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Abstract

In this work, we study a class of almost Hermitian manifolds called locally conformal

almost Kähler manifolds. These are almost Hermitian manifolds which contains an

open cover {Ut}t∈I and a family of C∞ functions ft : Ut → R such that each conformal

metric gt on Ut is an almost Kähler metric. Locally conformal almost Kähler manifolds

also falls under a class of locally conformal symplectic manifolds. More precisely,

locally conformal almost Kähler manifolds are manifolds whose fundamental 2-form is

locally conformal symplectic. We �rst recall some of the existing geometric properties

of almost Hermitian manifolds. Then further use these properties to derive those of

locally conformal almost Kähler manifolds. A new example of a locally conformal

almost Kähler manifold is given. We further investigate the relationship between the

covariant derivative and the Nijenhuis tensor on a locally conformal almost Kähler

manifold. The equivalence of the Nijenhuis tensor de�ned on each Ut and the one

de�ned globally is also proven.

The relationship between the curvature tensors induced by the two conformal

metrics on a locally conformal Kähler manifolds are considered. In particular, we show

that a locally conformal almost Kähler manifold is an almost Kähler manifold under

some curvature conditions. To achieve our goal, we �rst prove the relation between

scalar curvatures τ t and τ together with the corresponding scalar ∗-curvatures τ t∗

and τ ∗ of a locally conformal almost Kähler manifold.

Moreover, among other results, we also investigate the canonical foliations of lo-

cally conformal almost Kähler manifolds. Accurately, we give necessary and su�cient

conditions for the metric on a locally conformal almost Kähler manifolds to be a

bundle-like for foliations F.
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Chapter One

Introduction

1.1 Introduction

The study of manifolds whose metric is locally conformal to an almost Kähler metric

is considered as one of the most interesting studies in the �eld of di�erential geometry

[4]. This is because of its richness in the theory that is applicable in physics, algebraic

geometry, symplectic geometry, etc. To our knowledge, locally conformal (almost)

Kähler structures were �rst studied by P. Libermann [13] in the 1950s. In 1966, A

Gray [5] also contributed to the study by considering (almost) Hermitian manifolds

whose metric is conformal to a local (almost) Kähler metric. However, globally con-

formal (almost) Kähler manifolds share the same topological properties with locally

conformal (almost) Kähler manifolds [21]. It is therefore provocative to consider those

almost Hermitian manifolds whose metric is locally conformal to an almost Kähler

metric. The di�erence between locally conformal Kähler manifolds and locally con-

formal almost Kähler manifolds is the condition of integrability of an almost complex

structure, this is equivalent to an almost complex structure being parallel with respect

to a globally de�ned connection or the vanishing of a Nijenhuis tensor. Therefore, the

geometric properties which do not depend on the almost complex structure will apply

to both of these manifolds.

Libermann de�ned a locally conformal (almost) Kähler metric as a metric g at

which in the neighborhood of each point of a 2n-dimensional almost Hermitian man-

ifold, it is conformal to an (almost) Kähler metric. To be more speci�c, a metric g

is locally conformal (almost) Kähler if there is an open cover {Ut}t∈I of an (almost)

Hermitian manifold and a family {ft}t∈I of smooth functions ft : Ut → R such that

each metric

gt = exp(−ft)g|Ut
,

is a local (almost) Kählerian metric. An (almost) Hermitian manifold equipped with

this metric is a locally conformal (almost) Kähler manifold. Another way these man-

ifolds are characterized is by a globally de�ned 1-form ω on a Hermitian manifold
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Main results 2

satisfying

dΩ = ω ∧ Ω and dω = 0, (1.1)

where Ω is a Kähler form of an (almost) Hermitian manifold [21]. The closed 1-

form ω is known as the Lee form as it was introduced by Lee [12]. In the symplectic

viewpoint, locally conformal (almost) Kahler manifold (M,J, g) is a locally conformal

symplectic manifold (M,Ω) endowed with an (almost) complex structure and an

(almost) Hermitian metric corresponding to the locally conformal symplectic form.

Of course, we recall that a locally conformal symplectic manifold is a 2n-dimensional

connected paracompact manifold equipped with a non-degenerate 2-form Ω, so that at

every point in an open neighborhood U , we have d(exp(−ft)Ω|Ut) = 0. Equivalently,

(M,Ω) is locally conformal symplectic if there exist a Lee form ω such that 1.1 holds

[25].

1.2 Main results

Here is the summary of some results found on locally conformal almost Kähler man-

ifolds. Let (M,J, g) be a 2n-dimensional almost Hermitian manifold.

(1) The almost Hermitian manifold (M,J, g) is locally conformal almost Kähler if

and only if

(∇b
XJ)Y = (∇XJ)Y +

1

2

{
(ω ◦ J)(Y )X −ω(Y )JX + g(X, Y )JB−Ω(X, Y )B

}
,

for any vector �eld X, Y tangent to M .

(2) If the manifold (M,J, g) is locally conformal almost Kähler, then the scalar

curvatures τ t and τ of M are related by

exp(−ft)τt = τ + (2n− 1)

{
divB − 1

2
(1− n)||B||2

}
.

Also the scalar ∗-curvatures τ t∗ and τ ∗ are related by

exp(−ft)τ t∗ = τ ∗ + divB + (n− 1)||B||2.

(3) Let (M,J, g) be a 2n-dimensional compact locally conformal almost Kähler

manifold with n > 1 and contained in L1. If

τ ∗ = τ,

then (M,J, g) is an almost Kähler manifold.
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(4) For a locally conformal almost Kähler manifold admitting a foliation F, the

following are equivalent:

(i) The foliation F is Riemannian.

(ii) The Lee vector �eld B is auto-parallel with respect to ∇, that is,

∇BB = B (ln(||B||))B.

Moreover, the leaves of the distribution D are hypersurfaces with mean curva-

ture vector �eld

H ′ =
1

2n− 1

(
div|M′B

)
B.

Moreover, they are totally geodesic hypersurfaces if and only if the dual vector

�eld B of ω preserves their metrics.

Also these integral manifolds are minimal if and only if the dual vector �eld

incompressible along the manifolds.

1.3 Organization of the thesis

This dissertation is organized in the following way: The second chapter introduces

some basic principles and de�nitions of almost complex manifolds, complex manifolds,

almost Hermitian manifolds, Hermitian manifolds, almost Kähler manifolds, Kähler

manifolds, almost symplectic manifolds and symplectic manifolds. An almost complex

structure will be de�ned and its integrability conditions will be provided (see [18],

for more details). We will introduce the connections on almost Hermitian manifolds

together with its properties established by A. Gray[5].

The third chapter de�nes a locally conformal almost Kähler structures (see [21]

and references therein for more details) supported by an example. Furthermore, we

outline some of the geometric properties of underlying manifolds by considering the

connections ∇t and ∇ induced by the conformal metrics gt and g, respectively. Using

the fact that in such ambiant manifold, the almost complex structure is not parallel

with respect to the Weyl connection ∇b, we follow the work of Dragomir [[4], corol-

lary 1.1] to give a representation of a Weyl connection with respect to the almost

complex structure. We will then end the chapter by giving some representation of the

connections ∇ and ∇t with regards to the Nijenhuis tensors N and N t, respectively.

In Chapter 4, we investigate the curvature properties of locally conformal almost

Kähler manifolds. More precisely, we establish the relation between the scalar curva-

tures and τ and τ t, together with the corresponding scalar ∗curvatures τ ∗ and τ ∗t.

We prove that such ambiant manifold is a subclass of an almost Hermitian manifold

de�ned by the curvature identities introduced by A. Gray [6], then (M,J, g) is an

Ntokozo Khuzwayo©SMSCS/UKZN 2020
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almost Kähler manifold. We also focus on foliations that arise naturally when the

fact the Lee form is nowhere vanishing. We de�ne a bundle like metric for a folia-

tion F on a Riemannian manifold. Furthermore, we give a characterization for the

bundle-like metric. We also prove that the minimality of the leaves coincides with the

incompressibility of the Lee vector �eld.

Finally, in Chapter 5, we conclude on the results obtained in this dissertation and

we provide future research directions.
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Chapter Two

Preliminaries

2.1 Almost Hermitian manifolds

Almost Hermitian manifolds are important in di�erential geometry. They mode a

huge class of generalized Kähler manifolds. The rest of generalized Kähler manifolds

like almost Kähler, nearly Kähler, semi Kähler, and quasi Kähler manifolds fall under

the class of almost Hermitian manifolds (for more details, see [5] and [6]).

