis (Toluidine blue was used only on the section in ‘a’). a Contents of mucilage 

ducts (arrow) appeared faintly blue when toluidine blue was applied to the sections after staining for 

mucins with the tannic acid/ferric chloride protocol of Mace and Howell (1974), while the non-

stained, orange/brown colouration of tannin channels is also evident; bar = 50 µm. b The contents of 

mucilage ducts stained pale pink (arrow) with the epithelial cells staining a deeper pink to red when 

Ruthenium red was used for the detection of acidic polysaccharides, while tannin channels stained 

darkly; bar = 50 µm. c The contents of tannin channels stained red (arrow) with vanillin-HCl while 

the rest of the tissue did not stain, indicating the localised presence of tannins; bar = 200 µm. d 

Amyloplasts in most of the tissue stained black when Lugol’s solution, which localises carbohydrate 

(by reaction with potassium iodide/iodine; Jensen 1962) was employed, while vascular tissue (V) did 

not display similar staining; bar = 200 µm. e Scattered, small, discrete bodies of lipid were observed 

to stain darkly (arrows) with Sudan Black B; bar = 50 µm. f The use of Sudan Black B also yielded a 

thin film of darkly staining substance, presumed to be cuticular wax, on the external surface of the 

epidermis (arrows); bar = 50 µm. g There was no staining which would have indicated the presence of 

protein bodies when eosin dye was used; bar = 50 µm. h A similar, negative result was had when 

mercuric bromophenol blue was used to localise protein, although the nuclei stained prominently; bar 

= 50 µm 
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culminates in germination. Histochemistry in this study showed that the major storage 

product accumulated in the embryo is starch, which is accumulated abundantly in the many 

amyloplasts of non-meristematic cells, while lipid is accumulated in only minor quantities 

and reserve protein accumulation is negligible. This information, along with that revealed 

about the megagametophyte (Woodenberg et al. 2010), may be important for the future 

design of biotechnological protocols for the in vitro growth of immature E. natalensis 

embryos that were observed in the present study at the time of seed-shed. Immature embryos 

of this species may provide a suitable explant for the cryopreservation of this species, the 

seeds of which are currently unstorable in the long-term. 

The current investigation has also increased understanding of the secondary metabolites 

accumulated in the embryo of this species, particularly mucilage and tannin. Mucilage ducts 

were found to be a common feature of mature embryos in this species, which, along with the 

possession a tough sclerotesta external to the seed, and a waxy layer on the surface of the 

embryo may contribute to water retention in the months after seed-shed (Woodenberg 2009). 

These characteristics are suggested to contribute to the relative longevity (one to two years) 

in storage under conditions precluding dehydration, compared with recalcitrant seeds of other 

species which is generally a matter of days to months (Pammenter et al. 1994). 

Apart from mucilage, the other major secondary metabolite found in the embryo of the 

current species was tannin, accumulated in tannin channels. These may be analogous to the 

resin canals of most conifers, gum canals of Welwitschia, and laticifers of Gnetum and some 

angiosperm species (Esau 1953; Romberger 1993). The purported anti-microbial and wound-

healing properties of tannins may also account for the use of parts of cycads in traditional 

medicine in South Africa (e.g. Osborne et al. 1994), and according to Vashishta (1995), the 

‘resin’ obtained from Cycas rumphii is apparently applied to malignant tumours.  The use of 

tannins from cycads for medicinal purposes therefore warrants further investigation, and if 

verified, would justify research on in vitro culture for their production, as further depletion of 

the naturally-occurring plants cannot be countenanced.  

Further study is also encouraged on the early stages of wall formation in the embryo of E. 

natalensis. As Woodenberg et al. (2010) demonstrated, - initial cellularisation of the 

megagametophe of this species seemed to occur without the involvement of Golgi bodies. 

Similarly, very few Golgi bodies were evident in the early embryo in the present 

investigation. It will therefore be intriguing to see whether or not a similar mode of primary 
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cell wall development occurs during the initial cellularisation of the E. natalensis embryo. 

This would entail seed collection immediately, and shortly after, fertilisation (the dynamics of 

which would require to be ascertained), and adaptation of preparative technology for 

microscopy of the minute nascent structures. 
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CHAPTER 3 

Embryo cell wall properties in relation to development and desiccation in the 

recalcitrant-seeded Encephalartos natalensis (Zamiaceae) Dyer and Verdoorn  

Introduction 

Plant cell walls are dynamic assemblages that play important roles in plant morphology and 

ontogeny (Albersheim et al. 1994; Penell 1998). The main functions of the cell wall are to 

provide plants with mechanical strength and to act as a barrier against the external 

environment (Harholt et al. 2010). In this regard, cell walls are involved in facilitating 

essential plant responses to osmotic stress (e.g. Wakabayashi et al. 1997); acclimation to cold 

(e.g. Weiser et al. 1990); drought stress (e.g. Zwiazek 1991); pathogenic attacks (e.g. Boudart 

et al. 1998); wounding (e.g. Cardemil and Riquelme 1991); stress associated with salinity 

(e.g. Iraki et al. 1989a); and drying (e.g. Zwiazek 1991).  

According to Reiter (2002), the functional properties of cell walls may be influenced both by 

their composition and three-dimensional organisation of those components within their 

structure. Plant cell walls therefore do not possess the exact same chemical composition i.e. 

plant genera may have their own “signature” wall composition; and it has become apparent 

that the chemical composition of the cell walls of an individual plant can change with 

development (reviewed by Sarkar et al. 2009). Thus, knowledge of the composition and 

structure of cell walls is fundamental to understanding the functions of cell walls (Reiter 

2002). 

Cell walls are classified broadly as primary or secondary. Primary walls are laid down during 

cytokinesis and expansion, while material deposited on the primary wall after the cessation of 

growth comprises the secondary wall (Cosgrove 1997). Neighbouring cell walls are divided 

by an intercellular layer known as the middle lamella, which is apparently continuous with 

the primary cell wall matrix (Moore et al. 1986). 

All plant cell walls are comprised of cellulose microfibrils, which form the main framework 

of the wall, and a matrix phase (consisting of hemicellulose and pectin) forming cross-links 

amongst the microfibrils, filling the space between the fibrillar frame-work (reviewed by 

Sarkar et al. 2009).  
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Hemicelluloses are a family of polymers that have abundant glucose, xylose, or arabinose 

(Talmadge et al. 1973). Unlike cellulose, they have extensive side chains that often include 

xylose, galactose, and fucose. Commonly found hemicelluloses include xyloglucans, xylans, 

arabinoxylans, arabinogalactans, mannans, glucomannans, and galactoglucomannans (Timell 

1964; Timell 1965; Whistler et al. 1970). Dicots and monocots have been found to vary 

considerably in their composition of hemicellulose – descriptions of which have been 

reviewed comprehensively (Carpita and Gibeaut 1993; Reiter 1994; Cosgrove 1997). 

Pectins, on the other hand, are a group of polygalacturonic acids that may differ in their side 

chains, which are typically arabinose, galactose, or a complex branched organisation of 

monosaccharides (Cosgrove 1997). The precise nature of the neutral side-chains differs from 

plant to plant being either an arabinan, galactan, or a combination of the two (Aspinall 1970). 

Pectins are made up of homogalacturonans (HGs), which consist of contiguous, unbranched, 

α 1-4-linked α-D-galacturonic acid residues intermixed with rhamnose and specific branched 

polymers that include rhamnogalacturonans (RG-I and RG II).  

A significant functional aspect that characterises HGs is their amount of methylesterification 

of the galacturonic acid’s carboxylic function. As a consequence, HGs are frequently 

characterised as low- or high-methylesterified pectins (Jauneau et al. 1998). The unbranched 

and low-esterified HGs may aggregate via calcium bridges giving rise to junction zones that 

hold them together (Grant et al. 1973; Rees 1977; Jarvis 1984; Brett and Waldron 1990). This 

binding stiffens the gel matrix of the wall and contributes strength to the wall (Lloyd 2006).  

