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Abstract

Fragmentation equations occur naturally in many real world problems, see [ZM85, ZM86, HEL91,

CEH91, HGEL96, SLLM00, Ban02, BL03, Ban04, BA06] and references therein. Mathematical

study of these equations is mostly concentrated on building existence and uniqueness theories

and on qualitative analysis of solutions (shattering), some effort has be done in finding solutions

analytically. In this project, we deal with numerical analysis of fragmentation equation with

transport. First, we provide some existence results in Banach and Hilbert settings, then we turn

to numerical analysis. For this approximation and interpolation theory for generalized Laguerre

functions is derived. Using these results we formulate Laguerre pseudospectral method and

provide its stability and convergence analysis. The project is concluded with several numerical

experiments.
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Introduction

The study of fragmentation and coagulation has received significant attention in the past few

years, see [ZM85, ZM86, HEL91, CEH91, HGEL96, SLLM00, Ban02, BL03, Ban04, BA06] and

references therein. Attempts to describe and model these processes have shown relevance not

only in fragmentation and coagulation problems but in other fields. Application are ranging

from chemical engineering (polymerization/depolymerization) to marine biology and population

dynamics.

One of the earliest work on the fragmentation equations was done by Ziff and McGrady[ZM86],

where they showed analytic solutions can be found for certain type of the breakup function (known

in the literature as fragmentation kernels). They further provided some numerical simulations.

Also, in [ZM85] the same problem was solved using a statistical argument where the breakup was

independent of the length of the substance. In this situation the problem reduces to an integro-

differential equation that can be solved explicitly. Qualitatively, in the work [BL03, HGEL96,

HEL91], it is shown that there exist a solution for the model but under some restrictions on the

coefficients in the fragmentation with mass loss, both in the discrete and continuous cases. Huang

et al [HEL91, HGEL96], explored the same problem and found general solutions and observed

scaling violation for continuous mass loss. In this work the Laplace transforms is used to construct

the solutions.

Due to a growing number of application of fragmentation models, we decided to contribute to

the numerical side. In the project we develop a Laguerre pseudospectral method for solving

the transport-fragmentation equation. One of the advantage of the method is that it allows us

to treat unbounded domains directly, another advantage is that the scheme imposes very mild

restrictions on the growth rate of the coefficients of the model at infinity. However its stability

and convergence analysis requires wellposedness of the transport-fragmentation equation in a

Hilbert space. In the project the latter is studied in the same way as in [BA06].

The project is organized as follows: Chapter I contains some classical results form the semigroup

theory. Theory presented in Chapter I is applied in Chapter II to the transport-fragmentation

equations in L1 settings. Main results of our research are presented in Chapter III. First, we

1



provide a wellposedness analysis of the transport fragmentation equation in Hilbert settings.

Next, we derive several approximation and interpolation estimates for generalized Laguerre func-

tions. Finally, we introduce the Laguerre pseudo-spectral method and analyze its stability and

convergence. Chapter III is concluded with several numerical experiments.
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Chapter I

Semigroup Theory

It is important to understand a problem thoroughly in general before trying to get a solution either

analytically, numerically or using any other method. Sometimes a solution can be obtained but

it being significantly of no use to real world application it is needed for. We found it instructive

to collect tools that are needed to study the existence of a semigroup solution of transport-

fragmentation equations.

1 Abstract Cauchy Problem

The problem of how processes evolve in time is crucial to a number of applications in social,

physical and natural sciences. The evolution models are typically described in terms of Partial

Differential Equations (PDEs). A PDE is an equation that contains partial derivatives of an

unknown function u. The classical examples are:

• The heat equation ut = Kuxx.

• The Laplace equation uxx + uyy = 0.

Both equations have a wide range of practical applications. The first one is used to model the

heat conduction in bars and solids, evolution of probability distributions in random processes, etc.

The second one appears in the study of steady states of various processes.
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There is a high need in finding solutions of PDEs. However, there is no unified theory (like in

the case of ODEs) which relies on the fundamental existence and uniqueness theorems. In search

of the solutions to a given PDE one can deploy a number of well developed methods such as

semigroup approach, weak compactness approach, techniques based on the use of the maximum

principle and its modifications, etc. In this project we focus on the semigroup approach. In

order to apply this technique, a partial differential equation must be reformulated as an abstract

Cauchy problem (ACP).

Definition I.1.1. [EN00] Let X be a Banach space. The initial value problem of the form

ut = Au, for t > 0, u(0) = u0, (I.1.1)

is termed an abstract homogeneous Cauchy problem in X associated with (A,D(A)) and initial

value u0. Here u : R+ → X and D(A) ⊂ X is the domain of A.

Definition I.1.2. [EN00] Let X be a Banach space. The initial value problem of the form

ut = Au+ f(t), for t > 0, u(0) = u0, (I.1.2)

is termed an abstract inhomogeneous Cauchy problem in X associated with (A,D(A)) and initial

value u0.

Note that the nature of the operator A in (I.1.1) and (I.1.2) is not explicitly specified. The

operator can be linear, nonlinear, differential, integral or something else. For instance, A could

be
∂2

∂x2
(·),

∫∞
x

(·)dx, sin(·), e.t.c. In the sequel we always assume that operator A is linear.

The crucial question arises — does equation (I.1.1) have a solution? At least formally (I.1.1)

looks exactly like a system of linear ODEs whose solution is known to be eAtu0. It is natural to

search for the solution of abstract problem (I.1.1) in the form u(t) = eAtu0 as well. Of course

the exponent eAt must be given an appropriate interpretation. For this we need the notion of

semigroups of linear operators.
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2 Semigroups of Linear Operators

2.1 Semigroups

Definition I.2.1. A semigroup (S, ∗) is a non-empty set S together with an associative binary

operation ∗; for x, y, z ∈ S,

x ∗ (y ∗ z) = (x ∗ y) ∗ z.

There are different types of semigroups. For instance, S is a finite semigroup if it has a finite

number of elements. Also, S is a commutative semigroup if the operation ∗ is commutative. In

the sequel we make use of semigroups of linear operators.

Definition I.2.2. [BA06] A family of (S(t))t≥0 of bounded linear operator on X is called a

strongly continuous semigroup or C0-semigroup if

(i) S(0) = I;

(ii) for every s, t ≥ 0, the composition satisfies S(t)S(s) = S(t+ s); (the semigroup property)

(iii) limt→0+ S(t)x = x, ∀x ∈ X.

S(t) is a semigroup of type r if in addition to (i)—(iii),

‖S(t)‖ ≤ etr, t ≥ 0.

We should note that if r = 0, then the semigroup is called contractive. In this case ‖S(t)‖ ≤ 1,

for t ≥ 0 and,

‖S(t)u− S(t)v‖ ≤ ‖u− v‖, for u, v ∈ X t ≥ 0.

2.2 Generators of Semigroups

Definition I.2.3. The operator

Au = lim
t→0+

S(t)u− u
t

(I.2.1)
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is called the infinitesimal generator of a semigroup (S(t))t≥0. Its domain D(A) is the set of all

u ∈ X for which the limit of (I.2.1) exists.

It is clear that every C0-semigroup has a generator. The converse is not true, not every linear

operator A generates a semigroup. To be a generator, operator A must satisfy certain conditions:

Theorem I.2.1. [Bre12, BA06] Let (S(t))t≥0 be a semigroup, and A be its generator. Then

(i) the domain of A is dense in X;

(ii) the operator A is closed (or closable).

Proof. See [Bre12, BA06].

A connection between (S(t))t≥0 and its generator A is stated in the theorem below:

Theorem I.2.2. [Bre12] Let (S(t))t≥0 be a C0-semigroup and A be its generator. Assume that

u0 ∈ D(A), then

(i) ∀t ≥ 0, one has S(t)u0 ∈ D(A) and AS(t)u0 = S(t)Au0;

(ii) map t→ u(t) = S(t)u0 is continuous, differentiable and provides a solution to the Cauchy

problem (I.1.1).

Proof. For proof see [Bre12].

2.3 Resolvents and Hille-Yosida Theorem

A very important link between a generator A and a semigroup (S(t))t≥0 is given by the resolvent

of operator A. The resolvent is an analytic function of λ, except when λ lies in the spectrum of

the operator. Before we formally define the resolvent we need the following terminology:

Definition I.2.4. Let A be an operator in X.
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(i) ρ(A) = {λ ∈ C : λ− A : D(A)→ X is bijective} is the resolvent set and its complement

σ(A) = C \ ρ(A) is called the spectrum of A;

(ii) r(A) = sup{|λ| : λ ∈ σ(A)} is called the spectral radius of the operator;

(iii) s(A) = sup{<λ : λ ∈ σ(A)} is called the spectral bound of the operator.

For an unbounded operator A the role of the spectral radius is played by the spectral bound.

Definition I.2.5. [EN00] Let A be a linear operator on a Banach space. For λ ∈ ρ(A) the

resolvent operator Rλ : X → X is defined by

R(λ,A)u = (λI − A)−1u.

We note that an operator (A,D(A)) is resolvent positive if there exist r such that (r,∞) ⊂ ρ(A)

and R(λ,A) ≥ 0 for all λ > r.

2.3.1 Hille-Yosida Theorem

In the development of semigroup theory and its applications to physical problems there are im-

portant results that have remained pillars of semigroup theory since mid 1900’s till present. One

of the results comes from the works of Hille and Yosida.

Theorem I.2.3. [Paz83] A linear (unbounded) operator A is the infinitesimal generator of a

C0-semigroup of contractions (S(t))t≥0, if and only if

(i) A is closed and D(A) = X;

(ii) the resolvent set ρ(A) of A contains R+ and for every λ > 0, ‖R(λ,A)‖ ≤ 1
λ
.

Proof. For proof see [Paz83].
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2.4 Dissipative Operators and Lumer-Phillips Theorem

Sometimes Hille-Yosida theorem is not easy to apply because one needs an explicit estimate on

the resolvent of A. The situation is simplified if it is known that A is dissipative.

Definition I.2.6. [BA06, EN00] A linear operator (A,D(A)) on a Banach space X is called

dissipative if

‖(λ− A)x‖ ≥ λ‖x‖,

for all λ > 0 and x ∈ D(A).

2.4.1 Properties of Dissipative operators

Let (A,D(A)) be dissipative, then (see [EN00])

(i) λ− A is injective for all λ > 0 and

‖(λ− A)−1z‖ ≤ 1

λ
‖z‖,

for all z in range rg(λ− A) = (λ− A)D(A).

(ii) λ − A is surjective for some λ > 0 if and only if it is surjective for each λ > 0. In that

case, one has (0,∞) ⊂ ρ(A).

(iii) A is closed if and only if the range rg(λ− A) is closed for some (hence for all) λ > 0.

(iv) If rg(λ−A) ⊆ D(A) and if A is densely defined, then A is closable. Its closure A is again

dissipative and satisfies rg(λ− A) = rg(λ− A) for all λ > 0.

Theorem I.2.4. [Paz83] Let A be a linear operator with dense domain D(A) in X.

(i) If A is dissipative and there is a λ0 > 0 such that the range, rg(λ0I − A) of λ0I − A is

X, then A is the infinitesimal generator of a C0-semigroup of contractions on X.

(ii) If A is the infinitesimal generator of a C0-semigroup of contractions on X then rg(λ −

A) = X for all λ > 0 and A is dissipative. Moreover, for every x ∈ D(A) and every

x∗ ∈ F (x),<〈Ax, x∗〉 ≤ 0, where F (x) = {x∗ : x∗ ∈ X∗ and 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}.
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Proof. For proof see [Paz83]

2.5 Abstract Cauchy Problem(ACP) and Semigroups

The semigroup approach has received significant attention in the literature related to the PDEs,

see [BL03] and references therein. The theory was successfully applied to the wide range of

problems in physics, chemistry, biology, etc. The popularity of the method is explained by the

fact that many interesting practical models can be rewritten in the form of an ACP. In the sequel

we mention classical results concerning solvability of the ACP by means of semigroup.

There are generally two types of solutions associated with an ACP, namely classical and mild.

The classical solutions are obtained when initial data is in the domain of the generator.

Definition I.2.7. A function u : R+ → X is a classical solution of (I.1.1), (I.1.2) on [0,∞) if u

is continuous (0,∞), continuously differentiable on (0,∞), u(t) ∈ D(A) for t ≥ 0 and (I.1.1),

(I.1.2) are satisfied.

Theorem I.2.5. [EN00] Let A : D(A) ⊂ X → X generates a C0-semigroup (S(t))t≥0 on X,

then for all u0 ∈ D(A), (I.1.1) has a unique classical solution given by u(t) = S(t)u0.

Definition I.2.8. [Paz83] Let A be an infinitesimal generator of a C0-semigroup (S(t))t≥0 in X.

