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Abstract

Discrete mathematics has had many applications in recent years and this is

only one reason for its increasing dynamism. The study of finite structures is

a broad area which has a unity not merely of description but also in practice,

since many of the structures studied give results which can be applied to other,

apparently dissimilar structures. Apart from the applications, which themselves

generate problems, internally there are still many difficult and interesting problems

in finite geometry and combinatorics. There are still many puzzling features about

sub-structures of finite projective spaces, the minimum weight of the dual codes

of polynomial codes, as well as about finite projective planes. Finite groups are

an ever strong theme for several reasons. There is still much work to be done to

give a clear geometric identification of the finite simple groups. There are also

many problems in characterizing structures which either have a particular group

acting on them or which have some degree of symmetry from a group action.

Codes obtained from permutation representations of finite groups have been

given particular attention in recent years. Given a representation of group

elements of a group G by permutations we can work modulo 2 and obtain a

representation of G on a vector space V over lF2 . The invariant subspaces (the

subspaces of V taken into themselves by every group element) are then all the

binary codes C for which G is a subgroup of Aut(C). Similar methods produce

codes over arbitrary fields. Through a module-theoretic approach, and based
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on a study of monomial actions and projective representations, codes with given

transitive permutation group were determined by various authors.

Starting with well known simple groups and defining designs and codes through

the primitive actions of the groups will give structures that have this group

in their automorphism groups. For each of the primitive representations, we

construct the permutation group and form the orbits of the stabilizer of a point.

Taking these ideas further we have investigated the codes from the primitive

permutation representations of the simple alternating and symplectic groups

of odd characteristic in their natural rank-3 primitive actions. We have also

investigated alternative ways of constructing these codes, and these have come

about by noticing that the codes constructed from the primitive permutations of

the groups could also be obtained from graphs. We achieved this by constructing

codes from the span of adjacency matrices of graphs. In particular we have

constructed codes from the triangular graphs and from the graphs on triples.

The simple symplectic group PSP2m(q) , where m is at least 2 and q is any
2m 1

prime power, acts as a primitive rank-3 group of degree qq_~ on the points of the

projective (2m - I)-space PG2m- 1(IFq ). The codes obtained from the primitive

rank-3 action of the simple projective symplectic groups PSP2m(Q), where Q= 2t

with t an integer such that t 2: 1, are the well known binary subcodes of the

projective generalized Reed-Muller codes.

However, by looking at the simple symplectic groups PSP2m(Q), where Q is

a power of an odd prime and m 2: 2, we observe that in their rank-3 action as

primitive groups of degree q:':.~l these groups have 2-modular representations that

give rise to self-orthogonal binary codes whose properties can be linked to those of

the underlying geometry. We establish some properties of these codes, including

bounds for the minimum weight and the nature of some classes of codewords.

The knowledge of the structures of the automorphism groups has played a key
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role in the determination of explicit permutation decoding sets (PD-sets) for the

binary codes obtained from the adjacency matrix of the triangular graph T(n)

for n ~ 5 and similarly from the adjacency matrices of the graphs on triples.

The successful decoding came about by ordering the points in such a way that the

nature of the information symbols was known and the action of the automorphism

group apparent.

Although the binary codes of the triangular graph T(n) were known, we have

examined the codes and their duals further by looking at the question of minimum­

weight generators for the codes and for their duals. In this way we find bases

of minimum weight codewords for such codes. We have also obtained explicit

permutation-decoding sets for these codes.

For a set n of size nand n{3} the set of subsets of n of size 3, we investigate the

binary codes obtained from the adjacency matrix of each of the three graphs with

vertex set n{3}, with adjacency defined by two vertices as 3-sets being adjacent

if they have zero, one or two elements in common, respectively. We show that

permutation decoding can be used, by finding PD-sets, for some of the binary

codes obtained from the adjacency matrix of the graphs on G) vertices, for n ~ 7.
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Notation and conventions

Throughout this thesis all groups will be assumed to be finite. We will use

notation and terminology from [3] and the A1I'JLA§ [27].

rn, k, d]q

C

V

r
T(n)

PG(V)

AG(V)

G

9

9
le

K~G

KiG

N-::JG

IF

IF*

char (IF)

x·y

Aut(G)

N·K

N:K

kg

Nc(K)

Cc(K)

a q-ary code of length n, dimension k and minimum distance d

a q-ary code

an incidence structure

a graph

the triangular graph

the projective geometry

the affine geometry

a group

a generator matrix for C

a generator matrix for C..l

the identity element of G

K is a subgroup of G

K is not a subgroup of G

N is a normal subgroup of G

a field

IF - {O}

characteristic of the field IF

the dot product of x and y

the automorphism group of G

an extension of N by K

a split extension of N by K

conjugation of k by 9

the normalizer of the subgroup K in G

the centralizer of the subgroup K in G



n,A
o
1nl
IFq

GLn(q)

GL(V)

Sc(V)

dim(V)

pdim(U)

Sn

An

Aut(C)

sets

empty set

the cardinality of the set n
the Galois field of q elements

general linear group of dimension n over IFq

general linear group over V

the centre of GL(V)

the dimension of a vector space V

the projective dimension of U

the symmetric group on n symbols

the alternating group on n symbols

a vector space of dimension n over IFq

symplectic group of dimension 2m over IFq

the subspace spanned over IF by the subset {XI, X2,···, xn }

the automorphism group of a code C

ix
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Chapter 1

Introduction

Codes are built to transmit messages reliably from a sender to a receiver. During

transmission a message is encoded, sent through a channel, and then decoded.

At any stage during the transmission of a message, an error could be introduced.

The error-correction and error-detection capabilities of a code are dependent on

the smallest difference between any two words in the code, that is, the minimum

distance. For linear codes the minimum distance is the same as the minimum

weight of the code.

In [3], Assmus and Key describe codes, designs, finite geometries, and their

interconnections. The codes associated with finite geometries are members of the

class of well known and frequently used generalized Reed-Muller codes. These

codes have a number of convenient properties, including that established by

Delsarte [31, 32, 33], Goethals [35] and MacWilliams [36], and in related papers

(see [5] for a full set of references) that the minimum weight of these codes is

the block size of the geometrical design, and that the minimum-weight vectors

generate the code. Thus a basis of minimum words exist, and in [45], Gao and Key

constructed an explicit basis in the case of the designs of points and hyperplanes

from geometries over a prime field.

1
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Related to the prior problem, the question arises as to whether the other

generalized Reed-Muller codes are generated by their minimum words. Ding and

Key examined this in [42] where it is established exactly which of these codes are

generated by their minimum words.

The projective and affine geometries over finite fields provide a wide range

of combinatorial designs that can in many cases serve as classifying tools for

other designs with the same parameters. This association has led to a productive

exchange of ideas between the realms of finite geometries, design theory and coding

theory. The codes from geometries first came to importance in applications when it

was seen that the combinatorics could lead to a very effective decoding algorithm,

known as the majority logic decoding (see [81]). The codes actually used in this

algorithm are the dual codes of the codes from geometries or designs, and thus

knowledge of the minimum weight of the dual code became an important issue.

Such knowledge has not been established in the vast majority of cases. For the

binary case, in [18] the actual minimum weight for the codes from finite geometries

is obtained. For the odd case, and for non-desarguesian planes, the results are

sporadic, but the papers [26, 63, 64, 65] go some way in getting improved bounds.

In general the dual codes of these codes are not generalized Reed-Muller codes;

these are the so-called polynomial codes. Their minimum weight is not known in

general and in [61, Section 7] some new results that deduce the minimum weight

from the geometrical properties of the designs are described.

Although drawing on results and definitions from a broad spectrum of

mathematical fields, this thesis is concerned principally with the study of the

interplay between groups and combinatorial structures such as codes, designs,

graphs and finite geometries. A general methodological aim of this thesis has

been to illustrate the theory presented as richly as possible with examples.

Coding theory has made many contributions to the theory of combinatorial

designs. A code generated by the incidence matrix of designs has been useful in
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either constructing new designs or showing that certain designs do not exist, as it

is for example the case of the projective plane of order 10. Coding theory has also

been used to extend designs. In [59] Kennedy and Pless extended designs "held"

by vectors of a code. The connection between designs and codes leads to the

construction of new designs. Using the knowledge about codes and the existence

of designs in codes can be useful for decoding purposes. For example a binary

vector x of weight w is said to determine the block of w points corresponding to

the positions where x has non-zero coordinates. In such case we say that vectors

of a fixed weight w in a binary code of length n hold a t-design if the blocks

determined by these vectors are the blocks of a t-design on n points. This means

that there must exist t and A so that every set of t coordinate positions occurs as

non-zero positions for exactly Avectors of weight w. The knowledge ofthe number

of vectors of each weight existing in a code is crucial in determining whether or

not the supports of these vectors could form a design. For q = 2 the supports

are in a one-to-one correspondence with the codewords. The celebrated Assmus­

Mattson Theorem gives conditions on the weight enumerators of a code and its

dual that are sufficient to ensure that the support of the minimum weight vectors

(and other weights also) yield a t-design where t is less than the minimum weight.

On the other hand designs have had tremendous impact in coding theory since

the geometry of the design helps in the determination of the weight distribution

of the code. Also, design properties can be used in decoding algorithms, and

geometrical configurations can be used to define good codes.

Throughout this thesis using a construction method outlined in [66] we

will consider the construction of codes from designs obtained from primitive

permutation representations of some finite simple groups as well as codes from

graphs.

Given a non-empty set it of size n we form graphs r whose vertices are the k

element subsets (k > 1) of it and adjacency is defined according to whether these
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subsets meet or are disjoints. For example for any n, the triangular graph T(n)

is the graph whose vertices are the 2-element subsets of a set of cardinality n in

which two distinct vertices are adjacent if and only if they are not disjoint. It is a

strongly regular graph on (~) vertices, that is on the pairs of letters {i, j} where

i,jE{1, ... ,n}.

The code formed by the span of the adjacency matrix of r is also the code

of the l-(v, k, k) design obtained by taking the rows of the adjacency matrix as

the incidence vectors of the blocks. The automorphism group of this design will

contain the automorphism group of the graph, the latter of which is the symmetric

group Sw In a similar manner, given a set n of size nand n{3} the set of subsets

of n of size 3, we examine the binary codes obtained from the adjacency matrix

of each of the three graphs with vertex set n{3}, with adjacency defined by two

vertices as 3-sets being adjacent if they have zero, one or two elements in common,

respectively.

Codes obtained from permutation representations of finite groups have been

given particular attention in recent years. Given a representation of group

elements of a group G by permutations we can work modulo 2 and obtain a

representation of G on a vector space V over lF2 . The invariant subspaces (the

subspaces of V taken into themselves by every group element) are then all the

binary codes C for which G is a subgroup of Aut (C). This modular technique

has been used in [12, 13, 74]. Similarly we could produce codes over fields of

characteristic p, where p > 2. In [74], Knapp and Schmid consider rn, k, d]q codes

where the monomial automorphism group is a particular group. The groups

examined were the alternating groups An, the symmetric groups Sn and the

Mathieu groups written as permutation groups of degree n and associated with

codes of length n. Important information about these codes can be obtained from

the theory of modular representations of groups. Calderbank and Wales in [17]

have used this idea to construct a binary code of length 176 and dimension 22
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whose automorphism group is the Higman-Sims group. Brooke in [12, 13] has

found all codes obtainable this way from the primitive permutation representations

of the simple groups PSU4 (2) and PSU3 (3). In particular are examined all binary

codes arising from primitive permutation representations of these groups. In [49]

a [276,23, 100h self-orthogonal doubly-even code left invariant by the Conway

simple group'Co3 was constructed. Its residual code with respect to a minimum

weight codeword is the [176,22, 50h code left invariant by the Higman-Sims simple

group H S referred to above and constructed in [17].

Also, starting with well known simple groups and defining designs and codes

through the primitive actions of the groups will give structures that have the

groups in their automorphism groups. In [66] Key and Moori have examined all

such designs, graphs and some associated codes, for the Janko groups J1 and J2 .

For each of the primitive representations, the permutation groups were constructed

and the orbits of the stabilizer of a point were formed.

In the preliminary chapters (Chapter 2 and Chapter 3) we present general

results on group theory and combinatorial structures that will be required in the

sequel.

The link between combinatorial design theory, graph theory and algebraic

coding theory has proved useful to further understanding of these structures. For

example, codes have helped in the characterization of designs, and design theory

has provided examples of codes with effective encoding and decoding algorithms

and whose minimum weights and weight distributions can be found through the

combinatorial properties of the designs. In Chapter 4 we establish the interplay

between these combinatorial structures. The methods employed to exploit this

link include use of geometrical and combinatorial properties of the designs and

their automorphism groups.

In Chapter 5 we examine some of the successful applications of the association
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between combinatorial designs and groups. In particular we look at codes

obtained from primitive permutation representations of some finite simple groups.

In a manner of illustration we describe the codes derived from the primitive

permutation representations of two sporadic simple groups, namely the first and

the second Janko groups J1 and J2 • These codes and their respective properties

have been established in [66]. For each of the primitive representations the

permutation groups were constructed, formed the orbits of the stabilizer of a

point, and for each of the non-trivial orbits, the self-dual symmetric I-designs and

subsequently binary linear codes were obtained. In fact the work described in [66]

constitutes the berth for the ideas and results established in this thesis as a whole.

In Chapter 6, we deal with a conjecture that has been stated by Key and

Moori in [66]. In examining the codes and designs arising from the primitive

representations of the first two Janko groups, Key and Moori in [66, Section 7]

suggested that the computations made for these Janko groups could lead to the

conjecture: "any design V obtained from a primitive permutation representation

of a simple group G will have the automorphism group Aut(G) as its full

automorphism group, unless the design is isomorphic to another one constructed

in the same way, in which case the automorphism group of the design will be

a proper subgroup of Aut(G) containing G". While the conjecture is true for

the Janko groups J1 and J2 , and some other simple groups, we show that it is

not always true. We found examples of finite simple groups G with a primitive

representation giving a design V such that the automorphism group of G does

not contain the automorphism group of V. Furthermore, there are finite simple

groups that have automorphisms that do not preserve the design. Specifically,

we considered computationally all the primitive permutation representations of G

where G is the alternating group A6 or Ag•

In their natural primitive rank-3 action on the points of projective space of

dimension 2m -1, the projective symplectic groups PSP2m(Q), where Qis a power
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of an odd prime and m 2 2, have 2-modular representations that give rise to self­

orthogonal binary codes whose properties can be linked to those of the underlying

geometry. In Chapter 7, we establish some properties of these codes, including

bounds for the minimum weight and the nature of some classes of codewords.

Alternatively these codes could be obtained by taking the row span over JF2 of

an adjacency matrix of the strongly regular graph defined by the rank-3 action of

PSP2m(Q). Since we are looking at rank-3 groups, the graphs are actually strongly

regular.

In Chapter 8, we examine the codes of the triangular graph T(n) and their

duals, and in particular we show that the symmetric group Sn on n letters is the

full automorphism group of each code for n 2 5 except in the case n = 6. We

also look at the question of minimum-weight generators of the codes and of their

duals. The triangular graph T(n) is defined to be the line graph of the complete

graph Kn , for any n. It is a strongly regular graph of type ((~), 2(n - 2), n - 2, 4).

Alternatively T(n) (n > 4) may be viewed as the graph whose vertices are the 2­

element subsets of a set of cardinality n in which two distinct vertices are adjacent

if and only if they are not disjoint. The code formed by the span of the adjacency

matrix is also the code of the 1_(n(n
2
-1) , 2(n - 2), 2(n - 2)) design V obtained by

taking the rows of the adjacency matrix as the incidence vectors of the blocks. An

alternative way to construct these codes is through the primitive rank-3 action

of the simple alternating group An, for n 2 5, on the 2-subsets (or duads) n{2}

of a set n of size n. The orbits of the stabilizer in An of a duad P = {a, b}

consist of {P} and one of length 2(n - 2) and the other of length (n- 2k(n-3). We

take as points the duads of n that is, P = n{2} and for each P E n{2} we define

a block P to be {Q E n{2} I P n Q =1= 0, Q =1= P}, that is the orbit of length

2(n - 2). The duads P = n{2} and blocks B = {P IPEP} form a symmetric

1_(n(n2-1) , 2(n - 2), 2(n - 2)) design whose binary code is examined. In particular

the dimension and weight enumerator of the codes are determined.
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In Chapter 9, in a manner similar of that described in Chapter 8, given a set

n of size nand n{3} the set of subsets of n of size 3, we examine the binary codes

obtained from the adjacency matrix of each of the three graphs with vertex set

n{3} and adjacency defined by two vertices as 3-sets being adjacent if they have

zero, one or two elements in common, respectively.

Chapter 10 is entirely dedicated to applications of our results in that we obtain

the so-called PD-sets. A PD-set for a t-error-correcting code C is a set S of

automorphisms of C such that every possible error vector of weight t or less can

be moved by some member of S to another vector where the s non-zero entries

for, s :S t have been moved out of the information positions. In other words,

every t-set of coordinate positions is moved by at least one member of S to a

t-set consisting only of check-position coordinates. For small t, PD-sets can be

found computationally. PD-sets are given in both computational and explicit

forms. The knowledge of the structures of the automorphism groups has played a

key role in the determination of explicit permutation decoding sets for the binary

codes obtained from the triangular graphs and those of the graphs on triples.

The success of decoding these codes came about by ordering the points in such

a way that the nature of the information symbols was known and the action of

the automorphism group apparent. Since most of the groups we have dealt with

act naturally as primitive rank-3, the graphs obtained are in fact strongly regular.

We have also investigated the cases where the graphs are not strongly regular and

the action of the groups is not rank-3. This is the case of the binary codes from

graphs on triples.

All computations were carried out with the aid of Magma [11] versions 2.7

and 2.8 running on a Sun GX2 computer in Pietermaritzburg and on a Sun Blade

1000 computer at Clemson. We have developed various programmes for dealing

with designs, codes, graphs and PD-sets and these are outlined in the Appendices

of the thesis.



Chapter 2

Groups

The aim of this chapter is to assemble in readily usable form a selection of mostly

standard results from the theory of groups, which will be required in the sequel.

We will not give proofs of every result. Most of the results could be found in

standard texts such as [10, 21, 85].

2.1 Permutation groups

. The symmetric group on a set n (n is non-empty throughout) is the group So of

all permutations of n. If n is finite of cardinality n, then So is often denoted by

Sn' A permutation group G on a set n is a subgroup of So, and G is said to be

transitive on n if, for all a, /3 E n, there exists an element 9 E G such that the

image a 9 of a under 9 is equal to /3. More generally, the orbit of G containing

the point a E n is the set a G = {a9 I9 E G}.

The permutation group G on n can also be regarded as a permutation group

on n x n by defining

9
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where 0:, {3 E D and 9 E G. The number of orbits of G on D x D is called the rank

of G on D, which is denoted by rank(G). If 0:, {3 are distinct points of D, then the

pairs (0:,0:) and (0:, {3) lie in different orbits of G on D x D. Thus, for IDI > 1, the

rank of G is at least 2. A permutation group is said to be 2-transitive (or doubly

transitive) on D if it is transitive on the ordered pairs of distinct points of D.

Thus, for IDI > 1 the 2-transitive groups are precisely the permutation groups of

rank 2.

The orbits of G on D x D are called orbitals, and to each orbital E we associate

the directed graph with vertex set D and edge set E, the so-called orbital digraph

for E. It is easy to show that the orbitals of G are in one-to-one correspondence

with the orbits on D of the stabilizer Ga. = {g E G I 0:9 = o:} of a point 0: E D.

This correspondence maps an orbital E to the set of points {{3 I (0:, {3) E E}.

The orbits of Ga. on D are called suborbits of G, and their lengths are called

subdegrees of G.

If G has rank r on D x D then a point stabilizer will have exactly r orbits on

D and we say that such a stabilizer is a rank-r subgroup of G.

2.2 Permutation representations

Definition 2.2.1 Let G be a group and D be a set. An action of G on D is a

function which associates to every 0: E D and 9 E G an element 0:9 of D such

that, for all 0: E n and all g, h E G, 0:1 = 0: and (0:9)h = 0:9h . In a natural

way, an action defines a permutation representation of G on D, which is a

homomorphism 'ljJ from G into So..

Simply define 'ljJ(g) E So. by 'ljJ(g) (0:) = 0:9 . Conversely a permutation

representation naturally defines an action of G on D, leading to a natural bijection

between the action of G on D and the permutation representation of G on D.
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Most of the definitions of Section 2.1 apply to permutation representations by

applying them to the permutation group which is the image of that representation.

Thus a permutation representation is said to be transitive if its image is transitive.

Similarly the orbits of a representation are those of its image and, if the

representation is transitive, then its rank, orbitals, suborbits and subdegrees

are those of its image. However the point stabilizer Ga = {g E G J ag = a}

for the representation may be a proper preimage of the point stabilizer for the

permutation representation group image.

A permutation representation is said to be faithful if its kernel is the identity

group, in which case G is isomorphic to its permutation group image and we are

back to the case of permutation groups.

Theorem 2.2.2 Let G act on a set n. Then laGI = [G: Ga ], that is the number

of elements in the orbit of a is equal to [G: Ga ].

Proof: See [85].•

Corollary 2.2.3 If G is a finite group acting on a finite set n then Va E n we

have laGII IGI·

Proof: By Theorem 2.2.2 we have laGI = [G :Ga ] = I~I' Hence IGI = JaGI.IGa /.

Thus laGI divides IGI .•

Theorem 2.2.4 (i) If G is a finite group, then Vg E G the number of conjugates

of 9 in G is equal to [G: CG(g)].

(ii) If G is a finite group and H is a subgroup of G, then the number of

conjugates of H in G is equal to [G : NG(H)].

Proof: (i) Since G acts on itself by conjugation, using Theorem 2.2.2 we have

/gG/ = [G : Gg]. But since gG = {gh I h E G} = {hgh- 1 I h E G} = [g] and
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G IGI
la 1= IDI = IGal·

G9 = {h E GI gh = g} = {h E G I hgh-1 = g} = {h E GI hg = gh} = GG(g), we

have IgGI = l[g]1 = [G : GG(g)] = IC~~)I"

(ii) Let G act on the set of all its subgroups by conjugation. Then by the

Theorem 2.2.2 we have IHGI = [G : GH ].

Since HG = {H9 I 9 E G} = {gHg-1 I 9 E G} = [H] and GH = {g E GI H9 =

H} = {g E G I gHg-1 = H} = NG(H) we have I[H]I = IHGI = [G : GH ] =

[G : NG(H)] = IN~~1)1 .•

Note 2.2.5 If G is a finite transitive group acting on a finite set D, then Theorem

2.2.2 (ii) implies that

Hence IGI = IDI·IGal·

Definition 2.2.6 Let Gact on a set D. Let IDI = nand 1 ::; k ::; n be a positive

integer. We say that G is k-transitive on D if for every two ordered k-tuples

(a1,a2, ... ,ak) and (/31,/32,". ,/3k) with ai =I- aj and /3i =I- /3j for i =I- j there

exists 9 E G such that ai9 = /3i for i = 1,2, ... , k.

Lemma 2.2.7 Let G be a transitive group on a set D, IDI = n 2': 2. If Ga is

(k - I)-transitive on D \ {a} for every a E D, then G is k-transitive on D.

Proof: See [10, Lemma 1.3.6].•

Theorem 2.2.8 (8S) If G is a k-transitive group on a set Dwith IDI = n, then

IGI = n(n - 1)(n - 2) ... (n - k + 1) IG[ J01,Ct2, ... ,Clk

for every choice of k-distinct aI, a2,· .. , ak E D, where G[al,a2, ... ,akJ denotes the

set of all elements 9 in G such that ai9 = ai, 1::; i ::; k .
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Definition 2.2.9 The automorphism group of a group G, denoted by Aut(G),

is the set of all automorphisms of G, under the operation of composition.

Definition 2.2.10 Let 9 be any element of G. Define a map 1Jg : G ---t G by

1Jg(x) = gxg- l for all x E G. Then 1Jg is an automorphism of G, known as an

inner automorphism of G.

For a given x E G we have that x = 1Jg(g-lxg) and if 1Jg(x) = 1Jg(Y) then

gxg- l = gyg-l and so x = y. We also have that 1Jgh(X) = ghx(gh)-l

ghxh-lg- l = g1Jh(X)g-1 = 1Jg1Jh(X). So that 1Jgh = 1Jg1Jh for g, hE G.

Theorem 2.2.11 (1) If H is a subgroup of G, then Cc(H) :s:! NG(H) and

NG(H)/CG(H) can be embedded in Aut(H), that is NG(H)/CG(H) is

isomorphic to a subgroup of Aut(H).

(2) The set of all inner automorphisms of G, denoted by Inn(G), is a normal

subgroup of Aut(G) and G/Z(G) rooJ Inn(G).

Proof: (1) For each x E NG(H), define a map 1Jx on H by 1Jx(h) = xhx-l .

(i) If 1Jx(h) = 1Jx(g) then xhx-l = xgx-t, so h = 9 and hence 1Jx is injective.

(ii) For any h E H we have that x-1hx E H because X-I normalizes H. Now

since 1Jx(x-1hx) = x(x-1hx)x-1 = h, 1Jx is surjective.

Now it only remains to show that 1Jx is a homomorphism. But for all 9 and h

in H we have 1Jx(gh) = xghx-l = xgx-1xhx-1 = 1Jx(g)1JAh), which implies that

1Jx is a homomorphism.

The map 1J : NG(H) ---t Aut(H) given by 1J(x) = 1Jx is a homomorphism.

Because Vh E H, and Vx, yE NG(H) we have

(1J(x)1J(y))(h) 1J(x)(1J(y)(h)) = 1J(x)(yhy-l)

X(yhy-I)X- 1 = (xy)h(xy)-l = 1J(xy)(h),
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which implies cjJ(x)cjJ(y) = cjJ(xy).

Ker(cjJ) {x E Nc(H) I cjJ(x) = IH }

_ {x E Nc(H) I cjJ(x)(h) = h, for all h E H}

{x E Nc(H) Ixhx-1 = h, for all h E H}

- {x E Nc(H) I xh = hx, for all h E H}

- Cc(H).

14

Therefore Gc(H) :s1 Nc(H) and by the first isomorphism theorem we have that

Nc(H)jGc(H) rv Im(cjJ). Hence Nc(H)jGc(H) rv Im(cjJ) :::; Aut(H).

(2) If H = G, then Nc(H) = G and so Gc(H) = Z(G) and the map cjJ

given in part (1) has Inn(G) as its image. Therefore the isomorphism established

in (1) is now GjZ(G) rv Inn(G). To show that Inn(G) :s1 Aut(G) we must

show that if p E Aut(G) and cjJg E Inn(G) then pcjJgp-l E Inn(G). We can

see that (pcjJgp-l)(X) = p(cjJg(p-l(X))) = p(gp-l(X)g-l) = p(g)p(p-l(X))p(g-l) =

p(g)Xp(g-l) = cjJp(g) (x) for all x E G. Hence pcjJgp-l = cjJp(g) and Inn(G) :s1Aut(G) .

•

2.3 Primitive groups

If G is a permutation group on a set n, then a partition P of n is said to be

G-invariant (and G is said to preserve P) if the elements of G permute the

blocks (elements of P) of P blockwise, that is, for B E P and 9 E G, the

set Bg is also a block of P. The blocks of a G-invariant partition are called

blocks of imprimitivity for G. If G is transitive on n then all blocks of a

G-invariant partition P have the same cardinality and G acts transitively on P.

Moreover, every permutation group G on n preserves two partitions namely n
and {{Q'} I Q' En}; these are called trivial partitions of n, and their blocks n
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and {a} for a E D are called trivial blocks of imprimitivity. All other blocks

of D are said to be non-trivial.

Definition 2.3.1 A permutation group G is said to be primitive on D if G is

transitive on D and the only G-invariant partitions of D are the trivial partitions.

Also G is said to be imprimitive on D if G is transitive on D and G preserves

some non-trivial partition of D.

Theorem 2.3.2' (i) For every n, the symmetric group Sn acts n-transitively on

D={1,2,'" ,n},

(ii) for n ~ 3 the alternating group An acts (n - 2)-transitively, but not (n - 1)­

transitively on D.

Proof: (i) Since Sn contains all permutations of the set D, it is clearly n-transitive

on D.

(ii) We use induction on n, beginning with the fact that A3 is transitive, but

not 2-transitive, on {1, 2, 3}. For n > 3 we have that (An)n = An-I, and An- 1

is (n - 3)-transitive on {1, 2, ... ,n - 1} by the induction hypothesis. So An is

(n - 2)-transitive, by Lemma 2.2.7. Now suppose that An is (n - l)-transitive,

then there is g E An fixing each 1,2,'" ,n - 2 and taking n - 1 to n. But the

only g E An which does this is the transposition (n - 1 n) r/:. An.•

Theorem 2.3.3 Every k-transitive group G (with k ~ 2) acting on a set D, is

primitive.

Proof: See [10, Lemma 1.6.3].•

Theorem 2.3.4 (Characterization of primitive permutation groups) Let

G be a transitive permutation group on a set D. Then G is primitive if and only

if for each a E D, the stabilizer Ga is a maximal subgroup of G.

Proof: See [lD, Theorem 1.6.5].•
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2.4 Rank-3 primitive permutation groups

In this section we consider finite primitive permutation groups of rank-3.

16

Given a transitive permutation group G on D, the number of orbits of the

point stabilizer Go: is independent of the particular a E D and it is equal the rank

of G. From Section 2.1 we know that for IDI 2: 2 we have rank(G)2: 2.

If G is a transitive permutation group on D of rank-3 then we say that G is

a rank-3 permutation group. In this case Go: has exactly three orbits {a}, ~(a)

and r(a).

The above notation is used in such a way that ~(a)9 = ~(a9) and r(a)9 =

r(a9) for all a E D and 9 E G so that by setting 1~(a)1 = k and Ir(a)1 = l we

get that IDI = n = 1 + k + l.

In [95] Wielandt shows that a primitive group of degree 2p with p a prime has at

most rank-3. In fact p = 5 is the only prime for which a transitive group of degree

2p is known to exist. Any 4-transitive group has rank-3 when considered as a group

of permutations of the unordered pairs of distinct symbols. Thus, in addition to

the symmetric and alternating groups, the Mathieu groups are included among

the rank-3 groups. The projective (classical) groups of linear type are doubly

transitive on the points of the projective space, but are primitive of rank-3 on the

lines when the degree is at least 4. Those of symplectic and unitary types of degree

at least 4 are primitive of rank-3 when considered as group of permutations of the

absolute points (see Section 2.4.1). Those of orthogonal type of degree at least 5

are primitive of rank-3 on the singular points, the groups of characteristic 2 being

excluded for odd degrees. The study of finite primitive permutation groups has

lead to the discovery of interesting new groups (for instance, some sporadic simple

groups) and to application of new techniques in the theory of permutation groups.

For more information on rank-3 permutation groups the reader is encouraged to

consult [43, 55, 58, 76, 77] and [51, Section 2].
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In light of the preamble we will study the alternating and the symplectic groups

as examples of finite primitive permutation groups of rank-3. Both these groups

will be of use in Chapter 7 and Chapter 8 respectively. In the next section we

give a brief account of the symplectic groups followed by the alternating groups

in Section 2.4.2.

2.4.1 Symplectic groups

For the classical background on symplectic forms and symplectic groups see

[1, 37, 41, 40, 55, 91].

Definition 2.4.1 Let V be a finite dimensional vector space over a field IF. A

function (,) from the set V x V of ordered pairs in V to IF is called a bilinear

form on V if for each v E V, the functions (v, ) and ( ,v) are linear functionals

on V. In this case we say that (V, (, )) is an inner product space.

If (,) is a bilinear form on V such that for each non-zero x E V, there exists

y E V for which (x, y) =1= 0, then (,) is said to be non-degenerate.

Remark 2.4.2 A bilinear form (,) is called alternating (symplectic) on V if

(x, x) = 0 for all x E V.

Let V be a vector space over a field IF and (,) be a symplectic form on V. If

char(IF) =1= 2 then we obtain that for all x, y E V,

0= (x+y,x+y) = (x+y,x) + (x+y,y) = (x,x) + (y,x) + (x,y) + (y,y).

However, since (x + y, x + y) = (x, x) = (y, y) = 0 we have that (x, y) = -(y, x).

Conversely if (,) is a bilinear form for which (x, y) = -(y, x) for all x, yE V, then

in particular for x E V we have (x, x) = -(x, x). This implies that 2(x, x) = 0

and so (x, x) = 0, V x E V.
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Definition 2.4.3 Let V be a vector space over a field IF. Let (,) : V X V --t IF

be a bilinear form on V such that

(i) (x, x) = 0, V x E V

(ii) (x, y) = -(y, x), V x, Y E V

Then we say that (V, (,)) is a symplectic space over the field IF.

Remark 2.4.4 If char(lF) #- 2, then the properties (i) and (ii) in the above

definition are equivalent.

Let (V, (,)) and (U, (,)) be symplectic spaces over IF, then we say that V rv U

if there exists an isomorphism T E L(V, U) such that V x, Y E V we have

(x, y) = (T(x), T(y)).

Definition 2.4.5 Let (V, (,)) be a symplectic space. If x, y E V, then x and y

are orthogonal if (x, y) = o. If W is a subspace of V then the orthogonal

complement of W is defined by

W.1 = {y E V I (x, y) = 0, V x E W}.