Ascertaining the composition of cell walls has thus become important for the comprehension 

of plant development and their responses to biotic and abiotic stresses. In this regard, the 

aims of the current work are twofold: 1) to analyse the chemical composition of immature 

and mature embryos of E. natalensis to see how the walls change during post-shedding 

development of these desiccation sensitive seeds; and 2) to assess the effects of drying on the 

composition and conformation of mature embryo cell walls of this species. To this end, 

immunofluorescence microscopy in conjunction with immunogold labelling and biochemistry 

were employed to characterise the chemical composition of the pectin and hemicellulose 

components of the wall, while TEM and cryo-SEM were used to gauge the conformation of 

cell walls in hydrated and dehydrated mature embryos. To the knowledge of the authors, this 

appears to be the first study to characterise the cell wall composition of a desiccation-

sensitive embryo in relation to development and drying. 
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Materials and Methods 

Plant material 

Collection of seeds was made after issue of the appropriate permits, as Encephalartos 

natalensis is listed as threatened or protected (ToPS) in accordance with the National 

Environmental Management: Biodiversity Act of South Africa. Upon receipt of the permit, E. 

natalensis seeds were collected from a plant at the University of KwaZulu-Natal, Howard 

College Campus (29° 52� 07.28� S; 30° 58� 49.52�  E), Durban, as soon as a few seeds 

had been shed in December (summer). Immature embryos were excised from a subsample of 

these seeds shortly after seed-shed and processed for microscopy, while the rest of the seeds 

were decontaminated with a 2.5% sodium hypochlorite solution, rinsed in water, dusted with 

Benlate® (benzimidazole, 500 g kg-1), and placed into ‘open’ storage in brown paper bags at 

16°C. Another subsample of mature embryos was excised (hypocotyl tissue) from the batch 

of seeds stored for six months. Small cubes (1-2 mm3) were cut out of the embryonic axes 

using a sharp scalpel blade before subjecting them to prolonged infiltration and resin 

embedding as outlined below. 

Other plant material used in the present study for positive controls included leaf tissue from a 

Zea mays seedling, root tissue of Daucus carota, and pericarp tissue of Lycopersonicon 

esculentum.  

Prolonged tissue processing for TEM 

Excised embryo material was fixed for 18-24 h in 2.5% glutaraldehyde buffered at pH 7.2 

with 0.1 M phosphate buffer containing 1% caffeine, washed in 0.1 M phosphate buffer, prior 

to dehydration in a graded ethanol series (25-75%) [2 × 10 min each] and left in 75% ethanol 

overnight. Samples were dehydrated further with 100% ethanol, and then 2 × 10 min 

treatments with propylene oxide. These samples were subsequently placed in a mixture 

containing equal amounts of propylene oxide and epoxy resin (Spurr 1969), which was 

placed on a vertical turntable for 24 h at room temperature, incubated in full resin (Spurr 

1969) for a further 24 h before embedding in fresh resin and polymerisation at 80°C for 8 h.  

Freeze-substitution of dried embryo samples 

Mature, excised embryos were air-dried at room temperature for two weeks to an average 

water content of 0.4 g g-1 (dry mass basis). Samples of 1-2 mm3 were taken from these dried 
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embryos and plunged into liquid propane (-190°C) for fixation using a Leica CPC cryo-

fixation instrument as described by Wesley-Smith (2001). The protocol used by that author 

was subsequently modified as follows. Liquid propane-cooled samples were transferred to a -

80°C solution of 0.1% tannic acid in acetone where they were kept overnight; followed by 

three days in 2% anhydrous glutaraldehyde in acetone (-80°C). The vial containing the 

samples was subsequently transferred to -20°C for a further three days, before being placed in 

a container of dry ice at room temperature. Once the dry ice had sublimed and the samples 

equilibrated to room temperature, they were subjected to two rinses in acetone (5 min each) 

and infiltrated with increasing concentrations of LR White in acetone (1:3; 1:1; 3:1; and 1:0) 

for 8-12 h each, before polymerisation at 50°C for 6 h. 

Microtomy and microscopy 

Embedded samples were sectioned using a Reichert-Jung Ultracut E microtome. Sections, 1 

µm thick, were collected on glass slides before treatment for immunofluorescence 

microscopy outlined below. Viewing of immunofluorescent-treated sections was achieved 

with a Nikon Eclipse 80i light microscope equipped with epifluorescence and NIS Elements 

F Package imaging software.  For TEM, copper/gold ultrathin sections were cut using the 

same microtome, placed on 200 mesh  nickel grids, treated as described below for 

immunogold labelling, and viewed with a Jeol JEM 1010 transmission electron microscope 

and iTEM Soft Imaging System GmbH imaging software.  A maximum of five and minimum 

of three sections were viewed from each of three grids. 

Immunofluorescence microscopy 

Immunofluorescence microscopy was employed to characterise the chemical composition 

and distribution of the embryo cell walls in the hydrated and dried conditions. The antibodies 

for the immunofluorescence microscopy included JIM5 and JIM7, which recognise relatively 

low and high methyl esterified homogalacturonans (HG) [Knox et al. 1990] respectively; 

LM2, which recognises arabinogalactan protein (Smallwood et al. 1996); LM5, which 

recognises galactan (Jones et al. 1997); LM6, which labels arabinan (Willats et al. 1998); 

LM7, which recognises relatively low methyl esterified HGs from non-blockwise de-

esterification (Clausen et al. 2003); LM11, which recognises xylan and arabinoxylan 

(McCartney et al. 2005), and LM15 which recognises xyloglucan (Marcus et al. 2008). The 

antibodies were used during the following procedure.  
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Section-containing slides were flooded with Tween Tris-Buffered Saline (TTBS) for 5 min at 

room temperature, before incubation with a solution of 3% milk in TTBS for 30 min. The 

sections were then rinsed (3 × 3 min) in TTBS and incubated overnight at 4°C in a primary 

antibody solution diluted 1:10 with TTBS. The next day, sections were retrieved from 4°C 

and allowed to warm up to room temperature, subjected to a (3 × 3 min) wash in TTBS, and 

then incubated for one hour in the dark with the secondary antibody diluted 1:20 in TTBS. 

The sections were kept in the dark at room temperature, rinsed (3 × 3 min) in distilled water 

and viewed immediately with the microscope.  Specificity of the label was assessed by 

examination of control sections in which either the primary or secondary antibody was 

omitted, while negative reactions were tested by treating tissues that had previously been 

shown to give a positive reaction. 

Immunocytochemistry 

The protocol used in this study was described by Hu and Rijkenberg (1998). Section-bearing 

grids were placed on a drop of 0.01 M phosphate-buffered saline (PBS) (pH 7.4), containing 

0.2% polyethylene glycol (PEG) 20,000 (Fluka, Buchs, Switzerland) for 5 min. Thereafter, 

the sections were incubated for 30 min in a drop of blocking solution made up of 0.01 M PBS 

(pH 7.4), 10% foetal bovine serum (FBS) [Delta Bioproducts, Kempton Park, South Africa], 

1% BSA [Sigma, St. Louis, Missouri, USA], 0.05% Tween 20 (Sigma) and 0.2% sodium 

azide (Fluka). They were then incubated in 40µl of primary antibody (rat IgG, Plantprobes, 

Leeds, UK) in 0.01 M PBS (pH 7.4) (1:20) in a moist chamber, overnight at 4°C. Grids were 

then washed (3 × 5 min) in 0.01 M PBS (pH 7.4), containing 1% BSA and 0.05% Tween 20, 

and immersed for 1 h in a drop of 10 nm colloidal gold-conjugated goat antiserum to rat 

immunoglobulin (GAR-gold antibody [Sigma] diluted at 1:10 in washing solution. Finally, 

the sections were fixed with 1% glutaraldehyde for 2 min, rinsed with sterile distilled water, 

counterstained with uranyl acetate and examined with a JEOL JEM-1010 transmission 

electron microscope (TEM) at 100 kV. Specificity of the label was assessed by examination 

of control sections in which either the primary or secondary antibody was omitted. 

Cryo-SEM 

Dehydrated and hydrated mature embryo samples were fixed in nitrogen slush under vacuum, 

transferred to a stage, fractured, sublimated briefly and viewed with a Qurom PP3000T 

Technology (UK) Cryo-SEM.   
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Cell wall biochemistry 

Cell wall isolation and fractionation 

Cell wall material was extracted from frozen E. natalensis embryos and fractionated 

according to a protocol modified from Nguema-Ona et al. (2012). Briefly, the embryos were 

ground, under liquid nitrogen using a mortar and pestle, to a fine powder. After boiling in 

80% ethanol for 20 min, insoluble material was washed in methanol: chloroform (1:1) for 24 

h, thereafter the residue was washed in methanol before air drying. The dry material, referred 

to as alcohol insoluble residue (AIR), was de-starched using a combination of thermostable 

α-amylase, amyloglucosidase and pullulanase (all from Megazyme). De-starched AIR was 

then chemically fractionated with hot water, 50 mM cyclohexane-1,2-diamine tetra-acetic 

acid (CDTA), and 4 M KOH. Chemically extracted fractions were dialysed (3.5 kDa cutoff 

dialysis tubing) against deionised water (48 h at 8°C), and freeze dried before compositional 

analyses were conducted. 

