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Abstract 

The spotted stem, borer Chilo partellus Swinhoe (Lepidopteran, Pyralidae), is an important 

field pest of maize (Zea mays L), widely distributed in the lowland topics and mid-altitude 

maize growing zones, and  causing annual yield loss of 13.5% in Kenya.  Maize weevil, 

Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), an equally damaging post-

harvest insect pest, causes estimated annual grain losses of 15%. Host plant resistance for 

both pests has been employed to develop some varieties resistant to either of these pests. 

However, the traits are in separate cultivars, and most of the released varieties are not early 

maturing. The specific objectives of the study were to: i) investigate genetic diversity in stem 

borer and maize weevil resistant S4 maize families for use in breeding for insect resistance 

in maize hybrids, ii) investigate whether resistance to, Chilo partellus and Sitophilus 

zeamais, can be achieved in hybrid combinations using insect resistant maize inbred lines, 

iii) determine the genome dosage effect on resistance to C. partellus and S. zeamais by 

using maize lines with contrasting levels of resistance to the respective pests in designing 

maize hybrids,  iv) determine stability of the new C. partellus and S. zeamais resistant early 

and medium maturing hybrids across environments.  

Diversity studies results revealed that the markers were polymorphic with 0.46-0.48 

polymorphism for both SBR and SPR populations.  The cluster analysis revealed three major 

clusters of germplasm in both SBR and SPR populations. This indicated existence of 

diversity in both populations which can be exploited in breeding insect resistant varieties. 

Diallel analysis using 12 inbred lines revealed highly significant (p≤0.001) general combining 

ability (GCA) effects for leaf damage scores and undamaged kernels and contributed 71-

77% of the genetic variation. Similarly, the GCA for undamaged grain under S. zeamais was 

favorable (p≤ 0.001, 72.5-77.1%). This suggests that these traits are controlled by additive 

gene action. The analysis further revealed that 34.8% of the genotypes had high levels of 

stem borer resistance with leaf damage scores of 2-2.5, while 42.4 % had scores of 2.51-

3.0, 21.2% had moderate levels of resistance, while 1.5% were susceptible. Grain yield 

analysis revealed that 3.0-4.5% of genotypes were high yielder (9-11.0 t/ha) from both 

protected and infested, suggesting that stem borer resistance did not confer yield penalties 

to the hybrids. Parents; 2, 3, 6, 7, and 10 contributed to higher C. partellus resistance genes 

in hybrids (p≤ 2.3), while parents, 2,3,8,9, and 10 contributed to higher S. zeamais 

resistance genes. Hybrids: 3X10, 4X8, 5X10, 3X9, 2X9, 5X8, and 4X9; showed combined 

resistance to both pests, with grain yield of 5-8 t/ha.  The parents can be used as sources of 
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resistance genes in developing hybrids with combined resistance to field and storage pests 

in maize production.  

Evaluation of hybrids generated through North Carolina II from inbred line parents with 

contrast resistance levels revealed highly significant (p≤ 0.001) mean squares for grain yield, 

leaf damage scores, grain weight loss and undamaged kernels. The mean grain yield of 

eight sets was 5.0t/ha, when protected, and 4.7t/ha when infested. The highest grain yield 

(5.5t/ha, and, 5.2t/ha, protected and infested respectively), were observed in set 3. Sets 1, 7 

and 8 had relatively high resistance to maize weevil, and registered the least weight loss of 

14.9-16.7%.  

Female parent 3 had positive and favourable GCA effects for grain yield (0.95 and 0.70) 

when protected and infested treatments, as well as for undamaged kernels (1.66). The same 

parent 3 had favourable negative effects for both leaf damage scores (-0.46) due to C. 

partellus infestation, and, weight loss due to S. zeamais. Favourable GCA effects were also 

observed in set 5, for grain yield (0.69 and 0.57); leaf damage scores, -0.28; weight loss in 

maize weevil infestation, -3.77; and, undamaged grain, 1.94 under maize weevil infestation 

for the same parent. Calculated 8.9% of hybrids were highly resistant to stem borer with a 

leaf damage score of 1.5-2.5; 42% of the test hybrids had a score of 3.0, and, 49% were 

susceptible with leaf damage scores > 3. Heterosis for grain yield ranged from 26-41% for 

the best five hybrids.  Heterosis for resistant parameters, leaf damage scores was -22% to -

17, and, for weight loss was -45 to -32%. Both additive and non-additive gene action were 

responsible for combined resistance to both C. partellus and S. zeamais insect pests. 

Resistance to both C. partellus and S. zeamais was observed in hybrids from set 3, 7, and 8. 

Sets 3 and 5 had grain yield above mean of checks, and high levels of resistance for both 

insect pests. 

The overall results and findings of this study demonstrate that it is possible for breeders to 

develop maize hybrids with dual resistance for C. partellus and S. zeamais for use by 

smallholder farmers in Africa. The identified inbred lines parents‟ with good combining ability 

for yield and insect pest resistance can also be used in breeding programs to enhance the 

existing germplasm. The favourable alleles of combined resistance to C. partellus and S. 

zeamais can be fixed by further selection. Further, the findings of this research can be used 

as baseline studies for future research when breeding for combined insect pests‟ resistance 

in maize. 
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Chapter 1: Introduction  

1.1 Importance of maize 

Maize (Zea mays L.) is classified as a grass; family, Poaceae, subfamily Panicoideae, tribe 

Andropogoneae, and genus Zea. It is a monoecious plant with both sexes in the same 

individual, but the inflorescences are different. It is also diploid with chromosome number of 

2n = 4x = 20 (Acquaah, 2007).  

Maize is the main staple diet in sub-Saharan Africa for the majority of smallholder farmers 

and the urban poor population (Oerke, 2006). Current statistics indicate that maize is leading 

in total tonnage produced in the world with average of 800 million tonnes per year. The 

mean yield of maize for the year 2004-2013 is estimated at 5.1 t/ha (Figure 1-1) (FAOSTAT, 

2014). 

 

 Figure 1-1: Global production tonnage for maize, wheat and rice 

Source: FAOSTAT, 2014 

It is grown on an estimated global area of over 142 million hectares, with a total production 

of over 637 million metric tons (MT). The United States of America (USA) is the leading 

producer of maize with an average yield of 9.5 t/ha for the period 2004-2013, as compared 

to average yield of 1.9t/ha obtained in Africa for the same period (Figure 1-2) (FAOSTAT, 

2014). This low yield being realised in Africa versus the high yield potential justify 

investments in maize breeding research in sub-Saharan Africa.  
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1.2 Maize production in Kenya 

In Kenya, maize is by far the most important food crop, being grown as both a subsistence 

and commercial crop for income generation by smallholder farmers (DeGroote, 2002). It is 

planted on 1.69 million ha, which is more than 30% of the arable land in Kenya (Table 1-1), 

and is widely distributed throughout the six major agro-ecological zones. The average 

annual production for the period 2004-2013 is estimated at 3.03 million tonnes (FAOSTAT, 

2014). This is far below the actual demand for the crop averaging at 3.75 Million tonnes per 

annum, which makes Kenya a net importer of maize, with an estimated 140 364 metric 

tonnes of cereals imported between 2004 and 2006 (FAOSTAT, 2013). Even with the 

current deficit, the demand for maize is estimated to increase by 45-50% by the year 2020 

because of population growth and the diversification of its uses, which include possibilities of 

producing biofuel and use for animal feed (Anami et al., 2009; Hutňan et al., 2010).  

 

Figure 1-2: Maize yields in Kenya as compared with global yields 
Source: FAOSTAT, 2014 

Further, Kenya is still producing an average maize yield of 1.6 t/ha maize yields, compared 

to the recorded average yields of maize in Africa estimated at 1.9 t/ha (Figure 1-2) 

(FAOSTAT, 2014), yet a large area is used for maize cultivation in Kenya (Table 1-1) (GOK, 

2009). Statistics also indicate that maize ranks third to rice and wheat in Kenya in terms of 

yields per unit area (Figure 1-3) (FAOSTAT, 2014), yet it forms the staple food for the 

majority of households in Kenya. The low yields can be attributed to various constraints 

experienced in maize production.  
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Table 1-1: Area (Ha) under maize cultivation in Kenya 

Province 2006 2007 2008 2009 

Central        151,596         138,888         146,383         157,063  

Coast          88,475           86,786           92,139         129,379  

Eastern        523,931         435,773         508,135         462,401  

Nairobi            2,137             1,365             1,682             1,053  

North Eastern            6,470             4,843             3,606             2,525  

Nyanza        273,055           83,333         254,355         262,453  

Rift Valley        627,362         664,098         549,448         644,895  

Western        223,139         212,049         201,569         225,302  

Total  1,896,165 1,627,135 1,757,317 1,885,071 

Mean            237,021             203,392             219,665             235,634  
Source: FAOSTAT 2014. countrystat.kenya@go.ke  

 

 

Figure 1-3: Trend of yield for major cereals in Kenya for the period 2004-2013 
Source: FAO STATS, 2014 

 

mailto:countrystat.kenya@go.ke
mailto:countrystat.kenya@go.ke
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1.3 Constraints to maize production 

While the demand for maize is very high and, it is predicted to increase by 45-50%  by the 

year 2020 (Anami et al., 2009), its production is greatly affected by stress factors which can 

be broadly grouped into three categories, socio-economic, abiotic, and biotic stresses 

(Oerke, 2006).  

The major socio-economic constraints to maize production include lack of credit facilities 

which makes it difficult to purchase farm inputs especially fertilizer, improved seeds, and 

chemical pesticides (Wekesa et al., 2003).   This is compounded by lack of awareness on 

the part of the smallholder. Other times certified seed is not available on the market, which 

leads to use of  landraces preserved from previous harvests,  which are lower yielding and 

sometimes prone to other abiotic and biotic stresses (Pixley et al., 2006; Fato et al., 2012). 

Abiotic stresses include drought, unreliable rainfall, declining soil nutrients and fertility, 

salinity and changes in rainfall patterns caused by climate change and global warming 

(Setimela et al., 2007). 

The major biotic stresses to maize production include viruses, fungi, bacteria, parasites, 

weeds, and harmful insect pests. The insect pests cause direct harm to the crop, and others, 

act as vectors of disease causing micro-organism.  Pathogens and weeds account for 13% 

each, and insect pests account for 15% (Oerke et al., 1994). Arthropod pests are most 

common and of great economic importance in maize production (DeVries and Toenniessen, 

2001).  

1.4 Insects pests 

Insect pests are the most damaging to maize crop right from seedling all the way to storage. 

They can be grouped into two; field and storage pests.  The major field pests of maize are 

the stem borer complex, causing estimated losses of over 50 million MT in Kenya (James, 

2003). The most common stem borer species are Chilo partellus Swinhoe (Lepidoptera: 

Pyralidae) and Busseola fusca Fuller (Lepidoptera: Noctuidae). Maize yield losses due to 

stem borers in Kenya range between 12-40%, with an average of 13.5% annually, and stem 

borers have been a major focus for research in an attempt to reduce these losses 

(DeGroote, 2002). 

The major storage insect pests of maize in Kenya are the maize weevil Sitophilus zeamais 

Motschulsky (Coleoptera: Curculionidae) and the larger grain borer, Prostephanus truncatus 
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Horn, (Coleoptera, Bostrichidae) (Ayertey et al., 1999; Akob and Ewete, 2010). Postharvest 

losses due to these pests range from 14-40%, with compounding quality loss due to other 

pest infestation, for example, Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae) and, 

create avenues or entry points for secondary infections by mycotoxins in already damaged 

grains (Bervinson and Garcia-Lara, 2004; Tefera, 2012). 

1.5 Rationale of insect resistance breeding  

Various methods have been employed in efforts to reduce losses due to field and storage 

pests. These methods are biological, biotechnological, chemical, cultural, integrated pest 

management and host plant resistance (Mugo et al., 2001).  

Chemical control is effective and commonly used, however, it is expensive for the 

smallholder farmer, and it has social, environmental and health concerns. These include 

indiscriminate destruction of target and non-target insects, including beneficial insects like 

pollinators, decomposers, and biological control agents (Polaszek, 2001). Chemical control 

also leads to health complications, pollution to the environment, and, pest resurgence due to 

resistance development on active ingredients by the pest (Meissle et al., 2010) . Cultural 

control methods, on the other hand, are laborious, and include use of botanicals, field 

hygiene which encompasses removing of alternate hosts of these pests, burning of leftover 

stovers and uprooting stems which act as hibernating grounds for the diapausing stem 

borers (Kfir et al., 2002). Cultural control to some extend also involves hand picking of the 

individual pests, or use of wood ash (Akob and Ewete, 2010). It is not possible to hand pick 

stem borers from the maize plant because they enter the stem of the plant and cause stem 

tunnelling. It is also practically impossible to control weevils on large scale basis using 

cultural methods because they burrow and are hidden inside the maize grain. Their use is 

therefore limited. Biological control is effective but slow and it requires thorough knowledge 

of the pest and its natural enemies which can either be parasitoids, pathogens or predators 

of the pests (Othira et al., 2009).  

Breeding for host plant resistance (HPR) is not easy, since the breeder works with two 

organisms; the pest and the host. The trait is polygenic and therefore influenced by the 

environment. However, in terms of benefits, it is the best option for the farmer because the 

technology is inbuilt within the seed; it is cheaper, easy to use and safe. In addition to HPR, 

early maturing maize cultivars can escape drought and also avoid pests‟ early infestation 

due to lack of synchrony between the critical stages in the plant growth with the critical larval 

stage of the pest (Mugo et al., 2001).  
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Despite this awareness, combining different insect resistance traits in breeding has not been 

done. There are also no maize varieties developed with both stem borer and storage pest 

resistance. Most of the developed technologies have each resistance trait in separate 

hybrids, but not a combination of the two into single genotypes. This study aims at 

developing maize varieties that are early maturing and resistant to both C. partellus in the 

field, and S. zeamais in storage in order to reduce both yield and postharvest losses due to 

these pests. Ultimately the findings of this research will act as baseline studies for breeding 

for combined stem borer and storage insect pest resistance in maize hybrids, and thereby 

contribute towards increased food security and productivity by reduction of losses due to 

these field and storage insect pests. 

1.6 Importance of diversity studies and use of marker assisted 

breeding 

Genetic diversity can be defined as “the variety of alleles and genotypes present in a 

population that is reflected in morphological, physiological and behavioral differences 

between individuals and populations” (Frankham et al., 2002), as cited by Khoza (2012). 

Genetic diversity studies are of great importance in any given breeding program, because 

they provide baseline information on the genetic resources available for that particular 

breeding program. Genetic diversity studies also help the breeder make good selection of 

parents to ensure genetic variability and heterosis. Genetic diversity is also needed for 

conservation, estimation of alleles in the gene pool of the breeding program, and future 

follow up of the genetic resources in the population. Genetic diversity studies can also be 

used for enriching and enhancing the germplasm in the particular breeding program 

(Prasanna, 2012). Genetic diversity is therefore a critical component for a given breeding 

program (Jarvis and Hodgkin, 2005).  

1.7 Broad objective 

The broad objective of this study was to develop early maturing maize hybrids with 

combined resistance to the important field and storage insect pests in Kenya. 

1.7.1 Specific objectives 

Specific objectives of the project were to: 
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1. Investigate the genetic diversity among 130 S4 maize families with potential for use in 

breeding for insect resistance in maize hybrids. 

2. Determine whether resistance to stem borer, Chilo partellus, and storage pest, 

Sitophilus zeamais, can be achieved in hybrid combinations using insect resistant 

maize inbred lines. 

3. Determine the genome dosage effect on resistance to C. partellus and S. zeamais by 

using maize lines with contrasting levels of resistance to the respective pests in 

designing maize hybrids. 

4. Determine stability of the new C. partellus and S. zeamais resistant early and 

medium maturing hybrids across environments. 

1.7.2 Research questions 

The following research questions were answered. 

1. Does the potential parental insect pest resistance maize germplasm have broad 

genetic base to act as a good source of genes? 

2. Can breeding for insect pest resistance to both stem borers and storage pests be 

achieved in the same genotype without compromising grain yield? 

3.  What gene action favours combined stem borer and storage pest resistance in 

maize hybrids? 

4. Is the combined insect pest resistance in the maize hybrids stable across 

environment? 

1.7.3 Hypotheses 

There exists genetic diversity in local maize germplasm which can be exploited to provide 

wide genetic base and insect resistance genes in maize breeding. 

Resistance to Chilo partellus and Sitophilus zeamais can be obtained by crossing inbred 

lines with the respective resistance to each pest in maize hybrids. 

Maize hybrids with combined resistance to Chilo partellus and Sitophilus zeamais can 

substantially reduce losses associated with these pests without yield penalty. 
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There are inbred line parents with resistance to Chilo partellus and Sitophilus zeamais which 

have good combining ablity for both grain yield and insect pest resistance which can be used 

in breeding programs. 

Both additive and non-additive gene effects are responsible for controlling resistance to 

Chilo partellus and Sitophilus zeamais in maize germplasm, which can be exploited when 

selecting for host plant resistance in maize.  

1.8  Thesis outline 

This thesis is divided into six chapters. Each chapter addresses a particular objective and 

the Chapters 3-5 are designed for publication as standalone potential manuscripts for 

publication. For this reason there may be unavoidable repetition of some information, 

contents, and references. They are organized as follows:   

Chapter 1:   Introduction to thesis. This chapter provides an overview of the 

importance of maize, its production constraints, and, the objectives for 

the current study as a way of addressing insect pests constraint in 

maize production.  

Chapter 2:   Literature review. The literature on genetic diversity, insect resistance 

both pre- and post-harvest is discussed. This also includes the gene 

action and combining ability for insect resistance in maize, and 

application of the diallel and North Carolina design II in combining 

ability study. 

Chapter 3:  Genetic diversity of two S4 populations; stem borers resistant (SBR), 

and storage pests resistant (SPR). This chapter provides genetic 

analysis of S4 maize families from two maize populations using 30 

SSR markers. These populations form part of genetic resources used 

for host plant breeding for field and storage pest resistance. 

Chapter 4:   Combining ability for SBR and SPR into hybrids using diallel mating 

design. This chapter summarizes the findings of obtained after 

crossing stem borer resistance inbred lines with storage pest 

resistance one in a diallel design. 

Chapter 5:   Dosage effect of resistance to both SBR and SPR using North 

Carolina II mating design. This chapter summarizes the results 
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obtained when inbred lines with both contrasting and different dosage 

levels of resistance, to stem borer and storage pests were crossed in a 

North Carolina II design.  

Chapter 6:  Overview, general discussions, conclusions and recommendations. 

This chapter gives a summary of the major findings of this study, and, 

recommendations for future follow up research on combining stem 

borer and storage pest resistance in maize hybrids. 
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Chapter 2: Literature review  

2.1 Introduction 

This chapter provides information and literature relating to importance of maize in Kenya, 

major constraints to maize production, some of the research done to address these 

constraints. Literature review on earliness and its relevance to breeding for insect resistance 

was also done. Literature review on economic importance of field pests‟ stem borer, Chilo 

partellus, and storage pest, Sitophilus zeamais; their life cycle, ecology and distribution. It 

also provides a review of host plant breeding work done addressing insect resistance 

worldwide, in sub-Saharan Africa and Kenya; identifies some of the gaps in the previous 

research, which are addressed in the current study. This chapter also identifies the 

importance and application of other researchers effort and work and how this relates to the 

current study.  

 2.2 Maize production in Kenya 

Maize in Kenya is grown on 1.6 million ha of land, which is more than 30% of the arable land 

(FAOSTAT, 2014). Its production is distributed throughout the six agro-ecological zones. 

These zones are defined by elevation, the amount of rainfall received, length of the growing 

season and the maturity period of the maize cultivars (Hassan et al., 1998).. Moving from 

east to west, these zones include; (a) the humid coastal lowland tropics (HCLT) zone, which 

is found at the coast, (b) the dry mid-altitude (DMA) zone, (c) the dry transitional (DT) zone, 

(d) the mid-altitude transitional (MAT) zone, (d) the moist mid-altitude (MAM) zone, and (e) 

the highland tropics (HT) zone (Table 2-1) (Hassan et al., 1998).. 

Maize yields from HCLT, DMA, MAM and MAT, are usually low averaging 1.5 ton-1, or even 

lower, yet they occupy 29% of the area under maize cultivation. The total yield from these 

zones is estimated to be 11% of the total annual maize production. The HT is sandwiched 

between the MAT on the eastern side and MAM to the west (Figure 2-1). This zone occupies 

30% of the acreage under maize production with average yields of 2.5 t ha-1, which is 

equivalent to 80% of the total annual maize production (Hassan et al., 1998). The distribution 

of insect pests of maize follows the maize growing ecologies (Figure 2-1). 
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Table 2-1:  Characteristics of maize growing regions in Kenya 

Characteristic HT MAT MAM DMA HCLT 

Elevation (‟00 m) >18 14-18 14-18 9-18 <9 

Annual rainfall (‟00 mm) <18 10-18 8-12 4-8 4-14 

National maize area („000ha) 307 461 118 118 33 

National area (%) 30 46 10 10 4 

National Production (%) 35 25 25 10 5 

Potential yield (t ha-1) 6.7 5.2 3.7 2.7 3.3 

Farmer yield (t ha-1) 2.0 0.7 1.1 0.5 1 

Yield gap (t ha-1) 4.7 4.5 2.6 2.2 2.3 

Source: Government of Kenya (2009). ‡Data: HT, Highland tropics; MAT, mid-altitude transitional; MAM, md-altitude moist; MAD, 

mid-altitude dry; HCLT, lowland tropics. 

 

Figure 2-1:  Maize growing agro-ecologies in Kenya and the distribution of major 
stem borers 

Source: Modified from Hassan et al., 1998 
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 2.3 General constraints to maize production 

Throughout the world, maize cultivation has been limited by various constraints which range 

from socio-economic, biotic and abiotic stresses. According to Munns and Tester (2008), 

“stress is an adverse circumstance that disturbs, or is likely to disturb, the normal 

physiological functioning of an individual”. While the socio-economic stresses mostly affect 

the smallholder farmer, together with biotic and abiotic stresses, they ultimately contribute to 

reduced yields as opposed to the potential yields, which could be realised in any one given 

environment, if they were addressed (Abate et al., 2000). Plant breeders throughout the 

world are carrying out research on ways of developing maize cultivars that address the 

needs of the famers, are suited to the various environments, and can withstand the biotic 

and abiotic stresses in these environments. 

Abiotic stress factors are those that occur naturally and are not influenced by humans. 

These include drought and unreliable rainfall, declining soil nutrients and fertility, salinity, and 

changes in rainfall patterns caused by climatic changes and global warming (DeVries and 

Toenniessen, 2001). Plant breeders worldwide have embarked on research to address some 

of the abiotic stresses through both conventional breeding and biotechnology tools (Anami et 

al., 2009).  

Conversely, biotic stresses, are usually caused by living organisms, including insects and 

micro-organisms, such as fungi and bacteria (Morais and Pinheiro, 2012). Initially, maize 

breeding research placed more emphasis on increased yields at the expense of biotic stress 

resistance (Mwololo, 2010). However, in the recent past, biotic stresses are targeted by 

breeders worldwide in efforts to reduce crop losses both in the field and post-harvest.  These 

biotic stresses include diseases, weeds and insect pests. The current study emphasises 

development of hybrids with insect pest resistance both in the field and post-harvest in early 

maturing hybrids. 

 2.4 Why emphasis on early maturing maize 

Among other factors, challenges of climate change and global warming calls for early 

maturing maize hybrids. Studies on climate change indicate that there is recorded increase 

in global temperatures estimated at +0.6oC and projected to increase by between 1oC to 6oC 
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by the year 2100 (Stige et al., 2006; Mann, 2009). This increase in surface temperatures is 

predicted to increase evapotranspiration, which favour increased water holding capacity in 

the atmosphere. However, if the available surface water on land is not sufficient, then this 

enhanced evapotranspiration is expected to exacerbate naturally occurring droughts 

(Trenberth, 1998; Trenberth, 2011). These changes have affected low altitude environments 

in Africa where the growing seasons are increasingly becoming shorter with a higher 

frequency of drought and higher temperatures due to insufficient surface water (Trenberth, 

1998; Stige et al., 2006).  

Early maturing maize cultivars have been associated with both drought escaping 

mechanisms of withstanding water stress (Mugo et al., 1998). Other studies showed that 

early maturing maize has less aflatoxins and fumonisins contamination as compared to 

medium and late maturing maize (Löffler et al., 2010). The earliness trait is more so 

preferred by farmers in semi-arid regions of Kenya and also in other lowland tropics because 

it is a food security crop, pending maturity of the medium and late maturing maize cultivar 

(Mugo et al., 1998; Pingali et al., 2001). 

On the other hand, drought stressed crops have enhanced damage from insect pest attack. 

This is because the stressed plants have been found to have high concentrations of 

nutrients within the leaf tissues (Mattson and Haack, 1987). This favours the growth and 

development of leaf feeding insects, of which C. partellus is among them.  Similar studies 

showed that the altered biochemical composition of drought stressed plants enables insect 

pests to detoxicate any chemical compounds targeting their control (Mattson and Haack, 

1987). These chemicals may be in form of inbuilt mechanisms via biochemical composition 

of the crop plant or chemical pesticides. As a result, reduced efficacy has been noted in 

chemicals used on drought stressed crop plants. In order to enhance host plant resistance in 

maize germplasm targeting drought prone regions, consideration of incorporating the insect 

resistance trait in early maturing maize germplasm has been factored. Early maturing crops 

are preferred because they can take advantage of the rains within the first few months 

before onset of dry spell and escape heavy infestation by insect pests associated with onset 

of drought conditions (Mattson and Haack, 1987).   

It has been noted that early maturing maize varieties experience, not only heavy stem borer 

infestation levels, but also S. zeamais infestations compared to the later maturing cultivars. 

This can be compounded by late harvesting which allows for infestation to commence in the 
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field (Ajala et al., 2010). Further, since they mature early they are stored earlier than the late 

maturing cultivars. The remains of the previous season‟s stored grains act as sources of 

infestation by base colony of maize weevil. While these varieties are food security crops, 

they experience the bulk of insect pest damage both in the field and at post-harvest 

(Melchinger et al., 1998). Insect resistance trait, for both C. partellus and S. zeamais, is 

therefore important in early maturing maize cultivar for management of these pests. 

Irrespective of these challenges, maize remains the major staple food and the priority crop 

for the smallholder farmer, and „earliness‟ has therefore become a preferred trait by the 

majority of these farmers. 

 2.5 Economic importance of Chilo partellus and Sitophilus zeamais 

The devastating effects of C. partellus and S. zeamais in African agriculture are reflected in 

the amount of resources spent by farmers in their control. In the year, 1995, Kenyan farmers 

spent approximately USD 4.5 million on insecticides, USD 10.5 million on fungicides (Ndiritu, 

1999). Despite these huge resources spent in efforts to reduce insect pest losses,  imported 

maize is still estimated to increase from the current estimate of around 600 million MT to 

about 850 million MT in the year 2020 (Meissle et al., 2010). The cost of chemical pesticides 

in Kenya, Malawi and Tanzania is estimated at USD150–300M every year. This is an 

emphasis of the importance of developing insect pest resistant maize cultivar, as part of 

suitable solutions in addressing food security, which is affordable to the smallholder farmer 

(Oerke et al., 1994). 

2.5.1 Biology, ecology and economic importance of Chilo partellus 

The adult moths emerge and settle on plant debris during the day. The females release 

pheromones which attract males for mating soon after they emerge (Nesbitt et al., 1979; 

Lwande et al., 1993). A female moth can lay 200-600 scale-like eggs, within two to three 

days after emergence. The eggs are laid in batches of 10-80 eggs, on the underside of 

leaves mostly near mid-ribs (Nwanze, 1988). Neonates hatch 4-8 days later and start 

feeding on the leaf whorl before tunnelling into the stem and eat out extensive galleries. The 

larval period lasts between 2-4 weeks before pupating. Just before pupation, the larvae 

excavate a hole on the stem which is used by adult moths for exit after emergence. Adult 

moths emerge 5-12 days later after completing a 25-50 days life cycle when environmental 
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conditions are favourable. Depending on the maize crops maturity period, up to five 

generations may develop within one growing season, however, when conditions are not 

favourable, larval diapauses sets in (Nesbitt et al., 1979; Nwanze, 1988).  

Chilo partellus is found throughout main land Africa south of the Sahara, especially West, 

East and Southern Africa. It is prevalent in low altitudes below 1200 metre above sea level 

(Polaszek, 2001; Kfir et al., 2002). In Kenya, C. partellus is distributed in all the maize 

growing environments, but it is more prevalent in the HCLT, DMA, and MAT (Khan et al., 

2008), and therefore, it is the major stem borer species for the mandate region where early 

maturing maize if grown. 

