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ABSTRACT 

Global energy demand is on the rise due to continuous increases in population, 

economic growth, and energy usage. Methane production through anaerobic digestion 

of organic materials provides a resourceful carrier of renewable energy, as methane 

can be used instead of fossil fuels for both heat and power generation and also as 

vehicle fuel, thus cutting down the emissions of greenhouse gases and hence 

contribution in the slowing down climate change. Several studies have been done on 

biogas, but in South Africa, these are biased towards industrial wastewater. Therefore, 

there is need to explore other alternatives for biogas generation. Furthermore, the 

sustainability of anaerobic digestion processes depends on the availability and the 

identification of the optimal substrate. 

The use of cassava in South Africa provides a great potential for the production of 

bioenergy especially biogas, due to its suitable chemical composition. Cassava co-

digested with other feedstock could be an alternative substrate for various 

communities for the production of biogas in South Africa. Since cassava is yet to be 

listed as a staple food crop in South Arica, its peels and other by-products from its 

processing can be suitable for renewable energy production for small medium 

enterprises (SMEs). 

This study’s overall objective was that of establishing the suitability of cassava tubers 

as an alternative source of biomass feedstock for biogas production in South Africa. 

The specific objectives of the study were: 1) Comparing the yield and rate of biogas 

production of cassava peels inoculated with cattle manure using a batch digester 

under anaerobic digestion conditions addressed in chapter four and five of the thesis; 

2) Investigate the biogas yield and rate of different co-digestion ratios of cassava with 

vegetable and fruit waste using batch digestion under anaerobic digestion conditions 

presented in chapter six; 3) Optimize the production of biogas through process 

optimization by maintaining the optimum temperature during fermentation and 

compare inexperiments subjected to different treatment or treatment combinations 

and, 4) While chapter seven addresses the objective of using the experimental results 

to design an upscale system using baseline data information from experiment. 

Several feedstocks (i.e. cassava tuber, cassava peels, vegetable and fruit waste and 

cattle manure) were identified and analysed using the American Standard Methods for 
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Examination of Water and Wastewater (ASTM). Cassava was selected as it has 

several advantages compared to other crops, including the ability to grow on degraded 

land and where soil fertility is low. It also has the highest yield of carbohydrate per 

hectare (4.742 kg/carb) apart from sugarcane and sugar beet, which makes it suitable 

for bioenergy (biogas) generation.  

In the first instance, a batch experiment of were cassava peels were digested 

anaerobically with and without cattle manure to determine whether cassava peels (CP) 

in combination with cattle manure (CM) at different ratios shows better biogas yield. 

The following ratio combinations of mixture were used 100:0, 0:100, 80:20 and 20:80 

(CM:CP). A theoretical methane production was conducted using elemental 

composition and the results were compared with the experimental ones. The test of 

biogas yield was conducted using an anaerobic digester of 600 ml at mesophilic (35 ± 

1 °C) temperature. 

In the second experiment a 50 litres anaerobic digester was used to investigate the 

biogas yield of peeled cassava tuber compared to unpeeled cassava tuber that yield 

biogas of 635.23 L/kg VS and 460.41 L/kg VS respectively. This was based on the 

finding of the first experiments of biogas yield from cassava peels. The biogas yield 

with and without inoculum was measured and the biogas yield were modelled using 

two different models namely modified Gompertz and cone model.  

Finally, in parallel with the previous batch experiments another set of batch 

experiments were carried out under anaerobic conditions at mesophilic (35 ± 1 °C) 

temperature in a 600 ml digester, this experiments was conducted by co-digesting 

cassava (CB) with vegetable and fruit waste (CB:VF) at different ratios (100:0, 60:40, 

40:60 and 50:50). The cumulative biogas yield were modelled for kinetics using 

modified Gompertz model. 

Based on the results obtained from the experimental study cassava co-digested with 

vegetable and fruits at a ratio of 40:60 which was found to produce the maximum yield, 

a mathematical design (upscale system) was designed. This designed biogas plant 

could be located in several communities especially those close to the landfills to 

reduce the cost of transportation from source. 

The study’s results revealed that: 
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• co-digestion influenced biogas production and methane yield. The final 

cumulative methane yields by the co-digestion of CM and CP at the CM:CP mixing 

ratios of 80:20 and 20:80 were 738.76 mL and 838.70 mL respectively. The 

corresponding average daily methane yields were 18.42 mL/day and 20.97 mL/day. 

This indicates that CP enhanced the production of methane in the co-digestion 

process with the 20:80 CM:CP ratio. 

• the feedstock of peeled cassava with inoculum, produced 28.75% more biogas 

yield when compared to peeled cassava without inoculum. This results highlights the 

important of inoculum in the anaerobic digester. 

• peeling the cassava tuber increase the biogas yield by 38% compared to the 

unpeeled tuber 

• cassava biomass co-digested with vegetable and fruit waste increased the 

methane yield compared to the mono-digestion with the highest methane production 

was achieved from the co-digestion of cassava biomass with vegetable & fruit waste 

at 40:60 ratio (CB: VF) 

Although several challenges hampering the smooth implementation of biogas 

generation in South Africa, this study concludes that cassava (peeled and unpeeled) 

co-digested with fruit and vegetables waste has potential to generate biogas thereby 

presenting a substantial opportunity to promote bioenergy production from cassava 

considering in many rural areas the needs for fuel and electricity are not satisfied fully. 

Finally, cassava anaerobic digestion facility at different scales could enhance 

additional benefits like the integration of nutrients and residual carbon into the land as 

fertilizer. 
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: 

INTRODUCTION 

1.1 BACKGROUND 

The energy demand of the world is continually increasing due to the continuous 

increase in the world’s population, economic growth, and energy usage (Hasan et al., 

2012). The global population will likely increase in the next 40 years by 2.5 billion, well 

above the current population range of 6.7 to 9.2 billion (Okudoh et al., 2014). The 

projection indicates that in developing countries, population will rise from 5.4 billion in 

2007 to 7.9 billion in 2050 (Hiv/Aids Junpo and Organization, 2007). Due to the 

increase in population, both developed and developing countries are facing mainly 

issues surrounding the present and future energy security.  Research has shown that 

increase in the energy demand globally is intimately tied to two important trends. First, 

the requirement of energy per person has grown since the 1960s (Ritchie and Roser, 

2014), and second, there is a continuous growth of population energy consumers 

since 2001 (Dekanić et al., 2002). Considering a prediction that the earth’s population 

would have increased to around 9 billion people by 2050 (Béné et al., 2015), there is 

an ongoing effort towards increasing the global supply of energy to meet growing 

demands.  

The most common source of energy is fossil fuel (Council, 2016). Fossil fuel is 

considered a non-renewable source of energy because it cannot be replenished at the 

same time as its consumption rate. From the 19th century onwards, coal has been the 

heavily used fossil fuel (Campbell and Wöstmann, 2013). Coal is widely used for fuel 

and about 36% of the world electricity is produced from coal. With the development of 

different technologies, which has improved the conversion efficiencies, the potential 

of oil became apparent, and thus, making oil and gas a substitute to coal. Since then, 

the world has been heavily reliant on fossil fuels (Kuiper et al., 2007). However, fossil 

fuels as an energy resource are globally believed and accepted to be finite and with 

their discovery and processing regarded as too costly in monetary and energy terms 

to be utilizable (Khamis and Papenbrock, 2014). Moreover, the exploration and 

consumption of fossil fuels have been found to have a significant contribution to 

increased rate of carbon emissions, and this has, in turn, been directly linked to global 
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warming and climate change (Judkins et al., 1993). In the light of these drawbacks, 

renewable energy sources are being explored with the aim of having a viable 

alternative to existing conventional energy sources like fossil fuels. 

Renewable energy sources offer an opportunity to solving present and future energy 

problems. Examples of renewable energy sources include solar, wind, nuclear, 

hydropower, geothermal, and biomass. The major challenge with most renewable 

energy sources however is that their availability is often characterised by high 

variability (Beaudin et al., 2010), thus making them to be only usable when the 

resources are available. Solar and wind energy, for example are dependent on highly 

variable nonlinear local and regional weather patterns. Although nuclear energy is 

known for a high energy generation potential and a relatively little contribution to global 

warming (Linnerud et al., 2011), Uranium, which is the raw material used for 

generating nuclear energy, is considered a naturally unstable element and therefore 

limited in availability (Züttel et al., 2011). In addition, nuclear plants, if not managed 

within regulatory standards, are prone to accidents which could have devastating 

effects on both human beings and the nature. Nuclear energy is also known for 

generating extremely dangerous radioactive wastes. Water availability remains a 

major issue in many countries of the world and this continues to impact the adoption 

of hydro-energy (hydropower plants) (Branche, 2017), especially in water-scarce 

regions. Another major challenge with renewable energy sources is that, harnessing 

their full potential, even when they are available in abundant quantity, could be 

challenging or sometimes impossible. For instance, solar energy is received by the 

earth is about 11 000 times the energy that the global population needs in a year 

(Kuiper et al., 2007, Kannan and Vakeesan, 2016). However, due to high dispersion, 

only a small percentage is recovered for consumption purposes. Geothermal energy 

is location specific and expensive, and may result in the migration of potential 

greenhouse gases and toxic elements below the Earth to the surface and into the 

atmosphere (Hoegh-Guldberg and Bruno, 2010). Consequently, the identification of 

sustainable renewable energy sources that will produce a large volume of energy like 

coal has been a major challenge across the globe. 

Biomass energy is considered as a sustainable renewable energy source (Srirangan 

et al., 2012). This is because biomass is organic material that comes from plants and 
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animals which contains stored energy from the sun and is always available and 

producible.  

Biomass energy is typically harnessed by anaerobically digesting organic degradable 

material for production of gas often referred to as biogas (Nekhubvi and Tinarwo, 

2017). In the past, anaerobic digestion of organic degradable material as a source of 

biogas was used mainly for degradation of waste materials or toxic compounds 

(Appels et al., 2011). However, in recent times, production of biogas from energy crops 

is becoming increasingly popular (Weiland, 2010, Weiland, 2003). Since the 

promulgation of the Renewable Energy Sources Act (REA) in 2000 in Germany, the 

interest in anaerobic fermentation of energy crops as a source of electrical energy has 

increased significantly, coupled with support from relevant stakeholders. In 2002, the 

REA supported the production of electricity from biogas through a refund of 

approximately 0.1023 Euro per kWh (Okudoh et al., 2014). 

On the continent of Africa, there is a significant gap between energy production and 

consumption rates as cities struggle to meet the energy demand of their inhabitants 

(Maltsoglou et al., 2013).  Many African countries spend a large amount of their budget 

on the importation of energy (Winkler, 2005, Galarraga et al., 2011). These funds 

however could be used for development of other areas of the economy.  Lack of a 

constant supply of energy remains one of the factors that critically affects the 

development of industries such as agriculture, manufacturing, mining and tourism on 

the continent. As a result, there is an urgent need to develop renewable energy 

resources, particularly biofuels and biogas, which is considered a non-conventional, 

promising renewable energy carrier (Adelekan and Bamgboye, 2009). According to 

Van Zyl et al. (2011), in South Africa, about 20% of the total land mass of 120 million 

hectares (Mha) is being used for biomass production. It is hoped that this will bring 

about the reduction of dependence on fossil fuels, mitigate the negative social and 

environmental impacts on the lives of the people and the successful optimization of 

the conversion of biomass to energy (Change, 2007). Bio-fuels and biogas 

(considered to be the low carbon fuel sources) offer the best opportunities to the rural 

communities in African countries to meet their energy demand. The advantages of 

biomass energy over other renewable energy sources include the following:  

 Availability of raw material as waste is always generated. 
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 Reduction of waste as organic agricultural waste and municipal solid waste 

(MSW) could be used for energy production. 

 the improvement of environmental quality through CO2 emission reduction 

(Soccol et al., 2011).  

 Reduction of waste disposal to landfill as organic waste in digested for 

generation of valuable energy. 

 Reduction in the cost and effort required for grid extension to remote areas as 

biomass energy systems offers a platform for distributed energy generation 

which in turn provides an opportunity to supply electricity to off-grid rural 

communities. 

 Allows for peak saving rather than the use of gas generators. 

 Reduces political resource use conflicts related to gas installations/ pipelines. 

The disadvantages of biomass energy include the following: 

 Lack of agricultural wastes when the basic crops are no longer grown. 

 Additional work required for harvesting. 

1.2 RATIONALE AND JUSTIFICATION OF STUDY 

In South Africa, coal has been the main source of energy. It provides approximately 

74.8% of the energy in the country (Musango et al., 2011). The other sources of energy 

supply in South Africa include oil, gas, nuclear power, hydropower and renewable 

sources such as wind, solar, biomass and wave power. The percentage distribution of 

energy supply in South Africa is shown in Figure 1-1. 

 

Figure 1-1: Percentage distribution of energy to total primary energy supply in South 
Africa (Musango et al., 2011). 
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In 2002, about 77% of South African energy needs were provided by coal and this has 

remained unchanged over the years (Solangi et al., 2011). The coal industry feeds 

various local industries, about 53% of which goes to the generation of electricity. 

Research has shown that that about 53 billion tonnes of coal reserves are left, which 

will last for only a few decades more, going by the current production rate (Akinyemi 

et al., 2012). The identification of suitable alternative energy sources to coal and 

introduction of a variety of energy mix is thus critical to bridge the gap between energy 

production and rising demand. 

1.3 POTENTIAL AND JUSTIFICATION OF THE USE OF CASSAVA AS AN 

ENERGY CROP 

Cassava is a valuable crop in many African countries (Figure 1-2). Cassava is a 

starchy root crop, with a starch range of 20–35% fresh and 80.6% dry (Wang, 2002, 

Jansson et al., 2009). It is being cultivated in many countries in Africa, America and 

Asia. According to Haggblade et al. (2012), cassava is the second most important 

staple food in African diets. However, it is still a minor plant in South Africa (Okudoh 

et al., 2014). The use of cassava provides great potential for the production of 

bioenergy, especially biogas, due to its chemical composition. A report by the Forum 

for Agricultural Research in Africa (Diaz-Chavez et al., 2010), indicates that there are 

thousands of acres of degraded and unused land in Africa, which can be used for 

cultivating crops such as cassava for the purpose of bio-fuels production on a larger 

scale (Winchester and Reilly, 2015). 

 

Figure 1-2: Global cassava production for  2012 (Okudoh et al., 2014, Faostat, 
2018). 
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Cassava has several advantages compared to other crops. This is because it can grow 

in areas where the land has been degraded and where there is low soil fertility. 

Cassava usually survives and produces better harvests in locations where maize and 

other energy crops will not grow or yield bountifully (Hillocks et al., 2002, Spencer and 

Ezedinma, 2017). It has the highest yield of carbohydrates (4.742 kg/carb) per hectare 

besides sugarcane and sugar beet (Okudoh et al., 2014). According to Gerbens-

Leenes et al. (2009), cassava has a low water footprint of 21 m3/GJ compared to other 

crops. It is drought tolerant and can survive in extreme weather, climatic conditions 

and soil with low nutrients. It also yields well to irrigation or in regions with higher 

rainfall  (Spencer and Ezedinma, 2017, Okudoh et al., 2014). For this reason, it is 

gaining considerable attention in other countries, for example Nigeria, for the 

production of bioenergy (Jansson et al., 2009), specifically, biogas production 

(Ezekoye, 2008). Biomass is considered the best source of renewable energy (biogas) 

and the gas can be used for heating, can be used as fuel and as a natural gas, and 

can also be converted to electricity. Biogas production from cassava biomass is a 

biochemical process that takes places through an anaerobic food chain that involves 

mainly prokaryotes. Biogas production involves various types of feedstock. The quality 

and yield of the biogas produced depend on the feedstock composition (Lim et al., 

2012). 

Several developing and developed countries are faced with a range of problems, of 

which energy security is one (Chu and Majumdar, 2012). The African continent is 

characterised by a huge gap between energy production and consumption profiles 

(Wu et al., 2012). The main issue is that most of the energy produced in Africa is from 

fossil fuel. These fossil fuels have had so much impact on global warming, therefore 

the need to look for bioenergy production from agricultural crop biomass or residues. 

Studies done on biogas in South Africa are biased toward industrial wastewaters 

(Yenigün and Demirel, 2013). This has created the need to research on energy crops 

such as fodder beets and cassava. In recent years energy crops such as fodder and 

cassava has gained momentum in research focus for both food and non-food 

application (Carter et al., 1993, Oladeebo and Oyetunde, 2013). However, in South 

Africa, cassava is not a well-known crop. This is because cassava is not yet 

considered a staple food in the country (Godfray et al., 2010). For this reason, limited 
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information are available on biogas studies from cassava biomass and other energy 

crops (Hall et al., 1982). The non-consideration of cassava as a staple food in South 

Africa however provides an opportunity to explore its energy potential in biogas 

production as it offers no negative impacts on food security. The ability of the crop to 

grow under varying extreme conditions implies that its growth and survival is 

guaranteed in South Africa, if adequate resources are invested.  

Existing studies on cassava, mainly reported in the 1980’s have only focused on the 

production of starch from cassava (Morgan and Choct, 2016). The aim of this study is 

therefore to evaluate the potential of cassava biomass in biogas production through 

anaerobic digestion. To achieve this aim, the effects of the key factors (pH, nutrients, 

temperature, flow rate of feed (loading rate), retention time and type of feedstock) on 

biogas yield (methane gas production) are investigated. Because the cultivation of 

cassava in South Africa is at a very low scale, this research was not limited to cassava 

as the sole substrate. This study thus explores the biogas production potential of 

different co-digestion scenarios. The co-digestion of cassava with other feedstock 

could be an alternative substrate for biogas production in South Africa. Since cassava 

is yet to be listed as a staple food crop in South Arica, cassava, its peels and other by-

products from it processing can be suitable for energy production. 

This study thus explores the use of different cassava parts for biogas production using 

anaerobic digestion.  

1.4 OVERALL AND SPECIFIC OBJECTIVES 

The broad objective of this study is to investigate the suitability of cassava as an 

alternative source of biomass feedstock for biogas production in South Africa. 

The specific objectives of the study are as follows: 

1) To compare the yield and rate of biogas production of cassava peels inoculated 

with cattle manure under anaerobic digestion; 

2) To investigate the biogas yield and rate of different co-digestion ratio of cassava 

with vegetable and fruits waste using batch digestion at anaerobic digestion; 

3) To optimize the production of biogas through process optimization by 

maintaining the optimum temperature during fermentation; 
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4) To compare experimental and predicated biogas yields and develop a 

mathematical model based on the yields obtained; and 

5) To design an upscale system using experimental baseline data information. 

1.5 RESEARCH APPROACH AND METHODOLGY  

The methodological approach to achieving the outlined objectives of this study 

requires large scale and small-scale experiments under anaerobic digestion. This 

enables the establishment of the optimum factors and co-digestion of cassava tuber 

with vegetable and fruit waste with cattle manure (as inoculum) at different ratio under 

various conditions in a batch system. The data obtained from the different substrates 

at different ratios were captured as they provide critical information necessary for the 

simulation and design of upscale biogas digester. A brief methodological framework 

approach used in this study is summarized in Figure 1-3 starting from feedstock 

identification (step 1) till designing a small scale digester (step 5) for five (5) families 

with each family having 8 people: 

 

Figure 1-3: Methodological framework of the study 

 

1.6 RESEARCH SIGNIFICANCE AND CONTRIBUTION TO KNOWLEDGE 

This research focuses on the current gap between biogas production from wastewater 

and energy crop. The huge gap between energy supply and demand coupled with the 

drawbacks of coal and other alternative energy sources give rise to the need for 
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alternative energy generation from drought tolerant plant materials such as cassava. 

However, much research attention has been given to biogas production from industrial 

wastewaters in South Africa (Stafford et al., 2013, Demirel and Scherer, 2008). 

However, biogas production from biomass, especially energy crops have received little 

or no attention (Okudoh et al., 2014). Different varieties of plant in sub-Saharan Africa, 

due to their rich organic content, could serve as potential input material in anaerobic 

fermentation and production of biogas. Energy crops such as cassava have been 

identified as the major crop for biogas production since they are also drought tolerant 

plants that can give good yield in South Africa as well as elsewhere in the regions. 

This research explores cassava, as there is a paucity of research on cassava biomass 

and other energy crops. This study will contribute in establishing an appropriate way 

for biogas quantification regarding the use of unpeeled cassava tuber (UCT) and 

peeled cassava tuber (PCT). Additionally, this study will contribute to knowledge by 

providing information on the suitable feedstock required for an optimum biogas yield. 

To this end, a combination of three kinetic models is employed to establish a suitable 

feedstock for biogas production between UCT and PCT. The development of an 

innovative conceptual design based on the experiments will serve as guide the 

construction of small-scale biogas plants which could assist in bridging the gap 

between energy supply and demand. 

1.7 THESIS STRUCTURE 

This thesis follows the structure of an “Articles format Thesis”, which will consist of 

seven chapters. Four main chapters (3, 4, 5 and 6) are a reproduction of original 

research articles. Chapter 4 has been presented as a conference proceeding, 

chapters 2, 5 and 6 has been published while 3 is under review. Chapter 8 is an overall 

conclusion and recommendation. This thesis is therefore organized as follows (Figure 

1-4): 

Chapter 1 provides an introduction of the thesis, background information of the 

research and the motivation for this research. The aim and objectives of the research 

are outlined in this chapter.  

Chapter 2 provides a comprehensive literature review focusing on the biogas process 

extending the possibilities of conversion biomass into biogas from different biomass 
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and the current gap to be filled in order to produce biomass (cassava and vegetable 

& fruits) based biogas. 

Chapter 3 outlines the identification and characterization of potential feedstock for 

biogas production through anaerobic digestion, including the theoretical review into 

the biogas yield using substrates elemental composition. 

Chapter 4 presents a comparison of mono-digestion and co-digestion of animal 

manure and cassava peel for biogas production in South Africa under anaerobic 

digestion, using bench batch experiment.  

Chapter 5 focuses on the comparison and kinetic modelling of biogas production 

through anaerobic digestion of whole and peeled cassava tubers at mesophilic 

temperature using small scale batch experiment. It also presents the effect of 

presence of inoculum in the anaerobic digestion of unpeeled and peeled cassava on 

the biogas yield and rate. 

Chapter 6 presents the results of biogas yield through co-digestion of cassava 

biomass and vegetable & fruits waste. The optimum biogas yield through co-digestion 

ratio change at mesophilic temperature (37 °C) was compared.  

Chapter 7 presents the design of a low-cost biogas digester based on the optimum 

production obtained from the bench and laboratory results chapter 4, 5, and 6. This 

will enable the fabrication of the digester with the design specifications.  

Chapter 8 summarizes the main research findings and presents the conclusions and 

recommendation for future research work. 
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Figure 1-4: Framework of the thesis outline 
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ABSTRACT  

Due to the increase in population, both developed and developing countries are facing 

mainly issues surrounding the future energy security and a better use of natural 

resources. Such present and future energy problems can be solved by the use of 

renewable energy sources. Among several renewable energy sources is a sustainable 

means of anaerobic digestion for production of gases. In the past, anaerobic digestion 

as a source of biogas was used mainly for degradation of waste materials or toxic 

compounds. However, recently, there has been great interest in producing biogas from 

energy crops. This paper presents an overview of state-of-the-art and future 

viewpoints related to the anaerobic digestion process for biogas production.  

Keywords: Biogas, Biomass, Anaerobic Digestion, Methane, Renewable Energy 

JEL Classifications: Q4, P28 

 

2.1 INTRODUCTION 

Due to the fluctuating cost and the environmental effects of conventional sources 

(especially fossil fuels) of energy, there is an emergent interest in the use of renewable 

energy.  As such, the adoption of renewable energy is gradually becoming significant 

due to the negative effects of greenhouse gas emissions (GHG) on the environment 

(Naik et al., 2010, Babatunde et al., 2018, Ighravwe and Babatunde, 2018). Another 

driver for the use of renewable energy sources is sustainability. It has been said that 

the conventional sources have a lifespan and will be totally depleted in future 

(Ighravwe et al., 2018). The common renewable energy sources that have been 

explored include solar, wind, hydro, geothermal as well as biomass. It is possible to 

generate biofuels such as hydrogen, methanol, dimethyl ether (DME), ethanol, 

synthetic natural gas (SNG), etc from biomass. To fully explore the use of biomass in 

the generation of energy, several government organisations and researchers have 

instituted programmes and studies to promote the use of biofuels. For instance, the 

European Union has a target to make biofuel 10% of its energy share in the transport 

sector by 2020 (Molino et al., 2018). Furthermore, by 2022, the US is expected to 

produce about 36 billion gallons of biofuels annually (Molino et al., 2018). Presently, 

industrial plants are embracing the production of biogas for the generation of energy 
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and on biomethane upgrading for grid injection. The production of biogas is 

noncomplex and centralized technology with a low level of organic conversion into 

biogas, (nearly 5–10 wt. %), based on the type of feedstock and the operative 

conditions (Molino et al., 2013b, Molino et al., 2013a). 

Nations with enormous area of fertile cultivable land, a favourable climate as well as 

water resources can invest in the planting of biomass plants for energy generation 

(Sparks et al., 2014). Such agricultural plants include sugarcane, cassava, corn starch 

etc. For instance, it is possible to produce several types of sugar, and alcohol as well 

as generate electricity from sugarcane.  The agricultural and industrial processing of 

these plants yields products such as straws, molasses, filter cake, stalks, pulp etc. 

which can be further exploited to generate electricity. Conversely, there exist 

significant logistical challenges related to production of biomass feedstock from food 

products such as cassava and sugarcane. One of such is the challenge of maintaining 

a balance between the economic, technical, political, social, and environmental factors 

involved in the biofuel production processes. Thus, decision makers, researchers and 

other stakeholders have revolved into the conduct of experimental studies as well as 

mathematical optimizations techniques that can help in attaining the optimum decision 

that will make biomass more economically appealing and commercially available. One 

of the end products of this process that has been of major interest of late is the 

production of biogas. Biogas (considered to be the low carbon fuel sources) offers the 

best opportunities to the rural communities especially in African countries to meet their 

energy demand. The use of biogas offers multiple benefits, such as: 

 the enhancement of farming in rural communities, which directly enhances the 

economy of a community through job creation; 

 waste reduction through the use of organic agricultural waste and municipal 

solid waste (MSW) for energy production; 

 the improvement of the environment quality through CO2 emission reduction 

(Soccol et al., 2011); and 

 the combination of the disposal of organic waste with the formation of valuable 

energy “methane” by biogas.  

The production of biogas is based on a profound technology whose output is 

principally used for electricity generation and also for the valorization of organic 
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residues (Kougias and Angelidaki, 2018). Biogas is an output of anaerobic digestion, 

where various microorganisms, breakdown organic matter through different metabolic 

processes. Tremendous and novel development in biogas production has led to the 

creation of advanced bioenergy facilities. As such, the biogas facilities are the basis 

of an economy concept aimed at nutrients recycling, reduction of greenhouse gas 

emissions and biorefinery purposes. This paper presents an overview of state-of-the-

art and future viewpoints related to the anaerobic digestion process for biogas 

production.  

2.2 BIOGAS PRODUCTION 

Biogas is a colourless combustible gas that is produced by the biological breakdown 

of organic matter; occurring in the absence of oxygen (Umeghalu et al., 2012). The 

biogas comes from “biogenic materials” (Umeghalu et al., 2012), and is generated 

from anaerobic digestion of biodegradable materials such as biomass, cow dung 

green waste and agricultural residue such as cassava, sugar cane etc. (Ghosh, 2000). 

Biogas comprises a mixture of different gases, mainly methane (CH4), carbon dioxide 

(CO2), 1–5% other gases, including hydrogen (H2), and their typical composition is 

presented in Table 2-1 (Umeghalu et al., 2012).  

The gas is produced by bacteria that occur during the bio-degradation of organic 

materials under anaerobic conditions (Sutaryo, 2012). Biogas has an elevated 

methane content (see Table 2-1), which makes it an attractive source of energy and a 

suitable fuel for heating and cooking purposes globally. Moreover, considering that 

biogas constitutes mainly methane and carbon dioxide, which are greenhouse gases 

that are harmful to the environment, it is therefore important that it undergoes a burning 

process before releasing it to the atmosphere. Biogas generated during an anaerobic 

digestion process can be converted into electricity and heat using combined heat and 

power (CHP) engines  (Sorathia et al., 2012). 
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Table 2-1: Biogas composition (Prakash et al., 2005, Schnurer and Jarvis, 2010) 

Component Concentration (%) 

Methane (CH4) 55 – 60 

Carbon Dioxide (CO2) 35 – 40 

Hydrogen (H2) 2 – 7 

Hydrogen Sulphide (H2S) 2 

Ammonia (NH3) 0 - 0.05 

Nitrogen (N) 0 – 2 

The physical, chemical and biological characteristics of potential biomass materials 

can influence the biogas composition and yield (Mogami et al., 2006). In general, three 

key methods are in the thermo-chemical conversion of biomass. The main thermo-

chemical conversion processes, the intermediate process and the final energy 

products resulting from the conversion procedure are given in Figure 2-1. 

 

Figure 2-1: The main processes used for the thermo-chemical conversion of biomass 

(Mckendry, 2002) 
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2.2.1 Anaerobic digestion 

The anaerobic digestion is a microbial degradation of organic waste in the absence of 

oxygen. Organic matter conversion to CO2 and CH4 gases occurs next to a sequence 

of biochemical reactions during an anaerobic process (Bailey and Ollis, 1986). As a 

result, a breakdown of organics takes place during the digestion, and this is made 

possible by anaerobic microorganisms. The anaerobic digestion of organic matter 

follows stages that are organized by different categories of microorganisms. Most 

biodegradable organic matter are converted to gases while only a small amount (about 

10%) is converted to new cell mass through microbial growth (Speece, 1983). 

Methane produced by anaerobic digestion can be used to run a treatment plant; giving 

anaerobic digestion an economic advantage over aerobic digestion. Table 2-2 shows 

the advantages and disadvantages of an anaerobic digestion taking into consideration 

costs, start-up time, sludge generation and buffering capacity. 

Table 2-2: Advantages and disadvantages of anaerobic digestion process (Seghezzo 
et al., 1998, Lettinga et al., 1997, Lettinga, 1995) 

Advantages of anaerobic digestion 

process 

Disadvantages of anaerobic digestion 

process 

    The operating costs for an 

anaerobic treatment plant are relatively 

very low compared to an aerobic 

treatment plant. 

    Long start-up: the slow growth rate causes 

as a longer start-up period as compared to 

aerobic systems.  

    Low-energy consumption and 

production of biogas for further 

applications such as the production of 

electricity; requiring no external energy 

for its operation. 

