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ABSTRACT 

 

Previous research by Drew et al. (2009) on a SAPPI dendrometer trial, in northern KwaZulu-Natal, 

South Africa, yielded growth results for two Eucalyptus grandis clones (termed E. grandis x 

urophylla (GU) and E. grandis x camaldulensis (GC)). The GU clone was found to have a greater 

diameter than the GC clone, and further research has demonstrated that age, not environmental 

conditions, is the major determinant of tree growth for the GU and GC clone. The clones also showed 

different patterns of growth response following a rainfall event. In current study, young plants of three 

Eucalyptus grandis clones (two GU clones (GUA and GUW) and one GC clone) were grown in 80 L 

planting bags for 18 months at UKZN, Westville, South Africa. The experiments for this study 

entailed subjecting the three clones to three watering regimes. The trial was conducted using a 

randomised complete block (RCB) with a 3
3
 factorial design (i.e. 9 treatments with 12 replicate plants 

in each treatment). The three watering regimes were monitored daily with a soil moisture probe and 

were a control (little or no water stress was applied), chronic water stress (mild, long-term, gradual 

water stress) and acute water stress (rapid, severe, cyclic water stress with periods of recovery from 

stress by re-watering). Physiological (photosynthesis, plant water relations and hydraulic conductance 

characteristics) and morphological (height, diameter and total biomass) measurements were 

performed. Two harvest periods determining Kh and total biomass at 9 and 18 months were 

undertaken, whereas morphological measurements were taken monthly throughout the trial. 

Considering that there were differing growth responses of clones in response to rainfall events 

(observed by Drew et al., 2009), the recovery of the plants from water stress was also studied 

(resistance to water flow in leaves, assimilation rates and stomatal conductance). Further investigation 

of leaf characteristics was performed to assess different aspects of the water transport system 

(stomatal density) and improvement of water use efficiency (WUE) in response to water stress by 

measurement of δ
13

C in leaf samples. 

The GC clone showed 30% greater height growth than the GU clones. Growth efficiency, root 

biomass and root:shoot were significantly greater in the GC clone. The GU clones showed 

significantly greater stem and leaf biomass, primarily due to the 25% greater total leaf area, after 18 

months growth. Diameter of the plants subjected to the control, was 8% higher compared with water 

stress treatments (p = 0.036). Water stress significantly reduced tree volume by up to 10% and leaf 

area by 30%. Jmax and Vcmax were significantly lowered in plants subjected to acute stress at leaf 

wilting point (p < 0.001). After as little as 7 days re-watering however, Jmax and Vcmax were not 

different from the control.  

 



iii 
  

Plants subjected to chronic water stress showed moderately improved instantaneous WUE (8% 

increase compared with the control and acute stress). Long-term WUE (by measurement of δ
13

C in 

leaves, was significantly higher in leaves subjected to chronic water stress (p < 0.0001). Stomatal 

density was significantly different among clones, as the GUA clone showed complete stomatal 

absence on all upper leaf surfaces sampled (p < 0.001), although stomatal absence did not occur in 

leaves of the closely related GUW clone. Assimilation rate, stomatal conductance, Kh and total 

biomass were significantly positively correlated with one another. Recovery of plants subjected to 

acute stress differed among the GU and GC clones. An, gs and Rleaf (resistance to water flow in leaves) 

“recovered” (i.e. not significantly different from the control) by day 2 in the GC clone, but only by 

day 7 in the GU clones. There was hydraulic dysfunction in the GC clone which was suggested to be 

caused by collapse of the minor veins due to drought stress. The hydraulic dysfunction did not affect 

mesophyll tissue of the GC clone and thus hydraulic recovery was rapid. Although the GC clone was 

more drought tolerant (due to significantly greater root biomass), the selection of a GU clone would 

ensure improved wood productivity when planted commercially. The GUW clone showed enhanced 

traits of drought tolerance than the GUA clone including 20% less leaf dieback in response to water 

stress, as well as little to no variability of Kh in response to all watering regimes, and moderately 

improved WUE. Plants subjected to chronic stress showed long-term and instantaneous improvement 

in WUE, and greater diameters were maintained than plants subjected to acute stress. Perhaps the 

most important morphological and physiological parameter identified in the current study was that of 

leaf area. Leaf area differed significantly among eucalypt clones, in response to water stress and with 

tree age. Leaf area affected the expression of growth efficiency, hydraulic efficiency, total carbon 

assimilated and total biomass achieved. For the GU and GC Eucalyptus clones in the current study, 

the primary parameter driving physiological interactions and ultimately determining wood 

productivity could be considered to be leaf area. 
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1. INTRODUCTION 

 

1.1.1 Eucalyptus 

Eucalyptus is a diverse genus of flowering trees and a member of the family Myrtaceae. 

Indigenous to Australia, there are more than 800 known species of Eucalyptus worldwide. 

Eucalyptus species occur in a wide range of habitats and are the most widely grown commercial 

hardwood in world (Turnbull, 2000). First described by Charles L’Hertier de Brutelle, the genus 

Eucalyptus boasts the tallest flowering trees in the world (E. rengnens) found in Tasmania 

(Brooker and Kleinig, 2006). Eucalypts are grown for a number of commercial purposes 

including pulp wood production, wood production, ornamentals, as well as extracted oil from the 

leaves. Primarily, eucalypts are produced commercially for the provision of medium and low 

density short-fibred pulp for paper (Turnbull, 2000). Globally, short-fibred pulp production is 

used for the manufacture of paper for printing, copying, writing and tissue papers and for this 

reason no other sector in world forestry has expanded as rapidly as the use of Eucalyptus 

(Turnbull, 2000). Because of short rotation periods consequent upon acceptable growth rates in 

suboptimum environments, Eucalyptus plantations can be found in 70 countries with more than 

15 million hectares planted worldwide (Morris, 2008). Currently, the world’s largest producer of 

Eucalyptus is Brazil and other major producers include Chile, Morocco, Spain and South Africa. 

The most commonly planted species of Eucalyptus in these countries is Eucalyptus grandis. 

 

1.1.2 Eucalyptus in South Africa 

In South Africa, the first planting of alien trees occurred in 1875 and presently, forestry accounts 

for 1.2% of the GDP (van der Zel, 1995; Boreham and Pallett, 2009). Forestry plantations are 

located in the high rainfall eastern and southern regions of the country and cover 1.1% of total 

land area of South Africa (DWAF, 2004). Between 35 – 40% of the 1.5 million hectares of 

afforested land in southern Africa are Eucalyptus plantations (DWAF 2005; Morris, 2008; 

Boreham and Pallet, 2009). South African forestry is highly reliant on the fast-growing, low-cost 

wood that Eucalyptus provides in order to remain globally competitive.  
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Eucalyptus plantations in the subtropical environment that is found in southern Africa, produce 

large quantities of biomass in stands of short rotation that are no longer than seven years. South 

Africa is considered a semi-arid country (area weighted mean annual rainfall < 500mm), and the 

land area available for forestry is extremely limited (DWAF, 2005; Dyer, 2007). This limitation 

is driven by competition for water, and the vast majority of forestry plantations are found in less 

than 20% of the country that receive greater than 800 mm of annual rainfall (Dye and Versfeld, 

2007). South African legislation has further limited the available land area for forestry 

plantations because land potential suitable for afforestation is now preferable allocated to 

conservation and agriculture (Dyer, 2007; Jacobson et al., 2008). The increase in the 

accommodation of predominantly wetland conservation areas in the future may cause current 

forestry area to decrease further despite the rise in demand for forest products. Land-use for 

afforestation still remains desirable from an economic standpoint, and the forestry industry in 

southern Africa directly and indirectly employs up to 500 000 people (Dyer, 2007). The forestry 

industry, therefore, can be considered not only from an economic perspective but from the social 

and environmental aspect as well. 

 

1.1.3 Eucalyptus and the southern African environment 

The production of sufficient quantities of raw woody material has been the focal point of the 

global forest industry for many years, with less importance being placed upon the quality of the 

wood. More recently, significant research has been performed on the properties of the wood 

fibres in terms of pulp and paper production. In South Africa and abroad, current forestry 

research has focused on growing trees at suitable sites with the right climate to ensure optimal 

wood anatomical attributes for the final product (Downs et al, 1999). These resources include 

environmental conditions e.g. rainfall, temperature, soil type etc. It is therefore possible that the 

production of fibres with desirable properties can be produced by growing specific tree species 

under the right conditions.  The growth and development of trees is dependent upon the degree to 

which photosynthesis can take place, which in turn is affected by the prevailing environmental 

conditions at the site (Farrar, 1999). 
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Eucalyptus plantations are often found on sandy soils that have a low nutrient availability and 

poor water retention capacity (Laclau et al., 2003). Potentially Eucalyptus productivity is very 

high but these high rates of productivity are not often achieved because of environmental 

constraints (Whitehead and Beadle, 2004). The availability of water, nutrients and suitable 

temperatures are the most important environmental factors affecting Eucalyptus growth (Beadle 

and Turnbull, 1992; White et al., 2009). When assessing the literature in terms of water relations 

studies, it can be shown that Eucalyptus adapts to severe drought in terms of stress avoidance 

and/or tolerance (White et al., 2000; White et al., 2009). Although the southern African 

environment is suboptimal for achieving maximum growth potential of Eucalyptus species, 

acceptable growth rates can be achieved in environments that experience frost, drought or low 

nutrient availability (Beadle and Sands, 2004).  

 

At any one site there are a large number of environmental variables that constitute the overall 

environmental conditions. Identifying which variable is the most important in terms of growth is 

often complex. The primary environmental variable limiting growth and determining plant 

distribution in South Africa is the availability of water. Water availability is the one 

environmental factor that has the greatest effect on tree stand growth (Dye, 1996). In South 

Africa, the areas of forestry for commercial purposes are in the higher rainfall regions of the 

country, with adequate temperatures and suitable soils for good growth (Dye, 2000).  It has been 

assumed that differences in tree growth rates are primarily because of the diverse availability of 

water in tree stands (Turner et al, 2000). When soil water is unobtainable for uptake due to 

drought, each cell within the tree is limited in terms of water availability. The lack of water 

within the cells directly affects the tree in terms of both growth and development. The 

availability of water to trees is not determined only by the extent to which rainfall occurs. The 

balance between water loss and absorption allows for the conduction of the sap within the xylem 

column and ultimately the transport of water to the leaf canopy (Zimmerman, 1983). Gaining 

insight into the relationship between how water taken up is lost by the tree, and how this 

determines growth, is imperative for determining the correct species for a water-limited tree 

stand (White et al., 1999).  In environments where water is scarce, trees have evolved numerous 

morphological and biochemical mechanisms in order to survive (Merchant et al., 2007). 
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The primary environmental concern with regards to forestry in southern Africa is that Eucalyptus 

plantations affect water yield from natural river or stream catchments (Whitehead and Beadle, 

2004; van Dijk and Keenan, 2007). As a semi-arid country, South Africa is already under 

pressure from low water resource availability and afforestation of Eucalyptus has the potential to 

decrease surface water generation and ground-water recharge (Dye and Versfeld, 2007). Forestry 

plantations are found in the areas of the country where up to 50% of the country’s mean annual 

streamflow occurs (Scott et al, 1999). Afforestation has been shown, however debatable, to 

reduce streamflow by 3% and this has a significant effect on South African water resources (Dye 

and Versfeld, 2007). The extent of the impact of Eucalyptus afforestation is highly controversial 

and is ultimately dependent on the region, species, environment and land management practices 

used (Dye, 2000; Almeida et al., 2007). Research into understanding the ecology of the 

plantation area and site-species matching are crucial for improving productivity in limited land-

use and low rainfall areas (Louw and Scholes, 2002).  

Technology-driven improvement of Eucalyptus productivity i.e. tree improvement programmes 

and more robust clonal hybrids, has allowed Brazil to emerge as the world’s largest industrial 

Eucalyptus wood producer (Goncalves et al., 2004). Originally, due to the diverse range of 

habitats in South Africa, Eucalyptus grandis was most commonly planted species for industrial 

forestry purposes (Denison and Kietzka, 1993). Gradually, in the warmer regions of South 

Africa, e.g. Zululand/Northen KwaZulu-Natal, E.grandis is being replaced with clonal hybrids, 

E. grandis x E. urophylla or E. grandis x E. camaldulensis (Morris, 2008). These clones are 

better alternatives for subtropical areas and have the benefits of faster growth and improved 

disease tolerance (Denison and Kietzka, 1993). In cooler regions e.g. KwaZulu-Natal midlands, 

E. nitens is planted because it has superior tolerance to frost (Clarke et al., 1997).  

1.1.4 Eucalyptus and climate change 

Climate change is predicted to affect southern African forests in terms of temperature and 

precipitation. Mean annual temperatures in the eastern escarpment may rise between 2 – 6 ºC and 

mean annual rainfall is presumed to be on the decline (Dyer, 2008). Under conditions of climate 

change, optimal commercial forestry areas may shift (Warbuton and Schultze, 2008). The most 

significant factor to which forest species are most sensitive is that of rainfall.  
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Tree breeding programmes have already begun to breed and deploy robust, drought-tolerant 

Eucalyptus clonal hybrids in an attempt to maintain productivity under suboptimal conditions 

(Morris, 2008). Therefore investigation of the physiological and morphological mechanisms that 

accommodate drought-tolerance in E. grandis clonal hybrids is essential. The study of 

ecophysiological characteristics of E.grandis hybrids in response to differing water-stress 

regimes is vital for understanding how Eucalyptus trees will react to the weather experienced at a 

given ecological site. Stomatal, photosynthetic and hydraulic response to changes in water 

supply of E. grandis hybrids will elucidate how productivity is affected by periodic water-stress. 

 

1.2 Plant water relations 

1.2.1 Cohesion-Tension Mechanism 

The soil-plant-atmosphere continuum (SPAC) describes the movement of water through the 

plant driven by the process of transpiration. Transpiration is an unavoidable consequence 

imposed by photosynthesis, whereby plants lose water through their stomata during the processes 

of absorbing and fixing carbon dioxide from the atmosphere. The translocation of an 

uninterrupted water column from the roots to the leaves is facilitated by the adhesive and 

cohesive properties of water molecules and the xylem cell walls. Water potential gradients from 

the roots to the leaves become increasingly negative and the hydraulic architecture of the plant 

has a direct effect on the xylem water potential gradient.  

 

There are three theories explaining the ascent of sap in plants, but the most commonly accepted 

one is that of the cohesion-tension theory proposed by Dixon and Joly in 1894. The Cohesion-

tension theory is based on the principle that water ascends the plant under tension, i.e. negative 

xylem pressure (Tyree and Dixon, 1983). The driving force for this negative pressure is created 

by the surface tension at the evaporative surface of the leaf which results in a decrease of the 

water potential (Ѱ) of the mesophyll cell walls (Tyree and Zimmerman, 2002).  
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The lowering of the water potential is a primary result of the lowering of the pressure potential 

(Ѱp). Pressure potential is one of the main components driving water potential, with other being 

that of solute potential (Ѱл). The relationship can be described as follows: 

Ѱ = Ѱp + Ѱл 

Van der Honert (1948) proposed an Ohm’s Law analogy of the soil-plant-atmosphere continuum, 

stating that the driving force of the ascent of sap within any given plant is the constant lowering 

of the pressure potential in the direction of sap flow. There is however a point at which the water 

in the xylem column is subjected to pressures that are too negative (tensions are too great) to 

sustain. When this occurs, the xylem column breaks and the breaking of the continuous water 

column is known as a cavitation (Tyree and Zimmerman, 2002).  

 

1.2.2 Xylem cavitation 

Water in the xylem is said to be in a metastable state at a pressure below atmospheric pressure 

(Zimmerman, 1983). Under extreme tension, the continuous column of water can break and 

disturb water supply to the leaves (Tyree and Ewers, 1991). The dissolved gases found in the 

xylem come out of solution to form a micro-void. Due to the high tension in the xylem, the void 

can enlarge exponentially and completely fill the xylem conduit. This process is referred to as 

xylem cavitation (Tyree and Sperry, 1989). When the void forms a sufficient radius to 

completely fill the xylem conduit, the conduit is considered to be dysfunctional and unable to 

conduct water flow, and is known as an embolism (Tyree and Ewers, 1991).  

Xylem cavitation can be induced by drought, freezing, pathogen and mechanical damage 

(Zimmerman, 1983; Tyree and Sperry, 1989; Sperry and Pockman, 1993). Embolised conduits 

can be refilled with water and continue functioning normally (Lambers et al., 1998). The 

refilling of embolised conduits can occur under positive pressure experienced at night or during 

an occurrence of rainfall. The expansion of embolised air to adjoining xylem conduits has to be 

prevented and conduits are connected by means of a pit chamber (Tyree and Zimmerman, 2002). 

The porosity of the pit membrane determines the extent to which embolisms may spread from 

one conduit to another (Tyree and Sperry, 1989). 
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 “Safe” pit membrane pores are regarded as those pores of a narrow diameter that essentially 

prevent the majority of embolisms from spreading to other conduits. Species-specific differences 

in vulnerability to cavitation are controlled by a strong selective pressure on the genetics of the 

pit membrane pores (Tyree et al., 1995). The size of the pit membrane pores consequently forces 

a trade-off between the safety and ultimately the efficiency of sap flow of the conduit (Sperry 

and Sullivan, 1992). The risk of cavitation is inescapable, even for slightly water-stressed plants.  

In many environments, water is the primary limiting factor affecting photosynthetic CO2 fixation 

(Kramer and Boyer, 1995). Xylem embolisms cause xylem conductivity to decrease and hence 

water potential gradients to be greater, which can result in the closure of stomata. While stomatal 

closure beneficially decreases the amount of water lost by the plant, it also reduces the amount of 

carbon fixed via photosynthesis (Becker et al., 2000). A reduction in shoot growth rate, 

especially leaf growth, can be seen in even mildly water-stressed plants in response to xylem 

embolism formation, because xylem embolism has caused stomatal closure (Schultz et al., 1988). 

Cavitation is the most deleterious cause of productivity loss of an agricultural environment, when 

drought stress is experienced (Lo Gullo and Salleo, 1993). Drought-adapted species will 

consequently possess smaller pit membrane pores to allow for a higher degree of resistance to 

cavitation (Lambers et al., 1998). Changes in the dimensions of xylem conduits, from continued 

embolism formation in response to drought, have been shown to reduce whole-plant hydraulic 

conductance (White et al., 1999).  

 

 

1.2.3 Plant Hydraulic Conductance 

Plant hydraulic characteristics can be described in terms of conductivity or conductance. 

Conductivity is the flow rate through a plant per unit pressure gradient, K (kg s
-1

 MPa
-1

 m
-1

). 

Conductance does not take into account the length of a conducting system and is simply the flow 

rate per unit pressure drop, k (kg s
-1

 MPa
-1

). The inverse of conductivity is resistivity and the 

inverse of conductance is resistance. Resistances are assumed to be additive in series (Tyree and 

Zimmerman, 2002).  
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Hydraulic conductivity can be expressed as follows: 

Kh = F * L / ΔP kg m s
-1

 MPa 

Where F = flow rate (kg s
-1

); L = length (m); and ΔP = pressure gradient (MPa). 

Hydraulic conductivity can also be expressed in terms of area of conductive sapwood, Specific 

Hydraulic conductivity (Ks). Ksis a measure of the efficiency of the stems or branches or twigs to 

conduct water: 

Ks = Kh / Asw  kg s
-1

 m
-1

 MPa
-1

 

Where Asw = cross-sectional area of the conductive sapwood (m
2
). 

Leaf-specific conductivity (LSC) is a measure of the hydraulic sufficiency of a plant to supply 

water to the leaves at the end of the branch segment: 

Kl = Kh / Al  kg s
-1

 m
-1

 MPa
-1

 

Where Al = leaf area distal to segment measured (m
2
) (Zimmerman, 1978).  

 

Measurement of the hydraulic conductance parameters expressed above show that the trends 

observed will differ depending on species, growth conditions and the growth form within a 

species (Ewers et al., 1991; Cochard et al., 1997). The segmented growth form of the plant 

dictates that the hydraulic construction of a plant can be divided into components that determine 

overall whole-plant hydraulic conductance. Whole-plant hydraulic conductance can be 

apportioned into the roots, stems and leaves, and the leaves can be further sub-divided into 

petiolar, vascular and extravascular conductivity. Perennial plants conserve a distinct drop in 

conductance at the petiolar insertions of the leaf, and this allows plants to sacrifice their leaves 

during winter or periods of drought stress (Tyree and Zimmerman, 2002). 

 

 



Chapter 1  Introduction 9 

_____________________________________________________________________________________ 

 

 
 

There are a number of techniques that have been used to measure plant hydraulic characteristics. 

A low-pressure hydraulic conductivity apparatus was developed by Sperry et al. (1988). In a 

number of studies, measurements of plant hydraulic conductance were initially focused on 

branches of whole shoots (Tyree et al., 1991; Cochard et al., 1992; van der Willigen and 

Pammenter, 1998; Jaquish and Ewers, 2001). A different technique, which attached hydrostatic 

couplings to saplings, was then used to measure whole root conductivity (Brodribb and Hill, 

2000). The evaporative flux (EF) method involved the measurement of leaf to soil water 

potential gradients and the measurement of steady-state evaporative flux densities from total 

canopy leaves (Tsuda and Tyree, 1997; Tsuda and Tyree, 2000; Brodribb and Hill, 2000). 

Hubbard et al. (1999) showed that whole plant hydraulic conductance could be measured from 

sap flux densities through the trunk, in conjunction with leaf water potential and leaf gas 

exchange. An alternative method to the low-pressure flow system is that of the high-pressure 

flow meter (HPFM) developed by Tyree et al. (1995). The HPFM measures whole shoot 

hydraulic conductance by filling all the leaf air spaces with water under pressure (Tyree et al., 

1995). The results acquired using an HPFM have been found to be consistent with that of the 

low-pressure flow system in a comparative study (Sperry et al., 1988; Zotz et al., 1998). It is also 

possible to measure the hydraulic conductance of the roots, and localize the resistances to water 

flow in the whole plant with the use of the HPFM (Tyree et al., 1995).  

Root, stem and leaf hydraulic resistance can be measured separately and assessed to identify 

which plant component presents the greatest proportion of resistance to water flow. Vascular and 

non-vascular pathways of resistance to water flow have been shown to exist in whole plant 

hydraulic measurements, but the relationship of these pathways is unclear (Tyree et al., 1995).  

 

1.2.4 Plant hydraulic conductance and drought stress 

The water balance of plants results as a consequence of the intricately controlled hydraulic 

conductance of all plant organs in response to stimuli from the environment (Maurel and 

Chrispeels, 2001; Nardini et al., 2005). Environmental variation can affect the distribution of 

hydraulic resistance in plants.  
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Plants have the capability of acclimating in response to different environmental variables, a 

phenomenon referred to as phenotypic plasticity (Maherali et al., 2004). Physiological 

acclimation of the plant to low water availability is required when water is a limited 

environmental variable. Acclimation to drought encompasses a number of physiological and 

morphological mechanisms which permit either a drought tolerance or drought-delay strategy 

(Tyree et al., 2001). Physiological and morphological traits shown by plants that employ the 

drought-delay strategy include deeper roots, stomatal closure and leaf area loss (Mencuccini and 

Grace, 1996). These physiological traits increase access to water resources when drought stress 

is mild, rather than severe. Drought-tolerance comprises traits that allow for water transport to 

continue at more negative pressures, vulnerability to xylem cavitation is lowered (but only in 

post-stress xylem) and cells are permitted to exist at lower water potential values (Tyree et al., 

2001). Hydraulic conductance can be related to drought-tolerance or drought-delay strategy, and 

the former strategy ensures that as the severity of the drought stress increases, the hydraulic 

conductance of the roots reduces more slowly than that of the shoots. As leaf area is lost, the 

below-ground resources per unit leaf area increase, and the reduction in supply (due a reduction 

in demand, from leaf loss) ensures continued hydraulic supply (Costa E Silver et al., 2004; 

Nardini et al., 2005). A reduction in hydraulic conductance in response to drought stress has 

been documented for a number of species, including Eucalyptus globulus, Pondorosa pine, 

Licania platypus and Banksia species (Maherali et al., 2002; Tyree et al., 2001; Costa E Silva et 

al., 2004 and Canham et al., 2009).  

