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Abstract 

The magnitude of the global freshwater crisis is underestimated. Although international and 

national efforts have implemented strategies to safeguard these precious resources, the 

consequential effect of continued deterioration of water quality on the available options for 

water usage is still a major area of concern. Contamination of surface water resources resulting 

from inadequate treated effluent discharge from wastewater treatment plants (WWTPs) has 

previously been indicated as an important topic requiring continued investigations. Often, these 

discharges introduce large amounts of organic matter and nutrients which could lead to 

eutrophication and temporary oxygen deficiencies, ultimately disrupting the natural biotic 

community structure and its important ecological functions. In addition, pathogenic bacteria 

and antibiotic resistance genes (ARGs) present in the wastewater discharged increases public 

health risks due to their disease causing potential and dissemination of resistance determinants, 

respectively. This could result in increased cases of diseases such as dysentery, cholera, skin 

infections and typhoid, leading to higher rates of mortality and morbidity, placing further 

stresses on the public health system. Hence, better management and minimisation of microbial 

pathogens and antibiotic resistant bacteria in WWTPs is crucial to prevent the dissemination 

of potential pathogens and ARGs into the environment. The overall objective of this study was 

to provide metagenomic insights into the bacterial diversity as well as the ARGs associated 

with the communities present in wastewaters and to establish the impact of the discharged 

effluents on the receiving river bodies. Samples were collected from two urban WWTPs 

receiving distinctive raw sewage, with combinations of domestic, industrial and hospital, in the 

city of Durban, South Africa. Metagenomic sequencing were conducted on the Roche 454 

platform and shotgun generated pyrosequences were analysed using established pipelines 
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(MG-RAST) and a plethora of bioinformatic tools (IDBA_UD, MaxBin, CheckM, etc.) and 

databases (VFDB and CARD). The findings of this study suggest that there is a substantial 

shift between the bacterial communities in the raw wastewater and the treated wastewater in 

terms of abundance, composition and diversity. Similarly, this was observed in the functional 

genes determined and the overall metabolic potential of the associated bacterial communities. 

Additionally, putative genes encoding for resistance to most classes of antibiotics were 

identified in all samples and encompassing the three major resistance mechanisms. Although 

shotgun sequencing and subsequent analysis only provides qualitative and semi-quantitative 

data, we were able to establish a list of the bacterial communities and antibiotic resistance genes 

across all the water samples, identified the potentially pathogenic bacteria causing human 

disease in the treated wastewaters of both plants that need to be considered during treatment 

management decisions, as well as the functional potential of the communities. Overall, results 

from this study demonstrated the usefulness of a metagenomic approach in initial stages of 

water quality assessments. The results of this work also provide significant and novel 

information that will contribute to our understandings of water quality which could lead to 

sustainable wastewater management decisions. 
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“If you take care of the small things, the big things take care of themselves.” 

– Emily Dickinson (1830-1886) 
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1 Introduction and Literature Review 

1.1 Introduction 

Water is a natural resource and the driving force of nature by virtue of its fundamental 

properties. Clean and safe drinking water is indispensable for sustenance, health and dignity of 

life, whilst freshwater is central for energy and food security as well as all ecosystems functions. 

Hence, our societies and continued development profoundly depend on this natural resource. 

Yet, the magnitude of the global freshwater crisis is underestimated. This is partly due to the 

ignorance of the fact that unlike other natural resources, freshwaters cannot be regarded as a 

constant supply, but should rather be regarded as a restricted flux, which needs to be correctly 

managed so that it continues to remain as a renewable resource (World Economic Forum, 2015).  

 

To this end, the United Nations (UN) General Assembly in December 2003, in resolution 

A/RES/58/217, proclaimed the period of 2005 to 2015 the International Decade for Water of 

Life Action and its’ Environment Programme (UNEP) has acknowledged that water-related 

problems are one of the most immediate and serious environmental threats to humankind 

(UNEP, 2005). During this period, the importance of this finite resource was stressed at the 

Bonn Conference in 2011, and again in 2012 at The Rio+20 Summit in conjunction with global 

energy and food security issues in sustaining a Green Economy (Jägerskog and Jønch Clausen, 

2012). Moreover, the Millennium Development Goals (MDG), which came to a conclusion at 
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the end of the 2015, were implemented by most countries across the globe with success of the 

target for safe drinking water met early in 2010 (UN, 2015a).  

 

Despite meeting the goal seven’s target in providing two billion people access to safe drinking 

water sources, and the official launch of the bold and transformative 2030 Agenda for 

Sustainable Development this year, with a new set of 17 Sustainable Development Goals (SDG) 

established for the next 15 years, depletion of existing water resources still continues to be a 

major problem, with water scarcity affecting more than 40% of the global population and has 

been projected to increase with the explosive population growth (UN, 2015b). This is in part 

due to the limitation of the MDG framework in addressing the full water and development 

agenda as well as contributing factors such as increasing poverty, rapid urbanization, complex 

hydro-geological variability and the effects of climate change (Haddeland et al., 2014). 

Additionally, the crisis is further compounded by constant national, international and trans-

boundary conflicts arising in an attempt to provide adequate food, water and health security for 

the entire populations (Kraljevic and Geiger, 2012). Moreover, lack of potable water has been 

estimated to cost countries between 1% to 7% of their annual Gross Domestic Product, 

impeding national economic growth (Fogden and Wood, 2009). Furthermore, environmental 

considerations and its synergistic role with socio-economical dynamics were scarcely 

addressed. Combined, these aspects place further stress on the already deteriorating water and 

sanitation infrastructure, more so in mid-lateral developing countries than developed countries, 

where billions of people are already at risk of water, sanitation and hygiene (WSH) related 

diseases (WHO/UNICEF, 2012).   
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Fundamentally, the available abundance of freshwater sources, occurring as surface waters (ice 

sheets, ice caps, glaciers, icebergs, bogs, ponds, lakes, rivers and streams) and ground waters 

(underground aquifers and streams), has been suggested to be enough for sustaining human 

societies (Bunn, 2016). Approximately 93 000 km3 is estimated to be readily available from 

rivers, streams, ponds and lakes with more than double the amount suggested to be locked as 

glaciers and ice or stored in ground waters (Bunn, 2016). Stockholm’s International Water 

Institute estimated that, on average, each person on Earth requires a minimum of 1 000 m3 of 

water per year for drinking, hygiene and growing food for sustenance, which is equivalent to 

two-fifths of the volume of an Olympic-size swimming pool (Rockström et al., 2007). However, 

these sources are not uniformly distributed in time and space, nor in relation to anthropological 

settlement and urbanization patterns (Bunn, 2016). In practice, ground water contributes a large 

proportion of freshwater used across the domestic, agricultural and industrial sectors. Here, 

agriculture is the greatest consumer, accounting for approximately 70% of the total 

consumption, whilst industries consume 25% and the remaining 5% is used for domestic and 

recreational purposes. Though, it should be noted that these estimates are dependent on the 

country in question and their development stage, with as high as 95% total consumption in 

agriculture alone in developing countries. This high and projected increase in percentage 

consumption from the agricultural sector is a resultant chain effect of the explosive population 

growth leading to increases per capita of food consumption. Hence, the enormous expansion 

of the agriculture sector and the indirect role of ground water in sustaining life contributes to 

their large demand (UNEP, 2008). This has led to the depletion of major ground water 

resources, resulting from its overuse, improper management as well as pollution from point 

and non-point sources. As a consequence, nearly 80% of the world’s population has been 

estimated to be exposed to high levels of threat to water security (Vörösmarty et al., 2010). 

The above factors serve as the major driving force behind the increased use of wastewater, rain 
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water, grey water, storm water and surrounding surface waters as an alternative resource for 

the agricultural, domestic and industrial sectors (WHO/IWA, 2011). 

 

Although, the importance of these alternative water sources has become clear over the past 

decade, pollution and contamination of these sources from point (municipal and industrial) 

and/or non-point (agricultural, mining, sewage, domestic) sources has become increasingly 

evident over the past few decades. Water polluting substances including organic chemicals (e.g. 

phenolic compounds), inorganic chemicals (e.g. phosphates) and heavy metals (e.g. mercury), 

are frequently used in both the industrial and agricultural sectors (Beesley et al., 2011; Guo et 

al., 2012; Stefanowicz et al., 2009), their contamination of water and subsequent release into 

the environment results largely from the non-compliance of mines, industrial factories, 

wastewater treatment plants and crop cultivation productions, to the effluent quality regulations, 

good agricultural practices and disposal guidelines stipulated by government (Olaniran and 

Igbinosa, 2011; FAO, 2004; Ayomoh et al., 2008). Several studies have suggested the 

agricultural sector as one of the major contributors to water pollution (Liu et al., 2013; Ribbe 

et al., 2008) owing to the large use of synthetic antibiotics, fungicides, pesticides, insecticides 

and herbicides to ensure maximum production with low costs (Kughur, 2012). Pollution of 

nearby surface and ground water by these chemicals has been shown to result from the effects 

of leaching, runoff and infiltration (Dolan et al., 2012; Mendes et al., 2012; Masrevaniah, 2010; 

Shanafield et al., 2010). Mortality attributed to WSH related diseases is a global concern, with 

approximately 50% of the reported cases arising from microbial intestinal infections (Cabral, 

2010). According to the World Health Organization (WHO), such diseases account for an 

estimated 4.1% of the total disability-adjusted life year measurement of the global burden of 

disease and approximately 3.4 million people have been estimated, mostly children, to die from 
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water-related diseases each year, whilst the UN Children’s Fund (UNICEF) assessment 

reported death cases of 4 000 children each day as a result of contaminated water (WHO, 

2014a). To tackle this problem, the WHO has repeatedly stressed the importance of improving 

water quality on the reduction of the global disease burden which lead to the establishment of 

the MDG seven targets (Pandey et al., 2014). Naturally, microorganisms are ubiquitous and 

variety of these microbes including bacteria, algae, fungi, protozoa and viruses, exist in water 

sources where they form an ecosystem in which the dynamics are complex and difficult to 

comprehend. Though, all water sources can become contaminated from natural geogenic 

activities, most waterborne diseases result largely from some form of faecal pollution. 

Therefore, reliable water treatment infrastructures and continuous water monitoring are 

essential towards containment of anthropogenic activities and minimizing its influence on the 

environment, ensuring good water quality, community sanitation and health as well as lowering 

risks of epidemics and outbreaks (Cabral, 2010). 

 

 

1.2 Microbial water quality assessments 

For decades, to ensure safety of water sources such as those described above as well as those 

for drinking and recreational activities, water quality assessments have largely been based on 

in vitro cultivation, enumeration and detection of representative indicator microorganisms or 

the disease causing pathogens (Carew et al., 2013). The occurrence and abundance of indicator 

organisms serve as proxies, as they are easily measured and could be correlated to agents that 

directly mediate waterborne risks. Use of indicator organisms over direct pathogens is due to 

the time consuming, costly and technical difficulties associated with the detection of all 
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possible pathogenic organisms present in water sources as well as the current understandings 

of the presence and absence of these representative indicator organisms relative to disease 

causing pathogens (Barrell et al., 2000; Leclerc et al., 2002). It is important to note that these 

indicator microbes are flawed as they could also be derived from non-human sources and may 

be subjected to ecological or environmental stresses which have been shown to compromise 

their suggestive power for its associated pathogens (Payment and Locas, 2011). Nonetheless, 

indicator organisms are often used to predict the origin or source of contamination, coined 

“microbial source tracking” (Shanks et al., 2010). For example, a study demonstrated microbial 

source tracking using at least two species within the Bacteroides genus as indicators of human 

contamination and showed their direct association with symbionts of the human gut microflora 

(Yampara-Iquise et al., 2008). In order to eliminate the ambiguity with the term “microbial 

indicators”, the WHO (2001) has defined three possible groups described in Table 1.2. 

Furthermore, an ideal indicator organism should be suitable for all categories of water, be 

present with the occurrence of the associated pathogen, present in higher numbers than its 

associated pathogen, should have survival characteristics similar to its associated pathogen, 

should not be pathogenic, should not multiply in waters, and easily, rapid and cost-effectively 

quantifiable even at low numbers (Horan, 2003). As no single organism is able to fulfil all of 

the above mentioned characteristics, several indicator organisms have been selected (with a 

few key faecal indicators briefly described in Table 1.3), each with certain characteristics and 

are still routinely used for water quality and health risk assessments with their presence serving 

as an indication of the occurrence of its associated pathogens. Alternatively, specific pathogens 

such as waterborne Legionella, Campylobacter, Leptospira, viruses and protozoa (more 

described in Table 1.1) are often directly detected and enumerated over the use of indicator 

organisms. Direct detection and enumeration allows for quantitative microbial risk assessment, 
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where environmental concentrations of pathogens are compared to models of infectivity in 

order to characterize the risk to exposed human populations (WHO, 2001). 

 

Table 1.1: Microbial pathogens associated with waterborne diseases (adapted from WHO, 
2011). 
 

Pathogen Diseases Health 
significance 

Persistence 
in water 
supplies 

Resistance 
to chlorine 

Relative 
infectivity 

Important 
animal 
source 

Bacteria 
Burkholderia 
pseudomallei Melioidosis High May multiply Low Low No 

Campylobacter spp. Gastroenteritis High Moderate Low 
 Moderate Yes 

Escherichia coli 
(pathogenic & 
enterohaemorrhagic) 

Gastroenteritis High Moderate Low Low to 
High Yes 

Francisella 
tularensis Tularemia High Long Moderate High Yes 

Legionella spp. Legionellosis High May multiply Low Moderate No 
Leptospira spp. Leptospirosis High Long Low High Yes 
Mycobacteria spp. 
(non-tuberculous) 

Chronic obstructive 
pulmonary disease Low May multiply High Low No 

Salmonella Typhi Thyphoid fever High Moderate Low Low No 
Other Salmonella 
spp. 

Salmonellosis/ 
gastroenteritis High May multiply Low Low Yes 

Shigella spp. Dysentery High Short Low High No 
Vibrio cholerae Cholera High Short to long Low Low No 
 
 
Viruses 
Adenoviruses Gastroenteritis Moderate Long Moderate High No 
Astroviruses Gastroenteritis Moderate Long Moderate High No 

Enteroviruses 

Pleurodynia, Hand-
foot-and-mouth 

disease, Herpangina, 
Poliomyelitis 

High Long Moderate High No 

Hepatitis A & E virus Hepatitis High Long Moderate High Potentially  
to No 

Noroviruses Gastroenteritis High Long Moderate High Potentially 
Rotaviruses Diahorrea, vomiting High Long Moderate High No 
Sapoviruses Gastroenteritis High Long Moderate High Potentially 
 
 
Protozoa 

Acanthamoeba spp. 

Acanthamoeba 
keratitis, 

Granulomatous 
Amebic Encephalitis 

High May multiply High High No 

Cryptosporidium 
hominis/parvum Diahorrea High Long High High Yes 

Cyclospora 
cayetanensis Cyclosporiasis High Long High High No 

Entamoeba 
histolytica Amebic dysentery High Moderate High High No 

Giardia intestinalis Giardiasis High Moderate High High Yes 

Naegleria fowleri Primary amebic 
meningoencephalitis High May multiply Low Moderate No 



 9 

Table 1.2: Definitions for indicator and index microorganisms of public health concern 
(adapted from WHO, 2001). 
 

Group Definition 
General/process 

indicators 
A group of organisms that demonstrates the efficacy of a process, such 

as total heterotrophic bacteria or total coliforms for chlorine disinfection. 
  

Faecal 
indicators 

A group of organisms that indicates the presence of faecal 
contamination, such as the bacterial groups thermo-tolerant coliforms or 

E. coli. Hence, they only infer that pathogens may be present. 
  

Index 
organisms and 

model 
organisms 

A group/or species indicative of pathogen presence and behaviour 
respectively, such as E. coli as an index for Salmonella and F-RNA 

coliphages as models of human enteric viruses. 

 

Specifically, initial methods for identification of these indicators or pathogens rely on selective 

culturing and enumeration of presumptive isolates, followed by species confirmation using 

biochemical methods, such as the indole, methyl red, Voges-Proskauer (IMViC) tests. Such 

efforts lead to the standardization of simple and routine procedures for quantification of 

coliform indicators, which are relatively easy to culture (Simpson et al., 2002). Conversely, 

cultivation methods for detection of specific pathogens are often difficult and time-consuming, 

with failure of detecting some organisms due to fastidious growth as in the case for Leptospira 

species (Evangelista and Coburn, 2010). In addition, some pathogens which are viable but non-

culturable (VBNC) cannot be isolated by standard cultivation-based methods, meaning they 

are known to exist in a dormant infective state.  

 

Hence, to overcome this limitation, cultivation-independent molecular methods have been 

developed and used in conjunction with conventional methods for the identification of indicator 

organisms and disease- causing pathogens. These methods target DNA extracted from water 

and other environmental samples which is subsequently subjected to analysis for the presence 
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and abundance of unique genes associated with the indicator species or pathogens of interest. 

This is entirely evident in terms of the frequently used small sub-unit of the ribosomal RNA 

gene (SSU rRNA), the 16S rRNA gene for Bacteria and 18S rRNA gene for Eukarya, for 

molecular-based analysis due to its ubiquity in all organisms as well as highly conserved 

variable and hyper-variable regions in the sequence structure (Green et al., 2014). This has in 

turn allowed for alignment of multiple DNA sequence across diverse organisms and subsequent 

taxonomic identification and placement on the tree of life (Pace, 2009). As these cultivation-

independent methods are either based on the direct detection of nucleic acids or PCR-based 

amplification of target genes, limitations associated with culture-dependent methods have been 

overcome, though not with its own set of challenges and limitations. Primarily, the 

quantification and detection of DNA extracted from environmental species has and is still often 

assumed to be derived from living organisms. However, free or naked DNA may also be 

isolated from dead organisms during methods in DNA extraction which doesn’t take this into 

account. This ultimately hinders the correlation between cell abundance to the frequency of 

DNA copies isolated. Secondly, there is the limitation with regards to some methods in their 

ability to detect trace levels of targeted nucleic acids, such as virulence factors. Thirdly, 

quantification of microbial risks with the use of DNA-based methods may be complicated by 

the fact that pathogens have highly dynamic and diversified genomes, with additional 

complexities at the strain level, such as strain specific virulence factors (Tan et al., 2015b). 

Therefore, quantification of pathogenic organisms based on the occurrence of a DNA 

biomarker, such as the use of the universal SSU rRNA gene, does not necessarily translate into 

public health risk should the strain detected lack virulence genes to cause diseases. Nonetheless, 

PCR-based methods have still been proven useful with some methods currently under 

evaluation (Green et al., 2014) and one method already approved for the quantification of 

Enterococcus by the U.S. Environmental Protection Agency (USEPA, 2013, 2009). In general, 
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as cultivation-independent methods have now moved away from its infancy and is currently 

adopted in routine laboratory analysis, advancement in future water quality analysis hinders on 

the importance of defining a set of standard guidelines as well as thresholds of acceptable risk.  

Table 1.3: Definitions of selected key faecal indicator micro-organisms (adapted from WHO, 
2001). 
 

Indicators Description 

Coliforms 

Early water microbiologists defined all coliform bacteria as those bacteria which is 
able to grow within 24 to 48 hours at 36 ± 2 °C in the presence of bile salts, which is 
used to inhibit non-intestinal bacteria, and has the ability to produce acid and gas with 
the fermentation lactose. Faecal coliforms were considered to be those coliforms 
which were exclusively of faecal origin and consequently able to grow, replicate and 
ferment lactose at an elevated temperature of 44.5 ± 0.2 °C within 24 ± 2 hours, in 
addition to the production of indole from tryptophan metabolism (WHO, 2011). 
Hence, the coliform group includes species belonging to the genera Citrobacteri, 
Enterobacter, Escherichia, Hafnia, Klebsiella, Serratia, and Yersinia. Though some 
members of the Aeromonas genus may mimic coliforms in standard laboratory tests 
for the latter, they are oxidase-positive compared to oxidase-negative coliforms 
(Horan, 2003). 

  

Escherichia coli 

E. coli is commonly regarded as one of the first microbe in water monitoring 
programs and serves as the general primary indicator for faecal contamination of 
water. This species falls under the thermophilic category of coliforms which is able 
to produce indole from tryptophan. Their primary detection in water analysis is due 
to their prevalence in the gut microflora as well as large numbers excreted from both 
human and warm-blooded animals (WHO, 2001). Though majority of E. coli strains 
are harmless and are important components of healthy microflora, six major 
pathogenic classes has been established to date and are collectively referred to as 
diarrheagenic E. coli due to their resulting in diarrhoea, viz. enterotoxigenic E. coli 
(ETEC), enterohaemorrhagic, verocytotoxin-producing or shiga-toxin producing E. 
coli (STEC), enterpathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), 
enteroinvasive E. coli (EIEC) and diffuse adherent E. coli (DAEC) (Clements et al., 
2012; Nataro and Kaper 1998). Furthermore, the most important EHEC, which 
includes the –O111 and –O157 serogroups, results in majority of the reported severe 
cases of diarrhoea and haemorrhagic colitis (Okeke, 2009). 

  

Faecal 
streptococci and 
enterococci 

Faecal streptococci (FS) are defined as bacteria that is Gram-positive, catalase-
negative, non-spore forming cocci that grow in medium containing bile salts and 
sodium azide agar at 35 °C, belonging to the genera Enterococcus and Streptococcus 
possessing group D Lancefield antigen (WHO, 2001). Enterococci are defined as all 
aerobic faecal streptococci that is able to grow at pH 9.6, 10 °C and 44 ± 1 °C in the 
presence of 6.5% sodium chloride. Nearly all FE are members belonging to the 
Enterococcus genus, and also fulfil the following criteria: resistance to 60°C for 30 
min and ability to reduce 0.1% methylene blue (WHO, 2001). The enterococci are a 
subset of faecal streptococci that grow under the conditions outlined above, 
composing of the species E. faecalis, E. faecium, E. durans and E. hirae, which have 
been known for their association with faecal pollution (WHO, 2011). Members of 
this group of indicators are known to be present in large numbers in water 
contaminated by sewage, human and animal wastes. 
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1.3 Next-generation sequencing and water quality assessments 

Genomics is a relatively new scientific discipline having nucleic acid sequencing as its core. 

Recent advances in the sequencing technologies has decreased in cost and scale over 

sequencing’s 40-year history. This has allowed for massively parallel analysis of DNA 

sequence information generated from PCR amplicons or directly from nucleic acids. Nucleic 

acids could be isolated from simple single cells or complex communities. Hence, sequencing 

is said to have revolutionized all biological-related fields and ushered a new era of genomics, 

shifting the paradigm of genomics to address biological questions across the nucleotide to 

ecological scale (Koboldt et al., 2013). In clinical research, next-generation sequencing (NGS) 

has been applied as a screening tool which could complement or even bypass conventional 

diagnostic methods of microscopy, Gram-staining and culturing for the detection and 

identification of etiological agents in disease, respectively (Kumar et al., 2013). It has also been 

applied in the human microbiome profiling project (Qin et al., 2010), sputum analysis of 

patients with cystic fibrosis (Lim et al., 2014), viral pathogens detection (Yang, 2014) as well 

as many others. Similarly, NGS has also been applied for the assessment of various 

environmental scenarios, such as the determination of soil (Howe et al., 2014) and river (Amos 

et al., 2014) microbiota, communities found in activated sludge from WWTPs (Ju et al., 2014), 

communities in sediments from an oil spill (Mason et al., 2014), faecal microbiota (Ilmberger 

et al., 2014) and diversity in aquatic settings (Doxey et al., 2014). Overall, these studies have 

demonstrated the dynamic power of NGS and allowed for new opportunities to arise in water 

quality assessment through analysis of waterborne microbial communities. Analysis of 

waterborne microbial communities could advance development of new indicators or 

biomarkers required for microbial source tracking as well as novel understandings of important 

microbial mediated biological processes (Tan et al., 2015a). As these new tools are being 
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developed, biases and uncertainties associated with nucleic acid-based methods is a topic 

which still needs to be critically considered and is therefore still at “work-in-progress” stage. 

 

1.3.1 Technologies, experimental design and analysis methods for metagenomic studies 

1.3.1.1 Next-generation sequencing technologies 

Early studies investigating the relationship between water quality and waterborne microbial 

communities utilised the pyrosequencing platform from Roche 454 Life Sciences (McLellan 

et al., 2010; Vandewalle et al., 2012). The rationale behind the use was due to the relatively 

long sequence read lengths, initially at 110 bp but now up to 1 000 bp (van Dijk et al., 2014a), 

as well as the overall optimized sequencing conditions and bioinformatic analysis workflows 

developed during that period (Sergeant et al., 2012). However, as the sequencing by synthesis 

platform by Illumina was introduced into the market later on, with initial read lengths of 35 bp 

but increased later on from the merging of paired-end reads allowing up to 100 bp, the platform 

was able to rival pyrosequencing and saw increased standing in environmental sample analysis 

(van Dijk et al., 2014a). Despite availability of other NGS platforms in the market, including 

sequencing by ligation (SOLiD) by Applied Biosystems, single molecule real-time sequencing 

(SMRT) by Pacific Biosciences and ion semiconductor sequencing by Ion Torrent. These 

platforms has been reported in studies which sequenced both PCR amplicons or direct nucleic 

acid (Marine et al., 2014; Mitra et al., 2013; Marshall et al., 2012; Yergeau et al., 2012), as 

well as their capability of generating 0.7 to 600 gigabases (Gb) of data efficiently and in a short 

amount of time. However, these platforms are not widely adopted for water analysis due to 

technical limitations in the sequence generated which still require further advancements. A 

comparison between the specifications of the first-generation and selected next-generation 
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sequencing methods and platforms are described in Table 1.4. Consequently, in the last few 

years, the Illumina MiSeq technology has become one of the most widely used sequencing 

platform in majority of published literature, and with the announcement by Roche to withdraw 

the GS FLX 454 pyrosequencing platform, current studies reported have embarked on further 

refining the data analyses stage tailored specifically for Illumina platforms by improving on 

methods in library preparation (Esling et al., 2015; Shishkin et al., 2015; Kozich et al., 2013;) 

and quality control of sequence reads (Schirmer et al., 2015; Nelson et al., 2014; Kozich et al., 

2013).   

 

1.3.1.2 Experimental design  

Any experimental design should ultimately answer the scientific question of interest, though a 

reasonable and rigorous experimental design is important for acquiring high-quality and 

meaningful sequencing data. A typical design of metagenomic studies is summarized in Figure 

1.1. Several reviews have identified key aspects that should be considered or at least recognized 

in terms of the strengths and pitfalls of current metagenomics-driven studies utilizing NGS (Ma 

et al., 2014; Zhou et al., 2014; Valverde and Mellado, 2013; Mande et al., 2012; Prakash and 

Taylor, 2012; Gilbert and Dupont, 2011; Kunin et al., 2008; Wooley, 2007). Firstly, the 

adequate number of biological and technical replicates of samples investigated is necessary for 

thorough and accurate statistical analyses. Many initial exploratory investigations reported 

were not able to appropriately address this issue due to the high cost of sequencing at that time 

as well as the recent realisation in the implications of biological and technical replicates in 

downstream analyses (Knight et al., 2012). The importance of biological replicates from within 

an experimental group allows for a measure of within-group variation leading to a more 

accurate evaluation of the degrees and/or effectiveness of observed biological differences. 
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Technical replicates from a given sample provides a measure of the reproducibility of the 

sequencing data generated using identical molecular methods, such as DNA extraction and 

PCR amplification, and subsequent NGS protocols, such as library construction and sample 

multiplexing. Therefore, future studies should not be compromised in terms of appropriate 

replicates due to economic constraints as the cost of NGS is exponentially decreasing per year 

(Koboldt et al., 2013; Muir et al., 2016). Secondly, addition of positive and negative controls 

should be considered during the amplification steps, NGS as well as data analysis stages. This 

is to ensure that there is no contamination across samples and reagents, genomes are properly 

assembled from the analysis of the positive control and differential binning algorithms are 

implemented as intended. Thirdly, several critical decisions must be made at the sampling 

stages and include (i) the selection and monitoring of important influential parameters and their 

range of scales, such as physicochemical, biological, temporal and spatial variation; (ii) the 

methods for obtaining the above parameters, such as on-site or laboratory; (iii) the sample 

preservation and storage methods, such as on-site fixing or addition of preservatives; (iv) the 

methods of improving DNA or RNA quantity and purity; and (v) the sequencing platform 

selected, the depth and length of sequencing (Ju and Zhang, 2015). 
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Table 1.4: Comparisons between the specifications of first- and selected next-generation sequencing method and platforms† (adapted from Cheng 
et al., 2013). 
 

Sequencing 
platform 

Read 
length 
(bp)# 

Reads per 
run 

Throughput 
(Gb) 

Time per 
run 

Accuracy 
(%) 

Cost per 1 
million bp Advantages Disadvantages 

First-generation 

Sanger 400 – 900 n/a* n/a* 20 min – 3 h 99.9 $$$$$ Long individual reads. Useful for 
many applications. 

More expensive and impractical 
for larger sequencing projects. 
This method also requires the 

time consuming step of plasmid 
cloning or PCR. 

Next-generation 

Illumina HiSeqTM 
2000 35 – 100 300 Million 

– 3 Billion 100 – 600 2 – 11 days 98.0 $$ Ultra-high throughput. High 
capacity of multi-plexing. 

Short read assembly may miss 
large structural variations. Signal 
interference among neighbouring 

clusters. Homopolymer errors. 

Illumina MiseqTM 35 – 150 1 – 25 
Million 1.5 27 h 99.2 $ 

Well-proven sequencing 
technology. Fully automated 

workflows developed. Low cost. 
Fast runtime. 

Low abundance of amplified 
template. 

Applied 
Biosystems 5500 
SOLiDTM 

35 – 75 1.2 – 1.4   
Billion 120 6 – 14 days 99.9 $$ 

Ultra-high throughput. Two-base 
coding for higher accuracy. High 

capacity of multi-plexing 

Short read assembly may miss 
large structural variations. Long 

run time. Signal interference 
among neighbouring clusters. 

Signal degradation. 

Roche 454 Life 
Sciences GS FLX 
TitaniumTM 

700 –
1000 1 Million 0.7 0.35 – 0.42 

days 99.9 $$$$ 
Long read assembly allows 
detection of large structural 
variations. Short runtime. 

Lower throughput. Homopolymer 
errors. Signal interference among 

neighbouring clusters. 

Iron Torrent Ion 
ProtonTM PI & PII 100 – 400 40 – 80 

Million 10 – 30 4 h 98.5 $$$ 
Fast runtime. Highly scalable due 
to different chips available. Low 

cost. 
Newest to the market 

Iron Torrent Ion 
PGMTM 314, 316 
& 318 chips 

100 – 400  0.01 – 1 1 – 3 h 98.5 $$$ 
Highly scalable due to different 
chips available. Low cost. Fast 

run time. 
Homopolymer errors. 

*n/a, not applicable 
#average read length depends on specific sample and genomic characteristics. 
†specifications for all platforms are derived from company websites. 
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Figure 1.1: Flowchart of experimental preparation and data analysis in a typical metagenomic 
study; some typical bioinformatics tools or platforms are listed above the arrow lines (adapted 
from Ju and Zhang, 2015). 

 

1.3.1.3 Methods for analysis  

Analysis of metagenomic data is performed by the relatively new scientific field of 

bioinformatics, where various routes are available depending on the scientific question as 

summarized in Table 1.5. For example, short reads could be assembled into contigs and 

subsequently reconstructed into draft genomes through what is known as a self-accelerating 

data mining circle as depicted in Figure 1.2 (Ju and Zhang, 2015). The operation of this circle 

on NGS data annotation allows for novel training sets or generation of reference sequencing 

for the next rounds of reads, contigs, and genome annotations. This ultimately enables the 

discovery of novel conditions, such as biochemical attributes or metal resistance, for the 
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Data Storage & Sharing
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selective enrichment and isolation of novel uncultured microbes. Successful isolation of these 

novel microbes will validate the predicted annotations, increase biochemical properties and 

function as well as retrieval of their complete genomes, thereby increasing knowledge on the 

novel organism. Hence, this approach provides a powerful way for identifying novel microbial 

resources which may be important in biotechnological fields (Ju and Zhang, 2015). 

 

 

 

Figure 1.2: Schematic circle of self-accelerating data mining from raw reads, contigs, and 
genomes in a metagenomics-based study. Reads provide an overview of microbial community 
structure and functions; Contigs provide an overview of gene catalogue for the discovery of 
novel resources and patterns; Genomes provide a window to the function and conditions for 
isolation of uncultured microorganisms; Isolates provide function verification of genomes, 
physio-biochemical attributes, and materials for future application in genetic engineering 
(adapted from Ju and Zhang, 2015).  
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Table 1.5: Platforms and software tools available for the bioinformatics analysis of 
metagenomes (adapted from Ju and Zhang, 2015). 
 

Analysis Steps Bioinformatic 
Tool Tool Application Reference 

Quality Control MG-RAST de-multiplexing of barcoded samples; 
quality control; dereplication (Meyer et al., 2008) 

 CLC bio 

adapters/linkers removal; de-
multiplexing of barcoded samples; 

quality control; dereplication; 
overlapping of paired-end reads 

http://www.clcbio.com/ 

 IMG/M system quality control; dereplication (Markowitz et al., 2012) 

 PRINSEQ quality control; dereplication (Schmieder and Edwards, 
2011a) 

 NGS QC Toolkit adapters/linkers removal; quality 
control; (Patel and Jain ,2012) 

 DeconSeq DNA contamination removal (Schmieder and Edwards, 
2011b) 

 FASTX-Toolkit 
adapters/linkers removal; de-

multiplexing of barcoded samples; 
quality control 

http://cancan.cshl.edu/tools.php 

    
Assembly Velvet genome assembler (Zerbino and Birney, 2008) 
 ABySS contig/genome assembler (Simpson et al., 2009) 
 SOAPdenovo2 genome assembler (Xie et al., 2014) 
 CLC bio genome/metagenome assembler http://www.clcbio.com/ 
 IDBA-UD metagenome assembler (Peng et al., 2012) 
 MetaVelvet metagenome assembler (Namiki et al., 2012) 
 Ray Meta metagenome assembler (Boisvert et al., 2012) 
 Omega metagenome assembler (Haider et al., 2014) 
 MEGAHIT metagenome assembler (Li et al., 2015d) 
    
Binning GroopM genome reconstruction (Imelfort et al., 2014) 

 CONCOCT composition-based taxonomic 
binning/assignment (Alneberg et al., 2014) 

 MaxBin composition-based taxonomic 
binning/assignment (Wu et al., 2014) 

 METABAT composition-based taxonomic 
binning/assignment (Kang et al., 2015) 

 PhyloPythiaS composition-based taxonomic 
binning/assignment (McHardy et al., 2007) 

 TETRA composition-based taxonomic 
binning/assignment (Teeling et al., 2004) 

 CompostBin composition-based taxonomic 
binning/assignment (Chatterji et al., 2008) 

 TACAO composition-based taxonomic 
binning/assignment (Diaz et al., 2009) 

 MetaPhlAn2 homology-based taxonomic 
binning/assignment (Segata et al., 2012) 

 MetaPhyler  (Liu et al., 2010) 

 PhymmBL composition & homology-based 
taxonomic binning/assignment (Wang et al., 2012b) 

 MetaCluster  (Wang et al., 2012c) 
    
Annotation MG-RAST reads annotation (Meyer et al., 2008) 

 IMG/ER contigs and genomes annotation (Markowitz et al., 2009) 

 RAST contigs and genomes annotation (Aziz et al., 2008; Overbeek et 
al., 2014) 

 WebMGA reads and contigs annotation (Wu et al., 2011) 
 ggKbase contigs and genomes annotation http://ggkbase.berkeley.edu/ 

  



 20 

1.3.1.3.1 Quality control  

Regardless of the route taken for the analysis of NGS data, quality control of raw reads obtained 

from NGS platforms is an essential step to guarantee the use of high quality sequencing (also 

known as clean reads) in downstream analysis. Typically, quality control includes (i) quick 

summary statistics of raw data quality of a NGS library. This is achieved by the use of base 

quality, ambiguous bases, sequence duplication levels, length distribution, GC content and 

adaptor content which could be obtained from open-source tools such as FASTQC software 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Subsequently, (ii) nucleic acid 

adaptors or linkers used in NGS needs to be removed, followed by (iii) de-multiplexing, (iv) 

overall quality check of the generated reads, and then (v) dereplication, which is the removal 

of unwanted duplicate or near-duplicate artefacts produced during NGS library preparations. 

This is commonly seen with large insert size libraries. Failure in the dereplication step of 

quality control has been reported to lead to biased measures of taxon abundance or gene 

expressions (Schmieder and Edwards, 2011a). To date, there is no uniform standard for the 

dereplication of metagenomes. For example, the IMG/M annotation pipeline only retained one 

copy of those DNA sequences with greater than 95% similarity (Markowitz et al., 2014). 

Whilst the MG-RAST pipeline removes all but a single representative of the clusters of DNA 

sequences whose first 50 bp are identical (Meyer et al., 2008). Conversely, the PRINSEQ offers 

the complete list of options for users to remove 100% similarities and reverse complement 

duplicates (Schmieder and Edwards, 2011a). Finally, (vi) reads overlapping can be constructed 

for paired-end (PE) library NGS. Paired-end sequencing allows for overlapping and merging 

of the PE sequences obtained. Advances of using overlapped sequences with extended length 

means that higher resolution and accuracy of taxonomic and functional annotation would be 

possible due to the higher quality and smaller error of obtained sequences (Masella et al., 2012; 

Schloss et al., 2009). Popular bioinformatic tools for overlapping PE sequences include QIIME 
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(Caporaso et al., 2010), Mothur (Schloss et al., 2009), FLASH (Magoč and Salzberg, 2011) or 

PANDAseq (Masella et al., 2012) to name a few. Generally, popular packages or automated 

workflows have been designed for processing the raw NGS data, such as MEGAN, IMG/M 

and MG-RAST for DNA analysis or PRADA for RNA analysis (Torres-García et al., 2014). 

Among those listed in Table 1.5, PRINSEQ and NGS QC Toolkit have been the most popular 

tools used for DNA sequences, whilst RSeQC (Wang et al., 2012) is the most popular for RNA 

sequences followed by RNA-SeQC (DeLuca et al., 2012).  

 

1.3.1.3.2 Assembly  

Assembly is the computational process of connecting reads which passed quality control to 

yield long contigs. This will enable for the prediction of open reading frames, protein coding 

genes transcripts, strain specific genomic islands or allow for recovering of genomic sequences 

(discussed in the following section). This in turn, will allow for a qualitative analysis of the 

genetic content of the generated sequences at various taxonomic levels, and is particularly 

important for unculturable microorganisms. Although requiring substantial computational 

resources, metagenomic assembly effectively reduces data sizes (Howe et al., 2014). However, 

it has been suggested that this step is avoided in studies investigating biospheres with low 

sequencing depth or coverage due to the introduction of potential bias from the suppression of 

low abundance species which is omitted during assembly of reads (Rosseel et al., 2013; Sims 

et al., 2014). Typically, two strategies of assembly are employed depending on the scientific 

question and availability of other sequences, either de novo or reference based. De novo based 

assembly is usually recommended and widely adopted to avoid discarding the novel sequences 

described above regardless of the computationally expensive resources required, which 

previously reached up to hundreds of gigabytes of RAM alone with weeks of computational 
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runs. However, recent advances in the computational fields have greatly reduced the resource 

required (Howe et al., 2014). Most de novo assembly makes use of a mathematical concept 

known as the de Bruijn graph, and is implemented in tools such as MetaVelvet (Namiki et al., 

2012), SOAPdenovo2 (Xie et al., 2014), IDBA-UD (Peng et al., 2012). These three tools have 

been widely adopted in published literature utilising the de novo assembly approach. IDBA-

UD and Meta-IDBA both adopt a multiple k-mer strategy and have been demonstrated to be 

far more memory-efficient, only requiring nearly up to 400% less memory than Velvet, 

MetaVelvet, and SOAPdenovo (Namiki et al., 2012; Peng et al., 2012). MetaVelvet has been 

reported to provide significantly longer scaffold than Velvet, SOAPdenovo, and Meta-IDBA 

and increases the number of predicted genes from microbial metagenomic data sets of the 

human gut (Namiki et al., 2012). Additionally, comparison between MetaVelvet, 

SOAPdenovo2 and CLC bio’s de novo tools in a study showed that CLC bio’s de novo 

assembler produced longer scaffolds, based on the N50 size, mean length and maximum length 

of phenol-degrading methanogenic metagenome, in addition to the faster time and smaller 

memory required (Ju and Zhang, 2014). Reference based assembly utilises reference sequences 

and aligns reads with similar homology accordingly. Bioinformatic tools which utilise this 

strategy, such as Roche’s Newbler, are fast and memory efficient (Kunin et al., 2008). Though, 

it should be noted that reference based strategy is limited in its ability to truly capture the 

differences between genomes of novel species due to high genetic novelty and diversity and 

thus greatly underestimates the microbial diversity in complex microbial systems such as soil 

or water (Howe et al., 2014). 
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1.3.1.3.3 Binning  

Shotgun sequencing allows for bypassing of the cultivation limitation due to direct sequencing 

of isolated DNA. Furthermore, it allows for discovery of novel organisms and genes with 

recovery of near-complete genome sequences of species which could allow for further 

metabolic, evolutionary and ecological understandings (Albertsen et al., 2013; Sharon et al., 

2012; Wrighton et al., 2012). Binning is an important step and refers to the computational 

process of clustering contigs or reads into separate groups that might represent an individual 

level of taxonomic resolution originating from the same population source, such as single 

genome, similar genomes from the same genus or genomes from the same taxa (Strous et al., 

2012). Metagenomic binning methods can be based on various factors, viz. homology, 

abundance or coverage, sequence composition, or a combination of these factors. Homology-

based tools are typically used for taxonomic classification of shotgun metagenomic reads based 

on similarity comparisons with a database of known reference marker genes, such as the 16S 

rRNA genes, rpoB gene, or specific markers unique to a species. As homology binning strategy 

utilises similarity searchers and taxonomic assignments, they are not reliable for assigning short 

reads and often require longer assembled contigs and manual efforts to ensure high assignment 

accuracies, with each tool having their own minimum contig length requirements. Though this 

approach may provide useful grouping information on the short reads generated for improving 

downstream genome binning of specific organisms, the approach is limited by the heavy 

reliance on the quality and representativeness of the reference databases used, poor taxonomic 

resolution, accuracy as well as sensitivity of the alignment tool (Alneberg et al., 2014; Sharpton, 

2014). Tools such as MetaPhlAn2 (Segata et al., 2012), MetaPhyler (Liu et al., 2010) and 

CARMA3 (Gerlach and Stoye, 2011) fall into this category within the toolbox. Abundance or 

coverage-based tools classifies contigs by their differential coverage profiles among multiple 

related metagenomes. This is done with the assumption that contigs from the same 
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microorganisms should have similar abundance profiles in any given metagenome. The draft 

genomes obtained from this method can then be further purified and refined using composition-

based methods and other strategies, including reassembly, manual curation and paired-end 

tracking (Albertsen et al., 2013; Karlsson et al., 2013; Sharon et al., 2012). Composition-based 

algorithms generally use conserved nucleotide compositions derived from NGS data, such as 

GC content of DNA sequences within genomes or tetranucleotide frequencies (TNF) to group 

different contigs or reads. Typically, composition based tools are improved by providing 

sample-specific training datasets. To date, two unsupervised approaches have been widely 

applied to reconstruct high-quality genomes of uncultured organisms directly from 

metagenomes. The first approach from the Tetra-ESOM tool (Dick et al., 2009) explores 

genome signatures by clustering tetranucleotide frequencies using emergent self-organizing 

maps (ESOM). This new composition-based method has been successfully utilized to retrieve 

numerous genomes from the metagenomes of the Guaymas Basin hydrothermal plume and 

surrounding waters (Sheik et al., 2014), acidophilic biofilm communities (Dick et al., 2009) 

and acetate-amended aquifer sediment communities (Wrighton et al., 2012) to name a few. 

