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Abstract 

 

According to the Joint United Nations Programme against HIV/AIDS 2009 AIDS 

epidemic update, there were a total of 33.3 million (31.4 million–35.3 million) people 

living with HIV worldwide in 2009. The majority of the epidemic occurs in Sub-

Saharan Africa. Of the 33.3 million people living with HIV worldwide in 2009, a vast 

majority of 22.5 million (20.9 million-24.2 million) were from Sub-Saharan Africa. 

There were 1.8 million (1.6 million-2.0 million) new infections and 1.3 million (1.1 

million-1.5 million) AIDS-related deaths in Sub-Saharan Africa in 2009 (UNAIDS, 

2009). 

 

Statistical models and analysis are required in order to further understand the dynamics 

of HIV/AIDS and in the design of intervention and control strategies. Despite the 

prevalence of this disease, its pathogenesis is still poorly understood.  A thorough 

understanding of HIV and factors that influence progression of the disease is required in 

order to prevent the further spread of the virus.  Modelling provides us with a means to 

understand and predict the progression of the disease better.  

 

Certain genetic factors play a key role in the way the disease progresses in a human 

body. For example HLA-B types and IL-10 genotypes are some of the genetic factors 

that have been independently associated with the control of HIV infection. Both HLA-B 

and IL-10 may influence the quality and magnitude of immune responses and IL-10 has 

also been shown to down regulate the expression of certain HLA molecules. Studies are 

therefore required to investigate how HLA-B types and IL-10 genotypes may interact to 

affect HIV infection outcomes.   

 

This dissertation uses the Sinikithemba study data from the HIV Pathogenesis 

Programme (HPP) at the Medical School, University of KwaZulu-Natal involving 450 

HIV positive and treatment naive individuals to model how certain outcome biomarkers 

(CD4+ counts and viral loads) are associated with immuno genetic parameters (HLA-B 

types and IL-10 genotypes). The work also seeks to exploit novel longitudinal data 

methods in Statistics in order to efficiently model longitudinally measured HIV 
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outcome data. Statistical techniques such as linear mixed models and generalized 

estimating equations were used to model this data. The findings from the current work 

agree quite closely with what is expected from the biological understanding of the 

disease. 
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Chapter 1 

Introduction 
 

 

According to the Joint United Nations Programme against HIV/AIDS 2009 AIDS 

epidemic update, there were a total of 33.3 million (31.4 million–35.3 million) people 

living with HIV worldwide in 2009. This far exceeded the number reported in 1999, 

reflecting a 27% increase. A total of 2.6 million (2.3 million – 2.8 million) people were 

newly infected with HIV, coinciding with 1.8 million (1.6 million–2.1 million) AIDS-

related deaths in 2009 (UNAIDS, 2009). As of December 2009, the majority of the 

epidemic occurred in Sub-Saharan Africa where 22.5 million (20.9 million-24.2 

million) of the 33.3 million people living with HIV reside. There were 1.8 million (1.6 

million-2.0 million) incident cases and 1.3 million (1.1 million-1.5 million) AIDS-

related deaths in Sub-Saharan Africa in 2009 (UNAIDS, 2009). Despite the numerous 

studies about the disease, its pathogenesis is still poorly understood.  A thorough 

understanding of HIV and the factors that influence the progression of the disease is 

required in order to prevent further spread of the virus.  CD4+ (cluster of differentiation 

4) count and viral load are the most common biomarkers of HIV used to monitor its 

progression in humans.  

This dissertation will use the Sinikithemba cohort study conducted by the HIV 

Pathogenesis Programme (HPP) at the Nelson Mandela Medical School in the 

University of Kwa-Zulu Natal, Durban, consisting of 450 HIV positive and treatment 

naive individuals, to model how certain outcome biomarkers (CD4+ counts and viral 

loads) associate with immuno genetic parameters (HLA-B types and IL-10 genotypes). 

It will seek to exploit novel longitudinal data methods in order to efficiently model 

longitudinally measured HIV outcome data including information and effects of certain 

immune response genes on the pathogenesis of the disease. 
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1.1 Human Immunodeficiency Virus 
 

AIDS (acquired immune deficiency syndrome) was first identified in the early 1980s 

(Averting HIV and AIDS, 2009). The virus causing this deadly disease, known as HIV 

(human immunodeficiency virus), attacks the most vulnerable part of the human body - 

the immune system. The virus is passed on from one person to the next via bodily 

fluids, i.e.: semen and blood. This can occur during sexual contact (anal, vaginal or 

oral), from the practice of sharing needles, prevalent amongst some drug addicts, 

through tattooing and body piercing practices which use unsterilized needles, accidental 

needle pricks, unsafe blood or blood products, or mother to child transmission (either 

during pregnancy, during delivery or through breast feeding). A person who contracts 

the virus (HIV) may live for many years before developing full blown AIDS. AIDS is 

not a specific illness, but rather a collection of different symptoms or conditions that 

manifest in the human body due to the weakened immune system of an infected person. 

 

1.2 HIV Outcome Biomarkers 
 

An individual‟s immune system contains different types of cells that help protect the 

body from infection. The T-cells or CD4+ cells are one of these specialized cells, 

known as “helper” cells. They are a type of white blood cell, which play an important 

role in the body‟s immune system, and therefore in fighting infections. HIV is a 

retrovirus, meaning that it needs cells from a “host” to replicate. CD4+ cells act as a 

host for HIV. HIV attaches to the CD4+ cells thus allowing the virus to enter and infect 

other/further infect CD4+ cells. During this process the CD4+ cells are damaged, 

leaving a weakened immune system.  

A CD4+ count is a blood test which determines how well an individual‟s immune 

system is working by measuring the number of functioning CD4+ cells in the 

individual‟s body. A CD4+ count is measured as cells per cubic milliliter of blood. The 

lower the CD4+ count, the weaker the individual‟s immune system and the higher the 

risk to the individual for opportunistic infections.  
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The CD4+ count for an individual can fall in one of the following categories: 

CD4+ count for a healthy adult 600–1200 Healthy HIV negative individual 

CD4+ count for a HIV+ adult 350-600 Considered very good 

CD4+ count for a HIV+ adult 200 – 350  Immune System is weakened and 

therefore the individual may be at 

increased risk for infection and illness 

CD4+ count for a HIV+ adult <200 Classified as having AIDS 

 

Another imperative biomarker to consider is viral load. This is a blood test that 

measures the amount of active HIV in an individual‟s blood. This is stated as the 

number of HIV copies per milliliter of blood and is tested using reverse transcriptase 

polymerase chain reaction or PCR.  

 

1.3 Natural History of HIV 

Over several years, HIV infection reduces the number of T helper cells available to help 

fight disease and therefore damages the body‟s immune system. This process occurs in 

four stages, namely primary infection, clinically asymptomatic stage, symptomatic HIV 

infection, and progression from HIV to AIDS. The first stage is primary HIV infection. 

This normally lasts a few weeks and often includes flu-like symptoms. This may 

include a rash, fever, headaches, diarrhea and vomiting. Opportunistic infections are not 

seen at this stage. This stage is normally not severe and individuals rarely seek medical 

consultation. Besides possibly obtaining swollen glands, an individual will not 

experience any major symptoms during the asymptomatic stage of HIV infection. This 

stage typically lasts on average ten years. The individual remains healthy and unaware 

of the disease, with a CD4+ count above 500 cells per cubic milliliter of blood. In early 

symptomatic HIV disease, the immune system begins to fail and symptoms include 

fever, unexplained weight loss, recurrent diarrhea, fatigue and headaches. The 

individual‟s CD4+ count drops to below 200 cells per cubic milliliter of blood at this 
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stage, and usually anti retroviral therapy (ARV) is started. This stage is typically caused 

by the emergence of opportunistic infections. The individuals CD4+ count will continue 

to drop if the patient is not started on ARV‟s. The individual then progresses from HIV 

to AIDS and ultimately death. These stages can be seen graphically in Figure 1. 

Treatment strategies have recently recommended a CD4+ count of 200 as the cut off to 

begin ARV treatment (National Department of Health South Africa, 2010). 

 

 

Figure 1: HIV progression over time 

 

 

1.4 Immuno Genetic Parameters 

 

The major histocompatibility complex (MHC) in humans is called the human leukocyte 

antigen system (HLA). These are a class of proteins which are often found on the 

surface membrane of cells. HLA‟s can be broken into categories, namely class I, class II 

and class III HLA. Class I HLA‟s include HLA-A, B and C while the class II HLA‟s 

includes DP, DQ, and DR. The super locus contains a large number of genes which are 

http://en.wikipedia.org/wiki/HLA-DP
http://en.wikipedia.org/wiki/HLA-DQ
http://en.wikipedia.org/wiki/HLA-DR
http://en.wikipedia.org/wiki/Locus_(genetics)
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found on chromosome 6, which is where the genes that produce HLA antigens are 

inherited. These genes are related to immune system function in humans. For the 

purpose of this dissertation we will be concentrating on the class I HLA-B types. Figure 

2 shows the human chromosome 6 and the genes which are found on this chromosome. 

 

 

Figure 2: Human Chromosome 6 

 

The roles of the different HLA classes are similar. The class I HLA antigens present 

peptides from inside the cell, whereas class II HLA antigens present antigens from 

outside of the cell to T-lymphocytes. Class III HLA antigens encode components of 

the complement system. There is a groove on each of the antigens, which attach bits of 

proteins or other antigens. These proteins can either be exterior to the cell, or created by 

the cell itself. The HLA then moves to the outside of the cell, where a T-cell can 

identify it. The T-cell checks whether the protein is foreign or not, and will either pass 

over or destroy the foreign cell. 

Other important roles include disease defense. The antigens may be the cause of organ 

transplant rejections, and also may protect against or fail to protect against cancers. 

They may also mediate auto-immune disease, such as type I diabetes. Diversity of HLA 

in human population is one aspect of disease defense, and therefore the chance of two 

unrelated individuals having identical HLA molecules on all loci is very low.  

Interleukin 10 (IL-10) is an important immunoregulatory cytokine in humans (Eskdale 

et al, 1998). It is involved in the regulation of inflammatory responses and in the 

pathology of human auto-immune disease. IL-10 suppresses T-cell immune responses, 

http://en.wikipedia.org/wiki/Immune_system
http://en.wikipedia.org/wiki/Complement_system
http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Autoimmune_disease
http://en.wikipedia.org/wiki/Locus_(genetics)
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which are the defense mechanisms that fight against foreign substances. It also inhibits 

major histocompatibility complex class-I expression and plays an important role in the 

development of infectious disease (Eskdale et al., 1998). In this dissertation the focus 

will be on the IL-10 genotypes that are present on the -592 and -1082 loci. The 

genotypes on the -592 loci includes: AA, CA and CC. The genotypes present on the -

1082 loci includes: AA, AG and GG. 

 

1.5 Cohort Studies 

 

A cohort study is a longitudinal (prospective) study in contrast to a cross-sectional one. 

In medical science, studies are often designed to investigate changes in the outcome of 

interest which is measured repeatedly over time in the participating subjects (Verbeke et 

al., 1998).  

Advantages of a cohort or prospective study include: 

1) Multiple diseases and outcomes can be observed at the same time during the study.  

2) Risk and relative risk, odds and odds ratio can be calculated depending on the 

objectives of the study. These are all measures of disease association of a study disease 

and exposure to a risk factor(s). 

3) It is more accurate than a case-control study since researchers take the data 

themselves rather than relying on records or the subjects recall information. 

Disadvantages of a cohort or prospective study include: 

1) A large sample size is needed (exposed and unexposed samples) compared to a case-

control study. 

2) Time consuming (individuals are usually followed over a long period of time). 

3) It is expensive because of time and lengthy follow up period. 
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The current study cannot be classified as a cohort study in the strict sense of the word 

but rather an observational type cohort study. Information obtained from such a study 

can still be useful in assessing association between a study disease and a risk factor or 

exposure. The strict requirement of a specific sample size is not a pre-requisite. 

 

 

1.6 Longitudinal Data 

 

Longitudinal data is defined as data which is collected on subjects who are measured 

repeatedly over time (followed on two or more occasions), regarding a specific outcome 

or outcomes of interest in investigation. In this study, experimental units are repeatedly 

observed and measurements made over time. Experimental units can include patients or 

subjects in a clinical trial, or plots in agricultural experiments and other generalizations. 

Subjects are regarded as a random sample from a bigger population and hence, any 

effects that are not constant for all subjects are regarded as random. Such longitudinal 

studies are useful in determining individual changes over time, as well as the study of 

factors likely to influence change (Verbeke et al., 1998). 

Longitudinal data analysis can be based on a balanced or unbalanced design. The former 

occurs when every individual has an equal number of observations taken at the same 

time points and it is assumed that there are no missing observations (Jones, 1993). 

Analysis based on balanced designs can be performed using classical multivariate 

analysis of variance methods (Verbeke et al., 1998). The balanced model assumptions 

are usually violated in observational studies, since the data is often unbalanced due to 

factors that cannot be controlled by the researcher, such as individuals entering and 

withdrawing from the study at different times (Laird & Ware, 1982; Verbeke et al., 

1998). This results in individuals being observed a different number of times and the 

intervals between observations may also differ (Laird & Ware, 1982; Verbeke et al., 

1998). The resulting unbalanced data sets cannot be analyzed using these methods 

applicable to balanced designs. Therefore, the need for extensions such as Linear Mixed 

Models (Laird & Ware, 1982), Generalized Estimating Equations and their extensions 
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(Liang & Zeger, 1986), and other techniques that may become necessary depending on 

the complexity of the data pattern.  

Longitudinal data analysis can be advantageous in comparison to a cross-sectional study 

because the analysis can 

(1) Increase the precision by allowing for within subject information 

(2) Observe the change or evolution of a process over time 

(3) Be able to separate age and cohort effects 

(4) Account for individual to individual heterogeneity, a task which is not possible 

under cross-sectional studies 

(5) Under such a study both time dependent and baseline covariates can be 

accounted for simultaneously 

Measurements made on the same subjects are likely to be more similar than 

measurements made on different subjects. That is, repeated measurements are 

correlated. Therefore subject to subject variability and within subject correlation needs 

to be accounted for in the analysis. Overall there is within subject correlation and 

between subject variability, both contained in the data structure. Thus longitudinal data 

possesses a more informative structure compared to a cross-sectional data for the same 

problem. 

 

1.7 Missing Data 
 

Missing data is a frequent complication of any real-world study and can cause bias or 

lead to inefficient analyses. Missing observations is one of the many complications of 

analyzing longitudinal data and can result in subjects being measured a different number 

of times (Jones, 1993). Missing data may be due to design, chance or unforeseen 

circumstances. Missing data by design may include some variables not being collected 

or measured from all the subjects, subjects refusing to provide certain data as well as 

subjects or investigators leaving out information to insure confidentiality. Missing data 

can be classified as missing completely at random (MCAR), missing at random (MAR), 

or missing not at random (MNAR). MCAR refers to missing data that is completely 
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independent of the response. MAR is less severe, but missing data may depend on the 

response, however only on the observed responses. MNAR refers to missing data that is 

dependent on the unobserved responses (Molenberghs & Kenward, 2007). Missing data 

is a problem frequently encountered in longitudinal studies, and therefore needs to be 

taken into account during the analysis of longitudinal data. 

 

1.8 Objectives of the Study 
 

According to Kipiela et al. (2004) there is enough evidence to justify the importance of 

investigating the involvement of HLA-B in influencing HIV disease outcome and 

progression. It was found that the rate of disease progression is strongly associated with 

certain HLA-B, but not HLA-A allele expression (P < 0.0001 and P = 0.91 

respectively). More specifically, it was found that there was a significant association 

between B*57 and B*5801 with low viral load (non-progression), and between B*18 

and B*5802 with high viral load (progression). The paper by Kipiela et al. (2004) 

suggests the dominant role the HLA-B alleles play in the successful or unsuccessful 

immune containment of HIV infection and in the control of human pathogens. 

According to Shin et al. (2000), individuals carrying the IL-10 -592A promoter allele 

could possibly have a higher risk of HIV infection than the IL-10 -592 CC genotype. 

These individuals progress to AIDS more rapidly after infection, especially in the later 

stages. It is suggested that IL-10 -592A facilitates HIV replication in vivo, and thus 

accelerates the progression to AIDS (Shin et al., 2000). Long-term non-progressors are 

classified as individuals who avoid clinical AIDS for 10 or more years after HIV 

infection (Shin et al., 2000). 
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1.8.1 Specific Objective of the Study 

 

(1) To understand and apply methods relevant in modelling longitudinal data using 

a range of statistical techniques 

(2) To understand the disease pathogenesis using biomarkers such as CD4+ counts 

and viral loads 

(3) To understand the role of immuno genetic parameters HLA-B types and IL-10 

genotypes in disease progression 

(4) To investigate the interaction between HLA-B types and IL-10 genotypes 
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Chapter 2 

Exploratory Data Analysis 

 

2.1. Data Description 
 

The Sinikithemba Study (SK Study) was initiated by the HIV Pathogenesis Program 

(HPP) in 2005 at the Nelson Mandela Medical School in the University of Kwa-Zulu 

Natal, Durban. This cohort enrolled a sample of 450 HIV positive individuals, 

consisting of 93 (20.67%) males and 357 (79.33%) females, some of whom were 

recruited from a previous study. Baseline characteristics such as demographics, HLA 

typing, cellular immunology, CD4+ count and viral load were collected. Participants 

were then seen every three months after enrolment. CD4+ counts were taken at every 

visit (every three months) and viral loads taken every second visit (every six months). 

Other information, such as anti-retroviral treatment (ART) status and TB status, was 

continually updated throughout the study. For the purpose of this research, the focus 

pertains to participants while they were ART naive.  

Study participants were offered ongoing clinical care and monitoring. This was 

inclusive of regular feedback on the status of their HIV infection through the monitoring 

of their CD4+ levels and viral loads. Free counseling and support from dedicated and 

experienced doctors, nursing staff and counselors was also made available to all study 

participants. Once sufficient evidence to warrant treatment was gathered, participants 

were referred to the government sector medical care centers for initiation of 

antiretroviral therapy according to the national guidelines given by the South African 

government. 
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2.2 Study Design 
 

The data that will be used in this research can be classified as both a longitudinal study 

and an observational cohort study, as measurements were repeatedly conducted on each 

individual over time at regular, but not necessarily equal, intervals as time elapsed. As 

already stated, such studies may lead to unbalanced data which will need to be 

accounted for during the modelling process and will henceforth be discussed in 

subsequent chapters. 

 

2.3 Preliminary Plots and Descriptive Analysis 

2.3.1 CD4+ Count 

 

After excluding participants who did not have information on HLA-B typing or IL-10 

genotyping, and excluding information of an individual after transferring onto 

treatment, the data set used includes 426 participants with a total of 4016 CD4+ count 

observations between August 2003 and January 2010. Figure 3 shows CD4+ counts 

over time in days using observations for all individuals. From this graph it is evident 

that there is a clear decrease in CD4+ count over time. There is however an outlier 

whose CD4+ count increases over time. 

 

 

Figure 3: CD4+ counts of all the individuals over time in days 
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Figure 4 shows CD4+ counts over time for males and females. Although it is clear that 

there are less males then females, their CD4+ counts show the same decreasing pattern. 

Outlying patients can be seen in both male and female plots. The data also shows 

evidence of individual to individual variability over time. 

  

Figure 4: CD4+ counts for males and females over time in days 

 

In Figure 5 where mean CD4+ counts for males and females are plotted, it is evident 

that there is a slight difference in the mean CD4+ count at each time point between 

males and females; however the trend is the same. Males seem to have a slightly lower 

mean CD4+ count than females in most of the time points except towards time points 23 

and 24. The last time points (time points 24 and 25) show an increase in CD4+ count. 

These are however less precise than the early time points, since there are fewer 

observations toward the end due to dropout and death.  

 

Figure 5: Mean CD4+ counts for males and females at each time point with standard deviations 
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A summary of the repeated measurement for CD4+ counts can be found in Table 1. It 

can be seen that the highest percentage of participants have only one observation for 

CD4+ count (11.50%). The lowest percentage of participants has twenty five CD4+ 

count observations (0.47%). This can be explained by the fact that by this measurement 

value most participants have already been transferred onto treatment, withdrawn from 

the study or succumbed to death. This can be seen graphically in Figure 6. 

