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Abstract 

This research programme assessed the genetic structure and degree of polymorphism of the 

prawn Penaeus indicus (Crustacea: Decapoda) from five populations in the western Indian 

Ocean off South Africa, Mozambique, Tanzania, Madagascar and Oman. Four molecular 

techniques were applied: allozyme electrophoresis, RAPD (Random amplification of 

polymorphic DNA), DNA sequencing of the autosomal locus Pi06 and the mtDNA locus 

Cytochrome oxidase I (COl) which expressed the degree of genetic diversity at different 

molecular levels, within these populations. A total of 25 loci were screened by allozyme 

electrophoresis. The LDH, MDH, LGG, MPI loci showed a low mean number of alleles (<2) 

and population structure (Fst = 0.024). RAPD using 20 different primers revealed a pattern 

with higher diversity and, although within population structuring was high (Analysis of 

Molecular Variance: 97 %), a significant genetic differentiation among Oman, Tanzania and 

South Africa samples was detected (p<0.05). 

Genetic diversity was further tested by sequence polymorphism using the Pi06 locus and the 

COl mtDNA locus. The autosomal locus Pi06 was generated from a banding pattern ofRAPD 

primer OPC-6. The 500 bp insert was then cloned into a bacterial host (E. coli: DH5a 

lacZL\M13 competent cell) and sequenced to ascertain PCR misincorporation artefact and 

allele variation. A specific parameter arbitrarily named private nucleotide index was 

calculated as a frequency of nucleotides belonging to only one population and then compared 

with nucleotide diversity of mtDNA COl sequences results. The level of polymorphism was 

unexpectedly higher in Pi06 than in COl, and the private nucleotide index suggested a 

separation of Tanzania and Madagascar s~ples from the Oman, Mozambique and South 

Africa. Contrary to other research (Baldwin et al., 1998), a low level of polymorphism was 

reported not only at allozyme level but also in the mtDNA sequence data. COl sequences 

from P. indicus analysed by "analysis of molecular variance" showed an F st of 0.082 with no 

significant separation among the populations sampled. These results were then compared with 

26 different samples of Penaeus merguensis, collected from the east and west coast of 

Thailand peninsula. The hypothesis tested, assuming selective neutrality for COl, was that no 

genetic subdivision was expected within ecologically similar species unless different effective 

population sizes and/or historical events affected these species. Sequences of the COl locus in 

P. merguensis revealed a much higher polymorphism and a significant population structuring 
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(Analysis of molecular variance, Fst = 0.27, p< 0.05) within a shorter geographical distance 

(hundreds of km). Mismatch distribution analysis revealed also a different evolutionary 

history between the two species. A strict unimodal distribution characterised East African 

samples of P. indicus whereas several peaks were recorded in the Thailand populations of P. 

merguensis. It is suggested that the low genetic variation among populations of P. indicus 

along the East coast of Africa could have been caused by a strong bottleneck during the last 

Pleistocene glaciations (12 000-10 000 years before present). If the COl locus is selectively 

neutral, the difference in the degree of genetic polymorphism between Thailand and East 

Africa is consistent with a westward migration route of decreasing genetic diversity which has 

its centre of origin in the East Indies triangle (lWP) as proposed by Briggs (1999), or by a 

subsequent migration towards the Indonesian peninsula from a refuge in the Pacific ocean 

(Benzie et ai, 2002). Although high-resolution molecular techniques were involved, shallow 

subdivision among wide geographically separated samples was observed. In the light of these 

results calls for management caution, when issuing harvest quotes in trawling fisheries, 

cannot be ruled out. Furthermore the low level of genetic diversity of P. indicus, in the 

Western Indian Ocean also needs to be taken into consideration in relation to programmes of 

prawn aquaculture along the East Coast of Africa. 
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Chapter one 

Introduction 

This study presents a biochemical and molecular survey of the widespread species Penaeus 

indicus Milne Edwards, 1837 (Crustacea: Decapoda) collected from different geographical 

sites along the western border of the Indo-West Pacific geographical region (IWP). This 

investigation is the first attempt to characterise the genetic structure of Penaeus indicus along 

the East Coast of Africa. The main objectives of this thesis were to collect genetic information 

for the local identification of this species as well as to close the informational gap, both, 

genetic as well as phylo-geographic, in the data collected from the East and the West IWP 

regions (see folded map: Appendix). 

1.1 Geographic distribution of species 

The Indo-West Pacific (IWP) geographical regions enclose an enormous area extending 

longitudinally more than halfway around the world and encompassing more than 60° of 

latitude. The biota is extremely diverse, incorporating habitats such as coral reef, mangrove 

forests, seagrass beds, wetlands, open ocean, and deep-sea up-welling systems (UNEP, 

1985a). This extensive and diverse area includes approximately 6 570 000 1an2 of shelf habitat 

(less than 200m in depth) and hosts more than 6000 species of molluscs, 3000 species of 

Crustacea (873 belonging to the Penaeidae), 800 species of echinoderms, 500 species of 

hermatypic corals and 4000 species of fishes (Briggs, 1995). One of the most interesting 

features of the IWP is that, despite a basic homogeneity caused by the occurrence of many 

wide ranging species, there are great differences in species diversity amongst the various part 

of the region. 

The majority of the tropical marine families have their greatest concentration of species 

within a comparatively small triangle formed by the Philippines, the Malay Peninsula and 

New Guinea (Fig 1.1). As one moves towards the periphery of this hypothetical triangle, there 

is a notable decrease in species diversity that appears to be correlated with distance (Briggs, 

1999). This centre of high diversity in the East Indies owes its origin to the Tethys Sea 

(Briggs, 1999), the ocean that was situated between the northern and southern continents 



during the early Tertiary period. At first the area of greatest species diversity, estimated from 

fossil mollusc 

Fall in pc ies divl'T ity from East to 
\ c t through the Indian Ocean a~ 
percentage of spc i In tII Inclone ian 

" Malnysian ub-region: 
Location. Percentage 

.. Quth Amen 20 % 
East oast of Africa 25 ~o 
Gulf oflran to R d ea 40 0 

.,...,.. We, t Coast flndia -0 0 0 

.. E<lst Oilst of Bay of Bcngal 78 0,. 

Figure 1.1 - Current patterns in the Indian Ocean (modified from Atlante Zanichelli) during the 

winter Monsoon season. Triangle ABC delimits the high species diversity described by 

Briggs (1995). Red dots indicate the sampling location for P. indicus in Africa and P. 

merguensis in Thailand. 

assemblages appeared to have extended from Europe to North Africa and to India (piccoli et 

aI., 1987). Fossil material from Java indicates the building up of assemblages in the East 

Indies, beginning in the middle Eocene epoch, and that this expansion of species diversity was 

completed by the end of the Miocene (Briggs, 1999). Briggs stressed the possibility that the 

major events responsible for the eastward or westward migration from this diversity centre 

were the decline in global temperature, starting from the middle Eocene, and the collision of 

Africa and Eurasia that caused the elimination of the Tethys Sea and established the 

Mediterranean sea. The time elapsed since these major evolutionary events, approximately 10 
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million years (MY), allowed the establishment of certain biogeographic patterns of species 

distribution within the Indo West Pacific region that appear to be of evolutionary importance. 

As illustrated in figure 1.1, there is a decrease in species diversity that is negatively correlated 

with distance from the Indo-West Pacific region (lWP). In general, the decrease in species 

diversity from the IWP region to the East African coasts, is more pronounced than that found 

in other directions (Dall et aI., 1990). The general pattern of diversity in the IWP may be 

illustrated by reference to the species distribution within the damselfish (pomacentridae), the 

molluscan family (Strombidae), and the decapods family (penaeidae). In all these families, the 

patterns of distribution are remarkably similar despite the different life cycles of these 

organisms (Allen, 1975; Abbott, 1960; Dall et al., 1990; Veron, 1995). Whatley (1987) argues 

that several genera from the East Indies triangle were mostly Cenozoic, but those from 

Polynesia originated in the late Jurassic to upper Cretaceous; ostracod species have been 

dispersing outward from the East Indian / South Pacific region since the Miocene. These 

authors identified westwards dispersal flows, through the Indian Ocean to East Africa, by 

studying the history and biogeography of different species. Data supporting this hypothesis 

come from recent works on the genetic structure of widespread Indo West Pacific species 

(Benzie and Williams, 1997; Palumbi, 1997; Baldwin et. aI., 1998; Amornrat et aI., 1999). 

These authors provide evidence for the existence of routes of genetic exchange and decreasing 

gradients of genetic diversity that parallel the drop of species numbers across the Pacific. The 

different genetic markers used in these investigations, such as mitochondrial DNA (mtDNA) 

and allozymes, indicated the general area of the East Indies triangle as a place of origin for 

inter-oceanic radiation of species (Bowen and Grant, 1997; Nichida and Lucas, 1988). 

Dominant species that have been able to spread over large geographic areas probably arose in 

such places. However these large-scale dispersal events may partially explain the 

geographical species partitioning seen in the IWP. Small, isolated populations are capable of 

rapid speciation; they possess limited genetic variation and are possibly subject to genetic 

drift and inbreeding depression that may impair their successful distribution (Avise, 1994). In 

addition, there is empirical evidence that, species formed in peripheral locations have 

difficulties in expanding their ranges against a gradient of increasing diversity. For example, 

the IWP is a highly diverse bio-geographic region compared with East Africa or the Eastern 

Pacific (Leis, 1984; Emerson, 1991). Bio-geographical barriers, such as deep water and ocean 

currents, between these areas are formidable hurdles for numerous species of shallow water 

invertebrates and fishes. Nonetheless, a variety of IWP species have managed to cross these 

natural barriers and become established in the eastern or western part of the IWP triangle. 

Conversely there is almost no evidence of successful migrations in the opposite direction, 
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despite the fact that, in certain cases, ocean currents have been shown to carry larval stages to 

the outermost areas of a distribution range (Scheltema, 1988). Examples of this process can be 

found around the Cape of Good Hope, and in the Mediterranean sea, where a few tropical 

species have managed to migrate, but no reverse dispersal has yet been recorded (Briggs, 

1995). These cases support the hypothesis that it is extremely difficult for marine species 

originating from areas of low diversity to colonise areas of greater species diversity. This 

issue, however, is controversial and the debate is still far from settled. 

In spite of the above-mentioned debate, the East Indies triangle is a species rich environment, 

and several biotic and evolutionary factors could drive these species distribution phenomena 

(Ekman, 1953; Ladd, 1960). For example, extinction patterns may follow a predictable 

sequence of events: the evolution of an ancestral species in the IWP, the subsequent dispersal 

over large geographic areas, the initiation of extinction in the centre of origin and the fmal 

replacement of the evolved species following the onset of extinction. The widespread 

geographic patterns observed today would be created by repetitions of the replacement and 

extinction processes over millions of years (palumbi, 1997). Ultimately, the Cenozoic world­

wide rise and fall of sea levels is thought to have been responsible for the making and 

breaking of numerous barriers that evidently promoted allopatric speciation within the IWP 

region (Springer and Williams, 1990; Paulay, 1997). 

The distribution of any marine species is strictly related to multiple ecological as well as 

physical factors in the environment around them (Briggs, 1984). Therefore, the studies cited 

above are indicative of barriers to various types of Penaeidae distributions that are not always 

easy to predict. 

1.2 Ecological Factors Influencing the Distribution of Penaeus spp. 

Dall (1990) described the Penaeidae as conforming to the general malacostracan morphology 

plan (Fig 2.1). They are laterally compressed, elongate decapods, with a well-developed 

abdomen adapted for swimming. In the Penaeidae the head and thorax are fused into the 

cephalothorax, which is completely covered by the carapace. The rostrum is always 

prominent, with a high median blade bearing dorsal teeth (7-8 in P. indicus) as well as ventral 

teeth in some genera. The thorax has three pairs of maxillipeds and five pairs of pereiopods; 

the first three pairs are used for feeding and the last two for walking. Penaeus indicus is 

normally taxonomically diagnosed by the apical tuft of setae on the propodus of adult male 3rd 
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maxilliped which is about equal in length to the dactyl; thelycal flaps corrugated medially; 

rostrum of adult sinuous, blade low (Dall et al., 1990). 

1.2.1 Life Cycle 

In order to elucidate the main factors that can contribute to the dispersion and consequent 

distribution of these marine organisms, one should analyse in detail the different life cycles 

that characterise the genus being considered. It is still not clear which of the many extant 

penaeid life cycles most resemble the common one of the ancestral Penaeus. Much of the 

fossil record shows the presence of Penaeidae in marine shales (Glaessner, 1969). This may 

suggest that they lived in muddy substrata in inshore waters, as most extant species do and, 

therefore, it is reasonable to infer that the life history of modem forms of Penaeus are similar 

to those of the ancestral ones. For all known members of the family, the sequences of the 

larval stages are similar: they have a planktonic larva, with several naupliar, protozoea, mysis 

and postlarval stages followed by juvenile and adult stages. The different life cycles present in 

this species can be identified based on the particular habitat chosen by the postlarval stage. In 

general, four types are identified (Fig1.2): entirely estuarine, estuarine-inshore-offshore, 

inshore-offshore and predominantly off-shore (Kutkuhn, 1966a). 

Entirely estuarine life cycles appear to be restricted to the smaller species of Metapenaeus 

particularly M bennetae, M conjunctus, M. elegans, M moyebi, and sometimes M 

brevicornis (Miquel, 1982). The postlarvae tend to migrate upstream into water of lower 

salinity and, as they grow, the juveniles move progressively towards areas of higher salinity in 

the lower estuary. 

More usually, spawning takes place offshore, the depth varying with the species. Planktonic 

stages migrate inshore towards the end of larval development, when the postlarvae settle on 

their preferred nursery grounds. Preference for a particular substratum or vegetation type 

appears to be the dominating factor that governs where postlarvae will settle, although salinity 

preferences have also been claimed to be important (Staples and Vance, 1985). The postlarval 

preferences for inshore habitats determine the characteristic of the cycle. For example, in the 

estuarine-inshore-offshore type of life cycles, Penaeus postlarvae settle in mangrove-lined, 

muddy estuaries and may ascend rivers for as far as 85 kilometres, where salinity is very low 

(Staples, 1980a). The juveniles of these species are mostly euryhaline and only when they 

reach about half adult length do they leave the estuary for offshore waters. Penaeus artemisia, 
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Estuari ne-inshorc-offshore Predominantly OfTshore 

: Inshore : OfTshore Inshore, Offshore 

lnshore-offshore Entirely Estuarine 

Figure· 1.2 - Types of penaeid life cycles. See text for explanation. Modified from Dall el al. 

(1990) 

P. atypopenaeus, P. macropetesma, P. trachypenaeus, P. metapenaeopsis and P. 

parapenaeopsis, prefer seagrass beds or sandy mud as nursery grounds (Hall, 1962), to which 

they migrate during the postlarvae stage. In all Penaeus species the pre-adults move offshore 

to pelagic waters. A completely pelagic life cycle is present in some species such as P. 

pelagopenaeus, P. parapenaeus, P. penaeopsis where (Kensley et al. , 1987) both larval stage 

and juvenile live in off shore waters. Within this context, it is noteworthy that the genus 
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Parapenaeopsis possesses the largest recorded eggs of all Penaeidae, suggested to be an 

adaptation to fully pelagic waters (Tom et at., 1988). 

Given this wide variability in life cycles and habitat, it is not surprising that the penaeid 

prawns exhibit a rather complex seasonal life-history pattern (Garcia, 1985). Although one 

can recognise different life-history stages within the genusPenaeus that depend on local 

environmental as well as ecological conditions, it has been found that temperature and rainfall 

are the major factors contributing to the length of the cycle (Garcia, 1988). Close to the 

equator, most penaeids appear to spawn throughout the year. Their reproductive cycles are 

affected by rainfall regimes, often associated with seasonal monsoon winds or temperature 

changes brought about by shifts in winds, especially in regions adjacent to continental land 

masses (Dall et aZ., 1990). However two main yearly spawning periods have been observed in 

a number of tropical Penaeus and Metapenaeus species, including several populations close to 

the equator (Hall, 1962; Staples and Rothlisberg, 1980). Typically, these occur from 

September to November, and between March and May. These periods are characterised by 

decreased wind speed and currents during the tropical inter-monsoon season or, at slightly 

higher latitudes, by rising or falling temperatures. At higher latitudes (Tropical and 

Subtropical) bimodal spawning and recruitment are also common but, seasonal rainfall and 

lower winter temperatures often result in one or other of the generations being dominant in the 

offshore phase (Garcia, 1985). For example, in some species such as Penaeus notialis and 

Penaeus indicus, spring spawning is generally greater and more consistent than the autumn 

spawning (Garcia, 1977). Some authors suggest that greater springtime availability of 

phytoplankton and higher temperature of shallow waters in the inshore nursery grounds would 

help the degree of survival of larvae and juveniles. Additionally, Garcia (1977) noticed that 

the seasonality of offshore catch per unit effort (CPUE) tended to be bimodal in tropical 

waters, becoming unimodal at higher latitudes both to the south and the north. In all the 

countries examined, the period of higher CPUE appeared to coincide with the main period of 

rainfall. In summer the possible barriers to dispersion of Penaeidae populations can include 

the following aspects. 

Temperature; the Penaeidae are, predominantly tropical stenotherm. This means that they can 

withstand only a limited range of temperature, with few species thriving below a minimum of 

15°C. Thus, cold inshore and offshore upwellings, such as along the Cape of Good Hope 

coast and the Somali coast, could be considered barriers to the dispersion of larval stages. 
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Ocean currents; the pelagic larval stages (Fig 1.2) make most Penaeidae species susceptible to 

the influence of current flows moving in unfavourable directions. 

Coastal environments such as a desert with high inshore salinity, or rocky shores with deep 

water inshore may hinder the dispersal of certain species particularly during the post-larval 

and juvenile stages. 

1.3 Phylogeny and Biogeography of the Marine Prawn Penaeus 

In light of the above discussion on the general pattern of species distribution in the IWP 

region, I will now introduce the possible processes that may have contributed to the 

distribution and evolution of the Penaeidae species. Prawns of the genus Penaeus constitute a 

diverse and abundant group of benthic taxa found in the tropical and subtropical waters 

around the world. 

Decapod fossils from the early Tertiary have been found in Antarctica (Feldman and 

Zinsmeister, 1984a,b). These findings, together with temperature data values reconstructed 

from geological studies, indicate that a penaeid fauna might have existed in these waters, at 

least in the Cretaceous. However, geologically more recent fossil finds suggest that such a 

fauna could not have persisted (Zinsmeister, 1982) because as Australasia moved northward, 

there were extreme environmental changes (Shackleton and Kennett, 1975). The temperature 

fell to less than lOoC as the ocean became continuous around Antarctica about 40 MYBP, and 

continued to fall through the remainder of the Tertiary period. Later still, during the further 

northward shifting of Australasia, water temperatures rose again to over 20°C (30 MYBP) and 

the endemic fauna was replaced by warm water invading species from the Indo-Pacific. Thus 

it is very unlikely that any penaeid species of Australasia are relicts from Gondwana (Dall et 

al., 1990). 

The Penaeidae have been considered as the most primitive group of the decapoda because of 

the nauplius larVal stage, morphological features and the estimated age of their fossil record. 

The earliest Penaeidae fossils were found in deposits from the Triassic period (CaIman, 1909). 

Unequivocal Penaeus sp., have also been found in Jurassic shales (Woods, 1925) and became 

more common in the Cretaceous, with a record from India dating to the lower Tertiary 

(Glaessner, 1969). Therefore, taking the fossils records into account, the genus Penaeus 

appears to be the oldest of the penaeidae. Unfortunately, no penaeids have yet been found in 

more recent deposits, so there is no paleontological indication as to when existing penaeids 
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may have arisen. Consequently, estimation of the times of divergences of the various taxa has 

to be made by other techniques, such as molecular ones (Dall et al., 1990). 

Molecular investigations using approaches such as mitochondrial DNA (mtDNA) and 

microsatellites (Benzie et al., 2002) were able to confirm the hypothesis that the genus arose 

in the Indo- Pacific (Dall et al., 1990). This hypothesis was originally formulated on the basis 

that biogeographic centres of origin have the highest species diversity and the deepest 

morphological differentiation (Briggs, 1995). This scenario is supported by results obtained 

from the analysis of the COl (Cytochrome Oxidase I) mtDNA locus in the genus Penaeus 

(Baldwin et al. 1998). Populations from the Indo-Pacific that have been sampled share a 

number of haplotype sequences unique to this area, although they show the highest mtDNA 

diversity of all Penaeids (Balwin et aI., 1998). The relationships among Penaeus species, as 

resolved by mtDNA studies, are similar to those reported for genera of tropical marine 

organisms, where a gradient of diversity is commonly related to lineages radiating eastward 

and/or westward from the IWP (Briggs, 1984; Bowen et aI., 1998). 

The above patterns are generally explained by the widely invoked mechanisms of vicariance 

(Fig 1.3). Under vicariance interpretations, related populations, or taxa, became separated 

when more or less continuous ranges of ancestral forms were sundered by environmental 

events (Nelson and Rosen, 1981), such as the break-up of landmasses or the physical 

subdivision of a body of water that split populations of aquatic life-forms (Avise, 1986). 

Under dispersalist interpretations, a taxonomic assemblage came to occupy its present range 

through active or passive dispersal from one or more ancestral centres of origin (Briggs, 

1984). The relative role of these two processes has been the subject of strong debate in recent 

decades, with vicariance prevailing in the 1970s and '80s (A vise, 2000), but with more 

evidence for dispersal accumulating since the introduction of molecular evolutionary analyses 

(Rosenblatt and Waples, 1986; Bowen and Grant, 1997) although Knowlton (1993) suggests a 

greater role for vicariance. 

The relationships of eastern Pacific and western Atlantic forms bear the imprint of a vicariant 

separation. However, older vicariance events, such as the closure of the Tethys sea by the 

collision of Africa and Eurasia (approximately 20 MYBP) and opening of the Atlantic Ocean 

(about 10 MYBP), predate the deepest lineages within Penaeus. For the spread of Penaeus 

during Tertiary and Pleistocene periods, from the Western Pacific to the Eastern Pacific and 

from the Indian Ocean into the Eastern Atlantic Ocean, a dispersal mode has been strongly 
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indicated. Clearly, both vicariance and dispersal have a role in shaping the biogeographic 

history of Penaeus (Baldwin et al., 1998). However more molecular data are necessary, in 

particular, more species need to be analysed and a less patchy population sampling is 

necessary in order to avoid overestimating the evolutionary distances of very closely related 

morphological species. 
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Figure 1.3 - Phylogenetic relationships of spatially disjunctive populations or species under 
vicariance and ~spersal hypo~eses. Lowercase letters represent taxa; uppercase 
letters, geographic areas. ModIfied from A vise (2000) 
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1.4 Economical importance of Penaeus sp. 

The genus Penaeus is the largest of the family-Penaeidae, and contains the greatest number of . 

species of commercial importance (Table 1.1) to aquaculture and the fisheries industry. The 

total world catch of prawns in 1990 (FAD, 1990) was 2.1 million metric tons, 41 % of which 

was fished in the Indo West Pacific region, where penaeids are the most valuable of all marine 

species caught (FAD, 1990). According to this source 11 % of the world total volume was 

caught in the Western Indian Ocean, and two % of this volume was harvested from Tanzania, 

Kenya, Mozambique, Madagascar and South Africa. Along the East Coast of Africa the 

prawn fishery can be considered multi species, with several species being harvested in 

different quantities throughout the year by local trawlers. A total of 107 species belong to the 

genus Penaeus (Table 1.1), 81 of which are found in the diverse habitats of the Indo West 

Pacific region. Although several of these are harvested in various regions along the coast of 

the Indo Pacific, not all are considered valuable resources. Commercially the most important 

species are P. monodon Fabricius 1798, P. japonicus Bate 1888, P. merguiensis De Man 

1888, Penaeus indicus, Metapenaeus monoceros. Trawlers harvest all of these at different 

times of the year normally along bank formations outside river basins and at maximum depths 

of 90.:100 m where these species spend their adult stage (Fig. 1.4). 

Penaeid prawns are also an important part of the aquaculture industry in many areas of the 

world with increasing emphasis being placed on pond and raceway culture recently. Advances 

in laboratory controls of maturation have allowed the selection of populations for commercial 

production (Fast and Lester, 1992). These industries have developed rapidly over the past 30 

years and are dominated by four species: Penaeus monodon, (60 % of world production); 

Penaeus vannamei Boone 1931, (27 %); Penaeus stylirostris, Stimpson, 1874 (three %); 

Penaeus japonicus, (less than eight %). Several other species account for the remaining two 

% of world production, prominent among which are the following species: Penaeus indicus; 

Penaeus merguiensis and P. penicillatus, Alcock, 1905 (Benzie, 2000). Of the 20 species 

whose commercial usefulness was investigated from 1990 to 2000, those mentioned here were 

considered the most profitable (Benzie, 2000). 
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Table 1.1- Species of Penaeus of interest to fisheries in IWP. Range of depth and habitat 

preferences are also specified. Modified from F AO (1990) 

Sl'ecin I/lll11e DepTh rllIl!!" Hllhai1T Life (\ (/e 

PmflDlS tlj'ric1llUlS (&Iss, 1913) 
PmflDlS stenodtldybts (Stimpson, 1860) 

Penaeus barballls (De HtulII, 1844) 
Penaeus /amelJallls (De HtulII,1844) 

POItlDIS novae-pbreae (HtlSWell,1879) 
POItlDIS plliIippii (&de, 1881) 

PmflDlS affilIis (H.Mibre EdwIlTlls, 1837) 
PenflDlS brevicomis (H. .Kllne edwards,1837) 

Penaeus dobsoni (Miers, 1378) 
POItlDIS ensis (De HfUUI, 1844) 

POItlDIS iIrtenItediIIs (Xis/fiIfo.ye,I9(J(J) 
POUIetlSjOllJlIIUi (Miers. 1880) 

PmflDlS lysianassil (DeMan, 1888) 
PenflDlS 1rUlCleayi (HtlSWeD,1879) 

Penaeus monoceros.(FabricblS, 1798) 
POItlDISjisslmIs (&de, 1881) 

POItlDIS r«f«ptvs (&de,I188) 
POItlDIScIIiIleItsis (Osbeck,1765) 

Penaeus indicus (H. M. Edwards,1837) 
PmflDlS merguiensis (De Man,I888) 
POUIetlS pellicilltrtps (Alcock,I90S) 

POItlDIS jttpOlIiaIs (Btde,1188) 
POItlDIS ctlluwa"fltHs (0Iirier,11II) 

PenflDlS llItisukatllS '(ICu!dnollYe;1196) 
PmflDlS longistybts (I(u6o,1943) 

Penaeus mtUginatus (RandlllI,I840) 
POUIetlS pIebeftts (Hess,1165) 

PmflDlS esadeIrtIIs (HtISWdl,I379) 
PmflDlS _"odo" (Fabricilfs, 1791) 

Penaeus semisulcatus (De Hann,1844) 
PenflDlS anchoralis (Bate,I"I) 

1.5 Genetic variability in Penaeus Sp. 

28m 
11-27m 
20-7Om 

11-3Om 
IS-22m 
69-73m 
0-30m 

o 
44-5Om 
13-33m 
I0-2Om 
5-9m 

22·37m 
170m 

5O-274m 
I80-75Om 
9O-18Om 
2-90m 
I0-45m 
2-9Om 
l-9Om 

33-46m 
0-8Om 
35·55m 
0-3OOm 
2-16Om 
I6-22m 
O-llOm 
2-13Om 
I2-52m 

Marine - estuarme 
. Bottom mud 

Marine bottom mud or rocky 

Marine 
Marine Bottom mud 

Marine 
Estuarine and Marine 

Shallow brackish and salt water 
Marine 

Marine bottom sand 
Marine Bottom mud 

Marine 
Estuarine 
Marine 
Marine 
Marine 
Marine 

Estuarine 
Estuarine 
Marine 
Marine 
Marine 

Marine bottom mud 
Marine 

Estuarine 
Estuarine 
Marine 

Estuarine 
Estuarine 
Marine 

Most of the genetic studies on this species have been directed at determining stock structure 

for fisheries management purposes but, in addition, they have provided useful information on 

the genetic diversity available in nature and for the future planning of the source of brood 

stock for closed-cycle breeding programs (Hedgecock and Malecha, 1991). 

