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          Abstract 

 
Wetland ecosystems are being modified and threatened due to anthropogenic activities and climate 

change, hence the urgent need for wetland restoration. Wetland rehabilitation is important in the 

reversal of these dire conditions, through restoring damaged wetland ecosystems and recovering 

wetland vegetation. Wetland biophysical properties such as leaf area index and chlorophyll content 

are important indicators of vegetation productivity and stress. Therefore, the overall aim of this 

study was to assess the variations in wetland vegetation productivity between wetlands under 

different management regimes in Pietermaritzburg, South Africa using Sentinel-2 MSI data. 

Chlorophyll and leaf area index were used as proxies of wetland Cyperus dives and Typha capensis 

productivity in this study. The first objective was to test the ability of Sentinel-2 MSI data and 

vegetation indices in estimating leaf area index of wetland vegetation across natural and 

rehabilitated wetlands. The second objective was to assess the utility of the high-spatial resolution 

Sentinel-2 MSI data in the estimation of chlorophyll content of Cyperus dives and Typha capensis 

species across natural and rehabilitated wetlands. Results showed that vegetation indices derived 

from red-edge bands produced better LAI estimation accuracies for both wetlands with a root mean 

square error (RMSE) of 0.32 m2/m2 and 0.51 m2/m2 as well as R2 ‘s of 0.61 and 0.75 for the natural 

and rehabilitated wetlands, respectively. The optimal model for predicting LAI across natural and 

rehabilitated wetlands was attained based on red-edge bands centered at 705 nm (Band 5), 740 nm 

(Band 6), 783 nm (Band 7) as well as 865 nm (Band 8a) yielding a RMSE of 0.51 m2/m2 and R2 

of 0.75. In addition, the combination of all spectral variables in estimating chlorophyll across 

different wetland management regimes and species exhibited a relatively low RMSE of 9.11 µg 

cm2 (12%) and R2 value of 0.88 based on red-edge bands centered at 705 nm (Band 5), 740 nm 

(Band 6), 783 nm (Band 7) as well as 865 nm (Band 8a). The findings of this study indicate that 

Sentinel-2 MSI data can be optimally used to estimate productivity (chlorophyll content and LAI) 

of wetland plant species such Cyperus dives and Typha capensis growing under different 

management regimes, with the rehabilitated wetland exhibiting improved productivity. Results of 

this study underscores the unique potential of new generation earth observation sensors in wetland 

vegetation monitoring and management, this has implications on other ecosystem processes such 

as wetland water use and carbon sequestration. 

 
  Key words: wetland vegetation, productivity, natural wetland, rehabilitated wetland, accuracy 
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Chapter One 

General Introduction 

 

 
1.1 Study Background 

Wetland ecosystems are of utmost importance to the environment, due to their numerous ecological 

functions and roles. Hence, they need to be well preserved and protected (Zhang et al., 2009). 

Healthy wetlands freely provide social, economic and environmental benefits. These include 

preventing or reducing the severe effects of floods, providing unique habitat for flora and fauna, 

biodiversity and micro-climate stabilisation (Weiguo et al., 2012; Turner et al., 2000 and Kent & 

Mast, 2005). Wetland systems absorb excess nutrients, sediments and other pollutants before they 

reach water bodies. They are a natural sponge that absorbs and store water in wet seasons to be 

released in dry seasons (Teferi et al., 2010). With the impacts of climate change becoming more 

evident, wetlands play a vital role in reducing these impacts by storing carbon. These ecosystems 

are also important for their aesthetic value for tourism purposes. 

Despite their importance, wetlands are continually deteriorating due to human activities and 

climate change (Zhao et al., 2010; Tuner et al., 2000 and Meli et al., 2014). Large areas of wetlands 

are disappearing and those remaining become increasingly vulnerable to anthropogenic impacts 

such as industrial development, agriculture, aquaculture, urban development and domestic waste 

(Wu et al., 2017, Akumu et al., 2018 and Moomaw et al., 2018). Wetlands are being drained and 

converted into agricultural land; while rapid population growth, has resulted in conversion of 

wetlands into urban landuse. According to Ailstock et al. (2001) and Kotze et al. (2012), 50% of 

the worlds’ wetlands are under threat. In South African alone, an estimate of 65% of wetlands are 

threatened, with 48% of these wetlands being severely damaged and endangered due to climate 

change, pollution, increasing population and biological invasion (Nel & Driver, 2012). However, 

with increasing awareness and research efforts on wetland importance, a large number of wetlands 

globally are being strictly monitored and many interventions have been made to protect these 

systems. Governments have enacted legislation that protect and preserve wetlands globally, 

including South Africa (Cowden et al., 2014). Furthermore, with the awareness of wetland 

significance, wetland restoration and rehabilitation has become important for proper 
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management of local water resources. Zedler (2000), states that wetland rehabilitation success is 

measured in comparison to a natural pristine wetland in terms of structure and functionality. This 

is highly dependent on the wetland component that is being restored, which includes the wetland 

vegetation and hydrology. In most cases, the sole objective of wetland rehabilitation is to repair 

and reinstate the structure and core functions of the ecosystem while keeping the whole system 

fully functional (Cowden et al., 2014). 

Wetland condition assessments are generally performed by measuring vegetation properties such 

as vegetation cover, biomass, plant diversity, and productivity. These provide useful information 

about the success of the restoration programme. Biochemical and biophysical properties of 

wetlands such as leaf area index (LAI) and chlorophyll provide information about the condition 

and productivity of the wetland ecosystem vegetation (Adam et al., 2010 and Ayeni et al., 2012). 

LAI is a significant vegetation property that aids in assessing vegetation condition in ecosystems. 

Several studies have highlighted the use of LAI in understanding vegetation productivity across 

wetlands and various landscapes (Chen et al., 2009; Weiss et al., 2004 and Jonckheere et al., 2004). 

There are cases where rehabilitated wetlands adhere to the functions of a fully functional wetland 

(Mitsch & Wilson, 1996; Ruiz‐Jaen & Mitchell Aide, 2005). Vegetation types that are valuable to 

wetland ecosystems include Typha capensis and Cyperus dives, known as Bulrush and Giant Sedge 

respectively. Typha is not a commonly studied freshwater grass in South Africa (Hall, 1993). Its 

unbranched, joint less stems grow between 3 to 4m long and the grass-like leaves grow up to 10 

to 20m broad. They are commonly found in frequently flooded or fresh water wetlands, growing 

at or above mean high water. Typha are extremely productive, an attribute which enhances the 

species’ invasion in wetlands, therefore regarded as weeds. Furthermore, it is capable of 

encroaching and crowding out other wetland plant species therefore resulting in the reduction of 

biodiversity in the affected system. Although Typha have a high invasive potential, they play a 

vital role in water purification and in providing wildlife habitat (Hall, 1993 and BIR, 1980). Typha 

also provides food for humans, feed for animals, medicines to ‘cure’ various ailments and 

bioenergy (Saibu, 2017). 

Estimating wetland vegetation biophysical properties is essential to wetland monitoring and 

management. Hence, it is vital to understand the spatial distribution and growth of Typha Capensis 

and Cyperus dives under varying wetland health conditions in both the pristine and rehabilitated 
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wetlands (Adam et al., 2010). Wetland vegetation and their properties are not easily detected and 

it is often difficult to make a clear distinction between vegetation communities. Therefore, it is 

important to use techniques that effectively distinguish wetland vegetation spatially and spectrally 

(Silva et al., 2008). Wetland plant life is characterised by excessive spatial and spectral variability, 

due to steep environmental gradients and wetland conditions such as varying hydrological 

properties and soil moisture (Corbane et al., 2015). These conditions may affect the spectral 

reflectance of wetland vegetation, particularly in the visible, near-infrared and mid-infrared 

regions of the electromagnetic spectrum due to high water absorption (Adam et al., 2010; Corbane 

et al., 2013). Therefore, high spatial resolution imagery is considered to be more effective in 

wetland vegetation mapping and in the estimation of wetland biochemical properties such as 

chlorophyll (Gitelson et al., 2005; Li et al., 2018 & Haboudane et al., 2002). Changes in chlorophyll 

over time is related to the vegetation productivity, the different development stages and canopy 

stresses (Gitelson et al., 2005). Remote sensing techniques offer the ability to observe a large area 

at a time and that is beneficial in chlorophyll estimation. Changes in leaf chlorophyll results in 

significant changes in leaf reflectance and transmittance spectra which can be affected by LAI, 

canopy architecture and soil background. These factors make chlorophyll retrieval at canopy level 

challenging. Therefore, the use of remote sensing techniques has proven to be more efficient in 

estimating chlorophyll in leaves and canopies. 

Multispectral sensors are commonly used in wetland vegetation mapping. This is largely due to 

the availability and accessibility of these sensors. Multispectral sensors such as Landsat Thematic 

Mapper, SPOT XS, Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced 

Thematic Mapper (ETM) are among some of the sensors commonly used in wetland vegetation 

mapping. They are easily accessible and have been used for ecological monitoring in numerous 

studies. Landsat TM and SPOT satellites have been proven unsatisfactory to estimate the LAI and 

in discriminating vegetation species of wetland vegetation. This is due to the lack of high spatial 

and spectral resolution of optical multispectral imagery, restricting the mapping and detection of 

vegetation types in densely vegetated wetlands (Adam et al., 2009). The recent launch of new 

advanced generation sensors such as Sentinel-2 Multi Spectral Instrument (MSI) has provided 

opportunities for LAI and Chlorophyll estimation. Studies have demonstrated the strength of the 

additional bands provided by Sentinel-2 MSI for LAI and chlorophyll estimation. For instance, 

Clevers and Gitelson (2013) successfully estimated chlorophyll in crops and grasslands, which 
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demonstrated the significance of the red-edge bands of the MSI sensor on Sentinel-2. A study by 

(Delegido et al., 2011 & Herrmann et al., 2011), has also demonstrated the importance of the red- 

edge band on Sentinel-2 for estimating LAI and chlorophyll in grasslands and crop vegetation. To 

the best of our knowledge, there has not been studies done on estimating and comparing LAI and 

chlorophyll content on Typha capensis and Cyperus dives between natural and rehabilitated 

wetlands using Sentinel-2 MSI with the red-edge bands. This new advanced multispectral sensor 

with high spatial, spectral and temporal resolutions is sufficient and inexpensive, therefore, proven 

attractive for LAI and chlorophyll estimation between natural and pristine wetlands. 

 

 
1.2. Research objective 

The overall aim of this study was to test the utility Sentinel-2 MSI data to assess wetland vegetation 

productivity in wetlands under different management regimes in Pietermaritzburg, South Africa. 

The specific objectives are: 

 

• To test the ability of Sentine-2 MSI derived data and vegetation indices in quantifying the 

variation in leaf area index for vegetation growing in a natural wetland and that growing in 

a rehabilitated wetland. 

• To assess the use of high-resolution Sentinel-2 MSI data for estimating the chlorophyll 

content of Typha capensis and Cyperus dives vegetation species growing in a natural 

wetland and a rehabilitated wetland. 

 

1.3 Outline of dissertation/thesis structure 

 

 
The dissertation consists of four chapters. The two papers that make up this thesis have been 

presented as separate chapters. This makes each of them a separate portion of work that contributes 

to the overarching research question. In this regard, it is imperative to note that there will be 

inevitable overlaps or repetitions within the dissertation, as each chapter obtains fundamental 

principles that feed into the overall objective and aim of the research. The chapters of this work 

are presented in two categories, that is (i) wetland vegetation leaf area index quantification and 
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comparison and (ii) chlorophyll content estimation. Chapter one of this dissertation provides a 

background of the study, the overall aim and objectives of the study. 

Chapter 2 investigates the ability of Sentinel-2 MSI derived data and vegetation indices in 

quantifying and comparing the variation in wetland vegetation leaf area index between natural and 

rehabilitated wetlands. Partial Least Squares Regression (PLSR) algorithms were used to predict 

leaf area index between the two wetlands based on two predictor variables. 

