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Abstract                                     TI Hlela 

Abstract 

 

The growing significance of vanadium in medicinal inorganic chemistry is due to the diverse 

biological activities of its metal complexes, as elaborated in Chapter 1. These biological 

activities stem from the fact that vanadium is an essential trace element as well as its ability to 

form active pro-drugs under physiological conditions. To improve the bio-availability of these 

potential metallopharmaceuticals, the use of biologically relevant ligand systems such as 

heterocyclic ligands were considered.  These chelators should provide the stability and the ability 

to promote absorption through cell-membranes. The techniques as described in Chapter 2 were 

employed to analyze and characterize the formulated heterocyclic ligands and their metal 

complexes. The attained research findings are mainly divided into two studies which involve the 

explorative coordination chemistry of two classes of ligands: 2-pyridylbenzimidazole (see 

Chapter 3) and 2-phenylsubstituted heterocyclics (see Chapter 4). An additional brief study is 

described in Chapter 5 which discusses the attempted coordination of a uracil Schiff base ligand. 

 

In Chapter 3, the coordination behaviour of Hpybz (2-pyridylbenzimidazole) towards vanadium 

in various oxidation states (i.e. +III/IV/V) was explored. The six-coordinate complex cis-

[V
V
O2(Hpybz)(pybz)] (1) was isolated as the CH3OH.(H2O)2 hydrate from the reaction of 

NH4VO3 and Hpybz in aqueous methanol. The crystal structure shows that the vanadium is 

bonded to two cis-oxido ligands, and to the two bidentate ligands pybz and Hpybz.  This 

combination of ligands confers six-coordination on the metal centre, which is a rare coordination 

number for a mononuclear dioxido complex of vanadium(V). From the reaction between Hpybz 

and VCl3 the cationic complex salt cis-[V
III

(OH)2(Hpybz)2]Cl (2) was formed. The ligands in cis-

[V
III

(OH)2(Hpybz)2]Cl exhibits the same coordination behaviour as in 1, but instead of the 

dioxido moiety present in 1, two hydroxyl co-ligands are coordinated to the metal centre, with 

both chelator ligands neutral. Conductivity measurements in DMF affirmed that the compound is 

a 1:1 electrolyte. A novel binuclear mixed-valence oxidovanadium compound, (μ-

O)[V
V
O(pybz)2.V

IV
O(Hpybz)(acac)] (3), was obtained from the reaction of Hpybz with 



 

vi 
 

VO(acac)2. ESR analysis illustrates paramagnetic behaviour typical of a type I dimer. The metal 

compound, VO(Hpbyz)2SO4 (4).H2O was isolated in a good yield from the reaction of two 

equivalents of Hpybz with vanadyl sulfate.  

 

Chapter 4 reports the isolation of oxidovanadium compounds with 2-phenylsubstituted 

benz(imidazole/othiazole/oxazole) chelators. The 2:1 molar reaction between NH4VO3 and 2-

hydroxyphenylbenzothiazole (Hobs) led to the formation of a polynuclear vanadium(IV) 

complex, [VO(obs)2]n (1).  The atmospheric oxygen-induced oxidation reaction of VCl3 and 2-

hydroxyphenyl-1H-benzoxazole (Hobo) afforded a similar oxidovanadium compound, 

[VO(obo)2]n (2). A characteristic eight-line isotropic signal was observed in the ESR spectrum of 

2 in DMF while, due to the poor solubility of 1, a singlet was attained upon analysis of the single 

crystals. A diamagnetic dioxidovanadium(V) complex, cis-[VO2(obz)py] (3) (Hobz =  2-

hydroxyphenyl-1H-benzimidazole) was isolated from the reaction of NH4VO3 and Hobz in a 

methanolic solution.  A broad singlet is found in the 
51

V NMR spectrum at -520.7 ppm for the 

d
0
-vanadium centre.  The intra-ligand (π-π*) relaxations [466 nm for 1, 376 nm for 2 and 469 nm 

for 3] could be observed in the emission spectra which were obtained in anhydrous DMF.  In an 

effort to synthesize a coordination compound of vanadium, the reaction of  a heterocyclic ligand, 

2-mercaptophenyl-1H-benzimidazole (Hsbz) with vanadyl sulfate resulted in an unexpected 

reaction product, [C26H20N4S2].[SO4].4H2O (4). 

 

In Chapter 5, the metal-induced cyclization of 5-amino-6-[(Z)-(2-hydroxybenzylidene)amino]-

1,3-dimethylpyrimidine-2,4-(1H, 3H)-dione (H3duo) by NH4VO3 resulted in the formation of a 

cyclized benzimidazole derivative, 8-(2-hydroxyphenyl)-1,3-dimethyl-1H-purine-2,6-(3H, 7H)-

dione (1). The IR spectra of H3duo and its cyclized form are nearly identical where only minor 

shifts in the significant bands are observed. The molecular transformation was more evident 

when comparing the 
1
H NMR spectra of H3duo and 1. 

 

Keywords: Vanadium, Oxido, Dioxido, N-donor Heterocyclic ligands, Benzimidazole, 

Benzothiazole, Benzoxazole, Bidentate, Crystal Structure, Spectral Characterization 
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Chapter 1 

Introduction 

 

1.1 General Background 

 

Vanadium is a 3d transition element with an atomic number of 23. Of the six known isotopes 

which exist only two are natural occurring, 
50

V and 
51

V. The percentage abundance of 
50

V is 

0.24% with a nuclear spin of 6 while 
51

V is in the majority (99.76%) with a nuclear spin of 

7/2. Vanadium is the 22
nd 

most abundant element in the earth’s crust. Furthermore, it is 

regarded as a universal element since it is also found to exist on the moon, in meteorites and 

hypothesized to be existent on the sun [1, 2]. Vanadium sources on earth are found in 

concentrated ores (e.g.  patronite and roscoelite) and crude oil deposit [3]. Pure vanadium is 

obtained by heating vanadium residues to produce V2O5 which is then reduced to V(0) with 

molten calcium. It can also be obtained by the process of electrolysis of vanadium halides, or 

reducing vanadium halides with hydrogen, magnesium or carbon [4]. 

 

This transition metal has the electronic configuration of [Ar]3d
3
4s

2
 and therefore has a 

highest oxidation state of +V when all the d and s orbital valence electrons partake in 

bonding. This d-bock metal exhibits a wide range of different oxidation states, from -III to 

+V. Variable valency accompanied with rapidly interconverting oxidation states is highly pH 

dependent which results in complex redox chemistry (especially in aqueous media). 

Oxidation states of natural occurring vanadium sources are +IV and +V and to a lesser extent 

+III [2, 3 and 4]. 

 

The discovery of protein tyrosine phosphatase (PTP) inhibition by vanadate [VO4]
3- 

has 

changed the façade of vanadium, since it has long been known as a toxic and carcinogenic 

element. However, vanadium has now been approved as an essential trace element. In 

addition, selected vanadium compounds have shown to exhibit a wide range of biological 

activities which include antitumour and antibacterial activity [5, 6].  
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1.2 Aim and Motivation 

 

Heterocyclic compounds have been widely investigated in medicinal chemistry due to their 

range of applications. Pharmaceutically relevant compounds with heterocyclic moieties 

including benz(imidazole/oxazole/othiazole) (see Figure 1.1) have shown to exhibit an array 

of biological activities, such as anti-microbial [7, 8], anti-oxidant [9] and anti-helminthic 

activities [10]. It has been reported that substitution at the positions 1, 2 and 5 of the 

benzimidazole ring has significance influence on their pharmacological activity [11]. For 

example, Mebendazole [methyl-(5-benzoyl-1H-benzimidazol-2-yl)carbamate] is a 2,5-

substituted benzimidazole  which is  an anti-helminthic drug and is marketed as Vermox [12], 

see Figure 1.2.  

 

 

N

H
N

benzimidazole

O

N

benzoxazole

S

N

benzothiazole  

Figure 1.1: Structures of the respective heterocyclic moieties which will be considered within 

this study. 

 

 

NH

O

H3CO

N

N
H

O

 

Figure 1.2: Structure of Mebendazole (methyl-(5-benzoyl-1H-benzimidazol-2-yl)carbamate), 

also known commercially as Vermox. 

 

In vivo interconversion between oxidation states of +III, +IV and +V is a common occurrence 

with potential vanadium pharmaceuticals [13]. Meticulous ligand design ensures stability at 

specific pH values and can avoid biological redox processes associated with ligand exchange 
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to occur. In addition, selective ligands can provide a balance between (hydro/lipo)philicity for 

favourable trans-membrane transport. These selective ligands can exhibit biological 

relevance and display activities which may facilitate effective biodistribution. This would 

ultimately result in an increased bioavailability and minimized toxicity of the vanadium-

based pharmaceutical [14]. Thus, the development of vanadium metallo-drugs depends on the 

coordination of diverse ligand systems which inevitably may afford metal complexes with a 

wide range of biological activity including anti-diabetic, anti-tumour and antibacterial.  

 

Organovanadium compounds have received particular attention as insulin enhancing agents 

because they have fewer undesirable side effects compared to conventional treatments [15]. 

These orally administered compounds perform as pro-drugs where vanadate acts as the active 

species at a cellular level. Vanadate is structurally similar to phosphate and is able to inhibit 

protein tyrosine phosphatase (PTP) which counteracts autophosphorylation effects of insulin, 

thereby lowering the glucose level in the blood stream. However, these compounds suffer 

from poor stability in the gastrointestinal (GI) tract and poor absorption through biological 

membranes at intracellular and extracellular levels [5]. In addition, for the successful 

development of this class of vanadium therapeutic compounds, they need to have specific 

inherent properties such as a neutral charge, low molecular weight, thermodynamic and 

kinetic stability, target-specific biodistribution and bifunctional capability for the 

manipulation of lipophilicity and hydrophobicity [13]. Therefore, the biologically relevant 

ligands, such as the heterocyclic systems (as shown in Figure 1.1) will be considered within 

this study for coordination to the vanadium centre.  

 

Thus the main aim of this research study is: 

 To design, synthesize and characterize oxidovanadium(III/IV) as well as dioxido 

vanadium(V) compounds containing bidentate ligands incorporating heterocyclic 

chelates.  

 

The coordination behaviour of 2-phenyl- and 2-pyridyl substituted heterocyclic ligands was 

explored, see Figure 1.3. This class of ligands largely afforded monoanionic bidentate 

chelates (by deprotonating the acidic protons of donor atoms) and in the process coordinating 

in a “2+2” manner towards the central metal atom. In fact, when similar heterocyclic ligands 

were used (with no acidic protons), coordination to vanadium in oxidation states +III, +IV 

and +V did not occur. In a specific case, the unique redox chemistry of vanadium, induced 
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the dimerization of 2-mercaptophenyl-1H-benzimidazole (Hsbz) as well as the cyclization of 

a uracil Schiff base, 5-amino-6-[(Z)-(2-hydroxybenzylidene)amino]-1,3-dimethylpyrimidine-

2,4-(1H, 3H)-dione (H3duo). 

 

N

H
N N

Hpybz

N

N
H

X

X = OH (Hobz) 
or 

    = SH (Hsbz)

S

N

HO

O

N

HO

Hobs Hobo  

Figure 1.3: Structures of the heterocyclic ligands utilized within this study: 2-pyridyl-1H-

benzimidazole (Hpybz), 2-hydroxyphenyl-1H-benzimidazole (Hobz), 2-mercaptophenyl-1H-

benzimidazole (Hsbz), 2-hydroxyphenylbenzothiazole (Hobs) and 2-

hydroxyphenylbenzoxazole (Hobo). 

 

 

1.3 Vanadium Pharmaceuticals 

 

Vanadate, [VO4]
3-

, is among several oxidometallates that have been reported to have 

biological effects. These biological activities arise from the structural and charge resemblance 

of vanadate to phosphate, [PO4]
3-

 (see Table 1.1) [16, 17]. Another example is iodate, [IO4]
-
, 

and perrhenate, [ReO4]
-
, which both show high uptake in the thyroid due to their structural 

similarities [see Table 1.1] [18]. Typically, vanadate is unstable in the bloodstream and 

readily coordinates to biogenic ligand systems (e.g. gluthathione). As a result, vanadate is 

typically reduced to vanadyl, [VO]
2+

, under physiological conditions. This resultant species 
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binds to transferrin and albumin proteins which afford diverse biodistribution patterns [19, 

20].  

 

Table 1.1: Structures of vanadate, phosphate, perrhenate and iodate. 

[VO4]
3-

 [PO4]
3-

 

  

 [ReO4]
-
 [IO4]

-
 

  

 

1.3.1  Development of insulin enhancing vanadium compounds  

 

The glucose lowering effect of oxidovanadium compounds was noticed as early as 1897. It 

was observed that two out of three individuals with diabetes mellitus who were treated with 

an aqueous solution of sodium vanadate (NaVO3) showed a lowered blood glucose level. 

Later, vanadyl sulfate (VOSO4) which is less toxic than vanadate, was found to be more 

effective in streptozotocin-diabetic (STZ)-rats [21]. However vanadyl salts had poor 

absorption in the small intestine due to formation of insoluble vanadyl hydroxyls at pH 7.2 

[20].  

 

The poor effectiveness of these common inorganic salts has triggered the use of organic 

ligands to increase the biological availability of these oxidovanadium species. For this reason, 

there is currently a huge upsurge in the coordination chemistry of vanadium (predominantly 

in the oxidation states +IV and +V) with various ligand systems. In fact, the first vanadium 

compounds that have entered phase II clinical trials are bis(maltolato)oxidovanadium(IV) 
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(BMOV) and its derivative bis(ethylmaltolato)oxidovanadium(IV) (BEOV) [see Figure 1.4] 

[21, 22]. These compounds showed higher hypoglemic activity and less toxicity than vanadyl 

sulfate. Further development of this class of maltol-oxidovanadium complexes have led to the 

more promising bis(allixanato)oxidovanadium(IV) complex which exhibited a much longer 

residual time within tissues and ultimately resulted in a higher anti-diabetic activity (see 

Figure 1.5) [5, 23]. 

 

 

 

Figure 1.4: Structures of the BMOV (where R = CH3) and BEOV (where R = CH2CH3).  

O

O

O

V

O

O

O

O

MeO

MeO

   

Figure 1.5: Structure of the bis(allixanato)oxidovanadium(IV) complex. 

O

O

O

R

V

O

O

O

O

R

R = CH3 or CH2CH3
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1.3.2 Vanadium compounds as potential anticancer agents 

 

Research into the discovery of novel anticancer metallopharmaceuticals has increased due to 

the multiple adverse side effects of the more established chemotherapeutic drug, cis-platin 

[24]. Peroxidovanadate compounds, like vanadium(V)-betaine-peroxido, (see Figure 1.6, 

structure A) has shown therapeutic activity for human breast cancer and lung adenocarcinoma 

cells [25]. Other vanadium(IV) compounds like vanadocene dichloride (see Figure 1.6, 

structure B) as well as a oxidovanadium(IV) complex stabilized by a derivatized heme ligand 

(see Figure 1.7) have shown to exhibit anticancer activity against Ehrlich tumor cells [5]. 

 

V

O

O
O

O

O

N

H3C
CH3

CH3

O

O

(A)

V Cl

Cl

(B)
 

Figure 1.6: The structure of ternary vanadium-betaine-peroxido (A) and of vanadocene 

dichloride (B). 

 

These compounds have shown to be active in all cancer stages (i.e. initiation, promotion and 

progression) on several animal cancer models [27]. The mechanism of activity for the 

chemotherapeutic vanadium compounds have been assumed to be via inhibition of tyrosine 

phosphatase. Inhibition of tyrosine phosphatase leads to apoptosis or activation of tumour 

suppressor genes. The mode of action for the vanadium metallocene is through DNA 

intercalation which results in growth inhibition of the tumor cell [28]. These potential 
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metallo-drugs can also reduce cellular growth rate and modulation of cellular adhesive 

molecules for the inhibition of metastatic cancer cells. They are also able to reverse 

antineoplastic drug resistance while still having a lower toxicity for healthy cells in 

comparison to platinum-based anticancer drugs [29, 30].    

 

N

N
N

N

MeO2C O

Me

Et

Me
CH

H2C

Me

Me

HO2C(H2C)2

V

O

 

 

Figure 1.7: Oxidovanadium(IV) complex stabilized by the derivatized macrocyclic heme 

ligand. 

 

 

1.3.3  Other potential medicinal applications of vanadium compounds  

The World Health Organization (WHO) statistics indicated that diseases induced by 

microorganisms (e.g. viruses and parasites) are the most prevalent illnesses worldwide [31]. 

Vanadium compounds have shown potential to act as anti-parasitic agents against 

microorganisms causing malaria, american trypanosomiasis (chagas disease), Leishmaniasis 

and Amoebiasis [32]. The proposed mechanism of action of these vanadium compounds are 

via the inhibition of parasitic phosphatases. An example is the case of a vanadium compound 

containing the thiosemicarbazide (see Figure 1.8) ligand which showed activity against 

Entamoeba histolytica that causes amoebiasis. In vitro studies of a series of 

oxidovanadium(IV) compounds containing derivatized porphyrins (an example is shown in 
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Figure 1.9) exhibited anti-HIV-1 activity of 97% inhibition for HIV-1 reverse transcriptase. 

Interestingly the ligands alone and metal precursor were all found to be inactive [33, 34].   

 

HN

CH2OH

O

N

S

S
V

O O

N

 

Figure 1.8: Structure of the dioxidovanadium(V) complex with a thiosemicarbazide ligand.  