Much of the early work using allozyme markers generally emphasised the lack of significant 

geographical structure in the wild populations of many Penaeidae species (Hedgecock, 1986; 

Hedgecock et aI. , 1982). The information revealed by these studies is highly variable with 

respect to heterozygosity and sample size for both number of loci and number of individuals 
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sampled (Benzie, 2000). The number of individuals sampled for any given locus ranges from 

one to more than 200, but most fall within the average of 20-60 per population. Similarly, the 

number ofloci sampled ranges from 1 to 40, but most studies used between 15 and 35. Most 

of the investigations appear to have been concentrated in Australia, followed by Hong Kong, 

the Gulf of Mexico, the east coast of the USA and Thailand. Other regions sampled, usually 

only one region for any given species, have been Japan, south-east Asia, and south-east 

Africa. However, in south-east Africa, sampling has been patchy, and probably not consistent 

with the real distribution range of the species under investigation (Table 1.2). 

Table 1.2 - Published biochemical and molecular studies of the genera Metapenaeus and Penaeus. 

The species surveyed in the present research, Penaeus indicus, is highlighted. 

Modified from Benzie (2000). 

Species 

M affinis 
M bennettae 
M eboracensis 
M endeavouri 
M ensis 
M insolitus 
Mjoyneri 
M macleayi 
P. aztecus 
P. brasiliensis 
P. chinensis 
P. duorarum 
P. esculentus 
P. indicus 
P. japonicus 
P. kerathurus 
P. latisulcatus 
P. long;stylus 
P. merguensis 
P. monodon 

P. notiaiis 
P. penicillatus 
P. p/ebejus 
P. semisulcatus 
P. seiiferus 
P. stylirostiris 
P. vannamei 

Geographical extent 
of study 

Hong Kong 
East Australia 
North Australia 

North and West Australia 
North and East Australia, Hong Kong, Japan 

North Australia 
Hong Kong 
East Australia 

Gulf of Mexico South Carolina 
Gulf of Mexico 
Hong Kong 

Florida Gulf of Mexico 
North East and West Australia 

Kenya 
Japan Hong Kong 

Adriatic France Spain Italy Tunisia 
North West and South Australia 

North and East Australia 
North and East Australia Hong Kong 

South Africa Thailand Hong Kong North 
West East Australia 

Cuba 
Hong Kong 

East Australia 
North East Australia Japan Hong Kong 

Texas Louisiana Gulf of Mexico 
Mexico Equador 

Mexico Panama Ecuador 

Type of marker NO of Populations 
Sampled 

Allozymes I 
Allozymes 1-6 
Allozymes 1 
Allozymes 2-6 

AllozymeslRAPDs 1-3 
Allozymes 1 
Allozymes 1 
Allozymes 3- 11 

AllozymeslMicrosatellites 1 
Allozymes 1 
Allozymes 1 

AllozymeslMicrosatellites 14 
Allozymes 2 
Allozymes 1 

AllozymeslRAPDs 1-4 
Allozymes 1-6 
Allozymes 1-8 
Allozymes 2 
Allozymes 1-2 

AllozymeslMicrosatellites/ 
mtDNAlRAPDs 1-13 

Allozymes 1 
Allozymes 1 
Allozymes 4-11 
Allozymes 1-2 

AllozymesiMicrosatellites 14 
Allozymes 3 
Allozymes 2-3 
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Early work noted that populations separated by thousand of kilometres showed no significant 

differences in allele frequencies (Lester, 1979; Mulley and Latter, ' 1980; Forbes and 

Demetriades, 1999; Benzie et ai" '1992). These data all support the view that prawn 

populations are panmictic and· this conclusion is reinforced by tagging data from several 

species (Dall et al., 1990), which show considerable movement by individual prawns, of 

hundreds of kilometres over a few months. The possibility has been considered that this lack 

of spatial differentiation among wild populations was the result of the low resolution of the 

technique itself (Benzie, 2000). This prompted the utilisation of potentially more variable 

markers, that are more sensitive to recent evolutionary time-frames, such as, mtDNA, 

microsatellites, as well as RAPD (Random Amplification of Polymorphic DNA) and direct 

sequencing of specific target loci both nuclear as well as mitochondrial. 

Thus far, the available literature includes, three reports using mtDNA (Benzie, 1993; Benzie, 

2000; Klinbunga et aI., 1998), three reports using RAPD (Meruane et al., 1997, 1998; 

Tassanakajon et al., 1997b), and six using microsatellites (Ball et al., 1998; Tassanakajon et 

al., 1998a, b; Broeker et al., 1999). Microsatellites show a far higher proportion of 

polymorphic loci than that from some reported allozyme studies, although it will be some 

time before realistic estimates are available, given the difficulty of isolating loci from prawns 

for which reliable primers can be designed. Similarly, RAPD data show levels of 

polymorphism that are higher than those of allozymes, and available mtDNA data, confirm a 

general pattern of higher polymorphism than that detected by allozymes (Tassanakajon et al., 

1998a; Broker et aI., 1999). For example, allozyme, micro satellite and mtDNA markers 

generally demonstrate significant genetic differences between Andaman Sea and Gulf of 

Thailand populations of P. monodon (Tassanakajon, et ai., 1998b). Similarly, western 

Australian populations of P. monodon were significantly different from those on the east coast 

of Australia (Benzie et aI., 2000; Brooker et al., 1999). 

It appears that in Penaeus, high DNA sequence divergence between species may be masked at 

the level of amino acid sequence. These findings parallel the striking morphological and 

ecological similarities observed among divergent members of this genus (Palumbi and 

Benzie, 1991). Palumbi and Benzie (1991) propQsed two possible explanations for the 

apparent differences in molecular and morphological evolution: the rate of DNA evolution, 

particularly mitochondrial DNA, might be accelerated in the shrimp, or the rate of 

morphological divergence might be slow, possibly due to stabilising selection on 

morphological characters. Furthermore, the conClusions regarding the genetic structuring of 
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Penaeus spp., are based on surveys of few species, mostly those of major economic interest 

such as P. monodon (Ko et ai., 1983; Sodsuk et ai., 1992; Benzie et ai., 1992; Forbes et ai., 

1999; Benzie, 2000) and P. japonicus (Meruane et aI., 1997; Tam and Chu, 1993; Taniguchi 

and Han, 1989), and lack of information is evident in respect of other species within the IWP 

regions. Thus the controversy regarding the evolution and population structure of this 

widespread genus is far from being resolved. It is necessary to keep collecting data from wild 

populations from different and widely separated locations. The use of different markers in 

order to resolve the rate of divergence at which morphological and molecular characteristic 

evolve in this genus, is also highly recommended. 

1.6 Neutral Theory and Molecular methods 

Studies that use molecular markers to address questions in ecology and conservation biology 

often assume a strictly neutral model of molecular evolution as the basis for analysing and 

interpreting the results. It is therefore worthwhile to review briefly the status of the neutral 

theory after nearly 20 years of studies of DNA sequence variation among and within species 

(Ford, 2002; Kreitman and Akashi, 1995; Hughes, 1999). 

The strictly neutral theory proposes that the vast majority of new mutations fall into one of 

two categories: deleterious and selectively neutral (Kimura, 1983). Deleterious mutations are 

expected to be eliminated rapidly due to natural selection against them, and therefore 

presumably contribute little to variation among and within species. On the other hand, 

mutations that are selectively equivalent to the allele(s) already present in the population, are 

expected to have dynamics governed by genetic drift, and make up the vast majority of the 

observed variation both, within and among samples. Beneficial mutations are expected to be 

extremely rare and to contribute little to observed patterns of DNA sequence variation, 

although they must be involved in evolutionary success. Overall, patterns of DNA sequence 

variation generally support one key aspect of the neutral theory, that many of the observed 

differences within and between populations are non-adaptive (Kimura, 1983; Hughes, 1999). 

For example, there is a broad negative correlation between the functional importance of a 

nucleotide site and its substitution rate. Additionally, a vast part of the genomes of many 

organisms contain non-coding DNA that serves no known purpose, and most mutations in 

these areas are presumably neutral (Ford, 2002). 
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A second key aspect of the neutral theory, that most variation has dynamics governed 

predominantly by genetic drift, is not supported by observed patterns of DNA variation 

(Begun and Aquadro, 1992; Kraft et aI., 1998). Instead correlation has been found between 

recombination and variation, and this fact has-important implications for the neutral theory. It 

means that a gene's recombinational environment is a large contributing factor in determining 

patterns of variation within species. Therefore even if much of the observed variation is 

selectively neutral, the dynamics of this neutral variation could well be governed more by 

linkage between loci, than by genetic drift (Ford, 2002). 

In recent years, largely due to advances in DNA sequencing techniques and to statistical 

methods (Krei~an and Akashi, 1995; Yang and Bielawski, 2000), the proportion of genes 

known to be subjected to positive selection has increased (Chalesworth and Mc Yean, 2001; 

Fay et al., 2001; Wang et al., 1999). For example, genes that code for enzymes involved in 

energy metabolism form a group where statistical evidence for positive selection has been 

found (Eanes, 1999). The previously cited authors warned that routinely assuming selective 

neutrality for allozyme and mtDNA variation was problematic, due to considerable evidence 

for natural selection effects on these types of genetic markers. When conducting quantitative 

analyses such as estimating divergence times, rates of gene flow or effective population sizes, 

it is particularly worth avoiding assumptions of strict neutrality, when in fact, variation is 

affected by selection. 

In summary the neutralist vs. selectionist debate of the 1970s and 1980s has died away (Hey, 

1999); it has been replaced by a more complicated view in which selection appears to leave 

deep footprints in the genome. In this case the strictly neutral theory, rather than being a 

simple explanation for patterns of genetic diversity, has instead become the primary null 

hypothesis used to test for the effects ofnatutal selection (Ford, 2002). 

1.6.1 Coalescent Theory 

The stochastic process known as coalescence has played a central role in population 

genetics since the early 1980, and results based on coalescent assumptions are now routinely 

used to analyse DNA sequence polymorphism data (Nordborg, 2001). The coalescent theory 

provides a relatively simple and powerful tool for exploratory data analysis through the 

generation of simulated data. Comparison of observed data with data simulated under 
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various assumptions could give considerable insight. The coalescent was described by 

Kingman (1982a, b, c) but discovered independently also by Hudson (1983) and Tajima 

(1983). The basic assumption of the model is that since selectively neutral variants by 

definition do not affect . reproductive success, it should be possible to separate the neutral 

mutation process from the genealogical process. As a consequence the evolutionary 

dynamics of neutral allelic variants can be modelled through so-called gene dropping 

(mutation dropping). Allelic states are assigned to the original generation in a suitable 

manner, and the lines of descent then simply follow forward in time. In particular the allelic 

. states of any group of individuals can be generated by assigning an allelic state to their most 

recent common ancestor (MRCA) and then dropping mutations along the branches of the 

genealogical tree that leads to them. Most of the genealogical history of the population is 

then irrelevant. Basically it is possible to model the genealogy of a group of individuals 

backward in time without worrying about the rest of the population; in fact each individuals 

(assuming selectively neutrality) in a generation can be viewed as picking its parent at 

random from the previous generation. The realisation that a pattern of neutral variation 

observed in a population can be viewed as results of random mutations on a random tree is a 

powerful one, which profoundly affects the way we think about data (Stephens, 2001). In 

this general framework it is then possible to insert a different set of biological, as well as 

evolutionary phenomena, which can than be treated as a simple linear change in the time 

scale of the coalescent. The bad news is that biological and evolutionary phenomena will 

never be amenable to inference based on polymorphism data alone. For example, molecular 

ecologists in general are interested in how populations are genetically subdivided, or vary in 

size, and these processes cannot generally be modelled as a linear change in the time scale 

of the coalescent approach (Stephens, 2001). 

1.6.2 Analysis of Population Subdivision: inference methods 

Species, or populations, usually do not constitute a single panmictic unit where individuals 

breed at random over the all species range (Excoffier, 2001). In the marine realm especially, 

broadcast spawners such as the penaeid species, are astoundingly fecund. As individuals, they 

face exceptional challenge in matching reproductive activity to extremely variable 

oceanographic conditions. Reproductive success is dependent on a combination of gamete 

production, fertilisation, larval development, larval settlement and recruitment into the adult 

population (Hedgecock et af., 1982; Li and Hedgecock, 1998). Large variances in the viability 
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of such an organism, following these life stages are also expected on a generation basis and 

may be recorded as two types of molecular observations: 

(i) chaotic patchiness, defined as stochastic variation in genotypic frequencies over small 

spatial scales; (if) low levels of genetic diversity, implying recent coalescent times in gene · 

genealogies relative to what might have been suggested from the often very large populations 

typical of these marine species. 

These biologically driven features, if not properly identified, can affect interpretation of the 

observed pattern of genetic diversity. For example, over 80 years ago Wahlund (1928) 

showed that hidden subdivisions lead to an apparent excess of homozygotes. At a molecular 

level, especially, hidden population subdivision can greatly increase the number of 

segregating sites within samples, while local inbreeding could result in the opposite effect 

(Tajima, 1989b). In a population made up of demes interconnected by migrations, the mean 

number of pairwise differences (or the number of heterozygous sites within individuals) 

only depends on the sums of deme sizes, irrespective of the migration pattern (Slatkin, 

1987). In statistical terms population structure introduces some correlation or covariance 

between genes taken from different subdivision levels. Therefore, population genetic studies 

attempt to track, measure and test the presence of internal subdivisions, on the basis of 

observed correlations in the samples. In order to do so, inference moment methods such as 

those devised by Wright (1969), called F-statistics, which partition heterozygote deficiency 

into within and between population components, have been developed. This permits an 

assessment of the levels of structuring in samples of natural populations. The fixation index, 

one of the F -statistics parameters, includes a measure of heterozygote deficit within 

populations (FIS), whereas a measure of these parameters among populations (FST and FIT) 

expresses the global deficiency ofheterozygotes. 

By far the most common inference methodology considers only squares of allele 

frequencies or equivalent frequencies of identical pairs of genes (Analysis of Variance: 

ANOV A). The analysis of genetic subdivision under the analysis of variance framework is 

based on Cockerham's fixation index (1969; 1973) that showed how it is possible to 

decompose the total variance of gene frequencies into variance components associated with 

different subdivision levels within the ANOV A of gene frequencies. Cockerham also 

showed that these variance components and F -statistics were a different, but equivalent, 

parameterisation of correlations of genes. The model that is assumed is the existence of 

several demes of finite population sizes that have diverged simultaneously from an ancestral 
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population that was in Hardy-Weinberg equilibrium. Since the time of divergence, the 

demes have remained separate and have been exposed to the same conditions. Samples from 

different demes are thus expected to differ from each other because of the sampling process 

of individuals within demes (statistical sampling) and because of the stochasticity in the 

evolutionary process between populations (genetic sampling). The major interest is in 

defIning the relations (correlation, covariance) between genes found in the different levels 

of the hierarchy. Finally the procedure estimates the correlation of gene frequencies at 

different levels of subdivision via the method of moments by equating the mean squares 

expressed in terms of allele and genotype frequencies to their expectations in terms of 

correlation parameters. It should be noted, however, that the inferences stemming from this 

methodology do not represent real biological patterns encountered in natural population. 

Another inference methodology, likelihood analysis, often used in genetics has been only 

recently applied to genetically structured populations (Beerli and Felsentein, 1999). While 

the F st approach is conceptually straightforward, it does not claim efficiency, in contrast to 

likelihood methods (Excoffier, 2001). Several methods have been developed to compute the 

likelihood for various models of popUlation structure and different types of data with 

different mutation models. These methods are based on 'coalescent arguments (see section 

1.6), that is to say, they derive the probability of the sample from consideration of the 

sequence of events that relates the individuals in the sample to their common ancestor 

(MRCA) (Hudson, 1990; Nordborg, 2001; Stephens, 2001). These methods do not attempt 

to find an explicit expression for the likelihood, or to generate samples for different values 

of the parameters. Rather, they are based on simulation and involve importance-sampling 

algorithms. 

Finally, an empirical approach to infer the general demographic history of a population from 

gene tree data involves the examination of two types of different measures of haplotype 

variation (Grant and Bowen, 1998). Haplotype diversityl (h) condenses information on the 

numbers of frequencies of different alleles at a locus, regardless of their sequence 

relationships. Nucleotide diversiryl ( 3t) is a weighted sequence divergence between 

individuals in a population, regardless of the number of different haplotypes. Intuitively, a 

population with low 1t and low h may have experienced a prolonged or severe demographic 

1 diversity (h= 1 - L fi2, where fi is the frequency of the i haplotype) 

2 (3t = L fi fj Pij, where Pij is the sequence divergence between the ith and jth haplotype) 

19 



bottleneck in recent time. Conversely, high values of 7r and h are expected signatures from 

stable populations with large long-term effective population size (Ne); or they also might be 

observed in admixed samples of individuals from historically sundered populations. High h 

and low 3t suggest rapid population growth from an ancestral population with small Ne, 

provided that the time was sufficient for recovery of haplotype variation via mutation yet 

too short for accumulation of large sequence differences. Conversely, low 7r and high h 

could result from a transient bottleneck in a large ancestral population because an extremely 

short crash can eliminate many haplotypes without necessarily impacting 3t severely (Nei et 

al., 1975). Low 7r and high h also might reflect an admixture of samples from small, 

geographically subdivided populations (Bowen and Grant, 1997). 

In the present study, the analysis of molecular variance (AMOVA) framework has been 

applied to DNA molecular data, while the Wright F-statistic approach, was use for inference 

on population structure for the allozyme data. As described in the previous paragraph, 

comparisons of different genetic diversity measures were performed to determine 

empirically the possible causes of population differentiation. 

1.7 Analytical Model 

Following on the analytical framework briefly outlined above (chapter 1.6); it is possible to 

implement the following experimental steps while attempting to explain the genetic variation 

in natural populations of Penaeus indicus. 

Observation: Penaeus indicus is a widely dispersed species in the IWP ocean. Its life cycle is 

type two (Fig.1.3): marine and estuarine with high potential for dispersal. However the 

geographical separation of the sampling locations, could suggest, at least for some samples, 

an isolation by distance model. Physical as well as biological factors could influence local 

retention and survival of larvae, at least in some areas, thus preventing long-distance dispersal 

and hence triggering genetic isolation. 

Modell: Hardy-Weinberg eqUilibrium (HWE). Under the assumption of random mating, 

absence of selection and genetic drift and presence of non-overlapping generations, one would 

expect the frequencies of different alleles at unlinked and codominant loci to be in HWE. 
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Model 2: Wright (1943) Island model. Under the assumption of many ftnite sub-populations 

as sources of migrants between widely separated sites, one would evaluate the Fixation Index 

Fis, Fit and F st as coefficients of inbreeding within and between populations respectively. 

Null hypothesis: no allele or -haplotype frequency changes are expected when comparing 

populations along the east coast of Africa. 

In the process of testing hypotheses, however, efforts should be made to avoid the following 

two pitfalls. Firstly, a representative sample of individuals from a natural population must be 

randomly selected. 

Secondly, a sample of gene loci representative of the whole genome of the organism under 

study must be carefully identifted. 

Once the distribution of the allele frequencies is measured, they can be compared with those 

expected from the model under test using a statistical test such as which would allow 

acceptance or rejection of the null hypothesis. In such a case, it is possible to give a genetic 

explanation of the observations that have been made. This applies in the event that one 

already knows the expected distribution of the variables being tested. In certain situations, 

however, one may know very little of the expected distribution of the data, and hence fail to 

meet the assumptions required for customary statistical tests. In such instances, non­

parametric randomisations test, have been found to be powerful tools. A test of this type 

involves three steps: 

Consider an observed sample of frequencies as one of many possible, but equally likely, 

different outcomes that could have arisen by chance alone. 

Enumerate the possible outcomes that could be obtained by randomly rearranging the 

frequencies. 

On the basis of the resulting distribution of outcomes, decide whether the single outcome 

observed is improbable enough to warrant rejection of the null hypothesis. 

Sometimes determining all the possible outcomes of a given distribution is feasible and exact 

randomisation tests, such as Fisher's exact test or the Markov chain method (MCM) can be 

performed. The latter is a sample test that can .be used in the event that the possible 

enumeration of outcomes is too large. In this case one takes a random sample, computes the 

statistics, empirically ftnds a distribution of these statistics, and decides on the signiftcance of 

the original observation (Sokal and Rohlf, 1981). 
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Allozyme methods and molecular approaches such as microsatellites, mtDNA-RLFP, and 

direct sequencing of nuclear and mtDNA (Cytochrome Oxidase I, COl, and internal 

transcriber spacer, ITS) seem to violate the rules of scientific design listed above. This is 

because they rely mostly on a low number of loci, sometime single genes, and on the efficient 

work of primers and enzymes, for a successful identification of genetic variability (Nei, 1984; 

Beamount and Nichols, 1994). 

A further source of possible error is the fact that loci to be investigated are not chosen at 

random but typically their final selection is dictated mainly by the possibility of 

unambiguously scoring the results. Besides, fmancial considerations usually argue against the 

choice of a number of loci high enough to be representative of the entire genome. In these 

events therefore, these statistical devices can be of invaluable help in reducing the possibility 

of erroneously rejecting a null hypothesis. Nevertheless, in molecular ecology and population 

genetics, genetic structure is influenced by several factors such as population sizes, inbreeding 

typology, geographical distribution of populations and individuals, mutation rates, migration 

rates, and last but not least, natural selection (Hartl and Clark, 1997). It is almost impossible 

to be able to predict the synergistic effects of all these natural processes so as to allow the 

construction of elementary models, which can allow reliable inferences of population 

structure using only the relevant features of a system. Thus, it is important to compare results 

obtained from different molecular techniques as well as outcomes from inference methods 

with empirical predictions based on particular evolutionary scenarios (Heydrick, 1999). 
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1.8 Purpose of the research and layout of the thesis 

The research presented here describes the molecular record of Penaeus indicus in the west 

Indian Ocean. The present study was designed to examine the population genetic of P. 

indicus, the most abundant and economically important species along the east coast of Africa, 

in order to gain insights into the biogeography and genetic structure of this widespread genus 

in the western Indian Ocean. To accomplish this, populations of P. indicus were sampled 

along the East coast of Africa and in Madagascar, and examined by different DNA molecular 

techniques as well as allozyme electrophoresis. The hypothesis of Hardy-Weinberg 

equilibrium was tested assuming a panmictic population over the entire sampling range of the 

species, and in the case of molecular data, a Wright-Fisher model of neutral selection was 

tested based on a classical as well as coalescent approach. Comparison among the different 

molecular techniques was performed for the main purpose of establishing the resolution at 

which possible population diversity can be detected and to verify if inter-population genetic 

diversity was consistent across all nuclear and mtDNA loci. Furthermore, as a preliminary 

comparison of population structure and genetic diversity, data on the phylogenetically close 

species P. merguiensis are presented in the form of mtDNA sequences collected from 

different locations in the Andaman Sea and in the gulf of Thailand3
• The aim of this data set 

was to compare the genetic variability present at the Cytochrome Oxidase I (COl) between 

morphologically and ecologically similar species. Penaeus indicus and P. merguensis are in 

fact phylogenetically recognised sister taxa (Baldwin et aI., 1998) and interesting evolutionary 

hypotheses could be tested comparing the genetics of these two species. Furthermore, as 

stated by A vise (2000), genealogical concordance across co-distributed species presumably 

would reflect shared historical evolutionary elements. If this hypothesis were to be rejected, 

several evolutionary scenarios regarding the colonisation of the east coast of Africa could 

become relevant and would provide significant information to the understanding of speciation 

as well as dispersal mechanisms in this genus. 

Therefore, this investigation is detailed in the chapters that follow, whereby chapter one 

provides a theoretical framework to the analytical methods (experimental design) used to infer 

population structure, while the chapter that follows introduces, describes and discusses the 

genetic variation, as measured by allozyme polymorphism, found in P. indicus from east 

Africa. Likewise chapter three describes the variability of genomic DNA as detected by 

3 kindly provided by the University of Songala in Thailand 
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polymerase chain reaction of random primers, while chapter four details sequencing analysis 

of both, nuclear and mitochondrial DNA. A synthesis and comments on the significance of 

these aspects of P. indicus genetic variation is presented in chapter five. 
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Chapter Two 

Allozymes 

2.1 Introduction 

As mentioned in chapter one (Table 1.2, page 14), population genetic studies have 

traditionally been based on the analysis of iso-enzyme allelic variation. Investigations of 

allozymes by starch gel electrophoresis have proved informative in elucidating genetic 

structure and phylogenetic history of many marine invertebrates (Beamount, 1994). The aim 

was to understand how various isozymes could reveal genomic variability in Penaeus indicus 

under the assumption of dealing with panmictic populations. However, as noted by Hillis and 

Moritz (1996), and by Contrafatto et al. (1994), allozyme electrophoresis appears to be most 

informative when elucidating inter-specific relationships. Hence, this methodology was 

chosen for the present study as a means of testing the Hardy-Weinberg equilibrium and as a 

useful means of providing overall background information on Penaeus indicus. The intention 

was to subsequently integrate this information with more sensitive molecular methods, which 

are detailed in the next two chapters. 

2.2 Materials 

The populations and specimens used for the analysis of allozyme variation were also utilised 

for the extraction of genomic and mitochondrial DNA detailed in the next two chapters. 