Chapter 3 assesses the use of high-resolution Sentinel 2 MSI data in accurately estimating the 

chlorophyll content of Typha capensis and Cyperus dives species growing in a natural wetland and 

a rehabilitated wetland. Partial Least Squares Regression (PLSR) algorithms were used to estimate 

the chlorophyll content of both Cyperus dives and Typha capensis leaves and produce estimation 

models. 

The last chapter of the dissertation, chapter 4, presents a synthesis highlighting the key conclusions 

of the study, conclusions and recommendations for future studies. A list of all the sources used for 

this research is provided at the end of the dissertation. 
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Chapter Two 

 

 
The utility of Sentinel-2 MSI data to estimate wetland vegetation LAI in natural and 

rehabilitated wetlands 

 

Abstract 

Accurate estimation of LAI of wetland vegetation is required by earth-system and ecosystem 

models to assess wetland conditions and functionality. The present study sought to test the 

potential of Sentinel-2 MSI derived standard bands, traditional vegetation indices and red-edge 

derived vegetation indices in estimating wetland vegetation LAI across natural and rehabilitated 

wetlands. The LAI estimates for each wetland were compared to provide an understanding of how 

LAI varies between these ecosystems. Partial Least Squares Regression (PLSR) algorithms were 

used in this study. The results showed that LAI estimates were higher for the natural wetland as 

compared to the rehabilitated wetland. However, the rehabilitated wetland showed a wider LAI 

distribution pattern. The optimal models for estimating wetland vegetation LAI were produced 

based on red- edge bands centered between 705 nm - 783 nm as well as 865 nm (Band 8a) of the 

electromagnetic spectrum. The results showed that vegetation indices derived from red-edge bands 

performed better at estimating LAI for both wetlands with a root mean square error of prediction 

(RMSE) of 0.32 m2/m2 and R2 of 0.61 for the natural wetland, and RMSE of 0.510 m2/m2 and R2 

of 0.75 for the rehabilitated wetland. The optimal model for predicting LAI across natural and 

rehabilitated wetlands was attained based on red-edge bands centered at 705 nm (Band 5), 740 nm 

(Band 6), 783 nm (Band 7) as well as 865 nm (Band 8a) yielding a RMSE of 0.51 m2/m2 and R2 

of 0.54. The rehabilitated wetland exhibited high vegetation productivity compared to the natural 

wetland. Overall, the results of this study show that vegetation productivity was optimally 

characterised across wetlands under different management treatments using Sentinel-2 MSI red-

edge derived vegetation indices, combined with traditional vegetation indices.  

 
Keywords: natural wetland, rehabilitated wetland, leaf area index, accuracy, ecological functions, 

ecosystem 
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2.1. Introduction 

 

 
Wetlands are important ecosystems and play a significant role in regulating the health of the 

environment (Jiang, 2012; Janse, 2019). Wetlands are responsible for maintaining environmental 

quality, micro-climate stabilisation, flood control, water infiltration and biodiversity support (Batzer 

& Boix, 2018; Dini & Bahadur, 2016; Jiang et al., 2012; Kotze, 2012). They provide an interface 

for terrestrial and wetland species interaction (Akumu, Pathirana, Baban, & Bucher, 2011; Janse 

et al., 2019). Furthermore, wetlands have been providing an array of social and economic benefits, 

which include crafts for centuries (Traynor, Kotze, & McKean, 2010). However, wetlands are 

continuously being degraded in terms of their ecosystem services, diversity and spatial extent by 

chiefly anthropogenic activities such as urbanization, agriculture and sand mining, effects of 

climate change and invasive species (Pan et al., 2018). Invasive alien plant infestation also affects 

wetland functionality as they reduce the amount of water that is available for the wetland through 

their voluminous intakes. Alien invasive plants compete with the natural indigenous wetland 

vegetation for water, therefore decreasing the ability for these plants to perform their function in 

the wetland ecosystem. Hopkinson, Cai, & Hu, (2012), state that wetland degradation or loss could 

result in an increase in the net global carbon dioxide in the atmosphere, with an increase of up to 

6% per year. This challenge is compounded by the fact that currently there is a dearth of 

comprehensive frameworks and objective criteria for monitoring the health of these wetlands. In 

this regard, it is crucial to restore and protect degraded wetland ecosystems. Recent studies on 

wetland restoration have highlighted the importance of restoring degraded wetlands and the 

importance of monitoring and maintaining these wetlands. 

Wetland functionality and health monitoring has proven to be a complex task due to the complexity 

of these ecosystems. Specifically, direct assessments of restored wetlands are rare (Zedler & 

Lindig-Cisneros, 2002). This is a result of limited wetland data that can be used to assess restored 

wetlands over a period of time. (Eviner, Garbach, Baty, & Hoskinson, 2012; Wortley, Hero, & 

Howes, 2013). Though, there are other indicators that may be detected shortly after a wetland has 

been restored (Eviner et al., 2012; Wortely et al., 2013). According to Eviner et al. (2012); Wortley 
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et al. (2013), vegetation characteristics such as LAI, biomass and vegetation height, as well as 

wetland ecological processes can be used to measure wetland restoration success. In practice, 

wetland vegetation is the most common indicator of wetland rehabilitation success or failure and 

therefore can serve as a health index of these ecosystems. This is because wetland degradation is 

directly reflected in the decreased productivity and even mortality of the wetland vegetation 

species. Wetland vegetation biophysical and properties such as leaf area index, biomass, 

chlorophyll and water content can be used as the main indicators of vegetation health and 

productivity in wetland ecosystems (Eckert & Engesser, 2013; Pan et al., 2018; Stefanik, 2012). 

Currently there is no standardised method for evaluating the success of wetland restoration, hence 

the necessity to develop detailed and accurate methods for wetland restoration success assessment. 

Remote sensing techniques are frequently used to map and monitor plant species distribution, 

quality and quantity as a sustainable management method for wetlands (Adam, Mutanga, & 

Rugege, 2010; Mutanga et al., 2012). This is because, traditional wetland monitoring methods such 

as manual species discrimination and taxonomical information are highly labour intensive, 

overpriced and time consuming. Furthermore, some of these methods cannot be applied in lager 

areas. Meanwhile, remote sensing techniques offer practical and cost-effective means of estimating 

wetland vegetation biophysical parameters for wetland restoration monitoring (Adam et al. 2010). 

Leaf area index (LAI) is one of the commonly used vegetation biophysical properties in measuring 

vegetation health and functionality. It is an indicator of ecological processes, such as 

photosynthesis, plant and soil respiration, net primary productivity and energy exchange rates 

between plants and atmosphere (Kamal et al., 2016). It can be used to predict future growth and 

changes in canopy structure which are fundamental aspects of environmental management 

(Medeiros, Sampaio, & Nascimento, 2018). Wetland plants and their properties are not easy to 

detect. Above all, it could be very challenging to identify the boundaries between their plant 

communities. Therefore, is it important to establish techniques that can effectively distinguish 

wetland vegetation spatially and spectrally (Silva, Costa, Melack, & Novo, 2008). As a result of 

varying wetland conditions such as soil moisture and wetland hydrology, wetland vegetation 

spatial and spectral variance is increased (Corbane et al., 2015). 

The launch of the advanced new generation sensor such as Sentinel-2 Multispectral Instrument 

(MSI) has proven to be of great advantage to LAI estimation (Shoko, 2017). Studies have 
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confirmed the strength of the added red-edge bands provided by Sentinel-2 Multispectral 

Instrument for LAI estimation (Clevers and Gitelson, 2013). For instance, Clevers & Gitelson 

(2013) successfully estimated LAI in crops and grasslands, which illustrated the significance of 

the red-edge bands of the multispectral instrument. A study by Delegido, Verrelst, Alonso, & 

Moreno (2011), has also demonstrated the importance of the red-edge band on Sentinel-2 MSI for 

LAI estimation in grasslands and crop vegetation. Furthermore, vegetation indices derived from 

the red-edge spectrum have proven to have high accuracies when estimating vegetation properties 

such as biomass, which are extremely associated with LAI (Mutanga & Skidmore, 2004; Sibanda, 

Mutanga, Dube, Vundla, & L Mafongoya, 2019). 

Research on estimating wetland vegetation LAI has often been done on forested wetlands and 

mangrove wetlands (Turner et al., 2000). According to Adam et al. (2010), the univariate 

regression analysis inclusive of vegetation indices some of which are normalized difference 

vegetation index (NDVI) and simple ratio (SR) derived from the visible and NIR wavelengths are 

the most commonly used empirical models used in estimating LAI. Sibanda et al., (2019) 

illustrated the error of estimation for LAI was reduced with the inclusion of red-edge vegetation 

indices. This is because vegetation spectral reflectance is influenced by vegetation biophysical 

properties such as LAI, chlorophyll content and leaf angle distribution, these properties are known 

to be highly associated with the red-edge (Delegido et al., 2011; Mutanga & Skidmore, 2004; 

Verrelst et al., 2012). However, wetlands are characterised by high moisture content, leaf density 

as well as leaf angle distribution associated with various wetland plant species. These often 

attenuate the signal of vegetation through the process of saturation making it difficult to 

characterise physiochemical plant characteristics such as LAI in a wetland setting. Therefore, it is 

perceived that including red-edge vegetation indices could significantly improve the accuracy of 

LAI estimation models across the rehabilitated and natural wetlands. In our understanding, there 

has not been a study undertaken to estimate wetland vegetation LAI across natural and rehabilitated 

wetlands using Sentinel-2 MSI with the red-edge bands. Therefore, this study aims to test the 

ability of Sentine-2 MSI derived data and vegetation indices in estimating the variation in leaf area 

index for vegetation growing in a natural wetland and that growing in a rehabilitated wetland. The 

ultimate goal is to evaluate whether wetland rehabilitation improves the productivity of wetland 

vegetation and assess the extent to which this natural capital can be monitored from remote 

sensing. 
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2.2. Methods and Material 

 

 
2.2.1 Study Area Description 

 

The study was conducted in the Greater Edendale Mall wetland (29°38'54.70"S and 

30°20'28.03"E) and Wetland Erf 1105 in Willowfontain (29°42'41.51"S and 30°20'49.22"E), both 

situated in Pietermaritzburg, KwaZulu-Natal (Figure 2.1). The Willowfontain wetland is a natural 

wetland that is approximately 347.051 m2, while the Edendale wetland is a rehabilitated wetland 

that is approximately 502.519 m2. Currently these wetlands are colonised by common hydrophytes 

such as Typha Capensis and Cyperus dives species (Figure 2.2). However, other species such as 

Cyperus sphaerospermus, Cyperus textilis, Imperata cylindrical and Ischaemum fasciculatum 

grow on these wetlands. Degradation of the Edendale wetland was a result of historic and current 

land use practices, which include encroachment of residential and commercial development as 

well as grazing pressure which resulted in significant modifications to the catchment. This in turn 

altered the wetland system’s functions such as flood attenuation, sediment trapping and erosion 

control. 

The rehabilitation process on the Greater Edendale wetland started in the year 2010. This was done 

as part of the development of the Greater Edendale Mall. The rehabilitation was done to ensure 

that there is no diffuse flow of water through the wetland system. This has allowed for the 

establishment of a diverse range of wetland species through the transformation from temporary to 

permanently wet soils (Green Door Environmental, 2016). The wetland was dominated by alien 

invasive plant species such as Lantana camara, Melia azedarach, Solanum mauritianum and 

Sorghum halepense. Sewage water was also identified as one of the main disturbances to the 

wetland ecosystem. 

The study site generally experiences summer rainfall, but with some rainfall in winter. Average 

annual rainfall ranges between 801-1000 mm, while mean annual temperatures range from 

approximately 4.1oC to 27oC (Green Door Environmental, 2016). The dominant soil types in the 

study site consists of fill colluvial and residual soils that overlie weathered shale. With the average 

elevation ranging from 712-721 m. 
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Figure 2. 1: Map showing the location of the study area within KwaZulu-Natal, Pietermaritzburg. 