 

Table 1: Summary of repeated measurements for CD4+ counts   

Number of CD4+  

Observations per 

Participants 

Number of Participants % of Participants 

(Cumulative %) 

Total number of CD4+ 

count observations (%) 

1 49 11.5 (11.50) 49 (1.21) 

2 39 9.15 (20.65) 78 (1.92) 

3 29 6.81 (27.46) 87 (2.14) 

4 37 8.69 (36.15) 148 (3.64) 

5 20 4.69 (40.84) 100 (2.46) 

6 11 2.58 (43.42) 66 (1.63) 

7 13 3.05 (46.47) 91 (2.24) 

8 12 2.82 (49.29) 96 (2.36) 

9 15 3.52 (52.81) 135 (3.32) 

10 6 1.41 (54.22) 60 (1.48) 

11 7 1.64 (55.86) 77 (1.90) 

12 19 4.46 (60.32) 228 (5.61) 

13 22 5.16 (65.48) 286 (7.04) 

14 25 5.87 (71.35) 350 (8.62) 

15 28 6.57 (77.92) 420 (10.34) 

16 26 6.10 (84.02) 416 (10.24) 

17 11 2.58 (86.60) 187 (4.60) 

18 12 2.82 (89.42) 216 (5.32) 

19 4 0.94 (90.36) 76 (1.87) 

20 12 2.82 (93.18) 240 (5.91) 

21 6 1.41 (94.59) 126 (3.10) 

22 9 2.11 (96.70) 198 (4.88) 

23 7 1.64 (98.34) 161 (3.96) 

24 5 1.17 (99.51) 120 (2.95) 

25 2 0.47 (99.98)* 50 (1.23) 

*Does not equal 100% due to rounding off 
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Figure 6: Number of CD4+ count observations 

 

Tests for normality were performed on the CD4+ count data. Although results are not 

shown, it was seen that the CD4+ count data violates the normality conditions and 

therefore some kind of transformations will have to be made on the data. This is 

confirmed by the histogram in Figure 7. 

 

 

Figure 7: Histogram for CD4+ count 
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In an attempt to improve the assumption of normality, a log transformation was applied 

to the CD4+ count data. This led to an improvement as compared to the original CD4+ 

count data; however, the log CD4+ count data still violates the normality conditions, 

and therefore alternative transformations need to be conducted. This is confirmed by the 

histogram in Figure 8.  

 

 

Figure 8: Histogram for log CD4+ count 

 

By taking the square root of the CD4+ count data, the normality conditions showed a 

notable improvement over the log CD4+ count and the raw CD4+ count data. Although 

the normality test still shows significance as seen in Table 2, this may be due to the test 

detecting the longer than normal tails. The skewness and kurtosis are only slightly 

different to that of a normal distribution as seen in Table 3. The histogram in Figure 9 

shows that this is approximately normally distributed. Therefore the square root 

transformation has more normality features than the log transformation and will be used 

in further analysis.  Descriptive statistics for the square root CD4+ count can be seen in 

Table 3. 

 

Table 2: Test for normality for square root CD4+ count 

Test Statistic  P-Value 

Kolmogorov-Smirnov     0.038738 <0.0100 

Cramer-von Mises       1.996975 <0.0050 

Anderson-Darling       12.22675 <0.0050 
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Table 3: Summary descriptive statistics for square root CD4+ count  

 

Mean 19.00 

Median 18.68 

Mode 16.76 

Standard Deviation 4.84 

Variance 23.48 

Range 53.75 

Interquartile Range 5.92 

Skewness 0.41 

Kurtosis 2.02 

 

 

 

Figure 9: Histogram for square root CD4+ count 

 

It is however premature to check the normality assumptions before accounting for 

measured or observed covariates and any other variation that can be accounted for, since 

normality is a conditional property on the outcome. 

 

2.3.2 Viral Load 

 

After excluding participants who did not have information on HLA-B typing or IL-10 

genotyping, and individual information after they switched onto treatment, the data set 

used includes 426 participants with a total of 2007 viral load observations between 

August 2003 and January 2010. Figure 10 shows log viral loads over time for all 

individuals. From this graph it appears that log viral load remains constant over time. In 
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Figure 11 it can be seen that log viral loads for males and females remain constant over 

time.  

 

Figure 10: Data on the log viral loads of participants over time in days 

 

  
  

Figure 11: Log viral loads for males and females over time in days 

 

It is evident from Figure 12 that the mean viral loads are different between males and 

females. It appears that females have a lower viral load at the majority of the time 

points. This implies that females are at an advantage over males in the sense that they 

have lower levels of the virus than males.  
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Figure 12: Mean viral loads for males and females at each time point with standard deviations 

 

 

A summary of the repeated measurement for viral loads can be found in Table 4. It can 

be seen that the highest percentage of participants have only one observation for viral 

load as expected because initially all the participants were present. The lowest number 

of participants has fifteen viral load observations. This can be accounted for by 

participants being excluded after going onto treatment, withdrawing from the study or 

death. This can be seen graphically in Figure 13. 

 

Table 4: Summary of repeated measurements for viral load 

Number of viral load 

observations per subject 

Number of subjects % of subjects 

(cumulative %) 

Total number of viral load 

observations (%) 

0 2 0.47 (0.47) 0 (0.00) 

1 80 18.78 (19.25) 80 (3.68) 

2 65 15.26 (34.51) 13 (5.99) 

3 33 7.75 (42.25) 99 (4.56) 

4 29 6.81 (49.06) 116 (5.34) 

5 20 4.69 (53.76) 100 (4.60) 

6 30 7.04 (60.8) 180 (8.29) 

7 43 10.08 (70.89) 301 (13.86) 

8 58 13.62 (84.51) 464 (21.36) 

9 18 4.23 (88.73) 162 (7.46) 

10 16 3.76 (92.49) 16 (7.37) 

11 12 2.82 (95.31) 132 (6.08) 

12 13 3.05 (98.36) 156 (7.18) 

13 6 1.14 (99.77) 78 (3.59) 

14 1 0.23 (100.00) 14 (0.64) 
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Figure 13: Number of viral load observations 

 

Tests for normality indicate that the viral load data violates the normality conditions as 

shown by the results with p-values < 0.05 (results not shown).  This can also be seen 

clearly by the histogram in Figure 14. Therefore transformations will need to be made.  

 

 

Figure 14: Histogram for viral load 
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By taking the log of the viral load, the normality conditions showed an improvement 

over viral load. Although the normality conditions are still violated as seen in Table 5, 

this may be due to the test detecting the longer than normal tails. Otherwise log 

transformation greatly improves adherence to normality. Descriptive statistics for the 

log viral load can be seen in Table 6. It can be seen that the log transformation 

introduces a slight negative skewness.  The kurtosis in Table 6 shows that this data is 

approximately normally distributed. The histogram in Figure 15 shows that this is 

approximately normally distributed. Therefore the log viral load is acceptable and will 

be used in further analysis.  

 

Table 5: Test for normality for log viral load 

Test Statistic  P-Value 

Kolmogorov-Smirnov     0.0603 <0.0100 

Cramer-von Mises       2.4901 <0.0050 

Anderson-Darling       16.0202 <0.0050 

 

 

Table 6: Location for log viral load 

 

 

Mean 4.3431 

Median 4.4726 

Mode 2.6010 

Standard Deviation 0.9872 

Variance 0.9746 

Range 5.4114 

Interquartile Range 1.3194 

Skewness -0.5522 

Kurtosis -0.0872 

 

 

Figure 15: Histogram for log viral load 
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2.3.3 HLA-B Types 

 

The most common HLA-B types found in this data set include HLA-B*0801, B*1503, 

B*1510, B*4201, B*4403 and B*5802. The distribution of these HLA-B types can be 

seen in Figure 16. 

 

 

Figure 16: Frequency of each HLA-B type 
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Previous research on HLA-B types by Kiepiela et al. (2004) was based on cross-

sectional data. It has been shown that HLA-B*57, B*5801 and B*4403 are associated 

with low viral load, and therefore are categorised as controllers. HLA-B*1510 and 

B*5802 were shown to be associated with high viral load, and hence viewed as  

facilitators for faster disease progression (Kiepiela, et al., 2004). 

These HLA-B types will be investigated in the current longitudinal data analysis, as 

well as the most common HLA-B types found in Figure 16. Therefore the HLA-B types 

that will be included in the analysis are HLA-B*0801, B*1503, B*1510, B*4201, 

B*4403, B*5702, B*5703, B*5801, B*5802 and B*8100. 

Plots seen in Figure 17 are used to graphically show the associations between CD4+ 

count and the HLA-B types.  Since the mean CD4+ count for individuals that have these 

HLA-B types are above that of the overall mean CD4+ count for those that do not have 

these HLA-B types, it appears that B*0801, B*4403, B*5703 and B*8100 are 

associated with high CD4+ count, and therefore may be controllers. HLA-B*1503, 

B*1510, and B*5802 seem to be associated with low CD4+ count since the mean CD4+ 

counts for individuals with these HLA-B types all fall below that of the mean CD4+ 

count for those individuals who do not have these HLA-B types. They may therefore be 

considered as facilitators for faster disease progression. The mean CD4+ count for 

individuals with HLA-B*4201, B*5702 and B*5801 are very similar to the mean CD4+ 

count of those individuals without these HLA-B types and do not seem to be associated 

with either high or low CD4+ count. The effect of the presence and absence of these 

immune characteristics can be seen in the graphs shown in Figure 17 (a) - (j). 

In Figure 18 (a) – (j), it is shown that individuals with HLA-B*4403 and B*5801 have 

lower mean viral load than the individuals without these HLA-B types. This indicates 

that these HLA-B types may be associated with a slower disease progression. From the 

mean viral loads of the individuals that contain the HLA-B types, HLA- B*1503, 

B*1510, B*5702 and B*5802 they appear to be associated with high viral load. This 

implies that these HLA-B types are associated with a faster replication of the virus. 

HLA-B*0801, B*4201, B*5703 and B*8100 seem to have similar viral loads for the 

individuals with or without these HLA-B types. 
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Figure 17: CD4+ count means by HLA-B types with standard deviations 
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Figure 18: Viral load means by HLA-B types with standard deviations 

(j) (i) 

(h) (g) 
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2.3.4 IL-10 Genotypes 

 

Out of the 426 participants, it is shown in Figure 19 that 45 had the “AA” -592 

genotype, 198 had the “AC” -592 genotype and 183 had the “CC” -592 genotype. It can 

be seen in Figure 20 that 205 had the “AA” -1082 genotype, 173 had the “AG” -1082 

genotype, and 48 had the “GG” -1082 genotype.  

 

 

Figure 19: Number of individuals with each of 

the -592 genotypes 

 

Figure 20: Number of individuals with each of  

the -1082 genotypes 
 

 

Figure 21 illustrates the association between the median CD4+ counts and the -592 

genotypes. The p-values for the differences are shown over horizontal bars. Using the 

Kruskal Wallis Test, it is seen that there is at least one significant difference in the 

median CD4+ counts between the -592 genotypes (p-value=0.0428). Conducting a 

pairwise comparison, it is evident that the CA and CC genotypes have significantly 

different median CD4+ counts (p-value=0.0179). Figure 22 highlights the association 

between median CD4+ count and the -1082 genotypes. There is at least one significant 

difference in the median CD4+ counts among the -1082 genotypes. The pairwise 

comparison reveals that the AA and AG genotypes (p-value=0.0093), the AA and GG 

genotypes (p-value<0.0001) and the AG and GG genotypes (p-value=0.0008) have 

significantly different median CD4+ counts. These results are before correcting for 

multiple comparisons. To solve the problem of multiple testing, the Bonferroni 

correction can be used. This would imply that a significance level of          is 

used to test the differences between groups.   
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Figure 21: CD4+ counts for -592 genotypes 
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Figure 22: CD4+ counts for -1082 genotypes 

 

 

Figure 23 reveals the association between log viral load and the -592 genotypes. Using 

the Kruskal Wallis Test, it is evident that there is at least one significant difference 

between log viral loads for the -592 genotypes (p-value=0.0038). The AA and CC 

genotypes (p-value=0.0094) and the CA and CC genotypes (p-value=0.0048) have 

significantly different median log viral loads. Figure 24 shows the association between 

log viral load and the -1082 genotypes. There is at least one significant difference in 

median log viral loads among the -1082 genotypes (p-value=0.0002). After pairwise 

comparisons, it is evident that the AA and GG genotypes (p-value<0.0001) and the AG 

and GG genotypes (p-value=0.0002) have significantly different median log viral loads. 

Again, correcting for multiple comparisons is done by using the Bonferroni correction 

with a significance level of         . 
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Figure 23: Log viral load for -592 genotypes             Figure 24: Log viral load for -1082 genotypes 
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The exploratory data analysis shows that there are complex relationships between the 

key disease markers, namely CD4+ counts and viral loads and the individual‟s specific 

genetic factors, namely the HLA-B types and IL-10 genotypes.  
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Chapter 3 

Models for Longitudinal Data  
 

In this chapter we review briefly the theory of longitudinal data analysis which is the 

most appropriate technique to use for the SK study data. We first introduce the model 

then we discuss how to estimate fixed and random effects in the model. Statistical 

inference about the model parameters is also discussed. 

 

3.1 Linear Mixed Model 

 

The linear mixed model (LMM) deals with continuous longitudinal data assumed to be 

normally distributed and can be written as 

 

                 (3.1) 

 

for i=1,2,…,N (Laird & Ware, 1982; Verbeke et al., 1998). Where    is the response 

variable,    is matrix of fixed effects (design matrix and covariates), β is the fixed 

effects parameter,    is the design matrix for random effects and    is the random 

effects parameter (Laird & Ware, 1982). According to Verbeke et al. (1998), we assume 

            and              and we assume    and    are independent, thus we can 

write  

 
    

   
 
    

  
(3.2) 

and 

 

 

 
  
  
        

 
 
    

  
   

    
(3.3) 
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Thus, 

 

and 

          (3.4) 

              
        (3.5) 

 

Let the parameters contained in    be included in the vector  . The following 

demonstrates the estimation of the parameters discussed in the previous section.  

Incomplete and unbalanced data are complications associated with longitudinal data. 

One method of dealing with this problem is to use Gaussian theory estimation 

procedures for the mixed model. This includes maximum likelihood (ML) and restricted 

maximum likelihood (REML) estimators.  

The estimate for β and U can be shown to be 

 

                    

 

   

 

  

     
      

 

   

  

(3.6) 

   

                      (3.7) 

 

where      
      and                    

        and α is the variance 

component (Verbeke & Molenberghs, 2000, p. 42).
 

The expression        assumes that   is known otherwise an estimate for   may be 

used. The expression    in equation (3.7) is based on the conditional mean of   given 

data seen as a posterior mean of   given  . 

 

3.2 Maximum Likelihood Estimation (ML) 
 

Let   be a random variable such that          . The maximum likelihood method 

uses the probability density function of the Normal distribution given by  
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(3.8) 

 

Suppose there are N normally, and independently distributed variables           , 

where each have a mean µ and variance   . The basis of the inferential procedures is 

the likelihood function given by  

 

                

 

   

   
 

     
     

      
 

   
 

 

   

 

 

(3.9) 

 

where            
  and                contains the parameters to be estimated 

and this is done by maximizing the likelihood. Maximizing the likelihood is equivalent 

to maximizing the log likelihood where the log likelihood can be written as 

 

                        

 

   

       
 

 
         

      
 

   
  

 

   

 

 

(3.10) 

(Pawitan, 2001). 

 

3.2.1 Extension to Multivariate Data 

 

Let                     , where     is the     observation from the     individual or 

experimental unit in a longitudinal study. In this particular case the experimental unit is 

the individual, which constitutes a cluster of    observations. Assume a model for    

given by            
       . Then the likelihood formulation can be extended to this 

type of data as follows,  

 

              
  
        

 
 
       

 

 
         

   
               

 

   

  
 

(3.11) 

(Verbeke & Molenberghs, 2000, p. 42). 
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Here there are two types of fixed parameters namely the fixed effect regression 

parameters   and the variance covariance parameters  . The model also contains 

random effects parameters    as shown in model equation (3.1). 

 

3.2.2 Estimation of Fixed Effects Regression Parameters 

 

The estimation of the fixed parameters requires maximization of the log likelihood 

function with respect for those parameters,  . This is done by differentiating the log-

likelihood with respect to β and solving 
  

  
  . Assuming   is known, we then have 

the following 

  

  
 

 

  
  

 

 
         

   
                

        
 

  
  

 

 
   

   
          

   
          

   
   

         
   

   
           

            
   

           
   

         

 

 

 

 

(3.12) 

(Werner, 2009, p. 44). 

 

We now equate 
  

  
 to zero and solve for   as shown below. 

   

  
   

  
   

           
   

          

  
   

            
   

        

      
   

        
     

   
         

 

 

 

 

(3.13) 
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Combining the above information from N individuals will give the following estimate 

for β 

 

                    

 

   

 

  

           

 

   

  

 

(3.14) 

 

(Laird & Ware, 1982, p. 966; Verbeke & Molenberghs, 2000, p. 42), where      
   

which depends on  . If   is unknown then an estimate of   can be used. 

 

 

 3.2.3 Estimation of Random Effects Parameters 

 

Consider the model for each individual    

                 (3.18) 

 

The estimation of random effects follows a similar process to that of the estimation of 

the fixed effects. If the               , where    is the response vector and    is the 

vector of individual specific parameters, we then have  

 
 
 
 
      

  
 
   

   
    

   
 

(3.19) 

 

The prediction of the random effects given   is given by the conditional mean 

              

                           
  
           

         
   

              

 

 

(3.20) 
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It can easily be shown that  

          (3.21) 

and  

 

             
              

     

 

   

 

  

  
       

  

. 

(3.22) 

If we assess the estimation error using equation (3.22), the variation in        will be 

underestimated since this expression does not take into account the variation of Ui. The 

following may therefore be preferred 

 

                 
          

         
     

 

   

 

  

  
       

 

(3.23) 

(Laird & Ware, 1982, p. 966). 

 

 

3.2.4 Restricted Maximum Likelihood Estimation (REML) 

 

Applying maximum likelihood to the linearly transformed response data vector is 

known as restricted maximum likelihood. The transformation is done in such a way that 

the linearly transformed data vector contains none of the fixed effects. The method of 

REML was introduced by Patterson and Thompson (1971). It was developed to avoid 

the biased variance component estimates that are produced by ordinary ML estimation. 

This is due to the fact that the maximum likelihood method of the variance components 

takes no account of the loss of degrees of freedom resulting from the estimation of the 

fixed effects (β). REML takes into account the loss of degrees of freedom from 

estimating the fixed effects and is therefore unbiased, while ML is biased (Verbeke & 

Molenberghs, 2000, p. 44). For this reason ML estimates of variance are biased 

downwards compared to REML estimates. 
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To demonstrate how REML works, consider a simple univariate random sample 

                       
  .  Then all the data can be combined into one distributional 

model 

 

   
  
 
  

     

 
 
 
         

 

(3.24) 

 

where IN is a N-dimensional identity matrix. To avoid estimating µ, the vector Y can be 

transformed such that µ is removed from the likelihood. Let Y
*
 be the transformation 

where   
           , then  

 

     

     
     

 
       

                 

 

 

(3.25) 

 

where A is a (N-1)   N matrix with elements                    and zero elsewhere 

(Verbeke & Molenberghs, 2000, p. 43). Using this transformation the REML of σ
2
 is 

given by  

 

          
 
      

 

   

 

 

(3.26) 

 

which is unbiased for σ
2
, while the ML estimate is    

 

 
      , but for large   the 

difference will be negligible.   
  
 

When dealing with longitudinal data, let    denote the individual ni-dimensional vector 

of observations given by                     
 
. We assume that 

                Combining all subject specific information into one vector Y, such that  

          gives  
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(3.27) 

 

The REML adjusted likelihood for          , is given by 

 

             
        

 

   

 

 
 
 

       

 

(3.28) 

 

(Verbeke & Molenberghs, 2000, p. 46), where            
  .  

 

The REML estimators can also be found by maximizing the adjusted likelihood seen in 

equation (3.28) with respect to α and β, since     
        

 
     does not depend on β 

(Verbeke & Molenberghs, 2000, p. 46).          can be seen as a modification to 

       in equation (3.11) to include a penalty to account for degrees of freedom lost in 

estimating  .  

 

3.2.5 Estimation of Unknown Variance Components 

 

If the covariance matrices are unknown, but an estimate of fixed   is available, hence 

estimates of    and   are also available, we then let the variance of    given in equation 

(3.5) be estimated by               
     

  . From this we can then estimate α and 

  . To do this, we use the weighted least squares from equation (3.14), replacing each 

   by an estimate    . We denote these estimates by        and         (Laird & Ware, 

1982, pp. 966-967; Verbeke & Molenberghs, 2000, p. 42). 
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3.3 The Random Intercept Model 
 

Suppose time is the only covariate in the model such that a model for an outcome at a 

given time point for an individual   is given by the linear model, 

                     (3.29) 

 

where i=1,2,…,N and Y =  
  
 
  

 . 

Marginally  

                   (3.30) 

 

                  
   (3.31) 

                      

The coefficients    and    are a measure of marginal or population averaged effects. In 

order to explain individual to individual variability one can add individual specific 

effects to the model above so that the intercepts and slopes are now written as 

              (3.32) 

 

              (3.33) 

 

where 

 
    

   
   
       

 
 
   

  
    

     
    

 

(3.34) 

 

and         . Equations (3.32) and (3.33) suggest that now an individual possesses 

individual specific intercept and slope as opposed to the case in equation (3.30). 
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Then the final model is modified to:  

                                  

                                   

 

(3.35) 

 

Model (3.35) is thus called the random or subject specific random effects model.  