 

Drake and Franks (2003) found that stem and leaf hydraulic conductivity were significantly 

reduced during the dry season in five tropical species. Similarly, Pondorosa pine exhibited a 

considerable reduction in leaf specific conductivity when exposed to periodic drought stress 

(Maherali et al., 2002).However, Maherali et al. (2002) also showed that whole-plant hydraulic 

conductivity of Pondorosa pine was not significantly lower in drought stressed versus well-

watered plants. The lack of hydraulic response was considered to be caused by the fact that well-

watered plants were larger and hence had a higher hydraulic conductance. These findings suggest 

that hydraulic conductance can be correlated with plant size and it is further complicated by 

environmental stress.  
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Leaf specific conductivity (Kl) has been shown to be lower for drought-adapted species (through 

leaf loss), thereby increasing plant survival during periodic or prolonged drought stress and 

safeguarding the maintenance of a favourable water balance (Nardini and Tyree, 1999). Lower 

Kl is also associated with differing vulnerability to cavitation for similar drought-adapted species 

and between differing genotypes of the same plant species (Tyree and Ewers, 1991; van der 

Willigen and Pammenter, 1998). The reduction in LSC is therefore associated with a less gradual 

decrease in root conductivity, as reflected in terms of increased below-ground resources. The 

allocation of biomass and slower reduction of hydraulic conductance in roots extends plant 

survival during periods of severe or mild drought stress. The hydraulic changes in response to 

water stress are fundamental determinants of plant performance during drought. 

 

1.2.5 Leaf Hydraulic Characteristics 

The leaf anatomy of angiosperms, gymnosperms and ferns determines different strategies 

regarding how water is transported in a leaf. Angiosperms exploit a highly branched reticulate 

system of leaky veins, which allow for water to be transported to the evaporation sites of the leaf 

(Zwieniecki et al., 2002). The hydraulic conductance of an individual leaf (Kleaf) is a measure of 

how efficiently water is being transported through the leaf, and is usually normalized by leaf 

area. Concurrent with whole-plant hydraulic conductance, Rleaf is the inverse of Kleaf, and the 

resistances within the leaf can be partitioned as resistances are additive in series (Sack and 

Holbrook, 2006). In correlation with measurement of Rleaf, many studies have investigated the 

relationship between hydraulic resistance and/or conductance with that of stomatal conductance 

and gaseous exchange (Kuppers, 1984; Aasamaa et al., 2001; Sack et al., 2004; Santiago et al., 

2004). There appears to be a strong co-ordination across species between Kleaf, stomatal pore 

area, maximum stomatal conductance and photosynthetic capacity (Aasamaa et al., 2001; Sack et 

al., 2003; 2004). Leaf dehydration causes a concomitant decline in Kleaf; ψleaf; and stomatal 

closure, which leads to decreases in photosynthetic rate and ultimately lower growth rates. The 

extent to which Kleaf affects stomatal conductance in response to dehydration differs among 

species. Investigation into the correlation of Kleaf/ Rleaf with stomatal conductance and gaseous 

exchange is not well known for Eucalyptus species, and the mechanisms of recovery from 

drought stress in individual leaves, has not been established yet. 
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The conductance of water through the leaf lamina is determined by the vascular and non-vascular 

pathways of transpiring water (Yang and Tyree, 1994). The petiole is the site at which the 

conductance of water commences through the leaf, following which water flows through the 

xylem vein orders (vascular tissue) in either a series or parallel pathway (Sack et al., 2003). 

Water then crosses the bundle sheath and flows apoplastically and symplastically in the 

mesophyll (extravascular tissue) and then into the airspaces of the stomatal chamber and is 

evaporated into the atmosphere (Sack et al., 2003). 

 

Resistance to water flow in the leaves (Rleaf) can differ by up to 65-fold among different plant 

species and contributes an average of 30% of Rplant (Sack et al., 2003). Environmental variables, 

for example temperature, irradiance and water supply, change Rleaf, and Rleaf can also change 

with leaf age (Sack and Hoolbrook, 2006). Rleaf has been measured to be between 25-90% of the 

total whole-shoot hydraulic resistance (Nardini, 2001; Sack et al., 2003). The fact that Rleaf is 

high, relative to the rest of the plant, demonstrates that the hydraulic resistance of the leaves has 

a disproportionate hydraulic influence and the leaves can be considered a ‘hydraulic bottleneck’ 

in the water conductance pathway.  

 

Rleaf can be partitioned into specific leaf components, although most of the mechanisms 

pertaining to leaf hydraulic resistance are not well understood (Sack et al., 2004). Sack et al. 

(2003) expressed Rleaf as: 

Rleaf = Rpetiole + Rvenation+ Rextravascular 

 

The components that comprise Rleaf have been measured by means of specialized vein-cutting or 

freezing techniques as described by Sack et al. (2003; 2004) and Nardini et al. (2005), 

respectively.  
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Controversy has surrounded studies concerning leaf hydraulic resistance, as the methodology 

used to measure Rleaf has differed substantially. Early studies by Tyree and Cheung (1977) found 

that most of the hydraulic resistance in the leaf resides outside the vascular pathway (i.e. in the 

extravascular / mesophyll tissue). This pattern of hydraulic resistance partitioning was confirmed 

by experiments that targeted the removal of all the resistance that was associated with the 

extravascular / mesophyll membranes (Tyree et al., 2001; Salleo et al., 2003). Extravascular 

resistance to water flow is variable, dependent on the species and can account for up to 90% of 

Rleaf in studies shown by Yang and Tyree (1994); Cochard et al. (2004) and Salleo et al. (2003). 

In contrast to these studies, Sack et al. (2003; 2004; 2006) showed that the majority of the 

resistance to water flow in the leaves of Acer saccharum and Querus rubra was located in the 

vascular / venation water-flow pathway. Zwieniecki et al. (2002) and Sack et al. (2004) reported 

that Rvenation contributed 69-74% of Rleaf.  

Despite differences in Rleaf partitioning into Rvenation and Rextravascular, the ratio between them is 

dynamic. Rvenation is said to increase during water stress due to xylem embolism, whereas 

Rextravascular can change diurnally according to circadian rhythms (Sack et al., 2002; Nardini et al., 

2005). Cochard et al. (2005) suggested that there are disadvantages to either Rvenation > Rextravascular 

or vice versa partitioning of Rleaf. If the proportional allocation to Rextravascular is higher than 

Rvenation, then the xylem hydraulic efficiency of the venation would be lowered. If the majority of 

Rleaf was located in the extravascular tissue, then the integrity of the xylem could possibly be 

maintained in response to drought stress. Thus, the hydraulic conductance pathway will be 

preserved until recovery from the drought stress period. An increase in Rleaf would impose a 

decrease in leaf gaseous exchange, thereby causing a decrease in relative growth rate. 

 

Given that changes in leaf resistance affect plant water balance, it is not surprising that short and 

long-term changes of leaf resistance have been measured. Nardini et al. (2005) and Sack et al. 

(2003), have tested the response of leaf resistance to environmental and developmental factors, 

to assess how plants adapt to the changing environment. Changes in Rleaf partitioning in response 

to differing irradiance levels have been the primary focus of study. Rleaf of a number of sun 

species has been found to be 15-67% lower than that of measured shade leaves of the same 

species (Sack et al., 2003).  
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When assessing Rleaf in response to drought stress, an increase in Rpetiole can be observed, 

primarily due to xylem cavitation at low leaf water potentials (Hacke and Sauter, 1996; Hacke et 

al., 2001; Linton and Nobel, 2001; Cochard et al., 2002; 2004). Drought stress may also possibly 

cause an increase in Rextravascular, although the mechanisms explaining this remain to be 

investigated. Even though increases in Rleaf and Rpetiole have been well documented when 

exposed to periodic drought stress, more interesting to note is the rapid and complete recovery 

from drought stress during rehydration from re-watering (Linton and Nobel, 2001; Lo Gullo et 

al., 2003). The underlying processes causing such a short-term increase in Kleaf (decrease in Rleaf) 

include elastic xylem recovery, reverse embolism from root pressure and possibly active ion-

pumping or transient pressures (Bucci et al., 2003; Trifilo et al., 2003; Cochard et al., 2004; 

Brodribb and Holbrook, 2005).  

 

1.3 Photosynthetic Characteristics 

 

1.3.1 Photosynthetic capacity and stomatal conductance 

The process of photosynthesis is vital for all plant growth, and can continue even when 

environmental conditions are less than optimal. Photosynthesis is a co-ordinated response of all 

the physiological processes within the plant, and is affected by any environmental stress/es 

imposed on the plant (Chaves, 1991; Freeden et al., 1991). Transpiration and the inevitable loss 

of water through the stomata leads to a decrease in leaf relative water content (RWC). When root 

water supply does not match leaf water loss, the decline in RWC will directly and indirectly 

affect photosynthesis (Lambers et al., 1998). Drought stress causes the stomata to close in order 

to prevent cavitation and desiccation, and the supply of CO2 through the stomata declines (Wong 

et al., 1985). Kirschbaum et al. (1987) found that water stress facilitated stomatal closure and 

photoinhibition in Eucalyptus pauciflora. Decreasing CO2 supply stimulates photosynthetic 

down-regulation and this process (of down-regulation) is seen as one of the earliest effects of 

soil-drying (Lawlor, 2002; Correira et al., 2006). 
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In Eucalyptus globulus, water-stressed plants exhibited lower stomatal conductance and lower 

rates of photosynthesis, in comparison with plants that were well-watered (Pereira et al., 1993). 

Photosynthetic capacity in response to drought stress depends on the severity, speed and duration 

with which soil drying occurs (Rouhi et al., 2007). Drought stress can affect photosynthetic 

capacity not only by means of stomatal closure, but also via non-stomatal factors e.g. decreased 

carboxylation efficiency in the mesophyll of the leaf (Ramanjulu et al., 1998).   

Physiologically, photosynthesis is affected by stomatal and non-stomatal factors, however 

whole-plant reductions in photosynthetic capacity are usually observed in response to loss in leaf 

area (Rouhi et al., 2007). Drought stress stimulates leaf shedding in many plant species as a 

mechanism to reduce water loss through transpiration. Loss in leaf area reduces canopy net 

assimilation rate, and a reduction in photosynthetic rate per unit leaf area as well as stomatal 

conductance are characteristics of drought-tolerant species (Rouhi et al., 2007). The correlation 

of assimilation rate and stomatal conductance has been observed in many studies, and lower 

photosynthetic capacity is associated with lower stomatal conductance (primarily due to a 

reduction in transpiration rate) (Franks, 2005).  

 

1.3.2 Co-ordination of photosynthetic capacity and hydraulic conductance 

Xylem hydraulic characteristics have been shown to influence plant form and function, and 

environmental variables affect hydraulic conductance, which in turn can be constrained by xylem 

characteristics (Brodribb and Field, 2000; Macinnis-Ng et al., 2004). The same principle can be 

applied to photosynthesis and hydraulic conductance, where for any given allocation of carbon to 

a leaf, the photosynthetic potential of the leaf is constrained by the hydraulic conductance of the 

system (Franks, 2005). Several studies have shown that differences in hydraulic conductance 

could affect photosynthesis because gaseous exchange was affected. Sober (1997) showed that 

the hydraulic conductance of water-stressed Phaseolus vulgaris plants was positively correlated 

with stomatal conductance and photosynthetic rate. Experiments on drought-stressed mature 

Scots pine revealed an increased hydraulic resistance associated with stomatal closure and a 

reduced growth rate associated with low assimilation rates (Irvine et al., 1998).  
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Measurement of leaf photosynthetic capacity and stem hydraulic supply per leaf area displayed a 

close significant relationship in rainforest conifers and angiosperms (Brodribb and Field, 2000). 

Leaf specific hydraulic conductivity of Eucalyptus grandis was however found not to be 

influenced by changing fertilization regimes which were associated with higher photosynthetic 

capacity (Clearwater and Meinzer, 2001). The relationship between photosynthesis and hydraulic 

conductance is seen to be an indirect one, linked by the correlation of both parameters with 

stomatal conductance. Ultimately, the hydraulic architecture would be reflected in physiological 

and anatomical traits of leaf photosynthesis and evidence has shown that plant hydraulic 

characteristics play a fundamental role in limiting stomatal conductance and gaseous exchange 

(Brodribb and Field, 2000; Brodribb and Jordan, 2008).There are no studies specifically 

reporting measurements pertaining to the physiological processes relating water relations 

(stomatal conductance, transpiration and hydraulic conductance) with photosynthetic capacity of 

Eucalyptus grandis. 

 

1.4 Biomass growth and partitioning in response to environment 

There are three main environmental variables that influence plant growth: light, nutrient 

availability and water supply. Resulting growth is dependent not only on inherent carbon 

assimilation rates of leaves but also the relative sizes of plant organs (allocation) and 

morphology (Aphalo, 2010).The distribution and partitioning of carbon to plant organs (root, 

stems and leaves) will change in response to a change in environment, e.g. when light is limited, 

it has been shown that a greater allocation of carbon resources are made to the leaves of the plant 

(to maximize light capture). However, plants that are limited by nutrient and / or water supply 

will allocate more resources to the roots, therefore increasing root surface area and acquiring an 

increasing amount of water or nutrient supply (Gardiner, 1991, Hess and de Kroon, 2009). Under 

water deficits, investment of more biomass to roots facilitates an increase in water or nutrient 

absorption, and less biomass to leaves to reduce transpiration surface and efficient stomatal 

closure (Gindaba et al., 2005). 
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The allocation of resources to plant organs in response to water supply varies considerably 

between plant species and often depends on the way in which the water stress period was applied 

(short-term (acute) or gradual (chronic) drought stress ) (Pereira and Chaves, 1993; McDonald 

and Davies, 1996; Osorio et al., 1998). Acclimation to moderate water stress involves changes in 

plant structure that include change in biomass allocation in order to enhance the plant’s ability to 

avoid dehydration from water stress. The diversion of resources to plant parts that require it most 

is considered a necessary growth mechanism, and the response of changing resource allocation 

will prolong survival of environmental stress. 

 

Plants have a functional balance between root and shoot activity, in which below-ground 

resources that are acquired will be in approximate balance with the above-ground resources 

acquired by the roots i.e. root:shoot (Garnier, 1991). Root to shoot ratio is usually seen to 

increase when water is a limiting environmental factor, primarily because of a reduction in shoot 

growth (Sharp and Davies, 1979; Steinberg et al., 1990). However, in many studies, Eucalyptus 

species do not exhibit an increase in root:shoot in response to water stress (Pereira and 

Kozlowski, 1976; Pereira and Pallardy, 1989; Farrell et al., 1996; Osorio et al., 1998). Aphalo 

(2010) reported that water deficits do not affect biomass allocation to root in Eucalyptus 

camaldulensis and E. globulus. E.globulus and E.camaldulensis do not display an “optimized 

strategy” for root growth (i.e. there is no increase in biomass allocation to roots when water is 

limiting). This suggests that root:shoot ratio is primarily controlled by genetic factors in 

Eucalyptus species (Osorio et al., 1998).  

Conversely, when allocating biomass to leaves, a proportionately larger photoassimilate allocate 

to photosynthetic organs will increase relative growth rate (RGR) (Aphalo, 2010). An increase in 

RGR is dependent on the morphology of the photosynthetic organs through increases in specific 

leaf area (SLA) and the effect of leaf area on leaf area ratio (LAR). In a number of ecological 

transect studies, SLA is shown to decrease in Eucalyptus species in response to increasing aridity 

(Schultze et al., 1998; Searson et al., 2004). Mokotedi (2010) showed that drought-stressed 

Eucalyptus nitens x nitens plants displayed a reduction in total leaf area but maximized 

photosynthetic capacity of the remaining leaves to maintain a growth rate comparable with that 

of non-stressed plants.   
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1.5 Aims and Objectives of this study 

Northern KwaZulu-Natal houses a Sappi dendrometer trial growing two different clones of 

Eucalyptus grandis species – grandis x urophylla (GU) and grandis x camuldulensis (GC). This 

trial has to date provided invaluable tree diameter data measured on a quarter-hourly basis and 

has been analysed for any correlations with the weather data that has been collected at the same 

site. Previous research has shown that the diameter and height of both GU and GC clones are 

higher at higher rainfall areas (Drew and Pammenter, 2006; Drew et al., 2009) and that GU clone 

was also found to have a greater diameter than GC (Drew and Pammenter, 2006; Drew et al., 

2009). Work at their site has demonstrated that age, rather than environmental conditions, is the 

major determinant of tree growth for both the GU and GC clone (unpublished data, 2007). The 

dendrometer data, which is very powerful in terms of the radial resolution of the data set, has the 

disadvantage of having low vertical and physiological data resolution.  

 

Other physiological aspects of the diameter data set were also observed. The first of these was 

the lack of seasonal response to weather in terms of the tree growth. There appears to be no 

suppression or increase in growth rate during winter or summer months respectively. Secondly, 

the clones showed a different pattern of response to short-term weather changes that occur at the 

dendrometer trial site. The trees of the GU clone produced short bursts of growth following 

periods of rainfall, and then periods of slow or little growth subsequent to the period of rapid 

growth. The trees of the GC clone showed steady growth that did not appear to be influenced by 

rainfall events in contrast to that of GU (Drew et al, 2009).  

In the current study young plants of three eucalypt clones were grown in large (80 L) planting 

bags for 18 months and subjected to different watering regimes. This permitted study of the 

growth and underlying physiological responses to these short-term manipulations of water 

availability. Given the differing growth response to rainfall events observed by Drew et al. 

(2009), the recovery of the plants from stress was also studied. 
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Few studies have been carried out on the morphological and physiological response of drought 

stress on Eucalyptus clonal hybrids in South Africa. Manoharan (2002) investigated the response 

of Eucalyptus clonal hybrids to drought stress by measuring the hydraulic conductance and 

architecture of branches. Mokotedi (2007) measured the hydraulic conductance of roots of micro 

/ macro-propagated Eucalyptus grandis x nitens.  Fewer still have related photosynthetic 

capacity with the resistance of water flow in the leaf. Sack et al. (2003; 2004; 2006) determined 

not only the ideal technical method to measure resistance to water flow in the leaf (Rleaf) but also 

measured Rleaf in response to environmental variables such as light and water supply. Co-

ordination of Rleaf with assimilation rate has been determined indirectly with both parameters 

correlating with stomatal conductance. The experiments for the current study consisted of 

growing three Eucalyptus clonal hybrids in pots and subjecting them to three watering regimes 

(control - high water; chronic - gradual water stress and acute - rapid water stress). Physiological 

and morphological measurements were taken monthly throughout the growth trial period. 

Harvests were performed at 9 and 18 months in order to determine total growth allocation of 

biomass to plant organs as well as hydraulic resistance to water flow. The relationship between 

Rleaf and assimilation rate was examined in response to drought stress and subsequent recovery 

on release from the stress (re-watering).  

The specific objectives of the study were to: 

a) Measure the impact of watering regime on the morphology (height and diameter) of three 

Eucalyptus clonal hybrids. 

b) Evaluate the effects of water stress and clonal hybrid on hydraulic characteristics and 

biomass partitioning at the juvenile (9 months) and early adult (18 months) stages. 

c) Determine the influence that drought stress and consequent drought stress recovery after 

re-watering has on resistance to water flow in the leaf, stomatal conductance and 

instantaneous photosynthetic rate. 

d) Assess whether the physiological characteristics (water relations, photosynthetic capacity 

and hydraulic conductance) of the three Eucalyptus clonal hybrids differ with tree age, 

water availability, and among clones.  
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2. MATERIALS AND METHODS 

 

2.1.1 Experimental design 

The experiment was designed as a Randomized Complete Block with three clones GU 

A380, GU W1700 and GC 438 and three drought stress treatments (Fig. 2.1). The 

treatments were a control (no water stress imposed), chronic drought stress (watered 

often in small amounts) and acute drought stress (watered rarely in large amounts). The 

chronic drought stress treatments were watered everyday but only up to 20% of the water 

required to prevent any drought stress, whereas the acute drought stress treatments were 

allowed to dry close to complete dryness and the soil was re-watered for a period of 

recovery before being completely dehydrated again. As an RCB design there were 9 

treatments, and each treatment had 12 replicates. A total of 108 saplings were planted for 

experimental purposes, as well as 40 guard row plants to reduce edge effects. Saplings 

were planted at the end of May 2009, and monthly height and diameter data were 

measured. At the age of five months (November 2009), once the saplings were 

established, the water stress treatments were initiated. 

 

 

 
Figure 2. 1: Experimental design (Randomised Complete Block) of the Eucalyptus trial planted 

at UKZN, Westville campus.  



Chapter 2 Materials and Methods 21 

________________________________________________________________________ 

 

2.1.2 Experimental Site 

 

Figures 2.2 to 2.5 show the growth of the Eucalyptus trees at UKZN, Westville campus, 

from planting in May 2009 (Fig. 2.2) until September 2010 (Fig. 2.5). Prior to June 2010 

(Fig. 2.4), 45 trees were harvested and removed from the trial after nine months of 

growth. 

 

Figure 2.2:One week after planting (01 June 2009) 

 

 

 

 

Figure 2.3:Six months after planting (02 December 2009) 
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Figure 2.4:12 months after planting (01 June 2010) 

 

 

Figure 2.5:15 months after planting (01 September 2010)  
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2.1.3 Water treatments 

 

Field capacity of the soil was measured so that the amount of water necessary for each of 

the three treatments could be calculated. The water content of the soil was measured with 

a Theta HH2 (Delta-T Devices, Cambridge) Soil Moisture Probe (Fig. 2.6), and the field 

capacity was found to be 0.15 m
3
 m

-3
 or 15% by volume soil water content. The soil 

water content at field capacity is considered to be relatively low as the soil was primarily 

river sand-based (known locally as Umgeni River sand). The control water treatments 

were watered daily to field capacity (i.e. they were not water stressed). The Chronic 

water stress treatment was watered daily to 2% soil moisture content (approximately 0.5 

Litre per day). The Acute water stress treatment was drought stressed cyclically, where 

the trees were stressed to the point of wilting (<0.1% soil water content) and then re-

watered to field capacity. The trees were then watered daily to field capacity for a 

recovery period of one to two weeks before being drought stressed again. During the first 

12 months of growth, the acute drought stress treatment was imposed six times. 

 

 

Figure 2.6:Theta HH2 Soil Moisture Probe (Delta-T Devices). 
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2.2 Methods: Growth and Physiology Measurements 

 

Figures 2.7a – g illustrate the growth and physiological measurements performed for the 

18-month period of the growth trial. Growth and physiology measurements were divided 

into two types of measurements: non-destructive and destructive measurements. Non-

destructive measurements comprised detailed monthly measurement of tree height and 

diameter. Photosynthetic characteristics and plant water relations parameters were 

measured seasonally (at 6, 9, 12 and 18 months tree growth). Destructive measurements 

such as biomass harvest and whole-plant hydraulic conductance were measured after 9 

and 18 months growth. Individual leaves were destructively harvested for measurement 

of Rleaf (hydraulic resistance of individual leaves) at 12 months and at 18 months, 

individual leaves were harvested for measurement of stomatal characteristics and δ
13

C. 

 

 

Figure 2.7a: Flow diagram illustrating the growth and physiology measurements performed on 

standing trees (non-destructive measurements) and destructive measurements performed at 

harvest one (nine months growth) and harvest two (18 months growth).  
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2.2 Non-destructive measurements 

 

2.2.1 Morphological measurements: Tree height and diameter 

Height and diameter measurements were performed monthly and continuously (from one 

week after planting for each replicate in each treatment) throughout the trial. The height 

of the trees was measured with a 5m tape measure and recorded as close as possible to 

the nearest centimeter. The diameter of the stems was measured 10cm above soil level 

with of a digital pair of calipers (in mm) and measurements were recorded at two decimal 

places of a millimeter (Fig. 2.8). 

 

Figure 2.8:Digital caliper measuring tree diameter in mm (to two decimal places). 

 

2.2.2 Photosynthetic Measurements 

 

Photosynthetic measurements are needed for understanding and comparing biomass 

accumulation (productivity) and can be used as a short-term physiological response tool. 

Gas exchange of CO2 and H2O by leaves represent the basis for the design of 

photosynthesis meters. CO2 and H2O share the same biochemical pathway and sample 

leaves can be isolated in a closed chamber of a known area and measurements of carbon 

assimilation, stomatal conductance and transpiration can be recorded. Figure 2.7b shows 

that photosynthetic measurements can be divided into two different categories. 
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Figure 2.7b: Growth and physiology measurements showing measurements pertaining to 

photosynthetic characteristics. 

 

Photosynthetic measurements may be performed on leaves of standing trees in two 

different ways. The first method of measuring photosynthesis involves the measurement 

of photosynthetic potential in the form of A:Ci curves (A: maximum assimilation rate; Ci: 

intercellular CO2 concentration). A:Ci curves measure the response of photosynthetic 

potential to increasing intercellular CO2 concentrations at constant light intensity. The 

plant response to change in CO2 concentration provides information on the biochemical 

and stomatal limitations to photosynthesis. Measurement of A:Ci curves can facilitate 

investigation of short-term physiological response to water stress and physiological traits 

i.e. stomata closure that infer drought tolerance. 