LetM be a 2n-dimensional C∞ (smooth) manifold. Next, let TM be a tangent bundle

of M . That is,

TM =
⋃
x∈M

TxM,

where TxM = {V : ∃ α : (−ε, ε)→M, α(0) = x, α′(0) = V }.
Furthermore, let J : TM → TM be an R-linear endomorphism such that J2 =

−ITM . In particular, J can be viewed as a linear operator given by

J =

[
0 ITM

ITM 0

]
.

An almost complex manifold of dimension n is a real 2n-dimensional manifold

endowed with an almost complex structure J . We will use (M,J) to denote an almost

complex manifold. It is known that an almost complex manifold is orientable [11].

Let (M,J) be a 2n-dimensional almost complex manifold. Then the real tangent

bundle TM has a local basis{ ∂

∂x1
, . . . ,

∂

∂x2n
;
∂

∂y1
, . . . ,

∂

∂y2n

}
.

Also, the real cotangent bundle T ∗M has a local basis

{dx1, . . . , dx2n; dy1, . . . , dy2n}.
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Almost Hermitian manifolds 6

Next, we consider the complexi�ed cotangent bundle T ∗M ⊗ C given by

T ∗M ⊗ C = T (1,0)M ⊕ T (0,1)M,

where T (1,0)M and T (0,1)M are i−eigenbundle and −i-eigenbundle, respectively.
Also, we have a natural splitting

ΛkT ∗M ⊗ C =
⊕

p+q=k

Λ(p,q)M,

with

Λ(p,q)(M) = Λp
CT
∗(0,1)M ⊗ Λq

CT
∗(0,1)M.

De�nition 2.1.1. The sections of Λ(p,q)(M) are called (p,q)-forms.

Now let us consider an open set U ⊂ M and a map ψ : U → U, where U is an

open set in R2n. Then (U, ψ) = (U, (x1, x2, . . . , x2n)) de�nes a chart on M .

In particular, if (Ua, ψa) and (Ub, ψb) are two charts on M , we can construct the

transitional maps as illustrated in Figure 2.1 below:

ψUa

ψ−1Ua
ψ−1Ub

ψUb

M

Ua
Ub

ψ(Ua)

R2n

ψUb
◦ ψ−1Ua

ψ(Ub)

R2n

Figure 2.1: Transitional functions .

On an almost complex manifold, the transition map ψUb
◦ ψ−1Ua

is holomorphic, i.e. it

is a complex-valued function.

Any X ∈ C∞(TM), is locally represented by X =
∑2n

i=1X
i ∂
∂xi

and Y =
∑2n

j=1X
j ∂
∂xj

,

where X i : M2n → R. We de�ne the Lie bracket of X and Y by

[X, Y ] = X(Y )− Y (X).
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Almost Hermitian manifolds 7

De�nition 2.1.2. An almost complex structure J is integrable if

[T (1,0)M,T (0,1)M ] ⊂ T (1,0)M.

In addition, for all vector �eld X and Y in M , the Nijenhuis tensor �eld N of J

is given by

N(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ]. (2.1)

The well-known theorem of Newlander and Nirenberg [18] assets that the 2n-dimensional

almost complex manifold (M,J) is a complex manifold if and only if the Nijenhuis

tensor N vanishes or equivalently if the almost complex structure J is integrable.

Next, we de�ne a Riemannian metric g on a C∞-real di�erentiable manifold M as

a C∞-family of inner product gx : TxM × TxM → R on TxM .

Then [11]

(1) g(X, Y ) = g(Y,X), i.e. g is symmetric

(2) g(X,X) ≥ 0, i.e. g is positive de�ne and

(3) g(X,X) = 0 ⇐⇒ X = 0,

for all vector �elds X and Y on M .

De�nition 2.1.3. [21] A Hermitian metric is a Riemannian metric g on an almost

complex manifold (M,J) such that for each point x in M and each X, Y tangent to

M , we have

g(X, Y ) = g(JX, JY ), (2.2)

for all vector �elds X and Y on M .

Using the above de�nition, it follows that an almost Hermitian manifold (M,J, g)

is an almost complex manifold (M,J) together with a Hermitian metric g. Further-

more, by using the Newlander and Nirenberg Theorem [18], we deduce that if N

vanishes, then (M,J, g) is a Hermitian manifold.

Every (almost) complex manifold admits a Hermitian metric. This can be veri�ed by

noting that (almost) complex manifolds are paracompact by de�nition and as a re-

sult, they admit a Riemannian metric which we shall denote by g1. Now let us de�ne

g by

g(X, Y ) = g1(X, Y ) + g1(JX, JY ), (2.3)

for any vector �elds X and Y on M , then one has that g is a Hermitian metric [26].

To further outline the geometry of (almost) Hermitian manifolds, we must consider

Ntokozo Khuzwayo©SMSCS/UKZN 2020



Almost Hermitian manifolds 8

a tensor Ω induced by the metric g. This is a 2-form known as the (almost) Kähler

form of an (almost) Hermitian manifold M and satis�es

Ω(X, Y ) = g(JX, Y ) and Ω(JX, JY ) = Ω(X, Y ), (2.4)

for all X, Y ∈ TM .

Next, we introduce a well-de�ned method used to di�erentiate vector �elds and

any other tensors. Let Γ(TM) be the space of vector �elds in M . Then

De�nition 2.1.4. An a�ne connection on M is a mapping

∇ : Γ(TM)× Γ(TM) −→ Γ(TM)

(X, Y ) 7−→ ∇XY, for all X, Y ∈ Γ(TM).
(2.5)

We say ∇XY is a covariant derivative of Y in the direction of X.

Let us consider a C∞-function f : M → R and for any vector �elds X and Y on

M , then the relations [11]

(1) ∇fXY = f∇XY and

(2) ∇X(fY ) = df(X)Y + f∇XY ,

hold.

De�nition 2.1.5. The gradient of a C∞-function f is a vector �eld grad f such that

X(f) = g(grad f,X), (2.6)

for all X ∈ Γ(TM). In addition grad f = (df)], where ] denotes the raising of indices.

De�nition 2.1.6. The Levi-Civita connection is an a�ne connection ∇ such that

� ∇g = 0, that is, ∇ preserves the metric,

� ∇XY −∇YX = [X, Y ], i.e ∇ is torsion-free, for all X, Y ∈ Γ(TM).

The existence and uniqueness of the Levi-Civita connection on any C∞ manifold

is known as the Fundamental Theorem of Riemannian Geometry [11].

Let ∇ be the Levi-Civita connection on M and σ be the coderivative of Ω, then

we can get many other tensor �elds that can be used to de�ne di�erent classes of

almost Hermitian manifolds. Among these tensor �elds, we mention the following.

Let X, Y , and Z be tangent to an almost Hermitian manifold M . Then [7]

(1) (∇XΩ)(Y, Z) = g(Y, (∇XJ)Z) = g((∇XJ)Y, Z) and (∇XΩ)(Y, Z) = (∇XΩ)(JY, JZ)

de�nes the covariant derivative.
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(2) 3dΩ(X, Y, Z) =
⊕̂

XY Z(∇XΩ)(Y, Z) de�nes the exterior derivative and
⊕̂

XY Z

denotes the cyclic sum over X, Y and Z.

(3) (σΩ)(X) =
∑n

i=1

(
(∇Ei

Ω)(Ei, X)+(∇JEi
Ω)(JEi, X)

)
de�nes the codi�erential

of Ω where {E1, . . . , En, JE1, . . . , JEn} is the local orthogonal frame.

(4) ω(X) = 1
n−1σΩ(JX) is a 1-form an almost Hermitian manifolds and is called

the Lee form.

De�nition 2.1.7. An almost Kähler manifold is an almost Hermitian manifold

(M,J, g) such that the associated almost Hermitian form Ω is closed, that is,

dΩ = 0.

The condition for an almost Hermitian manifold to be an almost Kähler manifold is

equivalent to

g((∇XJ)Y, Z) + g((∇Y J)Z,X) + g((∇ZJ)X, Y ) = 0. (2.7)

If the almost complex structure J is integrable, or equivalently, if N = 0 if then

(M,J, g) is said to be a Kähler manifold. For a Kähler manifold, the integrability

of almost complex structure J and the vanishing of the Nijenhuis tensor N can be

characterized by a single condition ∇J = 0 [2].

Next, we consider any connected manifold M of dimension 2n such that its fun-

damental form Ω does not necessarily depend on the metric and the almost complex

structure.

De�nition 2.1.8. The pair (M,Ω) is called a symplectic manifold if dΩ = 0. More-

over, if dΩ 6= 0, then (M,Ω) is an almost symplectic manifold.

