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Abstract 

With the high demand for high data throughput and reliable wireless links to cater for 

real-time or low latency mobile application services, the wireless research community 

has developed wireless multiple-input multiple-output (MIMO) architectures that cater 

to these stringent quality of service (QoS) requirements. For the case of wireless link 

reliability, spatial diversity in wireless MIMO architectures is used to increase the link 

reliability. Besides increasing link reliability using spatial diversity, space-time block 

coding schemes may be used to further increase the wireless link reliability by adding 

time diversity to the wireless link. Our research is centered around the optimization of 

resources used in decoding space-time block coded wireless signals. There are two 

categories of space-time block coding schemes namely the orthogonal and non-

orthogonal space-time block codes (STBC). In our research, we concentrate on two non-

orthogonal STBC schemes namely the uncoded space-time labeling diversity (USTLD) 

and the Golden code. These two non-orthogonal STBC schemes exhibit some 

advantages over the orthogonal STBC called Alamouti despite their non-linear optimal 

detection. Orthogonal STBC schemes have the advantage of simple linear optimal 

detection relative to the more complex non-linear optimal detection of non-orthogonal 

STBC schemes. Since our research concentrates on wireless MIMO STBC transmission, 

for detection to occur optimally at the receiver side of a space-time block coded wireless 

MIMO link, we need to optimally perform channel estimation and decoding. 

 

USTLD has a coding gain advantage over the Alamouti STBC scheme. This implies that 

the USTLD can deliver higher wireless link reliability relative to the Alamouti STBC 

for the same spectral efficiency. Despite this advantage of the USTLD, to the best of our 

knowledge, the literature has concentrated on USTLD wireless transmission under the 

assumption that the wireless receiver has full knowledge of the wireless channel without 

estimation errors. We thus perform research of the USTLD wireless MIMO transmission 

with imperfect channel estimation. The traditional least-squares (LS) and minimum 

mean squared error (MMSE) used in literature, for imperfect pilot-assisted channel 

estimation, require the full knowledge of the transmitted pilot symbols and/or wireless 
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channel second order statistics which may not always be fully known. We, therefore, 

propose blind channel estimation facilitated by a deep learning model that makes it 

unnecessary to have prior knowledge of the wireless channel second order statistics, 

transmitted pilot symbols and/or average noise power. We also derive an optimal number 

of pilot symbols that maybe used for USTLD wireless MIMO channel estimation 

without compromising the wireless link reliability. It is shown from the Monte Carlo 

simulations that the error rate performance of the USTLD transmission is not 

compromised despite using only 20% of the required number of Zadoff-Chu sequence 

pilot symbols used by the traditional LS and MMSE channel estimators for both 16-

QAM and 16-PSK baseband modulation. 

 

The Golden code is a STBC scheme with spatial multiplexing gain over the Alamouti 

scheme. This implies that the Golden code can deliver higher spectral efficiencies for 

the same link reliability with the Alamouti scheme. The Alamouti scheme has been 

implemented in the modern wireless standards because it adds time diversity, with low 

decoding complexity, to wireless MIMO links. The Golden code adds time diversity and 

improves wireless MIMO spectral efficiency but at the cost of much higher decoding 

complexity relative to the Alamouti scheme. Because of the high decoding complexity, 

the Golden code is not widely adopted in the modern wireless standards. We, therefore, 

propose analytical and deep learning-based sphere-decoding algorithms to lower the 

number of detection floating-point operations (FLOPS) and decoding latency of the 

Golden code under low- and high-density M-ary quadrature amplitude modulation (M-

QAM) baseband transmissions whilst maintaining the near-optimal error rate 

performance. The proposed sphere-decoding algorithms achieve at most 99% reduction 

in Golden code detection FLOPS, at low SNR, relative to the sphere-decoder with sorted 

detection subsets (SD-SDS) whilst maintaining the error rate performance. For the case 

of high-density M-QAM Golden code transmission, the proposed analytical and deep 

learning sphere-decoders reduce decoding latency by at most 70%, relative to the SD-

SDS decoder, without diminishing the error rate performance. 
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1   Introduction 

With the high demand for high spectral efficiency and highly reliable wireless message 

transfers between mobile end user terminals and radio access network (RAN) base 

stations, researchers are under pressure to create technologies that can deliver on these 

quality of service (QoS) requirements. One such technology that can deliver on the 

stringent QoS requirements is the multiple-input multiple-output (MIMO) wireless 

architecture. The wireless MIMO architecture is characterised by multiple transmit and 

receive antennas in the MIMO configuration. The wireless MIMO architecture can 

achieve high spectral efficiency through spatial multiplexing, via multiple transmit 

antennas, and deliver highly reliable wireless links via the use of multiple receive 

antennas [1]. There is a known trade-off between spatial multiplexing gain inherent in 

wireless MIMO architectures and wireless link reliability [1]. The spatial multiplexing 

gain is achieved by sending different data symbols on different transmit antennas, 

separated in space such that the transmit antennas are de-correlated, but over the same 

shared frequency channel. It is obvious to see that the simultaneous transmission of 

wireless data symbols, on the same frequency channel, causes interference which 

logically affects the link reliability. It is not difficult to see that as the number of transmit 

antennas is increased, i.e spatial multiplexing is increased, the link reliability diminishes 

provided the number of receive antennas is kept constant. This is, however, only true 

provided the wireless MIMO transmission is not encoded.  

 

Space-time block encoding/coding (STBC) has the capability to deliver spatial 

multiplexing gain/full-rate and wireless link reliability/full-diversity over wireless 

MIMO channels. The wireless coding rate is defined, in this thesis, as the number of 

transmitted unique symbols per transmit antenna per transmission timeslot. Full-rate 

transmission is thus defined as rate-1 transmission or maximum achievable coding rate. 

Space-time diversity is a technique used to increase the link reliability using spatially 

de-correlated receive antennas and time de-correlated STBC transmission timeslots. Full 

diversity, in wireless STBC MIMO, is the maximum achievable diversity order of the 

wireless link such that the diversity order is equal to the number of STBC transmission 
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timeslots multiplied by the number of receive antennas. There are two types of STBC 

schemes namely the non-orthogonal and orthogonal STBC. The next Section 1.1 goes 

into detail on these two types of STBC schemes. 

 

1.1 Wireless MIMO Space-time block coding 

STBC schemes may achieve full-rate and full-diversity under specific transmit antenna 

MIMO configurations. The full-rate is a synonym for spatial multiplexing gain and full-

diversity is a synonym for highest possible link reliability that can be delivered using the 

STBC and wireless MIMO configuration. The aim of the STBC schemes is to achieve 

simultaneous full-rate and full-diversity of a wireless MIMO system. STBC also help to 

achieve increased wireless link reliability in wireless MIMO configurations where the 

receiving device has insufficient space to install many receive antennas for high spatial 

diversity. In this case, the STBC add time or transmit diversity to the wireless link to 

compensate for the small number of receive antennas installed at the receiver.  

 

STBC achieve time or transmit diversity by transmitting replicas of the transmitted 

symbols over multiple timeslots, 𝑇, and thus the time diversity is achieved via the 

assumption that in a different transmission timeslot, the copies of the initially transmitted 

M-ary quadrature amplitude modulation (M-QAM) symbols will experience 

independent fading. From literature it is known that, for M-QAM symbols, the 

orthogonal STBC cannot achieve full-rate for a wireless MIMO configuration with more 

than two transmit antennas [2]. This implies that the achievable capacity is undermined 

if the number of transmit antennas exceeds two in an open-loop wireless MIMO system 

using orthogonal STBC [3]. Despite the disadvantage of lack of spatial multiplexing gain 

from orthogonal STBC for more than two transmit antennas, they achieve full diversity 

whilst having linear optimal detection at the receiver due to their orthogonality property 

[2]. For the STBC and wireless MIMO combination to achieve full-rate and full-

diversity for more than two transmit antennas, non-orthogonal STBC needs to be 

considered [4]. The disadvantage of non-orthogonal STBC is their non-linear optimal 

detection due to joint maximum likelihood (ML) detection at the receiver. The detection 

complexity of orthogonal STBC is polynomial with respect to the M-QAM modulation 
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order and that of the non-orthogonal STBC is exponential based on the dimension of 

number of transmit antennas and M-QAM modulation order. This implies that for a 

wireless MIMO system with many transmit antennas, full wireless link diversity can be 

achieved more efficiently using orthogonal STBC. However, for full-rate and full-

diversity to be achieved for more than two transmit antennas, the more inefficient non-

orthogonal STBC needs to be utilized.  

 

1.1.1 Orthogonal Space-time block coding 

In 1998, Alamouti developed a new simple transmit diversity scheme, for the case of 

two transit antennas, that has an encoding matrix with columns that are orthogonal [5]. 

The Alamouti encoding matrix, 𝑨, takes the form of 𝑨 = [
𝑠1 −𝑠2

∗

𝑠2 𝑠1
∗ ] where 𝑠1 and 𝑠2 are 

complex M-QAM data symbols [5]. The function (∙)∗ denotes the complex conjugate of 

a complex number. The Alamouti encoding matrix has orthogonal complex column 

vectors, i.e [
𝑠1

𝑠2
]

𝐻

[
−𝑠2

∗

𝑠1
∗ ] = 0, where (∙)𝐻 is the Hermitian function. This orthogonality 

property allows the wireless MIMO receiver to decouple, without inter-symbol 

interference, the simultaneously transmitted M-QAM symbols and have each M-QAM 

symbol independently decoded using a linear ML detector. The Alamouti STBC has the 

capability of achieving full diversity with linear ML optimal detection. However, the 

Alamouti scheme is a half-rate full-diversity scheme based on a coding rate, 𝑟, defined 

as 𝑟 ≜
𝑛

𝑇𝑁𝑡
 where 𝑛 is the number of transmitted unique M-QAM symbols per timeslot, 

𝑇 is the number of timeslots, and 𝑁𝑡 is the number of transmit antennas. The Alamouti 

STBC is specifically designed for a two transmit antenna and two timeslot system. The 

authors in [6] and [2] were inspired by Alamouti to extend this simple transmit diversity 

scheme to the case of multiple transmit and receive antennas and this gave birth to 

orthogonal STBC. These extended orthogonal STBC schemes presented in [2] and [6] 

retain the property of full-diversity and simple linear ML detection from the original 

Alamouti transmit diversity scheme. The maximum achievable rate for the orthogonal 

STBC schemes presented by [2] and [6] is determined to be ¾ for the case of three and 

four transmit antennas. The fact that orthogonal STBC cannot achieve full-rate or a 
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coding rate of 1 for more than two transmit antennas, this necessitates an investigation 

into non-orthogonal STBC schemes. The aim of STBC is to maximize the achievable 

capacity whilst enhancing the wireless link reliability. Only non-orthogonal STBC can 

achieve full-rate or spatial multiplexing gain and full-diversity for MIMO configurations 

with more than two transmit antennas [2]. The next Section 1.1.2 elaborates on the 

literature of non-orthogonal STBC schemes. 

 

1.1.2 Non-Orthogonal Space-time block coding 

The authors in [7] propose a non-orthogonal STBC scheme which can achieve full-rate 

but with a loss in full-diversity. The STBC developed in [7] is called quasi-orthogonal 

as the encoding matrix has columns that are grouped together which are non-orthogonal 

to each other but orthogonal to columns in other groups. The quasi-orthogonal STBC in 

[7] allows pairs of transmitted M-QAM symbols to be decoded separately. Achieving 

full-rate at the loss of full-diversity will negatively affect throughput in mobile 

application services that require stringent QoS link reliability constraints to be met. In 

[8], the authors propose several three transmit antenna non-orthogonal STBC with a rate 

greater than the three transmit antenna orthogonal STBC presented in [2] and [6]. The 

non-orthogonal space-time block codes proposed in [8] are found using rank and 

determinant criterion-based code search.  In [9], a full-rate full-diversity non-orthogonal 

space-time block code is exhibited. This STBC is called the Golden code and it has 

exponential optimal detection complexity of order, Ο(𝑀2𝑁𝑡), where 𝑀 is the M-QAM 

modulation order. The space-time block code has an encoding matrix comprised of four 

Golden code super symbols. The Golden code encoding matrix, 𝑩, takes the following 

structure, 𝑩 = [
𝑥11 𝑥21

𝑥12 𝑥22
], where 𝑥11, 𝑥12, 𝑥21, 𝑥22 are the Golden code super symbols 

sent over two timeslots and two transmit antennas [9].  The Golden code space-time 

block code is deemed to be non-orthogonal as the encoding matrix columns are non-

orthogonal, i.e [
𝑥11

𝑥12
]

𝐻

[
𝑥21

𝑥22
] ≠ 0. Each Golden code super symbol conveys a linear 

combination of a pair of complex M-QAM data symbols.  
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Golden code STBC is defined in literature as a two transmit antenna and two timeslot 

STBC scheme. However, in [10], the authors generalise Golden code over two transmit 

antennas but for more than two timeslots. The Golden code super symbol also gets 

extended to carry multiple pairs of complex M-QAM data symbols. This generalised 

Golden code scheme achieves full-rate and full-diversity despite an increase in the 

number of timeslots. The generalised Golden code achieves higher wireless link 

reliability compared to the conventional Golden code scheme [10]. The authors in [11] 

apply space-time labelling diversity to the generalised Golden code space-time block 

code developed in [10] and improve the error rate performance of the generalised Golden 

code scheme. The new scheme, with four receive antennas and for the same spectral 

efficiency with the conventional Golden code, achieves a signal-to-noise ratio (SNR) 

gain of 1.3dB at a bit-error-rate (BER) of 3 × 10−6 relative to the conventional Golden 

code STBC [11]. Another non-orthogonal STBC is the uncoded space-time labelling 

diversity (USTLD) scheme which the authors in [12] propose as an alternative to the 

Alamouti STBC. The USTLD is shown to have coding gain over the Alamouti STBC 

for the same spectral efficiency. However, since the USTLD is a non-orthogonal STBC 

it implies that the optimal detector is a joint ML detector with an exponential detection 

complexity of order Ο(𝑀𝑁𝑡). The USTLD has an encoding matrix, 𝑪, which takes the 

form, 𝑪 = [
𝑥1 𝑥̃2

𝑥2 𝑥̃1
], where 𝑥1, 𝑥2 are complex M-QAM symbols from the first signal 

constellation labelled using Gray-coding. The encoding matrix entries 𝑥̃1, 𝑥̃2 are 

complex M-QAM signals, conveying the same information as 𝑥1, 𝑥2, but from a second 

signal constellation labelled using a different mapper. The second constellation mapper 

is optimally designed to improve the error rate performance. USTLD in [12] is designed 

and optimized for a two timeslot and two transmit antenna wireless MIMO system using 

16-QAM and 16-PSK baseband modulation. Our research is aimed at optimizing the 

space-time block coded wireless MIMO receiver design and this involves optimizing the 

channel estimation and decoding processes. The next two Sections 1.2 and 1.3 describe 

the literature on the state-of-the-art of wireless MIMO channel estimation and decoding. 
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1.2 Wireless MIMO Channel Estimation 

Channel estimation is an important component of a wireless MIMO receiver. The 

wireless channel needs to be known at the receiver side for efficient decoding to occur 

with minimal error rates. A wireless channel estimator is used in practice to estimate the 

wireless channel complex fading gains that a signal experiences during propagation from 

a transmitter to a receiver node. There are three main types of channel estimation 

methods namely: training-based, semi-blind and blind channel estimators [13]. The 

training-based channel estimators rely on pilot symbol sequences which are sent over a 

wireless channel for purposes of characterising the wireless channel [13]. These pilot 

symbols utilize expensive channel bandwidth meant for data transfer. The semi-blind 

channel estimators use a hybrid of training sequences or pilot symbols and the 

transferred data symbols to estimate the wireless channel [13]. The blind channel 

estimators solely use the transferred data symbols to estimate the wireless channel and 

do not utilize training sequences [13].  In our research, we primarily concentrate on the 

training-based channel estimation methods. The literature has a plethora of analytical 

channel estimation methods for various wireless MIMO channels, and these are 

illuminated in Section 1.2.1. Recently, deep learning-based channel estimators have 

attracted more attention in the wireless communication domain as they provide certain 

benefits over the known analytical methods. Section 1.2.2 deals precisely with deep 

learning-based wireless channel estimators. 