Note 2.4.6 Note that for all x E W we have (0, x) = (x-x, x) = (x, x) - (x, x) =

0-0 = 0, so that 0 E W.1. Now if x, yE W.1, then for any a,(3 E F and z E W

we have

(ax + (3y, z) = (ax, z) + ((3y, z) = a(x, z) + (3(y, z) = aD + (30 = 0,

therefore ax + (3y E W.1, and hence W.1 is a subspace of V.

Let (V, (, )) be a symplectic space and define R(V) by R(V) = V.1. Then we

call R(V) the radical of V. We can easily see that (V, (,)) is non-degenerate if

and only if R(V) = {Dv}.
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Definition 2.4.7 In an mner product space (V, ( , )), a vector v is called

isotropic if (v, v) = o. A subspace U of V is called isotropic if there exists

in U a non-zero vector z such that it is orthogonal to V.

It is clear that in a symplectic space every vector is isotropic.

Note 2.4.8 The Definition 2.4.7 suggests U isotropic is equivalent to (,) being

degenerate when restricted to U, which is in turn equivalent to Un ul.. =I V. A

subspace U is called totally isotropic if all its vectors are isotropic. Having U

being totally isotropic is equivalent to having any two vectors in U orthogonal,

this then implies that U ~ Ul...

Definition 2.4.9 Consider (V, (,)) with (,) bilinear. If {VI, V2, ... ,vm } is an

ordered basis of V, then the inner product matrix of (,) relative to this basis

is given by an m x m matrix A = [(Vi, Vj)]mxm .

If (V, (,)) is a symplectic space of dimension 2m then the form is given by

(u,V) = uMvT (2.1)

where a basis {el, e2, ... , e2m} for V can be chosen such that M = [mi,j] is the

2m x 2m matrix given as follows: if B is the m x m matrix [bilj ] where bi,j = 1 if

i + j = m + 1, and bi,j = 0 otherwise, that is

1

1

B=

1

1
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then

Thus

if i + j =I 2m + 1, and

_[0 -B]M- .
B 0

20

for 1 ::; i ::; m, and

for m + 1 ::; i ::; 2m.

The symplectic group SP2m(q) is the subgroup of GL2m (q) of

transformations 9 for which (ug,vg) = (u, v), for all u, v E V, that is with matrix

Q for which QMQT = M. The projective symplectic group PSP2m(q) is the

factor group SP2m(q)/Z(SP2m(q)) and we have

Z(SP2m(q))

Z(SP2m(q))

{I} if char(IFq ) = 2 and

{I, -I} if char(IFq ) =12.

The projective symplectic groups are simple except for PSp2(2)

PSp2(3) = PSL2(3) and PSp4(2). The order of PSP2m(Q) is given by

1
(2, Q_ 1) X ISP2m(Q)!

n2 n

Q IT( 2i )
(2, Q - 1) i=l Q - 1 .

Now if we let P(V) denote the projective space defined by V, that is

P(V) = PG2m- 1(Q) (see Section 3.4 for more details on projective geometry).

The symplectic form on V defines a polarity on P(V), a correspondence between
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the elements of P(V) that reverses inclusion and has order 2. If we denote this

polarity by a, then for any U E P(V) we have a : U ~ UO' where

UO' = {v I v E V, uMvT = 0, 'Vu E U}. (2.2)

It can be shown that PSP2m(q) is the group of all the collineations of P(V)

that commute with the polarity a.

In the context of projective space, the subspace U E P(V) is called totally

isotropic if unuO' = U, isotropic if unuO' =1= 0and non-isotropic if unuO' = 0.

We can see that for symplectic polarity, points are always totally isotropic. Any

totally isotropic space has dimension at most m, and those subspaces of dimension

m are called maximal isotropic subspaces. A point P of P(V) is said to be

absolute if P lies on pO'.

If P is a point of the projective (2m - 1)-space PG2m- 1(q) then the affine

subgroup of G = PSP2m(q) is the stabilizer Gp of the form N : PSP2m-2(q) , a

split extension, where N is a p-group of order q2m-l (see [47]).

If q = pT where p is an odd prime, N will be a non-abelian special p-group

of order q2m-l. If p = 2, then N is an elementary abelian 2-group. For further

information on the affine subgroups of the symplectic group, see ([84, Chapter 10]).

The simple symplectic group PSP2m(Q), where m is at least 2 and Q is any

~prime power, acts as a primitive rank-3 group of degree q_~ on the points of the

projective (2m - 1)-space PGzm-1(lFq), (see Theorem 2.4.10). The orbits of the

stabilizer of a point P consist of {P} and one of length q2:=~_1 - 1 and the other

of length qZm-l.

Theorem 2.4.10 Ifm 2: 2, then PSPZm(q) acts as a primitive permutation group

of rank-3 on the points ofP(V).

Proof: See [91, Theorem 8.2 and Theorem 8.3].•
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2.4.2 Alternating groups

22

For a set n of size n we shall use the notation n{k} to denote the set of all k­

subsets (a set of k unordered elements) of n for 1 ~ k ~ n. If k = 2 we call

n{2} the set of all duads of n. Since 1nl = n we have In{k} I = G). A group G

acting on n is called k-homogeneous if it is transitive on the set n{k}. Clearly k­

transitivity implies k-homogeneity. If A = {ab a2,' .. ,ak} is a k-subset of n, then

the stabilizer of the "point" A in the action of G on n{k} is the setwise stabilizer

GA in the action of G in n. The pointwise stabilizer of A in the action of G on n
is denoted by G[A]. Obviously G[A] ~ G A. The permutation representation of G A

associated with its action on A defines a homomorphism of GA into the symmetric

group SA rv Sk with kernel G[A] and so the factor group GA/G[A] is isomorphic to

a subgroup of Sk.

Lemma 2.4.11 If n ;::: 3 then the alternating group An acts transitively on n{2}

the set of duads of n = {1, 2, ... ,n}.

Proof: For if we let {aI, a2} and {a3' a4} be duads in n{2}, then the permutation

(al (3)(a2 (4) E An moves them accordingly.•

We now look at the structure of the stabilizer (An)A of A = {aI, a2} E n{2}

and show that (An)A rv Sn-2 = (Sn){ lTl, lT2}'

Theorem 2.4.12 The alternating group An where n ;::: 5 acts primitively as a

rank-3 permutation group of degree n(n
2
-1) on n{2} where n = {1, 2, ... ,n}.

Proof: That the action is transitive follows from Lemma 2.4.11. Since An acts

on n{2} and In{2} I= (~) we have that

I(A ) I- n! 2 _ I
n {lTl,lT2} - 2 x n(n -1) - (n - 2) .. (2.3)
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Now

23

Clearly

and

K = H(Jl (J2) . a Ia E (5n )[Ul,U2]' a is odd} :::; (An ){U1' U2}'

Thus A n- 2 U K :::; (An){Ul, U2} and

Hence (An ){ } = An - 2 U K. SinceU1, U2

and A n- 2 = (An) [Ul,U2] :::; (An ){Ul,U2}' we can deduce that (An ){U1' U2} rv 5n- 2 •

The group (An ){U1,U2} has three orbits H(Jl, (J2}}, {(Ji"li E {1,2}" E

n \ {(J1, (J2}} and {"lLh,1L E n \ {(Jll (J2}" =l-IL}. These orbits have lengths

1, 2(n - 2) and (n-2)jn-3) 1 respectively. Now any non-trivial block for the action

of An on n{2} which contains the point {(J1, (J2} must also contain one of the

other orbits of (An){Ul, U2}' However, a simple argument shows that for n =I- 4

such a block must also contain the other orbit, and so the action of An on n{2} is

primitive. Now since (An ){U1' U2} is the stabilizer of a point in the action of An on

n{2} and An is primitive we have that (An ){U1' U2} is maximal. •

Remark 2.4.13 If n = 4, then Theorem 2.4.12 is not true since (A4 ){ } ~U1,U2

52 = {ls2l ((Jl (J2)((J3 (J4)) and A4 is clearly not a rank-3 group on n{2} where

n={1,2,3,4}.



Chapter 3

Codes and Combinatorial

Structures

In this chapter we focus on codes, designs and finite geometries. For a more

detailed account and additional information the reader is advised to consult

[3, 9, 21] and [80].

3.1 Codes

A finite field of order q where q is a power of a prime, will be denoted by IFq and

IF~ will denote the non-zero elements of IFq' Denote the vector space of n-tuples

of elements of IFq by V = IFqn. Then the standard dot product of x and y in V is

defined by x· y = xyT where yT is the transpose of y. The subspace spanned over

IFq by the subset {XIl X2, ... , Xn} of V will be denoted by (Xl, X2,.·., Xn)'

If V is a vector space over the field IFq , an invertible semilinear

transformation from the vector space V onto V is a pair (5, Cl::) such that 5

is a bijection from V onto V, Cl:: is an automorphism of IFq , and for all X and y in

24
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V and a, bin IF'q we have

S(ax + by) = a(a)S(x) + a(b)S(y).

25

The group of all invertible semilinear transformations from V to V is

denoted by r L(V). The subgroup of r L(V) whose elements are of the form

(S, a) where a is the identity map on IF'q, is the group of all invertible linear

transformations GL(V). The groups rL(V) and GL(V) are known as the

semilinear group and the general linear group, respectively. The group of all

invertible scalar transformations Sc(V) is the centre of GL(V) and is a normal

subgroup of rL(V). The quotient groups rL(V)jSc(V) and GL(V)jSc(V) are

the projective semilinear group prL(V) and the projective linear group PGL(V)

of V, respectively. The affine linear group AGL(V) is the semi-direct product the

additive group of V with GL(V). The affine semilinear group AfL(V) is the semi­

direct product the additive group of V with f L(V). The action of the element

(S, v) in AGL(V) on a vector x is defined by (S, v) : x ~ S(x) + v. The action of

the element ((S, a), v) of AfL(V) on a vector x is defined similarly.

Definition 3.1.1 Let F be a set of q elements. A q-ary code C is a set of finite

sequences of the elements of F, called codewords (words) . If all the codewords are

sequences of the same length n, then C is called a block code of length n.

Definition 3.1.2 Let C be a q-ary code and x and y words in C. The Hamming

distance between x and y, denoted by d(x, y), is the number of positions in

which the words x and y differ. The minimum distance d of C is the

smallest Hamming distance between any two distinct words in C, that is d =

min{d(x,y) I x,y E C,x =J y}.

The codes from designs that we will study are block codes. The construction of

these codes over finite fields will give them additional structure. Specifically we

consider codes over finite fields which are finite dimensional vector spaces.
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Definition 3.1.3 A linear code C of length n over the field lFq is a subspace of

IFqn. We write C = rn, k]q where dim(C) = k.

Two linear codes of length n over the field IFq are equivalent if each can

be obtained from the other by permuting the coordinate positions of IFqnand

multiplying each coordinate by a non-zero element of the field. They are

isomorphic if each can be obtained from the other by a permutation of the

coordinate positions. Every linear code of length n over IFq contains the zero

vector °E IFqn whose entries are all the zero element of the field. If d(x, y) is the

Hamming distance of x, y in C, then x - y is in C and d(x, y) = d(O, x - V). This

implies that for a linear code, the minimum distance d of the code is the smallest

number of non-zero entries of the codewords of the code.

Definition 3.1.4 If C is a linear code of length n over the field lFq then the

weight of a word x in C is defined to be wt(x) = d(O, x).

It then follows that the minimum distance of a linear code C is the minimum

weight of the code. When the minimum weight d of a linear code C = rn, k]

is known, we write C = rn, k, d]q. For a linear code C = rn, k, d]q, we have the

Singleton bound d ~ n - k + 1 (see [3]).

Let C be a linear rn, k, d]q code. We let Ai(c) denote the number of codewords

at distance i from a codeword c E C. The numbers Ai(c) where °~ i ~ n,

are called the weight distribution of C with respect to c. Obviously Ao(c) =

1, Ai(c) ~ 0, and Li Ai(c) = qk. For linear codes (and some non-linear codes)

Ai (c) is independent of c and will be denoted by Ai.

Definition 3.1.5 Let C be a linear code. Then the weight enumerator of C is

the polynomial Wc(x, y) = LCEc xn-wt(c)ywt(c) = L~=o Aixn-iyi.

Remark 3.1.6 The weight enumerator classifies codewords according to the

number of non-zero coordinates. More detailed information is supplied by the
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complete weight enumerator, which gives the number of codewords of each

composition.

Definition 3.1.7 Let C be a rn, k]q code. A generator matrix for C denoted

by 9 is a k x n matrix obtained from any k linearly independent vectors of C.

Definition 3.1.8 Let C be a rn, k]q code. The dual code or orthogonal code

of C denoted by Cl-, is the orthogonal under the standard inner product, that is

Cl- = {v E Fqn I (v, c) = 0 for all c E C}.

From elementary linear algebra we have that dim(C) +dim(Cl..) = n, since Cl­

is simply the null space of a generator matrix for C. Taking 9 to be the generator

matrix for C = rn, k]q, a generator matrix 9 for Cl.. is a (n - k) x n matrix that

satisfies ggT = 0, that is c E C if and only if cgT = 0 E IFqn-k. For any vector

y in IFqn the vector ygT is called the syndrome of y , denoted Syn(y). If x and

y are in IFqn, then Syn(x) = Syn(y) if and only if x and y are in the same coset

of C. We will see in Section 3.5 that syndromes can be used to decode a received

message more efficiently.

Definition 3.1.9 Any generator matrix 9 for Cl- is called a parity-check or

check matrix for C. If 9 is written in the standard form [Ik lA], then 9 =

[_AT IIn - k ] is a check matrix for the code with generator matrix g.

Any code is isomorphic to a code with generator matrix in standard form. The first

k coordinates are called the information symbols and the last n - k coordinates

are the check symbols.

We can use the generator matrix for a linear code to encode a message. In fact

a generator matrix in standard form simplifies encoding. Suppose that we have

a set of data consisting of qk messages that are to be transmitted. We encode

the message using a code C with a generator matrix g. To do this we identify



CHAPTER 3. CODES AND COMBINATORIAL STRUCTURES 28

the data with the vectors in IFqk. Then for U E IFqk, we encode u by forming the

vector uy. If u = (UI, U2, ... , Uk) and y has rows RI, R 2, .. ·, R k , where each ~ is

in Fqn, then U is encoded as:

uy = L Ui~ = (Ull U2,···, Uk, Xk+I,··" Xn).

i

But when y is in standard form, the encoding takes the simpler form U ~

(Ull U2,"" Uk, Xk+I,·.·, xn), and here the UI, U2,···, Uk are the message or

information symbols, and the last n-k entries are the check symbols, and represent

the redundancy.

In general it is not easy to say anything about the minimum weight of Cl..

knowing only the minimum weight of C but, of course either a generator matrix or

a check matrix gives a complete information about both C and Cl... In particular,

a check matrix for C determines the minimum weight of C in a useful way:

Theorem 3.1.10 Let 9 be a check matrix for a rn, k, d] code C. Then every choice

of d -1 or fewer columns of 9 forms a linearly independent set. Moreover if every

d - 1 or fewer columns of a check matrix for a code C are linearly independent,

then the code has minimum weight at least d.

Proof: See [3, Theorem 2.3.1].•

A constant vector is one for which all the coordinate entries are either 0 or

1. If Cl.. contains the all-one vector J E lFqn, whose entries are all 1 E lFq , then

every vector in the q-ary code C of weight congruent to 0 modulo q is also in Cl...

A code C is self-orthogonal if C ~ Cl.. and is self-dual if C = Cl... The hull

of a design's code over some field is the intersection C n Cl... A binary code is

doubly-even if all its codewords have weight divisible by 4.

Definition 3.1.11 IfC is a linear code of length n over lFq , then any isomorphism

of C onto itself is called an automorphism of C. The set of all automorphisms

ofC is called automorphism group ofC, denoted by Aut(C).
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From the definition we can immediately deduce that any automorphism of the

code preserves each weight class of C.

The automorphism group of C is thus a subgroup of Sn, or of Sn if C ~ IFqn.

The existence of automorphism for C can provide a richer structure for the code

and allow the use of deeper results from group theory. In particular when C has

a regular automorphism group G ~ Aut(C); this means that G is transitive on n
and that IGI = 1nl = n, the block length of C.

3.2 Designs

An incidence structure is a triple (P, B,I) consisting of points P, a collection of

blocks B and an incidence relation I ~ P x B between the points and blocks. We

assume that P nB = 0. The points will be written in lower Roman letters and the

blocks by capital Roman letters. In the case where the blocks are subsets of the

points and the relationship is set containment, the incidence structure is denoted

by (P,B). If (p,B) is in I for pin P and B E B, then we say p is on B or pis

incident with B.

Let S = (P, B, I) and T = (Q, C, 3) be incidence structures, and let <p be a

bijection from PuB to Qu C. Then if <p(P) = Q with pEP incident with B E B

if and only if <p(p) E Q is incident with <p(B) E C, then <p is an isomorphism

from S to T. If S = T, then <p is an automorphism.

Definition 3.2.1 An incidence structure V = (P,B,I), with point set P, block

set B and incidence I is a t-(v, k, A) design if

(1) IPI = v;

(2) every block B E B is incident with precisely k points;

(3) and every t distinct points are together incident with precisely A blocks.
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Remark 3.2.2 A t-(v, k, A) design is also referred to as a t-design. We shall

assume that all the parameters are positive integers, and that v > k ~ t (to avoid

trivial cases). Also the members of 8 must be distinct, thus repeated blocks are

not allowed.

Theorem 3.2.3 A t-design V is also an s-design, for 1 ::; s ::; t . If the given

design has parameters t-(v, k, A) then its parameters as an s-design are s-(v, k, As)

where
(v - s)(v - s - 1) ... (v - t + 1)As = A . ~_--.:....::_-_---:.-_.-.:......__----.:....
(k - s)(k - s - 1) ... (k - t + 1)

Proof: See [10, Theorem 3.2.2]. •

(3.1)

Definition 3.2.4 Let V = (P,8,'I), with IPI = v and 181 = b. Let the points be

labelled {Pl,P2,'" ,Pv} and the blocks be labelled {Bl , B 2, .. ·, Bb}. An incidence

matrix for V is a b x v matrix A = (aij) of O's and 1 's such that

The incidence matrix depends on the ordering of points and blocks. If we impose

the labelling on the points of a design V, {PI, P2, . .. ,Pv}, a block B of the design

can be represented as an incidence vector VB of length v where the i th entry of

VB is 1 if Pi is incident with Band 0 otherwise. If an ordering is also imposed on

the blocks, an incidence matrix A may be defined for V where the ith row of A is

the incidence vector of the i th block.

A design is trivial if every k-set of points is incident with a block of the design.

A design is called simple if distinct blocks are not incident with the same set of

k points. In this thesis all designs will be simple and non-trivial designs. We

define Ai to be the number of blocks incident with i points, 0 ::; i ::; t. It follows

that At = A, AD = b and Al is the number of blocks through any point in the
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design, referred to as the replication number for the design, and denoted by r.

A counting argument proves the well known relationship between the parameters

(3.2)

In particular,

vr = bk. (3.3)

Definition 3.2.5 The dual structure of 1) is 1)t _ (Bt, pt,T), where pt =

B, Bt = P and T = {(B,p) I(p, B) ET}.

Given a labelling on the point and block sets of 1) the transpose of an incidence

matrix for 1) is an incidence matrix for 1)t. We will say that the design is

symmetric if it has the same number of points and blocks, and self-dual if

it is isomorphic to its dual.

Definition 3.2.6 Let 1) = (P, B, T). Then the complement of 1) zs the

structure 1) = (P, B,1), where P = P, B = B and 1= P x E - T.

Theorem 3.2.7 If 1) is a t - (v, k, >') design with v - k 2': t, then 1) zs a

t - (v, v - k,"X) design, where

"X = >. (v - k)(v - k - 1) ... (v - k - t + 1)
k(k - 1) ... (k - t + 1)

Proof: See [3, Theorem 1.3.1] •.

Definition 3.2.8 An automorphism of a design 1) = (P, E, T) is a permutation

7r ofP such that BE B implies 7r(B) E E.

Clearly, the automorphisms of 1) = (P, B,T) form a group which acts on P.

Since an automorphism takes blocks to blocks, the group also has a permutation

representation on the set E.
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Lemma 3.2.9 (10] Let V be a t-design with t > 2. Then the group of

automorphisms of the design acts faithfully on B.

The existence of multiply transitive groups may be used in order to construct

designs, as in the following theorem.

Theorem 3.2.10 Let G be a t-transitive permutation group on a finite set n,
with t 2 2, and suppose that l:1 is a subset of n, with 1l:11 = k, 1nl = v, and

1 < k < v - 1. Then the set B = {l:19 Ig E G} is the set of blocks of a t-design V,

and G is a group of automorphisms acting transitively on B.

Proof: See [10, Theorem 3.4.3].•

Only a few symmetric designs are known to enjoy the property that a primitive

nonsolvable group of automorphisms acts on points and blocks. In [57], Kantor

classified all designs with 2-transitive group of automorphisms. In [38, Section 1],

Dempwolff determined the symmetric designs V which admit G ::; Aut(V) such

that G has a socle and is a primitive rank-3 group on points and on blocks.

In this thesis we shall be concerned mostly with self-dual symmetric l-(v, k, k)

designs. In Theorem 5.2.1 we give a method to construct such designs. These

designs will result from the primitive permutation representations of groups. In

particular we are concerned with the primitive permutation representations of

finite simple groups.

3.3 Graphs

In this section we shall be concerned with the relationship between permutation

groups, graphs and designs. The theory of designs concerns itself with questions

about subsets of a set (or relations between two sets) possessing a high degree of

regularity. By contrast graph theory is mainly concerned with questions about
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general relations on a set. The generality usually means that either the questions

asked are too particular, or the results obtained are not powerful enough, to have

useful consequences for design theory. There are instances where the two theories

have interacted fruitfully. The unifying theme is provided by a class of graphs

called strongly regular graphs, whose definition reflects the symmetry inherent in

t-designs.

Definition 3.3.1 A graph r = (V, E), consists of a finite set of vertices V

together with a set of edges E, where an edge is a subset of the vertex set of

cardinality 2.

Our graphs are undirected (edges are not allowed to be ordered pairs), and without

loops (two vertices comprising an edge are not equal) or multiple edges (a given

pair of vertices can comprise at most one edge).

The complement of a graph r is the graph l' whose edge set is the complement

of the edge set of r (relative to the set of all 2-element subsets of the vertex set).

If x is a vertex for a graph r, the valency of x is the number of edges containing

x. If all vertices have the same valency, the graph is called regular, and the

common valency is the valency of the graph. Thus an arbitrary graph is a 0­

design, with block size k = 2. A regular graph is a I-design.

Definition 3.3.2 A strongly regular graph with parameters (n, k, >., f-L) is a

graph r with n vertices, not complete or null, in which the number of common

neighbours of x and y is k, A or f-L according as x and y are equal, adjacent or

non-adjacent respectively.

Remark 3.3.3 Notice that the complement of a strongly regular graph is strongly

regular.
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Definition 3.3.4 Let r be a graph with vertex set {X1,X2,'" ,xn }. The

adjacency matrix A(r) = (aij) of r is the n x n matrix given by

if Xi and Xj are adjacent,

otherwise.

Let r = (V, E) be a graph, and G be a permutation group on V. We say that

G acts on r if, for all (a, (3) E E and g E G, we have (a9 , (39) E E; that is, G is

a group of automorphisms of r. The automorphism group Aut(r) of the graph

r is the subgroup of Sv consisting of all automorphisms of r. We say that r is

vertex-transitive if Aut(r) is transitive on the vertex-set V, and we say that r

is a rank-r graph if Aut(r) is a transitive group of rank r on V.

The line graph of a graph r = (V, E) is the graph L(r) = (E, V) where e

and f are adjacent in L(r) if e and f share a vertex in r. The complete graph

K n on n vertices has for E the set of all 2-subsets of V and the null graph is a

graph that has no edges at all. The automorphism group of the complete graph

K n is the symmetric group Sn, since in this case any permutation of the vertices

preserves adjacency.

The line graph of K n is the triangular graph T(n), and it is strongly regular

with parameters C(~-l), 2(n - 2), n - 2,4). The automorphism group of the

triangular graph T(n) for n > 4 is the symmetric group Sn' This follows by

a Theorem of Whitney [94], which states that if r is a connected graph with

more than 4 vertices, then Aut(L(r)) = Aut(r). Now T(n) = L(Kn ) implies

Aut(T(n)) = Sn for all n > 4.

Let G be a rank-3 group of even order and let 0 1 , and O2 be two orbitals other

than the diagonal. Then G contains an involution T. Some pair x, y of distinct

points are interchanged by an element of G. Suppose that (x, y) E 0 1 , then every

pair in 0 1 is interchanged by an element of G. So we can take the set of unordered

pairs {x, y} for which (x, y) E 0 1 as the edge of a graph r on V. The fact that
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0 1 and O2 are orbitals implies that the number of common neighbours of two

adjacent vertices, or two non-adjacent vertices, is constant; and the transitivity

of G shows that r is regular. So r is a rank-3 strongly regular graph.

Sporadic simple groups are often related with strongly regular graphs. For

example, there is a strongly regular graph with parameters (162,105,81) and

the MacLaughlin group of order 898, 128, 000 is a subgroup of index 2 of the

automorphism group of this graph. Similarly there is a strongly regular graph

with parameters (416,100,96) and the Suzuki group of order 448, 345, 497, 600

is a subgroup of index 2 of the automorphism group of this graph. For a survey

on strongly regular graphs and rank-3 groups the reader is encouraged to consult

[14, 15, 10].

The code formed by the span of the adjacency matrix of a graph r is also

the code of the l-(v, k, k) design obtained by taking the rows of the adjacency

matrix as the incidence vectors of the blocks; the automorphism group of this

design will contain the automorphism group of the graph. Thus a relation is

established between graphs, designs, codes and groups. The interplay between

these structures will be more clear in Chapter 4, where these relations undergo a

considerable development and are explicitly defined. In Chapters 7, 8 and 9 we

construct codes from the adjacency matrices of the graphs defined therein and an

interplay between codes and graphs is established.

3.4 Finite geometries

We give a brief introduction to projective and affine geometries. The reader

is encouraged to consult any standard text in this area for a more complete

discussion: see for example [3] or [9].
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3.4.1 Projective geometries
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Let V be a vector space over the field IF. The projective geometry (space)

defined by V is denoted by PG(V). If the vector space V has dimension m

over IF, then the projective geometry PG(V) has projective dimension m-I;

PG(V) is also denoted by P(V) = PGm-l(lF). The elements of PGm-l(lF) are

non-trivial subspaces of V, and the structure of the set is given by set-theoretical

containment. The projective dimension of an element U in PGm - 1 (IF) is denoted

by pdim(U) and is defined to be one less than the dimension of U as a vector

space over IF. Thus the points of PG(V) are the I-dimensional subspaces of V,

the lines are the 2-dimensional subspaces of V, and the hyperplanes are the

(m - I)-dimensional subspaces of V.

If IF = lFq , a point of the projective geometry PGm-l(lFq ) is given in

homogeneous coordinates by the non-zero vector (Xl,"" Xm ) E lFq
m

. Each point

then has q-l such coordinates representatives since (XI, ... , xm ) and A(XI, ... ,x m )

yield the same I-dimensional subspace of lFqm for any non-zero vector A E lFq .

A hyperplane H of the projective geometry PGm- 1 (lFq), in homogeneous

coordinates is determined by by the non-zero vector (YI, ... ,Ymf which spans

Hl... A point ((XI, ... , xm )) is on the hyperplane H if and only if (XI, ... ,xm ) .

(YI, ... ,Ymf = O.

Grassman's identity for subspaces of V holds for subspaces of a projective

space PG(V). Thus if U and Ware arbitrary elements of PG(V), then

pdim(U) +pdim(W) - pdim(U n W) = pdim(U + W). (3.4)

If H is a hyperplane of PG(V) and U is an element of PG(V) with pdim(U) = t,

then from the identity 3.4 we get that pdim(H n U) = t or t - 1, and the former

occurs if and only if U S;;; H.

The number of subspaces of V of dimension k, where 0 < k :::; m, is given by
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(qm _ l)(qm _ q) (qm _ qk-l)
Nm,k(q) = (qk _ l)(qk _ q) (qk _ qk-l) . (3.5)

In particular the number of points and the number of hyperplanes of

PGm-1(IFq ) is q;_~l.

Similarly, if U is an r-dimensional subspace of an m-dimensional vector space

V and k is an integer with 0 :S r < k :S m, then the number of subspaces of V of

dimension k that contain U is given by

(qm _ qr)(qm _ qr+l) (qm _ qk-l)
(qk _ qr)(qk _ qr+l) (qk _ qk-l) . (3.6)

In particular, if k = m - 1, this gives the number of hyperplanes that contain

U ""m-r-l i
as L..-i=O q.

Given two projective spaces, an isomorphism is a bijective map that preserves

incidence structure. An isomorphism between two projective spaces is called

collineation, and an isomorphism from a projective space to itself is called an

automorphism or collineation. The full automorphism group of PG(V) is given

by the well-known fundamental theorem of projective geometry which follows:

Theorem 3.4.1 (Fundamental Theorem of Projective Geometry) The

full automorphism group of PGm- 1(IFq) is prLm(q) for any q :2: 2 and m :2: 3.

Proof: See [8].•

The elements of prLm (q) preserve the subspaces of V = IFqm, and thus

they form a permutation group on the points of PGm-1(V). We may construct

within this group an automorphism a of order q~~l that permutes the points

of the geometry in a single cycle of this length, called a Singer cycle, see [9,

Theorem 6.2]. The group generated by a Singer cycle is called a Singer group.
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Definition 3.4.2 An affine geometry (space) of an m-dimensional space V

over a filed IF consists of all cosets x + U where U is a subspace of V and x is an

element of V, and is denoted by AG(V) or AGm(lF).

The dimension of the geometry is the same as the dimension of the vector space

and affine dimension of an element x + U in AG(V) is the dimension of U as a

subspace of V The points of this space are all the vectors of V, the lines are the

cosets of the I-dimensional subspaces of V, and the hyperplanes are the cosets of

the (m-I)-dimensional subspaces of V. If a subspace U has dimension r, then any

coset of U is called an r-fiat of AG(V). Two r-fiats x + U and y + W in AG(V)

are parallel if U = W. The number of r-fiats in AGm(Fq ), where 0 ~ r ~ m, is

N _ qm-r(qm - l)(qm-l - 1) (qm-r+l - 1)
m,r(q) - (qr _ l)(qr-l - 1) (q - 1) (3.7)

Theorem 3.4.3 (Fundamental Theorem of Affine Geometry) The

full automorphism group of AGm (lFq), where m 2': 2 and q 2': 2, is the affine

semilinear group AfLm (q).

Proof: See [9]

•
The affine semilinear group AfL m (q) preserves the cosets of V and thus acts

as a permutation group on all the points of AGm(lFq).

For both projective and affine geometries, the full automorphism groups are

doubly transitive on the points. This will be of use later in the construction of

designs from the geometries PGm(lFq ) and AGm(lFq) where m 2': 2.
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Codes have been used with great efficiency in some important applications. In

[62] Key, gives a survey of some of the codes used in technical applications by

showing how they could be constructed and where they are used. We list some of

the successful applications that codes have enjoyed.

• Computer memories: the codes used are the extended binary Hamming

codes, which are perfect single error-correcting-codes.

• Photographs from spacecraft: the codes used initially were the first order

Reed-Muller codes, these can be constructed as the dual of the extended

Hamming codes; later the binary extended Golay codes were used.

• Compact discs: codes used here are the Reed-Solomon codes, constructed

using certain finite fields of large prime-power order.

Perhaps the most immediate application of codes is that which relates them

with the encoding and decoding of "messages", as we will see next.

Our primary interest is the capability of a code that is constructed from a

design. We will assume that a symmetric q-ary channel is used, where each

symbol in the alphabet of the code has the same probability of being transmitted

erroneously and has the same probability to occur when an error has been

made. We will describe the techniques of syndrome decoding and majority

logic decoding. These methods are often used in decoding projective geometry

codes. Subsequently we will describe the method of permutation decoding by

obtaining the so-called PD-sets. In particular we shall be more concerned with

the permutation decoding and in Chapter 10 we give PD-sets obtained through

computations as well as explicitly.
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The following result establishes the exact measurement of the error-detection

and error-correction capability of a code assuming the use of a symmetric channel.

The proof can be found in any standard text in coding theory: see for example

[3, Chapter 2].

Theorem 3.5.1 Let C be a code with minimum distance d. Then C can detect

d - 1 errors or correct ld;lJ errors.

Proof: See [3] .•

3.5.1 Nearest neighbour decoding

The decoding scheme in which a received word y is decoded as the closest word in

the q-ary code to y, should such a word be uniquely determined, is called nearest

neighbour decoding. Here "close" is measured in terms of the Hamming

distance between two codewords. Thus, the greater the minimum distance of

a code, the larger the number of errors can be corrected. Assuming the use of the

symmetric q-ary channel, this decoding algorithm maximizes the probability that,

after decoding, the correct word is finally received. Note that for large codes this

algorithm is costly as it requires a comparison between the received vector y and

every codeword in the code. For a linear code, the syndrome of the received vector

y, Syn(y), can be used to to reduce the number of comparisons that are needed

and to reduce the amount of memory needed to implement nearest neighbour

decoding. This method is referred to as syndrome decoding.