Monosaccharide composition analysis by gas chromatography 

A gas liquid chromatography method (see Nguema-Ona et al. 2012) was used to determine 

the monosaccharide content of cell wall residues and fractions. Approximately 1-3 mg of wall 

residue or fractionated material was hydrolysed (2 M trifluoroacetic acid (TFA), 110°C, 2 h) 

and the liberated monosaccharides converted to methoxy sugars using 1 M methanolic HCl at 

80°C for 24 h. Silylation was performed at 80°C (20 min) to produce trimethyl-silyl-

glycosides which were dissolved in cyclohexane. The derivatives (trimethylsilyl methyl ester 

methyl glycosides) were separated and analysed in a gas chromatograph (VARIAN CP 3800) 

coupled to a flame ionisation detector, using a 30 m × 0.25 mm (i.d.) CP-Sil 5 CB column 

(Agilent). The oven temperature program was stabilised at 120°C for 2 min, ramped at 

10°C/min to 160°C, then at 1.5°C/min to 220°C and finally at 20°C/min to 280°C. Myo-

inositol (0.5 µmol) was used as the internal standard. Derivatives were identified based on 

their retention time and quantified by determination of their peak areas. Monosaccharides 

(from Sigma-Aldrich) were used as standards to determine the retention time of the nine main 

monosaccharides found in plant cell walls. The sugar composition was expressed as mole 

percentage of each monosaccharide. Error bars in the histograms represent the standard 

deviation SD of the mean of four biological/technical samples. 
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Results and discussion 

Since the seeds of Encephalartos natalensis are shed at an early stage of embryogenesis 

(Woodenberg et al. 2014), it was decided to analyse the cell walls of two developmental 

stages: at seed-shed (immature stage) and six months after seed-shed (mature stage). While 

these two stages are characterised by differences at the subcellular level, e.g. typical 

meristematic ultrastructure in the immature stage versus subcellular domination by starch-

containing-amyloplasts in the mature stage, results from the current investigation suggested 

that there are no differences with respect to some key cell wall components (Figs 1a-p).  

In order to corroborate the immunofluorescence microscopy results of the present study, 

numerous controls were employed (Appendix A; Figs 8a-d). Negative controls suggested that 

the cells of the embryo possessed some faint autofluorescence in the cytomatrix and nuclei 

(Figs 8a-c) and although autofluorescence was present, it was noticeably faint compared with 

fluorescence in cell walls from the binding of fluorescent-tagged primary antibodies to their 

respective target molecules. Positive controls demonstrated that the antibodies which yielded 

no fluorescence in the cell walls of the E. natalensis embryos (LM2, LM5 and LM11; Figs 

1e-h; m; n), were operational (Figs 8d-f, respectively).  

Cell wall composition of immature and mature hydrated embryos 

Cell wall fluorescence was observed in embryos from both stages of development when both 

JIM5 (Figs 1a & b) and JIM7 (Figs 1c & d) antibodies were used. This indicates the possible 

presence of poorly and highly methyl-esterified epitopes of homogalacturonan (HG), 

respectively. This is not unexpected as HG is believed to be a ubiquitous component of the 

cell wall in most, if not all, plants (Talmadge et al. 1973). It has been proposed that HG is 

synthesised in a highly methyl-esterified form in the Golgi body before being exported to the 

cell walls where it is subsequently de-esterified by the action of pectin methyl esterases 

(PMEs) [Zhang and Staehelin 1992]. According to Jarvis (1984), HG with reduced methyl-

esterification can associate by calcium cross-linking. Such an association promotes the 

formation of supramolecular pectic gels, which are important in controlling the porosity and 

mechanical properties of cell walls and contribute to the maintenance of intercellular 

adhesion (Knox 1992; Carpita and Gibeaut 1993). 

In contrast to the results obtained for JIM5 and JIM7, when the antibodies LM2 and LM5 

were employed, cell walls did not display fluorescence (Figs 1e & f; g & h, respectively), 
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suggesting an absence of arabinogalactan protein and (1→4)-β-D-galactan, respectively. 

Arabinogalactan protein and (1→4)-β-D-galactan reportedly act as wall plasticisers (Ha et al. 

1997; Lamport 2001; Lee et al. 2005), which aid wall folding upon desiccation (Moore et al. 

2013). The apparent lack of these plasticising molecules in cell walls of E. natalensis 

embryos is commensurate with their desiccation sensitivity. Galactans are also known to have 

water-binding capabilities (Guinel and McCully 1986), which would be a potential advantage 

to the embryos of E. natalensis. The appearance of galactan has also been correlated with an 

increase in the firmness of cotyledons in pea (McCartney et al. 2000). This has led to the 

proposal that galactans may play a role in cell wall strengthening. Hence the cell walls of the 

E. natalensis embryo appeared to lack certain wall strengthening, plasticising, and water-

retentive molecules that are usually present in desiccation-tolerant plant tissues. 

On the other hand, when cell wall fluorescence was observed in the embryo after utilisation 

of LM6 (Figs 1i & j), it indicated that arabinan is likely to be present in the embryo cell walls 

of the current species. According to Jones et al. (2003), arabinan is another wall plasticiser 

that increases cell wall flexibility by diminishing strong interactions between HG chains. The 

cell walls of the immature and mature embryo of E. natalensis may therefore not be devoid of 

plasticising molecules, suggesting that they may ultimately have some flexibility to allow for 

cell expansion during growth of the embryo.  

While the fluorescence provided by JIM5, JIM7 and LM6 appeared to have a relatively 

uniform distribution within the wall, the LM7 antibody produced unique labelling. 

Fluorescence with LM7 appeared to be reduced to a few randomly dispersed regions of the 

cell wall (Figs 1k & l). The punctuate distribution of the LM7 epitope found in this study is in 

contrast to other studies, where this molecule usually has a precise and consistent location at 

corners of intercellular spaces and at the junction between cells (Willats et al. 2001). The 

results of the present study implied that partially methyl-esterified epitopes of HG derived 

from non-blockwise de-esterification may be present in a few, relatively small, isolated 

regions of the cell wall or that they were being deposited into the wall by nearby secretory 

vesicles.  

While the LM7 antibody produced fluorescence in small, discrete areas of the cell wall, use 

of LM11 yielded a result similar to the LM2 and LM5 antibodies i.e., no visible fluorescence 

of the cell walls (Figs 1m & n). Therefore, the hemicellulose xylan may be absent from the 

walls of the E. natalensis embryo. This result can be expected as xylan is thought to be a 
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major component of secondary walls and would not be found normally in the middle lamella 

or primary cell walls. However, while xylan may appear to be absent from the cell walls of E. 

natalensis, the hemicellulose xyloglucan appeared to be present. This was suggested to be the 

case after the LM15 antibody gave rise to bright fluorescence in the walls as depicted in 

Figures 1o & p. One of the main functions of xyloglucan is to confer strength to the cell wall 

by binding cellulose microfibrils together (Moore et al. 1986; Fry 1989). It may therefore 

form an important part in the maintenance of cell wall integrity upon environmental stresses 

such as drying.    

In muro localisation of cell wall components 

Immunogold labelling performed in the present study showed that the JIM5 epitope may be 

restricted to the middle lamella of the embryo cell wall (Figs 2a & b), while that of JIM7 

appeared to occur in both the middle lamella and primary cell wall (Figs 2c & d). Similar 

distribution patterns of those molecules have been reported in studies on other plants. A few 

studies have demonstrated poorly esterified HG in cell wall junctions and the middle lamella 

(Knox et al. 1990; Rihouey et al. 1995), while other studies have demonstrated highly 

esterified HG throughout the cell wall layers (Schindler et al. 1995; Jauneau et al. 1997). 

In contrast to JIM5 and JIM7, immunogold labelling with the LM6 antibody indicated that 

arabinan may be present in the primary cell wall and absent from the middle lamella (Figs 2e 

& f). Immunogold labelling with LM7 produced results that were similar to the 

immunofluorescence microscopy in mature embryos only (Figs 2g & h). In immature embryo 

cell walls, fluorescent labelling gave a sparse, punctuate distribution whereas there seemed to 

be no cell wall labelling with use of the immunogold technique (Fig. 2g). This occurred 

despite a few extra independent repeat studies using this antibody to check for technical 

errors. In mature embryo material, as was the case with immunofluorescence labelling with 

LM7, gold labelling was evident in localised areas of the cell wall (Fig. 2h) confirming the 

findings that partially methyl-esterified epitopes of HG are probably present in certain 

discrete regions of the E. natalensis embryo cell walls. This change in labelling pattern  
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Fig. 1 Immunofluorescent labelling of E. natalensis embryo cell walls. Uniform labelling was evident 

when JIM5 was used on a immature and b mature stages of ontogeny. Similar labelling occurred 

when JIM7 was employed on c immature and d mature stages. When LM2 was utilised, no 

fluorescence was evident in both e immature and f mature stages of development. The use of LM5 

yielded a similar result displaying no fluorescence in the walls of g immature and h mature 

developmental stages. The LM6 epitope, on the other hand, displayed fluorescence in the cell walls of 

both i immature and j mature embryos. Fluorescent labelling appeared punctuate (arrows) when LM7 

was utilised on k immature and l mature stages. LM11 yielded no cell wall fluorescence in both m 

immature and n mature developmental stages. Labelling with LM15 is apparent in both o immature 

and p mature stages. Bar = 20 µm (a-d; g; j-m; n); 50 µm (e; h; i; o; p); 100 µm (f)   
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Fig. 2 Immunogold labelling of embryo cell walls with probes that gave positive reactions in the 

immunofluorescence work. Labelling for JIM5 was evident in the a middle lamella and not primary 

cell wall of immature embryos and b middle lamella and cell wall junctions of mature ones. JIM7 

labelling appeared uniform throughout the cell wall layers in both immature and d mature embryos. 