 

1.2.1 Analytical Channel Estimation 

The literature has a plethora of analytical channel estimators for a variety of wireless 

MIMO configurations. In [14], a least-squares (LS) channel estimator is exhibited that 

is a training-based channel estimator as it requires the use of pilot symbol sequences to 

derive the wireless channel estimate. The LS channel estimator requires the prior 

knowledge of the pilot symbol transmission matrix for it to deduce the wireless channel 

estimate. The LS channel estimator estimates the wireless channel using the least-

squares solution equation. The LS channel estimation method is simple, but it is not as 

robust in mean squared error performance as the minimum mean square error (MMSE) 
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[15] method. The MMSE is also a training-based channel estimation method which also 

requires the prior knowledge of the training sequence matrix to deduce the channel 

estimate. The MMSE channel estimator further requires the prior knowledge of the 

average noise power at the receiver and the channel second order statistics [15]. These 

parameters may not always be known in advance and may need to be estimated which 

may induce more estimation errors in the wireless channel estimate.  

 

In [16], the authors propose an efficient channel estimator for a space-time block coded 

orthogonal frequency division multiplexing (OFDM) wireless MIMO system. The 

system estimates all the necessary subcarrier channel frequency responses for the OFDM 

signals using a comb-type pilot symbol configuration. The channel estimator in [16] is 

designed to perform all its operations in the frequency domain. The computation, in 

frequency domain, drastically reduces the computational complexity of the channel 

estimator relative to the MMSE channel estimator method without loss in error rate 

performance. In [17], the authors discuss the LS method for MIMO-OFDM wireless 

systems. The mean squared error (MSE) of the LS channel estimator is derived within 

this context. This derived MSE is then used to determine the optimal pilot training 

sequences and their optimal two-dimensional (2D) placement in frequency and time. 

The simulations show that the optimal pilot sequences outperform the random and 

orthogonal pilot sequences. In [18-20], the authors propose optimal channel estimation 

training sequences for the wireless MIMO-OFDM configuration.  

 

Traditional massive MIMO channel estimation suffers from high computational 

complexity since the wireless channel matrix is massive in dimension [21]. The 

conventional massive MIMO channel estimators also suffer from uplink pilot training 

sequence contamination and very high downlink training overhead [21]. In [22-26], the 

authors propose low-rank massive MIMO wireless channel estimators with some of the 

algorithms offering low computational complexity, all have reduced downlink training 

overhead which is an issue in massive MIMO channel estimation and the algorithms 

achieve uplink pilot decontamination. A novel semi-blind channel estimator is 

introduced in [27] for a cellular time-division duplex (TDD) massive MIMO wireless 
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configuration. This semi-blind channel estimator attenuates the interference that arises 

because of pilot contamination. The simulation results show that the novel semi-blind 

approach outperforms the traditional linear and non-linear massive MIMO channel 

estimators [27]. The Section 1.2.2 exhibits the recent developments in wireless MIMO 

channel estimation using deep learning methods. Some of the deep learning-based 

channel estimator methods alleviate the challenges experienced when applying the 

analytical channel estimators. 

 

1.2.2 Deep Learning-Based Channel Estimation 

Recently, deep learning-based channel estimators have been proposed as an alternative 

to analytical channel estimators. The deep-learning methods come with the advantages 

of being able to perform channel estimation without prior knowledge of training 

sequence patterns, second order channel statistics and average noise power. The 

traditional or analytical channel estimators usually require knowledge of channel 

statistics which may not necessarily always be available or known. A 2D frequency-time 

response deep learning-based channel estimator of a fast-fading wireless MIMO channel 

is presented in [28]. The paper shows that the deep learning-based channel estimator has 

a comparable MSE performance relative to the MMSE channel estimator. In [29], the 

traditional compressed sensing-based massive MIMO channel estimator is proven to be 

inferior relative to a deep learning-based channel estimator. In [30], the authors propose 

a deep learning-based frequency-time selective fading channel estimator. A deep 

learning-based denoising approximate message passing channel estimator is proposed in 

[31] that predicts the wireless channel for beam-space millimetre-wave (mmWave) 

massive MIMO with limited radio frequency (RF) chains. This algorithm is shown to 

outperform the compressed sensing-based algorithms. A deep learning channel estimator 

algorithm is proposed in [32] that performs channel estimation in time-selective wireless 

channels. This algorithm is shown to be superior in MSE performance relative to the 

conventional channel estimators. In [33], the authors propose a deep learning-based 

channel estimator that implicitly estimates the channel state information (CSI) and 

outperforms the conventional channel estimators when few pilot symbols are used for 

training. A deep learning-based channel estimator is proposed in [34] that performs 
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channel estimation in high-speed mobile wireless scenarios. The wireless channel being 

estimated experiences fast time-varying and non-stationary fading. The proposed deep 

learning-based channel estimator has a superior MSE performance and lower 

computational complexity relative to the traditional channel estimators.  

 

A deep learning-based channel estimator for massive MIMO is proposed in [35] for the 

case when the pilot training sequence length is less than the number of transmit antennas 

in the MIMO configuration. The deep learning architecture is in the form of a multistage 

deep neural networks. The first stage uses a pilot training sequence for channel 

estimation whilst the second stage uses the transmitted data for channel estimation [35]. 

The second stage neural network is used to enhance the channel estimation performance. 

This deep learning architecture of the channel estimator produces a MSE performance 

that is superior to that of the traditional channel estimators for massive MIMO. In [36], 

the authors propose a convolutional neural network (CNN) -based autoencoder to 

perform channel estimation at the transmitter based on the SNR feedback from the 

receiver. This CNN-based autoencoder is used in a quasi-static fading wireless channel 

to perform joint channel estimation and pilot symbol design. For time-varying fading 

channels, the channel estimator is derived from a combination of a recurrent neural 

network (RNN) and a CNN. To address the issue of limited training samples for the deep 

neural network (DNN) training, generative adversarial networks are proposed in [36]. 

The simulation results show that the proposed DNNs have a superior performance to the 

state-of-the-art channel estimators under the same fading scenarios. A low training 

overhead deep learning-based channel estimator is proposed in [37] to learn the 

underlying mapping between the received omni-beam patterns and the wireless 

vehicular mmWave channel estimate. The MMSE channel estimator is known to be used 

to reduce the effect of pilot contamination in massive MIMO [38]. However, this will 

mean that the wireless base station will need to know the second order statistics of the 

channels between each user terminal and the base station which is impractical. In [38], 

two DNN channel estimation methods are proposed for lowering the influence of pilot 

contamination. The simulation results show that the two proposed DNN channel 

estimation methods outperform the LS and the covariance estimation methods in terms 
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of normalised MSE performance. A deep learning-based channel estimator is proposed 

in [39] that can estimate high dimensional uplink massive MIMO wireless channels in 

hybrid analogue-digital (HAD) transceivers. The compressed sensing algorithm is 

shown to be inferior relative to the deep learning-based channel estimator in terms of 

MSE performance and computational complexity [39]. A wireless MIMO receiver uses 

the estimated wireless channel to efficiently perform the transmitted message decoding 

process with minimal errors. Section 1.3 deals with the low complexity wireless MIMO 

sphere-decoders.  

 

1.3 Wireless MIMO Sphere-Decoding Schemes 

Wireless MIMO optimal detection can be achieved using joint ML detection. The joint 

ML detector searches for complex M-QAM symbols that can minimize the objective 

function, ‖𝒚 − 𝑯̂𝒖‖
𝐹

2
, where 𝒚 is the received signal vector, 𝑯̂ is the estimated wireless 

channel matrix, and 𝒖 is the 𝑁𝑡-dimensional signal vector with 𝑁𝑡-estimated complex 

M-QAM data symbols. The detection complexity of this joint ML detector is exponential 

in the number of transmit antennas, i.e Ο(𝑀𝑁𝑡) [40]. It is easy to see that as the number 

of transmit antennas becomes very large, 𝑁𝑡 → ∞, the detection complexity becomes 

extremely large even for small modulation orders since 𝑀 ≥ 4 for M-QAM. It is thus 

necessary for researchers to find alternative decoding schemes that exhibit lower 

detection complexity relative to the joint ML detector but with marginal loss in error rate 

performance [40]. Complex sphere-decoding, henceforth sphere-decoding, is one such 

low complexity scheme with near-optimal error rate performance for wireless MIMO 

detection [41]. The sphere-decoder does not, on average, perform an exhaustive search 

for the transmitted M-QAM symbols unlike in joint ML detection. The sphere-decoder 

only searches for lattice points, 𝑯̂𝒖, that lie inside the hypersphere, ‖𝒚 − 𝑯̂𝒖‖
𝐹

2
≤ 𝑟2, 

with search radius 𝑟 [41]. Sections 1.3.1 and 1.3.2 exhibit the literature on sphere-

decoding of wireless MIMO systems.  
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1.3.1 Analytical Sphere-Decoding Schemes 

Sphere-decoding has been a subject of interest for a long time in small and medium 

wireless MIMO decoding. The sphere-decoder even has variants which exhibit 

improvement in the dimension of detection complexity. The Schnorr-Euchner sphere-

decoder (SE-SD) is a sphere-decoding variant that does not increase the search radius 

each time a lattice point cannot be found inside the hypersphere [42]. Instead, the 

Schnorr-Euchner (SE) search strategy dictates that the search must go back one layer 

upwards in the search tree and continue searching [42]. By not increasing the search 

radius and avoiding repeating the sphere-decoding search, the SE-SD exhibits lower 

detection complexity compared to the traditional sphere-decoder with increasing radius 

search (SD-IRS) found in [41]. The SE-SD has the same near-optimal error rate 

performance as the other sphere-decoding algorithms, for example the Fincke-Pohst 

sphere-decoder (FP-SD) [43], but with a reduced detection complexity. Despite the 

lower detection complexity compared to other sphere-decoder variants, the SE-SD still 

suffers from high detection complexity in large MIMO systems [44]. In [45], the authors 

propose a 𝐾-best sphere-decoding variant that has fixed, and low detection complexity. 

However, this sphere-decoding variant has a drawback of having a loss in error rate 

performance and exhibits high detection complexity in the high SNR region. 

 

The application of sphere-decoding is also seen in space-time block coded wireless 

MIMO systems especially non-orthogonal STBC with high detection complexity like 

Golden code. In [46], the SE-SD is applied to Golden code detection and is shown to 

reduce the Golden code detection complexity without any loss in the error rate 

performance. It is known that the sphere-decoding detection complexity depends on the 

search tree search breadth and depth [47]. The search breadth is the M-QAM signal set 

size which must be traversed and the search depth is the number of search tree search 

layers which for Golden code is set to 2𝑁𝑡. Knowing this, in [48], the authors proposed 

a sphere-decoder with detection subsets (SD-DS) with the aim to reduce the search 

breadth of the search tree. The SD-DS is shown in [48] to have lower detection 

complexity relative to the SE-SD whilst maintaining the near-optimal error rate 

performance. In [49], a sphere-decoder with sorted detection subsets (SD-SDS) is 
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proposed that achieves 1 order lower detection complexity relative to the SD-DS whilst 

maintaining near-optimal error rate performance. The next Section 1.3.2 discusses the 

literature on deep learning-assisted sphere-decoding which achieves more detection 

complexity reduction relative to the analytical sphere-decoders.  

 

1.3.2 Deep Learning-Based Sphere-Decoding Schemes 

Deep learning in wireless MIMO decoding has recently taken centre stage in the research 

of wireless communication systems. New low detection complexity decoding algorithms 

are being developed using deep learning. In [50], a novel deep learning-based sphere-

decoder, for large MIMO, is proposed that predicts the number of lattice points that lie 

inside a hypersphere based on an input sphere-decoding radius value. If the predicted 

number of lattice points that lie inside a hypersphere is large, the input radius is 

iteratively reduced by 50% each time until the predicted number of lattice points that lie 

inside the hypersphere is low.  It is known that the number of lattice points found inside 

a hypersphere is proportional to detection complexity. The sphere-decoding radius, that 

is responsible for the predicted low number of lattice points that lie inside the 

hypersphere, is then used as an initial radius for the sphere-decoder [50]. In [51], the 

authors propose a low complexity deep learning-based sphere-decoder, for large MIMO, 

that learns to predict multiple radii which are dynamic based on the instantaneous 

wireless channel conditions. The deep learning-based sphere-decoder in [51] is a more 

efficient version of the SD-IRS in [41]. A deep learning-based sphere-decoder, for large 

MIMO, is proposed in [52] which predicts the minimum path metric for the subtrees of 

the search tree. These minimum path metrics are used to initiate the early termination of 

the search for candidate transmitted symbols in the search tree. The deep learning-based 

sphere-decoder in [52] achieves considerable reduction in detection complexity whilst 

maintaining near-optimal error performance. In [40], the deep learning-based sphere-

decoding algorithm, for large MIMO, achieves low offline training complexity and low 

online decoding complexity relative to the deep learning-based sphere-decoding 

algorithms already available in the literature. 
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2 Motivation and Research Objective 

2.1 Motivation 

USTLD space-time block coded wireless MIMO has been studied in literature under the 

assumption of a wireless channel matrix that is known at the receiver without any errors. 