2.5.2 Biology, ecology and distribution of Sitophilus zeamais 

Sitophilus zeamais Motschulsky (Coleoptera: Curculionadae) is a 2.5 mm long beetle found 

in the tropics throughout the world. It is a major pest of maize but attacks other cereals like 

sorghum, rice, wheat, rice, peas and even dried cassava (Danho et al., 2002). In Kenya, the 

maize weevil is prevalent in all the maize growing ecologies (Mwololo et al., 2012). The adult 

female makes a hole on the seed coat and deposits one oval white egg in it. The egg is then 

covered with a waxy secretion which acts as a seal to plug the hole, before adult female 

moves on to another grain to lay eggs on it (Sallam, 2010). Only one egg is laid on each 

grain, and a total of 300-400 can be laid by a single adult. The legless larva (grub) feeds 

inside the grain until pupae stage. A circular hole made during larval stage is used by the 

adult beetle for exit.  The life cycle of an adult maize weevil can be between five to eight 

months depending on environmental conditions (Maceljski and Korunic, 1973). Sitophilus 

zeamais is distributed throughout the world in warm humid regions where maize is grown, 

and thrives well in temperature range of 15-34oC and 40% relative humidity (Tefera et al., 

2010). In Kenya, it is prevalent mostly in the HCLT, DMA, and MAT, but can be found in 

other maize growing zones but at a lower frequency (Tefera et al., 2013). 

2.5.3 Management of Chilo partellus and Sitophilus zeamais 

Several control options have been employed in order to reduce losses due to stem borers 

(Kfir, et al., 2002).  These measures include chemical, biological, cultural, “push-pull” method 

(Khan et al., 2008), use of trap crops (Chabi-Olaye et al., 2005), integrated pest 
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management (IPM) (Nwilene et al., 2008), host plant resistance (HPR) (Arabjafari and Jalali, 

2007), and more recent biotechnology through genetic engineering of resistance genes to 

the host plant (Cerda and Paoletti, 2004). 

Chemical control methods are expensive, and they also bring about unfavourable 

environmental effects in addition to being indiscriminate to the target and non-target insects, 

including beneficial insects like pollinators, decomposers, and biological control agents 

(Polaszek, 2001; Romeis et al., 2008). Efforts by all concerned to limit the extensive use of 

chemicals have been on-going, for example the ban of DDT®, Atrazine® and Furadan® 

(Dalvie et al., 2009; Meissle et al., 2010), which have had adverse effects on human health 

and environment. 

 2.6 Host plant resistance as a method of insects pest control 

Host plant resistance (HPR) can be defined as the relative amount of heritable qualities 

possessed by a plant, which influence the ultimate degree of damage done by the insect in 

the field (Painter, 1951). This method of control has many advantages to its use as 

compared to the others because it is compatible with all of the other methods, for example, 

use of resistant cultivars reduces quantities of chemical use to bare minimum, has no 

harmful effects on biological control agents and makes a good component of IPM (Dent, 

2000). Host plant resistance is not weather-dependent, and does not depend on density of 

pest, and it affects only the target pests (Russell, 1978). Host plant resistance can be 

improved through breeding by combining multiple resistance genes which confer different 

types of resistance within the same cultivar (Kumar, 1997). Development of stem borer and 

maize weevil resistant maize cultivars will be of great advantage to the smallholder farmer. 

 2.7 Breeding for host plant resistance to insect pest 

Plant breeding has been defined as “the art, science and business of improving plants for 

human benefits” (Poehlman and Sleper, 1995; Bernado, 2002). An insect resistant plant on 

the other hand can be defined as the result of heritable plant qualities or traits that make the 

plant less damaged upon infestation than damage observed in that plant without the traits 

(Dent, 2000).  
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In order to initiate a breeding program, it is advisable to first decide on where to source for 

parental germplasm. There are other factors which are important for insect resistant 

breeding; adequate source of insects‟ pests in question, the methodology for field screening, 

and, protocol for laboratory assays (Tefera et al., 2010). 

Breeding for insect resistance has lagged behind research addressing other maize 

production stresses (Bergvinson and Garcὶa-Lara 2004). This is because the breeder has to 

deal with the dynamics of host–pest interaction, as well as address production of each of the 

two organisms‟ enmass. This is costly, time consuming, and requires skilled labour and 

specialized laboratories (Mugo et al., 2001). 

Use of HPR is a better option for C. partellus and S. zeamais control, since it is easy and 

less costly for the smallholder farmer compared to chemical control which is expensive and 

has health implications or cultural control which is laborious and ineffective (Kfir 2002). This 

is also because the technology is built within the seed, and it does not require sophisticated 

procedures to administer. However, while various research activities to incorporate HPR 

option for stem borer control have been carried out in the past decade (CIMMYT, 1989), 

most of the resistant cultivars are late maturing and therefore not suited for semi-arid 

regions. There are also no maize varieties developed with both C. partellus and S. zeamais 

pest resistance. The current study was geared towards developing maize varieties that have 

resistance to both stem borers in the field, and maize weevil during post-harvest in order to 

reduce the yield losses due to these pests. This makes host plant resistance affordable to 

the smallholder farmer since the technology is built within the seed (Dent, 2000; vanEmden, 

2007). 

 2.8 Genetic diversity and its role in insect pest resistance breeding 

In insect pest resistance breeding, genetic diversity studies are important for good genetic 

base (Jarvis and Hodgkin, 2005). This is because host-plant resistance (HPR) is a 

quantitative trait, which is polygenic and controlled by multiple genes, and therefore highly 

influenced by environmental conditions (Bernardo, 2002). Genetic diversity studies can be 

exploited in charactering insect pest resistance mechanisms (Dhliwayo and Pixley, 2001), as 

well as making selection of improved superior genotypes for future breeding (Liu et al., 2003; 

Xia et al., 2004).  
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Locally adapted maize varieties are known to have good genetic diversity, with alleles that 

are adapted to the constraints within a given region (Warburton et al., 2008). However, few 

breeders are willing to use locally grown maize as a source of good alleles and exploit the 

genetic diversity resource for developing germplasm with desired traits in their breeding 

programs. This is because the selection process takes a long time before inbred lines with 

the desired traits are developed. In order to achieve these objectives, markers come in 

handy for determining the genetic variation in a given population (Jones et al., 1997; 

Stevens, 2008). 

 2.9 Types of markers and their importance in breeding 

Markers are tools used to identify a trait in a living organism (Lander and Botstein, 1989; 

Collard et al., 2005). There are two types of markers that have been used for diversity 

studies; morphological and molecular markers. Morphological markers use phenotypic traits 

and are biased due to continued selection of preferences in crops morphology (Moose and 

Mumm, 2008). Molecular markers use variation in macro-molecules in the genome of an 

organism. Molecular markers can further be classified in two types; Biochemical markers 

and genetic markers. Biochemical markers are proteins which are produced when a certain 

gene is expressed. They use dyes and electrophoresis for separation of enzymes, and are 

less polymorphic (Jones et al., 1997). Genetic markers use fragments of DNA with a 

specified sequence that detects a desired sequence in an organisms‟ genome. The 

discovery of molecular markers enables genetic diversity analysis of plants genomes 

(Collard et al., 2005). 

 2.10 Molecular markers and their role in diversity studies 

Molecular markers can be defined as specific fragments of DNA that can be readily detected 

and identified within the whole genome, and whose inheritance can be easily monitored 

(Ribaut and Hoisington, 1998). Molecular markers detect differences in nucleotide sequence 

in the DNA of an organism, which are as a result of mutations (Babu et al., 2012).  

There are several types of molecular markers that are commonly used, which include 

random amplified polymorphic DNA (RAPDs), amplified fragment length polymorphisms 

(AFLPs), DNA amplification finger printing (DAF), restriction fragment length polymorphisms 
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(RFLPs), and simple sequence repeats (SSR) also known as microsatellites (Semagn et al., 

2012).  

In the recent past, more markers have been used for different purposes ranging from 

measuring diversity, to, marker assisted breeding. These recently developed markers 

include; Inter-simple sequence repeats (ISSR), Cleaved amplified polymorphic sequences 

(CAPS), Diversity arrays technology (DArT), Expressed sequence tag (EST), Sequence 

tagged sites (STS), and Sequence characterized amplified regions (SCAR) (Weising et al., 

1998). Others include Single-strand conformation polymorphism (SSCP), Sequence 

characterized amplified region (SCAR), and Single nucleotide polymorphism (SNP). Still 

others are retrotransposon-based markers, including sequence-specific amplified 

polymorphism (S-SAP), Inter-retrotransposon amplified polymorphism (IRAP), 

Retrotransposon-Microsatellite amplified polymorphism (REMAP), Retrotransposon-Based 

insertional polymorphism (RBIP) (Weising et al., 1998; Semagn et al., 2006).  

Before the advent of SNPs and the more recent markers, SSRs, were more preferred since 

they are codominant, have a simple repetitive DNA sequences consisting of two, three or 

four nucleotides (di-, tri-, and tetra-nucleotide) repeats. They are also multi-allelic, are easy 

to use and require low amount of DNA; are reproducible, highly polymorphic, and, 

affordable. They are also easily transferable among populations, and can be automated for 

high throughput screening (Enoki et al., 2002). Their use in other maize genetic diversity 

studies has been documented (Khoza, 2012; Matewele, 2014). They have also been used in 

genetic diversity studies involving other crops, for example; Sorghum bicolor (L.) Moench. 

Their use involves characterization of germplasm, fingerprinting and identification of 

germplasm, and calculating genetic distances in populations (Perumal et al., 2007; Beyene 

et al., 2014). These markers are highly polymorphic and provide quality information on multi-

allelic loci, and, they are therefore still valid and were chosen for use in the diversity studies 

in the current research.  

Although genetic diversity has been studied in some maize germplasm in Kenya (Mwololo et 

al., 2012), there has not been one which focuses on germplasm which is used in breeding 

for combined insect resistance to both field pests stem borers and storage insect pests. It is 

therefore, not known whether there is diversity which breeders should exploit in breeding for 

both stem and postharvest resistance in hybrids. The current study has factored in the need 



 

 

22 

 

 

for genetic diversity studies of maize germplasm which has potential for breeding combined 

host plant resistance to stem borers and storage pests. 

While transgenic technology is a handy tool in breeding, it is important to note that biosafety 

issues in sub-Saharan Africa are not yet well established. Though Kenya has a biosafety 

law, no transgenic product has been commercialized to date. While this approach has 

potential to address pest menace, it remains a tool for complementing conventional 

approaches to host plant resistance breeding, but cannot replace conventional breeding 

approach (Araus et al., 2008). Markers have been widely used, not only for diversity studies, 

but also for other studies relating to insect resistance breeding (Ribaut and Hoisington, 

1998). 

 2.12 Genomic regions for insect resistance in maize 

Several studies on insect resistance genetics in maize have been carried out for both leaf 

feeding insect pests as well as storage pests. Quantitative trait loci (QTL) for resistance to 

these insect pests have also been documented by several authors: Willcox et al., (2002) 

reported three QTL regions associated with resistance to southwestern corn borer (SWCB) 

Diatraea grandiosella Dyar, (Lepidoptera, Crambidae) on chromosome 7 (c7), 9 (c9) and 10 

(c10). On the other hand, Castro-Alvarez et al., (2015) found six chromosomal regions; 2, 3, 

4, 8 and 10; associated with maize weevil resistance. Similar results were obtained by 

Garcia-Lara et al., (2010) while working on tropical maize. The study found that QTL for 

grain components; simple phenolic acids, diferulates and hydroxyproline-rich glycoproteins 

(HGRPs), associated with maize weevil resistance are located in chromosome, 3, 6, 8 and 

10.  

 2.13 Conventional breeding for insect resistance 

There are various methods for conventional breeding, but the most common is recurrent 

selection with screening for resistance at each advanced generation. Different parameters 

associated with susceptibility and resistance to insects pests in question are first identified, 

and then measured (KARI and CIMMYT, 2003). The frequency of the resistance genes in 

the resulting progeny population are increased over time (Pixley et al., 2006). 

https://en.wikipedia.org/wiki/Harrison_Gray_Dyar,_Jr.
https://en.wikipedia.org/wiki/Crambidae
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2.13.1 Sources of bioassay insects 

In order to carry out conventional breeding for C. partellus resistance in maize, a continuous 

supply of good quality insects is required. The insects should also be at the required stage 

and in large enough quantities. For this reason, mass rearing facilities are required before 

breeding for insect resistance can be initiated (Tefera et al., 2010). The bioassay C. partellus 

neonates used in this study were obtained from KALRO-Katumani mass rearing insectary, 

while the post–harvest insects were obtained from the mass rearing laboratory located at 

Kiboko. Having ensured good source of pest supply, a suitable method for breeding is then 

used for resistance development (Tefera et al., 2010).  

2.13.2 Estimation of gene action in conventional breeding 

Gene action is defined as the expression of genes within an individual (Chahal and Gosal, 

2002). This expression can be identified through genetic studies and classified into additive 

or dominance and epistasis. Additive gene action can be estimated through narrow sense 

heritability and acts as guidelines for selection of traits in breeding. Narrow sense heritability 

can be defined as the degree to which a trait in a parent is passed onto the offspring 

(Falconer and Mackay, 1996). Dominance can be estimated from the progeny relative to the 

performance of mid-parent value (Robinson, 1987; Sharma et al., 2007). It can range from 

over-dominance, when the performance of the progeny is outside the estimated range of 

parents, to partial-dominance, when the performance of the progeny is inclined towards the 

performance of one parent (Hallauer et al., 2010). Epistasis is observed when genes 

controlling a certain trait interact with others to express that trait, which, would otherwise not 

be observed in presence of other gene combination (Eta-Ndu and Openshow, 1999). It can 

be expressed as additive by additive, additive by dominance or dominance by dominance 

effects (Falconer and Mackay, 1996).  

Estimation of gene action can be done by making crosses between parents using different 

types of mating design (Hallauer et al., 2010). The choice of method to use largely rests on 

the breeder, and the objective of the breeding program and the sources of resistance. After 

developing the resistant maize cultivar, efficient screening and evaluation methods are 

important. These methods will identify the genotypes that are expressing the insect 
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resistance in the progeny. The frequency of the genes can then be assessed (Bernado, 

2002). 

Studies by Butrón et al. (1999) and Karaya et al. (2009) when investigating combining ability 

of stem borer resistant lines, reported preponderance of additive gene action for stem borer 

resistance in maize hybrids. Caution needs to be applied though before we can conclusively 

say that stem borer resistance is conditioned by additive genes because some other studies 

have also reported dominance as having a part in stem borer resistance (Kumar, 1997; 

Sharma et al., 2007). On the other hand, maize weevil resistance is associated with the 

grain properties since it is the structure of the maize that is attacked by the pest (Arnason et 

al., 1994; Abebe et al., 2009). Breeding for weevil resistance in maize therefore aims at 

improving the grain and increasing the characteristics associated with resistance 

(Bergvinson and García-Lara, 2004). Studies on gene action conditioning maize weevil 

resistance have been documented (Kim and Kossou, 2003; Derera et al., 2014), with both 

additive and non-additive genes responsible for resistance to maize weevil, and  reported 

cases of possible maternal effects (Dhliwayo et al., 2005). 

Other studies in Kenya by Mwololo et al. (2012) and Tefera et al. (2011) identified maize 

hybrids with resistance to maize weevil. However, there are no reported studies on gene 

action conditioning combined stem borer and storage pest resistance, which makes the 

current study a baseline study for future research on combining resistance to stem borers 

and maize weevil in maize hybrids. 

 2.14 Choice of method to use 

In the current study, two methods of estimating gene action were used; Griffings‟ design IV, 

and North Carolina II (Comstock and Robinson, 1952; Griffing, 1956).  There are 

assumptions based on the method used for sampling the parental inbred lines. When the 

parents are randomly chosen from a population, the assumptions are that; (1) the genes in 

the parents are independently distributed, (2) there is no epistasis gene action, (3) there is 

normal mendelian diploid inheritance, (4) there are no maternal effects, (5) there is no 

linkage disequilibrium, (6) there are no correlation of environmental effects. However, for this 

research, the parents were not randomly chosen from the population because the research 

is inclined towards developing combined insect resistance in maize genotypes. In this case 
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the experimental material is the population, and, therefore, inferences made in this research 

are specific to this population. 

2.14.1 Diallel mating design and its advantages 

The diallel mating design is defined as making all possible crosses among a group of inbred 

lines (Sprague and Tatum, 1942). Diallel design has been modified over time to factor in 

evaluation for the parental effects, reciprocals effects, and, the crosses effects, resulting in 

four methods; method I or complete diallel, method II or half diallel, method III and method IV 

(Table 2-2).  

Complete diallel, also known as method I provides variance due to the parents, the crosses 

and the reciprocals. Method II, or half diallel provides variance due to parents and crosses, 

method III evaluates both the crosses and reciprocals while method four provides the 

variances due to crosses (Griffing, 1956; Hallauer et al., 2010). Diallel mating design is 

useful when dealing with few parents, and therefore it has limitations on the number of 

parents that can be crossed. This necessitates the use of North Carolina design II.  

Table 2-2: Four methods of diallel mating design 

Method Components  

1  Parent + F1s + reciprocals  

2  Parents + F1s only  

3  F1s + reciprocals  

4  F1s only  

 

The variances estimates obtained from analysis of diallel are translated into genetic variance 

components, σ2, additive or dominance.  It is from these variance components that fixed 

effects and random effects are analysed using either analysis of variance or combining 

ability estimates. In this research, since the parents were carefully selected for insect 

resistance traits, a fixed model is used for estimating both general and specific combining 

ability of the parents, and it was used for estimation of unbiased of combining abilities and 

gene action (Shattuck et al., 1993). 
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Diallel mating design is a powerful tool, which has been widely used by breeders to estimate 

general and specific combining ability effects. Favourable GCA effects enable researchers to 

select suitable inbred lines for use in breeding programs, favourable SCA effects are useful 

for selecting suitable crosses. Williams and Windharm (2015) used diallel for investigating 

aflatoxin accumulation in maize. The study reported significant and positive GCA effects on 

susceptible maize inbred lines. A similar study was carried out by Betrán et al. (2002) to 

investigate accumulation of aflatoxin in maize in order to identify potential sources of 

resistance for breeding. The study revealed that yellow maize was more prone to aflatoxin 

infection as compared to white maize, with a strong influence on the environment. The 

authors further reported that both GCA and SCA effects were important depending on the 

method used for screening aflatoxin accumulation. 

Diallel mating design has also been used for insect resistance studies.  One such study was 

done by Butrón et al. (1999) when investigating maize ear resistance to pink stem borer. The 

study revealed that additive, non-additive and cytoplasmic effects were important for ear 

resistance to the pink stem borer, although additive effects were more important. Further, 

(Alvarez and Miranda (2002) used diallel method to investigate resistance of maize to fall 

armyworm (Spodoptera frugiperda, Smith. Lepidoptera: Noctuidae). The results also 

indicated a confounding effect of additive and non-additive effects, with significant non-

additive genes for control of S. frugiperda. Other studies involving storage pests‟ resistance 

have been carried out using diallel mating design. This is evidenced by Dhliwayo et al., 

(2005) when investigating the combining ability for resistance to maize weevil. The current 

study showed that both GCA and SCA effects were important for maize weevil resistance. 

Other studies done using diallel for maize weevil resistance include Kang et al. (1995) to 

study maize weevil preference to maize grain. The study revealed important and significant 

GCA and SCA effects for non-preference to grain by maize weevil. 

2.14.2 North Carolina II mating design 

The North Carolina II mating design, also known as a factorial design, was proposed by 

(Comstock and Robinson, 1952), as a modification of North Carolina design I.  It classifies or 

groups the female and male parents into separate groups of individuals or families, which 

are crossed in a factorial scheme, generating half-sib groups (Table 2-3).   
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North Carolina II design has two advantages over diallel; (1) large number of parents can be 

crossed, generating few crosses for evaluation, and, (2) two independent estimates of GCA 

effects are obtained (Sprague and Tatum, 1942; Comstock and Robinson, 1952). 

Table 2-3:  Schematic representation of North Carolina II design 

 

 

 

 

Previous studies involving insect resistance have demonstrated the effectiveness of this 

design for estimation of genetic variances. Derera et al., (2014) demonstrated that North 

Carolina design II is effective for insect resistance studies when he used this design to study 

the implications of grain weight loss for breeding resistance of maize to the maize weevil. 

Another researcher, Matewele (2014), used the North Carolina design II to assess the 

resistance of maize to larger grain borer and maize weevil in Malawi. Meseka et al. (2013),  

also used North Carolina design II while studying genetic analysis of maize inbred lines for 

tolerance to drought and low nitrogen in Nigeria, where he reported favorable SCA effects 

for grain yield under Low N conditions. 

The current study used both diallel and North Carolina II, each with independent parental 

inbred lines with specified insect resistance levels.  In the diallel, 12 parents were used 

generating 66 test hybrids. A different set of 20 parents were organized in groups of five, and 

crossed into eight sets using North Carolina design II.   

 
Males 

Females 6 7 8 9 10 

1 X16 X17 X18 X19 X110 

2 X26 X27 X28 X29 X210 

3 X36 X37 X38 X39 X310 

4 X46 X47 X48 X49 X410 

5 X56 X57 X58 X59 X510 

Half-sib group of males 

Half-sib group of 
females 
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 2.15 General and specific combining ability 

Combining ability has been defined as the ability of an individual, when crossed, to produce 

progeny with strong expression of a particular trait (Poehlman and Sleper, 1995). Acquaah 

(2007), defined combining ability as the performance of a line with others in a cross. 

Combining ability can be grouped into two, general and specific combing ability.  

General combining ability is “the ability of an individual to produce progeny with high genetic 

quality, when crossed to many other individuals in the population (Maynard, 1996).  Falconer 

and Mackay (1996) also defined GCA as, “the mean performance of a line in all its crosses 

when expressed as a deviation from all the crosses”. 

Specific combining ability is defined as “the performance of a line in a cross with a specific 

parent (Sprague and Tatum, 1942). It is also defined as, “the performance of a line in a 

specific cross which is over and above that expected on the basis of general combining 

ability” (Chahal and Gosal, 2002). Further, Poehlman and Sleper (1995), defined it as “the 

performance of specific combinations of genetic strains in crosses in relation to the average 

performance of all combinations.  In the current study, GCA and SCA effects were assessed 

using the diallel method IV, and, North Carolina design II, each method having its own 

separate set of parents.   

A lot of studies have been done on combining ability of maize germplasm for various stress 

factors. Significant GCA effects were reported by Derera et al. (2008) for grain yield under 

drought stress when investigating associations between grain yield potential, stress 

tolerance and yield stability in southern African maize. Menkir and Ayodele (2005) also 

reported significant GCA effects for grey leaf spot (GLS) disease.   Research done to 

address insect pest resistance to maize include work by Kim and Kossou (2003). The 

authors reported highly significant GCA and SCA effects for resistance to maize weevil from 

maize hybrids. Further García-Lara et al. (2009) reported that resistance to maize weevil in 

maize grain is attributed to varying gene actions. Research findings by Dari et al. (2010) 

indicated that both GCA and SCA effects were significant, and therefore both additive and 

non-additive genes action were important for maize weevil resistance in early generation 

maize inbred lines. In Kenya, Karaya (2009) reported highly significant GCA effects for grain 

yield and stem borer resistance parameters, with significant SCA effects from few crosses 
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for leaf damage scores and tunnel length. This was indicative that additive gene action was 

more important and therefore responsible for stem borer resistance in maize. Similar results 

were obtained by Beyene et al. (2011), when investigating the combining ability of maize 

inbred lines resistance to stem borers. The findings revealed that GCA effects were five 

times greater when compared to SCA effects. However, with all the reported research 

findings, there is still a gap as on combining resistance to stem borers and storage pests in 

maize, and there are no publishlications on combined stem borer and maize weevil 

resistance. This study therefore will act as the baseline findings for future combined field 

pests and storage pest resistance. 

 2.16 Summary of literature review 

This review showed that maize remains the staple food for the majority in sub-Saharan 

Africa. This justifies enhanced research in maize improvement in breeding programs. The 

review further showed that insect pests, both in the field and in storage, still remain a major 

challenge to maize production, with breeding work addressing individual pests in separate 

genotypes. This leads to a gap in maize breeding for combined insect resistance, in order to 

have the two resistance traits in the same genotype. Therefore breeding for combined 

resistance can lead to securing the losses associated with field and storage pests of maize 

and thus contribute to food security in sub-Saharan Africa. Again, this review highlighted the 

importance of having a good source of quality bioassay insect source when breeding for 

insect resistance traits. The insects should be in the right stage, quality and quantities.  

It is evident from the review that no literature has been published on breeding for combined 

stem borer and post-harvest insect pests‟ resistance in maize hybrids. The literature 

indicates that research has been employed separately on stem borer resistance and 

postharvest insects. As a result there is no evidence of hybrids which carry combined 

resistance to the two groups of insects. The review also highlighted the importance of having 

a wide genetic base for a breeding program addressing quantitative traits. Further, the 

review brought out the importance of engaging modern tools of molecular markers for 

enhancing breeding. It established that documented work reports additive and non–additive 

gene action are responsible for stem borer and storage pests resistance in maize, but no 

literature is documented on combined resistance to field and storage pests resistance in the 

same maize hybrid.  
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Again from this review, it is established that secondary traits can be used for selection in 

breeding for other traits with low heritability, of which insect resistance is one of them. 

Emphasis of importance of multi-environment testing for genotypes was highlighted. This 

identifies the main effects due to genotypes and environments, as well as the interaction. It 

also contributes to selection of genotypes which are stable and those that are specifically 

adapted for certain environments.  

In efforts to address the challenge of combined resistance to maize insect pests, it is 

important to quantify the level of genetic diversity in germplasm to be used in breeding for 

insect resistance. The following chapters present research which was conducted to close 

some of the knowledge gaps which were identified in the literature review.   
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Chapter 3: Genetic diversity of maize germplasm for developing 

insect pest resistant maize hybrids 

Abstract 

Genetic diversity is important to ensure viability of a breeding programme. The objective of 

this study was to determine the genetic diversity of 130 S4 families from two populations; 

sixty five (65) lines from stem borers‟ resistant population (SBR) and 65 lines from the 

storage pests‟ resistant population (SPR) using 30 SSR markers.  Results revealed that the 

markers were polymorphic with 0.46-0.48 polymorphism for both SBR and SPR populations, 

except umc1367, which was monomorphic for SPR population.  A total of 109 alleles were 

recorded from SBR population.  Allele‟s scores ranged from 2 to 6 alleles per loci, with a 

mean of 3.63, and product length ranging 47-362bp. The SPR had total of 103 alleles, with 

scores of 1 to 6 per loci, and a mean of 3.43 alleles, and product length ranging 47-320bp. 

Observed gene diversity was 0.27, with expected gene diversity of 0.45-0.48 for SBR and 

SPR respectively. Mean PIC values for SBR and SBR were 0.48 and 0.46 respectively, 

while uHe values were 0.4 and 0.45 respectively. Cluster analysis revealed three major 

clusters in each population; with cluster 1 comprising 33.8-40% of the genotypes in SPR and 

SBR populations respectively. Cluster two had 55.4% of SBR genotypes, and 53.4% of SPR 

genotypes. The study indicates that there is ample genetic diversity in the two populations 

which can be exploited in extracting new inbred lines for use in breeding insect resistant 

maize hybrids. 

Key words: Genetic diversity, stem borer resistant, storage insect pest resistant, SSR 

markers 

 3.1 Introduction 

Genetic diversity studies have been known to aid breeding programs benchmark their 

genetic resources (Hartl and Clark, 1997; Dagne, 2008).). These studies also provide useful 

information on alleles within a given gene pool (Prasanna, 2012).  
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Identification of breeding gerplasm with good genetic base is of great importance in insect 

resistance breeding because of its a polygenic trait.  Diversity studies therefore ensure that 

the germplasm being used for breeding has a wide genetic base (Dhliwayo and Pixley, 2003; 

Hari et al., 2004). This can be achieved at three levels; phenotypic, biochemical or molecular 

level (Beyene et al., 2014). The most reliable of these is use of molecular markers 

(Cholastova et al., 2011). There are several types of molecular markers, which include 

restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism 

(AFLP), simple sequence repeats  (SSRs), single nucleotide polymorphisms (SNP), and, 

diversity array technology markers (DATm) (Yuan et al., 2000; Perumal et al., 2007; Bouchet 

et al., 2012). Genetic diversity studies are therefore of great importance for any given 

breeding program (Jarvis and Hodgkin, 2005). 