The down-regulation of photosynthesis in terms of photosynthetic potential is one of the 

earliest effects of soil drying due to water stress. When the drought stress was initially 

imposed, the photosynthetic potential was measured for each treatment. The 

measurement of photosynthetic potential was performed using a LiCor 6400 (Li-Cor, 

Lincoln, Nebraska, USA) photosynthesis measuring system. Photosynthetic potential was 

measured by changing the CO2 concentration, while keeping the incident light, humidity 

and CO2 flow rate constant. The photosynthetic rate, recorded at the corresponding 

change in CO2 concentration, was used to construct an A:Ci curve, otherwise known as a 

CO2 response curve.  
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A:Ci curves were measured at 9 and 18 months tree growth (in order to correspond with 

trees that were to be harvested for total biomass accumulation). Light intensity in the 

closed LED chamber was 1500 µmol quanta m
-2

 s
-1

 and leaf temperature was controlled 

at 26 °C. Chamber CO2 was initiated at 400 µmol CO2 m
-2

 s
-1

, and then CO2 were pre-set 

at 400, 300, 200, 100, 50, 400, 600, 800, 1000, 1200 µmol CO2 m
-2

 s
-1

.   Measurements 

were made on 6 cm
2
 sections of intact eucalypt leaves of the same leaf age. Leaves were 

positioned in the 0.25 dm
3
 cuvette and the 3

rd
 uppermost leaves (usually the youngest 

fully expanded leaf) were studied. No plant was sampled more than once on a particular 

day and no leaf was sampled more than once. Five replicates from each clone and each 

water treatment were recorded at both 9 and 18 months tree growth (n = 45 per harvest).  

 

The photosynthetic rates acquired from CO2 measurements were fitted to an exponential 

saturation curve (Fig. 2.9). This was done by non-linear regression of the data to the 

equation 1: 

 

 y = a (1- exp(b-c*Ci)) for CO2 response 

 

The values of the parameters a, b and c were obtained for each individual curve. These 

parameters were then used to calculate photosynthetic variables. 

For A:Ci curves: 

 

a  = Jmax (maximum rate of electron transport at saturating CO2);  

 

b/c  = CO2 compensation point  

(point at which CO2 concentration initiates photosynthesis);  

 

a*c*e
b
 = initial slope of the curve  

(the carboxylation coefficient – measure of rubisco activity)  

 

a (1-e
b
) =  photorespiration rate. 
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Figure 2.9: A:Ci curve showing the point at which Jmax, CO2 compensation point, initial slope and 

photorespiration occur. 

 

Photosynthesis was also measured in terms of instantaneous photosynthetic rate, which is 

the actual assimilation rate of a specific leaf under ambient conditions (or otherwise 

referred to as a “snapshot”). “Snapshots” or spot measurements provide rapid point 

measurements of assimilation, transpiration and stomatal conductance and can be used as 

an indicator of plant health. The leaf chamber was fitted with a sun/sky attachment that 

allowed leaves to photosynthesise using natural light, while maintaining ambient CO2 

concentration (400 µmol CO2 mol
-1

). Leaf temperature, in the chamber, was set at 26°C 

and VPD and relative humidity were controlled. The assimilation rate values that were 

recorded under these conditions were considered to be actual photosynthetic rates. Spot 

measurements were performed on five replicates of each treatment at 6, 12 and 18 

months tree growth in order to establish how photosynthesis differs seasonally.   

Photosynthetic spot measurements were also recorded during drought stress cycles (at 

stress and recovery period) at the same time that leaf hydraulic characteristics were 

performed (at 12 months tree growth). 
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2.2.3 Water relations measurements 

 

Plant water relations measurements monitor H2O exchange of a leaf, and can be studied 

in conjunction with photosynthesis. Plant water relations include measurement of rate of 

passage of CO2 exiting or H2O entering the stomata on a leaf (stomatal conductance) and 

the emission of water lost to the environment which is essential in the process of 

photosynthesis (transpiration). Measurement of stomatal conductance and transpiration 

provide an indication of plant health status and stomatal closure can be detected in plants 

that are drought-stressed. 

  

 

Figure 2.7c: Growth and physiology measurements showing measurements pertaining to water 

relations. 

 

 

Transpiration (E) and stomatal conductance (gs) were measured concurrently with 

photosynthetic capacity (A:Ci curves) and spot / survey measurements with use of the 

LiCor 6400 (LiCor, Lincoln, Nebraska). gs and E were measured between 0800 and 1200 

h and chamber [CO2] was kept at 370-400 µmol CO2 m
-2

 s
-1

. Five replicates of gs and E 

were measured in the control, chronic and acute (at the point of wilting) stress treatments. 

Following wilting point of the leaves in the acute stress treatment, gs and E were 

measured on plants that had been re-watered to field capacity. 

 

Measurement of photosynthetic rate and transpiration can be used to calculate 

instantaneous water-use efficiency, which is an indicator of the amount of carbon 

assimilate acquired per unit water lost from transpiration.   
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Photosynthetic leaf water-use efficiency (PWUE) was calculated as: 

 

PWUE = A (µmol CO2 m
-2

 s
-1

) 

    E (mmol H2O m
-2

 s
-1

)  

 

 

2.3 Destructive Measurements 

2.3.1 Biomass at harvest 

 

 

 

Figure 2.7d: Growth and physiology measurements showing measurements pertaining to 

destructive harvesting of trees after 9 and 18 months growth. 

 

After nine months of growth, harvest one was performed in March and April 2010 on five 

out of nine replicates for each treatment (Fig. 2.10 shows the experimental design with 

the selected trees removed indicated in black). A total of 45 plants were harvested, and 

the soil from each tree was removed from the experimental site. 
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After 18 months growth, harvest two was performed in November and December 2010 

on 4-5 replicates of each treatment. A total of 39 plants were harvested, and the 

remaining plants were discarded. At both harvest periods, the leaves, stems and roots 

from each plant were dried separately in a drying oven at 80ºC for 48 hours. The final dry 

weights were measured to the milligram level and the biomass ratios for each treatment 

were calculated. Allocation of biomass to plant components (roots, stems and leaves) 

could be expressed as a percentage when divided by total biomass (kg). 

 The accumulated leaf area of the leaves of each harvested plant was measured using the 

CI-202 leaf area meter (CID Inc, Carnas, USA).  

Specific leaf area (SLA) was calculated as follows: 

 

SLA = Leaf area (m
2
) 

  Dry mass of leaves (kg) 

 

Figure 2.10:Experimental design showing (in black) the trees that were harvested for harvest 1 of 

the experimental trial. 
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2.3.2 Whole Plant Hydraulic measurement 

 

Hydraulic measurements provide a method to perform quantitative root and stem 

hydraulic analysis without digging up roots from the soil. The major hydraulic 

conductance measurements can be performed in order to study root and shoot hydraulics 

of trees through seasons and with age. Although, it is not necessary to dig up the roots, 

the measurements are destructive and were performed on roots, stems and leaves of 

eucalypt trees after 9 and 18 months tree growth (Fig. 2.7e). 

 

Figure 2.7e: Growth and physiology measurements showing whole-plant hydraulic 

characteristics measurements pertaining to destructive harvesting of trees after 9 and 18 months 

growth. 

 

Whole plant hydraulic studies, which include the measurement of the hydraulic 

conductance of shoots, stems and roots, were conducted using a High Pressure Flow 

Meter (HPFM) Tyree et al. 1995. For these measurements, values were reported in terms 

of hydraulic resistance (MPa m
2
 s kg

-1
). Five plants from each treatment were selected for 

whole shoot hydraulic measurements, and subsequently harvested for total leaf area and 

dry weight measurements at 9 and 18 months tree growth (n = 45 per harvest).  
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Each whole-shoot was transported from the growing area to the laboratory, in order to 

keep other variables e.g. temperature, humidity and light intensity as constant as possible 

when performing measurements on whole shoots and stems. 

 

Samples were initially cut about 10 centimeters above the shoot base and the shoot was 

placed in a 0.1 M HCl solution to hydrate. The basal portion of the stem attached to the 

roots was attached to one end of the HPFM compression fitting, after which it was cut 

with a sharp razor blade to ensure that the surface was even and that water could be 

perfused through it (Fig 2.11). Then the compression tubing was inserted into the other 

end of the fitting, which was attached to the root and filled with distilled water. 

Pressurized water was then forced through the root in order to measure flow rate, using 

the transient measurement mode of the HPFM. The flow rate was converted to hydraulic 

conductance by means of a line-fitting linear regression. 

 

Kroot was calculated as 1/Rroot.  

 

 

Figure 2.11:The removed root of a eucalypt tree after root resistance had been measured using 

the HPFM. 

 



Chapter 2 Materials and Methods 34 

________________________________________________________________________ 

 

The hydrated eucalypt clonal hybrid shoot was measured by the quasi-steady state 

method of the HPFM. The compression fitting was attached to the cleanly cut end of the 

shoot and water was then forced through the tubing under pressure. The hydraulic 

conductance of the shoot (Kshoot = 1/Rshoot) was recorded once the shoot had filled up, 

which can be seen when water droplets form on the under-surface of the leaves and flow 

rate was constant (Fig. 2.12). The conductance had to have been stable for a minimum of 

2 minutes before a reading was taken. Following this, the leaves of the plant were 

removed from each branch until only the branches and main stem were left. Once the 

hydraulic conductance had stabilised again and remained at the same value for more than 

2 minutes, the value was recorded and considered the hydraulic conductance of the stem 

i.e. Kstem = 1/Rstem (Fig. 2.13). 

 

The total leaf hydraulic conductance could be calculated only by using the resistances of 

the components of the whole shoot. Therefore the total leaf hydraulic resistance is the 

difference between shoot resistance and stem resistance:  

Rtotal leaf = Rshoot – Rstem  

Ktotal leaf = 1 / Rtotal leaf. 

 

Figure 2.12:Water droplets on the undersurface of the leaves of Eucalyptus before resistance to 

water flow of the shoot was recorded with the HPFM. 
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Figure 2.13:Measurement of resistance to water flow with a HPFM in the stem of Eucalyptus 

(i.e. all leaves removed). 

 

2.3.3 Leaf Hydraulic Characteristics 

 

 

 

Figure 2.7f: Growth and physiology measurements showing leaf hydraulic characteristics 

measurements pertaining to recovery from drought stress after 12 months growth. 
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Leaf hydraulic characteristic measurements were made on leaves from the standing trees 

remaining after the first harvest.  The leaves represent a significant portion of the 

resistance to water flow in the trees grown in the trial (up to 38% of the total hydraulic 

resistance). Investigation into the components of the leaf that contribute to the resistance 

to water flow was carried out using the HPFM. The method followed by Sack et al 

(2003) was used to isolate the three components that contribute to leaf hydraulic 

resistance. The theory assumes that the components of leaf hydraulic resistance are 

additive in series. For the purpose of this study, looking specifically at leaf hydraulic 

properties, leaf hydraulic resistance normalized by leaf area (MPa s m
2
 kg

-1
) was used as 

the unit of measure therefore:  

Rleaf = Rpetiole + Rvenation+ Rextravascular 

 

The first leaf hydraulic measurement made after measuring Rleaf, involved severing the 

connection of the lamina to the petiole (Fig. 2.14). This gave the portion of resistance 

allocated to the petiole (Rpetiole). Rlamina (MPa kg 
-1

 s m
2
) was then calculated by 

subtracting the petiolar resistance from Rleaf. This was expressed by the following 

equation: Rlamina = Rleaf – Rpetiole. 

 

Figure 2.14: Leaf point at which the petiole is excised during measurement of Rpetiole. 
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The remaining partitioning of leaf hydraulic resistances were performed using one of two 

different vein-cutting techniques as described in Sack et al, 2004. In order to determine 

the resistance of the extravascular tissue, the resistance downstream of the minor veins 

had to be removed. The minor veins were therefore cut (1.5 – 2 mm in length) at random 

locations over the entire lamina (with a scalpel) (Fig. 2.15). Extreme care was taken not 

to cut any major veins and between 120-150 cuts were applied to each leaf (until the 

resistance did not decline any further). The resistance measured after cutting minor veins 

was regarded as the Rvenation (the resistance of the venation of the leaf). The resistance of 

the leaf venation was therefore: Rvenation = Rleaf – Rextravascular . 

 

Figure 2.15:Minor vein cuts on the Eucalyptus leaf used in the measurement of Rvenation. 

 

The hydraulic resistance to water flow in the extravascular tissue is the portion of 

hydraulic resistance that is found in the mesophyll tissue, where the process of 

photosynthesis takes place in the chloroplasts. Correlating the hydraulic resistance to 

water flow in the mesophyll with that of instantaneous assimilation rate provides valuable 

insight into how drought stress ultimately affects growth rate. Hydraulic resistance to 

water flow was measured in selected leaves of each treatment of each clone. After 12 

months tree growth (during winter), a minimum of 9 leaves per water treatment (control, 

chronic and acute stressed / recovery treatments) and eucalypt clone were subjected to the 

“vein cutting” technique described above.  
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The acute water stress treatment was measured when at wilting point (i.e. completely 

drought stressed), and then again when the trees were recovering at day 1, 2 and 7 after 

re-watering. The acute treatment leaves in “recovery” were then compared to the chronic 

and control treatment. The instantaneous assimilation rate and stomatal conductance were 

also measured for the control, chronic and acute stress treatment on day 1, 2 and 7 of 

water stress recovery in order to investigate the relationship between Rleaf, An, gs and the 

recovery response. 

 

 

2.4 Destructive measurements: Leaf Characteristics 

 

A side investigation was performed in order to measure interesting leaf characteristics 

that were not originally part of the current study. Stomatal density (the number of stomata 

on the upper and lower leaf surfaces, per mm
2
), stomatal size (in mm) and δ 

13
C (carbon 

isotope discrimination of leaf dry matter) were determined after 18 months tree growth 

(Fig. 2.7f).  

 

 

 

 

Figure 2.7f: Growth and physiology measurements showing leaf characteristics measurements 

pertaining to recovery from drought stress after 18 months growth. 
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2.4.1 Leaf stomatal density 

 

After 18 months growth (during the second harvest) leaves were selected from each 

treatment for the determination of stomatal size and density. A total of 6 leaves from each 

eucalypt clone subjected to each water treatment (9 treatments) were used for the 

determination of stomatal density. Stomatal density was determined by using cellulose 

acetate film to produce a ‘replica’ of the leaf surface. A strip of cellulose acetate film was 

placed on a leaf surface which had a drop of acetone on it.  

After approximately 60 seconds, the dried acetate strip was peeled off and mounted onto 

a glass slide with a drop of acetone to enable the replica to remain flat on the slide. Slides 

were viewed under a Nikon Biophot light microscope using 20x objective magnification. 

The images were used to calculate stomatal density (per mm
2
) as well as average stomatal 

size per treatment. Replica’s of both the abaxial and adaxial surfaces were produced, 

making sure that the replica was taken parallel to the leaf midrib, on either side of the leaf 

midrib. 

 

2.4.2 Leaf δ 
13

C measurements 

 

Post-harvest at 18 months tree growth, one gram of dried leaf from replicates of each 

treatment (each eucalypt clone subjected to each watering treatment) were sent for 

determination of δ 
13

C (n = 45). The samples were sent to the Light Stable Isotope Unit at 

the University of Cape Town where δ 
13

C was measured using mass spectrophotometry 

and run against a standard set of samples. 

 

 

2.5 Statistical Analysis 

 

All the statistical analyses for this study were conducted using SPSS (version 18). 

Differences were considered significant at the p < 0.05 level. The photosynthetic CO2
 
and 

light response data were initially analysed using a non-linear regression to obtain the 

values of the parameters of the line-fitting equation from each photosynthetic 

measurement.  



Chapter 2 Materials and Methods 40 

________________________________________________________________________ 

 

The derived parameters used to calculate Jmax, CO2 light compensation point, initial slope 

and photorespiration were tested for significance between treatments and clones by 

means of a 2-way ANOVA or Univariate Analysis of Variance. The assumptions of these 

tests (for both light and CO2 response measurements) require the normality of the 

residuals of the ANOVA and the residuals to have equal variance. The normality of the 

residuals were analysed by means of a non-parametric K-S test, and the equality of 

variance of the residuals was analysed by Levene's test of equality. If either of these 

assumptions were violated, the data in question were log transformed and checked again. 

Subsequent to the ANOVA, a post-hoc Tukey test was performed, which allowed the 

data for each treatment to be compared with each of other seven treatments.  

 

The measured values of leaf hydraulic resistances (intact leaf lamina, petiole, and lamina 

with minor veins cut) were subjected to a 2-way ANOVA with the same procedure 

followed by the assumptions of the test. The components of the leaf hydraulic resistance 

reported as proportions of Rleaf (Rpetiole, Rextravascular tissue, Rvenation) were first √arcsin 

transformed and then also subjected to a 2-way ANOVA to compare significant 

differences between treatments. The whole shoot hydraulic resistance measurements 

(Rtotal leaf, Rstem and Rshoot), biomass measurements (dry weights of leaves, stems and 

roots), accumulated leaf area, stem diameter and biomass allocation were all also 

subjected to a 2-way ANOVA and its related assumptions. 

 

Finally a Pearson correlation was used to investigate the relatedness of certain variables 

measured in this study, the principle one being Amax and Kh (whole plant hydraulic 

conductance normalized by total leaf area). The normality of the variables considered for 

the Pearson correlation was tested using a K-S test to ensure the correlation was correct. 

The values generated from the correlations were summarized and correlation graphs were 

shown only for those variables that had a significant correlation, positive or negative. 
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3. Eucalyptus Growth and Physiology in response to 18 months drought stress 

 

Growth and physiology of Eucalyptus clonal hybrids were measured continuously for 18 months. 

Non-destructive morphological (height and diameter) and physiological (photosynthesis and 

plant water relations measurements) were performed at the time intervals indicated in Figure 3.1. 

Destructive morphological (biomass) and physiological (hydraulic characteristics) measurements 

could be performed only at the two harvests at 9 and 18 months (Fig. 3.1). Leaf characteristics 

(including Rleaf) will be discussed separately in Chapter 4, as these measurements were not part 

of the original experiment, but were interesting adjunct investigations. The results that have been 

presented in this chapter were analysed by a 2-way ANOVA, where the main effects of “clone”, 

and “water treatment” and “clone*water treatment” interaction were assessed. As it was difficult 

to clearly present the results for nine different treatments, the results have been shown in terms 

of clone and water treatment only. In the case of a significant interaction, those results (for all 

nine treatments) were then presented below the results of clone and water treatment. 

 

Figure 3.1: Flow diagram illustrating the growth and physiology measurements performed on standing 

trees (non-destructive measurements) and destructive measurements performed at harvest 1 (nine months 

growth) and harvest 2 (18 months growth).  
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3.1 Non-destructive morphological measurements: Height and Diameter 

 

GC eucalypt clones were significantly taller than GUA and GUW after 18 months growth (mean 

= 2.5 m; p < 0.0001; Fig. 3.2; 3.3 (a)). Figure 3.1 shows that the GC clones overtook the GU 

clones, in terms of height growth, after 70 days. The height of the GUA and GUW clones did not 

differ by more than 5% (mean = 2.07 m and 1.96 m respectively), but GC clones are up to 30% 

taller than GU. After approximately 200 days growth, height of the GC clones in the control 

treatment surpassed the drought stress treatments (Fig. 3.2). The control treatments had the 

greatest height in all three clones, but the differences were not significant (Figure 3.3 (b); p = 

0.127). Drought stress imposition did not significantly affect the height growth of GUA and 

GUW clones. Drought stress did reduce the growth in terms of height of GC, where the most 

severe drought stress (acute) showed the least growth in height (Fig. 3.1). Variability of height 

growth within treatments increased with time, as displayed in Figure 3.2. These results show that 

height growth was primarily determined by the clonal hybrid (GC > GU) rather than the 

imposition of chronic or acute drought stress. 

 

For the first 190 days (winter and spring seasons; juvenile phase), growth rates were less than 

0.002 m day
-1

. After 220 days growth, at the start of the summer season, growth rates of the 

Eucalyptus clones increased to between ± 0.007 – 0.010 m day
-1

 for all three clones. The final 

growth rate measurements (during summer at the early adult phase) showed an average of 0.003 

m day
-1

 in all treatments. GC trees had a significantly higher mean growth rate per day (mm 

height growth) in comparison with GUA and GUW (Fig. 3.4 (a); p = 0.002). Mean growth rate 

(in height per day) of GUA and GUW were almost identical (GR = 3.20 and 3.14 mm day
-1

, 

respectively). The control treatment had a greater growth rate than the chronic and acute 

treatments, although this difference was not significant (< 10% difference between treatments; 

Fig. 3.4 (b)). 
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Figure 3.2: Mean height of plants of three Eucalyptus clones grown in response to drought stress for 18 

months (n=7 / 12; bars represent ± 1.0 standard deviation). 

  

 
 
Figure 3.3: Mean height of plants of Eucalyptus (a) clones and (b) response to drought stress treatment 

after 520 days growth (n = 7; bars represent ± 1.0 standard deviation ; different letters denote significance 

difference). 

a a 

b 
a

 a  
a a 

(a)

 a  

(b) 
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Figure 3.4: Mean growth rate (mm height day

-1
) of plants of Eucalyptus (a) clones and (b) response to 

drought stress treatment after 520 days growth (n = 7; bars represent ± 1.0 standard deviation; different 

letters denote significance difference). 

 

 

 

GUW trees have a greater diameter than GUA and GC, although it was never more than 10% 

greater (Fig. 3.5; 3.6 (a)). Figure 3.5 shows that there was no distinct difference among clones or 

in terms of diameter, in contrast to height (Figure 3.2). There was no significant difference in 

diameter between eucalypt clones after 520 days (p = 0.890). The diameter of Eucalyptus trees 

was significantly greater in the control treatment (mean = 40.5 mm; p < 0.0001; Fig. 3.6 (b)). 

Diameter growth was shown to decrease with the imposition of drought stress, and Figure 3.6 (b) 

shows that the smallest tree diameter was measured in the acute drought stress treatment (mean = 

33.2 mm). Variability of diameter growth increased with time, but variability within treatments 

was considerably less than that of height growth (Fig. 3.5). Diameter appeared to be influenced 

primarily by water stress (Control > Chronic > Acute). The acute water stress treatment (drought 

stress watering cycles of complete wilting and then recovery for a period of time) had a more 

negative impact on eucalypt diameter than the chronic water treatment (watered daily to 2% soil 

water content) by decreasing diameter by up to 8% in comparison with the control. 
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 a  

(b)

 a  

a a 

b a 
a 
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Figure 3.5: Mean monthly diameter of plants of three Eucalyptus clones grown in response to drought 

stress for 18 months (n=7 / 12; bars represent ± 1.0 standard deviation). 

 

 
Figure 3.6: Mean diameter of plants of Eucalyptus (a) clones and (b) response to drought stress treatment 

after 520 days growth (n = 7; bars represent ± 1.0 standard deviation; different letters denote significant 

difference). 
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Growth rate, in terms of wood area (mm
2
 / day) was greatest in GUW Eucalyptus clones (Fig. 

3.7 (a); p = 0.005). Figure 3.7 (b) shows that the control treatment had the highest growth rate, of 

wood area per day, and was significantly greater than the acute treatment (p = 0.001). When 

growth was expressed as a function of diameter*height, the GC clones grew significantly more 

than GUA and GUW (Fig. 3.8 (a); p = 0.002). This was prodominantly because GC was 

significantly taller than the other clones. As was evident in growth rate (height or area per day), 

growth as diameter*height was greatest in the control treatment (Fig. 3.8 (b); p = 0.003). The 

acute stress treatment had the lowest growth, thereby showing that that periodic drought stress 

cycles affected growth more negatively than a chronic (constant, low water availability) water 

treatment. 

 

 
 
Figure 3.7: Mean growth rate (mm

2
 diameter day

-1
) of plants of Eucalyptus (a) clones and (b) response to 

drought stress treatment after 520 days growth (n = 7; bars represent ± 1.0standard deviation; different 

letters denote significant difference). 
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Figure 3.8: Mean diameter*height of Eucalyptus (a) clones and (b) in response to drought stress 

treatment after 520 days growth (n = 7; bars represent standard deviation ± 1.0; different letters denote 

statistical significance). 

 

Eucalypt tree volume was calculated with reference to Bredenkamp, 1982 (vander Willigen and 

Pammenter, 1997). Diameter and height were used to determine volume (m
3
) in an euqation 

specific for eucalyptus volume growth. Volume (m
3
) was significantly greater in GC clones 

(3.46 ± 0.16 10
-3

 m
3
) compared with GUA clones (2.71 ± 0.17 10

-3
 m

3
; p = 0.019; Fig. 3.9(a)). 