2.2.1 The Populations Studied 

Specimens of Penaeus indicus (Fig. 2.1) were obtained pre-frozen from commercial fisheries 

operating on the Sofala banks, off the Zambesi river (20° 00' S, 35° 00' E), in Mozambique 

and from Tanzania and Oman (the exact localities in the latter two countries are unknown). 

Specimens from Mahajanga (15°30' S, 46°30' E) (Madagascar) were obtained fresh from 

local commercial trawlers. Specimens from St. Lucia (28°30' S, 32°30' E) in KwaZulu-Natal 

(South Africa) were collected using a beam trawl and immediately frozen on dry ice (-70°C), 

before being delivered to the laboratory of the School of Life and Environmental Sciences , 
University of Natal. Small portions of the abdominal pleopods were stored in an ultra deep 
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freezer (Nuaire, UK) at -78°C. A detailed list of the 261 Penaeus indicus specimens studied, 

and the localities is provided in table 2.1 

Fig 2.1 - Digital photograph of specimen of Penaeus indicus collected in South African 

waters. a: 3rd maxilliped; b: rostrum. 

Table 2.1 - Sampling sites and number of specimens collected for the five samples of 

Penaeus indicus surveyed in this investigation. 

Pop I () Site of collection ~o of indh iduals 

1 South Mrica St. Lucia 50 
2 Mozambique Maputo 51 
3 Tanzania Dar es Salam 50 
4 Madagascar Nosi Be 50 
5 Oman Muscat 60 
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2.3 Methods 

Extracts of abdominal muscle (2:1; tissue mass: grinding buffer volume) were prepared by 

weighing approximately 4 g of tissue, adding 2 ml of 0.04 % aq. B-Mercaptoethanol, and then 

homog~nising the tissue with a glass pestle in a small plastic mortar kept on ice. Ground glass 

was sprinkled on each sample in order to assist tissue disruption. The samples of 

homogenised muscle tissue were transferred to 50 ml centrifuge tubes and stored on ice in the 

cold (5°C) until centrifugation at 8000g for 30 min at 4°C (Beckman Model CP centrifuge). 

The supernatant was then transferred to a 1,5 ml Eppendorff tubes and stored at -78°C for 

further analysis. Twenty-six loci (Table 2.2) were tested to determine which enzyme was 

active enough to allow reliable scoring and which electrophoretic media and buffers yielded 

the best resolution. Tissue homogenates were subjected to electrophoresis on non-commercial 

starch gels, using four buffer types, TC7, TEC 7.9, TEB 8.4, LIOR which had been tested 

successfully with P. monodon tissue (Ballment et al., 1994; see Appendix ITA). 

Table 2.2 - Enzymes used in this investigation, their enzyme nomenclature, reference number 

(E. C.) numbers and activity observed during a preliminary survey of 

appropriate buffer systems. 

En .. yme FilII ,\(fllle E.C Bl~ffel' Actil'jT), during SUrl'ey 
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Gels were · prepared at a 13 % concentration with all buffers used, liquefied, degassed and 

finally poured into a horizontal Perspex mould (210 mm X 136mm X 8mm) covered with a 

heavy glass plate and allowed to set o~ernight at room temperature. The glass cover was then 

removed, the gel trimmed to remove starch which had overflowed onto the sides of the mould, 

and cut across its width, 4 cm from one of the short sides. Pieces of chromatography paper 

wicks (lOmm X 3mm, Whatman No.3) were inserted in the Eppendorftubes to absorb part of 

each homogenate and then inserted next to one another along the cut in the gel. Gels were 

then placed on trays of buffer (in a cold room) at 5-8 °C and cuts of buffer-soaked sponge­

cloth were used as electrophoretic wicks. Voltage varied with the type of buffer uses (see 

Appendix IIA for details on media and volts applied). After five hours, gels were removed, 

placed on a large sheet of perspex and sliced into four or five sheets of 1.4 mm thickness. In 

order to produce an even surface on each slice, a slight downward pressure was applied to the 

gel during slicing by positioning a piece of glass-plate on the top of the gel. Slices were 

obtained by drawing through the gel a 0.5 mm diameter aluminium wire, kept under tension, 

and resting on rulers placed on both side of the gel. 

Staining solutions were prepared using standard recipes (see Appendix lIB modified from 

Harris and Hopkinson, 1976). These were applied to the slices as solutions in molten agar (10 

ml of stain solution plus 10 ml of aqueous 1.5 % agar, at 60°C, per gel slice) or poured on the 

gel in a shallow container (50 ml of buffer solution per gel slice). After staining with the 

appropriate substrate for each enzyme tested, a varying number of bands appeared in the lanes 

corresponding to the individual extracts. 

These bands or isozymes may correspond to the following interpretations: 

1. Products of the expression of several genes at several loci; 

2. Products of the expression of several alleles of a given gene at a given locus; 

3. Molecules produced by conformational changes of a given protein molecule; 

4. Molecule synthesised by a given gene or group of genes, which have undergone various post­

translational transformations. 

Finally, in order to allow reproducible scoring and to identify less intense bands, 

electromorphs showing enzymatic activity were photographed with a digital camera model 

244 (Sony, Japan) and each image was analysed tlsing an image editor (Adobe Photoshop 

5.0). With this software, each picture, representing a particular locus, was converted from 24-

bit colour to greyscale, adjusted in contrast and exposure after which a zymogram was 

constructed. 
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2.3.1 Data analysis 

As described in the previous section, electrophoresis of 26 enzymes (Table 2.2, page 27) was 

carried out on 14 % non-commercial starch gelsl
. Details of electrophoresis and staining 

techniques are given in Appendix lIB. Zymograms were constructed to determine how many 

chromosomal genes, or rather how many loci, were responsible for the observed pattern, and 

how this pattern could be explained in terms of individual genotypes. Loci were then 

subdivided into monomorphic and polymorphic, using the frequencies of different alleles of 

each type. Loci were considered polymorphic if more than one genotype was present 

according to Clark (Heydrick, 1999). Although polymorphic loci are generally considered 

more informative as they allow testing hypotheses on evolutionary forces, monomorphic loci 

were not neglected because they provide an estimate of the real population heterozygosities 

(Nei, 1987). Allele frequencies were estimated from zymograms assuming codominant 

expression and selective neutrality. To compute basic population genetic summary statistics 

such as, allele frequency, gene diversity, genetic distance, F -statistics and multilocus 

structure, the computer programmes POPGENE version 3.1 (Yeh and Yang, 1999) and F­

STAT version 2.9.3.1 (Goudet, 1995) were chosen. Hardy-Weinberg eqUilibrium was tested 

. by computing expected genotypic frequencies, under the assumption of random mating, using 

the algorithm of Levene (1949). Significance for Hardy-Weinberg equilibrium at each locus 

was tested by chi-square (:i). Estimates of F
1S 

as a measure of heterozygote deficiency or 

excess (Wright, 1978) were also computed. 

Genetic distances were computed using Neils unbiased (1978) estimates of heterozygosity and 

were used to carry out cluster analysis by the Unweighted Pair Group Method with Averages 

(UPGMA) which was presented graphically in the form of phenograms. Fixation index values 

across samples (Fst, Fis and FiJ were calculated following Nei (1987) and Weir and 

Cockerham estimators (1984) of gene diversities and differentiation as well as to test for 

genotypic disequilibrium. The statistic used to test for linkage disequilibrium between pairs of 

loci was the log-likelihood ratio. The p-value of the test is obtained as follows. Genotypes at 

any two loci are randomly associated a number of times and the statistic is recalculated on the 

randomised data set. The p-value is then estimated as the proportion of values, calculated 

from the randomised data sets that are greater or equal to those observed. The parameters Ho, 

I Personal communication, Dr. G. K. Campbell, School of Life and Environmental Sciences University of Natal, 
Durban . . 

29 



Hs, Ht, Dst, Dst', Ht', Gst, Gst' and Gis (Nei, 1973) were estimated for each locus and overall 

for all gene loci. All the equations used here rely on genotypic, rather than allele numbers, and 

are identified as follows. 

• Ho: observed proportion ofheterozygotes. 

• Hs : within sample gene diversity. 

• Ht : overall gene diversity 

• Dst : gene diversity among samples. 

Thereafter, the multilocus Weir and Cockerham (1984) estimator ofFsT (theta, 4» between all 

pairs of samples was calculated. Confidence intervals were based on bootstrapping, which 

randomly re-sampled (10 000 replicates) all loci analysed. Pairwise F STs were calculated for 

each replicate and sorted in ascending order. The significance levels (Rice, 1989) were re­

adjusted over the number of pair-wise comparisons made: hence the a levels were 0.005 and 

0.001. The so-called "Nm", which in population genetic represents the number of migrant per 

generation (Heydrick, 1999), is normally output simply as a function of pairwise F ST, namely 

1/(4 FST) - 114. In many cases, however, the assumptions necessary to transform FST into a 

number of migrants are not fulfilled (Whitlock and McCauley, 1999). This was particularly 

the case in this study that dealt with organisms whose dispersal and migration can occur at 

different life stages and, therefore, are subjected to many evolutionary variables. Ultimately, 

this can influence the outcome of the model under investigation (Kimura 1983; Wright, 

1969). Consequently calculations of these values were not applied to the present research. 

2.4 Results 

Penaeus indicus populations along the E~st Coast of Africa had never been screened for 

polymorphism at allozyme loci. For this reason, a total of 26 loci (Table 2.2, page 27) were 

tested by starch gel electrophoresis in order to detect enzymatic activity of abdominal tissue 

from the 261 individuals collected. 

After several attempts to integrate the best buffer and running conditions, 20 loci were found 

to be consistently active and well resolved. Three of these were expressions of two distinct 

gene products, MDH and IDH, whereas two loci expressed MPI. These loci were chosen for 

routine use in estimating protein polymorphism in the five populations of P. indicus studied 

(Table 2.2, page 27). 
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Because of excessive substrate activity in the gels, it was not possible to score the GPI locus, 

while variation on loci IDH2 and LP was not genetically interpretable, owing to inconsistency 

in banding patterns, even among replicates on the same gel. A measure of inconsistent activity 

was generally noticed also between samples loaded onto the same gel. Initially, each sample 

was applied more than once in the same place on the gel, allowing for absorption into the 

starch between successive sample applications. However, this method, which improved 

staining intensity, was only useful in cases of widely separated alleles. 

Simple, single banding patterns were usually observed for homozygotes, and either two or 

three bands were observed for heterozygotes. However, SDH and PGM zones were often 

accompanied by secondary banding i.e. a triple banding pattern, typical of dimer molecules 

was observed. Only four loci (LDH, LGG, MPI2, MDH1) of the 20 loci screened (Fig 2.2), 

displayed polymorphism at a level of 0.99 percent level frequency of "most common allele" 

(Table 2.3). 

Table 2.3 - Polymorphic loci in P. indicus: overall observed number of alleles (na) and 

effective number of alleles (ne) (Kimura and Crow, 1964). Shannon's 

information index (I) (Lewontin, 1972). Only polymorphic Loci are presented, 

but calculations include monomorphic loci. Sample size calculations are based 

on number of alleles while table presents number of genotypes. 

Locus Sample Size na nc I 

LDH 
LGG 
MDH 
MPI 

Mean 
St. Dev 

261 
261 
261 
261 

261 

2 
2 
2 
3 

1.2500 
0.5501 

1.9895 0.6905 
1.07l3 0.1500 
1.0351 0.0871 
1.9647 0.7655 

1.1038 0.0847 
0.2994 0.2235 
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Figure 2.2 - Examples of aUozyme migrations on starch gel of the four polymorphic loci and 

genotype interpretations (see table 2.2 for acronyms). 
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The remaining loci (ALD, HK, LP, LT, LA, LV, eK, AK, IDHl, PGD, PGM, FBP, ME, SDH, 

XDH, MPH and MDH2) were monomorphic with one or more alleles present at a frequency higher 

than 0.99 in all the individuals studied. Overall, the percentage of polymorphic loci varied from 15 

% to 20 %. All four polymorphic loci had mean alleles frequencies per locus ranging between 1.27 

and 1.57 (SE 0.20); observed mean heterozygosities per locus ranged from 0.048 to 0.058 (Table 

2.4). 

Table 2.4 - Overall observed and expected homozygosity and heterozygosity in P. indicus 

computed using Levene (1949) and Nei (1973) indices. Only values of polymorphic 

loci are reported. 

Locus SampJ Obs_Hom Obs_Het Exp_Hom Exp_Het :\ci AH_Het 
c Size 

LDH 261 0.5326 0.4674 0.5017 0.4983 0.4974 0.4824 
LGG 261 0.9310 0.0690 0.9333 0.0667 0.0666 0.0684 
MDH 261 0.9655 0.0345 0.9660 0~0340 0.0339 0.0345 
MPI 261 0.5096 · 0.4904 0.5080 0.4920 0.4910 0.4772 
Mean 261 0.9469 0~0531 0.9455 0.0545 0.0544 0.0531 
St. dey 0.1467 0.1467 0.1516 0.1516 0.1513 0.1469 

These results are similar to those found for several other species of Penaeus and conform to 

the finding of Mulley and Latter (1980) who described an extremely low heterozygosity in 13 

Penaeus species they analysed. Such low frequencies ranged from 0.06 to 0.03, although the 

analysis did not include Penaeus indicus. Forbes et aZ., (1999) recorded very similar results, 

with mean heterozygosities ranging from 0.8 to 0.01 in five samples of Penaeus monodon 

collected from different locations along the east coast of Africa, although their analysis 

included only selected polymorphic loci. 

Allele frequencies at the four polymorphic loci from the present study did not show a 

significant departure from Hardy-Weinberg equilibrium (Appendix lIe). Appendix lIe also 

lists data for the LGG locus, where the most common allele was allele B however in the 

samples listed above some individuals showed the presence ofheterozygotes Be. It should be 

noted that this allele (e) was not found in the Oman population for which several additional 

individuals (approx. 20) were also screened for that locus (Fig 2.2). Appendix lIe also lists 

other details of allele frequencies, homozygosity and heterozygosity levels for all 
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polymorphic loci. No significant values of linkage disequilibrium were recorded among 

pairwise comparisons of loci (Table 2.5 - section A). The within sample gene diversity was 

low (Hs = 0.074), the overall gene diversity (Ht) and the amount of gene diversity among 

samples (DsV were respectively 0.078 and 0.004. Finally, the estimator ofFst, the measure of 

heteroZygote deficit in a population, or Gst (Wright 1970), computed to a value of 0.056 

(Table 2.5- section B). 

Table 2.5- Section A: p-value for genotypic disequilibrium based on 4620 permutations. 

Adjusted p-value for 5 % nominal level is 0.000216 (Rice, 1989). Section B: 

Nei's estimation of heterozygosity 

Section A: 

Section B: 

LDH 0.468 
LGG 0.078 
MDH 0.036 
MPI 0.489 

Overall 0.073 

Loci tested p-yalues 

0.487 
0.076 

LDH X AAT 
LDHXLGG 
LDH X MDH 
LDHXMPI 

LGG X MDH 
LGGXMPI 
MDH X MPI 

0.497 0.010 
0.075 0.000 

0.035 - 0.035 0.000 
0.482 0.489 0.007 

0.074 0.078 0.004 

0.83117 
0.60087 
0.3744 
0.29892 
0.00022 
0.75844 
0.52749 

0.013 0.500 
0.000 0.075 
0.001 0.035 
0.009 0.491 

0.005 0.079 

0.020 ·0.025 0.040 
-0.002 -0.003 -0.036 
0.012 0.015 -0.028 
0.014 0.018 -0.016 

0.056 0.069 0.005 

The index Fis , the measure of the deviation from Hardy-Weinberg equilibrium within sub­

populations, although not statistically significant, was found to be negative at the loci LGG, 

MDH and MPI. Fst, defined from Nei.(1987) as Gst, was 0.024 (Table 2.6- section A) and in 

accordance with Forbes at al. (1999). 
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Table 2.6- Summary ofF-statistics for all polymorphic loci (Section A) •. Section B: 

p-values obtained from 1000 permutations ofFst pairwise values. Adjusted 

significance level (5%) for multiple comparisons: 0.005 (Rice, 1989) 

Section A 

Locus Sample Size Fi~ Fit F~t 

LDH 261 0.0307 0.0580 0.0282 
LGG 261 -0.0488 -0.0372 0.0111 
MDH 261 -0.0380 -0.0182 0.0191 
MPI 261 -0.0256 -0.0032 0.0219 

Mean 261 -0.0019 0.0222 0.0240 

Section B 

Pop ID MZ TZ l\lD OM 

ZA 0.78800 0.22800 0.73400 0.00100** 
MZ 0.61100 0.60100 0.00900 
TZ 0.065000.00200* 
MD 0.00600 

p-value ofFst pairwise comparison among populations (Weir and Cockerham, 1984) showed 

a significant level of genetic differentiation at the 0.005 level, between Oman and South 

Africa and between Oman and Tanzania (Table 2.6- section B). However, it is important to 

point out that the major weight in the output of the Fst analysis is given by the two loci MDH 

and LGG. These genes were in fact recorded as monomorphic in the Oman population while 

only MDH was found to be monomorphic in Tanzanian samples (see Appendix IIC). 

Nei's original measure of genetic distance (Nei, 1978) ranged from 0.0001 to 0.0056 and are 

presented in table 2.7, while the phenogram (Fig. 2.3) shows the presence of the cluster 

combining South Africa, Mozambique and Tanzania, while the Madagascar and Oman 

samples separate from this group at higher clustering levels. 
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Table 2.7- Nei's original measures of genetic identity (Nei, 1978) and genetic distance. 

Nei's genetic identity (above diagonal) and genetic distance 

(below diagonal). 

Pop 10 ZA 1\IZ TZ 1\10 01\1 

ZA ***** 0.9995 0.9993 0.9996 0.9944 
MZ 0.0005 ***** 0.9997 0.9999 0.9973 
TZ 0.0007 0.0003 ***** 0.9996 0.9967 
MD 0.0004 0.0001 0.0004 ***** 0.9968 
OM 0.0056 0.0027 0.0033 0.0032 ***** 

Sout hAfrica 

0.0056 
I 

0.0042 
I 

Madagascar 

0.0028 
I 

Genetic Distance 

Oman 

0.0014 
I 

Figure 2.3 - UPGMA phenogram based on Nei's (1978) genetic distance. 

o 
I 

Mozambique 

Tanzania 



In conclusion, although allozymes were an important source of information in detecting 

polymorphism levels and to test possible departure from Hardy-Weinberg equilibrium, they 

proved not to be variable enough to reliably detect any population structure of P. indicus 

along the East coast of Africa. 

2.5 Discussion 

The application of allozyme electrophoresis is no longer the fIrst choice when testing the 

hypothesis of panmixia in natural populations, especially in cases where highly dispersing 

larval stages are present (Palumbi, 1999). However, in this research, allozymes have been 

helpful at least in detecting Hardy-Weinberg eqUilibrium. This technique has been by far the 

most utilised during the past 30 years or so and offers a reliable and relatively inexpensive 

approach to gaining genotypic information. The ease with which non-commercial starch can 

be prepared and the ability to test different enzymatic reactions in a single electrophoretic run, 

make this biochemical approach an important source of information when dealing with large 

sample numbers. 

The most interesting feature revealed in the present study was the low level of polymorphism 

(20 %). Most enzymes showed the presence of a single allele fIxed in all populations across 

all loci screened. However, the degree of polymorphism that has been recorded in this 

research is not uncommon in studies on penaeids (Mulley and Latter, 1980; RedfIeld et a!. , 

1980; Ko et a!., 1983; Benzie et a!. , 1992; Forbes et aI., 1999). Allozyme polymorphism has 

been studied in different regions of the world (East coast of America, South East Asia, East 

coast of Africa, Australia). Several species, P. monodon, P. japonicus, P. merguensis, P. 

indicus, P. semisulcatus, to cite some which have an economical importance, have been the 

target of such studies. Although wide geographical studies of African P. indicus have not 

been published yet (Benzie, 2000), allozyme variation of a single population of P. indicus 

from Kenya has been reported by Ko et a1. (1983). Their results based on a mean number of 

20 individuals and 29 loci, showed a similar pattern to that detected by the present research. 

They estimated a low level of polymorphism of only four loci and mean heterozygosities of 

0.026. Based on these reports one could hypothesise that the genus Penaeus has arisen fairly 

recently and speciation events happened to evolve quite rapidly compare to other marine 

organisms. Alternatively, a likely explanation of the degree of polymorphism encountered in 

penaeidae could reflect their generalist adaptation to the ocean environment. Species that 
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inhabit three different ecological niches during their life cycle, could be characterised by 

monomorphic loci due to selection pressure (Mulley and Latter, 1980). Such a pattern could 

also be achieved in the case that populations were subjected to periodic crashes, bottlenecks 

or founder events, resulting in reduction of population sizes (Heydrick, 1999). In the case of 

reduction of the effective population size, the neutral theory of Kimura (see chapter one, 

section 1.5) predicts a relatively fast fixation of alleles. These alleles, if present at high 

frequency in the genetic pool of the population, reach fixation in spite of the degree of 

selection acting on these loci. However, some species, such as Penaeus plebe jus, complete 

. their life cycle in oceanic waters so that the survival of breeding stocks would not have been 

endangered by population bottleneck if postlarvae were prevented from entering estuaries by 

climatic upheavals (Racek, 1970; Racek and Dall, 1965). In P. plebejus, a relatively low 

degree of polymorphism has also been recorded (Mulley and Latter, 1980). With this scenario 

Latter (1980) thought it unlikely that the genetic variation of penaeid prawns could be 

attributed to periodic population crashes. 

A more parsimonious explanation for the extremely low levels of allozyme variation 

generally observed in Penaeidae is the hypothesis of selective elimination of mutational 

variation presented by Mulley and Latter (1980). This is applicable only in the case of 

relatively large effective population size, maintained for long periods, in accordance with the 

neutral theory (Kimura, 1983; see also chapter one, section 1.5.2). 

The bottleneck hypothesis assumes that genetic drift is the major causal force of variability 

and, hence, a neutralist vision of evolution. On the other hand, selection is the major force 

implicitly advocated by Mulley and Latter (1980): a classic neo-Darwinian view. Both these 

factors are equally possible and present analytical methods do not have the power to 

discriminate between these two evolutionary forces. This issue is further discussed in chapter 

five. 

F or the limited number of species where data are available there is a strong positive 

correlation between duration of the larval stage and the realised dispersal distance (Jackson, 

1986). It is generally believed that species with long larval periods disperse widely on ocean 

currents (Barber et al., 2002). However there is increasingly evidence that larvae fail to fully 

achieve their dispersal capability (Briggs, 1984; Scheltema, 1971, 1986; Jackson, 1986; 

Burton and Lee, 1994; Swearer et al., 1999) and local retention of larval stages may be high 

in conjunction with local currents and wind direction (Barber et al., 2002). The combined 
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effects of these oceanographic mechanisms as well as a complex set of ecological and genetic 

processes, acting across a range of spatial and temporal time scale would determine the 

population structure within and among groups of individuals (Grosberg and Cunningha, 

1999). For example, Forbes and Benzie (1999) analysed five populations of P. monodon 

collected from South Africa and Madagascar. Screening only polymorphic loci, they detected 

no significant differentiation among those samples (Fst = 0.012). These authors attributed this 

genetic pattern to significant reduction of effective population size during Pleistocene glacial 

periods. The marine current patterns were different from those of today and oceans receded 

from tidal lakes and river estuaries (Figure 2.4) thus reducing the availability of suitable 

habitat for the life cycle to be completed. 

Figure 2.4 - Pleistocene global ocean currents (upper map). Red arrows: warm currents; blue 

arrows: cold currents. Average continental shelf (light blue) during Pleistocene 

glaciations in the IWP (lower map) 
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In this research, tests of population structure with F st values in pairwise comparisons showed 

a low level of inter-population differentiation: overall Fst was 0.025. P-values of pairwise 

comparison were found to be significant in the case of Oman samples in comparison with 

Tanzania and South Africa, but were below 0.009 when compared with Madagascar and 

Mozambique, indicating perhaps a genetic differentiation of the' sample from the South 

Arabian Peninsula from populations of East Africa. The Oman samples displayed 

monomorphic LGG and MDH loci, whereas all other specimens (except Tanzania at MDH 

locus) exhibited two more alleles at these loci, although these were detected at very low 

frequencies. This genetic pattern is suggestive of past gene flow restriction, although this does 

not necessarily apply to the present day gene exchange. Looking at figure 2.4, major warm 

ocean currents move southward from the Arabian Peninsula and thus would have not 

prevented dispersal of larvae towards the East coast of Africa. Hence this could be an 

indication that other evolutionary forces played a major role in determining this recorded 

scenario. Within the East African coast no significant population structure has been revealed 

among Mozambique, Tanzania and Madagascar, while a pattern conforming to an isolation by 

distance model is recognised in the significant statistical value of South African samples 

towards Tanzania. 

Sometimes population sub-structuring is not obvious, and as a result, a sample may consist of 

heterogeneous sub-samples from populations. For example, sub-populations may be separated 

by subtle physical or ecological barriers that limit movement between groups or sampling 

activity might not be able to discern local isolated groups. If there are fairly large differences 

in allelic frequencies among these sub-samples, then when they are lumped together, there 

will be a net of deficiency of heterozygotes. In this research, the Fis index revealed a general 

excess ofheterozygotes at most polymorphic loci (LGG, MDH, and MPI) as an indication at a 

sub-population level of deviation from Hardy-Weinberg equilibrium. Although this value was 

found to be not statistically significant, such a result is quite unexpected in this kind of 

organism where the hypothesis of panmixia is the normal rule. As a more likely explanation 

of this result, one is left with a lack of sampling effort per population, which might have 

influenced the outcome of the analysis. However, in the case of population bottlenecks the 

most characteristic effect experienced by the genome of the organism would be the reduction 

of the expected number of alleles compared with the expected heterozygosity (Nei et al., 

1975). Rare alleles do not contribute significantly to the heterozygosity of a population and 

are more likely to be lost through the action of selection and genetic drift. Therefore 
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conditional on the low number of alleles observed in this study, the recorded excess of 

heterozygosity could be the result of population, which did not reach yet a mutation-drift 

equilibrium state. 

P. indicus is a widely dispersed species and its range is probably, together with that of P. 

monodon, the widest recorded for any Penaeidae species in the IWP region. If these samples 

are representative of the surveyed populations, the general lack of population structure along 

the African east coast may be an indication that all specimens derived from the same 

breeding population. If cladogenetic events in the Indo-West Pacific diversity triangle 

involved drastic reduction of effective breeding population sizes (founder effect) and P. 

indicus expanded towards the west by progressive colonisation, a lack of population 

structure would be expected. This is because a population may descend from a small number 

of individuals either through founder events or because of population crashes (bottlenecks). 