Immunogold label was apparent in the primary cell wall and absent from the middle lamella when 

LM6 was utilised on e immature embryos, while a few gold particles can also be seen in the middle 

lamella of f mature embryos. No or very little label was noticed on the cell wall when LM7 was used 

on g immature embryos, while Label occurred in certain randomly distributed cell wall areas (arrows) 

that stained darker than the rest of the cell wall when LM7 was used on h mature embryos. 

Immunogold particles attached to LM15 can be seen adhering to sites in the primary cell wall layer 

and not the middle lamella of i immature embryos, while j few particles can be seen also in the middle 

lamella region in mature embryos. Gold particles = 20 nm (a-f & i; j); 10 nm (g; h). Bar = 0.5 µm (a; 

b; d; e; g-j); 5 µm (c; f)  
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suggests a possible change to the LM7 epitope on maturation of the embryo, which might 

have influenced antibody binding when a gold (vs fluorescent label) is attached.  

The localised distribution of partially esterified HG differed considerably from the 

distribution of xyloglucan, which appeared to be found mostly in the primary cell wall layer 

(and not the middle lamella or cell junctions) of immature and mature embryos, as 

demonstrated by labelling with LM15 (Figs 2 i & j). This implied that xyloglucan is probably 

present in the primary cell wall and not the middle lamella – contrasting with the distribution 

of the JIM5 epitope of the present study.  

Monosaccharide composition of destarched alcohol insoluble residue (AIR)  

Biochemical analysis of the cell wall monosaccharide composition was performed in parallel 

with the immunofluorescence and immunogold labelling work. This was done in order to 

substantiate the data and quantify the cell wall components.  

Monosaccharide composition of destarched AIR material of mature E. natalensis embryo was 

determined by gas chromatography analysis of the supernatant obtained after trifluoroacetic 

acid (TFA) hydrolysis of AIR. TFA hydrolyses AIR and yields two fractions: a TFA-soluble 

fraction which contains non-cellulosic polysaccharides including pectins, hemicelluloses, cell 

wall glycoproteins such as arabinogalactan proteins, and sometimes amorphous cellulose; the 

TFA insoluble fraction mainly containing crystalline cellulose, which was not analysed in 

this study. Examination of the monosaccharide composition of the destarched AIR (Fig. 3a) 

of the current species revealed an abundance of Glc (ca 80%), which would indicate a 

predominance of Glc-enriched polymers. Such a high level of Glc is unusual in AIR, 

especially after the α-amylase/ amyloglucosidase digestion. It is well known that in many 

plant tissues, starch accumulates and is also hydrolysed with AIR by TFA. This often leads to 

such a high level of Glc after analysis of the TFA-soluble fraction. In the present study, starch 

was digested extensively in order to remove it before the analysis of AIR. Composition 

analysis of AIR before removal of starch was also performed in the current investigation, and 

in this condition, the level of Glc was much higher compared with destarched material. Two 

possibilities have to be considered: either not all the starch had been digested, and this was 

reflected in the composition analysis; or there was another Glc-enriched polymer present. 

Woodenberg et al. (2014) have shown that the embryo cells of E. natalensis accumulate large 

quantities of starch almost to the exclusion of other storage products and organelles, which 

may account for the unusually high Glc content in the present study; however, the Glc seen 
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here could also be part of xyloglucan, callose, mixed-linked glucan (MLG) or amorphous 

cellulose. Nevertheless, a much lower amount of Glc would be expected. 

Apart from Glc, the destarched AIR also contained a significant amount of Ara, Gal, Xyl, 

Rha and GalUA (Figs 3a & b). The relative proportion of destarched AIR was also 

normalised without the Glc to make the composition more readable (Fig. 3b). The most 

striking feature of the Glc-normalised data was the substantial amount of Ara (ca 55 mol %, 

Fig. 3b). This is surprising as desiccation sensitive vegetative tissues have been found to 

accumulate considerably less arabinose polymers than desiccation tolerant types (Farrant et 

al. 2012; Moore et al. 2013).     

Overall, the composition of Ara, Gal, Xyl, Rha and GalUA suggested that pectin- and 

hemicellulose-associated polysaccharides may be present in the AIR (Fig. 3b). The 

combination of Rha and GalUA suggested the occurrence of rhamnogalacturonan I (RG-I) 

(Schols and Voragen 1996); the presence of Ara and Gal can be indicative of arabinan and 

galactan chains associated with RG-I, or to type II arabinogalactan often related to 

arabinogalactan proteins (AGPs). Supporting the presence of AGPs, was the presence of all 

minor sugars reported to be incorporated into AGPs, such as Fuc, GlcUA and Rha. However, 

the lack of information on cycad cell composition in the literature encourages careful 

interpretation of this data.  

In the present investigation, three cell wall polysaccharide-enriched fractions were extracted 

sequentially i.e. with hot water, 50 mM cyclohexane-1,2-diamine tetra-acetic acid (CDTA), 

and 4 M KOH (Figs 3c-e, respectively). Usually, starch-derived Glc would be removed 

before commencement of the sequential extraction process; however, the three fractions were 

found to be highly-enriched in Glc (Figs 3c-e). It is tempting to speculate that there was still 

some starch in those fractions, but theoretically, most of the starch should have been removed 

by this stage. 

The immunolabelling work of the present study suggested the presence of xyloglucan in the 

cell walls. In higher plants, the xyloglucan ratio Glc/Xyl is often conserved (Bacic et al. 

1988). A Glc/Xyl ratio of 4:3 is found in most cases, although sometimes a ratio of 5:2 may 

be found; however, a ratio of 5:1, 6:1, or 8:1 was found here in E. natalensis destarched AIR 

(Fig. 3a) and hemicellulose-enriched fractions (4 M KOH, Fig. 3e). Clearly, there appeared to 

be an extra amount of Glc that is not yet attributable to any cell wall polysaccharide. 
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When the fractions were analysed individually, the water-extracted one (Fig. 3c) showed that, 

in addition to Glc, other monosaccharides were present viz. Ara, GalUA, Gal and Rha, and 

then Xyl and Man.  The CDTA-extracted fraction contained almost the same 

monosaccharides (Fig. 3d). The composition of these three fractions depleted of Glc is also 

presented (Figs 3f-h). Interestingly, the ratio between these monosaccharides was conserved. 

Water-extracted and CDTA-extracted fractions are known to be pectin-enriched material 

differently bound into the wall. Note first that the ratio of GalUA/Rha was 7:1 in the water-

extracted fraction (Fig. 3f) and 2:1 in the CDTA-enriched fraction (Fig. 3g). Together this 

implied that both fractions may contain a rhamnogalacturonan I (RG-I) backbone (the 

stoichiometry of RG-I backbone being 1:1), while the remaining GalUA consisted of 

homogalacturonan (HGs; polymer of α-1,4-GalUA). Together these compositions showed 

that there may be more water-extractable HGs than CDTA-extractable HGs in the embryo 

cell walls of E. natalensis. However, the composition does not tell us if there were more or 

less methyl-esterified HGs.  This is in agreement with the immunolabelling work of the 

current study, which showed fluorescence when the antibodies JIM5, JIM7 and LM7 were 

used (cf. Figs 1a-d; k-l, respectively). 

In higher plants, the RG-I backbone is often found to be branched with galactan or arabinan 

chains (Harholt et al. 2010). Both water- and CDTA-extracted fractions were found to be 

enriched in Ara in this study (Figs 3f & g, respectively), which corresponds with the cell wall 

fluorescence after labelling with the LM6 antibody that recognises (1→5)-α-L-arabinan 

chains associated with RG-I. 

