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ABSTRACT 

 

Introduction:  The O2 Gold magnetic device is a non-medicinal inhaler containing a magnetic 

coil that has been designed to improve cardio-respiratory function. Oxygen (O2) in the inhaled 

air passes through the magnetic coil in this breathing device and acquires a magnetic charge.  

Former studies (Ryan, 2007; Roberts, 2007) have reported improvements in peak power output 

and post-exercise recovery, supporting anecdotal reports of improved peak power output in 

world-class endurance athletes following regular use of this device. The mechanisms by which 

this improved peak power output may occur, are however unknown. 

 

Objectives:  The primary objectives of this study were to determine the effects of 28 days of 

regular use of the magnetic breathing device on the cardio-respiratory function of well-trained 

endurance athletes during an incremental exercise test to exhaustion. Secondary objectives 

included the determination of lung function and red blood cell status at rest, and maximal 

exercise performance and O2 uptake (VO2) as well as heart rate (HR) and blood pressure (BP) 

response to a maximal exercise test.  Finally the possible role of systemic concentrations of 

erythropoietin (EPO) and interleukin-3 (IL-3) as mediators of the beneficial effects of the 

magnetic breathing device on red blood cell status, was investigated.   

 

Study design and methods:  The study was designed as a double blind, placebo controlled, 

cross-over trial.  18 Healthy male participants volunteered from running and triathlon clubs in 

the greater Durban area. The participants were particularly suited to a set of inclusion criteria 

which included a specific age range (>18 and <45 years), were recreational or professional 

runners that were willing to maintain a training schedule of at least three times per week for the 

three months leading up to, and during the study period. The participants were required to use 

both the magnetic and placebo breathing devices, 30 times a day for 28 days each.  Each 

participant acted as their own control and the sequence of the trials was determined by the 

manufacturers of the pre-coded devices. At baseline and after active/placebo intervention, 

anthropometric characteristics and lung function were assessed and venous blood samples were 

collected for later determination of full blood count (FBC), serum EPO and plasma IL-3 

concentration. Metabolic and respiratory responses to an incremental exercise protocol were 

determined during an incremental maximal exercise test. Selected cardiovascular parameters 

including BP and HR were also measured before, during and for the first two minutes following 

the exercise test. 
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Results:  Ten participants, aged between 27 and 40 (mean: 32.3±4.9 yr) with a mean stature 

(cm) of 175.8±7.7 reported compliance with all aspects of the study. Analysis of the physical 

characteristics, including mass, % body fat, resting HR and blood pressure in this sample (n=10), 

revealed no significant difference (p>0.05) between mean (±SD) at baseline and after placebo or 

active trials.  

 

Six participants (60%) recorded a statistically significant (p<0.05) improvement (vs. baseline) in 

forced vital capacity following the active and placebo trials. Maximal exercise test duration 

ranged between 8 to 17 minutes. Five participants (50%) recorded a statistically significant 

improvement (vs. placebo, p=0.02) in maximum treadmill workload and running time following 

the active trial.  

 

Six of the sample presented with RBC count increases in (vs. placebo) and five with an increase 

in Hb concentration (vs. placebo) following the active trial. The mean (±SD) increases in this 

subsample of positive responders were both significant (p=0.02; 0.047) and corresponded with 

increases in VO2 maximum in each of these individuals. However no significant differences 

(p>0.05) were obtained in the means (±SD) of the circulating concentration of the hormone EPO 

and the haematopoietic growth factor, IL-3, between active and placebo trials.  The association 

between pre-post change in serum EPO concentration and plasma IL-3 concentration and 

changes in RBC count were also  not significant (p>0.05).  

 

Mean (±SD) and range of recovery HR, both 60 and 120 seconds post-test, showed no 

statistically significant improvement (n=10, p>0.05). Upon analysis of individual results, four of 

the participants showed an improvement in 120 second post maximal exercise test HR recovery 

when using the active device. The mean (±SD) of the improvement in this subsample was 

statistically significant (p=0.03). Although mean (± SD) post-test diastolic BP was not 

significantly lower in the full sample (n=10), there was a significant drop in this parameter in 

five individual participants following the active trial (p<0.03).  

 

Conclusion:  Only 50% of this subsample presented with significantly improved performance 

during the treadmill running test and 40% with significantly improved Hb concentration, HR at 

120 seconds post exercise and post exercise DBP. 60% of the sample presented with a significant 

improvement in RBC, but this was not related to an associated increase in VO2 maximum. 

Serum IL-3 and plasma EPO concentrations do not appear to be the mechanisms by which the 

beneficial effects on RBC count are mediated.  
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The possibility of the existence of responders and non-responders to this intervention and factors 

which influence this potential response, require further examination. Further studies examining 

the benefits of the magnetic breathing device, also need to consider the possibility of under-

acknowledged reduced compliance in the frequency of the device usage by human participants.  
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CHAPTER ONE 

 

INTRODUCTION TO THE STUDY 

 

1.1  Background 

Magnetic therapy, the use of magnetic fields to treat a range of medical conditions, has in 

recent years accumulated a great following. It has been observed that magnetic fields have 

the ability to alter water solubility, enzyme activity, gene expression, ion transport, 

membrane permeability and mitochondrial function (George et al., 1996). It has also been 

shown that magnetic therapy is beneficial in arthritis and pain relief (Mizushima, 1975), and 

that it enhances neurological and endocrine function (Hong, 1987). 

 

The Therahaler® O2 Gold is a magnetic breathing device that was originally invented by 

Bryan Speight of the Royal Pharmaceutical Society of Great Britain in 1998 and is currently 

being marketed as the “O2 Gold” by a South African company,  Rexi Pharmaceuticals CC. A 

magnetic coil of strength 1500 or 3000 Gauss (G) is the active component of the inhaler and 

inspired air is drawn directly through it. The manufacturers currently recommend that it is 

used over a period of 4-8 weeks, with a minimum of 25-30 inhalations to be taken daily at 

any stage or interval period throughout the day. 

  

When air is inhaled through this device, it passes through a magnetic field at which point the 

inhaled oxygen (O2) is ionized and develops a magnetic charge. The magnetized O2 is then 

drawn into the lungs and onto the iron binding sites of the haemoglobin (Hb).  O2 transport 

to alveolar capillaries is thought to be accelerated and binding to Hb improved (Chater et al., 

2006; Roberts et al., 2008). The manufacturers claim that the magnetic charge is then 

imparted onto a number of different molecular and biological systems as the blood circulates 

through the body. 

 

The magnetic breathing device was first designed to assist with asthmatic patients’ 

integration into a normal, functional lifestyle.  Rexi Pharmaceuticals CC claims that the O2 

Gold is non-medicative and beneficial to athletes of all ages. These marketers of the O2 Gold 

magnetic inhaler also suggest that athletic performance may be enhanced by magnetic fields, 

possibly by accelerating cell membrane substrate transport systems, elevating enzyme  

activity and ATP production.  Further claims following magnetic induction and use of a 
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magnetic breathing device are an elevation in haematocrit (Hct) and Hb concentration 

(Chater et al., 2006), improvement in immune response (Jankovic et al., 1991), improved 

respiratory muscle function (Roberts, 2008), a lower resting heart rate (HR; Ryan, 2010), as 

well as post-exercise HR recovery (Ryan, 2007), collagen deposition (Zhang et al., 2000) 

leading to accelerated muscle repair (Zhang et al., 2000), and increased bone mineral density 

(Costantino et al., 2007). 

 

For athletes, international attention and the rise in popularity of sport has been partnered 

with a tremendous amount of pressure to excel and maintain high performance levels. This 

has led to many athletes opting for performance-enhancing substances which are often illegal 

and potentially detrimental to their long-term health (Krcik, 2001). The magnetic breathing 

device may serve as a viable substitute for illegal performance enhancers if it yields the 

results claimed by the former marketers, Magnetic Air Health Products, and Rexi 

Pharmaceuticals. 

 

In the initial two unpublished pilot studies examining the effects of regular use of the 

Therahaler® O2 Gold on athletic performance over a four week-period, first described by 

Roberts (2004), heart rate recovery in 14 triathletes after completing a 15 minute cycle 

ergometer test as well as changes in endurance capacity in rugby players, were examined. In 

the triathletes using an active device (n=10), a significant reduction in resting heart rate, 

immediate post-exercise as well as recovery heart rate, one and three minutes after 

completing the cycle test was reported compared to those using a placebo device without a 

magnetic coil (n=4), while the rugby players using the Therahaler® O2 Gold  (n=8) showed a 

10.15% increase in performance in the sprint bleep test when compared to that of a control 

group (n=20).  

 

A large scale double-blind placebo-controlled clinical maximal cycle trial was thereafter 

conducted to determine if the Therahaler® O2 Gold improved peak power output and 

exercise time to exhaustion after four weeks of use.  Roberts (2007) reported that there was  

a significant 6.88% increase in the peak power output as well as a significant improvement   

(p< 0.05) in recovery heart rate and rate of perceived exertion (RPE) in the active group on a 

1500G magnetic device  (n=44) compared to that of the placebo group (n=59) and a group 

on a 3000G magnetic device (n=35).  
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As the evidence of the efficacy of this magnetic breathing device in optimizing athletic 

performance, is however presently primarily based on unpublished and anecdotal reports 

with only one extensive double–blind placebo-controlled trial having been conducted 

(Roberts, 2007), a further double blind, placebo-controlled, cross-over study was designed to 

confirm these reports of performance benefits and begin an investigation into possible 

mechanisms which could explain the possible improvements in cardio-respiratory function in 

endurance athletes using this device. 

 

1.2  Primary Aim 

To determine the effects of 28 days of regular O2 Gold usage, according to the current 

specifications of the manufacturers, on the cardio-respiratory function of well-trained 

endurance athletes during a maximal exercise test. 

 

1.3  Secondary Objectives 

1. To determine the effects of regular use of the magnetic inhaler on the following 

parameters during and following an incremental treadmill exercise test to exhaustion: 

 

 peak power output and maximal running time on the treadmill 

 absolute and relative maximum oxygen consumption (VO2 max)   

 RPE, HR, VE , respiratory exchange ratio (RER) and O2 saturation at the workload at 

which VO2 max was reached 

a. submaximal minute ventilation (VE, L.min
-1

), absolute O2 uptake (VO2, 

L.min
-1

), heart rate (HR), rating of perceived exertion (RPE), and O2 

saturation  

 HR recovery during the first two minutes post exercise 

 

2.  To determine the effects of regular use of the magnetic inhaler on pre-exercise forced 

vital capacity (FVC), forced expiratory volume in one second (FEV1), FVC/FEV1 and forced 

inspiratory volume (FIV1). 

 

3.  To determine the effects of regular use of the magnetic inhaler on red blood cell indices, 

serum erythropoietin (EPO) and plasma interleukin-3 (IL-3) concentrations in pre-exercise 

venous blood as well as exercise-induced elevations in nitric oxide in plasma 
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1.4   Hypotheses 

In view of the apparent consensus in the literature, albeit by a limited number of published 

studies, regarding a performance enhancing effect following regular use of the magnetic 

inhaler, a positive alternative hypothesis was set for the objectives relating to this effect, 

namely,  

 

Twenty-eight days of regular use of the 1500G O2 Gold magnetic breathing device will 

improve 

 peak power output and maximal running time on the treadmill 

 pre-exercise test respiratory function, RBC and  Hb concentrations and Hct of 

endurance athletes  

 

In view of the lack of published research findings and consensus regarding the objectives 

concerning possible mechanisms for this, null hypotheses were set of the remainder of the 

study objectives, namely,  

 

Twenty-eight days of regular use of the 1500G O2 Gold magnetic breathing device will not 

affect  

 absolute and relative maximum oxygen consumption (VO2 max)   

 RPE, HR, VE , respiratory exchange ratio (RER) and O2 saturation at the workload 

at which VO2 max was reached 

 submaximal minute ventilation (VE,), absolute O2 uptake (VO2,), heart rate (HR), 

rating of perceived exertion (RPE), and O2 saturation 

 resting circulating IL-3 and EPO concentrations 

 exercise-induced increases in systemic concentrations of nitric oxide  
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CHAPTER TWO 

 

REVIEW OF THE RELATED LITERATURE 

 

2.1  Magnetism and Magnetic Therapy 

Magnetism is created primarily by the motion of electrically charged particles (Durney et al., 

1999). A magnetic field is a force field generated by these moving electrical charges (Saini 

et al., 1988). Figure 2.1 below represents how electrical charges behave in the absence and 

presence of a magnetic field. In permanent magnets, this is created by the quantum 

mechanical motion of electrons in the atoms, each of which produces a magnetic moment 

(Jackson, 1988). The strength of a magnetic field is its magnetic flux density, with the SI 

unit of measurement being the Tesla (T) (Nave, 2007). For a magnetic flux density of one 

Tesla, a force of one Newton must act on a one meter length of wire carrying one ampere of 

one current (Nave, 2007). One Newton of force is a very large force. Therefore a smaller 

unit of magnetic flux density is often used: Gauss (G) (1 Gauss = 1/10000 Tesla) (Nave, 

2007). The earth’s magnetic flux is 0.5 Gauss, whereas the strength of the magnetic field of a 

fridge magnet is about 10 Gauss (Crowell, 2006).  

 

 

 

 

 

 

Figure 2.1  Moving electrical charges in the presence of a magnetic field.  
Adapted from: www.themagnetguide.com/magnetic-materials.html 

 

Many civilizations throughout history have used magnets and the magnetic field they create, 

to treat illness and enhance the lives of human beings (Roberts, 2008). Magnetic therapy has 

also been reported to be useful in treating ailments such as fractures (Sharrard, 1990), wound 

healing (Lee et al., 1993; Man et al., 1999), chronic pain (Valbona et al., 1997) and 

psychiatric disorders, including depression (Baker-Price and Persinger, 1996).  

 

For example, more recently the effect of static magnetic fields on cutaneous wound healing 

in an animal model was analysed by Henry et al. (2008). Standardized wounds were created 

on the backs of 33 Sprague-Dawley rats, which were divided into three groups to which a 23 
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gauss magnet, a sham magnet, or no magnet was positioned over the wound. Wounds in the 

magnet group healed in an average of 15.3 days, significantly faster than those in either the 

sham group (20.9 days, p=0.006) or control group (20.3 days, p<0.0001). Localized 

inflammation was induced via injection of inflammatory agents into rat hind paws (Morris 

and Skalak, 2008). Application of a 10 or 70 mT magnet for 15 or 30 minutes immediately 

following histamine induced oedema, resulted in a significant, 20–50% reduction in oedema 

formation.  Costantino et al. (2007) studied 40 patients with wrist fractures after applying a 

magnet of 12,500 G directly over the fracture in the plaster cast of the participants.  This 

resulted in bone callus formation that produced a 35% improvement in healing rates 

compared to standard time. The pain-relieving efficacy of static magnetic fields produced by 

200 G magnets compared with 50 G magnets were also examined in a double-blind, 

randomized, two-phase crossover study in patients with chronic lumbar radicular pain. Pain 

was rated on a scale of 1-10. A greater increase in pain was observed with use of the 200 G 

magnet (Khoromi et al., 2007).  Laszlo et al. (2009) examined antinociceptive activity in the 

writhing test in mice and concluded that a 3 T homogeneous static magnetic field of a 

clinical magnetic resonance system induces a significant pain-inhibitory effect and Butariu et 

al. (2009) confirmed improved neural function when they investigated the application of 

pulsed magnetic fields in the rehabilitation treatment of 20 participants with peripheral nerve 

lesions of the hand and reported an 11.1% improvement in peripheral nerve function. 

 

There is, however, limited information relating the use of magnetic therapy to enhance 

athletic performance (Roberts, 2004; 2007; Roberts et al., 2008). Bassett and Howley (1997) 

proposed that athletic performance may be enhanced by magnetic fields possibly by 

accelerating cell membrane substrate transport systems, elevating enzyme activity and ATP 

production.  It has been found to enhance nerve excitability (Hong, 1987), Hct and Hb 

concentration (Chater et al., 2006), collagen deposition (Zhang et al., 2000) and immune 

response (Jankovic et al., 1991). Further claims of an improved isometric exercise benefit for 

the inspiratory muscles (Roberts, 2004; 2007), a lower resting heart rate (HR;  Ryan, 2007), 

improved muscle repair (Zhang et al., 2000), bone mineral density (Costantino et al., 2007), 

post-exercise HR recovery (Ryan, 2007), vascular tone and tissue perfusion and general 

nervous system function have been made (Hong, 1987).  
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Little is however known of the exact mechanisms which are responsible for the reported 

elevation of RBC count, Hct and Hb concentrations, which may affect endurance capacity 

(Chater et al., 2006). Whether regular exposure to magnetic fields, for example, enhances 

RBC concentrations by affecting blood erythropoietin hormone concentrations or 

haematopoeitic growth factors, is unknown. 