These events can lead to random genetic changes altering allelic frequencies of the ancestral 

population. The results of this would be lower heterozygosity and fewer alleles, as in the 

case of the Oman popUlation. It is important to point out, however, that if the alleles are 

equal in frequency, the founder population size need not be very large in order to afford a 

high probability of inclusion of both alleles. If the frequencies of two alleles in the parental 

population are close to, say 0.95 and 0.05, then the founder number needs to be 30 or greater 

to give a 95 % chance of including both alleles (Heydrick, 1999). In general the founder 

population size has a large effect on the number of alleles in a population because founding 

events often eliminate alleles of low frequency. The average heterozygosity, on the other 

hand, is influenced primarily by the rate of popUlation growth after the founding event, 

rather than by the number of founder individuals. The reduction of heterozygosity in each 

generation is dictated by the finite size of the population2• After a founder event through 

small founding numbers, if population growth is slow, heterozygosity is lost at each 

generation, until the population grows to a substantial size. It is possible that the rate of 

growth per generation in the east African samples could have been substantially high due to 

various ecological factors, such as lack of competition and/or availability of suitable 

habitats. Finally, it is also feasible that polymorphism at these two loci is maintained by 

balancing selection, as discussed earlier. Allozymes analysis did not succeed in revealing 

any substantial population structuring in East African samples. Therefore, it is possible to 

suggest that this technique was not sufficiently sensitive or sampling effort extensive enough - --­

to detect a hypothetical cryptic population structure. 
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Chapter three 

~olecular analysis: 

Random Amplification of Polymorphic DNA (RAPD) 

3.1 Introduction 

The suspected low sensitivity of allozyme analysis was highlighted in the previous chapter, 

based on the inconsistent population genetic structure demonstrated by this method. As a 

result molecular methods were utilised in subsequent studies. A lack of suitable molecular 

markers, such as primers from micro satellite genomic libraries for P. indicus, dictated the 

choice of random amplification of nuclear DNA, which had already been successful in 

providing useful information on population genetic structure of some penaeids (Meruane et 

ai., 1997; Tassanakajon et ai., 1997). 

3.2 Materials 

All populations analysed by allozyme electrophoreses (Table 2.1 , page 26) were also 

investigated in this molecular study, DNA extraction was, however, carried out on a total of 

50 specimens, 10 specimens per population. 

3.3 Methods 

3.3.1 DNA extraction 

DNA extraction was carried out by the following two different protocols: the 

Kessing method and the 

CT AB method. 

Quantitative comparison between the DNA yielded by the two techniques was made by means 

of spectrophotometric readings (Beckman DV 530) in order to establish the most efficient 

methodology . 
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Kessing's protocol: 

Samples of muscle tissue were ground with small Teflon pestles in microcentrifuge tubes 

containing 100 mM EDTA, 10 mM TRIS (PH 7.5), 1 % SDS, and 1 ~g/ml of Proteinase K. 

Samples were then incubated overnight at 55°C and extracted twice with 

phenol/chloroform/isoamyl alcohol (24: 24: 1). The extracted DNA was precipitated twice 

with 100 % ethanol, once with 50 % ethanol and centrifuged at 4 °C in a Sepatech 

micro centrifuge (Heraeus, Switzerland) for 1.5 minutes at 13 000 g. The solution was then left 

at -78°C for half an hour to aid precipitation of the DNA. The samples were then dried in a 

vacuum centrifuge and resuspended in TE buffer (10 mIl M Tris, at pH 7.69- 8.0 and 2 mI 

0.5 M EDTA at pH 8.0-80 ml H20). 

CT AB: modified extraction protocol 

Abdominal muscle (50 mg) was placed in Eppendorf tubes with 500 ~l of extraction buffer 

(100 mM TRIS, 50 mM EDTA, 1 % SDS at pH 8.0). These were heated at 65°C for 30 

minutes, 25 ~l proteinase K (10 mg/ml) was then added and incubated at 55°C overnight. 

Following this incubation, 80 ~l of 5 M NaCl was then added, to a total volume of 605 ~l, and 

gently swirled to mix the solution. Thereafter 75 ~l of warmed (65°C) C-Tab solution (10 %) 

were added and the mixture incubated at 65°C for an hour. The DNA was extracted from this 

solution with an equal volume (700 ~l) of chloroform: isoamyl alcohol (24: 20). The aqueous 

phase (500 ~l) obtained from this extraction was transferred to a fresh tube and precipitated in 

1 ml cold 100 % ethanol for 12 hr at -78°C. This was then centrifuged (13 000 g in a 

Sepatech microfuge) for 30 sec and washed by replacing the absolute ethanol with 1 ml of 70 

% ethanol. Tubes were then inverted on a paper towel for a few minutes; residual excess 

liquid was tapped off. Finally each tube was air dried overnight in a clean area at 37°C. The 

extracted DNA was subsequently resuspended in 100 ~l TE buffer or distilled water. Quantity 

and purity of the extracted products were examined spectrophotometrically and by 

electrophoretic separation on agarose gels. 
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3.3.2 Random Amplification of Polymorphic DNA (RAPD) 

In contrast to isozymes, RAPD (Welsh and Mc Clelland, 1990; Williams et ai., 1990) 

provides by far a more extensive sampling o,f the genome and, ideally, can generate unlimited 

numbers of loci for use in genetic analyses. The RAPD procedure employed in this study was 

not substantially modified from that originally described by Williams et ai. (1990). A total of 

20 single-stranded oligonucleotide primers (decamers in Kit A from Operon Technologies, 

U.S.A.) were utilised in a polymerase chain reaction (Lynch and Milligan, 1994) using 

genomic DNA as a template. Typically, one primer at a time is used by this technique and 

only 10-25 ng of genomic DNA is necessary for the reaction. If the primer binds to sites on 

different strands that are within about 3 kilobases (Kb) of each other, the region between the 

ends of the priming sites is amplified. Because this can occur at any number of locations 

within the genome for any given primer, more than one DNA fragment may result from a 

single chain reaction governed by one primer. The decamer primers employed for RAPD have 

G-C rich content ranging from 50 % to 70 %. Thereafter, amplified fragments can be 

separated from the reaction mixture by poly-acrylamide or agarose gel electrophoreses. 

The RAPD banding pattern is superficially similar to a multilocus minisatellite pattern in that 

it is generated by a number of loci. There is a problem in assigning bands to loci, co­

migration cannot readily be disregarded, and two bands of differing mobility may be the two 

alleles from the same locus. Although heterozygotes may have more bands on average then 

homozygotes, the presence of a band is considered a dominant characteristic since its 

sequence is also present, albeit in single dose, in heterozygotes. Therefore, heterozygotes 

cannot be scored nor can allele frequencies be estimated directly. 

3.3.3 Amplification 

Amplification reactions were performed in volumes of 25 ~l of reaction mix: containing 25 ng 

of DNA, 200 J.1M each dNTPs' 3.0 mM MgCI2 , 0.2 J.1M 10-mer primer, and 1.0 unit of Taq 

DNA polymerase (Perkin Helmer, Stoffel fragment, USA) which is a truncated version of the 

Taq polymerase. Truncated polymerases, marketed under various names, have missing amino 

acids in their N-terminal region. They have higher thermostability than other versions of Taq, 

and no 3' to 5' or 5' to 3' exonuclease activity. 
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Two types of thermal cyclers (Hybaid) were progr~ed for one initial denaturing stage of 

180 seconds, in order to separate the double stranded DNA. This was followed by 35 cycles 

of 45 seconds each at 94 oe, 45 seconds at 33 0 
/ 40°C, depending on the primer used, and 90 

seconds at 72°C. A fInal stage at 72 °C for 10 minutes ended the programme in or~er to allow 

the enzyme to complete amplifIcation of all amplifIed fragments. 

The reason for using two instruments lies in the fact that thennal cycler make use of different 

temperature transition speeds between different stages (fast, Sprint PCR and slow, Thennal 

·cycler). This could influence the reproducibility of the RAPD patterns because the enzyme 

may have specifIc time requirements in order to complete amplifIcation and transfer of heat to 

different Eppendorf tubes could be a further variable. Hence agarose gel band patterns 

produced by the two thermal cyclers were compared in tenns of band intensity and numbers at 

each locus. All the amplillcation products were analysed by electrophoresis in 1.4 % agarose 

gels (Sigma, USA) and detected by ethidium bromide staining (0.5 ~g/ml). 

In order to score the banding pattern produced by the amplifIcations, as in the case of 

allozyme analysis discussed in chapter two, digital images were taken of each gel and used as 

a record for data analysis (Figure 3.1, page 48). As a measure of band intensity, the grey level 

(RGB) of each band was digitally recorded. The eyedropper tool of Adobe Photoshop 

(version 5.0) was placed across the band in order to record its grey value. If the reading across 

the all band was between 200 and 300 the band was considered as present for the analysis. 

However sometimes one band would yield a lower intensity of 200 but because of its presence 

in other individuals within the same population was still recorded. Furthennore each band on 

the gel was digitally enhanced to achieve more reliable reading after the bands with 

unmatched grey scale « 200) value were discarded. Matrices of presence/absence of 

characters were then constructed. Band reproducibility was estimated as a proportion of 

individuals showing homologous bands in both replicates run on the two different PCR 

machines. 

3.3.4 Statistical Analysis 

F or statistical analysis of RAPD data, the amount and distribution of variability of the RAPD 

profIles obtained from the 50 individuals studied (Table 2.1, page 26) using 20 primers 

(OPAl - 20, Operon Technologies, USA) were used. Under the assumption that variation in 
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banding patterns represents allelic segregation at homologous and independent loci, each 

locus was treated as a two-allele system corresponding to the presence/absence of the 

amplified band. For each of the five populations, a matrix was constructed by coding presence 

of each band as 1 and absence as 0 (Appendix lIlA). 

These presence-absence data were then analysed in order to obtain an estimate of the degree 

of polymorphism (P) for each band (POPGENE, version 3.2) and to estimate divergence 

values among all pairs of individuals in each population using the FORTRAN programme 

RAPDdist. The latter also performed a bootstrapping procedure that generated 1000 distance 

matrices that were used as input to the programme Neighbour from the suite PHYLIP 3.5 

(Felsenstein, 1999) in order to construct a consensus tree (UPGMA clustering method). Most 

programmes that analyse matrices of RAPD patterns make the following assumptions 

regarding the inheritance and expression of RAPD polymorphisms among individuals in 

populations: RAPD bands are inherited as dominant alleles in a Mendelian fashion, 

individuals with a given amplified band are homozygous or heterozygous for a dominant 

allele whereas individuals without that band are homozygous recessive. Genotypes are 

assumed to be in Hardy-Weinberg equilibrium; the frequency q of the recessive allele at a 

locus is estimated as a square root of the frequency of homozygous recessive individuals and 

the frequency of p, the dominant allele consequently is estimated from 1 - q. 

The analysis was performed on a total of 50 individuals, under the assumption that a high 

number of RAPD loci may counterbalance the relatively low number of individuals and may, 

therefore reduce the sampling variation of divergence estimates (Nei, 1997). To estimate the 

variation attributable to intra and inter-population differences an AMOV A (Analysis of 

Molecular Variance) test (Excoffier et ai. , 1992) was performed using the computer software 

ARLEQUIN version 2.0 (Schneider et aI. , 2000). This utilises both frequency and sequence 

divergence between genotypes. The divergence between genotypes was estimated calculating 

the pairwise mean differences between haplotypes. 

This type of analysis is based on the assumption that all populations surveyed have the same 

mating pattern. In such a case, the data can be treated as RFLP markers and AMOVA 

becomes an appropriate test (Excoffier. 2001). For each level. the sum of the squared 

deviation (SSD), the mean squared deviation (MSD) and the variance component were 

calculated, thus partitioning the genotypic variance, rather than the variance of allele 
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· frequencies, as is the case for co-dominant markers. The variance component was then 

expressed as a percentage. The significance of the fixation index is tested using a non­

parametric permutation approach described by Excoffier et al. (1992) consisting of a process 

of permuting haplotypes, individuals, and populations or groups of populations. After each 

permutation round, re-computation of all statistics is performed to get their null distribution. 

Under this procedure the normality assumption, usual in analysis of variance tests, is no 

longer necessary nor is it necessary to assume equality of variance among populations or 

groups. Nevertheless it is not possible to compare these F-statistics to those inferred from co­

dominant markers, such as allozymes and micro satellites, because these are genotype 

correlations, whereas F -statistics refer to gene correlations for dominant markers (Excoffier et 

al., 1992). Pairwise F st values generated by the AMOV A were used to construct a matrix to 

test for the correlation between geographical distances and genetic distances using the 

programs IBD version 1.2, edited by Bohonak (2002). 

As a form of comparison inference methodology RAPD band diversity was also analysed 

with the approach of Borowsky (2000), who showed that band diversity is a simple function 

of the nucleotide diversity (1t) thus allowing for conversion of band survey data to equivalent 

measures of nucleotide diversity (Appendix IlIA). 

A phenotypic heterogeneity index, Phi (<Pe) was defined as the proportion of unmatched 

RAPD bands between two individuals randomly chosen from the population according to the 

following equation: 

<Pe = lin Li=l to n 2q? (1- q?) 

It follows (for details see Borowsky, 2000) that the nucleotide diversity index (1t) can be 

estimated as 1t = 6/5 <Pe (1- Tl) / m, where 1') = 0.38 is the estimated proportion of undetected 

loci for population sizes greater than 103 and m = 20 is the number of bases in the random 

primers used. 

3.4 Results 

The use of two thermal cyclers with the specific characteristic presented in chapter two, 

showed that a longer transition time between stages results in more consistent and 

reproducible banding pattern across all loci scored. The optimal program parameters for 

47 



amplification of P. indicus were 40 cycles of 5 seconds at 95 DC, 45 seconds at 34 DC to 40 

DC, and 150 seconds at 72 DC. This program is considerably different from the standard 

program recommended by Williams et. al. (1990). The 20-decamer primers chosen from Kit 

A (Operon Technologies), consistently amplified a total of64 scorable bands whose estimated 

sizes range from 200 to 1000 base pairs. The number of polymorphic sites ranged from 30 in 

the South African samples to 36 in the Mozambique samples, which had the highest 

percentage of polymorphisms (Table 3.1) (56 %). Each primer had between three and eight 

bands, with a mean of 5.2. Examples ofRAPD profiles generated by primer OPA-2, OPA-6 

and OPA-17 are shown in Fig 3.1. The Shannon Index (I) ranged from 0.39 to 0.42 showing 

very similar levels of intra-population diversity. Nei's analysis of gene diversity (GsJ in 

subdivided populations (Nei, 1987), averaged over all loci, was 0.12 (Table 3.2). 

Fig 3.1- Example of RAPD patterns obtained during screening stages for optimal annealing 
~emperature and DNA concentration. Respectively OPA2, OPA6, OPAI7. Presented 
In th~ ~gure also the. band scored after grey scale setting and computer generated 
restrICtIOn enzyme dIgests (pBR322 DNA). Arrow: OP A 17 bands present in the 
samples from Mozambique, Tanzania, Madagascar and Oman 



Table 3.1 - Number and percentage of polymorphic loci in the samples from five populations 
of P. indicus. 

Population ID Number of Percentage Polymorphic Loci 
Pol~ morphic Loci 

South Africa 30 46.88 
Mozambique 36 56.25 
Tanzania 34 . 53.12 
Madagascar 35 54.69 
Oman 32 50.00 

Table 3.2 - Nei's analysis of gene diversity in subdivided populations. 

Locus Sample Size Ht Hs Gst 
OPA02-1 40 0.4747 0.4747 0.0000 
OPA02-2 40 0.1314 0.0914 0.3044 
OPA02-3 40 0.2428 0.1828 0.2471 
OPA02-4 40 0.2069 0.1657 0.1991 
OPA02-5 40 0.2411 02196 0.0888 
OPA03-1 40 0.3325 02789 0.1612 
OPA03-2 40 0.4990 0.4949 0.0081 
OPA03-3 40 0.4571 0.4571 0.0000 
OPA04-4 40 0.0763 0.0706 0.0747 
OPA05-1 40 0.4571 0.4571 0.0000 
OPA05-3 40 0.4914 0.4692 0.0452 
OPA07-1 40 0.3164 02060 0.3490 
OPA08-1 40 0.4931 0.4828 0.0209 
OPA08-2 40 0.4571 0.4571 0.0000 
OPA09-1 40 0.2150 02050 0.0468 
OPA09-2 40 0.0503 0.0483 0.0398 
OPA09-3 40 0.4431 0.1126 0.7458 
OPAI0-1 40 0.3406 03146 0.0764 
OPA 1 0-2 40 0.1225 0.1189 0.0293 
OPAl 0-3 40 0.4989 0.3521 0.2943 
OPAll-1 40 0.3206 02491 0.2230 
OPAIl-2 40 0.4673 0.4556 0.0252 
OPAIl-3 40 0.5000 0.3041 0.3919 
OPAI1-4 40 0.4931 0.4828 0.0209 
OPAI2-1 40 0.3006 02815 0.0634 
OPAI2-2 40 0.4571 0.4571 0.0000 
OPAI2-3 40 0.4294 0.3743 0.1284 
OPA13-1 40 0.4497 0.3828 0.1487 
OPAI4-1 40 0.4603 0.4319 0.0616 
OPAI4-2 40 0.4571 0.4571 0.0000 
OPAl4-3 40 0.4963 0.4642 0.0648 
OPA 1 5-2 40 0.4760 0.4191 0.1195 
OPAl6-1 40 0.2352 0.1778 0.2440 
OPAI6-2 40 0.4070 02813 0.3088 
OPAI6-3 40 0.4725 0.4657 0.0145 
OPAI7-2 40 0.3588 0.3314 0.0765 
OPAI8-1 40 0.4721 0.4363 0.0758 
OPAI8-2 40 0.5000 0.4491 0.1019 
OPAI8-4 40 0.4772 0.3864 0.1903 
OPAI9-2 40 0.3949 02914 0.2619 
OPA20-1 40 0.4999 0.4864 0.0271 
OPA20-3 40 0.0522 0.0464 0.1101 

Mean 40 0.2457 0.2152 0.1242 
StDev 0.04417 0.0378 

f!F 
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Neils original measures of genetic identity and genetic distance (Nei, 1978) are shown in table 

3.3. The majority of the loci identified, displayed shared bands among all populations and the 

similarity were striking even between geographically well-separated populations. Exceptions 

were represented by loci generated by OP A 03, 05, 10, 11 and 17 where recorded bands 

unique to South African, Tanzania and Oman samples were identified. 

Genetic distances ranged from 0.018 to 0.097 the former value identifying the distance 

between Madagascar and Tanzania and the latter between Oman and South Africa. 

Table 3.3 - Neils original measures of genetic identity and genetic distance. 
Neils genetic identity (above diagonal) and genetic distance 
(below diagonal). 

Pop ID ZA \lZ TZ :\ID 0\1 

ZA **** 0.9631 0.9479 0.9255 0.9072 
MZ 0.0376 **** 0.9640 0.9476 0.9456 
TZ 0.0535 0.0367 **** 0.9767 0.9580 
MD 0.0774 0.0539 0.0236 **** 0.9815 
OM 0.0974 0.0559 0.0429 0.0187 **** 

In order to test the statistical significance of this variation, intra- and inter-population 

variances, as determined by the Analysis of Molecular Variance, was carried out. AMOVA 

confirmed a general lack of genetic differentiation but significantly isolated South Africa 

from Tanzania and Oman as well as Oman from Tanzania (Table 3.4). Genetic diversity 

among populations (d.f.= 4) was 6.34 %, whereas the percentage of intra population variation 

(d.f. = 20) was 93.66. 
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Table 3.4 - Analysis of molecular variance of five populations of P. indicus (ZA: South 
Africa; MZ: Mozambique; TZ: Tanzania; MD: Madagascar; OM: Oman) Distance 
method: Pairwise difference; Significance tests (5 %) based on 1000 permutations 
of population pairwise F ST 

POP ID ZA i\lZ TZ MD OM 

ZA 
MZ 
TZ 
MD 
OM 

0.00000 
0.01929 
0.12052** 
0.09780 
0.18803** 

0.00000 
0.00307 
0.05322 
0.00585 

0.00000 
0.01017 
0.10819* 

0.00000 
0.04605 0.00000 

F value was 0.063, however distance method of F s' pairwise comparisons among 
u u 

population was found to be significant (p=0.008 at a = 0.05) in the case of Oman and 

Tanzania towards South Africa as well as Tanzania towards Oman. This separation was 

confirmed by UPGMA clustering of Nei's (1978) genetic distances. This clustering is 

graphically represented by the dendrogram in figure 3.2. In this phenogram, a cluster of 

northern populations (Madagascar, Oman, Tanzania) appeared relatively well differentiated 

from the southern populations of Mozambique and South Africa. 

Increased genetic distances were significantly correlated with geographical distances in the 

case of South Africa towards the other populations (Z= 3.15, r = 0.64, p< 0.02; with 1000 

permutation, Mantel test) (Fig 3.3). 

r------ South Africa 

L...-____ Mozambique 

,..-------- Tanzania 

r---- Madagascar 

__________ -=== Oman 

0.05 Genetic Distance 0.00 

Figure 3.2 - UPGMA dendrogram based on Nei's (1978) genetic distances (NEIGHBOR 

procedure of PHYLIP Version 3.5). 
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Figure 3.3- Correlation between geographical distance in kilometres (X axis) and genetic 

distance (pairwise F sJ between South African samples of P. indicus and 

Mozambique, Tanzania, Madagascar and Oman populations. Significance values 

were estimated with Mantel test implemented in the ffin software (Bohonak, 

2002). 

Table 3.5 present the values of the phenotypic diversity index (0e) and nucleotide diversity 

(estimated from 0 e ), which ranged from 0.008 to 0.004 in Oman and South African 

samples respectively. It is interesting to notice the relation of the phenotypic diversity with 

geographical distance. Figure 3.4 depicts the variability in the five populations of P. indicus 

using the phenotypic index and nucleotide diversity. 
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Table 3.5 - Average phenotypic diversity, 0 e and nucleotide diversity 1t, 

from the 64 loci screened. 
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Figure 3.4 - The relation of nucleotide diversity (right axis) and phenotypic diversity (left axis) 
among the five populations ex axis) of P. indicus. Total standard error indicated in 
table 3.5 

3.5 Discussion 

RAPD is a feasible technical approach in cases where little is known about the genome of the 

species being investigated and allozyme variation is not informative. Highly polymorphic 

markers such as microsatellite loci available for P. monodon (Pmo 09, 27, 25) were tested for 

P. indicus in this research, but proved uninformative in spite of the efforts in attempting 
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· various experimental approaches. Microsatellites are isolated from penaeid prawns with great 

difficulty and are normally characterised by large size (100 repeats) and have degenerate 

ends, which make designing effective primers difficult (Benzie, 1999). 

In this study, RAPD profiles showed a low diversity index (Nei, 1987) among all 

populations surveyed with most of the bands (64) shared by most specimens, although some 

primers displayed enough polymorphism to indicate significant population structure. The 

reliability of the technique was tested with gel replicates for each primer, and 95 % of the 

bands were reproducible. The technique was however found to be extremely sensitive to 

different DNA concentrations among individuals and also dependent on the amplification 

efficiency of the PCR machine employed. Nonetheless, once the DNA concentrations were 

adjusted and an appropriate annealing temperature selected, this procedure allowed the 

quick identification of a number of population specific bands. 

Although Gst (0.12) is a good measure of the relative degree of gene differentiation among 

sub-populations it worth noticing that it is highly dependent on the value of HT (0.24) (Nei, 

1987). The relatively high value of HT depends on both Hs (0.21), the within population 

gene diversity, and Dst the gene diversity among population. In this research probably the 

low number of individuals analysed per population and the high variance of band variation 

within each sample inflated the values of gene diversity. However the high number of loci 

screened (polymorphic and monomorphic) should have been able to counterbalance this 

phenomenon (Nei, 1987). Although the F st values, calculated with pairwise distance 

methods, could not be compared with those obtained from allozyme analysis (see chapter 

three, section 3.1.4), they were more informative revealing a significant population structure 

within the east coast of Africa. South African, Tanzania and Oman samples were found to 

be significantly different among each other (p< 0.05). In agreement with these results, South 

Africa formed a cluster that also included Madagascar, Mozambique and Oman (Fig 3.2) 

but excluded Tanzania. What seems inconsistent, however, is the fact that the Mozambique 

and Madagascar populations did not appear to be significantly different from the other 

populations. However such an outcome could be the result of a founder effect centred in the 

Zambesi basin. As previously pointed out (Forbes et al., 1999), Pleistocene glaciations 

could have reduced not only the effective population sizes of penaeid species along the East 

Coast of Africa but also the availability of suitable habitats. In the Southern Hemisphere 

water temperatures were much lower and probably the range of distribution of Penaeus sp. 
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along the coast would have been reduced to a narrow band of latitude around the equator. 

Eventually the delta of the Zambesi may have represented a refuge for remaining 

populations of penaeid species, which subsequently spread southward and northward as the 

water temperature began to rise again during inter-glacial periods. Not enough time would 

have el~psed for mutations to accumulate and population divergence to occur even under 

restricted gene flow. 

Another characteristic observed was the high value of the intra-population variance 

component (97 %). Although this is not an uncommon result of the RAPD approach (Moya et 

ai., 2001; Sebastiani et aZ., 2001; Pearson et aZ., 2002), this variability could be the result of 

different statistical as well as evolutionary components. For example, same authors have 

pointed out that this variation could be artifactual, irrespective of annealing temperature and 

even after excluding the faintest bands and individuals with rarer profiles (perez et aZ., 1998). 

However, because these markers sample along the whole genome, they may be more likely to 

reflect temporal genetic drift caused by differential survival of early life stages. Additionally, 

the large fluctuations in recruitment commonly found in marine invertebrates, may 

occasionally result in populations expanding their boundaries, causing considerable inter­

population mixing, rather than a constant migration between demes. This intermittent level of 

migration is unlikely to result in temporally stable population units. Secondly, a population 

structure conducive to high variation, because it is composed of numerous demes, could be a 

plausible hypothesis for high intra-population variability levels (Wahlund effect). This 

phenomenon may not necessarily have been created by a precise biological factor, but also by 

sampling since most of the specimens in this investigation were obtained from fishing 
-

trawlers. Oceanic trawlers collect specimens from different locations that can be separated by 

as many as hundreds of metres and, probably, these organisms are mixed in the subsequent 

packaging processes. 