3.5.2 Majority logic decoding

The majority decoding schemes are useful in decoding several families of codes:

see ([86, 35, 34]). We describe the one-step majority logic decoding algorithm. In
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[25, Section 3.3]' Clark shows that this algorithm is an effective decoding scheme

for binary codes of the projective planes. Multi-step majority decoding can be

implemented with codes of designs from geometries: see [86].

Definition 3.5.2 A set of 1 x n vectors {VI, V2, ... ,vr } is said to be orthogonal

at position i if the vectors form an r x n matrix with all entries in the ith column

equal to 1J and every column has either all zeros or exactly one 1 and r - 1 zeros.

Let x be the sent codeword of length n, y the received vector, and suppose

that there are at most t errors. Then x + e = y where e has non-zero entries at

the coordinate positions where the errors have occurred. Also, y. v = (x + e) .v =

x . v + e . v = e· v for every vector v E Cl... Suppose there are ri vectors

{VI, V2, ... , vrJ in the dual code Cl.. of C that are orthogonal at position i, where

1 ::; i ::; n.

If an error occurred at the ith position, then there are at least ri - (t - 1)

equations (check equations) of the systems Si = {y. Vj Ij E {I, 2, ... , ri}} whose

value is ei' In order to correct the errors that have occurred, we must have

a clear majority of the check equations in Si that equal ei. Thus we require,

t - 1 < ri - (t - 1) so that ri > 2(t - 1).

If no error occurred at the i th position, then there are at most t check equations

in Si that will be non-zero for 1 ::; i ::; n. This means that at least ri - t check

equations will be 0 for each i. For a clear majority of the checks to be 0 we need

t ::; ri - t. Hence ri 2: 2t.

It follows that if there are at most t ::; ~ errors introduced and there are

ri vectors in the dual code Cl.. of C that are orthogonal at position i, then the

majority logic decoding algorithm can detect and correct an error made in the ith

position. If such a set of checks exist for every position i E {I, 2, ... ,n}, then

we can correct up to t errors, where 2t ::; rand r = mini{rd. If the minimum

weight of C is d, then C can correct at most ld;1 J errors. So majority logic will
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use this capability as long as r 2 Ld;l J, that is r 2 d;l if d is odd and r 2 d;2 if

d is even.

3.5.3 Permutation decoding

Permutation decoding was first developed by MacWilliams [79]. It involves finding

a set of permutations that preserve a code, called a PD-set. The method is

described fully in MacWilliams and Sloane [80, Chapter 16] and, more recently,

in Huffman [53, Section 8]. In this section we will give a brief, but complete,

description of the method and in Chapter 10 we make extensive use of this method,

and discuss some recent results. In particular we will look at codes defined by

designs or graphs, where the automorphism group is known and large.

Definition 3.5.3 A PD-set for a code is a set S of automorphisms of the code

which is such that, if the code can correct t errors, then every possible error vector

of weight t or less can be moved by some member of S out of the information

positions.

That such a set will fully use the error-correction potential of the code follows from

Theorem 3.5.4 quoted below. That such a set exists at all is clearly not always

true. There is a bound on the minimum size that the set S may have, and we will

quote the relevant result in Theorem 3.5.5. Using this algorithm, in Chapter 10,

we obtain both computational and explicit permutation decoding sets for some

codes from permutation primitive representations of some simple groups as well

as codes obtained from the triangular graph T(n) and the codes from graphs on

triples. In particular explicit permutation decoding sets for the binary codes of

the triangular graphs and the codes from graphs on triples are found.

Theorem 3.5.4 (53] Let C be an rn, k, d]q t-error-correcting code. Suppose 9 is

a check matrix for C in standard form, that is such that In - k is in the redundancy
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positions. Let y = c + e be a vector, where c E C and e has weight less than or

equal to t. Then the information symbols in y are correct if and only if the weight

of the syndrome of y is less than or equal to t.

Proof: Suppose C has generator matrix 9 in standard form, that is 9 = [h IA]

and that the encoding is done using g, that is the data set x = (Xl"," Xk) is

encoded as xg. The information symbols are then the first k symbols, and the

check matrix 0 is 0 = [_AT II n - k ]. Suppose the information symbols of y are

correct. Then OyT = OeT = eT, and thus wt(OyT) :S t.

Conversely, suppose that not all the information symbols are correct. Then if

e = el ... en, and e' = el ... ek, e" = ek+l ... en, we assume that e' is not the zero

vector. Now use the fact that for any vectors wt(x + y) 2: wt(x) - wt(y). Then

wt(9yT) wt(OeT) = wt(_ATe,T + e"T
)

> wt(_ATe,T) - wt(e"T )

wt(e'A) - wt(e")

- wt(e'A) + wt(e') - wt(e') - wt(e")

wt(e'Q) - wt(e) 2: d - t 2: t + 1,

since d 2: 2t + 1 by Theorem 3.5.1. Hence the result .•

The algorithm for permutation decoding then is as follows: we have a t-error­

correcting rn, k, d]q code C with check matrix 0 in standard form. Thus the

generator matrix 9 for C that is used for encoding has h as the first k columns,

and hence as the information symbols. Any k-tuple v is encoded as vg. Suppose

X is sent and y is received and at most t errors occur. Let S = {gl' ... ,gs} be the

PD-set. Compute the syndromes O(ygi)T for i = 1, ... ,s until an i is found such

that the weight of this vector is t or less. Now look at the information symbols

in this vector, and obtain the codeword c that has these information symbols

(see [79]). Now decode y as cg;l. Note that this is valid since permutations of
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the coordinate positions correspond to linear transformations of IFqn, so that if

y = x + e, where x E C, then yg = xg + eg for any 9 E Sn, and if 9 E Aut(C),

then xg E C.

The following result which can be found in [53] and originally from Gordon [46]

establishes a bound for the minimum size a PD-set can have:

Theorem 3.5.5 If S is a PD-set for a t-error-correcting [n, k, d]qcode C, and

r = n - k, then

r
n

rn - 1r r
n

- t + 11 111ISI~ - - ... ....
r r-1 r-t+1

In Gordon [46] and Wolfman [96], small PD-sets for the binary Golay codes

were found. In Chabanne [24] abelian codes, that is ideals in the group algebra of

an abelian group, are looked at using Groebner bases, and the ideas of permutation

decoding are generalized. Note that PD-sets need not be sought, in general, for

codes with minimum weight 3 or 4, since correcting a single error is in fact simply

done by using syndrome decoding, because in that case multiples of the columns

of the check matrix will give the possible syndromes. Thus the syndrome of the

received vector need only be compared with the columns of the check matrix, by

looking for a multiple.

In general it is rather hard to find these PD-sets, and they need not even exist.

However, if C is a single-error-correcting code, it is somewhat easier to find such

sets. In fact we use the following observation which we state as a lemma:

Lemma 3.5.6 Suppose C is a [n, k, d]q t-error-correcting code, and let r = n - k.

Let T denote the set oft-tuples of elements of{I, 2" .. ,n} and £ be set oft-tuples

of elements of the check positions {k+ 1, k+ 2, ... ,n}. Then a set S = {gI, ... ,gs}

of automorphisms will be a PD-set for C if

U£g-l = T.
gES
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Furthermore) for any 9 E Aut(C) the set g5 = {ggl"'" ggs} will also be a PD-

set.

Proof: Let 13 E T. Then 13 E U9ES £9-
1

• Hence there exists gi E 5 such that

13 = £9;-\ so that 139; E £. For the second statement we proceed as follows: we

need to show that any t-tuple 13 E T satisfies 13 = a e
-

1
for some a E £ and

e E g5. If 139 = I = a h-
1 for some a E £ and h E 5, then 13 = a h- 19

-
1 = a(gh)-l,

as required. •

MacWilliams [79] developed a theory for finding PD-sets for cyclic codes. A

[n, k, d]q code C is said to be cyclic if whenever c = CIC2· .. en E C then every

cyclic shift of c is in C. Thus the mapping T E Sn defined by T : i I-t i + 1 for

i E {1, 2, ... ,n}, is in the automorphism group of C, and T
n = 1. If a message c

is sent and t errors occur, then if e is the error vector and if there is a sequence

of k zeros between two of the error positions, then Tj for some j will move the

sequence of zeros into the information positions, and thus all the errors will occur

in the check positions. Thus < T > will be a PD-set for C if k < 'T.

As shown in [79], if q is a number prime to the length n, then the map p : i I-t qi

is also an automorphism of the cyclic code and it is in the normalizer N of < T >.

MacWilliams examines the cases where N contains a PD-set.

As an illustration of this ideas of MacWilliams we give in Chapter 10 a PD-set

for the [15,4, 8h code obtained through computations with Magma [11] from a

primitive permutation representation of the simple alternating group A6 . In fact

this code is the dual code of the well known Hamming code of length 15. Since

this code is in fact a cyclic code, a PD-set for it was found in a Singer group.

For small t, PD-sets can be found computationally. Using Magma we have

designed a programme (see Appendix C) which could be used to determine the

PD-sets with small t, and t :S 7. A list of these codes and corresponding PD-sets

can be found at the website:
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http://www.ces.clemson.edu/-keyj

under the list of PD-sets.
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In [60} Key found computationally some PD-sets for single-error-correcting

codes of the Hermitian and Ree unitals on 28 points.

Other instances of PD-sets found through computations are given in [531, (see

for example Huffman [53, Example 8.3]), where a PD-set of 14 elements for the

[27, 12,8h extended binary Golay code is given.



Chapter 4

Codes from Combinatorial

Structures

As a mathematical theory, coding theory is relatively young, with its roots

in Shannon's [88] seminal paper in 1948. The practical gains, due to coding,

demonstrated there, and elsewhere since, have provided motivation for much of

coding theory. It is fascinating how a large mathematical theory was and is

continuing to be developed. The mathematical areas needed in classical coding

have been mainly algebraic. However through time, subsequent developments

have expanded this mathematical theory considerably. A frequent question in

coding theory is "how one constructs a code, or structure related to a code, that

is optimal in some mathematical or applied sense". In this chapter we relate some

ways in which codes have been constructed.

4.1 Codes from designs

Coding theory has made many contributions to the theory of combinatorial

designs. A code generated by the incidence matrix of designs has been useful

47
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in either constructing new designs or showing that certain designs do not exist,

as it is for example the case of the projective plane of order 10. Coding theory

has also been used to extend designs. In [59] Kennedy and Pless extended designs

"held" by vectors of a code. The connection between designs and codes leads to the

construction of new designs. Using the knowledge about codes and the existence

of designs in codes can be useful for decoding purposes. For example a binary

vector x of weight w is said to determine the block of w points corresponding to

the positions where x has non-zero coordinates. In such case we say that vectors

of a fixed weight w in a binary code of length n hold a t-design if the blocks

determined by these vectors are the blocks of a t-design on n points. This means

that there must exist t and A so that every set of t coordinate positions occurs as

non-zero positions for exactly A vectors of weight w. The knowledge of the number

of vectors of each weight existing in a code is crucial in determining whether or not

the supports of these vectors could form a design. For q = 2 the supports are in a

one-to-one correspondence with the codewords. The celebrated Assmus-Mattson

Theorem ([3, Theorem 2.11.2]) establishes the connection between designs and

codes, in that vectors of certain weight in a q-ary code hold a design, and we

can determine the number of vectors of such weight. Clearly the knowledge of

the number of vectors of each weight existing in a code is crucial in determining

whether or not the supports of these vectors could form a design. Notice that if

3 is the support of a vector in a code over IFq then it is the support of at least

q - 1 such vectors, in fact precisely q - 1 vectors if the minimum weight of the

code is 131. For q = 2 the supports are in a one-to-one correspondence with the

codewords. Once again the Assmus-Mattson Theorem gives conditions on the

weight enumerators of a code and its dual that are sufficient to ensure that the

support of the minimum weight vectors (and other weights also) yield at-design

where t is a positive integer less than the minimum weight.

For a general incidence structure 'D = (P,B,I) and any field IF, we denote the
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vector space of functions from P to IF by IFP. For W E IFP, the value of w at the

point p is w(p) in IF.

Definition 4.1.1 The support set of a function w in IFP is defined to be the

subset of points in P whose images under ware non-zero, that is, Supp(wJ={p E

PI w(p) =I- O}. The characteristic function for a block B is denoted by VB and

defined to be

Definition 4.1.2 A q-ary code of a design V = (P, B,7) is the subspace of

the function space IFqP generated by the characteristic functions of the blocks of

V and is denoted by Cq(V).

If the point set of V is denoted by P and the block set by B, and if Q is

any subset of P, then we will denote the incidence vector of Q by v Q
• Thus

CJF(V) = (VB IBE B), and is a subspace ofIFP. The dimension of the code Cp(V)

of the design V over a prime field IFp is the rank of the generating matrix of the

code and is referred to as the p-rank of V.

In general the minimum weight is less than the block size of V, but for the

p-ary codes of geometry designs, where p is the characteristic of the underlying

field of the geometry, we have equality by the work of Delsarte et all: see [36] and

[25, Section 6.1].

The following Lemma which can be found in [66] is an important result on the

automorphism group of codes obtained from incidence structures.

Lemma 4.1.3 Let C be the linear code of length n of an incidence structure 7

over a field IF. Then the automorphism group of C is the full symmetric group if

and only if C = IFn or C = IFJ.L.
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Proof: Suppose Aut(C) is Sn. C is spanned by the incidence vectors of the blocks

of I. Let B be such a block and suppose it has k points, and so it gives a vector of

weight k in C. Clearly C contains all the incidence vector of any set of k points,

and thus we see that C contains all the vectors of weight 2 having as non-zero

entries 1 and -1. Thus C = lB']J... or IFn. The converse is clear. •

4.2 Codes from graphs

In [29] Curtis showed how the binary Golay code can be obtained in a revealing

way straight from the edge-graph of the icosahedron. This construction not

only yields a natural basis for the code, but also supplies a simple description

of all codewords. It is also shown that the above is merely a special case of a

general method of constructing codes from graphs. Codes with certain properties,

such as self-duality, are obtained by putting certain conditions on the starting

graph. In [30] Curtis and Morris outlined a construction of codes from adjacency

matrices of graphs which we briefly describe as follows: let r to be a graph

without multiple edges (but possibly with loops) and vertex set r2 = {I, 2, ... ,n}

and A(r) = A = (,ij) its adjacency matrix and further consider Y(r2) the n­

dimensional vector space over IF2 with basis the set B = {Vi liE r2}. Then A is

the matrix of a linear transformation from Y into itself with respect to the basis

B. Now identify each vector in Y with the subset of the vertices of r to which

it corresponds. Further, consider the eigenspaces of y().) of A, where A E IF2 and

y(O) consisting of those set of vertices X for which any vertex of r is adjacent to

an even number of vertices in X, and y(l) consists of those sets X for which every

vertex not in X is adjacent to an even number of vertices in X and every vertex

in X is joined to an odd number of vertices in X. Define a bipartite graph t with

twice as many vertices as r, as follows:

(1) the vertices are 1,2, ... ,n, I, 2, ... ,n;
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(2) i is joined to J if and only if i is adjacent to j in r, and these are the only

adjacencies. Now A the adjacency matrix of r has the form

and the codes are constructed from the adjacency matrix A.

However, the only codes considered by Curtis and Morris are the eigenspaces

of A for the eigenvalue 1.

The codes constructed in this thesis follow a much simpler construction which

we outline as follows: let n = {I, 2, ... , n} and we define graphs r whose vertices

are the k element subsets (k > 1) of n and adjacency is defined according to

whether these subsets meet or are disjoints. The binary codes of the graph r
are formed by the span of the adjacency matrix of r. It turns out that the

code is also the code of the l-(v, k, k) design obtained by taking the rows of the

adjacency matrix as the incidence vectors of the blocks; the automorphism group

of this design will contain the automorphism group of the graph.

For example for any n, the triangular graph T(n) is the graph whose vertices

are the 2-element subsets of a set of cardinality n in which two distinct vertices

are adjacent if and only if they are not disjoint. It is a strongly regular graph on

the (;) vertices that is, on the pairs of letters {i, j} where i, j E {I, ... ,n} and

the binary codes of these graphs are studied in detail in Chapter 8.

Similarly, given a set n of size nand n{3} the set of subsets of n of size 3,

we examine the binary codes obtained from the adjacency matrix of each of the

three graphs with vertex set n{3}, with adjacency defined by two vertices as 3-sets

being adjacent if they have zero, one or two elements in common, respectively.

In Chapter 9 we investigate the binary codes of these graphs as well as establish

some of their properties.

For the construction of the graphs on triples and their codes we designed
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a Magma programme which we outline in the Appendix G. Using this

programme with necessary changes the triangular graph T(n) and its code could

be constructed.

4.3 Codes from geometries

To generate a design from PGm(IF) or AGm (IF) where m 2: 2, we take as the point

set of the design the set of points of the geometry. The blocks of the design are

all subspaces (or fiats) of the same fixed dimension, and the incidence relation is

containment. If we take the blocks set to be the set of all r-dimensional subspaces

of PGm(IFq ), then the design is denoted PGm,r(IFq ). Taking the blocks to be the

set of all r-fiats of AGm (IFq), we have the geometry designs AGm,r(lFq ). The doubly

transitivity of the projective and affine groups on points will assure that we are

dealing with 2-designs. Thus for example we can consider the designs of points

and lines, the design of points and planes, or the design of points and hyperplanes

of a geometry and be assured of a 2-design. The parameters will depend on both

the dimension of the geometry and the cardinality of the finite field. By fixing one

of these and letting the other vary we obtain numerous infinite families of designs.

Each of these designs will have an automorphism group containing prL(V) or

ArL(V) in the projective or affine case, respectively.

Proposition 4.3.1 [61} PGm,r(lFq ) is a 2-(v, k, A) design with

qm+l _ 1 qr+1 _ 1 (qm-I _ 1) ... (qm+l-r - 1)
v = k = A = ...:....:----,---......:.----,--...:....:-..,----..:.

q - l' q - 1 ' (qr-I - 1) ... (q - 1)

AGm,r(lFq ) is a 2-(v, k, A) design with

( m-I 1) (m+l-r 1)v= m k= r A= q - ... q -
q, q , (qr-I - 1) ... (q - 1)

The codes over lFp of any of the designs defined by a projective or affine

geometry over a filed of characteristic p are some form of generalized Reed-Muller
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code, that is possibly a so-called subfield code or a non-primitive sub-field code.

This fact follows from the work of Delsarte [31] and Delsarte and MacWilliams

[36]. The full results are described in [3, Chapter 5] and [4, Chapter 5]. If x is

any number and x = Li Xiqi where 0 ::; Xi ::; q - 1, then the q-weight of x is

defined to be wt(q) = Li Xi. In the following theorems which could be found in

[61] these codes are described:

Theorem 4.3.2 [61] The code over IFp of the projective geometry design

PGrn,r(IFq), where q = pt and p is a prime, and 0 < r < m, is the (non-primitive

subfield code) generalized Reed-Muller code C = ~-/11F ((m - r)(q - 1), m + 1). It
q p

has minimum weight qr:~~l and the minimum weight vectors are the multiples of

the incidence vectors of the blocks.

The p-rank is given by the cardinality of the set of integers u satisfying

o ::; u ::; qrn+l - 1 where q - 1 divides u and wt(upi) ::; (m - r)(q - 1), for

j = 0,1, ... ,t - 1, where upi is reduced modulo qrn+l - 1.

The dual code Cl- satisfies Cl- ;2 ~-/11F ((m - r) (q - 1), m + 1) n)l- and has
q p

minimum weight at least qm~~ll_l + 1, with equality if q = p.

There is a similar theorem for the affine geometry designs:

Theorem 4.3.3 [61] The code over IFp of the affine geometry design AGrn,r(IFq),

where q = pt and p is a prime, and 0 < r < m, is the (subfield code) generalized

Reed-Muller code C = R lFq / lFp ((m-r)(q-1), m). It has minimum weight qr and the

minimum weight vectors are the multiples of the incidence vectors of the r-fiats.

The p-rank is given by the cardinality of the set of integers u satisfying

o ::; u ::; qrn - 1 and wt(upi) ::; (m - r)(q - 1), for j = 0,1, ... , t - 1, where

upi is reduced modulo qrn - 1.

The dual code Cl- contains the code

R lFq / lFp (r(q - 1) - 1, m) = (v M
- v N IM, N parallel (m - r) - fiats in V)
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which has minimum weight 2qm-r with minimum weight vectors multiples of the

difference of incidence vectors of two parallel (m - r)-fiats. The minimum weight

d.l of C.l satisfies (q + p)qm-r-l ~ d.l ~ 2qm-r.

When q = p we have equality, that is

and the lower and upper bounds for d.l are the same.

In general the dual codes of these codes are not generalized Reed-Muller codes;

these are the so-called polynomial codes. Their minimum weight is not known in

general and in [61, Section 7] some new results that deduce the minimum weight

from the geometrical properties of the designs are described.



Chapter 5

Codes from Groups

5.1 Introduction

The link between combinatorial design theory, finite group theory and algebraic

coding theory has proved useful to further understanding of these structures. For

example, codes have helped in the characterization of designs, and design theory

has provided examples of codes with effective encoding and decoding algorithms

and whose minimum weights and weight distributions can be found through the

combinatorial properties of the designs.

The methods employed to exploit this link include use of geometrical and

combinatorial properties of the designs, and their automorphism groups. We will

examine some of the successful applications of this association, and in particular

look at codes obtained from primitive permutation representations of finite simple

groups.

Codes obtained from permutation the representations of finite groups have

been given particular attention in recent years. Given a representation of group

elements of a group G by permutations we can work modulo 2 and obtain a

55
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representation of G on a vector space V over IF2 . The invariant subspaces (the

subspaces of V taken into themselves by every group element) are then all the

binary codes C for which G is a subgroup of Aut(C). Similarly we could produce

codes over fields of characteristic p, where p > 2. This modulo-theoretic technique

has been used in [12, 13, 74]. In [74]' Knapp and Schmid consider rn, k, d]q codes

where the monomial automorphism group is a particular group. The groups

examined were the alternating groups An, the symmetric groups Sn and the

Mathieu groups written as permutation groups of degree n and associated with

codes of length n. Important information about these codes can be obtained from

the theory of modular representations of groups. Using these ideas, Calderbank

and Wales in [17] construct a binary [176,22, 50h code whose automorphism group

is the Higman-Sims (HS) group. Various arguments yield the Hoffman-Singleton

graph on 50 vertices, a 2-(176,50,14) design discovered by G. Higman, and the

original rank-3 construction of HS.

Brooke in [12, 13] has found all codes obtainable this way from the primitive

permutation representations of the simple groups PSU4 (2) and PSU3 (3). In

particular are examined all binary codes arising from primitive permutation

representations of these groups. The simple group PSU4 (2) of order 25920 has an

especially rich structure. It is the simple constituent of the groups Sp4(3), U4(2),

06"(2), 0 5 (3), and of W(E6 ), the Weyl group of type E6 . In [12], representations

of PSU4 (2) on the 27 lines ofthe general cubic surface, on the root system of type

E6 as well as some complex 4- and 5-dimensional representations are described.

These are used to construct the five primitive permutation representations of

degrees 27, 36, 40, 40 and 45. These representations lead to 6, 10, 6, 10 and

22 codes respectively (excluding the zero code and the ambient space). These

codes are all inequivalent except for the repetition code (IFJ) and its dual which

appear in both representations of degree 40. The group PSU3 (3) has order 6040

and has four permutation representations of degrees 28, 36, 63 and 63 leading
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to 4, 10, 26 and 42 codes, respectively, all of which are inequivalent except for

the repetition code and its dual appearing in both degree 63 representations. A

detailed description of the corresponding modular representations over the field

with two elements is presented. In each case the complete lattice of submodules

is given. Irreducible modules of degrees 1, 6, 8, and 14 are involved. Further the

weight distribution of subcodes (that is, submodules) with respect to the standard

basis is determined.

Taking G to be a permutation group of degree n, and V the corresponding IF2

permutation module. The submodules of V can be regarded as being G-invariant

binary linear codes in V, and one may therefore ask for the weight distribution

of these codes. In [13] a search is carried out when (G, V) corresponds to one of

the four primitive permutation modules associated with the simple unitary group

G = U3 (3), of order 6048. The approach is to regard G as acting 2-transitively

on a certain Steiner system 8(2,4,28), and then to obtain the other primitive

representations of G in terms of the action of U3 (3) on various geometric and

algebraic objects that live in 8(2,4,28). Of particular interest is the description

of 8(2,4,28) in terms of the Cayley integers and therefore provide an explicit

isomorphism between U3 (3) and G~ (2).

In [49] a [276,23, 100h self-orthogonal doubly-even code left invariant by the

Conway simple group C03 was constructed. Its residual code with respect to a

minimum weight codeword is the [176,22, 50h code left invariant by the Higman­

Sims simple group H S referred to above and constructed in [17]. For a collected

list of references and more details on codes from permutation representations, the

reader is encouraged to consult [28] and [53, Section 7.4].
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5.2 Codes from primitive groups
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In this thesis, following the construction method outlined in [66, Proposition 1] we

construct designs, graphs and codes from primitive permutation representations

of some finite simple groups. Our construction differ from the ones outlined

above in that we are particularly concerned with graphs and self-dual symmetric

1 - (v, k, k) designs. It is easy to describe the coverage of this thesis by first

referring to the present section, in which this perspective first emerges and

undergoes considerable development. We have developed some programmes in

Magma (see Appendix A) which were determinant in establishing the results

concerning designs and their codes. In this regard the results described in this

thesis are theoretical generalizations of the computations carried out. We have

essentially based the constructions of the designs in a standard method developed

by Key and Moori [66, Proposition 1] given below as Theorem 5.2.1. This theorem

could be regarded as a generalization of Theorem 3.2.10 in that incorporates the

study of I-designs and graphs.

Theorem 5.2.1 [66] Let G be a finite primitive permutation group acting on the

set n of size n. Let a E n, and let 11 =j:. {a} be an orbit of the stabilizer Ca of a.

If

B = {l1g: g E C}

and, given b E 11,

£ = {{a, b}g : g E C},

then B forms a self-duall-(n, 1111, 1111) design with n blocks, and £ forms the edge

set of a regular connected graph of valency 1111, with C acting as an automorphism

group on each of these structures, primitive on vertices of the graph, and on points

and blocks of the design.
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Proof: It follows immediately from Theorem 2.2.2 that IGI = Ib.GIIG~I, and

clearly G~ 2 Ga . Since G is primitive on 0, Ga is maximal in G, and thus

G~ = Get) and Ib.GI = 181 = n. Thus a I-(n, 1b.1, 1b.1) design is formed.

For the graph notice that the vertices adjacent to a are the vertices in b.. Now

as these pairs are orbited under G, nk ordered pairs are formed, and thus nk/2

edges, where k = Ib.1. Since the graph has G acting, it is clearly regular, and thus

the valency is k as required, that is, the only vertices adjacent to a are those in

the orbit b.. The graph must be connected, as a maximal connected component

will form a block of imprimitivity, contradicting the group's primitive action.

Now notice that an adjacency matrix for the graph is simply an incidence

matrix for the I-design, so that the I-design is necessarily self-dual. This proves

all assertions.•

Remark 5.2.2 Notice that by forming any union S, where {a} #- S #- 0, of orbits

of the stabilizer of a point, including the orbit consisting of the single point, and

orbit this under the full group, the design obtained is still a self-dual symmetric

I-design with the group operating.

Proof: Let Bs = {S9 I 9 E G}. Then we have Gs = {g I S9 = S} and

Ga ~ Gs ~ G. Since Ga is maximal, Gs = Ga or Gs = G. Since S #- 0, Gs #- G.

We deduce that Gs = Ga and IBsl = [G : Gs] = [G : Ga ] = 1nl. Hence we get a

symmetric 1 - (101, ISI, ISI) design. •

Thus the orbits of the stabilizer can be regarded as "building blocks". Since

the complementary design (that is, taking the complements of the blocks to be

the new blocks) will have exactly the same properties.

This gives all possible designs on which the group act primitively on points

and blocks:
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Lemma 5.2.3 If the group G acts primitively on the points and the blocks of a

symmetric I-design V, then the design can be obtained by orbiting a union of

orbits of a point-stabilizer, as described in Theorem 5.2.1.

Proof: Suppose that G acts primitively on points and blocks of the I-(v, k, k)

design V. Let B be the block set of V; then if E is any block of V, B = E G
. Thus

IG! = !BIIGB!, and since G is primitive, GB is maximal and thus GB = Ga for

some point. Thus Ga fixes E, so this must be a union of orbits of Go. .•

Remark 5.2.4 If G is simple, then the maximality of the point stabilizer, implies

that there is only one orbit of length 1.

Proof: Suppose that Go. fixes also 13. Then Ga = G{3. Since G is transitive,

there exists g E G such that a 9 = 13. Then (Ga )9 = Go.g = G{3 = Ga , and thus

g E NG(Ga ) = N. Since Ga is maximal in G, we have N = G or N = Ga . But G

is simple, so we must have N = Ga , so that g E Ga and so 13 = a. •

The following two theorems deal with the automorphism groups of the designs

and codes constructed from a finite primitive permutation group in a manner

described in Theorem 5.2.1.

Theorem 5.2.5 Let V be a self-dual I-design obtained by taking all the images

under G of a non-trivial orbit/::. of the point stabilizer in any of G's primitive

representations, and on which G acts primitively on points and blocks, then the

automorphism group of V contains G.

Proof: Suppose that G acts primitively on n = GIGa . Primitivity of G implies

that Go. is a maximal subgroup. Let B = {/::.9: g E G} and suppose that

E = /::.9, and E' = /::.9'. Then we have that (/::.9)9- 19' = /::'99- 19' = /::.9', and so G

acts transitively on B. Now, if h E G and a E /::.9 then a h E (/::.9)h. Hence, we

have that a h E /::.9
h and therefore G ~ Aut(V). •
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Theorem 5.2.6 If C is a linear code of length n of a symmetric 1 - (v, k, k)

design V over a finite field IF'q, then the automorphism group of V is contained

in the automorphism group of C.

Proof: Suppose that V is a l-(v, k, k) design with P = {Pl,P2,'" ,Pv} the point

set of V and B = {Bl , B2,'" ,Bv} the block set. Let A be an incidence matrix

for V, then P determines uniquely the rows of A, since each point is incident with

precisely k blocks. If a E Aut(V), then a sends Pi to Pj for 1:S i,j:S v and Bi,

to Bjl where 1 :S i' , j' :S v, and a preserves the incidence relation. Now if C is a

code from V, then we have that the columns of A span C. Let ~ and R j denote

the i-th and j-th columns of A respectively, with the entries of~ and R j labelled

as the blocks indices. Then ~ and Rj have each exactly k non-zero entries, since

they represent the incidence relation of a point with the corresponding k blocks

of V. Now the self-duality of V implies that ~ and Rj are weight k vectors in C

Now since a permutes the coordinate positions of the k non-zero entries of ~ to

R j , we deduce that a is an automorphism of C. •

5.3 Codes from the Janko groups J1 and J2

As a particular example of application of the construction method outlined in

Theorem 5.2.1, in this section we describe the work of Key and Moori [66]. By

considering the primitive representations of the simple Janko groups Jl and J2 ,

as described in the A1rlLA§ [27], in [66], Key and Moori using Magma [11], have

constructed designs and graphs that have the group acting primitive~ on points

as an automorphism group, and codes derived from the designs or graphs that

have the group acting as an automorphism group.

Where possible by means of computations it is shown that the full

automorphism group of these designs and graphs are Jl , J2 or J2 , the extension



CHAPTER 5. CODES FROM GROUPS 62

of J2 by its outer automorphism, and shown that for some of the codes the same

is true.

Note that J1 has no outer automorphisms, and thus is its own automorphism

group, whereas J2 has an involutary outer automorphism, so its automorphism

group, which we will denote by J2 , is a split extension of J2 by Z2, with double

the order.

They have looked first at J1 , which is of order 175560, and its maximal

subgroups and primitive permutation representations via the coset action on these

subgroups, see [27, 44]. There are seven distinct primitive representations, of

degree 266, 1045, 1463, 1540, 1596, 2926, and 4180, respectively. They have then

looked at J2 , of order 604800, which has nine primitive representations, of degree

100, 280, 315, 525, 840, 1008, 1800, 2016 and 10080, respectively.

For each of these groups, using Magma [11], the designs and graphs as

described in Theorem 5.2.1 were found, and found the p-rank of the designs for

some small set of values of the prime p. To aid in the classification, the dimension

of the hull of the design for each of these primes were also found. Also looked for

strongly regular graphs for each group, finding as a result three for J2•

5.3.1 The computations for J1

For each of the seven primitive representations, the permutation group were

constructed and formed the orbits of the stabilizer of a point. For each of the non­

trivial orbits, the symmetric 1-design as described in Theorem 5.2.1 was formed.

There are 245 designs formed in this manner and that none of them is

isomorphic to any other of the designs in this set. In every case the full

automorphism group of the design or graph is J1. In all but 34 of the designs, the

dimensions of the code or the hull over the set of primes given above distinguished

the designs. For the 34 remaining, these occurred in 17 pairs in which the set of
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dimensions for each pair was identical, but distinct from all the other pairs.