If we consider a model with only a random intercept effect (no random slope), such a 

model is written as 

                          (3.36) 

 

                   (3.37) 

 

             
      (3.38) 

 

Note that in the case of the LMM for a normal response it is easy to switch from the 

subject specific random effects model to the marginal model by using expectation but 

this is not generally true for other non-normal responses.  

Note b0i and εij are uncorrelated such that if an observation at time occasion k is given 

by 

                          (3.39) 

   

where εik , εij are uncorrelated then 

                     
      (3.40) 

 

                                      

                                   
     

   

 

(3.41) 
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(3.42) 

               

Thus by allowing for subject to subject variability through a random intercept effect, 

this automatically induces a correlation between any two observations from the same 

subject. Random effect models for longitudinally measured or observed data were first 

described by Laird and Ware (1982). This means a model with a random intercept only 

leads to the exchangeable or compound symmetry correlation structure given as: 

 

 

    
    
    
    

  

 

 

 

3.4 Random Intercept and Slope Model 
 

The random intercept and slope model is just but a special case of the linear mixed 

model for longitudinal data which we now briefly describe below. There exists 

numerous literature on the analysis of longitudinal data accounting of for both fixed and 

random effects and among the most referenced include Laird and Ware (1982), Diggle 

et al. (2002) and Verbeke and Molenberghs (2000).  

 

Now consider the full random intercept and slope model which can be written as 

                              (3.43) 

or equivalently, 

        
      

        (3.44) 
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where    
             ,     

             ,    
  
  
  and     

   
   
 ,  

then 

                , (3.45) 

 

                  
    

    
           

  (3.46) 

and      

                                                                        

 (3.47) 

  

which we can expand to 

                                       

              
          

                

            
          

               

 

 

(3.48) 

 

 
               

  
          

              

                 

 
 

(3.49) 

 

While the covariance in equation (3.41) is constant that specified in equation (3.48) is a 

second order quadratic function of time. The correlation between any two observations 

is no longer constant, but is now a function of time. 
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3.5 Types of Correlation or Covariance Structures 
 

Although the exact correlation between any two observations in a random intercept and 

slope model is as given in equation (3.49), other simplifying assumptions can be used. 

Since the repeated measurements are correlated, the covariance among the repeated 

measures needs to be accounted for. The following covariance structures can be used to 

account for both (1) correlation between subjects and (2) correlation between random 

effects depending on the focus of the analysis. 

Commonly used covariance structures include Compound Symmetry (CS), Toeplitz 

(Toep), Unstructured (UN), Autoregressive (1) (AR(1)), Power Spatial (SP(POW)(c-

list)), Exponential Spatial (SP(EXP)(c-list)) and Gaussian Spatial (SP(GAU)(c-list)) as 

listed in the table below. Some of the common covariance structures assumed in 

practice are listed below. In Table 7,   denotes the number of observations per 

individual.  

Table 7: Commonly assumed covariance structures 

Structure Description No. of 

Parameters 

{i,j}th element 

AR(1) Autoregressive(1) 2       
         

CS Compound Symmetry 2            
               

                

                     

UN Unstructured m(m+1)/2           

TOEP Toeplitz m               

VC Simple q       
         

                 

                     and  

i corresponds to the kth effect 

SP(POW)(c-list) Power Spatial 2        

SP(EXP)(c-list) Exponential Spatial 2                

SP(GAU)(c-list) Gaussian Spatial 2            
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The c-list under the spatial type structures is used to refer to the names of the numeric 

variables used as coordinates of the location of the observation in space, and dij is the 

Euclidean distance between the ith and jth vectors of these coordinates, which 

correspond to the ith an jth observations in the input data set. 

 

The VC structure is the standard variance components and is the default used by SAS. 

 

 

  
   

   
  

    
 

  

 

The Compound Symmetry structure assumes the covariances are homogeneous. There 

is a correlation between two separate measurements, but it is assumed that the 

correlation is constant regardless of how far apart the measurements are. This is 

unrealistic in a longitudinal data problem in the sense that observations closer to each 

other are more correlated than observations which are further apart. 

 

 
 
 
 
 
     

   
   

   
 

  
      

   
   

 

  
   

      
   

 

  
   

   
      

  
 
 
 
 

 

 

However a compound symmetry structure is ideal if observations are clustered 

arbitrarily say in a household location, class and so on. Since there is no time ordering 

as in longitudinal data one can realistically assume a constant correlation across 

observations. 

This problem of unequal correlation can be solved by using several approaches such as 

the Autoregressive (1) covariance structure. The correlation between m time units apart 

is ρ
m

, 0<ρ<1. The greater the distance (m), the smaller the magnitude of the covariance 

will be. In this case the covariance matrix is given by (taking four observations per 

individual as an illustration) 
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The Toeplitz structure is similar to AR(1) in that all measurements next to each other 

have the same correlation, measurements two time units apart have the same correlation 

different from the measurements one time unit apart, measurements three time units 

have the same correlation different from the measurements one and two time units apart, 

etc. There is however no assumption of exponential decay. Technically, the AR(1) is a 

special case of the Toeplitz. The Toeplitz model has as many parameters as there is 

distance. 

 

 
 
 
 
 
        
        
        
         

 
 
 
 

 

 

The Unstructured covariance structure is the most flexible since it assumes all the 

variances and covariances are different. The covariance matrix for such a structure is 

given by 

 
 
 
 
 
  
          

     
       

        
    

           
  
 
 
 
 

 

 

When observations are not necessarily equally spaced within and between individuals 

the best covariance structures to consider are the spatial type of structures. The 

correlations are positive and decreasing functions of the Euclidean distances between 

observations. These structures are advantageous when dealing with repeated 

measurement since they take into account the distance between the observations within 

each subject. The three most common spatial covariance structures are Power, 

Exponential and Gaussian as listed in Table 7. 
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The power spatial covariance structure is given by 

 

  

 
 
 
 
 
                

                

                

                 
 
 
 
 

 

 

where      is the distance between the     and     observation within subject   and 

     . 

 

The exponential spatial covariance structure is given by 

 

  

 
 
 
 

                                  

                                  

                                  

                                   
 
 
 

 

 

 

 

The Gaussian spatial covariance structure given by 

 

 

  

 
 
 
 
 

         
             

             
     

        
              

             
     

        
             

              
     

        
             

             
       

 
 
 
 

 

 

In all the specifications of the spatial structures above,      is the distance between the 

    and     observations within the same individual  . The advantage of the spatial type 

structures over the standard AR structure (which assumes equal spaced observations) is 

that they make use of the actual distance between observations. This is important 

because now the modeller can deal with unequally spaced observations within and 

between observations. 
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3.5.1 Selection of a Covariance Structure 

 

There are various model selection criteria that can be used to discriminate between 

model choice and these include the Akaike information criteria (AIC), the Bayesian 

information criteria (BIC), the marginal quasi-information criteria (MQIC) and Akaike 

conditional information criteria (AICC). Generally the model with the smallest AIC, 

BIC, MQIC or AICC should be selected. Choosing a covariance structure which is too 

simple will increase the fixed effects Type I error rate, while choosing a covariance 

structure which is too complex will sacrifice power and efficiency. Thus a choice 

between possible covariance structures is a tradeoff between these two extreme limits. 

The algebraic expressions showing how the values of the different criteria are calculated 

are shown in the Table 8. They are all likelihood based thus existence of a likelihood is 

a pre-requisite to their utility.  

 

Table 8: Selection criteria 

  

AIC        
MQIC                   
BIC             
AICC                  

 

 

Where   is the log likelihood,   is the number of parameters in the model and n is the 

sample size. The most common used method of model selection is the AIC. All the 

model selection criteria rely on imposing a penalty on the log-likelihood based on the 

number of parameters in the model. For the MQIC, BIC and AICC the expressions also 

include the sample size. 
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3.5.2 Selection of Mean Structure 

 

Consider the null hypothesis where parameter   is from the subspace       of the 

parameter space    such that               then the LR tests follows a chi-squared 

distribution with degrees of freedom equal to the difference between the dimension   of 

   and the dimension     . Note that the above result is only valid if the models are 

fitted using ML estimation (Verbeke & Molenberghs, 2000, p. 63). 

In order to test the fit of the mean structures of two models where one model is a special 

case of the other, or nested within the other model, the likelihood ratio (LR) test is 

commonly used. The test statistic is defined as 

 
             

          

        
  

(3.50) 

 

where     denotes the maximum likelihood function and       and     are the maximum 

likelihood estimates obtained from maximizing     (Verbeke & Molenberghs, 2000, 

pp. 62-63). 

 

3.5.3 Selection of Random Effects 

 

For valid conditional and marginal distributions of the data the positivity constraint on 

   is required. Consider the case where          and        . The value of    

under the null hypothesis is on the boundary of the parameter space, and the distribution 

of the likelihood ratio test statistic   is therefore nonstandard. This is a mixture of chi-

square distributions. Testing hypotheses such as the need for random effects uses the 

likelihood ratio test statistic which has an asymptotic null distribution that is often a 

mixture of chi-squared distributions rather than the classical single chi-squared 

distribution (Verbeke & Molenberghs, 2000). 
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3.5.4 Sandwich Estimator 

 

By using the sandwich estimator, we can correct the standard errors of the estimated 

fixed effects which are due to possible misspecification of the variance-covariance 

structure. This reflects the cautious nature of repeated measurements analysis assuming 

that we can never fit a perfect model, but at best we can fit a reasonable model to the 

data.  

 

3.6 Model Diagnostics 
 

After fitting a given model it is always appropriate to carry out a model diagnostics to 

assess how well the model fits. It is common to use model residuals as one of the 

byproducts of analysis to achieve this goal (Fitzmaurice et al., 2004, p. 237). 

For analysis of longitudinal data we can extract a vector of residuals for each individual. 

The vector of residuals can be defined as 

              (3.51) 

 

with a mean equal to zero. Note that this is the marginal case, where the mean of    is 

given by          . 

This gives an estimate of the vector of errors given as 

           (3.52) 

(Fitzmaurice et al., 2004, p. 237). 

The residuals can be used to assess the adequacy of the model for the covariance. This 

can be done by comparing the scatter-plot of the residuals against the predicted mean 

response to determine if there is any systematic trend where the residual for a given 

time occasion within an individual is given by  

            
    (3.53) 
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and the predicted mean response can be written as 

         
   .  

(3.54) 

For the model to be adequate there should be no systematic trend. The presence of this 

trend could imply that a quadratic term may need to be included, or that the covariate 

may need to be transformed (Fitzmaurice et al., 2004, p. 238). 

 

Note that the components of the vector of residuals in equation (3.51) are correlated and 

may not have constant variance. The vectors of the errors is given in equation (3.52) 

with mean equal to zero, which is the same as the mean of the vector of residuals.  The 

covariance of the residuals is however not the same as the covariance of the errors. The 

covariance of the residuals can be approximated by 

 

 

                  . (3.56) 

Since the covariance of the residuals have approximate covariance matrix,   , this has 

important implications for the examination of the residuals. Since the variance may not 

be constant, the range may not be constant when comparing the scatter-plot of the 

residuals against the predicted values or against time. For this reason, standard residual 

diagnostics should be avoided for examining the homogeneity of the residual variance 

or autocorrelation among the residuals. Another implication is that since the residuals 

from a regression analysis of longitudinal data may be correlated with the covariates, 

the scatter-plot may show a systematic trend when plotting the residuals against a 

selected covariate (Fitzmaurice et al., 2004, p. 238).  

 

An outlier is defined as an observation that lies an abnormal distance from other 

observations in a random sample. Influential observations are those that appear to have 

a large influence on the parameter estimate. These should be investigated and removed 

if necessary.  
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3.7 Summary  

 

A major problem with longitudinal data is that of missing values, inconsistent timed 

observations and incomplete data. The mixed model approach has assumptions and 

procedures that work well when dealing with these problems (Muller & Stewart, 2006). 

This approach involves building a model for the expected values and for the covariances 

of the data (Muller & Stewart, 2006).  Choosing the best covariance structure is 

important for the interpretation of the random variation found in the data. It is also 

essential in order to obtain valid inferences for the parameters in the mean structure of 

the model (Verbeke, et al., 1998). A structure that is too restrictive will invalidate 

inferences, while a structure that is too simple will lead to inefficient estimation and 

poor estimation of standard errors (Verbeke, et al., 1998). 

 

Missing data can be missing completely at random (MCAR) where the probability that 

an observation is missing does not depend either on the observed        or the missed 

       observation. Under this assumption missing observations cannot in any way bias 

the analysis if the assumption is true. Secondly data can be missing at random (MAR) 

where the probability that an observation outcome is missing may depend on the 

observed outcome        but not on the missing values       . Lastly we can have 

missing not at random (MNAR) where the probability that an observation is missing 

depends on the missing outcome         and possibly also on the observed        

(Diggle, et al., 2002, p. 283). Since the methods we adopt in the thesis are likelihood 

based we assume any missing data is MAR which is comfortably accounted for under 

the likelihood based method of analysis.  
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Chapter 4 

Application of Linear Mixed 

Models to Sinikithemba Data 
 

 

In most linear model applications involving several predictor variables a common step 

of analysis is to choose the set of variables that best predict the mean response or its 

function. Model selection is one of the most frequent problems encountered in data 

analysis. Model building can be done in numerous ways, such as backward, forward or 

stepwise procedures (Ngo & Brand, 2002). In this chapter we will first use a backward 

procedure using square root CD4+ count and log viral load separately as the response 

variables using linear mixed models. This will be done using the statistical software 

SAS version 9.2 (SAS Institute Inc., Cary, NC, USA) and specifically, we will use the 

PROC MIXED procedure in SAS.  

  

4.1 Square Root CD4+ Count as the Response 
 

Since CD4+ count was initially not normally distributed, a square root transformation 

was applied on CD4+ count and the transformed variable used in the analysis. The 

explanatory variables that will be included are gender (male or female), HLA-B type 

(B*0801, B*1503, B*1510, B*4201, B*4403, B*5702, B*5703, B*5801, B*5802 and 

B*8100) and IL-10 genotypes (-592 genotype and -1082 genotype). The -592 genotype 

includes AA, CA and CC. The -1082 genotype includes AA, AG and GG. 

The aim is to find the best population averaged or marginal model that best describes 

the mean responses. For each model the best covariance structure and estimation 

method are chosen on the basis of comparing the AIC‟s for different models. 

Covariance structures that will be used and compared include Compound Symmetry 
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(CS), Spatial Power (sp(pow)(c-list)), Spatial Exponential (sp(exp)(c-list)) and Spatial 

Gaussian (sp(gau)(c-list)) where c-list is defined as the list containing names of the 

numeric variables that are used as coordinates of the observations location in space or 

time. The methods of estimation that will be used are the maximum likelihood method 

and the restricted maximum likelihood method. The differences between the AIC, AICC 

and BIC for the ML and REML procedures is due to the fact that REML takes into 

account the degrees of freedom when estimating the fixed effects mean parameters 

whilst ML does not. This model building strategy will be done in two steps. Firstly, the 

covariance structure is sought and chosen then secondly, the mean structure must be 

chosen for the covariance structure that is adopted. 

 

4.1.1 Covariance Structure  

 

If the mean structure is not correctly chosen, it is likely that a more complicated 

covariance structure than necessary will be used. Therefore to choose the best 

covariance structure, we will first start with a full (Verbeke & Molenberghs, 2000, p. 

123). This model includes gender, all the HLA-B types, both -592 and -1082 IL-10 

genotypes, time, the two-way interactions between each of the HLA-B types and the IL-

10 genotypes, the two-way interactions between the HLA-B types and time, the two-

way interactions between the IL-10 genotypes and time and the three-way interactions 

between each of the HLA-B types, the IL-10 genotypes and time. Maximum likelihood 

estimation is used. The covariance structures are then compared using a likelihood ratio 

test (for the nested covariance structures) or AIC (for the unnested covariance 

structures).  

The unstructured (UN), autoregressive (AR(1)) and toeplitz (TOEP) covariance 

structures were found not to be appropriate for this analysis. Due to a large number of 

repeated measurements per subject, the unstructured covariance would not allow the 

model to converge. The autoregressive structure was not suitable as these measurements 

were not equally spaced. The model with the toeplitz covariance structure was unable to 

converge to a positive definite hessian matrix. Therefore the compound symmetry and 

spatial covariance structures will be compared. Since the compound symmetry and 
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spatial covariance structures are not nested within each other, the AICs were used to 

compare and choose the best covariance structure.  From Table 9 and Table 10, we can 

see that the compound symmetry covariance structure is the best covariance structure 

using the maximum likelihood method (AIC=19132.7). Therefore this will be the model 

we will use to determine the mean structure of the model. 

 

Table 9: Fit statistics for full model using ML method 

 CS SP(POW) SP(EXP) SP(GAU) 

-2 Log Likelihood 18920.7 19159.6 19159.6 22141.9 

AIC 19132.7 19371.6 19371.6 22353.9 

AICC 19138.4 19377.3 19377.3 22359.6 

BIC 19562.5 19801.4 19801.4 22783.6 

 

 

Table 10: Fit statistics for full model using REML method 

 CS SP(POW) SP(EXP) SP(GAU) 

-2 Log Likelihood 19477.5 19606.7 19606.7 22728.8 

AIC 19481.5 19610.7 19610.7 22732.8 

AICC 19481.5 19610.7 19610.7 22732.8 

BIC 19489.6 19618.8 19618.8 22740.9 

 

Fitting the full model, together with the compound symmetry covariance structure using 

the maximum likelihood procedure, the Type III tests of fixed effects are found. These 

can be found in Table 1B in Appendix B. From this, the mean structure can now be 

chosen. 
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4.1.2 Mean Structure  

 

Choosing the mean structure is done using the full model and the Type III tests of fixed 

effects shown in Table 1B in Appendix B. For this step, the maximum likelihood 

method is always used. From the Type III effects, terms are systematically dropped 

from the model, starting with the term that is the least significant. This newer, simpler 

model is then compared to the original model, using the likelihood ratio test. If the 

reduced model is not found to be significantly different from the original model (p-

value>0.05), it can then be used over the original model. This step is repeated, each time 

taking out more terms, until only the significant terms are left in the model. Terms that 

are found to be insignificant, but their interaction with another term is found to be 

significant, will need to be included in the final model. The final analysis is then 

repeated, using the correct covariance structure, and final mean structure. Table 11 

gives the final model with square root CD4+ count as the response, including gender, 

HLA-B types, IL-10 genotypes and their interactions with each other and time. We find 

that time is significantly associated with mean square root CD4+ count at the 5% level 

of significance (p-value<0.0001). HLA-B*5703 (p-value=0.0064) and B*5802 (p-

value=0.0301) are both significantly associated with square root CD4+ count. The two-

way interactions between HLA-B*1503, B*1510, B*5702, B*5703, B*5801, B*5802, 

B*8100 and time are significantly associated with mean square root CD4+ count (p-

value<0.05). The interaction of IL-10 -592 genotype and time is also significantly 

associated with square root CD4+ count (p-value<0.05). The interaction between HLA-

B*5802 and -592 genotype is significantly associated with square root CD4+ count (p-

value=0.0307). The three-way interaction between HLA-B*1503, -592 genotype and 

time (p-value=0.0134), B*1510, -592 genotype and time (p-value<0.0001), B*4201,  -

592 genotype and time (p-value<0.0001), B*4403, -592 genotype and time (p-

value<0.0001), B*5702, -592 genotype and time (p-value<0.0001), B*5801, -592 

genotype and time (p-value=0.0005),  B*5802, -592 genotype and time (p-

value=0.0163),  B*8100, -592 genotype and time (p-value<0.0001), B*0801, -1082 

genotype and time (p-value=0.0012), B*1510, -1082 genotype and time (p-

value=0.0440), B*4201, -1082 genotype and time (p-value=0.0451), B*4403, -1082 

genotype and time (p-value<0.0001), B*5801, -1082 genotype and time (p-
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value=0.0009), and B*8100, -1082 genotype and time (p-value<0.0001) are 

significantly associated with mean square root CD4+ count. The significant two-way 

interactions involving time imply that the slope or increase in mean square root CD4+ 

count differs for different levels of the categorical factor. The significant three-way 

interaction involving time imply that the slope also depends on the level of combination 

of the other remaining two categorical variables.  
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Table 11: Type III tests of fixed effects for final model with square root CD4+ count as the response 

Effect Num DF Den DF F Value Pr>F 

Time 1 3590 21.31 <.0001 

B0801   1 403 0.14 0.7117 

B1503 1 403 2.84 0.0925 

B1510            1 403 0.57 0.4508 

B4201 1 403 0.00 0.9494 

B4403 1 403 1.40 0.2368 

B5702 1 403 0.00 0.9543 

B5703 1 403 4.67 0.0313 

B5801 1 403 1.66 0.1990 

B5802 1 403 7.40 0.0068 

B8100 1 403 2.87 0.0909 

-592 Genotype  2 403 0.39 0.6788 

-1082 Genotype  2 403 0.28 0.7591 

B1503*Time   1 3590 6.79 0.0092 

B1510*Time              1 3590 15.45 <.0001 

B5702*Time   1 3590 18.01 <.0001 

B5703*Time   1 3590 22.72 <.0001 

B5801*Time   1 3590 19.03 <.0001 

B5802*Time   1 3590 13.03 0.0003 

B8100*Time   1 3590 4.02 0.0451 

-592 Genotype*Time   2 3590 5.53 0.0040 

B1510*-592 Genotypes             2 403 1.41 0.2451 

B5801*-592 Genotypes   2 403 2.44 0.0888 

B5802*-592 Genotypes   2 403 3.51 0.0307 

B5801*-1082 Genotypes     2 403 1.77 0.1715 

B0801*-592 Genotypes*Time   2 3590 2.64 0.0713 

B1503*-592 Genotypes*Time     2 3590 4.32 0.0134 

B1510*-592 Genotypes*Time               2 3590 11.91 <.0001 

B4201*-592 Genotypes*Time     2 3590 12.37 <.0001 

B4403*-592 Genotypes*Time     2 3590 9.59 <.0001 

B5702*-592 Genotypes*Time     2 3590 18.52 <.0001 

B5801*-592 Genotypes*Time    2 3590 7.63 0.0005 

B5802*-592 Genotypes*Time     2 3590 4.12 0.0163 

B8100*-592 Genotypes*Time     2 3590 22.07 <.0001 

B0801*-1082 Genotypes*Time       2 3590 6.75 0.0012 

B1510*-1082 Genotypes*Time                  2 3590 3.13 0.0440 

B4201*-1082 Genotypes*Time       2 3590 3.10 0.0451 

B4403*-1082 Genotypes*Time      2 3590 10.32 <.0001 

B5801*-1082 Genotypes*Time       2 3590 6.98 0.0009 

B8100*-1082 Genotypes*Time       2 3590 14.26 <.0001 

 

 

In Table 12 the reference category for gender is female, „absent‟ for the HLA-B types, 

CC for -592 genotypes and GG for -1082 genotypes. The gender effect is found not to 

be significant in this model. The estimate for time implies that the overall mean square 

root CD4+ count decreases at a rate of 0.00310 units per day (p-value<0.0001). 