In both these fractions, there was also a significant amount of Gal. However, there appeared 

to be no (apart from the walls of epithelial cells lining mucilage ducts, cf. Fig. 6c) label with 

the LM5 antibody for (1→4)-β-D-galactan chains of RG-I, as well as with the LM2-anti AGP 

antibody. Note that LM2 recognises an AGP-associated epitope that contains GlcUA 

(Smallwood et al. 1996). There are many other anti-AGP antibodies recognising AGP-

associated epitopes (see Moller et al. 2007). This raises the possibility that the Gal observed 

in all the fractions of the current investigation comes from AGPs. It also suggests indirectly, 

that part of the Ara was also coming from AGPs. To validate this possibility, future studies 

should employ JIM13 or JIM14 antibodies, which recognise other epitopes of AGP. In 

addition, LM6 was also found in some cases to recognise AGP-associated epitopes. Trying 

anti-galactomannan or galactoglucomannan antibodies may also be useful to account for Gal 

detected in this investigation.  
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Fig. 3 Monosaccharide composition of destarched AIR material of mature E. natalensis embryos 

determined by gas chromatography analysis. a The monosaccharide composition is dominated by Glc, 

which accounts for ca 80% of the monosaccharides present. b Relative proportion of the 

monosaccharides from destarched AIR material normalised without Glc. Monosaccharide 

composition of cell wall fractions from destarched AIR extracted with c Water; d CDTA; and e 4M 

KOH. All three extracts display a dominance of Glc over other monosaccharides. Monosaccharide 

composition of the same cell wall fractions from destarched AIR normalised without Glc as extracted 

with f water; g CDTA; and h 4M KOH. Error bars represent the standard deviation SD of the mean of 

four biological/technical samples. Monosaccharide codes are as follows: arabinose (Ara); rhamnose 

(Rha); fucose (Fuc); xylose (Xyl); mannose (Man); galactose (Gal); glucose (Glc); galacturonic acid 

(GalUA); glucuronic acid (GlcUA) 
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Finally, the 4 M KOH-extracted fraction also showed an almost similar composition to the 

two previous fractions, except that the level of Xyl was much higher (Fig. 3g). This suggested 

that the same polymers observed in the two previous fractions were present, since the ratio 

between Ara, Rha, Gal and GalUA appeared to be the same. Further comment will therefore 

not be made on those sugars; however, the higher level of Xyl confirmed that it was a 

hemicellulose-enriched fraction. In higher plants, Xyl occurs abundantly in xyloglucans and 

xylans (Reiter 2002; McCartney et al. 2005). Thus, this Xyl was probably incorporated in 

xyloglucans as immunofluorescence microscopy in the present study suggested that xylan 

was not present in the embryo cell walls of E. natalensis. However, as observed earlier, there 

was still a significant extra amount of Glc which was probably derived from other polymers 

(galactoglucomannan, glucomannan, amorphous cellulose). Nevertheless, the 

immunolabelling work involving LM15 seemed to confirm the presence of xyloglucan. Note 

that in some plant species, the xyloglucan can be galactosylated and fucosylated; in others 

species, xyloglucan is only partially arabinosylated. Future studies should therefore attempt 

to analyse further the xyloglucan present in the embryo of E. natalensis. 

Effects of drying on cell wall conformation 

In the current study, the desiccation-sensitive mature embryos of E. natalensis were dried to a 

lethal water content of ca 0.4 g g-1 on a dry mass basis to see whether or not cell wall folding 

would occur (Figs 4a-e). Cryo-SEM (Figs 4a & b) was employed to compare the cell walls of 

hydrated versus dehydrated embryos without the potential introduction of artefacts that may 

arise through fixation and embedding with aqueous chemicals (Figs 4c & d). Cells appeared 

turgid before drying and had walls of a relatively straight appearance (Fig. 4a) compared with 

dehydrated samples in which the walls appeared convoluted (Fig. 4b), indicating that the 

walls probably do not remain straight upon drying. The degree of undulation seemed to have 

been influenced by the abundant supply of amyloplasts in the cytomatrix, which appeared to 

have restricted cell shrinkage and concomitant wall undulation.  

Moderately-folded cell walls have been observed previously in dried, freeze-substituted, 

desiccation-sensitive cortical cells of jackfruit axes (Wesley-Smith 2001). Although there are 

many other studies on subcellular responses to drying of desiccation-sensitive seeds most did 

not concentrate on walls (Devey 1988; Berjak et al. 1989; Dewar 1989; Kioko 2002). 

Additionally, many of these studies used aqueous fixation and so the characteristics observed, 
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particularly plasmalemma withdrawal, may have been artefacts of rehydration (inter alia of 

walls) during fixation, and wall folding would not have been observed. 

Cell walls of E. natalensis embryos in the present study consisted of a middle lamella and 

primary cell wall only, and it seems reasonable to expect that these cell walls are not rigid, as 

the primary cell wall is generally required to be sufficiently flexible to allow for cell 

expansion (Reiter 2002). The cell wall convolution seen in the current investigation is also 

not dissimilar in appearance from what was called ‘wall folding’ in the cells of a variety of 

desiccation-tolerant seeds (see Webb and Arnott 1982). In that study wall folding also 

appeared to be restricted by the abundant amyloplasts and storage vacuoles depicted in those 

cells (as seen in the present investigation).  

Although wall folding in embryos of E. natalensis is not as extensive as is demonstrated in 

desiccation-tolerant plant material (e.g. Vicré et al. 1999; Moore et al. 2006), there appeared 

to be an enlargement of intercellular spaces (Fig. 4b) and plasmolysis was notably absent in 

dehydrated embryo cells processed for Cryo-SEM. Enlargement of intercellular spaces upon 

drying has also been seen in dry desiccation-tolerant seeds prepared by anhydrous methods 

(Webb and Arnott 1982) and may not necessarily indicate damage upon drying. 

In some areas, extensive cell wall folding was apparent in the embryo of E. natalensis as 

evidenced by a comparison of hydrated, conventionally-fixed embryo samples (Fig. 4c) with 

dehydrated, freeze-substituted material (Fig. 4d). While wall folding may have been restricted 

by the abundant amyloplasts, it appeared to be extensive in some places producing ‘hairpin’ 

convolutions (or folds) without rupture of the cell wall (Fig. 4d), which was indicative of the 

potential of these walls to fold.  

When Webb and Arnott (1982) processed dry, orthodox seeds using aqueous fixation 

methods, they observed turgid cells with straightened cell walls. Dehydrated E. natalensis 

embryo tissue fixed via conventional means produced moderately wavy cell walls (Fig. 4e) 

similar to that seen in the study by Webb and Arnott (1982).  

Although some wall folding was evident in the present investigation, it was unclear whether 

it was a controlled process or an uncontrolled collapse upon cell shrinkage. Cryo-SEM of 

embryo samples dried to a water content of ca 1 g g-1 dry mass, i.e. just above the water 

content where 50% viability is lost, revealed relatively straight cell walls (Fig. 4f). This  
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Fig. 4 Cryo-SEM and TEM of hydrated versus dehydrated E. natalensis embryonic axes. a Cell walls 

(arrows) appeared straight and cells took on a turgid appearance in hydrated cells viewed with Cryo-

SEM; bar = 20 µm. b Convolutions (arrows) that seemed to be restricted by abundant amyloplasts 

(Am) were evident in the cell walls of dehydrated embryo tissue, producing enlarged intercellular 

spaces (IS); bar =  10 µm. c TEM image of conventionally-fixed and embedded, hydrated embryo 

cells demonstrating relatively straight cell walls (CW), large vacuoles and amyloplasts; bar = 2 µm. d 

Dried embryo samples that were freeze-substituted displayed highly convoluted walls (CW) in some 

areas with hairpin-like bends (arrow); bar = 2 µm. e Dehydrated samples that were processed via 

conventional fixation methods displayed moderately undulating walls (CW); bar = 0.5 µm. f Embryos 

dried to a water content just above lethal levels displayed relatively straight walls (arrows); bar = 20 

µm  
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suggested that the cell wall folding observed in the E. natalensis embryo may not be as a 

result of a controlled process but a consequence of cell shrinkage.     

Based on their observations of the walls of dry, orthodox seeds, Webb and Arnott (1982) 

proposed that cell wall folding may be dependent on the chemical make-up of both the cell 

wall and cytomatrix, i.e., the nature and amount of accumulated reserves. While Woodenberg 

et al. (2014) have confirmed that the embryo cells of E. natalensis are packed with numerous 

starch-containing amyloplasts, the current study analysed the pectic and hemicellulosic 

components of the cell wall of dried E. natalensis embryos to increase understanding of the 

relation between chemical composition of the cell wall and its ability to fold upon 

desiccation. 