In Table 5.1, the first column gives the degree, the second the number of orbits,

and the remaining columns give the length of the orbits of length greater than

1, with the number of that length in parenthesis behind the length in case there

is more than one of that length. The pairs that had the same code dimensions

I Degree [it] length I D
266 4 132 110 12 11

1045 10 168(5) 56(3) 28 8

1463 21 120(7) 60(9) 20(2) 15(2) 12

1540 20 114(9) 57(6) 38(4) 19

1596 18 110(13) 55(2) 22(2) 11

2926 66 60(34) 30(27) 15(5)

4180 106 42(95) 21(6) 14(4) 7

Table 5.1: Orbits of the point-stabilizer of J1

occurred as follows: for degrees 266, 1045 and 1596, there were no such pairs; for

degree 1463 there were two pairs, both for orbit size 60; for degree 1540, there

were two pairs, for orbit size 57 and 114 respectively; for degree 2926 there was

one pair for orbit size 60; for degree 4180 there were 12 pairs, for orbit size 42.

For each one of these 245 designs (or graphs) there was at least one prime from

the small set that gave an "interesting code", that is a code that is not the full

space or of codimension 1. Full details of the numbers obtained can be found at

the web site:

http://www.ces.clemson.edu/-keyj/

under the file "Janko groups and designs".
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Proposition 5.3.1 [66] If G is the first Janko group J1 , there are precisely 245

non-isomorphic self-dual 1-designs obtained by taking all the images under G of

the non-trivial orbits of the point stabilizer in any ofG 's primitive representations,

and on which G acts primitively on points and blocks. In each case the full

automorphism group is J1 . Every primitive action on symmetric i-designs can

be obtained by taking the union of such orbits and orbiting under G.

5.3.2 The computations for J2

This group has nine primitive representations, as already mentioned, but

computations were not carried with the largest degree. Thus the results cover

only the first eight. The results for J2 are different from those for J1 , due to the

existence of an outer automorphism.

The main difference is that usually the full automorphism group of the design

is J2 , and that in the cases where it was only J2 , there would be another orbit of

that length that would give an isomorphic design, and which, if two orbits were

joined, would give a design of double the block size and automorphism group J2 .

A similar conclusion held if some union of orbits was taken as a base block.

From these eight primitive representations, in all 51 non-isomorphic symmetric

designs on which J2 acts primitively were obtained. Table 5.2 gives the same

information for J2 that Table 5.1 gives for J1 . . The automorphism group of the

design in each case was J2 or J2 . Where J2 was the full group, there is another copy

of the design for another orbit of the same length. This occurred in the following

cases: degree 315, orbit length 32; degree 1008, orbit lengths 60, 100 and 150;

degree 1800, orbit lengths 42, 42, 84 and 168; degree 2016, orbit lengths 50, 75,

75, 150, 150, and 300. We note again that the p-ranks of the designs and their hulls

gave an initial indication of possible isomorphisms and clear non-isomorphisms,

so that only the few mentioned needed be tested.



CHAPTER 5. CODES FROM GROUPS 65

IT]
100 3 63 36

280 4 135 108 36

315 6 160 80 32(2) 10

525 6 192(2) 96 32 12

840 7 360 240 180 24 20 15

1008 11 300 150(2) 100(2) 60(2) 50 25 12

1800 18 336 168(6) 84(3) 42(3) 28 21 14(2)

2016 18 300(2) 150(6) 75(5) 50(2) 25 15

IDegree lI!J length I

Table 5.2: Orbits of the point-stabilizer of J2

Three strongly regular graphs were found: that of degree 100 from the rank­

3 action, and two more of degree 280 from the orbits of length 135 and 36,

giving strongly regular graphs with parameters (280,135,70,60) and (280,36,8,4)

respectively. The full automorphism group is J2 in each case. Not all the

representations were checked, but note that the representation of degree 280 is

the only one with point stabilizer having exactly four orbits. Note that Bagchi [6]

found a strongly regular with parameters (280,144,44,80) admitting J2 .

The computations carried out in [66] regarding the Janko groups J1 and

J2 have been used to conjecture that the automorphism groups of the designs

obtained using the construction method outlined in Theorem 5.2.1, from a

primitive representation of a simple group G will have the automorphism group

Aut(G) as its automorphism group, unless the design is isomorphic to another

one constructed in this way, in which case the automorphism group of the design

will be a proper subgroup of the the Aut(G) containing G.

In [66], Key and Moori have not found a code that has automorphism group

bigger than J1 or J2 but not equal to the full symmetric group.



Chapter 6

A conjecture of Key and Moori

6.1 Introduction

In this chapter we examine a query posed as a conjecture by Key and Moori

[66, Section 7] which we have briefly described in the last part of Section 5.3,

concerning the full automorphism groups of designs and codes arising from

primitive permutation representations of finite simple groups, and based on results

for the Janko groups J1 and J2 as studied in [66]. Here, following that same method

of construction, we show that counter-examples to the conjecture exist amongst

some representations of some alternating groups, and that the simple symplectic

groups in their natural representation provide an infinite class of counter-examples.

In examining the codes and designs arising from the primitive representations

of the first two Janko groups, Key and Moori in [66, Section 7] suggested that the

computations made for these Janko groups could lead to the following conjecture:

Conjecture 6.1.1 (Key-Moori) Any design V obtained from a primitive

permutation representation of a simple group G will have the automorphism group

Aut{G) as its full automorphism group, unless the design is isomorphic to another

66
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one constructed in the same way, in which case the automorphism group of the

design will be a proper subgroup of Aut(G) containing G.

Here G is naturally a subgroup of Aut(D), and also of Aut(G), since it is

simple and hence isomorphic to the (normal) subgroup of inner automorphisms.

How outer automorphisms of G would define elements of Aut(D) is not clear

but it did occur for those Janko groups, and in fact for most of the primitive

representations; certainly the normalizer of G in Aut(D) will be a subgroup of

Aut(G).

While the Conjecture 6.1.1 is true for the Janko groups J1 and J2 , and some

other simple groups, we show here that it is not always true: we found examples

of finite simple groups G with a primitive representation giving a design D such

that the automorphism group of G does not contain the automorphism group of

D. Furthermore, there are finite simple groups that have automorphisms that

do not preserve the design. Specifically, we considered computationally all the

primitive permutation representations of G where G is the alternating group A6

or A g • Using Programme A2 (see Appendix A.2), we constructed designs that have

the group G acting primitively on points and blocks, and for each prime dividing

IGI we constructed the codes of the designs over that prime field. Contradicting

the Conjecture 6.1.1, we found for G = A6 of degree 15, two isomorphic designs

such that the automorphism group of the design is neither the group Aut(A6 ) nor

a proper subgroup of Aut(A6 ) containing A6 . In fact if D denotes one of these

designs, then Aut(A6 ) 1. Aut(D). Similarly for G = Ag we found that the orbits

of length 56 and 63 respectively for Ag of degree 120 produce designs with the

property that the automorphism group is not Aut(Ag ), nor a proper subgroup of

Aut(Ag ) containing Ag • Also, if D is either of these designs, then Aut(D) is the

orthogonal group 0;(2) : 2 and Aut(Ag ) 1. Aut(D).

We found other alternating groups that countered the conjecture, for example
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AlO of degree 2520 using an orbit of length 144, An of degree 462 using an

orbit of length 200, and An of degree 2520 using orbits of length 495 and 1584,

respectively. None of these are rank-3 representations, although all the counter­

examples we give in this chapter are. We should point out that most the simple

groups we tried did in fact satisfy the conjecture, that is all their primitive

representations did satisfy the conjecture. The counter-examples are relatively

rare, and interesting.

6.2 Symplectic groups

The simple symplectic groups PSP2m(q), for m at least 2, in their natural primitive

rank-3 action on the points of projective (2m - I)-space over the finite field lFq ,

provide an infinite set of groups that do not satisfy the Conjecture 6.1.1, by taking

the action on the symmetric design of points and hyperplanes of the (2m - 1)­

space, or of its complementary design. For q odd or for q even and m > 2, we have

the automorphism group of PSP2m(q) as a proper subgroup of the automorphism

group of the design. While for q = 2t , t ~ 2 and m = 2, there are automorphisms

of PSP2m(q) that are not automorphisms of the design.

From Theorem 2.4.10 we know that PSP2m(q) , where m is at least 2 and

q is any prime power, acts as a primitive rank-3 group of degree q:':.~l on the

points of the projective (2m - I)-space PG2m- 1(lFq ). The orbits of the stabilizer

of a point P consist of {P}, one of length q2:=~_1 - 1 and the other of length

q2m-l. The point P together with the points of the orbit of length q2:=~_1 - 1

form a hyperplane, which is in fact the image of the absolute point P under

the symplectic polarity. The symmetric l_(q::'~l,q2m-1, q2m-l) design V formed

following the method of Theorem 5.2.1 by orbiting the orbit of length q2m-l is

the complement of the design of points and hyperplanes obtained by taking the

union of the other two orbits. This latter design is a symmetric 2-design (see
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Proposition 4.3.1) 2_(q:~~1, q2:=~_1, q2:=:_1) and hence the complement V is also

2 d · 'th t 2 (q2m_ 1 2m-1 2m-1 2m-2)a - eS1gn, W1 parame ers - q-1 ,q ,q - q .

By Theorem 3.4.1 we have that the automorphism group of the design of points

and planes, and hence also of its complementary design, is the full projective semi­

linear group prL2m (q).

The automorphism group of PSP2m(q) is discussed in Dieudonne [41,

Chapter 4], but completely determined for the case where m = 2 and q is

even, by Steinberg [89]: see also Carter [23] for a description. Essentially, the

automorphism group is prSP2m(q) except when m = 2 and q > 2 is even, in

which case it is this group extended by an involution a that is not in prL4 (q).

Thus the automorphism group of the simple group is a proper subgroup of that of

the design in the case of odd q or the case of m > 2; for m = 2 and q > 2 even, it

is not a subgroup of the automorphism group of the design. Either way, we have

an infinite class of counter-examples to the Conjecture 6.1.1.

The above discussion has thus proved the following theorem:

Theorem 6.2.1 Let G be the simple symplectic group PSP2m(q), where m ~ 2

and even, and q is any prime power, acting as a primitive rank-3 group of degree

q:~~1
, and let V be the 1-(q:~~1

, q2m-1 , q2m-1) design formed from the longer orbit

of a point-stabilizer. Then V is a symmetric 2-design with automorphism group

prL 2m (q) which properly contains the automorphism group of P SP2m (q) unless

m = 2 and q = 2t where t ~ 2. For all cases, Aut(V) 1:. Aut(G).

Note 6.2.2 1. The case PSp4(2) is somewhat different and does not fit into the

above class (see the results for A6 in Section 6.3.1).

2. The codes of the designs in Theorem 6.2.1 are well known and are p-ary

subcodes of the projective generalized Reed-Muller codes: see [3, Chapter 5].
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6.3 Alternating groups

70

In this section, in a manner similar to the study in [66], and Section 5.3 we

examine the designs and codes from all the primitive permutation representations

of A6 and Ag, the alternating groups of degree 6 and 9, respectively. Note that

Aut(A6 ) = A6 : 22 , A6 being the only alternating group whose full automorphism

group is not the symmetric group; Aut(Ag ) = 8g • We looked first at A6 , of order

360, and its maximal subgroups and primitive permutation representations via the

coset action on these subgroups: see AlI'ILA§ [27]. There are five distinct primitive

permutation representations of degrees 6, 6, 10, 15 and 15, respectively, and only

the representations of degree 15 gave non-trivial designs. We then considered Ag ,

of order 181440, which has eight primitive permutation representations of degrees

9, 36, 84, 120, 120, 126, 280 and 840 respectively. For each of these groups,

using Programme A2 (see Appendix A.2), we found the corresponding designs as

described in Theorem 5.2.1, and computed the full automorphism groups of the

designs. We also constructed for each design the associated code for the primes

p that divide the order of the simple group. The computations in Appendix A.2

list the p-rank of the designs and the dimension of the hull in each case. Where

possible we have also computed the automorphism groups of the codes.

6.3.1 Computations for A6

Of the five primitive permutation representations of A6 , only the representations of

degree 15 give non-trivial designs. The representations and orbit lengths are shown

in Table 6.1: the first column gives the ordering of the primitive representations

as given by Magma (or the AlI'ILA§ [27]) and as used in our computations (see

Appendix A.2); the second gives the maximal subgroups; the third gives the

degree (the number of cosets of the point stabilizer); the fourth gives the number

of orbits, and the remaining columns give the size of the non-trivial orbits of the
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point-stabilizer.

~ Max. sub. IDeg. W length D
1 As 6 2 5

2 As 6 2 5

3 32
: 4 10 2 9

4 54 15 3 6 8

5 54 15 3 6 8

Table 6.1: Orbits of the point-stabilizer of A6

The first three representations gIVe trivial designs. We used Magma to

construct the permutation group and form the orbits of the stabilizer of a point

for each of the representations of degree 15. For each of the non-trivial orbits,

we formed the symmetric I-design as described in Theorem 5.2.1. We found that

the designs obtained with the same parameters for these two representations were

isomorphic. Thus in all there are four non-isomorphic symmetric designs for A6

formed using single orbits. Note that none of the designs has A6 acting as the

full automorphism group, and neither was there a design whose automorphism

group was Aut(A6 ) = A6 : 22
, since the trivial designs have the symmetric group

of degree 6 or 10, respectively, as automorphism group, and those on 15 points

have either As or the symmetric group 56: see Appendix A.2.

Considering either of the representations of degree 15, an orbit of length 8

produces a 1-(15,8,8) design with automorphism group of order 20160. This

representation is similar to that described for the symplectic groups, since A6 rv

5p4(2)', the derived group of 5p4(2). We have a rank-3 group acting on points of

the projective 3-space PG3 (lF2 ).

Proposition 6.3.1 For G = A 6 of degree 15, the automorphism group A of the
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design 1) with parameters 1-(15,8,8) is PGL4 (2) rv As and does not contain

Aut(G).

Proof: Since A6 is a subgroup of 5p4(2), this action is that on the points of

PG3 (lF2 ) and the 1-(15,8,8) design is actually a symmetric 2-(15,8,4) design, and

the complement of the 2-(15,7,3) design of points and planes. Its automorphism

group A is thus PGL4 (2), by Theorem 3.4.1. That this is isomorphic to As can

be found in Dickson [39].

Since Aut(A6 ) = A6 : 22 and since As has no subgroup of index 14 (see [27]),

we deduce that Aut(A6 ) is not a subgroup of As. In addition, computation of the

normalizer NA(G) showed that it has order 720, and is thus 56. Furthermore,

since IAsl > IA6 : 22 1, As cannot be a subgroup of Aut(A6 ) = A 6 : 22
. •

6.3.2 Computations for Ag

From the eight primitive permutation representations, we obtained in all 25 non­

isomorphic symmetric designs formed using Theorem 5.2.1 from single orbits,

on which Ag acts primitively. The full list of designs and codes is given in

Appendix A.2. From the list of designs and codes produced by our computations

we have singled out for discussion a case where the automorphism groups of both

design and code were distinct from A g or Aut(Ag). This arose for A g of degree 120

where the orbits of length 56 and 63 yield designs and codes with the orthogonal

group Ot(2) : 2 as automorphism group.

Table 6.2 gives the same information for A g as Table 6.1 gives for A6 . The

numbers appearing in parenthesis represent the number of orbits of the point

stabilizer in case there is more than one of that length.

Writing G = Ag , there are precisely 25 non-isomorphic self-dual I-designs

obtained by taking all the images under G of single non-trivial orbits of the point
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~ Max. sub. I Deg.~

1 As 9 2 8

2 87 36 3 14 21

3 (A6 X 3) : 2 84 4 18 20 45

4 L2(8) : 3 120 3 56 63

5 L2(8) : 3 120 3 56 63
•

6 (As x A 4 ) : 2 126 5 5 20 40 60

7 33 : 84 280 5 27 36 54 162

8 32 : 2A4 840 12 8 24(2) 27 36 72(4) 216(2)

Table 6.2: Orbits of the point-stabilizer of A g

stabilizer in any of G's primitive representations, and on which G acts primitively

on points and blocks. Our computations show that the full automorphism groups

of the designs are either Ag , 8g = Aut(Ag ) or the orthogonal group Ot(2) : 2.

Our results for Ag show that for Ag of degree 120, the fourth or fifth rank­

3 representation, an orbit of length 56 gives a 1-(120,56,56) design. Since the

representation is of rank-3, the orbits also define strongly regular graphs on 120

vertices, of valency 56 and 63 respectively: these graphs are well-known and appear

in the list of Brouwer[14, page 675]. This design yields a [120,8h self-orthogonal

doubly-even code.

Proposition 6.3.2 For G = A g of degree 120, the automorphism group of the

design D with parameters 1-(120,56,56) is the orthogonal group Ot(2) : 2, which

neither contains nor is contained in Aut(G).

Proof: Let G = Ag and G denote Aut(D) where D is constructed from an orbit of

length 56 for Ag of degree 120. Magma computations show that G is a non-abelian

group of order 348364800 generated by the permutations which we denote by

a, b, C, d, e, f, 9 and h listed in the appendix (see Appendix B). Computations with
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Magma show that there exists a non-abelian subgroup N of G of order 174182400.

Since [G : N] = 2 we have that N ~ G. We claim that N "-J Ot(2). A composition

series for G found by using Magma is G 2:: N 2:: le; this is in fact a chief series for

G. Thus N is a non-abelian chief factor of G. Since 1Nl = 174182400 = lot(2)1,

we have that N ~ Ot(2), as asserted.

It follows that G "-J Ot(2).2. The permutation a =

(1,84)(2,31)(5,62)(8,83)(10,26)(11,113)(12,103)(13,75)(14,38)

(15,67)(17,37)(22,72)(23,102)(24,82)(25,70)(27,52) (29,120)

(41,90)(45,117)(47,59)(48,104)(50,94)(58,89)(63,101)(64,108)

(71,85)(78,97)(87,112)

is in G - Nand o(a) = 2. Hence G is a split extension of N by (a).

We know that Aut(A9 ) = 8 9 , and since the normalizer Ne(G) = G, we have

Aut(G) 1:. Aut(V), as asserted. Note however that from the ATlLAS [27] we

know that 89 is a maximal subgroup of Ot(2):2 of index 960, so G does contain

isomorphic copies of Aut(A9 ). •

The design discussed in Proposition 6.3.2 is another counter-example to the

Conjecture 6.1.1.

We found that the 1-(120,56,56) design yields a [120,8h binary code whose

automorphism group has order 348364800. This leads to:

Proposition 6.3.3 The orthogonal group Ot(2):2 is the automorphism group of

the [120,8h binary code C derived from the 1-(120,56,56) design V. The code

C is self orthogonal and doubly-even, with minimum distance 56. Its dual is a

[120, 112, 3h with 1120 words of weight 3.

Proof: The automorphism group of the [120,8h binary code C derived from

the 1-(120,56,56) design constructed from A9 of degree 120 contains G, the
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automorphism group of the design, and has, by computation, the same order,

and thus is equal to G.

Since the dimension of C equals the dimension of the hull (see Appendix A.2)

it follows that C ~ Cl.. and so C is self orthogonal. Since the incidence vectors

of the blocks of the design span the code, and the vectors have weight 56, C is

doubly-even. In fact Magma gives the weight distribution:

<0, 1>, <56, 120>, <64, 135>

That Cl.. has minimum weight 3 was found using Magma. The full weight

distribution can be obtained.•

Conjecture 6.1.1 does thus not generally hold, although it does hold for most

representations.

In addition to the above results we have also found codes with interesting

properties and parameters, from the representations of Ag•

• The hull of the 1-(126,60,60) design is a [126,26, 32h doubly-even self­

orthogonal code with automorphism group of order 3628800, which is

isomorphic to 510. This is also the automorphism group of the 1-(126,60,60)

design's code, a [126,74, dh, where d ~ 12 and its dual, a [126,52, 14h

code. This then provides an example of the automorphism group of the

code being larger than that of the design. The weight distribution of the

hull is as follows:

> WeightDistribution(hull);

[<0,1>,<32,1575>,<36,2520>,<40,630>,<44,119700>,<48,278775>,

<52,2926350>,<56,9239940>,<60,16352280>,<64,17803800>,

<68,13894650>,<72,5005350>,<76,1313172>,<80,114345>,<84,55650>,

<100,126> ]
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The words of weight 100 form a 1-(126,100,100) design with SlO as

automorphism group, and with the code of the design the hull found above.

The design can also be formed by orbiting the union of an orbit of length 40

with one of length 60. The complementary design is a 1-(126,26,26) whose

code is a [126,27, 26h that contains the code of the hull shown above, and

is obtained from that code by adding the all-one vector.

• The binary code of the 1-(280,36,36) design is a [280,42, 36h self-orthogonal

doubly-even code.

• The ternary code of the 1-(120,63,63) design is a [120,36, 24h self­

orthogonal code with Ot(2) : 2 acting on it.



Chapter 7

Binary Codes from Symplectic

Groups

7.1 Introduction

In their natural primitive rank-3 action on the points of projective space of

dimension 2m -1, the projective symplectic groups PSP2m(q), where q is a power

of an odd prime, and m 2: 2, have 2-modular representations that give rise to self­

orthogonal binary codes whose properties can be linked to those of the underlying

geometry. In this chapter we establish some properties of these codes, including

bounds for the minimum weight, and the nature of some classes of codewords.

From Theorem 2.4.10 we have that the simple symplectic group PSP2m(q) ,

where m 2: 2 and q is any prime power, acts as a primitive rank-3 group of degree

q:;:'~l on the points of the projective (2m - I)-space PG2m- 1 (lFq ). The orbits of

the stabilizer of a point P consist of {P} and one of length q2:=~_1 - 1 and the

other of length q2m-l. The point P together with the points of the orbit of length

q2:=~_1 -1 form a hyperplane, which is, in fact, the image of the absolute point P

77
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under the symplectic polarity. The symmetric l_(q:':.~l, q2:=~_1 - 1, q2:=~_1 - 1)

q2m-l 1 d PS ()design V formed by orbiting the orbit of length q-l- - 1 un er P2m q

gives the binary code that we will be examining when q is odd. When q is even,

we still obtain the designs and codes, but the interesting binary codes in these

cases are then the binary codes of the projective geometry design of points and

hyperplanes, with the larger projective semi-linear group acting: they are the

well-known generalized Reed-Muller codes (see, for example, Theorem 6.2.1 or [5,

Chapter 5]).

Alternatively this code can be obtained by taking the row span over IF'2 of an

adjacency matrix of the strongly regular graph defined by the rank-3 action of

PSP2m(q). Since in this chapter we are looking at rank-3 groups, the graphs are

actually strongly regular: see Section 3.3 and Higman [51]. The codes are the

binary span of the adjacency matrix of the graph. The dimension of these codes

has been determined previously (see [15, 51, 75] for collected results), but here

we look more closely at the codes and use the geometry to gain some insight into

the nature of possible codewords, in particular those of small weight. We obtain

the results through a series of lemmas in Section 7.2, and sum up our results in

Theorem 7.2.11.

7.2 The binary codes

In all the following we will take G to be the symplectic group PSP2m(q) , where

m ~ 2 and q is a power of an odd prime, in its natural primitive rank-3 action of

degree q:':.~l on the points of the projective (2m -I)-space P(V) = PG2m- 1(lF'q),

where V = V2m(lF'q). For the orbits .6. of the stabilizer of a point, as described
. Th 2m-l 1
III eorem 5.2.1, we take the one of length q q-l- - 1 and get a symmetric

l_(q:':.~l, q2:=~_1 _ 1, q2:=~_1 - 1) design V. In all that follows C will denote the

binary code of this design. Clearly G acts as an automorphism group on V and
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on C, and on Cl...

Notice that in our construction of the design, if we use the stabilizer of the

point P of P, then Gp fixes also the polar of P, that is the hyperplane peT.

Thus the orbit of length q2:=~_1 - 1 that we orbit to get the design is peT \ {P}.

Let 1t denote the set of hyperplanes of P(V). By Theorem 5.2.1 we have that

B = {~glg E G}, so if we let Ho = ~ U {P}, then HoeT = {P} and so

1t = {Hog I9 E G} = {(~ U {P})g I 9 E G} = {~g U {pg} I 9 E G}, this is

so, since the symplectic group is a transitive group on hyperplanes. Hence for

H E 1t we have that v H + v HCT = V Ll9U{P9} + V{P9} = V Ll9 + V{P9} + V{P9} = v Ll9 .

Therefore we can consider the binary code C to be

C = (vH + v
HCT I H E 1t ) = (V

Ll9 I9 E G) = (VB IB E B).

We will now prove a series of lemmas that lead to some properties of the codes

C and Cl.., where, in all the lemmas, C is the binary code of the

q2m _ 1 q2m-l _ 1 q2m-l - 1
1 - ( q _ l' q _ 1 - 1, q _ 1 - 1)

design D. The results will be summarized in Theorem 7.2.11.

Lemma 7.2.1 C is self-orthogonal, that is C ~ Cl... Furthermore, C is doubly­

even for all m ~ 2 if q = 3 (mod 4) and for m odd if q - 1 (mod 4).

Proof: We need to show that, using the standard inner product (,), (vH +
V

HCT
, vK + V

KCT
) = 0 for any hyperplanes Hand K in 1t. Note first that since H

has dimension 2m - 1, and since HeT EH,

2m-2

wt(vH + v
HCT

) = L qi = 0 (mod 2),
i=l

and so the generating vectors of C have even weight, and thus (vH + v HCT , v H +
vHCT

) = o.
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Now consider two cases: suppose first that Ka EH. Then also Ha E K.

(vH,vK) + (vH, vK(7) + (vH17 , vK) + (vH17, v
K(7

)
2m-3

L qi + 1 + 1 + 0 0 (mod 2).
i=O

If Ka rf. H, then also Ha rf. K and

(VH,VK) + (VH,VK17 ) + (vH17,VK) + (v H17 ,vK17 )
2m-3

L qi +0+0+0 - 0 (mod 2).
i=O

This proves the assertion concerning self-orthogonality. The observation about C

being doubly-even follows simply by noticing for which values of m, wt(vH+v
H(7

),

for H E 7-{, is divisible by 4.•

Lemma 7.2.2 If U is a maximal totally isotropic subspace of V, then vU E Cl..

if and only if m is odd. If U1 and U2 are maximal totally isotropic subspaces, then

vUl + V U2 E Cl...

Proof: Let U = ua be a maximal totally isotropic subspace, and hence of

dimension m. If H E 7-{,

Take first the case where U ~ H. Then Ha rf. ua = U, and thus (vH17 ,vU) = O.

Also, H n U is a subspace of dimension m-I, and thus

if m is even,

if m is odd,

and hence

if m is even,

if m is odd.
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If U ~ H, then HU E UU = U, and

(vH, vU) + (v
Hf7

, vU)

!U! + 1.

Here

~. { 1 if m is odd,
IVI = LJ q~

i=O 0 if m is even,

so

U

{

I if m is even,
(vH + v

Hf7
,v ) =

o if m is odd.

It follows that vU E C.1 if and only if m is odd.

To prove the other statement, clearly if m is odd then vUl + VU2 E C.1. If m

is even then (vH + vHf7 ,vU) = 1 for any totally isotropic space of dimension m.

Thus again vUl + vU2 E C.1.•

Lemma 7.2.3 J E C if and only if m is even; J E c.1 for all m.

Proof: If m is odd, then by Lemma 7.2.2, vU E C.1, where U is a totally isotropic

subspace of dimension m. Now wt(vU) = IU! = L:~l qi = 1, and thus (J, vU) = 1,

and so J tf. (C.1).1 = C.

Now suppose that m is even and that U is a maximal totally isotropic subspace.

Let

W = L (vH + v
Hf7

).
UcHE?-l

For U c H, HU E U, and so there are exactly !U! hyperplanes that contain U.
Write W = Wl + W2 where Wl = LUCHE?-l vH and W2 = LUCHE?-l v

Hf7
. Thus

W2 = vU



CHAPTER 7. BINARY CODES FROM SYMPLECTIC GROUPS 82

For P E U, Wl (P) will register the number of hyperplanes containing U, that

is Wl(P) = I::~l qi - 0 (mod 2), since m-I is odd. For P rt u, Wl(P) will

register the number of hyperplanes that contain U and P. This means counting

the number of hyperplanes containing the dimension- (m + 1) space spanned by P

and U, and this is given by Equation (3.6) to be I::~2 qi - 1 (mod 2), since m-2

is even. Thus Wl(P) = 1 for P rt u. It follows that w(P) = Wl(P) + W2(P) = 1

for all points P, and hence w = J E C for m even.

Finally note that it is clear that J E Cl.. in all cases since C is spanned by

even-weight vectors.•

Lemma 7.2.4 If U is a subspace of dimension n where 1 ::; n ::; m, then

VU + vU
<7 E C if n is odd, and

J + VU + vU
<7 E C if n is even.

Then vU + vU
<7 E Cl.. for all values of m. If n is even, vU + vU

<7 E C if and only

if m is even. In particular, if U has dimension m then vU + vU
<7 E C. Further, if

U n ua has dimension r, where 0 ::; r ::; n ::; m, then

n-r-l 2m-2n-l
wt(vU + vU(7) = 2qr L qi + qn L qi.

Proof: Given U, let

i=O i=O

W = L (v
H + v H(7) = L v H + L vH

<7 = Wl + W2·
UcHEH UcHEH UcHEH

For each term in the sum, U c H implies that Ha E ua, so W2 = VU
<7.

For PEP, if P E U then Wl (P) will register the number of hyperplanes that

contain U, and thus

2m-n-l {I
Wl(P) = L qi_

i=O 0

if n is odd,

if n is even.
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2m-(n+l)-I. {I if n is even,
Wl(P) = L qt

i=O 0 if n is odd.

Thus if n is odd, Wl = vu, and W = vU + vUu
E C. If n is even, then Wl = J + vu,

and w = J +VU +vUU E C. Since by Lemma 7.2.3, J E C if and only if m is even,

the first part of the result is proved. The weight of the vector VU + VUu follows

directly.•

If p rt U, then Wl (P) counts the number of hyperplanes containing (P, U), and

thus

Note 7.2.5 As is customary, if the upper limit of the sum in the above

summations is lower than the lower limit, we take the sum to be zero.

Lemma 7.2.6 For m even, the minimum weight of cl. is at most 2qm-l.

Proof: By Lemma 7.2.2 we have that vUl + vU2 E Cl. for any pair of totally

isotropic subspaces of dimension m. We will show that we can find two such

subspaces that intersect in a subspace of dimension (m - 1). For this we need

to use a specific symplectic form, and we use that described in Equation 2.1 (see

Section 2.4.1). With that notation, we take

and

Then U1 n U2 - (eI, e2, . .. ,em-I) and hence the vector vUl + vU2 has weight

2qm-l.•

Lemma 7.2.7 The minimum weight of C is at most 2qm-2(q + 1).



CHAPTER 7. BINARY CODES FROM SYMPLECTIC GROUPS 84

Proof: We construct words of this weight using Lemma 7.2.4 by finding an

isotropic subspace of dimension m that meets its polar in dimension (m - 2).

Note first that an isotropic space U of dimension n meets its polar in dimension

n - r where r must be even since U/ (U n UU) is a non-degenerate symplectic

space of dimension r and thus must have even dimension. Thus we cannot have

isotropic spaces of dimension m meeting their polars in dimension m-I. With the

notation of Section 2.4.1 again, we first take the case m = 2. Here if U = (el, e4),

then UU = (e2' e3), and un UU = {O}, that is empty in P(V). For m > 2, let

Then

and

It follows that VU + vU" E C and has weight 2(qm-1 + qm-2), as asserted.•

Lemma 7.2.8 The minimum weight of C.l. and also of C is at least q + 1.

Proof: Let w E C.l. and let P E Supp(w) = Q. Every block of the design 1)

passing through P must meet Q again. There are (q2:=~_1 -1) blocks through P,

all of which must meet the Q again, since w E C.l. and we have that (w, wQ ) = O.

If a block through P meet Q only once then we would have (w, wQ) =1= 0 thus

contradicting the fact that w E C.l.. Since blocks of 1) are subsets of hyperplanes,

the number of blocks through P and another point of Q is at most the number

of hyperplanes through the two points, that is at most q2m-2_ 1 . Thus there are at
q-1

least
1 + (q2m-l_1 - 1)

q-1
q2m L1 = q + 1

q-1

points in Q.•
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Lemma 7.2.9 For m 2: 2 and even

d
' (C) = (qm + l)(qm-l - 1) + 1
Im q 2(q - 1) ,

and for m 2: 3 and odd

. (qrn + l)(qm-l - 1)
dIm(C) = q 2(q - 1) ,

Proof: The rank of the adjacency matrix of the strongly regular graph has been

studied by several authors, and in particular, details are given in Brouwer and van

Eijl [15]. The formula, using results of Higman [51, p. 149], is given in Lataille,

Sin and Tiep [75], Equation (23) for the case of m odd; for m even this formula

needs 1 added, due to the presence of J in the code in the even case. See also

Bagchi, Brouwer and Wilbrink [7] for m = 2.•

Lemma 7.2.10 Aut(V) = prSP2m(q).

Proof: Let a E Aut(V). If we can show that a E prL2m (q) and that a(J = (Ja,

then we will have the result (see, for example, Dembowski [37, Section 1.4]). Let

G = PSP2m(q); we have G ::; Aut(V).

If P denotes the set of points of V then the set of blocks of V is B =

{PT \ {P} IPEP}. Let pep = peT \ {P} for PEP. As an automorphism

of the design, a preserves incidence and takes blocks to blocks. We wish to show

that paep = pepa from which it will follow that a(J = (Ja.

