
 
 

 
 

The interaction between endophytic Fusarium species 

and Eldana saccharina (Lepidoptera) following in vitro 

mutagenesis for F. sacchari tolerance to control the 

borer in sugarcane 

 
 

by 

 
Tendekai Mahlanza 

 

 

 

Submitted in fulfilment of the academic requirements for the degree of  

Doctor of Philosophy  

in the College of Agriculture, Engineering and Science, 

 School of Life Sciences, University of KwaZulu-Natal,  

Durban, South Africa 

 

 

Supervisor : Prof. Paula Watt 

Co-supervisor: Dr Stuart Rutherford 

Co-supervisor: Dr Sandy Snyman 

 

 
February 2015 

 



 
 

ABSTRACT 

Eldana saccharina is a major pest in the South African sugar industry. Stalk damage by this 

borer and infection of bored tissue by opportunistic fungi result in loss of biomass and sucrose 

content, respectively. Amongst integrated management approaches, the best is employing E. 

saccharina-resistant genotypes. Resistance is attributed to physical stalk traits that impede 

boring and biochemical defences via nitrogen-based antiherbivory compounds. Further, in 

vitro assays have shown that Fusarium strains may be beneficial (e.g. F. pseudonygamai 

SC17) or antagonistic (e.g. F. sacchari PNG40) to the insect.  

The first objective of this study was, therefore, to establish the effect of sugarcane stalk traits 

and infection by Fusarium spp. on resistance to E. saccharina. In the first of two glasshouse 

trials, mature and immature stalk internodes of seven cultivars of known E. saccharina 

resistance ratings were inoculated with 2nd instar larvae via nodal wounds. Stalk rind hardness 

was greatest in both mature (42.2 units) and immature internodes (25 units) of the resistant 

cultivar N33. The softest of both mature and immature stalk regions were from the very 

susceptible N11 (32 units) and susceptible NCo376 (17.7 units), respectively. Percent fibre 

content in mature internodes was highest in the resistant N33 and N17 (12.8 - 14.2%) and 

lowest in the susceptible N11 and NC0376 (10.9 - 11.2%) cultivars. In all but one cultivar, % 

nitrogen content/dry mass was higher in immature internodes (0.65 - 1.2 %) than mature ones 

(0.36 - 0.91%) and lower in stalks of the resistant N41, N29 and N33 (0.36 - 0.75%) than in 

those of the susceptible NCo376 and N41 (0.48 - 1.27%) cultivars. Damage and mass gain 

by larvae retrieved from stalks were not entirely consistent with the cultivar resistance ratings, 

probably because the inoculation method by-passed the rind; N29 and N33 were unaffected 

by lack of rind protection. Hence, the tested stalk traits may contribute to E. saccharina 

resistance to varying extents in different sugarcane cultivars. In another trial, immature and 

mature stalks of NCo376 and N41 were inoculated with SC17 and PNG40 and then with E. 

saccharina larvae. The stalk area discoloured by Fusarium infection was smaller in the 

immature (6.1 - 7.1 cm2) than the mature (12.3 – 17.8 cm2) internodes. The smallest stalk 

length bored was in PNG40-infected NCo376 (3.3 cm) and N41 (1.7 cm) mature internodes, 

whilst NCo376 stalks colonised by SC17 (8.2 cm) were the most damaged. Hence, the 

proposal that Fusarium strains affect E. saccharina differently thereby impacting cultivar 

resistance/susceptibility to the borer, is supported. The in vivo activity of F. sacchari PNG40 

against E. saccharina was also established, corroborating its potential as a biological control 

agent against the borer. As this application of PNG40 is impeded by the fungus being the 

causal agent of Fusarium stem rot in sugarcane, F. sacchari-tolerant plants were then 

produced via induced mutagenesis. 
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Embryogenic calli of NCo376 and N41 were exposed to 32 mM ethyl methanesulphonate 

(EMS) for 4h. They were then placed on 100 ppm F. sacchari PNG40 culture filtrate (CF) at 

embryo maturation, germination or both stages, where 30.7 - 86.9% of the calli became 

necrotic and plantlet yield decreased by 59.2 - 99.2%. Roots of the regenerated plants were 

trimmed and placed on 1500 ppm CF. Plantlets with roots that regrew on CF medium beyond 

the 10 mm established threshold were deemed putatively tolerant (26.6 – 47.6% for EMS 

treatments, 5-24% for controls). These plants were acclimated and inoculated with PNG40 in 

the glasshouse. After 8 weeks, absence of symptoms, low lesion severity, re-isolation of 

PNG40 from the lesion and molecular identity of the isolates, confirmed some as PNG40 

resistant. Re-isolation of PNG40 from undamaged tissue above the lesion, in plants with low 

lesion severity and no symptoms, confirmed endophytic colonisation and tolerance to the 

fungus in the mutants. Polymorphisms were detected in some mutants, using 24 RAPD 

primers. 

The use of the tolerant mutants in F. sacchari PNG40-mediated control of E. saccharina was 

then investigated. Stalks of five tolerant mutants and parents of each NCo376 and N41 

cultivars were inoculated with PNG40 and with E. saccharina larvae, 3 weeks later. The length 

bored was less (1.0 - 4.7 cm) in stalks of PNG40 infected-mutants and parents than in the 

controls (3.9 - 9.0 cm). However, the % stalk discoloured area due to PNG40 infection was 

less in the mutants (10.6 - 22.0%) than in the parents (N41 - 28.9% and NCo376 - 30.2%). 

Re-isolation of PNG40 from undamaged tissue, within the inoculated internode and that above 

it, confirmed endophytic colonisation and fungal spread across internodes. Amongst stalks 

inoculated with PNG40, one mutant of NCo376 and two of N41 displayed limited boring (1 - 2 

cm) and % discoloured area (10.6 - 15.1%), and the highest % of endophytically colonised 

stalk sections (50 - 75%) in the internodes immediately above those inoculated. There were 

no differences between the mutants and their respective parents in stalk rind harness, fibre 

and nitrogen contents. This work, therefore, resulted in the production of F. sacchari-tolerant 

mutants, demonstrated the toxicity of F. sacchari PNG40 against E. saccharina in vivo, and 

the ability of the PNG40-tolerant mutants to support endophytic colonisation by the fungus. 

Demonstration of these Fusarium - E. saccharina interactions in the mutants under field 

conditions will lead to the application of biological control of E. saccharina using PNG40, as 

part of integrated management approaches for the pest. 
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1  Introduction 

The South African (SA) sugar industry generates R12 billion in direct income annually and 

creates 79 000 direct and 350 000 indirect jobs translating to approximately one million people 

who depend on the industry for their livelihood (Sasa, 2014). Cultivated mainly for sugar, 

sugarcane is increasingly becoming an important crop for renewable energy production as 

worldwide interest in ethanol biofuels (Goldemberg, 2007; Chum et al., 2014) and electricity 

cogeneration from biomass (Guerra et al., 2014; Lora et al., 2014) grows. As the SA sugar 

industry continues efforts to obtain higher sugar yields (Zhou, 2013) and considers 

cogeneration (Smithers, 2014), sustainable sugarcane production through effective control of 

pests and diseases and development of genetically improved cultivars is critical. 

The African sugarcane stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) is a 

major pest of sugarcane in the SA sugar industry with damage inflicted by the insect causing 

annual losses of up to US$ 82 million (Black, 2014). The insect bores sugarcane stalk tissue, 

especially in the mature stage of the crop, thereby reducing valuable biomass (Atkinson, 1980; 

Goebel and Way, 2003). This damage is compunded by drought stress as physiological plant 

defence mechanisms against the insect are compromised (Keeping et al., 2012).  Borings 

provide opportunistic Fusarium spp. entry into the inner stalk, thus resulting in an association 

between E. saccharina damage and Fusarium stalk rot (McFarlane et al., 2009). The Fusarium 

spp. convert sucrose to glucose resulting in lower sugar yields (Way and Goebel, 2003). Such 

damage has led to E. saccharina resistance being a priority for the SA sugar industry, with 

screening of borer-resistant genotypes being conducted in resource-intensive pot trials in the 

later stages of the breeding programme (Keeping, 2006). As a result, indirect losses are 

incurred as only a limited number of promising lines can be screened, and high sucrose 

genotypes may be discarded if susceptible to the borer (Butterfield and Thomas, 1996). 

Further, losses are sustained through early harvesting at 12 months instead of the 

economically viable age of 15-18 months in order to curtail E. saccharina damage in the 

mature crop (Keeping et al., 2014). Eldana saccharina damage also results in infection by 

other fungi such as Colletotrichum falcatum Went. (McFarlane and Bailey, 1996). 

Consequently, an integrated pest management (IPM) approach that entails use of 

insecticides, pre-trashing, destruction of infested stalks and limited application of nitrogen 

fertilisers, has been adopted to control E. saccharina (Webster et al., 2005). However, 

improvement of current control strategies and development of new ones is important as the 

borer continues to adapt to areas thought previously to be unfavourable for E. saccharina 

development (Kleynhans et al., 2014).  
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The use of resistant cultivars is the best measure for E. saccharina control (Keeping, 2006). 

Sugarcane stalk rinds and fibre impede boring and digestibility of tissue, respectively, thereby 

contributing to resistance. However, fibre content, which is positively correlated with rind 

hardness, is negatively associated with sucrose recovery from the stalk rendering both stalk 

characteristics undesirable mechanisms for borer resistance (Keeping and Rutherford, 2004). 

Nonetheless, plants produce metabolites that are repellent, unpalatable or toxic to herbivores 

and thus play a role in insect resistance (Howe and Jander, 2008). Insect feeding on plant 

tissue elicits an induced acquired response facilitated by jasmonic acid and its derivatives 

(Reymond and Farmer, 1998), which trigger expression of defence genes responsible for 

synthesis of proteinase inhibitors, anti-nutritional compounds, signalling molecules and repair 

proteins (Leon et al., 2001). This physiological reaction to herbivory is a preferred mode of E. 

saccharina resistance to physical mechanisms as it does not negatively impact sucrose 

recovery. Hence, understating the role of physical and biochemical mechanisms of resistance 

in sugarcane genotypes will aid in enhancing selection strategies for E. saccharina resistance. 

Nevertheless, developing additional control measures to combat the borer such as fungus-

mediated biological control, may also improve IPM of the pest.  

Studies in maize have shown that endophytic Fusarium verticillioides Sacc. (Nirenberg) 

exacerbate E. saccharina damage (Schulthess et al., 2002) and fecundity (Ako et al., 2003). 

In sugarcane, in vitro dietary and olfactory choice bioassays demonstrated the beneficial and 

antagonistic effects of Fusarium isolates on E. saccharina (McFarlane et al., 2009). These 

findings suggest that Fusarium spp. may influence E. saccharina damage and, therefore, the 

management of borer-beneficial strains may improve control of the insect. However, the 

impact of Fusarium strains on E. saccharina damage and performance is yet to be determined 

in vivo. Furthermore, the negative in vitro effect of Fusarium strains, e.g. F. sacchari Butler 

and Khan) Gams PNG40, on E. saccharina indicates the potential of the fungus in biological 

control of the lepidopteran. Fusarium strains produce insecticidal compounds (Gupta et al., 

1991, Logrieco et al., 1996; Guo et al., 2014) and their pathogenicity to insects pests has 

established their potential in biological control in various crops (Majumdar et al., 2008; 

Mikunthan and Manjunatha 2008; Wenda-Piesik et al., 2009; Batta 2012). However, the 

phytotoxicity of E. saccharina-antagonistic Fusarium strains, such as F. sacchari PNG40 

which causes stem rot in sugarcane, limits their value in insect control. Hence, the 

development of Fusarium-tolerant sugarcane genotypes may aid in controlling Fusarium stem 

rot. Tolerance permits endophytic colonisation of plant tissue by the fungus thereby enabling 

use of PNG40 in biological control of the borer.  

Conventional breeding of improved sugarcane genotypes is complicated by seed sterility, 

unsynchronised flowering and the polyploid and aneuploid genome of the crop, taking 12-15 
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years to release a new cultivar (Butterfield et al, 2001; Ming et al., 2006). Transgenic 

approaches in sugarcane are limited by technological, legislation and marketing concerns 

(Lakshmanan et al., 2005; Burnquist, 2006; Birch, 2014).  However, well established in vitro 

culture systems in sugarcane (Nickel, 1964; Lee, 1987; Snyman, 2004; Mekonnen et al., 2014) 

provide an alternative strategy for crop improvement via in vitro mutagenesis and selection 

strategies (Rutherford et al., 2014). Chemical mutagens such ethyl methanesulphonate are 

effective at inducing point mutations in cells with minimal deleterious effects (Weil and Monde, 

2009). Mutant cells and plants expressing desired traits may be screened under well-defined 

conditions by incorporating appropriate selection agents in the culture media (Novak and 

Brunner, 1992; Lebeda and Svabova, 2010). This approach has been employed for 

development of sugarcane genotypes with superior agronomic traits, disease, herbicide and 

salt tolerance (reviewed by Rutherford et al., 2014). 

The present study aimed to investigate the contribution of physical and biochemical sugarcane 

stalk characteristics to E. saccharina resistance, determine the influence of Fusarium strains 

on borer damage and performance in vivo, and establish possible use of the E. saccharina-

antagonistic strain F. sacchari PNG40 in endophytic biological control against the insect. This 

study also sought to produce F. sacchari-tolerant genotypes via in vitro mutagenesis and test 

the utility of such mutants in control of E. saccharina and associated Fusarium stem rot. 
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2.1    Background and importance of sugarcane  

Sugarcane is a perennial, tropical or subtropical crop grown worldwide, within 30˚ of the 

equator, for its high sucrose accumulation (Ming et al., 2006; Moore et al., 2014). 

Commercially, the crop is established by means of seed cane and ratoons, when the bud and 

root primordia of the stool left after harvesting produce a stubble (Bonnet, 2014). Sugarcane 

grows well in medium to heavy, slightly alkaline soils with good drainage, high organic matter 

(Anon., 2003) and an annual water supply of 1200-1500 mm (Tarimo and Takamura, 1998). 

The crop has one of the most efficient photosynthetic mechanisms, capable of fixing 2-3 % 

radiant solar energy and achieves a high CO2 coefficient (Almazan et al., 1998; Sage et al., 

2014).  

Sugarcane belongs to the genus Saccharum L., a part of the Andropogoneae tribe of the family 

Poaceae (grasses) (Azevedo et al., 2011). Among the recognised species are S. officinarum 

Linnaeus, S. spontaneum Linnaeus, S. sinense Roxb, S. edule Hassk, S. barberi Jeswiet and 

S. robustum Brandes and Jeswiet (Tarimo and Takamura, 1998; Moore et al., 2014). The wild 

forms of sugarcane are thought to have evolved from Papua New Guinea and other 

Melanesian islands (James, 2004). According to Grivet et al. (2004), sugarcane genetic 

resources can be divided into three groups:  

(i) traditional cultivars: these are the noble cultivars which have brightly coloured stalks and 

are rich in sugar e.g. S. officinarum and the North Indian and Chinese cultivars which have 

thinner stalks, flatter colours and lower sugar content, e.g. S. barberi;  

(ii) wild relatives: related to the traditional cultivars, they are informally grouped into the 

‘Saccharum complex’, have little or no sugar and have diverse morphological and ecological 

adaptations, e.g. S. spontaneum;  

(iii) modern cultivars: created by Dutch breeders in Java in the early 1900s (Burnquist, 2001); 

these are hybrids of traditional cultivars and S. spontaneum. that replaced the traditional 

cultivars during the 20th century.  

