
DATA BASE OPTIMISATION FOR AN I.C. DESIGN LAYOUT

PACKAGE ON THE VAX

by

Peter Gerald Figg

Submitted in partial fulfillment of the requirements for the degree of Master of

Science in Engineering in the Department of Electronic Engineering at the

University of Natal, Durban.

Durban November 1987

The woods are lovely, dark and deep.

But I have promises to keep,

And miles to go before I sleep.

And miles to go before I sleep.

Robert Frost (1875 - 1963)

PREFACE

The work described in this thesis was carried out III the Department of

Electronic Engineering, University of Natal, Durban, from February 1985 to

October 1987, under the supervision of Mr Roger C.S. Pep1ow.

This material represents the author's original work except where specific

acknowledgement is made, and has not been submitted in part, or in whole, to

any other University for degree purposes.

11

ACKNOWLEDGEMENTS

My thanks go to my supervisor, Roger Peplow, for his guidance and criticism

during the course of my research.

A special word of thanks goes to my fellow Post Grads for their support, and for

creating a dynamic and stimulating environment in which to develop both

academically and socially. Their friendship will long be remembered. I believe

Alan Barrett deserves special mention for his willingness to help in times of

need.

I thank Lyn for her patience and warm understanding.

I thank the staff of the Department of Electronic Engineering for providing the

friendly and supportive atmosphere, to this end I believe Sheila Wright deserves

special mention.

I wish to express my heart felt thanks to my parents for their support and

confidence during my university career.

The financial support of the Council for Scientific and Industrial Research and

of the University of Natal, Durban, is acknowledged.

This document was produced using the WORDSTAR word processing package,

by MicroPro International, in tandem with the KIDRON type setting/laser

printing system of the Kidron Corporation. The drawn figures were produced

using AUTOCAD, a drafting package by Autodesk, Inc. The graphs were

produced using the GRAPH program on the department's VAX-ll/750, written

by Allan Barrett.

III

ABSTRACT

The performance of an interactive graphics/computer aided design system, such

as the IC layout and rule checking package implemented as part of the

schematic drawing application on the Gerber Systems Technology IDS-80, is

very closely related to the performance of the system's data base. This is due to

the fact that most editing functions on an interactive graphics/CAD system are

data base intensive functions and the data base and its management routines

form one of the major building blocks of a CAD system. It can therefore be said

that the performance of a CAD system is directly dependent on the data base

access time and the efficiency of the managing routines.

The primary objective of this project was to enhance the performance of the IC

layout and rule checking package. This was done by improving the performance

of the data base of the system. This was achieved by following two mutually

supportive paths. The first was the transportation of the software to a new host

machine which had a 32-bit processor and virtual memory capabilities. The

second was to try and improve the performance of the transported data base

by utilising sophisticated data base structures and memory management·

techniques facilitated by the larger available memory of the new host to

optimise the data base operations. The effectiveness of the two paths in

achieving their respective goals was evaluated using evaluation programs which

simulated characteristic data base activities.

This thesis documents the above process, as well as expounds on some of the

background related theory which was instrumental in the progress of the project

and the drawing of the final conclusions.

IV

LIST OF CONTENTS

Preface

Acknowledgements

Abstract

List of Contents

List of Figures

11

III

iv

v

Vlll

CHAPTER 1- INTRODUCTION 1-1

1.1

1.2

Project Objectives

Project Progression

1-1

1-2

CHAPTER 2 - BACKGROUND THEORY 2-1

2.1

2.2

2.3

2.4

Introduction

Data Base Systems in General

Interactive Graphics/Computer Aided

Design Data Bases

Memory Management

2-1

2-2

2-12

2-15

CHAPTER 3 - GERBER IDS-80/INTERGRATED CIRCUIT

LAYOUT AND RULE CHECKING PACKAGE 3-1

3.1

3.2

3.3

3.4

3.5

3.6

Introduction

Description of Data Structure

Management of Storage Space

Interface Routines

Mass Storage Interface

Additional Structural Features

v

3-1

3-1

3-5

3-7

3-8

3-9

CHAPTER 4 - PROBLEM DEFINITION AND PROPOSED

SOLUTIONS 4-1

4.1

4.2

4.3

4.4

Introduction

Defining the Problem

Proposed Solutions

Conclusion

4-1

4-1

4-6

4-24

CHAPTER 5 - IMPLEMENTATION AND EVALUATION 5-1

5.1

5.2

5.3

5.4

Introduction

VAXjVMS Resource Management

Implementation of Solutions

Evaluation of Implemented Solutions

5-1

5-1

5-7

5-22

CHAPTER 6 - CONCLUSION

REFERENCES AND BIBLIOGRAPHY

APPENDIX A

GST High Level Data Base Access Routines

APPENDIXB

Data Base Access Routines Version 1.5

APPENDIXC

Example of Comparative Test Program for

GST and Version 1.5 Code

APPENDIXD

Example of Advanced Test Program for

Version 1.5 Data Base Access Routines

VI

6-1

Ref-1

A-I

B-1

C-1

D-1

APPENDIXE

Data Base Access Routines Version 2.5

APPENDIXF

Example of Test Run for Version 2.5 Data

Base Access Routines

APPENDIXG

Comparative Evaluation Program for GST

and Version 1.5 Code

APPENDIXH

Comparative Evaluation Programs for

Versions 1.5 and 2.5

vii

E-1

F-1

G-1

H-1

LIST OF FIGURES

CHAPTER 2

2.1 Simple representation of a single

linked list 2-7

2.2 Simple representation of a circular

linked list 2-7

2.3 Simple representation of a

multi-linked list 2-8

2.4 Storage of a directional tree as

a linked list 2-10

2.5 Simple example of a hierarchical

ring structure 2-11

2.6 AL and FSL for equal sized blocks 2-17

2.7 AL and FSL for variable sized blocks 2-19

CHAPTER 3

3.1 Different DAT lengths for different

entities 3-3

3.2 ATT comprising GATT and ADAT 3-4
3.3 Separate ATT and DAT storage space 3-5
3.4 ATT Free Space List 3-6
3.5 Paging scheme to disk for ATT data

storage 3-8

viii

CHAPTER 4

4.1 Effect of restrictive page size on DAT 4-3

4.2 Unsynchronised vs synchronised ATT and

DAT storage 4-5

4.3a Mass storage paging scheme on HP1000 4-7

4.3b Example of Virtual Memory map of a

VM system 4-8

4.4 Description of solution #2.1 4-11

4.5 Description of solution #2.2 4-13

4.6 Description of solution #2.3 4-15

4.7 Description of solution #2.4 4-17

4.8 Freed space and reclaimed space amongst

the synchronised data 4...,21

4.9 Enlarged ATT size for AL pointer field 4-23

CHAPTERS

5.1 VAX/VMS memory configuration 5-3

5.2 Parameter and Common Blocks for

Version 1.5 5-10
5.3 Parameter and Common Blocks for

Version 2.5 5-14
5.4 DAT Reclamation Process in WSDEL

Version 2.5 5-17
5.5· DAT Reclamation Process in WSPUT

Version 2.5 5-19

ix

5.6 First-Fit Search of TOPINDEX Branch 5-20

5.7 Allocation of unused DAT Space 5-20

5.8 Recovery of Extra Space after Reallocation

Oversized DAT Block 5-21

5.9 Table of results for comparative

CPU test 5-24

5.10 Graphs of results for SIM8 test 5-25

5.11 Graphs showing the effect of paging on

the respective implementations 5-26

5.12 Graphical representation of DAT

storage space 5-29

5.13 Predicted system responses 5-31

5.14 Graph of system performance SIMRUN055 5-32

x

Introduction

CHAPTER 1

INTRODUCTION

The motivation for this project was based on a previous MSc project [de Greef

1984] run at the University of Natal Electronic Engineering Department which

produced an Integrated Circuit Layout and Rule Checking (ICLRC) package to

run on the Gerber IDS-80 System.

1.1 Project Objectives

The primary objective of the project was to enhance the performance of the

above layout and rule checking package by improving the performance of the

data base, as the performance of the system as a whole is very closely linked to

that of the data base, as will be shown. This was to be achieved by moving the

software to an alternative host machine, such as the VAX-ll/750 or the

HP9000, which had a 32 bit word processor and Virtual Memory (VM)

capabilities. This would not only improve the processing time but also relieve the

memory management responsibilities from the code and entrusting that task to

the Virtual Memory management of the particular operating system, thus

streamlining the application code in the hope that it would improve

performance (see expl. later).

Furthermore, the new host would have more available memory and hence this

would facilitate the development of a more sophisticated data base structure.

Thus the restriction on available memory which was so evident in the previous

design requirements [Peled 1982], would no longer exist. Therefore an in depth

study was made into the present graphics data base structure and design

rationale, so that improvements in both the implementation and the design of

the data structures and associated data base could be developed. In parallel,

other data base design philosophies were investigated with respect to their

implementation in this particular application.

1-1

Introduction

Concisely stated, the main emphasis of the Project was the study of the present

implementation of the data base, and the exploration of various alternative

philosophies in the design of data bases and related data structures. This was

done in the context of VM computers with increased available memory. The

new designs were then evaluated with a view to the optimisation of system

performance.

A secondary objective was to implement a portable version of the package, by

removing the system dependent features from the code. In so doing the package

would be available to be run on various computers with VM operating systems

within the UND Elect. Eng. Department. The motivation being the need for an

effective training aid within the Department in the field of Computer Aided

Design (CAD) in Integrated Circuit (IC) design, to encourage further

development in that area.

1.2 Project Progression

To begin with a study of the present implementation of the data base and the

associated data structures on the Gerber IDS-80 was made (see Chapter 3). This

was achieved by studying the original source code as well as the available

documentation. The study of the source code proving to be the most valuable of

the two sources. Valuable information with respect to the design theory was

obtained from a paper by Joseph Peled [Peled 1982] who was involved in the

development of the original implementation of the data base for the lDS-80.

The present implementation of the data base and the data base management

routines were then transported to the VAX 11/750, running under the

VAX/VMS operating system (see Chapter 5). This was initially done with no

significant structural changes to the data base or the data structures, the only

changes being detailed implementation changes as required by the new operating

system. This move rendered the memory and mass storage management

routines redundant as the tasks previously fulfilled by these routines were now

the responsibility of the VM management system of the VAX/VMS operating

system.

1-2

Introduction

A study was then made into the general theory of data structures and data

bases, with specific reference to interactive graphics related to CAD (see Chapter

2). The objectives being the understanding of the specific requirements of the

interactive graphics/CAD implementation in the context of the general theory.

A study of memory management techniques was also done, in the context of

managing storage space within a data base.

Following the careful analysis of the problem areas affecting the present system

and based on the theory and knowledge already gained, various solutions that

utilised implementation and structural improvements were postulated. These

solutions were then analysed and the most promising were then implemented

for further evaluation (see Chapter 5). This was done by using appropriate

simulation programs that demonstrated the effects that the various solutions

had on system performance.

From the results obtained in the evaluation process, certain conclusions were

drawn in relation to optimisation of the particular system's performance with

respect to data base manipulation (see Chapter 6).

1-3

Background Theory

CHAPTER 2

BACKGROUND THEORY

2.1 Introduction

,
In order to understand the specific requirements of a graphics data base for

Interactive Computer Aided Design (ICAD), the author had to do an

investigation into the the general theory governing data base design,

concentrating on those aspects peculiar to interactive graphics data bases.

This section contains selected topics from this study. The topics were selected

on merit in the context of the specific problem at hand, as superfluous

theoretical ramblings would only serve to bore the reader, and make the

document cumbersome. The topics covered include Data Base Systems in

General, Interactive Graphics / Computer Aided Design Data Bases, and

Memory Management.

The objectives of this section were to demonstrate to the reader the theory on

which the authors postulated solutions were based, as well as to equip the

reader with some knowledge on the subject at hand with a view to evaluation of

the project.

2-1

Background Theory

2.2 Data Base Systems in General

A data base system consists in general of a Data Base (DB) and a data base

management system. The DB in turn is itself implemented using a particular

data structure.

2.2.1 The Discrete Parts of a DB System

2.2.1.1 Data Structures

When an application requires the manipulation of large quantities of data, it

becomes necessary to manage the information and hence data structures are

required to format the data into manageable entities. Therefore a Data

Structure (DS) can be described as the format in which .data is represented or

stored. The structure defines the relationship between various elements of data

with respect to a particular data entity; where an element describes a physical

unit and an entity a logical unit. Thus the DS collects together related data

elements into a group, where that group becomes a manageable entity. The DS

defines the physical form in which the data entity is stored.

Management of anything (people, resources, data, ete) can be measured in terms

of efficiency; more specifically in the case of data management, efficiency in the

context of overheads (eg: memory space) vs speed. Since DS's play such a large

roll in data management, it is obvious that their design will have definite effects

on the performance of the particular data management system, and hence on

the performance of the overall application. DS's can be seen as an attempt to

utilise space and time optimally. However the choice of a particular DS design

in itself has a space-vs-time tradeoff depending on the particular structures

used [Lewis 1982].

A further factor that affects the choice of a DS design is the dynamic nature of

the data in question. If the amount of· data is static, a static DS can be

employed; one that does not accommodate the expansion or contraction of

2-2

Background Theory

data. However if the volume of data may vary, a dynamic DS is required.

Although a static structure is less complex, and requires less overheads

compared to a dynamic structure, it does lack the flexibility and versatility of

the latter. Therefore it can be said that the choice of a Data Structure as a

solution for a particular problem depends on the following factors [Lewis 1982]

= with respect to the data

- the volume of the data involved

- the frequency and manner in which the data will be used

- the dynamic or static nature of the data

= with respect to the DS chosen

- the amount of storage space required by the DS

- the access time required to retrieve an entity

- the complexity with respect to programming and therequired

execution time

The most common types of DS's used in the design of DB's, which will be

covered in greater detail later, are :-

- Dense lists

- Linked lists

- Single link lists

- Multi-link lists

- Hierarchical structures

- Trees

- Network or Plex structures

- Graphs

2-3

Background Theory

2.2.1.2 Data Bases

A Data Base (DB) allows a collection of non-redundant related information to

be combined, into logical entities which then form a pool of information which

different applications can access.

The differences between the concepts of DB's and DB's can best be described in

terms of physical and logical definitions. The term physical is related to actual

size and position in the memory, and the logical size and position is defined in

terms of some model and mayor may not be connected to physical size and

position [Kroenke 1977].

A DB is defined in terms of logical data entities, where the physical storage of

these entities is specified by a DB. A DB is a logical concept which is

implemented using DB's, where a particular DB is defined i~ terms of a physical

storage format. The form that the logical data entity takes is dependent on the

application for which the data is to be used.

Although this clear distinction between the two concepts and associated terms

is not common in the literature, and in many cases the two terms are used

indifferently, disregarding the conceptual inconsistencies, the author wished to

emphasise the distinction between the two for the purposes of explanation in

this project.

The specification of the logical entities during the design stages of the

application, and hence the design of the DB to accommodate these entities, also

affects the performance of the data management system, and hence the

application as a whole. Therefore care should be taken when designing

applications, to ensure that the data entities specified do not hamper the

effectiveness, or unnecessarily complicate the implementation of the DB. Thus

the redesigning of entity specifications could be a method of optimising the

performance of an existing DB system.

2-4

Background Theory

Due to the close correlation between a particular DB design and its associated

DS, it is often difficult to separate the two when considering and analysing a

particular data management system. Hence they are often designed in parallel,

and factors affecting one often influences the other. Since the two concepts are

so clearly inter-related, for the purposes of this text, they will often be dealt

with under common topic headings for ease of understanding.

2.2.1.3 Data Base Management Systems

The data base management system is a system of routines which manipulate

the information stored in the DB, interfacing between the application and the

"pool of data" which is the DB. It should be noted that unlike certain texts on

the subject [Howe 1983], the title of "Data Base Management System" does not

imply a commercial package dedicated to the manipulation of specific DB's.

Instead, for the purposes of this text and the project, the title shall be redefined.

The resultant definition is one which is more general than that used by Howe,

and which still applies to commercial dedicated packages.

The functions of the DB Management System are :-

- to translate user/application requests into DB and DS operations.

- to transform the amorphous data into meaningful information m

terms of the logical definitions of the data entities.

- to interface between the user/application and the DB, thus the

structure of the DB and the DS's used to implement that structure

remain invisible to the user/application.

2.2.2 Data Structure Types that are Relevant to DB's

The DS's examined here are only those that are relevant in the context of DB

design and implementation. The discussion will be brief, consisting of a short

description of each structure, followed by comments on its advantages and

disadvantages with respect to its usage in DB implementation. For further

consideration, the reader is referred to the texts by Lewis [1982] and by Kroenke

[1977] which handle these topics admirably.

2-5

Background Theory

Almost every type of DS is actually a list of some kind.

Dense Lists

These are very simple structures. They involve the storage of the

information in a sequential manner in memory. Arrays are an example

of this particular structure

Advantages :-

- conservative on storage space as the structure entails no

overheads such as pointers or indexes; the location of a particular

item in the list is calculated as an offset from the beginning of the

list.

- due to the simple structure, the manipulation algorithms are

also very simple.

Disadvantages :-

- due to the simple structure and lack of overheads, the

manipulation functions (searching, insertion, deletion,

modification) are on average very time consuming. On average,

the functions have to search at least half the list in order to find

the item on which they wish to operate [Lewis 198.2].

- insertions and deletions are particularly difficult if the list is to

remain ordered.

Linked Lists

In the case of the simple linked list, each record (element) contains a link

field which contains a pointer to the next record in the list. The pointers

eliminate the need to store the data sequentially in memory. The

pointers logically connect elements in the list into the desired order

regardless of their physical positions. (see Fig. 2.1)

2-6

Background Theory

Rings or Circular linked lists are link lists that do not have an end, the

pointer of the "last" entry in the list points to the "first" entry in the list.

(see Fig. 2.2)

List
Heo.der

Link/Pointer
Field

Do.to.
Field

(~ I I
I 11 I

........
~r:
~

~
........
~/

.......
~3

Record/List EleMent

L\.. End of List Mo.rker

Fig 2.1 Simple representation of a single linked list, demonstrating that the

physical position of an element has no effect on the order of the list.

List·
Heo.der

Link/Pointer
Field

Do.to.
Field

- I I
"'" I II 1

........
~r:
~

~
.......

//

........
~~

Record/List EleMent

Fig. 2.2 Simple representation of a circular linked list. ,

2-7

-,

Background Theory

Multi-linked lists are link lists in which the records of the list contain

two or more pointer fields. The additional pointers can, for example, be

used for bi-directional linkage (forward and reverse pointers), or for

implementing different list orders without physically reshuffling the list

items. (see Fig. 2.3)

Forwo.rd
Heo.der

Forwo.rd Link
Field

Do.to.
Field

Reverse Link
Field

11

L\.. End of List Mo.rker

11

Reverse
Heo.der

Fig. 2.3 Simple representation of a multi-linked list showing forward and

reverse pointers.

2-8

Background Theory

Advantages :-

- flexibility as a result of being freed from the restrictions

associated with sequential storage.

- maintinance of an ordered list is easy as only the pointers need

be updated when insertion or ·deletion occurs.

Disadvantages :-

- added overheads in the form of the pointers result in the
,

increased requirement of storage space. The more pointers there

are the larger the overhead.

- due to the more complex structure, the manipulation

algorithms are more complex, the complexity increasing with the

number of links.

- in general, the intrinsic nature of link lists does not solve the

problem of having to, on average, search half the list to find an

item, however by careful utilisation of pointers, structures can be

created which will reduce the search time.

Hierarchical Structures

Trees are very complex, non-linear, hierarchical structures constructed

using multi-linked lists [Lewis 1982]. The mere position of an element in

the tree associates information with that element. Each element in the

tree, except the root node (start), has a parent node/element and may in

turn be a parent to one or more nodes/elements. (see Fig. 2.4)

2-9

Background Theory

A

ROOT

Fig. 2.4 Storage of a directional tree as a linked list.

Another complex structure is the Hierarchical Ring or Layered R.ing

structure, which is constructed using multi-linked circular linked lists.

(see Fig. 2.5)

2-10

Background Theory

Advantages:-

- the major advantage of these structures is the significantly

reduced scan time due to the interrelationship between the

different data entities which shortens the scan path

Disadvantages:-

- the most significant disadvantage is the increase in complexity

of both the data entities and the management routines, resulting

in increased operating overheads

A

~

0- ~ 0 ~

- -
(j) (j)

It

1
-...,

b ...
/':,.

I c
- -
""
~ ~

Fig. 2.5 Simple example of a hierarchical ring structure.

Network or Plex Structures

Graph structures are also constructed using multi-linked lists, yet they

are different from their hierachical relatives in that each element in the

graph mayor may not have more than one parent. A possible example is

an interconnected Layered Ring Structure, where the individual rmgs

may be interconnected.

2-11

Background Theory

These structures suffer from the same pro's and con's as do the

hierarchical structures, which is expected due to there similarities.

2.3 Interactive Graphics/Computer Aided Design Data Bases

2.3.1 Introduction

Interactive Graphics, by definition, can be considered as a real-time

conversational type medium for input and output to an application program.

Normally in Computer Aided Design (CAD) systems, the interactive graphics is

subordinate to the main application, in that it only fulfills the role of interface

between the user and the application. However there are exceptions in the case

were the applications are only related to drafting.

The reason why Computer Graphics is such an excellent medium for interfacing

the human user to the application programme, is because the human brain is

adept at processing visual information, and hence graphics becomes the prime

human communication medium. The power of interactive graphics lies in the

ability to reflect the input graphically, and hence allow the human to optimally

assimilate the affect of the input thus closing the interactive feedback loop

between the human and the computer.

2.3.2 Dual Representation of Graphics Objects/Data

A graphics entity can be represented in two different forms; one in the

application DB and the other in the Display File (DF), which holds the graphical

information to be displayed on what ever display medium is in use. The

difference between the two representations lies in the amount of information

included in the entity description.

2-12

Background Theory .

The DB representation encompasses a number of data records containing the

graphical data of the graphics object as well as all other related data. This

related data includes 'information which is not directly associated with the

picture generation;such as additional information establishing association

between the individual graphics objects (such as electrical connectivity).

The DF representation contains only graphical data extracted from the DB

representation; information related to the pictorial image of the graphics object,

such as colour, line style, coordinate positions, etc. The DB representation

defines the model of the object, where as the DF representation defines the

image of the object. The DF can be seen as a distillation of the DB.

It can therefore be said that interactive picture creation and editing implies not

only DF manipulation, updating the displayed data, but also permanent

updating of the DB version of the graphical data.

2.3.3 Interactive Graphics/CAD Data Base Design

It is generally accepted that the DS's which make up the DB, and the DB

management routines, form the basic building blocks for a interactive

graphics/CAD system [Peled 1982]. For this reason, the performance of the

resultant system is directly dependent on the DB access time. Which in turn is

related to the efficiency of the DS's used and of the management routines,

which form the interface between the DB and the application programs. The

interface should be sufficiently clean to accommodate the diverse applications

that are common in large CAD systems. By the nature of a interactive

graphics/CAD system, where constant graphic interaction requiring extensive

mathematical computation and DB manipulation, is continuous, it is obvious

that the response time of the system is critical.

For the above reason, the design of the interactive graphics/CAD DB is crucial

to the performance of the overall system. Furthermore, the use of

commercially available DB system is not always a viable solution [Peled 1982],

since the large overheads associated with these systems which are designed to

2-13

Background Theory

accommodate a variation of implementations, can be prohibitive in terms of

storage, which is a prime resource for most implementations of CAD systems.

This should be seen against the backdrop of the fixed implementational

requirements of a CAD system, where the entities are predefined, making the

variation features of the commercial systems redundant. Also the types of data

associated with these systems is such that their structure is often varied in

length and format, requiring a particularly flexible DB system, which is not a

forte' of most commercial DB systems.

The need is thus to develop a simple DS with the minimal necessary set of

efficient, but flexible, DB management 'routines which are still sufficient to

interface with any of the diverse applications associated with the particular

interactive graphics/CAD system.

2.3.4 Basic Requirements ofa DB System for Interactive Graphics/CAD

Systems

A DB system, comprising the DS used to implement it, the DB which defines it,

and the DB management routines, has to fulfill the following basic requirements

[Peled 1982] :-

- Flexibility

- of entity format and SIze to accommodate the variety of

different entities that are characteristic of CAD data, which may

contain differing lengths of data, implying variable length DS's.

- Speed

- of response to suit the interactive enviroment in which real-time

responses are crucial.

- Size and Overhead

- of both the DB and the DB management routines. Available

memory is a prime resource when dealing with very large

application programs, thus the DB and the DB management

2-14

Background Theory

routines should be as compact as possible so as to not squander

valuable space.

- Versatility

- the code should be transportable and easy to modify, with a

minimum of hardware dependency, so that the code can be

adapted to other computers to accommodate the fast hardware

turnover which is so prevalent in this field of interactive

graphics/CAD.

- Well Defined Interface

- the DS's and the DB management software responsible for DS

manipulation should be completely transparent to the

application. The software interface should be a set of predefined

routine calls, with a fixed parameter set, which should include all

the basic functions that an application can perform on a DB.

(eg: add, delete, modify, etc)

- Application Independent

- the DB system should be able to interface with any number of

different applications that could be included in the CAD system.

To insure application independence and a clean interface, any understanding of

relationships between different data entities should be developed in the

application code, keeping the DB system clean and simple.

2.4 Memory Management

2.4.1 Introduction

Memory management is a topic naturally dealt with in the sphere of operating

system design, where the memory to be managed is the main storage memory,

or available memory, of the machine. However the topic is included here since

2-15

Background Theory

the theory related to main memory management can equally be applied to the

management of storage space within a data base. In fact, the topics discussed

here are utilised in certain of the proposed solutions, relating to the allocation

and deallocation of both variable and fixed size blocks of storage space,

operations which occur when insertion and deletions are made to the data base.

The three main references for this section were; Shaw [1974] Chapter 5, Aho

[1983] Chapter 12, and Lewis [1982] Chapter 9. As before, only selected topics will

be briefly discussed, although in sufficient depth as to enable the reader to

understand the solutions presented later. The reader is directed to the

references for a better handling, in more depth, of these and other related

topics.

2.4.2 Managing Equal Sized Blocks

When the storage space is divided into fixed sized entities or atoms, memory

management is greatly simplified. By definition the fixed sized nature of the

atoms make them easy to manipulate. This is best demonstrated by means of a

general example.

Before any space is allocated, all the available atoms are linked in an available

space list, or Free Space List (FSL). When an atom is allocated, it is deleted from

the FSL and appended to the Allocated List (AL) (see Fig. 2.6). When an atom

of storage space is deallocated, or freed, it is removed from the AL and

appended to the FSL. This simple strategy insures the reuse of released atoms

(garbage collection) as well as the maintinance of a linked list of all allocated

storage entities.

2-16

Background Theory

FSL
Heo.der

Do.to.
Field

AL Pointer
Field

AL
Heo.der

CL> ~I
I

I
(~

/,

/ '\~

~

l\
,

/
/,

/ '\ I"

~

l\/
~

,

&....

~
/'::..

L.,-J
FSL POinter

Field

Fig. 2.6 AL and FSL for equal sized blocks.

Garbage collection prevents external fragmentation [Lewis 1982], which occurs

when vacant gaps or "holes" appear within the storage area when a storage

entity is deallocated. Without garbage collection, these freed atoms cannot be

reallocated, resulting in wasted space and fragmentation of the allocated

storage space. By adding the freed atoms to the FSL, they are then made

available to be reallocated.

For the purposes of compaction, the freed atoms are normally appended to the

top of the FSL, so that when an allocation occurs, the freed atoms are allocated

first before those atoms which have not yet been allocated. Thus, assuming that

the available storage is a continuous block of storage, all the allocated atoms

2-17

Background Theory

will be found in a concentrated continuous block at the head of the available

storage space, the only discontinuities being those atoms that have been

deallocated and not reallocated, if any. (see Fig. 2.6)

Furthermore, it is often advantageous to keep the AL sorted in terms of

position within the storage space, to aid in sequential searches, especially when

paging (memory buffering) considerations are a factor. It is obvious that if a

search is done sequentially with respect to storage position, and not with respect

to order of entry, unnecessary paging to and fro could be avoided.

A more detailed discussion on equal sized block management can be found in

Aho [1983].

2.4.3 Management of Variable Sized Blocks

Management of a storage area that can accommodate varying sizes of data

blocks (data records), a "heap" [Aho 1983], is a far more complex problem than

the simple case of fixed size blocks. Particular problems arise with garbage

collection and reallocation of freed space, which often involves the creation of

internal fragmentation [Lewis 1982].

Assuming once again that the available storage area is a continuous block of

storage space, when storage space is requested, a continuous block of storage

space containing the requested number of storage units (bytes, words, etc)is

allocated. The length and base address of the allocated block define the entity

explicitly, and are included in the AL information field. When a block of

storage is released, the base address and lenOgth of the block are included into

the FSL information field. Note that in this case, in contrast to the fixed length

example, the FSL only contains storage blocks that have been released, since

there is no way of identifying unallocated blocks. (Unless if the remaining

available area is treated as a very large block of storage which has been released

and is fragmented whenever a new block is allocated.) This is because a block is

defined by both its base address and its length, the later being "defined" only at

allocation time. (see Fig. 2.7)

2-18

AL
Heo.der

(~

AL/FSL Info.
Field

Background Theory

FSL
Heo.der

'-----')I~ painter length
J()

/I--V

------.----.--------;
, ,
V
~ ~r-- ----, , --------I---

V
L\,. ,~

Uno.lloco. ted
PoInter

... L\,. 0

Fig. 2.7 AL and FSL for variable sized blocks.

2-19

Background Theory

To demonstrate some of the more special problems associated with heap

management, let us consider the case where the FSL contains various blocks of

different sizes which have been released, and there is an allocation request for a

block of storage of size k. As demonstrated in the previous paragraph, the act

of garbage collection itself does not pose a problem, it is the reallocation of the

released space that does. The problem is to find a hole (released block) of size h

such that h~k. When a hole of appropriate size is found, k units of storage are

allocated to the new entity, leaving h-k units (if h>k) unused. This is called

internal fragmentation [Lewis 1982] a problem peculiar to heap management.

The criterion for selecting one of several competing satisfactory holes is called

the placement strategy [Shaw 1974] and is an area of further interest in this

type of memory management.

Internal fragmentation is an obvious problem, which is often combated by

adding the fragmented block, of h-k units in length, to the FSL, provided it is

large enough to accommodate the appropriate information field. The

fragmented block is treated as a normal released block, like any other block on

the FSL. The main problem with internal fragmentation is that fragments that

are, on average, too small to be reallocated are often produced, resulting in that

space being "lost" forever. This can be termed as redundant internal

fragmentation.

Redundant internal fragmentation is also affected by the nature of the data to

be stored. For instance; the wider the range of sizes for requested blocks, the

lower the degree of redundant internal fragmentation.

To aid the placement strategy, which is normally based on block size, hole

coalescing [Shaw 1974] or compaction [Aho 1983] is used to increase the size of

the available holes, and thus improve the likelihood of finding a fit when

requesting an allocation. This process involves the merging of adjacent holes, an

expensive process in terms of processing time, yet a worthwhile one in certain

circumstances. This process is also an effective means of combating redundant

internal fragmentation.

2-20

Background Theory

The choice of a placement strategy is based on two conditions; the degree of

redundant internal fragmentation, and processing time. Two popular placement

strategies are First Fit (FF) and Best Fit (BF) [Shaw 1974]

Given the situation where we have a set of released holes Hi of size hi for

i=l....m. The FF strategy searches for any hole Hi such that h{?k. The BF

strategy selects that hole Hi such that h{~·k and such that for all H;", h;"Zk, and

h;"-kZhi-k for i=l=;".

It can be concluded from the above that the FF strategy is the quickest, yet it is

inclined to wastefully fragment larger holes, which may be in demand at a later

date. However, the BF strategy retains the larger holes more effectively for

future use, but it is a much slower process, and is more inclined to produce

redundant internal fragmentation. Each method has its uses, depending on the

application environment.

