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ABSTRACT 
 

South Africa has wide diversity of African leafy vegetables (ALVs) rich in nutrients and 
adapted to marginal production. However, there is limited availability of ALVs in South Africa 
due to lack of cultivation owing to limited agronomic and postharvest management information. 
The increase in population growth, malnutrition and climate change necessitates production of 
more food using limited water resources. The aim of this study was to evaluate pre and 
postharvest response of Amaranthus cruentus (pigweed), Vigna unguiculata (cowpea), 
Corchorus olitorius (Jute mallow) and a reference crop B. vulgaris (Swiss chard) to varying 
irrigation regimes. The current study consisted of a literature review and five experiments (two 
agronomic studies and three post-harvest studies. In literature, the performance of ALVs is 
drawn in comparison to exotic counterparts grown under different conditions; yet agronomic 
and nutritional factors are only valid when crops are grown under the same condition. Hence in 
the four experiments of this study, Swiss chard was used as a reference crop grown under same 
locality. Swiss chard was chosen because it is an alien leafy vegetable that has been indigenised 
in sub-Saharan Africa and is highly nutritious (contains high levels of Fe, Zn and β-carotene).  

Before conducting experiments there was need to identify potential gaps and research 
priorities for this study and even for future research. This was done by conducting a literature 
review study (Chapter 2) on the status of production and utilisation of ALVs in South Africa 
for the period 1994–2017. Results of the review indicated that there is a decline in consumption 
of ALVs partly as a result of limited availability and negative perception. In order to promote 
ALVs, further research on agronomy, post-harvest handling, storage and processing is required 
in South Africa.  

Field and rain shelter experiments were conducted at Roodeplaat, Pretoria, over two 
summer seasons, 2015/2016 and 2016/2017 to evaluate growth, yield and water-use of selected 
leafy vegetables under varying water regimes. A randomised complete block design with three 
replicates was used. The treatments evaluated were: three irrigation regimes (30%, 60% and 
100% of crop water requirement (ETc) on three ALVs – Amaranthus cruentus, Corchorus 
olitorius and Vigna unguiculata and a reference crop, Beta vulgaris. Seeds of A. cruentus and 
C. olitorius were obtained from the seed bank of the Agricultural Research Council (ARC) - 
Vegetable and Ornamental Plants (VOP), Roodeplaat, Pretoria seed bank. Vigna unguiculata 
(Bechuana white, a runner type) and Swiss chard (B. vulgaris L.) cultivar ‘Ford Hook Giant’ 
seeds were obtained from Hygrotech Seed Pty. Ltd., South Africa. Soil samples were taken 
from the field prior to land preparation and soil fertility analyses done at the Agricultural 
Research Council–Institute for Soil, Climate and Water (ARC–ISCW). Nitrogen, phosphate 
and potassium were applied according to the results and recommendations of the soil fertility 
analysis for both seasons. Seedlings of A. cruentus, B. vulgaris and C. olitorius were raised in 
commercial growing medium and covered with vermiculate to minimize water losses from 
above surface.  Vigna unguiculata was sown directly. Seedlings were transplanted at four 
weeks after sowing. Irrigation scheduling was based on reference evapotranspiration (ET) and 
a crop factor for each crop. Data collection in field and rain shelter trials included plant height, 
leaf number, chlorophyll content index (CCI), chlorophyll fluorescence (CF) and yield.  
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In A. cruentus, drought stress (30% ETc) reduced yield consistently in both field and rain 
shelter trials. Plant height and chlorophyll content index (CCI) were significantly reduced by 
water stress under field conditions. For C. olitorius, drought stress (30% ETc) reduced yield 
under rain shelter conditions while all measured parameters were not affected under field 
conditions. In V. unguiculata, stem fresh mass increased with increase in water application from 
30%-60 ETc with no further significant increase under field conditions while all measured 
parameters showed a similar trend under rain shelter although the results were not significant. 
In B. vulgaris leaf number, plant height, CCI, yield, Mg, Ca, Na, Zn, and Mn were reduced by 
water stress for rainshelter. Using 60% ETc proved to be suitable for production of A. cruentus 
and B. vulgaris var. cicla whereas 30% ETc would be recommended for V. unguiculata. For V. 
unguiculata and C. olitorius application of 30% ETc is recommended while application of 60% 
ETc can be used under to slightly improve yield. Amaranthus cruentus and B. vulgaris were 
comparable in their response to water regimes while C. olitorius and V. unguiculata performed 
better than B. vulgaris under water stress, an indication of an opportunity to use these vegetables 
under drought conditions.  

The evaluation of nutritional quality of A. cruentus, C. olitorius, V. unguiculata and B. 
vulgaris was motivated by recommendations made in most agronomic studies based on biomass 
yield with no follow-up on nutritional value. Samples from each crop were collected from each 
of the three irrigation regimes (30%, 60% and 100%ETc) during each harvest (6, 8 and 10 
weeks after transplanting for both seasons) and analysed for macro and micronutrients. Results 
from A. cruentus indicates that Ca and Mg were significantly higher under drought stress (30% 
ETc) while Na, K and Zn increased with water application up to 60% ETc with no further 
increase thereafter. Similarly, Ca and Mg were higher under drought stress and Zn under 
medium stress in C. olitorius. Calcium was high under drought stress condition in B. vulgaris 
while Na and Zn where high in medium stress; with a further increase in water application 
resulting in diminishing returns. Phosphate and potassium were high in medium stress condition 
in V. unguiculata while in water application up to 100% ETc the two elements showed 
diminishing returns. The high nutrients alternated between the most severe water stress (30% 
ETc) and medium stress (60 ETc) treatments across all crops in this study, an indication that 
although the crops can be grown under drought conditions, slight irrigation can lead to 
improved production. Leaf Fe, Zn, Mn, Mg and Ca increased with time of harvesting that 
increased from 6 to 8 weeks, with no further change in nutritional yield when crops were 
harvested at 10 weeks in A. cruentus, V. unguiculata and B. vulgaris. In C. olitorius, Fe, Zn, 
Mn, Mg and Na were high when harvested at 6 weeks compared to late harvesting (8 and 10 
weeks). 

The first postharvest study investigated the effect of three irrigation regimes (30%, 60% 
and 100% ETc) and three drying (sun, oven, shade) methods on phenolic, flavonoid and 
gallatannin content of the four vegetables. Fully irrigated C. olitorius and subjected to sun 
drying (100% ETc x sun drying) had higher total phenolic content followed by medium stress 
subjected to shade drying (60% ETc x shade drying). Furthermore, water stressed plants that 
were then shade- or sun-dried retained better gallotannin content than other treatment 
combinations. Amaranthus cruentus grown under drought then shade- or sun-dried (30% ETc x 
shade and sun drying) retained better quality in all phenolic components measured.  
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In V. unguiculata, phenolic content was high in water-stressed plants subjected to sun-
drying (30% ETc x sun drying) while sun drying retained flavonoid and gallotannin than shade 
and oven drying. In B. vulgaris, well irrigated plants and shade- or oven-dried (100% ETc x 
shade/oven drying) had better phenolic content. Shade dried leaves had better flavonoid while 
drought-stressed plants had better gallotannins content compared to other treatments in B. 
vulgaris. All three ALVs can be grown under drought stress and subjected to sun or shade 
drying to retain nutrient compared to B. vulgaris. 

The second experiment on postharvest investigated the interaction of packaging (non-
perforated and perforated), temperature [room storage, refrigerated storage (4℃), retail storage, 
10℃] and storage duration (2, 4, 6, 8, 10 days) on C. olitorius. Plants rarely experience a single 
stress factor but are simultaneously exposed to multitude stress factors in their growing 
environment. The results showed that treatment combination of 4℃ with perforated packaging 
retains higher phenolic content followed by perforated packaging at 10℃ while lower phenolics 
were in treatment combinations that were stored at room temperature. Total phenolic content 
was higher at 2 days and 4 days storage in non-perforated packaging compared to all other 
treatments combinations. Furthermore, phenolic content decreased disproportionately with 
storage duration in non-perforated packaging treatment combinations, performing better than 
perforated in every storage duration.  Flavonoid content and total phenolics decreased with 
increase in storage duration while better retaining these in any treatment combination of 
4℃/10℃ compared to room temperature. Phenolic content was significantly higher from 2 to 
4 days then declined from 6 through to 10 days at 4℃. At room temperature, phenolic contents 
decreased from 2 to 4 days storage durations but were higher at 6 and 8 days storage durations 
before dropping at 10 days. Antioxidant activity and overall acceptance was improved in any 
treatment combinations kept at 4 and 10℃ compared to room temperature for both types of 
packaging as storage duration increased. Antioxidant activity and overall acceptance 
degradation was reduced in treatment combination kept at 4 and 10℃ compared to room 
temperature for both types of packaging as storage duration increased. Corchorus stored at 
room temperature had a shelf life of 2 days, but 8 days at 4℃ and 10 days at 10℃ for both 
types of packaging.   
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 1 

CHAPTER 1 2 

GENERAL INTRODUCTION 3 
 4 

1.1 Conceptualisation and study objectives 5 

South Africa faces challenges of food and nutritional security at household levels due to 6 

nutrient deficiencies such as vitamin A, iron, zinc, and vitamins C (Oelofse and van Averbeke, 7 

2012). Studies have shown that African leafy vegetables (ALVs) can contribute to addressing 8 

gaps in nutritional insecurities as they are considered to be healthy, affordable and nutrient 9 

dense. African leafy vegetables describe leafy vegetables that have been part of the food 10 

systems in African communities for generations (Van Rensburg et al., 2007). South Africa has 11 

a highly diverse pool of ALVs growing naturally and are available for consumption. The 12 

species utilised vary with indigenous knowledge, culture, species availability and economy. 13 

Wehmeyer and Rose (1983) identified more than 100 different species of plants that are used 14 

as ALVs in South Africa, out of which eight major groups are of importance (Van Rensburg et 15 

al., 2007). Their importance is based on ease of availability throughout the year, ease of 16 

collection, popularity, low production cost, distribution, taste, growth habitat, growing season 17 

and nutritional value. These include Corchorus olitorius (jute mallow), Amaranthus cruentus 18 

(pigweed), Citrullus lanatus (bitter melon), Vigna unguiculata (cowpea), Cleome gynandra 19 

(spider plant), Cucurbita spp (pumpkin), S. nigrum complex (night shade) and Brassica rapa 20 

subsp. chinensis (non-heading Chinese cabbage) (Van Rensburg et al., 2007; Oelofse and van 21 

Averbeke, 2012). These species have a wide genetic diversity in growth habit, leaf shape, leaf 22 

colour, leaf size and plant size (Van Rensburg et al., 2007). The large number of species for 23 

people to select from as well as a wider diversity of desirable traits can lead to successful 24 

commercilisation since farmers have a wider pool of species that are better adapted for their 25 

region within South Africa. 26 

 27 

These vegetables are reported to be contributors of both micronutrients and bioactive 28 

compounds to diets (Afolayan and Jimoh, 2009). The nutrient levels found in ALVs are often 29 

comparable, and in some cases better than those from exotic vegetables such as cabbage; they 30 

are also compatible to use with starchy staples because they contain ascorbic acid, which 31 

enhance iron absorption (Nesamvuni et al., 2001). They are also good dietary sources of 32 

antioxidants such as flavonoids, tannins and other polyphenolic constituents (Manach et al., 33 
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2005). Phenolic compounds are secondary metabolites produced by plants to cope with the 34 

environment and exhibit a wide range of physiological properties, such as anti-allergenic, anti-35 

atherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardio protective 36 

and vasodilatory effects (Amic et al., 2003). Some flavonoids and flavanols have been found 37 

to possess antioxidant and free radical scavenging properties that are much stronger than those 38 

of vitamins C and E (Zobolo et al., 2008).  39 

 Most ALVs are reported to be adapted to low input agriculture, tolerant to drought, pests 40 

and diseases (Oelofse and van Averbeke, 2012). However, most ALVs are not cultivated due 41 

to lack of adequate information on water use and postharvest handling practices. Those ALVs 42 

that are already in cultivation like Brassica rapa subsp. chinensis show variation in agronomic 43 

management practices, an aspect that indicate lack of proper production information (Oelofse 44 

and van Averbeke, 2012). Effective production of ALVs needs optimization of pre-harvest 45 

factors such as fertilizer, irrigation, and harvesting techniques (Oelofse and van Averbeke, 46 

2012).  47 

Nutritional value of plants has been reported to vary with soil fertility, environment 48 

temperature, plant type, plant age and the production techniques used (Chweya eand Nzava., 49 

1997; Nnamani et al., 2009). Furthermore, mineral composition is reported to vary greatly due 50 

to seasonal variations (Yazzie et al., 1994) and on the analytical method used (Boukari et al. 51 

2001). When plants are exposed to biotic (pests, disease) and abiotic stress (temperature, water 52 

stress) they respond by producing secondary metabolites (Nora et al., 2012). These include 53 

defence compounds such as polyphenols, alkaloids or healthy related compounds such as 54 

antioxidant (terpens, polyphenols) or organoleptic compounds such as polyphenols for 55 

bitterness, colour, firmness or terpenes for odour/colour (Nora et al., 2012). These compounds 56 

impact on quality of the produce. For ALVs to move from underutilised crops to commercial-57 

level production, it is vital that production be based upon objective quality criteria. Abbot 58 

(1999) defined the term ‘quality’ as the degree of excellence of a product or its suitability for 59 

use and this encompasses seed properties (viability germination), physical properties (size, 60 

shape, colour, freshness), sensory properties (appearance, texture, taste, aroma) and nutritional 61 

properties (vitamin, mineral and other chemical constituents) (Groff et al., 1993; Govindasamy 62 

et al., 1997; Wolf, 2002; Gruda, 2005; Hussin et al., 2010). Mampholo et al. (2015) conducted 63 

a literature review on how to maintain overall quality of ALVs in southern Africa; considering 64 

that quality is produced in the field, there is need to conduct studies on pre- and post-harvest 65 

factors that impact quality. African leaf vegetables are still considered wild species and have 66 

never been considered for commercial production in South Africa compared to other countries 67 
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in Southern Africa. Successful commercialisation of ALVs in South Africa should be 68 

accompanied by research on production factors such as irrigation and the impact they have on 69 

the quality of the product. Such information will lead to development of appealing and valuable 70 

products to the consumers.  71 

 72 

There are few studies that have monitored changes in nutritional parameters in the same 73 

commodity from harvest through to storage (Rickman et al., 2007). The current study focuses 74 

on how pre- harvest factors such as irrigation regimes can impact harvest yield and post-harvest 75 

quality. Availability of such information will give an insight into how these factors can be 76 

manipulated in future within the ALVs' growing environments. Furthermore, previous studies 77 

have tried to make comparison on agronomic and nutritional factors of ALVs relative to their 78 

exotic counterparts grown under different conditions. In the current study ALVs were grown 79 

together with a reference crop, Beta vulgaris to make general comparisons. The main aim of 80 

the study was to conduct trials on selected African leafy vegetables (ALVs) in order to evaluate 81 

their growth, physiological and biochemical responses to varying water regimes. The trials 82 

were conducted iunder field  and rain-shelter  conditions  and  included  both  pre-  83 

(growth, yield) and post-harvest  (mineral  nutrients,  phytochemicals)  evaluations. 84 

 85 
1.2 Objective 86 

The main objective of the study was to evaluate pre-and post-harvest response of Amaranthus 87 

cruentus, Corchorus olitorius, Vigna unguiculata and reference crop Beta vulgaris to varying 88 

water stress levels in South Africa. 89 

 90 

Specific objectives  91 
1. The objective of the review was to investigate the factors that influence utilisation and 92 

production of the African leafy vegetables.  93 

2. To evaluate the moisture stress on physiology and yield of some indigenous leafy 94 

vegetables under field conditions. 95 

3. To evaluate the productivity and yield of A. cruentus, C. olitorius, V. unguiculata and a 96 

reference vegetable crop, B. vulgaris under varying water regimes under rain shelter 97 

conditions.  98 

4. To evaluate the nutritional quality of Amaranthus cruentus, Corchorus olitorius, Vigna 99 

unguiculata and a reference vegetable crops–Beta vulgaris to varying water regimes 100 
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5. To determine the effect of irrigation and drying methods on the total phenolic, flavonoid 101 

and gallotannin content of A. cruentus, C. olitorius, V. unguiculata and a reference 102 

vegetable crop B. vulgaris. 103 

6. To determine the effect of postharvest packaging, temperature and storage duration on the 104 

total phenolic content, flavonoid, antioxidant properties and marketability of C.olitorius.  105 

 106 

1.3 Thesis structure  107 

This thesis is written in a paper format with each chapter as manuscript in preparation or 108 

submitted for publication. The study consist of agronomic and postharvest experiments 109 

conducted at the Agricultural Research Council (ARC), Roodeplaat, Pretoria over two summer 110 

seasons, 2015/2016 and 2016/2017.  111 

 112 

Chapter 2 Before the study commenced a review was conducted to document the state of 113 

utilisation and production of ALVs in South Africa in order to identify current and future 114 

research needs and reduce duplication of some work done so far. It addresses the first objective 115 

of the study. (Published in Journal of Sustainability). 116 

 117 

Chapter 3 reports on how moisture stress affects physiology and yield of some indigenous 118 

leafy vegetables under field conditions. Leaf number, plant height, chlorophyll content index 119 

(CCI), water productivity and yield were measured. It addresses the second objective of the 120 

study. (In press, South African Journal of Botany). 121 

 122 

Chapter 4 address the third objective of the study and reports on how productivity is affected 123 

by varying water regimes in V. unguiculata, C. olitorius, A. cruentus and B. vulgaris under 124 

controlled environment (rain shelter). Leaf number, plant height, chlorophyll content index 125 

(CCI), chlorophyll fluorescence (CF), water productivity and yield were measured. (Prepared 126 

for publication according to Journal of Agricultural Water Management). 127 

 128 

Chapter 5 is linked to chapter 4 and address how water regimes affect nutritional quality of V. 129 

unguiculata, C. olitorius, A. cruentus and B. vulgaris. It addresses the fourth objective of the 130 

study and phosphorus (P), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), copper (Cu), 131 

manganese (Mn), Zinc (Zn) and potassium (K) were analysed. (Published in South African 132 

Journal of Botany). 133 
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 134 

Chapter 6 evaluates how postharvest drying maintains phenolic, flavonoid and gallotannin 135 

content of V. unguiculata, C. olitorius, A. cruentus and B. vulgaris grown from various water 136 

regimes. It addresses the fifth objective of the study. (Published in Scientia Horticulturae). 137 

 138 

Chapter 7 reports on how postharvest packaging, temperature and storage time influences the 139 

phenolic composition and antioxidant properties of Corchorus olitorius. (Prepared for 140 

publication according to Journal of the Science of Food and Agriculture). 141 

 142 

Chapter 8 is general discussion and highlights major findings, outcomes and recommendations 143 

of the study. 144 

  145 
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Abstract: African leafy vegetables (ALVs) are mostly gathered from the wild, with few 221 

selected species being cultivated, usually as part of a mixed cropping system in home gardens 222 

or smallholder plots. They have important advantages over exotic vegetable species, because 223 

of their adaptability to marginal agricultural production areas and their ability to provide 224 

dietary diversity in poor rural communities. Despite their significance in food and nutrition 225 

security, there is limited availability or access to these crops leading to underutilisation. The 226 

objective of this review was to document the state of utilisation and production of ALVs in 227 

South Africa. A qualitative systematic approach review of online sources, peer reviewed 228 

papers published in journals, books and other publications was conducted. There is lack of 229 

suitable production systems, innovative processing, and value-adding techniques that promote 230 

utilisation of ALVs. Furthermore, there is a perception that ALVs are food for the poor among 231 

the youth and urban folks, while, among the affluent, they are highly regarded as being 232 

nutritious. To promote ALVs from household consumption and commercialisation, further 233 

research on agronomy, post-harvest handling, storage and processing is required in South 234 

Africa. 235 

Keywords: drying; nutritional value; packaging; promotion; water use 236 

(Published in Journal of Sustainability 2018, 10, 16; doi:10.3390/su10010016) 237 
  238 
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2.1 Introduction 239 

African leafy vegetables (ALVs) are defined as plant species which are either genuinely 240 

native to a particular region, or which were introduced to that region for long enough period to 241 

have evolved through natural processes or farmer selection [1]. There are many names by 242 

which indigenous leafy vegetables are known by different authors including wild vegetables 243 

[2], African leafy vegetables [1], and traditional leafy vegetables [3,4]. In South Africa, they 244 

are called imfino in isiZulu and isiXhosa, morogo in Sesotho and miroho in tshiVhenda [5]. 245 

South Africa faces challenges of food insecurity at household levels due to nutrient deficiencies 246 

such as vitamin A, iron, zinc, and vitamin C [6]. Studies have shown that ALVs can contribute 247 

to addressing gaps in nutrition through offering healthy and affordable nutrient dense 248 

alternatives. Some ALVs are rich in compounds such as vitamins, minerals, anti-oxidants and 249 

even anti-cancer factors needed to maintain health and fight off infections [7]. This would be 250 

particularly beneficial for poor rural communities who cannot afford to purchase vegetables. 251 

Most smallholder communities live in marginal areas where crops struggle to survive and 252 

face challenges of water scarcity. African leafy vegetables offer alternatives to such 253 

communities because they are tolerant to abiotic stresses such as drought and heat stress [8]. 254 

According to the Department of Agriculture, Fisheries and Forestry [9], ALVs are tolerant to 255 

drought, pests and diseases. They are also adapted to low input agriculture than exotic 256 

vegetables such as Swiss chard [5,10]. Thus, ALVs are a potential food source for poor people 257 

living in marginal areas and practising low input agriculture. Despite their abundance, they 258 

remain underutilised due to various constraints, including perception, processing, distribution 259 

and marketing, as well as nutritional information [11]. 260 

South Africa also faces challenges of water scarcity [12] and population growth [8]. 261 

Inclusion of ALVs in cropping systems can contribute to climate change adaptation, the 262 

environment, and employment creation in poor rural communities [13]. It is therefore 263 

worthwhile to identify the policy, socio-economic and institutional conditions that 264 

hinder/promote utilisation and production of ALVs. Availability of such information will give 265 

specific direction and guidance in research, production and marketing of ALVs. The objective 266 

of the study was to analyse factors that have influence in the use and production of ALVs to 267 

identify research needs. This study is expected to contribute to a broader scientific knowledge 268 

of important constraints and drivers in promoting ALVs. The goal of this paper is to critically 269 

review the status of utilisation and production of ALVs with a view to identifying research 270 

gaps that will facilitate scaling up their production in South Africa. The following questions 271 

are explored: 272 
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(1) What is the status of production and utilisation of ALVs in South Africa? 273 

(2) What can be done to promote production and utilisation of ALVs in South Africa? 274 

(3) What are the potential gaps and research priorities for future research of ALVs in South 275 

Africa? 276 

 277 

Methods Used for Literature Search 278 

A qualitative systematic approach was adopted for the current review. The search included 279 

online sources, peer reviewed papers published in journals, books and other publications such 280 

as popular articles. Published literature from universities, national research institutions, in the 281 

form of student theses, conference proceedings, working papers, and project reports was also 282 

considered. A comprehensive search was conducted using various search engines such as 283 

Google, MSN, Scopus etc., using the following terms: “indigenous leafy vegetable” or 284 

“African leafy vegetables” or “production or promoting ALVs” or “nutritional value of ALVs”; 285 

the search was limited to South Africa and the period 1994–2017. 286 

Approximately 480 articles were retrieved of which ~10% were peer reviewed. Through 287 

an analysis of the content of returned entries, papers were screened based on relevance to South 288 

Africa. The records were furthered filtered to ~300 and classified according to topics such as 289 

biodiversity (20%), nutrient content (38%), production and utilisation (32%), marketing (2%) 290 

and postharvest handling and processing (8%). The entries were further classified in terms of 291 

category of research, as surveys, field trials or laboratory experiments. Most studies from 292 

returned entries were as follows: based on household surveys (55.0%), literature reviews 293 

(10.0%), field trials (15.0%), and laboratory experiments (25.0%). The observation for such a 294 

variation of returned entries within the topics selected can be attributed to the magnitude of 295 

research attention given to each category by the research community in South Africa. For 296 

example, there is little information of ALVs available on marketing, postharvest, field trial etc. 297 

resulting in less returned entries in comparison to other areas in this paper. Putting entries into 298 

categories gave each entry an equal opportunity to be screened or filtered. Within the 299 

mentioned categories above, the papers were filtered based on relevance to the subject under 300 

study. This also considered geographical locations of the entries to represent all areas where 301 

possible and variation in crop species covered. In cases where many entries reported on the 302 

same issue, the most suitable rated entry was selected to reduce repetition. This reduced entries 303 

to ~167. These articles were further screened for research methodology, whether the study 304 

involved actual data, literature review, appropriate sampling technique, or data analysis or 305 

statistical techniques. An overall rating of suitability of articles was assigned as poor or 306 
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satisfactory. Only articles with ratings of satisfactory were selected for review. From this, 74 307 

articles were considered relevant and included in the review. 308 

 309 

2.2. Current Status of Utilisation and Production of Leafy Vegetables 310 

 311 
2.2.1. Diversity of ALVs 312 

South Africa has more than 100 different species of ALVs that have been identified; 313 

however, few groups of leafy vegetable species are still utilised [1]. These include C. olitorius 314 

(jute mallow), Amaranthus cruentus (pigweed), Citrullus lanatus (bitter melon), Vigna 315 

unguiculata (cowpea), Cleome gynandra (spider plant), Cucurbita spp. (pumpkin) and 316 

Brassica rapa subsp. chinensis (non-heading Chinese cabbage). The local names, distribution 317 

and ecology of major African leafy vegetables in South Africa have been documented [1,14]. 318 

Amaranth is one of the most common ALVs in South Africa. Amaranth belongs to the 319 

Amaranthaceae family and is an extremely variable, erect to spreading herb (Figure 1b). 320 

Different species of amaranth are available all over South Africa [1,6,14]. These include: 321 

Amaranthus thunbergii, A. greazicans, A. spinosus, A. deflexus, A. hypochondriacus, A. viridus 322 

and A. hybridus [1,6,14]. The various amaranth species are tolerant to adverse climatic 323 

conditions, but prolonged dry spells induce flowering and decrease leaf yield [1,6,14]. 324 

Amaranth is a C4 plant that grows optimally under warm conditions (day temperatures above 325 

25 °C and night temperatures not lower than 15 °C) bright light and adequate availability of 326 

plant nutrients. Hence amaranth is mainly grown in summer. Amaranth is rarely cultivated in 327 

South Africa because as with many other African leafy vegetables people believe the plants 328 

will grow naturally [1,6,14]. 329 

Corchorus belongs to the Tiliaceae family and is an erect annual herb that varies from 20 330 

cm to approximately 1.5 m in height (Figure 1.1a). The stems are angular with simple oblong 331 

to lanceolate leaves that have serrated margins and distinct hair-like teeth at the base. Different 332 

Corchorus species are available in South Africa, namely C. asplenifolius, C. trilocularis, C. 333 

tridens and C. olitorius [1,6,14]. Corchorus prefers warm, humid conditions and performs well 334 

in areas with high rainfall (600 to 2000 mm) and high temperature (30 °C during the day and 335 

25 °C at night). In South Africa it grows in summer. Despite the abundance of the species and 336 

having a potential for development as a crop, Corchorus is still considered a wild species and 337 

has never been cultivated. 338 
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(a) (b) 

Figure 1.1. (a) Corchorus olitorius; (b) Amaranthus cruentus growing under commercial 339 
production in a trial at Roodeplaat in 2012 summer season 340 

 341 
Cleome (Figure 2.2b) belongs to the Capparaceae family and it is an erect herbaceous herb, 342 

branched and rather stout [1,6,14]. Different Cleome species exist such as C. monophylla and 343 

C. hirta with Cleome gynandra most widely used as a leafy vegetable in South African gardens 344 

[1,6,14]. Cleome does tolerate a degree of water stress, but prolonged water stress hastens 345 

flowering and senescence. It grows in summer and does not grow well when the temperature 346 

drops below 15 °C. Cleome is not formally cultivated in South Africa although it is among the 347 

group of African leafy vegetables that has good potential for development as a crop [1,6,14]. 348 

 
 

(a) (b) 
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Figure 1.2. (a) Vigna unguiculate; and (b) Cleome gynandra growing under commercial 349 
production in a trial at Roodeplaat in 2012 summer season. 350 

Vigna unguiculata is a leaf and pulse crop that belongs to the Leguminosae family (Figure 351 

1.2a). It is an annual or perennial herbaceous plant with tri-foliate leaves [1,6,14]. Different 352 

varieties exist, varying from prostate indeterminate types to erect, determinate, low-branching 353 

types. The varieties mainly used as a leafy vegetable are the spreading, prostrate types. Various 354 

subspecies of Vigna unguiculata are found in the wild in the eastern parts of the KwaZulu-355 

Natal, Mpumalanga and Limpopo Provinces. These subspecies include: Vigna unguiculata 356 

subsp. dekindtiana var. dekindtiana, V. unguiculate subsp. dekindtiana var. huillensis, V. 357 

unguiculata subsp. rotracta, V. unguiculata subsp. stenophylla, V. unguiculate subsp. tenuis 358 

var. ovata, and V. unguiculata subsp. unguiculata, with Vigna unguiculata subsp. unguiculata 359 

the most commonly found [1,6,14]. Vigna unguiculata is widely cultivated in summer for its 360 

seeds and as a fodder crop. Its use as a leafy vegetable has not received much attention [1,6,14]. 361 

Brassica rapa L. subsp. chinensis (Figure 3). belongs to the Brassicaceae family, an 362 

annual, flowering, leafy vegetable, in which the leaves form a rosette [1,6]. It originates in 363 

China and found its way from Asia into Africa as a result of trade between the two continents 364 

[1,6]. Vhembe District in Limpopo province is the centre of origin of the cultivation of Brassica 365 

rapa L. subsp. chinensis in South Africa, where an informal seed multiplication and 366 

distribution system is being maintained by selected producers. It is primarily grown during the 367 

dry winter months, making it reliant on irrigation for its water requirements. Different landraces 368 

have been reported in South Africa which have been given local names such as dabadaba and 369 

lidzhainthi being most commonly grown, followed by tshikete and mutshaina wa u navha [6]. 370 

Its cultivation by South African smallholders has been rapidly spreading from Vhembe District 371 

to many parts of the Limpopo, Mpumalanga and Gauteng provinces. 372 

 373 
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Figure 1.3. Brassica rapa L. subsp. chinensis growing under commercial production in the 374 
trials at Roodeplaat in 2013 winter season 375 

Other ALVs species available in South Africa include Cucurbita family. Cucurbitaceae 376 

(pumpkin and relatives) are almost all vine like, annual, herbaceous plants. The most popular 377 

cucurbit species are Citrullus lanatus (Figure 4b), Cucumis melo, and Cucurbita pepo, C. 378 

maxima and C. moschata [1,6,14]. Cucurbita maxima (Figure 1.4a) and C. pepo are drought 379 

tolerant and require relatively little water, but they respond positively to irrigation when 380 

conditions are very dry.They are the most heat tolerant type of pumpkin and they are also fairly 381 

drought tolerant. They are grown in summer. 382 

 
 

(a) (b) 

Figure 1.4. (a) Cucurbita spp; (b) Citrullus lanatus growing during summer season at 383 
Roodeplaat in 2012 season 384 

2.2.2. Utilisation 385 

Previous studies have tried to quantify the frequency of utilisation of ALVs in South Africa 386 

[2,15–17]. Their use has remained low despite their nutritive value and potential economic use. 387 

Van Rensburg et al. [10] reported that the utilization of indigenous leafy vegetables is declining 388 

in favour of exotic vegetables. Even at present the utilisation is still variable [1]. This is because 389 

they are not cultivated but mostly gathered from cultivated fields, fallowed land and the veldt 390 

[14,18]. Women are the major custodians in the gathering of wild vegetables [1,19]. The low 391 

levels of utilisation are also attributed to perception that they are food for the poor and indicate 392 

hard times among the youth and urban folks [20–23]. The loss of indigenous knowledge also 393 

causes low utilisation [21]. This supports the view that the youth do not have enough 394 

knowledge of the wild species to collect in wild; with the tendency of mixing wild vegetables 395 

with poisonous species [14]. 396 
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 397 