The modern sugarcane cultivars are highly polyploid and aneuploid, originating from crosses 

between S. officinarum (2n = 80) and S. spontaneum (2n = 40 – 128) and from backcrossing 

the interspecific hybrids with the S. officinarum parent (Stevenson, 1965; Sreenivasan et al., 

1987; Butterfield et al., 2001; Ming et al., 2006; Moore et al., 2014). In some of these cultivars, 

10% of the chromosomes are inherited entirely from S. spontaneum, 80% from S. officinarum 

and 10% results from recombination of chromosomes from the two ancestral species (D’Hont 

et al., 2008; Zhang et al., 2014). These crosses introgressed disease resistance, vigour and 
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adaptability into sugarcane lines leading to a combined interspecific genome that makes it the 

most complex of all the economically important crops (Ming et al., 2006). The complex 

cytology of sugarcane makes it extremely difficult to predict the resulting characteristics of 

hybrids obtained by cross pollination of members of the genus Saccharum, thus the difficulties 

in breeding sugarcane (Barnes, 1964; D’Hont et al., 2008). In most crops, pest and disease 

resistance are regulated by both dominant and recessive genes, but in polyploids such as 

sugarcane, the recessive genes are obscured by homologous alleles, making them ineffective 

for breeding (Butterfield et al., 2001). Further, the effect of dominant genes in polyploids is not 

similar to that in diploids, due to the interaction of multiple alleles at a single locus, making it 

difficult to determine phenotype (Butterfield et al., 2001). Transcriptome analysis and 

functional genomics studies in sugarcane are emerging and will aid molecular breeding of 

complex traits (Manner and Casu, 2011; De Setta et al., 2014; Zhang et al., 2014).   

Sugarcane produces large amounts of biomass whilst accumulating high concentrations of 

sucrose (Manners and Casu, 2011). This justifies sugarcane’s status as the world’s most 

industrialised tropical crop (Moore and Ming, 2011). Approximately 75 % of the world’s sugar 

is obtained from sugarcane and 25 % from sugar beet (Beta vulgaris Linneaus) (Ming et al., 

2006). Although over 100 countries cultivate the crop, the bulk of the world’s sugarcane is 

produced by a few countries, including South Africa (SA) (Fischer et al., 2009), which is rated 

amongst the top 15 cost-competitive sugar industries (Potgieter et al., 2013). The sugar 

industry makes a vital contribution to rural economic activity in SA’s sugarcane-growing areas 

of Kwazulu-Natal (KZN), Mpumalanga and the Eastern Cape (Esterhuizen, 2012) (Fig. 1). In 

SA, a total of 16.80 million metric tonnes (MMT) of sugarcane (2.0 MMT sugar) was produced 

in the 2012/2013 season and 18.10 MMT (2.1 MMT sugar) is forecast for the 2013/14 season 

(Kreamer and Esterhuizen, 2013), improvements after production had declined to 16.02 MMT 

due to a severe drought in the 2010/11 season (Esterhuizen, 2012).  

The main products of industrial processing of sugarcane are sugar and ethanol, whilst by-

products include molasses, bagasse, vinasse and filter cake (Gómez-Merino et al., 2014). The 

production of sugar yields molasses, which is used as stock feed and in the manufucture of 

ethanol (Zuurbier and Van de Vooren, 2008). Bagasse, the fibrous biomass left after the juices 

are extracted from the cane, is used as fuel and in the production of cardboard, fibre board, 

furfural and wall board (Almazan et al., 1998; Pippo and Luengo 2013). Mohan et al. (2005) 

also used bagasse as an alternative to agar in apple micropropagation. Vinasse and the filter 

cake, residues left over after extraction of sucrose, are utilised as fertiliser and stock feed 

(Cheavegatti-Gianotto et al., 2011).  
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Figure 1: Sugarcane growing areas and mills in SA (SASA, 2014). 

 
In recent years, economic interest in sugarcane has increased due to its potential to expedite 

sustainable energy production (Cheavegatti-Gianotto et al., 2011; Botha and Moore, 2014). 

Despite its economic importance, sugarcane is attacked by various pests and diseases, 

causing significant losses in production. The crop is relatively susceptible to pests and 

diseases as a result of being vegetatively propagated and cultivated over large contiguous 

areas (Dick, 1945; Bailey, 2004). Pests like white grubs (Hypopholis sommeri Burm and 

Schizonycha affinis Boh) (McArthur and Leslie, 2004), the spotted sugarcane stalk borer [Chilo 

sacchariphagus (Bojer) (Lepidoptera:Crambidae)] (Rutherford and Conlong, 2010) and 

sugarcane thrips [Fulmekiola serrata (Kobus)] (Way et al., 2010) are threats to the South 

African sugarcane crop. However, of greater significance than these is the stalk borer Eldana 

saccharina, which has been the most economically important pest in the South African sugar 

industry since the 1970s (Atkinson et al., 1981; Way, 1994; Conlong, 2001; Leslie, 2013). 

 

2.2    Eldana saccharina 

2.2.1    Nature of damage  

The African sugarcane stalk borer E. saccharina is an insect found naturally in sedges 

(Cyperaceae), e.g. Cyperus immensus Clarke and C. papyrus Linnaeus, and is a pest of 

sugarcane, maize and sorghum (Atkinson, 1980; Schulthess et al., 2002). In sugarcane, the 
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larvae enter the stalk by boring through the bud, root primordia and cracks in the internodes 

and feed on the inner stem tissue (Dick, 1945; Leslie, 1993). The larvae can also bore into the 

stubble that remains after harvest, which becomes a source of infestation for subsequent 

ratoons (Girling, 1972). Cracks or borings in the stalk rind just above the node from which 

frass (excrement) is expelled (Fig. 2a), indicate attack by the insect (Girling, 1972; Carnegie, 

1974). Splitting the infested stalks longitudinally reveals tunnels created by feeding larvae (Fig. 

2b). This damage is compounded by opportunistic infections by fungi such as Fusarium spp. 

(Bourne, 1961; McFarlane et al., 2009) characterised by reddish-brown discolouration of the 

bored tissue (Fusarium stalk rot) (Fig. 2b). These fungi are unable to breach the stalk rind 

unaided, therefore, they exploit the borer-inflicted wounds for access into the stalk. This 

collective damage has resulted in E. saccharina causing devastating damages to the South 

African sugarcane crop. 

 

Figure 2: Eldana saccharina damage. a) Frass ejected from a crack in the stalk; and b) 

longitudinally split stalk revealing feeding larvae and fungal infection of the bored tissue (Photos 

from SASRI picture gallery. 

2.2.2   Biology 

All life cycle stages of E. saccharina, i.e. adult moth, eggs, larvae and pupae, can be present 

concurrently (Carnegie, 1974). The adult moths (Fig. 3a) have brown wings with a wingspan 

of 30-35 mm and live for approximately 7 days during which the male and females mate  

 

10 mm 
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Figure 3: E. saccharina a) adults; b) eggs; c) larvae; and d) pupae. 

(Carnegie, 1974). During courtship, the males appeal to the females by flapping their wings 

rapidly and outspreading hairs found on their abdomen into a round brush, a behaviour called 

displaying (Atkinson, 1981). After mating, oviposition occurs on the underside of dead leaf 

sheaths or in the space between the stalk and the soil, with each mated female laying up to 

450 eggs (Carnegie, 1974). Atkinson (1980) observed that dry plant material was preferred 

over green leaves for oviposition, thus more eggs were found in older than in young green 

sugarcane. The eggs (Fig. 3b) hatch 8-10 days after oviposition and the neonate larvae are 

approximately 1.5 mm in length, increasing to 25-35 mm when fully grown (Dick, 1945). They 

forage on the sugarcane leaves for a few days and disperse from the oviposition sites seeking 

soft tissue on the stem, which they bore to gain access into the inner stalk tissue for feeding 

(Leslie, 1993). This larval stage (Fig. 3c) period varies from 20-60 days depending on 

temperature, with warmer conditions resulting in faster development (Dick, 1945; Carnegie, 

1974). In addition, Atkinson and Nuss (1989) reported that larval survival and growth were 

promoted by the presence of nitrogen, both in vitro and in the field, thereby suggesting that 

the development of intensive farming practices, which incorporated application of nitrogen 

fertilisers, may have encouraged infestation of the sugarcane crop by E. saccharina. The 
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larvae moult 5-7 times, with the females having more larval instars than the males (Atkinson, 

1980; Way, 1995). The final instar larva constructs a cocoon, which is either embedded in 

frass within the stalk or attached outside the stalk, and pupates (Fig. 3d) for approximately 10 

days (Carnegie, 1974). Thereafter, eclosion takes place following sunset with males emerging 

first (Dick, 1945; Atkinson, 1981). The moths proceed with courtship and mating within 2-4 

days of eclosion. 

2.2.3   Distribution and economic importance 

Although E. saccharina was reported in sugarcane in West Africa in the 1800s (Carnegie, 

1974), the first outbreak in the SA sugar industry occurred in September 1939 in sugarcane 

fields on the Umfolozi Flats in KwaZulu-Natal (Dick, 1945) (Fig. 4). The introduction of resistant 

varieties into the industry temporarily solved the problem (Atkinson et al., 1981). However, in 

1970 another outbreak occurred at Hluhluwe, followed by more in the subsequent 2 years at 

Empangeni, Mtunzini, Amatikuku and also in Swaziland (Atkinson et al., 1981) (Fig. 4). Since 

then, E. saccharina has been a consistent constraint to sugarcane production in South Africa 

with the borer being distributed along the sugarcane belt of KwaZulu-Natal province (Atkinson 

and Carnegie, 1989; Way and Goebel, 2003; Kleynhans et al., 2014). Atkinson (1979) noted 

that E. saccharina’s presence was limited to Richards Bay in the north and Port Shepstone in 

the south of the sugarcane belt. This confinement of the pest to sugarcane-producing areas 

along the coast was attributed to relatively lower inland temperatures than those ideal for E. 

saccharina reproduction (Way, 1994). However, Way (1994) reported presence of the borer 

in the Midlands region of KwaZulu-Natal, an inland area that was previously regarded too cold 

for the insect’s development. Further, Conlong (2001) stated that E. saccharina distribution in 

the south had extended to Mkambati Nature Reserve, Eastern Cape and Assefa et al. (2008) 

then reported that the stalk borer had been found in Thohoyandou, Limpopo in the north. 

Potchefstroom, North West Province, a maize producing area, was announced as the new 

western limit for E. saccharina presence, thus raising concerns of introduction of the pest into 

the SA maize crop (Assefa et al., 2008). These changes were ascribed to increases in 

temperatures in these areas, thus providing conducive conditions for the stalk borer’s 

development (Way, 1994; Assefa et al., 2008). Kleynhans et al. (2014) reported that evolved 

thermal tolerance in E. saccharina may impact phenology and distribution of the insect. 
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Figure 4: History of Eldana saccharina outbreaks in the South African and Swazi sugar 

industries. (From Atkinson et al., 1981). 
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This wide distribution of E. saccharina in the SA sugar industry has resulted in devastating 

economic losses. Infestation by the lepidopteran pest results in lower sucrose levels; lower 

stalk length and mass; and higher fibre, which leads to extraction of less juice (Goebel and 

Way, 2003). Opportunistic fungi (e.g. Fusarium spp.) that infect the stem tissue as a result of 

borer-inflicted damage, metabolise sucrose to glucose, leading to less sugar being obtained 

from affected stalks (Way and Goebel, 2003). The larvae are ravenous feeders and as manyas 

12 can be found in a stalk, capable of hollowing it out and also spreading to the roots 

(Carnegie, 1974). This corporate damage translates into losses in valuable revenue for the 

SA sugar industry. Baker (2014) reported that losses due to E. saccharina damage was 

estimated to be US $89 million per annum. Additionally, as screening for E. saccharina 

resistance is carried out during the later stages of the breeding programme, high sugar yielding 

genotypes selected during the earlier phases are discarded due to susceptibility to the borer, 

thus hampering development of new improved commercial varieties (Butterfield and Thomas, 

1996; Zhou, 2013a).  Such losses continue to persist in the SA sugar industry and justify E. 

saccharina as one of the major priorities in pest and disease management efforts of the SA 

sugar industry. 

2.2.4    Control 

E. saccharina is cryptic with some life cycle stages concealed from control measures (Leslie, 

1993). However, after the eggs hatch, the neonate larvae are unprotected as they disperse 

from the oviposition sites. The adult moths are also exposed during dispersal, mating and 

oviposition (Leslie, 1993). This renders these two stages most vulnerable to control strategies. 

An Integrated Pest Management (IPM) approach which involves use of chemicals (Leslie, 

2003), crop management (Webster et al., 2005) and use of resistant varieties (Rutherford et 

al., 1993; Keeping and Rutherford, 2004; Keeping, 2006), has been employed to control E. 

saccharina in the SA sugar industry. 

Crop management practices that form part of the IPM strategy comprise of early harvesting 

when the cane is 12 months-old; destruction of all infested stalks and stubble; limited 

application of nitrogen fertilisers; and pre-trashing, i.e. removal of dry leaves from stalks to 

restrict oviposition (Webster et al., 2005). In chemical control, the insecticide α-cypermethrin 

(Fastac®) has been employed successfully to curb the stalk borer in sugarcane (Leslie, 2006). 

The application of this insecticide represses the population of E. saccharina during periods 

when infestation is usually at its peak, thereby allowing harvesting at a more economically 

viable age of 15-18 months than at 12 months-old (Leslie, 2009). However, as borers reside 

deep within stalk tissue, the efficacy of insecticide application against borers is limited as they 

may be inaccessible to the chemicals (Srikanth et al., 2011). Moreover, the use of insecticides 



14 
 

 
 

is undesirable as it may be harmful to human health and negatively impact the environment 

(Aktar et al., 2009). A more attractive approach is the use of resistant varieties as it provides 

an inherent control mechanism in the plant.  

2.3   Insect resistance in sugarcane 

Resistance to insects in sugarcane cultivars is attributed to physical and chemical 

mechanisms. Physical characteristics of the stalk such as rind and fibre content impede insect 

boring of the stalk (Keeping and Rutherford, 2004). Rinds provide a tough barrier that prevents 

or delays penetration of the stalk by larvae, thereby exposing them to mortality factors e.g. 

predation by ants, insecticides and unfavourable weather conditions, on the exterior of the 

plant (Mabulu, 2013). The sugarcane rind is composed of lignocellulosic fibres containing 

parenchyma cells and vascular bundles with thick cell walls, which give them a high tensile 

strength (Han and Wu, 2004). This structural feature imposes a mechanical challenge for 

insect mandibles to cut (Kvedaras et al., 2007). Keeping and Rutherford (2004) reported a 

negative correlation between rind hardness of 72 sugarcane cultivars and internodes bored 

by E. saccharina, borer numbers and borer mass per stalk. Additionally, the surface of the rind 

may have epicuticular stalk waxes, which contain C30 alcohol, C30 alderhyde and 

triacontanol, may be involved in larval antixenosis (Rutherford and Van Staden, 1996). Once 

larvae penetrate the rind, stalk fibre (composed of cellulose, hemicelluloses and lignin) 

(Santiago et al. 2013), is the main physical resistance mechanism as high fibre plant tissue is 

difficult for insects to digest. Lignification of cell walls as the plant matures increases the fibre 

content of the stalk (Gibson et al. 2009) and may lead to increased resistance. However, 

though high fibre content in sugarcane promotes borer resistance, it is undesirable as it 

negatively affects sucrose recovery and complicates milling (Singh et al., 2013a). Further, the 

positive correlation between fibre and rind hardness also renders the latter unattractive 

(Keeping and Rutherford, 2004). Silicification of plant cell walls by applying silicon to the soil 

can also increase the impenetrability of the rind and indigestibility of tissue by insects, thus 

contributing to resistance (Kvedaras and Keeping, 2007; Keeping et al., 2014).    