A further way of combating redundant internal fragmentation, is when the

fragment f i of size hi-k is very small but non-zero, it is often better to allocate

hi units of storage to the requested block, instead of the requested k units, thus

preventing the creation of a redundant fragment. The remaining excess of size

hi-k remains attached to the allocated block, unseen by the application,

allowing the full block, including the excess, to be reclaimed if the allocated

block were released at a later stage.

2-21

Gerber IDS-80/ICLRC Package

CHAPTER 3

Gerber lDS-SO / Integrated Circuit Layout and Rule Checking Package

3.1 Introduction

This section deals with the DS's and DB management routines as implemented

for the Schematic Diagram (SD) application, which is the basis for the

integrated circuit layout and rule checking package, on the Gerber Systems

Technology (GST) IDS-80 System.· The emphasis is on the theory and

philosophy on which this implementation was based, which prescribed the

resultant structures. The method of implementation is not discussed here, but is

covered in some detail in Chapter 5, when discussing the implementation of the

various solutions. The main source of reference for this section was the paper

by Peled [1982], aswell as the appropriate source code for the implemented DB

system.

It should be noted that one of the main riders for this particular design was the

fact that it was designed for a "Mini-Based" Turnkey CAD System, which

implies particular constraints. The mini-based CAD environment imposed

certain restrictions on the DB system design, in the form of limited resources in

terms of available memory, computing power, and storage capabilities. These

restrictions are very evident in the resultant design of a simple, yet flexible DS

with accompanying management routines.

3.2 Description of Data Stru~ture

Relating to the previous section (sec 2.3.4), one of the prime requirements of an

Interactive Graphics/CAD is a fast response time. Since Interactive Graphics

invariably involves the manipulation and modification of data, response time

can be said to be directly related to the access time of the DB system.

Furthermore, the simplest DS is a sequential list (dense list), and the fastest way

to access data from a sequential list is ifthe data is stored in fixed length

records. However, as pointed out in the previous section (sec 2.2.2), a variable

3-1

Gerber IDS-80/ICLRC Package

length DS is best suited to the many varied entity types that are characteristic

of Interactive Graphics/CAD applications. As a result, a combination of the

two structures was seen as an appropriate solution, monopolising on the

strengths of each structure, and mitigating their respective weaknesses.

The resultant structure was one where each entity in the DB consisted of two

associated parts; a fixed length portion and a variable length portion. The fixed

length portion of the DS was referred to as the Attribute (ATT) record, while

the variable length portion as the associated Data (DAT) record. The size of the

ATT record is set at initialise time for all entities defined in the DB, where as

the length of the DAT record for each entity is defined at creation time. of the

respective entities, and varies from entity to entity (see Fig. 3.1). In some cases

the length of DAT can vary between different occurrences of the same type of

entity, depending on the type of entity [GST]. The ATT record contains data

fields which are common to all types of entities, such as level, entity type, etc,

and thus could be usedas keys for searches through the DB. The DAT however

contains specific associated data which pertains to each entity type and to each

occurrence of that entity type, such as coordinates, character codes, etc.

To accommodate these two distinct structures, at initialise time the data

storage area is divided into two distinct areas; one for ATT and the other for

the DAT. The ATT area is divided up into fixed length records of length N,

where as the DAT area is merely defined as an amorphous block of storage,

defined by start and end addresses only. It should be noted that in general the

DAT area is larger than the ATT area since, in general, the size of the associated

data per number of entities,is normally larger than the corresponding attribute

data due to the nature of the data (the size of ATT is 13 words, while in general

the size of DAT can vary from 6 words through 22 words, and even larger).

Furthermore, the maximum size of the ATT memory block is defined by the

largest integer value that the computer, on which the system is being

implemented, can represent [Peled 1982].

3-2

Gerber lDS-80/ICLRC Package

LN Line Entity

X sto.rt paint

y sto.rt paint

X end paint

y end paint

DAT

ATT

RC Arc Entity

Vl
"Z5
l
a
~

(Y)
.-4

X center

y center

Ro.diuS

Sto.rt o.ngle

Del to. o.ngle

DAT

ATT

Fig. 3.1 Diagram shows that different entities have differentDAT lengths while

they all have the same ATT length.

3-3

Gerber lDS-80/ICLRC Package

When an entry is made in the DB, the length of the associated data record is

defined (NW), and the next NW words within the bAT area is allocated for the

storage of that record of data. The DB management routines, which are

responsible for the manipulation of the DB, allocate the next N available

words in the ATT block for the storage of the entity's attribute data. Also

included in the N words of ATT space, is a pointer to the location of the

associated data record within the DAT block, as well as the length of that

record. Hence it should be noted that the attribute data consists of two parts;

the General Attribute data (GATT) and the Associated Data information

(ADAT). The ADAT includes the pointers to, and the length of, the associated

data record, whereas the GATT contains attribute data fields which are

common to all types of entities. For this reason, the GATT is used as the search

keys for sequential searches through the DB. The GATT is the only portion of

the ATT which is accessible by the application program, the remaining ADAT is

used by the DB management routines (see Fig. 3.2 and Fig. 3.3).

Entity ATT Block

ATT

.
Genero.l Attribute Do.to.

such o.s
Level

Entity Type
Group Code

etc

Pointer to Assoc. DAT

Length of Assoc. DAT

GATT

}ADAT

Fig. 3.2 ATT comprising GATT and ADAT.

3-4

Gerber lDS-80jlCLRC Package

\

Inw1
1[\ ~

nw4ADAT1'" I,

nw2 ,It

ADAT C"'

It

.... 1[\

I
,

ADAT~

nw3

\ \ADAT'f'"'
I

\

ATT Storo.ge Spo.ce DAT Storo.ge Spo.ce

n{

I
Po.ge

I
Po.ge

Fig. 3.3 Separate ATT and DAT storage space, showing different DAT block

lengths.

3.3 Management of Storage Space

No matter how desirable it may be to recover the space freedwithin the storage

area when an entity is deleted, it remains atime consuming and sometimes

difficult task (see sec. 2.4.2 +2.4.3). However the DS described thus far affords

the opportunityto easily recover at least a portion of the freed space. Sincethe

ATT area is divided into equal length records, each record has an associated

index, or address, which makes it easy to reclaim freed space. This is done by

appending the address of the freed ATT record to the top of a linked list, called

the Free Space Chain (FSC)(or ATT Free Space List (FSL)), which contains

pointers to all the ATT records which have been deleted. (seeFig. 3.4) When the

3-5

Gerber IDS-80/ICLRC Package

next entity is inserted into the DB, the FSCis first checked for any free space in

the ATT block for thestorage of the entity. If no freed space is found, unused

spacein the ATT block is allocated. Due to the amorphous nature of theDAT

block, it is difficult to recover freed space without placinga strain on the already

restricted resources. For this reason nofurther "interactive" space management

is done, the remainderbeing left for when the interactive session has been

terminated.Any unreclaimed space in either the ATT or DAT block, at the

timeof termination, is recovered by the storage routines, whichcreate a

permanent copy of the created part. This is done bystoring only valid

information without any vacant "holes".

ATT Stornge Spnce

, "'J,' ' , , ,.

-
, " ' J ',' ,

, " ' ~,,',' ,', '\' " ' , ',' ,

,G=::='::+:J"\ " "

\

\

ATT FSL Hender
I 0 I

D',',' Allocnted ATT
',',,' Records

End of List
A Mnrker

DReclnlMed Freed
ATT Records

Fig. 3.4 ATT Free Space List.

3-6

Gerber IDS-80/ICLRC Package

3.4 Interface Routines

The interface subroutine set, which forms part of the DB management routines,

provides the application with all the necessary functions to be executed on the

DB. The set includes the following routines:-

-GET

this routine retrieves an entity from the DB, the GATT, or the

DAT, or both.

-PUT

this routine adds an entity to the DB.

-DELETE

this routine will delete an existing entity from the DB.

-SEQUENCE

this -routine is used to sequence/search through the DB using the

set of keys specified.

-MODIFY

this routine provides the capability to modify any existing entity,

either its GATT or DAT information.

These routines listed here can be considered to be a basic sub-set of the required

functions. All other functions can be implemented as combinations of these

[Peled 1982] (eg: DUPLICATE routine, which creates an exact copy of an entity,

using the GET and PUT routines).

3-7

Gerber IDS-80jICLRC Package

3.5 Mass Storage Interface

In the IDS-80 implementation of the package, the Mass Storage Management is

incorporated into the DB management routines, as the operating system (RTE

IV) has no virtual memory capabilities. Due to their large size, the large ATT

and DAT blocks are actually disk resident, with a buffering scheme to memory.

This scheme was implemented as it would be very inefficient to repeatedly

access the disk whenever an entity was accessed. Thus the management

routines use memory buffers, or "pages", to swap portions of the blocks in and

out of available memory as they are required. (see Fig. 3.5)

I
I-

~.p ~-----f

C
W

o

Po.ge ATT Storo.ge
Block

Mo.ss Storo.ge
Disk

Fig. 3.5 Paging scheme to disk for ATT data storage.

The page size (PGSZ) was chosen to be a multiple of the physical record size of

the mass storage device. Although the larger the page size the better the

performance (due-to the reduced number of disk accesses), sufficient memory

3-8

Gerber lDS-80jlCLRC Package

space should be left for the application code to run. A compromIse must

therefore be reached such that a page contains a reasonable amount of

information (entities), and still leaves adequate room in available memory for

the application code to run efficiently.

The page size is defined as a parameter at initialise time, and different sizes may

be defined for the ATT and DAT arrays (both are defined as 512 words at

present).

The management system keeps track of which page is in memory at anyone

time. The system also keeps track of whether the current page. has been

modified and therefore needs to be written back to the disk before a new page

is swapped in. This information is kept in a ten (10) word control block for each

array, which is initialised at start up by the lNlT routine. The control block for

each array is stored in the first ten words of the current page in memory per

array.

Since the DAT array grows a lot faster than the ATT array when inserting

entities, the DAT page fills up a lot faster than the ATT page. For this reason,

and since each page of DAT generally holds less discrete data entities than an

identical sized ATT page, the DAT page will be swapped more often than the

ATT page.

3.6 Additional Structural Features

There also two other DS'sthat are also included in the system; the Header

Block and the Global Block. Each contains information which is of general

importance to particular applications and parts. However, they are of very little

importance in the context of this examination, and therefore the reader is

referred to the literature for further details [Peled 1982, GST].

3-9

Problem Definition/Proposed Solutions

CHAPTER 4

Problem Definition and Proposed Solutions

4.1 Introduction

Based on the understanding gained from the background research, the analysis

and evaluation of the problem and its associated solutions could then be

approached. Consistent with the technique of problem solving, the first step to a

solution was the clear definition of the problem. Once the problem had been

clearly stated, and subdivided into its constituent parts, various solutions were

then considered. While still in the proposal/planning stage and prior to

implementation, the various solutions were compared with the hope of

eliminating those that were less effective or redundant.

Once the number of proposed solutions had been reduced to a collection of

viable alternatives, each with its own specific advantages, they were then

individually implemented and tested. The working solutions were then

evaluated in a comparative fashion to measure their respective effectiveness.

The results of the evaluation lead to the redesign or modification of certain of

the proposals. Which in some cases involved the combination of certain of the

options in the hope of capitalising on their strengths, and hopefully mitigating

their respective weaknesses.

4.2 Defining the Problem

The most prominent problem with the present system was found to be the

restriction of small available memory (memory address space) placed on the

implementation by the host computer (HP1000). This restriction not only

required the application code to be segmented, but also required the development

of a paging scheme to manage the large data arrays required to accommodate

the data base.

4-1

\

Problem Definition/Proposed Solutions

Furthermore, as discussed in sec. 3.1.5, the data paging scheme had to be

implemented with sufficiently small pages so as to leave adequate space in the

address space for the application code to run. As a result of the modest page

size, the swapping of data pages, with the associated disk accesses, became a

major overhead,which was detrimental to the performance of the system.

A further problem (which is related to the above) was that the allocated DAT

area increased in size faster than the corresponding ATT area, which caused

the DAT array to be paged more often than the ATT array when DB accesses

were done. This was not the essence of the problem, but merely a symptom. To

unearth the underlying problem, the causes of the uneven growth pattern had

to be. examined.

The following two causes were identified:

1) By the nature of the data entities, the length (in words) of the DAT

information that was stored, in general exceeded that of the ATT

information.

2) The lack of reclamation of DAT storage space, after a block of DAT

storage had been released (garbage collection, see sec. 2.4.3).

As a result of the lack of space management for the DAT storage area, there

was excessive space wastage and fragmentation of the data. Due to the nature

of the paging method used, the space wastage and fragmentation caused

unnecessary page swapping when the DAT information was accessed. This

problem was related to the restricted page size mentioned previously. The

problem was that very little useful DAT information fell within each page

boundary, and hence the excessive page swapping (see Fig. 4.1).

4-2

Problem Definition/Proposed Solutions

,.... b'AT ··.tNT1TY ··.·A .'.j
PQge }VQsted SpQce

Pnge }~n5ted Spnce

}~n5ted Spnce
1"i==;~~~~~;:::=:::~::;1

PQge I.' ··BAT.· E·NTITY.··D.· ·1

PQge

PQge

.
' ..D·A T' ·ENTITY· ·E···

. . .
.

.' .·b.Al.· E·NTI,TY·.· E'.'

DAT MeMory SpQce

'WQsted SpQce

Fig. 4.1 Effect of restricted page size on DAT.

4-3

Problem Definition/Proposed Solutions

A further problem arose when the DB was accessed sequentially with respect to

position (ie: from the first position through to the last entry). Due to the more

efficient storage ,management of the ATT array, in contrast to the

fragmentation of the DAT array, the ATT and DAT arrays became

unsynchronised with respect to the order and position in which the entity

information was stored (see Fig. 4.2). If the two arrays were synchronised,

sequential accesses of the DB would have required sequential paging of the DAT

array, as adjacent DAT blocks would have shared common pages. However,

because they were not synchronised, the chance of adjacent DAT blocks sharing

common pages was reduced, resulting in random, and hence excessive, paging.

When an entry was added to the DB, no record was kept of the addition, apart

from the entry itself. The existence of any valid information in the DB was

concealed in the form of a last entry pointer, and within the ATT information

record in the form of a deleted mark, a negative one (-1), in the DELMARK

field, indicating that the entry was deleted. There was no formal index of, or

pointers to, valid entries within the DB storage arrays. Thus, in order to find

any valid entries, without knowing their physical positions (IDs) within the

ATT array, the ATT ·array had to be searched sequentially from the first entry

position through to the last entry position, testing the DELMARK field for

validity.

Although this dense list structure cut down on overheads in terms of DS size,

their was a significant sacrifice in processing time when a sequential search of

valid entries, using the ATT record as keys, was done (provide~ there was a

significant distribution of deleted entries). This was due to the deleted entries

being included in the search, for the reasons discussed in the previous paragraph.

The access of the deleted entry's ATT record, to check the DELMARK field, was

a redundant and time consuming action.

4-4

Problem Definition/Proposed Solutions

Spo.ce

.'. DA'T' #.2'.' '.'

DAT

Po.'ge Po.'ge
DAT MeMory Spo.ce

. . .
.' I)Al .'#4' .' .

/ I-'-~"'--'-"-:"'-~....,

ATT #1

ATT #2

ATT #3

ATT #4

ATT #5

........-
-"-

Synchronised

Unsynchronlsed

. . .
ATT MeMory Spo.ce .

. . .
'. 'D'AT .'#1' .'

. . .
..DAT ·#4'·

..DAT ·#2'·

. . .
. .·DAT· #5· .

~....L.4-...c.....&..""""'L....4-1 . . .

ATT #1

ATT #2

ATT #3

ATT #4

ATT #5

........

ATT MeMory Spo.ce ' ' ' ' .

......p.~~ #~ : : : :.

.
.. ·DAT· #3·

i

Po. e
i

Po.ge

. Fig. 4.2 Unsynchronised vs synchronised ATT and DAT storage. (five page

swaps vs two page swaps, to access all the data sequentially)

4-5

Problem Definition/Proposed Solutions

4.3 Proposed Solutions

Most of the above problems were related to the restriction placed on the initial

design of the DB by the choice of the host computer, the restriction being the

limited memory address space. As a result, the original design lacked many

features that could have improved the efficiency of the DB operations.

Furthermore, it included a cumbersome paging scheme to manage the data

storage arrays, which, although a necessity, when combined with the barren

DS's produced still further complications.

Therefore, the most obvious solution was to attack the root cause of the

problem; the small, limiting, memory address space of the host computer.

4.3.1 Proposed Solution 1- New Host

The first proposed solution was to transfer the system to an alternate host

machine which had a better environment in which the code could run.

Fortunately there was a VAX-ll/750, running VMS, and a HP9000, running

HP Unix, available, both of which have a 32 bit processor and Virtual Memory

(VM) capabilities.

Both machines had much larger memory address spaces than the previous host,

in terms of both physical memory and addressable VM space. This feature,

therefore, no longer required the application code to be segmented, and, more

importantly, rendered the mass storage paging scheme for the data arrays

redundant. (see Fig. 4.3a and 4.3b)

4-6

Logical Address
Space

SysteM

Main

DAT Page

ATT Po.ge]

Problem Definition/Proposed Solutions

"DAT Storage Space

------,[1--------1

ATT Storage Space

Fig. 4.3a Mass storage paging scheme on HPIOOO.

4-7

· Problem Definition/Proposed Solutions

VIRTUAL MEMORY

////
////

////

////
////

////

r-

L.-

r-

-

-
'--

-

- ..--

- 1.-

SysteM
AreCA

PHYSICAL
MEMORY

////

////
////
////
////
////

DISK

Fig. 4.3b Example of Virtual Memory map of a VM System.

4-8

Problem Definition/Proposed Solutions

The advantages gained from this solution were :-

- because of the reduced application code size (due to the exclusion of

the paging scheme code) and the increased physical memory size, less. .

disk accesses would be required to manipulate the large data arrays

provided the DB could be kept sufficiently compact and thus remain in

physical memory for longer periods (requiring less VM paging).

- the VM system could be tuned to optimise the running of the code.

- the increased CPU processing speed (all 32 bits of it) was purely a

bonus.

The main disadvantage of this solution was the large amount of modifications

that had to be done to the existing code in order to transfer it to the new

machines, due to the machine dependent nature of sections of the existing code.

However, if the interface point in the Data Base Management routines was

chosen carefully, these routines could be transferred with little effort.

4.3~2 Proposed Solution 2 - DAT Reclamation

The next problem area to be attacked, was the problem of DAT space

reclamation. Due to the increased addressable memory space, it was now

feasible to accommodate the full DB, if not a significant portion of it, in the

resident portion of the memory. It was therefore obvious that the more

compact, and thus smaller, the DB, the greater the probability of

accommodating at least the allocated portion of the DB in the resident memory

space. Thus eliminating the need for VM paging, and the associated disk

accesses, for DB manipulations. The advantages were obvious. The following

solution proposals deal with this problem.

4-9

Problem Definition/Proposed Solutions

The objectives of these solutions were to develop a DAT reclamation scheme, in

.an attempt to keep the DB as compact as possible, to reduce the need for VM

paging during normal DB manipulation, and to keep the ATT and DAT arrays

synchronised to reduce the need for VM paging during sequential accesses.

4.3.2.1 Solution 2.1 - Fixed Length Records·

Proposed solution #2.1 required the DAT array to be divided into fixed length

records, say of length DATREC, where DATREC would be selected to be the

most economic size with respect to :-

- the most common DAT entity length

- the best utilisation of space, cutting down on partially full records

(similar in concept to the choice of an optimum page size in VM

operating systems)

This method would then allow the DAT array to be manipulated in much the

same way as the ATT array, since the DAT array would no longer be divided

into variable length records, but combinations of fixed length records. Thus the

principles associated with the manipulation of fixed size storage blocks could be

applied.

Using this method, when an entity is deleted, the storage space of the DAT block

associated with that entity will be attached to a DAT free space chain. When an

entity is deleted and a number of sequential DAT records, that were allocated as

a single DAT block, are released, the records remain linked even when on the

Free Space List (FSL). Thus when the free DAT space is reallocated and the

reclaimed block is too large for the requesting entity, the requested number of

record are allocated, and the remaining unused records are attached to the FSL

as a smaller block. (see Fig. 4.4) Obviously if the reclaimed block were smaller

than the size requested, it would not be allocated and the FSL would be

sequentially searched for a block of appropriate size. If there is no reclaimed

DAT space large enough for the new entity, a DAT block in the unused area of

the DAT array will be allocated.

4-10

Problem Definition/Proposed Solutions

FSL Heo.der

Cj)

ATT #1
-...,

ATT_#2
\I---~-~

ATT #4

ATT #5
-

DATREC

I
I I i

.. /
.. ~}po.ge'.' .. ' ," .. ' 'l"~

........: : : :· ..· :· ..· :·.··.·.:·.. v /l¥ / / / / /
...." ///////

-:.::.::.::\\::/>/:/~
':-':':-':":':-':":':":" :-,:~v /<V / / / / /

I ~.~.~.. ~ ; ~::::.::~
... ·.·..··.·.··V~I/ / / /

rl·....·..·....·..·....·..·..· ..·....·..·....·..·....·..·.. ··..·....·..·..··V,? / / / /
/// ///
/// v///

~
ATT

MeMory Spo.ce
DAT MeMory Space

.D Alloco. ted DAT Entity

~ Freed DAT Spo.ce

~ ~o.sted Spo.ce

Fig. 4.4 Description of solution #2.1.

4-11

Problem Definition/Proposed Solutions

The advantages of this method were :-

- DAT would be reclaimed

- the DAT array could be more easily manipulated due to its fixed record

length constitution'

- the DAT array would be more compact than before

The disadvantages were :-

- depending on the length of DATREC, there could still be considerable

space wastage due to internal fragmentation and partially filled records

- increased processing overheads associated with the manipulation of the

DAT FSL, especially if the list were to be sorted

- there was no guarantee that the ATT and DAT arrays would remain

synchronised

4.3.2.2 Solution 2.2 - ATT/DAT Free Space List

This method required the ATT block, once it had been allocated, to keep track

of its associated DAT block. Thus when an entity was deleted, the associated

ATT and DAT blocks would remain attached, and the released ATT block would

be appended to a specific FSL related to the size of the DAT block associated

with it. (see Fig. 4.5)

When an entity was created, the FSL would be searched for released ATT space,

with the required DAT block size of the new entity as the rider. Of course if no

freed space of the correct DAT size could b~ found, then a new ATT block with

a newly allocated DAT block would be assigned to the new entity.

4-12

Problem Definition/Proposed Solutions

n th
FSL Heo.der

,

/"
ATT

)

V
ATT

ATT
()

M th
FSL Heo.der

(n+M) th
FSL Heo.der

I

It

........... 1"--,

ATT

(~

""'~
ATT

ATT
o

!--1----l / / / / I

nj / / / / / / I

////

/ / / / I

/ / I

'------t---~ / / / / ,-

/ / / / ,-

/ / / /

It

//

//

//
//

/

Po.ge DAT MeMor Spnce
Fig. 4.5 Description of solution #2.2.

4-13

Problem Definition/Proposed Solutions

The advantages of this method were :-

- DAT would be reclaimed (to a degree)

- the ATT and DAT arrays would remain synchronised

The disadvantages were :-

- increased processing overheads associated with the manipulation of the

FSL, especially if the list were to be sorted

- the most outstanding problem with this method was the possibility of

external fragmentation within the ATT array. If one considers that the

maximum number of ATT entries was restricted to the largest single

integer represented in FORTRAN (32767) [Peled 1982], this made the ATT

area "prime land". Therefore one could not allow it to be squandered by

allowing a deleted ATT block to be tied up purely because it was

associated with a redundant (unpopular) DAT block size

- although a degree of compaction would be obtained, there would still be

a significant amount of fragmentation in both ATT and DAT (for the

above reasons)

4.3.2.3 Solution 2.3 - DAT Free Space List

Separate FSL's for ATT and DAT freed space. The FSL for freed DAT space

consisted of many different "branches", each branch containing released DAT

blocks of a particular size, such that all released DAT blocks of size n (words)

would be appended to the nth branch of the DAT FSL. (see Fig. 4.6)

When a new entity requested a DAT block of size n, the nth branch would be

searched for freed space. If none was found, the (n+1)th branch would be

searched for space, and so on. If space was found in the (n+m)th branch, then

the first n words would be allocated, and the remaining m extra words would be

appended to the mth branch of the DAT FSL. Of course if the nth branch

contained space in the first place, the first available block of DAT of length n

would be allocated, and the FSL pointers updated. If no freed space could be

found in the DAT FSL, unused DAT space would be allocated to the requesting

entity.

4-14

Problem Definition/Proposed Solutions

DAT FSL Index Arruy
(Brunch Headers/Pointers)

~
"/

tr ~n th M th n+M)
(G I I 0

,

Po.ge
, i i i

/
/ /

// A /
"

\11
/ ,

nj
A ~ / / /

~ / ///

v / 11

/ / / / /
v /// / i)/

1/ / / v / /
n+M

/ / / / /
i...-..

/ / / / v / /

/ / / / /

4 "

\iJ
/ /

v ~ / //
,

/L'Y..
/ / / /

M
v / / l/ / /
v. l/ / /7
1/ / / / \

DAT MeMor
Fig. 4.6 Description of solution #2.3.

4-15

Problem Definition/Proposed Solutions

The placement strategy used here was the First Fit strategy, chosen

predominantly because of its speed advantage, and thanks to the excess space

reclamation, the internal fragmentation would be kept to a minimum.

The advantages of this method were :-

- DAT would be reclaimed

- internal fragmentation would be cut down to a minimum, since the

fragments would be reclaimed by being appended to the appropriate

branch of the DAT FSL. This would therefore produce the most compact

DB thus far of all the previous solutions.

- due to the compact DB, sequential access performance would improve

The disadvantages were :-

- increased processing overheads associated with the manipulation of the

multi-branched DAT FSL (effect only felt when insertions, deletions and

modifications were made to the DB as that would be the only time that

the FSL would be manipulated)

- the ATT and DAT atrays would not necessary remain in phase

4.3.2.4 Solution 2.4 - ATT/DAT and DAT Free Space Lists

This solution involved the combination of solutions #2.2 and #2.3. The idea

was that the single FSL of solution #2.2 should be expanded to include a DAT

FSL as well. The ATT FSL, including each ATT element's associated DAT block,

would be managed in the same way as the DAT FSL was managed in solution

#2.3.

Thus when an entity was deleted, the associated ATT and DAT blocks would

remain attached, and the released ATT block would be appended to an ATT

FSL, which would be organised into branches related to the size of the DAT

blocks associated with the individual ATT elements. (see Fig. 4.7)

4-16

0I:>
I
~

--.:t

~

cFi·
~

~

~en
(')
'"1

'[
o'
~

o....,
eno
[
o'
~

%
I:V

~

ATT FSL Index Array
DAT FSL Index Array<Bro.nch Heo.aers/Polnters)

, ,

n th
M cv

th I n+M~ t1)
<Bro.nch Heo.aers/Polnters)

cv S "

:In+~ u[Jn th M cvth

-~ ~ ~ ..
cv
I " I

~ ~ .
~ Po.ge

",- ATT ATT ATT I
j i

cv <i> (~ / / /
I~ /

T I
,

// / 1/ //
. ",

// // / l/
4 ~

ATT // // IJ

11> ,L").

/ /

V / /V / /... M

..... // / / / / / /,

// V / /
IJ

V / /
nj

/~/

// V / /
/ / / / \
DAT MeMory Space

'1:lg.
......
en
S
~
~
~.....
c+-

o'
~

----'1:l.g
oen
en
p..
U1
o
[
o'
~en

Problem Definition/Proposed Solutions

This ATT FSL would then be searched in the same way as the DAT FSL of

solution #2.3, except that the excess DAT space reclamation would be

implemented using a separate DAT FSL, which would be structured in the same

way as the DAT FSL of solution #2.3. (see Fig. 4.7) This DAT FSL would only be

searched if no freed space could be found on the ATT FSL, thus a new ATT

element would be allocated and space for the associated DAT storage block

would be searched for from the DAT FSL. If the DAT FSL was empty, unused

DAT space would be allocated to the new Entity.

The advantages of this method were :-

- DAT would be reclaimed

- internal fragmentation would be cut down to a minimum, since the

fragments created by allocating space from the ATT FSL would be .

reclaimed by being appended to the appropriate branch of the DAT FSL.

- a larger degree of ATT and DAT synchronisation would be maintained,

than in solution #2.3, although less than in solution #2.2, due to the

reallocation of reclaimed excess DAT space from the DAT FSL, in

between the synchronised entity data pairs (see Fig. 4.8)

- due to the compacted DB, and the greater degree of synchronisation,

the performance of sequential access processes will improve dramatically

The disadvantages were :-

- significantly increased processing overheads associated with the

manipulation of both the multi-branched ATT and DAT FSL's due to the

more complex algorithm and resultant code. Once again this would only

affect the insertion, deletion and modification processes

- the possibility of a fragmented ATT array due to redundant DAT sizes

would still exist, although to a lesser degree than in solution #2.2. It

should be noted that due to the excess DAT space reclamation, and the

search sequence 'up' (inceasing associated DAT size) the indexed ATT
•

FSL, only the most unpopular sizes of DAT, smaller than the most

4-18

Problem Definition/Proposed Solutions

popular average DAT size, could cause redundancies in the ATT array.

The larger unpopular sizes would simply be subdivided and the excess

attached to the DAT FSL. A significant improvement on solution #2.2

4.3.2.5 Solution 2 Conclusion

When the problem, and the various proposed solutions were reviewed, it was

obvious that the priorities in terms of problem areas, had to be re-evaluated, in

order to choose the correct solution path.

The rationale used was that if one considered the case where all of the allocated

portions of the DB, both ATT and DAT information, could be accommodated in

the resident portion of the VM address space, along with the application code

that was running at that time, then the effect of VM paging on DB

manipulations could be ignored. Thus the situation of the ATT and DAT arrays

being unsynchronised during sequential accesses, would have no effect on the

performance.

This was of course only true provided that the allocated portion of the DB was

sufficiently small to be accommodated in the resident portion of the memory

address space. It was therefore obvious that the compaction of the DB was of

overriding importance, compared to the synchronisation of the ATT and DAT

arrays. Furthermore, the removal of "fragments" from the DB, particularly

from the DAT area, would ensure that if paging of the DB were to be necessary,

there would be more useful information per page (or cluster of pages) than if no

compaction techniques had been employed. Thus if any paging took place, it

would be more economical, and less wasteful than the hashing that took place

previously. Furthermore, if due to system constraints portions of the DB had t~

be paged to VM, the feature of synchronised data would be a great advantage

for sequential access processes.

Based on this philosophy, it was clear that the two proposals that stood head

and shoulders above the rest were solutions 2.3 and 2.4.

4-19

Problem Definition/Proposed Solutions

. However, the difference between the two was that for the price of a significant

increase in overheads, due to the additional processing required, solution #2.4

would offer an increased degree of synchronisation between ATT and DAT. It

was noted that synchronisation would not always be maintained, since the

reclaimed excess space in the DAT array, would be interspersed amongst the

"allocated" synchronised DAT blocks. Thus when a freed pair of ATT and DAT

could not be found for a requesting entity, and a new ATT entry was allocated,

the reclaimed DAT space could be assigned to it as its associated DAT block,

which would then be out of phase with the other synchronised pairs (see Fig. 4.8)

Based on the above reasoning, it was decided that the most economical, and

appropriate solution would be proposal #2.3, since it best satisfied the

proportional trade off between the overheads involved in the processing of a

complex DS, and the gain obtained from that DS.

4-20

Problem Definition/Proposed Solutions

ATT MeMory Spo.ce

e

[2] Freed DAT Spo.ce

DAT MeMory Spo.ce
7 7 /

\WT

/ /
-..