    High buffer requirements for the pH control: 

the required pH for anaerobic digestion should 

be in the range of 6.5 to 8. Also, chemical 

addition, mostly in industrial wastewater, may be 

indispensable for the control of pH with 

inadequate buffering capacity. 

    The flexibility of an anaerobic 

system allows the technology to be 

    High sensitivity of microorganisms: 

methanogens are sensitive to pH and 
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Advantages of anaerobic digestion 

process 

Disadvantages of anaerobic digestion 

process 

applied on either a small or a large 

scale.  

temperature, it is assumed that they have less 

resistance toward toxic compounds. 

    Low sludge generation compared 

to aerobic systems due to a lower yield 

coefficient. 

    Low pathogen and nutrients removal: 

effluents generated from anaerobic digestion 

are characterized by low removal of pathogens 

and nutrients. A post-treatment process such as 

membrane filtration is required to meet the 

discharge guidelines aiming to protect the 

environment. 

 

    The excess sludge is well 

stabilized thereby resulting to limited 

environmental impact. 

    The process is more sensitive to the 

presence of toxic compounds and changes in 

temperature than aerobic systems. 

    Low nutrient and chemical 

requirement: this is due to the small 

biomass production during an 

anaerobic process; consequently, the 

nutrients requirement is proportionally 

less. 

 

    Allows for efficient resource 

recovery, and conservation of non-

renewable energy sources. 

 

 



19 

 

2.2.2 Stages of biogas production using anaerobic digestion 

There are four basic stages involved in anaerobic digestion (AD). These four basic 

stages make up the process of biogas production from various organic materials as it 

occurs in an anaerobic digester. These four stages are the hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis as outlined in Figure 2-2 (Tutuk, 2011). The AD 

process is characterized by the decomposition of organic matter into methane, carbon 

dioxide, inorganic nutrients and compost in an anaerobic environment (Arsova, 2011, 

Ayu and Dyan Aryati, 2010). 

 

Figure 2-2: Biochemical stages of anaerobic digestion/biogas product (Jewitt et al., 

2009) 

Hydrolysis 

Hydrolysis is the first step in an AD process. It is achieved through the solubilization 

and degradation of biopolymer particulate organic compounds and colloidal wastes 

into soluble monomeric or oligomeric organic compounds (Gerardi, 2003). This 

process involves the decomposition of complex organic polymeric materials such as 
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carbohydrates, proteins and lipids. These complex organic compounds are hydrolyzed 

into smaller, water-soluble compounds such as sugars, amino acids, and long chain 

fatty acids by enzymes produced by the fermentative bacteria (microorganisms) 

(Eastman and Ferguson, 1981). At the end of the hydrolysis stage, a simple organic 

compound is produced. These products thereafter undergo absorption and 

degradation by different facultative and obligate anaerobic bacteria in the acidogenic 

step, producing short-chain volatile fatty acids (VFA). These combine with alcohols 

and are converted to acetate, hydrogen and carbon dioxide (Chandra et al., 2012). 

This phase involves hydrolyzing polysaccharides into monosaccharides, fats into 

glycerine and fatty acids and proteins into amino acids (Parawira et al., 2004, Lyilade, 

2009). The enzymatic catalysis accelerate the hydrolysis process through oxidation of 

the organic matter via a process called aerobic biological processes (Pisano, 2007). 

The hydrolysis and aerobic degradation process is a rapid process and the biogas 

produced is transformed into carbon dioxide (CO2) from oxygen (Pisano, 2007). When 

the substrate has been hydrolyzed, it becomes available for cell transportation and the 

fermentative bacteria can then degrade these substrates during the acidogenesis 

stage. Optimization of the hydrolysis process is, however, important to prevent 

inefficient degradation of the macromolecules, which could impact negatively on the 

rate of digestion or other biological activities, and consequently the biogas yield. It is 

therefore important to make sure that the culture of microorganisms is actively 

operational to allow the second process (acidogenesis) to take place. Physicochemical 

treatments can also be used to promote solubilization of organic matter. However, 

there should not be air intake in the system, as the presence of air in the biomass 

prevents the biomass from performing their duties as anaerobic units. 

Acidogenesis 

The process of acidogenesis transforms the organic acid that is produced during the 

second stage into acetic acid, acid derivatives, carbon dioxide, and hydrogen. 

According to (Fang et al., 2010), it is essential that the level of H2 is low for acidogenic 

reactions to be favourable thermodynamically. In this stage of the AD process, the 

products of the hydrolysis stage are further broken down by a variety of obligate and 

facultative fermentative microorganisms to produce weak acids (mostly organic acids) 

such as acetic acid, propionic acid, butyric acid (VFAs), lactic acid, alcohols, hydrogen 
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and carbon dioxide (CO2) (Kalyuzhnyi et al., 2000). The acidogenesis stage involves 

the production of high concentration of hydrogen by acid-producing bacteria called 

acidogenic microorganisms and is usually the fastest step in a balanced anaerobic 

process. Acidogenesis is mainly described by the accumulation of lactate, ethanol, 

propionate, butyrate, and higher VFAs called electron sink or intermediate products. 

Acidogenesis is the bacterial response to increased hydrogen concentration in the 

system to produce acetate by acetogenic microorganisms (Schink, 1997). The 

degradation of organic matter to generate biogas also depends on the complex 

interaction of various groups of bacteria, with the two main groups being the acid-

producing bacterial (acidogens) and the methane-producing bacteria (methanogens). 

Therefore, maintaining a symbiotic relationship between the acidogenic and 

methanogenic bacteria is critical in sustaining the successful operation of any 

anaerobic digester (White, 2011). This step is critical because it links the fermentation 

phase with the methane production phase. Thus, more acid is produced to give birth 

to methanogens elements, which produce methane gas. 

Acetogenesis 

During the acetogenesis stage, alcohols (ethanol), VFAs with more than two carbon 

atoms, are converted by acetate-forming bacteria into acetate, with hydrogen and 

carbon dioxide being the main products (Parawira et al., 2004, Gerardi, 2003). This 

conversion is a vital process because hydrogen and carbon dioxide are constantly 

reduced to acetate by homoacetogenic microorganisms (Chandra et al., 2012), 

thereby reducing the hydrogen accumulation that may affect the functioning of 

acetogenic bacteria (Weiland, 2010). Low hydrogen partial pressure (10.4 and 10.6 

atm) is required for the acetogenic reaction to proceed (Mccarty and Smith, 1986). 

This is because acetogenic bacteria can survive in a very low hydrogen concentration 

environment. However, further increase in the concentration of hydrogen partial 

pressure may result in acetogens losing their ability to produce acetate. In order to 

ensure that low pressure is maintained all through the acetogenesis stage of the AD 

process, a mutually symbiotic relationship between the acetogens and the 

hydrogenotrophic methanogens must occur, so that acetogens produce acetate that 

can be used as substrate by methanogens (Nges et al., 2012). This step constitutes 

the final phase for fermentation prior to methanogenesis. 
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Methanogenesis 

Methanogenesis is a critical step in AD. It has a large impact on the AD process (De 

Vrieze et al., 2012) because approximately 70% of methane used in AD is generated 

from this stage (Sutaryo, 2012). During this stage, carbon dioxide-reducing and 

hydrogen-oxidizing methanogens convert hydrogen and carbon dioxide to obtain 

methane, while acetoclastic methanogens utilize acetate to produce methane 

(Parawira et al., 2004). Methanogens (Archaea) utilize acetate, hydrogen and CO2, 

and to a lesser extent methanol, methylamines and formate, to form methane and 

CO2. These end products are the primary substrates for the methanogenic bacteria to 

produce biogas, which generally consists of 50–75% methane (CH4), 50–25% CO2 

and trace amounts of nitrogen, hydrogen and hydrogen sulphide. Methanogenesis 

indicates the extent of biological activities in an anaerobic system and the state of the 

digestion. The more methane is produced, the more the system is stable and well 

performing. 

2.3 MAIN FACTORS AFFECTING THE BIOGAS PRODUCTION 

The production of biogas is influenced by many factors such as nutrients, pH of 

feedstock, temperature, flow rate of feed (loading rate) and retention time. These 

factors may slow or stall the process of biogas production if the values of the factors 

are not within a certain range (Angelidaki et al., 2009). Some of the factors are 

presented in this section. 

2.3.1 Hydraulic retention time 

Hydraulic retention time (HRT) indicates the mean residence time for solids and liquids 

wastes remaining in a digester (reactor) to contact with the microbial biomass (Khanal, 

2008). In flow-through systems without recycle, such as the CSTRs adopted in Phase 

II, the HRT and retention time of the microbial biomass or sludge (SRT) are the same. 

In situations where the influent streams contain high solids concentrations, longer 

retention times are required to maximize bioenergy production (Khanal, 2008). The 

HRT can be understood as the treatment time for a waste that undergoes anaerobic 

digestion, the higher the HRT, the higher the removal efficiency because the biomass 

has enough time to be in close contact with the waste. Therefore, removing high 

amounts of contaminants from the waste being treated. 
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2.3.2  Nutrients 

The inadequate availability of nutrient concentration in energy crops have resulted in 

problems such as low methane yields, acidification and process instability in crop 

mono-digestion, leading to application of low organic loading rates (OLRs) and long 

HRTs (Lebuhn et al., 2008, Weiland, 2010). They influence the performance and 

stability of the AD process (Hinken et al., 2008, Lebuhn et al., 2008, Scherer et al., 

2009). The above mentioned setbacks indicate that adequate amounts of both macro- 

and micronutrients (Bruni et al., 2010) are crucial for continuous performance of the 

biogas process. 

2.3.3  pH of feed stock 

The pH value of the material is one of the essential factors. Methanogenic bacteria are 

sensitive to an acidic condition. This acidic condition could adversely affect the growth 

of bacteria and the production of methane (Arsova, 2011). Different optimal pH values 

are reached at different stages of the AD process. These changes occur during 

biological transformation, which takes place during the different stages of the AD 

process. The pH level can be below 5 during the production of organic acids, which 

occurs during the acetogenesis stage (Arsova, 2011). According to Liu et al. (2008), 

the optimal range of pH for obtaining utmost biogas yield in anaerobic digestion is 6.5–

7.5, and this range of pH is relatively wide in plants. Several factors such as the 

substrate used and the digestion technique could vary the optimal value of the pH. For 

this reason, constant pH level is of great importance, and to maintain a constant pH 

level, equilibrium buffers such as calcium carbonate or lime must be added into the 

system. Briefly, pH is a critical indicator in anaerobic process. It provides a clear 

indication of the performance of the system, including the stability of the digestion. A 

lower pH is an indication of system failure or low buffering capacity and can inhibit the 

digestion. High pH can also limit the methanogenesis process. The pH value is 

dependent on the following factors: volatile fatty acid (VFA) concentration, bicarbonate 

concentration, the alkalinity of the system and the fraction of CO2 in digester gas. 

According to Liu et al. (2008), the relationship between the VFA and bicarbonate 

concentration is crucial to maintain a constant pH value within the system. 
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2.3.4  Temperature 

As reported in Davidsson et al. (2008), AD is usually operated within two distinct 

temperature ranges, with one optimum at 35 °C (mesophilic) and the other at 55 °C 

(thermophilic). Though thermophilic digestion may provide some advantages over 

mesophilic digestion, such as improved reaction rate and pathogen reduction, 

microorganisms in mesophilic digestion have less demand on nutrients (Takashima et 

al., 2011), making mesophilic digestion function like thermophilic digestion (Nges et 

al., 2012). Temperature indicates the rate of biological reactions. It is a sensitive 

parameter that must be monitored regularly, especially when there is a change in 

weather. The choice of temperature (mesophilic or thermophilic) will depend on the 

type of expected outcome. However, temperature should be suitable to the type of 

microorganisms used for waste treatment. 

2.3.5  Organic loading rate 

The amount of substrate (biomass) fed into the unit reactor system is called the OLR 

and is commonly expressed in terms of chemical oxygen demand kg / m3day, volatile 

solids (VS) of total solids (TS)/ L day or VS / m3 day. It has been reported that the AD 

of solid wastes in a single stage may encounter problems if the OLR is increased 

above the system capabilities and if the hydrogen and the VFAs formed by the 

acidogenic bacteria are not consumed at the same rate by the methanogens. This is 

because acidogenic activity and the VFA intermediates produced in the acid forming 

stages triggers an increase in the acidogenic bacteria at higher OLRs, thereby 

reducing the growth of the methanogenic population. The increase in OLR and 

acidogenic activity (production of VFA, CO2 and H2) can result in an accumulation of 

organic acids and a decrease in pH and gas production. This in turn affects the 

biological activity of methane-producing methanogens as their growth is inhibited 

below a pH of 6.6, therefore reducing the production of methane, which is the main 

product of biogas. Therefore, determining the correct OLR for a particular substrate is 

critical for the optimization of reactor performance and maximizing methane 

production. The methane yield is generally measured by the amount of gas that can 

be produced per unit volume of VS contained in the feedstock after exposing it to 

anaerobic digestion for a sufficient amount of time under a given temperature and 

specific conditions (Zhang, 2012). The methane yield is also an indication of the 
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biodegradability of the substrate, as feedstock with low VS to total solids ratios 

(VS/TS), such as lignin, are not easily degraded using anaerobic processes. 

Therefore, the amount of gas produced is also very much substrate dependent. 

2.3.6  Retention time 

A longer retention time will provide a greater degree of sludge stabilization and allow 

intimate contact between the biomass and the liquid flow during the treatment process 

(Keay). 

 

2.3.7  Mixing 

In a conventional anaerobic digester, mixing has been observed to generally increase 

CH4 yields and to render the digester more stable (Forday and Greenfield, 1983). 

Mixing has the effect of bringing a homogeneous environment and an effective use of 

the entire digester volume. This is achieved by minimizing hydraulic dead zones in the 

digester and preventing build-up of large pockets of unfavourable environmental 

conditions (low pH and high VFA). Consequently, the concentration of toxic agents 

throughout the reactor is diluted. Mixing also assists in the removal of excess CO2 

which has inhibitory effects at partial pressures larger than 0.2 atmospheres (Pulles et 

al., 2001). 

2.3.8 Oxygen 

Oxygen is toxic to most anaerobic microorganisms. Its presence in an anaerobic 

reactor will result in a significant decrease in the digestion rate. However, it is possible 

that facultative anaerobes metabolize the dissolved oxygen before toxic effects are 

noticeable (Zinder and Koch, 1984). 

2.3.9 Volatile fatty acids (VFA) 

During start-up or when there is organic overloading of the digester, high 

concentrations of VFA are generally observed. They are usually associated with 

toxicity and inhibitory effects. Although it is generally understood that VFA inhibition is 

due to their accumulation and subsequent pH reduction, some VFA are themselves 

toxic to anaerobic microbes (Mara and Horan, 2003). 
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2.3.10 Free ammonia 

Free ammonia concentrations above 100 mg/l can cause inhibition, although the ionic 

form, NH+
4, will only cause inhibition at much higher concentrations (above 3000 mg/l) 

(Rittmann and Mccarty, 2012). 

2.4 METHODS OF BIOGAS PRODUCTION THROUGH ANAEROBIC DIGESTION 

Anaerobic digestion turns organic waste into useful biogas and fertilizer in an 

anaerobic environment (De Meester et al., 2012). There are two main methods to 

produce biogas from anaerobic digestion namely, wet anaerobic digestion (Wet AD) 

and dry anaerobic digestion (Dry AD). The main difference between these two 

methods relates to the form of the solid waste. Dry AD handles organic waste as it is 

by means of simple mechanical sorting and with digestion taking place from waste in 

its solid form. Wet AD requires that the waste be converted into a homogenous pulp 

that can be pumped while being processed. Biogas produced during anaerobic 

digestion is mainly composed of methane and carbon dioxide and is considered as an 

alternative to traditional energy (Khanal, 2008). Typically, it contains 60–65% 

methane, which is flammable. With the technology of biogas utilization improving, it 

becomes one of the most widely used waste/residues-to-energy technologies (Khanal, 

2008). Traditionally, biogas has been used as fuel to support the process temperatures 

in anaerobic digesters. Another alternative use is that the gas is burned in an engine 

generator of combustion to produce electricity in biogas plants. Biogas has also been 

used as fuel for cooking, lightning and vehicles (Khanal, 2008). 

Biogas production, except for its use as a renewable energy source, has many other 

benefits. In many countries, farmers must give up their occupations because their land 

no longer produces enough yield from conventional agricultural production. Biogas 

production is subsidized in many countries to give an additional income to the farmers. 

There is an increase in wider unused agricultural areas and farms becoming large-

scale industries, which will change the landscape (Branche, 2017). Biogas production 

with small-scale farm production could maintain the structure of the landscape. Energy 

can be generated from the unneeded biomasses, which can save the natural 

resources. Comparing anaerobic degradation metabolism products to aerobic ones, 

organic acid and methane contain higher energy than low-energy compounds like CO2 
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and H2O, which serve other organisms as nutrients or energy as 20 times as much as 

the energy lost to air. Biogas plant can also reduce landfill area and protect 

groundwater quality (Paolini et al., 2018). 

Due to anaerobic processes, organic matters can be reduced to 4%, which reduces 

landfill area and protects the groundwater (Mahar et al., 2007). Furthermore, because 

the reduction of biomass is significant, the reuse of the residue from biogas processes, 

such as fertilizers, can cut down the expenditure of organic wastes. If co-substrates 

are used in biogas plants, mineral fertilizers can be replaced by residue. The 

advantages include cutting down expenditure. Co-substrates can reach the cycle of 

nutrients and reduce nitrate leaching. Methane and nitrous oxide emissions are 

reduced when residue and manure are digested instead of being spread on the field 

or stored. The digested residue produced is less odorous (Linville et al., 2015). This 

process also supports the Kyoto agreement of climatic protection by achieving CO2-

neutral production of energy. It can reduce the fees for the management of wastewater 

and avoid the connection of sewers, especially in rural areas. Furthermore, a 

significant reduction in pathogenic germs could be derived from the digested residue 

after an anaerobic process. 

2.5 TYPES OF BIOMASS AND THEIR POTENTIAL 

Biomass is defined as a living organic matter (Fry, 1988). Biomass can be any type of 

organic matter and it is a source/feedstock. The fuel form obtained after the processing 

or preparation of this biomass is called biofuel, biogas or bio-solid and the energy 

output is called bioenergy, which is a measure of the energy capability of the biomass 

used. An extensive range of biomass is available for the potential sources for CH4 

production as shown in Figure 2-3. 
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Figure 2-3: Methane yield from different biomasses (Luna-Delrisco et al., 2011) 

2.5.1 Terrestrial biomass 

Biogas from woods and weeds 

Anaerobic digestion of woody biomass for biogas production has been considered 

unfeasible without pre-treatment (Gunaseelan, 1997) due to its anaerobic 

biodegradability, which depends on the following factors: low moisture content; relative 

lignin; cellulose and hemicellulose content; proportion of structural and non-structural 

carbohydrates; cellulose crystallinity; degree of association between lignin and 

carbohydrates; particle size; wood-to-bark ratio; and toxic components (Turick et al., 

1991). Table 2-3 shows that hybrid poplar and sycamore with high degradability 

produced the highest CH4 yield of 0.32 m3/kg VS using the BMP assay test, while 

according to (Tong et al., 1990) eucalyptus, loblolly pine and white fir on poor 

degradability yielded 0.014, 0.063 and 0.042 m3/kg VS of CH4 respectively at 

mesophilic temperature. 

The use of weedy plants as a potential feedstock for biogas production is a recent 

concept. It is considered a potential biomass for the following reasons (Nallathambi 

Gunaseelan, 1997): 

Biomass
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Weeds Woods

Leaves Grasses

Fruits and 
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Aquatic
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 Ability to trap a significant amount of solar energy. 

 Weeds can grow on soils unsuitable for conventional crop production under a 

wide range of climatic conditions. 

 Weeds are not easily affected by pests. 

 Weeds grow without inputs and irrigation. 

 The use of weeds for biogas production is considered the best strategy of weed 
management and control. 

Table 2-3 shows some of the weeds studied as a source of CH4, these weeds include 

Parthenium hysterophorus, Lantana camara, and Ageratum. According to Gunaseelan 

(1994), the batch co-digestion of cow manure (Bozkurt et al., 2016) and Parthenium 

has shown to increase the production of biogas using Parthenium. Anaerobic digestion 

of Parthenium in CSTR at a temperature of 30°C with a 10-day HRT yielded CH4 of 

0.11 m3/kg VS while pre-treated Parthenium increased the CH4 yield by 95% (Table 

2-4). Lantana camara, a weed that grows abundantly on the Himalayan slope, India, 

treated with NaOH and mixed with CM to feed batch digesters for 37 days at a 

temperature range of 28–31 °C produced 62% higher CH4 yield compared to CM alone 

(Dar and Tandon, 1987, Gunaseelan, 1994). Table 2-4 shows that Ageratum alone 

(mono digestion) yielded 0.24 m3/kg VS added of  CH4 yield in batch digesters at a 

temperature of 30 °C (Kalia and Kanwar, 1990). 
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Table 2-3: Methane yield of woody biomass 

Feed stock Fermenter 
Temperature 

(°C) 
Methane yield 

(m3/kg VS) 
VSr 
(%) 

Reference 

Cotton wood BMP  35 0.220 32.3 (Gunaseelan, 1997) 

Hybrid poplar BMP  35 0.320 53.8  

Sycamore BMP  35 0.320 56.7  

Loblolly pine BMP  35 0.063 3.6  

Eucalyptus sp BMP  35 0.014 1.0  

Black alder BMP  35 0.240 32.5  

Red alder BMP  35 0.280 48.4  

White fir BMP  35 0.042 ± 0.003 NR (Tong et al., 1990) 

Willow BMP  35 0.140 ± 0.01 NR 
(Turick et al., 1991, 

Chynoweth et al., 1993) 
Stem and bark 0.8 mm 
particle size 

BMP  35 0.310 ± 0.01 NR  

Poplar stem and bark BMP  35 0.290 ± 0.010 NR  

Sweet gum BMP  35 0.210 ± 0.010 NR  

Poplar wood - 0.003 mm size BMP  35 0.330 NR  (Chynoweth et al., 1993) 

BMP = Biochemical methane potential; VSr = Volatile solid reduction; NR = Not recorded 
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Table 2-4: Methane yield from weed biomass 

NA = Not available; NR = Not recorded; HRT = Hydraulic retention time; OLR = Organic loading rate 
VSr = VS reduction 

 

Feed stock Fermenter 
Temperature 

(°C) 
HRT 

(days) 
OLR (kg VS 

m3/day) 

Methane 
yield (m3/kg 

VS) 
VSr (%) Reference 

Parthenium 
Hysterophorus (PH) 

Semi-
continuous 

28 – 32 5 4.95 
0.034 ± 
0.002 

25.9 (Gunaseelan, 1994) 

PH, untreated, daily 
Feed 

  10 2.48 
0.117 ± 
0.005 

42.9  

   20 1.24 
0.115 ± 
0.001 

42.1  

Lantana camera, 
NaOH Treated + CM 
(50:50 w/w) 

Batch 3l 28-31 NA NA 0.236 NR (Dar and Tandon, 1987) 

Ageratum, partially 
decomposed 

Batch 3l 29-31 NA NA 0.241 NR  (Kalia and Kanwar, 1990) 
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Biogas from leaves and grass 

According to Chynoweth et al. (1993), methane produced from leafy biomass are 

generally higher compared to that produced from the stems (Table 2-5). Sharma et al. 

(1988) reported higher CH4 yield in Ipomoea jistulosa leaves than in its stem. 

According to Gunaseelan (1988), Gliricidia leaves green-leaf manuring found in India 

when it undergoes anaerobic digestion yielded a CH4 of 0.18 m3/kg VSadded when co-

digested with residue of high manorial value. However, some leaves with the presence 

of some toxic compound produced low CH4 due to partial inhibition of the digestion 

process. One such leaf is Calotropis (Mahamat et al., 1989). Research conducted by 

Shyam and Sharma (1994) showed that the batch digestion of high solids with mango 

leaves and cow manure (Bozkurt et al., 2016) produced higher biogas yield compared 

to digestion of CM alone. 

Research has shown that grasses such as Napier grass, energy cane (ball milled), 

Alemangrass-6A, turf grass, wheat straw, paddy straw, millet straw, oats crop, maize 

crop, corn stover and sorghum have exhibited CH4 yields as high as 0.3 m3/kg VS 

added without pre-treatment (Chynoweth et al., 1993). As reported by (Turick et al., 

1991), the grass with the highest yield of CH4 is sweet sorghum. The age of the grass 

has also been found to play an important role in CH4 production. Younger grasses 

often produce more methane than the older ones, probably because younger tissues 

are less lignified (Shiralipour and Smith, 1984). 
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Table 2-5: Methane yield from grassy biomass (Gunaseelan and Lakshmanaperumalsamy, 1990, Gunaseelan, 1995, Yang and Li, 
2014) 

Feedstock Fermenter 
Temperature 

(°C) 

Hydraulic 
retention time 

(days) 

Organic Loading Rate 
(kg VS m3/day) 

Methane yield 
(m3/kg VS) 

VSr 
(%) 

Reference 

Penniselum 
Purpureum (Napier 
Grass) 

       

Age: 120 days BMP 35 NA NA 0.310 NR (Gunaseelan, 2007)] 

180 days     0.260   

Energy cane        

Ball milled BMP 35 NA NA 0.320 NR  

Particle size 0.8mm     0.240   

Particle size 8.0mm     0.290   

Grass mixture        

Wheat straw        

20 mm size 
Batch l 

litre 
35-39 NA NA 0.255 79 (Ge et al., 2014) 

0.5 mm size    0.327  91  

Sugarcane hybrids        

US 72-1288 BMP 35     0.277 ± 0.028 NR   
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Biogas from fruit and vegetable solid waste (FVSW) and organic municipal solid 

waste (OMSW) 

The organic fraction of MSW has been identified as a diverse material of which the 

composition differs greatly. Many factors affect the composition of MSW, including 

regional differences, climate differences, the extent to which recycling is done, the 

frequency of collection, seasonal change, and cultural practices (Tchobanoglous et 

al., 1977). The sorting system of MSW is not the only factor that influences the quality, 

they are also influenced by various methods used for quantifying the OMSW. 

According to Mata-Alvarez et al. (1990), mechanical sorting of MSW is present in large 

amounts of suspended, non-biodegradable solids and small pieces of plastic, wood 

and paper. OMSW digestion at a mesophilic temperature (35°C) yields a maximum 

CH4 ranging from 0.39 to 0.43 m3/kg VS MSW without paper and wood (Mata-Alvarez 

et al., 1990) and VS reduction (VSr) ranging from 63 to 69% (Table 2-6). The methane 

yield of OMSW ranged from 0.11 to 0.16 m3 kg- VS and VSr was around 30% due to 

its high ash value (Mata-Alvarez et al., 1990). 

The FVSW wastes are characterized by high percentages of moisture (> 80%) and VS 

(> 95%) and have a very high biodegradability percentage. Table 2-6 shows that the 

CH4 yield of FVSW is very high. However, these results are mostly based on laboratory 

trials. According to Knol et al. (1978), the maximum OLR to obtain a stable digestion 

of a variety of FVSW ranges from 0.8 to 1.6 kg VS mm3/d having an HRT of 32 days. 

According to Hills and Roberts (1982), the failure of the digestion of peach waste is 

due to inadequate alkalinity levels at 3 kg/m3/d with a 20 days HRT. 

Research conducted by Radhika et al. (1983) show that coconut pith (Snyman and 

Botha) co-digested with cow manure (Bozkurt et al.) performed better with a mixture 

ratio of 3:2 dry weight basis that also showed enhanced biogas production with 80–

85% CH4. According to a study conducted by Stewart et al. (1984) where the biogas 

yield from the AD of banana, i.e. damaged fruit and stem, and potato waste was 

measured (peelings and rejects). The digestion was done in a 20 litres continuous 

digester at a temperature of 35 °C. The greatest CH4 yields were obtained from the 

complete digestion of the banana waste, which is almost a complete destruction of the 

VS. For a HRT of 20 days with OLR 2.5 kg TS/m3/d, the CH4 yield for banana waste 

was 0.53 m3/kg VS at 100% VS conversion. 
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Table 2-6: Performance of municipal solid waste at mesophilic temperatures 

Substrate Fermenter 
Temperature 

(°C) 

Hydraulic 
retention 

time (days) 

Organic 
loading rate 

(kg VS 
m3/day) 

Methane 
yield 

(m3/kg 
VS) 

VSr 
(%) 

Reference 

MS-OMSW 
Laboratory 

plant 
35-40 16 - 21 10 0.260 NR  

Conc = 30-35% TS 0.035 m3   12.1 0.264  (Lemmer and 
Oechsner, 2002) 

 Dranco 
process 

   0.260   

Conc = 25-35% TS 60 m3 35 - 40 14 - 21 15 0.187 NR  

Yard waste BMP 35 NA NA 0.209 NR 
(Owens and 

Chynoweth, 1993) 

Grass, VS = 88.1%TS     0.123   

Leaves, VS = 95% TS     0.134   

Branches, VS = 
93.9%TS 

    0.140   

Blend, VS = 92% TS    NA 0.255   

Paper Waste        

Office, VS = 92.7%TS BMP 35 NA NA 0.369 NR 
(Owens and 

Chynoweth, 1993) 
Printed newspaper VS 
= 97.6% TS 

    0.100   

Unprinted newspaper, 
VS = 97.9%TS 

    0.084   

Magazine, VS = 
78.1%TS 

        0.203     
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2.5.2 Aquatic biomass 

Biogas production from aquatic biomass may be greater when compared to those 

obtained from land considering the availability of large areas for growth. Terrestrial 

biomass production is two-dimensional, while aquatic biomass production is three-

dimensional where the “height” is added. 

Biogas from marine biomass and fresh water biomass 

Recent studies on marine biomass involve the bioconversion of marine macroalgae to 

a potential source for CH4. This includes the brown algae Macrocystis pyrifera, 

Sargassum, Laminaria etc. Table 2-7.  