 

 
2.2.2. Field Data Collection 

 

Prior to field sampling, Google Earth Pro was used to digitise the wetland areas. Subsequently the 

digitised polygons were transferred into a Geographic Information System (GIS), where a total of 

130 random points were generated for LAI measurement. Specifically, 72 sampling points from 

the Greater Edendale wetland and 58 from the Willowfontain wetlands were conducted and 

considered for this research. A handheld global positioning system (GPS), was used for navigation 

around the wetlands to the point of sampling. At each point, a 10m by 10m quadrat was established 

and used as a sampling unit. At each quadrat LAI estimate measurements were conducted and 

recorded against the coordinates of that sampling point using the LAI-2200 Plant Canopy 

Analyser. 
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The Plant Canopy Analyser computed the LAI from the canopy, based on incoming radiation 

measurements from a fisheye optical sensor. In measuring LAI estimates, 5 measurements that 

were conducted (1 measurement) above and (4 measurements) below the canopy. LAI estimates 

measurements were conducted in such a way that there were no external objects obstructing the 

LAI-2200 instrument’s optical sensor. The optical sensor was then placed levelled underneath the 

leaf canopy, with the above canopy measurement focusing in a similar direction. LAI data was 

thereafter recoded and imported into GIS as a table. 

 
2.2.3. Remotely Sensed Data 

 

A Sentinel-2 Multispectral Instrument satellite image of the area of study was obtained from the 

ESA Copernicus Open Access Hub (https://scihub.copernicus.eu/) on 3 October 2018, which is 

the same period that the field sampling was conducted. The image was the pre-processed using 

Sentinel Application Platform (SNAP) version 2.2, atmospheric correction was thereafter 

implemented on the image in order to extract accurate wetland vegetation spectra in a GIS system. 

The spatial resolution on Sentinel-2 MSI ranges between 10 meters to 60 meters with a revisit 

period of 5 days under clear sky conditions (Frampton et al., 2013). Sentinel-2 MSI consists of 12 

spectral bands, where bands 2, 3, 4 and 8 are positioned at 10 meters, bands 5, 6, 7, 8a, 11 and 12 

are positioned at 20 meters and bands 1, 9 and 10 are positioned at 60 meters. Sentinel 2 MSI 

offers unique red-edge bands which are situated at wavelengths between 705nm – 783nm (bands 

5, 6 and 7). 

However, spectral signatures for wetland vegetation were extracted from all Sentinel-2 MSI bands. 

Vegetation indices were generated based on simple ratio (sR) and normalised difference vegetation 

(nDVI) from all conceivable Sentinel-2 MSI band combinations including red-edge bands for 

estimating LAI. Additionally, traditional vegetation indices such as green normalised difference 

index (GNDVI), normalised difference water index (NDWI), chlorophyll green (Clgreen), 

transformed difference vegetation index (TDVI) were also computed using Sentinel-2 MSI bands 

excluding those with a 60-meter spatial resolution which are atmospheric correction channels 

(Table 2.1). 

https://scihub.copernicus.eu/
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Figure 2. 2: (a) Greater Edendale Wetland (rehabilitated wetland), (b) Willow fountain wetland 

(natural wetland) and (c) Typha Capensis one of the two dominant wetland vegetation species.
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Table 2. 1: List of Sentinel-2 bands and vegetation indices used in this study. 
 

Analysis stage Variable type Variable Formula 
1 All Sentinel 2 bands Standard Bands 

Blue, Green, Red, 

NIR and Red-edge 

 

 

 
2 

 

 
Conventional VI 

Vegetation 

Indices 
SR 

 

 
NIR/Red 

  SR.re NIR/Red-edge 

  NDVI 

NDVI.re 

NDWI 

(NIR-Red)/(NIR+Red) 

(NIR-Red-edge)/(NIR+Red-edge) 

(Green-NIR/(Green+NIR) 

  
GNDVI (NIR)/(Blue+NIR) 

  
Chlgreen (NIR-G)/ (NIR+G) 

 
3 

 
Modified Vis 

TDVI √(NIR-Red)/(NIR+Red) +0.5 

 
4 

nNDVI & sR 
Combined spectral 

  

 
5 

variables 

Pooled data 
  

 

2.2.4 Statistical Analysis 
 

Prior to the analysis, a Shapiro-Wilk normality test was completed. This was done to ensure that 

there are no significant deviations of field measured LAI. The descriptive statistics were also 

computed on SPSS statistics 24. The Shapiro-Wilk test results illustrated that there were no 

significant deviations in LAI data from the normal distribution (P > 0.05). 

 
             2.2.5 Partial Least Squares Regression Method 
 

Partial Least Square Regression (PLSR) is a statistical analysis method that selects optimal spectral 

features from a large number of variables (Wold et al., 2001). This advanced technique uses a 

selection of independent variables to predict a selection of dependent variables and is particularly 

advantageous when prediction is done using a considerable selection of independent variables 

(Abdi, 2003). This model is desirable for this study because the remotely sensed data (bands) are 

transformed into new orthogonal factors which aid in avoiding multicollinearity and over fitting 

issues (Eriksson, Johansson, Kettaneh-Wold, & Wold, 2001; Sibanda et al., 2019). The algorithm 

imposes sparsity, as it selects the optimal variables for each model that are most suitable for LAI 

estimation (Sibanda, et al. 2019). 
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The process of model validation refers to the assessing the performance of a model under realistic 

conditions using independent data (Richter, Hank, Vuolo, Mauser, & D’Urso, 2012). Leave-one- 

out cross validation (LOOCV) was therefore completed on a selected measured dataset to evaluate 

the performance of the PLSR model. Cross validation (CV) has been proven as a useful method in 

prediction error estimation (Varma, 2006). It is an unbiased and commonly used method to 

determine the optimal number of components to take into account (Mevik and Wehrens, 2007). 

CV splits data into training and testing data. Research conducted on plant biophysical data often 

use LOOCV as a validation method (Richter, 2012). The LOOCV coefficient of determination 

(R²), root mean square error (RMSE) and relative root mean square error of prediction (relRMSE) 

of the regression were used to generate the goodness fit for all the models, and these were 

computed to assess and compare the LAI estimation models across both wetlands. The models 

representing the measured and predicted LAI were compared for both wetland types. The most 

optimal model was represented by the lowest RMSE and relRMSE. This indicated that the model 

performed better than the other models. 

 

 

2.3. Results 

 
 

2.3.1 Measured LAI descriptive statistics 

The highest in-situ measured LAI value was 5.07 m2/m2, which was recorded from the rehabilitated 

wetland (Figure 2.3). The number of sampled points in the rehabilitated wetland were higher in 

measured LAI compared to the natural wetland. This is due to the productivity of the rehabilitated 

wetland as compared to the natural wetland. Field measured LAI mean values of 2 m2/m2 and 3 

m2/m2 were observed for the natural and rehabilitated wetlands, respectively. The standard 

deviation of LAI data in the natural wetland was 0.60 m2/m2 and 1.17 m2/m2 for the rehabilitated 

wetland (Table 2.2). After the outliers were removed, 3.61 m2/m² was the highest recorded LAI 

measured for natural wetland and 5.07 m2/m² for rehabilitated wetland. The LAI measurements 

represent a variable distribution across the two types of wetlands, and a wide range of LAI 

measurements were recorded for the rehabilitated wetland (Figure 2.5). The Shapiro-Wilk test 

results illustrated that there were no significant deviations in LAI data from the normal distribution 

(P > 0.05).  
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Table 2. 2: Descriptive statistics of LAI (m2/m2) for natural and rehabilitated wetlands. 

 

 
Samples 

 
Minimum 

 
Maximum 

 
Mean 

 
Std. Dev 

Natural Wetland LAI 46 0.97 3.61 2.051 0.602 

Rehabilitated Wetland LAI 52 0.75 5.07 3.042 1.176 

 

 

 

Figure 2. 3: Box plots of LAI, where the grey box represents the natural wetland and the white box 

represents the rehabilitated wetland. 

 

 
2.3.2 Comparing the influence of standard bands and traditional vegetation indices in estimating 

LAI of wetland vegetation between natural and rehabilitated wetlands 

In comparing the standard bands with traditional vegetation indices in estimating LAI of wetland 

vegetation, the results exhibited better accuracies when standard bands were used for LAI 

estimation for the natural wetland, as compared to traditional vegetation indices. A RMSE of 0.72 

m2/m−2 and an R2 of 0.51 was obtained from using standard bands, whereas a RMSE of 0.78 m2/m2 
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and an R2 of 0.42 was obtained when traditional vegetation indices were used based on the PLSR 

algorithm. However, for the rehabilitated wetland, results showed that standard bands were 

outperformed by traditional indices in estimating wetland vegetation LAI. A RMSE of 0.59 m2/m2 

and R2 of 0.74 were attained using standard bands, while a RMSE of 0.57 m2/m2 and an R2 of 0.71 

was obtained when traditional indices were used. The optimal variables that were selected for this 

model included red-edge bands, vegetation indices which comprised of red, green and yellow near 

infrared (NIR) and mid infrared (MIR) for the natural wetland. Whereas, the optimal variables 

selected for the rehabilitated wetland were from the red section and the red-edge bands. 

 

 
2.3.3 Comparing the influence of nDVI and sR vegetation indices in estimating LAI of wetland 

vegetation between natural and rehabilitated wetlands 

LAI estimation accuracies improved with the use of nDVI and sR vegetation indices, as compared 

to the accuracies derived from using standard bands only. A RMSE of 0.32 m2/m2 and an R2 of 

0.61 were attained for sR vegetation indices whereas, a RMSE of 0.34 m2/m2 and an R2 of 0.62 

were obtained from nDVI (Table 3). Therefore, nDVI vegetation indices were outperformed by sR 

vegetation indices in the natural wetland. However, for the rehabilitated wetland, results show 

improved accuracies in LAI estimations for wetland vegetation with the use of nDVI vegetation 

indices. A RMSE of 0.51 m2/m2 and an R2 of 0.72 were obtained for nDVI vegetation indices and 

an RMSE of 0.56 m2/m2 and an R2 of 0.74 was attained for sR vegetation indices. The selected 

optimal variables for the natural wetland were vegetation indices that were a combination of the 

green, red, red-edge and NIR/SWIR bands. However, for the rehabilitated wetland, some of the 

optimal vegetation indices included the blue band, red-edge bands and bands from the NIR sections 

of the electromagnetic spectrum. 
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Table 2.3: Summary of LAI estimation accuracies for natural and rehabilitated wetlands. 
 

Wetland Natural Rehabilitated 

Variables R² RMSE R² RMSE 

Sentinel-2 Bands 0.51 0.72 0.74 0.59 

Traditional Indices 0.42 0.78 0.71 0.57 

Simple Ratio 0.61 0.32 0.74 0.56 

NDVI 0.62 0.34 0.72 0.51 

Combined 0.63 0.32 0.75 0.52 

 

 

 

2.3.4 Estimating wetland vegetation leaf area index using combined data 
 

When all the Sentinel-2 MSI conventional bands and vegetation indices were collectively used for 

wetland vegetation LAI prediction, a high estimation accuracy was attained for the natural wetland 

as compared to the rehabilitated wetland (Figure 2.4 (i & ii) and Table 2.3). A RMSE of 0.32 m2/m2 

and an R2 of 0.63 was obtained for combined data (conventional bands and all vegetation indices) 

for the natural wetland, whereas a RMSE of 0.52 m2/m2 and an R2 of 0.75 was obtained for the 

rehabilitated wetland. When data from both sites (natural and rehabilitated wetlands) were pooled 

together a low accuracy was produced for wetland vegetation LAI, with a RMSE of 0.67 m2/m2 

and an R2 of 0.51. Figure 2.4 (iii), illustrates the relationship between measured and predicted LAI. 

Noticeably, the individual predictive models outperformed the pooled predictive model, with the 

natural wetland model producing high accuracies (Figure 2.4 (i)). The selected optimal variables 

when natural wetland data was combined comprised of red-edge derived vegetation indices paired 

with the red, green and yellow NIR bands. The optimal variables that were selected for the 

rehabilitated wetland included all of the visible section of the electromagnetic spectrum, coupled 

with red-edge derived vegetation indices and NIR and SWIR section of the electromagnetic 

spectrum. 
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Figure 2. 4: The relationship between measured and predicted LAI, i) representing the natural 

wetland, ii) representing the rehabilitated wetland and iii) pooled dataset. 