Cell wall composition of dried mature embryos 

While JIM5, JIM7, LM6 and LM15 epitopes appeared to be present in hydrated embryo cell 

walls of E. natalensis, when the embryos were dried to a water content of about 0.4 g g-1 on a 

dry mass basis and fixed via freeze-substitution, fluorescence microscopy results were 

suggestive of an alteration in the chemical make-up of the walls upon drying (Figs 5a-h). Use 

of the JIM5 and JIM7 antibodies did not result in visible fluorescence of the cell walls (Figs 

5a & b, respectively) and LM2 and LM5 epitopes appeared to remain unchanged in their 

absence of expression (Figs 5c & d) compared with hydrated embryo cell walls. However, the 

LM6 epitope seemed to be present in the cell walls of dried embryos by virtue of the bright 

fluorescence that was displayed (Fig. 5e). In contrast, LM7 and LM11 appeared to be absent 

as no fluorescence was observed (Figs 5f & g, respectively), whilst use of the LM15 antibody 

gave rise to intense fluorescence (Fig. 5h) as was the case in hydrated embryo cell walls. 

Therefore, the results from the fluorescence microscopy of dried embryos fixed by freeze-

substitution indicated that poorly, highly and partially methyl-esterified epitopes of HG were 

no longer present in the cell walls after the embryo had been dried, whilst expression of 

arabinan and xyloglucan appeared unchanged by dehydration.  

A possible explanation for the inability of some antibodies to yield positive results in freeze-

substituted material could be the phenomenon of steric hindrance (see Roth 1982). The cell 

walls may have changed conformation when dried and/or exposed to cryogenic temperatures 

such that sites usually available for tagging with the primary antibody in the hydrated cell 

wall are masked by the crumpled conformation of the cell wall in the dehydrated state. 

Results from aqueously-fixed, dehydrated embryos appeared to provide strength for the idea  
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Fig. 5 Immunofluorescence microscopy of various epitopes of pectin and hemicellulose in the cell 

walls of dry E. natalensis embryos fixed via freeze-substitution. a Cell walls do not display 

fluorescence when JIM5 was used; bar = 20 µm. b No cell wall fluorescence is evident in a section 

treated with JIM7; bar = 50 µm. c Similarly, the use of LM2 did not yield fluorescence in the cell 

walls; bar = 50 µm. d The LM5 epitope appeared to be absent from the walls; bar = 50 µm. e Bright 

fluorescing, undulating cell walls can be seen when LM6 was used; bar = 50 µm. f LM7 did not yield 

any fluorescence in the cell walls; bar = 50 µm. g No cell wall fluorescence is apparent after LM11 

was employed; bar = 50 µm. h Cell walls with an undulating conformation fluoresce intensely when 

LM15 was applied; bar = 50 µm  
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of steric hindrance (Figs 6a-h). Dried embryo material fixed in aqueous medium displayed 

results similar to that of hydrated embryos: JIM5 and JIM7 epitopes showed fluorescence in 

the cell walls (Figs 6a & b, respectively) implying that poorly and highly esterified epitopes 

of pectin were present.  

In the current study, LM2 and LM5 epitopes seemed to be absent from parenchyma cells 

since no fluorescence was observed when those antibodies were employed (Figs 6c & d, 

respectively); however, some faint labelling occurred in the walls of epithelial cells that lined 

mucilage ducts (Fig. 6c). This suggested that arabinogalactan proteins are not absent entirely 

from the embryo cell walls of E. natalensis, but that they may be a feature of the epithelial 

cells lining mucilage ducts, while galactans are not present.  

On the other hand, arabinan appeared to be present throughout the cell walls as LM6 yielded 

fluorescence in the cell walls (Fig. 6e). The embryo cell walls of E. natalensis therefore do 

contain some wall plasticising molecules, which may account for the convoluted appearance 

of cell walls seen in dehydrated tissues.  

While arabinan was apparently present, partially esterified epitopes (recognised by LM7) and 

xylan seemed to be absent from the walls as exemplified by the absence of fluorescence when 

LM7 and LM11 antibodies were used (Figs 6f & g, respectively); while the LM15 epitope, 

xyloglucan, appeared to be present when the use of its corresponding antibody yielded 

fluorescent cell walls.  

Immunogold labelling of dried, aqueously-fixed embryo material (Figs 7a-e) also showed 

similar results to that of hydrated embryos. Label was seen when both JIM5 and JIM7 

antibodies were used (Figs 7a & b, respectively), indicating that these epitopes are present in 

both the middle lamella and primary cell wall; however, label with JIM5 occurred throughout 

the wall not just in the middle lamella and cell junctions as seen previously. This implied that 

either more molecules of this epitope were being produced and that the distribution was 

spread to the primary cell wall too in order to confer strength, or that leaching of the JIM5 

epitope had taken place during the drying and rehydration process.  

The antibody LM6 produced label that bound mostly to the primary cell wall and nearby 

cytomatrix (Fig. 7c) suggesting that arabinan might be concentrated in those regions. The cell 

walls were mostly clear of label when LM7 was employed; however, a few vesicles that were 

presumably derived from Golgi bodies displayed some label (arrow, Fig. 7d), implying that  
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Fig. 6 Immunofluorescence microscopy of various pectin and hemicellulose epitopes in dried, 

aqueously-fixed embryos of E. natalensis. a Cell walls display bright fluorescence when JIM5 was 

utilised; bar = 50 µm. b JIM7 yielded a similar result with walls as well as tannin (arrows) fluorescing 

brightly; bar = 50 µm. c Use of the LM2 antibody resulted in faint fluorescence in the walls of 

epithelial cells that line mucilage ducts only (arrow);  bar = 50 µm. d LM5 yielded no visible 

fluorescence in the cell walls; bar = 50 µm. e Bright fluorescing cell walls are apparent when LM6 

was used; bar = 50 µm. f No cell walls can be seen fluorescing after treatment involving LM7; bar = 

100 µm. g Cell walls do not demonstrate fluorescence when LM11 was utilised although faint 

fluorescence can be seen in the cytomatrix; bar = 50 µm. h Use of LM15 gave rise to cell walls that 

fluoresced brightly in both parenchyma cells and those of the vascular tissue; bar = 50 µm  
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partially methyl-esterified epitopes of HG may have been incorporated into the wall. As 

evidenced in hydrated embryos, LM15 produced label in the primary cell wall layer and 

considerably less label was seen in the middle lamella (Fig. 7e). Hence, the results of the 

dried, aqueously-fixed embryos are indicative of an unchanged expression upon drying of 

xyloglucan, arabinan, as well as poorly, highly and partially methyl-esterified epitopes of HG 

in the cell walls of E. natalensis. They also imply that arabinogalactan protein, galactan, and 

xylan are probably not produced as a consequence of drying.  

Concluding comments 

It appears that the two sets of data (immunolabelling and biochemical analysis) are 

complementary. They provide an interesting, preliminary description of embryo cell wall 

composition in E. natalensis. While the immunolabelling work has shown the presence and 

positioning within the cell wall of different epitopes of pectin and hemicellulose, the 

biochemical analysis of monosaccharides has revealed that there may be more cell wall 

components (Glc-enriched polymers) that are present in the embryo that future research 

should explore.  

Moreover, the biochemical work provided quantitative data revealing potentially high 

concentrations of arabinose polymers in Glc-normalised graphs (ca 55 mol % of non-

cellulosic polysaccharides; Fig. 3b) that warrants further investigation. Such a large quantity 

of arabinose polymers is comparable with the cell walls of desiccation tolerant vegetative 

plant tissue (Moore et al. 2013) and orthodox seeds (Navarro et al. 2002; Dourado et al. 

2004; Gomes et al. 2009). However, it has been shown that in the desiccation tolerant seeds 

of Arabidopsis, arabinose polymers accumulated in the wall may also function as storage 

reserves for utilisation during germination (Gomes et al. 2009). In that study, the major 

subcellular storage reserves were lipid and protein and so the arabinose polymers of the wall 

were proposed to provide a dual role in conferring wall flexibility and being a source of 

carbohydrates needed for germination.  

However, in E. natalensis embryos are dominated by the accumulation of large starch-

containing amyloplasts (Woodenberg et al. 2014), which would naturally fulfill the 

carbohydrate needs of the germinating embryo. Although no study has been performed on E. 

natalensis seeds to confirm whether or not cell wall arabinose polymers are utilised during 

germination, the main carbohydrate source would probably come from the abundant 

amyloplasts. However, such a high concentration of arabinose polymers in the cell wall of E.  
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Fig. 7 Immunogold labelling of xyloglucan and various epitopes of pectin in the cell walls of dried, 

aqueously-fixed E. natalensis embryos. a Label can be seen in both the middle lamella and primary 

cell wall layers when JIM5 was employed; bar = 0.5 µm. b A similar demonstration of labelling is 

apparent when for JIM7; bar = 0.5 µm. c Some label is evident in the cell wall while many gold 

particles are found also in the cytomatrix close to the cell wall when LM6 was used; bar = 0.5 µm. d 

LM7 yielded an absence of gold label from the cell wall while a few Golgi-derived vesicles (arrows) 

display some labelling; bar = 0.5 µm. e Primary cell walls show some gold label while the middle 

lamella appears to be free of label when LM15 was used; bar = 0.5 µm 
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natalensis could also mean that they are constitutively prepared for cell wall folding upon 

drying.  

