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Thesis summary
 

Potato is one of the valuable crops in Ethiopia serving as a source of food and income for 

smallholder farmers. About 70% of the country’s arable land is suitable for potato production. 

Despite the rapid growth of the total potato production in the country, productivity of the crop 

under the small-scale farming sector is estimated at 11 t ha-1, which is far below attainable 

yields of over 40 t ha-1. Recurrent drought and late blight disease are the most important 

constraints affecting productivity of potato in Ethiopia. Late blight disease of potato, caused 

by Phytophthora infestans, is widespread in most potato growing areas of Ethiopia causing 

yield losses reaching up to 100% in susceptible cultivars. Breeding for host tolerance and 

resistance could be the best option for managing recurrent droughts and controlling the 

disease, respectively. The overall goal of this study was, therefore, to contribute to improved 

food security in Ethiopia by developing potato cultivars with improved yields, late blight 

resistance and drought tolerance. The specific objectives of the study were to (i) select late 

blight resistant and high yielding potato clones under field conditions in the north-western 

parts of Ethiopia, (ii) determine combining ability and gene action controlling late blight 

resistance, yield and yield components and to identify promising potato genotypes as 

potential parents in a breeding programme, (iii) determine combining ability and gene action 

controlling yield, yield components and drought tolerance related traits among selected 

potato clones and to identify promising parents and crosses for cultivar development, and (iv) 

assess the level of genetic diversity among 18 selected potato clones using 23 simple 

sequence repeat (SSR) markers and to complement phenotypic selection for identification of 

suitable parents for breeding. These objectives were achieved based on four sets of 

experiments conducted in the north-western Ethiopia.  

Twenty-four selected potato clones, of which 17 from the B3C2 population acquired from the 

International Potato Centre (CIP) and seven widely grown released and farmers’ cultivars, 

were evaluated for late blight resistance and yield related traits at three locations in the north-

western Ethiopia. A randomized complete block design was used with two replications. 

Results indicated significant variation among the genotypes for late blight resistance and 

yield related traits across the three locations. The following five clones were selected: 

396029.25, 395017.229, 396004.263, 396034.103 and 395077.12, displaying high to 

moderate resistance to late blight and greater yield levels.  

Twelve parents selected from late blight resistant advanced population (B3C2) were crossed 

using North Carolina Design II. Eighteen F1 families derived from these crosses were 

evaluated at two late blight hotspot areas in Ethiopia. Combining ability and gene action were 
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determined for late blight resistance under natural epidemics. Results showed that the 

general combining ability (GCA) effect was more important than the specific combining ability 

(SCA) effect for the relative area under disease progress curve (rAUDPC), total tuber yield, 

marketable tuber yield and average tuber weight, indicating that the expression of these traits 

was controlled by additive gene action. The parents with good GCA effects for late blight 

resistance were: 396264.14, 395109.34 and 396004.263. The first two contributed towards 

high tuber yield. Crosses from 396004.263 x 395017.229, 395096.2 x 396012.288 and 

395109.7 x 396264.14 were best specific combiners for late blight resistance.  

Thirty-two potato families derived from crosses of two sets of 16 parents and 17 clones were 

field evaluated for yield and drought related traits in a 7 x7 lattice design with two replications 

under well-watered and managed drought stress conditions. Results revealed significant 

differences among genotypes for drought stress tolerance, growth, physiological and yield 

related traits. Significant GCA and SCA effects were detected among parents and crosses, 

respectively. The GCA effects were more important than the SCA effects for total tuber yield, 

marketable tuber yield, average tuber weight, plant height, chlorophyll content and 

groundcover, suggesting the predominance of additive over non-additive gene action for 

these traits under drought stress. The best general combiner parents for yield and drought 

tolerance were clones 395112.32, 396034.103 and 396012.288. The families with the best 

SCA effects for both tuber yield and drought tolerance were 395109.34 x 396041.102, 

395096.2 x 396012.288, 395109.7 x 395017.14 and 396031.108 x 395017.14.  

Eighteen selected clones phenotyped for drought tolerance and late blight resistance were 

genotyped using 23 polymorphic SSR markers to determine genetic distance and to select 

suitable parents for breeding. Results showed the presence of wider genetic diversity among 

the tested clones. Pair-wise estimates of genetic similarity ranged from 0.26 to 0.52 with the 

mean of 0.35. Ninety-five alleles were amplified and polymorphic alleles per locus ranged 

from 3 to 7 with a mean of 5. The mean polymorphic information content (PIC) values, 

observed heterozygosity and expected heterozygosity were 0.62, 0.78 and 0.68, 

respectively. The genotypes were clustered into three distinct groups. The following clones 

were selected from each cluster: 396029.25 from cluster I, 396038.107, 396038.101 and 

395112.32 from cluster II, and 395017.229 and 395109.34 from cluster III, for drought 

tolerance and late blight resistance breeding.  

In summary, the study demonstrated the existence of genetic variability among the tested 

clones for late blight resistance, drought tolerance and yield and related traits. The study 

identified promising potato genotypes with high combining ability for tuber yield, late blight 

resistance and drought tolerance. The selected parents and families will be further evaluated 



iii 
 

for release in the highlands of north-western Ethiopia or similar environments in sub-Saharan 

African countries.   
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Introduction to thesis 

Background 

Potato (Solanum tuberosum L., 2n=4x=48) is one of the most important food crops 

worldwide. It ranks third after rice and wheat in terms of human consumption (FAOSTAT, 

2015). Potato contains significant amounts of vitamin C and essential amino acids, such as 

lysine useful in and complementing cereal based diets (Beukema and Van der Zaag, 1990; 

Hirpa et al., 2010). In comparison with cereals, potato produces more food energy and 

protein per hectare. Its high efficiency in producing energy and valuable protein, and its short 

vegetative period makes the potato a high potential food security crop. Potato is grown in 

about 149 countries, and consumed by more than a billion people worldwide (Birch et al., 

2012). Developing countries produce about 30% of the world’s potatoes, and the share of 

these countries in world production is growing rapidly (Agiro, 2011). The top ten African 

countries in terms of area allocated to potato production are Algeria, Egypt, Malawi, South 

Africa, Rwanda, Kenya, Morocco, Tanzania, Nigeria and Ethiopia (Table 0.1). 

Table 0.1 The top potato producers in Africa in 2013 

Countries Harvested area 
(ha) Yield (tons ha-1) Production (tons) 

Algeria 162,707 30.3 4,928,028 
Egypt 178,000 27.0 4,800,000 
Malawi 258,585 17.5 4,535,955 
South Africa    66,000 34.1 2,252,000 
Rwanda 164,691 13.6 2,240,715 
Kenya 152,007 14.4 2,192,885 
Morocco   53,047 36.4 1,928,606 
Tanzania 203,165   8.7 1,767,536 
Nigeria 264,000   4.5 1,200,000 
Ethiopia*   69,999 11.1    775,503 

Adapted from (FAOSTAT, 2015), the data doesn’t include off season production 

In Ethiopia, potato is a source of both food and income in the densely populated highlands. It 

is grown by about 1.8 million farmers and remains the most important among the root and 

tuber crops produced in the country. The total production in 2013/2014 main and offseason 

was 1,612,006.2 t on 179,159 ha (CSA, 2014). The annual per capita consumption is 

estimated at 13 kg. However, potato production is expanding steadily over time (Haverkort et 

al., 2012). FAOSTAT (2015) estimates show that the main season production has increased 

from 349,000 in 1993 to 775,503 t in 2013. Seventy per cent of the country’s arable land, 

mainly in highland areas (≥1,500 m), is believed to be suitable for potato production. The 
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highlands are inhabited by 90% of Ethiopia's population making potato a key crop in ensuring 

national food security (FAO, 2009). Potato is grown in four major regions of the country: the 

central, the eastern, the north-western and the southern. North-western Ethiopia is the top 

potato producing area inhabited by 40% of the country’s potato farmers (Hirpa et al., 2010). 

South Gondar, North Gondar, East Gojam, West Gojam and Agew Awi are the main 

production areas in this region.  

Despite high potential production environments and marked growth, the national average 

potato yield in farmers field in Ethiopia is only 11.1 t ha-1, which is lower than the 

experimental yields of over 38 t ha-1 (Woldegiorgis, 2013; FAOSTAT, 2015). The low yields 

are the result of a number of production constraints mainly involving abiotic and biotic stress 

factors. Among the biotic constraints late blight, bacterial wilt, virus diseases and potato tuber 

moth constitute the major threats to potato production, while the abiotic stresses include soil 

nutrient deficiency, frost, drought and erratic rainfall (Gildemacher et al., 2009; Berihun and 

Woldegiorgis, 2013; Kolech et al., 2015).  

Potato late blight, caused by the oomycete pathogen Phytophthora infestans (Mont.) de 

Bary, is a major disease that can result in total failure of the crop. It occurs throughout the 

major potato production areas of Ethiopia. The disease damages leaves, stems and tubers. 

Yield losses of susceptible cultivars can range from 30 to 100% (Kassa and Beyene, 2001; 

Mohammed, 2014). Research showed that late blight in Ethiopia has the A1 mating type (US 

1 clonal lineage), which reproduces asexually (Schiessendoppler and Molnar, 2002).  

The most effective control methods of the disease are host resistance and applications of 

fungicides. However, fungicide use is unaffordable in Ethiopia and has negative 

consequences for the environment and human health. Farmers in Ethiopia practice early 

planting to avoid condition that favour late blight development, regardless of yield penalty 

associated with lack of supplemental irrigation in the country. During 2014 only 1.3% of the 

total cultivated land is under irrigation (Forbes et al., 2003; CSA, 2014). Therefore, the 

principal method of late blight management should be host resistance (Colon et al., 1995). 

Advanced resistant breeding populations and selected clones have been developed by the 

International Potato Centre (CIP) for a variety of agro-ecological zones similar to sub-

Saharan Africa potato producing areas. These advanced clones can be used as a valuable 

source of genetic variation in breeding programmes. Among these clones, ‘population B 

recombination cycle 3 (Pop B3)’ is the new source for durable late blight resistance. Some of 

the clones derived from this population, such as CIP-393371.58 (cultivar ‘Belete’) showed 

promising performance and was released in Ethiopia (CIP, 2012). However, the performance 
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of CIP candidate clones under moisture stressed environments needs further study because 

drought is one of the most important yield limiting factors in Ethiopia.  

In Ethiopia, water shortage occurs due to rainfall variability both temporally and spatially 

(Mersha and Boken, 2005). Studies showed that the area with stable rainfall has decreased, 

while the area with highly variable rainfall has substantially increased (Mersha, 1999; Viste et 

al., 2013). As a result, drought recurrence cycle shortens over time and currently it occurs 

every two years in different parts of Ethiopia (Berhan et al., 2011). Moreover, due to climate 

change, areas affected by dry spells are expanding (Hiskias, 2011). Before the 1980s, 

drought was most protracted in the northern and eastern regions. However, the number of 

drought-affected areas has dramatically increased and now includes the most productive 

regions in west and south Ethiopia (Hiskias, 2011). Various climate models have indicated 

that drought episodes will become more frequent because of long-term effects of global 

warming (Anithakumari et al., 2011).  

The total amount of annual rainfall in many locations of the country is high, but its distribution 

is highly erratic. Rainfall distribution during the growing period was much more variable than 

the seasonal total, resulting in a limited growing period (Simane et al., 1994; Gebrehiwot et 

al., 2011). Dry spell probability during the main season is particularly high at the end of the 

growing season. Simane et al. (1999) reported that altitude had a significant negative relation 

with temperature, but not with precipitation amount and distribution. A 10% decline in 

average rainfall in Ethiopia below the long-term national average results in a 4.4% reduction 

in national food production (von Braun, 1991). The impact of rainfall on crop production can 

be related to its total seasonal amount or its intra-seasonal distribution. In the extreme case 

of droughts, with very low total seasonal amounts, crop production suffers the most. But 

more subtle intra-seasonal variations in rainfall distribution during crop growing periods, 

without a change in total seasonal amount, can also cause substantial reductions in yields. 

This means that the number of rainy days during the growing period is as important, if not 

more, as that of the seasonal total. Generally, the effect of rainfall variability on crop 

production varies with types of crops cultivated, types and properties of soils and climatic 

conditions of a given area (Bewket, 2009). 

In Ethiopia, potato production is primarily dependent on natural rainfall that frequently fails to 

meet the water demand of the crop. The potato is more sensitive to soil water conditions than 

most other crop species. At all stages of the growth, water stress reduces photosynthetic 

efficiency, but drought during the period of tuber initiation and bulking has the most drastic 

effect on tuber yield and quality (Vayda, 1994; Anithakumari et al., 2011). However, there are 

differences in the degree to which individual cultivars are affected by moisture stresses 
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(Steyn et al., 1998; Schittenhelm et al., 2006; Schafleitner et al., 2007). Therefore, there is a 

possibility to improve yield for drought prone areas through selection and breeding for high 

yield under water stress conditions. 

Selection of potato clones based on the combining ability estimates helps to identify the most 

valuable parents and crosses, and to recommend a strategy for clonal improvement. The 

importance of both additive and non-additive gene action in inheritance of yield and yield 

components under moisture non-stressed conditions have been reported in different studies 

(Brown and Caligari, 1989; Maris, 1989; Ruiz de Galarreta et al., 2006). However, little work 

has been done under water stressed conditions. As regards to late blight, different studies 

have shown that the additive component of genetic variance was larger than the non-additive 

in inheritance of quantitative resistance (Landeo et al., 2001; Kumar et al., 2007; Haynes et 

al., 2008).  

Estimation of genetic diversity helps in the choice of parental combinations of the greatest 

promise (Gaur et al., 1978). The use of parents of diverse genetic origin is considered 

important in hybridization programs to maximize heterozygosity and maintain high levels of 

variability in the progeny (Biswas et al., 2008).  However, Hung et al. (2012) found that 

genetic distances among maize parents had no predictive value for progeny variation. 

Genetic diversity studies using molecular markers, which are independent of environmental 

influences and tissue type, provide greater resolution and may complement phenotypic 

measurements (Demeke et al., 1996). Among molecular techniques, polymerase chain 

reaction (PCR) based approaches are in greater demand because of their simplicity and 

requirement for only small quantities of sample DNA. Microsatellites or simple sequence 

repeat (SSR) markers are easy and simple to use, specific, highly polymorphous and 

reproducible.  

Information on combining ability and genetic diversity of parents for yield and resistance for 

late blight, under moisture stress and in the presence of late blight, in that order, can be 

useful for breeding cultivars with both drought tolerance and late blight resistance. 

Incorporating these traits in the same genotypes ensures the development of cultivars with 

high and stable yield potential under fluctuating rainfall conditions. This is important in 

improving the productivity of potato in farmers’ fields in agro-ecologies with erratic and 

unpredicted rainfall conditions.  

Rational for research focus  

Ethiopia is among the leading ten sub-Saharan Africa countries in terms of area cropped to 

potato (FAOSTAT, 2015). Potatoes are a source of both food and cash income in the 
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densely populated highlands of the country. However, the national average yield of the crop 

is less than 11 t ha-1 which is much less than the attainable yields (Hirpa et al., 2010). The 

gap between national average and attainable yield is mainly due to late blight disease and 

water stress. Most potato farming occurs under rain-fed conditions by small-scale farmers 

who cannot afford irrigation and fungicide applications. In most potato growing regions, 

precipitation is inadequate and irregular, and is often failing to meet the water demands of 

the potato crop. The frequency of this problem is likely to increase owing to global warming 

(IPCC, 2007). Even though potato is often considered a drought sensitive crop, research has 

shown that potato genotypes differ in drought tolerance (Steyn et al., 1998; Schittenhelm et 

al., 2006; Schafleitner et al., 2007). However, very limited, research has been done on 

breeding potato for water deficit environments in Ethiopia.   

Under Ethiopian unpredictable rainfall conditions, late blight, which is the disease of wet 

environments, should also be considered while breeding for drought tolerance. The disease 

is most devastating throughout the major potato producing areas. Several improved varieties 

with reasonable resistance to late blight have been released to farmers, although a number 

of them have been abandoned, as the apparent resistance to late blight was not durable. 

Therefore, breeding and selection for genotypes combining both late blight resistance and 

drought tolerance would be important to improve productivity of the potato in drought prone 

areas.  

Research objectives 

The objectives of the study were: 

 To select late blight resistant and high yielding potato clones under field conditions in 

the north-western parts of Ethiopia. 

 To determine combining ability and gene action controlling late blight resistance, yield 

and yield components and to identify promising potato genotypes as potential parents 

in a breeding programme. 

 To determine combining ability and gene action controlling yield, yield components 

and drought tolerance related traits among selected potato clones and to identify 

promising parents and crosses for cultivar development.  

 to assess the level of genetic diversity among 18 selected potato clones using 23 

simple sequence repeat (SSR) markers and to complement phenotypic selection for 

identification of suitable parents for breeding. 
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Outline of the thesis 

This thesis consists of five distinct chapters in accordance with a number of activities related 

to the above mentioned objectives (Table 02). Chapters 2-5 are written as discrete research 

papers, each following the format of a stand-alone research paper (whether or not the 

chapter has already been published). This is the dominant thesis format adopted by the 

University of KwaZulu-Natal. Some overlap and unavoidable repetition of references and 

some introductory information between chapters may exist. The referencing system used in 

the chapters of this thesis is based on the Journal of Crop Science referencing style. 

Table 0.2 Thesis outline 

Chapter  Title 
- Introduction to thesis 
1 Literature review 

2 Response of potato clones to late blight disease, yield and yield related traits in 
north-western highlands of Ethiopia 

3 Combining ability of selected potato clones for resistance to late blight disease, 
yield and yield components 

4 Combining ability of selected potato clones for drought tolerance and yield 
components  

5 Genetic diversity analysis of selected potato genotypes using SSR markers 

- An overview of the research findings 
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CHAPTER 1. Literature Review 

1.1 Introduction 

This literature review presents important aspects of breeding potato for drought tolerance 

and late blight resistance, emphasising on basic principles in diversity, genetic analysis and 

breeding methods. It provides the current state of knowledge and advances made in 

understanding the crop, the pathogen of late blight disease and the effect of drought on yield 

and related traits. This is followed by summary of the importance of the crop and information 

on the casual organism, epidemiology and life cycle, and symptoms of late blight disease. 

Different control measures for the disease, with more emphasis on breeding for durable 

resistance are described with screening techniques for late blight resistance and drought 

tolerance. Finally, cultivar development strategies including broadening the present genetic 

base and selection methods are discussed. An attempt has been made to focus on literature 

related to Ethiopia whenever relevant and available. 

1.2 Origin and global spread of potato  

The potato (Solanum tuberosum L., 2n=4x=48) has its origin in the Andean mountains of 

South America. It was first cultivated in the Andes in the vicinity of Lake Titicaca near the 

border of Peru and Bolivia. Potatoes seem to have been domesticated at least 7000 years 

ago (Heřmanová et al., 2007). Later, the potato crop spread through the Andes and by the 

time of the Spanish conquest in the early sixteenth century, farmers were cultivating 

hundreds of varieties throughout the highland area of Bolivia, Chile, Colombia, Ecuador, and 

Peru (Horton, 1987).  

Potatoes were introduced to Europe by Spanish sailors between the16th and 17th century. 

From Spain, the potato spread to the continental Europe. By 1600, potatoes reached Italy 

and Germany from Spain. It is believed to have reached most parts of the world through the 

colonial powers, rather than directly from South America (Horton, 1987). Potato was 

introduced to Ethiopia in 1858 by the German botanist Schimper. Since then, it becomes an 

important crop in many parts of the country (Tsegaw, 2005). 

1.3 Taxonomy and diversity of potato   

The potato belongs to Solanaceae, the family of about 90 genera and 2800 species. The 

genus Solanum consists of about 2000 species (Heřmanová et al., 2007). The more 

economically important section of the genus Solanum, Petota, has about 110 tuber bearing 

species, that include the cultivated potato and its wild relatives (Spooner, 2009). Most 

species within Petota section are very similar and they are able to exchange genes encoding 
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various traits (Jacobs et al., 2011; Spooner et al., 2014). Wild potatoes are widely distributed 

in the Americas from the southwestern United States to the southern cone of South America 

(Camadro, 2012; Spooner et al., 2014). Due to a large range of geographical and ecological 

adaptation, wild potato species have often developed strong resistance to biotic and abiotic 

stresses and they are widely used in potato improvement programs (Bradshaw, 2007). 

According to Spooner et al. (2014) the cultivated potato can be grouped into four species: 1) 

S. tuberosum, with two cultivar groups: a) Andigenum group of upland Andean genotypes 

consisting of diploids, triploids and tetraploids, and b) the Chilotanum group of lowland 

tetraploid Chilean landraces, from which the modern cultivars arose, 2) S. ajanhuiri (diploid), 

3) S. juzepczukii (triploid), and 4) S. curtilobum (pentaploid). The modern cultivars are the 

products of extensive breeding between different cultivar groups and wild species (Spooner 

et al., 2014). 

1.4 Cytogenetics of potato 

The number of ploidy levels of potato species, based on a haploid number of 12, ranges from 

diploid (2n = 24) to hexaploid (6n = 72), and includes triploids, tetraploids, and pentaploids. 

Diploids are the most common species (Larrosa et al., 2012). The common potato S. 

tuberosum is a tetraploid (2n = 4x = 48) with gametes of n = 24 (Heřmanová et al., 2007). 

Most diploid tuber bearing Solanum species have the S-locus gametophytic self-

incompatibility system (Camadro et al., 2004; Weber et al., 2012). In contrast to the diploid 

potatoes, polyploid species (both wild and cultivated) are self-compatible. Self-compatibility 

in polyploids could be explained by fixed heterozygosity at the S-locus, that is the occurrence 

of two different alleles in pollen grains (Camadro et al., 2004; Larrosa et al., 2012).  

1.5 Genetic basis of hybridization barriers 

There are unique genetic factors that cause hybridization barrier among species of Solanum 

section Petota. These barriers include interspecific pollen-pistil incompatibility, nuclear-

cytoplasmic male sterility, and failure of the endosperm during fertilization (Camadro et al., 

2004; Bradshaw et al., 2006). However, gene flow among reproductively isolated species 

(sympatries) is not completely blocked since the barriers are not complete (Larrosa et al., 

2012). 

Interspecific pollen-pistil incompatibility is an important and common pre-zygotic hybridization 

barrier (Spooner et al., 2014). When individuals from cross-incompatible species crossed, 

pollen tube growth impedes either in the top, middle or bottom of the style (Spooner et al., 

2014). The mechanism of this hybridization barrier is not known although a gene-for-gene 

interaction between stylar tissue and pollen has been proposed (Camadro et al., 2004; 
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Weber et al., 2012; Spooner et al., 2014). There are some diploid species that show 

unilateral incompatibility, a phenomenon in which self-compatible species can be crossed as 

female, but not as male, to self-incompatible species. It is also possible to find exceptional 

plants that do not exhibit unilateral incompatibility in self-incompatible × self-compatible 

interspecific crosses. Identification of such plants allows breeders to overcome the 

incompatibility crossing barriers (Spooner et al., 2014). 

The second reproductive barrier, which is common in potatoes, is nuclear-cytoplasmic male 

sterility. Specific interactions between cytoplasmic and nuclear genes of interspecific hybrids 

commonly lead to male sterility (Camadro et al., 2004; Spooner et al., 2014). Male sterility in 

progenies derived from the crosses of various wild and cultivated species have been 

reported by several authors (Jansky, 2011; Larrosa et al., 2012; Weber et al., 2012). This 

kind of barrier can be incomplete due to segregation of genes involved in the incompatibility 

reactions in pollen and pistil (Larrosa et al., 2012). Segregation for male sterility has also 

been reported in haploid S. tuberosum x wild species hybrids (Jansky, 2006; Jansky, 2011). 

It is believed that nuclear-cytoplasmic male sterility can be attributed to the interactions 

between a dominant gene (MS) from the wild parent and factors in S. tuberosum cytoplasm 

(Camadro et al., 2004). Nuclear genes that restore fertility to interspecific hybrids have been 

reported (Spooner et al., 2014). 

Endosperm development is critical for viable seed production in potatoes. The endosperm 

balance number (EBN) hypothesis assumes that a 2:1 maternal to paternal ratio of the genes 

controlling EBN, rather than genomes, is necessary for normal endosperm development in 

potatoes (Spooner et al., 2014). Consequently, successful interspecific hybridization occurs 

only when parents produce gametes with the same EBN, if other hybridization barriers are 

not present (Jansky, 2006). In potato the EBN is controlled by a few genes with a variety of 

alleles (Ortiz, 1998). The EBN is an arbitrary value, experimentally assigned to each 

Solanum species based on their ability to hybridize with each other (Jansky, 2006). 

Cultivated S. tuberosum has 4 EBN. Diploid species have either 1 EBN or 2 EBN. Tetraploid 

species have 2 or 4 EBN. All of the pentaploids and hexaploid have EBN of 4. Thus, gene 

flow may occur between species of different ploidy but similar EBN, whereas species of the 

same ploidy could be isolated from each other if they hold different EBN (Ortiz, 1998). 

Crosses between species with different EBN could be manipulated when one of the species 

produces 2n gametes, which are gametophytes with unreduced chromosome numbers 

formed by inherited cytological alterations during meiosis (Larrosa et al., 2012). Meiotic 

mutations, which cause numerically unreduced (2n) gametes, occur naturally and frequently 

in cultivated and wild potatoes (Spooner et al., 2014). A cross between a tetraploid and a 2n 
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gamete-producing diploid will produce only tetraploid offspring. The produced 2n gametes, 

as a consequence of meiotic mutation could transmit a large proportion of heterozygous loci 

and epistatic genes to the tetraploid offspring (Peloquin et al., 2008). This allelic diversity is 

likely to buffer against environmental variability leading to yield diversity (Ortiz, 1998). Hence, 

EBN and 2n gametes, have complementary role to facilitate ploidy manipulation and thereby 

interspecific gene introgression.  

1.6 Inheritance of genes in the cultivated tetraploid potatoes  

The principal cultivated species of potato, S. tuberosum is an autotetraploid which displays 

tetrasomic inheritance (Bradshaw and Mackay, 1994). It is a highly heterozygous outcrossing 

species but asexually propagated, via tubers, for production and germplasm maintenance. 

Genetic load, which is the proportion of deleterious recessive alleles in a plant, is high in 

tetraploids where homozygous recessive genotypes are less common than in diploids. 

Hence, the crop suffer inbreeding depression when self-pollinated or crossed to genetically 

related clones (Spooner et al., 2014). Inbreeding depression in potatoes has impeded the 

elimination of unfavourable alleles and the fixation of alleles responsible for important traits 

(Spooner et al., 2014). 

Sexual propagation and the production of ‘true’ seed allow breeders to generate genetic 

variation, and as a clonal crop, there are opportunities to exploit both additive and non-

additive genetic variations in the potatoes (Paget, 2014). Theoretically an autotetraploid can 

carry four alleles per locus. Hence, the number of combinations within a gene and epistatic 

interaction among genes is much higher than can be achieved in diploids (Spooner et al., 

2014). In addition, larger samples of segregating populations need to be evaluated in order 

to characterize genetic ratios and to identify clones carrying genes for traits of interest 

(Spooner et al., 2014). However, recent genomic studies have revealed that tri-allelic and 

tetra-allelic loci are rare in potato cultivars (Hirsch et al., 2013; Spooner et al., 2014). This 

calls for re-evaluation of the general requirement of intra-locus interactions, as a major 

concept for potato breeding (Spooner et al., 2014). 

1.7 Importance of potato in Ethiopia 

Potato has become an important staple and cash crop in the highlands of Ethiopia. 

Production and consumption of potato are increasing over time. Over the last 20 years the 

potato production has grown considerably, from 349,000.00 in 1993 to 775,503.00 tons in 

2013 (FAOSTAT, 2015). Ethiopian agriculture is rainfall dependent subsistence farming with 

small land holdings (0.5 - 2 hectare) (Gebre-Selassie and Bekele, 2012). Potato yields more 

food per unit of land than any other major crop (FAO, 2009). In subsistence production 

(Haverkort et al., 2012; Kolech et al., 2015), potato has an important role as a food security 
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crop and to improve the livelihoods of small scale farmers who hold 95% of agricultural land 

in a rural community that accounts for 83% of the total population.  

Potato has excellent nutritional value. In addition to its contribution to carbohydrate, calorie 

and quality protein in diet, it is a good source of important nutrients such as dietary fibre, 

vitamin B6, vitamins B3 vitamin C, iron, potassium, copper, manganese, phosphorus, 

carotenoids and polyphenols (Paget, 2014). Potatoes in Ethiopia are mainly consumed 

boiled or prepared in a stew. The consumption of potato in the forms of chips and French 

fries has been limited but is steadily increasing over time due to urbanization, rising middle 

class, and tourism (Tesfaye, 2010; Haverkort et al., 2012). Devaux et al. (2014) stated that 

potato cropping systems help improve resilience especially among smallholder farmers by 

providing direct access to nutritious food, increasing household incomes, and reducing their 

vulnerability to food price volatility. This makes potato an important best fit crop in reducing 

hunger and malnutrition of the extremely poor.  

1.8 Constraints of potato production in Ethiopia 

Potato productivity is relatively low in Ethiopia. The national average yield is 11 t ha-1 which is 

more than four-fold lower as compared to yield obtained in research plots (Woldegiorgis, 

2013). Drought, late blight and bacterial wilt diseases are the predominant constraints limiting 

potato yields in Ethiopia (Kassa and Beyene, 2001; Bekele et al., 2011; Kolech et al., 2015). 

Under Ethiopian erratic rainfall condition, potato suffers water deficit when the season is dry 

and late blight disease when the season is wet in most of rain fed growing conditions (Forbes 

et al., 2003; Kolech et al., 2015). 

1.8.1 Late blight disease  
Late blight is a polycyclic disease, caused by Phytophthora infestans (Mont) De Bary 

(Turner, 2008). Potato late blight continues to be one of the most devastating plant diseases 

throughout the world. The disease is known for its role in causing the Irish potato famine in 

the 1840s. Today, the disease is still responsible for significant losses of production despite 

the efforts of potato breeders and fungicide producers (Grünwald and Flier, 2005; Cooke et 

al., 2011). Late blight was first reported in east Africa in 1941 (Nattrass, 1944) and has since 

continued to be devastating in the major potato growing tropical highlands of this region 

including Ethiopia  (Olanya et al., 2006; Cooke et al., 2011). 

1.8.1.1 Causal organism of late blight 
P. infestans is a coenocytic (multinucleate) oomycete with diploid nuclei, which are unrelated 

to true fungi (Van West et al., 1999). Oomycetes lack chitin in their cell walls, and produce 

short lived motile biflagellate zoospores (Fry et al., 1993). The asexual reproduction of P. 
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infestans is with ellipsoid to lemon shaped spores called sporangia. Sporangia are produced 

on the branch tips of the alternately branched sporangiophores that grow from infected tissue 

(Chycoski, 1995; Fry, 2008; Kaila, 2015). Infections of foliage or tubers are initiated by 

sporangia either directly with a germ tube or indirectly by liberating zoospores (Harrison, 

1992; Fry et al., 1993). After penetration, the pathogen forms a specialized hyphal structure, 

referred to as an infection vessel. Hyphae extend from this and begin colonization of plant 

tissue intercellularly. Intercellular hyphae form haustoria that penetrate cells to absorb 

nutrients. After a certain amount of time, sporangiophores grow out of stomatal openings 

(Guest and Brown, 1997). Where P. infestans exists as an asexual organism, it is essentially 

an obligate parasite. It requires a living host (crop debris or solanaceous weeds) for long-

term survival. Sporangia may survive days or weeks in soil, whereas mycelium of the fungus 

cannot survive in the absence of a living host cell (Chycoski, 1995).  