It is worth noting that in both symplectic and almost symplectic manifolds, the

2-form Ω is non-degenerate.
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Chapter Three

Locally conformal almost

Kähler manifolds

In this chapter, we wish to de�ne a locally conformal almost Kähler manifold and give

its characterization together with its geometric properties. An example of a locally

conformal almost Kähler manifold will be constructed by considering the Cartesian

product of two manifolds. We will give a characterization of locally conformal almost

Kähler manifolds using the covariant derivatives and the Nijenhuis tensors by follow-

ing the properties and charecterizations established in the case of locally conformal

Kähler manifolds [4].

3.1 Geometric properties of locally conformal almost

Kähler manifolds

Let M be a 2n-dimensional almost Hermitian manifold with the metric g and the

almost complex structure J satisfying

J2 = −I, g(JX, JY ) = g(X, Y ),

for any vector �elds X and Y tangent to M , where I stands for the identity trans-

formation of tangent bundle TM . Then for any vector �elds X and Y , the tensor

Ω(X, Y ) = g(X, JY ), (3.1)

de�nes the fundamental 2-form of M which is non-degenerate and gives an almost

symplectic structure on M .

De�nition 3.1.1. Let (M,J, g) be a 2n-dimensional almost Hermitian manifold.

Then (M,J, g) is a locally conformal almost Kähler manifold if there is an open

covering {Ut}t∈I of M and a family {ft}t∈I of C∞-functions ft : Ut → R such that,

for any t ∈ I, the metric form

gt = exp(−ft)g|Ut
, (3.2)
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is almost Kähler metric.

The metric g|Ut is given by g|Ut = ι∗tg, where ιt : Ut → M de�nes the inclusion.

Likewise, (M,J, g) is globally conformal almost Kähler if there is a C∞-function f :

M −→ R so that the metric

exp(−f)g,

is almost Kähler metric.

Another way to de�ne a locally conformal almost Kähler manifolds is to mimic

the approach to locally conformal symplectic manifolds [21]. In symplectic viewpoint,

a locally conformal symplectic manifold is a C∞ manifoldM which has an open cover

{Ut}t∈I and a family of C∞ functions ft : Ut → R such that the fundamental mental

form Ωt = exp(ft)Ω|Ut is symplectic, for any t ∈ I [25]. Hence one can easily deduce

that a locally conformal almost Kähler manifold is a locally conformal symplectic

manifold that admits an almost Hermitian structure.

Let Ωt be the 2-form associated with (J, gt). Then (3.2) leads, for any vector �elds

X and Y on M

Ωt(X, Y ) = gt(X, JY )

= exp(−ft)g(X, JY )

= exp(−ft)Ω(X, Y ). (3.3)

Another equivalent way to characterize the locally conformal almost Kähler manifolds

is the one established by H.C. Lee [12]. Lee noticed that on a locally conformal

symplectic manifold, the 1-forms dft �ts together into a globally de�ned 1-form ω.

For locally conformal almost Kähler manifolds, the Lee form ω is given by

ω =
1

n− 1
(δΩ) ◦ J, (3.4)

where δ denotes the the formal adjoint of exterior di�erentiation operator d with

respect to g [21].

The existence of a Lee form was de�ned by H.C. Lee [12], hence the name Lee

form.

The Lee form is important because it characterizes locally conformal almost Käh-

ler manifolds. To be more speci�c, we give the following theorem:

Theorem 3.1.1. [4] The almost Hermitian manifold (M,J, g) is a locally conformal

almost Kähler manifold if and only if there exists a globally de�ned 1-form ω such

that

dΩ = ω ∧ Ω, dω = 0. (3.5)
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Proof. Let (M,J, g) be a locally conformal almost Kähler manifold. Then equation

(3.2) holds. In fact, since gt(X, JY ) = Ωt(X, Y ) and Ωt is symplectic on each open

set Ut of M , we have

0 = dΩt = exp(−ft)dft ∧ Ω + exp(−ft)dΩ,

so that dΩ = dft ∧ Ω on Ut. Now on the overlaps Utr = Ut ∩ Ur, we have

dft ∧ Ω = dfr ∧ Ω.

Therefore,

(dft − dfr) ∧ Ω = 0,

and since Ω is nondegenerate we have that dft = dfr on Utr. Hence the local 1-forms

dft glue up to a globally de�ned 1-form ω on M . That is, ω satis�es the exactness

property ω|Ut = dft.

Conversely, if let ω be a closed satisfying (3.5). Then the Poincaré lemma [11]

asserts that there is an open cover {Ut}t∈I and smooth real functions (ft : Ut → R)t∈I
such that for each t ∈ I, we have ω|Ut = dft. Since dΩ = ω ∧ Ω, the restriction

dΩ = dft ∧ Ω on each Ut gives

dΩt = exp(−ft){−dft ∧ Ω + dΩ} = 0.

Thus d(exp(−ft)Ω) = 0. Hence (M,J, g) is a locally conformal almost Kähler mani-

fold.

Example 3.1.1. We consider the 4-dimensional manifold

M4 = {p ∈ R4|x1 6= 0, x2 > 0},

where p = (x1, x2, y1, y2) are the standard coordinates in R4. The vector �elds,

Xi = x2
∂

∂xi
, Yi =

1

x32

∂

∂yi
, for i = 1, 2,

are linearly independent at each point of M . Let g be the Riemannian metric on M

de�ned by g(Xi, Xj) = g(Yi, Yj) = δij, where δij is the Kronecker symbol, g(Xi, Yj) =

0. That is, the form of the metric becomes

g =
1

x22
(dx21 + dx22) + x62(dy

2
1 + dy22).

Let J be the (1, 1)-tensor �eld de�ned by, JX1 = Y1, JX2 = −Y2, JY2 = X2,

JY1 = −X1. Thus, (J, g) de�nes an almost Hermitian structure on M4. The non-zero

component of the fundamental 2-form J is

Ω(
∂

∂x1
,
∂

∂y1
) = − 1

x22
and Ω(

∂

∂x2
,
∂

∂y2
) =

1

x22
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Geometric properties of locally conformal almost Kähler manifolds 13

and we have

Ω =
1

x22
{−dx1 ∧ dy1 + dx2 ∧ dy2} .

Its di�erential gives

dΩ =
2

x32
dx1 ∧ dy1 ∧ dx2.

By letting

ω = − 1

x2
dx2,

we have,

dΩ = 2ω ∧ Ω.

It is easy to see that dω = 0 and the dual vector �eld B is given by

B = −X2.

Let us consider the open neighborhood U of M given by U = {p ∈M4|x2 > 0}, and
there exists a di�erentiable function f on U such that ω = d f , where f = − ln(x2). By

the characterization given in Theorem 3.1.1 above-mentioned, (M4, J, g) is a locally

conformal almost Kähler manifold.

Also, the Lee form ω analogous to g has a metrically corresponding vector �eld

B = ω] called the Lee vector �eld, where ] denotes the operation of lifting indices by

a metric g. The Lee vector �eld is de�ned by g(B,X) = ω(X) and locally by

B =
1

n− 1
J(

n∑
j=1

((∇Ej
J)Ej) + (∇JEj

)JEj),

where {Ej, JEj}j∈{1,...n} denotes the local orthonormal J-frame.

Remark 3.1.1. The existence of the Lee form ω such that equation (3.5) holds

implies that dω = 0 for n ≥ 3 . However, this is true except on complex surfaces, i.e.

for n = 2, the relation (3.5) holds true but the Lee form is not generally closed [24]. If

we consider n = 1, then ω = 0 and (M,J, g) is always an almost Hermitian manifold.

Now we give another typical example of a locally conformal almost Kähler mani-

fold.

Example 3.1.2. Let Ñ be an almost Kähler manifold whose corresponding 2- form Θ

is exact, i.e Θ = dλ where λ is a 1-form on Ñ . Next, denote by M̃ a locally conformal

symplectic manifold. Then the 2-form Φ of M̃ sati�es dΦ = ω ∧ Φ , where dω = 0

and ω is its Lee form. Let N = Ñ × M̃ be the Cartesian product of both manifolds.

We de�ne a 2-form Ω on N by

Ω = dλ+ Φ + λ ∧ ω. (3.6)
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It was proven in [17] that Ω is non-degenerate. Taking the exterior derivative in (3.6),

we get

dΩ = d(dλ) + dΦ + dλ ∧ ω − λ ∧ dω
= ω ∧ Φ + dλ ∧ ω
= ω ∧ (dλ+ Φ + λ ∧ ω)

= ω ∧ Ω.

Hence by Theorem 3.1.1, N is a locally conformal almost Kähler manifold.

Next, wish to study the relationship of the Levi-Civita connections induced by

the locally conformal Kahler metric gt and g. Hence we start by the following results

due to Sorin and Ornea [4].

Theorem 3.1.2. [4] The Levi-Civita connection ∇t of the almost Kähler metric gt
on M satis�es

∇t
XY = ∇XY −

1

2

(
ω(X)Y + ω(Y )X − g(X, Y )B

)
, (3.7)

for all X, Y ∈ TM , where ∇ is the Levi-Civita connection with respect to g.