Tools such as TETRA (Teeling et al., 2004), PhyloPythia (McHardy et al., 2007), CompostBin 

(Chatterji et al., 2008) and TACAO (Diaz et al., 2009) fall within this category within the 

toolbox. On the other hand, bioinformatic tools such as PhymmBL (Brady and Salzberg, 2009) 

and MetaCluster (Wang et al., 2012b) both utilise the composition and homology approach in 

taxonomic classification or clustering of reads from the metagenomic sequences into same/or 

similar genomes. Recently, tools including GroopM (Imelfort et al., 2014), CONCOCT 

(Alneberg et al., 2014), MaxBin (Wu et al., 2014) and METABAT (Kang et al., 2015) were 

developed to integrate coverage/abundance profiles and TNF patterns of contigs across 

multiple temporal or spatial related metagenomes into efficient automated pipelines for genome 

reconstruction from metagenomes. The completeness and potential contamination in 
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reconstructed genomes have been estimated by the presence/ absence of essential marker genes, 

such as essential single copy marker genes conserved in 95% of bacteria (Dupont et al., 2012), 

conserved phylogenetic marker genes (Wrighton et al., 2012), or clusters of orthologous groups 

(COGs) (Raes et al., 2007). Currently, the recently developed CheckM is the only automated 

tool that can assess the quality of a genome recovered from isolates, single cells, and 

metagenomes based on these conserved marker genes (Parks et al., 2015). 

 

1.3.1.3.4 Annotation 

Both assembled contigs and unassembled reads from NGS data could be used for annotation, 

thereby identifying the sequence and inferring its functions. Generally, assembled contigs with 

more compact size and much longer lengths allow for rapid analysis of both specific species 

and their functional genes compared with unassembled short reads. However, an assembly 

based annotation approach has the potential to introduce biases for quantitative analysis due to 

the difficulty associated with low abundance species and closely related strain as well as the 

exclusion of unassembled data in downstream analysis. In contrast, unassembled short reads 

retain all the original abundance information and enable quantitative comparisons within or 

between habitats or ecosystems. However, short reads are large in terms of data size and may 

lack resolution for taxonomic and functional annotations (Li et al., 2015a; Wang et al., 2012). 

For assembled contigs, gene calling tools commonly used to determine protein encoding genes 

from predicted open reading frames include FragGeneScan (Rho et al., 2010), Orphelia (Hoff 

et al., 2009), MetaGeneMark (Zhu et al., 2010), MetaGeneAnnotator (Noguchi et al., 2008) 

and Prodigal (Hyatt et al., 2010), with the latter being the popular tool due to lower false 

positive rates and improved gene structure predictions. Quantification of predicted protein 

encoding genes from assembled contigs typically is based on the mapping of the contigs to 
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known genes with Reads Per Kilobase of transcript per Million mapped reads (RPKM) 

(Mortazavi et al., 2008), Fragments Per Kilobase of transcript per Million fragments mapped 

(FPKM) (Trapnell et al., 2010) and relative abundance (number of reads mapped divided by 

total number of reads) metrics widely used. RPKM has been proposed to better reflect the 

absolute transcriptional activity due to the potential of uneven richness of different protein 

encoding genes in a given sample (Xia et al., 2014). Popular alignment tools for mapping of 

the contigs to known genes is Bowtie2 (Langmead and Salzberg, 2012; Langmead et al., 2009), 

BWA/BWA-SW (Li and Durbin, 2010, 2009) and recently developed HISAT (Kim et al., 

2015). Alternatively, binning approaches described above could be used to recover draft 

genomes of uncultured organisms and submitted to web-based servers with established 

pipelines such as IMG/ER (Markowitz et al., 2009), RAST (Aziz et al., 2008), WebMGA (Wu 

et al., 2011) and ggKbase. For unassembled reads, the the direct use of clean unassembled 

reads for quantitative analysis is typically first approach. Additionally, genomic and 

transcriptomic data which are available from the same samples allow for understandings of the 

active microbes as well as enable comparisons in their expression patterns (Frias-Lopez et al., 

2008; Yu and Zhang, 2012). For example, unassembled reads have been used to characterize 

or predict environmental biohazards such as bacterial pathogens, viruses and antibiotic 

resistance genes (ARGs) in drinking water disinfection systems (Gomez-Alvarez et al., 2012; 

Li et al., 2015c) and waste and wastewater treatment systems (Li et al., 2015b; Bibby and 

Peccia, 2013; Yang et al., 2013; Tamaki et al., 2012). Taxonomic and functional annotation 

with unassembled reads is based on homology searches against a reference database using 

various alignment tools either via standardised platforms or established pipelines such as MG-

RAST for DNA fragment analysis and PRADA for RNA analysis. Taxonomy profiling tools, 

such as Pathoscope (Francis et al., 2013), Sigma (Ahn et al., 2015), and MetaPhlAn2 (Segata 

et al., 2012), provide species level resolution for performing bio-surveillance and detecting 
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biohazards in healthy human microbiome with the assistance of reference genomes 

(Consortium, 2012). Local similarity searches with BLASTX or PSI-BLAST is time 

consuming and computationally expensive given the large sizes of reference databases and 

query data. To cope with this limitation, several tools have been developed and shown to be 

much faster in speed but at the cost of reduced levels of sensitivity and specificity. Tools such 

as BLAT (Kent, 2002), RapSearch2 (Zhao et al., 2012), USEARCH (Edgar, 2010) and 

DIAMOND (Buchfink et al., 2014) fall within this category in the toolbox. To maximize 

functional annotation, recent versions of popular automated pipelines such as MG-RAST, 

IMG/M and MEGAN have merged majority of the publically available databases (KEGG, 

UniRef, Swiss-Prot, PFAM, TIGRFAM, eggNOG, COG, CDD and SMART) into a single 

framework to allow for for user-friendly and streamlined analyses (Huson et al., 2016; Thomas 

et al., 2012).  

 

1.3.1.3.5 Data storage and sharing 

Sharing of NGS data, analysis results and associated metadata is a traditional and efficient 

method of knowledge dissemination. Its significance lies in the beneficial outcomes of 

comparative studies and complete elimination of unnecessary repeated sequencing or analysis 

of similar microbial systems. Several publically available databases have been maintained to 

promote the storage and sharing of NGS data, such as NCBI-SRA, MG-RAST and GOLD. 

Submitted data typically are required to be coupled with completed metadata file that is 

prepared according to the recently established minimum information about any sequence 

checklist (MIxS) from the Genomic Standards Consortium (http://gensc.org/projects/mixs-gsc-

project/) and include information such as sampling habitat type, location, time, organisms, 

sequencing method, analysis method (Ju and Zhang, 2015).  
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1.3.2 Applications of next-generation sequencing in water quality analysis 

1.3.2.1 Microbial quantification 

The application of NGS in water quality analysis is still in its early stages and has not been 

integrated into established epidemiological framework, whereby observed trends with NGS 

studies is correlated to public health risks. This is due to the fact that a fundamental requirement 

of microbial risk assessment within the quantitative microbial risk assessment (QMRA) 

framework is to be able to accurately quantify biological agents which leads to health risks 

(Haas et al., 2014). Several molecular based methods are known to be highly quantitative and 

is able to provide results in the form of absolute gene copy number viz. quantitative-PCR 

(qPCR) and digital-PCR (dPCR). On the other hand, the profiles of species generated from 

NGS amplicon and shotgun sequencing is regarded more as being qualitative result than 

absolute quantification. Furthermore, as amplicon sequencing is largely based on PCR 

amplification, the method is subjected to limitations associated with PCR such as generation 

of false positives, GC content of the amplicons, secondary structure formation as well as the 

impact of primers targeting the different SSU rRNA regions on resultant amplicons. These 

factors could lead to under-estimations or over-estimations of relative abundance and diversity 

in downstream analysis from the subsequent sequencing error or chimera formations. Chimera 

formations refers to incorrectly assembled amplicons and can produce artificial sequences that 

are often difficult to identify (Schirmer et al., 2015; Nelson et al., 2014; van Dijk et al., 2014b; 

Kozich et al., 2013; Quail et al., 2012; Wylie et al., 2012 Kozarewa et al., 2009). This is further 

complicated by recent studies which reported pronounced biases associated with increasing 

PCR cycle numbers (Murray et al., 2015; Schirmer et al., 2015; Sinclair et al., 2015) well as 

the fact that some bacterial species house multiple copies of the SSU rRNA gene (Angly et al., 

2014). Additionally, a study reported sequencing errors associated with reads generated from 
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the Illumina MiSeq platform may also result in differences due to differences in the library 

preparation protocols used (Schirmer et al., 2015). Studies which utilised mock NGS data of 

bacterial communities suggest that these variations can sometimes result in overestimation of 

the number of OTU observed and therefore skew estimates of species richness and evenness 

(Kennedy et al., 2014; Nelson et al., 2014). Hence, all of the factors described above influence 

the relative abundance of the OTU observed in downstream bioinformatic analysis and could 

lead to misinterpretations of the results observed. Despite the concerns discussed above, several 

studies have demonstrated usefulness of NGS targeting the SSU rRNA gene in determining the 

microbial species composition and quantification of their relative abundance in water samples 

(Ong et al., 2013; Wang et al., 2014). Although, the accuracy of these studies should be 

interpreted with caution as it is likely sample dependent and may be influenced by the factors 

described above. Therefore, as there are inherent differences between any sample types and its 

associated microbiome, it is likely that there could be no universal approach for quantitative 

measurement of all sample types and is a major limitation of this approach (Murray et al., 2015; 

Schmidt et al., 2015). 

 

In its applications, amplicon sequencing typically only provides insight into the taxonomic 

composition of the sample. It is impossible to directly resolve the biological functions 

associated with these taxa using this approach. In some cases, phylogenetic reconstruction can 

be used to infer biological functions that are encoded in a well annotated genome containing 

the particular SSU rRNA sequence observed. But, the accuracy with which these methods 

estimate the true functional diversity of a community is limited due to the fact that only few 

genomes are well understood, annotated and publically available in sequence databases 

(Langille et al., 2013). Due to these limitations as well as the concerns regarding introduction 
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of biases in PCR-based NGS studies, several studies have investigated microbial communities 

with an amplification-free approach targeting the SSU rRNA genes from shotgun NGS data. 

The shotgun sequencing approach utilises extracted nucleic acids from all cells in a sample. 

Rather than specific targeting of a set of sequences or gene for amplification, all nucleic acids 

are fragmented/sheared into tiny segments that is subsequently sequenced on a NGS platform 

(Sharpton, 2014). For example, Logares et al. (2013) recently assessed the diversity of marine 

plankton using three different NGS platforms with this approach as well as the amplicon 

approach, viz. shotgun sequencing by Illumina HiSeq and Roche 454 as well as amplicon 

sequencing of targeted SSU rRNA gene by Roche 454. The composition and diversity of the 

SSU rRNA genes observed from shotgun sequencing by Illumina was higher and more even 

than shotgun and amplicon sequencing by the Roche 454 platform. Furthermore, the relative 

abundance of the microbial taxa observed from shotgun Illumina sequencing was comparable 

to relative abundances observed by catalysed reporter deposition fluorescence in situ 

hybridization as well as flow cytometry assays. Hence, the choice of NGS platform may yield 

different results due to varying resolution and quantitative power from sequence throughput, 

coverage and depth. By spiking samples with known standards prior to DNA or RNA isolation, 

several protocols have been developed and reported in a few studies with the intention of 

quantifying gene copy numbers or transcripts from shotgun NGS data (Gifford et al., 2011; 

Satinsky et al., 2014; Rivers et al., 2013). For example, use of these controls for benchmarking 

was applied in a studies investigating microbial communities in the Amazon river by (Satinsky 

et al., 2015, 2014) where DNA and RNA standards of known concentrations which were 

prepared by using commercially acquired plasmid DNA. The plasmid was linearized and 

subsequently subjected to restriction enzyme digestion. For RNA quantification, the linear 

plasmid DNA fragments were further transcribed in vitro and the resultant product’s absolute 

copy number quantified via spectrophotometry. Thereafter, both DNA and RNA standards was 
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added to the samples of the study prior to cell lysis, total metagenome and metatranscriptome 

isolation and NGS. The copy number of the sequenced internal standard was then used as a 

benchmark to estimate the sequencing depth and allow for relative quantification of the 

differential expressed transcripts of the studied samples.  

 

Though potential biases and uncertainties introduced by nucleic acid-based methods and NGS 

still limit these two approaches, the studies discussed above demonstrate the potential use of 

NGS for quantification of either the relative abundance of targeted genes or taxonomic groups 

or determining the absolute quantification through the addition of control standards to 

environmental samples. However, as these methodologies is still relatively new with 

unforeseen pitfalls, developments and results obtained from further investigations should 

always be carefully interpreted.  

 

1.3.2.2 Faecal and pathogen detections 

Contamination of freshwater originally intended to serve as sources for drinking water or 

domestic, agricultural and industrial purposes continues to be a cause for concern. To determine 

the source of contamination of these resources, molecular based methods have been a 

favourable approach. NGS of the SSU rRNA gene has been used to characterize the microbial 

population in raw sewage/wastewaters entering wastewater treatment plants in several 

countries across the globe. Overall, bacterial communities associated with wastewater 

infrastructures has been observed to be unique and different from those present in human faecal 

materials as well as other environments such as soil and the ocean (Cai et al., 2014; Shanks et 

al., 2013; McLellan et al., 2010; Unno et al., 2010). Specifically, comparisons between the 
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wastewater microbial communities and human faecal communities from the Human 

Microbiome Project suggested that there is a difference of approximately 90 to 95% between 

the two sources, suggesting that only approximately 10% to 15% of the microbial populations 

in wastewaters were of human origin. Additionally, the studies reported the Firmicutes and 

Bacteroidetes genera to dominate the bacterial population from the percentage of detected 

faecal microbes, followed by other anaerobic families such as Bifidobacteriaceae, 

Coriobacteriaceae. Another interesting study reported the statistical correlation of the dominant 

families of Bacteroidaceae, Prevotellaceae, Lachnospiraceae and Ruminococcaceae to the 

obesity rate of the cities investigated, where higher obesity rates corresponded to increased 

relative abundance of Bacteroidaceae in domestic wastewaters. This finding is in line with a 

previous finding suggesting increased representation of Bacteroidaceae in human gut 

microbiomes of high fat consumption diets (David et al., 2014). As the major proportion of the 

microbial communities in wastewaters were reported to not be of faecal origins, this population 

was observed to vary in diversity and abundance between different geographical locations and 

seemed to be unique in the taxa determined compared to animals, freshwaters and other 

environmental sources, on top of having an overall higher diversity and species richness 

compared to stool samples (Newton et al., 2015; Shanks et al., 2013; Vandewalle et al., 2012; 

McLellan et al., 2010). Authors of these studies have proposed the use of species which have 

been found in human faeces and in wastewaters, but absent or in low abundance in freshwaters 

to be new indicators for sewage contamination in water contamination studies. Although, 

several studies have emphasised the use of species or bacterial taxonomic groups identified, 

NGS approaches are site specific as different wastewater infrastructures, urban population, 

climate variations, rain and storm water infiltrations contribute to different microbial 

compositions (McLellan et al., 2010; Shanks et al., 2013; Ye and Zhang, 2013) 
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While these studies have shown the applicability of NGS in determining faecal contamination 

and revealing the microbiome present in contaminated waters, a direct approach to determine 

pathogen diversity and their abundance is also possible with NGS. Though traditional 

determinations of pathogens are costly, time consuming, technically challenging and requires 

prior knowledge on the targeted pathogens (Varela and Manaia, 2013), use of NGS overcomes 

these limitations and allows for screening of sequences with high similarity to waterborne 

pathogens, on top of potential quantification inferences in their relative abundance (Lu et al., 

2015; Cai et al., 2014; Cai and Zhang, 2013; Ibekwe et al., 2013; McLellan et al., 2010). 

Identification of pathogenic sequences in early studies were not possible due to the short read 

lengths which could not provide the taxonomic resolution beyond genus or family levels. 

However, with increases in the NGS read lengths over the past few years, classification with 

higher confidence to the species level has now become possible. For example, a recent study 

investigating the bacterial pathogens in wastewater treatment plants utilised a combination of 

NGS and qPCR to determine the occurrence of bacterial pathogens at various treatment stages 

of the wastewater treatment process (Lu et al., 2015). The study showed that the raw influent 

received by the plant was high in the levels of potential pathogens which were related to 

Arcobacter butzleri, Klebsiella pneumonia, and Aeromonas hydrophila, with the Arcobacter 

genus accounting for as high as 97.37% of the pathogenic populations across the various 

treatment stages. However, upon treatment, the wastewater effluent only contained Arcobacter 

butzleri, demonstrating the effectiveness of the biological process in removal of these 

pathogens. Furthermore, quantification by qPCR saw similar trends observed by NGS and 

confirmed these observations. Similarly, (Ye and Zhang, 2011) investigated wastewater 

treatment plants in four different countries (USA, China, Singapore and Canada) utilising the 

454 pyrosequencing platform and reported the presence of pathogenic bacterial population in 

the raw wastewater influent received by the plants, with dominance corresponding to the 
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Aeromonas and Clostridium genera. The study saw dominance of Aeromonas veronii, 

Aeromonas hydrophila, Clostridium perfringens and Corynebacterium diphtheria species.  

 

Recent studies have also utilised NGS in combination with first-generation sequencing and 

conventional approaches such as PCR and qPCR, in order to identify and quantify pathogens 

associated with outbreaks of disease. For example, this approach was used for the analysis of 

eight pathogenic viruses (norovirus, astrovirus, rotavirus, adenovirus, Aichi virus, parechovirus, 

hepatitis A virus, and hepatitis E virus) from wastewaters in Gothenburg, Sweden and 

prevented a potential outbreak of Hepatitis A and norovirus due to their early detections with 

two strains of hepatitis A virus involved in an ongoing outbreak in Scandinavia (Hellmér et al., 

2014). In another study, this approach was also used to understand the spread and distribution 

of the polio virus as well as differentiate wild-type and vaccine strains in Congo through the 

2004 to 2011 years. The study was able to identify at least seven circulating lineages, determine 

their corresponding geographic regions in the country and show multiple independent 

emergence of the virus during the seven year period (Gumede et al., 2013). 

 

Together, the above studies have demonstrated the use of NGS in determining faecal, potential 

pathogen and viral contamination in water sources. However, the approach has not been 

integrated into the QMRA framework described above. On top of the issue with absolute 

quantifications described above, pathogen detection at a species taxonomic resolution has only 

been recently possible due to the increase in sequencing reads. Furthermore, though species 

resolution is now possible, the issue with strain specific virulence has not been overcome and 

is a topic for future research. Nonetheless, these studies have shown the potential impact of 
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NGS method providing insights into the distribution and relative representation of pathogens 

in different environmental scenarios. Such information with further developments and research 

should allow for better practices to safeguard public health. Therefore, one should see the 

integration of NGS into routine water quality analysis in the near future.  

 

1.3.2.3 Chemical pollution 

Chemical pollution is one of the major causes of diminished water quality. Several strategies 

for effective pollutant treatment have been through bioremediation by the stimulation of 

indigenous microbial communities for removal, immobilization or transformation of the 

compounds (Arjoon et al., 2015; Gieg et al., 2014; Koenig et al., 2014; Arjoon et al., 2013; 

Major et al., 2002). As the presence of these chemical pollutants provides selective pressures 

which enrich for specific microbial populations, some of these microbes have been observed 

to be capable of coping with associated stresses in addition to utilising the contaminants as 

carbon or nitrogen sources, or even as electron acceptors for their respiration (Hemme et al., 

2010; Smith et al., 2012). Analysis of enriched microbial communities as well as their genes 

in polluted waters through application of NGS has revealed key microbial processes involved 

in contaminant tolerance and transformation. 

 

Several investigations (Tan et al., 2015; Engel and Gupta, 2014; Rivers et al., 2013; Mason et 

al., 2012; Hemme et al., 2010) of marine samples demonstrated the enrichment of microbial 

genes in unique environments and reported their involvement in these key biogeochemical 

processes. These studies examined the gene expression profiles of microbial communities from 

polluted waters and was able to determine the pathways taken by microbes during 
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transformation of the contaminants. The observed pathway profiles served as indicators of in 

situ biodegradation processes and allowed for exploitation to further accelerate the 

bioremediation process by shifting processes towards an intended pathway (Coleman and 

Chisholm, 2010; Kelly et al., 2013; Ulloa et al., 2012).   

  

In a study by Hemme et al. (2010), microbial communities determined through NGS coupled 

with metagenomics was observed with limited diversity, consisting of beta- and gamma-

proteobacteria, in a groundwater resource heavily contaminated with nitric acid, organic 

solvents and heavy metals for approximately 50 years. The study was able to confidently 

reconstruct putative community metabolisms of the beta- and gamma-proteobacterial species 

as well as propose possible lateral gene transfer within the community as a rapid key functional 

response and adaptation to the environmental contamination upon sequence evolutionary 

analysis. A recent study was also able to show the link between gene content and metabolic 

pathways taken by microbial communities contaminated with hydrocarbons (Tan et al., 2015a). 

Here, the authors were able to utilise SSU rRNA pyrosequencing and shotgun sequencing in 

order to determine whether differences in three hydrocarbon degrading methanogenic cultures 

established from two geographically distinct environments and incubated with different 

hydrocarbon substrates affected the genetic potential and composition of the microbial 

communities. Despite differing hydrocarbon substrates and inoculum sources, all three cultures 

showed functionally redundant genes with multiple features associated with syntrophic 

hydrocarbon conversion to methane. Other recent studies which surveyed the open oceans and 

coastal shorelines in Gulf of Mexico after the Deep Horizon Oil spill in 2010 utilising NGS 

reported microbial community consisting of mainly marine gamma-proteobacteria dominated 

the oil plumes within a water column. Furthermore, members of the class were determined to 
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be key players in the aerobic degradation of oil and gas contaminants. Analysis of the SSU 

rRNA genes from the microbial communities in beach areas before and after the spill was 

reported to shift from predominantly enteric species, typically associated with anthropogenic 

sources, to marine species associated with remediation efforts, such as Rhodobacterales, 

Oceanospirillales, and Rhodospirillales taxonomic orders. Furthermore, potential populations 

with capability to assist in remediation was also identified (Engel and Gupta, 2014; Rivers et 

al., 2013; Mason et al., 2012). 

 

Full-scale wastewater treatment plant studies utilising NGS have reported the need for more 

reference genomes of species from activated sludge involved in key processes. Availability of 

these reference genomes will allow for interpretation of in situ studies and in this context, NGS 

data could then be fruitfully employed to infer media formulation and growth conditions for 

organisms of interest (Albertsen et al., 2012; Kristiansen et al., 2013; McIlroy et al., 2013). 

While single omic studies have greatly enhanced our understanding and provided novel 

insights into the functional capabilities of the microbial communities of interest, integrated 

omics over space and time, which is any possible combination of meta- genomics, -

transcriptomics and -proteomics have been demonstrated to further our understanding on the 

genes involved, actual expression and action of key processes in treatment of contaminated 

water sources under different environmental conditions such as alternating anaerobic/aerobic 

phases (Haroon et al., 2013; Yu and Zhang, 2012). Furthermore, these in combination with 

physico-chemical parameters will allow for reconstruction of the ecological networks and 

detailed definition of organismal niches which may then be utilised to identify overall microbial 

community structure and function, which in turn could ultimately be harnessed for 

comprehensive reclamation of energy and biotechnologically relevant products from 
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wastewater, leading to a more sustainable treatment of wastewater resources (Muller et al., 

2013).  

 

1.3.2.4 Detection of antibiotic resistance determinants 

Antibiotics are at the centre of modern clinical medicine with their successes in reducing 

childhood mortality and increased overall life expectancy. They are crucial for invasive surgery 

and treatments such as chemotherapy but the number of infections caused by multidrug-

resistant bacteria (MRB) is increasing across the world with the spectre of untreatable 

infections steadily becoming a reality. The most recent World Economic Forum Global Risks 

reports as well as the WHO have both indicated the impact of antibiotic resistance (AR) and 

stated AR as one of the greatest threats to human health in the 21st century (Blair et al., 2014; 

WHO, 2014b; Davies and Davies, 2010). Furthermore, a recent report by the WHO has 

indicated an alarming global problem with regards to bacteria becoming resistant to the 

spectrum of commercially available antibiotics (WHO, 2014b). However, current global 

monitoring efforts are limited to tracking antibiotic consumption and antibiotic resistant 

bacteria isolated from clinical and public health laboratories (Grundmann et al., 2011). 

 

Antibiotic resistance determinants (ARD) include antibiotic resistance genes (ARGs) and 

mobile genetic elements (MGEs), conferring AR and is a mechanism for the transfer of ARGs 

in bacteria, respectively. These ARD have been reported across all types of environmental 

systems such as soil, water, sediments, human and animal faecal samples, wastewater sludge 

and wastewaters (Li et al., 2015b; Czekalski et al., 2014; Port et al., 2014; Chen et al., 2013). 

Previous studies have already suggested the anthropogenic sources of ARGs with aquatic 
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environments acting as major reservoirs (Marti et al., 2014). These findings highlight that 

ARGs can spread from environmental reservoirs to human pathogens. Specifically, urban 

wastewater treatment plants have been implicated as being a hotspot for horizontal ARGs 

transfers between bacteria from difference origins due to the mixing of domestic, industrial, 

agricultural and clinical waste (Rizzo et al., 2013). Furthermore, subsequent dissemination of 

poorly treated wastewater effluents into aquatic sources have been shown to spread residual 

antibiotics, antibiotic resistance bacteria (ARB) and ARGs into aquatic environments 

(Kümmerer, 2009; Lupo et al., 2012), providing conditions for horizontal exchange of ARGs 

and adding further selection pressure for MRB. The overall effects of wastewater treatment 

plants discharges on environmental resistome is poorly understood and has potentially far 

reaching influence on intensifying the antibiotic resistance problem.  

 

Therefore, to gain better understanding of the types of ARGs that are present in different 

environmental scenarios in conjunction with the MGEs such as integrons, transposons, NGS 

has provided the opportunity to circumvent the limitations of conventional culturing and 

molecular techniques. Recent studies have taken two different approaches, which have been 

sequence-based or function-based analysis. Sequence-based approaches usually isolate and 

extracts the total DNA directly from an environmental sample followed by shotgun sequencing. 

The NGS data obtained is then compared to a reference database containing known ARGs 

sequences, allowing for prediction of the resistance potential of the sample studied. On the 

other hand, functional-based approaches have involved the cloning of randomly shared total 

DNA fragments isolated and extracted from an environmental sample into an expression vector 

and transformed into a suitable host (typically laboratory E. coli strains). The E. coli library is 

then screened by selection of the transformants on media with the addition of selected 
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antibiotics. Individually, these two approaches allow for the identification of highly divergent 

genes from known ARGs and provide direct evidence of resistance phenotypes associated with 

the expressed genes, respectively (Pehrsson et al., 2013). However, combined, studies have led 

to the discovery of novel ARGs in various microbial communities across diverse environments 

such as in soil (Torres-Cortés et al., 2011; Allen et al., 2009; Riesenfeld et al., 2004), 

freshwaters (Bengtsson-Palme et al., 2014; Diaz-Torres et al., 2006), human oral and gut 

microbiomes (Devirgiliis et al., 2014; Hu et al., 2013; Sommer et al., 2009), animal gut 

microbiomes (Kazimierczak et al., 2009) and wastewater treatment plants (Walsh, 2013; 

Uyaguari et al., 2011; Parsley et al., 2010; Mori et al., 2008). 

 

With further advances in the computational analysis, in terms of quality, accuracy and speed, 

NGS data should be expected to provide some novel and unparalleled insights from large scale 

studies assessing the threats posed by AR. This is further enhanced by the efforts of the 

scientific community in their contribution to the vast number of publicly available 

environmental microbiomes and current developments of bioinformatic tools for analysis such 

as the Comprehensive Antibiotic Resistance Database (McArthur et al., 2013), the Antibiotic 

Resistance Database (Liu and Pop, 2009), the beta-lactamase database (Danishuddin et al., 

2013), ResFinder (Zankari et al., 2012) and ARG-ANNOT (Gupta et al., 2014) to name a few. 

Recently, Gibson et al. (2015) developed Resfams, a curated protein family database and 

associated profile hidden Markov models (HMMs) to determine the relationship between 

environmental and human associated resistome. The database is organized by ontology 

specifically applied to AR functions with a subset of these AR proteins functionally verified 

using protein assays. By using HMM and consensus models for functional annotation rather 

than the pairwise sequence alignment to AR databases, significant increases in prediction 
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sensitivity and specificity was reported. Gibson et al. (2015) investigated the AR profiles and 

occurrence patterns of microbial communities in aquatic environments through the use of 

network analysis. The study was able to determine the ARGs profiles as well as the co-

occurrence patterns in 50 samples, spanning human, faecal, water, soil, sediments, wastewater 

and sludge samples. Aminoglycoside, bacitracin, beta-lactam, chloramphenicol, macrolide-

lincosamide-streptogramin, quinolone, sulphonamide and tetracycline resistance genes were 

observed in high abundance and were associated with antibiotics commonly administered in 

human or veterinary medicine. Furthermore, abundances of these ARGs were up to three-fold 

higher in the most heavily anthropogenic-impacted environments. Similarly, a study by (Chen 

et al., 2013) revealed higher diversity of ARGs for sulphonamides, fluoroquinolones, and 

aminoglycosides compared to pristine deep ocean samples from the South China Sea. 

Additionally, the study was able to show correlations between the distribution of ARGs and 

MGEs, where MGEs function as vectors for the dissemination of ARGS in the aquatic 

environment. A recent study suggested the use of a multivariate index as a means for 

quantification of the AR potential in publically available metagenomic data (Port et al., 2014). 

The index is based on the abundance of ARGs, MGEs, pathogenic potential and metal 

resistance genes, which are implicated in co-selection of ARGs. In line with studies examining 

the distribution of ARGs, the index was reported to be able to differentiate between natural 

aquatic and anthropogenic impacted environments. Hence, this study illustrates the utility of 

NGS for advanced characterization of AR in water quality monitoring and could assist in risk 

assessments (Port et al., 2014). 

 

While clinical settings are known to be the source of highest antibiotic and ARB loads, the 

natural environment has recently drawn attention as a reservoir of transferable ARGs 
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potentially implicating environments highly contaminated with ARGs as a human health risk 

(Ashbolt et al., 2013). ARDs in particular are increasingly being viewed as pollutants and 

emphasis of their occurrence and distribution in natural environments are being considered in 

development of antibiotic surveillance frameworks (Berendonk et al., 2015; FAO, 2011). 

Incorporating the NGS approach into frameworks for monitoring the threat of AR in aquatic 

environments provides a novel approach for environmental health monitoring and pushes 

boundaries on improving current risk assessment models.  

 

 

1.4 Scope of the present study 

Increased rates of urbanization, industrialization and population growth have contributed to the 

decrease of freshwater quality while global freshwater scarcity is already a crisis. South Africa 

is a water stressed country receiving an average rainfall of 450 mm per year, leading to reduced 

levels of runoff and availability of surface water (Department of Water Affairs, 2010). This has 

led to the utilization of alternative freshwater sources for daily anthropogenic activities. 

However, stresses such as salinity, eutrophication as well as sediment and acid mine run-off 

with additional anthropogenic contributions in biological and chemical pollution of these water 

sources impede their usage (Department of Environmental Affairs, 2016). This is further 

compounded by failure of a large number of existing wastewater treatment plants in meeting 

the national water quality standards leading to the discharge of poorly treated or untreated 

wastewater effluents, introducing excessive nutrients, phosphates and coliforms into the 

receiving water bodies in addition to other toxic pollutants from agricultural practices which 

uses pesticides, herbicides and fertilizers (Department of Environmental Affairs, 2016). 
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Furthermore, previous findings have already suggested wastewater treatment plants as major 

reservoirs for antibiotic resistance and as well as for dissemination of residual antibiotics (AB), 

antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) into the environment 

(Rizzo et al., 2013) which could pose public health risks. Antibiotics have played a crucial role 

in the clinical management of most bacterial diseases since the 1940s. However, these drugs 

have been short lived and gradually rendered obsolete with more cases of multidrug resistance 

organisms reported from the clinical sector. This would mean that the effectiveness of standard 

treatment protocols currently adopted in clinical and animal sectors for treatment of diseases 

causing pathogens is steadily declining and could lead to a projected increase in mortality rates 

and risk of infection to others (WHO, 2014b). In order to determine the point of concern within 

the wastewater treatment process, relative occurrence of ARGs and ARB need to be critically 

assessed in every treatment stage.  

 

Current microbiological tools used to assess the spread of ARGs and enrichment of ARB in 

water have largely been based on traditional culture-dependent and several molecular-

dependent methods, each with its own advantages and limitations (Rizzo et al., 2013). However, 

the use of culture-dependent methods to comprehensively characterize and evaluate ARGs and 

ARB in complex microbial communities remains a challenge as it is a time consuming task 

with only less than 1% of environmental organisms culturable with current microbiological 

methods (Schmieder and Edwards, 2012). Advances in sequencing as well as computational 

developments over the past decade has allowed for cost effective high-throughput sequencing 

combined with metagenomic analysis of a given environmental sample with unparalleled 

insights. Therefore, this approach has been applied for the assessment of various environmental 

scenarios such as soil (Howe et al., 2014) and river microbiota, communities in sediments from 
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an oil spill (Mason et al., 2014), faecal microbiota (Ilmberger et al., 2014), microbial diversity 

in aquatic settings (Doxey et al., 2014) as well as clinical settings such as the human gut 

profiling project (Qin et al., 2010), sputum analysis of patients with cystic fibrosis (Lim et al., 

2014), viral pathogens detection (Yang, 2014) and many others. In determining the complex 

genetic composition and diversity of wastewater samples with a relatively unbiased view as 

well as gaining understandings of the resistome of the communities and potential pathogens 

present, use of next-generation sequencing combined with metagenomic insight is a favourable 

approach. Therefore, this study investigated the role of two geographically varied full-scale 

wastewater treatment plants located in Durban as potential hotspots for antibiotic resistant 

bacteria and antibiotic resistance genes through a metagenomic approach. 

  

1.4.1 Hypotheses 

1.4.1.1 It was hypothesized that a metagenomic approach in the analysis of wastewater 

samples collected from two full-scale wastewater treatment plants in Durban, 

KwaZulu-Natal, South Africa will allow for taxonomic classification of the 

bacterial community present and functional genes characterized, as well as the 

determination of the frequency of the genes which play a role in antibiotic 

resistance. 

1.4.1.2 It was further hypothesized that a shotgun metagenomic approach will allow for 

a comprehensive view of the microbial communities in wastewater and aquatic 

samples, thereby allowing for proper insights into the effectiveness of the 

treatment process carried out by the full-scale wastewater treatment plants and its 
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potential contributions to the dissemination of antibiotic resistant bacteria and 

antibiotic resistance genes into the environment. 

  

1.4.2 Objectives 

The following objectives were set: 

1.4.2.1 To determine and analyse the microbial communities of wastewater and river 

samples using next-generation sequencing and bioinformatic tools.  

1.4.2.2 To profile and analyse the microbial communities of wastewater and river 

samples using T-RFLP and appropriate statistical analysis tools. 

1.4.2.3 To reconstruct draft genomes of organisms found in the metagenomes of the 

wastewater and river samples. 

 

1.4.3 Aims 

The following aims were pursued: 

1.4.3.1 Taxonomically and phylogenetic classification of the microbial communities of 

the wastewater and river samples. 

1.4.3.2 Functional characterization of the microbial communities of the wastewater and 

river samples. 

1.4.3.3 Determination of the putative metabolic potential of the microbial communities 

by mapping enzymes annotated. 
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1.4.3.4 Determination of the various antibiotic resistance genes present in the microbial 

community. 

1.4.3.5 Comparative analysis of the microbial community structure and function at 

various treatment stages. 

1.4.3.6 Isolation and assemblage of draft genomes found in the metagenomic datasets of 

wastewater and river samples. 

 

 

1.5 Present investigations 

In order to achieve the stated objectives and aims, the present study was divided into seven 

chapters as described below: 

 

Chapter 1: This chapter provides an overview of the global freshwater crisis as well as the 

global initiatives established by international organisations and government to 

safeguard these essential resources. In addition, in depth discussion on next-

generation sequencing technology in terms of experimental design and analysis 

methods were highlighted. Furthermore, an overview of the application of NGS 

in microbial quantification, faecal and pathogen detections, chemical pollution 

and remediation strategies prediction, and detection of antibiotic resistance 

determinants were also provided. 
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Chapter 2: This chapter evaluated the efficiency of two independent full-scale wastewater 

treatment plants through comparative metagenomic analysis of the wastewater 

influent received and the treated wastewater effluents. Specifically, the microbial 

community, potential bacterial pathogens and antibiotic resistance genes were 

determined and compared. 

Chapter 3: This chapter specifically focuses on the shifts in the microbial community 

composition, the functional potential and antibiotic resistome as a result of 

chlorination disinfection treatment at the two independent full-scale wastewater 

treatment plants through the use of a metagenomic approach.  

Chapter 4: This chapter investigated the impact of the treated wastewater effluent discharges 

from two independent full-scale wastewater treatment plants on their respective 

effluent-receiving river bodies in the Durban area through the use of a 

metagenomic approach. Specifically, the changes of the antibiotic resistance 

genes, bacterial community structure and metabolic potential of the two rivers as 

impacted by treated effluent discharge was examined.  

Chapter 5: This chapter investigated the bacterial community dynamics of two rivers 

receiving the treated wastewater effluent discharges from separate full-scale 

wastewater treatment plants in the Durban area though the use of terminal-

restriction fragment length polymorphisms. 

Chapter 6: This chapter demonstrated the usefulness and power of bioinformatics by 

applying the large amount of open-source bioinformatic tools to recover 

interesting draft genomes at the species level within all of the metagenomes 

analysed in this study.  
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Chapter 7: This chapter provides an overview of the significant findings reported within the 

various chapters. In addition, possible limitations and potential for future 

developments of the study are also highlighted. 
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2 Fate of bacterial pathogens, community composition 
and antibiotic resistance genes in two full-scale 
wastewater treatment plants as revealed by 
metagenomic analysis 

2.1 Abstract 

Monitoring of treated effluent from urban wastewater treatment plants (WWTPs) is important to 

ascertain their treatment efficiency as well as to avoid circulation of pathogens in the environment. This 

study applied a molecular approach to assess the efficiency of two different urban full-scale WWTPs 

in treating the influent samples received. The pathogenic bacterial population, community composition 

and antibiotic resistance genes (ARGs) were comprehensively profiled in both the influent and treated 

effluent samples of both WWTPs using whole metagenome shotgun pyrosequencing combined with 

metagenomic analysis. Overall community analysis revealed changes in the bacterial community 

composition from influent to effluent samples of both WWTPs, with members of the Proteobacteria, 

Bacteroidetes, Actinobacteria and Firmicutes phyla dominating the communities. Though accounting 

for a small percentage of the communities, up to 19 genera of pathogenic bacteria were still detected in 

the treated effluent, with Acinetobacter baumannii and Legionella pneumophila observed to dominate 

the population, which deserves more concerns. Furthermore, diverse antibiotic resistance determinants 

accounting for majority of clinically relevant classes of antibiotics were detected across the samples, 

further highlighting urban WWTPs as sources of antibiotic resistance. Results from this study indicate 

that urban WWTPs may act as an important source of bacterial pathogens and ARGs and could 

contribute to the increasing global problem of multidrug resistant pathogens. Additionally, the use of 

high-throughput sequencing approach may be a feasible yet reliable method for the comprehensive 

assessment of these environmental sources. 
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2.2 Introduction 

The treatment of domestic, industrial and hospital wastewaters rely heavily on urban 

wastewater treatment plants (WWTPs) infrastructures. Countries with high population density 

typically require numerous WWTPs with varying treatment capacities. For example, the 

KwaZulu-Natal province of South Africa has 11 districts and is serviced by 140 WWTPs with 

a total design capacity of 1090.8 Ml/day (Department of Water and Sanitation, 2015). Complex 

networks microbial communities have been utilised in the past decades for the effective 

treatment of wastewater. Specifically, reduction of various physicochemical parameters and 

pathogen load are the treatment targets before effluent is discharged into the receiving water 

bodies, or in some cases further treated for re-use in agriculture and aquaculture sectors (WHO, 

2006). Of major concern is that bacterial pathogens may endure the treatment process, 

proliferate under favourable conditions and ultimately disseminate into the environment (Okoh 

et al., 2007). Previous findings have already suggested the anthropogenic sources of antibiotic 

resistance genes (ARGs) (Marti et al., 2014) with urban WWTPs implicated as hotspots for 

horizontal ARGs transfers between different bacteria (Rizzo et al., 2013). Together with this is 

the increasing concern about the emergence and selection of multidrug resistant bacterial 

pathogens in such settings (WHO, 2014). Dissemination of these organisms in the environment 

could lead to an increase in mortality rates and risk of infection to others as the standard 

treatment protocol currently adopted in clinical and animal sectors would become ineffective 

(WHO, 2014).  