We are motivated to investigate the performance of USTLD under an imperfect wireless 

channel estimate. Because the signal channel bandwidth is very expensive for Telco 

operators, we propose a training-based channel estimation optimization technique for 

the USTLD-MIMO context. The literature does propose bandwidth efficient channel 

estimators in [53-57] but the wireless MIMO context is different. The literature in [53-

56] deals with bandwidth efficient channel estimation optimization in MIMO-OFDM 

wireless channels. The mathematical modelling of the channel estimation bandwidth 

optimization objective function, in a MIMO-OFDM environment, is different to our 

USTLD-MIMO environment. For MIMO-OFDM, the pilot training sequence 

optimization is usually in 2D as the pilot symbols are located jointly in frequency and 

time domain whereas our USTLD-MIMO pilot symbols are located only in time-

domain. In [57], the channel estimation bandwidth optimization is performed for a 

MIMO system with receiver frequency domain equalization. The bandwidth 

optimization is performed using fast Fourier and inverse Fourier transforms. Our 

USTLD-MIMO system does not have frequency domain equalization at the receiver 

hence the optimization technique in [57] is not applicable for our use case. The 

optimization technique for the USTLD-MIMO context entails lowering the number of 

time domain-based pilot training sequences necessary to perform channel estimation 

without losing the error rate performance. Reducing the number of pilot training 

sequences for the USTLD-MIMO system frees up the channel bandwidth for more data 

symbols to be transmitted by the users. We also propose a deep learning-based blind 

channel estimator that does not require the prior knowledge of the average noise power, 

pilot training sequence and wireless channel second order statistics unlike the traditional 

wireless MIMO channel estimators. The average noise power, and the wireless channel 

second order statistics are not always known in advance in practical wireless MIMO 

systems. 
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Golden code is a promising two transmit antenna STBC scheme for future wireless 

systems as it has spatial multiplexing gain over the Alamouti space-time block code. The 

Alamouti STBC is currently implemented in the institute of electrical and electronic 

engineers (IEEE) wireless fidelity (WiFi) standards [58] and the 3rd generation 

partnership project (3GPP) long-term evolution (LTE) standards [59]. However, despite 

Alamouti being implemented in modern wireless standards, it suffers from a coding rate 

limitation, since it is an orthogonal STBC, which limits its achievable capacity. The non-

orthogonal Golden code achieves full-rate and full-diversity therefore it can deliver 

higher spectral efficiencies relative to the Alamouti STBC. The drawback of the Golden 

code is that it has exponential detection complexity whilst the Alamouti has polynomial 

detection complexity. This implies that the Golden code requires higher processing 

power and decoding latency to reliably detect transmitted symbols relative to the 

Alamouti scheme. This maybe one of the reasons why Golden code is not widely adopted 

in the modern wireless standards relative to the Alamouti STBC. We, therefore, are 

motivated to propose low detection complexity analytical and deep-learning-based 

sphere-decoders to reduce the Golden code decoding latency, for high-density M-QAM 

scenarios, and receiver processing power. The lower decoding latency will aid the 

fulfilment of the ultra-low latency required for future wireless standards whilst the 

Golden code spatial multiplexing or full-rate will help increase the wireless MIMO data 

throughputs and the full-diversity will deliver higher wireless MIMO link reliability. 

The Golden code reduced decoding processing power will imply that all the benefits of 

the Golden code STBC can be delivered to low power wireless networks such as those 

deployed for internet-of-things (IoT) devices. 

 

2.2 Research Objective 

Our research is aimed at optimizing the wireless receiver for non-orthogonal space-time 

block coded wireless MIMO systems. The wireless MIMO receiver is generally made 

up of a channel estimator and a message decoding algorithm. In relation to the channel 

estimation system, our research is focused on lowering the pilot training sequence length 

in a space-time block coded MIMO system since training sequences use up expensive 
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signal bandwidth in training-based channel estimation. We are also interested in 

performing blind channel estimation where being blind, in this thesis, means that the 

channel estimator does not need to know the pilot training sequence, average noise 

power and wireless channel second order statistics.  

 

For the space-time block coded wireless MIMO decoding algorithms, we are interested 

in reducing the decoding latency in high-density M-QAM scenarios. The next generation 

wireless systems will need to deliver high data rates whilst also ensuring that the end-

to-end wireless communication has ultra-low latency [60]. One way of increasing data 

rates, in sufficiently good quality wireless links, is by using high-density M-QAM 

constellations for signal transmission. These high-density M-QAM constellations 

deliver data via highly spectrally efficient symbols. However, the drawback of using 

high-density M-QAM constellations is higher modulation orders, 𝑀, that increase the 

decoding complexity or latency. For example, the non-orthogonal space-time Golden 

code has a decoding complexity that is exponential, i.e Ο(𝑀2𝑁𝑡). It is easy to see that as 

we use higher-density M-QAM constellations, 𝑀 → ∞, the decoding complexity or 

latency increases which may aid the violation of the end-to-end ultra-low latency QoS 

constraint of the next generation networks. The other research objective is to lower the 

space-time block coded wireless MIMO decoding floating-point operations (FLOPS). 

Reducing the number of FLOPS needed during the decoding process implies lower 

receiver node random access memory (RAM) and central processing unit (CPU) loads. 

The lower CPU loads directly means that lower processing power is needed for decoding 

and thus this implies that highly reliable space-time block coded MIMO wireless links 

can be achieved in low power wireless communications. 

 

3 Research Contributions 

The research outputs in/this thesis are four published papers in which three of them are 

Journal articles and one is a conference paper. The publication references for these 

articles are listed below: 



16 
 

1. B. Mthethwa and H. Xu, "Deep Learning-Based Wireless Channel Estimation 

for MIMO Uncoded Space-Time Labeling Diversity," in IEEE Access, vol. 8, 

pp. 224608-224620, 2020. (Journal Article) 

2. B. Mthethwa and H. Xu, “Golden Code Deep Learning-Aided Sphere-Decoding 

with Sorted Detection Subsets”, SATNAC Proceedings Drakensberg, pp. 284-

289, November 2021. (Conference Paper)  

3. B. Mthethwa and H. Xu, "Low Complexity Golden Code Analytical and Deep 

Learning-Based Sphere-Decoders for High-Density M-QAM," in IEEE Access, 

vol. 10, pp. 6940-6953, 2022. (Journal Article) 

4. B. Mthethwa and H. Xu, “Low Complexity Deep Learning-Assisted Golden 

Code Sphere-Decoding with Sorted Detection Subsets”, SAIEE Africa Research 

Journal, vol. 113, no. 2, June 2022. (Journal Article) 

The next Sections 3.1 to 3.3 elaborate on the individual contributions of each Journal 

article. 

3.1 Paper A 

B. Mthethwa and H. Xu, "Deep Learning-Based Wireless Channel Estimation for MIMO 

Uncoded Space-Time Labeling Diversity," in IEEE Access, vol. 8, pp. 224608-224620, 

2020. 

 

We propose a novel bandwidth-efficient deep learning-based blind channel estimator for 

the USTLD-MIMO context. To the best of our knowledge, no USTLD-MIMO 

bandwidth-efficient deep learning-based blind channel estimator has been developed in 

the literature. The USTLD-MIMO system has been extensively studied in literature over 

wireless MIMO channels that have their channel matrix fully known at the receiver 

without any errors. We propose a bandwidth optimization technique that uses the 

transmit power-sharing between the pilot training sequences and the transmitted data 

symbols to achieve a reduction in bandwidth utilization. This technique is inspired by 

the transmit power-sharing technique used to improve the BER performance of the 

generalized differential scheme for spatial modulation in [61]. The transmit power-

sharing scheme in [61] is used to optimize the BER performance by finding an optimal 

power-sharing fraction between the multiple data symbols and the single reference 
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symbol in the generalized differential scheme. In the USTLD-MIMO power-sharing 

context, the optimal power-sharing fraction is to be found between multiple transmitted 

data symbols and multiple pilot training sequences. The equivalent noise power [61] for 

the USTLD-MIMO system is derived and used to find the optimal power-sharing 

fraction that minimizes the MSE and BER of the USTLD-MIMO system. This 

optimization technique yields an 80% saving, relative to the traditional channel 

estimators, on the number of pilot training sequences used to perform channel estimation 

whilst maintaining the error rate performance for 16-QAM and 16-PSK baseband 

modulation. 

 

3.2 Paper B 

B. Mthethwa and H. Xu, "Low Complexity Golden Code Analytical and Deep Learning-

Based Sphere-Decoders for High-Density M-QAM," in IEEE Access, vol. 10, pp. 6940-

6953, 2022. 

 

The next generation wireless networks will need to achieve ultra-low latency, high data 

throughputs and very high reliability connectivity [60]. Golden code can help deliver 

most of these QoS requirements but its high detection complexity or decoding latency 

will make delivering of ultra-low latency links infeasible especially at high M-QAM 

modulation orders. We, therefore, propose low decoding latency analytical and deep 

learning-based sphere-decoders to decode high-density M-QAM Golden coded wireless 

MIMO messages. In proposing the analytical and deep learning-based sphere-decoders 

the following contributions are made: 

• An instantaneous wireless channel quality metric is proposed that considers the 

instantaneous wireless fading power and noise power. In [46], the wireless 

channel quality metric depends only on the instantaneous wireless fading power. 

This is only valid at high SNR when fading is dominant, but at low SNR, the 

instantaneous noise power is dominant. Our proposed metric is valid for all SNR 

ranges. 

• We propose instantaneously varying candidate symbol subset lengths for the 

sphere-decoding search tree search layers. The subset lengths vary based on the 
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instantaneous wireless channel quality for each transmitted M-QAM symbol 

encoded using Golden code super symbols. This implies that the subsets assigned 

to each sphere-decoding search tree search layer may have instantaneous subset 

lengths that differ since each M-QAM symbol experiences a different 

instantaneous wireless channel quality. This is different from literature were the 

SD-SDS [49] and SE-SD [46] Golden code detectors used fixed length candidate 

symbol subsets or sets. 

• We then propose a worst-first search tree search order strategy that is the opposite 

of the best-first search tree search order strategy used in [46]. It is shown in this 

paper that the M-QAM symbol estimate that experiences the best instantaneous 

wireless channel quality has at best the smallest candidate symbol subset length 

assigned to it. Since the last search layer in the search tree contributes the most 

to the detection complexity at low SNR, assigning a subset with the smallest 

subset length to the last search layer of the search tree helps lower the detection 

complexity at low SNR.  

• A deep leaning-based search tree early stopping algorithm is proposed for a small 

MIMO environment. In [52], the authors propose a deep learning-based search 

tree early termination algorithm for a large MIMO environment. The DNN 

architecture in [52] is however not conducive for high-density M-QAM 

modulation, in small MIMO, as the architecture increases proportionally in 

complexity as the M-QAM modulation order increases. This implies that for high 

data throughput Golden code applications the decoding latency will be higher. 

Our proposed DNN architecture is suitable for high-density M-QAM modulation 

as the DNN architecture complexity is invariant to the increase in M-QAM 

modulation order. 

3.3 Paper C 

B. Mthethwa and H. Xu, “Low Complexity Deep Learning-Assisted Golden Code 

Sphere-Decoding with Sorted Detection Subsets”, SAIEE Africa Research Journal, vol. 

113, no. 2, June 2022. 
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Despite Golden code having spatial multiplexing gain over the Alamouti STBC, it is not 

widely incorporated in the modern wireless standards unlike Alamouti STBC. Golden 

code has a prohibitive detection complexity which limits its practical implementation in 

modern and future wireless standards.  Since Golden code is so far restricted to a two 

transmit antenna MIMO configuration, it is suitable for small IoT devices that have 

limited antenna space. However, small IoT devices rely on battery power and therefore 

energy efficient wireless communication systems are paramount. A high detection 

complexity implies that Golden code detection requires high processing power which is 

not suitable for the low power wireless communications envisioned for the IoT networks. 

We, therefore, propose a deep learning-based low complexity sphere-decoding 

algorithm that lowers the Golden code detection complexity in terms of number of 

FLOPS. The low complexity deep learning-based wireless MIMO decoding algorithms 

proposed in literature, i.e [40] and [50-52], are for a large MIMO environment. We have 

restricted our research to a small MIMO environment and thus the complex DNN 

architectures used in literature will not suffice for our use case.   