Table 2-7: Summary of biomass with high methane yield 

Biomass 
Methane yield 

(m3/kg VS) 
Reference 

Organic municipal solid waste   

HS-OMSW 0.390 (Cecchi et al., 1986) 

SC-OMSW 0.403 (Mata-Alvarez et al., 1990) 

SS-OMSW 0.399  

Fruit and vegetable solid waste 
and leaf 

  

Potato waste 0.426 (Stewart et al., 1984) 

Carrot waste 0.417 (Shen et al., 2013) 

Banana fruit and stem 0.529 (Murphy et al., 2011) 

Tomato processing waste 0.420 (Sarada and Joseph, 1994) 

Banana peeling 0.409 ± 0.002 (Izumi et al., 2010) 

Grassy biomass   

Sorghum 0.420 (Gunaseelan, 2004) 

Corn stover 0.360 (Gunaseelan, 2007) 

Paddy straw 0.367 (Mshandete et al., 2006) 

Milet straw 0.390 (Mahamat et al., 1989) 

Wheat straw 0.383 (Hashimoto, 1986) 
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Biomass 
Methane yield 

(m3/kg VS) 
Reference 

Woody biomass   

Iponnoea stem 0.426 (Seppälä et al., 2007) 

Poplar wood 0.330 (Gunaseelan, 2004) 

Pre-treated vine shoot 0.315 (Odlare) 

Weed Biomass   

Lantana treated with NaOH + cow 
manure 

0.236 (Dar and Tandon, 1987) 

Partially decomposed Ageratum 0.241 (Kanwar and Guleri) 

Parthenium treated with NaOH 0.236  

Marine biomass   

Ulea and Chaetomarpha 0.480 (Hansson, 1981) 

Ulea 0.330 
(Bohutskyi and Bouwer, 

2013) 

Maerocystis Pyrifera 0.310 (Ogut et al., 2013) 

Freshwater biomass   

Pisitia 0.410 
(Nipaney and Panholzer, 

1987) 

Water hyacinth treated with NaOH 0.362 (Chynoweth et al., 1982) 

2.6 FUTURE STUDIES 

The global demand for energy is increasing with the steady growth of the world 

population, economic growth and increased energy usage. Reliance on fossil fuels 

has also increased over the years and will soon result in the depletion of fossil fuel 

resource. It is therefore crucial that current research studies explore alternative energy 

sources that are sustainable and renewable for future generations. The renewable 

energy generation during anaerobic digestion of biomass has mainly been used for 

the degradation of biomass or any waste materials or toxic compounds. However, 

recently there has been increased interest in the production of biogas from 

carbohydrate rich energy crops by means of anaerobic digestion. Since cassava is 

enormously grown in Africa, extensive experimental studies into different 
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nomenclature that can give high yield of biogas from cassava can be performed. Some 

of the research questions may include:  

 Can cassava single and co-digested with vegetable and fruit waste be a 

successful and suitable anaerobic digestion feedstock for biomass renewable 

energy in Africa? 

 Can the link between peeled and unpeeled cassava tubers be exploited to 

evaluate biogas yield from cassava and the effect of the cassava peels on the 

yield? 

 How can cassava as an energy crop be used as a landfill cap in decommissioned 

landfills in Africa for purpose of biogas energy generation? 

Future studies should also focus on (i) technology selection via conducting small scale 

biogas projects; (Lehtomaki, 2006) scheduling under uncertainty of feedstock supply; 

(iii) farmers perceptions on biomass crops; and (iv) the impact of biomass plant 

production on host communities. Furthermore, assessment of small-scale biogas 

production subsidies in rural communities and employment issues can also be 

investigated. Investigations into these research gaps will strengthen biogas production 

management and sustainability in rural communities.  

2.7 CONCLUSION 

A review of the anaerobic digestion process and biogas production has been 

presented in this study. Technologies and processes involved in the production of 

biogas from AD have proven to be a valuable means for alternative renewable energy 

generation. Within the anaerobic domain, several important factors (pH, temperature, 

retention times, and availability of nutrient and organic loading rates) were identified 

to exert a high degree of influence on the different steps of the digestion process. In 

addition, depending on the source of the waste stream, several toxic or inhibitory 

compounds could be harmful to anaerobic digestion, thereby affecting biogas 

production and/or methane gas concentration. The evaluation and optimization of the 

anaerobic process should therefore be considered as an important step towards the 

realization of optimal biogas production from the AD process. It would help in obtaining 

the necessary information on waste components crucial for successful application of 

anaerobic digestion. Furthermore, continued research on AD is suggested, especially 
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in aspects relating to (i) evaluation of different types of waste streams and biomass 

feedstocks as substrates for different digester configurations; and development of 

processes that would increase the kinetics reaction, to increase the CH4 yield.  

  



 

40 

 

: 

IDENTIFICATION AND CHARACTERIZATION OF POTENTIAL 

FEEDSTOCK FOR BIOGAS PRODUCTION IN SOUTH AFRICA 

Nathaniel Sawyerr1*, Cristina Trois2, Tilahun Workneh3 

1,2Department of Civil Engineering, College of Agriculture, Engineering and Science, 

School of Engineering, University of KwaZulu-Natal, Howard College, South Africa 

*e-mail: sawyerrnathaniel@gmail.com  

e-mail: trois@ukzn.ac.za 

3Department of Agricultural Engineering, College of Agriculture, Engineering and 

Science, School of Engineering, University of KwaZulu- Natal, Pietermaritzburg, 

South Africa 

e-mail: seyoum@ukzn.ac.za 

PREAMBLE 

Given that the sustainability of the anaerobic process depends on the availability and 

properties of the selected feedstock, it was important to conduct an analysis of the 

feedstock to create a baseline of the study. This chapter presents the identification 

and quantification of potential feedstock material for biogas production. It also 

highlights the different feedstock selected for this research. A comprehensive method 

of sampling and analysis in terms of characterization is presented in this chapter. The 

physiochemical results of the selected feedstock are presented in this chapter. 

This chapter is written in the form of a journal article, as published in Journal of 

Ecological Engineering JEENG-01016-2019-01. The copy of the original article under 

review is in Appendix P2 as indicated in the declaration section. 

https://doi.org/10.12911/22998993/108652 

Received 16 March 2019; Revised 19 April 2019; Accepted 06 May 2019; View 

online at Journal of Ecological Engineering (www.jeeng.net) 

  

mailto:sawyerrnathaniel@gmail.com
mailto:trois@ukzn.ac.za
mailto:seyoum@ukzn.ac.za
https://doi.org/10.12911/22998993/108652


 

41 

 

ABSTRACT  

Biogas is produced during anaerobic digestion (AD) of biodegradable organic 

materials and is considered a promising renewable energy resource. Feedstocks are 

essential to ensure successful anaerobic digestion in biogas digesters. Therefore, the 

search of appropriate substrates has come into focus. In this study, we examined the 

potential substrates that could be used as feedstock for successful operation of an 

anaerobic digester. The approach used in this study was to identify the potential 

feedstocks that can be converted into value-added products. The identification of the 

feedstocks was done based on classification and by evaluating the theoretical biogas 

and methane production during the digestion process. Results show that all the 

substrates considered exhibited biogas theoretical yield, with cattle manure producing 

the highest yield (0.999 m3/kg VS), whereas the lowest biogas yield (0.949 m3/kg VS) 

was obtained from cassava peels. It was concluded that the use of cassava co-

digested with fruit and vegetable waste as an alternative feedstock offer greater 

potential in terms of biogas production and could thus be implemented in biogas 

projects running with cow dungs inside South Africa, especially in rural communities. 

Keywords: Cassava; fruit and vegetable; Anaerobic co-digestion; Biogas; Methane 

theoretical production 

3.1 INTRODUCTION 

The clamour for the reduction of GHGs and the need for sustainable energy and 

environment has increased research efforts into alternative fuels from renewable 

energy sources including bio-resources (Achinas et al., 2017).  Studies have 

suggested that, in order to ensure the sustainability of future energy needs, more 

research efforts should concentrate on renewable energy. Furthermore, the demand 

for energy is rapidly on the increase with approximately 88% of the world energy based 

on fossil fuels (Heubaum and Biermann, 2015). Conventional fuel sources such as 

coal, crude oil and natural gas are not present in commercial quantity throughout the 

world. This has left many countries to be energy-dependent on countries with 

abundant quantities. Political instability of the regions with commercially abundant oil 

and gas may translate to insecurity of energy supply in many countries that import 

these products. Since human and animal wastes are available in every part of the 
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world, biogas (extracted from biomass) will play a critical role for the future in energy 

(Achinas et al., 2017). Biogas, which is produced through anaerobic digestion (AD), 

has proven to offer a major advantage of being environmentally friendly and energy 

efficient when compared to other forms of energy based on AD technology (Van 

Foreest, 2012, Achinas et al., 2017).  

The sustainability of AD processes depends on the availability and supply of 

substrates. Therefore, the identification and quantification of potential feedstock 

material input is of great importance (Gogela et al., 2017). Without enough suitable 

material as feedstock, the process of anaerobic digestion will be impractical. Selecting 

a suitable potential material is the starting point in the process design. Additionally, 

accurate preparation and use of the feedstock is vital for the biogas digester to run 

effectively and to its maximum potential (Goemans, 2017). Generally, all kind of 

biomass can be used as substrates for biogas production as long as it has proteins, 

cellulose, carbohydrates, fats and hemicellulose (Bond and Templeton, 2011). 

However, depending on the organic content, the amount and quality of methane 

produced differ from one feedstock to the other (Hagos et al., 2017). The methane 

content in the biogas indicates the energy value of the biogas, therefore the quality of 

a selected feedstock plays an important role in terms of the biogas produced. Low 

biogas production may indicate low methane content which signify low energy value 

(Nnfcc, 2016). For example, according to Dussadee et al. (2016), maize produces 

more methane in biogas per m3 than livestock manure, while livestock manure 

produces greater methane content as compared to human sewage.  

The classification and selection of biomass can help in the construction of a database 

to determine the biogas yield and the rate at which the biogas is produced. Certain 

factors should be considered to select a viable feedstock. These include: 

1. The feedstock should be available in sufficient quantities for the biogas plant to be 

feasible for a 10 to 20 year lifespan (Nnfcc, 2016) 

2. The feedstock should have sufficient potential to add value (Jordaan, 2018). 

3. Fresh and suitable moisture content. Feedstock left in the sun for too long could 

be rendered unusable due to the loss in moisture content (Nnfcc, 2016, Dussadee 

et al., 2016) 
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4. The carbohydrate content of the feedstock should be within the acceptable range 

(Jørgensen, 2009) for biogas optimum production or else co-digestion should be 

considered. It is reported that if the feedstock consists of mainly carbohydrate such 

as cellulose and hemicellulose the methane yield will be low (Sridevi et al., 2012). 

5. The feedstock should have passed the theoretical methane production potential 

test (Biswas et al., 2007). 

3.1.1 Need for biogas development in South Africa 

There is significant prospect for biogas production (biomass from agricultural activities) 

for the generation of electricity in South Africa.  At present, South Africa’s daily load 

profile indicates that peak demands occur between 7a.m. - 10 a.m. and 6.p.m – 8 p.m. 

This is because many South African households use electricity for cooking as well as 

for heating (specifically during winter) in contrast to the use of gas which is prevalent 

in Europe and Unites states of America. As a result, there is disparity in efficiently 

matching the period of peak demand with the period when the peak solar irradiation is 

available to produce energy. Similarly, wind energy profiles usually do not strongly 

correlate with this demand profile. Due to the fact that biogas plant can be easily 

located anywhere feedstock is accessible, it offers a promising alternative for 

satisfying some part of the load demand in South Africa. The biogas application for 

electricity generation is specifically appropriate for rural communities in South Africa 

where feedstock is readily available. As long as a suitable and adequate quantity of 

feedstock is supplied into the bio-digester, the inadequacies of meeting peak demand 

in relation to available power is eliminated, and as such, electricity can be generated 

at any time of the day and when needed. In essence, it can be used in meeting peak 

energy demand spikes. 

The benefits of biogas-driven combined heat and power (CHP) plants outstrip the 

simple production of heat and power. The prospect for the enhancement of human 

welfare is important. When adopted for rural electrification, heat, gas for cooking or a 

combination of these can reduce air pollution, improved lighting and establishment of 

job opportunities for the locals (Owusu and Asumadu-Sarkodie, 2016). A renewable 

Independent Power Producer (IPP) procurement programme in South Africa has a 

target of ensuring the installation of 3725 MW of renewable energy to increase 
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renewable energy penetration in the national energy mix by 2030 (Assessment, 2012). 

Interestingly, biogas is one of the renewable energy sources incorporated into the 

3725 MW of renewable allocation. It is estimated that about 12.5MW of power will be 

generated through biogas. However, the development and installation of biogas plant 

in South Africa has been slow with only about 150 biogas digesters in operation at 

present. Only few of the existing large scale biogas digester available in South Africa 

are majorly used for solid and hazardous waste from landfills which is in contrast to 

other developed countries where various feedstock are utilised for larger scale biogas 

digester (Goemans, 2017). In order to ensure the adoption of biogas in South Africa, 

it is essential to carry out a preliminary identification and classification of potential 

feedstock. This will foster the development of a feedstock database which can help in 

the siting of biogas digesters across the country. This paper therefore presents the 

identification and characterization of potential feedstock for biogas production in South 

Africa. 

3.1.2 Biogas feedstock and the South African perspective 

According to Bond and Templeton (2011) biomass that contains carbohydrates, 

proteins, fats, cellulose, and hemicellulose as main components can be used as 

feedstock for biogas production. However, certain factors such as the chemical and 

physical form of the biomass affects the biodegradability of the feedstock (Lee, 2007). 

Several types of feedstock have been reported for the production of biogas. These 

include; agricultural wastes, energy crops, municipal bio-wastes, industrial wastes and 

wastewater  (Figure 3-1) (Steffen et al., 1998). These are further categorized as 

agricultural-, industrial- and community-based (Table 3-1). 

Industrial waste includes the peels of vegetables, stale cooked and uncooked food. 

Domestic waste is an underexploited substrate for the production of biogas (Rajendran 

et al., 2012). Vegetable waste has a high sugar content that easily ferments to organic 

acids. This encourages acidification that results in the inhibition of methanogenic 

bacteria activities (Scano et al., 2014). In an effort to enhance the production of biogas, 

co-digestion of domestic waste and another feedstock is recommended. Raw 

vegetable should be treated physically by chopping them, as methane production is 

increased by reducing the particle size due to the increase in surface area for microbial 

activities (Wantanee and Sureelak, 2004). Biogas can be produced from all organic 
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material however, not all of the organic materials are relevant to the South African 

industry. 

 

Figure 3-1: Sources of suitable substrates for anaerobic digestion 

Table 3-1: Various feedstock from different source (Smith et al., 2011) 

Sources Various Feedstock 

Agriculture 

 Manure 

 Energy Crops 

 Algal Biomass 

 Harvest remains 

Industry 

 Food/beverage processing 

 Dairy  

 Starch industry (e.g. cassava, corn, wheat and 
sweet potatoes)  

 Sugar industry (e.g. sugarcane and sugar beet raw) 

 Pharmaceutical industry (e.g. Water may be a raw 
materials) 

 Cosmetic industry (e.g. raw materials) 

 Biochemical industry (e.g. crops, woody plants, 
algae)  

 Pulp and paper  
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Sources Various Feedstock 

 Slaughterhouse/rendering plant 

Communities 

 OFMSW 

 MSW  

 sewage sludge  

 grass clippings/garden waste  

 food remains 

Several researches have been conducted using typical feedstock animal waste, 

human excreta/sewage, kitchen/food waste and co-digestion of multiple feedstock for 

biogas production. Table 3-2 shows typical biogas production potential of some of the 

feedstock used for domestic bio digesters. 

Table 3-2: Biogas production from selected feedstock 

Feedstock 
Daily 

Production 
(kg/animal) 

%DM 
Biogas 
Yield 

(m3/kg DM) 

Biogas Yield 
(m3/animal/day) 

Reference 

Cow 
Manure 8 16 0.2 – 0.3 0.32 

(Bond and 
Templeton, 
2011) 

Human 
excreta 

0.5 20 0.35 – 0.8 0.04 
 

Pig Manure 
2 17 0.25 – 0.5 0.128 

(Surendra et 
al., 2014) 

Chicken 
Manure 

0.08 25 0.35 – 0.8 0.01 
 

Food 
Waste 

- 34 0.55 - 
 

Cow 
Manure: 
Human 
excreta 
(1:1) 

- 18 0.407 - 

 

Food 
waste: 
Human 
excreta 
(1:1) 

- 27 0.489 - 
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3.2 MATERIALS AND METHODS 

3.2.1 Potential feedstock available in South Africa for biogas 

As much as municipal solid waste and sewage are considered as the highest potential 

feedstock in South Africa, other agricultural feedstock could be explored for more 

opportunities. Table 3-3 shows some of the potential feedstock that can be explored 

in South Africa. South Africa has different temperate zones and these different 

temperatures enhance the production of fruit, with different varieties distributed 

throughout the country. The major fruit production is citrus fruits with 2.1 tonnes which 

is followed by grapes with more than 1.8 tonnes. These fruits can serve as potential 

feedstock. 

Energy crops, such as cassava, are considered to be a traditional agricultural crop 

grown normally for food. However, due to its high energy characteristics, it has been 

considered for energy production (López-Bellido et al., 2014). Cassava co-digested 

with other feedstock could be an alternative substrate for various communities for the 

production of biogas in South Africa. Since cassava is yet to be listed as a staple food 

crop in South Arica, cassava, its peels and other by-products from its processing can 

be suitable for energy production. 

Table 3-3: Production volume of feedstock in South Africa (Faostat, 2018) 

Group Feedstock 
Total 

production 
(Tonnes) 

Agriculture 

Bananas 371 385.00 

Citrus fruits 2 102 618.00 

Grapes 1 839 030.00 

Apples 790 636.00 

Cassava Insignificant 

Sugarcane 15 074 610.00 

Industry 
Fruits and 
vegetables 559 520.00 
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3.2.2 Identification of energy crop and bio-waste substrates in Southern Africa 

Different feedstock was collected from different sampling procedures. Three (3) 

different substrates (i.e. cassava tuber, cassava peels, fruits and vegetables and cattle 

dung) were selected because of their unique properties and their importance in the 

production of renewable energy through anaerobic digestion. The selected feedstock 

was collected as follows: cassava samples were collected from a cassava plantation 

in the Nampula Province of Mozambique. Cattle dung was collected from the Ukulinga 

Research Farm, Pietermaritzburg, South Africa. Fresh fruit and vegetable residues 

were obtained from a fruit and vegetable supermarket in Pietermaritzburg, KwaZulu-

Natal. 

Table 3-4 shows numerous studies conducted on wastes from the South African fruit 

industry with regards waste to treatment and beneficiation. Various studies on 

beneficiation and the application of fruit waste as a feedstock for renewable energy 

generation has been conducted in various studies in South Africa, but co-digestion 

with other feedstock such as energy crop has been limited, hence the need to explore 

such research gap.  

Table 3-4: Various studies on fruit waste in South Africa 

Study Focus Fruit waste  Outcomes Reference 

Bioremediation 
and beneficiation 
application 

Pineapple cannery 
wastewater 

Suitable to 
produce ethanol 
due to its high 
carbohydrate 
content of about 
19.8 g/L. 

(Prior and 
Potgieter, 1981, 
Garcin and 
Burton, 2007) 

Water and 
wastewater 
management in 
fruit- and 
vegetable-
processing plants 

Fruits and 
vegetables Guideline to 

minimise water 
intake and 
wastage. 

(Khan et al., 
2015) 

Renewable energy Fruit cannery 
wastewater 

The anaerobic 
digestion of fruit 
cannery 
wastewater for 

(Sigge and 
Britz, 2007) 
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Study Focus Fruit waste  Outcomes Reference 

biogas production 
through the use of 
an upflow 
bioreactor. 

Renewable energy Various fruit 
processing Wastes 

Potential Energy 
recovery from fruit 
waste identified 
theoretically 

(Burton et al., 
2009) 
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3.2.3 Justification of using cattle manure, cassava and fruits and vegetables as 

co-substrate 

It is worth noting that cattle manure, cassava and fruits and vegetables as co-substrate 

were selected based on the availability and in terms of quantity and the energy 

production potential. According to Faostat (2018), in 2016, the production of cattle 

manure is around 136 161 tons per year in South Africa. These large volumes of cattle 

manure most times end up in landfills or being applied as fertilizer. The use of cattle 

manure for biogas production provides an alternative option for energy and waste 

treatment (Abubakar and Ismail, 2012, Scholtz et al., 2013). 

Furthermore, according to Hamilton (2014), cattle manure is rich in organic materials 

and in nutrients for this reason it is often used as an agricultural fertilizer. Several 

researches has been conducted into the production of biogas from cattle manure by 

mixing the cattle manure with other organic waste such as households and industrial 

waste (Maamri and Amrani, 2014, Yohaness). The co-digestion of cow/cattle manure 

has shown to play an important role in the anaerobic digestion process which has 

resulted in several environmental and economic benefits (Hassan et al., 2015). Girija 

et al. (2013) conducted an analysis on the microbiota of cattle manure, from this 

research analysis it was discovered that the following bacteria were found in the cattle 

manure Bacteroidetes (38.3%), Firmicutes (29.8%), Proteobacteria (21.3%) and 

Verrucommicrobia (2%). These bacteria are responsible for the degrader of complex 

organic matter in the form of lignocelluloses, chitin, cellulose, xylose and xylem 

(Martens et al., 2009). For this reason the use of cattle manure is justified as inoculum 

and also as co-digester in the anaerobic process.  

The production of cassava in the world is about 263 million tons per annum with South 

Africa having an insignificant data on the production and consumption available 

(Faostat, 2018).  While cassava has had a long history in the rest of Africa, cassava 

is not a well-known crop in South Africa because cassava is not yet considered a 

staple food in the country. It will therefore be interesting to explore its energy 

production potentials in South Africa. Cassava usually survives and produces better 

harvests in locations where maize and other energy crops will not grow or yield 

bountifully. It is drought tolerant and can survive in extreme weather, climatic 
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conditions and soil with low nutrients. Since cassava succeeds in drought conditions, 

it therefore requires low agro-chemical inputs (Okudoh et al., 2014). 

It however yields well to irrigation or in regions with higher rainfall. Cassava is 

extremely flexible in its management requirements and has the potential of high-

energy production per unit area of land. Because cassava has no definite maturation 

point, harvesting may be delayed until market, processing or other conditions are more 

favorable. This flexibility means cassava may be field stored for several months or 

more. Based on these features of cassava, its growth and survival is guaranteed in 

South Africa if adequate resources are invested. 

Since cassava can both serve as energy crop and food, the use of cassava peel 

(waste) instead of the peeled tuber (food) is suggested in this study. Alternatively, 

energy crops can be grown on marginal land (landfills) as a capping for landfill (Figure 

3-2). Therefore, making the crop unsuitable for food crop production. The latter is 

proposed here due to the fact that in South Africa some landfills are at the stage of 

being decommissioned. This creates the land for the capping of landfill through the 

use of cassava. Though the production of cassava is lacking in South Africa, using 

cassava as capping crop for landfill would enable its application for energy generation 

after harvesting. This is because the landfill capping crop has low biodiversity and 

economic value as there is a high risk of the cassava absorbing toxic trace elements 

that could present health risks for humans (Whiting et al., 2004, Hutchings et al., 2001). 

Cassava biomass has many benefits since it contains large amount of fermentable 

sugar (Okudoh et al., 2014). 
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Figure 3-2: Integration of energy crops and waste into landfill operation for biogas 

production 

3.3 METHOD FOR SAMPLING, PREPARATION AND CHARACTERIZATION OF 

FEEDSTOCK 

3.3.1 Sampling method and preparation of feedstock 

In an effort to obtain a more homogenous sample, the substrates were thoroughly 

mixed, after which each pile was then divided into four parts. Two diagonally opposite 

quarters were mixed, while the other two diagonally opposite quarters were removed 

or discarded (Figure 3-3). The mixed diagonals were again divided into four parts. This 

procedure was repeated until a small sample has been extracted. The above 

procedure was followed for all the substrates. 
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Figure 3-3: The coning and quartering method (Alakangas, 2015) 

The preparation of the potential feedstock was performed following the outline protocol 

below: 

Cassava 

Varieties of cassava are grown in Mozambique based on the regions. The Munhaca 

variety most common in Southern region, Inicriano and Bedo in the Central Region, 

and Nikwaha, Tomo and Cororo varieties in the Northern region.  The cassava types 

can be grouped into two major types namely: sweet and bitter (Silici et al., 2015). The 

cassava (Manihot esculenta Crantz) samples were collected in such a way that it 

covered random different parts of the entire volume. These sub-samples were mixed 

together. Coning and quartering were used to reduce the size of the mixed samples. 

One hundred kilogrammes of the collected fresh cassava tuber was mechanically pre-

treated by peeling, while the remaining 100 kg of the fresh cassava was not peeled. 

Both the peeled and unpeeled cassava were washed with tap water with a pH of 7 and 

chopped into pieces of about 1 cm3. Thereafter it was dried in sunlight for two days 

(Figure 3-3). All prepared feedstocks were stored in a refrigerator at 4 ˚C. The dried 

cassava tuber was milled with a scientific RSA hammer mill that is equipped with a 2 

mm sieve mesh to obtain cassava flour. This is because smaller particles does not 

only increase biogas production rate but also affects the hydraulic retention rate 

(Mshandete et al., 2006, Karp et al., 2013). 
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Cattle dung 

To form a cattle dung slurry, fresh cattle dung (CD) was mixed with water (W) to a ratio 

of 1:2 (CD:W) (Biswas et al., 2012). The slurry inoculum was filtered by passing it 

through a 0.5 mm diameter sieve to separate the solid content from the slurry, after 

which it was kept in a container at 4 °C. 

Fruit and vegetable residue 

Fresh fruit and vegetable residues were sampled randomly. The samples were then 

oven-dried at 60 °C until they reached a constant weight. The sample size was 

reduced to < 1mm through milling. Equipment combination of a TRF 400 hammer mill 

and a laboratory blender were used for size reduction. The fruits used in this 

experiment were mainly banana, which were analysed as the fruit only (peeled 

banana). The sample was stored in plastic sample bags in the refrigerator at 4 °C 

before analysis. This is to ensure that the condition of feedstock remains unchanged 

to avoid obtaining flawed results (Assegid, 2014). 

3.3.2 Feedstock composition and physicochemical characterization 

The feedstock sample was characterized in terms of the proximate and ultimate 

analysis. The proximate analysis refers to the physiochemical features in terms of its 

moisture content, total solids, volatile solid, pH value, total nitrogen, total carbon and 

ash. On the other hand, the ultimate analysis refers to the elemental carbon (C), 

hydrogen (H), nitrogen (N), oxygen (O), and sulphur (S) compositions in the feedstock 

under consideration. The main purpose for conducting the characterization tests is to 

determine and understand the physical and chemical characteristics of the substrates 

that are being used, thereby creating a reference point for the experiments. This will 

assist in accessing how effective the substrate is in the production of biogas. 

The analyses were conducted on the individual feedstock (cassava tuber, cassava 

peel, fruits and vegetable and cattle dung) using the American Standard Methods for 

Examination of Water and Wastewater (ASTM). Tests were repeated in triplicate for 

accuracy and repeatability (Eaton et al., 2005). 
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Moisture content (MC) 

The ratio of the mass of water to the total mass of the sample is defined as moisture 

content. MC can be illustrated by the following Equation 3-1: 

𝑀𝐶(%) =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 −  𝑀𝑎𝑠𝑠 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑤𝑒𝑡 𝑠𝑎𝑚𝑝𝑙𝑒
𝑥 100 (3-1) 

The procedure used to measure the moisture content is as follows: Approximately 100 

g of solid sample (each substrate) was weighed into crucibles at room temperature, 

after which it was placed into the oven at 105 ℃ for 24 hours. Thereafter the heated 

samples were placed in desiccators to cool down. The desiccator contains silica gel 

underneath as illustrated in Figure 3-4. The silica gel inside the desiccators absorbs 

any moisture that is present. The desiccators are moisture free. After cooling down the 

sample to obtain the mass of the dry sample, the cooled down sample is weighed 

again. Thereafter the moisture content is calculated using Equation 3-1. 

 

Figure 3-4: (a) Crucibles in oven at 105℃, (b) Crucibles in desiccator to cool down 

Total solids (TS) 

Total solids (TS) is the measurement that represents the quantity of total solid residue 

that remains after the sample has been oven dried at 105℃ for 24 hours. The test is 

conducted in accordance with the Standard Method for the Examination of Wastewater 

by Eaton et al. (2005) no. 2540 G, D and it is calculated using Equation 3-2. 
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Total Solids (%) =
Mass of dry sample

Mass of total sample
 x 100 (3-2) 

 

Volatile solids (VS) 

The residue from the TS test is placed in the furnace (Figure 3-5), which is fired / 

ignited at 550 ℃ for 2 hours to calculate the VS. Before placing the residue in the 

furnace, it is pre-heated to 550 ℃. The total VS test is used to determine the quantity 

of organic matter in the sample (Eaton et al., 2005). The tests were conducted in 

accordance with the Standard Method of Examination of Wastewater and Water-no. 

2540 G (Eaton et al., 2005) and the total Volatile Solids were calculated using Equation 

3-3. 

Total Volatile Solids(%)

=
Mass of dry sample − Mass of sample fired in furnace

Mass of total sample
x 100 

(3-3) 

 

Figure 3-5: Crucibles in furnace at 550℃ 
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pH 

The acidity or alkalinity in a solution is measured by a pH test. The test was conducted 

in the slurry before the use of the substrate for anaerobic digestion using a Labotec 

Orion Model 410A pH metre as illustrated in Figure 3-6. The measurement of the pH 

of the substrate is essential to determine if the pH level of the substrate is within the 

required range for the production of biogas. Before using the pH metre, it was first 

calibrated to a pH range of 4–10. The probe was dipped into the sample to obtain the 

pH readings.  

 

Figure 3-6: Orion Model 410A pH metre 

3.3.3 Mathematical models for determination of theoretical methane production 

According to Labatut et al. (2011), there are several theoretical approaches to estimate 

the Biochemical Methane Potential (BMP) of a feedstock or substrate. This is based 

on the assumption that the substrate will completely degrade and that the 

microorganisms in the substrate does not use energy (Forgács, 2012). This method 

relies on the accuracy of the data of substrate composition, therefore it cannot 

represent a realistic representation of BMP which is often higher than that of the 

observed methane (Forgács, 2012, Labatut et al., 2011). Some of the theoretical BMP 

used to estimate the maximum methane are as follow: 

1. Elemental composition: if the elemental composition (ultimate analysis) of the 

waste material/substrate is known, 
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2. Substrate nutrient composition: assuming the organic waste comprises of 

carbohydrates, proteins and lipids. 

Theoretical methane production potential from substrate elemental composition 

The ultimate analysis results of the selected feedstock are presented in Table 3-6 & 

Table 3-7. The elemental composition was used, according to Franco et al. (2007), to 

estimate the maximum theoretical biogas and methane yield using Buswell’s equation 

(Equation 3-4) to calculate the theoretical methane yield (Buswell and Neave, 1930). 

The general molecular formula can be presented to be of the form CaHbOcNd. 