 
 

2.4. Discussion 
 

2.4.1 Variability in measured leaf area index 
 

Results of this study show that wetland vegetation productivity was optimally characterised across 

wetland systems under different management practices using Sentinel-2 MSI data (Figure 2.4). 

Specifically, the results illustrated that optimal wetland vegetation LAI estimations were obtained 

with the use of Sentinel-2 MSI red edge derived vegetation indices in combination with traditional 

vegetation indices. Particularly, the optimal variables in the model that estimated LAI across the 

natural and the rehabilitated wetlands were red edge bands 5,6 and 7, as well as NIR band 8a. 
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The findings of the current study show that the estimation error for the natural wetland was lower 

when compared to the rehabilitated wetland. This suggests that the estimation model performed 

better in LAI estimation for the natural wetland. This could be due to high moisture content, leaf 

density, as well as lack of vegetation diversity in the rehabilitated wetland. These wetland 

characteristics attenuate the vegetation signal through the process of saturation, making it difficult 

to characterise physiochemical vegetation properties such as LAI in wetland settings, especially in 

more managed wetlands as compared to natural wetlands. However, for the natural wetland, these 

saturation issues were overcome by plant species diversity and representation due to the natural 

setting of the wetland. The Sentinel-2 MSI red edge region directly influenced the spectral 

reflectance of wetland vegetation in the natural wetland. Xie et al. (2018) presented similar results, 

where they illustrated that red and red-edge vegetation indices improved the R2 of LAI by 10% in 

a study that highlighted the influence of red and red-edge vegetation indices combinations for LAI 

estimation. Sibanda et al., (2019), also attained high accuracies with a RMSE of 0.5074 m2/m2 and 

R2 of 0.91 when Sentinel-2 MSI red edge bands were used to estimate LAI. 
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Figure 2. 5: The spatial distribution of LAI for (a) natural wetland and (b) rehabilitated wetland. 
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2.4.2 Performance of Vegetation indices in estimating wetland vegetation LAI 
 

The findings from this analysis show that vegetation indices significantly improved wetland 

vegetation LAI estimation for both wetlands by producing a lower error of estimation of 0.32 

m2/m2 for sR vegetation indices and 0.34 m2/m2 for nDVI vegetation indices for the natural 

wetland. Whereas the error of estimation for the rehabilitated wetland vegetation LAI was reduced 

to 0.56 m2/m2 when using sR vegetation indices and 0.51 m2/m2 when using NDVI vegetation 

indices. Background effects such as soil and litter can affect the model performance, especially 

with the use of standard bands only. Standard bands are more susceptible to soil background 

interference and other atmospheric issues that result in the impairment of vegetation reflectance 

when properties such as LAI are measured (Dong et al., 2019; Du et al., 2016; Mutanga & 

Skidmore, 2004). The findings of this analysis also indicate that the use of red-edge vegetation 

indices outperformed standard bands in LAI estimation. This is mainly due to the strong 

relationship between red-edge bands and LAI, as compared to standard bands. As it has been 

demonstrated that LAI strongly influences the shape of the red edge reflectance spectra (Xie, 

2018). 

The results indicate that traditional indices performed poorly in estimating wetland vegetation LAI. 

Out of the traditional indices that were used in this study, Clgreen was the most optimal in 

estimating wetland vegetation LAI in the natural wetland. Whereas, for the rehabilitated wetland 

it was Clgreen and NDWI that proved to be the most optimal variables in estimating wetland 

vegetation LAI. The reason for this could be these traditional indices were derived from the 

broadband sections of the electromagnetic spectrum. This makes these vegetation indices (VIs) 

unstable due to soil moisture, and atmospheric conditions (Taddeo et al., 2019; Maguigan et al., 

2018; Mutanga et al., 2012). In a related study, Adam et al. (2010) illustrated that NDVI 

asymptotically saturates within particular measurement of biomass density and specific ranges of 

LAI measurements. Therefore, the estimation accuracy drops considerably for both the natural and 

rehabilitated wetland. Overall the model performed better for wetland vegetation LAI in natural 

wetland as it provided the least estimation error when compared to the model derived for the 

rehabilitated wetland. The study adopted a PLSR model to establish the capability of Sentinel-2 

MSI derived data in estimating wetland vegetation leaf area index between a natural and 

rehabilitated wetland. The findings show that the PLSR algorithm can be used to estimate wetland 

vegetation LAI. 
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2.5 Conclusion 

 

 
The current study sought to investigate the ability of Sentinel-2 MSI derived data and vegetation 

indices to estimate wetland vegetation LAI under different management regimes. The findings 

show that the new generational Sentinel-2 MSI sensor data can optimally quantify the variability 

of wetland vegetation LAI across natural and rehabilitated wetlands. The presence of red-edge 

bands in Sentinel-2 MSI proved to be a great advantage to this study, as most of the optimal 

variables with the lowest estimation errors for LAI estimation included red-edge bands and red-

edge derived vegetation indices. The combination of standard bands, red-edge derived vegetation 

indices and traditional indices yielded low estimation errors for the natural wetland as compared 

to the rehabilitated wetland. Overall, the findings confirmed that Sentinel 2 MSI offers a cost 

effective and less time-consuming data source to accurately estimate LAI in resource scarce 

environments. The methods used in this study can be used for wetland monitoring by means of 

LAI estimation and comparison across wetlands under different management regimes. 
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Chapter Three 

 

 
Estimating chlorophyll content of Cyperus Dives and Typha Capensis growing in natural 

and rehabilitated wetlands 

 

Abstract 
 

Wetland restoration and management has become a pressing issue due to excessive wetland 

degradation. Vegetation health is a critical component of wetland ecosystem viability and therefore 

can be used to quantify the impacts of rehabilitation programmes using remote sensing. This study 

aimed to assess the use of high-resolution Sentinel-2 MSI data for estimating the chlorophyll 

content, (a proxy for vegetation health) of Typha capensis and Cyperus dives vegetation species 

growing in a natural wetland and a rehabilitated wetland. Partial Least Squares Regression (PLSR) 

algorithms were applied to estimate the chlorophyll content of both Cyperus dives and Typha 

capensis leaves. The results indicated that the PLSR model performed better at chlorophyll content 

estimation for Cyperus species from the rehabilitated wetland with a RMSE of 2.54 µg cm2 

(relRMSE = 4%) and R2 value of 0.86. The final model composed of combined datasets resulted 

in the accurate estimation of chlorophyll content with a RMSE of 9.11 µg cm2 (12%) and R2 value 

of 0.88 based on red-edge bands centered at 705 nm (Band 5), 740 nm (Band 6), 783 nm (Band 7) 

as well as 865 nm (Band 8a). The results indicate that wetland rehabilitation improves vegetation 

productivity. Overall, the results show that Sentinel-2 MSI data can be optimally used for 

chlorophyll content estimation of plant species growing in wetlands under different management 

regimes.  

Keywords: PLSR, accurate estimation, vegetation health, Sentinel-2 MSI data 
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3.1 Introduction 

 

 
There are numerous functions, products and ecosystem services provided by wetlands across 

different landscapes. These wetland functions include the provision of habitat for various fauna 

and flora, recreational functions and food products at a local scale (An and Verhoeven, 2019). 

Moreover, wetland ecosystems are relatively important for regulating the global water cycle 

functions, as well as productivity and biodiversity (Turner et al., 2000, Jones et al., 2018). 

Globally, wetlands increase resilience to climate change, as they act as buffers against droughts 

and floods (Janse et al., 2019). A number of wetland ecosystems are being modified and threatened 

due to anthropogenic activities and climate change, hence the urgent need for wetland 

rehabilitation. 

Wetland rehabilitation plays a vital role in the reversal of these dire conditions, by restoring 

damaged wetland ecosystems and recovering important ecosystem services. Studies have reported 

that wetland restoration focuses on returning the wetland from a disturbed or modified status 

caused by anthropogenic activities to a pristine condition, through a process of ecological 

restoration (Zhao et al., 2016). However, it is often a complex task to determine the important 

variables needed to measure the restoration success (Dou et al., 2018, Hazelton et al., 2019). 

According to Dou et al. (2018), similar variables should be used to assess the restoration success 

before and after the restoration process. However, this has proven difficult due to the lack of 

consistent data that can be used as measures of wetland restoration success (Guo and Guo, 2016, 

Hazelton et al., 2019). There is a variety of indicators that can be used to measure or assess wetland 

restoration progress across different wetlands, however, these indicators often differ depending on 

wetland ecosystem types (Dou et al., 2018, Guo and Guo, 2016). According to Choi (2004), 

ecological processes such as nutrient cycling, biological exchanges and vegetation structure should 

be taken into account as indicators when assessing the success of wetland restoration. 

Vegetation is a vital component in the ecological functioning of wetlands, and can also be an 

excellent indicator for wetland ecosystem health, physical and chemical characteristics (Elhadi et 

al., 2009, Adam et al., 2010). Vegetation properties such as chlorophyll content can provide an 

overview of the general health of vegetation (Dou et al., 2018). Chlorophyll is also a proxy for 

plants’ physiological status and it is highly related to plant photosynthetic function (Mutanga et 

al., 2012, Adam et al., 2010). Therefore, measuring leaf chlorophyll content of wetland vegetation 
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such as Typha capensis and Cyperus dives could help in attaining a complete representation of 

wetland functionality and restoration progress. 

Many African wetlands are characterised by a number of tropical species of the genera Typha 

capensis and species of Cyperus (Ruto et al., 2012). By comparison with other species in the genus, 

Typha is not a commonly studied fresh water plant, and it has only been recognised as widely 

distributed in freshwater wetlands that have relatively stable hydrological regimes (Masoko et al., 

2008). Typha capensis, commonly known as Bulrush generally occurs in areas that have permanent 

fresh water or are frequently flooded. Its unbranched, joint less stems grow between 0.5 to 1.5 m 

long. Considerable attention has been given to the genus Typha in other parts of the world. The 

main reason for this is its high productivity, which facilitates its invasion and encroachment in 

wetlands, hence it is often considered as a weed. Since Typha is extremely productive, it has a great 

potential as bio-energy crop which is useful in wastewater purification systems. Cyperus provides 

habitat for wetland fauna in most wetland ecosystems and it plays a critical hydrological, 

ecological and socio-economic role in wetland ecosystems. For instance, Cyperus is a food source 

for humans and livestock, and it can be used as a building material. However, Cyperus species are 

being endangered due to wetland degradation, agriculture and human encroachment (Elhadi et al., 

2009). Subsequently, numerous rehabilitation activities are being conducted to reduce the loss of 

ecosystem services associated with these wetland species. In this regard, comparing the leaf 

chlorophyll content of Typha capensis and Cyperus dives between restored and natural wetlands 

can offer insight on the variations of these ecosystems after restoration. There is, therefore, a need 

for effective and timely techniques for mapping and monitoring the productivity and health of such 

wetland vegetation species as part of their sustainable management (Adam et al., 2010). 

Wetlands are delicate ecosystems which are often characterised by thick, dense vegetation which 

is inaccessible rendering in-situ assessments and surveys difficult and tedious especially for 

relatively large wetlands (Adam et al., 2010). Additionally, field assessments on wetland 

ecosystems often lack adequate spatial coverage of the entire wetland due to shallow water puddles 

and high waterlogging conditions which restrict movement. Consequently, information required 

for that ecosystem monitoring is often scanty and inadequate. Therefore, there is need for more 

effective timely methods to accurately estimate chlorophyll content of wetland vegetation species 
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such as Typha and Cyperus as a proxy for wetland health. Meanwhile, remote sensing techniques 

offer an efficient and timely option for estimating and mapping chlorophyll of wetland vegetation 

species under different wetland management systems (Wortley et al., 2013). 

Wetland vegetation species properties such as chlorophyll (Chl) can be optimally estimated using 

satellite, airborne or in-situ sensors (Mutanga et al., 2012). A number of studies have indicated the 

successful application of remotely sensed data in Chl estimation at various plant phenological 

stages and across different landscapes (Gitelson et al., 1997; Chemura et al., 2017; Jay et al., 2017; 

Lu and He, 2019). Literature suggests space-borne sensors offer a synoptic view that makes remote 

sensing an ideal technique for estimating Chl at local, regional and global scales. These sensors 

provide images that are characterised by high spectral and spatial resolution, that are successfully 

used for vegetation type identification and species discrimination (Gillespie et al., (2015). 