Individuals who have HLA-B*1510 have a mean square root CD4+ count 2.6307 units 

lower (p-value=0.0219) and individuals with HLA-B*5802 have a mean square root 
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CD4+ count 2.9861 lower (p-value=0.0045) than for those without the respective HLA-

B types. This implies that HLA-B*1510 and B*5802 are associated with a faster 

progression of HIV. Individual with HLA-B*5703 have a mean square root CD4+ count 

2.9525 higher (p-value=0.0313) than individuals without B*5703. This implies that 

HLA-B*5703 is a good controller of HIV. On the -1082 loci, when the AA genotype is 

present the mean square root CD4+ count for such an individual is 2.1249 units lower 

than when the CC genotype is present (p-value=0.0374). The estimate for the 

interaction between HLA-B*1503 and time shows that individuals with B*1503 have a 

mean square root CD4+ count that increases at an extra rate of 0.001349 units  per day 

than that of an individual without this HLA-B type (p-value<0.0001). The interaction 

between HLA-B*1510 and time indicates that when HLA-B*1510 is present, the mean 

square root CD4+ count increases at an extra rate of 0.001919 units per day than when 

HLA-B*1510 is absent (p-value<0.0001). When HLA-B*5703 is present, the estimate 

for the interaction between B*5703 and time shows that the mean square root CD4+ 

count increases at an extra rate of 0.001467 units per day than when this HLA-B type is 

not present (p-value<0.0001). The interaction between HLA-B*5801 and time has a 

coefficient of 0.001696. This is interpreted to mean that compared to the reference 

HLA-B level, individuals with B*5801 have a mean square root CD4+ count that 

increases at an extra rate of 0.001696 units per day (p-value=0.0147). This implies that 

HLA-B*1503, B*1510, B*5703 and B*5801 are all associated with a slower 

progression of HIV over time. The interaction between HLA-B*5702 and time shows 

that the mean square root CD4+ count decreases at an extra rate of 0.02243 units per 

day for an individual with B*5702 than for an individual without this HLA-B type (p-

value<0.0001), thus HLA-B*5702 is associated with a faster progression of HIV over 

time. If we consider the -592 loci, the interaction between the CA genotype and time 

shows that the square root CD4+ count increases at an extra rate of 0.001499 units per 

day than when the CC genotype is present (p-value<0.0001). This implies that the CA 

genotype acts as a good controller of HIV. The significant interaction between HLA-

B*5801 and CA genotype shows that the mean square root CD4+ count is 4.7099 units 

more if HLA-B*5801 is present (p-value=0.0461) than when it is absent. The 

coefficient for the interaction between HLA-B*5802 and the CA genotype is 3.1686. 

This implies that the mean square root CD4+ count is 3.1686 units more when this 
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HLA-B type is present (p-value=0.0297) compared to when this is absent. This 

indicates that the CA -592 genotype is associated with a slower progression of HIV 

when HLA-B*5801 is present and associated with a faster progression of HIV when 

B*5802 is present. When HLA-B*0801 and the CA genotype is present, the interaction 

between B*0801, the CA genotype and time shows that an individual's mean square 

root CD4+ count increases at an extra rate of 0.001546 units per day (p-value=0.0300), 

and when the CC genotype is present this shows that an individual's mean square root 

CD4+ count increases at an extra rate of 0.002450 units per day (p-value<0.0001), 

compared to the absence of this HLA-B type.  An individual who has B*1503 and CA 

genotype has a mean square root CD4+ count that decreases at an extra rate of 0.00138 

units per day than an individual without B*1503 (p-value=0.0042). Still considering the 

-592 loci, we see that the interaction between B*1510, the AA genotype and time is 

significant which shows that the predicted square root CD4+ count increases at an extra 

rate of 0.003922 units per day, compared to the absence of this HLA-B type (p-

value<0.0001). The coefficient of the interaction between HLA-B*4201, the CA 

genotype and time is -0.00121. This demonstrates that the mean square root CD4+ 

count decreases at an extra rate of 0.00121 units per day (p-value=0.0377), while it 

increases at an extra rate of 0.000857 units per day when the CC genotype is present (p-

value=0.0349) compared to when B*4201 is absent. The estimate for an individual with 

HLA-B*4403 and the CA genotype over time is -0.00314. This suggests that the mean 

square root CD4+ count decreases at an extra rate of 0.00314 units per day (p-

value<0.0001) than an individual without this HLA-B type, and when HLA-B*4403 and 

the CC genotype is present the an individual's mean square root CD4+ count decreases 

at an extra rate of 0.00118 units per day (p-value=0.0386), compared to that for an 

individual without B*4403. The coefficient for HLA-B*5702, the AA genotype and 

time is 0.02516 and the coefficient for HLA-B*5702, the CA genotype and time is 

0.02109. This indicates that the predicted square root CD4+ count increases at an extra 

rate of 0.02516 units per day for an individual with B*5702 and the AA genotype (p-

value<0.0001), and increases at an extra rate of 0.02109 units per day for an individual 

with B*5702 and the CA genotype (p-value<0.0001), compared to that of an individual 

without this HLA-B type and the given genotype. The estimate for the interaction HLA-

B*5801, the CA genotype and time is 0.002496. This illustrates that the mean square 
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root CD4+ count increases at an extra rate of 0.002496 units per day (p-value<0.0001), 

compared to the mean square root CD4+ count when B*5801 is absent. The estimate for 

an individual with HLA-B*5802 and the AA genotype shows that the mean square root 

CD4+ count decreases at an extra rate of 0.00332 units per day (p-value=0.0159) than 

that for an individual without this HLA-B type. When HLA-B*8100 and the AA 

genotype is present, the interaction between B*8100, -592 genotype and time indicates 

that the mean square root CD4+ count decreases at an extra rate of 0.00527 units more 

per day (p-value<0.0001), and decreases by 0.00413 units per day (p-value<0.0001) 

when B*8100 is present compared to when B*8100 is absent. Looking now at the -1082 

loci,  the coefficient of the interaction between HLA-B*0801, AA genotype and time 

shows that the mean square root CD4+ count decreases at an extra rate of 0.00314 units 

per day (p-value<0.0001) when HLA-B*0801 is present compared to when this HLA-B 

type is absent. The coefficient of the interaction between the same HLA-B type, the AG 

genotype and time shows that the mean square root CD4+ count decreases at a rate of 

0.00149 units more per day (p-value=0.0120) than for the same interaction without this 

HLA-B type. Still considering the -1082 loci, the interaction between HLA-B*1510, the 

AA genotype and time shows that the mean square root CD4+ count decreases at a rate 

of 0.00255 units more per day (p-value=0.0132) and the interaction between B*1510, 

the AG genotype and time shows that the mean square root CD4+ count decreases at an 

extra rate of 0.00198 units per day (p-value=0.0411) compared to that when B*1510 is 

absent. When HLA-B*4403 and the AA genotype is present, the interaction between 

B*4403, -1082 genotype and time shows that the mean square root CD4+ count 

increases at an extra rate of 0.003114 units per day (p-value<0.0001), and shows that 

when the same HLA-B type and the AG genotype is present the mean square root CD4+ 

count increases at an extra rate of 0.001931 units per day (p-value=0.0039), compared 

to  that when B*4403 is absent. The coefficient of the interaction between B*5801, the 

AG genotype and time implies that the mean square root CD4+ count decreases at an 

extra rate of 0.00318 units per day, compared to when the HLA-B type is absent (p-

value=0.0007). The interaction between B*8100, the AA genotype and time illustrates 

that the mean square root CD4+ count increases at an extra rate of 0.004033 units per 

day (p-value<0.0001) and increases by 0.002314 units per day (p-value=0.0022) when 

B*8100 and the AG -1082 genotype is present, compared to when B*8100 is absent.   
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Table 12:  Solution for fixed effects with square root CD4+ count as the response 

Effect Genotype Estimate Std Error DF t-value p-value 

Intercept  21.1066 1.0146 403 20.80 <.0001 

Time  -0.00310 0.000366 3590 -8.48 <.0001 

B0801  -0.2991 0.8088 403 -0.37 0.7117 

B1503  -1.2200 0.7234 403 -1.69 0.0925 

B1510  -2.6307 1.1430 403 -2.30 0.0219 

B4201  -0.04540 0.7153 403 -0.06 0.9494 

B4403  0.9337 0.7880 403 1.18 0.2368 

B5702  0.1293 2.2564 403 0.06 0.9543 

B5703  2.9525 1.3667 403 2.16 0.0313 

B5801  -1.9469 2.5696 403 -0.76 0.4491 

B5802  -2.9861 1.0463 403 -2.85 0.0045 

B8100  1.6411 0.9683 403 1.69 0.0909 

-592 Genotype AA 0.3009 1.2264 403 0.25 0.8063 

-592 Genotype CA -0.7652 0.7648 403 -1.00 0.3177 

-1082 Genotype AA -2.1249 1.0177 403 -2.09 0.0374 

-1082 Genotype AG -1.4756 0.9888 403 -1.49 0.1364 

B1503*Time  0.001349 0.000282 3590 4.78 <.0001 

B1510*Time  0.001919 0.000889 3590 2.16 0.0310 

B5702*Time  -0.02243 0.004839 3590 -4.64 <.0001 

B5703*Time  0.001467 0.000308 3590 4.77 <.0001 

B5801*Time  0.001696 0.000695 3590 2.44 0.0147 

B5802*Time  -0.00030 0.000303 3590 -1.00 0.3172 

B8100*Time  0.000243 0.000446 3590 0.55 0.5857 

-592 Genotype*Time AA 0.000386 0.000706 3590 0.55 0.5847 

-592 Genotype*Time CA 0.001499 0.000352 3590 4.26 <.0001 

B1510*-592 Genotype AA 4.2517 2.6511 3590 1.60 0.1095 

B1510*-592 Genotype CA 1.4279 1.4821 403 0.96 0.3359 

B5801*-592 Genotype AA -6.5368 3.4741 403 -1.88 0.0606 

B5801*-592 Genotype CA -4.7099 2.3544 403 -2.00 0.0461 

B5802*-592 Genotype AA -2.2143 2.6208 403 -0.84 0.3987 

B5802*-592 Genotype CA 3.1686 1.4519 403 2.18 0.0297 

B5801*-1082 Genotype AA 6.6686 3.5636 403 1.87 0.0620 

B5801*-1082 Genotype AG 5.3379 3.2681 403 1.63 0.1032 

B0801*-592 Genotype*Time AA 0.000513 0.001141 3590 0.45 0.6531 

B0801*-592 Genotype*Time CA 0.001546 0.000712 3590 2.17 0.0300 

B0801*-592 Genotype*Time CC 0.002450 0.000514 3590 4.76 <.0001 

B1503*-592 Genotype*Time AA -0.00085 0.000581 3590 -1.46 0.1437 

B1503*-592 Genotype*Time CA -0.00138 0.000481 3590 -2.86 0.0042 

B1510*-592 Genotype*Time AA 0.003922 0.000934 3590 4.20 <.0001 

B1510*-592 Genotype*Time CA -0.00029 0.000499 3590 -0.58 0.5636 

B4201*-592 Genotype*Time AA 0.000352 0.000770 3590 0.46 0.6478 

B4201*-592 Genotype*Time CA -0.00121 0.000582 3590 -2.08 0.0377 

B4201*-592 Genotype*Time CC 0.000857 0.000406 3590 2.11 0.0349 

B4403*-592 Genotype*Time AA -0.00173 0.000969 3590 -1.78 0.0747 

B4403*-592 Genotype*Time CA -0.00314 0.000713 3590 -4.40 <.0001 

B4403*-592 Genotype*Time CC -0.00118 0.000572 3590 -2.07 0.0386 

B5702*-592 Genotype*Time AA 0.02516 0.004895 3590 5.14 <.0001 

B5702*-592 Genotype*Time CA 0.02109 0.004898 3590 4.31 <.0001 

B5801*-592 Genotype*Time AA 0.001530 0.000792 3590 1.93 0.0535 

B5801*-592 Genotype*Time CA 0.002496 0.000639 3590 3.91 <.0001 

B5802*-592 Genotype*Time AA -0.00332 0.001376 3590 -2.41 0.0159 

B5802*-592 Genotype*Time CA -0.00089 0.000472 3590 -1.89 0.0585 

B8100*-592 Genotype*Time AA -0.00527 0.001113 3590 -4.73 <.0001 

B8100*-592 Genotype*Time CA -0.00413 0.000665 3590 -6.21 <.0001 

B0801*-1082 Genotype*Time AA -0.00314 0.000706 3590 -4.45 <.0001 
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B0801*-1082 Genotype*Time AG -0.00149 0.000592 3590 -2.51 0.0120 

B0801*-1082 Genotype*Time AA -0.00046 0.000418 3590 -1.09 0.2745 

B0801*-1082 Genotype*Time AG 0.000484 0.000393 3590 1.23 0.2184 

B1510*-1082 Genotype*Time AA -0.00255 0.001027 3590 -2.48 0.0132 

B1510*-1082 Genotype*Time AG -0.00198 0.000967 3590 -2.04 0.0411 

B4201*-1082 Genotype*Time AA 0.000994 0.000563 3590 1.77 0.0775 

B4201*-1082 Genotype*Time AG -0.00002 0.000500 3590 -0.05 0.9629 

B4403*-1082 Genotype*Time AA 0.003114 0.000702 3590 4.44 <.0001 

B4403*-1082 Genotype*Time AG 0.001931 0.000669 3590 2.89 0.0039 

B5801*-1082 Genotype*Time AA -0.00163 0.000874 3590 -1.87 0.0620 

B5801*-1082 Genotype*Time AG -0.00318 0.000936 3590 -3.40 0.0007 

B8100*-1082 Genotype*Time AA 0.004033 0.000760 3590 5.31 <.0001 

B8100*-1082 Genotype*Time AG 0.002314 0.000756 3590 3.06 0.0022 

 

 

4.1.3 Diagnostic Analysis for the Model Excluding Random Effects 

 

The histogram of the residuals shown in Figure 25 indicates approximate normality for 

this model. The normal quantile plot of the residuals displays slight systematic 

departures from a straight line in the tails.  This reveals that this model may be a good 

representation of the data, but models including random effects need to be examined. 

 

   
 

  

 

Figure 25: Model diagnostics for square root CD4+ count as the response 
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4.1.4 Random Effects 

 

The variability in the subject-specific intercepts and slopes may not be completely 

explained by the covariates in the model. This can be solved by using random effects, 

which represent this variability (Verbeke & Molenberghs, 2000, p. 69). The model 

helps to account for the extra variability due to individual to individual heterogeneity. 

For the purpose of this analysis, we will compare models that include a random 

intercept and slope, a random intercept, and no random effects.  

Testing for the need of random effects cannot be done using classical likelihood ratio 

tests. This is due to the fact that the likelihood ratio statistic for the null hypothesis does 

not have the classical asymptotic chi-squared distribution (Verbeke & Molenberghs, 

2000, p. 133).  Instead of using the classical single chi-squared distribution, a mixture of 

chi-squared distributions should be used (Verbeke & Molenberghs, 2000, p. 69).  

Comparing the model with a random intercept and slope (time) to a model with only a 

random intercept, we get a p-value > 0.05 (using degrees of freedom equal to 2 and 3 

respectively). This implies that we do not need to keep the random intercept and slope 

for the final model. Comparing the model with only a random intercept and the model 

with no random effects gives a p-value > 0.05 (using degrees of freedom equal to 1 and 

0 respectively). This implies that we do not need to keep the random intercept in the 

final model. From this, we can conclude that the best model is in fact the model that 

does not contain any random effects. This is confirmed by fit criteria shown in Table 13. 

It can be seen that the model including no random effects it the best model 

(AIC=19133.5). 

 

Table 13: Fit criteria for CD4+ count comparing random effects 

 Random Intercept and Slope Random Intercept No random Effects 

-2 Log Likelihood 18919.5 18919.5 18919.5 

AIC 19135.5 19135.5 19133.5 

AICC 19141.4 19141.4 19139.3 

BIC 19573.3 19573.3 19567.3 
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4.2 Log Viral Load as the Response 
 

The same procedure used to analyze the square root CD4+ count will now be used in 

the analysis of log viral load. 

 

4.2.1 Covariance Structure 

 

Using the full model, the spatial power covariance structure with the maximum 

likelihood procedure is chosen (AIC=4220.0). This can be seen in Table 14 and Table 

15.  The type III tests of fixed effects can be found in Table 2B in Appendix B. From 

these results the mean structure can be chosen. 

 

Table 14: Fit statistics for full model using ML method 

 CS SP(POW) SP(EXP) SP(GAU) 

-2 Log Likelihood 4301.9 4220.0 5547.0 5547.0 

AIC 4515.9 4434.0 5761.0 5761.0 

AICC 4527.1 4445.2 5772.2 5772.2 

BIC 4949.7 4867.9 6194.9 6194.9 

 

Table 15: Fit statistics for full model using REML method 

 CS SP(POW) SP(EXP) SP(GAU) 

-2 Log Likelihood 5164.3 5028.3 6453.7 6453.7 

AIC 5168.3 5032.3 6457.7 6457.7 

AICC 5168.3 5032.3 6457.7 6457.7 

BIC 5176.4 5040.4 6465.8 6465.8 
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4.2.2 Mean Structure  

 

The same procedure for choosing the mean structure as described under the square root 

CD4+ count model is used. The terms in the final means structure model are shown in 

Table 16. It can be seen from this table using the log viral load as the response, the final 

model includes gender, HLA-B types, IL-10 genotypes and their interactions with each 

other and time. We find that gender is significantly associated with log viral load at the 

5% level of significance (p-value=0.0308). HLA-B*5703 (p-value=0.0006), B*5802 (p-

value=0.0322) and the -592 genotype (p-value=0.0041) are also significantly associated 

with log viral load. The interactions between HLA-B*1503 and the -592 genotype (p-

value=0.0049), B*8100 and the -592 genotype (p-value=0.0222) and the interaction 

between B*5702, the -592 genotype and time (p-value=0.0135), are significantly 

associated with log viral load.  
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Table 16: Type III tests of fixed effects for log viral load as response for model with no random effects 

Effect Num DF Den DF F Value Pr>F 

Gender 1 404 4.70 0.0308 

Time 1 1739 3.07 0.0798 

B1503 1 404 1.05 0.3051 

B4201 1 404 1.75 0.1866 

B5702 1 404 2.01 0.1571 

B5703 1 404 11.94 0.0006 

B5802 1 404 4.62 0.0322 

B8100 1 404 3.49 0.0626 

-592 Genotype 2 404 5.56 0.0041 

-1082 Genotype 2 404 0.08 0.9192 

B4201*Time 1 1739 3.36 0.0668 

B1503*-592 Genotype 2 404 5.38 0.0049 

B8100*-592 Genotype 2 404 3.84 0.0222 

B4201*-1082 Genotype 2 404 2.02 0.1337 

B5802*-1082 Genotype 2 404 2.64 0.0726 

B5702*-1082 Genotype*Time 3 1739 3.57 0.0135 

B5703*-1082 Genotype*Time 2 1739 2.93 0.0536 

 

 

From the results in Table 17 it can be seen that at the 5 % level of significance, gender 

is found to be significantly associated with log viral load (p-value=0.0308). The 

estimate shows the predicted log viral load for a female is 0.2017 units lower than that 

for a male. The estimate for time shows that predicted log viral load decreases by 

0.00025 units per day (p-value=0.0013). An individual with HLA-B*8100 has a 

predicted log viral load that is 0.8154 units lower than an individual without this HLA-

B type (p-value<0.0001). This implies that B*8100 is a good controller of HIV 

replication. Looking at the -592 loci, an individual who possesses HLA-B*1503 and the 

CA genotype has a predicted log viral load that is 0.6502 units higher than an individual 

who possesses B*1503 and the CC genotype (p-value=0.0016). This implies that an 

individual with B*1503 and the CC genotype is protected against HIV better than an 

individual with B*1503 and the CA genotype. An individual who possesses HLA-

B*8100 and the CA genotype has a predicted log viral load that is 0.6744 units higher 

than an individual who possesses B*8100 and the CC genotype (p-value=0.0092). This 

implies that an individual with HLA-B*8100 and the CA genotype is less protected than 

an individual without HLA-B*8100 and the CC genotype. Over time, the predicted log 

viral load for an individual who possesses B*5702 and the AG genotype will have an 

additional rate of increase of 0.001496 units per day than an individual who does not 
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possess this HLA-B*5702 (p-value=0.0020) and the predicted log viral load for an 

individual who possesses B*5703 and the AG genotype will have an additional rate of 

increase of 0.000552 units per day than for an individual who does not possess this 

HLA-B*5703 (p-value=0.0212). Thus these HLA-B and genotype interactions are 

disadvantageous for an individual‟s ability to control HIV replication over time. 