....-

"'" / /

\~ le le le le

le le le X
\WT

X le X x

\
le le le le

1\
le le le le

-~ le X X x

\ le le X X

le le le X-- / 7
v

/ /
/ / v /

~

/ /\WT

/ /
I I.,;;T 7

""' D. le le Reo.lloco. ted DAT Spo.c

D Alloco.ted DAT Spo.ce=\WT

--

Fig. 4.8 Freed space and reclaimed space amongst the synchronised data.

4-21

Problem Definition/Proposed Solutions

4.3.3 Proposed Solution 3 - ATT Allocated List

This solution attempted to address the problem of the lack of an Allocated List

(AL) for all the allocated entries within the ATT array. The existence of an AL

would remove the necessity of including and accessing deleted ATT entries in a

sequential search or access of allocated ATT entities, in so doing the searching

and accessing process would be made more efficient.

However, in order to implement this system, the ATT record would have to be

enlarged to include an AL pointer field, which would contain a pointer to the

next allocated ATT block in the list. This would have the effect of enlarging the

size of the DS and therefore the DB, without increasing the "usefull" information

content of the DB. (see Fig. 4.9) This would be in direct contrast to the

philosophy as postulated in the previous set of solutions, and would therefore

have been counter-productive to implement.

Furthermore, the manipulation of the ATT AL would have required still further

overheads in terms of processing in order to keep the list sequentially sorted. It

was obvious that the relative gain that could have been extracted from this

solution, was out of proportion to the mitigating influences of its structural and

operational overheads.

4-22

Problem Definition/Proposed Solutions

ATT FSL Heo.der ATT AL Heo.der ATT FSL Heo.der

I 0 I -(~ I

ATT
~

G--- --
.. --e

L'\.

...
A

< >

~

ATT

~(j)

..
A

Fig. 4.9 Enlarged ATT size for AL pointer field.

4-23

Problem Definition/Proposed Solutions

4.4 Conclusion

Although these various solutions are listed sequentially, they were not

necessarily arrived at in that process. In most cases they evolved out of an

iterative process of many other postulates that were considered, evaluated,

combined, adapted and sometimes rejected. Those mentioned here were

considered by the author to be the most productive and descriptive of the many

intermediate solutions that were left by the way side.

The solutions that were eventually selected for the final implementation .stage

were solution numbers 1, and 2.3, which were considered by the author to be the

most appropriate combination which would most effectively solve the problems

at hand, with a good balance between complexity and efficiency.

4-24

Implementation and Evaluation

CHAPTERS

IMPLEMENTATION AND EVALUATION

5.1 Introduction

Once the various postulated solutions had been considered, a few were selected

for the final implementation stage. In practice, the processes did not follow

this course explicitly. It was more of an iterative process, where several

different proposals reached fairly advanced implementation stages

before being referred back to the previous evaluation and design stages for

modification, or were totally discarded. To follow this process explicitly in

this document would be time consuming and laborious, and hence only the two

major solutions that were implemented and showed any significant promise

in the light of the objectives of the project, will be discussed here.

To aid a better understanding of the factors that affect the implementation and

evaluation of the varies solutions on the VAX, a section detailing the resource

management techniques employed by VAX/VMS is included here.

5.2 VAX/VMS Resource Management

5.2.1 Introduction

The objective of this section, is to familiarise the reader to some degree with the

resource management techniques as employed in the VAX/VMS system, with

particular attention to the management of the memory resources of the system.

This will hopefully give some insighf as how the varies solutions were evaluated
, ,

as well as describe certain factors which affect the performance of the individual

implementations.

5-1

Implementation and Evaluation

For further reading, the reader is directed to the VAX/VMS Reference Manual

entitled "Guide to VAX/VMS Performance Management".

5.2.2 General

With the VAX/VMS operating system, a number of different processes can be

run in available physical memory; were a process is a scheduled entity on the

system. There is one operating system (VAX/VMS), which consists of the

executive (which is always resident in physical memory) and other components.

Each process performs work, which involves the manipulation of data, and the

operating system tries to ensure that each process can complete its work as

quickly as possible. In addition to main memory, the system supports several

secondary storage devices (disks), where additional data can be stored, which is

also administered by the operating system.

Within the VAX/VMS system, physical memory can be thought of as divided

into three major parts, according to their usage. There is the portion ,available

for the processes to work in (balance set), there is the portion reserved for the

resident executive, and there is a portion for the page cache, where data is stored

for movement to and from the disk(s). (see Fig. 5.1)

There are enough balance slots reserved in physical memory for the maximum

number of processes expected to run concurrently, including the operating

system. The operating system and each process has its own individual working

space in physical memory, known as its working set. The working set includes

all the valid pages within the balance set area of physical memory for any

particular process. The pages in the working set usually represent a subset of the

total number of pages in the process's page table, which contains all the pages of

code/data which are associated with the process, be they in physical memory

(page cache or balance set) or on disk.

A page in VAX/VMS is a convenient vehicle for moving data into and out of

memory. Each page is made up out of 512 bytes, where the byte is the smallest

basic addressable unit in VAX/VMS.

5-2

Implementation and Evaluation

ReSident MeMory

RESIDENT PAGE BALANCE
SYSTEM CACHE SET

resident free user
executive pnge working
routines list sets

Moolifled

nonpnged
pnge
list

dynnMic systeM
MeMory working

set

IMnge Files

~G
Section Files

~8
Pnging Files

~8
Swnpping Files

~8
Fig. 5.1 VAX/VMS memory configuration.

During image activation, the groundwork is laid so that the process can bring in

the first set of pages from the image file and use them in its own working set.

The job of physical memory scheduling falls to the swapper process.

The swapper keeps track of the pages in both physical memory and on the disk

paging and swapping files, so that it can ensure that each process has a steady

stream of pages for each job. When a process's demand for space in physical

memory exceeds that of its working set, some of the pages already in the

working set must be moved out to the page cache to make room.

The page cache in physical ,memory is divided into two sections; those pages

whose contents have been modified are stored on the modified page list, while

those that have not been modified are kept on the free page list. When the page

cache begins to fill up, the swapper transfers a cluster of pages from the

modified page cache out to disk, to what is known as a paging file. Paging can

also occur from the image file, when required by the process. A page fault is

5-3

Implementation and Evaluation

generated whenever a page of code/data is required from either page cache or

disk.

5.2.3 Advanced Memory Management Mechanisms

VAX/VMS employs sever;:l.l sophisticated memory management mechanisms to

improve performance of the system. These mechanisms include: automatic

working set adjustment, swapper trimming, memory sharing, and scheduling.

However, only the first two mechanisms will be discussed in this section as they

relate directly to the implementation and evaluation of the solutions.

5.2.3.1 Automatic Working Set Adjustment

The automatic working set adjustment feature refers to a system where

processes can acquire additional working set space (physical memory) in which

to work, under control of VAX/VMS. The operating system recognises the

amount of page faulting that is occurring for each process and utilises this

information to optimise the performance of the system.

All processes have an initial default limit of pages of physical memory, or

working set limit (WSDEFAULT). However, any process that needs more space in

memory is allowed to expand, without restrictions, to the amount of a larger

limit, known as the working set quota (WSQUOTA). Whenever this expansion

occurs, the working set of the process increases in size in increments according to

a system parameter WSINC.

There is still a further feature which allows the process's working set to grow

even further, if, after the working set has expanded up to the process's quota,

the page fault rate is still high. This feature allows the working set to borrow

space up to a final limit called the working set extent (WSEXTENT). However,

this final expansion process can only occur provided the system has free

memory available to lend to the needy process.

5-4

Implementation and Evaluation

It should be emphasised that the feature of loaning additional working set space

to a process, over and above the process's quota, is very closely linked to the

available capacity of the system. Furthermore, the operating system can

prevent a process's working set from expanding further, but only if it has

already had the benefit of growing beyond its quota limit.

In a similar process that allows a heavily page faulting process to increase its

working set, a process that is not page faulting heavily can equally reduce its

working set size by releasing portions of its working set, up to its lower limit.

By reviewing the need for each process to add some pages to, or subtract some

pages from, its working set limit through this automatic working set adjustment

feature, VAXjVMS can better balance the working set space allocation between

all the processes. Since the goal of this activity is to reduce the amount of page

faulting, the operating system decides whether to grant memory by comparing

the current amount of page faulting that each process is undergoing, against a

norm, which in turn is governed by certain system parameters, for an processes

in the system.

5.2.3.2 Swapper TrimmIng

Sometimes, if process requirements so dictate, the operating system will "swap

out" processes to a swapping file on disk so that the remaining processes can

have the benefit of the use of the newly released memory, to reduce excessive

page faulting. Swapping refers to writing a process out to a reserved disk file.

To better balance the availability of memory resources, the operating system

normally reclaims memory through a far more complex procedure than just

simple swapping. This method is known as "swapper trimming", which indicates

that the procedure involves both the swapping and trimming of processes.

Swapper trimming can be initiated by the operating system at any time that

there is too few pages on the free page list (page cache). This detection process is

based on system parameters for the minimum number, and the ideal number, of
- .

5-5

Implementation and Evaluation

pages on the free page list. Thus, when the number of pages on the free page list

falls short of the minimum, the system tries to obtain at least as many pages as

is required to reach the ideal number of pages on the free page list.

When a problem is detected, the system first checks whether the minimum

number of pages required to satisfy the need on the free page list exists in the

modified page list, making it worthwhile to write them out to disk to make

space. If the minimum does exist, the pages are written out to disk and the

pages are freed to be appended to the free page list.

However, if not enough pages could be obtained from the modified page list, the

operating system does not activate the modified page writer. Instead, some of

the processes are "trimmed", that is, forced to relinquish some of their pages or

else face being swapped out entirely.

Trimming is done on two levels, and is attempted before the system resorts to

swapping. On the process level, the swapper checks for processes that have loans

out on their working set extent. Such processes can be trimmed ,at the

swappers discretion, back to their working set quota. However, if this amount of

trimming fails to produce a sufficient number of pages, the swapper can trim on

the second level. Here the swapper attempts to trim as many candidates, as is

necessary, back to a minimum number of pages, which is the minimum number

of pages any process is allowed to retain in memory before being swapped out.

Because the swapper does not want to trim pages needed by an active process, it

selects candidates based on their respective states.

If trimming on the second level fails to produce enough pages, the swapper

resorts to swapping out processes from its list of likely candidates. Memory is

always reclaimed from suspended processes before it is taken from any other

processes.

5-6

Implementation and Evaluation

5.3 Implementation of Solutions

5.3.1 Solution 1 - New Host

5.3.1.1 Introduction

As discussed previously, Solution #1 does not incorporate any revolutionary

changes to the DS from the original GST implementation on the HP1000

computer; it merely involves the transportation of the DB Management

Routines to the new host. Of course the move required certain implementation

changes to be made, and these will be discussed here with a slightly more

detailed description of the original implementation filling in the background.

The original code was written in FORTRAN according to the4X standard of

Hewlett-Packard. The new code was written according to the FORTRAN-77

standard, using the FTN IV-PLUS (HP FTN4X) compatibility compiler option

of VAX-ll FORTRAN, to ensure complete compatibility with the original

application code.

5.3.1.2 Implementation Details

As mentioned previously, the DB consists of three distinct blocks :-

-the GLOBAL block which contains data which is shared by all the

entities in a part (or model)

-the ATT block which contains the attribute data for all the entities

-the DAT block which contains entity specific data of all the entities

In the original system, the GST version, these· blocks were disk resident in an

area called the Working Part Store. Each block had its own memory buffer

which was manipulated by a set of low level routines (Mass Storage Management

routines) which implemented a memory paging scheme (see sec. 3.5) which gave

the blocks the appearance of large continuous arrays. These arrays were then

referenced by the high level (entity level) management routines.

5-7

Implementation and Evaluation

As mentioned, the DB management routines of the GST version were divided

into two parts, the high level access routines, which accessed the DB on an entity

level, and the low level access routines, which accessed and managed the

memory and mass storage via the memory buffering scheme.

The high level routines were :-

INIT

WSOPN

·WSPUT

WSGET

WSDEL

WSMOD

WSMNW

WSDUP

WSSEQ

PUTHW

GETHW

The low level routines were :-

DBINZ

DBASM

DBRLS

DBPUT

DBGET

MSIO

INCR

ICOMP

In the Solution #1 implementation, from here on called version 1.5, the three

blocks in the DB are implemented directly as three large continuous arrays. The

ATT array is defined asa two dimensional array of dimensions ATTSZ1 and

ATTSZ2, where ATTSZl is defined as the ATT entity data record size, in this

case thirteen (13) integer words long. ATTSZ2 is defined as the maximum

number of ATT entries that can be specified, which by the nature of the code

implementation is limited by the largest "single" integer as defined by

FORTRAN [Peled 1982), which is 32767. The reason being that the ATT is

defined in terms of "single" integers, and, on occasion, the ATT of an entity may

well contain a pointer to (the address of) another entity. Therefore the addresses

of all the entities must be small enough to be accommodated in a "single"

integer word. In this case, the entity ID is the address of the entity.

5-8

Implementation and Evaluation

Furthermore, the DAT array, although it is capable of storing reals as three word

integers, is also defined in terms of "single" integers, and it to contains pointers

to other entities from time to time (Symbol Macro entity, Text entity), as with

the ATT array. The GLOBAL and DAT arrays are defined as single dimensional

arrays of size GLBSZ and DATSZ1 respectively, as they both accommodate

variable length data. GLBSZ is defined as 1408 words and DATSZ1 as 520000

words to equal the memory size of ATT (see Fig. 5.2). DATSZ1 was later changed

to equal 920000, approximately the size of the DAT storage area on the IDS-80.

Due to this continuous array specification, the low level routines of the GST

version are now redundant in ver. 1.5, and are therefore excluded from this

implementation. It should be noted that the ATT array is set up such that the

ATT records follow sequentially in the actual physical storage of the array in

the memory, according to the FORTRAN array specification (in a multi

dimensional array, the first coefficient varies the fastest when sequentially

stepping through the physical memory allocated to the storage of the array).

For the above reasons the ID of an ATT·entry is no longer an index to the

entries actual physical address in the working part store, which had to be

calculated using the old ATT control block information. The new ID of ver. 1.5

is merely the second coefficient of the ATT array indicating the position of the

entry in the array (for example: ATT(i,ID), where i refers to a specific field

within the ATT entry).

In the GST version, the INIT and WSOPN routines were responsible for the DB

initialisation. WSOPN was called by INIT and was responsible for setting up

the Working Part Store on the disk. For this reason, WSOPN is no longer

required in ver. 1.5, with only the new INIT routine being responsible for the DB

initialisation; setting up the three arrays and their respective control blocks.

5-9

Implementation and Evaluation

update - 19/11/86 - changed An cooff around
- ver 1.5
- included implicit none statement

PARM15.FOR parameter block #1 for ver. 1.5

Parameters for data base management routines to be included
in appropriate routines.

c***
c
c
c
c
c
c
c

1 C
C

*

c

implicit none
* integer*2 glbsz,attsz1,datsz2,gattsz,ndw,daddr,delmark,datcbdim

integer*2 attsz2
integer*4 datsz1

PARAMETER (glbsZ=1408,attsz1=13,attsz2=32767,
*datsz1=520000,datsz2=O,gattsz=10,ndw=11,
*daddr=12,delmark=11)

c
**

c***
c
c COMMON15.FOR common block #1 for Ver. 1.5
c
c Couunon block for data base management routines.
c To be INCLUDED in appropriate routines.
c
c PARM15.FOR MUST ALSO BE INCLUDED!!!!
c
c
c

*

integer*2 id
INTEGER*2 global,att,dat,glbcb
integer*4 attcb,datcb,datpnt,fscpnt

COMMON /dbmsO/ global(glbsz),att(attszl,attsz2),dat(datsz1),
*attcb(2),datcb(2),glbcb(2)

*c
c***

.... -.

Fig. 5.2 Parameter and Common Blocks for Version 1.5.

In the GST version, the control block of each "array" contained ten words of

information, and was essentially used by the memory buffering scheme. In ver.

1.5, most of these words are no longer required, and the control blocks have been

reduced to contain only the last entry pointers of each array. The ATT control

block is the exception, as it has to include the ATT FSL start pointer as well.

Furthermore, the control blocks are no longer implemented as an integral part

of their respective arrays, but rather as independent variables; ATTCB, DATCB,

GLBCB, where ATTCB is defined as a two dimensional array. In the GST

implementation, the control blocks took up the first ten words of each respective

"array" block.

5-10

Implementation and Evaluation

WSMOD and WSMNW; in the GST version, were used to modify entity

information in the DB. In ver. 1.5, due to the new method of implementation,

the number of parameters passed to WSMNW is reduced from four to three,

due to one of them becoming redundant. In the old version, the lengths of the

new and old data records, the address within the ATT array where the data

length was stored, and the address of the data in the DAT array were passed as

parameters. The new version replaced the later two with the entity ID, from

which the two addresses could be obtained.

The remaining routines are implemented to fulfill their original tasks as defined

by the GST structure, with the required changes as defined by the new

"continuous array" implementation.

Three further routines have been written to complete the transportation

process. The MOVI routine, which moves integers from one array to another,

was written to replace a similar routine which had been written in assembly

language on the HP1000. The remaining two routines, GETDI and STRDI,

were written to extract a double integer address from a two word single integer

array, and to store a double integer address into a two word single integer array,

respectively, for the purpose of manipulating the associated DAT pointer in the

ATT record of an entity. (Appendix A contains the original GST high level

routines, and Appendix B the new version 1.5 equivalents for comparison.)

5.3.1.3 Testing

After debugging the rewritten routines, ver. 1.5 was tested using test programs

which ran on both the VAX and the HP1000 (SIMnWS15.SIM and &SMWSn.PF

respectively). Both the original and the new code was exercised by the same test

programs on their respective hosts, and the resultant printouts of the DB arrays

were compared. This process was used to ensure that the two versions of the

code produced the same output given the same input. These programs

essentially tested the operation of the INIT, WSPUT, and WSDEL routines,

comparing the effect that each version of these routines had on the same data.

5-11

Implementation and Evaluation

This was done by alternately inserting and deleting entities to and from the DB,

in a random fashion, to compare the resultant effects. Although the DB was

utilised, the total size of the DB was kept sufficiently small to ensure that the DB

arrays (both ATT and DAT) could be printed out to be compared, without paper

wastage. (an example of which can be found in Appendix C)

Once it had been certified that the two versions were compatible, more complex

test programs were written (TST15PRGn.TST)' to further test the remaining
,

access routines of ver. 1.5 . These more complex programs utilised the WSMOD,

WSDUP, WSSEQ, and WSGET routines. A similar process was followed as

before, were arbitrary DB manipulations were done, and the resultant output

checked to ensure that the routines were performing as required. (an example of

which can be found in Appendix D)

5.3.1.4 Conclusion

Following the testing phase, it was conclusively proved that version 1.5 fulfilled

the compatibility requirements in order to act as the new DB Management

routines for the full application system when it was implemented on the new

host, the VAX-ll/750.

The reader should note that version 1.5 represents a considerable amount of

effort, which was not detailed here, which went into the perfection of the new

implementation. To follow the progress of the project from ver. 1.0, via all the

intermediate versions, to ver. 1~5, would be a laborious and useless task in this

context.

5.3.2 Solution 2.3 - DAT Free Space List

5.3.2.1 Introduction

As discussed in sec. 4.3.2.3, This solution involves the implementation of a DAT

freed space reclamation scheme, with the objective of compacting the DB,

especially the allocated portions, as much as possible. The hope being that the

5-12

Implementation and Evaluation

compacted information bearing portion of the DB, with its high information

density, would be able to fit, along with the application code, into the addressable

memory (physical memory or, in the case of the VAX, working set) of the new

host, thus eliminating the effects of disk accesses from DB manipulations. (see

sec. 4.3.2.5)

Solution #2.3 was based on the code of Solution #1, and involved significant

changes to certain of the routines of version 1.5. The code of Solution #2.3 is

contained in version 2.5 of the DB Management routines. The routines that

under went the major changes were; WSDEL, INIT, WSMN'W; and WSPUT

(they can be found in Appendix E).

5.3.2.2 Implementation Details

As described in sec. 4.3.2.3, the solution involved the creation of a DAT FSL

which had multiple branches, each branch for DAT blocks of a particular size.

For a DAT block to be reclaimed, it would have to be large enough to

accommodate the FSL information field; the size of the block (one integer word),

and the address of the next freed DAT block of the same size in the list (two

integer words).

The branch nature of the FSL was implemented by enlarging the DAT Control

Block (DATCB) into an array large enough to accommodate the different indexes

of the various branches of the FSL (see Fig. 5.3).

5-13

Implementation and Evaluation

- 19/12/86 - maxdatBZ increased to 25
- ver 2.6

update - 19/11/86 - changed ATT cooff arround
- ver 1.5
- included implicit nODe statement

update - 12/12/86 - included parameters for DAT reclamation code
- changed value of DELMARK so as not to over

write the number of words of data
- ver. 2.4

parameter block #1 for ver. 2.5PARM15.FOR

c***
c
c
c
c Parameters for data base IIIllDagement routines to be included
c in appropriate routines.
c
c
c
c
c
c
c
c
c
c
c
c
* implicit none

integer*2 glbBz,attBz1,attsz2,datBz2,gattsz,ndw,daddr,delmark
integer*2 mindatsz ,maxdatBZ ,ldatoff ,datcbdim, topindex
integer*4 datBz1

PARAMETER (glbBZ=1408,attsz1=13,attBz2=32767,
*datBzl=520000,datBz2=O,gattBz=10,ndW=11,
*daddr=12,delmark=10,mindatBz=3,mazdatBz=25,ldatoff=2,
*datcbdim=25.topindex=24)

Note:- DATCBDIM=(mazdatBz~tBz)+3
TOPINDEX=(maxdatsz~tsz)+2

c

*

c
c
c
c
c*********************.****••*****.***.*.*••***••**••*****.*.***.*••*

•

c***•••**********.****••****••***••••*.**•••••••••••••••*•••••••**
c
c COMMON25.FOR common block #1 for Ver. °2.6
c
c Common block for data base IIIllDagement routines.
c To be INCLUDEED in appropriate routines.
c
c PARM25. FOR WST ALSO BE INCLUDED!!!!
c

integer*2 id
INTEGER.2 global,att,dat,glbcb
integer*4 attcb,datcb,datpnt,fscpnt

COMMON /dbmsO/ global(glbsz),att(attszl,attBz2),dat(datBzl), ,
.attcb(2),datcb(datcbdim),glbcb(2)

c
c****··******•••*.**••**

Fig. 5.3 Parameter and Common Block for Version 2.5.

The branch system was implemented as follows :-

- the smallest reclaimable DAT block is three integer words in SIze

(MINDATSZ = 3). Therefore the pointer to the head of the branch of the

DAT FSL which contains all the freed blocks of size 3 words, would be in

5-14

Implementation and Evaluation

the first position of the DAT Control Block array (DATCB(1)). Therefore

DATCB(4) would contain the pointer to the branch containing freed

blocks of size 6 words. Thus the pointer to the branch containing the

freed blocks of size n, would be stored in the DATCB array at position,.
DATCB(INDEX), where the INDEX would be calculated as follows :-

INDEX = (LENDAT - MINDATSZ) + 1

where LENDAT = n

MINDATSZ=3

- the most common largest sized DAT block, say of size m words

(MAXDATSZ = m), would be used to define the last index pointer

(TOPINDEX) to the last branch containing all the blocks of size m+1 and

larger.

TOPINDEX = (MAXDATSZ - MINDATSZ) + 2

where MAXDATSZ = m

MINDATSZ=3

- the las~ position in the DAT Control Block array (DATCB(TOPINDEX

+ 1)) would be used to store the last DAT entry pointer, which was the

previous use of the DATCB. Therefore the DAT Control Block array

would be dimensioned (DATCBDIM) to be TOPINDEX + 1 in length :-

DATCBDIM = (TOPINDEX + 1)

. (MAXDATSZ - MINDATSZ) + 3

As an example, consider version 2.5 where MAXDATSZ is set to be 25 :_

MAXDATSZ = 25

MINDATSZ=3

TOPINDEX = 24

DATCBDIM = 25

5-15

Implementation and Evaluation

Therefore :-

DATCB(1) - points to 3 word size branch

DATCB(2) - points to 4 word siz.e branch

DATCB(22) - points to 24 word size branch

DATCB(23) - points to 25 word size branch

DATCB(24) - points to larger than 25 word size branch

DATCB(25) - points to last DAT entry

The value of MAXDATSZ = 25 in version 2.5 was selected from the most

common largest DAT block size; which is the associated DAT block of the

Symbol Macro entity. This entity has a minimum of 22 DAT words associated

with it, and hence the selection of MAXDATSZ (22 words + 3 words extra).

TheDAT reclamation process works as follows:-

When an entity is deleted, and a DAT block of say size n words is

released, in order that that block can be reclaimed later, the freed block

must be attached to the appropriate FSL branch. To do this, the correct

DAT Control Block index must be calculated from the freed block size (n).

Once the correct index has been calculated (INDEX = (n - mindatsz) +
1), the newly freed block must be appended to the top of that particular

branch, by updating the pointer (address of the first freed block in that

branch) contained in the DAT Control Block location indicated by the

calculated index (DATCB(INDEX)). This is done by copying the pointer

from the DATCB, along with the length of the newly freed block (n), into

the FSL field of the newly freed block. The address of the of the newly

freed block is then copied into the appropriate DATCB location (see Fig.

5.4).

5-16

c

Implementation and Evaluation

c
c DAT reclamation
c - add the associated DAT block of the entity just deleted
c to the appropriate FSL w.r.t. size.
c - if size of block is smaller than the min. size, discard it.
c

lendat=att(ndw,id)
if (lendat.ge.mindatsz) then

c
ccaleulate index for data control block array/FSL header pointers
c

index=(lendat~tsz)+1
if (index.gt . topindex) then

index=topindex
endif

c
c get address of dat block
c

call getdi(addrdat,att(daddr,id))
c
c add dat block to appropriate FSL according to length
c - updating pointers appropriately
c

fslpnt=datcb(index)
datcb(index)=addrdat
call strdi(fslpnt,dat(addrdat))
dat(addrdat+ldatoff)=lendat

endif

Fig. 5.4 DAT Reclamation Process in WSDEL Version 2.5.

If n is less than the minimum required size (MINDATSZ = 3), then the

freed DAT block is considered unreclaimable and becomes a redundant

fragment (internal fragmentation). However, if n is greater than

MAXDATSZ, and hence the associated index (INDEX) is greater -than

the maximum index value (TOPINDEX), then the associated index is set

equal to the maximum (INDEX = TOPINDEX), and the freed block is

appended, in the same way as before, to the branch containing blocks of

sizes greater than the predefined maximum.

When a new entity is created, which requires an associated DAT block of

say size m, the appropriate DAT FSL branch must be searched for any

freed space. To do this, once again the associated index has to be

calculated using the required size (m). If m is smaller than MINDATSZ,

then the index is calculated as if m were equal to MINDATSZ. If the

calculated index is greater than the maximum index value (TOPINDEX),

then the index is set equal to TOPINDEX.

5-17

Implementation and Evaluation

Once the index has been calculated, the appropriate branch, pointed to by

DATCB(INDEX), can be searched for a freed block of the correct size. If

that branch of the DAT FSL is empty (ie: no freed blocks of size m),

INDEX is incremented, and the subsequent branch which holds any freed

blocks of size m+1, is searched. This process continues until either; freed

space large enough to accommodate the new DAT block is found, or the

last branch of the FSL (DATCB(TOPINDEX)) has been reached (see Fig.

5.5). When the last branch has been reached, the list of freed space

within it is searched on a First-Fit bases for space to accommodate the

new block (see Fig. 5.6). If none can be found, then unused DAT space is

allocated to the requesting entity (see Fig. 5.7).

5-18

*

*

Implementation and Evaluation

c OAT reclamation
c - check size of block required - if < mindatsz then =mindatsz
c - calculate index for datcb to start looking in correct
c FSL for freed space of correct size
c - look for freed space
c - if no freed space - allocate new space
c - if no perfect fit in lower sizes - search for fit in higher sizes
c - if no freed space large enough - allocate new space
c

rlendat=nw
if (rlendat.lt.mindatsz) then

rlendat=mindatsz
endif

index=(rlendat-mindatsz)+1
if (index. gt. topindex) then

index=topindex
endif

do 500 i=index topindex
if ((datcb(i).eq.O).and.(i.eq.topindex» then

goto 550 ! Allocate new space - no freed space
* elseif (datcb(i) .ne.O) then ! if FSL not empty

if (Leq. topindex) then ! if rlendat > maxdatsz
** search topindex FSL for first fit to accommodate
* requested data block
* - if no fit then allocate new space
* - update pointers if fit found and
* ret: ADORDAT, LENDAT

(see Fig. 5.6)

get space from FSL, update pointers, ret: ADDRDAT, LENDAT
addrdat=datcbU)
callgetdi(fslpnt,dat(addrdat»
datcb(i)=fslpnt
lendat=dat(addrdat+ldatoff)

endif

*
*

else ! if rlendat <= maxdatsz

** Check for extra space in block and update pointers approp.

(see Fig. 5.8).
endif

500 continue
c
c Allocate new space for OAT block

(see Fig. 6.7)

c Copy data into dat
c
699 do 600 i=1,nw

dat(offset+i)=data(i)
600 continue

c
c Copy dat info into att

call strdi(addrdat,att(daddr,id»
* goto 1000 ! return

Fig. 5.5 DAT Reclamation Process in WSPUT Version 2.5.

5-19

*
*
*
*
*
*
*

Implementation and Evaluation

Search topindex FSL for first fit to accommodate
requested data block

- if no fit then allocate new space
- update pointers if fit found and

ret: ADDRDAT, LENDAT

updating pointers

! if no fit found
! allocate new space

510

*

found=O
prevpntr=-1
prespntr--datcb(i)
do 510 while «prespntr.ne.O).and.(found.eq.O»

if (dat(prespntr+ldatoff) .ge.rlendat) then
found=1
addrdat=prespntr
lendat=dat(prespntr+ldateff)
call getdi(fslpnt,dat(prespntr»
if (pr~tr.eq.-1) then

datcb(i)=fslpnt
else

call strdi(fslpnt,dat(prevpntr»
endif

else
prevpntr=prespntr
call getdi(prespntr,dat(prespntr»

endif
continue
if (found.eq.O) then

goto 550
endif

Fig. 5.6 First-Fit Search of TOPINDEX Branch.

fit found

Get next data location from dat control block
test new data location if valid (<datsz1)
and if all the data will fit

- if not then error condition
- else store new address in att(id,daddr)

length of data in att(id,ndw)
update last entry pointer

c
c Allocate new space for DAT block
c
c
c
c
c
c
c
c
c
550 continue

if «datcb(datcbdim)+nw).gt.datsz1)goto 900
c* att(daddr,id)=datcb(datcbdim)+1

** Due to double vs single integer clash

*

error condition

datpnt=datcb(datcbdim)+1
datcb(datcbdim)=datcb(datcbdim)+nw ! updating last datentry pointer
offset=datcb(datcbdim)-nw ! offset: previous last entry point
addrdat=datpnt

* goto 599 copy data into DAT

Fig. 5.7 Allocation of Unused DAT Space.

5-20

Implementation and Evaluation

If a block of freed space, of say size h words, is found in one of the

branches, such that h>--m, then that block will be allocated to the

requesting entity. To do that, the appropriate DATCB pointer must be

updated. This is done by copying the address of the next freed block of

length h, which is in the FSL information field of the block that is being

reclaimed, into the appropriate DATCB location (see Fig. 5.6). If h>m,

then the excess (h-m words) can be appended to the FSL, provided

h-m>MINDATSZ, as for when an entity is deleted (see Fig. 5.8).