We first show that a preserves subspaces and thus is in the group of the

geometry. Let P and Q be points of P such that P ~ QeT. Then also Q ~ peT and

T = peT n QeT = pep n Qep, since P and Q are not in T. Since incidence is preserved

by a, Ta is also a subspace, of dimension 2m - 3. Thus a maps non-isotropic

subspaces of dimension 2m - 3 to themselves, and it follows in the same way that
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a preserves non-isotropic subspaces of all dimensions, down to the minimum of

non-isotropic lines.

To prove that a also preserves isotropic lines, suppose first that po. = P. Then

the non-isotropic lines through P are all mapped to non-isotropic lines through

P. Since a line through P is non-isotropic if and only if it meets pu at P, it

follows that pu is fixed by a and pO'.'P = p'PO'.. Suppose now that po'. = Q.

Since G is transitive on points, there exists 9 E G such that Q9 = P. Thus

p0'.9 = P, and ag also preserves non-isotropic lines since both a and 9 do. As

in the first case, (P'P)0'.9 = pep = (Q9)'P = (Q'P)9, since 9 E G = PSP2m(q). So

(P'P)0'.9 = (PO'.)'P9, and (P'P)O'. = (PO'.)'P. It follows that acp = cpa. Since a maps

hyperplanes P U pep = pu to hyperplanes, and preserves incidence, it also maps

isotropic lines to isotropic lines, and is hence in prL2m (q).

That a(l = (la follows from the above, and so a E prSP2m (q). It is clear that

every element of this group is an automorphism of the design, and so the result

is proved.•

Combining all these lemmas, we have thus proved the following theorem:

Theorem 7.2.11 Let G be the simple symplectic group PSp2m(q), where m 2: 2

and q is a power of an odd prime, in its natural action as a primitive rank-3 group

of degree q:':.~l on the points of the projective (2m -I)-space PG2m- 1(lFq). Let V
. (~q2""-1 1 2",,-1 1

be the symmet1"lc 1- q_~' q-1- - 1, q q-1- - 1) design whose blocks are the

images under G of the orbit of length q2:=~_1 - 1 of the stabilizer in G of a point.

Then Aut(V) = PrSP2m(q).

Let C = C2(V) denote the binary code, of length v = q2""_1 01 V. Then C
q-1 '

is self-orthogonal, and C is doubly-even for all m 2: 2 if q = 3 (mod 4) and for

m 2: 3 odd if q - 1 (mod 4).
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For m ~ 2,

for m even;

for m odd.

If d denotes the minimum weight of C and d..l the minimum weight of C..l, then

and

q + 1 ::; d..l ::; 2qm-l for m even;

qm -1
q + 1 < d..l < for m odd.- - q -1 J'

Note 7.2.12 1. Appendix D includes computations (using Programme Al

listed in Appendix A.l with G being PSp4(3) or PSp4(5)) for the minimum

weight for C and C..l for m = 2 and q = 3, 5 that meet the upper bound

given in the Theorem 7.2.11.

2. The automorphism group of the code contains the automorphism group of

the design, but need not be equal to it in general. For the designs and codes

looked at here, the group of the code was verified to be the same as the

group of the design for m = 2 and q = 3,5.

We believe that the minimum words for both the code and its dual are as

described by the lemmas and theorem, and that both the properties in the notes

above will hold in general.



Chapter 8

Binary Codes of Triangular

Graphs

8.1 Introduction

In Section 3.3 we have defined the triangular graph T(n) to be the line graph of the

complete graph K n , for any n. It is a strongly regular graph on G) vertices, that

is the pairs of letters {i,j} where i,j E {I, ... ,n}. Alternatively T(n) (n > 4)

may be viewed as the graph whose vertices are the 2-element subsets of a set of

cardinality n in which two distinct vertices are adjacent if and only if they are

not disjoint. The binary codes formed from the span of the adjacency matrix of

such graphs have been examined by Tonchev [92, p. 171] and Haemers, Peeters

and van Rijckenvorsel [50, Theorem 4.1]. See also [3, 4, 15, 16]. In particular

the dimension and weight enumerator of the codes are easily determined. In this

chapter we examine the codes and their duals further, and in particular show how

the case n = 6 distinguishes itself. In Theorem 8.2.4 we show that Sn is the full

automorphism group of the code for n ~ 5 except in the case n = 6. We also look

at the question of minimum-weight generators of the code and of its dual.

88
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The code formed by the span of the adjacency matrix is also the code ofthe 1­

(n(n
2
-1), 2(n - 2), 2(n - 2)) design V obtained by taking the rows of the adjacency

matrix as the incidence vectors of the blocks; the automorphism group of this

design will contain the automorphism group of the graph, the latter of which is

easily seen to be 5n . Similarly for the code. However for n = 6 the group of the

design and code is larger than the group of the graph (56), and we will use the

code to explain this, (see Lemma 8.2.1 and Theorem 8.2.4).

An alternative way to approach the designs, graphs and codes that we will

be looking at is through the primitive rank-3 action of the simple alternating

group An, for n 2:: 5, on the 2-subsets (or duads) n{2} of a set n of size n. By

Theorem 2.4.12 we have that the orbits of the stabilizer in An of a duad P = {a, b}

consist of {P} and one of length 2(n - 2) and the other of length (n-2~n-3). We

take as points the duads of n and for each P E n{2} we define a block P to

be {Q E n{2} I P n Q =I- 0, Q =1= P}, that is, the members of the orbit of length

2(n-2). The duads P and blocks P form a symmetric 1_(n(n
2
-1), 2(n-2), 2(n-2))

design whose binary code we will be examining.

8.2 The binary codes

Let n be any integer and let T(n) denote the triangular graph with vertex set P

the (;) 2-subsets (or duads) of a set n of size n. The I-design V = (P,B) will

have point set P and for each point (duad) {a, b} E P, a =1= b, a, bEn, a block,

which we denote by {a, b}, is defined in the following way:

{a, b} = {{a, x}, {b, y} I x =I- a, b; y =1= a, b}.

Then

B = { {a,b} la,b E n, a =1= b}.
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The incidence vector of the block {a, b} is then

v{a,b} = 2..= v{a,x} + 2..= V{b,y}

XoFa YoFb

90

(8.1)

where, as usual with the notation from [3], the incidence vector of the subset

. X ~ P is denoted by vx . Since our points here are actually pairs of elements

from ft, we emphasize that we are using the notation v{a,b} instead of the more

cumbersome v{{a,b}}, as mentioned in [3]. As a further bit of notation, if a, b, care

distinct points in ft, we will use

v{a,b,c} = v{a,b} + v{b,c} + v{a,c}

to denote this vector of weight 3 in the ambient space.

(8.2)

To avoid trivial cases we will take n ~ 5. Then in all the following lemmas C

will denote the binary code of V and of T(n), and Cl.. will be its dual code.

Lemma 8.2.1 The minimum weight of cl.. for n ~ 5 is 3 and any word of the

form v{a,b,c} is in Cl... If n =I- 6, these are all the words of weight 3 in Cl.., and

the number of words of weight 3 is thus G)· If n = 6, further words of weight 3

have the form v{a,b} + v{c,d} + v{e,f} where ft = {a, b, c, d, e, f}; in this case there

are 35 words of weight 3.

Proof: We first check that the minimum weight cannot be smaller: suppose

w = v{a,b} + V{c,d} where a, b, c, d are all distinct. Then if e E ft is distinct from

all these (such an element will exist since we are taking n ~ 5), then (w, v{a,e}) =

( v{a,b} + v{c,d} ~ v{a,x} + ~ v{e,y}) = 1 If w = v{a,b} + v{a,d} then
, LJxoFa,e LJYoFa,e· ,

(w, v{a,b}) = (v{a,b} + V{c,d} , LXoFa,bV{a,x} + L#a,bV{b,y}) = 3 - l(mod 2). Hence

there are no words of weight smaller than 3. So the minimum weight is at least 3.

Now let w = v{a,b,c} , and consider (w, v{x,y}) for any distinct x,y E ft. It is

easy to check that this is 0 (mod 2) for all choices of x, y. Furthermore, checking
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other possible vectors of weight 3, the only case that is not immediately ruled

out is w = v{a,b} + v{c,d} + v{e,f}. If there is another element 9 E n, then

(w, v{a,g}) = 1, but if n = 6 then w E C.1, giving another 15 weight-3 vectors in

C.1.•

Lemma 8.2.2 If n is even then C C C.1 and C 'lS doubly-even; if n 'lS odd,

C EB C.1 = IF~;). For any n, J E C.1.

Proof: Since blocks are of even size 2(n - 2), we have that J meets evenly every

vector of C, so J E C.1. For the first statement, consider ( v{a,b}, v{c,d}). If

{a, b} = {c, d} then this is zero. If d = a then the inner product is n + 2 = 0 if n

is even. If a, b, c, d are all distinct, then the inner product is 4 - 0 (mod 2).

For any a, bEn, we have

L V{a,b,c} ­

cfa,b

L V{a,b} + L V{a,c} + L V{b,c}

c;fa,b qa,b qa,b

(n - 2) v{a,b} + v{a,b}.

Thus if n is odd, v{a,b} E C + C.1 for any a, b, while for n even we obtain once

again that v{a,b} E C.1. Clearly C is doubly-even when n is even.•

Considering words in the code, note that

(8.3)

so we need only consider sums of blocks defined by disjoint duads. The following

lemma follows easily and the results are mentioned in [50]. Note that in this

lemma, the notation < i, A(i) > denotes the fact that there are A(i) vectors of

weight i.
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2 ( 2m )>, ... , < m - 1, m _ 1 >

Lemma 8.2.3 If n = 2m then C is a [(2;), 2m - 2, 4(m - 1)h code with weight

distribution the zero vector and

(
2m) (2m) 2 1 (2m)< 4(m - 1), 2 >, < 8(m - 2), 4 >, ... ,< m '2 m >

if m is even, and

< 4(m -1), (2~) >, < 8(m _ 2), (2:)
if m is odd.

If n is odd, then C is a [G), n - 1, n - 1h code with weight distribution the

zero vector and

< n - 1, n >, ... ,< 2i(n - 2i), (~) >, ... ,

where 1 :::; i :::; (n - 1)/2.

Proof: The dimension of these codes is well documented and not hard to deduce

(see [50, Theorem 4.1] or [15]). Alternatively the dimension of the codes could

also be deduced by using Lemma 8.2.5 and Lemma 8.2.7, which are discussed later.

Now the sum of the incidence vectors of the blocks defined by i disjoint duads

will give a vector of C of weight 2i(n - 2i). Therefore we must have i :::; L~J and

for n even, at i = ~, we get the zero vector. Thus for n = 2m we get increasing

weights from a minimum of 2(n - 2) up to a maximum when i = LWJ, and the

weight distribution is seen by simple counting tobe as given in the statement, with

distinct cases for m even and m odd. In the case of n even the minimum-weight

vectors are then the incidence vectors of the blocks of the design.

If n is odd, the maximum number of disjoint duads is n;-l, and all the weights

are distinct, with a minimum when i = n;-l, that is, weight n - 1. •

Theorem 8.2.4 For n 2:: 5, the automorphism group of the binary code C of the

triangular graph T(n) is Sn unless n = 6, in which case the automorphism group

of the code is PGL4 (2) rv As.
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Proof: In all cases, any automorphism of the graph will define an automorphism

of the design and of the code. Since the group of the complete graph is obviously

Sn, and the group of its line graph is the same (by a theorem of Whitney [94]),

the automorphism group of the code will contain Sn' We now use the fact that,

for n =1= 6, the automorphism group preserves (and is transitive on) both pairs of

letters of n and triples of letters of n to show that any automorphism of C induces

a permutation on n. We can use this fact since, for 9 E G = Aut(C), 9 preserves

the words of weight 3 in Cl.., and thus for n =1= 6, 9 maps pairs of elements to

pairs of elements, and triples of elements to triples of elements; this will be used

to define an action of 9 on n.

Let 9 E G. Then 9 is given as an element of S(~). We wish to define an

action of 9 on n. Let x E n. For arbitrary a, bEn, a, b =1= x, suppose

g: v{a,b,x} 1---+ v{al,bl,xI}. We use this to induce a map on triples of elements

of n by 9 : {a, b, x} 1---+ {aI, bl , Xl}. Since 9 preserves incidence of points of V on

words of Cl.., i.e. 9 preserves incidence of pairs of elements of n on triples, we

have, without loss of generality

{a, b, x} 1---+ {aI,bl,xI}

{a, b} 1---+ {ab bl }
g:

{a,x} 1---+ {al,XI}

{b,x} 1---+ {bl , Xl}

To preserve incidence then we will attempt to define 9 on n by 9 : {a, x} n {b, x} 1---+

{al,xI} n {bl,XI}, that is, g: X 1---+ Xl (and a 1---+ aI, b 1---+ bl ).

We need to check that this is indeed well-defined. Take first another triple

of the form {a, c, x} where c =1= b. Since 9 : {a, x} 1---+ {aI, Xl} we must have

{al,xI} incident with ({a,c,x})9, and thus 9 : {a,c,x} 1---+ {al,cI,xI}. Thus

9 : {c,x} 1---+ {CI,XI} or {ab Cl}' Suppose 9 : {c,x} 1---+ {aI,cd and so also

9 : {a, c} 1---+ {Xl, cd· Then ({b, c, X})9 must contain bl , XI, aI, Cl, and so we must

have bl = Cl· But then ({a,b,x})9 = {al,bl,xd = {aI,CI,xI} = ({a,c,x})9,
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which is impossible since 9 is a permutation on triples. Thus 9 : {c, x} 1--7 {XI, Cl}

and again we get 9 : x 1--7 x I, and 9 : C 1--7 Cl. If we now take any triple {x, y, z}

containing x, we look first at {a, y, x} as above, and then {z, y, x} and have

9 : x 1--7 xI, as required. Thus 9 is defined in Sn, and Aut(C) = Sn.

In case n = 6, there are more words of weight 3 in Cl., so we cannot use

this argument since we cannot assume that the vectors of the form v{a,b,c} are

mapped to one another. In this case C is a [15,4, 8h code and its dual is a

[15, 11,3h code. By Theorem 3.1.10 a generator matrix for C must thus have

every pair of columns linearly independent, that is distinct, and thus C is the

dual of the Hamming code of length 15. Its automorphism group is well known

to be PGL4 (2) (see also Theorem 6.3.1).•

Now we look for bases of minimum-weight vectors for C and Cl.. Clearly if n

is even then C has a basis of minimum-weight vectors since the incidence vectors

of the blocks are the minimum-weight vectors and span C by definition.

Lemma 8.2.5 Let n = {aI, a2, ... ,an}. The set ofn - 1 vectors

is a spanning set for C. For n odd S is a basis; for n even S \ { v{an-1,an}} is a

basis of minimum-weight vectors.

Proof: Note that for 2 :S i :S n

and thus v{ai,aj} = v{a1,ail + v{al,aj} can be written as a sum of vectors in Sand

thus S spans C. Since for n odd this is the dimension of C, the set S gives a basis

for C when n is odd.
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If n = 2m we know that L v{a,b} = 0, where the sum ranges over a set of m

disjoint pairs of elements of D. Hence for n even we have

and
v{a1,an} + v{a2,a3} + v{a4,as} .•• + v{an- 2,an- 1} = 0

. ,

so we have a non-trivial linear relation, and the vectors in S are linearly dependent.

Since

we can omit v{an-l,an } from the spanning set.•

Lemma 8.2.6 C has a basis of minimum-weight vectors.

Proof: For n even, this follows from Lemma 8.2.5. For n odd, the minimum

weight of C is n - 1 and there are exactly n minimum-weight vectors, which have

the form, for each a E D,

W a = L v{ai,aj},

where the sum is over a set of n;l disjoint pairs of elements of D \ {a}. Then for

a =1= b, we can write

showing that the W a span C, and hence C is also spanned by minimum-weight

vectors when n is odd. Notice that
n

v{a1,a2 } + ... + v{an- 2 ,an-I} + W
an

and thus {Wai 11 :S i :S n - 1} is a basis for C.•
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Lemma 8.2.7 Cl.. has a basis of minimum-weight vectors for n odd, but not for

n even.

Proof: Take n = {I, 2, ... , n}. For n #- 6, the minimum-weight vectors of Cl.. are

of the form
v{a,b,c} = v{a,b} + v{a,c} + v{b,c}.

Let S be the following set of these vectors:

S = { V{i,j,j+l} 11 :S i < j :S n -I}.

Notice that S has size (n; 1
). We order the points of P in the following way:

{1,2},{1,3}, ... ,{l,n- 1},{2,3}, ... ,{2,n- I}, ... ,{n- 2,n- I}, (8.4)

followed by the remaining points

{I, n}, {2, n}, ... , {n - 1, n}. (8.5)

We show that for n #- 6 every vector of weight 3 is in the span of S. Using the

ordering of the points as given above, it will follow that the vectors in S span a

space of dimension (n;l) = (;) - (n -1). Thus for n odd the span of S is the dual

code Cl.., while for n even it is not. In the even case the all-one vector J needs

to be adjoined. If this is done at the bottom of the generator matrix for Cl.. then

the points from Equation (8.5) up to {n - 2, n} can be taken as the last n - 2

coordinates, while the position corresponding to {n - 1, n} can be placed in front

of this set.

For this, we have, for 1 :S i < j < j + 1 < k :S n,

V{i,j,k} = V{i,j,j+l} + V{i,j+l,k} + v{j,j+l,k},

and induction will show that every vector of the form V{i,j,k} is in the span of S.

Further, ordering the points as given, and the vectors of S in the same way, by
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the smallest two elements, produces an upper triangular matrix which clearly has

the rank given above. •

In Chapter 10 we use the codes considered in this chapter for permutation

decoding and give explicit PD-sets for some of the infinite families.



Chapter 9

Binary Codes from Graphs on

Triples

9.1 Introduction

In this chapter, given a set n of size nand n{3} the set of subsets of n of size 3,

we examine the binary codes obtained from the adjacency matrix of each of the

three graphs with vertex set n{3}, with adjacency defined by two vertices as 3-sets

being adjacent if they have zero, one or two elements in common, respectively.

The binary codes formed from the span of the adjacency matrix of graphs,

and in particular strongly regular graphs, have been examined in Chapter 8 and

by various authors: see [15, 16, 92, 50, 3, 4]. Here we examine a different class of

graphs and prove the following theorem:

Theorem 9.1.1 Let n be a set of size n, where n 2: 7. Let P = n{3}, the set of

subsets of n of size 3, be the vertex set of the three graphs Ai(n), for i = 0,1,2,

with adjacency defined by two vertices (as 3-sets) being adjacent if the 3-sets meet

in zero, one or two elements, respectively. Let Ci(n) denote the code formed from

98
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the row span over lF2 of an adjacency matrix for Ai(n). Then

1. n _ 0 (mod 4):

(a) C2(n) = lF~~);

(b) Co(n) = C1(n) is a [G), (~)-n,4h code, and Co (n).1 is a [(~),n, (n;l)h

code;

(c) Ci(n) n Ci(n).1 = {O} for i = 0, 1,2;

2. n - 2 (mod 4):

G-(n) = IF(~) for i = 0 1 2't 2)1 , , ,

3. n = 1 (mod 4):

(a) Co(n) = C1(n) n C2 (n);

(b) i. Co(n) is a [G), G) - G),8h code and Co (n).1 is a [(~), (~),n-2h

code;

ii. C1(n) is, for n > 9, a [G), G) - n + 1,4h code and C1(n).1 is a

[G),n -1, (n - 2)(n - 3)h code, while C1(9) is a [84, 76,3h and

Cl (9).1 is a [84,8, 38h code;

iii. C2 (n) is a [G), (n;1),4h code and C2 (n).1 is a [G), (n;l),n - 2h
code;

4· n =3 (mod 4):

(a) C1(n) = (vP + j I PEP) of dimension G) - 1;

(b) Co(n) = C2 (n) is a [G), (n;1),4h code, andC2 (n).1 is a [(~), (n;l),n_

2h code;
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Furthermore, the automorphism groups of these codes are Sn or S(~)

The theorem will follow from a series of lemmas and propositions proved in

Section 9.2.

9.2 The binary codes

Let n be any integer and n of size n, and to avoid degenerate cases, we take

n 2: 7. Taking the set n{3} to be the set of all 3-element subsets of n, we define

three non-trivial undirected graphs with vertex set P = n{3}, and denote these

graphs by Ai(n) where i = 0,1,2. The edges of the graph Ai(n) are defined by

the rule that two vertices are adjacent in Ai(n) if as 3-element subsets they

have exactly i elements of n in common. For each i = 0,1,2 we define from Ai(n)

a I-design Vi(n), on the point set P by defining for each point P = {a,b,c} E P

a block {a, b, ch by

{a,b,c}i = {{x,y,z} II{x,y,z} n {a,b,c}1 = i }.

Denote by Bi(n) the block set of Vi(n), so that each of these is a symmetric

I-design on G) points with block size, respectively:

• (n;3) for Vo(n);

• 3(n;3) for V 1(n);

• 3(n - 3) for V 2(n).
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The incidence vector of the block {a, b, c} i for i = 0,1,2, respectively, is then

v {a,b,c}o L v{x,y,z}; (9.1)

x,y,zEn\{a,b,c}

v {a,b,c}l Lv{a,x,y} + Lv{b,x,y} + LV{c,X,y}; (9.2)
x,yEn\{a,b,c} x,yEn\{a,b,c} x,yEn\{a,b,c}

v {a,b,ch = D{a,b,x} + D{a,c,x} + D{b,c,x}. (9.3)
xEn\{a,b,c} xEn\{a,b,c} XEn\{a,b,c}

where, as usual with the notation from [3], the incidence vector of the subset

X ~ P is denoted by vx . Since our points here are actually triples of elements

from n, we emphasize that we are using the notation v{a,b,c} instead of the more

cumbersome v{{a,b,c}}, as mentioned in [3].

We will be examining the binary codes of these designs; in fact, computation

with Magma [11] shows that the codes over some other primes, in particular,

p = 3, might be interesting, but here we consider only the binary codes. Thus,

denoting the block set of Di(n) by Bi(n) we will write

where the span is taken over lF2 . Notice that, since the blocks of the three designs

do not overlap, we have, for any point P = {a, b, c},

(9.4)

Now consider, for any given point P = {a, b, c} E P, the vector

(9.5)

that is, the sum of all the incidence vectors of blocks of Di(n) that contain P,

for each i = 0,1,2. For any point Q of P, wp(Q) (the coordinate of Wp at Q) is

determined by four distinct cases, depending on the size of the intersection of the

triples that define P and Q. We look at the various cases, writing B i for a block

of Di(n):
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• i = 0;

1. P = Q, wp(P) = IEol = (n~3);

2. IP n QI = 2, wp(Q) = (n~4), and there are 3(n - 3) such points;

3. IPnQI = 1, wp(Q) = (n~5), and there are 3(n~3) such points;

4. IP n QI= 0, wp ( Q) = (n~6), and there are (n~3) such points.

• i = 1;

1. P = Q, wp(P) = IEll = 3(n~3);

2. IP n QI = 2, wp(Q) = 2(n~4) + (n - 4), and there are 3(n - 3) such

points;

3. IP n QI = 1, wp(Q) = (n~5) + 4(n - 5), and there are 3(n~3) such

points;

4. IP n QI = 0, wp(Q) = 9(n - 6), and there are (n~3) such points.

• i = 2;

1. P = Q, wp(P) = IE2 1 = 3(n - 3);

2. IP n QI = 2, wp(Q) = (n - 4), and there are 3(n - 3) such points;

3. IP n QI = 1, wp(Q) = 0, and there are 3(n~3) such points;

4. IP n QI = 0, wp(Q) = 0, and there are (n~3) such points.

Congruences modulo 4 give different properties of the binary codes of the

designs, as the lemmas to follow will show.

As a direct consequence of the observations above for Wp we have:

Lemma 9.2.1 With notation as defined above, P = {a, b, c} E P,

1. n _ 0 (mod 4):



CHAPTER 9. BINARY CODES FROM GRAPHS ON TRIPLES 103

(a) for i = 0, Wp = v{a,b,ch, so C1(n) ~ Co(n);

(b) for i = 1, Wp = v{a,b,c}l;

(c) for i = 2, Wp = v P , so C2(n) = lFF).

2. n = 2 (mod 4): for i = 0,1,2, Wp = vP
, so Ci(n) = lF~~).

3. n _ 1 (mod 4):

(a) for i = 0, Wp = v{a,b,c}o;

(b) for i = 1, Wp = v{a,b,c} + v{a,b,c}o + v{a,b,ch , and J E C1(n);

(c) for i = 2, Wp = v{a,b,ch.

4. n = 3 (mod 4):

(a) for i = 0, Wp = v{a,b,ch, so C2(n) ~ Co(n);

(b) for i = 1, Wp = v{a,b,c}o + v{a,b,ch + v{a,b,ch, Wp = J + v{a,b,c};

(c) for i = 2, Wp = v{a,b,ch.

Proof: Follows directly from the observations and Equation (9.4) •.

Proposition 9.2.2 Forn 2: 7 and odd, C2(n) is a [(~), (n;l) , 4h code and C2(n)1­

is a [G), (n;l),n - 2h code. There are (~) words of weight 4 in C2 (n) and they

span the code; there are G) words of weight n - 2 in C2 (n)1- and they span the

code. Furthermore, C2 (n) n C2 (n)1- = {O}.

For n odd Aut(C2 (n)) = Sn. For n even, Aut(C2 (n)) = S(~).

Proof: Since we deal exclusively with i = 2 in this proof, we will denote a block

of 'D2(n) by {a, b, c}, and write C = C2(n).

For fj. = {a, b, c, d} any subset of n of four elements, let

w(a, b, c, d) = v{a,b,c} + v{a,b,d} + v{a,c,d} + v{b,c,d}. (9.6)
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We claim that

( b d) v {a,b,c} + v{a,b,d} + v{a,c,d} + v{b,c,d}.wa, ,c, =

Because

v{a,b,c} L v{a,b,x} +L v{a,c,x} +L v{b,c,x}

x-:pc x-:pb x-:pa

v{a,b,d} L v{a,b,x} +L v{a,d,x} +L v{b,d,x}

x-:pd x-:pb x-:pa

v{a,c,d} L v{a,c,x} +L v{a,d,x} +L v{c,d,x}

x-:pd x-:pc x-:pa

v{b,c,d} L v{b,c,x} +L v{b,d,x} +L V{c,d,x} ,

x-:pd X-:pc x-:pb

and so v{a,b,c} + v{a,b,d} + v{a,c,d} + v{b,c,d} = v{a,b,d} + v{a,c,d} + v{b,c,d} + v{a,b,c} +
v{a,c,d} + v{b,c,d} + v{a,b,c} + v{a,b,d} + v{b,c,d} + v{a,b,c} + v{a,b,d} + v{a,c,d} =

v{a,b,c} + v{a,b,d} + v{a,c,d} + v{b,c,d} = w(a, b, c, d) and hence w(a, b, c, d) E C.

Clearly there are (~) of such words, and the minimum weight of C is at most 4.

Furthermore,

v{a,b,c} + L v{a,b,x} + L v{a,c,x}

x-:pc x-:pbxE!1\{a,b,c}

+L v{b,c,x}

x-:pa

L w(a,b,c,x)­
xE!1\ {a,b,c}

(n - 3) v{a,b,c} + v{a,b,c}

0+ v{a,b,c},

and thus C = (w(a, b, c, d) I a, b, c, dE D).

Now we consider the dual code C..l. For any pair of elements a, bED, define

w(a,b)= L v{a,b,x}.

xE!1\{a,b}

(9.7)
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The weight of w(a, b) is clearly n- 2; we show it is in C..L. For any {x, y, z} E 8 2 ,

writing w = w(a, b),

(w, v{x,y,z}) = (w, L v{x,y,c}) + (w, L v{x,z,c}) + (w, L v{y,z,c}).

ci'x,Y,z ci'x,Y,z ci'x,Y,z

If a, b rt. {x, y, z} then all three terms are 0; if x = a and b rt. {x, y, z}, the first and

second terms are 1, the last term is 0, and hence the sum is 0; if a, b E {x, y, z},

then the first term is n - 3 = 0, and the other two terms are 0, so the sum is 0

again. Thus w(a, b) E C..L, and clearly there are G) vectors of this type.

Now we show that this is the minimum weight of C..L and that these are the

minimum-weight vectors. Suppose w E C..L, and suppose that v{a,b,c} is in the

support of w. Since (w,w(a,b,c,d)) = 0 for all choices of dEn \ {a,b,c}, and

w(a, b, c, d) and w(a, b, c, e) have only v{a,b,c} in common in their supports, for

each dEn \ {a, b, c} we get another term in w, and thus its weight is at least

1 + (n - 3) = n - 2.

To show that any vector in C..L of weight n - 2 has this form, suppose w E C..L

has weight n-2. Then (w, w(a, b, c, d)) = 0 implies that w = v{a,b,c}+ v{a,b,d} +- ...
Since (w, w(a, b, c, x)) = 0 for all choices of x E n \ {a, b, c, d}, w has another

element from w(a, b, c, x) for each such x, so

{

v{a,b,e} + v{a,b,J} + + v{a,b,n}

W = v{a,b,c} + v{a,b,d} + v{b,c,e} + V{b,c,J} + + v{b,c,n}

v{a,c,e} + v{a,c,!} + + v{a,c,n}

for one of these cases. The top case is w(a, b); if one of the other cases hold then

v{a,b,x} is not in the support for some x, which will give a contradiction unless

the weight is greater than n - 2.

To show that 4 is the minimum weight of C, notice that the block size for

V 2(n) is 3(n - 3), which is even; thus J E C..L and hence all words of C have even

weight. We need then to show that C does not have words of weight 2. Suppose
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w = V{a,b,c}+ v{d,e,f}; then since (w,w(a,b)) = 0, we must have {a,b} C {d,e,!},

and w = v{a,b,c} + v{a,b,d} , where d =I- c. But then (w,w(a, c)) =I- 0, so we have

a contradiction, and C cannot have vectors of weight 2. Now suppose C has a

vector w of weight 4 that is not of the form w(a, b, c, d). If w = v{a,b,c} + ...
then (w, w(a, b)) = °implies that w = v{a,b,c} + v{a,b,d} + .... But we also have

(w, w(b, c)) = 0, so w = v{a,b,c} + v{a,b,d} + v{b,c,e} + .... Now similarly arguing

that (w, w(b, d)) = (w, w(a, c)) = 0, and assuming the weight of w is 4, we find

that d = e and w = w(a, b, c, d).

Now we show that the dimension of C is (n;l). For this we construct a basis

of words of weight 4. We introduce an ordering of the points and the spanning

weight-4 vectors so that the generating matrix is in upper triangular form.

For the point order: {I, 2, 3}, {I, 2, 4}, ... , {I, 2, n -I}, {I, 3, 4}, ... , {I, 3, n­

I}, ... ,{1,n-2,n-l},{2,3,4}, ... ,{n-3,n-2,n-l} (which will all be pivot

positions), and followed by the remaining (n~l) points {I, 2, n}, {I, 3, n}, ... ,{n­

2,n-l,n}.

The weight-4 vectors for the basis will be ordered as follows:

w(l, 2, 3, 4), w(l, 2, 4,5), w(l, 2, 5, 6), ... ,w(l, 2, n - 1, n), w(l, 3, 4, 5), ... ,

w(l, 3, n - 1, n), ,w(l, n - 2, n - 1, n), w(2, 3, 4, 5), w(2, 3, 5, 6), ... ,

w(2, 3, n - 1, n), ,w(n - 3, n - 2, n - 1, n).

Then it is simple to verify that with this ordering of points and spanning vectors

we get an upper triangular matrix of rank (n;l). Thus C has dimension at least

(n;l).

To prove that this is in fact the dimension, we look at Cl... We can keep the

same ordering of the points but we will in fact get the pivot positions in the last

(n~l) positions. For the rows of the generating matrix 9 we take the minimum

vectors w(l, 2), w(l, 3), ... ,w(l, n - 1), w(2, 3), ... ,w(2, n - 1), w(n - 2, n - 1);

then 9 has the form [AllkJ where k = (n~l). Thus Cl.. has dimension at least
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(n;l) = (~) _ (n;l) , and the proposition is proved.

To show that C n Cl.. = {O}, we show that C + Cl.. = IF~~) by showing that

every vector of weight 1 can be expressed as a sum of vectors from C and Cl... In

fact, if a, b, c E n are distinct, then

w(a, b) + w(a, c) + w(b, c) + v{a,b,e} = I:: v{a,b,x} + I::
xEr2\{a,b} xEr2\{a,e}

v{a,e,x}+

I:: v{b,e,x} + I:: v{a,b,x} + I:: v{a,e,x} + I:: v{b,e,x}

XEr2\{b,e} xEr2\{a,b,e} xEr2\{a,b,e} xEr2\{a,b,e}

- v{a,b,x} + v{a,b,x} + v{a,b,x} = v{a,b,x} ,

which is what is required.

Finally we obtain the automorphism group of C2(n). It is not difficult to see

that Aut(A2(n)) = Sn and Sn ~ Aut(C2(n)). Let 9 E Aut(C2(n)). Then 9 maps

triples to triples. Also since the words having the form w(a, b) = L:xEr2\{a,b} v{a,b,x}

are the words of minimum weight n - 2 in C2 (n)l.., 9 maps pairs to pairs. We use

these facts to show that Aut(C2 (n)) = Sn'

Let x E n. For arbitrary a, bEn such that x E n \ {a, b}, suppose that

{a, b}9 = {c, d}. Then {a, b, X}9 = {c, d, x*} where x* (j:. {c, d}. Without

loss of generality we may assume that {a, X}9 = {c, x*}. Then we must have

{b,X}9 = {d,x*}.