2.2.3. Production 398 

The occurrence and extent of cultivation of leafy vegetables in South Africa has been 399 

presented in Table 1.1. Amaranthus cruentus, Cleome gynandra and Corchorus olitorius as 400 

shown in Table 1 are still considered wild species and thus have never been considered for 401 

large-scale commercial production [24]. Vigna unguiculata is widely produced mainly for 402 

grain and as a fodder crop (Table 1.1). Its production as a leafy vegetable for human 403 

consumption is not widespread and has received limited research attention [24]. Citrullus 404 

lanatus and Cucurbita species are often grown as an intercrop with maize covering the soil 405 

surface which helps to control weeds [20,25,26] and for their fruits (Table 1). Some of the 406 

ALVs indicated in Table 1.1 such as Brassica rapa subsp. chinensis are already cultivated but 407 

the wide diversity in agronomic practices used indicate the absence of sound agronomic 408 

guidelines for these crops [27]. 409 

 410 

  411 
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Table 1.1. African leafy vegetables commonly harvested from the wild or obtained through 412 
cultivation in South Africa 413 

African Leafy Vegetable 
Harvested 

from Wild 
Cultivated 

Growth 

Season 
References 

Abelmoschus esculentus 

Moench. 
   Summer [6,8,14] 

Amaranthus spp.    Summer [1,6,8,14] 

Bidens spinosa L.    Summer [6,8,14] 

Brassica rapa L. subsp. 

chinensis  
   Winter [1,6,8,14] 

Chenopodium album L.    Summer [6,8,14] 

Citrillus lanatus     Summer [6,8,14] 

Cleome gynandra L.    Summer [1,6,8,14] 

Corchorus olitorius L.    Summer [1,6,8,14] 

Cucumis melo L.    Summer [1,6,8,14] 

Cucurbita spp.    Summer [1,6,8,14] 

Galinsoga parviflora Cav.    Summer [6,8,14] 

Momordica balsamina L.    Summer [6,8,14] 

Portulaca oleracea L.    Summer [6,8,14] 

Solanum retroflexum Dun.     Winter [1,6,8,14] 

Vigna unguiculata (L.) Walp.    Summer [1,6,8,14] 

Harvesting of ALVs without cultivation is unsustainable in that people have no control 414 

over availability as shown in Table 1. Others argue that these ALVs are only needed in small 415 

quantities and the naturally occurring amounts should be adequate. However, if the increase in 416 

promotion and consumption of these species is not matched with propagation or cultivation, 417 

this could lead to an unsustainable increase in harvesting from the wild or extinction of species 418 

in South Africa [14,28]. An alternative to this utilisation approach is the integration of African 419 

leafy vegetables in cropping systems [29]. Therefore, there is need to conduct more agronomic 420 

studies to generate basic production guidelines for these crops that will enable to match supply 421 

with demand. These agronomic studies will explore the planting dates appropriate for farmers 422 

to get better prices. Studies on various harvesting methods should be conducted alongside 423 

nutritional studies to ascertain the best time or different stages of harvesting. 424 
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Some agronomic studies aiming to develop optimal cultivation practices for improved 425 

yield in South Africa have indicated the possibility of improved production. Agronomic 426 

considerations such as nitrogen [8,27,30,31] and manure application [8,32] have been reported 427 

to improve production. However, further studies still need to be conducted on the effects of 428 

manure and nitrogen on the quality of ALVs in terms of bioactive compounds and quality 429 

parameters. It is after such studies have been conducted that some of the nitrogen rates can be 430 

adapted by farmers. Similar reports have been made on improved production due to agronomic 431 

factors such as planting date [27,33] irrigation management [34,35] and plant density [24,36]. 432 

Promoting cultivation of ALVs would increase their availability and accessibility to consumers 433 

and possibly generate household income for rural households [37]. There is still a need to 434 

investigate the relationship between water use, crop production and quality in terms of macro 435 

and micronutrients. 436 

 437 

2.2.4. Marketing of Leafy Vegetables in South Africa 438 

The marketing of leafy vegetables in South Africa is still low and limited to dried products 439 

[20,38]. Their marketing and distribution is mainly through street vendors [38,39]. Despite 440 

their perceived quality, ALVs are rarely found in supermarkets and upmarket groceries in 441 

South Africa. The rare presence of stocking of ALVs in supermarkets has greatly contributed 442 

to their reduced consumption. This is due to decreased availability and their low status among 443 

some South African communities. At the time of this research, there was no coordination of 444 

leafy vegetable production and marketing. Those who are already consuming these vegetables 445 

have not increased their demand for same, due to lack of improved presentation and availability 446 

from steady and reliable sources. The opening up of market outlets for ALVs in supermarkets 447 

and groceries can be achieved through training of farmers in modern production techniques, 448 

quality control and standardization of selling units, and then linking the farmers to the markets. 449 

According to Matenge et al. [22], marketing messages such as “old-fashioned but new” or 450 

“traditional but more convenient” might reach both younger and older consumer markets. For 451 

successful promotion of these crops there should be vertical integration that must be achieved 452 

through institutional linkages between the producers and the supply outlets. Linking up of the 453 

various market actors will lead to increased supply as well as increased efficiency in the value 454 

chains. 455 

 456 

2.2.5. The Role of the Private and Public Sectors in Promoting ALVs 457 
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Research of ALVs in South Africa has been ignored for a long time by policy makers and 458 

researchers although it is currently attracting interest [9]. The Agricultural Research Council 459 

(ARC) Vegetables and Ornamental Plants (VOPI) is one of the major role players involved in 460 

research and training of indigenous vegetables in South Africa. Indigenous crops research is 461 

since 1994 an existing research focus area for ARC-VOPI [18]. It has created awareness within 462 

the scientific community through publications, presentations, posters, workshops and 463 

conference attendance. The ARC-VOPI in collaboration with the International Institute of Plant 464 

Genetic Resources Institute, (IPGRI) has made efforts in promoting wild vegetables [18]. There 465 

are also current efforts being done by ARC-VOPI to promote different ALVs through 466 

compilation of important literature on the production, subsequent research collaboration with 467 

universities and farmer engagements. However, long term partnership and funding by 468 

government and the private sector is a key driving force behind the increased production of 469 

ALVs in South Africa. 470 

Water Research Commission (WRC) has also been a major role player in promoting ALVs 471 

through research funding. Some of the funded WRC scoping studies have tried to document 472 

water use efficiency of selected ALVs, and then use these with nutritional values to estimate 473 

nutritional water productivity [35,40]. This is necessary as it will give insight on how 474 

increasing ALV production and diversity can be linked to addressing nutritional outcomes. 475 

Most of the water use efficiency data used in these studies were benchmark estimates and from 476 

various sources [35,40]. This is because there is limited published data on most ALVs and there 477 

is no literature on water use of some of the ALVs such as in South Africa. Despite its efforts 478 

in scaling up research, WRC should direct mostly of its research in agronomy to determine 479 

potential yield and water use efficiency to accurately calculate nutritional water productivity 480 

in South Africa. 481 

The Medical Research Council as a role player has focused on the use and nutritional value 482 

of ALVs among rural households among other projects. The South African Department of 483 

Agriculture, Forestry and Fisheries (DAFF) is a key role player at policy level in promoting 484 

the value of ALVs [9]. At present, the current food security policy guiding research, production 485 

and marketing of agricultural produce is quite broad and lacks specific direction for the 486 

promotion of ALVs. At the time of this research, there was notably no formal or commercial 487 

seed production which is a prerequisite for sustaining the production trend. Discussions with 488 

colleagues from ARC-VOPI breeding department cited that there are no registered varieties of 489 

ALVs at present under the Department of Agriculture. According to Venter et al. [18], efforts 490 

should be made to ensure government agencies are supportive of ALV initiatives in current 491 
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and future projects. Extension service in South Africa is not well facilitated to work properly 492 

and, on the other, even if it was, there would be a need for some basic training since training 493 

college curricula rarely cover ALVs. This is because Agricultural education in both commercial 494 

and communal areas is aimed at cash crop production [29]. 495 

All South African universities are role players in promoting use of ALVs. Universities 496 

have been partners on nutritional and consumption studies, thus helping to strengthen the 497 

capacity in the scientific community on ALVs [18]. From the discussion arising from 498 

Symposium on the Water Use and Nutritional Value of Indigenous and Traditional South 499 

African Underutilised Food Crops for Improved Livelihoods conducted in Pretoria in 2014, 500 

one of the challenges is research funding. Lack of funding in some South African universities 501 

towards research of ALVs results in fewer field studies conducted and in the case where they 502 

are conducted, it is in small plots or backyard fields leading to poor results. Another challenge 503 

is that researchers are focusing on their areas of interest or interesting studies with few dealing 504 

with basic agronomic studies that require extensive field work. 505 

Promoting home-grown or small-scale food production is explored as a feasible 506 

contributor to food and nutrition security for the rural poor in South Africa [41]. Improved 507 

research funding, combined with public education and dissemination of information is 508 

required. Since the target is promoting home-grown or small-scale food production there is 509 

constant need for community feedback sessions, including interaction with farmers and 510 

scientists. According to van Rensburg et al. [1], the active promotion, use and conservation of 511 

ALVs will ensure that the status of these crops is enhanced, specifically their contribution 512 

towards sustainable nutrition as well as sustainable production in South Africa. 513 

 514 

2.3. Nutritional Value 515 

South Africa faces Vitamin A and iron deficiencies, while utilisation of ALVs is 516 

documented to alleviate malnutrition. In such cases one would expect an increased uptake of 517 

such species. However, there is a decreased tendency in the utilization of ALVs due to limited 518 

knowledge of the nutritional content [21]. African leafy vegetables are increasingly recognized 519 

as possible contributors of both micronutrients and bioactive compounds to the diets [42]. They 520 

contain nutrients such as calcium, iron and vitamins A and C, fibre and proteins [14]. They are 521 

a valuable source of nutrition in rural areas and they contribute substantially to protein, mineral 522 

and vitamin intake together with fibre; they also add diversity to the diet. African leafy 523 

vegetables should therefore be included in the diet to overcome various nutritional problems 524 
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such as iron and vitamin A deficiencies [14]. The minerals and vitamins found in ALVs exceed 525 

the levels found in exotic vegetables such as cabbage; they are also compatible to use with 526 

starchy staples because they contain ascorbic acid, which enhance iron absorption [2]. 527 

Studies on the antioxidant properties of these vegetables also revealed that they are good 528 

dietary sources of antioxidants such as flavonoids, tannins and other polyphenolic constituents 529 

[43]. Phenolic compounds are secondary metabolites in plants which exhibit a wide range of 530 

physiological properties, such as anti-allergenic, anti-atherogenic, anti-inflammatory, anti-531 

microbial, antioxidant, anti-thrombotic, cardio protective and vasodilatory effects [44]. Many 532 

phenolics, such as flavonoids, have antioxidant properties that are much stronger than those of 533 

vitamins C and E. Flavanols and flavonoids have been found to possess antioxidant and free 534 

radical scavenging activity in vegetables [45]. One way to promote nutritional uptake of ALVs 535 

in South Africa is childhood exposure and education on ALVs at primary school level by 536 

incorporating these products into school feeding programmes [22]. 537 

Our literature research has indicated that few studies have been conducted on the 538 

nutritional composition of wild vegetables in South Africa [3,21,42,46]. However, most of 539 

these studies have been based on the collection of plant samples from the wild. Hence, 540 

variations in soil and climatic conditions might have influenced the chemical composition of 541 

the crop species. Studies comparing the superior nutrient composition of wild vegetables to 542 

conventional vegetables such as cabbage (Brassica oleracea var. capitata) and Swiss chard 543 

[2,3,47,48] are documented in South Africa. In some cases, these studies have been conducted 544 

in separate soils or samples purchased from the market to conduct tests, hence there is need to 545 

conduct studies in the same field environment to reach meaningful comparison. More 546 

controlled experiments on aspects such as effect of soil type, effect of fertiliser amount and 547 

type, and age of harvesting on the nutritional composition of ALVs still needs urgent attention. 548 

The amounts of nutrients reported for the same species from different studies vary widely [13]. 549 

Possible cause to such is variation in the age of plant material used and variations in protocols 550 

of analysing the bio compounds from one lab to the other [14]. Therefore, there is need to 551 

conduct studies with standardised assays or protocols to make comparisons and to consider the 552 

age of plant materials used. 553 

 554 

2.4. Drought Tolerance and Resilience 555 

African leafy vegetables could make a positive contribution to world food production 556 

because they adapt easily to harsh or difficult environments [49]. The input required for 557 
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growing them is lower compared with other crops, and they are highly resistant to pathogens 558 

thus requiring fewer chemicals and pesticides [49]. They are considered low input crops, which 559 

are more tolerant to abiotic and biotic stresses as compared to exotic vegetables [50,51]. The 560 

notion that ALVs grow in the wild or adverse environments could mean they have various 561 

strategies/mechanisms to deal with drought stress. Drought stress is defined as the moderate 562 

loss of water which results in stomatal closure and limitation of gas exchange [52]. A plant 563 

may escape, avoid, and/or tolerate stress. Drought tolerance has been defined as the plant’s 564 

capacity to maintain metabolism under water stress [53]. Drought avoidance involves crop 565 

responses such as stomatal regulation, including enhanced capture of soil moisture through an 566 

extensive and prolific root system [54,55]. Studies conducted elsewhere have shown that 567 

cowpea [56] and Amaranth [57] are tolerant to adverse climatic conditions. Few studies 568 

conducted in South Africa have also shown that leafy vegetables are drought tolerant. Neluheni 569 

et al. [58] showed that reasonable yield in Amaranth can still be obtained even at lower 570 

moisture availability. Slabbert et al. [59] in screening for drought tolerance showed that the six 571 

major indigenous leafy vegetable could maintain higher relative water content and leaf area 572 

compared to B. vulgaris. var. cicla. 573 

Studies have shown that not all African leafy vegetables are tolerant to water stress. 574 

Brassica rapa subsp. chinensis has been shown to require adequate availability of soil water 575 

for optimum growth [34]. Neluheni et al. [58] reported that stress tolerant in amaranth depends 576 

on the specie with A. graezizans being more tolerant than A. cruentus. This concurs with 577 

previous researchers elsewhere who reported that drought tolerance in amaranth depends on 578 

the species [26,60]. Farmers can still choose species that are drought tolerant. Therefore, ALVs 579 

can act as a substitute for other cultivated crops to alleviate nutrient deficiencies by increasing 580 

nutrient supplies [37]. Therefore, the need to breed for drought resistant varieties and to 581 

conduct irrigation trials throughout the year to ensure continuous availability remains to be 582 

established in South Africa. 583 

 584 

2.5. Water Use of ALVs 585 

South Africa is a water stressed country [12] and irrigated agriculture takes place under 586 

water scarcity. According to Annandale et al. [61], in the next two to three decades, water 587 

availability is likely to drop below benchmark of 1000 m3 person year−1. One way to deal with 588 

inadequate availability of water is to utilise crops that are tolerant to water stress [6]. African 589 

leafy vegetables can be exploited to contribute towards food and nutrition security without 590 
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upsetting the existing burden on water shortages [6]. The promotion of production of ALVs in 591 

South Africa include addressing the notion of “more crop per drop”, thus the production of 592 

more food per millimetre of water used. This is necessary despite ALVs being drought tolerant, 593 

with low water requirement, poor water management could upset the existing water burden 594 

once these crops are commercilised. Therefore, to optimise the amount of water, water use 595 

efficiency (WUE) and water productivity should be known with considerable precision. WUE 596 

is defined as mass of dry matter produced per unit volume of water evapotranspired expressed 597 

in kg m−3. Studies conducted on water use efficiency indicate that black nightshade (Solanum 598 

nigrum) and cleome (Cleome gynandra) among other crops have low water use and high water 599 

use efficiency compared to Swiss chard [41]. Water use efficiencies obtained in South Africa 600 

substantially differs with those published internationally [40]. Therefore, there is need to 601 

conduct more studies as little local research has been published on water use efficiency of 602 

ALVs in South Africa. 603 

Crop water productivity is the amount of water required per unit total biomass or specified 604 

biomass produced expressed in kg m−3 [62]. A study conducted to determine the water 605 

requirements of selected ALVs in South Africa showed that adequate amount of water is 606 

needed to produce marketable yield [35]. Highest water productivity was obtained at deficit 607 

irrigation which indicates that production of ALVs is possible in water scarce areas. However, 608 

deficit irrigation compromised the leaf quality as observed by Beletse et al. [35]. This study 609 

was conducted under a rain shelter and in one locality, hence need to conduct more field trials 610 

in different regions of South Africa. 611 

Furthermore, in promoting production in South Africa, researchers need to shift from 612 

emphasizing production per unit area towards maximizing nutritional content per volume of 613 

water consumed, the nutritional water productivity (NWP) as defined by Renault and 614 

Wallender [63]. According to Mabhaudhi et al. [64] South African benchmarked values of 615 

macronutrient water productivities indicates that indigenous leafy vegetables such as Amaranth 616 

and pumpkin leaves are efficient in terms of water consumed per protein produced. Dark green 617 

vegetables are efficient protein synthesizers and high efficient iron accumulators [40]. The sets 618 

of nutritional water productivity (NWP) values were calculated using the equation of Renault 619 

and Wallender [63]. It should be noted that the values were calculated using the same trials 620 

hence the influence of the environment on water productivity and nutrient content questions 621 

the reliability of the results [40]. There is limited published information on nutritional water 622 

productivity (NWP) in South Africa [40]. Therefore, there is need to conduct systematic 623 
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research in the determination of yields, water use efficiencies and nutritional water productivity 624 

under a range of production environments in South Africa. 625 

2.6. Post-Harvest Handling and Storage of ALVs 626 

The main constraint to increased production, marketing and consumption of ALVs is the 627 

high perishability in the fresh form [42]. Another major constraint is that they are seasonal and 628 

produced mainly in summer [19]. A study by Modi et al. [21] in South Africa at Ezigeni, 629 

KwaZulu–Natal observed that the availability of wild vegetables suddenly declined in May and 630 

became scarce between July and August and only increased as the season progressed from 631 

August to October. Therefore, there is a need to develop and promote appropriate processing 632 

techniques to minimize post-harvest losses and ensure regular supplies of leafy vegetables from 633 

the production areas to consumers in peri-urban and urban centres. 634 

 635 

2.6.1. Cooling and Storage 636 

Post-harvest losses of leafy vegetables are generally caused by poor handling and storage 637 

conditions after harvest. Cooling extends shelf life by reducing the rate of physiological change 638 

(i.e., rate of respiration and transpiration) and retarding the growth of spoilage microorganisms. 639 

In most cases, if these vegetables are not sold within 24 h after harvest, the likelihood of 640 

deterioration is imminent. Some farmers have tried to sprinkle water and leave them in the 641 

open overnight. However, problems of disease development and thus microbiological 642 

contamination still hamper their efforts. 643 

Temperature is the most important environmental factor that influences the deterioration 644 

of harvested commodities [65]. Higher temperatures accelerate physiological deterioration and 645 

quality loss. Elsewhere, Nyaura et al. [66] reported that ascorbic acid declined by 88% in 646 

vegetable amaranth when kept at room temperature after four days of storage while the lowest 647 

loss was observed at 5 °C (55% loss) after 23 days of storage. Based on this study, it is 648 

suggested that shelf life extension and nutrient preservation of vegetable amaranth can be 649 

achieved through storage at temperatures of 5 °C. A study conducted in South Africa on Baby 650 

Spinach (Spinacia oleracea), a member of the Amaranthaceae family showed that storage 651 

period and temperature have different effects on Mg, Fe, Zn, phenolics, antioxidant activity, 652 

flavonoids carotenoids, and vitamin C [67]. Baby spinach leaves stored at 4 °C maintained 653 

good quality for 4–6 days as compared with those stored at 22 °C such as at a retail store [67]. 654 

There is limited information on storage temperature on ALVs. Information on various ranges 655 
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of storage temperatures for small holders farming and commercialisation of leafy vegetables 656 

in South Africa needs urgent research attention. 657 

 658 

2.6.2. Packaging 659 

According to Matenge et al. [22], there is need to improve the image of ALVs to improve 660 

acceptability, preference and consumption by younger consumers, thereby presenting food 661 

product developers and marketers with the opportunity to make more acceptable ALV products 662 

available. Proper packing is essential to protect ALVs against spoilage and microorganism 663 

decay, preserve their quality and provide convenience of handling [68]. At present ALVs are 664 

simply uprooted or cut at the stems, sometimes washed, then tied into bunches and presented 665 

in the market. African leafy vegetables would fetch better prices if there were innovative ways 666 

of presenting them in the markets because packaging would attract the attention of consumers. 667 

This conforms to the findings of Mampholo et al. [68] that appearance of the product plays a 668 

major role in influencing consumer acceptance. Voster et al. [19] reported that some farmers 669 

packaged dried leafy vegetables products to increase shelf life in South Africa. 670 

The knowledge of appropriate packaging for ALVs is still limited. Recent studies 671 

conducted in South Africa on A. cruentus and S. retroflexum [69] and on Brassicas chinensis 672 

[68] indicates that modified packaging can reduce postharvest losses and retain the overall 673 

quality and bioactive compounds on the retailer’s shelf during marketing. These studies have 674 

focused on modified packaging and research still need to be conducted on various low-cost 675 

packaging techniques for small holder farmers in South Africa. Furthermore, the effect of pre-676 

harvest or agronomic practices on postharvest and shelf life still needs urgent research needs. 677 

At the time of this research there was no pre-cut, branding or packaging of fresh ALVs in the 678 

South African formal market. Packaging and instructions on how to prepare the ALVs would 679 

assist potential customers who do not know how to cook them. 680 

 681 

2.6.3. Drying 682 

Drying is a way of processing leafy vegetables to make them available during periods of 683 

short supply [42]. Drying is a post harvesting process that can promote availability of leafy 684 

vegetables to farmers especially those who cannot afford packaging. Drying reduces 685 

microbiological activity through reduced moisture content in food. There are several methods 686 

of drying leafy vegetables that have been reported elsewhere which include sun drying, solar 687 

drying, vacuum drying, oven drying, and dehydrofreezing [70]. 688 
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In South Africa, drying is the major method of processing leafy vegetables to make them 689 

available during periods of scarcity [19]. Whilst drying solves the problem of perishability, it 690 

does not satisfy the needs of a large population of consumers; particularly urban dwellers who 691 

prefer freshly harvested vegetables [42]. Voster et al. [19] reported that there are two main 692 

methods of preserving indigenous leafy vegetables in South Africa. These include sun drying 693 

of fresh leaves and sun drying of blanched leaves. Both these methods transform the leafy 694 

vegetable into dry products that have long shelf lives [19]. Van Averbake et al. [27] reported 695 

that electrification of the rural areas has introduced the new preservation technology, of 696 

freezing of leaves. Various drying methods have been reported elsewhere to affect quality 697 

parameters such as texture, flavour, colour, and bio-compounds of leafy vegetables. However, 698 

there are limited published data on the effect of various drying methods on the quality of 699 

indigenous leafy vegetables in South Africa. Such information is necessary to establish suitable 700 

drying methods for cultivated leafy vegetables within South Africa. There is a need to develop 701 

and promote locally appropriate processing techniques and ensure regular supplies of leafy 702 

vegetables from the production areas to consumers in peri-urban and urban centres. 703 

 704 

2.6.4. Cooking 705 

Cooking induces significant changes in chemical composition affecting concentration and 706 

nutrient bioavailability [71]. Various cooking methods are used based on convenience and taste 707 

preference rather than nutrient retention. Some cooking methods may oxidize antioxidants [72] 708 

and affect the vegetable nutrient retention. It is therefore important to choose a cooking method 709 

that leads to optimal nutrient retention and bioavailability [73]. Cooking for a longer time leads 710 

to a higher loss of most of the nutrients especially if cooking water is discarded since most 711 

nutrients leach into it [71,73]. The choice and age of plant harvested also influences the quality 712 

of the leafy vegetable. 713 

Voster et al. [74] reported that young growing and tender leaves are used in the preparation 714 

of vegetables dishes in South Africa. Petioles and in some cases young tender stems are also 715 

included but old, hard stems are discarded [74]. The leafy vegetables dishes are prepared from 716 

a single species or from a combination of different species [6]. Cooking methods vary through 717 

boiling, to steaming [6]. The recipes used to prepare the vegetables tend to be similar among 718 

people belonging to a particular cultural group, limiting culinary diversity [19]. At the time of 719 

this research there was less published data retrieved on the recommended cooking methods and 720 

diversified recipes for various ALVs in South Africa. 721 
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Smith and Eyzaguirre [42] reported that ALVs are indispensable ingredients in soups or 722 

sauces that accompany carbohydrates or staples. The crucial component of the leafy vegetable 723 

promotion strategy will be through recipe developments to show ways of preparing these food 724 

ingredients. The recipes should encourage the use of the ALVs in preparing foods other than 725 

accompanying sauces to ensure that the vegetables are used daily, thus increasing the 726 

opportunities for their consumption. To promote these crops, the developed vegetable products 727 

can be consumed as snacks or accompany a beverage thus broadening the consumption habits. 728 

Value addition through product development will help address the issue of perishability and 729 

fluctuating supply of the vegetables on the market. There is need for research in the 730 

development of diversified recipes that are nutrient-dense and for alternative uses of these 731 

indigenous vegetables. Awareness creation, coupled with the development of brochures on how 732 

to prepare ALVs—as well as informing the potential consumers of where to find them—will 733 

help to extend demand even to those who do not know much about these vegetables. The 734 

demonstrations of proper cooking methods will result in increased utilization in ALVs species, 735 

some of which have an unpleasant taste (e.g., African night shade)—a factor which has been 736 

detrimental to acceptance by some people. 737 

 738 

2.7. Conclusions 739 

In South Africa, there is a decline in consumption of ALVs partly because of low 740 

availability and poor perception. Low availability is because production continues to be in 741 

small scales and they are considered wild species hence have never been commercialised. They 742 

are obtained by means of collection rather than cultivation hence they face threats of over-743 

exploitation. Promotion of conservation and collection of genetic resources and germplasm 744 

exchange need urgent attention. There is need to develop support policies for seed systems for 745 

both the public and private sectors. Although neglected and underutilised in South Africa, 746 

ALVs offer unique opportunities to diversify farming systems, ensure food security and 747 

alleviate poverty, while increasing income and improving human health. Some of the 748 

challenges hindering promotion of ALVs include lack of sound agronomic information due to 749 

limited research, shortage of seeds as currently there are no registered varieties for most of 750 

ALVs and lack of value-adding technologies. For leafy vegetables to move from underutilised 751 

crops to commercial-level production there is a need to generate production information as has 752 

been done on major crops. Public education in production, conservation and marketing through 753 

workshops and seminars is also key to their promotion. Increased research on production, 754 
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nutrition, processing and marketing still requires attention. Promotion of ALVs needs engaging 755 

of policy-makers who will incorporate it into government policies and programmes. 756 

Furthermore, policy makers can influence curriculum development at schools and universities 757 

to integrate ALVs into the educational curriculum. There is need to develop joint programmes 758 

among government, private sectors and NGOs to promote ALVs. ALVs are part of the region’s 759 

cultural heritage and are rich in nutrients, e.g., vitamin A and iron. Therefore, there is need to 760 

promote the cultivation and utilisation of ALVs by farmers, especially women and other 761 

vulnerable groups. Successful promotion should result in ALVs forming part of the daily staple 762 

diet of South Africans. 763 
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 1000 

Abstract  1001 

South Africa is rich with a diverse range of leafy vegetables that are rich in nutrients. African 1002 

leafy vegetables (ALVs) are limited in terms of their commercial production due to lack of 1003 

production information such as water requirements and yield. The effect of water stress on 1004 

growth, physiology and yield of ALVs were evaluated under field conditions at the Agricultural 1005 

Research Council (ARC), Roodeplaat, Pretoria, over two seasons, 2015/2016 and 2016/2017. 1006 

A randomised complete block design was used with: three water levels [30%, 60% and 100% 1007 

of crop water requirement (ETc)] and four ALVs (Amaranthus cruentus L., Corchorus olitorius 1008 

L, and Vigna unguiculata (L.) Walp and Beta vulgaris L.), replicated three times. In A. 1009 

cruentus, moisture stress (30% ETc) reduced plant height, chlorophyll content index (CCI) as 1010 

well as yield. In B. vulgaris leaf number, plant height and yield were reduced by water stress. 1011 

In both A. cruentus and B. vulgaris, yield increased with increase in water application from 1012 

30% ETc to 60% ETc and remained the same at 100% ETc. For C. olitorius and V. unguiculata, 1013 

mailto:bbkncube@yahoo.com
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CCI, plant height and yield were not affected by water stress although stem fresh mass was 1014 

reduced by water stress in V. unguiculata. Using 60% ETc appears ideal for production of A. 1015 

cruentus and Beta vulgaris, whereas 30% ETc is recommended for V. unguiculata and C. 1016 

olitorius. Results of A. cruentus and Beta vulgaris were comparable under similar conditions. 1017 

V. unguiculata and C. olitorius performed better than Beta vulgaris indicating an opportunity 1018 

to improve productivity under drought conditions. 1019 

 1020 
Keywords: Leafy vegetables; moisture stress; physiology; production; yield 1021 
 1022 

Abbreviations   
ALV African leafy vegetables 
ARC-VOP Agricultural Research Council-Vegetable and Ornamental Plants 
CCI Chlorophyll content index 
ARC-ISCW Agricultural Research Council-Institute for Soil Climate and Water 
RCBD Randomised complete block design 
AWS Automatic weather station 
WAT Weeks after transplanting 
DMRT Duncan’s multiple range test 

 1023 

3.1. Introduction 1024 

South Africa is a hyper-arid to semi-arid country (Bennie and Hensley, 2001). Agricultural 1025 

moisture limitation remains one of the major impending factors to crop production and a threat 1026 

to food security (Mabhaudhi et al., 2013, Chimonyo et al., 2018). According to Annandale et 1027 

al. (2011) in not so far future, water availability for individual use will drop rapidly. Growing 1028 

drought tolerant crops is one of the ways of averting the challenges of inadequate water 1029 

availability (Oelofse and van Averbeke, 2012). South Africa is endowed with diverse African 1030 

leafy vegetables (ALVs) that are rich in nutrients and can grow in marginal production areas. 1031 

According to Van Rensburg et al. (2007), Amaranthus cruentus (pig weed), Corchorus 1032 

olitorius (Jews mallow) and Vigna unguiculata (cowpea) are among the major ALVs in South 1033 

Africa. These crops contain significant levels of calcium, iron, zinc, vitamin B, vitamin A and 1034 

β-carotene, nutrients of which are highly deficient in South African diets (Oelofse and van 1035 

Averbeke, 2012). Despite their significance, these crops are less cultivated due to, in part, 1036 

limited agronomic information such as water use which is crucial in devising water 1037 

management strategies (Oelofse and van Averbeke, 2012). Amaranthus cruentus and C. 1038 

olitorius are rarely cultivated but harvested from cultivated lands, fallow land and in the wild 1039 

(Van Rensburg, 2007; Maseko et al., 2018). Vigna unguiculata is mainly produced for its grain 1040 
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and fodder with little attention as a leafy vegetable (Van Rensburg et al., 2007). The ability to 1041 

adapt to marginal growing conditions makes indigenous vegetable crops more advantageous 1042 

over exotic types and their contribution to dietary diversity and options makes them lucrative 1043 

to resource poor, mostly rural communities (Maseko et al., 2018). However, in South Africa 1044 

information on production, yield and quality of ALVs under varying water regimes that can be 1045 

used to promote their production is very scant (Nyathi et al., 2018b).  1046 

Studies conducted elsewhere reports C. olitorius as being tolerant to moisture and 1047 

salinity stress (Ayodele and Fawusi, 1989; Chaudhuri and Choudhuri, 1997; Fawusi et al. 1048 

1984). In contrast, Fasinmirin and Olufayo (2009) reported that higher yield and water use 1049 

efficiency (WUE) in C. olitorius could be possible when full irrigation is applied to the crop. 1050 

Although cowpea is regarded as a drought tolerant crop, limited irrigation has been found to 1051 

cause significant yield reduction (Watanabe et al., 1997).  The literature has shown that 1052 