Hyperspectral, Worldview and Landsat TM data have been successfully used for Chl estimation 

(Duo et al., 2018; Patra et al., 2017. For example, Dou et al. (2018) used hyperspectral data for 

chlorophyll content estimation of mangrove vegetation at different stages of restoration. Their 

results showed that hyperspectral data could be used to estimate biochemical constituents in leaves. 

Patra et al., (2017), also successfully estimated Chl levels for inland lakes using Landsat 8 

Operational Land Imager (OLI) imagery. In a study by Guo and Guo, (2016), hyperspectral data 

was successfully used to estimate leaf chlorophyll content of emergent plant species in wetlands 

(RMSE = 0.16 and R2 = 0.87). The authors concluded that remote sensing methods, particularly 

hyperspectral data offer an effective and non-destructive technique for monitoring restoration and 

management of urban wetlands (Guo and Guo, 2016). Although hyperspectral data is effective in 

chlorophyll estimation due to its high spectral resolution, it is often associated with exorbitant 

acquisition costs and it is often limited to local scales. Therefore, there is need for cost-effective 

data sources with similar benefits of high spatial and spectral resolution. Freely available remotely 

sensed data such as Sentinel offer opportunities to overcome the above limitations. 

Recent developments in spaceborne multispectral data provide promising sources of information 

for assessing wetland vegetation. The European Space Agency’s Copernicus programme now 

provides an opportunity to map wetlands more accurately from space, with the use of its freely 

accessible Sentinel-2 multispectral imager (MSI) data characterised by high spatial and temporal 

resolutions (Slagter et al., 2020). Sentinel-2 MSI satellites provide optical multispectral data in 

resolutions of 10, 20 and 60 meters in the visible, near-infrared (NIR) and short-wave infrared 
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(SWIR) regions of the electromagnetic spectrum (Slagter et al., 2020, Sibanda et al., 2019). 

Furthermore, Sentinel-2 MSI has a revisit period of 10 days, which makes it more suitable for 

assessing wetland health and productivity at a high spatial resolution (Mahdianpari et al., 2019). 

Unlike its predecessors such as Landsat, Sentinel-2 MSI consists of three narrow red-edge spectral 

bands which are highly sensitive to vegetation species characteristics such as chlorophyll (Cleveres 

and Gitelson 2013; Frampton et al., 2013; Vincini et al., 2016). It is, therefore, perceived that it 

could immensely contribute to the accurate estimation of vegetation biochemical and biophysical 

properties of wetlands in different management areas. Literature indicates that sensors inclusive of 

the red edge bands such as Sentinel-2 MSI may produce more accurate and effective results in the 

estimation vegetation biochemical properties such as chlorophyll. For instance, Pastor-Guzman et 

al. (2015), presented the potential of estimating chlorophyll content using Sentinel-2 MSI data in 

large mangrove areas and how this high spatial and temporal data can improve mangrove 

monitoring. A study by Frampton, Dash, Watmough, & Milton (2013), successfully illustrated 

how the red-edge section of Sentinel-2 MSI could provide accurate estimations of vegetation 

chlorophyll content, and it can therefore be used to monitor the health of wetland vegetation. So 

far, the performance of this sensor has not yet been explored in characterising leaf chlorophyll of 

wetland plants (Typha and Cyperus) under different wetland management systems. Therefore, this 

study will assess the utility of high-resolution Sentinel-2 MSI data in accurately estimating the 

chlorophyll content of Typha capensis and Cyperus dives growing in natural wetland and 

rehabilitated wetlands as proxy of evaluating the success of wetland rehabilitation. 

 

 
3.2 Methods and Material 

 

3.2.1 Study Area 
 

The study was conducted in the Greater Edendale Mall wetland (29°38'54.70"S and 

30°20'28.03"E) and Wetland Erf 1105 in Willowfontain (29°42'41.51"S and 30°20'49.22"E), both 

situated in Pietermaritzburg, KwaZulu-Natal (figure 3.1). The Willowfontain wetland is in its natural 

state, while the Edendale wetland was rehabilitated. Common hydrophytes such as Typha capensis 

and Cyperus dives are the most dominant species. However, other species such as Cyperus 

sphaerospermus, Cyperus textilis, Imperata cylindrical and Ischaemum fasciculatum are also



29  

found in the two wetlands but with negligible population sizes. The cause of degradation for the 

Edendale wetland was mainly historic and current land use changes such as the encroaching 

residential and commercial development as well as grazing pressure which resulted in significant 

modifications to the catchment. This in turn altered the wetland system’s functions such as flood 

attenuation, sediment trapping and erosion control. The rehabilitation process on the Greater 

Edendale wetland started in the year 2010. This was done as part of the development of the Greater 

Edendale Mall. The rehabilitation was done to ensure that there is no diffuse flow of water through 

the wetland system. This has allowed for the establishment of a diverse range of wetland species 

through its transformation from temporary to permanently wet soils (Green Door Environmental, 

2016). The wetland was dominated by alien invasive plant species such as Lantana camara, Melia 

azedarach, Solanum mauritianum and Sorghum halepense. Sewage water was also identified as 

one of the main disturbances to the wetland ecosystem. 

The study site generally experiences summer rainfall, but with some rainfall in winter. Average 

annual rainfall ranges between 801-1000 mm, while mean annual temperatures range from 

approximately 4.1oC to 27oC (Green Door Environmental, 2016). The dominant soil types in the 

study site consists of fill colluvial and residual soils that overlie weathered shale. With the average 

elevation ranging from 712-721 m. 
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Figure 3. 1: Location of the wetlands within Pietermaritzburg in the province of KwaZulu-Natal, 

in South Africa. 

 
 

3.2.2 Field Data Collection 
 

Prior to field measurements, Google Earth Pro was used to digitise the wetland areas. Subsequently 

the digitised polygons were transferred into a Geographic Information System (GIS), where a total 

of 130 random points were generated for Cyperus and Typha chlorophyll measurements. 

Specifically, 72 sampling points from the Greater Edendale wetland and 58 from the 

Willowfontain wetlands were conducted and considered for this analysis. A handheld global 

positioning system (GPS), was used for navigation around the wetlands. At each point, a 10m by 

10m quadrat was established and used as a sampling unit. Chlorophyll content was measured using 

the SPAD-502 meter. 
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The SPAD-502 was used for measuring chlorophyll in the field. The SPAD-502 quantifies leaf 

absorbance in the red and near-infrared regions where transmittance peaks (Ai et al., 2000). A 

numerical SPAD value which is relative to the amount chlorophyll that is present in the leaf is 

calculated by the meter, based on the transmittances of the red and near-infrared regions. SPAD 

values were measured by inserting a leaf in the measuring head of the SPAD at each of the 

generated points. Thereafter the SPAD value were recorded as the chlorophyll measurement on 

the data collection sheet, as well as the coordinates of where the chlorophyll measurements were 

taken. Since the SPAD values are unit less, a model by Markwell et al. (1995) detailed below was 

used to convert them into chlorophyll; 

 

 
𝐶ℎ𝑙 = 110𝑠0.0265 

 
Chlorophyll measured in µmol·m−2 is represented by Chl and the SPAD readings have no unit of 

measurement and therefore represented by S. With the knowledge of the molecular mass of Chl a 

and Chl b, the units were converted from μmol·m−2 to μg·cm−2. The SPAD value readings were 

measured in situ at approximately a middle point of a leaf while avoiding the midribs of grass 

leaves as in Lin et al. (2010). 

 
 

2.2.3. Remotely Sensed Data 
 

A Sentinel-2 Multispectral Instrument satellite image of the area of study was obtained from the 

ESA Copernicus Open Access Hub (https://scihub.copernicus.eu/) on 3 October 2018, which is 

the same period that the field sampling was conducted. The image was the pre-processed using 

Sentinel Application Platform (SNAP) version 2.2, atmospheric correction was thereafter 

implemented on the image in order to extract accurate wetland vegetation spectra in a GIS system. 

The spatial resolution on Sentinel-2 MSI ranges between 10 meters to 60 meters with a revisit 

period of 5 days under clear sky conditions (Frampton et al., 2013). Sentinel-2 MSI consists of 12 

spectral bands, where bands 2, 3, 4 and 8 are positioned at10 meters, bands 5, 6, 7, 8a, 11 and 12 

are positioned at 20 meters and bands 1, 9 and 10 are positioned at 60 meters. Sentinel 2 MSI 

offers unique red-edge bands which are situated at wavelengths between 705nm – 783nm (bands 

5, 6 and 7) (Table 3.1). 

https://scihub.copernicus.eu/
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However, spectral signatures for wetland vegetation were extracted from all Sentinel-2 MSI bands. 

Vegetation indices were generated based on simple ratio (sR) and normalised difference vegetation 

(nDVI) from all conceivable Sentinel-2 MSI band combinations including red-edge bands for 

estimating chlorophyll content. Additionally, traditional vegetation indices such as green 

normalised difference index (GNDVI), normalised difference water index (NDWI), chlorophyll 

green (Clgreen), transformed difference vegetation index (TDVI) were also computed using 

Sentinel-2 MSI bands excluding those with a 60-meter spatial resolution which are atmospheric 

correction channels. These vegetation indices were chosen and used for this analysis because they 

were documented in literature to have been successfully used to estimate chlorophyll (Turner et 

al. 2003, Wu et al. 2007, Frampton et al. 2013, Croft et al. 2017). 

 

Table 3. 1: Spectral and spatial resolution of Sentinel 2 MSI 
 

Bands Name Bands (nm) Resolution 

B1 Coastal aerosol 443 60 

B2 Blue 490 10 

B3 Green 560 10 

B4 Red 665 10 

B5 Red edge 705 20 

B6 Red edge 740 20 

B7 Red edge 783 20 

B8 NIR 842 10 

B8a Red edge 865 20 

B9 Water vapour 945 60 

B10 SWIR-Cirrus 1375 60 

B11 SWIR 1375 20 

B12 SWIR 2190 20 

 

 

 
 

3.4 Statistical Analysis 
 

Prior to the analysis, a Shapiro-Wilk normality test was completed so as to use the parametric 

regression models for Chl estimation. This was done to ensure that there is no significant deviation 

in Chl data collected in the field. The descriptive statistics were also computed on SPSS statistics 

24. Using the Shapiro-Wilk test results, the Chl data presented no significant deviations from the 

normal distribution (P > 0.05) hence the students t-test and PLSR were used in this study.
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3.4.1 Partial Least Squares Regression Method 
 

Partial Least Square Regression (PLSR) is a statistical analysis method that selects optimal spectral 

features from a large number of variables (Wold et al., 2001). PLSR was employed in this study 

to estimate Chl content of Cyperus and Typha species and select optimal modelling spectral 

features. This advanced technique uses a selection of independent variables to predict a selection 

of dependent variables and is particularly advantageous when prediction is done using a 

considerable selection of independent variables (Abdi, 2003). This model is desirable for this study 

because the remotely sensed data (bands) are transformed into new orthogonal factors which aid 

in avoiding multicollinearity and over fitting issues (Eriksson, Johansson, Kettaneh-Wold, & 

Wold, 2001; Sibanda et al., 2019). The algorithm selects the optimal variables for each model that 

are most suitable for chlorophyll estimation (Sibanda, Mutanga et al. 2019). 

The process of model validation refers to the assessing the performance of a model under realistic 

conditions using independent data (Richter, Hank, Vuolo, Mauser, & D’Urso, 2012). Leave-one- 

out cross validation (LOOCV) was therefore completed on a selected measured dataset to evaluate 

the performance of the PLSR model. Cross validation (CV) has been proven as a useful method in 

prediction error estimation (Varma, 2006). It is an unbiased and commonly used method to 

determine the optimal number of components to take into account (Mevik and Wehrens, 2007). 