 

Oxygen (O2) is the only gas that exhibits paramagnetic properties with molecular attraction 

and orientation in the presence of a magnetic field. This is caused by the electrons in motion 

in atoms forming microscopic current loops that are capable of forming magnetic fields of 

their own, a phenomenon that is recognised and utilised in Magnetic Resonance Imaging 

(Griffith et al., 1984).   Figure 2.2 is an enlarged diagrammatic representation of an oxygen 

molecule showing the configuration of electrons surrounding the nucleus. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  Diagrammatic representation of an oxygen molecule.  
Adapted from: www.google.co.za/imgres?imgurl=&imgrefurl=http%3A%2F%2Fmontessorimuddle.org%2F 
2013%2F01%2F13%2Fdrawing-atoms%2F&h=0&w=0&sz=1&tbnid=0zjpV8agojJf_M&tbnh=226&tbnw 

=223&zoom=1&docid=uEEwRm7Fe2ucqM&hl=en&ei=bg9RUpnqOsGJ7Aav74DICA&ved=0CAIQsCU 

 

In the case of recently designed breathing devices containing magnets varying in strength 

from 1800 to 3000 Gauss, atmospheric O2 inhaled through the device, is thus ionized.  The 

charged O2 then passes through the lungs and onto the iron binding sites of Hb within the red 

blood cells. Miller (1977) found that magnetic fields reduce water surface tension, possibly 

by altering characteristics of hydrogen bonding equilibrium and may hold this charge for 24 

hours. The surface tension of water (Gerber, 2001) is affected as hydrogen bonding occurs 

when a negative O2 atom of one water molecule is attracted to the positive hydrogen atom of 

another water molecule. Water makes up the majority of blood therefore it is proposed that 

the charge may affect nutrient solubility and athletic performance (Miller, 1977). 

Nucleus 

Electron 

Inner electron shell, 2 electrons 

Outer electron shell, 6 electrons 

Oxygen (
16

O) 
8 protons, 8 neutrons, 8 electrons 
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Figure 2.3  Diagrammatic representation of a haemoglobin molecule.  
Adapted from: http://gassama.myweb.uga.edu/ 

 

Hb is a molecule comprising an iron atom surrounded by a ring of hydrogen, O2 and carbon 

atoms which make up four polypeptide chains and the globin portion of the Hb molecule, as 

can be seen in Figure 2.3 above. Under conditions of neutral or alkaline pH, iron is found in 

the Ferric state (Fe
3+

) state and at acidic pH, the Ferrous state (Fe
2+

) state is favoured. The 

Fe
3+

 state is not readily soluble and the Fe
2+

 state favours O2 binding (Sakurai et al., 2000). It 

is suggested that O2 reduces haeme iron from its Fe
3+

 to its Fe
2+

 therefore gaining an electron 

and an O2 molecule. Thereby oxyhaemoglobin levels and active tissue O2 perfusion are 

increased (Sakurai et al., 2000).  

 

Zhernovoi et al. (2001) found that in some Hb molecules exposed to a magnetic field, the 

bond between nitrogen and iron atoms are disrupted, causing Hb activation. O2 may then be 

added to the free bond of the iron atom of activated Hb. The enhanced O2 carrying capacity 

of blood may be explained by the binding of two O2 molecules to the iron atom of Hb in the 

presence of a magnetic field, forming bioxyhaemoglobin. Bioxyhaemoglobin however, is 

dependent on a constant magnetic field, and decomposes when the magnetic field is 

removed. Formation of bioxyhaemoglobin also depends on the plasma concentration of 

dissolved O2 (Zhernovoi et al., 2001).  

 

2.2  Magnetic Breathing Device  

The O2 Gold magnetic breathing device, previously marketed as the Therahaler® O2 Gold, is 

a non-medicative magnetic breathing device that was initially developed by Bryan Speight, a 

member of the Royal Pharmaceutical Society of Great Britain in 1998, as an aid to treat 

asthma and in response to the results of research on the magnetic effects of O2 and O2 

transport. This early work was conducted by Prof Botiko of Moscow University and Dr B 

Shapiro, assistant professor, Department of Anaesthesiology from North-western Medical 

School (Shapiro, 1973).   

RBC β chain 

α chain 

Iron 

Heme group 
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The generally accepted procedure for use of the device, which is schematically represented 

in Figure 2.4 below, is that patients/athletes are required to breathe in through the O2 Gold 

containing a solid magnet and fill their lungs to full capacity. Thereafter, are required to hold 

their breath for as long as reasonably possible, and then exhale. It is suggested that athletes 

should do this 25 to 30 times a day for the initial 4 weeks, whereas an asthmatic person is 

required to complete an 8 week period. Subsequently a maintenance program of twice a day 

is sufficient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4  Schematic representation of the O2 Gold magnetic breathing device.  
Adapted from: www.ammhealth.co.za/therahaler/effects.htm.  

 

2.3  Studies on the Effects of the O2 Gold on Athletic Performance  

The O2 Gold magnetic breathing device is firstly believed to help condition the inspiratory 

respiratory muscles. When air is inhaled through the device, it is designed to create slight 

resistance to such airflow. This increases the work of the respiratory muscles during the 

inhalation. Several different studies have indicated that exercise does induce respiratory 

muscle fatigue (Johnson et al., 1993; Mador et al., 1993) and that respiratory muscle fatigue 

can limit exercise performance (Mador et al., 1991). Respiratory muscle training, 

particularly inspiratory muscle training is therefore thought to enhance endurance exercise 

performance in both trained and untrained individuals (Boutellier et al., 1992; Splenger et 

al., 1998; Splenge, 1999). The potential inspiratory muscle training provided by regular use 

of the O2 Gold may therefore be more directly responsible as a benefit than the magnetism of 

Cylindrical magnet 

Mouthpiece 

Air Passage 

Magnet Specs: 

Standard Mode- 1800 Gauss 

String Model- 3000 Gauss 
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the device itself and it is acknowledged by the author that such alternate factors do exist in 

contributing to improved endurance performance. 

 

The O2 Gold magnetic breathing device is firstly believed to help condition the respiratory 

muscles. When air is inhaled through the device, it is designed to create slight resistance to 

such airflow. This increases the work of one’s respiratory muscles during the inhalation. 

Several different studies have indicated that exercise does induce respiratory muscle fatigue 

(Johnson et al., 1993; Mador et al., 1993) and that respiratory muscle fatigue can limit 

exercise performance (Mador et al., 1991). Respiratory muscle training, particularly 

inspiratory muscle training is therefore thought to enhance endurance exercise performance 

in both trained and untrained individuals (Boutellier et al., 1992; Splenger et al., 1998; 

Splenge, 1999). The potential inspiratory muscle training provided by regular use of the O2 

Gold may therefore be more directly responsible for a benefit than the magnetism of the 

device itself and it is acknowledged by the author that such alternate factors do exist in 

contributing to improved endurance performance. 

 

Two initial pilot studies that were conducted using the magnetic breathing device were done 

on asthmatic patients by Drs Giereke and van der Linde, pulmonologists from Durban in 

1999 and 2001, respectively (Roberts, 2007).  In the first trial, Giereke found a significant 

reduction in the use of asthma medication as well as a reduction in the number and severity 

of asthma attacks (Geireke, 1999).  In the second study by van der Linde, 45 asthmatics were 

assessed according to quality of life. The use of the Therahaler® O2 Gold resulted in a 

reported improvement in the quality of life and a 71% reduction in the use of reliever 

medication, with no side effects reported (van der Linde, 2001).  There are also anecdotal 

reports of a number of the active trial patients that indicate an improvement in their physical 

performance and a few athletes reported running their personal best times while using the 

Therahaler® O2 Gold (Roberts 2004). 

 

In terms of the effect of regular prolonged usage of the Therahaler® O2 Gold on athletic 

performance, the first pilot trial was conducted by Angus Ryan, a Biokinetisist, on 14 

triathletes in 2003. As described by Roberts (2004; 2007), a heart rate recovery test was 

conducted on 10 athletes who were given an active Therahaler® O2 Gold device and four 

who were given placebo devices (identical breathing devices without a magnetic coil). A 15 

minute cycle ergometer test was completed and heart rate responses were analysed, both 
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before and after the standardized cycle ergometer test at the commencement of the study and 

again after 4 weeks. As is shown in Table 2.1, the O2 Gold group showed a significant 

reduction in resting heart rate immediately after completing the 15 minute cycle, as well as 

recovery heart rate one and three minutes after completing the test, when compared to the 

placebo group (Ryan, 2007). Table 2.1 details the findings of his study. 

 

Table 2.1  Heart rate response to regular use of the Therahaler®  O2 Gold.  
Adapted from: Ryan (2007).  

 

Test Parameter Athletes using O2 Gold  

(n=10) 

Athletes using Placebo  

(n=4) 

 At Start After 4 weeks % Change At Start After 4 Weeks % Change 

Ave resting heart 

rate (bpm) 
66.14 61.80 -7.35 64.75 66.50 +1.02 

Ave resting heart 

rate after 15 min 

exercise (bpm) 

160.20 150.50 -6.00 163.75 165.00 -0.91 

Ave resting heart 

rate after 1 

minute rest (bpm) 

122.70 105.60 -13.90 123.00 124.25 +1.00 

Ave resting heart 

rate after 3 

minute rest (bpm) 

91.30 81.10 -11.70 92.25 98.25 +6.25 

 

In the same year (2003), Roberts also conducted controlled testing on a 28-man rugby squad 

over a four week exercise regime during which the sprint bleep-test was used to measure 

endurance levels.  At the end of the four weeks the Therahaler® O2 Gold users (n=8) showed 

a 24.44% increase in performance in the bleep test whilst the control group (n=20) showed a 

14.29% increase (Roberts, 2004; 2007).  

In a further unpublished local pilot study described in Roberts (2004), blood gas, Hb and 

oxyhaemoglobin levels were assessed in seven participants using the Therahaler® O2 Gold 

for four weeks. Following extraction of baseline arterial blood samples, participants were 

required to use the Therahaler® O2 Gold according to the manufacturer’s recommendations 

at 30 minute intervals during waking hours and again report for arterial blood sampling after 

two and four weeks. Although the average oxyhaemoglobin levels rose over the four weeks 

from 93.69 to 94.75%, this increase only reached borderline statistical significance (p = 

0.0516) and it is not certain whether the mean increase confirms a clinically significant 
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therapeutic effect of improved bonding of the oxygen to the Hb. Interestingly, the PCO2 

levels were  not significantly disturbed (p=.3184), ruling out the possibility of a possible  

improvement in mean oxyhaemoglobin concentrations being the result of hyperventilation.   

In a subsequent double-blind baseline maximal cycle trial undertaken to determine if the 

Therahaler® O2 Gold improved peak power output and exercise time to exhaustion after four 

weeks of use,  131 healthy participants were recruited from running, cycling, swimming, 

triathlon, hockey and rugby clubs (Roberts, 2007; Roberts et al., 2007). Following baseline 

maximal cycling tests, the participants were divided into three groups, a placebo group 

(n=52) and two active groups, on a 1500G (n=44) and on a 3000G Therahaler® O2 Gold 

(n=35). The participants were requested to use the device every 30 minutes throughout the 

day while awake, and to record their daily use as well as training volume and intensity. They 

were then retested two and four weeks after device use. Roberts (2007) found that after two 

weeks there was no significant difference in the peak power output and in exercise time to 

exhaustion in the three groups (p>0.05). However, after four weeks of use there was a 

significant 13.78% increase in the peak power output in the 1500G group (p=0.0004) 

compared with a 6.90% increase in the placebo group (p=0.0122), but no significant change 

in the 3000G group (p=0.1). After four weeks there was also a significant improvement in 

the mean exercise time to exhaustion in all three groups; the mean improvement in the 

1500G group was 85 seconds (p<0.0001), in the 3000G group, 53 seconds (p=0.027) and in 

the placebo group, 53 seconds (p<0.001).  

 

Although there was also no significant difference in the HR response to exercise in the 

placebo and 3000G group (p>0.1), in the 1500G group after four weeks of usage, there was 

a significant reduction in the heart rate after four and a half minutes and after seven minutes 

of exercise (p<0.05). After two weeks there was a significant reduction in the rating of 

perceived exertion (RPE) after four and a half minutes of exercise in the 1500G group 

(p<0.05), and after four weeks there was a significant reduction in the RPE after four and a 

half minutes in the 1500G and 3000G group (p<0.05; Roberts, 2007).  

 The author acknowledges that the above reviewed literature relies primarily on  

unpublished, anecdotal and often small-scale works, with only one extensive double blind 

placebo-controlled trial (also unpublished), having been conducted to date.  It can therefore 

be concluded that further work in which major extraneous confounders such as changes in 

training status, compliance and diet are controlled, is necessary in order to confirm the 

· 
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findings of the above-mentioned studies. Furthermore, to the author’s knowledge, no work 

examining possible mechanisms which may contribute to the reported apparent benefits of 

magnetic therapy on athletic performance, has yet been published.    

2.4  VO2max 

The term “maximal oxygen consumption” (VO2max) was first coined and defined by Hill 

and Herbst in the 1920s (Warpeha, 2003). In 1923 Hill and Lupton postulated that (i) there is 

an upper limit to O2 uptake, (ii) there are inter-individual differences in VO2max and (iii) a. 

high VO2max is a prerequisite for success in middle and long distance running with VO2max 

being limited by the ability of cardiorespiratory system to transport O2 to the muscles 

  

Traditionalists supporting these early theories of a physiological upper limit to the body’s 

ability to consume O2, claim that VO2max, the highest rate at which one can transport and 

utilise oxygen, is the most widely accepted determinant of ability in endurance sports 

(Bassett and Howley, 1999). VO2max thus remains one of the most commonly measured 

parameters in the basic and applied physiological sciences.  

 

Absolute values of VO2max are typically 40-60% higher in men than in women (Hyde et al., 

2007). The average untrained healthy male will have a VO2max of approximately 35–40 

mL.kg.
-1

min
-1

 whereas the average untrained healthy female will score a VO2max of 

approximately 27–31 ml.kg
-1

.min
-1

 (Heywood, 1998; Guyton and Hall, 2011). These scores 

can improve with training and decrease with age, although the degree of trainability also 

varies very widely. Conditioning has been reported to double VO2max in previously 

untrained individuals, and to only marginally improve it in others (Kolata, 2992; Claude et 

al., 2007). In sports in which endurance is an important component in performance, such as 

cycling, rowing, cross-country skiing, swimming and running, world class athletes typically 

have VO2 maxima in excess of 70 mL.kg
-1

.min
-1

. Elite male runners can consume up to 85 

mL.kg
-1

.min
-1

, and female elite runners can consume about 77 mL.kg
-1

.min
-1

 (Noakes, 2001). 

 

According to the classical, traditional premise, the capacity of the heart, lungs and blood to 

transport oxygen to the working muscles, as well as the muscles’ ability to utilize that 

oxygen during exercise determine VO2max (Bassett and Howley, 1990). VO2max is 

therefore, also defined as the product of Qmax and (CaO2 – CvO2) where Qmax is the maximum 

cardiac output, CaO2 is the arterial oxygen content, and CvO2 is the venous oxygen content.  

CaO2 – CvO2 is also known as the arteriovenous (a-v) oxygen difference. Limiting 

· 

· 

http://en.wikipedia.org/wiki/Swimming_(sport)
http://en.wikipedia.org/wiki/Running
http://en.wikipedia.org/wiki/Arteriovenous_oxygen_difference
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physiological factors would therefore include the inspiratory capacity of the lungs, 

pulmonary diffusing capacity of O2 into the pulmonary circulation, O2 transport to the active 

muscles which is dependent on maximal cardiac output and the O2 carrying capacity of the 

blood and skeletal muscle characteristics including diffusion capacity, mitochondrial 

enzymes, and capillary density (Bassett and Howley, 1990). These limiting physiological 

factors are represented in Figure 2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5  Physiological factors that potentially limit maximal oxygen uptake in exercising 

humans. Adapted from: Bassett and Howley (1999).  

 

 

The first four of these factors are commonly classified as the “central” factors, while those 

relating to uptake of oxygen by skeletal muscle are termed the “peripheral” factors. Although 

both sets of factors suggest that availability of O2 limits muscle fiber oxidative ATP 

production, traditionally, exercise physiologists that support the traditional/ classical theory 

of the determinants of VO2max are divided into proponents of the “central” and “peripheral” 

perspectives.  

 

2.4.1  Central Factors 

The pulmonary system consists of the lungs, responsible for saturating the arterial blood 

with O2. It is well accepted that healthy lungs are able to saturate the arterial blood with O2 

extremely well (Guyton and Hall, 2011). Hill et al., however, predicted that a significant 

drop in arterial saturation does not occur based on the appearance of their participants in the 

early 1920’s and modern researchers have verified that the pulmonary system may indeed 

Pulmonary diffusing capacity 

Cardiac output 

Oxygen carrying capacity 

Skeletal muscle 

Lung inspiratory capacity 
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limit VO2max under certain circumstances (Bassett and Howley, 1999).  Dempsey et al. 

(1984) showed that elite athletes are more likely to undergo arterial O2 desaturation during 

maximal work compared with normal individuals. The reason for this has been related to the 

fact that trained individuals have a higher cardiac output than untrained individuals, and this 

therefore leads to a decreased transit time of the red blood cells in the pulmonary capillary. 

Consequently there may not be enough time to saturate the blood with O2 before it exits the 

pulmonary capillary. However this pulmonary limitation in highly trained athletes can be 

overcome with O2-enriched air (Dempsey et al., 1984), a fact which may be of great 

significance in terms of the potential effect of usage of a magnetically charged breathing 

device.  