Proof. SupposeM is a C∞ manifold and let gt = exp(−ft)g be two conformally related

metrics onM . Since any two connections di�er by tensor, the Levi-Civita connections

∇t and ∇ of conformally related Riemannian metrics gt and g, respectively, satis�es

∇t
XY = ∇XY + αXY, (3.8)

for any vector �elds X and Y on M . Next, we compute

gt(∇t
XY, Z) = exp(−ft)g(∇t

XY, Z)

= exp(−ft)(∇XY + αXY, Z)

= exp(−ft){g(∇XY, Z) + g(αXY, Z)}. (3.9)

Let us consider the Koszul formula [11] given by

2g(∇XY, Z) = Xg(Z, Y ) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]). (3.10)

Now for the Levi-Civita connection ∇t, induced by the metric gt, we can write the

Koszul formula as

2 exp(−ft)g(∇t
XY, Z) = X(exp(−ft)g(Z, Y )) + Y (exp(−ft)g(Z,X))

− Z(exp(−ft)g(X, Y ))− exp(−ft)g(X, [Y, Z])

+ exp(−ft)g(Y, [Z,X]) + exp(−ft)g(Z, [X, Y ]). (3.11)
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Next, using the product rule, we evaluate the derivatives

X(exp(−ft)) = − exp(−ft)X(f), Y (exp(−ft)) = − exp(−ft)Y (f)

and

Z(exp(−ft)) = − exp(−ft)Z(f).

Thus

2 exp(−ft)g(∇t
XY, Z) = exp(−ft)Xg(Z, Y )) + exp(−ft)Y g(Z,X))

− (exp(−ft)Zg(X, Y ))− exp(−ft)g(Z, Y )X(f)

− exp(−ft)g(Z,X)Y (f) + exp(−ft)g(X, Y )Z(f)

− exp(−ft)g(X, [Y, Z]) + exp(−ft)g(Y, [Z,X])

+ exp(−ft)g(Z, [X, Y ]). (3.12)

Now we substitute (3.12) into (3.9), we get

2 exp(−ft){g(∇XY, Z) + g(αXY, Z)} = exp(−ft)Xg(Z, Y )) + exp(−ft)Y g(Z,X))

− (exp(−ft)Zg(X, Y ))− exp(−ft)g(Z, Y )X(f)

− exp(−ft)g(Z,X)Y (f) + exp(−ft)g(X, Y )Z(f)

− exp(−ft)g(X, [Y, Z]) + exp(−ft)g(Y, [Z,X])

+ exp(−ft)g(Z, [X, Y ]). (3.13)

Furthermore, we divide by exp(−ft) since it is a strictly positive function, to get

2(g(∇XY, Z) + g(αXY, Z)) = Xg(Z, Y ) + Y g(Z,X)

− Zg(X, Y )− g(Z, Y )X(f)

− g(Z,X)Y (ft) + g(X, Y )Z(ft)

− g(X, [Y, Z]) + g(Y, [Z,X])

+ g(Z, [X, Y ]). (3.14)

Now using the Koszul formula again, we have

2(g(∇XY, Z) + g(αXY, Z)) = −g(Z, Y )X(ft)− g(Z,X)Y (f) + g(X, Y )Z(ft)

+ 2g(∇XY, Z).

Now we shall transpose the term containing ∇XY and use the symmetric property

of g to get

2g(αXY, Z)) = −g(Y, Z)X(ft)− g(X,Z)Y (ft) + g(X, Y )Z(ft),
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which implies

2g(αXY, Z)) = −g(X(ft)Y + Y (ft)X,Z) + g(X, Y )Z(ft).

However, we know by Theorem 3.1.1 that the Lee form ω is closed, hence exact on

Ut, i.e. dft = ω. As a result, we shall use the de�nition of a gradient 2.1.5 to write

X(ft) = dft(X) = g(ω], X) . Using this information in terms of a vector �eld Z, we

get

2g(αXY, Z)) = −g(X(ft)Y + Y (ft)X,Z) + g(X, Y )g(ω], Z).

Since g is non-degenerate, we get a representation of αXY at which

αXY = −1

2

(
ω(X)Y + ω(Y )X − g(X, Y )ω]

)
. (3.15)

Finally, substituting (3.15) in (3.8) and using the fact that B = ω], we get

∇t
XY = ∇XY −

1

2

(
ω(X)Y + ω(Y )X − g(X, Y )B

)
, (3.16)

as required.

The connection∇t de�ned by Theorem 3.1.2 is globally de�ned. In fact, S. Dragomir

and L. Ornea [4] proved that the Levi-Civita connections ∇t of the local almost Käh-

ler metrics {gt}t∈I glue up to a globally de�ned torsion-free linear connection ∇b on

M given by

∇b
XY = ∇XY −

1

2

(
ω(X)Y + ω(Y )X − g(X, Y )B

)
. (3.17)

Moreover, ∇b satis�es

∇bg = ω ⊗ g. (3.18)

Indeed, for any vector �elds X, Y and Z on Ut, we have

(∇b
Xg)(Y, Z) = Xg(Y, Z)− g(∇b

XY, Z)− g(Y,∇b
XZ) (3.19)

= X(exp(ft)gt(Y, Z))− exp(ft)gt(∇b
XY, Z)− exp(ft)gt(Y,∇b

X , Z)

= X(ft) exp(ft)gt(Y, Z) + exp(ft)Xgt(Y, Z)− exp(ft)g(∇b
XY, Z)

− exp(ft)gt(Y,∇b
XZ)

= X(ft) exp(ft)gt(Y, Z) + exp(ft)
{
Xgt(Y, Z)− gt(∇b

XY, Z)

− gt(∇b
XY, Z).

}
However,

Xgt(Y, Z)− gt(∇b
XY, Z)− gt(∇b

XY, Z) = 0.

Thus, we have

(∇b
Xg)(Y, Z) = X(ft) exp(ft)gt(Y, Z).
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Finally, since X(ft) = dft(X) and g = exp(ft)gt(Y, Z), we have

(∇b
Xg)(Y, Z) = dft(X)g(Y, Z).

Moreover, we know form Theorem 3.1.1 that dft = ω. Hence we conclude

(∇b
Xg)(Y, Z) = ω(X)g(Y, Z).

That is

∇bg = ω ⊗ g.

De�nition 3.1.2. The globally de�ned torsion-free linear connection ∇b given in

(3.17) is called the Weyl connection.

Remark 3.1.2. The Lee form ω of a Weyl connection ∇b induced by exp(−ft)g
measures the di�erence between the Weyl connection and the Levi-Civita connection.

3.2 Connections on a locally conformal almost Käh-

ler manifold

If the almost complex structure J is parallel with respect to the connection ∇b, i.e.,

∇bJ = 0, then (M,J, g) is a locally conformal Kähler manifold [4]. In the case of

locally conformal almost Kähler manifolds, we generalize the results in [4] in the

following way.

Theorem 3.2.1. The almost Hermitian manifold (M,J, g) is locally conformal al-

most Kähler if and only if

(∇b
XJ)Y = (∇XJ)Y +

1

2

{
(ω◦J)(Y )X−ω(Y )JX+g(X, Y )JB−Ω(X, Y )B

}
, (3.20)

for any vector �eld X, Y tangent to M .

Proof. We shall �rst take the covariant derivative of JY with respect to the linear

connection ∇X which yields

(∇XJ)Y = ∇X(JY )− J(∇XY ), (3.21)

which is also true for ∇t
X because it is also a linear connection. Now we use (3.7)

in the above equation to get

(∇b
XJ)Y = ∇X(JY )

− 1

2
ω(JY )X +

1

2
g(X, JY )B − J(∇XY ) +

1

2
ω(Y )JX − 1

2
g(X, Y )JB

= ∇X(JY )− J(∇XY )

− 1

2
ω(JY )X +

1

2
g(X, JY )B +

1

2
ω(Y )JX − 1

2
g(X, Y )JB,
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which by using (3.21) again simpli�es to

(∇b
XJ)Y = (∇XJ)Y +

1

2

{
(ω ◦ J)(Y )X − ω(Y )JX + g(X, Y )JB − Ω(X, Y )B

}
,

which completes the proof.

Next, we consider the representation of the the covariant derivative∇ with respect

to the metric g of a locally conformal almost Kähler manifold. S. Kobayashi and K.

Nomizu [11] proved that in an almost Hermitian manifold, we have

g((∇XJ)Y, Z) = 3dΩ(X, JY, JZ)− 3dΩ(X, Y, Z) + g(N(Y, Z), JX).