Let u0 ∈ X and f ∈ L1((0,∞), X). The function u ∈ C([0,∞), X) given by

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(s)ds

is called a mild solution of the ACP (I.1.2) on [0,∞).

If we assume that u0 ∈ D(A) then the mild solution becomes classical. Converse is not true, not

all mild solutions are classical solutions. In the case when f = 0 the mild solution of (I.1.1) is

given by S(t)u0, for u0 ∈ X.

Theorem I.2.6. [Paz83] Let A be the infinitesimal generator of C0-semigroup S(t). Let f ∈

L1((0,∞) : X) be continuous on (0,∞) and let

v(t) =

∫ t

0

S(t− s)f(s)ds, t ≥ 0.
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Then (I.1.2) has a classical solution u on (0,∞) for every u0 ∈ D(A) if one of the following

conditions is satisfied:

(i) v(t) is continuously differentiable on (0,∞);

(ii) v(t) ∈ D(A) for t ≥ 0 and Av(t) is continuous on (0,∞).

If (I.1.2) has a classical solution u on (0,∞) for some u0 ∈ D(A) then v satisfies both (i) and (ii).

3 Positive and Sub-stochastic Semigroups

In many evolution problems (including the one we are dealing with), the positivity of solutions

is of utmost importance. For example, the unknown function may define a number of particles,

species in a population, etc. This immediately dictates that the semigroup that solves the problem

should be positive.

3.1 Banach Lattices

Definition I.3.1. A vector space V equipped with a partial order ”≤” is called a vector lattice

if for each pair a, b ∈ V,

(i) there is a smallest element c for which a ≤ c and b ≤ c;

(ii) there is a largest element d for which d ≤ a and d ≤ b;

(iii) if a ≤ b then a+ c ≤ b+ c for c ∈ V ;

(iv) if a ≤ b and k ∈ R+ then ka ≤ kb.

Note that a vector lattice is a Riez space. A non-empty subset K of a vector space V is said to

be a cone if it satisfies the following properties [Tou00]:

(i) K +K ⊆ K;
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(ii) αK ⊆ K for all α ≥ 0;

(iii) K ∩ (−K) = 0.

Definition I.3.2. If E is a vector lattice, then we denote by E+ = {x ∈ E : 0 ≤ x} a positive

cone of E.

Definition I.3.3. [ABB90] A norm ‖ ·‖ on a vector lattice is said to be a lattice norm if |x| ≤ |y|

implies ‖x‖ ≤ ‖y‖.

Definition I.3.4. [BA06] A Banach lattice is a real Banach space1 X endowed with an ordering

” ≤ ” such that (X,≤) is a vector lattice and the norm of X is a lattice norm.

Definition I.3.5. [BA06] A Banach lattice X is a KB-space (Kantorovic-Banach space) if every

increasing, norm bounded sequence of elements of X+ converges in norm in X.

3.2 Positive Semigroups

Definition I.3.6. Let X be a Banach lattice. We say that the semigroup (S(t))t≥0 on X is

positive if for any x ∈ X+ and t ≥ 0,

S(t)x ≥ 0.

The following theorem provides a characterization of positive semigroups;

Theorem I.3.1. [EN00] A strongly continuous semigroup (S(t))t≥0 on a Banach lattice X is

positive if and only if the resolvent R(λ,A) of its generator A is positive for all sufficiently large λ.

3.3 Stochastic and Sub-stochastic Semigroups

A semigroup describing an evolution that allows the amount of the described quantity to decrease

is called strictly sub-stochastic. Formally these semigroups are defined in the following way:

Definition I.3.7. [BA06] Let (S(t))t≥0 be a strongly continuous semigroup on a Banach space

X. (S(t))t≥0 is sub-stochastic if for any t ≥ 0 and x ≥ 0, S(t)x > 0 and ‖S(t)x‖ ≤ ‖x‖.
1That is a complete normed vector space.
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For stochastic semigroups in Definition I.3.7 we have ‖S(t)x‖ = ‖x‖ for x ∈ X+.

4 Perturbations of Positive Semigroups

Not all problems in science can be defined by one linear operator, they can contain two or more

operators. Often it is not an easy task to verify whether a group of operators involved generate a

strongly continuous semigroup. Therefore, it is preferable to start building from the simpler case

to more complex. Methods available to perform the latter are perturbation and approximation.

In this work we shall use the perturbation method. Rephrasing the latter problem: Let (A,D(A))

be a generator of a semigroup in a Banach space X and (B,D(B)) be another operator on X.

Under what conditions does A+B generate a semigroup?

The question is easy to answer if B is bounded. In this case we have the following results:

Theorem I.4.1. [EN00] Let A be a generator of a positive strongly continuous semigroup

(S(t))t≥0 and let B ∈ L(X) be a positive operator on the Banach lattice X. Then, the following

holds:

(i) A + B generates a positive semigroup (T (t))t≥0 satisfying 0 ≤ (S(t))t≥0 ≤ (T (t))t≥0 for

all t ≥ 0;

(ii) s(A) ≤ s(A+B) and R(λ,A) ≤ R(λ,A+B) for all λ > s(A+B).

The situation is more complicated when B is not bounded. It is important to emphasize that

addition of two unbounded operators is a very delicate operation as properties of A+B might be

very different from that of A and B. We recall that D(A+B) = D(A)∩D(B). To circumvent

the problem of having D(A+B) = ∅, we assume that D(B) ⊃ D(A). In this case we have the

following theorem:

Theorem I.4.2 (Kato-Voigt [BA06]). Let X be a KB-space. Let us assume that we have two

operators (A,D(A)) and (B,D(B)) satisfying:

(i) A generates a positive semigroup of contractions (SA(t))t≥0;

12



(ii) r(BR(λ,A)) < 1 for some 0 < λ(= s(A));

(iii) Bx > 0 for x ∈ D(A)+;

(iv) 〈x∗, (A+B)x〉 ≤ 0 for any x ∈ D(A)+, where 〈x∗, x〉 = ‖x‖, x∗ > 0.

Then there is an extension (K,D(K)) of (A+B,D(A)) generating a C0-semigroup of contrac-

tions, say, (GK(t))t≥0 ≥ 0. The generator K satisfies,

R(λ,K)x = lim
n→∞

R(λ,A)
n∑
k=0

(BR(λ,A))kx =
∞∑
k=0

R(λ,A)(BR(λ,A))kx, for λ > 0.

Proof. See [BA06].

Generalised Kato-Voigt Theorem I.4.2 in L1 setting reads as follows (see [BA06]):

Theorem I.4.3. Let X = L1 and suppose that operators A and B satisfy:

(i) (A,D(A)) generates a sub-stochastic semigroup (SA(t))t≥0;

(ii) D(B) ⊃ D(A) and Bu ≥ 0 for u ∈ D(B)+;

(iii) for all u ∈ D(A)+, ∫
ω

(Au+Bu)dµ ≤ 0,

then there exist a smallest sub-stochastic semigroup (Gk(t))t≥0 generated by an extension K of

A+B.

In Chapter II we apply the semigroup theory (and in particular Theorem I.4.3) to study wellposed-

ness of transport-fragmentation equations in L1(xdx,R+) settings.
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Chapter II

Theoretical Analysis of the Model

1 The Transport-Fragmentation Equation

Fragmentation is the breaking down of a substance into small parts due to external or internal

forces. The process can be modelled using discrete and/or continuous equations. This is due

to the fact that at times fragmentation can be both discrete and continuous depending on a

particular scenario. For instance, a solid can fragment in a continuous time but at one state a

burst occurs — this can be classified as a discrete fragmentation. There are different ways to

model fragmentation processes, what approach to use depends on the nature of the process. In

this study we concentrate on the continuous models. They are derived as a balance equations

where we have a gain and loss terms. The gain term captures the mass of small particles

obtained from bigger particles breaking, while the loss term describes the decrease of mass of

bigger particles breaking into smaller particles.

In this work we consider fragmentation equation with transport:

∂tu(x, t) = ±∂x [r(x)u(x, t)]− µ(x)u(x, t)− a(x)u(x, t) +

∫ ∞
x

a(y)b(x|y)u(y, t)dy. (II.1.1)

In (II.1.1) function u is the particle mass distribution; r is the transport coefficient, it describes the

migration of particles; a is the rate of fragmentation; µ is the mortality rate; b is the fragmentation

kernel, it describes the distribution of particle of mass x spawned by the breaking up of a particle

14



of size y. Generally, the fragmentation process is mass conservative but the transport part is not,

hence the overall model has a mass leakage or increase.

In the sequel we adopt assumptions on the coefficients from [BA06]. We start with coefficient

a that defines the rate at which the particles or molecules break up into smaller pieces due to

internal or external forces. We assume that a is essentially bounded on a compact subset of

(0,∞), i.e.

0 ≤ a ∈ L1,loc([0,∞)). (II.1.2)

Mortality denoted by µ describes the annihilation of particles during fragmentation. For instance,

in the evolution of phytoplankton, after breaking up some fragments may die. We assume that

µ is locally integrable in a bounded interval of (0,∞), i.e.

0 ≤ µ ∈ L1,loc([0,∞)). (II.1.3)

The transport term r describes the situation in which the size of a particle decreases or increases.

If we have +r in (II.1.1) then we deal with decrease (decay) at the rate dx
dt

= −r(x). Alternatively,

if we have −r in (II.1.1) then we deal with growth at the rate dx
dt

= r(x). In both cases absolute

continuity1 and strict positivity of r on the interval (0,∞) are required,

r(x) > 0 on (0,∞) and r ∈ AC((0,∞)). (II.1.4)

The fragmentation kernel (in the sense of calculus2) b(x|y) describes the breaking mechanism of

particle of size y into particle of size x. We assume that it is measurable, non-negative in both

variables and

b(x|y) = 0 for x > y,

b(x|y) ≥ 0 for all time > 0.
(II.1.5)

From the practical point of view function b gives the number of expected particles after breaking

of a particle of size y, i.e. ∫ y

0

b(x|y)dx.

1A function f is absolutely continuous if and only if for every ε > 0 there is a δ > 0, so that for arbitrary

disjoint intervals Ik = [ak, bk], k = 1, . . . , n,
∑n

k=1(bk − ak) < δ implies
∑n

k=1 |f(bk)− f(ak)| < ε.
2I.e. b(x|y) is a function of two variables that defines an integral transform.
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If we assume that the fragmentation process is conservative then the total mass of daughter

particles must be equal to the mass of the parent particle. This yields:∫ y

0

xb(x|y)dx = y. (II.1.6)

The unknown function u is assumed to be positive for all values of t ≥ 0. The total mass of the

ensemble at time t is given by ∫ ∞
0

xu(x, t)dx.

2 The Transport-Fragmentation Equation in Abstract Set-

tings

We are going to use the semigroup technique to do the formal analysis of (II.1.1). In the sequel

we consider the decay case only. First, we rewrite (II.1.1) as an abstract Cauchy problem (ACP).

For this we define the following operators:

T [u](x) = ∂x [r(x)u(x, t)]− pu(x, t), p = (µ(x) + a(x)) ,

F [u](x) =

∫ ∞
x

a(y)b(x|y)u(y, t)dy,

then (II.1.1) is equivalent to

ut = T [u] + F [u], u(0) = u0, t ≥ 0. (II.2.1)

To apply abstract methods discussed in Chapter I we have to choose an appropriate Banach

space for the unknown u. In the study of fragmentation processes two spaces L1(R+, xdx)

and L1(R+, dx) are commonly used, due to the meaning given by their norms. For u ≥ 0,

L1(R+, xdx) norm

‖u‖ =

∫ ∞
0

u(x)xdx,

gives the total mass of the system, while L1(R+, dx) norm

‖u‖ =

∫ ∞
0

u(x)dx,
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represents the total number of particles in the system. In the sequel we use X = L1(R+, xdx)

since the total mass of the system is usually bounded while the number of particles might rapidly

grow towards infinity due the fragmentation.

Next, we define domains of our operators T and F . The domains should be chosen so that

D(T + F ) 6= ∅. The domain of the operators are constructed as follows:

D(T ) = {u ∈ X|(ru)x, pu ∈ X},

D(F ) = {u ∈ X|Fu ∈ X}.

Now we are at the point where we can start formal analysis of the problem at hand. We proceed

as in [BA06]. First, we alter the problem by assuming that F [u] = 0 in (II.2.1) and establish

existence of a semigroup generated by T . Second, we consider the whole problem by making

F [u] 6= 0 and apply the perturbation technique to obtain the semigroup for the sum of the

operators T and F . Finally, we make some comments on the uniqueness of the semigroup

solutions.