CV splits data into training and testing data. Research conducted on plant biophysical data often 

use LOOCV as a validation method (Richter, 2012). The LOOCV coefficient of determination 

(R²), root mean square error (RMSE) and relative root mean square error of prediction (relRMSE) 

of the regression were used to generate the goodness fit for all the models. The accuracies for 

chlorophyll estimation models across plant species and wetlands were compared based on the 

RMSE and R² they exhibited. Optimal models in this study exhibited a lower relRMSE and RMSE. 
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Absolute Total 
156 

3.3 Results 
 

3.3.1. Measured Cyperus and Typha chlorophyll descriptive statistics (µg cm2) 
 

Using the Shapiro-Wilk test results, the Chl data presented no significant deviations from the 

normal distribution (P > 0.05) hence the students t-test and PLSR were used in this study. Measured 

chlorophyll content was higher for Typha species in the rehabilitated wetland with a mean of 73.3 

µg cm2 while Cyprus in the natural wetland had a mean of 51.7. The mean Chlorophyll content 

recorded for Cyperus species ranged between 17 µg cm2 and 58 µg cm2 in the natural and 

rehabilitated wetlands respectively. Meanwhile the mean chlorophyll content of Typha species 

ranged between 51.7 µg cm2 and 73.3 µg cm2 in the natural and rehabilitated wetlands respectively. 

Figure 3.2. illustrates significant (α = 0.05) differences in Chl content between Cyperus species 

growing in the natural wetland and that growing in the rehabilitated wetland. However, no 

significant differences (P > 0.05) in Chl were observed on Cyperus and Typha species growing in 

the rehabilitated wetland, whereas significant differences (α = 0.05) were observed between 

Cyperus and Typha growing in the natural wetland. 

 

 
Table 3. 2: Descriptive statistics of Cyperus and Typha species chlorophyll content in natural and 

rehabilitated wetlands (µg cm2). 

 

 
 Wetland Mean Std. Deviation N  

Cyperus Natural 17.3 21.1  37 

 
 

Rehabilitated 58.9 27.6  36 

 
 

 

Total    73 

Typha Natural 51.7 11.1  25 

 
 

Rehabilitated 73.3 33.2  45 

 
 

Total    83 
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Figure 3. 2: Box plots of Chlorophyll, where grey boxes represent Cyperus and white boxes 

Typha between natural and rehabilitated wetland. 

 

 
3.3.2. Estimating chlorophyll content of Cyperus and Typha plant species in natural and 

rehabilitated wetlands using Sentinel-2 MSI data 

A comparison of chlorophyll content between Cyperus dives and Typha capensis in a rehabilitated 

wetland, showed that the estimation model for Cyperus dives plant species produced better estimation 

accuracies with a RMSE of 2.54 µg cm2 (relRMSE = 4%) and R2 value of 0.86, whereas, a RMSE 

of 3.91 µg cm2 (relRMSE = 8%) and R2 value of 0.60 was attained for the model for Typha plant 

species (Figure 3.3). However, in comparing these plant species Chl content for the natural wetland, 

results showed that the model for Typha plant species produced better accuracies with a RMSE of 

7.70 µg cm2 (relRMSE =12%) and an R2 value of 0.75, while a higher RMSE of 8.77 µg cm2 

(relRMSE = 11%) and an R2 value of 0.78 was attained for Cyperus plant species Chl estimation 

(Figure 3.3). The selected optimal variables for Cyperus Chl content estimation included red edge 

vegetation indices, red-edge bands, yellow and NIR section of the electromagnetic spectrum for 

the natural wetland. Whereas, the optimal variables that were selected for Typha species in the 

natural wetland included red, NIR and red-edge region. However, the green and red bands as well 

as red edge derived vegetation indices and NIR sections were selected as the optimal variables for 

Chl content estimation from Typha species in the rehabilitated wetland whereas for Cyperus, the red 

and red-edge sections were selected.
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Figure 3. 3: Relationship between measured and predicted Chlorophyll, a) Typha for 

rehabilitated wetland and b) Cyperus for rehabilitated wetland, c) Typha for natural wetland, d) 

Cyperus for natural wetland. 
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3.3.3. Comparison of wetland plant species chlorophyll content estimation models between 

natural and rehabilitated wetlands 

Figure 3.4. shows that the model for estimating Chl content of wetland vegetation (Typha and 

Cyprus combined) in the rehabilitated wetland outperformed that for the natural wetland. This is 

illustrated by a lower Chl content estimation RMSE of 3.26 µg cm2 (relRMSE= 6%) and R2 of 

0.89 for the rehabilitated wetland, whereas a higher RMSE of 7.20 µg cm2 (relRMSE = 12%) and 

a R2 value of 0.86 was obtained for the natural wetland vegetation. The selected optimal variables 

included red, green, red-edge and NIR sections of the electromagnetic spectrum, as well as red- 

edge derived indices for both the natural and restored wetlands. 

 

 

 
 

 
 

Figure 3. 4: Relationship between measured and predicted Chlorophyll, a) vegetation for 

rehabilitated wetland, b) vegetation for natural wetland. 
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3.3.4. Estimating wetland vegetation chlorophyll content across different wetland management 

regimes 

Figure 3.5. Illustrates the prediction of Chl content estimates across all the wetland vegetation 

species data (Cyperus and Typha) and different wetland management conditions (natural and 

rehabilitated). When all vegetation species data and the types of wetlands were combined and used 

to predict Chl, a RMSE of 9.11 µg cm2 (RelRMSE = 14%) and R2 of 0.88 were derived using the 

PLSR algorithm. The overall selected optimal variables for this model included red and red-edge 

regions and red-edge vegetation indices (Figure 3.6). 

 

 

 

 
 

Figure 3. 5: Relationship between measured and predicted Chlorophyll across different 

wetland management regimes. 
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Figure 3. 6: Variable of importance scores in Chl estimation based on conventional bands, 

simple ration and normalised difference vegetation index combinations. 

 

 

 

3.4 Discussion 

 
The present study sought to evaluate the use of Sentinel-2 MSI data for estimating the chlorophyll 

content of Typha capensis and Cyperus dives vegetation species growing in a natural wetland and 

a rehabilitated wetland. Chlorophyll content was used as a proxy for vegetation health hence to 

facilitate a better understanding of the success of wetland restoration programmes. 

 

 
3.4.1 Performance of Sentinel-2 MSI derived data in estimating chlorophyll content of Cyprus 

and Typha across different wetland management regimes 

 

The findings of this study indicate that wetland vegetation leaf chlorophyll content can be 

accurately estimated across wetland ecosystems under varying management conditions with a 

RMSE of 9.11 µg cm2 (relRMSE = 14%) and R2 of 0.88. Particularly, the spectral variables derived 

from the red-edge bands were the most influential variables. This can be explained by the 

renowned and proven strong relationship between chlorophyll content and the red-edge region 

(Curran and Plummer, 1991; Gitelson et al. 2001; Dou et al. 2018). Reflectance in red-edge section 
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of the electromagnetic spectrum (550 nm and 700 nm) are sensitive to leaf chlorophyll content, 

which results in reflectance peaks in this region when compared to the visible region of the 

electromagnetic spectrum. Gitelson et al. (2001), illustrated that the reflectance in spectral bands 

near 700 nm were sensitive to chlorophyll content of crops. Additionally, a study by Gitelson et 

al. (2002), illustrated a positive correlation between Chl and wavebands positioned further from 

absorption bands positioned at 550 nm and 700 nm. A study by Curran et al. (1990), identified the 

red-edge as an optimal variable in estimating chlorophyll content by creating a relationship 

between the red-edge region and reflectivity at different wavelengths. Subsequently, the red-edge’s 

relationship with plant chlorophyll content of makes it an effective tool for vegetation status 

assessment using remote sensing. 

 

3.4.2 Comparison of wetland vegetation chlorophyll content between natural and rehabilitated 

wetlands 

 

The findings of this study also showed that the chlorophyll content of rehabilitated wetlands 

exhibited more accurate models with a RMSE of 3.26 µg cm2 (relRMSE= 6%) and R2 of 0.89 

compared to a RMSE of 7.20 µg cm2 (relRMSE= 12%) and R2 of 0.86 exhibited by the natural 

wetland plants. The most influential variables were visible (red and, green) vegetation indices, NIR 

and red-edge regions. The variations in the accuracies exhibited across the different wetland 

management regimes could be justified by the variation in chlorophyll content between the 

wetlands. Vegetation in the rehabilitated wetland is in a healthier state when compared to that from 

the natural wetland, hence the high spectral reflectance in the rehabilitated wetland. The 

rehabilitated wetland is in an enclosed environment that is less prone to be affected by external 

factors such as pollutants, cattle grazing and housing developments, hence there is less impact on 

vegetation health and foliage density. However, the natural wetland is more susceptible to external 

influences such as pollution and disturbance due to its lack of fencing and protection. Goats tend 

to have access and graze the nutritious wetland plants reducing their foliage density. Vegetation in 

the natural wetland is prone to stress, which affects its productivity and ultimately its spectral 

reflectance. In a related study, Zhao et al. (2016) indicates how wetland restoration can improve 

the structure and function of degraded wetland ecosystems, therefore improving vegetation 

productivity. A plausible explanation could be that the rehabilitated wetland has pure stands of 

Typha which could be 
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accurately recorded by the sensors, whereas there is a lot of background effects in a natural 

wetland, with undergrowth, mixed species and polluted soils thus affecting reflectance. 

3.4.3 Variations in chlorophyll content of Cyperus dives and Typha capensis plant species in 

wetland settings 

 

Results of this study indicate that the model for estimating Cyperus chlorophyll content of the 

rehabilitated wetland exhibited lower estimation errors with a RMSE of 2.54 µg cm2 and R2 of 

0.86, based on red-edge region derived vegetation indices and bands when compared to Typha 

species (RMSE = 3.91 µg cm2 and R2 = 0.60). Cyperus species are predominantly horizontal leaves 

(planophile). Studies have shown that leaves in planophile position receive a greater total daily 

radiance, with minimum background effects (Wang et al., 2009). Therefore, the leaves of Cyperus 

species exhibits high reflectances in the visible, near-infrared (NIR) and red-edge positions, hence 

the better chlorophyll content estimation accuracies. Meanwhile, Typha species are predominantly 

vertical leaves (erectophile). These leaves have relatively lower interactions with the incoming 

radiation since part of the light penetrates to the ground and hence affected by background material, 

therefore exhibit a relatively lower reflectance in the visible, NIR and red-edge regions. As 

previously mentioned, the red-edge is associated with chlorophyll concentration, which directly 

affects vegetation spectral reflectance as in the case with Cyperus (Sibanda et al., 2019). Cyperus 

species is the dominant cover type in the wetlands and therefore has superior leaf reflectance 

properties over Typha species. A related study by Delegido et al. (2011), highlights the role of 

Sentinel-2 MSI red-edge bands in significantly improving chlorophyll content estimation, by 

illustrating a linear positive relationship between chlorophyll content and red-edge bands and 

indices across various plant types. However, in the natural wetland, the estimation model for Typha 

species produced a low estimation error for chlorophyll content estimation (RMSE = 7.18 µg cm2 

and R2 = 0.75) compared to Cyperus. This can be explained by the high canopy density of Typha 

species in the natural wetland which are characterized by thick leaves in close proximity to each 

other, which therefore influence the leaf reflectance of Typha species. Wang et al. (2009), indicates 

that where the erectophile canopy is dense, it produces spectral reflectances that are similar to those 

of a sparse canopy of planophile leaf orientation. 
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3.5 Conclusion 

 
The present study sought to investigate the ability of Sentinel-2 data to estimate the chlorophyll 

content of Cyperus dives and Typha capensis plant species growing in wetlands under different 

management regimes. Based on the findings of this study the following conclusions were 

established: 

 

• Wetland vegetation chlorophyll content can be accurately estimated using Sentinel 2 MIS’s 

visible (red and red-edge) spectral variables. 

• The stimation model for Cyperus dives plant species produced better estimation accuracies 

when compared to those for Typha capensis plant species for the rehabilitated wetland, and 

estimation model for Typha species produced better estimation accuracies for the natural 

wetland based on the visible red, NIR and red- edge spectral variables. 