 

Current microbiological tools used to assess bacterial pathogens and ARGs in WWTPs have 

either been culture- or molecular-dependent (Schwartz et al., 2003), and include colony count 

(Wen et al., 2009), PCR-based (Toze, 1999), real-time PCR (Kim et al., 2013) and microarray 
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(Aw and Rose, 2012; Cao et al., 2011). However, these techniques all present with its own 

advantages and limitations (Rizzo et al., 2013). Recently, the molecular approach for ARGs 

has been extended from their identification and characterization (Li et al., 2010; Luo et al., 

2010; Storteboom et al., 2010) to genetic elements (Gaze et al., 2011; Johnning et al., 2013) 

found in cultured organisms. This allows for further understanding of the dynamics involved 

with capturing and transferring of ARGs and generation of resistant bacteria in microbial 

communities found in WWTPs. However, the use of culture-dependent methods to 

comprehensively characterize bacterial pathogens and ARGs in the complex microbial 

communities of environmental samples remains a challenge as it is a time consuming task. 

Furthermore as less than 1% of environmental organisms remain cultivable in vitro in 

laboratories with current technologies, investigations with this approach limits the 

determination of the complete spectrum of the communities and the pathogenic population in 

wastewater samples (Schmieder and Edwards, 2012). 

 

In the last few years, high-throughput sequencing combined with metagenomic analysis of a 

given sample has been considered a promising approach for the assessment of microbial 

communities from complex samples (Kristiansson et al., 2011; Wang et al., 2013; Zhang et al., 

2011). Several studies have already confirmed the feasibility of this technique for the 

assessment of diverse environmental scenarios, including determination of soil (Howe et al., 

2014) and river (Amos et al., 2014) microbiota, communities found in activated sludge from 

WWTPs (Ju et al., 2014), communities in sediments from an oil spill (Mason et al., 2014), 

faecal microbiota (Ilmberger et al., 2014), microbial diversity in aquatic settings (Doxey et al., 

2014) as well as clinical settings such as the human gut profiling project (Qin et al., 2010), 

sputum analysis of patients with cystic fibrosis (Lim et al., 2014), viral pathogens detection 
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(Yang, 2014) and many others. Hence, in determining the complex genetic composition and 

diversity present in aquatic samples with a relatively unbiased view (Gomez-Alvarez et al., 

2009), a metagenomic insight is a favourable approach. 

 

Although previous studies have investigated the microbial diversity of wastewater samples, 

information about the pathogenic bacterial population and the antibiotic resistance available in 

relation to the communities are lacking. Hence, this study determined the bacterial diversity, 

pathogenic bacterial population and associated ARGs in the influent and effluent samples of 

two different WWTPs in the city of Durban, South Africa using a metagenomic approach. 

Specifically, the occurrence, abundance and diversity of the bacterial communities, pathogenic 

bacterial population and ARGs were comprehensively examined. The results from this study 

may help to extend our knowledge on the contribution of urban WWTPs in the dissemination 

of ARGs and the bacterial pathogens commonly found in WWTPs. It further demonstrated the 

feasibility of metagenomic approach in ARGs and microbial pathogen, and its potential 

application in evaluating environmental health. 

 

 

2.3 Materials and Methods 

2.3.1 Descriptions of WWTPs and sample collection 

In this study, influents (IF) and effluents (EF) wastewater samples were collected from two 

full-scale urban WWTPs in the city of Durban, South Africa, hereon designated as Plant A and 

Plant B. Plant A has a capacity of 70 megaliters/day with an operational capacity of 96% and 
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use the activated sludge and diffused air liquid technologies with gravity thickening, anaerobic 

digestion and belt press dewatering sludge technologies. The plant receives a mixture of nearby 

domestic and industrial wastewaters and discharges its final effluent into a nearby river in a 

suburban location. Plant B has a capacity of 25 megaliters/day with an operational capacity of 

76% and use the activated sludge liquid technology with anaerobic digestion and belt press 

dewatering sludge technologies. The plant receives a different mixture of domestic, industrial, 

hospital wastewaters and discharges its final effluent into a nearby river in a heavily urbanized 

location (Department of Water and Sanitation, 2015). Four samples were collected in 5 L 

plastic bottles pre-sterilized with 70% (v/v) ethanol and rinsed with 4 L of the sample at the 

various sampling sites prior to collection. Upon collection, the samples were transported on ice 

back to the laboratories within 3 h and stored at 4°C prior to DNA extraction which took place 

within 24 h.  

 

2.3.2 Ethics statement 

No special permits were required for this study. Permission for the collection of all wastewater 

samples from both WWTPs were granted by the relevant authorities of the respective WWTPs 

(Durban, South Africa). 

 

2.3.3 Total DNA extraction and shotgun pyrosequencing 

Prior to total DNA extraction, samples which visibly contained particles which would hinder 

DNA extraction was initially filtered through Whatman® filter paper #114 (Sigma-Aldrich, 

USA) to remove big particles and to allow for isolation of bacterial communities. Total DNA 
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of the bacterial populations from the samples were extracted using PowerWater™ DNA 

Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to manufacturer’s 

instructions. This kit is specifically designed for isolating bacterial DNA from environmental 

water samples and includes inhibitor removal technology aimed at removing humic acid and 

other organic matter commonly found in environmental samples that can interfere with 

downstream analyses. The resulting purity and quantity of the DNA preparation was 

determined using the NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, 

USA) before samples were sent to the National Genomics Platform (Technology Innovation 

Agency, South Africa) for sequencing. 

 

High-throughput whole metagenome shotgun pyrosequencing was conducted by the use of 454 

GS FLX System (Roche, USA) with the GS FLX Titanium Rapid Library Preparation Kit 

(Roche, USA). The samples were barcoded by the use of GS FLX Titanium Rapid Library 

MID Adaptors Kit (Roche, USA) in order to enable multiplex sequencing. Five hundred 

microgram of DNA was used for library construction. Briefly, DNA was nebulized using 

nitrogen gas and purified using MinElute PCR Purification Kit (QIAGEN, Germany) according 

to manufacturer’s instructions. Fragment end repair and attachment of adaptors to the samples 

was carried out according to standard protocol (Roche, USA). Thereafter, the quality of the 

libraries was assessed by the use of 2000 Bioanalyzer (Agilent Technologies, USA) using the 

High Sensitivity DNA Analysis Kit (Agilent Technologies, USA). This was followed by the 

measurement of the relative fluorescence of the DNA libraries on the GloMax-Multi 

Microplate Multimode Reader (Promega, USA) using 6-fluorescein amidite (6-FAM) 

standards and 6-FAM-labeled Multiplex Identifiers (MIDs). The results were uploaded onto 

the Rapid Library Quantitation Calculator (Roche, USA) and rapid libraries were made with a 
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final concentration of 1 × 107 molecules/µl. Emulsion PCR was carried out with the use of GS 

FLX Titanium MV emPCR Kit (Lib-L) (Roche, USA) according to manufacturer’s instructions. 

Subsequently, four DNA copies per bead were enriched and used for the main sequencing run 

with Escherichia coli beads as a positive control (Roche, USA).  

 

2.3.4 Data availability 

All individual sequence reads have been deposited at the NCBI Short Read Archive (SRA) 

under the accessions no. SRR3629046 and SRR3629048 for IF and EF of Plant A datasets, 

respectively, and SRR3629051 and SRR3629057 for IF and EF of Plant B datasets, 

respectively. 

 

2.3.5 Bioinformatic analysis 

Raw data files from sequencing were de-multiplexed by removing the barcoded sequence and 

any secondary adapter sequences using in-house scripts. For initial quality control, raw reads 

were evaluated by CLC Genomics Workbench v.7.5 (CLC Bio, QIAGEN, Germany) quality 

control pipeline. In total, approximately 800,409 raw reads with an average length of 611 bp 

corresponding to approximately 390 million bp were generated for this study. Specifically, raw 

sequences generated were 158,797 and 227,021 reads for IF and EF, respectively at Plant A, 

and 234,034 and 180,557 reads for IF and EF, respectively at Plant B. The quality of all reads 

were within the acceptable standards for the sequencing platform (see Table S2.1 in the 

supplemental material). Therefore, no reads were trimmed, filtered or discarded before 

implementation of the MG-RAST v.3.6 pipeline for further quality control, prediction and 
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annotation (Meyer et al., 2008; Wilke et al., 2015). Ambiguous base filtering was first 

implemented by removing sequences with >5 ambiguous base pairs (bp). This was followed 

by length filtering where sequences with a length of >2 standard deviations from the mean were 

removed. Filtering was applied using SolexaQA (Cox et al., 2010) implemented in the MG-

RAST pipeline. Upon ambiguous base and length filtering, approximately 9% and 5% of the 

reads from IF and EF, respectively at Plant A, and 9% and 17% of IF and EF, respectively at 

Plant B, were excluded from further analysis. Remaining reads which passed the quality control 

were allowed for further analysis. 

 

2.3.6 Taxonomic annotations and classifications 

For taxonomic identification and classifications, an initial BLAT search against reduced RNA 

database (90% identity clustered version of SILVA database) was performed and the rRNA-

similar reads were then clustered at 97% identity with the longest read as the cluster 

representative. Thereafter, BLAT search of the cluster representative was performed against 

the M5rna database (see Table S2.1 in the supplemental material). M5rna is a ribosomal 

database with integration of SILVA, Greengenes and RDP databases (Meyer et al., 2008; Wilke 

et al., 2015). Taxonomic abundance was analyzed using the Lowest Common Ancestor (LCA) 

algorithm used in MEGAN (Huson et al., 2007) and implemented in MG-RAST with a 

maximum e-value cut-off of 1 × 10-5, minimum identity of 60% and a minimum alignment 

length of 15, which is measured in amino acids for protein databases and bp for RNA databases 

(Zheng et al., 2015). This algorithm assigns each read to the LCA from the set of matching taxa 

when BLASTx is applied. For example, if a given read had sequence similarity to 3 different 

families within the same order, the read is assigned at the order level rather than assigning the 

read to a specific family. Hence, the LCA algorithm has been reported to have lower rates of 
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false positive assignments than the best hit classification algorithm implemented in the MG-

RAST pipeline. However, this would result in a higher number of unspecific assignments or 

no hits in some cases (Huson et al., 2007). 

 

2.3.7 Virulence factors annotation and bacterial pathogen classifications 

To determine the human bacterial pathogens in the metagenomes in order to establish the 

pathogenic population within the microbial communities, annotation with the human 

pathogenic bacteria virulence factor database (VFDB v.2016) was used (Chen et al., 2015, 

2005). A total of 2581 proteins sequences were downloaded from the VFDB website 

(http://www.mgc.ac.cn/VFs/), which were then grouped at the species level using in-house 

scripts. Compared to other databases, VFDB is a up-to-date database of virulence factors from 

various bacterial pathogens derived only from experimentally demonstrated and published 

literature (Chen et al., 2015, 2005). BLASTx against the database was carried out using 

DIAMOND tool v.0.7.11 (Buchfink et al., 2014) with a e-value cut-off of 1 × 10-5. Read with 

its best BLAST hit to the protein sequence from VFDB was further filtered with a sequence 

similarity of >80% over an alignment of ≥50 amino acids (Lu et al., 2015; Zhang et al., 2011).  

 

2.3.8 Statistical analysis 

Significant differences between the metagenomic samples were determined by the use of 

statistical analysis of metagenomic profiles (STAMP) v.2.1.3 software package (Parks and 

Beiko, 2010). Statistical significance of differences between two samples (q values) was 

calculated on the basis of two-sided Fisher’s exact test with Benjamin-Hochberg’s false 
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discovery rate (FDR). The confidence intervals were determined by Newcombe-Wilson’s 

method. Reads designated as unclassified were removed from analyses and only results with a 

q value of <0.05 were considered significant in this study (Pacchioni et al., 2014). Statistical 

significance of differences between more than two samples was calculated using multiple 

group ANOVA with Tukey-Kramer post-hoc tests at 0.95, an effect size (Eta-squared) and 

multiple test correction using the Benjamini-Hochberg FDR procedure (White et al., 2015). 

 

2.3.9 Antibiotic resistance genes annotation and classifications 

To identify ARGs in the metagenomes in order to establish the resistance profiles of the 

communities, annotation with the Comprehensive Antibiotic Resistance Database (CARD) was 

done (McArthur et al., 2013). The CARD database was chosen over other ARGs databases, 

such as Antibiotic Resistance Genes Online (Scaria et al., 2005), the microbial database of 

protein toxins, virulence factors, and antibiotic resistance genes (MvirDB) (Zhou et al., 2007), 

and Antibiotic Resistance Genes Database (Liu and Pop, 2009), because these databases are 

neither exhaustive nor regularly updated (Gupta et al., 2014). BLASTx against the database 

was carried out using DIAMOND tool v.0.7.11 (Buchfink et al., 2014) with a e-value cut-off 

of 1 × 10-5. A read with its best BLAST hit was deemed ARG-like if the hit had a sequence 

similarity of >90% over an alignment of ≥25 amino acids (Chao et al., 2013; Wang et al., 2013). 

Although such a high similarity threshold excluded some divergent ARGs from the analysis, 

we still used a more conservative strategy and thus only focus on those that are highly similar 

to the known ARGs. The classification of ARG-like sequences was performed using the 

structured database of CARD (McArthur et al., 2013) and in-house written scripts. 

Visualization of the distributions of ARGs classes and their abundances in the total annotated 

ARGs from the metagenomes was constructed and visualized using Circos v.0.69.2 
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(Krzywinski et al., 2009). Using the Paleontological Statistics (PAST) software v.3 (Hammer 

et al., 2001) Mann-Whitney test was implemented to compare whether ARGs abundances were 

significantly different among the various sampled environments (Hu et al., 2013; Li et al., 

2015b). Various diversity indices (Simpson, Shannon, Buzas and Gibson, Brillouin, Menhinick, 

Margalef, Equitability, Fisher’s alpha, Berger-Parker and Chao 1) and principal coordinate 

analysis (PCoA) based on the Bray-Curtis dissimilarity coefficients of the abundance of ARGs 

types were determined using the ‘vegan’ package (Shen and Fulthorpe, 2015) from the program 

R (R Development Core Team, 2007) with a bootstrap of 1000.  

 

 

2.4 Results 

2.4.1 Taxonomic analysis of microbial communities 

Taxonomic assignment of both predicted rRNA genes sequences and predicted proteins in all 

metagenomic datasets were conducted based on all the available annotation source databases 

in MG-RAST.  

 

Domain distributions in the four wastewater samples, showed the expected dominance of 

bacteria across all metagenomes, accounting for 99.40% and 93.32% at Plant A, and 99.42% 

and 99.44% at Plant B for IF and EF, respectively. The remaining sequences were assigned to 

Archaea, Eukaryota and Viruses, with members of the Amphibia class dominating the 

eukaryotic domain in both the IF samples. However, members of the Oligohymenophorea class 

were observed to dominate the eukaryotic domain in the EF sample of Plant A, whilst 
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potentially novel members of the Streptophyta class (determined as unclassified) were 

observed to dominate the eukaryotic domain in TE sample of Plant B. On the other hand, 

members of the Methanobacteria class were observed to dominate the archaeal domain in the 

IF and EF samples of both plants. The remaining sequences were distributed amongst the viral 

domains in very low abundance (see Table S2.2 in the supplemental material).  

 

For a better understanding of the bacterial community structure in all the metagenomes, 

taxonomic affiliation at different levels was analysed. At the phyla taxonomic level, bacterial 

communities were diverse with representatives from 28 phyla and 1 novel bacterial phylum 

(determined as unclassified, however, under the Bacterial domain level) observed across all 

samples, with the exception of the EF sample in Plant B which had 27 phyla and 1 novel 

bacterial phylum. Proteobacteria was observed as the dominant phylum in all samples 

accounting for 52.18% and 43.68% of the sequences in IF and EF communities of Plant A, 

respectively, and 58.12% and 83.81% of the sequences in IF and EF communities of Plant B, 

respectively (Figure 2.1). This was followed by Bacteroidetes, Firmicutes and then 

Actinobacteria phyla in IF of both plants. However, the relative abundance of bacterial 

dominance in EF samples of both plants was observed to be Bacteroidetes, Actinobacteria and 

Firmicutes. Statistical analysis using STAMP indicated that 24 out of the 28 phyla and 14 out 

of the 27 phyla were significantly different (q<0.05) at this taxonomic level for Plant A and B 

samples, respectively (see Figure S2.1 in the supplemental material). Notably, significant 

increases (q<0.05) in Proteobacterial members and significant decreases (q<0.05) of members 

belonging to the Bacteroidetes and Firmicutes phyla were observed from the EF communities 

relative to their IF communities in both WWTPs. Surprisingly, strains belonging to the 

Actinobacteria and several other phyla were significantly increased (q<0.05) in the EF 
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communities relative to their IF communities of Plant A (see Figure S2.1 in the supplemental 

material). 

 

At the class taxonomic level, the bacterial community was diverse with representatives of more 

than 43 classes and 11 potentially novel classes observed across all samples. Bacteroidia 

dominated the IF wastewater in Plant A, followed by Gamma-, Beta- and Epsilon-

proteobacteria, which accounted for 15.76%, 15.60% and 13.02% of the assigned reads, 

respectively, whilst Clostridia, Flavobacteria, Actinobacteria, Negativicutes, Delta- and Alpha-

proteobacteria accounted for >1% to <6% of the assigned reads in the sample. Conversely, 

Betaproteobacteria dominated the EF wastewater of Plant A, followed by Alpha-, Gamma-

proteobacteria and Actinobacteria, which accounted for 6.61%, 6.57% and 6.49% of the 

assigned reads, respectively, whilst Delta-proteobacteria, Bacteroidia, Clostridia, Flavobacteria, 

Planctomycetacia and Bacilli accounted for >1% to <4% of the assigned reads in the sample. 

For Plant B, IF sample was dominated by Gammaproteobacteria, followed by Beta-

proteobacteria, Bacteroidia, Epsilon-proteobacteria and Clostridia, accounting for 14.44%, 

11.74%, 11.10% and 6.35% of the assigned reads, respectively, whilst Flavobacteria, 

Actinobacteria, Negativicutes, Bacilli, Delta- and Alpha-proteobacteria accounted for >1% to 

<6% of the assigned reads in the sample. Conversely, Gammaproteobacteria dominated the EF 

sample, followed by Beta-proteobacteria, Flavobacteria and Alpha-proteobacteria, which 

accounted for 9.16%, 6.07% and 1.63% of the assigned reads, respectively (Figure 2.2). 

Although Bacteroidia dominated the community in the IF sample of Plant A, a significant 

(q<0.05) reduction was observed in the EF sample. Conversely, Beta-, Alpha-, Delta-

proteobacteria, Actinobacteria and several other phyla were significantly (q<0.05) increased in 

the EF communities (see Figure S2.2a in the supplemental material). On the other hand, 
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Gammaproteobacteria dominated the community of the IF sample in Plant B and was 

significantly (q<0.05) increased, along with Flavobacteria and Alpha-proteobacteria in the EF 

sample despite the treatment process. Nonetheless, significant decreases (q<0.05) were seen in 

majority of the remaining phyla (see Figure S2.2b in the supplemental material). 

 

2.4.2 Bacterial pathogen detection and analysis  

Annotation with the MG-RAST pipeline and assignment with the LCA algorithm revealed that 

at the genus taxonomic level, a total of 20 genera containing potentially pathogenic species 

were detected across all samples from the list of known bacterial pathogens. Among the genera 

identified, members belonging to the Acinetobacter genus had the highest abundance across all 

samples, accounting for 11.11% to 81.90% of all pathogenic sequences. This was followed by 

members of the Pseudomonas (6.60% to 15.49%), Escherichia (2.76% to 29.85%), Vibrio 

(2.76% to 8.69%), Clostridium (1.38% to 14.44%) and Salmonella (0.92% to 7.22%) genera 

(Figure 2.3a).  

 

At the species taxonomic level, sequences assigned to potentially pathogenic species revealed 

that the bacterial pathogen accounted for a small population in the communities accounting for 

0.53% (IF) and 0.46% (EF), and 0.76% (IF) and 0.95% (EF) of the community sequences for 

Plant A and Plant B, respectively. Here, 355 reads (25 species), 180 reads (29 species), 794 

reads (31 species) and 652 reads (23 species) were closely related to known pathogens in Plant 

A IF, EF and Plant B IF and EF samples, respectively. Amongst the species identified, 

Acinetobacter baumannii was the major pathogenic bacteria in all samples, followed by 

Pseudomonas aeruginosa, Escherichia coli, Vibrio cholera and Salmonella enterica across all 
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samples (see Table S2.3 in the supplemental material). However, statistical analysis indicated 

that only Burkholderia pseudomallei, Staphylococcus aureus, Helicobacter pylori, P. 

aeruginosa, Neisseria meningitides, Haemophilus influenzae, E. coli, A. baumannii, S. enterica 

and L. pneumophila significantly persisted throughout the treatment process in both WWTPs 

(Figure 2.4a). 

 

As human bacterial pathogens have been well-studied in both the medical and biological fields 

in terms of its virulence factors (VFs), with these VFs shown to directly cause diseases, they 

are well suited to serve as indicators for the presence of these bacterial pathogens. Annotation 

and assignment with the VFDB revealed at the genus taxonomic level, a total of 17 out of the 

24 genera of human bacterial pathogens were present across all samples. Among the genera 

identified, members belonging to the Pseudomonas genus had the highest abundance across all 

samples, accounting for 1.80% to 47.69% of all pathogenic sequences. This was followed by 

members of the Legionella (5.41% to 26.15%), Neisseria (7.21% to 15.56%) and Listeria 

(1.81% to 11.11%) genera (Figure 2.3b). 

 

At the species taxonomic level, sequences assigned to potentially pathogenic species revealed 

that bacterial pathogens accounted for an even smaller population in the communities 

accounting for 0.067%, 0.069%, 0.11% and 0.096% of the community sequences for Plant A 

IF, EF and Plant B IF and EF samples, respectively. Here, 45 reads (13 species), 27 reads (11 

species), 111 reads (19 species) and 65 reads (8 species) were closely related to known 

pathogens in Plant A IF, EF and Plant B IF and EF samples, respectively. Amongst the species 

identified, P. aeruginosa was the major pathogenic bacteria in all samples, followed by L. 
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pneumophila, N. meningitidis, L. monocytogenes, Brucella melitensis, Burkholderia 

pseudomallei and Yersinia enterocolitica across all samples (see Table S2.4 in the 

supplemental material). However, statistical analysis indicated that only B. pseudomallei, N. 

meningitides, L. pneumophila, P. aeruginosa, E. coli and L. monocytogenes significantly 

persisted throughout the treatment process in both WWTPs (Figure 2.4b). 

 

2.4.3 Composition, abundance and diversity of antibiotic resistance genes 

From the communities in the IF received by Plant A, a total of 99 reads were identified as 

ARGs-like. However, upon treatment EF communities revealed a total of 31 reads determined 

as ARGs-like. In comparison, in the IF received by Plant B showed a total of 175 reads 

annotated as ARGs in the communities. However, upon treatment, EF communities showed an 

increase to 187 reads annotated as ARGs-like. A significant (p<0.05) difference in the total 

abundance of the detected ARGs was observed between the IF and EF sample in Plant A, but 

not in Plant B (p>0.05).  

 

Among the 27 ARGs types in the structured CARD database, a total of 14 were detected in 

both IF and EF samples of Plant A, with 11 types shared between the metagenomic samples. 

Additionally an antimicrobial peptide resistance gene, bacA which recycles undecaprenyl 

pyrophosphate during cell wall biosynthesis that confers resistance to bacitracin, was also 

detected in the IF sample for Plant A. For Plant B, a total of 15 types were detected in IF and 

EF samples, with 12 types shared between the metagenomic samples. The distribution and 

relative abundance of the different types of ARGs conferring resistance to most major classes 

of antibiotics were seen across all samples in this study (Figure 2.5). Diversity indices 
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calculations consistently indicated a reduced diversity of ARGs types in EF communities 

compared to the initial diversity in IF samples of both WWTPs. Furthermore, it should be noted 

that the ARGs diversity in the IF sample of Plant B was the highest amongst all wastewater 

samples. The Shannon diversity of the ARGs types in the EF samples only showed a 19.13% 

and 4.64% reduction compared to the IF sample diversity for Plant A and B, respectively (see 

Figure S2.3 in the supplemental material). Nonetheless, PCoA of the ARGs type profiles 

showed separate clustering between the various wastewater samples (see Figure S2.4 in the 

supplemental material). 

 

The elfamycin class of ARGs was the dominant type across all metagenomes, accounting for 

16.17% to 41.94% of the relative abundance of ARGs, followed by resistance genes for 

tetracycline (10.86% to 20.20%), aminocoumarin (3.23% to 17.65%), aminoglycoside (6.42% 

to 14.14%), beta-lactam (6.45% to 11.43%), rifampin (5.05% to 9.68%) and multidrug 

resistance genes (3.23% to 7.35%) and (Figure 2.5). However, distribution of the resistance 

genes to various antibiotic classes were not even as indicated by the Buzas and Gibson’s 

evenness index, where the IF communities of both WWTPs showed a higher index compared 

to the EF communities (see Figure S2.3 in the supplemental material).  

 

The ARGs detected in these water samples were associated with the three major antibiotic 

resistance mechanisms (extrusion by efflux pumps, antibiotic inactivation or cellular 

protection). Though, majority belonged to the cellular protection mechanism. 
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Under the elfamycin ARG class, variants of the elongation factor Tu were the dominant type 

of ARGs across all samples. Point mutations that occurs in Mycobacterium tuberculosis and 

Escherichia coli beta-subunit of RNA polymerase (rpoB) conferring resistance to rifampicin 

was found to be in high abundance in Plant B IF and EF communities. Additionally, genes such 

as APH(3'')-Ib, tet39, adeJ, msrE and mexT were also detected in these samples. Similarly, E. 

coli rpoB was also detected in high abundance in Plant A IF, but was successfully reduced in 

the EF communities. Genes such as tetQ, tetW, APH(3'')-Ib, msrE, sul1, tet39 were found to be 

high abundance in IF and EF samples of Plant A. 

 

 

2.5 Discussion 

In this study, whole metagenome shotgun pyrosequencing combined with metagenomic 

analysis was used to explore the bacterial community composition, pathogenic bacterial 

population and associated ARGs in two full-scale urban WWTPs receiving different 

wastewaters. Direct shotgun pyrosequencing was carried out to avoid the inert bias from 16S 

rRNA gene targeting PCR, which has previously been shown to miss minor populations in a 

given sample (Lu et al., 2015). Hence, shotgun sequencing of the metagenomic libraries has 

allowed for a deeper insight into the complex communities present in the WWTPs influent and 

effluent samples, with thousands of reads generated, annotated and assigned to different taxa, 

identified as potential pathogens and varying ARG categories.  
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2.5.1 Phylogenetic signature of metagenomic sequences 

Although there were notable differences in the composition of the bacterial communities 

between the influent and effluent samples of both WWTPs, Proteobacteria was observed to be 

the dominant phyla across all samples. This finding is in agreement with several previously 

reported studies investigating WWTPs using different methods, such as 16S rRNA gene-PCR 

analysis of community samples collected from WWTPs (Miura et al., 2007; Silva et al., 2010), 

DNA cloning of activated sludge samples (Snaidr et al., 1997), microarray analysis of 

biological wastewater treatment reactors (Xia et al., 2010) and several metagenomic analysis 

of different WWTPs (Ferrera and Sánchez, 2016; Hu et al., 2012; Lee et al., 2015; Sanapareddy 

et al., 2009; Zhang et al., 2012). As Proteobacteria is known to comprise of one of the most 

phylogeneticaly and metabolically versatile group in the Bacterial domain (Ettema and 

Andersson, 2009), considering the setting in which wastewater provides for microbial 

proliferation, their predominance in such an environment is not surprising. Furthermore, a 

study which examined the global patterns of bacterial communities from different habitats 

suggested that Proteobacteria typically occupies an average of 40% of a bacterial population 

(Nemergut et al., 2011). Hence, as WWTPs present with an ever changing environment, in 

terms of its nutritional and/or pollutant composition and concentration, the dominance by this 

phylum across all samples is not surprising. Besides dominance by Proteobacteria, high 

abundance of several other phyla were also observed across all samples in this study, including 

members belonging to the Bacteroidetes, Actinobacteria and Firmicutes phyla. Detection of 

these phyla has been well documented in recent studies investigating WWTPs, such as 

untreated wastewaters (Shanks et al., 2013), sewage wastewaters (McLellan et al., 2010), swine 

wastewaters (Da Silva et al., 2015), anaerobic reactor digesting activated sludge from WWTP 

(Guo et al., 2015), tannery wastewater (Wang et al., 2013) and activated sludge of a WWTP in 

Hong Kong (Yu and Zhang, 2012). This is in accordance with findings reported by Shanks and 
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co-workers (Shanks et al., 2013) who investigated the microbial composition of untreated 

wastewaters at different geographical locations. Furthermore, it has been suggested that the 

core human microbial signature is composed of members belonging to the Firmicutes, 

Bacteroidetes, Actinobacteria, and Proteobacteria phyla (Buffie and Pamer, 2013). Hence, their 

presence and abundance in the wastewater samples is not surprising as both WWTPs in this 

study receives influent from domestic sources, with Plant B receiving a further mix of nearby 

hospital effluents. Hence, this suggests that at this taxonomic level of complexity, though 

significant changes are observed upon treatment, it does not result in the overall change of the 

bacterial community signature of wastewaters being discharged into the environment.  

 

Further phylogenetic analysis at the class taxonomic level revealed that members belonging to 

the Beta-, Epsilon-, Gamma-proteobacteria, Bacteroidia, Clostridia, Flavobacteria and 

Actinobacteria dominated the IF wastewaters received by both plants. Ye and Zhang (2013) 

reported Delta-, Gamma-proteobacteria, and Clostridia as the dominant classes in the influent 

wastewaters analysed, whilst McLellan et al. (2010) reported WWTP influent dominated by 

Actinobacteria, Bacteroidetes, and Firmicutes classes. These differences may be attributed to 

many factors, such as the composition of the wastewater received by both plants, the spatial 

and temporal variations, nearby industry effluents discharged and the treatment technology 

adopted by the WWTPs (McLellan et al., 2010). Additionally, fluctuations between members 

of these classes observed when IF and EF samples were compared to each other, further 

suggesting the contribution of wastewater treatment in the changes to the bacterial community 

structure.  
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2.5.2 Pathogenic bacterial populations of untreated and treated wastewaters  

In the MG-RAST annotations, a relatively standard cut-off was employed to filter the BLAST 

outputs. Furthermore, we employed very strict cutoffs for the VFDB annotations. For this 

reason, discrepancies between the detected potential pathogens was observed between the 

output of both analysis, whereby a reduced number of pathogenic genera was detected in the 

VFDB outputs. Hence, comparison of the potential pathogenic genera showed that both 

databases only shared Campylobacter, Escherichia, Haemophilus, Helicobacter, Legionella, 

Listeria, Mycobacterium, Neisseria, Pseudomonas, Salmonella, Shigella, Staphylococcus, 

Streptococcus, Vibrio and Yersinia genera. Nonetheless, annotation by both M5nr database and 

VFDB consistently showed that the abundance and diversity of the observed potential bacterial 

pathogens declined as a result of the treatment process, from the IF along the treatment train to 

the EF. Previous studies have demonstrated a removal efficiency of over 99% for 12 pathogens, 

including A. hydrophila, K. pneumoniae and E. coli, with the use of the activated sludge process 

detected by microarrays and quantitative-PCR (Lee et al., 2006). Therefore, since WWTPs in 

this study applied this technology during the treatment process, it suggests that the treatment 

process may be effective in the reduction of the pathogenic load by both WWTPs before the 

subsequent release of the wastewaters into the aquatic environments. However, since 8 to 19 

genera containing potential pathogens were still detected from in EF samples of both WWTPs, 

with some observed at a relatively high occurrence, there are concerns about the safety of the 

treated effluent discharge from these WWTPs on the receiving environment.   

 

Acinetobacter baumannii strains have previously been reported to be present in wastewaters 

receiving hospital discharges (Ferreira et al., 2011; Zhang et al., 2014) and only a few studies 

have reported their detection elsewhere in the environment (El-Sayed, 2016; Girlich et al., 2010; 
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Hrenovic et al., 2014). Surprisingly, a 4-fold increase of A. baumannii in treated wastewater 

communities of Plant B was observed in this study from the MG-RAST pipeline but not the 

VFDB analysis. The absence could be explained by the fact that A. baumannii virulence factors 

were not included within the VFDB. The bacterium has been reported as one of the most 

important human pathogen to cause nosocomial pneumonia and bacteremia among patients 

admitted at the intensive care unit (Gaynes and Edwards, 2005; Kanafani et al., 2003; Paul et 

al., 2005; Wisplinghoff et al., 2004) followed by skin, soft tissue, and urinary tract infections 

(Bergogne-Bérézin and Towner, 1996; Gales et al., 2001) and secondary meningitis (Falagas 

et al., 2007; Ng et al., 2006) globally. Furthermore, the number of reports of multidrug resistant 

A. baumannii in hospitals has been steadily increasing (Dijkshoorn et al., 2007). Though A. 

baumannii is an ubiquitous organism, as it could be found in various environmental sources 

such as soil, water, vegetables, meat, and fish (Krahn et al., 2016), they may infrequently 

colonize the skin of healthy human tissue, although the occurrence is typically at a low-density 

and for short-term duration (Cetin et al., 2009). Furthermore, as studies have demonstrated the 

presence of antibiotic resistant A. baumannii in a municipal WWTP (Hrenovic et al., 2016) and 

the contribution of the wastewater treatment process in increased selection of multidrug 

resistant Acinetobacter spp. discharged into the environment (Zhang et al., 2009), the relatively 

high occurrence of this species in the EF communities warrants further investigation. 

 

Legionella pneumophila is the causative agent of Legionnaires’ disease, a type of atypical 

pneumonia with a relatively high fatality rate, or Pontiac fever, a milder non-fatal form of 

Legionella infection. Normally, Legionella is transmitted mainly by inhaling bio-aerosols of 

contaminated water (Devos et al., 2005). Overall, approximately a 2.5-fold to 5-fold increase 

of L. pneumophila was observed in the treated wastewater communities of both WWTPs in this 
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study from both the MG-RAST pipeline and VFDB analysis. Though the organism is known 

to be ubiquitous in aqueous environments, such as: lakes, rivers, reservoirs, cooling towers, 

and whirlpools (Dusserre et al., 2008), it has been shown to survive in extreme ranges of 

environmental conditions, with a variety of different physiochemical factors (Mirzaee et al., 

2015). However, it typically requires free-living amoebae for its intracellular replication 

(Albert-Weissenberger et al., 2007), though, under appropriate conditions, L. pneumophila has 

been reported to survive for long periods as a free organism in low-nutrient environments 

(Chang et al., 2007; Steinert et al., 1997). Not many cases of L. pneumophila diseases have 

been frequently discussed in literature compared to other bacterial pathogens, but infections 

caused by L. pneumophila has been largely associated with biological treatment plants. For 

example, a survey of 33 industrial plants in Norway indicated aeration basins as sources for 

high concentrations of Legionella spp. (Lund et al., 2014), whilst two cases of severe 

pneumonia in employees working at two separate industrial WWTPs was documented in 

Finland (Kusnetsov et al., 2010). In the latter study, up to 1.7 × 1010 cells/L of L. pneumophila 

was detected in the aeration ponds of the WWTP and 105 CFU/L was detected downstream of 

wastewater outlet. Such levels of L. pneumophila was shown to directly cause the outbreak of 

Legionnaires’ disease. Furthermore, some commonly detected genera such as Escherichia, 

Listeria, Neisseria, Pseudomonas, Salmonella, Shigella, Staphylococcus, Streptococcus, 

Vibrio and Yersinia were also found in the EF of both WWTPs investigated in this study.  

 

2.5.3 Profiles of putative antibiotic resistance gene sequences across metagenomes 

The strict and unambiguous antibiotic resistance ontology of the CARD database was used to 

annotate genes as ARG-like in this study. It should be noted that the diversity and abundance 

of the antibiotic resistome observed by CARD alignment were different from those derived 
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from the MG-RAST analysis of the metagenome. Possible reasons for the divergence may be 

the difference in the reference database used as well as the contribution of the alignment 

algorithm. MG-RAST relies on the use of BLAT algorithm for similarity searches, which is 

less sensitive than the BLAST algorithm (Yu and Zhang, 2013). Additionally, the CARD 

database is a highly curated and comprehensive database (McArthur et al., 2013) compared to 

the incomplete resistance to antibiotics and toxic compounds subsystem on ARGs (Wang et al., 

2013). 

 

Overall, detection frequencies and diversity of different ARGs and ARGs types in the 

metagenomic samples of both WWTPs were expected as described in previous studies (Shi et 

al., 2013; Szczepanowski et al., 2009; Wang et al., 2013; Xi et al., 2009). Plant A showed a 

significant removal of ARGs types following treatment with a lower diversity of ARGs types 

in the EF communities. This is in line with a recent study by Chen and Zhang (2013) who 

investigated tetracycline and sulfonamide resistance genes in 4 municipal wastewater and 8 

rural domestic sewage treatment systems. Conversely, Plant B communities was observed 

without salient removal of ARGs types upon wastewater treatment. However, slight differences 

were observed by all means between the samples. Notably, this result corroborates with the 

suggestion that WWTPs represent the main sites through which ARGs are released into the 

environment (Marti et al., 2014).  

 

Genes conferring resistance to the elfamycin, tetracycline and aminoglycoside types of 

antibiotics was observed to be the most abundant across all metagenomes. The elfamycin 

family of antibiotics inhibits protein synthesis of Gram-negative bacteria by an interaction with 
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elongation factor Tu (Hall et al., 1989; Vogeley et al., 2001; Wolf et al., 1974). The tetracycline 

family of antibiotics also inhibits protein synthesis by preventing the attachment of aminoacyl-

tRNA to the ribosomal acceptor A site (Chopra and Roberts, 2001). The aminoglycoside family 

of antibiotics also inhibits protein synthesis of most Gram-negative aerobic and facultative 

anaerobic bacilli by the irreversible binding to the 30S ribosomal sub-unit (Kotra et al., 2000). 

Specifically, majority of the elfamycin-like ARGs in the metagenomes were associated with 

the variants of the elongation factor Tu. Elfamycins and aminoglycosides are not commonly 

used in treatment of human diseases due to the very narrow spectrum against human pathogens 

(Miele et al., 1994) and the adverse effects leading to ototoxicity, neuropathy and 

nephrotoxicity (Prayle et al., 2010). However, they are applied as a growth promoting agent in 

animal food production owing to their excellent activities (Brötz et al., 2011; Eagar et al., 2012; 

Maiese et al., 1989). Therefore, high abundance of these ARGs in the metagenomes suggests 

that the major source of wastewaters received by both WWTPs could be from nearby animal 

feed industries around both WWTPs. This reason could also partially explain the coinciding 

high occurrence of genes conferring resistance to tetracycline class of antibiotics as tetracycline 

is commonly used for livestock purposes in South Africa (Eagar et al., 2012). On the other 

hand, studies suggests that sources of tet39 gene could result from clinical (Agersø and 

Guardabassi, 2005) or animal sources (Agersø and Petersen, 2007) and are common amongst 

Acinetobacter spp. (Hamidian et al., 2016), which was detected in high abundance in this study. 

The occurrence of these particular family of antibiotic and their ineffective biodegradation in 

WWTPs may allow for low concentrations to persist in the treated effluents leading to the 

selection of these ARGs (Gullberg et al., 2011) and their subsequent dissemination into the 

environment. 
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Nonetheless, the proportions of the ARGs identified in this study were diverse and comparable 

to the results from previous studies investigating activated sludge (Zhang et al., 2011), sewage 

effluent (Port et al., 2012), plasmids recovered from WWTP (Li et al., 2015a), non-hospital 

medical care facility (Bäumlisberger et al., 2015) and drinking water treatment plants (Chao et 

al., 2013; Huang et al., 2011; Xi et al., 2009). Moreover, the ARGs detected in this study 

encompasses the three major resistance mechanisms, viz. exclusion by efflux pumps, antibiotic 

inactivation and cellular protection (Blair et al., 2014; Nikaido, 2009). Hence, detection of 

these ARGs in the EF of both WWTPs further demonstrates that WWTPs are hotspots for the 

ARGs transfer between bacteria and potentially contribute to the increase in the multidrug 

resistance strains.  

 

 

2.6 Conclusions 

In conclusion, while the sequencing depth in this study was not adequate due to the sequencing 

platform used, the fact that direct shotgun pyrosequencing combined with metagenomic 

analysis allowed for the determination of the microbial community structure, potential 

pathogenic bacterial populations as well as the ARGs profiles of two urban WWTPs in this 

study supports this approach as a relatively simple yet advantageous alternative over the time-

consuming and laborious conventional techniques used in community assessments, pathogen 

and ARGs detection. The findings of this study exhibited the taxonomic profiles of the 

wastewater communities, which were in general agreement with previous descriptions of 

aquatic and wastewater sources reported in literature. Furthermore, the observed profile of 

commonly concerning human bacterial pathogens was also comprehensively explored in a 
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single detection step, with Acinetobacter baumannii and Legionella pneumophila observed in 

high abundance regardless of treatment and is of concern. Resistance determinants also 

correlated with previous studies investigating similar environmental sources and our study 

further indicates the contribution of urban WWTPs in antibiotic resistance generation. 