** Check for extra space in block and update pointersapprop.

* if (lendat.ne.nw) then ! if extra space
extra=lendat-nw
if (extra.ge.mindatsz) then ! if extra space> min size

index=(extra-mindatsz)+l ! calculate index Est
if (index. gt. topindex) then

iildex=topindex
endif
xdataddr=addrdat+nw ! start addr. for extra block
fslpnt=datcb(index)
datcb(index)=xdataddr
call strdi(fslpnt,dat(xdataddr»
dat(xdataddr+ldatoff)=ertra

endif
endif

* offset=addrdat-l
goto 599.

endif
copy data into DAT

Fig. 5.8 Recovery of Extra Space after Reallocation of OversizedDATBlock.

5.3.2.3 Testing

The same set of advanced test programs that were used to test version 1.5 were

used to test this version (TST25PRGn.TST). Thus the output from this series of

tests could be compared to the output from the testing of ver. 1.5. The tests

covered all the major routines, paying special attention to DAT reclamation. The

input was tailored in such a way as to clearly demonstrate the DAT reclamation

process, by doing repetitious insertions and deletions of different sized entities

(an example.of a test run, demonstrating the DAT reclamation process, can be
found in Appendix F).

5-21

Implementation and Evaluation

5.3.2.4 Conclusion

The tests run on the code of version 2.5 proved not only that the code was bug

free, but also that the DAT reclamation scheme worked extremely well and

succeeded in compacting the DAT portion of the DB. Furthermore, the tests

proved that ver. 2.5 was compatible with the predefined interface that the DB

Access routines had to maintain between the application code and the data in

the DB.

5.4 Evaluation of Implemented Solutions

This section contains the conclusive evaluation processes for the two selected

solutions that were chosen for final implementation. Although many

evaluations of different implementations were done along the design route, this

section contains only the evaluations for each of the two final solutions. These

evaluations were done to demonstrate the degree of success that was attained

for each solution, as well as their respective limitations, if any.

5.4.1 Solution 1 - New Host

5.4.1.1 Introduction

The areas of improvement for this solution can be divided in two :-

- decreased paging due to the reduced size of the application code, and

the increased physical memory size associated with the new VM system

which could be tuned to optimise the performance of the implementation

- the increased CPU processing speed of the new 32 bit host

For this reason, each of the two areas of improvement had to be evaluated

separately to gain a true picture of their discrete influences on the performance

of the solution. Thus the nature of the performance improvement of the new

solution could be clearly examined.

5-22

Implementation and Evaluation

5.4.1.2 Evaluation

The first area to be evaluated, was the affect of the new CPU on the

performance of the DB management routines. To insure that the effects of

paging on the performance of the test could be excluded, the test was so

designed as to ensure that all the data associated with the test case could be

accommodated within one page of the ATT and DAT arrays, respectively, on

the IDS-80. This was done by limiting the number of insertions (creation of

entities) into the DB by the test programs SMWS8 (on the HPlOOO) and

SlM8WS15 (on the VAX-11/750), which were used in the test (see Appendix G),

referred to as the SlM8 test.

The control parameters (MAXDB, CYCVAL, DELACC, MAXIN, CYCL2) of the

respective test programs were adjusted so that at the end of the

insertion/deletion phase there was 22 ATT entities and 511 words of DAT that

had been allocated, which constituted just under one page (512 words) of ATT

and DAT, respectively, in the IDS-80 implementation (referred to as GST

implementation). Thus when other DB activities were exercised, provided these

activities did not affect the size of the DB, no paging of the ATT and DAT

arrays would be necessary. Granted, the INIT routine of the GST

implementation did require a few disk accesses, however their effect on the

measurements were eliminated by ensuring that the number of repetitive

sequential searches (REPS) was always sufficiently high to swamp the effect of

INIT on the measurements.

On the VAX, the EXTENT of the process working set was set equal to a

thousand (1000) pages (process default on the present system), which also

ensured that no VM paging would be necessary for the VAX version (ver. #1.5)

of the test.

At the time the tests were run, there were no other users on either of the two

. host machines machines, therefore there were no other extraneous activities,

other than normal system activities, that could affect the assessment of the

5-23

Implementation and Evaluation

performances of the respective implementations.

The assessment was made by taking response time measurements for each

sys~em, for different numbers of repetitive sequential access to the DB (see

REPS - Appendix G), and comparing the measurements. Using these

measurements (see Fig. 5.9), the averag~ improvement, as a ratio of the inverse

of the response times, giving a ratio of speeds, was calculated. Version #1.5 was

found to run, on average, 2.5 times faster than the original GST version. The

results are clearly illustrated in the graphs of the respective response times

versus the number of repetitive sequential searches (REPS), and the ratio of the

speeds versus REPS.

* Statistical Data for 81MB Tests *
* REPS MTY GST STD MTY_1.6 STD RATIO

1000 16.8 0.2 6.7 0.0 2.6
2000 33.3 0.0 13.4 0.1 2.6
3000 49.9 0.0 20.1 0.0 2.6
4000 66.6 0.0 26.8 0.1 2.6
6000 83.1 0.0 33.6 0.0 2.6
6000 99.7 0.0 40.1 0.0 2.6
7000 116.3 0.0 46.8 0.0 2.6
8000 132.9 0.0 63.6 0.0 2:6
9000 149.6 0.0 60.2 0.1 2.6
ooסס1 166.1 0.0 66.9 0.0 2.6

Fig. 5.9 Table of results for comparative CPU test (SIM8 Test).

5-24

Implementation and Evaluation

Mean Response Time vs REPS for 51MB Tests

Ratio of Speeds vs REPS for 81MB Tests

• 200..,
c
0
u••

150

100
Gl
E....
I-

50

00

2.65

2.60

2.55

2.eo

2.4!l

2.40

2.
0

2

2

4
REPS

4
REPS

6

6

8

8

Fig. 5.10 Graphs of results for SIM8 test.

This improvement can be attributed solely to the new CPU, for the reasons as

described above, and since the results compare favorably with the results from a

similar performance test, run in paralle~, using a program (SPEED) with

embedded loops and calls to SECNDS function of VAX FORTRAN, to

"benchmark" the two machines against each other.

The moment that the quantity of data in the above test was increased such that

both the ATT and DAT arrays occupied two pages each in the GST version, the

performance of the GST version dropped to such a degree that the ratio between

the twq versions was such that version #1.5 ran 29.4 times faster. This change

was solely due to the introduction of paging, to the IDS-80 implementation, in

order to access all the data. Due to the size of the working set on the VAX (1000

pages), the increase in data had no significant effect, as there was no need for

VM paging as yet.

5-25

Implementation and Evaluation

To demonstrate the effect of paging on the performance of the respective

implementations, a number of test runs were made with ever increasing

quantities of data, on both systems. The resultant response time, as the inverse

of the performance, was plotted against the data size, depicted by the variable

MAXDB (see Appendix G) which governs the quantity of data in each test run

(see Fig. 5.11). The dramatic effect that paging has on the GST version can be

clearly seen from these graphs. Programs SMWS9 and SIM9WS15 on the

lDS-SO and VAX, respectively, were used for the test, referred to as the SIM9

test. The programs were similar'to SMWSS and SIMSWS15 (Appendix G) except

that REPS was set constant at 500, and MAXDB was incremented from 1 to 30,

with response time readings for each value of MAXDB.

Response Time vs MAXOB for SIM9 Tests

Ratio of Speeds vs MAXOB for SIM9 Tests

30

30

20

20

15
MAXOB

15
MAXOB

10

10

• ~oot
u•• 4000

3000

GI 2000E......
1000

0
0

40

30

20

10

0
0

Fig. 5.11 Graphs showing the effect of paging on the respective implementations

(SIM9 Tests),

5-26

Implementation and Evaluation

The fluctuations which appear on the Ratio graph, are in fact due the the ripple

on the GST Response Time graph, which have been amplified and superimposed

on the VAX data by the calculation of the ratio. These ripples can be attributed

to the mix of paging, and associated disk accesses, between the two data arrays

(ATT and DAT) as a result of the uneven growth pattern of the respective data,

as the simulation program increased the entity content. This "nonlinear" effect

can, in some respects, be blamed on the mass storage paging scheme

implemented by the GST code, which implemented the data arrays directly as

storage space (tracks and sectors) on the disk.

The fluctuations mentioned above, in no way detracted from the value of the

Ratio graph.

5.4.1.3 Conclusion

The results showed conclusively that the solution had successfully addressed

the problem of the restrictive page size, which resulted in excessive paging on

the GST implementation. This was clearly demonstrated in the results from the

SIM9 tests.

Furthermore, the solution also capatalised on the improved processing speed of

the the new host, which further enhanced the performance improvement

achieved by the virtual memory capabilities of the new host.

5.4.2 Solution 2.3 - DAT Free Space List

5.4.2.1 Introduction

The objective of this solution was to reduce the number of page faults during

sequential manipulation of the DB. This was done by compacting the allocated

data in the DAT array using a reallocation scheme which reclaimed discarded

space from deletions, and reallocated it when new insertions were made. Thus,

due to the compaction of the data, more allocated space (and therefore useful

data) could be accommodated per page, and therefore per working set.

5-27

Implementation and Evaluation

In order that the effectiveness of this solution could be measured, and seen in

the light of the above, the most effective method of evaluation was to monitor

the number of page faults that were generated by the respective

implementations during DB manipulations. The only measure of performance

that could be obtained was one in relation to the previous implementation,

version. #1.5. which was used as the comparative reference for all

measurements.

As mentioned earlier, the insertion/deletion activities of version #2.5 are costly,

in terms of processing time and memory space, due to the need for

administering both the ATT and DAT free space lists. Thus to measure the

effectiveness of the solution with regards to sequential operations on the DB, the

optimisation of which was its objective, the two different types of operations;

insertion/deletion and sequential, had to be distinguish between during the

measurement of results.

5.4.2.2 Evaluation

For the purposes of evaluating this solution, a collection of routines were

developed to emulate the entity creation routines in the original

implementation. These routines, along with an exercising program, were then

used to simulate normal DB activities, using test data. The simulations were

designed to cover various categories of situations that might arise during

normal utilisation, and to effectively evaluate the success of the solution in

achieving its aims. Copies of the emulation routines and the simulation

programs can be found in Appendix H.

Due to the many different parameters that could affect the performance of a

system on the VAX; such as the quantity of data, the average type of data, the

convoluted nature of the DB, the working set parameters, and more, many

different simulation runs had to be done, using different parameter values, in

order that trends could be established and examined.

5-28

Implementation and Evaluation

To gain a true impression of the solution's success, certain predictions had to be

made as to how the two implementations (versions #1.5 and #2.5) would

perform under different situations, were the situations were selected to either

demonstrate a particular point, or to represent the norm. These predictions

were then put to the test in simulation runs, and the results were then

correlated. Using this method, specific trends and situations were examined

which were representative of the solution's relative success (or otherwise) over

version #1.5.

To discuss all the simulation runs and different trends that were examined,

would be unnecessary here, however the predominating predicted trends will be

discussed, and how they compared with the simulation results. From this

discussion, the effectiveness of the solution will become clear.

DAT25
Alloco.ted DAT Ver. 2.5

DAT IStorQge
Spa.ce

I

I I

I
DAT15

Alloco.ted DAT Ver. 1.5

Fig. 5.12 Graphical representation of DAT storage space.

Fig. 5.12 is a graphical representation of the DAT storage space, after the

identical insertion/deletion operations have been executed on the DB running

under the two different versions (1.5 and 2.5) of the management routines. The

area J:1 represents the amount by which the aliocated portion of DAT storage for

version #1.5 (DAT15), exceeds that of version #2.5 (DAT25). This difference is

due to the compaction process employed by version #2.5, and the area J:1

represents the degree of space saving due to this process.

5-29

Implementation and Evaluation

The size of the area L\ is dependent on the number of deletions and reinsertions

(successful reclamations) which occur during the insertion/deletion phase. This

number, for the purposes of the simulation runs, was measured as a percentage

of the total number of entities in the DB which had been reinserted after

deletion, and referred to as PRINS (Percentage ReINSertion). It therefore follows

that the size of L\ is also dependent on the total size of the DB, TOTDB,

measured as the total number of entities in the DB after the insertion/deletion

phase of the simulation.

The area L\ can be said to have two sizes; an actual physical size, measured in

words or pages, and a relative size, measured as a percentage of DAT25 (the

allocated DAT area for ver. #2.5). Although the physical size of L\ may be quite

large, the relative size may well be quite small if DAT25 is large. The importance

of this will become clear as we proceed.

Fig. 5.13 is a graph illustrating the predicted generalised response of the two

implementations, with fixed TOTDB and PRINS, in terms of page faults (PF) as

a function of the available memory or working set size (WS). A similar response

could be expected if the WS were to be kept constant along with PRINS, and

TOTDB were reduced. For the purposes of the simulation runs, WS was varied,

by manipulating the WSEXTENT and WSQUOTA values for the process. It is

important to note that this illustration represents a general/ideal situation, in so

doing, highlighting the prominent trends and concepts.

5-30

Implementation and Evaluation

Predicted Response
Po.ge Fo.ults vs 'w'arklng Set Size

I..L.
Q..

o

A B c
'viS

D

po.ges

Fig. 5.13 Predicted system responses

The predicted graph shows that the number of page faults generated by ver.

#2.5 will decrease sooner than those generated by ver. #1.5, with increasing

working set size, for a set TOTDB and PRIN8. For values of WS below position

A, both versions are equally disadvantaged due to the small working set size,

and hence generate similar numbers of page faults. However, at position A, the

WS is large enough such that the space saving, .1, that ver. #2.5 has over #1.5,

starts having an effect on the relative performance of ver. #2.5, and its number

of page faults starts to drop off. This is due to the fact that an ever increasing

significant portion of DAT25 is accommodated within the working set at any

one time. Only at position B does the similar effect manifest itself in ver. #1.5.

The lag between points A and B, c, is due to the difference in the respective

allocated DAT storage space sizes (DAT15-DAT25); .1.

5-31

Implementation and Evaluation

At position C, the whole of DAT25 (and the ATT array, which has the effect of a

dc offset on both versions) is able to fit into the working set, and the number of

page faults settles down to zero. At position D, ver. #1.5 follows suit.

It was stated that 5 was due to .£1, however, more clearly, the size of 5 is related to

the relative size of .£1. Stated differently; the larger .£1 is with respect to DAT25,

and therefore with respect to DAT15, the sooner point A is reached, and hence

the larger 5 becomes.

It is therefore clear that those parameters that affect .£1 also affect 5, although to

a different degree. Hence TOTDB and PRINS affect the size of 5. It is important

to note that position A (and therefore the other points) moves up and down the

scale of WS with increasing and decreasing DB size (TOTDB). This therefore

poses an interesting question; how does one set the working set size to suit the

DB before the size of the DB is even known, such that the operation. of the DB

occurs in the region above position A?

Fig. 5.14 Graph of system performance SIMRUN055

5-32

Implementation and Evaluation

These predictions were confirmed by the various simulation runs that were done

to examine the trends as defined above. Fig. 5.14 is a graph drawn using results

from an actual simulation run, the shape of which seemed to confirm the

predicted response.

The graph in question was drawn using results from simulation run # 055

(SIMRUN055), for which the controlling parameters were set such that there

were 26400 entities in the DB (TOTDB), and the degree of reinsertion was 79%

(PRINS). The x coordinate value, working set size, was incremented in steps of

fifty (50) pages. The "step" in the curve for version #2.5 (dashed line) could be

attributed to the discrete nature in which the VAX/VMS working set size is

increased, due to the system parameter WSINC. However the author was unable

to conclusively attribute the discontinuity directly to anyone factor, except that

it was safe to declare that it was either due to factors internal to the VAX/VMS

paging algorithm, or due to some random phenomenon as a result of the actual

dispersion of the data within the simulated DB. Not withstanding this, the

discontinuity did not detract from the value of the results obtained, which

supported the previous predictions.

Many simulation runs were done, examining the different affects that TOTDB

and PRINS had on the actual performances, through a wide range of values,

from maxima through minima. Although the predicted trends were followed

(within reasonable bounds) an alarming fact become clear.:

the size of 6 in most cases was disappointingly small, and only became

significant for large values of TOTDB (2600 entities upward) and PRINS

(80% plus).

The simulation runs showed that for acceptable values of TOTDB that fell

within the characteristic range (obtained by examining existing parts) from

3300 to 2800 entities, and for plausible values of PRINS (between 10% and

60%), the responses of the two implementations followed each other fairly

closely, and the size of 6 appeared insignificant.

5-33

Implementation and Evaluation

5.4.2.3 Conclusion

The evaluation showed that for normal operating conditions, the amount of

space saved due to the compaetion scheme, as a percentage of the total DB size,

was so small as not to affect the performance of the sequential operations on

the DB. Especially when seen against the backdrop of the ability of VAX/VMS

to allow the system to be tuned for the allocation of large quantities of memory

to the process working set, the solution can be judged to be of little or no value

in optimising the operation of the DB.

The only concrete advantage gained by this solution was the reduction in actual

physical memory usage for the storage of the DAT array (which was also

affected by TOTDB and PRINS). However this has to been seen in the context

of the increased size of the management routines and the slower insert/delete

operations.

5-34

Conclusion

CHAPTER 6

CONCLUSION

The primary objective of the project was to enhance the performance of the IC

layout and rule checking package which was implemented as part of the

schematic drawing CAD system on the Gerber Systems Technology lDS-SO

system. This was to be done by improving the performance of the data base of

the system, as the performance of the syste~ as a whole is very closely linked

to that of the data base. This was to be achieved by following two mutually

supportive paths. The first was the transportation of the software to a new host

machine which had a 32-bit processor and virtual memory capabilities. The

second was to try and improve the performance of the transported data base

by utilising sophisticated data base structures and memory management

techniques facilitated by the larger available memory of the new host.

The transportation of the data base access routines to the new host in the form

of the VAX-ll/750, running the VAX/VMS operating system, proved to be

very successful in terms of improving system response with respect to data base

access time. Using appropriate evaluation programs which simulated

characteristic data base activities, results showed an improvement in the order

of thirty (30) to forty (40) times that of the original implementation (lDS-SO).

Of this improvement, 2.5 could be attributed to the increased processing speed of

the new 32-bit processor, the remaining improvement could be attributed to the

advantages gained by the larger available memory and the virtual memory

management of the new host.

On the other hand, further attempts to improve the performance using memory

management techniques to make better utilisation of the data base storage

space, proved unsuccessful when considered against normal acceptable operating

conditions. This was due to the overpowering influence that the new virtual

memory operating system had over the performance of the data base. This

influence was due to the ability of the VM system to be tuned to allocate large

portions of the already large available memory of the system, to the specific

6-1

Conclusion

process working set in question. Thus any attempts to improve the performance

of the data base using memory management techniques or more sophisticated

data base structures, were dwarfed by the advantages gained by having large

portions of, if not the whole, data base in physical memory when accessing it.

Seen in relative terms against the back drop of the effect of the enlarged

memory space, any attempts to improve the performance of the system using

these techniques, were of no, or very little advantage.

Seen in retrospect, it may seem to the reader that the process of trying to

implement more advanced data structures and memory management schemes

to optimise the performance of the data base, was futile and a failure. However

without this process, and these results obtained, one could not have made the

above deductions without some reasonable doubt, and thus, seen in this light, the

project was a success. The transported data base access routines on the new

host, with their associated performance improvement, and the rewarding

experience gained by the author, further contributed to the success of the

project.

6-2

References jBibliography

REFERENCES AND BIBLIOGRAPHY

Aho, Alfred v., Hopcraft, John E., Ullman, Jeffrey D. 1983.

Data Structures and Algorithms. Addison - Wesley.

de Greef, George Bo. 1984

Computer Aided Intergrated-Circuit Mask Design. MSc Eng Thesis,

Department of Electronic Engineering. University of Natal. Durban.

GAELIC.

GAELIC User Guide. Science Research Council (UK) Sept. 1980

Giloi, Wolfgang K. 1978.

Interactive Computer Graphics. Data Structures, Algorithms, Languages.

Prentice - Hall.

GST.

2D Programmer Training l%rkbook. Training Workbook 2D Applications.

Training and Education Department Gerber Systems Technology, Inc.

Howe, D.R. 1983.

Data Analysis for Data Base Design. Edward Arnold.

Kroenke, David. 1977.

Data Processing. Fundamentals, Modeling, Applications. Science Research

Association.

Lewis, T.G., Smith, M.Z. 1982.

Applying Data Structures. Second Edition. Houghton Miffiin.

Ref-1

ReferencesjBibliography

Nattrass, Henry L., Okita, Glen K. 1983.

Some Computer Aided Engineering System Design Principles. IEEE. 20th

Design Automation Conference. IEEE Computer Society Press.

Newman, William M.,Sproull, Robert F. 1973.

Principles of Interactive Computer Graphics. McGraw - Hill.

Overmars, Mark H. 1982.

The Design of Dynamic Data Structures. Springer - Verlag.

Peled, Joseph. 1982.

Simplzjied Data Structure for 'Mini-Based" Turnkey CAD System. IEEE. 19th

Design Automation Conference.

Sabin, M A. 1974.

Programming Techniques in Computer Aided Design. NCC Publications.

Shaw, Alan C. 1974.

The Logical Design of Operating Systems.Prentice - Hall.

Stone, Harold S. 1972.

Introduction to Computer Organisation and Data Structures. McGraw - Hill.

VAX PM. 1986.

Guide to VAXjVMS Performance Management l!ersion 4.4. Digital Equipment
Corporation

Walker, B.S., Gurd, J.R., Drawneek, E.A. 1975.

Interactive Computer Graphics. Computer Systems Engineering Series.
Edward Arnold.

Ref-2

Wiederhold, Gio. 1977.

Database Des£gn. McGraw - Hill.

Ref-3

References/Bibliography

Appendix A

APPENDIX A

GST High Level Data Base Access Routines.

This appendix contains printouts of the original code as implemented on the

HPIOOO. The following routines are included:-

INIT

WSOPN

WSGET

WSDEL

WSPUT

WSDUP

WSMOD

WSMNW

WSSEQ

•

A-I

Appendix A

FTN4
SUBROUTINE INIT(LU)

C
C PURPOSE---INITITIALIZE THE GRAPHIC DATA BASE MANAGEMENT SYSTEM
C
C INPUT:LU-IORKING PART STORAGE LOGICAL UNIT NO.
C

COMMON /DBMS1/ISIZE,LUIS,NTRACK
C
C SET WORKING PART STORAGE LOGICAL UNIT NO.

LUWS=LU
C SET ATTRIBUTE FIELD LENGTH

ISIZE=10
C SET MAXIMUM NO. OF TRACKS IN "LUWS·

NTRACK=252
C SET NO. OF TRACKS FOR ·GLOBAL" ARRAY

NT1=2
C SET NO. OF TRACKS FOR "ATT" ARRAY

NT2=100
C SET NO. OF TRACKS FOR "DAT" ARRAY

NT3=150
C INITIALIZE CONTORL BLOCKS IN "GLOBAL",·ATTW AND "DAT"

CALL ISOPN(LUIS,NT1,NT2,NT3)
RETURN
END
END$

A-2

Appendix A

FTN4
SUBROUTINE ISOPN(LU,NT1,NT2,NT3)

PURPOSE---OPEN 10RKING PART STORAGE, INITIALIZE CONTROL BLOCKS
C
C
C
C
C
C
C
C

INPUT:LU-LOGICAL UNIT HO. OF MASS
NT1-NO. OF TRACKS ALLOCATED
NT2-
NT3-

STORAGE DEVICE
TO ARRAY "GLOBAL"

"ATT"
"DAT"

C

INTEGER LU,NT1,NT2,NT3
INTEGER GLOBAL,ATT,DAT
COMMON/DBMSO/GLOBAL(138),ATT(522),DAT(S22)
INT.EGER START(2)
DATA IP1,IP2,IP3,IP4/1,4,4,4/

START(1)=1
START(2)=LU

C
C INIT. GLOBAL ARRAY

NPAGE=NT1*.48/IP1
CALL DBINZ(GLOBAL,IP1,NPAGE,START)

C
C INIT.ATT ARRAY

START=START+NT1
NPAGE=NT2*48/1P2
CALL DBINZ(ATT,IP2,NPAGE,START)

C
C INIT . DATARRAY

START=START+NT2
NPAGE=NT3*48/IP3
CALL DBINZ(DAT,IP2,HPAGE,START)

C

RETURN
END
END$

A-3

Appendix A

FTN4
C* 02.02.09.44.C2.0002 JILL HEBERT 9 09/06/83

SUBROUTINE ISGET(ID,GATT,NI,DATA,MODE,COUNT,START),
* 02.02.09.44.C2.0002

C
C Purpose: Retrieve entity's data
C
C Modified: make time faster! Reduce the calls to DBGET from 3 ~o 2
C jah 8-17-83
C INPUT:
C ID-ENTITY'S IDENTIFIER
C ' MODE-SlIT CH, MODE=1 GET ONLY GENERAL ATTRIBUTE DATA
C MODE=2 GET ONLY VARIABLE LENGTH DATA
C MODE=3 GET BOTH
C COUNT-DATA ARRAY lORD COUNT,IF=O GET ALL DATA
C START-FIRST WORD TO GET IN DATA ARRAY, IF COUNf=O THIS
C PARAMETER IS DISREGARDED
C OUTPUT:
C GATT-GENERAL ATTRIBUTE ARRAY
C NI-LENGTH OF VARIABLE LENGTH DATA,(IILL RETURN FOR ALL MODES)
C DATA-VARIABLE LENGTH DATA ARRAY
C
C************HOTE: FOR A DELETED ENTI'TYHI=-1
C FOR END OF DATA BASE ID=-1
C

INTEGER GATT(l) ,DATA(1) ,LOCAL(13) ,COUNT ,ST'ART
INTEGER INDX(2),ADRS(2)
EQUIVALEHCE (ADRS,LOCAL(12»
INTEGER GLOBAL,ATT,DAT,LIST,ISLU
COMMON/DBMSO/GLOBAL(13S),ATT(522),DAT(522)
COMMON/DBMS1/ISIZE,WSLU,HTRACK

C
C»Calculate address from id
C

IF(ID.LE.O) NI=-l
IF(ID.LE.O) GO TO 9S
RIHDX=FLOAT(ID-1)*(ISIZE+3)
INDX=RIHDX/128
INDX(2)=RINDX-INDX*~28.0+1

C

C»Check if indx is out of limit
C

IF(ICOMP(IHDX,ATT(9».EQ.1) GOTD 98
C

C»Get addres and size for the Rdat R array, (stored in Rdat R array
C following the general attribute data)
C

CALL DBGET(ATT,INDX,ISIZE+3,LOCAL)
NI=LOCAL(ISIZE+l)

C

C»Check for deleted entity

A-4

C
IF(HI.EQ.-l) GOTO 99

C
C»Check for wrong Rmode ft

C
IF(UODE.LT.l.0R.UODE.GT.3) GOTO gg
GOTO(1,2,1),UODE

Appendix A

CALL MOVI(ISIZE,LOCAL,GATT)
IF (MODE.EQ.l) GOTO gg
IF(HI.EQ.O) ~OTO gg

length data

C
C»Get general attribute
C

1

2
C
C»Get variable
C

data

NI1=NI
IF(COUNT.LE.O) GOTO 4
NI1=COUNT
U=HI-START+1
IF(Hl1.GT.U)Hl1=U
CALL rHCR(ADRS,START~l)

4 CALL DBGET(DAT,ADRS,HI1,DATA)
GOTO gg

C
9S 1D=-1
gg RETURN

EHD

A-5

FTN4
SUBROUTINE ISDEL(ID)

C
C PURPOSE---DELETE AN ENTITY
C

INTEGER INDX(2)
C

INTEGER GLOBAL,ATT,DAT,LIST,~SLU

COMMON/DBMSO/GLOBAL(138), ATT (5.22), DAT (522)
COMMON/DBMS1/ISIZE,iSLU,NTRACK

C
DATA IDEL/-l/

C
IF(ID.LT.l)GOTO ggg

C CALCULATE ADDRESS FROM ID
RINDX=FLOAT(ID-l)*(ISIZE+3)
INDXbRINDX!128
INDX(2)=RINDX-IND'X*128. +1.1

C RELEASE BLOACK IN -"ATT" ARRAY
CALL DBRLS(ATT,INDX,ISIZE+3)

C PUT "DELETED" MARK IN BLOC-K
CALL INCR(INDX,ISIZE)
CALL DBPUT(ATT,INDX,l,IDEL)

ggg CONTINUE
RETURN
END
END$

A-6

Appendix A

Appendix A

FTN4
SUBROUTINE ISPUT(ID,GATT,NW,DATA)

C
C PURPOSE--STORE AN ENTITY
C
C INPUT:
C GATT~GENERAL ATTRIBUTE ARRAY
C NI-LENGTH OF VARIABLE LENGTH DATA
C DATA-VARIABLE LENGTH DATA ARRAY
C OUTPUT:
C ID-ENTITY IDENTIFIER, IF ID=-l ---ERROR CONDITION
C

INTEGER GATT(l),DATA(l)
INTEGER LOCAL(3),ADRS(2),INDX(2)

C
INTEGER GLOBAL,ATT,DAT,LIST,ISLU
COMMON/DBMSO/GLOBAL(138),ATT(522),DAT(622)
COMMON/DBMS1/ISIZE,ISLU,HTRACK

C
EQUIVALENCE (LOCAL(2),ADRS)

C
IF(NI.LT.O)GOTO ~8

C GET FREE BLOCK IN "ATT" ARR'AY
ISIZE3=ISIZE+3
CALL DBASN(ATT,INDX,ISIZE3,IFLAG)
IF(IFLAG.LT.O)GOTO 98

C CALCULATE ID NUMBER FROM BLOCK ADDRESS
RINDX~INDX*128.+IHDXt2)

ID=RINDX/ISIZE3+1.1
C STORE GENERAL ATTRIBUTE DATA IN "ATT" ARRAY

CALL DBPUT(ATT,INDX,ISIZE,GATT)
LOCAL(l)=HI
CALL MOVI(2,DAT(9),ADRS)
CALL IN~R(ADRS,l)

CALL INCR(INDX,rSIZE)
C STORE ADDRESS AND DATA LENGTH IN "ATT" ARRAY

CALL DBPUT(ATT,INDX,3,LO~AL)

IF(NI.EQ.O)GOTO 99
C STORE VARIABLE LENGTH DATA IN "DAT" ARRAY

CALL DBPUT(DAT,ADRS,NI,DATA)
C INCRENENT FREE SPACE POINTER OF "DAT" ARRAY

CALL INCR(DAT(9),NI)
GOTO 99

98 CONTINUE
C ERROR CONDITION

ID=-l
99 CONTINUE

RETURN
END

A-7

FTH4,L
SUBROUTINE ISDUP(ID,ID1),C2.80.06.0014

C-------------
C THIS ROUTINE IILL DUPLICATE ENTITY "ID" AND CREATE A
C NEI ENTITY "ID1". IT RETURNS "ID1" TO THE CALLER.
C-----------------

INTEGER ATT(10),DATA(t28)
IF(ID.LT.l) GO TO 99
IST&=l
CALL ISGET(ID,ATT,NI,DATA,3,128,ISTR)
CALL ISPUT(ID1,ATT,NW,DATA)
K=128

1 ISTR=ISTR+128
IC=NW-K
IF(IC.LE.128) GO TO 3
K=K+128
CALL ISGET(ID,ATT,NW,DATA,2,128,ISTR)
CALL ISMOD(ID1,ATT,Hi,DATA,2,128,ISTR)
GO TO 1

3 CALL ISGET(ID,ATT,Ni,DATA,2,IC,ISTR)
CALL ISMOD(ID1,ATT,Ni,DATA,2,IC,IS~R)

99 RETU·RN
END
END$

A-8

Appendix A

Appendix A

FTN4
SUBROUTINE ISMOD(ID,GATT,NI,DATA,MODE,COUNT,START)