 

 

 

N N

NN

R

R

R

RV

O

Me

S OO

N

R =

Et2N

 

Figure 1.9: Structure of an oxidovanadium(IV) complex with a derivatized porphyrin 

tetradentate chelator. 
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1.4 General Chemistry of  Vanadium (III, IV and V)  

 

1.4.1 Ligand Substitution 

The commonly utilized vanadium precursors in oxidation states +III, +IV and +V can readily 

undergo ligand substitution.  For example, the vanadium(III) core can be stabilized by the 

neutral 1,6-bis(2’-pyridyl)-2,5-dithiahexane (N2S2) chelating ligand, as illustrated by the 

following reaction [35]: 

VX3(thf)3 [X = Br or I] + N2S2 → [VX2(N2S2)]X + 3thf 

However, for the more acidic oxidation states, ligand substitution and subsequent metal 

stabilization requires donating chelating agents. A typical example is the displacement of an 

acac moiety of the [V
IV

O(acac)2] precursor by a monoanionic tridentate aptsc chelator 

(Haptsc = 2-acetylpyridine thiosemicarbazone), to afford the mononuclear oxidovanadium 

complex, [V
IV

O(acac)aptsc] [36] (see Figure. 1.10). 

NNN

S
H2N

V

O

O

O

 

 Figure 1.10: Structure of the oxidovanadium(IV) complex [VO(acac)aptsc]. 

 

1.4.2 Oxidation and reduction 

Vanadium complexes are prone to oxidation by atmospheric oxygen. The oxidation of the 

complex [VO(acac)aptsc] by oxygen in air led to the formation of a five coordinate, cis-

dioxidovanadium(V) specie, [VO2(aptsc)] (see Figure 1.11). 

 



11 
 

 

NNN

S
H2N

V
O

O
 

Figure 1.11: Structure of the cis-dioxidovanadium(V) complex [VO2(aptsc)]. 

 

The unique redox properties of vanadium compounds make them attractive for many catalytic 

reactions. In fact, the most well-known reduction reaction is the utilization of vanadium 

pentoxide for the catalytic oxidation of sulfur dioxide within the Contact process for the 

production of H2SO4 

SO2 + V2O5 → SO3 + 2VO2 

 

Ligand induced oxidation of the metal centre is a common phenomena in the coordination 

chemistry of vanadium. One such example is that of the diamagnetic vanadium(V) complex 

salt (Me3NBz)2[V
V
(S2)S2(SPh)] (HSPh = benzenethiol) in which the metal centre is 

surrounded by sulfur atoms in different coordination modes: the deprotonated thiolate sulfur 

of the monoanionic SPh moiety, the bridging persulfido (S2
2-

)  and two cis-orientated sulfido 

(S
2-

) groups [37]. This was also observed in the reaction of [VO(acac)2] and N,N-bis(2-

hydroxy-3,5-ditertiarybutyl)-N’,N’-dimethyl-ethylendiamine (H2otben) in a methanolic 

solution which resulted in the formation of a six coordinate complex, [V
V
O(otben)(OMe)]. 

The resultant compound readily underwent substitution of the methoxy co-ligand upon 

reaction with a one molar equivalent of salicylic acid (Hsac) to afford [V
V
O(otben)(sac)]  

[38].  
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1.4.3 Disproportionation 

Disproportionation reactions of vanadium compounds are not widely observed in the 

literature. However 1.4.3 disproportionation has been observed with vanadium(III) 

complexes of H2salen [39] and derivatives which have been investigated due to their potential 

electrocatalytic activities.  An illustrative example is shown below: 

2[V
IV

O(salen)] + 2H
+ → [VIII

(salen)]
+ + [VV

O(salen)]
+ + H2O 

 

1.4.4 Formation of  Polyoxidometallates 

The formation of polyoxidometallates is favourable at low pH due to the protonation of oxido 

ligands followed by dehydration which ultimately induces the condensation of the resulting 

vanadium species, e.g.  a polyoxidometallate compound such as [n-C4H9N]4MeCN(V12O32) is 

obtained from the heating of tetra-n-butyl ammonium decavanadate salt in refluxing 

acetonitrile [40]. Vanadium has also been incorporated into heteronuclear 

polyoxidometallates, largely through hydrothermal synthesis but can also be attained under 

mild conditions. [Zn(en)2]6[(VO)12O6B18O39(OH)3].13H2O (see Figure 1.12) is an example of 

a heteronuclear polyoxidometallate, which was synthesized from the mixing and stirring of 

NaVO3, H3BO3, Zn(CH3COO)2 and ethylenediamine for two hours at room temperature [41].   

V

O

O
O

O

O

V

O

O

B

O

O

O

B

O
O

O

B

O

O

Zn

N

NN

N

 

Figure 1.12: Structure representing the asymmetric unit cell of Zn6V12B11. 
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1.5 Coordination Chemistry of Vanadium  

 

1.5.1 Vanadium compounds with N- and N-donor ligands 

The first example of a vanadium(III) centre coordinated to two deprotonated diamide 

moieties was NHEt3{trans-[V
III

Cl2(bpb)]}, [H2bpb = 1,2-bis(2-

pyridinecarboxamide)benzene]  (see Figure 1.13). The complex has a distorted octahedral 

geometry with the chloro co-ligands found in trans axial positions while three constrained 

five membered chelate rings are formed by the bpb dianionic tetradentate chelator within the 

equatorial plane. Interestingly, the atmospheric oxidation of the aforementioned complex 

resulted in the formation of a dimeric oxidovanadium(IV) compound [VOCl(Hbpb)]2 

.2MeNO2, where one metal center coordinated in two different manners to the bridging 

ligands, firstly via the pyridyl nitrogens and secondly via the amide nitrogen and ketonic 

oxygen [42]. 

  

N

N

O

N

O

N

V

Cl

Cl

NHEt3

 

Figure 1.13: The structure of the vanadium(III) compound, NHEt3{trans-[V
III

Cl2(bpb)]}. 

 

The reaction of a multidentate N-donor benzimidazole ligand, tris[benzimidazol-2’-yl-

methyl]amine (H3ntb, see Figure 1.14) with vanadium afforded unique mono oxidovanadium 

and mixed valence binuclear vanadium compounds. The mixed valence 

oxidovanadium(IV/V) compound, [(H3ntb)V
IV

O(µ-O)V
V
O(H3ntb)](CF3SO3)3 dimer was 

obtained from the reaction of  H3ntb and VO(CF3SO3) in methanol. However, using different 
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vanadium precursors with H3ntb resulted in the isolation of only mononuclear species: the 

reactions with VOCl3, VOSO4 and VO(acac)2 formed [V
IV

O(H3ntb)Cl]Cl, 

[V
IV

O(H3ntb)(H2O)](ClO4)2 and [V
IV

O(Hntb)] respectively [43]. Interestingly, in the 

dinuclear compound, the delocalization of the unpaired electron between the two metal 

centers results in a 15 line-ESR spectrum as opposed to the mononuclear complexes which 

affords eight-line ESR spectra due to the localization of the unpaired electron at the 

respective metal centers. 

 

N

NH

N

N

N
H

N

HN

 

Figure 1.14: Tripodal structure of tris[benzimidazol-2’-yl-methyl]amine (H3ntb).   

 

1.5.2 Vanadium compounds with N- and O-donor ligands 

The vanadium compounds in the literature predominatly contain a combination of hard and 

soft donor atoms (nitrogen and oxygen) [44]. These donor atoms have been incorporated in 

various classes of ligands, varying from Schiff bases to heterocyclic ligands. In the 

vanadium(III) complex,  [V(acac)(Hsect)2] {H2sect = 2-[2-

(salicylideneamino)ethylamino]cyclopent-1-ene-1-dithiocarboxylate} a unique ‘2+2+2’ 

coordination is present in which the two Schiff base moieties forms 6-membered chelate 

rings through their respective imino nitrogens and singly deprotonated phenolic oxygens. It is 
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also observed that the reduced metal center showed preferential coordination for the N, O 

donor set while the N, S moiety remains uncoordinated [45] (see Figure 1.15). 

R = N

S
MeS

H

O N
R

O N
R

V

O

O

 

Figure 1.15: A structure depicting the octahedral geometry around the vanadium(III) centre. 

 

Recently, a polynuclear vanadium(IV) compound, (μ-O)n[VO(pbx)2] (see Figure 1.16) was 

isolated from the reaction of 2-hydroxyphenyl-1H-benzoxazole (Hpbx) and VO(acac)2 [46]. 

Each metal center is found at the centre of a distorted octahedron and each of the monomeric 

units stack symmetrically through axially linked oxido-bridged covalent bonds. The 

symmetry is further emphasized by the nearly equal N-V-O bite angles and coordination 

bonds. It is suggested that the lowest absorption and luminescence band are due to the 

electron transfers occurring within [VO]
3+

 moiety. The generation of the excited state specie 

corresponds to the electron transfer from O
2-

 to V
4+

 while the electron transfer from V
3+

 to O
-
 

are due to the formation of the ground state specie.  
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NO

O N O

O

V

O

O

n
 

Figure 1.16:  An illustration of a monomer unit of the polynuclear vanadium(IV) compound.  

    

1.5.3 Vanadium compounds with N- and S-donor atoms  

Vanadium compounds with N, S-donor atoms are rare in literature, despite the fact that sulfur 

is a soft donor atom and readily polarizable. In the dimeric vanadium compound, 

[V2O2(pyt)4] {Hpyt = pyridine-2-thiol}, vanadium centers are bridged by sulfur atoms which 

ultimately forms a bridging constrained 4-membered cyclometalled VSVS ring (see Figure 

1.17) [47]. A rare vanadium(V) bis-sulfide complex (Net4)[VO(S2)2(bpy)]  with a seven 

coordination site has been isolated (see Figure 1.18). The basal plane is defined by S-donor 

atoms of the persulfido co-ligands along with one of the nitrogen atoms from the bpy ligand. 

The other pyridyl nitrogen and oxido oxygen occupies the axial positions [48].  
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Figure 1.17: Oxidovanadium(IV) dimer compound with sulfur bridged atoms. 

 

 

N
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Figure 1.18: An oxidovanadium persulfide compound (Net4)[VO(S2)2(bpy)]. 
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Experimental                TI Hlela 

Chapter 2 

Experimental  

 

2.1 Handling of Vanadium 

 

Vanadium occurs naturally as a mixture of two isotopes: a stable 51V (99.75%) and a 

radioactive 50V (0.25%) which is a weak β-decay radioactive isotope with a corresponding 

half-life of 1.5 x 1017 years [1]. Therefore no special precautions were taken in the handling 

of vanadium. 

 

2.2 Materials 

 

2.2.1 Metal precursors  

 

All the precursor compounds were obtained from Sigma-Aldrich and used without further 

purifications: 

 

(a) Ammonium vanadate (98% purity) 

(b) Vanadyl sulfate (95% purity) 

(c) Vanadyl acetylacetone (99.9% purity) 

(d) Vanadium trichloride (97% purity) 

 

2.2.2 Commercially obtained ligands and organic precursors 

 

(a) 2-Hydroxyphenylbenzothiazole (Hobz, 98% purity)  

(b) 2-Hydroxyphenylbenzoxazole (Hobo, 95% purity) 

(c)  Picolinic acid (99% purity) 

(d)  Salicylic acid (99% purity) 

(e)  2-Mercaptobenzoic acid (97% purity) 

(f)  Salicylaldehyde (98% purity) 

(g)  5,6-Diamino-1,3-dimethyl uracil (98% purity) 
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All these chemicals were attained from Sigma-Aldrich and used without further purification. 

 

2.2.3 General synthetic procedure of isolated ligands 

 

A mixture of 1,2-diaminobenzene (H2dab) and the relevant 2-substituted-benzoic acid were 

added in portions over a one hour period to 50 cm3 hot (250 °C) polyphosphoric acid (PPA), 

see Scheme 2.1. The reaction mixtures were then stirred for a further 5 hours, allowed to cool 

to room temperature and poured into cold solutions of 10% K2CO3. This general synthetic 

procedure was adopted from a previously published article [2]. 

 

H2N

H2N

NO

HO

Picolinic acid

O

HO

HS

2-Mercaptobenzoic acid

HO

O

HO

Salicylic acid

Hpybz

Hobz Hsbz

H2dab

 

Scheme 2.1: Formation pathways of the condensation reactions. 

 

(a) 2-Pyridyl-1H-benzimidazole (Hpybz) 

From the condensation reaction between H2dab (2.28 g, 21.08 mmol) and picolinic acid (2.60 

g, 21.08 mmol), a purple precipitate was filtered under vacuum and recrystallized from 
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methanol to afford dark brown crystals. Yield = 81%, m.p. = 224.6 - 229.0 °C. IR (νmax/cm-1): 

ν(N-H) 3063;  ν(C=N) 1599. 1H NMR (295 K, ppm) 13.08 (br, s, 1H, NH); 8.73 (d, 1H, H1); 

8.32 (d, 1H, H2); 7.99 (t, 1H, H3); 7.70 (d, 1H, H4); 7.49-7.56 (m, 2H, H5, H8); 7.18-7.27 

(m, 2H, H6, H7). UV-Vis (DMF, (λmax (ε, M-1cm-1))): 303 (sh, 4340); 445 (2230). 

 

N

H
N N
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345
6

7

8

 

Figure 2.1: Numbering scheme of Hpybz. 

 

 

 
Figure 2.2: 1H NMR spectrum of Hpybz. 
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(b) 2-Hydroxyphenyl-1H-benzimidazole (Hobz) 

 

Hobz was formed in good yield from the reaction between H2dab (1.98 g, 18.31 mmol) and 

salicylic acid (2.53 g, 18.31 mmol). Yield = 75%, m.p. 241.6 - 243.1 ⁰C. IR (νmax/cm-1): ν(N-

H) 3326;  ν(O-H) 3240; ν(C=N) 1631. 1H NMR (295 K, ppm) 13.17 (br, s, 1H, NH); 8.07 (d, 

1H, H4); 7.64-7.61 (m, 2H, H5, H8); 7.32 (t, 1H, H3); 7.24-7.19 (m, 2H, H6, H7); 7.00-6.92 

(m, 2H, H1, H2); 4.00 (br, s, 1H, OH). UV-Vis (DMF, (λmax (ε, M-1cm-1))): 278 (sh, 54110), 

291 (sh, 7644); 297 (9033); 321 (10150); 333 (10576); 351 (sh, 2827). 
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Figure 2.3: Numbering scheme of Hobz. 

 
 

 
Figure 2.4: 1H NMR spectrum of Hobz, showing the signals of the aromatic   

protons only. 
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Figure 2.5: UV-Vis spectrum of Hobz. 
 

(c) 2-Mercaptophenyl-1H-benzimidazole (Hsbz) 

 

A mixture of 1.75 g (16.18 mmol) of H2dab and 2.50 g (16.18 mmol) of 2-mercaptobenzoic 

acid was used as starting reagents. Yield = 63%, m.p.  261.6 - 266.2 ⁰C. IR (νmax/cm-1): ν(N-

H) 3059;  ν(S-H) 2786; ν(C=N) 1621. 1H NMR (295 K, ppm) 12.99 (br, s, 1H, NH); 7.96 (d, 

1H, H5); 7.77 (d, 1H, H8); 7.69-7.66 (m, 2H, H6, H7); 7.46-7.42 (m, 2H, H1, H4); 7.30-7.28 

(m, 2H, H2, H3); 5.01 (br, s, 1H, SH). UV-Vis (DMF, (λmax (ε, M-1cm-1))): 298 (sh, 108957); 

307 (114312); 321 (sh, 9497); 335 (sh, 6407). 
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Figure 2.6: Numbering scheme of Hsbz. 
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Figure 2.7: 1H NMR spectrum of Hsbz between 7.15 and 8.05 ppm. 

 

2.3 Instrumentation 

 

2.3.1 Conventional  

 

A Perkin-Elmer Spectrum 100 FT-IR Spectrometer was utilized for capturing infrared (IR) 

spectra in the solid state in the range of 650 – 4000 cm-1. A Varian 500 MHz spectrometer 

was available for nuclear magnetic resonance (NMR) spectroscopy. Deuterated 

dimethylsulfoxide (DMSO) was the solvent of choice for both ligands and complexes. 

Melting points were found using a Stuart SMP3 machine. The electronic properties of the 

complexes were explored via UV/Vis spectroscopy using a PG Instruments Ltd. T80 and a 

Perkin Elmer Lambda 25 spectrophotometer. Emission spectroscopy was achieved through 

the utilization of a Photon Technology International, Nanoflash Illuminator. Conductivity 

measurements were done with a Radiometer Analytical standard Conductivity Electrode 

equipped on a MeterLab ION450 Ion Analyser instrument.  The conductivity meter was 

calibrated with a standard solution of 0.745 g KCl in 1 L of H2O. 
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2.3.2 X-ray crystallography  

 

Single crystal X-Ray diffraction (XRD) analyses were performed using a Bruker Apex Duo 

diffractometer which was equipped with a three-cycle goniometer, an Apex 2 CCD detector 

and an Inocoatec Mo (Kα = 0.71073 Å) microsource X-Ray tube operating at 30 W. Data was 

collected at 10 – 20 second exposure times at mostly 100 K using ω and φ scans at fixed 

angles of θ. Direct methods were used to solve the structures by applying SIR97 [3] and 

using SHELXL-97 [4] to refine by least-squares procedures. The hydrogen atoms were 

calculated in idealized geometrical positions and non-hydrogen atoms were refined 

anisotropically. Prior to the data being corrected by a numerical absorption correction 10, the 

crystal shape was optimized with Gaussian 09W [5].  