Locally adapted maize (Zea mays L.) varieties are known to have good genetic diversity, 

with alleles that are adapted to the constraints within a given region (Warburton et al., 2008). 

However, few breeders are willing to use locally grown maize as a source of good alleles 

and exploit the genetic diversity resource for developing germplasm with desired traits in 

their breeding programs.  This could be due to the amount of time and other resources 

required for identifying the right germplasm for the trait of interest, a challenge that can be 

addressed by use of molecular breeding approaches which saves time (Semagn et al., 

2006) .   In Kenya, Katumani composite, early maturing well adapted maize composite, has 

been grown for many years in the drought prone eastern region of Kenya. It is however, 

susceptible to insects‟ pests both in the field and at storage. Unfortunately, its use as a 

source of good alleles in breeding has been down-played.  

The Kenya Agricultural and Livestock Research Organization (KALRO), in collaboration with 

the International Maize and Wheat Improvement Center (CIMMYT), have developed maize 

varieties which have insect pest resistance traits (Mugo et al., 2001). Unfortunately, the 

resistance to field pests is in separate germplasm from the resistance to storage insect 

pests. To compound the problem, most of the already developed insects‟ resistant maize 

hybrids are late maturing yet earliness and insect resistance are among farmer preferences 

in maize hybrids (Odendo). This makes them unsuitable for production in the dry mid-altitude 

ecologies of eastern Kenya which experience random drought and high insect pest 

infestation rates in the field and in storage. Moreover, the warm temperatures prevalence in 

these ecologies are conducive environment for insect pest multiplication.  
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A breeding program was started to develop early maturing stem borer and storage pest 

resistant maize inbred lines. This was done with the aim of developing early maturing maize 

germplasm with combined resistance to both Chilo partellus and Sitophilus zeamais insect 

pests of maize. This required use of divergent germplasm in order to generate superior 

progeny from which pedigree breeding could be initiated. Therefore, in order to avoid use of 

parentage stock with narrow genetic base, the potential parental germplasm was subjected 

to molecular analysis using microsatellite markers to determine the divergence of the 

germplasm. Use of Katumani composite as a parent for earliness is also important in 

exploiting the genetic base as a good source of desired alleles in breeding. 

The objectives of this study were to: 

1. Determine the genetic diversity of the stem borer resistant S4 maize lines. 

2. Determine the genetic diversity of storage pest resistant S4 maize lines. 

 3.2 Materials and methods 

 Maize germplasm and sampling procedure 3.2.1

Seeds of 130 S4 lines; sixty five from stem borer resistance population, and 65 S4 lines from 

a storage insect pest resistant population were selected at random. The populations were 

developed by crossing elite CIMMYT inbred lines with insects‟ resistance to the target pests 

with a locally adapted maize variety, Katumani composite.  

The seeds were sent to Biosciences eastern and central Africa (BecA) laboratories in 

Nairobi, Kenya for genotyping. They were then planted in pots at a greenhouse at BecA 

during 2012 short rains experienced in the months of November to January (2012A) season.  

Leaf tissues were harvested three weeks after germination, and placed in tubes of a 96-well 

tube containing one stainless steel ball in each tube. The 96-well tube box was then placed 

in a bucket containing liquid nitrogen at a temperature of -210°C (-346°F) to chill the tubes. 

The chilled samples were placed in a genogrinder machine set at 500 strokes per minute 

and ground for two minutes. 
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 DNA extraction and genotyping 3.2.2

The plates were weighed and placed in a centrifuge machine for three minutes, which was 

set at 3500rpm. Using a multichannel pipette, 450ul of 650C pre-heated extraction buffer was 

added to each tube and capped. The samples were then placed in a water bath set at 650C, 

and incubated for 40 minutes. Deoxyribonucleic acid (DNA) was extracted by solvent 

modified method as described by Dellaporta et al. (1983), and, Semagn et al. (2012). A set 

of 30 microsatellites (SSR) markers, were used for genotyping the samples. The PCR 

products were run and detected on capillary system ABI-3730 using the LIZ500 as internal 

size standard. 

 Data collection and analysis 3.2.3

The data were then captured and done using the Genscan® software (Applied Biosytems) 

with reference dyes used as; Ned(Y) Pet R) 6-FAM (B) and Vic (G). The resulting fragments 

were analyzed and the alleles scored using the Genemapper® software ver4.1 (Applied 

Biosystems, 2009), and then compiled into a spreadsheet as a standard Genemapper output 

file. 

 Genetic diversity analysis 3.2.4

The genotypic data was subjected to analysis using DarWin version 6.0.10, and GENALEX 

version 6.5 (Peakall and Smouse, 2007). Data analysis was done using the protocol of Nei 

and Li (Nei and Li, 1979), to determine differences in allelic frequencies among the SSR 

markers. Information on polymorphic information content (PIC), the number of effective 

alleles per locus, total number of alleles per locus (Na), allelic richness observed 

heterozygosity (Ho), the average gene diversity (He), and, total gene diversity (Ht), were 

generated (Botstein et al., 1980). This information was calculated using the following 

formulae; 

(PIC) was calculated using the formula PIC=1- i=1-n(∑fi2)– (fi2)2 ……………………………..(1) 

Na = No. of Different Alleles;  

Ne = No. of Effective Alleles = 1 / (Sum pi^2);  
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I = Shannon's Information Index = -1* Sum (pi * Ln (pi));  

Ho = Observed Heterozygosity = No. of Hets / N;  

He = Expected Heterozygosity = 1 - Sum pi^2;  

Ht = Ho + He 

uHe = Unbiased Expected Heterozygosity = (2N / (2N-1)) * He;  

F = Fixation Index = (He - Ho) / He = 1 - (Ho / He);  

Where pi is the frequency of the ith allele for the population & Sum pi^2 is the sum of the 

squared population allele frequencies. 

Cluster analysis was done for both SBR and SPR populations with neighbour-joining 

algorithm. The unweighted pair group method of DARwin 6.0 software was used, with 

Bootsrap values set at 10,000 iterations.  Genetic dissimilarity dendograms were generated 

for each population, and graphical representation of populations done (Perrier and 

Jacquemoud-Collet, 2006). 

 3.3 Results 

 Microsatellite markers characterization 3.3.1

A total of 3859 data points were achieved out of the expected 3900 data points giving an 

overall success rate of 98.95%, from the analysed marker data. Summary of the motif and 

coloading information of 30 SSR markers, which were used for genotyping SBR and SPR 

populations, is recorded in Table 3-1. Microsatellite analysis revealed that 6.7% of the SSR 

motifs represented are dinucleotide, 40% are trinucleotide, and 53.3% are compound 

nucleotide (Table 3-1).  

The shortest product size in both SBR and SPR population was observed in locus umc2250 

with 47 base pairs (bp), while the longest for SBR was observed in locus phi062 with 362 bp, 

and, the longest for  SPR was observed  in locusPhi227562 with 320 bp. The highest 

difference in variation from the same locus was 212 bp, observed in phi072 (Table 3-1).  
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Table 3-1:  Background information on 30 microsatellite markers, their motif and 
coloading information 

Marker Entry Name  Repeat Sequence Repeat number Bin Number Coloading set 

1 nc130 AGC Tri 5 6 

2 nc133 GTGTC Penta 2.05 19 

3 Phi227562 ACC Tri 1.11 * 

4 phi029 AG/AGCG Compound 3.04 10 

5 phi031 GTAC Tetra 6.04 2 

6 phi041 AGCC Tetra 10 3 

7 phi046 ACGC Tetra 3.08 * 

8 phi056 CCG Tri 1 3 

9 phi062 ACG Tri 10.04 23 

10 phi065 CACTT Penta 9.03 17 

11 phi072 AAAC Tetra 4 3 

12 phi075 CT Di 6 4 

13 phi076 AGCGGG Hexa 4.11 7 

14 phi079 AGATG Penta 4.05 1 

15 phi084 GAA Tri 10.05 6 

16 phi102228 AAGC Tetra 3.06 2 

17 Phi112 AG Di 7.01 1 

18 Phi114 GCCT Tetra 7.03 23 

19 phi123 AAAG Tetra 6.07 21 

20 phi299852 AGC Tri 6.07 23 

21 Phi308707 AGC Tri 1.1 1 

22 Phi331888 AAG Tri 5.04 4 

23 Phi374118 ACC Tri 3.02 5 

24 Phi96100 ACCT Tetra 2.01 5 

25 umc1161 (GCTGGG)5 Hexa 8.06 22 

26 umc1304 (TCGA)4 Tetra 8.02 10 

27 umc1367 (CGA)6 Tri 10.03 5 

28 umc1545 (AAGA)4 Tetra 7 18 

29 umc1971 
 

Tri 
 

* 

30 umc2250 (ACG)4 Tri 2.04 7 
* Coloading information undefined 
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3.3.2 Allelic content of stem borer resistant population 

Analysis using 30 SSR markers identified total of 109 alleles from SBR population. The 

number of polymorphic alleles scored ranged 2 - 6 per loci, with a mean of 3.63 alleles. A 

graphical summary of the markers and the respective alleles amplified for SBR population is 

presented in Figure 3-1. 

 

 Figure 3-1:  Alleles amplified from SBR population using 30 SSR markers  

 

Out of the 30 markers used, eight markers, (nc133, phi065, phi084, phi102228, Phi112, 

phi123, Phi227562, umc2250), amplified two alleles each; four markers (phi079, umc1304, 

umc1367, umc1971), amplified 3 alleles each; 12 markers (nc130, phi029, phi062, phi075, 

phi076, Phi114, Phi308707, Phi331888, Phi374118, Phi96100, umc1161, umc1545) 

amplified 4 alleles each, and,  three markers each (phi031, phi041, phi056,  and, phi046, 

phi072, phi299852) amplified 5 and 6 alleles, respectively. The PIC values for SBR 

population ranged from 0.06 observed in locus umc1367 to 0.79 observed in phi299852, with 

mean of 0.48. Observed uHe indicated gene diversity of 0.06-0.80 in SBR population, and a 

mean of 0.48 (Table 3-2). Conversely, 43% of the loci have Ne value less than 2, 36% have 

Ne value of 2-3, and 20% have Ne value greater than 3.  

 

 



 

 

49 

 

 

Table 3-2:  Genetic diversity information generated from analysis of 65 S4 stem 
borer resistant population using 30 microsatellite markers 

Locus Na Ne I Ht Ho He uHe F PIC 

nc130 4 1.54 0.73 0.51 0.16 0.35 0.35 0.55 0.35 

nc133 2 1.35 0.43 0.48 0.22 0.26 0.26 0.17 0.26 

phi029 4 2.37 1.00 0.94 0.37 0.58 0.58 0.37 0.58 

phi031 5 2.81 1.21 1.45 0.81 0.64 0.65 -0.25 0.64 

phi041 5 3.23 1.37 0.84 0.15 0.69 0.70 0.79 0.69 

phi046 6 2.12 1.00 0.67 0.14 0.53 0.53 0.74 0.53 

phi056 5 3.63 1.44 1.00 0.28 0.72 0.73 0.62 0.72 

phi062 4 1.98 0.79 0.71 0.22 0.49 0.50 0.56 0.49 

phi065 2 1.30 0.40 0.34 0.11 0.23 0.24 0.52 0.23 

phi072 6 2.40 1.09 0.81 0.23 0.58 0.59 0.60 0.58 

phi075 4 2.61 1.08 0.88 0.26 0.62 0.62 0.58 0.62 

phi076 4 3.26 1.26 1.28 0.59 0.69 0.70 0.15 0.69 

phi079 3 2.39 0.96 0.98 0.40 0.58 0.59 0.32 0.58 

phi084 2 1.76 0.62 0.54 0.11 0.43 0.44 0.75 0.43 

phi102228 2 1.10 0.19 0.15 0.06 0.09 0.09 0.30 0.09 

Phi112 2 1.13 0.23 0.15 0.03 0.12 0.12 0.73 0.12 

Phi114 4 2.65 1.16 1.00 0.38 0.62 0.63 0.40 0.62 

phi123 2 1.43 0.48 0.45 0.15 0.30 0.30 0.49 0.30 

Phi227562 2 1.45 0.49 0.34 0.03 0.31 0.31 0.90 0.31 

phi299852 6 4.74 1.66 1.19 0.40 0.79 0.80 0.49 0.79 

Phi308707 4 3.97 1.38 1.05 0.30 0.75 0.75 0.60 0.75 

Phi331888 4 2.56 1.04 1.01 0.40 0.61 0.61 0.34 0.61 

Phi374118 4 2.94 1.17 1.16 0.50 0.66 0.66 0.24 0.66 

Phi96100 4 1.88 0.85 0.62 0.15 0.47 0.47 0.67 0.47 

umc1161 4 2.40 1.08 0.75 0.17 0.58 0.59 0.71 0.58 

umc1304 3 1.08 0.18 0.12 0.05 0.07 0.08 0.38 0.07 

umc1367 3 1.06 0.15 0.12 0.06 0.06 0.06 -0.03 0.06 

umc1545 4 3.12 1.23 1.01 0.33 0.68 0.68 0.52 0.68 

umc1971 3 1.42 0.55 0.47 0.17 0.30 0.30 0.42 0.30 

umc2250 2 2.00 0.69 1.48 0.98 0.50 0.50 -0.97 0.50 

Mean 3.63 2.26 0.86 0.75 0.27 0.48 0.48 0.42 0.48 

SE 0.23 0.17 0.08 0.07 0.04 0.04 0.04 0.07 0.04 
‡Data: Na = total number of alleles per locus; Ne = number of effective alleles per locus; I = Shannon's 
Information Index; Ht = total gene diversity; Ho = observed gene diversity within genotypes; He = average gene 
diversity within genotypes; uHe = Unbiased Expected Heterozygosity; FIS = inbreeding coefficient; PIC = 
polymorphic information content. 
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Fifty seven (57%) of the markers had a PIC value greater than 0.5, and Ht values ranged 

from 0.12 observed in locus umc1304, to 1.48 observed in locus umc2250, with a mean of 

0.75 (Table 3-2).  The locus differentiation, FIS, for SBR population was extreme from -0.97 

(umc2250) to 0.9 (Phi227562), having a mean of 0.42 (Table 3-2). A summary of genetic 

analysis for the SBR population is presented in Figure 3-2. 

 

Figure 3-2: Mean Allelic Patterns across SBR Population using 30 SSR markers 

3.3.3 Cluster analysis of stem borer resistant population 

Three major cluster groups (C1, C2, and, C3), were observed in the SBR population from 

cluster analysis of the SBR population using SSR markers. Cluster C1, comprised 40% of 

the genotypes, and was further classified into sub-clusters. The second cluster, C2, was by 

far the largest comprising of 55.4% of genotypes. It had two major sub-clusters. The third 

grouping, C3, was the smallest of the clusters comprising 3 genotypes (4, 16, and 64), and 

constituting only 4.6% of genotypes in SBR population. The pairwise dissimilarity values for 

SBR generated ranged from a minimum of 0.18 to a maximum of of 0.71, with a mean value 

of 0.445 (Figure 3-3). 
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Figure 3-3: Dissimilarity matrices dendogram of SBR population using neighbour 
joining algorithm indicating genetic relationships of genotypes 

3.3.4 Allelic content of storage pests’ resistant population 

Similar analysis with the same 30 SSR markers on SPR population identified a total of 103 

alleles. The allele‟s scores ranged from 1 to 6 alleles per loci, with a mean of 3.43 alleles. 

Only one marker (umc1367) was monomorphic out of the thirty SSRs markers used. Five 

markers, (phi046, phi062, phi084, phi123, phi102228), amplified two alleles each; 11 

markers (nc133, phi065, phi072, phi079, phi112, phi308707, phi331888, phi374118, 

umc1304, umc1971, umc2250), amplified 3 alleles each; eight markers (nc130, phi029, 

phi041, phi075, phi076, phi96100, phi227562, umc1545) amplified 4 alleles each, and,  three 

markers (phi056, phi114, umc1161), amplified 5 alleles each, and, two markers (phi031, 

phi299852) amplified 6 alleles (Table 3-3).  

Ne values for the SPR population ranged between 2-5.3, with 50% of loci having Ne values 

less than 2, 33% of loci had between 2-3, and, 17% had Ne values greater than 3.  Apart 

from umc1367, which had a PIC value of 0, the PIC values for SPR population ranged from 

0.07 (umc1304) to 0.85 (phi079), with a mean of 0.46. Fifty three (53%) of the loci had pic 

values greater than 0.5.  

Similar to SBR population, the locus differentiation, FIS, for SPR population was also extreme 

ranging from -0.91 (umc2250) to 0.82 (Phi041), having a mean of 0.41. Observed uHe 

indicated gene diversity of 0.08-0.82 in SPR population, with a mean of 0.45 (Table 3-3).  

C1  
C2 C3  



 

 

52 

 

 

Table 3-3:  Genetic diversity information generated from analysis of 65 S4 storage 
insect pests resistant population using 30 microsatellite markers 

Locus Na Ne I Ht Ho He uHe Fis PIC 

nc130 4 2.07 0.91 1.02 0.50 0.52 0.52 0.03 0.52 

nc133 3 1.73 0.76 0.70 0.28 0.42 0.42 0.34 0.42 

phi029 4 2.22 0.90 0.81 0.26 0.55 0.55 0.52 0.55 

phi031 6 5.34 1.73 1.78 0.97 0.81 0.82 -0.19 0.81 

phi041 4 3.20 1.26 0.81 0.13 0.69 0.69 0.82 0.69 

phi046 2 1.69 0.60 0.61 0.20 0.41 0.41 0.51 0.41 

phi056 5 3.00 1.28 0.96 0.30 0.67 0.67 0.55 0.67 

phi062 2 1.20 0.31 0.23 0.06 0.17 0.17 0.63 0.17 

phi065 3 1.27 0.43 0.38 0.17 0.21 0.21 0.19 0.21 

phi072 3 1.64 0.63 0.59 0.20 0.39 0.39 0.48 0.39 

phi075 4 2.70 1.12 0.83 0.20 0.63 0.63 0.68 0.63 

phi076 4 2.69 1.10 1.14 0.51 0.63 0.63 0.19 0.63 

phi079 3 2.52 1.01 0.87 0.27 0.60 0.61 0.56 0.85 

phi084 2 2.00 0.69 0.70 0.20 0.50 0.50 0.60 0.50 

phi112 3 1.37 0.54 0.36 0.09 0.27 0.27 0.66 0.27 

phi114 5 2.46 1.03 0.93 0.34 0.59 0.60 0.43 0.59 

phi123 2 1.47 0.50 0.50 0.18 0.32 0.32 0.42 0.32 

phi96100 4 3.25 1.27 1.06 0.37 0.69 0.70 0.47 0.69 

phi102228 2 1.10 0.19 0.15 0.06 0.09 0.09 0.30 0.09 

phi227562 4 1.75 0.80 0.53 0.10 0.43 0.43 0.78 0.43 

phi299852 6 4.64 1.64 1.22 0.43 0.78 0.79 0.45 0.78 

phi308707 3 2.15 0.91 0.75 0.22 0.53 0.54 0.60 0.53 

phi331888 3 2.18 0.85 0.74 0.20 0.54 0.55 0.63 0.54 

phi374118 3 1.97 0.72 0.80 0.31 0.49 0.50 0.37 0.49 

umc1161 5 2.17 1.07 0.71 0.17 0.54 0.54 0.69 0.54 

umc1304 3 1.08 0.18 0.12 0.05 0.07 0.08 0.38 0.07 

umc1367 1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

umc1545 4 1.56 0.68 0.57 0.22 0.36 0.36 0.40 0.36 

umc1971 3 1.08 0.18 0.12 0.05 0.08 0.08 0.38 0.08 

umc2250 3 2.03 0.73 1.48 0.97 0.51 0.51 -0.91 0.51 

Mean 3.43 2.15 0.80 0.72 0.27 0.45 0.45 0.41 0.46 

SE 0.22 0.18 0.08 0.08 0.04 0.04 0.04 0.06 0.04 
‡Data: Na = total number of alleles per locus; Ne = number of effective alleles per locus; I = Shannon's Information Index; Ht = 
total gene diversity; Ho = observed gene diversity within genotypes; He = average gene diversity within genotypes; uHe = 
Unbiased Expected Heterozygosity; FIS = inbreeding coefficient; PIC = polymorphic information content. 
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A graphical summary of the markers and the respective alleles amplified for SPR population 

is presented in Figure 3-4. 

 

Figure 3-4:  Alleles amplified from SPR population using 30 SSR markers 

 

The mean allelic performance observations for the SPR population are summarized in 

Figure 3-5. 

 

Figure 3-5: Mean allelic patterns across SPR population using 30 SSR markers 
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3.3.5 Cluster analysis of storage insect pest resistant population 

The SPR population revealed three major cluster groupings (C1, C2, and, C3) after analysis 

using SSR markers. Cluster C1, comprised 33.8% of the genotypes, and was further 

classified into two major sub-clusters. The second cluster, C2, comprised of 53.8% of the 

genotypes, and was further sub-divided into two major clusters, one of which is composed of 

only one genotype, entry 38. The other sub-cluster had two major sub-clusters with different 

number and list of genotypes each.  

The third grouping, C3, was the smallest of the clusters comprising 8 genotypes, constituting 

only 12.3% of genotypes in SPR population (Figure 3-6). 

The pairwise dissimilarity values for SPR generated ranged from a minimum of 0.17 to a 

maximum of of 0.64, with a mean value of 0.4. 

 

Figure 3-6: Dissimilarity matrices dendogram of SPR population using neighbour 
joining algorithm indicating genetic relationships of genotypes 

 3.4 Discussion 

Information obtained from the SSR markers used in the current study indicates that these 

markers were polymorphic. It is only one of the markers that was monomorphic for the SPR 

population. High success rate was achieved when these markers were used and therefore, it 

can be deduced that they had the ability to differenciate genotypes within the populations.  

C1  C2  C3  
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Legesse et al. (2007) and Wende et al. (2013), reported that dinucleotide SSR loci amplified 

the largest number of alleles as well as high PIC values. However, there was no observed 

correlatedness between marker nucleotide repeats and number of alleles amplified for the 

current study. Similar results with no correlatedness between allele numbers, PIC and 

nucleotide repeats were reported  in the literature (Matewele, 2014). 

The avearge alleles obtained from the current study of 3.43 and 3.63 for SPR and SBR 

populations respectively, are comparable to those reported by (Choukan et al., 2006). 

However, Xia et al. (2004) reported that the total number of alleles in diversity studies is 

proportional to sample size. Given that the sample size for the current study was 65 

genotypes, this may be linked to the number of alleles observed. There were also 

differences in allele number and effective alleles which can be attributed to the variation of 

major allele frequencies in the genotypes (Beyene et al., 2014). These results also agree 

with other studies done by Kostova et al. (2006), who reported low mean value of 1.9 alleles 

per locus. However, Zhi-zhai et al. (2010) observed mean allele value of 9.57 in 143  maize 

genotypes. The variation of fragment sizes within locus in the current study may be 

attributed to a phenomenon called slip-strand mispairing which occurs during DNA 

replication and can lead to great variation in allele size, as observed in loci phi062 with 362 

bp and Phi227562 with 320 bp (Levinson and Gutman, 1987; Beyene et al., 2014). The 

same phenomenon can be due to potential mutations occuring on the binding site of primers 

leading to low primer binding (Dillon et al., 2005).  

The levels of diversity obtained using these 30 SSR microsatellite markers in the two 

populations was 0.45 – 0.48. This agrees with previous studies (Musundire, 2013) where 

average diversity of 0.53 was observed. Similar studies by Matewele (2014), while working 

on diversity of maize germplasm from Malawi, reported diversity values of 0.51. Other 

authors have reported both lower values of diversity (Akinwale et al., 2014) as well as high 

values (Kong et al., 2000). 

The discriminatory power of loci was further estimated using PIC values having put into 

consideration the number of alleles and their relative frequencies (Smith et al., 2000).  In the 

current study, PIC values were high, with 57% of loci having pic values greater than 0.5, and 

two of the loci  (Phi308707, phi299852), giving values above 0.75 in SBR population, and 

two (phi031,  phi079) giving values greater than 0.8. This is evidence that these markers 

were able to effectively discriminate among all test genotypes and the results demonstrate 
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their informative nature when detecting differences among genotypes. These findings agree 

with studies (Ganapathy et al., 2012) done elsewhere with reported high PIC values. 

Conversely, 43% of the loci in the current study yielded PIC values of less than 0.5 for two 

populations. This is not to indicate that their discriminatory power is questionable, given that 

other authors have reported low pic value of 0.33 (Legesse et al., 2007). It is therefore 

important to note that these findings agree with studies by Smith et al. (2000) and Geleta et 

al. (2006), who reported that even moderate PIC values can be useful for classification of 

lines.  

Presence of high values for uHe confirm that these lines were not yet pure inbred lines since 

the lines were at S4 and still in the process of being selfed after selection based on the 

breeding goals. The results further indicate that there are high levels of polymorphism in the 

test populations. This is in agreement with findings by Smith et al.,  (1997) while evaluating 

the utility of SSR markers in maize. Other authors (Senior et al., 1998) have also reported 

similar findings as reported in this study.  

Genetic distances revealed the relatedness of the S4 lines used for this study, with clarity of 

markers being able to distinguish closely related lines with minimum genetic distances 

(Smith et al., 1997).  

Cluster analysis of the two populations, SBR and SPR, showed a good fit to the data with 

the dendrograms showing clear distinction of the different clusters. The three major clusters 

observed in the two populations could be an indication of pedigree relatedness of the S4 

lines. This agrees with previous finding (Reif et al., 2006), when he used SSR markers for 

heterotic groupings of maize. Similar findings were reported by (Senior et al., 1998), when 

investigating the genetic similarity and relatedness in maize. Furthermore, the clustering 

could be due to insect resistance levels in the test genotypes. This can be confirmed through 

other studies incorporating phenotypic data after screening the genotypes for resistance to 

C. partellus or S. zeamais insects.  It is also important to note that clustering could be due to 

maturity grouping of the S4 lines, since most of lines used were of early to medium maturity 

regime. This data was, however, not reported in the current study. Of great interest was 

entry 38 genotype, which fell in a sub-cluster of its own. This could be due to either genetic 

mix-up or incomplete pedigree records. Such observations have been reported by other 

researchers as occurrences due to effects of selection, some mutations, or genetic drift, as 

well as human error (Warburton et al., 2008). Hartl and Clark (1997) argued that the 
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differentiation of genotypes provides reason for breeders to select their preferred germplasm 

and fix desired alleles in each population.  

 3.5 Summary conclusions 

The findings of this study have demonstrated that: 

1. There is genetic variability in the genotypes from both the stem borer resistant as well 

as the storage pest resistant S4 population. 

2. The chosen SSR markers differentiated the S4 lines, indicating that they were robust for 

the current diversity studies.  

These findings can therefore be used for the following recommendation:  

1. The genetic variability could be exploited for further breeding. 

2. These populations can act as a valuable source of alleles especially in insect resistance 

studies.  
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Chapter 4: Estimating combined insect pest resistance for Chilo 

partellus and Sitophilus zeamais in maize hybrids 

Abstract  

The spotted stem borer, Chilo partellus Swinhoe, a major field pest of maize, and the 

storage pest, Sitophilus zeamais Motschulsky, are widely distributed in all major maize 

growing ecologies in Kenya. The two make destructive loss force of estimated at 15% in the 

field and 17-40% in storage. Host plant resistance has been achieved for each of these 

pests in separate inbred lines and hybrids, however, no combined field and post-harvest 

insects‟ pests resistance studies have been studied in Kenya. A study was carried out to 

determine whether resistance to the two pests can be combined in hybrids using 12 parents 

diallel. The seedlings were screened for stem borer resistance by artificially infesting with 10 

C. partellus neonates, and at harvest, 100g of grain was infested with 45 unsexed adults of 

S. zeamais and P. truncatus, for the post-harvest resistance screening. There were highly 

significant (p≤ 0.001) mean squares for grain yield, both under infestation and protected 

plots. The stem borers‟ and postharvest insects‟ resistance traits; leaf damage scores, exit 

holes, cumulative tunnel length, dust weight, live insect and weight loss; were also highly 

significant (p≤ 0.001)  in six environments. Parents 2, 3, 6, 7, and 10 contributed to higher 

Chilo partellus resistance genes in hybrids (≤ 2.3), while parents, 2,3,8,9, and 10 contributed 

to higher Sitophilus zeamais resistance genes. General combining ability effects for lead 

damage scores and undamaged kernels for Sitophilus zeamais were highly significant (p≤ 

0.001, R2 =71-77%). Hybrids 3X10, 4X8, 5X10, 3X9, 2X9, 5X8, and 4X9; showed combined 

resistance to both pests, with grain yield ranging between 5 and 8 t/ha respectively.  These 

inbred lines can be used as sources of resistance genes in developing hybrids with 

combined resistance to field and storage pests.   