The pathogen is heterothallic and requires two mating types namely A1 and A2 for sexual 

reproduction (Wiik, 2014). Spores produced by sexual mating are called oospores (Fry, 

2008). Both compatibility types must infect the same plant or tuber for oospores to be 

produced. Oospores have thickened walls and are believed to survive in soils for several 

years in the absence of living hosts (Erwin and Ribeiro, 1996; Fry, 2008). Both mating types 

(A1 and A2) were common in Mexico, but were apparently not common in other locations. 

Outside Mexico, populations of P. infestans were dominated by a particular clonal lineage 

(US-1) (Goodwin et al., 1994). But starting from the 1980s A2 mating types, isolates of A1 

mating type that were quite different from US-1, began to appear in other locations 

worldwide. The recent distribution of the A2 mating type has had significant impacts on 

disease severity and incidence. Sexual reproduction has led to a genetically more diverse 

population of P. infestans that increased adaptability to host and environment (Cooke et al., 

2011; Wiik, 2014). Recent studies on mating type and virulence of P. infestans are lacking 

in Ethiopia. Schiessendoppler and Molnar (2002) reported that only A1 clonal lineage mating 

type are present with host-specificity. Race analysis of P. infestans performed at Holetta 

Research Centre in Ethiopia showed that Race (R) 1, 2, 3, 4, and 6 were identified. Among 

these, R2 and R3 were the most prevalent (Kassa and Hiskias, 1994). The pathogen 

generally considered to have a limited host range and is a near-obligate hemibiotrophic. 

Potato and tomato (Lycopersicon esculentum) are the most economically important primary 

hosts of P. infestans (Erwin and Ribeiro, 1996; Fry, 2008; Kaila, 2015). 

1.8.1.2 Epidemiology and disease cycle 
Epidemic development of potato late blight critically depends on the inoculum sources, the 

local climate and the genetics of the host and pathogen (Grünwald and Flier, 2005; Kaila, 

2015). P. infestans survives on tubers in storage, cull piles or other host plants. Tubers 
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become infected through lenticles and wounds when spores are washed into the soil by rain 

from infected leaves. Seed tubers play an important role in the long-distance dispersal of P. 

infestans (Fry et al., 1993). In areas where potatoes are produced around the year, the 

pathogen is always present; hence the disease is also always present, even though limited to 

only humid microenvironments. For this reason, late blight generally occurs in the tropics at 

the onset of the rainy season (Forbes et al., 2003). In Ethiopia, farmers practice early 

plantings of potatoes during the main season and off season productions of potatoes and 

tomatoes to avoid late blight pressure. Since the rain pattern is variable, areas wet enough 

for blight incidence at any time of the year could easily be found (Forbes et al., 2003; Hirpa et 

al., 2010).  

For the disease development, temperature and humidity are of fundamental importance. The 

optimum temperatures for late blight disease development are near 20C. However, the 

disease can occur from about 5C to 30C (Harrison, 1992). Sporangia germination is 

temperature dependent. Air temperature of 15C appears to be a point of differentiation, 

below which germination is indirect through zoospore, and above which it is direct through 

germination tubes (Fry, 2008). Germination and zoospore activity can occur at very low 

temperatures, near 0C, although at a very slow rate. Above 30C, sporangia do not 

germinate and most phases of P. infestans cannot survive (Harrison, 1992; Mizubuti and 

Forbes, 2002). 

Under optimal conditions (18-22C), and with a susceptible potato cultivar, infections can be 

visible in three days (Mizubuti et al., 2000; Fry, 2008). Within a day or two after the lesion 

first becomes visible, the pathogen is capable of sporulation. Moderate temperatures (10-

25C) and wet conditions (100% relative humidity) are required for sporulation. Within 8-12 h 

of favourable conditions, sporangia are produced on indeterminate sporangiophores. 

Sporangia dislodge during changing relative humidity and can be captured in air currents or 

splash dispersed. As sporangia can survive for hours in unsaturated atmospheres when 

protected from solar radiation (Mizubuti et al., 2000), aerial dispersal up to hundreds of 

kilometres are possible. Under favourable conditions, massive numbers of sporangia can be 

produced from a single lesion (up to 300,000 sporangia per lesion) and readily dispersed. 

This explains why rapid development of the disease over a large area followed by complete 

destruction, is possible in susceptible cultivars within a few days (Harrison, 1992; Mizubuti 

and Forbes, 2002; Fry, 2008). 

Generally, saturated air or leaf wetness is required for sporangia to germinate and for 

zoospore motility (Harrison, 1992). The vegetative zoospores, by which the disease 

commonly spread from plant to plant, are fragile, water-dependent and short-lived. After 
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infection has occurred, the mycelium is relatively protected from low humidity, but high 

ambient humidity, near saturation, is needed for sporangia formation (Harrison, 1992).  

Most potato are grown in Ethiopia in a typical tropical highland climate (>1500 meter above 

sea level (masl)). The annual rainfall range between 600 - 1,200 mm, most of which occurs 

during July to September, and mean monthly temperatures ranges from 10 to 20◦C with a 

considerable diurnal range depending on altitude (CIP, 2012). Given the precipitation and 

relatively cool temperatures, this climate is favourable to late blight disease development in 

the country (Grünwald and Flier, 2005). 

1.8.1.3 Late blight symptom 

P. infestans, infects potato foliage, stems and tubers (Fry, 2008). The disease appears first 

as water-soaked irregular pale green lesions mostly near tips and margins of leaves (Kaila, 

2015). These lesions rapidly grow into large brown to purplish black necrotic spots under 

condition of high humidity and cool temperature. During morning hours, a white mildew 

consisting of sporangia and spores of the pathogen may be visible on the lower surface of 

infected leaves, especially around the edges of the necrotic lesions and soon the entire 
leaves are infected and die. In dry weather, the existing lesions turn black, curl, wither, and 

no mycelia appear on the underside of the leaves (Agrios, 2004).  

When late blight attacks the stem it can cause girdling and the leaves wilt above the point of 

infection. Light to dark brown lesions on stems or petioles elongate and encircle the stems. 

Stem lesions become brittle and the stem frequently breaks at that point. Rain-borne 

sporangia from the diseased foliage can also infect tubers in the soil (Andrivon, 1995). 

Infection in tubers generally occurs at eyes, lenticels, or through wounds. The infected tubers 

show irregular reddish brown to purplish slightly depressed areas that extend deep into 

internal tissue of the tubers (Kaila, 2015). The infected tubers are initially hard, dry, and firm 

but may be invaded by other pathogens, mainly bacteria, leading to soft rot. A pungent putrid 

smell is often associated with heavily infected fields. This is due to rotting of dead tissue and 

is not a direct consequence of late blight infection (Forbes et al., 2014). 
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1.8.1.4 Potato late blight control measures 
Reducing the primary sources of inoculum  

Infected tubers, cull piles next to fields, or volunteer plants are potential sources from where 

inoculum could spread between potato fields. Reduction of these sources of initial inoculum 

can minimize the initial amount of disease or delay disease initiation. Thus, management 

strategies based on sanitation (removal of cull piles, elimination of volunteer plants, etc.) and 

the use of healthy seed tubers can improve disease control (Forbes et al., 2003). Tuber 

infection can be reduced through good agronomic practices such as drainage, ridging, 

dehulming and maintenance fungicidal protection until the haulm is completely dead. Acid 

soils and high aluminium availability in soils, commonly found in the tropics, have been 

shown to inhibit P. infestans in soil (Andrivon, 1995). Even though little research has been 

done on quantification of infected tubers in Ethiopia, there appears to be little evidence that 

tuber infection are major sources of inoculum in tropical highlands. As described above, 

many fields are planted when blight is already present and the relative role of aerial inoculum 

from sporangia coming from foliage infection would seem much more significant. Given the 

limited clean seed source, presence of dumps, volunteer plants and year round cultivation of 

solanaceous hosts, control of aerial and tuber inoculum is not easy. This leaves the control 

measure to depend much on fungicides and genetic resistance measures (Forbes et al., 

2003). 

Fungicides  

Fungicide use is the most common practice for late blight control worldwide. However, its use 

increases production costs and has negative consequences for environment and human 

health. A survey made by Kolech et al. (2015) showed that more than 88% of farmers in 

central parts of Ethiopia use fungicides, while farmers in four major potato producing districts 

in Amhara region, do not spray at all to control late blight. This region contribute over 40% of 

the total production in the country. The limited fungicide use is mainly because of the cost 

involved.  

For an efficient and cost-effective use of fungicides, adequate knowledge on the type, 

dosage, frequency and timing of application are required. Fungicide and variety reaction 

studies conducted in Uganda, Kenya and Ethiopia suggests that significant late blight control 

can be achieved when the protectant fungicide, mancozeb is applied on a scheduled basis 

(Olanya et al., 2001). On-farm research also indicates that three timely applications of a 

protectant or a protectant fungicide alternated with a systemic fungicide can be effective for 

late blight management (Olanya et al., 2001). However the number of fungicide applications 

needed is strongly affected by the weather conditions of each year. To start spraying 
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fungicides at the right time, a disease forecasting system is important. However, this system 

requires weather-measuring devices and/or computers, which are not available for resource-

poor farmers (Forbes et al., 2003).  

The most widely available fungicides in the market in Ethiopia are those products containing 

mancozeb, metalaxyl, and chlorothalonil compounds as active ingredients (Haverkort et al., 

2012). Fungicides with metalaxyl active ingredient have a strong curative effect. The main 

disadvantage of these fungicides is that resistance to the fungicide readily develops in the 

pathogen population. There is limited information concerning the status of metalaxyl 

resistance, but CIP (2004) stated that 20% of the collected isolates were resistant. The 

resistance expected increases as the rate of application is increased since P. infestans is 

capable of quick development of resistant strains. Control of primary inoculum sources, use 

of dynamic fungicide dosages related to weather forecasts and exploitation of resistant 

cultivars, would reduce financial costs and unfavourable environmental consequences 

(Forbes et al., 2003). Although economical control of late blight disease has been achieved 

with timely use of effective fungicides, the use of fungicides adds a huge cost to potato 

production which is not affordable especially for Ethiopian small scale farmers. In addition, 

wide use of fungicides may also create health problems for users, adversely affect the 

environment, and result in the selection of fungicide resistant strains of the pathogen. 

Therefore, breeding for cultivars with durable and adequate-level resistance for potato crop is 

the most effective, economical, and environmentally friendly method of disease control. 

1.8.1.5 Breeding potato for late blight resistance 
Past breeding efforts for late blight resistance in Ethiopia 

In Ethiopia, limited knowledge and financial inputs to apply fungicides, and limited supply of 

clean seed makes genetic control of late blight an important objective of the potato breeding 

programme (Colon et al., 1995b; Woldegiorgis, 2013). With the objective of developing late-

blight resistant cultivars and other economically important traits, research has been 

undertaken in Ethiopia since 1975. From 1987 to 2010, 29 improved cultivars with late blight 

resistance and with high yield and good quality traits were released (Woldegiorgis, 2013).   

A potato breeding scheme begins with the evaluation and selecting appropriate parents, the 

crossing of the selected parents and the selection of elite clones from these progeny of 

crosses for further testing and potential release as cultivars (Paget, 2014). A narrow genetic 

base has been the main bottle neck for the crop improvement in the country, because of few 

introduction of potato cultivars (Haverkort et al., 2012). Therefore, the Ethiopian breeding 

program has benefited from the global collaborative efforts in potato breeding for widening 

the genetic base. In the past the parental selection and progeny generation has been carried 
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out at the International Potato Centre (CIP) in Peru, where large genetic diversity of the crop 

maintained. The selection in the country were performed in advanced clones, tuber families 

and true potato seeds received from CIP (Woldegiorgis, 2013).  

Searching for durable resistance  

Durability of resistance is the first concern in late blight resistance breeding (Umaerus and 

Umaerus, 1994). P. infestans is known to be a highly variable pathogen which easily adapts 

to host resistance based on major (R) genes which confer race specific resistance. Race 

specific resistance is governed by a single or few dominant genes with major effects and a 

clear, discontinuous segregation of progeny. Race-nonspecific or horizontal resistance, in 

contrast, is governed by minor genes, with small cumulative effects and segregation 

generation showing continuous distribution. The latter is more durable because it is 

polygenically controlled and shows quantitative resistance (Solano et al., 2014). Unlike race 

specific (qualitative) resistance, quantitative resistance permits invasion of the pathogen and 

its development in the host tissue in a restricted way and makes no distinction among the 

races of P. infestans (Landeo, 2002). Quantitative resistance has been described to 

consisting of components of resistance relative to the pathogen such as slow infection rate, 

slow growth and development, delayed spore’s latency period and reduced spore production 

(Dorrance et al., 2001). This kind of resistance may be affected by environmental conditions, 

inoculum potential, disease progress and physiological changes of the host plant (Kaila, 

2015). This could suggest the need to evaluate and select the genotypes in the target 

environments.  

Most of the potato genotypes that have been developed and released in eastern Africa 

before 2008 either have genes for vertical resistance to late blight or have been developed 

for horizontal resistance to late blight in the presence of unknown resistance (major R) genes 

(Woldegiorgis, 2013). As a consequence, considerable number of the varieties have become 

susceptible to late blight and, hence, they are no longer produced (Mohammed, 2014).  

Starting from 1990, CIP began a program to improve potato populations by increasing gene 

frequencies for quantitative (horizontal) resistance to late blight together with systematically 

upgrading and maintaining other farmer and consumer preferred traits. This was done by 

removing known dominant genes responsible for race-specific resistance, which could mask 

the quantitative resistance and using the recurrent selection scheme by crossing the best 

genotypes of the population with each other (Landeo et al., 2001). Population B3 has mostly 

S. demmisum derived horizontal resistance genes improved mainly from S. tuberosum ssp. 

tuberosum germplasm background (Landeo et al., 2001) and is adapted to tropical 

highlands. This population is currently available as a source of breeding material. Population 
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B3 has shown stability of resistance to diverse environments and pathogen populations in 

tropical environments (Landeo, 2002). 

Screening and evaluation for late blight resistance  

Screening of germplasm for resistance to late blight may be done both in the laboratory and 

in the field. In the latter condition, screening can be done in different locations with high 

disease pressure by planting the materials to be tested along with known susceptible and 

resistant check cultivars. Screening potato germplasm for late blight resistance can also be 

achieved in controlled environments using laboratory methods utilizing leaf disks, detached 

leaflets or detached leaves (Sleper and Poehlman, 2006).  

Field screening is generally done on a large population of plants. For this purpose disease 

should be recorded in each cultivar right from its appearance till the maximum build-up of the 

disease at regular (weekly) intervals. This data would allow to calculate the area under 

disease progress curve (AUDPC) (Wilcoxson et al., 1975; Shaner and Finney, 1977), which 

has been considered more reliable for categorizing the cultivars according to their resistance 

grades. AUDPC integrate all aspects of disease progress in relation to host development and 

growth. AUDPC has been widely used for field assessment of quantitative resistance (Jeger 

and Viljanen-Rollinson, 2001; Wulff et al., 2007; Kaila, 2015). 

1.8.2 Drought in Ethiopia and breeding for tuber yield under moisture-stressed 
environment 

Ethiopia is highly vulnerable to the impacts of frequent droughts, exacerbating the existing 

challenges to satisfy the food demands due to the increasing population (Tadesse et al., 

2014). Studies show that drought frequency and intensity is increasing over past few 

decades in a large geographical area of Ethiopia including the most populous and arable 

highlands (Deressa et al., 2014; Teklu, 2014). About 55% of the total land area constitutes 

moisture-stressed areas with crop growing period of less than four months (Teklu, 2014). 

Drought in Ethiopia can reduce household farm production by up to 90% of a normal year’s 

output and lead to the death and migration of humans (Deressa et al., 2014). About 85% of 

the population is rural, who depend mainly on rain-fed agriculture. Thus, vulnerability to 

poverty persists in rural households because of their poor coping capacity, which draws 

attention to the need for new and improved agricultural technologies (Teklu, 2014). Genetic 

enhancement will increase productivity of crops and food availability. Potato can make 

important contribution in this aspect. 
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1.8.2.1 Potato as efficient water user but drought sensitive crop 
Under rain-fed conditions, potato yields more food per unit of water than any other major 

crops. For every cubic meter of water applied to the crop, potato produces 5600 kcal of 

dietary energy, compared to 3860 in maize, 2300 in wheat and 2000 in rice (FAO, 2009; 

Monneveux et al., 2013). Because of its high productivity, potato is regarded as a food 

security crop. The crop is, however, considered a drought sensitive as compared to most 

other crop species (Deblonde and Ledent, 2001). Vayda (1994) has also confirmed that 

potato yield is especially sensitive to drought. Drought can affect potato growth and 

production by reducing the amount of productive foliage, by decreasing the rate of 

photosynthesis per unit of leaf area and by shortening the vegetative period (Van Loon, 

1986; Spitters and Schapendonk, 1990). Potato exhibits morphological changes at -0.4 bar, 

that is, when soil moisture only drops to 70-85% of field capacity, depending on the relative 

humidity (Vayda, 1994). Leaf expansion of the potato plant declines at a mild water stress 

level, a leaf water potential of -3 bars (Van Loon, 1986; Jefferies, 1995). Plants under water 

stress will close their stomata leading to a decrease in photosynthetic rate, which results in 

yield reduction. Stomatal closure enhances the differences between canopy and air 

temperature (Dalla Costa et al., 1997).  

Drought in the period of tuber initiation and bulking has the most drastic effect on yield 

(Vayda, 1994). Water stress during the tuber bulking period encourages plant senescence, 

resulting in a decrease in leaf area index (LAI). At first the lower leaves start to wilt and abort. 

Simultaneously drought inhibits the development of new leaves (Van Loon, 1986). However 

there are varietal differences in yield and yield component responses to moisture stress 

(Lynch et al., 1995). 

1.8.2.2 Yield components and yield determinant 
The primary objective in breeding potato is increased tuber yield. No new variety has any 

chance of succeeding unless it is at least as high yielding as the present varieties (Howard, 

1992). Total yield of a potato crop depends up on number of plants per unit area, number of 

tubers produced per plant and mass of the individual tubers. These variables are dependent 

on one another (Sleper and Poehlman, 2006). The number of tubers is highly correlated with 

the number of stems produced while a negative relationship exists between number of stems 

per plant and number of tubers per stem. The amount of foliage present has a strong 

influence on tuber yield. A leaf area index (LAI) of 3 occurs when 95-98% of incident 

radiation is intercepted, after which the correlation between tuber yield and leaf area 

decreases (Gregory and Simmonds, 1992; Howard, 1992).  
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1.8.2.3 Screening for drought tolerance   
Traits conferring yield stability under drought might include an array of morphological, 

physiological and biochemical adaptations involving hundreds of genes. Drought tolerance 

traits increase plant vigour and survival rate under water-limiting conditions (Schafleitner et 

al., 2007). In potato, maintenance of a high photosynthetic rate under drought has been 

proposed as the most crucial drought tolerance trait. Less reduction of stomatal conductance 

and rooting depth have also been associated with drought tolerance (Schafleitner et al., 

2007). However, observation of the root system in early generation is tedious and requires 

labour and time. Some traits, such as small plant size, reduced leaf area, early maturity and 

prolonged stomatal closure lead to a reduced total seasonal evapotranspiration resulting in a 

reduced yield potential (Van Loon, 1981; Cattivelli et al., 2008). 

Yield performance has been used as the most important criteria for screening cultivars under 

moisture stress condition (Alsharari et al., 2007). Most studies estimated drought 

susceptibility index (DSI) by comparing yield performance of a given genotype under 

moisture stress and well-watered conditions. This is to differentiate between  genotypes that 

have high yield under drought stress simply because of high inherent yield potential and 

those that also have greater drought tolerance per se (Yadav and Bhatnagar, 2001; Cabello 

et al., 2012).   

Canopy temperature measurements have been widely used to study the drought response of 

various crops. This approach is based upon the close, inverse relationship between leaf 

temperature and transpirational cooling. High canopy temperature related to high stomatal 

resistance (Blum, 1988) and thereby reduced photosynthetic rate, leading to a lower yield 

level (Blonquist Jr. et al., 2009). As stomates close in response to soil water depletion and a 

decrease in water uptake, plant temperature increases. Consequently, photosynthesis is 

reduced because CO2 absorption is reduced (Blonquist Jr. et al., 2009). Blum et al. (1989) 

found a positive correlation between drought susceptibility of wheat genotypes and canopy 

temperature in stressed environments. Genotypes that suffered greater relative yield losses 

under drought stress tended to have warmer canopies at midday. Stark et al. (1991) also 

reported that the most drought resistant potato genotypes usually had the lowest canopy 

temperatures during periods of drought.  

Kumar and Singh (1998) found in oil seed Brassica species that lower canopy temperature 

positively correlated with osmotic adjustment. Plants with higher osmotic adjustment 

transpired more water and therefore had cooler canopies than the plants with lower osmotic 

adjustment. Osmotic adjustment is an important mechanism enabling plants under water 

stress to maintain water absorption and cell turgor pressure, thus contributing to sustained 
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higher photosynthetic rate and expansion growth (Cattivelli et al., 2008). Osmotic adjustment 

involves the net accumulation of solutes in a cell in response to a reduced water potential of 

the cell’s environment. Because of the accumulation of solutes, the osmotic potential of the 

cell is lowered, which in turn attracts water into the cell and tends to maintain turgor pressure 

(Blum et al., 1996). 

The amount of intercepted radiation is a major factor which influences the final tuber yield of 

potato crops under drought conditions (Deblonde and Ledent, 2000). Measuring the 

proportion of ground covered by green foliage (ground cover) is a measurements of crop 

canopy development and used to estimate light interception and carbon acquisition (de la 

Casa et al., 2007). Deblonde and Ledent (2000) reported genotypes with high ground cover 

tended to have high intercepted radiation and high tuber yield. Boyd et al. (2002) and de la 

Casa et al. (2007) showed high correlation between ground cover and leaf area index. Thus, 

it can be used as an important parameter for discriminating cultivars according to their 

yielding ability under moisture stress.  

Stay green has become a noted trait in breeding programs, especially in environments where 

terminal drought is the main recurrent problem, as it indicates reduced chlorophyll 

degradation or delayed senescence (Cattivelli et al., 2008; Blum, 2011; Rolando et al., 2015). 

Leaf senescence is a highly organized and well-regulated process, in which chlorophyll and 

foliar proteins tend to degrade at similar rates (Rolando et al., 2015). Plant hormones are 

tightly linked to senescence control, where abscisic acid (ABA) promote senescence and 

kinetin delays it. Ethylene, is a known accelerator of senescence mediated by ABA (Blum, 

2011). Jensen et al. (2010) hypothesized that the delayed senescence could be caused by a 

possible negative effect of ABA concentration in the ethylene production. Under water 

restriction, delayed senescence (or stay-green) may reflect a maintenance of photosynthetic 

activity, which seems to be preferred by breeders (Blum, 2011; Rolando et al., 2015). 

However, Blum (2011) pointed out that stay green trait might delay remobilization of carbon 

products (stem reserves) to the harvested organs of the plant, which might lead to a lower 

yield. In potato Rolando et al. (2015) observed increased leaf greenness under water 

restriction, which seems to be associated with a decrease in leaf growth or turgor loss. The 

highest increment in leaf greenness in the above study observed on drought susceptible 

genotypes. Ramírez et al. (2014) also reported that stay green were negatively correlated 

with tuber yield under water stress in potato cultivars. 
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1.9 Cultivar development strategies in potato 

1.9.1 Broadening the genetic bases 
Identification of superior parents with high yield and desirable traits is the basis of the 

breeding program. Wider genetic base is important to choose the best parents for breeding, 

to design proper crossing schemes and selection strategies (Carputo et al., 2013). As 

modern potato breeding was started with only a few genotypes, narrow genetic base and 

limited accessibility to available genetic variation remains a challenge of potato breeding 

(Paget, 2014; Mihovilovich et al., 2015). Wild potatoes have contributed many genes of 

interest to potato breeding (Gebhardt and Valkonen, 2001). Among these, for example S. 

demissum is a widely used hexaploid, which has been used as a source of the major R gene 

as well as minor genes (for Population B3) that confers resistance to late blight (Acquaah, 

2007). However, only a small number of wild species have been used extensively, compared 

with the huge natural genetic diversity available in the wild relatives of the potato (Bradshaw 

et al., 2006). As potato is a heterozygous out breeder, use of the same recurrent parent 

during introgression would result in a self of the recurrent parent and hence inbreeding 

depression (Colon et al., 1995a; Khiutti et al., 2015). Genetic breeding barriers (see section 

1.5) associated with many wild potato species are the major challenges to exploit wild 

germplasm (Weber et al., 2012). Ploidy manipulations and bridge crosses, mentor 

pollination, embryo rescue and hormone treatment have been the methods used to 

overcome the difficulty of hybridization between sexually incompatible species (Jansky, 

2006). Understanding these barriers and developing techniques to allow for introgression are 

fundamental to utilize the wealth of genetic resources in potato (Jansky, 2006; Weber et al., 

2012).  

Potato germplasm resources provide genes for biotic and abiotic stress resistance, 

processing quality, and nutritional value (Bradshaw et al., 2006; Jansky, 2006). Resistance 

for late blight has been identified within and among several species of wild Solanum, that 

may or may not be sexually compatible with cultivated potatoes (Khiutti et al., 2015). Cabello 

et al. (2012) reported more drought tolerant genotypes in polyploid species and cultivar 

groups than the diploid ones. The authors pointed out Andean potatoes (S. tuberosum) 

potatoes, as a potential source of drought tolerance. Wild Solanum species add allelic 

diversity that can contribute to hybrid vigour and phenotypic stability (Darmo and Peloquin 

1990). Careful selection of both cultivated and wild species parents can result in a large 

proportion of fertile and economically desirable hybrid offspring after several cycles of 

recurrent selection (Jansky, 2011; Paget, 2014).  
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1.9.2 Selection for potential parents 
Since the cultivated potato is tetraploid (2n = 4x = 48) and highly heterozygous, crosses are 

made between parents with complementary features as selection of parents is based on 

phenotype rather than genotype (Bradshaw and Mackay, 1994). In recent years, major 

progress has been made in the use of molecular technologies for the identification of genes 

to enable the implementation of marker-assisted selection in crop improvement programs 

(Slater et al., 2014). This may help to accelerate future potato breeding. Conventional 

breeding, which is the main method to develop new improved cultivars include hybridization 

and selection (Bradshaw, 1994; Sleper and Poehlman, 2006). The procedure starts with 

identification of desirable parents, followed by crossing selected superior genotypes for the 

trait under consideration. The approach used by potato breeders for selection of desirable 

parents include use of mid-parent values, combining ability effects, estimated breeding 

values, progeny tests and genetic diversity analysis (Gopal, 2015). 

1.9.2.1 Selection based on combining ability 
Combining ability is a type of progeny test which predicts the performance of parents in 

crosses. This is the factor determining genotype’s potential for cultivar development 

(Hallauer et al., 1988; Acquaah, 2007). Combining ability effects are partitioned in to two 

types: general combining ability (GCA) and specific combining ability (SCA). The GCA 

depends predominantly on additive effects of the genes. Where GCA predominates, progeny 

performance can be reliably predicted from the performance of the parents. The SCA effect 

depends predominantly on non-additive effects of the genes. Then, when the SCA effect 

predominates specific combinations of parents would have to be evaluated to find progeny 

with the desired characteristic and considerably more testing would be required (Machado et 

al., 2002). Diallel and North Carolina Design II are the most widely used mating designs for 

an efficient estimation of combining ability effects (Acquaah, 2007).  

Variable reports on the importance of GCA and SCA effects for late blight resistance exist in 

the literature. These conflicting views may be the result of using different mating designs 

and/or different genetic parent materials for evaluation (Haynes et al., 2008). Despite the 

differences, studies showed that both GCA and SCA effects are important for choosing blight 

resistant parents for use in breeding (Tai and Hodgson, 1975; Haynes et al., 2008). Potato 

breeding work in Ethiopia focused on introduction and testing of advanced clones developed 

by CIP for late blight resistance and productivity. However, little work has been done in 

identifying parents, and generating and selecting progenies which combine drought tolerance 

and resistance to late blight (CIP, 2012). 
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1.9.2.2 Genetic diversity assessments 
Genetic diversity study is another important method to choose the best parents for breeding 

(Carputo et al., 2013). High level of genetic diversity serves as insurance against crop failure 

due to biotic and abiotic stresses (Fregene et al., 2003). In potato breeding, it has been 

assumed that hybrid vigour is maximized by using genetically divergent parents for crosses. 

However, maximizing heterozygosity should be coupled with the presence of certain alleles 

responsible for the desired traits, in order to realize genetic gain in a population derived from 

genetically divergent parents (Bonierbale et al., 1993). There are several molecular tools that 

are used for the genetic diversity study. Simple sequence repeat (SSR) markers are among 

the most widely used, owing to their high specificity, high polymorphism, good reproducibility 

and high throughput (Tenzer et al., 1999; Carputo et al., 2013; de Galarreta et al., 2013).  

1.9.3 Selection of elite clones 

In potato, genetic variation is achieved in the F1 generation following hybridization 

(Bradshaw, 1994; Acquaah, 2007). Potato heterozygosity is fixed by asexual reproduction 

using tubers. As such, F1 progenies obtained from crosses between two genotypes are each 

genetically unique and show a range of phenotypes (Mori et al., 2015). Highly heritable traits 

will be selected at early breeding stage, while selection for quantitative traits that are affected 

by environments would be performed at latter stage (Mori et al., 2015). Subsequently, 

selected superior genotypes are vegetatively propagated and maintained in their original 

genetic state (Bradshaw, 1994; Acquaah, 2007). Tubers harvested from each superior F1 

family are grown in rows for evaluation, and then the amount of seed tubers increased for 

subsequent selection generations. Each row represents a clone from a single F1 plant 

(Bradshaw and Mackay, 1994). Selected clones are tested in multi-location trials for 

evaluation and subsequent selection for wide or specific adaptation and yield stability before 

release (Sleper and Poehlman, 2006). 

As a clonally propagated crop, potato has the disadvantage of low multiplication rate, which 

can increase evaluation period and disease vulnerability, which can be transmitted by 

infected seed tubers such as viruses, insects, fungal and bacterial pathogens (Gebhardt and 

Valkonen, 2001). Infected seeds can transmit the disease for the next season and causing 

progressive yield and vigour degeneration, further restricting the germplasm use in breeding 

efforts (Hirsch et al., 2013). Thus, special attention should be given for germplasm 

‘maintenance’ breeding in potato breeding program, which require intensive resources.  
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1.10 Conclusions 

Potato has become increasingly important crop in eastern African highlands due to its 

adaptability, yield potential, and nutritional advantages relative to other crops. However, new 

potato cultivars with increased yield and improved performance under biotic and abiotic 

stress are needed to keep up with increasing food demands and the effects of climate 

change. This chapter reviewed important aspects of breeding potato particularly for late 

blight resistance and drought tolerance. The review highlighted the availability of resistant 

materials for both traits from cultivated and wild relatives of potatoes and their use is 

dependent on manipulation of crossing barriers. Selection of parents based on their 

combining ability and their genetic distance is an efficient method to achieve genetic gains. 