In the case of locally conformal almost Kähler manifold, we have the following:

Theorem 3.2.2. Let (M,J, g) be a locally conformal almost Kähler manifold. Then

g((∇XJ)Y, Z) =
1

2
Ω(N(Y, Z), X),

for all X, Y tangent to M , where N and Ω denotes the Nijenhuis tensor and the

non-degenarate 2-form, respectively.

Proof. We recall from (2.1) that the Nijenhius tensor of an almost Hermitian manifold

is de�ned by

N(Y, Z) = [JX, JY ]− [X, Y ]− J [JX, Y ]− J [X, JY ],

for all X, Y ∈ TM . Also, by S. Kobayashi and K. Nomizu [11], the di�erential of

a 2-form Ω on M is given by

3dΩ(X, Y, Z) = XΩ(Y, Z) + Y Ω(Z,X) + ZΩ(X, Y )

− Ω([X, Y ], Z)− Ω([Z,X], Y )− Ω([Y, Z], X). (3.22)

Now if we replace Y by JY and Z by JZ in Equation (3.22), we get

3dΩ(X, JY, JZ) = XΩ(JY, JZ) + JY Ω(JZ,X) + JZΩ(X, JY )

− Ω([X, JY ], JZ)− Ω([JZ,X], JY )− Ω([JY, JZ], X). (3.23)

Next, we use (3.21) to compute

g((∇XJ)Y, Z) = g(∇X(JY )− J(∇XY ), Z)

= g(∇XJY, Z)− g(J(∇XY ), Z)

= g(∇XJY, Z) + g(∇XY, JZ). (3.24)
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We now multiply by 2 on both sides of (3.24) and using (3.4) together with the Koszul

formula (3.10), this yields

2g((∇XJ)Y, Z) = 2g(∇XJY, Z) + 2g(∇XY, JZ)

= X(g(JY, Z)) + JY g(Z,X)− Zg(X, JY )

+ g([X, JY ], Z) + g([Z,X], JY ) + g([JY, Z], X)

+X(g(Y, JZ)) + Y g(JZ,X)− JZg(X, Y )

+ g([X, Y ], JZ) + g([JZ,X], Y ) + g([Y, JZ], X)

= −X(Ω(Y, Z))− JY Ω(JZ,X)− ZΩ(X, Y )

− Ω([X, JY ], JZ) + Ω([Z,X], Y ) + g(J [JY, Z], JX)

+XΩ(JY, JZ)− Y Ω(Z,X)− JZΩ(JX, Y )

+ Ω([X, Y ], Z)− Ω([JZ,X], JY )− g(J [Y, JZ], JX)

+
{

Ω([Y, Z], X)− g([Y, Z], JX)
}

−
{

Ω([JY, JZ,X)− g([JY, JZ], JX)
}

= X(Ω(JY, JZ))− JY Ω(JZ,X)− JZΩ(JX, Y )

− Ω([X, JY ], JZ)− Ω([JZ,X], JY )− Ω([JY, JZ], X)

−XΩ(Y, Z)− Y Ω(Z,X)− ZΩ(X, Y )

+ Ω([X, Y ], Z) + Ω([Z,X], Y ) + Ω([Y, Z], X) + g([JY, JZ, JX)

− g([Y, Z], JX)− g(J [JY, Z], JX)− g(J [Y, JZ], JX)

= 3dΩ(X, JY, JZ)− 3dΩ(X, Y, Z) + g(N(Y, Z), JX).

Hence

g((∇XJ)Y, Z) =
3

2
dΩ(X, JY, JZ)− 3

2
dΩ(X, Y, Z) +

1

2
g(N(Y, Z), JX). (3.25)

Now since (M,J, g) is locally conformal Kähler, there exist a closed 1-form ω such

that dΩ = ω ∧ Ω, where (ω ∧ Ω)(X, Y, Z) =
⊕̂

X,Y,Zω(X)Ω(Y, Z). Therefore (3.25)

becomes

g((∇XJ)Y, Z) =
3

2

{
(ω ∧ Ω)(X, JY, JZ)− (ω ∧ Ω)(X, Y, Z)

}
+

1

2
g(N(Y, Z), JX)

=
3

2

⊕̂
X,Y,Z

{
ω(X)Ω(JY.JZ)− ω(X)Ω(Y, Z)

}
+

1

2
g(N(Y, Z), JX).

Moreover, by the almost Hermitian property of the metric g de�ned in Equation (2.4),

the term ω(X)Ω(JY.JZ)− ω(X)Ω(Y, Z) will vanish. Hence,

g((∇XJ)Y, Z) =
1

2
g(N(Y, Z), JX) =

1

2
Ω(N(Y, Z), X),

as required.
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Next, we consider the underlying geometric properties with regard to local almost

Kähler metric gt in relation to Theorem 3.2.2 on each Ut. To achieve this, we shall

�rst understand the relation between the Nijenhius tensors N t and N corresponding

to gt and g, respectively.

Proposition 3.2.1. Let (M,J, g) be a locally conformal almost Kähler manifold.

Then the Nijehnuis tensor N t and N corresponding to gt and g, respectively, satis�es

N t(X, Y ) = N(X, Y ). (3.26)

Proof. We �rst note that since Jt = J , we have Ωt(X, Y ) = gt(X, JtY ) = gt(X, JY ).

Now using the torsion free property of ∇t we have

[X, Y ]t = ∇t
XY −∇t

YX,

which implies that

[JX, JY ]t = ∇t
JXJY −∇t

JY JX,

J [JX, Y ]t = J(∇t
JXY −∇t

Y JX)

= J∇t
JXY − J∇t

JYX

and

J [X, JY ]t = J∇t
XJY −∇t

JYX

= J∇t
XJY − J∇t

JYX.

Therefore, the Nijenhuis tensor on each Ut is given by

N t(X, Y ) = [JX, JY ]t − J [JX, Y ]t − J [X, JY ]t − [X, Y ]t.

= ∇t
JXJY −∇t

JY JX − (J∇t
JXY − J∇t

Y JX)

− (J∇t
XJY − J∇t

JYX)− (∇t
XY −∇t

YX)

= (∇t
XJ)(JY ) + (∇t

JXJ)Y − (∇t
Y J)(JX)− (∇t

JY J)X.

From Equation of JY with respect to ∇t, we get

(∇t
XJ)Y = ∇t

X(JY )− J(∇t
XY ). (3.27)

On the other hand, we know from Equation (3.21) that

(∇XJ)Y = ∇X(JY )− J(∇XY ). (3.28)

Now if we replace Y by JY in the in the above equation we get

(∇t
XJ)(JY ) = −∇XY − J(∇t

XJY ). (3.29)
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Also, we replace X by JX in (3.28), we get

(∇JXJ)Y = ∇JX(JY )− J(∇JXY ). (3.30)

Now substituting (3.7) into (3.27), we obtain

(∇t
XJ)Y = ∇X(JY )− 1

2
ω(X)JY − 1

2
ω(JY )X +

1

2
g(X, JY )B

− J(∇XY ) +
1

2
ω(X)JY +

1

2
ω(Y )JX − 1

2
g(X, Y )JB.

Thus, one has

(∇t
XJ)Y = ∇X(JY )− 1

2
ω(JY )X +

1

2
g(X, JY )B − J(∇XY ) +

1

2
ω(Y )JX

− 1

2
g(X, Y )JB. (3.31)

Let us replace Y by JY in (3.31) to get

(∇t
XJ)(JY ) = −∇XY +

1

2
ω(Y )X − 1

2
g(X, Y )B − J(∇X(JY )) +

1

2
ω(JY )JX

− 1

2
g(X, JY )JB (3.32)

and replacing X by JX on (3.31) we get

(∇t
JXJ)Y = ∇JX(JY )− 1

2
ω(JY )JX +

1

2
g(X, Y )B − J(∇JX)Y − 1

2
ω(Y )X

− 1

2
g(JX, Y )JB. (3.33)

We then add (3.32) and (3.33) to obtain

(∇t
XJ)(JY ) + (∇t

JXJ)Y = −∇XY +
1

2
ω(Y )X − 1

2
g(X, Y )B − J(∇X(JY ))

+
1

2
ω(JY )JX − 1

2
g(X, JY )JB +∇JX(JY )

− 1

2
ω(JY )JX +

1

2
g(X, Y )B − J(∇JX)Y

− 1

2
ω(Y )X − 1

2
g(JX, Y )JB,

which gives

(∇t
XJ)(JY ) + (∇t

JXJ)Y = −∇XY − J(∇X(JY )) +∇JX(JY )− J(∇JX)Y. (3.34)

Therefore, by using Equation (3.29) and (3.30) we have

(∇t
XJ)(JY ) + (∇t

JXJ)Y = (∇XJ)(JY ) + (∇JXJ)Y,
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which implies

N t(X, Y ) = (∇XJ)(JY ) + (∇JX)Y − (∇Y J)(JX)− (∇JY J)X.