2.1 The Transport Semigroup

We start by assuming that F [u] = 0, then equation (II.2.1) reduces to

ut = T [u], u(0) = u0, t ≥ 0. (II.2.2)

Our aim here is to show that T generates a strongly continuous semigroup. The approach is

standard. First, we demonstrate that for appropriately chosen domain D(T ) the resolvent R(λ, T )

satisfy ‖R(λ, T )‖ ≤ 1

λ
for all λ > 0. Second, we show that the operator (T,D(T )) is closed and

densely defined. Then, the generation result follows easily from the Hille-Yosida theorem.

Let u0 ∈ X, the resolvent equation reads

λu− (ru)x + pu = u0, λ > 0. (II.2.3)

The formal solution is given by

u(x) = Rλ[u0](x) :=
eλR(x)+Q(x)

r(x)

∫ ∞
x

e−λR(y)−Q(y)u0(y)dy, (II.2.4)
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where

R(x) =

∫ x

x0

1

r(s)
ds and Q(x) =

∫ x

x0

p(s)

r(s)
ds, (II.2.5)

and x0 is a fixed positive number. Assumptions (II.1.2)-(II.1.4) imply that
1

r
,
p

r
∈ L1,loc((0,∞)),

therefore the integrals R(x) and Q(x) are well defined for all x > 0.

(i) R(x) and Q(x) are continuous and bounded on compact subintervals of (0,∞);

(ii) R(x) is strictly increasing and Q(x) is non-decreasing on (0,∞);

(iii) esR(x)+Q(x) is positive and absolutely continuous on compact subintervals of [0,∞) for any

fixed real s.

Using this facts we can prove the following

Lemma II.2.1. [BA06] For λ > 0 operator Rλ maps X into D(T ), i.e. RλX ⊂ D(T ). Moreover,

Rλ is bounded and ‖Rλ‖ ≤
1

λ
.

Proof. Let u ∈ X and v = Rλu. We show that ‖v‖ <∞, ‖pv‖ <∞ and ‖(rv)x‖ <∞. First,

‖v‖ =

∫ ∞
0

x
eλR(x)+Q(x)

r(x)

∫ ∞
x

e−λR(y)−Q(y)|u(y)|dydx

=

∫ ∞
0

y|u(y)|e
−λR(y)−Q(y)

y

∫ y

0

x
eλR(x)+Q(x)

r(x)
dxdy

≤ ‖u‖ sup
x>0

[
e−λR(x)−Q(x)

x

∫ x

0

y
eλR(y)+Q(y)

r(y)
dy

]
:= ‖u‖ sup

x>0
Aλ(x).

Since

Aλ(x) =
e−λR(x)−Q(x)

x

∫ x

0

y
eλR(y)+Q(y)

r(y)
dy ≤ 1

λ
e−λR(x)

∫ x

0

eλR(y) λ

r(y)
dy

≤ 1

λ
e−λR(x)

(
eλR(x) − lim

x→0
eλR(x)

)
≤ 1

λ
,

it follows that ‖v‖ ≤ 1
λ
‖u‖.
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Second,

‖pv‖ =

∫ ∞
0

p(x)x
eλR(x)+Q(x)

r(x)

∫ ∞
x

e−λR(y)−Q(y)u(y)dydx

=

∫ ∞
0

yu(y)
e−λR(y)−Q(y)

y

∫ y

0

x
p(x)eλR(x)+Q(x)

r(x)
dxdy

≤ ‖u‖ sup
x>0

[
e−λR(x)−Q(x)

x

∫ x

0

y
p(y)eλR(y)+Q(y)

r(y)
dy

]
:= ‖u‖ sup

x>0
Bλ(x).

In the same way as before we obtain

Bλ(x) =
e−λR(x)−Q(x)

x

∫ x

0

y
p(y)eλR(y)+Q(y)

r(x)
dx ≤ e−Q(x)

(
eQ(x) − lim

x→0
eQ(x)

)
≤ 1,

and ‖pv‖ ≤ ‖u‖.

Finally, we note that (rv)x = (λ+ p)v − u, therefore

‖(rv)x‖ = ‖(λ+ p)v − u‖ ≤ 2‖u‖+ ‖u‖ = 3‖u‖,

and it follows that RλX ⊂ D(T ).

The operator Rλ : X → D(T ) is into but it does not have to be onto. To illustrate the statement

consider the homogeneous resolvent equation

λu− (ru)x + pu = 0, λ > 0.

Its general solution is given by u = Kvλ, where K is a constant and

vλ(x) =
eλR(x)+Q(x)

r(x)
.

It might occur that for some coefficients r and p the eigenfunction vλ belongs to D(T ). Since

vλ /∈ RλX it is clear that in such a situation λI − T is not invertible in D(T ) and T cannot be

a generator of a semigroup.

The situation is demonstrated by the following example, see [BA06]. Let r(x) = xb with b > 2

and p(x) be bounded and integrable. Since p(x) ≤M for some M > 0 we have

‖vλ‖ ≤
∫ ∞

0

x1−b exp

(
−(λ+M)

(b− 1)xb−1

)
dx =

∫ ∞
0

t
1

1−b exp

(
−(λ+M)t

(b− 1)

)
dt

b− 1
<∞.

In the same way one can show that pvλ ∈ X and hence vλ ∈ D(T ). We see that the operator

(T,D(T )) does not generate a semigroup.

Lemma II.2.1 implies that (λI − T )Rλ = I, i.e. Rλ is the right inverse of (λI − T ).
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Lemma II.2.2. Operator Rλ is the left inverse of λI − T in D(T ) provided that

lim
x→∞

u(x)

vλ(x)
= 0 for all u ∈ D(T ). (II.2.6)

Condition (II.2.6) is satisfied automatically if vλ /∈ D(T ).

Proof. Consider R(λ, T )(λI − T )u, where u ∈ D(T ). We have

Rλ(λI − T )u =
1

r(x)
eλR(x)+Q(x)

∫ ∞
x

e−λR(y)−Q(y)(λu(y)− [r(y)u(y)]x + p(y)u(y))dy

=
1

r(x)
eλR(x)+Q(x)

∫ ∞
x

− d

dy

(
e−λR(y)−Q(y)r(y)u(y)

)
dy

=
1

r(x)
eλR(x)+Q(x)

[
r(x)u(x)e−λR(x)−Q(x) − lim

x→∞

u(x)

vλ(x)

]
= u(x)− vλ(x) lim

x→∞

u(x)

vλ(x)
.

This proofs the first claim of the Lemma.

To prove the second one we assume that limx→∞
u(x)

vλ(x)
> 0 for some non-negative u ∈ D(T ).

Since both u and vλ are absolutely continuous in compact subintervals of (0,∞) it follows that

the limit is a finite non-negative number or infinity. In both cases there exists x0 > 0 such that
u(x)

vλ(x)
≥ Cλ for all x > x0 and for some Cλ > 0.

If vλ /∈ D(T ) then either vλ /∈ X or pvλ /∈ X. In the first case we have∫ ∞
x0

u(x)xdx =

∫ ∞
x0

vλ(x)
u(x)

vλ(x)
xdx ≥ Cλ

∫ ∞
x0

vλ(x)xdx,

and since
∫ x0

0
vλ(x)xdx <∞ it follows that

‖vλ‖ ≤
∫ x0

0

vλ(x)xdx+
1

Cλ

∫ ∞
x0

u(x)xdx <∞.

In the second case∫ ∞
x0

p(x)u(x)xdx =

∫ ∞
x0

p(x)vλ(x)
u(x)

vλ(x)
xdx ≥ Cλ

∫ ∞
x0

p(x)vλ(x)xdx,

and since
∫ x0

0
p(x)vλ(x)xdx <∞ it follows that

‖pvλ‖ ≤
∫ x0

0

p(x)vλ(x)xdx+
1

Cλ

∫ ∞
x0

p(x)u(x)xdx <∞.

The proof is complete.

20



In view of Lemmas II.2.1-II.2.2 we redefine D(T ) as follows

D(T ) =


{u ∈ X|(ru)x, pu ∈ X}, vλ /∈ X or pvλ /∈ X;{
u ∈ X|(ru)x, pu ∈ X, limx→∞

u(x)

vλ(x)
= 0
}
, vλ, pvλ ∈ X.

(II.2.7)

Then it follows at once that Rλ = R(λ, T ), i.e. it is the resolvent of (T,D(T )) and ‖R(λ, T )‖ ≤
1

λ
for all λ > 0. It remains to show that the operator (T,D(T )) is closed and densely defined in

X.

The fact that D(T ) is dense in X follows easily from the following result:

Corollary II.2.3. [Rob87] C∞c (Ω) is dense in Lp(Ω) provided that 1 ≤ p <∞.

To check that (T,D(T )) is closed we take un ∈ D(T ) such that un → u and Tun → f ∈ X

and show that u ∈ D(T ) and Tu = f . Let λ > 0 be fixed, since un ∈ D(T ) we have

un = R(λ, T )vn for some vn ∈ X. Since Tun = λun − vn we obtain vn → v = λu − f ∈ X.

Operator R(λ, T ) is continuous, hence un → u = R(λ, T )v and it follows that u ∈ D(T ).

Finally, Tu = TR(λ, T )v = λu− v = f .

Now we are ready to state the main result of this section:

Theorem II.2.4. The operator (T,D(T )) is the generator of a strongly continuous, positive

semigroup of contractions (ST (t))t≥0 on X.

Proof. The result follows from our analysis, the positivity of R(λ, T ) and the Hille-Yosida theorem.

2.2 The Transport-Fragmentation Semigroup

We have established existence of a strongly continuous semigroup (ST (t))t≥0 for the reduced

problem. Now we consider the full problem

ut = T [u] + F [u], u(0) = f, t > 0. (II.2.8)

We shall apply the generalised Kato-Voigt Theorem I.4.3 in L1 setting. First, we note that the

operator (T,D(T )) is a generator of a sub-stochastic semigroup (ST (t))t≥0. Second, (II.1.6) and

21



(II.2.7) together imply that D(F ) ⊃ D(T ). Third, it is clear that F [g] ≥ 0 for any g ∈ D(F )+.

We have to look at the last condition of Kato-Voigt theorem. Let u ∈ D(T )+, u = (λI−T )−1v,

for v ∈ X.∫ ∞
0

(T [u] + F [u])xdx =

∫ ∞
0

x(r(x)u(x))xdx︸ ︷︷ ︸
AT0

−
∫ ∞

0

xp(x)u(x)dx︸ ︷︷ ︸
AT1

+

∫ ∞
0

xF [u]dx︸ ︷︷ ︸
AF

(II.2.9)

Considering each independently we obtain,

AT0 =

∫ ∞
0

x
d

dx

[
eλR(x)+Q(x)

∫ ∞
x

e−λR(y)−Q(y)v(y)dy

]
dx

=

∫ ∞
0

x
λ+ p(x)

r(x)

[
eλR(x)+Q(x)

∫ ∞
x

e−λR(y)−Q(y)v(y)dy

]
dx−

∫ ∞
0

yv(y)dy

=

∫ ∞
0

e−λR(y)−Q(y)v(y)

∫ y

0

x
λ+ p(x)

r(x)
eλR(x)+Q(x)dxdy −

∫ ∞
0

yv(y)dy

=

∫ ∞
0

e−λR(y)−Q(y)v(y)

∫ y

0

x
d

dx
eλR(x)+Q(x)dxdy −

∫ ∞
0

yv(y)dy

=

∫ ∞
0

yv(y)dy −
∫ ∞

0

v(y)e−λR(y)−Q(y)

(∫ y

0

eλR(y)+Q(x)dx

)
dy −

∫ ∞
0

yv(y)dy

= −
∫ ∞

0

r(x)u(x)dx.

and

AF =

∫ ∞
0

x

[∫ ∞
x

a(y)b(x|y)u(y)dy

]
dx =

∫ ∞
0

a(y)u(y)

∫ y

0

xb(x|y)dxdy

=

∫ ∞
0

ya(y)u(y)dy.

Finally, combining them together we have,∫ ∞
0

(Tu+ Fu)xdx = −
∫ ∞

0

r(x)u(x)dx−
∫ ∞

0

xp(x)u(x)dx+

∫ ∞
0

xa(x)u(x)dx

= −
∫ ∞

0

r(x)u(x)dx−
∫ ∞

0

xµ(x)u(x)dx ≤ 0.

It follows that all conditions of the generalised Kato-voigt theorem are satisfied. Hence, we claim

that there is a smallest semigroup (SK(t))t≥0 generated by the extension K of T + F .

To complete the well-posedness analysis, we stress some point on the extension’s uniqueness.