C
C PURPOSE-MODIFY ENTITY'S DATA
C
C INPUT:
C ID-ENTITY'S IDENTIFIER
C MODE-SWITCH. MODE=1 MODIFY ONLY GENERAL ATTRIBUTE DATA
C MODE=2 MODIFY ONLY VARIABLE LENGTH DATA
C MODE='3 MODIFY BOTH
C COUNT-DATA ARRAY lORD COUNT.IF=O MODIFY ALL DATA
C START-FIRST lORD TO MODIFY IN DATA ARRAY, IF COUNT=O THIS
C PARAMETER IS DISREGARDED
C GATT-GENERAL ATTRIBUTE ARRAY
C NI-LENGTH OF VARIABLE LENGTH DATA
C DATA-VARIABLE LENGTH DATA ARRAY
C

INTEGER GATT(1).DATA(1),LOCAL(3),COUNT,START
INTEGERINDX(2), ADRS (2), INDX1 (2)
EQUIVALENCE (LOCAL,NWO).(ADRS,LOCAL(2»
INTEGER GLOBAL,ATT,DAT,LIST,ISLU
COMMON/DBMSO/GLOBAL(138),ATT(522),DAT(&22)
COIUlON/DBMS1/ISIZE, I.SLU, NTRACK

C
C CALCULATE ADDRES FROM ID

RINDX=FLOAT(ID-1)*(ISIZE+3)
INDX=RINDX/128
INDX(2)=RINDX-lNDX*t.28.0+1.1
CALL KOVIC2,INDX,INDX1)
CALL INCR(INDX.1.ISIZE)

C GET ADDRES AND SIZE FOR THE wDATw ARRAY, (STORED IN wATTw ARRAY
C FOLLOWING THE GENERAL ATTRIBUTE DATA)

CALL DBGET(ATT,INDX1,3,LOCAL)
C CHECK FOR DELETED ENTITY

IF(NIO.EQ.-1)GOTO 98
C CHECK FORIRONG wKODE'w

IF(~ODE.LT.1.0R.MODE.GT.3)G~TO 99
GOTO(1,2,2),KODE

1 CONTUUE
C MODIFY GENERAL ATTRIBUTE DATA

CALL DBPUT(ATT,INDX,ISIZE.GATT)
GOTO 99

2 CONTINUE
IF(NI.LE.O)GOTO 3

C CHANGE IN NI
IF(NI.NE.NIO)CALL ~SMNW(NI,INDX1,NIO,ADRS)

C MODIFY VARIABLE LENGTH DATA
NI1=NI
IF(COUNT.LE.O)GOTO 4
NI1=COUNT
M=NI-START+1

A-9

IF(NW1.GT.M)NW1=M
CALL INCR(ADRS,START-l)

4 CONTINUE
CALL DBPUT(DAT,ADRS,NW1,DATA)

3 CONTINUE
IF(MODE.EQ.3)GOTO 1
GOTO 99

98 ID=-t
99 CONTINUE

RETURN
END
END$

A-IQ

Appendix A

3 07/23/84

Appendix A

FTN4
C* 02.03.03.52.C2.0009 ALAN COHEN

SUBROUTINE ISMNi(NW,IHDX,NWO,ADRS)
C
C PURPOSE---MODIFY VARIABLE DATA LENGTH
C
C IHPUT:HI-NEI DATA LENGTH
C INDX-ADDRESS IN ATT ARRAY WHERE DATA LENGTH IS STORED
C NiO-OLD DATA LENGTH
C ADRS-ADDRESS OF DATA IN DAT ARRAY
C
C
C FIXED THE MODIFICATION OF NI BY SAVING THE ADRS OFF.
C ABC 2-20-84.
C

INTEGER Ni,INDX(1),NIO,ADRS(1),ADRS1(2),ADRS2(2)
INTEGER GLOBAL,ATT,~AT,LIST,iSLU,BUFF

COMMON/DBMSO/GLOBAL(L38),ATT(522),DAT(522)
COMMOH/DBMS1/ISI'ZE,iSLU,HTRACK
COMMOH/DBMSJ/BUFF(128)

C
C CHAHGE DATA LEHGTH

C'ALL DBPUT (ATT , lNDX, 1 , Hi)
C IF NEI LENGTH IS HOT LARGER--->TERYIHAT,E

IF(NI.LE.NWO}GOT0999
C GET HEi ADDRES FOR DATA

CALL MOVI(2,DAT(9),ADRS1)
CALL INCR (AD'RS.1, 1)
CALL IHCR(DAT(~),HI)

CALL INCR(INDX,l)
CALL DBPUT(ATT,INDX,2,ADRS1)
CALL MOVI(2,ADRS1,ADRS2)

C CALCULATE HO. OF FULL BUFFERS TO MOVE
HBUFF=HlO/128
IREM=HI0-NBUFF*128

C IF LESS THEN 1
IF(HBUFF.LT.l)GOTO 2
DO 10 J=l,HBUFF
CALL DB~ET(DAT,ADRS~128,BUFF)

CALL INCR(ADRS~L28)

CALL DBPUT(DAT,ADRS1,128,BUFF)
CALL INCR(ADRS1,128)

10 CONTINUE
C MOVE LAST BUFFER

2 CONTINUE
CALL DBGET(DAT,ADRS,IREM,BUFF)
CALL DBPUT(DAT,ADRS1,IREM,BUFF)
CALL MOVI(2,ADRS2,ADRS)

C UPDATE DAT ARRAY ADDRES
ggg CONTINUE

RETURN

A-ll

Appendix A

FTN4
SUBROUTINE ISSEQ(ID,GATT,NKEY,MASK,VALUE)

C
C PURPOSE---SEQUENCE THE MODEL AND GET NEXT ENTITY THAT MATCHES
C THE "MASK" AND "VALUE" ARRAYS
C
C INPUT:
C ID-LAST ENTITY FOUND (PREVIOUS CALL)
C NKEY-NO. OF SEARCH KEYS
C MASK-USED TO MASK THE ENTITIY'S KEY ATTRIBUTES
C VALUE-COMPARED TO THE ENTITIES MASKED KEYS
C OUTPUT:
C ID-NEXT ENTITY TAHAT COMPLIES, ID=O SIGNALS END OF SEQUENCE
C GATT-GENERAL ATTRIBUTE DATA
C

INTEGER MASK(l).VALUE(l),GATT(l),NKEY
INTEGER INDX(2),NIORD

C
INTEGER GLOBAL,ATT,DAT,LIST,ISLU
COMMON!DBMSO!GLOBAL(138),ATT(522),DAT(522)
COMMON!DBMS1!ISIZE,ISLU,NTRACK

C
IF(ID.LT.O)GOTO 999

1 . CONTINUE
ID=ID+-l

C CALCULATE ADD RES FROM ID
RINDX=FLOAT(ID-l)*(ISIZE+-3)
IHDX=RINDX!128
IHDX(2)=RINDX-IHDX*128.0+-1

C CHECK FOR LAST ENTITY
IF(ICOMP(INDX,ATT(9».EQ.-l)GOTO 2
ID=O
GOTO 999

2 CONTlNUE
C CHECK ENTITY DELETE FLAG

CALL INCR(INDX,ISIZE)
CALL DBGET(ATT,INDX,l,NIORD)
IF(NIORD.EQ.-l)GOTO 1

C GET GENERAL ATTRIBUTE DATA
CALL INCR(INDX,-ISIZE)
CALL DBGET(ATT,INDX,ISIZE,GATT)

C TEST SEARCH KEYS OF ENTITY
IF(NKEY.LE.O.OR.NKEY.GT.ISIZE)GOTO 999

C
DOlO J=l,NKEY
M=IAND(MASK(J),GATT(J»
IF(M.NE.VALUE(J»GOTO 1

10 CONTINUE
C

999 CONTINUE
RETURN

A-12

Appendix B

APPENDIXB

Data Base Access Routines Version 1.5.

This appendix contains printouts of Version 1.5 of the solution code as

implemented on the VAX-ll/750. The Parameter and Common blocks, to be

INCLUDED in to the different routines, are listed along with the following

routines:-

INIT

WSGET

WSDEL

WSPUT

WSDUP

WSMOD

WSMNW

WSSEQ

Also included are the new routines; GETDI, STRDI, MOVI, which are called by

some of the above.

B-1

c***
c

parameter block #1 for ver. 1.5PARM15.FORc
c
c Parameter8 for data ba8e management routine8 to be included
c in appropriate routine8.
c
c update - 19/11/86 - changed ATT coeff around
c - ver 1.5
c - included implicit none 8tatement

*
implicit none

*
integer*2 glb8z,att8z1,dat8z2,gatt8z,ndw,daddr,delmark,datcbdim
integer*2 att8z2
integer*4 dat8z1

c
PARAMETER (glb8z=1408,att8z1=13,att8z2=32767,

*dat8z1=520000,dat8z2=O,gatt8z=10,ndw=11,
*daddr=12,delmark=11)

c
*********************~**~****.*~**

B-2

;

Appendix B

c***
c

common block #1 for Ver. 1.5COMMON15.FORc
c
c Common block for data base management routines.
c To be INCLUDED in appropriate routines.
c
c PARM15.FOR MUST ALSO BE INCLUDED!!!!
c
c
c

integer*2 id
INTEGER*2 global,att,dat,glbcb
integer*4 attcb,datcb,datpnt,fscpnt

*
COMMON /dbmsO/ global(glbsz), att (attsz1, attsz2), dat (datsz1),

*attcb(2),datcb(2),glbcb(2)

*
c

c******* ************************ *****.* *** ************.* ***•••.••'•••'.

B-3

Appendix B

SUBROUTINE init
c**
c
c Routine Name:-INIT
c
c Purpose:- To initialise control blocks of data base arrays.
c
eVersion #. 1.6
c
c Input:
c
c Output:
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - CB(1) = free space poin"ter
c CB(2) = last entry pointer
c - uses common block #1 ver 1.6
c and parm16
c
c***

c
c Include parameter and common block #1
c

INCLUDE 'parm16.for/list'
INCLUDE 'common16.for/list'

c
c Initialise control blocks
c

attcb(1)=O
attcb(2)=O
datcb(1)=O
datcb(2)=O
glbcb(1)=O
glbcb(2)=O

free space chain for att
last entry pointer for att

I
not used yet
last entry pointer for dat
not used yet
last entry pointer for gIb

d

d writre(1,'(" cb init. complete. ")')
d

RETURN
end

B-4

Fixed input and output specs. and fulfilled them
properly wrt NW => ver. 1.2

Appendix B

SUBROUTINE wsget(id,gatt,nw,data,mode,count,start)
c**
c
c Routine Name:- WSGET
c
c Purpose:- Sub. WSGET retrieves an entity's da~a

c
c Version # 1.5
c
c Input:
c
c =>
c id= id of entity required
c = -1 iff out of range (when returned)
c - ie. end of data in DB
c mode= switch ->1 = gatt only
c 2 = dat only
c 3 = bo~h

c count= # of data words required
c iff =0 then get all da~a

c start= first word in data array to be fetched
c ignored if count =0
c
c
c Output:-
c gatt= general a~t. array
c nw= length of variable length data
c = -1 iff id<=O
c = -1 iff entity is deleted
c data= array in which data is returned
c
c Externals:- GETDI
c
c Programers Name:-Pe~er Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - follows original explicitly
c - uses common block #1
c - NB- GATT to be dimensioned externally
c
c Update:- 4/10/86
c
c

c - 19/11/86- Changed order of ATT coefficients => ver 1.5
c - included implicit none
c - included call to GETDI

c***
c

c Set up parameters and common block
c

B-5

Appendix B

INCLUDE 'parm15.for/list'
INCLUDE 'common15.for/list'

c
c Set up variables
c

integer*2 gatt(*),data(*),mode,nw,i,nwd,count,start,max
integer*4 ndataddr,k

*
nw=O

c
c Test id if within end of data stored limit
c if not set id=-l and RETURN
c

if (id.gt.attcb(2))then
id=-l
gotol000

endif
c
* Test f~r illogical ID value
* - ID <= 0

*
if (id.le.O) then

id=l
nw=-l
goto 1000

endif

*
c Test for deleted entity
c it att(delmark) = -1
c nw=-l
c goto RETURN ******_**.**.
c

if (att(delmark,id).eq.-l) then
nw=-l
goto 1000

endif
c
c No. of data words
c

nw=att(ndw,id)
c

c Test mode switch for validity and react to setting
c goto RETURN if invalid
c

if((mode.lt.l).or.(mode.gt.3» goto 1000
goto (100,200,100),mode

c
100 continue

c
c Get general att. data
c

do 110 i=l,gattsz

B-6

Appendix B

- gatt(i)=att(i,id)
110 continue

c
c Only att or all ?
c

if (mode.eq.l) goto 1000
c

200 continue
c
c Get variable length data from dat.
c

if (att(ndw,id).eq.O) gotol000
c

RETURN if no assoc. dat.

nwd=nw
• ndataddr=att(daddr,id)

•
• Due to double vs single imteger clash
• need to use sub. GETDI to get double integer from
• single integer array

•
call getdi(datpnt,att(daddr,id»
ndataddr=datpnt

•
c

if (count.le.O) goto 210 get all the assoc dat.

210

nwd=count
ndataddr=(start-l)+ndataddr
max=nw-start+l
if (nwd.gt.max) nwd=max
continue

get only
set data

! max. data
! read max

specified d,ata
start address
~hat can be read
if req. > max

c
c Test for nwd<=O so that no data is read
c

if(nwd.le.O)goto 1000
c
c Get specified data from dat.
c

do 220 i=l,nwd
k=(i-l)+ndataddr
data(i)=dat(k)

220 continue
c

1000 RETURN
end

B-7

Appendix B

SUBROUTINE wsdel(id)
c**
c
c Routine Name:- ISDEL
c
c Purpose:- Deletes an entity given the ID of the entity.

c
c Version # :- 1.5
c
c Input:- ID second coef. of att address, identifies particular
c entity entry exclusively.
c
c Output:
c
c Externals :- STRDI
c
c Programers Name:- Peter Figg
c
c Remarks:-

- base machine = (VAX/QOOO) VAX
- language std = (F77/F66) F66
- thi·s ver. follows old exactly
- operation results in :=

att(id,1)=attsz2
att(id,.2)=free space chain
att(id,delmark)=deleted mark (-1)

- uses common block #1
- routine uses parm. delmark for location of deleted mark

c
c
c
c
c
c
c
c
c
c
c UPDATE. 1Q/11/86
c Version 1.5

- coordinates of ATT changed around
- att(1,id)~attsz1

att(2,id)=free space chain
att(delmark,id)= deleted mark

uses common15 and parm15
include implicit none statement
included call toSTRDI to store FSCPNT into
ATT array, due to Double Integer clash.

c
c
c
c
c
c
c
c
c

c**********************~*************************************-**

c
c Include parameters and common block
c

INCLUDE 'parm16.for/list'
INCLUDE 'common15.for/list'

c
c Test for valid ID
c

if «id.lt.1).or.(id.gt.attsz2» goto QOO
c

att(1,id)=attsz1

B-8

Appendix B

c
c Up date freespace chain
c

! old pointer stored in free space chainatt(2,id)=attcb(1)*
** Due to clash with 40uble integers vs single integers
* call to STRDI required to store free space chain pointer FSCPNT

*
fscpnt=attcb(l)
call strdi(fscpnt,att(2,id»

*
attcb(l)=id ! new pointer stored in control block

c
c Put deleted mark into entry (space #delmark)
c

att(delmark,id)=-l
c

goto 1000
c
c Error handling
c

900 continue
c

1000 RETURN
end

..

B-9

Appendix B

SUBROUTINE wsput(id,gatt,nw,data)
c**
c
c Routine Name:- ISPUT
c
c Purpose:- Store an entity
c
c Version # :- 1.5
c
c Input:- gatt- general attribute array
c nw- length of variable length data
c data- variable length data array
c
c Output:- id- entity identifier
c iff id=-l ... error condition
c
c Externals:- STaDI
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - uses common block #1
c - follows original version explisitely
c ****- - NB dat overflow error check is a new addition **--****
c iff overflow then error condition id=-1
c
c update- 19/11/86 - changed ATT coeff around
c - ver. 1.5
c - included implicit none
c - included call STRDI
c
c***********-**************~***************-***************~****

c
c Declare input arrays and include parameters and common block #1
c

INCLUDE'parm15.for/list'
INCLUDE'common15.for/list'
integer*2 gatt(*),data(*),nw,i
integer*4 off'set

c
c Test nw for error condition if! nw<O then return
c with id=-1
c

if (nw.lt.O) goto 900 error condition
c
c Get free block in att array
c
c Test free space pointer for availiable address
c - attcb(1)=0 => no free space chain
c => then try at end of last entry

B-IO

Appendix B

c
if (attcb(1).eq.O) goto 200 see last entry

c
c Address found in free space chain
c - assign new address to id and update free space chain
c

id=attcb(1)
* attcb(1)=att(2,id)

*
* Due to double vs single integer clash

*
call getdi(fscpnt.att(2,id»
attcb(1)=fscpnt

*
goto 300 goto store gatt into att

c
c Test for free space after last entry
c - iff attcb(2»=attsz1 then no space - error
c

200 if (attcb(2).ge.attsz2) goto 900 error condition
c
c Space found ~tend of last entry
c - assign new address to id and update last entry po.inter
c

id=attcb(2)+1
attcb(2)=id

c
c Store gatt into att
c

300 do 400 i=1.gattsz
att (i. id)=gatt (i)

400 continue

gattsz=size of gatt array (10)*****

c
c Get next data location from dat control block
c test new data location if valid «dats~1)

c and if all the data will fit
c - if not then error condition
c - else store new address in att(id,daddr)
c length of data in att(id,ndw)
c update last entry pointer
c

if «datcb(2)+nw).gt.datsz1)goto 900
c
* att(daddr.id)=datcb(2)+1

*
* Due to double vs single integer clash

*
datpnt=datcb(2)+1
call strdi(datpnt,att(daddr.id»

*
att(ndw,id)=nw
datcb(2)=datcb(2)+nw

B-ll

error condition

Appendix B

c
c If nw (length of data)=O then return
c else store data into dat
c

if (nw.eq.O) goto 1000
c

offset=datcb(2)-nw
do 500 i=l,nw

dat(offset+i)=data(i)
500 continue

goto 1000
c
c Error condition set id=-l
c

900 id=-1
c

1000 RETURN
end

return

offset= previous last entry point

return

B-12

1.60

..
Externals:- wsget,wsput,w~mod

Output:- idl of duplicate copy

Appendix B

SUBROUTINE wsdup(id,idl)

c ••••• •• •••••••••••
c
c Routine Name:- 'SDUP
c
c Purpose:- To duplicate entities
c
c Version #
c
c Input:- id of entity to be duplicated
c
c
c
c
c
c Description:- This routine duplicates 'entity Rid R and
c creates a new entity Ridl R. It returns
c Ridl R to the c·all·er.
c The routine uses a brut force method
c of loading in the associated var.iabl'e
c length data, in 128 word bloc,k's.
c
c Progr,amers Name: - Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - exact copy of original routi.n,e
c - requires parameter include file #1
c
c update -19/11/86 - changed ATT coeff arround
c - ver. 1.6
c - included implicit none statement
c

c··· .
c
c Include parameter file #1
c

include 'parm16.for/list'
c

integer.2 gatt(gattsz),data(128),blksz,nw,istart,k,irem
integer.2 id,idl !OCQCCCCCCCCCCCCCCCCCCCCC

c
c Test for error on id
c

if (id.lt.l) goto 900
c
c

error condition goto return
why not set idl= -1 as error flag?

c Set start flag to one, and pick up first 128 word block of
c variable length data, allong with the associated gatt.
c

blksz=128 set block size •••••••••••••••••••••••••••••

B-13

Appendix B

istart=l
CALL wsget(id.gatt,nw,data,3,blksz.istart)

c
c How store in new entity, returning new idl
c

CALL wsput(idl.gatt,nw.data)
c
c Test to see if a further block of data need be picked up
c

k=blkliz
100 istart=istart+blksz

irem=nw-k

of words picked up

remainder of data
c
c Test if remainder is less than -
c - 1 => goto return
c - blksz => goto 200 (last load)
c

if (irem.lt.l) goto 1000
if (irem.lt.blksz) goto 200

return
last fetch

c
c Pick up next block of data • incrimenting the # of words
c picked up counter by the block size.
c

k=k+blksz
CALL wsget(id.gatt.nw,data,2,blksz.istart)

c
c Add data to the variable length data of new enti~y

c
CALL wsmod(idl,gatt,nw,data,2,blksz,istart)

c
goto 100 ! more data to be picked up 11

c
c Last bit of data to be picked up (remainder)
c

200 CALL wsget(id.gatt,nw.data,2,irem,istart)
c
c Add to new entity
c

CALL wsmod(idl,gatt.nw,data,2,irem.istart)
c

c
900 continue ! error condition 111 ••••••••••••••••••••

1000 RETURN
end

B-14

- uses common block #1
- NB- GATT to be dimensioned' externally
- uses delmarkparm

Appendix B

SUBROUTINE wsmod(id,gatt,nw,data,mode,count,start)
c**
c
c Routine Name:- ISUOD
c
c Purpose:- Sub. ISUOD modifies an entity's data
c
c Version # 1.5
c
c Input:
c
c =>
c id= id of entity required
c = -1 iff out of range (when returned) ***********111111
c - ie.end of data in DB
c mode= switch ->1 = gatt only
c 2 = dat only
c 3 = both
c count= # of data words to be modified (len. of data array)
c iff =0 then modify all data
c start= first word in data array to be fetched
c ignored if count =0
c gatt= general att. array
c nw= length of variab1e length data
c data= variable length data array
c
c Externals:- GETDI
c
c
c Programers Name:-Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - follows original explicitly exept
c !!!!!!! the call to wsmnw, where INDX is replaced I!! !!!!!!
c !! ! ! ! ! ! by ID. ! ! ! ! ! ! ! ! !
c
c
c
c
c Update - 6/10/86 - test of ID for out of range
c - mod. of test for call to wsmnw
c - mod. of calling sequence ~or wsmnw to
c exclude ndataddr parameter
c Vl.2
c
c
c
c
c
c

-19/11/86 - changed ATT coeff around
- ver. 1. 5
- included implicit none
- included call to GETDI
- changed the place of getting ndataddr

B-15

c to after the call to 18MRI

Appendix B

c
c***
c
c Set up parameters and common block
c

INCLUDE 'parm15.for/list'
INCLUDE 'common15.for/list'

c
c Set up var~ables

c
integer*2 gatt(*),data(*),count,start
integer*2 mode,nw,nwd,max,i,nwmd
~nteger*4 ndataddr,k

c
c Test id if within end of data stored limit
c if not set id=-1 and RETURN
c

if (id.gt.attcb(2))then
id=-1
goto1000

endif
c
c Test for deleted entity
c if att(delmark) = -1 error state goto error
c

?
?

! ?????
! ?????
! ?????
! ?????

** ***.** ******

if (att(delmark,id).eq.-1) goto 900 !*******************
c
c Test mode switch for ~alidity and react to setting
c goto RETURN if invalid
c

if«mode.lt.1).or.(mode.gt.3» goto 1000
goto (100,200,200),mode

c
100 continue

c
c Modify general attribute data, store gatt into att(id)
c

do 110 i=1,gattsz
att(i,id)=gatt(i)

110 continue
c
c Now return
c

goto 1000
c

200 continue
c

c Modify variable length data .
c - test length of variable len. data
c

if (nw.le.O) goto300 if no assoc. dat.

B-16

Appendix B

c
c Test to see if mod. requires different length of dat.
c if so call dat. modify routine
c

nwd=att(ndw.id) ! # of words of old data
if (nw.gt.nwd) call wsmnw(nw,id,nwd)

c
c Is this the correct place to continue from after routine call 11111
* ndataddr=att(daddr,id) ! start address of old data

** Due to double vs single integer

*
call getdi(datpnt.att(daddr,id»
ndataddr=datpnt

c
c Modify variable length data
c

nwmd=nw ! nwmd= # of dat words to be ~odified

if (count.le.O) goto 210 ! modify all the assoc dat.
c

nwmd=count
ndataddr=(start-l)+ndataddr
max=nw-start+l
if (nwmd.gt.max) nwmd=max

210 continue

modify only specified d·a.t.a
set data start address
max. data that can be mod:ified
1I0dify max if req. > max

c
c Test for nwmd<=O if so don't modify any data
c

if (nwmd.le.O) goto 300
c
c Modify specified data froll dat.
c

do 220 i=l,nwmd
k=(i-l)+ndataddr
dat(k)=data(i)

220 continue
c

300 continue
c
c Modify all or just dat. 17
c

if (mode.eq.3) goto 100
goto 1000

c
900 continue

c
c Error condition
c

id=-l
c

1000 RETURN
end

B-17

- the sequence of the first two operations could
be questioned:- test before change might be

better

Appendix B

SUBROUTINE wsmnw(nw,id,nwd)
c**
c
c Routine Name:- ISMNI
c
c Purpose:- Modify variable data length

c
c Version # :- 1.6
c
c Input:- nw = new data length
c id = address of entity under operation
c nwd = old data length
c
c Output:
c
c Externals:- GETDI STRDI
c
c Description:- The routine stores the new data length in
c the appropriate att loc,ation, allocates a
c new address for the data in the dat array
c moves the data from the old location to
c the new, up dating the control block and
c the dat start address in the att array.
c
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - NB: Input parameters have been changed, replaceing
c INDX with ID as INDX has very little meaning
c in the new array structure.
c This change eleviates the need for ndataddr
c being passed, since id can be used to obtain
c it. First check the effec~ of this change
c before implementing it.
c If ndataddr is dropped as a parm. change
c wsmod call to this routine!!!!! !!!! !************
c
c
c
c
c
c Update - 6/10/86 - remove test for nw <= nwd because tested in wsmod
c - remove ndataddr a8 parm. wsmod modified.
c - V 1.2
c
c
c
c
c

- 19/11/86- change ATT coeff. arround
- ver 1.6
- included implicit none
- included calls to GETDI and STRDI

B-18

Appendix B

c
c***
c
c Include appropriate parameters and common blocks
c

IHCLUDE ·parmlS.for/list·
IHCLUDE ·commonlS.for/list·
integer*2 nw,i,nwd,k
integer*4 Lstrtn,is~rto

c
c Is common block dbmsj / buff(128) required??????
c
c Store new data length in att array
c

att(ndw,id)=nw
c
c Test new length :- if not larger, RETURN
c

mod. 6/10/86 V 1.2if (nw.le.nwd) goto 1000*
c
c Get a new address for the data in the dat array,
c up dateing the dat control block.
* istrto~att(daddr,id) ! old start address of data

*
* Due to double vs single integer

*
call getdi(istrto,att(daddr,id»

att(daddr,id)=datcb(2)+1
*
*
*
* Due to double v~ single integer

new start address of data

*

! update dat array address Vl.2
I new last entry pointer

*

*

datpnt=datcb(2)+1
call strdi(datpnt,att(daddr,id»
istrtn=att(daddr,id)

istrtn=datpnt
ndataddr=istrtn

datcb(2)=datcb(2)+nw
c
c Now move data from old "address in dat to the new
c address in dat.
c

do 100 i=l,nwd
k=i-l
dat(istrtn+k)=dat(istrto+k)

100 continue
c
c return
c

1000 RETURN
end

B-19

Appendix B

SUBROUTINE w88eq(id,gatt,nkey,ma8k,value)
c**
c
c Routine Name:- WSSEQ
c
c Purp08e:- Sequence the model and get the next entity that
c matche8 the ma8k and value array8.
c
c Version #. 1.6
c
c Input:- id = la8t entity found (previou8 call)
c nkey = # of 8earch keys
c ma8k = u8ed to ma8k the entity' 8 key att'ribute8
c value = compared to the entity'8 ma.ked keY8
c
c Output: - id = next entity that compli·e8, id=O end of 8equence
c gatt = general attribute data
c
c Externals:
c
c Description:- The xoutine use. the ma8k to 8elect which entrie8
c in the att of the entity mU8t be te8ted in t'he
c 8equencing proce8s ..The 8elected entrie8 ar,e then
c compared to the required value in the value
c array which i8 u8ed in the sequencing proce88.
c
c Programer8 Name:- Peter Figg
c
c Remark8:-
c - base machine = (VAX/9000) VAX
c - language ,std = (F77/F66) F66
c - ma8k,gatt,value must be dimen8ionedexternally
c - thi8 routi~e follow8 the sequence ~f the origonal
c routine, although there are 80me 8equence change8
c thet could be made.
c eg: po.ition of nkey test
c outcome of nkey te8t
c - routine uses delmark parameter to indecate where
c the deleted mark re8ide8 in the att
c

c update - 19/11/86 - changed ATT coeff arround
c - ver. 1.5
C - included implicit none
c

c*-***
c
c Include appropriate parameter8 and common block8
c

INCLUDE ·parm1S.for/list·
INCLUDE ·common15.for/li8t·

c
c Define variable8 pa8sed in.

B-20

Appendix B

c
INTEGER*2 mask(*),value(*),gatt(*),nkey,i,m,j

c
c Test id for error
c

if (id.lt.O) goto 1000 ! goto Return

c
c Increment and test id for last entry in att array
c

100 id=id+l
if (id.gt.attcb(2» then

id=O
goto 1000

endif
c
c Test for deleted entity
c

id > last entry pointer
set id=O
return

if (att(delmark,id).eq.-l) goto 100 ! if deleted goto begining
c
c Test the number of search keys (nkey) for the entity
c **** position of test (why not at begining?) and
c outcome of test (no error mark, returns normaLly?)
c are in question. fry??????????? ****************************
c

if ((nkey.le.O).or.(nkey.gt.gattsz» goto 900 I??????????????????
c
c Test gatt against value using mask to select which entries in the
c entity's gatt are to be tested.
c

do 200 i=l,nkey
m=iand(mask(i),att(i,id»
if (m.ne.value(i» goto 100

200 continue
do 300 j=l,gattsz

gatt(j)=att(j,id)
300 continue

goto 1000
c
c Error handling
c

900 continue
c

1000 RETURN
end

! mask gatt array
on mismatch goto begin

B-2!

Appendix B

subroutine getdi(dint,sint)
c**
c
c Routine Hame:- GETDI
c
c Purpose:- Gets a doudle integer from a two word single integer
c array
c
c Version # :-1.6a
c
c Input:- sint = the start address of the single integer array
c where the double integer is stored.
c
c Output:-dint = the double integer returned
c
c Externals:
c
c Discription:
c
c Programers Hame:~ Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F11/F66)F66
c
c

c***

*
implicit none
integer*2 sint(2),j(2)
integer*4 i,dint
equivalence (j,i)

*
j(1)=sint(1)
j(2)=sint(2)
dint=i

*
return
end

B-22

Appendix B

subroutine strdi(dint.sint)

c··· .
c
c Routine Name:- STRDI
c
c Purpose:- Stores a double integer into a two word single integer
c array
c
c Version # :-1.5
c
c Input:- dint = the double integer to be stored
c
c Output:-sint = the start address ot the single integer array
c
c Externals:
c
c Description:
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66)F66
c
c
c *••*. **••• ***••••• *••••• ***•• *••**. **• **. **•• **•• *• *•• **• *.'•• **
•

implicit none
integer*2 sint(2).j(2)
integer.4 i.dint
equivalence (j.i)

*
i=dint
sint(1)=j(1)
sint(2)=j(2)

*
return
end

B-23

Appendix B

SUBROUTINE movi(count,from,to)
c**
c
c Routine Name:- MOVI

moved.
from.
to.

the # of integers to be
:= memory location to move
:= memory location to move

Input:-
count :=
from
'to

c
c
c
c
c Output:-

c
c Purpose:- To move integers from one place to another.
c ReplaceB an aBsembler routine on the gerber.
c
c Version #. 1.1 (compatible with 1.5)
c
c

c
c Externals:"':'
c
c Description:- First test legitimacy of COUNT val~e.

c Copy from FROM to TO for COUNT times.
c
c Programers Name:- Peter Figg
c
c Remarks:-

- base machine = (VAX/9000) Vax
- language std = (F77/F66) F66
- easier to rewrite MOVI than to replace all

the calls to it.

c
c
c
c
c

c***************************_***********_***********************
c
c Set up variables
c

integer count,from(*),to(*)
c
c TeBt count
c

if (count.le.O) goto 1000
c
c Copy acroBs
c

do 10 i=l,count
to(i)=from(i)

10 continue
c

1000 RETURN
end

B-24

Appendix C

APPENDIXC

Example of Comparative Test Program for GST and Version 1.5 Code.