Amaranthus is tolerant to adverse climatic conditions (Grubben, 2004). However, adopting 1053 

results from complicated by the variations in plants response to variable climates, plant species, 1054 

variety and levels of stress imposed to the plant among other factors. Few studies conducted in 1055 

South Africa under controlled environments (rain shelter, green house) have shown a 1056 

possibility of producing ALVs in water-limited areas although economic yield may be 1057 

compromised (Beletse et al., 2012; Slabbert et al., 2012). Neluheni et al. (2007) highlights that 1058 

significantly reasonable yield can still be attained in Amaranthus at low moisture levels under 1059 

field conditions, although it was only a one season trial. Preliminary studies conducted in South 1060 

Africa on nutritional water productivity of Cleome, Beta vulgaris and Amaranthus, reported a 1061 

decrease in biomass yield and mineral content with increase in water stress (Nyathi et al., 2016, 1062 

2018b). Furthermore, the performance of selected ALVs was comparable to that of Beta 1063 

vulgaris produced under the same conditions (Nyathi et al., 2018b). South Africa has a high 1064 

diversity of ALVs that are available for consumption; therefore the notion in this study was 1065 

that other ALVs species would perform comparably or better than Beta vulgaris. Therefore, 1066 

there is need for further research on water management strategies for other ALVs such as V. 1067 

unguiculata, C. olitorius, A. cruentus and commercialised B. vulgaris (used as a reference crop) 1068 

under the same growing conditions. Such information would be useful to generate production 1069 

guidelines for these crops. The aim of this study was to evaluate the physiological and yield 1070 

parameters of C. olitorius, V.unguiculata, A. cruentus, and B. vulgaris grown under different 1071 

moisture regimes in the field conditions.  1072 

 1073 
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3.2. Material and Method 1074 

3.2.1. Plant material 1075 

Amaranthus cruentus and Corchorus olitorius seeds were obtained from the seed bank at the 1076 

Agricultural Research Council-Vegetable and Ornamental Plants (ARC-VOP) while those for 1077 

V. unguiculata and Swiss chard (B. vulgaris L.) cultivar ‘Ford Hook Giant’ were sourced from 1078 

Hygrotech Seed Pty. Ltd., South Africa). The seeds were used as is without any treatment.  1079 

 1080 

3.2.2. Description of trial site 1081 

The  trials were conducted in the 2015-2016 and 2016-2017 seasons at ARC-VOP (25°35' S; 1082 

28°21' E; 1164 m a.s.l), Pretoria, South Africa. The mean annual precipitation for the study 1083 

site, for the past 18 years (2000-2018) was 635 mm. During the 2015/2016 and 2016/2017 1084 

seasons the total annual rainfall was about 274 mm and 515 mm respectively. The mean daily 1085 

minimum and maximum temperatures at the study sites during summer (November – April) 1086 

are 8°C and 34°C respectively. The soil type is classified as Hutton clay loam (red apedal, 1087 

aprox. 25% clay, 6% silt, 69% sand and pH 6.6) from the South African soil taxonomic system. 1088 

The soil physical and chemical characteristics within the top 30 cm are described in Table 3.1.  1089 

 1090 

Table 3.1. Physical and chemical characteristics of the soil in the experimental field  1091 

Soil attribute 2015/16 summer season 2016/17 summer season 

P (mg kg-1) 40.0 5.9 
K (mg kg-1) 227.0 250.0 
Ca (mg kg-1) 825.0 696.0 
Mg (mg kg-1) 240.0 273.0 
Na (mg kg-1) 34.0 17.8 
Exchangeable cation Ca (%) 60.2 53.8 
Exchangeable cation Mg (%) 29.2 35.1 
Exchangeable cation K (%) 8.5 9.9 
Exchangeable cation Na (%) 2.2 1.2 
pH 7.0 6.9 
Clay (%) 18.0 20.0 
Silt (%) 6.0 4.0 
Sand (%) 76.0 76.0 
N-NO3 6.2 6.4 
N-NH4 5.5 3.1 

 1092 

 1093 

 1094 

3.2.3. Experimental design and treatments 1095 
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The experimental design used for the trial was a randomised complete block design 1096 

(RCBD) with three replicates for both seasons. Moisture at three levels was investigated on 1097 

four different ALV species. (C. olitorius, V. unguiculata, A. cruentus, and B.vulgaris). The 1098 

moisture treatments were: 30%, 60% and 100% of crop water requirement (ETc). The plot sizes 1099 

were 36 m2 (12 m x 3 m) for each crop in both seasons. A plant population of 66666 plants ha-1100 
1 was used for each crop in each season (Maseko et al., 2015). Moisture was applied using the 1101 

drip irrigation. Watering was based on the reference evapotranspiration (ET) and a crop factor 1102 

and these ETo values were obtained from automatic weather station (AWS); which calculates 1103 

ETo daily as per the O Penman–Monteith’s approach (Allen et al., 1998, Mabhaudhi et al., 1104 

2013). Crop coefficient (Kc) values used were for spinach (Allen et al., 1998) where Kcinitial = 1105 

0.7, Kcmed = 1 and Kclate = 0.95. With these Kc and ETo values, crop water requirement (ETc) 1106 

was then calculated as using the following formula: 1107 

ETc = ETo*Kc 1108 

where, ETc = crop water requirement  1109 

ETo= reference evapotranspiration, and  1110 

Kc = crop factor.  1111 

To help the vegetables establish crop stands, all treatments were given the same amount of 1112 

water during the first two weeks and thereafter the different moisture levels were administered. 1113 

The total amount of water applied, inclusive of the initial watering, were 610 mm (100% ETc), 1114 

366 mm (60% ETc) and 183 mm (30% ETc) for 2015/16. During 2016/17 season it was 425 1115 

mm (100% ETc), 255 mm (60% ETc) and 127 mm for (30% ETc). Throughout the 1116 

experimental period, soil moisture status was monitored using Theta probes.  1117 

 1118 

3.2.4. Agronomic practices 1119 

Prior to land preparation and planting, soil samples were taken for nutrient analyses at 1120 

the ARC-Institute for Sil Climate and Water (ARC-ISCW). Fertiliser application was then 1121 

based on the soil analysis results for 2015/2016 and 2016/2017 seasons (Maseko et al., 2019). 1122 

Potassium was deemed sufficient based on results of soil fertility analyses for both seasons. 1123 

Amaranthus cruentus, C. olitorius and B. vulgaris seedlings were first raised in 200 cavity 1124 

polystyrene trays using a commercial growing medium, Hygromix® (Hygrotech Seed Pty. 1125 

Ltd., South Africa) and covered with vermiculate from above surface. The seedlings were then 1126 
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transplanted to the field four weeks after sowing. V. unguiculata seeds were directly sown using 1127 

at a rate of one (1) seed per station due to the high germination percentage based on the results 1128 

of the germination tests done. Pest, disease and weed control were applied as per best 1129 

agronomic management practices in all trials. 1130 

 1131 

3.3.5. Data collection 1132 

Climatic data were monitored through an automatic weather station (AWS) stationed 1133 

within a 100 m of the field trials. A total of twelve (12) plants per plot were tagged for data 1134 

collection. All measurements were taken on leaves that had at least 50% green leaf area. Plant 1135 

height, leaf number and chlorophyll content index (CCI) were measured from four weeks after 1136 

transplanting (WAT). Chlorophyll content index was were measured from the adaxial surface 1137 

of the leaf using the CCM-200 Plus chlorophyll content meter (Opti-Sciences, Inc., USA). All 1138 

data were collected mid-day prior to irrigation.  1139 

 1140 

Harvesting started six (6) WAT and every two weeks thereafter. The sample size for 1141 

yield was 1 m2 for each replicate. In each harvest, A. cruentus and C. olitorius yields were 1142 

measured through cutting the above ground mass of the plant leaving 0.2 m of plant height 1143 

above ground level while three to four fresh marketable leaves including their tender stems 1144 

towards the growing tip of each runner were picked for V. unguiculata. The harvested material 1145 

was then separated into stems and leaves. Fresh marketable leaves were picked for B. vulgaris. 1146 

Marketable leaves were defined as fresh green and tender leaves that were large enough to be 1147 

marketable starting from the fifth true leaf. For accuracy of results, plant sample weights were 1148 

measured within an hour of collection to minimise moisture loss. Dry matter content was 1149 

obtained after oven drying at 50°C for 48 hours. Total dry and fresh mass yields of the 1150 

consumable portion were used in the calculation of the crop water productivities. Crop water 1151 

productivity was determined as follows:  1152 

 1153 

Water productivity = Biomass / ETc  1154 

Where: Crop water productivity in kg m-3,  1155 

Biomass = FM (fresh matter) and DM (dry matter) yields above ground in (t ha-1, and   1156 

 ETc = Crop evapotranspiration/ water-use/ crop water requirement in m3. 1157 

3.2.6. Statistical analysis 1158 
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The data were analysed using one-way analysis of variance (ANOVA) using SPSS 1159 

software for Windows (IBM SPSS, version 25.0, Chicago, IL, USA). Duncan’s multiple range 1160 

test (DMRT) (P ≤ 0.05) was used to separate significantly different means.  1161 

 1162 

3.3. Results and discussion 1163 

3.3.1. Meteorological conditions and soil water content 1164 

The weather data recorded during the study period (2015-16 and 2016-17) indicate 1165 

variations in rainfall with insignificant differences in temperatures (minimum and maximum) 1166 

(Table 3.2). 1167 

Table 3.2. Summary of monthly averages for meteorological variables in the experimental field 1168 
at ARC, Roodeplaat, Pretoria, South Africa  1169 
 
Season 2016-17  
 
Month 

 

aTx 
(°C) 

 

bTn (°C) 
 

Total radiation 
(MJ m-2 day-1) 

 
Wind speed 

(m s-1) 

 
Rain 
mm 

 
ETo 

November 29,4 15,49 24,7 0,83 175,51 148,48 
December 30,14 17,39 24,31 0,87 67,57 155,51 
January 29,36 17,24 23,02 0,89 131,83 146,04 
February 28,74 17,37 2,06 0,96 140,98 23,15 
Mean  29.41 16.87 18.52 0.89 128.97 118.30 
Season 2015-16       
November 31,77 13,95 27,88 1,15 29,72 176,03 
December 33,88 18,09 26,54 0,94 60,2 176,96 
January 31,67 17,63 25,68 0,87 135,13 165,89 
February 32,46 17,82 24,4 0,94 49,53 152,84 
Mean  32.44 16.87 26.13 0.98 68.65 167.93 

aMaximum temperature; bMinimum temperature; cFAO reference evapotranspiration; 1170 
*Monthly total. Monthly averages and totals were calculated from hourly data.   1171 

 1172 

A comparison of rainfall received in the two study seasons with the mean long-term 1173 

rainfall (678 mm) for the study site indicate that total rainfall received in the 2015-16 (275 mm) 1174 

was 59 % lower. In the following season (2016-17) the rainfall received was 31% (516 mm) 1175 

lower than the long term average. In the 2015-16 season, the amount of water applied was 1176 

higher than in the 2016-17 experiment. The first season had higher average temperature (32 1177 

°C) while during the second season the temperature averaged 29 °C. The soil moisture content 1178 

of the three watering regimes are represented in Figure 3.1.  1179 
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Figure 3.1. Volumetric soil water content observed from 3 WAT showing differences between 1181 
30%, 60% and 100% ETc irrigation regimes 1182 
 1183 

The results revealed significant differences among the three treatments except in times 1184 

where there was rainfall that altered the predefined soil moisture deficits. 1185 

 1186 
3.3.2. Growth parameters 1187 

In A. cruentus plant height increased significantly (P<0.05) from 30% ETc (32cm) to 1188 

60% ETc (47cm), while a further increase in water application to 100% ETc (47cm) did not 1189 

significantly increase plant height during the first season (Table 3.3).  1190 

 1191 

Table 3.3. Effect of moisture stress on growth parameters of selected African leafy vegetables 1192 
for two growing seasons  1193 

Crops Parameters Irrigation levels (ETc)   
2015/16 summer 

(Season 1) 
2016/2017 summer 

(Season 2) 
*30% 60% 100% 30% 60% 100% 

A. cruentus *Plant height  31.97a 47.88b 47.04b 27.25a 29.58a 31.14a 
Leaf number 49.03a 55.12a 52.35a 34.23a 34.97a 35.23a 

C. olitorius Plant height  52.75a 51.52a 55.68a 27.85a 30.26a 37.85a 
Leaf number 55.20a 53.46a 60.80a 32.02a 35.06a 33.34a 

V.unguiculata Plant height  43.64a 46.91a 51.31a 23.55a 24.90a 25.50a 
Leaf number 46.24a 53.51a 45.75a 37.14a 46.40a 35.78a 

B.vulgaris  Plant height  19.46a 22.86a,b 29.16b 18.91a 20.10a 19.35a 
Leaf number 8.00a 6.93a 14.86b 8.05a 9.53a 8.42a 

Means followed by the same letters within a row are not significantly different according to Duncan’s multiple 1194 
range tests at P≤0.05. *Plant height-cm  1195 

 1196 

Similar results where plant height decreased under low soil moisture were reported 1197 

elsewhere in A. tricolor (Singh and Whitehead, 1992) and A. hybridus (Masarirambi et al., 1198 
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2012). Plants deal with with moisture stress by reducing in plant size (Mitchell et al., 1998) as 1199 

a drought avoidance strategy (Turner, 1986). Plant height increased during the second season, 1200 

with an increase in water application although not significantly (P>0.05). Differences in results 1201 

between the two seasons could be attributed to the differences in rainfall which could have led 1202 

to variation in drought effect. In A. cruentus leaf number increased from 30% ETc to 60% ETc, 1203 

then declined at 100% ETc in the first season, while leaf number was higher in well-watered 1204 

condition of 100% ETc compared to lower water application during the second season. 1205 

However, the differences observed in leaf number of A. cruentus were insignificant (P>0.05) 1206 

for all seasons (Table 3.3). Although not significant, the observed trend suggests that increasing 1207 

severity of water stress can lead to reduced number of leaves as has been observed by Yarnia 1208 

et al. (2010) in amaranths. 1209 

In C. olitorius, the well-watered plants (100% ETc) had higher plant height than those 1210 

grown under limited water supply for both seasons. However, the plant height differences 1211 

recorded in C. olitorius were not significant (P>0.05) for both seasons (Table 3.3). Although 1212 

statistically insignificant, limited moisture conditions had less leaf number in the first season 1213 

than the well-watered treatments in C. olitorius. In the second season, however, the trend was 1214 

such that leaf number increased with increase in water application from 30% ETc to 60% ETc, 1215 

with a slight decline at 100% ETc. The reduced growth as a result of moisture stress has been 1216 

previously reported in C. olitorius (Shiwachi et al., 2008). 1217 

Plant height in V. unguiculata increased with increase in water application although the 1218 

differences were not significant (P>0.05) for both seasons (Table 3.3). There were no 1219 

significant differences in leaf number in both seasons for V. unguiculata (Table 3.3). Despite 1220 

this lack of statistical significance, a general characteristic increase in leaf number from 30% 1221 

ETc to 60% ETc was observed with a further increase in moisture application to 100% ETc 1222 

resulting in reduced leaf number. Although not significant, the trend indicates that severe stress 1223 

level can lead to reduction in leaf number and plant height. Reduction in leaf production due 1224 

to moisture stress has been reported in V. unguiculata (Abidoye 2004). Drought stress did not 1225 

cause any major limitation to plant growth in the present study. These findings, however 1226 

disagreed with those of Aderolu (2000) who reported a reduction in leaf number in cowpea 1227 

under moisture stress. Variation in results may be attributed to variation in species used or 1228 

climatic condition among other factors. Nkaa et al. (2014) reported that different cowpea 1229 

variety performed differently under various stress conditions.   1230 

Plant height and leaf number of B. vulgaris was significantly (P<0.05) higher at 100% 1231 

ETc (29cm) compared to lower water regimes (19cm in 30% ETc and 22cm in 60% ETc) in 1232 
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the first season of this study although this was not significantly affected in the subsequent 1233 

season (Table 3.3). Reduction in plant height concurs with the findings from other researchers 1234 

who reported reduced plant height in AVLs such as wild mustard and wild melon under 1235 

moisture stress (Mbatha and Modi, 2010; Zulu and Modi, 2010). This suggests drought to be 1236 

one of major factors that strongly influence crop growth (Slabbert et al., 2012). The reduced 1237 

leaf number in moisture-deficient conditions may possibly have been a result of reduced leaf 1238 

formation, a mechanism employed by plants to curtail transpiration by reducing the leaf surface 1239 

area (Luvaha et al., 2008). During the second season of the study, leaf number and plant height 1240 

increased from 30% ETc to 60% ETc, then declined at 100% ETc although these differences 1241 

were not significant. Differences in the two seasons may be due to variation in rainfall since 1242 

during the second season more rainfall could have reduced severity of water stress.  1243 

 1244 

3.3.3. Chlorophyll Content Index (CCI) 1245 

In A. cruentus, chlorophyll content index significantly (P<0.05) increased from 30% 1246 

ETc to 60% ETc, with no further significant increase at 100% ETc during the second season 1247 

(Figure 2). During the first season; application of 100% ETc produced the highest CCI although 1248 

statistics showed that it was similar to 30% ETc (Figure 2). Generally, the trend was similar 1249 

for both seasons, with higher CCI in higher water application and lower CCI in lower water 1250 

application. Mensha et al. (2006) reported decreased chlorophyll content in other crops like 1251 

sesame subjected to water stress. According to Slabbert and Van den Heever (2007) 1252 

chloroplasts are known to be severely affected by drought stress leading to a decline in 1253 

photosynthetic rate. A decrease in photosynthetic activity may occur as a result of reduced 1254 

chlorophyll concentration in moisture-stressed plants (Jafar et al., 2004; Mafakheri et al., 1255 

2010). Photosynthesis is a crucial process that supports crop growth and development and can 1256 

be sensitive to moisture stress in many higher plant species (Maksymiec and Baszynski, 1996). 1257 

In a study by Muthomi and Musyimi 92009), chlorophyll concentrations decreased with 1258 

increased moisture deficit, a phenomenon that could be attributed to elevated oxidative stress. 1259 

Dehydration of plant tissues under water deficit, can lead to elevated levels of oxidative stress 1260 

and thus compromising the chloroplast structure and loss of chlorophyll. In other crops, 1261 

chlorophyll content was shown to decrease in sunflower plants grown under limited moisture 1262 

(Kiani et al. 2008). The high CCI recorded at 60% ETc in the current study adds to the market 1263 

value of the vegetable crop as the market perceives the greenness of leafy vegetables as a good 1264 

quality attribute (Maseko et al., 2015).1265 
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Figure 3.2. Effect of moisture stress on CCI of selected African leafy vegetables for two growing seasons 1267 
.1268 
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The results of CCI in C. olitorius are presented in Figure 3.2. Chlorophyll Content Index 1269 

increased with increase in moisture content from 30% ETc to 60% ETc and then remained the 1270 

same for both seasons. However, the only significant difference was observed during the 1271 

second season. In crops such as okra and sunflower plants, reduced chlorophyll content as a 1272 

result of moisture stress has been reported (Ashraf et al., 1994; Kiani et al., 2008). Severe 1273 

drought stress has been reported to inhibit photosynthesis through altering the components and 1274 

contents of the chlorophyll by damaging/distorting the photosynthetic apparatus (Iturbe 1275 

Ormaetxe et al., 1998; Ommen et al., 1999). Stressed plants will have less chlorophyll content 1276 

and reduced leaf area thereby compromising the market quality of the produce in terms of size 1277 

and colour.  1278 

Chlorophyll content index of V. unguiculata and B. vulgaris was not significantly 1279 

affected by water application in both seasons. Although not significant the trend was an 1280 

increase in CCI with increase in moisture from 30% ETc to 60% ETc then remaining the same 1281 

at 100% ETc in the first season. In the subsequent season, CCI increased proportional to the 1282 

increase in water application.  The trend suggests that increase in water stress can lead to 1283 

reduced CCI. Decrease in photosynthetic activity due to decrease in chlorophyll concentration 1284 

due to moisture stress in plants has also been recorded elsewhere (Jafar et al., 2004; Mafakheri 1285 

et al., 2010). The lack of significant differences among different moisture regimes, suggests 1286 

that chlorophyll contents in C. olitorius and V. unguiculata were not very sensitive to applied 1287 

levels of moisture stress. Other researchers have reported various responses of CCI in plants, 1288 

including a reduction in CCI in sunflower plants grown under limited moisture conditions 1289 

(Kiani et al., 2008) and no significant effect on CCI of bambara groundnut landraces (Vurayai 1290 

et al., 2011). 1291 

 1292 

3.3.4. Yield parameters 1293 

Varying moisture regimes in this study significantly affected yield in A. cruentus during 1294 

the first season (Table 3.4). Yield increased significantly from 30% ETc to 60% ETc and then 1295 

declined significantly (P<0.05) at 100% ETc. Nyathi et al. (2016) reported similar results of 1296 

yield reduction in water stressed conditions for crops such as Amaranthus and Cleome. Saleh 1297 

et al. (2018) reported pod yield and other plant growth parameters to have increased 1298 

proportional to the increase in mosture application from 60 to 80% of ETc, while further 1299 

increase up to 100% of ETc did not improve yield in green pea. 1300 
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Table 3.4. Effect of moisture stress on the yield of selected African leafy vegetables obtained from two growing seasons  1301 
Crop  

 Parameter (t. ha-1) 
Irrigation levels 

2015/16 summer (Season 1) 2016/2017 summer (Season 2) 
30% ETc 60% ETc 100% ETc 30% ETc 60% ETc 100% ETc 

A. cruentus 
 
 

FM stem + leaves 3.15b 5.63a 3.26b 7.09a 8.77a 9.39a 
FM leaves  1.75b 2.79a 1.89b 3.07a 3.77a 3.82a 
FM stem  1.46b 2.86a 1.23b 3.36a 4.95a 5.06a 
DM leaves  0.57a 0.70a 0.58a 0.61a 0.73a 0.72a 
DM stem  0.47a 0.65a 0.47a 0.69a 0.85a 0.81a 

C. olitorius 
 

FM stem + leaves 3.32a 2.77a 2.64a 7.13a 6.17a 7.50a 
FM leaves  1.56a 1.41a 1.36a 2.72a 2.55a 3.15a 
FM stem 1.57a 1.35a 1.41a 3.46a 3.39a 3.86a 
DM leaves 0.54a 0.53a 0.46a 0.68a 0.88a 0.92a 
DM stem  0.39a 0.37a 0.34a 0.69a 0.75a 0.77a 

V. unguiculata FM stem + leaves 2.88a 2.46a 3.91a 4.93a 7.34a 5.76a 
FM leaves  2.17a 1.83a 2.82a 2.28a 3.60a 2.91a 
FM stem  0.78b 0.75b 1.25a 2.56a 3.42a 2.93a 
DM leaves  0.59a 0.57a 0.67a 0.60a 0.54a 0.51a 
DM stem 0.34a 0.37a 0.37a 0.57a 0.44a 0.44a 

B. vulgaris  FM leaves  3.19a 3.61a 3.18a 8.4a 8.63a 9.10a 
DM leaves 0.54a 0.54a 0.58a 0.97a 1.09a 1.28a 
Leaf number  29b 22b 20b 33b 41ab 46a 

*Means followed by the same letters within a row are not significantly different according to Duncan’s multiple range tests at P≤0.05. FM=Fresh mass, DM = Dry mass 1302 
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Further application of water up to 100% ETc reduced yield possibly because excessive 1303 

water in the soil leads to the detrimental effects of oxygen deprivation in the roots (Saleh et al., 1304 

2018). The results also concur with that of Beletse et al. (2012) that A. cruentus grown in the 1305 

less irrigated treatment produced the least average biomass yield on fresh and dry weight basis. 1306 

The fresh mass yield obtained from the 30% ETc treatment was not of marketable quality. 1307 

Therefore, irrigating A. cruentus at this level of water stress is not recommended, because both 1308 

yield parameters were affected. Neluheni et al. (2007) also reported that A. cruentus is less 1309 

tolerant compared to other species like A. graezizans. In the second season of this study no 1310 

significant differences were observed among moisture treatments although generally yield 1311 

increased with increase in water application (Table 3.4). Although Amaranthus can produce 1312 

reasonable yield even at lower moisture availability as reported by Neluheni et al. (2007) 1313 

variation in the two seasons maybe due to variations in rainfall. During the second season there 1314 

was more rainfall which could have reduced the effect of irrigation. The results for both seasons 1315 

indicate that for successful production of A. cruentus, a considerable amount of water is needed. 1316 

Under severe stress conditions, farmers can utilise tolerant species as previous researchers have 1317 

reported that drought tolerance in amaranth is species-dependent (Schippers, 2000; Palada and 1318 

Chang, 2006). There were no significant differences in yield of C. olitorius as a result of 1319 

moisture regimes for the two seasons (Table 3.4). Increasing moisture content from 30% ETc 1320 

to 100 % ETc did not significantly increase biomass. The results contradict a report that C. 1321 

olitorius is prone to moisture stress due to its shallow root depth (Fasinmirin, 2001). Plant 1322 

responses to water stress depend on many factors, of which the amount of water loss, the rate 1323 

of loss and the duration of the stressed condition play important roles. 1324 

Variation in results compared to other findings may be attributed to severity of stress 1325 

imposed under field conditions. In times where there was rainfall, the predefined soil water 1326 

deficits were altered/disturbed. Cochorus olitorius have the ability to quickly regain its growth 1327 

vigour and viability following a moisture stress period if water supply is restored (Fasinmirin 1328 

and Olufayo, 2009). Furthermore, the duration and severity of moisture stress as well as the 1329 

growth stage of the plant shapes/determines the way it responds (Mabhaudhi, 2012). 1330 

In V. unguiculata, watering regimes significantly affected fresh stem yield during 1331 

2015/2016 season (Table 3.4). Full watering at 100% ETc resulted in significantly (P<0.05) 1332 

higher stem fresh mass relative to 30% ETc and 60% ETc. Significant differences observed in 1333 

this study corroborate with the report that water stress reduces yields in leguminous crops such 1334 

as black beans and soybeans (Nielson and Nelson, 1998; Frederick et al., 2001). 1335 
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Fresh and dry mass yields increased from 30% ETc to 60% ETc, then declined at 100% 1336 

ETc in the second season of the study, although not significantly. Considering that application 1337 

of 100% ETc produced the highest stem fresh mass without improving other measured 1338 

parameters, it will be suitable to apply this amount of water when growing it for fodder rather 1339 

than as a leafy vegetable.  1340 

Significant differences (P<0.05) were also recorded in leaf number (yield) of B. 1341 

vulgaris due to water application in the second season (Table 4). Leaf number (yield) increased 1342 

significantly by applying 30% ETc to 60% ETc, then remained the same at 100% ETc. Results 1343 

concur with those of Saleh et al. (2018) who reported a corresponding increase in yield with 1344 

the increase in moisture from 60 to 80% of ETc, while further increase up to 100% of ETc did 1345 

not improve yield. Fresh mass of leaves and dry matter for both seasons increased with increase 1346 

in application of water, however, the differences were not significant. Due to the fact that leaf 1347 

vegetables are sold as a bunch (number of leaves) and not on a weight basis, 30% ETc yield 1348 

may not be, in this case, not be a desirable option. Yield of B. vulgaris was consistent with 1349 

growth results indicating that any stress that occurs at either of these developmental stages has 1350 

a direct impact on vegetative growth, seedling establishment and final yield (Torrecillas and 1351 

Alarcon, 2005). 1352 

 1353 

3.3.5 Water productivity 1354 

Average fresh biomass yield in A. cruentus increased from 5.12 tha−1 (30% ETc) to 7.2 tha−1 1355 

(60% ETc) then declined to 6.30 t ha−1 (100 % ETc) (Table 3.5). Average crop water 1356 

productivity for A. cruentus increased from 0.9 kgm-3 (30% ETc) to 1.02 kgm-3 60% ETc then 1357 

dropped to 0.69 kgm-3 (100 % ETc) although statistical analysis showed that the difference 1358 

were negligible. The results indicate that 60% ETc irrigation treatment was more water 1359 

productive than all other treatments in terms of fresh biomass yield (although statistically 1360 

insignificant). Findings on water productivity response to limited water availability in A. 1361 

cruentus were consistent with results of yield on fresh mass basis.  1362 

Corchorus olitorius average yield obtained from 30% ETc was higher compared to 60 1363 

and 100% ETc (Table 5). The highest water productivity was obtained in the driest irrigation 1364 

treatment (30% ETc) which was statistical similar to other treatments. Higher yield and water 1365 

productivity obtained in the low moisture treatment of 30% ETc indicates a possibility of 1366 

production even under water stress conditions.1367 
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Table 3.5. Average total above ground fresh mass yield, irrigation water use and crop water productivity of selected indigenous leafy vegetables 1368 
in two seasons (2015/2016 and 2016/2017)  1369 

Indigenous  
Leafy 

Vegetables 

Well-Watered (100 ETc) Medium-Watered (60 ETc) Deficit Irrigation (30 ETc) 
Average total 
above ground 

fresh yield 
 (t ha−1) 

Average 
irrigation 
water use 

 (mm) 

Crop water 
productivity 

(kg m−3) 

Average 
total above 

ground fresh 
yield 

 (t ha−1) 

Average 
irrigation 
water use 

(mm) 

Crop water 
productivity  

(k gm−3) 

Average 
total above 

ground fresh 
yield  

(t ha−1) 

Average 
irrigation 
water use 

(mm) 

Crop water 
productivity  

(k gm−3) 

A. cruentus 6.30 912 0.69a 7.20 705 1.02a 5.12 550 0.90a 
C. olitorius 5.07 912 0.55a 4.47 705 0.63a 5.22 550 0.94a 

V.unguiculata 3.90 912 0.52a 4.90 705 0.70a 4.80 550 0.87a 
B. vulgaris 6.14 912 0.67a 6.12 705 0.86a 5.70 550 1.04a 

1370 
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In another separate study, a reduction in moisture application from 100 to 80 to 60% of 

ETc led to a progressive increase in WUE (Saleh et al., 2018). Deficit irrigation did not 

compromise leaf quality of C. olitorius indicating a possibility of production under rain fed 

conditions. Similarly, Nyathi et al. (2016) reported that results of water productivity of ALVs 

were comparable to those of B. vulgaris. 

Average fresh biomass yield in V. unguiculata increased from 4.80 tha−1 (30% ETc), 

4.90 tha−1 (60% ETc) then declined to 3.90 tha−1 (100 % ETc) (Table 5). Although not 

significant, average crop water productivity decreased with an increase in water application. 

The results obtained in this study are somewhat contrary to those found by Beletse et al. (2012) 

which recorded well irrigated treatments as having better yields in V.unguiculata. Variation in 

the results of the present study might be due to experimental conditions, which is field and rain 

shelter. Under rain shelter conditions the rainfall effect is minimized as the system is closed.  

The average total yield of B. vulgaris increased with increase in water application (Table 

3.5). Maximum crop water productivity was obtained in the 30% ETc, where deficit irrigation 

was applied although not signifiant. Water productivity decreased as applied irrigation water 

increased but higher fresh mass yield was obtained in the 100% ETc treatment. Results of the 

study showed that irrigating at 60 and 100% ETc gave higher yield compared to 30% ETc. 

Therefore, in B. vulgaris the less irrigated treatment of 30% ETc produced lower yield. This 

indicates little feasibility of producing the crop under limited water conditions compared to 

other ALVs. 

The results of this study concur with the current claim that wild vegetables are better adapted 

to marginal areas compared to exotic vegetable species. Yield and growth in V. unguiculata and 

C. olitorius were not significantly affected by varying water application compared to B. 

vulgaris. At limited water level of 30% ETc. V. unguiculata and C. olitorius performed similar 

in terms of growth and yield compared to well-watered treatments. This suggests that 

production of these crops is still possible under limited water supply. Yield in A. cruentus and 

B. vulgaris had a similar trend, an increase from 30% ETc to 60% ETc, and then remained the 

same at 100% ETc. This means the optimum level was reached at 60% ETc. Considering that 

application above 60% ETc significantly reduced yield in A. cruentus there is a possibility that 

the optimum level may still be below 60% ETc. This is very economical in producing these 

crops.  