 

In 1923 Hill et al. proposed that cardiac output, the product of the stroke volume and heart 

rate, was the primary factor explaining individual differences in VO2max. Today it is known 

that the normal range of VO2max values observed in sedentary and trained men and women 

of the same age is due primarily to variations in maximal stroke volume, given that 

considerably less variation exists in the maximal heart rate which also decreases with age, 

although to a much lesser extent (Hill et al., 1923; Bassett and Howley, 1999).  

  

It has been estimated that 70-85% of the limitations in VO2max are linked to the maximum 

cardiac output (Cerretelli and Prampero, 1987). Longitudinal studies have shown that the 

training induced increases in VO2max result primarily from an increase in maximal cardiac 

output, rather than a widening of the systemic (a-v) O2 difference, which is regarded as a 

peripheral factor and will be discussed below (Bassett and Howley, 1999). 

 

Another “central” factor involved in oxygen delivery is the muscle blood flow. During 

exercise there is a redistribution of cardiac output so that muscle blood flow can increase 

from a resting volume of ±1L.min
-1

 (20% of cardiac output) to around 20L.min
-1

 (80% of 

cardiac output) during maximal exercise. However vasodilation of the periphery cannot be 

unlimited as this would cause a drop in blood pressure. Increasing the demand for peripheral 

blood flow to an additional vascular bed by adding arm exercise to high intensity leg 

exercise will cause a reduction in leg blood flow, despite an unchanged work rate. This 

therefore indicates that the capacity of the periphery to vasodilate is actually greater than that 

elicited near exhaustion under normal physiological conditions. Muscle blood flow can also 

be increased without compromising peripheral resistance by increased muscle capillarity. 
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Since endurance training increases both muscle capillarity and VO2max, it is possible that 

inadequate muscle capillarity could limit the VO2max of untrained individuals, although an 

increase in muscle bulk alone would show an increase in VO2max independent of any 

increases in muscle capillarity.  

 

The next step in the physiological chain would then be the extraction of oxygen from the 

blood by the working muscles. The finding that femoral venous oxygen content is not close 

to zero at maximal exercise implies that oxygen delivery is adequate, but the muscle capacity 

for oxygen extraction may be exceeded. The mechanism of oxygen extraction includes its 

dissociation from Hb, diffusion from the red blood cells into the muscle cells and finally 

diffusion and transport within the muscle cells to the mitochondria.  

 

It would therefore be interesting to establish whether an improvement in central factors 

which govern the maximum O2 carrying capacity of the blood, including increased 

respiratory function (resulting in improved pulmonary ventilation), erythrocyte production, 

Hct, Hb and oxyhemoglobin concentration are related to increases in maximum O2 uptake 

during intense bouts of endurance exercise involving the large muscle groups. 

 

2.4.2  Peripheral Factors 

While O2 transport to the active muscles is dependent on central factors including the 

pulmonary diffusing capacity, maximal cardiac output and O2 saturation or O2 carrying 

capacity of the blood, peripheral factors including O2 diffusion into the muscle and 

mitochondrial oxidative capacity have also been considered as possible limitations of 

VO2max, particularly during exercise with small muscle groups (Ferretti et al., 1997). 

 

Systemic O2 extraction is a possible peripheral factor that can affect the amount of O2 

transported to the active muscles (Bassett and Howley, 1999). During maximum exercise 

almost all of the available O2 is extracted from the blood perusing the active muscles. The O2 

content of arterial blood is approximately 200mL O2.L
-1

 whereas in venous blood draining 

maximally working muscles it falls to about 20-30 mL O2. L
-1

. This therefore indicates that 

there is little O2 left to be extracted out of the blood during heavy exercise.  

 

Honig et al. (1992) however presented evidence for a peripheral O2 diffusion limitation in 

red canine muscles. According to their experiments and a mathematical model, the principle 
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site of resistance to O2 diffusion occurs between the surface of the red blood cells and the 

sarcolemma. They reported a large drop in PO2 over this short distance. They therefore 

concluded that O2 delivery is not the limiting factor. Without a peripheral diffusion gradient, 

O2 uptake will not increase. Within the muscle fibers the mitochondria are the site where O2 

is consumed in the final step of the electron transport chain. In theory, doubling the number 

of mitochondria should double the number of sites for O2 uptake in the muscle (Bassett and 

Howley, 1999). However human studies show that there is only a modest increase in 

VO2max (20-40%) despite a 2.2-fold increase in mitochondrial enzymes (Saltin et al., 1977).  

 

Proponents of the classical traditional theory therefore maintain that “VO2max sets the upper 

limit for performance in endurance events” rather than being “the best predictor of athletic 

ability” (Basset and Howley, 1997). VO2max is directly linked to the rate of ATP generation 

that can be maintained during a distance race, although distance races are not run at 100% 

VO2max. The rate of ATP generation is dependent on the VO2 (mL.kg
-1

.min
-1

) that can be 

maintained during the run, which is determined by the participants VO2max and the percent 

of VO2max at which the subject can perform. For example, to complete a 2:15 marathon, a 

VO2 of about 60mL.kg.min
-1

 must be maintained throughout the run. Therefore even if a 

marathon could be run at 100% VO2max, the runner would need a VO2max of 60 mL.kg
-

1
.min

-1 
for the above performance. However, since the marathon is typically run at about 80–

85% of VO2max, the VO2max values needed for that performance would be 70.5–75 mL.kg
-

1
.min

-1
. Hence VO2max is thought to set the upper limit for energy production in endurance 

events, but does not determine the final performance. 

 

2.4.3  An Alternative Perspective 

Recently a school of thought has emerged which proposes that local muscle factors 

independent of O2 delivery may limit the VO2max test by halting maximal exercise before 

the O2 delivery systems are taken to their maximal capacity (Hawley et al., 1995). This 

muscular limitation could be due to the ability of the mitochondria to utilize O2. Hawley et 

al.(1995), also thought that the proposed muscular limitation may be independent of O2 -

supply and utilization and dependent rather on the proper function of the muscle fiber 

excitation and acto-myosin interaction and relaxation.   

 

Factors determining the maximal work rate achieved during the maximal exercise test are 

therefore multiple and may also be related to skeletal muscle contractile function in the 
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fatigued state. Under conditions in which the products of high rates of ATP utilizations begin 

to accumulation, the rate of cross-bridge cycling is reduced by a decrease in myosin-ATPase 

activity. The subsequent decrease in the rate of ATP hydrolysis spares intracellular ATP 

concentrations. Accordingly, muscle ATP concentrations will always be maintained above 

the critical value at which irreversible energy depletion could develop. It may be that 

maximum high intensity exercise in humans is terminated by a regulated process that 

specifically presents the development of ATP depletion in the active muscles. However 

muscle ATP concentrations are preserved in normal individuals even during maximal 

exercise under ischemic condition. Therefore even in participants with mitochondrial 

myopathies who lack the oxidative capacity to produce ATP at very high rates, exercise 

terminates well before the onset of ATP depletion (Bassett and Howley, 1999).  

 

Muscle work rate or power output is not only a function of the myosin ATPase activity and 

myofibrillar cross-bridge turnover rate, but also the number of interacting cross-bridges and 

the force produced by each. The metabolites which accumulate during high rates if ATP 

utilization, such as hydrogen ions and phosphate, also decrease the force produced per cross-

bridge and thus a potential decreased maximal power output of the muscles. These 

metabolites may also decrease the rate of sarcoplasmic reticulum ATPase activity with the 

result that production of calcium from the intracellular space is less efficient and relaxation 

is impaired. Hawley et al. (1995) therefore concluded that exercise tests that are designed to 

elicit a VO2max may potentially be inhibited by these intramuscular factors before the 

classical “central” and “peripheral” factors of O2 utilization have reached an upper limit. 

 

2.4.4  VO2 max Versus “Running Economy” 

Mechanical efficiency is the ratio of work done to energy expended. The term “running 

economy” is used to express the oxygen uptake needed to run at a given velocity. This can 

be shown by plotting oxygen uptake (mL.kg.
-1

min
-1

) versus running velocity (m.min
-1

) or by 

simply expressing economy as the energy required per unit mass to cover a horizontal 

distance (mL.kg.
-1

min
-1

; Bassett and Howley, 1999). As was pointed out in the rebuttal to 

this (Noakes, 1998), when one examines the fastest four runners (10 km in 30.5–31 min) 

there was considerable variability in the economy of running (45–49 mL.kg
-1

.min
-1

 at 268 

m.min
-1

), suggesting a lack of association between the variables. A comprehensive 

explanation of how VO2max and running economy interact to affect running velocity was 

provided by Daniels (1985) in his description of “velocity at VO2max” (vVO2max). Figure 
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2.6 presents a plot of male and female runners equal in terms of VO2max, but differing in 

running economy (Daniels and Daniels, 1992). A line was drawn through the series of points 

used to construct an economy-of-running line, and was extrapolated to the subject’s 

VO2max. A perpendicular line was then drawn from the VO2max value to the x-axis to 

estimate the velocity that subject would have achieved at VO2max. This is an estimate of the 

maximal speed that can be maintained by oxidative phosphorylation. In this example, the 

difference in running economy resulted in a clear difference in the speed that could be 

achieved if that race were run at VO2max.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6  Comparison of male and female runners of equal VO2max where males are 

significantly favoured in economy and VO2max. Adapted from: Daniels and Daniels (1991).  

 

2.5  Blood Cell Status and its Regulation 

 

 2.5.1  The Role of Erythropoietin 

Oxygen carrying capacity is an important component of the ‘central’ factors which 

determine VO2max. This is dependent on the RBC and Hb concentrations. A factor to be 

examined would therefore include the possibility that previously shown increased 

erythrocyte and Hct levels are related to increases renal production of the hormone, 

erythropoietin (EPO). Erythropoietin, also known as erythropoetin or erthropoyetin or EPO, 

is a glycoprotein hormone that controls erythropoiesis, or red blood cell production. This 

would assist in clarifying the currently opposing theories that exist regarding the actions of 

magnetic fields, which have on the one hand, suggested increased O2 availability (Saini et 

al., 1988), but on the other hand, enhanced hormonal activity (George et al., 1996). 

 

V (m.min
-1

) 
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The adult human kidney is the main organ for production and release of EPO, which 

stimulates the proliferation, differentiation and maturation of the erythroid precursors in 

bone marrow (Jelkmann, 2003), therefore increasing the production of red blood cells. About 

120 million erythrocytes are destroyed every minute in the adult human body. This occurs 

mainly in the spleen, liver and bone marrow (Ratcliffe et al., 1996).  

 

To avoid anaemia, equilibrium between the destruction and production of new red blood 

cells has to be maintained. Under conditions of constant O2 availability the glycoprotein 

EPO is the main humoral factor responsible for maintaining a normal blood erythrocyte 

count (Gunga et al., 2007). 

 

EPO concentrations are expressed as milliunits per milliliter (mU.mL
-1

). The normal range 

of EPO levels in human serum or plasma is in the order of 5-25 mU.mL
-1

, but EPO levels 

can be increased 100- to 1000-fold in response to hypoxia or blood loss. In healthy 

individuals and patients with various types of anemia (e.g. caused by blood loss, hemolysis, 

iron deficiency, aplastic bone marrow or by nutritional deficiencies), EPO levels are 

inversely correlated with hematocrit and hemoglobin levels, and reflect the reciprocal 

relation between oxygen supply and EPO production rate (Wognum, 2011). 

 

As endogenous renal EPO production occurs mainly in response to hypoxia, it is under 

hypoxic conditions, such as training at altitude or with O2 depleted gas and living in O2 

depleted tents,  that athletes have been able to increase their production of EPO and thus in 

return increase their red blood cell count. This therefore results in an increase in Hb 

concentrations, which will ultimately result in the fundamental increase in O2 carrying 

capacity and availability of O2 to the active skeletal muscle. It would therefore be interesting 

to ascertain whether the mechanism by which the reported increases in Hct levels are related 

to magnetically induced increases in endogenous production of EPO despite the apparently 

contradictory findings that magnetic therapy has been shown to increase O2 availability.  

 

2.5.2  Interleukin-3  

Another potential mediator of the regulation of red blood cell production is via systemic 

concentrations of interleukin-3 (IL-3). This is a cytokine protein signaling molecule 

produced by T cells and mast cells, which acts as a broad spectrum haematopoeitic growth 

factor, regulating the differentiation of myeloid stem cells into red blood cells, thrombocytes 
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and granulocytes (Guyton, 2011). It is therefore of interest to ascertain whether regular 

exposure to a magnetic field over a 28 day period, will increase systemic concentrations of 

this cytokine, and thereby account for the previously described increase in RBC count 

reported by Chater et al. (2006). 

 

2.6  Criteria used to determine the endpoint of a maximal exercise test 

A phenomenon sometimes encountered in elite endurance athletes is the VO2max plateau as 

opposed to a peak VO2 which is commonly encountered in less well trained athletes. When 

an athlete is challenged to progressively increasing workloads, with sufficient time for 

recovery between each increment of work, a linear relation between workload and oxygen 

intake occurs. Ultimately, maximal oxygen intake per unit of time is reached. Beyond this 

point the workload can usually be increased even further, but oxygen intake levels off or 

declines. This is commonly referred to as the VO2max plateau (Mitchell et al., 1957).  

 

Considerable variation in the achievement of a plateau in VO2 has been reported in literature. 

For example the percentage of participants who achieve a plateau has been reported at 90-

100% (Taylor et al., 1955), 60-80% (Sidney et al., 1977) and ≤50% (Froelicher et al., 1974). 

Therefore a variety of factors must be considered when making a judgement about each 

individual case or difficulties encountered in achieving a plateau in oxygen uptake. These 

include the population being studied, as children, unfit and elderly people are more likely to 

only reach VO2 peak when the test needs to be stopped due to exhaustion before they have 

reached their true VO2max. Trained and untrained people also display varied oxygen uptake, 

as represented by Figure 2.7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7  The comparison in VO2 peak reached in trained and untrained individuals. 
Adapted from: Bassett and Howley (1999).  

 

Trained 

Untrained 

Trained 

Untrained 
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Pulmonary respiratory gas-exchange ratios (RER) defined as CO2 

production/O2 consumption is used as a secondary criterion for having reached VO2max. It is 

based on the reaction between a rise in plasma hydrogen ion (H
+
) concentration and plasma 

bicarbonate (HCO3
-
). As the CO2 is generated ventilation increases thus increasing the RER 

(ACSM, 9
th

 edition). The use of an RER value ≥1.15 as a criterion for achieving VO2max 

can be traced back to a study by Issekutz et al. (1961).  

 

Niekamp et al. (2012) conducted a study to assess whether diet affects RER changes during 

exercise. 57 sedentary individuals between 47 and 63 were used. The study concluded that a 

diet which promotes systemic alkalinity would cause an RER of 1.10 to be more easily 

achieved therefore resulting in a peak maximal oxygen uptake elicited in an incremental 

exercise test. RER is heavily influenced by CO2 production from acid buffering by the 

bicarbonate buffer system during maximal exercise. Therefore an RER of greater than 1.15 

in the most commonly accented value for termination of a test whereby a “true” VO2max 

will be reached. 

 

The achievement of a percentage of the age adjusted maximal heart rate is the most 

problematic criterion for the termination of a maximal exercise test. The standard deviation 

associated with the estimate is approximately ±11b.min
-1

 therefore making it a very difficult 

standard to justify (Londeree and Moeschberger, 1984). Participants in the lower half of this 

distribution would therefore not be able to achieve their heart rate standard, even when 

working maximally. While those at the other end of the distribution would achieve the 

estimate while working at submaximal work rates. It is for this reason that the American 

College of Sports Medicine states that predicted maximal heart rate should not be used for an 

absolute end point in the termination of a maximal exercise test (Howley et al., 1995). 

  

RPE is another frequently used criterion to end the test. As a measure of general fatigue that 

the person feels, it is measured on a scale of 1-10 or 4-20 (Borg, 1982). Perceived exertion 

can be defined as “the act of detecting and interpreting sensations arising from the body 

during physical exertion”. A persons’ perception of physical exertion allows them to monitor 

feelings of exercise intensity by sensory feedback; such internal feedback allows an 

individual to pace themselves appropriately during a specific bout of exercise or physical 

activity (Borg, 1982).  
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In conclusion a combination of the presence of at least three of the abovementioned criteria, 

is therefore generally used to determine the point at which the test should be terminated 

(Bassett and Howley, 1999).  

 

2.7  Blood Pressure 

It is well accepted that arterial blood pressure (BP), the pressure exerted against walls of the 

arteries, is dependent on cardiac output and total peripheral resistance (Guyton, 2011). One 

of the most frequently reported health benefits of regular participation in endurance exercise 

is lower resting BP, with the greatest effects seen in those with borderline hypertension 

(Fagard, 1993; 1999). Fagard (1993) noted that ‘aerobic’ exercise training decreased BP 

along a continuum with systolic (SBP) and diastolic (DBP) BP lowered by an average of 

3mmHg in individuals with normal BP, 6 and 7mmHg in those with high normal BP, 

respectively.  

 

Dynamic aerobic training including cycling, walking, jogging and running at a relatively low 

intensity e.g. 50% VO2 max, for an average of 30 minutes per day on five days in a week, 

can promote the lowering of clinical blood pressure during the post-exercise period in both 

hypertensive and normotensive participants. This phenomenon has been called post-exercise 

hypotension (PEH) and is characterized by a sustained decrease in blood pressure after a 

single episode of exercise (Pescatello et al., 2004).  