Figure 3.9 (b) shows that eucalypt tree volume was signifcantly greater in the control treatment 

compared with chronic and acute treatments (p = 0.039).  

 

Growth efficiency was calculated as the amount of wood volume per total leaf area (m
2
) per year 

(vander Willigen and Pammenter, 1997). The GC clone had a significantly higher growth 

efficiency than GU clones (GC = 5.1 10
-3

 m
3
/m

2
/yr; p = 0.022; Fig. 3.10 (a)). GC clones produce 

more wood volume by a smaller leaf area than GU clones. There was no signifcant difference 

between water treatments in terms of growth efficiency, however the acute treatment was slightly 

higher, primarily because trees treated with acute water stress had significantly less total leaf 

area i.e. see also Fig. 3. 28 (p = 0.175; Fig. 3.10 (b)).  
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Figure 3.9: Mean volume (m

3
) of plants of Eucalyptus (a) clones and (b) in response to drought stress 

treatment after 520 days growth (n = 7; bars represent ± 1.0 standard deviation; different letters denote 

significant difference). 

 

 

 

 
 
Figure 3.10: Mean growth efficiency (m

3
 wood / m

2
 leaf area / year) of Eucalyptus (a) clones and (b) in 

response to drought stress treatment after 520 days growth (n = 7; bars represent ± 1.0 standard deviation; 

different letters denote significant difference). 
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3.2 Non-destructive physiological measurements: Photosynthetic characteristics 

3.2.1 A:Cicurves (Photosynthetic Potential) 

 

Maximum photosynthetic potential (assessed as net CO2 assimilation rate at saturating Ci) of the 

trees subject to the control water treatment (after 6 months growth) was highest for the GUA 

clone (33.7 µmol CO2 m
-2

 s
-1

) and GUW (29.3 µmol CO2 m
-2

 s
-1

) (Fig. 3.11 (a) and (b)). Trees of 

the GC clone showed the highest photosynthetic potential for the chronic drought stress 

treatment (Fig. 3.11 (c)). There was a photosynthetic reduction of approximately 33% in the 

stress treatments of the GUA clone, in comparison with the control. The GC clone had the 

greatest potential to withstand drought stress, and displayed the highest photosynthetic rate when 

experiencing chronic stress treatments (mean = 34.8 µmol CO2 m
-2

 s
-1

). The GUW clone had the 

least variable photosynthetic potential between drought stress treatments because the maximum 

photosynthetic rate of the control, chronic and acute recovery treatments were within a 5 µmol 

CO2 m
-2

 s
-1

 range i.e. photosynthesis was not reduced by more than 20% in the stress treatments 

compared with the control (Fig. 3.11 (b)). This infers that the GUW clone is less affected in 

terms of assimilation rate (and hence possibly growth rate) when experiencing either chronic 

drought stress or during recovery from an acute drought stress period. 

 

During the acute drought stress cycle, when trees were being deprived of water, the 

photosynthetic rate was 75% lower than the control (at leaf wilting point and soil moisture 

content of < 0.001 m3 m-3). After Eucalyptus trees were re-watered for two weeks, 

photosynthetic potential was then re-measured (i.e. acute stress recovery). More detailed day by 

day photosynthetic recovery was measured in conjunction with Rleaf in Chapter 4. In all three 

Eucalyptus clones, the photosynthetic rate measured for the acute water stress recovery treatment 

was not significantly different from the control (Fig. 3.11 (a) – (c)). 

It was not possible to accurately reproduce A:Ci curves with many replicates for Eucalyptus trees 

after 18 months growth. Technical difficulties were experienced when the LiCor 6400 was used, 

primarily due to extreme weather conditions where daily temperatures and relative humidity 

reached 42ºC and 95% respectively. It was however possible to calculate individual parameters 

such as Jmax, CO2 compensation point, photorespiration and carboxylation efficiency and 

compare with the values obtained after 6 months growth. 
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Figure 3.11: Mean photosynthetic potential (A:Ci curves) of three Eucalyptus clones (a) GUA, (b) GUW 

and (c) GC in response to drought stress and subsequent drought stress recovery (after 2 weeks of re-

watering) (n = 5 per treatment, standard deviation not included because it distracts from the curve shape). 

(a) 

(b) 

(c) 
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Figure 3.12 (a) and (b) show that Jmax (maximum photosynthetic rate in response to change in 

CO2 concentration) was not different between Eucalyptus clones at six or 18 months (p = 0.061 

and p = 0.761 respectively). Maximum photosynthetic rates were 10% (± 2 -3 µmol CO2 m
-2

 s
-1

) 

lower after 18 months compared with 6 month old trees (Fig. 3.12 (a) and (b)). The decrease in 

Jmax could suggest a down-regulation of photosynthetic activity with tree age. 

Jmax was highest in the control treatment (mean = 30.6 µmol CO2 m
-2

 s
-1

) but was not 

significantly different from the chronic stress treatment (mean = 29.3 µmol CO2 m
-2

 s
-1

) after 6 

months growth (Fig. 3.13 (a)). The acute stress treatment was 60% less than the control (mean = 

12.8 µmol CO2 m
-2

 s
-1

) and was significantly different from the other three water treatments 

measured (p < 0.0001). After re-watering Eucalyptus trees subject to acute stress treatment, Jmax 

was re-measured and was not different from the control or chronic stress treatment (mean = 29.3 

µmol CO2 m
-2

 s
-1

). Figure 3.13 (b) shows that the Jmax measured after 18 months growth was 

completely different from that at six months. Jmax was highest in the acute recovery stress 

treatment (mean = 27. 3 µmol CO2 m
-2

 s
-1

; p < 0.0001). Due to equipment difficulties, it was not 

possible to measure Jmax (or any other photosynthetic parameters) during the imposition of acute 

drought stress. Jmax was lowest, but different from the GUW clone (mean = 23.9 µmol CO2 m
-2

 s
-

1
), in GUA Eucalyptus clones (mean = 18.3 µmol CO2 m

-2
 s

-1
). Similar to Eucalyptus clonal 

response to age, Jmax decreases in water treatments from 6 – 18 months. 

After six months growth, Jmax showed a significant clone*water treatment interaction (p = 0.001). 

Figure 3.14 shows that Jmax decreased significantly at the point of wilting (in all eucalypt clones) 

when exposed to acute drought treatment. Although Jmax was relatively lower (< 5 µmol CO2 m
-2

 

s
-1

) when recovering from acute drought stress, the difference was not significant from the 

control for any of the clonal hybrids (Fig. 3.14). Water stress therefore affects maximum 

photosynthetic rate in a limited capacity as long as there was a period of recovery, which was 

facilitated by re-watering Eucalyptus trees. 
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Figure 3.12: Mean maximum photosynthetic rate (Jmax) of clones when Eucalyptus trees were (a) 6 

months and (b) 18 months old (n = 15 per clone; different letters denote significant difference). 

 

 

 

 
 
Figure 3.13: Mean maximum photosynthetic rate (Jmax) of water treatments when Eucalyptus trees were 

(a) 6 months and (b) 18 months old (n = 15 per water treatment; different letters denote significant 

difference). 
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Figure 3.14: Mean maximum photosynthetic rate (Jmax) of clone*water treatments of eucalypt plants 

when Eucalyptus trees were 6 months old (n = 5 per treatment; different letters denote significant 

difference) amongst treatments within a clone. 
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The CO2 compensation point (Γ) illustrates the CO2 concentration at which net photosynthesis 

becomes positive (Fig. 3.15 and 3.16). Neither clone nor water treatment had any impact on the 

CO2 compensation point of Eucalyptus trees after 6 and 18 months growth. CO2 compensation 

point was greater after 18 months growth, but the variability within water treatments and clones 

was also greater (Fig. 3.15 (b) and 3.16 (b)). 

 

 

 
Figure 3.15: Mean CO2 compensation point (Γ) of clones mol

-1
 when Eucalyptus trees were (a) 6 months 

and (b) 18 months old (n = 15 per clone; different letters denote significant difference). 

 

 

 

 
 

 
Figure 3.16: Mean CO2 compensation point (Γ) of water treatments measured at when Eucalyptus trees 

were (a) 6 months and (b) 18 months old (n = 15 per water treatment; different letters denote significant 

difference). 
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Photorespiration, the rate at which CO2 is produced instead of consumed, can be viewed as a 

protective measure when stress reduces CO2 fixation. Figure 3.17 shows that photorespiration of 

the GUW clones was higher (less photorespiration) than GUA and GC, and the difference was 

significant (p = 0.034). GC had the highest photorespiration rate at both 6 and 18 months (mean 

= -9.5 and -7.75 µmol CO2 m
-2

 s
-1

 respectively). Photorespiration was significantly less in the 

acute stress treatments (at wilting point) (mean = -2.2 µmol CO2 m
-2

 s
-1

; p < 0.0001; Fig. 3.18 

(a)). After 18 months growth, photorespiration was less than the control in the acute and chronic 

stress treatment (p = 0.068; Fig. 3. 18 (b)).  

 

 

 
 

 
Figure 3.17: Mean photorespiration of clones when Eucalyptus trees were (a) 6 months and (b) 18 

months old (n = 15 per clone; different letters denote significant difference). 
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Figure 3.18: Mean photorespiration of water treatments when Eucalyptus trees were (a) 6 months and (b) 

18 months old (n = 15 per water treatment; different letters denote significant difference). 

 

 

Carboxylation efficiency (Vcmax, which is the initial slope of an A:Ci curve) was greatest in the 

GC clone after 6 and 18 months growth (p = 0.063 and p =0.358 respectively; Fig. 3.19 (a) and 

(b)). The difference between clones was not statistically significant, possibly due to high 

variability within each clone. As shown in Figure 3.11 (a) and (b) in terms of Jmax, Vcmax was 

lower after 18 months growth in comparison with 6 months growth (Fig. 3.19 (a) and (b)). Vcmax 

of eucalypt leaves could also possibly down-regulate with age, and perhaps have an influence on 

net photosynthetic rate.  

Figure 3.20 (a) illustrates that Vcmax was significantly reduced only in the acute stress treatment 

(at wilting point) although the variability measured is extremely high (mean = 0.050 ± 0.100; p < 

0.0001). After 18 months growth, Vcmax is lowest in the chronic treatment (mean = 0.068; p = 

0.071) and concurrent with the date for the clones, there appears to be a marked reduction in 

Vcmax with age in all water treatments (Fig. 3.19 (b)).  
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Figure 3.19: Mean carboxylation efficiency (Vcmax) of clones when Eucalyptus trees were (a) 6 months 

and (b) 18 months old (n = 15 per clone; different letters denote significant difference). 

 

 

 
 

 
Figure 3.20:  Mean carboxylation efficiency (Vcmax) of water treatments when Eucalyptus trees were (a) 

6 months and (b) 18 months old (n = 15 per water treatment; different letters denote significant 

difference). 
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3.2.2 Actual Photosynthetic Rates (Spot Measurements) 

 

Photosynthetic spot measurements (actual photosynthetic rate, using the sun / sky LiCor chamber 

top) were measured on Eucalyptus leaves at 6, 12 and 18 months. Spot measurements were 

therefore performed in spring, winter and summer (6, 12 and 18 months respectively) in order to 

determine seasonal photosynthetic change, although tree age then did become a contributing 

factor. Measurements performed on the acute stress Eucalyptus trees were done on leaves at least 

one week after recovering from a water stress cycle event. Accurate spot measurements could 

not be executed on eucalypt leaves when at their wilting point (end of the drought stress cycle) as 

the data were unreliable. This occurred because stomata were closed at the wilting point and 

internal Ci values were measured as negative numbers. To continuously compare the acute stress 

treatment it was decided that acute recovery photosynthetic rates could be contrasted against the 

control and chronic treatments.  

 

Mean assimilation rate (An) was significantly lower in the GUW clones at 6 and 12 months, 

compared with the GC clone (p = 0.05; p = 0.005; Table 3.1). After 18 months tree growth, An 

did not differ between all three Eucalyptus clones (p = 0.217). During the winter measurements 

(at 12 months growth), An declined in all three eucalypt clones by up to 50% (Table 3.1). An was 

seen to increase again during summer (18 months) but with the exception of GUW, assimilation 

rate had decreased in comparison with juvenile Eucalyptus tree assimilation rates. The decline of 

photosynthetic rate, with increasing tree age, was also evident when photosynthetic potential 

(Jmax) was measured. 

 

An did not change by more than 0.5% in the control treatment over 18 months and 3 different 

seasons (Table 3.1). The chronic and acute (recovery) stress treatment both showed a decline in 

An during winter. Although An increased at 18 months, it was approximately 25% less than An at 

juvenile tree growth (6 months). The only difference between water treatments was shown to be 

in the chronic treatment, which was significantly less at 12 months, in comparison with the 

control and acute recovery treatments (p = 0.0001; Table 3.1). After 12 and 18 months, the 

control treatment had the greatest actual assimilation rate.  
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Table 3.1:Mean actual photosynthetic rate (An, µmol CO2 m
-2

 s
-1

) of Eucalyptus clonal hybrids 

in response to water stress (p values derived from a two-way analysis of variance; different 

letters denote significance; clone*water treatment interactions are reported only if significant) 

Parameter Treatment /   Mean ± SE  Mean ± SE  Mean ± SE 

  Clone   6 months  12 months  18 months 

An  GUA   14.15 ± 1.08
a
  6.48± 0.56

a  
10.56± 0.73

a 
 

 GUW   11.44± 1.08
b
  6.91± 0.60

a  
12.23± 0.73

a 
 

  GC   15.15± 1.02
a
  9.22± 0.6

b
  12.28± 0.67

a
  

  p-value  0.05   0.005   0.217 

 

Control  12.47± 1.02
a
  12.71± 0.78

a  
12.57± 0.73

a 
 

  Chronic  14.22± 1.08
a
  8.82± 0.74

b 
10.59± 0.73

a 
 

  Acute (Recovery) 13.95± 1.08
a
  9.33± 0.74

b
  11.86± 0.69

a 
 

  p-value  0.421   0.0001   0.202 

______________________________________________________________________________ 

3.3 Non-destructive measurements: Plant Water Relations 

3.3.1 Stomatal Conductance 

 

Stomatal conductance (gs) was greatest in GC clones at 6, 12 and 18 months (Table 3.2). Table 

3.2 shows that GC and GUA were significantly greater than GUW at six months growth only (p 

= 0.001). Stomatal conductance was highest during winter (at 12 months growth) for all three 

Eucalyptus clones. After six months growth, gswas lowest in the control treatment but at 12 and 

18 months, gs was highest in the control (Table 3.2). For all three water treatments, gswas highest 

during winter. Transpiration (En) was greatest, for all three Eucalyptus clones, after six months 

growth (table 3.2). En was lowest during winter (in contrast to gs) for Eucalyptus clones, and GC 

was higher than GUA and GUW, although never significantly so. Table 3.2 shows that En was 

greatest at six months growth for all three water treatments. At 12 and 18 months the chronic 

water treatment was significantly lower than the control and acute (recovery) treatments (p = 

0.0001; p = 0.024). En showed a similar trend, when compared with An, where En decreased 
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during winter (12 months) and was still reduced after 18 months tree growth. Evapotranspiration 

could also possibly show down-regulation with age, as evident in An. 

 

Table 3.2: Mean actual stomatal conductance (gs, mmol mol
-1

) and transpiration rate (E, mmol m
-2 

s
-1

) of 

Eucalyptus clones in response to drought stress (p values derived from a two-way analysis of variance; 

different letters denote significance; clone*water treatment interactions are reported only if significant) 

Parameter Treatment  Mean ± SE  Mean ± SE  Mean ± SE 

     6 months  12 months  18 months 

gs  GUA   0.206 ± 0.02
a
  0.351 ± 0.21

a  
0.341 ± 0.09

a 
 

 GUW   0.166 ± 0.01
a
  0.421 ± 0.22

a  
0.254 ± 0.09

a 
 

  GC   0.256± 0.02
b
  0.759 ± 0.23

a
  0.423 ± 0.08

a
  

  p-value  0.001   0.378   0.449 

 

Control  0.190± 0.02
a
  1.590± 0.29

a  
0.429 ± 0.09

a 
 

  Chronic  0.201± 0.02
ab

  0.341± 0.28
b 

0.266 ± 0.09
a 

 

  Acute (Recovery) 0.237± 0.01
b
  0.490± 0.28

b
  0.334 ± 0.08

a 
 

  p-value  0.071   0.003   0.490 

 

En  GUA   4.67 ± 0.61
a
  2.36± 0.21

a  
3.90± 0.40

a 
 

 GUW   4.12±0.61
a
  2.48± 0.22

a  
3.60± 0.40

a 
 

  GC   5.94± 0.58
a
  2.73± 0.23

a
  4.12± 0.38

a
  

  p-value  0.105   0.475   0.701 

 

Control  5.36± 0.58
a
  4.21± 0.29

a  
4.62± 0.40

a 
 

  Chronic  4.22± 0.61
a
  2.54± 0.27

b 
2.82± 0.40

b 
 

  Acute (Recovery) 5.14± 0.61
a
  3.27± 0.27

ab
  4.22± 0.38

a 
 

  p-value  0.372   0.0001   0.024 

______________________________________________________________________________ 
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Water use efficiency (WUE, the amount of CO2 fixed per unit water transpired) was marginally 

higher in GUW Eucalyptus clones, but none of the mean WUEs were significantly different from 

one another (Fig. 3.21). GUA showed a decrease in WUE after 18-months growth, while WUE 

of GC clones increased after 18-months growth. 

The chronic water treatment had the greatest WUE, compared with the control and acute 

(recovery) treatments (Fig. 3.22). High variability within treatments led to lack of significance 

between any water treatments. The control and chronic treatments increased WUE with age (6 – 

18 months), although acute recovery treatments decreased (Fig. 3.22).  

 

 
Figure 3.21:Mean Water Use Efficiency (WUE, CO2 fixed per unit water transpired) measured at 6, 12 

and 18 months of Eucalyptus clones grown under to water stress  (different letters denote significant 

difference).   
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Figure 3.22: Mean Water Use Efficiency (WUE, asssimilate per unit water transpired) measured at 6, 12 

and 18 months of Eucalyptus in response to drought stress  (different letters denote significant difference). 

  

 

Stomatal conductance (gs) and assimilation rate (An) were correlated with each other to 

determine the relationship between the two. Figure 3.23 shows that An and gs were linearly and 

positively correlated for the three water treatments at 6 months old. The acute (recovery) 

treatment had the strongest linear relationship (R
2
 = 0.551) and the overall relationship between 

An and gs was significant and positive (p = 0.014). As gs increased, An increased linearly. Figure 

3.24 illustrates that there was a positive, linear relationship between An and gs (R
2
 = 0.288). After 

18 months tree growth, An was positively and significantly correlated with gs when expressing 

the relationship in terms of water stress treatment (p = 0.025; Figure 3.25). 
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Figure 3.23: Correlation between stomatal conductance (gs) and assimilation rate (An) of Eucalyptus 

clonal hybrids (GUA, GUW and GC) at six months old. 

 

 

Figure 3.24: Correlation between stomatal conductance (gs) and assimilation rate (An) of water 

treatments (control, chronic and acute stress) imposed on Eucalyptus trees at six months old. 
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Figure 3.25: Correlation between stomatal conductance (gs) and assimilation rate (An) of water treatments 

(control, chronic and acute stress) imposed on Eucalyptus trees at 18 months tree growth. 

 

 

 

3.4 Destructive measurements: Biomass at harvest (9 and 18 months) 

 

Total biomass after nine months growth was significantly greater in the GC clone (Fig. 3.26 (a); 

p = 0.02). After 18 months growth however, there was no statistically significant difference 

between clones although GUA had the greatest total biomass (mean = 1.7 kg; Fig. 3.27 (a); p = 

0.061). The GUW clone had the lowest total biomass (mean = 1.3 kg) and the variability within 

clones was relatively high. Figure 3.26 (b) showed that total biomass did not differ between 

water treatments after nine months growth (p = 0.493). Total biomass was shown to decrease in 

water treatments (control > chronic > acute) after 18 months growth, but the differences in total 

biomass were not found to be statistically significant (p = 0.073). 
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Figure 3.26: Total biomass (kg) of three Eucalyptus clones (a) clonal effect after 9 months and 18 months 

growth; (b) water treatment effect after 9 months growth and 18 months growth (Different letters denote 

significant difference between clones or treatments).   
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The GUA clone had the greatest leaf and stem biomass after nine and 18 months growth (Table 

3.3). At both harvests, the GC clone had significantly less leaf biomass than the GUA and GUW 

clones. Leaf biomass was not different between water treatments after nine months but was 

significantly reduced (by 30%) in the acute stress treatment after 18 months growth (Table. 3.3). 

The GUA clone had significantly more stem biomass after 18 months compared with GUW and 

GC (p = 0.041). The control treatment had the greatest stem biomass after nine and 18 months 

but was not significantly higher than chronic or acute treatments for either harvest. GC had up to 

50% more root biomass than GUA and GUW after nine months growth (p < 0.0001). Although 

the difference was still significant (p < 0.0001) after 18 months, GC was only 15 - 25% higher 

than the GU clones (Table 3.3). The acute stress treatment showed significantly less root biomass 

(reduction of 25%) than the control and chronic treatment after 18 months tree growth. 
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Table 3.3:Biomass parameters (leaf, stem and root dry mass) of Eucalyptus clonal hybrids in response to 

drought stress (p values derived from a two-way analysis of variance) 

 

Parameter Treatment/ Mean ± SE  Mean ± SE   p-value 

  Clone  9 months  18 months        9 months       18 months 

Leaf                GUA  0.155 ± 0.07
a
  0.364 ± 0.16

a
 

Biomass  GUW  0.130 ± 0.03
b
  0.281 ± 0.08

ab
 

(kg)  GC  0.124 ± 0.01
b
  0.219 ± 0.06

b
  0.029  0.003 

   

Control 0.135 ± 0.05
a
  0.340 ± 0.08

a
 

  Chronic 0.143 ± 0.03
a
  0.307 ± 0.13

a
 

  Acute  0.131 ± 0.02
a
  0.210 ± 0.11

b
  0.567  0.002 

 

Stem                GUA  0.137 ± 0.04
a
  0.720 ± 0.28

a
 

Biomass  GUW  0.116 ± 0.02
a
  0.507 ± 0.20

b
 

(kg)  GC  0.133± 0.02
a
  0.522 ± 0.15

b
  0.096  0.041 

   

Control 0.142± 0.03
a
  0.620 ± 0.15

a
 

  Chronic 0.126± 0.02
a
  0.578 ± 0.29

a
 

  Acute  0.119± 0.02
a
  0.534 ± 0.24

a
  0.092  0.632 

 

Root                GUA  0.143 ± 0.05
a
  0.634 ± 0.20

a
 

Biomass  GUW  0.174 ± 0.06
a
  0.560 ± 0.17

a
 

(kg)  GC  0.298± 0.09
b
  0.880 ± 0.22

b
  0.000  0.000 

   

Control 0.217± 0.08
a
  0.760 ± 0.22

a
 

  Chronic 0.201± 0.12
a
  0.730 ± 0.23

a
 

  Acute  0.196± 0.09
a
  0.580 ± 0.24

b
  0.726  0.030 
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Figure 3.27 (a) showed that the GC clone allocated biomass differently from the GU clones. GC 

allocated more than 50% of its biomass to roots after both nine and 18 months, and allocated the 

least amount of biomass to the stems, which are the plant component responsible for tree 

productivity. The GUA clone allocated the majority of its biomass to stem (36 and 42%, at 9 and 

18 months respectively). It can also be noted that allocation of biomass to leaves decreased with 

age, whereas allocation to stem increased (Fig. 3.27 (a)). 

The proportions of biomass allocated to roots, stems and leaves did not differ by more than 4% 

between water treatments at both nine and 18 months (Fig. 3.27 (b)). Biomass allocation, in 

response to tree age, showed that allocation to leaf biomass reduced by 30% and stem biomass 

increased after 18 months tree growth, irrespective of watering treatment. 
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Figure 3.27: Proportional (%) allocation of biomass to roots, stems and leaves (%) by the three 

Eucalyptus clones (a) clonal effect after 9 and 18 months growth; (b) water treatment effect after 9 and 18 

months growth. 
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Total leaf area was greatest in the GUA clone after nine months (Fig. 3.28 (a); p < 0.0001; mean 

= 1.3 m
2
). After 18 months, the GUW clone had more leaf area than GUA, although the 

difference was not significant. The GC clone had significantly less (25 – 35%) leaf area after 9 

and 18 months. Figure 3.28 (b) showed that there was no difference between leaf area in all three 

treatments (p = 0.862) after 9 months. Leaf area differed in water treatments (control > chronic > 

acute) after 18 months (p = 0.008). Acute (periodic and cyclic drought stress) most negatively 

reduced leaf area, by up to 25% compared with the control. 
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Figure 3.28: Total leaf area (m

2
) of three Eucalyptus clones (a) clonal effect after 9 months and 18 

months growth; (b) water treatment effect after 9 months growth and 18 months growth (Different letters 

denote significant difference between clones or treatments).   