Now consider e, fEn \ {a, b, c, d, x}. Then {a, e, X}9 = {c, x*, e*} where

e* rt {c, x*}. This provides two possible images for {e, x}, namely

{e,xF = {c,e*} or {e,xF = {x*,e*}

If {e, X}9 = {c, e*}, then we must have {a, e}9 = {x*, e*} which implies

{b,e,x}9 = {c,x*,e*,d}, a contradiction. Hence we must have {e,x}9 = {x*,e*}

which implies {a, e}9 = {c, e*}. Thus {b, e, X}9 = {d, x*, e*} and we deduce that

{b, e}9 = {d, e*}. Hence {a, b, e}9 = {c, d, e*}.
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Now assume that {a, f, X}9 = {c, x*, f*} where f* tj. {c, x*}. Then similarly

to the above argument we get {a, f}9 = {c, f*} and {f, X}9 = {x*, f*}. Hence

{b,j,X}9 = {d,x*,f*} and {e,f,x}9 = {e*,x*,f*}. Finally we deduce that

{e,f}9 = {e*,f*}.

From the above we deduce that 9 is defined in Sn and Aut(C2(n)) = Sn· For

n even C2(n) = lF~~) and hence the result.•

Lemma 9.2.3 For all n 2: 7 Co(n) has words of weight S. If n is odd,

w(a, b) = LXEn\{a,b} v{a,b,x} E Co(n).l, and Co(n) ~ C2(n). If n =3 (mod 4),

Co(n) = C2(n).

Proof: We first show how words of weight S can be constructed. In this lemma

we use the notation {a, b, c} to denote a block of 'Do(n).

Let 1::1 = {a, b, c, d, e, f} be a subset of n of six elements. For each partition of

1::1 into three disjoint 2-element subsets we will get a weight-S vector. The set 1::1

will be the point set of a 1-(6,3,4) design with A2 = 2 or O. We do this as follows:

suppose we take the partition 7r = {{a, b}, {c, d}, {e, f}} of 1::1, then the rule for

our design will be that points from the same 2-element subset will not be together

in a block. The eight blocks will thus be:

Bl = {a,c,e},B2 = {a,c,f},B3 = {a,d,e},B4 = {a,d,f}

and their complements

Bs = {b,d,f},B6 = {b,d,e},B7 = {b,c,f},Bs = {b,c,e}.

It is then a direct matter to prove that

s S

w(7r) = L VB; = L VB;,

i=l i=l

thus giving a vector of weight 8 in Co (n).

(9.S)
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Now take n to be odd, and consider

(w(a, b), v{x,y,z}) = ( L v{a,b,x} , L v{c,d,e}) = m.

xErl\{a,b} c,d,eErl\{x,y,z}

Then

• m=Oif{a,b}~{x,y,z};

• m = 0 if a E {x, y, z} and b tf. {x, y, z};

• if {a, b} n {x, y, z} = 0, then v{a,b,c} is in the support of v{x,y,z} except for

c = x, y, z. Thus they meet in n - 2 - 3 = n - 5 positions, so that m = 0

for n odd.

Since from Proposition 9.2.2 we have that C2 (n)..L = (w(a, b) I a, bEn), we

have now shown that C2 (n)..L ~ Co(n)..L for n odd, and thus Co(n) ~ C2(n) for n

odd. That equality holds here if n - 3 (mod 4) follows from Lemma 9.2.1(4a).•

Lemma 9.2.4 For n 2: 7, C1(n) has words of weight 4. If n 0 (mod 4) then

Co(n) has words of weight 4.

Proof: We define two types of words of lF~~) of weight 4 and show that they are

in C1(n) for any n 2: 7.

Let ~ = {a, b, c, d, e, f} ~ n of size 6, and let ~* = [a, b, c, d, e, f) be a sequence

of the elements of ~. Let

We claim that

w(~*) = v{a,b,c} + v{a,b,d} + v{c,e,f} + v{d,e,f}.

w(~*) = v{a,b,c} + v{a,b,d} + v{c,e,/} + v{d,e,f}.

(9.9)
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Because

v{a,b,c} -

v{a,b,d} -

v{c,e,J}

v{d,e,J} -

L v{a,x,y} + L V{b,x,y} + L v{c,x,y}

x,yEO\{a,b,c} x,yEO\{a,b,c} x,yEO\{a,b,c}

L v{a,x,y} + L v{b,x,y} + L V{d,x,y}

x,yEO\{a,b,d} x,yEO\{a,b,d} x,yEO\{a,b,d}

L v{c,x,y} + L v{e,x,y} + L vU,x,y}

x,yEO\{c,e,J} x,yEO\{c,e,J} x,yEO\{c,e,J}

L V{d,x,y} + L v{e,x,y} + L vU,x,y}

x,yEO\{d,e,J} x,yEO\{d,e,J} x,yEO\{d,e,J}

and so v{a,b,c} + v{a,b,d} + v{c,e,J} + v{d,e,J} = v{a,d,e} + v{a,d,J} + v{a,e,J} + v{b,d,e} +
V{b,d,J} + v{b,e,J} + v{c,d,e} + v{c,d,J} + v{c,e,J} + v{a,c,e} + v{a,c,J} + v{a,e,J} +
v{b,c,e} + v{b,c,J} + v{b,e,J} + v{d,c,e} + v{d,c,J} + v{d,e,J} + v{c,a,b} + v{c,a,d} +
v{c,b,d} + v{e,a,b} + v{e,a,d} + v{e,b,d} + vU,a,b} + vU,a,d} + vU,b,d} + v{d,a,b} +
v{d,a,c} + v{d,b,c} + v{e,a,b} + v{e,a,c} + v{e,b,c} + vU,a,b} + vU,a,c} + vU,b,c} =

v{a,b,c} + v{a,b,d} + v{c,e,J} + v{d,e,J} = w(Ll*), where our notation is for blocks of

1)l(n) in this lemma.

Similarly, let ~ = {a, b, c, d, e} ~ n of size 5, and let Ll* = [a, b, c, d, e] be a

sequence of the elements of ~. Let

u(~*) = v{a,b,c} + v{a,b,d} + v{a,c,e} + v{a,d,e}.

Then we can show as above that

u(Ll*) = v{a,b,c} + v{a,b,d} + v{a,c,e} + v{a,d,e} ,

(9.10)

thus illustrating two different types of words of weight 4 in Cl (n) for any n.

Since Cl(n) ~ Co(n) when n 0 (mod 4) (by Lemma 9.2.1 (la)), Co(n) also

has words of weight 4 in this case.•

Note 9.2.5 If we take the sequence Ll' = [a, f, c, d, e, b] in the first construction

of Lemma 9.2·4, then

w(~*) + w(~') = w(7f),
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where 11" = {{a, e}, {b, f}, {c, d}} is the partition of the set 6. as used in the

construction of the weight-8 words in Co(n) in Lemma 9.2.3, and w(1I") is as

defined in Equation (9.8).

Lemma 9.2.6 Forn 0 (mod 4), C1(n).l hasn words of weight (n;l) given, for

each a E n, by

w(a) = L v{a,x,y}. (9.11)
x,yEn\{a}

The same is true for Co (n).l for n 0 (mod 4) and for n - 1 (mod 4).

For any n, the n vectors w(a) are linearly independent and J = LaEn w(a); if

n - 1 (mod 4) then

and has dimension n - 1.

Proof: Let w(a) be as defined, and consider first Cl (n).l. Taking an arbitrary

block of V1(n), consider (w(a), v{b,c,dh) = m. Then we have the following two

cases:

(i) Suppose that a rf. {b, c, d}. Then we have that

m = (L v{a,x,y} , L v{b,x,y} +L v{c,x,y} +L v{d,x,y})

x,y#a x,yEn\{b,c,d} x,yEn\{b,c,d} x,yEn\{b,c,d}

(L v{a,x,y} , L v{b,x,y}) + (L v{a,x,y}, L v{c,X,y})

x,y#a x,yEn\{b,c,d} x,y#a x,yEn\{b,c,d}

+( L v{a,x,y} ,L V{d,x,y}) = r + s + t,
x,y'!-a x,yEn\{b,c,d}

where

r - (L v{a,x,y} ,L V{b,x,y}), S = (L v{a,x,y} ,L v{c,x,y})

x,y'!-a x,yEn\{b,c,d} x,y#a x,yEn\{b,c,d}

and

t (L v{a,x,y} ,L V{d,x,y}), respectively.

x,y#a x,yEn\{b,c,d}
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Now

r ( L v{a,x,y} , L V{b,x,y})

x,Yi-a x,yEO\{b,c,d}

(L v{a,x,y} + L V{a,b,x} , L V{b,x,y} + L V{a,b,x})

x,Yi-a xi-a,b x,yEO\{a,b,c,d} xi-a,b,c,d

(L v{a,x,y} , L V{b,x,y}) + (L v{a,x,y} , L V{a,b,x})

x,Yi-a x,yEO\{b,c,d} x,Yi-a x,yEO\{a,b,c,d}

+ (L V{a,b,x} , L V{b,x,y}) + (L V{a,b,x} ,L V{a,b,x})

xi-a,b x,yEO\{a,b,c,d} xi-a,b xEO\{a,b,c,d}

- (L V{a,b,x} , L V{a,b,x}) = n - 4.

x ,Yi-a,b xEO\{a,b,c,d}

Similarly we get that s = t = n - 4, so m = 3(n - 4).

112

(ii) Suppose that a E {b, c, d} and without loss of generality assume that a = d.

Then

m (L v{a,x,y} , L v{a,x,y} + L v{b,x,y} + L v{c,x,y})

x,Yi-a x,yEO\{a,b,c} x,yEO\{a,b,c} x,yEO\{a,b,c}

(L v{a,x,y} , L v{a,x,y}) + (L v{a,x,y} ,L V{b,z,y})

x,Yi-a x,yEO\{a,b,c} x,Yi-a x,yEO\{a,b,c}

+ (L v{a,x,y}, L v{c,X,y}) = (n ~ 3) = (n - 3)2(n - 4) .

x,Yi-a x,yEO\{a,b,c}

Now cases (i) and (ii) imply that if n =0 (mod 4), then m = 0 (mod 2) and

w(a) E C1(n)..l. Notice that if n - 1 (mod 4) then m = 1 for all blocks, and since

the block size is odd in this case, it follows that (J, v{b,c,dh) = 1 and hence that

J + w(a) E C1(n)..l.
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Now consider Co(n)..L and let m = (w(a), v{b,c,d}o). Suppose that a tJ. {b,c,d},

it follows that

m ( L v{a,x,y} , L v{x,y,z})

x,y'!a x,y,zEn\{b,c,d}

_ (n~4) = (n-4~(n-5).

Now suppose that a E {b, c, d} and without loss of generality assume that

a = d. Then we have that

m = ( L v{a,x,y} , L v{x,y,z}) = O.
x,y'!a x,y,zEn\{a,b,c}

Thus if n _ 0 (mod 4) or if n = 1 (mod 4), we will have m - 0 (mod 2) and

w(a) E Co(n)..L.

Clearly there are n words of this type. We now show that they are linearly

independent: suppose

n n

Laiw(i) =0= Lai L v{i,j,k}.
i=l i=l j,kEn\{i}

The coefficient of V{i,j,k} is ai + aj + ak = 0 for every choice of the triple {i, j, k}.

It follows easily that ai = 0 for all i.

That J = LaEn w(a) follows from the observation that each vector v{a,b,c}

will occur exactly three times in the sum. For n odd then it also follows that

LaEn(J + w(a)) = 0, completing the proof. •

Lemma 9.2.7 For n =0 (mod 4), Cl(n) = Co(n) and has minimum weight 4.

For n _ 1 (mod 4), Co(n) C Cl(n).

Proof: First show that the minimum weight of Cl (n) is 4. Notice that the block

size is 3(n;3) , which is even for n 0 (mod 4), and thus J E Cl(n)..L and all
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vectors in Cl (n) have even weight. We need thus only show that there are no

vectors of weight 2. Suppose that w = v{a,b,c} + v{d,e,f} E Cl (n). Considering

cases, and with w(a) as in Equation 9.11,:

• if {a,b,c} n {d,e,f} = 0 then (w(a),w) = 1;

• if {a, b, c} n {d, e, f} = {a} where a = d, then (w(b), w) = 1;

• if {a,b,c} n {d,e,f} = {a,b} where a = d,e = b, then (w(c),w) = 1.

This gives a contradiction for all choices of w of weight 2, so the minimum weight

is 4.

To show that Co(n) = C1(n) for n - 0 (mod 4), we form the sum

w = LW(~*)
t:>.*

of the words w(~*) of Equation (9.9) over sequences from ~ = {a, b, c, d, e, f}

where a, b, c are fixed, and d, e, f vary over the remaining triples, and w(~*) has

v{a,b,c} in its support. The number of sets ~ containing a, b, c is (n;3) and each ~

gives nine distinct words w(~*) with v{a,b,c} in the support. In the sum, v{a,b,c}

will occur 9 (n;3) = 0 (mod 2) times; each v{d,e,f}, where {d, e, f} is disjoint from

{a,b,c}, will occur 9 _1 (mod 2) times; each v{a,b,d} , v{a,c,d} , v{b,c,d} will occur

once for each ~ :3 d, and thus (n;4) _ 0 (mod 2) times. Each v{a,d,e} , v{b,d,e} ,

v{c,d,e} will occur once whenever {d, e} ~ ~, that is (n - 5) = 1 (mod 2) times.

Thus the sum w E C1(n) is

L
d,e,f El1\{a,b,c}

that is

V{d,e,f} + L
d,eEl1\{a,b,c}

v{a,d,e} + L
d,eEl1\{a,b,c}

V{b,d,e} + L
d,eEl1\{a,b,c}

V{c,d,e} ,

w = L w(~*) = v{a,b,c}o + v{a,b,ch,

t:>.*
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which shows that Co(n) ~ C1(n), and, since C1(n) ~ Co(n) for n - 0 (mod 4) by

Lemma 9.2.1 (la), hence they are equal.

In the case n - 1 (mod 4), looking at the vector w above, all the congruences

modulo 2 remain the same apart from n - 5 = 0 (mod 2). Thus we get

w = L w(~*) = v{a,b,c}o,

~.

and hence Co(n) ~ C1(n). Now by Lemma 9.2.1 (3b), J E C1(n), and by

Proposition 9.2.2, J E C2(n)..l and hence not in C2(n), and thus not in Co(n),

since by Lemma 9.2.3 Co(n) ~ C2(n). Thus the containment is proper. •

Lemma 9.2.8 If w(a) '1,8 defined as in Equation {9.11}, then the full weight

enumerator for

S = (J + w(a) I a E 0)

for n - 1 (mod 4) ~ 9 is given as follows: for r = 1 to n~l, S has (~) vectors of

weight

.In each case such a word has the form L~=l(J +w(ai)) where ~ = {aI, a2, ... , ar }

has size r. The minimum weight of S is 2(n~2) for n > 9, and 38 for n = 9.
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Proof: For 6:. as in the statement of the lemma, consider

r

w I)J + w(ai))
i=l

r

- rJ +L L V{ai,x,y}

i=l X,Yfoai

+t (L V{ai'x,y} + L L V{ai,aj,x} + 2..= v{ai,aj,ak})

- rJ i=l x,yE11\b. Hi xE11\b. j,kfoi

r

- rJ + L L V{ai'x,y} + 0 + 3 L v{ai,aj,ad.

i=l x,yE11\b. ai,aj,akEb.

The formulae given now follow, where G) = 0 if r = 1 or 2.

The smallest weight occurs when r = 2 except when n = 9 when it occurs at

r = 3.•

Lemma 9.2.9 For n _ 0 (mod 4) 2: 8

T = (w(a) I a E !1) ~ C1 (n)J..

and has weight enumerator as given in Lemma 9.2.8 together with the complements

of all the words. T is a [(~), n, (n;l)h code.

Proof: The proof is clear from Lemma 9.2.8 and Lemma 9.2.6.•

Lemma 9.2.10 If D (u(6:. *) I 6:. c !1), where u(6:.*) 2S gwen 2n

Equation (9.10), then D has dimension at least G) - n.

Proof: We order the points of P and a specific set of the words u(6:.*) so

that the generating matrix is in upper triangular form. The point order

is as follows: {l, 2, 3}, {l, 2, 4}, ... ,{l, 2, n}, {l, 3, 4}, ... ,{l, 3, n}, ... , {l, n ­

2, n}, {2, 3, 4}, ... , {2, n-2, n}, ... , {n-4, n-2, n-l}, {n-4, n-2, n}, giving (~)-
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n positions, followed by the remaining n points: {I, n-l, n}, {2, n-l, n}, . .. ,{n­

4, n-l, n}, {n- 3, n-l, n}, {n- 2, n-l, n}, {n- 3, n- 2, n-l}, {n- 3, n- 2, n}.

The words u(~*) are ordered according to sequences of elements of n of five

elements, and writing here, for simplicity, the sequence [a, b, c, d, e] to denote the

word u([a, b, c, d, e]) = V{a,b,c} + V{a,b,d} + V{a,c,e} + v{a,d,e}. The ordering is as

follows: [1,2,3, n - 1, n], ... , [1,2, n - 2, n - 1, n]' [n - 1, 1,2, n, n - 2], rn, 1, 2, n­

1, n- 2], ... , [1, n-3, n-2, n-l, n], [n-l, 1, n-3, n, n-2], rn, 1, n-3, n-l, n­

2], [n -1,1, n - 2, n, n - 3], rn, 1, n - 2, n -1, n - 3] giving the first (n;l) -1 vectors;

[2,3,4, n -1, n], . .. rn, 2, n - 2, n -1, n - 3] giving the next (n;2) -1 vectors; carry

on in this way until [n-4, n-3, n- 2, n-l, n]' [n-l, n-4, n-3, n, n- 2], rn, n­

4, n- 3, n -1, n- 2], [n-l, n-4, n- 2, n, n-3], rn, n-4, n- 2, n-l, n-3] giving

(n-(;-4)) -1 = 5 vectors. The total number of vectors is L:~:14 ((n;i) -1) = G) -no

If a matrix of codewords is now formed with the points in the order given,

and the rows the words u(~*) in the order given, then this matrix is in upper

triangular form, with G) - n pivot positions in the first G) - n positions. Thus

D has at least this dimension, for any n ~ 7.•

Proposition 9.2.11 1. Forn = 0 (mod 4) ~ 8, Co(n) = Cl(n) is a [(~), G)-
n,4h code, and Co(n)l- = Cl(n)l- is a [G),n, (n;l)h code with weight

enumerator given in Lemma 9.2.9.

2. For n - 1 (mod 4) ~ 13, Cl (n) is a [G), G) - n + 1, 4h code, and Cl (n)l­

is a [(~), n - 1, 2(n;2) h code with weight enumerator given in Lemma 9.2.8.

For n = 9, Cl (9) is a [84, 76, 3h code and Cl (9)1- is a [84,8, 38h code.

For all n ~ 7, Cl(n) n Cl (n)l- = {O}. For n 0 (mod 4) or n _ 1 (mod 4),

Aut(Cl (n)) = Sn, and for n 2 (mod 4) or n 3 (mod 4), Aut(Cl (n)) = S(~).

Proof: First take n - 0 (mod 4). Then by Lemma 9.2.9, Cl(n)l- has dimension

at least n, so Cl(n) has dimension at most (~) - n. From Lemma 9.2.10, we have
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D C Cl (n) of dimension at least (~) - n, and thus equality holds. The facts

about the minimum weight of Cl(n) and its dual then follow from Lemma 9.2.7

and Lemma 9.2.9. That Cl(n) = Co(n) was proved in Lemma 9.2.7.

Now take n _ 1 (mod 4). Then] E Cl(n) but ] ~ Cl (n)-L. Clearly] E D-L,

and so D-L ::) Cl(n)-L, and D C Cl(n). Now the dim(Cl(n)-L) ~ dim(S) = n - 1,

and so dim(Cl(n)) :S G) - n+ 1. Since dim(D) ~ G) - n, we have dim(Cl(n)) =

G) - n + 1 and Cl(n) = (D,]). This establishes the dimension of the code.

We have already noted the minimum weight of the dual code, since we have just

proved that S = Cl (n)-L and we can thus use Lemma 9.2.8. We need to show that

the minimum weight of Cl(n) is 4 unless n = 9, in which case we will show that

it is 3. Suppose first that w = v{a,b,c} + v{d,e,J} E Cl(n). Then (w,]+w(i)) = 0

for all i E n. Notice that] + w(i) = ] + L ..... " V{i,x,y} = L . v{x,y,z}.
X,Yr~ x,y,z=l~

Since w is to have weight 2, there is some element a, say, not in {d, e, I}. Then

(w,] + w(a)) = 1, giving a contradiction. So there are no elements of weight 2.

Suppose w = v{a,b,c} + v{d,e,f} + v{g,h,i} E Cl (n). If there is some element

j En such that j ~ {a,b,c,d,e,!,g,h,i}, then (w,]+w(i)) = 3 and we have

a contradiction. This shows that 4 is the minimum weight if n > 9. Consider

now the case n = 9. We show that if n = {a,b,c,d,e,!,g,h,i}, then w E Cl (9).

Recall from Lemma 9.2.1 (3b), that Wp = v{a,b,c} + v{a,b,c}o + v{a,b,ch where Wp

is the sum of all the incidence vectors of blocks of VI (n) containing the point

p = {a, b, c}. If we form the vector u = W{a,b,c} + W{d,e,f} + W{g,h,i} , it is quite

direct to show that u = w. Thus the minimum weight is 3 when n = 9.

Now we show that Cl(n) + Cl(n)-L = lF~~) for n - 0 (mod 4) and

n 1 (mod 4) since it already follows for other n. For this, let P = {a, b, c}

be any point and consider w = w(a) + w(b) + w(c) + v{a,b,ch E Cl(n) + Cl (n)-L

for n 0 (mod 4), and u = (] + w(a)) + (] + w(b)) + (] + w(c)) + (] + v{a,b,ch) E

C1(n) + Cl (n)-L for n =1 (mod 4). It is immediate that w = u = v{a,b,c} , which
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establishes the result.

To prove the stated results about the automorphism groups, if n - 0 (mod 4),

then by Lemma 9.2.6, {w(a) I a E fl} is the set of words of weight (n;l) in Cl(n)-L.

Hence if a E Aut(Cl(n)-L), then a(w(a)) = w(b) and since w(a) = w(b) if and

only if a = b, we deduce that a is defined in 8n and hence Aut(Cl(n)) = 8n ·

Now assume that n _ 1 (mod 4). Then for n ~ 13, Cl(n)-L has minimum

weight 2(n;1). The set

{j+w(a)+j+w(b) I a,bEfl,a=lb}={w(a)+w(b) I a,bEfl,a=lb}

is the set of all vectors of minimum weight (this follows from Lemma 9.2.8 and

the fact that 8 = Cl(n)-L). Using the definition of w(a), it is easy to see that

w(a) + w(b) = L (v{a,x,y} + v{b,x,y}).

x,yEfl\{a,b}

Now it is clear that w(a) + w(b) = w(c) + w(d) if and only if {a, b} = {c, d}. So

we deduce that if a E Aut(Cl(n)), then a maps pairs to pairs. Now the proof

follows similarly to the proof in Proposition 9.2.2. For n = 9, direct computations

with Magma show that Aut(Cl (9)) = 89 ,

For n - 2 (mod 4), Cl(n) = IF~~) and hence the result. For n _ 3 (mod 4),

we can easily see that Aut(Cl(n)) = 8(~), because Cl(n) =< vP + j I PEP>

and for any 9 E S(~) we have g(vP + j) = vQ + j .•

Lemma 9.2.12 For n 1 (mod 4), Cl(n) +C2(n) = IFF) and C2(n)-L nT = (J)

where T is as defined in Lemma 9.2.9.

Proof: From Lemma 9.2.1 (3b), we have v{a,b,c} = W{a,b,c} + u, where W{a,b,c} E

Cl(n) and u E C2 (n), since Co(n) ~ C2 (n) by Lemma 9.2.3, and thus Cl(n) +
C2(n) = IF~~). It follows that Cl (n)-L n C2(n)-L = {O}, that is 8 n C2(n)-L = {O},
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where S is defined in Lemma 9.2.6. Suppose that u E C2(n)l- n T. Then

u = 2:a w(a). Either u = 2:a(J + w(a)) or u + J = 2:a(J + w(a)). Recalling

that J E C2(n)-L, we see that either u = 0 or u = J, which proves the assertion.•

Note 9.2.13 From Lemma 9.2.12 and earlier results we see that, for

n - 1 (mod 4),

1. Co(n) C C2 (n);

2. Co(n) ~ Cl (n) n C2(n);

3. dim(Co(n)) ::; (;) - (~).

Lemma 9.2.14 If E = (w(11") 111") where w(11") is defined in Equation (9.8) and

11" ranges over all partitions of all six element subsets 6. of n, then dim(E) ~

G) - G)·

If n = 1 (mod 4), Co(n) = E and has dimension (;) - G). Furthermore,

Co(n) = C1(n) n C2(n).

Proof: The proof follows similar ideas to those in Lemma 9.2.10. Thus

we order the points of P and a specific set of the words w(11") so that the

generating matrix is in upper triangular form. The point order is as follows:

{1,2,3},{1,2,4}, ... ,{1,2,n - 1},{1,3,4}, ... ;{1,3,n - l}, ... ,{l,n - 3,n­

2}, {I, n - 3, n - I}, {2, 3, 4}, ... , {2, n - 3, n - I}, ... , {n - 5, n - 3, n - 2}, {n­

5, n - 3, n - I}, giving G) - G) positions, followed by the remaining points in

arbitrary order.

The words w(11") are ordered according to partitions of subsets of n of six

elements; write here, for simplicity, the sequence [a, b, c, d, e, f] to denote the word

w(11") with partition 11" = {{a,b}, {c,d}, {e,f}}. Thus w(11") is the vector

v{a,c,e} + v{a,c,f} + v{a,d,e} + v{a,d,J} + v{b,c,e} + v{b,c,J} + v{b,d,e} + v{b,d,J}.
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We will refer to the term in the support of w(11") that is earliest in the ordering of

the points as given above, as the leading term of w(11"). We will choose our 11" so

that the leading terms will be the pivot positions in the generating matrix.

The ordering is as follows: [1, n- 2, 2, n-l, 3, n], [1, n - 2, 2, n-l, 4, n], ... , [1, n­

2,2, n - 1, n - 3, n]' [1, n - 3,2, n - 1, n - 2, n], [1, n - 3,2, n - 2, n - 1, n]' [1, n ­

2,3, n - 1,4, n], ... , [1, n - 3,3, n - 2-, n - 1, n], . .. , [1, n - 3, n - 4, n - 2, n - 1, n]

and [1, n - 4, n - 3, n - 1, n - 2, n], [1, n - 4, n - 3, n - 2, n - 1, n] for the first

(n;2) -1 vectors, with leading terms the points {I, 2, 3}, ... {I, n - 3, n -I}. The

next vectors are [2, n - 2,3, n - 1,4, n], . .. , [2, n - 4, n - 3, n - 2, n - 1, n] giving

another (n;3) -1 vectors with leading terms the points {2, 3, 4}, ... {2, n-3, n-l}.

Continue in this way up to the last set of five vectors: [n - 5, n - 2, n - 4, n -1, n­

3, n], [n - 5, n - 3, n - 4, n - 1, n - 2, n], [n - 5, n - 3, n - 4, n - 2, n - 1, n], [n ­

5,n - 4,n - 3,n - l,n - 2,n], [n - 5,n - 4,n - 3,n - 2,n - l,n], with leading

terms {n - 5, n - 4, n - 3}, {n - 5, n - 4, n - 2}, {n - 5, n - 4, n -I}, {n - 5, n­

3, n - 2}, {n - 5, n - 3, n - I}. The number of terms is the sum of these which is

again easily seen to be G) - (~).

If a matrix of codewords is now formed with the points in the order given, and

the rows the words w(11") in the order given, then this matrix is in upper triangular

form, with (~) - (~) pivot positions in the first G) - G) positions. Thus E has

at least this dimension, for any n 2: 7.

If n - 1 (mod 4), then dim(Co (n)) ~ G) - G), as noted above. Since

E s;;; Co(n), we have equality, and since this is also the dimension of Cl (n) nC2 (n),

this completes the proof. •

Note 9.2.15 In the Appendix F we list the ordering of the vectors in the case

n= 9.
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Proposition 9.2.16 For n - 1 (mod 4) ~ 9, Co(n) is a [(~), G) - (;), 8b code,

and Co(n)-L is a [G), G),n - 2b code. Further, Co(n) n Co(n)-L = {O}.

For all n "t 2 (mod 4), Aut(Co(n)) = Sn and for n - 2 (mod 4), Aut(Co(n)) =

S(~) .

Proof: Since Co(n) C C2(n), its minimum weight is at least 4, and a vector of

weight 4 would be of the form w(a, b, c, d) E C2(n), as shown in Proposition 9.2.2.

Since these words span C2(n) and since Aut(Co(n)) ;2 Sn, which is transitive on 4­

tuples, if Co(n) contained one word of weight 4 it would contain all those in C2(n)

and hence Co(n) = C2(n), which is a contradiction for n = 1 (mod 4). Thus its

minimum weight is 6 or 8. If it contained a word of weight 6 then such a word

would be in both C2 (n) and C1(n), and w = w(a, b, c, d) + w(a, b, c, e) would be a

candidate. Consider the vector u = u([a, b, d, e, cD = v{a,b,d} + v{a,b,e} + v{a,d,c} +

v{a,e,c} E Cl (n). Then w + u E Cl (n) and has weight 2, which is a contradiction.

Thus we need only show that the words of weight 6 in C2(n) have the form of w,

in which case it will follow that Co(n) will have minimum weight 8. For this, we

use the words w(a, b) E C2 (n)-L, as defined in Equation (9.7). Suppose u is a word

of weight 6 in C2(n). Any w(a, b) must meet the support of u evenly: clearly six

times is impossible, since if {a,b,c} is in the support, then (w(b,c),u) = 1. Four

times is also easily seen to be impossible for the same reason, so any w(a, b) can

meet the support of u twice or not at all. Thus u must be such that if {a, b, c} is

in its support, each pair {a, b}, {a, c} and {b, c} must occur again in a point in the

support of u. Consideration of the possibilities leads only to a word of the form

w = w(a, b, c, d) + w(a, b, c, e). Thus the minimum weight of Co(n) is 8. That the

minimum weight of Co(n)-L is n - 2 follows by a similar argument to that given

in Proposition 9.2.2.

To show that Co(n) n Co(n)-L = {O}, again we show that Co(n) + Co(n)-L =

lF~~). Recall that w(a) and w(a, b) are in Co(n)-L, where w(a) is as defined in

Equation (9.11). Then, for any {a,b,c}, w(a) +w(b) +w(c) +w(a,b) +w(a,c) +
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w(b, c)+J+ V{a,b,c}o = (w(a)+w(b)+w(c)+ v{a,b,ch )+(w(a, b)+w(a, c)+w(b, c)+

v{a,b,ch ) + V{a,b,c} = v{a,b,c} , as we observed before (and using Equation (9.4)),

and hence Co(n) + Co(n)l- = lFF).

For the automorphism groups, if n = 0 (mod 4), then Co(n) = C1(n) and

hence Aut(Co(n)) = Aut(C1 (n)) = Sn by Proposition 9.2.11. If n 1 (mod 4),

then by Lemma 9.2.8, {w(a) I a E D} is the set of words of weight (n~l)

for Co(n)l-. Now the proof is similar to the proof in Proposition 9.2.11. If

n _ 3 (mod 4), then Co(n) = C2(n) and the result follows from Proposition 9.2.2.

For n - 2 (mod 4), C2(n) = lF~~) and the result follows.•



Chapter 10

Permutation Decoding

10.1 Introduction

In Section 3.5 we have introduced the concept of permutation decoding sets and

described the algorithm through which these sets are constructed. This chapter

has a two fold methodological aim. The first aim is to present the theory as

richly as possible with examples. This is done by using this decoding method in

obtaining explicit PD-sets for some of the codes presented in Chapters 8 and 9,

that is the binary codes of the triangular graphs and the codes obtained from the

graphs on triples. The success of decoding came about by ordering the points

in such a way that the nature of the information symbols was known and the

action of the automorphism group apparent. The second aim is to illustrate with

particular examples how computational methods could be applied in the cases

where the minimum distance is reasonably small. Using Magma [11] we have

obtained such sets for the [15,4, 8h code of the 2-(15,8,4) design described in

Proposition 6.3.1, which is the dual code of the Hamming code of length 15, and

for the binary codes of the Chang graphs.

124
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We have developed two programmes in Magma (see Appendices C and H)

which deal with computations. The first programme (Appendix C) computes the

PD-sets of t-error-correcting codes, for small t, with t ::; 7. The second programme

(Appendix H) is used for constructing the Chang graphs and their codes.

10.2 Codes of the triangular graphs

In this section we describe specific PD-sets for the binary codes obtained from

the triangular graphs. For decoding purposes we order the points in such a

way that the nature of the information symbols is known and the action of the

automorphism group apparent. These codes were constructed in Chapter 8 and

their properties were given in Lemma 8.2.3. In Lemma 8.2.7 we showed that by

ordering the points in the following way:

{I, 2}, {I, 3}, ... , {I, n - I}, {2, 3}, ... , {2, n - I}, ... , {n - 2, n - I}, (10.1)

followed by the remaining points

{I, n}, {2, n}, ... , {n - 1, n}

we get the generator matrix of Cl.. in upper triangular form.