 

Table 17: Solution for fixed effects for log viral load for model with no random effects 

Effect Genotype Estimate STD Error DF t Value Pr>|t| 

Intercept  4.9106 0.2258 404 21.75 <.0001 

Gender  -0.2017 0.09308 404 -2.17 0.0308 

Time  -0.00025 0.000076 1739 -3.23 0.0013 

B1503  -0.1326 0.1371 404 -0.97 0.3342 

B4201  -0.1934 0.2640 404 -0.73 0.4642 

B5702  -0.5384 0.3799 404 -1.42 0.1571 

B5703  -0.8043 0.2328 404 -3.45 0.0006 

B5802  0.3715 0.2808 404 1.32 0.1866 

B8100  -0.8154 0.1888 404 -4.32 <.0001 

-592 Genotype AA 0.04594 0.1860 404 0.25 0.8050 

-592 Genotype CA -0.1370 0.1108 404 -1.24 0.2171 

-1082 Genotype AA 0.1223 0.1569 404 0.78 0.4359 

-1082 Genotype AG 0.1573 0.1516 404 1.04 0.3000 

B4201*Time  0.000203 0.000111 1739 1.83 0.0668 

B1503*-592 Genotype AA 0.07553 0.2753 404 0.27 0.7839 

B1503*-592 Genotype CA 0.6502 0.2042 404 3.18 0.0016 

B8100*-592 Genotype AA 0.7949 0.4885 404 1.63 0.1045 

B8100*-592 Genotype CA 0.6744 0.2578 404 2.62 0.0092 

B4201*-1082 Genotype AA -0.1581 0.2841 404 -0.56 0.5781 

B4201*-1082 Genotype AG 0.2275 0.2843 404 0.80 0.4239 

B5802*-1082 Genotype AA 0.06013 0.3139 404 0.19 0.8482 

B5802*-1082 Genotype AG -0.4115 0.3203 404 -1.28 0.1996 

B5702*-1082 Genotype*Time AA 0.000230 0.000449 1739 0.51 0.6087 

B5702*-1082 Genotype*Time AG 0.001496 0.000484 1739 3.09 0.0020 

B5702*-1082 Genotype*Time GG 0.002660 0.002156 1739 1.23 0.2176 

B5702*-1082 Genotype*Time AA 0.000094 0.000155 1739 0.60 0.5455 

B5702*-1082 Genotype*Time AG 0.00000557 0.000102 1739 -0.05 0.9563 

B5703*-1082 Genotype*Time AG 0.000552 0.000239 1739 2.31 0.0212 

B5703*-1082 Genotype*Time GG -0.00003 0.000285 1739 -0.11 0.9115 
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4.2.3 Diagnostics Analysis for the Model Excluding Random Effects 

 

The histogram of the residuals after fitting the model shown in Figure 26 indicates 

slight skewness. The normal quantile plot of the residuals shows that there is a slight 

systematic departure from a straight line.  

 

   
 

  

 

Figure 26: Model diagnostics for log viral load 

 

 

4.2.4 Random Effects 

 

Comparing the model with a random intercept and slope (time) to a model with only a 

random intercept gives a p-value > 0.05, using a chi-squared distribution with 2 and 1 

degrees of freedom respectively. This implies that the simpler model having a random 

intercept only is sufficient. Comparing the model with a random intercept and no 

random effects gives a p-value   0 using a chi-squared distribution with 1 and 0 degrees 

of freedom. From this we can conclude that the model including a random intercept is 

the best model and will therefore be used for the final analysis. This is confirmed by the 

AIC statistics given in Table 18, with the model including the random intercept having 

the smallest AIC (AIC=4324.3). It should be noted that since the best model includes a 

random intercept, this implies that there is a strong individual to individual variability in 

log viral load at baseline. 
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Table 18: Information criteria for random effects with log viral load as the response 

 Random Intercept and Slope Random Intercept No random Effects 

-2 Log Likelihood 4107.1 4108.3 4220.0 

AIC 4327.1 4324.3 4434.0 

AICC 4338.9 4335.7 4445.2 

BIC 4773.1 4762.1 4867.9 

 

 

4.2.5 Model Including Random Intercept 

 

The mean structure is chosen using the Type III Tests for fixed effects shown in Table 

3B in Appendix B. After removing the non-significant terms and using the likelihood 

ratio test to compare models, we find the simplest mean structure. The Type III tests for 

fixed effects for the final model are shown in Table 19. At a 5% level of significance, 

gender (p-value=0.0296) and time (p-value=0.0154) are significantly associated with 

log viral load. HLA-B*5703 (p-value<0.0001), B*5801 (p-value=0.0375), B*8100 (p-

value=0.0037) and the -1082 genotype (p-value=0.0198) are shown to be significantly 

associated with log viral load. The interactions between HLA-B*4201 and time (p-

value=0.0039), B*4403, the -592 genotype and time (p-value=0.0443), B*5702, the -

592 genotype and time (p-value=0.0002), B*8100, the -592 genotype and time (p-

value=0.0400) and B*0801, the -1082 genotype and time (p-value=0.0388) are 

significantly associated with log viral load. 
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Table 19: Type III tests for fixed effects for final model with log viral load as the response 

Effect Num DF Den DF F Value Pr>F 

Gender 1 1723 4.74 0.0296 

Time 1 1723 5.88 0.0154 

B0801   1 1723 0.23 0.6315 

B4201 1 1723 3.13 0.0768 

B4403 1 1723 1.11 0.2915 

B5702 1 1723 2.47 0.1162 

B5703 1 1723 15.62 <.0001 

B5801 1 1723 4.33 0.0375 

B5802 1 1723 0.10 0.7528 

B8100 1 1723 8.47 0.0037 

-592 Genotype  2 1723 0.70 0.4957 

-1082 Genotype  2 1723 3.93 0.0198 

B4201*Time 1 1723 8.34 0.0039 

B5703*Time 1 1723 3.61 0.0574 

B0801*-1082 Genotype 2 1723 2.89 0.0557 

B4201*-1082 Genotype 2 1723 2.83 0.0593 

B4403*-592 Genotype*Time 3 1723 2.70 0.0443 

B5702*-592 Genotype*Time 3 1723 6.75 0.0002 

B5802*-592 Genotype*Time 3 1723 2.48 0.0599 

B8100*-592 Genotype*Time 2 1723 3.23 0.0400 

B0801*-1082 Genotype*Time 3 1723 2.80 0.0388 

B8100*-1082 Genotype*Time 2 1723 2.75 0.0641 

 

 

At a 5% level of significance, it is shown in Table 20 that females have a predicted log 

viral load that is 0.2260 units lower than that for males. Individuals who have 

HLA*B5703 have a predicted log viral load that is 0.8926 units lower (p-value<0.0001) 

than those without this HLA-B type, those with B*5801 have a predicted log viral load 

0.2944 units lower (p-value=0.0375) than individuals who do not have this HLA-B type 

and individuals with B*8100 have a predicted log viral load 0.4491 units lower (p-

value=0.0037) than individuals who do not have this HLA-B type. The interaction 

between HLA-B*4201 and time shows that when HLA-B*4201 is present, the predicted 

log viral load increases at an extra rate of 0.000224 units more per day than when HLA-

B*4201 is absent (p-value=0.0039). On the -592 loci, the estimate of the interaction 

between HLA-B*5702, the CA genotype and time shows that the predicted log viral 

load increases at an extra rate of 0.001509 units more per day than that when B*5702 is 

absent (p-value<0.0001). The estimate of the interaction between HLA-B*5802, the CA 

genotype and time indicates that the predicted log viral load increases at an extra rate of 

0.000364 units more per day compared to that of an individual without B*5802 (p-
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value=0.0082). The coefficient of the interaction between HLA-B*8100, the AA 

genotype and time is 0.001009. This is interpreted to mean that compared to the absence 

of HLA-B*8100, an individual with B*8100 and the AA genotype has a predicted log 

viral load which increases at a rate of 0.001009 units more per day (p-value=0.0401). 

Now looking at the -1082 loci, the estimate of the interaction between HLA-B*0801, 

the GG genotype and time illustrates that the predicted log viral load decreases at a rate 

of 0.00055 units more per day than if HLA-B*0801 is absent (p-value=0.0200). This 

shows that being female, having the HLA-B*5703, B*5801 and B*8100 is protective 

against worse conditions of the disease. In addition, although the HLA-B*4201 effect 

was not significant, its interaction with time was significant causing an increased rate of 

0.00224 per unit. Significant three-way interactions that were found are B5702*-592 

CA*time, B5802*-592 CA*time, B8100*-592 AA*time, B0801*-1082 GG*time. 
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Table 20: Solutions for fixed effects for final model log viral load as the response 

Effect Category Estimate Std Error DF t-value p-value 

Intercept  4.9375 0.2536 407 19.47 <.0001 

Gender  -0.2260 0.1038 1723 -2.18 0.0296 

Time  -0.00014 0.000110 1723 -1.27 0.2026 

B0801    -0.05149 0.3856 1723 -0.13 0.8938 

B4201  -0.08356 0.2948 1723 -0.28 0.7769 

B4403  -0.1306 0.1237 1723 -1.06 0.2915 

B5702  -0.5919 0.3766 1723 -1.57 0.1162 

B5703  -0.8926 0.2258 1723 -3.95 <.0001 

B5801  -0.2944 0.1414 1723 -2.08 0.0375 

B5802  0.03731 0.1184 1723 0.31 0.7528 

B8100  -0.4491 0.1543 1723 -2.91 0.0037 

-592 Genotype  AA 0.1940 0.1683 1723 1.15 0.2493 

-592 Genotype CA 0.07266 0.1021 1723 0.71 0.4770 

-1082 Genotype  AA 0.2355 0.1846 1723 1.28 0.2021 

-1082 Genotype AG 0.1110 0.1829 1723 0.61 0.5442 

Time*B4201  0.000224 0.000077 1723 2.89 0.0039 

Time*B5703  0.000263 0.000138 1723 1.90 0.0574 

B0801*-1082 Genotype AA -0.3589 0.4341 1723 -0.83 0.4085 

B0801*-1082 Genotype AG 0.2832 0.4216 1723 0.67 0.5018 

B4201*-1082 Genotype AA -0.4685 0.3292 1723 -1.42 0.1549 

B4201*-1082 Genotype AG 0.02753 0.3306 1723 0.08 0.9336 

B4403*-592 Genotype*Time AA -0.00019 0.000251 1723 -0.75 0.4545 

B4403*-592 Genotype*Time CA 0.000147 0.000128 1723 1.14 0.2527 

B4403*-592 Genotype*Time CC 0.000194 0.000122 1723 1.59 0.1116 

B4403*-592 Genotype*Time AA 0.000072 0.000138 1723 0.52 0.6019 

B4403*-592 Genotype*Time CA -0.00012 0.000092 1723 -1.30 0.1923 

B5702*-592 Genotype*Time AA -0.00006 0.000319 1723 -0.18 0.8539 

B5702*-592 Genotype*Time CA 0.001509 0.000346 1723 4.36 <.0001 

B5702*-592 Genotype*Time CC 0.002434 0.002025 1723 1.20 0.2296 

B5802*-592 Genotype*Time AA 0.000192 0.000430 1723 0.45 0.6558 

B5802*-592 Genotype*Time CA 0.000364 0.000138 1723 2.65 0.0082 

B5802*-592 Genotype*Time CC 0.000088 0.000125 1723 0.71 0.4808 

B8100*-592 Genotype*Time AA 0.001009 0.000491 1723 2.05 0.0401 

B8100*-592 Genotype*Time CA 0.000522 0.000323 1723 1.61 0.1068 

B8100*-592 Genotype*Time CC -0.00002 0.000187 1723 -0.08 0.9330 

B0801*-1082 Genotype*Time AA 0.000210 0.000181 1723 1.16 0.2466 

B0801*-1082 Genotype*Time AG -0.00014 0.000154 1723 -0.93 0.3517 

B0801*-1082 Genotype*Time GG -0.00055 0.000234 1723 -2.33 0.0200 

B0801*-1082 Genotype*Time AA 0.000024 0.000127 1723 0.19 0.8532 

B0801*-1082 Genotype*Time AG -4.09E-6 0.000121 1723 -0.03 0.9732 

B8100*-1082 Genotype*Time AA -0.00060 0.000308 1723 -1.94 0.0529 

B8100*-1082 Genotype*Time AG -0.00010 0.000314 1723 -0.32 0.7471 
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4.2.6 Diagnostic Analysis for the Model Including Random Intercept 

 

The histogram of the residuals shown in Figure 27 does not indicate any skewness. The 

normal quantile plot of the residuals shows that there is only a minor systematic 

departure from a straight line at the tails. This indicates a fairly adequate model. 

Although these are fairly similar diagnostics to those from the model with no random 

effects, the current model is preferred since the fit statistics indicated that this model is a 

better fit to the data. 

 

   
 

  

 

Figure 27: Model diagnostics for log viral load with random intercept 
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Chapter 5 

Generalized Estimating Equations 
 

 

Generalized estimating equations (GEEs), which were first introduced by Liang and 

Zeger (1986), are an extension to the theory of generalized linear models (GLMs) and 

are based on the concept of quasi-likelihood as opposed to direct likelihood. Hence we 

firstly consider the theory of the generalized linear models. Generalized estimating 

equations are also referred to as marginal or population averaged models. The focus in 

these models is on the population averaged effects rather than on the individual specific 

effects. The crucial characteristics about GEEs is that they have the capacity to account 

for correlation in clustered data such as repeated measurements from the same 

experimental unit. 

 

5.1 Generalized Linear Models 
 

The generalized linear model (GLM) extends the ordinary regression model to allow for 

non-normal response variables. There are three components that make up the GLM and 

are defined as the random component, the systematic component, and the link function 

(Agresti, 2002). 

An important characteristic of generalized linear models is that they assume 

independent observations (McCullagh & Nelder, 1989, p. 21). These observations form 

the first component of the GLM, which are the random component. The response 

variable is Y with independent observations (               from a distribution that 

falls in the exponential family, which  has probability density function or mass function 

given by 
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(5.1) 

 

The parameter   is known as the dispersion parameter and    is known as the natural 

parameter.  

 

The systematic component of a GLM relates a function    of explanatory variables by 

making use of the linear model given by  

            
 

 
(5.2) 

 

where     is the value of predictor where          and          . The linear 

combination of explanatory variables to the right of equation (5.2) is known as the 

linear predictor. The coefficient of an intercept in the model can be accommodated by 

letting one       for all i.  

The random and systematic components are connected by the third component of the 

GLM, the link function. By letting  
 
      , where          , the model links  

 
 

to    by       
 
 . The link function denoted by   is a monotonic differentiable 

function.  

This implies that g links       to the explanatory variables through the equation 

    
 
          

 

 
(5.3) 

 

For the ordinary regression model where the response Y is normally distributed, we 

have the identity link       , with     
 
 (Agresti, 2002, pp. 116-117). The 

simplest assumption in the specification of the model stated in equation (5.3) is to 

consider the outcomes within a unit as independent, which is clearly not a realistic 

assumption. 
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5.2 Generalized Estimation Equations 
 

5.2.1 Introduction 

 

GEE's allow for repeated measurements,                      where    can vary for 

each subject such as in the case of unbalanced data (Agresti, 2002, p. 467). The vector 

   is a realization of a random vector   . 

An alternate to maximum likelihood estimation is the quasi-likelihood estimation. This 

estimation assumes only a mean-variance relationship, instead of assuming a specific 

distribution for   . It has a link function and linear predictor of the usual GLM form, but 

instead of assuming a distributional type for    it assumes only            
 
  for 

some chosen variance function   (Agresti, 2002, p. 149). The quasi-likelihood method 

specifies a model for       . The variance function      describes how        is 

dependent on the mean µ. Unlike the GLM approach, the GEE model applies to the 

marginal distribution for each    (Agresti, 2002, p. 467). 

When dealing with repeated measurements, we have a multivariate response for   , such 

that                  
 
. Where it is assumed that the    ,             are 

independent, then a GLM approach can be used. Also,  
 
   

  
      

   
  , where 

 
  
       . Each outcome,    , for subject   at time   may have a different number    

of responses (Zeger, Liang, & Albert, 1988, p. 1049). Let the vector of explanatory 

variables values for     be denoted by     with dimension     (Liang & Zeger, 1986, 

p. 13). For the link function  , the linear predictor of the model can be written as 

        
  
      

    (5.4) 

(Agresti, 2002, p. 472). 

This is the model for the marginal distribution at each   rather than the joint distribution. 

The matrix of predictor values for subject   is then denoted by   , and has dimension 

     and     
  is row   of   . 
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The probability mass function for     is given by 

 
                 

               

 
            

(5.5) 

(Agresti, 2002) 

 

If   is known, the probability mass function is that of the natural exponential family 

with natural parameter    . 

Similar to the case of GLM's, we have  

  
  
                (5.6) 

    
  
                     (5.7) 

 

5.2.2 Correlated Data 

 

Consider the case where the observations in the vector    are not necessarily 

independent. Let the assumed or working correlation matrix of    be     , which 

depends on a vector of unknown parameters  .  

Let 

                          (5.8) 

and    denote a diagonal matrix with diagonal elements   
     . 

Then 

 
    

 

 
      

 

 
   

(5.9) 

is the working covariance matrix for    (Agresti, 2002, p. 472; Liang & Zeger, 1986, p. 

15). 

 

In GLM's the score equation is given by  
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(5.10) 

(Agresti, 2002, p. 470; Ramroop, 2008, p. 92). 

For the case when the outcome    is multivariate, equation (5.10) then becomes   

 
       

  
  

  
  

   
  
 
  
     

 
  

 

 
                   

  
 
 

  
 

  
       

 
  

 

                      
   
       

 
 

 

   
(5.11) 

where    
   

 

  
 ,  

 
       (Liang & Zeger, 1986, p. 15; Agresti, 2002, p. 474; 

Ramroop, 2008, p. 93)  and    is given in equation (5.9). 

 

The GEE estimator    is the solution to equation (5.11), where  

  
 
  

 
          

    (5.12) 

(Agresti, 2002, pp. 472-473). 

 

In the case where the identity link assumption holds with  
 
    , we then have 

         
    

  
 
  
           

 

 
(5.13) 

(Ramroop, 2008, p. 93). Thus data which requires the adoption of the identity link 

becomes a special case of the equation presented in (5.11). 
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5.3 Measures of Goodness of Fit 
 

Since the GEE is strictly not likelihood based a challenge in its utility is the type of 

statistics to use for model selection. As an approximation the Quasi-likelihood under the 

Independence Model Criteria (QIC) can be used to choose the best subset of covariates. 

The QIC can be approximated by the QICu. The algebraic expressions showing how the 

QIC and the QICu are defined below in Table 21, with            
 
 ,  

 

Table 21: Goodness of fit criteria for GEEs 

  

QIC                          
          

QICu                    

 

 

where   stands for quasi-likelihood,       is the inverse link function,    is the 

variance matrix which is obtained assuming the independence model,        is the 

modified sandwich estimate of variance from the model that uses   as the hypothesised 

correlation structure and d is the number of parameters in the model (Pan, 2001, p. 122; 

Hardin & Hilbe, 2003, pp. 139-142).  