This appendix contains an example of the type of test programs that were run

to compare the operation and output of the GST and 1.5 versions of the data

base access routines, given the same input. Listings of programs SMWS2 and

SIM2WS15, their respective print routines and resultant output, as well as their

respective compile and load procedures, are included.

Both these programs simply add a number of entities (25), of different sizes, to

the data base, and then deletes every fifth entity. After each stage the data base

is printed out, both the ATT and DAT arrrays. SMWS2 runs on the HPlOOO,

and SIM2WS15 on the VAX-ll/750.

C-1

»SEVERITY,l
»**
»** PROCEDURE TO COMPILE AND LOAD SPECIFIED PROGS
»**
»TELL,********************
»TELL, DELETE OLD I FILES
»TELL,***************·****
»DELETE,ISMIS2.PF::73
»DELETE, UMPDB. PF: : 73
»TELL,******************
»TELL, BEGIN COMPILE
»TELL,******************
»FTNX, lSMIS2. PF: : 73,1, ISMIS.2 . PF: : 73
»FTNX,lSMPDB2.PF::73,1,ISMPDB.PF::73
»TELL,******************
»TELL, COMPILE COMPLETE
»TELL,******************
»X,LOADR"SYWS2"PU
»TELL,*****************
»TELL, IDSEG. REMOVED
»TELL,*****************
»**
»** NOW RUN LOADR USING LOAD##.PF FILE
»**
»RU,LOADR,LOADD2.PF::73
»TELL,***************
»TELL, LOAD COMPLETE
»TELL,***************
»SEVERITY,O
»TRANSFER,-l

**
** LOADR COMMAND FILE TO LOAD SlY. PROG. 11TH SD.
**

Appendix C

ECHO
RE,ISMWS2.PF: :73
RE,"SMPDB.PF::73
RE,"SDDTA
SCN,#C2LIB
SE,$F
END

, MAIN SIM. PROG.
, PRINT·· SUB.
, SD. COMMON BLOCK DATA

, SCAN C2 LIB.
, SEARCH FTN4X LIB

C-2

Appendix C

FTN 4X,L,Q
$FILES(O,2)

PROGRAM SMWS2
c**
c
c Routine Name:-SMIS2
c
c Purpose:- To simulate the operation of certain DB activities
c to evaluate the performance of the specific DB
c structures.
c
c Version # :-1.2
c
c Input:
c
c Output:
c
c Externals:-INIT,WSPUT
c
c Description:-
c - Sequencial insertion of data
c - Sequential deletion of data
c Small quantities of data BO aB to compare the output
c from the two sets ofroutineB on the two different
c machines.
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000/IDS80) IDS80
c - language std = (F77/F66) F66
c - CHANGES MADE FROM VAX VERSION MARKED 11TH ~~~~~

c
c**************************~************************************

c
c Define dummy variables for prog.
c

implicit none
integer maxdb,icycle,delacc,lu,i,j,k,l,m,id,iattq,idatq
INTEGER dnw,dgatt(10),ddata(100),gattBz,itotdb

c
c Define counter variables
c

gattsz=10
maxdb=6
icycle=6
delacc=5
lu=14

c
c Initialise DB arrays
c

C-3

Appendix C

.. call init(lu)
c
c Put entities into DB
c

d
120

130

110
100

do 100 i=l,maxdb
do 110 j=l,icycle

do 120 k=l,gattsz
dgatt(k)=j
write(l,'(" dgatt= ",i4,)')dgatt(k)

continue
dgatt(l)=(i-l)*icycle+j
dnw=j
do 130 l=l,dnw

ddata(l)=(~-l)*icycle+j

continue
call wsput(id,dgatt,dnw,ddata)
write (1,'(" id# = ",i4)')id !~~%~~~~~~~~%~~~~~~~~

continue
continue

c
c Print out DB to see the result
c

iattq=(maxdb*icycle)
idatq=maxdb*((icycle*(icycle+l»/2)+10

d write(l,'(" iattq= ",i4)')iattq
d write(1,'(" idatq= ",i4)')idatq

iattq=(iattq*13)+20 13 words per entity
idatq=idatq+l0
call smpdb(iattq,idatq,l) !~%~~~~~~~~~~~~~~~""

c
c Know delete a few entries
c

itotdb=maxdb*icycle
do 200 m=1,itotdb,delacc

call wsdel(m)
200 continue

C WRITE(1,'(" DONE!!! ")')
c
c Print out DB
c

call smpdb(iattq,idatq,2)
c

end

C-4

Appendix C

FTN4X,L,Q
SUBROUTINE smpdb (attq,datq,j)

c
c Sub. writes the contence of the ws data base to
c a file for inspection
c
c SWPDB2.PF::73 - FOR SWWS2.PF::~3

c
implicit none
integer i,ios,j
INTEGER GLOBAL,ATT,DAT
common/dbmsO/global(138),att(522),dat(522)
integer attq,datq

c
c Open a file to write DB to for inspection
c

if (j. eq . 1) then
open(20,file='DBDT21::73',iostat=ios,err=900,statu8='UN')
endif
if (j. eq .2) then
open(20,file='DBDT22::73',i08tat=i08,err=900,8tatuB='UN')
endif

c
write(20, , (1014)' Hatt(i) ,1=1,10)

c
write(20,'(13i4)',err=910,i08tat=i08)(att(i),i=11,attq)

c
write(20,'(10i4)')(dat(i),i=1,10)

c
write (20,'(20i4)',err=920,i08tat=io8)(dat(i),i=11,datq)

c
goto 1000

c
900 write(1,'(" error on open " , i4)' H08

goto 1000
910 write(1,'(" error on first write ",i4)')ios

goto 1000
920 write(1,'(" error on 8econd write ",i4)')i08

goto 1000
1000 cl08e(20)

return
end

C-5

Appendix C

3 14 41200 0 1 0 0 2 69
1 1 1 1 1 1 1 1 1 1 1 0 1
2 2 2 2 2 2 2 2 2 2 2 0 2
3 3 3 3 3 3 3 3 3 3 3 0 4
4 4 4 4 4 4 4 4 4 ,4 4 0 7
6 6 6 6 6 6 6 6 5 6 6 0 11
6 1 1 1 1 1 1 1 1 1 1 0 16
7 2 2 2 2 2 2 2 2 2 2 0 17
8 3 3 3 3 3 3 3 3 3 3 0 19
9 4 4 4 4 4 4 4 4 4 4 0 22

10 6 6 6 6 6 6 6 5 5 5 0 26
11 1 1 1 1 1 1 1 1 1 1 0 31
12 2 2 2 2 2 2 2 2 2 2 0 32
13 3 3 3 3 3 3 3 3 3 3 0 34
14 4 4 4 4 4 4 4 4 4 4 0 37.
16 6 6 6 6 6 6 5 5 6 6 0 41
16 1 1 1 1 1 1 1 1 1 1 0 46
17 2 2 2 2 2 2 2 2 2 2 0 47
18 3 3 3 3 3 3 3 3 3 3 0 49
19 4 4 4 4 4 4 4 4 4 4 0 52
20 6 6 6 6 6 6 6 6 6 6 0 66
21 1 1 1 1 1 1 1 1 1 1 0 61
22 2 2 2 2 2 2 2 2 2 2 0 62
23 3 3 3 3 3 3 3 3 3 3 0 64
24 4 4 4 4 4 4 4 4 4 4 0 67
26 6 6 6 6 6 6 6 5 6 6 0 71

0 0 0 0 0 0 0 0 0 0

103 14 41800 0 1 0 0 0 75
1 2 2 3 3 3 4 4 4 4 5 6 6 6 6 6 7 7 8 8
8 9 9 9 9 10 10 10 10 10 11 12 12 13 13 13 14 14 14 14

16 16 16 16 15 16 17 17 18 18 18 19 19 19 19 20 20 20 20 20
21 22 22 23 23 23 24 24 24 24 26 25 26 25 25 0 0 0 0 0

0 0 0 0 0

C-6

Appendix C

3 14' 41200 0 1 2 5 2 69
13 0 0 1 1 1 1 1 1 1 -1 0 1

2 2 2 2 2 2 2 2 2 2 2 0 2
3 3 3 3 3 3 3 3 3 3 3 0 4
4 4 4 4 4 4 4 4 4 4 4 0 7
5 5 5 5 5 5 5 5 5 5 5 0 11

13 0 1 1 1 1 1 1 1 1 -1 0 16
7 2 2 2 2 2 2 2 2 2 2 0 17
8 3 3 3 3 3 3 3 3 3 3 0 19
9 4 4 4 4 4 4 4 4 4 4 0 22

10 5 5 5 5 5 5 5 5 5 5 0 26
13 0 66 1 1 1 1 1 1 1 -1 0 31
12 2 2 2 2 2 2 2 2 2 2 0 32
13 3 3 3 3 3 3 3 3 3 3 0 34
14 4 4 4 4 4 4 4 4 4 4 0 37
16 6 5 5 6 5 5 5 5 5 5 0 41
13 1 3 1 1 1 1 1 1 1 -1 0 46
17 2 2 2 2 2 2 2 2 2 2 0 47
18 3 3 3 3 3 3 3 3 3 3 0 49
19 4 4 4 4 4 4 4 4 4 4 0 52
20 6 5 6 6 6 5 6 5 6 5 0 56
13 1 68 1 1 1 1 1 1 1 -1 0 61
22 2 2 2 2 2 2 2 2 2 2 0 62
23 3 3 3 3 3 3 3 3 3 3 0 64
24 4 4 4 4 4 4 4, 4, 4 4 0 67
25 5 5 5 5 5 5 5 5 5 5 0 71

0 0 0 0 0 0 0 0 0 0

103 14 41800 0 1 0 0 0 75
1 2 2 3 3 3 4 4 4 4 6 6 6 5 6 6 7 7 8 8
8 9 9 9 9 10 10 10 10 10 11 12 12 13 13 13 14 14 14 14

16 15 16 16 16 16 17 17 18 18 18 19 19 19 19 20 20 20 20 20
21 22 22 23 23 23 24 24 24 24 26 26 26 25 26 0 0 0 0 0

0 0 0 0 0

C-7

Appendix C

Fortran proc. to compile sim2ws15 and associated files

for/nof77/noi4/nolist sim2ws15.sim,simprdb15.sim
exit

SlY program with the SlY print prog.

Version 1. 5

Procedure to link the specified
and the IS library

Version 1.5

$ ****************************-*********************************
$
$
$
$
$ **
$
$
$
$ ***
$
$
$
$
$

$ ***
$
$link sim2ws15,simprdb15,libws15.olb/lib
$!
$exit

C-8

- base machine = (VAX/9000) VAX
- language std = (F77/F66) F66

Appendix C

-PROGRAM simws2
c**
c
c Routine Name:-SIMiS2
c
c Purpose:- To simulate the operation of certain DB activities
c to evaluate the performance of the specific DB
c structures.
c
c Version # :-1.5Q
c
c Input:
c
c Output:-

.c
c Externals:-INIT,ISPUT,ISDEL,
c
c Description:-
c - Sequencial insertion of data
c - Sequencial deletion of some of the data
c Small quantities of data so as to compare the output
c from the two sets of routines on the two different
c machines.
c
c Programers Name:- Peter Figg
c
c Remarks:-
c
c
c
c

c *** ****'* ***
c
c Include parameter block
c

INCLUDE 'parm15.for/list'
c
c Define dummy variables for prog.
c

IRTEGER*2 dnw,dgatt(gattsz),ddata(100)
integer*4 idatq,i,j,k,l,m
integer*2 id,iattq,maxdb,icycval,delacc,itotdb

c
c Define counter variables
c

maxdb=6
icycval=5
delacc=6

c
c Initialise DB arrays
c

call init

C-9

!CQQCQQQCQ
!CQQCQQQQQ

c
c Put entities into DB
c

do 100 i=l,maxdb
do 110 j=l,icycval

do 120 k=l,gattsz
dgatt(k)=j

120 continue
dgatt(l)=(i-l)*icycval+j
dnw=j
do 130 l=l,dnw

ddata(l)=(i-l)*icycval+j
130 continue '

call wsput(id,dgatt,dnw,ddata)
write (6,'(" id# = ",i4)')id

110 continue
100 continue

c
c Print out DB to see the result
c

iattq=(maxdb*icycval)+10
idatq=maxdb*«icycval*(icycval+l»/2)+10
call simprdb(iattq,idatq)

c
c Know delete a f,ewentries
c

itotdb=maxdb*icycval
do 200 m=l,itotdb,delacc

call wsdel(m)
200 continue

c write(6,'(" done!! ")')
c
c Print out DB
c

call simprdb(iattq,idatq)
c

end

0-10

Appendix 0

SUBROUTINE simprdb (attq,datq)
c
c Sub. prints the contence of the ws data base to
c a file for001.dat for inspection
c
c SIWPRDB1S.SIM for SIW1SiS2.SIW
c

include 'parmlS.for/list'
include 'commonlS.for/list'
integer*2 attq
integer*4 datq,i,j

c
do 100 i=l,attq

write (l,'(13i3)') (att(j,i),j=l,attszl)
100 continue

c
write (l,'(20i4)')(dat(i),i=l,datq)

return
end

C-11

Appendix C

Appendix C

1· 1 1 1 1 1 1 1 1 1 1 1 0
2 2 2 2 2 2 2 2 2 2 2 2 0
3 3 3 3 3 3 3 3 3 3 3 4 0
4 4 4 4 4 4 4 4 4 4 4 7 0
5 5 5 5 5 5 5 5 5 5 5 11 0
6 1 1 1 1 1 1 1 1 1 1 16 0
7 2 2 2 2 2 2 2 2 2 2 17 0
8 3 3 3 3 3 3 3 3 3 3 19 0
9 4 4 4 4 4 4 4 4 4 4 22 0

10 5 6 6 5 5 5 5 5 5 5 26 0
11 1 1 1 1 1 1 1 1 1 1 31 0
12 2 2 2 2 2 2 2 2 2 2 32 0
13 3 3 3 3 3 3 3 3 3 3 34 0
14 4 4 4 4 4 4 4 4 4 4 37 0
16 6 6 6 6 6 5 5 6 6 5 41 0
16 1 1 1 1 1 1 1 1 1 1 46 0
17 2 2 2 2 2 2 2 2 2 2 47 0
18 3 3 3 3 3 3 3 3 3 3 49 0
19 4 4 4 4 4 4 4 4 4 4 52 0
20 6 6 6 6 6 6 6 6 6 6 66 0
21 1 1 1 1 1 1 1 1 1 1 61 0
22 2 2 2 2 2 2 2 2 2 2 62 0
23 3 3 3 3 3 3 3 3 3 3 64 0
24 4 4 4 4 4 4 4 4 4 4 67 0
25 6 6 6 6 6 6 5 6 6 6 71 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 o· 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 3 3 3 4 4 4 4 5 5 6 5 6 6 7 7 8 88 9 9 9 9 10 10 10 10 10 11 12 12 13 13 13 14 14 14 1415 16 15 16 16 16 17 17 18 18 18 19 19 19 19 20 20 20 20 2021 22 22 23 23 23 24 24 24 24 25 25 25 26 26 0 0 0 0 00 0 0 0 0

C-12

Appendix C

13 0 0 -1 1 1 1 1 1 1 -1 1 0
2 2 2 2 2 2 2 2 2 2 2 2 0
3 3 3 3 3 3 3 3 3 3 3 4 0
4 4 4 4 4 4 4 4 4 4 4 1 0
6 5 6 6 6 6 6 6 6 6 6 11 0

13 1 0 1 1 1 1 1 1 1 -1 16 0
1 2 2 2 2 2 2 2 2 2 2 11 0
8 3 3 3 3 3 3 3 3 3 3 19 0
9 4 4 4 4 4 4 4 4 4 4 22 0

10 5 6 6 6 6 6 6 6 6 6 26 0
13 6 0 1 1 1 1 1 1 1 -1 31 0
12 2 2 2 2 2 2 2 2 2 2 32 0
13 3 3 3 3 3 3 3 3 3 3 34 0
14 4 4 4 4 4 4 4 4 4 4 31 0
16 6 5 6 6 6 6 6 5 6 6 41 0
13 11 0 1 1 1 1 1 1 1 -1 46 0
11 2 2 2 2 2 2 2 2- 2 2 41 0
18 3 3 3 3 3 3 3 3 3 3 49 0
19 4 4 4 4 4 4 4 4 4 4 52 0
20 5 5 5 5 5 5 5 5 5 6 56 0
13 16 0 1 1 1 1 1 1 1 -1 61 0
22 2 2 2 2 2 2 2 2 2 2 62 0
23 3 3 3 3 3 3 3 3 3 3 64 0
24 4 4 4 4 4 4 4 4 4 4 61 0
25 5 5 6 5 5 5 5 5 5 5 11 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 2 3 3 3 4 4 4 4 5 5 6 5 5 6 1 1 8 8
8 9 9 9 9 10 10 10 10 10 11 12 12 13 13 13 14 14 14 14

15 15 15 15 15 16 11 11 18 18 18 19 19 19 19 20 20 20 20 20
21 22 22 23 23 23 24 24 24 24 25 25 25 26 26 0 0 0 0 0

0 0 0 0 0

C-13

Appendix D

APPENDIXD

Example of Advanced Test Program for Version 1.5 Data Base Access Routines.

This appendix contains an example of the type of advanced test programs that

were run on version 1.5 of the implemented solution. Listings of the program

TST15PRG1, its print routine and resultant output, as well as its compile and

load procedures, are included.

The program TST15PRG1 first inserts some entities into the data base, then

deletes every second one, then re-inserts a few more entities. It then extracts

information from selected entities and writes it to a file, and then duplicates

certain of the entities. After each modification to the data base, the ATT and

DAT arrays are printed out to show the effect of the modification. The list of

extracted information is included as the last listing in the appendix.

D-1

Link the code with the IS Library

Procedure to compile TST15PRG1.TST with its print routine PRNTDB1.TST
Version 1.5

Appendix D

$!**
$!
$!
$!
$! •
$!**
$!
$for/nof77/noi4/nolist tst15prg1.tst,prntdb1.tst
$!
$!**
$!
$!
$!
$!**
$!
$link tst15prg1,prntdb1,libws15.olb/lib
$!
$exit
$!

D-2

Appendix D

c**
c
c Program Name:- TST15PRG1
c
c Purpose:- To test the data base access routines
c

1.6Qc Version #

c
c Input:
c
c Output:
c
c Externals:- INIT 'SPUT 'SDEL 'SGET 'SDUP
c
c Description:- Initialises data base arrays
c Places entitries in datra base and prints out data base
c Delete entries from DB and print out DB
c Place a few more entries into DB and print out
c Extract data from DB using 'SGET and print data out
c Duplicate some of the entries and print out DB
c
c
c
c Programers Name:- Peter Figg
c
c Remarks:-

- base machine = (VAX/9000) Vax
- language std = (F77/F66) F66

c
c
c

c***
c
c Include parameter and common blocks
c

! don"t need them!!!!!
INCLUDE Iparm15.for/li~t"

INCLUDE Icommon1.for/list"c
c
c Define dummy variables used in the test prog.
c

INTEGER*2 dnw,dgatt(gattsz)lddata(100)
integer*2 i,j,k,l,m;n,mode,lcount,istart
integer*2 id,id1,maxdb,half !CCCCCCCCCCCCCCCQCCQCCCCCCC

c
c Init. data base arrays
c

CALL init
c
c Put a few entries into the data base
c

maxdb=20
do 100 i=1,maxdb

do 110 j=1,gattsz
dgatt(j)=i+10

D-3

110 continue
dnw=i
do 120 k=l,dnw

ddata(k)=i+l00
120 continue

CALL wsput (id,dgatt,dnw,ddata)
write (6,'(" id#= ",i3)') id

100 continue
c
c Print out the contence of the data base
c

CALL prntdb
c
c Now delete every second entry in the att array
c

do 200 i=2,maxdb,2
id=i
CALL wsdel(id)

200 continue
c
c Print out data base
c

CALL prntdb
c
c Now make a few more entries to test the free space
c chain handling.
c

half=maxdb/2
do 210 i=l,half

do 220 j=l,gattsz
dgatt(j)=i+20

220 continue
dnw=i
do 230 k=l,dnw

ddata(k)=i+110
230 continue

CALL wsput (id,dgatt,dnw,ddata)
write (6,'(" id#= ",i3)') id

210 continue
c

c Print out db
c

CALL prntdb
c
c Now extract data from DB using wsget and print out
c

do 300 i=1,maxdb,2
do 310 j=1,2

do 320 m=l,gattsz
dgatt(m)=O

320 continue
do 330 n=1,20

D-4

Appendix D

Appendix D

ddata(n)=O
330 continue

mode=3
icount=i-1
istart=j+1
id=i
CALL wsget(id,~gatt,dnw,ddata,mode,icount,istart)

write (2,'(10i4)')(dgatt(k),k=1,gattsz)
write (2,'(20i4)~)(ddata(1),1=1,dnw)

310 continue
300 continue

c
cHow dupliclte some of the entries to test the wsdup routine
c

do 400 i=1, half
id=i
CALL wsdup(id,id1)
write(6,'(" id= ",i3)')id
write(6,'(" id1= ",i3)')idl

400 continue
c
c Print out db
c

call prntdb
c

end

"

D-5

SUBROUTINE prntdb
c
c PRNTDB1.TST - to run with TESTPRG1.TST
c
c Sub. prints the contence of the ws data base to
c a file for001.dat for inspection
c

Appendix D

c

include 'parm1S.for/list'
include 'common1S.for/list'
integer.2 attq,datq
parameter (attq=31,datq=340)
integer.2 i,j

1· •••**·
1.***•• *

c

do 100 i=1,attq
write (1,'(13i3)') (att(j,i),j=1,attsz1)

100 continue

write (1,'(20i4)')(dat(i),i=1,datq)
return
end

D-6

Appendix D

11 11 11 11 11 11 11 11 11 11 1 1 0

12 12 12 12 12 12 12 12 12 12 2 2 0

13 13 13 13 13 13 13 13 13 13 3 4 0

14 14 14 14 14 14 14 14 14 14 4 7 0

15 15 15 15 15 15 15 15 15 15 5 11 0

16 16 16 16 16 16 16 16 16 16 6 16 0

17 17 17 17 17 17 17 17 17 17 7 22 0

18 18 18 18\18 18 18 18 18 18 8 29 0

19 19 19 19 19 19 19 19 19 19 9 37 0
20 20 20 20 20 20 20 20 20 20 10 46 0

21 21 21 21 21 21 21 21 21 21 11 56 0

22 22 22 22 22 22 22 22 22 22 12 67 0

23 23 23 23 23 23 23 23 23 23 13 79 0
24 24 24 24 24 24 24 24 24 24 14 92 0
25 25 25 25 25 25 25 25 25 25 15106 0
26 26 26 26 26 26 26 26 26 26 16121 0
27 27 27 2727 27 27 27 27 27 17137 0
28 28 28 28 28 28 28 28 28 28 18154 0
29 29 29 29 29 29 29 29 29 29 19172 0
30 30- 30 30 30 30 30 30 30 30 20191 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Q 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 104 104 104 104 105 105 105 105 105 106 106 106 106 106
106 107 107 107 107 107 107 107 108 108 108 108 108 108 108 108 109 109 109 109
109 109 109 109 109 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111
111 111 111 111 111 111 112 112 112 112 112 112 112 112 112 112 112 112 113 113
113 113 113 113 113 113 113 113 113 113 113 114 114 114 114 114 114 114 114 114
114 114 114 114 114 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115
116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 117 117 117 117
117 117 117 117 117 117 117 117 117 117 117 117 117 118 118 118 118 118 118 118
118 118 118 118 118 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D-7

Appendix D

11 11 11 11 11 11 11 11 11 11 1 1 0

13 0 0 12 12 12 12 12 12 12 -1 2 0

13 13 13 13 13 13 13 13 13 13 3 4 0

13 2 0 14 14 14 14 14 14 14 -1 7 0

15 15 15 15 15 15 15 15 15 15 5 11 0

13 4 0 16 16 16 16 16 16 16 -1 16 0

17 17 17 17 17 17 17 17 17 17 7 22 0

13 6 0 18 18 18 18 18 18 18 -1 29 0

19 19 19 19 19 19 19 19 19 19 9 37 0

13 8 0 20 20 20 20 20 20 20 -1 46 0
21 21 21 21 21 21 21 21 21 21 11 56 0

13 10 0 22 22 22 22 22 22 22 -'1 67 0
23 23 23 23 23 23 23 23 23 23 13 79 0
13 12 0 24 24 24 24 24 24 24 -1 92 0
25 25 25 25 25 25 25 25 26 26 15106 0
13 14 0 26 26 26 26 26 26 26 -1121 0
27 27 27 27 27 27 27 27 27 27 17137 0
13 16 0 28 28 28 28 28 28 28 -1164 0
29 29 29 29 29 29 29 29 29 29 19172 0
13 18 0 30 30 30 30 30 30 30 -1191 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 .0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 104 104 104 104 105 105 105 106 106 106 106 106 106 106
106 107 107 107 107 107 107 107 108 108 108 108 108 108 108 108 109 109 109 109
109 109 109 109 109 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111
111 111 111 111 111 111 112 112 112 112 112 112 112 112 112 112 112 112 113 113
113 113 113 113 113 113 113 113 113 113 113 114 114 114 114 114 114 114 114 114
114 114 114 114 114 116 115 115 115 115 115 115 115 116 115 115 116 115 115 115
116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 117 117 117 117
117 117 117 117 117 117 117 117 117 117 117 117 117 118 118 118 118 118 118 118
118 118 118 118 118 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D-8

Appendix D

11 11 11 11 11 11 11 11 11 11 1 1 0

30 30 30 30 30 30 30 30 30 30 10256 0

13 13 13 13 13 13 13 13 13 13 3 4 0

29 29 29 29 29 29 29 29 29 29 9247 0

15 15 15 15 15 15 15 15 15 16 6 11 0

28 28 28 28 28 28 28 28 28 28 8239 0

17 17 17 17 17 17 17 17 17 17 7 22 0

27 27 27 27 27 27 27 27 27 27 7232 0

19 19 19 19 19 19 19 19 19 19 9 37 0

26 26 26 26 26 26 26 26 26 26 6226 0

21 21 21 21 21 .21 21 21 21 21 11 66 0

25 26 26 26 25 26 25 26 26 26 6221 0

23 23 23 23 23 23 23 23 23 23 13 79 0

24 24 24 24 24 24 24 24 24 24 . 4217 0

26 25 25 25 25 26 26 25 26 25 15106 0

23 23 23 23 23 23 23 23 23 23 3214 0

27 27 27 27 27 27 27 27 27 27 17137 0

22 22 22 22 22 22 22 22 22 22 2212 0

29 29 29 29 29 29 29 29 29 29 19172 0
21 .21 21 21 21 21 21 21 21 21 1211 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 104 104 104 104 105 105 105 105 105 106 106 106 106 106
106 107 107 107 107 107 107 107 108 108 108 108 108 108 108 108 109 109 109 109
109 109 109 109 109 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111
111 111 111 111 111 111 112 112 112 112 112 112 112 112 112 112 112 112 113 113
113 113 113 113 113 113 113 113 113 113 113 114 114 114 114 114 114 114 114 114
114 114 114 114 114 116 115 115 116 115 115 115 115 115 115 115 115 115 115 115
116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 117 117 117 117
117 117 117 117 117 117 117 117 117 117 117 117 117 118 118 118 118 118 118 118
118 118 118 118 118 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 1'19 119 119 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 111 112 112 113 11'3 113 114 114 114 114
115 115 115 115 115 116 116 116 116 116 116 117 117 117 117 117 117 117 118 118
118 118 118 118 118 118 119 119 119 119 119 119 119 119 119 120 120 120 120 120
120 120 120 120 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D-9

Appendix D

11 11 11 11 11 11 11 11 11 11 1 1 0

30 30 30 30 30 30 30 30 30 30 10256 0

13 13 13 13 13 13 13 13 13 13 3 4 0

29 29 29 29 29 29 29 29 29 29 9247 0

15 16 16 15 16 16 15 15 15 15 5 11 0

28 28 28 28 28 28 28 28 28 28 8239 0

17 17 17 17 17 17 17 17 17 17 7 22 0

27 27 27 27 27 27 27 27 27 27 7232 0

19 19 19 19 19 19 19 19 19 19 9 37 0

26 26 26 26 26 26 26 26 26 26 6226 0

21 21 21 21 21 21 21 21 21 21 11 66 0

25 25 25 26 26 26 25 26 25 25 6221 0

23 23 23 23 23 23 23 23 23 23 13 79 .0

24 24 24 24 24 24 24 24 24 24 4217 0

26 25 26 25 26 25 25 25 26 26 15106 0

23 23 23 23 23 23 23 23 23 23 32U 0

27 27 27 27 27 27 27 27 27 27 17137 0

22 22 22 22 22 22 22 22 22 22 221.2 0

29 29 29 29 29 29 29 29 29 29 19172 0

21 21 21 21 21 21 21 21 21 21 1211 0

11 11 11 11 11 11 11 11 11 11 1266 0
30 30 30 30 30 30 30 30 30 30 10267 0

13 13 13 13 13 13 13 13 13 13 3277 0
29 29 29 29 29 29 29 .29 29 29 9280 0
15 15 15 15 15 16 16 15 16 16 6289 0
28 28 28 28 28 28 28 28 28 28 8294 0
17 17 17 17 17 17 1717 17 17 7302 0
27 27 27 27 27 27 27 27 27 27 7309 . 0
19 19 19 19 19 19 19 19 19 19 9316 0
26 26 26 26 26 26 26 26 26 26 6326 0

0 0 0 0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 104 104 104 104 105 105 106 105 105 106 106 106 106 106
106 107 107 107 107 107 107 107 108 108 108 108 108 108 108 108 109 109 109 109
109 109 109 109 109 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111
111 111 111 111 111 111 112 112 112 112 112 112 112 112 112 112 112 112 113 113
113 113 113 113 113 113 113 113 113 113 113 114 114 114 114 114 114 114 114 114
114 114 114 114 114 116 116 116 116 116 115 116 115 116 115 116 116 116 115 115
116 116 116 118 116 116 116 116 116 116 116 116 116 116 116 116 117 117 117 117
117 117 117 117 117 117 117 117 117 117 117 117 117 118 118 118 118 118 118 118
118 118 118 118 118 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 111 112 112 113 113 113 114 114 114 114
115 116 116 116 116 116 116 116 116 116 116 117 117 117 117 117 117 117 118 118
118 118 118 118 118 118 119 119 119 119 119 119 119 119 119 120 120 120 120 120
120 120 120 120 120 101 120 120 120 120 120 120 120 120 120 120 103 103 103 119
119 119 119 119 119 119 119 119 105 105 105 105 105 118 118 118 118 118 118 118
118 107 107 107 107 107 107 107 117 117 117 117 117 117 117 109 109 109 109 109
109 109 109 109 116 116 116 116 116 116 0 0 0 0 0 0 0 0 0 0

D-IO

Appendix D

11 11 11 11 11 11 11 11 11 11

101
11 11 11 11 11 11 11 11 11 11

101
13 13 13 13 13 13 13 13 13 13

103 103 0
13 13 13 13 13 13 13 13 13 13

103 0 0
16 16 16 16 16 16 16 16 16 15

105 106 105 105 0
15 15 16 16 15 15 15 16 16 16

105 105 105 0 0
17 17 17 17 17 17 17 17 17 17

107 107 107 107 107 107 0
17 17 17 17 17 17 17 17 17 17

107 107 107 107 107 0 0
19 19 19 19 19 19 19 19 19 19

109 109 109 109 109 109 109 109 0
19 19 19 19 19 19 19 19 19 19

109 109 109 109 109 109 109 0 0
21 21 21 21 21 21 21 21 21 21

111 111 111 111 111 111 111 111 111 111 0
21 21 21 2.1 21 21 21 21 21 21

111 111 111 111 111 111 111 111 111 0 0
23 23 23 23 23 23 23 23 23 23

113 113 113 113 113 113 113 113 113 113 113 113 0
23 23 23 23 23 23 23 23 23 23

113 113 113 113 113 1"13 113 113 113 113 113 0 0
25 26 25 25 26 26 25 26 25 25

115 116 115 115 115 115 115 116 115 115 115 115 116 1"16 0
26 26 26 26 26 26 26 26 26 25

116 116 116 116 116 1"16 116 116 116 115 115 115 116 0 0
27 27 27 27 27 27 27 27 27 27

117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 0
27 27 27 27 27 27 27 27 27 27

117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 0 0
29 29 29 29 29 29 29 29 29 29

119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 0
29 29 29 29 29 29 29 29 29 29

119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 0 0

D-ll

Appendix E

APPENDIXE

Data Base Access Routines Version 2.5.