Traits used to screen drought tolerance and late blight resistance are summarised. There is 

limited recent information published in Ethiopia on the variability of P. infestans and studies 

related to drought in potatoes, which call for research in these areas. 
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CHAPTER 2. Response of potato clones to late blight disease, 
yield and yield related traits in north-western highlands of 
Ethiopia 

Abstract 

Late blight disease of potato caused by Phytophthora infestans poses a significant threat to 

potato production in Ethiopia. High yielding genotypes with adequate late blight resistance 

remain a strong component in integrated disease management strategy. Several potato 

cultivars released in Ethiopia have succumbed to late blight disease requiring new sources of 

resistance for breeding. The objective of this study was to select late blight resistant and high 

yielding potato clones under field condition in north-western Ethiopia. Twenty four clones (17 

B3C2 population acquired from the International Potato Centre and 7 widely grown released 

and farmers’ cultivars), were evaluated at three locations. The experiments were planted in 

north-western Ethiopia using a randomized complete block design with two replications. Data 

collected included area under disease progress curve (AUDPC), days to 5% severity 

threshold, relative yield loss percentage, total tuber yield, marketable tuber yield, total tuber 

number and marketable tuber number. Results showed that clones differ significantly for all 

traits assessed across locations. The following five clones combine high to moderate 

resistance to late blight with high yields: 396029.25, 395017.229, 396004.263, 396034.103 

and 395077.12. These clones, all from B3C2 population, are useful genetic resources for 

resistance breeding against late blight disease and for enhanced yields.  

Key words: highland tropics, tetraploid potatoes, resistance breeding, yield loss, AUDPC.  

2.1 Introduction 

Ethiopia is among the leading ten sub-Saharan Africa countries in terms of areas of potato 

production (FAOSTAT, 2015). Potatoes are a source of both food and cash income in the 

densely populated highlands of the country which is inhabited by 90% of the population 

(Gildemacher et al., 2009; Chindi et al., 2013). This makes potato a high-potential contributor 

to national food security (FAO, 2009; Gildemacher et al., 2009). However, the national 

average yield of the crop is less than 11 t ha-1 which is far below the attainable yield of 45 t 

ha-1 (Berihun and Woldegiorgis, 2013; Chindi et al., 2013; FAOSTAT, 2015). Of the 

constraints that widen the gap between actual and attainable yield, late blight is the most 

serious disease (Fuglie, 2007; Gildemacher et al., 2009; Forbes, 2012; Sparks et al., 2014). 

Potato late blight disease, caused by the heterothallic oomycete pathogen Phytophthora 

infestans (Mont.) de Bary, is a major threat that can cause complete crop failure (Trognitz et 
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al., 2001; Fry, 2008). Yield losses of 30 to 100% were reported in Ethiopia (Kassa and 

Beyene, 2001; Berihun and Woldegiorgis, 2013). The disease damages leaves, stems and 

tubers and is most devastating throughout the major potato producing areas in the country 

(CIP, 2004; Villamon et al., 2005; Forbes, 2012; Woldegiorgis, 2013). Research showed that 

the population of P. infestans in Ethiopia has the A1 mating type (US 1 clonal lineage), which 

reproduces asexually (Schiessendoppler and Molnar, 2002). 

Effective control of late blight disease requires integrated disease management (Mundt et al., 

2002). The disease can be controlled by the application of fungicides, cultural practices such 

as early planting, eliminating the source of inoculum, and/or using resistant cultivars (Garrett 

et al., 2001). However, deployment of these methods individually could not provide sufficient 

control of the disease. Fungicides can provide good control but they are often unaffordable 

for the small scale farmers, who account for over 90% of potato crop production in Ethiopia 

(Mizubuti and Forbes, 2002; Schulte-Geldermann, 2013). Also, fungicides are unsafe to 

human health and the environment. In some parts of Ethiopia, farmers plant potatoes early in 

the dry season to escape heavy late-blight pressure, though yield levels are compromised 

due to insufficient soil moisture (Forbes et al., 2003). Additional factors that contribute to high 

levels of late blight infection are: lack of certified clean seed, monocropping practiced by 

most farmers, and the fact that the tubers are left in the soil for extended period (Chindi et al., 

2013). Optimal management of potato late blight can best be achieved by incorporating 

durable resistance genes against virulent races of the fungus (Colon et al., 1995; Trognitz et 

al., 2001; Forbes, 2012; Woldegiorgis, 2013). This approach can be suitably integrated with 

other measures that fail to provide full control in isolation. 

Durability of host resistance is the main concern in late blight resistance breeding (Umaerus 

and Umaerus, 1994). Late blight resistance can be conditioned by race specific and race 

non-specific or field resistance genes. It is well known that race-specific or vertical resistance 

is controlled by major genes. Several major genes have been identified in differential potato 

cultivars (Sleper and Poehlman, 2006). However the emergence of virulent pathotypes of the 

pathogen could rapidly overcome the resistance of one or few major genes. Consequently, 

the use of major genes in breeding for resistance to late blight is mostly not recommended 

(Haynes et al., 2008; Forbes et al., 2014). Conversely, race non-specific or field resistance, 

is conditioned by minor genes (Trognitz et al., 2001; Andrivon et al., 2006). Race non-

specific resistance might not confer absolute protection, but is considered to be more durable 

than race-specific resistance, and is attributed to polygenically controlled quantitative 

resistance. Hence, this form of resistance is effective against a broad range of pathotypes of 

P. infestans (Bradshaw and Bonierbale, 2010). 
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In Ethiopia several improved potato cultivars with considerable resistance to late blight have 

been released to potato growers. However, a number of these cultivars have lost their 

resistance over time as the apparent resistance to late blight was overcome by the virulent 

pathotypes (Schulte-Geldermann, 2013). Advanced resistant breeding populations and 

candidate clones have been developed by the International Potato Centre (CIP) for a variety 

of agro-ecological zones including tropical highlands (CIP, 2012). This germplasm can serve 

as a valuable source of genetic variation in breeding programs. Among these clones, 

‘population B recombination cycle 3 (Pop B3)’, which lacks any known major or R genes (R1 

to R11) against P. infestans, is the latest advanced source released by the CIP for durable 

late blight resistance (Landeo et al., 2001; Yao et al., 2011). The population is constantly 

monitored to maintain sufficient genetic variation to ensure further progress and selection of 

outstanding clones with high levels of resistance and varietal potential (Landeo et al., 2001; 

Gastelo et al., 2014). Some of the clones derived from this population showed promising 

performance in Ethiopia and of these CIP-393371.58 has been released under the name 

‘Belete’ in 2009 (CIP, 2012). 

Potato breeding in Ethiopia has generally focused on introduction and testing of advanced 

clones developed by CIP for late blight resistance and productivity. However, little work has 

been done locally in parent selection and breeding of potato against late blight resistance 

(CIP, 2012; Woldegiorgis, 2013). Therefore, the objectives of this study was to select late 

blight resistant and high yielding potato clones under field conditions in north-western 

Ethiopia for breeding. 

2.2 Materials and methods 

2.2.1 Plant materials 
The study used 24 potato genotypes. Seventeen clones were obtained from CIP, and seven 

were locally released and farmers cultivars widely adapted to the mid- and high-altitude 

environments (>1500 meter above sea level) in Ethiopia (Table 2.1). The clones sourced 

from CIP are from population B group three, cycle two (B3C2) which are known for their 

quantitative late blight resistance. Locally released clone ‘Guassa’, a moderately susceptible 

cultivar, was used as a comparative control. 
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Table 2.1 List of potato genotypes used in the study 

 
Noa Genotype Pedigree 

Reported late-blight 
reactionb Population  

1 392633.64  387132.2 x 387334.5 Resistant B3C2 
2 393220.54 381400.22 x 387170.9 Resistant B3C2 
3 395011.2  393085.5 x 392639.8 Resistant B3C2 
4 395015.6  393083.2 x 391679.12 Moderately resistant B3C2 
5 395017.14  393085.13 x 392639.8 Moderately resistant B3C2 
6 395017.229  393085.13 x 392639.8 Resistant B3C2 
7 395077.12  391586.109 x 393053.6 Resistant B3C2 
8 395096.2  393085.5 x 393053.6 Moderately resistant B3C2 
9 395109.34 391589.26 x 393079.4 Resistant B3C2 
10 395112.32 391686.15 x 393079.4 Moderately resistant B3C2 
11 396004.26 391002.6 x 393382.64 Moderately resistant B3C2 
12 396029.25 392633.54 x 393382.64 Resistant B3C2 
13 396031.108 392633.64 x 393382.64 Resistant B3C2 
14 396034.103 393042.5 x 393280.64 Resistant B3C2 
15 396038.101 393077.54 x 393280.64 Moderately resistant B3C2 
16 396038.105 393077.54 x 393280.64 Moderately resistant B3C2  
17 396038.107 393077.54 x 393280.64 Moderately resistant B3C2 
18 Belete (393371.58) 387170.16 x 389746.2 Resistant B3C2 
19 Gorebella (382173.12) 380088.4 x MEX BULK - Pop A 
20 Guassa (384321.9) 380479.15 x 3 BULK Moderately susceptible Pop A 
21 Jalene (384321.19) 380479.15 x 3 BULK - Pop A 
22 Shenkola (KP-90134.5) 382132.14 x XY.13 Moderately susceptible Pop A 
23 Gudene (386423.13) - Moderately resistant Pop A 
24 Aba Adamu Farmer’s cultivar -       - 
a Genotypes from 1 to 17 are acquired from the International Potato Centre, while 18-23 are 
locally released cultivars and 24 is a farmers’ cultivar; b The information for B3C2 clones was 
cited from the CIP’s website (http://www.cipotato.org). 
 

2.2.2 Study sites 
The study was carried out at three selected locations in north-western Ethiopia: Injibara, Adet 

and Debark during the main cropping season (June to October 2014). These sites represent 

the main potato production areas in the north-western Ethiopia. The sites are hot spot areas 

and experience high late blight pressure during the rainy season. Injibara (10°57′ N, 36°56′ 

E) is located at an altitude of 2568 meters above sea level (masl). The mean annual 

temperature and rainfall are 15 oC and 1700 mm, respectively. The soils at this site are 

predominantly Nitosol (Shibabaw et al., 2014). Adet (11°17′ N, 37°47′ E) is situated at an 

altitude of 2240 masl and receives a mean total annual rainfall of 1238 mm with mean annual 

temperature of 17 °C, with mainly red brown Nitosol soils (Zegeye et al., 2010). Debark (13° 

14′ N, 37°89′E) is situated at an altitude of 2836 masl and receives a mean total annual 

rainfall of 974 mm with a mean annual temperature of 12.4 °C. It has predominantly Luvic 

Andosols soils (Assen and Tegene, 2008). All the three locations have a monomodal rainy 

season which occurs between May and October except Injibara with rainy months extending 

from March to end of November (Shibabaw et al., 2014). 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Injibara&params=10_57_N_36_56_E_
https://tools.wmflabs.org/geohack/geohack.php?pagename=Injibara&params=10_57_N_36_56_E_
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2.2.3 Seed potato preparation and experimental set up 
Healthy plantlets of 17 clones acquired from CIP along with six released and one farmers’ 

(Aba Adamu) local cultivars were multiplied in the tissue culture laboratory of Amhara 

Agricultural Research Institute (ARARI). These were transplanted to a screen house and 

harvested in June 2013. Harvested tubers were kept in diffused light storage (DLS) system 

for four months to break dormancy. Tubers were planted for further multiplication in 

November 2013 under virus free condition (cold highland and using chemical control). 

Tubers were then harvested and kept for four months prior to planting for the field tests.  

A total of 24 entries were planted in the field during the rainy season. Two spray regimes, 

(sprayed and unsprayed) were used at Injibara and Adet locations for comparative study. 

The two treatments were arranged in separate experiments. The distance between the 

experiments was 3 m. The trials were established using a randomised complete block design 

with two replications per each spray regime and each location in June 2014. In the 

unsprayed treatment genotypes were exposed to natural infection using spreader rows of a 

susceptible local cultivar ‘Enatbeguaro’ to keep a continuous infection pressure during the 

period of disease assessment. Neither pesticides nor fungicides were applied in this regime 

except in Adet where late blight occurred early (two weeks after planting). In this location a 

contact fungicide (Mancozeb) was applied once in the second week after planting to maintain 

the genotypes. In the control or sprayed treatment Ridomil MZ 72 (8% a.i. metalaxyl + 64% 

a.i. mancozeb), Bravo (82.5% WP Chlorothalonil), Tanos (250 g kg-1 cymoxanil, 250 g kg-1 

famoxadone) and Mancozeb (80% WP) were sprayed at weekly interval alternately as per 

the recommendation of the manufacturer. Spraying started from two weeks after planting and 

continued until the end of the season. At Debark, however, genotypes were evaluated only 

under unsprayed condition because of seed shortage. 

Each genotype was represented by an experimental unit consisting of 40 plants established 

in a plot of 9 m2 with 4 rows, 3 m long, with 0.75 m inter- and 0.3 m intra-row spacing. All 

necessary agronomic practices such as weeding and ridging were carried out by using hoe 

and hand cultivation. Phosphorus fertilizer in the form of diammonium phosphate was applied 

at the rate of 69 kg ha−1 and nitrogen at 81 kg ha−1 in the form of urea. The entire dose of 

phosphorus and half rate of the nitrogen fertilizers were applied at planting and the other half 

of nitrogen was added 45 days after planting. 

Data collection 

Data collected included percentage of leaf area affected by late blight, from which area under 

disease progress curve (AUDPC) and days to 5% disease severity threshold were 



40 
 

calculated, relative yield loss percentage, total tuber weight, marketable tuber weight, total 

tuber number per plant and marketable tuber number per plant. 

Area under disease progress curve (AUDPC) 

Late blight disease severity was recorded visually as percentage of foliage affected at weekly 

intervals starting with the first appearance of the symptoms until the susceptible control had 

reached 100% infection. The percentage of late blight affected leaf area per plot was 

estimated using a scale comprising 9 classes, corresponding to 0.01, 0.1, 1, 5, 25, 50, 75, 95 

and 100% of diseased leaf tissue (Fry, 1978; Niks et al., 2011). For all plots and assessment 

dates, the area under the disease progress curve AUDPC (Campell and Madden, 1990) was 

calculated using the following formula: 

 

  

Where “t” is the time of each reading, “y” is the percentage of affected foliage at each reading 

and n is the number of readings. 

Area under disease progress curves were standardized to give relative area under the 

disease progress curve (rAUDPC) by dividing the AUDPC by the maximum potential AUDPC 

(Fry, 1978) to allow for comparison between different locations. The maximum potential 

AUDPC is calculated by multiplying the total number of days between the first and last 

readings by 100 as shown in the formula below. 

rAUDPC = AUDPC/(Last reading day-First reading day)x100 

An interval susceptibility scale (0 to 9) was calculated as described by Yuen and Forbes 

(2009) using the rAUDPC value resulting in low values for resistance and high values for 

susceptible ones. In order to use this scale, the cultivar Guassa was assigned a susceptibility 

value of 6 based on its moderate susceptibility.  

Days to 5% disease severity threshold (DT5) 

The number of days after planting for the plants to reach the 5% disease level for each plot 

was also estimated and assigned as days to 5% disease severity threshold (DT5) as 

proposed by Dorrance et al. (2001). The measurement of DT5, could include the major 

components of partial resistance such as infection efficiency, latent period and lesion growth 

rate (Dorrance et al., 2001; Pariaud et al., 2009). This makes DT5 an important parameter 

 




 
1

1

11 ]2/)([
n

i

iiii yyttAUDPC



41 
 

especially under natural epidemics under field condition, where it is a difficult task to quantify 

inoculum dosage or control timing of inoculation (Dorrance et al., 2001). 

Yield and yield related traits 

At harvest, yield was measured for each plot. Total tuber yield was calculated by converting 

the total weight of all the tubers harvested in a plot in t ha-1. Total tuber yield from sprayed 

plots was compared with those from the unsprayed plots to obtain relative yield loss. And 

percentage relative yield loss (RYL%) was calculated as the ratio of the difference between 

the yield obtained from sprayed control and the unsprayed plots to the yield of the sprayed 

control as shown in the formula below: 

RYL%=(tuber yield of the sprayed plot-yield of unsprayed plot)/(yield of sprayed plot)×100 

Tubers of each plot were graded in to three categories: >30 mm (marketable), <30mm 

(unmarketable), and rotten and diseased (discarded) and were counted and weighted in kg. 

Form the above grading, the marketable tubers yield was expressed in t ha-1, number of total 

tubers per plant and number of marketable tubers per plant were calculated. The relative 

reduction of marketable tuber yield, total tuber number and marketable tubers number was 

also calculated as RR = (sprayed - unsprayed)/sprayed and expressed in percentage. 

2.2.4 Data analysis 
Data were subjected to analysis of variance (ANOVA) using Genstat for window 17th edition 

(Payne et al., 2014). Mean separation was performed using the least significant difference 

(LSD) procedure at a 5% probability level. Spearman correlation coefficient values were 

calculated to determine trait associations. Separate ANOVA were conducted per location 

with genotypes as the main effect and later combined ANOVA were calculated across 

locations after homogeneity of variance tests. 

2.3 Results 

2.3.1 Weather conditions 
Mean monthly temperatures and rainfall were recorded at each site (Table 2.2). Adet 

experienced lower rainfall and higher temperatures than the other two locations. Highest 

rainfall was encountered at Injibara, whereas the lowest temperature was recorded at 

Debark. This indicates that the fungal pathogen was exposed to a wide range of 

environments during the cropping season.  
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Table 2.2 Total monthly rainfall and temperatures of the sites during the study 

  Total monthly rainfall (mm)     Mean monthly air temperature (°C) 
Sites June July Aug. Sept. Oct Total   June July Aug. Sept. Oct Mean 

Injibara 265.8 427.5 405.9 399.3 114.6 1613.1  17.5a 16.8 16.2 15.9 17.2 16.5 
Adet 130.6 204.9 194.1 151.8 108.5   789.9  19.6 18.7 17.6 17.8 18.3 18.4 
Debark 108.5 231.5 290.5 201.0   44.1   875.6   15.0 14.2 13.6 13.8 13.8 14.1 
Source: Ethiopian Meteorology Agency, a Temperature data at Injibara obtained from 
personal data logger (Watchdog Data Logger, Spectrum Technologies, Plainfield, IL, USA) 

2.3.2 Analyses of variance 
Analyses of variance for the traits measured are presented in Table 2.3. Highly significant 

(P<0.001) differences were detected among genotypes, treatments and environments for all 

the traits examined. This indicates that there is variability in the genetic makeup of the 

clones. The sites exhibited significant differences suggesting the existence of variation 

among the prevailing environments. The combined analysis of variance showed highly 

significant (p<0.001) interactions of genotype x environment, genotype x treatment, treatment 

x environment, and genotype x treatment x environment for all the parameters measured 

except for treatment x environment interaction for total and marketable tubers number per 

plant. The significant interaction shows that the clones did not respond the same in all 

environments and treatments.  
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Table 2.3. Analysis of variance involving 24 clones at three locations during 2014 growing season 

Location Traits and mean squares 
Source of 
variation  d.f. rAUDPC AUDPC DT5 TTW MTW TTN MTN RYL% 

Injibara          

Rep 1 0.036 1252675 252 2.55 2.26 0.215 0.239 371.7 

Gen 23 0.032*** 1113829*** 132*** 11.70*** 11.70*** 3.387*** 2.596*** 568.3*** 

Residual 23 0.003 91435 25 1.15 1.14 0.399 0.513 128.6 

Adet                   

Rep 1 0.0001 1213 3 48.23 57.65 0.267 0.519 0.73 

Gen 23 0.0206*** 251740*** 98*** 56.69*** 51.41*** 18.58*** 11.041*** 406.3*** 

Residual 23 0.0014 16884 19.4 12.62 10.1 3.16 1.299 37.88 

Debark                   

Rep 1 0.0004 4304 6.75 57.72 51.007 0.012 6.822 
 Gen 23 0.0661*** 764359*** 154** 70.236*** 63.495*** 14.35*** 8.865*** 
 Residual 23 0.0044 50457 42.6 4.461 4.414 2.932 1.344 
 Combined analysis of genotype and environment in experiments under late blight pressure   

Rep (Env) 1 0.0086 345984 75.1 0.294 1.274 0.252 0.656 
 Gen 23 0.0742*** 1317503*** 266*** 51.771*** 53.716*** 16.24*** 9.916*** 
 Env 2 0.2076*** 20562089*** 1356*** 12477*** 10829*** 611.7*** 470.06*** 
 Gen.Env 46 0.0222*** 406213*** 59** 43.425*** 36.445*** 10.04*** 6.293*** 
 Residual 71 0.0031 64283 30.9 7.428 6.616 2.106 1.12 
 Combined analysis of genotype, treatment and environment (Adet and Injibara) 

Rep (Env) 1 
   

108232 131055 2.498 0.013 
 Gen 23 

   

99739*** 99260*** 35.17*** 20.984*** 
 Env 1 

   

29831368*** 25885381*** 1816.24*** 1392.052*** 
 Trt 1 

   

3707693*** 3458444*** 336.28*** 278.348*** 
 Gen.Env 23 

   

96228*** 95304*** 22.75*** 16.616*** 
 Gen.Trt 23 

   

50764*** 45331*** 6.68*** 5.247*** 
 Env.Trt 1 

   

193855*** 167242*** 1.641ns 0.181ns 
 Gen.Trt.Env 23 

   

42785*** 40923*** 8.19*** 5.152*** 
 Residual 95 

   

3908 4115 1.73 0.879 
 Significance levels: ** p≤0.01; ***p≤0.001; ns = non-significant; df = degrees of freedom; 

AUDPC = area under the disease progress curve; rAUDPC = relative area under disease 
progress curve; DT5 = days to 5% disease severity threshold; TTY = total tubers yield; MTY = 
marketable tubers yield; TTN = Total tubers number; MTN = marketable tubers number; 
RYL%= relative yield loss percentage; Rep = replication; Gen = genotype; Env = 
environment; Trt = treatment  
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2.3.3 Late blight disease severity  
Late blight developed in the unsprayed plots across all three test environments. Late blight 

developed uniformly on the susceptible spreader row until the vines were 100% blighted. No 

disease was detected in the fungicide-treated plots both at Adet and Injibara sites. In 

general, Adet had lower rAUDPC (0.18) followed by Debark (0.24), while Injibara had the 

highest rAUDPC (0.31) (Table 2.4). The lower rAUDPC value at Adet could be associated 

with a relatively dry weather experienced during the study period (Table 2.2). The rAUDPC 

values for individual genotypes at the three environments varied from 0.01 (most resistant) to 

0.63 (most susceptible). A comparison of rAUDPC values within locations and averaged 

across locations had the following ranges for the genotypes 396004.263 (0.04 - 0.13), 

396038.105 (0.01 - 0.20), 396029.25 (0.02 - 0.17), 393220.54 (0.04 - 0.25) and 395011.2 

(0.05 - 0.24) displaying the lowest rAUDPC. In contrast, rAUDPC was greatest on local 

cultivars, including Shenkola (0.31 - 0.53), Jalene (0.30 - 0.48), Guassa (0.25 - 0.45), Aba 

Adamu (0.27 - 0.52) as well as B3C2 clones such as 395015.6 (0.26 - 0.54) and 395112.32 

(0.25 - 0.63). All of the local cultivars were in the higher half of the interval susceptibility scale 

among the 24 clones tested, except Gudene. Some clones were highly variable in their 

rAUDPC values across the three locations. For example, Belete had higher rAUDPC value of 

0.42 at Adet than at Injibara (0.21) and Debark (0.07), with extreme susceptibility scale 

ranging from 1 (Debark) to 9 (Adet). 
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Table 2.4. Relative area under the disease progress curve (rAUDPC) and susceptibility scale 

of 24 potato genotypes evaluated at three environments under late blight disease pressure 

    Injibara   Adet   Debark   mean 
  Genotype rAUDPC aScale   rAUDPC Scale rAUDPC Scale   rAUDPC Scale 

1 396004.263 0.13 k 2 
 

0.04 jk 1 
 

0.05 gh 1  0.07 1 
2 396029.25 0.17 k 2 

 
0.04 k 1 

 
0.02 i 0  0.08 1 

3 396038.105 0.20 i-k 3 
 

0.01 l 0 
 

0.04 hi 1  0.08 1 
4 393220.54 0.25 d-h 3 

 
0.14 g-j 3 

 
0.04 hi 1  0.14 2 

5 395011.2 0.24 f-j 3 
 

0.17 c-h 4 
 

0.05  gh 1  0.15 2 
6 Gudene 0.13 k 2 

 
0.17 c-f 4 

 
0.18 ef 3  0.16 3 

7 395096.2 0.30 c-g 4 
 

0.14 f-i 3 
 

0.05  h 1  0.16 3 
8 395109.34 0.19 jk 3 

 
0.08 g-j 2 

 
0.20 de 3  0.16 3 

9 395017.229 0.34 a-e 5 
 

0.10 c-g 4 
 

0.06 e-g 1  0.19 3 
10 396034.103 0.22 e-i 3 

 
0.21 c-f 5 

 
0.15 e-g 2  0.19 3 

11 396031.108 0.22 g-j 3 
 

0.15 f-i 4 
 

0.24 b-e 4  0.21 3 
12 395077.12 0.31 c-g 4 

 
0.10 g-j 2 

 
0.22 c-e 3  0.21 3 

13 Gorebella 0.36 a-e 5 
 

0.08 jk 2 
 

0.24 c-e 3  0.23 4 
14 Belete 0.21 h-k 3 

 
0.42 a 9 

 
0.07 f-h 1  0.23 4 

15 395017.14 0.53 ab 7 
 

0.14 f-i 3 
 

0.20 ef 3  0.29 5 
16 396038.101 0.32 b-f 4 

 
0.16 c-i 4 

 
0.41a-c 6  0.29 5 

17 392633.64 0.32 a-f 4 
 

0.22 c-f 5 
 

0.48 a-c 7  0.34 6 
18 395015.6 0.54 a 7 

 
0.26 c-f 6 

 
0.28  a-e 4  0.36 6 

19 Guassa 0.45 a-d 6 
 

0.25 b-e 6 
 

0.40 a-c 6  0.37 6 
20 Aba Adamu 0.27 d-h 4 

 
0.32 ab 8 

 
0.52 ab 8  0.37 6 

21 396038.107 0.43 a-d 6 
 

0.20 c-f 5 
 

0.52ab 8  0.38 6 
22 Jalene 0.48 a-c 6 

 
0.30 a-c 7 

 
0.37 a-d 6  0.39 6 

23 Shenkola 0.53 a 7 
 

0.34 ab 8 
 

0.31 a-d 5  0.39 6 
24 395112.32 0.41 a-e 5 

 
0.25 a-d 6 

 
0.63 a 9  0.43 7 

  Mean 0.31     0.18     0.24     0.24 
 

 
CV (%) 16.4 

  
20.4 

  
27.7 

  
  a Susceptibility scale, values were rounded to the nearest whole number; b rAUDPC = relative 

area under disease progress curve; c means in a column followed by the same letter(s) are 
not significantly different at P < 0.05 

2.3.4 Days to 5% disease severity threshold (DT5)  
Days to 5% disease severity threshold (DT5) was shorter at Injibara (62.5) due to the early 

onset of late blight followed by Debark (69.4) and Adet (73.0) (Table 2.5). The first late blight 

lesions at Injibara were observed approximately six weeks after planting. In contrast, at Adet 

the first lesions were not observed until many of the genotypes had begun to flower. Most 

genotypes which had the lowest rAUDPC such as clones 396004.263, 396029.25, 

396038.105, 395017.229, and 395011.2, reached their 5% disease severity late whereas, 

Guassa, Jalene, Gorebella, Shenkola, 396038.107, 395015.6, and 395112.32 developed late 

blight lesion early.  
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Table 2.5 Days to 5% disease severity threshold and relative yield loss of 24 potato clones 

when evaluated across three environments 

  Days to 5% disease severity (DT5)  Relative yield loss% 
Genotype Injibara Adeta Debark Mean   Injibara Adet Mean 
396029.25 72.0 ab 83.0 ab 90.5 a 81.8  22 gh 34 a-d 28 
396004.26 75.0 a 83.0 ab 79.0 a 79  58 a-f 8 i 33 
395011.2 67.5 a-c 78.0 a-c 82.5 a 76  53 c-f 6 i 30 
396038.11 67.0 a-c 88.0 a 71.0 ab 75.3  47 d-g 39 ab 43 
395017.23 68.5 ab 78.0 a-c 79.0 a 75.2  62 a-f 12 hi 37 
393220.54 67.0 a-c 78.0 a-c 79.0 a 74.7  50 c-f 23 c-h 37 
Belete 72.0 ab 66.0 de 85.0 a 74.3  53 c-f 33 a-d 43 
395096.2 67.5 a-c 78.0 a-c 71.0 ab 72.2  53 c-f 21 d-i 37 
395077.12 65.0 a-d 83.0 ab 67.5 a-c 71.8  62 a-f 27 b-g 45 
Gudene 65.0 a-d 78.0 a-c 67.5 a-c 70.2  16 h 15 g-i 15 
396034.1 60.5 b-f 73.5 b-d 71.0 ab 68.3  54 b-f 13 f-i 33 
396031.11 67.0 a-c 69.0 c-e 67.5 a-c 67.8  51 c-f 30 b-f 40 
395109.34 67.5 a-c 69.0 c-e 64.0 a-d 66.8  43 e-g 33 a-d 38 
Aba Adamu 69.5 ab 67.5 c-e 60.0 de 65.7  53 c-f 16 e-i 34 
392633.64 62.5 b-e 72.0 cd 60.0 b-e 64.8  51 c-f 8 i 30 
395017.14 56.0 c-g 73.5 b-d 64.0 a-d 64.5  88 a 28 b-e 58 
396038.1 62.5 b-e 67.5 c-e 62.0 b-e 64  43 fg 37 a-c 40 
395112.32 65 a-d 67.5 c-e 58.0 e 63.5  62 a-f 16 e-i 39 
Shenkola 53.5 d-g 66.0de 67.5 ab 62.3  71 a-e 7 i 39 
395015.6 51.0 e-g 66.0 de 67.5a-c 61.5  81 ab 13 f-i 47 
Gorebella 49.0 fg 69.0 c-e 64.0 a-d 60.7  62 c-f 40 ab 51 
Jalene 48.5 g 67.5 c-e 65.5 a-c 60.5  77 a-c 45 a 61 
Guassa 47.5 g 69.0 c-e 62.0 b-e 59.5  76 a-c 46 a 61 
396038.11 53.5 d-g 61.0 e 60.0 c-e 58.2  75 a-d 23 c-h 49 
Mean 62.5 73 69.4 68.3   57 24 40.4 
CV (%) 8 6 9.4     20 26   
a means in a column followed by the same letter(s) are not significantly different at P=0.05 

2.3.5 Yield loss  
A reduction in tuber yield was experienced in all genotypes in the diseased plots compared 

to the sprayed plots (Table 2.5). However, there was a wide variation in the relative yield loss 

among environments and genotypes. Yield loss ranged from 16 to 88% at Injibara and from 6 

to 46% at Adet. At Injibara, the lowest yield reduction occurred on Gudene (16%), 396029.25 

(21.97%) and 395109.34 (42.59%), while the highest loss was recorded in clones 395017.14 

(88%), 395015.6 (82%) and Jalene (77%). At Adet, the clones with low yield loss were 

recorded in the genotypes 395011.2 (6%), Shenkola (7%) and 396004.263 (8%). The 

genotypes Guassa, Jalene and Gorebella had the highest yield losses recorded at 46%, 

45%, and 40%, respectively. Average relative yield loss percentage for two locations 

revealed that clones 396029.25, Gudene, 392633.64, 395011.2, 396004.263 and 

396034.103 were among the most tolerant/resistant genotypes with the lowest yield loss 

when compared to the rest of the clones. The cultivars Guassa and Jalene were heavily 

infected, with yield losses estimated at 61%. Most of the genotypes that had lower rAUDPC 

and DT5, showed lower yield reduction. However there are some genotypes that had lower 

yield levels than expected. For example clone 396038.105 exhibited lower rAUDPC value. 