Additionally, our study suggests, for the first time, the dominance of the elfamycin family of 

antibiotics in two different urban WWTPs although the wastewaters were subjected to the 

complete treatment process. These findings demonstrated the applicability of this technique as 

a powerful yet feasible approach which could be applied in microbial ecology and other related 

fields. However, it is worth noting that such a molecular technique is difficult to absolutely 

quantify the pathogens in question, in terms of an exact cell number, because of the complexity 

in converting gene copy number to cell number. 
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2.8 Figures 

 
Figure 2.1: Occurrence and relative abundances of dominant phyla in Plant A (a) influent (b) effluent and Plant B (c) influent (d) effluent annotated 
by MG-RAST pipeline and classified with the lowest common ancestor algorithm. Relative abundance represents the number of reads affiliated 
with that phyla divided by the total reads assigned for the bacterial domain. Several phyla dominating the domain in the sample is indicated on the 
chart as percentages. 
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Figure 2.2: Occurrence and relative abundances of dominant classes observed in Plant A 
influent (IF). effluent (EF) and Plant B IF. EF annotated by MG-RAST pipeline and classified 
with the lowest common ancestor algorithm. Relative abundance represents the number of 
reads affiliated with that class divided by the total reads assigned for the bacterial domain. The 
“Other” category in the figure legend represents assignments to the class level rather than 
potential novel class (represented as “unclassified derived from”). 
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Figure 2.3: Occurrence and relative abundances of genera containing potentially pathogenic 
species at the genus taxonomic level revealed by (a) annotation with the MG-RAST pipeline 
and classified with the lowest common ancestor algorithm and (b) annotation and classification 
with the human pathogenic bacteria virulence factor database. Relative abundance represents 
the number of reads affiliated with that genus divided by the total reads assigned in all genera. 
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Figure 2.4: Heatmap depicting the distribution and relative abundance of potentially 
pathogenic species in Plant A influent (A_IF), effluent (A_EF), Plant B influent (B_IF) and 
effluent (B_EF) revealed by (a) annotation with the MG-RAST pipeline and classified with the 
lowest common ancestor algorithm and (b) annotation and classification with the human 
pathogenic bacteria virulence factor database. Relative abundance represents the number of 
reads affiliated with that genus divided by the total reads assigned in all genera. 
  



 

 137 

 

 

 

 
Figure 2.5: Distribution and relative abundance of antibiotic resistance genes (ARGs) types 
observed from Plant A influent (IF), effluent (EF) and Plant B IF and EF (visualized via Circos). 
Relative abundance values were calculated by dividing the number of annotated ARGs to the 
total number of ARGs detected in the metagenomes. Each antibiotic resistance type is 
represented by a specific ribbon colour and the width of the outer ring for each ribbon 
represents the percentage relative abundance of ARGs in the associated metagenomes. Plant A 
and Plant B associated metagenomes has been coloured black with remaining antibiotic types 
in a variety of colours.  
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2.9 Supplementary material 

Table S2.1: Characterization of the 454 pyrosequenced libraries from wastewater treatment 
plant (WWTP) influent and effluent microbial populations. Two different full-scale urban 
WWTPs located in Durban. South Africa were investigated in this study. 
 

Characteristics 
Plant A Plant B 

Influent Effluent Influent Effluent 
# raw reads 158 797 227 021 234 034 180 557 
Total size (bp) 95 665 775 143 321 109 139 421 962 110 996 053 
Average reads (bp) 602 631 596 615 
# reads uploaded to MG-RAST 158 797 227 021 234 034 180 557 
     
MG-RAST QC 
# reads before QC 158 797 227 021 234 034 180 557 
Total size before QC (bp) 95 665 775 143 321 109 139 421 962 110 996 053 
Average length before QC (bp) 602 631 596 615 
# reads removed during ambiguous 
base filtering 14 981 11 511 21 023 30 777 

# reads removed during 
dereplication 9 134 11 511 13 978 2 031 

# reads after QC 134 682 194 388 199 033 147 749 
Total size after QC (bp) 31 555 611 41 085 936 47 542 086 27 636 500 
Average length after QC (bp) 234 211 239 187 
     
MG-RAST Annotations 
# reads identified as RNA 22 235 32 299 32 975 23 065 
# reads predicted ORFs 124 573 175 950 186 281 131 523 
     
Database Annotations 
# reads assigned to VFDB 45 27 111 65 
# reads assigned to CARD 99 31 175 187 

 

Table S2.2: Relative abundance of the microbial populations from two full-scale wastewater 
treatment plants influent and effluent annotated by the MG-RAST pipeline and assigned with 
the lowest common ancestor algorithm. Relative abundance is reported as percentages and 
represents the number of reads affiliated with that domain divided by the total reads assigned 
for all domain. 
 

Domain Plant A Plant B 
Influent Effluent Influent Effluent 

Bacteria 99.40 93.32 99.42 99.44 
Archaea 0.14 1.47 0.13 0.17 

Eukaryota 0.12 4.37 0.10 0.24 
Viruses 0.30 0.47 0.31 0.11 

Other sequences <0.01 <0.01 <0.01 0.01 
Unclassified sequences 0.04 0.37 0.04 0.03 
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Figure S2.1: Comparative taxonomic profile of (a) Plant A influent (IF) and effluent (EF) and 
(b) Plant B IF and EF wastewater samples at phylum taxonomic level. Annotation was 
determined by the MG-RAST pipeline and assigned with the lowest common ancestor 
algorithm. Asterisks on top of the bar graphs indicate phyla with significant differences (q<0.05) 
in abundance between the wastewater samples determined in STAMP. 
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(b) 

 
Figure S2.2: Comparative taxonomic profile of (a) Plant A influent (IF) and effluent (EF) and 
(b) Plant B IF and EF wastewater samples at class taxonomic level. Annotation was determined 
by the MG-RAST pipeline and assigned with the lowest common ancestor algorithm. Asterisks 
on top of the bar graphs indicate phyla with significant differences (q<0.05) in abundance 
between the wastewater samples determined in STAMP. 
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Table S2.3: Occurrence and relative abundance of potentially pathogenic bacterial species 
from two full-scale wastewater treatment plants influent (IF) and effluent (EF) annotated by 
the MG-RAST pipeline and assigned with the lowest common ancestor algorithm. Relative 
abundance is reported as percentages and represents the number of reads affiliated with that 
species divided by the total reads assigned for all potentially pathogenic species. 
 

Species Plant A Plant B 
IF EF IF EF 

Acinetobacter baumannii 19.44 11.11 19.90 81.90 
Pseudomonas aeruginosa 15.49 9.44 10.08 6.60 

Escherichia coli 23.94 9.44 29.85 2.76 
Vibrio cholerae 6.20 3.33 5.67 1.38 

Salmonella enterica 3.66 7.22 6.05 0.92 
Haemophilus influenzae 1.69 3.33 3.65 0.77 
Vibrio parahaemolyticus 0.28 0 1.39 0.77 
Clostridium perfringens 1.41 2.22 1.39 0.61 

Vibrio vulnificus 1.13 0.56 1.64 0.61 
Bacillus cereus 0.85 3.33 1.26 0.46 

Burkholderia pseudomallei 2.82 8.33 1.76 0.46 
Clostridium botulinum 4.23 7.22 1.51 0.31 

Clostridium difficile 2.82 4.44 3.02 0.31 
Enterococcus faecium 0 0.56 0 0.31 

Legionella pneumophila 2.54 7.78 1.01 0.31 
Neisseria meningitidis 1.13 0.56 1.13 0.31 
Staphylococcus aureus 0.56 0.56 0.13 0.31 

Clostridium tetani 0 0.56 0 0.15 
Helicobacter pylori 0.56 1.11 1.26 0.15 

Mycobacterium tuberculosis 0 2.22 0.25 0.15 
Streptococcus agalactiae 0.85 0 1.64 0.15 

Streptococcus pneumoniae 1.41 1.67 1.64 0.15 
Yersinia pestis 0.28 0.56 0.50 0.15 

Bacillus anthracis 0 0.56 0 0 
Bacillus subtilis 1.13 1.11 0.13 0 

Campylobacter jejuni 3.66 3.33 1.51 0 
Clostridium novyi 0 0 0.25 0 

Enterococcus faecalis 2.82 3.89 1.39 0 
Listeria innocua 0 0 0.25 0 
Listeria ivanovii 0 0.56 0 0 

Listeria monocytogenes 0 1.67 0.25 0 
Shigella dysenteriae 0.56 0 0.25 0 

Shigella flexneri 0 0 0.13 0 
Streptococcus pyogenes 0.56 1.11 0.88 0 
Yersinia enterocolitica 0 2.22 0.25 0 
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Table S2.4: Occurrence and relative abundance of potentially pathogenic bacterial species 
from two full-scale wastewater treatment plants influent (IF) and effluent (EF) annotated and 
assigned with the virulence factor database. Relative abundance is reported as percentages and 
represents the number of reads affiliated with that species divided by the total reads assigned 
for all potentially pathogenic species. 
 

Species Strain Plant A Plant B 
IF EF IF EF 

Pseudomonas aeruginosa PAO1 17.78 18.52 1.8 47.69 

Legionella pneumophila subsp. pneumophila str. 
Philadelphia 1 8.89 22.22 5.41 26.15 

Neisseria meningitidis MC58 15.56 14.81 7.21 15.38 
Listeria monocytogenes EGD-e 6.67 11.11 1.8 4.62 

Brucella melitensis bv. 1 str. 16M 0 3.7 0 1.54 
Burkholderia pseudomallei K96243 2.22 3.7 1.8 1.54 

Escherichia coli CFT073 8.89 3.7 0.9 1.54 
Yersinia enterocolitica subsp. enterocolitica 8081 15.56 7.41 6.31 1.54 

Bordetella pertussis Tohama I 2.22 7.41 2.7 0 
Campylobacter jejuni subsp. jejuni NCTC 11168 0 0 1.8 0 
Campylobacter jejuni O157:H7 str. EDL933 2.22 0 31.53 0 
Campylobacter jejuni O45:K1:H7 str. S88 0 0 1.8 0 

Haemophilus influenzae Rd KW20 2.22 0 0.9 0 
Helicobacter pylori 26695 0 0 0.9 0 

Mycobacterium tuberculosis H37Rv 0 0 5.41 0 

Salmonella enterica subsp. enterica serovar Typhi 
str. CT18 8.89 0 8.11 0 

Salmonella enterica subsp. enterica serovar 
Typhimurium str. LT2 2.22 0 0.9 0 

Shigella dysenteriae Sd197 2.22 3.7 1.8 0 
Streptococcus agalactiae 2603V/R 0 0 1.8 0 

Streptococcus pneumoniae TIGR4 2.22 0 0.9 0 
Streptococcus pyogenes M1 GAS 0 0 8.11 0 

Vibrio cholerae O1 biovar El Tor str. N16961 2.22 0 7.21 0 
Yersinia pestis CO92 0 3.7 0.9 0 
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Figure S2.3: Diversity indices (Simpson, Shannon, Buzas and Gibson, Brillouin, Menhinick, 
Margalef, Equitability, Fisher’s alpha, Berger-Parker and Chao 1) of the abundance of ARGs 
types determined for Plant A WWTP influent (IF), effluent (EF), Plant B WWTP IF and EF.  

 

 
 
Figure S2.4: Principal coordinate analysis (PCoA) of the Bray-Curtis dissimilarity coefficients 
of different ARGs types determined for Plant A WWTP influent (IF), effluent (EF), Plant B 
WWTP IF and EF. 

0

2

4

6

8

10

12

14

16

18

IF EF IF EF

Di
ve

rs
ity

 In
di

ce
s

Simpson

Shannon

Buzas and Gibson

Brillouin

Menhinick

Margalef

Equitability

Fisher's Alpha

Berger-Parker

Chao 1
Plant A Plant B

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

-0,5 0 0,5 1

PC
2 

(8
3.

99
%

)

IF

EF

EF

IF

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

-0,5 0 0,5 1

PC
3 

(5
.8

4%
)

PC1 (10.17%)

EF

EF

IF

IF

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

-1 -0,5 0 0,5 1

PC3 (5.84%)

IF

EF

EF

IF

Plant A

Plant B



 

 144 

Chapter Three 
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3 Chlorination effects on bacterial diversity, functional 
potential and antibiotic resistome during urban 
wastewater treatment: a metagenomic insight 

3.1 Abstract 

The most common method of disinfection used by wastewater treatment plants (WWTPs) aimed at 

removing microbial pathogens from the treated effluent is chlorination. However, some studies have 

reported on the selective pressure exerted by the process for antibiotic resistance. In this study, we 

investigated the effects of chlorination on bacterial diversity and structure, functional potential and 

antibiotic resistome of wastewater communities using whole-genome shotgun pyrosequencing 

combined with metagenomic analysis in two full-scale WWTPs. Overall, chlorination significantly 

influenced the microbial diversity and structure in both WWTPs, creating a shift between Beta-, 

Gamma- and Alpha-proteobacteria in pre- and post-chlorination communities, suggesting the ability of 

the members of these classes to resist disinfection treatment. This was further supported by the increase 

in specific protective mechanisms, such as glutathione metabolism and oxidative stress subsystems in 

post-chlorination communities at both WWTPs. Overall decrease in antibiotic resistome was observed 

following disinfection suggesting the effectiveness of this treatment stage. However, chlorination seems 

to promote the selection of resistance to the elfamycin and tetracycline classes of antibiotics at both 

WWTPs. The results from this study shed more light on the influence of chlorination disinfection on 

the bacterial community dynamics, functional potential and antibiotic resistome during chlorination 

treatment in WWTPs. 

Keywords: Antibiotic resistance; Chlorination; Metagenomics; Microbial communities; 

Pyrosequencing; Wastewater   
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3.2 Introduction 

Wastewater treatment plants (WWTPs) are an essential urban infrastructure. The most common 

method of wastewater disinfection internationally adopted for the removal of pathogens in 

wastewater effluent is chlorination. Wastewater disinfection is essential for ensuring 

compliance to water quality standards before treated wastewater effluents are discharged from 

WWTPs into receiving rivers, streams or the ocean (Blatchley et al., 2007). Although 

disinfection by chlorination has been shown to be effective in decreasing the load of various 

bacteria, viruses and protozoa, chlorination does not completely eradicate the growth of 

microorganisms (Gomez-Alvarez et al., 2012). Conversely, previous findings have suggested 

that urban WWTPs act as major reservoirs for residual antibiotics (AB), antibiotic resistant 

genes (ARGs) and antibiotic resistance bacteria (ARB) and are responsible for their 

dissemination into the environment (Kümmerer, 2009; Lupo et al., 2012; Rizzo et al., 2013). 

The concern is the potential in which the dissemination of wastewater effluents into the 

environment would contribute to the generation and selection of ARB capable of infecting 

human and animals (Courvalin, 2008; Da Silva et al., 2006; Davies and Davies, 2010; Figueira 

et al., 2011; Olaniran et al., 2012; Wellington et al., 2013), leading to animal and public health 

risks (Ram et al., 2008; WHO, 2014). 

 

Previous studies have reported on the diverse microbial species and communities found in 

wastewater effluents discharged from WWTPs using a variety of culture- or molecular- 

dependent techniques, each with its own advantages and limitations (Hong et al., 2010; 

Olaniran et al., 2015, 2012; Revetta et al., 2011; Rizzo et al., 2013). Specifically, several studies 

have shown the contribution of chlorination in the spread of ARGs (Huang et al., 2011; 

Karumathil et al., 2014) and enrichment for ARB (Armstrong et al., 1982; Karumathil et al., 
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2014; Murray et al., 1984). However, most of these studies have been limited in scope as the 

use of culture-dependent methods to comprehensively characterize microbial communities 

remains a challenge. Firstly, it is a time consuming task with most environmental organisms 

remaining unculturable in vitro with current available technologies (Schmieder and Edwards, 

2012). Secondly, the inert PCR bias associated with microbial diversity fingerprinting and PCR 

based-clone library methods do not allow for a comprehensive and unbiased view of the 

complex microbial communities present in wastewater samples (Yadav et al., 2014).  

 

Recently, high-throughput sequencing combined with metagenomic analysis of a given sample 

has been considered a promising approach for the assessment of complex microbial 

communities (Kristiansson et al., 2011; Wang et al., 2013; Zhang et al., 2011). This approach 

has been applied for the assessment of various environmental scenarios. These include the 

analysis of soil (Howe et al., 2014) and river (Amos et al., 2014) microbiota, communities 

found in activated sludge from urban WWTPs (Ju et al., 2014), communities in sediments from 

an oil spill (Mason et al., 2014), faecal microbiota (Ilmberger et al., 2014), microbial diversity 

in aquatic settings (Doxey et al., 2014) as well as clinical settings such as the human gut 

microbial profiling project (Qin et al., 2010), sputum analysis of patients with cystic fibrosis 

(Lim et al., 2014), viral pathogens detection (Yang, 2014) and many others. In determining the 

complex genetic composition and diversity present in WWTP samples with a relatively 

unbiased view (Gomez-Alvarez et al., 2009), a metagenomic insight is a favourable approach. 

Furthermore, recent studies have indicated the importance of understanding bacterial 

community shifts as it is said to influence the shaping of the microbial community resistome 

(Forsberg et al., 2014; Su et al., 2015). 
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In this study, high-throughput pyrosequencing of metagenomic samples combined with 

bioinformatic analysis were used for the assessment of the diversity and composition of the 

bacterial communities present in wastewater samples. Furthermore, the community functional 

potential and antibiotic resistome was also determined. Results from this study may help to 

extend our knowledge on the complex microbial communities found in urban WWTPs and the 

effects of chlorination on the microbial communities during this important disinfection 

treatment stage.  

 

 

3.3 Materials and Methods 

3.3.1 WWTP description and sample collections 

In this study, pre-chlorinated and post-chlorinated wastewater samples were collected from two 

full-scale urban WWTPs in the city of Durban, South Africa, hereon designated as Plant A and 

Plant B. Plant A has a capacity of 70 megaliters/day with an operational capacity of 96% and 

uses the activated sludge and diffused air liquid technologies with gravity thickening, anaerobic 

digestion and belt press dewatering sludge technologies. Plant B has a capacity of 25 

megaliters/day with an operational capacity of 76% and uses the activated sludge liquid 

technology with anaerobic digestion and belt press dewatering sludge technologies 

(Department of Water and Sanitation, 2015). Furthermore, Plant A receives a mixture of nearby 

domestic and industrial wastewater, whilst Plant B receives a mixture of domestic, industrial 

and hospital wastewaters. Four samples were collected in 5 L plastic bottles pre-sterilized with 

70% (v/v) ethanol and rinsed with 4 L of the sample at the various sampling sites prior to 
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collection. Upon collection, the samples were transported on ice back to the laboratories within 

3 h and stored at 4°C prior to DNA extraction which took place within 24 h. 

 

3.3.2 Ethics statement 

No special permits were required for this study. Permission for collection of pre-chlorinated 

and post-chlorinated samples from both WWTPs was granted by the authorities of the 

respective WWTPs (Durban, South Africa). 

 

3.3.3 Total DNA extraction and shotgun pyrosequencing 

Total DNA of the bacterial populations were extracted from the samples using PowerWater™ 

DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to manufacturer’s 

instructions. This kit is specifically designed for isolating bacterial DNA from environmental 

water samples and includes inhibitor removal technology aimed at removing humic acid and 

other organic matter commonly found in environmental samples that can interfere with 

downstream analyses. The resulting purity and concentration of the DNA preparation was 

determined using the NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, 

USA) before samples were sent to the National Genomics Platform (Technology Innovation 

Agency, South Africa) for sequencing. 

 

High-throughput whole-genome shotgun pyrosequencing was conducted by the use of 454 GS 

FLX System (Roche, USA) with the GS FLX Titanium Rapid Library Preparation Kit (Roche, 

USA). The samples were barcoded by the use of GS FLX Titanium Rapid Library MID 
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Adaptors Kit (Roche, USA) in order to enable multiplex sequencing. DNA of 500 µg was used 

for library construction. Briefly, DNA was nebulized using nitrogen gas and purified using 

MinElute PCR Purification Kit (QIAGEN, Germany) according to manufacturer’s instructions. 

Fragment end repair and attachment of adaptors to the samples was carried out according to 

standard protocol (Roche, USA). Thereafter, the quality of the libraries was assessed by the 

use of 2000 Bioanalyzer (Agilent Technologies, USA) using the High Sensitivity DNA 

Analysis Kit (Agilent Technologies, USA). Thereafter, relative fluorescence of the DNA 

libraries was measured on GloMax-Multi Microplate Multimode Reader (Promega, USA) 

using 6-fluorescein amidite (6-FAM) standards and 6-FAM-labeled Multiplex Identifiers 

(MIDs). The results were uploaded onto the Rapid Library Quantitation Calculator (Roche, 

USA) and rapid libraries were made with a final concentration of 1 × 107 molecules/µl. 

Emulsion PCR was carried out with the use of GS FLX Titanium MV emPCR Kit (Lib-L) 

(Roche, USA) according to manufacturer’s instructions. Subsequently, four DNA copies per 

bead were enriched and used for the main sequencing run with Escherichia coli beads as a 

positive control (Roche, USA).  

 

3.3.4 Data availability 

All individual sequence reads have been deposited at the NCBI Short Read Archive (SRA) 

under the accessions no. SRR3629047 and SRR3629048 for Plant A pre- and post-chlorination 

datasets, respectively, and SRR3629053 and SRR3629057 for Plant B pre- and post-

chlorination datasets, respectively.  
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3.3.5 Bioinformatic analysis of pyrosequencing datasets 

Raw data files from sequencing were de-multiplexed by removing the barcoded sequence and 

any secondary adapter sequences. For initial quality control, raw reads were evaluated by CLC 

Genomics Workbench v.7.5 (CLC Bio, QIAGEN, Germany) quality control pipeline. The 

quality of all reads was within the acceptable standards from the platform (see Table S3.1 in 

the supplemental material). Therefore, no reads were trimmed, filtered or discarded before 

implementation of the MG-RAST v.3.6 pipeline for further quality control, prediction and 

annotation (Meyer et al., 2008; Wilke et al., 2015). Ambiguous base filtering by removing 

sequences with >5 ambiguous base pairs (bp) and length filtering by removing sequences with 

a length of >2 standard deviations from the mean were applied as quality control filters using 

SolexaQA (Cox et al., 2010) in the MG-RAST pipeline.  

 

3.3.5.1 Taxonomic classifications  

For taxonomic classification, an initial BLAT search against reduced RNA database (90% 

identity clustered version of SILVA database) was performed and the rRNA-similar reads were 

then clustered at 97% identity with the longest read as the cluster representative. Thereafter, 

BLAT search of the cluster representative was performed against the M5rna database (see 

Table S3.1 in the supplemental material). M5rna is a ribosomal database with integration of 

SILVA, Greengenes and RDP databases (Meyer et al., 2008; Wilke et al., 2015). Taxonomic 

abundance was analyzed using the Lowest Common Ancestor (LCA) algorithm used in 

MEGAN (Huson et al., 2007) and implemented in MG-RAST with a maximum e-value cut-

off of 1 × 10-5, minimum identity of 60% and a minimum alignment length of 15, which is 

measured in amino acids for protein databases and bp for RNA databases (Zheng et al., 2015). 
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This algorithm assigns each read to the LCA from the set of matching taxa when BLASTx is 

applied. For example, if a given read had sequence similarity to 3 different families within the 

same order, the read is assigned at the order level rather than assigning the read to a specific 

family. Hence, the LCA algorithm has been reported to have lower rates of false positive 

assignments than the best hit classification algorithm implemented in the MG-RAST pipeline. 

However, this would result in a higher number of unspecific assignments or no hits in some 

cases (Huson et al., 2007). 

 

3.3.5.2 Functional annotations  

Prior to functional annotation, reads within the datasets were screened for artificially replicated 

sequences and those identified sequences were removed using the dereplication tool (Gomez-

Alvarez et al., 2009) implemented in the MG-RAST pipeline (see Table S1 in the supplemental 

material). Thereafter, putative ORFs were identified using FragGeneScan, an ab-initio 

prokaryotic gene calling algorithm using the Hidden Markov Model (Rho et al., 2010), and 

their corresponding protein sequences were searched with BLAST against the M5nr protein 

database in the MG-RAST server. M5nr is a non-redundant protein database with integration 

of many public sequences databases including GenBank, SEED, IMG, UniProt,  KEGG  and  

eggNOGs (Meyer et al., 2008; Wilke et al., 2015). For functional assignments, analysis was 

performed using Hierarchical Classification approach against KEGG orthology (KO) and 

SEED subsystems (SS) with maximum e-value cut-off, minimum identity and a minimum 

alignment length as described above. 
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3.3.6 Comparative metagenomic analyses 

To determine the statistical differences in taxonomic and functional distribution between 

metagenomic datasets, statistical analysis of metagenomic profiles (STAMP) v.2.1.3 software 

package was used (Parks and Beiko, 2010). Statistical significance of differences between 

samples (q values) was calculated on the basis of two-sided Fisher’s exact test using Storey’s 

false discovery rate (FDR). Because p values were not uniformly distributed using Storey’s 

FDR, Benjamin-Hochberg FDR was applied for corrections during functional annotations. The 

confidence intervals were determined by Newcombe-Wilson’s method. Only features with a q 

value of <0.05 were considered significant in this study.  

 

Principal Coordinate Analysis (PCoA) of the Bray-Curtis dissimilarity coefficients based on 

the normalized abundance of functional assignments under the SS was used to identify the 

relationships between functional community structures of wastewater metagenomes in this 

study and 48 publically available metagenomes covering a wide variety of habitats (see Table 

S2 in the supplemental material). All publically available metagenomes utilized the same 

sequencing method as described for this study with the exception of Artic freshwater datasets 

which utilized Sanger sequencing. Annotation and functional assignment of the publically 

available metagenomes was performed on the MG-RAST server to avoid potential bias from 

different analysis pipelines (Jeffries et al., 2011; Smith et al., 2012). Functional assignments 

were performed using Hierarchical Classification approach against SS with maximum e-value 

cut-off, minimum identity and a minimum alignment length as described above. Prior to PCoA, 

SS assignments of each metagenomic datasets were normalized against the total number of hits 

in the respective database, log transformed and implemented in MG-RAST to avoid variations. 
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3.3.7 Detection of antibiotic resistome 

To identify ARGs in the metagenomes in order to establish the antibiotic resistome profiles, 

the Comprehensive Antibiotic Resistance Database (CARD) was used (McArthur et al., 2013). 

CARD database was preferred over the other ARGs databases, such as Antibiotic Resistance 

Genes Online (Scaria et al., 2005), the microbial database of protein toxins, virulence factors, 

and antibiotic resistance genes (MvirDB) (Zhou et al., 2007), and Antibiotic Resistance Genes 

Database (Liu and Pop, 2009), because these databases are neither exhaustive nor regularly 

updated (Gupta et al., 2014). BLASTx against the database was carried out using DIAMOND 

tool v.0.7.11 (Buchfink et al., 2014) with a e-value cut-off of 1 × 10-5. A read with its best 

BLAST hit was deemed ARG-like if the hit had a sequence similarity of above 90% over an 

alignment of at least 25 amino acids (Chao et al., 2013; Wang et al., 2013). The classification 

of ARG-like sequences was performed using the structured database of CARD (McArthur et 

al., 2013) and in-house written scripts. One-way analysis of variance (ANOVA) was carried 

out to assess the variations between the different antibiotic resistome of the pre- and post-

chlorination communities using IBM SPSS v.22 (Armonk, New York: IBM Corp.), and p<0.05 

was considered statistically significant. Principal coordinate analysis was performed to 

evaluate the difference between the antibiotic resistome of the samples based on the Bray-

Curtis dissimilarity coefficients of the relative abundance of ARGs. Various diversity indices 

for the antibiotic resistome were determined using the ‘vegan’ package (Shen and Fulthorpe, 

2015) from the program R (R Development Core Team 2007). 
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3.4 Results 

Whole-genome shotgun metagenomics in combination with pyrosequencing were used to gain 

an insight into the effect of chlorination on the taxonomic diversity and composition, functional 

potential and antibiotic resistome of microbial communities in wastewater samples of two full-

scale WWTPs.  

 

In total, approximately 914,987 raw reads with an average length of 539 bp corresponding to 

approximately 479 million bp were generated for this study. Specifically, raw sequences 

generated were 237,014 and 227,021 reads for pre- and post-chlorinated samples in Plant A, 

respectively, and 270,395 and 180,557 reads for pre- and post-chlorinated samples in Plant B, 

respectively. Upon ambiguous base filtering and length filtering, 9.3% of the reads in both pre- 

and post-chlorination datasets for Plant A, and 19.7% and 18.2% of the reads for pre- and post-

chlorinated samples in Plant B, respectively, was excluded from further analyses. Prior to 

functional annotation, approximately 5% of the reads for pre- and post-chlorinated samples in 

Plant A, and 5% of pre-chlorination and 1% of post-chlorination for Plant B metagenomes were 

identified as artificially replicated sequences and removed (see Table S3.1 in the supplemental 

material). 

 

3.4.1 Microbial composition and diversity 

Taxonomic classification of both predicted rRNA genes sequences and predicted proteins in 

all metagenomic datasets were conducted based on all the available annotation source 

databases in MG-RAST. Domain distributions in the four samples, showed the expected 



 

 156 

dominance of bacteria across all metagenomes occupying 97.81% and 93.32% for pre- and 

post-chlorinated samples from Plant A, respectively, and 99.01% and 99.44% for pre- and post-

chlorinated samples from Plant B, respectively. Also, low numbers of the Oligohymenophorea 

class of eukaryotic members were found in abundance, after the bacterial domain, accounting 

for 0.35% and 2.8% of the annotated sequences in pre- and post-chlorinated samples of Plant 

A, respectively. Whilst, low numbers of the Streptophyta phylum of eukaryotic members were 

found in abundance, after the bacterial domain, accounting for 0.14% and 0.04% of the 

annotated sequences in pre- and post-chlorinated samples of Plant B, respectively. The 

remaining sequences were distributed amongst archeal and viral domains in very low 

abundance (see Table S3.3 in the supplemental material). 

 

At the phyla taxonomic level, bacterial communities were diverse with representatives of 27 

phyla in pre- and post-chlorinated samples in both Plant A and Plant B. Statistical analysis 

using STAMP indicated that no correlation (r2=0.873) was found at this taxonomic level 

between bacterial community diversity in pre- and post-chlorinated samples in Plant A, whilst 

high positive correlations (r2=0.989) were seen between pre- and post-chlorinated samples in 

Plant B at this taxonomic level (see Figure S3.1 in the supplemental material). In all wastewater 

samples, Proteobacteria was the dominant phylum accounting for 43.68% to 83.81% of 

annotated reads in effluent of both WWTPs. This was followed by Bacteroidetes, 

Actinobacteria and Firmicutes phyla (Figure 3.1). Disinfection treatment in Plant A was 

observed to show a 21.8% reduction in the Proteobacteria phylum from pre- to post-

chlorination, whilst Plant B showed a 14.3% increase in the reads classified. Additionally, 

significant differences (q<0.05) were observed at this level amongst Proteobacteria, 

Bacteroidetes, Actinobacteria and Firmicutes between pre- and post-chlorinated wastewaters 
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from both WWTPs (see Figure S3.2 in the supplemental material). Notably, Actinobacteria, 

Firmicutes and Chloroflexi significantly increased after disinfection treatment in Plant A. 

However, significant decrease was observed for these phyla after disinfection in Plant B. 

 

At the class taxonomic level, Betaproteobacteria was the most abundant class accounting for 

26.68% of the total bacterial sequences, followed by Gammaproteobacteria (23.46%), 

Flavobacteria (8.34%) and Alphaproteobacteria (3.87%) in pre-chlorinated wastewater of Plant 

A. In post-chlorinated wastewater of Plant A, Betaproteobacteria was the most abundant class 

accounting for 17.37% of total bacterial sequences, followed by Alphaproteobacteria (6.61%), 

Gammaproteobacteria (6.57%) and Actinobacteria (6.49%) (Figure 3.2). Additionally, 

significant differences (q<0.05) were observed for Betaproteobacteria, Gammaproteobacteria, 

Flavobacteria and Alphaproteobacteria amongst others at the class level (see Figure S3.3 in the 

supplemental material). Gammaproteobacteria was the most abundant class in pre-chlorinated 

wastewater of Plant B, accounting for 38.20% of total bacterial sequences, followed by 

Betaproteobacteria (17.11%), Flavobacteria (6.22%) and Actinobacteria (3.40%). In post-

chlorinated wastewater of Plant B, Gammaproteobacteria was still the most abundant class 

accounting for 67.69% of total bacterial sequences, followed by Betaproteobacteria (9.16%), 

Flavobacteria (6.07%) and Alphaproteobacteria (1.63%) (Figure 3.2). However, significant 

differences (q<0.05) were observed for Gammaproteobacteria, Betaproteobacteria, 

Actinobacteria and other phyla at this level (see Figure S3.4 in the supplemental material). It 

should be noted that a 3.6-fold decrease in members of the Gammaproteobacteria and a 1.7-

fold and 3-fold increase in members of the Alphaproteobacteria and Actinobacteria class was 

observed upon disinfection treatment in Plant A, whilst a 2-fold increase of the members of the 
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Gammaproteobacteria class was observed following disinfection treatment in Plant B (Figure 

3.2). 

 

3.4.2 Functional potential of microbial communities 

Predicted protein features were annotated using MG-RAST with SS and KO. In all cases, to 

avoid bias from lower quality spurious hits, an e-value threshold of 1 × 10-5 was applied when 

the results were exported or further processed. Overall, annotation of the metagenomic 

sequences against the MG-RAST M5nr database with hierarchical classification revealed a 

total of 77,212 and 42,663 reads were assigned to the various level 1 SS for the wastewater 

communities in Plant A (for pre- and post- chlorination, respectively). Whilst, 92,346 and 

71,314 reads were assigned to the various level 1 SS wastewater communities in Plant B (for 

pre- and post- chlorination, respectively). For KO assignments, a total of 32,724 and 19,038 

reads were assigned to class 1 KO wastewater communities in Plant A (pre- and post-

chlorination, respectively), whilst a total of 40,346 and 31,009 reads were assigned to class 1 

KO wastewater communities in Plant B (pre-and post-chlorination, respectively). 

 

The dominant functional level 1 subsystems for bacterial communities in Plant A (pre- and 

post-chlorination) were “clustering-based subsystems”, followed by “protein metabolism” and 

“carbohydrates” in decreasing relative abundance. For Plant B pre-chlorination, the dominant 

subsystems among the bacterial communities were “clustering-based subsystems”, 

“carbohydrates”, “amino acids and derivatives” and “protein metabolism” in decreasing 

relative abundance. However, shifts were observed, post-chlorination, with “clustering-based 

subsystems”, “amino acids and derivatives”, “miscellaneous” and “protein metabolism” in 
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decreasing relative abundance as the dominant subsystems (Figure 3.3 and see Table S3.4 and 

S3.5 in the supplemental material).  

 

Statistical analysis of the overall level 1 subsystem of communities in pre- and post-chlorinated 

wastewater of Plant A and Plant B showed no correlation in their functional potential (r2=0.817 

and r2=0.874, respectively) (Figure 3.4a and 3.4b). Comparison of the level 1 subsystems 

between pre- and post-chlorinated wastewaters in Plant A indicated that 15 out of the 28 

subsystems were significantly different (q<0.05) (Figure 3.4c). Specifically, significant 

increases were observed in “clustering-based subsystems”, “carbohydrates”, “protein 

metabolism”, “DNA metabolism”, “phages, prophages, transposable elements, plasmids” and 

“cell division and cell cycle” subsystems in post-chlorinated wastewaters of Plant A. 

Conversely, significant decreases were observed in “amino acids and derivatives”, “cofactors, 

vitamins, prosthetic groups, pigments”, “fatty acids, lipids, and isoprenoids”, “virulence, 

disease and defence”, metabolism of aromatic compounds”, “motility and chemotaxis”, 

nitrogen metabolism”, iron acquisition and metabolism” and “sulphur metabolism”. 

Comparison of the level 1 SEED subsystems in pre- and post-chlorination communities of Plant 

B indicated that 14 out of the 28 subsystems were significantly different (q<0.05) (Figure 4d). 

Specifically, significant increase was observed in “cofactors, vitamins, prosthetic groups, 

pigments”, “RNA metabolism”, “fatty acids, lipids, and isoprenoids”, “nucleosides and 

nucleotides”, “metabolism of aromatic compounds”, “regulation and cell signalling”, “iron 

acquisition and metabolism”, “sulphur metabolism” and “secondary metabolism” subsystems. 

Conversely, “carbohydrates”, “protein metabolism”, “DNA metabolism”, “nitrogen 

metabolism” and “motility and chemotaxis” subsystems decreased significantly.  
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Detailed analysis of the disinfectant resistance mechanisms of the bacterial communities 

include the oxidative stress response functions assigned in SS and the glutathione synthesis 

pathways assigned in KO. Specifically, the OxyR system, SoxRS system, RpoS regulated 

genes and exopolysaccharide (EPS) synthesis pathways assigned in SS were investigated. 

 

In bacterial communities of pre- and post-chlorinated wastewater of both Plants, 11 out of 21 

enzymes involved in the glutathione synthesis pathways was annotated and assigned to KEGG 

pathway (Figure 3.5a and 3.6a). All three of the enzymes for bacterial glutathione synthesis 

(viz. glutathione synthase, glutathione reductase and glutathionylspermidine synthase) were 

detected at considerable abundances (Figure 3.5a and 3.6a). Comparing the abundance of the 

genes encoding the enzymes of the pathway in pre- and post-chlorinated wastewater of Plant 

A, higher abundance of leucyl aminopeptidase, dipeptidase D and 5-oxoprolinase was observed 

among communities post-chlorination. Contrarily, higher abundance of glutathione reductase, 

leucyl aminopeptidase, glutamate-cysteine ligase and 5-oxoprolinase was observed for Plant B. 

For the OxyR system, alkyl hydroperoxide reductase protein C (ahpC), glutaredoxin 1 

reductase (grxA) and thioredoxin reductase (trxB) were found in greater abundance post-

chlorination in Plant A (Figure 3.5b), whilst alkyl hydroperoxide reductase protein F (ahpF), 

hydrogen peroxide-inducible regulator (oxyR), peroxidase/catalase (katG) and trxB were found 

in greater abundance post-chlorination in Plant B (Figure 3.6b). For the SoxRS system, 

aconitate hydratase/aconitase A (acnA), glucose-6-phosphate 1-dehydrogenase/G6PD (zwf), 

magnesium superoxide dismutase (sodA) and redox-sensitive transcriptional regulator (soxR) 

was found in higher abundance post-chlorination in Plant A (Figure 3.5c), whilst only fumarate 

hydratase/fumarase C (fumC), sodA and soxR were found in higher abundance post-

chlorination in Plant B (Figure 3.6c). For the RpoS system, all three enzymes, Cu-Zn 
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superoxide dismutase (sodC), exo-DNase III (xthA) and RNA polymerase sigma factor (rpoS) 

were detected in greater abundance post-chlorination in Plant A (Figure 3.5d), whilst all three 

enzymes were observed in low abundance post-chlorination in Plant B (Figure 3.6d). Genes 

involved in exopolysaccharide (EPS) synthesis pathways, primarily belonging to cell wall and 

capsule SS was determined for both all wastewater samples. Among these, genes for EPS 

biosynthesis and dTDP-rhamnose synthesis was found in greatest abundance in post-

chlorinated wastewaters of Plant A and Plant B, respectively (Figure 3.5e and 3.6e). 

 

Comparison of the functional potential of bacterial communities of all wastewater samples to 

6 different environmental habitats by principle coordinate analysis (PCoA) revealed that 

different ecosystems clustered differently (Figure 3.7). For example, human oral, human gut, 

ocean and soil metagenomes cluster into individual groups. Conversely, Arctic freshwater and 

hydrocarbon wastewater samples showed variations in metagenomes although sampled from 

the same ecosystem. Wastewater samples from this study were observed to ordinate around 

ocean, soil and Artic freshwater metagenomes.  

 

3.4.3 Antibiotic resistome abundance and diversity  

BLASTx against the CARD protein database showed that 94 reads (pre-chlorination) and 31 

reads (post-chlorination) were assigned to a total of 15 classes of ARGs in Plant A (Figure 

3.8a). For Plant B wastewaters, BLASTx against the CARD database showed that 169 and 187 

reads were assigned to pre- and post-chlorinated wastewaters, respectively, with a total of 14 

classes of resistance genes (Figure 3.8b). The total abundance of the detected ARGs showed 

no significant differences (p>0.05) between the pre- and post-chlorinated wastewaters at both 
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WWTPs. However, Shannon and Simpson’s diversity indices calculations consistently 

indicated that disinfection by chlorination reduced the diversity of the ARGs in treated effluents 

of both WWTPs (see Figure S3.5 in the supplemental material). Additionally, PCoA of the 

antibiotic resistome patterns revealed shifts after disinfection of the wastewaters in both 

WWTPs, where each of the antibiotic resistome profile clustered separately from each other 

(see Figure S3.6 in the supplemental material). This was further observed with additional 

calculations of diversity indices (see Table S3.5 in the supplemental material). 

 

The elfamycin resistance genes was the dominant class in Plant A wastewater communities 

(pre- and post-chlorination). This was followed by tetracycline, aminoglycoside, 

aminocoumarin and macrolide classes in decreasing relative abundance in pre-chlorinated 

wastewater. Post-chlorination, elfamycin resistance gene was followed by tetracycline, 

aminoglycoside, rifampin, beta-lactam classes and multidrug efflux pump genes in decreasing 

relative abundance. In pre-chlorinated wastewater in Plant B, elfamycin resistance gene was 

also the dominant class of ARGs, followed by tetracycline, macrolide, beta-lactam, 

aminoglycoside classes and multidrug efflux pump genes in decreasing relative abundance. 

Post-chlorination, bacterial communities showed aminocoumarin as the dominant class, 

followed by elfamycin, tetracycline, macrolide, multidrug efflux pump genes and beta-lactam 

classes in decreasing relative abundance. 

 

Under the elfamycin ARG class, variants of the elongation factor Tu were the dominant type 

of ARG in pre- and post-chlorinated wastewater bacterial communities of both WWTPs. 

Relative abundance of 29.79% and 41.94% of the total ARGs was observed, pre- and post-
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chlorination respectively in Plant A, while a relative abundance of 17.16% and 17.11% of the 

total ARGs was observed in pre- and post-chlorinated wastewaters, respectively in Plant B, 

(Figure 3.8c). The msrE and tet39 genes were found to be in high abundance, pre-chlorination 

in Plant A. However, post-chlorination, APH(3”)-Ib and rpoB genes conferring resistance to 

rifampicin was found to be in higher abundance. Similarly, msrE and tet39 genes were also 

found in high abundance in pre-chlorinated wastewater of Plant B, while, tet39 and adeJ genes 

were in higher abundance in post-chlorination communities. 