Ultimately the estimates of 7t for the five populations of P. indicus using the averaged RAPD 

data was 0.0066 (± 0.0012) and seemed to be correlated with distance (Table 3.5) in 

agreement with the pairwise Fst (Fig 3.3). This result proved that the heterogeneity index can 

be an useful parameter of the degree o~ differentiation of populations especially when a low 

number of individuals is taken into account. A simple correspondence between geographical 

distance and genetic distance, such as the one recorded in this investigation from RAPD data ---­

would not necessarily mean that the populations are at equilibrium. When a 
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population consists of an aggregate of more or less contiguous local populations that are 

internally panmictic, but that do not exchange migrants with the other ,sub populations, an 

analysis of genetic structure that includes both intra- and inter population comparisons can 

yield a significant relationship between genetic and geographic distances, despite the absence 

of gene flow among populations. 
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Chapter four 

Sequencing of Nuclear and mtDNA loci 

4.1 Materials 

The DNA collected from specimens of P. indicus from the east coast of Africa that was used 

for the RAPD analyses was also used for the sequencing of the Pi06 nuclear locus and for 

the COl mtDNA locus. A total of 25 individuals were sequenced at locus Pi06, comprising 

five samples from each population, while only 14 sequences were obtained for the 

mitochondrial survey. In addition, since it proved impossible to obtain P. indicus specimens 

from Thailand (Amornat, pers. comm.), it was decided to carry out an interspecific 

comparison of sister species and, therefore, 26 specimens of P. merguensis from Thailand 

were obtained. These were kindly supplied by the Marine Biology Department of the 

University of Songala (Thailand) in the guise of 30 sequences of COl each 558 bp long. 

These samples had been collected from different locations in the Gulf of Thailand and the 

Andaman Sea (Fig. 4.4) and four individuals of Penaeus silasi were also included as an out­

group for phylogenetic comparison. 

4.2 Methods 

4.2.1 Technical Hurdl~s of Nuclear Sequencing 

In diploid organisms, each locus of the nuclear genome can carry two different alleles on the 

homologous chromosomes and the major technical challenge for a researcher, is to be able 

to identify each allele of a particular nuclear gene. In the polymerase chain reaction (PCR), 

usually, both alleles of heterozygous individuals are amplified from a target locus, such that 

subsequent assays fail to distinguish between alternative genetic configurations. Further 

complications can arise if heterogeneous sequencing products are present as a result of the 

target locus belonging to paralogous genes with similar PCR priming sequences. It can 

happen, although rarely, that the PCR reaction itself generates recombinant DNA products 

from two amplifying alleles of a single gene in heterozygous individuals (Bradley and Hillis, 

1997). 
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Various approaches can be employed to circumvent these difficulties (Avise, 1994). One 

method h~s broad taxonomic applicability and involves cloning of PCR products through 

biological vectors and designing new primers for direct sequencing 9f the PCR products. 

When analysing such products homogeneity 'of sequences may be taken as an indication of 

homozygosity, whereas lack of congruence can indicate that a heterozygous sample was 

cloned and amplified (A vise, 2000). Furthermore, the possibility of nucleotide 

misincorporation by Taq polymerase in the preceding PCR step is of some concern, hence 

several clonrs from each individual should be sequenced and compared in order to distinguish 

true allelic vari~ts from PCR cloning artefacts (Bernardi et al., 1993). Consequently, this 

allows one to ignore possible mis-incorporations in phylogenetic analyses (Palumbi and 

Baker,1994). !iowever, as stated by Avise (1999), this is a costly and laborious methodology 

and a costJbenetit assessment indicated that this would not have been a worthwhile approach 

for this s~dy. 

Therefore, a "poor-man" approach to the resolution of this hurdle was specifically developed 

for this study. 1bis was based on the assumption that mislncorporation is a rare event (Beltran 

et al., submitted) occurring at random at a frequency of 0.001 or 0.002 (palumbi and Baker, 

1994). Therefore, the lowest frequency of incorporation errors in a short sequence of 500 bp 

can be esti.nlated at one base for every sequence analysed. Because Taq polymerase errors are 

random OCClUTences, any two erroneous singletons have a low probability of being observed 

in the same position. Hence, elimination of possibly misincorporated bases from the analyses 

may be achieved by a more or less arbitrary elimination of unique substitutions. Therefore, in 

this study of five individuals per population, any single-base substitution that occurred in only 

one individual was interpreted as a misincorporation and eliminated from the analysis. 

Furthermore, a sampled specific index was calculated as a measure of diversity .among the 

population. The assumption made in order to calculate this index was that sequences were 

representing both alleles in a random proportion. In this manner a private nucleotide index 

was defme5i as a measure of the frequency of the private nucleotides screened at the locus, 

b~ngin~ J.o a single popUlation. Intuitively, a higher value of this arbitrary index WOUlA be 

indi~tive of an isolated population. 
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4.2.2 The Pi06 Autosomal Locus 

Using DNA sequence data to study the effect of evolutionary forces on marine organisms is 

useful but there are several obstacles, both practical and conceptual, that will limit its 

applicability within the short term (Ford, 2002). The primary practical limitation for most 

molecular ecologists studying non-model organisms is to find appropriate genes to study. 

Mitochondrial genes are extensively used for sequencing because of their mutation rate and 

haploid manner of maternal inheritance, but in some cases the rate of evolution of these loci is 

not high enough to discern genetic structure of relatively close species (Baldwin et al., 1998). 

An innovative approach as a potential source of informative genes could be that of randomly, 

or systematically, sampling a species genome for loci that show evidence of positive selection 

or genetic drift (pogson, 1995). This author surveyed genetic variation in Atlantic cod, within 

and among populations, using a group of randomly cloned cDNA fragments, and found that 

random clones marked greater levels of inter-population diversity than allozyme loci, 

suggesting that major evolutionary forces acted on such sequences. Although this approach 

can fail to identify a particular gene functions it can, however, provide nuclear markers 

capable of differentiating populations (Pogson, 2001). Combined nuclear and mtDNA 

genealogies can help to distinguish different models of speciation and identify both, intra- and 

inter-specific gene flow (Wang et al., 2002; Hey, 1999). 

Also, RAPD markers have been successfully employed (Amornrat et al., 1999) to develop 

sequence characterisation of amplified regions (SCARs). SCARs have been developed to 

increase the usefulness of RAPD markers, thus avoiding uncertainties of interpretation due to 

co-migrating fragments (paran and Michelmore, 1993). In this approach, RAPD bands are 

excised from the gel and the fragment cloned to develop sequence specific primers that will 

amplify only the targeted region. SCARs have been used successfully in many studies on, 

inter alia, wheat (Hernandez et al., 1999; Boora et aI., 1999) but never to elucidate the 

population genetics of marine organisms. 

A rapid Kit-C (Operon Technologies, U.S.A.) was utilised, in a RAPD analysis carried out 

according to the method described in Section 3.3, to isolate a monomorphic band in order to 

create a genetic marker for identification of P. indicus from P. merguensis. Following a 
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protocol of Amornrat, 19991, a band of 500 bp was identified amongst those generated by the 

random primer OPAC 13. The choice of this band was dictated also by the fact that its 

sequence contains a small micro satellite (TA), as shown in P. indicus specimens from The 

Thai peninsula (Amornrat, 1999). Because length polymorphism might be expected in a 

sequence extracted from randomly sampled specimens, the result of the sequence generated 

from the same locus (Pi06) from African P. indicus could be compared with the already 

available sequence of Pi06 for P. indicus sampled from the Thailand coasts. 

This methodology consists of performing a standard RAPD procedure followed by the 

identification of a single monomorphic band of an arbitrary molecular weight. Thereafter, 

elution of this band from the gel is carried out and, in turn,followed by cloning as a means to 

obtain the full sequence of the band (SCAR). From this sequence, band-specific primers are 

deSigned and amplification and sequencing of the SCAR can be performed (Amornrat et al., 

1999). 

The amplification reaction was performed using the following primers: clone Pi06 forward 5' 

- ACT CTC TCC TTC GAC TCT and clone Pi06 reverse 5'- TGC GTA AAT AAT CAT 

CAG GA - 3'. The PCR reaction was performed in a 12.5 /ll reaction volume containing: 50 

ng of genomic DNA, 200 /lM of each dNTPs, 2.5 roM MgCI2, 0.5 /lM of forward and reverse 

primers and 0.05 U of Taq (Bioline, U.K.). The amplification reaction was performed in a 

Hybaid thermal cycler under the following condition: denaturation at 94 °c for two minutes, 

followed by 35 cycles of 94 °c for 60 seconds, 57 °C for 30 seconds and 72 °c for one 

minute. A final extension step of5 minutes was allowed at the end of these 35 cycles. 

PCR prod~cts were separated on 1.4 % agarose gel electrophoresis. The target band of 500 bp 

was excised from the agarose gel using a sterile scalpel blade and purified, using a QuiaGen 

Quick agarose gel DNA purification kit (Quiagen). The filtrate was tested again in a one % 

agarose gel in order to determine the purity and the concentration of the DNA amplification 

products. Sequences were obtained using an ABI automated 370A sequencer (see Appendix 

VIA for an example of an ABI chromatogram). Both, forward and reverse strands were 

sequenced in order to confirm the matching of double-stranded sequences although, in some 

cases, results from either forward or reverse strand sequencing 

J A rapid Kit-C (Operon technologies, U.S.A.), was employed in order to isolate a monomorphic band of a minimum 
length of 500 bp to create a genetic marker for identification of Penaeus indicus versus P. merguensis. 
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only was used. In order to compare the validity of the assumption made in the statistical 

analysis of the locus, three randomly chosen P. indicus specimens from Tanzania, South 

Africa and Oman respectively were cloned using PGem-T easy vector kit (Promega). The 500 

bp purified band was cloned in competent E. coli cells (protocol one, Appendix VIB), the 

plasmid containing the insert was recovered from a total number of six clones and sequenced 

with an ABI PRISM 310 automated sequencer (Molecular Biology Department University of 

Cape Town). A GENBANK search using BLAST was carried out for Pi06 sequences of 

African P. indicus in order to test for possible relationships with coding regions of known 

mitochondrial and autosomal genes. As may be expected from this kind of random 

approaches, no matches were found, as also reported by Amomarat (1999). Sequences 

obtained were aligned and edited with the programme BIOEDIT 4.7.0 (Hall, 2001) removing 

terminal regions that displayed either repeats or insertions that could hinder alignment. 

Subsequently, nucleotide diversity using a Jukes and Cantor (1969) approach, Dxy (average 

pairwise number of nucleotide differences) were calculated using the software DNAsp version 

3.5.3 (Rozas and Rozas, 2001) and graphically presented in figure 4.1 (page, 64). A homology 

index was calculated, after re-alignment with a fast algorithm (Higgins and Sharp, 1988) 

using DNAman 4.13 (Lynnox Biosoft, 1999). Nucleotide diversity index n and average 

number of nucleotide substitutions per site between populations were plotted as a pairwise 

comparison between populations. Furthermore a private nucleotide index was arbitrarily 

defined (see 4.2.1). This index represented the number ofnucleotides along the sequence of 

Pi06 that were unique to any single population. Subsequently, a graph was plotted 

representing the frequencies of private and shared nucleotides among the samples. This 

empirical methodology allowed the identification of populations with a higher percentage of 

private nucleotides, a fmding that may be expected under conditions of limited gene flow. 

Ultimately values of nucleotide diversity extrapolated from each population were compared 

with data obtained from mtDNA markers to ascertain the reliability of the nuclear data set and 

eventually to confirm the potential of this methodology as a low cost-benefit ratio approach 

for the inference of population genetic structure. 

4.2.3 The Cytochrome Oxidase I mtDNA Locus 

It is not always understood that a failure to reject a null hypothesis does not mean that 

hypothesis is true. In the case of penaeids, there could be a single panmictic population or 

there could be a multitude of separate meta-populations exchanging just sufficient individuals 
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to prevent the detection of population differentiation. In marine invertebrates with relatively 

high effective population sizes, a few hundreds animals each generation will prevent such 

differentiation unless the sampling effort is intense or specific molecular markers are 

employed. Mitochondrial DNA sequences have been widely used to reconstruct intraspecific 

phylogenies and determine relationships between closely related species (Carr and Marshall, 

1991; Park et al., 1993; Baldwin et al., 1998). The mtDNA genome typically shows a rapid 

rate of evolution and short coalescence times, which means that phylogenies are often well 

resolved, even between recently separated popUlations and species complexes (Avise, 1994). 

F or these reasons, and in the light of the previous results, it was decided to apply a 

mitochondrial gene sequencing approach to the present study so as to be able to combine 

nuclear and mtDNA genealogies. Identification of intra-specific gene flow or finer scale 

population structure within P. indicus was tested with the mitochondrial locus Cytochrome 

Oxidase I (Wang et al., 1997) 

The cytochrome oxidase subunit I (COl) was sequenced from 15 specimens of P. indicus. An 

attempt to sample Penaeus indicus from Thailand was made, but no individuals of this species 

could be found, although its range is considered to extend from the African coasts to 

Australia. However, P. indicus is typically difficult to separate from P. merguensis and other 

Penaeus species based on morphological evidence because of the presence of several sibling 

and cryptic species in Thai waters, (Amomrat P., pers. comm.). 

The primers were especially designed after alignment of COl sequences from P. monodon, P. 

merguensis and African P. indicus. PCR primers were: 5' CAA CAT TTA TCT TGA TCT 

TTT GG 3' and 5' TCC AAT GCA CTA ATC TGC CAT ATT A 3'. PCR conditions were as 

follows: one denaturing step at 95°C for 4 min. This was followed by 35 cycles of these three 

steps: 94°C for 30 sec., 45-50 °c for 30 sec. and 72°C for 1 min. which were followed by 

one cycle of 72 °c 10 min. This resulted in the amplification of a 464 bp region of the COl 

gene. peR reactions were carried out in 25 ~l volumes each containing 20 ~M primer, 1.25 

mM dNTPs, lOx buffer, Taq polymerase (Bioline), 50 ng of template DNA, and purified 

water (Milli-Q, Millipore). As in the case of Pi06 locus, PCR reaction products were 

separated on 1.3 % agarose gels (Sigma). The band of interest was eluted from the gel, filtered 

through a 20 ~l yellow disposable tip inserted in a 1.5 ml Eppendorff tube and then 

centrifuged for 1 minute at 12 000 RPM. The filtrate was then resuspended in 20 ~l of TE 

buffer. Previous to sequencing 3 ~l of solution were analysed on 1.4 % agarose gel and the 
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concentration determined by a densitometric measurement of band intensity and comparison 

with a standard DNA concentration. Sequences were obtained using 'an ABI Prism 310 

automated sequencer. Both, forward and reverse strand sequencing were carried out for 

confirmation of correct sequences. 

Sequence alignments were performed manually as described above using BIOEDIT (version 

5.0.6) and DNAman (version 4.13) for subsequent analyses. A dendrogram was constructed 

using Neighbour Joining method (Saitau and Nei, 1987). Pairwise exact tests between 

population were performed using haplotype frequency data following AMOV A (Excoffier, 

2001). An analysis of molecular variance (AMOVA) was carried out using the package 

ARLEQUIN (Schneider et aI., 2000) to test for population genetic structure. The AMOV A 

(Excoffier et al., 1992) programme in ARLEQUIN was used to calculate the est (analogous 

of Fst) and to perform a hierarchical analysis on two arbitrarily assigned, different groups. 

The first group (Southern group) comprised sequence data from South Africa and 

Mozambique, while the northern group included sequences from Oman, Tanzania and 

Madagascar samples. Tajima's test of selective neutrality, Tajima's D (Tajima, 1989a), was 

calculated to assess evidence for population expansion (Tajima, 1989b). The distribution of 

the observed pairwise difference and mismatch distribution (Rogers and Harpending, 1992) 

were plotted using the program DNAsp (version 3.53) in order to infer the occurrence of past 

demographic expansion in fmite populations. In the case of COl sequences from P. 

merguensis from Thailand, the AMOV A was performed on a west-coast group comprising the 

Ranong, Puket and Satun localities while to the east coast group belonged the sample 

populations of Trad, Songala and Surat. 

4.3 Results 

4.3.1 Pi06 autosomal locus 

The location of the Pi06 sequence on the genome of Penaeus indicus is unknown. Sequence 

comparison with GENBANK stored data, failed to recognise any similarity with already 

cloned chromosomal genes or mitochondrial genes, which is not unexpected. 
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Not all sequences resulted In an interpretable chromatogram, probably due to the 

amplification of paralogous genes with similar annealing primer sites. A total of 25 sequences 

displayed a sufficiently clear pattern for interpretation. Five of these sequences came from 

individuals from each of the sampling locations: South Africa, Mozambique, Tanzania, 

Madagascar and Oman. The sequences of the four clones obtained from two specimens from 

South Africa and Tanzania are presented in Appendix IVC. In all the sequences obtained from 

each clone the Pi06 insert showed only one segregating site at position 138 bp, probably due 

to misincorporation of T aq polymerase. This is consistent with the previous assumption of an 

average of two mis-incorporations every 1000 bases reported by other authors (Section 4.1.1). 

Variation in the length of sequenced products was not observed in the short micro satellite 

(TA)g discovered from position 330, except in one case, for one Tanzanian sample. Insertion 

of sequences, such as CAT AG in one sample from South Africa in position 72 and TCTT A in 

one Oman specimen, were observed. In all Tanzanian specimens a region of insertion was 

found at position 25. These regions caused alignment difficulties, especially because of length 

variation, and were eliminated in order to maximise group alignment. All sequences were 

aligned to form a 400 bp data matrix (Appendix IVD). Nucleotide composition (relative 

value) was 11.65 % for C, 45.30 % for T, 30.15 % for A and 12.90 % for G. The average 

number of polymorphic sites was 24.6 and there was a bias towards transversions, with 14 

transversions found in South African samples and 11, 23, 16, and 16 respectively, for 

. Mozambique, Tanzania, Madagascar and Oman. Although length variation was observed in 

some specimens, species-specific differences were determined by fixed polymorphisms. The 

nucleotide diversity index (n) ranged from 0.026 between South Africa and Mozambique to a 

maximum value of 0.048 between Oman and Madagascar. Comparison of sequence alignment 

between spatially related samples indicated a high degree of identity between South Africa 

and Mozambique (98.89 %), with a highly conserved region between 60 bp and 180 bp 

(Appendix IVD). When comparing specimens from Tanzania with those from Mozambique 

and South Africa, the degree of identity was lower (97.57 %). Comparison between 

Madagascar specimens and samples from South Africa and Mozambique indicated again a 

value of 97.75 %. In the case of Oman, comparison with Madagascar and Tanzania 

populations was of the same magnitude as that of other comparisons (97.52 %). When testing 

an isolation by distance model, an increased similarity index of almost one percent was noted 

when comparing Oman samples with those from South Africa and Mozambique. When this 

data set was compared with a published sequence of P. indicus collected in Thailand 

(Amornrat, 1999) one could identify a region of deletion (between base 90 to 102) and region 
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of insertion (between base 140 to 150). It is noteworthy that all sequences reached a value of 

97 % homology from 150 to 460 bp. The pairwise comparison with the east Africa data set 

found a total of 25 segregating sites. Furthermore, the pairwise nucleotide diversity index was 

plotted together with the average number of nucleotide differences (Dxy), for each population 

pair and this is graphically presented in figure 4.1. 

As reflected in the graphs, nucleotide diversity indexes ('n) plotted with nucleotide position 

are very similar in the case of the pairwise comparison of South Africa versus Mozambique 

South Africa (nl) vs Mozambique (n 2) Mozambique (n 1) vs Tanzania (n 2) 

0.05 

0.0. 

0,03 

0.02 

0.01 

O. 
100 200 

Hudeo6de POlo.. 

- Pil 

-- 1'12 

-0., 

300 

Tanzania (n 1) vs Madagascar (n 2) 

0.1 

0.08 

0.06 

0.04 

0.02 

O. 

0.08 

0.06 

0J)4 

0.02 

o. 

100 300 400 

Tanzania (n 1) vs Oman (n 2) 

100 2DO 
Nuclootido Pooition 

JDO 

- Pil 

-- Pi2 

-0", 

- Pil 

-- Pi2 

-0., 

0.08 

0.06 

0.04 

0.02 

O. 

0.08 

D.06 

0.04 

0.02 

O. 

0.06 

0.04 

0.02 

o. 

- Pi, 
__ 1'12 

-0., 

100 200 300 400 

Madagascar (n 1) vs Oman (n 2) 

100 200 
Nucleotide Position 

300 400 

- Pil 

-- Pi2 

-0., 

South Mrica (n 1) vs Oman (n 2) 

- Pil 

-- 1'12 

-0., 

400 
NucIootidoPooition 
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The private nucleotide index represented graphically in figure 4.2 indicated a higher 

frequency of private alleles for Tanzanian (12) and Madagascar samples (9). 
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Figure 4.2 - Private nucleotide index along the 400 bp sequence of Pi06 locus from the five 
African populations of P. indicus. The circle represents the sequence of the locus 
and the lines show the position of private and shared nucleotides along the 
sequence. 
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4.3.2 Cytochrome Oxidase I 

4.3.2.1 Penaeus indicus from the Mrican coast 

A total of 15 sequences of the COl mtDNA locus were analysed and their total alignment for 

these two species of Penaeus is presented in Appendix IVE. As previously mentioned, the 

difficulty in obtaining a reliable morphological identification of P. indicus from Thailand 

suggested that it may be profitable to collect penaeid samples from this area although P. 

indicus is thought to be totally absent from Thai waters (Amornrat P., pers. comm.). 

In east African samples (South Africa, Mozambique, Tanzania, Oman) the 464 bp portion of 

this gene showed an overall lack of insertions or deletions and contained four variable sites 

included in the region 270 - 462 bp (Appendix IVE). There was no sequence variation at the 

second codon position. Average nucleotide composition was 17 % for C, 25 % T, 17 % for G 

and 39 % for A. A high AT content (average 184-A and 117-T) was consistent with 

descriptions of other arthropod mtDNA sequences (Spicer, 1995) as well as other Penaeus 

mtDNA sequences (Garcia et al., 1996). There were two polymorphic sites for transition in 

South African samples and three and one in Mozambique and Oman respectively. 

AMOV A analysis performed on pairwise F st (Jukes and Cantor distance method, 1969) using 

single population sequences failed to reveal any significant structure. Thus a second analysis 

was performed. The AMOV A was used to analyse two different groups: South Africa and 

Mozambique specimens were pooled together in a single group arbitrarily named South 

samples. Tanzania, Madagascar and Oman specimens were pooled to define a second group 

named North samples. This type of pooling technique was performed to enhance the power of 

the analysis since in some cases (Madagascar) only two sequences were used. The average 

pairwise population Fst value (Jukes and Cantor, 1969) was 0.082 and was found not to be 

significant, after testing 1000 permutations (MCM), p = 0.092; p< 0.05. AMOV A estimates of 

within group diversity were very high as previously detected by RAPDs and reached a value 

of 91 %. Nucleotide diversity 7l calculated over all sites, was 0.0028 and the nucleotide 

sequence divergence ranged from 0 % within population to 0.26 % among population 

(identity index). The total divergence between populations was very low since it ranged from 
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a minimum of 0.0022 when Oman was compared with the samples from South Africa, 

Mozambique and Tanzania, to 0.0043 among the latter populations. The total nucleotide 

diversity index (n) from East Africa and Oman was 0.0032. It is noteworthy that although the 

number of sequences per sample was low and haplotype frequency does depend on samples 

size (Nei and Kumar, 2001), there was again a particular pattern in the shared haplotypes. The 

South group samples shared one haplotype (H7) with the north group comprising Oman, 

Madagascar and Tanzania (Hll , HI2). The values of the average number of nucleotide 

substitutions per site pairwise (Dxy) and between groups (Da) were 0.0046 and 0.00044 

respectively. The mismatch distributions of the pairwise comparison between the two groups 

are presented in figure 4.3 and show a distinct unimodal pattern of distribution. 
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Figure 4.3 - Mismatch distribution (dotted line) for each of the two African groups of P. 
indicus. Expected curve under a constant size coalescent model of population 
size (solid line). Pairwise differences on the abscissa and relative frequencies on 
the ordinates. 

The value of Tajima' s D (Tajima, 1989a) was - 0.65 and was not significant in the south 

group, whereas in the north group this parameter had a value of 0.05. However, in both cases 

no statistical significance was found (p >0.01). When comparing haplotype diversity (h) and 

nucleotide diversity (n), in both groups there were high values of h (0.83 south group; 0.72 

north group) and extremely low values of n (0.0033 south group; 0.0026 north group). 

A comparison between the nucleotide diversity of the Pi06 locus with that of the COl locus 

was also carried out and the values are shown in table 4.1. 
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The values of nucleotide diversity are both very small for COl and Pi06 although the latter is 

an order of magnitude higher. 

4.4.3.2 P. merguensis from Thailand 

Sequences from this species were analysed according to two groups: an east coast group, 

from the Gulf of Thailand, and a west coast group, from the Andaman Sea (Fig 4.4). 

THAILAND 

Figure 4.4 - Map showing the collecting sites of P. merguensis samples in Thailand. 

The number of polymorphic sites ranged from 10 to 36, (see Appendix lYE). The number of 

transitions was higher than the number of transversions in all samples (6/3, Ranong; 411 
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The number of polymorphic sites ranged from 10 to 36, (see Appendix IVE). The number of 

transitions was higher than the number of transversions in all samples (6/3, Ranong; 4/1 

Puket; 12/2 Satune; 6/4 Songala; 23/6 Trad and 5/1 in Surat), and the nucleotide composition 

was consistent with the P. indicus sequence data from the present study. Thai specimens 

showed a percent of AT higher than that of GC (C: 19.61 %; T: 35.36 %; A: 27.80 %; G: 

17,23 %). Population structure using the Jukes and Cantor (1969) distance method of FST 

estimation with AMOV A was calculated on sequences from the Gulf of Thailand and the 

Andaman Sea group, and its value was 0.27. The total within samples variation was 72 %, 

whereas the remaining 28 % was due to among populations structuring (Table 4.3). 

Furthermore, FST pairwise comparison (1000 permutations, MCM) failed to recognise a 

consistent significant difference, at a 0.05 p-value, between the two groups. However, the 

west coast group was significantly different from Songala. On a small geographical scale, 

significant structure was recorded also between Surat and Songala (Table 4.2). 

Table 4.2 - Fst pairwise values and significance of AMOVA among samples of the Gulf of 

Thailand and the Andaman Sea (west coast comprising sequences of Puket and 
Ranong). Distance method: Jukes and Cantor Matrix of significant F st. ** 
Significant p values at a 0.05 significance level. 