Key words: Insect Pests, Maize, Resistance, Combining Ability  



 

 

64 

 

 

 4.1 Introduction 

Maize, (Zea mays L), remains the major food crop for the majority of households in sun-

Saharan Africa (FAOSTAT, 2014). Production is, however, still below the demand of the 

crop because of yield losses caused by both field and storage pests (DeGroote, 2002). Stem 

borers form the major pest complex of maize in the field especially in the tropics where 

temperatures are high and the environmental conditions are conducive for the pests‟ 

multiplication. The maize weevil and the larger grain borer form the major pests of maize in 

storage.  

The spotted stem borer, Chilo partellus Swinhoe (Lepidoptera: Pyralidae) is of great 

economic importance, not only in lowland tropics, but also in mid-altitude and highland 

tropics, where it is progressively advancing due to global warming which has led to climate 

change. It is therefore distributed in all major maize growing ecologies in Kenya up to 

altitude of 1200masl. It attacks maize from seedling stage through to maturity (Appert and 

Deuse, 1982). In highly humid and hot environments, up to 100% infestation levels have 

been recorded in maize fields (Mohamed et al., 2004). Losses due to stem borers are two-

fold: Quantity (lower yields), and also quality, (faecal waste and secondary microbial 

infections). De Groote (2002) reported average grain yield losses of 13.5% in Kenya, while 

more than 50 million metric tons (MT) of global maize production are estimated lost due to 

stem borers annually (James, 2003).  

On the other hand, the storage pest, maize weevil, (Sitophilus zeamais Motschulsky 

(Coleoptera: Curculionidae), is a major pest in Kenya distributed also in all maize growing 

ecologies. It is known to thrive well in temperatures ranging between 15-34oC, and causes 

both quantity and quality loss (Giga et al., 1991; Derera et al., 2014). Infestation starts in the 

field especially in the early maturing maize genotypes, especially, in the open-tipped 

genotypes (Dari et al., 2010). This can lead to ear rot and secondary pathogen infections, for 

example, mycotoxins, resulting in production of aflatoxins and fumonisins, which are harmful 

to human health (Kankolongo et al., 2009). The result of such infection is low market value 

for the grain, and also endangers the lives of the consumers.  

Chemical pesticides, are not affordable to smallholder farmers, they are indiscriminative in 

nature, and have side-effects both directly to the health of the farmer, and then to the 
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environment, whereas biological control methods are generally not effective (Dalvie et al., 

2009; Meissle et al., 2010). Therefore host plant resistance, which is a noble method for pest 

control and stands to be promising because the protection is in-built within the seed. This is 

affordable to the farmer and has no side effects both to the health of the farmer and 

consumer, and the environment (Mugo et al., 2001). Various stem borer and storage pest 

resistant maize germplasm has been developed, and released to the farmers (Dhliwayo et 

al., 2005; Tefera et al., 2011). Unfortunately, the hybrids already released confer resistance 

to only one type of these pests; either stem borer resistant or maize weevil resistant maize 

hybrids. The challenge here is that each of the insect resistant traits is in separate maize 

germplasm. This necessitates the smallholder farmer to use chemicals at some point; either 

in the field to control stem borers when growing storage pests‟ resistant maize, or in store, 

after harvesting the stem borer resistant maize. This is because the two insect resistance 

traits are in different genotypes; either way, the cost of production and storage of maize is 

high and not feasible to the resource-constrained smallholder farmer.  

In efforts to address this challenge, studies were carried out to determine whether resistance 

to both stem borers and storage pests can be achieved in hybrid combination without 

compromising the yield. This study therefore aimed at finding out whether stem borer 

resistant inbred lines can be used in hybrid formation along with elite maize weevil resistant 

inbred lines to develop hybrids which have resistance to each of these pests. In addition, the 

study aimed at identifying the best combiners of lines in general combining ability (GCA) and 

specific combining ability (SCA) to confer resistance to the maize crop when in the field and 

in storage.  The findings can be used for devising the strategy for breeding multiple 

resistance to maize pests and therefore contribute towards reduced yield losses in the field,  

increase length of storing maize, increased food security and improved livelihoods for the 

small-holder farmers in Africa. 

The objectives of this study were to:  

1. Identify inbred lines with stem borer resistance that combine well with the selected 

post-harvest insect resistance lines. 

2. Determine the general and specific combining ability of elite inbred lines with 

resistance to the individual pests; Chilo partellus and Sitophilus zeamais. 

3. Identify the best combiners of inbred lines which give hybrids with combined C. 

partellus and S. zeamais resistance for use in future breeding. 



 

 

66 

 

 

 4.2 Materials and methods 

 Choice of parents and making crosses 4.2.1

Ten test inbred lines, and two CIMMYT maize lines (CML), developed by the International 

Center for Maize and Wheat Improvement (CIMMYT) through the Insect Resistant Maize for 

Africa (IRMA) project (Table 4-1), were crossed in a half diallel combination.  

Table 4-1:  List of parents used in the diallel crosses, their codes and pedigrees 

Parent CODE Pedigree 

1 CKSBL10039 P590 C7 Blancos F156-1-2-1-B-B-B-B -B-B 

2 CKSBL10025 MBR C5 Bc F60-2-1-2-B-B-BxCML 384-B-1-2-B-B-B-B -B-B 

3 CKSBL10026 MBR C5 Bc F8-1-1-1-B-2-2-B -B-B 

4 CKSBL10014 CML311/MBR C3 Bc F43-2-1-1-B-B-B-B -B-B 

5 CKSBL10034 MBR-Et(W)/P590C3 F6-1-1-B-2x761B A1 Bco x 751B-B-3-B-1-2-B-B-B-B -B-B 

6 CKDHL120030 5K_CUBA/GUAD//KILIMA_ST94A/MSV/3/CML395:@.@%3052.-B 

7 CKDHL120493 5K_CML442/3/CUBA/GUAD//KILIMA_ST94A/MSV:@.@%3007.-B 

8 CKSPL10090 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-277-1-B-3-B-B-B-B 

9 CKDHL120517 5K_CML442/3/CUBA/GUAD//KILIMA_ST94A/MSV:@.@%3031.-B 

10 CKDHL120731 5K_CML444/3/CUBA/GUAD//KILIMA_ST94A/MSV:@.@%3042.-B 

11 CML442 CML442 

12 CML444 CML444 

 
 The diallel mating design was identified and chosen as suitable for making the crosses of 

the parents from the SBR and SPR groups (Griffing, 1956). This method is useful for 

estimation of both the general combining ability (GCA) and the specific combining ability 

(SCA). The GCA will generate information for estimating additive gene action, while the SCA 

information generated will be used for estimation of the non-additive (dominance and 

epistasis) gene effects.  It has been used widely in genetic studies and for parental selection 

in maize breeding and also gives good estimates of GCA and SCA (Machida et al., 2010; 

Makumbi et al., 2011). 

  Sites for nursery and evaluation of F1 hybrids 4.2.2

The nursery was planted at CIMMYT‟s new site at Kenya Agricultural and Livestock 

Research Organization (KALRO)-Kiboko (2°12' 50.24'' S, 37°43' 30.11'' E, 945 masl) on the 

27th December 2012, during the 2012B season. The females‟ plots were four rows of 5 m 
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length planted at 75 cm between rows and 25 cm within rows. Two seeds were sown per hill 

and later thinned down to one plant per hill. The male plots were sown on one row per 

planting, preceding each set of female rows at three intervals (-5, 0 and +5 days) after 

planting the females to synchronize flowering for continued pollen supply at the time of 

pollination (CIMMYT, 1985). The nursery was harvested on the 30th April 2013 and, clean 

seed from each female row per plot was bulked, dried and shelled, and the grain weighed. 

Table 4-2:  Climatic description of the sites used for evaluation of the F1 maize 
hybrids  

Location Co-ordinates Altitude  Soil type Zone Temp (oC) RF 

    (masl)     Minimum Maximum (mm) 

Kiboko 
02o 15‟ S 

037 o 75‟ E 
975 Sandy-loam LT 23 29 530 

Kirinyaga 
00 o 34'08.37‟ S 

037 o 19'21.31‟ E 
1286 Andisols MAM 14 26 1250 

Embu 
00 o 30'18.76' S 

037 o 27'18.22‟ E 
1533 Humid-Nitisols MT 14 28 1100 

Kakamega 
00 o 02'20.02‟ N 

034 o 48'57.42‟ E 
1589 Clay-Loam MT 17 28 1900 

‡ LT, lowland tropics; MAM, moist mid-altitude; MT, Moist transitional; RF, Rainfall; mm, millimetres; masl, meters above 
sea level; Temp, average annual temperature in 

o
C (degrees centigrade).  

Three sites, Kirinyaga, Embu and Kakamega, were selected for trial evaluation of the 

resulting F1 hybrids (Table 4-2). All routine agronomic practices and proper nursery 

management procedures were followed up to pollen shedding (Badu-Apraku et al., 2012). 

Pollen from four male plants was harvested, bulked and used to hand pollinate as many 

designated females as possible. Data was collected on flowering dates, ear height, and plant 

height.  

The choice of these sites was done based on the special constraints each site experiences: 

In Kirinyaga, there is natural infestation occasioned by C. partellus, while in Embu, there is 

both C. partellus and Busseola fusca Fuller (Lepidoptera: Noctuidae) stem borer species. In 

addition to these, Embu is a hot spot of maize streak virus (MSV) infection. On the other 

hand, Kakamega is known for high disease incidences, and this makes it a good site for 

evaluation of hybrids under disease pressure. 
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Season by site combination constituted an environment, therefore from three sites and two 

seasons (2013B and 2014A), this gave a total of six environments. Season A are the short 

rains experienced during the months of November to January, while season B are the long 

rains experienced during the months of March to June. These environments were Kirinyaga 

in 2013B as Environment 1, and in 2014A Environment 2; Embu by 2013B was environment 

3, and 2014A environment 4, and, Kakamega 2013B was Environment 5, and 2014A 

Environment 6. Sixty six (66) F1 hybrids, and four commercial checks, were evaluated under 

rain fed conditions, with supplementary irrigation when needed, and, artificial infestation with 

C. partellus.  

 Design used for evaluating F1 maize hybrids obtained after making 4.2.3

crosses 

The trial consisted of 66 test hybrids and three commercial available hybrids (checks) and 

one internal check (within the breeding program check) with known stem borer resistance 

trait. The trial design was a 7 x 10 α-lattice, with two rows per plot and three replications. 

The rows were five meter-long, with 21 hills per row, and row to row spacing of 0.75 m and 

hill to hill spacing of 0.25 m. Two seeds were planted per hill, and later thinned to one plant 

per hill two weeks after germination, except the border hills which maintained two plants per 

hill. All routine agronomic practices of maize production; weeding and fertilizer application; 

were followed, except the use of pest control sprays. The plots were partitioned into two 

parts using a nylon rope two weeks after germination at the time of thinning, to create two, 

10-plant portions, excluding the first hill, to allow for artificial infestation.  

 Artificial infestation with Chilo partellus neonates 4.2.4

The front half of the mapped field was infested with ten first instar larvae of C. partellus 

neonates, into the maize seedlings whorl using a camel hair brush, two weeks after 

germination.  The neonates were obtained from a mass rearing laboratory situated at the 

Kenya Agricultural and Livestock Research Organization (KALRO) (37o 37' 36.75" E, 1o 38' 

1.54" S, 1571masl), Katumani (Tefera et al., 2010). The second half and the back side was 

protected using Bulldock® 0.05 GR granule, a synthetic pyrethroid with Beta-cyfluthrin 

0.5g/kg as the active ingredient, which is systemic. The granules were placed in the whorl of 

the developing seedlings one shake in the funnel of each plant amounting to 3 kg/ ha.  
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After infestation, the neonates were allowed two weeks to feed and burrow into stem of the 

developing maize seedlings. A four week interval between infestation and second scoring 

was allowed to give the neonates a chance to develop within the maize plant while inflicting 

damage on the plant up to sixth instar stage, prior to pupae stage. 

 Stem borer resistance screening data collection 4.2.5

The first data scores on leaf damage scores were taken after the expiry of two weeks, and, a 

second scoring was done four weeks after infestation, then the plants were allowed to 

develop to maturity. The leaf damage scores were recorded using a scale of 1-9 (Table 4-3) 

(Tefera et al., 2010). Other data collected include, days to flowering, plant heights and ear 

heights. At harvest, yield data and other stem borer resistance parameters, which include 

exit holes and cumulative tunnel length, were taken and recorded. The harvested cobs were 

weighed and taken to the post-harvest resistance screening laboratory, which is situated at 

KALRO-Kiboko (037o 42' 50.98'' E, 02o 13' 56.56'' S; 947 masl).  Other post-harvest 

parameters were collected and they include oils, starch and protein content, before setting 

up the storage pests‟ resistance screening experiments. 

Table 4-3:  Leaf damage scores rating for insect resistance assessment 

Score  Leaf damage scores Resistance rating 

1 Few pin holes to indicate feeding activity (<10%) Highly resistant 

2 Few shot holes on several leaves (<20%) Resistant 

3 Several holes on leaves (<30% perforation on leaf) Resistant 

4 Several small holes on leaves (40-50%) Moderately resistant 

5 More severe feeding activity (>50%) on a few leaves Moderately resistant 

6 Elongated lesions on several leaves Susceptible 

7 Heavy perforation on leaves leading to leaf tattering Susceptible 

8 More severe leaves perforation (>80%)  Highly susceptible 

9 
Dead hearts (when growing point is completely 
damaged) 

Extremely 
susceptible 

Source: Tefera et al., 2010 
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 Post-harvest insect resistance screening and data collection 4.2.6

At harvest, clean ears from each plot were selected and shelled, and then post-harvest data 

were taken on moisture, oil, starch, and protein content of the grain. The grain was then 

dried to relative uniform moisture content and fumigated using Aluminum Phosphide 55%, 

marketed as Phostoxin®, for two weeks, in order to eliminate any pests from the field. Equal 

weights of 100g samples were taken from each plot and placed in 0.5 litre glass jars in the 

post-harvest laboratory with enough room to allow for proper aeration within the jar for the 

period of incubation. Forty five unsexed, three week-old adults insects of both S. zeamais 

and P. truncatus were placed in each sample.  This age allowed for reduction of time from 

infestation to emergence of the next progeny. The jars were covered with a lid perforated in 

small enough holes not to allow the insects escape from the jar. They were then incubated 

for 90 days, under controlled conditions in the laboratory with temperatures of 28 ± 2oC, 

relative humidity (RH) of 65 ± 5% and a 12:12 hour light:dark regime, using the field 

randomization (Haines, 1991; Tefera et al., 2010). 

The jars were opened after the 90-day screening period, and the products sieved through 

appropriate screens in order to separate the various components; grain, insects and flour. 

This incubation period was to ensure that there was enough time for the insects to infest and 

feed on the grain so that any clean grains observed was not due to escapes.  The large 

screen mesh size 4.7mm was to separate grains from insects and flour, and   a smaller 

screen mesh size 1.0mm for separating the insects from the flour. Data on number of live 

and dead insects was recorded to give progeny count. The weights of both the damaged and 

undamaged kernels were also recorded. Both damaged and undamaged kernels were 

counted and recorded, and, finally, weight loss of grain calculated. All the data was captured 

in excel before analysis.  

 4.3 Data analysis 

The data on leaf damage scores, powder produced (flour), and weight loss of grain was 

transformed to the square root prior to statistical analyses. Grain yield was adjusted to 

12.5% moisture content, and plot yield calculated to tonnes per hectare using the formula:  

GY = (Fwt/1000)*((100-Moisture) / (100-12.5)*(10000/Plot area))*shelling % ................(2) 
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Where;  

GY = Grain yield;  

FWT = field weight.  

Analysis of variance was done for the traits of interest; grain yield, leaf damage scores, 

weight grain loss, and tunnel length; using PROC GLM of SAS, for all the traits. A fixed 

model, for Griffings method 4 (Griffing, 1956) for a partial diallel, was used (Hallauer et al., 

2010) which excluded the parents and the reciprocal crosses. The following statistical model 

was used: 

xij = μ +rk + gi + gj + sij + e ijk …………………………………………………………………….(3) 

Where: 

xij = the effect of the ijth genotype (i,j = 1,2 -----------p, i < j ) 

μ = grand mean 

rk = kth replication effect 

gi and gj = GCA effects of parents i and j 

sij = SCA effects between parent i and j 

еijk = experimental error for the observation xijk ( k = 1,2, ---------r, i =j = 1,2,---------n ). 

The environments were considered as random effects while the genotypes were fixed. A 

combined analysis across the environments was also performed taking into consideration 

that environments are random effects and genotypes are fixed effects (SAS, Institute, 2014).  

Percentages of GCA and SCA were calculated using the formulae:   

%GCA = 100*(GCA ss)/ Entry ss, %SCA = 100*(SCA ss)/ Entry ss ………...……………….(4) 

 4.4 Results 

 Grain yield and stem borer resistance parameters 4.4.1

The results revealed that out of 66 genotypes which were evaluated, 23 of these hybrids had 

high levels of stem borer resistance with leaf damage scores of 2-2.5. This accounts for 
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34.8% of the genotypes.  Twenty eight (28) of the hybrids scored 2.51-3.0 leaf damage 

which is equivalent to 42.4 %.  Moderate levels of resistance with scores of 3.1-3.5, were 

observed in 14 of the test hybrids which is equivalent to 21.2% of the genotypes. Only one 

hybrid was observed to be susceptible with leaf damage scores of greater than 3.5, 

accounting for 1.5% of the test hybrids (Figure 4-1).  

 

Figure 4-1: Frequency distribution of leaf damage scores among test hybrids  

Analysis of variance revealed highly significant (p≤0.001) mean squares for yield, both under 

infestation and protected plots, and stem borers‟ resistance traits, leaf damage scores, exit 

holes and cumulative tunnel length across different environments, for genotypes (Table 4-4).  

Similarly, the oil, protein and starch content showed highly significant (p≤0.001) mean 

squares across different environments, for genotypes. General combining ability (GCA) 

effects for leaf damage scores and undamaged kernels for S. zeamais were highly 

significant (p≤0.001, R2= 71-77%). Specific combining ability was not significant for 

cumulative tunnel length, and, there were no significant interactions for specific combining 

ability by environment, for grain yield under infestation, exit holes, leaf damage scores and 

protein content. It was observed that Entry 1 had the highest starch content of 70.5%, yet the 

same entry had the lowest oil content of 4.9%. Similar results were observed for entry 26 

which had high protein content of 12.0%, yet with low starch content of 68.2% (Table 4-4). 
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Table 4-4:  Analysis of variance for grain yield, stem borer resistance parameters 
and biochemical traits 

    Mean squares 

    Grain Yield Chilo partellus Biochemical traits  

Source DF GYP GYI CTL ExHls LDS Oil Protein Starch 

ENV 5 771.6*** 1100.5*** 4552.0*** 340.7*** 53.4*** 34.2*** 78.8*** 162.8*** 

REP(ENV) 12 30.3 45.3 214.2 25.4 5.68 0.442 7.6 5.9 

ENTRY 65 36.1*** 37.3*** 25.6*** 5.0*** 2.33*** 1.14*** 4.2*** 3.6*** 

ENV*ENTRY 325 8.2*** 9.3*** 15.5** 2.2*** 0.48* 0.215*** 0.92*** 0.93*** 

GCA 11 105.9*** 92.8*** 82.1*** 17.4*** 10.6*** 4.2*** 20.0*** 11.5*** 

SCA 54 21.9*** 26.0*** 14.1 2.5*** 0.66*** 0.52*** 0.97*** 1.96*** 

GCA*ENV 55 20.5*** 20.1*** 24.9*** 3.8*** 0.70*** 0.61*** 2.2*** 1.83*** 

SCA*ENV 270 5.7* 7.04 13.5 1.9 0.44 0.13*** 0.67 0.75* 

Error 780 4.6 7.1 12.7 1.6 0.394 0.093 0.62 0.63 

R
2
 

 

0.72 0.67 0.76 0.71 0.68 0.82 0.69 0.74 

Coeff Var 

 

31.6 40.4 67.7 76.5 23.4 6.1 7.3 1.14 

% GCA (ss) 

 

0.5 0.42 0.54 0.58 0.77 0.62 0.81 0.54 

% SCA (ss) 

 

0.5 0.58 0.46 0.42 0.23 0.38 0.19 0.46 

Mean 

 

6.8 6.6 5.3 1.7 2.7 5.03 10.8 69.6 

Max 

 

10.5 (38) 10.1 (5) 3.7 (12) 3.5 (49) 3.9 (65) 5.6 (66) 12.0 (26) 70.5 (1) 

Min   3.0 (53) 3.3 (53) 8.5 (65) 0.96 (2) 2.1 (2) 4.9 (1) 9.9 (9) 68.2 (26) 

‡Data significance: *** Highly significant at ≤ 0.001; **significant at ≤ 0.01; * significant at ≤ 0.05. †GYP, grain 
yield protected (t/ha), GYI, grain yield infested, CTL, cumulative tunnel length, ExHls, exit holes, LDS, leaf 
damage scores. Numbers in parentheses indicate the entries with the adjacent means. 

Grain yield from five test hybrids were high (9-11.0 t/ha), which constitute 3.0-4.5% of 

genotypes. Grain yields from 36.4 - 43.9% of the test hybrids ranged 7.0 - 9.0 t/ha, while 

43.9 - 45.5% of the test hybrids yielded 5.0 – 7.0 t/ha. Only 9.1-13.6% of the test hybrids 

gave low yields of 3.0 - 5.0 t/ha (Figure 4-2). 
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Figure 4-2: Distribution of grain yield when infested and protected among test hybrids 

 Mean performance for yield and insect resistant parameters 4.4.1

The highest yielding entry for grain yield when protected was 10.5 t/ha (entry 38, single 

cross 4×12), and mean of 6.8t/ha, while grain yield when infested was 10.1 t/ha (entry 5, 

1×6), and mean of 6.6 t/ha for all the entries. Entry 35 (4×9) gave the high yields both when 

protected (8.4t/ha) and when infested (8.3 t/ha). It had a leaf damage score of 2.2, 

cumulative tunnel length of 4.1 and exit holes count of 1 (Table 4-5).  

The lowest score for leaf damage was 2.1 (entry 2, 1×3), and high of 3.9 (entry 65, 10×12), 

the mean for all the entries was 2.7. Cumulative tunnel length had mean of 5.3 cm, with 

minimum measurements of 3.7 cm for entry 12 (2×3), and maximum of 8.8 cm from entry 49 

(6×10). Exit holes count yielded mean of 1.7, with minimum of 1 from entries 2, 12, 22,  35 

and 7 (1×3, 2×3, 3×4, 4x9 and 1x8), while the highest count was 3.5 from entry 49 (6×10). 

These hybrids ranked among the top four for leaf damage score except entry 7 which ranked 

eight for leaf damage (Table 4-5). Entry 53 was observed to give the lowest yields both when 

protected and also infested with C. partellus.  
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Table 4-5:  Means of stem borer resistance traits, cumulative tunnel length, exit holes and leaf damage scores of best and 
worst ten hybrids 

Rank Entry SC GYP Entry SC GYI Entry SC CTL Entry SC ExHls Entry SC LDS 

1 38 4X12 10.5 5 1x6 10.1 12 2x3 3.1 2 1x3 1 2 1x3 2.1 

2 66 11X12 10 38 4x12 9.2 4 1x5 3.5 12 2x3 1 12 2x3 2.2 

3 11 1X12 8.8 48 6x9 9.1 27 3x9 3.6 22 3x4 1 22 3x4 2.2 

4 9 1X10 8.7 9 11x12 8.8 1 1x2 3.7 35 4x9 1 35 4x9 2.2 

5 21 2x12 8.7 66 1x10 8.8 29 3x4 3.8 7 1x8 1 27 3x9 2.2 

6 45 5x12 8.7 37 4x11 8.6 22 3x11 3.8 27 3x9 1.1 18 2x9 2.2 

7 33 4x7 8.6 56 7x12 8.4 2 1x3 3.9 1 1x2 1.1 8 1x9 2.2 

8 50 6x11 8.5 11 1x12 8.3 21 2x12 4 3 1x4 1.1 7 1x8 2.3 

9 35 4x9 8.4 35 5x12 8.3 9 4x9 4.1 4 1x5 1.2 1 1x2 2.3 

10 56 7x12 8.4 45 4x9 8.3 35 5x9 4.1 19 2x10 1.2 3 1x4 2.3 

57 19 2x10 5.5 22 3x4 5 54 7x10 6.5 59 8x11 2.1 53 7x9 3.1 

58 1 1x2 5.4 49 6x10 5 66 8x12 6.6 6 1x7 2.2 59 8x11 3.1 

59 61 9x10 5.4 26 3x8 4.9 60 11x12 6.6 20 2x11 2.2 64 10x11 3.1 

60 65 10x12 5.1 23 3x5 4.8 55 7x11 6.7 48 6x9 2.3 51 6x12 3.2 

61 23 3x5 4.9 61 9x10 4.6 59 8x11 6.9 56 7x12 2.4 55 7x11 3.2 

62 26 3x8 4.6 57 8x9 4.4 64 10x11 7 54 7x10 2.5 60 8x12 3.2 

63 57 8x9 4.6 52 7x11 4 56 7x12 7.1 64 10x11 2.5 56 7x12 3.3 

64 52 7x8 3.7 55 7x8 4 53 7x9 7.6 66 11x12 2.9 66 11x12 3.3 

65 58 8x10 3.7 58 8x10 3.6 65 10x12 8.5 65 10x12 3.4 49 6x10 3.4 

66 53 7x9 3 53 7x9 3.3 49 6x10 8.8 49 6x10 3.5 65 10x12 3.9 

 

Mean 

 

6.8 

  

6.6 

  

5.3 

  

1.7 

  

2.7 

 

Max 

 

10.5 (38) 

  

10.1 (5) 

  

3.7 (12) 

  

3.5 (49) 

  

3.9 (65) 

 

Min 

 

3.0 (53) 

  

3.3 (53) 

  

8.8 (49) 

  

0.96 (2) 

  

2.1 (2) 

  SE 

 

0.65     0.77     1.28     0.4     0.18 

†GYP, Grain yield (t/ha) protected; GYI, grain yield (t/ha) infested; CTL, cumulative tunnel length (cm); ExHls, exit holes (counts); LDS, leaf damage scores 
(scores 1 = clean , 9 = most susceptible); SC, single cross.  
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 Post-harvest insects’ resistance parameters 4.4.2

Highly significant (p≤ 0.001) differences were observed from the analysis of variance for percent 

live insects recovered, both from larger grain borer and maize weevil infestation across different 

environments, for genotypes, entry, entry-by-environment interactions, and for GCA (Table 4-6). 

Both GCA and SCA were highly significant for undamaged kernels, weight loss, and live insects.  

The storage pests‟ resistance traits of weight loss for S. zeamais had a mean score of 17.4%, 

with minimum of   8.8% for entry 57 (8×9). Percentage undamaged kernels recorded were mean 

of 42.7%, with the best genotype recording 75.1% undamaged kernels (entry 57, 8×9), and the 

lowest being 15.6 (entry 61, 9×10) for S. zeamais, The percentage of live S. zeamais insects 

recovered were a maximum of 77.8% from entry 44, and a minimum of 40.5% form entry 57 

(Table 4-6).  