  

Several mechanisms have been proposed for the hypotensive efficacy of regular exercise. 

Studies by Japanese investigators suggest that the blood pressure reduction is initiated by 

volume depletion, induced by activation of the renal kinin system, dopamine, and 

prostaglandin systems. A subsequent reduction in sympathetic activity might be involved in 

the maintenance of the blood pressure reduction (Miura, 1994).  Jennings (1997) on the other 

hand, suggests that in Caucasians the primary events are an improvement of endothelium-

mediated vasodilatation (via release of dilatory agents including nitric oxide) and an increase 

in systemic arterial compliance in large vessels, although increases in arterial compliance are 

not always found. This changes the afferent input to the arterial baroreceptors. The result 

could be a reduced sympathetic outflow to the renal bed which could counterbalance any 

tendency to an increase in blood volume and thus blood pressure. It is quite possible that the 

antihypertensive mechanism of exercise training differs among populations depending on the 

underlying hypertensive mechanism (Pescatello et al., 2004). Kouamé et al. (1991) suggest 
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that an attenuation of the cardiopulmonary baroreflex control of skeletal muscle vascular 

resistance after training at 70% VO2max compared with training at 50% VO2max may 

contribute to the less pronounced hypotensive efficacy of higher intensity exercise compared 

with lower intensity exercise. 

 

Microcirculation is the flow of blood through the microvasculature, including the arterioles, 

capillaries, and venules. It is these vessels that nourish the body’s tissues and organs. Two 

important functions of this circulatory system are to alter blood flow according to the 

varying metabolic requirements of the tissues it serves and to stabilize blood flow and 

pressure by making local regulatory adjustments (Zweifach, 1977). Several attempts have 

been made to explore the parameters of microcirculation and microvasculature when tissue 

and/or blood vessels have been exposed to a magnetic field (MF) (McKay et al., 2007). As 

previously mentioned many of the health benefits of magnets have been associated with the 

polarity of the static magnetic field (SMF). The negative and positive poles of magnets are 

believed to produce opposite physiological effects.  

 

The biological effects of MFs have often been linked to nitric oxide (NO). It is believed that 

NO may also be the molecule responsible for the changes in vessel diameter following MF 

exposure (McKay et al., 2007). In an experiment by Okano and Ohkubo (2001), blood 

pressure changes associated with SMF exposure were investigated in conscious rabbits. 

When blood pressure was increased using a nitric oxide synthase (NOS) inhibitor which 

resulted in vasoconstriction, exposure to a SMF caused a significant decrease in blood 

pressure during and post-exposure. This led to a significant increase in blood flow, measured 

using microphotoelectric plethysmography, after 10 minutes of exposure through to 40 

minutes post-exposure (Okano and Ohkubo, 2001), and was attributed to the vasodilatory 

effect of SMF exposure, it was therefore suggested that this may be related to the endothelial 

release of NO. 

 

This magnetic effect was again tested by Okano and Ohkubo (2003) on genetically 

hypertensive rats. At seven weeks of age, the rats were continuously exposed to a SMF (10 

or 25 mT) for 12 weeks. Throughout the 3rd to 5th weeks of SMF exposure, significant 

antipressor effects on mean blood pressure were found using the tail-cuff method. No 

differences in mean blood pressure were found between the two MF intensities that were 

tested. Hormone analysis revealed that the 10mT SMF (at five weeks of exposure) reduced 



25 

 

angiotensin II by 65.3% and aldosterone by 39.6%. The 25mT SMF (at five weeks of 

exposure) reduced angiotensin II by 63.8% and aldosterone by 36.6%. These reductions 

disappeared at 12 weeks of exposure. 

 

Okano and Ohkubo (2005) did further research into the effect of a stronger SMF (180 mT) 

implanted in the neck of spontaneously hypertensive rats. Hypertensive rats that were 

exposed to the SMF (14 weeks) had a mean blood pressure reduction (tail-cuff 

measurements) of 3.8% in comparison to controls during the 5
th

 –8
th
 weeks of exposure. The 

SMF also inhibited the decrease in baroreflex sensitivity that was observed in sham animals 

during the 5th–8th weeks of exposure. When nicardipine (Ca
2+

 channel blocker) was 

administered to decrease blood pressure, the application of the SMF further enhanced this 

decrease in mean blood pressure by 6.9% during weeks 1–8 of exposure. These results 

suggested that the SMF synergistically antagonized Ca
2+

 influx through Ca
2+

 channels.  

 

The investigation by Okano and Ohkubo (2005) indicates that the homeostatic effect of MFs 

might influence NO pathways. When genetically hypertensive rats were exposed to a SMF 

(1 or 5 mT) for 12 weeks, blood pressure, the concentration of NO metabolites, angiotensin 

II, and aldosterone were reduced. Specifically, exposure to the SMF reduced blood pressure 

during weeks 3–6. Hypertensive rats are known to have increased levels of NO metabolites, 

most likely due to the upregulation of NOS. Exposure to the 5 mT SMF for 6 weeks 

significantly reduced the concentration of NO metabolites by 73.2%. The 1 mT SMF did not 

have an effect on the NO metabolites. At three weeks, the 5mTSMF reduced angiotensin II 

by 51.1% and aldosterone by 40.2%, and at six weeks reduced angiotensin II by 58.2% and 

aldosterone by 72.2%. Similar significant reductions in angiotensin II and aldosterone were 

seen with the 1mT field. At 12 weeks, all effects on the NO metabolites, angiotensin II, and 

aldosterone disappeared. 

 

2.8  Heart Rate 

As previously mentioned, a study conducted by the Ryan (2007) on the effect of using the 

Thrahaler® O2 Gold to improve the heart rate response during exercise in 14 triathletes was 

performed. In this study, the group using the magnetic breathing device showed a significant 

reduction in resting heart rate, heart rate immediately after completing the 15 minute cycle, 

as well as recovery heart rate one and three minutes after completing the test compared to the 

placebo group 
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According to Colbert et al. (2009), fifty six studies have been conducted on the effects of 

static magnetic field therapy, in both patient populations and in healthy volunteers. In the 56 

studies, 39 different physiological or pathological conditions were represented. The 

physiological outcomes measured included improvement in muscle strength, muscle 

soreness post exercise, postural sway, fine touch, blood flow and heart rate and blood 

pressure.  

 

A study by Hinman (2002) compared HR and BP responses among healthy participants as 

they rested on pads containing magnets of negative polarity, magnets of positive polarity or 

placebo magnets. These physiological measures were selected because Philpott (1998) 

claimed that the heart is the most responsive tissue to the stress or anti-stress fields created 

by magnets. He stated that a significant (10 point) decrease in HR will occur within a few 

minutes of exposure to a negative SMF. Another further study by Jehenson et al. (1998) 

confirmed this as they reported a significant increase in cardiac cycle length (i.e. decrease in 

HR) following exposure to a high-intensity SMF (20 000 gauss) in a magnetic resonance 

chamber. However, other participants who were exposed to a weaker SMF (10 000 gauss) 

experienced no changes in HR or rhythm. 

 

Hinman (2002) therefore concluded that the changes in HR and BP that occurred in the 

participants within the study did not differ in relation to the type of pad on which they lay, 

and none of these changes were more than one might expect to find in a normal individual at 

rest. All participants experienced a slight reduction in both HR and BP that was most likely 

due to a general relaxation response. Thus, these findings do not support Philpott’s assertion 

that exposure to a negative SMF will gradually slow the HR by 10 bpm. Overall Hinman’s 

findings suggest that healthy people who lie on either positive or negative magnetic pads, 

experience no significant deviations in their HR or BP. 

 

2.9  Pulse Oximetry 

A pulse oximeter is a device intended for the non-invasive measurement of arterial blood 

oxygen saturation (SaO2) and pulse rate. Pulse oximeters use a light source and photodiode 

light detector to measure the amount of light passing through an arteriolar bed. SaO2 can be 

estimated noninvasively because the light-absorbing characteristics of haemoglobin differ 

between oxyhemoglobin and deoxyhemoglobin.  
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Pulse oximeters are commonly used during exercise in clinical and research settings to 

provide a noninvasive, continuous estimate of the oxyhemoglobin saturation of arterial 

blood. Arterial oxyhemoglobin saturation indicates the degree of arterial blood oxygenation 

(Mengelkoch et al., 1994). However, although well accepted for use in resting participants, 

using pulse oximetry during exercise for accurate measurement of SaO2 has been 

problematic for several reasons. First, depending on the sensor site, sensors are subjected to 

varying degrees of motion resulting in signal corruption and thus inaccurate estimations of 

saturation (Plummer, 1995). Furthermore, sensors placed on the digits are even more 

susceptible to this problem especially during cycle because gripping the handlebars results in 

weakening or even complete loss of signals (Plummer, 1995).  

 

2.10  Conclusion 

This review of the literature indicates that there is evidence in favour of possible therapeutic 

benefits when the human body is exposed to static magnetic fields. As much of the evidence 

however remains inconclusive and in some cases contradictory, confirmation in further well 

controlled studies on athletes is required. The exact mechanisms by which a magnetic 

breathing device may affect endurance performance and associated physiological responses 

including improved endurance capacity, enhanced RBC and Hb cell concentrations, O2 – 

carrying capacity, VO2max and lowered heart rate and blood pressure responses to exercise 

also remain open areas for further research. 
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CHAPTER THREE 

 

METHODOLOGY 

 

3.1  Ethical Clearance and Study Design 

The study was designed as a double blind, placebo-controlled, cross-over laboratory trial 

preceded by a baseline assessment.  

 

Full ethical clearance for this study was obtained from the Biomedical Research Ethics 

Committee of the University of KwaZulu-Natal (Ethics Clearance No: BFC 82/012) 

(Appendix A).  

 

In order to implement the double-blind nature of the study, devices were coded by the 

manufacturer so that the researchers as well as participants were not aware which devices 

were the placebos and which were the active. Only after completion if the trial were the 

devices decoded. 

 

3.2  Participants 

All volunteers from three sporting clubs who met inclusion criteria (n= 18) were included in 

the original sample. Clubs were contacted and informed about the study via information 

meetings as well as visual representation. Participants then volunteered to participate in the 

study, and were only included if inclusion and exclusion criteria were met. 

 

The inclusion and exclusion criteria for the participants were as follows:  

INCLUSION CRITERIA EXCLUSION CRITERIA 

 Healthy males  

 Aged >18 and <45 years old 

 Willing participants who consent 

to participate in the entirety of the 

trial, which included regular 

prescriptive O2 Gold use,  three 

maximal exercise tests on a 

treadmill,  and provision of small  

venous blood samples at baseline 

and after the active and placebo 

Women 

Age <18 and >45 years old 

Any contraindications to exercise as per 

Physical Activity Readiness Questionnaire 

(PAR-Q) 

Regular or chronic use of medication 

Smoking or excessive alcohol consumption 
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trials 

Recreational or professional endurance 

runners who were prepared to maintain 

their weekly training distance during the 

3 months prior to the study 

 

 

 

 

 

 

Implanted metal or medical devices 

Use of performance enhancing agents  

Consumption of any drug, caffeine or 

alcohol on test days 

Any bleeding disorders 

Vegetarians  

Regular consumption of any form of 

nutritional supplementation (e.g. 

multivitamins, calcium, magnesium) 

 

After completing baseline assessments eighteen athletes were assigned the O2 Gold 

breathing device that had been pre-coded by the manufacturer prior to the study; 50% 

assigned to the active trial first, and 50% assigned to the placebo trial first. The cross-over 

design of the study is clarified in the schematic representation given in Table 3.1. 

 

Table 3.1  Schematic representation of the cross-over design used during the trial 

Baseline 

Assessment 

 

TEST 1 

1
st
     28-day 

intervention 

period 

    

7-14 day interval 

 

TEST 2 

2
nd     

 28-day 

intervention 

period 

 

 

 

TEST 3 Group A 

Active trial 

Group B 

Active trial 

Group B 

Inactive trial 

Group A 

Inactive trial 

 

3.3  Testing Procedure 

On three occasions participants were required to present themselves to the Exercise 

Laboratory in the Division of Human Physiology at the University of KwaZulu-Natal, 

Westville Campus. Before the first 28-day intervention period participants reported to the 

laboratory. After studying the information sheet (Appendix B), consent forms were 

completed by each athlete (Appendix C). Thereafter a medical questionnaire (Appendix D) 

as well as baseline questionnaires (Appendix E) which provided information regarding their 

training history, their dietary intakes, mileage/racing experience as well as other sporting 

endeavours) were completed. Basic anthropometric measures including stature (cm), body 
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mass (kg; in running shorts without shoes), waist circumference (measured at the mid-point 

between the lowest rib and the top of the illiac crest) and seven-site skinfold measurements 

including the triceps, chest, mid axilla, suprailiac, subscapular, abdominal and thigh skinfold 

thickness, were taken. Percentage subcutaneous body fat was calculated using the Jackson 

and Pollock (1978) formula. 

Dynamic resting lung function including FVC, FEV1, FVC/FEV1 and FIV1 was determined 

using a Jaeger Mastercope Flowmate Spirometer (Wuerzburg, Germany), as seen in Figure 

3.1 below. All participants underwent medical screening conducted by a general practitioner 

in order to assess their general health, musculo-skeletal status and to rule out the presence of 

any clinical condition/s that may have prevented full participation in the trial. A 4mL venous 

blood sample was then taken. 

Figure 3.1  Lung Function Testing using a Jaeger Mastercope Flowmate Spirometer 

 

The Oxygen Pro Analyser (Cardinal Health, Hoechberg, Germany) was used to measure 

metabolic and respiratory responses before and during exercise. After verification of ambient 

air conditions as determined by the integrated Ambient Unit, automatic calibration of the 

volume sensor was conducted according to manufacturer’s recommendations (Cardinal 

Health, Hoechberg, Germany). Gas analysers were calibrated using room air and a 2-litre gas 

cylinder containing 16% O2 and 5% CO2 in nitrogen (Cardinal Health, Hoechberg, 

Germany).   

 

After entering the participant details (including body mass) into the computer, a heart rate 

monitor belt (Polar Electro OY, Finland) and a disinfected connector facemask which was 
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connected to a disinfected triple V transducer and twin tube, were fitted. Exhaled respiratory 

gas analysis was then performed using Triple V sensors to detect the volume of expired air, 

and an aliqout thereof was fed into the gas analysers. A pulse oximeter (Oxypal, OLV-2700, 

Nihon Kohden, Japan) was used to provide a continuous non-invasive measurement of O2 

saturation of the arterial blood before and during the test. 

 

Prior to starting the exercise trials, baseline data (including heart rate, blood pressure, 

oxygen saturation, VE and VO2) were recorded while the participant was comfortably seated 

on a chair, shown clearly in Figure 3.2.  

 

 

 

 

 

 

 

 

 

Figure 3.2  Baseline Measures Conducted before the start of the Maximal Exercise Test  

 

 

Participants were then introduced to the motor 

driven treadmill (Powerjog GX100, Sport 

Engineering Limited, Birmingham, England) on 

which all VO2max testing was conducted. They 

completed a five minute warm-up at a speed of 12 

km.hr
-1

 with no incline.  Thereafter the speed 

remained constant (at 12 km.hr
-1

) while the 

gradient increased to an initial 2% in the first 

minute and a further 1% each minute until the test 

was terminated.   

 

Figure 3.3  The Maximal Exercise Test  
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 Continuous monitoring of heart rate and oxygen saturation occurred throughout the test, as 

depicted in Figure 3.3 above, and a 10 point Borg scale was used to quantify subjective rate 

of perceived exertion (Borg. 1982).  

 

The test was terminated when participants had reached three of the following: (i) RPE of > 

8.0 (ii) an RER of 1.15 or greater (iii) estimated heart rate maximum (iv) an apparent VO2 

plateau despite a further increase in workload on the treadmill.  

 

Immediately post-test systolic and diastolic blood pressure was measured, as well as a 60 

second and 120 second post exercise HR recording, while participants were seated on a 

chair, as can be seen in Figure 3.4 below. 

 

 

 

 

 

 

Figure 3.4  Post Test Recovery Recordings 

 

 

 

 

 

 

 

 

3.4  Active and Placebo Interventions 

Participants were required to use each of the magnetic breathing devices a minimum of 30 

times daily for the 28-day duration of each intervention. Inhalations were to be taken daily, 

either at half-hour intervals or at the end of the day with two minute breaks between 

inhalations, as stipulated by the manufacturer of the device. Figure 3.5 presents a detailed 

description of the current recommendations for the use of the device. 
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Figure 3.5  Manufacturer’s recommendations for use of the O2 Gold device 

 

3.5  Quantification of Training Status 

Participants were requested to record their daily usage of the device, training volume and 

intensity on a daily basis (Appendix F). An index of their training status (Ts index) based on 

the total amount of training that was done during each of the 28 day trials was computed. 

This was determined from the sum of the number of minutes spent training at high (0.8), 

medium (0.5) and low (0.2) intensity for each day of the week and then averaged over the 4 

weeks. 