Because the cells of the E. natalensis embryo contained an abundance of amyloplasts, cell 

shrinkage was not marked. Therefore, high arabinose polymer levels would not be required 

for the purpose of extensive wall folding in this species, but the possession of substantial 

amounts of this polymer may coincidently make the walls amenable to folding.   

Similarly, the accumulation of abundant starch-containing amyloplasts in cells of the E. 

natalensis embryo may function primarily as storage reserves required for the protracted 

post-seed-shed ontogeny and germination of this species (Woodenberg et al. 2014). However, 

as evidenced by the current study, the amyloplasts may also fulfill a secondary role in the 

provision of mechanical stabilisation during dehydration, by preventing excessive cell 

shrinkage.  

Interestingly, although cells of the E. natalensis embryo seem to have mechanical 

stabilisation provided by both constitutive cell wall flexibility and substantial accumulation 

of subcellular reserves, the embryo of this species is highly sensitive to desiccation 

(Woodenberg et al. 2007). This is in contrast to the subcellular situation in the highly 

recalcitrant seeds of Avicennia marina (e.g. Farrant et al. 1997), which does not accumulate 

much by way of insoluble reserves. Encephalartos natalensis therefore appears to be an 

exception to the general belief that the degree of reserve accumulation in recalcitrant seeded 

species tends to be commensurate with the amount of water loss tolerated (e.g. Farrant and 

Walters 1998; reviewed by Farrant et al. 2012).         

The cryo-SEM and freeze-substitution work reported in the present study suggested that the 

walls of the E. natalensis embryo may have some degree of folding upon dehydration that is 

comparable with previous reports on desiccation-tolerant plant material. The fact that the 

walls displayed some form of folding is not surprising as the cell walls were found to consist 

of a middle lamella and primary cell wall only, i.e. the walls were not abnormally thick and 

should theoretically be flexible, at least to allow for cell expansion during embryo 

development. While wall plasticising molecules such as arabinogalactan protein recognised 

by the LM2 antibody and galactan appeared to be absent from the cells (apart from the walls 

of epithelial cells lining mucilage ducts), the walls of E. natalensis embryo were apparently 

not devoid of plasticising molecules, as arabinan was present in hydrated immature, mature, 

and dehydrated mature tissue. Similarly, while xylan was not positively labelled in this 
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investigation, the embryo of E. natalensis may well accumulate this hemicellulose in xylem 

walls (see Woodenberg et al. 2014). Future research should look at the ability and extent of 

cell wall folding in desiccation-sensitive embryo cells that have fewer large amyloplasts (e.g. 

meristematic cells of the immature embryo of this species) to see whether or not the cells can 

fold to a similar extent as desiccation-tolerant plant tissues.  

From the results of the present study and other works, it is tempting to speculate that the 

potential of walls to fold (which is determined by their composition and structure) may be a 

strategy to avoid membrane damage on drying; however, the concept deserves an extension 

of the interest currently being paid to it. Additionally, results from this study have reinforced 

the belief that seed recalcitrance is a consequence of the malfunction or absence of many 

interacting mechanisms that allow for desiccation tolerance (Pammenter and Berjak 1999). 

Further research is thus needed to elucidate why E. natalensis seeds lose viability upon 

dehydration.      
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Appendix A 

Fig. 8 Demonstrates fluorescence microscopy of negative and positive controls used to verify results. 

a Some autofluorescence appeared to be present in the cells with faint fluorescence evident in the 

nuclei and certain areas of the cytomatrix; bar = 50 µm. b A similar picture can be seen in a primary 

antibody only control; bar = 50 µm. c Fluorescence was somewhat more intense in the nuclei and 

cytomatrix when the protocol was performed with the secondary antibody only; bar = 50 µm. d 

Relatively intense fluorescence was evident in the root tip cell walls [especially in the xylem walls 

(arrowed)] of Daucus spp. when the LM2 antibody was employed; bar = 50 µm. e Epidermal and 

subepidermal cell walls display fluorescence when  the LM5 antibody was used on the pericarp tissue 

of Lycopersonicon spp.; bar = 50 µm. f Intense fluorescence is apparent when the LM11 antibody was 

used on Zea mays leaf tissue; bar = 100 µm 
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CHAPTER 4 

Overview and concluding comments 

The present investigation has revealed some important aspects of the post-shedding 

development of the E. natalensis embryo that furthers understanding of the recalcitrant 

behaviour of these seeds (Woodenberg 2009). The seeds of this species are shed from the 

parent plant when the embryo is rudimentary and physiologically immature, and its 

development has been shown to be a continuous process after seed-shed that ultimately 

culminates in germination. This is in contrast with orthodox seeds where full embryo 

development has usually occurred by the time they are shed in a quiescent or dormant state 

following maturation drying (Adams and Rinne 1980).  Much of the development of the 

embryo of the cycad, E. natalensis, was found to occur after seed-shed and since these 

developmental processes would require the degree of hydration facilitating ongoing 

metabolism, it is clear why the seeds of this species do not tolerate desiccation.   

While cells continued to show signs of ongoing metabolism throughout embryogenesis – 

exemplified by mitochondria of active appearance, abundant polysomes and profiles of ER – 

the current investigation has revealed the details of development that occur in the months 

after seed-shed, viz. cellular differentiation during the ontogeny of cotyledonary 

protuberances; procambial strands giving rise to vascular tissue; development of tannin-

containing channels and mucilage ducts;  while reserve accumulation, principally starch, also 

emerged as a post-shedding phenomenon. So while recalcitrant seeds of most species are 

notoriously short-lived (Pammenter et al. 1994), E. natalensis seeds require a protracted 

period (ca six months) of post-shedding development before they reach a maturity level 

commensurate with germinability.   

In fact, the seeds of E. natalensis when maintained in dry storage (i.e. at ambient relative 

humidity) at 16°C, have been found to remain viable for up to two years after they have been 

shed (personal observation). The present work has revealed possible explanations for this 

unusually long period of viability of these desiccation-sensitive seeds. For example, mucilage 

ducts, which are suggested to act as water reservoirs (reviewed by Bhatnagar and Moitra 

1996), were a common feature of mature embryos in this species, and the waxy layer on the 

surface of the embryo, which, along with the possession of a tough sclerotesta external to the 

megagametophyte in which the embryo is contained, may contribute to water retention in the 

months after seed-shed (Woodenberg 2009). These structures are suggested to act together to 
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minimise water loss in the months after seed-shed – thus facilitating ongoing metabolism and 

post-shedding ontogeny in these desiccation-sensitive seeds. 

Another salient feature of the E. natalensis embryo that may play a role in its ability to 

remain viable for a relatively protracted period could be the accumulation of considerable 

deposits of starch in amyloplasts as opposed to lipid bodies as the chief storage reserve. The 

latter reserve type is known to be susceptible to oxidation (McDonald 2004), which may well 

have led to a loss of viability during the long period of embryogenesis in the current species. 

This is suggested to have been of particular importance during the Carboniferous Period 

when cycads are believed to have originated (Schwendemann et al. 2009). Reports suggest 

that during that Period, atmospheric oxygen concentrations may have been as high as 35% 

(e.g. Berner and Canfield 1989), and thus the propensity for oxidative damage would have 

been considerably greater than it is today. In accumulation of starch as the major storage 

reserve of the embryo, E. natalensis shows commonality with other recalcitrant-seeded 

gymnosperms viz. Araucaria angustifolia (Farrant et al. 1989); A. hunsteinii (Pritchard and 

Prendergast 1986), A. araucana (Royal Botanic Gardens Kew 2008) and A. bidwillii (Del 

Zoppo et al. 1998). It is proposed that lipid in such seeds, which remain hydrated and 

metabolically active for relatively extended periods, would be more prone to oxidative 

degradation than would be the case in desiccation-tolerant (orthodox) seeds of e.g., many of 

the conifers.   

While there are comparatively few studies that have analysed the storage reserves of embryo 

tissue of gymnosperm seeds, the predominance of starch as the main embryo storage reserve 

could be viewed as an ancestral trait, while lipid- and protein-rich embryos seem to represent 

the more advanced state in gymnosperms (Ching 1966; Gifford 1988; Krasowski and Owens 

1993).  Since cycads are regarded as the most primitive group of gymnosperm, it would be 

interesting to speculate that starch was the initial reserve to be accumulated in embryos of the 

first spermatophytes. In E. natalensis, for example, an importation of sucrose from the 

megagametophyte and its conversion to lipid would seemingly be a much more sophisticated 

biochemical process compared with that involving starch (pers. comm. M. Black, King’s 

College, London). 