Pop ID \\ estcoast Songala Trad Surat 
West coast 

Songala 
Trad 
Surat 

0.00000 
0.37225** 0.00000 
0.24412 0.06382 0.00000 
0.10023 0.50702** 0.38444 0.00000 

Nucleotide diversity was 9.030 and 0.037 for west and east group respectively and again 

haplotype diversity was high 0.76 and 0.81 respectively. Furthermore, Tajiroa's D was not 

foun~ to be significant at p<O.OI or 0.05 and had a negative value (-0.35) in the east group, 

while it was positive (1.16) in the west group. Contrary to the analysis of east African samples 

of P. indicus, the mismatch distribution in P. merguensis displayed an uneven distribution of 

pairwise differences compared to the expected model graph (Fig 4.5). 
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Figure 4.5 - Mismatch distribution for each of the two groups of Penaeus merguensis in the 

Gulf of Thailand and the Andaman Sea 
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In this case the values of nucleotide diversity (n) for the COl mtDNA locus were an order of 

magnitude higher than the those recorded for P_ indicus African samples, whereas the 

haplotype diversity (h) was similar (Table 4.3). 

Table 4.3 - Haplotype diversity (h) and nucleotide diversity (n) recorded from COl mtDNA 

locus for the Penaeus merguensis groups (West and East coast of Thailand). 

Pop 10 h (COl) TC (COl) 
West Coast 
,East Coast 
Total (SE) 

0.76 
0.81 

0.78 ±0.S8 

0.030 
0.037 
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4.5 Comparison of results between P. indicus and P. merguensis 

The data set comprising the COl sequences of Penaeus indicus was pooled into a single group 

and comparisons were made with the West and East coast groups of P. merguensis. 

Nucleotide diversity in the all-African samples was 0.0032: an order of magnitude lower than 

that of pooled Thailand sequences (0.052). Haplotype diversity was very similar, being 0.77 

in P. indicus and 0.78 in P. merguensis. The value of Tajima'sD was negative (-1.32) in the 

African sample, although this was not statistically significant, and the mismatch distribution 

followed a pattern similar to that of the African pooled group. The tree obtained using the 

neighbour-joining tree-construction method, included sequences downloaded from 

GENEBANK for the species P. monodon (outgroup) and P. silasi. This dendrogram indicated 

a strong differentiation of P. indicus from P. merguensis with 100 % bootstrap support and 

suggested a closer genetic relationship between P. merguensis and P. silasi (Fig 4.6). There 

was no bootstrapping support for strong differentiation between African populations. A 

stronger diversification is found in the P. merguensis samples but the branching was not 

consistent with the sampling locations. The haplotypes from Ranong (RNW), from the west 

coast of Thailand, are grouped with samples collected from Suratthani (SRE) in the Gulf of 

Thailand. The same pattern is evident in the first group (A) where samples from Trad (Gulf of 

Thailand) are grouped together with Satun (STW). The most striking feature is the higher 

level of population structuring among the samples of P. merguiensis compared to that of 

African P. indicus. 
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4.6 Discussion 

The nuclear locus (Pi06) revealed a discrete pattern of genetic differentiation among 

populations of Penaeus indicus. Sequence alignment showed that interpopulation 

nucleotide diversity indices were lower than the diversity between the group composed of 

South Africa and Mozambique, on the one hand, and Tanzania and Madagascar group on 

the other. Nevertheless, all sequences were highly conserved within the region 150-460 

even after including the only published sequence (Amornrat et ai., 1999) ofPi06 from P. 

indicus. This result is quite interesting in the light of the fact that downstream and upstream 

of this conserved region, differences among populations were high, especially between 

African and Thailand samples. Selection could be a possible explanation, but no particular 

function has been attributed to this locus at present. The private nucleotide index as a 

measure of population differentiation has no statistical properties, but is a simple frequency 

measure that can empirically ascertain if there is gene flow restriction between populations 

at any given locus. The values recorded for this parameter and presented in Fig 4.2 revealed 

a higher frequency of private nucleotides for the populations from Tanzania and 

Madagascar. However, it is difficult to explain such a pattern from an ecological point of 

view. Although oceanographic data are not readily available, one might suppose that 

Tanzania has been isolated due to ocean-current patterns that retain larvae in that area. It 

may be suggested further, that similar current patterns do not occur in Mozambique and 

South Africa and it is probable that the distance separating these two localities is not 

sufficient to prevent gene exchange. 

Although analyses of nuclear genes are influenced by different technical constraints (see 

introduction), this study made an attempt to reduce the cost of procedures normally 

employed to obtain reliable results from nuclear genes. It is important to note that this 

approach has been developed to test the possibility to deploy SCARs as a practical and 

novel technique to discern variability among populations of the same species. Noteworthy 

is the results of the pairwise comparison analysis that underlined the similarity of the Oman 

population with those from South Africa and Mozambique. This result is discordant from 

previous analyses based on allozymes and the RAPDs profile (see chapter 3). Both markers 

showed a significant degree of differentiation between South Africa and Oman, at least at 

some loci. However, a polyphyletic relationship among recently isolated populations is 
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often caused by the persistence of ancestral polymorphisms, but similar genealogical 

patterns can be caused by moderate gene flow over longer divergence times (Wakeley, 

1995). Furthermore, when population genetic analyses are performed on a wide range of 

loci, it is possible that unexpected results may appear, especially when dealing with 

organisms with high dispersal rates. As discussed by Slatkin (1985a), if the average number 

of generations needed by a local population to become extinct is less than the effective 

number of breeding adults, extinction and re-colonisation would prevent the genetic 

differentiation of this local population by means of evolutionary forces such as genetic 

drift. Screening more than one locus for polymorphism, affords a greater probability to 

highlight possible restrictions of gene flow having occurred in more recent evolutionary 

times since the last re-colonisation event. 

COl variation of Penaeus indicus was low (mean nucleotide diversity 0.0045) and only 

three haplotypes were recorded. No significant difference was present when analysis was 

performed by population haplotypes or when haplotypes were pooled into North and South 

groups (see page 63). The high value of the within population variance component might be 

an artefact of the low number of sequences utilised in this investigation, despite the pooling 

procedure adopted. However as previously discussed in chapter tree (page 55), this could 

also be a result of dealing with structured populations collected within the same sampling 

area. Nevertheless, the lack of spatial variation evidenced does differ from the results 

obtained from the analysis of the Pi06 locus. 

Another intriguing feature revealed by the analysis of mtDNA sequences, was the 

mismatch distribution pattern. This methodology showed graphically the presence of an 

unimodal distribution of haplotype diversity for east African P. indicus. Looking a the 

graph (Fig. 4.3) and following the mutation model of Roger and Harpending (1992), the 

drop of the curve occurs because, following a population expansion, the mean pairwise 

difference increases much more rapidly than its standard deviation. On the other hand, Aris­

Brosou and Excoffier (1996) have shown that an uneven mutation rate model, a 

diametrically opposed hypothesis, could also lead to an unimodal distribution of pairwise 

differences. This latter hypothesis was also tested by comparing the values of n and h. 

Nucleotide diversity (n) is a weighted sequence divergence between individuals in a 

population. Haplotype diversity (h) condenses information on the numbers of different 

alleles at a locus, regardless of their sequence relationships (Grant and Bowen, 1998). 
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Intuitively, loss of nucleotide diversity compared with high values of haplotype diversity 

suggests rapid population growth from an ancestral population with small effective 

population size, provided the time was sufficient for recovery of haplotype variation via 

mutation, yet too short for an accumulation of large sequence differences (A vise, 2000). 

Nucleotide diversity was very low when compared with haplotype diversity, an indication 

of rapid growth in East African populations starting from a very low Ne. Such kind of 

population history is not unique for this part of the Indian Ocean. For example, Benzie et al. 

(2002) calculated divergence times of several populations of Penaeus monodon in the IWP 

region based on RLFP mtDNA haplotypes and suggested that two population expansions 

might have happened along the east coast of Africa around 22 000 and 43 000 years ago. As 

will be discussed in chapter five, this could have drastic effects on the effective population 

size and, hence, on the effect of genetic drift towards the gene frequency of these penaeid 

populations. 

The COl sequences of Penaeus merguensis collected from the Gulf of Thailand were very 

different from those of African P. indicus, although AMOV A failed to recognise a 

consistent difference between samples collected in the Andaman Sea and those from the 

Gulf of Thailand (Table 4.3). The west coast sequences were significantly different from 

those from Songala and within the Gulf of Thailand and significant population 

differentiation was recorded between Surat and Songala. This pattern of spatial variation 

was not consistent in all samples, probably due to the small number of sequences utilised 

for the analysis, although hybridization among sympatric species among regions could have 

resulted in an homogenisation of gene genealogy. The haplotype diversity and nucleotide 

diversity (Table 4.4) were more consistent with a hypothesis of stable population sizes with 

large and long-term Ne. In this case too, the mismatch distribution was congruent with that 

recorded from the above-mentioned index (h and n) and, following Roger and Harpending 

(1992), showed an uneven distribution consistent with a lack of population expansion. An 

alternative hypothesis to explain these fmdings, would be the possible admixture of 

samples, derived from historically sundered populations. 

It is noteworthy that the average surface of the continental shelf in the Gulf of Thailand is 

very different from the rest of the western IWP and the east coast of Africa. During the 

Pleistocene, lowered sea levels connected much of SE Asia, New Guinea and Australia, 
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almost closing the sea connection between the Indian and the Pacific Oceans. These 

tectonic changes might have restricted gene flow and · created a sundering barrier which, 

ultimately, lead to genetic differentiation among several marine species (Williams and 

Benzie, 1996, 1997, 1998; Nishida and Lucas, 1988; Mc Millan and Palumbi, 1995). These 

results, although preliminary because based on a relatively low number of sequences, are 

consistent with other reports that surveyed the extremes of other species ranges (Klinbunga 

et aI., 1998; Benzie et al. 2000,2002; Forbes et aI., 1999). It is possible that, historically, 

large numbers of semi isolated populations in the highly geographically structured IWP 

region generated, or at least maintained, the diversity in Southeast Asia. As mentioned in 

the previous paragraph, surveys of mitochondrial DNA variation in the tiger prawn, 

Penaeus monodon, using restriction fragments length polymorpbisms (Benzie et al., 2002), 

have provided clear evidence that the Indo West Pacific region (IWP) is a site of 

accumulation of genetic diversity rather than a site of origin of diversity as stated by Briggs 

(1999). In the report by Benzie et al. (2002) no shared haplotypes were found in common 

between group of south east African, Australian and south east Asian populations. 

Therefore, these authors suggested that southeast African samples could have gone through 

a relatively recent population expansion and further analysis allowed them to conclude that 

an increase in population size occurred approximately 43 000 years ago. Their observations 

provide evidence for the evolution of genetic variants in peripheral populations in one of the 

oceans and their subsequent migration into the East Asia region. An important factor 

common to the present investigation is the fact that the least diverse populations were found 

at the periphery of the species range. Possibly the bimodal shapes for both groups in the 

Gulf of Thailand and the Andaman sea are consistent with two evolutionary scenarios: the 

first one suggests a lack of population expansion in these populations and the second one 

indicates a possible population mixing. 

The results presented in the phylogenetic tree (Fig 4.6), show a different population 

structuring between the two penaeids species. Following the genealogical concordance 

rules stated by A vise (2000), if co-distributed species with comparable natural histories or 

habitat requirements are phylogenetically structured in different fashions, this is not be a 

reflection of shared historical elements in the evo~utionary or ecological factors. Penaeus 

indicus and P. merguensis are closed related species that happen to share similar 

environments and life cycles (Dall et al., 1990). This issue therefore, draws attention to 

different evolutionary forces acting on these two species. The genetic variation of Penaeus 
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sp appears to be lost along the way to East Africa. Presently the only sampling gap is the 

Indian peninsula which moved away from Africa five million years before present and 

efforts are under way to obtain samples of Penaeus indicus from the east and west coasts of 

India. If the genetic break of diversity is within. the range of SE Asia, we expect to see a 

gradual lowering of genetic diversity between the two Indian coasts, with more recent 

haplotypes along the east coast of India. Two alternative hypotheses can be proposed to 

explain the genetic diversity registered at the COl locus for the two species of Penaeus: 

(i) The COl locus could be under selection by environmental pressure. 

(ii) The lower genetic diversity in East Africa may reflect bottlenecks sometimes in the 

last few millions years or founder effects following re invasion after extinction of 

peripheral populations during the last ice age (Benzie, 2000). 

This explanation contrasts with the previous one of Mulley and Latter (1980), although also 

in this case a bottleneck effect is hypothesised, the process that generated it is considered to 

be strictly biological (speciation) and not environmentally caused (geological). It will be 

necessary to develop specific predictions of the spatial patterns of genetic variation 

expected under different biogeographic hypotheses so that these can be explicitly tested. 

Some approaches have been suggested (palumbi, 1998) which predict that older genotypes 

and consequently, higher diversity at neutral loci are likely to be found where species 

originate. However, this pattern might be masked by differences in population size and 

extinction rates among regions (e.g.: higher population sizes and lower extinction rates or 

lower population sizes and higher extinction rates). A phylogeographic analysis of P. 

monodon (Benzie et al., 2002) has shown evidence for the evolution of haplotypes in an 

oceanic region and of their subsequent migration into the Indonesian region, contributing to 

the increased level of genetic diversity in these areas. The present study of P. indicus, P. 

merguensis is in accordance with this hypothesis. Nevertheless, further application of 

molecular genetic tools to examine the structure of penaeid species within these regions, 

will provide an important means of advancing our understanding of the origin and 

maintenance of biodiversity in the IWP. In this case the higher values of the nucleotide 

diversity could be an expected signature of a stable population with large long term Ne or, 

due to admixture of samples of individuals from historically sundered populations. 
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Chapter five 

Synthesis 

5.1 General considerations 

As can be gathered from much of the literature cited in this thesis, the latter part of the XX 

Century has seen a flourishing of diverse molecular techniques, aimed at eliciting and 

analysing genetic information in order to interpret it in terms of evolutionary history of 

biological forms (Beaumont, 1994). The present study is no exception to this trend since 

several bio-chemical and molecular methods were utilised to gain an understanding of P. 

indicus genetic structure and the phylogenetic relationships between its populations. Each of 

these sources of genetic information, however, tends to be better suited to a given taxonomic 

level (A vise, 2000; Hillis and Moritz, 1996) and, hence, a given evolutionary time frame. 

Thus, an overall understanding of biological diversity can only be gained with great difficulty 

from any single method. Therefore, as pointed out earlier, comparing and integrating the 

information derived from more than one method best assesses genetic polymorphism of 

natural populations and this is the purpose of this chapter. 

For the study of genetic variation in natural populations, DNA sequences are much more 

informative than protein sequences or electrophoretic variation of proteins. A large part of the 

DNA sequences such as pseudo-genes, introns and microsatellites, is not translated into 

proteins and is thus not detected by gene product analyses. The degeneracy of the genetic 

code further contributes to this "hidden" genome variation. Genetic variation in these 

particular regions, therefore, can be studied only through the analysis of DNA sequence 

variation. As stated by A vise (2000), when gathering molecular information about different 

populations or species, one must take into consideration the agreement of genetic results 

across independent loci. The occurrence of such concordance demonstrates almost 

conclusively that particular partitions in the gene trees can accurately register fundamental 

phylogenetic subdivisions at a population or species level (Avise, 2000). For these reasons 

collection of molecular data should be normally conducted not only at varying degrees of 

polymorphism, but also from both nuclear and mitochondrial genomes. Mitochondrial DNA 

is the most utilised source of molecular data mostly due to the small size (16 000 bp) of its 

circular genome (Wilson et af., 1985; A vise, 1986). Because there is little or no paternal 
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contribution of mitochondria, and no known recombination event between mitochondrial 

genomes has been recorded (Avise, 1994), mtDNA is considered to be clonally inherited. All 

these factors combine to reduce the mtDNA effective population size to one-fourth of that of 

the nuclear genes of the same organisms (Nei and Tajima, 1981). A smaller effective 

population size means that genetic drift can cause frequency differences between isolated 

gene pools more readily in mtDNA than in nuclear DNA. In many organisms, the mtDNA 

also seems to accumulate mutations more rapidly than do single-copy nuclear genes (Lynch 

and Jarrell, 1993). In other words it provides markers with greater variability and sensitivity 

to drift, and is, therefore, more likely to show differences between populations or species. 

Because different regions of the mitochondrial genome evolve at different rates, certain 

regions of the mtDNA have been targeted for certain types of studies. The Cytochrome b 

locus and the D-Ioop region have been examined in a number of species (Carr and Marshall, 

1991; Park et aI. , 1993) and different evolutionary hypotheses have been successfully te~ted 

by means of these genetic markers. Furthermore the COl locus had been successfully used in 

other investigations of prawns (Baldwin et ai. , 1998) and other marine organisms with long 

dispersal larval stages (Barber et ai., 2002). 

Most natural populations of organisms carry large amounts of genetic variation. In sexually 

reproducing or out-breeding species, for example, any pair of individuals is genetically 

different and most loci often contain two or more alleles so that populations are genetically 

polymorphic. Polymorphism at a locus is generated by mutations such as nucleotide 

substitution, insertion or deletion, gene conversion or inter-allelic recombination. However, 

most of these new mutations are eliminated from the population by genetic drift or purifying 

selection and only a minority of them are incorporated in the population by chance, positive 

selection, or over-dominant selection (selective advantage of heterozygotes). The neutral 

theory proposed by Kimura (1968) plays an important role in the study of molecular variation, 

since it proposes that genetic variation at a molecular level (see chapter one) is largely neutral 

and that the extent of variation is determined primarily by the mutation rate and the effective 

population size (Kimura and Crow, 1964; Nei, 1987). Therefore due to the fact that, normally, 

mutation rates are considered to be quite slow in most organisms, the effective population size 

would remain the major evolutionary force driving the genetic sculpturing of out-breeding 

populations. Thus neutrality predicts that an increase in effective population size and/or 

mutation rate results in increased heterozygosity. Nevertheless, as mentioned in section 1.6 

(page 18), in recent years, many genes have been shown to be subjected to positive selection 
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so that assumptions of strict neutrality may not always be appropriate to an evolutionary 

interpretation of genetic data, although examples of this kind would be more the exception 

than the rule. Following Nei (1987), the present genetic variability of natural populations is 

simply a product of evolutionary changes accumulated in the past. In the present survey 

Penaeus indicus populations were almost completely depleted of protein and molecular 

polymorphisms despite the fact that these organisms were subjected to different, as well as 

quite variable, environmental conditions. In addition to this, phylogenetically closer species, 

such as P. merguensis, showed different levels of genetic diversity at the same locus (COl). 

This thesis, in turn, should be interpreted as a significant indication that neutral theory should 

be the null hypothesis tested in most evolutionary frameworks. Hence the data presented in 

this thesis allows the formulation of the following two major predictions in the light of the 

neutral hypothesis: 

1. The equilibrium heterozygosity in the population, following Kimura (1964) is 

proportional to the effective populations size and mutation rate. Because the production of 

new mutants is generally quite slow and the population size in most species is relatively 

large, making the effect of genetic drift small, a long time is required for this equilibrium 

to be reached. Of course, low population sizes experienced at some time in the past, as in 

the case of P. indicus, would reduce the heterozygosity to below the level of equilibrium 

expected. Hence, the neutrality theory predicts that increases in effective population size 

and/or mutation rate result in an increase in heterozygosity. On the other hand low levels 

of heterozygosity can be related to low effective population size that, in the case of P. 

indicus, could only be due to population bottlenecks. The concordance of the data 

obtained at different molecular levels in identifying extremely low polymorphism or 

number of segregating sites in all population of P. indicus, is consistent with extremely 

low Ne (effective population size) assuming a mutation rate !l of 10-6. 

2. Low values of genetic distances and/or nucleotide divergence are a consequence of the 

low polymorphism, referring again to population size depression; otherwise these values 

are more commonly interpreted as an indication of panmixia and, hence, of large effective 

population sizes maintained at least since the last Pleistocene glaciations. 
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5.2 Penaeus indicus: comparisons of Allozyme and RAPD variation 

Despite the availability of recently developed molecular techniques, analysis of allozyme 

variation will continue to have a major impact on studies of population genetics as well as 

phylogenetic analyses (Hoelzen, 1998). Cost-benefit ratios of allozymes electrophoresis are 

probably lower than any molecular approach, a great amount of published data are available 

for different species and, usually, the co-dominant expression of most loci screened allows an 

unbiased and prompt identification of genotypes and alleles. Furthermore, the loci usually 

chosen for this type of approach often include enzymes that play important roles in 

biochemical pathways. Therefore, they may be more informative than sequences of genes of 

unknown function, because they can show the effects of selection and this in turn, can be 

related to important ecological factors influencing the species under survey. Nevertheless, the 

following drawbacks may apply to methods, such as allozyme electrophoresis, that rely on the 

detection of gene product variation. For example, nucleotide differences can be masked by the 

redundancy of the genetic code or by synonymous substitution at the third position in the 

codon. In addition, nucleotide substitutions can lead to insertion of different amino acids with 

the same charge, which would then not interfere with the electrophoretic mobility of the 

protein and consequently, would remain undetected. For these reasons allozyme 

electrophoresis can be prone to underestimate the degree of genetic polymorphism and 

consequently, erroneous conclusions could be drawn if expectations of rejecting the null 

hypothesis of no differentiation between population is entertained. 

The RAPD technique (Welsh and McClelland 1990; Williams et al. , 1990) has been described 

as a valid methodology to overcome these limitations in that it is more sensitive to 

polymorphism in out-breeding organisms. This technique is useful for population genetic 

analysis (Haig, 1998), taxonomy (Chapco et al., 1992) and mapping (Michelmore et al., 

1991), because it allows the rapid acquisition of a lot of genetic information (Helzel and 

Green, 1998; Bruford et al., 1998). It is suitable to genomes for which micro satellite markers 

are not available (Hadrys et al., 1992) and has the potential to detect polymorphism anywhere 

in a genome. However, although RAPD is a fast and inexpensive molecular technique with 

applications in different fields, it also has practical and statistical limitations (see chapter 3.3.2 

page 44). 
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APPENDIX 



ARABIA 

Red circles delimited enlarged sections of sampling 
areas of speciments from Penaeus indicus and Penaeus 
merguensis respectively along the East African coast 
and the Thailand peninsula. 



APPENDIX IIA 

Buffers used for starch gel electrophoresis of Penaeus indicus 

1. TEB: 
Gel buffer: 
Electrode buffer: 

Stock solution: 

Running buffers: 

Gel buffer: 
Electrode buffer 

Running conditions: 

2. TEe 7.9: 
Gel buffer: 
Electrode buffer: 

Stock solution: 

Running buffers: 

Gel buffer: 
Electrode buffer 

Running conditions: 

3. TC7 

Gel buffer: 
Electrode buffer: 

Stock solution: 

48mM Tris, ImM EDTA, 37mM Boric acid, pH 8.4 
150mM Tris, 3 mM EDT A, 117 mM Boric acid, pH 8.4 

Dissolve the following in distilled water and make up to 2 litres 
181,67 g Tris 
12,42 g EDTA (Na2 salt) 
72,57 g Boric acid 

16ml stock solution diluted to 250 ml with distilled water 
1 part stock solution plus 4 parts distilled water 

30-35 mA/gel at 200-400 V (mosto often 400V) for 5 hours 

8,5 mM Tris, 2 mM Citric acid, 0,27 mM Na2EDTA, pH 7,87 
135mM Tris, 32 mM Citric acid, 4 mM Na2EDTA, pH 7,87 

Dissolve the following in distilled water and make up to 2 litres 
163.5 g Tris 
67.25 g Citric acid H20 
15.2 gNa2EDTA 

3.15ml stock solution diluted to 250 ml with distilled water 
1 part stock solution plus 4 parts distilled water 

30-35 mA/gel at 200V for 5 hours 

9.6 mM Tris, 3mM Citri·c acid, pH7.0 
135 mM Tris, 43mM Citric acid, pH 7.0 

Dissolve the following in distilled water and make up to 2 litres 
163.5 g Tris 
90.4 g Citric acid H20 



Running buffers: 

Gel buffer: 
Electrode buffer 

Running conditions: 

4. LI: 
Gel buffer: 

Electrode buffer: 

Stock solution: 
(Electrode stock 
solution 

Stock solution: 
(Gel stock 
solution 

Running buffers: 

Gel buffer: 
Electrode buffer 

Running conditions: 

3.5ml stock solution diluted to 250 ml with distilled water 
1 part stock solution plus 4 parts distilled water 

30-35 mA/gel at 175-200V for 5 hours 

48.6 mM Tris, 7.8 mM Citric acid, 3.2 mM LiOH, 20.7 mM Boric acid pH8.4 

192mM Boric acid, 30 mM LiOH, pH 8.15 

Dissolve the following in distilled water and make up to 2 litres 
12,6 gLiOH 
118.9 g Boric acid 

Dissolve the following in distilled water and make up to 2 litres 
54.5 g Tris 
15.1 g Citric acid H20 
200ml Electrode Stock solution 

27ml stock solution diluted to 250 ml with distilled water 
1 part stock solution plus 4 parts distilled water 

40-45 mA/gel at 300-400 V (mosto often 400V) for 5 hours 
(It is normally necessary to cool down the gel with ice) 



APPENDIX 1m 

Enzymes' staining recepies used in the this thesis (modified from Harris and 
Hopkinson, 1976) 

ASPARTATE AMINO TRASNFERASI 

TRIS -A BUFFER 
L-ASPARTIC acid 
KETOGLUTARIC acid 
PIRIDOXAL-S-PHOSPHA TE 

EC 2.6.1.1 

40ml 
200mg 
100mg 
10mg 

Dissolve the above substances in a beaker and check that pH is at least 7.4 (is not adjust with TRIS 

1M 

Incubate with the gel for 30 minutes at room temperature, than add: 
FASTBLUEBB 

ACONITASE EC 4.2.1.3 

TRIS - B BUFFER 18ml 

CIS-ACONITIC acid 7Smg 

Mg Cl2 (O.SM) Sml 

NADP (1 % IN H2O) O.5ml 

Before staining add: 

MIT (1 % IN H2O) 18ml 
PMS (1% IN H2O) 0.2ml 
AGAROSE (1% IN H2O) 2Sml 

ALCOHOL DEHYDROGENASE EC 1.1.1.1 

TRIS-A buffer 40ml 
MgCl2 (O.SM) 0.2ml 
ETHANOL (9S0) 3ml 
NAD (1 % IN H2O) 2ml 

Before use add: 

NBT (I%H20) Iml 
MIT (1 % in H2O) O.3ml 
PMS (1% in H2O) O.Sml 

ADENYLATE KINASE EC 2.7.4.3 



TRIS-A buffer 
MgC12 (0.5M) 
H20 
D+-GLUCOSE 
ADP 

NAD (1 % in H20) 

Before use add: 

HEXOKINASE (1.7U) 
GLUCOSE-6-PHOSPHATE DEHYDROGENASE (17U) 

Incubate for 60 minutes than add: 
PMS (1% in H20) 

ALDOLASE 

TRIS-A buffer 
FRUCTOSE-I ,6-DIPHOSPHA TE 
NAD (1 % in H20) 
SODIUM ARSENATE 

Before staining add: 