 

 

Specific leaf area (SLA) is expressed as the area of leaf per unit leaf biomass. There was no 

difference in SLA between clones or water treatments after nine months (Table 3.4). SLA was 50 

– 60% greater after 18 months relative to 6 months in all clones and water treatments. The GUW 

clone had significantly greater SLA than the GUA and GC clones (p = 0.031) thereby inferring 

that GUW leaves have more area per unit leaf mass after 18 months growth. Plants subjected to 

the acute stress had significantly higher SLA than the chronic and control treatment (Table 3.4). 

GC clones had a significantly greater (40 – 60% greater) root:shoot than GU clones after both 9 

and 18 months (Table 3.4). Previously, Fig. 3.27 showed that GC clones allocated 50% of their 

biomass exclusively to roots. There was however no difference in root:shoot between the water 

treatments at both harvest intervals (Table 3.4).  
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Table 3.4:Biomass parameters (Specific leaf area and Root : Shoot) of Eucalyptus clonal hybrids 

in response to drought stress (p values derived from a two-way analysis of variance) 

 

Parameter Treatment Mean ± SE  Mean ± SE   p-value 

    9 months  18 months        9 months       18 months 

SLA  GUA  2.66 ± 0.09
a
  5.13 ± 0.35

a
 

(m
2
/kg) GUW  2.51 ± 0.09

b
  6.43 ± 0.33

b
 

  GC  2.45± 0.09
a
  5.55 ± 0.34

a
  0.281  0.031 

  Control 2.56± 0.09
a
  5.39 ± 0.34

ab
 

  Chronic 2.54± 0.09
a
  5.23 ± 0.34

a
 

  Acute  2.51± 0.09
a
  6.49 ± 0.34

b
  0.921  0.027 

 

root:shoot GUA  0.49 ± 0.07
a
  0.62± 0.06

a
 

 GUW  0.71± 0.07
a
  0.75± 0.06

a
 

  GC  1.16± 0.07
b
  1.22± 0.06

b
  0.0001  0.0001 

  Control 0.80± 0.07
a
  0.83± 0.06

a
 

  Chronic 0.77±0.07
a
  0.92± 0.06

a
 

  Acute  0.80± 0.07
a
  0.84± 0.06

a
  0.933  0.553 

______________________________________________________________________________ 
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3.5 Destructive measurements: Whole Plant Hydraulic Characteristics 

 

Hydraulic conductance (Kh) was measured and expressed as a function of flow rate normalized 

per unit leaf area (m
2
). Kh was significantly lower in the GUA clones after nine months growth 

(Fig 3.29 (a); p < 0.0001). GC clones had a 50% greater Kh than GUA. Figure 3.29 (a) shows 

that Kh increased by approximately three times in all three clones after 18 months. An increase in 

total biomass accompanies a concurrent increase in Kh because more biomass provides more 

hydraulic pathways to conduct water thereby increasing Kh. The variability within clones was 

very high, largely in part due to the difficulty of accurately measuring hydraulic flow of trees of 

greater than 2.0 meters height with the available equipment. There was no difference in Kh 

between Eucalyptus clones after 18 months growth, although GUW did have the highest mean 

Kh (Fig. 3.29 (a); p = 0.116). Kh was not significantly different between water treatments after 9 

and 18 months (Fig. 3.29 (b); p = 0.730 and 0.290 respectively). The variability within 

measurements of the same water treatment were relatively even after nine months, but variability 

after 18 months was extremely high. The chronic treatment had the highest Kh by approximately 

20% compared with the control (Fig. 3.29 (b)). 

 

Hydraulic resistance to water flow (Rh) is the inverse of Kh and was also expressed normalized 

per unit leaf area (m
2
). The GUA clone had the highest Rh after 9 and 18 months (Fig. 3.30 (a); p 

< 0.0001; p = 0.174 respectively). Rh also decreased with age because the number of hydraulic 

pathways increased with age, therefore decreasing overall resistance to water flow. Fig 3.30(b) 

shows that Rh was not significantly different between water treatments after 9 and 18 months (p 

= 0.91; p = 0.081). Rh was highest in the control treatment, after 18 months, which was the 

opposite trend compared with trees measured at nine months. It would be expected that the 

control treatment would have the lowest Rh because no water stress was imposed. On the other 

hand, there could be a decrease in Rh with stress as a compensating method to increase the flow 

of the limited water through the plant to the leaves. 
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Figure 3.29: Total hydraulic conductance (Kh) of three Eucalyptus clones (a) clonal effect after 9 months 

and 18 months growth; (b) water treatment effect after 9 months growth and 18 months growth (Different 

letters denote statistical significance between clones or treatments).   
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Figure 3.30: Total hydraulic resistance (Rh) of three Eucalyptus clones (a) clonal effect after 9 months 

and 18 months growth; (b) water treatment effect after 9 months growth and 18 months growth (Different 

letters denote statistical significance between clones or treatments).   
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Table 3.5 shows the hydraulic resistance to water flow in individual plant components (roots, 

stems and leaves) which are expressed as components of Rn. The GC clone had significantly 

lower Rroot at nine months, primarily due to the high root biomass possessed by GC clones. GUA 

had significantly higher Rstem and Rleaves than GUW and GC after 9 and 18 months. There was 

however no difference in hydraulic characteristics among water treatments at both harvest 

periods (Table 3.5). 

 

The allocation of hydraulic resistance to plant components (root, stems and leaves) is shown in 

Figure 3.31. Panel (a) displays allocation of resistance in clones after 9 and 18 months. At nine 

months, more than 55% of the total Rh resided in the roots, in all three clones. This proportion 

was similar to that seen in Figure 3.26 (a), where more than 50% of the total biomass was found 

in the roots. GUW clones had 10% more resistance in the roots than GUA and GC. A completely 

different pattern of allocation of resistance was seen after 18 months growth (Fig. 3.31 (a)). The 

proportion of hydraulic resistance was lowest in the roots, in all three clones. The allocation of 

resistances to roots, stems and leaves did not differ significantly between clones after 9 and 18 

months growth. 

When assessing the allocation of resistance in response to water treatments, Figure 3.31 (b) 

shows that up to 60% of the resistance can be attributed to the roots at nine months. After 18 

months however, the proportion of the resistance in the leaves was significantly greater. The 

proportion of resistance in the above-ground plant components (stems and leaves) increased by 

50% by 18 months (Fig. 3.31 (b)). There was no difference between water treatments in the 

allocation of resistances to plant components at both harvests. 
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Table 3.5:Hydraulic characteristics (leaf, stem and root hydraulic resistance, Rh (10
4
MPa m

2
 s kg

-1
)) of 

Eucalyptus clonal hybrids in response to drought stress (p values derived from a two-way analysis of 

variance; clone*water treatment interactions reported only if significant) 

Parameter Treatment/ Mean ± SE  Mean ± SE   p-value 

  Clone  9 months  18 months        9 months       18 months 

Rroot  GUA  0.736 ± 0.05
a
  0.051 ± 0.02

a
 

 GUW  0.601 ± 0.04
a
  0.048 ± 0.02

a
 

  GC  0.421± 0.04
b
  0.061 ± 0.02

a
  0.0001  0.849 

   

Control  0.570± 0.05
a
  0.340 ± 0.08

a
 

  Chronic  0.630± 0.04
a
  0.307 ± 0.13

a
 

  Acute  0.559± 0.04
a
  0.210 ± 0.11

a
  0.483  0.669 

 

Rstem  GUA  0.209 ± 0.01
a
  0.159± 0.01

a
 

 GUW  0.129± 0.01
b
  0.117± 0.01

b
 

  GC  0.132± 0.01
b
  0.124± 0.01

ab  0.0001  0.036 

   

Control  0.150± 0.008
a
  0.150± 0.01

a
 

  Chronic  0.152± 0.008
a
  0.117± 0.01

a
 

  Acute  0.168± 0.008
a
  0.133± 0.01

a
  0.227  0.146 

 

Rleaves  GUA  0.346 ± 0.03
a
  0.355± 0.07

a
 

  GUW  0.180± 0.02
b
  0.168± 0.07

a
 

  GC  0.226 ± 0.02
b
  0.277± 0.07

a
  0.0001  0.229 

   

Control  0.232± 0.03
a
  0.391± 0.07

a
 

  Chronic  0.246± 0.02
a
  0.177± 0.07

a
 

  Acute  0.275 ± 0.02
a  

0.212 ± 0.07
a  

0.450  0.076 

_____________________________________________________________________________ 
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Figure 3.31: Allocation of hydraulic resistance to plant components (roots, stems and leaves) of three 

Eucalyptus clones (a) clonal effect after 9 and 18 months growth; (b) water treatment effect after 9 and 18 

months growth.  
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3.6 Growth and Physiology Characteristics: Correlated Biomass and Rh Parameters 

 

Biomass and whole-plant hydraulic characteristics were assessed to determine whether there 

were any relationships between these parameters. Establishing a clear relationship between, for 

example, biomass and hydraulic conductance (Kh) will determine if an increase in the number of 

hydraulic pathways in a Eucalyptus tree will ensure an increase in total biomass long-term. 

Figure 3.32 shows that as Kh increased, total biomass increased. An increase in biomass 

increased the total number of hydraulic pathways available for water flow thereby increasing Kh. 

Additionally, an increase in hydraulic conductivity could lead to higher leaf water potentials, 

higher stomatal conductance and higher CO2 assimilation (the ‘hydraulic limitation hypothesis’). 

The correlation between total biomass and Kh was significantly positive (p = 0.03). Considering 

that Rh is the inverse of Kh, Figure 3.33 shows that Rh was significantly and negatively correlated 

with total biomass. 

 

 

 

 
 

Figure 3.32: Correlation between hydraulic conductance (Kh) and total biomass (kg) of plants subjected 

to the watering treatments (control, chronic and acute stress). 
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Figure 3.33: Correlation between hydraulic resistance (Rh) and total biomass (kg) of plants subjected to 

watering treatments (control, chronic and acute stress). 

  

 

The allocation of biomass to roots (expressed as a percentage of total biomass) was significantly 

and negatively correlated with allocation of biomass to stems (Fig. 3.34; p < 0.0001). The 

proportion of biomass allocated to leaves was 25% less than the stems. Figure 3.35 shows that 

percentage biomass allocated to leaves was significantly and negatively correlated with that of 

percentage root biomass (p = 0.001). 

 

 

 

 

 

 

 

 

 

 

 

p < 0.001 
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Figure 3.34: Correlation between allocation of biomass to roots and stems in plants subjected to water 

treatments (control, chronic and acute stress) at 18 months (p = 0.014). 

 

 
Figure 3.35: Correlation between allocation of biomass to roots and leaves in plants subjected to water 

treatments (control, chronic and acute stress) at 18 months (p < 0.0001). 
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3.7 Growth and Physiology Characteristics: Correlated Photosynthetic and Hydraulic 

Parameters 

 

Photosynthetic (actual/spot measurements), growth efficiency and whole-plant hydraulic 

characteristics (particularly Kh) were investigated for any relationship between individual 

parameters. Figure 3.36 shows that as Kh increases, growth efficiency increases (R
2
 = 0.320). 

Growth efficiency is considered wood volume per total leaf area, and eucalypt trees subjected to 

the acute water treatment had significantly less leaf area and therefore higher growth efficiency 

in relation to Kh. 

 

 

Figure 3.36: Correlation between Kh (hydraulic conductance, normalized by leaf area) and growth 

efficiency in plants subjected to watering treatments (control, chronic and acute stress) at 18 months. 

 

Figure 3.37 and 3.38 show the positive, significant correlation between Kh and An at 9 and 18 

months growth, respectively (R
2
 = 0.15 and 0.45). An increase in Kh accompanied an increase in 

An. Maximum An was lower after 18 months tree growth, whereas Kh was higher.  A positive 

relationship was also evident between Kh and gs (Fig. 3.39 and 3.40 at 9 and 18 months tree 

growth, respectively). 
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Figure 3.37: Correlation between Kh (hydraulic conductance, normalized by leaf area) and An in plants 

subjected to watering treatments (control, chronic and acute stress) at 9 months (p = 0.041). 

 

 

Figure 3.38: Correlation between Kh (hydraulic conductance, normalized by leaf area) and An in planted 

subjected to watering treatments (control, chronic and acute stress) at 18 months (p = 0.032). 
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Figure 3.39: Correlation between Kh (hydraulic conductance, normalized by leaf area) and gs in plants 

subjected to watering treatments (control, chronic and acute stress) at 9 months (p = 0.031). 

 

 
 

Figure 3.40: Correlation between Kh (hydraulic conductance, normalized by leaf area) and gs in plants 

subjected to watering treatments (control, chronic and acute stress) at 18 months (p = 0.04). 
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3.8 Discussion 

 

Sappi Forests Research embarked on a tree breeding program with eucalypts in 1984 (Morris, 

2008). The program has made Sappi self-sufficient in genetically improved orchard seed and 

hybrid combinations are continuously produced for vegetative propagation (Morris, 2008). The 

clones chosen for planting are determined based on market requirements, yield improvement and 

the need to decrease risk, particularly in terms of drought risk (Morris, 2008). The selection of 

clones has to be matched with the site i.e. site-species matching, to ensure productivity in that 

specific climate (Pallett, 2005; Boreham and Pallett, 2009). Demands for improved productivity 

have created a need for research into the understanding of morphological and physiological 

characteristics of Eucalyptus trees of different clones. Water stress is one of the most important 

environmental factors limiting plant productivity and research knowledge of the response to 

water stress in Eucalyptus clones is essential for maintaining productivity and site-species 

matching.  

 

Considering that few studies have been carried out on the morphological and physiological 

response to water stress of Eucalyptus clones in South Africa, the aim of this study was to 

investigate these responses in three South African produced Eucalyptus clones under three 

different watering regimes. Morphological assessments were measured by means of height, 

diameter, biomass and leaf area over an 18 month trial period. Physiological responses of the 

clones by water stress included the assessment of photosynthetic characteristics and hydraulic 

conductance to water flow. The first objective of the current study was to measure the impact of 

watering regime on the morphology (height and diameter) of three Eucalyptus clonal hybrids.  

Figure 3.41 displays a results summary diagram showing which morphological or physiological 

parameters were significantly affected by clone, water treatment or age.   
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Figure 3.41: Summary of results of physiological and morphological parameters that are affected by 

eucalypt clone, water treatment or tree age in plants grown for 9 or 18 months. 

RESULTS SUMMARY 
 

Physiological and Morphological Parameters Are Affected By: 

CLONE 

 
• Height (GC > GU) 

• Diameter Growth Rate 

(GUW > GUA & GC) 

• Growth Efficiency (GC > 

GU) 

• Volume (GC & GUW > 

GUA) 

• A
n
 (GUW signif lower at 6 

months) 

• Root:shoot (GC > GU) 

• SLA (GUW > GUA & 

GC) 

• K
h
 (signif lower in GUA 

at 9 months) 

• Leaf Area (GU > GC) 

 
GC: Growth efficiency 
GUW: Diameter growth 
GUA: Leaf area supporting growth 

WATER TREATMENT 

 
• Diameter (control > 

stress) 

• Volume (control > stress) 

• J
max

 (↓ at acute wilting 

point) 

• V
cmax

 (↓ at acute wilting 

point) 

• E
n 
+ WUE (↓ in chronic 

treatment) 

• g
s 
(↑ in control treatment) 

• SLA (acute > control & 

chronic) 

• Leaf Area (control > 

stress) 

 

 

Control: Diameter; leaf area 
Chronic: Improved WUE 
Acute: SLA signif higher 

AGE 

 
• A

n
 & E

n
 (↓ with age and 

winter) 

• g
s
 (↑ with age and 

winter) 

• Biomass allocation (↓ to 

leaves; ↑ to stems) 

• SLA (significant only at 

18 months) 

• Allocation of resistance 

to water flow (↑ to 

leaves; ↓ to roots) 

• Leaf Area (significant 

only at 18 months)  

 

At 18 months: change in 

allocation to biomass and 

resistance; leaf area maintained 

is significantly different between 

clone and water treatment 

CONCLUSIONS 
 

Clone: GUW clones maintain greater diameters, improved WUE, and greater above-ground biomass 

 

Water treatment: Chronic water stress (small water deficits long-term) improve WUE, maintain 

greater diameters, more leaf area than acute water stress (severe, short-term water stress) 

 

Age: Leaf area and allocation of biomass and resistance are controlled ontogenetically 

 

Leaf Area is the morphological parameter driving physiological changes 
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Eucalyptus clones show different patterns of response depending on the morphological 

parameter being assessed. The GC clone was significantly taller than GU clones (Fig. 3.2-3) 

whereas GU clones (in particular GUW) reached greater diameters, although not significantly 

greater (Fig. 3.5-6). Absolute height and diameter were reflected by the fact that growth rate (in 

height) was greater in GC clones and growth rate (in diameter) was greater in GU clones (Fig. 

3.4 and 3.7). 

 

In contrast to clonal response, eucalypt water treatment response was significant in terms of 

diameter but not height growth (Fig. 3.3 and 3.6). Height growth was not affected by water 

treatment but diameter growth was significantly greater in the control treatment. The acute water 

stress most negatively affected diameter growth (Fig. 3.7). GU clones exposed to the control 

water treatment had the greatest diameter but when exposed to the acute water treatment, GU 

growth rate (in diameter) was less than GC clones (Fig. 3.5). Although GU clones had the 

greatest diameter growth under favourable water balance, GU had greater water stress 

susceptibility than that of GC. This has been shown in field trials, where drought stress more 

negatively affected GU clones compared with GC clones (Drew et al, 2009; Drew and 

Pammenter, 2006; van der Willigen and Pammenter, 1998). GC has been shown to display slow 

and steady diameter growth (“tortoise” growth) but GU displays fast growth under favourable 

conditions (“hare” growth habit) (Drew et al., 2009). Differing growth habits have been observed 

in other Eucalyptus species (Alijaro et al., 1972; Downes et al., 1999; Morgan and Barton, 

2008). Height growth was therefore determined by genetics (GC > GU) whereas diameter growth 

was firstly determined by water treatment imposition (control > chronic > acute) and secondarily 

by genetics (GU > GC). 

Tree volume was greater in GC clones (primarily because of greater heights attained) but the tree 

volume was not significantly different from the GUW clones (which display greater diameters) 

(Fig. 3.9). Tree volume was significantly greater in the control and lowest in the acute water 

treatment. Similar findings have been reported for Eucalyptus clones grown in field trials at 

mesic and xeric sites, where trees grown at mesic sites attained up to 100% more wood volume 

than trees grown at xeric sites (vander Willigen and Pammenter, 1998). When expressing growth 

as tree volume per leaf area per year (i.e. growth efficiency, GE), GC clones had a greater GE 
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than GU (Fig. 3.10). GC clones maintain more volume of wood per unit leaf area (m
2
) compared 

with GU clones, primarily because GC clones have significantly lower total leaf area than GU 

clones (Fig. 3.10). GE was greatest, although not significantly, in the acute water treatment, i.e. 

more volume of wood per unit leaf area than the control treatment. Expressing GE per unit leaf 

area does not take into account the significantly lower total leaf area maintained by the acute 

treatment trees due to leaf loss from water stress (senescence).  

As previously mentioned, water stress is the main factor limiting plant yield in semi-arid regions 

(Egea et al., 2011). The degree to which growth is affected by water stress is of utmost 

importance as to whether Eucalyptus species can tolerate environmental conditions at a specific 

plantation site (Gindaba et al., 2005). Understanding the relationship between water stress and 

plant physiological processes in Eucalyptus depends on the severity, duration and rapidity of the 

drought event (Rouhi et al., 2007). Studies focussing on photosynthesis have been used as tools 

to explore the physiological basis of tree growth under water-limited conditions (Lambers et al., 

1998; Gindaba et al., 2005). Stomata also play an important role in controlling carbon balance 

and negatively affected carbon balance when closed in response to water limitation (Rouhi et al., 

2007). An objective of the current study was to assess whether physiological characteristics e.g. 

photosynthetic capacity and plant water relations of the three Eucalyptus clones differed with 

water availability and with tree age. 

Acute water stress negatively and significantly affected maximum photosynthetic potential (Jmax, 

at saturating CO2 concentration) of all three Eucalyptus clones, when measured at leaf wilting 

point (Fig. 3.11). After re-watering the eucalypt trees subjected to the acute water treatment, 

there was no significant difference in Jmax compared with chronic and control water treatments. 

GU clones showed the greatest Jmax in control water treatments, whereas Jmax in GC clones was 

greatest in the chronic treatment (Fig. 3.11). Whitehead et al. (2004) showed that Eucalyptus 

species have relatively high photosynthetic capacity and the average Jmax values exceed those 

found across woody species. The results presented in the current study are comparable with the 

results found by Whitehead et al. (2004). Although Jmax was negatively affected by acute water 

stress at wilting, the recovery of Jmax is in agreement with other Eucalyptus studies regarding 

photosynthetic capacity (Searson et al., 2004).  
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E. occidentalis showed no difference in Jmax between well-watered and water-limited plants 

(Searson et al., 2004) and Jmax of E. camaldulensis seedlings was unaffected by water limitation 

in a glasshouse study (Gibson et al., 1994). Jmax declined with age in all three Eucalyptus clones 

(Fig. 3.11).  

Γ (CO2 compensation point) and photorespiration did not differ between clones, watering 

treatment or age (Fig. 3.15 and 3.18). Vcmax (carboxylation efficiency) did however decline with 

leaf age. Jmax and Vcmax have been shown to decrease with tree age in almond and olive trees 

(Diaz-Espejo et al., 2007; Egea et al., 2011). Ontogenetic changes (i.e. leaf age or seasonal 

differences) were shown to decrease Jmax and Vcmax more than water limitation.  

The GC clone showed higher instantaneous photosynthetic rates (An) than GU clones over three 

seasons within the 18 month growth trial period (Table 3.1). An decreased significantly during 

the winter season in all three Eucalyptus clones, and by 18 months tree age (summer season), An 

was between 2-4 µmol CO2 m
-2

 s
-1

 less than the previous summer. Seasonal and age-related 

declines in An have been reported in numerous studies (Diaz-Espejo et al., 2007; Egea et al., 

2011) and ontogenetic changes were shown to affect almond trees more than water restriction 

(Nortes et al., 2009).  

Water stress did not affect An when the eucalypt trees were juvenile saplings (six months tree 

growth. There was a seasonal decline in photosynthetic rate (An) during winter of 2010, and An 

was significantly lower in water stressed treatments. Decrease in An during different seasons has 

been observed in deciduous (Flexas et al., 2009) and evergreen species (Niinemets et al., 2005). 

The decrease is usually associated with a decrease in Jmax and Vcmax, which was observed in 

Eucalyptus clones in the current study (Fig. 3.10 and 3.19). Decreases in An in response to water 

stress have also been observed in almond trees (Egea et al., 2011) and olive trees (Niinemets et 

al., 2009) and the reduction was attributed to non-stomatal limitations e.g. decreased 

carboxylation efficiency i.e. a reduction in Vcmax. For Eucalyptus clones (GU and GC), 

instantaneous photosynthetic rate was affected more negatively by seasonal and tree age factors 

than it was by a reduction in water supply.   
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Stomatal conductance (gs) and transpiration (En) were highest in the GC clone over all three 

seasons (Table 3.2). gs was greatest after 12 months of tree growth (during winter) and was 

lowest in the chronic stress treatment at 12 and 18 months. En was greatest during the juvenile 

growing phase (at 9 months tree growth), and declined with tree age, similar to An. 

 En in the chronic treatment was also consistently lower than the control or acute water treatment. 

gs was found to have the same degree of seasonal plasticity as that found in almond leaves (Egea 

et al., 2011). The results of the current Eucalyptus study were in contrast to those found by Egea 

et al. (2011) as gs increased with eucalypt tree age, rather than the decrease found in almond 

trees. Therefore after 18 months growth, the reduction in An was not attributed to stomatal 

reduction. A decline in gs has been reported for other eucalypt species (Whitehead and Beadle, 

2004), but the current study shows that photosynthetic reduction could be attributed to non-

stomatal limitation e.g. less efficient biochemical processes in the photosynthetic cycle. Water 

stress had a significant negative effect on gs up to 18 months tree growth. Reductions in gs due to 

water limitation in woody angiosperms have been reported in a number of other studies (Flexas 

et al., 2002; Niienemets et al., 2005; Warren, 2008).  