The method we deployed, yields the smallest semigroup solution. This solution is a particular

realization of the problem. There is a possibility that there exist other solutions to (II.1.1).
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Indeed, extension K = Kmin obtained in Section II.2 correspond to the minimal operator (T +

F,D(T )). There may exist other extensions that correspond to different realization of the sum

T + F . For instance, it may happen that Kmin  Kmax, where Kmax is an extension of

(T + F,D(T + F )), with D(T + F ) = {u ∈ X : (T + F )[u] ∈ X}. In this case the solution

of (II.1.1) may not be unique. Examples of such behaviour are well-known in the literature, see

[ZM85, Ban02] for particular examples.
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Chapter III

Numerical Analysis of the Model

In this chapter we concentrate on the quantitative analysis of the fragmentation equation with

transport. We apply a pseudo-spectral method to solve equation (II.1.1) . For our method to

work (II.1.1) must be well-posed in a Hilbert space. We choose a suitable working space in which

we do error and stability analysis and construct a numerical scheme that solves the problem. We

begin with the wellposedness analysis in a Hilbert spaces.

1 Wellposedness in X = L2
α(R+)

To establish existence of semigroup solutions in Hilbert settings, we follow the technique of

Chapter II with some modifications. We begin with the transport semigroup.

1.1 The Transport Semigroup

In what follows we study wellposedness of our problem in the weighted Hilbert space X =

L2
α(R+) = {f | ‖xα/2f‖L2 <∞}. Let κ be a non-negative parameter, and

Tκ[u] = (ru)x − (µ+ a− κ2a2)u, D(Tκ) = D(T0) = {u, T0u, au ∈ X} , κ > 0. (III.1.1)

Assumptions of Section II.2.1 in Chapter II do not necessarily imply that Tκ generates a C0-

semigroup in X = L2
α(R+). For this to be true the coefficients of the model must satisfy some
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extra conditions.

Lemma III.1.1. Assume that for some κ > 0

ωκ(x) =
αr

x
+ 2(µ+ a− κ2a2)− rx ≥ 0, a.e. in R+, (III.1.2)

and there exist a measurable set Ω ⊂ R+, such that

max
{
‖a|Ω‖∞, ‖ a√

r
|R+/Ω
‖2, ‖ a

2
√
r
|R+/Ω
‖2,
}
≤ Λ. (III.1.3)

Then (Tκ, D(T0)) generates a C0-semigroup of contraction.

Proof. Condition (III.1.2) implies that Tκ is monotone, that is 〈Tku, u〉 ≤ 0, for all u ∈ D(T0).

For ”good” functions the statement can be verified without difficulties using integration by parts

and for any other u ∈ D(Tκ) the inequality follows from the closedness of Tκ.

Consider the resolvent equation,

(λI − Tκ)u = v, v ∈ X. (III.1.4)

Its formal solution is given by:

u(x) = Rλ[v] =
1

r(x)
eR(x)

∫ ∞
x

e−R(t)v(t)dt, R(x) =

∫ x

1

λ+ µ(t) + a(t)− κ2a2(t)

r(t)
dt.

Using weighted version of Hardy-type inequality [KP03] we conclude that Rλ[v] is bounded from

X to D(Tκ) if and only if

A = sup
x>0

(∫ x

0

tα
e2R(t)

r2(t)
dt

)1/2(∫ ∞
x

e−2R(t)

tα
dt

)1/2

≤ ∞, (III.1.5a)

B1 = sup
x>0

(∫ x

0

tα
a2(t)e2R(t)

r2(t)
dt

)1/2(∫ ∞
x

e−2R(t)

tα
dt

)1/2

≤ ∞, (III.1.5b)

B2 = sup
x>0

(∫ x

0

tα
a4(t)e2R(t)

r2(t)
dt

)1/2(∫ ∞
x

e−2R(t)

tα
dt

)1/2

≤ ∞. (III.1.5c)

We show that (III.1.2) implies (III.1.5a).

From (III.1.2) it follows that,

0 ≤ 2λxα
e2R(x)

r(x)
≤ d

dx

[
xα
e2R(x)

r(x)

]
,
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therefore, ∫ x

0

tα
e2R(t)

r(t)
dt ≤ 1

2λ

[
xα
e2R(x)

r(x)

]
. (III.1.6)

In a similar way,
e−2R(x)

xα
≤ − 1

2λ

d

dx

[
r(x)

e−2R(x)

xα

]
,

and ∫ ∞
x

e−2R(t)

tα
dt ≤ 1

2λ

[
r(x)

e−2R(x)

xα

]
. (III.1.7)

Combining (III.1.6) and (III.1.7) together we obtain

A ≤ 1

2λ
, for λ > 0.

In the same way one can show that (III.1.2), (III.1.3) imply (III.1.5b) and (III.1.5c), and

max{B1, B2} ≤
Λ1/2

√
2λ
. (III.1.8)

From the above calculations it follows that for any v ∈ X and λ > 0 there exist u = Rλ[v] ∈

D(Tκ), such that (λI−Tκ)u = v, i.e. the range of (λI−Tκ) is X. Since Tκ is maximal monotone

Lumer-Phillips theorem implies that (Tκ, D(Tκ)) generates a C0-semigroup of contraction in X.

1.2 The Transport-Fragmentation Semigroup

Now we consider the complete model

ut = (ru)x − (µ+ a)u+

∫ ∞
x

a(y)u(y)b(x|y)dy := (T0 + F )[u]. (III.1.9)

It seems to be difficult to establish L2
α(R+) theory for general fragmentation kernels. In the

sequel we assume that the kernels are separable, that is:

b(x|y) = b1(x)b2(y), where b2(y) =
y∫ y

0
xb1(x)dx

. (III.1.10)

Lemma III.1.2. Assume that for some κ > 0 conditions of Lemma III.1.1 are satisfied. If, in

addition,

C = sup
x>0

(∫ x

0

tαb2
1(t)dt

)1/2(∫ ∞
x

b2
2(y)dy

yα

)1/2

≤ ∞, (III.1.11)

then (T0 +F,D(T0)) generates a C0-semigroup (G(t))t≥0 in X. Moreover, ‖G(t)‖X ≤ eλ0t with

λ0 = max{0, (κ2 + 1)8ΛC2, C
2

κ2 }.
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Proof. From Lemma III.1.1, we have ‖R(λ, Tκ)‖ ≤ 1
λ

. Moreover, using estimate (III.1.8) com-

bined with the best Hardy constant1 we obtain the following upper bound:

max{‖aR(λ, Tκ)‖, ‖a2R(λ, Tκ)‖} ≤
√

2Λ√
λ
. (III.1.12)

Assumption (III.1.11) implies that ‖F [u]‖X ≤ 2C‖au‖ for all u ∈ D(Tκ), therefore

‖FR(λ, Tκ)u‖ ≤ 2C‖aR(λ, Tκ)u‖ ≤
2C
√

2Λ√
λ
‖u‖, (III.1.13)

that is ‖FR(λ, T0)‖ < 1, provided that λ > 8ΛC2. Using estimates (III.1.12) and (III.1.13) it is

not hard show that the resolvent equation is solvable. Indeed,

(λI−T0−F )u = (λI−Tκ+κ2a2−F )u = (I+κ2a2R(λ, Tκ)−FR(λ, Tκ))(λI−Tκ)u = v, v ∈ X.

Since for all λ > (κ2 + 1)8ΛC2 operator (I + κ2a2R(λ, Tκ) − FR(λ, Tκ)) is bounded with a

bounded inverse, it follows that λ ∈ ρ(T0 + F ) for all λ > λ0.

To estimate ‖R(λ, T0 + F )‖, we take the scalar product of the resolvent equation with u. This

gives

〈(λI − T0 − F )u, u〉 = λ‖u‖2 − 〈T0u, u〉 − 〈Fu, u〉 = 〈v, u〉,

and

λ‖u‖2 − 〈T0u, u〉 ≤ ‖u‖‖v‖+ ‖Fu‖‖u‖

≤ ‖u‖‖v‖+ 2C‖au‖‖u‖

≤ ‖u‖‖v‖+ κ2‖au‖2 +
C2

κ2
‖u‖2.

The last inequality can be rewritten as

λ‖u‖2 − 〈Tκu, u〉 ≤ ‖u‖‖v‖+
C2

κ2
‖u‖2.

Since Tκ is monotone, it follows that (λ− C2

κ2 )‖u‖ ≤ ‖v‖ or ‖R(λ, T0+F )‖ ≤ 1

λ− C2

κ2

≤ 1

λ− λ0

.

By Hille-Yosida theorem we conclude that (T0 + F,D(T0)) generates a C0-semigroup (G(t))t≥0

in X and ‖G(t)‖ ≤ eλ0t, for t > 0.

1The best constant C satisfy A ≤ C ≤ K(p, q)A, where A is given by (III.1.5a), K(p, q) = p1/q(p′)1/p′, and

1
p + 1

q = 1 (see [KP03]).
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2 The Laguerre-type Spectral Methods

Numerical methods for solving PDE’s can be categorized as local and global methods [STW11,

HGG07]. Local methods use nearby grid points to approximate a function at a given instant,

while in global methods calculations at any given point depend on the information from the

whole spatial domain. Typical representatives of local methods are Finite Elements (FEM),

Finite Volumes (FVM) and Finite Differences (FDM) methods. The examples of global methods

are spectral method and their modifications. The advantage of global methods is their superior

accuracy, while local methods enjoy domain flexibility [STW11].

In the past three decades there has been a growing interest in spectral methods that resulted in a

well-developed theory [CQHZ06, HGG07, STW11, Tre00]. A spectral method is defined in terms

of two sets of functions: the set of basis functions {φn}n≥0 and the set of test or trial functions

{ψn}n≥0. The exact solution is approximated by a finite linear combination of the basis functions

u(x) ≈ uN(x) =
N∑
n=0

ûnφn(x). (III.2.1)

The test functions are used to determinethe unknown spectral coefficients ûn. Three of the

earliest types of spectral schemes, Galerkin, Collocation and Tau, differ by the choice of the test

functions [CQHZ06]. We emphasize that unlike FEM and FEM-like methods, spectral methods

employ bases that are not compactly supported in spatial domains. In most applications the

basis and the test functions are analytic or entire. Typical examples are trigonometric functions,

orthogonal polynomials and their modifications, see [STW11].

Convergence and stability of a spectral methods are intimately connected with the approximation

properties of the basis functions. A choice of the basis depends on many factors, and in particular,

on the type of PDE and on the spatial domain. In our project we study Transport-Fragmentation

equation (II.1.1) that is posed in an unbounded spatial domain. There are a three general ways

to deal with such domains. In the first one, the domain is truncated. The approach works well for

linear problems, where it is relatively easy to impose artificial boundary conditions. The second

one make use of classical orthogonal polynomials combined with algebraic maps. This approach

is quite popular in the numerical literature, see [Boy00, CQHZ06] and references therein. The

third approach employs functions that are orthogonal in unbounded intervals.
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In the project we follow the third approach. Since our domain is half line, it is natural to use

generalized Laguerre functions. They are denoted by

L̂αn(x) = e
−x
2 L(α)

n (x), n ≥ 0,

where L
(α)
n (x) are generalized Laguerre polynomials. For α > −1 the collection {L̂αn}n≥0 forms

an orthogonal basis in L2
α(R+) (see [Sze67]) and∫ ∞

0

xαL̂αn(x)L̂αm(x)dx =
Γ(n+ α + 1)

n!
δmn. (III.2.2a)

The Laguerre functions satisfy many important identities [GR07], we list some of them below:

L̂αn(x) = L̂αn−1(x) + L̂α−1
n (x), α ∈ C, (III.2.2b)

L̂αn(x) =
1

x

[
(n+ α)L̂α−1

n (x)− (n+ 1)L̂α−1
n+1(x)

]
, α ∈ C, (III.2.2c)

L̂αn(x) = L̂α+1
n (x)− L̂α+1

n−1(x), α ∈ C, (III.2.2d)

d

dx
L̂αn(x) = −1

2
L̂αn(x)−

n−1∑
s=0

L̂αs (x), α ∈ C, (III.2.2e)

L̂αn+1(x) =
1

x

[
(x− n)L̂αn(x) + (α + n)L̂αn−1(x)

]
, α ∈ C, (III.2.2f)

L̂αn(0) =

(
n+ α

n

)
, and

n∑
m=0

L̂αm(x)L̂βn−m(y) = L̂α+β+1
n (x+ y), α, β ∈ C. (III.2.2g)

Note that in view of (III.2.2e) constant coefficient linear PDE’s can be solved exactly. In addition,

thanks to the exponential multiplier in L̂αn(x), the Laguerre basis allows the treatment of problems

with rapidly growing coefficients. The next subsection contains more details on the approximation

properties of Laguerre basis.

2.1 The Scale of Bessel Potential Spaces

It is convenient to study Laguerre basis in weighted Bessel potential spaces. They are similar to

Sobolev spaces and give an advantage to handle fractional and integer derivatives of functions.