Entry 57 was observed to have the best combination for low percentages of weight loss, live S. 

zeamais insects and the highest percentage of undamaged grain after infestation. Conversely, 

entry 4 had both high percentage of grain weight loss of 26.7% and the lowest percentage of 

undamaged grains of 15.6% (Table 4-6).  
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Table 4-6:  Analysis of variance for grain yield and post-harvest insect pest resistance 
parameters due to infestation by the Sitophilus zeamais 

    Grain Yield Maize weevil  

Source DF GYP GYI MLI MuDkn Mwtls 

ENV 5 771.6*** 1100.5*** 17741.2*** 44994.7*** 9068.8*** 

REP(ENV) 12 30.3 45.3 1328.3 1019 339.1 

ENTRY 65 36.1*** 37.3*** 997.5*** 2768.5*** 297.8*** 

ENV*ENTRY 325 8.2*** 9.3*** 330.8*** 413.4*** 65.3*** 

GCA 11 105.9*** 92.8*** 3903.0*** 11853.1*** 1250.6*** 

SCA 54 21.9*** 26.0*** 405.6*** 917.9*** 103.8*** 

GCA*ENV 55 20.5*** 20.1*** 664.8*** 537.9*** 86.6*** 

SCA*ENV 270 5.7* 7.04 262.8*** 388.0*** 60.9*** 

Error 780 4.6 7.1 186.8 293.6 47.2 

R2 

 

0.72 0.67 0.66 0.71 0.71 

Coeff Var 

 

31.6 40.4 21.8 40.2 39.4 

% GCA (ss) 

 

49.7 42.1 66.2 72.5 71.1 

% SCA (ss) 

 

50.3 57.9 33.8 27.5 28.9 

Mean 

 

6.8 6.6 62.7 42.7 17.4 

Max 

 

10.5 (38) 10.1 (5) 77.8 (44) 75.1 (57) 26.7 (4) 

Min   3.0 (53) 3.3 (53) 40.5 (57) 15.6 (4) 8.8 (57) 
‡Data significance: *** Highly significant at p≤ 0.001; **significant at p≤ 0.01; * significant at p≤ 0.05. †GYP/GYI, grain 
yield (t/ha), protected/infested; MLI, percentage live maize weevil insects, MuDkn, percentage of undamaged 
kernels/grains under mw infestation, Mwtls, percent weight loss by grains due to mw infestation. Numbers in 
parentheses indicate the entries with the adjacent means. 

 General combining ability effects 4.4.3

Parents 12, 11, 4, 6, and 1, had positive and favourable effects (1.47, 0.72, 0.95, 0.38, and 

0.19) for grain yield respectively, when protected, with parents 4, 11, and 12 being highly 

significant (p ≤ 0.001). The same parents also gave positive and favourable estimates for grain 

yield when infested.  Parents 1,3,2,4 and 5, gave the most favourable and negative effects (-

0.93, -0.92, -0.64, -0.62, -0.35), for cumulative tunnel length, but only parents 1 and 3 were 

significant (p ≤ 0.01) (Table 4-7).  
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Table 4-7:  General combining ability effects for grain yield, stem borer resistance parameters, biochemical components 
and storage pest resistance parameters 

Parent GYP GYI CTL ExHls LDS OIL Protein Starch MLI MuDkn Mwtls 

1 0.19 0.47 -0.93* -0.32* -0.27*** -0.29*** -0.17* 0.29*** 4.8*** -13.03*** 4.65*** 

2 -0.19 -0.17 -0.64 -0.25 -0.23*** -0.17*** -0.31*** 0.5*** 3.24** 0.15 -0.03 

3 -0.73*** -0.90*** -0.92* -0.37** -0.35*** 0.06 0.34*** -1.0*** 2 -4.06* 1.13 

4 0.95*** 0.85*** -0.62 -0.36** -0.24*** 0.24*** -0.43*** -0.15 -0.56 -0.71 -0.82 

5 -0.16 0.03 -0.35 -0.2 -0.13* -0.06 -0.16* 0.11 2.68* -6.39*** 1.73* 

6 0.38 0.75** 0.68 0.25 0.25*** 0.17*** -0.06 -0.09 1.65 -3.60* 0.29 

7 -0.21 -0.58* 0.90* 0.26 0.15** -0.13*** 0.22** -0.06 0.51 -0.9 0.89 

8 -1.12*** -0.95*** 0.16 -0.15 0.063 0.05 0.57*** -0.32*** -8.42*** 12.72*** -4.33*** 

9 -0.67** -0.27 -0.08 -0.02 -0.07 -0.07 0.41*** -0.05 -8.62*** 14.71*** -4.55*** 

10 -0.62** -0.70** 0.6 0.43** 0.23*** 0.12** 0.14 -0.17* -4.38*** 7.93*** -1.57* 

11 0.72*** 0.28 0.65 0.36** 0.27*** 0.1** -0.12 -0.06 4.24*** -6.45*** 2.65*** 

12 1.47*** 1.20*** 0.55 0.37** 0.32*** -0.02 -0.44*** 0.31*** 2.86* -0.37 -0.03 

Mean 6.78*** 6.60*** 5.26*** 1.66*** 2.68*** 5.03*** 10.77 69.6*** 62.65 42.65*** 17.43*** 

StdErr 0.22 0.26 0.43 0.13 0.06 0.04 0.08 0.09 1.27 1.65 0.7 

‡Data: GYP/GYI, grain yield protected/infested; CTL, cumulative tunnel length; ExHls, exit holes; LDS, leaf damage scores; MLI, percentage live mw insects; 
MuDkn, percentage of undamaged kernels; Mwtls, percent grain weight loss; Significance: *** means data is significant at P ≤ 0.001, ** data is significant at p ≤ 
0.01, * data is significant at p ≤ 0.05.   
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Parents 1, 3, and 4, gave significant favourable negative estimate (-0.32, -0.37, and -0.36) of 

exit holes, respectively. Leaf damage scores favourable effects came from parents 1, 2, 3, 4, 

and 5 (-0.27, -0.23, -0.35, -0.24, and -0.13), respectively which were highly significant (p ≤ 

0.01), except parent 5 (p ≤ 0.01) (Table 4-7).   

Parents 1 and 2 gave negative estimates for both oil and protein (-0.29, 10.17 and -0.17, 

10.31), but gave positive estimates for starch (0.29, 0.50), respectively.  Inbred line parent 8 

and 9 had the most favourable negative effects on percentage live insects for S. zeamais (-

8.42, -8.62). The same parents had favourable positive effects for undamaged kernels 

(12.71, 14.71) and also favourable negative effects for weight loss (-4.33, -4.55) (Table 4-7). 

The contributions of these two parents to the three traits of interest gave negative and 

significant effects for oils (-0.29, -0.17), and proteins (-0.17, -0.34). Parents 8 and 9 gave 

positive effects for proteins (0.57, 0.41) respectively (Table 4-7). Overall, general combining 

ability accounted for 50.9-66.2% of live insects, 71.1-74.9% of weight loss and 72.5-77.1% of 

undamaged kernels. 

 Specific combining ability effects 4.4.1

The single cross (SC) 7×10, had favorable positive specific combining ability (SCA) effects 

(2.33) for yield when protected, which translated into 39.2% yield gain from expected 

(predicted) yield of 5.95 to observed yield 8.28 t/ha. Other hybrids with favorable and 

positive effects for yield were SC 1×10 (2.31), giving yield gain of 36.4% from the expected 

of 6.3 t/ha to observed 8.65 t/ha. More favorable SCA effects for grain yield were observed 

for SC 1×10 (2.43), SC 1×6 (2.27), and SC 2×9 (1.89) when infested (Table 4-8).    

Further, the analysis revealed negative unfavorable SCA effects as well. These were 

observed on some specific single crosses for grain yield and insect resistance traits.  The 

single cross 10×12 gave unfavorable SCA effects of -2.54, for yield which resulted in yield 

reduction of 33.3% from expected 7.63 t/ha to 5.0 t/ha. Similar results were observed for 

grain yield for SC 6×12 (-2.31), SC 7×9 (-2.89), as well as SC 11×12 (-0.042) for grain yield 

protected, and infested (-0.12). Although the hybrid SC 11×12 revealed a negative SCA (-

0.02), the observed yield of 10.02 t/ha, was far more than expected (predicted) yield of 8.97 

t/ha. Other hybrids include SC 7×9 (-2.48), and SC 10×12 (-1.68) with negative and 

unfavorable effects on grain yield when infested (Table 4-8).  

Three single crosses had significant SCA effects for leaf damage scores. These are SC 4×5 

(15.1%), SC 10×12 (19.9%), and SC 7×9, (11.1%). It was also observed that SC 6×10 and 
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SC 10x12, showed significant SCA effects, 51.4% for exit holes and 40.2% respectively, 

(Table 4-8).  

Table 4-8:  Specific combining ability effect on grain yield, Chilo partellus and 
Sitophilus zeamais insect resistance traits observed in selected crosses  

    GYP GYI LDS 

Entry SC SCA Obsv %effect SCA Obsv %Eff SCA Obsv %Eff 

5 1X6 -0.3 7.0 -4.4 2.3 10.1 29 0.1 2.8 4.2 

9 1X10 2.3 8.7 36.4 2.4 8.8 38.2 -0.1 2.6 -3.2 

18 2X9 1.5 7.4 25.6 1.9 8.1 30.7 -0.1 2.2 -5.9 

26 3X8 -0.4 4.6 -7.4 0.2 4.9 3.3 0 2.4 1.2 

31 4X5 -0.9 6.6 12.2 -1.0 6.4 -13.8 0.4 2.7 15.1 

47 6X8 1.7 7.8 28.7 0.3 6.7 4.4 0 3.0 0.9 

49 6X10 -0.8 5.7 -12.2 -1.7 5.0 -24.8 0.2 3.4 7.5 

51 6X12 -2.3 6.3 -26.8 -2.0 6.5 -23.5 0 3.2 -1.0 

53 7X9 -2.9 3.0 -48.9 -2.5 3.3 -43.2 0.3 3.1 11 

54 7X10 2.3 8.3 39.2 1.7 7.0 32.1 -0.3 2.8 -9.3 

58 8X10 -1.4 3.7 -26.8 -1.3 3.6 -26.9 0.1 3.0 1.7 

65 10X12 -2.5 5.1 -33.3 -1.7 5.4 -23.7 0.6 3.9 19.9 

66 11X12 -0.02 10.0 -0.5 -0.1 8.0 -1.5 0.1 3.4 2.9 

    MLI 

  

MuDkn 

 

Mwtls 

 Entry SC SCA Obsv %Eff SCA Obsv %Eff SCA Obsv %Eff 

5 1X6 -1.7 67.4 -2.5 3.1 29.1 11.8 -2.4 20.0 -11 

9 1X10 4.2 67.3 6.7 -15 22.5 -40 4.6 25.1 22.4 

18 2X9 -6.1 51.2 -10.6 6.5 64.0 11.3 -2.4 10.5 -18 

26 3X8 -4.7 51.5 -8.4 2.2 53.5 4.2 -1.3 12.9 -9.2 

31 4X5 3.4 68.2 5.3 -0.8 34.8 -2.2 0.4 18.8 2.2 

47 6X8 11.9 67.8 21.4 -13 38.9 -24.9 3.6 17.0 26.8 

49 6X10 -4.4 55.6 -7.3 0.2 47.2 0.4 -0.3 15.8 -2.0 

51 6X12 -4.5 62.7 -6.6 8.1 46.8 20.9 -1.8 15.9 -10.0 

53 7X9 -6.3 48.2 -11.6 0.2 56.6 0.3 0.1 13.9 0.9 

54 7X10 13.4 72.1 22.7 -26.0 23.6 -52.5 8.8 25.5 52.3 

58 8X10 2.8 52.7 5.7 -0.5 62.9 -0.7 1.8 13.3 15.7 

65 10X12 0.4 61.5 0.7 5.7 55.9 11.4 -0.1 15.7 -0.7 

66 11X12 -12 64.3 -16.9 5.5 41.0 15.3 -0.9 18.7 -4.3 

Data: GYP, grain yield protected; GYI, grain yield infested; LDS, leaf damage scores; CTL, cumulative tunnel 
length; MLI, live maize weevil insects; MuDkn, undamaged kernels after maize weevil infestation; Mwtls, weight 
loss due to maize weevil infestation; SC, single cross; SCA, specific combining ability; %Eff, percentage effect 
contributed to observed mean; Obsv, observed mean of trait. 

The single cross 7×10 gave highly significant SCA effects for Mwtls (8.76), MuDGN (-26.11), 

and MLI (13.35) effects. Other genotypes with significant SCA effects were; 1x10 having 

MuDGN (15.01), and Mwtls (4.60); cross between 6 and 8 also with, MuDGN (11.95), and 

Mwtls (12.92) (Table 4-8). Overall, SCA accounted for 22.9-27.5% of undamaged kernels, 

25.1- 28.9% weight loss, and 33.8-49.1% live insects (Table 4-8). 
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 Combined resistance for stem borers and maize weevil in hybrids  4.4.2

There was observed resistance to stem borers by crosses derived from stem borer resistant 

inbred lines, 1 to 5. Inbred lines parents 1, 2, 3 and 4, gave crosses with high resistance 

levels to stem borers (Table 4-9).  

Table 4-9:  Means of leaf damage scores for stem borers and undamaged grain for 
maize weevil 

Rank Ent SC LDS Entry SC MuDGn 

1 2 1×3 2.1 57 8×9 75.1 

2 12 2×3 2.2 61 9×10 64.4 

3 22 3×4 2.2 18 2×9 64 

4 35 4×9 2.2 58 8×10 62.9 

5 27 3×9 2.2 28 3×10 59.9 

6 18 2×9 2.2 62 9×11 57.1 

7 8 1×9 2.2 60 8×12 56.8 

8 7 1×8 2.3 53 7×9 56.6 

9 1 1×2 2.3 41 5×8 56.6 

10 3 1×4 2.3 65 10×12 55.9 

Mean 

  

2.7 

  

42.7 

Max 

  

3.9 (65) 

  

75.1 (57) 

Min 

  

2.1 (2) 

  

15.6 (4) 

SE     0.18     4.93 
†Ent, entry; LDS, leaf damage scores (scores 1 = clean, 9 = most susceptible); MuDgN, undamaged grain infested 
with maize weevil. 

However, among the best 10 crosses with high levels of stem borer resistance, five of them; 

SC 1×8, SC 1×9, SC 2×9, SC 3×9, and SC 4×9; had parents 8 and 9 which are storage pest 

resistant inbred lines (Table 4-9). Similarly the best 10 crosses with high levels of storage 

pest resistance where derived from storage pest resistance inbred lines 6 to 10 and 

demonstrated high resistance levels to S. zeamais. Four of these crosses; SC 7×9, SC 8×9, 

SC 8×10, and SC 9×10; were purely from storage pests resistant inbred lines 7, 8, 9 and 10. 

The other six had parents from the stem borer resistant inbred lines 2, 3 and 5. The neutral 

CIMMYT inbred lines 11 and 12 also combined well with storage pest resistance inbred lines 

and contributed to grain yield in three of these top ten hybrids with combined insect 

resistance (Table 4-9). 

Some hybrids demonstrated existence of combined stem borer and maize weevil resistance 

in the same genotypes. These hybrids are summarized in Table 4-10. 
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Table 4-10:  Single cross hybrids which exhibited combined resistance to stem 
borers, maize weevil and high grain yield 

Entry SC Gyp Gyi LDS MuDKN 

35 4×9 8.4 8.3 2.2 59.7 

41 5×8 5.9 8.2 2.4 56.5 

18 2×9 7.4 8.1 2.2 62.5 

27 3×9 6.5 6.3 2.2 66.4 

43 5×10 5.9 6.3 2.6 58.4 

34 4×8 6.8 6.2 2.4 60.3 

28 3×10 6.0 5.7 2.3 64.3 

17 2×8 6.1 5.6 2.7 63.2 

 Mean 6.6 6.8 2.4 61.4 

Best Check PH3253 7.1 6.0 3.2 16.5 

Grand mean Pop 6.7 6.5 2.7 42.9 

 LSD 0.6 0.6 0.1 1.9 

 CV 14.2 15.2 11.6 13.4 

 Max 10.5 (38) 10.1 (5) 3.9 (65) 69.5 (58) 

 
Min 3.0 (53) 3.3 (53) 2.1 (2) 49.8 (4) 

‡Data: Gyp/i, grain yield (t/ha) protected/infested; LDS, leaf damage score (1=clean, 9=dead heart); MuDKN, undamaged 
grain (%) under maize weevil infestation. Figure in parentheses are the respective entries. 

Entry 35, a cross between inbred lines 4 and 9, gave the highest yields both when protected 

(8.4 t/ha), and when infested (8.3 t/ha). It had a leaf damage score of 2.2, and 59.7% of 

undamaged grain after 90 days infestation with maize weevil (Table 4-10). Yields of the best 

check when protected were high (7.1 t/ha), when compared to the mean of hybrids with 

combined resistance which stood at 6.6 t/ha, as well as the mean of the population, 6.7 t/ha. 

However, insect resistance traits, leaf damage scores and undamaged kernels after 

infestation with C. partellus and S. zeamais were low at 3.2 and 16.6% respectively (Table 4-

10). 

 4.5 Discussion  

 Grain yield, stem borer and post-harvest resistance parameters 4.5.1

The significance of environments implies that each of the environments was unique and 

important for evaluating the test hybrids, which is in agreement with work done by (Beyene 

et al., 2012).  Significance of test genotypes (entry) suggests that these hybrids had variation 
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and each one was a unique genetic constitution, there existed variability within the test 

hybrids. 

The significant Environment by Entry (GXE), suggests that there was interaction between 

the genotypes and the environments. It also justifies evaluating the test hybrids across 

different environments so that unbiased estimates of phenotypic information can be 

obtained. Again this confirms the importance of multiple environments for evaluating 

genotypes particularly under infestation because each environment not only affects the 

genotypes, but also interferes with the bioassay insects in specific ways. This can be 

explored further to determine which environments can separate the test genotypes based on 

insect resistance traits of interest. Again this can be explored further to determine which 

genotypes are suited to which environment, although, data for yield stability across many 

environments would be more preferred for general adaptation rather than specific 

adaptability. This agrees with work done by  Machida et al. (2010), when investigating the 

combining ability of quality protein maize, and reported that some of the traits were highly 

influenced by environment, and to make selection based on few environments is important 

for release of maize varieties. 

Significant general combining ability and specific combining ability for grain yield (protected 

and infested), exit holes, leaf damage scores, oil, protein and starch all suggest that there 

were both additive and non-additive genes effects conditioning these traits. This partially 

agrees with findings by Dhliwayo et al. (2005), Beyene et al. (2011), and Derera et al. (2014) 

who reported additive effects for insects‟ resistance traits. However, in this study, non-

additive effects are reported to have played a major role in insect pests‟ resistance as well. 

Significant GCA for cumulative tunnel length suggests that the trait is mostly conditioned by 

additive effects, since SCA was not significant for these test hybrids. 

The presence of significant effects, for the post-harvest traits of undamaged kernel, live 

insects, and weight loss of the test genotypes is a confirmation of the variability existing in 

the genotypes. The significant GCA and SCA for all the traits except live insects of larger 

grain borer, further suggests that resistance to post-harvest insect pests is due to both 

additive and non-additive effects. This agrees with Derera et al. (2010), and Matewele 

(2014), that resistance to maize weevil was due to additive, non-additive effects. Dhliwayo et 

al. (2005), further reported that there are maternal and non-maternal effects influencing 

kernel qualities of a maize grain on response to maize weevil attack.  
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 Mean performance for yield and insect resistant parameters 4.5.2

The highest yielding entries for grain when protected and infested suggest that stem borer 

resistance can be obtained in maize hybrids without yield penalty.  This is because the 

differences between the two treatment means were not significant, and the overall means 

within the treatments was also not significant. These findings agree with work done by 

Beyene et al. (2011), where different inbred lines were combined and evaluated for 

resistance to stem borers.  

On the other hand, the most resistant hybrid for maize weevil and larger grain borer was not 

necessarily among the best yielding hybrids. This suggests that post-harvest insect 

resistance breeding may have yield penalties on the genotypes. This agrees with work done 

by Butrón et al. (2002), which reported yield penalties on selection for resistance to 

European corn borer, however, the present study identifies this penalty only in association 

with post-harvest insect pests resistance.  The different ranking of genotypes per trait is a 

confirmation of the variability within the test genotypes. The observed resistance to post 

harvest insects contributed by parent 8 and 9 is suggestive of the high frequency of good 

alleles which can be exploited for future insect resistance breeding.   

 General combining ability effects 4.5.3

The observed favourable positive effect for yield from parents 12, 11, 4, 6 and 1, can be 

deduced to indicate that the allele frequency for yield is high in these parents, irrespective of 

the treatment. Parent 12 exhibited dominance effects for yield when the observed yield 

exceeded the predicted. The same can be deduced of parents 1, 2, 3, and 4 which gave 

favourable negative effects for exit holes, cumulative tunnel length and leaf damage scores. 

These suggest that they have high frequency of stem borer resistance alleles.   

The overall effects due to general combining ability (GCA) and specific combining ability 

(SCA) were significant for all post-harvest resistance traits; live insects, undamaged kernel, 

and weight loss. This confirms that both additive and non-additive gene actions were 

responsible for resistance in the test genotypes. Storage pest resistance parents 8, 9 and 10 

had hybrids with high levels of S. zeamais resistance which means there contribution to 

storage pest resistance was favourable. The favourable negative effects contributed by the 

two inbred lines parents 8 and 9 for live insects and weight loss resistance traits and the 

favourable positive effects for undamaged kernels under infestation can therefore be 

deduced that they have high frequency of the favourable alleles for resistance to post-
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harvest insect pest. These parents can therefore be used for breeding for post-harvest insect 

pest resistance in a breeding program. 

 Specific combining ability effects 4.5.4

Non-additive gene action was observed for grain yield and other traits as noted in yield of 

cross, 7×10 when the observed yield was far much more than the predicted. This can be 

deduced to mean dominance or epistatic gene effects. Of great interest was the single cross 

11×12, which even when it had negative SCA effect, still gave far greater yield than 

expected (predicted) yield. Such observations can be attributed to non-additive gene action, 

and therefore can be exploited for yield gain as well as resistance parameter. Again from the 

findings of this research, SCA contributed to both yield and resistance traits, and it can be 

deduced that there are non-additive gene action conditioning these traits. This agrees with 

findings of Kim and Kossou (2003) who reported non-additive gene action for both grain 

yield and maize weevil resistance in maize germplasm. 

 Combined resistance for stem borer and maize weevil in hybrids 4.5.5

High resistance levels observed from SBR × SBR inbred lines 1, 2, 3 and 4, is an indication 

that there is synergy in terms of resistance with the respective inbred lines contributing 

favorable alleles for stem borer resistance in the hybrids. This confirms the already reported 

favorable GCA effects for stem borer resistant traits leaf damage scores, exit holes and 

cumulative tunnel length, already reported in this study. It is important to therefore note that 

additive gene action was responsible for stem borer resistance in these hybrids. Similarly 

hybrids derived from crosses of SPR × SPR inbred lines showed synergy in resistance to 

maize weevil. This confirms the findings of this study where GCA effects for resistance were 

favorable. The combination of good grain yield and high levels of resistance to C. partellus 

and S. zeamais is an indication that it is possible to develop hybrids with combined insect 

resistance to these pests.  

 4.6 Conclusion 

The findings of this research provide evidence from which the following deductions can be 

made: 
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1. Four C. partellus parents; 1, 2, 3 and 4, and three S. zeamais resistant inbreds lines 

parents 8, 9 and 10 were good combiners and can be good sources of resistance genes 

in breeding for combined resistance to field and storage pests in maize. 

2. Stem borer resistant hybrids did not show yield penalties, however, there were yield 

penalties‟ in the observed post-harvest resistance hybrids. 

3. Some single crosses exhibited high yields, stem borer resistance and maize weevil 

resistance. These are entry 35, SC 4X9; entry 18, SC 2X9; entry 34, SC 4x8; entry 27, 

SC 3x9; entry 17, SC 2x8. These hybrids had parents 2, 3, 4, 8 and 9.  

4. Resistance was conditioned mostly by both additive and no-additive gene action. 

5. Non-additive gene action can be exploited for hybrids that exhibited high performance 

exceeding the expected in insect resistance traits.  
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Chapter 5:  Genetic analysis of combined stem borer and 

storage insect pest resistance in maize hybrids 

Abstract 

Field pest stem borer, Chilo partellus Swinhoe is a major pest, and widely distributed in all 

maize producing ecologies of sub-Saharan Africa causing 12.9-17%. In storage, maize 

weevil, Sitophilus zeamais Motschulsky, causes estimated 15-30% maize yield losses in 

developing countries. Hybrids developed through host plant resistance have separate 

resistance to each of these insect pests and there is no record of hybrids with dual 

resistance to these pests. A study was carried out to determine the effects of combining 

resistance to the two pests using parental inbred lines with contrasting and varying levels of 

resistance to each of these insect pests. Twenty inbred lines were selected and organized 

into four sets of five (5) inbred lines each, based on resistance levels to C. partellus and S. 

zeamais. The lines were crossed in accordance with a North Carolina Design II, in eight 

sets. The resulting F1s were evaluated for yield in four (4) environments. The young 

seedlings were screened for resistance to C. partellus in the field, and the grain screened for 

S. zeamais resistance after harvest. There were highly significant (p≤ 0.001) mean squares 

for grain yield, leaf damage scores, grain weight loss and undamaged kernels. Both additive 

and non-additive gene action were responsible for combined resistance to both C. partellus 

and S. zeamais insect pests. The female parent 3 diplayed  favourable GCA effects for grain 

yield,  when protected and infested treatments, as well as positive and favourable effects for 

undamaged kernels, and for both leaf damage scores (-0.46) due to C. partellus infestation, 

and, weight loss due to S. zeamais. At least 8% of the hybrids were highly resistant to stem 

borer with a leaf damage score of 1.5-2.5; 42% of the test hybrids had a score of 3.0, and, 

49% were susceptible with leaf damage scores > 3. Heterosis for grain yield ranged from 26-

41% for the best five hybrids.  Heterosis for resistant parameters, leaf damage scores was -

22% to -17, and, for weight loss was -45 to -32%.  Some hybrids from different sets exhibited 

resistance to both C. partellus and S. zeamais and displayed grain yield levels above the 

mean of checks, and high levels of resistance for both insect pests. 

Key word: Combining ability, Heterosis, Insect pests, Maize, North Carolina II. 
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 5.1 Introduction 

Maize crop yields in sub-Saharan Africa remain low at 1.9 t/ha as compared to the potential 

yields of 9.5 t/ha realized in more developed countries (Bänziger et al., 2000; Araus et al., 

2008). Unfortunately smallholder farmers bear the brunt of these low yields because they 

have resource-constrained, and also depend largely on the crop for food (Mugo, 2005). The 

reasons for the low yields are partly due to poor agronomic practices, lack of use of certified 

seed (DeVries and Toenniessen, 2001), and losses due to insect pests both in the field and 

during storage (Appert and Deuse, 1982). Field pest stem borer, Chilo partellus Swinhoe 

(Lepidoptera: Pyralidae), is a major pest in maize production, which is widely distributed in 

all maize producing ecologies of sub-Saharan Africa (Guofa et al., 2001; Ong'amo et al., 

2006). In Kenya, it is found in the lowland tropics and mid-altitude agro-ecologies (Ong'amo 

et al., 2006). Due to climate change which has contributed to global warming, the spread of 

this pest is rapidly moving to the highland tropics (Guofa et al., 2001; Le Rü et al., 2006). 

Infestation by C. partellus starts after crop emergence all the way to the grain filling stage of 

the developing cob, and up to 100% infestation has been reported (Ebenebe et al., 2000; 

Mohamed et al., 2004). The feeding action of larvae causes damage to leaves, which 

reduces the photosynthetic area of the maize plant. The developing larvae tunnels within the 

maize stem, creating tunnels which affect the translocation of nutrients and water from the 

roots to the rest of the plant, and also interferes with the translocation of photosynthates 

from the leaves (Mohamed et al., 2004).  

The second generation of C. partellus feeds on the developing grains and this lowers the 

value of the grain, as well as opening entry points for secondary pathogens to infest the 

developing grain. Secondary effects of C. partellus infestation include increased stem 

lodging of maize plants, weak maize plants which are vulnerable to attack by disease 

causing pathogens, and increased mycotoxin infections on the young developing cob. 

DeGroote (2002), estimated yield losses of 13.5%, amounting to estimated $90M in Kenya 

due to this pest.    

On the other hand, the maize weevil, Sitophilus zeamais Motschulsky (Coleoptera: 

Curculionidae), is a major pest in maize storage. Maize grain losses due to this pest are 

estimated at 15-30% in developing countries (Derera et al., 2014). Infestation starts in the 

field especially on the open tipped varieties (Sallam, 2010).  The complex yield losses from 

stem borers in the field, to post-harvest losses by maize weevil in storage; is a major threat 

to food security in Africa. 



 

92 

 

Breeders, in an effort to address this challenge, have developed maize hybrids with separate 

resistance to each of these insect pests; stem borer resistant hybrids, and storage pests‟ 

resistant hybrids. There is, however, no record of hybrids with dual resistance to these pests. 