 

2.3.3 Computational studies 

 

The Gaussian 09W programme was used in the computational modelling studies. Geometry 

optimizations were achieved through Density functional theory (DFT) calculations done with 

the LAND2Z basis set [6].  
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Chapter 3 

Novel Vanadium Compounds with 2-

Pyridylbenzimidazole 

 

3.1 Introduction 

 

Vanadium compounds have shown to exhibit a wide range of biological activities which 

include anti-tumour and antibacterial activity as well as insulin enhancing capabilities for the 

treatment of diabetes mellitus [1]. Their catalytic properties have also been extensively 

investigated [2]. Because of these applications there has been renewed interest in the 

coordination chemistry of vanadium [3]. 

 

The compound 2-pyridylbenzimidazole (Hpybz) is a highly versatile ligand system and has 

been coordinated to an array of transition metals [4]. Studies of this ligand with rhenium(V) 

metal precursors led to the formation of compounds showing unique redox chemistry. For 

example, the Re(III) complex [ReCl2(pybz)(PPh3)2] where ReO4
-
 is produced as a by-product, 

was isolated from the disproportionation reaction between trans-[ReOCl3(PPh3)2] and Hpybz 

[5]. Similarly, the cationic complex salt cis(Cl), trans(P)-[ReCl2(PPh3)2(Hpybz)]Cl was 

prepared from the reaction of 2-pyridylbenzimidazole with trans-[ReOCl2(OEt)(PPh3)2]. 

However, the reaction of Hpybz with [ReCl3(PhC(O)C(O)Ph)(PPh3)] in the presence of an 

oxidizing agent, NaOCl afforded a neutral Re(V) compound, [ReCl4(Hpybz)].OPPh3 [6].  

 

Ruthenium complexes of the 2-pyridylbenzimidazole ligand and its derivatives have also 

been studied, especially with respect to their interesting electrochemical and 

photoluminescent properties [7]. Titanium dioxide nanocrystals doped with a ruthenium(II) 

compound, [Ru(NCS)2(L1)(L2)]  {L1 = 4,4’-dicarboxy-2,2’-bipyridine and L2 = 1-(2,4,6-

trimethylbenzyl)-2-(2’-pyridyl)benzimidazole} showed evidence of optimal 
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photoelectrochemical activity as a dye sensitized solar cell [8]. Other derivatives of Hpybz 

such as terpyridyl-imidazole were used to form ruthenium compounds that have been utilized 

as both electrochemical and lifetime based sensors for anions [9].  

 

Square pyramidal copper complexes of Hpybz have shown to exhibit anticancer activity [10]. 

These compounds does not show anticancer activity through typical DNA intercalation, like 

in the case of square planar Pt(II) chemotherapeutic drugs but rather destroy cancer cells 

through superoxide dismutase (SOD) mimetic activity [11]. Indicative to the above-

mentioned, the ligand proved to be an excellent chelator to vanadium.  In this chapter, we 

report the synthesis and characterization of four novel vanadium compounds, cis-

[VO2(Hpybz)(pybz)] (1), cis-[V(OH)2(Hpybz)2]Cl (2),  (μ-O)[VO(pybz)2.VO(Hpybz)(acac)] 

(3) and VO(Hpbyz)2SO4] (4).H2O. 

 

3.2 Experimental 

3.2.1 Cis-[VO2(Hpybz)(pybz)] (1) 

A mixture of NH4VO3 (0.100 g, 0.855 mmol) and Hpybz (0.334 g, 1.71 mmol) in 20 cm
3
 of a 

MeOH:water (1:1) v:v solvent ratio was heated under reflux for three hours. The resulting 

yellow solution was allowed to cool to room temperature and yellow, cubic crystals were 

grown over a four day period via the slow evaporation of the mother liquor. Yield (73 %), 

m.p. = 223 – 225 °C. IR(νmax/cm
-1

): ν(N-H) 3354 w; ν(C=N) 1604 s; ν(V=O2) 875 vs br. 
1
H 

NMR (δ, ppm) 13.05 (br, s, 1H, N6H); 8.78 (d, 2H, H1, H13); 8.23 – 8.41 (m, 2H, H4, H16); 

8.05 (t, 2H, H2, H14); 7.26 – 7.94 (m, 6H, H3, H8, H11, H15, H20, H23); 7.18 (d, 2H, H10, 

H22); 7.13 (d, 2H, H9, H21). 
51

V NMR (δ, ppm) -588. UV-Vis (DMF, (λmax (ε , M
-1

cm
-1

))): 

310 (1774); 323 (1512); 354 (270). Conductivity (DMF, 10
-3

 M): 17.08 ohm
-1

cm
-2

mol
-1

.  

 

3.2.2 Cis-[V(OH)2(Hpybz)2]Cl (2)   

An ethanolic solution (20 cm
3
) of Hpybz (0.248 g, 1.271 mmol) and VCl3 (0.100 g, 0.636 

mmol) was heated under refluxed for five hours. The volume of the resultant dark green 

solution was halfed and layered with petroleum ether. Dark green, cubic crystals were 

obtained which were suitable for X-ray analysis. Yield (78 %), m.p. > 350 °C. IR(νmax/cm
-1

): 
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ν(N-H) 3263 m; ν(O-H) 2686, 2682 m; ν(C=N) 1603 vs.  
1
H NMR (δ, ppm) 13.05 (br, s, 2H, 

N3H, N6H); 8.73 (s, 2H, H1, H13); 8.36 (s, 2H, H4, H16); 8.02 (s, 2H, H2, H14); 7.51 (s, 6H, 

H3, H8, H11, H15, H20, H23); 7.61 (br, s, 2H, O1H, O2H); 7.14 (s, 4H, H9, H10, H21, 

H22). UV-Vis (DMF, (λmax (ε, M
-1

cm
-1

))): 311 (3140); 322 (2836); 356 (264). Conductivity 

(DMF, 10
-3

 M): 39.57 ohm
-1

cm
-2

mol
-1

.  

 

3.2.3 (μ-O)[VO(Hpybz)(pybz).VO(Hpybz)(acac)] (3) 

A reaction mixture of Hpybz (0.155 g, 0.796 mmol) and VO(acac)2 (0.100 g, 0.398 mmol) in 

20 cm
3
 of ethanol was heated under reflux for five hours. After reducing the volume to half, it 

was layered with petroleum ether. From the solution, XRD quality green needles were 

obtained. Yield (84 %), m.p. = 277 – 280.5 °C. IR (νmax/cm
-1

): ν(N-H) 3058 w; ν(C=N) 1604, 

1653, 1520 s; ν(C=O) 1445, 1366 m; ν(V-O) 951, 948 vs; ν(V-O-V) 787 m. 
1
H NMR (δ, 

ppm) 13.07 (br, s, 1H, N8H); 8.70 (d, 4H, H6, H9, H16, H13); 8.37 (d, 2H, H4, H12); 8.09 

(d, 2H, H1, H9); 8.01 (t, 4H, H2, H3, H10, H11); 7.45 (t, 4H, H6, H7, H14, H15).  
51

V NMR 

(δ, ppm) -590.5. UV-Vis (DMF, (λmax (ε, M
-1

cm
-1

))): 313 (2780); 327 (2450); 357 (570). 

Conductivity (DMF, 10
-3

 M):  20.07 ohm
-1

cm
-2

mol
-1

.  

 

3.2.4 VO(Hpbyz)2SO4.H2O (4) 

The title compound was formed from the 2:1 molar ratio reaction between Hpbyz (0.239 g; 

1.2278 mmol) and VOSO4 (0.100 g; 0.6139 mmol) in 20 cm
3
 of a MeOH:water (1:1) v:v 

solvent ratio (after five hours of refluxing).  From the slow evaporation of the mother liquor, 

green, cubic crystals suitable for X-ray analysis were obtained after 3 days. Yield = 87 %, 

m.p. > 350 °C.  IR (νmax/cm
-1

): ν(N-H) 3069 (w); ν(C=N) 1608 (m); ν(V=O) 948 (s). UV-Vis 

(DMF, (λmax (ε, M
-1

cm
-1

))): 303 (sh, 38622); 313 (39835); 360 (sh, 3496). Conductivity 

(DMF, 10
-3

 M):  27.93 ohm
-1

cm
-2

mol
-1

.  

 

 

 



32 
 

3.2.5 X-ray diffraction 

X-ray diffraction data were recorded on an Oxford Diffraction Xcalibur 2 CCD 4-circle 

diffractometer equipped with an Oxford Instruments Cryojet operating at 120(2) K in the case 

of compound 1. The X-ray data for 2, 3 and 4 were recorded on a Bruker Apex Duo equipped 

with an Oxford Instruments Cryojet operating at 100(2) K and an Incoatec microsource 

operating at 30 W power. Crystal and structure refinement data are given in Table 3.1. 

Selected bond lengths and angles are given in Tables 3.2 and 3.3. In all three cases the data 

were collected with Mo Kα (λ = 0.71073 Å) radiation at a crystal-to-detector distance of 50 

mm. The data collection on the Oxford diffractometer was performed using omega scans at θ 

= 29.389⁰ with exposures taken at 2.00 kW X-ray power and 0.75º frame widths using 

CrysAlis CCD [12]. The data were reduced with the programme CrysAlis RED Version 170 

[12] using outlier rejection, scan speed scaling, as well as standard Lorentz and polarisation 

correction factors. A semi-empirical multiscan absorption correction [13] was applied to the 

data. The following conditions were used for the Bruker data collection: omega and phi scans 

with exposures taken at 30 W X-ray power and 0.50º frame widths using APEX2 [14]. The 

data were reduced with the programme SAINT [14] using outlier rejection, scan speed 

scaling, as well as standard Lorentz and polarisation correction factors. A SADABS semi-

empirical multi-scan absorption correction [14] was applied to the data. Direct methods, 

SHELXS-97 [15] and WinGX [16] were used to solve all four structures. All non-hydrogen 

atoms were located in the difference density map and refined anisotropically with SHELXL-

97 [15]. All hydrogen atoms were included as idealised contributors in the least squares 

process. Their positions were calculated using a standard riding model with C-Haromatic 

distances of 0.93 Å and Uiso = 1.2 Ueq.  The imidazole N-H atoms as well as the water and 

methanol solvate O-H hydrogen atoms of 1 were located in the difference density map, and 

refined isotropically.  In the case of 3, the O-H hydrogen atoms of first and third ethanol 

solvent molecules were located in the difference density map and refined isotropically. The 

O-H hydrogen atom attached to O2S of the second ethanol molecule was refined using a 

riding model with the torsion angle governed by the experimental electron density (HFIX 83 

instruction in SHELX). The third ethanol solvent molecule in the asymmetric unit of 3 (atoms 

O3-C5S-C6S) exhibited positional disorder for the central methylene group (C5S); this was 

well-resolved using a simple two-site model with occupancies of 0.37842 (C5S) and 0.62158 

(C5S’). 
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3.3 Results and Discussion 

3.3.1 Synthesis and spectral characterisation  

The metal compounds were isolated in good yields from the reactions of two equivalents of 

Hpybz with the respective metal precursors. The compounds 1∙CH3OH.(H2O)2, 

3∙(CH3CH2OH)3 and 4∙H2O compounds dissolve in DMF and DMSO, but they are poorly 

soluble in other common organic solvents.  The solubility of 2 could only be achieved 

through heating followed by ultrasonication in DMF, DMSO or EtOH but not in chlorinated 

solvents.  Compounds 1, 3 and 4 are non-electrolytes while  compound 2 is a 1:1 electrolyte 

in DMF [17]. The infrared spectrum of complex 1∙CH3OH.(H2O)2 (see Figure 3.1) shows an 

intense, broad band at 875 cm
-1

 which is well within the region expected for the V=O 

stretching frequency (860–930 cm
-1

) [18].   

 

Figure 3.1: Overlay IR spectra of  the free ligand, Hpybz (2-pyridylbenzimidazole) and 

complex 1 in the range of 1850 and 650 cm
-1

. The arrow indicates the intense, broad band at 

875 cm
-1

 for the V=O stretching frequency.  
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For compound 2, the distinctive feature is two weak intensity stretching frequencies observed 

at 2686 and 2682 cm
-1

 for the hydroxyl co-ligands (i.e. ν(O-H)). The N-H vibrations for the 

chelators in complexes 1, 2, 3 and 4 are found at 3554, 3263, 3058 and 3069 cm
-1

 

respectively. The IR spectrum of 3 shows high intensity vibrational bands for the oxido-

bridged bond (at 787 cm
-1

), as well as those ascribed to the oxido moieties for the respective 

metal centres (at 948 and 951 cm
-1

) which compare well with other oxido-bridged 

oxidovanadium (IV/V) compounds found in the literature [19]. The fact that these V=O 

bonds vibrate at different frequencies are due to the different coordination environments of 

the metals. The strong metal oxo-stretching frequency of complex 4 is found at 948 cm
-1

. All 

IR spectra shows the presence of an intense stretch for ν(C=N); and a weak intensity 

frequency band for the ν(N-H) of the Hpybz/pybz. 

 

The 
1
H NMR spectrum of complex 1 measured in DMSO-d6 shows signals in the aromatic 

region ascribed to the protons of the Hpybz and pybz ligands. However, the signals could not 

be resolved due to the near equivalence of the two ligands, and so the chemical shifts are 

listed in the experimental section as averaged values.  A broad singlet at 13.05 ppm is readily 

assigned to the imidazole proton of the Hpybz ligand; note that the signal integrates for one 

proton, thus confirming that one of the coordinated ligands was deprotonated with the second 

one remaining in the neutral form. The 
51

V chemical shifts of -588 (for complex 1) and -

590.5 (for compound 3) ppm is upfield relative to the values of -540 and -539 ppm reported 

for cis-[VO2(salhyph)]
- 
(H2salhyph = benzoic acid hydrazide) and cis-[NH4]2[VO2(bmidaa)] 

(H3bmidaa = N-(1-carboxymethylbenzimidazol-2-ylmethyl)iminodiacetic acid) respectively 

[20, 21]. The upfield shift reflects a relatively high electron density at the vanadium atom due 

to the strong σ-donor abilities of the pybz and Hpybz ligands (see the discussion of the crystal 

structure). 

  

Broad signals were observed in the 
1
H NMR spectrum of compound 2, (see Figure 3.2) 

typical of metal centres containing unpaired electrons. Thus the assignments were based on 

the free ligand. In the case of compound 3, well resolved proton signals appear in the 

aromatic region which is associated with the diamagnetic metal centre in combination with 

broadened signals which are due to the effects of the paramagnetic metal centre (see Figure. 

3.3). The diamagnetic signals appears as a doublet (d):d:d: triplet (t):t set which integrate to 
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4:2:2:4:4.  A broad singlet is found downfield which is due to the imidazolium proton. The 

presence of the diamagnetic +V centre was confirmed by 
51

V NMR, (see Figure 3.3) in 

which the signal at -590.5 ppm was found relatively close to that of complex 1 (at -588 ppm).  

 

Figure 3.2: 
1
H NMR spectrum of compound compound 2 illustrating the broad signals in the 

aromatic region which are due to the paramagnetic influence of the vanadium (III) metal 

centre.  

 

The ESR spectrum of compound 3 (see Figure 3.4) shows eight well-defined isotropic 

signals which confirm that no delocalization occurs between the metal centres. It is classified 

as a type I dimer since the metal centres are within different coordination environments as 

confirmed by NMR, IR, ESR spectroscopy and the crystal structure. Similar g-values and 

hyperfine coupling constants were found for other bimetallic oxidovanadium (IV/V) 

compounds as in compound 3 (giso = 1.921 and A = 102 G) [22]. Indicative to compound 3, 

the mononuclear vanadium complex 4 showed an analogous ESR spectrum. The UV-Vis 

spectra of the compounds shows similar electronic transitions all ascribed to ligand based (π-

π*) transitions due to the highly delocalized nature of the chelator [23] (see Figure 3.5).  
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Figure 3.3: 
1
H NMR of compound 3 illustrating both sharp and broad signals within the 

aromatic region due to the presence of both vanadium(IV) and -(V) metal centres. Inset: The 

signal at -590.5 ppm in the 
51

V NMR confirms the presence of the vanadium(V) metal center. 

 

Figure 3.4: X-band EPR spectra of compound 3 and complex  4 at 298 K. Instrument 

settings: microwave bridge frequency, 9.8 GHz; microwave bridge attenuator, 20 dB; 

modulation frequency, 100 kHz; modulation amplitude, 5 G; centre field, 3500 G. 
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Figure 3.5: Overlay UV-Vis spectra of the respective compounds. 

 

 

 

3.3.2 Structure of complex  1 

 

 

The cis-[VO2(Hpybz)(pybz)] (complex 1) crystallizes as the CH3OH∙(H2O)2 hydrate with two 

independent complex molecules per asymmetric unit.  The two complexes have very similar 

geometrical parameters and for this reason, we have averaged the bond lengths and angles 

(Table 3.2) for the purpose of the discussion.  A perspective view of the complex is given in 

Figure 3.6 along with the atom labelling scheme. The vanadium is octahedrally coordinated 

by two adjacent oxido groups (O1 and O2), by the pyridyl nitrogen (N1), an imidazole 

nitrogen (N2) of the anionic pybz ligand, the pyridyl nitrogen (N4) and an imidazole nitrogen 

(N5) of the protonated Hpybz ligand.   

 

The oxido groups are cis relative to each other and trans to the pyridyl nitrogen atoms.   