We describe the weighted Bessel potential space in terms of fractional integrals, this approach

avoids use of space interpolation and allows to obtain sharper error estimates. We begin by
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defining left and right Bessel fractional integrals of order β > 0 in R+. Let g(x) be a measurable

function, we define the former by

Jβ+[g](x) =

∫ x

0

e
t−x

2 (x− t)β−1g(t)dt, (III.2.3)

Jβ−[g](x) =

∫ ∞
x

e
x−t

2 (t− x)β−1g(t)dt. (III.2.4)

We also define the Riemann-Liouville and the Weyl fractional integrals,

Iβ+[g](x) =

∫ x

0

(x− t)β−1g(t)dt, (III.2.5)

Iβ−[g](x) =

∫ ∞
x

(t− x)β−1g(t)dt, (III.2.6)

then the Bessel fractional integrals can be expressed as follows: Jβ+ = e
−x
2 Iβ+e

x
2 and Jβ− =

e
x
2 Iβ−e

−x
2 .

We describe the weighted Bessel potential spaces by means of operator Jβ−. Let u and v be

almost everywhere positive measurable function in R+ and

Lpu(R+) = {f |‖u
1
pf‖p = ‖f‖u,p <∞} and Lpv(R+) = {f |‖v

1
pf‖p = ‖f‖v,p <∞},

be two corresponding weighted Lebesque spaces with 1 < p < ∞. We set u− = ue
pt
2 , v− =

ve
pt
2 , 1

p
+ 1

p′
= 1 and

Ap,β(u, v) = sup
x>0

(
I
p(β−1)+1
+ [u−](x)

)1/p (
I1
−[v1−p′
− ](x)

)1/p′
, (III.2.7)

Ãp,β(u, v) = sup
x>0

(
I
p′(β−1)+1
− [v1−p′

− ](x)
)1/p′ (

I1
+[u−](x)

)1/p
, (III.2.8)

Bp,β(u, v) = sup
x>0

(
Iβ+[v1−p′

− (Iβ+[u−])p′](x)
)1/p′ (

Iβ+[u−](x)
)−1/p′

, (III.2.9)

B̃p,β(u, v) = sup
x>0

(
Iβ−[u−(Iβ−[v1−p′

− ])p](x)
)1/p (

Iβ−[v1−p′
− ](x)

)−1/p

. (III.2.10)

It is shown in [KP03], that the operator Jβ−, is continuous from Lpv(R+) to Lpu(R+) if and only if

Ap,β(u, v) <∞ and Ãp,β(u, v) <∞, β ≥ 1. Recently in [PS02] for 0 < β < 1, Jβ−, it is proved

that Jβ− is continuous provided that Bp,β(u, v) < ∞ or B̃p,β(u, v) < ∞, 0 ≤ β ≤ 1. Hence,

when (u, v) are sufficiently regular, the following Hardy-type inequality holds:

‖Jβ−[f ]‖u,v ≤ cu,v,p,β‖f‖v,p, 1 ≤ p ≤ ∞, β > 0, (III.2.11)
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where constant cu,v,p,β satisifies

cu,v,p,β ∼ max{Ap,β(u, v), Ãp,β(u, v)}, β ≥ 1,

and

cu,v,p,β ≤ min

{
p

Γ(β)
Bp,β(u, v),

p′
Γ(β)

B̃p,β(u, v)

}
, 0 < β < 1.

In view of (III.2.11) we define the following class Hp,β
v (R+) = Jβ− (Lpv(R+)), 1 < p <∞, β > 0.

It can be shown [SKM93], that there exists for operator J−β− with the properties:

(i) J−β− maps Hp,β
v (R+) onto Lpv(R+);

(ii) J−β− [Jβ−] = I in Lpv(R+) and Jβ−[J−β− ] = I in Hp,β
v (R+);

(iii) J−β− [f ] = 0 if and only if f = 0 in Lpv(R+);

(iv) f ∈ Hp,β
v (R+) if and only if J−β− [f ] ∈ Lpv(R+) and f ∈ Lpu(R+) where the pair (u, v)

satisfies (III.2.7)–(III.2.10).

From (i)—(iv) the class Hp,β
v (R+) equipped with the norm ‖f‖v,p,β = ‖J−β− [f ]‖v,p is isometrically

isomorphic to Lpv(R+), and hence is a Banach space. It is called the weighted Bessel potential

space.

We study approximation properties of Laguerre functions in the Hilbert spaces

Hα,β(R+) = H2,β
xα (R+), α > −1, β > 0,

where the scalar product and the induced norm are given by

〈f, g〉α,β =

∫
R+

xαJ−β− [f ](x)J−β− [g](x)dx, ‖f‖α,β = 〈f, g〉1/2α,β.

It is not difficult to verify that for Hα,β(R+) inequality (III.2.11) takes the form:

‖f‖γ ≤ cα,β,γ‖f‖α,β, (III.2.12)

where parameters α, β and γ satisfy

α > −1, β > 0, γ > −1 and α− 2β ≤ γ ≤ α.
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To conclude we mention several useful results related to Bessel fractional integrals and derivatives.

For f ∈ Lp(R+), g ∈ Lp′(R+), the formula of fractional integration by parts holds:∫
R+

fJβ±[g]dx =

∫
R+

gJβ∓[f ]dx, β > 0. (III.2.13)

The formula of fractional differentiation by parts reads:∫
R+

fJ−β± [g]dx =

∫
R+

gJ−β∓ [f ]dx, β > 0, (III.2.14)

where f, J−β± f ∈ Lp(R+) and g, J−β± g ∈ Lp′(R+) for some 1 ≤ p ≤ ∞, [SKM93]. For the

generalized Laguerre functions the following holds [PBM92, p. 462-463 formulas 2.19.2.2 and

2.19.3.7]:

Jβ+[xαL̂αn(x)] =
Γ(α + n+ 1)

Γ(α + β + n+ 1)
xα+βL̂α+β

n (x), J−β− [L̂αn(x)] = L̂α+β
n (x), β > 0. (III.2.15)

2.2 Laguerre Spectral Approximation in Hα,β(R+)

It is natural to approximate elements of a Hilbert space by their truncated Fourier series. Let N

be a positive integer, Pn be a subspace of L2
α(R+) spanned by {e−x2 xn|0 ≤ n ≤ N}, and Pα

N :

L2
α(R+) → Pn be the orthogonal projector onto Pn, i.e. Pα

Nf =
∑N

n=0 f̂nL̂
α
n(x), f ∈ L2

α(R+).

Then, we have the following estimate:

Lemma III.2.1. Let α > −1 and β ≥ 0, then

‖(I − Pα
N)f‖α ≤ cN

−β
2 ‖f‖α+β,β. (III.2.16)

The positive constant c is independent of N and f .
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Proof. We have

‖(I − Pα
N)f‖2

α =
∑
N<n

n!

Γ(α + n+ 1)
(aαn)2 =

∑
N<n

n!

Γ(α + n+ 1)
〈L̂αn, f〉2

=
∑
N<n

n!

Γ(α + n+ 1)

[∫
R+

J−β+ Jβ+[xαL̂αn]f(x)dx

]2

(since J−β+ Jβ+ = I)

=
∑
N<n

n!

Γ(α + n+ 1)

[∫
R+

Jβ+[xαL̂αn]J−β− [f(x)]dx

]2

( by (III.2.14))

=
∑
N<n

Γ(α + n+ 1)n!

Γ2(α + β + n+ 1)

[∫
R+

xα+βL̂α+β
n J−β− [f(x)]dx

]2

(by(III.2.15))

≤ Γ(α +N + 1)

Γ(α + β +N + 1)
‖f‖2

α+β,β

Using Stirling’s formula and taking the square root we obtain the result.

Then Lemma III.2.1 enables us to proof the following results.

Theorem III.2.2. Let α > −1, β > −1, γ ≥ 0 and δ ≥ 0 satisfy

β ≤ α + γ, δ ≥ α + 2γ − β, (III.2.17a)

then

‖(I − Pα
N)f‖β,γ ≤ cNγ+(α−β−δ)/2‖f‖α+δ,δ, (III.2.17b)

where positive constant c is independent of N and f .

Proof. By (III.2.15) J−γ− Pα
N [f ] = Pα+γ

N J−γ− [f ], therefore

‖(I − Pα
N)f‖β,γ = ‖(I − Pα+γ

N )J−γ− [f ]‖β

≤ c‖(I − Pα+γ
N )J−γ− [f ]‖2(α+γ)−β,α+γ−β (by (III.2.12))

= c‖(I − P 2(α+γ)−β
N )J

−(α+2γ−β)
− [f ]‖2(α+γ)−β

≤ c1N
−ξ/2‖J−(α+2γ−β)

− [f ]‖2(α+γ)−β+ξ,ξ (by Lemma III.2.1)

= c1N
−ξ/2‖f‖2(α+γ)−β+ξ,ξ+α+2γ−β

= c1N
γ+(α−δ−β)/2‖f‖α+δ,δ,

where δ = ξ + α + 2γ − β. The proof is complete.
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Now we estimate the approximation error for β ≥ α + γ.

Theorem III.2.3. Let α > −1, β > −1, γ ≥ 0 and δ ≥ 0 satisfy

β ≥ α + γ, δ ≥ β − α, (III.2.18a)

then

‖(I − Pα
N)f‖β,γ ≤ cN (β−α−δ)/2‖f‖α+δ,δ, (III.2.18b)

where positive constant c is independent of N and f .

Proof. Using the same approach as in Theorem III.2.1 we obtain

‖(I − Pα
N)f‖β,γ = ‖(I − Pα+γ

N )J−γ− [f ]‖β

≤ c‖(I − Pα+γ
N )J−γ− [f ]‖β,β−α−γ (by (III.2.12))

= c‖(I − P β
N)J

−(β−α)
− [f ]‖β

≤ c1N
−ξ/2‖J−(β−α)

− [f ]‖β+ξ,ξ (by Lemma III.2.1)

= c1N
−ξ/2‖f‖β+ξ,ξ+β−α = c1N

(β−α−δ)/2‖f‖α+δ,δ,

where δ = ξ + β − α.

Theorems III.2.2 and III.2.3 provide us the complete description of Laguerre spectral approxima-

tion error in spaces Hα,β(R+).

2.3 Laguerre Interpolation at Gauss and Radau Nodes

The major problem with spectral approximations is that one has to calculate all the integrals

〈f, L̂αn〉 exactly, which is not always possible. The simplest solution is to replace all the integrals

with quadrature formulas. For Gaussian quadratures this approach is equivalent to the standard

polynomial interpolation (the ancient technique first used by John Wallis in 1655 [GS00]).

Given an ordered set of points X = {xn}Nn=0, 0 ≤ x0 ≤ · · · ≤ xN ≤ ∞, we define the Lagrange

interpolation operator IαX,N : L2
α → PN , by the formula

e−xnIαX,N [ex/2f ](xn) = f(xn), 0 ≤ n ≤ N. (III.2.19)
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Properties of operator IαX,N are completely determined by the set X, in the sequel we consider

Gaussian and Radau abscissas only.

The set of Gaussian abscissas is denoted by Xα,G = {xα,n,N}Nn=0, where xα,n,N are zeros of

L
(α)
N+1(x). The Radau abscissas are given by Xα,R = {0} ∪ {xα+1,n,N−1}N−1

n=0 . The classical

theory of Gaussian quadratures implies that

‖IX,N [f ]‖2
α =

N∑
n=0

wα,ne
xnf 2(xn), f ∈ PN , (III.2.20)

where X is either Xα,G or Xα,R and wα,n are the corresponding quadrature weights. Gauss-

Laguerre abscissas satisfy (see [Sze67, p. 129] or [MM08, p. 141] and references therein):(
3π

16

)2
(n+ 1)2

N + 1
< xα,n,N < 4

(n+ 1)2

N + 1
, 0 ≤ n ≤ N, (III.2.21)

and

c

(
xα,n,N

4(N + 1)− xα,n,N

)1/2

≤ hα,n,N ≤ C

(
xα,n,N

4(N + 1)− xα,n,N

)1/2

, 0 ≤ n ≤ N − 1,

(III.2.22)

where hα,n,N = xα,n+1,N − xα,n,N . Associated Christoffel numbers are given explicitly by

wα,n,N =
Γ(α + n+ 1)

n!xα,n,N(L
(α)′
n (xα,n,N))2

0 ≤ n ≤ N. (III.2.23)

The following estimate can be found in [MM08, p. 144]

cxαα,n,Ne
−xα,n,Nhα,n,N ≤ wα,n,N ≤ Cxαα,n,Ne

−xα,n,Nhα,n,N , 0 ≤ n ≤ N. (III.2.24)

For Laguerre-Radau quadrature associated Christoffel numbers can be expressed in terms of

Gaussian weights as follows:

wα,0,N =
Γ2(α + 2)Γ(N + 1)

(α + 2)Γ(N + α + 2)
, wα,n,N =

wα+1,n−1,N−1

xα,n−1,N−1

, 1 ≤ n ≤ N.