(10.2)

The generator matrix obtained in Lemma 8.2.7 for Cl.. with the above ordering

can be reduced to the form [hIA) where k is the dimension of Cl... If the points

are re-ordered with the first k put at the end, then the matrix is [Alh). This is

now standard form for the code C, and the corresponding generator matrix for C

has the form [In - k IAT], where here we are using n for the length of the code.

In order to get the generator matrix into standard form, as described above,

we order the point set P by taking the set from Equation (10.2), that is

PI = {I, n}, P2 = {2, n}, ... ,Pn - 1 = {n - 1, n}, (10.3)
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first, followed by the set from Equation (10.1), that is
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Pn = {1, 2}, Pn +1 = {1, 3}, ... ,P2n- 2 = {2, 3}, ... ,p(~) = {n - 2, n - 1}. (10.4)

The generator matrix for Cl., using the words of weight 3 (with J if n is even),

is then a check matrix for C in standard form. The generator matrix for C will

then also be in standard form, with the first n - 1 coordinates the information

symbols for n odd, and the first n - 2 for n even. Using the fact that the group

of the code is Sn, we can find PD-sets for the code C.

Proposition 10.2.1 For n 2:: 5 odd, a PD-set of n elements can be found for C.

If the points are ordered as given in Equations (10.3) and (10.4), the set

S={le}U{(i,n) 11:Si:sn-1}

of permutations in Sn in the natural action on the points P forms a PD-set of n

elements for c.

Proof: Order the points of the coordinate set P as described in Equations (10.3)

and (10.4) so that the first n - 1 points are in the information positions.

Now C can correct t = n~3 errors. We need a set S of elements of

G = Sn = Aut(C) such that every t-set of elements of P is moved by some

element of S into the check positions. If the s:S t positions are all in the check

positions, then we can use the identity element, le, to keep these in the check

positions.

Suppose the s :S t positions occur at

distinct points in the information positions, and at
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distinct points in the check positions, where r + m = s < t. The number of

elements of n in the set

T = {aI, ... ,ar } U {b l , ... ,bm } U {Cl, ... , Cm} <;;; n \ {n}

is at most r + 2m. Since r + m :::; t = (n - 3)/2, we have 2r + 2m :::; n - 3, and

thus r + 2m :::; n - 3. Thus there are elements other than n in n that are not in

T; let d be one of these. The transposition (j = (d, n) will map the r elements

out of the information positions, as required, and fix the m elements already in

the check positions.

It follows that the given set

S = {le} U {(i,n) 11:::; i:::; n -1}

forms a PD-set of n group elements for the code.•

(10.5)

In this case the Gordon bound (see Theorem 3.5.5) has an explicit form:

Lemma 10.2.2 For n ~ 5 odd, the Cordon bound for C is n~l.

Proof: The length of the code is G) and the redundancy is r = G) - n +1. With

t = n~3, we have

G) - t + 1 n 2
- 2n + 5

(~) - n + 1 - t + 1 = n2 - 4n + 7

for the innermost term. In fact the Gordon bound is

r n2 - n r rn2
- 2n + 7 rn2

- 2n + 511 11
n2 - 3n + 2 ... n 2 - 4n + 9 n 2 - 4n + 7 . . . .

It is not hard to show that this is equal to n~l for n ~ 5 and odd.•



CHAPTER 10. PERMUTATION DECODING 128

Proposition 10.2.3 For n 2: 6 and even, a PD-set of n2
- 2n + 2 elements can

be found for C. If the points are ordered as given in Equations (10.3) and (10.4),

the set

5 = {le} U {(i,n) 11 :S i:S n -1} U {[(i,n -l)(j,n)]±l 11:S i,j:S n - 2}

of permutations in Sn in the natural action on the points P is a PD-set for C.

Proof: Again we order the points as in Equations (10.3) and (10.4) so that now

the points PI, P2 , . .. , Pn - 2 are in the information positions, I, and the remaining

points of P, starting with Pn - I = {n -1, n}, then followed by Pn , ... , p(~), are in

the check positions, £. In this case we need to correct t = n - 3 errors, since the

minimum weight is 2(n - 2).

We claim that

5 = {le} U {(i,n) 11:S i:S n -1} U {[(i,n -l)(j,n)]±1 11 :S i,j:S n - 2}

is a PD-set for C. Note that 151 = 1+n-1+2(n-2)+(n-2)(n-3) = n2 -2n+2.

We need to show that every t-tuple T of points of P can be moved into the check

positions £ by some member of 5. Consider the various cases for the members of

T:

(i): if all the t positions are in £ then le will do;

(ii): if all the t positions are in I then (n - 1, n) will do;

(iii): if some a E n \ {n} does not occur in any member of T then (a, n) will do.

We can thus restrict our attention to those sets T for which every a E n
appears in some duad in T. We show that if {a, b} E T and a does not occur

again in any element of T, then an element of 5 can be found to map T into £.

Consider the possible cases:

(iv): a = nand b = n - 1, then le will do; if b =J n - 1, then (b, n - 1) will do;

(v): a =J nand b = n then if a = n - 1, (n, n - 1) will do and if a =J n - 1 then
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(a, n, n - 1) = (a, n)(a, n - 1) will do;

(vi): a =I nand b =I n then if a = n - 1, (b, n - l)(b, n) will do; if a =I n - 1, then

if b = n - 1, (a, n) will do and if b =I n - 1, (a, n)(b, n - 1) will do.

So if there is a duad {a, b} E T such that a occurs only once, our set of

permutations will form a PD-set. Now every a E n occurs and if every element

appears more than once we would have 2n elements to place in 2t = 2(n - 3)

positions, which is impossible.•

Remark 10.2.4 (i) The code Cl.. has minimum weight 3, so can only be used

for single-error correction. Thus syndrome decoding would be the usual method

employed. However notice that PD-sets can be found easily for this code too,

using the ordering of the points given in Lemma 8.2.7, where the set S of n

permutations given in Equation (10.5) will form a PD-set for Cl.. for n ~ 5 odd

or even. The Gordon bound is less than this number.

(ii) The permutations given in the set S need to be written as permutations on

the points g, P2 ... , p(~). Thus, for example, if n = 6, then with the ordering of

the points as given in Equations (10.3) and (10.4),

(1,6)

(1,5)(1,6)

(1,5)(2,6)

(P2,P6)(P3,P7)(P4,PS)(P9,P5)

(PI,P9,P5)(P2,P6,PI2)(P3,P7,PI4)(P4,PS,PI5)

(PI, PI2 )(P3,PlO) (P4,Pn )(P6,P5)(P7,PI4 )(PS,P15 )

(iii) For n even the Gordon bound becomes

r n2 - n rn
2

- n - 2 r rn
2

- 3n + 811 11
n 2 - 3n + 4 n 2 - 3n + 2 ... n 2 - 5n + 12 . . . .

An exact formula for this, in contrast to the odd case, does not seem evident,

but from computations (using Magma [11]) up to a large value of n, the following

formula appears to hold for this bound for n ~ 18 (smaller values of n seem
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to be unrepresentative of the general rule): writing n = 2k + 18, k1 k

(mod 6) E {O, 1,2,3,4, 5}, k ~ 0, the Gordon bound for n is

n + 8 + 10 l~J+ k1 + l~l J.
For n even the size of the PD-sets we have found are of the order of n2

, a lot

bigger than the Gordon bound, which gives the order of n; the Magma output in

Appendix E, illustrates this. However, we show also the size of the automorphism

group in comparison to illustrate that our sets are a lot better than trying to use

the whole group.

10.3 Codes of the graphs on triples

In this section using the results established in Chapter 9 we determine PD-sets,

for some of the binary codes obtained from the adjacency matrix of the graphs

on (~) vertices, for n ~ 7, with adjacency defined by the vertices as 3-sets being

adjacent if they have zero, one or two elements in common, respectively. In

Proposition 9.2.2 we showed that the points {1, 2, n}, {1, 3, n}, ... , {n-2, n-1, n}

can be taken to be the information positions for the code C2 (n)..L for n ~ 7 odd.

We now replace the point {n - 2,n -l,n} with {n - 3,n - 2,n - 1}; that this

can be done is easily seen by looking at the last basis word for C2(n), that is

w(n - 3, n - 2, n - 1, n). With this ordering of points, the generator matrix for

C2 (n)..L is in standard form and we have the following:

Theorem 10.3.1 Let D = C2 (n)..L be the [G), (n;1),n-2]z code from the design

'D2(n) when n ~ 7 is odd. Taking the points {1, 2, n}, {1, 3, n}, ... , {n-2, n-1, n}

as information symbols, but replacing the point {n - 2, n - 1, n} by {n - 3, n ­

2, n - 1}, then D has a PD-set in Sn given by the following elements of Sn in their

natural action on triples of elements of n = {1, 2, ... ,n}:

S = {(n, i)(n - 1, j)(n - 2, k) 11 ~ i ~ n, 1 ~ j ~ n - 1, 1 ~ k ~ n - 2}.
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We note that the notation includes the convention (i, i)

element of Sn.
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1, the identity

Proof: That the information symbols can be taken as given above follows from

Proposition 9.2.2. Let 'I denote the information positions, and E the check

positions. Thus

'I = {{i, j, n} I 1 5: i < j < n} U {{n - 3, n - 2, n - 1n\ {{n - 2, n - 1, nn·
Let P = {n - 3, n - 2, n -I} E 'I and Q = {n - 2, n -1, n} E E. Notice that the

code D will correct t = n~3 errors.

Take a set T oft points ofP and let T = U{a,b,c}ET{a, b, c}. We need to exhibit

an element a E S such that T a ~ E. For this we need to consider the different

types of composition of T, so the proof goes through a number of cases. Notice

that if T ~ E then the identity 1 will do. Thus suppose T ~ E.

Case (I): T ~ 'I. Then at least t - 1 members of T contain n.

(i) P rf. T: then ITI 5: 2t + 1 = n - 2, so there are at least two elements a and b

in .0, not equal to n, that are not in T. If a 5: n - 3 then a = (n, a) will satisfy

Ta ~ E. If {a,b} = {n - 2,n -I} then again (n,a) will do.

(ii) PET: then ITI 5: 2(t - 1) + 1 + 3 = n - 1, so there is at least one element

a E .0 such that a rf. T. Clearly a 5: n - 4. If ITI = n - 1, then n - 3, n - 2, n - 1

appear only in P and in no other element of T. Thus (n, n - 3) will do. If

ITI < n - 1 then there are at least two elements a, b rf. T with a, b 5: n - 4. Then

T(n, a)(n - 1, b) ~ E.

Case (ll): suppose T meets both 'I and E non-trivially.

(i) Suppose first that there is an element a E .0 such that a rf. T.

1. If a 5: n - 4 then if P rf. T, g = (n, a) will do. If PET then the number of

points of the form {i, n-2, n-3} with i =I- n, n-1, a is n-5 > t-1 for n ~ 7,

so there is an element b :S n - 4 such that b =I- a and {b, n - 2, n - 3} rf. T.
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Then T(n, a)(n - 1, b) ~ E.
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2. If a = n - 3 then P tf. T. If Q tf. T then (n, n - 3) will do. If Q E T then

T(n, n - 3)(n - 1, b) ~ E for any b :::; n - 4.

3. If a = n - 2 then P, Q tf. T. If {n - 3, n - 1, n} tf. T then (n, n - 2) will do,

and if {n-3,n-1,n} ET, then (n,n-2)(n-1,b) for some b:::; n-4 will

do.

4. If a = n - 1 then P, Q tf. T. If {n - 3, n - 2, n} tf. T then (n, n -1) will do,

and if {n - 3, n - 2, n} ET, then (n, n - 1) (n - 2, b) for some b :::; n - 4 will

do.

5. If a = n, then T n I = {{n - 3, n - 2, n - I}}. The number of points of the

form {i, n - 2, n - 3} with i =I- n, n - 1 is n - 4> t - 1 for n ~ 7, so there is

an element b :::; n - 4 such that {b, n - 2, n - 3} tf. T. Then T(b, n - 1) ~ E.

(ii) Now suppose that T = D. For a E D, let X a denote the number of times a

appears in points in T. So 1 :::; X a :::; t for each a E D and 3t = L~=l Xi' For

1 :S i:S t let ki = I{a E D I X a = i}l. Thus

For any a E D, X a = 3t - Lb#a Xb :S 3t - (n - 1) = t - 2, and so k i = 0 for

i~t-1.

We will now show that we can find a point {a, b, c} ET such that X a = Xb = 1,

a, b :S n - 4, and c =I- n. Suppose X n = m, where 1 < m :S t - 2. Then

3t = k 1 + m + L ~ k1 + m + 2(n -1- k1 ),

Xa~2,a#n

which simplifies to k1 ~ t + 4 + m. If m = 1 then this inequality still applies if

we take k1 to be the number of elements with X a = 1 excluding n. Suppose that
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as many pairs with X a = 1 as possible occur as part of a triple with n in T. This

uses 2m elements, leaving k1 - 2m 2: t + 4 - m elements with X a = 1 (always

excluding n from the count). We want to exclude n - 3, n - 2, n - 1, which still

leaves at least k 1 - 2m - 3 2: t +m-I elements. The number of points available

is t - m so we must have at least one point X = {a, b, c} with two elements a and

b with X a = Xb = 1, a, b :::; n - 4, and c #- n.

Finally we show how this point X = {a, b, c} can be used to define group

elements that will map T into E. We need to look at the various possibilities for

c.

1. c :::; n - 4: then C7 = (n,a)(n -l,b)(n - 2,c) will satisfy TC7 ~ E, since

{d, e, n}C7 E E, {a, b, C}C7 = {n, n-1, n-2} E E, and {n-3, n-2, n-1}C7-1 =

{b, c, n - 3} rf. T, since Xb = 1 and a#- n - 3.

2. c = n - 1: then C7 = (n, a)(b, n - 2) will work as above, noting that

{n - 3, n - 2, n - 1}C7-1 = {b, n - 1, n - 3} rf. T, since Xb = 1 and a #- n - 3.

3. c = n - 2: then C7 = (n, a)(b, n - 1) will work as in the previous case.

4. c = n-3: then {a,b,c} = {a,b,n-3} and take C7 = (n,a)(b,n-1)(n-2,n­

3). Then {a,b,c}g = {n,n -l,n - 2} E E, and {n - 3,n - 2,n -1}C7-1 =

{b, n - 2, n - 3} rf. T, since Xb = 1 and a #- n - 2.

We have shown that every t-tuple, and hence every s-tuple for s :::; t can be moved

by an element of S into the error positions. Thus S is a PD-set for D.•

Next we looked at the code Co(n) for n = 1 (mod 4) 2: 9, with minimum

weight 8 and thus 3-error-correcting. This code has been obtained in

Proposition 9.2.16. Note first that from Lemma 9.2.14 we can take as the (;)

check positions the points {i, j, n} for 1 :::; i, j :::; n - 1, {i, n - 2, n - I} for

1 :::; i :::; n - 3 and two extra points: {n - 4, n - 3, n -I} and {n - 5, n - 4, n - 3},
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where again we have switched the last point with {n - 4, n - 3, n - 2} in order to

be able to construct a PD-set.

Theorem 10.3.2 Let C = Co(n) be the [G), (~) - (~),8h code from the design

Vo(n) when n _ 1 (mod 4) 2: 9. With information and check positions defined as

above, C has a PD-set in Sn given by the following elements of Sn in their natural

action on triples of elements of n = {I, 2, ... , n}:

where (i, i) denotes the identity element of Sn'

Proof: Let T denote the information positions and £ the check position. Thus,

writing P = {n - 4,n - 3,n -I} and Q = {n - 5,n - 4,n - 3}, let

£1 = {{i,j,n} 11 ~ i,j ~ n -I},

£2={{i,n-2,n-l} 11~i~n-3},

and £3 = {P, Q}, then

The code C corrects three errors, so for any given set T of three points of

P, we need to exhibit an element (J E S such that T (J ~ £. For this we need

to consider the different types of composition of T, depending on the number of

points from T in T. Notice that if T ~ £ then the identity 1 will do, which is

included in S. Thus suppose T ~ £.

Case (1): T ~ T Let T = {PI, P2, P3 }. If there is an element a E Pi for

i = 1,2,3, then (n, a) will do. If there is an element a E PI, P2, and a tt P3 , then

if P3 = {g, h, i}, where g < h < i ~ n - 1, then (n, a)(n - 1, i)(n - 2, h) will map

Tto £.
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Now we can suppose the Pi are disjoint, where PI = {a, b, c} and a < b < c :s;
n - 1, and P2 = {d, e, f} where d < e < f :s; n - 1. Since these are disjoint, their

images must be disjoint, so we need a E S such that ga E El, P2a E £2 and

P3a = Q. Consideration of the cases involved easily yields that some element of

the form

where ai :s; n - i + 1, will work in all cases, as required.

Case (11): T n I = {PI, P2 }. We consider possibilities for P3 E £.

1. P3 E El, that is P3 = {n, h, i}:

(a) if PI n P2 = 0, then (n - 1, a)(n - 2, b)(n - 3, d)(n - 4, e)(n - 5, f) will

map T into £;

(b) if PI n P2 = {a}, where a = d, then (n, a)(h, n - l)(i, n - 2) will do;

(c) if PI n P2 = {a, b}, then (n - 1, a)(n - 2, b) will do.

2. P3 E £2, that is P3 = {n -l,n - 2,i}:

(a) if PI n P2 n P3 = 0, or if PI n P2 = 0 and neither n - 1 nor n - 2 are

in g U P2 , then (n, a)(n - 3, d)(n - 4, e)(n - 5,1) will map T into £;

if n - 1 = a or n - 2 = a, then (n, a)(n - 3, d)(n - 4, e)(n - 5,1) will

still do;

(b) if PI n P2 = {a}, where a = d, then (n, a) will do;

(c) if PI n P2 = {a, b}, then (n, i)(n - 1, a)(n - 2, b) will do.

3. P3 E £3, that is P3 = P or Q:

(a) if a E g n P2 , then (n, a) will do;
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(b) if PI and P2 are disjoint then they must map to disjoint elements in

£ while P3 must also stay in £; this can be done by mapping P3 to

an element in £ 1, g to an element in £2 and P2 to P or Q. This can

be achieved with an element (/ of S. Note that the transpositions in (/

need not commute.

Case (Ill): T n 'I = {PI}'

1. If n tt P2 or P3 , then (n, a) will map T into £.

2. If n E P2 n P3 then we can map PI into £2 and keep P2 and P3 in £1 by an

element of the form (n - 1, b)(n - 2, c) or (n - 1, c)(n - 2, b) (where we still

use the convention that a < b < c).

3. If P2 E £1 and P3 E £2 then if n - 1, n - 2 tt g, the element

(n - 3, c)(n - 4, b)(n - 5, a) will map PI to Q and keep P2 in £1, and P3 in

£2; if c = n -1 then (n - 3, b)(n - 4, a) maps g to P, and if c = n - 2 then

(n - 1, n - 2)(n - 3, b)(n - 4, a) will map g to P, and the others will stay

in the same class.

4. If P2 E £1 and P3 E £3, then P3 = P or Q. Taking P3 = Q first, if none of

n - i for i E {l, 2, 3, 4, 5} are in PI, then (n - 1, a)(n - 2, b) will do. If some

of the n - i are in PI then a case by case analysis shows that we can keep

P2 in £1 and map PI and P3 into £2 or £3. The same is true for P3 = P; we

leave these details for the reader to check.

Thus in all cases we have shown that an element of S can be found to move the

triple into the check positions, so S is a PD-set for the code.•
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10.4 PD-sets through computation

For small t, PD-sets can be found computationally. Using Magma we have

designed a programme (see Appendix C) which could be used to determine the

PD-sets with small t and t ::; 7. We used the programme and determined the

PD-sets for the [15,4, 8h code of the 2-(15,8,4) design, and the binary codes of

the Chang graphs. This programme was also used for the PD-sets of codes related

to Ag (see discussion in Section 6.3.2). A list of these codes and corresponding

PD-sets can be found at the website:

http://www.ces.clemson.edu/-keyj

under the list of PD-sets.

In [60] Key, examined the Hermitian and Ree unitals on 28 points, both of

whose codes are only single-error correcting, but nevertheless PD-sets were found.

Key also looked at some codes from desarguesian projective planes; these codes

are cyclic, so PD-sets were found in the normalizer of a regular cyclic subgroup of

the automorphism group.

10.4.1 Codes from A6 and Ag

As an illustration of permutation decoding, we obtained a PD-set for the binary

code of the 2-(15,8,4) design: the code is the simplex code of length 15, that is

a [15,4,8] code, which is the dual to the binary Hamming code of length 15. A

generator matrix in standard form is

[1 000 1 1 1 o 1 0 1 o 0 1 1]

[0 1 000 1 1 1 0 0 0 1 1 1 1]

[0 0 1 o 1 1 000 1 1 1 1 0 1]

[0 0 0 10111 1 1 1 0 1 0 0]
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From Lemma 6.3.1 we have that the automorphism group of this code is the

group PGL4 (2). The group PGL4 (2) contains Singer cycles, and hence the code

is cyclic. According to the bound mentioned in Theorem 3.5.5, at least five

permutations are needed for a PD-set. In addition, according to the analysis

in MacWilliams [79], a PD-set might be found in a Singer group. Using the

programme listed in Appendix C we found the following seven elements that form

a PD-set for this code in a Singer group in PGL4 (2):

Id,

(1, 13, 10, 9, 8)(2, 5, 14, 7, 6)(3, 11, 15, 12, 4),

(1,15,2,13, 12, 5, 10, 4, 14, 9, 3, 7, 8, 11, 6),

(1, 2, 12, 10, 14, 3, 8,6, 15, 13, 5, 4, 9, 7, 11) ,

(1, 11, 7, 9, 4, 5, 13, 15, 6, 8, 3,14, 10, 12, 2),

(1, 8, 9, 10, 13)(2, 6, 7, 14, 5)(3, 4, 12,15,11) ,

(1, 6, 11, 8, 7, 3, 9, 14, 4, 10, 5, 12, 13, 2, 15).

This gives an algorithm for correcting three errors. The minimum size of a PD-set for

this code is 5.

We now list some of the codes with interesting parameters obtained from the

designs resulting from the action of Ag (see Section 6.3.2) on two different designs

on 126 points:

• The binary code C of the 1-(126,20,20) design is a [126,56, 6h with dual a

[126, 70, 5h code. For C the minimum size of a PD-set is 4, and we found

one of size 17; for Cl.. the minimum size is 7 and we found one of size 32.

• The binary code C of the 1-(126,40,40) design is a [126,48, 16h and its dual

is a [126, 78, 5h code. We found a PD-set of size 43 for Cl.., the minimum

size being 8.
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10.4.2 Binary codes of the Chang graphs
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There exist four non-isomorphic strongly regular graphs of the type (28,12,6,4),

being T(8) and the three Chang graphs. All these graphs are switching equivalent.

Definition 10.4.1 [22] The operation of switching a graph f with respect to a

set Y of vertices replaces f by the graph f' such that {a, b} is an edge of f' if and

only if both or neither of the following conditions occur:

(i) I{a,b} n YI = 0 or 2.

(ii) {a, b} is an edge of f.

In other words switching replaces all edges between Y and its complement

with non-edges and vice versa, leaving edges within Y and outside Y unaltered.

The vertex set of T(8) is the set of duads of {1, 2, ... ,8}. So a subset of the

vertex set can be regarded as the edge set of a graph with eight vertices. Here

we take a set of eight elements {a, b, c, d, e, f, g, h} as vertices for T(8). The three

Chang graphs can be obtained by switching T(8) with respect to:

(1) four disjoint edges, that is {a, b}, {c, d}, {e,f}, {g, h};

(2) an octagon, that is {a,b},{b,c},{c,d},{d,e},{e,f},{f,g},{g,h},{h,a};

(3) the disjoint union of a pentagon and a triangle, that is

{a,b},{b,c},{c,a},{d,e},{e,f},{f,g},{g,h},{h,d}.

Each graph obtained is a strongly regular graph with parameters as those of

T(8), that is (28,12,6,4). Additional information on the Chang graphs can be

found in [22, Chapter 4] and [87].

By making use of the notion of switching as given above we have developed a

programme in Magma (see Appendix H), which we used to construct the Chang

graphs from T(8), and to determine their respective binary codes.

In Table 10.1 we list the codes from the Chang graphs and T(8) respectively.

The first column gives the names of the graphs which we adopted as the names
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of their respective codes, the second the dimension, and the remaining the weight

enumerator of each of the codes. We will call the binary codes from the Chang

graphs, Chang 1, Chang 2 and Chang 3 codes, respectively. From Lemma 8.2.3

we have that T(8) produces a binary code of dimension 6 and from Table 10.1

we deduce that each Chang code has dimension 8. Now if C is any of the Chang

codes, it follows from [50, Theorem 5.1] that J E C. In addition observe that

the Chang 1 and Chang 2 codes, have the same weight enumerator, and they

are 3-error-correcting codes. Using the notion of invariant multisets on the

codewords of weight 8, it is shown in [50] that the Chang 1 and Chang 2 codes

are non-isomorphic.

Name Dim 0 4 8 12 16 20 24 28

T(8) 6 1 28 35 1

Chang 1 8 1 6 121 121 6 1

Chang 2 8 1 6 121 121 6 1

Chang 3 8 1 1 3 121 128 3 1 1

Table 10.1: Weight enumerator of the codes of the graphs of type (28,12,6,4)

Using the programme given in Appendix C we determined PD-sets associated

with the Chang codes.

In the following we only list the a PD-set for the Chang 1 code. Note that

according to the Gordon bound the minimum size for a PD-set for the Chang 1

code is 5, and the PD-set presented below has 16 elements. The PD-set for the

Chang 2 code is given in Appendix I. Notice that the Chang 3 code is a single­

error correcting code, so a PD-set for this code could be found using syndrome

decoding.

(1,23)(2,22)(3,25)(4,21)(5,12)(6,17)(8,27)(9,19)(11,15)(13,26)(14,20)(24,28),

(1,7,23,20,11,6,22,18,2,17,15,14)(3,12,5,25,26,27,24,19,9,28,8,13)(4,21,10),
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(1.22)(2.19)(3.15)(4.10)(6.26)(7.25)(8.14)(11.24)(12,23)(16.21)(17.20)(18.28).

(1.8)(2.13)(3.28)(5.6)(9.14)(10.16)(11,15)(12.17)(19.20)(22.26)(23.27)(24,25).

(1.8.24.20.12.28,22.26.3.17.19.25)(2.15.27.14.7.9,23,11.13.6.18.5)(4.16.10).

(1.7)(2.6)(3,5)(8.26)(9.24)(10.21)(11.17)(13.25)(14,23)(15.20)(18.22)(27.28).

(1.20)(2.18)(3.26)(4.10)(6.15)(7.23)(8.24)(11.14)(12.25)(13.27)(17.22)(19.28).

(1,7.8.22.18.26)(2.5.28.23,9.25)(3.6.13.24.14.27)(10.21,16)(11.12.17.15.19.20).

(1.27)(2,26)(3.24)(4,21)(5.17)(6,12)(8.23)(9,20)(10.16)(13,22)(14.19)(25.28),

(1.23,9,12.22.2.5.19)(3.15,28.7,24.11.25,18)(4,10.21.16)(6.27.26.20.14.13,8,17),

(1.7.27.25.22.18.13.28)(2.12.6,26,23.19.14.8)(3.17.11.5,24.20,15.9)(4.21.16.10).

(1.23,28.20.6.3.22.2,25,17.14.24)(4.21.16)(5.8.18.27,12,15.9,26.7.13,19,11).

(1.27.22.13)(2.6.23,14)(3.11,24,15)(4.16)(5.20.9.17)(7,25,18.28)(8.12.26.19)(10,21).

(1.23.11.22.2,15)(3,5.26.24.9.8)(4.10.21)(6.18,17,14,7.20)(12.25.27.19.28,13).

(1.27.20.5.22.13,17.9)(2.11,26,25.23.15.8.28)(3.6.18.12.24.14.7.19)(4.16.10.21).

Id.
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Appendix A

Programmes Al and A2

We have included two main programmes written in Magma that were used in

the construction of designs and codes from finite simple groups. All of our work

was carried out on Sun workstations at the University of Natal and Clemson

University with Magma versions 2.7 and 2.8. Here we first give a general purpose

programme (Programme AI) used to find the designs and respective binary

codes from primitive permutation representations of simple groups and then we

list Programme A2 which was used to obtain the designs and codes from the

alternating groups A6 and Ag , followed by the output of the respective designs

and binary codes.