Hence,

N t(X, Y ) = N(X, Y ),

which completes the proof.

Therefore, in relation to Theorem 3.2.2, with regards to gt, we have

Corollary 3.2.1. Let (M,J, g) be a locally conformal almost Kähler manifold, on

each Ut, we have

gt((∇t
XJ)Y, Z) =

1

2
Ωt(N

t(Y, Z), X).

Proof. Using (3.24) for ∇t, we have

2gt((∇t
XJ)Y, Z) = 2gt(∇t

XJY, Z) + 2gt(∇t
XY, JZ).

In particular, we compute

2gt((∇t
XJ)Y, Z) = 2 exp(−ft)

{
g(∇t

XJY, Z) + g(∇t
XY, JZ)

}
. (3.35)

That is,

2gt((∇t
XJ)Y, Z) = exp(−ft)

{
Xg(JY, Z) + JY g(Z,X)− Zg(X, JY )

+ g([X, JY ], Z) + g([Z,X], JY ) + g([JY, Z], X)

+Xg(Y, JZ) + Y g(JZ,X)− JZg(X, Y )

+ g([X, Y ], JZ) + g([JZ,X], Y ) + g([Y, JZ], X)
}

= exp(−ft)
{
−XΩ(Y, Z)− JY Ω(JZ,X)− ZΩ(X, Y )

− Ω([X, JY ], JZ) + Ω([Z,X], Y ) + g(J [JY, Z], JX)

+XΩ(JY, JZ)− Y Ω(Z,X)− JZΩ(JX, Y )

+ Ω([X, Y ], Z)− Ω([JZ,X], JY )− g(J [Y, JZ], JX)

+
(

Ω([Y, Z], X)− g([Y, Z], JX)
)

−
(

Ω([JY, JZ,X)− g([JY, JZ], JX)
)}

= exp(−ft)
{
XΩ(JY, JZ)− JY Ω(JZ,X)− JZΩ(JX, Y )

− Ω([X, JY ], JZ)− Ω([JZ,X], JY )− Ω([JY, JZ], X)

−XΩ(Y, Z)− Y Ω(Z,X)− ZΩ(X, Y )

+ Ω([X, Y ], Z) + Ω([Z,X], Y ) + Ω([Y, Z], X) + g([JY, JZ, JX)
}

− g([Y, Z], JX)− g(J [JY, Z], JX)− g(J [Y, JZ], JX)

= 3dΩt(X, JY, JZ)− 3dΩt(X, Y, Z) + gt(N
t(Y, Z), JX).
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Now since (M,J, g) is a locally conformal almost Kähler manifold, dΩt = 0. Hence

gt((∇t
XJ)Y, Z) = 1

2
Ωt(N

t(Y, Z), JX).

Remark 3.2.1. Proposition 3.2.1 and Corollary 3.2.1 implies that gt((∇t
XJ)Y, Z) =

1
2
Ωt(N(Y, Z), JX).

The following was proved by Vaisman [21]. In this work, we prove that the result

holds on Ut as well.

Theorem 3.2.3. Let (M,J, g) be an almost Hermitian manifold. Then (M,J, g) is

a locally conformal almost Kähler manifold if and only if the Nijenhuis tensor N of

M satis�es ⊕̂
XY Z

Ωt(N
t(Y, Z), X) = 0, (3.36)

on each Ut, where
⊕̂

denote the cyclic sum over X, Y and Z.

Proof. To prove that the imposed assertion is true, we use Corollary 3.2.1 to compute⊕̂
XY Z

Ωt(N
t(Y, Z), X) = Ωt(N

t(Y, Z), X) + Ωt(N
t(Z,X), Y ) + Ωt(N

t(X, Y ), Z)

= gt(N
t(Y, Z), JX) + gt(N

t(Z,X), JY ) + gt(N
t(X, Y ), JZ)

= gt((∇t
XJ)Y, Z) + gt((∇t

Y J)Z,X) + gt((∇t
XJ)Y, Z).

Since gt is almost Kähler, Equation (2.7) implies that

gt((∇t
XJ)Y, Z) + gt((∇t

Y J)Z,X) + gt((∇t
XJ)Y, Z) = 0.

Hence, ⊕̂
XY Z

Ωt(N
t(Y, Z), X) = 0,

as required.

Remark 3.2.2. Theorem 3.2.3 and Proposition 3.2.1 implies that⊕̂
XY Z

Ωt(N(Y, Z), X) = 0.
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Chapter Four

Curvature criteria for locally

conformal almost Kähler

manifolds

This chapter is devoted to the curvature properties of locally conformal almost Kähler

manifolds. We give a characterization of locally conformal almost Kähler manifolds

in terms of the Ricci curvatures τ t and τ together with the corresponding Ricci

∗-curvatures. Using a (0, 2) tensor P which exist on every locally conformal almost

Kähler manifold with curvature R (see [19], for more details), we establish a condition

for a locally conformal almost Kähler manifold to be an almost Kähler manifold. On

the last section, we will consider the canonical foliations of locally conformal almost

Kähler manifolds.

4.1 Curvature relations of locally conformal almost

Kähler metrics

In general, the curvature is used to determine the curve direction changes on a suf-

�ciently small distance from one point to another on any curve. However, for higher

dimensions (greater than 2), it is not easy to determine a single number at any given

point. As a consequence, Riemann invented a way to de�ne the curvature in higher

dimensions.

Let (M,J, g) be a 2n-dimensional almost Hermitian manifold. Here we keep the

formalism of local transformations and others formulas de�ned in the previous chap-

ter.

For the Riemann curvature R of a metric g, we use the following convention

R(X, Y, Z,W ) = g(R(X, Y )Z,W ), (4.1)

where

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (4.2)
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for any vector �eld X, Y and Z on M .

Let {Ei}1≤i≤2n be the orthonormal basis with respect to g. The Ricci curvature

tensor ρ and the scalar curvature τ are given by

ρ(X, Y ) =
2n∑
i=1

R(Ei, X, Y, Ei) and τ =
2n∑
i=1

ρ(Ei, Ei). (4.3)

Now we consider the Ricci ∗-curvature tensor ρ∗ and the scalar ∗-curvature τ ∗ de�ned
by

ρ∗(X, Y ) =
2n∑
i=1

R(Ei, X, JY, JEi) and τ ∗ =
2n∑
i=1

ρ∗(Ei, Ei). (4.4)

Similarly, the curvatures corresponding to the metric gt will be denoted by Rt, ρt, τ t,

ρt∗ and τ t∗, respectively.

Lemma 4.1.1. Let (M,J, g) be a locally conformal almost Kähler manifold. Then

the curvature tensors Rt and R with respect to the metrics gt and g, respectively, are

related as

Rt(X, Y )Z = R(X, Y )Z +
1

2

{
(∇Y ω)Z +

1

2
ω(Y )ω(Z)

}
X

− 1

2

{
(∇Xω)Z +

1

2
ω(X)ω(Z)

}
Y +

1

2
g(Y, Z)

{
∇XB +

1

2
ω(X)B

}
− 1

2
g(X,Z)

{
∇YB +

1

2
ω(Y )B

}
− ||B||

2

4
{g(Y, Z)X − g(X,Z)Y } , (4.5)

where ||B||2 = g(B,B).

Proof. Using the convention in (4.2) for the curvature tensors Rt and R and the

relation (3.7), and for any vector �elds X, Y and Z on M , the expressions

∇t
X∇t

YZ = ∇X∇YZ −
1

2
ω(X)∇YZ −

1

2
ω(∇YZ) +

1

2
g(X,∇YZ)B

− 1

2
X(ω(Y ))Z − 1

2
ω(Y )∇XZ +

1

4
ω(X)ω(Y )Z +

1

4
ω(Y )ω(Z)X

− 1

4
ω(Y )g(X,Z)B − 1

2
X(ω(Z))Y − 1

2
ω(Z)∇XY +

1

4
ω(X)ω(Z)Y

+
1

4
ω(Y )ω(Z)X − 1

4
ω(Z)g(X, Y )B +

1

2
X(g(Y, Z))B +

1

2
g(Y, Z)∇XB

− 1

4
||B||2g(Y, Z)X, (4.6)
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Also,

∇t
Y∇t

XZ = ∇Y∇XZ −
1

2
ω(Y )∇XZ −

1

2
ω(∇XZ) +

1

2
g(Y,∇XZ)B

− 1

2
Y (ω(X))Z − 1

2
ω(X)∇YZ +

1

4
ω(Y )ω(X)Z +

1

4
ω(X)ω(Z)Y

− 1

4
ω(X)g(Y, Z)B − 1

2
Y (ω(Z))X − 1

2
ω(Z)∇YX +

1

4
ω(Y )ω(Z)X

+
1

4
ω(X)ω(Z)Y − 1

4
ω(Z)g(X, Y )B +

1

2
Y (g(X,Z))B +

1

2
g(X,Z)∇YB

− 1

4
||B||2g(X,Z)Y. (4.7)

It is worth noting that

∇t
[X,Y ]Z = ∇[X,Y ]Z −

1

2
ω([X, Y ])Z − 1

2
ω(Z)[X, Y ] +

1

2
g([X, Y ], Z)B. (4.8)

Putting the pieces (4.6), (4.7) and (4.8) together, one obtains

Rt(X, Y )Z = R(X, Y )Z +
1

2

{
(∇Y ω)Z +

1

2
ω(Y )ω(Z)

}
X

− 1

2

{
(∇Xω)Z +

1

2
ω(X)ω(Z)

}
Y +

1

2
g(Y, Z)

{
∇XB +

1

2
ω(X)B

}
− 1

2
g(X,Z)

{
∇YB +

1

2
ω(Y )B

}
− ||B||

2

4
{g(Y, Z)X − g(X,Z)Y } ,

(4.9)

which completes the proof.