47 
 

However it showed higher yield loss of >40% indicating the high sensitivity of the genotype to 

late blight disease. Conversely, genotypes 392633.64, Aba Adamu, Shenkola and 395112.32 

had higher rAUDPC values (>5 susceptibility scale) and short DT5, however with less (<40%) 

yield loss. This could be attributed to their tolerance to late blight infection. 

2.3.6 Total tuber yield 
There was significant variation in total tuber yield among the tested clones under late blight 

infection across the three locations (Table 2.6). Overall, the highest yield was recorded at 

Adet (38.8 t ha-1) followed by Debark (23.9 t ha-1) and Injibara (6.54 t ha-1). At Injibara the 

clones 396034.103, Belete and 396029.25 with mean yields of 12.3, 10.4, and 10.0 t ha-1, 

respectively were the best yielding and these clones are not significantly different in terms of 

total yield. At Adet, the highest yielding clones under late blight epidemics were 396038.107 

(48.8 t ha-1), 396038.105 (47.0 t ha-1) and 395017.229 (46.6 t ha-1). At Debark, the clones 

396038.105 (38.2 t ha-1), Belete (32.4 t ha-1) and Guassa (31.5 t ha-1) had the highest yields. 

The best yielding cultivars in each location were resistant genotypes that showed ≤4 interval 

susceptibility scale except clones 396038.107 (Adet) and Guassa (Injibara). This suggests 

high yield potential for these two clones, though both had high (>50%) average yield loss. 
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Table 2.6 Total tuber yield of 24 potato genotypes under late-blight pressure when evaluated 

at three environments in north-western Ethiopia 

  Sites and total tuber yield (t ha-1) 
 Genotypes Injibaraa Adet Debark Mean 
396038.105 8.3 b-d 47.0 ab 38.2 a 31.2 
395017.229 6.8 c-g 46.6 ab 28.0 b-e 27.1 
395077.12 7.5 c-e 41.6 a-e 29.0 b-d 26.0 
396034.103 12.3 a 36.6 d-h 27.2 c-e 25.3 
Guassa 4.8 f-j 39.5 b-g 31.5 bc 25.3 
396029.25 10.0 ab 36.0 d-h 29.7 b-d 25.2 
Belete 10.4 ab 30.9 h 32.4 b 24.6 
396004.263 5.0 e-j 40.4 a-f 28.0 b-e 24.5 
396038.101 7.1 c-f 42.6 a-d 21.9 f-h 23.8 
396038.107 4.5 g-k 48.8 a 17.7 hi 23.7 
395112.32 5.9 d-j 46.2 a-c 18.8 g-i 23.6 
393220.54 6.8 c-g 36.2 d-h 25.8 d-f 22.9 
395109.34 9.0 bc 30.3 h 29.2 b-d 22.8 
392633.64 5.6 e-j 41.5 a-e 20.0 gh 22.4 
Gorebella 7.3 c-f 35.7 d-h 23.6 e-g 22.2 
395011.2 4.1 h-k 41.8 a-e 19.9 gh 22.0 
Shenkola 3.8 i-k 37.7 c-h 23.5 e-g 21.6 
395017.14 2.2 k 41.4 a-e 20.9 gh 21.5 
Jalene 4.1 h-k 40.9 a-e 18.7 g-i 21.2 
395096.2 6.5 d-h 37.2 d-h 19.1 g-i 20.9 
Gudene 8.3 b-d 31.9 f-h 20.9 gh 20.4 
396031.108 7.4 c-e 31.6 gh 18.6 g-i 19.2 
Aba Adamu 6.0 d-i 34.0 d-h 14.3  i 18.1 
395015.6 3.4 jk 33.7 e-h 17 hi 18.0 
Mean 6.5 38.8 23.9 23.1 
CV (%) 16.4 9.2 8.8 

 a means in a column followed by the same letter(s) are not significantly different at P=0.05 

2.3.7 Marketable tuber yield  
Genotypes ranked the same for marketable tuber yield (MTY) and total tuber yield. The 

highest MTY was recorded at Adet (35.9 t ha-1) followed by Debark (21.9 t ha-1) and Injibara 

(5.8 t ha-1) in a similar order like total tuber yield. The loss in marketable yield, however, is 

relatively higher than the total tuber yield. At Injibara, marketable yield was reduced by 

61.5% due to the disease pressure. At Adet the yield loss was 26.8% (Table 2.7).  
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Table 2.7 Marketable tuber yield of 24 potato genotypes when evaluated at three late blight 

affected environments with and without chemical control. 

  Unsprayed   Sprayed 
Genotypes Injibaraa Adet Debark Mean   Injibara Adet Mean 
396038.105 7.7 b-e 46.4 a 35.9 a 30.0 

 
15.4 d-i 72.2 a 43.8 

395077.12 6.6 d-g 40.0 a-d 28.3 b 25.0 
 

19.0 b-d 56.2 b 37.6 
396029.25 9.2 a-c 35.1 b-g 28.5 b 24.3 

 
12.5 i-m 52.7 b-e 32.6 

396034.103 11.2 a 35.7 b-g 25.7 b-d 24.2 
 

25.9 a 41.7 gh 33.8 
395017.229 5.6 e-j 41.7 ab 23.4 c-e 23.6 

 
17.1 c-g 51.8 b-f 34.4 

Guassa 4.0 h-k 38.4 b-e 28.4 b  23.6 
 

19.6 bc 72.9 a 46.2 
Belete 9.9 ab 28.9 g-i 30.3 b 23.0 

 
20.7 b 42.7 f-h 31.7 

396038.101 6.6 d-g 39.4 a-e 20.9 d-g 22.3 
 

11.6 k-m 68.1 a 39.9 
396004.263 4.1  g-k 37.1 b-f 23.5 c-e 21.6 

 
11.1 k-m 41.5 gh 26.3 

395011.2 3.7 i-l 40.5 a-c 19.0 e-h 21.1 
 

7.6 n 43.1 e-h 25.4 
392633.64 5.2 e-j 38.2 b-f 19.3 e-h 20.9 

 
10.9 l-n 44.1 d-h 27.5 

395017.14 1.5  l 40.0 a-d 20.5 e-g 20.7 
 

17.9 b-f 54.4 bc 36.1 
395096.2 6.0 e-i 36.7 b-f 18.1 f-h 20.3 

 
13.1 h-l 45.6 c-h 29.4 

393220.54 6.3 d-h 31.8 e-h 22.1 c-f 20.1 
 

13.2 h-l 43.4 e-h 28.3 
Jalene 3.6 i-l 39.4 a-e 17.4  f-i 20.1 

 
17.0 c-g 68.5 a 42.8 

395112.32 5.5 e-j 37.9 b-f 16.7 g-i 20.0 
 

14.6 f-k 50.7 b-g 32.7 
395109.34 8.8 b-d 23.9 i 26.8 bc 19.9 

 
15.3 e-j 31.8 i 23.6 

396038.107 4.0 h-k 38.3 b-f 17.0 g-i 19.8 
 

16.6 c-h 42.8 f-h 29.7 
Gorebella 6.7 d-g 32.1 e-h 19.0 e-h 19.3 

 
18.4 b-e 53.3 b-d 35.9 

Gudene 7.2 c-f 30.6 f-i 17.9 f-h 18.6 
 

9.5 mn 35.9  hi 22.7 
Aba Adamu 5.1 f-j 33.4 c-h 12.8 i  17.1 

 
11.8 j-m 38.8 hi 25.3 

396031.108 6.4 d-h 27.4 hi 16.7 g-i 16.9 
 

14.2  g-l 44.8 c-h 29.5 
395015.6 2.0 kl 32.4 d-h 14.7 hi 16.4 

 
16.9 c-g 37.5 hi 27.2 

Shenkola 3.2 j-l 34.9 b-h 23.1 c-e 20.4   12.9 i-m 39.1 hi 26.0 
Mean 5.8 35.9 21.9 21.2  15.1 48.9 32 
CV (%) 18.3 8.9 9.6     10 8.4   
a means in a column followed by the same letter(s) are not significantly different at P=0.05 

2.3.8 Total tubers number 
Under late blight infection, the highest total tubers number was recorded at Debark site at 

11.2 followed by Adet (10.8) and Injibara (4.8) (Table 2.8). At Injibara the genotype 

396034.103 (with 8.2 tubers per plant), 395077.12 (7.2) and Gudene (7.0) had higher total 

tubers number. The total tubers number was reduced by 33.3% attributed to late blight 

infection. At Adet, the clones with highest tuber number under late blight endemics were 

395077.12 (16.8), Jalene (16.3) and Guassa (15.4). The number is reduced by 18.8% due to 

the disease pressure. At Debark, clones with the highest total tubers number were Belete 

(17.5), 396031.108 (15.8) and Guassa (14.6).  
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Table 2.8 Total tubers number of 24 potato genotypes with and without chemical control of 

late blight disease in the highlands of north-western Ethiopia 

  Total tubers number  

 Unsprayed   Sprayed 
 Genotypes Injibaraa Adet Debark Mean   Injibara Adet Mean 
395077.12 7.2 ab 16.8 a 13.7 a-e 12.6 

 
9.4 bc 19.3 b 14.3 

Guassa 5.6 de 15.4 ab 14.6 a-c 11.8 
 

10.6 b 19.6 b 15.1 
396038.105 5.1 d-f 13.3 a-c 14.0 a-d 10.8 

 
6.8 d-h 22.3 a 14.6 

396031.108 5.9 b-d 10.2 c-e 15.8 ab 10.6 
 

7.9 c-g 14.4 d-f 11.2 
Jalene 3.5 hi 16.3 a 12.0 bg 10.6 

 
7.7 c-g 18.6 bc 13.2 

396038.101 4.2 e-h 13.4 a-c 13.0 b-f 10.2 
 

6.1 g-j 13.6 d-g 9.8 
395015.6 4.9 d-h 12.8  a-c 12.6 b-g 10.1 

 
12.7 a 14.9 de 13.8 

395017.229 4.6 d-h 15.1 ab 9.4  f-j 9.7 
 

6.9 d-g 14.7 d-f 10.8 
Belete 4.6 d-h 6.7 ef 17.5  a 9.6 

 
7.1 d-g 7.6 kl 7.4 

396029.25 5.7 c-e 10.8 c-e 11.5 c-i 9.3 
 

6.2 f-i 16.0 cd 11.1 
395096.2 4.4 e-h 9.7 c-e 12.0 b-g 8.7 

 
6.8 d-i 9.0 i-l 7.9 

395112.32 5.1 d-g 9.7 c-e 11.2 c-i 8.7 
 

7.3 c-g 15.2 de 11.2 
396034.103 8.2 a 9.1 c-e 8.9 f-j 8.7 

 
8.5 c-e 10.4 h-k 9.5 

Gudene 7.0 a-c 8.2 d-f 10.6 c-j 8.6 
 

5.8 g-j 10.9 g-j 8.4 
396004.263 4.0 f-h 9.9 c-e 11.7 c-h 8.5 

 
4.7 Ij 10.9 g-j 7.8 

392633.64 3.9 f-h 11.5 b-d 8.5 g-j 8.0 
 

6.4  e-i 8.9 j-l 7.7 
393220.54 4.9 d-h 8.0 d-f 10.9 c-j 7.9 

 
5.9 g-j 11.5 g-j 8.7 

Gorebella 4.3  e-h 9.2 c-e 10.0 dj 7.8 
 

8.6 cd 15.2 de 11.9 
395011.2 3.6 hi 9.7 c-e 9.7 e-j 7.7 

 
4j 15.4 de 9.7 

Aba Adamu 4.8 d-h 10.2 c-e 6.9  j 7.3 
 

5.9 g-j 12.8 e-h 9.4 
Shenkola 4.2 e-h 9.1 c-e 8.7 g-j 7.3 

 
4.8 h-j 9.1 i-l 6.9 

395017.14 2.5 i 11.4 b-d 7.7 h-j 7.2 
 

9.3 bc 11.9 f-i 10.6 
395109.34 3.8 f-i 4.8 f 10.6 c-j 6.4 

 
6.1 g-j 7.3 l 6.7 

396038.107 3.6 g-i 7.8 d-f 7.5 ij 6.3 
 

8.2 c-f 9.4 i-l 8.8 
Mean 4.8 10.8 11.2 8.9 

 
7.2 13.3 10.3 

CV (%) 13.1 16.5 15.3 
  

12.3 9.3 
 a means in a column followed by the same letter(s) are not significantly different at P=0.05 

2.3.9 Marketable tubers number 
The marketable tubers number in each location under natural late blight infestation had 

similar rank as the total tubers number (Table 2.9). The highest number of marketable tubers 

number was recorded at Debark (8.8) followed by Adet (8.6) and Injibara (3.3). At Injibara, 

the genotypes 396034.103 (6.3), Belete (5.2) and 395077.12 (5.1) had the highest number of 

marketable tubers. At Adet, the clones with highest tubers number under late blight 

epidemics were 395077.12 (14.2), Jalene (12.9) and 395017.229 (11.7). At Debark the 

genotypes Belete (14.7), 395077.12 (12.2) and Guassa (11.8) had highest total tubers 

number. 
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Table 2.9. Marketable tubers number of 24 potato genotypes with and without chemical 

control of late blight disease in the highlands of north-western Ethiopia 

  Unsprayed   Sprayed 
Genotypes Injibara Adet Debark Mean   Injibara Adet Mean 
395077.12 5 a-c 14.2 a 12.2 b 10.5 

 
7.3 bc 18.2 a 12.7 

Belete 5.2 ab 6.4 h-k 14.7 a 8.8 
 

5.8 e-h 6.9 f-h 6.3 
Guassa 3.1 d-f 11.2 b-d 11.8 bc 8.7 

 
8.1 b 16.9 a 12.5 

Jalene 2.2 e-g 12.9 ab 9.2 c-g 8.1 
 

5.7 f-h 16 a 10.9 
396038.105 3.8 b-e 10.5 b-e 9.8 b-e 8.0 

 
5.0 g-i 16.5 a 10.7 

396038.101 3.5 c-f 9.0 c-h 10.7 b-d 7.7 
 

5.0 g-i 12.4 b 8.7 
396034.103 6.3 a 8.3 e-j 8.0 d-g 7.5 

 
7.2 b-d 9.5 c-e 8.3 

395017.229 2.8 d-f 11.7 bc 7.3 e-g 7.3 
 

5.5 f-h 11.5 b-d 8.5 
396004.263 2.8 e-g 9.3 c-f 9.8 b-e 7.3 

 
4.9 hi 8.8  ef 6.8 

396029.25 3.1 d-f 9.0 c-i  9.2 c-g 7.1 
 

4.8  hi 13.3 b 9.0 
395015.6 1.8 fg 10.4 b-e 9.0 d-g 7.0 

 
9.4 a 11.6 bc 10.5 

Gudene 4.5 b-d 7.2 f-j 7.9 d-g 6.6 
 

3.9 I 8.4 e-g 6.2 
396031.108 3.8 b-e 6.3 i-k 9.4 c-f 6.5 

 
6.2 c-g 12.2 b 9.2 

393220.54 3.8 b-e 6.4 g-k 8.9 d-g 6.4 
 

4.9 hi 9.7 c-e 7.3 
395096.2 3.2 d-f 7.9 e-j 8.3 d-g 6.4 

 
4.9 hi 8.0 e-g 6.4 

392633.64 2.9 d-f 8.2 e-j 7.4 e-g 6.2 
 

4.8 hi 6.8 f-h 5.8 
395011.2 2.3 e-g 8.8 d-i 7.3 e-g 6.2 

 
2.6 j 11.3 b-d 6.9 

395112.32 3.7 b-e 6.5 g-k 8.4 d-g 6.2 
 

6.0 d-h 11.5 b-d 8.7 
Shenkola 2.8 e-g 7.9 e-j 8.1 d-g 6.2 

 
4.2 I 8 e-g 6.1 

Gorebella 2.3 e-g 7.3 f-j 7.9 e-g 5.8 
 

6.5 c-f 11.5 b-d 9.0 
Aba Adamu 2.9 d-f 9.2 c-g 4.2 h 5.5 

 
4.8 hi 9.8 c-e 7.3 

395017.14 1.1 g 8.4 e-j 6.5 gh 5.3 
 

6.0 d-h 9.3 de 7.6 
395109.34 3.2 d-f 4.0 k 8.8 d-g 5.3 

 
5.0 g-i 5.4 h 5.2 

396038.107 2.7 e-g 5.9 Jk 6.5 f-h 5.0 
 

7.1 b-e 6.4 gh 6.7 
Mean 3.3 8.6 8.8 6.9   5.6 10.8 8.2 
CV (%) 21.8 13.2 13.2     9.6 9   
a means in a column followed by the same letter(s) are not significantly different at P=0.05 

The marketable tubers number was reduced by 41.1 and 20.4% at Injibara and Adet, 

respectively. In general, the results revealed that late blight disease affected all the 

measured yield parameters at both Injibara and Adet although the disease severity differed 

among genotypes. The disease had significant effect on marketable and total tubers yield 

leading reduction of 44 and 40%, respectively. Significant, but relatively less effect on total 

and marketable tubers number was recorded due to the disease with reductions of 26 and 

31%, in that order. 

2.3.10 Relationships between yield and disease resistance parameters 
Spearman’s rank correlation coefficients were calculated among the AUDPC, DT5, RYL%, 

TTY, MTY, TTN, and MTN to determine associations between the parameters assessed 

(Table 2.10). Due to the presence of clone x location interactions, the correlation analysis is 

presented for each location separately. Significant negative correlations were detected 

between AUDPC and DT5 across the three environments (P<0.001). AUDPC had a negative 

correlation with TTY and MTY at Injibara and Debark (P<0.001), and with TTN and MTN at 

Injibara (P<0.01) and Debark (P<0.05). Conversely, non-significant correlation was observed 
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between AUDPC and yield and yield related traits at Adet. DT5 had a significant and positive 

correlation (P<0.01) with TTY and MTY at Debark and Injibara and significant correlation 

(P<0.05) at Adet. Similarly, DT5 had significant (p<0.05) and positive correlation with MTN 

and TTN at Debark, highly significant (p<0.01) and significant (p<0.05) correlation with MTN 

at Injibara and Adet, respectively. However, weak association had been detected between 

DT5 and TTN at both Injibara and Adet. Total tuber yield had highly significant (p≤0.01) and 

positive correlation with MTY, TTN and MTN in all the environments. A positive correlation 

was found between relative yield loss and AUDPC at both Injibara (p<0.001) and Adet 

(p<0.01). At Injibara, relative yield loss had highly significant (P<0.01) and negative 

correlation with DT5, TTY, MTY, TTN, and MTN. Significant and negative correlation was 

found between relative yield loss and TTN (p<0.01) and MTN (p<0.05) at Adet. 

Table 2.10 Pair-wise correlation coefficients showing association of late blight disease and 

yield related parameters of 24 potato clones tested at three sites in north-western Ethiopia 

Traits AUDPC DT5 TTY MTY TTN MTN 
Injibara       
AUDPC 1.00 

     DT5 -0.78*** 1.00 
    TTY -0.64*** 0.39** 1.00 

   MTY -0.62*** 0.39** 0.99*** 1.00 
  TTN -0.34** 0.14ns 0.57*** 0.52*** 1.00 

 MTN -0.49*** 0.30** 0.72*** 0.71*** 0.66*** 1.00 
RYL% 0.78***  -0.56*** -0.73*** -0.72*** -0.36** -0.50*** 
Adet       
AUDPC 1.00      
DT5 -0.77*** 1.00     
TTY -0.11ns 0.19* 1.00    
MTY -0.12ns 0.31** 0.91*** 1.00   
TTN -0.04ns 0.18ns 0.46*** 0.63*** 1.00  
MTN -0.05ns 0.25* 0.39** 0.60*** 0.85*** 1.00 
RYL% -0.31**  0.15 ns -0.12 ns -0.18 ns -0.36**  -0.29*  
Debark       
AUDPC 1.00      
DT5 -0.91*** 1.00     
TTY -0.58*** 0.48*** 1.00    
MTY -0.54*** 0.45*** 0.95*** 1.00   
TTN -0.21* 0.30** 0.37** 0.34** 1.00  
MTN -0.24* 0.31** 0.55*** 0.56*** 0.84*** 1.00 
Significance levels: *p≤0.05; ** p≤0.01; ***p≤0.001; ns=non-significant; AUDPC = area under 
the disease progress curve; DT5 = Days to 5% disease severity threshold; TTY = total tuber 
yield; MTY = marketable tuber yield; TTN = total tubers number; MTN= marketable tubers 
number; RYL%= relative yield loss percentage 
 

2.4 Discussion 

The present study evaluated the response of 24 selected potato clones for late blight disease 

and yield and related traits at three major potato growing locations in the highlands of north-

western Ethiopia. The study included 17 clones from a B3C2 population developed by CIP 
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for their non-specific resistance to late blight (Landeo et al., 1995), while seven were widely 

grown local potato cultivars. Disease development varied across locations resulting in 

differential responses of genotypes for late blight severity and yield reduction. AUDPC values 

were the highest, DT5 was shorter, relative yield loss was greater and the total and 

marketable yield were the lowest at Injibara site followed by Debark and Adet. The severity of 

late blight and the yield reduction seems to be correlated with the amount of precipitation 

received during the growing season (Table 2.2). Umaerus and Umaerus (1994) and 

Hannukkala et al. (2007) also explained that environment does play a considerable role in 

the development of late blight. Temperature and humidity are the principal factors that affect 

disease development. Generally, moderate temperatures (10-25 C) and wet conditions 

(100% relative humidity) are required for sporulation (Harrison, 1992). The present study 

displayed the Injibara site which had the most favorable environment for late blight disease 

development, had the highest disease severity, providing the best discrimination among the 

tested clones. The lower coefficient of variation recorded for AUDPC and relative yield loss 

percentage also confirms more uniform disease development at Injibara than the other sites. 

Significant genotype x location interaction was observed for late blight resistance and yield 

and yield related traits. The tested clones exhibited an interval susceptibility scale value 

differences less than 4 across the three locations, except cultivar Belete. Interestingly, 

cultivar Belete displayed the highest late blight susceptibility at Adet despite the relatively 

lower disease pressure at the site. However, this clone was amongst the most resistant 

genotypes with lower disease severity at both Injibara and Debark sites. The present findings 

contradicts the observation of Haynes et al. (1998) who reported that highly resistant and 

susceptible genotypes were the most stable but that some of the intermediate clones were 

less stable. Observation of partially resistant clones behaving differently to Phyphthora 

infection in different locations were also reported by Parker et al. (1992), Mulema et al. 

(2004) and Forbes et al. (2005). The discrepancies in late blight severity shown in some 

genotypes over the locations could be associated with isolate variability, adaptation to 

quantitative resistance, environmental difference and/or a combination of all (Flier et al., 

2003; Forbes et al., 2005). The population of the potato late blight pathogen in Ethiopia is A1 

mating type, US-1 clonal lineage plus mtDNA haplotype Ia, which are host specific 

(Schiessendoppler and Molnar, 2002). Thus the interaction effect could be associated with 

the presence of unknown R gene in the genotype or change in pathogen genotype in the 

particular location. However, more detailed research would be required to test diversity of 

pathogen genotypes among the locations. 

The same inference can be made for the rank of changes observed in yield and yield related 

traits of some clones. The magnitude of the yield loss differed with disease severity as it is 
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verified by significantly negative correlation of resistance parameters with yield and related 

traits in the present study. Likewise, variation in environmental factors such as daily 

temperature fluctuations, rainfall, soil types, etc. are critical in affecting tuber yield (Kooman 

et al., 1996; Khan, 2012). Thus, the differences in tuber yield and yield related parameters 

among the clones could be explained not only by differences in the level of disease severity 

but also in the yield potential of the genotypes. This can be illustrated by the genotype 

395109.34 which had the highest yield at Injibara but the lowest at Adet despite its stable 

susceptibility scale (2-3). 

Marked variability and association were detected in late blight resistance, tuber yield, 

marketable tuber yield, tubers number and marketable tubers number within and across 

locations. AUDPC was highly correlated with DT5 in all the three study locations suggesting 

that susceptible cultivars succumb to the disease early resulting in higher AUDPC values. 

Similar findings have been reported by Dorrance et al. (2001) reporting that specific 

components of resistance such as infection efficiency, latent period, and lesion growth rate, 

which are included in the measurement of DT5, would likely contributed to partial resistance. 

They also suggested that DT5 is the most efficient method to measure components of 

resistance under field condition. Significant correlation was found between RYL% and 

AUDPC in both test locations confirming the great potential of AUDPC in detecting 

differences in disease development between cultivars.  

A negative correlation was also found between AUDPC and yield and yield related traits, i.e., 

TTW, MTW, TTN and MTN under chemically unsprayed conditions at the Injibara and 

Debark sites. The result indicates that yield and yield related traits decrease with increased 

severity. At Adet, weak correlation was found between AUDPC and yield and yield related 

traits and between RYL and DT5, TTY and MTY. This could be associated with lower severity 

and the late appearance of the disease at Adet. Mean rAUDPC values were approximately 

two fold higher at Injibara than in Adet. Estimation of low levels of disease severity often 

leads to high standard errors because of irregular distribution of disease within the crop 

(Danielsen and Munk, 2004). In the presence of high disease severity at Injibara, RYL% was 

highly and negatively correlated with DT5 and yield and yield related parameters as 

expected. The strong correlation between RYL% and DT5 indicates that the early 

appearance of the disease has greatest potential to cause serious yield reductions. 

Significant variation was observed among the clones with regard to late blight infection under 

sprayed and unsprayed regime (Figure 2.1). The best eight genotypes with the highest late 

blight resistance (rated with interval susceptibility scale of ≤3, longer DT5 and ≤37% yield 

loss) and stability across the three locations were 396004.263, 396029.25, 393220.54, 
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395011.2, Gudene, 395096.2, 395017.229 and 396034.103. Clones 395109.34, 396031.108 

and 395077.12 had moderate resistance (interval susceptibility scale of 3 and intermediate 

yield loss ranging from 37 to 50%). Many of these clones are therefore potential parents for 

late blight resistance breeding programs. Among these 396029.25, 395017.229, 396004.263 

and 396034.103 and 395077.12 were relatively high yielding (≥ 25 t ha-1), all of which are 

clones selected from B3C2 population developed by CIP. The present findings demonstrate 

that high levels of resistance are available in the B3C2 population. The candidate clones 

exhibiting adequate levels of late blight resistance and with high yields can be valuable 

genetic resources for breeding programs and/or for large scale production after yield stability 

tests. Breeding gains in resistance and minimum yield loss could be achieved through 

selection and recombination using these genetic stocks. The most susceptible genotypes 

across the study sites (> 4 interval susceptibility scale and >50% yield loss) were 

396038.107, Guassa, 395015.6, 396038.101, 395017.14 and Gorebella. The present study 

showed that late blight resistance levels of the B3C2 clones were more variable under the 

present environments than their ‘resistant to moderately resistant’ reaction reported by CIP 

(Table 2.1). This could be attributed to differences in pathotypes of the disease and the 

environments. The same result has also been found by Yao et al. (2011). 
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Figure 2.1 Late blight susceptible genotype 395017.14 with chemical spray (A) and 

unsprayed condition (B); resistant genotype 395011.2 when chemical sprayed (C) 

and unsprayed (D) at Injibara site of the north-western Ethiopia during the 2014 main 

cropping season. 

2.5 Conclusions 

Results from the current study revealed significant differences in the level of resistance to 

late blight disease and yield and related traits among the tested potato clones. The following 

clones: 396004.263, 396029.25, 393220.54, 395011.2, Gudene, 395096.2, 395017.229, 

396034.103, 395109.34, 396031.108 and 395077.12 had resistant to moderately resistant 

reaction to late blight disease across the study locations. All the local cultivars except 

Gudene were susceptible to late blight suggesting the need for strategic resistance breeding 

using the novel parents. Correlations between AUDPC, DT5 and RYL were significantly 

positive indicating that early appearance of the disease could result higher AUDPC values 

and yield loss. Strong and significant correlation existed between AUDPC and DT5 across 

the study sites suggesting that DT5 was the most important parameter in identifying the 

resistant clones. Overall the study identified high yielding clones with adequate level of late 

blight resistance which are recommended for breeding or direct production after yield stability 

tests. 
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CHAPTER 3. Combining ability of selected potato clones for 
resistance to late blight disease, yield and yield components 

Abstract 

Late blight of potato caused by Phytophthora infestans is a most destructive disease. 

Breeding potato cultivars with resistance to late blight is the most economic, effective and 

ecologically sustainable method to control the disease and to boost productivity. This study 

was, therefore, carried out to determine combining ability and gene action controlling late 

blight resistance, yield and yield components and to identify promising potato genotypes as 

potential parents in a breeding programme. Eighteen F1 families were generated from two 

sets of 12 parents using a North Carolina Design II. The families were evaluated for relative 

area under disease progress curve (rAUDPC), yield and yield related traits in two hotspot 

locations for late blight. Results showed that the general combining ability (GCA) effects of 

female and male parents, and the specific combining ability (SCA) of families were significant 

for all the traits except for the GCA effect of female for marketable tuber yield. Estimates of 

genetic components indicated that additive component of genetic variance was more 

important than the non-additive component in inheritance of resistance to late blight 

(rAUDPC= 71%) and average tuber weight (80%). The GCA and SCA effects were almost 

equally important for the total and marketable tuber yields [GCA/ (GCA+SCA) = 53%]. 

Among the parents: 396264.14 and 395109.34 were selected for their good GCA effects for 

both late blight resistance and yield related traits, while the parent 396004.263 had strong 

ability to transfer late blight resistance to its progenies. Crosses from 396004.263 x 

395017.229 and 395096.2 x 396012.288 were best combiners displaying significant SCA 

effect for both late blight resistance and yield related traits in the desired direction and the 

cross from 395109.7  x 396264.14 had negative and significant SCA effect for late blight 

resistance as measured by rAUDPC. The selected parents and families were the best 

candidates to develop improved potato cultivars that combined both high yield and adequate 

late blight resistance. 

Key words: AUDPC, breeding, Ethiopia, North Carolina Design II, tetraploid potato  

Late blight of potato caused by Phytophthora infestans (Mont.) de Bary is the most 

devastating disease in the humid tropical highlands of Ethiopia (Mulatu et al., 2005; Hirpa et 

al., 2010). The disease causes an estimated yield losses ranging between 30 and 100% in 

different parts of the country (Kassa and Beyene, 2001; Mulatu et al., 2005). Several control 

measures can be employed against late blight disease. Given the fact that potato is mostly 

grown by resource poor farmers, the most economic and environmentally sound control 
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measure could be the use of resistant cultivars (Colon et al., 1995; Forbes, 2012). Although 

breeding for late blight resistance has had priority in potato breeding program in Ethiopia for 

more than three decades (Hirpa et al., 2010), many resistant cultivars thus far released have 

quickly succumbed to virulent races of the pathogen (Woldegiorgis, 2013).  

Resistance to P. infestans are classified into race-specific and race-nonspecific resistance. 

Presently resistance breeding focused on polygenically controlled, quantitative resistance 

which may substantially reduce levels of disease. This form of resistance is more durable as 

it is effective against a broad range of pathogenic races of the disease (Umaerus and 

Umaerus, 1994). Conversely, race specific resistance controlled by major resistance (R) 

gene can be readily overcome by rapid appearance of virulent races of the pathogen (Fry, 

1977; Haynes et al., 1998). Based on this concept, the international potato centre (CIP) 

developed advanced population group B3 with quantitative resistance which are free of any 

known major (R) genes by recurrent selection. Late blight resistance of population B3 has 

been improved after every cycle of recombination (B3C0, B3C1 and B3C2) (Landeo et al., 

2001; Kaila, 2015). Also, the population have wider genetic background of various economic 

traits. The germplasm are available as source of breeding population for durable late blight 

resistance in potatoes (Landeo et al., 1995; Landeo et al., 2001; Yao et al., 2011). Some of 

the advanced clones from this population were evaluated in Ethiopia and showed promising 

performance (CIP, 2012).  