The objectives of the current research were therefore to:  

1. Combine stem borer and storage pests resistance in maize hybrids;  

2. Evaluate the performance of these hybrids under C. partellus infestation in the field;  

3. Screen for postharvest S. zeamais resistance of the hybrids after harvest; and  

4. Investigate the mode of gene action and heritability of the resistance traits in the 

hybrids 

 5.2 Materials and Methods 

 Germplasm 5.2.1

The parental inbred lines used in this study were obtained from International Maize and 

Wheat Improvement Centre (CIMMYT), Nairobi (Table 5-1). Beyene et al., (2011a), 

evaluated and reported the levels of resistance for stem borer field pest, while the maize 

weevil storage pest resistant inbred lines were evaluated and reported by Mwololo et al., 

(2012). The procedure used for stem borer and maize weevil resistance is as described in 

chapter four sections 4.2.4 and 4.2.6.  

Table 5-1:  Groups of inbred lines used for making sets in North Carolina II design 
and their insect pests’ resistance information 

  SBR 

Females 

SPR Males   SBR 

Females 

SPR Males 

Group 

1 

Cpr/Szs Cps/Szr Group 

2 

Cps/Szr Cpr/Szs 

1 CKSBL10039 CKSPL1001

3 

1 CKSBL10041 CKSPL10186 

2 CKSBL10014 CKSPL1009

0 

2 CKSBL10029 P100C6-200-1-1-B***-#-# 

3 CKSBL10027 CKSPL1008

9 

3 CKSBL10001 CKSPL10036 

4 CKSBL10025 CKSPL1011

1 

4 CKSBL10008 LPSC7-F180-3-1-1-1-BB-#-# 

5 CKSBL10004 CKSPL1034

3 

5 CKSBL10021 CML440 

6 CKSBL10040 CKSPL1008

8 

6 CKSBL10008 DTPWC9-F16-1-1-1-1-BB-#-

# 7 CKSBL10007 CKSPL1002

8 

7 CKSBL10020 CKSPL10230 

8 CKSBL10045 CKSPL1022

9 

8 CKSBL10001 CKSPL10003 

9 CKSBL10043 CKSPL1008

8 

9 CKSBL10028 CKSPL10113 

10 CKSBL10033 CKSPL1011

1 

10 CKSBL10023 CML159 
†Cpr/Szs, Chilo partellus resistant but Sitophilus zeamais susceptible; Cps/Szr, Chilo partellus susceptible but Sitophilus 
zeamais resistant; SBR, stem borer resistant; SPR, storage pest resistant; CKSBL, code for CIMMYT/KARI stem borer 
resistant lines; CKSPL, code for CIMMYT/KARI storage pest resistant lines. 
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A total of forty parents were obtained from two populations; twenty from stem borer resistant 

(SBR) population, and, twenty from storage pests‟ resistant (SPR) population. These parents 

had varying levels of resistance to C. partellus and S. zeamais insect pests.  These inbred 

lines were divided into groups of five parents based on resistance levels using the SBR lines 

as the female parents, and SPR lines as the males (Table 5-1).  

Two major groups of the lines were formed; group one had 10 SBR line with resistance to C. 

partellus but susceptible to S. zeamais used as females and 10 SPR lines susceptible to C. 

partellus, but resistant to S. zeamais. The lines had varying levels of resistance among 

themselves. Group two had 10 lines drawn from SBR population which were susceptible to 

C. partellus but resistant to S. zeamais, and, 10 lines drawn from SPR population which 

were resistant to C. partellus but susceptible to S. zeamais (Table 5-1). 

The resulting crosses had parents with resistance to C. partellus but susceptible to S. 

zeamais crossed with parents resistant to S. zeamais but susceptible to C. partellus, 

(Cpr/Szs × Cps/Szr), and the reverse ((Cps/Szr × Cpr/Szs), each with varying levels (dosage) 

of resistance. A total of 200 single crosses were expected (25 from each set). However, 

some of the crosses were unsuccessful leading to a total of 190 singles crosses (Appendix 

1, list of F1 entries per set). Five check hybrids were used alongside the test hybrids during 

across sites evaluation.  

 Experimental sites 5.2.2

The nurseries were planted at Kiboko (ENV 0), while the evaluation sites were at Kirinyaga, 

Embu and Kakamega sites during the 2013B and 2014A seasons. Season by site interaction 

was classified as one environment (Table 5-2). 

Table 5-2:  Experimental sites for nursery and evaluation of hybrids derived from 
North Carolina II design 

ENV Location 

Latutude 

(N/S)  

 Longitude 

(E) Soils 

Altitude 

(masl) Season 

RF 

(mm) 

Temp 

(oC). 

(oC) 
0 Kiboko 02o 15‟ S 037 o 75‟  Sandy-Loam 975 2013A 530 26 

1 Kirinyaga 00o 33.703‟ 

N 

037 o 19.346‟ 

E 

Andisols 1308 2013B 1250 25 

2 Kirinyaga 00o 33.678‟ 

N 

037 o 19.328‟ 

E 

Andisols 1305 2014A 1200 26 

3 Kakamega 02o 12.882‟ 

N 

37 o 43.534‟ 

E 

Clay-loam 1526 2013B 1900 23 

4 Kakamega 00o 16.872‟ 

N 

34 o 46.237‟ 

E 

Clay-loam  1521 2014A 1700  24  

 

†masl, meters above seas level; RF, rainfall, N/S, north or South, except where indicated; E, east. 
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 Design of the experiment  5.2.3

5.2.3.1 The nurseries 

Females were planted in four rows for every one row of males, but in a block of twenty rows 

per female parent. The respective males were planted in one row planting staggered three 

times in intervals of -5, 0, +5 days, corresponding to the female planting. These males were 

planted adjacent to each of the female twenty-row-block rows. The plots were five meter 

rows per entry with row to row distance of 75 cm and hill to hill distance of 25 cm. Two seeds 

were sown and later thinned to one plant per hill (CIMMYT, 1985). Different colour tags were 

used to label females and males. Chemical stem borer control was applied on seedlings at 

the 6-leaf, and, 10-leaf stages. Routine agronomic practices for weeding, fertilizer application 

and rogueing off-types were practiced to ensure clean, uniform and healthy plants. Shoots 

were covered as they emerged in all plants (CIMMYT, 1985).  

Pollen was harvested and bulked from at least four plants in the male rows.  As many 

females as possible were hand pollinated, to ensure large number for seeds for multi-

location field-testing. Harvested ears from each female were kept separate. The rotten ears 

were eliminated, and the seeds from each female were dried, shelled, weighed and 

protected with a suitable storage pesticide. The commonly used chemical for post-harvest 

insect pests of maize among the smallholder farmers in Kenya is Actellic Super, with 1.6 % 

Pirimiphosmethyl and 0.3 % Permethrin as active ingredients (Farrell and Schulten 2002).  

5.2.3.2 Evaluation of F1 crosses for resistance to stem borer and storage pests’ 

resistance 

The hybrids were evaluated in a 13x15 α-lattice design with three replications at Kirinyaga 

University College (KYUC), Embu and Kakamega sites in Kenya during the 2013B and 

2014A seasons. Planting, spacing, seeding rate, and thinning were carried out as described 

in section 5.2.3.1. Infestation was carried out as described in chapter four section 4.2.4 

(Artificial infestation using C. partellus neonates) (Tefera et al., 2011a). Routine agronomic 

practices of weeding, fertilizer application and rogueing off-types were practiced to ensure 

clean, uniform and healthy plants.  

 Data collection and analysis 5.2.4

Data on leaf damage was collected using a scale of 1-9, where 1 is clean and 9 is heavily 

damaged (dead hearts) (Tefera et al., 2011a). At harvest, grain yield, exit holes, cumulative 
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tunnel length data was collected. Data on oil, protein and starch content was collected using 

the grain analyser®. Grain yield was then adjusted to 12.5% moisture (Bänziger et al., 

2000), using the formula:  

Grain Yield (t/ha) = [Grain Weight (kg/plot) x 10 x (100-MC)/ (100-12.5)/(Plot Area)]………(5)  

Where MC = Grain Moisture Content.  

The harvested grain was then screened for post-harvest insects pests resistance as 

described in the previous chapter (Post-harvest insects‟ resistance screening and data 

collection) using the protocol described by Tefera et al., (2011a). 

Analysis of variance was done using PROC GLM of SAS, for all the traits (SAS, 2000). 

Yijkpq = µ+Sp + gi(Sp) + gj(Sp) + hij(Sp) + Eq + rk(SE)pq + (ES)pq + (Eg)iq(Sp) +(Eg)jq(Sp) + 

(Eh)ijq(Sp) + eijkpq……………………………………………………………………………............(6) 

Where i =1, 2, 3, 4, 5; j = 1, 2, 3, 4, 5; k = 1, 2, 3; p = 1, 2, 3, 4, 5, 6, 7, 8; q = 1, 2, 3, 4 and 

Yijkpq denotes the value of the hybrid of a mating of the ith female line, the jth male line, in the 

kth block, within set p and in the qth environment. The terms are defined as follows: 

µ = Grand mean, 

Sp =       the average effect of the pth set, 

gi(Sp)   = the GCA effect common to all hybrids of the ith female line nested within pth set, 

gj(Sp)  = the GCA effect common to all hybrids of the jth male line nested within pth set, 

hij(Sp)  = the SCA effect specific to hybrid of the ith female and jth male line nested within pth 

set, 

Eq           = average effect of qth environment, 

rk(SE)pq  = the effect of the kth replication nested within the pth set and qth environment 

(ES) pq  = the interaction between set effects and the environment 

(Eg)iq(Sp)  and  +(Eg)jq(Sp) = the interaction between environment and GCA nested within 

sets 

(Eh) ijq(Sp) = the interaction between environment and SCA nested within sets, and 
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eijkpq = the random experimental error. 

Using the variance ratios, heritability estimates were calculated in REML (Payne et al., 2011) 

as suggested by Hallauer et al. (2010) for the fully inbred parents (F = 1)  

(Where σ2
m = σ2

f = ½σ2A; and σ2
mf    = σ2D) using the formulae:  

 a) h2 = 2σ2
m/(σ2/r + σ2

mf + 2σ2
m) …………………………………………………………………(7) 

for one environment, and 

b) h2 =2σ2
m/( σ2/re + σ2

fme/e + 2σ2
me/e + σ2

mf + 2σ2
m)  .................................................(8)  

for across environments,  

Where σ2
m = male (set) variance, σ2 = random error variance; σ2

mf = male x female (set) 

variance; σ2
fme = environment x male x female (set) variance; σ2

me = environment x male 

(set) variance; r = number of replications and e = number of environments. σ2
f = female (set) 

variance; σ2
A = additive variance and σ2

D = dominance variance. 

 5.3 Results 

 Gene Action 5.3.1

Results of analysis of variance for grain yield (protected and infested), leaf damage scores 

and weight loss and undamaged kernels are presented in Table 5-3.  

Table 5-3:  Analysis of variance for grain yield, leaf damage scores, percent weight 
loss and grain damage 

Source   DF   Gyp (t/ha) Gyi (t/ha) LDS MWTLS M-uDgrn 

Set 7 25.3*** 34.2*** 9.5*** 1852.3*** 536.5*** 

ENV 3 1216.5*** 1534.6*** 16.7*** 17851.3*** 6514.2*** 

Rep(ENV) 8 25.4 36.2 11.1 269.6 2108.7 

Female(Set) 30 21.6*** 15.3*** 2.2*** 177.7*** 2108.7*** 

Male(set) 32 48.3*** 42.2*** 3.7*** 358.7*** 484.6*** 

Female*Male(Set) 115 3.2*** 4.0*** 1.1*** 73.3 ns 155.2*** 

Set*ENV 21 4.8*** 3.2* 4.4*** 100.2* 168.4* 

Female*ENV(set) 90 6.2*** 4.3*** 1.0* 97.5*** 142.6* 

Male*ENV(set) 96 5.5*** 4.7*** 1.9*** 102.0*** 154.9*** 

Female*Male*ENV(set) 345 2.7*** 2.5*** 0.9 ns 79.3*** 107.3 ns 
‡Data: Gyp/i, grain yield (t/ha), protected /infested; LDS, leaf damage scores; MWTLS, percent weight loss; M-GD, percent grain 
damage. ENV, environment; Rep, replication; DF, degrees of freedom. 
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Significant differences were observed for grain yield, leaf damage scores and undamaged 

kernels for test hybrids. The female (set) main effects for all traits were highly significant (p 

0.001), with undamaged kernels accounting for 69% of gross sum of squares. On the other 

hand, the male (set) main effects for grain yield; infested, protected; and, leaf damage 

scores accounted for 55%, 58%, and 37% of sum of squares, respectively. 

The sets, and, environment were all highly significant (p0.001) for grain yield and insect 

resistant parameters.  The sets x environment interactions, were also highly significant 

((p0.001), for grain yield (protected) and leaf damage scores; and significant (p0.05) for 

grain yield (infested), weight loss and undamaged grains (Table 5-3). 

The interaction of females and males within sets was highly significant (p0.001), except for 

weight loss due to maize weevil infestation, which was not significant. Similarly, the 

interaction of female by environment within sets, was highly significant (p0.001), except for 

leaf damage scores and undamaged kernels which were significant (p0.05). The male x 

environment (sets) were highly significant (p0.001), for grain yield (protected and infested) 

for all traits. Female x male x environments (sets) were highly significant for grain yield 

(protected and infested), and weight loss, but not significant for leaf damage scores and 

undamaged kernels. 

 Mean performance of eight sets 5.3.2

The mean performance of the eight sets was 5.0t/ha, when protected, and 4.7t/ha when 

infested. Differences were observed in performance of the sets depending on traits in 

consideration (Table 5-4). 

The highest grain yield of 5.5t/ha, and, 5.2t/ha were recorded in set 3, both when protected 

and infested respectively. Conversely, the lowest yields were recorded in set 1 (4.5 t/ha, 

and, 4.2t/ha), both when protected and infested respectively. Sets 1, 4 and 6 yielded lower; 

4.2-4.5 t/ha, 4.3-4.9t/ha, and 4.4-4.7t/ha; than the mean of all the sets, when protected as 

well as when infested (Table 5-4). 

Set 7 had the least difference in weight between protected and infested grain yield, while set 

4 had the highest difference in yield due to treatments (Table 5-4). The performance of best 

check for yield when protected was high, but this yield was heavily damaged by stem borer 

(score of 3.8), and also in storage with only 14.4% undamaged grain (Table 5-4). 
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Table 5-4:  Mean performance and ranks of eight sets for grain yield and insect 
pests resistance traits 

Set Gyp (t/ha) Gyi (t/ha) LDS MWTLS M-uDgrn 

1 4.5(8) 4.2(8) 3.2(7) 16.7(3) 58 (3) 

2 5.1(4) 4.8(5) 3.1(5) 18.7(5) 55.0 (8) 

3 5.5(1) 5.2(1) 2.9(3) 18.6(4) 57.4 (6) 

4 4.9(6) 4.3(7) 3.2(6) 20.6(7) 57.9 (4) 

5 5.2(3) 4.9(3) 3.0(4) 19.0(6) 57.5 (5) 

6 4.7(7) 4.4(6) 3.3(8) 22.8(8) 56.6 (7) 

7 5.1(5) 4.9(4) 2.9(2) 14.9(1) 58.6 (2) 

8 5.3(2) 5.0(2) 2.7(1) 15.7(2) 59.3 (1) 

Sets Mean 5.0 4.7 3.0 18.4 58 (3) 

PH3253 6.6 5.1 3.8 33.3 14.4 

Checks 5.9 5.0 3.3 25.8 26.7 

R2 0.8 0.8 0.49 0.6 0.5 

CV 27.9 28.7 29.7 43.3 24.3 

MSE 1.4 1.4 0.9 8.0 10.3 
‡Data: Gyp/Gyi, grain yield (t/ha), protected /infested; LDS, leaf damage scores; MWTLS, percent weight loss; M-
uDgrn, percent undamaged grain under maize weevil infestation. Figures in parentheses are the respective ranks 
for the trait. 

Storage pest resistance trait, weight loss, showed high differences across the eight sets. 

Sets 1, 7 and 8 had relatively high resistance to maize weevil, and registered the least 

weight loss of 14.9-16.7%. Resistance to both C. partellus and S. zeamais was observed in 

hybrids from set 8, 7, and 3 (Table 5-4). 

 General combining ability of parents  5.3.3

The general combining ability effects for both the female and female parents used in this 

study are recorded in Table 5-5.  

Female parent 3 had positive and favourable GCA effects for grain yield (0.95 and 0.70) 

when protected and infested treatments, as well as positive and favourable effects for 

undamaged kernels (1.66). The same parent 3 had favourable negative effects for leaf 

damage scores (-0.46) due to C. partellus infestation, and, negative and favourable effects 

for weight loss when infested with S. zeamais. Similar results were observed with the same 

parent when used in set 5, where favourable GCA effects were obtained for grain yield (0.69 

and 0.57), -0.28 for leaf damage scores, -3.77 for weight loss in maize weevil infestation, 

and, 1.94 for undamaged grain under maize weevil infestation (Table 5-5).  



 

99 

 

Table 5-5:  General combining ability of selected traits grain yield, leaf damage 
scores and weight loss from North Carolina II analysis 

Set Parent GYP GYI LDS Mwtls M-uDgrn 

1 3 0.95 0.70** -0.07 -0.46 1.66 

5 3 0.69 0.57** -0.28 -3.77** 1.94 

2 22 0.30 0.39** -0.12 -2.76** 4.14 

5 22 -0.33 -0.47 -0.104 -0.3 0.35 

7 12 1.37 0.85** 0.16 -1.238 -2.41 

5 1 -1.46 -1.23 0.27 2.35 -1.15 

2 6 -0.25 -0.094 -0.36 2.76 -0.59 

6 36 -2.38 -2.4 0.13 1.41 7.6** 

4 36 -2.51 -2.29 -0.04 2.2 7.05** 
†Data: GYP/I, grain yield protected/infested; LDS, leaf damage scores; Mwtls, weight loss due to maize weevil: Significance: *** 
means data is significant at p ≤ 0.001, *** data is significant at p ≤ 0.01, * data is significant at p ≤ 0.05. 

The male parent 22 exhibited favourable GCA for all the traits in consideration in set 2, 

however, when used with different females in set 5, the GCA effect for undamaged grains of   

0.35 was not favourable. Similar results were observed with parent 36 in sets 4 and 6, where 

negative GCA effects of -2.38 and -2.51 were observed (Table 5-5). 

The highest and positive favourable GCA for grain yield were observed in female parent 12 

(1.37 and 0.85) in set 7, while the lowest was in parent 1 (-1.46 and 1.23) for protected and 

infested respectively. Leaf damage scores highest negative GCA was contributed by parent 

6 (-0.36) in set 2, while parent 36 contributed the highest positive GCA effect (7.6 and 7.05) 

for undamaged kernels in sets 6 and 4 respectively (Table 5-5). 

Overall, favourable GCA obtained translated to yield gains of between 37% infested to 45% 

protected respectively, leaf damage scores (42%), and weight loss (45%) and, undamaged 

grain (53%) for the female parents. The male parents contributed favourable GCA for grain 

yield (53% and 55%) protected and infested respectively, 45% for leaf damage scores, 43% 

weight loss, and, 48% of undamaged kernels (Table 5-6). 
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Table 5-6:  Percentage heterosis for grain yield when protected and infested with 
Chilo partellus 

Best five hybrids for grain yield for protected and infested treatments 

Set Female Male gyp Set Female Male gyi 

1 3 25 40.7 4 17 40 37.4 

4 17 40 29.2 6 8 40 31.2 

4 19 40 28.3 1 3 25 28.0 

5 3 34 28.1 1 2 23 27.1 

1 2 23 26.5 4 19 40 25.9 

Worst five hybrids for grain yield 

Best five for leaf damage scores and grain weight loss 

Set Female Male LDS Set Female Male mwtls 

4 16 36 -22.0 7 11 22 -45.0 

3 14 33 -19.6 3 11 31 -43.6 

6 7 37 -17.6 5 3 33 -40.9 

7 14 23 -17.2 5 3 31 -40.8 

4 17 36 -17.1 7 12 23 -31.7 

Worst five hybrids for leaf damage scores and grain weight loss 

Set Female Male LDS Set Female Male mwtls 

8 16 28 15.4 5 5 32 25.2 

2 9 28 18.2 7 14 22 26.7 

4 20 36 19.5 7 15 22 27.9 

4 18 36 21.0 4 17 39 28.8 

3 11 31 21.9 8 17 26 33.4 

‡Data: Gyp/Gyi,),LDS, Mwtls;  % heterosis of grain yield (protected/infested), leaf 

damage scores, and grain weight loss.  

Set Female Male LDS Set Female Male Mwtls 

1 1 23 -45.1 4 16 36 -47.7 

6 7 36 -48.8 6 7 36 -47.7 

4 19 36 -48.8 1 2 24 -50.7 

4 20 36 -48.9 4 19 36 -61.1 

1 2 24 -49.3 6 6 36 -61.7 
‡Data: Gyp/Gyi), LDS, Mwtls; % heterosis of grain yield (protected/infested); LDS, leaf damage scores, and Mwtls, grain weight 
loss. 

 Hybrids resistance to insect pests 5.3.4

The mean leaf damage score across eight sets was 3.0. Four sets; 3, 5, 7, and 8 were 

resistant to stem borer, C. partellus, with leaf damage scores of 2.7 (set 8) to 3.0 (set 5). 

Lowest scores were registered in sets 1, 4, and 6 with means scores of 3.2 and 3.3.  

 

Figure 5-1:  Distribution of leaf damage scores due to stem borers and weight loss 
due to maize weevil infestation  
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In terms of individual hybrids, calculated 8.9% were highly resistant to stem borer with a leaf 

damage score of 1.5-2.5. There were 42% of the test hybrids with a score of 3.0, with the 

remaining 49% being susceptible with leaf damage scores greater 3. The minimum weight 

loss was 7.3%, while the maximum was 28.4%, with less than 5% of hybrids registering 

minimum weight loss and, only 4% of hybrids had more than 25% weight loss (Figure 5-1). 

 Performance of hybrids across different ecologies 5.3.5

The hybrids performed differently across the environments.  Environment 1 had the highest 

grain yield (6.7 t/ha and 7.0 t/ha) for protected and infested treatments. Conversely, 

environment 3 had the lowest grain yield (3.6 t/ha and 3.1 t/ha).  

In terms of insect pests‟ resistance, environment 2 had the lowest leaf damage scores of 2.0, 

and environment 4 had the highest scores of 3.5. More exit holes were observed in 

environment 1, followed by 3. Environment 2 had the least number of exit holes. The 

percentage of undamaged kernels ranged from 54% (ENV 4) to 61% (ENV 3) (Table 5-7). 

Similarly, inbred line male parents 34 and 40, had four out of ten best hybrids in grain yield 

even when infested, while the female parent inbred line 12 contributed genes for grain yield 

in two of the top ten hybrids in vigour and value for breeding. 

Table 5-7:  Mean performance of hybrids in four environments for grain yield and 
insect pests resistance traits 

ENV Gyp (t/ha) Gyi (t/ha) ExH LDS MuDKN Mwtls 

1 6.7 A 7.0 A 3.4 D 2.7 B 58.7 B 17.4 B 

2 4.0 C 4.1 C 0.2 A 2.0 A 55.4 C 25.5 D 

3 3.6 D 3.1 C 2.1 B 2.4 C 61.8 A 11.8 A 

4 5.8 B 4.8 B 0.7 C 3.5 D 54.1 D 19.1 C 

Mse 1.9 1.8 1.8 0.5 106.5 64.0 

LSD 1.12 0.16 0.16 0.58 8.3 0.93 

†Data: ENV, environment; Gyp/Gyi, grain yield (t/ha) protected/infested; ExH, exit holes (#); LDS, leaf damage scores (1=clean, 
9=dead hearts); MuDKN, undamaged grain under maize weevil infestation; Mwtls, weight loss under maize weevil infestation. 
†Means with the same letter are not significantly different. 

 Heterosis and the value for breeding for insect resistance 5.3.6

There was observed heterosis for grain yield, leaf damage scores, weevil weight loss, and, 

undamaged grains in the test hybrids (Table 5-7). Heterosis for grain yield when protected 
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ranged from 26-41% for the best five hybrids, when protected, and 26-37% when infested. 

The worst affected five hybrids displayed -45% to -61% reductions in grain yield. 

Heterosis for leaf damage scores for the best five hybrids was -22% to -17, while weight 

loss, registered -45 to -32%. Conversely, the worst five hybrids had a reduction of 15-22% 

increase in leaf damage scores, while weevil weight loss had an increase of 25-33% (Table 

5-7).  

The best performing hybrid, single cross 17x40, had percent heterosis of 29-37% when both 

protected and infested. The same hybrid had grain yields of 154% higher above the 

population mean. Other hybrids that had high heterosis and reasonable value for breeding 

are single cross 19x40, and single cross 3x25. Conversely there are some hybrids which 

performed badly with the worst single cross 6x6, yielding 24% grain yield below the 

population mean (Table 5.8). 

Table 5-8:  Grain yield advantage of best ten hybrids over and above the mean of 
population 

  Best ten hybrids for grain yield under insect infestation 

SET Female Male GYP GYI LDS MWTLS M-Udgrn 

4 17 40 153.1 154.6 113.8 123.3 112.3 

6 8 40 136.9 152 106.5 137.5 94.3 

3 12 34 147.2 145.8 100.8 106.2 92.6 

5 2 32 151 143.6 112.6 104.9 93 

3 12 32 150 143.3 113.2 134.5 96 

6 7 40 135.2 142 123.1 120.3 94.6 

4 19 40 157.3 141.3 113.2 121.6 101.3 

5 4 34 107.4 140.3 94.7 124.8 103.3 

3 14 34 135.1 137.4 87.1 124.7 97.2 

3 15 34 133.3 135.8 96 101.1 83.1 

  Worst five hybrids for gran yield under insect infestation 

6 7 36 37.4 37.9 127.2 130.2 114.7 

1 2 24 37.9 36.7 113.5 77.4 92.5 

4 16 36 50.8 34.9 73 105.9 137.8 

4 19 36 39.9 27.5 91.5 105.9 111 

6 6 36 53.5 24.4 119.6 145.5 127.8 

†Data: Gyp/Gyi, grain yield (t/ha) protected/infested; LDS, leaf damage scores (1=clean, 9=dead hearts); Mwtls, grain loss due 
to maize weevil infestation; MuDKN, undamaged grain under maize weevil infestation; Mwtls, weight loss under maize weevil 
infestation. 
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 5.4 Discussion 

 Gene Action 5.4.1

The presence of significant GCA and SCA for grain yield, leaf damage scores and 

undamaged kernels indicate that both additive and non-additive gene action are important 

for conditioning combined resistance to C. partellus and S. zeamais in maize hybrids. 

These findings can be used when making selections for breeding for insect resistance 

through recurrent selection and pedigree methods. The presence of non-additive gene 

action places emphasis on the need to consider dominance effects. Similar findings were 

reported by Butrón et al. (2009), while investigating genetic resistance to pink stem borer in 

maize.   

This research work further observed that up to 69% of gross sum of squares for undamaged 

kernels under maize weevil infestation were realized; an indication that it is possible to 

combine insect pest resistance through proper selection of resistant parents with the 

respective resistance levels. It was recorded that the female and male main effects for grain 

yield were significant and almost equivalent (55% and 58%). It can be concluded that there 

was a balanced contribution of both the male and female parent for insect resistance. This 

makes it complicated to deduce that additive gene action was more predominant over non-

additive as earlier studies suggested (Menkir and Ayodele, 2005). The results agree also 

with work done by Derera (2005) when breeding for yield potential, stress tolerance and 

yield stability in maize. Similar findings were reported by Dari et al. (2010), when 

investigating resistance of early generation maize inbred lines and their hybrids, that both 

additive and non-additive gene actions were responsible for weevil resistance.  

A slight drop in male main effects GCA for leaf damage score (37%) may be attributed to the 

fact that the male parents were selected from the storage insect pest resistance population 

with predetermined levels of resistance to both C. partellus and S. zeamais insect pests.  

The significance of sets in this study showed the role each combination had in resistance 

breeding. Sets 3, 7 and 8; which showed good combination of resistance genes as well as 

grain yield both protected and infested; had parents with contrast; susceptible to C. partellus, 

but resistant to S. zeamais. These parents may have had combination of complementary 

genes for resistance as well as grain yield.  
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Similarly, Matewele (2014) found that parents obtained for resistance to maize weevil and 

larger grain borer produced F1 which had varying levels of resistance to one of either pest, 

and, some with resistance to both pests. This can be further explored through molecular 

work to identify the right parents with these genes for future breeding. Conclusions can be 

made that both additive and dominant gene action have a major role to play in insect 

resistance breeding. Breeding for insect resistance and yield can be achieved in the same 

hybrid, with the right parents, the correct selection procedure, and, the right model. 