While on the subject of reserve accumulation, another interesting observation in the current 

investigation was the apparent absence of dense protein bodies that were prevalent in the 

megagametophyte tissue of this species (Woodenberg et al. 2010). This was observed despite 
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the preponderance of polysomes in the cytomatrix of the embryo cells throughout ontogeny. 

The embryo of E. natalensis therefore appears to obtain its amino acid quota directly from the 

protein reserves of the megagametophyte. However, the abundant polysomes indicate 

ongoing active protein synthesis, presumably directly for the production of membrane-

component and structural proteins and enzymes, which would negate the need for storage of 

protein in protein bodies in the embryo. In the light of the current work on reserve 

accumulation in the embryo of E. natalensis, future studies are encouraged on reserve 

accumulation in other gymnosperm and angiosperm embryos to further understanding of how 

this relates to post-harvest behaviour, germination rates, and evolutionary status. 

While the current investigation has afforded information on reserve accumulation in the E. 

natalensis embryo, it has also revealed some important aspects of secondary metabolite 

production – namely of mucilage and tannins – in the embryo of this species. For example, 

initial stages of tannin channel formation suggested that tannins are accumulated in vacuoles 

of nucleated cells that also display amyloplasts. Tannins appeared to accumulate by the 

internalisation of small electron-opaque deposits within vesicles, which are suggestedly 

derived from the endoplasmic reticulum. This is in keeping with proposals made in studies on 

other plants (Zobel 1985; Rao 1988; Evert 2006), that tannins originate in the ER prior to 

being accumulated intravacuolarly. In the current investigation, subsequent elongation of 

tannin-accumulating cells appeared to occur without prior formation of a syncytium as was 

reported by Zobel (1985) for shoots of the angiosperm, Sambucus racemosa. 

Clues with regard to the function of tannin in the current species became apparent in a few 

occasions when the embryo had apparently been wounded before fixation. In those instances, 

tannin(s) from the nearby channel(s) seemed to penetrate the wound. This suggests the 

manner in which tannins may function to prevent pathogen entry upon physical injury 

(Goodman et al. 1967; Wood 1967), and/or their role in providing antioxidant activity where 

and when needed (Esau 1953), since wounding is reported to be accompanied by increased 

levels of reactive oxygen species (ROS) (Bolwell 1999). In this regard, the present study also 

highlighted the positioning of tannin channels near the periphery and vital tissues of the E. 

natalensis embryo, where they are suggested to provide defence against pathogens. 

Moreover, attention was drawn in this study to the use of parts of cycads in traditional 

medicine (e.g. Osborne et al. 1994), where tannins may be the active principles. Further 

investigation is thus also encouraged on the efficacy of tannins from cycads for medicinal 
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purposes, with the possibility of their production via in vitro cultivation of e.g. callus from 

selected explants.  

As far as the other secondary metabolite, mucilage, is concerned, ultrastructural observations 

in the present work suggested that the endoplasmic reticulum (as opposed to Golgi bodies) is 

the chief subcellular component responsible for the manufacture and secretion of 

mucopolysaccharides in the embryo of E. natalensis. Although this was an unexpected 

observation, it was in keeping with an earlier study on cellularisation in the 

megagametophyte of this species (Woodenberg et al. 2010). In that study, ER-derived 

vesicles were observed to elaborate and deposit cell wall material without the involvement of 

Golgi bodies, which were rarely observed. In this regard, further research should also be 

undertaken to investigate the intracellular pathways implicated in primary wall formation 

during the initial cellularisation of the E. natalensis pro-embryo, as it will be interesting to 

see whether or not a similar mode of Golgi-bypass (Hara-Nishimura et al. 1998; Hawes 2005; 

Takahashi et al. 2005) occurs. 

With regard to the cell walls, the current work appears to be the first in-depth characterisation 

of the apoplast in a cycad embryo. It also appears to be the first in-depth study on the walls of 

a desiccation-sensitive embryo in relation to development and dehydration. Cell walls of 

immature embryos of E. natalensis appeared to be characterised by both poorly- and highly-

methyl-esterified epitopes of the pectin, homogalacturonan (HG); partially-methyl-esterified 

epitopes of HG recognised by the antibody, LM7; rhamnogalacturonan-associated arabinan; 

and the hemicellulose, xyloglucan; while arabinogalactan protein (AGP) recognised by LM2 

antibody, rhamnogalacturonan-associated galactan, and the hemicellulose, xylan, were 

apparently absent.  

These results demonstrated that the cell walls of the E. natalensis embryos may not be 

dissimilar from those of other plants in their possession of poorly- and highly-methyl-

esterified HG (Talmadge et al. 1973); however, they seem to differ from cell walls of other 

plants in the punctuate distribution of partially-esterified epitopes of HG recognised by the 

LM7 antibody as opposed to the accumulation of this epitope at the corners of intercellular 

spaces and junctions between cells in other plant tissue (Willats et al. 2001). This suggested 

that the LM7 epitope may have been localised in vesicles close to the wall or in those that 

were being incorporated into the wall in the present study.  
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As far as pectin side-chains are concerned, there appeared to be an absence of certain wall 

plasticisers, viz. arabinogalactan protein as would be recognised by the LM2 antibody, and 

rhamnogalacturonan-associated galactan; however, the walls were not devoid of plasticisers 

as rhamnogalacturonan-associated arabinan appeared to be present. This implied that the 

walls may have some degree of flexibility, which is expected given that embryos in these 

recalcitrant seeds were undergoing continuous growth and development in the post-shedding 

phase.  

Xyloglucan appeared to be the predominant hemicellulose in the E. natalensis embryo, while 

xylan was undetected with LM11. This could be expected as xylan is usually a component of 

the secondary cell wall, as opposed to the primary cell wall and middle lamella layers that 

were prevalent in embryos in the current investigation.  

Interestingly, the cell wall components analysed in this study did not appear to change during 

the six month post-shedding development of the embryo. However, while the current 

investigation made use of a number of cell wall antibodies, the biochemical work in this 

study revealed that there are other wall components that future research should explore. For 

example, the high concentration of glucose (Glc)-rich polymers identified in this study was of 

particular significance. Future research is needed to elucidate whether this is due to various 

Glc-rich polymers e.g. galactoglucomannan, glucomannan, and/or amorphous cellulose, or 

whether it is due to starch contamination. If those Glc-rich polymers are not localised in the 

wall, it may imply contamination of the cell wall fraction in this study by starch which is a 

dominant feature in the cytomatix of mature E. natalensis embryo cells (Woodenberg et al. 

2014). Furthermore, if there is contamination by starch, future research will involve 

developing suitable protocols for complete de-starching of E. natalensis embryo cell wall 

fractions prior to analysis.  

Similarly, the high concentrations of arabinose polymers in the present study in Glc-

normalised data, also warrants further investigation. Future studies should employ a range of 

antibodies for the detection of other epitopes of AGP to confirm whether or not these 

molecules are present in the embryos of E. natalensis. The current study suggested that the 

LM2 epitope may be absent; however, it may emerge that other epitopes of AGP are present 

and may contribute to the high concentration of arabinose found in this study. Given the basal 

position of cycads in spermatophyte phylogeny, a thorough analysis of cell walls in these 

plants could be important towards an understanding of cell wall evolution in plants.   
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In the present study, however, the absence of AGP and rhamnogalacturonan-associated 

galactan did not appear to be significant with regard to drying in mature embryos, as the 

walls appeared sufficiently flexible and were afforded enough mechanical stabilisation by the 

occurrence of the abundant amyloplasts in the cytomatrices of the cells. In this particular 

study, only mature embryos were subjected to drying. It will be intriguing to see the 

responses of the walls of immature embryos of E. natalensis where there would be less 

mechanical stabilisation from amyloplasts, which are fewer and smaller than in the mature 

stage of embryogenesis (Woodenberg et al. 2014). 

Since there are very little data, other than the work on resurrection plant cell walls (reviewed 

by Farrant et al. 2012; Moore et al. 2013), to compare with the current findings, future 

research is encouraged to investigate cell wall properties in embryos across a range of cycad 

genera. Similarly, investigations on embryo cell walls across a spectrum of orthodox- and 

recalcitrant- seeded species could prove important in elucidating plant cell wall evolution and 

improve understanding of the relationship between cell wall composition and the responses of 

cell walls to desiccation.  

Overall, this study has been relatively comprehensive in coverage of the ultrastructural and 

histological aspects of embryogenesis of E. natalensis. This work will form a pivotal basis for 

future studies, which may lead to an improved understanding of the responses of seed cell 

walls to desiccation – and also, through the understanding gained about the intricacies of 

embryogenesis – ultimately, result in the successful germplasm cryopreservation and in vitro 

production on a commercial scale of these, and other, endangered cycad species.  
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