Next, from the above Lemma, we de�ne (0, 2)-tensor �eld P by

P (X, Y ) = (∇Xω)Y +
1

2
ω(X)ω(Y )− 1

4
||B||2g(X, Y ), (4.10)

and this trace is given by

traceP = divB − 1

2
(1− n)||B||2. (4.11)

Lemma 4.1.2. The (0, 2)-tensor �eld P is symmetric.

Proof. For any vector �elds X and Y on M and since ω is closed, we have

P (X, Y ) = (∇Y ω)X +
1

2
ω(X)ω(Y )− 1

4
||B||2g(X, Y )

= Y (ω(X))− ω(∇YX) +
1

2
ω(X)ω(Y )− 1

4
||B||2g(X, Y )

= Y (ω(X))− ω([Y,X])− ω(∇XY ) +
1

2
ω(X)ω(Y )− 1

4
||B||2g(X, Y )

= (∇Xω)Y +
1

2
ω(X)ω(Y )− 1

4
||B||2g(X, Y ),

which completes the proof.
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The Lie derivative g with respect to the vector �eld B gives, for any vector �elds

X and Y ,

(LBg)(X, Y ) = X(g(B, Y ))− g([B,X], Y )− g(X, [B, Y ])

= (∇Xω)Y + (∇Y ω)X

= 2(∇Xω)Y. (4.12)

The last equality of (4.12) follows from the fact that the smooth 1-form ω is closed.

De�nition 4.1.1. Let ω be a Lee form such that ∇ω = 0, then ω is said to be parallel

with respect to ∇ or it is ∇-parallel.

Lemma 4.1.3. The dual vector �eld B of ω preserves the metric g if and only if the

Lee form ω is ∇-parallel.

Proof. Suppose that the vector �eld B preserves the metric g. Then by Equation

(4.12), we have (LBg)(X, Y ) = 2(∇Xω)Y = 0. Hence, by De�nition 4.1.1 the Lee

form is ∇-parallel. Conversely, if the Lee form ω is ∇-parallel, then by Equation

(4.12), we have 2(∇Xω)Y = (LBg)(X, Y ) = 0, as required.

The Riemannian curvatures are related by, for any X, Y , Z and W on M ,

exp(ft)R
t(X, Y, Z,W ) = R(X, Y, Z,W ) +

1

2
{g(X,W )P (Y, Z)− g(Y,W )P (X,Z)}

+
1

2
{g(Y, Z)P (X,W )− g(X,Z)P (Y,W )} . (4.13)

Let {Ei} be the orthonormal basis with respect to g. Then, we have

g(Ei, Ej) =

{
1, if i = j,

0, if i 6= j.

Let Et
i = exp(ft)

1
2Ei, for any i = 1, 2, · · · , 2n. Therefore, we have the following.

Lemma 4.1.4. The frame {Et
i}1≤i≤2n is the orthonormal basis with respect to gt.

The following identities generalize the ones given in [19, p.216].

Lemma 4.1.5. The Ricci curvature tensors ρt and ρ with respect to gt and g, respec-

tively, are related by

ρt(X, Y ) = ρ(X, Y ) + (n− 1)P (X, Y ) +
1

2
g(X, Y ) traceP. (4.14)
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Proof. Using the Lemma 4.1.4 and for any vector �elds X and Y on M , one has

ρt(X, Y ) =
2n∑
i=1

Rt(Et
i , X, Y, E

t
i ) =

2n∑
i=1

exp(ft)R
t(Ei, X, Y, Ei)

=
2n∑
i=1

R(Ei, X, Y, Ei) +
1

2

{
2n∑
i=1

g(Ei, Ei)P (X, Y )−
2n∑
i=1

g(X,Ei)P (Ei, Y )

}

+
1

2

{
2n∑
i=1

g(X, Y )P (Ei, Ei)−
2n∑
i=1

g(Ei, Y )P (X,Ei)

}
= ρ(X, Y ) + (n− 1)P (X, Y ) +

1

2
g(X, Y )traceP,

which completes the proof.

Also, corresponding Ricci ∗-curvatures ρt∗ and ρ∗ are related by

ρt∗(X, Y ) = ρ∗(X, Y ) +
1

2
{P (X, Y ) + P (JX, JY )} . (4.15)

Corollary 4.1.1. The scalar curvatures τ t and τ are related by

exp(−ft)τt = τ + (2n− 1)

{
divB − 1

2
(1− n)||B||2

}
. (4.16)

Proof. Using the Lemma 4.1.4, the scalar curvature τ t, we have

τ t =
2n∑
i=1

ρt(Et
i , E

t
i ) = exp(ft)

2n∑
i=1

ρt(Ei, Ei). (4.17)

Then, applying Equation (4.14) into (4.17), we get

exp(−ft)τ t =
2n∑
i=1

ρt(Ei, Ei)

=
2n∑
i=1

ρ(Ei, Ei) + (n− 1)
2n∑
i=1

P (Ei, Ei) + n traceP

= τ + (2n− 1) traceP

= τ + (2n− 1)

{
divB − 1

2
(1− n)||B||2

}
.

Therefore,

exp(−ft)τ t = τ + (2n− 1)

{
divB − 1

2
(1− n)||B||2

}
,

which completes the proof.
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Now if we consider a relation between the scalar ∗-curvature τ t∗ and τ ∗, we get

the following.

Corollary 4.1.2. The scalar ∗-curvatures τ t∗ and τ ∗ are related by

exp(−ft)τ t∗ = τ ∗ + divB + (n− 1)||B||2. (4.18)

Proof. The scalar ∗-curvature τ t∗ is given by

τ t∗ =
2n∑
i=1

ρt∗(Et
i , E

t
i ) = exp(ft)

2n∑
i=1

ρt∗(Ei, Ei). (4.19)

Now applying the relation (4.15) into (4.19), we compute

exp(−ft)τ t∗ =
2n∑
i=1

ρt∗(Ei, Ei)

=
2n∑
i=1

ρ∗(X, Y ) +
1

2

2n∑
i=1

{P (Ei, Ei) + P (JEi, jEi)}

= τ ∗ + divB + (n− 1)||B||2.

Hence,

exp(−ft)τ t∗ = τ ∗ + divB + (n− 1)||B||2,
as required.

Gray in [6] considered some curvature identities for Hermitian and almost Her-

mitian manifolds. Let L be the class of almost Hermitian manifolds as de�ned in [6].

Then the manifold under consideration is an element of the class L. Now consider as

in [6] the curvature operator Rt of a locally conformal almost Kähler manifold M :

(1) Rt(X, Y, Z,W ) = Rt(X, Y, JZ, JW ),

(2) Rt(X, Y, Z,W )−Rt(JX, JY, Z,W ) = Rt(JX, Y, JZ,W ) +Rt(JX, Y, Z, JW ),

(3) Rt(X, Y, Z,W ) = Rt(JX, JY, JZ, JW ),

for any X, Y , Z and W on M .

The item (1) is called Kähler identity if M is locally conformal Kähler manifold

(see [6] for more details and reference therein).

We will focus, throughout the rest of this thesis, on the item (1). Items (2) and

(3) are considered in a further work whose details are given in [10] (in preparation).

Using further notations as in [6], we denoted by Li the subclass of manifolds whose

curvature operator Rt satis�es identity (i). Here (i) may be either the item (1), (2)

or (3) above. As in [6], it is easy to see that

L1 ⊆ L2 ⊆ L3 ⊆ L.