Some pointwise estimates and inverse inequalities that are needed to study the interpolation

operator IαX,N are discussed in the following subsection.
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2.3.1 Pointwise Estimates and Inverse Inequalities

We begin with the pointwise estimates.

Lemma III.2.4. Let f ∈ Hα,β(R+), α > −1 and 1/2 < β ≤ 1, then for x, h > 0

|f(x)| ≤ chβ−1/2‖φ‖[x,x+h] +
(1− e−h)1/2

h
‖f̂‖[x,x+h], (III.2.25)

where f̂ ∈ Hα,β(R+) is defined by means of the identity f̂ = Jβ−[|J−β− f |] and positive constant c

does not depend on f, f̂ , x and h.

Proof. For τ > 0 and φ = J−β− [f ] we have

|f(x)| ≤ 1

Γ(β)

(∫ x+τ

x

+

∫ ∞
x+τ

)
(t− x)β−1e(x−t)/2|φ(t)|dt

≤ 1

Γ(β)

∫ x+τ

x

(t− x)β−1e(x−t)/2|φ(t)|dt+ e(−τ/2)f̂(x+ τ).

Integrating both sides with respect to τ from 0 to h and using the Cauchy-Schwarz inequality we

get

h|f(x)| ≤
∫ h

0

1

Γ(β)

∫ x+τ

x

(t− x)β−1e(x−t)/2|φ(t)|dtdτ +

∫ h

0

e(−τ/2)f̂(x+ τ)dτ

≤ hβ+1/2B
1/2(2β − 1, 3)

Γ(β)
‖φ‖[x,x+h] + (1− e−h)1/2‖f̂‖[x,x+h].

The proof is complete.

For inverse inequalities we have the following result:

Lemma III.2.5. Let α > −1, β ≥ 0 and pN ∈ PN , then

‖pN‖α+β,β ≤ cNβ/2‖pN‖α, (III.2.26a)

‖pN‖α ≤ cN |α−β|/2‖pN‖β, (III.2.26b)

‖pN‖α,β ≤ cNβ−min {0,α}‖pN‖α. (III.2.26c)

In each inequality positive constant c do not depend on N and pN .
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Proof. (i) Let pN =
∑N

n=0
n!

Γ(α+n+1)
anφ

α
n(x), then using Gautschi inequality2 and (III.2.15) we

obtain

‖pN‖2
α+β,β =

N∑
n=0

Γ(α + β + n+ 1)

Γ(α + n+ 1)

n!

Γ(α + n+ 1)
a2
n ≤ cNβ

N∑
n=0

n!

Γ(α + n+ 1)
a2
n = cNβ‖pN‖2

α.

(ii) By (III.2.15) and generalised Hardy-type inequality,

‖pN‖α ≤ c‖pN‖α,α−β ≤ c2N
(β−α)/2‖pN‖β,

if α ≥ β. On the other hand,

‖pN‖α ≤ c‖pN‖2β−α,β−α ≤ c2N
(α−β)/2‖pN‖β,

if α ≤ β.

(iii) Using (III.2.15) and (III.2.2g)

J−β− [pN ] =
N∑
n=0

n!

Γ(α + n+ 1)
φαn(x)

N∑
m=n

m!Γ(n+ α + 1)

n!Γ(m+ α + 1)
Lβ−1
m−n(0)am.

Then,

‖pN‖α,β ≤ |D−1UD|‖pN‖α,

where |.| is the standard euclidean norm, D = diag
{

1
Γ1/2(α+1)

, . . . , (N !)1/2

Γ1/2(α+N+1)

}
, U is the upper

triangular Toeplitz matrix of the form U =
∑N

n=0 L
β−1
n (0)In, where In are matrices with unit on

the n-th upper diagonal. Let α ≥ 0, then

|D−1UD| ≤
N∑
n=0

Lβ−1
n (0)|D−1InD| ≤

N∑
n=0

Lβ−1
n (0) = Lβ−1

n (0) =

(
N + β

N

)
≤ cNβ.

Similarly, for −1 < α < 0, we obtain

|D−1UD| ≤
N∑
n=0

Lβ−1
n (0)|D−1InD| ≤

N∑
n=0

Lβ−1
n (0)

n!Γ(α + 1)

Γ(α + n+ 1)

≤ c
N∑
n=0

(n+ 1)β−α−1 ≤ C1N
β−α.

The proof is complete.

2Which says that n1−s ≤ Γ(n+1)
Γ(n+s) ≤ (n+ 1)1−s for all n ∈ N and 0 ≤ s ≤ 1, see [Gau59].
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2.3.2 Interpolation at Gaussian Abscissas

Using results of Section III.2.3.1 we can prove the following stability estimate:

Lemma III.2.6. Let

α > −1, 1/2 < γ ≤ 1, β ≥ 0 and α + γ ≤ β ≤ α + 2γ, (III.2.27a)

then

‖IαXG,N [f ]‖α ≤ c‖f‖β,γ. (III.2.27b)

Positive constant c does not depend on N and f .

Proof. Identity (III.2.20) and Lemma III.2.4 yield,

‖IαXG,N [f ]‖2
α ≤ 2c1

N∑
n=0

wα,n,Ne
xα,n,Nh2γ−1

α,n,N

∫ xα,n+1,N

xα,n,N

φ2(x)dx

+ 2
N∑
n=0

wα,n,Ne
xα,n,N

1− e−hα,n,N
h2
α,n,N

∫ xα,n+1,N

xα,n,N

f̂ 2(x)dx = A+B,

where we set hα,N,N = hα,N−1,N , hα,N+1,N = xα,N,N + hα,N,N and Jγ−[φ] = f . Using (III.2.24)

and taking into account that β ≥ 0 we obtain

A ≤ 2c1

N∑
n=0

xαα,n,Nh
2γ
α,n,N

∫ xα,n+1,N

xα,n,N

φ2(x)dx

≤ 2c1

N∑
n=0

xα−βα,n,Nh
2γ
α,n,N

∫ xα,n+1,N

xα,n,N

xβφ2(x)dx

≤ 2c2 max
0≤n≤N

xα−βα,n,Nh
2γ
α,n,N‖f‖

2
β,γ.

The estimates (III.2.21) and (III.2.22) imply,

max
0≤n≤N

xα−βα,n,Nh
2γ
α,n,N ≤ c2 max

0≤n≤N−1

xα−β+γ
α,n,N

(4(N + 1)− xα,n,N)γ

≤ c3N
max{α−β+γ,β−α−2γ}.

We follow the same procedure to obtain B ≤ c4‖f̂‖2
α, where

c4 ≥ 2

(
16

π

)−2α

≥ 2 max
0≤n≤N

(
xα,n,N
xα,n+1,N

)α
1− e−hα,n,N
hα,n,N

,
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when −1 < α < 0 and

c4 ≥ 2 ≥ 2 max
0≤n≤N

1− e−hα,n,N
hα,n,N

,

when α ≥ 0. By (III.2.12) and definition of f̂ , ‖f̂‖α ≤ c5‖f̂‖β,γ. This gives the result.

Using the stability estimate and approximation properties of Section III.2.2 it is not difficult to

obtain the following two theorems:

Theorem III.2.7. Let α > −1, β > −1, γ ≥ 0, 1/2 < ξ ≤ 1 and δ ≥ 0, then

‖(I − IαXG,N )f‖β,γ ≤ cNγ+(α−β−δ+ξ)/2‖f‖α+δ,δ, γ − 1 < β ≤ α + γ, (III.2.28a)

‖(I − IαXG,N )f‖β,γ ≤ cN (β−α−δ+ξ)/2‖f‖α+δ,δ, β ≥ α + γ. (III.2.28b)

Positive constant c does not depend on N and f .

Proof. We apply the triangular inequality, Lemma III.2.5 and Lemma III.2.6, to obtain

‖(I − IαXG,N )f‖β,γ ≤ ‖(I − Pα
N)f‖β,γ + ‖(Pα

N − IαXG,N )f‖β,γ

≤ ‖(I − Pα
N)f‖β,γ + cNγ/2‖(Pα

N − IαXG,N )f‖β−γ by (III.2.26a)

≤ ‖(I − Pα
N)f‖β,γ + cNγ/2‖IαXG,N (I − Pα

N)f‖β−γ by [IαXP
α
X = Pα

X ]

≤ ‖(I − Pα
N)f‖β,γ + c1N

(γ+|α−β+γ|)/2‖IαXG,N (I − Pα
N)f‖α by (III.2.26b)

≤ ‖(I − Pα
N)f‖β,γ + c1N

(γ+|α−β+γ|)/2‖(I − Pα
N)f‖α+ξ,ξ by (III.2.27b).

The results follows from Theorems III.2.2 and III.2.3.

Theorem III.2.8. Let α > −1, γ ≥ 0, −1 ≤ β ≤ γ − 1, 1/2 < ξ ≤ 1 and δ ≥ 0, then

‖(I − IαXG,N )f‖β,γ ≤ cNγ−min {0,β}+(|α−β|−δ+ξ)/2‖f‖α+δ,δ. (III.2.29)

Positive constant c does not depend on N and f .
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Proof. Using the triangular inequality, Lemma III.2.5 and Lemma III.2.6, we infer

‖(I − IαXG,N )f‖β,γ ≤ ‖(I − Pα
N)f‖β,γ + ‖(Pα

N − IαXG,N )f‖β,γ

≤ ‖(I − Pα
N)f‖β,γ + cNγ−min{0,β}‖(Pα

N − IαXG,N )f‖β by (III.2.26c)

≤ ‖(I − Pα
N)f‖β,γ + cNγ−min{0,β}‖IαXG,N (I − Pα

N)f‖β by [Pα
XI

α
X = IαX ]

≤ ‖(I − Pα
N)f‖β,γ + c1N

γ−min{0,β}+(|α−β|)/2‖IαXG,N (I − Pα
N)f‖α by (III.2.26b)

≤ ‖(I − Pα
N)f‖β,γ + c1N

γ−min{0,β}+(|α−β|)/2‖(I − Pα
N)f‖α+ξ,ξ by (III.2.27b).

Theorem III.2.2 implies (III.2.29).

2.3.3 Interpolation at Radau Abscissas

The analysis is the same as in the case of Gaussian nodes by this reason we skip proofs.

Lemma III.2.9. Let α > −1, 1/2 < β ≤ 1, γ ≥ 0, α+ β ≤ γ ≤ α+ 2β and −1 < δ < 2β− 1,

then

‖IαXR,N [f ]‖α ≤ c1‖f‖γ,β + c2N
−(α+1)/2‖f‖δ,β. (III.2.30)

Positive constant c does not depend on N and f .

Proof. We know that

‖IαXR,N [f ]‖2
α = ŵα,0,Nf

2(0) +
N∑
n=1

ŵα,0,Ne
x̂α,0,Nf 2(x̂α,0,N) = A+B.

Using Stirling’s formula and Gautschi inequality we obtain A ≤ f2(0)
N1+α . B is estimated in the same

way as in Lemma III.2.6

Theorem III.2.10. Let α > −1/2, β > −1, γ ≥ 0, 0 ≤ ξ ≤ 2 min {1, 1 + α} and δ ≥ 0, then

‖(I − IαXR,N )f‖β,γ ≤ cNγ+(α−β−δ+ξ)/2‖f‖α+δ,δ, γ − 1 < β ≤ α + γ, (III.2.31a)

‖(I − IαXR,N )f‖β,γ ≤ cN (β−α−δ+ξ)/2‖f‖α+δ,δ, β ≥ α + γ, (III.2.31b)

Positive constant c does not depend on N and f .

Proof. The same as in Theorem III.2.7
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Theorem III.2.11. Let α > −1/2, β > −1, γ ≥ 0, 0 < ξ < 2 min {1, 1 + α} and δ ≥ 0, then

‖(I − IαXR,N )f‖β,γ ≤ cNγ−min {0,β}+(|α−β|−δ+ξ)/2‖f‖α+δ,δ. (III.2.32)

Positive constant c does not depend on N and f .

Proof. The same as in Theorem III.2.8

3 Numerical Scheme

3.1 An Alternative Form of (II.1.1)

The transport-fragmentation equation written in the form of (II.1.1) is not suitable for space

discretization. For numerical purposes it is necessary to reformulate both the transport and the

fragmentation operators. For the transport operator we set

T [u] =
1

2
(ru)x +

1

2
rxu+

1

2
rux − (µ+ a)u. (III.3.1)

For the fragmentation part we set

F [u] = b1(x)

∫ ∞
x

b2(y)a(y)u(y)dy

= −1

x

d

dx

∫ ∞
x

yb1(y)dy

∫ ∞
y

b2(z)f(z)dz

= −1

x

d

dx

∫ ∞
x

b2(z)a(z)u(z)dz

∫ z

x

yb1(y)dy

= −1

x

d

dx

∫ ∞
x

b2(z)a(z)u(z)

[
z

b2(z)
− x

b2(x)

]
dz

= a(x)u(x) +
1

x

d

dx

[
x

b2(x)

∫ ∞
x

b2(z)a(z)u(z)dz

]
,

so that

F [u] = au+ 2v + xvx, (III.3.2)

where

x2v(x) =
x

b2(x)

∫ ∞
x

b2(z)a(z)u(z)dz. (III.3.3)
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Using (III.3.3) and condition (II.1.6) it is not difficult to verify that v satisfies

−xvx + v(xb(x|x)− 2) = au. (III.3.4)

The following result provides sufficient conditions that guarantees solvability of (III.3.4).