G-3PDH (800 UIML) 
MIT (1 % in H20) 
PMS (1 % in H20) 
AGAROSE (1.5% in H20) 

CREATINE KINASE 

TRIS-A buffer 
D+GLUCOSE 
MgC12 (0.5M) 
ADP' 
PHOSPHOCREATINE 
NAD (1 % in H20) 
NADP (1 % in H20) 

Before use add: 
GLUCOSE-6-PHOSPHATE DEHYDROGENASE (7U) 
HEXOKINASE (1.7U) 
PMS (1% in H20) 
MIT (1 % in H20) 
AGAROSE (1 .5% in H20) 

Sml 
I.2ml 
45ml 

4S0ml 
IOmg 

lml 

0.5ml 

EC 4.1.2.13 

2Sml 
IOOmg 
2ml 
60mg 

SOJll 
0.74ml 
0.25ml 

EC 2.7.3.2 

15ml 
100mg 
Iml 
30ml 
15mg 
Iml 
0.5ml 

6Jll 
6Jll 
0.5ml 
0.5ml 
IOml 



FUMARASE 

TRIS-A buffer 
FUMARIC acid 
PYRUVATE 
NAD (1 % in H20) 

Before staining add: 

MALATE DEHYDROGENASE 
NBT (1 % in H20) 
PMS (1 % in H20) 

GLYCERALDEHYDEPHOSPHATEDEHYDROGENASE 

TRIS-A buffer 
NAD (1 % in H20) 
PYRUVATE 
SODIUM ARSENATE 

60 minutes before staining, make up: 

FRUCTOSE-1.6 DIPHOSPHATE 
ALDOLASE (27U) 
TRIS A buffer 
H20 

At staining mix the above solutions and add: 

MIT (1 % in H20) 
PMS (1 % in H20) 
AGAROSE (1.5% in H20) 

ALFA - GLYCEROPHOSPHATE DEHYDROGENASE 

TRIS-A buffer 
D.L - GLYCEROPHOSPHATE 
MgCl2 (O.SM) 
NAD (1 % in H20) 

Before staining add: 

NBT (1 % in H20) 
MIT (1% in H20) 
PMS (1 % in H20) 

EC 4.2.1.2 

40ml 
100mg 

30mg 
2ml 

100J,t1 
Iml 

0.5ml 

EC 1.2.12 

10m! 
2ml 
50mg 
50mg 

50mg 
30J,t1 
1m! 
2ml 

OAml 
0.2ml 
15ml 

EC 1.1.1.8 

40m! 
250mg 
0.2ml 

2ml 

Iml 
O.3ml 
O.Sml 



GLUCOSEPHOSPHATE ISOMERASE 

TRIS A buffer 
MgCl2 
FREUCTOSE 6 PHOSPHATE 
NAD (1 % in H20) 
NADP (1 % in H20) 

Before staining add: 

GLUCOSE 6 PHOSPHATE ISOMERASE (17U) 
PMS (1 % in H20) 
NBT (1 % in H20) 
MIT (1 % in H20) 
AGAROSE (1.5% IN WARM H20) 

HEXOKINASE 

TRIS-A buffer 
ATP 
D-GLUCOSE 
MgCl2 (O.5M) 
NAD (1 % in H20) 
NADP (1 % in H20) 

Before staining add: 

NBT (1 % in H20) 
GLUCOSE-6-PHOSPHATE DEHYDROGENASE (17U) 
PMS (1% in H20) 
AGAROSE (1.5% in· H20) 

ISOCITRA TE DEHYDROGENASE 

TRIS-A buffer 
MgC12 (O.5M) 
NADP (1 % in H20) 

Before staining add: 

NBT (1 % in H20) 
PMS (1 % in H20) 
MIT (1% in H20) 

Incubate withgel for 30minutesnthan add: 

D.L- ISOCITRIC ACID 

EC 5.3.1.9 

10ml 
hpl 

10mg 
1ml 

O.5mg 

6J.lI 
O.5ml 
O.5ml 
O.5ml 
10ml 

EC 2.7.1.1 

10ml 
20mg 
500mg 

1ml 
1ml 

O.5ml 

1ml 
6J.ll 

O.5ml 
10ml 

EC 1.1.1.42 

10ml 
1ml 
O.3ml 

O.3ml 
0.3m1 
O.3ml 

O.lM 



Preparation ofO.1m citric acid na-d-l- isocotric acid 2.9g 
H20 make up to 100ml 

LACTATE DEHYDROGENASE 

TRIS-A buffer 
D.L- LACTIC acid (O.5M) 
NAD (1 % in H20) 

Before use add: 

NBT (1 % in H20) 
PMS (1% in H20) 

Preparation of lactic acid: . 

lithium D.L-LACTATE 
H20, make up to (adjust pH with LiOH) 

MALIC ENZYME 

TRIS-A buffer 
MgCl2 (O.5M) 
MALIC acid 2M (pH7) 
NADP (1 % in H20) 

Before use add: 

PMS (1 % in H20) 
NBT (1% in H20) 
MIT (1 % in H20) 

MANNOSE PHOSPHATE ISOMERASE 

Mannose - 6 - phosphate 
Glucose - 6 - phosphate dehydrogenase 
Glucose phosphate isomerase 
NAPD 

Before use add 

MIT (1 % in H20) 
PMS (1 % in H20) 

EC 1.1.1.27 

35ml 
6ml 
1ml 

O.3ml 
O.5ml 

9.6g 
200ml 

EC 1.1.1.40 

lOml 
1.5ml 
lml 
O.lml 

O.lml 
O.2ml 
O.2ml 

35mg 
60U 
100U 
lOmg 

O.Sml 
O.5ml 



PHOSPHOGLUCOMUTASE 

Glucose - 1 - phosphate 
Glucose -6 - phosphate dehydrogenase 
NAPD 

Before use add: 

MTT (1 % n H20) 
PMS (l % in H20) 

PHOSPHOGLUCONATE DEHYDROGENASE 

6 - phosphogluconate 
NAPD 
MIT (1% in H20) 

SORBITOL DEHYDROGENASE 

Sorbitol 
NAD (l % in H20) 
MIT (l % in H20) 
PMS (1 % in H20) 

SUPEROXIDE DISMUTASE 

NBT 
PMS 
NAD 
(leave exposed to ight) 

XANTHINE DEHYDROGENASE 

Hypoxantine 
NAD 
MIT (1 % in H20) 
PMS (l % in H20) 

100mg 
60U 
10mg 

1ml 
O.5ml 

80mg 
10mg 
1ml 

250mg 
20mg 
O.Sml 
O.Sml 

20mg 
6mg 

20mg 

60mg 
20mg 

1ml 
1ml 

Heat substrate until it dissolves (do not bring to boil) and allow to cool down to room temperature 
before adding other ingredients. 



APPENDIX lIe 

1. Hardy-Weinberg equilibrium of observed and expected genotypes. : Chi square (X2) test for 
significant departure form Hardy-Weinberg equilibrium are also presented. d.f. = degree of 

freedom. 

Population: South Africa 

LDH 

Genotypes 
(A, A) 
(B, A) 
(B, B) 

Obs. (0) 
20 
22 
8 

Exp. (E) 
19.1010 
23.7980 
7.1010 

(O-Ey/E 
0.0423 
0.1358 
0.1138 

Xl test for Hardy-Weinberg equilibrium : 
t: 0.291964 
Df: 1 

p-Value: 0.588965 

LGG 

Genotypes 
(A,A) 
(B, A) 
(B, B) 
(C,A) 
(C, B) 
(C, C) 

Obs. (0) 
o 
o 
46 
o 
4 
o 

Exp. (E) 
0.0000 
0.0000 
46.0606 
0.0000 
3.8788 
0.0606 

(0-E)2/E 
0.0000 
0.0000 
0.0001 
0.0000 
0.0038 
0.0606 

Xl test for Hardy-Weinberg equilibrium : 
Xl: 0.064474 
Df: 1 

p -Value: 0.799560 

MDH 

Genotypes Obs. (0) 
(A, A) 0 
(B, A) 2 
(B, B) 48 

EXE. (E) (0-E)2/E 
0.0101 0.0101 
1.9798 0.0002 
48.0101 0.0000 

Xl test for Hardy-Weinberg equilibrium : 
Xl: 0.010309 
Df: 1 

p-Value: 0.919126 



MPI 

Genotypes Obs. {O) EXE· (E} (0-E}2fE 

(A, A) 3 3.2828 0.0244 
(B, A) 20 18.9091 0.0629 
(B, B) 25 25.8182 0.0259 
(C, A) 0 0.5253 0.5253 
(C, B) 2 1.4545 0.2045 
(C, C) 0 0.0101 0.0101 

t test for Hardy-Weinberg equilibrium : 
7}: 0.853131 
Df: 3 

p-Value: 0.836721 

Population: Mozambique 

LDH 

Genoty}?es 
(A,A) 
(B, A) 
(B, B) 

Obs. (O} 
17 
22 
12 

EXE. {E) (0-E)2fE 
15.2475 0.2014 
25.5050 0.4817 
10.2475 0.2997 

7.:' test for Hardy-Weinberg equilibrium : 
1:: 0.982778 
Df: 1 

p-Value: 0.321514 

LGG 
Genoty}?es 
(A,A) 
(B,A) 
(B, B) 
(C, A) 
(C, B) 
(C, C) 

Obs. (0) 
o 
o 
47 
o 
4 
o 

EXE· (E) (0-E)2fE 
0.0000 0.0000 
0.0000 0.0000 
47.0594 0.0001 
0.0000 0.0000 
3.8812 0.0036 
0.0594 0.0594 

7.: test for Hardy-Weinberg equilibrium : 
1:: 0.063118 
Df: 1 

p-Value : 0.801634 



MDH 

Genotypes 
(A, A) 
(B, A) 
(B, B) 

Obs. (0) 
o 
2 
49 

Exp. (E) 
0.0099 
1.9802 
49.0099 

0.0099 
0.0002 
0.0000 

X1. test for Hardy-Weinberg equilibrium : 
X1.: 0.010101 
Df: 1 

p-Value : 0.919944 

MPI 

Genotypes Obs. (0) 
(A, A) 6 
(B, A) 21 
(B, B) 21 
(C, A) 0 
(C, B) 3 
(C, C) 0 

Exp. (E) {0-E)2/E 
5.2277 0.1141 
21.5644 0.0148 
21.2376 0.0027 
0.9802 0.9802 
1.9604 0.5513 
0.0297 0.0297 

X1. test for Hardy-Weinberg equilibrium : 
X1.: 1.692721 
Df: 3 

p-Value : 0.638553 

Population: Tanzania 

LDH 

Genotypes 
(A, A) 
(B,A) 
(B, B) 

Obs. (0) 
13 
30 
7 

Exp. {E) 
15.5556 
24.8889 
9.5556 

{O-Ey/E 
0.4198 
1.0496 
0.6835 

X1. test for Hardy-Weinberg equilibrium : 
Xl: 2.152907 
Df: 1 

p-Value: 0.142300 



LGG 

Genotypes 
(A, A) 
(B,A) 
(B, B) 
(C, A) 
(C, B) 
(C, C) 

Obs. (0) 
o 
o 
44 
o 
6 
o 

Exp. (E) 
0.0000 
0.0000 
44.1515 
0.0000 
5.6970 
0.1515 

(O-E)2/E 
0.0000 

· 0.0000 
0.0005 
0.0000 
0.0161 
0.1515 

1..% test for. Hardy-Weinberg equilibrium : 
1..%: 0.168154 
Df: 1 

p-Value : 0.681758 

MPI 

Genotypes 
(A, A) 
(B,A) 
(B, B) 
(C, A) 
(C,B) 
(C, C) 

Obs. (0) 
6 
19 
22 
o 
3 
o 

Exp. (E) 
4.6970 
20.6667 
21.6667 
0.9394 
2.0000 
0.0303 

(0-E)2/E 
0.3615 
0.1344 
0.0051 
0.9394 
0.5000 
0.0303 

1..% test for Hardy-Weinberg equilibrium : 
1..%: 1.970720 
Df: 3 

p-Value: 0.578506 

Population : Madagascar 

LDH 

Genotypes 
(A, A) 
(B,A) 
(B, B) 

Obs. (0) 
20 
20 
10 

Exp. (E) 
17.8788 
24.2424 
7.8788 

(O-E)21E 
0.2517 
0.7424 
0.5711 

1..% test for Hardy-Weinberg equilibrium : 
1..%: 1.565189 
Df: 1 

p-Value: 0.210907 



LGG 

Genotypes 
(A,A) 
(B, A) 
(B, B) 
(C,A) 
(C, B) 
(C, C) 

Obs. (0) 
o 
o 
46 
o 
4 
o 

Exp. (E) 
0.0000 
0.0000 
46.0606 
0.0000 
3.8788 
0.0606 

(0-E)2/£ 
0.0000 
0.0000 
0.0001 
0.0000 
0.0038 
0.0606 

"l' test for Hardy-Weinberg equilibrium : 
r: 0.064474 
Df: 1 

p-Value: 0.799560 

MDH 

Genotypes 
(A,A) 
(B,A) 
(B,B) 

Obs. (0) 
o 
5 
45 

Exp. (E) 
0.1010 
4.7980 
45.1010 

(0-E)2/£ 
0.1010 
0.0085 
0.0002 

X2 test for Hardy-Weinberg equilibrium : 
X2: 0.109742 

Df: 1 
p-Value : 0.740438 

MPI 

Genotypes Obs. (02 
(A,A) 5 
(B, A) 27 
(B, B) 16 
(C,A) 0 
(C, B) 2 
(C, C) 0 

Exp. {E) (0-E22/£ 
6.7273 0.4435 
22.7980 0.7745 
18.4848 0.3340 
0.7475 0.7475 
1.2323 0.4782 
0.0101 0.OlD1 

X2 test for Hardy-Weinberg eqUilibrium : 
X2: 2.787816 

Df: 3 
p-Value : 0.425510 



Population: Oman 

LDH 

Genotypes Obs. (0) Exp. (E) (O-EYIE 
(A, A) 
(B, A) 
(B, B) 

9 
28 
23 

8.6975 
28.6050 
22.6975 

0.0105 
0.0128 
0.0040 

1..% test for Hardy-Weinberg equilibrium : 
t: 0.027352 
Df: 1 

p-Value : 0.868641 

MPI 

Genotypes Obs. (0) Exp. (E) (O-E)21E 
(A,A) 
(B, A) 
(B, B) 
(C, A) 
(C, B) 
(C, C) 

15 
26 
14 
o 
5 
o 

12.9412 
27.7647 
14.3782 
2.3529 
2.4790 
0.0840 

0.3275 
0.1122 
0.0099 
2.3529 
2.5637 
0.0840 

1..2 test for Hardy-Weinberg equilibrium : 
1..2 : 5.450361 
Df: 3 

p-Value : 0.141638 

2. Allele frequencies of polymorphic loci 

South Africa 

Allele \ Locus 
Allele A 
Allele B 
Allele C 

Mozambique 

LDH LGG 

0.6200 
0.3800 0.9600 

0.0400 

MDH 

0.0200 
0.9800 

MPI 

0.2600 
0.7200 
0.0200 



Allele \ Locus 
Allele A 
AlleleB 
Allele C 

Madagascar 

Allele \ Locus 
Allele A 
Allele B 
Allele C 

Tanzania 

Allele \ Locus 
Allele A 
Allele B 
Allele C 

Oman 

Allele \ Locus 
Allele A 
Allele B 
Allele C 

LDH 

0.5490 
0.4510 

LGG MDH 

0.0196 
0.9608 0.9804 
0.0392 

LDH LGG MDH 

0.6000 
0.4000 0.9600 

0.0400 

LDH LGG 

0.5600 
0.4400 0.9400 

0.0600 

0.0500 
0.9500 

MDH 

1.0000 

LDH LGG MDH 

0.3833 
0.6167 1.0000 1.0000 

MPI 

0.3235 
0.6471 
0.0294 

MPI 

0.3700 
0.6100 
0.0200 

MPI 

0.3100 
0.6600 
0.0300 

MPI 

0.4667 
0.4917 
0.0417 



APPENDIX III A 
RAPDS 



Frequency 

~, 

Tot Sample 0,241699219 0,001249219 

SAfr 0,241699219 o 

:-5 

~. ':" " _.c.," _",,,. 

0,0049875 0,4998 0,188936719 0,139811719 

0,375 0,875 
0,625 0,125 

0,030762 0,476074219 0,030761719 

0,75 
0,25 

0,1171875 

Moza 0,241699219 0,030761719 0,030761719 0,375 0,241699219 0,1171875 

Tanz 0,241699219 

Mada 0,241699219 

Oman 0,241699219 

Frequency 

Tot Sample 0,030761719 

SAfr 

0,875 
0,125 

0,030761719 

0,030761719 

0,030761719 

o 

o 

o 

o 

1 
o 
o 

o 

o 

o 

o 0,358886719 0,241699219 0,241699219 

o 0,358886719 0,241699219 0,1171875 

o 0,476074219 0,241699219 0,1171875 

o 

1 
o 
o 

o 

o 

o 

o 

o 0,247061719 0,030761719 

1 
o 
o 

o 

o 0,875 
1 0,125 
o 0,030761719 

o 0,030761719 

o 0,358886719 0,030761719 

o 0,4921875 0,030761719 

o o 0,030761719 



Frequency 

Tot Sample 

SAfr 

Moza 

Tanz 

Mada 

Oman 

Frequency 

Tot Sample 

a· 
SAfr 

Moza 

Tanz 

Mada 

o 

1 0,625 
o 0,375 
o 0,241699219 

o 0,1171875 

o 0,030761719 

o 0,030761719 

o 0,030761719 

o 

1 
o 
o 

o 

o 

1 0,875 0,875 
o 0,125 0,125 
o 0,030761719 0,030761719 

o 0,1171875 0,030761719 

o 0,030761719 0,030761719 

o 0,1171875 0,030761719 

o 0,1171875 0,030761719 

1 
o 
o 

o 

o 

1 
o 
o 

o 

o 

o 

o 

1 
o 
O. 

o 

o 

o 

o 

1 
o 
o 

o 

1 0,125 
o 0,875 
o 0,358886719 

o 0,358886719 

o 0,476074219 

o 0,476074219 

o 0,4921875 



Frequency 

Tot Sample 0,247061719 0,1638 

SAfr 

° 1 

° 
° 1 

° 
° 1 

° 
0,5 
0,5 

0,375 

1 0,875 

° 0,125 ° 0,030761719 

Moza . 0,358886719 ° 

Tanz 0,358886719 ° ° 0,241699219 ° 0,375 

Mada ° 0,476074219 

Oman 0,358886719 0,4921875 ° 0,358886719 ° 0,241699219 

Frequency 

Tot Sample 0,476074219 0,2688 0,2149875 0,0768 0,2688 0,030761719 

SAfr 

Moza 

Tanz 

Mada 

Oman 

0,75 
0,25 

0,1171875 

0,375 

0,75 
0,25 

0,1171875 

1 0,875 0,625 0,875 ° 0,125 0,375 0,125 ° 0,030761719 0,241699219 0,030761719 

0,375 0,030761719 0,1171875 0,1171875 0,030761719 

0,375 0,241699219 0,1171875 0,030761719 0,1171875 0,030761719 

° 0,241699219 0,476074219 0,1171875 0,241699219 0,030761719 

0,358886719 0,375 0,4921875 0,1171875 0,4921875 0,030761719 



Frequency 

Tot Sample 0,030761719 0,0439875 

SAfr 

Moza 

Tanz 

Mada 

Oman 

Frequency 

1 
o 
o 

1 
o 
o 

0,030761719 0,030761719 

0,030761719 0,030761719 

0,1171875 0,1171875 

0,030761719 0,1171875 

Tot Sample 0,096124219 o 

SAfr 

0,875 
0,125 

0,030761719 

0,030761719 

0,030761719 

1 
o 
o 

o 

o 

o 

o 

o o 0,295999219 

1 
o 
o 

1 0,75 0,875 
o 0,25 0,125 
o 0,1171875 0,030761719 

o o 0,375 0,030761719 

o o 0,375 0,030761719 

o o 0,1171875 0,030761719 

o o 0,476074219 0,030761719 

o 0,2688 o 0,399311719 

1 0,625 1 0,875 
o 0,375 o 0,125 
o 0,241699219 o 0,030761719 

o 0,1171875 o 0,358886719 

o 0,1171875 o 0,241699219 

o 0,1171875 o 0,241699219 

o 0,358886719 o 0,358886719 



Frequency 

Tot Sample 

Tanz 

Mada 

Oman 

Frequency 

~q, 

Tot Sample 

SAfr 

Tanz 

Mada 

Oman 

0,0439875 

0,875 
0,125 

0,030761719 

0,1171875 

0,030761719 

0,030761719 

0,030761719 

o 

1 
o 
o 

o 

o 

o 

o 

0,2688 0,139811719 

0,625 0,875 
0,375 0,125 

0,241699219 0,030761719 

0,1171875 0,030761719 

0,1171875 0,1171875 

0,4921875 0,476074219 

1 1 
o 0 
o 0 

o 0,1171875 

o 0,1171875 

o 0,241699219 

o 0,241699219 

o 

1 
o 
o 

0,0768 

1 
o 
o 

o 0,1171875 

o 0,1171875 

o 0,241699219 

1 
o 
o 

o 

o 

o 

o 
~ 

1 
o 
o 

o 

o 

o 

o 

o 0,030761719 

1 
o 
o 

1 
o 
o 

o 0,030761719 

o 0,1171875 

o 0,1171875 



Frequency 

Tot Sample 0;1171875 

0,875 
0,125 

SAfr 0,030761719 

Moza 0,1171875 

Tanz 0,241699219 

Mada 0,1171875 

Oman 0,1171875 

0 0,1759875 <pe = 0,107407292 

1t= 0,006689326 
1 0 
0 1, 

0 o <pe = 0,053152902 

1t= 0,003310363 

o 0,4921875 <J>e = 0,092238653 

o 

o 

o 

1t = 0,005744623 

o <J>e = 
1t= 

0,087355841 

0,005440522 

0,102539063 

1t = 0,006386133 

0,134254092 

-------------------------------1t= 0,008361345 



APPENDIX IVA 



APPENDIX IVB 



APPENDIX IV 

Cloning protocol procedures performed in this research for Pi06 locus: 

1. Preparation of the plateswith ampicillin (lOOJll in 50 ml of media) 

2. Set ligation reaction as described in Pgem - Easy cloning kit pag 11 (use only half reaction mix) 

3. Store ligation reaction overnight at 4°C 

4. Take two III ofligation reaction mix and add to 1.5ml eppendorf 

5. Add 50 III of competent cells (E.Coli: DH5(llacZ~M13) 

6. Insert the eppendorfwith the solution (Ligation reaction and competent cells) on ice for two 
minutes 

7. Then place it on a heating block at 42°C for two minutes. 

8. Under the fume cupboard add 950Jll of SOC media to the eppendorf. 

9. Place the eppendorf at 36°C for 1.5 hr. 

10. Take two plates out of the 4°C and add to each one IOOJll ofIPTG and 20 JllofX-GAL 

11. Place then the plates upside down in the 36°C 

12. Take eppendorffrom the 36°C and centrifuge it at 10000 g for 10 minutes 

13. Remove 700Jll of supernatant and re-suspend the cells in the media left 

14. Under the fume cupboards place 125Jll of solution in each plates and place it in the 36°C 
overnight. 

15. If colony grew, pick up one white colony (containing the insert) and place it in a 5ml eppendorf 
containing 4 ml ofLB media with ampicillin 1 % 

16. Store in the 36°C overnight 

Miniprep for Sml culture in order to sequence: all steps are performed on ice except as stated 
otherwise. Centrifuge steps are performed at 4°C. 

1. Pipette 1.5 ml of overnight culture into eppendorf 

2. Centrifuge cells (12 000 g) for 30 seconds 

3. Discard supernatant and repeat step 2 and 3 

4. Re-suspend the pellet in 100 III of ice-cold Solution 1 by vortexin 

5. Incubate for a maximum of 5 minutes at room temperature (RT) 

6. Add 200 III of fresh solution 2 (0.1 mL of 2M NaOH, O.lmL of 10 % SDS, 0.8mL of distilled 

water) and mix by inverting the tube rapidly 5 times. 



7. Inqlbate on ice for 5 minutes 

8. Transfer 400 JlI of supernatant to a fresh tube and add Rnase (heat inactivated) at a 

concentration of 5 o JlglmL (stock 10mglmL = 2JlI) and incubate for 30 minutes at 37° C 

9. Add an equal volume ofphenol:chloroform:isoamyl (25:24:1) and vortex Centrifuge for Z 

minutes. 