Therefore we have the following result.
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Lemma 4.1.6. If a locally conformal almost Kähler manifold is in a class L1, then

the equality holds:

τ ∗ − τ = 2(n− 1)traceP. (4.20)

Proof. The proof follows from a straightforward calculation using the fact that, for

any vector �elds X and Y on M , we have

ρt(X, Y ) =
2n∑
i=1

exp(ft)R
t(Ei, X, Y, Ei)

=
2n∑
i=1

exp(ft)R
t(Ei, X, JY, JEi)

= ρ∗t(X, Y ), (4.21)

which leads to

(ρ∗ − ρ)(X, Y ) = (n− 3

2
)P (X, Y ) +

1

2
g(X, Y )traceP − 1

2
P (JX, JY ).

This completes the proof.

The relation (4.21) leads to

τ t =
2n∑
i=1

ρt(Ei, Ei) =
2n∑
i=1

2n∑
j=1

Rt(Ej, Ei, Ei, Ej)

=
2n∑
i=1

2n∑
j=1

Rt(Ej, Ei, JEi, JEj) =
2n∑
i=1

ρt∗(Ei, Ei)

= τ t∗.

Theorem 4.1.1. Let (M,J, g) be a 2n-dimensional compact locally conformal almost

Kähler manifold with n > 1 and contained in L1. If

τ ∗ = τ,

then (M,J, g) is an almost Kähler manifold.

Proof. By Lemma 4.1.6, we have τ ∗ − τ = 2(n − 1)traceP , with traceP = divB −
1
2
(1 − n)||B||2. Taking into account this, integrating the relation (4.20) and using

Green's Theorem, we have

0 =

∫
M

{τ ∗ − τ} = (n− 1)2
∫
M

||B||2.

Hence, under our assumption, we obtain B = 0. Therefore ω = 0 identically on M .

Hence (M.J, g) is an almost Kähler manifold.

As an example for this Theorem, we have compact �at locally almost Kähler

manifolds. For compact �at manifolds have been detailed in [3] and reference therein.
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4.2 Lee form and canonical foliations

As mentioned in the previous Chapter, an almost Hermitian manifold (M,J, g) with

almost Kähler form Ω satisfying dΩ = ω∧Ω and dω = 0 is a locally conformal almost

Kähler manifold.

Now let (M,J, g) be a locally conformal almost Kähler manifold and assume that

the Lee form ω is never vanishing on M . Then ω = 0 de�nes on M an integrable

distribution, and hence a foliation F, on M (see [8] for more details and reference

therein).

Let D := kerω be the distribution on M and D⊥ be the distribution spanned the

vector �eld B.Then, we have the following decomposition

TM = D ⊕D⊥, (4.22)

where ⊕ denotes the orthogonal direct sum. By the decomposition (4.22), any X ∈
Γ(TM) is written as

X = QX +Q⊥X, (4.23)

where Q and Q⊥ are the projection morphisms of TM into D and D⊥, respectively.

Here, it is easy to see that Q⊥X = 1
||B||2ω(X)B and

X = QX +
1

||B||2
ω(X)B.

Let F be a foliation on a locally conformal almost Kähler manifold (M,J, g) of codi-

mension 1. The metric g is said to be bundle-like for the foliation F if the induced

metric on the transversal distribution D⊥ is parallel with respect to the intrinsic con-

nection on D⊥. This is true if and only if the Levi-Civita connection ∇ of (M,J, g)

satis�es (see [?] and [20] for more details):

g(∇Q⊥YQX,Q
⊥Z) + g(∇Q⊥ZQX,Q

⊥Y ) = 0, (4.24)

for any X, Y , Z ∈ Γ(TM). If for a given foliation F, the Riemannian metric g on M

is bundle-like for F, then we say that F is a Riemannian foliation on (M,J, g).

Let F⊥ be the orthogonal complementary foliation generated by B. Now we pro-

vide necessary and su�cient conditions for the metric on an locally conformal almost

Kähler manifold to be bundle-like for foliations F and F⊥. Therefore

Theorem 4.2.1. Let (M,J, g) be a locally conformal almost Kähler manifold and let

F be a foliation on M of codimension 1. Then the following assertions are equivalent:

(i) The foliation F is Riemannian.

(ii) The Lee vector �eld B is auto-parallel with respect to ∇, that is,

∇BB = B (ln(||B||))B.
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Proof. For any X, Y , Z ∈ Γ(TM), we have Q⊥Y = 1
||B||2ω(Y )B, Q⊥Z = 1

||B||2ω(Z)B

and the left-hand side of (4.24) gives

g(∇Q⊥YQX,Q
⊥Z) + g(∇Q⊥ZQX,Q

⊥Y ) =
2

||B||2
ω(Y )ω(Z)ω(∇BQX),

for which the equivalence follows.

Let M ′ be a leaf of the distribution D. Since M ′ is a submanifold of M and for

any X, Y ∈ Γ(TM ′), we have

∇XY = ∇′XY + α(X, Y ), (4.25)

∇XB = −ABX +∇′⊥XB, (4.26)

where ∇′ and α are the Levi-Civita connection and the second fundamental form

of M ′, respectively. Here AB is the shape operator with respect to B. On the other

hand, we have g(∇XB,B) = X(ω(B))− g(∇XB,B), hence

g(∇′⊥XB,B) =
1

2
X(ω(B)),

for any X ∈ Γ(TM ′). Therefore, the Weingartem formula (4.26) becomes

∇XB = −ABX +
1

2
X(ω(B))B. (4.27)

Proposition 4.2.1. Let (M,J, g) be a locally conformal almost Kähler manifold.

Then, the mean curvature vector �eld H ′ of the leaves of the integrable distribution

D de�ned in (4.22) is given by

H ′ =
1

2n− 1

(
div|M′B

)
B.

Moreover, these leaves are totally geodesic hypersurfaces of M if and only if the dual

vector �eld B of ω preserves their metrics.

Proof. Let M ′ be a leaf of the integrable distribution D. Using (4.25) and (4.27), the

second fundamental form of M ′ gives

α(X, Y ) = g(ABX, Y )B = g(∇XB, Y )B,

for any X, Y ∈ Γ(TM ′). Fixing a local orthonormal frame {e1, · · · , e2n−1} in TM ′,

one has,

H =
1

2n− 1

2n−1∑
i=1

α(ei, ei) =
1

2n− 1

(
div|M′B

)
B.

The last assertion follows and this completes the proof.
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The cosymplectic version of a such result was found by Massamba and Maloko

Mavambou in [16, Theorem 3.8]. Therefore we have the following results.

Corollary 4.2.1. Let (M,J, g) be a locally conformal almost Kähler manifold. Then,

the leaves M ′ of the distribution D in (4.22) are minimal if and only if the dual vector

�eld B is incompressible along M ′.
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Chapter Five

Conclusion and Perspectives

We have investigated the concept of conformality in almost Kähler structures which

is characterized by a smooth 1-form ω on the underlying manifolds satisfying the

following conditions:

dΩ = 2ω ∧ Ω and dω = 0.

Here Ω stands as the second fundamental 2-form.

We established the relation between the scalar curvatures and τ and τ t, together

with the corresponding scalar ∗curvatures τ ∗ and τ t∗ . We proved that under some con-

ditions the ambiant manifold is part of the class of almost Kähler manifolds. Focusing

on canonical foliations that arise in locally conformal almost Kähler manifolds, we also

proved the geometric con�guration of the Lee vector �eld depends on the bundle-like

condition of the metric for a foliation F. We showed that the leaves of this foliation

are locally conformal almost Kähler hypersurfaces with a mean curvature vector

H ′ =
1

2n− 1

(
div|M′B

)
B.

These leaves are totally geodesic hypersurfaces if and only if the dual vector �eld B of

the Lee form ω preserves their metrics. Moreover they are minimal as a submanifold

immersed in the locally conformal almost Kähler manifolds if and only the dual vector

�eld B is incompressible along the leaves.

The relationship of locally conformal almost Kähler manifolds with other mani-

folds discussed in this work is summarized by the inclusion diagram below.
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Kähler

Locally conformal Kähler

Symplectic

Locally conformal almost Kähler

Locally conformal symplectic

Almost Kähler

One of the principal problems in the geometry of the manifold under consideration

is to classify those admitting some (almost) Kähler metric. Even though we have

obtained the results in terms of curvature properties, it appears that there are a lot

of ways to approach this problem. For instance, in the case of locally conformal Kähler

manifolds, I. Vaisman [23] proved that compact locally conformal Kähler manifolds

which admit some global Kähler metric are globally conformal Kähler. We wish to

test this assertion in the case of locally conformal almost Kähler manifolds and derive

more conditions. Our approach would be to start by studying topological properties

of almost Kähler manifolds.
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