Limited water supply did not compromise yield quality and quantity of V. unguiculata 

and C. olitorius. Furthermore, less water application can reduce amount of fertiliser leached 
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thereby reducing fertiliser application and cost. Low water application means less maintenance 

of irrigation systems. This was however, the opposite for B. vulgaris where yields were higher 

in higher moisture regimes of 100% ETc. In a similar study, Slabbert et al. (2012) in screening 

reported that a relatively higher leaf area and relative water content was maintained by the six-

major indigenous leafy vegetable than in B. vulgaris. Farmers could, however benefit from 

growing V. unguiculata through its nitrogen fixing properties, high leaf yield and reduction in 

soil erosion due to its extensive soil cover. The development of a wider choice of crops, 

including crops adapted to dry areas is critical if the growing human population of South Africa 

will continue to obtain its food from local production. If global warming persists, areas currently 

under irrigation could in future be without water supply, which means that cultivation will 

require the use of drought tolerant crops. Moisture deficit affects plant growth, development, 

yield and quality of crops under field conditions (Luvaha et al., 2008). When soil moisture is 

limited, photosynthetic rate, the respiration process, ion uptake and subsequently sugars 

(carbohydrates) and nutrient metabolism decrease and thus plant growth is also affected (Jaleel 

et al., 2009).  

 

Conclusion 

The present study showed that water stress leads to reduced yield in some ALVs. In A. 

cruentus plants were bigger (plant height) while yields were improved by application of 60% 

ETc. Considering that application above 60% ETc reduced yield there is a possibility that the 

optimum level may still be below 60% ETc which will be very economic for producing these 

crops. In both A. cruentus and B. vulgaris, yield significantly increased with increase in water 

application from 30% ETc to 60% ETc. For Vigna unguiculata and C. olitorius, CF, CCI, leaf 

number and yield as well as plant height were not affected by moisture stress and this indicated 

that these crops can be produced under limited water conditions. For Vigna unguiculata stem 

fresh mass improved by application of 100% ETc. However, this can be recommended when 

fodder is the end product because only the stems were improved while leaf yield was not 

affected. Using 60% ETc may be ideal for A. cruentus and B. vulgaris production, while 30% 

ETc can be recommended for V. unguiculata and C. olitorius. Further work needs to be done 

to explore performance of various plant species under different water regimes or stress severity. 

In addition, trials covering multi-site as well as different varieties in South Africa are necessary 

because variation in water requirement with location has been reported. 
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CHAPTER 4 

Productivity of selected African leafy vegetables to varying water regimes. 
Rain-shelter conditions. 
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Abstract.  

African leafy vegetables (ALVs) are rich in nutrients and can offer a wider choice of crops 
adapted to dry areas of South Africa. However, research on the productivity of various ALVs 
under limited water availability remains limited and sporadic. The effect of irrigation levels on 
growth, physiology and yield of V. unguiculata, C. olitorius, A. cruentus and a reference crop 
B. vulgaris were evaluated under a rain shelter at Roodeplaat, Pretoria over two summer 
seasons, 2015/2016 and 2016/2017. A randomised complete block design was used with: 
irrigation level and four crops, replicated three times. Vegetables species used as planting 
material were: A. cruentus, C. olitorius, V. unguiculata and B. vulgaris. The irrigation levels 
were: 30%, 60% and 100% of crop water requirement (ETc). Leaf number, plant height, 
chlorophyll content index (CCI), chlorophyll fluorescence (CF), and yield were measured in 
situ. In A. cruentus and C. olitorius, limited water availability of 30% ETc was shown to lower 
yield although leaf number, plant height and chlorophyll content index was shown to be 
unaffected. Comparable, in B. vulgaris var. cicla leaf number and yield were reduced by water 
stress. For Vigna unguiculata, CF, CCI, plant height, leaf number, and yield was not affected 
by water stress and this indicated that it can be produced under limited water compared to B. 
vulgaris. Using 60% ETc was suitable for production of A. cruentus, C. olitorius and B. vulgaris 
var. cicla, whereas 30% ETc is recommended for V. unguiculata. The yield results of V. 
unguiculata indicates it performs better, while yield of A. cruentus and C. olitorius comparable 
to that of B. vulgaris under similar conditions indicating the potential for marginal production. 
 

Keywords: irrigation, production, yield 
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South Africa is a water stressed country (Mabhaudhi et al., 2013) that faces challenges of 

population growth including food and nutrition insecurity (Oelofse and van Averbeke, 2012). 

Most smallholder communities live in marginal areas where crops struggle to survive and face 

challenges of water scarcity and malnutrition (Oelofse and van Averbeke, 2012). Furthermore, 

commercial or irrigated agriculture takes place under water scarcity and water availability is 

likely to drop below benchmark of 1000 m3 person−1 year−1 (Annandale et al., 2011). African 

leafy vegetables (ALVs) offer alternatives both to small holder and commercial farmers because 

they have dense nutrients and more tolerant to abiotic stresses such as drought, heat stress, pests 

and diseases (Van Averbeke et al., 2012; DAFF, 2004). ALVs contribute to both micronutrients 

and bioactive compounds to diets (Smith and Eyzaguirre, 2007). They contain nutrients such 

as calcium, iron, vitamin A, vitamin C, fibre and proteins (Mavengahama, 2013). Furthermore, 

they are good sources of antioxidants such as flavonoids, tannins and other polyphenolic 

constituents (Afolayan and Jimoh, 2009).  

 

South Africa has more than 100 different species of ALVs that have been identified; however, 

few groups of leafy vegetable species are still utilised (Van Rensburg et al., 2007). Cochorus 

olitorius (jute mallow), Amaranthus cruentus (pigweed) and Vigna unguiculata (cowpea) are 

among the major groups that are utilized. Amaranthus are reported to be tolerant to adverse 

environmental effects (Dieleman et al., 1996; Ghorbani et al., 1999). They have been growing 

wild in arid and semi-arid ecological regions, which means that they could be more tolerant to 

low water and high temperature conditions (Modi, 2006). Although cowpea is relatively 

drought tolerant, it has been shown that water stress reduces essential physiological and 

biochemical processes that affect growth and productivity (Pimentel, 2004; Costa et al., 2008; 

Lobato et al., 2008). Water stress in cowpea also occurs within genotypes (de Ronde and 

Spreeth, 2007). Corchorus olitorius is susceptible to moisture stress owing to its shallow rooting 

depth which can be prevented by using irrigation (Fasinmirin, 2001). African leaf vegetables 

have been reported to have advantages over exotic vegetable species, because of their 

adaptability to marginal agricultural production areas and their ability to provide dietary 

diversity in poor rural communities (Maseko et al., 2018). Inclusion of ALVs in cropping 

systems can contribute to climate change adaptation, the environment, and employment 

creation in poor rural communities (Mabhaudhi et al., 2016). However, their adoption is 

currently low because of limited research on their yield response to water. 

 

ALVs have been documented to address some of the challenges South Africa faces in terms of 

water scarcity and malnutrition; however, there is lack of information on their yield response 
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to water (Maseko et al., 2018; Nyathi et al., 2018a). Studies conducted in South Africa to 

determine the water requirements of selected ALVs showed that although adequate amount of 

water is needed to produce marketable yield (Beletse et al., 2012; Nyathi et al., 2016) there is 

possibility of producing ALVs (Slabert et al., 2012) under limited water conditions. Recent 

studies conducted in South Africa on nutritional water productivity of Amaranthus, Cleome and 

B. vulgaris reported yield reduction in water stress conditions (Nyathi et al. 2018b). ALVs are 

also reported to produce yield comparable to that of Beta vulgaris var. cicla under similar 

conditions (Nyathi et al., 2018b). Since a lot of different species of ALVs exist (Maseko et al., 

2018), with a wide genetic diversity in growth habit, leaf shape, leaf colour, leaf size, plant size 

(Van Rensburg et al., 2007), there is need for further research on selectedALVs. These include 

A. cruentus, C. olitorius and V. unguiculata in comparison to B. vulgaris under the same 

locality. The greater number of species for people to select from, as well as a wider diversity of 

desirable traits can lead to successful commercilisation because farmers have a wide range to 

choose species that are better adapted for their region within South Africa. The objective of the 

study is to evaluate the productivity and yield of A. cruentus, C. olitorius, V. unguiculata and a 

reference vegetable crop,B. vulgaris under varying water regimes.  

 

4.2 Material and Methods 

4.2.1 Plant material 

Seeds of A. cruentus and C. olitorius were obtained from the seed bank of the Agricultural 

Research Council (ARC) - Roodeplaat, Vegetable and Ornamental Plant Institute (VOPI). V. 

unguiculata (Bechuana white, a runner type) and Swiss chard (B. vulgaris) cultivar ‘Ford Hook 

Giant’ were obtained from Hygrotech Seed Pty. Ltd., South Africa. No treatment was done to 

the seeds.  

 

4.2.2 Site description  

Trials were planted at Roodeplaat, Pretoria (25º60´S; 28º35´E) during the summer seasons of 

2015/2016 and 2016/2017. Soils in the rain shelter was classified as loamy sand (USDA 

taxonomic system). Soil physical characteristics were used to generate parameters for amount 

of water available at field capacity (FC), permanent wilting point (PWP), and saturation  

(SAT), as well as the saturated hydraulic conductivity using the Soil Water Characteristics  

Hydraulic Properties Calculator ® (Version 6.02.74, USDA Agricultural Research Services). 

Daily maximum and minimum temperature averages were 28.5˚C and 15˚C in summer 

(November – April) (Agricultural Research Council – Institute of Soil Climate and Weather). 
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Rainfall was excluded since the rain shelter is designed to close when rainfall starts. The field 

capacity of the soil was 146 mm-1 and the permanent wilting point was 75 mm m-1. 

4.2.3 Experimental design  

The experimental design was a factorial experiment arranged in a randomised completely block 

design; individual plot size in the rain shelter was 6 m2, with plant spacing of 0.3 m x 0.3 m. 

There were two factors: irrigation level and four crops, replicated three times. Vegetables 

species used as planting material were: Amaranthus cruentus, Corchorus olitorius, Vigna 

unguiculata (cowpea) and Beta vulgaris (Swiss chard). The irrigation levels were: 30% (Deficit 

irrigation), 60% (Moderate stress) and 100% (Well-watered) of crop water requirement (ETc). 

Swiss chard was chosen because it is a commercialised leafy vegetable that is highly nutritious 

which contains high levels of Fe, Zn and β-carotene (Mavengahama et al., 2013). 

4.2.4 Irrigation  

Drip irrigation was used to apply water in the rain shelter. The system consisted of a pump, 

filters, solenoid valves, water meter, control box, online drippers, 200 litre watertank, main line, 

sub-main lines and laterals. The system was designed to allow for a maximum operating 

pressure of 200 kPa with average discharge of 2 l/hour per emitter. Drip lines were spaced 

according to the plant spacing (0.3 m x 0.3 m). A black 200 µm thick polyethylene sheet was 

trenched at a depth of 1 m to separate the plots to prevent water seepage and lateral movement 

of water between plots.  

Irrigation scheduling was based on reference evapotranspiration (ET) and a crop factor (Allen 

et al. 1998). Reference evapotranspiration (ETo) values were obtained from an automatic 

weather station (AWS); the AWS calculates ETo daily according to the Penman–Monteith’s 

method (Allen et al., 1998, Mabhaudhi et al., 2014). Crop coefficient (Kc) values used were for 

spinach as described by Allen et al. (1998) whereby Kcinitial = 0.7, Kcmed = 1 and Kclate = 0.95. 

Using these values of Kc and ETo from the AWS, crop water requirement (ETc) was then 

calculated as follows as described by Allen et al. (1998): 

ETc = ETo*Kc 

where, ETc = crop water requirement  

ETo= reference evapotranspiration, and  

Kc = crop factor.  



 

80 
 

During the first two weeks all treatments received the same amount of water to establish the 

plants and thereafter the irrigation treatments were imposed. Irrigation was applied three times 

every week and during the mornings to ensure water availability during peak periods of demand 

in the day. The total amount of irrigation water applied, taking into consideration the initial 

watering whileranged from 622 mm (100% ETc-well watered), 373 mm (60% ETc-medium 

watered) and 186 mm for (30% ETc-stress) for 2015/16. During 2016/17 season, watering 

ranged from 556 mm (100% ETc), 333 mm (60% ETc) and 166 mm for (30% ETc). The soil 

water status during the growing period was monitored using Theta probes. 

 

4.2.5 Agronomic practices 

Soil samples were taken from the field prior to land preparation at a depth between 0.3 m to 0.6 

m and submitted for soil fertility analysis at the Agricultural Research Council- Institute of Soil, 

Climate and Water (ARC-ISCW). Land preparation included digging and harrowing to achieve 

a fine seedbed. Nitrogen (limestone ammonium nitrate (LAN) 28% N) was applied according 

to results of soil fertility analysis for 2015/2016 and 2016/2017 both seasons (Table 1). 

 

Table 4.1: Soil physico-chemical analysis results of the soil used in the study 
K Ca Mg Na P pH N-NO3 N-NH4 

mg/kg 

105 1412 221 67 67.7 7,4 5.44 3.42 

 

Application rates were: 125 kg ha-1 N for A. cruentus and C. olitorius, 150 kg ha-1 N for B. 

vulgaris and 135 kg ha-1 N for V. unguiculata for both seasons. Nitrogen was applied by banding 

in three split applications. The first application was at transplanting/sowing (50%), second at 4 

weeks after transplanting/sowing (25%) and the last at (25%) 8 weeks after 

transplanting/sowing. Double super phosphate was applied at 20 kg (10.5 % P) at planting for 

season 1 for all the crops. During second season at 63 P kg ha-1 for B. vulgaris, 55 kg ha-1 P for 

A. cruentus and C. olitorius and 75 kg ha-1P for V. unguiculata at planting. Potassium was 

deemed sufficient based on results of soil fertility analyses for both seasons. Seedlings of A. 

cruentus, B. vulgaris and C. olitorius were grown in 250 cavity polystyrene trays filled with a 

commercial growing medium, Hygromix® (Hygrotech Seed Pty. Ltd., South Africa) and 

covered with vermiculate to minimize water losses from the above surface. Seedlings were 

transplanted at four weeks after sowing. V. unguiculata was sown directly using seed at a rate 

of one (1) seed per station because the germination percentage was high based on results of 

previous standard germination tests carried out at the experimental site. Routine weeding and 
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scouting for pests and diseases were done to ensure best management practices for the trials. 

Seedlings were planted at an inter-row and intra row spacing of 0.3 m x 0.3 m (111,111 plants 

ha-1) 

 

4.2.6 Data collection 

Data collection was done on the inner rows for both seasons to prevent border effects. A total 

of twelve (12) plants per replication were tagged for data collection for growth and physiology 

parameters. All measurements were done on leaves that had at least 50% green leaf area. Plant 

height, leaf number, chlorophyll content index (CCI) and chlorophyll fluorescence (CF) were 

measured starting from four weeks after transplanting (WAT). Plant height was measured using 

a measuring tape from the ground level to the tip or apex of the tallest stem. Chlorophyll content 

index was determined on the adaxial surface using the CCM-200 Plus chlorophyll content meter 

(Opti-Sciences, Inc., USA). All measurements were done before irrigation and during mid-day. 

 

Harvesting commenced at six (6) weeks after transplanting (WAT) or sowing and every two 

weeks thereafter. The sample size for yield was 1 m2 for each replicate for both seasons. During 

each harvest, C. olitorius and A. cruentus yield were determined by cutting the mass of above 

ground portion of the plant leaving 0.2 m of plant height above ground level. For V. unguiculata, 

harvesting was done by picking three to four fresh marketable leaves including their tender 

stems towards the growing tip of each runner, leaving the first and second growing leaves from 

the tip. Marketable leaves in V. unguiculata were defined as fresh or green tender leaves. The 

harvested portion was then partitioned into leaves and stems. For B. vulgaris during each 

harvest, yields were determined by picking fresh marketable leaves. Marketable leaves were 

defined as fresh green and tender leaves that were large enough to be marketable starting from 

the fifth true leaf. At first harvest the small lower leaves were removed to promote growth. In 

order to obtain accurate results, plants were weighed within an hour to avoid loss of water. Dry 

matter content was obtained by oven drying at 70°C for 48 hours. Yield per hectare was 

obtained by conversion from measurements taken at 1 m2 per replicate.  

 

Soil water content (SWC) was monitored using ML-2X Theta Probes connected to a DL-6 

data logger (Delta-T Devices, UK) in the rain shelters at varying depths. The frequency of data 

collection for SWC using the Theta probes was every day.  Crop water productivity was 

determined as follows:  

 Water productivity = Biomass / ETc       
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Where: Crop water productivity was in kg m-3,  

Biomass = FM (fresh matter) and DM (dry matter) yields above ground in (t ha-1, and   

 ETc = crop evapotranspiration/ water-use/ crop water requirement in m3. 

4.2.7 Statistical analysis 

Data were subjected to one-way analysis of variance (ANOVA) using SPSS software for 

Windows (IBM SPSS, version 25.0, Chicago, IL, USA). Where there were significant 

differences (P ≤ 0.05), the means were further separated using Duncan’s multiple range test 

(DMRT). 

 

4.3 Results and discussion 

4.3.1 Meteorological conditions and soil water content 

Figure 1 shows the soil water content measurements from the three water regimes. The 

measurements confirmed that there were indeed differences between the three water regimes.
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Figure 4.1. Volumetric soil water content observed from 3 WAT showing differences between the 30%, 60% and 100% ETc water regimes. 
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In the 2015-16 experiment, the amount of irrigation water applied was slightly higher than 

in the 2016-17 experiment although the difference was negligible (Table 4.2). The ETo was 

slightly higher for 2015-16 compared to 2016-17. The 2015-16 season had higher temperature 

with average of 32.47 °C while during the 2015-16 the average temperature was 29.95°C. 

Minimum temperature, radiation and wind speed were similar for both seasons. The weather 

data was consistent for both seasons.  

 

Table 4.2. Summary of monthly averages for climaticvariables during the growing season of 
ALVs 

Season 2016-17  
 
Month 

aTx (°C) bTn (°C) Total radiation 
(MJ m-2 day-1) 

Wind speed 
(m s-1) 

cETo 

October  30,90 13,32 25,18 1,15 163,12 
November 29,40 15,49 24,70 0,83 148,48 
December 30,14 17,39 24,31 0,87 155,51 
January 29,36 17,24 23,02 0,89 146,04 
Season 2015-16 

     

October  32,58 14,16 25,17 0,69 161,52 
November 31,77 13,95 27,88 1,15 176,03 
December 33,88 18,09 26,54 0,94 176,96 
January 31,67 17,63 25,68 0,87 165,89 

aMaximum temperature; bMinimum temperature; cFAO reference evapotranspiration; *. 
Monthly averages and totals were calculated from hourly data. Note:  meteorological 
variables do not include rainfall, because it was excluded in the rainshelter 
 

4.3.2 Growth parameters 

 

4.3.2.1 Plant height and leaf number 

Plant height of A. cruentus was not significantly (P>0.05) affected by different water 

regimes for both seasons (Table 4.3). Despite lack of statistical significance, the trend was an 

increase in plant height with increase in water application for the first season while during the 

second season the trend was an increase from 30% ETc to 60% ETc and then a decline at 100% 

ETc (Table 4.3). The present study did not show any significant difference although other 

researchers have reported decreasing plant height with low soil moisture under controlled 

environments in A. hybridus (Masarirambi et al., 2012) and A. tricolor (Singh and Whitehead, 

1992). Differences observed may be due to variation in plant species used since stress tolerance 

varies with species or stage of plant growth or level of stress (Slabbert et al., 2012).
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Table 4.3. Effect of irrigation on growth of selected African leafy vegetables for two seasons  
Plants  Parameters Irrigation levels 

2015/16 summer (Season 1) 2016/2017 summer (Season 2) 
30% ETc 60% ETc 100% ETc 30% ETc 60% ETc 100% ETc 

A. cruentus Plant height (cm) 52.1a 63.8a 68.3a 29.5a 37.5a 34.6a 
Leaf number 80a 103a 111a 69a 64a 74a 

C. olitorius Plant height (cm) 41.1a 34.3a 41.6a 41.8a 39.6a 51.4a 
Leaf number 128a 139a 149a 46a 44a 67a 

V. unguiculata Plant height (cm) 65.4a 74.3a 77.0a 31.3a 30.5a 23.7a 
Leaf number 89a 95a 86a 49a 48a 36a 

B. vulgaris  Plant height (cm) 22.9a 21.1a 20.7a 27.5a 24.3a 21.5a 
Leaf number 10a 11a 11a 7a 13b 9a 

*Means followed by the same letters within a row are not significantly different according to Duncan’s multiple range test at P≤0.05. 
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Although not significant for both seasons, at 100% ETc, plants had a higher leaf number 

than at lower water application during the second season in A. cruentus. For the first season 

leaf number increased with increase in water application as observed in plant height. Although 

not statistically significant, for both seasons, the trend suggested that limiting water application 

could lead to reduced leaf number and plant height. From the study, A. cruentus growth was 

favoured at 30% ETc to 60% ETc although better growth could be expected when the crop was 

irrigated at 100% ETc.  

In C. olitorius, plant height and leaf number were higher in 100% ETc compared to limited 

water application of 30% ETc to 60% ETc for both season, however, the difference observed 

were not significant (P>0.05) for all seasons (Table 4.3). The present study showed that C. 

olitorius was able to grow under soil moisture stress condition which concurs with Shiwachi et 

al. (2008). Similarly, other researchers have reported that C. olitorius was shown to be tolerant 

to soil moisture and NaCl stress (Chaudhuri and Choudhuri, 1997; Fawusi et al., 1984; Ayodele 

and Fawusi, 1989; 1990). Distribution of C. olitorius in arid-regions is thought to be attributed 

to its tolerance to soil moisture stress. 

There was no significant (P>0.05) difference in leaf number and plant height of V. 

unguiculata for both season (Table 4.3). Although not significant (P>0.05), plant height and 

leaf number increased from 30% ETc to 60% ETc and then declined at 100% ETc during the 

first season. The trend observed concurs with Aderolu (2000) who reported that water stress 

affected number of leaves for cowpea. During the second season the results were not consistent, 

where leaf number and plant height increased with decrease in water application. Cowpea has 

been found to be one of the most drought tolerant crops (Singh et al., 1997). 

Irrigation regimes did not significantly (P>0.05) affect plant height of B. vulgaris in both 

seasons (Table 4.3). Significant (P<0.05) differences were observed for leaf number during the 

second season, although no significant differences were recorded during the first season (Table 

4.3). Leaf number increased significantly from 30% ETc to 60% ETc then declined 

significantly (P<0.05) at 100% ETc. Water stress was shown to reduce plant height, leaf 

number and area in ALVs such as wild mustard (Mbatha and Modi, 2010) and wild melon 

(Zulu and Modi, 2010). Water stress impairs mitosis, elongation and expansion, resulting in 

reduced leaf number and reduced crop growth (Kaya et al., 2006).  

 

4.3.3 Crop physiology 

4.3.3.1 Chlorophyll Content Index (CCI) 
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Chlorophyll content index was not significantly (P>0.05) affected by varying water 

regimes in A. cruentus, C. olitorius, B. vulgaris and V. unguiculata for both seasons (Figure 

4.2). In C. olitorius and V. unguiculata, CCI increased with increase in water application for 

both season although not statistically significant (P>0.05). A similar trend was observed for A. 

cruentus and B. vulgaris although in some instances the trend was an increase in CCI from 30 

up to a 60% ETc then a decline. Researchers have reported various responses of CCI in plants. 

Chlorophyll content was shown to decrease in sunflower plants subjected to water stress (Kiani 

et al., 2008). Vurayai et al. (2011) working on pot trials, reported that water stress did not have 

a significant effect on chlorophyll content index (CCI) of Bambara groundnut landraces; they 

concluded that CCI was not reduced by water stress at all stages of growth. Lack of significant 

differences in V. unguiculata among treatments may be due to the ability of plants to maximise 

resources even at a limited water application of 30% ETc. Therefore, varying irrigation 

application in V. unguiculata did not compromise leaf colour or greenness of the leaf. 

According to Ashley (1993), drought tolerance is the ability of a plant to live, grow and yield 

satisfactorily with a limited soil water supply or under periodic water deficiencies. 

There were no significant (P>0.05) differences in Chlorophyll fluorescence (CF) in 

response to varying water regimes in A. cruentus, C. olitorius, B. vulgaris and V. unguiculata 

(Data not shown). Despite lack of statistical significance, there was a tendency of CF in all 

crops to increase from 30% ETc to 60% ETc up to 100% ETc. The lack of differences for CF 

may be because experiments were conducted under optimum fertilisation. No significant 

differences (P > 0.05) between water regimes, suggests that CF was not as sensitive to water 

stress. 
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Figure 4.2. Effect of irrigation on chloropyl content Index of selected African leafy vegetables for two seasons 
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4.3.4 Yield parameters 

4.3.4.1. Total fresh and dry yield 

Yield in A. cruentus was significantly (P<0.05) affected by water regimes during both 

seasons (Table 4.4). Fresh mass of stems, leaves and leaf dry matter increased significantly 

(P<0.05) with increase in water application from 30% ETc to 60% ETc, then remained the 

same at 100% ETc for both seasons. Results concur with wit previous reports that irrigation 

improved biomass yield in amaranth (Nyathi et al., 2016). Saleh et al. (2018) also reported that 

green bean growth parameters and pod yield increased with increasing water application from 

60 to 80% of ETc while further increase up to 100% of ETc did not improve yield. Water deficit 

often causes plant water stress, which has a negative effect on growth and quality of plants and 

would cause substantial reductions in yield (Wang et al., 2003). Similar observation was made 

by Beletse et al. (2012) where medium watered plants had better yield that well watered plants. 

Higher yield was obtained in the 60% ETc treatment than in the 100% ETc irrigation treatment. 

The reduced yield obtained in the 100% ETc treatment could be attributed to the high frequency 

of irrigation applied to replenish the soil water deficit, which may have caused nutrient leaching 

from the root zone (Beletse et al., 2012). Lower yields in limited water application for A. 

cruentus concurs with previous researchers who reported that drought tolerance in amaranth 

depends on the species (Nehuleni, 2007; Palada and Chang, 2006; Schippers, 2000). Yarnia et 

al. (2010) also reported that applying low levels of irrigation leads to reduction in yield. 

According to Beletse et al. (2012) yields obtained under water-stressed conditions may lack 

the quality needed to market the produce. Although results of growth parameters (leaf number 

and plant height) were not significant, the trend was consistent with yield results. 

In C. olitorius leaf dry matter content (first season) and fresh leaf mass (second season) 

were significantly (P<0.05) affected by water regimes (Table 2.4). Leaf dry matter and fresh 

leaf mass increased significantly (P<0.05) with increase in water application from 30% ETc to 

60% ETc, further application of water to 100% ETc did not improve yield. The same trend was 

observed in other measured yield components for both seasons although not significant 

(P>0.05). Fasinmirin and Olufayo (2009) reported that above ground biomass increased with 

amount of water application when grown under irrigated conditions. 



| P a g e  90 

 

Table 4.4. Effect of irrigation on the yield of selected African leafy vegetables obtained from two growing seasons  
Crops  Plant parts (t. ha-1) Irrigation levels 

2015/16 summer (Season 1) 2016/2017 summer (Season 2) 
30% ETc 60% ETc 100% ETc 30% ETc 60% ETc 100% ETc 

A. cruentus 
 
  

FM stem + leaves 4.11a 10.84b 7.85ab 2.87a 4.35ab 5.00b 
FM leaves  3.17a 4.14a 3.71a 1.66a 1.97ab 2.45b 
FM stem  2.92a 4.67a 3.60a 1.32a 1.86ab 2.48b 
DM leaves  0.54a 0.87b 0.71ab 0.38a 0.50a 0.54a 
DM stem  0.45a 0.70a 0.52a 0.38a 0.39a 0.48a 

C. olitorius 
  

FM stem + leaves 4.43a 7.21a 6.79a 1.95a 3.68a 4.04a 
FM leaves  2.05a 2.74a 2.62a 0.83a 1.46ab 1.70b 
FM stem 2.40a 3.71a 3.40a 1.21a 1.32a 1.25a 
DM leaves 0.50a 0.63ab 0.66b 0.33a 0.40a 0.43a 
DM stem  0.45a 0.43a 0.48a 0.33a 0.37a 0.36a 

V. unguiculata FM stem + leaves 5.04a 5.72a 6.90a 4.93a 7.34a 5.76a 
FM leaves  3.03a 3.34a 3.81a 2.28a 3.60a 2.91a 
FM stem  2.05a 2.39a 3.05a 2.56a 3.42a 2.93 
DM leaves  0.62a 0.68a 0.68a 0.59 0.54a 0.51 
DM stem 0.36a 0.39a 0.43a 0.57a 0.44a 0.44a 

B. vulgaris  FM leaves  4.53a 6.91ab 10.26b 4.08a 6.44b 8.67b 
DM leaves 0.83a 0.74a 1.04a 0.61a 0.72ab 0.86b 
Leaf number  40a 51a 57a 28a 38a 37a 

*Means followed by the same letters within a row are not significantly different according to Duncan’s multiple range tests at P≤0.05. FM=Fresh mass, DM =Dry mass 
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Results concur with reports that C. olitorius is susceptible to moisture stress owing to 

its shallow rooting depth which can be prevented by using irrigation (Fasinmirin, 2001). Taylor 

and Wepper (1990) reported that the yield of C. olitorius was enhanced when irrigation was 

used in conjunction with rainfall to reduce soil moisture stress. When evaporation rates are 

high, frequent irrigations are required to maintain plant available water at levels necessary to 

maximize growth and yield (Connor et al., 1985; Whitfield et al., 1986).  

Yield components in V. unguiculata increased with increase in water regimes from 30% 

ETc to 60% ETc andup to 100% ETc during first season; however, statistical analysis showed 

that there were no significant differences (Table 4.4). During the second season, yield 

components increased from 30% ETc to 60% ETc, and then remained unchanged at 100% ETc; 

however; no significant differences were observed. The results concur with Slabbert et al. 

(2012) who reported that V. unguiculata is among the most tolerant ALVs. Studies conducted 

elsewhere have shown that cowpea (Singh et al., 2003; Singh et al., 1997) is tolerant to adverse 

climatic conditions. Present results indicate potential of V. unguiculata production under deficit 

irrigation. Vigna unguiculata grew well under deficit irrigation of 30% ETc without losing 

quality of the leaves. Drought stress did not have an influence on biomass. The results 

contradict with Hayatu and Mukhtar (2010) who reported that drought stress significantly 

reduced plant above ground biomass in cowpea genotypes. Variation in results may be 

attributed to variation in species used or climatic condition among other factors. Nkaa et al. 

(2014) reported that different cowpea varieties perform different under various stress 

conditions.   

In B. vulgaris fresh mass and dry mass yield was significantly (P<0.05) affected by 

water regimes during both seasons (Table 4.4). Fresh mass of stems, leaves and leaf dry matter 

increased significantly (P<0.05) with increase in water application from 30% ETc to 60% ETc 

and up to 100% ETc for both season. For both season applications of 100% ETc produced 

double the amount of biomass compared to 30% ETc. Highest fresh leaf weight was obtained 

from the 100% ETc treatment, which indicated that B. vulgaris favoured high levels of soil 

water availability for optimum growth and development. Similarly, Van Averbeke and 

Netshithuthuni (2010) reported that Brassica species such as Chinese cabbage are sensitive to 

water stress. Sammis and Wu (1989) reported that cabbage marketable yield increased linearly 

with increased water application. Sanchez et al. (1994) found that cabbage production was 

optimized when crops were irrigated for evapotranspiration (ET) replacement while both 

deficit and excess irrigation reduced yield. Statistical analysis showed that there was no 
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difference at 60% ETc to 100% ETc and therefore it will be economic for farmers to adapt 60% 

ETc for B. vulgaris.  

Overall, the results of this study indicated that the ALVs had a higher degree of drought 

tolerance than the reference crop B. vulgaris. Ranking for drought tolerance starting with the 

most tolerant could be: V.unguiculata, C. olitorius, A. cruentus and B. vulgaris. Growth and 

yield of V. unguiculata were not affected by varying water application compared to B. vulgaris. 