 

Ts index = ∑ time (0.2) + ∑ time (0.5) + ∑ time (0.8)/4 

 

Examples of Ts index, ranging from 1.42 - 26.73, are provided in Appendix G 

Exhale maximally 

Place the mouth over the mouthpiece 

and inhale maximally 

 

Hold breath as long as possible 

 

Exhale and remove the mouthpiece 

Remove the protective cap from 

the mouthpiece 
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3.6  Processing of Blood Samples 

Four mL of whole venous blood was collected in vacutainer tubes containing K3 - ethylene 

diaminetetra-acetic acid (EDTA) and transported to a commercial pathology laboratory 

(Ampath Laboratories, Westridge, Durban) for the assessment of full blood count (FBC).   

FBC and differential leukocyte and platelet counts were determined on the EDTA treated 

specimens using standard haematological procedures on an automated STKS model (Coulter 

Electronics Inc., Hialeah, Florida, USA).    

 

A further 4mL sample was collected in pre-cooled EDTA tubes and immediately centrifuged 

at 3000rpm for five minutes, while serum collection vacutainer tubes were used for the 

collection of the third 4mL sample which was allowed to clot at ambient temperature after 

which the serum was separated by centrifugation at 3000 rpm for four minutes. Aliquots of 

0.5mL of plasma and serum were snap-frozen in liquid nitrogen until transferred to an ultra-

freezer at -80
o
 Celsius for storage in the Department of Human Physiology for later ELISA 

analysis of the concentration of plasma IL-3, determination of serum EPO concentrations 

and serum osmolality. 

 

After noting a trend of decreased post-exercise blood pressure following numerous trials 

during the study, additional post-exercise samples were collected into pre-cooled EDTA 

tubes from the last few participants tested. They were immediately centrifuged at 3000rpm 

for five minutes. Aliquots of 0.5mL of plasma were snap-frozen in liquid nitrogen until 

transferred to an ultra-freezer at -80
o
C for later indirect determination of nitric oxide from 

the concentration of nitrate and nitrite in these samples as well as the pre-exercise-samples 

obtained before the exercise-test at baseline. 

 

3.7  Biochemical Analysis of Blood Samples 

 

3.7.1  Plasma IL-3 Concentration 

An in vitro enzyme-linked immunosorbent assay for the quantitative measurement of human 

IL-3 in serum, plasma and cell culture supernatants was conducted using IL-3 human ELISA 

kit (Abcam, UK, USA, Japan, Hong Kong). 
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The stock standard was prepared by adding 400µl assay diluent into a vial containing IL-3 

standard. Seven serial dilutions were prepared by adding assay diluent to the stock standard 

as shown in Figure 3.5. 

 

Figure 3.6  Serial Dilution of Standard 

 

A 96- well plate was coated with an antibody specific for human IL-3 standards and blood 

plasma samples were pipetted into wells and IL-3 present in the samples was bound to the 

wells by the immobilized antibody. The wells were washed and biotinylated anti-Human IL-

3 antibody was added. After washing away unbound biotinylated antibody, HRP-conjugated 

Streptavidin was pipetted to the wells. The wells were again washed. A TMB substrate 

solution was added to the wells and colour developed in proportion to the amount of IL-3 

bound. The stop solution changed the colour from blue to yellow and the intensity of the 

colour was measured at 450nm.   

 

3.7.2  Erythopoietin Concentration 

Serum samples were selected from a subsample of athletes for the assessment of EPO. A 

Pathology Laboratory (Ampath Laboratories, Westridge, Durban) determined serum EPO 

concentration using a commercial radioimmunoassay. 

 

3.7.3  Nitric Oxide Determination 

The principle of this assay was reduction of nitrate by vanadium (III) combined with 

detection by the acidic Griess reaction. NO has a short half life and exists at low 

concentrations thus detection is impractical. The stable metabolites, nitrites and nitrates can 

be used as a measure. Thus NO concentration is indirectly determined by nitrites, formed by 

auto-oxidation of NO in aqueous solutions and nitrates, formed by reaction of NO with 

superoxide or oxyhaemoglobin. This assay was sensitive to 0.5µM NO3. Standards were 

prepared by dissolving 6.06mg of sodium nitrate in dH2O. Eight serial dilutions were 

prepared from 0-200µM. 50µl of serum blood sample was pipetted into a well of a 96 well 
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plate in triplicate and 50µl of VCl3 followed by 25µl of sulfanilamide and N-1-napthyl 

ethylenediamine dihydrochloride were rapidly added to each well. The plate was then was 

then incubated for 30-45min (in the dark). Absorbance was measured at 540nm with a 

reference of 690nm.  

 

3.8  Uncoding and Final Feedback 

After all testing procedures for both trials were completed by the participants, the coding of 

the devices was revealed to the researchers by the manufacturer. A comprehensive feedback 

report was compiled for each participant (examples given in Appendix H). After the device 

compliance was established and training status during the two separate 28-day trial periods 

was calculated using the Ts index, described on page 33, the necessary exclusion of 

additional non-compliant participants took place and the final sample size (n=10) was 

confirmed.  

 

3.9  Statistical Analyses  

Data were expressed as mean (±SD and were analysed with GraphPad Prism 5 Software 

(Version 5.01, 2007).  Level of significance was set at p=0.05.  

 

Paired t-tests were used when comparisons of the post-active and post-placebo trials was 

required. One-way analysis of variance (ANOVA) with a Bonferroni correction to establish the 

exact location of the differences, was used to determine whether the difference between the 

means of baseline, post-active and post-placebo trials were significant or not. 

 

Pearson’s Product Moment Co-efficient of Correlation was used to determine whether the 

relationship between EPO concentration and red blood cell count was statistically significant or 

not.  
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CHAPTER FOUR 

 

RESULTS 

 

Eighteen athletes who met all inclusion criteria initially enrolled for the trial and completed 

the baseline assessment. Of these only thirteen completed both active and placebo trials. Five 

participants withdrew, three due to personal reasons, one due to medical reasons and another 

due to a knee injury. 

 

When analysing the training records and the compliance of the participants’ use of the 

magnetic breathing device (Appendix F), an additional three participants who had completed 

both sets of post-trial tests needed to be excluded from the study.  This was necessary as 

variation in training status, as revealed by computation of their Ts index (Appendix G) and 

irregular/inadequate use of the magnetic device, may have confounded their results. 

 

According to the data provided by participants, ten participants therefore complied with all 

aspects of the study. Uncoding of the devices of the fully compliant participants revealed 

that seven of the final sample (n=10) completed the active trial first and three completed the 

placebo trial first. 

 

4.1  Participants’ Characteristics 

The ten participants who complied with all aspects of the study were aged between 27 and 

40 (mean: 32.3±4.9 yr) with a mean stature (cm) of 175.8±7.7. They included elite 

endurance athletes who participated in a variety of endurance events including a combination 

of running, paddling and cycling e.g. Dusi Canoe Marathon (n=8) as well as a serious 

participant in gymnasium training (n=1) and a recreational runner (n=1).  

 

No participants reported deviation from usual regular dietary practices, vegetarianism, or 

acknowledgement of the use of iron supplementation or any form of ergogenic aid, during 

the course of the 10 week study. 

 

Further mean (± SD) baseline physical characteristics of these participants are provided in 

Table 4.1. No statistically significant difference was found in mean (±SD) data recorded 

between baseline data and after the active and placebo trials (p>0.05). 
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Table 4.1  Mean (± SD) and range of baseline characteristics of the participants who 

complied with all aspects of the trial (n =10) 

Characteristic  

 

Baseline 

 

Mean (SD); Range 

         After placebo trial 

 

         Mean (SD); Range 

 

After active trial 

 

Mean (SD); Range  

Mass (kg) 74.7 (4.7); 65.6-82.7            74.6 (4.3); 67.3-81.5 74.6 (3.9); 67.3-80.9 

% body fat * 13.3 (5.6); 6.1-24.1           12.7 (5.6); 6.4-24.6 12.8 (5.4); 6.0-23.7 

RHR (bpm) 56.0 (5.8); 48-66           49.4 (4.9); 40-61 52.4 (12.8); 40-84 

SBP (mmHg) 124.2 (8.1); 112-142           122.0 (5.3); 112-128 123.6 (5.8); 114-132 

DBP (mmHg) 68.0 (8.7); 50-80           69.8 (7.9); 60-86 65.0 (5.8); 60-78 

* Derived from the sum of triceps, chest, mid axilla, suprailiac, subscapular, abdominal and thigh skinfold 

thickness; RHR: Resting heart rate, SBP: Systolic blood pressure, DBP: Diastolic blood pressure 

 

 

Results of the quantification of the training status index (Ts) while using the active and 

placebo devices are shown in Table 4.2. The mean (±SD) was not statistical significant 

between the two trials (paired t test; p > 0.05).  

 

Table 4.2  Mean ± SD training status index (Ts) while on active and placebo devices 

 

Characteristic  After placebo trial After active trial 
 

Mean 9.94 11.51  

SD ±6.07 ±6.66  

 

4.2  Lung Function  

With regard to the mean (± SD) and range of lung function shown in Table 4.3, FVC was 

consistently in excess of the reference range for non-athletic individuals of the specified age, 

gender and height. Only one participant presented with an FEV1/FVC ratio of <0.80, 

indicating the presence of possible minor obstruction to air flow.  

 

Table 4.3  Mean (± SD) and range of lung function of the participants who complied with all 

aspects of the trial (n =10) 

Characteristic  

 

 

 

Baseline 

 

Mean (SD); Range 

      After placebo trial 

 

      Mean (SD); Range 

 

After active trial 

 

Mean (SD); Range  

FVC (L/min) 5.3 (0.7); 4.0-6.5        5.5 (0.8); 4.2-6.7 5.4 (0.7); 4.0-6.3 

FEV1 (L/min) 4.4 (0.5); 3.5-5.1        4.3 (0.5); 3.5-5.1 4.4 (0.5); 3.4-5.1 

FEV1/FVC 0.8 (0.1); 0.7-1.0        0.8 (0.1); 0.7-0.9 0.8 (0.1); 0.7-0.9 

FIVC (L/min) 5.4 (0.7); 4.4-6.6        5.6 (0.8); 4.3-6.9 5.5 (0.6); 4.2-6.3 

BHT  77.4 (28.6); 48-132        91.4 (29.8); 45-144 93.3 (31.6); 60-148 

FVC: Forced Vital Capacity, FEV1: Forced Expiratory Volume in 1 Sec, FVC/FEV1: Forced Expiratory 

Volume:  Forced Vital Capacity in 1 Sec, FIVC: Forced Inspiratory Capacity, BHT: Breath holding Time 
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Although one-way ANOVA revealed that the difference between the mean (±SD) of the tests 

of dynamic lung function conducted at the three trials, was not statistically significant 

(p>0.05), six (60%) participants recorded an improvement (vs. baseline) in FVC and five 

(50%) in FIVC following the active trial. The mean (±SD) of the FVC of the six positive 

responders was significantly greater than baseline (p = 0.038). These results are graphically 

presented in Figure 4.1. 

 

  

 

 

 

 

 

 

 

 

Figure 4.1  Graphical representation of results of lung spirometry in the positive responders 

(FVC, n=6 and FIVC, n=5) Data presented as mean (±SD) * p<0.05, paired students t test 

 

4.3  Maximal Exercise Test 

The mean (± SD) and range of the selected data obtained from the maximal exercise test, is 

provided in Table 4.4. The tests ranged in duration from 8 to 17 minutes. It was confirmed 

by one-way ANOVA that use of the magnetic breathing device did not optimize mean 

workload on the treadmill or final mean running time obtained in the test, during active 

and/or placebo trials (p>0.05). However five (50%) participants recorded an improvement 

(vs. placebo) in maximum running time and hence peak power output following the active 

trial. The mean (± SD) improvements of this subsample of positive responders (n=5) was 

statistically significant (p = 0.018) 
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Table 4.4  Mean (± SD) and range of  results of maximal exercise test of the participants 

who complied with all aspects of the trial (n =10)
 

HR: Heart rate, VE: Minute ventilation, RPE: Rating of perceived exertion, TV: Tidal volume, BF: Breathing 

frequency, RER: Respiratory exchange ratio;* n=8,  

 

In terms of submaximal physiological response during the last 15 seconds of the 8
th

 minute 

of the incremental protocol used in the maximal exercise test, an improvement (vs. placebo) 

in submaximal heart rate and O2 saturation was documented in four (40%) and three (30%) 

of the participants, respectively. One-way ANOVA however revealed no difference in terms 

of mean (± SD) submaximal heart rate and O2 saturation during this stage of the test in the 

complete sample (n=10, p= 0.69; 0.94). This lack of significance in the differences between 

trials was also apparent in the positive responders (n= 4,3; p = 0.098, 0.12)  

 

No significant improvements in mean or individual maximum minute ventilation, tidal 

volume and breathing frequency (p>0.05) were noted use of the active device. Although 

one-way ANOVA did not show a significant increase in mean absolute VO2 max (p>0.05) 

Characteristic  

 

Baseline 

 

Mean (SD); Range 

After placebo trial 

 

 Mean (SD); Range 

 

After active trial 

 

Mean (SD); Range  

SUBMAXIMAL  
(During the last 15 seconds 8

th
 minute of the exercise test) 

    

HR (bpm) 165.4 (12.9); 144-188  160.7 (12.1); 144-180 161.4 (14.5); 138-182 

O2 saturation (%) 94.3 (2.0); 92-96  94.4 (1.8); 92-97 94.6 (2.2); 90-98 

MAXIMUM 

Workload (% 

gradient) 

9.5 (2.9); 4.0-13  9.6 (3.1); 5-14 9.8 (3.1); 5-13 

Running Time 

(min) 

8.6 (2.8); 3.3-12  8.6 (3.0); 3.7-12.1 7.8 (4.1); 3.6-12.1 

HR (bpm) 184.0 (9.0); 169-194  183.4 (6.6); 168-191  182.4 (9.1); 164-195 

O2 saturation (%) 90.4 (2.2); 87-93  91.0 (2.9); 85-95 90.1 (3.4); 85-95 

RPE  8.8 (1.4); 6-10  9.1 (1.7); 5-10 9.5 (1.0); 7-10 

VE (L.min
-1

) 150.7 (18.5); 130-192  155.4 (16.7); 128-189 154.8 (15.1); 133-186 

TV (L) 3.1 (0.4); 2.6-3.7  3.2 (0.4); 2.6-4.0 3.2 (0.4); 2.6-3..8 

BF (breaths.min
-1

) 50.1 (8.0); 39-61  50.1 (8.0); 41-62 50.1 (7.9); 40-64 

VO2 (mL.min
-1

)   4861 (561.8); 3983-5716 5009 (538.9); 4248-5760 4915 (587.1); 4044-

5728 

VO2 (L.min
-1

.kg
-1

) 65.3 (8.1); 55-78.5 67.3 (7.8); 58-80.4 66.1 (9.1); 55.6-81.5 

  POST TEST 

60 sec HR (bpm) 149.2 (10.9); 130-162 143.9 (10.8); 130-162 145.6 (11.2); 128-165 

120sec HR (bpm)* 126.3 (10.3): 109-139 116.4 (10.7); 101-131  119.3 (13.3); 102-144 

SBP (mmHg) 171.4 (17.9); 140-200 185.2 (12.4); 162-202 179.3 (9.3); 164-192 

DBP (mmHg) 64.7 (5.8); 58-72 58.4 (7.2); 48-70 61.5 (5.8); 52-72 



41 

 

· 
after use of the active or placebo devices, when compared to baseline testing, five (50%) 

participants recorded small improvements (vs. placebo) in absolute VO2 max following the 

active trial. These improvements which averaged 6.5% were however not great enough to 

create a statistically significant difference in the mean (p = 0.37). 

 

Regarding post test recovery, neither mean (± SD) post-test heart rate recovery at the 60 and 

120 second time-points or post-test diastolic blood pressure, were significantly lower in the 

entire sample  (n=10).  There was however a significant drop in HR recovery at the 120 

second time point in four (40%) of the sample (p = 0.033) and in DBP in five (50%) 

individual participants following the active trial (p = 0.086). As is shown in Table 4.5, pre-

post treadmill running blood samples were obtained from two of these participants and 

showed an increase nitric oxide concentration in both when on the active device. 

 

Table 4.5  Individual and mean serum Nitric Oxide concentrations (µM) determined from 

plasma nitrate and nitrite concentration in a subsample (n=2) in whom lower post-trial 

diastolic blood pressure was recorded after being on the active device. 