Distortions from a regular octahedral geometry are apparent from the angles subtended at the 

vanadium atom, for e.g. for the two bidentate ligands: the N1-V-N2 and N4-V-N5 bite angles 
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are only 72-74°.  This is due to the geometric constraints imposed by the ligands that are rigid 

and planar: the maximum deviation of an atom from a mean plane drawn through the non-

hydrogen atoms of the pybz ligand is only 0.104(1) Å; and for the Hpybz ligand it is 0.190(3) 

Å.  The ‘trans’ O1-V-N1, O2-V-N4 and N2-V-N5 angles also show marked deviations from 

the idealised octahedral bond angles (i.e. 180°)  

 

Figure 3.6:  An ORTEP view of complex 1 showing 50 % probability displacement ellipsoids 

and the atom labelling. The other independent molecule of complex 1 and the solvent 

molecules of crystallization are omitted for clarity. 

 

Octahedral coordination for a mononuclear dioxidovanadium(V) complex is unusual and we 

found only two examples reported in the literature,  viz cis-[VO2(EDDA)]
-
 (H2EDDA = 

ethylenediamine-N,N’-diacetate acid) [24] and cis-[VO2(X)] (X = monoanionic tetradentate 

Schiff base) [25].  The octahedral coordination of the VO2
+
 core in each of these two 
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examples is completed by a tetradentate ligand, whereas in complex 1 it is completed by two 

bidentate ligands.  Thus, the combination of ligands in complex 1 is the first of its kind to be 

reported for an octahedral complex of vanadium(V). Although octahedral mononuclear 

dioxidovanadium compounds (as in complex 1) are rarely found in the literature, binuclear 

dioxidovanadium(V)  compounds adopting octahedral geometries with respect to each metal 

centre are common [26]. For example, the coordination reactions with tridentate Schiff base 

ligands (HX) afforded the formation of centrosymmetric dinuclear dioxidovanadium(V) 

compounds, (μ-O)2[V2O2X2] where X = [2-(2-

(methyl/ethyl/isopropyl)methylaminoethylimino)methyl] phenolate. In all three compounds, 

each vanadium atom occupies the centre of an octahedron with the chelators acting as 

monoanionic tridentate (X) moieties and the remaining coordination sites occupied by the 

oxido moiety as well as two oxido-bridged moieties [27].  

 

The two V=O bond lengths of 1.621(3) Å (O1) and 1.638(4) Å (O2) are comparable with 

values found in the literature.  For example, an average V=O bond length of 1.62 Å has been 

reported for cis-[VO2(salhyph)]
-
 [21]; while for cis-[VO2(Hpmide)]∙4H2O (H2pmide = N-(2-

pyridylmethyl)iminodiethanol) the V=O bond lengths are 1.634(1) and 1.664(1) Å [20].  

More interesting are the V-N distances listed in Table 3.2.  Starting with the pyridyl 

nitrogens, we note a significantly shorter distance to the anionic pybz ligand [V-N1 = 

2.308(2) Å] as compared to the corresponding distance of the neutral Hpybz ligand [V-N4 = 

2.384(2) Å]. With the imidazole nitrogens, there is also a shorter V-N distance for the anionic 

pybz ligand [V-N2 = 2.032(2) Å] compared to the neutral Hpybz ligand [V-N5 = 2.092(2) 

Å]. These V-N bond lengths show that the anionic pybz ligand functions as a stronger σ-

donor ligand than the neutral Hpybz ligand, both through the pyridyl and imidazole nitrogen 

donor atoms.  Interestingly, other authors have also reported metal-nitrogen bond lengths that 

reflect the stronger σ-donor ability of the nitrogen atoms of the anionic pybz ligand, as 

compared to those of the neutral Hpybz ligand, e.g. in the [Gd(Hpybz)(pybz)3] complex, the 

Gd-N(pyridyl) bond lengths average 2.566(8) Å for the pybz ligand, a shorter distance than 

the Gd-N(pyridyl) distance of  2.593(9) Å for the Hpybz ligand [28].  

 

In order to fully understand the difference in electron density at the nitrogen donor atoms of 

the protonated and deprotonated 2-pyridylbenzimidazole ligands, DFT calculations were 
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carried out on the Hpybz and pybz ligands. A plot of the results of the DFT calculations is 

shown in Figure 3.7.  As the results in the plot show, there is good agreement between the 

calculated C-C and C-N bond lengths of the imidazole moieties and those obtained from the 

crystal structure determination.  This suggests that the LANL2DZ basis set used for the DFT 

calculations is suitable, and that the net charges calculated for the nitrogen atoms are reliable 

estimates.  We first examine the electron density on the imidazole nitrogens of the neutral 

ligand.  The net charge of -0.433 electrons on the protonated nitrogen (N6) is higher than the 

net charge of -0.289 electrons on the coordinated nitrogen (N5).  However, the lone pair on 

the protonated nitrogen is not available for bonding to the metal and, perforce, a bond 

between N5 and the vanadium is formed.  

 

 

Figure 3.7:  DFT calculated Hpybz and pypz ligands of the vanadium complex. The 

calculated bond angles are shown adjacent to each bond and the experimental values are 

given in parentheses. The charge on the nitrogen atoms (electrons) are shown in red. 

 

The same restriction does not apply to the imidazole nitrogens of the anionic ligand, since 

both have lone pairs available for bonding to the metal.  However, they carry very different 

net charges:  the net charge of -0.439 electrons on N2 is much higher than the net charge of -
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0.079 electrons on N3, as expected, since N2 carries a formal negative charge after loss of the 

proton. It is also significantly higher than the net charge on the donor atom of the neutral 

ligand (N5).  On this basis N2 is expected to be a stronger N(σ) donor than N5 and, therefore,  

the  DFT results predict a V-N2 bond that will be stronger and shorter than the V-N5 bond, 

consistent with the measured V-N2 and V-N5 bond lengths of 2.032(3) and 2.092(3) Å 

respectively.   The calculated net charges on the pyridyl nitrogen atoms of the two ligands 

were then examined.  As the DFT results show, the net charge of -0.192 electrons on the 

pyridyl nitrogen atom of the anionic ligand (N1) is higher than the net charge of -0.139 

electrons on the pyridyl nitrogen atom of the neutral ligand (N4). The former atom is 

therefore expected to be the stronger σ-donor, and to form the stronger and shorter bond to 

the vanadium, consistent with the measured V-N1 and V-N4 distances of 2.308(2) and 

2.384(2) Å respectively. In fact, all the V-N distances fit a pattern where an increase in net 

charge on the donor nitrogen atom leads to a shorter V-N bond length. 

 

In the crystal packing it is noteworthy that the two crystallographically independent 

molecules of complex 1 in the asymmetric unit adopt different packing motifs.  The 

molecules denoted as A stack in columns parallel to the [b]-axis (see Figure 3.8). Successive 

molecules in a column are linked through a centre of inversion, and in an alternating fashion 

by either π(pybz)-π(pybz) or π(Hpybz)-π(Hpybz) interactions. These are stabilizing π- π 

interactions in view of the relative orientations of the ligands within the adjacent pybz/pybz 

and Hpybz/Hpybz pairs, and the short perpendicular distance of ca. 3.3 Å between their 

planes. 

 

The molecules denoted as B also stack in columns parallel to the [b]-axis, but in this case 

successive molecules in a column are linked through hydrogen bonds; also molecules from 

adjacent columns are linked by hydrogen bonds, thus effectively forming sheets of molecules 

parallel to the ab plane (see Figure 3.9). Details of the hydrogen bonding are given in Table 

3.4. It can be seen in Figure 3.10 that molecules from adjacent rows are cross-linked through 

a series of hydrogen bonds (Table 3.4). The columns of molecules A and molecules B stack 

in alternating layers to give the three-dimensional structure.   
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Figure 3.8: One-dimensional chains of molecules A, showing centroid-centroid contacts. The 

chains are supported by pi-pi stacking. 

 

Figure 3.9: Two-dimensional network of molecules B supported by extensive hydrogen bonds 

(shown as dashed, purple lines). 
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Figure 3.10:  Three-dimensional network of complex 1.CH3OH∙(H2O)2 viewed down the [a]-

axis. The network is completed by hydrogen bond cross-links between the molecules in the 

columns of molecule A (shown in blue) and molecule B (shown in yellow). 

 

3.3.3 Structure of compound 2 

The compound cis-[V(OH)2(Hpybz)2]Cl (compound 2) exhibits a distorted octahedral  

geometry (see Figure 3.11). Selected bond distances and angles are given in Table 3.2. The 

Hpybz ligands act as bidentate chelators through the two neutral pyridyl (N1, N4) and 

imidazolium nitrogens (N2, N5).  These ligands afford 5-membered chelate rings with 

constrained bite angles [N1-V-N2 = 73.04(9)° and N5-V-N4 = 73.31(9)°] inducing 

octahedral distortion with the O2-V-N4 = 161.8(1)°, O1-V-N1 = 165.1(1)° and N2-V-N5 = 

151.2(1)° angles deviating significantly from linearity. The metal centres of compounds 1 

and 2 have very similar coordination environments, with oxido groups that are required for 

the +V oxidation state of the (d
0
) metal centre (in complex 1) and are replaced with hydroxyl 

groups (in compound 2) which is suitable for low oxidation stabilization. In addition, in 

compound 2, both chelating ligands act as neutral bidentate ligands (i.e. Hpybz) whereas 

complex 1 has a neutral and a monoanionic (i.e. pybz) bidentate chelator. Thus these 

compounds have comparable geometrical parameters.  For example, the cis hydroxyl co-
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ligands in compound 2 affords a slightly wider O1-V-O2 angle of 108.1(1)° compared to the  

average O1-V-O2 angle [105.6(1)°] formed by the  cis oxido co-ligands in complex 1. 

 

Figure 3.11: An ORTEP view of compound 2, showing 50 % probability displacement 

ellipsoids and the atom labelling. 

As expected, the V-O double bond lengths in complex 1 [V-O1 = 1.621(3) Å and V-O2 = 

1.638(4) Å] are shorter than the V-O single bond lengths in compound 2 [V-O1 = 1.759(3) Å 

and V-O2 = 1.809(2) Å], and the Hpybz chelators affords similar bite angles in both complex 

1 [N4-V-N5 = 72.36(9)°] and compound 2 [N1-V-N2 = 73.04(9)˚ and N5-V-N4 = 73.31(9)˚].  

More interestingly, the V-N bond lengths were similar for both metal compounds despite 

having different oxidation states.  In fact, the trans V-N(pyridyl) bond lengths are similar to 

vanadium(III) compounds found in the literature: V
III

(qn)3  (Hqn = quinoline) as well as the 

series of complex cations, [VX2N2S2]X (where X = Br or I), [29] which were synthesized 

from the tri-halide vanadium precursor, VX3(thf)3, and the neutral tetradentate chelator, 1,6-

bis(2’-pyridyl)-2,5-dithiahexane (N2S2) [30]. 

 

Unlike in complex 1, where a network of hydrogen bonding stabilized the crystal lattice, only 

two classical hydrogen bonds are observed for compound 2 between the chloride counter-ions 
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and the respective N-H bonds of the chelates, (refer to Table 3.5 and Figure 3.12). Weak 

intermolecular interactions occur between the C19 to C24 phenyl rings of respective 

molecules with centroid to centroid distances of 4.012 Å. Consequently, these interactions 

results in a three dimensional network with a series of polymeric chains running at ca = 60° 

with respect to the [c]-axis. 

 

Figure 3.12:  A perspective view of the unit cell for compound 2, showing the classical 

hydrogen-bonding. 

 

3.3.4 Structure of compound 3 

The crystal structure of compound 3 with the atom numbering scheme is shown in Figure 

3.13. Compound 3 crystallized with three ethanol solvent molecules. The crystal structure is 

stabilized by various classical hydrogen bonding interactions (refer to Table 3.6) and π-π 

interactions (ca = 3.5 Å) between two co-planar Hpybz and pybz ligands of the respective 

metal atoms. 
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Figure 3.13:  An ORTEP view of compound 3 showing 50 % probability displacement 

ellipsoids and the atom labelling. 

 

The metal atoms are at the centres of distorted octahedrons with a central oxido-bridge O2 

[V1-O2-V2 equal to 151.81(9)˚]. The deviation of this angle from linearity is ascribed to the 

variable valences of the metal atoms. The (μ-O)(VO)2 backbone has a syn-angular orientation 

given by the angles of O1-V1-O2 = 105.50(7)° and O3-V2-O2 = 98.60(7)° which is 

significantly larger than the ideal 90°. Variable valency is also evident from the difference in 

bond lengths within the oxido-bridged moiety [V1-O2 = 1.683(1) Å and V2-O2 = 1.958(1) 

Å]. However the V=O bond lengths [V1-O1 = 1.606(1) Å and V2-O3 = 1.602(1) Å] were 

found to be essentially identical. These bond lengths were comparable with the bond length 

of 1.607(1) Å for (NH4)[(μ-O)V2O2(Hhida)2]∙H2O (H3hida = N-(2-

hydroxyethyl)iminodiacetic acid [14]. 

 

The pybz ligands around the V1 atom are coordinated bidentately through the pyridyl (N1, 

N4) and deprotonated imidazolate (N3, N6) nitrogens of the respective pybz moieties, with 

bite angles of  N1-V1-N3 = 74.26(6)° and N4-V1-N6 = 73.41(6)°. The difference in the bite 

angles could be due to the stronger trans effect experienced by the V1-N4 bond [2.341(2) Å] 
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which is trans to the oxido group [O1] compared to the V1-N1 [2.284(2) Å] which is trans to 

the oxido-bridged group [O2]. Around the V2 atom the ligand forms a 5-membered chelate 

ring through the pyridyl (N7) and neutral imidazolium (N9) nitrogens with a bite angle, N7-

V2-N9 = 72.28(6)°. A six-membered chelate ring is also afforded by the bidentate 

coordination of the monoanionic acetylacetone (acac) moiety through the oxygens (O4, O5) 

where the slight difference in the bond lengths V2-O4 = [1.977(2) Å] and V2-O5 = [2.006(1) 

Å] is accounted to the variable trans-influence experienced by the donor atoms.  

 

Although spectral characterization support the presence of different oxidation states for the 

metal centres, an argument arises that charge neutrality can be achieved through protonation 

of the N2 atom. This argument is also proven contradictory when considering the C6-N2 

[1.324(3) Å] bond which exhibits double bond character and is significantly shorter than the 

C6-N3 [1.356(3) Å] bond which implies that the latter is a single bond. Furthermore, the C6-

N2 bond distance is also comparable with the other two C=N [C18-N5 = 1.335(3) Å and 

C30-N9 = 1.329(3) Å] bonds found within the Hpybz and pybz ligands respectively. In 

addition, the coordination bond lengths to the imidazolate nitrogens [V1-N3 = 2.051(2) Å and 

V1-N6 = 2.031(2) Å] are significantly different. 

   

Despite the fact that most mixed valence oxidovanadium compounds have been formed from 

oxygen-donor ligands, nitrogen-donor ligands have also proved to be excellent chelators. The 

isolation of the novel binuclear vanadium (II/III) compounds,  [(PY5Me2)V
II
(μ-

Lbr)V
III

(PY5Me2)]
4+

 (PY5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine) with different N-

donor (Lbr) bridges were described [31]. Another example is the benzimidazole ligand, 

Me3ntb [tris(N’-methylbenzimidazol-2’-yl-methyl)amine] which was reacted with 

VO(CF3SO3)2 to afford the binuclear compound, [(Me3ntb)V
IV

O(μ-

O)V
V
O(Me3ntb)](CF3SO3)3∙2H2O [32]. Nitrogen and oxygen-donor Schiff base ligands 

derived from salicylaldehyde and various aliphatic diamines forms tetradentate chelators 

which readily coordinate to vanadium affording mixed binuclear oxido-bridged vanadium 

compounds [33], e.g. [(salen)V
IV

-O-V
V
=O(salen)][ClO4]; H2salen = N,N’-ethylene-

bis(salicylideneimine). A further study involves the chelation of one heptadentate N4O3 donor 

ligand to two vanadium centers, which led to the formation of the vanadium(IV/V) dimer, (μ-

O)[V2O2(oap)]; H3oap = 2,6-bis[{{(2-hydroxybenzyl)(N,N’-

(dimethylamino)ethyl)}amino}methyl]-4-methylphenol [22]. In addition, the strong affinity 

of N, O chelator ligands to vanadium often allows the formation of multinuclear, mixed 
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valence vanadium compounds. For example, the reaction of vanadyl sulfate and N-

acetylsalicylhydrazidate (H3ashz) formed a hexanuclear vanadium compound, 

[V3O3(OEt)(ashz)2(μ-OEt)]2 [34]. 

 

3.3.5 Structure of complex 4 

 

Complex 4 has similar structural features as all the previous vanadium complexes 1 – 3 and 

for this reason a detailed comparative description of complex 4 will not be given.  The ‘2+2’ 

coordination mode of the neutral Hpybz ligands affords two five-membered rings with bite 

angles of 73.20(8)˚ [N1-V-N2] and 77.07(9)˚ [N4-V-N5] (see Figure 3.14). These 

constrained bite angles results in the formation of a distorted octahedron with the N2-V-N4 

[159.22(9)˚], N1-V-O1 [170.1(1)˚] and O2-V-N5 [157.25(9)˚] angles severely deviating from 

linearity.  

 

As expected, the differences between the respective neutral V-Npy [V-N1 = 2.350(3) Å and 

V-N4 = 2.146(2) Å] and V-Nhetero [V-N2 = 2.080(2) Å and V-N5 = 2.115(2) Å] coordination 

bonds are attributed to the different trans-effects experienced by the donor atoms. 