 Mean performance of eight sets 5.4.2

Set 1 F1 hybrids produced the lowest grain yield when under protected and infested 

treatment. The female parents from SBR had C. partellus resistance but S. zeamais 

Susceptible, while the male parents from SPR population had C. partellus susceptible but S. 

zeamais resistance. The challenge of high resistance to the insect pests but low yields 

observed in set 1 could mean that there is presence of tightly linked genes for insect 

resistance with undesired low yields.  

Parental combination for set 7 gave the most resistant to both C. partellus and S. zeamais 

F1 hybrids. Ironically, the parents, though drawn from different populations; females from 

SBR and males from SPR; had similar attributes in terms of resistance, with both being 

susceptible to C. partellus, but resistant to S. zeamais. The F1s from this set showed higher 

yields and combined resistance to the two pests. This can be explained as having some 

linkage disequilibrium for C. partellus resistance, which breaks when crossed, and the 

resistance expressed in the F1 progeny. This also explains the importance of screening 

maize germplasm for resistance to other biotic stresses even when they have not been 

developed for resistance to the particular stress. The SPR population was screened for C. 

partellus and the SBR population screened for S. zeamais resistance. This is useful for 

sourcing for resistance genes to insect pests. The findings agree with work done by 

Matewele (2014) and Mwololo et al. (2012) that there are available sources of maize weevil 

resistance. These resistance sources can be explored for combined resistance. Other 

researchers; (Butrón et al., 2004; Tefera et al., 2011b; Beyene et al., 2011b); reported 

resistance to each of the pests in hybrids without compromising yield.  

 General combining ability 5.4.3

Female parent 3, showed favourable GCA effects for grain yield, undamaged kernels, leaf 

damage scores, and, weight loss, in sets 1 and 5.  Similarly, male parent 22 had favourable 
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GCA effects for set 2. This suggests that these parents have good alleles for insect pests‟ 

resistance and can be used for breeding for combined resistance to these two pests. Male 

parents 22 and 38 however shared favourable GCA for all traits except for undamaged 

kernels. The results can be deduced to mean that a good donor of favourable alleles for 

undamaged kernels can be used in combination with these parents for breeding.  

The high GCA for grain yield observed in female parent 12 can be exploited for yield in 

combination with other lines that can contribute resistance genes in hybrids. Similarly, 

parents 6, 31, 33, 36, and 38 displayed favourable GCA for other traits; leaf damage scores, 

weight loss and undamaged kernels, suggesting that they can be exploited as good sources 

of resistance alleles in breeding. Other lines had combination of favourable alleles for some 

traits and unfavourable for others; which can be exploited with the right combination in 

hybrids. 

 Hybrids resistance to insect pests 5.4.4

Variation among test hybrids existed. This is evidenced by the observed differences in 

genotypes to infestation by C. partellus and S. zeamais, an indication that the hybrids were 

diverse in terms of response to infestation. These differences were registered as levels of 

leaf damage scores, percentage of weight loss and percentage of undamaged grain after 

infestation. Use of such parameters as measures of resistance has been documented 

previously when screening maize germplasm for resistance to insect pests (Beyene et al., 

2011b; Mwololo et al., 2012; Derera et al., 2014; Matewele, 2014). Leaf damage scores 

have been tested and validated as a measure of resistance and susceptibility to stem borers 

in Kenya (Tefera et al., 2011a).  

Tefera et al. (2011b) reported that resistant maize varieties had less leaf damage score as 

compared to susceptible varieties. Using this parameter as a determinant of C. partellus 

resistance, the test hybrids in this study possessed reasonable resistance as indicated in the 

results where 8.9% were highly resistant, 41.6% resistant, 38.4% moderately resistant, and, 

11% susceptible. The resistance distribution in the population followed the normal 

distribution curve; an indication that the genetic variation existed among the test hybrids 

(Kim and Kossou, 2003). 

Similarly, weight loss and grain damage have been used in previous studies involving 

breeding for post-harvest resistance in maize. The varieties with resistance to S. zeamais 

had low weight loss compared to susceptible maize varieties (Abebe et al., 2009; Derera et 
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al., 2010; Mwololo et al., 2012). Grouping of the test hybrids into resistance groups also 

revealed that maize weevil resistance was normally distributed.   

The parameters have, therefore, been found to discriminate and separate genotypes into 

resistant and susceptible groupings based on levels of damage and weight loss. A more 

recent study by Matewele (2014), showed that percentage of grain weight loss was a 

conservative indicator of resistance in maize varieties. It is this indicator that is preferred for 

the current study so that it can discretely discriminate hybrids that are truly resistant to S. 

zeamais from those that are susceptible.  

In the current study, combination of high yields when infested with low leaf damage scores, 

low weight loss due to weevil infestation and high percentage of undamaged grains suggests 

that the hybrids in sets 3, 7 and 8, had combined resistance to C. partellus and S. zeamais 

insect pests. The best check performance when protected and the drop in yield when 

infested emphasises the importance of incorporating insect resistance in breeding programs. 

Further, at storage the minimum undamaged grain percentage is an indication that yield loss 

at storage is of great economic importance.  

The findings of this study show also that breeders can select for combined resistance from 

within their breeding program and enhance the resistance of insects in the existing 

germplasm. It can therefore be concluded that favourable alleles of combined resistance to 

C. partellus and S. zeamais can be fixed through selection. 

 Performance of hybrids across different ecologies 5.4.5

The hybrids‟ differential performance across the environments for grain yield and insect pest 

resistance parameters was observed. This is evidenced by analysis of variance which 

revealed significant differences through Set*ENV, Female*ENV(set), Male*ENV(set), 

Female*Male*ENV(set). Lack of significance for leaf damage scores and undamaged grain 

for Female*Male*ENV(set), can be attributed to the consistent and uniform artificial 

infestation both in the field as well as in controlled laboratory screening. This is important for 

this study because it shows that any differences in performance in terms of leaf damage 

scores and undamaged grain were due to genotypic variation rather than environmental 

influence. However, in terms of grain yield and weight loss, there was observed significant 

differences in the test hybrids.   

Consistency in ranking grain yield both infested and protected, where environment 1 had the 

highest grain yield and  environment 3 had the lowest grain yield could be an indication that 
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these hybrids are more suited to environment 1.  Although environment 2 had the lowest leaf 

damage scores, and environment 4 had the highest scores, analysis of variance revealed no 

significance differences for LDS and undamaged kernels. This suggests that resistance 

parameters can be considered for the whole population rather than per environment basis 

for this study. Further, field infestation can be done at selected sites to save on costs, and 

use the other sites to evaluate for genotype stability. This agrees with studies by (Derera, 

2005), when working on breeding for resistance to grey leaf spot, where he reported that 

maize screening for biotic stress can be done in an established nursery with high disease 

pressure to save on resources.  

In other studies, Matewele (2014) reported that correlation between grain yield and 

resistance to maize weevil was not significant. Hence resistance to maize weevil can be 

advanced without affecting grain yield. The correlations between yield and resistance 

parameters for both maize weevil and larger grain borer were not significant. This means 

that selection for resistance can be done without significantly affecting yield. 

 Heterosis and value for breeding 5.4.6

High percentage values for increased vigour in test hybrids are an indication of progress in 

insect pest resistance. The high reduction in leaf damage indicates good resistance genes 

combination. It is not without a challenge though, because some of the test hybrids 

demonstrated increase in leaf damage scores as well as reduced grain yield. This is an 

indication of the variation existing in the test hybrids from which breeders can select what is 

desirable and discard what is not favourable. This confirms Mwololo et al. (2012) findings 

that there are good sources of resistance to both maize weevil and stem borers in Kenya. 

Using these sources, some hybrids, for example, single cross 17x40 and 19x40 had good 

heterosis and performed well above population mean. It can be deduced that inbred line 40 

had favourable genes for grain yield, even when infested. The hybrids can be said to be 

tolerant because despite the moderate levels of resistance observed, they yielded well.  

These hybrids can be recommended for release in mid-altitude areas. 

 5.5 Conclusion 

The results obtained demonstrated that there is genetic variability for insect resistance and 

yield in the test hybrids. Furthermore, the study demonstrated that resistance to C. partellus 

and S. zeamais can be combined in a single maize hybrid. The findings of this research 

therefore lead to the following conclusions: 



 

108 

 

1. Combined C. partellus and S. zeamais resistance can be achieved with proper 

selection of parents which combine well in hybrid combination. 

2. The results of field evaluation demonstrated that resistance alleles for C. partellus 

and S. zeamais followed the Mendelian law of independent assortment. This is 

because some the hybrids were susceptible to the insect pest although the parents 

had known levels of resistance to the pest. 

3. Hybrids from sets 3, 7 and 8 demonstrated combined resistance to C. partellus and 

S. zeamais with high grain yield both when infested and protected, and good levels of 

resistance to the two pest. This shows that combined resistance can be achieved.  

4.  Significant gain in breeding was achieved for selected hybrids for increased grain 

yield and reduced leaf damage scores as evidenced in high heterosis and 

percentage gain above mean of population.  

5. Both additive and dominant gene action played a major role in conferring C. partellus 

and S. zeamais resistance in the current study, and therefore breeding for insect 

resistance and yield can be achieved in the same hybrid. 

Considering the outcome of the results, the following recommendations can be made:  

1. Presence of tolerance type of resistance in some hybrids is an indication that there is 

need to incorporate molecular marker for identifying the correct germplasm for insect 

resistance development.  

2. Use the SPR inbred lines as the females and the SBR inbred lines as the males and 

screen for insect resistance to determine whether there could be variation in 

resistance levels and maternal effects. 
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Chapter 6: Research Overview 

Introduction 

The current study focused on “combining stem borer and storage insect pest resistance in 

early maturing maize germplasm”. This was accomplished through various chapters, of 

which each was addressing an objective. Summary of the main objectives, the findings, and 

breeding implications, and, recommendations are outline in this overview. 

Four research questions needed to be answered by the findings of this research, which are:  

a) Insect resistance is a polygenic trait, which is highly influenced by the environment. Is 

there wide enough genetic base on the selected maize germplasm for resistance 

breeding in early maturing maize? 

b)  Can resistance to the field pests stem borer, Chilo partellus, and storage pests 

maize weevil Sitophilus zeamais, and Prostephanus truncatus, be combined in the 

same hybrids through direct hybrids development using inbred lines parents which 

have separate resistances to each pest without compromising grain yield? 

c) Can combined resistance to Chilo partellus and Sitophilus zeamais, be achieved 

when the parent inbred lines have contrast and varying “dosage” or levels of 

resistance to each of these pests? 

d) What gene action favours combined stem borer and storage pests‟ resistance?  

 6.1 Findings of the study and their implications 

 Genetic diversity studies using 30 SSR markers for S4 stem borer and 6.1.1

storage insect pest resistant populations 

Genetic diversity analysis revealed that the selected S4 maize germplasm for stem borers 

and storage pests were diverse and had a wide genetic base. A total of 3859 data points 

were achieved out of the expected 3900 data points giving an overall success rate of 

98.95%, from the analyzed marker data. 

The shortest product size in both SBR and SPR population was observed in locus umc2250 

with 47 base pairs (bp), while the longest for SBR was observed in locus phi062 with 362 bp, 
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and, the longest for  SPR was observed  in locusPhi227562 with 320 bp. The highest 

difference in variation from the same locus was 212 bp, observed in phi072.  

Diversity analysis revealed a total of 109 and 103 alleles from SBR and SPR populations 

respectively. The number of polymorphic alleles scored ranged from 2 to 6 per loci, with a 

mean of 3.63 alleles for SBR and 1 to 6 alleles per loci, with a mean of 3.43 alleles, for SPR. 

Observed uHe indicated gene diversity of 0.06-0.82 in both SBR and SPR populations, with 

means of 0.48and 0.45 respectively. Observed mean PIC values were 0.45-0.46, with over 

50 of the loci having PIC greater than 0.5. 

Cluster analysis revealed three major clusters for each of the population with observed 6 and 

8 major sub-clusters for SPR and SBR populations respectively. 

 Estimating combined insect pest resistance for Chilo partellus and 6.1.2

Sitophilus zeamais in maize hybrids 

Diallel analysis of combined SBR and SPR inbred lines revealed that it is possible to 

combine the two types of insect pests‟ resistance in hybrids. Grain yields for stem borer 

resistant hybrids were comparable, or even better than the checks. However, the hybrids 

which exhibited storage pest resistance were not necessarily high yielding.  Some hybrids 

however had combined resistance to the two pests without compromising yield. This was 

evidenced by some select entries which were high yielding both when protected and also 

infested, a good example is the single cross, SC 4X9, entry 35. This entry gave high yields 

both when protected (8.4t/ha) and when infested (8.3 t/ha). It had a leaf damage score of 

2.2, cumulative tunnel length of 4.1, exit holes count of 1, and maize weevil - larger grain 

borer weight loss, of 15 - 49.1%. 

Inbred line parents with favourable alleles for grain yield, resistance were identified. These 

are 12, 11, 4, 6, and 1, which had positive and favourable effects (1.47, 0.72, 0.95, 0.38, and 

0.19) for grain yield respectively, when protected, with parents 4, 11, and 12 being highly 

significant (p ≤ 0.001) and also  when infested.   Other inbred line parents; 1,2,3,4 and 5; 

were identified with favourable alleles for stem borer resistance, while inbred lines parents 8 

and 9 gave favourable allele contributions for storage pests‟ resistance. 

The SBRxSPR hybrids combination showed higher grain yield above mean of checks had 

modest leaf damage scores as well as modest grain damage. Heterosis was also observed 

since this combination yielded better than the SPRXSPR, SBRXSR, and internal checks. 
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Significant general combining ability and specific combining ability for grain yield (protected 

and infested), exit holes and leaf damage scores, as well as, significant effects, for the post-

harvest traits of undamaged kernel, live insects, and weight loss, were observed on the test 

genotypes. This was suggestive that there were both additive and non-additive genes effects 

conditioning these traits. While other researcher had placed a lot of emphasis on additive 

effects, in this study, non-additive effects are reported to have played a major role in insect 

pests‟ resistance as well. The findings were in agreement with reported studies by other 

scientist working on insect pests host plant resistance (Kumar, 1997; Dhliwayo et al., 2005; 

Dari et al., 2010; Derera et al., 2014). 

 Genetic analysis of combined stem borer and storage insect pest 6.1.3

resistance in maize hybrids 

This study involved 20 parental inbred lines organized into groups of five parents each and 

eight sets to investigate whether resistance to Chilo partellus and Sitophilus zeamais can be 

achieved when the parents have contrast resistance to each pest and at different levels. 

The results revealed that there were differences in performance of the sets depending with 

traits in consideration. Set three (3), gave more favorable grain yield and resistance to both 

stem borers and storage pests respectively, with the highest grain yield of 5.5t/ha, and, 

5.2t/ha, both when protected and infested respectively. Grain yield mean performance of the 

eight sets was 5.0t/ha, when protected, and 4.7t/ha when infested.  

There was observed heterosis for grain yield; when protected ranged from 26-41% for the 

best five hybrids, and 26-37% when infested. Also heterosis for leaf damage scores, for the 

best five hybrids was -22% to -17%. Post-harvest resistance traits, weevil weight loss, 

registered -45% to -32%. The best performing hybrid, single cross 17x40, had percent 

heterosis of 29-37% both when protected and infested. The same hybrid had grain yields of 

154% higher above the population mean. Other hybrids that had high heterosis and 

reasonable value for breeding are single cross 19x40, and single cross 3x25. The presence 

of significant GCA and SCA for grain yield, leaf damage scores and undamaged kernels 

indicate that both additive and non-additive gene action are important for conditioning 

combined resistance to C. partellus and S. zeamais in maize hybrids. The presence of non-

additive gene action places emphasis on the need to consider dominance effects brought 

about by presence of either epistasis, pleiotropic genes, or, genotype by environment 

interactions. The validity of these results is confirmed by other researchers who observed 

similar findings (Butrón et al., 2009), while investigating genetic resistance to pink stem borer 

in maize.   
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The findings of this study also show that breeders can select for combined resistance from 

within their breeding program and enhance the resistance of insects in the existing 

germplasm. It can therefore be concluded that favourable alleles of combined resistance to 

C. partellus and S. zeamais can be fixed through selection. 

 6.2 General conclusions and recommendations 

The findings of this research have demonstrated that: 

1. There was gene diversity in the identified maize germplasm for use in insect 

resistance breeding program jointly developed by Kenya Agricultural and Livestock 

Research Organization (KALRO), and the International Maize and Wheat 

Improvement Center (CIMMYT).  

2. It is possible to combine stem borer and storage insect pest resistance into hybrids. 

However, there is need to identify sources of resistance to storage pests which 

have favourable alleles for high grain yield.  

3. Some of the germplasm with susceptible alleles for one pest can contribute 

favourable alleles for resistance to another pest in hybrid combination.  

4. The findings of this research are important because they will act as baseline studies 

for future research when breeding for combined insect pest resistance in maize. 
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Appendix  

Appendix 3.1:  List of stem borer resistant S4 lines and their respective pedigrees and origins 

 

Stem Borer Resistant population 

Entry Stock ID Pedigree Origin Entry Stock ID Pedigree Origin 

1 SM-405-1 (CKSBL10001/KCB)-1-B-1 IR-KIB-11B-12-1-1 34 SM-405-400 (CKSBL10001/KCB)-41-B-1 IR-KIB-11B-12-41-1 
2 SM-405-13 (CKSBL10001/KCB)-2-B-1 IR-KIB-11B-12-2-1 35 SM-405-411 (CKSBL10001/KCB)-42-B-1 IR-KIB-11B-12-42-1 
3 SM-405-22 (CKSBL10001/KCB)-3-B-1 IR-KIB-11B-12-3-1 36 SM-405-421 (CKSBL10001/KCB)-43-B-1 IR-KIB-11B-12-43-1 
4 SM-405-27 (CKSBL10001/KCB)-4-B-1 IR-KIB-11B-12-4-1 37 SM-405-437 (CKSBL10001/KCB)-45-B-4 IR-KIB-11B-12-45-4 
5 SM-405-36 (CKSBL10001/KCB)-5-B-2 IR-KIB-11B-12-5-2 38 SM-405-443 (CKSBL10001/KCB)-46-B-1 IR-KIB-11B-12-46-1 
6 SM-405-56 (CKSBL10001/KCB)-12-B-1 IR-KIB-11B-12-12-1 39 SM-405-457 (CKSBL10001/KCB)-48-B-3 IR-KIB-11B-12-48-3 
7 SM-405-63 (CKSBL10001/KCB)-13-B-1 IR-KIB-11B-12-13-1 40 SM-405-469 (CKSBL10001/KCB)-49-B-1 IR-KIB-11B-12-49-1 
8 SM-405-80 (CKSBL10001/KCB)-15-B-1 IR-KIB-11B-12-15-1 41 SM-405-478 (CKSBL10001/KCB)-50-B-1 IR-KIB-11B-12-50-1 
9 SM-405-93 (CKSBL10001/KCB)-16-B-1 IR-KIB-11B-12-16-1 42 SM-405-489 (CKSBL10001/KCB)-51-B-1 IR-KIB-11B-12-51-1 

10 SM-405-111 (CKSBL10001/KCB)-17-B-1 IR-KIB-11B-12-17-1 43 SM-405-501 (CKSBL10001/KCB)-52-B-1 IR-KIB-11B-12-52-1 
11 SM-405-127 (CKSBL10001/KCB)-18-B-1 IR-KIB-11B-12-18-1 44 SM-405-518 (CKSBL10002/KCB)-1-B-1 IR-KIB-11B-12-53-1 
12 SM-405-136 (CKSBL10001/KCB)-19-B-1 IR-KIB-11B-12-19-1 45 SM-405-532 (CKSBL10002/KCB)-2-B-1 IR-KIB-11B-12-54-1 
13 SM-405-149 (CKSBL10001/KCB)-20-B-1 IR-KIB-11B-12-20-1 46 SM-405-547 (CKSBL10002/KCB)-3-B-1 IR-KIB-11B-12-55-1 
14 SM-405-162 (CKSBL10001/KCB)-21-B-1 IR-KIB-11B-12-21-1 47 SM-405-552 (CKSBL10002/KCB)-4-B-1 IR-KIB-11B-12-56-1 
15 SM-405-170 (CKSBL10001/KCB)-22-B-1 IR-KIB-11B-12-22-1 48 SM-405-558 (CKSBL10002/KCB)-5-B-1 IR-KIB-11B-12-57-1 
16 SM-405-181 (CKSBL10001/KCB)-23-B-1 IR-KIB-11B-12-23-1 49 SM-405-563 (CKSBL10002/KCB)-6-B-1 IR-KIB-11B-12-58-1 
17 SM-405-189 (CKSBL10001/KCB)-24-B-1 IR-KIB-11B-12-24-1 50 SM-405-564 (CKSBL10002/KCB)-7-B-1 IR-KIB-11B-12-59-1 
18 SM-405-202 (CKSBL10001/KCB)-25-B-1 IR-KIB-11B-12-25-1 51 SM-405-568 (CKSBL10002/KCB)-8-B-1 IR-KIB-11B-12-60-1 
19 SM-405-209 (CKSBL10001/KCB)-26-B-1 IR-KIB-11B-12-26-1 52 SM-405-577 (CKSBL10002/KCB)-9-B-1 IR-KIB-11B-12-61-1 
20 SM-405-219 (CKSBL10001/KCB)-27-B-1 IR-KIB-11B-12-27-1 53 SM-405-592 (CKSBL10002/KCB)-10-B-1 IR-KIB-11B-12-62-1 
21 SM-405-227 (CKSBL10001/KCB)-28-B-1 IR-KIB-11B-12-28-1 54 SM-405-598 (CKSBL10002/KCB)-11-B-1 IR-KIB-11B-12-63-1 
22 SM-405-245 (CKSBL10001/KCB)-29-B-1 IR-KIB-11B-12-29-1 55 SM-405-608 (CKSBL10002/KCB)-12-B-1 IR-KIB-11B-12-64-1 
23 SM-405-262 (CKSBL10001/KCB)-30-B-1 IR-KIB-11B-12-30-1 56 SM-405-614 (CKSBL10002/KCB)-13-B-1 IR-KIB-11B-12-65-1 
24 SM-405-269 (CKSBL10001/KCB)-31-B-1 IR-KIB-11B-12-31-1 57 SM-405-618 (CKSBL10002/KCB)-14-B-1 IR-KIB-11B-12-66-1 
25 SM-405-275 (CKSBL10001/KCB)-32-B-1 IR-KIB-11B-12-32-1 58 SM-405-621 (CKSBL10002/KCB)-16-B-1 IR-KIB-11B-12-68-1 
26 SM-405-288 (CKSBL10001/KCB)-33-B-1 IR-KIB-11B-12-33-1 59 SM-405-623 (CKSBL10002/KCB)-17-B-1 IR-KIB-11B-12-69-1 
27 SM-405-305 (CKSBL10001/KCB)-34-B-1 IR-KIB-11B-12-34-1 60 SM-405-629 (CKSBL10003/KCB)-1-B-1 IR-KIB-11B-12-70-1 
28 SM-405-323 (CKSBL10001/KCB)-35-B-1 IR-KIB-11B-12-35-1 61 SM-405-641 (CKSBL10003/KCB)-2-B-1 IR-KIB-11B-12-71-1 
29 SM-405-334 (CKSBL10001/KCB)-36-B-3 IR-KIB-11B-12-36-3 62 SM-405-649 (CKSBL10003/KCB)-3-B-1 IR-KIB-11B-12-72-1 
30 SM-405-341 (CKSBL10001/KCB)-37-B-1 IR-KIB-11B-12-37-1 63 SM-405-655 (CKSBL10003/KCB)-4-B-1 IR-KIB-11B-12-73-1 
31 SM-405-351 (CKSBL10001/KCB)-38-B-1 IR-KIB-11B-12-38-1 64 SM-405-663 (CKSBL10003/KCB)-5-B-1 IR-KIB-11B-12-74-1 
32 SM-405-367 (CKSBL10001/KCB)-39-B-1 IR-KIB-11B-12-39-1 65 SM-405-671 (CKSBL10003/KCB)-6-B-1 IR-KIB-11B-12-75-1 
33 SM-405-386 (CKSBL10001/KCB)-40-B-1 IR-KIB-11B-12-40-1         
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Appendix 3.2:  List of germplasm constituting storage insect pest resistant S4 and their respective origin and pedigrees 

 

 

Storage pests resistant population 

Entry Stock ID Pedigree Origin Entry Stock ID Pedigree Origin 

1 SM-406-3 (CKSPL10001/KCB)-1-B-3 IR-KIB-11B-13-1-3 34 SM-406-636 (CKSPL10005/KCB)-9-B-3 IR-KIB-11B-13-70-3 

2 SM-406-12 (CKSPL10001/KCB)-2-B-1 IR-KIB-11B-13-2-1 35 SM-406-650 (CKSPL10005/KCB)-10-B-1 IR-KIB-11B-13-71-1 

3 SM-406-1215 (CKSPL10006/KCB)-9-B-2 IR-KIB-11B-13-120-2 36 SM-406-667 (CKSPL10005/KCB)-11-B-1 IR-KIB-11B-13-72-1 

4 SM-406-41 (CKSPL10001/KCB)-6-B-1 IR-KIB-11B-13-5-1 37 SM-406-680 (CKSPL10005/KCB)-12-B-1 IR-KIB-11B-13-73-1 

5 SM-406-56 (CKSPL10001/KCB)-8-B-1 IR-KIB-11B-13-6-1 38 SM-406-691 (CKSPL10005/KCB)-13-B-3 IR-KIB-11B-13-74-3 

6 SM-406-87 (CKSPL10001/KCB)-12-B-1 IR-KIB-11B-13-9-1 39 SM-406-707 (CKSPL10005/KCB)-14-B-1 IR-KIB-11B-13-75-1 

7 SM-406-109 (CKSPL10001/KCB)-19-B-1 IR-KIB-11B-13-11-1 40 SM-406-728 (CKSPL10005/KCB)-16-B-2 IR-KIB-11B-13-77-2 

8 SM-406-128 (CKSPL10001/KCB)-21-B-1 IR-KIB-11B-13-13-1 41 SM-406-752 (CKSPL10005/KCB)-19-B-2 IR-KIB-11B-13-79-2 

9 SM-406-155 (CKSPL10001/KCB)-23-B-1 IR-KIB-11B-13-15-1 42 SM-406-766 (CKSPL10005/KCB)-20-B-1 IR-KIB-11B-13-80-1 

10 SM-406-166 (CKSPL10001/KCB)-24-B-1 IR-KIB-11B-13-16-1 43 SM-406-784 (CKSPL10005/KCB)-22-B-1 IR-KIB-11B-13-82-1 

11 SM-406-180 (CKSPL10001/KCB)-25-B-1 IR-KIB-11B-13-17-1 44 SM-406-799 (CKSPL10005/KCB)-23-B-1 IR-KIB-11B-13-83-1 

12 SM-406-195 (CKSPL10001/KCB)-26-B-3 IR-KIB-11B-13-18-3 45 SM-406-827 (CKSPL10005/KCB)-26-B-2 IR-KIB-11B-13-86-2 

13 SM-406-203 (CKSPL10001/KCB)-27-B-1 IR-KIB-11B-13-19-1 46 SM-406-845 (CKSPL10005/KCB)-28-B-1 IR-KIB-11B-13-88-1 

14 SM-406-223 (CKSPL10001/KCB)-29-B-1 IR-KIB-11B-13-21-1 47 SM-406-877 (CKSPL10005/KCB)-31-B-1 IR-KIB-11B-13-91-1 

15 SM-406-229 (CKSPL10001/KCB)-30-B-1 IR-KIB-11B-13-22-1 48 SM-406-910 (CKSPL10005/KCB)-33-B-8 IR-KIB-11B-13-93-8 

16 SM-406-238 (CKSPL10001/KCB)-31-B-1 IR-KIB-11B-13-23-1 49 SM-406-931 (CKSPL10005/KCB)-35-B-2 IR-KIB-11B-13-95-2 

17 SM-406-249 (CKSPL10002/KCB)-1-B-1 IR-KIB-11B-13-24-1 50 SM-406-949 (CKSPL10005/KCB)-37-B-1 IR-KIB-11B-13-97-1 

18 SM-406-302 (CKSPL10004/KCB)-1-B-1 IR-KIB-11B-13-29-1 51 SM-406-990 (CKSPL10005/KCB)-41-B-5 IR-KIB-11B-13-101-5 

19 SM-406-360 (CKSPL10004/KCB)-9-B-1 IR-KIB-11B-13-37-1 52 SM-406-1004 (CKSPL10005/KCB)-43-B-1 IR-KIB-11B-13-103-1 

20 SM-406-374 (CKSPL10004/KCB)-10-B-2 IR-KIB-11B-13-38-2 53 SM-406-1017 (CKSPL10005/KCB)-44-B-1 IR-KIB-11B-13-104-1 

21 SM-406-401 (CKSPL10004/KCB)-13-B-1 IR-KIB-11B-13-41-1 54 SM-406-1030 (CKSPL10005/KCB)-45-B-1 IR-KIB-11B-13-105-1 

22 SM-406-405 (CKSPL10004/KCB)-14-B-1 IR-KIB-11B-13-42-1 55 SM-406-1048 (CKSPL10005/KCB)-46-B-1 IR-KIB-11B-13-106-1 

23 SM-406-411 (CKSPL10004/KCB)-15-B-1 IR-KIB-11B-13-43-1 56 SM-406-1332 (CKSPL10006/KCB)-24-B-1 IR-KIB-11B-13-134-1 

24 SM-406-416 (CKSPL10004/KCB)-16-B-1 IR-KIB-11B-13-44-1 57 SM-406-1088 (CKSPL10005/KCB)-50-B-1 IR-KIB-11B-13-110-1 

25 SM-406-423 (CKSPL10004/KCB)-18-B-1 IR-KIB-11B-13-46-1 58 SM-406-1100 (CKSPL10005/KCB)-51-B-1 IR-KIB-11B-13-111-1 

26 SM-406-442 (CKSPL10004/KCB)-20-B-2 IR-KIB-11B-13-48-2 59 SM-406-1116 (CKSPL10006/KCB)-1-B-1 IR-KIB-11B-13-112-1 

27 SM-406-450 (CKSPL10004/KCB)-21-B-1 IR-KIB-11B-13-49-1 60 SM-406-1131 (CKSPL10006/KCB)-2-B-1 IR-KIB-11B-13-113-1 

28 SM-406-498 (CKSPL10004/KCB)-26-B-2 IR-KIB-11B-13-54-2 61 SM-406-1389 (CKSPL10007/KCB)-7-B-1 IR-KIB-11B-13-141-1 

29 SM-406-1253 (CKSPL10006/KCB)-13-B-1 IR-KIB-11B-13-124-1 62 SM-406-1159 (CKSPL10006/KCB)-4-B-2 IR-KIB-11B-13-115-2 

30 SM-406-553 (CKSPL10005/KCB)-1-B-1 IR-KIB-11B-13-62-1 63 SM-406-1177 (CKSPL10006/KCB)-6-B-1 IR-KIB-11B-13-117-1 

31 SM-406-563 (CKSPL10005/KCB)-2-B-1 IR-KIB-11B-13-63-1 64 SM-406-1190 (CKSPL10006/KCB)-7-B-1 IR-KIB-11B-13-118-1 

32 SM-406-1319 (CKSPL10006/KCB)-21-B-8 IR-KIB-11B-13-131-8 65 SM-406-1205 (CKSPL10006/KCB)-8-B-1 IR-KIB-11B-13-119-1 

33 SM-406-582 (CKSPL10005/KCB)-4-B-3 IR-KIB-11B-13-65-3         
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Appendix 4.1: Means of traits for hybrids with combined resistance Chilo partellus and storage insect pests 