Yield in A. cruentus, C. olitorius and B. vulgaris showed similar trends, an increase from 30% 

ETc to 60% ETc, and then remaining the same at 100% ETc. Considering that application of 

60% ETc and 100% ETc yielded same results according to statistical analysis, therefore 

application of 60% ETc is more economic for both crops. The yield results found in A. cruentus 

are often comparable, and in some cases were better than B. vulgaris. Yield in A. cruentus 

doubled when 60% ETc was applied while in B. vulgaris, a double in yield was obtained when 

100% ETc was applied compared to 30% ETc. Our findings on yield response to limited water 

availability were consistent with results of crop growth. Reduction in yield in well irrigated 

plants (C. olitorius, A. cruentus and B. vulgaris) can be due to increased susceptibility of soil 

to water logging which reduces aeration within the soil (Jenson et al. 1990). Sharma et al. 

(1990) also stated that crop growth and yield were improved when application of water can be 

controlled to what the plant actually needs. 

 

4.3.5 Water productivity 

A. cruentus grown in the 30% ETc irrigation treatment produced the least average biomass 

yield on fresh and dry weight basis (Table 4.5). Fresh biomass yield for both seasons averaged 

6.42 t ha−1 (100% ETc) and 7.59 t ha−1 (60% ETc) (Table 5). Average crop water productivity 

for A. cruentus increased from 30% ETc (1.98 kg m-3) to 60% ETc (2.15 kgm-3) then dropped 

at 100 % ETc 1.09 kgm-3). Although water productivity for dry mass decreased as applied 

irrigation water increased the maximum marketable fresh mass yield was obtained in the 60% 

ETc treatment (Table 4.5). Therefore results indicate that 60% ETc irrigation treatment was 

more water productive than all other treatments in terms of fresh biomass yield. Amaranth 

plants show lower water loss rates and greater water use efficiency than many other C4 plants, 

and more so in dry conditions (Moran and Showler, 2006; Liu and Stutzel, 2002). 
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Table 4.5. Average total above ground fresh mass and dry yield, irrigation water use and crop water productivity of selected African leafy 
vegetables for two seasons (2015/2016 and 2016/2017). 

 

African  
Leaf 

Vegetables 

Well-Watered (100 ETc) Medium-Watered (60 ETc) Deficit Irrigation (30 ETc) 
Average total 
above ground 

fresh yield 
 (t ha−1) 

Average 
irrigation 
water use 

 (mm) 

Crop water 
productivity 

1, (kg m−3) 

Average 
total above 

ground fresh 
yield 

 (t ha−1) 

Average 
irrigation 
water use 

(mm) 

Crop water 
productivity 

(k gm−3) 

Average 
total above 

ground Fresh 
yield (t ha−1) 

Average 
irrigation 
water use 

(mm) 

Crop water 
productivity 

(k gm−3) 

A. cruentus 6.42 589 1.09a 7.59 353 2.15a 3.49 176 1.98a 
C. olitorius 5.42 589 0.91a 5.44 353 1.50a 3.18 176 1.80a 

V.unguiculata 6.33 589 1.07a 6.53 353 1.84b 4.98 176 2.83b 
B. vulgaris 9.46 589 1.60b 6.67 353 1.89b 4.30 176 2.40a 

 

African 
 Leaf 

Vegetables 

Well-Watered (100 ETc) Medium-Watered (60 ETc) Deficit Irrigation (30 ETc) 
Average 

total above 
ground dry 
matter yield 

 (t ha−1) 

Average 
irrigation 
water use 

 (mm) 

Crop water 
productivity 

(kg m−3) 

Average 
total above 
ground dry 
matter yield 

 (t ha−1) 

Average 
irrigation 
water use 

(mm) 

Crop water 
productivity  

(k gm−3) 

Average 
total above 
ground dry 
matter yield 

 (t ha−1) 

Average 
irrigation 
water use 

(mm) 

Crop water 
productivity 

(k gm−3) 

A. cruentus 0.56  589 0.10a 0.61 353 0.17a 0.43 176 0.24a 
C. olitorius 0.48 589 0.08a 0.45 353 0.12a 0.40 176 0.22a 

V.unguiculata 0.51 589 0.09a 0.51 353 0.14a 0.53 176 0.30a 
B. vulgaris 0.95 589 0.16a 0.73 353 0.20a 0.70 176 0.40a 
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Amaranth has been often described as a drought tolerant crop (Zavitkovski and Ferrell, 

1968; Liu and Stutzel, 2002) capable of maintaining normal physiological processes under 

stress. Findings on yield response to limited water availability in A. cruentus were consistent 

with results of water productivity on fresh mass basis. Results were also consistent with the 

findings of Beletse et al. (2012) who observed higher water productivity in water limited 

treatments in comparison to well water treatments. Improving water productivity can make a 

contribution to global food production and poverty alleviation. 

Corchorus olitorius yield obtained from the irrigation treatments were in the range of 

3.18, 5.44 and 5.42 t ha-1 on a fresh weight basis for 30, 60 and 100% ETc (Table 5). The 

highest yield was obtained in the well irrigated treatment 100% ETc showing a positive effect 

on increased water application. A tendency for yield to decrease was observed as irrigation was 

reduced from 100% ETc to 30% ETc. The highest water productivity was obtained in the driest 

irrigation treatment (30% ETc). Results concur with Nyathi et al. (2016) who reported that 

ALVS are productive under limited water conditions. On the contrary, Fasinmirin and Olufayo 

(2009) reported higher biomass yield and WUE of C. olitorius can be achieved when the crop 

is grown at full irrigation. The difference in water productivity between the 100% ETc and 

30% ETc reported previous may be due to variation in climatic conditions, specie and degree 

of severity. Deficit irrigation compromised leaf quality of C. olitorius because it favours good 

application of water for its growth and development (Beletse et al., 2012). Water deficit reduces 

crop productivity; causing economic losses (Oelofse and van Averbeke, 2012).  

Highest yields of V. unguiculata leaves were obtained in the 60 and 100% ETc 

irrigation treatments, on fresh weight basis (Table 5). Drought stress has been reported to 

decrease water use efficiency (WUE), leaf production and root proliferation; and consequently 

crop productivity (Farooq et al., 2009).  Maximum yield was attained in the 60% ETc, but 

maximum water productivity was obtained where deficit irrigation (30% ETc) was applied. V. 

unguiculata seems to grow at deficit irrigation (30% ETc) without losing marketable quality 

of the leaves. According to Beletse et al. (2012) if the crop is grown for seed or bean production 

it has to be well irrigated to get optimum yield. Water use efficiency is an important trait for 

improving drought tolerance in cowpea as it saves considerable amount of irrigation water. An 

improvement in water use efficiency would significantly enhance total biomass production as 

well as yield at a given level of soil water availability 

The average total yield of B. vulgaris obtained for both seasons experiments ranged 

between 4.30 t ha-1, 6. 67 and 9.46 t ha-1 on fresh weight (FW) basis for 30, 60 and 100% ETc 
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respectively (Table 4.5). The fresh mass yield obtained from the 30% ETc treatment was not 

of marketable quality. Therefore, irrigating B. vulgaris at this level of water stress is not 

recommended, because both yield and quality were compromised. Maximum crop water 

productivity was obtained in the 30% ETc, where deficit irrigation was applied. Water use 

efficiency has been reported to increase with decreasing water supply (Mabhaudhi et al., 2014; 

Songsri et al., 2013). Water productivity decreased as applied irrigation water increased but 

maximum marketable fresh mass yield was obtained in the 100% ETc treatment which was 

statistical similar to 60% ETc. Results of the study showed that irrigating at 60 and 100% ETc 

gave higher above-ground yield and better quality leaves compared to other treatments to 

the30% ETcMaximum crop water productivity was obtained in the driest treatment (30% ETc) 

and decreased when applied irrigation water increased but yield was compromised.  

The ALVs differed in their response to drought stress because plant response to drought 

depends on plant species and stress severity. Results from the 2 year data showed that ALVs 

performed comparable or better than B. vulgaris as far as water productivity was concerned. 

At deficit irrigation (30% ETc) V. unguiculata produced the highest amount of biomass per 

cubic metre of water followed by B. vulgaris, A. cruentus and C. olitorius. At 60% ETc, A. 

cruentus produced the highest amount of biomass per cubic metre of water followed by B 

vulgaris, V. unguiculata and C. olitorius. In the B. vulgaris irrigation experiment, highest leaf 

fresh weight was obtained from the 100% ETc treatment and this indicates that B. vulgaris 

favours regular application of water for optimum growth and development, confirming the 

findings reported by Van Averbeke and Netshithuthuni (2010). Nyathi et al. (2016) reported 

that results of water productivity of ALVs were comparable to those of B.vulgaris. 

If farmers are to select a preferred crop among the three ALVs crops studied, they 

should consider yield, cost of inputs and irrigation set up among other factors. At limited water 

level of 30% ETc, V. unguiculata performed similar in terms of growth and yield compared to 

other water treatments. This suggests that production of this crop is still possible under limited 

water supply. This confirms to the study by Beletse et al. (2012) in which V. unguiculata was 

ranked as one of the drought tolerant crops compared to B. vulgaris. V. unguiculata production 

was optimised in terms of reduced amount of water use under limited water supply. 

Furthermore, limited water supply can be efficient in terms of use of less fertiliser which cannot 

be leached and low maintenance of irrigation systems. At higher water application the systems 

will have to be running for a long time compared to limited water application. If farmers decide 
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to grow V. unguiculata, the benefits include reduced soil erosion, and improved soil status due 

to nitrogen fixation. 

For A. cruentus and C. olitorius application of 30% ETc resulted in reduced yield 

therefore production is feasible at 60% ETc. In B. vulgaris yield was higher in water regimes 

of 100% ETc which was statistically similar to 60% ETc. This concurs with the report that 

water deficit affects growth, development, yield and quality of plants in the greenhouse and 

field conditions (Luvaha et al., 2008). The development of a wider choice of crops adapted to 

dry areas is critical because of global warming threats, decrease in water supply and demand 

to feed an increasing population. Research results on water productivity can help in decision‐

making options of vegetable growers in terms of calculating gross returns. This gives important 

insights into economic water productivity per cubic metre of water applied. Where irrigation 

water is in limited supply or where irrigation is expensive, irrigation management methods are 

needed which result in less water use while maintaining adequate yields of the economic 

product. 
 

4.4 Conclusions 

Water stress reduced yield for A. cruentus, C. olitorius and B. vulgaris compared to the well-

watered treatment although other growth and physiological parameters were not affected. 

Considering that the objective of every farmer is to achieve high yield under all conditions, 

more so under drought stress, therefore yield is a very important aspect. In V. unguiculata, all 

measured parameters were not compromised implying that it performed better than other ALVs 

including B. vulgaris under limited water application. Results concur with the current notion 

that wild vegetables can perform better or comparable to vegetable species such as B. vulgaris 

var. cicla under similar conditions. Yield followed a similar trend in A. cruentus, C. olitorius 

and B. vulgaris, an increase with increase in water application from 30% ETc to 60% ETc, and 

then remained the same at 100% ETc. A further increase in water application led to diminishing 

returns because optimum production had been reached. Int the present study the optimum level 

was reached at 60% ETc which is recommended for the three crops. However, there is a 

possibility that the level of water application can still be lower than in the current study making 

them even better adapted to marginal areas. Use of low water application reduces irrigation 

maintenance cost as the irrigation systems can operate at low pressure and leaching of nutrients 

is reduced. It will also translate to low cost saving since some of the water can be diverted to 

other crops. Highest water productivity was obtained by deficit irrigation (30% ETc) but deficit 
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irrigation compromised leaf quality in B. vulgaris, C. olitorius and A. cruentus. The highest 

biomass per metre cube of water was obtained in V. unguiculata and A. cruentus compared to 

B. vulgaris in terms of fresh mass weight. There is need to conduct studies under open field 

conditions because sometimes results obtained in closed systems such as rain shelter do not 

translate well under field conditions. Future studies should explore performance of various 

plant species under different water regimes or stress severity. Since drought seldom occurs in 

isolation, and mostly interacts with a variety of other abiotic and biotic stresses such as 

temperatures.and incidence, disease it is important that these factors are studied 

simultaneously. Since species have been reported to show a drought tolerance in various stages 

of development, or with time, it is important to use a variety of screening techniques (cellular 

level and whole plant level) to make sound conclusions concerning the general drought 

tolerance of a given plant. Further work needs to be done on using fertiliser application methods 

such as fertigation along irrigation which could possibly reduce fertiliser application rates, 

thereby reducing fertiliser costs and increasing sustainability of the enterprise. In addition, 

multi-location trials and studies of different varieties in South Africa are required. 
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Abstract 23 

African leafy vegetables (ALVs) are considered rich in micronutrients and adapted to marginal 24 

production areas than their exotic counterparts. However, information on ALV nutritional 25 

content when grown under limited moisture is scant in the literature. In this study, we evaluated 26 

the nutritional composition of three ALVs (Amaranthus cruentus L., Corchorus olitorius L, 27 

and Vigna unguiculata (L.) Walp) – to varying water regimes using Beta vulgaris L. as a 28 

reference crop. The experimental trial was carried out at the Agricultural Research Council 29 

(ARC) in Roodeplaat, Pretoria over two summer seasons, 2015-2016 and 2016-2017. The 30 
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irrigation levels were: 30%, 60% and 100% of crop water requirement (ETc) and nutrients were 31 

analysed at each harvest. From the nutritional analysis, under severe drought conditions (30% 32 

ETc) Ca and Mg were high in A. cruentus and C. olitorius while only Ca was high in B. 33 

vulgaris. The following were also observed: Na, K and Zn in A. cruentus, Zn in C. olitorius, P 34 

and K in V. unguiculata, Na and Zn in Beta vulgaris increased with increase in water 35 

application from 30 to 60 % ETc. Further increase in water application did not improve the 36 

nutrient content. Leaf Fe, Zn, Mn, Mg, Ca increased as time of harvesting increased from 6 37 

weeks to 8 weeks, with no further increase at 10 weeks in A. cruentus, V. unguiculata and B. 38 

vulgaris. In C. olitorius, Fe, Zn, Mn, Mg and Na were high when harvested early at 6 weeks 39 

than during late harvesting at 8 weeks and 10 weeks. Early and medium harvesting has potential 40 

to retain nutrient in leafy vegetables. Application of 60% ETc led to improved nutritional yield 41 

in all crops while concentration of nutrient under water stress indicates the potential of 42 

production in marginal areas.  43 

List of abbreviations 44 

ALV African leafy vegetables 
ARC Agricultural Research council 
ARC-ISCW Agricultural Research Council–Institute for Soil, Climate and Water 
DMRT Duncan’s multiple range test 
ICP-OES Inductively Coupled Plasma Optical Emission Spectrometric 
LAN Limestone ammonium nitrate 
WATP Weeks after transplanting 

 45 

Keywords: Leafy vegetables, Nutritional composition, Water stress 46 

5.1 Introduction 47 

South Africa faces challenges of food insecurity at household level collectively known as 48 

“hidden hunger” (Faber and Wenhold, 2007; Maunder and Meaker 2007;). Nutrition insecurity 49 

(“hidden hunger”) in South Africa includes iron, iodine and zinc deficiency (Oelofse and van 50 

Averbeke 2012). White and Braodleyi (2009) also reported that Mg and Cu deficiencies also 51 

constitute “hidden hunger” and can be reduced by production of edible vegetative organs with 52 

increased concentrations of these nutrients. South Africa is a dry country with some areas 53 

experiencing shortages of drinking water and crop production mostly practiced under water 54 

deficit (Annandale et al. 2011; Mabhaudhi 2013; Nyathi et al. 2018). Studies have shown that 55 

African leafy vegetables (ALVs) can contribute to addressing gaps in nutrition and inadequate 56 

availability of water because they are nutrient dense and adapted to marginal areas of 57 
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production (Oelofse and van Averbeke, 2012). However, information on nutritional value and 58 

yield of ALVs grown under limited water availability is scant. 59 

Studies conducted in other regions reports that a decrease in the amount of water in the 60 

soil reduces the amount of minerals absorbed by the roots and hence reduces the mineral 61 

content (Pascale et al. 2001). Saleh et al. (2018) reported N, P, K Fe, Zn, and Cu to be increasing 62 

with increase in soil water regimes from 60% ETc to 80% ETc, then remained constant at 100% 63 

in green bean. Other researchers observed a reduction in K due to water stress in Gongrolema 64 

latifolium (Osuagwu and Edeoga 2012), Dalbergonia sisso (Singh and Singh 2004) and 65 

Lycopersicon esculentum (Nahar and Gretzmachar 2002). Luoh et al. (2014) found no 66 

significant difference in leaf calcium content of A. cruentus and A. hypochondriacus grown 67 

under water-deficient (water when plants showed signs of wilting) conditions in the 68 

greenhouse. Agbemafle et al. (2015) observed that Fe contents decreased with deficit irrigation 69 

in Lycopersicon esculentum. The concentration of minerals K, Na, Fe and Zn in Lycopersicon 70 

esculentum was observed to increase with increasing level of irrigation water from 70% ETc, 71 

80% ETc, 90% ETc up to 100% ETc (Agbemafle et al., 2015). The information on the amount 72 

of nutrients reported in various research studies vary considerably and sometimes even within 73 

the same crop species. This is possibly due to variation in production systems, soil fertility, age 74 

of plant or time of harvest and seasonal variations in leafy vegetables (Giri et al. 1984; Khader 75 

and Rama 2003; Mavengahama 2013). To further advance knowledge and information on the 76 

nutritional response of these vegetables to varied (mostly marginal) environments, the need to 77 

conduct controlled trials under similar environmental settings would make for conclusive and 78 

sound recommendations.  79 

African leafy vegetables are reported to be among the major contributors of micronutrients 80 

in diets as they contain significant amounts of calcium, zinc and iron (Odhav et al. 2007, 81 

Vorster et al. 2008). Corchorus olitorius, Vigna unguiculata and Amaranthus cruentus are rich 82 

in minerals such as calcium, iron, magnesium, phosphorus, potassium, zinc, copper and 83 

manganese (Oelofse and van Averbeke 2012). The nutrient levels found in leafy vegetables are 84 

often comparable, and in some cases higher than those of exotic vegetables such as cabbage 85 

and Swiss chard (Nesamvuni et al. 2001; Van Der Walt 2005; Ndlovu et al. 2008; Afolayan 86 

and Jimoh 2009; Oelofse and van Averbeke 2012). The information provided by some of these 87 

studies is limited by the fact that they have tried to make comparisons of leafy vegetables and 88 

Swiss chard when grown in different environmental conditions (Nyathi et al. 2018). 89 
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However, adopting recommendations based on the few preliminary studies is challenging 90 

as South Africa has a high diversity of ALVs that are available for consumption and preference 91 

varies with province. Hence there is need to conduct extensive trials on a wider range of leafy 92 

vegetables under similar experimental settings. The larger the number of species for people to 93 

select from, as well as a wider diversity of desirable traits can lead to successful 94 

commercialization of these vegetables. Swiss chard is often chosen as a reference crop because 95 

it is a widely accepted leafy vegetable that is commercialized (Mavengahama et al. 2013). 96 

The aim of the current study was to evaluate the nutritional quality and water productivity 97 

of Amaranthus cruentus, Corchorus olitorius, Vigna unguiculata to varying moisture regimes.  98 

 99 

5.2. Materials and methods  100 

5.2.1. Plant material and growth conditions 101 

AVLs were grown as a field trial at the Agricultural Research Council (ARC) - Vegetable and 102 

Ornamental Plants (VOP) farm, Roodeplaat, Pretoria (25°35' S; 28°21' E; 1164 masl) under the 103 

various water regimes (100% ETc, 60% ETc and 30% ETc) 2015/2016 and 2016/2017 summer 104 

seasons. Fertiliser was applied according to soil analysis results done at the Agricultural 105 

Research Council–Institute for Soil, Climate and Water (ARC–ISCW), Acardia, Pretoria 106 

(Table .5.1).  107 

Table 5.1. Physical and chemical characteristics of the soil in the experimental field 108 

Soil attribute 2015-16 summer season 2016-17 summer season 

P (mg kg-1) 40.0 5.9 
K (mg kg-1) 227.0 250.0 
Ca (mg kg-1) 825.0 696.0 
Mg (mg kg-1) 240.0 273.0 
Na (mg kg-1) 34.0 17.8 
Exchangeable cation Ca (%) 60.2 53.8 
Exchangeable cation Mg (%) 29.2 35.1 
Exchangeable cation K (%) 8.5 9.9 
Exchangeable cation Na (%) 2.2 1.2 
pH 7.0 6.9 
Clay (%) 18.0 20.0 
Silt (%) 6.0 4.0 
Sand (%) 76.0 76.0 
N-NO3 6.2 6.4 
N-NH4 5.5 3.1 

 109 
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Leaf growth was monitored throughout the growing period and harvested during the early 110 

morning of the trial. The leaves were harvested at six (6), eight (8) and 10 weeks after 111 

transplanting (WATP) and packed in an upright position in clean plastic crates and immediately 112 

transported to the laboratory (100m from the harvesting site) for processing and harvesting. 113 

Each treatment had 3 replicates, each containing approximately 300g of fresh leaves. 114 

 115 

5.2.2 Agronomic practices 116 

Nitrogen (limestone ammonium nitrate (LAN), 28% N) was applied according to results of soil 117 

nutrient analysis for 2015-2016 and 2016-2017 seasons. Application rates were: 125 kg ha-1 N 118 

for A. cruentus and C. olitorius, 150 kg ha-1 N for B. vulgaris and 135 kg N ha-1 for V. 119 

unguiculata for both seasons. Nitrogen was applied by banding in three split applications. The 120 

first application was at transplanting/sowing (50%), second at 4 weeks after 121 

transplanting/sowing (25%) and the last (25%) at 8 weeks after transplanting/sowing. Double 122 

Super Phosphate was applied at 20 kg (10.5 % P) at planting for season 1 for all the crops. 123 

During second season at 63 kg ha-1 P for B. vulgaris, 55 kg ha-1 P for A. cruentus and C. 124 

olitorius and 75 kg ha-1 P for V. unguiculata at planting. Potassium was deemed sufficient 125 

based on results of soil fertility analyses for both seasons. 126 

 127 

5.2.3 Analysis of nutritional composition 128 

Leaf samples were dried in an oven at 50 °C for 48 h. Dried samples  for each treatment 129 

were prepared for the analysis of macro and micro nutrients (sodium (Na), phosphorus (P), 130 

potasium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu) and manganese 131 

(Mn) by grinding them into a fine powder. The macronutrients P, K, Ca, Mg and Ca and 132 

micronutrients Fe, Cu, Zn and Mn were analysed at the Agricultural Research Council-Institute 133 

of Soil, Climate and Water (ARC-ISCW) laboratory in Pretoria for both seasons. Samples (1 134 

g) were digested by first muffling in a muffle furnace at 500°C for 2 hrs before adding 3 ml of 135 

50% aqueous (dionised) nitric acid (v/v) (after cooling) and heating the mixture again at 100°C 136 

in a hot plate until dry. Ten millilitres of 50% HCL(v/v) were then added into the sample which 137 

then further diluted with deionised water and analysed for the various nutritional components 138 

in triplicate and all nutrient concentrations expressed as mg/kg. 139 

An aliquot of the digest solution was used for the ICP-OES (Inductively Coupled Plasma 140 

Optical Emission Spectrometric) determination of chemical parameters. The ICP-OES is a 141 
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multi-element instrument. The instrument used was an Agilent 725 (700 Series) simultaneous 142 

instrument, where all the elements (and all wavelengths) are determined simultaneously. 143 

Several elements were determined at more than one wavelength, allowing confirmation of the 144 

values, with no increase in analysis time or consumption of digest solution. Each element was 145 

measured at one or two appropriate emission wavelengths, chosen for high sensitivity and lack 146 

of spectral interferences. The instrument was set up and operated according to the 147 

recommended procedures in the instrument manual and optimised conditions. The instrument 148 

was calibrated against a series of standard solutions, containing all the elements of interest. 149 

 150 

5.2.4 Data analysis 151 

Data were subjected to one way analysis of variance (ANOVA) using SPSS software for 152 

Windows (IBM SPSS, version 25, Chicago, IL, USA). Where there were significant differences 153 

(P ≤ 0.05), the means were further separated using Duncan’s multiple range test (DMRT). 154 

 155 

5.3 Results and discussion 156 

5.3.1 Effect of irrigation on Mg, Ca, Na, P and K 157 

Calcium plays a role in plant growth and development because of its role in cell physiology 158 

such as cell division (Shao et al. 2008) and its concentration is affected by water stress. With 159 

regard to Ca, although only A. cruentus (2015-2016 season), C. olitorius (2016-2017 season) 160 

and B. vulgaris (2016-2017season), showed significant changes in Ca levels between 161 

treatments, the observed general characteristic trend was that high levels of calcium were either 162 

alternating between the most severe water stress (30% ETc) and the well-watered (100 ETc) 163 

treatments across all crops in this study (Table 5.2).  164 

Akinci and Lösel (2012) reported higher levels of leaf calcium content at low water levels 165 

due to increased water stress as plants develop a selective uptake for specific elements. De 166 

carvolho and Savaria (2005) reported that water stress caused a decrease in calcium content of 167 

Lupins lopinus albus and Lopinus metabilis. Decrease of Ca uptake under drought conditions 168 

may be attributed to depressed absorption (Ciríaco da Silva et al. 2011) and reduction in 169 

transpiration (Sardans et al. 2008). Similarly, Saleh et al. (2018) working on green bean 170 

reported lower Ca content at lower water level of 60% ETc relative to 80% ETc and 100% ETc 171 

in their trials.  172 
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Table 5.2. Effect of irrigation regimes on the levels of macro elements of selected African leafy vegetables from two growing seasons  173 

Crop Irrigation 2015/16 summer (Season 1) 2016/2017 summer (Season 2) 
Concentration (mg/kg) 

Mg Ca Na P K Mg Ca Na P K 
A. cruentus 30% ETc 12500.1a 34200.1a 350.95b 4500.4a 29100.1b 14062.85a 32090.90a 1454.04a 4515.47b 37245.69a 

60% ETc 10400.3b 26200.1b 1118.63a 5100.6a 39800.4a 13214.27a 30933.46a 328.12a 5095.97a 38293.86a 
100% ETc 11000.5a 28400.6a 346.51b 4800.7a 37600.1a 15536.73a 31775.73a 642.65a 4948.02a 37245.69a 

C. olitorius 30% ETc 3600.4a 16600.0a 254.35a 5600.5c 30200.9a 3720.75a 17554.97a 3997.10a 5438.39a 37772.79a 
60% ETc 2900.1b 17000.1a 264.55a 6100.3b 28600.5a 3076.96b 15118.35b 1639.37a 6072.29a 32868.26b 
100% ETc 3400.8a 17500.8a 222.79a 6900.8a 26700.5a 2708.79c 12598.87c 3997.09a 5389.61a 30475.67c 

V.unguiculata 30% ETc 5100.7a 21500.3a 222.15a 3700.7b 18000.4b 4537.58a 16912.80a 319.79b 4856.15a 
 

60% ETc 5100.6a 20900.7a 236.07a 3800.7ab 19400ab 5029.28a 16771.77a 718.33a 5354.64a - 
100% ETc 4600.5a 21500.9a 235.76a 4200.3a 22100.0a 4775.81a 14409.81a 429.17a 6331.02a - 

B. vulgaris  30% ETc 7100.2a 9300.6a 40388.79a 4300.5a 33400.7a 6894.66a 9978.26a 28727.07b 4580.68a 33459.85a 
60% ETc 9200.1a 11200.5a 30667.43a 8600.3a 33600.8a 7017.77a 8835.74b 35177.29a 4358.71a 40275.87a 
100% ETc 8100.5a 9500.5a 28950.73a 6700.4a 32800.6a 8554.32a 10782.32a 35825.61a 3830.42a 42830.60a 

*Means followed by the same letters within a column for each treatment are not significantly different according to Duncan’s multiple range test at P≤0.05. 174 
- There was no data for K for second season. 175 
 176 
 177 
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Luoh et al. (2014) on the other hand found no significant difference in leaf calcium content 178 

of A. cruentus and A. hypochondriacus under water-deficient levels in greenhouse conditions. 179 

The concentration in the soil is reported to be directly linked to its concentration in the plant 180 

(Ciríaco da Silva et al. 2011). Magnesium plays a role in the central atom of chlorophyll 181 

molecules, energy conservation and conversion and protein synthesis (Amtmann and Blatt 182 

2009) and its uptake is affected by drought or irregular water availability (Ciríaco da Silva et 183 

al. 2011). With the exception of B. vulgaris, Mg levels were consistently higher (C. olitorius 184 

and A. cruentus), though not significantly different, under water stress than in well-watered 185 

treatments in all crops in the 2015-2016 season in this study. Nahar and Gretzmachar (2002) 186 

reported that the uptake of magnesium by tomato plants was significantly reduced under water 187 

stress. When plants are stressed to low internal water potential, uptake of nutrients decreases 188 

due to diminishing absorbing power of roots (Dunham and Nye 1976), an explanation of which 189 

could be advanced to explain the observed trend in this study. Generally, for both seasons and 190 

in all crops (except for Ca in C. olitorius 2016-2017 season), Ca and Mg levels were 191 

comparable with no significant differences between 30% ETc and 100% ETc irrigation 192 

treatment levels in this study. In light of these results and from an economic viewpoint, its 193 

suffice to deduce or draw recommendations that application of 30% ETc irrigation levels for 194 

the vegetable crops under study would be an economic water-saving strategy without 195 

compromising on nutritional yield and quality. Calcium and Mg are important nutritional 196 

elements in human diets with beneficial roles such as growth and maintenance of bones, teeth 197 

and muscles (Turan et al. 2003). 198 

 199 

In two out of the four crops in this study, leaf K (first season) and Na (second season) 200 

increased significantly (P < 0.05) with water application from 30% ETc to 60% ETc and further 201 

increase in water application did not increase nutritional yield. Although not significant in some 202 

crops, this trend was generally characteristic of all crops under study. Previous researchers 203 

reported similar findings to the current study, a reduction in K due to water stress in 204 

Lycopersicon esculentum (Nahar and Gretzmachar 2002; Agbemafle et al., 2015), Gongrolema 205 

latifolium (Osuagwu and Edeoga 2012) and Dalbergonia sisso (Singh and Singh 2004). On a 206 

season to season comparison, Na seemed to show some significantly huge fluctuations, for 207 

example 350.95 mg/kg in the first season increasing more than four-fold to 14062.85 mg/kg at 208 

30% ETc irrigation in A. cruentus while on the other hand increasing from 118.63 to 328.12 209 

mg/kg at 60% ETc irrigation from season one to season two for the same crop. In C. olitorius, 210 

Na levels increased by more than 11-fold from season one to season two in 30- and 100% ETc 211 
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irrigation levels and by more than 6-fold in 60% ETc irrigation level. This multiple-fold 212 

decrease and increase in sodium levels between treatments and season may point to the 213 

sensitivity of the element to the interactive combination of environmental factors affecting 214 

plant survival and growth. Sodium serves to concentrate carbon dioxide and to promote 215 

metabolism and hence its uptake by plants may be affected by water availability. The highest 216 

potassium concentration was found in B. vulgaris, while the element occurred in more or less 217 

the same quantities in A. cruentus and C. olitorius but at much lower levels in V. unguiculata. 218 

High potassium coupled with a low sodium content, as observed in B. vulgaris has been 219 

reported to serve a protective role against numerous diseases (Arlington et al. 1992). African 220 

leafy vegetables can meet the daily requirements of potassium for an adult and be useful in the 221 

management of hypertension and other cardiovascular diseases. 222 

 223 

Leaf P content also followed a similar trend as observed in K and Na, with significant 224 

(P < 0.05) differences observed during the second season (Table 5.2). This observation concurs 225 

with that of Saleh et al. (2018) who observed that P increased with increase in water regimes 226 

from 60% ETc to 80% ETc, then remained constant at 100% in green bean. The results for P 227 

content in C. olitorius were also similar to those of A. cruentus, showing a significant (P < 228 