En did not differ between the clones during any growth season, for the duration of the growth 

trial period (Table 3.2). What was of particular interest with regards to En, was that En was 

significantly lower in the chronic water treatments, when compared with the control and acute 

water treatments. Even though gs was lower in chronic treatment, although not always 

significantly over 18 months, En was limited in the chronic treatment. A reduction in En has 

important consequences in terms of theoretical water use efficiency (WUE, An/En) because 

Eucalyptus have been reported to optimise WUE in water limited environments (Mooney et al., 

1978; Anderson et al., 1996).  

Instantaneous water use efficiency (WUE) was higher, although not significantly so, in the 

chronic water treatment and in GUW clones (Fig. 3.22). WUE was higher in the chronic 

treatment primarily because of a significant reduction in En (Table 3.2). WUE estimates are 

described to vary widely between Eucalyptus species and environmental conditions (Whitehead 

and Beadle, 2004). Dunin and Mackay (1982) showed seasonal variations in WUE for E. 

maculata, although significant seasonal variation in WUE for the current study was not evident.  
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Soil water deficit has been reported to reduce WUE in severely water-stressed E. camaldulensis 

and E. globulus, but the reduction in WUE was driven by a reduction in An (Gindaba et al., 

2004). Due to the constant, low soil water availability that facilitated long-term, mild soil water 

deficit, eucalypt clones growing in the chronic treatment showed a measure of physiological 

plasticity in terms of En, that ensured improved WUE. Eucalyptus species grown in xeric 

environments do not usually have high WUE (Searson et al., 2004) but two studies have been 

shown to find improved WUE in xeric environments (Anderson et al., 1996; Sefton et al., 2002). 

One might have expected the acute water treatment to show a measure of WUE improvement, 

but perhaps the recovery periods following a severe drought or water stress cycle facilitated no 

need for optimised WUE over the growth trial period. 

 

An was correlated with gs for eucalypt clone and water treatment at both six and 18 months tree 

growth (Fig. 3.23-25). Numerous studies have reported that An is correlated with gs for 

Eucalyptus species (Ngugi et al., 2004; Searson et al., 2004; Gindaba et al., 2005; Niienemets et 

al., 2009; Egea et al., 2011). As gs increased in clone or water treatment, An increased as 

displayed by the significant positive correlation in Fig. 3.23 – 25. Stomatal response of GC and 

GU leaves may have increased the supply of CO2 to maintain high An during favourable 

conditions. Searson et al. (2005) reported that an increase in CO2 supply to the mesophyll of E. 

occidentalis and E. sideroxylon leaves assisted in the improvement of nitrogen use efficiency 

(NUE). Close co-ordination between An and gs has been shown in Ficus sylvatica (Montpied et 

al., 2009) and the co-ordination is considered to be associated with a decrease in the efficiency of 

the photosynthetic apparatus. The reduction in An is later accompanied by a reduction in gs, 

which could be understood as a down-regulation process due to leaf age or residual water stress 

effect (Egea et al., 2011). Co-ordination of mesophyll photosynthetic capacity and stomatal 

aperture remains a question in plant science (Lawson et al., 2003).  
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The evaluation of biomass and biomass allocation, leaf area and root:shoot interactions under a 

controlled watering regime could provide important information on the potential performance of 

eucalypts under field conditions (Nilsen and Orcutt, 1996; Gindaba et al., 2005).  

Trees can change biomass allocation patterns when the soil environment changes e.g. changes in 

soil water deficit (Sands and Mulligan, 1990). Soil water deficits have been shown to cause 

reductions in total biomass, leaf production and patterns of allocation (Osorio et al., 1998; 

Pereira and Chaves, 1993). Consequences of moderate soil water deficit involve acclimation to a 

water-limited environment e.g. increase in root:shoot, leaf loss and stomatal closure (Osorio et 

al., 1998). Although more than 500 000 hectares of eucalypts are currently planted in South 

Africa, the demand for sustainable harvest is not being met (DWAF, 2005; Morris, 2008). 

 Forest research output has considerably increased eucalypt wood production per unit area but a 

thorough understanding of biomass allocations (especially below-ground) in response to soil 

water deficit will improve understanding of the specific clonal response to water stress. The 

objective of the current study in terms of biomass allocation was to evaluate the effects of water 

stress and eucalypt clone on biomass partitioning at the juvenile (9 months) and early adult (18 

months) growth stages.  

Total dry biomass was negatively affected by water stress after 18 months growth, although the 

reduction was not significant (Fig. 3.26). Total biomass was lowest in the GUW clones (after 18 

months) and highest in the GUA clone. Above-ground biomass was significantly greater in 

GUA, as GUA had significantly more leaf and stem dry matter than GUW and GC (Table 3.3). 

In terms of wood production, the GUA clone had up to 30% more stem dry matter than GUW 

and GC. The control water treatment had the greatest biomass (in terms of root, stem and total) 

compared with the chronic and acute treatment. The acute treatment was most negatively 

affected with respect to biomass in response to water stress (Table 3.3). Stem productivity was 

never more than 15% greater in the control treatment, implying that moderate-severe soil water 

deficit does not detrimentally affect wood productivity, especially if there is a period of recovery 

from prolonged or acute water stress. These results are in contrast to those obtained by Mokotedi 

(2010) for E. nitens x nitens where drought stress (similar to the acute water treatment in the 

current study) reduced total biomass by up to 50% in comparison with control plants.  
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Moderate and severe soil water deficit were also shown to reduce total biomass of E. globulus by 

up to 50% (Osorio et al., 1998). The most noticeable difference in the results found (i.e. total 

biomass decreases in response to water stress) is that the eucalypt plants of the two studies were 

grown in relatively small pots (10 or 25 litre pots) and the plants were not more than six months 

old (Mokotedi, 2010; Osorio et al., 1998). Perhaps, with tree age, reduction in total biomass 

becomes less significant, depending on eucalypt clone and the degree of soil water deficit.  

 

Biomass allocation patterns differ between GU and GC clones (Fig. 3.28). The GC clone 

allocates more than 50% of total biomass to the roots, whereas in the GU clone it is 

approximately 40%. The proportion of biomass allocated to roots remains relatively the same 

over the 18 month growth trial period. The proportion of biomass allocated to leaves decreases 

with tree age by up to 12% in all three eucalypt clones (Fig. 3.28). The GC clone had 40% less 

leaf biomass than GU at the early adult growth stage. In terms of productivity, trees of the GC 

clone would have the necessary root biomass to withstand drought more effectively than GU. 

However, 10% more stem biomass in the GU clones would yield significantly more wood per 

unit area in a plantation. The genotype has been shown to affect total biomass and allocation of 

carbon to plant components in E. globulus, therefore providing evidence that genotypes do differ 

in their biomass allocation patterns.  

Root biomass does not differ by more than 5% between water treatments at both nine and 18 

months growth (Fig. 3.27). Larcher (1995) stated that higher biomass allocation to roots could 

increase the amount of water available to the plant when soil water deficits are experienced. 

Eucalypts in the current study did not show increased biomass allocation to the roots and it may 

have been possible that some degree of root restriction had occurred by the 18 month growth 

stage. As evident in clonal response, allocation to stem increased by up to 10% with tree age, 

with a concurrent reduction in leaf biomass. In the current study, it appears that genetic traits i.e. 

clone and ontogenetic traits determine biomass allocation more than soil water deficit. 

Root:shoot did not differ with tree age or change in response to water stress, which suggests that 

root:shoot ratios are also genetically controlled.     
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GU and GC clones are known to maintain different leaf areas and possibly different rooting 

patterns (Drew et al., 2009). The current study produced similar findings and GC was shown to 

consistently maintain significantly less total leaf area than GU (Fig. 3.28). Specific leaf area 

(SLA) increased by double to the early adult growth stage (18 months) and GUW retained 

significantly more leaf area per dry mass than GUA and GC clones and this was reflected in 

biomass partitioning (Fig. 3.26). The GC clone allocates at least 50% of total biomass to roots, 

and during field trials it was found that GC trees were not prone to uprooting in high winds, 

whereas GU clones were (Drew et al., 2009). Total leaf area was significantly reduced by 18 

months growth only in the acute treatment (Fig. 3.28). Acute water stress reduced total leaf area 

by 30% across all three clones. Total water loss from leaves (experiencing water stress) can be 

decreased by reducing the total evaporative surface area of leaves. Leaf senescence usually 

follows severe drought stress cycles and future leaf growth is then also decreased (Sands and 

Mulligan, 1990). A reduction in total leaf area can conserve soil water but the total growth 

achieved is then also reduced. If total leaf area is reduced in the long term, a reduction in 

biomass accumulation will ultimately be observed. Although the difference was not significant, 

there was a reduction in total biomass of the trees exposed to the acute water stress treatments, 

compared with the control and chronic treatments. The same reduction of total leaf area was 

found between water treatments (control > chronic > acute). Long-term biomass reduction in 

water-stressed plants has been attributed to a reduction in total leaf area in E. globulus (Osorio et 

al., 1998), E. microtheca (Li and Wang, 2003), E. maculata (Whitehead and Beadle, 2004) and 

E. nitens x nitens (Mokotedi, 2010).  

 

Acute water stressed leaves had significantly greater SLA (more leaf area per unit dry mass), 

perhaps to maximise photosynthetic capacity while making use of a limited amount of dry matter 

(Table 3.4). Values for SLA are known to vary from 2 – 8 m
2
 kg

-1
 in the field but can reach up to 

15 m
2
 kg

-1
 in controlled, potted studies (Whitehead and Beadle, 2004). These results are in 

contrast to that shown for native or plantation studies because SLA was less than half that of 

other E. grandis SLA values reported (Whitehead and Beadle, 2004). SLA is also usually lower 

at sites with lower water supply, and this was not the case in the current study (Table 3.4).  
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SLA is reported to be greatest in emerging eucalypt leaves and lower in mature leaves and 

following growth seasons (White et al., 2000). The current results for SLA in Eucalyptus GU 

and GC clones show an increase with tree age, in contrast to the response reported by White et 

al. (2000) and Whitehead and Beadle (2004).  

 

The current study had as one of its objectives, the evaluation of the effects of water stress and 

clonal hybrid on hydraulic characteristics at juvenile and young adult stages. Hydraulic 

characteristics were measured using a high pressure flow meter (HPFM, Tyree, 1993) which uses 

positive pressure to refill any embolised xylem in the hydraulic system. The HPFM measures 

only maximum Kh and so cannot be used to assess ψ-related changes in hydraulic conductivity 

(Sperry et al., 2002). Previous research on hydraulic conductance of Eucalyptus clones has 

shown that hydraulic conductance (normalised by leaf area) did not differ (Mokotedi, 2006). 

Clones grown at sites differing in water availability showed that higher absolute Ks values were 

found at mesic sites, compared with xeric sites (vander Willigen and Pammenter, 1998). The 

results of the present study expressed hydraulic conductance or resistance normalised by leaf 

area. The GC clone had the highest hydraulic efficiency (Kh, normalised by leaf area) at the 

juvenile growth stage, whereas GUW had the greatest Kh after 18 months growth (Fig. 3.30). 

GUA leaves sustain significantly more leaf area than GUW and GC, and had the lowest 

hydraulic efficiency. These results imply then that GUA trees conduct less water per unit leaf 

area than other eucalypt clones. 

 

There were no significant differences in Kh in response to water stress treatment, but the chronic 

treatment was found to conduct more water per unit leaf area than the control and acute 

treatment. The control treatment had the lowest (but not significantly lower) hydraulic efficiency, 

presumably due to the higher leaf area maintained by the control treatment trees. The trees 

exposed to the chronic water treatment showed a level of phenotypic plasticity by responding to 

mild long-term water stress by reducing leaf area sufficiently while ensuring a greater hydraulic 

supply of water to the remaining leaves. Manoharan (2002) found similar results, reporting that 

Kh for three eucalypt clones was higher in plants in the low water treatment.  
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Lower leaf area was also developed as a result of water stress in this study, and this may have 

increased the hydraulic conductance of the shoots relative to the well watered plants which had a 

greater leaf area (Manoharan, 2002). Increased hydraulic efficiency of shoots and roots (when 

normalised by leaf area) under water stress can be considered a drought avoidance strategy 

(Nardini and Tyree, 1999). Although Sperry and Sullivan (1992) showed that reductions in Kh in 

response to drought were attributed to xylem hydraulic conductance, the current study does not 

show any clear hydraulic pattern in roots, stems and leaves of eucalypts in response to drought 

stress (Table 3.4).  

The proportion of total hydraulic resistance residing in the roots was greatest in the GUW clone 

after nine months growth (Fig. 3.31). At the nine month growth stage, more than 50% of the 

hydraulic resistance (Rh) was located in the roots, regardless of clone or water treatment. In three 

month old Eucalyptus clones, between 59-81% of the total Rh was located in the roots 

(Manoharan, 2002), and these results are in agreement with the present study. High root 

resistances have been reported for two different Eucalyptus grandis x urophylla hybrids, 

suggesting that high root resistances may be a genetic characteristic of Eucalyptus plants 

(Manoharan, 2002). The pattern of proportional allocation of resistances was similar to that of 

the proportional allocation of biomass to roots, stems and leaves (Fig. 3.27). The implication of 

high root resistance is that less water will be conducted but whether high root resistance reduces 

embolism potential is yet to be established. 

 

There were no significant differences in allocation of resistances to plant parts between clones or 

water treatment. There was however a significant difference in Rh with tree age (Fig. 3.30). 

There appeared to be a complete reversal of the majority of total Rh between roots and leaves. 

Hydraulic resistance of leaves at 18 months represented more than 50% of the total hydraulic 

resistance. Above-ground biomass after 18 months tree growth, contributed up to 85% of Rh. Kh 

increases by up to three times with a 12 month increase in tree age (Fig. 3.29). Increase in Kh 

with tree age could be explained by increase in biomass that causes an increase in the number of 

xylem pathways within the tree.  
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Van der Willigen and Pammenter (1998) concluded that hydraulic characteristics measured in 

closely related eucalypt clones were influenced primarily by water availability and secondarily 

by genetics. The current study shows equal influence of both water availability and genetic 

make-up, and the hydraulic efficiency was ultimately determined by leaf area. Similar findings 

were found by Manoharan (2002) with four eucalypt clones, showing that the hydraulic 

efficiency of Eucalyptus clones is driven by changes in leaf area, which differed significantly 

with both water treatment and clone in this study. 

Total biomass shows concurrent increase with Kh, implying again that as eucalypt trees increase 

in size, the number of hydraulic pathways increase thus causing an increase in Kh (Fig. 3.33). 

The relationship was inversely confirmed because Rh decreased proportionately with total 

biomass (Fig. 3.35). Contrary to the results found by vander Willigen and Pammenter (1998) for 

Eucalyptus species, growth efficiency (GE) was negatively related to Kh (Fig. 3.36). Due to the 

highly variable nature of leaf area in response to water treatment, expressing GE as a function of 

leaf area meant that GE was greater in most of the acute stress treatments. 

 

In response to water stress Kh of the clones grown in this study, was positively correlated with An 

and gs at both nine and 18 months tree growth (Fig. 3.37-40). Co-ordination of hydraulic 

characteristics and gaseous exchange properties has been reported for a number of species e.g. 

Scots pine (Mencuccini and Grace, 1996) and Callitris species (Brodribb et al., 2010). Tyree and 

Sperry (1998) emphasize the strict regulation between gs and hydraulic characteristics of the 

xylem flow pathway. Transpiration and mean gs are determined by the properties of the hydraulic 

pathway, and An is determined by mean maximum gs (Whitehead, 1998). Close correlation 

between Kh, An, and gs of eucalypt trees over an 18 month growth period show the intricate 

balance of physiological processes to attain tree growth over a wide range of water availabilities.  
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Conclusions 

 

Eucalypt tree physiology in the current study could be considered to be governed by genetics, 

environmental variables (e.g. water stress) and / or ontogenetics (tree or leaf age). Eucalyptus 

grandis x camaldulensis achieved significantly greater tree heights than E. grandis x urophylla 

clones. Tree height appeared to be controlled primarily by clone genetics. In terms of plant water 

relations, GC clones maintained consistently higher En and gs rates over all three seasons across 

the 18 month growing period. The GUW clone however, attained moderately improved 

instantaneous WUE, implying that GUW is more efficient at assimilating carbon per unit of 

water lost. Root:shoot and SLA were controlled by genetics, and were independent of water 

stress. The GC clone allocated the majority of their biomass to roots, whereas GUA this was to 

stems. In terms of wood productivity, GUA clones out-compete that of the GC and GUW clones. 

GC however would have greater ability to withstand water stress in the long term (due to high 

root biomass) whereas GUW uses water more efficiently while accumulating carbon biomass. 

 

While tree height was considered to be genetically controlled, tree diameter was significantly 

affected by water stress i.e. watering regime. The GUW clone reached the greatest stem 

diameters but this was not reflected in terms of wood volume. Wood volume takes tree height 

(genetically ‘governed’) and tree diameter (environmentally ‘governed’) into account. GC clones 

maintained moderately greater tree volume because of significantly greater tree height. 

 

Jmax was significantly affected by watering regime, but only at the wilting point of eucalypt 

leaves. In terms of plant water relations and actual photosynthetic values, the trees subjected to 

the chronic treatment had improved instantaneous WUE in comparison with the control and 

acute treatments. Eucalyptus clones show some degree of phenotypic plasticity because the 

amount of carbon that is assimilated per unit water transpired changes in response to water stress. 

Total biomass was not significantly affected by water stress. The acute water stress treatment 

achieved the lowest total biomass.  
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Although water stress significantly and negatively affected Jmax only at leaf wilting point, the 

duration of wilting over multiple water stress cycles was sufficient to reduce total biomass. Had 

Jmax been significantly less during the recovery period (which it was not) total biomass would 

have been more significantly reduced. 

Physiologically, Eucalyptus clones were affected by ontogenetic changes i.e. leaf or tree age. Jmax 

and Vcmax decreased with leaf age and the ‘down-regulation’ of photosynthetic parameters was 

not due to constraints imposed by stomatal conductance. Photosynthetic down-regulation was 

explained by non-stomatal limitations enforced by less efficient biochemical pathways of the 

photosynthetic cycle i.e carboxylation efficiency of Rubisco (Vcmax).  

As tree age increased with concurrent increase in biomass, Kh showed a corresponding increase 

in all three clones across all water treatments. The correlation of biomass and Kh was understood 

to be caused by an increase in the number of hydraulic (increasing Kh) associated with increase 

in biomass. 

 

Perhaps the most important morphological and physiological parameter identified in the current 

study was that of leaf area. Leaf area was different between clones (GU > GC), therefore a 

genetic constraint was inherent in total leaf area. Leaf area was negatively and significantly 

affected by reduction in watering regime, thereby imposing an environmental constraint in terms 

of leaf area. With tree age there was also a change in leaf area. SLA in particular was 

significantly greater with an increase in tree age. Leaf area affects the expression of growth 

efficiency, hydraulic efficiency, total carbon assimilation and total biomass achieved. For GU 

and GC Eucalyptus clones in the current study, the primary parameter driving physiological 

interactions and ultimately determining wood productivity could be considered to be leaf area.  
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4. Leaf Characteristics 

 

During the investigation of physiological and morphological characteristics of three Eucalyptus 

clones in response to water stress, a number of leaf characteristics were concurrently measured, 

all of which were destructive to individual leaves. Following the first harvest, after nine months 

growth, it was noted that a considerable portion of the above-ground resistance to water flow was 

located in the leaves. While measuring Rleaves, of a whole tree using the high pressure flow meter, 

it was observed that most of the leaves would “fill up” and liquid water would be expressed 

through the stomata. There were however, particular leaves that would still remain “unfilled” 

with water even under conditions measuring maximum Kh. Another aspect that was noted was 

that during acute drought stress and subsequent drought stress recovery, leaves of GUA clones 

were observed to dry out completely and die, whereas GUW and GC leaves showed some degree 

of drought stress tolerance and recovery. This prompted further investigation into the 

measurement of the resistance to water flow of individual leaves. Measurements were performed 

when leaves were completely water stressed and when recovering from water stress over a period 

of seven days, and then compared with the control (Fig. 4.1). Gaseous exchange measurements 

(actual maximum photosynthetic rate and stomatal conductance) were also measured on the same 

water-stressed trees, in order to correlate Rleaf with Amax and gs. 

 

Figure 4.1: Growth and physiology measurements indicating the leaf hydraulic characteristics 

measurements pertaining to recovery from drought stress after 12 months growth. 
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4.1. Leaf Hydraulic Characteristics 

 

Hydraulic resistance was measured in individual leaves and expressed normalized by leaf area 

(Rleaf). Rleaf was not significantly different between Eucalyptus clones (Fig. 4.2 (a); p = 0.313). 

Figure 4.2 (b) shows that Rleaf was significantly greater in the acute stress treatment, by 40%, 

compared with the control and chronic treatment (p < 0.0001). There was also a significant 

interaction between water treatment and clone (Fig. 4.3; p< 0.0001). In all three Eucalyptus 

clones, the control treatment had the lowest Rleaf. The acute stress treatment generated 

significantly greater Rleaf in GUA and GC clones (Fig. 4.3). The GUW clone had the least 

variable Rleaf among water treatments, and Rleaf did not differ by more than 15% between the 

treatments. 

 

 

 

 
 
Figure 4.2: Leaf hydraulic resistance (Rleaf) of Eucalyptus (a) clonal hybrids (p = 0.313) (b) in response to 

water treatment (p < 0.0001); (Different letters denote statistical significance between clones or 

treatments).   
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Figure 4.3: Leaf hydraulic resistance of Eucalyptus clones in response to water stress (Clone*Water 

treatment interaction: p < 0.0001); (Different letters denote statistical significance between clones or 

treatments).   

 

 

Leaf hydraulic resistance was also measured in response to drought stress and subsequent water 

stress recovery. GUA had significantly higher Rleaf (by 100%) after day 2 of water stress 

recovery compared with the control and chronic treatment (Fig. 4.4 (a)). Rleaf was significantly 

greater (by 75%) after one day recovery from water stress in the GUW clone (Fig. 4.4 (b)). The 

GC clone had significantly higher Rleaf only on the day which leaves were wilting (at the end of 

the water stress cycle, before re-watering) (Fig. 4.4 (c)). GUA leaves recover in terms of 

hydraulic resistance, by day 7 of re-watering, in comparison with the control. GUW leaves 

recover hydraulically by day 2 and GC leaves recover from acute drought stress by day 1 of re-

watering, when compared with the control treatment. 
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Figure 4.4: Mean leaf hydraulic resistance of Eucalyptus clonal hybrids ((a) GUA, (b) GUW and (c) GC) 

in response to water stress and subsequent water stress recovery. 
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Rleaf was expressed as a proportional contribution between the three leaf components that 

constitute an individual leaf: the petiole, venation and extravascular tissue. Rpetiole, Rvenation and 

Rextravascular were measured in all three water treatments and in the acute water stress recovery 

treatment at leaf wilting point (day 0) and day 1, 2 and 7 recovery after re-watering (Fig. 4.5). 

Rpetiole was approximately 500 MPa m
2
 s kg

 -1
 in GU clones and was 200 MPa m

2
 s kg

-1
 in the 

GC clone (Fig. 4.5 (a) – (c)). Rpetiole was not significantly different between water treatments of 

all three clones (p = 0.89). Rpetiole was a minimum of 50% less than Rvenation and Rextravascular across 

all treatments. 

Rextravascular was higher than Rvenation in all three clones for the control treatment. Rvenation and 

Rextravascular in the chronic treatment did not differ significantly from the control for GU and GC 

clones. During acute drought stress recovery, the GC clone had a significantly higher Rvenation 

than Rextravascular (Fig. 4.5 (c)). Although Rvenation decreased with drought stress recovery (from re-

watering) the resistance observed was significantly different from the control. 
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Figure 4.5: Leaf hydraulic resistance components (petiole, venation and extravascular tissue) of 

Eucalyptus clonal hybrids ((a) GUA, (b) GUW and (c) GC) in response to water stress and 

subsequent water stress recovery. 
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4.1.2 Leaf hydraulic characteristics and correlation with photosynthetic parameters 

 

Actual photosynthetic rates were measured in leaves of the clones in response to water treatment. 