Insect herbivores elicit an induced acquired response (IAR) facilitated by jasmonic acid (JA), 

its derivatives and ethylene (Reymond and Farmer, 1998). Damage to plant tissue as a result 

of herbivory elicits a wound response pathway which is mediated by jasmonates (Howe and 

Schaller, 2008). Upon wounding of the plant (e.g. insect boring), the action of systemin, a 

signalling polypeptide, in the damaged cell membranes leads to release of linoleic acid, an 

intermediate of the JA signalling pathway (Farmer and Ryan, 1992). Studies in solanaceaous 

crops have indicated that systemin also serves as a long-range signal transported via the 

phloem to undamaged tissues where it induces systemic defence responses in the plant by 
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induction of JA pathway (Ryan, 2000). The accumulation of JA and its intermediates activates 

expression of wound-inducible defence genes responsible for synthesis of proteinase 

inhibitors, anti-nutritional compounds, signalling molecules and repair proteins (Leon et al., 

2001). These inducible biochemicals are largely nitrogen-based which include proteinase-

inhibiting benzoxazinoids 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one (DIMBOA) and 

its derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one (DIBOA), anti-nutritional polyphenol 

oxidases and phenylpropanoid polyamine conjugates (Rutherford, 2014). 

Producing sugarcane genotypes that express these physical and biochemical defences via 

conventional breeding methods is time consuming due to the complex cytogenetics of the crop 

(Butterfield et al., 2001; Ming et al., 2006). Additionally, E. saccharina resistance obtained via 

conventional breeding has been found to be inversely related to resistance to sugarcane smut 

(Heinze et al., 2001), a fungal disease that is capable of causing severe sugarcane yield 

losses. Transgenic sugarcane exhibiting resistance to stem borers via expression of cry1A 

genes from Bacillus thuringiensis Berliner, has also been attempted (Arencibia et al., 1997; 

Weng et al., 2011; Srikanth et al., 2011). However, transgenic sugarcane is yet to be approved 

for commercial production worldwide (Meyer and Snyman, 2013). These deterrences warrant 

additional strategies to complement existing management approaches for controlling E. 

saccharina in sugarcane.  

2.4     Biological control of insect pests  

Biological control is defined as the deliberate use of insects, entomopathogenic nematodes 

and microorganisms to manage pest populations (Mahr et al., 2001; Pal and Gardner, 2006). 

Several ecological relationships occur between insects, fungi and their plant hosts, e.g. 

mutualism, parasitism, commensalism and neutralism (Pal and Gardner, 2006). Whilst some 

of these interactions may be detrimental to the host, some are beneficial.  Various fungal and 

insect species that occur in plants have been found to be natural enemies of pests (Faria and 

Wraight, 2001; Vega et al., 2009). Conlong (2001) reported that Schembria eldana 

Barraclough (Diptera:Tachinidae), Syzeuctus sp., Goniozus garoue (Risbec) (Hymenoptera: 

Bethylidae), Actia sp., Beauveria bassiana (Balsamo) Vuillemin and Iphiaulax sp. obtained 

from sugarcane, maize and sedges, were parasitiods of E. saccharina. Such associations may 

be manipulated in biological control strategies against insect pests. This approach has 

advantages over use of insecticides which pose a threat to human health, non-target 

organisms and the environment via residue contamination of soils and water bodies, and are 

also prone to redundancy when the insects attain resistance to the chemicals (Mahr et al., 

2001). Along with the use of insect parasitiods, the utilisation of entomopathogenic fungi–

mediated biological control as part of the integrated pest management may contribute towards 
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environmentally friendly and cost-effective control of pests such as E. saccharina. However, 

unlike insect parasitiods, endophytic entomopathogens may also benefit the plant through 

growth enhancement, disease resistance and drought tolerance (Kaldau and Bacon, 2008). 

Identifying a plant – fungus relationship in which the microorganism protects the host from the 

pest without the microbe causing disease, i.e. endophytism, is important in employing 

entomopathogens as biological control agents.  

 
2.4.1    Endophytes 

Endophytes are microorganisms that colonise plant tissues for part of their life cycle without 

causing apparent symptoms in their host (Saikkonen et al., 1998; Azvedo et al., 2000; Schultz 

and Boyle, 2005; Porras-Alfaro and Bayman, 2011). A diverse range of fungal endophytes 

has been isolated from different plant species worldwide (Schultz et al., 1993; Hoff et al., 2004; 

Crozier et al., 2006; Kim et al., 2007; Macia-Vicente et al., 2008; Gazis and Chaverri, 2010). 

In a study of 12 plant species, Schultz et al. (1993) isolated 16 different endophytic fungal 

strains from each of the 11 species. Mehnaz (2013) reviewed a range of non-pathogenic 

fungal species isolated from sugarcane. These plant - endophyte interactions are mutualistic 

associations in which the host obtains growth promotion and defence from biotic and abiotic 

stresses, whilst the fungus gains nutrients and habitation from competitors and unfavourable 

environmental factors on the exterior of the plant (Schultz and Boyle, 2005). 

Fungal endophytes are capable of colonising the plant host systemically or locally in roots, 

stem and leaf tissues (Saikkonen et al., 1998). They can grow in intercellular spaces of plant 

tissues where they benefit from nutrients released into the apoplast (Clay and Schardl, 2002; 

Kaldau and Bacon, 2008), whilst others occur intracellularly (Rodriguez et al., 2009). The 

endophyte aids the plant by producing secondary metabolites which exhibit antimicrobial 

(Danielsen and Jensen, 1999; Gao et al., 2010), insecticidal (Azevedo et al., 2000; Vega et 

al., 2008) and growth-enhancing (Zhi-lin et al., 2007; Machungo et al., 2009) activities. Hence, 

the losses the plant incurs in supporting the endophyte are compensated by the 

microorganism’s contribution to host fitness (Backman and Sikora, 2008). Schultz et al. (1999) 

stated that the outcome of a plant – microorganism interaction (i.e. disease development or 

endophytic colonisation) depends on the virulence of the microbe, its adaption to the host, 

defence responses of the host and environmental conditions. Those authors proposed that 

endophytic colonisation of a host plant occurs when the virulence of the microorganism and 

the defence mechanisms of the host are at an equilibrium such that neither is negatively 

impacted by the association. Elements that may disturb this balance, e.g. environmental 

factors that stress the host, can result in disease development (Schultz and Boyle, 2005). 



17 
 

 
 

Based on evolutionary history, taxonomy, plant hosts and ecology, fungal endophytes are 

categorised into clavicipitaceous and non-clavicipitaceous classes (Table 1) (Rodriguez et al., 

2009). The clavicipitaceous fungi (Class 1) (order - Hypocreales, family - Clavicipitaceae) are 

classified into over 33 genera and 800 species (Eriksson, 2006), including Cordyceps, 

Balansia, Epichloe, Claviceps, (Bacon and White, 2000) and Neotyphodium spp. (Kaldau and 

Bacon, 2008). They exclusively occupy above ground parts of numerous grasses with 

colonisation levels increasing from the basal towards the apical regions (Kaldau and Bacon, 

2008). Whilst certain species colonise a range of grasses, some are host specific (Saikkonen 

et al., 1998). Clavicipitaceous fungi produce plant growth regulators (e.g. indole acetic acid) 

(De Battista et al., 1990), loline alkaloids that are involved in drought tolerance,  peramine 

alkaloids which display antiherbivory activities (Bush et al., 1997) and antifungal compounds 

(e.g. indole derivatives and sesquiterpene) (Yue et al., 2000). Kaldau and Bacon (2008) 

reviewed a range of insects and nematodes that are inhibited by Epichloe spp. and 

Neotyphodium spp. These attributes of clavicipitaceous fungi have resulted in their use in the 

production of endophyte-enhanced turf (Bacon et al., 1997) and pasture (Easton et al., 2001) 

grasses. However, some species have been implicated in livestock toxicosis due to their 

production of ergot alkaloids in colonised pastures, e.g. tall fescue and rye grass (Looper et 

al., 2012; Young et al., 2012).  

Rodriguez et al. (2009) distinguished non-clavicipitaceous endophytes (NCE) into three 

functional classes based on ecological interaction with the host (Table 1).   Class 2 NCE are 

a group of fungi belonging to either the Ascomycota or Basidiomycota and include some 

Fusarium and Colletotrichum spp. (Rodriguez et al., 2008). They are notable for their extensive 

presence in roots, rhizome and shoots, occupying host tissue in intra- and intercellular spaces 

and achieving levels of colonisation of up to 100% (Rodriguez et al., 2009). Class 2 NCE are 

transmitted to other individual plants horizontally or vertically via the seed coats (Redman et 

al., 2002). They also are reported to produce metabolites that enhance growth (Tudzynski and 

Sharon, 2002), induce disease (Schultz et al., 1999) and drought (Rodriguez et al., 2008) 

tolerance. Class 3 NCE (Table 1) mainly belong to the Ascomycota, subphyla Pezizomycotina 

and Saccharomycotina (Higgins et al., 2007), and are differentiated by their localised 

occurrence mainly within above ground parts (Rodriguez et al., 2009). They are a highly 

diverse group with numerous species colonising a small area of the host tissue such that 

individual leaves of the same plant may house conglomerates of endophytes (Arnold et al., 

2000). Class 4 NCE (Table 1) occur only in the roots and are characterised by dark melanised  
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Table 1: Characteristics of clavicipitaceous and non-clavicipitaceous endophytes (modified from 

Rodriguez et al., 2009) 

Criteria 
Clavicipitaceous  Non-clavicipitaceous 

Class 1  Class 2 Class 3 Class 4 

Host range Narrow Broad Broad Broad 

Tissue(s) 

colonised 

Shoot and 

rhizome 

Shoot, root and 

rhizome 
Shoot Root 

In planta 

colonisation 
Extensive Extensive Limited Extensive 

In planta 

biodiversity 
Low Low High Unknown 

Transmission 
Vertical and 

horizontal 

Vertical and 

horizontal 
Horizontal Horizontal 

Examples 

Epichloe spp. 

Cordyceps spp. 

Claviceps spp. 

Balansia spp 

Fusarium culmorum 

(Smith) Sacc, 

 Fusarium 

oxysporum Snyder 

and Hansen, 

Colletotrichum 

magna Jenkins & 

Winstead 

Ustilago maydis 

Corda, 

Phyllosticta spp. 

Chloridium 

paucisporum 

Wang & Wilcox, 

Leptodontidium 

orchidicola Sigler 

& Currah 

 

septate hyphae and microsclerotia, which occupy intra- and intercellular spaces (Rodriguez et 

al., 2009). The group constitutes of 320 genera and 114 families, which are found in 587 plant 

species located in various ecosystems including high-stress environments (Rodriguez et al., 

2009). Their presence in the rhizosphere may serve to decrease the carbon available to 

pathogenic microorganisms, whilst synthesis of melanin by the endophytes may be involved 

production of antiherbivory metabolites (Mandyam and Jumpponen, 2005). 

2.4.2   Endophyte-mediated biological control of insects 

A number of studies in various crops have documented the negative effect of endophytic fungi 

on insect pests. Bing and Lewis (1993) reported that B. bassiana reduced the population of 

the European cornborer, Ostrinia nubilalis (Hiibner) (Lepidoptera: Crambidae) by 31-60% in 

maize. In that study, 100% of the larvae mycosed by B. bassiana were obtained from plants 

endophytically colonised by the fungus. In a study by Prestidge and Gallagher (1988), the 

tunnel length bored by the Argentine stem weevil Listronotus bonariensis (Kuschel) 

(Coleoptera: Curculionidae) in ryegrass was reduced by infecting plants with the endophyte 
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Acremonium lolii Latch, Christensen, and Samuels. In sugarcane, McFarlane et al. (2009) 

observed minimal damage by E. saccharina in stalks endophytically colonised by certain 

Fusarium strains. In addition, those Fusarium strains reduced larval mass and survival of the 

stalk borer in dietary inclusion assays and repelled the insect in olfactory choice assays. 

Endophytes produce various secondary metabolites that are detrimental to insects via 

different modes of action. For example, antibiosis of insect larvae was reported to occur as a 

result of production of bioactive volatile organic compounds, e.g. alcohols, esters and ketones, 

by endophytes (Lacey et al., 2009). Alkaloids produced by endophytes can act as feeding 

deterrents by rendering plant tissue unpalatable by insects (Carroll, 1988). For instance, Clay 

(1988) reported that armyworm (Spodoptera sp.) larvae consumed less ergot alkaloid-treated 

maize leaf tissue than those that fed on untreated leaf tissue. Some metabolites produced by 

endophytes are also toxic to insects, e.g. lolitrem B is a neurotoxin produced by some 

clavicipitaceous fungi and has been observed to result in slower development rates and higher 

mortality in stem weevil (Listronotus sp.) larvae feeding on diet containing the alkaloid (Gaynor 

and Rowan, 1986). Also, some Fusarium spp. produce fusaproliferin and beauvericin (Gupta 

et al., 1991; Logrieco et al., 1996), compounds reported to be toxic to insects through inhibition 

of phenoloxidase, an enzyme which acts against entomopathogens by means of 

encapsulation (Dowd, 1999). In addition to production of secondary metabolites, the presence 

of endophytes in host tissues may also trigger plant defences (via jasmonate signalling 

pathway) against insects, thereby inducing resistance to pests (Backman and Sikora, 2008). 

Endophytic entomopathogenic fungi may, therefore, be introduced into crops as biological 

control agents against insect pests (Shah and Pell, 2003).  

2.4.3    Fusarium spp. as endophytic biological control agents 

The genus Fusarium is a member of the order Hypocreales, which belongs to the class 

Ascomycetes (Seifert, 1996). Fusarium spp. are commonly found together with higher plants 

and are prevalent in terrestrial ecosystems (Ploetz, 2005), colonising a wide range of plant 

species, e.g. F. verticillioides infects over 1000 species (Bacon and Yates, 2006). Most strains 

are pathogenic to various crops causing wilts (Baayen et al., 1997; Akkopru and Demir, 2005; 

Sharma and Muehlbauer 2007; Muthomi et al., 2012) and rots (Mughogho and Rosenberg, 

1984; Croft, 2000; Akinsanmi et al., 2004; Afolabi et al., 2008), whilst others are endophytic 

(Bacon and Hinton, 1996; Bacon and Yates, 2006; Macia-Vicente et al., 2009; Zakaria and 

Rahman, 2011). Endophytic Fusarium strains have been isolated from maize (Bacon and 

Yates, 2006), barley (Macia-Vicente et al., 2008), wheat (Larran et al., 2007) and sugarcane 

(McFarlane et al., 2009). They have potential as biological control agents of pests and 

diseases as they produce a wide array of compounds that are harmful to insects and 
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pathogens. For example, Athman et al. (2006) and Zum Felde et al. (2006) reported that 

inoculation of banana roots with endophytic Fusarium resulted in lower numbers of the 

nematode Radopholus similis (Cobb) Thorne than in uninoculated plants. Endophytic 

Fusarium verticillioides was also shown to reduce maize smut disease symptoms induced by 

Ustilago maydis (Lee et al., 2009; Estrada et al., 2012). Kidane and Laing (2010) documented 

the negative effect an endophytic strain of F. oxysporum on its pathogenic counterpart F. 

oxysporum f. sp. cubense (E.F. Smith) Snyder and Hansen which causes wilt in banana. 

Navarro-Meléndez and Heil (2014) reported that endophytic Fusarium spp. experimentally 

introduced into Lima bean plants resulted in elevated levels of jasmonic acid, a plant signalling 

metabolite responsible for plant response against herbivory, as previously discussed. 