 

5.4 Application of Generalized Estimating Equations to 

Sinikithemba Data 

 

In this chapter we will use a backward procedure using square root CD4+ count and log 

viral load separately as the response variables under the generalized estimating 

equations methodology. This will be done using the statistical software SAS version 9.2 

(SAS Institute Inc., Cary, NC, USA). Using the 'proc genmod' procedure.  
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5.5 Square Root CD4+ Count as the Response 

 

As with the linear mixed model analysis, square root CD4+ count will be used as the 

response variable in the analysis. The explanatory variables that will be included are the 

same variables that were included for the linear mixed model analysis, i.e. gender (male 

or female), HLA-B type (B*0801, B*1503, B*1510, B*4201, B*4403, B*5702, 

B*5703, B*5801, B*5802, B*8100) and IL-10 genotypes (-592 genotype and -1082 

genotype). The -592 genotype includes AA, AC and CC. The -1082 genotype includes 

AA, AG and GG. 

The model building strategy will be done in two steps. Firstly, the covariance structure 

of observations from the same individuals needs to be chosen. Unlike with linear mixed 

models, if the covariance structure is chosen incorrectly, the estimates of the model 

parameters will still be correct (Agresti, 2002). The covariance structures that will be 

utilized include Independence (IND), Compound Symmetry (CS) and Autoregressive 

(1) (AR(1)). Secondly, the mean structure must be chosen. 

 

5.5.1 Covariance Structure  

 

In order to choose the best covariance structure we make use of the full mean model. 

This includes all the HLA-B types, both -592 and -1082 genotypes, time, the 

interactions between each of the HLA-B types and the IL-10 genotypes, the interactions 

between the HLA-B types and time, the interactions between the IL-10 genotypes and 

time and the three-way interactions between the HLA-B types, the IL-10 genotypes and 

time. The covariance structures are then compared using the empirical standard error 

estimates and the model-based standard error estimates. The empirical standard error 

estimates are based on the actual variation of the data, whereas the model-based 

standard error estimates are based on the estimated correlation from the chosen model. 

The covariance structure with the least difference between the standard errors is the best 

covariance structure (Hanley, et al., 2003). For this data, the compound symmetry 

covariance structure was found to be the best and will therefore be used in this analysis. 

Using the compound symmetry covariance structure, the score statistics were found as 
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seen in Table 1C in Appendix C. This will be used to select the best model structure in 

the following section.  

 

5.5.2 Mean Structure  
 

Using the Score Statistics in Table 1C in Appendix, the covariate that is the least 

significant is dropped from the model. This new model is then compared to the original 

model using the QICu values, with the smaller QICu being better. This is then repeated 

until all the non-significant terms are dropped from the model (unless the QICu value is 

smaller, in which case the term will remain in the model). Note that any term that is 

included in an interaction term needs to be included as an individual or main effect 

term. If one of these terms has already been dropped, it will still need to be included in 

the final model. Following this procedure the final model can be seen in Table 22. From 

this table it can be seen that time is significantly associated with square root CD4+ 

count (p-value<0.0001) at the 5% significance level. HLA-B*5703 (p-value=0.0252) 

and B*5802 (p-value=0.0240) are significantly associated with square root CD4+ count. 

The interactions between HLA-B*1503 and time (p-value=0.0105), B*5703 and time 

(p-value=0.0283) and B*5801 and time (p-value=0.0050) are significantly associated 

with square root CD4+ count. The interactions between HLA-B*5802 and the -592 

genotype (p-value=0.0208), and the interaction between HLA B*4403, the -1082 

genotype and time (p-value=0.0274) are significantly associated with square root CD4+ 

count.  
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Table 22: Score statistics for type III GEE analysis with square root CD4+ count as response for final 

model 

Source DF Chi-Square Pr > Chi-Sq 

Time 1 28.73 <0.0001 

B0801 1 0.10 0.7558 

B1503  1 2.65 0.1035 

B1510 1 3.53 0.0603 

B4201 1 0.05 0.8313 

B4403 1 1.51 0.2192 

B5702 1 0.31 0.5806 

B5703 1 5.01 0.0252 

B5801 1 0.07 0.7934 

B5802 1 5.10 0.0240 

B8100 1 3.59 0.0583 

-592 Genotype 2 2.11 0.3485 

-1082 Genotype 2 4.11 0.1283 

B0801*Time 1 1.25 0.2629 

B1503*Time 1 6.54 0.0105 

B4403*Time 1 0.13 0.7142 

B5702*Time 1 0.70 0.4037 

B5703*Time 1 4.81 0.0283 

B5801*Time 1 7.87 0.0050 

B8100*Time 1 0.91 0.3388 

-592 Genotype*Time 2 0.36 0.8353 

-1082 Genotype*Time 2 2.01 0.3657 

B5802*-592 Genotype 2 7.75 0.0208 

B5702*-1082 Genotype 1 0.14 0.7108 

B4201*-1082 Genotype*Time 3 4.39 0.2223 

B4403*-1082 Genotype*Time 2 7.19 0.0274 

 

 

At a 5% level of significance, the significance of model effects can be assessed in Table 

23. The estimate for time shows that on average at the population level mean square 

root CD4+ count decreases at a rate of 0.0026 units per day (p-value<0.0001) as time 

elapses. Individuals who possess B*5802 have a mean square root CD4+ count 3.0974 

units lower (p-value<0.0001) than individuals who do not have this HLA-B type. 

However, those with B*5703 have a mean square root CD4+ count 2.9480 units higher 

mean square root CD4+ count (p-value=0.0086) than individuals without B*5703. 

Considering the -1082 loci, individuals with the AA genotype have a mean square root 

CD4+ count 1.7561 units lower than individuals with the GG genotype. The interaction 

between HLA-B*1503 and time shows that when HLA-B*1503 is present, the mean 

square root CD4+ count increases at an additional rate of 0.0009 units per day than 

when HLA-B*1503 is absent (p-value=0.0079). The coefficient of the interaction 
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between HLA-B*4403 and time is -0.0016. This indicates  that when HLA-B*4403 is 

present, the average square root CD4+ count decreases at an additional rate of 0.0016 

units per day than when HLA-B*4403 is absent (p-value=0.0012). The interaction 

between HLA-B*5703 and time shows that when HLA-B*5703 is present, the  mean 

square root CD4+ count increases at an additional rate of 0.0015 units per day than 

when HLA-B*5703 is absent (p-value=0.0018). Focusing on the -592 loci, the estimate 

of the interaction between HLA-B*5802 and CA genotype shows that the average 

square root CD4+ count is 3.0255 units more for individuals who have this HLA-B type 

than for individuals who do not (p-value=0.0082). Looking at the -1082 loci, the 

estimate of the interaction between HLA-B*4201 and AA genotype, the mean square 

root CD4+ count for such individuals is 0.0010 units higher when B*4201 is present, 

than when it is absent (p-value=0.0401). The estimate of the interaction between HLA-

B*4403 and the AA genotype illustrates that the mean square root CD4+ count 

increases at a rate of 0.0025 units per day (p-value=0.0001) and when the -1082 AG 

genotype is present the mean square root CD4+ count increases at a rate of 0.0017 units 

per day (p-value=0.0073) for individuals who possess HLA-B*4403 compared to those 

who do not possess this HLA-B type.  
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Table 23: Analysis of GEE parameter estimates empirical standard error estimates for square root CD4+ 

count as response 

Parameter Category Estimate Std Error (Model-

Based) 

95% Confidence 

Limits 

Z 

Value 

Pr > |Z| 

Intercept   20.8451 0.8114 (0.8382) 19.2548 22.4354 25.69 <0.0001 

Time  -0.0026 0.0005 (0.0003) -0.0035 -0.0017 -5.50 <0.0001 

B0801  -0.2916 0.9380 (0.6968) -2.1301 1.5469 -0.31 0.7559 

B1503  -1.2047 0.7329 (0.6263) -2.6411 0.2318 -1.64 0.1002 

B1510  -1.4024 0.7411 (0.6407) -2.8548 0.0501 -1.89 0.0584 

B4201  -0.1379 0.6453 (0.6192) -1.4026 1.1268 -0.21 0.8308 

B4403  1.0163 0.8158 (0.6838) -0.5826 2.6152 1.25 0.2128 

B5702  -0.5142 4.0158 (2.3746) -8.3850 7.3566 -0.13 0.8981 

B5703  2.9480 1.1221 (1.1807) 0.7487 5.1473 2.63 0.0086 

B5801  -0.2360 0.9028 (0.8117) -2.0055 1.5334 -0.26 0.7937 

B5802  -3.0974 0.7514 (0.8878) -4.5702 -1.6246 -4.12 <0.0001 

B8100  1.7568 0.9022 (0.8400) -0.0114 3.5251 1.95 0.0515 

-592 Genotype AA 0.4018 1.3203 (0.9398) -2.1860 2.9895 0.30 0.7609 

-592 Genotype CA -0.7309 0.6907 (0.5847) -2.0846 0.6228 -1.06 0.2899 

-1082 Genotype AA -1.7561 0.8435 (0.8448) -3.4092 -0.1029 -2.08 0.0373 

-1082 Genotype AG -1.2293 0.7573 (0.8174) -2.7135 0.2549 -1.62 0.1045 

B0801*Time  0.0005 0.0004 (0.0002) -0.0004 0.0013 1.15 0.2520 

B1503*Time  0.0009 0.0003 (0.0002) 0.0002 0.0015 2.66 0.0079 

B4403*Time  -0.0016 0.0005 (0.0006) -0.0025 -0.0006 -3.25 0.0012 

B5702*Time  0.0011 0.0010 (0.0006) -0.0009 0.0030 1.06 0.2877 

B5703*Time  0.0015 0.0006 (0.0004) 0.0003 0.0026 2.52 0.0116 

B5801*Time  0.0013 0.0004 (0.0003) 0.0005 0.0021 3.12 0.0018 

B8100*Time  0.0005 0.0005 (0.0003) -0.0005 0.0015 0.97 0.3334 

-592 

Genotype*Time 

AA -0.0003 0.0005 (0.0003) -0.0013 0.0007 -0.60 0.5485 

-592 

Genotype*Time 

CA -0.0001 0.0004 (0.0002) -0.0008 0.0006 -0.26 0.7981 

-1082 

Genotype*Time 

AA -0.0002 0.0005 (0.0004) -0.0013 0.0008 -0.43 0.6662 

-1082 

Genotype*Time 

AG 0.0002 0.0005 (0.0003) -0.0008 0.0012 0.43 0.6690 

B5802*-592 

Genotype 

AA -2.2947 2.9472 (2.2333) -8.0712 3.4818 -0.78 0.4362 

B5802*-592 

Genotype 

CA 3.0255 1.1445 (1.2316) 0.7824 5.2685 2.64 0.0082 

B5702*-1082 

Genotype 

AA -2.0668 5.4739 (4.0078) -12.7955 8.6619 -0.38 0.7058 

B4201*-1082 

Genotype*Time 

AA 0.0010 0.0005 (0.0003) 0.0000 0.0020 2.05 0.0401 

B4201*-1082 

Genotype*Time 

AG 0.0003 0.0005 (0.0003) -0.0008 0.0013 0.47 0.6359 

B4201*-1082 

Genotype*Time 

GG 0.0008 0.0007 (0.0005) -0.0006 0.0023 1.16 0.2450 

B4403**-1082 

Genotype*Time 

AA 0.0025 0.0006 (0.0007) 0.0012 0.0038 3.83 0.0001 

B4403*-1082 

Genotype*Time 

AG 0.0017 0.0006 (0.0007) 0.0005 0.0030 2.68 0.0073 
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5.6 Log Viral Load as the Response 
 

We now consider log viral load as the response, and perform the analysis as done 

previously for square root CD4+ count.  

 

5.6.1 Covariance Structure  

 

Once again we considered the saturated or the full model. The covariance structures 

were then compared using the empirical standard error estimates and the model-based 

standard error estimates. The covariance structure with the least difference between the 

standard errors was taken as the best covariance structure. The compound symmetry 

covariance structure was found to be the best and will therefore be used in this analysis. 

This suggests that the correlation between measurements remains constant and is not 

dependent on how far apart the measurements are. The score statistics are shown in 

Table 2C in Appendix C. These statistics will be used to determine the best mean 

structure. 

 

5.6.2 Mean Structure  

 

Terms that are not significant were excluded or dropped systematically from the model 

and compared to the previous model using the QICu. The model with the smallest QICu 

is kept. The final model for log viral load is shown in Table 24. At a 5% significance 

level, gender is shown to be significantly associated with log viral load (p-

value=0.0234), and time is shown not to be significantly associated with log viral load 

(p-value=0.4749). HLA-B*5703 (p-value=0.0164), the interaction between HLA-

B*0801 and time (p-value=0.0383) and the interaction between HLA-B*1503, the -592 

genotype and time (p-value=0.0446) were found to be significantly associated with log 

viral load.   
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Table 24: Score statistics for type III GEE analysis with viral load as response for final model 

Source DF Chi-Square Pr > Chi Sq 

Gender 1 5.14 0.0234 

Time 1 0.51 0.4749 

B0801 1 0.06 0.8010 

B1503 1 0.71 0.3998 

B1510 1 2.12 0.1453 

B4201 1 3.75 0.0527 

B4403 1 0.06 0.8115 

B5703 1 5.76 0.0164 

B5801 1 1.47 0.2258 

B5802 1 1.51 0.2199 

B8100 1 3.54 0.0599 

-592 Genotype 2 2.72 0.2570 

-1802 Genotype 2 1.01 0.6036 

B0801*Time 1 4.29 0.0383 

B1503*Time 1 0.04 0.8466 

B1510*Time 1 1.40 0.2360 

B4201*Time 1 3.82 0.0506 

B5703*Time 1 1.76 0.1848 

B5801*Time 1 0.12 0.7277 

B5802*Time 1 2.48 0.1153 

B8100*Time 1 1.15 0.2825 

-592 Genotype*Time 2 2.54 0.2813 

-1082 Genotype*Time 2 2.70 0.2598 

B1503*-592 Genotype 2 6.22 0.0446 

B5802*-592 Genotype 2 1.44 0.4871 

B0801*-1082 

Genotype*Time 

2 5.90 0.0522 

B1510*-1082 

Genotype*Time 

2 3.26 0.1956 

 

From Table 25 and it can be seen that females have mean log viral load 0.2345 units 

lower than males (p-value=0.0212). Individuals with HLA-B*5703 have a mean log 

viral load that is 0.7628 units lower than individuals without this HLA-B type (p-

value=0.0029). The effect of HLA-B*4201 is marginally significant with an estimate of 

-0.2247 (p-value=0.0503). The interaction between HLA-B*4201 and time shows that 

when this HLA-B type is present, individuals have a mean log viral load that increases 

at a rate of 0.0002 units more per day compared to individuals who do not have HLA-

B*4201 (p-value=0.0423). Looking at the -592 loci, when HLA-B*1503 and the CA 

genotype are present, such individuals have mean log viral loads 0.5387 units higher 

compared to those with the CC genotype was present (p-value=0.0114). Now 

considering the -1082 loci, when HLA-B*0801 and the AA genotype are present, the 

individuals mean log viral load increases at a rate of 0.0006 units more per day than 

when B*0801 was absent (p-value=0.0315).  
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Table 25: Analysis of GEE parameter estimates empirical standard error estimates for log viral load as 

response 

Parameter Genotype Estimate Std Error 95% Confidence Level Z 

Value 

Pr > |Z| 

Intercept  4.8916 0.2490 (0.2526) 4.4035 5.3797 19.64 <0.0001 

Gender  -0.2345 0.1018 (0.1057) -0.4339 -0.0350 -2.30 0.0212 

Time  0.0000 0.0001 (0.0001) -0.0002 0.0002 0.21 0.8343 

B0801  0.0328 0.1303 (0.1327) -0.2225 0.2881 0.25 0.8012 

B1503  -0.1172 0.1614 (0.1662) -0.4336 0.1992 -0.73 0.4678 

B1510  0.1947 0.1328 (0.1248) -0.0656 0.4549 1.47 0.1427 

B4201  -0.2247 0.1148 (0.1188) -0.4497 0.0003 -1.96 0.0503 

B4403  -0.0305 0.1273 (0.1258) -0.2799 0.2190 -0.24 0.8109 

B5703  -0.7628 0.2565 (0.2270) -1.2655 -0.2601 -2.97 0.0029 

B5801  -0.2083 0.1693 (0.1545) -0.5401 0.1235 -1.23 0.2184 

B5802  0.1110 0.1566 (0.1736) -0.1959 0.4179 0.71 0.4783 

B8100  -0.3452 0.1779 (0.1599) -0.6938 0.0034 -1.94 0.0523 

-592 Genotype AA 0.0279 0.2177 (0.2144) -0.3987 0.4545 0.13 0.8980 

-592 Genotype CA -0.0000 0.1273 (0.1226) -0.2495 0.2494 -0.00 0.9997 

-1082 Genotype AA 0.1477 0.1563 (0.1617) -0.1587 0.4540 0.94 0.3447 

-1082 Genotype AG 0.1429 0.1507 (0.1563) -0.1525 0.4383 0.95 0.3431 

B0801*Time  -0.0005 0.0003 (0.0002) -0.0011 0.0000 -1.92 0.0550 

B1503*Time  -0.0000 0.0001 (0.0001) -0.0002 0.0001 -0.19 0.8469 

B1510*Time  -0.0006 0.0006 (0.0003) -0.0017 0.0005 -1.06 0.2910 

B4201*Time  0.0002 0.0001 (0.0001) 0.0000 0.0003 2.03 0.0423 

B5703*Time  0.0002 0.0001 (0.0001) -0.0001 0.0004 1.47 0.1427 

B5801*Time  -0.0001 0.0002 (0.0001) -0.0004 0.0003 -0.35 0.7279 

B5802*Time  0.0002 0.0001 (0.0001) -0.0000 0.0004 1.67 0.0949 

B8100*Time  -0.0001 0.0001 (0.0001) -0.0004 0.0001 -1.13 0.2578 

-592 

Genotype*Time 

AA 0.0002 0.0001 (0.0001) -0.0001 0.0004 1.48 0.1377 

-592 

Genotype*Time 

CA 0.0000 0.0001 (0.0001) -0.0002 0.0002 0.11 0.9085 

-1082 

Genotype*Time 

AA -0.0001 0.0001 (0.0001) -0.0004 0.0001 -1.18 0.2386 

-1082 

Genotype*Time 

AG 0.0000 0.0001 (0.0001) -0.0002 0.0003 0.39 0.6996 

B1503*-592 

Genotype 

AA 0.1228 0.3119 (0.3270) -0.4884 0.7340 0.39 0.6938 

B1503*-592 

Genotype 

CA 0.5387 0.2130 (0.2338) 0.1213 0.9561 2.53 0.0114 

B5802*-592 

Genotype 

AA 0.3754 0.3856 (0.4364) -0.3804 1.1312 0.97 0.3303 

B5802*-592 

Genotype 

CA -0.1261 0.2317 (0.2348) -0.5803 0.3282 -0.54 0.5865 

B0801*-1082 

Genotype*Time 

AA 0.0006 0.0003 (0.0002) 0.0001 0.0012 2.15 0.0315 

B0801*-1082 

Genotype*Time 

AG 0.0003 0.0003 (0.0002) -0.0003 0.0009 1.09 0.2270 

B1510*-1082 

Genotype*Time 

AA 0.0006 0.0006 (0.0003) -0.0005 0.0017 1.12 0.2624 

B1510*-1082 

Genotype*Time 

AG 0.0002 0.0006 (0.0003) -0.0010 0.0014 0.34 0.7322 
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5.7 Summary  
 

A main advantage of using generalized estimating equations instead of other methods is 

that the correlated longitudinal data does not need to be normally distributed in order to 

fit the linear model. An assumed covariance structure is used for the response variables, 

with a specified variance function and a pair wise correlation pattern. This is done 

without assuming any specific multivariate distribution (Agresti, 2002, p. 467). Unlike 

when using linear mixed models, if the covariance structure is chosen incorrectly, the 

estimates of the model parameters will still be consistent (Agresti, 2002; Ghisletta & 

Spini, 2004).  The GEE method offers two possible algorithms for estimating variance. 

The first is the model-based estimator. This requires the correct working covariance 

structure to be chosen. The second is the empirical estimator. This is purely based on 

the data, and is therefore the most trustworthy, since the model parameters will still be 

accurate even if the wrong covariance structure is used (Ghisletta & Spini, 2004). Since 

GEEs are an extension of GLMs for correlated data, they can be applied to a wide range 

of outcome variables. When dealing with incomplete data, GEEs are applicable when 

observations are missing completely at random. They are also advantageous since GEEs 

can be used to analyze unbalanced data easily (Ghisletta & Spini, 2004). A limitation of 

the GEE method is that it does not have a likelihood function, because the joint 

distribution of elements in    cannot be completely specified (Agresti, 2002). If missing 

data is present, this method will assume the data is missing completely at random, and 

therefore bias will be introduced if this assumption is violated. Another limitation is that 

GEEs require a large sample size to ensure unbiased estimation (Ghisletta & Spini, 

2004). 
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Chapter 6 

Conclusion  

 

Despite the intensive research about HIV, its pathogenesis is still not adequately 

understood.  A thorough understanding of HIV and factors that influence or affect 

progression of the disease is required in order to help design control and treatment 

strategies to limit the further spread of the virus in the population.  Modelling provides 

us with a means or tools to understand and predict the progression of the disease better. 