0.05) increase from 30% ETc to 60% ETc with no further significant increase when water was 229 

increased to 100% ETc. Faye et al. (2006) reported that phosphate ions move through soils 230 

through diffusion and a decrease in soil content decreases P mobility hence drought causes a 231 

reduction in P absorption and transport in plants. From the soil, P is a highly immobile nutrient 232 

element and is thus either required in high amounts and as closer to the plant roots as possible 233 

for ease of uptake. Within the plant, the element P holds key physiological and metabolic roles 234 

such as conserving and transferring energy in the cell metabolism that are fundamental to plant 235 

growth and survival (Jin et al. 2006). Phosphorus also forms a key component of the universal 236 

energy carrier molecule ATP in all living systems including plants and is also an integral 237 

chemical component of some amino acids and nucleic acid (Ciríaco da Silva et al. 2011). As 238 

opposed to Mg and Ca, the elements K, Na and P in higher levels can be obtained in moderate 239 

to well-watered (60-100% ETc) conditions although the quantities obtained under high water 240 

stress conditions (30% ETc) were still significantly comparable in almost all the crops in the 241 

current study. Based on the general observation in this study, it remains logical to draw similar 242 

recommendations for K, Na and P to that of Ca and Mg, with a general observation that it is 243 

economical to grow these vegetable crops under limited moisture conditions (30% ETc to 60% 244 

ETc) and still be able to obtain good quality nutritional content. 245 
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 246 

5.3.2 Effect of irrigation on Cu and Mn 247 

Manganese is involved in electron transport and therefore it is involved in photosynthesis, 248 

respiration and the activation of several enzymes and its uptake is affected by low moisture in 249 

the soil (Ciríaco da Silva et al. 2011). Copper participates in electron transport in 250 

photosynthesis, mitochondrial respiration and in response to oxidative stress. Effects of 251 

drought on Cu uptake and distribution in higher plants is limited (Ciríaco da Silva et al. 2011). 252 

In A. cruentus and C. olitorius leaf samples of Cu and Mn were not significantly (P > 0.05) 253 

affected by irrigation water regimes although there was a general tendency of increase from 254 

30% ETc to 60% ETc followed by a decline at 100% ETc for both seasons (Table 5.3).  255 

 256 

Table 5.3. Effect irrigation regimes on the levels of Cu and Mn on selected African leafy 257 
vegetables from two growing seasons  258 

Crops  Irrigation 2015/16 summer 
(Season 1) 

2016/2017 summer 
(Season 2) 

Concentration (mg/kg) 
Mn Cu Mn Cu 

A. cruentus 30% ETc 137.81a 9.26a 133.61a 10.56a 
60% ETc 203.93a 9.58a 190.69a 10.24a 
100% ETc 206.84a 8.27a 175.32a 10.37a 

C. olitorius 30% ETc 75.32a 9.45a 78.52a 9.99a 
60% ETc 78.60a 8.31a 120.86a 9.98a 
100% ETc 70.60a 8.96a 54.90a 8.87a 

V. unguiculata 30% ETc 153.83a 8.42a 121.67a 7.85a 
60% ETc 135.89a 7.73a 124.82a 8.96a 
100% ETc 126.87a 7.89a 109.26a 9.40a 

B. vulgaris  30% ETc 192.85a 12.03a 168.62a 12.11a 
60% ETc 249.88a 13.25a 170.90a 12.35a 
100% ETc 241.21a 13.49a 146.86a 9.79a 

*Means followed by the same letters within a column for each treatment are not significantly different according 259 
to Duncan’s multiple range test at P≤0.05. 260 

 261 

The ability of A. cruentus and C. olitorius to concentrate Cu and Mn under low soil 262 

moisture conditions agrees with the notion that the two crops can be produced under limited 263 

moisture availability. Although not significant, the trend suggests that high levels of stress can 264 

reduce yield quality. Singh and Singh (2004) reported that increasing water stress decreased 265 

the level of copper in Dalbergonia sisso leaves. Brown et al. (2006) reported reductions of Mg 266 

in both the roots and shoots of Spartina alterniflora (coastal smooth cordgrass) under drought 267 

conditions. Lack of significant response at higher soil moisture content may possibly be due to 268 

leaching of nutrients at higher water application.  269 
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In V. unguiculata and B. vulgaris leaf Cu and Mn were not significantly (P > 0.05) 270 

affected by water regimes although a general increase from 30% ETc to 60% ETc followed by 271 

a decline at 100% ETc for both seasons (Table 5.3) was noted.  272 

Results for Cu and Mn were higher in B. vulgaris compared to all ALVs which disagree 273 

with the notion that wild vegetables always have a greater inherent ability to accumulate 274 

micronutrients from the soil than the widely cultivated exotic vegetables.  275 

5.3.3 Effect of irrigation on Zn and Fe 276 

Although required in minute quantities in plants, Zn and Fe are important micro 277 

elements in human nutrition. Iron plays a role in the prevention of anemia while zinc plays a 278 

role in vitamin A and vitamin E metabolism (FAO, 2004).  Zinc was significantly (P < 0.05) 279 

affected by water regimes in A. cruentus, C. olitorius and B. vulgaris (Figure 1). Zn content 280 

increased significantly (P < 0.05) with increase in water regimes from 30% ETc to 60% ETc, 281 

then remained constant at 100% ETc in A. cruentus (both seasons), C. olitorius (second season) 282 

and B. vulgaris (both season). Nyathi et al. (2016) and Saleh et al. (2018) reported similar 283 

results in amaranths species and green beans respectively where Zn content decreased with 284 

increase in water stress. Similarly, the concentration of Zn in Lycopersicon esculentum was 285 

reported to decrease with decreasing level of irrigation from 100% ETc to 70% ETc 286 

(Agbemafle et al. 2015). In V. unguiculata, leaf Zn did not show any significant (P>0.05) 287 

response to water application. Similarly, Pirzad et al. (2012) showed that different water 288 

applications had no significant effect on zinc uptake of German chamomile (Matricaria 289 

chamomilla L). 290 

On the other hand, leaf Fe concentration did not show any significant (P>0.05) response 291 

to water application for both seasons in all crops. Research indicates that Fe content varies with 292 

moisture availability; under wet soil Fe availability is higher for plants compared to drought 293 

conditions (Sardans et al. 2008).  Nyathi et al. (2016) reported a significant decrease in Fe 294 

content in amaranths with increase in water stress. Birnin-Yauri et al. (2011) reported a higher 295 

Fe value for rainy season in amaranth arguing that this weather condition favours Fe 296 

accumulation without further elaboration on the quality of the season. Although this may be 297 

partly true in light of the results obtained in this current and other previous studies, it can be 298 

deduced that low water levels does favour Fe accumulation in plants. Variation in the reported 299 

Fe content of the current study with those of other studies may be due to variation in climatic 300 

conditions, levels of water stress applied, plant species and/or  the inherent ability of the 301 

plants’ mechanisms to concentrate nutrients at low water level.  302 
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Figure 5.1. Effect of irrigation regimes on the levels of Fe and Zn from two growing seasons 304 
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These attributes play a central role in determining whether a crop is able to sustain 305 

economic production under high water stress. Be that as it may and notwithstanding the 306 

observed variations in this study, all four crops in this current study showed comparable 307 

accumulation of Zn and Fe levels under low soil water conditions of 30% ETc. B. vulgaris had 308 

higher Fe concentrations than all ALVs while Zn concentrations in B. vulgaris and A. cruentus 309 

were comparable and also higher than V. unguiculata and C. olitorius. Anaemia, due to 310 

hookworms and iron deficiency, is a widely-occurring problem and iron is required for 311 

haemoglobin formation (Kaya and Incekara 2000). Consumption of ALVs like V. unguiculata 312 

and A. cruentus, which are comparatively high in iron content, in adequate amounts may help 313 

to alleviate some of the nutritional problems associated with iron deficiency. The amounts of 314 

Fe in the present study correlates and are comparative with those obtained from previous work 315 

where V. amyglidina, C. tora and C. olitorius leaves were reported to contain 277 mg/kg and 316 

204 mg/kg and 840 mg/kg of iron respectively (Barminas et al. 1998; Anyoola et al. 2010; 317 

Asaolu and Asaolu 2010). The levels of Zn in the current study also corroborate and are 318 

comparative with those obtained from previous work. Barminas et al. (1998) reported C. tora 319 

to contain an average of 209 mg/kg Zn while C. tridens, Amaranthus spinosus and Adansonia 320 

digitata had 123, 68 and 224 mg/kg zinc, respectively. 321 

 322 

5.3.4 Effect of harvesting time on Fe, Zn, Mn, Mg, Ca P, and Na 323 

African leaf vegetables are harvested from crop fields at different stages of plant 324 

growth. For most ALVs there is a preferred stage of plant development when flavour and 325 

palatability are favourable for human consumption. Research has indicated that levels of 326 

nutrients and toxic substances in vegetables are influenced by stages of plant development 327 

(Khader and Rama 2003; Modi et al. 2006). A number of ALVs are consumed at different 328 

stages of maturity, but limited information is available on their mineral content at different 329 

stages of maturity (Khader and Rama 2003). In A. cruentus trace elements were significantly 330 

(P<0.05) affected by harvesting (Table 5.4). The trend observed for Fe and Zn was an increase 331 

as time of harvesting increased from 6 weeks to 8 weeks for both seasons and then declined at 332 

10 weeks during the second season. The results of the present study concur with Khader and 333 

Rama (1998) who observed a decrease in Zinc content with increasing maturity stages in 334 

Amaranthus and Spineces species. Other researchers reported similar results (Flyman and 335 

Afolayan 2008; Amanabo et al. 2011). 336 
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Table 5.4. Effect of harvest intervals on mineral composition of selected African leafy vegetables from two growing seasons  337 

Crop Harvest 2016/2017 growing season - Concentration (mg/kg) 
Fe Zn Ca Mn Na Mg P 

A. cruentus 6 Weeks 510.73a 56.65a 23372.52c 109.62b 699.52a 11426.62b 5027.30a 
8 Weeks 538.59a 62.43a 31582.36b 147.76b 629.75a 16108.04a 4995.53b 
10 Weeks 287.79b 51.66b 39845.25a 242.23a 495.53a 15279.19a 4536.61b 

C. olitorius 6 Weeks 579.44a 39.17a 14901.85a 59.29a 580.50a 5963.20a 247.81b 
8 Weeks 350.37b 34.99a 15632.08a 51.47a 542.77a 5118.45a 918.86a 
10 Weeks 342.27b 30.74b 14738.25a 41.41b 297.27a 5460.15a 238.19b 

V. unguiculata 6 Weeks 118.80b 8.50b 4452.00b 118.80b 247.81b 4452.00b 5963.20a 
8 Weeks 142.34a 10.50a 5602.64a 142.34a 918.86a 5602.64a 5118.45a 
10 Weeks 94.59c 7.18c 4288.01b 94.59c 238.19b 4288.01b 5460.15a 

B. vulgaris 6 Weeks 630.90a 57.80a 9200.02b 149.36b 32181.88a 7872.57a 4395.28b 
8 Weeks 658.85a 64.34a 11632.71a 237.01a 37118.12a 8872.11a 5416.24a 
10 Weeks 516.34a 36.35b 8763.57b 100.01c 30429.95b 5722.06b 2958.28c 

2015/2016 growing season - Concentration (mg/kg) 338 

A. cruentus 6 Weeks 261.25b 58.15a 26224.86a 87.01b 319.04a 11455.63a 5840.32a 
8 Weeks 422.24a 62.89a 32999.37a 278.71a 799.80a 11105.07a 3774.96b 

C. olitorius 6 Weeks 471.27a 30.45a 18377.02a 86.82a 284.36a 3093.20a 6192.92a 
8 Weeks 197.02b 33.80a 15697.72b 62.85b 207.05b 3495.47a 6185.66a 

V. unguiculata 6 Weeks 492.80a 44.77a 21287.28a 116.11b 196.85b 4924.39a 3676.49a 
8 Weeks 328.24a 36.93a 18646.73a 161.62a 276.31a 4541.91a 3772.61a 

B. vulgaris 6 Weeks 241.77b 55.19a 8895.73b 186.71a 26780.76b 6075.48a 4468.9b 
8 Weeks 754.25a 60.35a 11136.88a 269.23a 39890.53a 10186.32a 8689.01a 

*Means followed by the same letters within a column for each treatment are not significantly different according to Duncan’s multiple range test at P≤0.05 339 
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Lanyasunya et al. (2007) observed that the rapid uptake of minerals by plants during 

early growth and the gradual dilution that occurs as plants mature would have been responsible 

for the decrease in some of the mineral content. Modi et al. (2006) found that iron concentration 

in A. cruetus increased significantly with age. Variation on results may be due to many factors 

such as soil composition and pH, water availability to the plant, weather conditions prevailing 

during the growth of the plant and the variety of the plant. During the second season leaf Ca 

and Mn significantly (P<0.05) increased as harvesting time increased although during the first 

season the differences were not significant (Table 5.4). These findings are in agreement with 

previous researchers who reported that calcium accumulated in more mature parts of the plant 

than in the younger parts of the plant (Loneragan 1968; Loneragan and Snowball 1969). Modi 

(2007) also reported that the calcium content increased in leaves of A. hybridus and A. tricolor 

with plant age. 

Leaf P levels decreased significantly as harvesting time increased. Magnesium content 

increased significantly (P<0.05) from harvesting at 6 weeks to 8 weeks for both seasons and 

decreased significantly (P<0.05) at 10 weeks during the second season. This result was in 

agreement with results of Singh and Saxena (1972). They also found an increase in Mg content 

from 15 days to 30 days and a decrease in Mg content from 30 days to 45 days in most of the 

leafy vegetables studied. Leaf P content decreased significantly as time of harvesting increased. 

Similar results were obtained by Khader and Rama (2003) where P content was higher where 

growth rate was higher. Khader and Rama (2003) attributed the results to synthesis of new 

protoplasm in young leaves than in older leaves. 

 

Leaf Fe, Zn, Mn, Mg and Na content in C. olitorius were significantly (P<0.05) affected by 

harvesting time (Table 5.4). Leaf Fe, Zn, Mn, Mg and Na were significantly (P<0.05) higher 

in early harvest (6 weeks) compared to late harvesting at 8 weeks and 10 weeks during the 

second season. A similar trend for Fe, Mn, and Na was observed during the first season (Table 

4). P content increased significantly (P<0.05) from harvesting at 6 weeks to 8 weeks and 

decreased significantly (P<0.05) at 10 weeks during the second season although there were no 

significant differences during the first season (Table 5.4). Researchers have reported variations 

in nutrients such as Fe, Mn, Zn and Cu contents due to age of plant or time of harvest in leafy 

vegetables (Khader and Rama 2003). Phosphate content increased significantly (P<0.05) from 

harvesting at 6 weeks to 8 weeks and decreased significantly (P<0.05) at 10 weeks. This result 

concurs with the results of Giri et al. (1984) who reported that P increased with the age of the 

Chekurmeni plant. 
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Leaf Fe, Zn, Mn, Mg and Na content in V. unguiculata were significantly (P<0.05) 

affected by harvesting time (Table 5.4). Leaf Fe, Zn, Ca, Mn, Mg and Na significantly (P<0.05) 

increased as time of harvesting increased from 6 weeks to 8 weeks and then declined at 10 

weeks during the second season. Similar results were obtained for Na and Mn with regard to 

increase from 6 weeks to 8 weeks during the first season. The trend was similar to that observed 

for A. cruentus. These findings were similar to previous reports, with an increase in iron content 

at each stage in V. unguiculata as the plant matured from 21 to 57 days after sowing the seeds 

(Flyman and Afolayan 2008). The increasing trend of iron suggests that the mineral may be 

indissociable ion and accumulates as age increase. Giri et al.(1984) also found a continuous 

increase in calcium content from 3 months to one year of age in chekurmenis leaves. It may be 

due to the immobile nature of the calcium and failure to retranslocate from older parts of the 

plant to the growing parts of the plant. Bello et al. (2011) reported that Amaranthus species, 

when harvested several times, are more productive than plants harvested once. Results of Na 

concur with other authors who reported an increase in Na concentration in V. unguiculata 

followed by a decrease with age (Flyman and Afolayan 2008; Mahala et al. 2012). Materechera 

and Medupe (2006) recommended leaves to be harvested every two weeks in A. hybridus. 

 

Leaf Fe, Zn, Mn, Mg and Na levels in B. vulgaris were significantly affected by 

harvesting time (Table 4). Leaf Fe, Zn, Mn, Mg, Ca P, and Na content significantly (P<0.05) 

increased as time of harvesting increased from 6 weeks to 8 weeks for both seasons and then 

declined at 10 weeks during the second season. Giri et al.(1984) reported that phosphorus (P), 

calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), copper (Cu) and manganese (Mn) 

increased with the age of the Chekurmeni plant. Similar results were reported by Singh and 

Saxena (1972). They found an increase in Ca and Mg content with time up to a point followed 

by a decline. The increase may have been due to the Mg ion being in an unfixed or dissociable 

form that accumulates with age. The trend was similar to that observed for A. cruentus and V. 

unguiculata. African leafy vegetables can provide a continuous source of nutritious leaves to 

enrich the staple food over time because they can be harvested more than once. For A. cruentus 

and C. olitorius minerals were concentrated on early harvest while in V. unguiculata and B. 

vulgaris they increased with time up to a point then declined. During the second season, the 

crops were harvested more than the previous season based on the interest of results from he 

first season. It will be recommended in future to study multiple harvesting (above 3 harvest 

from the study) consistently since ALVs can be harvested as many times. This will give 

indication as what stage of a plant a crop performs better in terms of nutrients. Knowing the 
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optimum point of nutrient accumulation at harvest will help optimise resources such as fertiliser 

and water. For example, if harvesting a crop 4 or 5 times is not productive in terms of nutrient 

composition, it will be worthy to harvest once to save resources.  

 

If farmers are to select a preferred crop among the three ALVs crops studied, they 

should consider nutritional yield and benefits gained from the saving of water among other 

factors. At limited water level of 30% ETc, V. unguiculata performed better than all crops 

under study. This confirms that V. unguiculata is one of the drought tolerant crops compared 

to B. vulgaris var. cicla. In V. unguiculata production was optimised in terms of reduced 

amount of water use under limited water supply. A. cruentus and C. olitorius performed similar 

to B. vulgaris with optimum nutritional yield at 60% ETc. Application of 60% ETc is still a 

water-saving strategy because it is below the water requirements. This suggests that production 

of these crops is still possible under limited water supply especially for home consumption. 

The results obtained for nutrients were consistent to biomass yield (not shown) because quality 

is produced in the field. Therefore, the promotion of production of ALVs in South Africa can 

include addressing the notion of “more crop per drop”, thus the production of more food per 

millimeter of water used without compromising yield quality. 

 

5.4 Conclusion 

 In the current study, water stress reduced nutrients for selected African leafy 

vegetables relative to the medium and well-watered treatment. Fe, Zn, Na and Cu were not 

affected by varying water regimes in V. unguiculata. Ca and Mg were higher in water limited 

conditions of 30% ETc compared to well-watered conditions in A. cruentus and C. olitorius. 

The ability of these crops to concentrate trace elements even under low water availability 

indicates the possibility of production even under limited water conditions. The different 

vegetable species investigated demonstrated different abilities to concentrate Mn, Cu, Fe, Na 

and K in the order B. vulgaris > A. cruentus > C. olitorius > V.unguiculata. The trend A. 

cruentus > C. olitorius > V.unguiculata > .B. vulgaris was observed for the Ca and P while for 

Zn and Mg the trend was A. cruentus > B. vulgaris > V.unguiculata > C. olitorius. A. cruentus, 

C. olitorius and B.vulgaris are recommended to be irrigated at 60 % ETc, because 30% ETc 

reduced yield while 100% ETc did not have any additional benefits. V. unguiculata is 

recommended to be irrigated at 30% ETc considering that most of the nutrient were not 

affected. Leaf Fe, Zn, Mn, Mg, Ca increased as time of harvesting increased from 6 weeks to 
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8 weeks, with no further increase at 10 weeks in A. cruentus, V. unguiculata and B. vulgaris. 

In C. olitorius, Fe, Zn, Mn, Mg and Na were high when harvested early at 6 weeks than during 

late harvesting at 8 weeks and 10 weeks. Early and medium harvesting has potential to retain 

nutrient in leafy vegetables. The present study shows that ALVs perform comparably, and in 

some cases better than their exotic vegetables such as B. vulgaris. Further studies are needed 

to assess nutritional composition of many ALVs under various water management strategies in 

different locations, climates and soils.  
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CHAPTER 6 1 

Postharvest drying maintains phenolic, flavonoid and gallotannin content of 2 
some cultivated African Leafy Vegetables. 3 

 4 

I. Masekob,⁎, T. Mabhaudhib, B. Ncubec, S. Tesfaya, H.T. Arayac, M.K. Fessehazionc, V.G.P. 5 
Chimonyob, A.R. Ndhlalac, C.P. Du Plooyc 6 

a 
aHorticultural Science, School of Agricultural, Earth and Environmental Sciences, 7 

University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South 8 
Africa 9 

bCentre for Transformative Agricultural and Food Systems, School of Agricultural, Earth & 10 
Environmental Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, 11 
Pietermaritzburg, 3209, South Africa 12 

b 
cAgricultural Research Council, Vegetable and Ornamental Plant Institute (ARC-VOPI), 13 

Private Bag X293, Pretoria 0001, South Africa 14 
*Correspondence: 215082595@stu.ukzn.ac.za; innocentmsk94@gmail.com; Tel: +27-(0)-33-15 

260-6108 16 
 17 

Abstract 18 

The study investigated the effect of three irrigation regimes (30%, 60% and 100% of crop water 19 

requirement (ETc) and three drying (sun, oven, shade) methods on phenolic, flavonoids and 20 

gallatannin content of leafy vegetables. Corchorus olitorius grown under full irrigation and 21 

subjected to sun drying (100% ETc x sun) had significantly higher total phenolic content 22 

followed by medium stress subjected to shade drying (60% ETc x shade). Water stressed plants 23 

then shade and sun dried retained better gallotannins content than other treatments. Amaranthus 24 

cruentus grown under drought and shade dried (30% ETc x shade) retained better total phenolic, 25 

flavonoid and gallotannin content. Drought stress and sun drying also performed better for A. 26 

cruentus (30% ETc x sun) in terms of all phenolic components measured. In Vigna unguiculata, 27 

total phenolic content was high in water-stressed plants subjected to sun drying (30% ETc x 28 

sun), results were similar to well-watered plants subjected to shade drying (100% ETc x shade). 29 

Furthermore, sun drying retained better flavonoid and gallotannin content than shade and oven 30 

drying. In Beta vulgaris, well irrigated plants and shade or oven dried (100% ETc x shade or 31 

oven) performed similar to stressed plants subjected to sun drying (30% ETc x sun) in phenolics. 32 
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Shade dried leaves had better flavonoid while drought stress had better gallotannins content 33 

compared to other treatments in B. vulgaris. The three leaf vegetables can grow under drought 34 

stress then sun and shade dried without compromising their phenolic content.  35 

 36 

Keywords: water stress, wild vegetables, processing, production, yield 37 

*To whom correspondence should be addressed (Email: innocentmsk94@gmail.com)   38 

 39 

6.1 Introduction  40 

African leafy vegetables (ALVs) are important food and nutritional security crops which can 41 

contribute to addressing gaps in nutrition because they are nutrient-dense and requires less 42 

water for production (Oelofse and van Averbeke 2012). Amaranthus cruentus L., Corchorus 43 

olitorius L. and Vigna unguiculata L.Walp are among the major ALVs of great importance in 44 

South Africa. They are good dietary sources of calcium, iron, antioxidants such as flavonoids, 45 

tannins and other polyphenolic constituents (Moyo et al. 2012). These bioactive compounds 46 

provide strong protective effects against diseases such as cancer, arthritis, emphysema, 47 

retinopathy, neuro-degenerative cardiovascular diseases, atherosclerosis and cataracts (Sarker 48 

and Opa 2018; Kaur and Kapoor 2002). Despite their importance, cultivation of ALVs has not 49 

been widely adopted in South Africa. The main constraint to increased production, marketing 50 

and consumption of these crops is the high perishability in the fresh form and seasonality (Smith 51 

and Eyzaguirre 2007; Voster et al. 2005). Most ALVs are available in summer during the rainy 52 

season (Modi et al. 2006). 53 

To overcome perishability and seasonal shortages, households apply preservation 54 

techniques that reduce their biological properties (Maseko et al. 2018). Drying is a way of 55 

processing leaf vegetables to ensure their availability during periods of short supply (Smith and 56 

Eyzaguirre 2007, Vorster et al. 2007) especially if packaging is unaffordable. Drying reduces 57 

microbiological activity through reduced moisture content in the food. There are several drying 58 
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methods that can be utilised for leafy vegetables which include sun drying, solar drying, vacuum 59 

drying, oven drying, and freeze-drying (Fellows 2009). The most common natural drying 60 

method includes sun and shade drying. Sun drying method is the simplest, affordable and easily 61 

accessible means for resource-constrained households to preserve seasonal foods (Masarirambi 62 

et al. 2010; Bhila et al. 2010). Despite being cheaper, sun drying is reported to cause high 63 

nutrient losses, requires a longer drying period and is prone to contamination (Faber et al. 2010; 64 

Bankole et al. 2005). Shade drying is also a natural drying method that maintain better 65 

nutritional quality although it takes many days to dry to constant weight (Rajeswari 2010). 66 

Shade dried samples have been reported to have the highest nutrient retention followed by sun 67 

drying and oven dried samples (Joshi and Mehta 2010). Oven drying is reported to retain more 68 

carotene than sun drying; reduces drying time, allows for even heat distribution and improves 69 

sensory attributes such as colour and texture (Mdziniso et al. 2006). However, oven drying is 70 

expensive for resource-constrained rural households who do not have ready access to 71 

electricity.  72 

In South Africa, sun drying of fresh leaves and sun drying of blanched leaves is the 73 

major method of processing leafy vegetables to make them available during periods of scarcity 74 

(Smith and Eyzaguirre 2007). The rural households usually store vegetables in a dried state in 75 

order to use them during times when they are not readily available (Misra et al. 2008; Smith 76 

and Eyzaguirre 2007). Van Averbeke et al. (2007) reported that electrification of the rural areas 77 

has introduced the new preservation technology, of freezing of leaves. However, most 78 

households are constrained with no access to a fridge or freezers (Van der Hoeven et al. 2013) 79 

and ovens hence freezing and oven drying methods are no options for them. 80 

Presently, there is very limited literature on the various drying methods for ALVs in 81 

South Africa. Most of the nutrients reported from drying have been based on collecting various 82 

samples from farmers or samples purchased from the market to conduct bioassays. Some of the 83 

drying methods reported was based on survey studies with no structured and controlled 84 
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experimentations conducted. This, however, makes it difficult to make nutritional 85 

recommendations as the field conditions in which the plants were produced has not been 86 

considered. South Africa is a dry country and crop production is mostly practiced under water 87 

deficit (Nyathi et al. 2018; Mabhaudhi et al. 2013; Annandale et al. 2011). For successful 88 

promotion and utilisation of ALVs, there is a need to conduct trials on production factors such 89 

as drought effect and postharvest factors and thus develop and promote locally processing 90 

techniques. Drought stress has been reported to enhance phenolic acids, flavonoids and 91 

antioxidants in A. tricolor (Sarkar and Oba 2018), phenolic content and antioxidant activity in 92 

leafy lettuce varieties (Malejane et al. 2018).  Currently there is scanty information regarding 93 

drought stress and drying effects on bioactive compounds such as phenolic, flavonoids and 94 

gallotannins of ALVs in South Africa. The present study was undertaken to determine the effect 95 

of water stress and drying methods on the total phenolic, flavonoid and gallotannin content of 96 

Amaranthus cruentus, Corchorus olitorius, Vigna unguiculata and a reference vegetable crop–97 

Beta vulgaris L.var. cicla. 98 

 99 

6.2 Material and Method 100 

6.2.1 Plant material and growth conditions 101 

ALVs were grown in an open field trial at the Agricultural Research Council (ARC) - Vegetable 102 

and Ornamental Plants (VOP) farm, Roodeplaat, Pretoria (25°35' S; 28°21' E; 1164 masl) under 103 

varied irrigation regimes during 2015/2016 summer season. The vegetables species used as 104 

planting material were: Amaranthus cruentus (Amaranth), Corchorus olitorius (Jute mallow), 105 

Vigna unguiculata (cowpea variety Bechuana white, a runner type) and Beta vulgaris var. cicla 106 

(Swiss chard cultivar ‘Ford Hook Giant’). The irrigation levels were: 30% (drought stress), 60% 107 

(medium stress) and 100% (well-watered) of crop water requirement (ETc). The vegetable 108 

leaves were harvested at six (6) weeks after transplanting (WATP) from each irrigation 109 
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treatment and packed in an upright position in clean plastic crates and transported to the storage 110 

facility where they were packed according to the drying methods. 111 

 112 

6.2.2 Collection and drying of plant samples 113 

Samples of Amaranthus cruentus, Corchorus olitorius, Vigna unguiculata (Bechuana white, a 114 

runner type) and Beta vulgaris var. cicla from each irrigation treatment (30%, 60% and 100% 115 

ETc) were subjected to three drying methods. The drying methods were: shade (28°C), sun 116 

(35°) and oven (45°C). Sun drying: fresh leafy vegetables were evenly spread on a tray and left 117 

to dry in the sun. Oven drying: the vegetables were oven dried at 45°C for 48 hours until 118 

completely dried. Shade drying: leaves were dried in a closed shade which protected the drying 119 

vegetables from the direct sunlight. The room selected for shade drying was well ventilated. 120 

The temperature range was (ambient temperature 25-35°C). Natural current of air was used for 121 

shadow drying the leaves. In all drying methods, leaves were turned occasionally until constant 122 

weight was attained. The dried leaves were ground and the powder was then sieved manually 123 

by using sieve with size 250 mm. Around 3 g of powder sample was used to test the particle 124 

size using particle size analyser. The dried samples were then used for the required analysis.  125 

 126 

6.2.3 Sample Preparation 127 

Dried plant materials were ground into powders and extracted (1:20 w/v) with 50% aqueous 128 

methanol in an ultrasonic bath for 1 h. The extracts were filtered under vacuum through 129 

Whatman’s No. 1 filter paper. The resulting fresh extracts were then used in the phytochemical 130 

analysis.  131 

 132 

6.2.4 Bioassays 133 

6.2.4.1 Determination of total phenolic and flavonoid content 134 
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Folin Ciocalteu (Folin C) assay as described by Makkar (1999) with slight modifications was 135 

used to determine amounts of total phenolic compounds in plant samples. Fifty microlitres of 136 

each extract were transferred into test tubes then 950 μl of distilled water were added followed 137 

by 1 N Folin C reagent (500 μl) and 2% sodium carbonate (2.5 ml). Under room temperature 138 

for 40 min the test mixtures were incubated. The absorbance was read at 725 nm using a UV-139 

vis spectrophotometer (Varian Cary 50, Australia) against a blank consisting of aqueous 140 

methanol instead of extract. Total phenolic concentrations were expressed in mg gallic acid 141 

equivalents (GAE) per g dry weight (DW). Total flavonoid content was determined following 142 

the vanillin assay Makkar (1999) and expressed as µg catechin equivalents (CTE) per g DW.  143 

Extracts (50 μl), were made up to 1 ml with methanol in test tubes before adding 2.5 ml 144 

methanolic-HCl (95:5, v/v) and 2.5 ml vanillin reagent (1 g 100 ml-1 acetic acid). Similar 145 

preparations of a blank that contained methanol instead of plant extracts were made. 146 

Absorbance was read at 500 nm using a UV-vis spectrophotometer after 20 min at room 147 

temperature.  148 

 149 

6.2.4.2 Determination of gallotannin content 150 

Hydrolysable tannin as gallotannins was determined using method of Makkar (1999) with slight 151 

modifications according to Ndhlala et al. (2007). Sample extracts (50 µl) were made up to 1 ml 152 

with distilled water (in triplicate). Sulphuric acid (100 µl, 0.4 N) and 600 µl of rhodanine were 153 

added to the diluted extracts. Incubation at room temperature was done for 5 min, and then 200 154 