This appendix contains printouts of Version 2.5 of the solution code as

implemented on the VAX-ll/750. The Parameter and Common blocks, to be

INCLUDED in to the different routines, are listed along with only those routines

that have been modified from version 1.5, which .are:-

INIT

WSDEL

WSPUT

WSMNW

E-l

Appendix E

c***

parameter block #1 for ver. 2.5PARM15.FOR
c
c
c
c Parameter8 for data ba8e management routine8 to be included
c in appropriate routineB.
c
c update - 19/11/86 - changed ATT coe!! arround
c - ver 1.5
c - included implicit none 8tatement
c
c update - 12/12/86 - included parameter8 for DAT reclamation code
c - changed value o! DEUIARK 80 a8 not to over
c write the number o! word8 of data
c - ver. 2.4
c
c - 19/12/86 - maxdat8z increa8ed to 25
c - ver 2.5

*
implicit none

*
integer*2 'glb8z, att8z1, att8z2 ,dat8z2, gatt8z, ndw, daddr ,de.lmark
integer*2 mindat8z,maxdat8z,ldatof!,datcbdim,topindex
integer*4 dat8z1

c
PARAIlETER (glbsz=1408,att8z1=13,att8z.2=32767,

*dat8z1=520000,dat8z2=O,gatt8z=10,ndw=11,
*daddr=12,delmark=10,mindat8z=3,maxdat8z=25,ldato!f=2,
*datcbdim=25,topindex=24)

c
c Hote:- DATCBDIM=(maxdat8z-mindatsz)-t3
c TOPIHDEX=(maxdat8z-mindat8z)-t2
c

c***_**

c***_*******************
c

common block #1 for Ver. 2.6COIlMON25.FORc
c
c Common block for databa8e management routine8.
c To be IHCLUDEED in appropriate routine8.
c
c PARM25.FOR MUST ALSO BE INCLUDED! III
c
c
c

integer*2 id
INTEGER*2 global,att,dat,glbcb
integer*~ attcb,datcb,datpnt,f8cpnt

*
COMMON /dbm80/ global(glbBz),att(attBz1,att8z2),dat(dat8z1),

*attcb(2),datcb(datcbdim),glbcb(2)

E-2

Appendix E

-SUBROUTINE init

c·.··· .
c
c Routine Name:-INIT
c
c Purpose:- To initialise control blocks of data base arrays.
c
c Version # ~.6

c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - CB(l) = free space pointer
c CB(2) = last entry pointer
c - uses common block #1 ver 1.6
c and parm15
c
c update 12/12/86 - DAT reclamation schema
c - larger datcb array
c - ver. 2.4
c

c··· .
c
c Include parameter and common block #1
c

INCLUDE ·parm25.for/list·
INCLUDE 'common26.for/list'
integer.2 i

c
c Initialise control blocks
c

attcb(l)=O
attcb(2)=0

free space chain for att
last entry pointer for att

c
c Initialise FSL pointers for DAT
c - DATCB (DATCBDIM) => last entry pointer for dat
c

do 100 i=l,datcbdim
da tcb (.1)'=0

100 continue
c

•

glbcb(l)=O
glbcb(2)=0

RETURN
end

not used
last entry pointer for glb

E-3

Appendix E

SUBROUTINE wsdel(id)

c· ••• ••• •••••••••••
c
c Routine Hame:- ISDEL
c
c Purpose:- Deletes an entity given the ID of the entity.

c
c Version # :- 2.6
c
c Input:- ID second coef. of att address, identifies particular
c entity entry exclusively.
c
c Output:
c
c Externals :- STRDI
c
c Programers Name:- Peter Figg
c
c Remarks:-

- base machine = (VAX!9000) VAX
- language std = (F77/F66) F66
- this ver. follows old exactly
- operation results in :=

att(id,1)=attsz2
att(id,2)=free space ch-ai'n
att(id,delmark)=deleted mark (-1)

- uses common block #1
- routine uses parm. delmark for location of deleted mark

c
c
c
c
c
c
c
c
c
c
c UPDATE'- 19/11/86
c Version 1.6

- 12/12/86
Version 2.4

- DAT reclamation schema using multiple Freed Space Lists

- coordinates of ATT changed arround
- att(1,id)=attsz1

att(2,id)=free space chain
att(delmark,id)= deleted mark

uses common16 and parm16
include implicit none statment
included call to STRDI to store FSCPNT in~o

ATT array, due to Double Integer clash.

c
c
c
c
c
c
c
c
c
c
c
c
c
c················..· · .
c
c Include parameters and common block
c

INCLUDE ·parm26.for/list'
INCLUDE 'common26.for/list·

c
c Define variables

E-4

Appendix E

c
integer*2 lendat,index
integer*4 addrdat,fslpnt

c
c Test for valid ID
c

if «id.lt.l).or.(id.gt.attsz2» goto 900

c
att(l,id)=attszl

c
c Up date freespace chain

! old pointer stored in free space chainatt(2,id)=at.tcb(1)
c

*
*
* Due to clash wit.h double integers vs single int.egers
* call to STRDI required t.o st.ore free space chain pointer FSCPHT

*
fscpnt=attcb(l)
call strdi(fscpnt,att(2,id»

*
attcb(l)=id ! new pointer stored in control block

c
c Put delet.ed mark into entry (space #delmark·)
c

at.t.(delmark,id)=-l
c
c DATreclamation
c - add the associat.ed DAT block of the entity just deleted
c t.o t.he appropriate FSL w.r.t. s.ize.
c - if size of block is smaller than the min. size, discard it.
c

lendat=att(ndw,id)
if (lendat.ge.mindatsz) then

c
c calculate index for data control block array/FSL header pointers
c

index=(lendat-mindatsz)+l
if (index.gt.topindex) then

index=topindex
endif

c
c get address of dat block
c

call getdi(addrdat,att(daddr,id»
c
c add dat block to appropriate FSL according to length
c - updating pointers appropriately
c

fslpnt=datcb(index)
datcb(index)=addrdat
call Btrdi(fslpnt,dat(addrdat»
dat(addrdat+ldatoff)=lendat

E-5

c
endif
goto 1000

c
c Error handling
c

900 continue
c

1000 RETURN
end

E-6

Appendix E

Appendix E

SUBROUTINE wBput(id,gatt,nw,data)
c**
c
c Routine Name:- 'SPUT
c
c Purpose:- Store an entity
c
c Version # :- 2.6
c
c Input:- gatt- general attribute array
c nw- length of variable length data
c data- variable length data array

c
c Output:- id- entity identifier
c iff id=-1 ... error conditi-on

c
c Externals:- STRDI
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - uses common block #1
c - follows original version explicately
c ***** - NB dat overflow error check is a new addi-tion **'******
c iff overflow then error condition id=-l
c
c update- 19/11/86 - changed ATT coeff arround
c - ver. 1.6
c - included implicit .none
c - included call· STRDI
c
c update- 12/12/86 - DAT reclamation included
c - ver. 2.4
c
c***
c
c Declare input arrays and include parameters and common block #1
c

INCLUDE'parm25.for/list'
INCLUDE' common25. fo'r/lis.t'
integer*2 gatt(*),data(*),nw,i,lendat,index,rlendat
integer*2 found, extra
integer*4 offset,addrdat,prevpntr,prespntr,fslpnt
integer*4 xdataddr

c
c Test nw for error condition iff nw<O then return
c with id=-1
c

c
if (nw.lt.O) goto 900

E-7

error condition

Appendix E

c Get free block in att array
c
c Test free space pointer for availiable address
c - attcb(l)=O => no free space chain
c => then try at end of last entry
c

if (attcb(l).eq.O) goto 200 ! see last entry
c
c Address found in free space chain
c - assign new address to id and update free space chain
c

id=attcb(l)
* attcb(1)=att(2,id)

*
* Due to double vs single integer clash

*
call getdi(fscpnt,att(2,id»
attcb(l)=fscpnt

.*
goto 300 goto store gatt into att

c
c Test for free space after last entry
c - iff attcb(2»=attszl then no space - error
c

200 if (attcb(2).ge.attsz2) gote 900 error condition
c
c Space found at end ot last entry
c - assign new address t~ id and update last entry pointer
c

id=attcb(2)+1
attcb(2)=id

c
c Store gatt into att
c

300 do 400 i=l,gattsz
att(i,id)=gatt(i)

400 continue

gattsz=size of gatt array (10)*****

c
c fill length of dat into att position
c

att(ndw,id)=nw
c
c If nw (length of data)=O then return
c else store data into dat
c

if (nw.eq.O) goto 1000 return
c
c DAT reclamation
c - check size of block required
c - if < mindatsz then =mindatsz
c - calculate index for datcb to start looking in correct
c FSL for freed space of correct size

E-8

Appendix E

c ~ook for freed space
c - if no freed space
c - allocate new space
c - if no perfect Ut in lower order sizes

c - search for Ut in higher sizes

c - if no freed space large enough
c - allocate new space
c

rlendat=nw

if (rlendat.lt.mindatsz) then
rlendat=mindatsz

endif

*
index=(rlendat-mindatsz)+1
if (index.gt.topindex) then

index=topindex
endif

*
do 500 "i=index.topindex

if «datcb(i).eq.O).and.(i.eq.topindex» then

*

*
goto 550 Allocate new space - no freed space

*
elseif (datcb(i).ne.O) then

if (i.eq.topindex) then

! if FSL not empty

! if rlendat > maxdatsz

** search topindex FSL for first fit to accommodate
* requested data block
* - if no fit then allocate new space
* - update pointers if fit found and
* ret: ADDRDAT. LEND AT

*
found=O
prevpntr=-1
prespntr=datcb(i)
do 610 while «prespntr.ne.O).and.(found.eq.O»

if (dat(prespntr+ldatoff).ge.rlendat) then fit found
found=l"
addrdat=prespntr
lendat=dat(prespntr+ldatoff)
call getdi(fslpnt.dat(prespntr» updating pointers
if (prevpntr.eq.-l) then

datcb(i)=hlpnt
else

call strdi(fslpnt.dat(prevpntr»
endif

else
prevpntr=prespntr
call getdi(prespntr.dat(prespntr»

endif

E-9

610

*

continue
if (found.eq.O) then

goto 660
endif

else

if no fit found
allocate new space

! if r1endat <= maxdatsz

Appendix E

if extra space

start addr. for extra block

if extra space > min size
calculate index FSL

** get space from FSL, update pointers, ret: ADDRDAT, LEHDAT

*
addrdat=datcb(i)
call getdi(fs1pnt,dat(addrdat»
datcb(i)=fs1pnt
1endat=dat(addrdat.1datoff)

*
endif

** Check for extra space in block and update pointers approp.

*
if (lendat.ne.nw) then

extra=lendat-nw
if (extra.ge.mindatsz) then

index=(extra-:mindatsz).1
if (index. gt. topbldex) then

index=topindex
endif
xdataddr=addrdat.nw
fslpnt=datcb(~ndex)

datcb(index)=xdataddr
call strdi(fslpnt,dat(xdataddr»
dat(xdataddr+ldatoff)=extra

endif
endif

*
offset=addrdat-1
goto 699

endif
600 continue

copy data into DAT

*
c
c Allocate new space for'DAT block
c
c Get next data location from dat control block
c test new data location i1 valid «datsz1)
c and if all the data will fit
c - if not then error condition
c - else store new address in att(id,daddr)
c length of data in att(id,ndw)
c update last entry pointer
c

c

660 continue
if «datcb(datcbdim)+nw).gt~dats~1)goto900 error condition

E-IO

Appendix E

* . att(daddr,id)=datcb(datcbdim)+l

** Due to double vs single integer clash

*
datpnt=datcb(datcbdim)+l
datcb(datcbdim)=d!ltcb(datcbdim)+nw ! updating last dat entry pointer
offset=datcb(datcbdim)-nw ! offset= previous last entry point
addrdat=datpnt

*
c
c Copy data into dat
c

699 do 600 i=l,nw
dat(offset+i)=data(i)

600 continue
c
c Copy dat info into att
c

call strdi(addrdat,att(daddr,~d»

goto 1000
c
c Error condition set id=-l
c

900 id=-l
c

1000 RETURN
end

! return

E-ll

- the sequence of the first two operations could
be questioned:- test before change might be

better

Appendix E

-SUBROUTINE wsmnw(nw,id,nwd)
c**

c
c Routine Name:- 'SMNi
c
c Purpose:- Modify variable data length

c
c Version # :- 2.6
c
c Input:- nw = new data length
cid = address of entity under operation
c nwd = old data length
c
c Output:
c
c Externals:- GETDI STRDI
c
c Description:- The routine stores the new data length in
c the appropriate att location, allocates a
c new address for the data in the dat array
c moves the data from the old location to
c the new, up dating the control block and
c the dat start address in the att array.

c
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000) VAX
c - language std = (F77/F66) F66
c - NB: Input parameters have been changed, replac-eing
c INDX with ID as INDX has very little meaning
c in the new array structure.
c This change eleviates the need for ndataddr
c being passed, since id can be used to obtain
c it. First check the effect of this change
c before implementing it.
c If ndataddr is dropped as a parm. change
c wsmod call to this routine!! !!!!!!! !************
c
c
c
c
c
c Update - 6/10/86 - remove test for nw <= nwd because tested in wsmod
c - remove ndataddr as parm. wsmod modified.
c - V 1.2
c
c
c
c
c

- 19/11/86- change ATT coeff. arround
- ver 1. S
- included implicit none
- included calls to GETDI and STRDI

E-12

c
c
c
c
c

- 16/12/86 - mod. of parm and common blocks for
particular version

- included DAT reclamation code
- ver. 2.4

Appendix E

c
c***
c
c Include appropriate parameters and common blocks
c

INCLUDE 'parm26.for/list'
INCLUDE 'common26.for/list'

*
integer*2 nw,i,nwd,k,rlendat,lendat,index,extra,found
integer*4 istrtn,istrto,oaddrdat,addrdat,xdataddr
integer*4 prevpntr,prespntr,fslpnt,offset1,offset2

c
c New code for version 2.4+
c

call getdi(oaddrdat,att(daddr,id»
c

! old dat address

if (nw.gt.nwd) then ! new DAT block required
c
c DAT reclamat.ion
c - check size of block required
c - if < mindatsz then =mindat.z
c calculate index for dat.cb to start looking in correct
c FSL for freed space of correct size
c look for freed space
c - if no freed space
c - allocate new space
c - if no perfect fit in lower order sizes
c - search for fit in higher sizes
c - if no freed space large enough
c - allocate new space
c

rlendat=nw

if (rlendat.lt.mindatsz) then
rlendat=mindats~.

endif

*
index=(rlendat-mindatsz)+1
if (index.gt.topindex) then

index=topindex
endif

*
do 600 i=index,t.opindex

if «datcb(i).eq.O).and.(i.eq.topindex» then

*

*
goto 660 Allocate new space -no freed space

E-13

*

*

. elseif (datcb(i).ne.O) then

if (i.eq.topindex) then

! if FSL not empty

! if rlendat > maxdatsz

Appendix E

* search topindex FSL for first fit to accommodate
* requested data block
* - if no fit then allocate new space
* - update pointers if fit found and
* ret: ADDRDAT, LEHDAT

*

updating pointers

if no Ut found
allocate new space

*

510

found=O
prevpntr=-1
prespntr=datcb(i)
do 510 while «prespntr.ne.O).and.(found.eq.O»

if (dat(prespntr+ldatoff).ge.Tlendat) then
found=1
addrdat=prespntr
lendat=dat(prespntr+ldatoff)
call getdi(fslpnt,dat(prespntr»
if (prevpntr.eq.-1) then

datcb(i)=.hlpnt
el,se

call strdi(hlpnt,dat(prevpntr»
endif

else
prevpn.tr=prespntr
call getdi(prespntr,dat(prespntr»

endif
continue
if (found.~q.O) then

goto 660
endif

fit found

else ! if rlendat <= maxdatsz

*
* get space from FSL, update pointers, ret: ADDRnAT, LEHDAT
*

addrdat=datcb(i)
call getdi(fslpnt,dat(addrdat»
datcb(i)=fslpnt
lendat=dat(addrdat+ldatoff)

*
endif

*
.*
*

Check for extra space in block and update pointers approp .

if (lendat.ne.nw) then
extra=lendat-nw
if (extra.ge.mindatsz) then

index=(extra-mindatsz)+1
if (index.gt.topindex) then

index=topindex

E-14

if extra space

if extra space > min size
calculate index FSL

Appendix E

endif
xdataddr=addrdat+nw start addr. for extra block
fslpnt=datcb(index)
datcb(index)=xdataddr
call 8trdi(f81pnt.dat(xdataddr»
dat(xdataddr+ldatoff)=extra

endif
endif

*

*

goto 599
endif

500 continue

copy data into DAT

c
c Allocate new space for DAT block
c
c Get next data location from dat control block
c te8t new data location if valid «dat8z1)
c and if all the data will fit
c -if not then error condition
c - e18e store new caddre88 in att(id.daddr)
c length of data in att(id.ndw)
c update la~t entry pointer
c

550 continue
if ((datcb(datcbdim)+nw).gt.dat8z1)goto 900

c
* att(daddr.id)=datcb(datcbdim)+l

** Due to double V8 8ingle integer cla8h

*

error condition

datpnt=datcb(datcbdim)~l

datcb(datcbdim)=datcb(datcbdim)+nw
addrdat=datpnt

*
c
c Copy old data into dat block
c

599 offset2=oaddrdat-l
offset1=addrdat-1
do 600 i=l.nwd

dat(offsetl+i)=dat(off8et2+i)
600 continue

c
c Copy new dat info into att
c

call 8trdi(addrdat.att(daddr.id»
att(ndw.id)=nw

updating la8t dat entry pointer

c

c Reclaim space in dat released by old dat storage
c
c

E-15

c
c
c
c

c
c
c

Appendix E

DAT reclamation
- add the old DAT block to the appropriate FSL w.r.t. size.
- if size of block is smaller than the min. si~e, discard it.

lendat=nwd
if (lendat.ge.mindatsz) then

calculate index for data control block array/FSL header pointers

index=(lendat-mindatsz)+l
if (index.gt.topindex) then

index=topindex
endif

c
c get address of old dat block
c

addrdat=oaddrdat
c
c add old dat block to appropriate FSL according to length
c - updating pointers appropriately
c

fslpnt=datcb(index)
datcb(index)=addrdat
call strdi(fslpnt,dat(addrdat»
dat(addrdat+ldatoff)=lendat

c
endif

*
elseif (nw.lt.nwd) then I requires less space than before

** Check for extra space in block and update pointers approp.

*
lendat=nwd
addrdat=oaddrdat
if (lendat.ne.nw) then if extra space

extra=lendat-nw
if (extra.ge.mindatsz) then if extra space> min size

index=(extra-mindats~)+l I calculate index FSL
if (index.gt.topindex) then

index=topindex
endif
xdataddr=addrdat+nw start addr. for extra block
fslpnt=datcb(index)
datcb(index)=xdataddr
call strdi(fslpnt,dat(xdataddr»
dat(xdataddr+ldatoff)=extra

endif
endif
att(ndw,id)=nw

endif
goto 1000 return

c

E-16

c Error
c

900 continue
c
c return
c

1000 RETURN
end

E-17

Appendix E

Appendix F

APPENDIXF

Example of Test Run for Version 2.5 Data Base Access Routines, Demonstrating

the DAT Reclamation Process.

This appendix contains an example of the type of data produced bya test run,

using the test program TST25PRG1, to test and demonstrate the DAT

reclamation process.

The program TST25PRGl replicates the sequence of data base manipulations

that were followed in TST15PRGl (Appendix D), except that they are done using

version 2.5 access routines. The DAT reclamation process is clearly

demonstrated in the various data base listings included in this appendix,which

can be compared to their counterparts in appendix D.

F-l

Appendix F

11 11 11 11 11 11 11 11 11 11 1 1 0

12 12 12 12 12 12 1.2 12 12 12 2 2 0

13 13 13 13 13 13 13 13 13 13 3 4 0

14 14 14 14 14 14 14 14 14 14 4 7 0

15 15 15 15 15 15 15 15 15 15 5 11 0

16 16 16 16 16 16 16 16 16 16 6 16 0

17 17 17 17 17 17 17 17 17 17 7 22 0

18 18 18 18 18 18 18 18 18 18 8 29 0
19 19 19 19 19 19 19 19 19 19 9 37 0
20 20 20 20 20 20 20 20 20 20 10 46 0
21 21 21 21 21 21 21 21 21 21 11 56 0
22 22 22 22 22 22 22 22 22 22 12 67 0
23 23 23 23 23 23 23 23 23 23 13 79 0
24 24 24 24 24 24 24 24 24 24 14 92 O'
25 25 25 25 25 25 25 25 25 25 15106 0
26 26 26 26 26 26 26 26 26 26 16121 0
27 27 27 27 27 27 27 27 27 27 17.137 0
28 28 28 28 28 28 28 28 28 28 18154 0
29 29 29 29 29 29 29 29 29 29 1917.2 0
30 30 30 30 30 30 30 30 30 30 20191 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 104 104 104 104 105 105 105 105 105 106 106 106 106 106
106 107 107 107 107 107 107 107 108 108 108 108 108 108 108 108 109 109 109 109
109 109 109 109 109 110 110 110 110 110 110 110 110 110 110 111 111 111 111 111
111 111 111 111 111 111 112 112 11.2 112 112 112 112 112 112 112 112 112 113 113
113 113 113 113 113 113 113 113 113 113 113 114 114 114 114 114 114 114 114 114
114 114 114 114 114 116 116 115 116 115 115 116 115 115 115 116 115 115 115 115
116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 117 117 117 117
117 117 117 117 117 117 117 117 117 117 117 117 117 118 118 118 118 118 118 118
118 118 118 118 118 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F-2

Appendix F

11 11 11 11 11 11 11 11 11 11 1 1 0

13 0 0 12 12 12 12 12 12 -1 2 2 0

13 13 13 13 13 13 13 13 13 13 3 4 0

13 2 0 14 14 14 14 14 14 -1 4 7 0

15 15 15 15 15 15 15 15 15 15 5 11 0

13 4 0 16 16 16 16 16 16 -1 6 16 0

17 17 17 17 17 17 17 17 17 17 7 22 0

13 6 0 18 18 18 18 18 18 -1 8 29 0

19 19 19 19 19 19 19 19 19 19 9 37 0

13 8 0 20 20 20 20 20 20 -1 10 46 0

21 21 21 21 21 21 21 21 21 21 11 56 0

13 10 0 22 22 22 22 22 22 -1 12 67 0

23 23 23 23 23 23 23 23 23 23 13 79 0

13 12 0 24 24 24 24 24 24 -1 14 92 0
25 25 25 25 25 25 25 25 25 25 15106 0
13 14 0 26 26 26 26 26 26 -1 16121 0
27 27 27 27 27 27 27 27 27 27 17137 0
13 16 0 28 28 28 28 28 28 -1 18154 0
29 29 29 29 29 29 29 29 29 29 19172 0
13 18 0 30 30 30 30 30 30 -1 20191 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 0 0 4 104 105 105 105 105 105 0 0 6 106 106
106 107 107 107 107 107 107 107 0 0 8 108 108 108 108 108 109 109 109 109
109 109 109 109 109 0 0 10 110 110 110 110 110 110 110 111 111 111 111 111
111 111 111 111 111 111 0 0 12 112 ·112 112 112 112 112 112 112 112 113 113
113 113 113 113 113 113 113 113 113 113 113 0 0 14 114 114 114 114 114 114
114 114 114 114 114 115 115 115 115 115 115 115 115 115 115 115 115 115 116 115

0 0 16 116 116 116 116 116 116 116 116 116 116 116 116 116 117 117 117 117
117 117 117 117 117 117 117 117 117 117 117 117 117 0 0 18 118 118 118 118
118 118 118 118 118 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 0 0 20 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F-3

Appendix F

11 11 11 11 11 11 11 11 11 11 1 1 0

30 30 30 30 30 30 30 30 30 30 10191 0

13 13 13 13 13 13 13 13 13 13 3 4 0

29 29 29 29 29 29 29 29 29 29 9154 0

15 15 15 15 15 15 15 15 15 15 5 11 0

28 28 28 28 28 28 28 28 28 28 8121 0
17 17 17 17 17 17 17 17 17 17 7 22 0

27 27 27 27 27 27 27 27 27 27 7 92 0
19 19 19 19 19 19 19 19 19 19 9 37 0
26 26 26 26 26 26 26 26 26 26 6 67 0
21 21 21 21 21 21 21 21 21 21 11 56 0
25 25 25 25 25 25 25 25 25 25 5 46 0
23 23 23 23 23 23 23 23 .23 23 13 79 0
24 24 24 24 24 24 24 24 24 24 4 29 0
25 25 25 25 25 25 25 25 25 25 15106 0
23 23 23 23 23 23 23 23 23 23 3 16 0
27 27 27 27 27 27 27 27 27 27 17137 0
22 22 22 22 22 22 22 22 22 22 2 8 0
29 29 29 29 29 29 29 29 29 29 19172 0
21 21 21 21 21 21 21 2121 21 1 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 o· 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 111 112 112 3 105 105 106 105 105 113 113 113 0 0
3 107 107 107 107 107 107 107 114 114 114 11-4 0 0 4 108 109 109 109 109

109 109 109 109 109 116 116 116 116 116 0 0 6 110 110 111 111 111 111 111
111 111 111 111 111 111 116 116 116 116 116 116 0 0 6 112 112 112 113 113
113 113 113 113 113 113 113 113 113 113 113 117 117 117 117 117 117 117 0 0

7 114 114 114 114 115 116 116 116 116 116 116 116 116 116 116 115 115 115 115
118 118 118 118 118 118 li8 118 0 0 8 116 116 116 116 1.16 117 117 117 117
117 117 117 117 117 117 117 117 117 117 117 117 117 1:19 119 119 119 119 119 119
119 119 0 0 9 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 120 120 120 120 120 120 120 120 120 120

0 0 10 120 120 120 120 120 120 120 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F-4

Appendix F

11 11 11 11 11 11 11 11 11 11 1 1 0

30 30 30 30 30 30 30 30 30 30 10191 0

13 13 13 13 13 13 13 13 13 13 3 4 0

29 29 29 29 29 29 29 29 29 29 9164 0

16 16 16 16 16 16 15 15 16 16 6 11 0

28 28 28 28 28 28 28 28 28 28 8121 0

17 17 17 17 17 17 17 17 17 17 7 22 0

27 27 27 27 27 27 27 27 27 27 7 92 0

19 19 19 19 19 19 19 19 19 19 9 37 0

26 26 26 26 26 26 26 26 26 26 6 67 0

21 21 21 21 21 21 21 21 21 21 11 66 0

26 26 26 26 25 25 25 26 26 25 6 46 0

23 23 23 23 23 23 23 23 23 23 13 79 0

24 24 24 24 24 24 24 24 24 24 4 29 0

26 25 25 26 25 26 26 25 26 26 16106 0

23 23 23 23 23 23 23 23 23 23 3 16 0
27 27 27 27 27 27 27 27 27 27 17137 '0

22 22 22 22 22 22 22 22 22 22 2 8 0
29 29 29 29 29 29 29 29 29 29 191'72 0
21 21 21 21 21 21 21 21 21 21 1 7 0
11 11 11 11 11 11 11 11 11 11 1 19 0
30 30 30 30 30 30 30 30 30 30 10201 0
13 13 13 13 13 13 13 13 13 1'3 3 33 0
29 29 29 29 29 29 29 29 29 29 9163 0
16 15 16 16 16 15 15 16 16 16 6 51 0
28 28 28 28 28 28 28 28 28 28 8129 0
17 17 17 17 17 17 17 17 17 17 7 99 0
27 27 27 27 27 27 27 27 27 27 7211 0
19 19 19 19 19 19 19 19 19 19 9218 0
26 26 26 26 26 26 26 26 26 26 6 73 0

0 0 0 0 0 0 0 0 0 0 0 0 0

101 102 102 103 103 103 111 112 112 3 106 106 106 106 106 113 113 113 101 0
3 107 107 107 107 107 107 107 114 114 114 114 103 103 103 108 109 109 109 109

109 109 109 109 109 116 116 116 116 116 106 106 106 106 106 111 111 111 111 111
111 111 111 111 111 111 116 116 116 116 116 116 116 116 116 116 116 116 113 113
113 113 113 113 113 113 113 113 113 113 113 117 117 117 117 117 117 117 107 107
107 107 107 107 107 116 116 115 116 116 116 116 115 116 116 116 116 116 116 116
118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 117 117 117 1.17
117 117 117 117 117 117 117 117 117 117 117 117 117 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119
119 119 119 119 119 119 119 119 119 119 120 120 120 120 120 120 120 120 120 120
120 120 120 120 120 120 120 120 120 120 117 117 117 117 117 117 117 109 109 109
109 109 109 109 109 109 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F-5

Appendix F

11 11 11 11 11 11 11 11 11 11

101
11 11 11 11 11 11 11 11 11 11

101
13 13 13 13 13 13 13 13 13 13

103 103 0
13 13 13 13 13 13 13 13 13 13

103 0 0
15 15 15 15 15 15 15 15 15 15

105 105 105 105 0
15 15 15 15 15 15 15 15 15 15

, 105 105 105 0 0
17 17 17 17 17 17 17 17 17 17

107 107 107 107 107 107 0
17 17 17 17 17 17 17 17 17 17

107 107 107 107 107 0 0
19 19 19 19 19 19 19 19 19 19

109 109 109 109 109 109 109 109 0
19 19 19 19 19 19 19 19 19 19

109 109 109 109 109 109 109 0 0
21 21 21 21 21 21 21 21 21 21

111 111 111 111 111 111 111 111 111 111 0
21 21 21 21 21 21 21 21 21 21

111 111 111 111 111 111 11.1 111 111 0 0
23 23 23 23 23 23 23 23 23 23

113 113 113 113 113 113 113 113 113 113 113 113 0
23 23 23 23 23 23 23 23 23 23

113 113 113 113 113 113 113 113 113 113 113 0 0
25 25 25 25 25 25 25 25 25 25

115 115 115 115 115 115 115 115 115 115 115 115 115 115 0
25 25 25 25 25 25 25 25 25 25

115 115 115 115 115 115 115 115 115 115 115 116 116 0 0
27 27 27 27 27 27 27 27 27 27

117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 117 0
27 27 27 27 27 27 27 27 27 27

1:17 117 117 117 117 117 117 117 117 117 117 117 117 117 117 0 0
29 29 29 29 29 29 29 29 29 29

119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 0
29 29 29 29 29 29 29 29 29 29

119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 0 0

F-6

Appendix G

APPENDIXG

Comparative Evaluation Program for GST and Version 1.5 Code.

This appendix contains an example of the evaluation programs that were run to

compare the performance of the GST and 1.5 versions of the data base access

routines, given the same input. A listing of program SMWS8 and its compile and

load procedure, is included along with the RSCND routine. The SIM8WS15

program which ran on the VAX, was identical, except that it used the VAX

FORTRAN SECNDS function to return the time parameters for the timing

calculations.