 
Participant Placebo  Active  

11  58.74 92.12 

14  67.63 94.94 

Mean  

SD  
63.18  

± 6.28  

93.53  

± 1.99  

SD: Standard deviation 

 

4.4  Red Blood Cell Indices 

Mean (± SD) and range of red blood cell indices of the participants who complied with all 

aspects of the trial (n =10), are shown in Table 4.6. The findings of a lack of significance in 

the difference between mean Hct and Hb concentration were paralleled by an absence of 

changes in the mean cell volume of the red blood cells. One-way ANOVA confirmed the 

absence of a statistical significance in both mean RBC and Hb (p>0.05). However when data 

from individual participants were analysed, six (60%) of the sample presented with 

significant increases in RBC count (vs. placebo; p = 0.029) and five (50%) with a significant 

increase in Hb concentration following the active trial (vs. placebo; p = 0.047). 
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Table 4.6  Mean (± SD) and range of red blood cell indices of the participants who complied 

with all aspects of the trial (n =10) 

Characteristic  Baseline 

 

Mean (SD); Range 

       After    placebo trial 

 

        Mean (SD); Range 

 

 After active trial 

 

Mean (SD); Range  

Hb (g/dl) 16.6 (0.3); 15.2-16.1         15.1 (0.8); 13.9-16.4  15.5 (0.8); 13.9-16.6 

RBC( 10
12

/L) 5.0 (0.1); 4.9-5.2         4.9 (0.3); 4.6-5.4  5.0 (0.3); 4.7-5.3 

Hct (%) 46.1 (1.0); 44.4-47.4         44.3 (2.1); 41.1-47.7  45.5 (2.0); 42.1-48.4 

MCV (fL) 91.5 (2.5); 88.6-96.3         91.3 (2.2); 89.1-96.5  91.1 (2.5); 88.6-96.6 

MCH (pg) 30.2 (3.0); 21.8-32.5         31.1 (1.2); 29.8-33.8  30.9 (1.2); 29.5-33.5 

MCHC (g/dL) 33.9 (0.5); 33.0-34.3         34.1 (0.7); 33.2-35.2  33.9 (0.6); 32.9-34.7 

RDW (%) 13.0 (0.3); 12.7-13.6         13.1 (0.3); 12.5-13.6  13.0 (0.3); 12.6-13.5 

Hb: Haemoglobin, RBC: Red blood cell, Hct: Haematocrit, MCV: Mean cell volume, MCH: Mean cell 

haemoglobin,  MCHC: Mean cell haemoglobin concentration  RDW: Red cell distribution width 

 

4.5   VO2 Max vs. Red Blood Cell Count 

The relationship between the change in absolute VO2max and change in RBC in each 

participant following placebo and active trials is presented in Figure 4.2. This revealed 

positive, linear correlation (r = 0.68) which is statistically significant (p = 0.029).  

   

 

Figure 4.2  The association between change in absolute VO2max and change in RBC count 

following active and placebo trials in the complete sample (n=10). * Pearson’s Product 

Moment Co-efficient of Correlation 
 

4.6  Serum EPO  

The individual serum EPO concentration following active and placebo trials for a subsample 

of 7 participants, is given in Table 4.7. The mean (±SD) was not significantly improved 

(p=0.13; paired students t-test) with the use of the active breathing device in this subsample. 

As is shown in Figure 4.3, Pearson’s product moment co-efficient of correlation also did not 

∆ absolute  

 VO2max  

(L/min) 

 

∆ RBC  

 count  

(g/dL) 

 

R = 0.68 

P<0.05 
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confirm a statistically significant correlation between the change in serum EPO 

concentration and the change in red blood cell count (r
 
= 0.69; p<0.05) following active and 

placebo trials. 

 

Table 4.7  Individual and mean (± SD) serum EPO (mLU.mL
-1

) concentration following 

active and placebo trials, taken from a subsample of participants (n=7)  

 

Participant No. After placebo trial  After active trial 

1 45.5  58.9 

5 12.9  11.8 

6 39.1  64.0 

8 10.2    5.7 

10   2.3    5.4 

11 114  136 

13   2.9    0.7 

Mean 24.2  29.8 

SD 39.8  49.8 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3  The association between change in serum EPO concentration and change in 

RBC count following active and placebo trials. * Pearson’s Product Moment Co-efficient of 

Correlation 

 

4.7  Plasma IL-3 Concentrations 

Although individual plasma IL-3 concentrations increased following the active trial in four 

(40%) of the study sample, one-way ANOVA revealed that there was no significant 

difference in plasma IL-3 concentration between baseline and active and placebo 

interventions (p>0.05). Mean (± SD) plasma IL-3 concentrations at baseline and following 

active and placebo trials (n=10) are shown in Figure 4.4 

R = 0.69 

P<0.05 
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Figure 4.4  Mean (±SD) plasma IL-3 concentration (pg.mL-1), at baseline and following 

active and placebo trials (n=10) 

 

4.8  Integrated Physiological Profile of Positive Responders 

When the individual profile of each of the five participants in whom either an improvement 

in absolute VO2max or peak power output on the treadmill was achieved during the maximal 

exercise test following the active trial, is analysed, this corresponds with an increase in RBC 

concentration in 100% of the group and an increase in HB concentration in 80% of the 

group. Furthermore, submaximal heart rate in the last 15 seconds of the 8
th

 minute of the test 

as well as 2 minute post-test HR , also improved in 80% (n=4) of the sample. The overall 

profile of these positive responders (n=5) is presented in Table 4.8.   

 

Table 4.8  Overall profile of positive responders to improvement in absolute VO2max or 

peak power output on the treadmill (n=5) 

+ : positive improvement on active , - :  No improvement on active, = : Same results 

 

Participant 

No. 

VO2max 

L/min 

Running 

time 

(min) 

FVC 

(L/min) 

FIVC 

(L/min) 

RBC 

10
12

/L 

Hb 

(g/dL) 

HR 

Submax 

(bpm) 

HR 

120 sec 

post 

(bpm) 

DBP 

(mmHg) 

          

1 + - + + + + - - + 

5 + + + + + + + + - 

6 + + - - + + + + + 

8 - + + + + + + + - 

12 + + + + + = + + + 



45 

 

· 

4.9  Conclusion 

Statistically significant differences between the active, placebo and baseline trials were not 

apparent in any of the reported measures when expressed as mean ± SD of the completed 

sample (n=10). However following 28 days of use of the magnetic device, 60% of the 

sample presented with a statistically significant improvement in mean ± SD FVC and RBC 

count (p = 0.038; 0.029)and 40% with significantly improved mean ± SD peak power output 

(p = 0.018), Hb concentration (p = 0.047), and HR at 120 seconds post exercise (p = 0.033). 
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CHAPTER FIVE 

 

DISCUSSION OF RESULTS 

 

 

5.1  Introduction 

While the restricted sample size may be regarded as a limitation of this work, this study 

required an exceptional amount of commitment from each participant. They were expected 

to use the device 30 times a day, maintain their usual dietary intake and keep their training 

status consistent over the course of the study. This led to the decrease in sample size from 

eighteen to ten participants over the 10 week duration of the study.  

 

Only thirteen participants completed both active and placebo trials as well as the three 

assessments. Four athletes presented with influenza and/or upper respiratory tract infection 

symptoms. In addition the time of year was not optimal for the majority of these participants 

who were endurance athletes as it is generally their off season/ base training period over the 

winter months. Therefore it was difficult encouraging them to maintain their initial high 

training volume. After the computation of the Ts index of the participants (Table 4.2), three 

additional participants therefore had to be excluded from the study as their training was 

inconsistent or they had been ill for an extended period of time, thus decreasing both training 

and compliance in using the device. The final sample (n=10), although limited in size, was 

therefore restricted only to individuals who had reported adequate compliance with the 

inclusion criteria of the study. It is felt that this stringent attention to control possible 

confounding influences was an important strength of the study.  

 

Another strength of the study was the cross-over design (Table 3.1) which was preceded by 

baseline testing. This resulted in each athlete acting as their own control and the sequence of 

trials varying equally within the original sample (n=18). The intention was that any possible 

carry-over effect in those who first used the active device would have been apparent when 

placebo trial results were compared to the results of the baseline testing. Provision was made 

for this by the use of a one-way ANOVA followed by a Bonferroni post hoc test in the 

statistical analyses of the results. 
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5.2  Participant  Characteristics and Quantification of Training 

The mean ± SD percentage body fat (12.8 ± 5.4), resting heart rates (52.4 ± 12.8 bpm) and 

diastolic blood pressures (65.0 ± 5.8 mmHg) of the participants (Table 4.1) confirmed that 

they were in elite sporting condition throughout the entire duration of the study. The athletes 

had above normal lung function with a mean ± SD FVC of 5.4 ± 0.7 L.min
-1

 and FIVC 5.5 ± 

0.6 L.min
-1

. Statistical analysis also revealed that this condition did not change significantly 

over the 10 week period of the two trials.  

 

As this study focused on cardio-respiratory function, change in training status was one of the 

most important potential confounders of the results of this study. As discussed on page 33, a 

method was therefore devised in order to quantify the participants specific Ts while using the 

active and placebo devices. This showed lack of statistical significance in the difference 

between the amount of training done by the athletes during active and placebo trials 

(p>0.05), hence eliminating the possibility of changes in the fitness level of the athletes 

significantly confounding the results of the study.  

 

5.3  Lung Function  

The purpose of including a lung function test in the pre-post trial assessment was not to 

assess a possible effect of the magnetic influences of the device, but as a means of 

confirming compliance in the use of the device. It is well known that when air is inhaled 

through the device, resistance to airflow is created. This resistance is believed to increase the 

work of the diaphragm, the external intercostal and the interchondral part of the internal 

intercostal muscles during the inhalation and has been shown to enhance endurance exercise 

performance in both trained and untrained individuals (Boutellier et al., 1992; Splenger et 

al., 1998; Roberts, 2004; 2007). Although no significant pre-post trial difference was found 

in mean (±SD) FVC, FEV1 or FIVC of the sample (n=10; p>0.05), when individual results 

of the participants were studied independently of the mean (±SD), only 50% of the final 

sample (n=5) showed a significant improvement in FVC and FIVC (p = 0.038; p = 0.095) 

when using the active magnetic inhaler. This does not confirm the compliance of these 

athletes with device use throughout the entire duration of both trials, and raises a question 

regarding the ‘reported’ compliance in the remaining participants. For this reason, it was 

regarded as prudent to also focus on individual results and conduct statistical analyses of the 

improvements recorded in the positive responders as detailed in Table 4.8.   

 



48 

 

· 

5.4  Red Blood Cell Indices 

Although not yet proven, it has been hypothesised that the magnetic effect on erythrocytes, 

Hct and Hb concentrations could influence athletic performance by increasing the oxygen-

carrying capacity of the blood (Roberts et al., 2008). Zhernovoi et al. (2001) found that in 

some Hb molecules exposed to a magnetic field, the bond between nitrogen and iron atoms 

are disrupted, causing Hb activation. O2 may then be added to the free bond of the iron atom 

of activated Hb. The enhanced O2 carrying capacity of blood may be explained by the 

binding of two O2 molecules to the iron atom of Hb in the presence of a magnetic field, 

forming bioxyhaemoglobin. Although this was confirmed in an unpublished pilot study 

conducted on 7 participants by Drs Craig Roberts and Bruce Biccard (Roberts, 2004), which 

showed a 0.9% improvement in the oxyhaemoglobin concentration from an average of 

94.4% to 95.3% after four weeks using the Therahaler magnetic breathing device (p = 

0.0516), the findings of this study did not lend support to this possibility. 

 

As the non-invasive measurement of oxyhaemoglobin concentration using pulse-oximetry 

has many limitations (Plummer, 1995) and the use of an arterial blood sample was regarded 

as too invasive a procedure to use on the athletes prior to a maximal exercise test, no 

specific, sensitive measure of oxyhaemoglobin concentration was obtained in this trial and 

the haematological assessment in this trial was restricted to venous blood sampling.  

 

The mean (±SD) and range of both RBC and Hb concentrations showed no statistically 

significant improvement following the active trial. Although this finding which did not 

confirm previous findings of Chater et al. (2003), all of the positive responders in terms of 

VO2max and peak power output (n=5), did however present with statistically significant 

increases in RBC count (p=0.029) and Hb concentration (p=0.047). As these individuals 

also had improved lung function which confirmed their use of the device, the alternative 

hypothesis set at the onset of the study, that RBC indices would improve following use of 

the magnetic breathing device, cannot be rejected. The possibility of unacknowledged under-

compliance in usage of the device and the existence of non-responders in whom venous 

blood RBC and Hb concentrations do not rise with a small rise in oxyhaemoglobin 

concentrations, does however need to be acknowledged. 

 

In view of previous findings that RBC counts are increased following use of the device, 

focus was also placed on possible mechanisms in this trial.  Therefore the circulating 
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concentration of the hormone EPO and the haematopoietic growth factor, IL-3, were 

investigated.  However no significant differences were obtained in the means (±SD) between 

active and placebo trials or the association between pre-post change in serum EPO 

concentration and change in RBC count. Mean plasma IL-3 concentration also did not 

change, therefore a direct effect on the circulating concentration of EPO and IL-3 can be 

excluded as possible mechanism by which the O2 Gold may improve blood cell status.  

 

5.5  Maximal Exercise Test 

 

5.5.1  Peak Power Output and Exercise Time to Exhaustion  

One of the primary findings of the study was that although statistically significant 

improvement in mean peak power output (% gradient on the treadmill) and exercise time to 

exhaustion, as described previously by Roberts et al., (2008), was not confirmed in the 

complete sample (n=10), there were however five positive responders. Four of the five 

participants who showed a statistically significant increase in both peak power output and 

exercise time to exhaustion were the elite endurance athletes, thus suggesting that well 

trained endurance athletes are perhaps more responsive. 

 

A possible overriding confounder which cannot be overlooked, was the competitive nature 

of the participants and their intrinsic motivation to ‘push themselves’ to maximum capacity 

and better their performance during each consecutive test. While this may have played a part 

in their maximal performance, the cross-over design of the study was aimed at compensating 

for this possibility. Of further interest was the finding shown in Table 4.4, that there was no 

benefit associated with use of the magnetic breathing device (p >0.05) in terms of their 

perception of effort at the same work load, as RPE was not reduced after using the active 

breathing device. 

 

5.5.2  Response to Submaximal Exercise 

Submaximal heart rate, recorded in the eighth minute on the maximal exercise test, also 

showed an improved in 40% of the participants when using the active devices, but the mean 

mean (±SD) of this subgroup did not reach statistical significance (p = 0.098). The finding 

of this study does therefore not confirm the early pilot work conducted by Ryan in 2003 

(Roberts, 2004).  
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Higher submaximal O2 saturation, based on pulse oximetry, was only documented in 30% of 

the participants.  The insignificant difference in users of the active breathing device obtained 

from both the results of the ANOVA analyses and analysis of the individual positive 

responders, therefore do not support those of Biccard (2005). Although a special effort was 

made to overcome the limitation of considerable variability with hand movements during 

treadmill running (Plummer, 1995) by only recording stable readings during the last 15 

seconds of each workload, pulse oximetry does also provide a relatively gross estimation of 

saturation of Hb with O2 (percentages in whole numbers). Sole reliance on this technique for 

the measurement of O2 saturation must therefore be acknowledged as a limitation of the 

study. 

 

5.5.3  VO2 max  

As VO2 max is a function of numerous cardio-respiratory processes including lung 

inspiratory and pulmonary diffusing capacity, cardiac output, oxygen carrying capacity as 

well as uptake of oxygen at the level of skeletal muscle (Bassett and Howley, 1999), this 

assessment was a major focus of this study.  Interpretation of the findings were only based 

on absolute VO2 max recordings (L.min
-1

) as the relative VO2 max is reliant on a change in 

body mass over the 10 week period of the trial. 

 

One of the most important findings of this study was that absolute VO2 max only improved 

in 40% of the sample. The magnitude of the mean improvement (6.5%) in this subsample 

(n=4) was however not sufficient to result in a statistically significant change at the 0.05 

level of significance. Furthermore, as is seen in Table 4.8, this was not accompanied by an 

improved peak power output and running time on the treadmill in the each of the 

participants. The practical significance of these findings for endurance athletes is therefore to 

be questioned. 

 

A further interesting and important observation is that in the four positive responders, the 

improvement in absolute VO2 max was accompanied by an increase in RBC count in each of 

the participants and in Hb concentration in four of the participants (Table 4.8).  This was also 

supported by the positive correlation between VO2 max and RBC in the complete sample 

(Table 4.2). The findings therefore lend support to the premise that central factors may affect 

absolute VO2 max via an improvement in oxygen carrying capacity of the blood.  
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5.5.4  Post Maximal Exercise Test Heart Rate and DBP  

In this study mean (±SD) and range of recovery heart rate, both 60 and 120 seconds post-test 

however showed no statistically significant improvement in both active and placebo trials. 

Upon analysis of individual results, 40% of the participants showed an improvement in 120 

second post maximal exercise test HR recovery when using the active device. The mean 

(±SD) improvement was significant and confirms the hypothesis of Philpott (1998) and the 

findings of Jehenson et al. (1998) following the exposure to the high intensity SMF, as well 

as those of Ryan (2007). On the other hand, the absence in improvement in non-responders, 

although possibly due to lesser compliance in use of the device, may lend support to the 

findings of Hipman (2002). As the sample size in this study was small, further work is 

therefore required in order to clarify this question.  

 

Five participants presented with a lower post-test DBP following use of the active device 

confirming the findings of Okan and Ohkubo (2001). It is well accepted that the synthesis of 

nitric oxide by vascular endothelium is responsible for the vasodilator tone that is essential 

for the regulation of blood pressure (Moncada and Higgs, 1993). Pre-post treadmill running 

venous blood samples were taken and analysed for nitric oxide concentration from two of the 

participants during the later phases of the study. Interestingly in both of these participants 

who also presented with lower post-test DBP, an increase in nitric oxide concentration was 

found in the post exercise test samples following the use of the active device (Table 4.5). 

This once again confirms the findings of Okan and Ohkubo (2001; 2003; 2005) and presents 

a direction for further research on humans. Whether the well described post exercise 

hypotension (Noakes, 2001) is exacerbated by the use of the magnetic breathing device, is an 

important question requiring further examination.  