 

The proposed deep learning-based Golden code decoding algorithm achieves a 

comparable detection complexity to the Alamouti linear ML detector for a spectral 

efficiency of 8 bits/s/Hz. For a spectral efficiency of 12 bits/s/Hz, the proposed deep 

learning-based Golden code decoding algorithm achieves a 90% reduction in detection 

complexity relative to the Alamouti linear ML detector. This implies that the Golden 

code full-rate and full-diversity benefits can be enjoyed by the IoT low power wireless 

networks since the Golden code detection complexity has been reduced to at most a 

comparable level to that of the Alamouti linear ML detector. The proposed Golden code 

deep learning-based decoding algorithm also achieves a 75% reduction in detection 

complexity, at low SNR, relative to the SD-SDS algorithm for 16-QAM whilst 

maintaining the near-optimal error rate performance. For 64-QAM, the deep learning-

based decoding algorithm achieves 99% lower detection complexity, at low SNR, 

relative to the SD-SDS algorithm whilst maintaining the near-optimal BER 

performance. The SD-SDS algorithm is shown in [49] to achieve lower Golden code 
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detection complexity relative to the traditional SD-IRS [41] and SE-SD [46] detection 

algorithms.  
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Abstract 

Uncoded space-time labeling diversity (USTLD) is a space-time block coded (STBC) 

system with labeling diversity applied to it to increase wireless link reliability without 

compromising the spectral efficiency. USTLD achieves higher link reliability relative to 

the traditional Alamouti STBC system. This work aims to design a bandwidth-efficient 

and blind wireless channel estimator for the USTLD system. Traditional channel 

estimation techniques like the least-squares (LS) and the minimum mean squared error 

(MMSE) methods are generally inefficient in using the channel bandwidth. The LS and 

MMSE channel estimation schemes require the prior knowledge of transmitted pilot 

symbols and/or channel statistics, together with the receiver noise variance, for channel 

estimation. A neural network machine learning (NN-ML) channel estimator with 

transmit power-sharing is proposed to facilitate blind channel estimation for the USTLD 

system and to minimize the required channel estimation bandwidth utilization. We 

mathematically model the equivalent noise power and derive the optimal transmit power 

fraction that minimizes the channel estimation bandwidth utilization. The blind NN-ML 

channel estimator with transmit power-sharing is shown to utilize 20% of the LS and 

MMSE wireless channel estimators' bandwidth to achieve the same bit error rate (BER) 

performance for the USTLD system in the case of 16-QAM and 16-PSK modulation. 
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1 Introduction 

Uncoded Space-Time Labeling Diversity (USTLD) is a technique developed recently by 

[1] to increase the link reliability of space-time block coded (STBC) systems in a 

multiple-input multiple-output (MIMO) environment. It uses two distinct symbol 

constellation mapper designs to map bitstreams to symbols. The first STBC timeslot 

sends information symbols from a gray coded symbol constellation mapper. The second 

timeslot sends the same information symbols picked from the second constellation 

mapper designed using the labeling technique defined in [1]. This scheme outperforms 

the traditional Alamouti STBC [2] system in terms of bit error rate (BER) performance 

as it has coding gain over the Alamouti system. In [3], the authors develop a genetic 

algorithm-based mapper labeling design technique for non-symmetric constellations 

since the USTLD mapper design in [1] is limited to symmetric constellations. In [4], the 

authors develop a generic analytical framework to evaluate the BER performance of 

USTLD in Rician, and Rayleigh fading wireless channels for a three transmit antenna 

MIMO system. In [5], the authors show that applying media-based modulation with 

radio frequency (RF) mirrors enhances the wireless link reliability of USTLD STBC 

schemes. The authors in [6] apply signal space diversity (SSD) to USTLD STBC in order 

to improve the error rate performance of USTLD. They show that the SSD USTLD 

scheme outperforms the USTLD BER performance. Trellis code aided high-rate space-

time labeling diversity (TC-STLD) is proposed in [7] to deliver superior spectral 

efficiency whilst maintaining the BER performance, relative to that of USTLD. In [8], 

the authors investigate USTLD in a three transmit antenna MIMO configuration as the 

other USTLD research has only been carried out in a two transmit antenna MIMO 

configuration. They develop the second and third labeling mappers using a heuristic 

method and observe that the three transmit antenna USTLD scheme has superior BER 

performance relative to the two transmit USTLD scheme presented in [1]. Rectangular 

quadrature amplitude modulation (QAM) for USTLD is investigated in Nakagami-m 

fading channels in [9]. A heuristic algorithm to design the optimal labeling mapper for 

the rectangular QAM USTLD scheme is proposed. In [10], the authors develop a high-

density M-QAM labeling mapper using a heuristic algorithm for a three transmit antenna 
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USTLD STBC scheme. They design the second and third labeling mappers using the 

heuristic algorithm for 256-QAM and 1024-QAM constellations since most research has 

developed mapper designs for lower modulation orders. 

 

The works discussed so far for the USTLD scheme have assumed a perfect wireless 

channel estimate, which motivates the investigation of USTLD under an imperfect 

channel estimate. Recently, deep learning has been proposed to address challenges 

associated with wireless channel estimators. As stated earlier, deep learning has been 

proposed in the field of wireless channel estimation. In [11], the authors propose deep 

learning in predicting the time-frequency response of a fast-fading wireless MIMO 

channel. They show that the proposed deep learning algorithm has a competitive mean 

squared error performance relative to the traditional MMSE channel estimator. In [12], the 

authors prove that their proposed deep learning channel estimator outperforms the 

traditional compressed sensing-based algorithms for massive MIMO wireless channel 

estimation. The authors in [13] propose a deep learning channel estimation algorithm for 

doubly selective wireless fading channels. Deep learning is applied in [14] to estimate the 

uplink wireless channels for massive MIMO systems at the base station with some 

antennas using high-resolution analog-to-digital converters (ADC) and others using low-

resolution ADCs. The proposed deep learning algorithm uses the high-resolution ADCs 

to predict the channels of the antennas using low-resolution ADCs. In [15], a deep 

learning-based channel estimation technique is proposed for wireless energy transfer. 

Based on the energy received by the energy receiver, the energy transmitter channel state 

information (CSI) is learned using the proposed deep learning autoencoder. The authors 

in [16] propose a learned denoising-based approximate message passing (LDAMP) 

channel estimator for beamspace millimeter-wave massive MIMO channels with limited 

RF chains. The deep learning-based LDAMP algorithm outperforms the compressed 

sensing-based algorithms. In [17], a deep learning-based channel estimator is proposed for 

a time-varying Rayleigh fading channel. Its mean squared error performance is shown to 

outperform that of the traditional channel estimation algorithms. A deep learning 

algorithm is proposed in [18] to handle the end-to-end wireless orthogonal frequency 

division multiplexing (OFDM) channels. It implicitly estimates the CSI and directly 
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decodes the transmitted symbols. It shows robustness relative to the conventional channel 

estimation techniques when fewer training pilot symbols are used. In [19], deep learning-

based channel estimation and equalization scheme (DL-CE) for filter bank multicarrier 

(FBMC) modulation is proposed. It is shown in [19] that this DL-CE scheme achieves 

state-of-the-art performances in channel estimation and equalization. In [20], the authors 

propose a deep learning-based downlink channel estimator for fast time-varying and non-

stationary wireless fading channels present in high-speed mobile scenarios. The proposed 

deep learning channel estimator proves to have better performance relative to the 

traditional channel estimators whilst offering lower computational complexity.  

 

Research on bandwidth efficient channel estimation has been performed in literature 

largely in MIMO-OFDM systems. In the works presented in [21-24], the authors develop 

bandwidth-efficient channel estimators for the MIMO-OFDM environment. In [25], the 

authors propose a bandwidth-efficient channel estimator for a single carrier MIMO system 

with frequency domain equalization. The channel estimator iteratively uses a series of fast-

Fourier transforms (FFT) and inverse FFT operations to reconstruct the CSI fully. A 

bandwidth-efficient blind channel estimator is proposed in [26] for a full-duplex (FD) 

point-to-point wireless communication system. The blind channel estimator 

simultaneously estimates the channel parameters of the FD system without requiring time 

division duplex (TDD). 

 

In summary, it is evident from the literature that LS [27] and MMSE [28] require prior 

knowledge of the transmitted pilot symbols and/or the wireless channel statistics to 

perform channel estimation. The other general observation is that the channel estimator’s 

mean squared error (MSE) drops as the number of transmitted pilot symbols is increased. 

It will be challenging to perform channel estimation using the traditional LS and MMSE 

channel estimators in environments where the transmitted pilot symbols and channel 

wireless statistics are unknown. With the high cost of licensed wireless channel 

bandwidth, service providers are pressured to utilize bandwidth efficiently. Hence, large 

numbers of pilot symbols sent over a wireless channel for channel estimation may not be 

desirable. Therefore, we propose a blind NN-ML channel estimator with transmit power-
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sharing that minimizes the channel bandwidth usage whilst delivering a competitive MSE 

and BER performance compared to the traditional LS and MMSE schemes. We choose 

NN-ML because it does not require prior knowledge of the transmitted pilot symbols, 

wireless channel statistics, and receiver noise variance to perform channel estimation.  

 

The idea of transmit power-sharing is taken from [29], where an optimal power fraction is 

derived that facilitates the optimal sharing of transmit power between the information 

symbols and a single reference symbol to improve BER performance. In our case, we 

apply this power-sharing technique between information symbols and multiple 

reference/pilot symbols to improve the MSE and BER performance of the NN-ML 

channel estimator relative to the traditional LS and MMSE based channel estimators. This 

translates to lower usage of channel bandwidth in order to deliver the same BER 

performance. 

The main contributions of this paper are as follows: 

• We propose a novel deep learning-based bandwidth-efficient blind channel 

estimator for the USTLD-MIMO system by employing optimal transmit power-

sharing between information symbols and pilot symbols. To our knowledge, no 

literature has developed a bandwidth-efficient channel estimator, for the USTLD-

MIMO context, using transmit power-sharing between pilot symbols and 

information symbols. Over and above that, the literature in [21-26] develops 

bandwidth-efficient MIMO channel estimators for very different system models to 

ours. The differences in environmental context or system model affect the method 

of channel estimation bandwidth optimization. We, therefore, cannot, for example, 

directly use a MIMO-OFDM optimized channel estimator in our system model. 

• We mathematically derive a multiple pilot/reference symbol equivalent noise power 

upper bound for USTLD-MIMO, unlike in [29], where the equivalent noise power 

is only for a single reference symbol. No work in the literature has derived the 

equivalent noise power for the USTLD-MIMO system.  

• We apply differential calculus to determine the optimal power fraction that 

minimizes the equivalent noise power. The minimized equivalent noise power is 

shown to minimize the MSE and BER of the USTLD-MIMO system. This 
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minimization of the MSE and BER implies a minimization of channel estimation 

bandwidth utilization to achieve the same BER performance as the traditional 

channel estimation methods. 

 

The remainder of the paper is organized as follows: In Section 2, we present the system 

model for the proposed blind NN-ML channel estimator with transmit power-sharing for 

USTLD-MIMO and the background theory of LS and MMSE channel estimation. In 

Section 3, we introduce the proposed blind NN-ML channel estimator's theory with 

transmit power-sharing. Section 3 also presents the equivalent noise power upper bound's 

derivation and the optimal transmit power fraction. Section 4 discusses the MSE and BER 

simulation results, and Section 5 concludes the paper. 

 

Notation: Bold lowercase (a) and uppercase letters (A) denote vectors and matrices, 

respectively. (. )𝐻 and ‖. ‖𝐹 are the Hermitian and the Frobenius norm of a vector or 

matrix, respectively. 𝑡𝑟(. ) is a trace function which takes the sum total of the major 

diagonal of a matrix. The symbol ∀ 𝑥 means for all values of x. The operator 𝐸(. ) is the 

statistical expectation or mean of a random variable. The functions 𝑅𝑒(. ) and 𝐼𝑚(. ) return 

the real and imaginary components of a complex number, respectively. 

2 System Model and Channel Estimation Background 

2.1 System Model 

A 2 × 𝑁𝑟 USTLD system is used to evaluate the channel estimation algorithms' BER 

performance, where 𝑁𝑟 is the number of receive antennas, and 2 represents the number 

of transmit antennas. The USTLD system is a modification of the conventional 2 × 𝑁𝑟 

Alamouti system [2]. The fundamental idea is to transmit a mapped symbol pair in the 

second time slot instead of the complex conjugates. The USTLD system generates the 

2 × 2 STBC codeword matrix based on two mappers: 𝜔1
𝑊 and 𝜔2

𝑊 as in [1]. For 

example, the two mappers for 16-QAM signal constellations are the Gray-coded labeling 

map 𝜔1
16 and the optimized labeling map 𝜔2

16 as per [1]. The labeling maps and their 

design criterion are detailed in [1]. A bitstream consisting of 2 log2 𝑊 random bits, 

where 𝑊 is the W-QAM/W-PSK modulation order, 𝒅 = [𝒃𝑡1
, 𝒃𝑡2

] is fed into the 
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USTLD modulator to produce the modulated symbol pairs 𝒙1 = [𝑥𝑡1
 𝑥𝑡2

]
𝑇
 and 𝒙2 =

[𝑥̃𝑡2
 𝑥̃𝑡1

]
𝑇
  for the first and second time slot, respectively. Let (𝒙1, 𝒙2) be an ordered pair 

and let 𝝌𝐿𝐷 be a set that contains all the possible modulated symbol pairs (𝒙1, 𝒙2), such 

that (𝒙1, 𝒙2)  ∈  𝝌𝐿𝐷. Based on 𝒃𝑡1
 and 𝒃𝑡2

, where 𝒃𝑡1
= [𝑏1

1 𝑏2
1 … 𝑏𝑚

1 ], 𝒃𝑡2
=

[𝑏1
2 𝑏2

2 … 𝑏𝑚
2 ] with 𝑚 = log2 𝑊, the labeling map 𝜔1

𝑊 produces 𝑥𝑡1
 and 𝑥𝑡2

, while 𝜔2
𝑊 

produces 𝑥̃𝑡1
 and  𝑥̃𝑡2

, respectively, where 𝑥𝑡𝑖
 and 𝑥̃𝑡𝑖

 belong to an W-QAM/W-PSK 

constellation set 𝓧, with 𝑡𝑖 ∈  [1: 𝑊] , 𝐸 {|𝑥𝑡𝑖
|

2
} = 𝐸 {|𝑥̃𝑡𝑖

|
2

} = 1 and 𝑖 ∈ [1: 2].  

 

The transmission of the 2 × 2 STBC symbols happens over a quasi-static fading wireless 

channel with a constant channel gain over one message frame, including 𝑀 = 200 W-

QAM/W-PSK information symbols and N channel estimation pilot symbols transmitted 

per frame per transmit antenna.  The pilot symbols are generated using the Zadoff-Chu 

sequence [30] since it can generate orthogonal complex sequences of constant amplitude 

and varying phase. This is important to avoid creating a singular square matrix 𝑿𝒓𝑿𝒓
𝑯 

since the LS, and MMSE channel estimation methods rely on matrix inversion. The 

Zadoff-Chu sequence pilot symbols are generated using Equation (A.1) 

 

𝑃(𝑛) = {
𝑒

−𝑗𝜋𝑄𝑛(𝑛+2𝑞)

𝑁   , ∀ 𝑁 = 2∅, ∅ ∈ [1, ∞)  

𝑒
−𝑗𝜋𝑄𝑛(𝑛+2𝑞+1)

𝑁  , ∀ 𝑁 = 2∅ + 1, ∅ ∈ [1, ∞)
                                                      (A. 1) 

                                                                                                               
 

where 𝑛 ∈ [0: 𝑁 − 1], 𝑃(𝑛) ∈ ℂ is the complex pilot symbol at position n of the N-

dimensional pilot symbol vector, N is the number of pilot symbols transmitted per pilot 

symbol vector, j is a complex number, 𝑞 ∈ ℕ and Q is a relative prime number to N and 

obeys the equation 

 

𝜑(𝑁, 𝑄) = 1                                                                                                                           (A. 2)  
           

where 𝜑 is the greatest common divisor function.  