Furthermore, the V-O1 [1.582(2) Å] has a bond order of 2 due to its shorter bond distance V-

O2 [1.984(2) Å]. More interestingly, the aforementioned coordination bond (i.e. V-O2) 

induces a longer S-O2 [1.515(2) Ǻ] than all the other intraligand S-O [S-O3 = 1.449(3) Å, S-

O4 = 1.461(3) Å and S-O5 = 1.473(2) Å] bonds within the sulfate co-ligand. This implies that 

the latter exhibits double bond character and that an electron is delocalized over these 

intraligand bonds.  

 

The crystal lattice of complex 4 is stabilized by the intermolecular interactions between the 

two co-planar N4/N5-Hpybz moieties of adjacent molecules [average centroid to centroid 

distance = 5.630 Å]. In addition, the presence of the water molecule of recrystallization and 

sulfate co-ligand allows the formation of three classical hydrogen bonds (refer to Table 3.7 

and Figure 3.15).   
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Figure 3.14:  An ORTEP view of complex 4 showing 50 % probability displacement 

ellipsoids and the atom labelling. Hydrogen atoms have been omitted for clarity. 
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Figure 3.15: A perspective view of complex 4, showing the hydrogen-bonding and the two co-

planar N4/N5-Hpybz moieties of adjacent molecules. 

 

 

 

 

 

 

 

 



51 
 

3.4 References: 

 

1. (a) Rehder D., Inorg. Chem. Comm., 2003, 6, 604, 1(b) Evangelou A.M., Crit. Rev. 

Oncol. Hemat., 2002, 42, 249. 

2. Ligtenbarg A., Hage R., Feringa B., Coord. Chem. Rev., 2003, 237, 89. 

3. Thompson K.H., Orvig C., Coord. Chem. Rev., 2001, 219–221, 1033. 

4. Zhou Y., Li X., Zhang H., Fan C., Zhang H., Wu B., J. Coord. Chem., 2011, 64, 

4066. 

5. Gerber T.I.A., Mayer P., Tshentu Z.R., J. Coord. Chem., 2006, 59, 1509. 

6. Sokolov M.N., Fedorova N.E., Peresypkina E.V., Pätow R., Fedorov V.E., Fenske D., 

Inorg. Chim. Acta, 2005, 358, 3914. 

7. Baggaley E., Weinstein J.A., Gareth J.A., Coord. Chem. Rev., 2012, 256, 1762. 

8. Sahin C., Ulusoy M., Zafer C., Ozsoy C., Varlikli C., Dittrich T., Cetinkaya B., Icli 

S., Dyes Pigments, 2010, 84, 88. 

9. Bhaumik C., Maity D., Das S., Baitalik S., Polyhedron, 2013, 52, 890 

10. Lu Y.M., Chen Y.H., Ou Z.B., Chen S., Zhuang C.X., Le X.Y., Chin. J. Chem., 2012, 

30, 303. 

11. Devereux M., Shea D.O., Kellett A., McCann M., Walsh M., Egan D., Deegan C., 

Kędziora K., Rosair G., Müller-Bunz H., J. Inorg. Biochem., 2007, 101, 881. 

12. Oxford Diffraction, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, 

Yarnton, England, 2008. 

13. Blessing R.H., Acta Cryst., 1995, A51, 33. 

14. Bruker APEX2, SAINT and SADABS. Bruker AXS Inc. (2010) Madison, Wisconsin, 

USA. 

15. Sheldrick G.M., Acta Cryst., 2008, A64, 112. 

16. Farrugia L.J., J. Appl. Cryst., 2012, 45, 849. 

17. Asif I., Ali S., Shahzadia S., Mahmood S., J. Chin. Chem. Soc., 2007, 54, 23. 

18. Maurya M.R., Kumar A., Abid M., Azam A., Inorg. Chim. Acta, 2006, 359, 2439. 

19. (a) Mahroof-Tahir M., Keramidas A.D., Goldfarb R.B., Anderson O.P., Miller M.M., 

Crans D.C., Inorg. Chem., 1997, 36, 1657 (b) Nishizawa M., Hirostsu K., Ooi S., 

Saito K., J. Chem. Soc. Chem. Comm., 1979, 707. 

20. Crans D.C., Keramidas A.D., Amin S.S., Anderson O.P., Miller S.M., J. Chem. Soc. 

Dalton Trans., 1997, 2799. 



52 
 

21. Plass W., Yozgatli H., Z. Anorg. Allg. Chem., 2003, 65, 629. 

22. Mondal A., Sarkar S., Chopra D., Guru Row T.N., Pramanik K., Rajak K.K., Inorg. 

Chem., 2005, 44, 703. 

23. Murray K.S., Sheahan R.M., J. Chem. Soc. Dalton Trans., 1973, 11, 1182. 

24. Crans D.C., Keramidas A.D., Mahroof-Tahir M., Anderson O.P., Miller M.M., Inorg. 

Chem., 1996, 35, 3599. 

25. Romanowski G., Kwiatkowski E., Nowicki W., Kwiatkowski M., Lis T., Polyhedron, 

2008, 27, 1601. 

26. Kwiatkowski E., Romanowski G., Nowicki W., Kwiatkowski M., Polyhedron, 2006, 

25, 2809; Romanowski G., Wera M., Polyhedron, 2010, 29, 2747. 

27. You Z., Sun H., Ding B., Ma Y., Zhang M., Xian D., J. Coord. Chem., 2011, 64, 

3510. 

28. Muller-Buschbaum K., Quitmann C.C., Z. Anorg. Allg. Chem., 2004, 630, 131. 

29. Manos M.J., Tasiopoulos A.J., Raptopoulou C., Terzis A., Woollins J.D., Slawin 

A.M.Z., Keramidas A.D., Kabanos T.A., J. Chem. Soc. Dalton Trans., 2001, 10, 

1556. 

30. Nekola H., Wang D., Grunning C., Galtjens J., Behrens A., Rehder D., Inorg. Chem., 

2002, 41, 237. 

31. Bechlars B., D’Alessandro D.M., Jenkins D.M., Lavarone A.T., Glover S.D., Kubiak 

C.P., Long J.R., Nature Chem.,  2010, 2, 362.  

32. Ghosh S., Nanda K.K., Addison A.W., Butcher R.J., Inorg. Chem., 2002, 41, 2243. 

33. Tsuchida E., Oyaizu K., Coord. Chem. Rev., 2003, 237, 213 and references therein. 

34. Sutradhar M., Kirillova M.V., Guedes da Silva M.F.C., Martins L.M.D.R.S., 

Pombeiro A.J.L., Inorg. Chem., 2012, 51, 1229. 

 

 

 

 

 



5
3 

 

T
a
b

le 3
.1

: C
rysta

l a
n
d
 stru

ctu
re refin

em
en

t d
a
ta

 

 
1
.(H

2 O
)
2 .C

H
3 O

H
 

2
 

3
.(C

H
3 C

H
2 O

H
)
3  

4
.H

2 O
 

C
h
em

ical fo
rm

u
la

 
C

2
4 H

1
7 N

6 O
2 V

.(H
2 O

)
2 .C

H
3 O

H
 

C
2
4 H

2
0 C

lN
6 O

2 V
 

C
4
1 H

3
2 N

9 O
5 V

2 .(C
H

3 C
H

2 O
H

)
3  

C
2
4 H

2
0 N

6 O
6 S

V
 

F
o
rm

u
la w

eig
h
t 

5
4
0
.4

4
 

5
1
0
.9

 
9
7
0
.9

 
5
7
1
.5

 

T
em

p
eratu

re(K
) 

1
2
0
(2

) 
1
0
0
(2

) 
1
0
0
(2

) 
1
0
0
(2

) 

C
ry

stal sy
stem

 
T

riclin
ic 

M
o
n
o
clin

ic 
M

o
n
o
clin

ic 
T

riclin
ic 

S
p
ace g

ro
u
p

 
P

-1
 

P
2

1 /c 
P

2
1 /n

 
P

-1
 

U
n
it cell d

im
en

sio
n

s (Ǻ
, °) 

a
 =

 1
1
.9

6
2
(5

) 
a
 =

 8
.8

5
3
5
(3

) 
a
 =

 1
0
.0

0
6
4
(3

) 
a
 =

 1
0
.1

3
3
3
(5

) 

 
b
 =

 1
4
.7

2
8
(5

) 
b
 =

 1
1
.2

2
6
4
(4

) 
b
 =

 2
8
.8

3
9
(1

) 
b
 =

 1
0
.8

1
7
9
(5

) 

 
c =

 1
4
.8

4
6
(5

) 
c =

 2
2
.2

3
8
5
(7

) 
c =

 1
6
.5

5
4
5
(6

) 
c =

 1
3
.3

8
0
4
(6

) 

 
α

 =
 1

0
3
.5

1
1
(5

) 
α

 =
 9

0
 

α
 =

 9
0

 
α

 =
 6

9
.0

4
0
(2

) 

 
β
 =

 1
0
4
.5

0
4
(5

) 
β
 =

 9
0
.5

0
8
(2

) 
β
 =

 1
0
1
.5

1
8
(1

) 
β
 =

 7
4
.2

9
3
(2

) 

 
γ =

 9
4
.9

3
3
(5

) 
γ =

 9
0

 
γ =

 9
0

 
γ =

 8
8
.2

2
4
(3

) 

C
ry

stal size (m
m

) 
0
.4

0
 x

 0
.1

5
 x

 0
.1

0
 

0
.5

0
 x

 0
.1

2
 x

 0
.1

0
 

0
.3

0
 x

 0
.2

5
 x

 0
.1

5
 

0
.3

3
 x

 0
.2

7
 x

 0
.1

3
 

V
(Å

3) 
2
4
3
2
.9

(6
) 

2
2
1
0
.2

6
(1

) 
4
6
8
1
.1

(1
) 

1
3
1
5
.0

3
(1

5
) 

Z
 

4
 

4
 

4
 

2
 

D
en

sity
 (calc.) (M

g
/m

3) 
1
.4

8
 

1
.5

3
 

1
.3

8
 

1
.4

4
 

A
b
so

rp
tio

n
 co

efficien
t (m

m
-1) 

0
.8

1
1
 

0
.6

0
6
 

0
.4

6
2
 

0
.5

0
7
 

F
(0

0
0
) 

1
1
1
9
.8

 
1
0
4
7
.8

 
2
0
1
9
.6

 
5
8
5
.9

 

θ
 ran

g
e fo

r d
ata co

llectio
n
 (d

eg
) 

2
.9

-2
6
.0

 
1
.8

-2
6
.9

 
2
.4

6
-2

5
.4

8
 

2
.0

-2
7
.0

 

In
d

ex
 ran

g
es 

-1
4
 ≤

 h
 ≤

 1
4
 

-1
7
 ≤

 k <
 1

8
 

-1
8
 ≤

 ℓ
 ≤

 1
3

 

-1
1
 ≤

 h
 ≤

 1
1

 

-1
4
 ≤

 k <
 1

3
 

-2
7
 ≤

 ℓ
 ≤

 2
8

 

-1
1
 ≤

 h
 ≤

 1
1

 

-3
1
 ≤

 k <
 3

4
 

-1
9
 ≤

 ℓ
 ≤

 2
0

 

-1
2
 ≤

 h
 ≤

 1
2

 

-1
3
 ≤

 k <
 1

3
 

-1
7
 ≤

 ℓ
 ≤

 1
4

 

R
eflectio

n
s m

easu
red

 
1
8
2
6
4
 

1
7
8
0
9
 

2
4
7
7
5
 

1
6
2
8
1
 

O
b
serv

ed
 reflectio

n
s [I>

2
σ

(I)] 
5
7
3
4
 

4
1
3
2
 

7
5
3
1
 

4
3
2
3
 

In
d

ep
en

d
en

t reflectio
n
s 

9
6
1
1
 

4
7
8
6
 

8
5
2
0
 

5
2
3
8
 

D
ata/R

estrain
ts/p

aram
eters 

9
6
1
1
/0

/6
5
1

 
4
7
8
6
/0

/3
1
7

 
8
5
2
0
/3

/6
2
1

 
5
2
3
8
/0

/3
5
9

 

G
o
o
d
n
ess o

f fit o
n
 F

2 
0
.8

6
2
 

1
.0

6
6
 

1
.0

5
2
 

1
.0

3
1
 

O
b
serv

ed
 R

, w
R

2  
0
.0

4
9
, 0

.1
0
6
 

0
.0

5
7
, 0

.1
3
8
 

0
.0

3
7
, 0

.1
0
1

 
0
.0

4
5
, 0

.1
2
5

 

R
in

t  
0
.0

4
8
 

0
.0

3
5
 

0
.0

2
2
 

0
.0

2
6
 



54 
 

Table 3.2: Selected bond lengths [Å] and bond angles [°] for 1, 2 and 4 

 1 2 4 

V-O1 1.621(3) 1.759(3) 1.582(2) 

V-O2 1.638(4) 1.809(2) 1.984(2) 

V-N1 2.308(2) 2.334(3) 2.350(3) 

V-N2 2.032(2) 2.078(2) 2.080(2) 

V-N4 2.384(2) 2.330(2) 2.146(2) 

V-N5 2.092(2) 2.090(3) 2.115(2) 

N5-C18 1.330(2) 1.335(4) 1.315(3) 

N3-C6 1.327(2) 1.342(4) 1.342(3) 

N2-C6 1.369(5) 1.336(4) 1.321(4) 

N6-C18 1.342(6) 1.342(4) 1.324(3) 

S-O2 - - 1.515(2) 

S-O3 - - 1.449(3) 

S-O4 - - 1.461(2) 

S-O5 - - 1.473(2) 

O1-V-N1 164.65(1) 165.1(1) 170.1(1) 

N5-V-N2 149.30(1) 151.20(1) 159.22(9) 

N4-V-O2 163.15(1) 161.80(1) 157.25(9) 

N4-V-N5 72.36(9) 73.31(9) 77.07(9) 

N2-V-N1 73.91(9) 73.04(9) 73.20(8) 

O1-V-N4 89.12(1) 85.04(9) 97.9(1) 

O1-V-O2 105.6(1) 108.10(1) 102.4(1) 
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Table 3.3: Selected bond lengths [Å] and bond angles [°] for 3 

 3 

V1-O1 1.606(1) 

V1-O2 1.683(2) 

V2-O2 1.958(2) 

V2-O3 1.601(1) 

V2-O4 1.977(2) 

V2-O5 2.006(2) 

V2-N9 2.090(2) 

V2-N7 2.372(2) 

V1-N6 2.031(2) 

V1-N4 2.341(2) 

V1-N1 2.284(2) 

V1-N3 2.051(2) 

C6-N2 1.324(3) 

C6-N3 1.355(3) 

C18-N5 1.335(3) 

C30-N9 1.329(2) 

N1-V1-N3 74.26(6) 

N4-V1-N6 73.41(6) 

O4-V2-O5 86.62(6) 

N9-V2-N7 72.28(6) 

V1-O2-V2 151.81(9) 

O1-V1-N4 165.22(7) 

N1-V1-O2 162.71(7) 

N3-V1-N6 151.64(7) 

O5-V2-O2 163.76(7) 

O4-V2-N9 156.47(7) 

O3-V2-N7 168.95(7) 

O1-V1-O2 105.50(7) 

O3-V2-O2 98.60(7) 
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Table 3.4: Hydrogen bond lengths and angles for 1∙H2O∙CH3OH 

 

 

 

Table 3.5: Hydrogen bond lengths and angles for 2 

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (°) 

N3-H3···Cl1 1.00(7) 2.310(7) 3.038(3) 151(5) 

N6-H6···Cl1 0.830(4) 2.300(4) 3.112(2) 166(4) 

 

 

Table 3.6: Hydrogen bond lengths and angles for 3∙(CH3CH2OH)3 

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (°) 

O1S-H1S···O3S 0.81(3) 1.89(3) 2.680(3) 163(3) 

O3S-H3S···N5 0.89(4) 1.88(4) 2.751(3) 168(4) 

N8-H8···O1S 0.81(3) 1.94(3) 2.757(3) 178(3) 

O2S-H2S···N2 0.84(1) 2.08(1) 2.824(3) 148.1(1) 

 

 

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (°) 

N6B-H101···O1W 0.99(3) 1.69(3) 2.680(5) 175(3) 

O3W-H6W···O2B 0.95(2) 1.88(2) 2.819(3) 171(2) 

O3W-H5W···N3B 0.98(4) 1.83(4) 2.814(4) 174(4) 

N6A-H102···O1A 0.90(2) 2.05(3) 2.793(3) 140(3) 

O2W-H3W···O2A 0.95(1) 1.99(1) 2.923(3) 166(3) 

O4W-H7W ···O2A 1.02(1) 1.83(1) 2.847(3) 175(1) 

O4W-H8W···N3A 1.04(1) 1.73(1) 2.758(4) 169(1) 

O1W-H2W···O1S 0.73(6) 2.24(6) 2.925(6) 158(6) 

O2S-H2S···O4W 0.84(1) 2.22(1) 2.897(4) 138(1) 

O1W-H1W···O2W 0.98(3) 1.72(2) 2.702(4) 171(1) 

O2W-H4W···O3W 0.77(5) 1.98(5) 2.742(4) 169(1) 



57 
 

Table 3.7: Hydrogen bond lengths and angles for 4.H2O 

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (°) 

NB6-HB6···O3 0.74(5) 2.01(5) 2.749(5) 174(4) 

O1S-H2S···O4 0.89(3) 2.08(2) 2.903(3) 154(3) 

O1S-H1S ···O5 0.89(3) 2.22(3) 2.991(3) 145(4) 
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Chapter 4                TI Hlela 

Chapter 4 

Oxidovanadium(IV/V) Compounds with 2-Substituted 

Phenylheterocyclic Chelators 

 

4.1 Introduction 

 

Vanadium compounds have been a focus of research in medicinal inorganic chemistry due to 

their optimal hypoglycemic activity in the potential treatment of Type II diabetes. To enable 

targeted uptake as well as secretion of vanadium-containing formulations, fine tuning of the 

solubility as well as hydrophilicity of the compounds under investigation is necessary. In 

addition, this class of metallo-pharmaceuticals requires biologically relevant ligand systems 

that should provide the stability and the ability to promote absorption across cell-membrane 

transportation [1]. 