 

3.5 Discussion 

3.5.1 Microbial composition and diversity 

Metagenomic analysis consistently indicated that chlorine disinfection altered the microbial 

community diversity of the wastewater from the two different WWTPs investigated in this 

study, although Proteobacteria was observed to persist after the disinfection treatment used by 

both WWTPs. This result is consistent with studies using PCR-based experiments targeting the 

16S rRNA gene to examine the microbial communities of samples from WWTPs (Miura et al., 

2007; Silva et al., 2010a, 2010b). The result is also consistent with a study which reported 

Proteobacteria as the dominant persisting phylum during drinking water disinfection by 

chlorination (Chao et al., 2013; Poitelon et al., 2009; Shi et al., 2013). Furthermore, 

investigations on the community structure of biofilms in drinking water treatment plants during 

disinfection with a metagenomic approach also showed that the dominant microbes were 

related to Proteobacteria phylum (Chao et al., 2015; Schmieder and Edwards, 2012). 

Dominance by this phylum could be due to the fact that this phylum comprises one of the most 

phylogenetically and metabolically diverse group in the Bacteria domain (Ettema and 
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Andersson, 2009). Besides dominance by Proteobacteria, dominance by Bacteroidetes, 

Actinobacteria and Firmicutes phyla in the bacterial communities were seen in this study. This 

is also consistent with previously reported studies investigating community structure of 

microbes in untreated wastewaters (Shanks et al., 2013), swine WWTP (Da Silva et al., 2015), 

anaerobic reactor digesting activated sludge from WWTP (Guo et al., 2015), tannery WWTP 

(Wang et al., 2013) and activated sludge of WWTP in Hong Kong (Yu and Zhang, 2012). It 

has been suggested that the core human microbial signature is made up of Firmicutes, 

Bacteroidetes, Actinobacteria, and Proteobacteria, with shifts in the ratio of Firmicutes and 

Bacteroidetes correlating with obesity (Buffie and Pamer, 2013). As both WWTPs in this study 

receives domestic wastewaters and hospital effluents (in the case of Plant B), it is not surprising 

that the bacterial community is dominated by members of these phyla due to the source of 

influent received by the WWTPs. It is noteworthy that for this study we did not remove free 

associated DNA or dead cells before DNA isolation and therefore the sequences identified 

could be associated with live and/or dead microbial populations. Whilst, urban WWTPs present 

microbes with a relatively harsh environment, especially during treatment stages, there have 

been reports which indicate survival of pathogenic ARB which survive all treatment stages 

(Odjadjare and Olaniran, 2015; Olaniran et al., 2015, 2012). 

 

Shifts in the microbial community structure was observed at the class level in both WWTPs 

upon disinfection. In Plant A, members of the Beta- and Gamma-proteobacteria dominated the 

community before disinfection treatment, however, a shift to Beta- and Alpha-proteobacteria 

was observed, post-chlorination. This suggests that Beta- and Alpha-proteobacteria may 

tolerate chlorination disinfection during wastewater treatment. Shifts to Alpha-proteobacteria 

was also observed following disinfection of drinking water (Chao et al., 2013), moving bed 
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biofilm reactor systems treating municipal sewage (Biswas and Turner, 2012) and 

investigations on the bacterial communities in different sections of a municipal WWTP (Ye 

and Zhang, 2013). Conversely, in Plant B, Gamma- and Beta-proteobacteria dominated the 

community before and after disinfection of the wastewater with no shift observed. This result 

is consistent with a report which indicated the shift towards decreased relative abundance of 

Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, 

Gammaproteobacteria in the microbial ecology of a hospital’s hot water system after 

supplemental monochloramine disinfection implementation (Baron et al., 2014). Therefore, 

overall results observed in this study suggests that selected members from Proteobacterial 

classes, Beta-, Gamma- and Alpha-proteobacteria, may tolerate chlorination better than the 

remaining classes under the Proteobacteria phylum.  

 

3.5.2 Functional potential of microbial communities 

Whole genome shotgun sequencing of metagenomes has the capacity to fully sequence the 

majority of available genomes within an environmental sample (or community). Therefore, 

besides community biodiversity profiles, functional potential of microbial communities can be 

explored. As with the diverse bacterial structure observed in this study, a wide metabolic 

diversity was also present in the wastewater communities of both WWTPs. 

 

As expected, genes assigned to the metabolism of carbohydrates, protein metabolism, amino 

acids and proteins were observed to be in relatively high abundance as they are related to the 

housekeeping functions of all living organisms. However, clustering-based subsystems 

(containing functions such as proteosomes, ribosomes, and recombination-related clusters 
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(Delmont et al., 2012)), and miscellaneous subsystems (containing genes associated with iron-

sulphur cluster assembly, common prokaryotic-plant genes and Niacine-Choline transport and 

metabolism) were also found to be in relatively high abundance. These results were observed 

in previous studies investigating soil (Delmont et al., 2012), marine (Gilbert et al., 2008), 

activated sludge (Dinsdale et al., 2008) and freshwater (Dinsdale et al., 2008) communities. 

Comparison of the overall functional potential between other ecological settings revealed 

considerable functional differences between different ecosystems. Though, different 

ecosystems show distinct functional characteristics, wastewaters from this study shared similar 

functional characteristics with ocean and soil sources. These observations are expected as 

WWTPs present with an environment closer to soil and ocean environments. 

 

Significant increases in several higher level subsystems and the shift observed in the metabolic 

potential upon disinfection with no correlations between pre- and post-chlorinated wastewater 

suggests that these functions could be important in providing the resistance to chlorination 

treatment. Specifically, direct increase in bacterial resistance to chlorine compounds have been 

reported to include protective genes involved in glutathione metabolism (Chesney et al., 1996). 

Several genes involved in the bacterial pathway of glutathione metabolism (Chao et al., 2013) 

were observed in this study. The widely accepted and proposed theory of glutathione 

metabolism in eukaryotes is by the transfer of these genes from bacteria via the ancestral 

predecessor of mitochondria during evolution (Fahey et al., 1984). This suggests that the 

modern relatives of the ancestral predecessor of mitochondria, members of the 

Alphaproteobacteria class, should house glutathione biosynthesis genes, and might explain the 

increase in the abundance over other bacterial classes observed,  post-chlorination in Plant A. 

Moreover, because the nutrient levels present in treated wastewaters prior to disinfection 
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treatment should be at low levels, starvation of bacterial species is expected to stimulate 

glutathione synthesis and subsequently enhance chlorine resistance (Saby et al., 1999). 

Additionally, genes involved in EPS synthesis, although more related to biofilm production, 

could also provide protective functions (Ryu and Beuchat, 2005) and were observed in the 

wastewater communities at both WWTPs. Furthermore, genes involved in Glutathione 

metabolism has been said to be indirectly involved in the regulation of several oxidation 

resistant systems, such as OxyR, SoxR and SOS systems (Saby et al., 1999).  

 

Specifically, activation of the OxyR system can induce the transcription of various antioxidant 

genes, such as trxB, ahpCF, grxA, katG and non-specific DNA-binding protein (dps) (Sund et 

al., 2008). The GrxA protein acts as a repair mechanism for the oxidized form of glutathione 

in many Gram-negative bacteria (Gallardo-Madueño et al., 1998; Müller et al., 1995; Smirnova 

et al., 2001), and the reduction of disulphide bonds in proteins damaged by oxidative radicals 

is carried out by TrxB (Gómez-Pastor et al., 2010; Kuhns et al., 2015; Russel and Model, 1988). 

These genes were found in high abundance post-chlorination in both WWTPs, suggesting that 

OxyR systems could be an important resistance mechanism for chlorine. This is supported by 

studies which have suggested the key role of the OxyR system in resistance (Chao et al., 2015; 

Gray et al., 2013; Wang et al., 2009). acnA and fumC genes are involved in the TCA cycle 

whereby the TCA cycle maintain cellular redox balance by reduction reactions (Zheng et al., 

1999), whilst activation of the zwf gene would produce NADPH/NADH in response to severe 

oxidative stress (Shimizu, 2013; Sund et al., 2008). Genes involved in responses to the SoxR 

system, including acnA and zwf were found in high abundance post-chlorination in Plant A, 

suggesting that the microbial communities in these wastewaters potentially followed the 

NADPH/NADH synthesis and TCA cycle. Conversely, Plant B post-chlorination communities 
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saw high abundance in only fumC and potentially followed only the TCA cycle. The presence 

of these genes could explain the poor efficiency of chlorination for inactivation and the 

reduction of pathogens abundance during disinfection process.  

 

3.5.3 Antibiotic resistome abundance and diversity 

Chlorination was found to effectively decrease the relative abundance of ARGs in Plant A, 

which agrees with a recent study (Zhang et al., 2015). Surprisingly, increase in the relative 

abundance of ARGs in Plant B was observed post-chlorination. This result was also observed 

in a study investigating drinking water (Chao et al., 2013). Overall, a decrease in the diversity 

of ARGs upon chlorination in both WWTPs was observed. This suggests that there is a 

relationship between decreased diversity and decrease in total ARGs abundance in Plant A. 

Conversely, for Plant B, chlorination decreased the diversity, but increased the total abundance 

of the ARGs in the bacterial communities. Several studies investigating the ARGs using 

molecular methods have also reported the same trend observed for Plant B (Mao et al., 2015; 

Shi et al., 2013; Xi et al., 2009). Overall, the various antibiotic classes observed post-

chlorination in this study was also reported in a previous study investigating ARGs from 

environments impacted by livestock and municipal waste (Agga et al., 2015). 

 

Unexpectedly, elfamycin genes were found to be the most abundant ARGs in both WWTPs. 

The elfamycin family of antibiotics inhibits protein synthesis of Gram-negative bacteria by an 

interaction with elongation factor Tu (Hall et al., 1989; Vogeley et al., 2001; Wolf et al., 1974). 

This family is said to be subdivided into three types on the basis of their structure. Specifically, 

majority of the elfamycin ARGs in the wastewater communities were associated with the 
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variants of the elongation factor Tu. Though elfamycin are not commonly used in treatment of 

human diseases due to the very narrow spectrum against human pathogens (Miele et al., 1994), 

it is used as a growth promoting agent in animals owing to its excellent activities (Brötz et al., 

2011; Maiese et al., 1989). Therefore, high abundance of the ARGs suggests that the major 

source of wastewaters received by both WWTPs could be from nearby animal feed industrial 

wastewaters. Furthermore, it suggests that chlorination during wastewater treatment does not 

effectively decrease the relative abundance of this family of antibiotics and this warrants further 

investigations. This could also partially explain the high abundance of tet39 genes observed 

post-chlorination as tetracycline is not effectively biodegradable and commonly used for 

livestock purposes in South Africa (Eagar et al., 2012). Furthermore, studies suggests that 

sources of tet39 gene could result from clinical (Agersø and Guardabassi, 2005) or animal 

sources (Agersø and Petersen, 2007) and are common amongst resistant Acinetobacter spp 

(Hamidian et al., 2016), which is a cause for concern as chlorination does not seem to be 

effective in the removal of these ARGs.  

 

It should be noted that the diversity and abundance of the antibiotic resistome observed by 

CARD alignment were different from those derived from the MG-RAST analysis of the 

metagenome. Possible reasons for the divergence may be the difference in the reference 

database used as well as the contribution on the alignment algorithm. MG-RAST relies on the 

use of BLAT algorithm for similarity searches, which is less sensitive than the BLAST 

algorithm (Yu and Zhang, 2013). Furthermore, CARD database is a highly curated and 

comprehensive database (McArthur et al., 2013) compared to the incomplete SEED “resistance 

to antibiotics and toxic compounds” subsystem on ARGs 

(http://theseed.uchicago.edu/FIG/subsys.cgi). 
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3.6 Conclusion 

Detection of taxonomic profiles, functional potential and antibiotic resistome across the 

wastewater samples tested in this study further supports the use of the pyrosequencing approach 

as a preliminary investigation before deep-sequencing by Illumina technology is used to 

identify trends across diverse and complex environments. Taxonomic profiles were in general 

agreement with previous descriptions of WWTPs, in which Proteobacteria were the 

predominant members of the wastewater communities. Furthermore, the functional potential 

of these communities were also in general agreement with previously reported studies. 

However, our study indicated that selected members of the Proteobacterial class showed 

tolerance towards chlorination, and were detected in higher abundance after disinfection. 

Resistance to chlorine was supported by the detection of Glutathione metabolism and related 

oxidative stress response systems genes in the communities suggesting that they play a major 

as protective functions during disinfection of wastewaters. Results from this study further 

indicate the diversity of ARGs in wastewaters, and suggests for the first time, the dominance 

of the elfamycin family of ARG in urban WWTPs. These findings strongly support the notion 

that urban WWTPs are potential reservoirs for AR, ARGs and ARB selection. Further 

investigation on the effects of the effluent discharge from these WWTPs on the receiving 

surface water bodies is a subject on on-going investigation in our laboratory to allow for a more 

comprehensive understanding of the microbial ecology of WWTPs and the environment, and 

could be useful for the safeguard of public and environmental health. 
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3.8 Figures 
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Figure 3.1: Relative abundances of dominant phyla of the pre- and post-chlorinated samples 
for (a) Plant A and (b) Plant B annotated by MG-RAST. Relative abundance represents the 
number of reads affiliated with that taxon divided by the total reads assigned for the bacterial 
domain, and the phylum (or domain) making up more than 1% of the population in the sample 
is indicated on the chart as percentages.  
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Figure 3.2: Relative abundances of dominant class in the pre- and post-chlorinated wastewater 
samples from Plant A and Plant B annotated by MG-RAST. Relative abundance represents the 
number of reads affiliated with that taxon divided by the total reads assigned for the bacterial 
domain.  
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Figure 3.3: Comparison on the relative abundance of functional annotation indicating the variation of bacterial metabolic structure at level 1 SEED 
subsystems. Relative abundance represents the number of reads affiliated with that taxon divided by the total reads assigned for the bacterial 
domain. 
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(a) 

 
(b) 

 
Figure 3.4: Comparative level 1 SEED subsystem profile of microbial communities in the pre- and post-chlorinated wastewater. Statistical analysis 
using STAMP showed overall negative correlations in (a) Plant A, and positive correlations in (b) Plant B. Significant differences (q<0.05) in 
abundance between each subsystems before and after disinfection treatment in (c) Plant A and (d) Plant B annotated by MG-RAST are indicated 
in asterisks. 
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(d) 

 
Figure 3.4 (cont.): Comparative level 1 SEED subsystem profile of microbial communities in 
the pre- and post-chlorinated wastewater. Statistical analysis using STAMP showed overall 
negative correlations in (a) Plant A, and positive correlations in (b) Plant B. Significant 
differences (q<0.05) in abundance between each subsystems before and after disinfection 
treatment in (c) Plant A and (d) Plant B annotated by MG-RAST are indicated in asterisks.  
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Figure 3.5: Normalized relative abundance of annotated reads conferring resistance to chlorine 
disinfection under (a) Glutathion pathway assigned in KO (b) OxyR system, (c) SoxRS system, 
(d) RpoS regulated genes and (e) exopolysaccharide (EPS) synthesis pathways assigned in SS 
of pre- and post-chlorination disinfection wastewaters of Plant A. Relative abundance was 
calculated from the number of reads annotated in either KO or SS. 
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Figure 3.6: Normalized relative abundance of annotated reads conferring resistance to chlorine 
disinfection under (a) Glutathion pathway assigned in KO (b) OxyR system, (c) SoxRS system, 
(d) RpoS regulated genes and (e) exopolysaccharide (EPS) synthesis pathways assigned in SS 
of pre- and post-chlorination disinfection wastewaters of Plant B. Relative abundance was 
calculated from the number of reads annotated in either KO or SS.   
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Figure 3.7: Principal coordinate analysis (PCoA) of the Bray-Curtis dissimilarity coefficients 
of 6 different ecosystems (human oral, human gut, ocean, soil freshwater, wastewater treatment 
plants) with normalized amount of annotated reads in the SEED subsystems. Metagenomes of 
the different ecosystems were analysed in MG-RAST to avoid variations in analysis using the 
publicly available data on MG-RAST (their information is provided in Table S3.2). 
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(a) 

  

(b) 

 
Figure 3.8: Comparison of the relative abundance of antibiotic resistance gene (ARGs) classes observed from bacterial communities (pre- and 
post-chlorination) in (a) Plant A and (b) Plant B and the diversity of specific ARGs in (c) Plant A and Plant B. Relative abundance values were 
calculated by dividing the number of assigned ARGs to the total number of ARGs detected. ARGs were annotated by BLASTx against the CARD 
protein database. (Staphylococcus aureus, S. aureus; Salmonella enterica, S. serovars; Mycobacterium tuberculosis, M. tb; Escherichia coli, E. 
coli; Bartonella bacilliformis, B. bacilliformis).
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(c) 

Figure 3.8 (cont.): Comparison of the relative abundance of antibiotic resistance gene (ARGs) 
classes observed from bacterial communities (pre- and post-chlorination) in (a) Plant A and (b) 
Plant B and the diversity of specific ARGs in (c) Plant A and Plant B. Relative abundance 
values were calculated by dividing the number of assigned ARGs to the total number of ARGs 
detected. ARGs were annotated by BLASTx against the CARD protein database. 
(Staphylococcus aureus, S. aureus; Salmonella enterica, S. serovars; Mycobacterium 
tuberculosis, M. tb; Escherichia coli, E. coli; Bartonella bacilliformis, B. bacilliformis).  
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3.9 Supplementary material 

Table S3.1: Characterization of the 454 pyrosequenced libraries from the pre- and post-
chlorinated wastewater samples of two full-scale urban wastewater treatment plants in Durban, 
South Africa. 
 

Characteristics Plant A Plant B 
Pre-chlorination Post-chlorination Pre-chlorination Post-chlorination 

# raw reads 237,014 227,021 270,395 180,557 
Total size (bp) 151,058,869 143,321,109 73,708,040 110,996,053 
Average reads (bp) 637 631 272 614 
# reads uploaded to 
MG-RAST 237,014 227,021 270,395 180,557 

     
MG-RAST QC 
# reads before QC 237,014 227,021 270,395 180,557 
Total size before 
QC (bp) 151,058,869 143,321,109 73,708,040 110,996,053 

Average length 
before QC (bp) 637 631 272 614 

# removed during 
dereplication (bp) 11,741 11,511 13,020 2,031 

# after QC 203,253 194,388 217,147 147,749 
Total size after QC 
(bp) 42,025,286 41,085,936 44,369,381 27,636,500 

Average length 
after QC (bp) 207 211 204 187 

# predicted ORFs 184,950 175,950 198,687 131,523 
# identified RNA 32,915 32,299 35,691 23,065 
     
Functional Annotation 
# of SEED entries 6797 6041 7034 5759 
# of SEED 
subsystem level 2 167 165 166 162 

# of SEED 
subsystem level 3 978 946 1,005 928 

# of KEGG entries 1961 1881 2040 1607 
# of COG entries 3012 2769 3188 2622 
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Table S3.2: Basic information summary of 48 publicly available metagenomic datasets from 
MG-RAST in six ecosystems (human gut, human oral, ocean, soil, freshwater and wastewater 
treatment plants) used in this study. 
 

Label/Biomes MG-RAST 
ID 

Metagenome 
size (bp) # Reads Habitat 

Type Location Sequencing 
Method 

Human Oral_1 4447943.3 142,374,233 339,503 human-
associated 

Valencia, 
Spain 454 

Human Oral_2 4447192.3 77,538,485 204,218 human-
associated 

Valencia, 
Spain 454 

Human Oral_3 4447103.3 203,711,161 464,594 human-
associated 

Valencia, 
Spain 454 

Human Oral_4 4447102.3 100,125,112 244,881 human-
associated 

Valencia, 
Spain 454 

Human Oral_5 4447101.3 129,851,692 295,072 human-
associated 

Valencia, 
Spain 454 

Human Oral_6 4447971.3 37,519,874 97,722 human-
associated 

Valencia, 
Spain 454 

Human Oral_7 4447970.3 27,669,924 70,503 human-
associated 

Valencia, 
Spain 454 

Human Oral_8 4447903.3 123,266,763 306,74 human-
associated 

Valencia, 
Spain 454 

Human Gut_1 4440452.7 54,632,274 229,857 human-
associated 

St. Louis, 
United States 454 

Human Gut_2 4440616.3 174,824,393 507,928 human-
associated 

St. Louis, 
United States 454 

Human Gut_3 4440611.3 103,097,122 526,727 human-
associated 

St. Louis, 
United States 454 

Human Gut_4 4440826.3 124,768,172 499,499 human-
associated 

St. Louis, 
United States 454 

Human Gut_5 4440824.3 100,520,072 414,497 human-
associated 

St. Louis, 
United States 454 

Human Gut_6 4440639.3 93,430,618 440,521 human-
associated 

St. Louis, 
United States 454 

Human Gut_7 4440461.5 105,923,024 522,134 human-
associated 

St. Louis, 
United States 454 

Human Gut_8 4440613.3 102,979,597 312,665 human-
associated 

St. Louis, 
United States 454 

Ocean_1 4443702.3 47,289,202 209,073 aquatic Bergen, 
Norway 454 

Ocean_2 4443707.3 31,359,337 135,033 aquatic Bergen, 
Norway 454 

Ocean_3 4443708.3 8,571,342 38,22 aquatic Bergen, 
Norway 454 

Ocean_4 4443703.3 30,991,689 134,915 aquatic Bergen, 
Norway 454 

Ocean_5 4443709.3 26,982,195 116,192 aquatic Bergen, 
Norway 454 

Ocean_6 4443705.3 68,187,679 304,02 aquatic Bergen, 
Norway 454 

Ocean_7 4443704.3 59,316,369 344,216 aquatic Bergen, 
Norway 454 

Ocean_8 4443706.3 38,021,523 162,871 aquatic Bergen, 
Norway 454 

Soil_1 4445996.3 116,821,792 312,444 soil Navada, 
United States 454 

Soil_2 4445993.3 133,555,260 352,417 soil Navada, 
United States 454 
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Table S3.2 (cont.): Basic information summary of 48 publicly available metagenomic datasets 
from MG-RAST in five ecosystems (human, ocean, soil, freshwater and wastewater treatment 
plants) used in this study. 
 

Label/Biomes MG-RAST 
ID 

Metagenome 
size (bp) # Reads Habitat 

Type Location Sequencing 
Method 

Soil_3 4445994.3 254,548,462 683,082 soil Navada, 
United States 454 

Soil_4 4445990.3 219,117,356 583,724 soil Navada, 
United States 454 

Soil_5 4450750.3 87,160,647 239,933 soil Navada, 
United States 454 

Soil_6 4450752.3 76,860,743 233,279 soil Navada, 
United States 454 

Soil_7 4451103.3 397,257,248 1,040,697 soil Navada, 
United States 454 

Soil_8 4451104.3 347,578,191 998,484 soil Navada, 
United States 454 

Arctic 
Freshwater_1 4443683.3 101,310,476 100,085 freshwater Antarctica sanger 

Arctic 
Freshwater_2 4443680.3 9,622,231 9,672 freshwater Antarctica sanger 

Arctic 
Freshwater_3 4443679.3 9,755,315 10,042 freshwater Antarctica sanger 

Arctic 
Freshwater_4 4443681.3 54,929,769 54,446 freshwater Antarctica sanger 

Arctic 
Freshwater_5 4443682.3 284,069,722 283,663 freshwater Antarctica sanger 

Arctic 
Freshwater_6 4443685.3 28,413,296 28,481 freshwater Antarctica sanger 

Arctic 
Freshwater_7 4443686.3 101,573,008 103,058 freshwater Antarctica sanger 

Arctic 
Freshwater_8 4443687.3 95,664,001 95,521 freshwater Antarctica sanger 

Hydrocarbon 
WWTP_1 4507688.3 116,596,410 186,74 terrestrial Inniskillen, 

Canada 454 

Hydrocarbon 
WWTP_2 4507689.3 155,694,182 241,209 terrestrial Inniskillen, 

Canada 454 

Hydrocarbon 
WWTP_3 4509513.3 29,379,862 88,526 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_4 4509514.3 41,742,688 109,108 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_5 4509515.3 50,103,178 124,879 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_6 4509516.3 38,880,264 111,957 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_7 4523101.3 423,985,802 548,46 terrestrial 

Fort 
McMurray, 

Canada 
454 

Hydrocarbon 
WWTP_8 4523103.3 340,253,804 436,518 terrestrial 

Fort 
McMurray, 

Canada 
454 
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Table S3.3: Relative abundance of microbial communities of the pre- and post-chlorinated 
samples from the wastewater treatment plants annotated by MG-RAST. Relative abundance is 
reported as percentages and represents the number of reads affiliated with that taxon divided 
by the total reads assigned for all domain. 
 

Domain Plant A Plant B 
Pre-chlorination Post-chlorination Pre-chlorination Post-chlorination 

Bacteria 97,81 93,32 99,01 99,44 
Eukaryota 1,20 4,37 0,65 0,24 
Archaea 0,62 1,47 0,16 0,17 
Viruses 0,18 0,37 0,08 0,03 

Unclassified sequences 0,18 0,47 0,09 0,11 
Other sequences 0,01 0,00 0,01 0,01 

 

 

 

 
(a) 

 
(b) 

 
Figure S3.1: Comparative taxonomic profile of the pre- and post-chlorinated wastewater in (a) 
Plant A and (b) Plant B at phylum level annotated by MG-RAST, assigned with the lowest 
common ancestor algorithm and statistically analysed with STAMP. 
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Figure S3.2: Comparative taxonomic profile of the pre- and post-chlorinated wastewater in (a) 
Plant A and (b) Plant B at phylum level annotated by MG-RAST and assigned with the lowest 
common ancestor algorithm. Asterisks indicate phyla with significant differences (q<0.05) in 
abundance between the wastewater samples determined in STAMP, whilst remaining phyla 
were omitted for clarity. 
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Figure S3.3: Comparative taxonomic profile of the pre- and post-chlorination disinfection 
wastewater in Plant A at class level annotated by MG-RAST and assigned with the lowest 
common ancestor algorithm. Asterisks indicate classes with significant differences (q<0.05) in 
abundance between the wastewater samples determined in STAMP, whilst remaining phyla 
were omitted for clarity. 

 

 

 
 
 
Figure S3.4: Comparative taxonomic profile of the pre- and post-chlorination disinfection 
wastewater in Plant B at class level annotated by MG-RAST and assigned with the lowest 
common ancestor algorithm. Asterisks indicate classes with significant differences (q<0.05) in 
abundance between the wastewater samples determined in STAMP, whilst remaining phyla 
were omitted for clarity. 
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Table S3.4: Relative abundance and distribution of predicted proteins assigned to level 1 
SEED subsystems of the pre- and post-chlorinated samples for Plant A annotated by MG-
RAST. Relative abundance is reported as percentages and represents the number of reads 
affiliated with a subsystem divided by the total reads assigned in SEED subsystems.  
 

SEED Level 1 Subsystems Pre-chlorination relative 
abundance 

Post-chlorination relative 
abundance 

Amino Acids and Derivatives 8,23 7,25 
Carbohydrates* 8,31 8,55 

Cell Division and Cell Cycle* 1,57 1,73 
Cell Wall and Capsule 3,85 3,78 

Clustering-based subsystems* 15,51 16,30 
Cofactors, Vitamins, Prosthetic 

Groups, Pigments 6,41 5,86 

DNA Metabolism* 4,95 5,58 
Dormancy and Sporulation 0,23 0,17 

Fatty Acids, Lipids, and 
Isoprenoids 2,93 2,80 

Iron acquisition and metabolism 0,84 0,49 
Membrane Transport* 3,13 3,33 

Metabolism of Aromatic 
Compounds 1,58 1,34 

Miscellaneous 8,04 7,68 
Motility and Chemotaxis 1,20 0,92 

Nitrogen Metabolism 1,65 1,27 
Nucleosides and Nucleotides* 2,81 2,85 

Phages, Prophages, Transposable 
elements, Plasmids* 2,15 3,22 

Phosphorus Metabolism 0,76 0,74 
Photosynthesis* 0,11 0,11 

Potassium metabolism 0,42 0,37 
Protein Metabolism* 8,67 9,84 

Regulation and Cell signalling** 1,63 4,63 
Respiration 3,23 1,56 

RNA Metabolism 4,60 3,16 
Secondary Metabolism 0,35 0,32 

Stress Response 2,40 2,25 
Sulphur Metabolism 1,04 0,92 

Virulence, Disease and Defence 3,41 3,00 
*indicate a greater than 1-fold increase post-chlorination disinfection of the wastewater. 

**indicate a greater than 2-fold increase post-chlorination disinfection of the wastewater. 
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Table S3.5: Relative abundance and distribution of predicted proteins assigned to level 1 
SEED subsystems of the pre- and post-chlorinated samples for Plant B annotated by MG-RAST. 
Relative abundance is reported as percentages and represents the number of reads affiliated 
with a subsystem divided by the total reads assigned in SEED subsystems.  
 

SEED Level 1 Subsystems Pre-chlorination relative 
abundance 

Post-chlorination relative 
abundance 

Amino Acids and Derivatives* 8,61 8,83 
Carbohydrates 8,77 7,83 

Cell Division and Cell Cycle* 1,56 1,75 
Cell Wall and Capsule* 4,05 4,09 

Clustering-based subsystems 15,25 14,97 
Cofactors, Vitamins, Prosthetic 

Groups, Pigments* 6,48 6,85 

DNA Metabolism 4,66 4,30 
Dormancy and Sporulation 0,19 0,17 

Fatty Acids, Lipids, and 
Isoprenoids* 3,04 3,11 

Iron acquisition and metabolism* 0,91 1,26 
Membrane Transport 3,19 3,14 

Metabolism of Aromatic 
Compounds* 1,52 1,76 

Miscellaneous* 8,14 8,22 
Motility and Chemotaxis 1,06 0,57 

Nitrogen Metabolism 1,53 1,25 
Nucleosides and Nucleotides* 2,70 3,14 

Phages, Prophages, Transposable 
elements, Plasmids 2,06 2,03 

Phosphorus Metabolism* 0,86 0,92 
Photosynthesis* 0,12 0,13 

Potassium metabolism* 0,43 0,46 
Protein Metabolism 8,41 8,20 

Regulation and Cell signalling* 4,61 4,76 
Respiration* 1,68 1,75 

RNA Metabolism 3,10 3,06 
Secondary Metabolism* 0,37 0,48 

Stress Response 2,53 2,51 
Sulphur Metabolism* 1,09 1,30 

Virulence, Disease and Defence* 3,10 3,14 
*indicate a greater than 1-fold increase post-chlorination disinfection of the wastewater. 

**indicate a greater than 2-fold increase post-chlorination disinfection of the wastewater. 
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Figure S3.5: Shannon and Simpson diversity indices showing the diversity of antibiotic 
resistance genes (ARGs) of the bacterial communities pre- and post-chlorination at two 
different full-scale wastewater treatment plants. Indices were calculated in PAST software. 

 

 
 
Figure S3.6: Principal coordinate analysis (PCoA) indicating the difference in antibiotic 
resistance genes (ARGs) profiles among all the samples tested in this study as determined using 
the PAST software.  
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Table S3.6: Diversity indices determined for ARGs profiles observed pre- and post-
chlorination at Plant A and Plant B. 
 

Indices Plant A Plant B 
Pre-chlorination Post-chlorination Pre-chlorination Post-chlorination 

# Taxa 33 15 57 34 
# Individuals 94 31 169 187 

Simpson’s Dominance 0,1145 0,2029 0,06418 0,08719 
Simpson Diversity 0,8855 0,7971 0,9358 0,9128 
Shannon Diversity 2,857 2,179 3,387 2,823 

Buzas and Gibson's Evenness 0,5277 0,5895 0,5188 0,4948 
Brillouin 2,448 1,702 2,979 2,577 

Menhinick's Richness Index 3,404 2,694 4,385 2,486 
Margalef's richness index 7,043 4,077 10,92 6,308 

Equitability 0,8172 0,8048 0,8377 0,8005 
Fisher’s alpha 18,09 11,44 30,23 12,16 
Berger-Parker 0,2979 0,4194 0,1716 0,1711 

Chao 1 52,13 24 86 41,09 
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Chapter Four 
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4 Antibiotic resistance genes, bacterial community 
structure and metabolic potential of two rivers 
impacted by treated wastewater effluent discharges as 
revealed by metagenomic analysis 

4.1 Abstract 

Treated effluents from most wastewater treatment plants (WWTPs) are routinely discharged into river 

bodies and have been implicated as major contributors to the dissemination of antibiotic resistance. 

Here we describe a metagenomic assessment of effluent discharge of two different WWTPs and their 

receiving rivers, in order to ascertain the impacts on the ecosystem functioning of the river. The 

antibiotic resistance genes, metabolic potential and bacterial community structures of the water samples 

were comprehensively investigated using whole metagenome shotgun pyrosequencing combined with 

metagenomic analysis. Overall, a shift in bacterial community composition of the river samples 

amongst members belonging to the Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia and 

Firmicutes phyla was observed following effluent discharge. Similarly, a shift in the metabolic potential 

of the communities downstream of the effluent-receiving river compared to the upstream was observed. 

Alarmingly, diverse antibiotic resistance determinants, accounting for resistance to majority of 

clinically relevant classes of antibiotics, were recovered in all communities, further highlighting urban 

WWTPs as sources of antibiotic resistance. Results from this study shed more light on the role of 

WWTPs in the dissemination of antibiotic resistance into aquatic environments and the general impact 

of the discharge of improperly treated effluent on river ecosystems. 

Keywords: Antibiotic resistance; Aquatic environment; Metagenomics; Microbial communities; River; 

Wastewater effluent   
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4.2 Introduction 

Antibiotics have played a crucial role in the clinical management of most bacterial diseases 

since the 1940s. However, these drugs have been short lived and gradually rendered obsolete. 

A recent report has indicated an alarming global problem with regards to bacteria becoming 

resistant to the spectrum of commercially available antibiotics (WHO, 2014). This would mean 

that the standard treatment protocol currently adopted in clinical and animal sectors would no 

longer work, leading to a projected increase in mortality rates and risk of infection to others 

(WHO, 2014). Previous findings have already suggested the anthropogenic sources of 

antibiotic resistance genes (ARGs) with aquatic environments acting as major reservoirs (Marti 

et al., 2014). These findings highlight that ARGs can spread from environmental reservoirs to 

human pathogens. Specifically, urban wastewater treatment plants (WWTPs) have been 

implicated as a hotspot for horizontal transfer of ARGs between bacteria from difference 

origins due to the mixing of domestic, industrial, agricultural and clinical waste (Rizzo et al., 

2013). Furthermore, subsequent dissemination of poorly treated wastewater effluents into 

aquatic sources have been shown to result in the spread of residual antibiotics (AB), antibiotic 

resistant bacteria (ARB) and ARGs into aquatic environments (Kümmerer, 2009; Lupo et al., 

2012), providing conditions for horizontal exchange of ARGs and adding further selection 

pressure for ARB. The overall effect of WWTPs discharges on environmental resistome is 

poorly studied and has potentially far reaching influences on intensifying the antibiotic 

resistance problem. 

 

Current microbiological tools used to assess the spread of ARGs and enrichment of ARB in 

these processes have either been culture- or molecular- dependent, each with its own 

advantages and limitations (Rizzo et al., 2013). Recently, the molecular approach has been 
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extended from identification and characterization of ARGs (Li et al., 2010; Luo et al., 2010; 

Storteboom et al., 2010) to genetic elements (Gaze et al., 2011; Johnning et al., 2013) found in 

cultured organisms. This allows for further understanding of the dynamics involved with 

capturing and transferring of ARGs and generation of ARB in microbial communities found in 

WWTPs. Additionally, whole-genome sequencing of isolated ARB has allowed for elucidation 

of mutation sites which give rise to ARGs as well as novel ARGs (Johnning et al., 2013). 

However, the use of culture-dependent methods to comprehensively characterize ARGs and 

ARB in complex microbial communities remains a challenge as it is a time consuming task. 

Furthermore as <1% of environmental organisms are culturable in vitro at laboratories with 

current technologies, determination of the complete spectrum of the environmental resistome 

(Schmieder and Edwards, 2012) is limited by this approach. 

 

In the last few years, high-throughput sequencing combined with metagenomic analysis of a 

given sample has been considered a promising approach for the assessment of complex 

microbial communities (Kristiansson et al., 2011; Zhang et al., 2011; Wang et al., 2013).  This 

approach has been applied for the assessment of various environmental scenarios, including 

soil (Howe et al., 2014) and river (Amos et al., 2014) microbiota, communities found in 

activated sludge from WWTPs (Ju et al., 2014), communities in sediments from an oil spill 

(Mason et al., 2014), faecal microbiota (Ilmberger et al., 2014), microbial diversity in aquatic 

settings (Doxey et al., 2014) as well as clinical settings such as the human gut profiling project 

(Qin et al., 2010), sputum analysis of patients with cystic fibrosis (Lim et al., 2014), viral 

pathogens detection (Yang, 2014) and many others. In determining the complex genetic 

composition and diversity present in aquatic samples with a relatively unbiased view (Gomez-

Alvarez et al., 2009), a metagenomic insight is a favourable approach. 
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In this study, we investigated the impact of effluent discharge of two different urban WWTPs 

on the receiving river ecosystem. Specifically, the occurrence, abundance and diversity of 

ARGs, as well as the metabolic potential and structure of the bacterial communities were 

examined comprehensively. Results from this study may help to extend our knowledge on the 

contribution of effluent discharge from urban WWTPs in the dissemination of ARGs to river 

sources and its influence on the natural bacterial community metabolic potential and 

composition. 

 

 

4.3 Materials and Methods 

4.3.1 Site description and sample collections 

In this study, two full-scale urban WWTPs, hereon designated as Plant A and Plant B, which 

discharges their final treated effluent (TE) directly into nearby rivers in the city of Durban, 

South Africa, were chosen for investigation. Plant A has a capacity of 70 megaliters/day with 

an operational capacity of 96% and uses the activated sludge and diffused air liquid 

technologies with gravity thickening, anaerobic digestion and belt press dewatering sludge 

technologies. The plant receives a mixture of nearby domestic and industrial wastewaters and 

discharges the final effluent into a nearby river in a suburban location. Receiving river samples 

were collected from approximately 500 m in opposite directions from the TE discharge point 

along the suburban river viz., downstream (DS) and upstream (US). Plant B has a capacity of 

25 megaliters/day with an operational capacity of 76% and uses the activated sludge liquid 

technology with anaerobic digestion and belt press dewatering sludge technologies. The plant 

receives a mixture of domestic, industrial, hospital wastewaters and discharges the final 
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effluent into a nearby river in a heavily urbanized location (Department of Water and Sanitation, 

2015). Samples were also collected from the receiving river as described above along the urban 

river. All samples were collected in 5 L plastic bottles, pre-sterilized with 70% (v/v) ethanol 

and rinsed with 4 L of the sample at the various sampling sites prior to collection. Upon 

collection, the samples were transported on ice back to the laboratories within 3 h and stored 

at 4°C prior to DNA extraction which took place within 24 h. 

 

4.3.2 Ethics statement 

No special permits were required for this study. Permission for collection of wastewater  

samples from both WWTPs was granted by the authorities of the respective WWTPs in Durban, 

South Africa. 

 

4.3.3 Total DNA extraction and shotgun pyrosequencing 

Prior to total DNA extraction, samples which visibly contained particles which could hinder 

DNA extraction was initially filtered through Whatman® filter paper #114 (Sigma-Aldrich, 

USA) to remove big particles and to allow for isolation of bacterial communities. Total DNA 

of the bacterial populations were extracted from the samples using PowerWater™ DNA 

Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to manufacturer’s 

instructions. This kit is specifically designed for isolating bacterial DNA from environmental 

water samples and includes inhibitor removal technology aimed at removing humic acid and 

other organic matter commonly found in environmental samples that can interfere with 

downstream analyses. The resulting purity and concentration of the DNA preparation was 
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determined using the NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, 

USA) before samples were sent to the National Genomics Platform (Technology Innovation 

Agency, South Africa) for sequencing. 

 

High-throughput whole metagenome shotgun pyrosequencing was conducted by the use of 454 

GS FLX System (Roche, USA) with the GS FLX Titanium Rapid Library Preparation Kit 

(Roche, USA). The samples were barcoded by the use of GS FLX Titanium Rapid Library 

MID Adaptors Kit (Roche, USA) in order to enable multiplex sequencing. Five hundred 

micrograms of DNA was used for library construction. Briefly, DNA was nebulized using 

nitrogen gas and purified using MinElute PCR Purification Kit (QIAGEN, Germany) according 

to manufacturer’s instructions. Fragment end repair and attachment of adaptors to the samples 

was carried out according to standard protocol (Roche, USA). Thereafter, the quality of the 

libraries was assessed by 2000 Bioanalyzer (Agilent Technologies, USA) using the High 

Sensitivity DNA Analysis Kit (Agilent Technologies, USA). Thereafter, relative fluorescence 

of the DNA libraries was measured on GloMax-Multi Microplate Multimode Reader (Promega, 

USA) using 6-fluorescein amidite (6-FAM) standards and 6-FAM-labeled Multiplex 

Identifiers (MIDs). The results were uploaded onto the Rapid Library Quantitation Calculator 

(Roche, USA) and rapid libraries were made with a final concentration of 1 × 107 molecules/µl. 

Emulsion PCR was carried out with the use of GS FLX Titanium MV emPCR Kit (Lib-L) 

(Roche, USA) according to manufacturer’s instructions. Subsequently, four DNA copies per 

bead were enriched and used for the main sequencing run with Escherichia coli beads as a 

positive control (Roche, USA).  
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4.3.4 Data availability 

All individual sequence reads have been deposited at the NCBI Short Read Archive (SRA) 

under the accessions no. SRR3629048, SRR3629049 and SRR3629050 for Plant A TE, US 

and DS river datasets, and SRR3629057, SRR3629055 and SRR3629056 for Plant B TE, US 

and DS river datasets.  