 

Results of this study highlight the critical and potential role that could be played by Sentinel 2 

MSI’s remotely sensed data in monitoring wetland vegetation elements such as chlorophyll content 

as a wetland health assessment technique. This effective and timely high spatial data could offer 

means to successfully monitor wetland vegetation productivity and health. Additionally, this study 

highlighted the ecological benefits of wetland rehabilitation which is clearly represented by 

healthier and more productive vegetation in the rehabilitated wetland. Furthermore, this study is a 

pathway towards the monitoring and understanding wetland restoration success, which can assist 

with future wetland management practices and consequently contribute to preservation and 

protection of wetland areas in local communities. 
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CHAPTER FOUR 

Synthesis and Conclusions 

 

 

4.1 Introduction 

This research aimed to assess the variation in productivity of plant species in wetland areas under 

different management regimes in Pietermaritzburg, South Africa using Sentinel-2 MSI data. The 

objectives of this research were; (i) to test the ability of Sentinel-2 MSI derived data and vegetation 

indices in estimating the variations in leaf area index for vegetation growing in a natural wetland 

and that growing in a rehabilitated wetland, and (ii), to assess the use of high-resolution Sentinel- 

2 MSI data in estimating the chlorophyll content of Cyperus dives and Typha capensis vegetation 

species growing in a natural wetland and a rehabilitated wetland. This chapter provides an 

overview of the aims and objectives of this study and highlight the main conclusions and 

recommendations for future studies. 

 

 
4.2 Assessing the utility of Sentinel-2 MSI data in quantifying wetland vegetation leaf area 

index for natural and rehabilitated wetlands 

 

Findings from this study suggest that the new generational Sentinel-2 MSI sensor data is suitable to 

optimally quantify the variability of wetland vegetation LAI across natural and rehabilitated 

wetlands. The combination of standard bands, red-edge derived vegetation indices and traditional 

indices yielded low estimation errors based on the PLSR estimation algorithm for the natural 

wetland as compared to the rehabilitated wetland. Based on these findings, we concluded that 

Sentinel-2 MSI data offers a cost effective and less time-consuming data source for accurate LAI 

estimation in resource scarce environments and can be used for wetland monitoring by means of 

LAI estimation and comparison across wetlands under different management regimes. 
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4.3 Estimating the chlorophyll content of Cyperus dives and Typha capensis and Cyperus 

dive species growing in a natural wetland and a rehabilitated wetland using Sentinel-2 MSI 

data 

The findings of this study illustrated the use of Sentinel-2 MSI data to optimally estimate the 

chlorophyll content of different plant species, characterised by wetland type. The sensors’ red- 

edge region proved to be of significant importance in the accurate estimation of chlorophyll 

content, as most of the optimal variables with the lowest estimation errors for Chl estimation 

included the red-edge bands based on PLSR estimation algorithms. In terms of overall 

performance, the PLSR model proved to be an optimal model for estimating wetland vegetation 

Chl content by providing a relatively low error of estimation. Furthermore, the study demonstrated 

that Sentinel- 2 MIS data provides focused and efficient data source for accurate Chl content 

estimation of different plant species across wetlands under different management regimes. 

 

 
4.4 Conclusions and Recommendations 

This study has confirmed that Sentinel-2 MSI data is an accurate, reliable and timely data source, 

and can therefore be used to optimally estimate LAI and chlorophyll content of wetland vegetation 

growing in a natural and a rehabilitated wetland. This conclusion is based on the following 

observations: 

1. When using Sentinel-2 MSI data to estimate wetland vegetation LAI, results show that 

vegetation indices generated from red-edge bands performed better for both wetlands. 

Therefore, vegetation productivity was optimally characterised across wetlands under 

different management treatments using Sentinel 2 MSI red-edge derived vegetation 

indices, combined with traditional vegetation indices. 

 
2. Sentinel-2 MSI data was successfully used to estimate Cyperus dives and Typha capensis 

species chlorophyll content in wetlands under different management regimes with limited 

errors. The findings show that chlorophyll content was accurately estimated for wetland 
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vegetation in a rehabilitated wetland when compared to a natural wetland based on the 

visible red and red-edge spectral variables. 

 

 
Based on these findings, we conclude that Sentinel-2 MSI data can accurately assess the 

productivity of wetland vegetation species growing in wetland areas under different regimes. This 

illustrates the critical role played by new generation remote sensors in wetland vegetation 

monitoring, especially with the fine spatial and spectral resolutions that provide an added 

advantage in monitoring essential plant biophysical characteristics such as LAI and chlorophyll 

content. This provides a pathway towards the monitoring of wetland restoration success, which 

can assist with future wetland management practices and consequently contribute to the 

preservation and protection of wetlands in local communities. Furthermore, results of this study 

highlight the ecological benefits of wetland rehabilitation and preservation in local communities, 

clearly represented by healthier and more productive vegetation in the rehabilitated wetland. These 

findings confirm the need to adopt long-term wetland monitoring strategies that are specific to 

wetland type and vegetation type, especially with the current state of climate change and global 

warming. 

This study focused on some of the key elements of wetland vegetation in wetlands under different 

management regimes. Future studies should evaluate the role of other critical wetland vegetation 

indicators such as biomass, vegetation height and also observing the wetland vegetation 

characteristics in different seasons and growth stages. Furthermore, future studies should observe 

the role of factors that influence wetland health and functionality such as climate change. It is 

suggested that wetland ecologists use the methods from this study as a basis for developing a 

technique that can be used in assessing wetland rehabilitation success in larger wetland ecosystems 

and future management strategies. 



46  

References 

 
Abdel-Rahman, E. M., Mutanga, O., Odindi, J., Adam, E., Odindo, A., and Ismail, R. (2014). A 

comparison of partial least squares (PLS) and sparse PLS regressions for predicting yield of Swiss 

chard grown under different irrigation water sources using hyperspectral data. Computers and 

Electronics in Agriculture, 106, 11-19. 

Abdi, H. (2003). Partial least square regression (PLS regression). Encyclopedia for research methods for 

the social sciences, 6(4), 792-795. 

Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for 

identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management, 

18(3), 281-296. 

Akumu, C. E., Pathirana, S., Baban, S., and Bucher, D. (2011). Examining the potential impacts of sea level 

rise on coastal wetlands in north-eastern NSW, Australia. Journal of Coastal Conservation, 15(1), 

15-22. 

Akumu, C. E., Henry, J., Gala, T., Dennis, S., Reddy, C., Tegegne, F., Haile, S., and Archer, R.S. (2018). 

Inland wetlands mapping and vulnerability assessment using an integrated geographic information 

system and remote sensing techniques. Global Journal of Environmental Science and 

Management, 4(4), 387-400. 

Ailstock, M. S., Norman, C. M., & Bushmann, P. J. (2001). Common reed Phragmites australis: control 

and effects upon biodiversity in freshwater nontidal wetlands. Restoration Ecology, 9(1), 49-59. 

An, S., and Verhoenven, J. T. (2019). Wetland functions and Ecosystem services: Implications for wetland 

restoration and wise use. Wetlands: Ecosystem Services, Restoration and Wise use, 1-10: Springer. 

Andersen, C. M., and Bro, R. (2010). Variable selection in regression—a tutorial. Journal of 

Chemometrics, 24(11‐12), 728-737. 

Ayeni, O., Ndakidemi, P., Snyman, R. and Odendaal, J. (2012). Assessment of Metal Concentrations, 

Chlorophyll Content and Photosynthesis in Phragmites australis along the Lower Diep River, 

CapeTown, South Africa. Energy and Environment Research, 2(1). 

Borin, A., and Poppi, R. J. (2005). Application of mid infrared spectroscopy and iPLS for the 

quantification of contaminants in lubricating oil. Vibrational Spectroscopy, 37(1), 27-32. 

Batzer, D. P., & Boix, D. (2018). Invertebrates in freshwater wetlands: Springer. 

Chemura, A., Mutanga, O., & Odindi, J. (2017). Empirical modeling of leaf chlorophyll content in coffee 

(coffea arabica) plantations with sentinel-2 msi data: Effects of spectral settings, spatial resolution, 

and crop canopy cover. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 10(12), 5541-5550. 

Chen, J., Gu, S., Shen, M., Tang, Y., & Matsushita, B. (2009). Estimating aboveground biomass of 

grassland having a high canopy cover: an exploratory analysis of in situ hyperspectral data. 

International Journal of Remote Sensing, 30(24), 6497-6517. 

Choi, Y. D. (2004). Theories for ecological restoration in changing environment: toward 

‘futuristic’restoration. Ecological research, 19, 75-81. 



47  

Clevers, J. G., & Gitelson, A. A. (2013). Remote estimation of crop and grass chlorophyll and nitrogen 

content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth 

Observation and Geoinformation, 23, 344-351. 

Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., Millán, V. E. G., . . . Michael, F. (2015). 

Remote sensing for mapping natural habitats and their conservation status–New opportunities and 

challenges. International Journal of Applied Earth Observation and Geoinformation, 37, 7-16. 

Curran, P. J., Dungan, J. L., & Gholz, H. L. (1990). Exploring the relationship between reflactance red 

edge and chlorophyll content in slash pine. Tree Physiol, 7, 33-48. 

Curran, P. J., & Plummer, S. E. (1991). The effecte of red leaf pigment on the relationship between red 

edge and chlorophyll concentration. Remote Sensing of Environment, 32(1), 69-76. 

Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of sentinel-2 red-edge bands for 

empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063-7081. 

Dini, J., & Bahadur, U. (2016). South Africa's National Wetland Rehabilitation Programme: Working for 

Wetlands. The wetland book. Netherlands: Springer. https://doi. org/10.1007/978‐94‐007‐6172‐ 

8_145‐2. 

Dong, T., Liu, J., Shang, J., Qian, B., Kovacs, J. M., Walters, D., Jiao, X., Geng, X. & Shi, Y. (2019) 

Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sensing of 

Environment, 222, 133-143. 

Dou, Z., Cui, L., Li, J., Zhu, Y., Gao, C., Pan, X., . . . Li, W. (2018). Hyperspectral estimation of the 

chlorophyll content in short-term and long-term restorations of mangrove in Quanzhou Bay 

Estuary, China. Sustainability, 10(4), 1127. 

Du, H., Jiang, H., Zhang, L., Mao, D., & Wang, Z. (2016). Evaluation of spectral scale effects in estimation 

of vegetation leaf area index using spectral indices methods. Chinese Geographical Science, 26(6), 

731-744. 

Eckert, S., & Engesser, M. (2013). Assessing vegetation cover and biomass in restored erosion areas in 

Iceland using SPOT satellite data. Applied geography, 40, 179-190. 

Ehrenfeld, J. G. (2003). Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes. Ecosystems, 

6(6), 503-523. 

Elhadi, M. A., Mutanga, O., Rugege, D., & Ismail, R. (2009). Field spectrometry of papyrus vegetation 

(Cyperus papyrus L.) in swamp wetlands of St Lucia, South Africa. Paper presented at the 2009 

IEEE International Geoscience and Remote Sensing Symposium. 

Eriksson, L., Johansson, E., Kettaneh-Wold, N., & Wold, S. (2001). Multivariate and megavariate data 

analysis—principles and applications. Umetrics, AB. 

Eviner, V. T., Garbach, K., Baty, J. H., & Hoskinson, S. A. (2012). Measuring the effects of invasive 

plants on ecosystem services: challenges and prospects. Invasive Plant Science and Management, 

5(1), 125-136. 

Gitelson, A.A., Merzlyak, M. N., Zur, Y., Stark, R., & Gritz, U. (2001) Non-Destructive and Remote 

Sensing Techniques for Estimation of Vegetation Status. Papers in Natural Resources 273, 205- 

10. 

https://doi/


48  

Gitelson, A. A, Yoav, Z., Olga, B. C., & Mark, N. M. (2002). Assessing Carotenoid Content in Plant 

Leaves with Reflectance Spectroscopy. Photochemistry and Photobiology, 75(3), 272-81. 

Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C., & Arkebauer, T. J. (2005). Remote estimation 

of canopy chlorophyll content in crops. Geophysical Research Letters, 32(8). 
 

Govender, M., Chetty, K. and Bulcock, H. (2007). A review of hyperspectral remote sensing and its 

application in vegetation and water resource studies. 

Guo, C., & Guo, X. (2016). Estimating leaf chlorophyll and nitrogen content of wetland emergent plants 

using hyperspectral data in the visible domain. Spectroscopy Letters, 49(3), 180-187. 