 

A plausible option for chelators is the utilization of heterocyclic ligands including 

benz(imidazole/oxazole/othiazole) moieties which have shown an array of biological 

activities, such as anti-microbial [2], anti-oxidant [3] and anti-helminthic activities [4]. It has 

been reported that substitution at the positions 1, 2 and 5 of the benzimidazole ring has 

significant influence on their pharmacological activity. For example, Mebendazole [methyl-

(5-benzoyl-1H-benzimidazol-2-yl)carbamate] is a 2,5-substituted benzimidazole  which is  an 

anti-helminthic drug and is marketed as Vermox [5]. In addition, derivatized benzimidazoles 

have also been commercially used as proton pump inhibitors for the reduction of gastric acid 

[6]. 

 

In this Chapter, the isolation of oxidovanadium(IV) compounds with 2-substituted 

phenylheterocyclic chelators are reported. The 1:2 molar reaction between NH4VO3 and 2-

hydroxyphenyl-1H-benzothiazole (Hobs) led to the formation of a polynuclear vanadium(IV) 

complex, [VO(obs)2]n (1).  The atmospheric oxygen-induced oxidation reaction of VCl3 and 
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2-hydroxyphenyl-1H-benzoxazole (Hobo) afforded a similar oxidovanadium compound, 

[VO(obo)2]n (2). A diamagnetic dioxidovanadium(V) complex, cis-[VO2(obz)py] (3) (Hobz =  

2-hydroxyphenyl-1H-benzimidazole) was isolated from the reaction between NH4VO3 and 

Hobz in a methanolic solution. The resulting yellow precipitate was then dissolved in a 70% 

pyridine and 30% THF solution. In an effort to synthesize a coordination compound of 

vanadium containing the heterocyclic ligand, 2-mercaptophenyl-1H-benzimidazole (Hsbz), 

an unexpected reaction product, [C26H20N4S2].[SO4]∙4H2O (4) was isolated.  

 

4.2 Experimental 

 

4.2.1 [VO(obs)2]n (1) 

A solution of 0.100 g of NH4VO3 (85.50 μmol) in 5 cm
3
 of ultrapure water was added to 

0.389 g of Hobz (171 μmol) in 20 cm
3
 of pyridine, and the mixture was refluxed for 6 hours.  

Afterwards, precipitation of an orange compound was induced by adding ethanol dropwise. 

The precipitate was then filtered and dried under vacuum. The precipitate was then dissolved 

in a pyridine:thf (7:3, v:v) mixture and the resultant mixture was layered with ethanol. From 

the slow diffusion of ethanol into the solvent mixture, orange needles grew which were 

suitable for XRD analysis. Yield = 89 %, m.p. = 212.7 – 214.6 °C. IR (νmax/cm
-1

): ν(C=N) 

1601 (s); ν(V=O) 910 (vs). UV-Vis (DMF, (λmax (ε, M
-1

cm
-1

))): 291 (1682); 301 (1538); 334 

(2074). Emission (DMF): 466 nm. Conductivity (DMF, 10
-3

 M): 14.53 ohm
-1

cm
-2

mol
-1

. 

 

4.2.2 [VO(obo)2]n (2) 

A mixture of VCl3 (0.100 g, 63.57 μmol) and Hobo (0.269 g, 127.14 μmol) in ethanol (20 

cm
3
) was heated under reflux for 6 hours. A brown precipitate was filtered, dried under 

vacuum and then dissolved in pyridine. From the slow evaporation of the aforementioned 

solution, brown, cubic crystals were grown. Yield = 95 %, m.p. 282.6 – 283.5 °C.  IR 

(νmax/cm
-1

): ν(C=N) 1615 (s); ν(V=O) 899 (s). UV-Vis (DMF, (λmax (ε, M
-1

cm
-1

))): 273 

(2862); 284 (3264); 288 (3252); 296 (4165); 323 (3984); 336 (3538). Emission (DMF): 376 

nm. Conductivity (DMF, 10
-3

 M):  17.93 ohm
-1

cm
-2

mol
-1

.  
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4.2.3 Cis-[VO2(obz)py] (3) 

To a mass of 0.1 g of NH4VO3 (85.50 μmol) in 10 cm
3
 of ultrapure water was added 0.389 g 

of Hobz in 10 cm
3
 of methanol which was heated under reflux for 8 hours. The solution was 

allowed to cool to room temperature and a yellow precipitate was filtered by gravity. This 

precipitate was dissolved in a pyridine:thf (7:3, v:v) mixture and the resultant mixture was 

layered with ethanol. Yellow needles were isolated from the slow diffusion of ethanol into 

the solvent mixture. Yield = 87 %, m.p. = 126.6 – 127.5 °C.  IR (νmax/cm
-1

): ν(N-H) 3070 

(w); ν(C=N) 1626 (m); ν(V=O2) 951, 871 (w). 
1
H NMR (δ, ppm) 13.53 (s, 1H, NH); 8.57 (d, 

2H, H14, H18); 8.08 (d, 1H, H9); 7.78 (t, 1H, H11); 7.56 (d, 1H, H12); 7.32 - 7.49 (m, 5H, 

H2, H5, H10, H15, H17); 7.05 (t, 2H, H3, H4); 6.92 (t, 1H, H16). 
51

V NMR (δ, ppm) -520.7. 

UV-Vis (DMF, (λmax (ε, M
-1

cm
-1

))): 293 (2563); 303 (2649); 323 (sh, 2113); 336 (2748); 361 

(sh, 1884). Emission (DMF): 469 nm. Conductivity (DMF, 10
-3

 M):  18.94 ohm
-1

cm
-2

mol
-1

.  

 

4.2.4 [C26H20N4S2].[SO4] ∙4H2O (4) 

The reaction conducted was aimed at synthesizing a vanadium based coordination compound 

and the title compound was unintentionally obtained upon reacting Hsbz (277.69 mg, 122 

μmol) with vanadyl sulfate (100 mg, 61.35 μmol)  in refluxing 20 cm
3
 methanol/water (v/v = 

1:1). Crystals were obtained upon free evaporation of the solvent, yield = 65 %, m.p. = 255 – 

256.7 °C. IR (νmax/cm
-1

): ν(N-H) 3373, 3185 (s); ν(C=N) 1627 (s).
1
H NMR (δ, ppm) 7.96 – 

7.91 (m, 2H, H12, H33); 7.83 – 7.77 (m, 2H, H16, H36); 7.77 – 7.71 (m, 4H, H14, H15, H34, 

H35); 7.55 – 7.46 (m, 4H, H23, H26, H45, H46); 7.46 – 7.39 (m, 4H, H24, H25, H43, H44); 

5.12 (br, s, 4H, N1H, N2H, N3H, N4H). 

 

4.2.5 X-ray diffraction 

The X-ray data for compounds 1, 2, 3 and 4.3H2O were recorded on a Bruker Apex Duo 

equipped with an Oxford Instruments Cryojet operating at 100(2) K and an Incoatec 

microsource operating at 30 W power. Crystal and structure refinement data are given in 

Table 4.1. Selected bond lengths and angles are given in Tables 4.2 and 4.3. In all three 

cases the data were collected with Mo Kα (λ = 0.71073 Å) radiation at a crystal-to-detector 

distance of 50 mm. The following conditions were used for data collection: omega and phi 

scans with exposures taken at 30 W X-ray power and 0.50º frame widths using APEX2 [7]. 

The data were reduced with the programme SAINT [7] using outlier rejection, scan speed 

scaling, as well as standard Lorentz and polarization correction factors. A SADABS semi-
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empirical multi-scan absorption correction [7] was applied to the data. Direct methods, 

SHELXS-97 [8] and WinGX [9] were used to solve all four structures. All non-hydrogen 

atoms were located in the difference density map and refined anisotropically with SHELXL-

97 [8]. All hydrogen atoms were included as idealized contributors in the least squares 

process. Their positions were calculated using a standard riding model with C-Haromatic 

distances of 0.93 Å and Uiso = 1.2 Ueq.  The imidazole N-H atom was located in the 

difference density map, and refined isotropically.  The carbon-bound H atoms of compound 4 

were placed in calculated positions with d(C—H) = 0.95 Å and were included in the 

refinement in the riding model approximation, with U(H) set to 1.2 Ueq. The nitrogen-bound 

H atoms were located from a difference Fourier map and refined freely. The H atoms of the 

solvent water were located from a difference Fourier map as well and refined using DFIX 

instructions. 

 

4.3 Results and Discussion 

4.3.1 Synthesis and spectral characterization 

All the coordination reactions were conducted in a 1:2 molar ratio of the metal and the free 

heterocyclic ligands, which resulted in the formation of the metal complexes in good yields 

while compound 4 could only be attained at a moderate yield of 65%. The chelating moieties 

act as monoanionic bidentate chelators (i.e. obs, obo or obz) through the deprotonated 

phenolic oxygens and neutral heterocyclic nitrogens. The 2:1 molar reaction between 

NH4VO3 and 2-hydroxyphenylbenzothiazole (Hobs) led to the formation of a polynuclear 

vanadium(IV) compound, [VO(obs)2]n (1). The formation of complex 2 is promoted by the 

atmospheric oxygen oxidation of the metal precursor, VCl3. Interestingly, complex 2 could 

also be attained from NH4VO3 and as previously reported, using VO(acac)2 [10]. However, 

reacting the benzimidazole analogue (i.e. Hobz) with NH4VO3 afforded a yellow precipitate 

which was dissolved in a 70% pyridine and 30% THF solution resulting in  the 

dioxidovanadium(V) complex, [VO2(obz)py], (3). In an effort to synthesize a coordination 

compound of vanadium by applying the Hsbz heterocyclic ligand featuring a thiol group, the 

unexpected reaction product 4 was isolated. A mechanism has been proposed for the 

oxidation of thiophenolates (RSH) to disulfides (RSSR), which is initiated by removal of the 

oxygen from the vanadyl ion (VO
2+

) (see Equation 1). The resultant reactive V
4+

 cation 

oxidized the thiophenolates (RSH) to afford the sulfur-bridged specie (RSSR) (see Equation 

2) [11]. 
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2RSH + VO
2+

 → 2RS
-
 + V

4+
 + H2O  Equation 1 

2V
4+

 + 2RS
-
 → 2V

3+
 + RSSR   Equation 2 

Complex 1 exhibits partial solubility in pyridine and upon heating in DMSO and DMF, 

whereas complexes 2 and 3 are only soluble in DMF and DMSO. The molar conductivity 

values of the metal complexes are typical of neutral vanadium(IV/V) complexes [12]. The 

overlay IR spectra of the metal complexes show the common ν(C=N) [1601 cm
-1

 for complex 

1, 1615 cm
-1

 for complex 2 and 1626 cm
-1

 for complex 3] (see Figure 4.1), and the absence 

of the phenolic stretching frequencies which were originally found in the respective free 

ligands’ IR spectra (e.g. 3240 cm
-1

 for Hobz). Similarly, for the dimerized organic compound 

4, the heterocyclic C=N bonds vibrate at 1627 cm
-1

 while the absence of the thiol group of 

the Hsbz starting material is noted. Another distinctive feature of complex 3 is the weak 

intensity band for the benzimidazolium N-H vibrating at 3070 cm
-1

. In addition, the ν(V=O2) 

stretches appears as two weak bands at 951 and 871 cm
-1

. For the mono-oxo metal cores of 

complexes 1 and 2, these bonds vibrate as intense bands at 910 and 899 cm
-1

, respectively. 

All these metal-based vibrations were comparable to other di/oxidovanadium(IV/V) 

complexes found in the literature [13, 14, 15].  

 

Figure 4.1: Overlay IR spectra of the complexes 1, 2 and 3. 
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The presence of the paramagnetic vanadium(IV) metal centers (i.e. in complexes 1 and 2) 

were confirmed via room temperature X-band ESR spectroscopy. A characteristic eight-line 

isotropic signal was observed in the ESR spectrum of complex 2 in DMF while, due to the 

poor solubility of complex 1, a singlet was attained upon analysis of the single crystals (see 

Figure 4.2). All the experimental g-values (g1 = 1.97028 and g2 = 2.00138) were close to the 

value of a free electron (i.e. ge = 2.0023) which implies that all the electron transitions are 

metal based. In addition, the g-values and hyperfine coupling constant (95.238 G) of complex 

2 were similar to other oxidovanadium species in solution (see Figure 4.3) [16, 17]. The well 

resolved signals in the 
1
H NMR spectrum of complex 3 is reminiscent of diamagnetism; the 

benzimidazolium proton occurs as a sharp singlet integrating to one proton which is found 

downfield at 13.53 ppm (see Figure 4.4). In the aromatic region, signals for the pyridyl and 

obz moieties appear as a doublet, doublet, triplet, doublet, multiplet and two triplets. A broad 

singlet is found in the 
51

V NMR spectrum of complex 3 which appears at -520.7 ppm for the 

d
0
-vanadium centre (see Figure 4.4). In the 

1
H NMR spectrum of compound 4, nearly 

identical aromatic peaks are observed as the free-ligand Hsbz; except that the aromatic peaks 

integrates to double the number of protons in comparison to the proton spectrum of Hsbz.  In 

addition, the singlets of the benzimidazolium protons coalesce into a broad singlet at 5.12 

ppm (see Figure 4.5).  

 

Figure 4.2: Solid state X-band ESR spectrum of complex 1 at 298 K. Instrument settings: 

microwave bridge frequency, 9.8 GHz; microwave bridge attenuator, 20 dB; modulation 

frequency, 100 kHz; modulation amplitude, 5 G; centre field, 3500 G. 
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Figure 4.3: X-band ESR spectrum of complex 2 at 298 K.  

 

Figure 4.4: 
1
H NMR spectrum of complex 3, showing the aromatic protons of the pyridyl co-

ligand and obz chelator. Inset: The signal at -520.7 ppm in the 
51

V NMR confirms the 

presence of the vanadium(V) metal center. 
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Figure 4.5: 
1
H NMR of complex 3 between 7.36 – 8.02 ppm. 

 

The UV-Vis spectra of the metal compounds (see Figure 4.6 - 4.8) in DMF are dominated by 

intense intra-ligand (π-π*) electronic transitions which were similar to those found in the 

electronic spectra of the corresponding free ligands (refer to Figure 2.5 in Chapter 2). Similar 

to all the vanadium complexes in Chapter 3, no ligand-to-metal charge transfer and d-d 

transitions for the d
1
 systems (i.e. complexes 1 and 2) and for the d

0
 system (i.e. complex 3) 

could be observed. The corresponding intra-ligand (π-π*) relaxations [466 nm for complex 1, 

376 nm for complex 2 and 469 nm for complex 3] could be observed in the emission spectra 

which were obtained in anhydrous DMF. The peak labeled A in the emission spectrum of 

complex 3 occurred as a result of not having a filter near the excitation wavelength to 

eliminate the replicating effect of the emission spectrometer. 
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Figure 4.6: Overlay absorbance and emission spectra of complex 1. The excitation 

wavelength was 388 nm. 

 

Figure 4.7: Overlay absorbance and emission spectra of complex 2. The excitation 

wavelength was 322 nm. Peak A results from instrumental limitations. 
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Figure 4.8: Overlay absorbance and emission spectra of complex 3. The excitation 

wavelength was 336 nm. 

  

4.3.2 Structures of complexes 1 and 2 

In compounds 1 and 2, the vanadium atom is at the centre of an octahedron which is 

surrounded by two chelators within the equatorial plane and the [VO]
2+

 core occuping one 

axial position while the remaining axial position is occupied by the V·····Ox [3.393(3) Å for 

complex 1 and 2.257(2) Å for complex 2]  interactions. These axial interactions allow the 

molecules of 1 and 2 to stack in polymeric columns parallel to the [b]-axis (see Figure 4.9). 

Furthermore, the monoclinic unit cells of the complexes have the same number of molecules 

(i.e. Z = 6 for complexes 1 and 2) with each complex having identical three-dimensional 

arrangements of their molecules (see Figure 4.10).  
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1 2 

Figure 4.9: Perspective views of complexes 1 and 2, illustrating the co-planar obs/obo 

chelators, as well as the Vn·····Ox linkages for the respective molecules. 

 

The structures are highly distorted due to the influence of the constrained bite angles [O-V-N 

= 87.6(1)˚ for complex 1 and 87.07(6)˚ for complex 2] in the individual structures which 

affords large deviations from the idealized 90˚ for the angles: O1-V-O2/O3 [103.8(1)˚] and 

O1-V-N1/N2 [96.3(1)˚] for complex 1 and O1-V-O2/O4 [101.81(7)˚] and O1-V-N1/N2 

[95.99(7)˚] for complex 2 (see Figures 4.11 and 4.12). Another contributive factor to the 

distortion, is the influence of the π-π stacking between the chelators of respective molecules 

where the interplanar spacings for complexes 1 and 2 are 4.018 Å and 3.881 Å, respectively. 