A.I Programme Al

load simgps;

SetLogFile(uG.out U) ;

g:=SimGroup(uG");

re:=SimRecord(uGU);

ma:=re'Max;

for k:=l to #ma do

gk:=ma[k] ;
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a1,a2,a3:=CosetAction(g,gk);

st:=Stabilizer(a2,l);

orbs:=Orbits(st);#orbs;

v:=Index(a2,st); v;

pr:=[divisors of order of G];

lo:=[#orbs[i]: i in [l .. #orbs]];lo;

for j:=2 to #10 do

"orbs no" ,j, "of length" ,#orbs [j] ;

for 1:=1 to #orbs do

blox[l] :=Setseq(orbs[j]-a2);

des [1] :=Design<l,vlblox[l]>; des[l];

IsIsomorphic(des[l],des[l+l]);

"des" ,des [1], "is isomorphic to" ,des [1+1] ;

autdes:=AutomorphismGroup(des[l]);

autdes; for i:=l to #pr do

p:=pr[i]; dc:=descode(v,blox,p);

dl:=Dual(dc); d1:=Dim(dc);

d2:=Dim(dl); d3:=Dim(dc meet dl);

"p=" ,p, "dim=" ,d1, "dimdual=" ,d2, "hull=" ,d3;

end for; end for; end for; end for;
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A.2 Programme A2 lithe natural representations

IIResults for G=A6, of order 360

liThe program, where G=A6 or A9

load simgps;

g:=SimGroup("G");

re:=SimRecord("G");

ma:=re'Hax;

"no. of prim. reps=",#ma;

for k:=l to #ma do

k,' 'th prim. rep.";

gk:=ma[k];

al,a2,a3:=CosetAction(g,gk);

st:=Stabilizer(a2,l);

orbs:=Orbits(st);

"no. of orbits=".#orbs;

v:=Index(a2,st);

((degree=' , ,v;

pr: =[2,3,5,7] ;

lo:=[#orbs[i]: i in [l .. #orbs]];

"seq. of orbit lengths=",lo;

for j:=2 to #10 do

"orbs nO",j,"of length" ,#orbs[j];

blox:=Setseq(orbs[j]Aa2);

des:=Design<l,vlblox>;des;

autdes:=AutomorphismGroup(des);

"autgp of order",Order(autdes);

for i:=l to #pr do

p:=pr[i] ;

dc:=LinearCode(des,GF(p));

dl:=Dual(dc); dl:=Dim(dc);

d2:=Dim(dl); d3:=Dim(dc meet dl);

('p=" .p,' 'dim=" ,d1,' 'dimdual=" J

d2,' 'hull=" ,d3;

if not ({dl,d2} subset {O,l,v-l,v})

then if i in {1} then

cau:=PermutationGroup(dc);

"perm gp of order",Order(cau);

end if; end if;

end for; ('-----";

end for; (( ..... ";

end for;

Ilomiting the trivial designs and

$4 th prim. rep.

no. of orbits= 3

degree= 15

seq. of orbit$ lengths= [1,6,8]

orbs no 2 of length 6

1-(15, 6, 6) Design with 15 blocks

autgp of order 720

p= 2 dim= 14 dimdual= 1 hull= 0

p= 3 dim= 9 dimdual= 6 hull= 0

perm gp of order 720

p= 5 dim= 15 dimdual= 0 hull= 0

orbs no 3 of length 8

1-(15, 8, 8) Design with 15 blocks

autgp of order 20160

p= 2 dim= 4 dimdual= 11 hull= 4

perm gp of order 20160

p= 3 dim= 15 dimdual= 0 hull= 0

p= 5 dim= 15 dimdual= 0 hull= 0

5 th prim. rep.

no. of orbits= 3

degree= 15

seq. of orbit lengths= [ 1, 6, 8 ]

orbs no 2 of length 6

1-(15, 6, 6) Design with 15 blocks

autgp of order 720

p= 2 dim= 14 dimdual= 1 hull= 0

p= 3 dim= 9 dimdual= 6 hull= 0

perm gp of order 720

p= 5 dim= 15 dimdual= 0 hull= 0

orbs no 3 of length 8

1-(15, 8, 8) Design with 15 blocks

autgp of order 20160

p= 2 dim= 4 dimdual= 11 hull= 4

perm gp of order 20160

p= 3 dim= 15 dimdual= 0 hull= 0

p= 5 dim= 15 dimdual= 0 hull= 0
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//Results for G=A9 of order 181440

//omiting trivial designs

no. of prim. reps= 8

2 th prim. rep.

no. of orbits= 3

degree= 36

seq. of orbit lengths= [ 1, 14, 21 ]

orbs no 2 of length 14

1-(36, 14, 14) Design with 36 blocks

autgp of order 362880

p= 2 dim= 8 dimdual= 28 hull= 0

perm gp of order 362880

p= 3 dim= 36 dimdual= o hull= 0

p= 5 dim= 28 dimdual= 8 hull= 0

p= 7 dim= 35 dimdual= 1 hull= 0

orbs no 3 of length 21

1-(36, 21, 21) Design with 36 blocks

autgp of order 362880

p= 2 dim= 28 dimdual= 8 hull= 0

perm gp of order 362880

p= 3 dim= 27 dimdual= 9 hull= 0

p= 5 dim= 36 dimdual= o hull= 0

p= 7 dim= 35 dimdual= 1 hull= 0

3 th prim. rep.

no. of orbits= 4

degree= 84

seq. of orbit lengths= [ 1, 18, 20, 45 ]

orbs no 2 of length 18

1-(84, 18, 18) Design with 84 blocks

autgp of order 362880

p= 2 dim= 56 dimdual= 28 hull= 0

perm gp of order 362880

p= 3 dim= 34 dimdual= 50 hull= 7

p= 5 dim= 84 dimdual= o hull= 0

p= 7 dim= 84 dimdual= o hull= 0

orbs no 3 of length 20

1-(84, 20, 20) Design with 84 blocks

autgp of order 362880

p= 2 dim= 48 dimdual= 36 hull= 0

perm gp of order 362880

p= 3 dim= 84 dimdual= 0 hull= 0

p= 5 dim= 75 dimdual= 9 hull= 0

p= 7 dim= 84 dimdual= 0 hull= 0

orbs no 4 of length 45

1-(84, 45, 45) Design with 84 blocks

autgp of order 362880

p= 2 dim= 76 dimdual= 8 hull= 0

perm gp of order 362880

p= 3 dim= 34 dimdual= 50 hull= 7

p= 5 dim= 75 dimdual= 9 hull= 0

p= 7 dim= 57 dimdual= 27 hull= 8

4 th prim. rep.

no. of orbits= 3

degree= 120

seq. of orbit lengths= [ 1, 56, 63 ]

orbs no 2 of length 56

1-(120. 56, 56) Design with 120 blocks

autgp of order 348364800

p= 2 dim= 8 dimdual= 112 hull= 8

perm gp of order 348364800

p= 3 dim= 120 dimdual= 0 hull= 0

p= 5 dim= 120 dimdual= 0 hull= 0

p= 7 dim= 119 dimdual= 1 hull= 0

orbs no 3 of length 63

1-(120, 63, 63) Design with 120 blocks

autgp of order 348364800

p= 2 dim= 120 dimdual= 0 hull= 0

p= 3 dim= 36 dimdual= 84 hull= 36

p= 5 dim= 120 dimdual= 0 hull= 0

p= 7 dim= 119 dimdual= 1 hull= 0

5 th prim. rep.

no. of orbits= 3

degree= 120
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seq. of orbit lengths= [ 1, 56, 63 ]

orbs no 2 of length 56

1-(120, 56, 56) Design with 120 blocks

autgp of order 348364800

p= 2 dim= 8 dimdual= 112 hull= 8

perm gp of order 348364800

p= 3 dim= 120 dimdual= 0 hull= 0

p= 5 dim= 120 dimdual= 0 hull= 0

p= 7 dim= 119 dimdual= 1 hull= 0

orbs no 3 of length 63

1-(120, 63, 63) Design with 120 blocks

autgp of order 348364800

p= 2 dim= 120 dimdual= 0 hull= 0

p= 3 dim= 36 dimdual= 84 hull= 36

p= 5 dim= 120 dimdual= 0 hull= 0

p= 7 dim= 119 dimdual= 1 hull= 0

6 th prim. rep.

no. of orbits= 5

degree= 126

seq. of orbit lengths=

[ 1, 5, 20, 40, 60 ]

orbs no 2 of length 5

1-(126, 5, 5) Design with 126 blocks

autgp of order 362880

p= 2 dim= 70 dimdual= 56 hull= 0

perm gp of order 362880

p= 3 dim= 99 dimdual= 27 hull= 0

p= 5 dim= 125 dimdual= 1 hull= 0

p= 7 dim= 126 dimdual= 0 hull= 0

orbs no 3 of length 20

1-(126, 20, 20) Design with 126 blocks

autgp of order 362880

p= 2 dim= 56 dimdual= 70 hull= 0

perm gp of order 362880

p= 3 dim= 126 dimdual= 0 hull= 0

p= 5 dim= 125 dimdual= 1 hull= 0

p= 7 dim= 126 dimdual= 0 hull= 0

orbs no 4 of length 40

1-(126, 40, 40) Design with 126 blocks

autgp of order 362880

p= 2 dim= 48 dimdual= 78 hull= 0

p= 3 dim= 99 dimdual= 27 hull= 0

p= 5 dim= 77 dimdual= 49 hull= 27

p= 7 dim= 99 dimdual= 27 hull= 8

orbs no 5 of length 60

1-(126, 60, 60) Design with 126 blocks

autgp of order 362880

p= 2 dim= 74 dimdual= 52 hull= 26

p= 3 dim= 27 dimdual= 99 hull= 0

p= 5 dim= 125 dimdual= 1 hull= 0

p= 7 dim= 126 dimdual= 0 hull= 0

7 th prim. rep.

no. of orbits= 5

degree= 280

seq. of orbit lengths=

[ 1, 27, 36, 54, 162 ]

orbs no 2 of length 27

1-(280, 27, 27) Design with 280 blocks

autgp of order 362880

p= 2 dim= 232 dimdual= 48 hull= 0

p= 3 dim= 68 dimdual= 212 hull= 41

p= 5 dim= 280 dimdual= 0 hull= 0

p= 7 dim= 280 dimdual= 0 hull= 0

orbs no 3 of length 36

1-(280, 36, 36) Design with 280 blocks

autgp of order 362880

p= 2 dim= 42 dimdual= 238 hull= 42

p= 3 dim= 252 dimdual= 28 hull= 0

p= 5 dim= 280 dimdual= 0 hull= 0

p= 7 dim= 280 dimdual= 0 hull= 0

orbs no 4 of length 54

1-(280, 54, 54) Design with 280 blocks

autgp of order 362880

p= 2 dim= 48 dimdual= 232 hull= 0

p= 3 dim= 125 dimdual= 155 hull= 84

p= 5 dim= 280 dimdual= 0 hull= 0
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p= 7 dim= 280 dimdual= 0 hull= 0

orbs no 5 of length 162

1-(280, 162, 162) Design with 280 blocks

autgp of order 362880

p= 2 dim= 68 dimdual= 212 hull= 68

p= 3 dim= 41 dimdual= 239 hull= 41

p= 5 dim= 280 dimdual= 0 hull= 0

p= 7 dim= 280 dimdual= 0 hull= 0

8 th prim. rep.

no. of orbits= 12

degree= 840

seq. of orbit lengths=

[ 1, 8, 24, 24, 27, 36, 72, 72, 72, 72,

216, 216 ]

orbs no 2 of length 8

1-(840, 8, 8) Design with 840 blocks

autgp of order 362880

p= 2 dim= 530 dimdual= 310 hull= 112

p= 3 dim= 624 dimdual= 216 hull= 189

p= 5 dim= 651 dimdual= 189 hull= 56

p= 7 dim= 651 dimdual= 189 hull= 0

orbs no 3 of length 24

1-(840, 24, 24) Design with 840 blocks

autgp of order 181440

p= 2 dim= 322 dimdual= 518 hull= 224

p= 3 dim= 699 dimdual= 141 hull= 21

p= 5 dim= 840 dimdual= 0 hull= 0

p= 7 dim= 840 dimdual= 0 hull= 0

orbs no 4 of length 24

1-(840, 24, 24) Design with 840 blocks

autgp of order 181440

p= 2 dim= 322 dimdual= 518 hull= 224

p= 3 dim= 699 dimdual= 141 hull= 21

p= 5 dim= 840 dimdual= 0 hull= 0

p= 7 dim= 840 dimdual= 0 hull= 0

orbs no 5 of length 27

1-(840, 27, 27) Design with 840 blocks

autgp of order 362880

p= 2 dim= 616 dimdual= 224 hull= 48

p= 3 dim= 446 dimdual= 394 hull= 41

p= 5 dim= 651 dimdual= 189 hull= 56

p= 7 dim= 784 dimdual= 56 hull= 0

orbs no 6 of length 36

1-(840, 36, 36) Design with 840 blocks

autgp of order 362880

p= 2 dim= 608 dimdual= 232 hull= 190

p= 3 dim= 482 dimdual= 358 hull= 77

p= 5 dim= 771 dimdual= 69 hull= 21

p= 7 dim= 798 dimdual= 42 hull= 0

orbs no 7 of length 72

1-(840, 72, 72) Design with 840 blocks

autgp of order 181440

p= 2 dim= 258 dimdual= 582 hull= 160

p= 3 dim= 182 dimdual= 658 hull= 141

p= 5 dim= 258 dimdual= 582 hull= 83

p= 7 dim= 259 dimdual= 581 hull= 0

orbs no 8 of length 72

1-(840, 72, 72) Design with 840 blocks

autgp of order 181440

p= 2 dim= 546 dimdual= 294 hull= 176

p= 3 dim= 587 dimdual= 253 hull= 141

p= 5 dim= 840 dimdual= 0 hull= 0

p= 7 dim= 840 dimdual= 0 hull= 0

orbs no 9 of length 72

1-(840, ·72, 72) Design with 840 blocks

autgp of order 181440

p= 2 dim= 546 dimdual= 294 hull= 176

p= 3 dim= 587 dimdual= 253 hull= 141

p= 5 dim= 840 dimdual= 0 hull= 0

p= 7 dim= 840 dimdual= 0 hull= 0

orbs no 10 of length 72

1-(840, 72, 72) Design with 840 blocks

autgp of order 181440

p= 2 dim= 258 dimdual= 582 hull= 160

p= 3 dim= 182 dimdual= 658 hull= 141



APPENDIX A. PROGRAMMES Al AND A2

p= 5 dim= 258 dimdual= 582 hull= 83

p= 7 dim= 259 dimdual= 581 hull= 0

orbs no 11 of length 216

1-(840, 216, 216) Design with 840 blocks

autgp of order 362880

p= 2 dim= 306 dimdual= 534 hull= 160

p= 3 dim= 230 dimdual= 610 hull= 230

p= 5 dim= 595 dimdual= 245 hull= 0

p= 7 dim= 595 dimdual= 245 hull= 0

orbs no 12 of length 216

1-(840, 216, 216) Design with 840 blocks

autgp of order 362880

p= 2 dim= 418 dimdual= 422 hull= 98

p= 3 dim= 446 dimdual= 394 hull= 41

p= 5 dim= 554 dimdual= 286 hull= 104

p= 7 dim= 714 dimdual= 126 hull= 0
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Generators for Ot(2) . 2

a = (1,2)(5,93)(6,89)(7,11)(8,65)

(10,100)(12,63)(13,116)(14,53)

(16,34)(17,40)(18,21)(19,38)(20,30)

(22,111)(24,46)(25,45)(26,115)(27,52)

(28,101)(29,69)(31,43)(32,97)(33,60)

(35,88)(36,50)(37,44)(39,104)(41,99)

(42,81)(47,94)(48,105)(49,95)(51,108)

(54,118)(56,73)(57,120)(58,112)(59,62)

(61,64)(66,113)(67,83)(70,87)(71,79)

(75,102)(76,84)(78,91)(80,103)(82,110)

(85,119)(92,98)(107,114), order 2;

b = (2,3)(5,93)(6,29)(7,60)(8,70)

(10,58)(11,66)(12,30)(13,100)(14,53)

(15,104)(16,21)(17,40)(18,19)(20,98)

(22,111)(24,109)(25,45)(26,115)(27,78)

(28,101)(32,97)(33,113)(34,38)(35,57)

(36,44)(37,85)(41,99)(42,73)(43,74)

(48,52)(50,119)(51,69)(54,118)(56,67)

(59,106)(61,64)(63,92)(65,82)(68,95)

(71,79)(72,94)(75,102)(76,120)(80,103)

(81,83)(84,88)(87,110)(89,108)(91,105)

(112,116)(114,117), order 2;

c = (3,29)(4,97)(6,24)(7,76)(8,93)

(10,50)(11,62)(13,16)(14,103)(15,26)

(17,74)(18,52)(19,95)(21,49)(22,90)

(23,55)(25,77)(27,107)(28,113)(30,82)

(31,100)(33,57)(34,61)(35,101)(36,47)

(37,64)(38,105)(39,84)(40,79)(42,92)

(43,58)(44,78)(45,111)(46,108)(48,114)

(53,68)(54,91)(59,60)(63,87)(65,99)

(67,70)(71,72)(73,110)(75,115)(80,117)

(81,96)(85,112)(86,98)(94,119)(102,106)

(104,120)(116,118), order 2;

d = (5,41,93,99)(6,82,51,70)(7,76,60,

120)(8,29,65,69)(10,50,58,119)(11,84,33,

57)(12,67,30,56)(13,44,116,37)(14,80,53,

103)(15,106)(16,78,34,91)(17,79,40,71)

(18,52,19,48)(20,73,63,83)(21,27,38,105)

(22,54,111,118)(23,55)(25,64,45,61)(26,

102,115,75)(28,97,101,32)(31,47)(35,66,

88,113)(36,112,85,100)(39,62)(42,92,81,

98)(43,94)(49,107)(59,104)(68,117)(72,

74)(77,90)(86,96)(87,89,110,108)(95,114),

order 4;

e = (5,115)(7,56)(11,73)(12,76)(20,57)

(22,45)(23,77)(25,111)(26,93)(30,120)(31,

47)(33,83)(35,98)(41,75)(42,66)(43,94)(49,

107)(54,61)(55,90)(60,67)(63,84)(64,118)

(68,117)(72,74)(81,113)(88,92)(95,114)

(99,102), order 2;

f = (8,106)(10,50)(11,63)(13,44)(14,103)

(15,65)(16,78)(18,52)(22,90)(23,111)

(25,77)(26,99)(28,86)(30,60)(35,81)

(38,105)(39,110)(40,79)(45,55)(59,82)

(62,87)(67,120)(70,104)(73,84)(85,112)
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(93,102)(96,101)(98,113),

order 2;

g = (4,77)(7,10)(9,55)(11,100)(13,66)

(15,72)(17,102)(22,97)(26,80)(27,84)

(28,61)(32,111)(33,112)(35,91)(39,47)

(40,75)(48,120)(49,62)(52,76)(57,105)

(58,60)(59,95)(64,101)(68,106)

(78,88)(94,104)(103,115)(113,116),

order 2;

h = (10,18)(13,16)(14,40)(17,53)(19,58)

(21,100)(22,25)(23,55)(27,36)(31,49)

(34,116)(37,91)(38,112)(43,95)(44,78)

(45,111)(47,107)(48,119)(50,52)(54,64)

(61,118)(68,74)(71,80)(72,117)(77,90)

(79,103)(85,105)(94,114), order 2.
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Appendix C

PD-sets Through Computation

Here we list a general programme which was used to obtain the PD-sets through

computations for a t-error-correcting code, for small t, obtained from designs or

graphs. For this we require the length of the code, the dimension, the minimum

weight, and the automorphism group. Note that given a generator matrix for C

the automorphism group can be obtained by using Magma.

qudecodeR.m

p=p-ary code

IIC= code,

pdset=PD set for code

IV:=func< v, block,plCharacteristicVector

(VectorSpace(GF(p) ,v) , block) > ;

bal:=Basis(C);

seq:=[];

d:=Dimension(C);

v:=Length(C);

for j:=l to d do

b:=bal [j];

seq:=seq cat [b[k]: k in [d+l .. v]];

end for;

ma:=KMatrixSpace(GF(p),d,v-d);

sm:=ma!seq;

smt:=-Transpose(sm);
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#s,"errors";

152

z: = [0: j in [1.. v-d]] ;

seqn:=[];

for j:=l to v-d do

r: =[smt [j] [i] : i in [1.. dJ] ;

zj:=z;

zj[j]:=l;

rc:=r cat zj;

seqn:=seqn cat rc;

end for;

cseq:=kcat[Eltseq(bal[i]):i in [l .. d]];

man:=KMatrixSpace(GF(p),v-d,v);

mal:=KMatrixSpace(GF(p),l,d);

ma2:=KMatrixSpace(GF(p),d,v);

ma3:=KMatrixSpace(GF(p),l,v-d);

hsmt:=man!seqn;

"check matrix";

H:=hsmt;

cs:=ma2!cseq;

f:=GF(p);

kset:={};

for i:=l to 5 do

bb:=Random(C);

ers:= [] ;

for i:=l to t do

ni:={Random({l .. v})};

ai:=Random(f);

cc:=IV(v,ni,p);

ers:=Append(ers,ai*cc);

end for;

b:=bb + k+[ers[i]:i in [1 .. t]];

"sent . .... It, bb;

"received. ",b;

for k:=l to #pdset do

e:=PDset[k];

seql:=[] ;

for i:=l to v-d do

seql:=Append(seql, InnerProduct(b-e,hsmt[i]));

end for;

s:={i:i in [1 .. v-d] Iseql[i] ne O};

if #s le t then

k,"th pdset elt";

e;

kset:=kset join {k};

bee:=b-e;

aseq:=[bee[i]:i in [1 ..d]];

vv:=mal!aseq;

r:=C!(vv*cs);

"corrected" ,r- (e--1);

"It is",r-(e--l) eq bb,

"that the corrected vector is the sent word";

break k;

end if;

end for;
tt ";

end for;
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Minimum Weights

The output for computations of the minimum weights for the codes obtained

from the rank-3 permutation representations of the symplectic groups PSp4(3)

and PSp4(5) respectively. By using Programme Al we have obtained the designs

and codes from the rank-3 primitive permutation representations of PSp4(3) and

PSp4(5) of degrees 40 and 156 respectively. The first items of the output refer to

the number of orbits of a point stabilizer in the action of the groups and the second

is the degree of the representation. The remaining items are self explanatory.

These computations were used to deduce the bounds given in Theorem 7.2.11.

3

40

design:=Design<1,vlblocks>;

1-(40, 12, 12) Design vith 40 blocks

Permutation group au acting on a set of cardinality 40

Order = 51840 = 2·7 • 3·4 • 5

p= 2 dim= 16 dimdual= 24 hull= 16

code:=LinearCode(design,GF(2)); ;

> vd:=WeightDistribution(code);

> vd;

[ <0, 1>, <8, 45>, <12, 1120>, <16, 15570>, <20, 32064>, <24, 15570>, <28,

1120>, <32, 45>, <40, 1> ]

> dual:=Dual(code);
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> wdual:=WeightDistribution(dual);

> wdual;

<0, 1>, <6, 240>, <8, 2205>, <10, 23760>, <12, 182560>, <14, 664560>, <16,

2035170>, <18, 3243600>, <20, 4473024>, <22, 3243600>, <24, 2035170>, <26,

664560>, <28, 182560>, <30, 23760>, <32, 2205>, <34, 240>, <40, 1> ]

> quit;

Total time: 1.859 seconds

3

156

design: =Design<l ,vlblocks>;

1-(156, 30, 30) Design with 156 blocks

Permutation group au acting on a set of cardinality 156

Order = 9360000 = 2-7* 3-2* 5-4 * 13

p= 2 dim= 66 dimdual= 90 hull= 66

code:=LinearCode(design,GF(2));;

> mdcode:=MinimumDistance(code);

> md;

12

Total time: 56091.750 seconds

3

156

design:=Design<l,vlblocks>;

1-(156, 30, 30) Design with 156 blocks

Permutation group au acting on a set of cardinality 156

Order = 9360000 = 2-7 * 3-2 * 5-4 * 13

p= 2 dim= 66 dimdual= 90 hull= 66

code:=LinearCode(design,GF(2));;

> dual:=Dual(code);

> mdual:=MinimumDistance(dual);

> mdual;

10

Total time: 115125.059 seconds
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Gordon Bound

Here we give the Gordon bound for the PD-sets obtained for the codes from the

triangular graph T(n) for n 2: 6 and even. The first column gives the value of

n, with n an even integer, the second the code length, the third the number of

errors corrected, the fourth the value of the Gordon bound, the fifth the size of

the PD-set we constructed, and the last column gives the order of Sn.

n, length, n-3, Gordon, PDset. IS_nl

6 15 3 5 26 720

8 28 5 8 50 40320

10 45 7 11 82 3628800

12 66 9 15 122 479001600

14 91 11 18 170 87178291200

16 120 13 22 226 20922789888000

18 153 15 26 290 6402373705728000

20 190 17 29 362 2432902008176640000

22 231 19 33 442 1124000727777607680000

24 276 21 36 530 620448401733239439360000

26 325 23 40 626 403291461126605635584000000

28 378 25 43 730 304888344611713860501504000000

30 435 27 48 842 265252859812191058636308480000000

32 496 29 51 962 263130836933693530167218012160000000

34 561 31 55 1090 295232799039604140847618609643520000000

36 630 33 58 1226 371993326789901217467999448150835200000000

38 703 35 62 1370 523022617466601111760007224100074291200000000

155



APPENDIX E. CORDON BOUND 156

40 780 37 65 1522 815915283247897734345611269596115894272000000000



Appendix F

W(1f) for Lemma 9.2.14

The table below shows the ordering of the vectors w err) as given in Lemma 9.2.14,
in the case n = 9. Read down the successive columns. The leading terms,
corresponding to pivot positions, can be read from the first, third and fifth

elements in each block: thus the block [1 7 2 8 5 9] has leading term

{I, 2, 5}.
1 7 2 8 3 9 2 7 3 8 4 9 I 3 7 4 8 5 9

1 7 2 8 4 9 2 7 3 8 5 9 I 3 7 4 8 6 9

1 7 2 8 5 9 2 7 3 8 6 9 I 3 6 4 8 7 9

1 7 2 8 6 9 2 6 3 8 7 9 I 3 6 4 7 8 9

1 6 2 8 7 9 2 6 3 7 8 9 I 3 7 5 8 6 9

1 6 2 7 8 9 2 7 4 8 5 9 I 3 6 5 8 7 9

1 7 3 8 4 9 2 7 4 8 6 9 I 3 6 5 7 8 9

1 7 3 8 5 9 2 6 4 8 7 9 I 3 5 6 8 7 9

1 7 3 8 6 9 2 6 4 7 8 9. I 3 5 6 7 8 9

1 6 3 8 7 9 2 7 5 8 6 9 I 4 7 5 8 6 9

1 6 3 7 8 9 2 6 5 8 7 9 I 4 6 5 8 7 9

1 7 4 8 5 9 2 6 5 7 8 9 I 4 6 5 7 8 9

1 7 4 8 6 9 2 5 6 8 7 9 I 4 5 6 8 7 9

1 6 4 8 7 9 2 5 6 7 8 9 I 4 5 6 7 8 9

1 6 4 7 8 9

1 7 5 8 6 9

1 6 5 8 7 9

1 6 5 7 8 9

1 5 6 8 7 9

1 5 6 7 8 9
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Construction of codes from

graphs

The programme that follows was used to construct the graphs on triples and

their respective codes. With appropriate changes it can be used to construct the

triangular graph and its code.

SetLogFile{"duads_out");

//give value to n

pts:=[] ;

for i:=l to n-3 do

for j:=i+l to n-2 do

for k:=j+l to n-l do

for l:=k+l to n do

pts:=Append(pts.{i,j.k,l});

end for;

end for;

end for;

end for;

v:=#pts;

bloxO:=[];

bloxl :=[];

blox2: =[] ;

blox3:=[] ;

for i:=l to v do
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bl:={};bla:={};

blc:={};bld:={};

for j:=i to v do

ss: =pts [j] ;

if #(pts[i] meet ss) eq 0 then

bl:=bl join {j};

elif #(pts[i] meet ss) eq 1 then

bla:=bla join {j};

end if;

if #(pts[i] meet ss) eq 2 then

blc:=blc join {j};

elif #(pts[i] meet ss) eq 3 then

bld:=bld join {j};

end if;

end for;

bloxO:=Append(bloxO,bl);

bloxi:=Append(bloxi,bla);

blox2:=Append(blox2,blc);

blox3:=Append(blox3,bld);

end for;

p:=2;

//blox;

des:=Design<i,vlbloxO>;des;

au:=AutomorphismGroup(des);au;

co:=LinearCode(des,GF(2));

cod:=Dual(co);

di:=Dim(co);d2:=Dim(cod);

d3:=Dim(co meet cod);

II p='' ,p, "dim=" ,d1, "dimdual=" ,d2, "hull=" ,d3;

mco:=MD(co);mco;

mcod:=MD(cod);mcod;

dse:=Design<i,vlbloxi>;dse;

aut:=AutomorphismGroup(dse);aut;

ci:=LinearCode(dse,GF(2));

cid:=Dual(c1) ;

dii:=Dim(ci);d22:=Dim(cid);

d33:=Dim(ci meet cid);

"p=" ,p, "dim=" ,dii, "dimdual=" ,d22, "hull=" ,d33;

mci:=MD(ci);mci;

mcid:=MD(cid);mcid;

dsc:=Design<i,vlblox2>;dsc;

autdes:=AutomorphismGroup(dsc);autdes;
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c2:=LinearCode(dsc.GF(2»;

c2d:=DuaHc2) ;

d12:=Dim(c2);d21:=Dim(c2d);

d31:=Dim(c2 meet c2d);

"p=" •p. "dim=" •d12. "dimdual=" •d21, "hull=" ,d31;

mc2:=MD(c2);mc2;

mc2d:=MD(c2d);mc2d;

dsd:=Design<1.vlblox3>;dsd;

autd:=AutomorphismGroup(dsd);autd;

c3:=LinearCode(dsd,GF(2»;

c3d:=DuaHc3);

d32:=Dim(c3);d34:=Dim(c3d);

d35:=Dim(c3 meet c3d);

"p=" ,po "dim=" ,d32, "dimdual=" ,d34. "hull=" ,d35;

mc3:=MD(c3);mc3;

mc3d:=MD(c3d);mc3d;
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Appendix H

Constructing the Chang codes

Here we give the programme which was used to construct the Chang graphs from

T(8) by using the notion of switching as given in Definition 10.4.1. Also by using

this programme we were able to construct the binary codes associated with each

of the three Chang graphs. Notice that the notations mset1, mset2 and mset3 in

the programme correspond to disjoint edges, an octagon, and a disjoint union of

a pentagon and a triangle (see Section 10.4.2).

pts:=[{1.2}.{1.3}.{1.4},{1.5}.{1.6}.

{1.7},{1.8}.{2.3}.{2.4},{2,5}.{2,6}.

{2.7},{2.8},{3,4}.{3.5}.{3.6},{3,7}.

{3.8}.{4.5},{4.6},{4.7}.{4.8}.{5.6}.

{5.7}.{5.8},{6.7}.{6.8}.{7.8}];

mat:=MatrixRing(Integers(),28);

sj:= [l:j in [1..28*28]];

jmat: =mat! sj ;

maq:=MatrixRing(Rationals(),28);

oblox:=[] ;

for i:=l to 28 do

bl:={};

for j:=l to 28 do

s: =pts [j] ;

if #(pts[i] meet s) eq 1 then
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bl:=bl join {j};

end if; end for;

oblox:=Append(oblox,bl); end for;

oblox;

ndes:=Design<1,28I oblox>;

ma:=IncidenceMatrix(ndes);

ai:=ma;

bi:=jmat-ai;

ci:=bi-ai;

mseti:={1,14,23,28};

mset2:={l,7,8,14,19,23,26,28};

mset3:={2,14,3,10,23,26,28,13};

chi:=ci;

for i:=i to 28 do

bl: =ch1[i] ;

for x in mset do

end for;

chi[i]:=bl; end for;

for x in mset do

chi[x]:=(-i)*chi[x]; end for;

chi;

ch2:=(-1)*chi;

cha:=ch2+jmat;

cha3:=(1/2)*cha;

desi:=Design<1,28I cha3>;

descha3;

cod:=LinearCode(descha3,GF(2));
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Appendix I

A PD-set for the Chang 2 code

Here we give the output of the computations for a PD-set for the Chang 2 code.

The computations were carried out using the programmes listed in Appendices H

and C respectively.

(1,20,4,21,14,9,5,19,6,2)(3,8,16,15,17)(7,22)(10,25,23,27,26)(11,28,13,24,12),

(1,18,9,7,8,22)(2,5,3,20,14,16)(4,15,19)(6,17,21)(10,12)(11,27)(13,24)(25,28),

(1,18,20,4,3,9,7,16,19,14,8,22,5,15,2)(6,17,21)(10,13,24,12,23)(11,26,27,28,25),

(1,9,8)(2,18,14,22,3,7)(4,20,15,5,19,16)(6,21,17)(10,24)(11,26)(12,23)(25,27),

(1,18,4,8,7,15)(2,20,21)(3,5,17,14,16,6)(9,22,19)(10,24,11)(12,27,13)(23,25,28),

(1,4)(2,21)(3,17)(6,14)(8,15)(9,19)(10,27)(11,13)(12,24)(23,25),

(1,18,14,8,7,3)(2,9,22)(4,16,6,15,5,17)(10,24,28)(11,23,25)(12,26,27)(19,20,21),

(1,21)(2,14)(4,20)(5,19)(6,9)(7,22)(8,17)(10,26)(11,24)(13,28)(15,16)(25,27),

(1,20,18,4,21,8,5,22,15,6,9,16,7,19,17)(2,3,14)(10,26,13,23,28)(11,27,25,24,12),

(1,18,4,3,6,8,7,15,14,17)(2,21,9,22,19)(5,16)(10,28,27,13,11)(12,23,26,25,24),

(1,20,3)(2,8,5)(4,22,17)(6,19,18)(7,21,15)(9,16,14)(10,24,26)(12,28,27)(13,25,23),

(1,3,4,8,14,15)(2,19,9)(5,17,7,16,6,18)(11,24,26)(12,25,28)(13,23,27)(20,21,22),

(1,20,4,9,5,19)(2,6,22,14,21,7)(3,17,18)(8,16,15)(10,25,12)(11,13,26)(23,27,24),

(1,8,9)(2,6,18,19,5,3,21,7,15,20,14,17,22,4,16)(10,25,13,27,24)(11,12,23,26,28),

(1,20,8,5,9,16)(2,3,14)(4,19,15)(6,22,17,7,21,18)(10,23)(12,27)(13,26)(24,25),

(1,20)(2,4)(3,15)(5,9)(6,21)(7,22)(8,16)(10,23)(11,28)(12,13)(14,19)(26,27),

(2,17)(3,21)(5,7)(6,14)(8,9)(10,27)(11,23)(13,25)(15,19)(16,22)(18,20)(26,28),

(1,9)(2,14)(4,22)(5,21)(6,20)(7,19)(10,13)(11,12)(15,18)(16,17)(23,28)(24,27),

(1,20,3,7,19,8,5,2,18,4,9,16,14,22,15)(6,21,17)(10,24,23,13,12)(11,27,25,26,28),

(1,3,21)(2,6,8)(4,18,20)(5,15,22)(7,16,19)(9,14,17)(10,28,25)(11,24,23)(13,26,27),

(1,6,7)(2,20,19)(3,16,15)(4,14,5)(8,17,18)(9,21,22)(10,26,12)(11,13,25)(24,27,28),
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(1,4,6,7,14)(2,9,19,21,22)(3,8,15,17,18)(10,27,11,28,13)(12,26,24,23,25),

(1,18,14,17,5,8,7,3,6,16)(2,21,20,9,22)(4,15)(10,11,23,27,12)(13,28,26,25,24),

(1,19,6,22,14,9,4,21,7,2)(3,8,15,17,18)(5,20)(10,27,11,28,13)(12,26,24,23,25),

(1,3,22,6,15,9,14,18,21,4,8,2,7,17,19)(5,16,20)(10,13,28,11,27)(12,25,23,24,26),

(1,14,7)(2,18,9,3,22,8)(4,6,5)(10,28,24)(11,25,23)(12,27,26)(15,21,16,19,17,20),

(1,4,7,14,5)(2,20,9,19,22)(3,16,8,15,18)(10,12,13,23,24)(11,28,26,25,27),

(2,17,22,15,20,3,21,18,19,16)(4,5,14,6,7)(8,9)(10,25,13,27,24)(11,12,23,26,28),

(1,17,7,8,6,18)(2,20,19)(3,5,15,14,16,4)(9,21,22)(10,26,12)(11,13,25)(24,27,28),

(1,4,5)(2,18,21,3,22,17)(6,14,7)(8,19,16,9,15,20)(10,12,25)(11,26,13)(23,24,27),

(1,4)(2,3)(5,7)(8,19)(9,15)(11,25)(12,24)(13,23)(16,22)(17,21)(18,20)(26,28),

(1,4,6)(2,18,20,3,22,16)(5,14,7)(8,19,17,9,15,21)(10,11,25)(12,26,13)(23,28,24),

(1,18,20)(2,4,17)(3,19,6)(5,8,22)(7,16,9)(10,11,26)(12,25,13)(14,15,21)(23,27,28),

(1,4,14,5,6)(2,20,21,9,19)(3,16,17,8,15)(10,23,26,25,27)(11,13,12,28,24),

(1,14,5,7,6)(2,16,22,17,9,3,20,18,21,8)(10,23,12,11,27)(13,26,24,28,25)(15,19),

(1,2,15,5,22,8,14,19,16,7,9,3,4,20,18)(6,21,17)(10,23,12,24,13)(11,25,28,27,26),

(1,17,14,15,7,8,6,3,4,18)(2,19,22,9,21)(5,16)(10,11,13,27,28)(12,24,25,26,23),

Id,
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