2.5    Fusarium spp. – Eldana saccharina interactions  

The wounds inflicted by E. saccharina on plants provide Fusarium spp access to the inner 

stalk tissues, thus resulting in an association between borer infestation and infection by the 

fungus. Moreover, studies in maize and sugarcane revealed that Fusarium spp. impact the 

biology of the lepidopteran during this interaction. For instance, Schulthess et al. (2002) 

reported that in maize, stalks infected by endophytic strains of F. verticilloides showed greater 

damage by E. saccharina than those treated with a fungicide. In addition, Ako et al. (2003) 

observed that E. saccharina oviposited approximately four times more on maize stems 

infected with F. verticillioides than on the uninoculated controls. Those studies in maize 

indicated that F. verticillioides promotes E. saccharina survival and development. Similarly, 

findings from studies in sugarcane by McFarlane et al. (2009) revealed that some endophytic 

Fusarium strains were beneficial to E. saccharina growth and survival in in vitro assays. Bartlet 

and Wicklow (1999) identified volatile alcohols aldehydes, esters and phenolics produced by 

F. verticillioides, which were responsible for attraction of sap beetles (Coleoptera: Nitidulidae) 

in bioassays. Ako et al. (2003) reported that these compounds are also known to attract 

lepidopterous stem borers. However, McFarlane et al. (2009) also reported that some 

Fusarium isolates exhibited harmful effects on E. saccharina larval weight and survival in 

dietary inclusion assays. Olfactory choice assays carried out in that study also indicated that 

these Fusarium isolates repelled the borer. These antagonistic effects of the Fusarium isolates 

on the pyralid may be due to action of metabolites such as beauvericin, fusaproliferin (Gupta 

et al., 1991; Logrieco et al., 1996) and fusaric acid (Dowd, 1999), which are insecticidal 

compounds known to be produced by Fusarium spp.  

The interactions between Fusarium spp. and E. saccharina have implications on control 

approaches for the lepidopterous pest in sugarcane. Curbing plant infection by Fusarium 

strains beneficial to E. saccharina may aid in reducing damage by the borer. More importantly, 
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Fusarium strains harmful to the lepidopteran may be employed as biological control agents 

against the pest. However, the latter approach is impeded by the susceptibility of sugarcane 

to Fusarium stem rot.      

2.6    Fusarium stem rot  

2.6.1    The pathogen 

Fusarium stem rot was first encountered in sugarcane in Barbados in 1922 (Cook, 1981). The 

species that causes the disease was initially named Fusarium moniliforme Sheldon 

(Anamorph: Gibberella moniliforme [Sheldon] Wineland) (Bourne, 1961). However, the 

taxonomy of the genus Fusarium has been problematic (Kruger, 1989; Thrane, 1989) due to 

inconsistency of the features used in identification of different species, thus leading to 

erroneous identification of some species (Edgerton, 1955; Nelson, 1991). The current 

classification system of this genus has 16 sections, 65 species and 77 subspecific varieties 

and forms (Leslie and Summerell, 2006). The genus is identified by the production of three 

types of asexual spores called conidia (Ohara et al., 2008). Macroconidia are large, slender, 

septate and canoe-shaped and are produced in fruiting bodies called sporodochia; 

microconidia are markedly different and are produced on aerial mycelium and chlamydopores 

are produced by some species (Seifert, 1996).  Fusarium moniliforme was described as the 

only species in section Liseola (Snyder and Toussoun, 1965). However, F. moniliforme was 

renamed F. verticillioides Sacc. (Marasas et al., 2001). Consequently, there was doubt on the 

identity of those isolates initially identified as “F. moniliforme” as they were not F. verticillioides 

(Leslie and Summerell, 2006). Leslie and Summerell (2006) stated that strains initially 

identified as F. moniliforme that were not F. verticillioides, would probably be called other 

species, e.g. F. fujikori from rice, F. thapsinum from sorghum and F. sacchari in sugarcane. 

However, using RFLP analysis, McFarlane and Rutherford (2005) identified F. sacchari, F. 

verticillioides, F. proliferatum, and F. subglutinans Wollenw. and Reink. in sugarcane stalks. 

In subsequent work with the aid of direct sequencing, isolates from sugarcane were identified 

as mainly F. sacchari and some as F. pseudonygamai O'Donnell and Nirenberg and F. 

verticillioides (McFarlane et al., 2009). 

 

2.6.2     The disease 

 
Infection of sugarcane by Fusarium occurs in stems that have been injured or damaged by 

borers Diatraea saccharalis Fabricius (Holliday, 1980) or E. saccharina (McFarlane et al., 

2009). The disease is characterised by red-brown discolouration of the parenchyma, which is 

darker in the vascular tissues. The fungus spreads in the xylem (Sivanesan and Waller, 1986) 
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resulting in the longitudinal splitting of the stalks, which reveals symptoms extending across 

internodes (Cook, 1981). Those symptoms are frequently found to spread rapidly, more 

towards the base than towards the top of the stem (Cook, 1981). The leaves wilt, turn yellow 

and dry up (Croft, 2000).  

 
Bourne (1961) reported that wilting in infected plants is probably induced by the wilting agent 

fusaric acid, which is produced by the fungus. The movement of the compound up the xylem 

in its undissociated state, results in faster advancement up the xylem because it is 

uninterrupted by the negatively charged components of the xylem walls (Bourne, 1961). The 

compound permeates through the cell walls of the vascular bundle parenchyma without 

difficulty, thereby permitting the fungus access to the vascular bundles where it elicits the most 

damage (Bourne, 1961). In addition, necrosis of infected plant tissue may be due to the action 

of fumonisins, which are phytotoxic compounds produced by Fusarium spp. (Nelson et al., 

1993; Marasas et al., 2000; Nishiuchi, 2013) that interrupt sphingolipid metabolism (Munkvold 

and Desjardins, 1997; Marasas et al., 2000; Torre-Hernandez et al., 2010). Sphingolipids are 

components of cell membranes (Munkvold and Desjardins, 1997), structurally similar to 

fumonisin B1 (Marasas et al., 2000) and are thought to be involved in signal transduction, 

membrane stability, programmed cell death and host-pathogen interaction in plants (Christie, 

2010). Monoliformin, also produced by Fusarium spp., may cause disease by inhibiting the 

mitochondrial oxidative enzyme, pyruvate dehyrogenase, affecting the entry of carbon into the 

Krebs cycle during plant respiration (Schuller et al., 1993; Nishiuchi, 2013). Other phytotoxins 

produced by Fusarium spp. which may be involved in disease development in plants include 

trichothecenes (Desjardins and Hohn, 1997; Menke, 2012), zearalenone (Miedaner, 1997; 

Logrieco et al., 2002) and fusarins (Desjardins and Proctor, 2007).  

 
Whilst Fusarium is mainly reliant on stalk borer damage for access into sugarcane stalks, it 

can also be transmitted via the cut ends of setts, immature adventitious roots, nodal leaf scars 

of stems planted in infected soils and the use of cane cuttings obtained from infected stems 

(Holliday, 1980). The fungus grows on decaying plant material and produces a large number 

of conidia (Bourne, 1961) that are spread by wind and rain (Croft, 2000). In the SA sugar 

industry, Fusarium stem rot is mainly a problem in association with E. saccharina damage 

where tissue surrounding the borer tunnels is discoloured, thus compounding damage caused 

by the pest. Production of sugarcane cultivars tolerant to Fusarium may aid in reducing such 

damage and also enable control of E. saccharina via endophytic biological control methods 

using insecticidal strains of the fungus. 
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2.7    Development of genotypes tolerant to Fusarium spp. 

2.7.1      Conventional breeding approaches 
 
In conventional breeding, carefully selected parents are crossed to reproduce offspring that 

exhibit specific characteristics that meet human requirements, based on sexual genetic 

inheritance of parental traits by the progeny according to Mendelian genetics (Acquaah, 2007). 

The variation generated in offspring is a result of gene recombination, varying chromosome 

number and mutations (Poehlman and Sleper, 1995). In this way, and for centuries, plant 

breeders have been developing crops with superior growth, yields and pest and disease 

resistance compared with their wild relatives (James, 2004; Ming et al., 2006; Todd et al., 

2014).  

Sugarcane breeders aim to produce varieties with high yield, high sucrose content, good 

ratoonability, low fibre levels and pest and disease resistance (Jackson, 2005; Srikanth et al., 

2011; Zhou, 2013a). The commercial sugarcane cultivars used today resulted from crosses of 

S. officinarum and S. spontaneum (Stevenson, 1965; Sreenivasan et al., 1987; Butterfield et 

al., 2001; Ming et al., 2006; Singh et al., 2010; Todd et al., 2014). However, the reproductive 

biology and complex genome of sugarcane complicate breeding of genetically-improved 

varieties by conventional means (Selman-Housein et al., 2000; Gill et al., 2004; Ming et al., 

2006). For instance, flowering in male and female parent plants does not coincide (Selman-

Housein et al., 2000) and pollen production varies between varieties causing variation in 

crossing and selfing (James, 2004). In addition, pollen viability is short-lived, thus making it 

difficult for sugarcane breeders to carry out intended crosses (Anon, 2004). Offspring of 

parents are surveyed in a number of crosses and promising genotypes are then selected 

(Stafne et al., 2001; Tai et al., 2003; Berding et al., 2004). Due to the polyploidy of sugarcane, 

a single cross can produce large numbers of offspring that vary in a range of features which 

include size, yield and disease resistance (Barnes, 1964; Olaoye, 2001; Berding et al., 2004). 

Furthermore, sugarcane genotypes differ in fertility and produce small seed that is fertile under 

specific conditions (Poehlman and Sleper, 1995; James, 2004). Hence, sugarcane breeding 

is a laborious and time-consuming process, with developement of new superior clones taking 

12-15 years (Burnquist 2001; Butterfield et al, 2001; Lakshmanan, 2005). Nevertheless, some 

Fusarium-tolerant genotypes have been produced through conventional breeding in 

sugarcane (Lyrene et al., 1977), maize (Kozhukhova et al., 2007; Afolabi, 2008; Tembo et al., 

2013) and wheat (Jansen et al., 2005; Lv et al., 2014). 

Biotechnological tools can be used to assist conventional breeding and reduce the time taken 

in producing desired genotypes (Selman-Housein et al., 2000; Wang et al., 2005; Garcia and 

Mather, 2014). For example, marker-assisted selection (MAS) has been utilised to assist 
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breeders to select for certain genes in crops (Wang et al., 2005, Singh et al., 2013b). Genetic 

maps that show the position of certain genes on the chromosomes have been constructed for 

various crops, aiding plant breeders in breeding programs (Poehlman and Sleper, 1995; Bohra 

et al., 2014). This approach, called molecular breeding (Wang et al., 2005), has been widely 

used in breeding programs of cereals and other crops (Butterfield et al., 2001; Korzun, 2003; 

Pan et al., 2003; Wang et al., 2005, Singh et al., 2013b; Garcia and Mather, 2014). However, 

due to the polyploid nature of sugarcane, the link between the genes and alleles present in 

the genotype and their expression in the phenotype is complicated by silencing and differential 

expression of gene copies (Butterfield et al., 2001, Manners, 2011). Current advancements in 

elucidating sugarcane sequences will enable the utilisation genomic information resources in 

breeding strategies for the crop (De Setta et al., 2014). 

 

2.7.2    Genetic engineering  
 
 
Genetic transformation is the insertion of specific genes into a genome where the inserted 

gene is expressed (Poehlman and Sleper, 1995). Crops that have been transformed and are 

commercially available include canola, cotton, maize, tomato and soybean (ISAAA, 2013). In 

2012, there were 17.3 million farmers in 28 countries cultivating transgenic crops under 170.3 

million hectares, which increased to 175 million hectares in 2013 (ISAAA, 2013). Sugarcane 

transformation started in the 1980s (Chen et al., 1987) and particle bombardment has been 

the main method used to introduce genes into sugarcane cells (Allsopp and Manners, 1997; 

Snyman et al., 2000; Kaur et al., 2007; Van der Vyver et al., 2013; Joyce et al., 2014). Cell 

electroporation (Arencibia et al., 1999) and Agrobacterium tumefaciens-mediated 

transformation (Dong et al., 2014; Kumar et al., 2014), have also been used.  

The high chromosome numbers and genomic complexities of sugarcane makes expression of 

inserted genes complicated (Lakshmanan et al., 2005; Xue et al., 2014). However, strategies 

for the development of disease resistant transgenic sugarcane have been established. They 

involve insertion of genes capable of degrading or inactivating pathotoxins, producing 

polypeptide signals that induce expression of protease inhibitors and producing enzymes that 

enhance the toxicity of antibiotics produced by plants (Allsopp and Manners, 1997), 

expression of untranslatable virus coat proteins (Zhu et al., 2011) and RNA inference of virus 

coat proteins (Zhuo et al., 2014). Resistance has been achieved by genetic transformation for 

diseases which include sorghum mosaic virus (SrMV) (Ingelbrecht et al., 1999), sugarcane 

leaf scald (Zhang and Birch, 2000), sugarcane rust (Puccinia melanocephala Syd. and Syd.) 

(Enriquez et al., 2000), Fiji disease virus (McQualter et al., 2004), sugarcane yellow leaf virus 
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(ScYLV) (Gilbert et al., 2009; Zhu et al., 2011) and sugarcane mosaic virus (ScMV), (Gilbert 

et al., 2005; Zhuo et al., 2014). Other traits that have been introduced into sugarcane by 

genetic transformation include increased sucrose content, suppressed flowering and 

resistance to sugarcane borers D. saccharalis (Burnquist, 2006), Proceras venosatus Walker 

(Weng et al., 2011), herbicide (van der Vyver et al., 2013), drought (Reis et. al., 2014) and 

salinity (Kumar et al., 2014) tolerance. However, none of these is available commercially.  

Makandar et al. (2006) obtained resistance to Fusarium head blight in wheat (caused by F. 

graminearum) by inserting the NRP1 gene from Arabidopsis thaliana. In maize, F. moniliforme 

infection was reduced by controlling the European corn borer by inserting genes coding for 

the endotoxin cryIA(b) produced by B. thuringienesis, which resulted in lower levels of 

fumonisins that cause symptoms of Fusarium ear rot (Munkvold et al., 1997).  Funnell and 

Pedersen (2006) inserted genes that lowered the lignin levels in sorghum, which resulted in 

resistance to F. moniliforme. Gaspar et al. (2014) obtained resistance to F. oxysporum in 

cotton by transforming calli to express the NaD1, a defensin that has antifungal properties.  

Ramgareeb and Rutherford (2006) found antifungal peptides that are potent against Fusarium 

and smut in sugarcane, of which the ponericin PONG1, was the most effective. Furthermore, 

its activity was shown to be enhanced by an indolicidin REV4, when the two were used in 

combination. Genes that code for these peptides can be inserted into the sugarcane genome 

to control Fusarium and smut.   

Despite research and development being carried out since the 1980s (Chen et al., 1987), the 

first transgenic sugarcane variety in the world was only approved for commercialisation in 

2013 in Indonesia (www.thejakartapost.com). This slow adoption of genetically modified 

sugarcane is due to limitations which include transgene silencing, inadequate knowledge 

about inheritance of transgenes (Lakshmanan et al., 2005), legislation (Burnquist, 2006, 

Arruda, 2011; Meyer and Snyman, 2013) and intellectual property issues (Birch, 2014). 

Further, transformation of monocotyledons is limited by inefficient transformation systems and 

low cell competence (Sood et al., 2011). 

 

2.8     In vitro culture systems 
 
In vitro culture refers to the culture of plant cells, tissues and organs, under controlled sterile 

laboratory conditions that allow them to regenerate into whole plants (Jain, 2006; Thorpe, 

2007). The process manipulates the cells’ ability to regenerate into whole plants (totipotency) 

(George, 1993; Litz and Gray, 1995). Since its discovery in the 1930-1940s, plant cell culture 

has been an essential part in plant improvement (Sangwan et al., 1997), with a wide 

application in plant physiology and biotechnology strategies (Karp, 1995, Birch, 2014). 

http://www.thejakartapost.com/
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Sugarcane culture was first successfully carried out by Nickel (1964), who produced calli which 

later developed roots. Whole plant regeneration was then achieved by Heinz and Mee (1969). 