Lemma III.3.1. Let the fragmentation kernel satisfy

0 < c ≤ xb(x|x) +
α + 1

2
− 2 ≤ B <∞, (III.3.5a)

then for any au ∈ L2
α(R+), there exists a unique solution v of (III.3.4) such that

‖v‖α ≤
1

c
‖au‖α, ‖xvx‖α ≤

2B + 2c+ α + 1

2c
‖au‖α. (III.3.5b)

Proof. The weak formulation of (III.3.4) reads as follows: find v ∈ X1 := {f |f, xfx ∈ L2
α(R+)}

so that

a(v, φ) := 〈−xvx + v(xb(x|x)− 2), φ〉α = 〈au, φ〉α =: f(φ), (III.3.6)

for all φ ∈ X2 := L2
α(R+). Condition (III.3.5a) implies that

a(v, v) = 〈(xb(x|x) + α+1
2
− 2)v, v〉α ≥ c‖v‖2

α,

and a(v, φ) ≤ (α+3
2

+B)‖v‖X1‖φ‖X2 , so that by the Lax-Milgram theorem there exists a unique

v that solves (III.3.4).

To obtain (III.3.5b) we substitute φ = v into (III.3.6). This yields the estimate

c‖v‖2
α ≤ a(v, v) = 〈au, v〉α ≤ ‖au‖α‖v‖α,

which is equivalent to the first inequality in (III.3.5b). Similarly, putting φ = xvx into (III.3.6)

we infer

‖xvx‖2
α = 〈(xb(x|x)− 2)v, xvx〉α − 〈au, xvx〉α

≤ 2B + α + 1

2
‖v‖α‖xvx‖α + ‖au‖α‖xvx‖α.

Combining this with the first estimate of (III.3.5b) yields the result.
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Lemma III.3.1 implies that for separable fragmentation kernels equation (II.1.1) can be rewritten

as

ut =
1

2
(ru)x +

1

2
rxu+

1

2
rux − (µ+ a)u+ au+ 2v + xvx, (III.3.7)

provided that (III.3.5a) holds. On the other hand from Section III.1 we know that (II.1.1) is

wellposed in L2
α(R+) provided that (III.1.11) holds. It is important to emphasize that for the

power fragmentation laws (III.1.11) and (III.3.5a) are equivalent.

3.2 The Numerical Scheme

Here we consider slightly more general situation, we assume that equation (III.3.7) is augmented

with a source term f .

Let α > 0 and conditions (III.1.2), (III.1.3), (III.1.11) and (III.3.5a) be satisfied. To solve the

transport-fragmentation equation numerically we apply Laguerre pseudospectral method, i.e. we

replace u(t) with uN(t) ∈ PN , and approximate equation (III.3.7) by

(uN)t =
1

2
Iα−1
N [(ruN)x] +

1

2
Iα−1
N [rxuN ] +

1

2
Iα−1
N [r(uN)x]− Iα−1

N [µuN ]

+ 2vN + xPα+2
N−1[(vN)x] + Iα−1

N [f ],

(III.3.8a)

where uN(0) = Iα−1
N [u0], vN ∈ PN satisfies

〈Iα−1
N [(xb1b2 − 2)vN ], L̂αm〉α − 〈(vN)x, L̂

α
m〉α+1 = 〈Iα−1

N [au], L̂αm〉α, 0 ≤ m ≤ N, (III.3.8b)

and Iα−1
N is the Laguerre interpolation operator with Gaussian abscissas.

In (III.3.8) the transport part is split into four terms, in each term the product of a coefficient and

uN is evaluated at Gaussian abscissas and then interpolated. The derivatives are calculated using

formulas (III.2.2e) and (III.2.2g). To evaluate the fragmentation part one has to solve system

of linear equations (III.3.8b). Using the same arguments as in Lemma III.3.1 one can show that

there exists a unique solution vN that satisfy

‖vN‖α ≤
1

c
‖Iα−1

N [au]‖α, ‖xPα+2
N−1[(vN)x]‖α ≤

2B + 2c+ α + 1

2c
‖Iα−1

N [auN ]‖α, (III.3.9)

so that the right-hand side of (III.3.8a) makes sense. Discrete equation (III.3.8a) can be viewed

as a sort of a collocation scheme, where the numerical solution is required to satisfy (III.3.7) at

zeros of L
(α−1)
N+1 (x).
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3.2.1 Stability Analysis

First, we show the numerical solution uN depends continuously on the input data, i.e. semidis-

cretization (III.3.8) is stable. Since (III.3.8) is linear it is sufficient to show that ‖uN‖α is uniformly

bounded with respect to the discretization parameter N .

Theorem III.3.2. Let α > 0 and conditions (III.1.2), (III.1.3), (III.1.11) and (III.3.5a) be satis-

fied, then for any fixed 0 < t <∞ the following estimate holds:

‖uN(t)‖α ≤ etM‖uN(0)‖α +

(∫ t

0

e2M(t−s)‖Iα−1
N [f ](s)‖2

αds

)1/2

, (III.3.10)

where M does not depend on N .

Proof. At each time level 0 < t <∞ the numerical solution satisfy

〈(uN)t, φ〉α = 〈TN [uN ], φ〉α + 〈FN [uN ], φ〉α + 〈fN , φ〉α φ ∈ PN , (III.3.11)

where

TN [uN ] =
1

2
Iα−1
N [(ruN)x] +

1

2
Iα−1
N [rxuN ] +

1

2
Iα−1
N [r(uN)x]− Iα−1

N [(µ+ a)uN ],

FN [uN ] = Iα−1
N [auN ] + 2vN + xPα+2

N−1[(vN)x],

vN is given by (III.3.8b) and fN = Iα−1
N [f ]. We estimate each term of (III.3.11) separately by

taking its scalar product with uN .

For the discrete transport operator we have

〈TN [uN ], uN〉α =
1

2
〈uN , Iα−1

N [(ruN)x]〉α +
1

2
〈uN , Iα−1

N [rxuN ]〉α +
1

2
〈uN , Iα−1

N [ruNx]〉α

− 〈uN , Iα−1
N [(µ+ a)uN ]〉α.

Integrating by parts we obtain

〈TN [uN ], uN〉α = −1

2
lim
x→0

xαuNI
α−1
N [ruN ]− 1

2
〈(uN)x, I

α−1
N [ruN ]〉α −

α

2
〈uN , Iα−1

N [ruN ]〉α−1

+
1

2
〈uN , Iα−1

N [rxuN ]〉α +
1

2
〈uN , Iα−1

N [ruNx]〉α − 〈uN , Iα−1
N [(µ+ a)uN ]〉α

= −α
2
〈uN , Iα−1

N [ruN ]〉α−1 +
1

2
〈xuN , Iα−1

N [rxuN ]〉α−1 − 〈xuN , Iα−1
N [(µ+ a)uN ]〉α−1.
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Since the interpolation Iα−1
N is based on the Gaussian nodes each scalar product in the formula

above can be replaced with the quadrature formula and we have the following:

〈TN [uN ], uN〉α = −1

2

N−1∑
n=0

wα−1,n,N

[
uN
]2

(xα−1,n,N)xα−1,n,N

[
2(µ+ a)− rx + αr

x

]
(xα−1,n,N)

= −1

2

〈
uN , I

α−1
N

[
(2(µ+ a)− rx + αr

x
)uN

]〉
α
. (III.3.12)

We treat the fragmentation part in the same manner as before:

〈FN [uN ], uN〉α = 〈Iα−1
N [auN ], uN〉α + 2〈vN , uN〉α + 〈xPα+2

N−1[(vN)x], uN〉α.

Using Cauchy-Schwartz and Young inequalities and taking into account (III.3.9) we obtain

〈FN [uN ], uN〉α ≤ ‖Iα−1
N [auN ]‖α‖uN‖α + 2‖vN‖α‖uN‖α + ‖xPα+2

N−1[(vN)x]‖α‖uN‖α

≤ 2B + 3c+ α + 3

c
‖Iα−1

N [auN ]‖α‖uN‖α

≤ κ2‖Iα−1
N [auN ]‖2

α +
(2B + 3c+ α + 3)2

4κ2c2
‖uN‖2

α. (III.3.13)

For the source term we have

〈fN , φ〉α ≤
1

4
‖uN‖2

α + ‖fN‖2
α. (III.3.14)

Combing (III.3.12), (III.3.13) and (III.3.14) we see that

d

dt
‖uN‖2

α ≤ −
〈
uN , I

α−1
N

[
(2(µ+ a)− rx + αr

x
− κ2a2)uN

]〉
α

+
((2B + 3c+ α + 3)2

2κ2c2
+

1

4

)
‖uN‖2

α + ‖fN‖α2

≤
((2B + 3c+ α + 3)2

2κ2c2
+

1

4

)
‖uN‖2

α + ‖fN‖α2 .

From Gronwall’s inequality it follows that

‖uN(t)‖2
α ≤ e2Mt‖uN(0)‖2

α +

∫ t

0

e2M(t−s)‖fN(s)‖2
αds, with M =

(2B + 3c+ α + 3)2

4κ2c2
+

1

8
.

The proof is complete.

Theorem III.3.2 says that in finite time intervals [0, T ], the numerical solution is bounded by

‖uN(0)‖α + eMT‖fN‖L2([0,T ],L2
α(R+)) = ‖Iα−1

N [u0]‖α + eMT‖Iα−1
N [f ]‖L2([0,T ],L2

α(R+)).
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We note that

‖Iα−1
N [u0]‖α ≤ ‖u0‖α + ‖(I − Iα−1

N )[u0]‖α,

‖Iα−1
N [f ]‖L2([0,T ],L2

α(R+)) ≤ ‖f‖L2([0,T ],L2
α(R+)) + ‖(I − IN)α−1[f ]‖L2([0,T ],L2

α(R+)),

so that by Theorem III.2.7 both quantities are uniformly bounded with respect to N provided

that u0 ∈ Hα+β−1,β(R+) ∩ L2
α(R+) and f ∈ L2([0, T ], Hα+β−1,β(R+) ∩ L2

α(R+)), with β > 3
2
.

3.2.2 Convergence Analysis

From the previous section we know that the sequence {uN}N≥1 is uniformly bounded with respect

to N in L2
α(R+) provided that u0 ∈ Hα+β−1,β(R+) ∩ L2

α(R+), with β > 3
2
. From this it follows

that there exist a weakly convergent subsequence {uNk}. Let, ū be its weak limit, then in a

standard way one can show that ū is a weak solution of (II.1.1) in L2
α(R+). The argument,

similar to that employed in [BGS07], then shows that ū, is the strong solution of (II.1.1). This

result is not very practical, since it is not clear how to select the weakly convergent subsequence.

Moreover, we do not have any control on the rate of convergence.

Better results are obtained if it is known a priori that solutions are regular. Unfortunately, the

theory presented in the project does not say what conditions guarantee such a regularity. We do

not concentrate on the theoretical study of regularity conditions since it would require us to build

entirely new theory. To derive practical error estimate we assume that the exact solution, as well

as quantity v, defined by (III.3.3), are sufficiently regular.

Theorem III.3.3. Let u0 ∈ D(T0), δ > 4, 1/2 < ξ ≤ 1 and α > 0, then

‖u− uN‖L∞([0,T ],L2
α(R+)) ≤ c1N

(1−δ+ξ)/2‖u‖L∞([0,T ],Hα−1+δ,δ(R+))

+ c2N
(3−δ+2ξ)/2‖v‖L2([0,T ],Hα−1+δ,δ(R+)), (III.3.15)

with c1, c2 independent on N , provided that the norms in the right-hand side of (III.3.15) are

finite.