Measurements were performed on leaves of a similar age on days concurrent with Rleaf 

measurement. Two-way analysis of variance showed that mean assimilation rate was not 

significantly different among clones after 12 months growth (Fig. 4.6 (a); p = 0.366). Water 

treatment had a significant effect (p = 0.02) with Figure 4.6 (b) showing that the control had the 

highest assimilation rate compared with the chronic and acute treatment (p = 0.002). The chronic 

treatment was 30% lower than the control, and the acute treatment (at wilting) was 0 µmol CO2 

m
-2

 s
-1

. Photosynthetic measurement of leaves at their wilting point had to be considered as a 

zero value because stomatal conductance was zero and this prompted inaccurate negative 

photosynthetic recording.  

 

 

 
 
Figure 4.6: Mean maximum assimilation rate of Eucalyptus (a) clonal hybrids (p = 0.366) (b) in response 

to drought stress (p = 0.002) when measured concurrently with Rleaf; (Different letters denote statistical 

significance between clones or treatments).   

 

 

Stomatal conductance (gs) was also not significantly different among clones (Fig. 4.7 (a); p = 

0.871). gs in the chronic treatment was significantly reduced (60% less) compared with the 

control, and the acute treatment was considered to be zero (Fig. 4.7 (b); p = 0.002).  
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Figure 4.7: Mean maximum stomatal conductance of Eucalyptus (a) clonal hybrids (p = 0.871) in 

response to (b) drought stress (p = 0.002) when measured simultaneously with Rleaf; (Different letters 

denote statistical significance between clones or treatments).   

 

 

Mean assimilation rate (An) was measured in the control, chronic and acute stress recovery 

treatments on day 1, 2 and 7 in all three clones. Figure 4.8 (a) shows that An was significantly 

higher in the control treatment compared with the water stress treatments (mean = 11.7 ± 1.4; p < 

0.0001). An was significantly reduced after acute stress and was 85% and 76% lower after day 1 

and 2 of re-watering, respectively (Fig. 4.8 (a)). On day 7, An was not significantly different 

from the control but was still 21% lower. GUW showed a similar assimilation rate pattern to that 

of GUA (Fig. 4.8 (b)). An in the control of GUW was significantly higher than the other water 

stress treatments (mean = 13.7 ± 1.4; p < 0.0001). On day 7 of re-watering however, An was 

significantly lower than the control (mean = 7.6 ± 1.4; 45 % less). Figure 4.8 (c) shows that GC 

leaves had a significantly lower An in the acute stress treatment compared with the control after 

one day of re-watering (mean = 5.20 ± 1.4; 59% less than the control). GC showed the greatest 

capacity to recover photosynthetically from water stress, but under control conditions, GUW had 

the greatest An. 
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Figure 4.8: Mean maximum assimilation rates of Eucalyptus clonal hybrids (a) GUA, (b) GUW 

and (c) GC in response to water stress and subsequent water stress recovery. 
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Stomatal conductance (gs) was significantly higher in the control treatment of all three 

Eucalyptus clones (mean GUA = 0.60 ± 0.27; GUW = 0.51 ± 0.23; GC = 0.49 ± 0.03 mol CO2 

m
-2

 s
-1

; p < 0.01 in all three clones; Fig. 4.9 (a) – (c)). Fig 4.9 (a) shows that gs of GUA leaves 

was significantly reduced in the chronic and acute day 1 and 2 recovery treatments compared 

with the control. The chronic treatment was 78% lower (mean = 0.13 ± 0.06) whereas after day 1 

and 2 of re-watering in the acute treatment gs was 98% and 87% lower, respectively (mean = 

0.01 ± 0.01; 0.08 ± 0.03). gs was reduced after seven days of re-watering in the acute treatment 

but was not significantly different from the control (37% less; p = 0.338).  

 

GUW leaves showed a reduction in gs in the acute treatment compared with the control, which 

was comparable with the GUA clone (Fig. 4.9 (b); p = 0.016). Stomatal conductance was 98% 

and 94% lower after day 1 and 2 of re-watering in the acute treatment, compared with the 

control. As observed in GUA, gs in GUW was not significantly different after seven days of re-

watering in the acute treatment, compared with the control, but was 47% lower (mean = 0.27 ± 

0.21; p = 0.436). 

Leaves of the GC clone showed the same gs in the control, chronic and day 7 of re-watering in 

the acute recovery treatments (mean = 0.49 ± 0.03; 0.48 ± 0.03; 0.49 ± 0.15, respectively; p = 

1.00; Fig.4.9 (c)). Stomatal conductance was significantly reduced in the acute treatment after 

day 1 and 2 of re-watering (mean = 0.06 ± 0.04 and 0.14 ±0.09; 88% and 71% lower than the 

control; p = 0.001). GC leaves showed that the least variability of gs in response to water stress 

treatment when compared with the GUA and GUW clones and also had the highest values under 

stress conditions.  
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Figure 4.9: Mean maximum stomatal conductance of Eucalyptus clonal hybrids (a) GUA, (b) GUW 

and (c) GC in response to water stress and subsequent water stress recovery. 
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4.1.3 Leaf hydraulic resistance and photosynthetic correlation 

 

Rleaf was negatively and significantly correlated with both An and gs when expressed in terms of 

clone (p = 0.001 and 0.026; Figure 4.10 and 4.11, respectively). Rleaf was not expressed in terms 

of water treatment because it did not show a significant relationship. If the inverse of Rleaf was 

expressed i.e. Kleaf, the relationship with An and gs was also found to be positively and 

significantly correlated.  

 

Figure 4.10: Correlation between Rleaf and An, expressed in terms of eucalypt clone. 

 

Figure 4.11: Correlation between Rleaf and gs, expressed in terms of eucalypt clone. 
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4.2 Stomatal Characteristics 

 

Before the second harvest was completed, after 18 months growth, it was suggested that further 

attention be paid to leaf anatomical characteristics including stomatal characteristics. Stomatal 

size and density were examined in order to assess why the water stress recovery response 

differed among the clones. On completion of the stomatal characteristics study, an article by 

Pinheiro et al. (2005) stimulated investigation of δ
13

C and δ
15

N of Eucalyptus leaves (Fig. 4.12). 

The ratio of An:En is a measure of instantaneous WUE, which may not be translated into long-

term WUE. A more positive δ
13

C would imply that leaves that were exposed to drought stress 

over a long period of time would have improved long-term water use efficiency (WUE). Long-

term WUE measured by δ
13

C would be important information for breeders, particularly if one 

clone shows improvement in long-term WUE. 

 

 

 

 

 

 

 

Figure 4.12: Growth and physiology measurements showing leaf characteristics measurements 

pertaining to recovery from drought stress after 18 months growth. 
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Stomatal density (per mm
2
) was measured on the upper (adaxial) and lower (abaxial) leaf 

surfaces to assess for clonal differences and differences in response to water treatment. Stomatal 

density on the lower leaf surface was similar across all three Eucalyptus clones (mean GUA = 60 

± 13; GUW = 67 ± 7; GC = 66 ± 8 mm
-2

; p = 0.116; Fig. 4.13 (a)). GUA leaves had no stomata 

on the upper surface (mean = 0; Fig. 4.13 (a)). Stomatal density on the upper surface of GUA 

leaves was therefore significantly less than GUW and GC leaves (mean = 18 ± 3 and 25 ± 4, 

respectively; p < 0.0001). The upper surface of GUW leaves also had significantly fewer stomata 

than GC leaves (p < 0.0001). GU clones therefore exhibit significantly lower stomatal densities 

on the upper leaf surface than GC Eucalyptus clones. 

Figure 4.13 (b) shows that stomatal density on the lower leaf surface was significantly higher in 

the acute treatment (mean = 68 ± 20; p = 0.037). The control and chronic treatments had 19% 

and 8% less stomata on the lower leaf surfaces, respectively (mean = 61 ± 17; and 63 ± 9; Fig 

4.13 (b)). There were no differences between stomatal densities on the upper leaf surfaces in 

response to water treatment (p = 0.195; Fig. 4.13 (b)). 

 

There was a significant interaction between clone and water treatment with regards to stomatal 

density (p < 0.0001; Fig. 4.14). The lower leaf surface had a significantly higher number of 

stomata across all treatments. In all three water treatments, there were no stomata on the upper 

surface of GUA leaves. There was no clear pattern in terms of stomatal density on the lower leaf 

surface when looking across water treatments in each Eucalyptus clone. These measurements 

were performed during the second harvest, after 18 months growth on leaves of a similar age. 

Unfortunately, the idea to assess this parameter arose only just before the second harvest. It was 

therefore not possible to track stomatal development on growing leaves or check for differences 

between leaves on juvenile and adult Eucalyptus trees. 
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Figure 4.13:Stomatal density on the lower and upper surfaces of Eucalyptus 

(a) clonal hybrids (p = 0.116 (lower surface) and p = 0.0001 (upper surface)) (b) in response to 

water stress (p = 0.037 (lower surface) and p = 0.195 (upper surface)); 

(Different letters denote statistical significance between clones or treatments). 
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Stomatal size (mean guard cell length) (mm) on the lower leaf surface did not differ among 

clones (p = 0.104; Fig. 4.15 (a)). There was no difference in stomatal size on the upper surface of 

GUW and GC leaves, but because GUA leaves did not have stomata, there was a significant 

difference in stomatal size (p < 0.001; Fig. 4.15 (a)). Figure 4.15 (b) shows that stomata are 

smaller on the upper surface of Eucalyptus leaves in all three water treatments (mean = 0.03 mm; 

p = 0.845). On the lower leaf surface, stomata are larger, but there was no difference in stomatal 

size between water treatments (mean = 0.05mm; Fig. 4.15 (b)). 
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Figure 4.14: Stomatal density of Eucalyptus clones in response to water stress (Clone*Water 

treatment interaction: p < 0.0001).  
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Figure 4.15:Stomatal size on the lower and upper surfaces of Eucalyptus 

(a) clonal hybrids (p = 0.104 (lower surface) and p = 0.0001 (upper surface)) (b) in response to 

water stress (p = 0.102 (lower surface) and p = 0.845 (upper surface));  

(Different letters denote statistical significance between clones or treatments).   
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Figure 4.16 (a-f) show light microscope images of lower and upper leaf surfaces of the clones. 

Figure 4.16 (a) and (b) show the lower and upper of GUA leaves. There were no stomata present 

on the upper leaf surface (Fig. 4.16 (b)). On the upper surface of GUW and GC leaves, stomata 

were present, although they were smaller and less numerous than on the lower leaf surfaces (Fig. 

4.16 (d) and (f)). 

 

 

  

(a) GUA: Lower Surface                                             (b) GUA: Upper Surface 

 

  

(c) GUW: Lower Surface                                            (d) GUW: Upper Surface 

0.2 mm 0.2 mm 

0.2 mm 0.2 mm 
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(e) GC: Lower Surface                                                  (f) GC: Upper Surface 

Figure 4.16: Light microscope images of cellulose acetate replicas of lower and upper Eucalyptus leaf 

surfaces. (Note the absence of stomata on the upper surface of GUA leaves (b)). 

 

 

4.3 Leaf δ 
13

C measurements 

 

δ
13

C was not different between the clones (p = 0.283; Fig. 4.17 (a)). δ
13

C was significantly less 

negative in the chronic treatment (mean = -27.34 ± 0.88; p < 0.0001; Fig. 4.17 (b)). There was no 

difference between δ
13

C in the control and the acute treatments (-28.73 ± 0.85 and -28.78 ±0.75, 

respectively). A difference in δ
13

C infers improved water use efficiency in the chronic treatment 

compared with the control and acute treatments. 
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Figure 4.17: Mean δ

13
C of Eucalyptus (a) clonal hybrids (p = 0.283) and (b) in response to water stress (p 

= 0.0001) (Different letters denote statistical significance between clones or treatments).   

 

 

 

δ
15

N was not different between Eucalyptus clones, although δ
15

N in GC leaves was less negative 

than GUA and GUW (mean (GC) = -1.35 ±1.2; p = 0.54; Fig. 4.18 (a)). There was also no 

difference in δ
15

N between water treatments (p = 0.55; Fig. 4.18 (b)).  

 

 

 
 
Figure 4.18: Mean δ

15
N of Eucalyptus (a) clonal hybrids (p = 0.54) and (b) in response to drought stress 

(p = 0.55) (Different letters denote statistical significance between clones or treatments).   
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Figure 4.19 shows a significant, negative correlation between gs and δ
13

C (R
2
 = 0.699; p = 

0.025). As stomatal conductance increases, δ
13

C becomes more negative. δ
13

C was also 

correlated with Kl (whole-plant hydraulic conductance, normalized by leaf area), and the 

relationship was found to be significant and negative (R
2 

= 0.212; p = 0.03; Fig. 4.20).  

 

 
 
Figure 4.19: Correlation between gs and δ

13
C when expressed in terms of eucalypt water treatment. 

 

 

 
 

Figure 4.20: Correlation between Kl and δ
13

C when expressed in terms of eucalypt water treatment. 
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4.4 Discussion 

 

The original aim of the current leaf characteristics study was to assess leaf morphological and 

physiological response of hybrid clones when exposed to different levels of drought stress. 

Considering that up to 40% of the total hydraulic resistance of the GU and GC clones resided in 

the leaves, it was suggested that investigation of leaf characteristics (especially physiology) 

would be an important addition to the current study. Figure 4.21 shows a results summary 

diagram of the physiological and morphological parameters of leaves that may or may not be 

affected by eucalypt clone or water treatment. 

 

Much recent research on leaves has focused on the biochemical and molecular processes in 

response to drought (Flexas et al., 2008). Leaf physiological responses to drought have now 

received more attention (Blackman et al., 2009; Brodribb and Cochard, 2009; Resco et al., 

2009), particularly that of plant hydraulic characteristics. Plant hydraulic characteristics have 

been identified as a principle or primary governor of gas exchange characteristics during periods 

of water stress and water stress recovery. Water potential in response to water stress becomes 

more negative, increasing hydraulic tension, cavitation events and thus hydraulic resistance 

(Tyree and Sperry, 1989). Plants are capable of recovering from a loss in hydraulic conductivity 

but the recovery mechanisms employed by water stressed leaves are largely unknown (Bucci et 

al., 2003; Brodribb and Holbrook, 2004). Rleaf can contribute more than 30% of Rtotal (Sack and 

Holbrook, 2006) and Rleaf can constrain or reduce maximum gs and photosynthetic capacity 

(Brodribb et al., 2005). As Rleaf increases there is known to be a corresponding decrease in gs 

therefore hydraulic vulnerability has the potential to indicate plant response to water stress.  
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Figure 4.21: Summary of leaf characteristics that are affected or not affected by eucalypt clone or water 

treatment. 

 

RESULTS SUMMARY 

 

Leaf Characteristics 

ARE AFFECTED BY: PARAMETERS NOT AFFECTED 
• Stomatal size 

• δ
15

N 

CLONE 

 

• R
leaf

 recovery time (by Day 2 

in GC; day 7 in GU) 

• R
leaf

 – contribution of petioles, 

veins and mesophyll to 

resistance 

• A
n
 and g

s
 recovery time 

(quickest in GC) 

• Stomatal density (NO stomata 

on upper leaf surface of GUA 

clone) 

 

GC: Recovery time from water stress is 

rapid for R
leaf

, A
n
 and g

s 

GU: Slower to recover, GUA more 

conservative with water loss (no 

stomata on the upper leaf surface)  

WATER TREATMENT 

 

• R
leaf

 (highest in acute water 

stress) 

• A
n
 and g

s
 (lowest in acute 

water stress) 

• δ
13

C (less negative in chronic 

water stress treatment) 

 
 

Control: Ideal for maximum growth 

Chronic: Improved WUE, not 

significantly less than the control 

Acute: Most negative impact on leaf 

productivity and no improved WUE) 

CONCLUSIONS 

 

Clone: GC clones recover more rapidly than GU but GUA leaves lose less water due to fewer stomata 

 

Water treatment: Chronic stress does not affect leaves as negatively as acute stress. Chronically stressed 

leaves show improved WUE compared with the control and acute stress 
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There was no difference between in Rleaf between eucalypt clones (Fig. 4.2). Leaf hydraulic 

resistance appears to be similar across clones of unstressed leaves. Water stress recovery was 

however different in each clone (Fig. 4.4). GC clones showed the quickest recovery (after re-

watering in the acute treatment) as Rleaf on day 1 of recovery was not different from the Rleaf in 

the control treatment. This shows that GC leaves have a rapid recovery response, provided that 

the soil water deficit returns to unstressed conditions and trees are relieved of long-term water 

stress. GUW clones showed higher Rleaf values during initial stages of recovery and with 

recovery from water stress (in terms of Rleaf) within 2 days after re-watering (Fig. 4.4). GUA 

clones show a gradual build-up of Rleaf in response to water stress and have the longest recovery 

period of 7 days after re-watering.  

 

When investigating the components that contribute to total Rleaf (Rpetiole, Rvenation and Rextravascular 

tissue), the resistance found in the petioles of all 3 clones was minimal i.e. less than 10% of Rleaf 

(Fig. 4.5). These results are agreement with those of Sack and Tyree (2005) who found 14% of 

Rtotal resided in the petioles of Acer saccharum and 5% of Rtotal resided in the petioles of Quercus 

rubra. Rpetiole did not change significantly in response to water stress and subsequent water stress 

recovery, suggesting that Rpetiole is influenced genetically and not environmentally, for these 3 

eucalypt clones. 

 

The majority of the “hydraulic bottlenecks” to water flow in leaves are considered to be in the 

xylem (Rvenation) or in the mesophyll (Rextravascular). What is of particular importance is the fact that 

there is no agreement upon whether most of the leaf resistance to water flow is located in the 

xylem veins or in the mesophyll tissue. In sugar maple and red oak, more than 60% of total Rleaf 

was located in the xylem (Rvenation) (Sack et al., 2004; Sack and Tyree, 2005; Sack and Holbrook, 

2006). Experiments on Coffea arabica have yielded results concluding that 75% of the total Rleaf 

resided in the mesophyll tissue (Rextravascular) (Gasco et al., 2004). There are also different 

implications attached to whether leaf resistance is located primarily in the xylem or in the 

mesophyll. In the current study, leaf hydraulic resistance is located differently between the 

xylem and mesophyll, and is dependent on the eucalypt clone. In GU clones, resistance in the 

mesophyll tissue (Rextravascular) increases significantly in response to water stress (Fig. 4.5). The 

point at which Rextravascular was the greatest corresponded with the highest Rleaf value. 
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However, when GU leaves were unstressed (control treatment), Rextravascular and Rvenation were 

relatively equal (~ 40-45% each). Rextravascular was relatively higher in GC clones (25% higher 

than Rvenation) when the leaves were not water stressed. GC leaves showed a substantial increase 

(by more than twice) in Rvenation during water stress and during water stress recovery. The 

increase in Rleaf (in response to water stress) is usually explained by xylem cavitation, but leaf 

turgor loss could have also contributed to increased mesophyll (extravascular) resistance 

(Brodribb and Holbrook, 2005; Knipfer and Steudle, 2008). GU clones exhibited higher 

extravascular resistance in response to water stress, whereas GC clones displayed increased Rleaf 

explained by xylem caivitation. 

 

The results of the current leaf characteristics study are rather intriguing as the allocation of the 

components of leaf hydraulic resistance (petiole, venation and extravascular tissue) would be 

expected to be the same in closely related eucalypt clones such as GU and GC. The fact that one 

clone showed an increase in Rextravascular (GU) and the other increased in Rvenation (GC) in response 

to water stress showed that the hydraulic junctions restricting water flow may be different 

depending on the leaf morphology and anatomy of specific eucalypt clones. Regardless of 

whether Rleaf increased in response to water stress by xylem cavitation or extravascular resistance 

increase, the prompt reversibility of increased Rleaf in mildly or acutely stressed plants implies 

that other physiological processes are operating. In all three clones, increased Rleaf from water 

stress was reversed (back to Rleaf values comparable with the control) within seven days. 

 

An and gs were measured concurrently with Rleaf in order to investigate the relationship between 

plant water relations, gaseous exchange and hydraulic characteristics. An and gs were measured 

during winter and values were of the lower range for eucalypts (± 8 -12 µmol CO2 m
-2

 s
-1

; Fig. 

4.6 – 7). An and gs were not significantly different between Eucalyptus clones, although GUA 

clones did have 20% lower An values. An and gs appeared to be less variable between clones 

during winter due to lower En and daily lower temperatures.  
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Control treatments had significantly greater An and gs than leaves of the acute treatment at 

wilting point and An and gs values were considered to be zero (at leaf wilting point) as negative 

values and “noise” were measured due to stomatal closure (Fig. 4.6). The same pattern of 

response was evident across all three eucalypt clones, where An and gs were significantly higher 

in the control treatment (Fig. 4.8 and 4.9). An of GUA clones “recovered” i.e. was not 

significantly different from the control by day 7 of re-watering (Fig. 4.8). The same response of 

recovery was seen for GUA clones with respect to Rleaf. An of GC leaves had recovered 

photosynthetically from water stress by day 2 of re-watering. GUW leaves exposed to the acute 

stress treatment however showed a significant reduction in An (compared with the control) even 

after 7 days of re-watering. Photosynthetic recovery of GUW leaves after water stress appeared 

to be the slowest of all three clones. 

 

For all three clones, gs had recovered from acute water stress by day 7 and gs was no longer 

limiting assimilation rates. Perhaps the lack of photosynthetic recovery in GUW leaves was 

caused by non-stomatal limitations e.g. Vcmax (carboxylation efficiency) of Jmax where 

photosynthetic biochemistry of Rubisco regeneration was temporally and negatively affected by 

water stress. Recovery from water stress in the three clones was found to be similar with a 

“hydraulic-stomatal limitation model” (Blackman et al., 2009; Blackman et al., 2010) where the 

recovery of gaseous exchange characteristics was strongly influenced by the recovery of leaf 

hydraulic conductance i.e. leaf hydraulic resistance decreased. Other woody temperate species 

have been reported to recover from increased hydraulic resistance and reduced gaseous exchange 

(due to water stress) within a 24 hour period (Blackman et al., 2009).  

 

Brodribb and Jordan (2008) stated that the study of the relationship between hydraulic 

characteristics and stomatal response to changes in soil water deficit demonstrate the constraints 

and the dynamics of gaseous exchange characteristics. Recent research has focused on the 

stringent co-ordination of Kleaf and gs and positive relationships have been found when 

correlating Kleaf and gs (Sack et al., 2003; Brodribb and Holbrook, 2005; Meinzer et al., 2004; 

Blackman et al., 2009). The close co-ordination of Kleaf and gs has been correlated with leaf 

characteristics such as stomatal pore parameters (Sack et al., 2003) and vessel diameters 

(Aasamaa et al., 2001).  



Chapter 4    Leaf Characteristics     126 

Stomatal characteristics vary between species and different trees have different “safety margins” 

at stomatal closure before Kleaf is reduced (Sack and Holbrook, 2006; Johnson et al., 2009). 

Although the majority of the literature discusses leaf hydraulic characteristics in terms of Kleaf, 

for the current study the inverse of Kleaf i.e. Rleaf was used to correlate photosynthetic parameters 

e.g. An and plant water relations e.g. gs. A negative, significant correlation was determined 

between Rleaf and both An and gs for all three Eucalyptus clones (Fig. 4.10-11). The co-ordination 

between leaf hydraulic characteristics and gs indicates that leaf hydraulic characteristics are of 

primary importance in determining water loss from the tree crown (Brodribb et al., 2005).  

Whether the majority of the hydraulic resistance resides in the leaf venation or extravascular 

mesophyll tissue will impose different constraints upon gaseous exchange recovery from water 

stress.  

GC clones showed increased hydraulic resistance in leaf venation in response to water stress but 

gaseous exchange recovery from water stress was rapid i.e. within 48 hours. GU clones however 

show increased hydraulic resistance in the mesophyll tissue in response to water stress and the 

increase in Rleaf ensured slower gaseous exchange recovery from water stress. Increased 

hydraulic resistance located in the mesophyll (as evident in GU clones) could possibly restrict 

water flow to the photosynthetic apparatus and hence cause slower photosynthetic recovery. 

 

Stomatal density was measured only during the second harvest at 18 months tree growth. 

Unfortunately, stomatal density was not measured at the same time as Rleaf, An and gs in order to 

correlate stomatal pore characteristics with leaf hydraulic characteristics. The most remarkable 

discovery from the investigation into stomatal pore characteristics was the finding that stomata 

were absent on the upper leaf surface of GUA clones (Fig. 4.13-16). GUA and GUW eucalypt 

clones are both E. grandis x urophylla hybrids and the complete absence of stomata on the upper 

leaf surface of GUA clones, but not GUW, was perplexing. GC leaves had significantly more 

stomata on the upper leaf surface than GUA and GUW and perhaps GC stomatal density may be 

correlated with the evidence that GC leaves had significantly higher gs values (Table 3.2). 