Since then, sugarcane culture has had various applications, e.g. micropropagation (Lee, 1987; 

Baksha et al.,2002; Pawar et al., 2002; Cheema and Hussain, 2004; Meyer et al.,  2007; 

Behera and Sahoo, 2009; Kaur and Sandhu, 2014), virus elimination (Irvine and Benda, 1985; 

Parmessur et al., 2002; Snyman et al., 2005; Ramgareeb et al., 2010, Neelamathi et al., 2014), 

genetic transformation (Snyman et al., 2000; Snyman, 2004; Lakshamanan et al., 2005; Shah 

et al., 2009, Joyce et al., 2014), improvement via somaclonal variation (Krishnamurthi and 

Tlaskal, 1974; Liu and Chen, 1978; Peros et al., 1994; Patade et al., 2005; Singh et al., 2008) 

and germplasm preservation (Gnanapragasam and Vasol, 1990; Taylor and Dukic, 1993; Watt 

et al., 2009; Nogueira et al., 2013). 

Conventionally, sugarcane is vegetatively propagated by means of stem cuttings (known as 

setts) with 2-3 nodes (Behera and Sahoo, 2009) which results in a low rate of plant 

multiplication, viz. 10-20 plants being produced per stalk (Geijskes et al., 2003). The planting 

material also causes spreading of diseases (Hoy et al., 2003). Consequently, the distribution 

of new cultivars to farmers is time consuming. In comparison, Geijskes et al. (2003) showed 

that micropropagation is up to 35 times more productive than the conventional approach. At 

the SASRI, Snyman et al. (2008) found that 32-600 plants per stalk could be obtained from 

different SA sugarcane varieties. Sugarcane micropropagation is, therefore, a highly beneficial 

technique for the rapid production of good quality planting material (Bailey and Brechet, 1989; 

Karim et al., 2004; Roy and Kabir, 2007; Ali et al., 2008; Khan et al., 2008; Behera and Sahoo, 

2009; Kaur and Sandhu, 2014).  

Whole plants can be regenerated in vitro via somatic embryogenesis or organogenesis (Fig. 

5) and each of the two morphogenic routes has wide applications (Table 2). Organogenesis 

involves the regeneration of plants either directly from tissues (e.g. shoot tips) or indirectly 

from callus, an undifferentiated mass of cells (George, 1993). Regeneration via direct 

organogenesis, i.e. without the callus stage, reduces the chance of obtaining variant plants 

through somaclonal variation (Lakshmanan et al., 2006). In sugarcane, the manipulation of 

plant growth regulators, i.e auxins and cytokinins in the medium, results in the formation of 

shoots and roots from callus (Lee, 1987; Karim et al., 2004; Behera and Sahoo, 2009; Dibax 

et al., 2013), shoot tips (Fitch et al., 2001; Baksha et al., 2002; Pawar et al., 2002; Ali et al., 

2008; Sughra et al., 2014) and auxillary buds (Cheema and Hussain, 2004; Mekonnen et al., 

2014). In somatic embryogenesis, somatic cells form bipolar embryos that are similar to those 

formed from zygotic cells (Ahloowalia and Maretzki, 1983; Litz and Gray, 1995; Ali et al., 
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Figure 5: Illustration of indirect and direct morphogenesis routes in sugarcane plantlet 

regeneration (from Snyman, 2004). 

2007a). Somatic embryo formation, similar to zygotic embryo development, is characterised 

by the development of cells into globular, heart-shaped and finally torpedo-shaped stages in 

dicotyledons (Terzi and Loschiavo, 1990; Zimmerman, 1993; Litz and Gray, 1995; Dodeman 

et al., 1997; Malabadi et al., 2011) or globular, scutellar and coleoptilar stages in 

monocotyledons (Gray et al., 1995). Burrieza et al. (2012) demonstrated the accumulation and 

nuclear localisation of dehydrins (proteins usually expressed late in zygotic embryogenesis) 

in sugarcane embryos, thus indicating their involvement in induction and maintenance of 

somatic embryogenesis. 

As with organogenesis, somatic embryos can be produced directly from cells of the explant 

(e.g. leaf roll), i.e. direct somatic embryogenesis (Snyman, 2004) or indirectly via a callus 

stage, i.e. indirect somatic embryogenesis (Ho and Vasil, 1983; Snyman, 2004; Malabadi et 

al., 2011). Sugarcane produces compact embryogenic callus, friable non-embryogenic callus 

and mucilaginous non-embryogenic callus (Ho and Vasil, 1983; Guiderdoni and Demarly, 

1988; Lakshmanan, 2006; Rae et al., 2014). The ability of sugarcane leaf segments to produce 

calli of different embryogenic potential was demonstrated by Guiderdoni and Demarly (1988). 

Those authors reported that the innermost sheath produces white compact embryogenic 

callus, the intermediate produces friable non-embryogenic callus and the outer produces 

mucilaginous non-embryogenic callus. Sugarcane embryos can be produced directly from leaf 
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Table 2: Examples of applications of different in vitro morphogenesis routes in sugarcane. 

 

  

Application Morphogenesis route  Reference 

Micropropagation Direct organogenesis 

Indirect organogenesis 

Direct somatic embryogenesis 

Direct organogenesis 

Baksha et al. (2002) 

Meyer et al. (2007)  

Behera and Sahoo (2009) 

Kaur and Sandhu (2014) 

Pathogen elimination 

Sugarcane mosaic virus 

Yellow leaf syndrome (YLS), 

 sugarcane yellow leaf virus 

Ratooning Stunting disease, 

sugarcane mosaic virus,  

sugarcane yellow leaf virus, 

sugarcane leaf yellows 

phytoplasma 

Sugarcane mosaic virus, 

sugarcane  yellow leaf virus 

 

Direct organogenesis 

Indirect somatic embryogenesis 

and direct organogenesis 

Direct somatic embryogenesis 

 

 

 

 

Indirect somatic embryogenesis, 

direct and indirect organogenesis 

 

Irvine and Benda (1985) 

Parmessur et al. (2002) 

 

Snyman et al. (2005) 

 

 

 

 

Ramgareeb et al. (2010) 

Genetic transformation 

 

Direct and indirect somatic 

 embryogenesis 

Direct somatic embryogenesis 

Direct organogenesis 

Snyman et al. (2000) 

 

Snyman et al. (2006) 

Kumar et al. (2014) 

Breeding 

Fiji disease resistance 

 

Performance and yield 

Sugarcane rust and yield 

Salinity and drought tolerance 
  
Red rot, yield, height  

Drought tolerance 

 

Indirect organogenesis 

 

Indirect organogenesis 

Direct and indirect organogenesis 

Indirect somatic embryogenesis 

Indirect somatic embryogenesis 

Indirect somatic embryogenesis  

 

Krishnamurthi and Tlaskal 

(1974) 

Liu and Chen (1978) 

Peros et al. (1994) 

Patade et al. (2005) 

Singh et al. (2008)  

Rao and Ftz (2013) 

Germplasm preservation 

Cryopreservation 

 

Cryopreservation 

 

Slow growth 

 

Indirect somatic embryogenesis 

 

Indirect somatic embryogenesis 

Direct organogenesis  

Indirect somatic embryogenesis 

 

Gnanapragasam and Vasil 

(1990) 

Chanprame et al. (1993) 

Taylor and Dukic (1993)  

Watt et al. (2009) 
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discs and indirectly from callus on media containing low and high concentrations of 2,4-D (2,4-

Dichlophenoxyacetic acid), respectively (Snyman et al., 2000; Laskshmanan, 2006; Sharma 

et al., 2007) and no callus forms in the absence of 2,4-D (Ho and Vasil, 1983). Other plant 

growth regulators used in sugarcane somatic embryogenesis include benzylaminopurine 

(BAP), kinetin (Gill et al., 2004) 3,6-dichloro-O-anisic acid (dicamba), naphthaleneacetic acid 

(NAA) and 4-fluorophenoxyacetic acid (4-FPA) (Brisibe et al., 1994).  Chengalrayan et al. 

(2005) produced callus from sugarcane seeds on media containing picloram. Embryo 

formation in sugarcane is also dependent on the genotype with different varieties requiring 

media with varying levels of auxins, sugar and amino acids (Ozias-Akins et al., 1992; Ito et al., 

1999; Gill et al., 2004; Onay et al., 2007; Birch, 2014). Embryo germination generally occurs 

in media with no auxins (Snyman et al., 2000; Parmessur et al., 2002; Ramgareeb et al., 2010). 

2.8.1     In vitro culture-induced variation 
 

Somaclonal variation in in vitro cultured plants was first described by Larkin and Scowcroft 

(1981) when they observed the resistance of previously susceptible in vitro plants to the toxin 

produced by Helminthosporium sacchari Butler, which causes eyespot in sugarcane. They 

called this spontaneous genetic change somaclonal variation, and defined it as heritable 

genetic variation that results from in vitro culture. However, variations in in vitro cultured 

sugarcane had been observed before by Heinze and Mee (1969). Since then, somaclonal 

variation has been utilized vastly in crop improvement, and is known to occur in many plant 

species (reviewed by Bairu et al., 2011), including barley (Bregitzer et al., 2002), maize 

(Vasconcelos et al., 2008), petunia (Abu-Qaoud et al., 2010), olives (Peyvandi et al., 2010), 

potato (Ehasanpour et al.,2007), rice (Ngezahayo et al., 2007), sorghum (Raveendran et al., 

1998), strawberry (Mohamed, 2007), sugarcane (Larkin and Scowcroft, 1983; Burner and 

Grisham, 1995; Snyman et al.,  2011; Rutherford et al., 2014) and wheat (Abouzied, 2011). 

Alterations in a cell’s genome may result from stress induced on cells when they are exposed 

to new environments (McClintock, 1984). When cells are cultured in vitro, they are exposed to 

conditions of high sucrose, nitrogen, salt concentrations and osmotic potential different to 

those of soils. In addition, culture media usually contain plant growth regulators, which induce 

stress on the cells (Desjardins et al., 2009; Lebeda and Svabova, 2010). Consequently, the 

cell’s control mechanisms may break down leading to changes in the genome through different 

processes (Phililps et al., 1994; Campbell et al., 2011). For example, changes in DNA 

methylation patterns can affect gene expression by changing the structure of chromatin 

resulting in breaking of chromosomes due to delayed DNA replication (Kaeppler and Philips, 

1993; Stelpflug et al., 2014). DNA methylation has also been shown to result in the 

transposition of genetic elements in genomic DNA (Brown, 1989; Wang et al., 2013). As a 
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result, increased DNA methylation leads to decreased gene expression and conversely, 

reduced DNA methylation enhances gene expression (George, 1993; Zhao and Chen, 2014). 

Variation also occurs due to activation of transposable elements as a result of in vitro culture 

(McClintock, 1984; Hirochika et al., 1996; Kaeppler et al., 2000; Peschke et al., 2000; Zhang 

et al., 2014). The activated transposable elements cause a change in the DNA sequence that 

can lead to a change in gene expression (Rossi et al., 2001; Zhang et al., 2014). In addition, 

when cells are in stressful conditions, the number of copies of a specific gene within the 

genome can increase during cell differentiation, leading to an increase in mRNA synthesis and 

higher levels of the respective protein, which can manifest in the phenotype (Larkin and 

Scowcroft, 1981; Teaster and Hoagland, 2014). 

Changes in chromosome structure can also occur during cell division due to stress of the 

culture environment, through inversion, deletion, fusion and duplication of sections of the 

chromosomes (Larkin et al., 1989, Acanda et al., 2013). Further, single base pair changes in 

the DNA sequence can occur due to the breakdown of systems that control the base 

sequencing (Philips et al., 1994). Larkin and Scowcroft (1981) reported that the different 

mechanisms by which somaclonal variation may occur seem to be applicable to situations 

where variation already exists in the explant whilst others apply when cells are in culture. 

PontaroliI and CamadroII (2005) proposed that pre-existent ploidy variation within the explant 

may be a source of somaclonal variation. However, some of the variation observed in culture 

is epigenetic, i.e. it is reversible and cannot be passed on sexually to the next generation 

(George, 1993; Kaeppler et al., 2000; Joyce et al., 2003; Patade et al., 2005).  These 

epigenetic effects are due to changes in gene expression regulating mechanisms and not 

changes in the genetic sequence of the gene, which may be expressed in divided cells after 

mitosis, but not in the offspring of the regenerated plants after sexual reproduction (Chaleff, 

1983). For instance, Sun et al. (2013) observed diminished pollen viability in regenerants 

torenia (Torenia fournieri Lind.) after one to nine sub-cultures. However, after sexual crosses, 

the pollen viability was recovered suggesting that epigenetic, and not genetic, factors such as 

DNA methylation were responsible the observed variation.  

The extent of variation in cells also depends on the type of explant used (George, 1993) with 

variation likely to be greater in older and more differentiated material (Karp, 1995; Wang and 

Wang, 2012). Interestingly, Wang and Wang (2012) also reported that in some cases older 

cultures may exhibit less somaclonal variation. Genetic differences between the parent and 

the somaclones are less when plants are obtained from axillary meristems as opposed to 

regeneration via a callus stage (Hanna et al., 1984; Ali et al., 2008). Through molecular 

analysis of somaclones in sugarcane, Zuchhi et al. (2002) found that some genotypes are 

more prone to somaclonal variation than others. This may be due to varying ploidy levels 
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amongst species, with variation being expressed more in haploids and diploids than in 

polyploids (Karp, 1995). In addition, as different genotypes differ in genetic stability they may 

differ in susceptibility to mutations (Joyce et al., 2003). Inclusion of plant growth regulators, 

auxins and cytokinins, singly or in combination, in the medium can result in cells mutating 

(George, 1993). For example, Bairu et al. (2006) showed that growth regulators increase 

somaclonal variation by increasing cell division in bananas. Other commonly used media 

constituents, e.g. yeast extract, coconut milk, kinetin and micronutrient metals, have also been 

shown to alter the ploidy level of cells and cause chromosome damage (George, 1993). For 

these reasons, the length of time cells are in culture affects the degree of variation (Burner 

and Grisham, 1995; Sun et al., 2013). 

Somaclonal variation is undesirable when true-to-type plants are required, e.g. during 

micropropagation (Litz and Gray, 1995; Bouman and De Klerk, 2001; Kour et al., 2012) and 

in transgenic plants (Joyce et al., 2014). In such cases, molecular studies to detect variants 

are necessary (Khoddamzadeh et al., 2013; Bello-Bello et al., 2014). However, somaclonal 

variation is also a source of variant plants that can be utilised for plant improvement (Patade 

et al., 2005; Rutherford et al., 2014). New traits, which conventional breeding may be unable 

to develop, can be obtained through screening large numbers of somaclonal variants (Jain, 

2001). Despite the discovery of somaclonal variation in the 1940s, its application to crop 

improvement only started to be utilised in the 1970s (Thorpe, 2007). Table 3 shows examples 

from sugarcane in which somaclones have been screened for disease resistance. Other traits 

which have been developed in sugarcane through somaclonal variation include increased 

yield and performance (Liu and Chen, 1978), low fibre content, longer internode lengths 

(Rajeswari et al., 2009), drought tolerance (Rao and Ftz, 2013) and sugar yield (Raza et al., 

2014). 