 

5.5.5  Conclusion  

When individual profiles of the five participants who presented with either an improvement 

in absolute VO2max and/or peak power output on the treadmill are taken into account, a 

100% presented with an improvement in RBC concentration and 80% with an improvement 

in Hb concentration after use of the active O2 Gold device. The remaining 20% presented 

with an equal Hb concentration after both active and placebo trials (Table 4.8).  Lack of 

compliance in device use may account for the remaining 20% of the results. Hence further 

investigation into other possible reasons for non-improvement warrants further study. 
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However the practical value of a 6.5 % improvement in absolute VO2 max to the athletes is 

to be questioned as this cannot compensate for or override the value of a well designed and 

implemented schedule of training which is known to increase VO2max and peak treadmill 

performance by a far greater percentage.  
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CHAPTER SIX 

 

CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

 

Every attempt was made to monitor participants throughout the entire duration of the trial in 

terms of their compliance with the device use, maintenance of a consistent training status 

and a balanced diet and refraining from the use of ergogenic aids. However in a study 

involving human participants which requires an intervention which is so reliant on the 

truthfulness of the participants in terms of their use of the devices over such a prolonged 

period, the possibility of latent under-compliance is always a reality. Hence a deeper look at 

the ‘positive’ responders was considered appropriate. Positive effects on cardio-respiratory 

function as a result of the constant use of a magnetic breathing device was verified in 50% of 

the participants. 

 

According to the individual results of the five positive responders, the alternative hypothesis 

that the 1500G O2 Gold magnetic breathing device will improve peak power output and 

maximal running time on the treadmill, pre-exercise test respiratory function, RBC and  Hb 

concentrations and Hct of endurance athletes during a maximal exercise test, therefore 

cannot be rejected. The null hypothesis that twenty-eight days of regular use of the 1500G 

O2 Gold magnetic breathing device will not affect absolute and relative maximum oxygen 

consumption (VO2 max) , RPE, HR, VE, respiratory exchange ratio (RER) and O2 saturation 

at the workload at which VO2 max was reached, submaximal minute ventilation (VE, 1/min), 

absolute O2 uptake (VO2, L/min), heart rate (HR), rating of perceived exertion (RPE), and O2 

saturation, resting circulating IL-3 and EPO, is accepted. 

 

In order to exclude the possibility of Type 2 error, future research should include examining 

the effects of the O2 Gold on a larger sample size. However because of the difficulty in 

ensuring device usage and maintenance of training status and other externally related 

practices including diet, this may not be practical. Therefore further work needs to firstly 

focus on validation of the device usage and control of all possible confounders. Furthermore 

the effect of the O2 Gold should be determined in less well trained non-endurance athletes 

and the long term effects of the O2 Gold should also be examined. Further investigation of 

the preliminary observation of changes in markers of nitric oxide concentration associated 
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with exacerbation of post-exercise reductions in DBP, is also an important direction for 

further research. 
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APPENDIX B 

PARTICIPANT INFORMATION FORM 

 

 

DIVISION OF HUMAN PHYSIOLOGY 

 COLLEGE OF HEALTH SCIENCES 

 

Dear participant, 

 

Ms Robyn Turton, Mr Aroshen Naiker, Dr. Mike Marshall and Professor Edith Peters-Futre from the 
Division of Human Physiology in the School of Laboratory Medicine and Medical Sciences of the 

College of Health Sciences at the University of KwaZulu-Natal would like to conduct the following 

research project:  

 

The efficacy of a Therahaler magnetic breathing device in optimizing cardio-respiratory 

function during a maximal exercise test. 

 
You are being invited to consider participating in this study. 

 

Background to the study: 
Magnetic therapy, the use of magnetic fields to treat a range of medical conditions, has obtained great 

support in recent years. This non-medicinal breathing device is an inhaler containing a magnetic coil 

which is being marketed by Magnetic Air natural health products and has been successfully used in 

improving the oxygenation of blood in asthmatic subjects. Oxygen in the inhaled air passes through 
the magnetic coil in the Therahaler breathing device and acquires a magnetic charge. It is 

hypothesized that the magnetically charged oxygen is more highly attracted to the iron binding sites 

on haemoglobin, thus enhancing the oxyhaemoglobin concentration and oxygen carrying capacity. It 
is suggested that this will enhance O2 uptake and may account for anectodatal reports of improved 

performance in world-class endurance athletes.  

The aim and purpose of this research is to establish whether cardiorespiratory function, maximal 
oxygen uptake and maximal exercise performance during a maximal exercise test is enhanced by the 

use of a 1500G Therahaler. This trial may provide valuable insight into specific physiological 

responses to magnetic fields and inhalation of magnetically charged oxygen. It will also establish 

whether there is scientific verification for the anecdotal claims of endurance athletes that their 
performance and cardio-respiratory function is improved following regular inhalation of magnetically 

charged oxygen. 

 

Who is eligible to participate in this study? 

Male volunteer recreational endurance runners, healthy and relatively well trained,   

 between 18-40 years old 

 completing at least 60 km per week in training during the 3 months prior to the study,  

 are not suffering from any ailment or chronic illness that will impede on the performance 

of the test 

 and do not  
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 use regular medication 

 smoke or consume alcohol excessively 

 have implanted metal or medical devices 

 use any performance enhancing agents 

 

What will be expected from volunteers in this study?  
 You will be asked to: 

1. Use the Therahaler Device 1 and 2 for 28 days between three exercise tests in the laboratory. 

2. Maintain your normal diet and training status throughout the study.  
3.  Provide a small (4ml) venous blood sample before and after each of the maximal exercise tests. 

 

Outline of tests 
As one of 30 healthy male runners who will be required to use the Therahaler Device 1 for 28 days 
after baseline test 1 and then Therahaler Device 2 for 28 days after test 2. This will involve inhaling 

through the little device a minimum of 25 times daily for the 28-day duration of each intervention.  

 
At the start of the study, you will be required to visit the exercise laboratory for a basic 

familiarization session during which vital signs and basic anthropometric and lung function measures 

will be taken, you will be required to fill in a medical and training status questionnaire, and a medical 

doctor will conduct a basic examination of your health status. Thereafter you will be required to 
perform a maximal treadmill exercise test during which heart rate, blood pressure and non-invasive 

oxygen saturation will be measured. Before and after the treadmill tests a small blood sample will be 

taken for analysis of your red blood cell indices. 
 

After using the Therahaler Device 1 and Therahaler Device 2, you will be asked to return to the 

laboratory for a repeat of the maximal exercise tests and provision of small blood samples before and 
after each treadmill test. 

 

How can you benefit from participation in this study?  

Following the study, you will be given the results of each of the laboratory tests and your haematocrit 
and haemoglobin concentrations. The magnetic strength of the two Therahaler devices that you have 

used, will then also be disclosed.   

 
By participating you will establish whether a Therahaler is of benefit to your maximal running 

performance and your lung capacity and function, oxygen carrying capacity and cardiac response to 

exercise.  
 

Will you be exposed to adverse effects of the study? 

A minimal risk factor is involved in any physical test and all necessary precautions will be taken to 

ensure safe conditions.  
 

As you are however a trained athlete, there is only a very slight risk of something unfortunate 

occurring while you are on the treadmill. There is also a very slight risk of complications from 
venipuncture (taking of blood), mainly infection at the site of puncture or inflammation (swelling) of 

the vein used.  

 

In the unlikely event of a complication occurring, Dr. Mike Marshall will be present at all of the 
assessments and taking of the blood samples. He will ensure that procedures are performed according 

to the same standards that you would experience in a hospital environment.  

 

Can you withdraw from the study?  
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As your participation is entirely voluntary, you may withdraw from the study at any time without 
penalty.  

 

Will your individual results remain confidential?  

Yes.  The records identifying the participants will be kept confidential and, to the extent permitted by 
the applicable laws and/or regulations, will not be made publicly available. Although the study is for 

degree purposes, the results of the study may be published. In all cases your identity will remain 

confidential.  
 

 

Financial compensation 
Any out-of-pocket expenses which you may incur as a result of your participation in this study (e.g. 

traveling expenses) will also be reimbursed by the research team. 

 

Further queries 
Should you have any queries or wish to obtain further details regarding this study, please do not 

hesitate to contact the following persons at the University of Kwa-Zulu-Natal: 

Mr. Aroshen Naiker – 083-618 3478 
Miss Robyn Turton_ 084-606-6987             

Prof. Edith Peters-Futre - (031) 260 4237 (W); 0737597974 

 

BIOMEDICAL RESEARCH ETHICS ADMINISTRATION 
Research Office, Westville Campus 

Govan Mbeki Building 

Private Bag X 54001  
Durban  

4000 

KwaZulu-Natal, SOUTH AFRICA 
Tel: 27 31 2604769 - Fax: 27 31 2604609 

Email:BREC@ukzn.ac.za
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APPENDIX C 

SUBJECT CONSENT FORM 

 

 

DIVISION OF HUMAN PHYSIOLOGY 

COLLEGE OF HEALTH SCIENCES 

 

THE EFFICACY OF A 1500G THERAHALER MAGNETIC BEATHING DEVICE IN 

OPTIMIZING CARDIO-RESPIRATORY FUNCTION DURING A MAXIMAL EXERCISE 

TEST. 

 
I, ………………………………………….. hereby agree to participate in a research study to be 

performed by Ms Robyn Turton, Mr Aroshen Naiker, Professor Edith Peters-Futre and Dr. Mike 

Marshall in the Division of Human Physiology in the College of Health Sciences of the University of 
KwaZulu-Natal. I have been informed about the study by the principal investigator, Mr. Muhammad 

Vahed. 

 

I understand that the basic procedures to be carried out are to include:  
 

1. Use of the Therahaler magnetic breathing device for 28 days after the first laboratory test and 

28 days after the second laboratory test. 

 

2. Completion of three maximal exercise tests on a treadmill. 

 

3. Completion of a brief medical and training questionnaire before the trial and provision of 

2ml blood samples before and after the treadmill tests. 

 

The details of these procedures have been explained to me in full. I am aware that a certain level of 

discomfort may occur when the blood is taken and that this procedure may be accompanied by 

certain medical risks including infection and inflammation of the vein.    
 

I understand that this study will form part of the Masters Degree of Ms. Robyn Turton and that the 

results may be published.  
 

I understand that participation is entirely voluntary and that I may withdraw from the study at any 

time. 
 

I may contact the principal investigator of the project, Ms Robyn Turton, Mr Aroshen Naiker at 

0737861269 at any time if I have questions about the research or if I am injured as a result of the 

research. 
 

______________________________            ____________________ 

Signature of Participant                       Date 
 

______________________________            ____________________ 

Signature of Witness                            Date (Where applicable)   
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APPENDIX D 

MEDICAL QUESTIONNAIRE 

 

                           

DIVISION OF HUMAN PHYSIOLOGY 

COLLEGE OF HEALTH SCIENCES                

                                         

The efficacy of a 1500G Therahaler magnetic breathing device in optimizing cardio-respiratory 

function during a maximal exercise test. 

 

1. Name…………………………………     2. Date of birth………………………………… 
 

3. Are you currently in good health? (i.e. No illness within the last 3 months)     

yes □ no □.  If no, please specify 
 ………………………………………………………………………………………………… 

 

4. Do you suffer from any chronic medical conditions?  (conditions diagnosed  more than 3 months 

ago which affect your everyday life) e.g. diabetes, high blood pressure, asthma.  
yes □ no □.  If yes, please list 

………...……………………………………………………………………………………….. 

 
5. Do you use anti-inflammatory tablets during a race of this nature?   

yes □ no □. If yes, please specify the type and dosage 

…………………………………………………………………………………………………. 
 

6. Are you using any other medication?  

yes □ no□.  If yes, please list 

…………………………………………………………………………………………………. 
 

7. Do you suffer from a bleeding disorder e.g. haemophilia?  

yes □ no □  If yes, please specify 
…………………………………………………………………………………………………. 

 

8. Have you been admitted to hospital within the last year?   

yes □ no □  If yes, please specify 
…………………………………………………………………………………………………. 

 

9. Do you smoke?  yes □ no □  
If yes, please specify amount per day and for how many years 

…………………………………………………………………………………………………. 

 
10. Are you presently or have you ever used performance enhancing drugs? (e.g. Erythropoeitin, 

anabolic steroids)    

yes □ no □.  If yes, please list 

…………………………………………………………………………………………………. 
 

11. Do you have a cardiac pacemaker or any other implanted electromedical device?  

yes □ no □  
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Thank you for your participation 
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APPENDIX E 

PRE-TRIAL QUESTIONNAIRE 

 

 

DIVISION OF HUMAN PHYSIOLOGY 

COLLEGE OF HEALTH SCIENCE 

 

 The efficacy of a 1500G Therahaler magnetic breathing device in optimizing cardio-

respiratory function during a maximal exercise test. 

 

Name……..…………………………………………………………………………………… 

Device code (to be filled in by researchers)…………………............................................           

    

SECTION A: PLEASE ANSWER ALL QUESTIONS.   

 

1.  Date of birth: …………………………………        Age: …………………………..........    
2.  Address: …………………………………………………………………………………… 

3.  Telephone numbers:   Home: ……………………………………………………….. 

Work: ………………………………………………………... 
Cell: ………………………………………………………….. 

4. Running club: ………………………………………………………………………………. 

5. Occupation: ……………………………………………………………………………….... 

 
Please tick one of the boxes in each of the following questions:  

 

 6. How many hours do you generally train per week? 

 

 

 
 

7. How would you classify your athletic ability?  

 

 

 

 

8. Racing experience within last year?   

 

 

 
 

 

 

9. Running history:   Serious\social: ………………………………………………. 
             Age started running: ……………………………..…….years 

Level of training during these years: ………………………. 

Total number of running  races: …………………………… 

□ <  5 

□ 6 - 10 

□ 11 - 15 

□ 16 – 20 

 

□ WEEK-END WARRIOR (only run on weekends) 

□ SERIOUS AMATEUR (> 5 races per year) 

□ ELITE (regular top 10% finisher) 

□ PROFESSIONAL (paid to run) 

□ OTHER – SPECIFY…………………………. 

□ FUN RUNS 

□ < 5  x 21 km races)  PER YEAR 

□ < 5 marathons (42km)  PER YEAR 

□ > 2 ultra marathons (52 km or longer) PER YEAR 

□ PREVIOUS MULTISTAGE RACES e.g. Cape Odyssey, 3 Cranes 

□ OTHER - 

SPECIFY…………………………………………………………………

…...  



70 

 
10.  Sports played in last 12 months (squash, rugby, soccer, etc)              
…………………………………………………………………………………………............ 

Dietary and fluid intake details 

 

1. Are you on any specific diet? (Vegetarian, fish only, etc)  

 

…………………………………………………………………………………………………. 

2. Are you presently using any supplements? (Multivit, Calmag, etc)  

yes  no .  If yes, please specify how much you are taking and how often: 

…………………………………………………………………………………………………. 

3.  Do you use water and/or a sports drink during training?……………………………….... 
4.  Please specify how much of each, how often and which product: 

…………………………………………………………………………………………………. 

…………………………………………………………………………………………………. 

 

THANK YOU FOR YOUR PARTICIPATION 

 

 

 

______________________________            ____________________ 

Participant’s Signature    Date 
 

 

______________________________             ____________________ 
Principal Investigator’s Signature   Date  
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APPENDIX F 

TRAINING DIARY 

 

 

     

      

NAME 

     

DEVICE CODE   

    

      DATE NUMBER 

OF TIMES 

DEVICE 

WAS 

USED 

TRAINING SCHEDULE HAVE YOU TAKEN ALL 

SUPPLEMENTS/CURRENT 

MEDICATION DISTANCE APPROXIMATE 

SPEED 

INTENSITY 

HIGH/MODERATE/EASY 

06/26/13 

 

        

06/27/13 

 

        

06/28/13 

 

        

06/29/13 

 

        

06/30/13 

 

        

07/01/13 

 

        

07/02/13 

 

        

07/03/13 

 

        

07/04/13 

 

        

07/05/13 

 

        

07/06/13 

 

        

07/07/13 

 

        

07/08/13 

 

        

07/09/13 

 

        

07/10/13 

 

        

07/11/13 

 

        

07/12/13 

 

        

07/13/13 

 

        

07/14/13 

 

        

07/15/13 

 

        

07/16/13 
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APPENDIX G 

QUANTIFICATION OF TRAINING STATUS 

AN EXAMPLE 

 
NAME: 

        

   
Time Fraction 

    

 
WEEK 

DURATION 
OF TRAINING 

PER WEEK 
(hrs) 

LOW 
INTENSITY 

MODERATE 
INTESITY 

HIGH 
INENSITY FREQUENCY/WEEK 

   

          

ACTIVE 

1 6.85 2.00 2.00 2.85 6.00 
   2 6.00 2.50 1.00 2.50 6.00 
   3 7.22 3.00 1.70 2.52 7.00 
   4 4.57 0.00 1.00 3.57 6.00 
    +3 

DAYS 2.91 0.91 1.00 1.00 3.00 
   

  
27.54 8.41 6.70 12.44 28.00 

TOTALS 
PER 
MONTH 

  

  
6.22 1.90 1.51 2.81 6.32 

AVERAGE 
PER 
WEEK 

  

   
9.50 3.03 3.51 

    

   
16.03 

 

       

          

PLACEBO 

5 6.11 2.00 2.00 2.11 6.00 
   6 6.17 1.84 1.40 2.93 6.00 
   7 5.00 2.50 1.50 1.00 5.00 
    +3 

DAYS 1.34 0.67 0.00 0.67 2.00 
   

  
18.62 7.01 4.90 6.71 19.00 

TOTALS 
PER 
MONTH 

  

  
5.43 2.04 1.43 1.96 5.54 

AVERAGE 
PER 
WEEK 

  

   
10.22 2.86 2.45 

    

   
15.53 
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APPENDIX H 

PARTICIPANT FEEDBACK 

AN EXAMPLE (PARTICIPANT EXCLUDED) 

  

Discipline of Human Physiology 

School of Laboratory Medicine &Medical Sciences 

Faculty of Health Sciences 

2013-07-30 

 

Dear……. 
Thank you very much for agreeing to take part in the above study. We are pleased to be able to 

provide you with the following feedback: 

Uncoding of the devices has revealed that you were on an inactive placebo device for the first 4 week 

period; thereafter you were on an active device containing a 1500g magnet for the following 4 weeks. 
 