The wireless channel is Rayleigh frequency-flat fading. The received pilot symbols and 

information/message symbols at the receiver are mathematically modeled as per 

Equations (A.3) and (A.4): 
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𝒀𝑟 = 𝑯𝜏𝑿𝑟 + 𝑵𝑟                                                                                                                   (𝐴. 3) 
          
𝒀𝑖 = 𝑯𝜏+1𝑿𝑖 + 𝑵𝑖                                                                                                                  (𝐴. 4) 
        
where 𝑯𝜏+1 = 𝑯𝜏 = 𝑯 ∈ ℂ𝑁𝑟×𝑁𝑡 is the constant wireless channel matrix over one 

transmission frame because the wireless channel is quasi-static fading. The channel 

matrix H has complex channel gains, which are independent and identically distributed 

(i.i.d) according to ℂ𝑁(0,1).  𝑿𝑟 ∈ ℂ𝑁𝑡×𝑁 is the transmitted pilot symbol matrix, 𝑿𝑖 ∈

ℂ𝑁𝑡×2 is the transmitted information symbol matrix over 𝑁𝑡 = 2, transmit antennas, and 

two timeslots. The information symbol matrix 𝑿𝑖 has transmitted W-QAM/W-PSK 

symbols. 𝒀𝑟 ∈ ℂ𝑁𝑟×𝑁 is the received/observed pilot symbol matrix over 𝑁𝑟 receive 

antennas, 𝒀𝑖 ∈ ℂ𝑁𝑟×2is the received information symbol matrix over 𝑁𝑟 receiver 

antennas and two timeslots for USTLD. The additive white Gaussian noise (AWGN) 

matrix 𝑵𝑟 ∈ ℂ𝑁𝑟×𝑁 is observed at the wireless receiver over the received Nr×N pilot 

symbols. The AWGN matrix 𝑵𝑖 ∈ ℂ𝑁𝑟×2is observed at the wireless receiver when 

receiving the information symbols over two timeslots. The reference/pilot noise matrix 

𝑵𝑟 and the information noise matrix 𝑵𝑖 have i.i.d entries that follow the complex 

Gaussian distribution as follows: 

 

𝑛𝑖
𝑧𝑥~ℂ𝑁(0, 𝜎𝑖

2) 𝑎𝑛𝑑 𝑛𝑟
𝑤𝑦

~ℂ𝑁(0, 𝜎𝑟
2)                                                                              (𝐴. 5)

      

where 𝑛𝑖
𝑧𝑥 is the information noise matrix zth row and xth column entry, 𝜎𝑖

2 is the average 

noise power for the information receiver white noise, 𝑛𝑟
𝑤𝑦

 is the reference/pilot noise 

matrix wth row and yth column entry with an average noise power of 𝜎𝑟
2. 
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Fig. A. 1 Shows the USTLD system with blind NN-ML channel estimator with 

transmit power-sharing. 

As shown in Fig. A.1, the proposed system takes a fraction of the transmit power from 

the information symbol transmission from the wireless transmitter side and donates this 

transmit power fraction to the reference/pilot symbol transmission [29]. Knowing that 

we have M information symbols transmitted per frame per transmit antenna means we 

donate M𝛼 transmit power to N pilot symbols. This implies that each pilot symbol gets 

𝑀

𝑁
𝛼 extra transmit power, and each information symbol loses 𝛼 transmit power. 

Mathematically this is denoted as follows: 
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𝜎𝑖
2 =

2

(1−𝛼)𝛾
                                                                                                                         (𝐴. 6.1) 

        

𝜎𝑟
2 =

2

(1+
𝑀

𝑁
𝛼)𝛾

                                                                                                                      (𝐴. 6.2)                   

where 𝛼 is the transmit power fraction, M is the number of information symbols 

transmitted per frame per transmit antenna, N is the number of pilot symbols sent per 

frame per transmit antenna, and 𝛾 is the average received signal-to-noise ratio (SNR) per 

receive antenna. The total power for the transmission of M+N information and pilot 

symbols must be constant. Equations (A.6.1) and (A.6.2) obey this conservation of 

transmit power constraint.  The optimal power fraction that ensures the optimal BER 

and MSE performance is computed using the 𝛼𝑜𝑝𝑡 
= 𝑓(𝑿𝑟 , 𝑁, 𝑀, 𝑁𝑡) function that 

needs to be derived. 

 

On the wireless receiver side, the NN-ML channel estimator is fed the received pilot 

symbol matrix 𝒀𝑟 . The NN-ML channel estimator then predicts the wireless channel and 

feeds it into the maximum likelihood (ML) detector and this channel estimate is done 

once per received frame. The ML detector then uses the channel estimate 𝑯̂𝑒𝑠𝑡to detect 

the transmitted symbols based on the received 𝒀𝑖 symbol matrix.  

2.2 Background of Traditional Channel Estimation Methods 

The LS [27] channel estimation method is the least complex channel estimation method 

relative to the MMSE [28] method and the approximate linear minimum mean square 

error (ALMMSE) [31] method but is generally the least performing of the channel 

estimation methods. The LS method works by generating a closed-form channel 

estimation formula, which estimates a wireless channel that minimizes the square of the 

Euclidean distance between the observed/received pilot symbol matrix and the product 

of the estimated wireless channel and the transmitted pilot symbol matrix. The formula 

for estimating the wireless channel based on the observed/received pilot vectors and the 

transmitted known pilot symbol matrix is as shown [27] 
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𝑯̂𝐿𝑆 = 𝒀𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1                                                                                                        (𝐴. 7)     

 

where 𝑯̂𝑳𝑆 is the LS estimated wireless channel matrix, 𝒀𝑟 is the observed/received pilot 

symbol matrix, and 𝑿𝑟 is the transmitted pilot symbol matrix. From Equation (A.7) it is 

clear that 𝑿𝑟𝑿𝑟
𝐻 must be invertible and hence non-singular in nature, which motivates 

the selection of orthogonal pilot symbol vectors as entries in the transmitted pilot symbol 

matrix. Equation (A.7) also shows that the LS channel estimator requires the full 

knowledge of the transmitted pilot symbol matrix. The MMSE channel estimation 

method works by estimating the wireless channel using Equation (A.8) [28] 

            

𝑯̂𝑚𝑚𝑠𝑒 = (𝜎𝑖
2𝑹𝐻𝐻

−1 + 𝑿𝑚𝑚𝑠𝑒
𝐻 𝑿𝑚𝑚𝑠𝑒)−1𝑿𝑚𝑚𝑠𝑒

𝐻 𝒀𝑚𝑚𝑠𝑒                                                    (𝐴. 8) 

    

where 𝜎𝑖
2 is the receiver noise variance, 𝑹𝐻𝐻 = 𝐸(𝑯𝑚𝑚𝑠𝑒𝑯𝑚𝑚𝑠𝑒

𝐻 ) is the wireless 

channel autocorrelation matrix, 𝑿𝑚𝑚𝑠𝑒 = 𝑿𝑟
𝐻 is the MMSE pilot symbol matrix, 

𝒀𝑚𝑚𝑠𝑒 = 𝑿𝑚𝑚𝑠𝑒𝑯𝑚𝑚𝑠𝑒 + 𝑵𝑚𝑚𝑠𝑒is the observed/received MMSE pilot symbol matrix 

where 𝑯𝑚𝑚𝑠𝑒 = 𝑯𝐻. As can be seen from Equation (A.8), the MMSE channel estimator 

requires the full knowledge of the pilot symbol matrix, wireless channel autocorrelation 

statistics, and the noise variance at the receiver side. These are assumed to be known 

without any estimation errors. 

3 Proposed Channel Estimation For USTLD-MIMO 

The channel estimation method proposed here facilitates blind channel estimation when 

the transmitted pilot symbols, wireless channel second-order statistics, and the noise 

variance are unknown at the receiver side. The NN-ML channel estimator with transmit 

power-sharing method is a blind machine learning channel estimator. It also reduces the 

required bandwidth to achieve a good MSE and BER performance relative to the 

traditional channel estimation methods. 

 

Recently, researchers within the communications research space have taken a keen interest 

in applying machine learning to solve communications-related research problems. The 

problems are primarily related to wireless symbol detectors' design using machine 

learning. The order of computational complexity of current expert wireless receivers is 
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high for higher-order modulation W-QAM/W-PSK. Machine learning comes with the 

benefit of training a mathematical function to predict an output based on a noisy input. 

Once trained, there is no need for the machine learning algorithm to search iteratively, in 

a large search space for higher-order modulation orders, for an estimated transmitted 

symbol in the case of a wireless receiver symbol detector.  The function will, in a much 

shorter convergence time, with similar BER performance, estimate the transmitted symbol 

compared to a ML detector that takes a longer time to converge to a solution. This is 

critical for real-time communication environments as link latency needs to be minimal to 

achieve a good quality of service (QoS).  In the case of channel estimation, we evaluate if 

we can train a machine-learning algorithm to predict the wireless channel based on a noisy 

received pilot symbol matrix with similar or better MSE and BER performance relative to 

the expert method of using LS or MMSE to carry out channel estimation. The advantage 

of using machine learning over LS or MMSE is that we can blindly estimate the wireless 

channel without knowing the pilot symbol matrix, channel covariance matrix, and receiver 

noise variance.  

 

The work in this section is organized as follows: Section 3.1 concentrates on 

Hyperparameter tuning of the neural network model, Section 3.2 ventilates the training 

phase of the neural network model and Section 3.3 exhibits the derivation of the optimal 

transmit power fraction that minimizes the channel estimation bandwidth utilization. 

 

3.1 Proposed NN-ML Channel Estimation Hyperparameter Tuning 

For a supervised machine learning algorithm to be useful, it needs to be first trained using 

appropriate data. Two machine learning algorithms are being trained for, the first being 

the NN-ML-Channel-Estimation without power-sharing where 𝛼 = 0. The second is the 

NN-ML-Channel- Estimation with power-sharing, where 𝛼 = 𝛼𝑜𝑝𝑡. We then generated 

10 000 samples for the received pilot symbols based on Equation (A.3) for 𝛼 = 0 and 𝛼 =

𝛼𝑜𝑝𝑡. We also used the Zadoff-Chu sequences in Equation (A.1) to generate the 

transmitted pilot symbol matrix over a range of N pilot symbols.  The 10 000 samples 

were generated for each SNR value in the range [0dB to 16dB, step 2dB]. Since this section 

is responsible for hyperparameter tuning, we only tuned the hyperparameters using the 



40 
 

10dB SNR samples in order to reduce the tuning time. Table A.1 shows the machine 

learning architecture and the training hyperparameters found using a genetic algorithm for 

the cases when 𝛼 = 0 and 𝛼 = 𝛼𝑜𝑝𝑡. The hyperparameters found through genetic 

algorithm [32] optimization are the pseudo-random number generator seed value, learning 

rate and training batch size. The objective function which the genetic algorithm optimized 

was the validation MSE at 10dB SNR. 

 

The NN-ML-Channel-Estimation architecture in Table A.1 was invariant to the changes 

in the number of pilot symbols 𝑁. However, the architecture was found to be sensitive 

to the MIMO receive antenna configuration 𝑁𝑟. This is because changing the value of 

𝑁𝑟 explicitly alters the MIMO channel matrix dimensions, which also alters the number 

of required neurons at the output layer of the architecture. Therefore, we declare that the 

architecture in Table A.1 is only valid for the 2 × 4 MIMO configuration discussed in 

our simulation results. Any other MIMO configuration may require a new architecture 

and re-training of the NN-ML-Channel-Estimation model. 

Table A. 1: NN-ML-Channel-Estimation Architecture and Hyper-Parameters 

Layer Parameter Description 

Flatten 1 × 2𝑁𝑟 × 2𝑁 input data dimension 

(Input Layer) Dense+LeakyReLU 256 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 

Dropout Probability of 0.5 

(Hidden Layer) Dense+LeakyReLU 256 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 

Dropout Probability of 0.5 

(Output Layer) Dense+Linear 16 neurons. 

Batch Size=2189,  

Learning Rate=0.00104, 

Seed Value=433 

The above hyperparameters are for when α = αopt 

Batch Size=1300,  

Learning Rate= 0.00583, 

Seed Value=549 

The above hyperparameters are for when α = 0 
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The input data dimension is based on the number of transmitted pilot symbols (N) per 

symbol vector and the number of receive antennas 𝑁𝑟. At the bottom of Table A.1 are 

the tunable hyperparameter values, which we derived via a genetic algorithm. The 

genetic algorithm pseudo-code is as follows: 

 

Algorithm A.1: Genetic Algorithm 

Result: Gene sequence with pseudo-random seed-value, batch size and learning rate for 

the population member that produces the lowest validation MSE at 10dB SNR. 

 

Initialization: 

𝑁𝑟 = 𝜖, 

𝑁 = 𝛿,  
𝜇𝑙 = 0.35 

𝜇𝑔 = 0.15 

𝑃 = 10  

ω[1: 𝑃] = 0  

𝐺 = 100  

𝜋 = 0.20  

𝐸 = 1000  

 

Step 1: Generate 𝑃 random population members with random hyperparameter values.  

 

Let each population member be denoted by Ω𝑘 where 𝑘 ∈ [1: 𝑃]. Ω𝑘 contains the set 

{𝜆𝑘, 𝜂𝑘, 𝜁𝑘} where 𝜆𝑘is the pseudo-random seed value,  𝜂𝑘  is the learning rate and 𝜁𝑘 is 

the batch size for the 𝑘𝑡ℎ population member. The random values are set within the 

following constraints: 𝜆𝑘 ∈ [2, 1001) ⊆ ℤ, 𝜂𝑘 ∈ [0.0001,0.01] ⊆ ℝ, and 𝜁𝑘 ∈

[1000,4000] ⊆ ℤ. 