10. Transfer 400 JlI of iso-propanol at room temperature for 2 minutes 

11. Centrifuge for 5 minutes 

12. Discar~ supernatant and allow pellet to dry air-dry 

13. Add 1 ml ofice-cold 70 % ethanol 

14. Centrifuge for 5 minutes 

15. Discard supernatant and dry pellet at 70°C for not more than 5 minutes and then air-dry pellet 

for 5 minutes 

. 16. Re':'dessolve pellet in 50 JlI of ~illiQ water 

17. Run on 1 % agarose in 1 time TBE buffer to check purity state 

18. Clean with sephadex- G50 from excess salts 

19. Store at -20°C 



APPENDIX Ive 



810 
TRACE 

Model1000 File: M13- Cllone01- TZ.abd 
HUB ETOH 
Cimarron 3.12Jack_1-_M13] 

Lane 21 

Signal C:O A:O G:O T:O 
ET Terminators 
?? no 'MTXF' field 
Points 4201 to 1B956 

Page 1 of3 
5/2/2003 
Spacing: 0 

BioEdit version 5.0.9 
T GACGACGG CAG T GAATI GfAAT AC GA CT C ACT A T AG GG C GA A TT G G G CCC GAroI' C G C A T G C T CCC G G 

10 20 30 40 so 60 

C A C GG T AGAA T AG T C T C AAA CC A T AA TT AG T C A T GAA C AGA T A T A T A T A T A T A T 
200 210 220 230 240 

A A A A 
400 



810 
TRACE 

Model1000 File: M13- Clione01- TZ.abd 
HU8 ETOH 
Cimarron 3.12Jack_1-_M13J 

Lane 21 

Signal C:O A:O G:O T:O 
ET Terminators 
?? no 'MTXF' field 
Points 4201 to 18956 

Page 2 of3 
5/2/2003 
Spacing: 0 

BioEditversion 5.0.9 
GA T A A A T T A A C A GA T A' GA T A A A T AG A T A C A GA T A G G T T C A T A G A C A 
~ ~ ~ ~ ~ 

CC GA T AAA T AAA C TT A T CCC G AG C T AAAA T GA T GG T C AAGG A C A TT 
540 550 560 570 

T C AGAG T C GAAGGAGAGAG T AA T C A C T AG T GAA TT C G C GG CC G CC T 
580 590 600 610 620 

G CC GG AAG C A T AAA G T G T AAAG CC T GGGG T G CC T AA T GAG T GAG C T AA C T C A C A 
780 790 800 810 820 



810 
TRACE 
BioEdit version 5.0.9 

Model1000 File: M13- Clione01 - TZ.abd 
HU8 ETOH 
Cimarron 3.12Jack_1-_M13_F 

Lane 21 

Signal c:o A:O G:O T:O 
ET Terminators 
?? no 'MTXF' field 
Points 4201 to 18956 

Page 3 of3 
51212003 
Spacing: 0 

T T A A TT G C G T T G C G C T C AC T G G C C G C T T T C C AG T C G G G A AA C T G T C G T G CC AG CT G 
830 840 850 860 870 880 

C TT AA T GMA T <I: GGG CCMA C GCC GCCC(x;G(x;AGAAGffi CGGG G\m OC G T M T Aa;GGGOGGr NC 'NI' CC (x;ACIT CC 'll\. 
890 900 910 920 930 940 950 960 



110 
rRACE 

Model1000 File: M13-Clone02-TZ.abd 
HU8 ETOH 

Signal C:O A:O G:O T:O 
ET Terminators 

Page 1 of3 
5/212003 
Spacing: 0 Cimarron 3. 12Jack_2-_M13_F 

Lane 20 

?? no 'MTXF' field 
Points 4201 to 18955 

ioEditversion 5.0.9 
'Il:EAALThffiG CAG TGAA TT GfM T AC GA C T C A C T A T AG GG C GA A TT G G G CCC GAarr C G C A T G C T CC C G G 

10 20 30 40 SO 60 70 

C C G C C A T G G C G G C C G C G G G A A T T C GA T T T G C G T A A A T A A T C A T C A G GA T A C GAG A G G C A A A CC 
80 90 100 110 120 130 

A C A C GG T AGAA T AG T C T C AAA CC A T AA TT A G T C A T GAA C AGA T A T A T A T A T A T A 
200 210 220 230 240 

AA T A TT G C TT A C AAAAGA TT A T GAAA T G T A C A C T G T C GAAA TTT G AA C 
300 310 320 330 340 

A A T A A A A T C AA A T AG A T A A A T AG A T A C A T A A A C A A T A T A T A A 
400 41 0 ~20 430 



810 
TRACE 

Model1000 File: M13-Clone02-TZ.abd 
HU8 ETOH 
Cimarron 3.12Jack_2-_M13] 

Lane 20 

Signal C:O A:O G:O T:O 
ET Terminators 
?? no 'MTXF' field 
Points 4201 to 18955 

Page 2 of3 
5/212003 
Spacing: 0 

T T GA T A A A T T AA C A GA T A GA T A A A T AG A T A C A GA T A G G T T C A T A G 
440 450 460 470 480 

BioEdit version 5.0.9 

AAAA T GA T GG 
560 

C C T G C AG G T C G A C C A T A T G G GAG A G C T CC C AA C G C G T T G G A T G C A T A 
630 640 650 660 

C GAG C C G G A A G C A T A A A G T G T A A A G C C T G GCG G T G C C T A A T GAG T G AG C T A A C T C A 
770 780 790 800 810 820 



810 
TRACE 
BioEdit version 5.0.9 

Model1000 File: M13-Clone02-TZ.abd 
HUB ETOH 
Cimarron 3. 12Jack_2-_M13J 

Lane 20 

Signal C:O A:O G:O T:O 
ET Terminators 
?? no 'MTXF' field 
Points 4201 to 1B955 

Page 3 of3 
5/212003 
Spacing: 0 

C A T T AA T T G C G T T G C G C T C A C T G G C C G C TTT C C A G T C G G G AA A AC C T G T CG T G C C AG 
830 840 850 860 870 880 

T G C 

T T AAT G A A T C GOO CC AA C G C G C GG GG A G A GGC G(I; iG\ G CG TAA A NG GG CGC CC N CC G N TT CC T CG T 
890 900 910 920 930 940 950 



BIO 
TRACE 

,5.0.9 

Model 1000 File: Jack_3-_M13_F.abd 
HUB ETOH 
Cimarron 3. 12Jack_3-_M13] 

Lane 19 

Signal C:O A:O G:O T:O 
ET Terminators 
?? no 'MTXF' field 
Points 4002 to 9363 

Page -1 of2 
5/2/2003 
Spacing: 0 

'M~~~TrGGG<IIX;JGmC.>\lGCIUXGGrrY'rro .v... 
10 20 30 40 50 60 70 80 

,., 

TICG\TITOCGfMATM TCATCAGGATACG\GAGOCMAOCT AGCGGATTACI'CG TGAT GGTTTM CAGTCG\CTTGAT MCACCMAGAGTCATT M T ACAC 
100 ltO 120 130 140 150 160 170 180 190 

GG T AGAA TAGTCT CM A CC AT M TT AGTCAT GAACAGAT AT A TAT A T A T A TTCMA TTTCAAA C TT A T CG TC T AA T AA TT AC GCAA TT A 
200 210 220 230 . 240 250 260 270 280 

TT GA GAA CTTCC AA T A TT G CTT AC AAAAGATT A T GA AA T GT AC AC T G T CGA A A TTT G AA C TT C AA T A T C TTTA TT G C AA A CA 
m ~ m ~ m ~ ~ ~ 

CAA TT GC G A T C TTG AAA TTCC T AA CC AA T AA T AAAA T C AAA T AG A T AAA T A G A T A C A T AAA C AA T A T A T AA T T GA T AAA TT 
m ~ m ~ ~ ~ ~ ~ 

AA C A GA T AG A T AAA T AG A T A C A GA l' A GG TT C A T A G A C A G A C A G A T A G A T ACA T A C A T AA A T AAA T AAA T AAA T AAAAA G A 
~ ~ ~ ~ ~ ~ ~ ~ 

r AAA CC G A T AA A T AA A CTT A T CCC GAG C T AA A A T GA T GG T C AA GG AC ATTT CA G A G T C GAA GG AGAG A GT AA T C AC T A G T G 
530 540 550 S60 570 580 590 600 

t 

AA TT C GC GG CC GCC T G CAGG T C G A CC A T AT GGGA GA GCT CCC AA CG CG TT GG AT GCA T A GCTTG A G T ATT CT A T A GT GT C AC 
m ~ ~ ~ ~ ~ m ~ 



810 
TRACE 
BioEdit version 5.0.9 

Model1000 File: Jack_3-_M13_F.abd 
HOa ETOH 
Cimarron 3. 12Jack_3-_M13_F 

Lane 19 

Signal C:O A:O G:O T:O 
'ET Terminators 
?? no 'MTXF' field 
Poiots 4002 to 9363 

Page 2 of2 
5/2/2003 
Spacing: 0 

T AAATAG CTTGG CGTAATCATGG TCATAGCTGTTT OC TGTGTGAAA TT GTTATCC GCTCACAA TT CCACACAA CATACGAG OC GGAA 
90 700 710 720 730 740 750 760 770 

GCATAA.4.GTGTAAAGOCTGGGGTGCC T AA TGAGTG\. 
780 790 800 810 



810 
TRACE 

Model8990 File: M13.Clone02·ZA.abd Signal C:O A:O G:O T:O 
HUSOO ETOH ETTerminators 

Jack41._M13] ?? no 'MTXF' field 

Page 1 of3 
0/0/0 
Spacing: 0 

Lane 0 Points 0 to 0 
BioEcflt version 5.0.9 \' 

T lGAAUA<X;G C AG TGMTT Gr M T AC GA C T C A CT A T AG G G C GA A TT G G G CCC GA<Gf C G C A T G CT CC C G G 
10 20 30 40 50 60 70 

A G C G GA T T A C T C G T GA T G G T T T A A C A G T C G A C T T GA T A A C A C C A A A GAG T C A T T A A T A 
140 156 160 170 180 190 

C A C GG T AGAA T AG T C T C AAA CC A T AA TT AG T C A T GAA C AGA T A T A T A T A T A T A T 
200 210 220 230 240 

T C A A A T T T C A A A C T T A T C G T C T A A T AA T T A C G C A A T T A T T GAG A A C T T C C A 
250 260 270 280 290 

C AA T A T A T AA TT G 
~o ~o 



810 
TRACE 

Model a99D File: M13-Clone02-ZA.abd Signal C:O A:O G:O T:O 
HOSDD ETOH ET Terminators 

Jack41-_M13_F ?? no 'MTXF' field 

Page 2 of3 
0/0/0 
Spacing: 0 

Lane 0 Poir;Jts 0 to 0 
BioEdit version 5.0.9 '. 

A T AA A TT AA C AG A T AG A T AA A T AG A T A C AG A T AG G TT C A T AG A C AG 
450 460 470 480 

A C A GA T A GA T A C A T A C A T A A A T A A A T A A A T AA A T A AC Q\C A GA T A A A C 
490 soo 510 520 530 

C GA T A A A T A A A C T T T A T C C C GAG C T A A A A T GA T G G T C AA G G A C A T T T 
540 550 560 570 580 



810 
TRACE 
BioEdit version 5.0.9 

Model a990 File: M13-Clone02-ZA.abd 
HOaoo ETOH 

Jack41-_M13_F 
Lane 0 

Signal C:O A:O G:O T:O 
ET Terminators 
?? no 'MTXF' field 
POi,tlts 0 to 0 

Page 3 of3 
0/0/0 
Spacing: 0 

A TTN G C G TT (x; C GACTTC A C T G CCC G C TTIT CC AG T CG GGAAA CC T (x; T CG T G CC A G T ca::: A TIC M 
900 840 850 860 870 880 890 

GIT GGA ATICC GGG <n::AA AC (x;CGGOCaGGGG AC MGGC CGG<n\~Aax:N(X;r AO\TC<II;GG(I} mcCAOCAI'T AITGGN TT CC <l\\CGG T OO\(A1C 
910 920 930 940 9SO 960 970 980 990 1000 



APPENDIX IVD 



OMI 
OM2 
OM3 
OM4 
OMS 
MZl 
MZ2 
MZ3 
MZ4 
MZS 
TZI 
TZ2 
TZ3 
TZ4 
TZS 
MAD 1 
MAD2 
MAD 3 
MADS 
MAD 6 
ZAI 
ZA2 
ZA3 
ZAS 
ZA6 
SEQUENZAPIO 
Consensus 

/\(,'1'1','1" "1""1'/\']'1'" rj, l'I','I'i\i,I'I'J" '~ I"''I' I'j'" ;'1'1'1',' :1"1'1',r ':", ~'I '{'" 1"'1''''1'''1'1'1\'['(''1'1' '1'1"'1 '<['1"1'1 I'I'IHI\'.,-~I'I f;l.~'I'("j', f/\'II"I""i'l' 1'1'1\ 'l'C'I'I'!~' , , -, , - " I' ' ' " I ' ' "" I ' r<~ , I I ' I'" 
1\(,'1'1 'i'·' . 1'1'/\'1'('1 ,I;""'I"I'/I.II'C"I' '" ":'1"1'1' 'ITi , "'1"1/' ','::, 'I " ~ "''I'i'''I'' .'1'/\'['1"1' .'1'('" "'1'(''1'1,,:'['(,',,1/\1, ',1,11 Y:.1'1'",!,I, Ij/\'I'("J'I:jl'~,TA T'CI'I":: 

I ;, 'i' I' ' I I:: " ,- , I ' , I·' I I' 1 1 w.i ' 1 ' . I'" 
7\(,Tr','l'" 1',:'1'/\'1'1: (,",'I"I'r, ('I' "" ~ 'J',,"TI '1'1'" "1"1' , "','" ", ; '1'i"I" 'I'J\'I'I"f ,'1'(',",',':"'1" iTc,"il\, :("~'\~;~'I'('I,("Jt''I''''I''':'1''''''t't,\ ']"I,:'I'f',: 
I, t ' Jill - I 'J, I '1 I,' 1 I" ' r I • 'I : 13,:: 

l\( ,'I'I <'I',m "II'/\,[,( ,I c ,," '1"]'1\[ f'l' ~" m r!'I' "jTI "'! T C!I 1'/ '1,1 ""'" '" ,", ", I !T' .'1\' 1'1'1\'1'< 'Tj ,'1'(':1 1'1'1 "]'!' 1'1'( ,+\1,,'( ,!, ~~'I'I ''1':, r /\']'/"1'( 1'1' 1'.'1'1\ T:,C',I'!:.';'! 
'/\\;'J,I 't""'II'ITI\IT (;,'iIIT'!'I\[{"l'I'~I",'j"ij'jl '1'1": 'I'j' "" ~ I'I'I' i 'l"~I'J\'I'(,II"I'I,," i '['("I',I'I'("II\I,I('I~'I'l:'1', 1:/\'I,'''J'fh,'!'/\ TC,:'I.,v .. ,r,;: 

" i '[;1 1- 'I I" - II I:: - , II 'I II m , II ' , I' 
I\( ;,' I 'I T,' "'j'!'}\'I'('; (; i 'f'I'I'I\"c ','l i ",'1',,' I': ' :' IT I, ", I" I' , : ~ " 'I ,T.' T,' ,'['1\']'(' 1'1 ,:'I'( ",' '~'J'(: 1'1 1'1' ( ,I, ,7\,' ,(, y~WC T: :'7\ 'j' (;'!' ',']', I.,T)\ '['I'CT~:-. 

, , ' I ': I' ' II I ' I ' lI'fi , ' . , 'I' ' I I' I ~ " I ' I I) 
1\(; '1'1' 1'1'1 ' IT/\,],( 'II' ,e>' T'I'/\, 'j("'['1 h 'i',\, ' J'! 1'1'1,' ,'1"1 , . /iii " j ''1'1' T' 1'1'/\ '1'( ,''1':1 '['(' 'I ,:'1'(:'1'1 ,'!'( ,', ',II ;( 'I E1'l'C'l'i ";}\'[',C "j'" IT ,'i',f\ T'II:Tl':,; 

I I ' , I . f i r 1 \' I ' ,I }(i:" l, ,,'- I r I r I \ I~~. 

1\( ;'1',,\ 'T • 1'1'1'1'1 'I' ;< 'j "'1''1'/\1 r'r/":" 1'\"" ;'1'1,' hi I"" ,'1"/.11 '" " ,I" ' !~" " I, !T, "'1'" 'T1\Te I'"~ ,']'( 'II , ,'1'1 'Tt 1'1'(,' ,17\' :( 'I V~'r ("I', '1,1\'I'C''I'i"hl l '[',1\ 1'11.:'11». 
I ' " , , "'" 1 'j .,' 1 ' 'I ~'~.' I F" 

I'll;'/' {'I' • "iT!,'I""1 (;",~'I"J'!\ ~I"I" ',1"1"'.''1'' 1'1',' '·,'J''I'I ,I, 'r~;M:" 1 1'1':"1' '1'1'\'1'("1,[1:'1'(" '1'1','''1' ,'1'(; I/\,'!"I ~Vi'("I',' ,,'/\'1('[', :'/'1';'1'7\ 'J','(:Tl'.i; 
I I - ) I i - r ~1 "i r I I l ' 1 J ,~! I I . r I'f /\(,'T":'I'~' ,I'!,/,I\'I'('I"(,i T'I'l\I;I'I'I" "":0""1'11 1)/ '1"1', ", 'r~"'" I '1'1"'1' 11'1'1"1'1 "l'I' '1'1 , '1',',],( 1,/,'r,:'III: '1','1 ~~'I'(''I''I' 11/\"""I'!,h'I",],!\ '[';r.:'d:,':; 
I ,r I ,, ~ I ' , 'I I I . ~~j i ' "'" r 1, ,r/;1' II! "~I' 

IV,']" 'j , '1'/\'1'1 'I J ,I "1"1'/\ -("1'1' 'I II'j" ,'j'l ' .,,','1, ' "1"[' ,r~ I ']', '['.', 1'/\'1'( "1'1 '1'(' I 'I" "1'1 :'1'1,"111 'I', I~~ I', "I" ,1\'1" ''1'1 1,[,', '['1\ '1':,-;']'10:' 
I, " ! I I 'j I I" I ~.~ t I ) \ I I t v.'.'t<I " 'I I .1 r",' N;'I'~'l":" 'I'N]'I' (;"I'["]'j\IIC"I'I', ~ 'j"':'I' ~ hi" "'1''1'1 fil,_' I"I':"I,'I'!'/\'I"'!' 'I( :I""I"!'I'(; i/,IIII'I ; ,[,,:,[,: '1)\'1" ]'1'1'1,1,".'1'/\ T'I:'J' , I I - , - 1 " ~;;J, I r , i 1 "j " ~ 'I • I 

1\(;']':":'1', ','['7\'1'1', ('I ']','1'/\ /,,1" :'1 T! l'1'i 1 :1,[,1, 'i' lii , I '1'" 'I"~ "1'r,'I'("l'~ 'i'l ,1'1 "]'t 1'1'( ;",7\'1 ~I 'I, viil'!'( "I'~ : f,'I" "1':"'']' ; '1'1\ T:C'.!' 
" 1 I' '" , J' l U ," I - ' '1 ' 'I''')i - 'i ~ , 7\\ '[' "'I' ' 1'7"]'/'1 (, '1"J'j\ ("1 01

, 'I" I. r,j I']' "J'I' r~~ ,II j'I""'I" '''7''''r''I' '1'(' ' re ']"'I,1 1'1'(-'·'/\/",,] ~:::'l'] ' ',\,' '7"1'("/""'1"'1'1'1\ '1"('']'V,"·,. 
, r") ," , , I '( ~ I ; 1 I I. I ! j I 1- " '~~'!' j \ l -' , . I, ~ 1'- r ',1 I (I I :J~ t, :' ~\ \ I ; 1~ : -' I:::' 

7\, "1' '1', m I' \'1'(', ( 0 'I' 1'1 l I "1'1" II m'j,' I'i f1I ,1'1'" '1''[' , '" ,'t' lii , I' I'" 'I" '1'/' '1'1 "I ~T('" "1" ''1',,1']'( Iii 1\ Iii '1, e T( "I' '/\'1" "1,1 II' ; ,], '\ 'I'll "1",',':, 
! , (~ liA J " f ' "t 1 11& I ill :, " 'rU J I I \' j I. ~ I I I / f I 'I.; I u' " !, 1 ' ~ I j" !~:~ 

/\1;'1,,:1', '11'/,'1'1'1 (;",'I'I'l\l ("I'll, ,,'I' ,'III" 1'1',' ,1'1'/ ~' 1'1'1\ "1,', '1'j\'J'("ll '1'1',' l'l'l:TI,'I'I,"V\1 !"I . 1'<":'i!\'I"'I"'~'I'i.''I'l\ ',I',r,.:,p~,:; 
, , I "I 'I, ' ~ I ' 'I ' '" I . I I I I ' "I ' [ .. ,. N;I" 'I" '['/\'1', ,"'("Il\ ,("[,r,, ",'I' il': ' 1'1',," :i"J ' 't.~ ,'\ '11'1'/\']'1 'I': ':1'("1', '1'(, i" ,I' . 'I\"II, e /\'I""[' "1'/111 ,[,/\ 'IT'I'!,,:: 

, 'I "'" I J , '",. , I I I I" I " " ,,: ,( 'I" 'I 'I I' '1"" ""I'T\ 1'1' '1' 'I' 1'1 ,J'I' " "1"1'1 ' 'r~' ',"I' ,], 1'1'/ '['I'" '1'(' 'ih" "I" '1'( , {\, 11,1 . '1" "~I' e /\'I" ''I' 1']'1 ['l\ '1'" "1'1,' 
r I I' " I I) J I ' I; \, i I '~~ I I I \ J J_ ,'" ]' If I j I I ! I . I. t,':: 

,(,['!"'(' ; '!'I'I\'1 l< 1:':,1"]'/\',('1",' 1,'/' "'II' ";'1.1, '1''1'/'"''1 ,1''' ,,; Iii · 1I'I"Ti 'J'!\'j'("I" !'I ':'J'I'''''I'! >I'(;:hm('! . '1',"1' e r\'I~'''r': I'I'I'I'!\ TI,(~'I'I:.,· 'I ' " I ; I' ' , ", " , ,U J " I:: 'I'" 1 II ' , 1 If' I" /,1 'I' "I "'1'/"1'( ( '1''1'/\' '1'" ' '" 'I" "'Ii, '1"1,1 '; e ""~ 'I ''I' "I,' 'II" '1'1"1'1 "(' I'll "I'" {'I'(' I\ ~ I' . '1'( 'I' e /\'I'l"I' 'I' ""'11 '1'("]"" ~ . I I I I I 11 ill I' . t J~ J i .;! I, ; 1 I t I j~~ I I • / \ I ' J ,I I /' » 1, )~J ',1& ' fl' I . ;" !-:;~; 
71'(,'I'i",'j', ", 11'1'/\'I't" (""I'I'I'i\f'I'("I'j'" :'1",1': I ''\'1'" 11'I'i"," 'q' II" ", 1'~'I'>,],'i'I'I\'I'C:TI' '['C"",,]'(~'I'I,i']'("'~/\:':('lfll'I'I"[':' ':/\'I'I"I',I'I'I''I'!\ ,],(:']'1,,: 

I t, 1 ' , ,!, I I I ' 1 < , ~ 1 r I I I I I I (I ,I !'" 
7\( "]"" 'I" " '1'1'1\'1'('" '(' ,"1"('7\1 ("I"" T .'1" "h'I" m' '1"11,' "",,' , mr 

'']' "I' "1'/\'1'1"],' '']'1'"'' ']"''1'', ''1'(' II\' II ,I ~h', "I 'I" 'I" "I J 1'1'1 '1'1' ']"r."I'<' 
" ~' 'I ',1 ' " , J 'I : '. 'I" ,II ' , , , , .. ,' I ,\ " I ' Ii'; , 'I ~ ',," t ill>i ~'I' (/, "1 I'" \ . > r;; 

7\( 'T,r'l 'j" '1'1'1'1'1' C" '[' TN '( "I' 11 'I'" '[ ~ ,hi' fi" 'l"Il " ", (~,," I ,']" 'I' Tj\ '1'( T' '1'/ 'm, 'TI "J' :'1'(" 1[\' II' 1:.1,],1 H[' " 'II( "I'" T' '1'1\ T', "IT"; I.'~ ~ II \ I~I,)::, iJ 1'1., .. :,11 .. :, . 1'.>Ill 11 f l' , I ~ 11 \'1 I .1 ~1! i ,I, )1 II, i'"'(~ r\l~ 'I' ".'1':' ,0 :' ,iTJ\,[" 'I, r;; 1;']':'17\11 I( "1,1, I ','j' 1'1'1" 11'11;,: ,'1')'" , 'II ' ', 'I ,}~ I,' I'ri' "1', '1'1'/\ rC'I'1 '1'( , ~ ,: fl'i ,,[tl'I'/ ;,+\!, !( "I vth( "I':' "/\T,r-'f'1 '1'1' ( '1'7\ ']"11 : Tli •. , ' 'I r " ,', "I I, ~ - I' . - , II 1'1 I7fiI ' III '.' 7\( 'J'I,"'I",' ','",I'7\'J,'(","""'I"I'/\I'('1'" ''',,''/'''''1'1' ','J",,' ,',]"1""" II,,' .,r,,'Il' 1",],1"'1' "1''\'1'(''['1 "J'C"',.' "I'("J',"I'( '1/'\',,1 I ':l.~'J'("I'\ '''/''/'''''1' "I' ,'J'II '1';("1'1,.:',', 1, t I ,:.,lll!'1 rl I I 1! j~ '-'~ 1.~J ,;,'/,l:'J'~1',!,1 Ijl " . -,I'~I' r" ) tJI/J~ 1\ \.1' r'l I" 'i"I}" 

~1\( . ,],1" 'I'.' " ).1' i\'I' ( ' G':(,' "I"I'J\~ ("'l' re , "I' l.:e '],/ "]'1'1'" '1"1' ,d,,', I' e 'I' 7' '1'(' '1' ~ '1'( ':, '{ i ' I' ''I' re 'I'("' ,1/\, ('Il~'l'r'(' 'I'm ,i' 1\ '1"1 ''!' re I' 't T 1\ eT.r''J'li.) • I,.;c . .e '. I'!' U lilt I I. j - ': I~I ,II .:. "",.! •••••••••••• J I ,\ ,\ '( ;:~1 1iti:i l ~ J.J 1>'1 I ~ ia ld . ,-' ~ 101\ • -'. I~:' 

CIa a a co tct 

1 



OMI 
OM2 
OM3 
OM4 
OMS 
MZI 
MZ2 
MZ3 
MZ4 
MZS 
TZI 
TZ2 
TZ3 
TZ4 
TZS 
MAD I 
MAD2 
MAD 3 
MADS 
MAD 6 
ZAI 
ZA2 
ZA3 
ZAS 
ZA6 
SEQUENZAPIO 
Consensus 

1'/\1','[',. '/,1:":1'/\',>:,1'1'1 'I'I'/\'I'll 'I", ''['f,i'I''[''11 ;/\'["1"1 '1/\']"1', "'i'I:' ;'11"1'1\1;( ;/\/\'1"]':1'1 '(.il ( ;/1']'1" ')\!',~I'I"IE,~'i':j'J"!"I'I;I:/\I\'I'N~i\ 
,0 "I .',' ' , , .. I "I ' ,I I'''~ I , I :r /I 'I d,i" 'I"" 'I' /""'1" 0" I ;,." 'I 'I" ' I /' ' [")" i '\'1'( ,,[, I!!!e ' I" '''I', '/1' 1,"1" I" 1'/1 'I " I ' ''1'1 i( ,\" 'I" [' 'I' 'jl I' '1"1'1" 'r / "!" j' 1 , '/'" 1'1 ,," :'1'1" I']' 1"" ( '( 'l r ' I'!, ]", r, . \i', !-:/\ ;.( \~,:~: :',_,' ;. ','. ,,",,: 'i: " ..,. II ." ~': \_: I I ,,\ ' l\ \! 1'._ :_, .. t· .. , I I~t: :':;! J' _' \. \::~,I I 

'f'( ,"1 '( " '/' /\ 'I' " 1'["].1' n ',,', I,' '''1'' 1\'1' I ' :, I " '1"1'1'" r '1'1 "I" "1"1"" ( , )' ""1"1' '1'/' 'I" 1'1 'I"" ,I, ('1" 1'" "'" '1'1"1', I" ' '" I ' , '" I ' '/dl""I ''i ']' ",'1' 'I "I' ' , , , 1\' I' ;" ""i' I .\. !:!:I_ ::, .I\~·i :~'j I . ,': ,1\ '~.'i'\ .~-,.; I 1,·\_1 .. I ,(I;':'~ /',1,,-1.\/, ,,,- /'./,.,1/\1 .'. 'i>1 ~ ~::! ,lr'.'\,.J '.;-:'!' 
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