 

4.3.5 Bioinformatic analysis 

Raw data files from sequencing were de-multiplexed by removing the barcoded sequence and 

any secondary adapter sequences using in-house scripts. For initial quality control, raw reads 

were evaluated by CLC Genomics Workbench v.7.5 (CLC Bio, QIAGEN, Germany) quality 

control pipeline. In total, approximately 777,796 raw reads with an average length of of 613 bp 

corresponding to approximately 655.1 million bp were generated for this study. Specifically, 

raw sequences generated were 227,021, 115,483 and 169,225 reads for Plant A TE, DS and US 

of river receiving effluent from Plant A, respectively, and 180,557, 148,377 and 233,173 reads 

for Plant B TE, DS and US of the receiving river samples, respectively. The quality of all reads 

was within acceptable standards for the sequencing platform (see Table S4.1 in the 

supplemental material). Therefore, no reads were trimmed, filtered or discarded before 

implementation of the MG-RAST v.3.6 pipeline for further quality control, prediction and 

annotation (Meyer et al., 2008; Wilke et al., 2015). Ambiguous base filtering was first 

implemented by removing sequences with >5 ambiguous base pairs (bp) and length filtering 

by removing sequences with a length of >2 standard deviations from the mean were applied as 

quality control (QC) filters using SolexaQA (Cox et al., 2010) in the MG-RAST pipeline. 

Reads which passed the QC were used for further analysis. Upon ambiguous base filtering and 
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length filtering, approximately 9% (Plant A TE), 9% (DS), 7% (US), and 17% (Plant B TE), 

9% (DS), 8% (US) of the reads were excluded from further analysis.  

 

4.3.6 Combined functional and taxonomic annotations and assignments 

Prior to functional annotation, reads within the datasets were screened for artificially replicated 

sequences and those identified sequences were removed using the dereplication tool (Gomez-

Alvarez et al., 2009) implemented in the MG-RAST pipeline. Approximately 5% (TE), 5% 

(DS) and 6% (US) in Plant A, and  1% (TE), 5% (DS) and 6% (US) in Plant B  of the reads 

were identified as artificially replicated sequences and removed (see Table S4.1 in the 

supplemental material). Thereafter, putative ORFs were identified using FragGeneScan, an ab-

initio prokaryotic gene calling algorithm using the Hidden Markov Model (Rho et al., 2010), 

and their corresponding protein sequences were searched with BLAST against the M5nr 

protein database in the MG-RAST server (see Table S4.1 in the supplemental material). M5nr 

is a non-redundant protein database with integration of many public sequences databases 

including GenBank, SEED, IMG, UniProt,  KEGG  and  eggNOGs (Meyer et al., 2008; Wilke 

et al., 2015). For functional assignments (i.e. assigned functions), analysis was performed using 

Hierarchical Classification approach against KEGG orthology (KO), SEED subsystems (SS) 

and clusters of orthologous groups (COG) with maximum e-value cut-off of 1 × 10-5, minimum 

identity of 60% and a minimum alignment length of 15, which is measured in amino acids for 

protein databases and bp for RNA databases (Zheng et al., 2015). 

 

For taxonomic identification and designation, an initial BLAT search against reduced RNA 

database (90% identity clustered version of SILVA database) was performed and the rRNA-
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similar reads were then clustered at 97% identity with the longest read as the cluster 

representative. Thereafter, BLAT search of the cluster representative was performed against 

the M5rna database (see Table S4.1 in the supplemental material). M5rna is a ribosomal 

database which integrates SILVA, Greengenes and RDP databases (Meyer et al., 2008; Wilke 

et al., 2015). Taxonomic abundance was analyzed using the Lowest Common Ancestor (LCA) 

algorithm used in MEGAN (Huson et al., 2007) and implemented in MG-RAST with a 

maximum e-value cut-off, minimum identity and alignment length as described above. This 

algorithm assigns each read to the LCA from the set of matching taxa when BLASTx is applied. 

For example, if a given read had sequence similarity to 3 different families within the same 

order, the read is assigned at the order level rather than assigning the read to a specific family. 

Hence, the LCA algorithm has been reported to have lower rates of false positive assignments 

than the best hit classification algorithm implemented in the MG-RAST pipeline. However, 

this would result in a higher number of unspecific assignments or no hits in some cases (Huson 

et al., 2007). 

 

Principle Coordinate Analysis (PCoA) of the Bray-Curtis dissimilarity coefficients based on 

the normalized abundance of functional assignments under the SS was used to identify the 

relationships between metabolic potential of the bacterial populations in this study and 48 

publicly available metagenomes covering a wide variety of habitats (see Table S4.2 in the 

supplemental material). All the publicly available metagenomes utilized the same sequencing 

method as described for this study with the exception of Artic freshwater datasets which 

utilized Sanger sequencing. Annotation and functional assignment of the publicly available 

metagenomes was performed on the MG-RAST server to avoid potential bias from different 

analysis pipelines (Jeffries et al., 2011; Smith et al., 2012). Functional assignments were 
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performed using Hierarchical Classification approach against SS with maximum e-value cut-

off, minimum identity and a minimum alignment length as described above. Prior to PCoA, SS 

assignments of each metagenomic datasets were normalized against the total number of hits in 

the database, log transformed and implemented in MG-RAST. 

 

To determine the statistical differences between the metagenomic samples statistical analysis 

of metagenomic profiles (STAMP) v.2.1.3 (Parks and Beiko, 2010) software package was used. 

Statistical significance of differences between two samples (q values) was calculated on the 

basis of two-sided Fisher’s exact test with Storey’s false discovery rate (FDR). Because p 

values were not uniformly distributed using Storey’s FDR, Benjamin-Hochberg FDR was 

applied for corrections during functional analysis. The confidence intervals were determined 

by Newcombe-Wilson’s method. Statistical significance of differences between multiple 

samples was calculated with ANOVA analysis with a post-hoc test (Tukey-Kramer at 0.95) 

and an effect size (Eta-squared). A multiple-test correction using Benjamini-Hochberg FDR 

was employed. Only features with a q value of <0.05 were considered significant in this study. 

 

4.3.7 Antibiotic resistance genes annotation and classifications 

To identify ARGs in the metagenomes in order to establish the resistance profiles of the 

communities, the Comprehensive Antibiotic Resistance Database (CARD) was used for 

annotation (McArthur et al., 2013). The CARD database was preferred over other ARGs 

databases, such as Antibiotic Resistance Genes Online (Scaria et al., 2005), the microbial 

database of protein toxins, virulence factors, and antibiotic resistance genes (MvirDB) (Zhou 

et al., 2007), and Antibiotic Resistance Genes Database (Liu and Pop, 2009), because these 
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databases are neither exhaustive nor regularly updated (Gupta et al., 2014). BLASTx against 

the database was carried out using DIAMOND tool v.0.7.11 (Buchfink et al., 2014) with an e-

value cut-off of 1 × 10-5. A read with its best BLAST hit was deemed ARG-like if the hit had 

a sequence similarity of >90% over an alignment of ≥25 amino acids (Chao et al., 2013; Wang 

et al., 2013). Although such a high similarity threshold excluded some divergent ARGs from 

the analysis, we still used a more conservative strategy and thus only focus on those that are 

highly similar to the known ARGs. The classification of ARG-like sequences was performed 

using the structured database of CARD (McArthur et al., 2013) and in-house written scripts. 

Visualization of the distributions of ARGs classes and their abundances in the total annotated 

ARGs from the metagenomes was constructed and visualized using Circos v.0.69.2 

(Krzywinski et al., 2009). Using the PAleontological Statistics (PAST) software v.3 (Hammer 

et al., 2001), Mann-Whitney test was implemented to compare whether ARGs abundances were 

significantly different among the various sample environments (Hu et al., 2013; Li et al., 2015). 

Various diversity indices and PCoA based on the Bray-Curtis dissimilarity coefficients of the 

abundance of ARGs were determined using the ‘vegan’ package (Shen and Fulthorpe, 2015) 

from the program R (R Development Core Team, 2007) with a bootstrap of 1000. 

 

4.4 Results 

4.4.1 Taxonomic profile of microbial communities 

Taxonomic assignment of both predicted rRNA genes sequences and predicted proteins in all 

metagenomic datasets were conducted based on all the available annotation source databases 

in MG-RAST.  
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Domain distributions in the six water samples, showed the expected dominance of bacteria 

across all metagenomes accounting for 93.32%, 98.37% and 98.94% of the metagenomes for 

Plant A TE, DS and US of the receiving suburban river samples, respectively, and 99.44%, 

99.52% and 98.69% for Plant B TE, DS and US of the receiving urban river samples, 

respectively. The eukaryotic domain was observed to be dominated by members of the 

Oligohymenophorea class in TE sample of Plant A, whilst members of the 

Coscinodiscophyceae class were dominant in both the DS and US suburban river samples. In 

contrast, potentially novel members of the Streptophyta class (determined as unclassified) were 

observed to dominate the eukaryotic domain in Plant B TE and in both DS and US urban river 

samples. The remaining sequences were distributed amongst archeal and viral domains in very 

low abundance (see Table S4.3 in the supplemental material). 

 

For a better understanding of the microbial community structure in all the metagenomes, 

taxonomic affiliation at different levels was analysed. At the phyla taxonomic level, bacterial 

communities were diverse with representatives of 27 phyla and 1 novel bacterial phyla 

(determined as unclassified, however, under the Bacterial domain level) found across all 

samples. Proteobacteria was observed as the dominant phylum in all samples accounting for 

43.68% to 80.07% of the sequences in Plant A TE and discharged effluent-receiving river 

samples, and 60.84% to 83.81% of the sequences in Plant B TE and discharged effluent-

receiving river samples (Figure 4.1).  Following Proteobacteria, dominance of Bacteroidetes, 

Actinobacteria and Firmicutes phyla was observed in Plant A TE. However, a shift to 

Bacteroidetes, Actinobacteria and Verrucomicrobia phyla was noted DS of the river receiving 

effluent from Plant A. The same members of the phyla were also observed US of the river 

receiving effluent discharged by Plant A. In the case of Plant B, following Proteobacteria, 
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dominance by Bacteroidetes, Actinobacteria and Verrucomicrobia was observed in US river 

samples. However, both TE and DS samples saw Bacteroidetes, Actinobacteria and Firmicutes 

as the dominant phyla. Statistical analysis using STAMP indicated that several significant 

differences (q<0.05) were observed at this taxonomic level (see Figure S4.1 in the supplemental 

material). Notably, significant decreases (q<0.05) in Proteobacteria members were observed 

DS compared to US communities along both rivers, whilst significant increases (q<0.05) in 

Bacteroidetes, Actinobacteria and Firmicutes were observed in DS communities compared to 

US communities along both rivers. 

 

At the class taxonomic level, the bacterial community was diverse with representatives of more 

than 50 classes observed across all samples. Beta-proteobacteria, Gamma-proteobacteria, 

Flavobacteria and Alpha-proteobacteria were the most abundant classes in treated effluents of 

both Plants as well as in the microbial communities DS and US of the receiving rivers, 

accounting for 1.63-67.69%, 2.08-57.93% and 3.63-51.94% of the assigned reads, respectively 

(Figure 4.2). Although Beta-proteobacteria dominated the community, significant increases 

(q<0.05) were observed in bacterial communities DS of the river receiving effluent discharge 

from Plant A compared to US river communities. Conversely, significant decreases (q<0.05) 

were observed for Gamma-proteobacteria, Flavobacteria and Alpha-proteobacteria DS of the 

river receiving effluent discharge from Plant A compared to US river communities. In Plant B, 

Gamma-proteobacteria dominated the microbial community DS of the effluent-receiving river 

in significant (q<0.05) abundance relative to US river communities, whilst significant 

decreases (q<0.05) were seen in Betaproteobacteria, Flavobacteria and Alphaproteobacteria 

classes in DS river communities (see Figure S4.2 in the supplemental material). 
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4.4.2 Composition, abundance and diversity of antibiotic resistance genes 

From the metagenome of the effluent discharged by Plant A, a total of 31 reads were identified 

as ARGs. However, in the DS and US sample of the receiving river, a total of 43 and 68 reads 

were identified as ARGs, respectively. In contrast, a total of 187 reads were annotated as ARGs 

in the metagenome of effluent discharged by Plant B. However, a 82.5% increase in the number 

of reads assigned as ARGs was observed from US (57) to the DS (104) of the effluent-receiving 

river. There was no significant difference in the total abundance of the ARGs detected at US 

and DS of both rivers separately receiving the treated effluent from each Plant.   

 

Among the 27 ARGs types in the structured CARD database, a total of 13 were detected in 

Plant A TE, DS and US of the effluent-receiving river samples, with 9 types shared among the 

three metagenomic samples. For Plant B, a total of 14 types were detected in TE, DS and US 

of the receiving river samples, with 9 types also shared among the metagenomic samples. The 

different types of ARGs conferring resistance to most major classes of antibiotics were noted 

to be distributed and relatively abundant across all samples in this study (Figure 4.3). 

Calculated diversity indices consistently indicated a reduced diversity of ARGs types in DS 

communities of river receiving effluent from Plant A compared to US sample, although, it 

should be noted that the ARGs diversity in the TE was the highest amongst all three samples. 

Conversely, an augmented diversity of ARGs types was observed in DS sample of river 

receiving Plant B TE compared to US diversity. It is worth noting that the ARGs diversity in 

Plant B TE was also the highest amongst all three samples (see Figure S4.3 in the supplemental 

material). Furthermore, PCoA of the ARGs class profiles showed separate clustering between 

the various samples with different environmental sources (see Figure S4.4 in the supplemental 

material). 
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The elfamycin class of ARGs was the dominant class in TE sample, and DS and US of the river 

receiving effluent from Plant A, accounting for 41.93-51.16% of the relative abundance, 

followed by resistance genes for fluoroquinolones (2.94-13.05%), rifampins (4.41-12.9%), 

sulfonamides (9.3-10.29%), multidrug resistance genes (3.23-10.29%) and aminoglycosides 

(3.23-7.35%) (Figure 4.3). However, distribution of the remaining ARGs classes showed 

relatively the same Buzas and Gibson’s evenness index ranging from 0.5257 to 0.6537. The 

elfamycin class of ARGs was also the dominant class in the US communities of Plant B TE 

receiving river, accounting for 43.86% of determined ARGs in the population. However, 

aminocoumarin class of ARGs was found to be dominant in both the Plant B TE and DS of the 

receiving river , accounting for 17.65% and 20.04%, respectively. This was followed by 

resistance genes for tetracycline (1.76-14.34%), multidrug resistance genes (7.02-9.63%) and 

rifampins (4.81-17.54%). Distribution of the various resistance class were not even as indicated 

by the Buzas and Gibson’s evenness index, with a lower index obtained for the US sample of 

Plant B effluent-receiving river communities compared to Plant B TE and DS river sample (see 

Figure S4.3 in the supplemental material).  

 

Under the elfamycin ARG class, variants of the elongation factor Tu were the dominant type 

across all samples. Point mutations that occurs in Mycobacterium tuberculosis and Escherichia 

coli beta-subunit of RNA polymerase (rpoB) conferring resistance to rifampicin was found to 

be in high abundance in Plant A TE and DS of the effluent discharge receiving river. 

Additionally, genes such as TEM-1, tetQ, sul2 and tet39 were also detected in these samples 

(see Figure S4.5 in the supplemental material). Conversely, genes such as adeJ, msrE, mexT, 

OXA-211 were found to be in high abundance in Plant B TE and DS of the TE-receiving river. 

Furthermore, point mutation that occurs in M. tuberculosis, E. coli and Staphylococcus aureus 
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beta-subunit of RNA polymerase (rpoB) and DNA subunit B gyrase (gyrB) were also in 

abundance in these samples (see Figure S4.5 in the supplemental material). 

 

4.4.3 Functional analysis using SEED, KEGG and COG identifiers 

Overall, functional analysis of the metagenomes showed approximately 36% to 95% of the 

predicted open reading frames (ORFs) to be assigned to the SS functional levels in Plant A TE, 

DS and US metagenomes, whilst approximately 79% to 86% of the predicted ORFs were 

assigned to the SS functional levels in Plant B TE, DS and US samples. For KEGG pathways, 

approximately 11% to 28% of the predicted ORFs were for Plant A TE, DS and US 

metagenomes, whilst approximately 23% to 26% of the predicted ORFs were assigned for Plant 

B TE, DS and US metagenomes. Similarly, approximately 18% to 47% of the predicted ORFs 

were assigned by COG for Plant A TE, DS and US metagenomes, whilst approximately 29% 

to 44% of the predicted ORFs were assigned to the SS functional levels for Plant B TE, DS and 

US of the river communities (see Table S4.1 in the supplemental material). 

 

At the level 1 of SEED classifications, in Plant A TE, DS and US of the receiving river 

metagenomes, approximately 9-16% of the genes were related to the subsystems of clustering 

and protein metabolism whereas, 8-9% of the sequences were related to subsystems of 

carbohydrate and miscellaneous. About 6-8% of the genes were related to subsystems of amino 

acids and derivatives, and cofactors, vitamins, prosthetic groups, and pigments. While 3-6% of 

the genes were related to subsystems of DNA metabolism, RNA metabolism, and membrane 

transport. A relatively low number of the genes were related to the subsystems of virulence 

(3%) in all the metagenomes, whereas 5%, 2%, 1% of the predicted protein sequences were 
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related to the subsystems of cell wall and capsule, stress response, and motility and chemotaxis, 

respectively. An additional 2% of the genes were related to subsystems of regulation and cell 

signalling (Figure 4.4a and Table S4.4 in the supplemental material). Furthermore, SS 

statistical analysis showed 4 out of 28 level 1 subsystems were significantly different (q<0.05) 

between DS and US metagenomes. Specifically, significant decrease (q<0.05) in carbohydrate 

and phages, prophages, transposable elements and plasmids subsystems were observed in DS 

compared to US communities. However, significant increase (q<0.05) in cell wall and capsule, 

and nitrogen metabolism subsystems were observed in DS compared to US communities (see 

Table S4.4 in the supplemental material). Statistical analysis of functional level subsystems 

assignments between DS and the US river metagenome in Plant A showed slight similarities 

(r2=0.89) between the metabolic potential of the communities (see Figure S4.6a in the 

supplemental material). This was further observed in principal component analysis (PCA) 

which clustered DS and US river metagenomes closer to each other than with TE metagenome 

(see Figure S4.7a in the supplemental material). 

 

In the metagenomes of Plant B TE, DS and US of the receiving river, approximately 9-15% of 

the genes were related to the subsystems of clustering and amino acids and derivatives, whereas, 

approximately 8% of the sequences were related to both subsystems of miscellaneous and 

protein metabolism. About 6-10% of the genes were related to subsystems of carbohydrates, 

and cofactors, vitamins, prosthetic groups, and pigments, respectively, while 4% and 5% of the 

genes were related to subsystems of DNA metabolism and RNA metabolism, respectively. A 

relatively low number of the genes were also related to the subsystems of virulence (3%) in all 

the metagenomes, whereas 4%, 3%, 2% of the predicted protein sequences were related to the 

subsystems of cell wall and capsule, stress response, and motility and chemotaxis, respectively. 
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An additional 2% of the genes were related to subsystems of regulation and cell signalling 

(Figure 4.4a and see Table S4.5 in the supplemental material). Furthermore, SS statistical 

analysis showed 16 out of 28 level 1 subsystems to be significantly different (q<0.05) between 

the DS and US metagenomes. Specifically, significant decrease (q<0.05) in carbohydrate, 

miscellaneous, RNA metabolism, membrane transport, motility and chemotaxis subsystems 

were observed in DS compared to US communities. However, significant increase (q<0.05) in 

clustering, amino acids and derivatives, fatty acids, lipids, isoprenoids, DNA metabolism, 

nucleosides, nucleotides, metabolism of aromatic compounds, phages, prophages, transposable 

elements, plasmids, cell division and cell cycle, phosphorus metabolism, sulphur metabolism 

and secondary metabolism subsystems were observed in DS compared to US communities (see 

Table S4.5 in the supplemental material). Statistical analysis of the functional level subsystems 

assignments between DS and the US river metagenome in Plant B revealed no similarities 

(r2=0.791) between the metabolic potential of the communities. (see Figure S4.6b in the 

supplemental material). This was further observed in principal component analysis (PCA) 

which clustered DS and TE metagenomes closer to each other than with US metagenome (see 

Figure S4.7b in the supplemental material). 

 

The KEGG mapping and subsequent assignment of the predicted protein sequences identified 

1881, 1721 and 1836 unique genes associated with KO identifiers from the Plant A TE, DS 

and US of the receiving river metagenomes, respectively. Majority of the predicted protein 

sequences were associated with the functions relating to metabolism (54-60%), followed by 

genetic information processing (19-24%) and environmental information processing (14-15%) 

(Figure 4.5a). Statistical analysis indicated only three pathways (lipopolysaccharide 

biosynthesis, ABC transporters and flagellar assembly) were significantly different (q<0.05) 
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between DS and US metagenomes of Plant A effluent-receiving river  at the level 3 SS (see 

Figure S4.8a in the supplemental material). For Plant B TE, DS and US of the receiving river 

metagenomes, mapping and assignment identified 1607, 1668 and 1982 unique genes 

associated with KO identifiers, respectively. Majority of the predicted protein sequences were 

associated with the functions relating to metabolism (38-60%), followed by genetic 

information processing (12-18%) and environmental information processing (9-15%). It must 

be noted that a large proportion (12-37%) of the identified KO genes were observed to be 

uncategorized for the DS and US samples of this river metagenomes (Figure 4.5a). Statistical 

analysis indicated 39 pathways which were significantly different (q<0.05) between DS and 

US metagenomes of Plant B TE-receiving river at the level 3 SS (see Figure S4.8b in the 

supplemental material). 

 

COG families revealed significant differences (q<0.05) in the overall cellular processes, 

signalling and metabolism between DS and US river metagenomes in Plant A (see Figure S4.9a 

in the supplemental material). Furthermore, statistical comparison of both samples to Plant A 

TE showed a closer relationship between the US and DS than to TE metagenome (see Figure 

S4.10a in the supplemental material). Conversely, all families were observed to be significantly 

different (q<0.05) between DS and US of the metagenomes of Plant B TE-receiving river (see 

Figure S4.9b in the supplemental material). This was also observed in the statistical comparison 

of both samples to Plant B TE, which showed a closer relationship between DS and TE 

metagenomes than to US metagenome (see Figure S4.10b in the supplemental material). 

Overall, general function predictions (e.g. ABC-type transport systems, permeases, ATPases, 

hydrolases, peptidases, phosphatases), functions relating to amino acid metabolism and 

transport, energy production and conversion, translation systems, ribosomal biogenesis, 
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replication systems, recombination (transposase) and repair systems, cell wall or membrane 

biogenesis, families implicated in signalling processes (e.g. EAL domain, GGDEF domain, 

signal transducing histidine kinase, CheY-like receiver) were present predominantly in all river 

samples. It should be noted that functions relating to inorganic ion transport and metabolism 

(e.g. arsenite and silver efflux pumps, cation transport ATPase, Fe, Mn transporters) were 

found in higher prevalence in the US and DS river receiving Plant B TE compared to the river 

receiving effluent discharges from Plant A (Figure 4.5b). 

 

To extend comparative metagenomic analyses, comparison of the overall metabolic potential 

of the bacterial communities of all metagenomic samples from this study to 6 different 

environmental habitats by principal coordinate analysis (PCoA) revealed that different 

ecosystems clustered differently (Figure 4.6). For example, human oral, human gut, ocean and 

soil metagenomes cluster into individual groups. Conversely, Arctic freshwater and 

hydrocarbon wastewater samples showed variations in metagenomes although sampled from 

the same ecosystem. Samples from this study were observed to ordinate around ocean, soil and 

Artic freshwater metagenomes. 

 

 

4.5 Discussion 

Although antibiotic resistance has become a major threat to human health worldwide, this 

phenomenon has been overlooked in aquatic settings. Aquatic sources may provide an ideal 

setting for the acquisition and dissemination of antibiotic resistance because they are frequently 
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impacted by anthropogenic activities, such as effluent discharges from urban WWTP. In this 

study, whole metagenome shotgun pyrosequencing combined with metagenomic analysis was 

used to explore the profiles of antibiotic resistance genes, metabolic potential and bacterial 

community structure in two rivers impacted by effluent discharges from separate WWTP. 

Sequencing of the metagenomic libraries has allowed for a deeper insight into the complex 

communities in the effluents discharged by these WWTPs and their receiving rivers, with 

thousands of reads generated and assigned to different taxa, metabolic and ARG categories.  

 

4.5.1 Phylogenetic signature of metagenomic sequences 

Proteobacteria was observed to be the dominant phyla across all samples analysed in this study. 

This finding corroborates several studies investigating different ecosystems, such as: those 

targeting the 16S rRNA gene of samples collected from WWTPs (Miura et al., 2007; Silva et 

al., 2010), DNA cloning of activated sludge (Snaidr et al., 1997), microarray analysis of 

biological wastewater treatment reactors (Xia et al., 2010), metagenomic analysis of different 

WWTPs (Hu et al., 2012), drinking water treatment plants (Shi et al., 2013), artic river sources 

(Kolmakova et al., 2014), soil (Roesch et al., 2007) and freshwater sources (Ghai et al., 2011). 

Therefore, predominance of members belonging to this phylum in such environments could be 

explained by the fact that the phylum comprises of one of the most phylogenetically and 

metabolically versatile group in the Bacteria domain (Ettema and Andersson, 2009). 

Furthermore, a study which examined the global patterns of bacterial communities from 

different habitats suggested that Proteobacteria typically occupies an average of 40% of a 

bacterial population (Nemergut et al., 2011). Hence, as WWTPs and rivers present with a 

constant changing environment, such as the composition and concentration of nutrients and/or 

pollutants, the observation dominance by this phylum across all samples is not surprising. 
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Besides dominance by Proteobacteria, high abundance of several other phyla was seen 

downstream of  both  rivers in this study, including members belonging to the Bacteroidetes, 

Actinobacteria, Verrucomicrobia and Firmicutes phyla. Detection of Bacteroidetes, 

Actinobacteria and Firmicutes has been well documented in recent studies investigating 

WWTPs, such as untreated wastewaters (Shanks et al., 2013), swine WWTP (Da Silva et al., 

2015), anaerobic reactor digesting activated sludge from WWTP (Guo et al., 2015), tannery 

WWTP (Wang et al., 2013) and activated sludge of a WWTP in Hong Kong (Yu and Zhang, 

2012). Additionally, members of these phyla have also been reported in studies investigating 

river sources (Sánchez-Andrea et al., 2011; Wu et al., 2012; Jordaan and Bezuidenhout, 2013; 

Kolmakova et al., 2014), lake sediments (Sauvain et al., 2013), mangrove (Andreote et al., 

2012) and soil (Foong et al., 2010; Zhang et al., 2015) sources. Although, members of the 

Verrucomicrobia phylum have not been widely reported in WWTP environments, studies have 

indicated dominance by this phyla in aquatic sources (Brown et al., 2015; Satinsky et al., 2015). 

Furthermore, it has been suggested that the core human microbial signature is composed of 

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria (Buffie and Pamer, 2013). 

Therefore, presence and abundance of the observed phyla in the receiving rivers is not 

surprising and suggests that at this taxonomic level of complexity, effluents discharge from 

these WWTPs do not disrupt the natural bacterial community structure in the receiving river 

sources. 

 

Phylogenetic analysis at the class taxonomic level revealed members belonging to the Beta-

proteobacteria, Gamma-proteobacteria, Flavobacteria and Alpha-proteobacteria classes to be 

in high abundance. This result is consistent with several studies investigating different aquatic 

environments (Berg et al., 2009; Mlejnková and Sovová, 2010; Liu et al., 2012; Du et al., 2013; 
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Chiaramonte et al., 2014). However, fluctuations in the community structure at this level was 

apparent when upstream and downstream samples were compared to each other, suggesting the 

shifts in community structure as a consequence of the WWTP effluent discharged. This is in 

line with many cases where wastewater effluent discharges make up a significant proportion 

of the receiving water body (Brooks et al. 2006; Gücker et al. 2006). Equally, inadequately 

treated wastewater effluents have been said to be sources of organic and inorganic nutrients, 

heavy metals, pesticides, pharmaceuticals and antibiotics (Drury et al., 2013; Proia et al., 2013). 

Therefore, their presence may lead to beneficial or detrimental effects on the microbial 

communities and changes in the community structure and diversity as a result of the effluent 

discharge is expected on a case to case basis. Previous findings have suggested an increase 

(Garnier et al., 1992; Wakelin et al., 2008) and decrease (Drury et al., 2013) in bacterial 

community diversity and composition from rivers receiving WWTP discharges. Thus, these 

reasons could explain the observed shift between genera belonging to the Betaproteobacteria, 

Gammaproteobacteria, Flavobacteria and Alphaproteobacteria classes from upstream and 

downstream sites along both rivers.  

 

4.5.2 Metabolic potential of treated wastewater effluent discharge and receiving rivers  

Whole genome shotgun sequencing of metagenomes has the capacity to fully sequence the 

majority of available genomes within an environmental sample (or community). Therefore, 

besides community composition profiles, metabolic potential of microbial communities can be 

explored. As with the diverse bacterial communities observed in this study, a wide metabolic 

potential was also present across the metagenomic samples. The percentage of annotated and 

successfully assigned reads to either SS, KO or COG identifiers in this study were higher than 

those previously reported using the Illumina sequencing platform used to characterise structure 
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and function of a sewage sludge community (Yu and Zhang, 2012). However, previous studies 

have reported that approximately 25% of Illumina reads and >36% of pyrosequencing reads 

from soil metagenomes had a significant match to the SS (Uroz et al., 2013). Furthermore, 

functional metagenomic investigations of microbial communities in a hydrothermal systems 

using pyrosequencing (Tang et al., 2013) showed comparable results to this study. Hence, 

divergences of annotation proportions may perhaps be due to the difference in environmental 

sample types, community composition and sequencing platforms in those studies.  

 

As expected, genes associated with the metabolism of carbohydrates, protein metabolism, 

amino acids systems were observed to be in relatively high abundance as they are related to the 

housekeeping functions of all living organisms. In addition, clustering-based subsystems 

(containing functions such as proteosomes, ribosomes, and recombination-related clusters) and 

miscellaneous subsystems (containing genes associated with iron-sulphur cluster assembly, 

common prokaryotic-plant genes and Niacine-Choline transport and metabolism) were also 

found to be in relatively high abundance. These findings are in agreement with previous studies 

investigating sewage sludge (Yu and Zhang, 2012), activated sludge (Dinsdale et al., 2008), 

soils (Manoharan et al., 2015) and tropical freshwater sediment (Costa et al., 2015), which 

presents with similar environmental conditions as the samples investigated in this study. 

Therefore, this suggests that genes associated with these functional categories could form the 

core metabolic potential for bacterial communities in wastewater and receiving river 

environments. However, further omic-based investigations should be conducted to further 

confirm this assumption.  
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Interestingly, distinct differences were observed between the metabolic potential of the 

upstream compared to the downstream river samples only in rivers receiving treated effluent 

from Plant B. This suggests that Plant B WWTP effluent discharges could have contributed to 

the shift in the metabolic potential of the communities present in the receiving river. This also 

illustrates the concept of biotic homogenization, which suggests that “anthropogenic 

modifications of the environment are reducing the biological richness that exist in natural 

ecosystems”. Consequently only a subset of naturally occurring species are constantly being 

selected for as a result of the human-altered ecosystems (McKinney 2008; Baiser et al. 2012). 

Although, this phenomenon has been largely seen in plant and animal community studies, it 

has been poorly documented for microbial communities and their metabolic potential 

(McKinney, 2008). Effects of this phenomenon has been suggested to result in a more 

homogenized biosphere with lower diversity on regional and global scales (McKinney and 

Lockwood, 1999). Therefore, our results suggests that Plant B WWTP effluent may be a 

driving force for biotic homogenization of bacterial communities in this receiving river and 

may lead to negative implications on the ecosystem functions. These results were also observed 

utilizing T-RFLP fingerprinting technique (see Chapter Five).  

 

Overall, comparisons of the metabolic potential of the metagenomes of samples in this study 

to those from other  ecological settings revealed considerable functional differences between 

unique ecosystems. Though, different ecosystems displayed distinct characteristics, 

metagenomic samples from this study shared similar characteristics with ocean and soil 

ecosystems. These observations are expected as WWTPs and rivers present with an 

environment closer to soil and ocean environments than that of human settings.  
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4.5.3 Proportion of putative antibiotic resistance gene sequences differs across 

metagenomes 

The strict and unambiguous antibiotic resistance ontology of the CARD database was used to 

annotate genes as ARG-like in this study. It should be noted that the diversity and abundance 

of the antibiotic resistome observed by CARD alignment were different from those derived 

from the MG-RAST analysis of the metagenome. Possible reasons for the divergence may be 

the difference in the reference database used as well as the contribution of the alignment 

algorithm. MG-RAST relies on the use of BLAT algorithm for similarity searches, which is 

less sensitive than the BLAST algorithm (Yu and Zhang, 2013). Additionally, the CARD 

database is a highly curated and comprehensive database (McArthur et al., 2013) compared to 

the incomplete resistance to antibiotics and toxic compounds subsystem on ARGs (Wang et al., 

2013). 

 

Genes conferring resistance to the elfamycin and aminocoumarin class of antibiotics was 

observed to be the most abundant across all metagenomes. The aminocoumarin family of 

antibiotics inhibits the beta sub-unit of DNA gyrase which is essential in cell division (Galm 

et al., 2004). The elfamycin family of antibiotics inhibits protein synthesis of Gram-negative 

bacteria by interacting with elongation factor Tu (Wolf et al., 1974; Hall et al., 1989; Vogeley 

et al., 2001). Specifically, majority of the elfamycin-like ARGs in the metagenomes were 

associated with the variants of the elongation factor Tu. Elfamycin are not commonly used in 

treatment of human diseases due to the very narrow spectrum against human pathogens (Miele 

et al., 1994), however, it is applied as a growth promoting agent in animals owing to its 

excellent activities (Brötz et al., 2011; Maiese et al., 1989). Though, aminocoumarin is used in 

the treatment of human diseases, it is also largely applied for treatment of Stapholococcus 
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infections, cholera infections and treatment of bovine mastitis in animal food production 

(Economou and Gousia, 2015; Marshall and Levy, 2011). Therefore, high abundance of these 

ARGs in the metagenomes suggests that the major source of wastewaters received by both 

WWTPs could be from nearby animal feed industries. This reason could also partially explain 

the coinciding high occurrence of genes conferring resistance to tetracycline class of antibiotics 

as tetracycline is commonly used for livestock purposes in South Africa (Eagar et al., 2012). 

Furthermore, studies suggests that sources of tet39 gene could result from clinical (Agersø and 

Guardabassi, 2005) or animal sources (Agersø and Petersen, 2007) and are common amongst 

Acinetobacter spp. (Hamidian et al., 2016), which is a cause for concern with the increasing 

threat in hospitals from multidrug-resistant Acinetobacter strains (Dijkshoorn et al., 2007). The 

occurrence of these particular family of antibiotic and their ineffective biodegradation in 

WWTP may allow for low concentrations to persist in treated effluents leading to the selection 

of these ARGs (Gullberg et al., 2011) and their subsequent dissemination to the effluent 

receiving rivers.  

 

Surprisingly, upstream and downstream samples contained ARGs without salient differences 

between each another despite the WWTP effluent discharge. However, slight differences were 

by all means detected across all the samples, indicating that the ARGs load from the WWTP 

effluent discharges did not have a detectable influence on the receiving rivers. This result is in 

contradiction to the fact that WWTPs represent the main sites through which ARGs are released 

into the environment (Marti et al., 2014). However, a recent study by Munck et al. (2015) 

suggested that the abundant WWTP resistome is only disseminated, to a very limited extent, to 

other microbial communities in differing environments. Furthermore, the study suggested that 

members of the WWTP core resistome rarely take part in gene exchange networks with human 
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pathogens with mobilization acting as the main barrier preventing the spread of ARGs (Munck 

et al., 2015). Hence, the findings of this study suggest that the WWTP effluents discharged into 

receiving rivers did not have major influences on ARGs dissemination into the aquatic sources. 

 

Nonetheless, the proportions of the ARGs identified in this study were diverse and comparable 

to the results from previous studies investigating activated sludge (Zhang et al., 2011), sewage 

effluent (Port et al., 2012), plasmids recovered from WWTP (Li et al., 2015), non-hospital 

medical care facility (Bäumlisberger et al., 2015) and drinking water treatment plants (Xi et al., 

2009; Huang et al., 2011; Chao et al., 2013). Moreover, the ARGs detected in this study 

encompasses the three major resistance mechanisms, viz. exclusion by efflux pumps, antibiotic 

inactivation and cellular protection mechanisms (Zhu et al. 2013). Hence, detection of these 

ARGs in both effluent discharged and downstream of the effluent-receiving rivers indicates 

that WWTP could potentially contribute to the expansion of the resistance reservoir in aquatic 

environments. 

 

In conclusion, although still at its infancy, metagenomic analysis of total community DNA 

using direct pyrosequencing without the need for cloning and with long sequence fragments 

opens up new perspectives in determining the impact of the effluent discharge from the two 

WWTPs investigated in this study on the antibiotic resistance genes, metabolic potential and 

bacterial community structures of their receiving rivers. While the sequencing depth in this 

study was not adequate due to the sequencing platform used, until very recently, 454 

pyrosequencing had the advantage of producing the longer average read length with low costs. 

Rapid development and improvements of next generation sequencing have closed this gap in 
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the meanwhile on Illumina platforms, increasing both the average read length and the amount 

of data generated with relatively low costs. Nonetheless, the fact that ARGs, metabolic 

potential and taxonomic profiles could be detected across all the samples in this study supports 

the use of whole metagenome shotgun pyrosequencing approach as a relatively simple 

preliminary investigation for comparing samples exposed to constant fluctuating pressures with 

unknown microbial community composition and for profiling antibiotic resistance 

determinants in highly impacted environments. Overall, findings from this study showed the 

prevalence of a typical WWTP and freshwater bacterial communities. Results from this study 

indicated a shift in the community structure and metabolic potential of the river ecosystems as 

a result of the treated effluent discharge from the different WWTP. Additionally, our study 

suggests, for the first time, the dominance of the elfamycin family of antibiotics in urban 

WWTPs and their effluent-receiving rivers identifying the possible sources of this family of 

antibiotics. Findings from this study pave way for a more comprehensive understanding of the 

microbial ecology of WWTPs and the surrounding aquatic environment and could assist 

towards effort to safeguard public and environmental health concerns associated with the 

release of improperly treated wastewater into the surrounding aquatic milieu. 
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4.7 Figures 

 

Figure 4.1: Relative abundances of dominant phyla in the metagenome of (a) Plant A effluent discharged, (b) downstream of river receiving 
effluent from Plant A, (c) upstream of river receiving effluent from Plant A, (d) Plant B effluent discharged, (e) downstream of river receiving 
effluent from Plant B and (f) upstream of of river receiving effluent from Plant B as annotated by MG-RAST. Relative abundance represents the 
number of reads affiliated with that phyla divided by the total reads assigned for the bacterial domain. Several phyla dominating the domain in the 
sample is indicated on the chart as percentages. 
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Figure 4.2: Relative abundances of dominant classes observed in the metagenome of the 
treated effluents (TE) of both WWTPs, and upstream (US) and downstream (DS) of their 
receiving rivers as annotated by MG-RAST. Relative abundance represents the number of 
reads affiliated with that class divided by the total reads assigned for the bacterial domain. The 
“Other” category in the figure represents assignments to the class level rather than potential 
novel class (represented as “unclassified derived from”). 
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Figure 4.3: Distribution of the relative abundance of antibiotic resistance genes (ARGs) types 
in the metagenome of the treated effluents (TE) of both WWTPs, and upstream (US) and 
downstream (DS) of their receiving rivers as visualized via Circos. Relative abundance values 
were calculated by dividing the number of annotated ARGs by the total number of ARGs 
detected in the metagenomes. Each antibiotic resistance type is represented by a specific ribbon 
colour, and the width of the outer ring for each ribbon represents the percentage relative 
abundance of ARGs in the associated metagenomes. Plant A and Plant B associated 
metagenomes has been coloured in grey and black, respectively.  
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Figure 4.4: Heatmap depicting the distribution and relative abundance of predicted proteins 
assigned to 28 functional level 1 SEED subsystems in the metagenome of (a) Plant A treated 
effluent (TE), downstream (DS) and upstream (US) of receiving river of Plant A TE and (b) 
Plant B TE, DS and US of receiving river of Plant B TE as annotated by MG-RAST. Relative 
abundance is reported as percentages and represents the number of reads affiliated with a 
subsystem divided by the total reads assigned to all SEED subsystems. 
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Figure 4.5: Distribution and relative abundance of predicted proteins assigned to (a) 7 major 
KEGG hierarchies (b) 24 COG families in the metagenomes of the treated effluent (TE) of 
both WWTPs, downstream (DS) and upstream (US) of the respective receiving rivers as 
annotated by MG-RAST. Relative abundance is reported as percentages and represents the 
number of reads affiliated with a classification/family divided by the total reads assigned to all 
KEGG/COG. COG families are divided into 4 major groups; I, Cellular processes and 
signalling; II, Information storage and processing; III, Metabolism; IV, Poorly characterized. 
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Figure 4.5 (cont.): Distribution and relative abundance of predicted proteins assigned to (a) 7 
major KEGG hierarchies (b) 24 COG families in the metagenomes of the treated effluent (TE) 
of both WWTPs, downstream (DS) and upstream (US) of the respective receiving rivers as 
annotated by MG-RAST. Relative abundance is reported as percentages and represents the 
number of reads affiliated with a classification/family divided by the total reads assigned to all 
KEGG/COG. COG families are divided into 4 major groups; I, Cellular processes and 
signalling; II, Information storage and processing; III, Metabolism; IV, Poorly characterized. 
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Figure 4.6: Principal coordinate analysis (PCoA) of the Bray-Curtis dissimilarity coefficients 
comparing the metagenomes of the investigated wastewater treatment plants with 5 other 
ecosystems (human oral, human gut, ocean, soil and freshwater) with normalized amount of 
annotated reads in the SEED subsystems. Metagenomes of the different ecosystems were 
analysed in MG-RAST to avoid variations in analysis using the publicly available data on MG-
RAST (their information is provided in Table S4.2). 
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4.8 Supplementary materials 

 
Table S4.1: Characterization of the 454 pyrosequenced libraries generated from the treated 
effluents of wastewater treatment plants (WWTPs) and the respective receiving river water 
samples analysed in this study. 
 