In turn, this forces the chelators of the two complexes to have different arrangements as given 

by the dihedral angles of 63.23˚ (for complex 1) and 55.30˚ (for complex 2).  
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1 

 

2 

 

Figure 4.10: The monoclinic unit cells of complexes 1 and 2. 

 

The ideal axial bond angles [O1-V-Ox = 180°] for complexes 1 and 2 affords inversion of 

symmetries which is emphasized by the opposing bond distances within the equatorial plane 

being the same in the individual structures: V-Ophenolic [1.923(3) Å for complex 1 and 

1.945(2) Å for complex 2] and V-N [2.087(3) Å for complex 1 and 2.077(1) Å for complex 

2]. The characteristic short and nearly equidistant V-O1 [1.625(3) Å for complex 1 and 

1.625(2) Å for complex 2] bond distances is similar to those found in other 

oxidovanadium(IV) complexes, e.g. the polynuclear oxovanadium(IV) complex [VOL2]n (L = 
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(5-bromo-2-hydroxybenzyl-2-furylmethyl)imine) with a V=O bond distance of  1.6247(19) Å 

[18]. In contrast, the analogous V·····Ox bond of this complex is considerably shorter than 

found in complexes 1 and 2. Within the heterocyclic moieties, the bond orders of the C-N 

bonds are readily distinguishable based on their distances [N1-C1/N2-C14 = 1.408(6) Å for 

complex 1 and 1.404(3) Å for complex 2, N1-C7/N2-C20 = 1.355(6) Å for complex 1 and 

1.310(2) Å for complex 2]. In contrast to the C-N bond distance, the C-X (where X = S or O) 

single bonds [C7-S1/C20-S2 = 1.738(4) Å for complex 1 and C7-O3/C20-O5 = 1.336(2) Å 

for 2, C6-S1/C19-S2 = 1.725(4) Å for complex 1 and C6-O3/C19-O5 = 1.387(3) Å for 

complex 2] are nearly equidistant.    

 

Interest in polynuclear oxidovanadium complexes largely arises from the potential in 

developing new functional molecular-based ferromagnetic materials [19, 20]. In particular, 

vanadium(IV) complexes with bis-imines derived from salicylaldehyde have been known to 

form metal complexes containing the [V=O·····V=O]n backbone [21, 22]. The general 

structure includes the tetradentate N2O2 chelators occupying the basal plane while the 

monomeric fragments link through Vn·····Ox interactions, similar to those found in complexes 

1 and 2. For example, a study originally conducted by Drake et.al. on the temperature-

dependance of the magnetic susceptibility of [VO(salph)]n (H2salph = N, N’-

disalicylidenepropylenediamine) has sparked wide-spread curiosity in the isolation of new 

derivatives of this complex [23]. This alteration of the original metal complex includes 

attaching electron-withdrawing groups on the phenyl substituents to investigate the influence 

of the stereoelectronic changes on the magnetic properties [24, 25].  
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Figure 4.11:  An ORTEP view of the monomeric fragment of complex 1 showing 50 % 

probability displacement ellipsoids and the atom labelling.  

 

Figure 4.12:  An ORTEP view of the monomeric fragment of complex 2 showing 50 % 

probability displacement ellipsoids and the atom labelling.  
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4.3.3 Structure of complex 3 

Complex 3 crystallizes in a P21/c space group with four crystallographic identical molecules 

occupying the monoclinic unit cell. The crystal packing is influenced by classical hydrogen 

bonding [N2-H2A·····O1 = 1.96(3) Å] as well as accompanying intermolecular π-π stacking 

between pyridyl moieties of adjacent molecules, with interplanar spacing of 4.141 Å (see 

Figure 4.13). The effects of cyclometallation are clearly evident from the distortion of the 

bond angles compared to the ideal square pyramidal values. The constrained N1-V-O3 

[84.15(8)˚] bite angle forces the N1-V-N3 [166.02(8)˚], O3-V-O1 [126.12(9)˚] and [O3-V-O2 

= 123.88(9)˚] bond angles to be narrower than the idealized 180˚ (see Figure 4.14). 

 

Figure 4.13:  The monoclinic unit cell of complex 3, showing the classical hydrogen-bonding 

in blue and the π-π intermolecular interactions between the co-planar pyridyl moieties, 

shown in green. 
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Figure 4.14:  An ORTEP view of complex 3 showing 50 % probability displacement 

ellipsoids and the atom labelling.  

 

Evaluating the coordination sphere bonds, the V-O1 [1.625(2) Å] and V-O2 [1.635(2) Å] are 

different but both are comparable to that found in the mononuclear vanadium(V) complex, 

cis-[VO2(salhyhp)] where salhyhp was isolated from 5-hydroxy-pentane acid hydrazide and 

salicylaldehyde (1.625(3) Å and 1.647(3) Å), respectively [26]. The lower acidic character of 

the vanadium(V) centre in complex 3 results in shorter V-O3 [1.892(2) Å] and V-N1 

[2.068(2) Å] bonds compared to the V-Ophenolic [1.923(1) Å for complex 1 and 1.945(1) Å for 

complex 2] and V-N [2.087(3) Å for complex 1 and 2.077(1) Å for complex 2] bond 

distances of the vanadium(IV) complexes. The V-N3 bond length of 2.191(2) Å is shorter 

than the V-Npyridyl bond distance found in a similar dioxidovanadium(V) complex,  cis-

[VO2(ads)] (Hads = 2-acetylpyridine-N,N-dimethylselenosemicarbazone) due to the 

difference in trans-effect experienced by the pyridyl nitrogens [27]. 
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The vast majority of vanadium complexes have N, O-donor ligands due to the preference of 

the vanadium metal center for this combination of hard and soft donor atoms [28].  An 

example is the reactions of the bidentate ligands, 2-(2’-hydroxyphenyl)-1R-imidazoline {R = 

hydrogen, ethyl or ethanol} with VOSO4 whereby a series of five coordinate oxidovanadium 

complexes formed with a ‘2+2’ coordinate mode of two monoanionic N, O-donor chelators 

[29].  

 

4.3.4 Structure of 4 

 

Compound 4 is a dimer of Hsbs with a S-S bridge which co-crystallize along with three water 

molecule and one sulfate molecule of crytallization (see Figure 4.15). The bond length d(S—

S) = 2.0511(6) Å, as well as both angles Car–S–S = 100.77(6)° and 100.99(5)°, (see Figure 

4.15) respectively, are in good agreement with corresponding values in comparable 

compounds whose data has been deposited with the Cambridge Structural Database [30]. The 

least-squares planes defined by the aromatic systems in both halves of the molecule intersect 

at angles of 50.28(4)° and 44.92(4)° respectively. The planes defined by the atoms of both 

benzimidazole moieties enclose an angle of 65.20(3)° while the corresponding angle for the 

planes defined by phenyl moieties was found at only 28.86(3)°.  

 

In the crystal structure, hydrogen bonds between all NH groups as well as all water molecules 

are present. For two of the NH groups, one O atom of the sulfate anion serves as a two-fold 

acceptor while the remaining two NH groups apply the oxygen atom of one water  molecule 

each as acceptor. The protons of the water molecules form hydrogen bonds to other water 

molecules as well as O atoms of the sulfate anion. One of the water molecules span two of 

the sulfate ion’s O atoms. The descriptor for the hydrogen bonding system in terms of graph-

set analysis [31] is D on the unitary level. In total, the components of the crystal structure are 

connected to a three-dimensional network. The closest intercentroid distance between two p-

systems was found at 3.4592(9) Å and is apparent between the five-membered part of a 

benzimidazole moiety and the six-membered part of its symmetry-generated equivalent. 
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Figure 4.15:  An ORTEP view of 4.3H2O showing 50 % probability displacement ellipsoids 

and the atom labelling.  

 

 

 

 

 

 

 

 

 

 



76 
 

4.4 References: 

 

1. Willsky G.R., Chi L., Godzala M., Kostyniak P.J., Smee J.J., Trujillo A.M., Alfano 

J.A., Ding W., Hu Z., Crans D.C., Coord. Chem. Rev., 2011, 255, 2258. 

2. Bondock S., Fadaly W., Metwally M.A., Eur. J. Med. Chem., 2010, 45, 3692. 

3. Zhou B., Li B., Yi W., Bu X., Ma L., Bioorg. Med. Chem. Lett., 2013, 23, 3759.  

4. Satyendra R.V., Vishnumurthy K.A., Vagdevi H.M., Rajesh K.P., Manjunatha H., 

Shruthi A., Eur. J. Med. Chem., 2011, 46, 3078. 

5. Dayan A.D., Acta Trop., 2003, 86, 141. 

6. Jain K.S., Shah A.K., Bariwal J., Shelke S.M., Kale A.P., Jagtap J.R., Bhosale A.V., 

Bioorg. Med. Chem., 2007, 15, 1181. 

7. Bruker APEX2, SAINT and SADABS. Bruker AXS Inc. (2010) Madison, Wisconsin, 

USA. 

8. Sheldrick G.M., Acta Cryst., 2008, A64, 112. 

9. Farrugia L.J., J. Appl. Cryst., 2012, 45, 849. 

10. Back D.F., de Oliveira G.M., Ballin M.A., Corbellini V.A., Inorg. Chim. Acta, 2010, 

363, 807.  

11. Rehder D., Inorg. Chim. Acta, 2003, 6, 604. 

12. Thaker B.T., Barvalia R.S., Spectrochim. Acta A, 2013, 112, 101. 

13. Kwiatkowski E., Romanowski G., Nowicki W., Kwiatkowski M., Suwinska K., 

Polyhedron, 2003, 22, 1009. 

14. Romanowski G., Wera M., Polyhedron, 2010, 29, 2747. 

15. Kurt Y., İlhan-Ceylan B., Acıkgoz M., Tuzun E., Atun G., Ulkuseven B., Polyhedron, 

2013, 65, 67. 

16. da Maia P.I., Pavan F.R., Leite C.Q.F., Lemos S.S., de Sousa G.F., Batista A.A., 

Nascimento O.R., Ellena J., Castellano E.E., Niquet E., Deflon V.M., Polyhedron, 

2009, 28, 398. 

17. Nejo A.A., Kolawole G.A., Opoku A.R., Wolowska J., O’Brien P., Inorg. Chim. Acta, 

2009, 362, 3993. 

18. Grivani G., Delkhosh S., Fejfarová K., Dušek M.L., Khalaji A.D., Inorg. Chem. 

Comm., 2013, 27, 82. 

19. Miller J.S., Epstein A.J., Angew. Chem. Int. Ed. Engl., 1994, 33, 385. 



77 
 

20. Matsuoka N., Tsuchimoto M., Yoshioka N., J. Phys. Chem. B, 2011, 115, 8465. 

21. Kasahara R., Tsuchimoto M., Ohba S., Nakajima K., Ishida H., Kojima M., Inorg. 

Chem., 1996, 35, 7661. 

22. Fujiwara K., Ishida T., Polyhedron, 2011, 30, 3073. 

23. Drake R.F., Crawford V.H., Hatfield W.E., Simpson G.D., Carlisle G.O., J. Inorg. 

Nucl. Chem., 1975, 37, 291. 

24. Pasini A., Gulloti M., J. Coord. Chem., 1974, 3, 319. 

25. Tsuchimoto M., Yoshioka N., Chem. Phys. Lett., 1998, 297, 115. 

26. Pohlmann A., Nica S., Luong T.K.K., Plass W., Inorg. Chem. Comm., 2005, 8, 289. 

27. Sarkar A., Pal S., Polyhedron, 2006, 25, 1689. 

28. Maurya M.R., Coord. Chem. Rev., 2003, 237, 163. 

29. Walmsley R.S., Tshentu Z.R., Fernandes M.A., Frost C.L., Inorg. Chim. Acta, 2010, 

363, 2215. 

30. Allen F.H., Acta Crystallogr., 2002, B58, 380. 

31. Bernstein J., Davis R.E., Shimoni L., Chang N.L., Angew. Chem. Int. Ed. Engl., 1995, 

34, 1555. 

32. Etter M.C., MacDonald J.C., Bernstein J., Acta Crystallogr., 1990, B46, 256. 



7
8 

 

T
a
b

le 4
.1

: C
rysta

l a
n
d
 stru

ctu
re refin

em
en

t d
a
ta

 

 
1
 

2
 

3
 

4
.3

H
2 O

 

C
h
em

ical fo
rm

u
la

 
V

S
2 O

3 N
2 H

1
6 C

2
6  *

 
V

O
5 N

3 H
1
4 C

1
8
 *

 
V

O
3 N

3 H
1
4 C

1
8  

C
2
6 H

2
8 N

4 O
8 S

3  

F
o
rm

u
la w

eig
h
t 

5
1
9
.4

9
 *

 
4
8
7
.3

6
 *

 
3
7
1
.2

6
 

6
2
0
.7

2
 

T
em

p
eratu

re(K
) 

2
9
6
 

2
9
6

 
1
0
0
(2

) 
1
0
0
(2

) 

C
ry

stal sy
stem

 
M

o
n
o
clin

ic 
M

o
n
o
clin

ic 
M

o
n
o
clin

ic 
M

o
n
o
clin

ic 

S
p
ace g

ro
u
p

 
C

1
2
/c1

 
C

1
2
/c1

 
P

2
1 /c1

 
P

1
2

1 /c1
 

U
n
it cell d

im
en

sio
n

s (Ǻ
, °) 

a
 =

 2
9
.5

6
0
2
(2

4
) 

a
 =

 2
9
.1

7
4
0
(2

) 
a
 =

 5
.9

6
8
1
(9

) 
a
 =

 1
4
.8

0
5
0
(3

) 

 
b
 =

 4
.0

1
8
1
(4

) 
b
 =

 3
.8

8
1
2
(3

) 
b
 =

 2
3
.0

3
5
(4

) 
b
 =

 1
5
.1

5
7
0
(4

) 

 
c =

 2
1
.5

5
3
6
(1

7
) 

c =
 2

1
.6

0
0
8
(1

6
) 

c =
 1

3
.9

1
4
(3

) 
c =

 1
2
.3

1
3
0
(3

) 

 
α

 =
 9

0
 

α
 =

 9
0

 
α

 =
 9

0
 

α
 =

 9
0

 

 
β
 =

 1
2
7
.4

5
4
(3

) 
β
 =

 9
0
.9

7
0
(2

) 
β
 =

 9
0
.9

7
0
(2

) 
β
 =

 9
0
.2

0
6
(1

) 

 
γ =

 9
0

 
γ =

 9
0

 
γ =

 9
0

 
γ =

 9
0

 

C
ry

stal size (m
m

) 
0
.6

0
 x

 0
.0

6
 x

 0
.0

3
 

0
.3

0
 x

 0
.1

0
 x

 0
.1

0
 

0
.1

8
 x

 0
.0

3
 x

 0
.0

2
 

0
.2

5
6
 x

 0
.4

4
1
 x

 0
.5

3
6
 

V
(Å

3) 
2
0
3
2
.2

7
(5

9
) 

1
9
7
5
.0

0
(3

6
) 

1
9
1
0
.3

(5
) 

2
7
3
6
.0

 

Z
 

6
 

6
 

4
 

4
 

D
en

sity
 (calc.) (M

g
/m

3) 
1
.7

0
 

1
.6

4
9

 
1
.2

9
1

 
- 

A
b
so

rp
tio

n
 co

efficien
t (m

m
-1) 

0
.7

3
0
 

0
.5

4
9

 
0
.5

3
9

 
3
.2

6
 

F
(0

0
0
) 

1
0
5
9
.8

 
9
9
5
.8

 
7
6
0
 

- 

θ
 ran

g
e fo

r d
ata co

llectio
n
 (d

eg
) 

1
.7

-2
6
.2

 
1
.7

-2
6
.8

 
1
.7

7
-2

6
.0

 
- 

In
d

ex
 ran

g
es 

-3
6
 ≤

 h
 ≤

 3
6
 

-2
 ≤

 k <
 4

 

-2
7
 ≤

 ℓ
 ≤

 2
5
 

-3
6

 ≤
 h

 ≤
 3

6
 

-2
 ≤

 k <
 4

 

-2
7

 ≤
 ℓ

 ≤
 2

5
 

-3
 ≤

 h
 ≤

 7
 

-2
8
 ≤

 k <
 2

7
 

-1
7
 ≤

 ℓ
 ≤

 1
7
 

- 

R
eflectio

n
s m

easu
red

 
6
8
7
0
 

8
1
4
8

 
1
3
8
8
9

 
4
8
1
2
3
 

O
b
serv

ed
 reflectio

n
s [I>

2
σ

(I)] 
1
6
5
6
 

1
9
6
2

 
3
1
6
0
 

6
8
9
2
 

In
d

ep
en

d
en

t reflectio
n
s 

1
9
4
7
 

2
0
7
9

 
3
7
4
0
 

6
3
0
6
 

D
ata/R

estrain
ts/p

aram
eters 

1
9
4
7
/0

/1
5
5

 
2
0
7
9
/0

/1
5
5

 
3
7
4
0
/0

/2
3
1

 
6
3
0
6
/0

/4
0
7

 