CaHbOcNd + (a −
b

4
−

c

2
+

3d

4
) H2O → (

4a+b−2c−3d

8
) CH4 + (

4a−b+2c+3d

8
) CO2 + dNH3               (3-4) 

Equation 3-4 above represents the degradation of carbon in the substrate under 

consideration. The coefficients a, b, c, and d are dimensionless coefficients and can 

be evaluated from the approximated ratio of each component number of moles to the 

minimum number of moles among all the components (Roati et al., 2012, Jingura and 

Kamusoko, 2017), where:  

𝑎 =
%𝐶

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 𝐶

𝐿
,  𝑏 =

%𝐻

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 𝐻

𝐿
,  𝑐 =

%𝑂

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 𝑂

𝐿
, 𝑑 =

%𝑁

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 𝑁

𝐿
, and  𝐿 =

%𝑀

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 𝑀
 

%C, %H, %O and %N represent the composition of C, H, O and N in the organic 

substrate respectively.  

M represents the element with the minimum number of moles in a given sample, and 

in most cases, M is usually nitrogen, such that the value of d is almost always equal 

to1. Molar Mass C is the molar mass of carbon, and the same applies for hydrogen 

(H), oxygen (O) and nitrogen (N). 

The maximum theoretical biogas production (Bth) and the theoretical methane 

production (Mth) can be estimated from Equations 3-5 and 3-6 respectively. 



 

59 

 

𝐵𝑡ℎ [
𝑚3

𝑘𝑔𝑣𝑠
] =

𝑎22.415

12𝑎+𝑏+16𝑐+14𝑑
                                                                           (3-5) 

𝑀𝑡ℎ [
𝑚3

𝑘𝑔𝑣𝑠
] =

(
4𝑎+𝑏−2𝑐−3𝑑

8
)22.415

12𝑎+𝑏+16𝑐+14𝑑
                                                                                (3-6) 

The Buswell equation (Roati et al., 2012) was further used to verify the selected 

promising substrates for further examination in the laboratory and in a pilot scale test. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Identified biogas production biomass 

Cassava tuber, cassava peels, cattle dung, fruits (Banana) and vegetable residues 

were selected for this study. Figure 3-7 (A – E) shows pictures of selected biomass for 

this study. 

       

     

Figure 3-7: (A) Unpeeled cassava tuber, (B) Cassava peel, (C) Cattle dung, (D) 

Vegetable and (E) Fruit 
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3.4.2 Proximate and ultimate analysis results 

Table 3-5 shows the results of proximate and ultimate analysis of all the selected 

feedstock for anaerobic digestion. All the feedstocks (cassava tuber, cassava peels, 

fruits & vegetables and cattle dung) were characterized and the results show some 

differences in most of the properties as shown in Table 3-5. 

Table 3-5: Physical and chemical characteristics of cassava tuber, cassava peels, fruit 
& vegetable waste and cattle dung 

Characterization 

Biomass 

Cassava 
tuber 

Cassava peel 
Fruit & 

vegetable 
waste 

Cattle dung 

Moisture content 
(%) 

61.58 ± 2.11 79.68 ± 0.01 58.40 ± 0.1 83.50 ± 0.4 

Total solids (%) 42.25 ± 1.51 20.32 ± 0.12 41.60 ± 1.2 19.84 ± 0.3 

Volatile solids (%) 91.27 ± 0.52 75.51 ± 1.01 76.10 ± 0.3 12.40 ± 1.5 

Starch (%) 76.32 ± 2.01 61.42 ± 0.21 ND ND 

Sugars 77.54 ± 1.11 78.74 ± 1.07 42.87 ± 1.01 ND 

pH 6.87 ± 0.47 6.94 ± 0.24 7.34 ± 0.15 6.57 ± 0.11 

Protein (g) 1.01 ± 0.01 1.11 ± 0.11 77.30 ± 0.67 - 

Total nitrogen (%) 0.53 ± 0.44 0.87 ± 0.14 0.52 ± 0.34 2.06 ± 0.2 

Total carbon (%) 39.67 ± 1.78 51.91 ± 0.01 39.06 ± 0.11 43.12 ± 0.7 

C:N  74.84:1 59.67:1 75.12:1 18.50:1 

Ash (%) 3.06 ± 0.66 4.98 ± 0.31 9.44 ± 0.11 1.66 ± 0.21 

Phosphorus (%) 0.16 ± 0.57 0.20 ± 1.21 ND 0.42 ± 0.04 

Fe (mg/kg) 62.00 ± 0.17 201.09 ± 0.51 ND ND 

Zn (mg/kg) 15.01 ± 0.12 25.10 ± 1.17 ND ND 

Mn (mg/kg) 8.02 ± 1.21 36.45 ± 0.55 ND ND 

ND: Not determined 

From the Table 3-5 above it can be observed that a major difference in the moisture 

content with cattle dung having the most moisture content at 83.50%. The cassava 
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peels showed lower starch content (61%) compared to that of the cassava tuber with 

76%. However, the cassava peels reported a higher fermentable sugar of 79%, which 

is higher than that of the cassava tubers by 1.5%. 

The cassava peel showed high traces of heavy metals, namely Zn, Mn and Fe (25.10 

mg/kg, 36.45 mg/kg and 201.09 mg/kg) compared to that of cassava tuber. According 

to Hoban and Berg (1979), traces of Fe is essential to the fermentation of methane. 

The carbon-to-nitrogen ratio of a feedstock is represented by C/N. For a feedstock to 

produce optimal gas, the C/N ratio among other factors plays an important role. A 

feedstock with a ratio 25:1 of C/N produces an optimum gas (Gerardi, 2003). 

According to Kwietniewska and Tys (2014), for optimum performance of the AD the 

feedstock should have a C/N ratio of 20:1 – 30:1. It can be observed that all the 

selected feedstock have a C/N ratio of greater than 30:1, which could cause rapid 

depletion of nitrogen and as a result cause lower production of gas (Khalid et al., 

2011), with the exception of cattle dung, which is within the range. In order to mitigate 

the C/N ratio outside of the range, co-digestion could be considered (Hartmann et al., 

2002). However, the correct combination of other parameters (pH, biodegradable 

organic matter and toxic compounds) in the co-substrate mixture is important. To 

increase the biogas yield co-substrates in the digester with carbon rich substrates such 

as energy crop would be favourable (Pavan et al., 2007). Cassava tuber and cassava 

peels were found to be rich in carbohydrates with sugar content of approximately 78%, 

which is good indication of cassava potential as it is well recorded that high biogas 

yields are usually related to the high carbohydrate (Achinas et al., 2017). 

Carbohydrates in cattle manure could not be determined due to complexity as the 

substrate is composed of carbohydrates, proteins and fats, while the carbohydrates in 

Fruits and vegetables largely contain carbohydrates and a relatively less amount of 

proteins and fats. 

According to Christy et al. (2014), the different stages of the AD process requires 

different optimal pH value (Hydrolysis Stage pH 4, Acidogenisis Stage pH 6.5, 

Acetogensis stage pH 6.0 and Methanogenesis stage pH 6.5 – 7.8). The selected 

substrates (Table 4) have a pH within the acceptable range of 6.5 and 7.8 for the AD 

process to perform well (Okonkwo et al., 2013). Cattle manure is an easy choice of 
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feedstock because of its neutral pH and its resistance to change in pH. However, it 

has low energy because of its pre-digestion in the gastrointestinal (Meshach, 2013). 

3.4.3 Theoretical methane production potential from substrate elemental 

composition 

For all the selected feedstock (cassava, cattle manure, and fruit & vegetable waste), 

the ultimate analysis (elemental composition) was performed. Equation 3-5 & 3-6 was 

used to estimate the ultimate methane in order to investigate the potential of the 

feedstock selected. Mono-digestion were conducted, the results obtained are shown 

in Table 3-6. 

 

Table 3-6: Mathematical ultimate methane yield of different substrates using elemental 

analysis 

Sample 

Elemental analysis C, H, O, N coefficients  

Bth [
m3

kgvs
] 

  

 

pH N C H O A b c d 
Molecular 
formula 

Mth [
m3

kgvs
] 

 

CP 7.07 0.87 51.91 5.90 41.79 69.61 94.94 42.03 1 C70H95O42N 0.965 0.496 

CM 6.62 1.38 22.50 3.29 14.90 19.02 33.38 9.45 1 C20H34O10N 0.999 0.575 

CT 6.6 1.75 53.29 5.93 41.16 35.53 47.44 20.58 1 C31H36O21N 0.975 0.499 

F & V 6.62 2.17 39.49 5.85 30.16 21.23 37.74 12.16 1 C30H21O12N 0.949 0.533 

F & V: Fruits and Vegetable waste; CP: Cassava Peel; CT: Cassava Tuber; CM: Cattle Manure 

The results in Table 3-6 shows that the cattle manure obtained the highest ultimate 

methane yield (0.575 m3/kg VS), whereas the lowest methane yield (0.495 m3/kg VS) 

was obtained from cassava peels. This result indicates that the selected feedstock has 

a potential of producing biogas.  

Numerous studies has shown that co-digestion is a promising way of improving the 

performance of AD (Zhang et al., 2014). The elemental analysis is used to calculate 

the ultimate methane yield of co-digested substrates at different ratios (Table 3-7) 

(Gerber and Span, 2008, Biswas et al., 2007). From Table 3-7, it can be noted that co-
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digesting CT with F&V improved the biogas and methane yield which is in agreement 

with the literature that indicate that improvement of biogas yield could be done by co-

digestion of two or more substrates at the correct ratio. This may assist in establishing 

the methane potential of the substrate at different substrate ratio which can thereafter 

be investigated further through experimental process. 

Table 3-7: Mathematical ultimate methane yield of different co-digestion ratio using 

elemental analysis 

Sample 

Elemental analysis  

Bth [
m3

kgvs
] 

  

  

pH N C H O Molecular formula 
Mth [

m3

kgvs
] 

 

 

CM:CP (20:80) 7.07 1.35 52.03 6.26 40.36 C45.01H65.00O26.18N 0.971 0.512  

CM:CP (40:60) 6.62 1.83 52.39 6.65 39.12 C33.37H50.84O18.69N 0.979 0.528  

CM:CP (50:50) 6.62 2.07 52.57 6.85 38.51 C29.59H46.23O16.25N 0.982 0.536  

CM:CP (60:40) 6.62 2.31 52.76 7.04 37.89 C26.59H42.59O14.32N 0.985 0.543  

CM:CP (80:20) 6.62 2.80 53.12 7.43 36.65 C22.15H37.19O11.46N 0.992 0.559  

CT:FV (20:80) 7.07 2.58 51.11 7.19 39.13 C23.13H39.03O13.28N 0.954 0.526  

CT:FV (40:60) 6.62 2.36 51.38 6.84 39.42 C25.38H40.56O14.60N 0.960 0.519  

CT:FV (50:50) 6.62 2.25 51.51 6.67 39.57 C26.67H41.42O15.36N 0.962 0.516  

CT:FV (60:40) 6.62 2.14 51.65 6.50 39.71 C28.08H42.39O16.20N 0.964 0.512  

CT:FV (80:20) 6.62 1.92 51.91 6.15 40.01 C31.39H44.63O18.14N 0.970 0.505  

F & V: Fruits and Vegetable waste; CP: Cassava Peel; CT: Cassava Tuber; CM: Cattle Manure 

3.5 CONCLUSION 

This paper presents the identification and characterization of potential feedstock for 

biogas production in South Africa. Using American Standard Methods for Examination 

of Water and Wastewater (ASTM) method, the pH, total solids (TS), volatile solids 

(VS), total carbon and total nitrogen were determined with proximate and ultimate 

analysis of the feedstocks. The conclusions drawn from the results obtained are as 

follows: 
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The large amount of carbohydrate, total solids (TS), volatile solid (VS) and the low 

fibre in the cassava biomass indicates high biogas production potential. However, the 

carbon to nitrogen ratio (C:N) of cassava tuber and cassava peels 74.84:1 and 59.67:1 

respectively which is higher than normal and may have to be co-digested with animal 

manure such as cattle manure to bring the C:N ratio to about 20:1; 

The benefit of using cassava biomass for future crop-based biogas plants is that it 

reduces the need to use lands available for food production and artificial fertilizers as 

they can be cultivated in degraded lands such as landfills. 

Analysis of the theoretical methane production potential from substrate elemental 

composition has shown that the highest methane yield was achieved from cattle 

manure (0.575 m3/kg VS) while the lowest methane yield (0.495 m3/kg VS) was 

obtained from cassava peels. 

The mathematical ultimate methane yield of fruit and vegetable using elemental 

analysis showed a much higher methane yield (0.533 m3/kg VS) compared to cassava 

tuber and cassava peels 0.499 m3/kg VS and 0.496 m3/kg VS respectively. 

This study thus shows that cassava (tuber and peels), fruit and vegetable wastes are 

potential sources for energy production. Further study will focus on ascertaining the 

biogas yield under mesophilic temperature with varying co-digestion ratios and taking 

into consideration the factors that affects the maximum yield. 
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ABSTRACT 

Global energy demand is on the rise due to continuous increases in population, 

economic growth, and energy usage. Several studies have been done on biogas, but 

in South Africa, these are biased toward industrial wastewater. Therefore, there is a 

need to explore other alternatives for biogas generation, for example energy crops 

such as fodder beets and cassava, on which studies are limited. Cassava has several 

advantages compared to other crops, including the ability to grow on degraded land 

and where soil fertility is low. It also has the highest yield of carbohydrate per hectare 

(4.742 kg/carb) apart from sugarcane and sugar beet, which makes it suitable for 

bioenergy (biogas) generation. This study was designed to determine the performance 

of co-digestion of cassava peel with cattle manure in different ratios, and to study the 

effect of the mixed ratios on methane yield through batch anaerobic digestion. All 

digesters were run simultaneously under mesophilic temperatures of 35 ± 1 °C. The 

digestion was carried out in 600 mL SCHOTT DURAN® glass laboratory bottles. The 

results showed that co-digestion influenced biogas production and methane yield. The 

final cumulative methane yields by the co-digestion of CM and CP at the CM:CP mixing 

ratios of 80:20 and 20:80 were 738.76 mL and 838.70 mL respectively. The 

corresponding average daily methane yields were 18.42 mL/day and 20.97 mL/day. 

This study thus suggests that methane production could be enhanced using CP in a 

co-digestion process and at a 20:80 CM:CP ratio. 

KEYWORDS: Cassava, Biogas, Co-digestion, Biomass, Animal Manure 

4.1 INTRODUCTION 

Biogas technology offers a long-term sustainable renewable energy alternative with 

the potential to address economic, environmental, and social concerns relating to 

global development (Sahoo, 2016). Anaerobic fermentation of biomass is a well-

developed and efficiently applied process for methane gas production (Verma et al., 

2007, Heeg et al., 2014), from the recycling of various organic wastes under anaerobic 

conditions (Tuesorn et al., 2013, Bożym et al., 2015). Feedstocks used for biogas 

production include plant waste, animal waste, food waste, municipal sewage sludge, 

and paper waste (Bożym et al., 2015). However, the quality and quantity of methane 

yielded and biogas produced largely depends on feedstock characteristics and 
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digester operating conditions, including hydraulic retention time, pH, carbon-nitrogen 

(C/N) ratio, and inoculum (Verma et al., 2007). Therefore, improving the efficiency of 

biogas production requires improving the characteristics of the feedstock and 

operating conditions of the digester. It is also well established that co-digestion of two 

or more feedstocks produces a higher methane yield than a single feedstock 

(Panyadee et al., 2013, Haider et al., 2015). Co-digestion is the process of mixing two 

or more substrates and digesting them simultaneously. The function of co-digestion 

during AD includes balancing nutrients (C/N ratio, micro- and macro-nutrients), pH 

regulation, and dilution of inhibitors/toxic compounds (Haider et al. 2015; Bożym et al. 

2015; Zhu et al. 2014). These highlight the fact that co-digestion could be a simpler 

method to improve the feedstock characteristics and digester operating conditions. 

Some of the major benefits of anaerobic co-digestion over mono-digestion include 

increased biogas production and methane concentration (Brown and Li, 2012, Mel et 

al., 2015).  

Co-digestion has been utilized extensively to improve the efficiency of biogas 

production. Its efficiency may be influenced by parameters such as nutrients, 

feedstock pH, temperature, feed flow rate (loading rate), feedstock type, mixture ratio, 

and retention time. However, these factors may slow or stall the process of biogas 

production if their values are not within a certain range. Therefore, understanding the 

importance and optimal operating conditions for each parameter during AD will 

contribute to the realization of optimal hydrolyses and digestion (Comino et al., 2012). 

The improvement of biogas production via co-digestion requires careful selection of 

feedstocks (Zhu et al., 2014). In addition, the characteristics and availability of each 

feedstock plays a key role in improving the efficiency of AD. Co-digestion with a 

mixture of two or more substrates is considered a more appropriate cost-effective 

method than pre-treatment, especially when trying to improve the efficiency of plant 

residues in biogas production. This is because the addition of nitrogen-rich substrates 

such as animal manure/slurries helps in balancing the C/N ratio of carbon-rich plant 

residues (Ye et al., 2013, Wei et al., 2014). Research has shown that co-digestion of 

energy crop residue with a nitrogen-rich substrate can mitigate the rapid acidification 

of the digester by the high lignin content of plant residue, ease the utilization of energy 

crops by microorganisms and improve biogas production and methane yield. (Haider 
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et al., 2015). Therefore, this study aims to evaluate the co-digestion of cassava peel 

and cattle manure at different ratios and the effect of the mixing ratios on methane 

yield (Okudoh et al., 2014). 

The main research highlights of this paper relate to: 

 collecting data on co-digestion of cassava peel with cattle manure; 

 comparing data on biogas yield from mono-digestion and co-digestion of 

feedstock; 

 Estimating the theoretical biogas yield obtained from the CM:CP co-digestion 

ratio and comparing the result with the yield obtained from the experimental 

study. 

4.2 MATERIALS AND METHODS 

The study was divided into two stages, namely (i) assessing the mono-digestion and 

co-digestion of the substrates by testing in biochemical methane potential (BMP) 

reactors at a mesophilic temperature (36 °C) using CM and CP, and using 

mathematical models to determine theoretical methane production using the 

elemental composition of the feedstock (Lehtomaki, 2006). 

4.2.1 Collection and preparation of substrates for biogas production 

The substrates tested in the BMP reactors were CM (animal biomass) and CP (plant 

biomass). The animal biomass used for this study was collected in a large clean plastic 

container from Ukulinga Research Farm at the University of KwaZulu-Natal, 

Pietermaritzburg, South Africa, while the energy crop biomass (Snyman and Botha) 

was imported from Nampula Province, Mozambique. The CP was sourced from 

Mozambique because it is more readily available there compared to South Africa 

(Okudoh et al., 2014). The characteristics of the substrates used are presented in 

Table 4-2. 

The CPs were prepared from fresh cassava roots, which were peeled mechanically 

with a sharp knife (Figure 4-1A). The CPs (Figure 4-1B) were thereafter washed three 

times in tap water and allowed to drain for about 30 min. Subsequently, the CPs were 

sun dried for two consecutive days to reduce their cyanide content (Igwe, 2014). The 

CM was homogenized using a hammer mill (SER No. 400, Scientific South African, 
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South Africa) and a laboratory blender to reduce the particle size to less than 5.0 mm 

(Figure 4-1C) (Oparaku et al., 2013, Promphiphak and Wongwuttanasatian, 2012). 

The CPs were shredded into smaller sizes. About 20 kg of CP was soaked in water 

for one month at ambient temperature (35 °C) to soften the substrate and ensure that 

the microorganisms involved in AD could feed easily on bacteria to produce the 

biogas. Both the homogenized CM and prepared CP were stored in a refrigerator at 4 

°C. The soft CP was made into a slurry by adding water, as shown in  

Table 4-1. A flowchart indicating the steps used in the process of biogas production 

from cassava peels is shown in Figure 4-2. 

   

Figure 4-1: (A) Unpeeled cassava roots, (B) cassava peels, and (C) blended 

cassava peels 

Fresh cattle dung (FCD) collected from Ukulinga Research Farm was used as an 

inoculum to start-up the experiment. This was prepared by mixing FCD with deionized 

water in a 1:1 ratio (100 g cattle dung:100 mL water). The inoculum was kept in an 

airtight container at 4 °C; prior to use, it was acclimated and degassed at 35 °C for 

three weeks to minimize the production of methane from the inoculum (Li et al., 2013). 

The characteristics of the substrates used in this study (i.e. CM and CP) are shown in 

Table 4-2. 
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Figure 4-2: Flow chart showing the steps used to prepare cassava used for biogas production 
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4.2.2 Experimental design 

The BMP was studied by investigating the co-digestion of CM and CP. Four co-

digestion ratios were investigated: CM:CP = 100:0, CM:CP = 0:100, CM:CP = 80:20, 

and CM:CP = 20:80. These ratios were based on the volatile solids content, and 1.5 g 

VS/100 mL of slurry was used in each bottle. Three runs of the experiment were 

conducted using 600 mL SCHOTT DURAN® laboratory glass bottles as the batch 

reactor. The experiments were conducted under mesophilic conditions with a 

temperature of 36 °C. The experimental design shown in  

Table 4-1 was used for all three runs. Substrate and deionized water were added to 

each reactor bottle to produce an effective solution of 1.5 g VS/100 mL. Organic 

loading was used to avoid acidification while simultaneously ensuring manageable gas 

volumes (Hansen et al., 2004). The headspace in all the reactor bottles was kept at 

20 mL (working volume of 580 mL) and the bio-digesters were flushed with nitrogen 

gas to set anaerobic conditions. 

An inoculum comprising a mixture of 100 g raw (fresh) cattle dung and 100 mL 

deionized water was prepared. Additionally, 100 g of the raw CM was mixed with 100 

mL of tap water and fed to the same anaerobic bio-digester. The slurry was inoculated 

with the prepared FCD to a ratio of 1:2 w/w. The same method was used to prepare 

the CP feedstock. The biogas produced was measured using the displacement 

method. The cumulative biogas volume was thereafter calculated and corrected to 

standard pressure (760 mm Hg) and temperature (0 °C). Sodium hydroxide (NaOH) 

was put into the inverted displacement bottle to absorb CO2 biogas produced in the 

reactor. It can therefore be assumed that the gas collected in the headspace of the 

inverted displacement bottle was mainly methane, so that the liquid volume displaced 

and collected in the measuring cylinder indicated the volume of methane produced 

(Figure 4-3). The methane produced was measured daily. 

Table 4-1: Biochemical methane potential experimental design 

Co-
digestion 

Ratio 
Mass of 
CM (g) 

Mass of 
CP (g) 

VS (g) 
Solution 

volume (mL) 
Loading (g 

VS/100 mL) 

CM:CP 100:0 20.11 0 8.7 580 1.5 
CM:CP 0:100 0 10.37 8.7 580 1.5 
CM:CP 80:20 16.09 2.07 8.7 580 1.5 
CM:CP 20:80 4.02 8.29 8.7 580 1.5 
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4.2.3 Biochemical methane potential (BMP) apparatus setup 

The BMP experiment was carried out in 600 ml SCHOTT DURAN® glass laboratory 

bottles (bio-digesters) operated in a batch system (Figure 3). The bio-digester bottles 

were plugged with tight rubber plugs equipped with valve for biogas measurement. 

The bio-digester was operated at a controlled temperature of 35 ± 1 °C using a 

thermostatically controlled electricity heated water bath. The biogas that formed inside 

the bio-digester was measured using the liquid displacement method as indicated in 

Figure 4-3 (Jingura and Matengaifa, 2009). The schematic diagram of experimental 

laboratory was set up as shown in Figure 10. 

 

Figure 4-3: Schematic diagram depicting the setup of the biochemical methane 

potential tests (Tawona, 2015) 

4.2.4 Analytical methods 

The total solids (TS) and volatile solids (VS) in the feedstocks and inoculum were 

analysed using standard techniques at the beginning of the AD process and at the end 

of the 40 d incubation period (Labatut et al., 2011). TS content was determined after 

drying the sample in an oven overnight at 105 °C. VS content was calculated as TS 

minus the ash content after ignition at 550 °C in a muffle furnace. The pH levels of the 

feedstock solutions were measured with a calibrated pH metre (Model 410A, Labotec 

Orion, South Africa). Daily methane gas production was measured directly as the 

volume of liquid collected in the measuring cylinders. 
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4.2.5 Data analysis 

The results of all the volume measurements were reported at standard temperature 

and pressure (STP) (273.15 K,). Daily temperature (Tm) and atmospheric pressure 

(Antoniou et al.) were recorded with every measurement of methane volume (VS). 

These values were used to calculate the gas volumes at standard conditions (VSTP) 

according to Equation 4-1 below. 

𝑉𝑆𝑇𝑃 = 𝑉𝑠𝑥
𝑇𝑆𝑇𝑃

𝑇𝑚
𝑥

𝑃𝑚

𝑃𝑆𝑇𝑃
                                                                                              (4-1) 

TSTP and PSTP represent standard temperature (0 °C) and standard pressure (760 mm 

Hg), respectively. Daily methane volume was recorded in mL, whereas cumulative 

methane yield was calculated and standardized to mL CH4/g VS. 

4.2.6 Mathematical models to determine theoretical methane production 

Theoretical methane production potential from substrate elemental composition 

The feedstock used was characterized to obtain its elemental composition (Table 4-4). 

The elemental composition can be used, according to Franco et al. (2007), to estimate 

the maximum theoretical biogas and methane yield. Buswell’s equation can be used 

to calculate the theoretical methane yield (Buswell and Neave, 1930). 

CaHbOcNd + (a −
b

4
−

c

2
+

3d

4
) H2O → (

4a+b−2c−3d

8
) CH4 + (

4a−b+2c+3d

8
) CO2 + dNH3  (4-2) 

Equation 4-2 above describes the complete degradation of all the carbon in the 

substrate. The maximum theoretical biogas production (Bth) and the theoretical 

methane production (Mth) can be estimated from Equations 4-3 and 4-4 respectively. 

𝐵𝑡ℎ [
𝑚3

𝑘𝑔𝑣𝑠
] =

𝑎22.415

12𝑎+𝑏+16𝑐+14𝑑
                                                               (4-3) 

𝑀𝑡ℎ [
𝑚3

𝑘𝑔𝑣𝑠
] =

(
4𝑎+𝑏−2𝑐−3𝑑

8
)22.415

12𝑎+𝑏+16𝑐+14𝑑
                                                           (4-4) 

The Buswell equation (Roati et al., 2012) can be used to select promising substrates 

for further examination in the laboratory and in a pilot scale test. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Characterization of substrates 

Characterization tests were conducted on the substrates and inoculum as presented 

in Table 4-2. The substrates were tested for all the compositions shown in Table 4-2 

below. 

Table 4-2: Characteristics of feedstocks and inoculum 

Composition 
(%) 

Substrate 
Inoculum (cattle 

dung) Cassava Peel (CP) 
Cattle Manure 

(CM) 

Moisture 
Content 

79.68 ± 0.01 69.08 ± 0.15 75.20 ± 0.34 

Total solids 20.32 ± 0.12 30.92 ± 0.12 24.80 ± 0.95 

Volatile solids 75.51 ± 1.01 94.64 ± 4.21 84.67 ± 0.57 

Starch 61.42 ± 0.21 ND ND 

Sugar 77,34 ± 0.11 ND ND 

Total nitrogen 0.87 ± 0.14 1.14 ± 0.05 2.06 ± 1.15 

Total carbon 51.91 ± 0.01 53.95 ± 0.25 35.92 ± 0.17 

Ash 4.98 ± 0.31 1.66 ± 0.44 3.80 ± 0.17 

Phosphorus 0.20 ± 1.21 0.12 ± 0.73 0.42 ± 0.03 

ND = Not determined 

The CP has high starch content (approximately 61.42%) and is rich in carbohydrates. 

It has a sugar content of approximately 77%. It also contains approximately 79.68% 

moisture, 4.98% ash, and 0.2% phosphorus. On the other hand, CM has a moisture 

content of 69.08%. The C/N ratio of the CP was 45:1, which is considered very high 

compared to the optimum ratio range of 20–30:1 for maximum biogas yield (Okudoh 

et al., 2014). 

4.3.2 pH of substrate solution 

At the start of the experiment, the pH values of substrate solutions in the BMP batch 

reactors were measured and recorded. Table 4-3 presents the average results for all 

the runs. 
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The pH of the feedstock is an important parameter in determining the efficiency of an 

anaerobic digester (Kondusamy and Kalamdhad, 2014). The pH level can drop below 

5 during the production of organic acids, which occurs during acetogenesis (Arsova, 

2011). According to Liu et al. (2008), the optimal pH range for obtaining the highest 

biogas yield by AD is 6.5–7.5. Table 4-3 shows that the pH of the substrates is within 

this optimal range. The initial pH of all the substrates ranged from 6.51–7.41 and was 

within a favourable range. However, during the fermentation process, the pH was 

monitored and measured every five days. To neutralize pH within the bottle reactor, 

NaHCO3 (10 g/L) was added when necessary (Ai et al., 2014). 

4.3.3 Methane production 

Daily methane yield at different ratios 

The methane production rates under mesophilic conditions for the different mono- and 

co-digestion ratios, which are based on the average results for daily methane 

production from the three runs conducted, are presented in Figure 4-4. From Day 1, 

all substrates began to produce methane. However, the mixture with the CM:CP ratio 

of 20:80 produced the highest methane yield of 62.69 mL, followed by the ratio 80:20, 

with 55.57 mL, 100:0 with 51.19 mL, and 0:100 with 28.80 mL. The high yield of biogas 

on Day 1 could be attributed to the acclimation of the inoculum (Steinmetz et al., 2016). 

An interesting decrease in the biogas yield, which could have been the result of an 

abatement in methane production caused by acidification in the batch reactors (Kong 

et al., 2016), was observed after Day 1. The pH was measured at this stage to confirm 

the acidification in all batch reactors, and the average results are presented in Table 

4-3. According to Ali Shah et al. (2014), acidification is expected to occur within the 

first few days of AD unless a pH control mechanism is instituted. 

Table 4-3: Average pH on Day 2 of the biochemical methane potential tests 

Substrate 
Average pH on 

Day 0 
Average pH 

on Day 2 

Cassava (100:0) 7.07 ± 0.08 6.02 ± 0.09 

Cattle manure (0:100) 6.62 ± 0.14 5.71 ± 0.14 

Inoculum (cattle dung) 6.86 ± 0.34 - 

CM:CP (80:20) 6.54 ± 0.03 5.50 ± 0.11 

CM:CP (20:80) 7.30 ± 0.14 5.85 ± 0.26 
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After Day 7, all reactors began to yield less methane. It was suspected that this 

abatement in methane production was caused by acidification in the batch reactors. 