Entry Cross GYP GYI CTL EXhLS LLI LDS LuDkn Lwtls MLI MuDkn Mwtls Oil Protein Starch 

1 1×2 5.4 5.1 3.7 1.1 80.9 2.3 31.5 50.3 72.4 29.0 22.9 4.5 10.4 70.5 

2 1×3 5.6 5.7 3.9 1.0 83.0 2.1 32.9 52.4 72.6 26.3 25.1 4.7 11.0 69.7 

3 1×4 7.6 6.8 4.3 1.1 81.6 2.3 28.1 54.0 64.8 34.6 19.2 5.1 10.2 69.7 

4 1×5 6.4 6.1 3.5 1.2 85.7 2.4 26.0 53.4 73.0 15.6 26.7 4.7 10.6 69.9 

5 1×6 7.0 10.1 4.3 1.4 81.6 2.8 29.6 51.9 67.4 29.1 20.0 4.9 10.7 69.8 

6 1×7 7.5 7.0 6.2 2.2 85.5 2.7 25.8 58.9 64.7 33.5 22.5 4.8 11.2 69.5 

7 1×8 5.8 5.5 4.4 1.0 81.8 2.3 31.4 45.1 55.1 47.1 15.4 4.8 11.5 69.3 

8 1×9 6.3 6.7 4.7 1.4 82.6 2.2 31.2 50.5 57.7 47.1 15.9 4.7 10.6 69.9 

9 1×10 8.7 8.8 4.1 1.4 84.1 2.6 25.2 59.7 67.3 22.5 25.1 4.8 9.9 70.1 

10 1×11 7.4 7.2 4.1 1.6 86.4 2.7 21.7 65.4 71.8 24.0 24.2 4.9 10.4 69.9 

11 1×12 8.8 8.3 5.3 1.8 81.1 2.5 29.3 53.0 70.4 30.0 21.2 4.7 10.3 70.0 

12 2×3 6.3 5.7 3.1 1.0 82.7 2.2 31.8 52.7 71.9 30.1 21.2 4.9 10.8 69.8 

13 2×4 6.3 7.1 4.9 1.4 83.9 2.4 30.8 51.1 68.0 40.3 17.3 5.1 9.9 69.9 

14 2×5 6.3 6.0 4.8 1.2 83.0 2.3 32.7 46.7 70.1 37.6 19.1 4.8 10.4 70.2 

15 2×6 6.4 6.7 5.8 1.7 80.2 2.5 35.2 48.3 65.8 35.1 19.5 5.0 10.6 69.9 

16 2×7 7.0 6.4 4.4 1.4 82.2 2.5 32.1 51.0 65.1 45.7 15.9 4.8 10.7 69.8 

17 2×8 6.1 5.6 6.0 1.4 78.2 2.7 39.5 43.9 56.7 55.7 12.7 5.0 10.9 69.8 

18 2×9 7.4 8.1 4.3 1.4 79.6 2.2 36.6 49.1 51.2 64.0 10.5 4.7 10.7 70.0 

19 2×10 5.5 5.2 4.2 1.2 79.9 2.6 38.5 44.9 59.6 54.6 14.8 4.9 10.6 70.0 

20 2×11 7.2 7.0 6.2 2.2 82.9 2.9 29.8 55.1 70.9 34.4 20.4 5.0 10.2 70.0 

21 2×12 8.7 8.1 4.0 1.7 80.5 2.6 31.9 53.8 69.8 44.2 17.0 4.9 10.1 70.1 

22 3×4 5.9 5.0 3.8 1.0 87.7 2.2 33.5 50.9 65.5 37.9 18.4 5.3 10.5 69.3 

23 3×5 4.9 4.8 5.2 1.6 86.0 2.4 32.6 50.4 68.8 24.2 22.8 4.9 10.8 69.7 

24 3×6 6.6 6.5 5.6 1.8 84.0 2.8 35.9 45.8 66.3 37.1 18.7 5.4 11.0 69.0 
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Apendix 4-1: Continued from page 119 

Entry Cross GYP GYI CTL EXhLS LLI LDS LuDkn Lwtls MLI MuDkn Mwtls Oil Protein Starch 

25 3×7 6.0 5.6 6.2 1.8 81.0 2.4 37.1 48.1 65.6 40.2 17.6 5.1 11.2 69.0 

26 3×8 4.6 4.9 4.5 1.4 72.9 2.4 46.2 36.0 51.5 53.5 12.9 5.5 12.0 68.2 

27 3×9 6.5 6.3 3.6 1.1 74.8 2.2 41.8 41.1 62.4 53.0 13.6 5.0 11.4 69.3 

28 3×10 6.0 5.7 4.4 1.4 84.2 2.3 40.5 41.1 51.7 59.9 11.6 5.2 11.8 68.8 

29 3×11 7.1 6.1 3.8 1.3 81.9 2.4 29.7 52.4 67.8 27.9 21.9 5.0 10.7 69.7 

30 3×12 7.9 7.2 4.7 1.3 82.6 2.6 30.2 53.2 65.1 38.5 19.1 5.0 10.6 69.7 

31 4×5 6.6 6.4 4.3 1.3 82.2 2.7 34.0 50.2 68.2 34.8 18.8 5.3 10.3 69.5 

32 4×6 8.0 7.9 5.1 1.2 83.9 2.6 33.5 50.4 60.2 42.0 16.0 5.4 10.3 69.4 

33 4×7 8.6 8.1 6.3 2.1 84.6 2.5 31.1 51.7 60.2 44.8 16.2 5.2 10.4 69.3 

34 4×8 6.8 6.2 4.6 1.2 78.5 2.4 37.6 44.8 48.9 54.1 11.7 5.3 11.2 68.9 

35 4×9 8.4 8.3 4.1 1.0 80.9 2.2 36.0 47.0 57.6 50.7 15.0 5.3 10.8 69.3 

36 4×10 7.1 7.6 4.4 1.4 83.3 2.6 33.5 51.4 59.6 50.8 13.5 5.4 10.4 69.2 

37 4×11 8.3 8.6 5.6 1.5 82.8 2.6 25.4 58.9 61.3 37.6 19.0 5.0 10.1 69.9 

38 4×12 10.5 9.2 4.3 1.3 82.6 2.6 30.2 54.0 69.3 34.5 18.4 5.3 9.9 69.3 

39 5×6 7.8 6.9 6.3 1.7 83.1 2.9 32.0 51.7 64.9 39.8 16.5 5.2 10.5 69.5 

40 5×7 6.7 5.9 5.3 1.4 79.2 2.6 34.5 50.0 59.3 44.1 17.5 5.0 11.0 69.2 

41 5×8 5.9 8.2 5.5 1.5 74.9 2.4 36.9 43.6 53.4 56.6 11.9 5.1 11.2 69.3 

42 5×9 6.2 6.6 4.1 1.5 78.0 2.5 41.7 38.1 56.8 50.7 15.8 4.8 11.2 69.7 

43 5×10 5.9 6.3 4.8 1.4 79.8 2.6 35.1 45.9 53.5 55.4 14.0 5.1 10.7 69.7 

44 5×11 7.4 7.2 5.8 2.0 83.1 2.9 25.2 59.8 77.8 18.5 24.9 5.2 10.3 69.6 

45 5×12 8.7 8.3 4.7 1.4 84.3 2.6 27.7 55.0 70.2 28.0 20.9 4.9 10.0 70.0 

46 6×7 7.2 7.0 5.9 1.9 86.4 3.0 28.7 54.6 68.4 34.6 19.0 5.1 10.8 69.6 

47 6×8 7.8 6.7 4.9 1.3 83.0 3.0 32.0 51.2 67.8 38.9 17.0 5.4 11.1 68.7 

48 6×9 6.9 9.1 6.3 2.3 81.2 2.8 39.3 43.0 56.7 50.3 14.6 5.0 10.9 69.6 

49 6×10 5.7 5.0 8.8 3.5 76.9 3.4 36.7 46.0 55.6 47.2 15.8 5.2 10.8 69.4 

50 6×11 8.5 7.6 6.2 2.0 83.7 3.0 25.4 58.3 70.0 32.4 21.6 5.4 10.8 69.2 
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Appendix 4-1: Continued from page 120 

Entry Cross GYP GYI CTL EXhLS LLI LDS LuDkn Lwtls MLI MuDkn Mwtls Oil Protein Starch 

51 6×12 6.3 6.5 5.5 1.8 79.7 3.2 32.8 51.7 62.7 46.8 15.9 4.9 10.3 70.2 

52 7×8 3.7 4.0 4.6 1.4 78.5 3.0 35.4 43.3 60.1 54.9 15.0 4.7 11.4 69.8 

53 7×9 3.0 3.3 7.6 2.0 73.3 3.1 38.1 42.9 48.2 56.6 13.9 4.8 11.6 69.4 

54 7×10 8.3 7.0 6.5 2.5 80.4 2.8 25.2 58.0 72.1 23.6 25.5 5.0 10.9 69.3 

55 7×11 6.1 4.0 6.7 1.8 83.0 3.2 27.7 53.7 61.9 39.7 20.0 4.6 11.2 69.9 

56 7×12 8.4 8.4 7.1 2.4 82.9 3.3 30.4 53.3 68.7 42.5 17.6 5.0 10.3 69.8 

57 8×9 4.6 4.4 5.5 1.6 77.2 2.6 45.6 34.1 40.5 75.1 8.8 5.0 11.9 69.3 

58 8×10 3.7 3.6 5.9 1.9 71.6 3.0 45.4 32.3 52.7 62.9 13.3 5.3 11.5 69.1 

59 8×11 7.2 6.9 6.9 2.1 80.2 3.1 32.0 48.7 64.3 40.9 17.6 4.8 11.0 69.9 

60 8×12 7.4 7.1 6.6 2.1 81.4 3.2 37.9 42.7 54.0 56.8 11.9 5.0 10.7 69.7 

61 9×10 5.4 4.6 5.2 1.9 77.5 3.0 44.1 37.2 50.2 64.4 10.0 5.1 11.5 69.2 

62 9×11 5.6 5.4 5.6 1.9 76.1 3.1 38.4 45.6 60.0 57.1 13.1 5.5 11.2 68.8 

63 9×12 7.5 7.3 6.1 1.9 79.2 2.9 35.2 49.2 61.7 47.2 15.0 4.8 10.8 70.3 

64 10×11 7.1 6.4 7.0 2.5 83.4 3.1 32.0 49.1 61.5 51.3 16.6 5.5 11.1 68.7 

65 10×12 5.1 5.4 8.5 3.4 81.2 3.9 38.2 46.0 61.5 55.9 15.7 5.0 10.7 70.1 

66 11×12 10.0 8.8 6.6 2.9 82.2 3.3 23.0 62.9 64.3 41.0 18.7 5.6 10.4 69.0 

 

Mean 6.8 6.6 5.3 1.7 81.2 2.7 33.3 49.5 62.7 42.7 17.4 5.0 10.8 69.6 

 

Max 10.5 10.1 8.8 3.5 87.7 3.9 46.2 65.4 77.8 75.1 26.7 5.6 12.0 70.5 

 

Min 3.0 3.3 3.1 1.0 71.6 2.1 21.7 32.3 40.5 15.6 8.8 4.5 9.9 68.2 

  StdErr 0.7 0.8 1.3 0.4 2.4 0.2 2.3 2.8 3.8 4.9 2.1 0.1 0.2 0.3 
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Appendix 5.1:  Female parents of used for estimating combined resistance in maize hybrids to Chilo partellus and Sitophilus 
zeamais 

Entr

y 

Stock ID Name Pedigree Resistance Parent 

1 SM-176-34 CKSBL1003

9 

P590 C7 Blancos F156-1-2-1-B-B-B-B-B-B Cp(Res), Sz(Susc) Female 1 

2 SM-480-

103 

CKSBL1001

4 

CML311/MBR C3 Bc F43-2-1-1-B-B-B-B-B-B-B Cp(Res), Sz(Susc) Female 2 

3 SM-390-44 CKSBL1002

7 

MBR C6 Bc F299-2-B-#-1-1-B-B-B-B-B-B-B Cp(Res), Sz(Susc) Female 3 

4 SM-480-

119 

CKSBL1002

5 

MBR C5 Bc F60-2-1-2-B-B-BxCML 384-B-1-2-B-B-B-B-B-B-B Cp(Res), Sz(Susc) Female 4 

5 SM-480-

123 

CKSBL1000

4 

MBR C5 Bc F4-1-2-2-B-1-2-B-B-B-B Cp(Res), Sz(Susc) Female 5 

11 SM-204-36 CKSBL1004

0 

P590 C7 Blancos F206-1-1-2-B-B-B-B-B-B-B Cp(Res), Sz 

(Susc) 

Female 6 

12 SM-480-

106 

CKSBL1000

7 

CML 380xMBR/MDR C3 Bc F21-1-1-2-B-B-B-B-3-1-B-B-B-B-B-B-B Cp(Res), Sz 

(Susc) 

Female 7 

13 SM-480-

120 

CKSBL1004

5 

Pob.SEW-HG"B"c0F39-1-1-1-1xMBR C5 Bc F22-2-1-4-B-B-B-B-2-2-B-B-B-B-B-B-B Cp(Res), Sz 

(Susc) 

Female 8 

14 SM-480-

113 

CKSBL1004

3 

P591c4 F14-1-2-1-B-B-B-B-B-B-B Cp(Res), Sz 

(Susc) 

Female 9 

15 SM-480-

112 

CKSBL1003

3 

MBR-Et(W)/P590C3 F35-1-3-B-1x1760B G1 Bco x Comp.-B-2-B-1-1-B-B-B-B-B-B-

B 

Cp(Res), Sz 

(Susc) 

Female 

10 21 SM-480-

118 

CKSBL1004

1 

P590 C7 Blancos F27-1-1-2-B-B-B-B-B-B-B Cp(Susc), Sz 

(Res) 

Female 

11 22 SM-480-

111 

CKSBL1002

9 

MBR E.T(W )C3 S5/SINTxMBR F41-1-1-1-B-B-B-B-B-B-B Cp(Susc), Sz 

(Res) 

Female 

12 23 SM-480-

122 

CKSBL1000

1 

MBR/MDR C3 Bc F1-1-1-1-B-3-2-B-B-B-B Cp(Susc), Sz 

(Res) 

Female 

13 24 SM-480-

117 

CKSBL1000

8 

CML 384xMBR/MDR C3 Bc F58-2-1-3-B-B-B-B-3-1-B-B-B-B-B-B-B Cp(Susc), Sz 

(Res) 

Female 

14 25 SM-480-21 CKSBL1002

1 

MBR C5 Bc F114-1-1-3-B-8-2-B-B-B-B-#-#-B-B-B Cp(Susc), Sz 

(Res) 

Female 

15 31 SM-480-

117 

CKSBL1000

8 

CML 384xMBR/MDR C3 Bc F58-2-1-3-B-B-B-B-3-1-B-B-B-B-B-B-B Cp(Susc), Sz 

(Res) 

Female 

16 32 SM-480-

100 

CKSBL1002

0 

MBR C5 Bc F108-2-3-1-B-5-2-B-B-B Cp(Susc), Sz 

(Res) 

Female 

17 33 SM-480-

122 

CKSBL1000

1 

MBR/MDR C3 Bc F1-1-1-1-B-3-2-B-B-B-B Cp(Susc), Sz 

(Res) 

Female 

18 34 SM-480-

110 

CKSBL1002

8 

MBR E.T(W )C3 S5/SINTxMBR F15-2-1-2-B-B-B-B-B-B-B Cp(Susc), Sz 

(Res) 

Female 

19 35 SM-480-29 CKSBL1002

3 

MBR C5 Bc F14-2-2-3-B-B-BxG16SeqC1F47-2-1-2-1-BBBBB-B-1-2-B-B-B-B-B-B Cp(Susc),Sz Sues) Female 

20 †Cp, Chilo partellus; Sz, Sitophilus zeamais; Res, resistance; Susc, Susceptible 
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Appendix 5.2: Male parents used in North Carolina design II, their pedigrees and resistance information 

Entr

y 

Stock ID Name Pedigree Resistance Parent 

6 SM-482-

132 

CKSPL10013 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-141-1-B-1-B-

B-B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

21 7 SM-482-

169 

CKSPL10090 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-277-1-B-3-B-

B-B-B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

22 8 SM-482-

168 

CKSPL10089 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-277-1-B-2-B-

B-B-B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

23 9 SM-482-

170 

CKSPL10111 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-306-1-B-1-B-

B-B-B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

24 10 SM-482-

186 

CKSPL10343 M37W/ZM607#bF37sr-2-3sr-6-2-X]-8-2-X-1-BB-B-xP84c1 F27-4-3-3-B-1-B] F29-1-2-2 x 

[KILIMA ST94A]-30/MSV-03-4-05-B-1-B-B-2xP84c1 F27-4-3-3-B-1-B] F4-1-1-2-2-1-B-B-B-B-

B 

Cp (Susc), Sz 

(Res) 

Male 

25 16 SM-390-64 CKSPL10081 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-230-1-B-5-B-

B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

26 17 SM-482-

156 

CKSPL10028 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-160-1-B-2-B-

B-B-B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

27 18 SM-390-84 CKSPL10229 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-463-1-B-5-B-

B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

28 19 SM-390-68 CKSPL10088 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-277-1-B-1-B-

B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

29 20 SM-482-

181 

CKSPL10224 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-463-1-B-4-B-

B-B-B-B-B 

Cp (Susc), Sz 

(Res) 

Male 

30 26 SM-482-

176 

CKSPL10186 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-420-1-B-7-B-

B-B-B-B-B 

Cp (Res), Sz 

(Susc) 

Male 

31 27 SM-442-24 P100C6-200-1-1-B***-#-# P100C6-200-1-1-B***-#-# Cp (Res), Sz 

(Susc) 

Male 

32 28 SM-482-

158 

CKSPL10036 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-160-1-B-5-B-

B-B-B-B-B 

Cp (Res), Sz 

(Susc) 

Male 

33 29 SM-442-74 LPSC7-F180-3-1-1-1-BB-

#-# 

LPSC7-F180-3-1-1-1-BB-#-# Cp (Res), Sz 

(Susc) 

Male 

34 30 SM-157-8 CML440 CML440 Cp (Res), Sz 

(Susc) 

Male 

35 36 SM-215-16 DTPWC9-F16-1-1-1-1-

BBB-# 

DTPWC9-F16-1-1-1-1-BBB-# Cp (Res), Sz 

(Susc) 

Male 

36 37 SM-482-

183 

CKSPL10230 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-466-1-B-2-B-

B-B-B-B-B 

Cp (Res), Sz 

(Susc) 

Male 

37 38 SM-482-

177 

CKSPL10003 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-445-1-B-1-B-

B-B-B-B-B 

Cp (Res), Sz 

(Susc) 

Male 

38 39 SM-482-

171 

CKSPL10113 (CUBA/GUAD C1 F27-4-3-3-B-1-Bx[KILIMA ST94A]-30/MSV-03-2-10-B-2-B-B)-306-1-B-3-B-

B-B-B-B-B 

Cp (Res), Sz 

(Susc) 

Male 

39 40 SM-442-4 CML159 CML159 Cp (Res), Sz 

(Susc) 

Male 

40 †Cp, Chilo partellus; Sz, Sitophilus zeamais; Res, resistance; Susc, Susceptible. 
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Appendix 5.3: General combining ability effects for inbred lines used in North Carolina II analysis for combined stem borer and 
storage insect pest resistance 

 

 

 

 

    GCA  

    Female   Male 

Set Entry Gyp Gyi LDS Mwtls M-uDgrn Entry Gyp Gyi LDS Mwtls M-uDgrn 

1 1 -0.83 -0.61 0.17 0.71 -2.56 21 0.17 0.24 0.15 2.24 -1.59 

1 2 -0.95 -0.86 0.12 -1.07 -1.26 22 0.30 0.39** -0.12 -2.76** 4.14 

1 3 0.95 0.70** -0.07 -0.46 1.66 23 -0.17 -0.18 -0.06 -0.62 -0.79 

1 4 0.79 0.88** -0.024 0.6 0.077 24 -0.58 -0.59 0.03 0.31 -0.92 

1 5 -0.12 -0.26 -0.15 0.052 1.65 25 0.34 0.23 -0.01 0.6 -0.48 

2 6 -0.25 -0.094 -0.36 2.76 -0.59 26 0.06 0.09 0.08 2.8 0.25 

2 7 0.66 0.57** 0.18 -0.33 -4.15 27 -0.01 0.27* -0.1 -1.18 1.23 

2 8 0.36 0.44** 0.04 1.34 1.01 28 0.06 -0.03 0.14 -1.83 0.36 

2 9 -0.40 -0.63 0.16 -1.47 2.83 29 0.04 -0.056 -0.21 0.28 -1.32 

2 10 -0.37 -0.29 -0.016 -2.3** 0.89 30 -0.14 -0.27 0.08 -0.11 -0.52 

3 11 -0.42 -0.29 0.28 0.27 0.4 31 -0.70 -0.46 0.09 -4.24** 3.28 

3 12 0.84 0.7** 0.03 0.53 -2.82 32 0.85 0.45** 0.24 3.01 -3.08 

3 13 -0.34 -0.28 0.026 -2.39** 2.34 33 -0.30 -0.41 -0.19* -3.71** 0.048 

3 14 0.34 0.24 -0.17 1.07 1 34 1.01 1.05** -0.09 0.68 -2.79 

3 15 -0.42 -0.38 -0.17 0.52 -0.92 35 -0.86 -0.63 -0.05 4.26 2.55 
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Appendix 5.3: Continued from page 124 

 

 

    GCA  

    Female   Male 

Set Entry Gyp Gyi LDS Mwtls M-uDgrn Entry Gyp Gyi LDS Mwtls M-uDgrn 

4 16 0.07 -0.11 -0.3 0.23 4.81** 36 -2.51 -2.29 -0.04 2.2 7.05** 

4 17 0.15 0.3* -0.21 1.74 1.05 37 0.27 0.3* -0.2 2.27 -2.43 

4 18 -0.25 -0.15 0.14 -1.01 2.38 38 0.39 0.21* -0.15 -3.08** -0.74 

4 19 0.56 0.27* 0.03 -2.21** -1.27 39 -0.14 0.16 0.09 -1.96** -5.84 

4 20 -0.53 -0.31 0.36 1.25 -6.98 40 1.99 1.62** 0.29 0.58 1.95 

5 1 -1.46 -1.23 0.27 2.35 -1.15 31 -0.72 -0.73 -0.06 -2.25 1.07 

5 2 0.68 0.43* 0.14 0.63 -2.9 32 1.40 1.08 0.14 1.24 -1.75 

5 3 0.69 0.57** -0.28 -3.77** 1.94 33 -0.36 -0.17 -0.25 -4.81 -1.1 

5 4 0.12 0.28* -0.12 1.5 1.26 34 0.54 0.57** 0.077 0.51 0.93 

5 5 -0.61 -0.54 0.1 0.23 0.4 35 -0.66 -0.58 0.077 4.6 0.28 

6 6 0.15 -0.28 -0.013 1.79 1.44 36 -2.38 -2.4 0.13 1.41 7.6** 

6 7 0.28 0.54 0.13 -1 -1.84 37 0.07 0.47** -0.37* 2.65 -3.02 

6 8 0.26 0.44 0.08 1.17 -1.5 38 0.39 0.17 -0.23 -2.98 -0.89 

6 9 -0.40 -0.58 -0.055 -1.85 1.15 39 0.23 0.06 0.32 -1.94 -2.94 

6 10 -0.29 -0.11 -0.13 -0.11 0.75 40 1.69 1.74*** 0.15 0.87 -0.76 
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Appendix 5-3: Continued from page 125 

 

 

    GCA  

    Female   Male 

Set Entry Gyp Gyi LDS Mwtls M-uDgrn Entry Gyp Gyi LDS Mwtls M-uDgrn 

7 11 -0.20 -0.15 0.24 -3.18 0.71 21 0.11 0.26** 0.105 0.94 -2.59 

7 12 1.37 0.85** 0.16 -1.238 -2.41 22 -0.33 -0.47 -0.104 -0.3 0.349 

7 13 -0.49 -0.29 0.053 -0.37 3.5** 23 -0.10 -0.21 -0.08 -1.28 0.88 

7 14 0.03 -0.097 -0.34** 1.51 0.4 24 0.49 0.22** 0.013 -1.33 -1.15 

7 15 -0.71 -0.32 -0.12 3.27 -2.2 25 -0.16 0.20** 0.07 1.97 2.52** 

8 16 -0.25 -0.22 -0.095 1.O 0.92 26 -0.10 0.22** -0.12 2.32 -3.88 

8 17 -0.03 -0.19 0.04 -0.01 1.85 27 0.06 -0.17 -0.4* -0.71 1.26 

8 18 0.14 0.21** 0.028 -0.5 -1.39 28 -0.13 -0.08 0.36 -2.22* -1.22 

8 

      

29 0.26 0.42** -0.005 0.25 1.56 

8 

      

30 -0.09 -0.4 0.17 0.35 2.29 
†Data: GYP/I, grain yield protected/infested; LDS, leaf damage scores; Mwtls, weight loss due to maize weevil: Significance: *** means data is significant at p ≤ 0.001, *** 
data is significant at p ≤ 0.01, * data is significant at p ≤ 0.05 

 