Both programs run through the process of inserting and deleting entities,

followed by a sequential access process. SMWS8 runs on the ~P1000, and

SIM8WS15 on the VAX-ll/750.

Note that the following variables, in both programs, control the following :-

MAXDB - number of insertion cycles

CYCVAL - number of insertions per cycle

DELACC - frequency of deletions
-

GETACC - frequ~ncy of sequential access

REPS - number of repetitive sequential access cycles

The listings in order of appearance are:

COMP08.PF

LOAD08.PF

&SMWS8.PF

&RSCND.PF

G-1

»SEVERITY,1
»**
»** PROCEDURE TO COMPILE AND LOAD SPECIFIED PROGS
»**
»TELL,********************
»TELL, DELETE OLD ~ FILES
»TELL,********************
»DELETE,~SMWS8.FF::73

»DELETE,~RSCND.PF::73

»TELL,******************
»TELL, BEGIN COMPILE
»TELL,******************
»FTNx,tSMWS8.PF::73,1,~SMWS8.PF::73

»FTNX,tRSCND.PF::73,1,~RSCND.PF::73

»TELL,*************·_***
»TELL, COMPILE COMPLETE
»TELL,******************
»X,LOADR"SMWS8"PU
»X,LOADR"SMWS8"PU
»TELL,~****************
»TELL, ID SEG. REMOVED
»TELL,*************-***
»**
»** NOW RUN LOADR USING LOAD##.PF FILE
»**
»RU,LOADR,LOAD08.PF::73
»TELL,***-***********
»TELL, LOAD COMPLETE
»TELL,***************
»SEVERITY,O
»TRANSFER,-1

**
** LOADR COMMAND FILE TO LOAD SIM. PROG. nTH SD.
**

Appendix G

ECHO
RE,~SMWS8.PF::73

RE,~RSCND.PF::73

RE,~SDDTA

SCN,#C2LIB
SE,$F
END

, MAIN SIM. PROG.
, RSCND FUNCTION
, SD. COMMON BLOCK DATA

, SCAN·C2 LIB.
, SEARCH FTN4X LIB

G-2

Appendix G

FTN 4X,L,1l
$FILES(0,2)

PROGRAM smws8
c**-*-*****
c
c Routine Name:-SYIS8
c
c Purpose:- To simulate the operation of certain DB activities
c to evaluate the performance of the specific DB
c structures.
c
c Version # :-1.5
c
c Input:
c
c Output:
c
c Externals:-INIT,ISPUT,ISDEL,ISGET,RSCND
c
c Description:-
c - Sequencial in.ertionof data
c - Sequencial deletion of some of the data
c - Sequencial reinsertion of da'ta
c - Sequential extraction of entity in'for,mati,on
c Dealing 'with small enough quantities so that the
c GST code does not have to page either the DAT or
c ATT arrays, to compare the relat'ive CPU r,elated
c performance of the two sets of code.
c
c Programers Name:- Peter Figg
c
c Remarks:-
c - base machine = (VAX/9000/IDS80)IDS80
c - language std = (F77/F66) F66
c - sm7 is the streamlined veraion of smB
C - am8 uses rscnd to measure time delay, for cpu speed
c comparisons
c
c
c**************_*******_*.***********************************_**
c
c Define dummy variables for prog.
c

implicit none
INTEGER dnw,dgatt(10),ddata(100)~getacc,mode,delacc,gatt.z

integer idatq,i,j,k,1,m,lu,cyc12,cnt
integer id,iattq,maxdb,cycval,itotdb,maxin,reps
real to,ta,rscnd
integer start,itrtn,step,ios1,ios2,n,mn

*
ios1=0
ios2=0

G-3

Appendix G

open(11,file='TMDT08::73',status='UN',iostat=iosl,err=900)

'*
write(ll,'(" **Timing Data for SMWS8.pf on GST**")',iostat=ios2,

*err=900)

*
do 700 mn=1000,10000,1000

reps=mn

*
do 600 n=1,3

*
to=rscnd(O.O)

*
c
c Define counter variables
c

*

gattsz=10
ma:z:db=1
cycval=25
delacc=4
getacc=2
mode=3
reps=1000
lu=t4

!**************************
!**************************

!*******************-******

*
c
c InitialLse DB arrays
c

call init(lu)
c
c Put entities into DB
c

c

120

130

110
100

do 100 i=1,ma:z:db
do 110 j=1~cycval

do 120 k=1,gattsz
dgatt(.k)=j

continue
dgatt(1)=(i-1)*cycval+j
dnw=j

dnw=j+5 !**********************
do 130 1=1,dnw

ddata(1)=(i-1)*cycval+j
continue
call ~sput(id,dgatt,dnw,ddata)

write (1,'(" id# = ",i6)')id
continue

continue
c

c Know delete a few entries
c

cnt=O
-~totdb=ma:z:db*cycval

do 200 m=1,itotdb,delacc

G-4

Appendix G

call wsdel(m)
cnt=cnt+l

200 continue
c
c Now insert more entities using the free space chain
c
* maxin=cnt/'delacc*2)

maxin=l for one page of DAT
* cyc12=delacc*2

cyc12=3 for one page of DAT
do 400 i=l,maxin

do 410 j=1,cyc12
do 420 k=l,gattsz

dgatt(k)=j
420 continue

dgatt(1)=(i-l)*cyc12+j
dnw=j
dnw=j+5 !***-*****************.*
do 430 l=l,dnw

ddata(1)=(i-l)*cyc12+j
430 continue

call wsput(id,dgatt,dnw,ddata)
c write (1,'(" id# = ",i6)')id

410 continue
400 continue

c
c Now extract some data using ISGET, in a sequentual manner
c

do 600 j=l,reps
do 300 i=l,itotdb,getacc

call wsget(i,dgatt,dnw,ddata,mode,O,O)
300 continue
500 continue

* write(l,'(" done!! ")')

*
ta=rscnd(tO)

*
write(11,'(f8.2)')ta

*
600 continue

*
700 continue

*
close(l1)
goto 1000

*
900 continue

write (1,'(lx,2(i6»')iosl,ios2

*
1000 continue

end

G-5

- base machine = (VAX/9000/ID880) 1D880
- language std = (F77!F66) F66

Appendix G

FTN 4X,L,Q
real function rscnd(tin)

c**
c
c Routine Hame:-rscnd
c
c Purpose:- To return the difference between the input time TIN
c and the present time since midnight, in seconds
c
c Version # :-1.1
c
c Input:- TIN
c
c Output:- rscnd
c
c Externals:
c
c Description:
c
c Programers Name:- Peter Figg
c
c Remarks:-
c
c
c

c*********** ******<* ********** *<* ** *********** ***** ****** *********
c
c Define variables for prog.
c

implicit none
real ta,tin
integer time(5),secnd

c
* Get present time

*
call exec(11,time)

*
* ta=(hrs*3600)+(min*60)+sec+(hundreds of sec)

*

*
rscnd=ta-tin

*
secnd=int(rscnd)
if (secnd.lt.O) then

ta=ta+(24*3600)
rscnd=ta-tin

endif

*
return
end

G-6

Appendix H

APPENDIXH

Comparative Evaluation Programs for Versions 1.5 and 2.5.

This appendix contains listings of the routines designed to emulate the entity

creation routines of the original implementation, as well as an example of the

simulation programs that called these routines to create a simulated DB on

which evaluationmeasurement~ could be made. Also included is an example of

the batch job procedure files that were used to run the simulations.

All the programs with the ''AD'' suffix in their names are associated with entity

creation (eg: ADENT, ADARD, etc). ADDB2 and ADDB3, routines called by

SIM14WS, are identical to ADDB, except that the order in which the different

entities are created, varies from routine to routine. SIM14WS is the simulation

program (version 2.5 is included), and PGFLTS is the routine called by it to

return the page fault count. SIMRUN050 is the batch procedure file which

schedules the simulation run. PARMSIM14 is the include file containing the

parameters for the simulation program, specific to a particular run. By

changing the ITRTN1, ITRTN2, ITRTN3, DELACC1, DELACC2 parameters,

the resultant size of the DB (TOTDB) and the degree of deletion and reinsertion

(PRINS), can manipulated. .

The listings in order of appearance are:-

PARMAD.FOR

ADDB.SIM

ADARD.SIM

ADCHD.SIM

ADCPD.SIM

ADLND.SIM

ADSID.SIM

ADSMD.SIM

ADTXD.SIM

ADENT.SIM

H-1

PARMSIM14.FOR

SIM14WS25.SIM

PGFLTS.SIM

SIMRUN050.COM

- baBe machine = (VAX/9000)vax
- language Btd = (F77/F66)f66

Appendix H

*
* PARMAD.FOR Parameter block for the AD*.SIM routineB
* implicit none

integer*2 maxch,Btrtch,Bmdum,Bidum,BiBz,BmBz,lnBz,arBz,
*txBZ,CpBZ

*
parameter (maxch=4,Btrtch=3,Bmdum=4,Bidum=4,B~8z=15,

*BmBz=21,lnBz=12,arBz=15,txBz=14,cpBz=6)

*
**

Bubroutine addb(itrtn,numln,numar,numBm,numBi,
*numtx,numch,numcp,count)

c**-***************
c
c Routine Hame:-addb
c
c PurpoBe:- AddB a number of different entitieB to the DB according
c to the parameterB paBBed to it.
c
c VerBion # :-1.1
c
c Input:- itrtn - itteration count
c numln - number of line entitieB
c numar - number of arc entitieB
c numBm - number of Bymbol macro enti ti,eB
c numBi - number of Bymbol inBtance ,entftieB
c numtx - nu~ber of text entitieB
c numch - (number of character entitieB/maxch)
c numcp - number of connect point entitieB
c count - Btart count of enti~ieB

c
c Output:- count - end count of entitieB
c
c ExternalB:- ADLND,ADARD,ADSMD,ADSID,ADTXD,ADCHD,ADCPD
c
c DeBcription:
c
c ProgramerB Name:- Peter Figg
c
c RemarkB:-
c
c
c
c

c**_************
*
* Include parameter block

*
implicit none

H-2

include 'parmad.for/list'

*
integer*2 itrtn,numln,numar,numsm,numsi,

*numtx,numch,numcp,count,i,j,k,offset

*
do 100 i=1,itrtn

*
* Create line entity

*
do 110 j=1,numln

count=count+1
call adlnd(count)

110 continue

*
* Create arc entity

*
do 120 j=1,numar

count=count+1
call adard(count)

120 continue

*
* Create symbol macro 'entity

*
do 130 j=1,numsm

count=coun't+1
offset=j*smdum
call adsmd(count,offset)

130 continue

*
* Create symbol instance entity

*
do 140 j=1,numsi

count=count+1
offset=j*sidum
call adsid(count,offset)

140 continue

*
* Create text entity

*
do 150 j=1,numtx

count=count+1
call adtxd(count)

150 continue

*
* Create character entity

*
do 160 j=1,numch

do 161 k=strtch,maxch
count=count+1
offset=k
call adchd(count,offset)

Appendix H

161 continue
160 continue

** Create connect point entity

*
do 170 j=1.numcp

count=count-t1
call adcpd(count)

170 continue

*
100 continue

*
return
end

H-4

Appendix H

- base machine = (VAX/9000)vax
- language std = (F77!F66)f66

- base machine = (VAX/9000)vax
- language std = (F77/F66)f66

Appendix H

subroutine adard(count)
c**
c
c Routine Name:- adard
c Purpose:- To add a dummy arc entity
c Version # :-1.1
c Input:- count = entry number in DB
c Externals:-adent
c Programers Name:- Peter Figg
c Remarks:-
c
c
c
c*************-**********-************************-*************

*
integer*2 type,tnw,count

*
type=4
tnw=15
call adent(count~type,tnw)

*
return
end

subroutine adchd{count,of~set)

c******************** **** ***** **** **********************'** ** *****
c
c Routine Name:- adchd
c Purpose:- To add a dummy character entity
c Version # :-1.1
c Input:- count = entry number in DB
c offset = variation in DAT block size
c Externals:-adent
c Programers Name:- Peter Figg
c Remarks:-
c
c
c
c************************~********.**.*.**********.*************

*
integer*2 type,tnw,count,off~et

*
type=8
tnw=offs,et
call adent(count,type,tnw)

*
return
end

H-5

Appendix H

subroutine adcpd(count)

c ••••••• •• •••••••••••
c
c Routine Name:- adcpd
c Purpose:- To add a dummy connect point entity
c Version # :-1.1
c Input:- count = entry number in DB
c Externals:-adent
c Programers Name:- Peter Figg
c Remarks:-
c
c

- base machine = (VAX/9000)vax
language std = (F77/F66)f66

- base machine = (VAX/9000)vax
- language std = (F77/F66)t66

c
c··.··········***·*··**···*******··**···****·*···*·*··* ••**.*.*•.-

integer.2 type,tnw,count,offset

*
type=769
tnw=6
call adent(count,type,tnw)

*
return
end

subroutine adlnd(count)

c···********··*****··**·*******··*·**·**·***·*··*···.*.**•••*••*.
c
c Routine Name:-adlnd
c Purpose:- To add a dummy line entity
c Version # :-1.1
c Input:- count = entry number in DB
c Externals:-adent
c Programers Name:- Peter Figg
c Remarks:-
c
c
c
c**···*···· •••*****•••••••*••*•••*.*••*****.*•••••••••**••••••**
*

integer.2 type,tnw.count

*
type=2
tnw=12
call adent(count,type,tnw)

•
return
end

H-6

Appendix H

subroutine adsid(count.offset)
c**
c
c Routine Hame:- adsid
c Purpose:- To add a dummy symbol instince entity
c Version # :-1.1
c Input:- count = entry number in DB
c offset = variation in DAT block size
c E:z:ternals:-adent
c Programers Hame:- Peter Figg
c Remarks:-
c
c

- base machine = (VAX/9000)va:z:
- language std = (F77/F66)f66

c
c***********************--********************-*********-***--**

*
integer*2 type,tnw.count.offset

*
type=S
tnw=1S+offset
call adent(count.type.tnw)

return
end

subroutine adsmd(count,offset)
c ********************** **** ************* ** ************'* *****'** ***
c
c Routine Hame:- adsmd
c Purpose:- To add a dummy symbol macro entity
c Version # :-1.1
c Input:- count = entry number in DB
c offset = variation in DAT block size
c E:z:ternals:-adent
c Programers Hame:- Peter Figg
c Remarks:-
c - base machine = (VAX/9000)va:z:
c - language std = (F77/F66)f66
c

c***-****_**

*
integer*2 type,tnw.count.off.et

*
type=6
tnw=21+offset
call adent(count.type,tnw)

*
return
end

H-7

- base machine = (VAX/9000)vax
- language std = (F77/F66)f66

Appendix H

subroutine adtxd(count)
c**
c
c Routine Hame:- adtxd
c Purpose:- To add a dummy text entity
eVersion # :-1.1
c Input:- count = entry number in DB
c Externals:-adent
c Programers Hame:- Peter Figg
c Remarks:-
c
c
c
c***_*_***

*
integer*2 type,tnw,count,offset

*
type=7
tnw=14
call adent(count,type,tnw)

*
return
end

H-8

- base machine = (VAX!9000)vax
- language std = (F77!F66)f66

Appendix H

subroutine adent(count,type,tnw)

c**
c
c Routine Name:- adent
c Purpose:- Routine adds a dummy entity to the DB
c Version # :-1.1
c Input:- count = entry number of the entity
c type = entity type number
c tnw = total number of words in the associated DAT block
c Externals:-wsput
c Programers Name:- Peter Figg
c Remarks:-
c
c
c

c***
*

include ·parm24.for!list·
integer*2 count,type,tnw,i,gatt(gattsz),data(100)
integer*4 id

*
* Create gatt

*
do 100 i=2,gatts%

gatt(i)=type
100 continue

gatt(l)=count

** Create DAT

*
do 200 i=3.tnw

data(i)=type
200 continue

data(l)=count
data(2)=tnw

*
* Create entry

*
call wsput(id,gatt,tnw,data)

*
return
end

H-9

- base machine = (VAX/9000)vax
- language std = (F77/F66)f66

Appendix H

******** ••*•••••••**.*••••** •••** ••*•••••••*.*.* ••*•••• ** •• *••• **•••••*
* PARMsim14.FOR parameter block for sim14JSnn.sim

•
* Contains parameters which define the ratio between the respective
* entities, as well the number of iterations for the different stages
* within the program .

•
**************************.************************************ •••*****

*
integer*2 numln,numar,numsm,numsi,numtx,numch,numcp,

*count,i,j,k,itrtn,mode,gatt(gattsz),data(100),total,nw,
*itrtnl,itrtn2,itrtn3,itrtn4,
*delaccl,delacc2,delacc3,delacc4
integer*4 attq,datq

*
PARAMETER (numln=4,numar=1,numsm=1,numsi=1,numtx=1,numch=1,

*numcp=2,
*itrtnl=2000,itrtn2=1200,itrtn3=734,itrtn4=20,
*delacc.1=2, delacc2=3, delacc3=O, del.acc-4=O)

*
.***-

program sim14ws
c *************** ****** ******************** ***********.* *** *****.* **
c
c Routine Name:-sim14ws
c Purpose:- Simulation program to exercise the DB and the DB
c access routines, using realistic dummy entities, of
c of the correct size, to get a more accurate ~valuation

c of how the DB will perform under real conditions.
eVersion # :-1.25
c Externals:- addb,wsdel,wsget,prntsz,s~m14pdb,avdatsz,pgflts,secnds

c addb2,addb3
c Programers Name:-Peter Figg
c Remarks:-
c
c
c

c************************~.**********************************.**

*

*
*
*
*

include ·parm26.for/list·
include ·parmsim14.for/list·
integer*4 pgflts ! pagefaults function
real secnds ! VAX FTN function to return elapsed time
integer*4 fO,fa,fb
real to,ta,tb

Open files for pagefault and elapsed time data
NB these are process permanent files pfdat*.dat, tmdat*.dat

open(unit=10,file=·pfdata25·.status=·old')

H-lO

Appendix H

open(unit=11,file='pfdatb2S',status='old')
open(unit=12,file='tmdata2S',status='old')
open(unit=13,file='tmdatb2S',status='old')

** Get initial values of pagefaults and time

*
fO=pgflts(O)
to=secnds(O.O)

** Add to the DB

*
count=O
call addb(itrtnl,numln,numar,numsm,numsi,numtx,numch,numcp.count)
total=count

** How delete some entities

*
count=O
do 100 i=delaccl,total,delaccl

call wsdel(i)
count=count-l

100 continue
total=total+count

** Add more entities

*
count=O
call addb2(itrtn2,numln.numar,numsm,numsi,numtx.numch,numcp,count)
total= total+count

** How delete somemoreentitie.

*
count=O
do 200 i=delacc2,total,delacc2

call wsdel (i)
count=count-l

200 conttnue
total=total+count

*
* Add more entities

*
count=O
call addb3(itrtn3,numln.numar,numsm,numsi.numtx.n~mch,nu~cp,count)
total= total+count

** Get values of pagefaults and time

*
fa=pgfl ts (fO)-O
ta=secnds(tO)-O.O

*
*
*

How extract info, both ATT and DAT, from the DB in a sequential manner

H-ll

Appendix H

mode= 3
do 300 j=l,itrtn4

do 310 i=l,total
call wsget(i,gatt,nw,data,mode,O,O)

310 continue
300 continue

•
• Get values of pagefaults and time

•
fb=pgUts(fO)-fa
tb=secnds(tO)-ta

•
• Now write the pagefaults and elapsed time to there respective files

•
write (10,'(i8)')fa
write (11,'(i8)')fb
write (12,·(f8.1)·)ta
write (13,·(f8.1)·)tb

•
close(10)
close(11)
close(12)
close(13)

•
end

INTEGER.4 FUNCTION PGFLTS(oldUts)

c·········_····························*····*··*······._ .
c
c Routine Name:- PGFLTS
c Purpose:- To calculate the difference between the present
c number of page faults and OLDFLTS.
c Version # :- 1.1
c Input:- OLDFLTS
c Output:- PGFLTS
c Externals:- LIB$GETJPI
c Programers Name:- Peter Figg
c Remarks:-
c - base machine = (VAX/gOOO)VAX
c - language std = (F77/F66)F66
c

c·.·**·* * *•• *••* * * *_*****.*•••••••••
•

integer.4 oldflts,newflts
include '($JPIDEF)J

•
call lib$getjpi(jpi$_pageflts."newflts)
pgflts=newflts-oldflts

*
return
end

H-12

open process permanent files
and put a heading in the first record of each file

Appendix H

$!**
$! SIMRUN050
$! Batch procedure file to run a simulation run.
$!
$!
$!**
$!
$! Set up Vax environment
$!
$ stpriv
$! disable logins
$! remember the current sys$announce text
$ oldannounce == f$logical(-SYS$ANNOUNCE~)

$! modify the sys$announce text
$ define/system sys$announce -System down for Peter Figg's experiment~·

$! disable logins
$ set logins/interactive=O
$!
$ reply/bell/shut/all -Shutting System dowm forSim. runs!! Peter
$!
$! Record environment details
$!
$ who
$ sh que/all
$!
$!
$!
$!
$ open/writepfdata15 duaO:[figg.scratch]pfdata15.dat
$ write pfdata15 -* Page fault count~ for version 1.5 insert/delete phase 52
$ open/write pfdatb15 duaO:[figg.scratch]pfdatb15~dat

$ write pfdatb15 -* Page fault counts for version 1.~ sequential phase 52
$ open/write pfdata25 duaO:[figg.scratch]pfdata26.dat
$ write pfdata25 -* Page fault counts for version 2.5 insert/delete phase 52
$ open/write pfdatb25 duaO:[figg.scratch]pfdatb2~.~at

$ write pfdatb25 -* Page fault counts for version 2.6 sequential phase 52
$ open/write tmdatalS duaO:[figg.scratchhmdata16.dat
$ write tmdata16 .* Elapsed times for version 1.6 insert/delete phase 52
$ open/write tmdatb15 duaO:[figg.scratch]tmdatb15.dat
$ write tmdatblS -* Elapsed times for version 1.5 sequential phase 52
$ open/write tmdata25 duaO:[figg.scratch]tmdata25.dat
$ write tmdata25 -* Elapsed times for version 2.5 insert/delete phase 52
$ open/write tmdatb2S duaO:[figg.scratch]tmdatb25.dat
$ write tmdatb2S-* Elapsed times for version 2.5 sequential phase 52
$!
$!
$! Set size of lorking Set
$!
$ stwst /e=800 /q=800
$ shwst
$!
$ ru [figg.scratch]sim5215

H-13

$ ru [figg.scratch]sim5215
$ ru [figg.scratch]sim5215
$1
$ ru [figg.scratch]sim5225
$ ru [figg.scratch]sim5225
$ ru [figg.scratch]slm5225
$1
$1
$! Set size of lorking Set
$!
$ stwst /q=850
$ shwst
$1
$ ru [figg.scratch]sim5215
$ ru [figg.scratch]slm5215
$ ru [figg.scratch]sim5215
$!
$ ru [figg.scratch]sim5225
$ ru [figg.scratch]sim5225
$ ru [figg.scratch]sim5225
$ I
$1
$1 Set size of lorking Set
$ I
$ stwst /q=900
$ shwst
$ I
$ ru [figg.scratch]sim5215
$ ru [figg.scratch]slm&215
$ ru [figg.scratch]sim5215
$1
$ ru [figg.scratch]sim5225
$ ru [figg.scratch]sim5225
$ ru [figg.scratch]sim5225
$1
$1
$1 Set size of lorking Set
$1
$ stut /q=950
$ shwst
$!
$ ru [figg.scratch]sim5215
$ ru [flgg.scratch]sim5215
$ ru [figg.scratch]sim5215
$1
$ ru [figg.scratch]sim5225
$ ru [figg.scratch]sim5225
$ ru [flgg.scratch]sim5225
$1
$1
$1 Set size of lorking Set
$!

H-14

Appendix H

$stwst /q=1000
$ shwst
$!
$ ru [figg.scratch]sim5215
$ ru [figg.scratch]sim5216
$ ru [figg.scratch]sim5216
$!
$ ru [figg.scratch]sim6226
$ ru [figg.scratch]sim6226
$ ru [figg.scratch]sim5225
$!
$! Allow other users on again
$!enable login~

$! restore the normal sys$announce text
$ if ft"oldannounce'ft .nes . •• then -
$ define/system sys$announce ·"oldannounce'·
$! enable ogins
$ set logins/interactive=64
$!
$ exit

H-15

Appendix H

	Figg_Peter_Gerald_1987.front.p001
	Figg_Peter_Gerald_1987.front.p002
	Figg_Peter_Gerald_1987.front.p003
	Figg_Peter_Gerald_1987.front.p004
	Figg_Peter_Gerald_1987.front.p005
	Figg_Peter_Gerald_1987.front.p006
	Figg_Peter_Gerald_1987.front.p007
	Figg_Peter_Gerald_1987.front.p008
	Figg_Peter_Gerald_1987.front.p009
	Figg_Peter_Gerald_1987.front.p010
	Figg_Peter_Gerald_1987.front.p011
	Figg_Peter_Gerald_1987.p001
	Figg_Peter_Gerald_1987.p002
	Figg_Peter_Gerald_1987.p003
	Figg_Peter_Gerald_1987_Chp2.p001
	Figg_Peter_Gerald_1987_Chp2.p002
	Figg_Peter_Gerald_1987_Chp2.p003
	Figg_Peter_Gerald_1987_Chp2.p004
	Figg_Peter_Gerald_1987_Chp2.p005
	Figg_Peter_Gerald_1987_Chp2.p006
	Figg_Peter_Gerald_1987_Chp2.p007
	Figg_Peter_Gerald_1987_Chp2.p008
	Figg_Peter_Gerald_1987_Chp2.p009
	Figg_Peter_Gerald_1987_Chp2.p010
	Figg_Peter_Gerald_1987_Chp2.p011
	Figg_Peter_Gerald_1987_Chp2.p012
	Figg_Peter_Gerald_1987_Chp2.p013
	Figg_Peter_Gerald_1987_Chp2.p014
	Figg_Peter_Gerald_1987_Chp2.p015
	Figg_Peter_Gerald_1987_Chp2.p016
	Figg_Peter_Gerald_1987_Chp2.p017
	Figg_Peter_Gerald_1987_Chp2.p018
	Figg_Peter_Gerald_1987_Chp2.p019
	Figg_Peter_Gerald_1987_Chp2.p020
	Figg_Peter_Gerald_1987_Chp2.p021
	Figg_Peter_Gerald_1987_Chp3.p001
	Figg_Peter_Gerald_1987_Chp3.p002
	Figg_Peter_Gerald_1987_Chp3.p003
	Figg_Peter_Gerald_1987_Chp3.p004
	Figg_Peter_Gerald_1987_Chp3.p005
	Figg_Peter_Gerald_1987_Chp3.p006
	Figg_Peter_Gerald_1987_Chp3.p007
	Figg_Peter_Gerald_1987_Chp3.p008
	Figg_Peter_Gerald_1987_Chp3.p009
	Figg_Peter_Gerald_1987_Chp4.p001
	Figg_Peter_Gerald_1987_Chp4.p002
	Figg_Peter_Gerald_1987_Chp4.p003
	Figg_Peter_Gerald_1987_Chp4.p004
	Figg_Peter_Gerald_1987_Chp4.p005
	Figg_Peter_Gerald_1987_Chp4.p006
	Figg_Peter_Gerald_1987_Chp4.p007
	Figg_Peter_Gerald_1987_Chp4.p008
	Figg_Peter_Gerald_1987_Chp4.p009
	Figg_Peter_Gerald_1987_Chp4.p010
	Figg_Peter_Gerald_1987_Chp4.p011
	Figg_Peter_Gerald_1987_Chp4.p012
	Figg_Peter_Gerald_1987_Chp4.p013
	Figg_Peter_Gerald_1987_Chp4.p014
	Figg_Peter_Gerald_1987_Chp4.p015
	Figg_Peter_Gerald_1987_Chp4.p016
	Figg_Peter_Gerald_1987_Chp4.p017
	Figg_Peter_Gerald_1987_Chp4.p018
	Figg_Peter_Gerald_1987_Chp4.p019
	Figg_Peter_Gerald_1987_Chp4.p020
	Figg_Peter_Gerald_1987_Chp4.p021
	Figg_Peter_Gerald_1987_Chp4.p022
	Figg_Peter_Gerald_1987_Chp4.p023
	Figg_Peter_Gerald_1987_Chp4.p024
	Figg_Peter_Gerald_1987_Chp5.p001
	Figg_Peter_Gerald_1987_Chp5.p002
	Figg_Peter_Gerald_1987_Chp5.p003
	Figg_Peter_Gerald_1987_Chp5.p004
	Figg_Peter_Gerald_1987_Chp5.p005
	Figg_Peter_Gerald_1987_Chp5.p006
	Figg_Peter_Gerald_1987_Chp5.p007
	Figg_Peter_Gerald_1987_Chp5.p008
	Figg_Peter_Gerald_1987_Chp5.p009
	Figg_Peter_Gerald_1987_Chp5.p010
	Figg_Peter_Gerald_1987_Chp5.p011
	Figg_Peter_Gerald_1987_Chp5.p012
	Figg_Peter_Gerald_1987_Chp5.p013
	Figg_Peter_Gerald_1987_Chp5.p014
	Figg_Peter_Gerald_1987_Chp5.p015
	Figg_Peter_Gerald_1987_Chp5.p016
	Figg_Peter_Gerald_1987_Chp5.p017
	Figg_Peter_Gerald_1987_Chp5.p018
	Figg_Peter_Gerald_1987_Chp5.p019
	Figg_Peter_Gerald_1987_Chp5.p020
	Figg_Peter_Gerald_1987_Chp5.p021
	Figg_Peter_Gerald_1987_Chp5.p022
	Figg_Peter_Gerald_1987_Chp5.p023
	Figg_Peter_Gerald_1987_Chp5.p024
	Figg_Peter_Gerald_1987_Chp5.p025
	Figg_Peter_Gerald_1987_Chp5.p026
	Figg_Peter_Gerald_1987_Chp5.p027
	Figg_Peter_Gerald_1987_Chp5.p028
	Figg_Peter_Gerald_1987_Chp5.p029
	Figg_Peter_Gerald_1987_Chp5.p030
	Figg_Peter_Gerald_1987_Chp5.p031
	Figg_Peter_Gerald_1987_Chp5.p032
	Figg_Peter_Gerald_1987_Chp5.p033
	Figg_Peter_Gerald_1987_Chp5.p034
	Figg_Peter_Gerald_1987_Chp6.p001
	Figg_Peter_Gerald_1987_Chp6.p002
	Figg_Peter_Gerald_1987_Chp6.p003_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p004_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p005_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p006_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p007_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p008_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p009_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p010_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p011_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p012_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p013_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p014_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p015_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p016_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p017_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p018_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p019_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p020_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p021_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p022_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p023_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p024_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p025_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p026_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p027_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p028_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p029_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p030_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p031_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p032_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p033_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p034_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p035_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p036_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p037_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p038_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p039_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p040_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p041_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p042_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p043_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p044_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p045_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p046_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p047_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p048_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p049_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p050_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p051_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p052_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p053_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p054_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p055_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p056_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p057_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p058_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p059_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p060_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p061_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p062_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p063_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p064_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p065_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p066_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p067_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p068_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p069_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p070_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p071_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p072_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p073_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p074_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p075_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p076_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p077_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p078_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p079_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p080_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p081_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p082_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p083_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p084_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p085_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p086_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p087_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p088_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p089_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p090_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p091_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p092_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p093_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p094_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p095_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p096_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p097_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p098_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p099_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p100_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p101_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p102_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p103_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p104_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p105_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p106_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p107_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p108_Appendixe
	Figg_Peter_Gerald_1987_Chp6.p109_Appendixe