For a successful potato breeding program for late blight resistance, it is necessary to select 

parental clones capable of transmitting the resistance to their offspring. Parental genotypes 

which transmit superior economic traits to their offspring when crossed with a wide variety of 

other clones are said to have good general combining ability (GCA). The deviation of a 

specific cross from what is expected on the basis of the GCA of the parent is referred to as 

specific combining ability (SCA) (Plaisted et al., 1962; Gopal, 1998). Genetically, GCA is 

associated with genes which are additive in their effects. SCA, on the other hand, caused by 

dominance and epistasis gene effects (Falconer and Mackay, 1996; Acquaah, 2007). 

Information on the components of general and specific combining ability are helpful to select 

promising parents and novel genetic combinations for effective breeding. When GCA effects 

are significant, parents with desirable effects can be used for future crosses which may yield 

improved selection gain. When SCA effects is present, the progeny tests can be used to 

identify the best crosses for clonal evaluation and cultivar release (Gopal, 2015).  

Use of appropriate mating design is a key factor for proper estimation of combining ability 

effects. Different mating designs have been used to study the genetic determination of 

various traits of potato. For example: Killick and Malcolmson (1973) used a North Carolina 
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Design II and reported that the SCA was more important than GCA effect for late blight 

resistance. Malcolmson and Killick (1980) found significant GCA effect using the same 

design. Plaisted et al. (1962) and Kaushik et al. (2000) found larger estimate of SCA effect 

than the GCA effect for yield and late blight resistance, respectively using a line x tester 

genetic design. Kumar et al. (2007), on the other hand, reported the predominance of 

additive component of genetic variance over the non-additive component using line x tester 

genetic design. Other researchers used incomplete diallel (Tai and Hodgson, 1975) and full 

diallel (Bradshaw et al., 1995) designs to determine combining ability effects of different 

traits.  

North Carolina Design II (NCD II or factorial) provides good genetic information on the 

reference population for the trait(s) being investigated (Hallauer et al., 1988; Ortiz and 

Golmirzaie, 2002). Advantages of a factorial design includes: addition of more parents 

without a significant increase in resources and estimation of additive variances of males and 

females (Lynch and Walsh, 1998).  

In Ethiopia, potato improvement has been limited to evaluation of CIP and local genotypes 

(CIP, 2012; Woldegiorgis, 2013). No information is available in Ethiopia on the combining 

ability and the gene action controlling resistance of potato genotypes against the present 

pathotypes of P. infestans and their yield performance. There is a need for a well-designed 

breeding program in the country to improve late blight resistance, yield and yield related 

traits. Clonal selection and information on combining ability for the desired traits among 

selected potato genotypes is important in order to identify the best combiners for successful 

breeding. The objective of the present study was therefore to determine the combining ability 

and gene action controlling late blight resistance, yield and yield components and to identify 

promising parents and crosses based on their combining ability effects among selected 

potato cones of B3C2 population for further breeding and selection in north-western Ethiopia.  

3.1 Materials and methods 

3.1.1 Parents and crosses  
Twelve clones from the B3C2 population showing variable late blight resistance were 

crossed using a North Carolina Design II (NCD II) (Table 3.1). Crosses were performed in 

two sets, six parents each to generate 18 families. In the first set three female clones 

(395015.6, 395109.34 and 396004.263) were crossed with three males (395011.2, 

395017.229 and 396038.107), whereas in the second set three female parents (395096.2, 

395109.7 and 396031.108) were crossed with three males (395017.14, 396012.288 and 

396264.14). In total, 18 families were constituted (2 sets x 9 family each).  
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 Table 3.1 Name of potato parents used in the study with their late blight reaction and yield 

level 

Set Male/Female Parents AUDPC-CIP AUDPC-NWE 

Yield in late blight 
epidemics 

(t ha-1) 
1 Female 395015.6 1207 1670 18.03 
1 Female 395109.34   690   710 22.83 
1 Female 396004.263   858   355 24.46 
1 Male 395011.2   703   722 21.95 
1 Male 396038.107 1094 1660 23.65 
1 Male 395017.229   937   934 27.13 
2 Female 396031.108   724   889 19.22 
2 Female 395096.2 1210   795 20.91 
2 Female 395109.7 1212 - 17.66* 
2 Male 395017.14 1025 1430 21.47 
2 Male 396012.288   971 - 25.32* 
2 Male 396264.14   389 - 21.26* 

AUDPC = area under disease progress curve; CIP= International Potato Centre; NWE = 
north-west Ethiopia; * = yield information for the three clones obtained from CIP  

3.1.2 Seedling generation 
A maximum of 200 F1 seeds per cross was sown in seedling trays filled with 1:2:1 mixture of 

sand, farmyard manure and soil, respectively at Adet agricultural research centre. The 

substrate was sterilized in an oven. After 35 days, 80 to 120 seedlings of each cross were 

transplanted into 10 cm plastic pots for further growth. Fertilizer was applied as per 

recommended and pesticides were sprayed when required.  

True potato seedlings from 18 crosses having 80 genetically unique siblings each harvested 

separately, approximately three months after transplanting. As the tubers were harvested 

from each plant, they were left in the pots in which the plant was grown and one tuber from 

each pot was taken to produce tuber families comprised of a single tuber from each true 

seedling (Figure 3.1). Two sets of tuber families which were selected were saved for planting 

in two environments. Seed potatoes were stored at Injibara using the diffused light storage 

facility approximately for five months prior to field evaluation. 
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Figure 3.1   Tubers derived from true seeds (left) and a tuber family consisting of single tuber 

from each seedling with in a family (right) 

3.1.3 Trial establishment and experimental design 

Eighteen families each having eighty progeny were planted at the two locations in north-

western Ethiopia: Adet (11°17′ N, 37°47′ E and altitude 2240 m) and Injibara (10°57′ N, 

36°56′ E and altitude 2568 m,), during the main crop season (June, 2014). These location 

are known for experiencing severe late blight disease pressure during the rainy season. 

Consequently, clones were evaluated under natural disease development. A susceptible 

local cultivar, ‘Enatbeguaro’ was planted adjacent to each row to increase the inoculum level 

and ensure infection across the plots. No control measure was taken against late blight. 

Trials were established using a randomized complete block design with two replications. 

Each entry was represented by an experimental unit consisting of forty plants assigned in a 

plot of 9 m2. The plot size was four rows, 3 m long, with 0.75 m inter- and 0.3 m intra-row 

spacing. All the necessary agronomic practices were carried out according to the 

recommendations to the locations.  

3.1.4 Data collection 
Data collected included percentage of foliage affected by late blight disease, total tuber yield 

(TTY), marketable tuber yield (MTY) and average tuber weight (ATW). Late blight disease 

severity was recorded visually as percentage of foliage affected at weekly intervals starting 

with the first appearance of the symptoms until the susceptible control had reached 100% 

infection. The percentage foliage covered with late blight in each plant was estimated (Fry, 

1978; Niks et al., 2011) and averaged per plot basis. For each plot and assessment dates, 

AUDPC was calculated using the method of Campbell and Madden (1990). AUDPC was 

standardized to estimate a relative area under the disease progress curve (rAUDPC) by 

dividing the AUDPC by the maximum potential AUDPC of that location (Fry, 1978).  



65 
 

At harvest, yield was measured in a plot basis. Total tuber yield (TTY) was calculated by 

converting the total weight of all the tubers harvested in a plot to t ha-1. Tubers of each plot 

were graded in to three categories: >30 mm (marketable), <30mm (unmarketable), and 

rotten and diseased (discarded) and were counted and weighted in kg. Form these, the 

marketable tuber yield (t ha-1), number of total tuber per plant and number of marketable 

tuber per plant were calculated. Average tuber weight (ATW) was calculated as the total 

tuber weight per plant divided by the total tuber number of tubers per plant. 

3.1.5 Data analyses 
The data for rAUDPC, total tuber yield, marketable tuber yield and average tuber weight of 

the two locations were subjected to the standard analysis of variance using the GLM 

procedure of SAS 9.3 (SAS Institute Inc, 2011) statistical program. The data were first 

analysed separately. After homogeneity of variance tests a combined analysis of variance 

was performed. 

Analysis of variance was performed using the North Carolina Design II (Comstock and 

Robinson, 1952) with SAS version 9.3 (SAS Institute Inc, 2011) to identify the significance 

level of general combining ability (GCA) of parents and specific combining ability (SCA) of 

crosses. Data were analysed over sets and across environment using the following linear 

model (Hallauer et al., 1988): 

Yijkpq = µ + Sp + gi(Sp) + gj(Sp) + hij(Sp) + Eq + rk(SE)pq + (ES)pq + (Eg)iq(Sp) + (Eg)jp(Sp) + 

(Eh)ijq(Sp) + (Eh)ijq(Sp) + eijkpq 

Where: i = 1, 2, 3; j = 1, 2, 3; k = 1, 2; p = 1, 2; q = 1, 2; the terms for the model are defined 

as follows: Yijkpq denotes the value of a family from the mating between the ith female parent, 

the jth male parent, in the kth replication, within set p and in the qth environment; μ = Grand 

mean; Sp = the average effect of the pth set; gi(Sp) = the GCA effect common to all F1 

families of the ith female parent nested within pth set; gj(Sp) = the GCA effect common to all 

F1 families of the jth male parent nested within pth set; hij(Sp) = the SCA effect specific to F1 

families of the ith female and jth male parent nested within pth set; Eq = average effect of qth 

environment; rk(SE)pq  = the effect of the kth replication nested within the pth set and qth 

environment; (ES)pq = the interaction between site and set effects; (Eg)iq(Sp)  and (Eg)jp(Sp) = 

the interaction between site and GCA of the ith female and jth male parent, respectively 

nested within sets; (Eh)ijq(Sp) = the interaction between site and SCA, nested within sets; and 

eijkpq = the random experimental error. 
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Throughout the text, variation due to males within sets, females within sets, and males x 

females within sets were referred to as GCAm, GCAf and SCA variation, respectively. For 

each trait, GCA effect for each clone and SCA effect for each F1 family were calculated 

according to Beil and Atkins (1967). For rAUDPC negative estimate of combining ability 

(GCA and SCA) effects were taken as high in a desirable direction, while neutral or positive 

estimate were regarded as low or undesirable. For TTY, MTY, and ATW positive estimate of 

GCA and SCA effects were taken as high to identify genotypes with high yield and yield 

components, whereas neutral or negative estimates as low. Standard errors for GCA effects 

of female and male parents and SCA effects of families in each sets were calculated by 

using the method described by Cox and Frey (1984). The spearman correlations were 

calculated for selected traits and locations to study the interrelationships between these traits 

and the two environments. The relative importance of additive (GCA) and non-additive (SCA) 

genetic effects in determining the performance of the progeny for each of the traits was 

determined by individually expressing the GCAf mean square, GCAm mean square, and the 

SCA mean square as a percentage of the treatment (crosses) mean square as shown in the 

formula below (Baker, 1978): 

GCA/ (GCA+SCA) (%) = MS GCAPooled/ (MS GCAPooled +MS SCA) 

MS GCApooled = s(f-1)MS GCAf + s(m-1)MS GCAm/ (s(m+f-2)) 

Where; MS GCAPooled = mean squares for GCApooled; MS SCA = mean squares for SCA 

effects; s = number of sets; f = number of female parents; m = number of male parents; MS 

GCAf = mean square of GCAf; MS GCAm = mean square of GCAm, respectively. 

3.2 Results 

3.2.1 Environmental Effects 
Late blight disease pressure varied across the two locations (Table 3.2). Large 

environmental main effects were a reflection of differences in the magnitude of disease 

severity and yield related traits at the two locations. The mean rAUDPC at Adet and Injibara 

was 0.17 and 0.28, respectively. The mean temperature was lower and total precipitation 

was higher at Injibara during the growing season (16.5oC and 1613.1mm, respectively from 

June to October, 2014) than at Adet (18.4oC and 789.9mm, respectively). Because of more 

conducive environmental condition late blight disease started early at Injibara than at Adet.  

3.2.2 Combining ability 
The analyses of variance of rAUDPC, total tuber yield, marketable tuber yield and average 

tuber weight for North Carolina Design II combined across environments and sets is 

presented in Table 3.2. Analysis of variance pooled over sets and across environments 
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showed that the GCA mean square for males (GCAm), GCA for females (GCAf) and SCA 

were all significant for all the traits tested except the GCAf effects for marketable tuber yield. 

The parents and the F1 families, therefore, differed significantly in their GCA and SCA, 

respectively for the four traits. The interactions of GCAf x environments and of SCA x 

environments were only significant for average tuber yield. Interaction of GCAm x 

environment was significant (P < 0.01) for total and marketable tuber yield. The sets are 

significantly different for rAUDPC (P<0.05) and average tuber weight (P<0.01). There was no 

significant interaction between environment and sets for all the traits assessed.  

Table 3.2. Summary mean squares and significant tests of combining ability effects for 

rAUDPC, TTY, MTY and ATW of potato clones evaluated at two sited in north-western 

Ethiopia   

Source of variation d.f. rAUDPC TTY MTY ATW 
Environment 1 0.2226*** 22531.5*** 20610.6*** 35594.06*** 
Set 1 0.0066* 0.01502ns 0.06698ns 193.6787** 
Environment x Set  1 0.0035ns 0.72605ns 0.37154ns 5.24117ns 
Replication (Set) (Environment) 4 0.0032ns 36.929*** 41.3038*** 111.2662** 
GCAf 4 0.0219*** 14.795* 11.2265ns 504.7382*** 
GCAm 4 0.0111*** 39.101*** 42.7027*** 180.8366*** 
SCA 8 0.0069*** 24.158*** 23.4957** 87.73194*** 
Environment x GCAf 4 0.0024ns 7.6621ns 4.73641ns 79.0173** 
Environment  x GCAm 4 0.0028ns 21.588** 25.52429** 47.26075ns 
Environment x SCA 8 0.0018ns 7.14989ns 7.55228ns 48.42515* 
Error 32 0.00138 4.563 5.731 19.03 
GCA/ (GCA+SCA) (%)  71 53 53 80 
Contribution of GCAf (%)  47 14 11 59 
Contribution of GCAm (%)  24 42 38 21 
***, **,*, ns = significant at P< 0.001, P< 0.01, P< 0.05 and non-significant at P> 0.05, 
respectively; d.f. = degree of freedom; rAUDPC = relative area under disease progress 
curve; TTY = total tuber yield; MTY = marketable tuber yield; ATW= average tuber weight; 
GCAf = general combining ability due to female; GCAm = general combining ability due to 
male; SCA = specific combining ability 
 

There was a highly significant and positive correlation (r = 0.52, P < 0.001) between the 

locations for rAUDPC indicating that the environments x family interaction was not of the 

crossover type. All yield related traits had significant (P < 0.001) and negative(r > -0.70) 

correlation coefficient with rAUDPC (Table 3.3). These results were expected because of the 

influence of the disease on tuber yield. The yield components also showed strong correlation 

to each other. Interactions of environments with the genetic components were not significant 

for most of the traits. Hence, results are presented pooled by environment. 

Total GCA (i.e., male plus female main effects) accounted for 71 and 80% for rAUDPC and 

average tuber weight, and 53% for both marketable and total tuber yield, respectively. For 
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rAUDPC, the GCAf effects were 1.9 times larger than GCAm effects and the GCAf sum of 

squares contributed more (47% of total variance) than the GCAm sum of squares (24% of 

total variance).  Similarly, for average tuber weight, GCAf mean square was 2.8 times larger 

than GCAm. GCAf contributed 59% and GCAm 21% for the treatment mean square of 

average tuber weight. In contrast, GCAm effects were 3 times larger than GCAf effects for 

total tuber yield. For this trait, GCAm contributed 42% and GCAf 14% for the cross sum of 

square.  Also, for marketable tuber yield GCAm was 3.5 times larger than GCAf. Here, GCAm 

contributed 38% and GCAf 11% for the treatment sum of square. 

Table 3.3 Pair-wise correlation coefficients of late blight disease and yield related parameters 

in 18 F1 potato families tested at two locations in north-western Ethiopia 

Traits rAUDPC Total tuber yield Marketable tuber yield 
Total tube yield -0.72*** - 

 Marketable tuber yield -0.73*** 0.99*** - 
Average tube weight -0.70*** 0.88*** 0.89*** 
*** = significant at P< 0.001; rAUDPC= relative area under disease progress curve 

3.2.3 General combining ability effects and mean response of parents 
Estimates of the GCA effects for the 12 parents are shown in Table 3.4. The GCA estimates 

for rAUDPC ranged from -0.047 for clone 396004.263 to 0.064 for 395015.6. The parents 

which possessed good GCA for late blight resistance were 396004.263 and 395096.2 among 

female and 396264.14 among male parents, which had significant and negative estimates. 

Clones 395015.6 and 395109.7 possessed the undesired GCA effects for late blight disease 

resistance as measured by rAUDPC. 

Among the males tested in this study, clone 396264.14 was a good general combiner for all 

the characters assessed, while among females clone 395109.34 had good parental value 

measured as high GCA for average tuber weight, total and marketable tuber yield under the 

disease pressure. Clone 395109.7 also contributed favourably to increase in the average 

tuber weight despite its poor GCA effect for rAUDPC. 

The genotypes 396012.288 and 395015.6 are associated with undesired GCA effect for both 

resistance and yield traits, while clone 395017.14 was a poor general combiner for average 

tuber weight, total and marketable tuber yield. Genotype 395017.229 was a poor combiner 

for total and marketable tuber yield, although it had positive effect for average tuber weight 

among the males. Among the parents that showed significant desirable effect for rAUDPC 

were 396004.263 and 395096.2 associated with negative (undesirable) effect for average 

tuber weight, total and marketable tuber yield. 
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Table 3.4 Estimates of general combining ability (GCA) effects and mean performance for 

rAUDPC, TTY, MYY and ATW of 18 F1 potato families evaluated in two sets across two 

locations of north-western Ethiopia. 

Parents 
rAUDPC   TTY (t ha-1)   MTY(t ha-1)   ATW (g) 

Mean GCA   Mean GCA   Mean GCA   Mean GCA 

Set I 

Female 
           395015.6  0.29 0.064** 

 
20.8 -0.82 

 
19.4 -0.70 

 
39.3 -4.73** 

395109.34 0.21  -0.017 
 

23.3    1.69** 
 

21.7 1.56 
 

53.0 8.93* 

396004.263 0.18 -0.047** 
 

20.8 -0.88 
 

19.2 -0.86 
 

39.8 -4.2** 
Male            
395011.2 0.25 0.022 

 
22.3 0.67 

 
20.8 0.70 

 
42.5 -1.51 

395017.229 0.23 -0.001 
 

20.0 -1.64** 
 

18.4 -1.74** 
 

46.4 2.33 

396038.107 0.21 -0.021 
 

22.6 0.97 
 

21.1 1.04 
 

43.2 -0.82 

SE  0.010   0.597   0.597   1.14 

Set II 

Female 
           395096.2 0.20 -0.015* 

 
21.6 -0.11 

 
20.0 -0.19 

 
41.9 -5.46** 

395109.7 0.23  0.022** 
 

22.3 0.61 
 

20.4 0.20 
 

51.4 4.12** 

396031.108 0.20   -0.007 
 

21.2    -0.5 
 

20.2 -0.01 
 

48.7   1.34 
Male            
395017.14  0.21 -0.003 

 
20.5 -1.21* 

 
19.0 -1.12* 

 
43.8 -3.52** 

396012.288 0.25    0.039** 
 

20.4 -1.24* 
 

18.8 -1.41** 
 

45.0 -2.32* 

396264.14  0.18   -0.036** 
 

24.1   2.44** 
 

22.7   2.53** 
 

53.2   5.84** 

SE  0.007   0.53   0.53   0.898 

SE = standard error; *, ** significantly different from zero at ≥ 1.96SE and 2.56SE 
respectively; rAUDPC = relative area under disease progress curve; TTY = total tuber yield; 
MTY = marketable tuber yield; ATW= average tuber weight 

3.2.4 Specific combining ability effects and mean response of families 
Families from the crosses of 395109.7 x 396264.14 and 396031.108 x 395017.14 showed 

significant and desirable SCA effects for rAUDPC and high SCA effects for average tuber 

weight, total and marketable tuber yields in the desired direction (Table 3.5). These two 

families had also the lowest mean rAUDPC and the highest mean TTY, MTY and ATW 

among the families tested. Cross 396004.263 x 395017.229 exhibited the highest and 

significant SCA effect in a desired direction and the highest mean for rAUDPC. However, this 

cross showed the lowest mean and undesirable SCA effect for yield traits.  

Cross 395109.34 x 395011.2 showed the highest mean for all yield traits while crosses from 

395096.2 x 396012.288 had significant and positive SCA effects and highest mean for total 

and marketable tuber yield. The latter cross also showed significant SCA effect in the desired 

direction for rAUDPC although it scored medium for this trait. Besides cross 395109.7 x 
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396264.14, families of 395109.34 x 395017.229, 395109.34 x 396038.107 and 395109.34 x 

395011.2 were the best three in terms of average tuber yield. Most of the crosses with high 

mean for yield traits involved the parent 395109.34 that showed the highest GCA effect for 

these traits (Table 3.5).  

Table 3.5 Estimates of specific combining ability effects (SCA) and mean performance for 

rAUDPC, TTY, MTY and ATW of potato families evaluated in two sets across two locations 

of north-western Ethiopia   

  rAUDPC   TTY   MTY   ATY 

Sets and crosses Mean SCA   Mean SCA   Mean SCA   Mean SCA 

Set I                       

395015.6 x 395011.2 0.31 -0.01 
 

20.2 -1.31* 
 

19.1 -1.04 
 

33.6 -4.20** 

395015.6 x 395017.229 0.33 0.038* 
 

19.4 0.16 
 

17.4 -0.26 
 

43.9 2.27* 

395015.6 x 396038.107  0.25 -0.028* 
 

23.0 1.15 
 

21.7 1.31* 
 

40.4 1.93 

395109.34 x 395011.2 0.23 -0.004 
 

24.4 0.36 
 

22.7 0.29 
 

50.4 -1.01 

395109.34 x 395017.229 0.22 0.006 
 

22.5 0.84 
 

20.6 0.67 
 

54.9 -0.41 

395109.34 x 396038.107 0.19 -0.002 
 

23.1 -1.20* 
 

21.7 -0.97 
 

53.6 1.43 

396004.263 x 395011.2 0.22 0.014 
 

22.4 0.95 
 

20.7 0.75 
 

43.5 5.21** 

396004.263 x 395017.229 0.14 -0.044** 
 

18.1 -1.00 
 

17.1 -0.41 
 

40.3 -1.86 

396004.263 x 396038.107 0.19 0.03 
 

21.8 0.05 
 

19.9 -0.34 
 

35.7 -3.36** 

SE  0.014 
 

 0.597   0.597 
 

 1.14 

Set II                       

395096.2 x 395017.14 0.21 0.021** 
 

18.8 -1.61* 
 

17.4 -1.46 
 

33.6 -4.77** 

395096.2 x 396012.288 0.18 -0.052* 
 

24.2 3.83** 
 

22.3 3.77* 
 

43.6 4.09** 

395096.2 x 396264.14 0.19 0.031** 
 

21.8 -2.22** 
 

20.2 -2.3** 
 

48.4 0.68 

395109.7 x 395017.14 0.25 0.016* 
 

20.7 -0.34 
 

18.6 -0.66 
 

49.5 1.56 

395109.7 x 396012.288 0.29 0.021** 
 

18.7 -2.33** 
 

16.8 -2.13** 
 

44.2 -4.87** 

395109.7 x 396264.14 0.16 -0.036** 
 

27.4 2.66** 
 

25.7 2.79** 
 

60.6 3.31** 

396031.108 x 395017.14 0.16 -0.037** 
 

21.9 1.95* 
 

21.2 2.13** 
 

48.3 3.21* 

396031.108 x 396012.288 0.27 0.031** 
 

18.4 -1.50* 
 

17.1 -1.64* 
 

47.1 0.78 

396031.108 x 396264.14 0.17 0.006 
 

23.2 -0.44 
 

22.2 -0.49 
 

50.5 -3.99** 

SE   0.007     0.75     0.75     1.27 

SE = standard error; *, ** significantly different from zero at ≥ 1.96SE and 2.56SE 
respectively; rAUDPC = relative area under disease progress curve; TTY = total tuber yield; 
MTY = marketable tuber yield; ATW= average tuber weight 
 

3.3 Discussion  

Knowledge of combining ability of clones and genetic mechanisms controlling late blight 

disease and yield and yield related traits are essential in the designing of a potato breeding 

program. These information will aid for in the selection of clones with improved late blight 

resistance and yield. The present study investigated combining ability effects and the mode 

of gene action conditioning the inheritance of late blight resistance and yield components and 
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identified clones for breeding under the prevailing environment of north-western Ethiopian 

highlands. In the present study, a total of 18 families obtained from 12 parents of wider 

genetic background from improved population B3C2 from CIP, were used (Table 3.1).  

Significant differences among GCAf, GCAm and SCA effects of clones indicated the presence 

of sufficient genetic variability for breeding. Both additive and non-additive gene actions were 

important in inheritance of the traits measured (Table 3.2). However, GCA variances were of 

higher magnitude than SCA variances for rAUDPC suggesting that the inheritance of this trait 

is under the control of additive genetic effect, hence further genetic gains can be achieved by 

selecting superior clones. Role of additive gene effects was also predominant for average 

tuber weight. These results agreed with previous studies (Tai and Hodgson, 1975; 

Malcolmson and Killick, 1980; Bradshaw et al., 1995; Landeo et al., 1995; Landeo et al., 

2001; Kumar et al., 2007) who reported that GCA was more important than SCA for late 

blight resistance. Landeo et al. (2001) reported large additive genetic variance for late blight 

resistance in a random sample of B3C1 clones using three different mating designs. Higher 

SCA variances than GCA variances for late blight resistance were also reported by some 

authors (Killick and Malcolmson, 1973; Kaushik et al., 2000). The variation in the proportions 

of GCA and SCA variances in various studies could be attributed to differences in genetic 

material used. In the present study the preponderance of additive effect for late blight 

resistance could confirm the absences of major (R) genes in the parents and indicated minor 

genes were responsible for the resistance. Where GCA predominates, progeny performance 

can be reliably predicted from the performance of the parents. Killick and Malcolmson (1973) 

suggested that traits subjected to stabilizing selection are expected to show great additive 

genetic variation but little degree of dominance and epistasis, whereas the reverse is true for 

traits subjected to directional selection that may lead narrow genetic base.  

For total and marketable tuber yield, the GCA effects were only slightly more important than 

the SCA effects (53% for both traits) (Table 3.2). Bradshaw and Mackay (1994) concluded in 

their review that both GCA and SCA effects contribute to the genetic variation observed in a 

population. Ruiz de Galarreta et al. (2006) and Gopal (1998) reported significant SCA effects 

for yield. However, host plant resistance to late blight can also influence GCA and SCA 

estimates. Landeo et al. (2001) suggested that quantifying the yield potential and its genetic 

control under late blight disease pressure wouldn’t reflect the actual gene frequency and its 

magnitude in the clones. Holland and Munkvold (2001) pointed out that yield under disease 

stress and yield in the absence of substantial disease stress can be considered distinct traits 

that may be under the control of different sets of genes. However, Carson and Wicks III 

(1989) suggested that selection for plant genotypes that yield well under disease stress could 
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be advantageous approach to select for yield potential and disease resistance 

simultaneously. 

The magnitude of the GCA variance for female was much larger than the GCA variance for 

males for rAUDPC (1.9 times higher) and average tuber weight (2.8 times) (Table 3.2). 

Higher contribution of female parents over male parents could be associated with influence 

of cytoplasm for late blight resistance and tuber size. This findings, however, should be 

interpreted with care, because the reciprocal difference was not tested. In their studies on 

genetic divergence in potato, Gaur et al. (1978) discovered that the distances of the 

tuberosum-andigena hybrids appeared to be influenced by the cytoplasm carried by their 

parents. In contrast, for total and marketable tuber yield GCAm effects were 3 and 3.5 times 

larger than GCAf, respectively. 

This study identified the female parent 396004.263 and the male parent 396264.14 as good 

general combiners for late blight resistance (Table 3.4). The latter is a good general 

combiner for average tuber weight, total and marketable tuber yields. The resistance of the 

former clone, however, was associated with poor combining ability for yield needing further 

improvement for yield traits. Likewise, the female parent 395109.34 has good combining 

ability for yield traits with appreciable resistance to late blight. By contrast, the use of clones 

396012.288 and 395015.6 as parents should be avoided under the prevalence of the 

disease.  

Crosses involving 396004.263 x 395017.229, 395096.2 x 396012.288 and 395109.7 x 

396264.14 showed significantly negative SCA effect for rAUDPC suggesting that they would 

produce the most highly resistant progenies (Table 3.5). High family mean for the traits 

assessed involved at least one parent with high GCA effect in the desirable direction. For 

example, the family 395109.7 x 396264.14 which had the lowest mean for rAUDPC emerged 

from low (positive) x high (negative) GCA combination of the parents 395109.7 and 

396264.14, while the cross 396004.263 x 395017.229 emerged from high x neutral GCA 

combinations of 396004.263 and 395017.229 for rAUDPC, respectively. Similarly, the family 

from the crosses of 395109.34 x 395011.2 which had the highest mean for all yield traits had 

high x neutral to negative GCA combination of the female and male parents for yield related 

traits, respectively. The family from the cross 395096.2 x 396012.288 which showed the 

highest mean and significant SCA effect for yield and yield traits involved female parent 

395096.2 with negative GCA for rAUDPC despite both parents were from low x low GCA 

combinations for yield and its related traits. This result suggests that SCA effects of the 

families were conditioned by the GCA effects of the parents. It could also indicate that it 
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would be possible to develop resistant clones when crosses are made between 

complementary progenitors. 

The non-significant interaction between environment x set and environment x genetic 

components for rAUDPC suggest that the performance of the families were consistent across 

the two tests of environment for these traits. This result was supported by significant and 

strong correlation for rAUDPC between the two environments.  

3.4 Conclusions 

The present study showed that clones 396264.14 and 395109.34 were best combiners 

displaying good GCA effects for both late blight resistance and yield related traits. Among the 

crosses 396004.263 x 395017.229 and 395096.2 x 396012.288 were selected for their best 

SCA effects for both late blight resistance and yield related traits. The selected parents and 

families were the best candidates to develop improved potato varieties with high yields and 

LB resistance. The predominance of variance due to GCA over SCA effects for disease 

resistance suggests that progeny performance can be accurately predicted based on GCA 

effects of the parents. Overall results indicated that it would be possible to breed for high 

yielding clones coupled with adequate level of late blight resistance from this sets of 

germplasm.  
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CHAPTER 4. Combining ability of selected potato clones for 
drought tolerance and yield components  

Abstract 

Recurrent drought is one of the major impediments to potato production in the north-west 

Ethiopian highlands. The objectives of this study were therefore, to determine combining 

ability effects and gene action determining yield, yield components and drought tolerance 

related traits among selected potato clones and to identify promising parents and crosses for 

cultivar development. Sixteen selected clones were crossed in two sets using North Carolina 

Design II, resulting in 32 families. Families together with 17 clones were evaluated in a 7 x 7 

lattice design with two replications under irrigated and managed drought stress conditions at 

tuber bulking stage at Adet, Ethiopia. Results showed highly significant differences among 

genotypes for drought stress tolerance, growth, physiological and yield related traits. 