The co-digestion CM:CP mixture of ratio 20:80 exhausted its methane yield after 38 

d, while the other BMP mixtures (CM:CP 100:0, 0:100, and 80:20) did so after 39 d 

(Figure 4-4). The maximum methane yield, 91.05 mL, was produced on Day 6 by the 

CM:CP co-digestion mixture with the ratio 20:80, which otherwise had an average yield 

of 20.97 mL/day. The other BMP mixtures, that is, with CM:CP ratios of 100:0, 0:100, 

and 80:20, produced maximum methane yields of 61.42 mL, 38.15, and 52.28 mL 

respectively. The experiments were terminated at 40 d, when methane production 

stopped. 

  

Figure 4-4: Daily methane gas, over 40 d, from different ratios of cattle manure to 

cassava peel 

Cumulative methane yield at different ratios 

The cumulative methane yield of the substrates tended to follow the horizontal 

asymptote representing the maximum methane production per gramme of VS (CH4/g 

VS) achievable from each substrate (Esposito et al., 2012). In Figure 4-5, the x-axis 

displays the observation time in days, whereas the corresponding cumulative methane 

yield, expressed as mL CH4/g VS, is displayed on the y-axis. Mono-digestion at the 

CM:CP ratio of 0:100 was inhibited, and it had a low cumulative methane yield of 61.75 
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mL/g VS (Figure 5). The highest cumulative methane yield was obtained from co-

digestion of CM:CP at a ratio of 20:80 (96.40 mL/g VS), which was higher than that of 

the other co-digestion processes. The highest cumulative methane yield resulted from 

the mixing ratio in which the CM provided the nutrients, appropriate C/N ratio, and 

sufficient microorganisms required for AD (Kennedy et al., 2015). The final cumulative 

methane yields from the co-digestion of CM:CP of ratios 80:20 and 20:80 were 739.97 

mL and 838.70 mL respectively, with average cumulative methane yields of 652.2 

mL/day and 431.0 mL/day, respectively. The order of methane yield is 20:80 > 100:0 

> 80:20 > 0:100, which could be attributed to the good digestibility of the CM and better 

interactions between the different substrates and the CM. 

 

Figure 4-5: Cumulative methane gas over 40 d from different ratios of cattle manure 

to cassava peel 

According to Esposito et al. (2012), the cumulative methane yield curve can be divided 

into three main phases: initial, intermediate, and final (Figure 4-5). The initial phase 

was characterized by a steady increase in the cumulative methane yield. According to 

(Mata-Alvarez, 2002), the daily methane yield affects the shape of the cumulative 

methane yield. This implies that, if the daily methane production rates are high in the 
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first few days, it will result in a more pronounced reverse L-shaped curve. The 

intermediate phase was characterized by a higher bio-methanation rate than the initial 

phase. This is shown by an increase in the slopes of the cumulative methane 

production curves after Day 5, which is a result of the pH correction. 

Determining the effect of co-digestion on ultimate methane yield using 

mathematical models 

The biogas yield was mathematically predicted using the elemental composition of the 

substrates. These were compared with experimental results. The mathematical model 

used was described in Equations 4-3 and 4-4, which were derived from Buswell’s 

equation and used to estimate ultimate methane yield from the different CM:CP co-

digestion ratios. The mathematical estimates of biogas yield obtained are presented 

in Table 4-4. 

Table 4-4: Mathematical ultimate methane yield of different co-digestion mixtures 

using elemental analysis 

Sample 

Elemental analysis C, H, O, N coefficients  

Bth [
m3

kgvs

] 

  

 

pH N C H O a b c d 

Molecular 
formula Mth [

m3

kgvs

] 

 

CP 7.07 0.87 51.91 5.90 41.79 69.61 94.94 42.03 1 C70H95O42N 0.97 0.50 

CM 6.62 1.14 53.95 6.39 36.82 55.21 78.47 28.26 1 C55H79O28N 1.03 0.56 

CM:CP 
(80:20) 

6.54 1.10 54.24 6.37 38.28 57.48 81.60 30.43 1 
 

C58H82O30N 
1.01 

 

0.54 

CM:CP 
(20:80) 

7.30 0.92 52.31 6.00 40.77 66.00 90.81 38.58 1 
 

C66H91O39N 
0.98 

 

0.51 

The results presented in Table 4-4 show an interesting trend. The ultimate methane 

yield obtained from mono-digestion with CM, followed by co-digestion of CM:CP at a 

ratio of 80:20, were 0.56 m3/kg VS and 0.54 m3/kg VS respectively. The lowest 

methane yield was obtained from mono-digestion with CP (0.50 m3/kg VS). These 

results support the outcome obtained by Shah et al. (2015) that co-digestion improves 

the methane yield if the correct ratios are used.  
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4.4 CONCLUSION 

Co-digestion remains a suitable and simple method to improve the biogas production 

efficiency of mono-feedstock substrate. At similar ratios, the co-digestion of feedstock 

substrate at different ratios is more suitable for maximum biogas production. Co-

digestion helps to balance the nutrient ratio essential for microorganisms. The 

chemical composition of cassava showed a high biogas production potential due to 

high carbohydrate, dry matter (TS), and VS content, and low fibre content. 

The highest methane production was achieved from the CM:CP co-digestion ratio of 

20:80, whereas the mono-digestion of CP resulted in the lowest daily and cumulative 

methane yields. The study showed that increasing the CM ratio in relation to CP 

increased the cumulative biogas yield. This result could also introduce the possibility 

of using energy crops such as cassava as a capping measure for landfills, which could 

assist in the utilization of the landfill site after closure. Cassava peel could also be 

used for biogas generation at harvest. The results obtained from this study could be 

used as a basis to design a plot-sized anaerobic digester, and in turn large-scale 

anaerobic digesters, thereby providing a source of renewable energy for low income 

communities. 
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PREAMBLE 

Based on the identified feedstock in chapter 2 and the promising theoretical results, 

further investigation was conducted on the biogas yield of Peeled Cassava Tuber 

(PCT) and Unpeeled Cassava Tuber (UCT). Chapter 5 aims to define the effect of the 

cassava peels on the biogas yield by comparing the peeled cassava tuber and 

unpeeled cassava tuber. Additionally, the effect of inoculum on the biogas yield is also 

investigated.  

This chapter is presented in the form of a journal article published in International 

Journal of Mechanical Engineering and Technology (Scopus), minor changes were 

made to improve the flow. The copy of the original published research article can be 

found in Appendix P4. 
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ABSTRACT 

The production of energy from biomass such as an energy crop is gaining momentum 

due to the steady increase of the world population, economic growth and the 

accelerating cost of fossil fuels. In recent years, progressive climate change related to 

global warming and rampant Green House Gases emissions necessitates applied 

research in renewable energy generation from different sources. The purpose of this 

study, therefore, was to evaluate the potential of production of biogas from unpeeled 

and peeled cassava tubers at a mesophilic temperature of 37 ºC in a 50-litre laboratory 

scale biogas digester, with cow dung (inoculum) as source of methanogens. The 

experimental design consists of two biomass raw materials (i.e. whole cassava and 

peeled whole cassava tuber). The highest biogas yield of 635.23 L/kg VS was obtained 

from peeled cassava tuber anaerobic fermentation using inoculum followed by the 

digestion of peeled cassava tuber as raw material without inoculum which led to the 

production of 493.35 L/kg VS. The feedstock of peeled cassava with inoculum, 

produced 28.75% more gas yield when compared to peeled cassava without inoculum. 

The Modified Gompertz model fitted the cumulative experimental methane gas data 

well. The Gompertz Model with the newly developed coefficients was used to predict 

the maximum biogas yield at day 40. The validated results show that peeling the 

cassava tuber increases the biogas yield by 38% compared to the unpeeled cassava 

tuber. 

KEYWORDS: Biomass, Anaerobic Digestion, Biogas, Peeled Cassava Tuber, Kinetic 

Model, Unpeeled Cassava Tuber 

5.1 INTRODUCTION 

Supply and consumption of energy are important factors in improving living standards 

in off-grid communities (Twidell and Weir, 2015). Evidence shows that global demand 

for energy is increasing with the steady growth of the world population, economic 

growth and increased energy usage (Hagos et al., 2017, Sorrell, 2015). Reliance on 

fossil fuels has also increased over the years and will soon result in the depletion of 

fossil fuel resources. It is crucial that we explore alternative energy sources that are 

sustainable and renewable for future generations (Panwar et al., 2011).  Considering 

the need for sustainability in resource and environmental management, research 



 

82 

 

focused on harnessing energy from sustainable sources is on the increase. These 

sustainable sources are majorly renewable in nature. Some of these renewable 

sources include small hydro, wind, geothermal, solar, and biomass. Of all these 

sources, the biomass is distinct and different from other sources of renewable energy. 

This is majorly due to its special feature as regards use, control, collection of organic 

wastes and concurrent production of fertilizer and water for agricultural use (Memon 

et al., 2012). Furthermore, biomass has no geographical limitation and can be 

processed to biogas using local technologies.  Biogas is a gas generated when organic 

matters are broken down in the absence of oxygen (anaerobic digestion). According 

to Gelegenis et al. (2007), “organic waste such as dead plant and animal material, 

animal faeces, and kitchen waste can be converted into a gaseous fuel called biogas.”  

This means that biogas can be produced for energy even in remote communities 

without enough wind speed and solar irradiation for wind turbine technologies and 

solar technologies respectively. This will help in increasing electrification rates 

worldwide.  

The renewable energy generation during anaerobic digestion of biomass has mainly 

been used for the degradation of biomass or any waste materials or toxic compounds 

(Khalid et al., 2011). However, recently, there has been increased interest in the 

production of biogas from carbohydrate rich energy crops by means of anaerobic 

digestion (Choi and Lee, 2015). Based on this, the local production of energy from 

carbohydrate rich energy crops is essential for the minimisation of emissions and 

increase of electrification rates in Africa. For instance, South Africa, as one of the 

countries with the highest inequality in the world (Gini coefficient = 0.7), could benefit 

from the adoption of anaerobic digestion technology for energy crops (Bhorat, 2015), 

thereby assisting local communities in gaining access to electricity like their urban 

communities. To achieve this, a laboratory-scale research on the ultimate biogas and 

methane yield from new energy crops such as cassava is of importance. Much 

research attention has been given to biogas production from industrial wastewaters in 

South Africa while there is a huge interest in industrial waste water treatment for use 

of the treated water for other purposes (Stafford et al., 2013). However, little research 

attention has been dedicated to energy production from energy crops. 
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Some recent studies have focused on using raw materials such as municipal waste, 

agricultural waste, sewage, manure, plant material, food or green waste in developing 

novel methods of biogas production. Klimiuk et al. (2010) carried out an investigation 

on the ability of silage obtained from crop species namely: Zea mays L., Sorghum 

saccharatum, Miscanthus giganteus and Miscanthus sacchariflorus, to produce 

methane. It was observed that due to the higher crude content in Miscanthus spp., the 

volumetric methane obtained from Zea mays L. or S. saccharatum silages were higher 

than those from the Miscanthus giganteus or sacchariflorus silages at a hydraulic 

retention time of 60 days. The methane productivity of Miscanthus sacchariflorus was 

however higher than that of Miscanthus giganteus at comparable feedstock lignin 

concentrations. The efficiency of cellulose conversion was observed to be highest in 

Zea mays L. (88.9%,), followed by Sorghum saccharatum (83.6%), Miscanthus 

giganteus (59.7%) and Miscanthus sacchariflorus (52.1%). 

Maragkaki et al. (2018) carried out an experimental investigation on the effect of using 

a mixture of small amount of agro-industrial by-products, co-digesting sewage sludge 

and food wastes for biogas production. The experiment was carried out using lab-

scale reactors under mesophilic conditions at a hydraulic retention time of 24 days. 

Jiang et al. (2018) carried out an investigation to validate the production of bio-hythane 

using a two-stage fermentation process of cassava with recirculation and with 

repeated batch experiments. The effect of hydraulic retention time was clarified and 

the effects of nickel, nitrogen, sulfur and cobalt supplements used in the fermentation 

process, were investigated. It was observed that the increase in hydrogen, hydrolysis 

and acidogen producing bacteria was ensured by sufficient presence of nickel, 

nitrogen, sulfur and cobalt supplements in the fermentation process, with the recovery 

of a sustainable hythane fermentation metabolism. 

Castrillón et al. (2011) carried out an evaluation on the production of biogas through 

the co-digestion of cattle manure with crude glycerin extracted from biodiesel after the 

cattle manure was pre-treated using the sonication technology of ultrasound. It was 

observed that under moderate temperatures, the addition of a light amount of glycerin 

increased biogas production by 400% while sonication of cattle manure mixed with 

glycerin increased biogas production by 800%. Furthermore, an experimental study 
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has also been carried out by Zema et al. (2018) to obtain biogas from olive mill 

wastewater (OMW) blended with other agro-industrial by-products. 

Gilson (2017) performed a cost-benefit analysis on the use of wetland plants as a 

supplement for biogas production, thereby conducting an investigation on how harvest 

time affects the biogas production of wetland species such as Phragmites australis 

and Glyceria maxima. It was observed that the midyear harvest time produced the 

highest generated revenue. Although using wetland plants solely for biogas production 

is not currently profitable, Gilson concluded that placing higher premium on the value 

of socioeconomic benefits such as global warming mitigation and increased 

biodiversity will make it economically attractive in future. Ebrahimi-Nik et al. (2018) 

carried out a study on the benefits of using drinking water treatment sludge as a 

supplement for biogas production from food waste. It was observed that the treatment 

sludge enhanced the products of biogas and lessened the time of retention and lag 

phase.  

A preliminary desktop review undertaken prior to this study reveals that the energy 

generating potential of some plants are yet to be explored. These include locally grown 

plants species in sub-Saharan Africa. Energy crops such as fodder beets and cassava 

have been identified as major crops for biogas production since they are drought-

tolerant and can, thus, give good yield in South Africa as well as elsewhere in the 

region. This article explores the potential of cassava as an energy crop, as there is a 

paucity of research on cassava biomass (Okudoh et al., 2014).  

Cassava is cultivated in many African, American and Asian countries. It is a starchy 

root crop with starch concentration ranging from 20–35% and 80% to 86% when fresh 

and dried respectively (Uchechukwu-Agua et al., 2015). In most West-African 

counties, cassava is the second most important staple food, but it is still a minor food 

plant in South Africa. For this reason, the conflict between food security and energy is 

inconsequential (Arc.Cassava, 2014). Due to its high carbohydrate concentration of 

4.742 kg/carb per hectare (Nuwamanya et al., 2012), cassava chemical composition 

has great potential for the production of bioenergy, especially biogas (Okudoh et al., 

2014). Cassava has several advantages compared to other energy crops as it has the 

ability to grow in areas with low fertility and has the highest yield of carbohydrates 
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compared to sugarcane and sugar beet (Okudoh et al., 2014). Therefore, the main 

objective of this research is to evaluate the production of biogas from unpeeled 

cassava tubers (UCT) compared with peeled cassava tubers (PCT) at a mesophilic 

temperature (37°𝐶) in the absence and presence of inoculum. This study is a pilot 

study on the production of biogas from cassava in South Africa. It is expected that this 

study will contribute towards establishing an accurate technique for biogas 

quantification using UCT and PCT, and contribute to knowledge on the suitable 

feedstock that can provide an optimum biogas yield. 

5.2 MATERIAL AND METHODS 

This section presents the methodological approach adopted in this study. The 

research involved (1) collecting data on the mono-digestion of unpeeled cassava 

tubers (UCT0) and peeled cassava tubers (PCT0) without inoculums; (2) comparing 

data on the biogas yield from mono-digestion for UCT and PCT; (3) investigating the 

effectiveness of inoculums for biogas production from unpeeled cassava tuber with 

inoculums (UCT1) and peeled cassava tuber with inoculums (PCT1); and (4) 

investigating the daily production rate of both peeled and unpeeled cassava in the 

presence and absence of inoculum.   

5.2.1 Collection and Pre-treatment of Substrates and Inoculums 

Fresh cassava tubers (200 kg) were collected from a cassava plantation in the 

Nampula Province of Mozambique. A hundred kilogrammes of the collected fresh 

cassava tubers were mechanically pre-treated by peeling, while the remaining 100 kg 

was not peeled. Both the peeled and unpeeled cassava was washed with tap water 

and chopped into pieces of about 1 cm3 using a sharp knife. Thereafter, it was dried 

in sunlight for two days (Figure 5-1). All prepared feedstock were stored in a 

refrigerator at 4 ˚C until use in the experiment. The dried cassava tubers were milled 

with a scientific Republic of South Africa hammer mill that is equipped with a 2 mm 

sieve mesh to obtain cassava flour. The properties of the substrates are shown in 

Table 1.  

The inoculum used for this study was fresh cattle dung (FCD) (Figure 5-2) collected 

from the University of KwaZulu-Natal’s (UKZN) Ukulinga Research Farm in 

Pietermaritzburg, South Africa. It contained all the required microbes essential for the 
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anaerobic digestion process. The inoculum was characterized for moisture content, 

total solids, volatile solids, total carbon, total nitrogen, pH, C/N Ratio, ash and 

phosphorus. 

 

Figure 5-1: (A) sample of unprepared cassava tubers, (B) sample of peeled cassava 

tubers (PCT), (C) sample of cut peeled cassava tubers, (D) sample of cut unpeeled 

cassava tubers (UCT), and (E) Cassava Flour 

5.2.2 Inoculum Preparation 

The FCD was mixed with water to a ratio of 1 kg cattle dung: 2 litres water (i.e. 1:2) to 

form a slurry (Nasir et al., 2015). The slurry inoculum was filtered by passing it through 

a 0.5mm sieve diameter to separate the solid content from the slurry. The filtered FCD 

slurry was kept in an airtight container at 4°C. Prior to use, it was acclimated and 

degassed at 35°C for three weeks to minimize the production of methane from the 

inoculum. An inoculum: substrate ratio of 1:2 was used for the digestion (Angelidaki et 

al., 2009) after purging the system of oxygen with ultrapure N2 gas to create an 

anaerobic environment.  
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Figure 5-2: Fresh cattle dung (Inoculum) 

5.2.3 Experimental set up 

Peeled cassava tubers (PCT) and unpeeled cassava tubers (UCT) were weighed and 

the biomass was mixed with tap water to a volume ratio of 1:2 (Biomass: Water). This 

was done to maintain total solids in the digester of between 8 and 15%, which is the 

acceptable range for wet anaerobic digestion (Liu et al., 2015). The slurries were 

mixed properly to obtain a homogenous condition. The prepared slurry was fed into 

the batch type digester (Figure 5-3) and digested anaerobically until no biogas was 

produced (zero biogas yield). The characterization of the slurry feedstock used in the 

anaerobic digestion is presented in Table 1. The initial pH for all the slurry was 

adjusted to 7.0 ± 0.1 by using NaOH solution 1 N. 

5.2.4 Experimental Design  

A laboratory scale experiment was conducted with a 50-litre open head drum (Figure 

5-3B). A 50 mm PVC pipe was connected to the digester to feed it with the substrate. 

The mixing was done manually and operated by a pitched 3-blade paddle impeller 

(Figure 5-3B). The working volume of the bio-digester was 45 litres, which is about 

90% of the volume of the digester.  
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Figure 5-3: (A) Model for generation of biogas from cassava peel and peeled 

cassava tubers, (B) Section of digester showing the 3-blade paddle, (C) Biogas 

generation experimental setup, and (D) programmable logic controller (PLC) 

 

The digester was placed in a hot-water bath that keeps it at its desired operating 

temperature. This hot-water bath was constructed with a 1000 l intermediate bulk 

container (IBC) (Figure 5-3A). The IBC was fitted with two temperature adjustable 

heating elements to control the water temperature and a recirculation pump (Figure 

5-3A & Figure 5-3C), which was used to recycle the hot water through different points 

in the IBC to ensure even heat distribution and convective heat transfer around the 

digester. The temperature of the water was kept at 37 ºC as the experiment was 

carried out at a mesophilic temperature.  

A gasholder system (GH) connected to programmable logic controller (PLC) was used 

to measure the biogas yield per day. After the setup of the GH, the PLC system was 

connected to a single phase 220V, 50Hz power outlet (Normal wall plug). The PLC 

was turned on by turning the power button (Figure 5-3D). When biogas is produced in 

the digester, the gas moves through the 8mm uPVC pipe (Figure 5-3A) into the inner 

cylinder of the gasholder. The gasholder is filled with water up to the top part where 
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the aluminum isolation stops (Figure 5-4A & Figure 5-4B). Due to the pressure formed 

inside the inner cylinder by the gas from the digester, the cylinder moves upwards as 

more gas is produced. The gas cylinder will eventually come in contact with the Button 

limit switch and activate it. When the switch is activated, the solenoid valve will be 

activated. This can be seen when the valve light is lit on the PLC. When the valve is 

activated, the biogas becomes vented. As the biogas is vented, the gas cylinder will 

move down, eventually activating the lever limit switch which will deactivate the 

solenoid valve which is the end of one complete gas cycle. 

 

Figure 5-4: Gasholder with moving inner gas cylinder, up inner gas cylinder (A), 

down inner gas cylinder (B), and Gas chromatography connection point (C) 

UCT and PCT were separately examined in the absence and presence of inoculum 

with a single digestion process to determine and compare performance. The digester 

was fed with 40 litres of the relevant substrate and was inoculated with a slurry of FCD. 

The inoculum was used to apply the bacterial concentration in the digester. After 

feeding, the digester with the desired amount of feedstock was flushed with nitrogen 

gas to create an anaerobic environment, where after the digester was closed. The 

mesophilic batch tests were conducted at a temperature of 37 ºC. This temperature 

was maintained throughout the whole experiment and was monitored using a mercury 

thermometer. The biogas volume produced was measured using a gasholder (Figure 

5-4C) and the methane content was measured using chromatography, the biogas was 

collected at the collection point as indicated in Figure 5-4C. All gas volumes reported 

have been corrected to STP (0 oC, 110.3 KPa) as described by Walker et al. (2009). 

The substrate was manually stirred using the 3-bladed paddle for about ten (10) 

seconds once a day before measurement of the biogas volume. 

C 
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5.2.5 Biogas measurement and analytical methods 

The programmable logic controller (PLC) was used to measure the biogas produced 

daily. The gas composition was analysed offline by means of chromatography. Total 

solids (TS) and total volatile solids (VS) were determined at 104⁰C and 550⁰C, 

respectively, using standard methods (Helrich, 1990, Federation and Association, 

2005). Additional parameters were also determined total carbon and nitrogen contents 

using the CNS-2000 Elemental Analyzer (Leco Corporation, USA).  

The starch concentration in the cassava tubers was determined using 

spectrophotometry at 580 nm absorbance in the soluble form and the presence of 

iodine (Gales, 1990). The experiment ran until zero biogas was reached.  

5.2.6 Modelling of production during biogas digestion 

The cone model (Zhen et al., 2015), and modified Gompertz model (Syaichurrozi and 

Sumardiono, 2013) were used to model the experimental biogas yield. The model 

parameters such as ym, 𝜆, U, khyd, n, k were optimised using non-linear regression 

analysis with the help of Polymath 6.10 software. The equations of the cone model (5-

1), the modified Gompertz model (5-2) are presented below: 

 

𝑦(𝑡) =
𝑦𝑚

1 + (𝑘ℎ𝑦𝑑 . 𝑡)−𝑛
, 𝑡 > 0          (5-1) 

 

𝑦(𝑡) = 𝑦𝑚. exp {− exp [
𝑈. 𝑒

𝑦𝑚

(𝜆 − 𝑡) + 1]} , 𝑡 ≥ 0 
 (5-2) 

where: 

ym = biogas yield potential (Lkg-1 VS), 

y(t) = cumulative biogas at digestion time t days (Lkg-1 VS), 

U = the maximum biogas production rate (Lkg-1 VS. day), 

𝜆 = lag phase period or minimum time to produce biogas (days), 

t = cumulative time for biogas production (days), 
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e = mathematical constant (2.718282), 

khyd = hydrolysis rate constant (day-1), 

n = shape factor, and 

k = the biogas rate constant (day-1). 

5.2.7 Data analysis 

The data were analyzed using ANOVA for variance and coefficient(s) of determination 

(r2) by sigma (𝜆) (2-tailed). The least significant was used to investigate the statistical 

significance of the presence of inoculum in the feedstock. All the data were analyzed 

using the Statistical Package for the Social Sciences (SPSS) model, version 24 of 

2016. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Characterization of substrates 

The physico-chemical properties of UCT, PCT and the inoculum are shown in Table 

5-1. The results show that there was no significant difference (P≤0.05) between the 

peeled and unpeeled cassava tubers in terms of biogas yield. The UCT had 

maintained higher moisture content (76.56%) compared to the moisture content in 

PCT (61.58%). These results are favourable as they are within the optimum moisture 

content range of 60–95% (Demetriades, 2008) for the digester to perform efficiently. 

Moisture content of less than 20% will result in no biogas generation (Rilling, 2005).  

The pH value of the feedstock used in the anaerobic digester is critical for optimum 

biogas yield (Sichilalu et al., 2017). The pH of UCT, PCT and inoculum (CD) is 6.90, 

6.87 and 7.30, respectively. These levels are within the acceptable pH range of 6.0–

8.0 (Hettiaratchi et al., 2015). The optimal pH level during the fermentation process 

within the digester is between 5 and 6, while the optimal pH during the 

methanogenesis is between 6.8 and 7.5 (Hettiaratchi et al., 2015).  

Table 5-1 shows that the total solids of both UCT and PCT (38–43 %) were out of the 

recommended range (7% to 10% ) for best biogas production (Kigozi et al., 2014). The 

recommended range seeks to avoid solids settling down in the lower part of digester. 
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The fresh cattle dung inoculum was in the correct range. Peeling the cassava tubers 

did affect the C/N ratio, but the effect was not significant at P≤0.05 level of significance.  

Table 5-1: Characterizations of substrates used in the experiments 

Parameter 

Substrate FCD ±SD 
Significance 

level (P-Value) UCT ±SD PCT ±SD  

Moisture Content (%) 76.56 ± 3.12 61.58 ± 2.11 80.34 ± 0.12 0.006* 

Total Solids (%) 38.43 ± 1.01 42.25 ± 1.51 11.95 ± 0.10  0.083 

Volatile Solids (%TS) 94.21 ± 0.32 91.27 ± 0.52 61.57 ± 0.01 0.016* 

pH 6.9 ± 0.91 6.87 ± 0.47 7.30 ± 0.11 <0.001* 

Starch (%) 78.38 ± 1.34 76.32 ± 2.01 ND 0.184 

Total Nitrogen (%) 0.51 ± 0.22 0.53 ± 0.44 2.15 ± 0.41 0.189 

Total Carbon (%) 39.04 ± 2.31 39.67 ± 1.78 35.17 ± 1.01 0.001* 

 C/N Ratio 76.55 ± 10.5 74.85 ± 4.05 16.36 ± 2.46 0.106 

Ash (%) 3.84 ± 0.44 3.06 ± 0.66 33.17 ± 1.10 0.310 

Phosphorus (%) 0.09 ± 0.68 0.16 ± 0.57 0.03 ± 0.31 0.131 

ND - Not determined; *significant at P≤0.05 or P≤0.001 level of significance. 
UCT – Unpeeled Cassava Tubers; PCT - Peeled Cassava Tubers; FCD – Inoculum Fresh Cattle Dung 
C/N - Carbon to Nitrogen 

5.3.2 Daily Biogas Yield of Peeled Cassava Tuber with and without Inoculum 

Figure 5 displays the average daily biogas yield of PCT and UCT with and without 

inoculum at mesophilic temperature (37 oC) over 40 days of digestion in Lkg-1 VS of 

biogas. Feedstock with inoculum started yielding biogas at a rapid rate compared to 

the PCT sample with no inoculum. This could be attributed to the presence of microbes 

in the inoculum that act readily on the substrates (Steinmetz et al., 2016).  

As shown in Figure 5-5, the biogas production, as a result of the digestion of PCT, 

started at a rapid rate and continued to rise until it reached a peak of 32.92 Lkg-1 VS. 

It thereafter decreased between days 14 and 17. These small methane variation were 

as a result of variations in pH and temperature (Baltrenas and Kvasauskas, 2008, 

Misevičius and Baltrėnas, 2011), after which the biogas peaked at 38.04 Lkg-1VS.  

The feedstock comprising peeled cassava tubers with inoculum (PCT1) produced the 

highest biogas yield of 38.04 Lkg-1VS on day 19 compared to peeled cassava tubers 
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without inoculum (PCT0), which had its peak biogas yield at 31.81 Lkg-1VS on day 21. 

These results when compared with studies conducted by Rodriguez-Chiang and Dahl 

(2014) and Liu et al. (2017) show that the addition of inoculum to feedstock enhances 

the daily biogas yield. 

The daily biogas yield for PCT without inoculum produced a flatter increasing slope of 

+1.696 Lkg-1 VS between days 1 and 21 compared to PCT with inoculum, which 

produced a steep slope of +1.799 Lkg-1 VS between days 1 and 19. The decrease in 

the slope of the daily biogas yield of PCT without inoculum was steep (-2.814 Lkg-1 

VS), which signifies that the feedstock without inoculum reduced the biogas yield after 

a retention period of 21 days, compared to the feedstock with inoculum which reduced 

the biogas yield after a retention period of 19 days. 

 

 

Figure 5-5: Daily biogas yield, over 40 d, from peeled cassava tuber (PCT) and 

unpeeled cassava tuber (UCT) with and without inoculum. Each data point is the 

average of the measurements of three digesters. 
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5.3.3 Daily Biogas Yield of Unpeeled Cassava Tubers with and without 

Inoculum 

Figure 5-5 presents the average daily biogas production rates (Lkg-1VS) for unpeeled 

cassava tubers (UCT) with and without inoculum. The UCT with FCD inoculum begin 

to yield biogas from the second day of digestion compared to the UCT without 

inoculum, which only produced a significant biogas yield on the sixth day. The 

maximum values of biogas production rate were 41.95 L/kg VS and 32.41 Lkg-1VS for 

UCT with inoculum and UCT without inoculum respectively. The fact that the UCT with 

inoculum had a higher biogas production rate may be attributed to the presence of 

easily biodegradable materials in the inoculum compared to the UCT without inoculum. 

The production of biogas in UCT without inoculum started at a flatter rate of 0.1796 

Lkg-1VS until day five, after which it produced biogas at a faster rate (between days 5 

and 13). In comparison, the UCT with inoculum produced biogas at a faster rate from 

day one, and this suggests the presence of microbes in the cow dung inoculum that 

was added to the UCT substrate (Gebrekidan et al., 2014). The decrease in the slope 

of the daily biogas yield of UCT with inoculum was steep (-2.814 Lkg-1VS) compared 

to that of UCT without inoculum, which signifies that the feedstock without inoculum 

reduced the biogas yield after a retention period of 21 days compared to the feedstock 

with inoculum, which reduced the biogas yield after a retention period of 19 days. The 

start and reduction rate of biogas is shown in Figure 5. 