Hazelton, E. L., Downard, R., Kettenring, K. M., McCormick, M. K., & Whigham, D. F. (2019). 

Correction to: Spatial and Temporal Variation in Brackish Wetland Seedbanks: Implications for 

Wetland Restoration Following Phragmites Control. Estuaries and coasts, 42(3), 907-907. 

Hopkinson, C. S., Cai, W.-J., & Hu, X. (2012). Carbon sequestration in wetland dominated coastal 

systems—a global sink of rapidly diminishing magnitude. Current opinion in environmental 

sustainability, 4(2), 186-194. 

Janse, J. H., van Dam, A. A., Hes, E. M., de Klein, J. J., Finlayson, C. M., Janssen, A. B., . . . Verhoeven, 

J. T. (2019). Towards a global model for wetlands ecosystem services. Current opinion in 

environmental sustainability, 36, 11-19. 

Jiang, W., Wang, W., Chen, Y., Liu, J., Tang, H., Hou, P., & Yang, Y. (2012). Quantifying driving forces 

of urban wetlands change in Beijing City. Journal of Geographical Sciences, 22(2), 301-314. 

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., and Baret, F. (2004). Review of 

methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical 

photography. Agricultural and forest meteorology, 121(1), 19-35. 

Kent, B. J. and Mast, J. N., 2005. Wetland change analysis of San Dieguito Lagoon, California, USA: 

1928-1994. Wetlands, 25(3):780-787. 

Kotze, D. (2012). South Africa's foreign policy and international relations during 2012. South African 

Yearbook of International Law, 37(1), 356-377. 

Lantz, N. J., & Wang, J. (2013). Object-based classification of Worldview-2 imagery for mapping invasive 

common reed, Phragmites australis. Canadian Journal of Remote Sensing, 39(04), 328-340. 

Lee, K. S., Cohen, W. B., Kennedy, R. E., Maiersperger, T. K., and Gower, S. T. (2004). Hyperspectral 

versus multispectral data for estimating leaf area index in four different biomes. Remote Sensing 

of Environment, 91(3), 508-520. 

Lu, B., & He, Y. (2019). Evaluating Empirical Regression, Machine Learning, and Radiative Transfer 

Modelling for Estimating Vegetation Chlorophyll Content Using Bi-Seasonal Hyperspectral 

Images. Remote Sensing, 11(17), 1979. 

Maguigan, M., Rodgers, J., Dash, P., &Meng, Q. (2016). Assessing net primary production in Montane 

wetlands from proximal, airborne, and satellite remote sensing. Advances in Remote Sensing, 5(2), 

118-130. 

Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., & Gill, E. (2019). The first wetland 



49  

inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data 

on the google earth engine cloud computing platform. Remote Sensing, 11(1), 43. 

Mao, H., Gao, H., Zhang, X., and Kumi, F. (2015). Nondestructive measurement of total nitrogen in lettuce 

by integrating spectroscopy and computer vision. Scientia Horticulturae, 184, 1-7. 

Markwell, J., Osterman, J. C., & Mitchell, J. L. (1995). Calibration of the Minolta SPAD-502 leaf 

chlorophyll meter. Photosynthesis Research, 46(3), 467-472. 

Masoko, P., Mokgotho, M., Mbazima, V., & Mampuru, L. (2008). Biological activities of Typha capensis 

(Typhaceae) from Limpopo Province (South Africa). African Journal of Biotechnology, 7(20). 

Medeiros, T. C. C., Sampaio, E. V., & Nascimento, D. M. (2018). Leaf area index and vegetation cover 

of the Paripe river mangrove, Pernambuco, Brazil, in 1997 and 2017. Journal of Integrated Coastal 

Zone Management, 18(1), 41-48. 

Meli, P., Benayas, J. M. R., Balvanera, P., & Ramos, M. M. (2014). Restoration enhances wetland 

biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. 

PloS one, 9(4), e93507. 

Moomaw, W. R., Chmura, G. L., Davies, G.T., Finlayson, C.M., Middleton, B.A., Natali, S.M., Perry, 

J.E., Roulet, N., and Sutton-Grier, A. E. (2018). Wetlands in a changing climate: science, policy 

and management. Wetlands, 38(2), 183-205. 

Mitsch, W. J., & Wilson, R. F. (1996). Improving the success of wetland creation and restoration with 

know‐how, time, and self‐design. Ecological applications, 6(1), 77-83. 

Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation 

using WorldView-2 imagery and random forest regression algorithm. International Journal of 

Applied Earth Observation and Geoinformation, 18, 399-406. 

Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem 

in biomass estimation. International journal of remote sensing, 25(19), 3999-4014. 

Nagendra, H. (2001). Using remote sensing to assess biodiversity. International journal of remote sensing, 

22(12), 2377-2400. 

Navea, S., Tauler, R., and de Juan, A. (2005). Application of the local regression method interval partial 

least-squares to the elucidation of protein secondary structure. Analytical biochemistry, 336(2), 

231-242. 

Nguy-Robertson, A. L., Peng, Y., Gitelson, A. A., Arkebauer, T. J., Pimstein, A., Herrmann, I., . . . Bonfil, 

D. J. (2014). Estimating green LAI in four crops: Potential of determining optimal spectral bands 

for a universal algorithm. Agricultural and forest meteorology, 192, 140-148. 

Norgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., and Engelsen, S. B. (2000). Interval 

partial least-squares regression (iPLS): a comparative chemometric study with an example from 

near-infrared spectroscopy. Applied Spectroscopy, 54(3), 413-419. 

Pan, F., Xie, J., Lin, J., Zhao, T., Ji, Y., Hu, Q., . . . Xi, X. (2018). Evaluation of climate change impacts 

on wetland vegetation in the Dunhuang Yangguan National Nature Reserve in Northwest China 

using Landsat derived NDVI. Remote Sensing, 10(5), 735. 

Pastor-Guzman, J., Atkinson, P. M., Dash, J., & Rioja-Nieto, R. (2015). Spatiotemporal variation in 

mangrove chlorophyll concentration using Landsat 8. Remote Sensing, 7(11), 14530-14558. 



50  

Patra, P. P., Dubey, S. K., Trivedi, R. K., Sahu, S. K., & Rout, S. K. (2017). Estimation of chlorophyll‐a 

concentration and trophic states in Nalban Lake of East Kolkata Wetland, India from Landsat 8 

OLI data. Spatial Information Research, 25(1), 75-87. 

Richter, K., Hank, T. B., Vuolo, F., Mauser, W., & D’Urso, G. (2012). Optimal exploitation of the 

Sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sensing, 4(3), 561-582. 

Ruiz‐Jaen, M. C., & Mitchell Aide, T. (2005). Restoration success: how is it being measured? Restoration 

ecology, 13(3), 569-577.

Rundquist, D. C., Narumalani, S. and Narayanan R. M., 2001 A review of wetlands remote sensing and 

defining new considerations. Remote Sensing Reviews, 20(3), 207-226. 

Ruto, W., Kinyamario, J., Ng'etich, N., Akunda, E., & Mworia, J. (2012). Plant species diversity and 

composition of two wetlands in the Nairobi National Park, Kenya. Journal of Wetlands Ecology, 

6, 7-15. 

Shen, L., Li, Z., and Guo, X. (2014). Remote Sensing of Leaf Area Index (LAI) and a Spatiotemporally 

Parameterized Model for Mixed Grasslands.International Journal of Applied, 4(1). 

Sibanda, M., Mutanga, O., Dube, T., S Vundla, T., & L Mafongoya, P. (2019). Estimating LAI and 

mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using 

Sentinel-2 MSI derived red edge bands. GIScience & remote sensing, 56(1), 68-86. 

Silva, T. S., Costa, M. P., Melack, J. M., & Novo, E. M. (2008). Remote sensing of aquatic vegetation: 

theory and applications. Environmental monitoring and assessment, 140(1-3), 131-145. 

Slagter, B., Tsendbazar, N.-E., Vollrath, A., & Reiche, J. (2020). Mapping wetland characteristics using 

temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South 

Africa. International Journal of Applied Earth Observation and Geoinformation, 86, 102009. 

Stefanik, K. C. (2012). Structure and function of vascular plant communities in created and restored 

wetlands in Ohio. The Ohio State University. 

Taddeo, S., Dronova, I., & Depsky, N. (2019). Spectral vegetation indices of wetland greenness: 

Responses to vegetation structure, composition and spatial distribution. Remote Sensing of 

Environment, 234,111467. 

Teferi E., Uhlenbrook E., Bewket W., Wenninger J. and Simane B., 2010. The use of remote sensing to 

quantify wetland loss in the Choke Mountain range, Upper Blue Nile basin, Ethiopia. Hydrology 

and Earth System Sciences, 14, 2415–2428. 

Traynor, C., Kotze, D., & McKean, S. (2010). Wetland craft plants in KwaZulu-Natal: an ecological 

review of harvesting impacts and implications for sustainable utilization. Bothalia, 40(1), 135-144. 

Turner, K. R., Van der Bergh, C. J. M., Soderqvist, Barendregt, A., van der Straaten, J., Malty, E. and van 

Ierland E. C. (2000). Ecological-economic analysis of wetlands: scientific integration for 

management and policy. Ecological Economics 35, 7–23. 

Varma, S., & Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. 

BMC bioinformatics, 7(1), 91. 

Verrelst, J., Muñoz, J., Alonso, L., Delegido, J., Rivera, J. P., Camps-Valls, G., & Moreno, J. (2012). 



51  

Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for 

Sentinel-2 and-3. Remote Sensing of Environment, 118, 127-139. 

Wehrens, R., & Mevik, B.-H. (2007). The pls package: principal component and partial least squares 

regression in R. 

Weiguo, J., Wenjie, J., Yunhao, C., Jing, L. and Hong, T., 2012. Quantifying driving forces of urban 

wetlands change in Beijing City. Journal of Geographical Sciences, 22(2): 301-314. 

Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., and Coppin, P. (2004). Review of methods for in situ 

leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agricultural 

and Forest Meteorology, 121(1), 37-53. 

Wold, S., Sjostrom, M., and Eriksson, L., (2001). PLS-regression: a basic tool of chemometrics. 

Chemometrics and intelligent laboratory systems, 58(2), 109-130. 

Wortley, L., Hero, J. M., and Howes, M. (2013). Evaluating ecological restoration success: a review of 

the literature. Restoration ecology, 21(5), 537-543. 

Wu, W. T., Zhou, Y. X., and Tian, B. (2017). Coastal wetlands facing climate change and anthropogenic 

activities: A remote sensing analysis and modelling application. Ocean and Coastal Management, 

138, 1-10. 

Zedler, J. B. (2000). Progress in wetland restoration ecology. Trends in Ecology & Evolution, 15(10), 402- 

407. 

Zedler, J. B., and Lindig-Cisneros, R. (2002). Functional equivalency of restored and natural salt marshes. 

In Concepts and controversies in tidal marsh ecology (pp. 565-582): Springer. 

Zhang, R., Ba, J., Ma, Y., Wang, S., Zhang, J., and Li, W. (2012). A comparative study on wheat leaf area 

index by different measurement methods. In Agro-Geoinformatics (Agro-Geoinformatics), 2012 

First International Conference on (pp. 1-5). IEEE. 

Zhang, S., Na, X., Kong, B., Wang, Z., Jiang, H., Yu, H., Zhao, Z., Li, X., Liu, C. and Dale, P., 2009. 

Identifying Wetland Change in China's Sanjiang Plain Using Remote Sensing. Wetlands, 

29(1):302-313. 

Zhao, Q., Bai, J., Huang, L., Gu, B., Lu, Q., & Gao, Z. (2016). A review of methodologies and success 

indicators for coastal wetland restoration. Ecological Indicators, 60, 442-452. 

Zheng, G and Moskal, L. M. (2009). Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, 

Methods and Sensors. Sensors.9, 2719-2745. 

Zhou, Y., Xiang, B., Wang, Z., and Chen, C. (2009). Determination of chlorpyrifos residue by near- 

infrared spectroscopy in white radish based on interval partial least square (iPLS) model. 

Analytical Letters, 42(10), 1518-1526. 