Proof. First, the numerical solution satisfy

(uN)t = TN [uN ] + FN [uN ] + fN . (III.3.16)
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Let ū = Iα−1
N [u] be the interpolant of the exact solution, then taking into account that

Iα−1
N [fIα−1

N [g]] = Iα−1
N [gIα−1

N [f ]] = Iα−1
N [fg]

for any f and g, we obtain

ūt = TN [ū] + FN [ū] + fN + (Iα−1
N F − FNIα−1

N )[u] = TN [ū] + FN [ū] + fN + EN [u]. (III.3.17)

Subtracting (III.3.16) out of (III.3.17) we see that the error eN = ū− uN satisfy

(eN)t = TN [eN ] + FN [eN ] + EN [u], eN(0) = 0,

so that by Lemma III.3.2 the error is bounded as follows:

‖eN(t)‖2
α ≤

∫ t

0

e2M(t−s)‖EN [u](s)‖2
αds. (III.3.18)

Second, we estimate EN [u]. For this we rewrite EN [u] in the form

EN [u] = 2(Iα−1
N [v]− vN) + (Iα−1

N [xvx]− xPα+2
N−1[(vN)x])

= 2(Iα−1
N [v]− vN) + xPα+2

N−1

[
(Iα−1
N [v]− vN)x

]
+ (Iα−1

N [xvx]− xPα+2
N−1[

(
Iα−1
N [v]

)
x
])

=: 2ê+ ẽ+ ē,

where v satisfies (III.3.4) and vN is the solution of

〈Iα−1
N [(xb(x|x)− 2)vN ]− x(vN)x, φ〉α = 〈Iα−1

N [au], φ〉α, φ ∈ PN .

If v̄ = Iα−1
N [v], then from (III.3.4) we have

〈Iα−1
N [(xb(x|x)− 2)v̄]− xv̄x, φ〉α = 〈Iα−1

N [au], φ〉α +
〈
Iα−1
N

[
x
(
(I − Iα−1

N )[v]
)
x

]
, φ
〉
α
, φ ∈ PN .

It follows that, ê satisfies

〈Iα−1
N [(xb(x|x)− 2)ê]− xêx, φ〉α =

〈
Iα−1
N

[
x
(
(I − Iα−1

N )[v]
)
x

]
, φ
〉
α
, φ ∈ PN .

In the same way as in Lemma III.3.1 we obtain

‖ê‖α ≤
1

c

∥∥Iα−1
N

[
x
(
(I − Iα−1

N )[v]
)
x

]∥∥
α
,

‖ẽ‖α ≤
2B + 2c+ α + 1

2c

∥∥Iα−1
N

[
x
(
(I − Iα−1

N )[v]
)
x

]∥∥
α
.
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Now applying the approximation results of Section III.2 we infer

‖ê‖α ≤
1

c

∥∥Iα−1
N

[
x
(
(I − Iα−1

N )[v]
)
x

]∥∥
α

≤ 1

c
‖(I − Iα−1

N )[v]‖α+2,1 +
1

c

∥∥(I − Iα−1
N )

[
x
(
(I − Iα−1

N )[v]
)
x

]∥∥
α

≤ c1N
(3−δ+ξ)/2‖v‖α−1+δ,δ by Theorem III.2.7

+ c2N
(1−δ1+ξ)/2‖(I − Iα−1

N )[v]‖α+1+δ1,δ1+1 by Theorem III.2.7

≤ c1N
(3−δ+ξ)/2‖v‖α−1+δ,δ

+ c3N
(1−δ1+ξ)/2N (2+δ1−δ+ξ)/2‖v‖α−1+δ,δ by Theorem III.2.7

≤ c4N
(3−δ+2ξ)/2‖v‖α−1+δ,δ,

and ‖ẽ‖α ≤ c5N
(3−δ+2ξ)/2‖v‖α−1+δ,δ, where 1/2 < ξ ≤ 1 and all the constants do not depend

on N . Similarly,

‖ē‖α ≤ ‖Iα−1
N [xvx]− xPα+2

N−1[
(
Iα−1
N [v]

)
x
]‖α

≤ ‖(I − Iα−1
N )[xvx]‖α +

∥∥(I − Pα+2
N−1)

[(
(I − Iα−1

N )[v]
)
x

]∥∥
α+2

≤ c6N
(3−δ+ξ)/2‖v‖α−1+δ,δ−1 by Theorem III.2.7

+ c7N
−δ1/2‖(I − Iα−1

N )[v]‖α+δ1,δ1+1 by Lemma III.2.1

≤ c6N
(3−δ+ξ)/2‖v‖α−1+δ,δ−1

+ c8N
−δ1/2N (1+δ1−δ+ξ)/2‖v‖α−1+δ,δ by Theorem III.2.7

≤ c9N
(3−δ+ξ)/2‖v‖α−1+δ,δ,

where 1/2 < ξ ≤ 1 and c9 does not depend on N . Combining last the three estimates we

conclude that

‖E[u](t)‖α ≤ cN (3−δ+ξ)/2‖v(t)‖α−1+δ,δ, (III.3.19)

where v(t) is given explicitly by (III.3.3).

Finally, we use (III.3.18) and (III.3.19) to obtain

‖u(t)− uN(t)‖α ≤ ‖u(t)− ū(t)‖α + ‖eN(t)‖α

≤ c1N
(1−δ+ξ)/2‖u(t)‖α−1+δ,δ by Theorem III.2.7

+ c2N
(3−δ+2ξ)/2

(∫ t

0

e2M(t−s)‖v(s)‖2
α−1+δ,δ

)1/2

,
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where δ > 4, 1/2 < ξ ≤ 1 and c1, c2 do not depend on N . This completes the proof.

Proof of Theorem III.3.3 indicates that accuracy of computations depend on the regularity of u

and v but not on the individual regularity of the coefficient r, µ, a, b(x|y) or f .

4 Numerical Simulations

In this section we provide some numerical simulations that illustrate theory developed above. In

all the computations semidiscrete problem (III.3.8) is integrated using built-in Matlab ODE solver

ode23. The tolerances RelTol and AbsTol are chosen so that the numerical error is dominated

by ‖u− uN‖α.

Example 4.1 In our first example we set

r = 1 + x, µ = 0, a = 1, b(x|y) =
(γ + 1)(γ + 2)y(1 + x)γ

(1 + y)γ+1((γ + 1)y − 1) + 1
,

we have also augmented the right-hand side of (II.1.1) with a source function, so that the exact

solution is given by

u(x, t) = xδ
(
(1 + x)γ+1((γ + 1)x− 1) + 1

)
e−x−t.

For numerical simulations we took δ = 1 and γ = −1/2, with this choice of the parameters

problem (II.1.1) is wellposed in L2
1(R+).

The results of simulations are shown in Fig. 4.1. The upper left panel of Fig 4.1 illustrates the

numerical solution uN , N = 64, in the time interval [0, 10]. The pointwise error is shown in the

lower left panel. It attains its maximum close to the boundary x = 0 and gradually decays as

x increases. Observe that the pointwise error is of magnitude 10−7 in the whole computational

domain.

Parameters of the model are chosen so that both u(x, t) and v(x, t) are regular. By Theo-

rem III.3.3 the error ‖u − uN‖L∞([0,T ],L2
α(R+)) shall decrease faster than algebraically. This is

completely confirmed by the work-precision diagram (see the right panel of Fig. 4.1).
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Figure 4.1: The numerical solution of (II.1.1) (upper left panel); the pointwise error (lower left

panel); and the work precision-diagram (right panel) with α = 1, δ = 1, γ = −1/2.

Example 4.2 In this example we consider (II.1.1) with an unbounded fragmentation rate. That

is, we took the fragmentation rate to be a(x) = xβ, β = 1/2, and left all other parameters the

same as Example 4.1. With this settings we integrated (II.1.1) in time interval [0, 10]. The

diagrams shown in Fig. 4.2 has the same meaning as in Example 4.1. Once again the pointwise

error is concentrated near the boundary x = 0 and the convergence rate is faster than algebraic

(see the right panel of Fig. 4.2).

Example 4.3 In this case we took

r = 1 + xξ, µ = 0, a = xβ, b(x|y) = (γ + 2)xγy−γ−1,

and had chosen the source function to make the exact solution be,

u(x, t) = xδe−x−t.

50



5
10

0

5

0

0.2

x t

u
6
4

5
10

0

5

−2

0

·10−6

x t

u
−
u

6
4

100.6 100.9 101.2 101.51101.81

10−6

10−5

10−4

10−3

10−2

10−1

100

101

logN

lo
g
‖u
−
u
N
‖ α

Figure 4.2: The numerical solution of (II.1.1) (upper left panel); the pointwise error (lower left

panel); and the work precision-diagram (right panel) with α = 1, β = 1/2, δ = 1, γ = −1/2.

The results of numerical simulations of (II.1.1) with α = 2, β = −1/2, ξ = 1/2, δ = 1, γ = −1/2

in time interval [0, 10] are shown in Fig. 4.3. We observe that the errors are significantly larger

as compared with two previous examples. This is due to the singularity of v(x, t) at x = 0.

By the same reason the work-precision diagram shows a decline in the convergence rate. The

convergence now is only algebraic. To reduce the errors one can move to the higher moment

spaces (of course one has to verify that all the conditions that guarantee wellposedness of (II.1.1)

are still satisfied).

Example 4.4 In our last example we consider pure fragmentation equation with

r = 0, µ = 0, a = xβ, b(x|y) = (γ + 2)xγy−γ−1,
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Figure 4.3: The numerical solution of (II.1.1) (upper left panel); the pointwise error (lower left

panel); and the work precision-diagram (right panel) with α = 2, β = −1/2, ξ = 1/2, δ = 1,

γ = −1/2.

equipped with the following initial condition

u0 =
1

(1 + x)3
.

It is known (see [ZM85, Ban02]) that for β = 1, γ = 0, the solution of (II.1.1) is not unique. In

particular we have the following two formal solutions

u1(x, t) = e−xt
(

1

(1 + x)3
+

∫ ∞
x

2t+ t2(y − x)

(1 + y)3
dy

)
,

u2(x, t) =
et

(1 + x)3
,

where the first one is mass conserving and the second one is not. Theoretical results of Chap-

ter III do not guarantee wellposedness of (II.1.1) in this particular case. However, the results

of calculations presented in Fig. 4.4 indicate that the numerical solution uN converges to the

physically correct mass conservative solution u1, though the convergence is quite poor.
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Figure 4.4: The numerical solution of (II.1.1) (upper left panel); the pointwise error (lower left

panel); and the work precision-diagram (right panel) with α = 2, β = 1, γ = 0.

To conclude this section we observe that in all computational experiments presented above the

numerical scheme behaves well, provided that both u and v are smooth. The convergence

rate may deteriorate when u or v develops singularities. To handle such problems the type of

singularities and their locations must be known a priori and numerical scheme (III.3.8) must be

reformulated accordingly.
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Conclusion

Due to increasing practical applications of the fragmentation equations, they have been an object

of extensive study [ZM85, ZM86, HEL91, CEH91, HGEL96, SLLM00, Ban02, BL03, Ban04,

BA06]. The model deals with objects whose breaking up or disperse is random like in polymer

degradation and population dynamics processes. The model has some application in diffusion

processes. In the project we deal with the numerical analysis of the transport-fragmentation

equation in the decay case.

In Chapter I we collected some classical results on the semigroup theory which are used later on.

In Chapter II we considered transport-fragmentation equations in L1 settings. Following [BA06]

we studied existence of solutions in the decay case. Uniqueness of solutions was not investigated,

however, it was noticed in several papers (see [ZM85, Ban02, BA06] and references therein) that

pure fragmentation equations might have multiple solutions emanating from the same initial data.

The main results of our research are presented in Chapter III, where we study Laguerre pseudo-

spectral semidiscretization of the transport-fragmentation equations with separable fragmentation

kernels. Because of the nature of our numerical method we had to provide a wellposedness analysis

in Hilbert settings. Existence of L2
α(R+) semigroup solutions was carried out in a similar manner

as in Chapter II. However, the approximation technique employed in Chapter III does not preserve

the positive cone of L2
α(R+). By this reason positivity does not play much role in our analysis.

Stability and convergence analysis of our numerical scheme required some approximation and

interpolation estimates for generalized Laguerre functions. We found that it is natural to derive

such estimates in weighted Bessel potential spaces Hα,β(R+), where parameter α controls be-

haviour of functions at zero and infinity and parameter β controls regularity. The approximation

and interpolation theory developed in Section III.2 is quite general and can be used in other

applications.

Numerical computations were carried using the Laguerre pseudo-spectral method. The model was

reformulated in a way that the stability estimate can be derived, stability of the scheme was proven

in Theorem III.3.2. Error estimates were obtained in Theorem III.3.3. From Theorem III.3.3 it

follows that the convergence rate depends on the regularity of u and v. The convergence rate
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is faster than algebraic if u ∈ L∞([0, T ], Hα−1+δ,δ(R+)), v ∈ L2([0, T ], Hα−1+δ,δ(R+)), for all

δ > 0, and algebraic if the above inclusions hold for 4 < δ ≤ D, with some D > 4. The

major problem is that we do not know what conditions guarantee such a regularity. Chapter III

is concluded with several numerical experiments, which illustrate our theoretical analysis

As our future research, we plan to study models with more general different fragmentation kernels.

Another important perspective is to consider the transport-fragmentation-coagulation equations,

as in many applications these processes occur together.
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