Characteristics 
Plant A Plant B 

WWTP 
Effluent 

River 
Downstream 

River 
Upstream 

WWTP 
Effluent 

River 
Downstream 

River 
Upstream 

# raw reads 227,021 115,483 169,225 180,557 148,377 233,173 
Total size (bp) 143,321,109 73,823,069 96,909,864 110,996,053 93,930,993 136,123,317 
Average reads (bp) 631 639 573 615 633 584 
# reads uploaded to 
MG-RAST 227,021 115,483 169,225 180,557 148,377 233,173 

       
MG-RAST QC 
# reads before QC 227,021 115,483 169,225 180,557 148,377 233,173 
Total size before 
QC (bp) 143,321,109 73,823,069 96,909,864 110,996,053 93,930,993 136,123,317 

Average length 
before QC (bp) 631 639 573 615 633 584 

# reads removed 
during dereplication 
(bp) 

11,511 5,388 10,567 2,031 7,808 13,986 

# after QC 194,388 99,617 147,605 147,749 127,426 201,260 
Total size after QC 
(bp) 41,085,936 20,168,242 37,429,256 27,636,500 26,061,955 49,921,741 

Average length 
after QC (bp) 211 203 254 187 205 248 

       
MG-RAST Annotations 
# reads identified as 
RNA 32,299 15,356 20,112 23,065 19,395 29,977 

# reads predicted 
ORFs 175,950 90,658 142,899 131,523 118,258 192,916 

# reads assigned to 
SEED 63,773 67,359 136,518 103,755 102,227 155,558 

# reads assigned to 
KEGG 19,038 19,829 40,538 31,009 30,783 45,177 

# reads assigned to 
COG 32,332 33,676 67,537 50,763 52,556 85,143 
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Table S4.2: Basic information summary of 48 publicly available metagenomic datasets from 
MG-RAST in six ecosystems (human gut, human oral, ocean, soil, freshwater and wastewater 
treatment plants) used in this study. 
 

Label/Biomes MG-RAST 
ID 

Metagenome 
size (bp) # Reads Habitat 

Type Location Sequencing 
Method 

Human Oral_1 4447943,3 142,374,233 339,503 human-
associated 

Valencia, 
Spain 454 

Human Oral_2 4447192,3 77,538,485 204,218 human-
associated 

Valencia, 
Spain 454 

Human Oral_3 4447103,3 203,711,161 464,594 human-
associated 

Valencia, 
Spain 454 

Human Oral_4 4447102,3 100,125,112 244,881 human-
associated 

Valencia, 
Spain 454 

Human Oral_5 4447101,3 129,851,692 295,072 human-
associated 

Valencia, 
Spain 454 

Human Oral_6 4447971,3 37,519,874 97,722 human-
associated 

Valencia, 
Spain 454 

Human Oral_7 4447970,3 27,669,924 70,503 human-
associated 

Valencia, 
Spain 454 

Human Oral_8 4447903,3 123,266,763 306,74 human-
associated 

Valencia, 
Spain 454 

Human Gut_1 4440452,7 54,632,274 229,857 human-
associated 

St, Louis, 
United States 454 

Human Gut_2 4440616,3 174,824,393 507,928 human-
associated 

St, Louis, 
United States 454 

Human Gut_3 4440611,3 103,097,122 526,727 human-
associated 

St, Louis, 
United States 454 

Human Gut_4 4440826,3 124,768,172 499,499 human-
associated 

St, Louis, 
United States 454 

Human Gut_5 4440824,3 100,520,072 414,497 human-
associated 

St, Louis, 
United States 454 

Human Gut_6 4440639,3 93,430,618 440,521 human-
associated 

St, Louis, 
United States 454 

Human Gut_7 4440461,5 105,923,024 522,134 human-
associated 

St, Louis, 
United States 454 

Human Gut_8 4440613,3 102,979,597 312,665 human-
associated 

St, Louis, 
United States 454 

Ocean_1 4443702,3 47,289,202 209,073 aquatic Bergen, 
Norway 454 

Ocean_2 4443707,3 31,359,337 135,033 aquatic Bergen, 
Norway 454 

Ocean_3 4443708,3 8,571,342 38,22 aquatic Bergen, 
Norway 454 

Ocean_4 4443703,3 30,991,689 134,915 aquatic Bergen, 
Norway 454 

Ocean_5 4443709,3 26,982,195 116,192 aquatic Bergen, 
Norway 454 

Ocean_6 4443705,3 68,187,679 304,02 aquatic Bergen, 
Norway 454 

Ocean_7 4443704,3 59,316,369 344,216 aquatic Bergen, 
Norway 454 

Ocean_8 4443706,3 38,021,523 162,871 aquatic Bergen, 
Norway 454 

Soil_1 4445996,3 116,821,792 312,444 soil Navada, 
United States 454 

Soil_2 4445993,3 133,555,260 352,417 soil Navada, 
United States 454 
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Table S4.2 (cont.): Basic information summary of 48 publicly available metagenomic datasets 
from MG-RAST in six ecosystems (human gut, human oral, ocean, soil, freshwater and 
wastewater treatment plants) used in this study. 
 

Label/Biomes MG-RAST 
ID 

Metagenome 
size (bp) # Reads Habitat 

Type Location Sequencing 
Method 

Soil_3 4445994,3 254,548,462 683,082 soil Navada, 
United States 454 

Soil_4 4445990,3 219,117,356 583,724 soil Navada, 
United States 454 

Soil_5 4450750,3 87,160,647 239,933 soil Navada, 
United States 454 

Soil_6 4450752,3 76,860,743 233,279 soil Navada, 
United States 454 

Soil_7 4451103,3 397,257,248 1,040,697 soil Navada, 
United States 454 

Soil_8 4451104,3 347,578,191 998,484 soil Navada, 
United States 454 

Arctic 
Freshwater_1 4443683,3 101,310,476 100,085 freshwater Antarctica sanger 

Arctic 
Freshwater_2 4443680,3 9,622,231 9,672 freshwater Antarctica sanger 

Arctic 
Freshwater_3 4443679,3 9,755,315 10,042 freshwater Antarctica sanger 

Arctic 
Freshwater_4 4443681,3 54,929,769 54,446 freshwater Antarctica sanger 

Arctic 
Freshwater_5 4443682,3 284,069,722 283,663 freshwater Antarctica sanger 

Arctic 
Freshwater_6 4443685,3 28,413,296 28,481 freshwater Antarctica sanger 

Arctic 
Freshwater_7 4443686,3 101,573,008 103,058 freshwater Antarctica sanger 

Arctic 
Freshwater_8 4443687,3 95,664,001 95,521 freshwater Antarctica sanger 

Hydrocarbon 
WWTP_1 4507688,3 116,596,410 186,74 terrestrial Inniskillen, 

Canada 454 

Hydrocarbon 
WWTP_2 4507689,3 155,694,182 241,209 terrestrial Inniskillen, 

Canada 454 

Hydrocarbon 
WWTP_3 4509513,3 29,379,862 88,526 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_4 4509514,3 41,742,688 109,108 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_5 4509515,3 50,103,178 124,879 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_6 4509516,3 38,880,264 111,957 terrestrial San Juan, 

United States 454 

Hydrocarbon 
WWTP_7 4523101,3 423,985,802 548,46 terrestrial 

Fort 
McMurray, 

Canada 
454 

Hydrocarbon 
WWTP_8 4523103,3 340,253,804 436,518 terrestrial 

Fort 
McMurray, 

Canada 
454 
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Table S4.3: Relative abundance of the microbial populations in the treated effluent discharge 
from two full-scale wastewater treatment plants, and upstream and downstream of their 
effluent-receiving river as annotated and assigned by the MG-RAST pipeline. Relative 
abundance is reported as percentages and represents the number of reads affiliated with that 
domain divided by the total reads assigned for all domain. 
 

Domain 
Plant A Plant B 

WWTP 
Effluent 

River 
Downstream 

River 
Upstream 

WWTP 
Effluent 

River 
Downstream 

River 
Upstream 

Bacteria 93.32 98.37 98.94 99.44 99.52 98.69 
Eukaryota 4.37 1.16 0.80 0.24 0.29 1.02 
Archaea 1.47 0.26 0.15 0.17 0.11 0.12 
Viruses 0.47 0.11 0.07 0.11 0.04 0.09 

Unclassified 
sequences 0.37 0.09 0.05 0.03 0.03 0.07 

Other 
sequences <0.01 0.01 <0.01 0.01 <0.01 <0.01 
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(a) 

 
 
 

  
(b) 

 
 
Figure S4.1: Comparative taxonomic profile of downstream (DS) and upstream (US) samples 
of the river receiving treated effluent discharge by (a) Plant A and (b) Plant B at phylum 
taxonomic level. Annotation was determined by the MG-RAST pipeline and assigned with the 
lowest common ancestor algorithm. Asterisks indicate phyla with significant differences 
(q<0.05) in abundance between the wastewater samples determined in STAMP.
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(a) 

 
 
Figure S4.2: Comparative taxonomic profile of downstream (DS) and upstream (US) samples of the river receiving treated effluent discharge by (a) Plant A and 
(b) Plant B at class taxonomic level. Annotation was determined by the MG-RAST pipeline and assigned with the lowest common ancestor algorithm. Asterisks 
indicate phyla with significant differences (q<0.05) in abundance between the wastewater samples determined in STAMP.  
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(b) 

 
 
Figure S4.2: Comparative taxonomic profile of downstream (DS) and upstream (US) samples of the river receiving treated effluent discharge by (a) Plant A and 
(b) Plant B at class taxonomic level. Annotation was determined by the MG-RAST pipeline and assigned with the lowest common ancestor algorithm. Asterisks 
indicate phyla with significant differences (q<0.05) in abundance between the wastewater samples determined in STAMP. 
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Figure S4.3: Diversity indices of the ARGs types calculated for treated effluent discharged 
(TE) from both WWTPs, and downstream (DS) and upstream (US) of the corresponding 
effluent-receiving rivers.  
 
 
 
 
 
 
 

 
(a) 

 
(b) 

 
Figure S4.4: Principal coordinate analysis (PCoA) of the Bray-Curtis dissimilarity coefficients 
of different ARGs classes determined for treated effluent discharged (TE) downstream (DS) 
and upstream (US) of the effluent-receiving rivers for (a) Plant A and (b) Plant B. 
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Figure S4.5: Comparison of the diversity of antibiotic resistance genes (ARGs) in Plant A and 
Plant B across all metagenomic samples. Relative abundance values were calculated by 
dividing the number of annotated as ARGs to the total number of ARGs detected in the 
metagenome. ARGs were annotated by BLASTx against the CARD protein database. 
(Staphylococcus aureus, S. aureus; Salmonella enterica, S. serovars; Mycobacterium 
tuberculosis, M. tb; Escherichia coli, E. coli; Bartonella bacilliformis, B. bacilliformis).  
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Table S4.4: Distribution and relative abundance of predicted proteins assigned to level 1 SEED 
subsystems metagenomes of treated effluent discharged (TE) of Plant A and in downstream 
(DS) and upstream (US) of the receiving river as annotated by MG-RAST. Relative abundance 
is reported as percentages and represents the number of reads affiliated with a subsystem 
divided by the total reads assigned to all SEED subsystems. 
 

SEED Level 1 Subsystems TE DS US 

Amino Acids and Derivatives 7,25 8,10 8,13 

*Carbohydrates 8,54 8,91 8,01 

Cell Division and Cell Cycle 1,73 1,62 1,64 

*Cell Wall and Capsule 3,77 4,32 4,70 

Clustering-based subsystems 16,28 15,28 15,56 
Cofactors, Vitamins, Prosthetic 

Groups, Pigments 5,85 7,05 7,12 

DNA Metabolism 5,57 4,30 4,22 

Dormancy and Sporulation 0,20 0,22 0,20 
Fatty Acids, Lipids, and 

Isoprenoids 2,79 2,94 2,78 

Iron acquisition and metabolism 0,50 0,73 0,67 

Membrane Transport 3,33 3,13 3,14 
Metabolism of Aromatic 

Compounds 1,34 1,91 1,76 

Miscellaneous 7,72 8,22 8,54 

Motility and Chemotaxis 0,92 0,84 0,79 

*Nitrogen Metabolism 1,26 1,41 1,61 

Nucleosides and Nucleotides 2,85 2,99 2,71 
*Phages, Prophages, Transposable 

elements, Plasmids 3,21 1,53 1,43 

Phosphorus Metabolism 0,74 0,74 0,75 

Photosynthesis 0,11 0,19 0,13 

Potassium metabolism 0,37 0,39 0,40 

Protein Metabolism 9,82 8,62 8,51 

Regulation and Cell signalling 1,56 1,42 1,52 

Respiration 3,16 3,39 3,47 

RNA Metabolism 4,63 4,73 4,71 

Secondary Metabolism 0,32 0,42 0,40 

Stress Response 2,25 2,31 2,47 

Sulphur Metabolism 0,94 1,14 1,34 

Virulence, Disease and Defence 3,00 3,16 3,29 
*indicate statistically significant differences (q<0.05) between DS and US assignments  
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Table S4.5: Distribution and relative abundance of predicted proteins assigned to level 1 SEED 
subsystems in metagenomes of treated effluent discharged (TE) of Plant B and in downstream 
(DS) and upstream (US) of the effluent-receiving river as annotated by MG-RAST. Relative 
abundance is reported as percentages and represents the number of reads affiliated with a 
subsystem divided by the total reads assigned to all SEED subsystems. 
 

SEED Level 1 Subsystems TE DS US 

*Amino Acids and Derivatives 8,83 9,06 8,55 

*Carbohydrates 7,83 8,52 9,80 

*Cell Division and Cell Cycle 1,75 1,61 1,41 

Cell Wall and Capsule 4,09 4,01 4,06 

*Clustering-based subsystems 14,97 14,93 14,78 

Cofactors, Vitamins, Prosthetic 
Groups, Pigments 

6,85 6,71 6,42 

*DNA Metabolism 4,30 4,26 4,10 

Dormancy and Sporulation 0,17 0,21 0,22 

*Fatty Acids, Lipids, and 
Isoprenoids 

3,11 3,24 2,66 

Iron acquisition and metabolism 1,26 1,31 1,53 

*Membrane Transport 3,14 3,23 3,55 

*Metabolism of Aromatic 
Compounds 

1,76 2,00 1,75 

*Miscellaneous 8,22 8,20 8,25 

*Motility and Chemotaxis 0,57 0,91 1,64 

Nitrogen Metabolism 1,25 1,41 1,39 

*Nucleosides and Nucleotides 3,14 3,11 2,75 

*Phages, Prophages, Transposable 
elements, Plasmids 

2,03 1,72 1,32 

*Phosphorus Metabolism 0,92 0,87 0,71 

Photosynthesis 0,13 0,12 0,13 

Potassium metabolism 0,46 0,44 0,44 

Protein Metabolism 8,20 7,85 7,87 

Regulation and Cell signalling 1,75 1,60 1,72 

Respiration 3,06 2,93 2,99 

*RNA Metabolism 4,76 4,39 4,58 

*Secondary Metabolism 0,48 0,41 0,32 

Stress Response 2,51 2,54 2,61 

*Sulphur Metabolism 1,30 1,28 1,15 

Virulence, Disease and Defence 3,14 3,16 3,29 
*indicate statistically significant differences (q<0.05) between DS and US assignments  
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(a) 

 
(b) 

 
 
 
 
Figure S4.6: Comparison between the SEED subsystem assignment of predicted proteins at the functional level of complexity in (a) downstream 
(DS) and upstream (US) of river receiving effluent discharged by Plant A, and (b) DS and US samples of river receiving treated effluent discharged 
by Plant B as determined using the STAMP software package. 
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(a) 

 
 
 

 
(b) 

 
 
 
 
 
Figure S4.7: Principal component analysis (PCA) of the SEED level 1 subsystems assigned in 
MG-RAST for treated effluent discharged (TE) and upstream (US) and downstream (DS) of 
the effluent-receiving rivers for (a) Plant A and (b) Plant B metagenomes.  
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(a) 
 
 

 
(b) 

 
 
Figure S4.8: Chart depicting post-hoc confidence interval plots (>95%) based on Fisher’s 
exact test parameters including SEED level 3 carried out in STAMP and assigned in MG-RAST 
for treated effluent discharged (TE) and upstream (US) and downstream (DS) of the effluent-
receiving rivers for (a) Plant A and (b) Plant B.  
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(b) 
 
 
 
 
Figure S4.9: Comparison between the relative abundance of predicted proteins assigned to 
COG families determined using the STAMP software package for treated effluent discharged 
(TE) and upstream (US) and downstream (DS) of the effluent-receiving rivers for (a) Plant A 
and (b) Plant B. Asterisks indicate significant differences (q<0.05) in abundance between the 
river samples. 
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(a) 

  
 

(b) 
 
 
Figure S4.10: Heatmap depicting the distribution and relative abundance of predicted proteins 
assigned to the level 2 complexity COG families in the metagenome of (a) Plant A treated 
effluent discharged (TE), downstream (DS) and upstream (US) of effluent-receiving river 
receiving river of Plant A and (b) Plant B TE, DS and US of effluent-receiving river of Plant 
B as annotated by MG-RAST. Relative abundance is reported as percentages and represents 
the number of reads affiliated with a family divided by the total reads assigned to all COG 
families. 
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5 Bacterial community dynamics of two rivers receiving 
treated urban wastewater effluents: a T-RFLP 
assessment 

5.1 Abstract 

Effluents from wastewater treatment plants (WWTPs) represent a significant proportion of the 

receiving river water body. In this study, we investigated the effects of treated wastewater effluent 

discharge from two full-scale WWTPs on the microbial diversity of the receiving river bodies. 

Total bacterial DNA was extracted from the effluent and river water samples and analyzed by the 

terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting of the 16S rRNA gene. 

Different bacterial fingerprint patterns observed for all sample sites were compared. The overall 

effect of the WWTP effluent on the urban river was the observed indistinguishable communities 

from upstream to downstream of the river. However, a significant decrease (p<0.01) in bacterial 

community diversity and composition was observed downstream of the river, relative to the 

upstream. Conversely, for the suburban river, no significant decrease in bacterial diversity and 

composition was observed downstream of the river subsequent to receiving treated wastewater 

effluent. Results from this study suggest that depending on the wastewater effluent quality and 

receiving water body, treated wastewater effluent has the potential to reduce the natural bacterial 

diversity in river ecosystems which may have serious implications on the higher order ecosystems. 

Keywords: Bacterial community diversity; Environment; River; T-RFLP; Wastewater effluent 
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5.2 Introduction 

Urban wastewater treatment plants (WWTPs) are one of the most common systems used for 

treating domestic, industrial and hospital wastewater. In highly urbanized areas with high 

population densities, WWTPs can be large and numerous. For example, the KwaZulu-Natal 

province of South Africa has 11 districts and is serviced by 140 WWTPs with a total design 

capacity of 1090.8 Ml/day (Department of Water and Sanitation 2015). The treatment of 

wastewater rely heavily on the activities of complex microbial communities for effective 

reduction of various physicochemical parameters and pathogen load before disposal into the 

receiving water bodies or in some cases re-use in agriculture and aquaculture sectors (World 

Health Organization 2006). Majority of WWTPs frequently discharge the final treated effluent 

into nearby rivers, and in many cases wastewater effluent discharge make up a significant 

proportion of the receiving water body (Brooks et al. 2006; Gücker et al. 2006). However, 

rivers in urban and suburban areas are often heavily impacted by the poorly treated wastewater 

discharge from WWTPs, and result in severe reduction in the water quality leading to 

detrimental effects on the health of these aquatic ecosystems (Carey and Migliaccio 2009). 

Furthermore, it is impossible for the characteristics of the final treated effluent to match the 

characteristics of the water in the receiving bodies despite the level of treatment and 

compliance to water quality standards set at local and government levels (Drury et al. 2013). 

Thus, effluent from WWTPs has the potential to significantly alter the physicochemical and 

microbial properties of the receiving ecosystem. 

 

Assessments of river health is largely based on the use of indicator bacteria and other 

microorganisms to provide a more illuminating condition of the aquatic ecosystem due to their 

ubiquitous presence, high abundance and continued exposure to the water columns as well as 
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their major involvement in biogeochemical transformations (Lawrence et al. 2005). 

Furthermore, the impacts of stress and disturbance on the bacterial and other microbial 

communities can lead to the understanding of the implications of these stress factors on 

ecosystem functions and processes as well as biodiversity in higher order community structures. 

However, only a minor fraction of bacteria have been isolated in pure cultures on appropriate 

media in vitro, accounting for <1% of the natural diversity in the environment (Vartoukian et 

al. 2010). Consequently, studies have utilized cultivation-independent genetic fingerprinting 

techniques such as denaturing gradient gel electrophoresis (DGGE), terminal-restriction 

fragment length polymorphism (T-RFLP), single-strand conformation polymorphism, random 

amplified polymorphic DNA, amplified ribosomal DNA restriction analysis, length 

heterogeneity PCR, and ribosomal intergenic spacer analysis, to provide insights into the 

diversity and structure of microbial communities (Ahmad et al. 2011). For example, 16S 

rRDA-DGGE was used to assess the effect of wastewater effluent on microbial function and 

community structure in the sediment of a freshwater stream with variable seasonal flow in 

South Australia (Wakelin et al. 2008). They found that significant shifts in bacterial community 

structures were associated with alteration of the sediment’s physicochemical properties. 

Furthermore, amplified ribosomal DNA restriction analysis was used to demonstrate the 

reduction of the bacterial and archaeal diversity in an anaerobic sequencing-batch biofilm 

reactor for the treatment of industrial wastewater (Sarti et al. 2012). 

 

In this study, T-RFLP fingerprinting technique was used to investigate the changes in bacterial 

community diversity and structure at selected treatment stages of two different full-scale 

WWTPs as well as the effects of the final treated effluent discharge on the receiving river 

bodies in the city of Durban, South Africa. Plant A’s receiving river is located in a less densely 
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populated suburban area, whilst Plant B’s receiving river is located in a highly urbanized area, 

with both rivers receiving effluent from a separate large WWTP. Results from this study may 

help to extend our knowledge of the changes in the complex bacterial community diversity and 

composition during wastewater treatment processes as well as the effect of the final treated 

effluent on the diversity and composition of bacterial community in receiving river bodies. 

 

 

5.3 Materials and Methods 

5.3.1 Study description and sample collections 

In this study, two full-scale WWTPs, hereon designated as Plant A and Plant B, which 

discharges their final treated effluent directly into nearby rivers in the city of Durban, South 

Africa, were chosen for investigation. Plant A has a capacity of 70 megaliters/day with an 

operational capacity of 96% and uses the activated sludge and diffused air liquid technologies 

with gravity thickening, anaerobic digestion and belt press dewatering sludge technologies. 

The plant discharges the final effluent into a nearby river in a suburban location. Plant B has a 

capacity of 25 megaliters/day with an operational capacity of 76% and use the activated sludge 

liquid technology with anaerobic digestion and belt press dewatering sludge technologies. The 

plant discharges the final effluent into a nearby river in heavily urbanized location (Department 

of Water and Sanitation 2015). Furthermore, Plant A receives a mixture of domestic and 

industrial wastewater, whilst Plant B receives a mixture of domestic, industrial and hospital 

wastewaters. Three pre-designated sampling points within the plants viz., raw influent received 

by the plants (RI), the treated effluent before disinfection by chlorination (BD), and the final 

effluent discharged (FE) were chosen to allow for comparison of bacterial communities during 
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the treatment process. To determine the shifts in bacterial community diversity as a result of 

the final effluent discharged into the receiving river, two pre-designated points along the rivers 

viz., downstream (DS) and upstream (US), approximately 500 m in opposite directions from 

the final effluent discharge point from the WWTPs were selected. All samples were collected 

in 5 L plastic bottles pre-sterilized with 70% (v/v) ethanol and rinsed with 4 L of the sample at 

the various sampling sites prior to collection. Upon collection, the samples were transported 

on ice back to the laboratories within 3 h and stored at 4°C prior to DNA extraction which took 

place within 24 h. 

 

5.3.2. Total DNA extraction, PCR amplification and restriction digestion 

Total DNA of the bacterial populations were extracted from the samples using PowerWater™ 

DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) according to manufacturer’s 

instructions. This kit is specifically designed for isolating bacterial DNA from environmental 

water samples and includes inhibitor removal technology aimed at removing humic acid and 

other organic matter commonly found in environmental samples that can interfere with 

downstream analyses. The quantity and purity of the isolated DNA was determined using the 

NanoDrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, USA). 

 

Amplification of the universally conserved regions of 16S ribosomal DNA of the bacterial 

genomes (approx. 1.5 kb) was carried out by PCR using primer set F27 (5¢-AGA GTT TGA 

TCM TGG CTC AG-3¢) and R1492 (5¢-TAC GGY TAC CTT GTT ACG ACT-3¢), labelled 

with 6-carboxyfluorescein (FAM) and hexachlorofluorescein (HEX) at the 5¢ end, respectively 

(Disayathanoowat et al. 2012). PCR consisted of 1 ng of template DNA, 0.4 mmol of each 
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primer, 2.5 µl of 10× reaction buffer (Southern Cross Biotechnology, South Africa), 1 µl of 25 

mM MgCl2 (Southern Cross Biotechnology, South Africa), 0.5 µl of 10 mM dNTP Mix 

(Thermo Fisher Scientific, USA), 2 U of 5U/µl SuperTherm Taq (Southern Cross 

Biotechnology, South Africa) and nuclease-free water (Thermo Fisher Scientific, USA) to 

make up a 25 µl reaction mixture. PCR amplification was done in triplicate per DNA sample 

in the T100 Thermo Cycler (Bio-Rad, USA) under the following conditions: initial 

denaturation at 95°C for 5 min, followed by 30 cycles of denaturation at 95°C for 45 s, 

annealing at 55°C for 1 min, extension 72°C for 1 min, with a final extension at 72°C for 10 

min. PCR products (3 µl) were mixed with 0.6 µl of 6× loading dye (Thermo Fisher Scientific, 

USA) and then loaded onto a 1% (w/v) Sekem LE Agarose gel (Lonza, USA) with a 1 kb Plus 

DNA Ladder (Thermo Fisher Scientific, USA). Subsequently, the gel was stained with 0.2 

mg/ml ethidium bromide (Bio-Rad, USA) and visualized under UV light in G:BOX F3 system 

(Cambridge, United Kingdom) to determine whether amplification of correct product sizes had 

occurred. Purification of remaining PCR products was done using GeneJET PCR Purification 

Kit (Thermo Fisher Scientific, USA) with an elution product of 30 µl. Quality and 

concentrations of purified PCR products was determined with the OD260/280 values of 2 µl of 

PCR products and ranged from 24.3 to 102.1 ng DNA/µl. 

 

Purified PCR products was simultaneously digested using three FastDigest restriction enzymes, 

HhaI, MspI and RsaI, at 1 U each, 2 µl of 10× FastDigest Buffer, 10 µl of purified PCR products 

and nuclease-free water to make up a 30 µl reaction mixture. Reaction digestion mixtures were 

incubated at 37°C for 4 h to ensure complete digestion. Purification of restriction digestion 

products was done using GeneJET PCR Purification Kit with an elution product of 30 µl. All 

enzymes, reagents and kits were purchased from Thermo Fisher Scientific, USA.  
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5.3.3 Capillary electrophoresis and sizing of T-RFLP profiles 

To determine the length of terminal-restriction fragments (T-RFs), all 30 µl of purified digested 

products was mixed with the LIZ-labelled GeneScan™-500 internal size standards (Life 

Technologies, USA). The samples were denatured at 95°C for 3 min and then placed on ice for 

5 min. T-RFLP capillary electrophoresis was carried out on an automated sequencer, the ABI 

Genetic Analyser 3500xL (Applied Biosystems, UK), by Inqaba Biotechnical Industries 

(Pretoria, South Africa) and T-RFs generated by the sequencer were analysed using the size-

calling software GeneMapper™ v.4.0 (Applied Biosystems, UK). AFLP option was selected 

in the software with 10 to 1000 bp set as the analysis range and quantification was carried out 

in the advanced mode using global southern method algorithm. A T-RF in a T-RFLP profile 

was called by the software if the minimum peak height was above the noise observed (10, 50 

and 60 for blue, green and yellow relative fluorescence units (RFU), respectively). Sizing tables 

containing raw peak positions, peak height and peak area per profile were exported from 

GeneMapper™ for further analysis. 

 

5.3.4 Consensus T-RFLP profiles and community structure analysis 

Raw datasets was transformed into appropriate format required by the T-RFLP excel tool 

(Fredriksson et al. 2014a). For quality control of the different replicate profiles, normalization, 

alignment, alignment correction, systematic differences detection was initially determined 

based on methodology described by Kaplan et al. (2001) implemented in the tool. Subsequently, 

normalization, alignment, alignment correction, and systematic differences detection of 

generated consensus profiles for each sample point was computed. The final consensus profile 

for each sample site generated was used for further analysis. In this analysis, the relative peak 
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area from the consensus profiles data matrix was processed. Relative peak area was calculated 

by dividing the individual peak area of each T-RF in a sample by the sum of all T-RF peak 

areas in the sample (Wang et al. 2010). This was done in order to compensate for differences 

in the quantity of PCR product and subsequent T-RFs profile intensity variations among 

samples.  

 

In order to graphically represent the structure of a bacterial community in each T-RFLP profile, 

Pareto-Lorenz (PL) evenness curves were constructed as previously described (Marzorati et al. 

2008; Wang et al. 2010). For the various T-RFLP profiles, each T-RF in the profile was ranked 

from high to low based on their relative area abundance. The cumulative proportions of relative 

area abundance were plotted against the respective cumulative proportions of each T-RF peak, 

to generate a convex curve. The more the PL curve deviates from the theoretical line 

representing perfect evenness (i.e., the 45° diagonal), the less evenness is observed in the 

community structure of the profile. In this study, the PL curves were also evaluated according 

to the Pareto’s principle where the cumulative y-axis value corresponding to the 20% level on 

the x-axis was evaluated (Possemiers et al. 2004).  

 

5.3.5 Diversity indices and nonmetric multidimensional scaling analysis 

Raw datasets was transformed into appropriate format required by the T-RFLP excel tool 

(Fredriksson et al. 2014a). For quality control of the different replicate profiles, normalization, 

alignment, alignment correction and systematic differences detection was determined as 

described previously. The triplicate profiles for each sample site generated were used for 

further analysis. In this analysis, the relative peak area from the data matrix was processed as 
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described previously. All univariate and multivariate statistical analyses was performed with 

the ‘vegan’ package (Shen and Fulthorpe 2015) from the program R (R Development Core 

Team 2007). 

 

Richness (S) was determined by the presence or absence of unique T-RFs in each of the profiles. 

Shannon’s diversity index (H') was determined using the equation 1, Pielou’s Evenness index 

(J') was calculated using equation 2, Simpson’s diversity index (D) was determined using 

equation 3 and Simpson’s reciprocal diversity index (1/D) was calculated using equation 4 as 

described by Tipayno et al. (2012). 

H' = − (#$)(log #$) (1) 

J' = H'/log(S) (2) 

D = 1 – p+, (3) 

1/D = 1
pi

2 (4) 

In these formulas, S was richness, pi was the relative area abundance of the T-RFs to the specific 

profile and log was the natural logarithm with base 10. Both Shannon and Simpson’s indices 

were used because they respond differently to changes in rare and abundant species. The 

Shannon diversity index has increased sensitivity to changes in rare species whereas Simpson’s 

reciprocal diversity index is more sensitive to changes in abundant species (Blackwood et al. 

2007). Comparison of diversity indices between the sample site were done by one-way analysis 

of variance (ANOVA) using IBM SPSS v.22 (Armonk, New York: IBM Corp.).   

 

Pair-wise comparisons of the profiles for each sample sites was done using the Bray-Curtis 

distance coefficient (Legendre and Legendre 1998) and visualised using nonmetric 
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multidimensional scaling (NMDS) using the ‘metaMDS’ method in the ‘vegan’ package. A 

one-way analysis of similarity (ANOSIM) was then used to examine the statistical significance 

of differences observed among the T-RFs at the different sample sites. Permutation for the 

analysis was set at 1000.  

 

 

5.4 Results 

5.4.1 Richness, community structure and evenness 

In this study, a total of 10 samples from two different WWTPs and receiving river bodies were 

analysed. Richness, as derived from the number of unique T-RF peaks detected from each of 

the consensus profiles that were within the range of the size markers used (35 to 500 bp) is 

shown in Table 5.1 for the various sample points. The overall highest richness was observed in 

Plant A with a total of 91 T-RFs, whilst the lowest was observed in Plant B with a total of 43 

T-RFs. In Plant A, highest richness was observed in the FE of the WWTP, followed by DS and 

US of the suburban river, then RI and BD of the WWTP. Conversely, in Plant B, the highest 

richness was observed US of the urban river, followed by RI and BD of the WWTP, and DS 

of the urban river, then FE of the WWTP. 

 

The relative abundance of each unique T-RF of the bacterial community from the T-RFLP 

profiles showed that the bacterial community was not stable across all the samples collected 

(Figure 5.1). For Plant A, relative abundances of 36-, 80-, 100-, 118-, 119-, 120-, 201-, 204-, 

429- and 486-bp T-RFs varied greatly at the different treatment stages and from river surface 
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waters. The 120-bp T-RF was present at a relative abundance of 3.87% from the raw influent 

received by the WWTP, but increased to a maximum of 13.73% BD, however, decreased to 

10.19% in the FE. A 5.22% difference in the relative abundance of the 120-bp T-RF was 

observed between the DS and US samples. In contract, the 119-bp T-RF with a relative 

abundance of 15.26% from the RI received by the WWTP decreased rapidly to undetectable 

levels BD and then increased to 2.02% in the FE. The relative abundance of the 119-bp T-RF 

in US sample was observed to be a maximum of 13.51%, whilst it decreased to 4.26% DS. The 

36-, 100-, 201-, 204- and 486-bp T-RFs also varied in relative abundances with maximum 

relative abundances of 14.95%, 22.20%, 16.10%, 21.97%, and 13.42%, respectively, and 

minimum of zero for all T-RFs. The T-RFs of 80- and 429-bp were less variable remaining 

below 2.5% across all sample sites, whilst the T-RF for 118-bp remained below 5% across all 

sample sites. The remaining 47 T-RFs showed undetectable levels across three or more sample 

sites, with varying relative abundance from 0% to 24.47% (Figure 5.1a).   

 

For Plant B relative abundances of 120-, 204-, 366-, 484-, and 486-bp T-RFs varied greatly 

(Figure 5.1b). The 484-bp T-RF was present at a relative abundance of 7.45% in the RI received 

by the WWTP, but increased to a maximum of 29.24% BD, before decreasing rapidly to 

undetectable levels in FE. The relative abundance of the 484-bp T-RF US was observed to be 

2.93%, whilst decreasing to undetectable levels in DS sample. In contrast, the 204-bp T-RF 

with a relative abundance of 9.76% from the RI received by the WWTP decreased rapidly to 

undetectable levels upon treatment in BD sample and then increased to a maximum of 56.35% 

in FE. The relative abundance of the T-RF US was observed to be a maximum of 13.77%, 

whilst DS showed an increased 51.42%. The 120-, 366- and 486-bp T-RF also varied in relative 

abundances with maximum relative abundances of 27.74%, 8.25%, and 13.38%, respectively, 
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and minimum of zero for all T-RFs. The remaining 20 T-RFs showed undetectable levels across 

three or more sample sites, with varying relative abundance from 0% to 43.89% (Figure 5.1b). 

 

To assess the interspecies abundance ratios of different bacterial species, Pareto-Lorenz curve 

distribution patterns of the consensus T-RFLP profiles were plotted based on the numbers of 

peaks and their relative abundance (Figure 5.2). In Plant A, it was observed that 20% of the 

peaks (number based) corresponded with 81, 81, 75, 79 and 82% of the cumulative relative 

abundance of the peaks for RI, BD, FE, US and DS, respectively (Figure 5.2a). For Plant B, it 

was observed that 20% of the peaks (number based) corresponded with 79, 77, 84, 63 and 81% 

of the cumulative relative abundance of the peaks for RI, BD, FE, US and DS, respectively 

(Figure 5.2b). Hence, for majority of the T-RFLP profiles, with the exception of US from Plant 

B, only a small group of bacterial species was numerically dominant and all the others were 

present in low numbers, with a large difference between the two groups. 

 

5.4.2 Diversity indices and nonmetric multidimensional scaling analysis 

Shannon’s diversity index (H'), Evenness index (J'), Simpson’s diversity index (D) and 

Simpson’s reciprocal diversity index (1/D) for each WWTP and the receiving rivers are shown 

in Figure 5.3. Although these indices are not a definitive measure of diversity, they still provide 

relative values for assessing spatial variation among different sample sites (Hewson et al. 2007).  

 

Using these indices, the highest diversity for Plant A was observed in the FE sample with values 

of 3.09, 0.88, 0.93, 15.30 for H', J', D and 1/D, respectively. The lowest diversity was observed 
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from the BD sample with values of 2.50, 0.80, 0.88, 8.85 for H', J', D and 1/D, respectively 

(Figure 5.3a). Significant differences (p<0.05) were observed when comparing the indices 

observed between each sample site. The highest diversity for Plant B was observed US of the 

receiving river with values of 3.03, 0.90, 0.94, 16.62 for H', J', D and 1/D, respectively, while 

the lowest diversity was observed in the FE sample with values of 1.57, 0.59, 0.67, 3.08 for H', 

J', D and 1/D, respectively (Figure 5.3b). Comparison of the indices between each sample sites 

showed highly significant differences (p<0.01) in the indices observed.  

 

Nonmetric multidimensional scaling (NMDS) analysis was done to compare overall 

similarities and differences in bacterial populations between the five sites based on the T-RFLP 

profiles in the WWTPs. Distances between points in the NMDS ordination as seen in Figure 

5.4 reflects relative dissimilarity of bacterial populations between samples based on T-RFLP 

profile. For both plants, all replicates of the sample sites clustered closely to each other as 

expected. For Plant A, DS, BD, FE and US profiles cluster more closely compared to RI 

profiles (Figure 5.4a). Kruskal’s stress values were lower than 0.05 for Plant A, suggesting a 

good representation of the relationship between the points in the matrix and provide an 

excellent representation in the reduced dimensions. However, looking at the dendrogram plot 

of the Bray-Curtis coefficients between the profiles (Figure 5.5a), RI and DS profiles clustered 

closely compared to BD, FE and US profiles, with FE and US profiles clustering more closely 

than with BD profiles. For Plant B, all sample site replicate profiles cluster closely to each 

other compared to the sample sites as expected (Figure 5.4b). Kruskal’s stress values were 

greater than 0.1, but less than 0.2, suggesting a fair representation of the relationship between 

the points in the matrix and provide a good representation in the reduced dimensions. Looking 

at the dendrogram plot of the Bray-Curtis coefficients between the profiles (Figure 5.5b), RI 
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and US clustered closely compared to BD, FE and DS, with FE and DS clustering more closely 

than to BD profiles. 

 

The ANOSIM reports include R-statistics and p-values. A R-statistic close to 1 indicates that 

samples in the same group are more similar to each other than samples in different groups. A 

R-statistic close to 0 indicates that samples in the same group are not more similar to each other 

than samples in different groups. The p value reflects the statistical significance of the R-

statistic. ANOSIM of the statistical significance of differences among the T-RFs by the 

different sample sites showed that for all samples from the two different WWTPs, T-RFs in the 

triplicate profiles of the sample were highly significantly similar compared to the various 

sample sites (R=1, p<0.01). 

 

 

5.5 Discussion 

Understanding the diversity of the aquatic microorganisms is essential for sustainable 

management of water sources. In addition, changes in bacterial community structures can 

potentially be used as bio-indicators of environmental disturbances (Ager et al. 2010). In this 

study, bacterial community diversity and composition were examined by T-RFLP 

fingerprinting technique. The technique is a highly reproducible, robust, inexpensive and 

simple tool that has been reported to be useful in characterization of microbial community 

structures in different habits (Osborn et al. 2000; Prakash et al. 2014). T-RFLP is a method 

which investigates variations in the lengths of T-RFs of conserved molecular markers, such as 
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the case in this study which utilised the 16S rRNA gene found in all bacterial species. Although 

the technique has great potential in characterization of microbial communities, due to the 

inherent technical biases from PCR as well as instrumental artefacts during peaks detection, 

meticulous care must be taken when interpreting results from T-RFLP profiles (Danovaro et al. 

2006; Cotton et al. 2014). Also, the sequences of 16S rRNA genes have been shown to be very 

similar among different bacterial species and, thus, are not completely effective in 

distinguishing among closely related genomic groups due to the generation of T-RF with the 

same size (Danovaro et al. 2006; Wang et al. 2010). However, in order to overcome the 

technical artefacts resulting during peak detection and subsequent data analysis, guidelines 

suggested by Fredriksson et al. (2014b) were applied for all T-RFLP profiles. Furthermore, the 

increasingly popular trend in T-RFLP analysis has been to associate the T-RFs determined with 

representative microorganisms using in silico digestion of databases with known 16S rRNA 

genes or the use of T-RFLP clones. However, several studies have reported discrepancies 

ranging from one to seven base-pairs between in silico-determined T-RF length and the actual 

T-RF length determined by clone T-RFLP (Kitts 2001; Kaplan et al. 2001; Kaplan and Kitts 

2003). This can greatly alter the identification of bacterial species of a particular community in 

question and hence, in this study, in silico digestion was not done. 

 

5.5.1 Plant A and suburban river body 

Overall, there was a difference in the composition, evenness and diversity indices of the 

bacterial communities observed across all sample sites. This was as expected as the effects of 

various treatment stages of the wastewater in Plant A could have resulted in changes in the 

bacterial community composition and diversity as previously reported (Ye and Zhang 2013).  
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Surprisingly, the bacterial composition was higher in the final effluent discharge than the 

influent received by the WWTP suggesting that the treatment was not efficient in reducing 

bacteria. Furthermore, composition and diversity was observed to be highest at the FE point 

compared to RI and BD sites of the WWTP as well as the US and DS points of the suburban 

river. Analysis of the bacterial communities with more sample sites during the various process 

and the physicochemical parameters of the wastewater might assist in confirming whether or 

not the increase in the bacterial richness and diversity in the final effluent discharged is a result 

of the ineffectiveness of the treatment process. However, assessment of the efficiency of the 

treatment processes was beyond the scope of this study. 