 

Step 2: Set 𝑖 = 1 

 

Step 3: 𝐼𝐹 𝑖 ≤ 𝐺 𝑇𝐻𝐸𝑁 

a) Set 𝑘 = 1 

b) 𝐼𝐹 𝑘 ≤ 𝑃 𝑇𝐻𝐸𝑁 

I. 𝑝𝑎𝑟𝑒𝑛𝑡𝑘 = Ω𝑘 

II. 𝜆𝑘 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑘. 𝑔𝑒𝑡𝑆𝑒𝑒𝑑𝑉𝑎𝑙𝑢𝑒() 

III. 𝜂𝑘 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑘. 𝑔𝑒𝑡𝐿𝑒𝑎𝑟𝑛𝑅𝑎𝑡𝑒() 

IV. 𝜁𝑘 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑘. 𝑔𝑒𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒() 

V. χ = 𝐼𝑚𝑝𝑜𝑟𝑡(𝐷𝑎𝑡𝑎𝑠𝑒𝑡) 

VI. ω[k] = Φ(χ, π, 𝐸, 𝜆𝑘, 𝜂𝑘 , 𝜁𝑘 , 𝑁𝑟 , 𝑁) 

VII. 𝑘 = 𝑘 + 1 
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VIII. GOTO Step 3b 

c) ELSE 

I. Set 𝑠𝑒𝑞 = 1 

II. 𝐼𝐹 𝑠𝑒𝑞 ≤ 𝑃 𝑇𝐻𝐸𝑁 

• 𝜏[1: 𝑃] = 𝑔𝑒𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑉𝑎𝑙𝑢𝑒𝑠(ω[1: 𝑃]) 

• 𝜌[1: 𝑃] = 𝑔𝑒𝑡𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠(𝜏[1: 𝑃]) 

• 𝜐[1: 2] = 𝑠𝑒𝑙𝑒𝑐𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝜌[1: 𝑃]) 

• 𝑐 = 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝐶ℎ𝑖𝑙𝑑(𝜐[1: 2]) 

• Ω𝑠𝑒𝑞 = 𝑐 

• 𝑠𝑒𝑞 = 𝑠𝑒𝑞 + 1 

• GOTO Step 3c number II. 

III. 𝑖 = 𝑖 + 1 

IV. GOTO Step 3 

Step 4: End 
 

The initialization step initializes the salient variables defined in Table A.2, amongst 

other variables in Algorithm A.1. 

 

Table A. 2: Definition of Genetic Algorithm Parameters 

Parameter Description 

𝑁𝑟 number of receive antennas in MIMO configuration 

𝑁 Number of pilot symbols 

𝜇𝑙 Local mutation rate 

𝜇𝑔 Global mutation rate 

𝑃 Population size per generation 

ω[1: 𝑃] A list that stores the MSE validation loss values at 10dB 

SNR for each Ω𝑘. 

𝐺 Maximum number of evolutionary generations 

𝜋 The fraction of the dataset which will be used as the test 

data. 

𝐸 Number of training Epochs 

𝜏[1: 𝑃] A list that stores the fitness value for each Ω𝑘. 

𝜌[1: 𝑃] A list that stores the selection probabilities for each Ω𝑘. 

𝜐[1: 2] A list that stores the two parents that are selected for 

mating 

c The child produced from the mating of the two selected 

parents. 

χ Dataset 
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Algorithm A.1 works by generating 𝑃 random population members with randomized 

seed-values, batch sizes and learning rates as an initial Genetic algorithm population of 

possible hyperparameters. The population members, Ω𝑘, hyperparameters are randomly 

assigned values subject to the constraints stated in Step 1 of Algorithm A.1. The 

algorithm then iterates through each population member per generation. It uses each 

population member's hyperparameters to train the neural network architecture in Table 

A.1, represented as Φ(∙) in the Algorithm. The neural network architecture is trained 

with a training dataset of 80% of the imported dataset stored in χ. The other 20% is used 

as a test dataset to produce the validation MSE at 10dB SNR. The dataset stored in χ is 

produced from Equation (A.3), at 10dB SNR, for the power fraction values 𝛼 = 0 and 

𝛼 = 𝛼𝑜𝑝𝑡. The training dataset is collected at a single SNR value of 10dB because at this 

stage, we are merely pre-training the neural network to select hyperparameters that 

produce the lowest validation MSE at 10dB SNR. At this stage, we are not fully training 

the neural network for channel estimation but for tuning or selecting optimal 

hyperparameters. 

 

The population members in the current generation are selected one after the other, and 

their hyperparameters, together with the training and test datasets, are used to train and 

test the neural network in Table A.1 in order to evaluate the validation MSE at 10dB 

SNR. This validation MSE is saved in a list that stores the mapping between the 

population member’s number 𝑘 and the validation MSE associated with the population 

member’s hyperparameters. When all the population members have been used to 

determine the validation MSE, at 10dB SNR, for the neural network in Table A.1, the 

algorithm uses the stored validation MSEs to create the next generation of population 

members. It does this by computing the fitness value associated with each population 

member. The fitness value is calculated based on the validation MSE of the neural 

network in Table A.1 and the formula 𝜏[𝑘] =
106

10(1000𝜔[𝑘]−45) . ω[k] is the 𝑘𝑡ℎ population 

member’s validation MSE at 10dB SNR. 𝜏[𝑘] is the 𝑘𝑡ℎ population member’s fitness 

value. The formula for computing the fitness values is found empirically by maximizing 

the small differences between validation MSE values at 10dB SNR. If we do not non-
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linearly amplify the small differences between MSE values, then the selection 

probabilities will be almost identical for all population members since their fitness 

values will be very close to each other. For example, if 5 population members A, B, C, 

D, and F have validation MSE values of 0.04797, 0.0478, 0.048, 0.04632, and 0.04921, 

respectively, then it is obvious to see that the selection probabilities for population 

members A, B, C, D, and F will be almost identical if the fitness function does not non-

linearly amplify the validation MSE values. However, if we use our empirical formula 

to calculate the fitness values, we get the following fitness values for population 

members A, B, C, D, and F: 1071.51, 1584.89, 1000, 47863.01, and 61.66, respectively. 

The population member F has the worst validation MSE and the lowest fitness value of 

61.66. The population member D has the best validation MSE and the highest fitness 

value of 47863.01. The difference between the validation MSE for population members 

F and D is only 0.0029. However, the fitness values have a huge difference to avoid 

equal selection probabilities being calculated in scenarios when the validation MSE 

values are very close to each other. 

 

After the fitness values are computed, the selection probability per population member 

is calculated based on each population member's fitness value. The selection 

probabilities are computed based on the formula 𝜌[𝑘] =
𝜏[𝑘]

∑ 𝜏[𝑙]𝑃
𝑙=1

 [32]. 𝜌[𝑘] is the 

selection probability of the 𝑘𝑡ℎ population member. The selection probability is the 

likelihood of a population member being randomly selected to mate and produce a child 

for future generations. Only two parents are randomly selected to produce one child. 

 

When the two parents are selected randomly, a genetic crossover is performed to produce 

a child. The crossover is done by inheriting the pseudo-random seed value from the first 

parent and then inheriting the batch size and the learning rate from the second parent. 

Random genetic mutation may occur with a probability of 0.35 for local mutation and 

0.15 for global mutation. Local mutation involves altering a single inherited 

hyperparameter value of the child. Global mutation involves the altering of all three 

inherited hyperparameter values of the child. The genetic mutation involves randomly 
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assigning values to the hyperparameters subject to the constraints stated in Step 1 of 

Algorithm A.1.  

 

The child produced from the selected parents' mating is then added as a new population 

member for the next generation. Selecting mating parents and producing children is 

repeated until the new population size is 𝑃. Only then do we destroy the old population 

and move on to the next generation of population members. 

 

The process of searching for a global minimum validation MSE is repeated until the 

number of iterations is equal to the maximum number of generations 𝐺. Only then do 

we search for the population member Ω𝑘, together with its hyperparameters, that 

produces the lowest validation MSE evaluated from generation 1 to generation 𝐺. The 

optimal population member’s hyperparameters are then used to fully train the neural 

network in Table 1 from 16dB to 0dB SNR. 

3.2 Training the NN-ML Channel Estimator 

There are two sets of data used in the machine learning algorithm training and testing in 

Table A.1. The first dataset Å, is the training dataset, which is made up of 80% of the 10 

000 samples generated using the received pilot symbol matrix data from Equation (A.3), 

and the second dataset ℳ is the test dataset, which is the remaining unseen 20% of the 

10 000 samples. The datasets are collected for SNR values from 0dB to 16dB. The 

datasets are generated for both scenarios when 𝛼 = 0 and 𝛼 = 𝛼𝑜𝑝𝑡. We trained the 

machine learning algorithm over a wide range of SNR values 0dB to 16dB. The algorithm 

was trained from 16dB down to 0dB as it was noticed that training it the other way from 

0dB to 16dB yielded a poor validation mean squared error per SNR training cycle.  

 

For the training to happen, the received complex pilot symbol matrix from Equation 

(A.3) is converted into a 2-dimensional data structure, with real numbers, with a single 

channel. A matrix representation that converts a complex matrix into a 2-dimensional 

real-valued data structure is used as per [33]. The resulting 2-dimensional data structure 

is stored in a single element array to create a single channel. Since the received pilot 
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symbol matrix is ℂ𝑁𝑟×𝑁, the real-valued matrix is ℝ2𝑁𝑟×2𝑁 as shown in Equation (A.9) 

[33] 

       

𝒁𝑟 = (
ℜ(𝒀𝑟) −ℑ(𝒀𝑟)

ℑ(𝒀𝑟) ℜ(𝒀𝑟)
) ∈ ℝ2𝑁𝑟×2𝑁                                                                           (𝐴. 9) 

                          

where in Equation (A.9):                                     

 𝒀𝑟 = (

𝑦11 ⋯ 𝑦1𝑁

⋮ ⋱ ⋮
𝑦𝑁𝑟1 ⋯ 𝑦𝑁𝑟𝑁

) ∈ ℂ𝑁𝑟×𝑁               . 

 

The set of 10 000 samples is made up of the 2-dimensional data 𝒁𝑟  with a single channel. 

To train the machine learning algorithm, using supervised learning, we need the output 

label data that corresponds to this input training set Å. The output training data is the 

actual wireless channel matrix 𝑯 ∈ ℂ𝑁𝑟×𝑁𝑡 as per the method used in [11]. We then 

convert this wireless channel matrix into a real-valued vector 𝒉 ∈ ℝ1×2𝑁𝑟𝑁𝑡 , which in 

our case we have 𝑁𝑟 = 4 and 𝑁𝑡 = 2, which means 𝒉 ∈ ℝ1×16, which makes the output 

layer of the neural network a 16-neuron layer as per Table A.1. The real-valued entries 

of the vector 𝒉 are determined by taking the real and imaginary values of the complex 

entries of the channel matrix 𝑯.  

 

During training, the set Å is fed into the machine learning algorithm function 𝐹(Å, 𝐾) 

with hyper-parameters (𝐾). This function's output is compared to the output labeled data 

in vector 𝒉 that corresponds to the actual wireless channel as per [11]. The function 

𝐹(Å, 𝐾) hyper-parameters (𝐾) are tuned using the Adam optimizer with an objective to 

minimize the validation MSE based on the test data from set ℳ. The optimization 

objective function or loss function is shown in Equation (A.10) 

 

𝑀𝑆𝐸 𝐿𝑜𝑠𝑠 =
1

‖Å‖
∑ ‖𝐹(𝒙, 𝐾) − 𝒉‖𝐹

2
𝒙∈Å                                                                           (𝐴. 10)  

 

where ‖Å‖ is the batch size of the training set. This loss function is used in back-

propagation by the Adam optimizer [34] to determine the neural network function 
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𝐹(Å, 𝐾) hyper-parameters (𝐾), or synaptic weights. During training, the training process 

looks for the weights that produce the lowest validation MSE, which is determined by 

evaluating the MSE loss function in Equation (A.10) after each training epoch using the 

unseen test data set ℳ.   

3.3 Optimal Transmit Power Sharing 

Based on Section 2's system model, we derive the optimal power fraction function 

𝛼𝑜𝑝𝑡 
= 𝑓(𝑿𝑟 , 𝑁, 𝑀, 𝑁𝑡). This subsection is dedicated to deriving the optimal power 

fraction function and finding the optimal number of pilot symbols to be transmitted for 

optimal MSE and BER performance. 

 

Inspired by a generalized differential scheme for spatial modulation systems [29], the 

following derivation is performed to determine the optimal power fraction that 

minimizes the NN-ML wireless channel estimator's MSE and BER performance. Based 

on Equations (A.3) and (A.4), we can see that the channel matrix H is the common link 

between Equations (A.3) and (A.4). Manipulating Equation (A.3), we get the following 

Equation (A.11): 

 

(𝒀𝑟 − 𝑵𝑟) = 𝑯𝑿𝑟 ,  further manipulation yields 

(𝒀𝑟 − 𝑵𝑟)𝑿𝑟
𝐻 = 𝑯𝑿𝑟𝑿𝑟

𝐻 , where 𝑿𝑟𝑿𝑟
𝐻 is an invertible square matrix, thus 

 

𝑯 = (𝒀𝑟 − 𝑵𝑟)𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1                                                                                           (𝐴. 11)

       

Substitute Equation (A.11) into Equation (A.4) we get the following: 

𝒀𝑖 = ((𝒀𝑟 − 𝑵𝑟)𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1)𝑿𝑖 + 𝑵𝑖, and simplifying yields Equation (A.12) 

 

𝒀𝑖 = 𝒀𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 − 𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 + 𝑵𝑖                                                  (𝐴. 12)

    

We can see from Equation (A.12) that the first coefficient of 𝑿𝑖 is 𝒀𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1 and 

is identical to Equation (A.7), which is the least-squares wireless channel estimate. We 

can then replace the first coefficient of 𝑿𝑖 with the generic placeholder for the wireless 
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channel estimate, which we will call 𝑯̂𝑒𝑠𝑡. This changes Equation (A.12) to be 

represented mathematically as 𝒀𝑖 = 𝑯̂𝑒𝑠𝑡𝑿𝑖 − 𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 + 𝑵𝑖. 