TABLE 1: Your Physical and General Medical Characteristics 

Physical Characteristic 

Your 

value 

(PRE) 

Your value 

(POST Device 2) 

Predicted norm for active 

athlete of your age, 

gender and 

BMI/researcher’s comment 

Age 28 - 

Medication General vitamin   

Sporting Discipline Running, Paddling, Diving  

Height (m) 1.71  

Cardiovascular status Normal rhythm, heart sounds with no murmurs noted 

Respiratory status No abnormalities detected  

Dermatological No abnormalities/ dermatological lesions noted 

Musculoskeletal No pain or limitation on range of motion of weight bearing joints 

Mass (kg) 65.6 67.3 Gained  1.7, 1.12% gain 

BMI 22.4 23 Normal range:18.5-24.9 

Triceps skinfold (mm) 5.8 5.4  

Chest Skinfold (mm) 4.6 4.9  

Midaxilla (mm) 4.8 5.4  

Subscapular(mm) 8.7 8.8  

Suprailliac(mm) 6.2 6.5  

Abdominal (mm) 6.3 6.2  

Thigh (mm) 9.3 7.8  

Body Fat % (determined from 

above skinfolds) 
6.1 6.0 

Elite Triathletes average 

between 5 and 12% 

WAIST circumference (cm) 71 73 >95cm = central obesity  

Hip Circumference( cm) 88 88  

Waist : Hip Ratio 0.81 0.83 < 0.90 =low risk 

Resting Pulse Rate (bpm) 58 52  

THE EFFICACY OF A THERAHALER MAGNETIC BREATING DEVICE IN 

OPTIMIZING CARDIO-RESPIRATORY FUNCTION IN ATHLETES 
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Resting Blood Pressure 

(mmHg) 

               Systolic 

               Diastolic 

 

 
120 

50 

 

 
118 

64 

 

 

Within healthy range 

Reported Compliance in using Device: 

Compliance with the use of the first inactive device did not reach the requirements of 30 inhalations 

per day. It was reported in your training diary that during this first period you used the device an 
average of 15-20 times per day. During the second period of the trial compliance with use of the 

device increased considerably to meet the studies requirements of 30 inhalations per day. 

 

Training Status during the Experimental Period: 

This was a very important confounder in the study which will affect the internal validity of the 

results. You were asked to keep your training status constant. 

 

While using Active Device: 

During this period of the trail you reported that you were decreasing your running mileage in order to 

focus on strength training on the water and gym. However you retained a consistent daily training 
status throughout this period  

 

While using Placebo Device: 
A consistent daily training status was reported during this first period of the trial. You did however 

report that during this time you were doing more running than when you moved onto the active 

device.  

 

Other possible Confounders: 

Illness: Nil 

Use of medication: Nil 

Use of performance enhancing agents: 

USN carbohydrate racing juice 

 

TABLE 2: Lung Function 

 Unit Baseline 

After 

use of 

Placebo 

Device 

After Use 

of Active 

Device 

NORMS for inactive 

person of your 

height, age and 

gender 

Comment 

Forced Vital 

Capacity 

(FVC) 

L/min 5.37 5.57 5.49 5.05 

Excellent 

static and 
dynamic 

lung 

function 
 

Forced 

Expiratory 

Volume in1 
Sec ( FEV1) 

L/min 4.46 4.5 4.44 4.15 

FVC/FEV1 

ratio 
% 0.83 0.81 0.81 

>0.80 : no obstruction 

to air flow 

Forced 

Inspiratory 
Capacity( 

FIVC) 

L/min 5.57 5.62 5.64 5.05 

Breath 

holding Time 
Sec 98 114 125  

Maximum 

Expiratory 

Capacity (VE 
max) during 

Exercise Test 

L/min 136 152 153 In elite category! 
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TABLE 3: Performance in maximal running test 

 Units Baseline 

After use 

of Active 

Device 

After Use 

of Placebo 

Device 

Comment 

 

Pretest Data 

 

Body Mass kg 65.6 67.3 67.3 
Body mass gain, a 

confounder 

 

After 8 minutes (12 km/hr, 4% gradient) 

 

Submaximal 

Heart Rate 
bpm 167 153 156 

Best after use of active 

device 

Submaximal O2 

saturation 
% 96 94 96  

 

At VO2 max 

 

Workload 
Km/hr, % 

Gradient 

12Km/hr, 

12% 

Gradient 

12Km/hr, 

13% 

Gradient 

12Km/hr, 

13% 

Gradient 
Training /learning effect 

after initial baseline 

test? Max Running 
Time 

min: sec 11:00 12:00 12:03 

Heart Rate bpm 194 191 195  

O2 saturation % 92 92 92  

RPE 
Scale of 1-

10 
9 10 10  

VE (Minute 

ventilation) 
L/min 136 152 153  

Tidal volume L 2.6 2.8 2.8  

Breathing 
frequency 

b/min 53 56 54  

O2consumption 

(VO2) 
L/min 5144 5164 5489 

Max achieved after 

placebo trial when you 
were doing more 

running. Outstanding 

capacity! 
VO2 ml/kg/min 78.5 76.7 81.5 

RER 

Index 
ranging 

from 0.7-

1.00 during 
“aerobic” 

exercise 

1.04 1.10 1.08 

Greatest reliance on  

CHO breakdown & 
tolerance of “anaerobic” 

metabolism after use of 

active device 

 

Post Test 

 

Heart rate: 60 sec 

post 
bpm 162 162 153 Greater endurance as 

tests progressed over the 

8 weeks 
Heart rate: 120 
sec post 

bpm 128 122 125 

Diastolic Blood mmHg 58 58 54 Drop indicates dilation 
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Pressure of blood vessels in 

response to intense 

exercise 

 

TABLE 4: Results of Full Blood Count 

 Units Baseline 
After use of 

Device 1 

After Use of 

Device 2 

Reference 

Range 

Red Blood Cell Indices 

Hemoglobin(Hb) g/dL 15.6 15.6 15.0 13.0-17.0 

Red Blood Cell 

count (RBC) 
1012 /L 5.03 5.0 4.77 4.5-5.5 

Hematocrit(Hct) % 45.8 45.5 43.3 40-50% 

White Blood Cell Indices 

White Blood Cell 

Count (WBC) 
109 /L  6.51  3.92-9.88 

Neutrophills 109 /L  3.07  2.0-7.5 

Lymphocytes 109 /L  2.65  1.0-4.0 

Monocytes 109 /L  0.27  0.18-1.0 

Eosinophils 109 /L  0.35  0-0.45 

Basophils 109 /L  0.02  0-0.2 

Platelets 

Platelets 109 /L  239  150-450 

 

Conclusion: 

You have an outstanding O2 carrying and uptake capacity which is supported by your high red cell 
status in your blood and a good maximum ventilatory capacity. It is really a great pity that you 

changed over to doing less running and more strength training while on the active device. But this 

does show that there is no replacement for muscle specific training. To achieve max on the treadmill, 
you need to do running training; it improves capillarisation and oxidative capacity in the trained leg 

muscles, which are important determinants of VO2 max when it is measured during treadmill 

running.  

 
As the change in mode of training was a major confounder, the findings of this trial can unfortunately 

not be used to reveal how effective the magnetic device is for you. 

 
We trust that you will find these results interesting and thank you for participating in this research 

project. 

 

Robyn Turton 

Masters Student in Sports Medicine 

Aroshen Naicker 

Honours student in Exercise Physiology 
Dr Mike Marshall 

Consulting Physician  

                                                                                                  
         Professor Edith Peters-Futre                

Research Supervisor 
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Discipline of Human Physiology 

School of Laboratory Medicine &Medical Sciences 

Faculty of Health Sciences 

2013-08-30 
 

THE EFFICACY OF A THERAHALER MAGNETIC BREATING DEVICE IN OPTIMIZING 
CARDIO-RESPIRATORY 

 
Dear ……..   
 
Thank you very much for agreeing to take part in the above study. We are pleased to be 
able to provide you with the following feedback: 
 
Uncoding of the devices has revealed that you were on an active device containing a 1500g 
magnet for the first 4 week period; thereafter you were on an inactive placebo device for the 
following 4 weeks 
 
TABLE 1: Your Physical and General Medical Characteristics 

Physical Characteristic 
Your 
value 
(PRE) 

Your value 
(POST Device 

2) 

Predicted norm for active 
athlete of your age, 

gender and BMI/researcher’s 
comment 

Age 29 Years 

Medication None reported 
Sporting Discipline Hockey, elite trail runner and Mountain Biking 

Height (cm) 183 

Cardiovascular status Normal rhythm, heart sounds with no murmurs noted 

Respiratory status No abnormalities detected 

Dermatological No abnormalities/ dermatological lesions noted 

Musculoskeletal 
No musculoskeletal problems which will interfere with 
performance in treadmill running test or training 

Mass (kg) 72 71.6 Minimal loss 

BMI 21.5 21.4 
In lower section of normal 
range (18.5-24.9) despite 
added weight of muscle. 

Triceps skinfold (mm) 7.3 8.4  

Chest Skinfold (mm) 6.9 5.3  

Midaxilla (mm) 6.2 6.3  

Subscapular(mm) 11.5 9.8  
Suprailliac(mm) 8.4 8.2  

Abdominal (mm) 8.3 8.0  

Thigh (mm) 7.1 7.4  

Body Fat % (determined 
from above skinfolds) 

7.84 7.47 
6-15% for elite cyclists; 5-12% 
for elite triathletes 

WAIST circumference (cm) 72 74 >94cm = central obesity 

Hip Circumference( cm) 88 93  

Waist : Hip Ratio 0.82 0.80 
< 0.90 =low risk 
 

Resting Pulse Rate (bpm) 49 40 
Excellent! As expected for elite 
endurance athlete 

Resting Blood Pressure 
(mmHg) 
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               Systolic 
               Diastolic 

126 
78 

116 
68 

Within healthy range 

Reported Compliance in using Device: 

The use of your initial active device was compliant with that of the studies requirements, 
averaging 30 inhalations every single day. During the use of the second (inactive) device 
compliance dropped a little as there were a few days on which less inhalations were 
reported. 
 
Training Status during the Experimental Period: 

This was a very important confounder in the study which will affect the internal validity of the 
results. You were asked to keep your training status constant. 
 
While using Active Device: 

A very consistent training history was reported throughout both trials. The mileage 
accumulated was also consistent at approximately 60km/wk. There is a range in distances 
between 10 and 20km of running per day, with a few rest days taken. The intensity of the 
exercise also remained consistent throughout the trial. 
 
While using Placebo Device: 
As above, a consistent training diary throughout the 8 weeks. 
 
Other possible Confounders: 
Illness: None reported 
Use of medication: None reported 
Use of performance enhancing agents: None reported 
 
TABLE 2: Lung Function 

 Unit Baseline 

After 
use of 
Active 
Device 

After 
use of 

Placebo 
Device 

Predicted 
norms for 

your height, 
age and 
gender 

Comment 

Forced Vital 
Capacity 
(FVC) 

L/min 4.86 4.94 5.33 5.84 

Appears not to 
have been 

maximal effort 
Forced 
Expiratory 
Volume in1 
Sec ( FEV1) 

L/min 4.12 4.18 TD 4.75 

FVC/FEV1 
ratio 

% 0.85 0.85 TD 0.80 
>0.80 absence 
of obstruction to 

air flow 

Forced 
Inspiratory 
Capacity( 
FIVC) 

L/min 4.76 5.08 5.07 5.84 

Also appears 
not to have 

been maximal 
effort 

Breathholding 
Time 

Sec 52 N/A 45   

Maximum 
Expiratory 
Capacity (VE 
max) during 
Exercise Test 

L/min 158 166 160  
This places you 

into the elite 
category 

N/A: not available; TD: Technical Difficulty 
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TABLE 3: Performance in maximal running test 
 

 Units Baseline 

After 
use of 
Active 
Device 

After 
Use of 

Placebo 
Device 

Comment 

 
Pretest Data 

 

Body Mass kg 72.0 73.0 71.6  

 
After 8 minutes (12 km/hr, 4% gradient) 

 

Submaximal 
Heart Rate 

bpm 160 152 152 
No change in fitness 

status 

Submaximal O2 

saturation 
% 92 98 93 

Far less of a drop in 
oxygen saturation of 
haemoglobin after 

being on active device 

 
At VO2 max 

 

Workload 
Km/hr, % 
Gradient 

12 km/hr; 
13% 

12 
km/hr; 
13% 

12 
km/hr; 
14% 

 

Max Running 
Time 

min: sec 12:00 12:00 12:04  

Heart Rate bpm 193 186 187 

Lower HR max  
compared to baseline, 
but little difference after 
use of the two devices 

O2 saturation % 88 85 89  

RPE 
Scale of 

1-10 
9 9 9 

Perception of effort 
unchanged 

Pulmonary 
Ventilation(VE) 

L/min 158 166 160 

Greatest after use of 
active device 

Tv( Tidal Volume) L 2.99 3.01 2.98 

Rf( respiratory 
Frequency) 

b/min 54 56 54 

Absolute 
O2consumption 
(VO2 max) 

ml/min 5378 5728 5760 
Improved VO2max 

compared to baseline; 
excellent result! Active 

device usage did 
however not appear to 
improve this capacity. 

VO2 ml/kg/mi 74.7 78.5 80.4 

RER 

Index 
ranging 

from 0.7-
1.00 

during 
“aerobic” 

1.14 1.09 1.01 

Reduced reliance on 
oxygen independent 

metabolism with time, 
appears to indicate 

improved endurance 
status. 
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exercise 

 
 
 

Post Test 
 

Heart rate 
recovery: 60 sec 
post 

bpm 147 138 134 
Improved heart rate 
recovery. This again 
points to improved 

endurance status with 
time 

Heart rate: 120 
sec post 

bpm 122 112 107 

Diastolic Blood 
Pressure 

mmHg 72 70 60 

Dilation of blood 
vessels in response to 

intense exercise 
improved with time ( 

and fitness) 
 
TABLE 4: Results of Full Blood Count 
 

 Units Baseline After use of 
Active 
Device  

After use 
of Placebo 
Device  

Reference 
Range 

Red Blood Cell Indices 

Hemoglobin(Hb) g/dL 16 15.8 15.6 13.0-17.0 

Red Blood Cell 
count (RBC) 

1012 /L 4.92 4.73 4.61 4.5-5.5 

Hematocrit(Hct) % 47.4 45.7 44.5 40-50% 

White Blood Cell Indices 

White Blood Cell 
Count (WBC) 

109 /L 6.23 6.19 5.43 3.92-9.88 

Neutrophills 109 /L 3.23 3.13 2.77 2.0-7.5 

Lymphocytes 109 /L 2.22 2.22 1.92 1.0-4.0 

Monocytes 109 /L 0.36 0.34 0.36 0.18-1.0 

Eosinophils 109 /L 0.27 0.36 0.27 0-0.45 

Basophils 109 /L 0.02 0,03 0.02 0-0.2 

Platelets 

Platelets 109 /L 214 182 209 150-450 
 
 
Conclusion: 

Congratulations on an outstanding VO2 max! This places you into world class category! 
 

Although you report that training status was constant, endurance levels do appear to have 
improved over the course of the study. This is particularly reflected in your heart rate 
recovery, lower RER, and greater vasodilatation (lower DBP) during the post-placebo 
device trial. 
 
Red Blood indices remained relatively constant. We shall however be investigating your 
hydration status on test days to ensure that this remained constant. 
 
Your WBC counts appear to have been depressed following the placebo trial. Reasons for 
this could include suppressed immune defences following overtraining or high levels of 
stress and  blood cortisol concentration. 
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 In summary, the use of the active magnet device did not appear to be beneficial to you in 
terms of enhancing your performance at endurance events. 
 
Robyn Turton 
Masters Student in Sports Medicine 
 
Aroshen Naicker 
Post Grad student in Exercise Physiology 
 
Dr Mike Marshall                                                         
Consulting Physician  

                                                                                     
                                                                                    Prof Peters-Futre 
                                                                                    Research Supervisor 

 

 

 

 

 

 

 

 

 

 

 

 

 