G
o
o
d
n
ess o

f fit o
n
 F

2 
1
.2

4
2
 

1
.0

5
7

 
1
.0

4
3

 
- 

O
b
serv

ed
 R

, w
R

2  
0
.0

5
3
2
, 0

.1
6
2
0
 

0
.0

3
0
5
, 0

.0
7
8
5

 
0
.0

5
1
0
, 0

.1
1
3
4

 
0
.0

3
7
; 0

.1
0
2

 

R
in

t  
0
.0

3
1
 

0
.0

1
9

 
0
.0

3
1

 
- 

                 -  =
 n

o
t av

ailab
le,     *

 
 =

 fo
r a m

o
n

o
n
u

clear frag
m

en
t



79 
 

Table 4.2: Selected bond lengths [Å] and bond angles [°] for 1 and 2 

 1 2 

V-O1 1.625(3) 1.652(2) 

V-O2 1.923(3) 1.945(2) 

V-O3 1.923(3) - 

V-O4 - 1.945(2) 

V-N1 2.087(3) 2.077(1) 

V-N2 2.087(3) 2.077(1) 

N1-C7 1.335(4) 1.310(2) 

N1-C1 1.408(6) 1.404(3) 

N2-C20 1.355(4) 1.310(2) 

N2-C14 1.408(6) 1.404(3) 

S1-C7 1.738(4) - 

S1-C6 1.725(4) - 

S2-C19 1.725(4) - 

S2-C20 1.738(4) - 

C8-C7 1.452(6) 1.439(3) 

C21-C20 1.452(6) 1.439(3) 

O1-V-O2 103.8(1) 101.81(7) 

O1-V-O4 - 101.81(7) 

O1-V-N1 96.3(1) 95.99(7) 

O1-V-O3 103.8(1) - 

O1-V-N2 96.3(1) 95.99(7) 

O2-V-N1 87.6(1) 87.07(6) 

O3-V-N2 87.6(1) - 

O4-V-N2 - 87.07(6) 

O3-C7 - 1.366(2) 

O3-C6 - 1.387(3) 

O5-C19 - 1.387(3) 

O5-C20 - 1.366(2) 
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Table 4.3: Selected bond lengths [Å] and bond angles [°] for 3 

V-O1 1.625(2) 

V-O2 1.635(2) 

V-O3 1.892(2) 

V-N1 2.068(2) 

V-N3 2.191(2) 

N1-C1 1.403(8) 

N1-C7 1.341(3) 

N2-C7 1.357(3) 

N2-C6 1.385(3) 

N1-V-O3 84.15(8) 

O1-V-O2 109.7(1) 

N1-V-N3 166.02(8) 

O3-V-O1 126.12(9) 

O2-V-O3 123.88(9) 
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Chapter 5                TI Hlela 

Chapter 5 

Attempted Synthesis of a Dioxidovanadium(V) complex 

bearing a Uracil Schiff base chelate: Intraligand Cyclization 

 
5.1 Introduction 

 

Molecular transformations using ammonium metavanadate (NH4VO3) has been widely explored 

[1, 2]. The most common transformation is the formation of α-hydroxy/aminophosphonates 

which are essential building blocks for many pharmaceutical agents [3, 4]. Recent developments 

in the isolation of these compounds include the use of solvent-free synthesis at room temperature 

to form products having higher conversion yields than other oxidants in organic media [5].  

 

Similarly, a study involving the isolation of 2-substituted benzimidazole derivatives from 2-aryl 

aldehydes and 1,2-diaminobenzimidazole using NH4VO3 as a catalyst, have reported minimal 

formation of Schiff base side products, compared to other synthetic methodologies [6]. In this 

Chapter, the metal-induced cyclization of 5-amino-6-[(Z)-(2-hydroxybenzylidene)amino]-1,3-

dimethylpyrimidine-2,4-(1H, 3H)-dione (H3duo) by NH4VO3 which resulted in the formation of 

a cyclized benzimidazole derivative, 8-(2-hydroxyphenyl)-1,3-dimethyl-1H-purine-2,6-(3H, 

7H)-dione (1) is reported (see Figure 5.1).  

NO

N

O

NH2

N
H
C

HO

H3duo

NO

N

O

N
H

N

C

HO

C13H12N4O3

Figure 5.1: Structures of H3duo and the cyclized benzimidazole derivative, compound 1. 
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5.2 Experimental 

 

5.2.1 5-Amino-6-[(Z)-(2-hydroxybenzylidene)amino]-1,3-dimethylpyrimidine-2,4-(1H, 3H)-

dione (H3duo) 

A synthetic procedure was adopted from previously published work of Booysen et. al. [7]. A 

mixture of 5,6-diamino-1,3-dimethyl uracil (1.25 g, 7.34 mmol) and salicylaldehyde (1.1 cm
3
, 

11.0 mmol) in methanol (100 cm
3
) was heated under reflux for 3 hours. The resultant orange 

solution was allowed to cool to room temperature and the yellow precipitate was filtered, yield = 

60 %; m.p. 247 – 249 ˚C. IR (νmax/cm
-1

): ν(O-H) 3454; ν(N-H) 3324; ν(C=O) 1691; ν(C=N) 

1607; ν(C=C) 1505. 
1
H NMR (295K/ppm):  11.26 (br, s, 2H, NH2); 9.78 (s, 1H, H1); 7.71 (d, 

1H, H2); 7.24 (t, 1H, H3); 7.11 (br, s, 1H, OH); 6.90-6.83 (m, 2H, H4, H5); 3.44 (s, 3H, C8H3); 

3.17 (s, 3H, C9H3).  

NO

N

O

NH2

N
H
C

HO

1
2

3

4

5
67

8

9

 

Figure 5.2: Numbering scheme of H3duo. 

 

 

5.2.2 8-(2-Hydroxyphenyl)-1,3-dimethyl-1H-purine-2,6-(3H, 7H)-dione (1) 

The title compound was prepared by reacting H3duo (234 mg, 85.48 μmol) and NH4VO3 (100 

mg, 85.48 μmol) in 20 cm
3
 methanol. A bright yellow precipitate was filtered, washed with 

methanol and dried under reduced pressure. Single crystals suitable for the X-ray diffraction 

study were obtained by recrystallization from an ethanol-dichloromethane (v:v = 1:1) mixture 
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which was left for several days at 5˚C, yield = 64 %; m.p. 289.8 - 292.5 ˚C; IR (νmax/cm
-1

): ν(O-

H) 3460; ν(N-H) 3323; ν(C=O) 1690; ν(C=N) 1609. 
1
H NMR (295K/ppm): 8.01 (br, s, 1H, NH); 

7.72 (d, 1H, H9); 7.22 (t, 1H, H10); 7.13 (br, s, 1H, OH); 6.92–6.74 (m, 2H, H11, H12); 3.18 (s, 

3H, CH3,); 3.18 (s, 3H, CH3). 

 

 

 

Figure 5.3: 
1
H NMR spectrum of H3duo in the range of 11.80 - 6.50 ppm. 

 

5.2.3 X-ray crystallography 

The X-ray data was recorded on a Bruker Apex Duo equipped with an Oxford Instruments 

Cryojet operating at 100(2) K and an Incoatec microsource operating at 30 W power. Crystal and 

structure refinement data are given in Table 5.1. Selected bond lengths and angles are given in 

Tables 5.2. The data were collected with Mo Kα (λ = 0.71073 Å) radiation at a crystal-to-

detector distance of 50 mm. Carbon-bound H atoms were placed in calculated positions (C-H 

0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 
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1.2Ueq(C). The H atoms of the methyl groups were allocated to rotate with a fixed angle around 

the C-C bond to best fit the experimental density [8]. The nitrogen-bound H atom was located on 

a difference Fourier map and refined freely. 

 

5.3 Results and Discussion 

5.3.1 Synthesis and Spectral Characterization 

 

The product 1 was synthesized using a 1:1 molar ratio of the metal precursor, NH4VO3 and 

Schiff base ligand, H3duo in refluxing methanol. The interest in this Schiff base arises from the 

biological relevance of uracil as a nucleotide base and its derivatives have shown various 

biological activities [9]. Yellow platelets suitable for X-ray analysis were grown from the slow 

evaporation of a dichloromethane-ethanol solvent mixture. This compound exhibits poor 

solubility in most organic solvents with the exception of DMF and DMSO. The IR spectra of 

H3duo and its cyclized form are nearly identical where only minor shifts of the significant bands 

are observed (see Figure 5.4). For example, the ν(C=O) vibrates at nearly identical frequencies 

[1691 cm
-1

 for H3duo and 1690 cm
-1

 for 1]. Another example is the C=N bands which are found 

at similar positions (1607 cm
-1

 for H3duo and 1609 cm
-1

 for compound 1). 

 

The molecular transformation was more evident when comparing the 
1
H NMR spectra of H3duo 

and compound 1 (see Figure 5.5). Firstly, the absence of an imino proton was observed in 

compound 1 whereas in H3duo this signal was originally observed as a sharp singlet at 9.78 ppm. 

Secondly, a broad singlet integrating for one proton at 8.01 ppm is assigned to the 

benzimidazolium proton of compound 1 which replaces the amino group found in the proton 

spectrum of H3duo. Thirdly, all the phenolic moiety signals of compound 1 are similar as 

previously observed in H3duo’s NMR spectrum: the hydroxyl proton appear as broad singlets at 

7.11 and 7.13 ppm for H3duo and 1, respectively while the aromatic protons appear as a doublet, 

a triplet and a multiplet integrating to 1, 1 and 2 for both compounds. Metal-induced cyclization 

of Schiff bases are a common phenomena. For example, upon coordination of the Schiff base 

ligand 2-(2-aminophenyliminomethyl)-4H-chromen-4-one (H2pch)  to the fac-[Re
I
(CO)3]

+
 core, 

intra-ligand cyclization occurred between the amino nitrogen atom and the Schiff base carbon 

atom to afford a benzimidazole moiety, bzch which led to the isolation of a mononuclear 
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rhenium(I) complex, fac-[Re(CO)3(bzch)Cl] (1), where bzch = 2-benzimidazole-4H-chromen-4-

one [10]. 

 

  

Figure 5.4: Overlay IR spectra of the Schiff base ligand, H3duo and compound 1.

 

Figure 5.5: Overlay 
1
H NMR spectra of H3duo (red) and compound 1 (blue). 
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5.3.2 Crystal structure of compound 1 

 

The molecule features a benzimidazole-inspired backbone comprised of a 6-amino-1,3-

dimethylpyrimidine-2,4-(1H, 3H)-dione moiety which is annealed to a five-membered aromatic 

ring. This part of the molecule is essentially planar (r.m.s. of its fitted non-hydrogen atoms = 

0.0205 Å). The small puckering amplitude (t = 1.6°) of the six-membered heterocyclic preludes a 

conformational analysis [11]. The least-squares planes defined by the atoms of the phenyl ring 

on the one hand and the benzimdazole-type ring system on the other hand enclose an angle of 

0.45(10)° (see Figure 5.6). Both C-N-C angles in the five-membered heterocyclic are similar in 

value with 106.25(15)° and 104.41(15)°, with the smaller value found on the non-protonated 

nitrogen atom. However, these angles are smaller in value than the corresponding ones in 

hopoxanthinium monohydrate (invariably above 108°) where both nitrogen atoms bear a 

hydrogen atom [12]. 

 

 

Figure 5.6: The molecular structure of compound 1 with atom labels and anisotropic 

displacement ellipsoids (drawn at 50% probability).  

 

In the crystal structure, intra- as well as intermolecular hydrogen bonds and C-H····O contacts 

whose range falls by more than 0.1 Å below the sum of van-der-Waals radii of atoms 
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participating are observed. While the intramolecular hydrogen bonds are exclusively made up by 

the proton of the hydroxyl group as donor and the non-protonated nitrogen atom of the five-

membered heterocyclic, intermolecular hydrogen bonds are solely apparent between the amino 

group and one of the double-bonded oxygen atoms (see Table 5.3). The C-H····O contacts can be 

separated in two groups: while one of the nitrogen-bound methyl groups forms a C-H····O 

contact involving the oxygen atom of the hydroxyl group, one of the aromatic C-H groups acts as 

donor for the double-bonded oxygen atom that is already part of the N-H····O type hydrogen 

bonds. In terms of graph-set analysis, the descriptor of the classical hydrogen bonds is 

S(6)R
2

2(10) on the unitary level. For the C-H····O contacts, a R
2

2(16)R
2
2(18) descriptor on the 

same level is needed for description. In total, the molecules are connected to chains [110]. The 

shortest intercentroid distance between two aromatic systems was measured at 3.7771(11) Å (see 

Figure 5.7). The packing of the compound 1 in the crystal is shown in Figure 5.8. 
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Figure 5.7: Intermolecular contacts viewed along [-100].  
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Figure 5.8: Molecular packing diagram of the compound, viewed along [010] (anisotropic 

displacement ellipsoids.  
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Table 5.1: Crystal and structure refinement data 

Chemical formula C13H12N4O3 

Formula weight 272.27 

Temperature (K) 200 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions (Ǻ, °) a = 8.6418(5) 

 b = 5.9415(3) 

 c = 23.4475(10) 

 α = 90 

 β = 91.275(2) 

 γ = 90 

Crystal size (mm) 0.41 x 0.10 x 0.05 

V(Å
3
) 1203.62(11) 

Z 4 

Density (calc.) (Mg/m
3
) 1.502 

Absorption coefficient (mm
-1

) 0.11 

F(000) 568 

θ range for data collection (deg) 2.4-27.2 

Observed reflections [I>2σ(I)] -11 ≤ h ≤ 11 

-7 ≤ k < 6 

-31 ≤ ℓ ≤ 27 

Independent reflections 2975 

Data/Restraints/parameters 2975/0/188 

Goodness of fit on F
2
 1.01 

Observed R, wR
2
  0.049, 0.124 

Rint 0.043 

 

 

 



92 
 

Table 5.2: Selected bond lengths [Å] and bond angles [°] 

O1-C4 1.237(2) 

O2-C3 1.213(2) 

O3-C13 1.351(2) 

N1-C7 1.355(2) 

N2-C7 1.346(2) 

N2-C2 1.351(2) 

N3-C2 1.371(2) 

N3-C3 1.382(2) 

N3-C5 1.461(2) 

N4-C4 1.396(2) 

N4-C3 1.402(2) 

N4-C6 1.474(2) 

C1-C2 1.361(3) 

C1-C4 1.410(3) 

C13-O3-H3 109.5 

C7-N1-C1 106.25(15) 

C7-N1-H71 126.1(13) 

C1-N1-H71 127.6(13) 

C7-N2-C2 104.41(15) 

C2-N3-C3 119.72(16) 

C2-N3-C5 121.03(15) 

C3-N3-C5 119.14(15) 

C4-N4-C3 126.42(15) 

C4-N4-C6 116.97(15) 

C3-N4-C6 116.61(15) 

C2-C1-N1 105.66(16) 

C2-C1-C4 122.63(17) 

N1-C1-C4 131.69(17) 

N2-C2-C1 111.80(16) 
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Table 5.3: Hydrogen bond lengths[Å] and angles[°]. 

D-H···A D-H (Å) H···A (Å) D···A (Å) D-H···A (°) 

1  O3-H3•••N2 0.84 1.86 2.611 (2) 148 

2  N1-H71•••O1 0.97 1.78 2.746 (2) 175.4 (19) 

3  C9-H9•••O1 0.95 2.37 3.294 (2) 164 

4  C5-H5A•••O3 0.98 2.58 3.234 (2) 124 
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Conclusion and Future work                    TI Hlela 

Chapter 6 

Conclusion and Future work 

 

The main aim of this research project was to design, synthesize and characterize novel 

di/oxidovanadium complexes with various N-donor heterocyclic ligands. This class of ligands 

proved to be versatile chelators for stabilizing the central atom in its oxidation states +III, +IV 

and +V while also conferring unique and rare coordination geometries. As proposed, all the 

ligands utilized coordinates as monoanionic bidentate chelators with the exception of 2-

mercaptophenyl-1H-benzimidazole (Hsbz) which dimerized upon reaction with vanadyl sulfate. 

Furthermore, the formulated paramagnetic vanadium complexes yielded characteristic ESR 

spectra in solution and in the solid state (for [VO(obs)2]n). In addition, the electronic properties 

of the metal complexes resemble that attained for their free-ligands.  

 

The anti-diabetic testing of the oxovanadium compounds with 2-pyridylbenzimidazole (see 

Chapter 3) will be conducted. This biological testing study will involve the investigation of the 

glucose lowering capability of the respective complexes against various cell lines (e.g. pancreas). 

The vanadium compounds that exhibit optimal activity will be injected into Streptozotocin-

diabetic (STZ) rats for the further advancement of the biological studies. This will establish a 

solid basis for the biological testing of the isolated metal complexes in Chapter 4. 

 

From a coordination chemistry point of view, future work entails the exploration of bis-

heterocyclic ligands (see Figure 6.1) towards the [VO2]
+
 and [VO]

2+
 cores. This will also 

provide an interesting comparative study between the structure-activity relationships between the 

mono- and bis-heterocyclic chelators. In addition, the glucose lowering effects of the resultant 

complexes will be explored. Additional motivation is that these bis-heterocyclic ligands have 

shown rich coordination chemistry with an array of transition metals, as shown by their 

stabilization capability of the fac-[Re
I
(CO)3]

+
 and acidic [Re

V
O]

3+
 metal cores [1]. 
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Interestingly, the attempted coordination of a Schiff base derived from 5,6-diamino-1,3-dimethyl 

uracil, showed no coordination but instead cyclized to form the heterocyclic  compounds, see 

Chapter 5.  
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Figure 6.1: Generic structure of the bis-heterocyclic ligands. 
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