 

To find the optimal power fraction that minimizes the channel estimate MSE and BER, 

we need to derive the equivalent noise power based on a similar method used to derive 

the equivalent noise power for a generalized differential scheme for spatial modulation 

systems [29]. From Equation (A.12) it is clear that the equivalent noise power is actually 

dependent on the noise term −𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 + 𝑵𝑖, for the MIMO pilot assisted 

wireless channel estimation methods. If 𝑯̂𝑒𝑠𝑡 is the estimated wireless channel at an 

instant, then the average signal mean squared error expression, 𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡
𝐸 (‖𝒀𝑖 −

𝑯̂𝑒𝑠𝑡𝑿𝑖‖𝐹

2
), needs to be minimized for a good channel estimation accuracy where the 

operator E(∙) is the statistical expectation given that 𝑿𝑖 is known at the receiver. In order 

to practically evaluate the accuracy or MSE of the wireless channel estimate, we need to 

transmit a fixed, known 𝑿𝑖 information symbol matrix based on the USTLD method and 

observe the received 𝒀𝑖symbol matrix and evaluate 𝐸 (‖𝒀𝑖 − 𝑯̂𝑒𝑠𝑡𝑿𝑖‖𝐹

2
) after having 

have estimated the wireless channel and obtained 𝑯̂𝑒𝑠𝑡. Expanding the minimization of 

the term 𝐸 (‖𝒀𝑖 − 𝑯̂𝑒𝑠𝑡𝑿𝑖‖
𝐹

2
), we get the following mathematical 

expression: 𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡
𝐸 (‖𝒀𝑖 − 𝑯̂𝑒𝑠𝑡𝑿𝑖‖𝐹

2
) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡

𝐸 (‖(𝑯 − 𝑯̂𝑒𝑠𝑡)𝑿𝒊 +

𝑵𝑖‖𝐹

2
). Using the Frobenius norm property in Equation (A.13.1) and the Cauchy–

Bunyakovsky–Schwarz inequality in Equation (A.13.2) [35] 

 

‖𝑨𝑩‖𝐹 ≤ ‖𝑨‖𝐹‖𝑩‖𝐹                                                                                                      (𝐴. 13.1)

    

|tr(𝑨𝑩𝑯)| ≤ ‖𝑨‖𝐹‖𝑩‖𝐹                                                                                                (𝐴. 13.2)

  

And using the Frobenius norm triangle inequality in [35], we get 
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𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡
𝐸 (‖(𝑯 − 𝑯̂𝑒𝑠𝑡)𝑿𝒊 + 𝑵𝑖‖𝐹

2
) ≤ 𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡

𝐸 (‖𝑯 − 𝑯̂𝑒𝑠𝑡‖
𝐹

2
‖𝑿𝒊‖𝐹

2 +

‖𝑵𝑖‖𝐹
2 + 2‖𝑯 − 𝑯̂𝑒𝑠𝑡‖

𝐹
‖𝑿𝒊‖𝐹‖𝑵𝑖‖𝐹).But 𝐸(‖𝑿𝒊‖𝐹) = 𝜆, 𝐸(‖𝑵𝑖‖𝐹) =

𝜇, 𝐸(‖𝑿𝒊‖𝐹
2 ) = 2𝑁𝑡 and 𝐸(‖𝑵𝑖‖𝐹

2 ) = 2𝑁𝑟𝜎𝑖
2 therefore we can simplify the expression 

to form Equation (A.14) 

 

𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡
𝐸 (‖(𝑯 − 𝑯̂𝑒𝑠𝑡)𝑿𝒊 + 𝑵𝑖‖𝐹

2
) ≤ 𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡

(2𝐸 (‖𝑯 − 𝑯̂𝑒𝑠𝑡‖
𝐹

2
) 𝑁𝑡 +

2𝑁𝑟𝜎𝑖
2 + 2𝐸 (‖𝑯 − 𝑯̂𝑒𝑠𝑡‖

𝐹
) 𝜆𝜇)                                                                                   (𝐴. 14)

         

where 𝑁𝑡 is the number of transmit antennas and 𝑁𝑟 is the number of receive antennas 

in the wireless MIMO configuration. We can see from Equation (A.14) that the 

minimization of 𝐸 (‖𝒀𝑖 − 𝑯̂𝑒𝑠𝑡𝑿𝑖‖𝐹

2
) implies minimizing the channel estimate MSE 

𝐸 (‖𝑯 − 𝑯̂𝑒𝑠𝑡‖
𝐹

2
) term. Using this fact, we can then link the channel estimation MSE 

minimization to the minimization of the equivalent noise power term. Based on Equation 

(A.12), 𝐸 (‖𝒀𝑖 − 𝑯̂𝑒𝑠𝑡𝑿𝑖‖𝐹

2
) = 𝐸(‖−𝑵𝑟𝑿𝑟

𝐻(𝑿𝑟𝑿𝑟
𝐻)−1𝑿𝑖 + 𝑵𝑖‖𝐹

2). Therefore, we can 

minimize the average signal mean squared error 𝐸 (‖𝒀𝑖 − 𝑯̂𝑒𝑠𝑡𝑿𝑖‖
𝐹

2
) expression by 

minimizing its equivalent expression 𝐸(‖−𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 + 𝑵𝑖‖𝐹
2 ). But  

 

𝐸(‖−𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 + 𝑵𝑖‖𝐹
2 ) ≥ 𝐸(‖𝑵𝑖‖𝐹

2 + ‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹
2 −

2‖𝑵𝑖‖𝐹‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹)                                                                                     (𝐴. 15)       

                             

But we know that 𝐸(‖−𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 + 𝑵𝑖‖𝐹
2) ≥ 0 ⇒ 𝐸(‖𝑵𝑖‖𝐹

2 ) +

𝐸(‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹
2 ) ≥ 𝐸(2‖𝑵𝑖‖𝐹‖𝑵𝑟𝑿𝑟

𝐻(𝑿𝑟𝑿𝑟
𝐻)−1𝑿𝑖‖𝐹) ∀𝛼.  

It is easy to see that when the expression 𝐸(‖𝑵𝑖‖𝐹
2) + 𝐸(‖𝑵𝑟𝑿𝑟

𝐻(𝑿𝑟𝑿𝑟
𝐻)−1𝑿𝑖‖𝐹

2 ) 

increases in value, the expression 𝐸(2‖𝑵𝑖‖𝐹‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹) also increases in 

value, and the converse is true, which implies that the two expressions are in phase. This 

means that the mathematical expression, 𝐸(2‖𝑵𝑖‖𝐹‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹), only shifts 

or translates the graph of 𝐸(‖𝑵𝑖‖𝐹
2 ) + 𝐸(‖𝑵𝑟𝑿𝑟

𝐻(𝑿𝑟𝑿𝑟
𝐻)−1𝑿𝑖‖𝐹

2 ) vertically downwards 
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on the Cartesian plane. It does not affect the 𝛼 value where the minimum or stationary 

point occurs. Thus, to minimize the term 𝐸(‖−𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 + 𝑵𝑖‖𝐹
2 ), we need to 

only concentrate on minimizing the term 𝐸(‖𝑵𝑖‖𝐹
2 ) + 𝐸(‖𝑵𝑟𝑿𝑟

𝐻(𝑿𝑟𝑿𝑟
𝐻)−1𝑿𝑖‖𝐹

2 ). 

 

However, knowing that the total equivalent noise power, henceforth the equivalent noise 

power, is the total noise power contribution from the noise matrix expressions 

𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖 and 𝑵𝑖. We can define the equivalent noise power as follows in 

Equation (A.16): 

 

𝜎𝑒𝑞𝑢
2 ≜ 𝐸(‖𝑵𝑖‖𝐹

2 ) + 𝐸(‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹
2 )                                                          (𝐴. 16) 

    

 As can be seen, that Equation (A.15) contains the equivalent noise power; thus, for us 

to minimize the channel estimation MSE, we can find the minimum or lowest equivalent 

noise power. So mathematically, this is noted as follows in Equation (A.17): 

 

𝑎𝑟𝑔𝑚𝑖𝑛𝛼𝜎𝑒𝑞𝑢
2 ⇒ 𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡

𝐸 (‖𝒀𝑖 − 𝑯̂𝑒𝑠𝑡𝑿𝑖‖𝐹

2
) ⇒ 𝑎𝑟𝑔𝑚𝑖𝑛𝑯̂𝑒𝑠𝑡

𝐸 (‖𝑯 −

𝑯̂𝑒𝑠𝑡‖
𝐹

2
)                                                                                                                                 (𝐴. 17)

       

Based on Equation (A.16), we expand the expression 𝐸(‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹
2) using 

the following inequality 𝐸(‖𝑵𝑟𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1𝑿𝑖‖𝐹
2 ) ≤

𝐸(‖𝑵𝑟‖𝐹
2‖𝑿𝑟

𝐻(𝑿𝑟𝑿𝑟
𝐻)−1‖𝐹

2‖𝑿𝑖‖𝐹
2 ). Now let 𝜽 = 𝑿𝑟

𝐻(𝑿𝑟𝑿𝑟
𝐻)−1where 𝜽 ∈ ℂ𝑵×𝑵𝒕 

matrix. The matrix 𝜽 has constant complex entries containing the fixed transmitted 

pilot symbol matrix 𝑿𝑟. Therefore, the equivalent noise power becomes Equation 

(A.18) 

 

𝜎𝑒𝑞𝑢
2 ≤ 2𝑁𝑟𝜎𝑖

2 + 𝐸(‖𝑵𝑟‖𝐹
2 )𝐸(‖𝜽‖𝐹

2 )𝐸(‖𝑿𝑖‖𝐹
2 )                                                          (𝐴. 18) 

     

since matrices 𝑵𝑟 , 𝜽 and 𝑿𝑖 are independent. But 𝐸(‖𝑵𝑟‖𝐹
2) = 𝑁𝑟𝑁𝜎𝑟

2, 𝐸(‖𝜽‖𝐹
2 ) =

‖𝜽‖𝐹
2 , and 𝐸(‖𝑿𝑖‖𝐹

2 ) = 2𝑁𝑡 thus the equivalent noise power upper bound is given in 

Equation (A.19) 
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𝜎𝑒𝑞𝑢
2 ≤ 2𝑁𝑟𝜎𝑖

2 + 2𝑁𝑟𝑁𝑡𝑁𝜎𝑟
2‖𝜽‖𝐹

2                                                                                   (𝐴. 19)

       

Using Equations (A.6.1) and (A.6.2), we can get the complete equivalent noise power 

upper bound as stated in Equation (A.20) 

 

𝜎𝑒𝑞𝑢
2 ≤

4𝑁𝑟

(1−𝛼)𝛾
+

4𝑁𝑟𝑁𝑡𝑁‖𝜽‖𝐹
2

(1+
𝑀

𝑁
𝛼)𝛾

                                                                                              (𝐴. 20) 

       

To get the optimal power fraction that minimizes the equivalent noise power, we rely on 

the calculus of finding the stationary point of the equivalent noise power with respect to 

the transmit power fraction. 
𝑑𝜎𝑒𝑞𝑢

2

𝑑𝛼
= 0, solving this leads to the following optimal power 

fraction as shown in Equation (A.21) 

 

𝛼𝑜𝑝𝑡 =
𝑁√𝑀𝑁𝑡‖𝜽‖𝐹−𝑁

𝑀+𝑁√𝑀𝑁𝑡‖𝜽‖𝐹
                                                                                                          (𝐴. 21) 

        

where 𝛼𝑜𝑝𝑡 is the optimal transmit power fraction, M is the number of information 

symbols transmitted per transmit antenna, N is the number of pilot symbols sent per 

transmit antenna, 𝑁𝑡 is the number of transmit antennas in the MIMO configuration and 

‖𝜽‖𝐹 is the Frobenius norm of the matrix 𝜽 = 𝑿𝑟
𝐻(𝑿𝑟𝑿𝑟

𝐻)−1. 

 

The next objective is to find the optimal number of pilot symbols that must be 

transmitted over the wireless channel and used for channel estimation. Since it follows 

that getting a minimal or lowest equivalent noise power translates to minimum channel 

estimation MSE, we need to select the number of pilot symbols that produce the lowest 

possible equivalent noise power. The optimal power fraction that minimizes the 

equivalent noise power is a function of the number of pilot symbols N. Thus, the critical 

parameter to select for optimal channel estimation performance is the number of pilot 

symbols N since the optimal power fraction can be obtained from Fig. A.3 after finding 

the optimal N. We can find the optimal number of pilot symbols N from Fig. A.2. 
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Fig. A. 2 Shows the equivalent noise power at 0dB SNR versus number of pilot 

symbols 𝑵. 

As can be seen in Fig. A.2, the realistic values for the number of pilot symbols can only 

be in the range 2 to 200 since the quasi-static channel fading is constant for slightly more 

than 200 symbols at a time, hence the limit of 200. However, we cannot use 𝑁 = 1 pilot 

symbol because the Zadoff-Chu sequence always starts with an element with an 

amplitude of 1 and a phase of 0°. This means that for 𝑁 = 1, we have a singular square 

matrix created by 𝑿𝑟𝑿𝑟
𝐻, which is not invertible. We, therefore, can only work with 

values of N in the range 2 to 200. This is our search space for our optimal number of 

pilot symbols. The SNR is set to 0dB because it plays an insignificant role in determining 

the optimal number of pilot symbols since the SNR is just a scaling factor. Setting the 

SNR to 0dB is equivalent to setting a scaling factor of 1 on the linear scale.  
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Fig. A.2 exhibits the fact that the lowest equivalent noise power value is observed at 

𝑁 = 2 pilot symbols. As shown in Section 3.3's derivation, the lowest equivalent noise 

power value corresponds to the lowest MSE performance. This translates to an optimal 

power fraction 𝛼𝑜𝑝𝑡 ≈ 0.16 based on extrapolation from Fig. A.3 at 𝑁 = 2. Fig. A.3 is 

produced from Equation (A.21) and Fig. A.2 is produced from Equation (A.20) with the 

transmit power fraction set as 𝛼 = 𝛼𝑜𝑝𝑡. 

 
 

Fig. A. 3 Shows the power fraction versus number of pilot symbols 𝑵. 

From Fig. A.3, we can see that the optimal power fraction stays within the feasible range 

of [0,1) over a different number of pilot symbol values. The other observation is that the 

power fraction cannot increase and approach unity linearly because the transmit power 

of the information symbols will become negligible, negatively affecting the BER 

performance of the transmitted information symbols. Thus whilst increasing the transmit 

power of the pilot symbols may yield an excellent channel estimation MSE performance, 
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lowering the transmit power of the information symbols close to 0 will yield inferior 

BER performances, which will defeat the aim of improving the channel estimation 

accuracy, thus a perfect balance must be struck to optimize the BER and MSE 

performance. 