Significant general combining ability (GCA) effects and specific combining ability (SCA) for all 

the traits assessed indicated the contribution of additive and non-additive genes in the 

expression of these traits, respectively. GCA effects were more important than SCA effects 

for total tuber yield, marketable tuber yield, average tuber weight, plant height, chlorophyll 

content and groundcover. This suggested the preponderance of additive gene action for 

these traits under drought stress. Among the parents, the clones 395112.32, 396034.103 

and 396012.288 were the best general combiners for yield and drought tolerance. The 

families with the best specific combining ability (SCA) effects for both tuber yield and drought 

tolerance were 395109.34 x 396041.102, 395096.2 x 396012.288, 395109.7 x 395017.14 

and 396031.108 x 395017.14. The selected parents and families are useful genetic 

resources to improve drought tolerance and yield of potato. The study demonstrated that 

high yield potential and high drought tolerance were not mutually exclusive in the tested set 

of germplasm. 

Key words: combining ability, drought tolerance, North Carolina II mating designs, plant 

breeding, potatoes  

4.1 Introduction 

Recurrent drought is one of the most important constraints to plant growth and productivity in 

many regions all over the world (Chaves et al., 2002; Obidiegwu et al., 2015). In Ethiopia, 

drought is a frequently recurring phenomenon and its impact is magnified by threatening food 

security and rural livelihood. Agriculture is a major economic sector in the country, employing 

85% of labour force and contributing 48% of the domestic national product. This sector, 

however, is heavily dependent on timely onset, amount, duration and distribution of rainfall 



77 
 

(Mersha and Boken, 2005; Adhikari et al., 2015). Studies indicated that the area with stable 

rainfall has decreased, while the area with highly variable rainfall has substantially increased 

over time (Mersha, 1999; Berhan et al., 2011). The frequency and severity of this problem is 

likely to increase as climate change is expected to escalate drought (IPCC, 2007; 

Gebrehiwot et al., 2011; Adhikari et al., 2015). Lack of irrigation facilities makes the 

agricultural system in the country vulnerable to rainfall variability and dry spells. Dry spell 

probability during the main cropping season (Meher) is particularly high at the end of the 

season. A long-term climate data analysis revealed that altitude had a significant negative 

relation with temperature, but not with precipitation amount and distribution (Simane et al., 

1999). Crop improvement for drought tolerance is one of the important strategies to enhance 

productivity and food security for the rapidly growing population.  

Potato has become important crop in drought-prone highlands of Ethiopia as its short growth 

period makes well-suited for crop rotation with other major crops (Devaux et al., 2014; 

Kolech et al., 2015). Moreover, under rain fed conditions, potato yields more food per unit of 

water than other major crops (Monneveux et al., 2013). Consequently, it can be cultivated in 

environmental conditions where other crops may fail (Schafleitner et al., 2007b). These 

qualities make potato a strategic food security crop in Ethiopia. Despite its yield advantages 

over cereals, potato is more sensitive for water stress than most other crop species due to its 

sparse and shallow root system. Very little information is available on the actual potato yield 

loss due to moisture stress in Ethiopia. However, the modelling of the impact of climate 

change showed that potato yields are expected to decrease by 15% in Africa by 2030 

(Adhikari et al., 2015). Moisture stress reduces potato growth and production by reducing the 

amount of productive foliage, by decreasing the rate of photosynthesis per unit of leaf area 

and by shortening the vegetative growth period (Van Loon, 1986; Spitters and Schapendonk, 

1990).  

Potato yield under water deficit conditions depends on the time, duration and severity of the 

stress and genotypic differences. Monneveux et al. (2013) pointed out that decline in 

photosynthetic rate is fast and substantial, even at relatively high water potentials (-0.3 to -

0.5 MPa). Tuber initiation and bulking stage are reported to be the critical stages that are 

associated with the highest tuber yield loss (Vayda, 1994; Obidiegwu et al., 2015). Thus, 

phenotyping and selection for drought tolerance at this stage is crucially important to 

discriminate drought tolerant genotypes. There are genetic variations in the degree to which 

cultivars are affected by moisture stress. Hence, selection strategies for drought tolerant 

cultivars in a breeding programme are required (Mienie and De Ronde, 2008). Results from 

protected environment studies such as hydroponic, pot grown or greenhouse experiment 

may often not have direct relevance to drought tolerance in the field. Unexpected shifts in 
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rainfall pattern in drought prone areas, on the other hand, reduces the accuracy and 

effectiveness of phenotyping and phenotypic selection. Therefore, phenotyping under field 

conditions during the dry season could be the best solution to control over water regime and 

to avoid rainfall disturbance (Blum, 2011; Okogbenin et al., 2013).  

Genotypes that maintain economic yields under water deficits are the target of the breeding 

program. Thus, desirable drought tolerant traits must be genetically associated with yield and 

yield components under stress. Important drought tolerance traits must also be highly 

heritable, genetically variable, easy to measure, stable within the measurement period, and 

without yield penalty under unstressed conditions (Okogbenin et al., 2013). Potato tuber yield 

is closely related to the plants ability to intercept solar radiation and its efficiency in dry 

matter accumulation. Intercepted radiation levels could be determined by leaf area (Boyd et 

al., 2002). Deblonde and Ledent (2000) and Schafleitner et al. (2007a) found that 

groundcover which is strongly related to leaf area index and biomass, was consistent with 

tuber yield in both drought and well-watered condition in potato. Similarly, plant height under 

stress could be an important growth parameter to discriminate for drought tolerance showing 

a good relationship with drought tolerance index (Deblonde and Ledent, 2001).  

Stay green or delayed senescence in crop cultivars is recognized as important for plant 

production under terminal drought stress (Blum, 2011; Rolando et al., 2015). This trait can be 

assessed by measuring chlorophyll content. The Minolta SPAD-502 meter measures green 

color intensity and is a good indicator of chlorophyll concentration. It is therefore an ideal 

instrument for obtaining the data without destructive sampling (Uddling et al., 2007). In 

potato, chlorophyll content was reported to have a direct association with drought tolerance 

though its contribution to yield was variable (Van der Mescht et al., 1999; Blum, 2011; 

Yactayo et al., 2013; Ramírez et al., 2014). Similarly, canopy temperatures have been 

suggested as a method to identify drought tolerant potato clones as they are related to 

stomatal conductance and transpiration which is associated with rate of photosynthesis 

(Blum, 1988).  

Potato is one of the most important crops in the highlands of the north-western Ethiopia. The 

region is known for drought occurrence covering wider proportions and affecting food 

security and rural livelihoods. However, there is no systematic research conducted on 

breeding of potato for drought tolerance and yield related traits.  

Selection of potato genotypes based on combining ability estimates is useful to identify the 

most valuable parents and families for breeding and cultivar development. The importance of 

both additive and non-additive gene action in inheritance of yield and yield components have 

been reported in different studies under unstressed conditions (Brown and Caligari, 1989; 
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Maris, 1989; Ruiz de Galarreta et al., 2006). However, information is scanty under water 

stressed conditions. The objective of this study was therefore, to determine combining ability 

effects and gene action determining drought tolerance, yield and yield components among 

selected potato clones and to identify promising parents and crosses for cultivar 

development.  

4.2 Materials and methods 

4.2.1 Germplasm 
Sixteen potato clones selected from a B3C2 population with wide genetic background and 

specific adaptation for highland tropics (Landeo et al., 1995) were crossed using the North 

Carolina Design II (NCD II) in two sets (Comstock and Robinson, 1952; Hallauer et al., 

1988). Details of the clones are described in Table 4.1. Four clones were designated as 

female and crossed with another four clones used as male parents to form 16 families in 

each set.  In total, 32 families were generated. Three widely grown cultivars (Belete, Guassa 

and Gorebella), two promising clones from B3C2 population (396038.101 and 396029.25) 

and 12 parental clones were also included in the study. 

Table 4.1 Pedigree, root dry mass, and tuber specific gravity of potato parents used to 

generate families using North Carolina Design II 

Clones Set Female/Male Pedigree Root dry mass(g)a Tuber specific gravity 
395011.2 1 Male 393085.5 x 392639.8 43.78 1.23 
396041.102 1 Male 393280.58 x 393280.57 - - 
395017.229 1 Male 393085.13 x 392639.8 26.64 1.19 
396038.107 1 Male 393077.54 x 393280.64 25.87 1.18 
395015.6 1 Female 393083.2 x 391679.12 23.52 1.20 
395109.34 1 Female 391589.26 x 393079.4 17.35 1.17 
396004.263 1 Female 391002.6 x 393382.64 21.15 1.19 
396034.103 1 Female 393042.5 x 393280.64 15.13 1.19 
395017.14 2 Male 393085.13 x 392639.8 40.78 1.17 
395077.12 2 Male 391586.109 x 393053.6 20.34 1.20 
396012.288 2 Male 391004.10 x 393280.58 - - 
396264.14 2 Male 393280.82 x 392639.2 - - 
395096.2 2 Female 393085.5 x 393053.6 40.94 1.22 
395109.7 2 Female 391589.26 x 393079.4 - - 
395112.32 2 Female 391686.15 x 393079.4 26.75 1.20 
396031.108 2 Female 392633.64 x 393382.64 17.32 1.19 

a Root dry mass and tuber specific gravity are estimated from previous field evaluation at 
Enjibara, 2013. 

4.2.2 Seedling generation 
A maximum of 200 F1 seeds per cross was sown in seedling trays filled with 1:2:1 mixture of 

sterilised sand, farmyard manure and soil, respectively in a screen house at Adet Agricultural 

Research Centre (11°17′ N, 37°47′ E and altitude of 2240 meter above sea level (masl)). 
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After 35 days, 80 to 120 seedlings of each cross were transplanted into 10 cm plastic pots for 

further growth. Fertilizers were applied as per recommendation and pesticides were sprayed 

when required. 

Seedling progenies from 32 crosses having 60 genetically unique siblings each harvested 

separately, approximately three months after transplanting. As the tubers were harvested 

from each plant, they were left in the pots in which the plant was grown and one tuber from 

each pot was taken to produce tuber families comprised of a single tuber from each true 

seedling. Two sets of tuber families which were selected were saved for planting in two 

environments, i.e., under moisture stressed and well-watered conditions. Seed potatoes 

were stored at Injibara using the diffused light storage facility approximately for five months 

prior to field evaluation. The first moisture stress trial was established at Merawi (11°41′ N, 

37°16′ E and altitude 2000 masl). However, unexpected rainfall during the dry season 

disrupted the experiment and evaluation was not possible. Thus the first clonal generation of 

F1 families were advanced to second clonal generation for the next dry season evaluation 

and the same procedure were followed as the seedling progenies to produce tuber families.  

4.2.3 Trial establishment and experimental design 
A total of 49 entries that included 32 families each having sixty progeny plus their 12 parents 

along with five checks were planted at Adet Agricultural Research Centre (11°17′ N, 37°47′ E 

and altitude of 2240 masl) during long dry season (November 4, 2014 – March 5, 2015). 

Trials were established using a 7x7 simple lattice design with two replications of three rows, 

3 m long plots each having 30 plants. Inter- and the intra-row spacing were 0.75 and 0.3 m, 

respectively. The season was rain free and had a lower mean air temperatures than was 

experienced in the main (rainy) season of 2014. This effect, however, was offset by lower 

relative humidity and higher wind speed of this second season which favored evaporation 

(Table 4.2). Two irrigation regimes were used: under optimal soil moisture control treatment 

and under terminal stress. Terminal moisture stress was imposed by withholding water 

supply six weeks after planting until harvest. The time to impose drought was decided based 

on previous experience of the time of tuber initiation for most of the parents used. Iirrigation 

was supplied using furrows. The furrows length was limited to 3.5 m to reduce variation in 

water infiltration along the furrow.  

The soil of the site was a clay loam with 41% of sand, 29% of clay and 30% of silt and with 

electronic conductivity (EC) of 0.18 mS/cm and pH of 6.35. Soil water potential was 

measured in depths of 0.2 and 0.4 m in both irrigated and moisture stressed plots with a 

granular matrix sensor (watermark sensor) (Irrometer Co., Box 2424, Riverside, CA 92516, 

USA). A total of 28 watermark sensors were installed for the experiment: 14 for well-watered 
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and 14 for water stressed experiment. Two sensors for every sub- block (row) were installed, 

one at the depth of 0.2 m and the other at 0.4 m. The control treatment (for the full season) 

and the water stressed treatment (until the 6th week) were irrigated before the soil water 

potential at 0.2 m depth reached 30 centibars (cb). According to Shock et al. (2013) 30 cb is 

the optimum soil water potential for medium textured soil at 0.2 m depth and 100 to 200 cb 

indicates that the soil is becoming dangerously dry and production is adversely affected. The 

weekly water sensor readings for irrigated and moisture stressed treatments in the drought 

period is presented in Figure 4.1. All the necessary agronomic practices were carried out 

according to the recommendations to the location. Tubers were harvested on the 5th of March 

(120 days after planting).  

Table 4.2 Mean minimum, maximum and average temperatures, relative humidity and wind-

run at Adet site during the study period. 

  Mean monthly air temperature (°C)     
Months Maximum Minimum Mean Relative humidity (%) Wind-run 100ms-1 
November 25.7 9.8 17.7 59.0 0.26 
December 25.7 7.6 16.0 42.0 0.28 
January 26.9 6.9 16.9 47.5 0.31 
February 29.9 8.9 19.4 39.3 0.37 
Mean 27.0 8.3 17.5 46.9 0.30 

 

4.2.4 Data collection and analyses 
Yield, yield components, growth parameters and physiological traits were measured under 

both irrigated and drought treatments. For growth and physiological traits, data was collected 

every two weeks after drought was imposed in well-watered and moisture stressed 

treatments. Measurements were taken from four tagged plants of parents and checks, and 

from all individual plants in crosses. Significant treatment x genotype interaction was 

observed for most of the traits at 40th day of measurement after the drought was imposed. 

Thus the data from this date were used to identify tolerant clones and families.    

The following growth parameters were measured: plant height (PHT) measured as the 

distance between soil surface and the apex of the main stem in centimeter. The number of 

main stems (STN.) was counted in each plant. Groundcover percentage (GC) was measured 

using grid (0.75 m x 0.60 m) that was divided into (0.075 m x 0.06 m) squares. The quadrat 

was held just above the canopy and the number of squares at least half filled with green 

leaves were counted and then divided by the total number of squares to determine the 

percentage cover (Boyd et al., 2002). 
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Physiological measurements included: Chlorophyll content (CC) measured using SPAD-502 

chlorophyll meter (Minolta Co., Ltd. Japan) on the two apical leaflets of the third fully 

expanded leaf of the main stem. Canopy temperature (CT) was measured by a portable 

infrared thermometer (Major Tech-MT694) which is designed to sense long-wave infrared 

radiation emitted from its target and convert it to average temperature display which can be 

related to transpiration. CT measurements (°C) were taken on eight clear (cloudless), 

windless and sunny days between 9:00 to 10:00, 10:30 to 11:30 and 6:00 to 7:00 to identify 

the best time for genotype discrimination. Measurements taken at 10:30 to 11:30 that show 

the only significant difference among genotypes are presented in this study.  

Yield and yield related traits: at harvest, tubers of each plot were graded in to two categories: 

>30 mm (marketable), <30mm (unmarketable) and were counted and weighted. Form these, 

total number of tubers (per plant), marketable tuber number (per plant), total tuber yield (kg 

plant-1), marketable tuber yield (kg plant-1) and average tuber weight (g) were determined. 

Average tuber weight was calculated as total tuber yield divided by total tuber number. 

Drought tolerance index (DTI) was determined by multiple regression of stress yield on non-

stress yield and maturity score under well-watered treatments over all genotypes in the study 

(Bidinger et al., 1987; Blum, 2011). For every data point the deviation from the regression 

was calculated. High and positive deviations of the actual yield from the expected indicate 

relative drought resistance independent of the effect of phenology and yield potential (Blum, 

2011). The relative reduction of all the measured traits was calculated as RR = (control - 

stressed)/control and expressed in percentage. 

4.2.5 Data analyses 
The data for growth, physiological and yield related traits were subjected to the general 

analysis of variance for all crosses, parents and checks using the GLM procedure of SAS 9.3 

(SAS Institute Inc, 2011) statistical program. Two way analysis of variance was performed in 

a randomized complete block design (RCBD) because the relative efficiency of the lattice 

designs over RCBD was not significant. The Spearman correlation was used to examine the 

relation between the traits.  

Genetic analysis was performed using the North Carolina Design II procedure (Comstock 

and Robinson, 1952) with SAS version 9.3 (SAS Institute Inc, 2011) for individual sets and 

pooled over sets to identify the significance level of general combining ability (GCA) of 

parents and specific combining ability (SCA) of crosses. The same linear model, explained in 

Chapter 3, Section 3.1.5 (Hallauer et al., 1988), was used for the analysis.  
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Throughout the text, variation due to males within sets, females within sets, and males x 

females within sets will be referred to as GCAm, GCAf and SCA variation, respectively. For 

each trait, general combining ability effect for each clone and specific combining ability effect 

for each F1 family were calculated according to Beil and Atkins (1967). For chlorophyll 

content and canopy temperatures negative estimate of combining ability (GCA and SCA) 

effects were taken as high in a desirable direction, while neutral or positive estimate were 

regarded as low or undesirable. For the rest of the traits, positive estimate of GCA and SCA 

effects were taken as high to identify genotypes with high yield and yield components, 

whereas neutral or negative estimates as low. Standard errors for GCA effects of female and 

male parents and SCA effects of families in each sets were calculated by using the method 

described by Cox and Frey (1984). The relative importance of additive (GCA) and non-

additive (SCA) genetic effects in determining the performance of the progeny for each of the 

traits was determined by individually expressing the GCAf mean square, GCAm mean square, 

and the SCA mean square as a percentage of the treatment (crosses) mean square. 

 

Figure 4.1 Average soil water potential measured by water mark sensor at the 0.3 m and 0.6 

m soil depth for water stressed and non-stressed experiments at weekly intervals.  

4.3 Results 

4.3.1 Effects of water stress  
Soil water potential reached 97 Centibars (cb) on the 55th day after planting which ensured 

the drought stress was coincided with tuber bulking (Figure 4.1). The results revealed that 

drought affected all the measured traits, although genotypic response differed as indicated 

by trait mean values and the percentage of relative reduction (RR%) for the tested population 

(Table 4.3). The yield reduction in the most susceptible clone 395017.14 was 57%, showing 

the occurrence of sufficient moisture stress that allowed discrimination of genotypes based 

on their drought tolerance. Drought stress had drastic effect on marketable tuber yield, 
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average tuber weight and total tuber yield with the corresponding relative reduction of about 

51, 49 and 47%, respectively. Groundcover, number of marketable tuber per plant, and plant 

height were considerably less than the irrigated plants with 25, 22 and 19% reduction, 

respectively. Canopy temperature increased markedly under stress by 48%. Chlorophyll 

content and total tuber number were also increased slightly by 7, and 13%, respectively 

under stress condition. Number of main stems was not affected by drought as the stems 

were completely emerged before the stress became severe.  

Table 4.3 Analysis of variance, mean values, and relative reduction (RR%)  of the traits 

under control and drought condition 

  Mean square and Significance   Means   
Traits Genotype (G) Treatment (T) G*T CV (%) Control Drought RR (%) 

TTY(kg plant-1) 0.031*** 5.410*** 0.009*** 10.9 0.71 0.38 47 
MTY(kg plant-1) 0.035*** 5.816*** 0.009*** 11.2 0.68 0.34 51 
TTN(per plant)  32.832*** 47.125*** 18.960*** 13.2 13.62 14.6 -7 
MTN (per plant) 4.633*** 176.940*** 1.688** 11.9 8.62 6.72 22 
ATW (g)  456.550*** 36022.670*** 165.110*** 14.3 55.16 28.05 49 
PHT (Cm) 230.093*** 6108.974*** 30.799*** 5.6 57.67 46.51 19 
GC (%) 246.740*** 12159.120*** 59.920** 10.3 62.61 46.86 25 
STN (per plant) 2.186*** 0.004ns 0.237ns 21.6 2.95 2.96 0 
CC (SPAD reading) 37.769*** 1623.381*** 3.432ns 3.5 43.04 48.8 -13 
CT(°C) 2.616*** 3186.997*** 4.419*** 5.1 16.9 24.96 -48 
***, **,*, ns = significant at P< 0.001, P< 0.01, P< 0.05 and non-significant at P> 0.05, 
respectively; TTY = total tuber yield; MTY = marketable tuber yield; TTN= total tuber number; 
MTN= marketable tuber number; ATW= average tuber weight; PHT = plant height; GC = 
groundcover; STN = stem number; CC = chlorophyll content; CT = canopy temperature;  
RR(%)= percentage of relative reduction; CV(%) = coefficient of variance; MS = mean square  

4.3.2 Genetic variation under water stressed and well-watered conditions 
Analysis of variance showed the existence of highly significant variation (p<0.001) among the 

genotypes for all the traits under both stressed and non-stressed conditions. This indicated 

that the populations had wide genetic background for the tested drought related traits. There 

were significant differences between well-watered and water stressed treatments for all the 

traits except for number of main stems. Highly significant interaction between the treatments 

and the genotypes was observed for most of the traits indicating that clones responded 

differently according to the water level. Chlorophyll content showed significant differences 

between genotypes and treatments, however, interaction between genotype and treatment 

was not significant. 

4.3.3 Correlation of traits with tuber yield in the stressed treatments 
Under drought condition, total tuber weight was significantly (P<0.001) and positively 

correlated with marketable tuber yield, marketable tuber number, average tuber weight, plant 
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height, groundcover and number of main stem (Table 4.4). High yielding clones tended to be 

taller, vigorous and well branched and had bigger tubers under drought condition. Canopy 

temperatures measured under water stressed treatment did not have strong correlation with 

most of the traits measured. However, the canopy temperatures measured in well-watered 

treatment had significant and negative correlation for total and marketable tuber yield under 

drought condition (r = -0.34). This indicates that genotypes with lower canopy temperatures 

under well-watered condition tended to have higher yield under water stressed environment. 

Similarly, stronger and negative correlation was obtained between total tuber weight in 

stressed treatment and chlorophyll content in well-watered condition (r = -0.38) than the 

measurement taken in treatments exposed to water stress (r = -0.28). This shows that high 

yielding genotypes under stress tended to lose their chlorophyll content earlier (early 

senescent) than the low yielding ones. Hence, canopy temperatures and chlorophyll content 

obtained from well-watered treatment were used for phenotyping and for combining ability 

estimation. 

Table 4.4 Pair-wise correlation coefficients of yield and agronomic traits under water stressed 

condition, and physiological parameters under well-watered condition among potato 

genotypes evaluated at Adet, Ethiopia 

  TTY MTY TTN MTN ATW PHT GC STN CC CT 

TTY 1 
         MTY 0.967*** 1 

        TTN -0.108ns -0.279** 1 
       MTN 0.704*** 0.655*** 0.222* 1 

      ATW 0.649*** 0.772*** -0.793*** 0.256* 1 
     PHT 0.521*** 0.492*** -0.122ns 0.221* 0.398*** 1 

    GC 0.682*** 0.676*** -0.08 ns 0.445*** 0.471*** 0.437*** 1 
   STN 0.329*** 0.311** 0.103 ns 0.532*** 0.121ns 0.036ns 0.27** 1 

  CC -0.281** -0.313** 0.342*** -0.266** -0.374*** 0.156ns -0.169ns -0.375*** 1 
 CT 0.066ns 0.126ns -0.312** 0.060 ns 0.286** -0.145ns -0.031ns 0.226* -0.238* 1 

***, **,*, ns = significant at P< 0.001, P< 0.01, P< 0.05 and non-significant at P> 0.05, 
respectively; TTY = total tuber yield; MTY = marketable tuber yield; TTN= total tuber number; 
MTN= marketable tuber number; ATW= average tuber weight; PHT = plant height; GC = 
groundcover; STN = stem number; CC = chlorophyll content; CT = canopy temperature  

4.3.4 Drought tolerance of crosses and clones 
Data for tuber yield and seven important yield determinant traits which showed high 

correlation to total tuber yield are presented in Table 4.5. Genotypes in Table 4.5 are sorted 

in descending order based on their drought tolerance index (DTI). The total tuber yield per 

plant ranged from 0.5 to 0.2 kg for the families of the crosses 395109.34 x 396041.102 and 

395096.2 x 395017.14 respectively and from 0.6 to 0.3 kg for the clones 396038.107 and 

395096.2, respectively. The clones 396038.101, 396038.107, 396029.25, Gorebella and 
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395112.32 were the most tolerant based on drought tolerance index. All of these clones 

exhibited the highest plant height and groundcover except Gorebella and 396029.25 for plant 

height and groundcover, in that order. Clone 396038.107 had the highest groundcover and 

favorable chlorophyll content (lower). Clone 395112.32 showed the highest stem number and 

plant height. The clones with high DTI widely differed in their canopy temperatures although 

all were in the lower half among the tested genotypes. The following families displayed high 

yield and high drought resistance index: 396034.103 x 396038.107, 395096.2 x 396012.288, 

395109.34 x 396041.102, 396031.108 x 396012.288, 395109.34 x 396038.107, 395112.32 x 

396012.288, 395112.32 x 396264.14, 395109.7 x 395017.14, 396034.103 x 395011.2 and 

395112.32 x 395077.12. 
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Table 4.5 Mean responses of nine traits assessed for crosses parents and checks during 

2014/2015 at Adet. 

  TTYa MTY ATW PHT GC STN CC CT DRI 
Crosses                   
396034.103 x 396038.107 0.46b-f 0.42b-g 27.8i-n 37.0tu 57.4a-d 3.4a-l 44.6f-l 18.0a-f 0.11 
395096.2 x 396012.288 0.48a-e 0.42b-g 26.5j-o 62.9a 58.9a-c 2.7e-q 42.9i-o 17.8a-h 0.10 
395109.34 x 396041.102  0.48a-e 0.45a-d 34.5f-i 56.6a-e 51.9b-i 2.0m-q 44.5f-l 16.1i-o 0.09 
396031.108 x 396012.288 0.41d-l 0.38c-j 35.3f-h 53.4c-i 48.6d-m 3.1b-n 39.7q-t 16.9d-n 0.07 
395109.34 x 396038.107 0.45b-g 0.43b-f 37.0e-g 56.8a-e 49.8 c-l 2.2j-q 45.7b-h 18.3a-f 0.07 
395096.2 x 395077.12 0.31m-r 0.27n-r 17.2r-t 43.8m-t 39.2m-q 2.5g-q 45.6c-i 17.6a-i 0.06 
396031.108 x 395017.14 0.38f-o 0.32i-p 20.7o-r 47.7g-q 46.6e-n 3.1b-o 41.9l-r 17.5a-j 0.06 
395112.32 x 396012.288 0.48a-e 0.45a-e 39.7d-f 59.9a-c 59.1a-c 3.2b-n 41.0o-s 15.8k-p 0.05 
396031.108 x 395077.12 0.39e-n 0.36f-m 30.2g-k 45l-s 43.4h-q 2.5g-q 41.8m-r 16.0k-p 0.04 
395112.32 x 396264.14 0.44c-h 0.39c-i 23.8k-r 50.5e-m 46.2f-n 4.2ab 43.3g-m 16.9d-n 0.04 
395109.7 x 395017.14 0.43c-j 0.34f-o 22.1m-r 52.0d-l 54.9b-f 2.6f-q 43.8f-l 16.8e-o 0.04 
396034.103 x 395011.2 0.40 e-m 0.33h-p 21.2n-r 43.1n-t 42.1i-q 4.2ab 42.8i-o 16.5e-o 0.02 
396004.263 x 396038.107 0.31m-r 0.26o-r 18.7p-s 43.4m-t 36o-q 2.3i-q 45.7b-g 17.6a-j 0.02 
395112.32 x 395077.12 0.43c-i 0.37d-l 24.9j-q 56.3a-f 51.1b-j 4.1a-c 43.4f-m 15.5n-r 0.01 
396004.263 x 396041.102 0.30o-r 0.27o-r 18.1q-s 43.8m-t 37.5n-q 2.3i-q 45.5d-j 17.8a-g 0.01 
395109.34 x 395017.229 0.38f-o 0.26p-r 12.6st 48.8g-p 45.9f-o 2.3i-q 41.7m-r 17.1b-l 0.00 
396031.108 x 396264.14 0.31n-r 0.27o-r 25.2j-p 40.0r-t 39.5m-q 2.2k-q 43.3h-m 17.8a-g 0.00 
396004.263 x 395011.2 0.34i-p 0.30 j-q 24.2k-q 42.9o-t 44.2g-p 4.1a-d 45.2e-k 15.9k-p -0.01 
395109.7 x 396264.14 0.40e-m 0.36f-m 29.3h-l 52.9c-j 54.9b-f 3.5a-j 42.9h-n 16.9e-o -0.01 
396034.103 x 396041.102 0.41d-k 0.38c-k 25.2j-p 47.6h-q 53.5b-g 4.6a 42.5j-p 15.3o-r -0.01 
395109.34 x 395011.2 0.30o-s 0.27o-r 27.9i-n 45.4k-s 40.2k-q 2.6f-q 45.2e-k 19.3ab -0.01 
395096.2 x 396264.14 0.29o-s 0.27o-r 33.7f-i 46.0j-r 36.7n-q 1.8o-q 48.0bc 17.5a-j -0.02 
395015.6 x 395017.229 0.35h-o 0.32i-q 28.3i-m 36.8tu 43.4h-q 3.4a-k 38.5s-u 17.0c-l -0.02 
395109.7 x 396012.288 0.41d-l 0.37e-l 36.1f-h 57.2a-e 50.6 b-j 4.1a-d 38.1v 17.2b-k -0.04 
395109.7 x 395077.12 0.32l-r 0.29k-r 26.7j-o 46.9h-r 39.4m-q 3.2b-m 42.1k-q 17.4b-k -0.04 
395015.6 x 396038.107 0.36h-o 0.30j-q 24.3k-q 46.4i-r 46.1f-n 2.9c-p 46.4b-e 14.7r -0.04 
395112.32 x 395017.14 0.35h-p 0.29l-r 18.2q-s 50.2e-n 48.8d-m 3.7a-g 47.2b-d 19.6a -0.06 
395096.2 x 395017.14 0.21s 0.17s 12.5st 46j-r 33.5q 1.9n-q 49.3b 18.3a-e -0.06 
396034.103 x  395017.229 0.24rs 0.16s 10.5t 36.5tu 35.7pq 2.6g-q 45.5d-i 18.5a-c -0.06 
396004.263 x 395017.229 0.25q-s 0.22rs 20.4o-r 31.2uv 44.9f-p 2.8e-p 40.7p-t 18.5a-d -0.07 
395015.6 x 395011.2 0.26p-s 0.21rs 17.3r-t 46.7i-r 36.0o-q 2.6f-q 44.1f-l 17.0c-l -0.08 
395015.6 x 396041.102 0.29o-s 0.23q-s 19.3p-s 42.1p-t 38.6n-q 3.1b-o 45.8b-f 16.5f-o -0.09 
Parents and checks                   
396038.101* 0.53ab 0.51a 46.7a-c 50.1e-o 49.8c-l 2.7e-q 41.8m-r 16.2h-o 0.11 
396038.107 0.55a 0.53a 51.8a 55.0b-g 67.3a 3.2b-n 38.1uv 17.0d-m 0.10 
396029.25* 0.49a-d 0.46a-c 40.0c-f 54.2 b-h 41.5j-q 2.4i-q 38.9r-t 16.0j-o 0.08 
Gorebella* 0.46a-f 0.42b-f 31.7g-j 37.6tu 52.3b-h 3.8a-f 41.1n-s 15.0p-r 0.02 
395112.32 0.51a-c 0.48ab 44.8bd 60.8ab 53.0b-h 3.9a-e 44.5f-l 16.4g-o 0.00 
Belete* 0.43c-j 0.40c-i 43.1c-e 38.3s-u 50.0c-k 2.8e-q 33.2w 15.5m-r -0.01 
Guassa* 0.36h-o 0.33h-p 23.7k-r 26.6v 38.5n-q 3.6a-i 38.3t-v 15.2o-r -0.01 
395017.229 0.39e-n 0.36f-m 28.4i-m 32.5uv 56.8 b-d 2.4h-q 41.4n-s 15.0qr -0.01 
395109.34 0.37g-o 0.36f-n 50.5ab 58.8a-d 60.5ab 1.7pq 52.6a 19.6ab -0.01 
396004.263 0.41d-k 0.39c-i 35.8f-h 41q-t 44.0g-p 3.7a-h 40.9p-s 15.8l-q -0.03 
395096.2 0.30o-s 0.26p-r 19.2p-s 46.8i-r 43.3h-q 1.5q 45.1f-k 18.4a-e -0.03 
396034.103 0.43c-h 0.41b-h 36.4e-g 49.2f-p 56.3b-e 4.5a 42.2j-p 17b-l -0.04 
396031.108 0.36g-o 0.34g-p 33.8f-i 45.5k-s 49.8c-l 3.1b-n 39.8p-t 16.1h-o -0.06 
395015.6 0.34j-p 0.29l-r 27.8i-n 52.6c-k 44.8 g-p 2.2k-q 40.8p-s 16.4f-o -0.06 
395011.2 0.34 k-q 0.28m-r 23.2l-r 31.6uv 39.5m-q 2.8d-p 40.3p-t 16.6e-o -0.06 
395077.12 0.33k-q 0.31j-q 26.2j-o 45.2l-s 40l-q 2.4h-q 42.0l-q 16.6e-o -0.07 
395017.14 0.33k-q 0.29l-r 22.0m-r 37.6tu 54.8b-f 2.1l-q 49.6b 15.7m-r -0.09 
Mean 0.38 0.34 28.1 46.5 46.9 3 43 16.9   
CV (%) 11.6 12.3 12.2 7.8 10.6 21.3 2.8 4.6   

TTY = total tuber yield; MTY = marketable tuber yield; TTN = total tuber number; MTN= 
marketable tuber number; ATW = average tuber weight; PHT = plant height; GC = 
groundcover; STN = stem number; CC = chlorophyll content; CT = canopy temperature; DTI 
= drought tolerance index; a means in a column followed by the same letter(s) are not 
significantly different at P < 0.05; * clones used as checks, the rest are parents 
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4.3.5 Combining ability 
The analyses of variance of groundcover, plant height, marketable and total tuber yield, 

average tuber weight, chlorophyll content and canopy temperature following North Carolina 

Design II procedure pooled over sets is presented in Table 4.6. Results showed that the 

GCA due to females within sets (GCAf), GCA due to males within sets (GCAm) and SCA 

within sets were significant for all the traits tested. The sets also were significantly different 

for all the traits except for canopy temperature.    