In this dissertation study, longitudinal data from the Sinikithemba cohort was used to 

understand the contribution of immunogenetic parameters (namely HLA-B types and 

IL-10 genotypes) to disease pathogenesis using biomarkers such as CD4+ counts and 

viral loads.  In addition the data was further used to investigate the interaction between 

HLA-B alleles and IL-10 genotypes, and further to understand their interaction over 

time.  

 

This study consisted of 450 individuals followed longitudinally over a 5 year period. 

With CD4+ counts being taken every 3 months and viral loads taken every 6 months, 

this resulted in having 4016 CD4+ count observations and 2007 viral load observations 

after excluding individuals who had missing data or who commenced antiretroviral 

treatment. CD4+ count and viral load did not conform to the normality assumptions and 

therefore needed to be transformed. For this reason, square root CD4+ count and log 

viral load were used for the analysis. From the exploratory analysis the most common 

HLA-B types were identified. These, in addition to the HLA-B types that were found to 

be significant in past research, enabled us to choose 10 HLA-B types to use in 

conducting the analysis. The IL-10 genotypes were compared using the Kruskal Wallis 

Test and pairwise comparisons. Looking at the -592 loci, it was found that there is a 

significant difference in median CD4+ counts across the CA and the CC genotypes, and 

a significant difference in median log viral load across the AA and CC genotypes, as 
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well as across the CA and CC genotypes. Examining the -1082 loci, it was evident that 

there was a significant difference in median CD4+ counts across all combinations of 

these genotypes (AA and AG, AA and GG, AG and GG), and a significant difference 

between median log viral loads across the AA and AG genotypes, as well as across the 

AG and GG genotypes. 

 

Longitudinal data is commonly characterized with missing values, inconsistent timed 

observations and incomplete data which are problems that need to be accounted for 

during the analysis. Linear mixed models are useful for dealing with these problems. 

The maximum likelihood method and the restricted maximum likelihood method are 

two estimation methods applied when using linear mixed models. These likelihood 

based methods automatically allow the handling of missing data under the MAR 

assumption. Which of the two methods to use needs to be chosen correctly in order to 

model and assess effects in the data accurately. Another important consideration when 

dealing with longitudinal data is the type of covariance structure to use for observations 

from the same unit. Choosing a covariance structure that is too restrictive will invalidate 

inferences, while a structure that it too simple will lead to inefficient estimation and 

poor estimation of standard errors (Verbeke, et al., 1998). Although the data used in this 

dissertation is normally distributed after transformation, another method that was looked 

at is generalized estimating equations for marginal effects. This procedure is an 

extension of generalized linear models to account for correlated data, but can be used 

for non normal data. Another difference compared to LMMs is that GEEs do not take 

into account the random effects that the LMM does. Thus GEEs and linear or 

generalized linear mixed models are conceptually different. Model diagnostics is an 

important part of longitudinal analysis. An analysis of residuals is used to determine 

whether a model is adequate and to indicate any outliers. This can be done graphically 

by constructing scatter-plots of the residuals after model fitting. 

 

From the linear mixed model analysis, we found that the model which most adequately 

fitted square root CD4+ count was that which excluded all random effects. It was 

established that the best model for log viral load was the model including a random 

intercept. This implies that there was no significant heterogeneity between individuals 
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for square root CD4+ count, but strong individual to individual variability at baseline 

for log viral load. It was shown that individuals who possess HLA-B*1510 and B*5802 

have lower mean square root CD4+ counts than individuals who do not possess these 

HLA-B types. This suggests that these HLA-B types and this genotype are associated 

with a faster progression of HIV. Individuals that have the AA genotype on the -1082 

loci or have B*5801 and the CA genotype on the -592 loci also have significantly lower 

mean square root CD4+ counts. This is consistent with the results found by Shin et al. 

(2000), where it was shown that individuals who carry the -592A promoter allele have 

an accelerated progression to AIDS. Individuals who possess HLA-B*5802 and the CA 

genotype on the -592 loci were however found to be significantly associated with a 

higher mean square root CD4+ count and therefore the presence of such genetic factors 

is considered as a relative controller of HIV. Individuals that have HLA-B*5703 have 

higher mean square root CD4+ counts and have lower mean log viral loads than 

individuals who do not have B*5703. This implies that B*5703 is associated with a 

slower progression of HIV. Other HLA-B types that are associated with a slower 

progression of HIV include HLA-B*5801 and B*8100 as individuals with these HLA-B 

types had significantly lower mean log viral loads. This is consistent with the results 

found by Kiepiela et al. (2004), where HLA-B*57 and B*5801 were found to be 

significantly associated with a lower viral load and therefore considered to be associated 

with a slower progression of HIV. HLA-B*5703 was found to be significantly 

associated with a higher mean square root CD4+ count and HLA-B*4201 was found to 

be significantly associated with a lower mean viral load over time, illustrating that 

individuals with either B*5703 and B*4201 have a slower progression of HIV than 

individuals without these HLA-B types. Including time in all the interactions and 

looking at the -592 loci, individuals with both HLA-B*1503 and the CA genotype, 

B*4201 and the CA genotype, B*4403 and the CA genotype, B*4403 and the CC 

genotype, B*5802 and the AA genotype, B*8100 and the AA genotype or B*8100 and 

the CA genotype were all significantly associated with a lower mean square root CD4+ 

count. Still considering time in each interaction and looking at the -592 loci, individuals 

with both HLA-B*5702 and the CA genotype, B*5802 and the CA genotype or B*8100 

and the AA genotype are significantly associated with a higher mean log viral load. 

Looking at the -1082 loci and including time in the interactions, individuals with both 
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HLA-B*0801 and the AA genotype, B*0801 and the AG genotype, B*1510 and the AA 

genotype, B*1510 and the AG genotype or B*5801 and the AG genotype are also 

significantly associated with a lower mean square root CD4+ count. This implies that 

individuals with any of these interactions progress faster to HIV over time. In contrast, 

looking at the -592 loci and including time, an individual with both HLA-B*0801 and 

the CA genotype, B*0801 and the CC genotype, B*1510 and the CC genotype, B*5801 

and the CA genotype or B*5801 and the CC genotype have a significantly higher mean 

square root CD4+ count. Looking at the -1082 loci, individuals with both HLA-B*4403 

and the AA genotype, B*4403 and the AG genotype, B*8100 and the AA genotype or 

B*8100 and the AG genotype have significantly higher mean square root CD4+ counts, 

and individuals with both B*0801 and the CA genotype have significantly lower mean 

log viral loads. This indicates that individuals with a combination of these 

immunogenetic parameters will have a slower progression of HIV over time. 

  

Using generalized estimating equations similar results were found. However, here it was 

found that HLA-B*4201 is associated with a lower mean log viral load, and B*8100 is 

associated with a higher mean square root CD4+ count compared to that for individuals 

who do not possess these HLA-B types. HLA-B*4201 and B*8100 are therefore 

associated with a slower progression of the disease. Individuals who possess HLA-

B*4403 have mean square root CD4+ counts that decrease significantly faster than 

individuals who do not have B*4403 over time. The two-way interaction between 

B*1503 and the CA -592 genotype implies that these genetic factors are associated with 

a faster progression of HIV since possessing them indicates a significant association 

with a higher log viral load. The three-way interaction between B*4201, the AA -1082 

genotype and time shows that an individual with these factors are significantly 

associated with an increasing mean square root CD4+ count over time, and can 

therefore be considered as controllers of the disease. The three-way interaction between 

HLA-B*0801, the AA -1082 genotype and time was found to be significantly associated 

with a significantly higher mean log viral load compared to individuals without B*0801 

and therefore can be considered to be associated with a faster progression of HIV. These 

factors were not found to be significant when using linear mixed models.  
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Both methods found that time was significantly associated with square root CD4+ 

count, but not significantly associated with log viral load. This may be due to time being 

looked at in days. The mean square root CD4+ count decreases at a significant rate per 

day, whereas the mean log viral load does not. Gender is found to be significantly 

associated with log viral load, but not with square root CD4+ count. In this dissertation 

females were found to have a 0.2260 lower mean log viral load than men (when using 

linear mixed models) and 0.2345 lower mean log viral load than men (when using 

generalized estimating equations). This is consistent with results found in Gender 

Difference in Viral Load (1999). Results found from these studies found that women 

had viral loads that were approximately half those of men (Traub, 2002/2003). Since 

higher viral loads are associated with quicker progression to AIDS and poorer 

outcomes, this suggests that women may be able to suppress HIV infection better than 

men. However, although there are these differences in viral load, women still progress 

to AIDS at the same rate as men. This indicates that women progress to AIDS at much 

lower viral loads than men (Traub, 2002/2003).  

 

Since this was a study conducted over a long period of time, there were many drop outs. 

These may have been due to individuals not returning for visits, or in some cases death. 

Another issue related to this was that the time periods between visits were considerably 

varied between individuals. This complicated the analysis since the data was not 

balanced.  Due to the number of covariates and interactions included in the application, 

not all of the HLA-B types were included in the analysis. Thus there may have been 

other significant HLA-B types that were ignored. During the analysis, individuals were 

looked at over time only as HIV positive, not defined by which stage of HIV they were 

at. This causes complications since the individuals CD4+ counts and viral loads may 

have stabilized, whereas others may not. This data does not however permit us to look 

at these stages separately.   

 

The findings from this study highlight the additive effects of two separate genetic loci in 

HIV pathogenesis.  Previous studies have generally concentrated on analysis of only 

one specific gene or genetic loci to HIV pathogenesis and yet these genes likely interact 

and together contribute to the clinical outcome of HIV-1 disease.  Therefore, this study 
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has extended our understanding of how combined genetic factors may contribute to 

HIV-1 disease progression. Further studies will need to be conducted to understand the 

mechanisms by which these genes may modulate HIV pathogenesis.  However, 

previous studies have suggested that certain “protective” HLA alleles may modulate 

their effect by presenting conserved regions of the virus to the immune system as part of 

the immune recognition pathway, and immune escape in these epitopes is then 

associated with reduced replicative capacity of the virus (Wright et al, 2010 and Wright 

et al, 2011), thus conferring a clinical benefit to the infected patient. On the other hand, 

the IL-10 gene codes for interleukin-10, an important immunoregulatory cytokine.  This 

cytokine has been shown to downregulate the expression of HLA molecules that are 

involved in antigen presentation (Matsuda, Salazar et al, 1994).  IL-10 has been 

proposed to affect HIV disease pathogenesis according to the stage or phase of infection 

(Naicker et al, 2009).  This is because IL-10 may dampen essential immune responses 

required to control the virus (Brooks et al, 2006) but it may also act as an anti-

inflammatory agent that reduces immune activation and thus leading to better clinical 

outcomes (Naicker et al, 2009).  Better understanding of how HLA and IL-10 interact to 

modulate disease pathogenesis may lead to better design of vaccines and 

immunotherapies which are urgently needed to stem the spread of AIDS.  This study 

offers strong statistical genetics evidence for interaction between these two loci and 

should form a basis for functional and mechanistic studies. 

This dissertation can be extended in many different aspects. Since this is a real-life 

study, issues such as missing data can be looked at in more depth. Methods for dealing 

with missing data such as simple and multiple imputations can be investigated. Only ten 

of the HLA-B types were chosen, therefore there are more that should be analyzed with 

respect to this research. Similar analysis could be conducted, but taking into account the 

stages of HIV that each individual is at when enrolled into the study, and comparing 

these groups accordingly. Another way to analyze this data would be to look at fitting a 

generalized linear mixed model using a Poisson distribution since CD4+ count is in fact 

a count.   
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Appendix A: SAS Code  

 
Linear Mixed Models 
 
 

******************** SQUARE ROOT CD4+ COUNT ********************* 

 

 
/*FULL MODEL (MODEL IN TABLE 18)*/ 

proc mixed data=skfinal method=ml; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model sqrtcd4 = gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 

B5802 B8100 F2 F3 time B0801*time B1503*time B1510*time B4201*time 

B4403*time B5702*time B5703*time B5801*time B5802*time B8100*time 

F2*time F3*time B0801*F2 B1503*F2 B1510*F2 B4201*F2 B4403*F2 B5702*F2 

B5703*F2 B5801*F2 B5802*F2 B8100*F2 B0801*F3 B1503*F3 B1510*F3 

B4201*F3 B4403*F3 B5703*F3 B5801*F3 B5802*F3 B8100*F3 B0801*F2*time 

B1503*F2*time B1510*F2*time B4201*F2*time B4403*F2*time B5702*F2*time 

B5703*F2*time B5801*F2*time B5802*F2*time B8100*F2*time B0801*F3*time 

B1503*F3*time B1510*F3*time B4201*F3*time B4403*F3*time B5703*F3*time 

B5801*F3*time B5802*F3*time B8100*F3*time / solution; 

repeated timec/ subject=pid type=cs; 

run; 

 

/*FINAL MODEL WITH NO RANDOM EFFECTS (MODEL IN TABLE 19 AND 20)*/ 

proc mixed data=skfinal method=ml; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model sqrtcd4 = B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 time B1503*time B1510*time  B5702*time B5703*time 

B5801*time B5802*time B8100*time F2*time B1510*F2 B5801*F2 B5802*F2 

B5801*F3 B0801*F2*time B1503*F2*time B1510*F2*time B4201*F2*time 

B4403*F2*time B5702*F2*time B5801*F2*time B5802*F2*time B8100*F2*time 

B0801*F3*time B1510*F3*time B4201*F3*time B4403*F3*time B5801*F3*time 

B8100*F3*time /solution; 

repeated timec/ subject=pid type=cs; 

run; 

 

 

 

/*FINAL MODEL WITH RANDOM INTERCEPT*/ 

proc mixed data=skfinal method=ml maxiter=10000; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model sqrtcd4 = B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 time B1503*time B1510*time  B5702*time B5703*time 

B5801*time B5802*time B8100*time F2*time  B1510*F2 B5801*F2 B5802*F2 

B5801*F3 B0801*F2*time B1503*F2*time B1510*F2*time B4201*F2*time 

B4403*F2*time B5702*F2*time B5801*F2*time B5802*F2*time B8100*F2*time 



98 
 

B0801*F3*time B1510*F3*time B4201*F3*time B4403*F3*time B5801*F3*time 

B8100*F3*time /solution; 

random intercept/ subject=pid type=un; 

repeated timec/ subject=pid type=cs; 

run; 

/*FINAL MODEL WITH RANDOM INTERCEPT AND SLOPE*/ 

proc mixed data=skfinal method=ml maxiter=10000; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model sqrtcd4 = B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 time B1503*time B1510*time  B5702*time B5703*time 

B5801*time B5802*time B8100*time F2*time B1510*F2 B5801*F2 B5802*F2 

B5801*F3 B0801*F2*time B1503*F2*time B1510*F2*time B4201*F2*time 

B4403*F2*time B5702*F2*time B5801*F2*time B5802*F2*time B8100*F2*time 

B0801*F3*time B1510*F3*time B4201*F3*time B4403*F3*time B5801*F3*time 

B8100*F3*time /solution; 

random intercept time/ subject=pid type=un; 

repeated timec/ subject=pid type=cs; 

run; 

 

 

 

 

************************** LOG VIRAL LOAD ************************** 
 

 

/*FULL MODEL WITH NO RANDOM EFFECTS (MODEL IN TABLE 24)*/ 

proc mixed data=skfinal method=ml; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model logvl = gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 

B5802 B8100 F2 F3 time B0801*time B1503*time B1510*time B4201*time 

B4403*time B5702*time B5703*time B5801*time B5802*time B8100*time 

F2*time F3*time B0801*F2 B1503*F2 B1510*F2 B4201*F2 B4403*F2 B5702*F2 

B5703*F2 B5801*F2 B5802*F2 B8100*F2 B0801*F3 B1503*F3 B1510*F3 

B4201*F3 B4403*F3  B5703*F3 B5801*F3 B5802*F3 B8100*F3 B0801*F2*time 

B1503*F2*time B1510*F2*time B4201*F2*time B4403*F2*time B5702*F2*time 

B5703*F2*time B5801*F2*time B5802*F2*time B8100*F2*time B0801*F3*time 

B1503*F3*time B1510*F3*time B4201*F3*time B4403*F3*time  B5703*F3*time 

B5801*F3*time B5802*F3*time B8100*F3*time ; 

repeated timec/ subject=pid type=sp(pow)(sampledate); 

run; 

 

 

/*FINAL MODEL WITH NO RANDOM EFFECTS (MODEL IN TABLE 25 AND 26)*/ 

proc mixed data=skfinal method=ml; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model logvl = gen B1503 B4201 B5702 B5703 B5802 B8100 F2 F3 time 

B4201*time  

B1503*F2 B8100*F2 B4201*F3 B5802*F3 B5702*F2*time B5703*F2*time 

/solution; 

repeated  timec/ subject=pid type=sp(pow)(sampledate); 

run; 
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/*FINAL MODEL WITH RANDOM INTERCEPT (MODEL IN TABLE 29 AND 30)*/ 

proc mixed data=skfinal method=ml; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model logvl = gen B1503 B4201 B5702 B5703 B5802 B8100 F2 F3 time 

B4201*time  

B1503*F2 B8100*F2 B4201*F3 B5802*F3 B5702*F2*time B5703*F2*time 

/solution; 

random intercept / subject=pid type=un; 

repeated timec/ subject=pid ; 

run; 

 

 

 

/*FINAL MODEL WITH RANDOM INTERCEPT AND SLOPE*/ 

proc mixed data=skfinal method=ml; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model logvl = gen B1503 B4201 B5702 B5703 B5802 B8100 F2 F3 time 

B4201*time  

B1503*F2 B8100*F2 B4201*F3 B5802*F3 B5702*F2*time B5703*F2*time 

/solution; 

random intercept time / subject=pid type=un; 

repeated  timec/ subject=pid; 

run; 

 

 

 

 

 

Generalized Estimating Equations 
 

 

 

******************** SQUARE ROOT CD4+ COUNT ********************* 

 
 

/*FULL MODEL (MODEL IN TABLE 31)*/ 

PROC GENMOD data=skfinal; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model sqrtcd4 = gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 

B5802 B8100 F2 F3 time B0801*time B1503*time B1510*time B4201*time 

B4403*time B5702*time B5703*time B5801*time B5802*time B8100*time 

F2*time F3*time B0801*F2 B1503*F2 B1510*F2 B4201*F2 B4403*F2 B5702*F2 

B5703*F2 B5801*F2 B5802*F2 B8100*F2 B0801*F3 B1503*F3 B1510*F3 

B4201*F3 B4403*F3  B5702*F3 B5703*F3 B5801*F3 B5802*F3 B8100*F3 

B0801*F2*time B1503*F2*time B1510*F2*time B4201*F2*time B4403*F2*time 

B5702*F2*time B5703*F2*time B5801*F2*time B5802*F2*time B8100*F2*time 

B0801*F3*time B1503*F3*time B1510*F3*time B4201*F3*time B4403*F3*time 

B5702*F3*time B5703*F3*time B5801*F3*time B5802*F3*time B8100*F3*time 

/ type3; 

repeated subject=pid / withinsubject=timec type=cs covb corrw modelse; 

run; 
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/*FINAL MODEL (MODEL IN TABLE 32 AND 33)*/ 

PROC GENMOD data=skfinal descending; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model sqrtcd4 = time B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 

B5802 B8100 F2 F3  B0801*time B1503*time B4403*time B5702*time 

B5703*time B5801*time B8100*time F2*time F3*time B5802*F2  B5702*F3 

B4201*F3*time B4403*F3*time / type3; 

repeated subject=pid / withinsubject=timec type=cs covb corrw modelse; 

run; 

 

 

 

 

************************** LOG VIRAL LOAD ************************** 
 

 

/*FULL MODEL (MODEL IN TABLE 34)*/ 

PROC GENMOD data=skfinal; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model logvl = gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 

B5802 B8100 F2 F3 time B0801*time B1503*time B1510*time B4201*time 

B4403*time B5702*time B5703*time B5801*time B5802*time B8100*time 

F2*time F3*time B0801*F2 B1503*F2 B1510*F2 B4201*F2 B4403*F2 B5702*F2 

B5703*F2 B5801*F2 B5802*F2 B8100*F2 B0801*F3 B1503*F3 B1510*F3 

B4201*F3 B4403*F3 B5702*F3 B5703*F3 B5801*F3 B5802*F3 B8100*F3 

B0801*F2*time B1503*F2*time B1510*F2*time B4201*F2*time B4403*F2*time 

B5702*F2*time B5703*F2*time B5801*F2*time B5802*F2*time B8100*F2*time 

B0801*F3*time B1503*F3*time B1510*F3*time B4201*F3*time B4403*F3*time 

B5702*F3*time B5703*F3*time B5801*F3*time B5802*F3*time B8100*F3*time 

/ type3; 

repeated subject=pid / withinsubject=timec type=cs covb corrw modelse; 

run; 