5.3.4 Cumulative Biogas Yield of Peeled Cassava Tubers with and without 

Inoculum 

Figure 5-6 shows the cumulative biogas productions of peeled cassava tubers with 

and without inoculum.  PCT with inoculum yielded a higher volume than PCT without 

inoculum. The total biogas produced from PCT with inoculum was 635.23 Lkg-1VS, 

while that produced from PCT without inoculum was 493.35 Lkg-1VS, which is 77% 

less than that of the substrate seeded with inoculum.  
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Figure 5-6: Cumulative biogas production from peeled cassava tuber and unpeeled 

cassava tuber with and without inoculum. Each data point is the average of the 

measurements of three digesters. 

5.3.5 Cumulative Biogas Yield of Unpeeled Cassava Tubers with and without 

Inoculum 

The cumulative biogas yields of unpeeled cassava tuber in the presence and absence 

of inoculum are shown in Figure 5-6. The unpeeled cassava tubers (UCT) with 

inoculum had a higher biogas yield than, UCT without inoculum. The retention period 

was 40 days. The biogas yield for UCT with and without inoculum was calculated to 

be 460.41 Lkg-1VS and 341.12 Lkg-1VS respectively. From Figure 5-6, we observe that 

after 15 days of digestion, approximately 51% of the final biogas yield could be 

obtained (Table 5-2). 

5.3.6 Modelling Biogas Yield 

The model parameters such as ym, 𝜆, U, n, khyd, k were obtained by fitting the equations 

to the experimental biogas yield data. Table 5-2 displays the summary of the results 

of both experimental and predicted biogas yield using the coefficients at day 40. Figure 

5-7 presents the experimental and the calculated data using the developed model 

(based on the cone model), and modified Gompertz (equations 1 and 2). These 
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models can be used to estimate the changes in gases and ultimate yield of a given 

substrate under specified conditions. 

Table 5-2: The coefficients of determination and constants developed by fitting cone, 

and modified Gompertz to experimental PCT, UCT data. 

MODELS 
Substrate 

PCT0 PCT1 UCT0 UCT1 

CONE MODEL         

khyd (day-1) 0.05 0.06 0.07 0.07 

N 4.15 2.99 5.10 3.76 

r2 0.99 0.99 1.00 1.00 

ym (Lkg-1VS) 536.40 708.38 343.09 474.99 

Predicted biogas yield (Lkg-1VS) - 40 d 512.99 662.86 340.85 464.21 

Measured biogas yield (Lkg-1VS) - 40 d 493.35 635.23 341.12 460.41 

Difference between measured and predicted biogas yield (%) 3.98 4.35 0.08 0.83 

MODIFIED GOMPERTZ MODEL     
𝜆 (days) 16.45 13.30 13.27 12.53 

µ (Lkg-1VS.day) 0.15 0.14 0.24 0.18 

r2 0.99 0.99 0.99 0.99 

ym (L/kg VS) 527.00 673.90 340.70 464.70 

Predicted biogas yield (Lkg-1VS) - 40 d 513.29 658.17 340.14 461.80 

Measured biogas yield (Lkg-1VS) - 40 d 493.35 635.23 341.12 460.41 

Difference between measured and predicted biogas yield (%) 4.04 3.61 0.29 0.30 

PCT0: Peeled cassava tubers without inoculum; PCT1: Peeled cassava tubers with inoculum; UCT0: 
Unpeeled cassava tubers without inoculum; UCT1: Unpeeled cassava tubers with inoculum; R2: 
correlation coefficient. 

Cone model 

The parameters obtained as the result of fitting this model to the experimental biogas 

yield data are presented in Table 5-2. The coefficient(s) of determination (r2) between 

the cone model and the experimental results of all the substrates are presented in 

Table 5-2. The r2 values range from 0.99 to 1.00, with the unpeeled cassava tubers 

with and without inoculum producing the best fit. The maximum biogas cumulative 

yield (ym) from the cone model was close to the experimental yield, with the percentage 

difference between measured and predicted ranging from 0.83% to 3.98%. These 

results show that the cone model fits well to the cumulative biogas yield curve for this 

study. The hydrolysis rate constant (khyd) measured in days indicates the hydrolysis 

rate of the organic materials. The higher value of khyd indicates that the organic 

materials of the substrates were degraded (Syaichurrozi, 2018). The bacteria inside 
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the digesters needed shorter time to adapt, as is evident from the lower value of 𝜆 

(12.53 days), which is the lag phase period and the higher value of khyd (0.07day-1).  

Modified Gompertz model 

With reference to Table 5-2, the substrate of peeled cassava tuber with inoculum 

produced more ym with a maximum biogas yield of 673.90 Lkg-1VS compared to the 

other substrate (PCT0, UCT0 and UCT1), which yielded between 340.70 and 527.00 

Lkg-1VS, with UCT0 being the lowest. The high biogas yield in the peeled cassava may 

be attributed to the impact of the bacteria which enhanced its degradability compared 

to the unpeeled tubers. The higher the biogas production rate (µ), the lower the 

maximum biogas yield.  

According to Syaichurrozi et al. (2016), the 𝜆 value shows the time it takes during 

anaerobic digestion for the bacteria to adapt to the substrate before commencement 

of the biogas yield. If a substrate has a small 𝜆 value, this signifies that it takes more 

time to produce biogas than substrates with greater 𝜆. Using this information, 

substrates of PCT0 require more time to adapt, 16.45 days, whereas substrates of 

UCT1 require less time, 12.53 days. This result suggests that PCT1 produces a better 

biogas yield compared to the other substrates. 
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Figure 5-7: Comparison of model data and experimental data using the cone model, 

the modified Gompertz and the first order model 

5.4 CONCLUSIONS 

This study investigated the production of biogas from unpeeled cassava tuber without 

inoculum (UCT0), unpeeled cassava tuber with inoculum (UCT1), peeled cassava 

tuber without inoculum (PCT0), and peeled cassava tuber with inoculum (PCT1) by 

means of batch anaerobic digestion. The data obtained in this study suggest that 

anaerobic digestion of PCT1 yields the most viable results. This in turn suggests that 

the production of biogas from peeled cassava tuber with inoculum could be a viable 

alternative renewable energy source for the future. PCT1 was more favourable in the 

biogas production as a result of the feedstock degradability.  

The following were the main findings of the study: 

 PCT1 produced the best biogas yield, with 635.23 Lkg-1VS at day 40. 
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 The modified Gompertz model fitted well to the experimental data for the 

cumulative biogas yield compared to the cone model and the first order kinetic 

model, which was the least favourable model for predication of biogas yield. 

 Peeling the cassava tubers reduces the lignin and thereby exposes the 

cellulose to the bacteria. 

Further research is recommended on the co-digestion of PCT1 with domestic waste or 

vegetable and fruit waste to increase the biogas yield additionally, efforts will focus on 

technology selection of small-scale biogas production and production scheduling 

under uncertainty of feedstock supply.  
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Science, School of Engineering, University of KwaZulu- Natal, Pietermaritzburg, 

South Africa 

PREAMBLE 

Based on the identified feedstock in chapter 3 and the promising theoretical results, 

further investigation was in chapter 6 which aimed at exploring the optimum biogas 

yield through co-digestion of cassava biomass, vegetable and fruits at different ratios 

in a single stage fed-batch anaerobic digester for biogas production. Additionally, the 

effect of inoculum on the biogas yield is also investigated and the results of the biogas 

yield were modelled using the Gompertz model.  

This chapter is presented in the form of a journal article published in International 

Journal of Renewable Energy Research (Scopus), minor changes were made to 

improve the flow. The copy of the original accepted research article can be found in 

Appendix P5.  
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ABSTRACT 

Biogas is a mixture of gases mainly methane and carbon dioxide, it is considered a 

clean and renewable form of alternative energy. It can be obtained through 

fermentation of any biomass in the absence of oxygen called anaerobic digestion. The 

objective of this paper is to obtain the optimum biogas yield through co-digestion of 

cassava biomass, vegetable and fruits at different ratios in a single stage fed-batch 

anaerobic digester for biogas production. The physical pre-treatment of the both 

substrates was by milling the feedstock into small pieces prior to anaerobic 

fermentation. Anaerobic digestion of the mix of cassava biomass and vegetable & fruit 

was investigated in a 600 ml digester for 31 days under mesophilic condition (37ºC). 

Bio-methane potential of cassava biomass co-digested with vegetable & fruit ranged 

from 1124.26 to 1641.82 mL CH4/g VS. Co-digestion of CB and VF with inoculum at 

ratio of 40:60 achieved the maximum methane yield of 1641.82 mL/g VS which was 

23.08% higher than that of the mono-digestion feedstock.  

Keywords: Anaerobic digestion; Gompertz model; Performance Index; Mon-

digestion; Vegetable & Fruit. 

6.1 INTRODUCTION 

The increase in urbanization and human population growth has resulted in an increase 

of demand for services such as electricity and waste management (Madlener and 

Sunak, 2011). According to FAO (2017), in South Africa, urban population (65.8%) is 

approximately twice the rural population (34.2%) as indicated in Figure 6-1. In 2012, 

the urban population was approximately 63.3% and rural population was 36.7%, this 

figure shows an increase of 2.5% between 2012 and 2017. Though the increase seem 

insignificant it is important that the government prepares for the growth well in 

advance. The population growth implies that the energy demand for both urban and 

rural communities will also be on the increase (Madlener and Sunak, 2011). This 

implies that the energy demand for urban area will also be on the increase. Biomass 

from fuelwood and charcoal forms the dominant source of energy in African countries 

with South Africa inclusive (Wessels et al., 2013). 

Presently, most rural municipalities power most of the communities under their 

jurisdiction using candles, paraffin’s as well as fire gel.  It is reported that in 2016, 
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about 16.6 million households make use of candles for lighting. Based on available 

statistics, over 86 500 poor households have access to free paraffin in 20 

municipalities. Majority of these communities are concentrated in Eastern Cape and 

Northern Cape, with two municipalities in North West. These sources of energy are 

not clean and cost effective. They can simply be replace by electricity from biogas 

(Stats, 2019). 

There is a lack of clean energy in South Africa as about 74.8% of energy come from 

coal (Amigun et al., 2012) which is not environmentally safe. With the increase in urban 

population, still half a million people within South Africa still do not have access to 

electricity within their homes (Jamal, 2015). According to Brown (2006), homes with 

no electricity to  meet their cooking demands have to rely on fuelwood/firewood and 

that has been an hindrance to development in those areas. 

Biogas that forms part of the renewable energy is being mostly used in developed and 

some developing countries such as Asia to meet some of their energy needs 

(Surendra et al., 2014, Peres et al., 2018). South Africa could make use of renewable 

energy to reduce the dependence on fossil fuels which have both health and 

environmental consequences. 

 

Figure 6-1: Rural and Urban Population from 2012 to 2017 (Faostat, 2018) 

According to Quadrelli and Peterson (2007), South Africa is grouped among the top 

emitters of Green House Gases (GHGs) worldwide. Therefore, there is a need for 



 

103 

 

South Africa to decrease its carbon intensity. This can be partly achieved through the 

adoption of biogas technologies. In the process of decreasing the carbon intensity, the 

country will be fully and simultaneously exploring renewable energy and improving the 

life of the citizen of the country. Table 6-1 shows some of the areas in which biogas 

has been applied in South Africa. 

Table 6-1: Location of Biogas Application in South Africa (Bond and Templeton, 2011) 

Application Location Discussion 

Agricultural  George 
Private client using biogas to 
supply energy at their farm 

Sewage Treatment 
Works 

Elim 
Biogas generated using sewage 
treatment works and the dairy 
farm 

Industrial  Cape Flats 
Treatment of sewage sludge and 
generated biogas used for 
heating of the digester. 

 

Energy crops are considered to be traditional agricultural crops grown typically for 

food. However due to the crop characteristic, it has been considered for energy 

production (López-Bellido et al., 2014). There has been some agitation on the use of 

energy crop for energy generation because it may affect the food chain and access to 

food.  In order to mitigate conflict of interest caused by this agitation, the waste 

products or non-edible parts of energy crop can be used for energy generation, while 

the edible parts can be used for food production. Alternatively, the growing of energy 

crop on marginal land can be encouraged, therefore making the crop unsuitable for 

food crop production. For instance, though the production of energy crop like cassava 

is low in South Africa, using it as capping crop for landfill would enable its planting on 

landfills for the sole purpose of energy generation. This is because the landfill capping 

crop has low biodiversity and economic value as there is a high risk of the cassava 

absorbing toxic trace element which could pose health risk to human. Cassava 

biomass has many benefits such as biogas production, since it contains large amount 

of fermentable sugar (Okudoh et al., 2014).  

The chemical and physical characteristic of feedstock plays an important role in the 

anaerobic process. Therefore, the performance of the digester and the quality of the 

biogas yield is influenced by the composition of the substrates used. With regards to 
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this research area little research has been conducted in South Africa. The aim of this 

study is therefore to determine the biogas yield of mono and co-digestion of vegetable 

& fruits and Cassava in a controlled mesophilic environment by means of a batch 

reactor. This study determines the optimum biogas yield of cassava through co-

digestion. 

6.2 MATERIALS AND METHODS 

6.2.1 Cassava Biomass and Vegetable & Fruits waste collection 

The cassava (Manihot esculenta Crantz) biomass (200 kg) used for this study were 

obtained from cassava plantation in the “Nampula” Province of Mozambique, while the 

Vegetable & Fruits waste (VF) (200 kg) were obtained from farm in a small town 

“Verulam” in KwaZulu-Natal. Both substrates were collected into a plastic bag and 

stored in a refrigerator at 4 ˚C to preserve the freshness. The physical characteristics 

of the used substrates are presented in results and discussion section 6.3. 

6.2.2 Inoculum 

The inoculum used for this study was fresh cow dung (CD) which was collected from 

“Ukulinga” Research Farm, Pietermaritzburg, South Africa. CD was used because of 

its high buffering capacity including its richness in the required microbes that is 

essential for the anaerobic digestion process. The CD used was characterized and 

results presented in section 6.3 (Results and Discussion). 

6.2.3 Substrate Preparation 

The cassava biomass 

Approximately one hundred kilogrammes (100 kg) of the collected fresh cassava tuber 

was mechanically pre-treated by peeling, while the remaining 100 kg of the fresh 

cassava was stored for later use. The peeled cassava was washed with tap water and 

chopped into pieces of about 1 cm3 using a sharp knife after which it was sundried for 

2 days. The sundried cassava biomass were milled with a scientific Republic of South 

Africa hammer mill that is equipped with a 1 mm sieve mesh to obtain the cassava 

flour. The prepared milled cassava biomass were stored in a refrigerator at 4 ˚C until 

use. The properties of the substrates are shown in section 6.3 (Results and 

Discussion). 
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The Vegetable and Fruit Waste 

The collected vegetable and fruit waste was collected randomly different parts of the 

volume to be sampled. Sampling of the fruit & vegetable was done following the 

suggestion of Sitorus and Panjaitan (2013), whereby the waste were taken based on 

the grab sampling method with the feedstock composition having a ± 80% vegetable 

waste and a ± 20% fruit wastes (Figure 6-2). A total of 160 kg were collected after 

which these samples were mixed together. Coning and quartering method was used 

to reduce the size of the mixed samples. The samples were dried at 60°C in an oven 

until constant weight. Milling was performed with a scientific RSA hammer mill to 

reduce sample particle size to < 1mm after which a laboratory blender were used for 

size reduction. The prepared samples were labelled and packed in plastic sample 

bags and stored at 4°C for analysis. 

   

 

Figure 6-2: Vegetable and Fruit 

Cow Dung Innoculum  

Fresh Cow Dung (CD) collected from “Ukulinga” Research Farm was used as an 

inoculum to start up the experiment (Figure 3). The sample of CD was collected in 

sterile plastic bags and was kept in an airtight container at 4 °C; prior to use. Before 

utilization the CD was acclimatized and degassed at 37 °C for 1 week to minimize the 

production of methane from the inoculum (Liew, 2011). The inoculum was prepared 
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by soaking CD with deionized warm water to a of 1:1 ratio (Figure 6-3B). It was 

thereafter sieved through a cloth of 0.5 mm to separate the solid content from the 

slurry. The characteristics of the substrates used in this study (i.e. CB, VF and CD) 

are shown in section 6.3 (Results and Discussion). 

    

Figure 6-3: Cow Dung from Ukulinga Research Farm A) sampled cow dung, B) cow 

dung with deionized water 

6.2.4 Experimental set-up 

A batch system configuration was used when conducting bio-methane potential (BMP) 

for this study. The study was conducted under controlled conditions at mesophilic 

temperature 37˚C ± 0.5.  Four stage experimental design which consist of four (4) 

ratios namely 100:0, 60:40, 40:60 and 50:50 as shown in Table 6-2 were used and 

three runs were conducted. The BMP was conducted in a 600 ml SCHOTT DURAN® 

glass laboratory bottles (bio-digesters) (Figure 6-4). The bio-digester was filled to 80% 

of its capacity, which signifies 480 ml working volume. The bio-digester was 

submerged into a water bath to which it had a heating element to keep the water bath 

at constant temperature of 37˚C ± 0.5 for the duration of the experiment. 

A total solids of 8% (Ituen et al., 2009) was used to obtain a better biogas yield. This 

was achieved by mixing feedstock with tap water to get to the 8% TS. The amount of 

water to be added to the feedstock was calculated using the below formula: 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 =
𝐴

𝐵+𝐶
                 (6-1) 

Where: 

A = Mass of fixed total solids 
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B=Mass of fresh Cassava Biomass + Mass of Vegetable & Fruits waste 

C=Mass of water to be added to achieve 8% total solids in digester 

 

  Table 6-2: Biochemical Methane Potential Experimental Design 

Digester 
Mix Ratio 

TS of 
CB (g) 

TS of 
VF (g) 

Contents of the digester 

Total 
Volume 

(mL) 

Amount of Fresh 
Substrate 

Amount 
of Water 
added 
(mL) 

Amount of 
Inoculum 

added (mL) 
%CB %VF CB (g) VF (g) 

R+ - - - - - -  480 480 

A+ 100 0 30.5 0 32.64 0 347.36 100 480 

B+ 60 40 18.3 12.2 19.58 29.33 331.086 100 480 

C+ 40 60 12.20 18.30 13.06 43.99 322.954 100 480 

D+ 50 50 15.25 15.25 16.32 36.66 327.02 100 480 

E+ 0 100 0 30.5 0 41.75 321.47 100 480 

A* 100 0 30.5 0 32.64 0 447.36 0 480 

B* 60 40 18.3 12.2 19.58 29.33 431.086 0 480 

C* 40 60 12.20 18.30 13.06 43.99 422.954 0 480 

D* 50 50 15.25 15.25 16.32 36.66 427.02 0 480 

E* 0 100 0 30.5 0 41.75 421.47 0 480 

CD: Cow Dung, CB: Cassava Biomass, VF: Vegetable & Fruit waste, R: bio-digester, A* - E*: No 
inoculum added, R+: control (Inoculum only) and A+ – E+: inoculum added 

 

After preparing the substrate and the inoculum the bio-digesters were filled up with the 

feedstock (inoculum and substrates) as per Table 6-2 above. The pH was measured 

using and adjusted were necessary to pH 7 using 1M (1 molar) sodium hydroxide 

(NaOH) solution  before the commencement of the anaerobic digestion process. Liquid 

displacement method was used to measure the biogas yield (Figure 6-4).  
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Figure 6-4: Schematic diagram of experimental laboratory set (Tawona, 2015) 

6.2.5 Experimental Procedure and Analytical Methods 

The bio-digesters were flushed with nitrogen gas for 2 minutes by removing all 

dissolved oxygen and to set anaerobic conditions and thereby sealing the bio-digester 

bottles with a plugged with tight rubber plugs to prevent escape and inflow of gas into 

the bio-digester. To prevent scum accumulating and achieving homogeneity in the bio-

digester it was manually shake twice a day at 1pm and 5pm daily.  

All the bio-digesters were inoculated with cow dung except for digester A* to E* as 

shown in Table 6-2. A 100 ml inoculum was used on digester A+ to E+. A blank digester 

filled with inoculum and water was used as a control digester (R+). The control digester 

consisted of 100 ml inoculum and 380 ml water. This served as a control bio-digester 

which will form the baseline for all the other co-digestion.  

Digester B+ which consisted of a 60:40 (CB:VF) ratio 160 ml of VF was inoculated with 

CD, C+ was feed with 160 ml CB and inoculated with CD, while lately D+ was filled with 

80 ml VF and 80 CB and 240 ml CD. Digesters A+, E+, A* and E* consisted of mon-

digestion were A+ and E+ had CB (100:0 ratio CB:VF) only with inoculum added while 

A* and E* has VF (0:100 ratio CB:VF) only with no inoculum added. The BMP 

experiment was carried out for a duration of 40 days before it was terminated. 

The total solids (TS) and volatile solids (VS) in the feedstocks and inoculum were 

analysed using standard techniques at the beginning (Federation and Association, 

2005) of the AD process and at the end of the 40 d incubation period (APHA, 2005). 

TS content was determined after drying the sample in an oven overnight at 105 °C. 
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VS content was calculated as TS minus the ash content after ignition at 550 °C in a 

muffle furnace.  

6.2.6 Biogas Yield Calculation  

The biogas yield was measured by using the water displacement method. As the 

biogas is generated in the bio-digester it is transported by a plastic pipe into the 

displacement bottle which generates pressure within the displacement bottle thereby 

forcing water up into a 100 ml graduated measuring cylinder. 

The bio-digester is kept air tight, thereby preventing the escape of biogas. The biogas 

produced by the co-digestion substrate was calculated by subtracting the biogas 

formed by the inoculum only from that of the biogas formed by the co-digestion 

substrate (Equation 6-2). 

𝑌1 = 𝑌0+1 − 𝑌0 (6-2) 

  Where: 

𝑌1 = 𝑁𝑒𝑡 𝐵𝑖𝑜𝑔𝑎𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝐷𝑎𝑖𝑙𝑦 (𝑚𝑙) 

𝑌0+1 = 𝐵𝑖𝑜𝑔𝑎𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑐𝑜 − 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐷𝑎𝑖𝑙𝑦 (𝑚𝑙) 

𝑌0 = 𝐵𝑖𝑜𝑔𝑎𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝐷𝑎𝑖𝑙𝑦 (𝑚𝑙) 

The cumulative biogas yield was calculated by summing daily yield, and then the 

cumulative methane yield was calculated by dividing the net cumulative methane by 

the mass of the volatile solid added (Equation 6-3).  

𝑋 =
𝑋1

𝑍
 

(6-3) 

Where:  

𝑋 = 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑦𝑖𝑒𝑙𝑑 (𝑚𝑙
𝐶𝐻4

𝑔𝑉𝑆
) 

𝑋1 = 𝑁𝑒𝑡 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 (𝑚𝑙 𝐶𝐻4)  

𝑍 = 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒 𝑆𝑜𝑙𝑖𝑑 𝑎𝑑𝑑𝑒𝑑 (𝑔)  



 

110 

 

1.1. The Gompertz Model  

Equation 6-4 represents the modified Gompertz model that describes the cumulative 

biogas production curve in batch operated digester, this equation assumes that the 

substrate levels limit growth in a logarithmic relationship (Pell et al., 1994). The 

modified Gompertz Model was applied to compare the model predication and the 

experimental data. This model was applied on the cumulative methane yield. 

𝑦(𝑡) = 𝑦𝑚 exp {− exp [
𝑈𝑒

𝑦𝑚
(𝜆 − 𝑡) + 1]} , 𝑡 ≥ 0           (6-4) 

Where: 

ym = biogas yield potential (Lkg-1 VS), 

y(t) = cumulative biogas at digestion time t days (Lkg-1 VS), 

U = the maximum biogas production rate (Lkg-1 VS. day), 

𝜆 = lag phase period or minimum time to produce biogas (days), 

t = cumulative time for biogas production (days), 

e = mathematical constant (2.718282), 

6.2.7 Co-digestion Performance Index (CPI) 

The performance of combined substrates was investigated to determine the effects 

which maybe the dilution and/or enhancement of performance by adding valuable 

nutrients. These nutrients could increase the bio-degradability thereby changing the 

microbiome to either increase the performance and/or decreasing it (Wang et al., 

2018). The optimal mixture composition between two substrates have been 

investigated in several studies (Pagés-Díaz et al., 2014, Astals et al., 2014). A CPI > 

1 indicates that there is a synergistic effect of the co-digestion while CPI < 1 shows 

that there is an aggressive effect (Labatut et al., 2011). According to Ebner et al. (2016) 

the co-digestion performance index (CPI) was calculated using Equation 6-5: 

𝐶𝑃𝐼𝑖,𝑛 =
𝐵𝑖,𝑛

𝐵𝑜𝑖,𝑛
=

𝐵𝑖,𝑛

∑ %𝑉𝑆𝑖𝐵𝑜,𝑖
𝑛
𝑖

 
             (6-5) 

Where: 
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𝐶𝑃𝐼𝑖,𝑛 = 𝐶𝑜 − 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 

𝐵𝑖,𝑛 = 𝑏𝑖𝑜 − 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜 − 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑏𝑙𝑒𝑛𝑑 

𝐵𝑜𝑖,𝑛

= 𝑐𝑜

− 𝑑𝑖𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑏𝑙𝑒𝑛𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝐵𝑜𝑖,𝑛
̅̅ ̅̅ ̅̅ )𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑉𝑆 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%𝑉𝑆)𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑎𝑙 𝑠𝑢𝑏

− 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑏𝑖𝑜 − 𝑚𝑒𝑡ℎ𝑎𝑛𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 

6.3 RESULTS AND DISCUSSION 

6.3.1 Substrates and inoculum Characterization 

Table 6-3 shows the characterization of substrates and inoculum. Characterization is 

one of the most important steps in the anaerobic digestion as it gives the general 

composition of the substrate (feedstock). It can be used to calculate the amount and 

composition of the biogas produced, including the energy content in the biogas. The 

characterization of the substrates and inoculum shows the physical and chemical 

characteristics of CB, VF and CD. CD inoculum had higher TN and lower TC compared 

to cassava biomass and vegetable & fruits waste. The mixture of each other could 

complement each other to achieve the suitable co-digestion nutrient content. 

Table 6-3: The composition of cassava biomass, vegetable & fruits and inoculum 

Proximate and 
Ultimate Analyses 

Substrate 

Inoculum 
(Cattle Dung) Cassava Biomass  

Vegetable & Fruits 
Waste (VF) 

Moisture Content (%) 66.15 ± 1.01 58.40 ± 0.61 83.50 ± 0.16 

Total Solids (%) 93.45 ± 0.21 41.60 ± 0.22 19.84 ± 0.51 

Volatile Solids (%) 97.02 ± 0.52 76.10 ± 0.67 12.40 ± 0.57 

Protein 2.35 ± 0.11 77.30 ± 0.91 - 

Total Nitrogen (%) 0.55 ± 0.12 0.52 ± 0.28 2.06 ± 0.18 

Total Carbon (%) 39.7 ± 0.61 39.06 ± 0.84 38.12 ± 0.81 

C/N Ratio 72.18 75.12 18.50 

Ash (%) 1.75 ± 0.11 9.44 ± 0.17 30.40 ± 0.15 

Calcium (%) 0.02 ± 1.12 0.14 ± 0.19 0.42 ± 1.19 
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Proximate and 
Ultimate Analyses 

Substrate 

Inoculum 
(Cattle Dung) Cassava Biomass  

Vegetable & Fruits 
Waste (VF) 

Starch (%) 76.32 ± 2.01 ND ND 

Sugars 77.54 ± 1.11 42.87 ± 1.01 ND 

ND: Not determined 

The total solids of both substrates and inoculum is between 19.84% - 93.45%, with the 

cattle dung having the lowest total solids of 19.84% and the CB with the highest of 

93.45%. These are in contradiction to what was reported by Malakahmad et al. (2009) 

who stated that for biogas production, the solid content of the feedstock should be 

between 10% – 15%. The total solids content has great impact on cumulative biogas. 

According to Liu et al. (2014) the cumulative biogas decreases with an increase of 

total solids content from 5% to 10%. However, the cumulative biogas further increased 

subsequently as the total solids increased beyond 10%. 

The inoculum had the lowest carbon to nitrogen (C/N) ratio of 18.50 and cassava 

biomass (Mcbride, 2012) with the greatest of 72.18. C/N ratio plays a critical role in 

the performance and/or yield of biogas. The C/N ratio in the anaerobic digestion should 

be within the optimal range of 20-30 for optimum performance of the digester (Li et al., 

2011, Li et al., 2016), as bacteria in the digester uses up carbon 25-35 times faster 

than compared to that of using up nitrogen (Sitorus and Panjaitan, 2013). The C/N 

ratios of CB and VF were above the maximum limit of 30 which is an indication of rapid 

consumption of nitrogen at methanogens stage which results in the low production of 

gas. The C/N ratio of the CD however was under 20 which causes accumulation of 

ammonia and an increase in pH level which becomes toxic to the methanogenic 

bacteria (Tanimu et al., 2014) . Therefore, co-digestion could be used to balance 

substrate with high C/N ratio using substrate with low C/N ratio such as cattle manure 

which are easily available and suitable for renewable energy (Wu et al., 2010). 

Vegetable waste has significant limitation due to its rapid acidification as a result of its 

low pH level and the high production of volatile fatty acids which affect the 

methanogenic activities in the digester. The moisture of all substrate CB and VF was 

found to be 66.15% and 58.40% respectively. This indicates that the disposal of both 
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substrates were not ideal for landfilling and incineration due to its high moisture 

content (Girotto et al., 2015). 

6.3.2 Daily and cumulative methane yield at mesophilic (37˚C) temperature 

Figure 6-5 shows the daily methane yield of all the digesters. It can be observed that 

the methane yield of the blank substrate and single digestion increased gradually 

(Figure 6-5A – Figure 6-5C). The co-digestion (Figure 6-5D – Figure 6-5F) started to 

produce biogas on day one, with co-digestion of cassava biomass and vegetable & 

fruits waste without inoculum (CB: VF) at 40:60* ratio producing the highest methane 

on day one of 59.68 ml/g VS. The maximum methane yield peak (220.55 mL/g VS) 

was reached on the twelfth day. It was reached by the co-digestion CB: VF at a ratio 

of 50:50 (Figure 6-5E). The next highest was followed by co-digestion CB: VF (Figure 

5F) at a ratio of 40:60 (211.09 mL/g VS).  The methane yield of all the co-digestion 

feedstock (Figure 6-5D – 6-5F) decreased significantly after day one. This could be 

attributed to the acidification in the batch reactors which confirms that hydrolysis and 

the alcoholic fermentation of the vegetables waste are rapid compared to other organic 

substrates (Sitorus and Panjaitan, 2013, Di Maria et al., 2014). 