2.8.2   Induced mutagenesis 

a) Principles and types of mutagens 

 
Mutagenesis refers to the artificial induction of genetic variation via the use of physical or 

chemical mutagens (Drake and Koch, 1976; Anderson, 1995). It was first carried out using X-

rays in the fruit fly Drosophila spp. by Muller in 1927 (Van Harten, 1998). In plants, various 

methods which include heat treatment, centrifugation and ageing of seeds, were initially 

carried out in an attempt to induce mutations (Van Harten, 1998). Ionizing radiation, X-rays, 

gamma rays and thermal neutrons were later used, but the first attempts resulted in low 

mutation frequencies and lethal effects on the plants, which were resolved by improving 

treatment conditions (Novak and Brunner, 1992; Brunner, 1995). Mutagens that have been 
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Table 3: Examples of pest and disease resistance traits obtained via somaclonal variation in 

sugarcane 

 
Disease/pest References 

 
Fiji disease virus 

Eyespot (H. sacchari) 

Sugarcane borer (D. saccharalis) 

Red rot (C. falcatum) 

Brown rust (Puccinia melanocephala Syd. & Syd.) 

Sugarcane mosaic virus 

 
Krishnarmurthi and Tlaskal (1974) 

Larkin and Scowcroft (1983) 

White and Irvine (1987)  

Singh et al. (2008); Sengar et al. (2009) 

Litardo et al. (2011) 

Khan et al. (2013) 

 

used in sugarcane include sodium azide, ethyl methanesulphonate, 5-azacytidine and gamma 

rays (reviewed by Rutherford et al., 2014). The mechanisms that result in mutations during 

induced mutagenesis are similar to those that result in spontaneous mutations during in vitro 

culture (Jain et al., 1998). However, the frequency of mutagen-induced mutations is higher 

than that of spontaneous mutations in in vitro culture (Novak and Brunner, 1992). Obtaining 

desired mutations through the use of mutagens is based on chance and may also result in 

lethal effects that can disrupt normal plant development (Roane, 1973; Nair et al., 2014). 

The use of physical mutagens in mutation breeding in plants dates back to the early 20th 

century with the use of X-rays and later, gamma and neutron radiation (Novak and Brunner, 

1992). They have been used in mutation breeding of sugarcane and many other crops (Van 

Harten, 1998, Nawaz and Shu, 2014). Mutation efficiency of physical mutagenic agents 

depends on the dose, dose rate, dose distribution and exposure time (Brunner, 1995; 

Suprassana et al., 2009). The establishment of these parameters relies upon radiation type, 

radiation facilities and the type of material to be exposed to the radiation (Brunner, 1995). X-

rays and gamma rays can penetrate deep into the tissue due to limited scattering and 

concentration of the ion beam on the plant tissue leading to high mutation frequency compared 

with UV-light and neutron radiation (Suprasanna et al., 2009). Furthermore, X-rays and 

gamma rays cause the formation of radicals that break DNA strands (Waugh et al., 2006) and 

ionize nitrogenous bases, especially during DNA replication, leading to heritable errors in the 

base sequence (Medina et al., 2005). UV-light causes covalent bonding between neighbouring 

pyrimidines resulting in the formation dimers that alter DNA replication (Waugh et al., 2006). 

Physical mutagens are less hazardous and are easier to handle compared to chemical 

mutagens (Suprasanna et al., 2009), but are relatively expensive due to the equipment 

required (Poelhman and Sleper, 1995).  
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Chemical mutagens used in mutagenesis include hydroxylamine, methyl methanesulfonate 

(MMS), N–methyl-N–N–nitrosoguanidine (MNNG), ethyl methanesulfonate (EMS), nitrous 

acid and N-methyl-N-nitrosourea (MNU) (Inoue, 2006; Shu et al., 2012). The mechanisms by 

which they effect changes in DNA include base analog, intercalation and base modification 

(Waugh et al., 2006), which result in different types of mutations (Table 4). Mutation frequency 

is dependent on the concentration, temperature and pH of the mutagen (Van Harten, 1998) 

and access of cells to the mutagen in the cell-mutagen suspension (Durand, 1990; Chen et 

al., 2013). 

Ethyl methanesulfonate (EMS) has been widely used in mutagenesis of many plant species 

that include palm (Omar and Novak, 1990), wheat (Masrizal et al., 1991), Arabidopsis (Jander 

et al., 2003), sweet potato (Luan et al., 2007), soyabean (Van et al., 2008), banana (Chen et 

al., 2012) and rice (Serrat et al., 2014). In sugarcane, this mutagen has been used in mutation 

breeding for various traits including high sugar content (Khairwal et al., 1984), salt tolerance 

(Kengenal et al., 2008), herbicide tolerance (Koch et al., 2012) and disease resistance 

(Mahlanza et al., 2013). It is a popular mutagen because of its ability to induce high point 

mutation frequencies without causing lethal abnormalities to the chromosomes (Waugh et al., 

2006; Weil and Monde, 2009; Nair et al., 2014). Ethyl methanesulfonate is an alkylating agent 

that induces the alkylation of guanine to form O2-ethylguanine which is capable of pairing with 

thymine instead of cytosine (Kim et al., 2006; Waugh et al., 2006). This results in errors during 

DNA repair with the A-T pair replacing G-C (transition mutation) (Anderson, 1995; Davies et 

al., 1999), especially during DNA replication (Durand, 1990). The methylation inhibitor 5-

azacytidine has also been used in sugarcane to obtain variants with tolerance to the Ustilago 

scitaminea Syd. and Syd. and the herbicide imazapyr (Munsamy et al., 2013).  

Mutagenesis can be carried out using parent material or in vitro cultures (Suprassana et al., 

2009). Axillary and adventitious buds, apical meristems (Ahloowalia and Maluszynski, 2001), 

anthers (Mulwa and Mwanza, 2006) and seeds (Rahman et al., 2013) can be used. Plants 

produced from mutated embryogenic callus cells can be chimeric as a result of mutations 

occurring unevenly amongst the diploid cells (Van Harten, 1998; Datta and Chakrabarty, 2009, 

Shu et al., 2012). Consequently, the use of haploid cell cultures (e.g. microspores) is favoured 

over diploid cultures due to the expression of recessive genes without being masked by 

dominant genes after crossing (Swanson et al., 1989; Suprassana et al., 2009). The haploid 

plants that result can be inbred to produce diploid plants with the desired traits, making 

selection easier and less time consuming (Mulwa and Mwanza, 2006). In addition, the 
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Table 4: Examples of chemical mutagens and the damage they induce in DNA (Inoue, 2006) 

 
Chemical mutagen Mode of action Mutation type 

 
4-nitroquinoline 1-oxide (4-NQO), 
Diepoxybutane (DEB) 
 
ICR-170 
 
Mitomycin C (MMC), 
1, 2, 7, 8- diepoxyoctane (DEO) 
 
N-methyl- N’-nitro-N-nitrosoguanidine (MNNG), 
Ethyl methane sulfonate (EMS), 
Methyl methane sulfonate (MMS) 
 
Nitrous acid (NA), 
Hydroxylamine (HA) 
 
2-amino purine (2AP) 
 

 
DNA adducts 
 
 
Intercalation 
 
Interstrand cross-
linking 
 
Alkylation 
 
 
 
Modification of bases 
 
 
Base analog 

 
Base-pair substitution 
 
 
Frameshift 
 
Deletion 
 
 
Base-pair substitution 
 
 
 
Base-pair substitution 
 
 
Base-pair substitution 

 

production of double haploids from mutagenized microspores or anthers, assists in preventing 

formation of chimeras leading to the regeneration of plants with homozygous alleles 

(Maluszynski et al., 1995; Sugihara et al., 2013). Hence, the generation of double haploids 

makes selection of mutants more efficient (Griffing, 1975; Huang et al., 2014). However, the 

difficulty of the technique and complexity of sugarcane genetics, renders use of haploids in 

improvement of the crop a challenging approach (Palmer et al., 2005).  

b) Selection of variant cells and plants 

 
The development of effective strategies for selection of desirable traits is an important step in 

plant breeding programmes (Roane, 1973; Van den Bulk, 1991; Novak and Brunner, 1992; 

Lebeda and Svabova, 2010). Conventionally, selection of traits of interest is carried out in the 

field, but this is laborious and time-consuming compared with in vitro selection techniques 

(Novak and Brunner, 1992; Jain, 2001; Patade et al., 2008). This is because a selection 

pressure can be applied to in vitro cultured cells and/or to the regenerated plants in the culture 

medium and subsequently to the field plants (Maluszynski et al., 1995; Chandra et al., 2010). 

Rutherford et al. (2014) reviewed studies in which in vitro and ex vitro screening were used to 

obtained sugarcane somaclonal variants with resistance to biotic and abiotic stresses and 

desirable agronomic traits. This approach allows for selection of a large number of mutant 

cells and plants in a small space and provides a specific and controlled environment that is 

free from biotic and abiotic factors that might negatively influence selection (Chaleff, 1983; 

Duncan and Widholm, 1990; Clemente and Cadenas, 2012). Cells can be exposed to 

herbicides (Koch et al., 2012), water stress (Rao and Ftz, 2013), high salt concentrations (Al-
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Rawahy and Farooq, 2014) and fungal toxins (Mahlanza et al., 2013; Vedna and Kumar, 

2014). In addition, the technique allows for the introduction of a pathogen in a controlled 

environment, negating the need for strict quarantine if carried out ex-vitro (Chandra et al., 

2010).  

However, limitations of in vitro selection are that traits expressed at the cellular level might not 

be expressed at the plant level (Daub, 1986). Furthermore, the technique cannot be used to 

select certain phenotypic traits (e.g. agronomic traits), which require cell differentiation and 

organisation (Chaleff, 1983; Rai et al., 2011). When the desired traits are dominant and 

homozygous recessive, resistant cells and plants can be selected immediately, but crossing 

is necessary in cases of heterozygous plants in order to obtain plants with recessive traits 

(Allard, 1999). The traits expressed in cells as a result of epigenetic variation may not be 

expressed in the progeny of the plants, as the epigenetic effects are reversed by meiosis 

during sexual reproduction (Chaleff, 1983; George, 1993; Suprassana et al., 2009). 

To apply a selection pressure in vitro, the concentration of the selection agent that kills or 

inhibits the growth of cells, has to be established for incorporation into the selection medium 

(Mahlanza et al., 2013). Exposure of cells to the selection agent can either be single-step with 

2-3 times the lethal dose of the agent, or multiple-step where the concentration of the selection 

agent is gradually increased, starting at the lethal concentration (Suprassana et al., 2009). 

Screening for disease resistance involves the use of a selection agent known to be involved 

in pathogenicity and ensuring uniform exposure of each cell, such that susceptible cells are 

killed and the resistance ones survive and regenerate into plants (Daub, 1986; Lebeda and 

Svabova, 2010). The pathogen, its toxins or culture filtrates, can be used in selecting lines that 

are disease resistant. 

i) Use of pathogens in selection 

 
The pathogen responsible for causing a disease can be used as an in vitro selection agent for 

resistance (Daub, 1986; Van den Bulk, 1991; Lebeda and Svabova, 2010) (Table 5). Fungal 

conidia can be inoculated onto shoot cultures and these visually monitored for resistance to 

the fungus, provided there is a correlation with the effect of the fungus in vivo (George, 1993; 

Devnarain, 2010). Factors that may influence the expression of resistance include the 

concentration of the inoculum, temperature and the composition of the medium (Xue and Hall, 

1992; Bertetti et al., 2009), which may lead to inconsistent results being obtained (Daub, 

1986). Moreover, this option has limitations including: 1) uneven exposure of the cells to the 

pathogen; 2) whether resistance can be expressed in in vitro cultured cells; and 3) the 

overgrowth of the pathogen on the cells and medium, which makes it difficult to make 

observations (Daub, 1986; Slavov, 2005). 



36 
 

 
 

 

ii)    Use of toxins and culture filtrates in selection 
 
 
Fungi secrete toxins as a mode of protection against a host plant’s defences, enabling them 

to kill host cells and in the process induce disease symptoms (Nishiuchi, 2013). These toxins 

cause wilting, necrosis and chlorosis of plants (Chandra et al., 2010). Over 250 fungal and 

bacterial phytotoxins have been extracted and characterised (Lebeda and Svabova, 2010). 

They can, therefore, be used as in vitro selection agents (Chandra et al., 2010) (Table 5). This 

strategy allows uniform exposure of the cells to the selection pressure by culturing them on 

media containing the toxin (Daub, 1986). A prerequisite for the use of a toxin is to determine 

that it contributes to pathogenesis, i.e. that it is a pathotoxin (Van den Bulk, 1991; Slavov, 

2005). To determine this, various approaches can be undertaken, viz.:1) the phytotoxin can 

be extracted from the infected plant; 2) the phytotoxin’s presence at a crucial stage of the 

disease can be tested; and 3) the phytotoxin’s ability to induce symptoms on the plant can be 

assessed (Yoder, 1980; Slavov, 2005). Further, the gene(s) responsible for the synthesis of 

the toxin can be made dysfunctional and pathogenesis of the mutated fungus can then be 

assessed (Desjardins and Hohn, 1997). In this strategy, it is postulated that cells resistant to 

the phytotoxins will also be resistant to the pathogen (Daub, 1986; Van den Bulk, 1991; 

Desjardins and Hohn, 1997; Chandra et al., 2010). Consequently, initial tests should be 

conducted to establish the effect of the toxin or filtrate on the plant tissue cultures to determine 

a suitable concentration of the toxin or filtrate that can be used in selection (Lebeda and 

Svabova, 2010; Grzebelus et al., 2013). However, due to the conditions provided in vitro, the 

concentration of toxins produced is likely to be greater than that produced by the fungus in 

vivo (Yoder, 1980, Sharma et al., 2010). This might result in a weak correlation between the 

amount of toxin in vitro and virulence of the fungus in vivo (Yoder, 1980; Tripathi et al., 2008). 

 

The purified toxins can be used in selection strategies (Remotti et al., 1997; Khan et al., 2004; 

Slavov, 2005). They can be purified from culture filtrates (Mayama et al., 1990; Alvi and Iqbal, 

2014) or acquired from commercial suppliers (Desjardins and Hohn, 1997; Remotti, 1997; 

Horacek et al., 2013). El Hadrami et al. (2005) reviewed purified toxins from different fungal 

pathogens that have been used to select for disease resistance in vitro.  Gengenbach et al. 

(1977) used the purified toxin produced by Helminthosporium maydis Nisik. and Miyake, which 

induces southern corn leaf blight in maize, to select for cells that were resistant to the disease. 

Ali et al. (2007b) partially purified a toxin produced by C. falcatum and used it to select mutants 

resistant to red rot in sugarcane. Eyespot disease resistant sugarcane genotypes have also 

been selected by using a toxin produced by H. sacchari (Chaleff, 1983; Prasad and Naik, 

2000).  
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Table 5: Examples of selection studies for disease resistance in sugarcane using different 

selection agents. 

 
 

 
Culture filtrates can be used when there is no reliable description of the toxins produced by 

the fungus. The fungal CF are prepared by passing the liquid culture through a series of filters 

in order to remove the mycelia and conidia (Sengar et al., 2009; Mahlanza et al., 2013). This 

is an easy and effective method as culture filtrates have been shown to be phytotoxic 

(Suprasanna et al., 2009, Chandra et al., 2010; Grzebelus et al., 2013). Hidalgo et al. (1998) 

reported that culture filtrates of F. subglutinans were toxic to pineapple calli and leaves. F. 

oxysporum culture filtrates incorporated into tissue culture media were also reported to have 

an inhibitory effect on the growth of Amaranthus hybridus Linnaeus plantlet roots (Chen and 

Swart, 2002). Thakur et al. (2014) selected Zingiber officinale Rosc. plants resistant to F. 

oxysporum by exposing calli to fungal culture filtrate in the culture medium. However, although 

culture filtrates contain the toxins, their effect on callus or plants can be due to interaction of 

the toxins with other compounds present in the filtrate, which may not be important in 

pathogenesis (Van den Bulk, 1991; Sharma et al., 2010).  