Total GCA (i.e., male plus female main effects) accounted for 83% for plant height and 

chlorophyll content, 68% for marketable and average tuber weight, 66% for total tuber 

weight, 60% for canopy and 48% for canopy temperatures. Hence, GCA effect was more 

important than SCA effect for all the traits except for canopy temperature. Contribution of 

GCAf and GCAm were almost the same for most of the traits assessed except for average 

tuber weight, marketable tuber weight and chlorophyll content where the GCAm effects were 

3, 1.6, and 1.5 times larger than GCAf effect, respectively. However, the ratio of their mean 

squares (i.e., the F-test or variance ratio) were statistically non-significant.  

Table 4.6 Summary mean squares and significant tests of combining ability effects for yield 

and growth traits under water stressed condition and for physiological traits under well- 

watered condition of potato genotypes evaluated at Adet, Ethiopia  

Source of variation d.f TTW MTW ATW GT PHT CT CC 

Set 1 0.0125* 0.018** 187.80*** 144.43* 695.40*** 0.093ns 6.13* 

Replication (set) 2 0.0003ns 0.002ns 104.18*** 64.95ns 173.14*** 0.020ns 13.10** 

GCAf 6 0.0160*** 0.014*** 77.56*** 128.44*** 158.50*** 2.139** 20.32*** 

GCAm 6 0.0147*** 0.022*** 235.51*** 135.45*** 171.05*** 2.804*** 30.89*** 

SCA 18 0.0079*** 0.008*** 74.39*** 88.16*** 32.63*** 2.690*** 5.32*** 

Error 30 0.0017 0.001 3.06 23.95 8.29 0.826 0.92 

GCA/(GCA+SCA)% 
 

65.992 68.39 67.79 59.95 83.47 47.886 82.81 

Contribution of GCAf 
 

34.340 26.43 16.79 29.18 40.15 20.719 32.86 

Contribution of GCAm   31.652 41.95 50.99 30.77 43.32 27.167 49.95 

***, **,*, ns = significant at P< 0.001, P< 0.01, P< 0.05 and non-significant at P> 0.05, 
respectively; d.f. = degree of freedom; TTW = total tuber weight; MTW = marketable tuber 
yield; ATW= average tuber weight; PHT = plant height; GC = groundcover; CT = canopy 
temperature; CC = chlorophyll content; GCA = general combining ability; GCAf = general 
combining ability for female; GCAm = general combining ability for male; SCA = specific 
combining ability 
 
Analysis of individual sets showed that GCAm effect was significantly larger than GCAf effect 

only for chlorophyll content in set I (Table 4.7). Generally, the proportions of GCA variance 

over total treatment variance were higher in set II than in set I for all of the traits. Set II had 

larger mean values for total tuber yield, marketable tuber yield, average tuber weight, 
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groundcover, plant height and low mean value for chlorophyll content. This could indicate 

more drought tolerance individuals could be found in set II than set I. GCAf effect was 

relatively larger than GCAm effect for most of the traits evaluated in set I, whereas GCAm was 

relatively larger than GCAf effect in set II for all the traits except for chlorophyll content. This 

reflects female parents in set I and male parents in set II differ more in the traits measured 

than their male and female counterparts, respectively. GCAf was non-significant for 

chlorophyll content in set I and canopy temperature in set II. SCA was non-significant for 

chlorophyll content in set II.  

Table 4.7 Summary mean squares and significant tests of combining ability effects for yield 

and agronomic traits under water stressed condition and for physiological traits under well- 

watered condition of potato genotypes tested in set I and set II at Adet, Ethiopia  

Source of variation d.f. TTY MTY ATW GC PHT CT CC 

Set I 

Replication 1 0.0042ns 0.0070ns 86.81*** 1.334ns 100.77* 0.052ns 5.23ns 

GCAf 3 0.0186*** 0.0154*** 95.86*** 103.679ns 228.16*** 3.010** 0.71ns 

GCAm 3 0.0135** 0.0218*** 114.11*** 70.696ns 129.11*** 2.500* 23.15*** 

SCA 9 0.0084** 0.0110*** 102.39*** 88.735ns 36.26* 3.497*** 8.15** 

Error 15 0.0017 0.0017 2.15 35.778 12.13 0.549 1.53 

CV (%) 
 

11.778 13.5466 6.39 13.612 7.9 4.324 2.81 

Mean 
 

0.3495 0.3006 22.95 43.941 44.07 17.137 44.01 

R2 
 

0.8739 0.8972 0.98 0.711 0.89 0.854 0.87 

GCA/(GCA+SCA)% 
 

65.5515 62.8355 50.63 49.56 83.12 44.066 59.4 

GCAf/GCAm ratio 
 

1.3768 0.7059 0.84 1.467 1.77 1.204 0.03** 

Set II 

Replication 1 0.0018ns 0.0006ns 26.19* 104.904** 73.44** 0.184ns 8.02* 

GCAf 3 0.0133** 0.0118*** 59.27*** 153.191*** 88.84*** 1.268ns 39.93*** 

GCAm 3 0.0159*** 0.0214*** 356.91*** 200.199*** 212.98*** 3.109** 38.62*** 

SCA 9 0.0074** 0.0053** 46.39*** 87.584*** 29.00** 1.883* 2.48ns 

Error 15 0.0015 0.001 3.6 10.958 4.92 0.533 1.03 

CV (%) 
 

10.292 9.646 7.19 7.051 4.38 4.242 2.34 

Mean 
 

0.3775 0.3339 26.38 46.946 50.66 17.213 43.39 

R2 
 

0.8732 0.9047 0.97 0.922 0.94 0.791 0.95 

GCA/(GCA+SCA)% 
 

66.4819 75.8768 81.77 66.859 83.88 53.75 94.06 

GCAf/GCAm ratio   0.8377 0.553 0.17 0.765 0.42 0.408 1.03 
**, **,*, ns = significant at P< 0.001, P< 0.01, P< 0.05 and non-significant at P> 0.05, 
respectively; d.f. = degree of freedom; TTW = total tuber weight; MTW = marketable tuber 
yield; ATW= average tuber weight; PHT = plant height; GC = groundcover; CT = canopy 
temperature; CC = chlorophyll content; GCA = general combining ability; GCAf = general 
combining ability for female; GCAm = general combining ability for male; SCA = specific 
combining ability; R2= coefficient of determination 
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4.3.6 General combining ability effects of parents 
Estimates of the GCA effects for the 16 parents are shown in Table 4.8. The GCA estimates 

for total tuber weight per plant ranged from 0.052 for clone 395109.34 to -0.048 for clone 

396004.263 in Set I and from 0.065 for clone 396012.288 to -0.052 for clone 395096.2 in set 

II. The parents which possessed good GCA effects for yield under drought stress were the 

clones 395109.34, 396034.103 and 395112.32 among female parents and clone 396012.288 

and 396038.107 among male parents, which had significant and positive estimates. These 

parents also showed positive GCA estimate for marketable tuber yield, average tuber weight, 

groundcover and plant height. Male parent 396012.288, which had the highest positive GCA 

effect and female parent 396034.103 showed negative estimate for canopy temperature and 

chlorophyll content. Parent 395109.34 had undesirable and positive GCA effect for canopy 

temperature whereas parent 396038.107 had positive and undesirable GCA effect for 

chlorophyll content. Parents 396004.263, 395096.2 and 395017.14 displayed undesirable 

GCA effects for all the traits measured. Parents 395015.6 and 395017.229 also had 

undesirable GCA effects for most of the traits although they had significant desirable effect 

for canopy temperature and chlorophyll content, respectively. 
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Table 4.8 Estimates of general combining ability (GCA) effects of 32 potato parents in two 

sets for seven traits assessed at Adet, Ethiopia. 

Parents TTY MTY ATW GC PHT CT CC 

Set I 

Female 
       395015.6 -0.034** -0.035** -0.657 -2.932 -1.056 -0.837** -0.314 

395109.34 0.052** 0.052** 5.053** 3.019 7.827** 0.571* 0.247 
396004.263 -0.048** -0.038** -2.601** -3.297 -3.747** 0.315 0.261 
396034.103 0.029* 0.02 -1.795** 3.21 -3.024** -0.049 -0.195 
Male 

       395011.2 -0.024 -0.021 -0.29 -3.319 0.461 0.052 0.286 
395017.229 -0.044** -0.063** -5.015** -1.465 -5.740** 0.645** -2.413** 
396038.107 0.045** 0.052** 3.974** 3.368 1.829 0.022 1.570** 
396041.102 0.023 0.032** 1.330** 1.415 3.451** -0.720** 0.557 
SE 0.013 0.012 0.449 1.831 1.066 0.227 0.379 

Set II 

Female 
       395096.2 -0.052** -0.050** -3.914** -4.884** -1.008 0.592 3.041** 

395112.32 0.046** 0.043** 0.282 4.323** 3.550** -0.271 0.314 
395109.7 0.012 0.008 2.154** 2.995** 1.598* -0.171 -1.656** 
396031.108 -0.005 -0.001 1.478* -2.435* -4.140** -0.15 -1.699** 
Male 

       395017.14 -0.036** -0.054** -8.020** -1.013 -1.701* 0.840** 2.150** 
395077.12 -0.012 -0.009 -1.629** -3.670** -2.657** -0.608** -0.146 
396012.288 0.065** 0.070** 8.012** 7.322** 7.675** -0.292 -2.981** 
396264.14 -0.017 -0.008 1.637** -2.639** -3.317** 0.06 0.977** 
SE 0.012 0.01 0.581 1.014 0.679 0.224 0.31 

SE = standard error; *, ** significantly different from zero at ≥ 1.96SE and 2.56SE 
respectively; TTY = total tuber yield; MTY = marketable tuber yield; ATW= average tuber 
weight; GC = groundcover; PHT = plant height; CT = canopy temperature; CC = chlorophyll 
content 

4.3.7 Specific combining ability effects and mean response of families 
Families from the following crosses: 395109.34 x 396041.102, 395015.6 x 395017.229, 

396004.263 x 395011.2 in set I and 395096.2 x 396012.288, 395109.7 x 395017.14 and 

396031.108 x 395017.14 in set II showed significant and desirable SCA effect for most of the 

traits measured (Table 4.9). The clone from cross 396034.103 x 395011.2 also had 

significant and desirable SCA effect for total tuber weight. All of these families had desirable 

SCA effect for chlorophyll content and/or canopy temperature. Among these families 

395109.34 x 396041.102, 395096.2 x 396012.288, 395109.7 x 395017.14 and 396031.108 x 

395017.14 were drought tolerant with the highest DTI value.  
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Table 4.9 Estimates of specific combining ability effects (SCA) of 32 F1 potato families 

evaluated in two sets for yield, yield components and drought related traits at Adet, Ethiopia. 

Crosses TTY MTY ATW GC PHT CT CC 
Set I               
395015.6 x 395011.2 -0.029 -0.036 -4.722** -1.69 3.255* 0.656 0.095 
395015.6 x 395017.229 0.082** 0.114** 11.028** 3.844 -0.464** 0.073* -2.752** 
395015.6 x 396038.107 -0.003 -0.014 -1.932** 1.722 1.549 -1.596** 1.13 
395015.6 x 396041.102 -0.049** -0.063** -4.374** -3.875 -4.341** 0.867* 1.528** 
395109.34 x 395011.2 -0.080** -0.058** 0.211 -3.407 -6.929** 1.584** 0.617 
395109.34 x 395017.229 0.02 -0.032 -10.388** 0.428 2.609 -1.236** -0.198 
395109.34 x 396038.107 0.003 0.02 4.978** -0.551 3.077 0.563 -0.142 
395109.34 x 396041.102 0.057** 0.069** 5.200** 3.53 1.243 -0.911** -0.276 
396004.263 x 395011.2 0.063** 0.062** 4.150** 6.83 2.124 -1.604** 0.634 
396004.263 x 395017.229 -0.008 0.019 5.055** 5.748 -3.348** 0.397 -1.137* 
396004.263 x 396038.107 -0.034 -0.051** -5.668** -8.018 1.244 0.124 -0.146 
396004.263 x 396041.102 -0.021 -0.029 -3.537** -4.56 -0.02 1.083** 0.65 
396034.103 x 395011.2 0.046* 0.032 0.361 -1.732 1.55 -0.637 -1.345* 
396034.103 x  395017.229 -0.093** -0.101** -5.695** -10.02 1.202 0.767* 4.088** 
396034.103 x 396038.107 0.035 0.045* 2.623** 6.847 -5.871** 0.909** -0.841 
396034.103 x 396041.102 0.013 0.023 2.711** 4.905 3.118 -1.039** -1.901** 
SE 0.019 0.019 0.686 2.798 1.629 0.347 0.579 
Set II               
395096.2 x 395017.14  -0.076** -0.062** -1.961* -7.567** -1.987 -0.33 0.671 
395096.2 x 395077.12 0.001 0 -3.626** 0.822 -3.232** 0.409 -0.643 
395096.2 x 396012.288 0.089** 0.065** -4.007** 9.505** 5.589** 0.281 -0.579 
395096.2 x 396264.14 -0.014 -0.003 9.594** -2.76 -0.37 -0.36 0.551 
395112.32 x 395017.14 -0.037* -0.034* -0.46 -1.465 -2.305* 1.824** 1.298 
395112.32 x 395077.12 0.018 0.004 -0.087 3.456* 4.754** -0.862* -0.174 
395112.32x 396012.288 -0.011 0.005 5.030** 0.464 -2.023 -0.855* 0.254 
395112.32 x 396264.14 0.03 0.025 -4.483** -2.455 -0.426 -0.108 -1.378 
395109.7 x 395017.14 0.072** 0.056** 1.534 5.981** 1.409 -1.081** -0.05 
395109.7 x 395077.12 -0.053** -0.042** -0.225 -6.882** -2.655* 0.919** 0.536 
395109.7 x 396012.288 -0.047** -0.044** -0.449 -6.686** -2.721** 0.411 -0.687 
395109.7 x 396264.14 0.028 0.029 -0.86 7.587** 3.968** -0.25 0.202 
396031.108 x 395017.14 0.040* 0.039** 0.887 3.051* 2.883** -0.413 -1.919 
396031.108 x 395077.12 0.034 0.038* 3.938** 2.603 1.134 -0.467 0.281 
396031.108 x 396012.288 -0.03 -0.026 -0.573 -3.283* -0.845 0.162 1.013 
396031.108 x 396264.14 -0.044* -0.051** -4.251** -2.372 -3.172** 0.718* 0.625 
SE 0.018 0.015 0.887 1.548 1.038 0.342 0.474 

SE = standard error; *, ** significantly different from zero at ≥ 1.96SE and 2.56SE 
respectively; TTY = total tuber yield; MTY = marketable tuber yield; ATW= average tuber 
weight; GC = groundcover; PHT = plant height; CT = canopy temperature; CC = chlorophyll 
content 

4.4 Discussion 

4.4.1 Treatment effects 
Drought reduced yield of all potato genotypes in the present study. Genotypes had reduced 

marketable tuber number and yield, tuber size, plant height and groundcover due to drought. 

Contrary to previous reports (Lahlou et al., 2003; Schafleitner et al., 2007a; Cabello et al., 

2014), total tuber number increased by 7% under drought stress. Haverkort et al. (1990) 

found that, in both controlled and field conditions, drought before tuber initiation increased 

total tuber number, while the number of tubers remained unchanged when drought occurred 

during tuber initiation. Yield under drought stress had not shown any relation to total number 

of tubers in the present study, indicating that yield reduction due to the stress was associated 
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instead, with distribution of tuber size. Drought caused undesirable downward shift in tuber 

size distribution, which reduced the number of marketable tubers (>30mm). This was 

confirmed by stronger and negative correlation of total tuber number with average tuber 

weight (r = -0.79, P<0.001) as compared to their correlation under well-watered condition (r= 

-0.65, P<0.001). A similar result was reported by MacKerron and Jefferies (1988). Cabello et 

al. (2014) also indicated that total tuber number was a poor predictor of tuber yield under 

stress.  

Chlorophyll content, which is the indicator of delayed senescence, increased significantly 

(13%) in response to the stress. Similar results were observed by Rolando et al. (2015) and 

Ramírez et al. (2014) in potatoes. The increase in chlorophyll content could be explained by 

turgor loss or a reduction of leaf growth (Teixeira and Pereira, 2007; Rolando et al., 2015). 

Reduction of leaf growth was confirmed by 25% groundcover decrease under stress (Table 

4.2). However, the interaction of genotypes and moisture level was non-significant, showing 

genotypes had increased their chlorophyll content under stress in a similar manner. Blum 

(2011) and Rolando et al. (2015) pointed out that stay green (non-senescence) is largely a 

constitutive trait which can be expressed under well-watered conditions, and is highly 

heritable which makes it an easily manipulated trait for breeding. Canopy temperature 

increased due to stress. Decreased water uptake due to soil water depletion closes 

stomataes, which reduces transpiration and increases leaf temperature (Blonquist Jr. et al., 

2009). Leaf-canopy temperature is a reliable indicator of plant water stress (Blum et al., 

1982; Blum, 2011) 

4.4.2 Relation between yield and other traits  
High yielding genotypes were better able to maintain their marketable tuber yield, marketable 

tuber number, tuber size, plant height, and groundcover under water stress. Among the 

secondary traits tested, groundcover seems to be the major determinant of yield under stress 

followed by plant height (r = 0.68, P<0.001 and r = 0.52, P<0.001, respectively). A similar 

result has been reported by Schafleitner et al. (2007a) using vegetative indices which are 

related to leaf area index and above ground biomass. Rolando et al. (2015) and Boyd et al. 

(2002) concluded that genotypes which show less reduction in growth and carbon 

assimilation rate could also show less tuber yield reduction under stress. The measurement 

of groundcover has the advantage of being quick and non-destructive. 

In the present study, loss of chlorophyll content and cooler canopy in irrigated treatment had 

significant relationship with high yield under stress. Contrasting results have been reported in 

contribution of chlorophyll content (stay green trait) to yield under stress (Anithakumari et al., 

2012). Loss of chlorophyll content related to resource remobilization in pea and soybean 



94 
 

(Blum, 2011). Ramírez et al. (2014) found that a slower rate of chlorophyll concentration 

reduction and increased leaf greenness at early senescence were negatively correlated with 

tuber yield under water restriction in potato. Blum (2011) explained that resource mobilization 

capacity to the harvested organs of the plant, which leads to higher yield, is mutually 

exclusive with stay-green.  

Likewise, the correlation between low canopy temperature in irrigated treatment and high 

yield in stressed condition suggests that increased stomatal conductance is a desirable trait 

to improve yield under both stressed and non-stressed environment. Low canopy 

temperature related to high stomatal conductance and transpiration, which is associated with 

increased rate of photosynthesis. Early stomatal closure in response to drought causes a 

similar reduction in growth rate and final yield (Blum, 1988; Rolando et al., 2015). Reynolds 

et al. (1994) found that higher yielding wheat genotypes under different soil moisture 

condition showed lower canopy temperature under well-watered environment. Selection for 

low-transpiration types may translate to selection for low yield depression under stress, but 

would result in lower yields under optimum conditions (Spitters and Schapendonk, 1990). 

The present study demonstrated that the yield improvement in water-limited environment 

would not necessarily be associated with traits that cause yield penalty in high yielding 

environment.  

4.4.3 Variation in drought tolerance among the tested genotypes 
In the present study, maturity assessed on the 90th days after planting had significant (r = -

0.40) correlation with tuber yield showing that early maturing genotypes had better yield 

advantage over the lately matured ones. Highly significant (r = 0.60) correlation was also 

observed between yield under well-watered and yield under stress. Given the strong effects 

of phenology and yield potential on yield under the stress treatment in this study, it is clear 

that actual tuber yield under stress per se is of little value in describing a genotype’s drought 

tolerance. Regression analysis of the combined effects of phenology and yield potential on 

tuber yields in the stress treatments indicated that these two factors accounted for 36% of 

the observed variation in tuber yield under the stress (Data not shown). Therefore, in this 

study drought tolerance index (DTI) which is regressed for yield under stress and maturity 

was used to identify drought tolerant genotypes and crosses. This parameter could assure 

the yield achieved under stress was due to drought tolerance, instead of drought escape and 

is independent on yield potential.  

DTI was positively correlated to yield in the drought treatment. Conversely, the index is 

unrelated to yield under well-watered treatment, indicating that breeding for stress tolerance 

would not necessarily have negative effects on yield under non-stressed conditions for the 
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population studied. Based on the DTI value and yield under stress the following clones were 

classified as drought tolerant and high yielding under stress: 396038.101, 396038.107, 

396029.25, Gorebella and 395112.32. Among these, 395112.32, 396038.107 and 

commercial cultivar Gorebella were the best yielders both under drought and well-watered 

condition. The genotypes 396029.25 and 396038.107 had the additional merit of being late 

blight resistant and a good combiner for later blight resistance, respectively (Chapters 3 and 

4). Consequently, clone 396029.25 could be recommended for release in drought prone 

areas during the rainy season. Clone 396038.107 could also be a good parent to generate 

progenies with combined drought tolerance and late blight resistance. The study showed that 

the three local cultivars: Gorebella, Belete and Guassa had moderate to high levels of 

drought tolerance. This could be associated with the presence of drought related traits in 

these genotypes, since they were selected for yield stability across broad range of 

environments with variability in rainfall amount and distribution (Woldegiorgis, 2013; Kolech 

et al., 2015).  

4.4.4 Gene action and combining ability 
The study showed highly significant GCA and SCA effects for total tuber yield, marketable 

tuber yield, average tuber weight, plant height, groundcover and canopy temperature, 

indicating the importance of both additive and non-additive gene action in conditioning these 

traits. Larger GCA than SCA effects for total tuber yield (60%), marketable tuber yield (68%), 

average tuber weight (68%), plant height (83%), chlorophyll content (83%) and groundcover 

(60%), indicated that additive genetic effect predominantly control the phenotypic variation of 

these traits under moisture stress. There have been few studies on the inheritance of potato 

yield, yield components and drought related traits under moisture stress. Recently Cabello et 

al. (2014) reported the predominance of additive genetic variance over non-additive genetic 

for average tuber weight. In wheat, additive gene effects have been demonstrated in the 

genetic control of flag leaf area duration which is corresponded to ‘stay green’ effect (Simon, 

1999). Anithakumari et al. (2012) were able to identify three quantitative trait loci (QTL) for 

chlorophyll content. These traits can be effectively improved by appropriate selection 

procedures. For canopy temperature non-additive effect was predominant over additive 

effect (GCA effect = 48%), thus specific hybridization should be considered to enhance this 

physiological trait. 

The study showed that the following clones: 396038.107, 396034.103, 396012.288, 

395109.34, and 395112.32 contributed to high GCA effect for yield and most desirable traits 

for drought tolerance in their respective sets and were parents to the most resistant families 

as measured by DTI. Among these clones: 395112.32, 396034.103 and 396012.288 had 

negative GCA effect for chlorophyll content and/or canopy temperature, indicating that they 
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can be utilized as breeding parents for stress tolerance that does not compromise yield. The 

yield potential of clones 395112.32 and 396034.103 was confirmed by their high per se 

performance under well-watered experiment. On the other hand, clone 395109.34, which 

showed undesirable GCA canopy temperature and chlorophyll content, was among the 

lowest yielding genotypes under well-watered treatment, suggesting that it could be 

associated with undesired “static” yield stability which cause yield penalty if high rainfall 

occurs. Schafleitner et al. (2007a) explained that cultivars with minimal yield losses under 

drought might have a low yield potential if their resistance is associated with stay green 

and/or high canopy temperature. Nevertheless, these cultivars might harbour interesting 

drought tolerance traits that could be transferred to higher yielding commercial varieties. In 

addition clones 395017.229, 395109.7 and 396031.108, which had significant and negative 

GCA effect for chlorophyll content, can also be utilized for breeding for high yields, because 

loss of chlorophyll content was found to be correlated with yield both under stress and well-

watered condition. Clone 396041.102 with high and significant GCA effect for marketable 

tuber yield, average tuber weight, plant height and canopy temperature could be an 

important donor for yield components and cooler canopy temperature.  

Families from crosses of 395109.34 x 396041.102, 395096.2 x 396012.288, 395109.7 x 

395017.14, 396031.108 x 395017.14 were among the most drought tolerant crosses which 

showed significant SCA effect for most yield and drought related traits. Most of the crosses 

with high yield and drought tolerance were obtained from the parental combination with 

different desirable characters. For instance, the family 395109.34 x 396041.102 had high 

GCA effect of female parent 395109.34 for yield and growth traits in moisture stressed 

condition complementing with the desirable GCA effect of the male parent 396041.102 for 

canopy temperature. The high SCA effect observed in crosses involving 395096.2 and 

395017.14 could be explained by their complementary effects for high root dry mass (Table 

4.1) with the desired GCA effect of their male and female counterparts for yield components 

and physiological traits, respectively. Larger roots and deeper roots provide better access to 

remaining soil water. Different combinations of drought tolerance traits may lead to the same 

effect, which is tuber yield maintenance under drought condition (Schafleitner et al., 2007b). 

Effective crop improvement for drought tolerance will require the pyramiding of many 

complementary characters, with different combinations (Obidiegwu et al., 2015). Among the 

best yielders and drought tolerant families, 395096.2 x 396012.288 showed good SCA effect 

for late blight resistance (Chapter 4), suggesting that the progenies from this combination 

would be high yielding, drought tolerant and late blight resistant.  
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4.5 Conclusions 

The present study showed that the parents 396034.103, 396012.288 and 395112.32 were 

good combiners for tuber yield under stress and most drought related traits that do not affect 

yield under non-stressed situation. Families from crosses of 395109.34 x 396041.102, 

395096.2 x 396012.288, 395109.7 x 395017.14, 396031.108 x 395017.14 were selected for 

their best SCA effects for high yield and drought tolerance. The selected parents and families 

were the best candidates to develop improved potato varieties for drought prone areas of the 

north-western Ethiopia or similar environments. The predominance of variance due to GCA 

over SCA effects suggests that high response to selection would be obtained either by 

directly selecting for yield or for desirable traits correlated with yield. Overall, results indicated 

that it would be possible to breed improved potato cultivars with combined drought tolerance 

and high yield potential. 
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CHAPTER 5. Genetic diversity analysis of selected potato 
genotypes using SSR markers 

Abstract 

Knowledge about diversity of genetic resources is important for an efficient choice of parents. 

The objective of this study were to assess the level of genetic diversity among eighteen 

selected potato clones using 23 simple sequence repeat (SSR) markers and to complement 

phenotypic selection for identification of suitable parents for breeding. The results showed 

that pair-wise estimates of similarity ranged from 0.26 to 0.52 with the mean of 0.35. Ninety-

five alleles were amplified by twenty three SSR primer pairs among all genotypes. 

Polymorphic alleles per locus ranged from 3 to 7 with a mean of 5. The polymorphic 

information content (PIC) values of loci ranged from 0.15 to 0.81 with a mean of 0.62. 

Observed heterozygosity (Ho) varied from 0.17 to 1 with an average of 0.78. Mean unbiased 

expected heterozygosity was 0.68. Cluster analysis and principal coordinate analysis 

separated the genotypes into three distinct groups. The following clones: 396029.25 from 

cluster I, clone 396038.107, 396038.101 and 395112.32 from cluster II, and clones 

395017.229 and 395109.34 from cluster III, could be promising parents for breeding with 

high to moderate late blight resistance and drought tolerance. The present study showed that 

the tested potato genotypes had wide genetic diversity and hybridization between the highly 

differentiated clones could render superior genetic combination.  

Keywords: genetic diversity, polymorphic information content, simple sequence repeat 

(SSR) markers, tetraploid potatoes. 

5.1 Introduction 

Potato is the world’s number one non-cereal food crop with production reaching 376 million 

tons in 2013 (FAOSTAT, 2015). Because of its high yield and food value per unit area as 

compared to most cereals and its short growth period, potato is considered as a potential 

food security crop for the growing population of the world (Hoque et al., 2014). Ethiopia is 

among the top ten potato producer countries in sub-Saharan Africa and the production is 

increasing over time. However, the average national yield is 11 t ha-1 which is far below the 

attainable yield of over 40 t ha-1 (Woldegiorgis, 2013). Drought and late blight disease are the 

major impediments contributing to extensive crop loss in Ethiopia. Given that potato is mostly 

produced by small scale farmers who cannot afford chemical control and irrigation, genetic 

improvement is the best option to increase productivity of potatoes. 
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The cultivated potato, Solanum tuberosum subsp. tuberosum, is a highly hererozygous 

autotetraploid species (2n = 4x = 48), with a genome size of 844 Mb, is a predominantly 

outcrossing species and suffers acute inbreeding depression (Stupar et al., 2007; Park et al., 

2009). The crop shows tetrasomic inheritance which increases the number of progeny 

genotype classes and allelic dosage (Luo et al., 2000). Potato cultivars are obtained from 

crossing heterozygous parents and selecting among the F1 progeny. Heterozygous 

genotypes are immediately fixed due to vegetative propagation via tubers (Bradeen and 

Kole, 2011). Thus, a promising clone can be multiplied with all its favourable inter- and intra-

allelic gene actions intact. Potato exhibits heterosis due to multi-allelic gene action. 