  

A B 
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Figure 6-5: Daily Methane yield at 37°C of A) Blank no inoculum, B) single digestion 

of Cassava tuber and vegetable & fruit, C) co-digestion of Cassava tuber and 
vegetable & fruit at 60:40, D) co-digestion of Cassava tuber and vegetable & fruit at 
60:40, (E) co-digestion of cassava tuber and vegetable & fruit at 50:50, (F) co-
digestion of Cassava Tuber and vegetable & fruit at 40:60, ; “+” – with inoculum, “*” – 
without inoculum 

 

Figure 6-6 shows the cumulative methane yield (CMYs) of mono-digestion and co-

digestion at different ratios. Cassava single digestion without inoculum (Figure 6B) 

produced the lowest cumulative methane yield (1124.26 mL/g VS) compared to mono-

digestion of cassava with inoculum (1262.90 mL/g VS). Co-digestion of CB : VF with 

cattle dung inoculum at a 40:60 ratio (Figure 6-6F) produced the highest cumulative 

methane (1641.82mL/g VS) due to more available substrate, It confirms that biogas 

yield could be improved by co-digestion of the suitable substrate (Zamanzadeh et al., 

2017). However, the ratio mix ratio of the substrate is of importance as this could 

change the digestion process in the digester thereby changing the biogas yield and 

C D 

E F 
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the rate (Li et al., 2016). When the cassava biomass ratio was reduced and the ratio 

of the vegetable & fruit waste was increased, the cumulative methane yield increased 

proportionally.  

The percentage increase of the cumulative methane yield of co-digestion CB:VF 

(40:60) in relation to the mono-digestion of cassava at a ratio 100:0 (CB:VF) is 13.65%. 

These implies that co-digestion does enhance performance of the digester for 

maximum yield. It should be noted that when the co-digestion of CB:VF ratio increase 

from 40:60 to 50:50 the cumulative methane yield was negatively affected; suggesting 

that an increase of CB in relation to the VF would reduce the methane yield. It could 

be observed that the methane yield deceased by 1%.  

These results suggest that the suitable co-digestion proportion of CB and VF for 

maximum methane yield is 40:60 as the highest methane production of 1641.82 mL/g 

VS was achieved. 

   

    

B 

C D 
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 Figure 6-6: Cumulative methane yields with (A) Blank inoculum only, (B & C) single 

digestion of Cassava tuber and vegetable & fruit, (D) co-digestion of Cassava tuber 

and vegetable & fruit at 60:40, (E) co-digestion of cassava tuber and vegetable & fruit 

at 50:50, (F) co-digestion of Cassava Tuber and vegetable & fruit at 40:60, ; “+” – with 

inoculum, “*” – without inoculum 

6.3.3 The Gompertz Model 

The parameters such as ym, 𝜆 and µ of Gompertz Model were obtained by fitting the 

equations to the experimental biogas yield data. Table 4 presents the summary of the 

results of both experimental and predicted biogas yield calculated using the Gompertz 

Model coefficients at day 31. The experimental methane yield was modelled using 

Gompertz Model and presented Figure 6-6. These models can be used to estimate 

the biogas yield at any given time under a specific condition. 

Referring to Table 6-4, the substrate of co-digestion of CB:VF with inoculum yielded 

more ym with a maximum biogas yield of 1671 Lkg-1VS compared to the other 

substrate, the lowest was obtained from mon-digestion of VF without inoculum. This 

results confirmed the finding of Rodriguez-Chiang and Dahl (2014) that inoculum 

improves the biogas yield of substrates. All the substrates that were inoculated 

performed better than that without inoculum. The biogas yield from the model, 

predicted and also measured shows that the ratio of 40:60 yielded the maximum 

biogas. These results confirm that vegetable and fruits has certain properties that 

improved the performance of digester to yield maximum biogas as reported by  

Phetyim et al. (2015).  

F E 
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Table 6-4: The coefficients and constants developed by fitting the modified Gompertz 

to cumulative methane yield data 

Digester 

Ratio Modified Gompertz Model Predicated 
biogas yield 
(Lkg-1VS) - 

40 d 

Measured 
biogas yield 
(Lkg-1VS) - 

40 d 

Difference 
between 

measured and 
predicted biogas 

yield (%) 
CB:VF 𝜆 (days) 

µ (Lkg-

1VS.day) 

ym 
(L/kg 
VS) 

R+ Blank 10.36 0.23 1320 1308.6 1287.3 1.65% 

A* 100:0 12.01 0.18 1216 1175.5 1124.2 4.56% 

B* 60:40 10.63 0.27 1274 1268.5 1246.2 1.79% 

C* 40:60 11.53 0.19 1403 1368.7 1302.1 5.11% 

D* 50:50 12.53 0.19 1397 1365.2 1300.2 5.00% 

E* 0:100 12.38 0.27 1199 1190.6 1157.7 2.84% 

A+ 100:0 10.03 0.32 1280 1278.3 1262.9 1.22% 

B+ 60:40 9.27 0.29 1642 1639.3 1607.8 1.96% 

C+ 40:60 8.10 0.31 1671 1669.5 1641.8 1.69% 

D+ 50:50 9.16 0.29 1671 1667.7 1632.7 2.14% 

E+ 0:100 9.62 0.23 1368 1358.6 1335.7 1.71% 

 +: with inoculum; *: without inoculum 

6.3.4 Co-digestion Performance Index (CPI) 

From Figure 6-7, it can be observed that the CPI of the co-digested substrates range 

between 1.092 (for, 60:40*) and 1.264 (for, 40:60+). These show that the co-digestion 

of the substrate has a positive synergistic effect since the CPI is greater than one (CPI 

> 1). Co-digestion of cassava biomass and vegetable & fruit waste residues with 

inoculum showed higher methane yields (1641.82 mL/g VS) which is supported by the 

CPI of 1.264.  
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Figure 6-7: Co-digestion Performance Index (CPI) of co-digestion at different mixture 

ratios, CPI > 1 indicates synergistic effect, CPI < 1 indicates antagonistic effect. 

Different ratios (Cassava Biomass: Vegetable & Fruits)  

When the proportion of cassava biomass was higher to that of the vegetable & fruit 

waste (60:40*), the CPI decreased with the increase in the cassava biomass. Both 

ratios (60:40* and 60:40+) of cassava biomass to vegetable & fruit waste without and 

with inoculum had a CPI of 1.092 and 1.237 respectively.  

The lowest CPI came from the co-digestion of CB and VF without inoculum to a ratio 

of 60:40*. These results suggest that the increase in ratio of cassava biomass could 

negatively affect the co-digestion performance.  

According to Wang et al. (2012), several factors could impact the synergistic effect, 

factors such as balanced nutrient composition, stimulated synergistic effects of 

microorganisms, an associated increase in buffering capacity, and a decreased effect 

of toxic compounds on the digestion process.  

6.4 CONCLUSION 

The determination of biogas yield of mono and co-digestion of vegetable & fruits with 

cassava in a control mesophilic environment by means of a batch reactor has been 

carried out.  The characterization of the cassava biomass and the vegetable & fruit 

waste indicated that they have high biogas potential with the cassava biomass having 

a high carbohydrate.  The carbon to nitrogen (C/N) ratio was significantly high with 



 

119 

 

72.18. To balance the C/N ratio, co-digestion with animal manure was performed to 

make the C/N to be between 20 and 30. Cassava biomass co-digested with vegetable 

& fruit waste was successful in producing methane. However, cassava biomass mono-

digestion produced the lowest methane yield. The maximum methane yield of 1641.82 

mL/g VS was obtained from the mixture of CB and VF with cattle dung inoculum at a 

ratio of 40:60 which was 23.08% higher than that of the mono-digestion feedstocks. In 

conclusion, cassava biomass co-digested with vegetable & fruit waste to a ratio of 

40:60 was a good substrate for methane production. Cassava biomass mono-

digestion yielded the lowest methane yield. The maximum methane yield of 1641.82 

mL/g VS was obtained from the mixture of CB and VF with cattle dung inoculum at a 

ratio of 40:60 which was 23.08% higher than that of the mono-digestion feedstock. In 

conclusion, the optimal conditions for maximum yield of biogas of cassava biomass 

co-digested with vegetable & fruit waste were: initial pH of 6.87, ratio of CB:VF at 40:60 

and temperature at 37 °C, for maximum yield inoculum should be used to start the 

digestion process in the digester. This research can serve as a frontier for the 

development of a biogas plants location map across South Africa. Finally, before the 

proposed system can be adopted on a large scale, it is essential to carry out further 

investigation at pilot level using specific cassava tuber from landfill.  
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: 

BIOGAS TECHNOLOGY AND THE DESIGN OF HOUSEHOLD 

DIGESTER FOR CO-DIGESTION OF CASSAVA AND 

VEGETABLE & FRUITS WASTE 

PREFACE 

Based on the promising results obtained in chapters 4, 5, and 6, a pilot fixed dome 

digester was designed to yield 0.25 m3/person/day for cooking purposes. Chapter 7 

aims at presenting the process followed in sizing the digester to meet the energy 

demand for five (5) families; each comprising eight (8) members.   

This chapter is written in the form of a journal article to be submitted to International 

Journal of Mechanical Engineering and Technology (Scopus), minor changes were 

made to improve its reading. The detailed drawings with dimension of the digester can 

be found in Appendix D1. 
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ABSTRACT 

Global increase in energy demand has given rise to the need to harness the potential 

of renewable energy sources. Biogas production from waste has been identified as 

one of the sustainable renewable energy technologies with great potential for energy 

production and has been argued to be one of the pathways to solving South Africa’s 

energy problems. Successful implementation of waste-to-energy (biogas generation) 

projects is however dependent on a number of factors which include, but are not 

limited to, digester type and configuration, digester size and, more importantly, 

availability of substrate. This paper presents the design of an anaerobic digester for 

sustainable co-digestion of cassava, vegetable and fruit waste. Using a scenario-

based approach, the digester was designed to produce biogas energy that will cater 

for five (5) families; each comprising eight (8) members. Given an energy requirement 

of 0.25 m3/person/day for cooking purposes, the biogas production rate of the digester 

was estimated to be 10 m3/day. Additional parameters such as active slurry volume, 

volume of gas storage, height and diameter were calculated using mathematical 

calculations via scaling up of experimental data. A fixed dome configuration coupled 

with a mesophilic temperature profile were adopted in designing the digester. The 

dimensions of the digester to achieve the energy requirement were Height of 

Cylindrical Digester (H) 2.09 m, Diameter of Digester (D) 4.19 m, Breadth of inlet and 

outlet (b) 1.54 m, Dome height (dh) 0.829 m and Radius of Dome (r) 3.06 m at an 

estimate cost of R 121 136.09 (material only). 

Keywords: Bio-digester; Mesophilic; Fixed Dome; Gas Production Rate; Vegetable & 

Fruit. 

7.1 INTRODUCTION 

Fossil fuel is currently the world’s main supply of energy and is prevalent in forms such 

as coal, crude oil, natural gas and lignite. Such fuels are not renewable in nature as 

they were formed millions of years ago but are consumed at a much faster rate than 

they are formed (Al Seadi et al., 2008).  Many economies are thus investigating 

sustainable energy systems that are environmentally friendly, clean and adaptable. 

Biogas is currently being considered as a renewable energy resource that could 

possibly serve as a viable alternative to fossil fuels, especially in developing 
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economies like Africa where majority of its population lacks access to constant energy 

supply, and consequently, depend on imported energy (Amigun et al., 2012, Owusu 

and Asumadu-Sarkodie, 2016). 

Biogas is generated through the anaerobic digestion of organic matter, whereby the 

substrate is converted into renewable energy (Ye et al., 2013, Ošlaj and Muršec, 

2010). Biogas contribute to the global energy mix hence it is considered as an energy 

carrier (Braun et al., 2008, Jingura and Kamusoko, 2017). The conversion occurs in 

an anaerobic digester which is also known as biogas digester.  Several research has 

resulted in various designs of biogas digesters which range from simple to 

sophisticated, depending on the budget and the end use of the biogas (Anozie et al., 

2005). According to Anozie et al. (2005), as the level of sophistication in terms of 

design increases, the demand for manpower with suitable skills increases, making its 

implementation a challenge due to shortage of such skills.  

Various digester types have been developed over the last century. Based on flow 

configuration, digesters can be categorized as: (1) batch flow, (2) continuous flow, (3) 

continuously expanding, (4) plug flow, and (5) contact flow (Samer, 2012). Digesters 

that process liquid raw material that has high solids content are called “conventional 

digester” or “rural digester”. These kinds of digester have fermentation chamber 

volume of less than 100m3 (Florentino, 2003). The conventional digesters however do 

not have any mechanism to reduce the retention time, making the feedstock biomass 

to remain in the fermentation chamber until the biogas yield reduces. These systems 

are fed using a stage-wise approach, making it a batch digester. Considering the high 

profile of socioeconomic challenges plaguing developing countries,  the need for 

simple, distributed and cost-efficient digester designs is of great importance to foster 

the adoption of waste-based renewable energy sources (Singh and Harvey, 2010). 

Biogas can be produced from various substrates, such as cow dung, poultry 

droppings, cassava biomass, vegetable and fruit waste as well as their mixture. As 

reported in Jordaan (2018), since the introduction of the first biogas digester in 1957 

(Esi-Africa, 2016), South Africa has only about 700 biogas digesters installed (Cheng 

et al., 2014). We however posit that South Africa could increase the number of biogas 

installations if cassava biomass co-digested with vegetable and fruit waste is adopted. 
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To this end, the main objective of this paper is to design a low-cost biogas digester 

based on the optimum production results obtained from initial experimental results 

(chapter 6). The task involves designing all system components of the biogas digester 

namely inlet and outlet chambers, dome height, digester (fermentation chamber) and 

agitator/impeller (Figure 7-1). The following sections presents a synopsis of available 

biogas installations in South African followed by a step-by-by approach for the design 

of the proposed biogas digester. 

 

 

Figure 7-1: Key components of biogas digester 

7.1.1 Type and location of installed biogas digesters in South Africa 

Several digesters have been designed and installed in different areas in South Africa 

since the initiation of the biogas technology in 1957 (Table 7-1). The biogas digesters 

in different parts of South Africa were installed by different organizations with three 

current projects being executed in local communities namely: Melani village biogas 

expansion, Ilembe district and Mpufuneko biogas projects. Most of the digesters 

(medium to large scaled) were installed between the years of 2005 to 2017.  Although 

some small domestic digesters may have been developed and installed by some 

private individuals, there are however no published records of such digesters.  
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Table 7-1: Location, developer, Feedstock and power out of biogas digesters installed 

in South Africa (Mutungwazi et al., 2018, Franks et al., 2015) 

Location Developer Feedstock Power Output 

Alice, Eastern 
cape 

CAE / University of 
Fort Hare 

4000 m3 of dairy 
and piggery 
manure 

2 × 132 kVa 
electricity 

generators 

Athlone Industria Alrode brewery 

Farm Secure 
Energy, 
Wastemart, 
CEA/New 

Horizon waste to 
energy 

400 t of organic 
waste per day 

 

Bela-bela Limpopo 

Belville 

Bonnievale 

Bredasdorp 

Cavalter 

CAE Humphries 
Boerdery piggery 

 

 

FarmSecure 
Carbon 

iBert 

iBert 

EnviroServ/ 
Chloorkop LFG 

Cullinan 

 

Waste water 
treatment plant 

> 5 t bovine 
manure 

4 t abattoir waste 
per day 

20 t abattoir waste 
per day 

 

 

100 kW 

500 kW 

Springs 

Stellenbosch 

 

BiogasSA / 
Morgan Springs 
Abatrtoir 

Veolia water 
Technologies / 
Distell 

Slaughter waste 
and organic waste 

1000 m3 
wastewater per 
day 

0.4 MW 

Table view 

KZN 

Jeffares and 
Green / Bayside 
Mall 

Khanyisa projects 

0.6–1 t of food 
waste per day 

Manure from 2+ 
cows, school 

 

Rural cooking fuel 
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Location Developer Feedstock Power Output 

organic and 
sewage waste 

Darling Uilenkraal 

Darling GrootPost 

Durban 

Durban 

CAE/Uilenkraal 
dairy farm 

FarmSecure 
manure 

Bisasar road LFG 

Marrianhill LFG 

Bovine manure 

Bovine manure 

3500–5000 refuse 
per day 

550–850 t per day 

600 kW 

 

6 MW 

1.5 MW 

Pretoria Bio2watt / 
Bronkhorst-Spruit 
Biogas plant 

Prospection 
brewery 

Manure 4.6 MW 

The KwaZulu-Natal Province, has 26 operational digesters which are domiciled in the 

Illembe districts, and have a working volume of 6 m3  (Munganga, 2013). The Limpopo 

Province has 55 digesters, installed mainly in the Mpfuneko region. (Altgen, 2016). 

Provinces such as Eastern Cape currently have a significant number of digesters (110 

digesters) to be installed by the Melani Village Biogas Project. This is done in 

conjunction with the University of Fort Hare (Munganga, 2013). Other biogas 

installations include those instituted by developers such as BiogasPro Agama and 

BiogasSA wherein biogas digester were installed in areas such as schools, rural 

households, game farms etc. (Mutungwazi et al., 2018). In total, about 320 units have 

been installed in South Africa, predominantly in the Western Cape, and a few in the 

Eastern Cape and KwaZulu Natal Provinces. Considering the limited number of biogas 

installations in South Africa (Table 7-2), biogas technology in South Africa is still at 

infant stage compared to other countries such as Uganda and Kenya. The overview 

presented above suggests that limited research work has been done on the adoption 

of biogas technology in South Africa. The installation of small-scale biogas technology 

in rural communities thus presents an opportunity for a long term sustainable solution 

to the household energy issues in South Africa as a vast majority of the population 

living therein are poor (Agency, 2014). 
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Table 7-2: Number of digesters installed in selected African countries 

Country 
Year of Program 

Initiation 

Cumulative Number of 
digesters installed up to 

2015 

Rwanda 2007 2619 

Ethiopia 2008 5011 

Tanzania 2008 4980 

Kenya 2009 6749 

Uganda 2009 3083 

Burkina Faso 2009 2013 

Cameroon 2009 159 

Benin 2010 42 

Senegal 2010 334 

South Africa 2010 320 

7.1.2 Biogas digester configurations 

Numerous types of biogas plants over the world are available and their types are often 

determined by their mode of operation. Below is an overview of the various types of 

plants used in different countries.  

A biogas plant typically has two components, namely a digester or fermentation tank 

and a gas holder. The digester component can be a waterproofed cube-shaped or 

cylindrical-shaped component. The digester component includes an inlet where the 

fermentable mixture can be fed into the digester in a slurry form. 

Several forms of small to medium scale biogas technologies have been developed in 

African countries. These technologies include the floating drum, fixed dome and plastic 

bag design. The floating drum and the fixed dome have been used widely in Africa 

(Figure 7-2). These two technologies have the same digestion process (Amigun and 

Blottnitz, 2007), but the major difference between them is the method of gas collection. 

The fixed dome is equipped with a gas outlet where the gas is collected. It also has an 
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overflow pipe to discharge the sludge into drainage. Below are descriptions as well as 

advantages and disadvantages of the two commonly used technologies. 

The fixed dome 

A fixed-dome plant consists of a digester with a fixed and non-movable gas holder 

located at the top of the digester (Figure 7-2), while the fixed volume structure is 

typically buried underground. The fixed dome digester was first developed in China 

(Kumar et al., 2015).  

The slurry in the digester is forced into a separate tank by the increasing pressure of 

the biogas in the tank. The pressure in the digester thus enables the biogas flow 

through the pipeline, which can then be used for cooking, heating and if upgraded it 

can be used for electricity. The advantages and disadvantages of the fixed dome are 

presented in Table 7-3. 

Table 7-3: Advantages and disadvantages of a fixed-dome plant (Bond and 

Templeton, 2011) 

Advantages Disadvantages 

 Low initial costs and long useful 

lifespan 

 Not easy to build, and thus, requires 

the supervision of experienced 

biogas technicians during 

construction 

 Construction creates local 

employment 

 The construction is labour intensive 

 Underground construction saves 

space and protects the digester from 

temperature change 

  Gas leaks could occur if not 

appropriately designed and 

constructed 

 Construction on bedrock could be 

difficult 

 Structural strength is required during 

construction 
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Figure 7-2: Fixed Dome (Energypedia, 2016) 

The floating drum 

A floating drum plant is often cylindrically-shaped or dome-shaped with the design 

originating from India (Mutungwazi et al., 2018). The floating drum plant consists of a 

gas holder that floats either directly into the fermenting slurry or into a separate water 

jacket. During operation, when the gas is produced, the drum moves upwards, and 

thereafter downwards, as soon as the gas is collected (Figure 7-3). The height of the 

drum is an indication of how much biogas has been produced. The floating drum 

digester has a constant pressure that is as a result of the weight of the drum relative 

to the cross-sectional area of the digester (Rajendran et al., 2012). The advantages 

and disadvantages of the floating drum configuration are outlined in Table 7-4. 

Table 7-4: The advantages and disadvantages of a floating drum digester (Rajendran 

et al., 2012) 

Advantages Disadvantages 

 It is easy to understand and 

operate 

 Requires frequent coating with 

paint to avoid rust 

 The gas produced has a 

constant pressure 

 Fibrous materials may block 

the movement of the digester if 

not regularly maintained 

 The gas storage is immediately 

visible 
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Figure 7-3: Floating Drum (Energypedia, 2016) 

Flexible balloon digester 

The flexible balloon digester consists of a long cylinder made from heavy duty PVC 

plastic that forms part of the anaerobic digester. Anaerobic digestion takes place in 

the cylinder and gas is stored as shown in Figure 7-4. 

The feedstock inlet, slurry outlet and biogas outlet are attached to the wall of the 

digester. The flexibility of the digester is advantageous to the digestion process as it 

allows for some slight movement, which in turn agitates the feedstock. When the gas 

is at a maximum the balloon digester works like the fixed dome digester. The 

advantages and disadvantages of the system is outlined in Table 7-5. 

Table 7-5: The advantages and disadvantages of the balloon digester (Balsam and 

Ryan, 2006) 

Advantages Disadvantages 

 The construction process is 

much easier. Does not require 

high level skilled labour. 

 The digester is constructed 

from heavy duty PVC pipes 
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Advantages Disadvantages 

that might not be easily 

available in rural areas. 

 The digester can be placed 

close to the use point, reducing 

the cost of gas piping. 

 Reparation of a torn digester 

requires specialized plastic 

welding, which is 

unfavourable in rural setting. 

 The digester is favourable in 

situations where there is a high 

water table and masonry or 

concrete cannot be used. 

 Shorter life span of 

approximately 5 years. 

 

 

Figure 7-4: Balloon biogas digester (Florentino, 2003) 

7.2 DESIGN OF DIGESTER 

7.2.1 Experimental Data Analysis 

With reference to chapter 6, at laboratory stage a 600ml capacity biogas digester with 

a working volume of 480ml giving a space head of 120ml for gas collection, was used 

to investigate the biogas yield of cassava co-digested with vegetable and fruit waste 

at different ratios.  
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The experimental data used for the pilot plant calculation is given from the results 

obtain the laboratory experiments conducted on the co-digestion of cassava biomass 

(CB) and vegetable & fruit waste (VF) as presented in chapter 6. The maximum 

cumulative biogas yield (1641.82 ml/g) was obtained from the co-digestion ratio of 

40:60 (CB:VF) inoculated with cattle dung. 

7.2.2 Digester Design Calculations 

The size of the biogas digester depends on the desired volume of the biogas required 

daily yield. The volume of the gas holder should be equal to one (1) day’s biogas yield. 

As discussed in section 7.1.1, various digester designs are available, however, the 

fixed dome design is adopted in this study as it contains key advantages which 

includes cost as it is relatively cheap and durable, all the parts are fixed with no moving 

parts and well insulated since it is constructed below ground level (Nijaguna, 2006, 

Omer and Fadalla, 2003). This study thus presents the design of a flat-bottomed fixed 

dome digester for biogas generation from the co-digestion of cassava biomass, 

vegetable and fruit waste. 

The digester is designed to produce gas that would serve a family of five (5) with an 

assumption that each family has eight (8) people. Therefore, the requirements and 

criteria adopted in implementation the design are as follow:   

According to Mital (1996), the amount of gas required for cooking per person/day is 

0.25 m3/ person/day. Therefore the biogas digester is design mathematically to 

produce 10 m3/day of biogas (Kaur and Kumar, 2017). The following steps were 

followed in the sizing of the biogas digester (Nijaguna, 2006): 

A) Gas Production Rate (G) 

B) Active Slurry Volume (Vs) 

C) Dimension Calculation (H & D) 

D) Slurry displacement inside digester (d) 

E) Slurry displacement in the inlet and outlet chamber (h) 

F) Length (l) and breadth (b) of the inlet and outlet chambers 

G) Dome height (dh) calculation 

H) Radius of the dome (r) 
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For the co-digestion of cassava biomass (unpeeled) and vegetable & fruits with a ratio 

of 40:60 (CB : VF).  

57.05 𝑔 = 0.0570 𝑘𝑔 =  
37995.03 𝑘𝑔

31 𝑑𝑎𝑦𝑠
= 1.225 𝑙/𝑑𝑎𝑦 

1 𝑘𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 =  
1.225 

0.05705
𝑥 1 = 21.48 𝑙/𝑑𝑎𝑦 

21.48 𝑙/𝑑𝑎𝑦 = 0.02148 𝑚3/𝑑𝑎𝑦 

A) Gas Production Rate (G) 

𝐺 = 𝑊 𝑥 0.0215                 (7-1) 

W = weight of biomass 

G = gas Production rate 

The biogas digester is designed for G = 10 m3/day so this value is put into Equation 

7-1. 

10 = 𝑊 𝑥 0.0215 

𝑊 =
0.0215

10
= 465.12 𝑘𝑔 

On solving equation 7-1 we get W = 465.12 kg/day 

B) Active Slurry Volume (Vs) 

The volume of the digester which will be filled with undigested feedstock (Biomass + 

Water). The volume of the active slurry volume (Vs) is calculated by Equation 7-2. 

𝑉𝑠 = 𝐻𝑅𝑇 𝑥 
2𝑊

1000
                 (7-2) 

𝑉𝑠 = 31 𝑥 
2 𝑥 465.12

1000
= 28.84 𝑚3 

Where: 

W = Weight of Biomass (465.12 kg) 
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HRT = Hydraulic Retention Time (31 days) 

 

C) Dimension Calculation (Height & Diameter) 

The biogas digester uses the ratio of height and diameter, these ratio are usually set 

to be D : 2H. The digester shape selected is cylinder therefore the volume of the 

cylinder is found by Equation 7-3. 

𝑉𝑠 =
𝜋

4
 𝑥 𝐻 𝑥 𝐷2                 (7-3) 

𝑉𝑠 =
𝜋

4
 𝑥 𝐻 𝑥 (2𝐻)2 

𝑉𝑠 =
𝜋

4
 𝑥 𝐻 𝑥 4𝐻2 

𝐻 = (
𝑉𝑠

𝜋
 )

1

3
                  (7-4) 

𝐻 = (
28.84

3.14
)

1
3

= 2.09 𝑚 

𝐷 = 2𝐻 = 2 𝑥 2.09 = 4.19 𝑚  

Where: 

Vs = Volume of active slurry 

H = Digester height  

D = Digester Diameter 

D) Slurry displacement inside digester (d) 

Assuming the cooking is done two (2) time a day namely afternoon and evening. 

Assuming that 50% of the gas produced in a day is available for one (1) cooking with 

each cooking span of 3 hours. The slurry displacement depends on the gas storage 

volume Vsd which is achieved by Equation 7-5. 

 (
𝐶𝑜

24
) 𝑥 𝐺 +  𝑉𝑠𝑑 = 0.5𝐺                (7-5) 
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(
3

24
) 𝑥 𝐺 +  𝑉𝑠𝑑 = 0.5𝐺 

𝑉𝑠𝑑 = 0.5𝐺 −
3

24
𝐺 = 0.375𝐺 ≈ 0.4𝐺 

𝑑 =
𝜋

4
 𝑥 𝐷2𝑑 = 𝑉𝑠𝑑 = 0.4𝐺                (7-6) 

𝑉𝑠 = 𝐻𝑅𝑇 𝑥
2𝑊

1000
 

𝑉𝑠 = 31 𝑥
2 𝑥 𝐺

1000
 𝑥

1

0.012
 

𝑉𝑠 = 2.884𝐺 

𝑉𝑠𝑑 =
𝜋

4
 𝑥 𝐷2𝑑 

𝜋

4
 𝑥 𝐷2𝑑 =

𝜋

4
 𝑥 𝐷2 𝑥

𝐻

2.884
 𝑥 𝐺 = 0.4𝐺 

𝑑 =
𝐻

2.884
 𝑥 0.4 =

2.09

2.88
 𝑥 0.4 = 0.29 𝑚 

Where: 

Co = cooking time 

G = Gas Production Rate 

d = slurry displacement insider digester 

D = Gas Production Rate 

Vsd = Gas storage volume 

E) Slurry displacement in the inlet and outlet chamber (h) 

Pressure is selected to be 0.85m water gauge as a safe limit for brick or concrete 

dome (Nijaguna, 2006). Therefore, the slurry displacement height in the inlet and outlet 

is obtained using Equation 7-7 below: 
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ℎ + 𝑑 = 0.85                  (7-7) 

ℎ = 0.85 − 0.29 = 0.56 𝑚 

Where: 

h = slurry displacement in the inlet and outlet chamber 

d = slurry displacement inside digester 

F) Length (l) and breadth (b) of the inlet and outlet chambers 

The length and breadth of the inlet and outlet chamber is obtained using equation 8, 

taking that the length (l) = 1.5 breadth (b). The inlet and outlet are assumed to be 

identical. 