µl of potassium hydroxide (0.5 N) was added followed by 4 ml distilled water after a further 155 

2.5 min. The mixtures were incubated at room temperature for 15 min, and then absorbance 156 

was done at 520 nm using a UV-visible spectrophotometer against a blank that contained 50% 157 

aqueous methanol instead of plant extract. For standard curve, freshly prepared stock of gallic 158 

acid solution (0.1 mg/ml in 0.2 N sulphuric acids) was. Gallotannin concentrations were 159 

expressed as gallic acid equivalents (GAE), derived from a standard curve. 160 
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 161 

6.2.5 Statistical analyses 162 

All data were subjected to two-way analysis of variance (ANOVA) using SPSS software 163 

for Windows (IBM SPSS, version 25.0, Chicago, IL, USA). Where there were significant 164 

differences (P≤0.05), the means were further separated using Duncan’s multiple range test 165 

(DMRT). 166 

 167 

6.3 Results and discussion 168 

6.3.1 Total Phenolics 169 

Phenolic compounds play a major role in the prevention of cancer and cardiovascular 170 

diseases (Moyo et al. 2012). They are secondary metabolites that are synthesized by plants 171 

during normal development and in response to stress conditions (Naczk and Shahidi 2004). In 172 

the present study, total phenolic content increased significantly (P<0.05) in response to the 173 

interaction effect between irrigation and drying in C. olitorius (Figure 6.1). Total phenolic 174 

content increased with increase in the amount of irrigation water applied in sun drying; while 175 

an increase with increase in water application from 30 to 60% ETc followed by a decline was 176 

observed in shade drying. Leaves that were grown in well irrigated plots and sun dried (100% 177 

ETc x sun drying) produced higher phenolic of 17.5 mg/gDW which was also not significantly 178 

different to 16.5 mg/gDW obtained in medium irrigated C. olitorius and shade dried (100/60% 179 

ETc x shade drying). Leaves from all water rgimes subjected to oven drying had lowest phenolic 180 

content (7.9 mg/gDW) relative to sun and shade dried leaves (Figure 6.1). Results are in 181 

agreement with those of Mphahlele et al. (2016) who reported decrease in phenolic compounds 182 

due to degradation at elevated temperature such as during oven drying process. Postharvest 183 

processing using sun or shade is economic for resource-poor farmers compared to oven drying 184 

were resources in terms of oven and electricity are needed. Variation in the results of oven dried 185 

samples compared to sun and shade drying may be due to variation in drying temperature used.186 
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Figure 6.1. Interaction effect of irrigation and drying on phenolic content of Amaranthus cruentus, Corchorus olitorius, Vigna unguiculata and Beta 210 
vulgaris var. Figure cicla. 211 
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Rababah et al. (2015) observed a decrease in phenolic content in herbs due to oven 213 

drying. Quality is produced in the field hence plants grown under favourable environment 214 

translated to better yield quality. In terms of cost production to farmers, leaves grown under 215 

medium stress and shade dried (60% ETc x shade drying) performed better than all treatments 216 

on total phenolic content. In terms of phenolic content C. olitorius cultivation under drought-217 

stressed areas such as semi-arid and drought-prone area is less feasible. 218 

 219 

Phenolic acids of amaranths species such as A. tricolor have been reported to be good 220 

sources of natural antioxidant as they detoxify reactive oxygen species (ROS) in the human 221 

body (Sarker and Oba 2018; Venskutonis et al. 2013). Similar results were obtained in the 222 

present study, total phenolic content significantly (P<0.05) increased in response to interaction 223 

of irrigation and drying in A. cruentus (Figure 6.1). 224 

Treatment combination of drought stress and shade drying (30% ETc x shade drying) 225 

had higher total phenolic content of 11.34 mg/gDW compared to other treatments combinations 226 

which had as lower as 7.6 mg/gDW. Water stress condition could have triggered production of 227 

secondary metabolites (Naczk and Shahidi 2004) in vegetables in the current study. Plant 228 

phenolics are the most widely distributed secondary metabolites that are involved in the 229 

response to stress (Cheynier et al. 2013; Ncube et al. 2013). Drought stress has been reported 230 

to enhance phenolic acids and antioxidant capacity of Amaranthus (Sarker and Oba 2018). 231 

Phenolic compounds accumulation is also affected by types and severity of stress (Ncube et al. 232 

2013) that suggest the vairiation in results for the species under study. All treatment 233 

combination with oven drying had lower total phenolic relative to sun and shade drying. Results 234 

are similar to findings of Joshi and Mehta (2010) who reported that shade dried samples have 235 

the highest nutrient retention compared to sun and oven dried samples. Sun and shade drying 236 

are cost effective especially for poor farmers where there is no electricity. Based on the results 237 

of high total phenolic in limited irrigated plants, A. cruentus can be produced in marginal areas 238 
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hence a promising crop for farmers of semi-arid and dry areas (Sarker and Oba 2018). 239 

Furthermore, postharvest processing of A. cruentus using sun/shade is economic for resources 240 

poor farmers compared to oven drying were resources in terms of oven and electricity are 241 

needed. 242 

Interaction effect between the drying and irrigation on the total phenolics content of V. 243 

unguiculata was noted in this study (Figure 6.1). Irrigated plants that were shade and sun dried 244 

better maintained phenolic content than oven dried treatment. Zhang et al. (2009) reported 245 

severe loss of total flavonoids and total phenolics in oven dried bitter melon leaves compared 246 

to freeze-dried product. Thermal treatment has been reported to have an effect on the depletion 247 

of polyphenols in food products (Kaur and Kapoor, 2001). In sun dried treatments, total 248 

phenolic levels decreased as amount of water applied increased while the reverse effect was 249 

true for shade dried treatments, a phenomenon that suggest shade drying to be preserving 250 

phenolic content in the dried vegetative products. Total phenolic content was high in treatments 251 

obtained from limited water and sun dried (12.6 mg/gDW in 30% ETc x sun drying) which was 252 

statistically not different to well-irrigated and shade dried samples (12.1 mg/gDW- 100% ETc 253 

x shade drying). Phenolic compounds are synthesized by plants during normal development 254 

and in response to stress conditions (Naczk and Shahidi 2004). Similar results of total phenolic 255 

content in limited and well-watered conditions under different drying conditions asserts to 256 

shade drying as being superior and ideal in preserving the phenolic content in stored vegetables. 257 

Possible explanation could be drought drying method (shade) preserves the state of phenolic 258 

content as opposed to other drying methods.  259 

The results of total phenolics content in response to interaction of irrigation and drying 260 

in Beta vulgaris are presented in Figure 6.1. The study showed that well irrigated treatments 261 

subjected to shade or oven dried (11.7 mg/gDW in 100% ETc x shade and 11.8 mg/gDW in 262 

100% ETc x oven drying) had higher total phenolic levels than other treatments. Higher 263 

phenolic compounds are synthesized by plants during normal development a (Naczk and 264 
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Shahidi 2004). Drought stressed plants subjected to sun drying (11.1 mg/gDW 30% ETc x sun 265 

drying) was the third promising treatment. Similar observation of increase in total phenolic 266 

concentration in water stressed plants was reported in lettuce (Min et al. 2010). Total phenolic 267 

content decreased with increase water application for sun dried samples while the opposite was 268 

true for oven drying. Oven drying yielded results comparable to those of shade drying possibly 269 

due to controlled uniform heating resulting in increased availability of nutrients. Mdziniso et 270 

al. (2006) also found that oven drying reduces drying time and improves some sensory 271 

attributes like colour and texture. Higher phenolic content in well-watered conditions in Beta 272 

vulgaris compared to drought stressed plants in A. cruentus and V. unguiculata indicate that 273 

production of secondary metabolites (such as phenolics) vary from species involved, as species 274 

have different mechanisms of interactions with stress environments (Ncube et al. 2013).   275 

6.1.3.2 Flavonoid content 276 

Flavonoids have a variety of biological activities because of their antioxidant effect; 277 

they protect against coronary heart disease, stroke and cancer and also produce colour and 278 

flavour in food (Mampholo et al. 2015). Total flavonoid content in C. olitorius was not affected 279 

by water regimes and drying method. There was no interaction effect recorded and the results 280 

on independent factors are presented in Table 6.1. Although no significant differences were 281 

observed, plants grown under stress (30% ETc x shade drying) and shade dried produced the 282 

highest flavonoid content of 4.02 mg/gDW relative to other treatments. Higher flavonoids 283 

content under limited water combined with shade drying indicates the possibility of cultivating 284 

the crop under drought-stressed conditions and utilising cheaper method of preservation to 285 

retain nutrients.286 
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Table 6.1. Independent influence of irrigation and drying on polyphenolic content of selected African leafy vegetables.  287 

Crops Compounds Irrigation levels (mg/gDW) Drying (mg/gDW) 
30% ETc  60% ETc 100% ETc Shade Sun Oven 
Mean±SE Mean±SE Mean±SE Mean±SE Mean±SE Mean±SE 

A. cruentus Phenols  10.08±0.36a 6.52±0.36b 10.01±0.36a 7.68±0.36c 10.40±0.36a 8.53±0.52b 
Flavonoids 3.99±0.03a 3.88±0.03b 3.99±0.03b 3.92±0.03b 3.92±0.03b 4.03±0.03a 
Gallotannins 10.04±0.19a 9.62±0.19b 9.58±0.19b 9.08±0.19b 10.55±0.19a 9.61±0.19b 

C. olitorius Phenols  11.42±0.52a 12.57±0.52b 13.79±0.52c 15.86±0.52a 14.22±0.52b 7.70±0.52c 
Flavonoids 3.94±0.04a 3.86±0.04b 3.85±0.04c 3.94±0.04a 3.86±0.04a 3.85±0.04a 
Gallotannins 9.40±0.18a 9.29±0.18a 8.86±0.18b 9.39±0.18a 9.52±0.18a 8.64±0.52b 

V. unguiculata Phenols  10.81±0.32a 10.51±0.32a 10.64±0.32a 15.86±0.32a 11.21±0.32a 9.79±0.32a 
Flavonoids 3.87±0.40a 3.82±0.40a 3.87±0.40a 3.88±0.40a 3.76±0.40a 3.85±0.40a 
Gallotannins 10.37±0.33a 9.56±0.33b 13.79±0.33a 10.77±0.33a 14.22±0. 33a 9.59±0.33a 

B. vulgaris L Phenols  10.01±0.56a 9.78±0.56a 10.61±0.56a 10.31±0.56a 9.87±0.56a 10.22±0.56a 
Flavonoids 3.98±0.40a 3.96±0.33a 3.96±0.33a 4.08±0.33a 3.84±0. 33b 3.97±0.33c 
Gallotannins 10.20±0.13a 9.57±0.13c 9.86±0.13b 9.85±0.13a 9.92±0.13a 9.87±0.13a 

* Mean values (±SE) in rows with different letters are significantly different (p < 0.05; n = 3) according to Duncan’s multiple range tests. 288 
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Amaranthus species such as tricolor are sources of natural antioxidants such as 

flavonoids that serve some protective against a number of conditions, such as cancer and 

cardiovascular diseases (Venskutonis et al. 2012). Various factors such as drought (Sarker and 

Oba 2018) and drying method (Joshi and Mehta, 2010) are reported to influence accumulation 

of nutritional and bioactive compounds in plants. Results on total flavonoid content in response 

to the interaction effect between irrigation and drying in A. cruentus are presented in Figure 

6.2.  
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Figure 6.2. Interaction effect of irrigation and drying method on flavonoid content in 

Amaranthus cruentus. 

Total flavonoid content was higher or statistically similar in stressed plants subjected to 

all three drying (30% ETc x sun, oven, and shade drying) methods compared to other treatment 

combination. Flavonoids accumulation may represent a defense against the increased oxidative 
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stress produced by drought, because flavonoids respond to various kinds of adverse 

environmental conditions and play several protective roles (García-Calderón et al. 2015). 

Although oven drying is one of the recommended methods in preserving agricultural produce 

due to even drying temperature that retains aesthetic physical quality attributes, nutritional 

degradation has been reported due to high drying temperature (Joshi and Mehta 2010). 

Furthermore, it is costly for resource-constrained households as it requires the usually 

inaccessible resources such as ovens and electricity. Higher levels of flavonoids in stressed 

plants could be attributed deficit irrigation that influences the abiotic stress condition that 

stimulates the biosynthesis of phytochemicals in plants and improves their levels (Malejane et 

al. 2018). Drought stress has been reported to enhance flavonoids in amaranths species such as 

A. tricolor (Sarker and Oba 2018). The results reported in this current study are consistent with 

those on phenolic and gallotannins, in which the interactive effect of drought stress and shade 

drying overall performed better in all bioactive compounds. Shade (room temperature) drying 

has been reported to retain higher amounts of total phenolics, antioxidant activity and 

flavonoids than oven drying (Rababah et al. 2015). Furthermore, postharvest processing of A. 

cruentus using shade is economic for resources poor farmers compared to oven drying that 

require resources such as oven and electricity.  

 

 Independently, drying as a factor significantly (P<0.05) affected total flavonoid content 

in V. unguiculata and no interaction effect was observed (Table 6.1). Total flavonoid content 

was higher in sun dried samples compared to shade and oven drying. Although sun drying 

exposes samples to direct sun exposure and contamination, it still remains one of the major 

options for rural households that have limited resources (Voster et al. 2007). This is because 

sun drying is the simplest, affordable and easily accessible means for poor households to 

preserve seasonal foods (Masarirambi et al. 2010). Sun drying is less-resource demanding as 

the sun is freely accessible and is less time consuming for marginalised populations. Total 
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phenolics, antioxidant activity and flavonoids content in herbs decreased apparently by oven 

dried compared to shade drying (Rababah et al. 2015). 

 

In B. vulgaris, drying significantly (P<0.05) affected total flavonoid content although 

no significant interaction effect was observed (Table 6.1). Shade drying had the highest 

flavonoid content, followed by sun drying and oven drying respectively and the differences 

between these methods were significant. Joshi and Mehta (2010) reported similar findings that 

shade dried samples have the highest nutrient retention compared to sun and oven dried 

samples. Rababah et al. (2015) reported the loss of flavonoids to be less in shade drying than 

oven drying possibly due to drying time and temperature (Schieber et al. 2001). Heating may 

breakdown some phytochemicals which affect cell wall integrity and cause a migration of some 

flavonoids component (Rababah et al. 2015). Lack of response of flavonoids due to water stress 

maybe due to intermolecular conversion of flavonoids to phenolic that occur under higher stress 

levels (Ncube et al. 2013). 

 

6.3.3 Total Gallotannins 

Gallotannins are the simplest hydrolysable tannins, containing a polyphenolic and a 

polyol residue (Gan et al. 2018). They possess useful bioactivities, including antioxidant, 

cardiovascular protective and anti-diabetic properties (Gan et al. 2018). Various factors 

influence production or modification of plant secondary metabolites such as gallotannins. In 

the present study, there was a significant (P<0.05) increase in gallotannin content due to 

interaction of irrigation and drying in C. olitorius (Figure 6.3).  
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Figure 6.3. Interaction effect of irrigation and drying method on gallotannin content in 

Amaranthus cruentus and C. olitorius leaves 

 

Total gallotannin content was lower in oven dried samples compared to sun and shade 

dried ones in all irrigation regimes. The treatment that performed better was the drought stressed 
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plants subjected to shade drying (30% ETc x shade drying) with 10.2 mg/gDW as the highest 

relative to 8.42 mg/gDW which was the lowest in well irrigated plants subjected to oven drying 

(100% ETc x ovendrying). Overall observation was that, all stressed plants had better 

gallatannin retention than medium/well watered plants. The possible reason to high gallotannin 

content in water-stress plant material could be that deficit irrigation influences the abiotic stress 

condition that stimulates the biosynthesis of these phytochemicals in plants (Malejana et al. 

2018). Ncube et al. (2013) reported that under severe stress conditions that dehydrate tissues, 

flavonoids are converted into tannins (gallatannins) to deal with most devastating stress. This 

could account for the results observed in C. olitorius because Flavonoids were not significantly 

affected possible due to conversion to gallatannins. Other treatment combination that produced 

higher gallotannin were plants grown under medium water conditions and subjected either to 

sun or shade drying (60% ETc x shade/sun drying). Shade and sun drying treatment 

combinations had the highest total gallotannins content which were significantly different to 

those from oven drying. Joshi and Mehta (2010) reported similar findings on nutrient retention 

for various drying methods. 

 

The concentrations of secondary metabolites in vegetables is influenced by many 

factors, including soil, irrigation, and other climatic conditions (Chandra et al. 2014). Total 

gallotannins content was significantly (P<0.05) affected by the interaction between irrigation 

and drying method in A. cruentus (Figure 6.3). Total gallotannins content were significantly 

higher in samples obtained from severe and medium drought stress conditions then sun dried 

(30/60% ETc x sun drying) compared with the other treatment combinations. Under water stress 

conditions tannins (gallatannins) are formed to deal with moisture stress (Ncube et al. 2013) 

and could accaount for results obaerved. Voster et al. (2007) reported that preservation through 

sun drying is a preferred option for rural households that have limited resources. Other 

treatment combinations that performed comparatively similar were samples from drought stress 
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conditions subjected to oven or shade drying (30% ETc x oven/shade drying). Drought stressed 

plants subjected to shade and sun drying are cost effective treatments because less water is used 

for production and the drying methods require less resources. Overall, treatments combinations 

with sun drying had the highest gallotannins content than oven and shade drying while treatment 

a combination of drought stressed plants performed better than medium and well watered plants 

(Table 6.1). The results of gallotannin content were consistent with those of flavonoid and 

phenolic content indicating the possibility of producing A. cruentus under marginal areas and 

using inexpensive drying methods to preserve the quality of the produce. 

 

Total gallotannins content in V. unguiculata was significantly affected by drying and 

irrigation independently (Table 6.1). Sun and shade drying had significantly higher gallotannins 

content compared to oven drying although the differences between sun and shade drying was 

not significant. Shade and sun dried samples have been reported to have the highest nutrient 

retention than oven dried samples (Joshi and Mehta 2010). Drought stressed and well watered 

plants had higher gallotannin content than medium stressed plants. Deficit irrigation has been 

reported to stimulate the biosynthesis of phytochemicals in plants and improves crop quality 

(Malejana et al. 2018). The ability of V. unguiculata in drought stress conditions to produce 

comparably similar gallotannin content with well watered plants indicates its adaptability under 

water limited conditions. Since limited water application and well watered plants produced 

similar results and hence application of limited water could be an economical viable option.  

The independent influence of irrigation on total gallotannins content in B. vulgaris is 

presented in Table 6.1. Drought stressed plants had higher gallotannin content (10.20 mg/gDW) 

relative to medium stressed and well watered plants (9.5 and 9.8 mg/gDW respectively) in B. 

vulgaris. High phenolic productions are favoured by drought stress and high temperature 

(Ncube et al. 2012) and could accaount for the results obaerved. When plants are exposed to 

stress they produce secondary metabolites for protection against oxidative damage (Sarker and 



 

144 
 

Oba 2018; Malejana et al. 2018) and gallotannins are one such compounds serving this purpose. 

Natural drying (drying in the shade or in the sun) methods performed better than oven drying 

in all crops. These methods are still the most widely used because of the lower cost and 

affordability although it is difficult to control large quantities and achieve consistent quality 

standards. Drought stressed plants had better retention of nutrient quality compared to well-

watered plants.  

 

6.4 Conclusion 

Drying methods and water regimes influenced flavonoid, phenolic and gallotannins content 

of all crops under study. C. olitorius grown under full irrigation and shade dried had higher total 

phenolic indicating that addition of water could lead to improved production. Medium irrigated 

and shade dried (60% ETc x shade drying) also retained better phenolic in C. olitorius. Total 

gallotannins content was retained in drought stressed plants subjected to all drying methods 

with shade and sun drying being economic due to use of less and inexpensive resources. 

Although flavonoids were not affected by irrigation and drying; application of less water and 

sun/shade drying is cost effective. A. cruentus grown under drought stress and shade dried 

retained better total phenolics, flavonoids and gallotannins content being cost effective by less 

water application and less resources for drying. In V. unguiculata, total phenolic content was 

high in plants grown under limited water and sun dried similar to well watered plants subjected 

to shade drying. Sun drying retained flavonoids and galatanins better than other treatments 

followed by shade drying. Drought stress retained better gallotanninn content similar to well 

conditions, therefore, drought stress treatments is economic as water is saved. In Beta vulgaris, 

total phenolic content was high in plants grown under limited water and sun dried similar to 

well watered plants subjected to shade drying. Shade drying retained flavonoids better than 

other treatments. Drought stress retained better gallotanninn content similar drought stress 

treatments is economic as water is saved. V. unguiculata and C. olitorius were comparable to 
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B. vulgaris in retention of bioactive compounds while A. cruentus was better that all crops under 

similar conditions. Household can adopt drying methods that promotes high retention of 

nutritional and sensory quality attributes and water regimes that are cost effective in preserving 

water. Sun and shade drying retained flavonoid, phenolic and gallotannins content better than 

oven drying in all crops and are thus better methods of drying. For shade drying there is need 

to regulate heat to avoid degradation of nutrients while in sun drying there is need to reduce 

exposure of vegetables to contaminants like dust and insects and direct ultraviolet. Drought 

stressed plants in most crops were better in terms of retention of flavonoid, phenolic and 

gallotannins content compared to well irrigated plants. This concurs with the notion that they 

are better adapted for marginal areas of production without compromising nutritional quality. 

The study indicate potential to manipulate preharvest factors such as water regimes or practise 

deficit irrigation inorder to optimise postharvest yield quality such as phenolic compounds. 

Similar studies in future should also include additional drying methods such as freeze, 

microwave and solar drying. Further studies are also needed to explore nutritional variation as 

a function of drying in different harvests, considering that leaves are harvested several times 

per season. 
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CHAPTER 7 

Influence of postharvest packaging, temperature and storage time on the 
phenolic composition and antioxidant properties of Corchorus olitorius 
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Abstract 

BACKGROUND: Production and utilisation of African leafy vegetables is hindered by lack of 
information on postharvest management. The objective of this study was to assess variation in 
nutrient content of Corchorus olitorius in response to packaging (non-perforated and 
perforated), temperature [room storage, refrigerated storage (4℃)] and retail storage (10℃) and 
storage time (2, 4, 6, 8, 10 days). 
RESULTS: Corchorus olitorius samples from each treatment were analysed for total 
flavonoids, total phenolics, antioxidant activity, β-carotene and overall acceptance. Phenolic 
contents were high in treatment combination involving 4 and 10℃ compared to room 
temperature while a decrease was observed with an increase in storage time. Flavonoid content 
increased significantly with time up to 6 days then declined. Total phenolic content was 
significantly higher in leaves kept at 4 and 10℃ combined with non-perforated packaging and 
was not significantly different to those stored at 4℃ combined with perforated packaging. Total 
phenolic content decreased as storage time increased with non-perforated packaging treatment 
combination performing better than perforated. As storage time increased combined with any 
temperature, phenolic content decreased, with 4 and 10℃ treatment combinations performing 
better than room temperature treatments. Antioxidant activity and overall acceptance was 
improved in any treatment combination kept at 4 and 10℃ compared to room temperature for 
both packagings as storage time increased.  
CONCLUSION: Corchorus olitorius leaves stored at room temperature had a shelf life of 2 
days, at 4℃ of 8 days and 10℃ for 10 days in non-perforated and perforated packaging. Results 
indicated that overall quality was maintained when leaves were stored at 10℃ for 10 days and 
4℃ for 8 days using both types of packaging.  
 
Keywords: bioactive compound, shelf life, yield  
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7.1 Introduction  

Corchorus olitorius (Jute mallow) is one of the major African leafy vegetables (ALVs) 

growing naturally in South Africa with a potential for development into a commercial crop.1,2 

It belongs to the Tiliaceae family and is an erect annual herb that varies from 20 cm to 

approximately 1.5 m in height.1,2 The stems are angular with simple oblong to lanceolate leaves 

that have serrated margins and distinct hair-like teeth at the base.1,2 The crop contains high 

levels of iron, protein, calcium, thiamin, riboflavin, niacin, folate and dietary fibre and thus a 

good candidate in alleviating nutrient deficiencies.3,4 Previous studies have shown that ALVs 

are rich sources of phenolic compounds and other phytochemicals with antioxidant properties 

that contribute to reducing oxidative damage.5,6 Despite the abundance of Corchorus olitorius 

species, rich in nutrients and adapted to marginal production conditions, it is still considered a 

wild species and is not being cultivated in South Africa.7 It is currently harvested and utilised 

from the wild and people in the northern regions of South Africa appreciate its sliminess more 

than those in the south regions and  add bicarbonate of soda to reduce the sliminess when 

cooking.8,9,10 One of the main challenges to its production and utilisation is seasonality and high 

perishability in its fresh form.1 Considering its nutritional composition and potential for 

nutritional security, the possibility of storing the leaves and increasing its shelf life thus require 

urgent attention. 

 

Corchorus olitorius would also potentially fetch good prices if there were innovative ways 

of presenting it in the market such as packaging which can attract the attention of consumers.7 

According to Matenge et al.11 there is need to improve the image of ALVs in order to improve 

acceptability, preference and consumption by mostly younger consumers. At present, most 

ALV are simply uprooted or cut at the stems, sometimes washed, then tied into bunches and 

presented in the market. Proper packaging is essential for protecting ALVs against spoilage and 

microorganism decay, preserve their quality and provide convenience of handling. 12 Voster et 

al.13 reported that even dried leafy vegetable products can be packaged to increase shelf life.  

 

Temperature and storage conditions are some of the factors that influence the deterioration 

of harvested commodities.14 Higher temperatures accelerate physiological deterioration and 

quality loss. Nyaura et al.15 reported  an 88% decline in ascorbic acid content in amaranth 

vegetable when kept at room temperature after four days of storage while the lowest loss was 

observed at 5°C (55% loss) after 23 days of storage. Based on this study, shelf life extension 

and nutrient preservation of vegetable amaranth can be achieved through storage at 5°C. Storage 

time and temperature has been reported to significantly impact on shelf life and quality of 
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vegetable produce.16 It is very important to have sufficiently long shelf life of produce while 

maintaining good nutritional quality for its intended consumers.17 Fresh green leaves of 

Amaranthus reportedly lost 85% of β-carotene due to inappropriate storage conditions.18 Thus, 

it is of great importance to establish the appropriate storage time and temperature to maintain 

the quality of vegetables.19  

 

A study conducted on okra (Abelmoschus esculentus L. Moench) on various storage 

temperatures (4℃, 8.5℃, 13℃ and room temperature) showed that marketable pods were from 

the 13℃ storage temperature in non-perforated and perforated packaging.20,21 Thompson22 

further reported that optimal storage temperatures range between 13℃ and 18℃ for okra. 

Despite these promising results, it is difficult to extrapolate these recommendations because the 

composition and concentration of phytochemicals are influenced by various factors such as crop 

species, cultural practices, geographic origin, climatic conditions, postharvest storage 

conditions and postharvest processing procedures.23 Recent studies conducted in South Africa 

on A. cruentus and S. retroflexum24 and on B. chinensis 12 indicate that modified packaging and 

storage at 10°C can reduce postharvest losses and retain the overall quality and bioactive 

compounds on the retailer’s shelf during marketing. South Africa has a high diversity of ALVs 

that are available for consumption that include C. olitorius. However, literature information is 

very scanty on the effects of combined factors such as packaging, temperature and storage time 

on the changes in chemical propersties of olitorius. This study, therefore, was conducted with 

the aim of determining the effect of postharvest packaging, temperature and storage time on the 

total phenolic content, flavonoid, antioxidant properties and marketability of C.olitorius.  

 

 

7.2 Materials and methods 

7.2.1 Plant material and growth conditions 

Corchorus olitorius was grown in an open field trial at the Agricultural Research Council 

(ARC) - Vegetable and Ornamental Plant (VOP), Roodeplaat, Pretoria (25°35' S; 28°21' E; 

1164 masl), under full irrigation during 2015/2016 summer season. The crop was irrigated three 

times a week to meet crop water requirements and fertiliser was applied according to soil 

analysis results done at the Agricultural Research Council–Institute for Soil, Climate and Water 

(ARC–ISCW), Acardia, Pretoria. Leaf growth was monitored throughout the growing period 

and harvested during the early morning for the trial. The leaves were harvested at six (6) weeks 

after transplanting (WATP) and packed in an upright position in clean plastic crates and 

immediately transported to the storage facility (100 m from the harvesting site) for packaging 
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and storage. Each treatment had 3 replicates, each containing approximately 200 g of fresh 

leaves.  

 

7.2.2 Packaging and storage  

Approximately 200 g of fresh leaves per replication were packaged separately in two types of 

biorientated polypropylene packages, perforated (micro perforations) and non-perforated 

(according to the supplier) obtained from Knilam Packaging (Pty) Ltd (Cape Town, South 

Africa). This packaging is used by vegetable retailers across South Africa. The thickness of the 

bags was 35 µm (size 40 cm × 18 cm), and sealed with a heat sealer in order to create suitable 

internal atmospheres. The packed produce were then stored at 4°C, 10°C and room temperature 

for 2, 4, 6, 8 and 10 days. The 10℃ storage temperature chosen for this study is representative 

of the retail display market conditions in South Africa 24 while 4℃ is the standard temperature 

used in commercial retail stores in Johannesburg, Gauteng Province, South Africa. 25 The 

temperatures of 4℃, and 10℃ were attained using refrigerators while room temperature 

(approx temperature range 22℃-30℃) was obtained by placing the leaves on tables in the open 

at room temperature that was well-lit during the day and dark during the evening.  

 

7.2.3 Sample preparation 

Leaf samples were removed after 2, 4, 6, 8 and 10 days from different storage temperature 

conditions and the changes with respect to quality and bioactive compounds in the leaves were 

investigated. Fresh leaf samples were separately oven dried at 50°C for 48 h. Dried plant 

materials were ground into fine powder and extracted (1:20 w/v) with 50% aqueous methanol 

in an ultrasonic bath for 1 h. The extracts were filtered under vacuum through Whatman’s No. 

1 filter paper. The extracts were concentrated under pressure using a rotary evaporator at 30°C 

and completely dried under a stream of air. The extracts were stored in airtight vials at 10°C 

until needed for various analysis. Fresh extracts of 50% aqueous methanol were used in the 

phytochemical analysis.  

 

 

 

7.2.4 Determination of total phenolics and flavonoids 

 Dried samples of 2 g were extracted with 20 ml of 50% (v/v) aqueous methanol by sonication 

on ice for 20 min. Whatman No. 1 filter paper was used to filter extracts under vacuum. Folin 

Ciocalteu (Folin C) assay as described by Makkar 26 with slight modifications was used to 

dertemine amounts of total phenolic compounds in plant samples. Fifty microlitres of each 
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extract were transferred into test tubes then 950 μl of distilled water were added followed by 1 

N Folin C reagent (500 μl) and 2% sodium carbonate (2.5 ml).  The test mixtures were 

incubated under room temperature for 40 min. The absorbance was read at 725 nm using a UV-

vis spectrophotometer (Varian Cary 50, Australia) against a blank consisting of aqueous 

methanol instead of the extract. Total phenolic concentrations were expressed in mg gallic acid 

equivalents (GAE) per g dry weight (DW). Total flavonoid content was determined following 

the vanillin assay of Makkar 26 and expressed as µg catechin equivalents (CTE) per g DW.  

Extracts (50 μl) were made up to 1 ml with methanol in test tubes before adding 2.5 ml 

methanolic-HCl (95:5, v/v) and 2.5 ml vanillin reagent (1 g 100 ml-1 acetic acid). Similar 

preparations of a blank that contained methanol instead of plant extracts were made. 

Absorbance was read at 500 nm using a UV-vis spectrophotometer after 20 min at room 

temperature. 

 

7.2.4 β-Carotene-linoleic acid model system (CLAMS) 

The delay or inhibition of β-carotene and linoleic acid oxidation was measured according to 

the method described by Amarowicz et al. 27 with slight modifications. The antioxidant assay 

measures the ability of a test solution to prevent or minimize the coupled oxidation of β-carotene 

and linoleic acid in an emulsified aqueous system. In the reaction, the emulsion loses its orange 

colour due to the reaction with radicals, but this process can be inhibited by antioxidants.  