Heterozygosity in potato is known to be essential to realize heterosis for economic traits like 

tuber yield (Gopal and Minocha, 1997). Gopal (2015) pointed out that the inbreeding 

coefficient is negatively associated with vigour and tuber yield.  

An understanding of the breeding material allows breeders to select the appropriate parents 

to be used in designed crosses (Acquaah, 2007). Potato breeders have used a number of 

approaches for the selection of superior parents and cross-combinations. These include use 

of mid-parent values, combining ability effects, estimated breeding values, progeny tests and 

genetic diversity (Gopal, 2015). Owing to the complexities in genetics and inheritance pattern 

of potato, various strategies for the selection of parents need to be used in combination to 

attain reliable results (Sharma and Nandineni, 2014; Gopal, 2015).  

High level of genetic diversity among potato genotypes possessing different desirable traits 

would greatly benefit breeding programmes for further improvement. Selection of parents 

based on genetic diversity is a good strategy to maximize heterozygosity, to broaden the 

genetic base and to produce heterotic progenies (Gopal and Minocha, 1997). Conversely, a 

narrow genetic base cause loss of fitness or inbreeding depression as a consequence of 

accumulation of deleterious alleles in a population (Gopal, 2014). The assessment of genetic 

diversity can be achieved through pedigree, phenotypic, biochemical and/or molecular 

information (Govindaraj et al., 2015). Molecular marker systems are stable, and not affected 

by the developmental stage of the plant.  They are also independent to environmental, 

pleiotropic, and epistatic effects (Govindaraj et al., 2015). A number of molecular markers 

including random amplified polymorphic DNAs (RAPDs), restriction fragment length 

polymorphism (RFLPs), amplified fragment length polymorphism (AFLP), microsatellites or 

simple sequence repeats (SSRs), and single nucleotide polymorphisms (SNPs) have been 

developed and used to complement phenotyping (Mondini et al., 2009).  

Microsatellites or simple sequence repeats (SSR) DNA markers are currently the robust 

molecular approach to study genetic diversity. They are relatively abundant, co-dominant, 
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multi-allelic, and highly polymorphic, even among closely related cultivars due to mutations 

causing variations in the number of repeating units (Spooner et al., 2005). Microsatellites 

provide high genetic information, are highly reproducible, and simple to use. Additionally, 

the SSRs have the capacity to reflect ploidy status and the level of heterozygosity of the 

tetraploid potatoes (Muthoni et al., 2014).  

Diversity assessment using molecular markers complement phenotypic information for 

parental selection to ensure genetic variation for continued progress (Acquaah, 2007). Hence 

the present study was undertaken to assess the genetic diversity among eighteen potato 

clones that show variability for drought and late blight resistance using SSR markers. This 

study will help to complement phenotypic data with molecular information that is neutral in 

terms of environmental influences and conducive to quantitative estimates of genetic 

similarity and distance.  

5.2 Materials and methods 

5.2.1 Plant materials 
Eighteen potato clones, belonging to population B group 3, cycle two (B3C2), which have 

been developed by the International Potato Centre (CIP) for durable late blight resistance, 

were used in the study. Among which one clone 393371.58 (Belete) was tested under 

Ethiopian condition and release as a cultivar in 2010, while the rest of the17 genotypes are 

advanced clones. The clones have different reaction for drought and late blight.  A list of 

potato clones used in this study and their description is presented in Table 5.1. 
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Table 5.1 A list of 18 potato clones used in the study, their late blight reaction and drought 

tolerance level    

No. Clones Late blight reaction Drought tolerance 
1 395011.2 Moderately resistant Sensitive 
2 395015.6 Susceptible Sensitive 
3 395017.14 Susceptible Sensitive 
4 395017.229 Moderately resistant Moderately tolerant 
5 395077.12 Moderately resistant Sensitive 
6 395096.2 Moderately resistant Sensitive 
7 395109.34 Moderately resistant Moderately tolerant 
8 395112.32 Susceptible Tolerant 
9 396004.263 Resistant Sensitive 
10 396034.103 Moderately resistant Sensitive 
11 396038.107 Susceptible Tolerant 
12 396031.108  Moderately resistant Sensitive 
13 392633.64 Susceptible - 
14 393220.54 Resistant - 
15 396029.25 Resistant Tolerant 
16 396038.101 Susceptible Tolerant 
17 396038.105 Resistant - 
18 393371.58 (Belete) Resistant (Unstable) Moderately tolerant 

5.2.2 Genotyping 
For the molecular diversity assessment, a set of 23 polymorphic microsatellite markers were 

used. The details of the markers are shown in Table 5.2. These markers were obtained from 

the recently selected 24 potato genetic identity (PGI) kit set up by Ghislain et al. (2009). This 

kit has been proposed for use as a reference for standardizing the potato germplasm 

analysis across laboratories. The markers were selected based on quality of amplicons as 

determined by clarity and reproducibility, genome coverage, and locus-specific polymorphic 

information content. The kit provides two markers from each of the 12 linkage groups of 

potato separated by at least 10 cM (Ghislain et al., 2009).  

Genomic DNA was obtained from the DNA bank of CIP. The loci were amplified using 

standard protocol for SSR markers from CIP (Ghislain et al., 2004). Genotyping was 

conducted using a LI-COR 4300 DNA Analysis System and SSR allele scoring was 

performed using SAGA Generation 2 software (LI-COR) (Ghislain et al., 2009). 

5.2.3 Data analysis  
Genotypic data were subjected to various analysis of the genetic diversity of clones using 

GENALEX version 6.5 (Peakall and Smouse, 2007). The chi-square (x2) test was performed 

to determine the differences in allele frequencies among the SSR markers. Genetic diversity 

parameters, such as the total number of alleles per locus (Na), the number of effective alleles 

per locus (Ne), allelic richness (Ar), observed heterozygosity (Ho), expected  heterozygosity 

(He), were determined using the protocol of Nei and Li (1979). Allelic richness was corrected 
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for sample size differences and estimated by using the rarefaction method implemented in 

HP-Rare 1.0 (Kalinowski, 2005). The polymorphic information content (PIC), is a measure of 

allelic diversity and was calculated as PIC=1-∑pi2, where pi is the frequency of ith allele 

detected in all individuals of the populations (Nei, 1973). 

Two approach were adopted to investigate the genetic structure and diversity among the 

potato clones. In the first approach, polymorphisms were treated as binary data. The SSR 

marker alleles were scored as discrete variables, 1 for presence or 0 for absence of the band 

for all the 18 potato genotypes. Each SSR band amplified by a given primer was treated as a 

locus. The binary data were used to obtain a dissimilarity matrix using the Jaccard index. The 

matrix was used to run a cluster analysis based on Neighbor-Joining employing the software 

DARwin 5.0 (Perrier and Jacquemoud-Collet, 2006). A dendrogram was generated on the 

dissimilarity matrix. The binary data were also used to generate the principal coordinate 

analysis (PCoA). The plot was generated from the first two principal coordinates highlighting 

the distance between the different potato varieties based on scores. The reliability of the 

dendrogram was tested by bootstrap analyses with 10,000 replications to assess branch 

support. The second approach based on the co-dominant nature of the marker was used to 

determine the genetic structure within and among accessions using GENALEX version 6.5.  

5.3 Results  

The statistics of genetic diversity parameters are given in Table 5.2. The 18 potato 

genotypes evaluated in this study were differentiated uniquely, using the 23 SSR markers. 

Each of the markers differed significantly in their ability to determine variability among the 

clones. Some markers generated several alleles, while others generated only a few. A total 

of 95 putative alleles were detected across 18 potato clones using the 23 SSR markers. The 

maximum number of polymorphic alleles (7 alleles) was obtained from 22% of the markers, 

while the minimum number of polymorphic alleles (3 alleles) was amplified from 17% of the 

markers. The mean number of polymorphic alleles per marker was 5. The overall size of the 

amplified product varied from 91 bp (marker STM0037) to 314 bp (STM5114). The size 

difference between the smallest and the largest allele at a given SSR locus varied from 4 

(STM1053) to 44 bp (STM1106). Null alleles were observed only from few markers. Among 

the genotypes assessed in the panel, the highest frequency of null alleles was observed from 

CIP395096.2. In this genotype 8 (35%) of the markers failed to produce detectable 

amplification. Significant variation was observed among effective alleles. Genetic diversity 

can be measured by the effective number of alleles, which is the number of alleles that would 

be maintained if all alleles had the same frequency. The number of effective allele (Ne) 

ranged from 1.2 (STM1064) to 5.5 (STM0037) with a mean of 3.5 alleles per locus. 
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The level of polymorphism among the 18 potato clones was evaluated by calculating PIC 

values for each of the 23 SSR loci. The PIC values significantly varied among loci and 

ranged from 0.15 for primer STM1053 to 0.81 for STM0037, with a mean value of 0.62 per 

locus (Table 5.2). PIC values showed a significant positive linear correlation with number of 

alleles at SSR locus (r = 0.77; p < 0.001). Over 83% of the SSR-loci had PIC value of >0.5 

and about 57% of the loci had PIC values of >0.7, indicating an adequate discriminatory 

power of individual SSR loci used in the study.  

The results of the x2 test showed significant differences in allele frequencies at all loci for all 

the genotypes. The probability that two randomly selected alleles in a given genotype are 

different, estimated by He, was found to be 0.68, with maximum and minimum values of 0.16 

and 0.84 recorded by the microsatellite markers STM1064 and STM0037, respectively. The 

observed heterozygosity value (Ho) at each locus ranged from 0.17 (STM1064 and 

STPoAc58) to 1.00 (STM5114, STI0033, STI0014, STG0016, STG0010, STI0003 and 

STM0037), with a mean value of 0.78 for all the loci.  

Table 5.2 Chromosome location, allele size range and genetic diversity parameters for 23 

simple sequence repeat loci used in the study 

Marker Motif Chromosome Allele size  Genetic parameters 
range (bp) Na Ne Ho He F PIC Ar 

STG0001 (CT)10 XI 145-158 7 4.31 0.88 0.79 -0.15 0.75 5.56 
STG0010 (TG)6 III 178-187 5 4.07 1 0.78 -0.33 0.74 4.52 
STG0016 (AGA)8 I 143-175 6 4 1 0.77 -0.33 0.73 4.52 
STG0025 (AAAC)5 X 216-221 3 2.44 0.88 0.61 -0.5 0.51 3.33 
STI0001 (AAT)n IV 196-210 5 4.32 0.94 0.79 -0.23 0.75 4.74 
STI0003 (ACC)n VIII 140-177 6 4.44 1 0.8 -0.29 0.75 5.77 
STI0004 (AAG)n VI 96-122 5 3.75 0.78 0.75 -0.06 0.7 4.53 
STI0012 (ATT)n IV 184-208 7 5.02 0.94 0.82 -0.18 0.79 5.38 
STI0014 (TGG)n(AGG)n IX 140-149 4 3.83 1 0.76 -0.35 0.72 3.7 
STI0030 (ATT)n XII 106-126 7 4.53 0.94 0.8 -0.21 0.76 3.99 
STI0032 (GGA)n V 128-143 4 3.47 0.89 0.73 -0.25 0.68 3.91 
STI0033 (AGG)n VII 131-152 4 3.48 1 0.73 -0.4 0.68 3.14 
STM0031 (AC)5…(AC)3(GCAC)  VII 186-206 4 2.92 0.78 0.68 -0.18 0.6 3.68 

 
(AC)2(GCAC)2 

        STM0037 (TC)5 (AC)6 AA(AC)7 XI 91-107 7 5.45 1 0.84 -0.22 0.81 6.19 

 
(AT)4 

         STM1052 (AT)14 GT(AT)4(GT)6 IX 226-244 5 2.82 0.56 0.66 0.14 0.56 4.24 
STM1053 (TA)4 (ATC)5 III 187-191 3 1.74 0.56 0.44 -0.3 0.15 2.83 
STM1064 (TA)12.. (TG)4 GT(TG)5 II 207-212 3 1.18 0.17 0.16 -0.07 0.16 2.59 
STM1104 (TCT)5 VIII 183-197 6 4.02 0.89 0.77 -0.18 0.73 5.19 
STM1106 (ATT)13 X 169-213 5 3.6 0.5 0.74 0.31 0.7 4.14 
STM5114 (ACC)7 II 299-314 5 3.43 1 0.73 -0.41 0.67 2.1 
STM5121 (TGT)5 XII 301-310 4 1.99 0.44 0.51 0.11 0.32 3.14 
STM5127 (TCT)5 I 254-289 7 4.7 0.72 0.81 0.08 0.77 4.71 
STPoAc58 (TA)13 V 249-257 3 1.26 0.17 0.21 0.18 0.2 1.94 
Overall mean     5 3.51 0.78 0.68 -0.17 0.62 4.12 
SE       0.29 0.24 0.05 0.04 0.04 0.21 0.23 

Na = No. of allele; Ne = No. effective allele; Ho = Observed heterozygosity; He = Unbiased 
expected heterozygosity (gene diversity); F = Fixation Index (inbreeding coefficient); PIC = 
Polymorphic information content; SE = standard error; bp = base pair; Ar= allelic richness;  

A similarity matrix based on the proportion of shared SSR alleles was used to establish the 

level of relatedness between the various clones studied. Pair-wise estimates of similarity 
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ranged from 0.26 to 0.52 and the mean similarity among 18 clones was 0.35 (Table 5.3). 

Two clones, 396034.103 and 396031.108, were the closest related genotypes with the 

highest similarity index of 52%. The lowest similarity (26%) was observed between clones 

395077.12 and 396029.25. As expected due to the heterozygous and heterogeneous nature 

of potato, genetic similarities between the clones were low indicating that the clones shared 

less number of alleles.  



108 
 

Table 5.3 Genetic distance estimates of 18 potato genotypes revealed by 23 SSR markers 

Clones 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0.00                                   

2 0.33 0.00                                 

3 0.29 0.29 0.00                               

4 0.39 0.33 0.29 0.00                             

5 0.41 0.36 0.32 0.41 0.00                           

6 0.34 0.32 0.36 0.46 0.34 0.00                         

7 0.37 0.36 0.34 0.46 0.36 0.52 0.00                       

8 0.27 0.33 0.37 0.34 0.33 0.28 0.29 0.00                     

9 0.34 0.27 0.29 0.38 0.37 0.28 0.29 0.30 0.00                   

10 0.32 0.33 0.31 0.35 0.30 0.38 0.44 0.33 0.27 0.00                 

11 0.32 0.32 0.39 0.31 0.35 0.33 0.32 0.34 0.33 0.33 0.00               

12 0.34 0.28 0.28 0.32 0.29 0.27 0.29 0.29 0.27 0.29 0.36 0.00             

13 0.35 0.32 0.32 0.33 0.41 0.28 0.31 0.32 0.32 0.31 0.35 0.35 0.00           

14 0.47 0.33 0.34 0.42 0.44 0.40 0.41 0.32 0.39 0.32 0.34 0.33 0.36 0.00         

15 0.42 0.34 0.33 0.43 0.40 0.35 0.40 0.35 0.38 0.38 0.35 0.36 0.39 0.50 0.00       

16 0.32 0.33 0.29 0.33 0.32 0.24 0.29 0.34 0.32 0.27 0.26 0.27 0.29 0.32 0.33 0.00     

17 0.36 0.46 0.32 0.38 0.35 0.32 0.37 0.37 0.30 0.34 0.29 0.29 0.36 0.36 0.39 0.43 0.00   

18 0.32 0.39 0.29 0.36 0.38 0.30 0.30 0.31 0.30 0.32 0.32 0.36 0.32 0.36 0.35 0.38 0.44 0.00 

1= CIP395015.6, 2= CIP395096.2, 3=CIP395109.34, 4= CIP395112.32, 5= CIP396004.263, 6= CIP396031.108, 7= CIP396034.103, 8 = 
CIP395011.2, 9 = CIP395017.14, 10= CIP395017.229, 11= CIP395077.12, 12= CIP396038.107, 13 = CIP392633.64, 14 = CIP393220.54, 15= 
CIP393371.58, 16= CIP396029.250, 17 = CIP396038.101, 18= CIP396038.105; G= genotypes. 
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The cluster analysis based on genetic dissimilarity using the neighbour-joining method in 

DARwin 5.0 classified the 18 potato genotypes into three main clusters (Figure 5.1). Cluster I 

consisted of seven genotypes: one clone (396029.25) was drought and late blight resistant, 

four clones were late blight resistant but drought sensitive (396031.108, 396034.103, 

395096.2 and 396004.263) and two of them were late blight susceptible (392633.64 and 

395015.6). Cluster II composed of the another seven clones: three drought tolerant but late 

blight susceptible clones (396038.107, 396038.101 and 395112.32) and four late blight 

resistant clones with various levels of drought tolerance (396038.105, 393220.54, Belete and 

395077.12). Cluster III had four clones: two clones with moderate resistance both for drought 

and late blight (395017.229 and 395109.34), clone 395011.2 which is late blight resistance 

but drought sensitive and 395017.14, a clone susceptible for both drought and late blight 

disease.  

The principal coordinate analysis (Figure 5.2) revealed three clustering patterns that existed 

among 18 potato clones. The first two principal coordinates explained 35.6% of the total 

genetic variance. In this clustering it was observed that clone 396038.101 was placed far 

from clones 395017.229 and 395017.14 in the first coordinate (X-axis). In the second 

coordinate (Y-axis) clones 395109.34 and 393220.54 were placed farthest from 395096.2, 

396004.263 and 392633.64. All the clones characterized as drought sensitive (Table 5.1) 

located on the positive side of second coordinate (Y-axis) except clone 396029.25, which 

was the only tolerant clone in this group. In contrast, the negative side of the second 

coordinate was dominated by moderately tolerant to tolerant clones for drought including 

396038.101, 396038.107, 395112.32, 395017.229, Belete and 395109.34. Late blight 

resistant clones, however, were distributed evenly over both the coordinates. Overall, results 

showed that the microsatellite markers used clearly distinguished all the eighteen potato 

genotypes.  
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Figure 5.1 Neighbour-joining dendrograms showing genetic relationship among 18 potato 

clones using 23 SSR markers  
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Figure 5.2 The first two principal coordinates of the principal co-ordinate analysis (PCoA) 

using SSR genetic dissimilarity matrix of 18 B3C2 potato clones.  

5.4 Discussion 

The present study examined the genetic diversity present among 18 potato clones from a 

B3C2 population using 23 SSR markers. The markers were previously selected and reported 

for their high polymorphism (Ghislain et al., 2004; Ghislain et al., 2009; Sharma and 

Nandineni, 2014). SSRs have the capacity to reveal ploidy status and their heterozygosity 

because of their co-dominant nature and they have the advantage of being highly 

polymorphic (Ghislain et al., 2004). Sharma and Nandineni (2014) and Milbourne et al. 

(1997) compared the DNA profiles obtained from SSRs with other molecular techniques 

among 47 potato varieties from India and found higher polymorphism and wider range of 

genetic similarity values in SSR markers than the other type of molecular markers. Besides, 

microsatellites are appropriate molecular tools to study the genetic distance of closely related 

germplasm sources (Ghislain et al., 2004). The selected clones are all tetraploids from the 

same species and from the same (B3C2) population, suggesting that the SSRs would be the 

best choice to distinguish the set of genotypes under the present study. 

In the present study, 83% of the loci had PIC values of >0.5, which demonstrated the 

markers were very informative. The polymorphism values reported in this study ranged from 

0.15 to 0.81 which is more or less similar to those reported by earlier studies. Ghislain et al. 

(2009) found PIC value of 0.25 to 0.88 using 51 SSR markers on 742 potato landraces with 
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different ploidy level. The observed fragment size of alleles for all loci was between 91 and 

314 bp which is within the range of previously reported standard allele size (83-322 bp) 

(Ghislain et al., 2004; Ghislain et al., 2009). The allele size per locus coincides with the 

earlier studies except for the markers STM5127, STPoAc58, STM1106 and STG0016. The 

total number of alleles and number of alleles per locus observed in this study were low when 

compared to prior reports. For example, Ghislain et al. (2009) observed 137 alleles using 24 

SSR markers (nearly all were used in the present study) on 742 potato genotypes with the 

range of 3 to 9 alleles per locus. Sharma and Nandineni (2014) found 139 alleles with allele 

per locus ranged from 6 to 11 using 17 SSR markers on 44 potato genotypes. The lower total 

number of alleles and number of allele per locus in the present study could be attributed to 

the smaller number of clones studied.   

The observed heterozygosity within the potato genotypes was very high which is 

demonstrated by higher values for Ho than He for most of the SSR loci, except for STM1052, 

STM1106, STM5121, STM5127 and STPoAc58. Comparable results were obtained by 

Sharma and Nandineni (2014) on potatoes. The high observed heterozygosity confirms the 

predominantly outbreeding and tetraploid nature, and clonal propagation of the crop that 

preserve its heterozygosity. Constant monitoring of the B3 population to maintain sufficient 

genetic variation could also play a vital role for the observed heterozygosity (Landeo et al., 

2001). 

The cluster and principal coordinate analyses grouped the clones into three main clusters 

(Figures 1 and 2). It seems that the grouping mainly places potato genotypes in similarity 

clusters according to their tolerance to drought, although three of them were not phenotyped. 

There were seven drought tolerant and eight sensitive clones in the tested population, of 

which four tolerant clones (57%) were grouped together in cluster II and five of the 

susceptible clones (63%) were grouped in to cluster I. This could indicate the genetic bases 

of drought tolerance observed in this sets of clones were similar. The other explanation could 

be that the markers used in this study could be linked with genes conferring drought 

tolerance.  

Conversely, late blight resistant genotypes were widely scattered in different clusters, 

suggesting a different genetic basis for resistance. The tested population had 12 late blight 

resistant and 6 susceptible clones. Both susceptible and resistant clones were dispersed 

over the three clusters and on principal coordinate plot, which reflected wider genetic 

variation within and among resistant and susceptible clones. Similar results have been 

reported by Pattanayak et al. (2002) who studied twenty-four tetraploid Indian cultivars that 

differed in late blight resistance using RAPD molecular markers. This result is in agreement 
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with wide range of variability and significant and preponderant additive gene action revealed 

in late blight resistance by crossing the subset of the clones in this study (Chapter 4). High 

genetic diversity implies the presence of a high amount of additive genetic variance, upon 

which progress in plant breeding depends (Carputo et al., 2013). The study also confirms 

stabilizing selection practiced in each cycle of in B3 population to maintain the genetic 

diversity for further breeding progress (Landeo et al., 2001). Kaushik et al. (2000) reported 

the presence of heterosis for late blight resistance. Thus, selecting cross combinations based 

on the genetic distance of late blight resistant clones could ensure further progress and 

provide an opportunity of identifying transgressive sergeants that can combat virulent 

pathogens of Phyphthora infestance and tolerate moisture stress.  

In the light of this, clones 395017.229, 395109.34 from cluster III with drought tolerance and 

late blight resistance could be crossed with 396029.25 from cluster I with excellent resistance 

to late blight and drought but genetically distant from these two clones. Alternatively, the 

above clones could be crossed with drought tolerant clones 396038.107, 396038.101 and 

395112.32 to complement their lack of late blight resistance. Hybridization of clones that 

showed close relationship in this study should be avoided to minimize genetic depression 

and reduced genetic variation in breeding materials.     

5.5 Conclusions  

Genetic diversity analysis is a useful tool to estimate genetic distance among genotypes and 

for an efficient choice of parents for breeding. Powerful molecular markers such as SSRs are 

neutral, stable and unaffected by environmental factors and are useful to study the genetic 

diversity among the various potato clones in a quick an accurate manner. The current study 

was therefore carried out to assess the pattern and extent of genetic diversity among the 

selected 18 potato tetraploid clones using 23 SSR markers to identify appropriate parents for 

crossing. The results showed that considerable genetic differentiation exists among the 

potato genotypes. The SSR genetic markers provided five distinct genetic groups. The 

following clones from different clusters were selected based on their late blight resistance 

and/or drought tolerance reaction: 396029.25 from cluster I, clone 396038.107, 396038.101 

and 395112.32 from cluster II, and clones 395017.229 and 395109.34 from cluster III. 

Designing crosses based on genetic distance enable the breeders to exploit heterosis, and 

maintain genetic diversity for future improvement.  
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An overview of the research findings
 

Introduction and objectives of the study 

Potato is the third most widely grown crop worldwide serving as a staple food for more than 

one billion people. Ethiopia is amongest the top 10 potato producer in Africa. Seventy 

percent of the arable land of the country is situated in the highlands, which are potentially 

suitable for potato production. Potato is a strategy crop for food security due to its short 

growing season and higher yields per unit of land compared to other major cereal crops such 

as maize, rice and wheat. Potato production in Ethiopia is predominantly under rainfed 

condition and the productivity of the crop is highly vulnerable to seasonal rainfall variability 

which causes moisture stress (in dry season) or condition that favour the development of  

diseases (in wet season). Frequent drought and dry-spells during the growing seasons cause 

severe yield reduction, while humid weather enhances late blight disease development often 

leading to a complete crop failure. More than 95% of crop production in Ethiopia is under 

small-scale farming systems. Smallholder farmers grow potato on fragmented and small 

sized plots with limited use of irrigation water and chemical control of late blight disease. 

Therefore, genetic improvement of the crop through breeding for drought tolerance and late 

blight resistance could be the best strategy which is effective and affordable to smallholder 

farmers. This chapter, summarises the study objectives, highlights the main findings of each 

objective and their implications, and maps the way forward for future research. 

The objectives of this study were: 

 To select late blight resistant and high yielding potato clones under field conditions in 

the north-western parts of Ethiopia. 

 To determine combining ability and gene action controlling late blight resistance, yield 

and yield components and to identify promising potato genotypes as potential parents 

in a breeding programme. 

 To determine combining ability and gene action controlling yield, yield components 

and drought tolerance related traits among selected potato clones and to identify 

promising parents and crosses for cultivar development.  

 To assess the level of genetic diversity among 18 selected potato clones using 23 

simple sequence repeat (SSR) markers and to complement phenotypic selection for 

identification of suitable parents for breeding. 
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Research findings in brief 

Response of potato clones to late blight disease, yield and yield related traits in north-
western highlands of Ethiopia 

Twenty four potato clones: 17 from B3C2 population and seven widely grown released and 

farmers’ cultivars, were evaluated for late blight resistance and yield related traits at three 

locations and with two replication using random complete block design. The main findings of 

this study are presented below:

 Significant phenotypic variation was observed among the clones for late blight 

resistance and yield related traits under the disease pressure.  

 Highest level of late blight resistance was found among B3C2 population sourced 

from the International Potato Centre. 

 Five clones (396029.25, 395017.229, 396004.263 396034.103 and 395077.12) with 

high level of late blight resistance and yield performance were selected for further 

breeding and recommended for release after stability tests. 

Combining ability of selected potato clones for resistance to late blight disease, yield 
and yield components 

Eighteen F1 families were generated from two sets of 12 parents using North Carolina Design 

II. The families were evaluated for late blight resistance and yield related traits in two 

locations using a randomized complete block design with two replications. Results showed 

that: 

 The general combining ability effects (GCA) and specific combining ability effect 

(SCA) effects were significant for all the traits evaluated. 

 The GCA effect accounted for 71% and between 53 to 80% of the genetic variation in 

the families for late blight resistance and yield related traits, respectively.  

 Parental clones 396264.14 and 395109.34 showed good GCA effect for both late 

blight resistance and yield related traits, while clone 396004.263 was a good general 

combiner for late blight resistance. 

 Crosses from 396004.263 x 395017.229 and 395096.2 x 396012.288 were selected 

for their significant SCA effect for both late blight resistance and yield related traits 

towards the desired direction.  
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 The genotypes from the cross of 395109.7 x 396264.14 were the best specific 

combiners for late blight resistance.  

Combining ability of selected potato clones for drought tolerance and yield 
components  

Thirty-two potato families derived from two sets of 16 parents using a North Carolina Design 

II together with 17 clones were field evaluated for yield and drought related traits in a 7 x 7 

lattice design with two replications under irrigated and drought stress conditions. Results 

revealed that: 

 There was significant variation among the genotypes tested in terms of all assessed 

traits. 

 Significant GCA effects and SCA effects were found for yield and drought tolerance 

related traits and the GCA effects were more important than SCA effects for most of 

the traits measured.  

 The following clones: 395112.32, 396034.103 and 396012.288 were found to be the 

best general combiners for yield and drought tolerance.  

 Genotypes derived from the crosses of 395109.34 x 396041.102, 395096.2 x 

396012.288, 395109.7 x 395017.14 and 396031.108 x 395017.14 had good SCA 

effects for tuber yield and drought tolerance. 

Genetic diversity analysis of selected potato genotypes using SSR markers 

Eighteen potato clones phenotyped for drought tolerance and late blight resistance were 

genotyped using 23 polymorphic SSR markers for an efficient choice of parents. Results 

showed that: 

 A wide range of genetic diversity was observed among the tested genotypes. 

 Neighbour-joining cluster analysis and principal coordinate analysis revealed the 

presence of three distinct genetic groups.  

 Clones 396029.25 from cluster I, 396038.107, 396038.101 and 395112.32 from 

cluster II, and 395017.229 and 395109.34 from cluster III were selected as promising 

parents based on their desirable phenotype for drought tolerance, late blight 

resistance and their genetic distance.  
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Implications of the research findings for breeding potato for late blight resistance and 
drought tolerance 

Results from the clonal evaluation demonstrated the presence of high level of late blight 

resistance among the B3C2 population. This population is developed by the CIP and is 

adapted to highland tropics and possess horizontal late blight resistance free of the major 

genes. Five clones were selected from this population with promising late blight resistance 

and high yields. These clones can be exploited in resistance breeding programs in the 

country. Also the clones are recommended for direct production after stability tests. Overall, 

the source population offered great opportunity for late blight resistance breeding in the 

Ethiopian highlands. However, genetic diversity studies of the pathogen should be 

considered in future to devise the most effective strategy for resistance breeding. 

The present combining ability studies identified best parents and cross combinations with 

high yield and adequate late blight resistance. The selected clones could be effectively 

utilized in potato breeding to develop improved potato cultivars in Ethiopia. Additive genetic 

variance were found to be more important than non-additive variance in inheritance of 

resistance to late blight, implying the use of recurrent selection could provide better 

recombination and accumulation of desirable genes. Future studies should incorporate 

reciprocal crosses to rule out any possible maternal effects that may influence late blight 

resistance.  

In the combining ability analysis for drought tolerance, additive genetic effects were found to 

be more important than non-additive variances in the genetic control of yield and drought 

tolerance related traits. This suggests that progress in increasing the level of drought 

tolerance can be achieved through breeding and recurrent selection. The selected parents 

and families are useful genetic resources to improve drought tolerance and yield of potato. 

The study demonstrated that there is no negative association between yield potential and 

drought tolerance, suggesting that drought tolerant cultivars are not necessarily associated 

with yield penalty under non-stressed condition. 

Genetic diversity analysis using SSR markers provided three distinct genetic groups. 

Hybridization between the genetically distant clones could enable exploitation of hybrid 

vigour.  

In summary, the present study identified genetically distant genotypes combining high yield, 

drought tolerance and adequate level of late blight resistance for developing improved potato 

cultivars in Ethiopia. The selected clones are important genetic resources to enhance potato 
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productivity in the highlands of Ethiopia or similar environments in sub-Saharan African 

countries. 