2 𝑥 𝑙 𝑥 𝑏 𝑥 ℎ =  𝑉𝑠𝑑 = 0.4𝐺                (7-8) 

𝑙 = 1.5𝑏 

𝑏 = (
 0.2𝐺

1.5ℎ
)

1
2
 

𝑏 = (
 0.2 𝑥 10

1.5 𝑥 0.56
)

1
2

= 1.54𝑚 

𝑙 = 1.5 𝑥 1.54 = 2.31𝑚 

Where: 

l = length of chamber 

b = Breadth of inlet and outlet chamber 

h = height of inlet and outlet chamber 

G) Dome height (dh) calculation 

The volume of the dome that is spherical in shape is given by Equation 7-9: 
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𝑉𝑑 =
𝜋

6
 𝑥 𝑑ℎ 𝑥 [3 𝑥 (

𝐷

2
)

2

+ 𝑑ℎ
2]       (7-9) 

𝑉𝑠𝑑 = 0.4𝐺 

𝑉𝑑 = 𝐺 − 0.4𝐺 = 0.6𝐺 

𝑝 = 0.75𝐷2 = 0.75 𝑥 4.192 = 13.17 𝑚   

𝑞 = −0.6 𝑥 (
6

𝜋
) 𝐺 = −0.6 𝑥 (

6

𝜋
)  𝑥 10 = −11.5𝑚 

𝑅 = (
𝑝

3
)

3

+ (
𝑞

2
)

2

= (
13.17

3
)

3

+ (
11.5

2
)

2

= 117.66 𝑚 

𝐴 = [(
−𝑞

2
) + √𝑅]

1
3

= [(
11.5

2
) + √117.66]

1
3

= 2.55 𝑚 

𝐵 = [(
−𝑞

2
) − √𝑅]

1
3

= [(
11.5

2
) − √117.66]

1
3

= −1.72 𝑚 

𝑑ℎ = 𝐴 + 𝐵 = 2.55 − 1.72 = 0.829𝑚 

Where: 

d = slurry displacement insider digester 

D = Gas Production Rate 

Vsd = Gas storage volume 

H) Radius of the dome (r) 

The radius of the dome is obtained using Equation 7-10: 

𝑟 =
(

𝐷

2
)

2
+𝑑ℎ

2

2𝑑ℎ
= 3.06 𝑚               (7-10) 

Table 7-6 below presents the design parameters used in sizing of the digester and 

also indicating the critical dimension of the digester for the purpose of construction 

with the drawing presented in Appendix D1. 
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For the inlet and outlet, (i.e. opening boxes), a dimension of 0.6 m x 0.6 m was used 

to allow for entry and exit of construction and maintenance personnel into the digester 

when necessary. 

7.2.3 Agitator/impeller Design Calculations 

At the laboratory stage, two layers were observed in the digester bottle after some 

period, depicting a separation between the biomass and water. This could be a 

disadvantage as the gas gets trapped in the layers of the biomass. The trapped gas 

only be released by shaking the bottle. To prevent trapping of the gas and ensure 

proper gas transfer, an agitator was designed using the steps below (Appendix D1); 

A) Calculation of diameter of three blade type agitator (Da) 

B) Calculation of height of impeller (Ha) 

A) Calculation of diameter of three blade type agitator (Da) 

The diameter of the impeller is determined using the total height of digester and 

diameter of the digester using the Equation 7-11 (Low, 2014) below: 

𝐷𝑎

𝐷
=

1

3
                 (7-11) 

𝐷𝑎 =
1

3
 𝑥 𝐷 

𝐷𝑎 =
1

3
 𝑥 4.19 = 1.40 𝑚 

Where: 

𝐷𝑎 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 

𝐷 = 𝑑𝑖𝑎𝑚𝑡𝑒𝑟 𝑜𝑓 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 

B) Calculation of total height of impeller (HP) 

The total height of the impeller is determined using the relationship of the height of 

impeller in cylinder added to the height of the dome (Equation 7-12). 
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𝐻𝑝 = 𝐻𝑝𝑎 + 𝑑ℎ         (7-12) 

𝐻𝑝

𝐷𝑎
=

1

1
 

𝐻𝑝 =
1

1
𝑥 𝐷𝑎 

𝐻𝑝 =
1

1
 𝑥 1.40 =  

Where: 

𝐻𝑝 = 𝑇𝑜𝑡𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 

𝐻𝑝𝑎 = 𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟 𝑖𝑛 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 

𝑑ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑜𝑚𝑒 

7.2.4 Material Estimation for the Plant 

Material estimate for the plant is required to have the correct cost estimate for 

construction purpose and to avoid wastage of material and finance. The material 

estimate is divided into three (3) category listed below: 

A) Concrete: the calculation of all concrete required including the following, 

concrete for bottom of digester, concrete for inlet and outlet box, concrete slab 

to cover inlet and outlet chamber, concrete for lentils,  

B) Brickwork 

A) Concrete 

Concrete at bottom of digester 

𝐴𝑡 𝑡ℎ𝑒 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 =
𝜋

4
 𝑥 [𝐷 + 2 (𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠) + 0.2]2𝑥 0.1  (7-13) 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 =  0.23𝑚 

𝐷 =  4.13𝑚 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑏𝑜𝑡𝑡𝑜𝑚 =
𝜋

4
 𝑥 [4.13 𝑥 (2 𝑥 0.23) + 0.2]2𝑥 0.1  

= 1.80 𝑚3 
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Concreting at the inlet and outlet 

𝐼𝑛𝑙𝑒𝑡 𝑏𝑜𝑥 𝑡𝑎𝑘𝑒𝑛 𝑎𝑠 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑏𝑜𝑥 𝑤𝑖𝑡ℎ 0.75 𝑚 𝑥 1.00 𝑚. 

𝑂𝑢𝑡𝑙𝑒𝑡 𝑏𝑜𝑥 𝑡𝑎𝑘𝑒𝑛 𝑡𝑜 𝑏𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑏𝑜𝑥 𝑤𝑖𝑡ℎ 1.05 𝑥 1.00 𝑚 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =  (0.75 𝑥 1.00 𝑥 0.1)  +  (1.05  𝑥 1.00 𝑥 0.1)  =  0.18 𝑚3 

Concrete for inlet and outlet chamber 

𝐵𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑠ℎ𝑎𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑜𝑢𝑡𝑙𝑒𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 =  (𝑙 +  0.46 +  0.2) 𝑥 (𝑏 +

 0.46 +  0.2)                (7-14) 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =  2 𝑥 (𝑙 +  0.46 +  0.2) 𝑥 (𝑏 +  0.46 +  0.2) 𝑥 0.1 

                                             =  2 𝑥 (2.31 +  0.46 +  0.2) 𝑥 (1.54 +  0.46 +  0.2) 𝑥 0.1               

                                             = 1.31 𝑚3 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑡𝑜 𝑏𝑒 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒𝑑 𝑎𝑠 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑜𝑢𝑡𝑙𝑒𝑡 𝑐ℎ𝑎𝑚𝑏𝑒𝑟 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 

=  −[(0.6 𝑥 0.6 𝑥 0.1)  +  (𝑏 𝑥 0.6 𝑥 0.1)] 

                              =  −[(0.6 𝑥 0.6 𝑥 0.1)  +  (1.54 𝑥 0.6 𝑥 0.1)] 

                              =  −0.13 𝑚3 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =   1.13 –  0.13 

                                                              =  1.18 𝑚 3 

Volume of the concrete lentils 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑙𝑒𝑛𝑡𝑖𝑙𝑠 =  2 𝑥 0.9 𝑥 0.23 𝑥 0.1 =  0.04 𝑚3 

Volume of concrete slab for chambers (VCSC) 

𝑉𝐶𝑆𝐶 =  2 𝑥 (𝑙 +  0.46) 𝑥 (𝑏 +  0.46) 𝑥 0.075           (7-15) 

=  2 𝑥 (2.31 +  0.46) 𝑥 (1.54 +  0.46) 𝑥 0.075 =  0.831𝑚3 

The total volume of concrete required was obtained by adding all concrete quantities 

which sums up to 4.031m3 (Table 7-7). In the construction of the fixed dome digester 
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the reinforced cement concrete mixed proportion of 1:2:4 (cement: sand: aggregate 

stone) will be used (Adewole et al., 2015). 

The material required for 1 m3 of concrete is: 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.22 𝑚3 (6.6 𝑏𝑎𝑔𝑠);  𝑓𝑜𝑟 4.031 𝑚3 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 0.887 𝑚3(26.6 𝑏𝑎𝑔𝑠) 

𝑜𝑓 𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑛𝑒𝑒𝑑𝑒𝑑. 

𝑆𝑎𝑛𝑑: 0.44 𝑚3;  𝑓𝑜𝑟 4.031 𝑚3 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 1.77 𝑚3 𝑜𝑓 𝑠𝑎𝑛𝑑 𝑖𝑠 𝑛𝑒𝑒𝑑𝑒𝑑. 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (25 𝑚𝑚): 0.88 𝑚3;  𝑓𝑜𝑟 4.031 𝑚3 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 3.55 𝑚3 𝑜𝑓 𝑠𝑡𝑜𝑛𝑒 𝑖𝑠 𝑛𝑒𝑒𝑑𝑒𝑑. 

𝑆𝑡𝑒𝑒𝑙 (8𝑚𝑚): 40 𝑘𝑔;  𝑓𝑜𝑟 4.031 𝑚3 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 161.24 𝑘𝑔 𝑜𝑓 𝑠𝑡𝑒𝑒𝑙 𝑖𝑠 𝑛𝑒𝑒𝑑𝑒𝑑 

𝐵𝑖𝑛𝑑𝑖𝑛𝑔 𝑤𝑖𝑟𝑒: 0.10 𝑘𝑔;  𝑓𝑜𝑟 4.031 𝑚3 𝑜𝑓 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 0.403 𝑘𝑔 𝑜𝑓 𝑤𝑖𝑟𝑒 𝑖𝑠 𝑛𝑒𝑒𝑑𝑒𝑑. 

B) Brickwork 

Digester wall 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘𝑤𝑜𝑟𝑘 𝑛𝑒𝑒𝑑𝑒𝑑 =  (
𝜋

4
)  𝑥 [(𝐷 +  0.46)2 – 𝐷2] 𝑥 (𝐻 +  𝐷)       (7-16) 

=  (
𝜋

4
)  𝑥 [(4.19 +  0.46)2 – 4.192]𝑥 (2.09 +  4.19) = 20.06 𝑚3 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑖𝑛𝑙𝑒𝑡/𝑜𝑢𝑡𝑙𝑒𝑡 =  2 𝑥 (0.6 𝑥 0.23 𝑥 0.6)  =  0.17 𝑚3 

𝐿𝑖𝑛𝑡𝑒𝑙𝑠 =  2 𝑥 (0.9 𝑥 0.23 𝑥 0.1)  =  0.04 𝑚3 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘𝑤𝑜𝑟𝑘 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑟 𝑤𝑎𝑙𝑙 =  20.06 –  0.17 –  0.04 

=  19.85 𝑚3  

Materials needed for 1 m3 for the digester wall 

𝐵𝑟𝑖𝑐𝑘𝑠 (0.23𝑚 𝑥 0.115𝑚 𝑥 0.075𝑚) ∶  500 𝑛𝑢𝑚𝑏𝑒𝑟𝑠;  𝑓𝑜𝑟 19.85 𝑚3  =  9925 𝑏𝑟𝑖𝑐𝑘𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.05 𝑚3 (1.5 𝑏𝑎𝑔𝑠) ;  𝑓𝑜𝑟 19.85 𝑚3  =  0.9925 𝑚3 (29.77 𝑏𝑎𝑔𝑠) 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑠𝑡𝑜𝑛𝑒: 0.25 𝑚3;  𝑓𝑜𝑟 19.85 𝑚3 =  4.96 𝑚3 
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Inlet/Outlet chamber 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘𝑤𝑜𝑟𝑘 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑜𝑟 𝑖𝑛𝑙𝑒𝑡/𝑜𝑢𝑡𝑙𝑒𝑡 𝑐ℎ𝑎𝑚𝑏𝑒𝑟𝑠 =  4 𝑥 (𝑙 +  𝑏 +

 0.46) 𝑥 0.23 𝑥 (ℎ +  0.15)              (7-17) 

=  4 𝑥 (2.31 +  1.54 +  0.46)𝑥 0.23 𝑥 (0.56 +  0.15) = 2.82𝑚3 

Materials needed for 1 m3 for inlet/outlet chamber 

𝐵𝑟𝑖𝑐𝑘𝑠 (0.23𝑚 𝑥 0.115𝑚 𝑥 0.075𝑚) ∶  500 𝑛𝑢𝑚𝑏𝑒𝑟𝑠;  𝑓𝑜𝑟 2.82 𝑚3  =  1408 𝑏𝑟𝑖𝑐𝑘𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.05 𝑚3 (1.5 𝑏𝑎𝑔𝑠) ;  𝑓𝑜𝑟 2.82 𝑚3  =  0.141 𝑚3 (4.23 𝑏𝑎𝑔𝑠) 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑠𝑡𝑜𝑛𝑒: 0.25 𝑚3 ;  𝑓𝑜𝑟 2.82 𝑚3 =  0.705 𝑚3 

Inlet/outlet boxes 

𝐼𝑛𝑙𝑒𝑡 𝑏𝑜𝑥 𝑠𝑖𝑑𝑒 𝑤𝑎𝑙𝑙𝑠 =  2 𝑥 
0.4+ (𝑏 + 0.1)

2
 𝑥 (0.6 +  𝑑 –  0.1)         (7-18) 

𝐼𝑛𝑙𝑒𝑡 𝑏𝑜𝑥 𝑠𝑖𝑑𝑒 𝑤𝑎𝑙𝑙𝑠 =  2 𝑥 
0.4 + (1.54 +  0.1)

2
 𝑥 (0.6 +  0.29 –  0.1) = 1.61𝑚2 

𝑖𝑛𝑙𝑒𝑡 𝑏𝑜𝑥 𝑠𝑙𝑜𝑝𝑖𝑛𝑔 𝑤𝑎𝑙𝑙 =  [(𝑏 –  0.3)2  +  (0.6 +  𝑑 –  0.1)2]
1

2 𝑥 0.6        (7-19) 

= [(1.54 − 0.3)2 + (0.6 + 0.29 − 0.1)2]
1
2 𝑥 0.6 = 0.882𝑚2 

𝑂𝑢𝑡𝑙𝑒𝑡 𝑏𝑜𝑥 =  2 𝑥 0.7 𝑥 (0.6 + 𝑑 − 0.1)            (7-20) 

                        = 2 𝑥 0.7 𝑥 (0.6 +  0.29 –  0.1) = 1.106𝑚2 

𝑆𝑖𝑑𝑒 𝑤𝑎𝑙𝑙𝑠 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡/𝑜𝑢𝑡𝑙𝑒𝑡 =  1 𝑥 0.6 𝑥 (0.6 +  𝑑 –  0.1)          (7-21) 

                                                      =  1 𝑥 0.6 𝑥 (0.6 +  0.29 –  0.1) = 0.474𝑚2 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 =  1.61 + 0.882 + 1.106 +  0.474 = 4.072𝑚2 

The material required for 10m2 area: 

𝐵𝑟𝑖𝑐𝑘𝑠: 500 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.05 𝑚3 (1.5 𝑏𝑎𝑔𝑠) 

𝑆𝑎𝑛𝑑 (𝑐𝑜𝑎𝑟𝑠𝑒): 0.25 𝑚3 
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Therefore for area of 4.072 m2 the material required are: 

𝐵𝑟𝑖𝑐𝑘𝑠: 203.6 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.0204 𝑚3 (0.6 𝑏𝑎𝑔𝑠) 

𝑆𝑎𝑛𝑑 (𝑐𝑜𝑎𝑟𝑠𝑒): 0.102 𝑚3 

Bricks for the construction of dome 

The construction of the dome will be done using the first-class brick bonded with CM 

1:2 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑜𝑚𝑒 =  2 𝑥 𝜋 𝑥 (𝑟 + 0.05) 𝑥 (𝑑ℎ + 0.05)          (7-22) 

                                     =  2 𝑥 𝜋 𝑥 (3.06 + 0.05) 𝑥 (0.829 + 0.05) = 17.18𝑚2 

𝑂𝑛𝑒 𝑏𝑟𝑖𝑐𝑘 𝑙𝑎𝑦𝑒𝑟 𝑎𝑟𝑜𝑢𝑛𝑑 𝑡ℎ𝑒 𝑑𝑜𝑚𝑒 𝑎𝑠 𝑎 𝑓𝑖𝑟𝑠𝑡 𝑟𝑖𝑛𝑔 = 𝜋 𝑥 𝐷 𝑥 0.1        (7-23) 

                                                                                                   = 𝜋 𝑥 4.19 𝑥 0.1 = 1.316𝑚2 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐷𝑜𝑚𝑒 =  17.18 +  1.316 =  18.496𝑚2 

The material required for 10m2 area: 

𝐵𝑟𝑖𝑐𝑘𝑠: 370 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.05 𝑚3 (1.5 𝑏𝑎𝑔𝑠) 

𝑆𝑎𝑛𝑑 (𝑐𝑜𝑎𝑟𝑠𝑒): 0.11 𝑚3 

Therefore, for area of 18.49 m2 the material required are: 

𝐵𝑟𝑖𝑐𝑘𝑠: 685 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.0925 𝑚3 (2.8 𝑏𝑎𝑔𝑠) 

𝑆𝑎𝑛𝑑 (𝑐𝑜𝑎𝑟𝑠𝑒): 0.203 𝑚3 

Brick tiles for the digester dome 

The digester dome will be covered with brick tiles and the number of times required is 

calculated below: 
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𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑟𝑖𝑐𝑘 𝑡𝑖𝑙𝑒 =  2 𝑥 𝜋 𝑥 (𝑟 + 0.17) 𝑥 (𝑑ℎ + 0.17)         (7-24) 

=  2 𝑥 𝜋 𝑥 (3.06 + 0.17) 𝑥 (0.829 + 0.17) = 20.27𝑚2 

 

The material required for 10m2 area: 

𝐵𝑟𝑖𝑐𝑘𝑠: 370 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.1 𝑚3 (3.0 𝑏𝑎𝑔𝑠) 

𝑆𝑎𝑛𝑑 (𝑐𝑜𝑎𝑟𝑠𝑒): 0.04 𝑚3 

Therefore, for area of 20.27 m2 the material required are: 

𝐵𝑟𝑖𝑐𝑘𝑠: 750 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 

𝐶𝑒𝑚𝑒𝑛𝑡: 0.203 𝑚3 (6.08 𝑏𝑎𝑔𝑠) 

𝑆𝑎𝑛𝑑 (𝑐𝑜𝑎𝑟𝑠𝑒): 0.081 𝑚3 

7.2.5 Cost estimate to construct 

A cost estimate to construct the biogas digester was calculated based on material only 

no labour, transportation and all other construction obligations was included.  

7.3 RESULTS AND DISCUSSION 

To construct a biogas digester plant for a family of five (5) with each family having 

eight (8) people. An underground fixed dome is used having a spherical dome, the 

underground was selected as to preserve the heat of 37 °C. The gas production rate 

of the co-digestion slurry of cassava biomass and vegetable and fruit waste was 

0.02148 m3/day, however, the digester is required to produce a gas at 10 m3/day 

therefore a feed of 465.12 kg/day is required. Table 7-6 presents a summary of the 

digester dimension for construction purposes.  

Table 7-6: Design parameter for fixed dome digester 

Parameters Values 

Gas Production Rate (G) 10 m3/day 
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Parameters Values 

Active Slurry Volume (Vs) 28.84 m3 

Height of Cylindrical Digester (H) 2.09 m 

Diameter of Digester (D) 4.19 m 

Slurry Displacement (d) 0.29 m 

Height of Slurry displacement (h) 0.56 m 

Breadth of inlet and outlet (b) 1.54 m 

Length of inlet and outlet (l) 2.31 m 

Dome height (dh) 0.829 m 

Radius of Dome (r) 3.06 m 

 

The total volume of concrete required for the construction of the anaerobic digester is 

obtained by summing up all the quantities of concrete which is presented in Table 7-

7. 

Table 7-7: Total volume of concrete for energy requirement of 0.25 m3/person/day 

Concrete Item Volume 

Bottom of digester 1.80 m3 

Inlet and outlet 0.18 m3 

Inlet and outlet chamber 1.18 m3 

Lentils 0.04 m3 

Slab for chambers 0.831m3 

Total 4.031m3 
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A cost estimate to construct the biogas digester was calculated based on material only 

no labour, transportation and all other construction obligations was included. Table 7-

8 presents the cost estimate. 

Table 7-8: Cost estimate to construct biogas digester for 0.25 m3/person/day 

Items Units Quantities Rate Amount 

Concrete no 4.031 R 950.00 R 3 829.45 

Bricks kg 13000 R 5.69 R 73 970.00 

Binding Wire tonnes 0.5 R 250.00 R 125.00 

Stone Ballast (25 mm) m3 3.55 R 750.00 R 7 721.25 

Sand (Fine) m3 2.2 R 350.00 R 770.00 

Chicken Wire Mesh kg 27 R 725.00 R 19 575.00 

Steel (8mm) m 161.24 R 45.94 R 7 407.37 

Steel rings around the 
base of the dome 

m 29.47 R 15.34 R 452.07 

GI pipe for outlet bags 0.45 R 35.00 R 15.75 

Cement no 84 R 86.55 R 7 270.20 

Total R 121 136.09 

7.4 CONCLUSION 

As the demand for energy increases, the demand for alternative renewable energy 

such as biogas increases. Considering that the installation of biogas plants in South 

Africa is still in an infant stage, more installations are required. This study provides a 

platform for understanding the process of sizing of digesters using a family in a rural 

area in a scenario analysis. A full-scale anaerobic digester was designed to produce 

biogas from cassava, vegetable and fruit waste. The material required to construct the 

digester was calculated. The fixed dome digester was designed as a batch digester to 

produce 10m3 of gas for a family of five (5) given that each family has eight (8) people. 

The digester consisted of inlet and outlet chamber, volume of the fermentation 

chamber and a gas storage chamber. The digester diameter for the required gas 

production rate is 4.19m with a digester height of 2.09m at a material cost of R 121 
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136.09. Further research on the economic feasibility of the project and construction 

cost is recommended. Moreover, the methods of purification of biogas and biogas 

storage requires further research. 
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:  

CONCLUSIONS AND RECOMMENDATIONS 

PREFACE 

This chapter presents a summary of the key findings and conclusions of the study as 

well as recommendations for future works. This chapter also elucidates the various 

contributions to knowledge generated from this study.  

8.1 BACKGROUND AND RATIONALE 

The decline in electricity reserve margin resulted in blackouts in 2008 that affected the 

economic sector of the South Africa. Demand and supply was managed through a 

process of load shedding to improve the energy situation (Odhiambo, 2009). During 

this process, electricity generation is aligned with the demand and at the same time a 

reasonable electricity reserve margin is maintained. The financial impact of load 

shedding during the period November 2007—January 2008 amounted to ZAR 50 

billion (USD 6.6 billion). However, the overall costs are much greater. A 4% drop in 

the economic growth resulted in 2008. South Africa depends mainly on coal, 84% of 

energy generation was from fossil fuels, of which 72% came from coal and 12.4% from 

oil. The production of electricity from coal is amongst the cheapest electricity in the 

world (Amigun et al., 2011). However, South African coal has high ash content that 

varies from 5% to 15%, which results in particulate and gases that have a negative 

effect on the quality of the air in the surrounding areas. The gases emitted also 

contribute to global warming. South Africa needs more energy to sustain its economy 

and to maintain to the standards of an emerging country that can reach the level of 

developed world in the future. According to Pegels (2010), South Africa has high 

potential for renewable energy generation. Various studies support this view. 

However, there is still lacking initiative and will in Africa, particularly South Africa to 

transform the research into a product for consumers at a commercial scale (South 

Africa National Energy Association, 2010). 

In South Africa, most renewable energy is derived from biomass (Musango et al., 

2011). About 18 million tonnes of agricultural and forestry residue is produced in South 

Africa per annum (Lynd et al., 2003). South Africa has the potential to produce about 
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67 million tonnes of energy crops on 10% of the available land (Marrison and Larson, 

1996). Biomass already contributes between 9 and 14% of the total energy 

requirement, but it could be utilized more efficiently, and the current use is not always 

sustainable. The key issues faced by many developed and developing countries of the 

world today are mainly future energy security and better use of natural resources. 

About 70% of the countries in Africa rely on imported energy. The focus of the study 

was to investigate the suitability of cassava as an alternative source of biomass 

feedstock for biogas production in South Africa, through co-digestion with other 

available biomass, thereby designing a digester for local communities.  

8.2 MAJOR FINDINGS AND CONCLUSIONS OF THE STUDY 

Cassava has a great potential for bioenergy production with greater advantages 

towards biogas, in particular. South Africa has thousands of acres of lands that are 

degraded and unutilized since the lands have been degraded. Cassava provides 

advantages over other crops because it can thrive in these kinds of lands as it thrives 

well on soils of relatively low fertility where the use of the lands would be uneconomical 

(Rodrigues et al., 2018). According to  Popp et al. (2014), cassava can be produced 

on degraded lands making it have an additional advantage that it can be produced in 

large scale for biofuels without posing a risk to food production and or its natural 

habitats. The above advantages of cassava motivated this research as there has been 

scarce literature that addresses the co-digestion of cassava and vegetable & fruits 

waste especially in South Africa. Most research have focused on cassava peels 

(Ezekoye, 2008, Adelekan and Bamgboye, 2009, Oparaku et al., 2013), and the 

peeled cassava solely digested (mono-digestion). No much research has been 

conducted on co-digestion of cassava with vegetables & fruits waste. Findings from 

this study thus display various areas wherein original contribution to knowledge has 

been made. The study also presents how the research findings can be implemented 

practically through a design of biogas digester for a community. The study produced 

a series of interesting results that are summarized as follows:  

The overall objective of Chapter 3 entitled “Identification and Characterization of 

Potential Feedstock for Biogas Production in South Africa” was to investigate the 

different feedstock with the potential to produce biogas. This was done through 

characterization of different feedstock, and additionally, through preliminary 
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calculation of the theoretical biogas and methane yield of the identified feedstock. The 

theoretical yield calculation was based on the physical-chemical characterization. The 

results revealed that cassava, vegetables and fruits have the necessary 

characteristics to produce biogas. Co-digestion analysis based on elemental analysis 

demonstrated that optimal co-digestion ratios to improve the biogas yield. These 

promising results encouraged the authors to conduct BMP to investigate the biogas 

yield at laboratory scale using a 600 ml reactor to compare the theoretical yield. This 

was addressed in chapter 4. 

Chapter 4 entitled “Co-Digestion of Animal Manure and Cassava Peel for Biogas 

Production in South Africa” aimed to determine the performance of co-digestion of 

cassava peel at different inoculate ratios of cattle manure. The results showed that co-

digestion influenced biogas production and methane yield. The final cumulative 

methane yields by the co-digestion of CM and CP at the CM:CP mixing ratios of 80:20 

and 20:80 were 738.76 mL and 838.70 mL respectively. The corresponding average 

daily methane yields were 18.42 mL/day and 20.97 mL/day. This study thus suggests 

that methane production could be enhanced using CP in a co-digestion process and 

at a 20:80 CM:CP ratio being the promising ratio which yielded the highest amount of 

biogas. The analysis of variance amongst the biogas yields indicate that different co-

digestion mixtures have an important effect on the ultimate yields. With the promising 

performance of cassava peel, further investigations and modelling into the 

performance of peeled cassava compared to unpeeled cassava was thus conducted 

in Chapter 5. 

Chapter 5 entitled “Comparison and Modelling of Biogas Production from 

Unpeeled and Peeled Cassava Tubers at a Mesophilic Temperature” is a pilot 

study focused on the production of biogas from cassava in South Africa. It is expected 

that this study will contribute towards establishing an accurate technique for biogas 

quantification using UCT and PCT, and contribute to knowledge on the suitable 

feedstock that can provide an optimum biogas yield. The influence/effect of the 

cassava peels on the biogas yield was also assessed. The results showed that 

anaerobic digestion of peeled cassava tuber in the presence of inoculum (PCT1) yields 

the most viable results, thereby suggesting that the use of unpeeled cassava tuber 

slows down the digestion process thereby reducing the biogas yield. These results are 
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in agreement with that obtained by Budiyono et al. (2013) which submits that the 

inoculation of feedstock with fresh manure can increase the biogas yield by 30%. 

Furthermore, mechanical pre-treatment of the substrate by removing the cassava peel 

is highly recommended to ensure high conversion rates. A reduction in biogas yield 

was observed for the peeled fraction and this can be attributed to its slow degradability 

(Jekayinfa and Scholz, 2013). Due to low amounts cassava farming in South Africa, 

the potential of energy production of mono-digestion of cassava biomass for the 

biogas process would be rather low, therefore the need to explore co-digestion with 

available waste stream such as vegetable and fruit (VF) waste was explored, with 

results indicating the potential of VF to produce biogas. Further investigations and 

optimization of co-digestion of cassava with vegetable and fruit waste were conducted 

in chapter 6. 

Chapter 6 entitled “Optimization of Biogas Yield through Co-Digestion of Cassava 

Biomass and Vegetable & Fruits Waste at Mesophilic Temperatures” focuses on 

the optimum biogas yield through co-digestion of cassava biomass, vegetable and 

fruits at different ratios in a single stage fed-batch anaerobic digester for biogas 

production. Following this investigation coupled with modelling of the biogas yield of 

cassava biomass, vegetable and fruits waste, the results affirmed the conclusion 

reached in chapter 3 that co-digestion of cassava biomass, vegetable and fruit waste 

enhances the biogas yield. It was observed that under anaerobic conditions in the 

presence of inoculum, co-digestion 40:60 (CB;VF) achieved the maximum methane 

yield which was 23.08% greater than that of mono-digestion. It is worthy to note that 

an increase in the cassava biomass above 40% in relation to the vegetable and fruit 

waste had a negative effect on the yield. The omission of inoculum in the best 

performing co-digestion (40:60) affected the biogas yield as it reduced significantly. 

Notwithstanding, the performance exhibited by the co-digestion ratio of 

40%CB:60%VF was satisfactory as it performed better than that of cassava biomass 

digestion on its own. Using the results obtained in chapter 6, further investigation was 

conducted by upscaling the results to design a pilot digester which is presented in 

chapter 7. 

The design of an anaerobic digester for sustainable co-digestion of cassava, vegetable 

and fruit waste was covered under the Chapter 7 entitled “Biogas Technology and 
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the Design of Pilot Digester for Co-Digestion of Cassava and Vegetable & Fruits 

Waste”. The digester was designed to produce biogas energy that will cater for five 

(5) families; each comprising eight (8) members. The energy requirement for cooking 

purposes was estimated to be 0.25 m3/person/day, while the biogas production rate 

of the digester was estimated to be 10 m3/day. The digester was designed as a fixed 

dome digester which consisted of fermentation chamber and gas storage chamber. 

The dimensions of the digester were height of cylindrical digester (H) 2.09 m, diameter 

of digester (D) 4.19 m, breadth of inlet and outlet (b) 1.54 m, dome height (dh) 0.829 m 

and radius of dome (r) 3.06 m. 

8.3 FUTURE WORK/RESEARCH 

This research was successfully conducted and the bio-digester design, however 

based on the finding of this study, the following recommended research have 

emanated and can be undertaken in future studies: 

1) The construction of a large-scale bio-digester based on the design put forward in 

this study of the digester. 

2) The modelling of the anaerobic digestion process using artificial intelligence 

techniques with focus on batch system.  

3) The use of cassava as a landfill cap as it thrives well on soils of relatively low 

fertility making it advantageous in land where cultivation of other crops is 

uneconomical. 
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