 
Tolerance to toxins or culture filtrates expressed by somaclonal variants should correlate to 

tolerance to the pathogen (Van den Bulk, 1991; Svabova and Lebeda, 2005; Grzebelus et al., 

2013). Hence, the toxin-tolerant plants should be inoculated with the pathogen to confirm 

tolerance (Chen and Swart, 2002; Mahlanza et al., 2013). According to Koch’s postulates 

(Parry, 1990), plants susceptible to the pathogen should exhibit symptoms similar to those 

displayed by diseased plants from which the pathogen was initially isolated. The tolerant plants 

should display no or minimal symptoms in the presence of the pathogen in the plant tissue 

(Gengenbach et al., 1977; Arcioni et al., 1987; Botta et al., 1994; Grzebelus et al., 2013). Since 

inoculation is usually carried out in non-sterile environments and there is, therefore, potential 

Pathogen Selection agent Reference 

Fiji disease virus 

Helminthosporium sacchari 

Puccinia melanocephala 

Helminthosporium sacchari 

Colletotrichum falcatum 

Colletotrichum falcatum 

Colletotrichum falcatum 

Colletotrichum falcatum 

Fusarium sacchari 

Pathogen 

Toxin  

Pathogen 

Toxin 

Culture filtrate 

Pathogen 

Purified culture filtrate 

Culture filtrate 

Culture filtrate 

Krishnamurthhi and Tlaskal (1974) 

Larkin and Scowcroft (1983) 

Peros et al. (1994) 

Leal et al. (1996) 

Mohanraj et al. (2003) 

Singh et al. (2008) 

Ali et al. (2007b) 

Kumar et al. (2012) 

Mahlanza et al. (2013) 
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for secondary infection by other pathogens, it is important to confirm that the inoculated 

pathogen is the causal agent of observed symptoms (Harris et al., 1999). This can be achieved 

by re-isolation of the pathogen onto appropriate culture media and identification of the isolates 

(Chen and Swart, 2002; Abdel-Monaim et al., 2011; Mahlanza et al., 2013). 

c) Molecular analyses of variants 

 
Analysis of the changes that occur at the DNA level resulting from culture-induced somaclonal 

variation and mutagenic treatments are important to understand the resulting variation (Hoezel 

and Green, 1998; Rasheed et al., 2005; Rutherford et al., 2014). Evaluation of variation based 

on visible traits is not reliable as they are dependent on the environment and age of plants 

(Kunert et al., 2003). Molecular markers (DNA and protein based) are more reliable as they 

identify variations that have a genetic origin (Kunert et al., 2003; Talve et al., 2014). DNA 

marker systems used in analysis of such variation include Amplified Fragment Length 

Polymorphism (AFLP) (Chuang et al., 2009; Landey et al., 2014), Restriction Fragment Length 

Polymorphism (RFLP) (Patzak, 2003) and Random Amplified Polymorphic DNA (RAPD) 

(Rasheed et al., 2005; Thakur and Ishii, 2014). Flow cytometry has also been used utilised to 

assess variation due to changes in ploidy (Acanda et al., 2013; Shilpha et al. 2014). 

AFLPs involve the following steps: 1) digestion of genomic DNA; 2) attachment of small DNA 

segments called adapters to the digested fragments; 3) PCR amplification of the fragments 

using primers specific for the adapters and 4) separation of the PCR products (Saunders et 

al., 2001, Chuang et al., 2009). The technique requires no prior knowledge of the genomic 

DNA sequence, as they generate a large number of polymorphic bands and results are 

reproducible (Yang et al., 2005). Munsamy et al. (2013) used AFLP analyses to detect 

polymorphism in sugarcane calli trested with 5-azacytidine. In the RFLP method, genomic 

DNA is digested using restriction enzymes and the resulting fragments are separated by gel 

electrophoresis. A radioactive-labelled DNA probe is used to identify a fragment with the 

desired sequence (Liu, 2007). Difficulties in handling and storage of the radioactive reagents 

make RFLP an unfavourable technique (Nakazato and Gastony, 2006). RAPD is a simple and 

time efficient technique compared to RFLP (Garcia et al., 2004). It results in amplification of 

few random segments of DNA, allowing for variation in length and number of amplified 

segments when the sequence of the segments is altered (Hoezel and Green, 1998). RAPDs 

have been used widely for analysis of genetic variation in sugarcane (Shahid et al., 2011; 

Pandey et al., 2012; Shahid et al., 2014). 
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d) Phenotypic evaluation of variants 

In somaclonal variant plants, the expression of the desired trait has to be accompanied by 

important agronomic features (Singh et al., 2008) as certain traits cannot be determined in 

vitro. In sugarcane, transferring in vitro plants to the field is, therefore, necessary in order to 

enable observation of agronomic features such as cane height, number of nodes, stalk weight, 

internodal length and sucrose content, which determine yield in the crop (Liu and Chen, 1978; 

Dalvi et al., 2012; Nikam et al., 2014). These traits can be assessed and a comparison made 

between the somaclonal variants and vegetatively propagated plants (Krishnamurthi and 

Tlaskal 1974; Shkvarnikov and Kulik, 1975; Song et al., 1994; Watt et al., 2009). Song et al. 

(1994) compared brown spot disease-resistant soyabean plants obtained by in vitro screening 

with their parents and selected those with similar or superior agronomic traits. Krishnamurthi 

and Tlaskal (1974) developed in vitro sugarcane lines that were resistant to Fiji disease virus 

through somaclonal variation and selected lines that had retained the high yield that 

characterised the parents. Nikam et al. (2014) produced salinity-tolerant sugarcane mutants 

via gamma radiation of calli and some of these genotypes expressed higher sugar yield, 

percent brix and number of millable stalks. 
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Aims of the study  

This study aimed to investigate the influence of stalk characteristics and associated Fusarium 

spp. on E. saccharina resistance, and the use of Fusarium-tolerant sugarcane mutants to 

manipulate the insect-fungus relationship in endophytic biological control of the borer. As 

physical resistance mechanisms to E. saccharina resistance are not ideal and nitrogen-based 

metabolites are essential in biochemical defences, Chapter 3 describes the contribution of 

stalk rind hardness, fibre and nitrogen content of mature and immature stalk internodes on E. 

saccharina resistance in seven sugarcane cultivars of varying borer resistance ratings, 

towards improving resistance screening strategies. Further, due to previous demonstrations 

of the beneficial and harmful effects of Fusarium spp. on E. saccharina in vitro, the influence 

of Fusarium spp. infecting sugarcane stalks on E. saccharina resistance was investigated. 

This established the negative effect of F. sacchari PNG40 on E. saccharina damage and 

performance, thus highlighting the potential of the fungus in biological control. As E. 

saccharina damage is associated with Fusarium stem rot, thereby impeding Fusarium-

mediated control of the borer, Chapter 4 describes development of a protocol for production 

of Fusarium-tolerant sugarcane mutants (cultivar NCo376) by in vitro mutagenesis using ethyl 

methanesulphonate and selection using fungal culture filtrates and the pathogen. The 

usefulness of the produced Fusarium-tolerant mutants (cultivars N41 and NCo376) in the 

control of E. saccharina and associated Fusarium stem rot, was tested in a glasshouse trial. 

In Chapter 5, the impact of mutagenesis on stalk rind hardness, fibre and nitrogen content and 

the ability of the mutants to support endophytic colonisation, were determined.
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6   Overview discussion and future prospects  

 
Eldana saccharina is the single most important production constraint in the SA sugar industry 

and is extending to new areas previously thought to have unfavourable conditions for borer 

survival and development (Conlong, 2001; Assefa et al., 2008; Kleynhans et al., 2014). Larvae 

enter sugarcane stalks via nodes or cracks and feed on inner tissue (Dick, 1945; Leslie, 1993), 

thereby providing opportunistic Fusarium spp., which cannot gain entry into the stalk unaided, 

access to inflict Fusarium stem rot (Bourne, 1961; McFarlane et al., 2009). Consequently, 

revenue is lost due to the reductions in biomass and sucrose (Baker, 2014). An integrated 

pest management (IPM) approach has been implemented in the SA sugar industry to combat 

the pest (Conlong and Rutherford, 2009). These strategies involve early harvest, destruction 

of infested crops (Webster et al., 2005), application of insecticides, e.g. α-cypermethrin (Leslie, 

2006), and use of resistant cultivars (Keeping, 2006). Resistance to the borer is the best 

measure to control E. saccharina (Keeping and Rutherford, 2004). However, additional 

strategies, such as biological control, and improvements to current approaches, are necessary 

for sustained management of the pest.   

Understanding the underlying mechanisms for E. saccharina resistance is important for 

improved screening and selection of borer-resistant genotypes (Keeping and Rutherford, 

2004). Seven sugarcane cultivars, with varying E. saccharina resistance ratings based on pot 

trial data (Keeping, 2006), were used in the current study to test the impact of stalk rind 

hardness, fibre and nitrogen content on resistance to the borer (Chapter 3). Susceptible 

cultivars generally exhibited low rind hardness and fibre content and high nitrogen content 

whilst resistant genotypes displayed hard rinds, high fibre and low nitrogen content (Mahlanza 

et al., in press; Chapter 3). However, by-passing the rind at inoculation with E. saccharina 

larvae showed that these stalk characteristics may contribute to borer survival, damage and 

growth to variable extents in the different cultivars. The stalk rind is a physical barrier that 

impedes larval entry into the stalk whilst plant tissue high in fibre has low nutritional quality for 

borers (Kvedaras et al., 2007). Nitrogen is a major component of numerous plant metabolites 

involved in antiherbivory defences (Mattson, 1980; Mithofer and Boland, 2012; Furstenberg-

Hagg et al., 2013; Rutherford, 2014) and the amount of free nitrogen in plant tissues is a major 

determinant to the nutritional value of the plant to the insect (Awmack and Leather 2002; 

Throop and Lerdau, 2004). Hence, the net effect of rind hardness, fibre and nitrogen on E. 

saccharina establishes the quality of a genotype as a host for borer thereby determining 

resistance to the insect. This proposal is supported by the findings that borer resistant 

sugarcane genotypes displayed hard rinds, high fibre and low nitrogen, stalk characteristics 

that constitute a poor quality host (Mahlanza et al., in press; Chapter 3). However, hard rinds 
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and high fibre are undesirable as they complicate cane cutting and sucrose recovery (Singh 

et al., 2013a). Screening for resistance to the sugarcane borer D. saccharalis in the USA 

(White et al., 2006) and for E. saccharina resistance in South Africa (Zhou, 2013), result in 

inadvertent selection of sugarcane genotypes with high fibre resulting in the release of low 

sugar yielding cultivars. Developing genotypes with alternative forms of resistance will negate 

this relationship between stalk borers resistance and low sugar yields thereby allowing 

selection of the low fibre-high sucrose genotypes that are usually discarded due to borer 

susceptibility during the breeding programme.   

Plant nitrogen content is major factor in determining host quality for insects (Throop and 

Lerdau, 2004). Unlike plants which use carbohydrates, animals use proteins as structural 

building-blocks and are less efficient nitrogen users, excreting significant amounts of the 

element in their waste (Mattson, 1980). Hence, nitrogen is a limiting factor for herbivores which 

need to source nitrogen to meet their physiological demands and compensate for their low 

nitrogen-use efficiency. In plants, the allocation of assimilated nitrogen towards plant defences 

or other physiological processes, e.g. growth, ascertains host quality (Cronin and Hay, 1996; 

Throop and Lerdau, 2004). For instance, nitrogen-based defence allelochemicals such as 

alkaloids, terpenoids and cyanogenic glucosides produced by plants antagonise herbivores 

(Mithofer and Boland, 2012), whilst soluble amino acids and enzymes such as ribulose 

bisphosphate carboxylase, which are easy for insects to extract and digest, enhance herbivore 

nutrition (Bernays and Chapman, 1994). Further, nitrate accumulation in plant tissues may 

cause toxicity to insects (Mattson, 1980). This allocation of plant nitrogen can vary amongst 

genotypes (De Jong and Van Der Meijden, 2000). Hence, the variable nitrogen-use 

efficiencies amongst sugarcane genotypes (Robinson et al., 2007; Weigel et al., 2010) may 

impact host quality. For instance, in the current study, larvae recovered from the low fibre, 

nitrogen-rich immature internodes of the tested cultivars gained more weight with the upper 

stalk parts exhibiting greater damage, than the mature sections which recorded low nitrogen. 

However, larvae retrieved from the immature parts of resistant cultivars N33 and N29 gained 

less mass, with N33 exhibiting less damage, than the mature stalk parts. Hence, it may be 

hypothesised that certain genotypes, such as N29 and N33, have the genetic potential to 

utilise supplied nitrogen in growth processes and metabolism of nitrogen-based anti-herbivory 

compounds and less nitrogen towards insect nutrition, thus resulting in a poor quality host for 

the herbivore which leads to resistance. It was also observed that comparisons of E. 

saccharina damage, growth and survival in immature internodes amongst the tested cultivars 

did not correspond to those recorded in mature ones (Chapter 3). This indicates that 

genotypes may display borer resistance at different ages depending on the impact of 

morphological and physiological changes which occur during maturity on host quality. 
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Genotypes that express resistance at the immature stage may be attractive as they will 

negatively affect borer populations which will benefit the mature crop.  Also, Fusarium stem 

rot caused by infection by SC17 and PNG40 was less in the immature internodes compared 

with the mature ones. As nitrogen is essential to synthesis of antimicrobial metabolites in the 

plant (Rutherford, 2014), the lower levels of infection by SC17 and PNG40 recorded in the 

immature internodes compared with the mature ones (Chapter 3), possibly indicate high 

antimicrobial activity in the nitrogen-rich young tissues. Also, higher infection levels by borer-

beneficial fusaria in mature internodes than immature parts, as recorded in current study, may 

contribute to higher E. saccharina damage observed in lower stalk parts than the upper ones 

(Mazodze et al., 2003).  

This relationship between genotype and the contribution of nitrogen to host plant quality may 

offer insights into conflicting reports on the role of nitrogen fertilisers in E. saccharina damage 

(Meyer and Keeping, 2005; Rhodes et al., 2013). Increased sugarcane susceptibility to the 

borer during water stress, especially after fertiliser application (Keeping et al., 2012), may be 

a consequence of enhanced host quality arising from insect nutrition profiting from nitrogen 

unutilised due to retarded growth and compromised biochemical defences. A proposal is to 

establish the concentration of the major forms of available nitrogen, e.g. amino acids, enzymes 

and nitrate in E. saccharina-susceptible and -resistant genotypes. Further, metabolic profiles 

of E. saccharina-resistant and -susceptible genotypes can be elucidated through 

chromatography and spectrometry techniques to detect anti-herbivory metabolites. For 

example, Brennan et al. (1992) used gas chromatography to compare the metabolomes of 

blackcurrant genotypes resistant and susceptible to the gall mite (Cecidophyopsis ribis 

Westw.) and established a correlation between resistance and mono- and sesquiterpenes, 

compounds known to have anti-nutritional activity against insects (Asakawa et al., 1980; Perry 

et al., 2008). Also, using nuclear magnetic resonance spectroscopy, Leiss et al. (2009) 

established that ragwort genotypes resistant to western flower thrips (Frankliniella occidentalis 

Pergande) produced higher levels of alkaloids and flavonoids than the susceptible ones. 

Establishing the underlying genetics of those induced physiological defences may yield 

molecular markers for borer resistance which may be used in selection of resistant genotypes. 