 

 

 

/*FINAL MODEL (MODEL IN TABLE 35 AND 36)*/ 

PROC GENMOD data=skfinal; 

class pid gen B0801 B1503 B1510 B4201 B4403 B5702 B5703 B5801 B5802 

B8100 F2 F3 timec; 

model logvl = gen B0801 B1503 B1510 B4201 B4403 B5703 B5801 B5802 

B8100 F2 F3 time B0801*time B1503*time B1510*time B4201*time 

B5703*time B5801*time B5802*time B8100*time F2*time F3*time B1503*F2 

B5802*F2  B0801*F3*time B1510*F3*time / type3; 

repeated subject=pid / withinsubject=timec type=cs covb corrw modelse; 

run; 
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Appendix B: Linear Mixed Models  
 

 

Table 1B: Type III tests of fixed effects for square root CD4+ count as response for full model 

Effect Num DF Den DF F Value Pr>F 

Gender 1 373 1.23 0.2688 

Time 1 3583 22.47 <.0001 

B0801   1 373 0.03 0.8665 

B1503 1 373 0.94 0.3322 

B1510            1 373 0.05 0.8219 

B4201 1 373 0.15 0.6944 

B4403 1 373 3.48 0.0628 

B5702 1 373 0.00 0.9536 

B5703 1 373 7.53 0.0064 

B5801 1 373 1.03 0.3101 

B5802 1 373 4.74 0.0301 

B8100 1 373 1.24 0.2666 

-592 Genotype  2 373 0.16 0.8536 

-1082 Genotype  2 373 0.60 0.5484 

B0801*Time   1 3583 0.07 0.7957 

B1503*Time   1 3583 1.88 0.1699 

B1510*Time              1 3583 13.62 0.0002 

B4201*Time   1 3583 0.92 0.3372 

B4403*Time   1 3583 2.13 0.1449 

B5702*Time   1 3583 16.44 <.0001 

B5703*Time   1 3583 12.17 0.0005 

B5801*Time   1 3583 16.81 <.0001 

B5802*Time   1 3583 8.35 0.0039 

B8100*Time   1 3583 4.62 0.0316 

-592 Genotype*Time   2 3583 4.86 0.0078 

-1082 Genotype*Time   2 3583 0.57 0.5658 

B0801*-592 Genotypes   2 373 0.07 0.9323 

B1503*-592 Genotypes   2 373 0.71 0.4901 

B1510*-592 Genotypes             2 373 1.59 0.2058 

B4201*-592 Genotypes   2 373 1.07 0.3431 

B4403*-592 Genotypes   2 373 0.72 0.4888 

B5702*-592 Genotypes   2 373 0.11 0.8977 

B5703*-592 Genotypes   1 373 0.00 0.9451 

B5801*-592 Genotypes   2 373 2.69 0.0689 

B5802*-592 Genotypes   2 373 2.94 0.0539 

B8100*-592 Genotypes   2 373 0.00 0.9998 

B0801*-1082 Genotypes     2 373 1.90 0.1514 

B1503*-1082 Genotypes     2 373 1.77 0.1726 

B1510*-1082 Genotypes                2 373 0.20 0.8200 

B4201*-1082 Genotypes     2 373 0.19 0.8231 

B4403*-1082 Genotypes     2 373 1.12 0.3267 

B5703*-1082 Genotypes     2 373 0.97 0.3809 

B5801*-1082 Genotypes     2 373 1.32 0.2691 

B5802*-1082 Genotypes     2 373 0.01 0.9902 

B8100*-1082 Genotypes     2 373 0.28 0.7596 

B0801*-592 Genotypes*Time   2 3583 1.91 0.1485 

B1503*-592 Genotypes*Time     2 3583 4.62 0.0099 

B1510*-592 Genotypes*Time               2 3583 11.55 <.0001 
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B4201*-592 Genotypes*Time     2 3583 10.75 <.0001 

B4403*-592 Genotypes*Time     2 3583 9.78 <.0001 

B5702*-592 Genotypes*Time     2 3583 17.06 <.0001 

B5703*-592 Genotypes*Time     1 3583 0.43 0.5102 

B5801*-592 Genotypes*Time    2 3583 7.43 0.0006 

B5802*-592 Genotypes*Time     2 3583 2.53 0.0795 

B8100*-592 Genotypes*Time     2 3583 21.46 <.0001 

B0801*-1082 Genotypes*Time       2 3583 5.63 0.0036 

B1503*-1082 Genotypes*Time       2 3583 0.89 0.4106 

B1510*-1082 Genotypes*Time                  2 3583 2.12 0.1208 

B4201*-1082 Genotypes*Time       2 3583 2.58 0.0763 

B4403*-1082 Genotypes*Time      2 3583 10.05 <.0001 

B5703*-1082 Genotypes*Time       2 3583 0.32 0.7283 

B5801*-1082 Genotypes*Time       2 3583 5.56 0.0039 

B5802*-1082 Genotypes*Time       2 3583 0.65 0.5202 

B8100*-1082 Genotypes*Time       2 3583 14.58 <.0001 
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Table 2B: Type III tests of fixed effects for log viral load as response for full model 

 

Effect Num DF Den DF F Value Pr>F 

Gender 1 371 5.07 0.0249 

Time 1 1696 2.46 0.1169 

B0801   1 371 0.04 0.8385 

B1503 1 371 0.10 0.7534 

B1510            1 371 0.00 0.9806 

B4201 1 371 0.42 0.5190 

B4403 1 371 0.35 0.5531 

B5702 1 371 0.72 0.3964 

B5703 1 371 15.93 <.0001 

B5801 1 371 2.44 0.1194 

B5802 1 371 1.38 0.2401 

B8100 1 371 2.56 0.1103 

-592 Genotype  2 371 0.94 0.3905 

-1082 Genotype  2 371 0.39 0.6774 

B0801*Time   1 1696 0.41 0.5196 

B1503*Time   1 1696 0.02 0.8904 

B1510*Time              1 1696 1.26 0.2613 

B4201*Time   1 1696 2.40 0.1215 

B4403*Time   1 1696 0.34 0.5611 

B5702*Time   1 1696 2.39 0.1222 

B5703*Time   1 1696 3.76 0.0528 

B5801*Time   1 1696 0.59 0.4416 

B5802*Time   1 1696 0.59 0.4428 

B8100*Time   1 1696 1.37 0.2415 

-592 Genotype*Time   2 1696 1.74 0.1762 

-1082 Genotype*Time   2 1696 0.44 0.6448 

B0801*-592 Genotypes   2 371 1.73 0.1783 

B1503*-592 Genotypes   2 371 0.62 0.5374 

B1510*-592 Genotypes             2 371 1.17 0.3113 

B4201*-592 Genotypes   2 371 0.90 0.4074 

B4403*-592 Genotypes   2 371 0.59 0.5568 

B5702*-592 Genotypes   2 371 0.38 0.6832 

B5703*-592 Genotypes   1 371 0.16 0.6861 

B5801*-592 Genotypes   2 371 0.01 0.9893 

B5802*-592 Genotypes   2 371 1.99 0.1384 

B8100*-592 Genotypes   2 371 0.42 0.6574 

B0801*-1082 Genotypes     2 371 1.96 0.1429 

B1503*-1082 Genotypes     2 371 0.09 0.9108 

B1510*-1082 Genotypes                2 371 0.15 0.8574 

B4201*-1082 Genotypes     2 371 1.08 0.3397 

B4403*-1082 Genotypes     2 371 0.17 0.8435 

B5703*-1082 Genotypes     2 371 1.55 0.2147 

B5801*-1082 Genotypes     2 371 0.34 0.7108 

B5802*-1082 Genotypes     2 371 1.05 0.3508 

B8100*-1082 Genotypes     2 371 0.16 0.8548 

B0801*-592 Genotypes*Time   2 1696 0.05 0.9511 

B1503*-592 Genotypes*Time     2 1696 1.45 0.2353 

B1510*-592 Genotypes*Time               2 1696 2.07 0.1261 

B4201*-592 Genotypes*Time     2 1696 0.91 0.4031 

B4403*-592 Genotypes*Time     2 1696 1.40 0.2477 

B5702*-592 Genotypes*Time     2 1696 2.63 0.0724 
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B5703*-592 Genotypes*Time     1 1696 3.83 0.0505 

B5801*-592 Genotypes*Time    2 1696 0.12 0.8908 

B5802*-592 Genotypes*Time     2 1696 2.02 0.1327 

B8100*-592 Genotypes*Time     2 1696 3.22 0.0401 

B0801*-1082 Genotypes*Time       2 1696 1.34 0.2629 

B1503*-1082 Genotypes*Time       2 1696 0.38 0.6830 

B1510*-1082 Genotypes*Time                  2 1696 0.50 0.6085 

B4201*-1082 Genotypes*Time       2 1696 0.11 0.8920 

B4403*-1082 Genotypes*Time      2 1696 0.63 0.5349 

B5703*-1082 Genotypes*Time 2 1696 1.39 0.2484 

B5801*-1082 Genotypes*Time       2 1696 0.45 0.6408 

B5802*-1082 Genotypes*Time       2 1696 0.14 0.8727 

B8100*-1082 Genotypes*Time       2 1696 2.58 0.0764 
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Table 3B: Type III tests of fixed effects for full model with log viral load as the response 

Effect Num DF Den DF F Value Pr>F 

Gender 1 1696 5.61 0.0180 

Time 1 1696 3.52 0.0609 

B0801   1 1696 0.02 0.8972 

B1503 1 1696 0.01 0.9040 

B1510            1 1696 0.05 0.8300 

B4201 1 1696 0.64 0.4244 

B4403 1 1696 0.21 0.6463 

B5702 1 1696 0.60 0.4402 

B5703 1 1696 14.70 0.0001 

B5801 1 1696 1.89 0.1698 

B5802 1 1696 0.85 0.3558 

B8100 1 1696 2.18 0.1399 

-592 Genotype  2 1696 0.75 0.4728 

-1082 Genotype  2 1696 0.31 0.7347 

B0801*Time   1 1696 1.94 0.1635 

B1503*Time   1 1696 0.13 0.7236 

B1510*Time              1 1696 0.86 0.3531 

B4201*Time   1 1696 4.86 0.0276 

B4403*Time   1 1696 0.64 0.4254 

B5702*Time   1 1696 2.44 0.1188 

B5703*Time   1 1696 5.41 0.0201 

B5801*Time   1 1696 0.24 0.6238 

B5802*Time   1 1696 0.32 0.5705 

B8100*Time   1 1696 2.27 0.1317 

-592 Genotype*Time   2 1696 2.85 0.0583 

-1082 Genotype*Time   2 1696 0.30 0.7420 

B0801*-592 Genotypes   2 1696 1.92 0.1466 

B1503*-592 Genotypes   2 1696 0.56 0.5717 

B1510*-592 Genotypes             2 1696 0.96 0.3815 

B4201*-592 Genotypes   2 1696 0.71 0.4930 

B4403*-592 Genotypes   2 1696 0.71 0.4922 

B5702*-592 Genotypes   2 1696 0.24 0.7899 

B5703*-592 Genotypes   1 1696 0.08 0.7715 

B5801*-592 Genotypes   2 1696 0.03 0.9682 

B5802*-592 Genotypes   2 1696 1.85 0.1569 

B8100*-592 Genotypes   2 1696 0.31 0.7305 

B0801*-1082 Genotypes     2 1696 2.23 0.1075 

B1503*-1082 Genotypes     2 1696 0.11 0.8945 

B1510*-1082 Genotypes                2 1696 0.19 0.8303 

B4201*-1082 Genotypes     2 1696 0.87 0.4189 

B4403*-1082 Genotypes     2 1696 0.16 0.8544 

B5703*-1082 Genotypes     2 1696 1.41 0.2451 

B5801*-1082 Genotypes     2 1696 0.41 0.6643 

B5802*-1082 Genotypes     2 1696 1.40 0.2466 

B8100*-1082 Genotypes     2 1696 0.26 0.7703 

B0801*-592 Genotypes*Time   2 1696 1.24 0.2888 

B1503*-592 Genotypes*Time     2 1696 1.87 0.1546 

B1510*-592 Genotypes*Time               2 1696 0.95 0.3870 

B4201*-592 Genotypes*Time     2 1696 2.71 0.0667 

B4403*-592 Genotypes*Time     2 1696 2.21 0.1102 

B5702*-592 Genotypes*Time     2 1696 6.25 0.0020 

B5703*-592 Genotypes*Time     1 1696 5.01 0.0253 

B5801*-592 Genotypes*Time    2 1696 0.14 0.8660 

B5802*-592 Genotypes*Time     2 1696 3.37 0.0346 

B8100*-592 Genotypes*Time     2 1696 3.74 0.0240 
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B0801*-1082 Genotypes*Time       2 1696 3.11 0.0449 

B1503*-1082 Genotypes*Time       2 1696 1.12 0.3274 

B1510*-1082 Genotypes*Time                  2 1696 1.87 0.1539 

B4201*-1082 Genotypes*Time       2 1696 0.68 0.5048 

B4403*-1082 Genotypes*Time      2 1696 0.52 0.5971 

B5703*-1082 Genotypes*Time       2 1696 1.87 0.1543 

B5801*-1082 Genotypes*Time       2 1696 0.40 0.6679 

B5802*-1082 Genotypes*Time       2 1696 0.01 0.9930 

B8100*-1082 Genotypes*Time       2 1696 3.14 0.0434 
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Appendix C: Generalized 

Estimating Equations  
 

 

Table 1C: Score statistics for type III GEE analysis with square root CD4+ count as response for full 

model 

Source DF Chi-Square Pr > Chi-Sq 

Gender 1 1.20 0.2726 

Time  1 11.13 0.0008 

B0801 1 0.02 0.8881 

B1503 1 1.17 0.2788 

B1510 1 0.02 0.8989 

B4201 1 0.31 0.5801 

B4403 1 4.46 0.0347 

B5702 1 0.00 0.9458 

B5703 1 4.29 0.0383 

B5801 1 1.86 0.1726 

B5802 1 5.32 0.0210 

B8100 1 1.67 0.1958 

-592 Genotype 2 0.35 0.8408 

-1082 Genotype 2 2.47 0.2903 

B0801*Time 1 0.10 0.7573 

B1503*Time 1 2.20 0.1380 

B1510*Time 1 1.89 0.1687 

B4201*Time 1 0.47 0.4939 

B4403*Time 1 0.24 0.6275 

B5702*Time 1 1.08 0.2981 

B5703*Time 1 4.53 0.0333 

B5801*Time 1 5.64 0.0176 

B5802*Time 1 2.80 0.0945 

B8100*Time 1 0.01 0.9303 

-592 Genotype*Time 2 3.44 0.1791 

-1082 Genotype*Time 2 0.77 0.6801 

B0801*-592 Genotype 2 0.12 0.9428 

B1503*-592 Genotype 2 1.20 0.5498 

B1510*-592 Genotype 2 2.27 0.3210 

B4201*-592 Genotype 2 2.32 0.3140 

B4403*-592 Genotype 2 1.42 0.4918 

B5702*-592 Genotype 1 1.37 0.2414 

B5703*-592 Genotype 1 0.01 0.9219 

B5801*-592 Genotype 2 5.36 0.0687 

B5802*-592 Genotype 2 5.96 0.0509 

B8100*-592 Genotype 2 0.00 0.9997 

B0801*-1082 Genotype 2 4.55 0.1026 

B1503*-1082 Genotype 2 4.07 0.1306 

B1510*-1082 Genotype 2 0.41 0.8127 

B4201*-1082 Genotype 2 1.00 0.6063 

B4403*-1082 Genotype 2 3.11 0.2109 

B5703*-1082 Genotype 2 2.32 0.3131 

B5801*-1082 Genotype 2 4.22 0.1209 
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B5802*-1082 Genotype 2 0.06 0.9697 

B8100*-1082 Genotype 2 0.51 0.7745 

B0801*-592 Genotype*Time 2 0.95 0.6205 

B1503*-592 Genotype*Time 2 2.57 0.2769 

B1510*-592 Genotype*Time 2 2.40 0.3008 

B4201*-592 Genotype*Time 2 4.36 0.1128 

B4403*-592 Genotype*Time 2 4.96 0.0846 

B5702*-592 Genotype*Time 1 1.06 0.3030 

B5703*-592 Genotype*Time 1 0.10 0.7464 

B5801*-592 Genotype*Time 2 3.99 0.1358 

B5802*-592 Genotype*Time 2 1.50 0.4730 

B8100*-592 Genotype*Time 2 8.53 0.0140 

B0801*-1082 Genotype*Time 2 3.49 0.1743 

B1503*-1082 Genotype*Time 2 0.83 0.6595 

B1510*-1082 Genotype*Time 2 1.75 0.4169 

B4201*-1082 Genotype*Time 2 1.33 0.5151 

B4403*-1082 Genotype*Time 2 10.93 0.0042 

B5703*-1082 Genotype*Time 2 0.55 0.7604 

B5801*-1082 Genotype*Time 2 3.09 0.2128 

B5802*-1082 Genotype*Time 2 0.32 0.8502 

B8100*-1082 Genotype*Time 2 8.49 0.0143 
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Table 2C: Score statistics for type III GEE analysis with log viral load as response for full model 

Source DF Chi-Square Pr > Chi-Sq 

Gender 1 5.28 0.0216 

Time  1 1.54 0.2145 

B0801 1 0.02 0.8785 

B1503 1 0.00 0.9622 

B1510 1 0.06 0.8050 

B4201 1 0.97 0.3240 

B4403 1 0.19 0.6619 

B5702 1 2.10 0.1468 

B5703 1 5.18 0.0228 

B5801 1 2.30 0.1293 

B5802 1 0.46 0.4983 

B8100 1 1.95 0.1627 

-592 Genotype 2 1.19 0.5519 

-1082 Genotype 2 0.83 0.6598 

B0801*Time 1 3.07 0.0796 

B1503*Time 1 0.32 0.5694 

B1510*Time 1 0.75 0.3866 

B4201*Time 1 4.95 0.0260 

B4403*Time 1 0.58 0.4477 

B5702*Time 1 1.09 0.2962 

B5703*Time 1 3.46 0.0627 

B5801*Time 1 0.20 0.6544 

B5802*Time 1 1.22 0.2688 

B8100*Time 1 3.00 0.0832 

-592 Genotype*Time 2 6.98 0.0305 

-1082 Genotype*Time 2 0.93 0.6277 

B0801*-592 Genotype 2 4.66 0.0973 

B1503*-592 Genotype 2 1.19 0.5529 

B1510*-592 Genotype 2 1.39 0.5001 

B4201*-592 Genotype 2 1.14 0.5643 

B4403*-592 Genotype 2 1.59 0.4507 

B5702*-592 Genotype 1 0.07 0.7850 

B5703*-592 Genotype 1 0.05 0.8194 

B5801*-592 Genotype 2 0.24 0.8849 

B5802*-592 Genotype 2 3.29 0.1928 

B8100*-592 Genotype 2 0.33 0.8482 

B0801*-1082 Genotype 2 5.30 0.0708 

B1503*-1082 Genotype 2 0.25 0.8822 

B1510*-1082 Genotype 2 0.47 0.7903 

B4201*-1082 Genotype 2 1.41 0.4943 

B4403*-1082 Genotype 2 0.47 0.7924 

B5703*-1082 Genotype 2 4.34 0.1144 

B5801*-1082 Genotype 2 1.21 0.5473 

B5802*-1082 Genotype 2 3.04 0.2190 

B8100*-1082 Genotype 2 0.66 0.7178 

B0801*-592 Genotype*Time 2 4.29 0.1173 

B1503*-592 Genotype*Time 2 4.25 0.1196 

B1510*-592 Genotype*Time 2 0.49 0.7818 

B4201*-592 Genotype*Time 2 4.49 0.1057 

B4403*-592 Genotype*Time 2 7.01 0.0300 

B5702*-592 Genotype*Time 1 1.02 0.3118 

B5703*-592 Genotype*Time 1 4.63 0.0314 

B5801*-592 Genotype*Time 2 0.61 0.7382 

B5802*-592 Genotype*Time 2 6.73 0.0346 

B8100*-592 Genotype*Time 2 4.70 0.0955 
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B0801*-1082 Genotype*Time 2 6.10 0.0474 

B1503*-1082 Genotype*Time 2 3.22 0.1995 

B1510*-1082 Genotype*Time 2 2.63 0.2689 

B4201*-1082 Genotype*Time 2 2.39 0.3021 

B4403*-1082 Genotype*Time 2 0.62 0.7321 

B5703*-1082 Genotype*Time 2 3.27 0.1953 

B5801*-1082 Genotype*Time 2 1.30 0.5214 

B5802*-1082 Genotype*Time 2 0.66 0.7202 

B8100*-1082 Genotype*Time 2 3.70 0.1570 

 

 

 