 

The increase in bacterial composition in the final effluent discharged could be due to the 

possible selection for resistant bacterial species following chlorination and subsequent 

proliferation of those species due to the presence of dissolved organic nutrients. Although, 

disinfection treatment by chlorination of the wastewater is expected to reduce the bacterial load, 

simultaneous protective functions provided by antibiotic resistance genes for chlorine 

resistance in resistant strains has been previously reported (Shi et al. 2013; Yuan et al. 2015). 

For example, Jai et al. (2015) reported residual chlorine as the key contributing factor to the 

bacterial community shift in selection for resistant bacteria with antibiotic resistance genes 

which allows for chlorine resistance (Jia et al. 2015). This was also observed in another study 

where the use of chlorine disinfection over UV disinfection resulted in the survival and 

increased abundance of pathogenic Escherichia coli, Salmonella typhimurium, Vibrio cholera 

as well as somatic and F-RNA coliphages despite high levels of residual chlorine 

concentrations in the treated effluent (Dungeni et al. 2010). Therefore, it is not surprising to 

observe the slight increase in bacterial communities downstream of the receiving suburban 
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river body in terms of composition and diversity compared to the US sample, which could be 

attributed to the effect of the final effluent discharge. However, it must be mentioned that the 

results of Plant A in this study contradicts what has been previously reported, where reduction 

in the abundance and diversity of benthic bacterial communities in urban and suburban rivers 

was observed (Drury et al. 2013).  

 

5.5.2 Plant B and urban river body 

Plant B resulted in significantly altered bacterial community composition and diversity 

downstream of the receiving river, in contrast to Plant A. The most striking effect was the 

absence of bacterial species present in upstream samples at the downstream sites, in addition 

to downstream sites having relatively the same community composition as the wastewater 

effluent discharged. A potential reason for the decreased levels of composition and diversity 

for Plant B could be due to the presence and inhibitory effects of toxic compounds in the final 

treated effluent. Several studies have shown the effects of a wide range of biologically active 

compounds, including low levels of antimicrobials and dissolved heavy metals, in rivers and 

streams as a result of effluent dispersed from nearby WWTP (Radjenović et al. 2009; Oulton 

et al. 2010; Jelic et al. 2011; Gatica and Cytryn 2013; Chirila et al. 2014; Collado et al. 2014). 

Many of these compounds are not completely removed during wastewater treatment, thus 

making WWTP a major source for their dissemination into the environment (Ort et al. 2010; 

Chirila et al. 2014). Furthermore, it has been reported that even at low concentrations in the 

environment, these compounds can have adverse effects on aquatic organisms (Radjenovic et 

al. 2007; Chirila et al. 2014). The observed decrease in the bacterial composition and diversity 

downstream of the receiving rivers in this study could be attributed to the possible presence of  
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compounds toxic to microorganisms, However, future studies will attempt to quantify the 

biologically active and toxic compounds in the effluents to corroborate this speculation.  

 

The results obtained in this study correlates with previous finding which also showed a 

decrease in microbial community richness and diversity phenomenon from effluent discharged 

into aquatic ecosystems (Drury et al. 2013). The results illustrates the concept of biotic 

homogenization, which suggests that human modifications of the environment are reducing the 

biological richness that exist in natural ecosystems and consequently only a subset of naturally 

occurring species are constantly being selected for as a result of the human-altered ecosystems 

(McKinney 2008; Baiser et al. 2012). Although, this phenomenon has been largely seen in 

plant and animal community studies, it has been poorly documented for microbial communities 

(McKinney 2008). Effects of this phenomenon has been suggested to result in a more 

homogenized biosphere with lower diversity on regional and global scales (McKinney and 

Lockwood 1999). Therefore, our results suggests that Plant B’s effluent may be a driving force 

for biotic homogenization of bacterial communities in receiving river and may lead to negative 

implications on the ecosystem functions.  

 

Although the popularity of T-RFLP seems to be decreasing as the method of choice for 

community profiling and analysis, due to the increasing popularity, availability and decreasing 

costs of next generation sequencing, however, the technique still remains a quick, easy and cost 

effective method for an initial indication of the bacterial community diversity and composition. 

Our results demonstrate that the two rivers which differed in the levels of urbanization showed 

different responses to WWTP effluent inputs, including changes in the composition and 
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diversity of the bacterial communities. Given that majority of the design and intended operation 

of WWTPs in the KwaZulu-Natal province of South Africa are similar to the remaining 

provinces, these results raises new questions on the effects of human modification of river 

ecosystems. Nonetheless, the present study sheds some light on the dynamics of bacterial 

communities during wastewater treatment in relation to the effects of treated effluent discharge 

on the river ecosystems. Furthermore, our study further support the concept of biotic 

homogenization of bacterial communities in receiving river bodies as a result of effluent 

discharge from WWTPs. Hence, more studies and investigations are still needed to shed some 

light on this important topic.  
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5.7 Figures and tables 

(a) 

 

(b) 

  

 
Figure 5.1: Histograms of terminal-restriction fragments (T-RF) relative abundances in (a) 
Plant A and (b) Plant B. Each T-RF is the mean (n=3) size upon normalization, alignment, 
alignment correction, systematic differences detection. The relative abundance is the ratio of 
the peak area of a given T-RF in a given sample to the sum of all T-RFs in that sample expressed 
as a percentage. Arrows indicate the consensus sizes from three replicates (upon normalization, 
alignment, alignment correction, systematic differences detection) of the restriction fragments 
for dominant T-RF in base pairs (bp).   
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(a) 

 

(b) 

 

 
Figure 5.2: Pareto-Lorenz distribution curves of the average bacterial terminal-restriction 
fragment length polymorphism profiles from the various sampling points in this study of (a) 
Plant A and (b) Plant B. Each T-RF is the mean (n=3) size upon normalization, alignment, 
alignment correction, systematic differences detection. The dashed vertical line at the 0.2 x-
axis level is plotted to evaluate the range of the Pareto values, whilst the 45° diagonal line is 
the theoretical line representing perfect evenness. 
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(a) 

 

(b) 

 

 
Figure 5.3: Mean (average) diversity indices determined for (a) Plant A (b) Plant B from the 
various sampling points in this study: Shannon’s diversity index (H'), Evenness index (J'), 
Simpson’s diversity index (D) and Simpson’s reciprocal diversity index (1/D). Each data point 
is the mean (n=3) ± standard error. One-way analysis of variance (ANOVA) of the indices 
demonstrated significant differences (p<0.05) between each sample sites for Plant A and highly 
significant differences (p<0.01) between each sample sites for Plant B.  
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(a) (b) 

 
Figure 5.4: Nonmetric multidimensional scaling (NMDS) plot for the first two dimensions of the Bray-Curtis dissimilarity coefficients of the 
bacterial community terminal restriction fragment length polymorphism (T-RFLP) profiles from the various sampling points in this study of (a) 
Plant A, stress = 0.09839739 and (b) Plant B, stress = 0.1145624. Grey cross represents the unique relative abundance of terminal-restriction 
fragments in each T-RFLP profile. Profile sample sites with the replicate number represents the T-RFLP profile ordination. Abbreviations: RI, 
raw influent; BD, wastewater before disinfection stage; FE, final effluent discharged; US, upstream of final effluent discharge site on the river; 
DS, downstream of final effluent discharge site on the river.  
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(a) (b) 

 
Figure 5.5: Dendrogram plot of Bray-Curtis dissimilarity coefficients of the bacterial community T-RFLP profiles from the various sampling 
points in this study of (a) Plant A (b) Plant B. Abbreviations: RI, raw influent; BD, wastewater before disinfection stage; FE, final effluent 
discharged; US, upstream of final effluent discharge site on the river; DS, downstream of final effluent discharge site on the river. 
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Table 5.1: Mean terminal-restriction fragments (T-RF) richness (S) of the various sampling 
points in this study from Plant A and Plant B. Each T-RF is the mean (n=3) size upon 
normalization, alignment, alignment correction, systematic differences detection. 
 

 RI BD FE US DS 
Plant A 16 13 24 18 20 
Plant B 9 7 5 16 6 
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6.1 Draft genome sequence of an Acinetobacter sp. PT1 
reconstructed from metagenomic sequences of 
wastewater and river samples in Durban, South Africa 

6.1.1 Abstract 

Acinetobacter sp. have been reported to be ubiquitous in the environment, many of which may 

be pathogenic and/or express multidrug resistance. Here, we report the 2.324 Mb draft genome 

sequence of the Acinetobacter sp. PT1, reconstructed from the metagenomes of wastewater 

and river samples collected in the city of Durban, South Africa. 

 

 

6.1.2 Genome announcement 

Acinetobacter is a complex genus which includes Gram-negative, non-motile, aerobic 

coccobacilli bacteria that are able to inhabit several ecological niches including soil, water, 

animals and humans (1). Alarmingly, A. baumannii have been associated with nosocomial 

infections, with increasing number of multi-drug resistant strains resulting in high rates of 

mortality and long periods of hospitalization (2, 3). Here, we present a draft genome of an 

Acinetobacter sp. PT1 which was obtained from multiple metagenomic sequences of 

wastewater samples collected at various treatment stages from a wastewater treatment plant 
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(WWTP) in Durban, South Africa as well as samples from the river receiving treated effluent 

discharge from this WWTP. 

 

Total DNA was extracted from each of the wastewater samples using the Power Water DNA 

isolation kit (MoBio Laboratories, Carlsbad, CA, USA). Using a whole-genome shotgun 

strategy, the metagenomic libraries were prepared using the GS FLX Titanium Rapid Library 

Preparation Kit (Roche, USA) and sequenced with a Roche 454 genome sequencer (GS FLX 

titanium) pyrosequencing system at the National Genomics Platform (Technology Innovation 

Agency, South Africa). De novo cross assembly was carried out using IDBA_UD (4) and 

subsequently, bins were generated from binning of the assembled contigs based on 

metagenomic read coverage, tetranucleotide frequency and the occurrence of unique marker 

genes using MaxBin (5). CheckM (6) estimated the completeness of the draft genome to be 

75% with 3% contamination. Our search of the contigs bin against all bacterial and archaeal 

genome sequences available in the GenBank database (February 2016) using BLASTn (7) 

showed best hits for Acinetobacter spp. 

 

The draft genome is 2,324,032 bp with 1217 contigs (ranging from 1 to 7.9 kb) and an average 

GC content of 42% (with N50 value of 2011). Gene prediction and functional annotation of the 

draft genome performed using the RAST server (8) placed PT1 to share an ancestral node with 

the A. johnsonii cluster which further shared an ancestor with the A. lwoffii, A. schindleri, 

Acinetobacter sp. HA cluster based on 1327 and 1513 different cluster signatures, respectively, 

suggesting that PT1 is closely related to A. johnsonii. Additionally, RAST annotated 35 RNA 

genes, whilst 2250 protein-coding sequences were assigned to 278 SEED subsystem categories. 
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In addition to the expected genes encoding catabolism, biosynthesis, and stress response, the 

draft genome was annotated with genes encoding prophages, transposable elements and 

plasmids, and 15 genes under virulence, disease and defense category. ARG-ANNOT (9) 

identified several resistance genes encoding β-lactamases (blaOXA-211, blaOXA-212 and blaOXA-309), 

macrolide resistance (mphE and msrE), and tetracycline resistance determinant (tet39), which 

have been reported to be found in several Acinetobacter species (10). 

 

Nucleotide sequence accession number(s) 

The sequences from the whole-genome shotgun project investigating Acinetobacter sp. PT1 

have been deposited in DDBJ/EMBL/GenBank and is currently under review with submission 

no. SUB1581611 and awaiting designation of accession and version no. 
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6.2 Draft genome sequence of a Polynucleobacter 
necessarius PT2 reconstructed from metagenomic 
sequences of wastewater and river samples in Durban, 
South Africa  

6.2.1 Abstract 

Polynucleobacter necessarius spp. have been reported to be ubiquitous in freshwater 

environment, many of which have been reported to be endosymbiont of the ciliate protist 

Euplotes aediculatus. Here, we report the 1.414 Mb draft genome sequence of the P. 

necessarius PT2, reconstructed from the metagenomes of wastewater and river samples 

collected in the city Durban, South Africa  

 

 

6.2.2 Genome announcement 

The Polynucleobacter genus falls under the Proteobacteria phylum, under the Beta-

proteobacteria class and is affiliated with the Burkholderiaceae family. The genus, which 

harbors Gram-negative, non-motile, rod-shaped bacteria was originally established by 

Heckmann and Schmidt in 1987 (1).  Organisms from this genus have been reported to be 

cytoplasmic endosymbionts of the ciliate protist Euplotes aediculatus. To date, there are only 

four members under this genus viz. P. necessarius, P. cosmopolitanus, P. rarus and P. 

acidiphobus, and by definition, the genus would have been designated as Candidatus (2). Here, 
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we present a draft genome of a Polynucleobacter necessarius PT2 which was obtained from 

multiple metagenomic sequences of wastewater samples collected at various treatment stages 

from a wastewater treatment plant (WWTP) in Durban, South Africa as well as samples from 

the river receiving treated effluent discharge from this WWTP. 

 

Total DNA was extracted from each of the wastewater samples using the Power Water DNA 

isolation kit (MoBio Laboratories, Carlsbad, CA, USA). Using a whole-genome shotgun 

strategy, the metagenomic libraries was prepared using the GS FLX Titanium Rapid Library 

Preparation Kit (Roche, USA) and sequenced with a Roche 454 genome sequencer (GS FLX 

titanium) pyrosequencing system at the National Genomics Platform (Technology Innovation 

Agency, South Africa). De novo cross assembly was carried out using IDBA_UD (3) and 

subsequently, bins were generated from binning of the assembled contigs based on 

metagenomic read coverage, tetranucleotide frequency and the occurrence of unique marker 

genes using MaxBin (4). CheckM (5) estimated the completeness of the draft genome to be 

68% with 3% contamination. Our search of the contigs bin against all the bacterial and archaeal 

genome sequences available in the GenBank database (February 2016) using BLASTn (6) 

showed best hits for Polynucleobacter necessarius. 

 

The draft genome is 1,414,206 bp with 729 contigs (ranging from 1 to 11.5 kb) and an average 

GC content of 45.6 % (with N50 value of 2045). Gene prediction and functional annotation of 

the draft genome performed using the RAST server (7) placed PT2 to be related with the 

1,560,469 bp P. necessarius subsp. necessarius STIR1 (accession no. NC_010531) (8), which 

shared an ancestral node with the 2,159,490 bp P. necessarius subsp. asymbioticus QLW-
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P1DMWA-1T (accession no. NC_009379) (2), based on 859 different cluster signatures, 

suggesting that PT2 is closely related to P. necessarius subsp. necessarius. Additionally, RAST 

annotated 41 RNA genes, whilst 1421 protein-coding sequences were assigned to 219 SEED 

subsystem categories.  

 

In summary, we present the draft genomic sequence of PT2 which is closely related to the 

sequence of P. necessarius species. As the organisms under this genus are known to be both 

symbiotic and free-living, further analysis and comparisons of the draft genome will allow for 

exploration and new insights into the metabolism of the oligotrophic bacteria and their 

ubiquitous ecological roles in freshwater systems. 

 

Nucleotide sequence accession number(s) 

The sequences from the whole-genome shotgun project investigating Polynucleobacter 

necessaries PT2 have been deposited in DDBJ/EMBL/GenBank and is currently under review 

with submission no. SUB1581622 and awaiting designation of accession and version no.  
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Chapter Seven 
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7 General discussion, future developments and 
conclusion 

7.1 Research in perspective 

The magnitude of the global freshwater crisis is underestimated. Clean and safe drinking water 

is indispensable for sustenance, health and dignity of life, whilst freshwater is central to energy 

and food security as well as all ecosystems functions. Continued development of our societies 

profoundly depends on this natural resource. Though international and national efforts have 

illuminated this crisis and certain strategies implemented to safeguard these precious resources 

over the past few decades, continued deterioration of water quality is still a major area of 

concern. This is owing to the continued reduction of the available options of water usage 

(World Economic Forum, 2015). Contamination of surface water resources due to discharge of 

inadequately treated wastewaters has previously been indicated as an important topic requiring 

continued investigations. Often, these discharges introduce large amounts of organic matter 

and nutrients which could lead to eutrophication and temporary oxygen deficiencies, ultimately 

disrupting the natural biotic community structure and its important ecological functions. In 

addition, pathogenic microorganisms present in the discharged wastewater increases public 

health risks due to their disease causing potential (Corcoran et al., 2010). This could result in 

increased cases of diseases such as dysentery, cholera, skin infections and typhoid fever in a 

country like South Africa with an already stressed public health system. This is further 

compounded by the increasing cases of multidrug resistant organisms, with consequent 

increase in morbidity and mortality (Department of Environmental Affairs, 2016). It is 
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therefore imperative that continued monitoring of wastewater treatment plants (WWTPs) and 

its treated effluent being discharged into the environment is conducted to gain important 

understanding of the public health implications to the population serviced. This will allow for 

implementation of sustainable wastewater treatment strategies, thereby safeguarding the 

limited freshwater resources (Department of Environmental Affairs, 2016).  

 

Hence, the main focus of this study was to investigate the role of two urban wastewater 

treatment plants in the dissemination of antibiotic resistant bacteria (ARB) and antibiotic 

resistance genes (ARGs) into the receiving aquatic systems, as well as the general impacts of 

effluent discharge on the aquatic ecosystem functioning through the use of next-generation 

sequencing coupled with metagenomic approach.  

 

Results of the bacterial community composition and diversity analysis presented in Chapters 

two, three and four revealed changes in the community composition upon treatment of the raw 

wastewaters received by both WWTPs. Members of the Proteobacteria phyla was observed to 

dominate the bacterial communities in effluents of both WWTPs as well as in both urban and 

suburban effluent-receiving rivers investigated in this study. Dominance by the Proteobacteria 

phyla has been reported in previous studies investigating the microbial communities of water 

treatment plants, such as targeting the 16S rRNA gene of samples collected from WWTPs 

(Miura et al., 2007; Silva et al., 2010), DNA cloning of activated sludge (Snaidr et al., 1997), 

microarray analysis of biological wastewater treatment reactors (Xia et al., 2010), 

metagenomic analysis of different WWTPs (Hu et al., 2012) and even drinking water treatment 

plants (Shi et al., 2013). Furthermore, previous studies investigating different ecosystems such 
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as artic river sources (Kolmakova et al., 2014), soil (Roesch et al., 2007) and freshwater sources 

(Ghai et al., 2011) also saw dominance of the Proteobacteria phylum. Predominance of this 

phylum could be explained by the fact that it comprises of one of the most phylogenetically 

and metabolically versatile group in the Bacteria domain (Ettema and Andersson, 2009) and is 

known to typically occupy an average of 40% of a given bacterial population (Nemergut et al., 

2011). Hence, as WWTPs and rivers present with an ever changing environment, such as the 

composition and concentration of nutrients and/or pollutants, the observation of dominance by 

this phylum across all samples is not surprising. An overall decrease in the relative abundance 

of Proteobacteria from 51% (in raw influent) to 44% (in treated effluent sample) was observed 

in Plant A. In contrast, Plant B saw an overall increase in the relative abundances of 

Proteobacteria from 45% (in raw influent) to 84% (in treated effluent sample). In Plant A, a 

15% decrease in the relative abundance of members of the Proteobacteria phylum from 

upstream (80%) to downstream (69%) of the effluent-receiving (suburban) river was observed. 

Conversely, relative abundances of members of the Proteobacteria phylum saw a 36% increase 

from the natural baseline population in the river receiving Plant B effluent discharges, shifting 

from 61% upstream to 83% downstream of the urban river. These differences could be 

attributed to geographical environmental factors and overall ineffectiveness of the treatment 

process adopted by the different WWTP. Besides dominance by Proteobacteria, high 

abundance of several other phyla was seen in both WWTPs as well as in both urban and 

suburban rivers receiving the treated effluent from these plants, including members belonging 

to the Bacteroidetes, Actinobacteria, Verrucomicrobia and Firmicutes phyla. Detection of 

Bacteroidetes, Actinobacteria and Firmicutes has been well documented in recent studies 

investigating WWTPs, such as untreated wastewaters (Shanks et al., 2013), swine WWTP (Da 

Silva et al., 2015), anaerobic reactor digesting activated sludge from WWTP (Guo et al., 2015), 

tannery WWTP (Wang et al., 2013) and activated sludge of a WWTP in Hong Kong (Yu and 
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Zhang, 2012). Additionally, members of these phyla have also been reported in studies 

investigating river (Jordaan and Bezuidenhout, 2013; Kolmakova et al., 2014; Sánchez-Andrea 

et al., 2011; Wu et al., 2012), lake sediments (Sauvain et al., 2013), mangrove (Andreote et al., 

2012) and soil (Foong et al., 2010; Zhang et al., 2015) sources. However, it has been suggested 

that the core human microbial signature is composed of Firmicutes, Bacteroidetes, 

Actinobacteria, and Proteobacteria (Buffie and Pamer, 2013). Although, members of the 

Verrucomicrobia phylum have not been widely reported in WWTP environments, studies have 

indicated dominance by this phyla in aquatic sources (Brown et al., 2015; Satinsky et al., 2015). 

Hence, detection of these phyla from both WWTPs and effluent receiving rivers is not 

surprising. However, shifts in the relative abundances in comparison to the natural population 

of these phyla in both effluent-receiving rivers (upstream) demonstrate that these WWTPs 

disrupt the natural bacterial community composition in the respective receiving river sources. 

 

This was also observed from the results in Chapter five where overall, there was a difference 

in the composition, evenness and diversity indices of the bacterial communities observed across 

all samples. Here, the bacterial composition for Plant A was higher in the final effluent 

discharged than in the raw influent received as well as in the effluent-receiving rivers 

suggesting that the treatment was not efficient in reducing the bacterial load. Analysis of the 

bacterial communities with more sample sites during the various process and the 

physicochemical parameters of the wastewater might assist in confirming whether or not the 

increase in the bacterial richness and diversity in the final effluent discharged is a result of the 

ineffectiveness of the treatment process. In contrast, Plant B resulted in significantly altered 

bacterial community composition and diversity downstream of the receiving river. The most 

striking effect was the absence of bacterial species present in upstream sample of the effluent-
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receiving river compared to the downstream sample. In addition, downstream sample was 

observed to have relatively the same community composition as the wastewater final effluent 

discharged. The results illustrates the concept of biotic homogenization and suggests that 

human modifications of the environment are reducing the biological richness that exist in 

natural ecosystems and consequently only a subset of naturally occurring species are constantly 

being selected for as a result of the human-altered ecosystems (McKinney 2008; Baiser et al. 

2012). Effects of this phenomenon has been suggested to result in a more homogenized 

biosphere with lower diversity on regional and global scales (McKinney and Lockwood, 1999). 

Therefore, our results suggests that Plant B’s effluent may be a driving force for biotic 

homogenization of bacterial communities in receiving river and may lead to negative 

implications on the important urban river ecosystem functions. 

 

Results presented in Chapter two highlighted the potential of wastewater effluents in the 

dissemination of potential pathogenic bacteria into the environment even at low relative 

abundances. Though the abundance and diversity of the observed potential pathogens declined 

as a result of the treatment process in both WWTPs, up to 19 genera of pathogenic bacteria 

were still detected in final treated effluent samples. These included Legionella, Acinetobacter, 

Escherichia, Listeria, Neisseria, Pseudomonas, Salmonella, Shigella, Staphylococcus, 

Streptococcus, Vibrio and Yersinia. The presence of Acinetobacter baumannii and Legionella 

pneumophila in high frequencies poses potential public health risk as they can easily be 

disseminated into the river systems. Acinetobacter baumannii strains have previously been 

reported to be present in wastewaters receiving hospital discharges (Ferreira et al., 2011; Zhang 

et al., 2014) with only a few studies reporting their detection elsewhere in the environment (El-

Sayed, 2016; Girlich et al., 2010; Hrenovic et al., 2014). The bacterium has been reported as 
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one of the most important human pathogens to cause nosocomial pneumonia and bacteraemia 

in patients admitted in the intensive care unit (Gaynes and Edwards, 2005; Kanafani et al., 

2003; Paul et al., 2005; Wisplinghoff et al., 2004) followed by skin, soft tissue, and urinary 

tract infections (Bergogne-Bérézin and Towner, 1996; Gales et al., 2001) and secondary 

meningitis (Falagas et al., 2007; Ng et al., 2006) globally. Furthermore, the number of reports 

of multidrug resistant A. baumannii in hospitals has been steadily increasing (Dijkshoorn et al., 

2007).  

 

Detection of these potential pathogenic genera in the final treated effluent could be explained 

by the results presented in Chapter three, where chlorination was found to be ineffective in 

reducing the pathogenic population due to the presence of several genes involved in the 

bacterial pathway of glutathione metabolism (Chao et al., 2013), which could offer protective 

function to these organisms (Chesney et al., 1996). The widely accepted and proposed theory 

of glutathione metabolism in eukaryotes is by the transfer of these genes from bacteria via the 

ancestral predecessor of mitochondria during evolution (Fahey et al., 1984). This suggests that 

the modern relatives of the ancestral predecessor of mitochondria, members of the alpha-

proteobacteria class, should house homologous glutathione biosynthesis genes. Moreover, 

because the nutrient levels present in treated wastewaters prior to the disinfection treatment 

stage should be at low levels, starvation of bacterial species is expected to stimulate glutathione 

synthesis and subsequently enhance chlorine resistance (Saby et al., 1999). Additionally, genes 

involved in glutathione metabolism has been said to be indirectly involved in the regulation of 

several oxidation resistant systems, such as OxyR, SoxR and SOS systems (Saby et al., 1999), 

all of which were observed in high abundance in the metagenomes of both WWTPs. 

Furthermore, genes involved in EPS synthesis, although more related to biofilm production, 
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could also provide protective functions (Ryu and Beuchat, 2005) and were also observed in the 

metagenomes of both WWTPs. Therefore, the presence of these genes encoding protective 

functions could explain the inefficiency of chlorination for inactivation and reduction of the 

potential pathogens, hence their detection in the final treated effluent. 

 

Annotation, abundance and diversity analysis of genes encoding for antibiotic resistance from 

the results presented in Chapters two, three and four also revealed changes upon treatment of 

the raw wastewaters received by both WWTPs. Diversity indices calculations consistently 

indicated a reduced diversity of ARG types upon wastewater treatment in both WWTPs. This 

was also observed with PCoA of the ARGs type profiles, with each of the ARG type profiles 

showing separate clustering between the various wastewater samples. Conversely, slight 

differences were detected between the upstream and downstream samples along both effluent-

receiving rivers. However, no obvious differences between the natural baseline of ARG types 

in influent samples compared to the final treated effluents and downstream of the effluent-

receiving rivers was observed. These observations indicated that the ARGs load from both 

WWTPs investigated in this study did not have a detectable influence on both the effluent-

receiving rivers. This result is in contradiction to the fact that WWTPs represent the main sites 

through which ARGs are released into the environment (Marti et al., 2014). However, a recent 

study by Munck and colleagues (2015) suggested that the abundant WWTP resistome is only 

disseminated, to a very limited extent, to other microbial communities in differing 

environments. Furthermore, the study suggested that members of the WWTP core resistome 

rarely take part in gene exchange networks with human pathogens as mobilization seems to be 

acting as the main barrier preventing the spread of ARGs (Munck et al., 2015). Hence, the 

findings of this study suggest that the discharge of treated wastewater effluents into receiving 
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rivers, though introduce ARGs into aquatic sources, did not contribute to increased levels of 

the natural ARGs. This relatively stable abundance of ARGs could be attributed to the ongoing 

discharge of inefficiently treated wastewaters by both WWTPs, resulting in an already 

compounded levels of ARGs within these aquatic sources. Hence, future studies should attempt 

to corroborate this speculation. 

 

Nonetheless, the proportions of the ARGs identified in this study were diverse and comparable 

to the results from previous studies investigating activated sludge (Zhang et al., 2011), sewage 

effluent (Port et al., 2012), plasmids recovered from WWTP (Li et al., 2015), non-hospital 

medical care facility (Bäumlisberger et al., 2015) and drinking water treatment plants (Chao et 

al., 2013; Huang et al., 2011; Xi et al., 2009). Specifically, ARGs conferring resistance to the 

elfamycin and aminocoumarin class of antibiotics was observed to be the most abundant across 

all wastewater metagenomes from both WWTPs as well as in the respective receiving river 

bodies. The aminocoumarin family of antibiotics inhibits the beta sub-unit of DNA gyrase 

which is essential in cell division (Galm et al., 2004). The elfamycin family of antibiotics 

inhibits protein synthesis of Gram-negative bacteria by interacting with elongation factor Tu 

(Hall et al., 1989; Vogeley et al., 2001; Wolf et al., 1974). Coincidentally, variants of the 

elongation factor Tu were the dominant type of elfamycin resistance gene across the 

wastewater bacterial communities of both WWTPs. Though the elfamycin class of antibiotics 

are not commonly used in treatment of human diseases due to its narrow spectrum against 

human pathogens (Miele et al., 1994), it is largely applied as a growth promoting agent in 

animals owing to its excellent activities (Brötz et al., 2011; Maiese et al., 1989). Though, 

aminocoumarin is used in the treatment of human diseases, it is also largely applied for 

treatment of Stapholococcal infections, cholera infections and treatment of bovine mastitis in 
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animal food production (Economou and Gousia, 2015; Marshall and Levy, 2011). Therefore, 

high abundance of these ARGs across all the metagenomes analysed in this study suggests that 

a high percentage of the wastewaters received by both WWTPs could be from surrounding 

animal feed industries with domestic, hospital and other industrial wastewaters contributing to 

a relatively small percentage. This reason could also partially explain the coinciding high 

occurrence of genes conferring resistance to tetracycline class of antibiotics as tetracycline is 

commonly used for livestock purposes in South Africa (Eagar et al., 2012). Furthermore, 

studies suggests that sources of tetracycline resistance genes could result from clinical (Agersø 

and Guardabassi, 2005) or animal sources (Agersø and Petersen, 2007) and are common 

amongst Acinetobacter spp. (Hamidian et al., 2016), which is a cause for concern with the 

increasing threat in hospitals from multidrug-resistant Acinetobacter strains (Dijkshoorn et al., 

2007). The occurrence of these particular families of antibiotic could also be due to their 

ineffective biodegradation during the wastewater treatment process and subsequent selections 

at a low concentrations, persisting in the treated effluents as previously suggested (Gullberg et 

al., 2011). Overall, the ARGs types detected in the wastewater samples of both WWTPs as 

well as in the effluent-receiving river bodies were associated with the three common antibiotic 

resistance mechanisms viz. extrusion by efflux pumps, antibiotic inactivation and cellular 

protection. 

 

Recovery of microbial genomes from the assembly of metagenomic sequence data is of 

fundamental value to improving our general understanding of microbial ecology and 

metabolism. This is especially significant in elucidating the functional potential of genomes 

representing important unculturable microbial lineages that carry out core functions of complex 

ecosystems such as in aquatic sources. Therefore, Chapter six aimed to recover draft genomes 
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with as high completeness as possible from the metagenomic datasets in this study. 

Polynucleobacter sp. was recovered with an estimated 68% completeness from the 

metagenomic datasets. The Polynucleobacter genus falls under the Proteobacteria phylum, 

under the Beta-proteobacteria class and is affiliated with the Burkholderiaceae family. As 

Proteobacterial species dominated the metagenomes across all samples, it is not surprising that 

recovery of members within the phylum was observed. This genus, which harbours Gram-

negative, non-motile, rod-shaped bacteria was originally established by Heckmann and 

Schmidt in 1987 (Heckmann and Schmidt, 1987). Organisms from this genus have been 

reported to be cytoplasmic endosymbiont of the ciliate protist, Euplotes aediculatus. To date, 

there are only four members under this genus viz. P. necessarius, P. cosmopolitanus, P. rarus 

and P. acidiphobus, and by definition, the genus would have been designated as Candidatus 

(Meincke et al., 2012). Hence, the recovery of PT2 draft genome, identifications and 

annotations of genes encoded may elucidate the metabolic potential of this organism and 

contribute to further understandings of its symbiosis with protist. As expected, Acinetobacter 

sp. PT1 was recovered with an estimated 75% completeness, since the genus was observed to 

be dominant across the metagenomic datasets in this study. Acinetobacter is a complex genus 

which includes Gram-negative, non-motile, aerobic coccobacilli bacteria that are able to inhabit 

several ecological niches including soil, water, animals and humans (Warskow and Juni, 1972). 

In addition to the expected genes encoding for catabolism, biosynthesis, and stress response, 

the PT1 draft genome was annotated with genes encoding prophages, transposable elements 

and plasmids, with genes under virulence, disease and defence category also detected. 

Furthermore, several resistance genes encoding for β-lactamases (blaOXA-211, blaOXA-212 and 

blaOXA-309), macrolide resistance (mphE and msrE), and tetracycline resistance determinant 

(tet39), which have been reported to be found in several Acinetobacter species (Figueiredo et 

al., 2012) were also identified in the PT1 draft genome. Identification of the draft genome with 
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the GenBank database showed best hits for Acinetobacter spp. Furthermore, resolving to the 

species level placed PT1 to be closely related to well-studied A. johnsonii, suggesting PT1 to 

be members of the A. johnsonii species. Alarmingly, A. baumannii have been associated with 

nosocomial infections, with increasing number of multi-drug resistant strains, resulting in high 

rates of mortality and long periods of hospitalization (Dijkshoorn et al., 2007; Falagas et al., 

2006). Hence, the recovery of PT1 draft genome and annotations of genes identified would 

contribute to further understandings of this genus and provide possible targets for treatment of 

its related species.  

 

 

7.2 Potential for future developments 

The omics field is rapidly expanding due to the exponentially decreasing cost of sequencing 

and widespread availability of sequencers and mass spectrometers coupled with the seemingly 

unlimited breadth of applications. However, generating, processing, analysing, interpreting 

data and inferring biological meaning can still take months to years and requires substantial 

technical and general expertise in large teams due to the swift evolving nature of these 

techniques. In this study, only one of the five omic based approaches (meta-genomics, -

transcriptomics, -proteomics, -bolomics and -phenomics) was utilised. Although the wealth of 

information generated from metagenomics is quite substantial and proven to be highly 

informative, the DNA sequence-based method still has limitations. For example, taxonomic 

resolution can only go up to species level at best. However, it is known that many important 

phenomena such as the acquisition of antibiotic resistance genes occurs at the strain level.  
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Therefore, in order to understand the evolutionary and epidemiological relationships among 

bacterial pathogens, whole genome analysis has been previously used to identify and attribute 

the outbreak sources for many bacterial pathogenic strains, including Escherichia coli O104 

(Rasko et al., 2011a), Vibrio cholerae (Hendriksen et al., 2011), Klebsiella spp. (Snitkin et al., 

2012) methicillin resistant Staphylococcus aureus (MRSA) (Price et al., 2012) and Bacillus 

anthracis (Rasko et al., 2011b). However, an approach with the power to resolve complex 

microbial communities at a strain level to determine genomic variations has only recently been 

proposed by Eren et al. (2013). This strategy termed “oligotyping” is a supervised 

computational method that allows for investigation in the diversity of closely related but 

distinct bacteria through canonical approaches in the final operational taxonomic units 

established from amplicon sequencing of the conserved 16S ribosomal RNA gene data (Eren 

et al., 2013). This approach has been applied in studies investigating the structure of the vaginal 

microbiome and was able to determine 46 unique oligotypes within the Gardnerella vaginalis 

species (Eren et al., 2011). Another approach, demonstrated by the Human Microbiome Project, 

showed that mapping of shotgun sequencing reads from tongue samples to genomes of 

Streptococcus mitis was able to reveal the absence or presence of genomic islands within strains 

of the same species identified from individuals enrolled in the project. These genomic islands 

were shown to contain multiple and functionally coherent genes that were gained and lost 

together, suggesting a mechanism for individual-specific and body site-specific functional 

specialisation of S. mitis (Consortium, 2012). In the same project, where greater shotgun 

sequencing depths of the microbiome was analysed, determination of single-nucleotide 

polymorphisms (SNPs) were possible from human stool samples and used for comparisons to 

high quality known reference genomes. This analysis revealed that subject-specific SNPs 

variations tend to remain stable for up to one year and was comparatively more conserved than 

the overall species abundance. Furthermore, ranking of species and genes in the gut by the 
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degree of SNP between the individuals revealed that antibiotic resistance genes were amongst 

the most variable whilst the housekeeping genes were the most conserved (Schloissnig et al., 

2013). Therefore, further analysis of the metagenomic datasets sequenced in this study should 

move towards this direction in order to further elucidate the pathogenic bacterial populations 

in the metagenomes.  

 

Conversely, the importance of integrated multi-omic studies have recently gained the spotlight 

leading to some momentum and future investigations should move towards this direction. For 

example, a study aimed at targeting the functional role of Oceanospirillales species as well as 

other active members of the indigenous microbial community following the 2010 Deepwater 

Horizon oil spill which has potential in aiding bioremediation of the spillage. This was achieved 

by utilising the combination of meta-genomics, -transcriptomics as well as single-cell 

genomics. Metagenomic and metatranscriptomic sequencing revealed that genes for motility, 

chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed 

in the hydrocarbon plume samples compared with uncontaminated seawater collected from 

plume depth. In contrast, although genes coding for degradation of recalcitrant compounds, 

such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, 

were identified from the metagenomes, they were expressed at low levels or not at all based on 

analysis of the metatranscriptomes. Isolation and genome sequencing of two Oceanospirillales 

single cells revealed genes coding for n-alkane and cycloalkane degradation with near-

complete pathway for cyclohexane oxidation and supported the detection in both metagenome 

and metatranscriptome data analysis. Furthermore, the draft genomes also included genes for 

chemotaxis, motility and nutrient acquisition strategies which were also determined in the 

metagenomes and metatranscriptomes (Mason et al., 2012). Therefore, integrated omics allows 
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for simultaneous enhanced understanding of not only the community structure but also the in 

vivo function and dynamics of the community studied. Hence, future studies should entail a 

multi-omic approach utilizing meta-genomic, -transcriptomic as well as single-cell genomics. 

As demonstrated in this study, metagenomics would allow for elucidation of the complex 

bacterial communities present, the small pathogenic population, metabolic potential of the 

communities as well as the antibiotic resistome, whilst metatranscriptomics would validate the 

functional genes determined from metagenomics and indicate which of the enriched genes are 

expressed resulting in the protective functions and resistance to treatment described in Chapter 

three. Furthermore, metatranscriptomics and single-cell genomics would reveal the resistance 

genes expressed and mechanisms of horizontal gene transfer as well as isolation and subsequent 

reconstruction of complete genomes of the small pathogenic population, respectively. 

Combined, these results will allow for complete understanding of pathogenic population within 

the particular WWTP of concern and provide knowledge which may be useful when designing 

effective wastewater treatment strategies, thereby reducing the risks associated with 

improperly treated wastewaters discharged into the receiving rivers. Hence, it has been 

suggested that simultaneous generation of meta-omics data is crucial to fully understand the 

functional capacity of microbial communities (Muller et al., 2014). Furthermore, 

systematically obtained temporal- and spacial-resolved omic datasets will allow for 

establishment of structure to function relationships by identifying key members and its 

functions. Such knowledge also offers a starting point in potentially novel biological-functional 

discoveries and is attractive for biotechnological applications (Narayanasamy et al., 2015).  

 

Next-generation sequencing platforms utilising single molecule real-time technology such as 

the SMRT from Pacific Biosciences and MinION from Oxford Nanopore Technologies are 
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said to be capable of producing sequences with read lengths greater than 1000 bp and produce 

reads of up to 99.99% consensus accuracy, overall cost-effectiveness and small pocket-sized 

mobility, surpassing some of the limitations from the Illumina and Roche platforms. This 

coupled with real-time data acquisition makes both platforms attractive for future 

environmental monitoring applications. Despite these advantages, these platforms have not 

been widely adopted to date in surveys of highly diverse bacterial communities due to initial 

studies revealing high rates of randomly distributed sequencing errors which could lead to 

artificially inflated community diversity (Schloss et al., 2016). Nevertheless, recent studies 

employing the SMRT platform with improved sequencer hardware and chemistry yielded 

improved accuracy with read lengths greater than 1400 bp (Marshall et al., 2012; Mosher et 

al., 2014). Though riddled with a high sequence error rate of approximately 30%, sequencing 

results produced by laboratories which participated in the MinION Access Program utilising 

the platform in a plethora of different environmental and human samples showed that MinION 

could generate single read lengths of up to 5500 bp in a single run (Ashton et al., 2015; Madoui 

et al., 2015; Mikheyev and Tin, 2014). Therefore, future investigations in determining the 

bacterial pathogens should utilised these emerging NGS platforms in combinations with the 

established Illumina NGS platforms. These studies would allow for technical limitations to be 

overcome and will ultimately open up new avenues of monitoring water quality and ensuring 

sustainable wastewater treatment.  
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7.3 Concluding remarks 

Microbial water quality assessment through NGS-based molecular detection of community 

compositions, potential pathogens as well as genes encoding for antibiotic resistance or 

important biogeochemical processes, have the potential to be translated into actionable data for 

water quality managers. The overall findings of this study demonstrates the usefulness of NGS 

in initial evaluations of microbial contaminants in wastewater effluents during water quality 

assessments as well as the possible impacts on the receiving river bodies. This study indicates 

that urban WWTPs are indeed potential hotspots for antibiotic resistant bacteria and antibiotic 

resistance genes. Furthermore, inefficiency of the treatment process could contribute towards 

the dissemination of potentially pathogenic and multidrug resistant bacteria into the 

environment. Moreover, genes encoding for resistance to major classes of antibiotics detected 

in treated effluents of these urban WWTPs could contribute to the rise in global antibiotic 

resistance. Hence, constant monitoring is crucial to safeguard freshwater resources as well as 

the public human health. However, crucial relationships between the occurrence, detection and 

quantification of nucleic acids in the environment through NGS approaches and potential 

impacts on human or environmental health still needs to be further investigated before profiles 

based on the distribution of microbial genes are relied upon to replace currently used indicator 

organisms and direct pathogen detections. Current frameworks for water quality assessment 

heavily rely upon quantifications of these indicator organisms with decades of literature 

validating its approach coupled with epidemiological data. Hence, future research needs to 

investigate whether the utilization of NGS for water quality assessment can improve the 

existing frameworks.  
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