For instance, combined metabolomics and gene expression studies by Liu et al. (2009) in rice 

genotypes resistant and susceptible to the brown planthopper (Nilaparvata lugens Stal) 

identified secondary metabolites and genes associated with resistance to the insect. Also, 

Brennan et al. (2009) developed a PCR-based marker that was associated with resistance to 

gall mite in blackcurrant. Once E. saccharina resistance markers are established and used for 

early screening, only lines containing the markers can then progress to E.  saccharina 

resistance trials.  
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Previous studies in sugarcane indicated that Fusarium spp. may be beneficial or antagonistic 

to E. saccharina in vitro (McFarlane et al., 2009; Govender et al., 2010).  The present study 

demonstrated that such Fusarium strains influence borer damage, growth and survival in vivo 

(Chapters 3). Eldana saccharina susceptible cultivars NCo376 and resistant N41 displayed 

less insect damage when colonised by the borer antagonistic strain PNG40 than the controls 

(uninoculated stalks), whilst NCo376 stalks infected by the beneficial strain SC17 exhibited 

more damage (Chapter 3). This corroborated the proposal that Fusarium strains impact E. 

saccharina resistance negatively or positively, depending on the strain (borer-beneficial or -

antagonistic) colonising the stalk. The pathogenicity of Fusarium spp. to insect pests has been 

reported in many plant species (Majumdar et al., 2008; Mikunthan and Manjunatha 2008; 

Wenda-Piesik et al., 2009; Batta 2012; Guo et al., 2014),  with the beneficial effect of Fusarium 

spp. on E. saccharina damage and fecundity being reported in maize (Schulthess et al., 2002; 

Ako et al., 2003). As Fusarium spp. are ubiquitous, the implications of findings from those 

studies, and the current one, should be considered in E. saccharina management strategies. 

It is possible that susceptible genotypes may exhibit increased resistance if colonised by an 

E. saccharina-antagonistic Fusarium strain whilst a borer-resistant genotype may appear 

more susceptible if infected by a strain beneficial to the insect. Hence, measures to eliminate 

Fusarium spp., e.g. fungicide treatments and use of Fusarium resistant cultivars, should be 

part of E. saccharina control approaches. Infection of plants by Fusarium spp. should be 

controlled during E. saccharina screening trials to avoid susceptible genotypes infected by 

borer-antagonistic strains being selected as resistant. Fungicide treatments may also be 

applied in E. saccharina resistance screening pot trials to eliminate Fusarium spp. for a more 

judicious assessment of genotype resistance.  

The present study demonstrated the negative in vivo effect of F. sacchari PNG40 against E. 

saccharina, thus establishing the potential of the fungus in controlling the insect (Chapters 3 

and 5). The fungus caused a reduction in length bored in stalks of NCo376 and N41 and their 

mutants (Chapter 5). Most studies report toxicity of Fusarium spp. against insects in in vitro 

bioassays (Varma and Tandan, 1996; Ganassi et al., 2000; Majumdar et al., 2008; McFarlane 

et al., 2009; Batta, 2012; Guo et al., 2014). However, the present investigation describes the 

negative impact of F. sacchari on E. saccharina in vivo and the consequent reduction in insect 

damage in sugarcane stalks. This is a major step towards implementing Fusarium-mediated 

insect control, as it proves the ability of the fungus to prevent E. saccharina damage in 

sugarcane stalks. This harmful effect of PNG40 on the borer may have been due to elevation 

of JA levels in tissues as a result of colonisation by endophytic F. sacchari (Navarro-Meléndez 

and Heil, 2014), acting in concert with possible production of the prominent insecticidal toxins 

beauvericin (Gupta et al., 1991) fusaproliferin (Logrieco et al., 1996) and enniatins (Guo et al., 
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2014) by the fungus. The accumulation of JA and its intermediates activates expression of 

defence genes responsible for synthesis of proteinase inhibitors, anti-nutritional compounds, 

repair proteins and signalling molecules which amplify the defence response in the plant (Leon 

et al., 2001). Whilst some entomopathogenic Fusarium strains that have potential in biological 

control are endophytic, some cause disease in plants (Majumdar et al., 2008; McFarlane et 

al., 2009; Wenda-Piesik et al., 2009). The latter is the case with F. sacchari PNG40, which 

despite its toxicity to E. saccharina, causes stem rot in sugarcane, subsequently hindering its 

utility in biological control of E. saccharina. However, in the current study, the production of 

Fusarium-tolerant genotypes was employed to overcome this impediment (Chapter 5). Unlike 

resistance which inhibits fungal growth, tolerance permits symptomless endophytic 

colonisation of plant tissue (Roy and Kirchner, 2000). This is an attractive remedial strategy 

for plant-entomopathogen-insect interactions in which the fungus is also a phytopathogen as 

endophytic colonisation alleviates disease and maintains the fungus in the plant to act against 

the insect.  

The Fusarium-tolerant mutants produced in this study exhibited less Fusarium stem rot and 

showed endophytic colonisation in the inoculated internode and the one above it (Chapter 5). 

This supports the hypothesis that endophytism is the net effect of a balanced antagonism 

between plant resistance mechanisms and fungal pathogenicity (Schultz et al., 1999). Hence, 

enhancing plant defences or diminishing pathogen virulence factors in a plant-pathogen 

relationship may achieve equilibrium in this antagonism, thereby circumventing disease. In 

some studies (Freeman and Rodriguez, 1993; Bolker et al., 1995; Akamatsu et al., 1997; 

Redman et al., 1999), the fungal pathogen was genetically altered to weaken pathogenicity, 

thus achieving the endophytic equilibrium. In contrast, the present study illustrated an 

approach in which the plant is genetically altered via mutagenesis to achieve endophytism, 

i.e. disease tolerance. The mutagenic treatment employed in this study may have elicited 

random mutation events which enhanced plant defences against F. sacchari possibly through 

stimulation of constitutive expression of pathogenesis related genes (Duggal et al., 2000; 

Zhang et al., 2003), disruption of suppressor genes inhibiting resistance ones (Kwon et al., 

2004), and inactivation of fungal effector targets (Berestetskiy, 2008). This approach presents 

an appealing alternative to genetically altering the fungal pathogen as this may also protect 

the plant against new pathogenic strains. Fusarium spp. have also been shown to exhibit in 

vitro toxicity to Chilo and Sesamia spp. (Varma and Tandan, 1996), stem borers that pose a 

threat to production of the crop (Way et al., 2012; Nikpay et al., 2014) and may also offer 

defence against these pests.  

It has previously been inferred, from observations of variable E. saccharina resistance in N41 

stalks from the field, that the cultivar was readily colonised by different endophytic Fusarium 
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strains (Rutherford, pers. comm.). Observations in the current study corroborated this 

proposal as N41 and its mutants experienced higher levels of endophytic colonisation than 

NCo376 and its mutants. Furthermore, some N41 mutants expressed higher levels of 

colonisation than their parent (Chapter 5). This supported the hypothesis that endophytic 

colonisation may be genotype-dependant and breeding and selection of genotypes amenable 

to endophytic colonisation may be possible (Bailey et al., 2005; Rutherford, 2014). In addition, 

identification of more E. saccharina-antagonistic Fusarium isolates, and assessing the 

receptiveness of different cultivars to endophytic colonisation to these strains through 

inoculation studies, may reveal cultivar-isolate relationships that are most effective for 

biological control purposes. As Fusarium stem rot results in sucrose loss and consequent 

lower sugar yields (Way and Goebel, 2003), it will be beneficial to test the impact of endophytic 

colonisation on sucrose content in the Fusarium-tolerant mutants. Indeed the mutant 

genotypes produced in this study may constitute genetic resources to introgress tolerance to 

Fusarium into commercial sugarcane varieties. Differential gene expression in the tolerant 

mutants and parent cultivars can be assessed using suppression subtractive hybridization 

(Legay et al., 2011) or RNA seq (Ramskold et al., 2012) to establish genes involved in defence 

against Fusarium. These genes may be used as markers for Fusarium tolerance. Future 

studies to assess Fusarium stem rot, endophytism and anti-herbivory activity of the fungus in 

the tolerant mutants under field conditions are necessary in order to advance towards 

implementation of biological control against the insect using endophytic Fusarium.   

This study illustrated a novel technique for assessing borer resistance that may complement 

or even replace the E. saccharina resistance screening method currently used in the South 

African sugarcane breeding programme (Mahlanza et al., 2014). The current practice entails 

growing plants in 25 L pots for 7-8 months in a shade house and inoculating with eggs at the 

base of the stalk (Keeping, 2006). This process is a laborious, time and space consuming 

exercise, resulting in restriction of the number of clones that can be screened. However, the 

method developed in the present study may offer improvements to the current one. Stalks 

from the field were marcotted in the glasshouse thereby producing plants that are ready for E. 

saccharina inoculation within 5 weeks compared to 7-8 months using the current method.  The 

6 L metal cylindrical canisters used offer an efficient use of limited space and labour compared 

with 25 L pots used in the standard bioassays. Inoculation of plants with larvae versus eggs 

lessens the time between inoculation and larval penetration of the stalk thus curtailing 

predation of eggs by ants and exposure to other mortality factors which affect hatching 

efficiency. Whilst rind hardness may still contribute to borer resistance, by-passing the rind at 

inoculation may place greater weight on inducible physiological mechanisms in assessing 
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resistance than the current method. Rind-based resistance can then provide auxiliary defence 

in the selected genotypes during cultivation in the field. 

The Fusarium-tolerant mutants were produced via in vitro mutagenesis using ethyl 

methanesulphonate (EMS) and selection with fungal culture filtrates (CF) incorporated into 

culture media followed by inoculation of regenerated plants with the fungus (Mahlanza et al., 

2013; Chapter 4). This illustrated the effectiveness of this strategy in development of disease-

resistant sugarcane genotypes, and possibly of tolerance to other biotic and abiotic stresses. 

The approach avoids some complications created by the complex sugarcane genome and 

problematic reproductive biology relied on by conventional breeding practices. These include 

poor pollen viability, seed sterility, unsynchronised flowering and polyploidy that results in 

crosses producing large numbers of clones which are highly variable in a range of 

characteristics and require a lengthy selection procedure (James, 2004). Whilst the role of 

conventional breeding practices is central in sugarcane improvement, in vitro mutation 

breeding can play a complementary part. Breeding thrives on creation of variation in plant 

populations from which desired traits can be selected (Acquaah, 2007). Variation generated 

by natural mutations and in segregating populations during conventional breeding 

approaches, is low and limits crop genetic improvement (Acquaah, 2007). However, higher 

somaclonal variation and induced mutation frequencies occurring in in vitro plant cultures 

present an alternative source of variation (Patade et al., 2008; Rutherford et al., 2014). As 

demonstrated in the current study, somaclonal variation, enhanced via induced mutagenesis 

using EMS, can generate variation from which desired traits may be selected. This may also 

yield traits that are not available in the gene pool (Van Harten, 1998). In the current study, 

plants from EMS treatments displayed greater variation in root length than those from non-

EMS treatments (Mahlanza et al., 2013; Chapter 4). In addition, polymorphisms were detected 

in Fusarium-tolerant mutants using RAPD markers indicating the ability of EMS to induce 

mutations in sugarcane cells (Chapter 5). Single base pair changes in genes may modify or 

disrupt their function resulting in expression of a desired trait (Kwon et al., 2004). For example, 

more plants with improved root length from the EMS treatments than the non-treated ones 

were obtained in the present investigation, thus indicating that exposure of sugarcane cells to 

EMS possibly induced mutations which enhanced defence against Fusarium toxins (Mahlanza 

et al., 2013; Chapter 4).  

In vitro selection of large numbers of lines using appropriate selection agents can be employed 

under controlled screening conditions and limited space and time (Van den Bulk, 1991; 

Clemente and Cadenas, 2012). Plants selected in vitro using Fusarium CF exhibited tolerance 

or resistance when inoculated with the fungus in the glasshouse (Mahlanza et al., 2013; 

Chapter 4; Chapter 5), thus showing the suitability of CF as a selection agent as they contain 
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fungal toxins involved in pathogenesis (Daub, 1986; Van den Bulk 1991; Chandra et al., 2010). 

Fusarium spp. are known to produce phytotoxins such as fusaric acid (Bacon et al., 1996), 

trichothecenes (Desjardins and Hohn, 1997), moniliformin (Marasas et al., 2000) and 

fumonisins (Munkvold and Desjardins, 1997; Nishiuchi, 2013). In the present investigation, 

toxicity of PNG40 CF was displayed by callus necrosis, plantlet yield decline and inhibition of 

root growth (Mahlanza et al., 2013; Chapter 4). Re-isolation of the fungus was conducted to 

confirm Koch’s postulates (Parry, 1990), i.e. confirming that the observed symptoms were 

caused by the inoculated fungal strain. Whilst most studies use morphological features to 

confirm the identity of the retrieved isolates (Swart et al., 1999; Chen and Swart, 2002; 

Tahmatsidou et al., 2006), the current investigation used ISSR markers, which widely used to 

detected variation amongst Fusarium strains (Mishra et al., 2006; Gurjar et al., 2009; 

McFarlane, et al., 2009; Baysal et al., 2010; Dinolfo et al., 2010; Vitale et al., 2011), for a more 

accurate approach.  

Indeed variation generated by in vitro mutagenesis and stringent screening and selection 

strategies may be harnessed to develop sugarcane genotypes expressing tolerance to 

herbicides, salinity, drought, heat and diseases (Rutherford et al., 2014). Although targeted 

mutagenesis techniques such as zinc finger nucleases, transcription factor-like effector 

nucleases (TALENs) and clustered regularly interspaced short palindromic repeats 

(CRISPRs) are emerging as tools for more precise mutation induction, knowledge of the 

genetic mechanisms responsible for the desired trait is a prerequisite to their utility (Gaj et al., 

2013; Chen and Gao, 2014; Fichtner et al., 2014). However, as illustrated in this study, random 

mutagenesis offers the flexibility of mutating genes without prior knowledge of the genetic 

mechanisms involved. Nevertheless, disruption of important traits by non-target mutations is 

of concern in random mutagenesis (Van Harten, 1998). Exposing a large number of cells to 

the mutagen enhances chances of obtaining a desired mutation event that is accompanied 

with minimal lethal effects. The exposure of embryogenic callus cells to a mutagen as 

conducted in the current investigation is, therefore, advantageous over treating seeds or tissue 

explants as more regeneratable somatic cells are treated. As commercialisation of transgenic 

sugarcane continues to be hampered by technological, regulatory and marketing challenges 

(Burnquist, 2006; Meyer and Snyman, 2013; Birch, 2014), the present study demonstrated the 

utility of in vitro mutagenesis and selection approaches as successful tools for sugarcane 

genetic improvement.  

In conclusion, the findings from the present study showed that, high rind hardness and fibre 

and low nitrogen content are associated with resistance to E. saccharina. The extent to which 

each of these stalk characteristics contribute to host quality unfavourable to E. saccharina 

varies between different genotypes. The association between lower nitrogen content and 
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resistance to the borer gave some insight into possible roles of this element in resistance and 

potential strategies to improve E. saccharina resistance screening for selection of high sucrose 

yielding E. saccharina-resistant genotypes. The beneficial and antagonistic effects of 

Fusarium spp. on E. saccharina damage was also demonstrated in vivo, thus indicating the 

possible influence of these fungi on borer damage and underlining the importance of 

controlling Fusarium spp. in E. saccharina management strategies. A protocol was established 

for production of Fusarium-tolerant sugarcane mutants using in vitro mutagenesis via 

exposure of embryogenic calli to EMS and selection with fungal culture filtrate at the embryo 

maturation, germination and plantlet stages. This provided evidence for the applicability of this 

approach in sugarcane genetic improvement. Lastly, the toxicity of F. sacchari PNG40 to E. 

saccharina and reduced Fusarium stem rot was demonstrated in Fusarium-tolerant mutants 

of NCo376 and N41. This presented a strategy to modify plant-pathogen interactions into 

mutually beneficial plant-endophyte associations for disease management and biological 

control purposes. MutA of NCo376, and Mut5 and Mut23 of N41 were selected (Chapter 5) for 

further studies which will include field experiments and molecular characterisation of the 

observed tolerance to Fusarium. This will motivate for the utilisation of Fusarium-sugarcane 

endophytic interactions in integrated management approaches for E. saccharina.  
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