β-Carotene (10 mg) was dissolved in 5 ml chloroform in a brown Schott bottle. The excess 

chloroform was evaporated under vacuum, leaving a thin film of β-carotene near to dryness. 

Linoleic acid (200 µl) and Tween 20 (2 ml) were immediately added to the thin film of β-

carotene and mixed with aerated distilled water (497.8 ml), giving a final β-carotene 

concentration of 20 µg/ml. The mixture was further saturated with oxygen by vigorous agitation 

to form an orange coloured emulsion. The emulsion (4.8 ml) was dispensed into test tubes to 

which the sample extracts (200 µl of 6.25 mg/ml) were added, giving a final concentration of 

250 µg/ml in the reaction mixtures. Absorbance for each reaction was immediately (t = 0) 

measured at 470 nm and incubated at 50°C, with the absorbance of each reaction mixture being 

measured every 30 min for 180 min. Tween 20 solution was used to blank the 

spectrophotometer. The negative control consisted of 50% methanol in place of the sample. The 

rate of β-carotene bleaching was calculated using the following formula: 

Rate of bleaching (R)  = �ln �
A t=0  

A t=t  
��  × 

1
t
 

Where At=0 is the absorbance of the emulsion at 0 min; and At=t is the absorbance at time t 

(90 min; any point on the curve can be used for the calculation). The calculated average rates 
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were used to determine the antioxidant activity (ANT) of the respective samples, and expressed 

as percentage of inhibition of the rate of β-carotene bleaching using the formula: 

 

% ANT  = �
R control  −  R sample  

R control  
�× 100 

Where Rcontrol and Rsample represent the respective average β-carotene bleaching rates for the 

control and test samples, respectively. Antioxidant activity was further expressed as the 

oxidation rate ratio (ORR) based on the equation: 

ORR =  
R sample  

R control  
 

 

7.2.5 Ferric-reducing power Assay (FRAP) 

The  ferric  reducing  power  of  the  Corchorus  extracts  were  determined  based  on  

the  method  by Lim et al.28 with slight modifications. Each resuspended sample extract (50 

µl) at 6.25 mg/ml and the positive control (BHT dissolved in methanol) was added to a 96 well 

microtiter plate in triplicate and two-fold serially diluted down the wells of the plate. To each 

well, 40 µl potassium phosphate buffer (0.2 M, pH 7.2) and 40 µl potassium ferricyanide (1% 

in phosphate buffer, w/v) were added. The microtiter plate was covered with foil and incubated 

at 50°C for 20 min. After the incubation period, 40 µl trichloroacetic acid (10% in phosphate 

buffer, w/v), 150 µl distilled water and 50 µl FeCl3 (0.1% in phosphate buffer, w/v) were added. 

The microtiter plate was re-covered with foil and incubated at room temperature for 30 min. 

The ferric-reducing power assay involves the reduction of the Fe3+/ferricyanide complex to the 

ferrous (Fe2+) form. Absorbance of the formed Fe2+ was measured at 630 nm using a microtitre 

plate reader (Opsys MRTM, Dynex Technologies Inc., Palm City, FL, USA). The ferric-

reducing power of the cultivar extracts and ascorbic acid were expressed graphically by plotting 

absorbance against concentration. The assay was repeated twice. 

 

 

 

7.2.6 Overall evaluation 

Overall acceptance evaluation was carried according Mampholo et al. (2013; 2015).24,12 The 

panellists were asked to assess the overall acceptance of the fresh product at each storage 

interval after opening the bags at 2 day intervals. The leaves were individually scored according 

to a structured hedonic scale from 1 to 10 (10–9 excellent, no defects; 8–7 good; 6–5 fair, with 

acceptable marketability; 4–3 poor; 2–1 inedible). 
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7.2.7 Statistical analysis 

All assays were done in triplicate, and the results reported as mean ± standard deviation 

(SE). One-way and two-way analysis of variance (ANOVA) were used to find differences 

among and between treatment combinations and significantly different mean values were 

separated using the Duncan multiple range test (DMRT). (P≤0.05). Data computations were 

done using SPSS for Windows (IBM SPSS, version 25.0, Chicago, IL, USA).  

 

7.3 Results and discussion 

 

7.3.1 Total flavonoid content 

Consumption of indigenous leafy vegetables such as C. olitorius can contribute to beneficial 

flavonoids in diets. Flavonoids possess several biological effects such as anti-inflammatory, 

antioxidant and anticarcinogenic activities.29 Total flavonoid content results of C.os olitorius 

are presented in Table 1. The interactions between storage time, temperature and packaging 

were not significant. However, storage duration as an individual factor significantly (p<0.05) 

affected flavonoid content (Table 7.1). Flavonoid levels increased from 2 days (1.156 mg/g 

DW) with increase in storage duration up to 6 days (1.457 mg/g DW)
 
then started to decline. 

Results indicate that Corchorus olitorius can be stored up to 6 days to preserve flavonoids with 

further storage exhibiting a decline. The possible explanation to results observed could be that 

flavonoids degrade with storage while lower flavonoid content in shorter storage days could 

imply that flavonoids are synthesided from other phenolics into flavonoids. Decrease in 

flavonoid content with storage time has been previously reported in other studies, such as 

Mampholo et al.24 in A. cruentus, Baltacıoğlu 30 in rowanberry fruit and Raya et al. 31 in 

Clinacanthus nutans.   
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Table 7.1.  Flavonoid content of C. olitorius grown under full irrigation and stored at different 
storage conditions  

 
Storage period (days) Mean CE mg/g DW) ±Std. Dev 
2 days 1.156

 
±0.181 

4 days 1.238
 
±0.226 

6 days 1.457
 
±0. 358 

8 days 1.315
 
±0.729 

10 days 1.215
 
±0.269 

Temperature 
 

Room Temperature 1.340±0.549 
10℃ 1.251±0.365 
4℃ 1.111±0.288 
Packaging  
Non-perforated 1.229±0.375 
Perforated 1.243±0.375 

Values expressed as catechin equivalents (CE) per gram of sample dry weight. Mean values with 
different letters are significantly different (p < 0.05; n = 3) 
 

7.3.2 Total phenolic content 

Phenolic compounds have become a measurable indicator of nutritional quality of food 

because of their antioxidant properties32 which provides protection against reactive oxygen 

species in the body.33 Total phenolic content responded strongly (p<0.05) to the interaction 

effect of packaging and temperature (Figure 7.1). Phenolic contents were significantly higher 

in Corchorus leaves kept at 4℃ in perforated packaging (80 mg/g DW) and at 10℃ (75 mg/g 

DW) in non-perforated packaging (Figure 7.1). Lower total phenolics were recorded in leaves 

kept at room temperature in both perforated and non-perforated packaging which was also not 

significantly different from those kept at 10℃ under perforated packaging. With the exception 

of samples stored at 4°C, all samples stored in non-perforated packaging had higher phenolic 

content than those stored in perforated packaging. Generally, on average, irrespective of the 

packaging type, the observed characteristic trend in this study was a decrease in phenolic 

content with an increase in storage temperature. High temperature could have led to accelerated 

metabolic processes leading to the degradation of phenolic compounds in the stored leaves. 

Padda and Picha 34 and Albert et al.35 reported that a relationship exist between temperature and 

levels of phenolic compounds in plant tissues, in which lower temperatures are associated with 

higher levels of phenolic compounds. In this study, high storage temperature reduce phenolic 

composition while low temperature regardless of the packaging was able to retain nutritional 

value.  
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Figure 7.1. Interaction effect of packaging and temperature on total phenolic content of C. 

olitorius  
 

Total phenolic content in C. olitorius were also significantly affected by storage time 

and packaging (Figure 7.2). Total phenolic content decreased significantly (p<0.05) as storage 

time increased for all packaging treatments. The longer the leaves were stored the higher the 

loss of nutritive values for both packaging. However, any treatment combination of storage 

duration and non perforated packaging perfomed better that perforated treatment combinations. 

The results concurs with Mampholo et al.24 who reported a decrease in total phenolic content 

with increase in storage time across various packaging treatments in A. cruentus and S. 

retroflexum. Fawole and Opara36 reported that degradation of total phenolic is related to 

enzymatic oxidation of polyphenol oxidase and peroxidase over time. Furthermore, in all 

storage durations, samples stored in non-perforated packaging maintained higher levels of 

phenolic content than those in perforated packaging except for 8 days of storage (Figure 2). 

However, Heyes37found that non-perforated packaging failed to retain flavour and aroma in 

comparison to perforated packaging. Phenolic compounds are responsible for flavour and 

colour in fruits and vegetables.24 Varying perforation of packaging has significant effect in 

retention of phenolic compounds in Corchorus. If farmers decide to store C. olitorius, non-
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perforated packaging may be of use because degradation of phenolic compounds is reduced as 

compared to perforated packaging.  
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Figure 7.2. Interaction effect of storage duration and packaging type on the total phenolic levels 
of C. olitorius  

 
Postharvest storage time and temperature has been reported to influence antioxidant 

activity and total phenolic content.38 Similarly, total phenolic content in C. olitorius was 

affected by storage time and temperature in the current study (Figure 3). Phenolic content for 

leaves kept at 4℃ increased significantly from 2 days (78 mg/g DW) to 4 days (137 mg/g DW) 

then declined from 6 days (74 mg/g DW), 8 days (39 mg/g DW) up to 10 days (22 mg/g DW). 

Increase in phenolic content for the first few days asserts to the fact that low temperatures 

maintain quality better than higher temperatures. Lowering of phenolics by low temperature 

(4℃) as storage duration increased might have been due to chilling injury at low temperatures 

for a prolonged period of time.21 Leaves kept at 10℃ showed an alternating decrease and 

increase as storage time increased up to 10 days, but the changes were not as drastic compared 

to room temperature and 4℃. For leaves kept at room temperature, phenolic content decreased 

from 2 days (71 mg/g DW) to 4 days (28 mg/g DW) followed by an increase from 6 days (71 

mg/g DW ) to 8 days (71 mg/g DW) then a decline at 10 days (71 mg/g DW). Temperature 
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plays a pivotal role in the shelf life and quality of stored vegetable produce. Drastic decline of 

phenolic during room temperature storage (4 days) may be attributed to breakdown of phenolics 

at high temperatures, while a sudden increase in phenolics may be due to formation of phenolics 

from the breakdown of other substances with increase in storage time. 
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Figure 7.3. Interaction effect of storage duration and storage condition on total phenolic content 

of C. olitorius  
 

A correlation analysis between total phenolics and storage conditions (temperature and 

storage duration) revealed significant strong negative relationships with coefficient (r) values 

of -0.795 to -0.906 (Figure 4a-b) for temperature and storage duration respectively. Increasing 

temperature resulted in a decrease in phenolics under storage. Similarity, Prabhu and Barrett20 

concluded that to minimise qualitative and nutritive losses, consumers should store leafy green 

vegetables such as C. tora and C. tridens at 4℃ after harvest.  
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(b) 

Figure 7.4. Correlation between storage duration and temperature on total phenolic content of 
C. olitorius 

 

Similarly, storage duration showed a negative correlation on phenolic content (R = -

0.906). Keeping C. olitorius for longer resulted in reduced phenolic content. Previous findings 

have shown higher total phenolic content in lettuce during early days of storage.39,40 

 
7.3.3 Antioxidant activity  
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The results of the delay in β-carotene bleaching, recorded as antioxidant activity (ANT 

%) and oxidation rate ratio (ORR), calculated on the basis of the rate of β-carotene bleaching 

at time = 60 min are shown in Tables 7.2 and 7.3. Antioxidant activity (ANT) was significantly 

(p<0.05) influenced by the interaction between packaging and temperature in Corchorus 

olitorius samples (Table 7.2). The highest ANT (%) was recorded in leaves kept at 4 and 10℃ 

in non-perforated packaging which was similar to those kept at room temperature in perforated 

packaging. Perforated packaging retained better nutritional quality than non-perforated 

packaging.37 The results obtained in this study may be a reflection of the variation influenced 

by perforation treatment.12 Lower ORR values denote better antioxidant potentials therefore 

leaves in non-perforated packaging kept at 4℃ and 10℃ exhibited the most antioxidant activity 

which were statistically similar to those kept in perforated packaging at room temperature 

(Figure 7.4).  

Table 7.2. Interaction effect of packaging and temperature on antioxidant activity (AA % and 
ORR) of Corchorus olitorius as determined by β-carotene-linoleic acid model system 

Treatment (ANT %) ±Std. Dev ORR±Std. Dev 
Non-Perforated x 4℃ 70.25±8.758 0.297±0.087 
Non-Perforated x10℃ 71.33±17.804 0.287±0.178 
Non-Perforated x room temperature 67.15±7.624 0.329±0.076 
Perforated x 4℃ 65.76±6.790 0.342±0.067 
Perforated x 10℃ 65.58±13.801 0.344±0.138 
Perforated x room temperature 71.28±13.722 0.287±0.137 

 
 
 

Antioxidant activity was significant (P<0.05) in response to storage time and 

temperature in C. olitorius (Table 3). The highest ANT (%) was from leaves kept at 10 ℃ for 

8 days compared to all treatments followed by 4 ℃ for 8 days, room temperature for 8 days and 

room temperature for 4 days (Table 7.3). Higher ANT (%) in leaves kept at room temperature 

may be due to decomposition. Overall acceptance results presented later shows that leaves kept 

at room temperature were only marketable for 2 days hence it shows they can still be utilised 

for other things. Generally, ANT (%) increased from 2, 4, 6 up 8 days then declined at 10 days, 

a trend similar to that observed in phenolic compounds. Similarly, ORR was significantly lower 

(good activity) in all treatment combinations that had significantly higher ANT (%) (Table 3). 

The lowest ORR was obtained when leaves were kept at 10℃ for 8 days as with the ANT (%) 

shown in Table 3. Lower ORR values, denote better antioxidant potentials. Plants with high 

levels of antioxidants, either constitutive or induced, have been reported to have greater 

resistance to oxidative damage.41 Storage of vegetables and fruits is often associated with loss 
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of antioxidant compounds.42 Decrease in antioxidant capacity with prolonged storage may be 

due to the O2 promoted oxidation of the constitutive phenolic compounds and vitamin C.43 Low 

temperature could decrease the rate of biochemical processes inleaves, thus maintening 

antioxidant agents. Postharvest storage time and temperature influences antioxidant activity and 

total phenolic content.38 The decrease in the levels of antioxidants during storage was also 

reported in other leafy vegetables.12,24 Losses of different bioactive compounds can be minimal 

if optimal storage time and temperature can be established so that the product’s shelf-life can 

be increased. 

Table 7.3. Interaction effect of storage and temperature on Antioxidant activity (AA % and 
ORR) of Corchorus olitorius as determined by β-carotene-linoleic acid model system 

Treatment (ANT %) ±Std. Dev ORR±Std. Dev 
2 days x 4℃ 68±9.654 0.319±0.096 
2 days x 10℃ 60±5.016 0.404±0.050 
2 days x room temperature 62±5.160 0.375±0.051 
4 days x 4℃ 69±5.054 0.312±0.050 
4 days x 10℃ 65±9.958 0.351±0.099 
4 days x room temperature 71±12.034 0.293±0.120 
6 days x 4℃ 61±5.390 0.390±0.053 
6 days x 10℃ 61±6.878 0.390±0.068 
6 days x room temperature 69±8.967 0.307±0.089 
8 days x 4℃ 77±6.400 0.231±0.064 
8 days x 10℃ 95±2.780 0.047±0.027 
8 days x room temperature 75±19.108 0.249±0.191 
10 days x T4℃ 68±3.444 0.324±0.034 
10 days x 10℃ 68±18.568 0.322±0.185 
10 days x room temperature 68±5.169 0.325±0.051 

 

The abilities of storage duration, packaging and temperature to reduce Fe3+ complexes 

in solution are presented in Figure 7.5. 
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Figure 7.5. Ferric reducing activity of C. olitorius as influenced by storage duration, packaging and temperature. n = 3. *S1 = 2 days; S2 = 4 days; 

S3 = 6 days; S4 = 10 days. *T1 = 4 ℃; T2= 10 ℃; T3 = room temperature. * P1 = Perforated; P2 = Non Perforated 
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Figure 7.5 was split into various sections for visibility of individual lines representing 

different factors. Reducing activity increased with increase in the concentration of all the 

treatment combinations. There were differences in the reduction power, with 4℃ x perforated 

x 4 days, 4℃ x non-perforated x 4 days, room temperature x perforated x 6 days and 4℃ x non-

perforated x 8 days performing as the least reducing agent. The treatment combinations with 

10℃ x perforated x 10 days, room temperature x non-perforated x 6 days, 4℃ x perforated x 2 

days, 4℃ x non-perforated x 2 days, 10℃ x non-perforated x 2 days, 10℃ x perforated x 2 

days, 4℃ x non-perforated x 6 days and 4℃ x perforated x 6 days were strong antioxidants 

(reductants) and exhibited higher activities compared to ascorbic acid used as a reference 

compound. The reducing activity of bioactive extracts is directly associated with antioxidant 

activity as the reduction of the Fe3+ complex is brought about by the donation of electrons.44 

Treatment combination with 4℃ and 10℃ had better antioxidant capacity compared to 

treatment combinations that were stored at room temperature. For storage durations of 2, 6 and 

8 days, the highest antioxidant was obtained when leaves were kept at 4℃ in both perforated 

and non-perforated packagings. At 10 days of storage time, FRAP showed higher antioxidant 

activity for treatment leaves kept at 10℃ while leaves kept at room temperature had the lowest 

antioxidant activity. Decline in antioxidant activity during storage time has also been reported 

in other leafy vegetables.12, 24  

 

7.3.4 Overall acceptance evaluation  

In leafy vegetables, consumers seek visual quality (based on appearance) attributes 

which include freshness, uniformity of size, shape and typical colour, and free of defects.12, 24 

These quality attributes were evaluated in the current study as they are the first point of contact 

between the product and consumers. There was a significant (P<0.001) increase in overall 

acceptance score in response to the interaction effect of packaging, temperature and storage in 

Corchorus olitorius leaves (Figure 7.6). The treatments that acted as strong oxidants (Figure 

7.5) such as 4℃ x perforated x 2 days, 4℃ x non-perforated x 2 days, 10℃ x non-perforated x 

2 days and10℃ x perforated x 2 days were also observed to have the highest overall acceptance 

score (Figure 7.6).  
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Figure 7.6. Interaction effect of storage duration, packaging and temperature on overall quality 
of C. olitorius. n = 3. *S1 = 2days; S2 = 4days; S3 = 6days; S4 = 8days, S5 = 10days 
*T1 = 4 ℃; T2= 10 ℃; T3 = room temperature. * P1 = Perforated; P2 = Non Perforated 

 

Overall acceptance score was observed to decrease with increase in storage time and 

temperature for the leaf samples subjected to different types of packaging (Figure 7.6). Leaves 

packed with either perforated or non-perforated plastic and stored at 4°C retained their 

marketability (score 5-10) for 8 days while leaves packed with perforated/non-perforated 

packaging and stored at 10°C remained marketable (score 6-10) for up to 10 days. Leaves 

packed in perforated/non-perforated packaging and stored at room temperature remained 

marketable for only 2 days (Figure 7.6). At 4 days of storage the leaves had turned brown as 

shown in Figure 7.7 and this coincided with drastic decline in phenolics during room 

temperature storage (4 days) shown in Figure 3 earlier. After 4 days of storage at room 

temperature some of the nutritional quality measured (ANT % and ORR in Table 3) started to 

increase possibly due to formation/conversion of phenolics from one form to the other. This 

could mean formation of other secondary metabolites which could be beneficial thus indicating 
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posibility of using decaying leaves for other functions such as animal feeds etc. Mampholo et 

al.24 reported similar findings on A. cruentus and S. retroflexum while Prabhu and Barrett20 

reported similar results on C. tora and C.tridens. The results of this study also concurs with 

those of Ngure et al.21 who reported that Okra (Abelmoschus esculentus L. Moench) lose quality 

within two days under room temperature conditions leading to severe postharvest losses. 

Possible short postharvest life at room temperatures is because temperature facilitates 

respiration and other metabolic degradation of the product leading to loss of quality. 

 

Figure 7.7. Corchorus leaves kept at room temperature for 2 and 4 days after storage 

 

Leaves packed at 4°C started showing some chilling injury at 6 days which increased 

with time up to 8 days. The treatment combination that had leaves kept at 10°C did not show 

leaf chilling injury even after 10 days of storage. These result coroborate with that of Tulio et 

al.3 who reported that Corchorus leaves are sensitive to chilling injury manifested as browning 

symptoms at low storage temperatures (8°C and lower).  Corchorus have been reported to 

have a longer storage life at 8°C than with the other storage temperatures, and the shelf life was 

8 days which is closer to the findings of the current study.3 Corchorus is chill injury-damaged 

when stored at low temperatures showing surface and internal discoloration (browning), pitting 

and water soaked areas. Browning, a symptom of chilling injury of Jute mallow, developed at 

lower temperature than 5°C.3 Similarly, low storage temperature caused chilling injury in okra 
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(Abelmoschus esculentus L. Moench) across all the packaging methods tested.21 Crops which 

are susceptible to chilling injury often have a short storage life as low temperatures cannot be 

used to slow deterioration and pathogen growth. The primary cause of chilling injury is thought 

to be damage to plant cell membranes.21  

 

The present study shows that storing Corchorus leaves at 10℃ for 10 days using either 

of the perforated or non-perforated packaging has better shelf life than storage of 4°C regardless 

of the packaging types. The results of the present study support the findings of Mampholo et 

al.12,24 who reported 10°C as optimal condition for keeping freshness of leafy vegetables. Leaf 

browning was observed on the second day on any treatment combination that had leaves kept 

at room temperature and the severity of browning increased with increasing storage time as 

shown in Figure 7.7. Consumer perceives the greenness of leaves as a quality attribute in leafy 

vegetables therefore; browning will reduce the market value of the crop. Leaf browning 

somewhat indicate the end of the shelf life of a product. There was no off odour in leaves kept 

at 4℃ and 10℃ storage temperature. Leaves in non-perforated/perforated packaging and stored 

at room temperature had off odour after 2 days of storage. There was a gradual increase in 

weight loss with increase in storage duration and temperature (not presented). Highest weight 

loss was observed at room temperature with minimum weight loss observed at 4℃ and 10℃ in 

non-perforated and perforated packaging. Weight loss was due to loss of water from the leaves 

due to metabolic activities. Apart from temperature, water loss from fresh produce also causes 

deterioration through wilting and shrivelling, loss of textural quality (softening, flaccidity, 

limpness, loss of crispness and juiciness) and nutritional quality.22 

 

7.4 Conclusion  

 

Development of postharvest handling techniques for perishable products such as C. 

olitorius will lead to their successful utilisation and commercialisation. The deterioration of 

flavonoids, total phenolics, antioxidant activity and overall acceptance was minimal in 

treatment combination of 4℃/10℃ compared to room temperature for both packaging as 
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storage duration increased. C. olitorius leaves stored at room temperature had a shelf life of 2 

days, at 4℃ of 8 days and 10℃ for 10 days in non-perforated and perforated packaging. Since 

the current study indicates that Corchorus olitorius can only be stored for 2 days at room 

temperatures, small holder farmers who do not have access to refrigeration and packaging can 

resort to various types of indigenous drying methods. The overall quality was maintained when 

leaves were stored at 10℃ for 10 days and 4℃ for 8 days using both types of packaging which 

are promising conditions for extending the shelf life of C. olitorius. Further studies needs to be 

conducted on other low cost packaging and also explore various effects of packaging 

perforations.Furthemore studies should be conducted to ascertain the compounds formed when 

leaves have lost their shelf life, there is a posibility that new fomed substance can be of benefits 

to humans.  
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CHAPTER 8 

8.1 General discussion 
 

The literature review on Chapter 2 in the form of published review article provided 

evidence of low utilisation and production of African leafy vegetables (ALVs) in South Africa 

due to lack of sound agronomic practices, innovative processing and value-adding techniques. 

Furthermore, limited funding and lack of coordinated research were identified as some of the 

factors contributing to the slow uptake commercialisation of ALVs. Involvement of 

stakeholders such as government, private sectors, NGOs, research and academic institutions 

can generate valuable and extensive production information that can lead to successful 

commercialization of ALVs. 

 

In Chapters 3 and 4, the agronomic field studies indicated that ALVs respondend positively to 

irrigation water application under varying growing conditions. The result for A. cruentus was 

consistent for both field and controlled environments. Most measured parameters were 

negatively affected by water stress and these results concured with other similar studies that 

reports A. cruentus as a less stress tolerant crop (Neluheni et al., 2007). In V. unguiculata CCI, 

plant height, yield and trace elements were not affected by drought stress under field conditions 

(Chapter 3). Fresh fresh mass was reduced under rain shelter conditions and other measured 

parameters showed a trend of increase with increase in water application up to 60% ETc with 

no further increase observed beyond this point (Chapter 4). General results were consistent for 

V. unguiculata even under rain shelter environment. Corchorus olitorius yield was reduced by 

water stress under rain shelter (Chapter 4) although it was not significantly affected under field 

conditions (Chapter 5). The possible explanation to such variation could be due to variation in 

degree of stress due to periodic rain water additions under field conditions. The results indicate 

the potential of production of C. olitorius in marginal areas although under extreme moisture 

stress irrigation would be needed to improve yield.  
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In the field experiment (Chapter 3) the following elements were high in A. cruentus: Na 

and Mn (drought stress-30% ETc), K (medium stress-60% ETc), Ca and P (full irrigation-100% 

ETc) while no significant differences were observed in C. olitorius. In V. unguiculata: Mn was 

high under drought stress conditions. The results were consistent with those of biomass yield. 

For example in C. olitorius, all measured parameters in the field including yield and nutrient 

quality were not affected by irrigation regimes. Therefore, application of 30% ETc would be 

more economic in C. olitorius since drought stress did not affect biomass yield quality (size, 

shape, colour, and freshness) and nutritional quality (micro and macronutrients).  

 

Under severe drought conditions, the following were high: Ca in B. vulgaris, Ca and Mg 

in A. cruentus and C. olitorius. Under medium stress, the following were high: Na, K and Zn 

(A. cruentus), Zn (C. olitorius), P and K (V. unguiculata), Na and Zn (B. vulgaris). The 

alternating high and low nutrient elements recorded between the most severe water stress (30% 

ETc) and medium stress (60 ETc) treatments across all crops in this study indicate that although 

the crops can be grown under drought conditions, irrigation can improve production in some of 

these vegetables. Similarly, these results mirror those obtained on biomass yield under rain 

shelter conditions. In addition, the response of ALVs to varying regimes in terms of macro and 

micro-nutrients under field conditions were similar to field results reported in Chapter 3. 

Generally, the results were consistent both under the field and rain shelter conditions in terms 

of nutritional quality hence most crops which produced high yield in the field also had better 

nutritional quality.  

 

The levels of nutrients in vegetables is reported to be influenced by stages of plant 

development (Khader and Rama 2003; Modi et al., 2006). However, there is limited information 

on mineral content at different stages of maturity (Khader and Rama, 2003). In Chapter 5, a 

follow-up of how mineral content varied with harvest was conducted.  Leaf Fe, Zn, Mn, Mg 

and Ca contents increased as time of harvesting increased from 6 weeks to 8 weeks, with no 

further change when crops were harvested at 10 weeks in A. cruentus, V. unguiculata and B. 

vulgaris. In C. olitorius on the other hand Fe, Zn, Mn, Mg and Na were higher when the crop 
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was harvested at its early stages (6 weeks) compared to late harvesting (8 and 10 weeks). Apart 

from plant age or harvesting techniques, there are other factors that can affect nutritional quality 

such as fertiliser application or soil fertility, environment temperature, plant type, and the 

production techniques used (Chweya et al., 1997; Nnamani et al., 2009). Information on when 

the plant has high nutritional value could serve as a cost cutting measure especially for plants 

harvested numerous times. For example, according to the current study, there will be a need to 

fine-tune fertisation programme for C. olitorius since nutritional content decreases 

disproportionately with increase in harvests as the plant grows. To make sound 

recommendations on this aspect, other quality parameters need to be investigated and plant 

growth analysis monitored from the early days of plant establishment to ascertain the best 

time/plant age with high nutritional yield. 

 

Postharvest studies (Chapter 6 and 7) provided evidence that certain postharvest 

management practices can retain nutrient and lead to increased shelf life than others. Corchorus 

olitorius leaves stored at room temperature had a shelf life of 2 days, while 8 days at 4℃ and 

10 days at 10℃ in non-perforated and perforated packaging. Plant phenolics were studied 

because they are the most widely distributed secondary metabolites that provide strong 

protective effects against diseases such as cancer, arthritis, emphysema, retinopathy, neuro-

degenerative cardiovascular diseases, atherosclerosis and cataracts. The way these bio active 

compounds respond to stress can be manipulated to ensure quality. The types of packaging used 

in the current study are costly for smallholder farmers and this necessitates also exploring low 

cost packaging. Some resource-constrained farmers who cannot afford the electricity expenses 

and high quality packaging can utilise low cost packaging. Resource poor households who 

cannot afford packaging can still resort to other means of increasing shelf life such as drying. 

Natural drying methods such as shade and sun drying from limited water or medium water 

irrigation conditions proved to increase shelf life of the studied ALVs better than oven drying. 

The three ALVs studied can grow under severe and medium drought stress and be sun- or shade-

dried without significantly compromising major nutritional quality compared to B. vulgaris 

production which was limited by water availability. Phenolic compounds (flavonoids, tannins, 
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phenolic, gallotannins) are produced in high concentrations under suboptimal conditions hence 

these condition could be altered to optimise production of these compunds. There is potential 

to optimise preharvest factors such as water or practise deficit irrigation to optimise phenolic 

compounds. Regulation of water levels and stress duration that favours optimum biomass yield 

without compromising accumulation of biocompounds provides an opportunity for future 

research studies on nutritional water productivity.  
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8.2 Conclusions 
The following conclusions can be drawn from this study:  

• A review of literature showed that increased research on production, nutrition, processing 

and marketing still requires attention as it hinders utilisation of ALVs. 

• Amaranthus cruentus and B. vulgaris biomass yield and nutritional quality were reduced 

due to water stress in both field and rain shelter conditions. Using 60% ETc is suitable for 

production of A. cruentus and B. vulgaris var. cicla. Corchorus olitorius and V. unguiculata 

were not affected by water stress under field conditions. Use of 30% ETc is recommended 

for V. unguiculata and C. olitorius under field conditions.  

• In terms of nutritional quality, results were alternatingly higher between the most severe 

water stress (30% ETc) and medium stress (60 ETc) treatments in all crops. Leaf Fe, Zn, 

Mn, Mg and Ca increased as time of harvesting increased from 6 to 8 weeks and remained 

the same after 10 weeks while in C. olitorius, Fe, Zn, Mn, Mg and Na were higher when 

harvested at early harvest (6 weeks) than other harvestings. 

• Corchurus olitorius phenolic composition and antioxidant properties were affected by 

postharvest packaging, temperature and storage time. Corchorus olitorius leaves can be 

stored at room temperature for 2 days, or 8 days at 4℃ and 10 days at 10℃ in non-

perforated and perforated packagings. 

• Water stressed and medium stressed plants which were shade- and sun-dried retained better 

gallotannin, phenolic and flavonoid content than treatment combinations that were oven-

dried with varying water regimes. 
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8.3 Recommendations 
The following recommendations may be made, based on observations made during the study: 

• Owing to plants being exposed to a multiplicity of environmental factors in their growing 

environment, there is need to conduct more research on the interaction effect of agronomic 

factors such as water, fertiliser and plant populations for ALVs under study for both field 

and controlled environments.  

• To draw wide-ranging recommendations, it is essential that these experiments be conducted 

on multiple sites (different regions) over an extended period of time to consider effect of 

seasonal changes or one can use modelling studies.  

• There is need to conduct more research on various drying methods which can be utilised by 

commercial farmers e.g. freeze drying, solar drying. Various nutritional parameters such as 

macro and microelements should be tested for various drying methods. 

• Further research is required for both commercial and low cost packaging, different storage 

conditions and temperature of various species of ALVs. Nutritional variation due to 

packaging, storage and temperature should also be tested for each harvest since ALVs are 

harvested many times per season. 
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