Stomatal density and size did not differ between water treatments, but there could possibly have 

been different stomatal pore characteristics if these parameters were monitored over the course 

of the growth trial. 
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Water use efficiency (WUE) was measured instantaneously as a function of carbon assimilation 

per unit water transpired (Fig. 3. 21 and 3.22). The current study found the GUW clone and trees 

grown in the chronic water treatment had relatively higher WUE compared with other 

treatments. The instantaneous results expressed for WUE prompted further investigation into the 

δ
13

C values for Eucalyptus clonal hybrids in response to water stress. δ
13

C has been shown to be 

an alternative measure of demonstrating improved long-term WUE. The degree of discrimination 

between 
13

CO2 and 
12

CO2 i.e. δ
13

C, indicates the ratio of ci:ca which is related to long-term WUE 

(Farquhar and Richards, 1984; Prentice et al., 2010; Whitehead and Beadle, 2004).  

The only indication of improved long-term WUE for the current study (with regards to δ
13

C) was 

found by significantly greater δ
13

C values for the chronic water treatment (Fig. 4.17). The 

corresponding measurements of instantaneous WUE and WUE (in terms of δ
13

C) were 

interesting because they showed that trees growing in the chronic water stress treatment 

maintained improved WUE compared with the control and acute stress treatments. Increases in 

δ
13

C values have been found in water-stressed Coffea canephora clones, implying improved 

long-term WUE (Pinheiro et al., 2005). Similar δ
13

C values were obtained by Schultze et al. 

(2006) for a variety of Eucalyptus species along a rainfall gradient, however there were no direct 

correlations between total rainfall and δ
13

C of eucalypt leaves. δ
13

C was also found to be 

significantly and negatively correlated with gs and Kleaf (Fig. 4.19 and 4.20). Less negative δ
13

C 

values were associated with lower gs and Kleaf values implying that long-term WUE was 

controlled in terms of lower gs and more strictly regulated Kleaf. Less negative δ
13

C values were 

shown by Farquhar et al. (1989) to arise from lower gs values in leaves. 

Conclusions 

Even in closely related Eucalyptus grandis clonal hybrids, leaf response to water stress and 

subsequent water stress recovery was different. E. gandis x camaldulensis leaves experienced 

high increases in hydraulic resistance of veins (Rvenation) under acute water stress. During water 

stress recovery, GC leaves achieved typical unstressed Rleaf values within one day of re-watering. 

Photosynthetic recovery of GC leaves was also rapid, with An values within control treatment 

range after only two days of re-watering. E. grandis x urophylla leaves were slower to recover 

from the imposition of acute water stress.  
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Both GUA 380 and GUW 1700 leaves showed drastic increases in hydraulic resistance of the 

mesophyll or extravascular tissue (Rextravascular) in response to water stress. Rleaf and 

photosynthetic recovery in GU leaves were slower than GC. GUW leaves did not fully recover 

from water stress (in terms of An) after seven days of re-watering. If leaf venation affects the 

hydraulic resistance to water flow, cavitation events occur during periods of water stress. 

Subsequent water stress recovery can easily reverse mild cavitation events. Water stress within 

the mesophyll tissue cannot be reversed easily, even by positive pressure. It therefore appears 

that an increase in Rextravascular during water stress more negatively affects photosynthetic 

processes and recovery from water stress. For GU clones, the increase in Rextravascular during water 

stress could be considered as a major disadvantage affecting photosynthesis and ultimately stem 

productivity.   

Interestingly, GUA and GUW leaves exhibit different stomatal densities. The absence of stomata 

on the upper surface of GUA leaves was intriguing. GUA 380 is one of the most widely grown 

eucalypt hybrid clones (by SAPPI) and research has not been performed yet on the stomatal 

properties of GU or GC leaves. Perhaps the lack of stomata on the upper leaf surface has an 

advantage with respect to plant water relations and the prevention of water loss during gs and An. 

During periods of water stress, fewer stomata would be highly favourable in maintaining strict 

water control. The absence of stomata could explain the lower stomatal conductances achieved 

by GUA leaves. If speculating wildly, perhaps the lack of stomata on GUA leaves could be seen 

as an adaptation to prevent excessive water loss in response to water stress. Water stress in GUA 

leaves affects photosynthetic parameters negatively because the majority of the resistance to 

water flow resides in the mesophyll tissue. 

 

Another exciting discovery found from further investigation into eucalypt leaf characteristics 

was the correlation of WUE, both instantaneously and in terms of δ
13

C. In both WUE 

measurements, WUE was greatest in the chronic water treatments. Chronic water stress 

treatments appear to have improved long-term WUE and leaves showed some degree of 

plasticity when responding to mild, long-term water stress. GUW leaves showed more promising 

instantaneous WUE than GUA and GC, but WUE in terms of δ
13

C did not reflect the same 

relationship. 
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FINAL CONCLUSIONS 

 

5.1 Growth and Physiology of Euclayptus clones in response to drought stress 

The current study aimed to explain and build on the differing growth responses displayed in 

the GC and GU clones, in response to rainfall events, reported by Drew et al. (2009). The 

objectives of the study were to measure the impact of watering regime on the morphology 

(height, diameter and biomass) and physiology (hydraulic conductance, leaf water relations 

and photosynthetic characteristics) of three Eucalyptus clonal hybrids. The physiological and 

morphological characteristics of the three clones were then assessed for differences with tree 

age, water availability and among the clones. The influence of drought and subsequent 

drought stress recovery after re-watering the plants was also evaluated in leaves (resistance to 

water flow, stomatal conductance and photosynthetic rate). Figures 5.1 and 5.2 were used to 

summarise the significant differences in physiological and morphological characteristics (and 

leaf characteristics) of tree age, water availability and among the clones. 

The GC clone showed significantly better growth efficiency (GE, cm
3
 wood m

-2
 leaf area 

year
-1

) than the GU clones. The higher GE was due to the significantly lower leaf area 

maintained by the GC clone, and not because the GC clone accumulated more wood than the 

GU clones. The GC clone appeared to be the most drought tolerant clone as it was less 

affected in terms of diameter and total biomass in response to water stress. The primary 

reason for the drought tolerance was that 50% of the total biomass of the GC clone was 

below-ground (root biomass). While high root biomass may confer traits of drought tolerance 

(more root surface area for water absorption and a greater volume of soil exploited), in the 

GC clone in this study, it was at the expense of lower above-ground biomass (especially leaf 

area). Higher root biomass would imply greater hydraulic efficiency to the tree, and this was 

reflected by the higher photosynthetic rates and stomatal conductance attained by the GC 

clone. The GC 438 clone can be used in commercial plantings at sites that are known to 

experience lower than sufficient rainfall. Stem productivity of the GC clone on these sites 

would possibly be greater than that of a higher biomass, more drought-susceptible clone. 

However, the continued commercial planting of the GC clone at mesic sites would not 

accomplish the increased long-term productivity objectives of SAPPI, due to the lower leaf 

area and reduced stem biomass achieved by the GC clone, compared with the GU clones 

available for planting. 
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Figure 5.1: Summary of results of physiological and morphological parameters that are affected by 

eucalypt clone, water treatment or tree age in plants grown for 9 or 18 months. 
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s 
(↑ in control 

treatment) 

• SLA (acute > control & 

chronic) 

• Leaf Area (control > 

stress) 

 

 

Control: Diameter; leaf area 
Chronic: Improved WUE 
Acute: SLA was greatest 

AGE 

 
• A

n
 & E

n
 (↓ with age 

and winter) 

• g
s
 (↑ with age and 

winter) 

• Biomass allocation (↓ 

to leaves; ↑ to stems) 

• SLA (significant only 

at 18 months) 

• Allocation of 

resistance to water 

flow (↑ to leaves; ↓ to 

roots) 

• Leaf Area (significant 

only at 18 months)  

 

At 18 months: change in 

allocation to biomass and 

resistance; leaf area maintained 

is significantly different 

between clone and water 

treatment 

CONCLUSIONS 
 

Clone: GUW clones maintain greater diameters, improved WUE, and greater above-ground biomass 

 

Water treatment: Chronic water stress (small water deficits long-term) improve WUE, maintain 

greater diameters, more leaf area than acute water stress (severe, short-term water stress) 

 

Age: Leaf area and allocation of biomass and resistance are controlled ontogenetically 

 

Leaf Area is the morphological parameter driving physiological changes 
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Figure 5.2: Summary of leaf characteristics that are affected or not affected by eucalypt clone or 

water treatment. 

 

 

 

RESULTS SUMMARY 

 

Leaf Characteristics 

ARE AFFECTED BY: 

 PARAMETERS NOT AFFECTED 
• Stomatal size 

• δ
15

N 

CLONE 

 

• R
leaf

 recovery time (by Day 2 

in GC; day 7 in GU) 

• R
leaf

 – contribution of petioles, 

veins and mesophyll to 

resistance 

• A
n
 and g

s
 recovery time 

(quickest in GC) 

• Stomatal density (NO stomata 

on upper leaf surface of GUA 

clone) 

 

GC: Recovery time from water stress is 

rapid for R
leaf

, A
n
 and g

s 

GU: Slower to recover, GUA more 

conservative with water loss (no 

stomata on upper leaf surface)  

WATER TREATMENT 

 

• R
leaf

 (highest in acute water 

stress) 

• A
n
 and g

s
 (lowest in acute 

water stress) 

• δ
13

C (less negative in chronic 

water stress treatment) 

 
 

Control: Ideal but unlikely in reality 

Chronic: Improved WUE, not 

significantly less than the control 

Acute: Most negative impact on leaf 

productivity and no improved WUE) 

CONCLUSIONS 

 

Clone: GC clones recover more rapidly than GU but GUA leaves lose less water due to fewer stomata 

 

Water treatment: Chronic stress does not affect leaves as negatively as acute stress. Chronically stressed 

leaves show improved WUE compared with the control and acute stress 
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Both the GU clones (GUA380 and GUW1700) produced more stem biomass than did the GC 

clone. While plants of the GUW clone achieved greater diameters than those of the GUA 

clone, the GUA clone produced 30% more stem biomass than the GUW clone after 18 

months growth. From personal observations, the GUA clone lost a significant amount of leaf 

area after an acute water stress event. Leaf dieback in response to water stress could be 

considered a drought avoidance strategy that prevents further water loss. Beyond a certain 

point, hydraulic dysfunction from drought can be non-recoverable, and the sacrificial death of 

disposable plant organs (e.g. leaves) will improve hydraulic conductance and water status in 

the remaining foliage (Holloway-Phillips and Brodribb, 2011). Recovery of leaf area after 

water stress is time-consuming, and can take up to 100 days in some woody species 

(Brodribb and Cochard, 2009), which therefore slows down the maximum diameter growth 

attained. 

The GUW clone produced less stem biomass, but it lost 20% less leaf area than the GUA 

clone following an acute drought stress event. The GUW clone showed enhanced traits of 

drought tolerance compared with the GUA clone in response to acute drought stress. 

Moderately improved instantaneous water use efficiency (WUE) was also shown in the GUW 

clone in plants subjected to the chronic water stress treatment. Commercial planting of GU 

clones should be assessed in conjunction with long-term weather and soil data of the sites to 

be planted. The GUA380 clone would produce significantly greater stem biomass, provided 

only that extreme weather conditions (e.g. severe drought) were not experienced or predicted 

in the long-term. The GUW1700 clone, while less productive, was considerably more 

drought tolerant and would be a less risky clone choice, at a time where climate change is 

predicted to cause further extreme weather events.  

 

Clone or water treatments affected some, but not all leaf characteristics (Fig. 5.2). Acute 

water stress increased the leaf hydraulic resistance to water flow while simultaneously 

decreasing assimilation rate and stomatal conductance. The leaf recovery time (after re-

watering) was however, clone dependent. Leaves of the GC clone recovered from stress (i.e. 

Rleaf, An, and gs were not significantly different from the control treatment) as soon as 2 days 

of re-watering. The GU clone recovered from stress after approximately 7 days after re-

watering.  
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Rapid recovery of Kleaf (inverse of Rleaf), seen in the GC leaves, is likely if the primary cause 

of leaf hydraulic dysfunction is cell collapse of the minor veins (Blackman et al., 2010). 

Beyond a certain point non-recoverable hydraulic dysfunction can occur, and this 

phenomenon was noted with the GUA clone in response to the acute water stress treatment. 

Brodribb and Feild (2010) reported that Kleaf can be related to vein density and hydraulic 

architecture and there is an influence on gaseous exchange and water flux. Leaf hydraulic 

recovery could be considered a key functional trait linked to leaf structure, leaf anatomy and 

ecological tolerance.    

One of the fascinating observations from the study was that stomata were not present on the 

upper surface of the GUA clone unlike the closely related GUW clone. No information could 

be found regarding stomatal density studies on southern African Eucalyptus grandis clonal 

hybrids. The absence of stomata on the upper leaf surface could be deemed to be a drought 

avoidance strategy of the GUA clone, reducing transpiration and preventing leaf dieback 

during drought stress. 

 

5.2 Growth and Physiology of Euclayptus clones in response to tree age 

A number of physiological parameters of the plants were influenced by tree age. Assimilation 

rate and transpiration decreased with age and were lowest during the winter season in all 

three clones. The reduction in carbon fixed (and hence growth rate) and water transpired with 

age are experienced in most C3 plants. Water, nutrients and soil space for roots (in the current 

study) can become limiting with tree age and size, and this constrains the efficiency with 

which carbon can be assimilated (Way, 2011).  

The proportional allocation of resistance to water flow (Rh) and biomass changed with tree 

age. Allocation of biomass to leaves decreased with age, whereas allocation of resistance (to 

water flow) in leaves increased with age. The reverse was evident in root biomass and root 

hydraulic resistance. Although root biomass did not increase in response to drought stress, as 

evident in Eucalyptus globulus clones (Costa E Silva et al., 2004), the allocation of biomass 

to roots and the change in the hydraulic properties of the root system could be considered a 

successful drought acclimation strategy. For the E. grandis clones in the current study, 

changes in the hydraulic properties of the plant organs were driven by primarily by age, and 

not by strategic drought stress acclimation. 
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5.3 The Implications of Drought Stress Severity and Duration 

Drought is one of the most important environmental factors that limit crop yield. A reduction 

in plant yield can occur by reducing the effect of intercepted light that can be converted into 

plant material though photosynthesis (Bunce, 2009). Photosynthetic constraint during drought 

can be highly correlated with the reduction in stomatal conductance (Flexas et al., 2004). The 

improvement of photosynthesis during drought needs to be based on efforts to understand the 

physiological processes that reduce photosynthesis (Flexas et al., 2004).  

Mild or moderate drought causes reductions in photosynthesis by early stomatal closure 

whereas severe drought stress can result in non-stomatal limitations of photosynthesis i.e. 

biochemistry of the photosynthetic cycle is interrupted (Bunce, 2009). Therefore the severity 

and duration of drought affects the underlying physiological responses of the tree. 

Trees can respond to drought by different physiological mechanisms: 

 A reduction in leaf water potential 

 Stomatal closure 

 Leaf dieback, that reduces transpiration and photosynthesis 

 Carbon partitioning to the roots and storage changes 

 Drought can “weaken” trees by making them more susceptible to insect attacks and 

pathogens 

The tree response to drought is expected to be complex and variable, and it is likely that the 

entire tree would be involved in the physiological and morphological response to drought. 

Assessing the physiological and morphological characteristics in response to water stress in 

the current study yielded some interesting, although unforeseen results (Fig. 5.1). 

Unsurprisingly, the control treatment (little or no water stress was applied) yielded 

significantly greater tree diameters, volumes and leaf area than the trees subjected to water 

stress. Total biomass, although lower in plants subjected to the water stress treatments, was 

not significantly reduced by water stress. Acute water stress (severe, short-term cyclical 

drought, with periods of recovery from re-watering) had a more negative influence on the 

reduction of leaf and root biomass compared with the chronic stress treatment (mild, long-

term water stress).  
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Plants subjected to chronic water stress showed moderately (but not significantly) improved 

instantaneous WUE. Commercial planting sites experiencing little or no water stress in the 

South African Zululand area are not common, and moderate to severe water stress would be 

considered the norm in certain regions.  

When assessing the influence of water stress on eucalypt productivity, chronic water stress 

confers plant traits that include increased WUE and maintenance of greater tree diameters. 

Acute water stress was shown to decrease stem biomass by 15% compared with the control 

after 18 months growth. Long-term drought stress similar to the acute water stress treatment 

applied here could possibly progressively reduce stem biomass over the approximately 7 year 

growth rotation.  

 

Studies of the investigation of δ
13

C values have been performed in natural Eucalyptus forests 

in Australia, but there was found to be no correlation between the δ
13

C in leaves and along a 

rainfall gradient (Schultze et al., 2006). In pot-grown studies of Coffea arabica however, 

δ
13

C in leaves was significantly greater (i.e. less negative) in water-stressed plants, suggesting 

some degree of higher long-term water use efficiency. The δ
13

C values for the current study 

indicate that the plants in the chronic treatment showed some degree of increased long-term 

water use efficiency because δ
13

C was significantly greater under this treatment. The finding 

that plants in the chronic treatment had better WUE (in terms of δ
13

C) than the control and 

acute stress treatment was in accordance with data that showed instantaneous WUE was 

moderately higher in plants subjected to chronic water stress.  

 

5.4 Assessing the objectives of the current study 

 

a) Measure the impact of watering regime on the morphology (height and diameter) of 

three Eucalyptus clonal hybrids: 

Watering regime was shown to have significantly different impacts on the height and 

diameter of the three Eucalyptus clones. Tree height was significantly different among 

clones, where the GC clone was taller the GU clones, regardless of water treatment. Watering 

treatment had no significant effect on the height of the eucalypt clones in the current study. 
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Tree diameter was primarily and significantly affected by watering regime. Water stress 

(acute and chronic) significantly reduced the diameter of all three clones. 

b) Evaluate the effects of water stress and clonal hybrid on hydraulic characteristics and 

biomass partitioning at the juvenile (9 months) and early adult (18 months) growth 

stages: 

Biomass partitioning to roots was driven by genetics (the GC clone had significantly more 

root biomass than the GU clones), whereas biomass partitioning to leaves was governed by 

genetics and the imposition of water stress. The proportion of biomass accumulated in the 

stems increased substantially with tree age. Hydraulic characteristics changed with tree age, 

but not among clones or watering regime. It was evident that there was a reversal in the 

proportion of the allocation to resistance in the leaves and roots. As tree age increased, and 

the number of drought stress events increased, leaves of eucalypt trees represented the 

“hydraulic bottlenecks to water flow”, a phenomenon seen in many other tree species. Even 

though biomass partitioning was driven primarily by genetics, and the proportional allocation 

of hydraulic resistance was determined by tree age, there still existed a positive, significant 

relationship between hydraulic conductance and total biomass. 

c) Determine the influence the drought stress and consequent drought stress recovery has 

on resistance to water flow in the leaf, stomatal conductance and instantaneous 

photosynthetic rate: 

The results from the investigation of leaf characteristics, in response to water stress, showed 

positive, significant correlations between Kleaf, An and gs. While Kleaf, Rleaf, An and gs were 

governed by the imposition of drought stress, the leaf recovery time (i.e. once the parameter 

was not different from the control) was determined by eucalypt clone. The GC clone showed 

rapid leaf recovery (in terms of Kleaf, An and gs) essentially because water stress negatively 

affected the leaf venation, and not the mesophyll tissue (where photosynthesis occurs).  

d) Assess whether the physiological characteristics (plant water relations, photosynthetic 

capacity and hydraulic conductance) of the three Eucalyptus clonal hybrids differ with 

tree age, water availability and among clones: 

Tree age was shown to cause changes in allocation of resistance to water flow, a reduction in 

An and En and changes in leaf area. Reduction of water availability (in the chronic and acute 

stress treatments) decreased Jmax, Vcmax, En, gs and leaf area.  
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Genetics (clonal hybrid) significantly affected differences in SLA, Kh and leaf area. The 

interaction of age, water availability and clone affects tree physiology on a whole-plant level. 

The only morphological parameter that can drive physiological processes, that was different 

with tree age, watering regime and among clones, was that of leaf area.  

 

5.5 Future suggestions for research 

 

The onset of climate change has significant consequences with regards to the future 

productivity of plant ecosystems worldwide. Climate change predictions suggest that drought 

events will be more common, earlier snowmelts will occur, higher temperatures and greater 

variability of rainfall are highly probable (IPCC, 2007). It is likely that there will be 

significantly longer periods without rainfall, in a number of regions, as well as less rainfall 

captured by the soil because of more intense storm events (IPCC, 2007). There is no detailed 

assessment and research dedicated to the potential impacts of climate change on the forestry 

industry in southern Africa (Warburton and Schulze, 2008). Significant shifts in areas that 

experience high rainfall are expected, and this is likely to change commercial productivity of 

the forestry sector. Warburton and Schulze (2008) have suggested that the current areas 

optimal for planting trees may have to shift in response to changing rainfall patterns.  

Conflicting evidence pertaining to physiological responses of trees to elevated CO2, as a 

consequence of climate change, have been reported. Way (2011) suggested that tree size class 

and species differences are more important factors determining tree response to drought 

under elevated CO2 than nutrient availability. An undervalued area of research when 

considering tree response to changes in water availability is that of the physiology of the 

water transport system of trees (Brodribb et al., 2010). On a smaller scale, recent research has 

focussed on venation traits possessed by leaves that correlate with climatic variables or can 

be directly decoded through models as predictors of plant function (Blonder et al., 2011). 

“Venation networks” within leaves can be important predictors of leaf function. 

Understanding the importance of leaf venation, xylem transport and resistance to cavitation 

events, in response to drought, are likely to progressively improve predictions of plant and 

environmental water use.  
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The improvement of predictions that govern maximum plant productivity can then be used on 

local and global scales and in response to future environmental change. There is 

underestimated potential for the use of water transport physiology to predict the growth and 

mortality of trees where climate change has altered predictable and reliable rainfall patterns. 

The use of FACE experiments to simulate elevated CO2 response in real crop ecosystems has 

provided interesting results for a number of studies worldwide, but these systems are 

extremely expensive and substantial maintenance and labour costs are required for 

meaningful results. 

 

Research that requires great investment cost is not a priority during a period when global 

financial crisis and budget cuts are prevalent, and the forestry sector in southern Africa is not 

excluded from the current situation where financial priorities are to cut spending. It would be 

foolish to make grand, hugely expensive suggestions for future work at SAPPI when it is 

unlikely, at the current time, that these suggestions would be viable.  

Technology transfer of forestry research requires cost-benefit analysis and there is a pressing 

need to produce conclusions from research undertaken that align with management systems. 

Presently, refining choice of species and clones than maintain optimal productivity in 

response to changing rainfall events and patterns, is more important that continually releasing 

new clonal varieties.   

 

A number of small-scale research studies could be initiated as a continuation of the current 

study. Considering the interesting results found in terms of stomatal density (i.e. lack of 

stomata on the upper leaf surface of GUA leaves), eucalypt clones could be screened for 

stomatal anatomical differences. Stomatal density determination is rapid, inexpensive and 

does not require highly skilled technical equipment or staff. It may be useful to assess 

whether lack of stomata on the upper leaf surface is a common occurrence in all GUA clones, 

or if it is age-related.  

The GUA clone also showed the most pronounced leaf dieback in response to water stress. 

Correlations between stomatal absence and leaf dieback in response to soil water deficit of 

closely related clones could be examined.  
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Another relatively inexpensive investigation could be determination of δ
13

C of leaves of 

clones in areas experiencing significantly different rainfall. Leaf samples could be collected 

in the field or at tree breeding stations, and the dried leaf samples can be processed locally. 

Determination of a site or rainfall gradient can be related to improved water use efficiency 

may be valuable for future site predictions and commercial clone planting. Another 

suggestion by Schultze et al. (2006) would be to relate wood δ
13

C to leaf δ
13

C, and evaluate 

whether a relationship occurs between long-term WUE in the leaves and carbon assimilated 

in the wood.  

 

Existing and future short-term research should focus on facilitating continuous improvement 

of site-species matching and production management. Should or when the global financial 

crisis be alleviated and more funds become available for more extensive research programs, 

there exists great potential in further investigation of water transport physiology (leaf and 

whole plant hydraulic conductance characteristics) in response to prolonged or severe water 

stress. The link between plant hydraulic systems, stomatal control of transpiration rate and 

the concurrent correlation of photosynthetic rates is imperative for comprehending whole-

plant responses to changes in water availability. There also exists a huge gap in knowledge of 

how climate change, especially elevated CO2 and rainfall variability, will change Eucalyptus 

productivity in southern Africa. Climate change research requires great investment that would 

require funding from additional research institutions or the corporate sector in order to 

produce the quality of research being performed worldwide. Research objectives should 

continuously aim to align with management strategies that benefit the forestry sector in 

southern Africa. 
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