 

4 Simulation Results 

The Monte-Carlo wireless simulation environment is setup as a 2 × 4 multiple-input-

multiple-output (MIMO) wireless channel with Rayleigh quasi-static fading in which 

the channel gain remains constant for 200 + 𝑁 symbol durations and changes every 

200 + 𝑁 symbol durations. The wireless transmit and receive antennas are sufficiently 

spaced enough such that the wireless channels are de-correlated. The number of 

information symbols transmitted per frame is 𝑀 = 200 and the number of pilot symbols 

transmitted per frame is 𝑁 = 2 or 𝑁 = 10. The information and pilot symbols share a 

fraction of the transmit power based on the optimal power fraction in Equation (A.21) 

for 𝑁 = 2. The pilot symbols are generated using the Zadoff-Chu sequence in Equation 

(A.1) and based on the number of pilot symbols 𝑁 = 2 or 𝑁 = 10. The information 

symbol modulation order used in the simulation is 16-QAM and 16-PSK. The average 

power constraint for the 16-QAM and 16-PSK symbols is set to 1. The NN-ML-based 

algorithm model architecture seen in Table A.1 is loaded into the simulation 

environment, and the saved optimal synaptic weights are loaded into the machine 

learning model. The channel estimation algorithms used are the LS, MMSE, NN-ML 

without power-sharing, and NN-ML with power-sharing. The Monte-Carlo simulation 

determines the channel estimation algorithms' MSE and BER performance over 0dB to 

14dB SNR. 
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Fig. A. 4 Shows the MSE performance of the 𝟐 × 𝟒 MIMO NN-ML channel 

estimation vs traditional channel estimation methods. 

 

From Fig. A.4 we can see that the NN-ML channel estimator without transmit power-

sharing underperforms the traditional channel estimation methods LS and MMSE at high 

SNR. The reason for this is that the hyperparameters in Table A.1 are searched for in a 

multivariable landscape with the objective to find the global minimum validation MSE 

at 10dB SNR. Because the landscape is multivariable, it lends itself to the possibility of 

having multiple local stationary points and a single global stationary point. The genetic 

algorithm (GA) used in Algorithm A.1 tries to search for the global stationary point in 

the multivariable landscape with no guarantees of finding the global stationary point. 

Our GA runs for only 100 evolutionary generations, with a population size of 10, and 

this limits the number of permutations of hyperparameter values tested on the neural 

network. Thus, it restricts the search space for the global stationary point. The 
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hyperparameters found in Table A.1 for the case 𝛼 = 0, are clearly suboptimal based on 

the poor MSE performance at high SNR. The higher SNR range is sensitive to the 

channel estimator's systematic errors as opposed to the low SNR range. 

 

We also see from Fig. A.4 that the NN-ML channel estimation method has an improved 

MSE performance when transmit power-sharing is used to improve its performance. 

From Fig. A.4, the added transmit power fraction for the pilot symbols improves the 

MSE performance. It is also interesting to note that for the defined SNR range, the NN-

ML channel estimator with transmit power-sharing outperforms the traditional LS and 

MMSE methods. At MSE= 6 × 10−2, we have an approximately 12dB gain over the 

traditional LS and MMSE channel estimation when using the NN-ML with power-

sharing channel estimation algorithm. This implies that we can save transmit power with 

the NN-ML with the power-sharing method; we can also do blind channel estimation 

without knowledge of the transmitted pilot symbols and/or channel autocorrelation 

statistics or the received noise variance required by the traditional channel estimation 

methods. 
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Fig. A. 5 Shows the BER performance of the 𝟐 × 𝟒 MIMO NN-ML channel 

estimation vs traditional channel estimation methods at the same number of pilot 

symbols for 16-QAM modulation. 

As shown in Fig. A.5, the NN-ML channel estimator's BER performance with transmit 

power-sharing is the best performing as expected from the MSE accuracy shown in Fig. 

A.4. This shows that minimizing the equivalent noise power does, in fact, minimize the 

channel estimation MSE performance as shown in Fig. A.4 and the signal MSE 

performance as shown in Fig. A.5. The signal MSE performance is linked to the 

maximum likelihood detector performance. Hence, the NN-ML channel estimator's BER 

performance with transmit power-sharing has the best BER performance since its 

equivalent noise power is minimized relative to the other channel estimation algorithms.  

 

There is a loss in diversity at high SNR for the NN-ML channel estimator without 

transmit power-sharing as the hyperparameters selected for the case 𝛼 = 0 are 
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suboptimal. Fig. A.4 MSE performance shows that at high SNR the NN-ML channel 

estimator without transmit power-sharing has poor performance relative to the other 

channel estimators. This poor MSE performance has an impact on the BER performance, 

as shown in Fig. A.5. For the NN-ML channel estimator with transmit power-sharing, 

there is no loss in diversity because the hyperparameters selected for the case when 𝛼 =

𝛼𝑜𝑝𝑡 are near-optimal. The approach of selecting hyperparameters using a GA does not 

guarantee that the stationary points found are globally optimal.  

 

We also observe a near 2dB BER performance gain between the NN-ML channel 

estimator with transmit power-sharing and the traditional LS and MMSE channel 

estimation methods. This implies that the NN-ML channel estimator with transmit 

power-sharing enables a good channel estimation accuracy and link reliability relative 

to the traditional channel estimation algorithms whilst using a minimal number of pilot 

symbols to estimate the wireless channel. As shown in Fig. A.6, the NN-ML channel 

estimator with transmit power-sharing has the same BER performance, at 𝑁 = 2, with 

the traditional LS and MMSE channel estimation methods at 𝑁 = 10. This means that 

we need 8 extra pilot symbols for the LS and MMSE channel estimation methods to 

deliver a similar BER performance as the NN-ML channel estimator with transmit 

power-sharing. That is a waste of expensive wireless channel bandwidth, which should 

be used to transmit information symbols. 

 

The other observation is that the NN-ML channel estimator without transmit power-

sharing, at higher N values, as observed in Fig. A.6, has a BER performance that 

approaches that of the traditional LS and MMSE methods. This is advantageous because 

totally blind channel estimation can be achieved by this NN-ML method as it only needs 

the observed/received pilot symbols matrix to perform channel estimation. This means 

that it does not need to know the wireless channel second-order statistics, nor does it 

need to know the noise variance. Neither does it need to know the transmitted pilot 

symbol matrix, unlike the traditional channel estimation methods that require this prior 

knowledge. 
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Fig. A. 6 Shows the BER performance of the 𝟐 × 𝟒 MIMO NN-ML channel 

estimation vs traditional channel estimation methods at different number of pilot 

symbols for 16-QAM modulation. 

In Fig. A.7, we see that the same performance gains achieved in Fig. A.6 for 16-QAM 

modulation apply to 16-PSK modulation. This implies that 16-QAM or 16-PSK USTLD 

modulation in conjunction with NN-ML channel estimator with transmit power-sharing 

can achieve a comparable BER performance to the traditional channel estimation 

methods but at 20% of the bandwidth required by the traditional channel estimators LS 

and MMSE. 
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Fig. A. 7 Shows the BER performance of the 𝟐 × 𝟒 MIMO NN-ML channel 

estimation vs traditional channel estimation methods at different number of pilot 

symbols for 16-PSK modulation. 

5 Conclusion 

The power-sharing method improves the NN-ML channel estimation MSE accuracy 

relative to the NN-ML method without transmit power-sharing. The MSE performance 

of the NN-ML channel estimator algorithm with transmit power-sharing is very good 

throughout the SNR range relative to the traditional LS and MMSE channel estimation 

methods. The NN-ML channel estimator with transmit power-sharing MSE 

performance, at MSE= 6 × 10−2, has an approximately 12dB gain over the traditional 

LS and MMSE channel estimation methods. The NN-ML algorithm does not require 

knowledge of the channel autocorrelation statistics and the noise variance to estimate 

the wireless channel. This implies that the NN-ML algorithm with power-sharing can be 

used for wireless channel estimation where the transmitted pilot symbols, channel 
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second-order statistics and receiver noise variance are unknown. Another inference from 

the results is that, since the optimal number of pilot symbols is only 2, it means we can 

achieve high channel estimation MSE/BER accuracy whilst saving expensive channel 

bandwidth since the traditional channel estimation algorithms will need a higher number 

of pilot symbols to achieve similar MSE/BER performance. From the simulation results, 

the proposed NN-ML channel estimator with transmit power-sharing requires only 20% 

of the bandwidth utilized by LS and MMSE to achieve the same BER performance for 

16-QAM and 16-PSK USTLD modulation. 
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Abstract 

In this paper, we develop low complexity Golden code sphere-decoding (SD) algorithms for 

high-density M-ary quadrature amplitude modulation (M-QAM). We define the high-density 

M-QAM as having modulation orders (𝑀) of at least 64, i.e. 𝑀 ≥ 64. High-density M-QAM 

symbols deliver high data rates under good wireless channels. Future wireless systems must 

deliver high data rates and simultaneously low end-to-end latency. However, higher M-QAM 

modulation orders increase the Golden code SD search breadth, thus increasing decoding 

latency. We, therefore, propose two forms of low complexity Golden code SD to achieve low 

decoding latency while maintaining the near-optimal SD bit-error rate (BER). The proposed low 

complexity SD algorithms are based on the SD with sorted detection subsets (SD-SDS). The 

literature shows the SD-SDS to achieve lower detection complexity relative to the Schnorr-

Euchner SD (SE-SD). The first form of the proposed Golden code SD is the SD-SDS-Descend 

algorithm with instantaneously varying subset lengths and a search tree search order sorted 

based on the worst-first search strategy. The second form of the proposed Golden code SD is an 

SD-SDS algorithm called SD-SDS-ES-DNN with a deep learning-based early stopping search 

criterion. Our proposed algorithms achieve at most 57% and 70% reduction in Golden code 

decoding latency relative to SD-SDS, at low SNR, for 64-QAM and 256-QAM, respectively. 

At high SNR, the proposed algorithms achieve 40% and 37% in Golden code decoding latency 

reduction relative to the SD-SDS for 64-QAM and 256-QAM, respectively. The decoding 

latency reduction is achieved while maintaining near-optimal BER performances. 
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1 Introduction 

With the high demand for communication services that require high data throughputs and low 

end-to-end latency, coupled with the sharp increase of mobile devices depending on wireless 

communications, the wireless communication literature proposes various multiple-input 

multiple-output (MIMO) architectures to cater to these demands. Wireless MIMO technology 

offers high data throughputs and link reliability through spatial multiplexing and spatial 

diversity, respectively [1]. The spatial diversity offers the benefit of creating high-reliability 

wireless links. However, the wireless link reliability is enhanced using space-time block coding 

(STBC) signal processing at the transmitter, which adds time diversity to MIMO spatial 

diversity. These STBC schemes create full-diversity wireless links by transmitting replicas of 

the data symbols over two or more timeslots. One such scheme is the non-orthogonal STBC 

Golden code [2].  

 

Golden code is a full-rate full-diversity STBC scheme relevant to meet the demands for high 

data throughput and link reliability. Golden code offers not only an added time diversity over 

the space diversity of MIMO, but it also adds spatial multiplexing gain over and above the 

spatial multiplexing inherent in wireless MIMO. Golden code further improves the data 

throughputs offered by wireless MIMO over and above enhancing the link reliability. It, 

however, has the drawback, which other non-orthogonal STBC schemes have, of having 

nonlinear maximum likelihood (ML) detection at the receiver side [3]. In the case of the Golden 

code, the optimal ML detector has a detection complexity of 𝑂(𝑀4) [4]. This nonlinear 

detection complexity of order 𝑂(𝑀4), where 𝑀 is the M-QAM modulation order, has the 

negative effect of high decoding latency, increasing end-to-end latency. Golden code has low 

adoption in modern wireless standards relative to the orthogonal STBC scheme called Alamouti 

[5]. Another non-orthogonal STBC scheme is the half-rate full-diversity uncoded space-time 

labeling diversity (USTLD) with nonlinear optimal ML detection [6]. 

 

The orthogonal STBC schemes exploit their orthogonality property to deliver optimal linear 

ML, 𝑂(𝑀), detection complexity at the receiver side in block fading channels [3]. For example, 

the Alamouti is a half-rate full-diversity orthogonal STBC scheme, yet it is implemented in the 

various WiFi [7] and LTE [8] wireless standards. Golden code is incorporated in the now-
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defunct WiMAX standard [9]. Despite the Golden code having spatial multiplexing gain over 

the Alamouti scheme, its popularity in wireless standards is low, possibly due to the higher 

detection complexity than the Alamouti linear ML detector. 

 

The literature proposes various novel lower detection complexity algorithms to lower the 

Golden code detection complexity, hence decoding latency. In [4], the authors propose a fast 

ML detection of Golden code using a sphere-decoder (SD) with a search tree with reduced 

dimensions. In [10], the authors manage to reduce the Golden code detection complexity to 

𝑂(𝑀1.5) at the expense of losing 1 dB signal-to-noise ratio (SNR) relative to the optimal ML 

detector. The authors introduced fast ML detection in [11], and their detection scheme achieves 

a detection complexity order of 𝑂(𝑀2) with near-optimal bit-error-rate (BER) performance. In 

[12], the authors propose the low complexity Schnorr-Euchner SD (SE-SD) as an SD variant 

for the Golden code detection. The SE-SD algorithm does not require the re-adjusting or 

increasing of the search radius compared to the traditional SD [13], which increases its search 

radius when there are no lattice points found inside the hypersphere. From the literature, it is 

known that SD detection complexity depends on the search tree's search breadth and depth [14]. 

The authors in [15] reduce the search breadth of the Golden code SD by creating detection 

subsets (SD-DS) of the full M-QAM signal cardinality. The SD-DS detection strategy is shown 

to achieve lower detection complexity relative to the SE-SD algorithm while exhibiting near-

optimal BER performances. The SD with sorted detection subsets (SD-SDS) is ventilated in 

[16], where the M-QAM signal constellation candidate symbols are sorted in ascending order 

based on which symbols are closest to the estimated symbols detected by the sub-optimal QR 

decoder. The furthest symbols from the estimated M-QAM symbols are the least likely 

transmitted symbols. Hence the SD-SDS algorithm creates the detection subsets by rejecting the 

candidate symbols furthest away from the estimated M-QAM symbols. This strategy reduces 

the signal cardinality, hence SD search breadth of SD-SDS, and achieves a detection complexity 

that is 1 order lower than the SD-DS algorithm in [15]. 

 

Recently, deep learning has been applied to lower the detection complexity of the SD algorithm 

for large MIMO architectures. A deep learning algorithm is introduced in [17] that predicts the 

number of lattice points inside the SD hypersphere. The prediction is based on the SD initial 
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radius, which is reduced until the number of predicted lattice points inside the hypersphere is 

small. With this sufficiently small initial radius, the SD algorithm is initiated, and hence lower 

detection complexity is achieved since the SD complexity also depends on the value of the initial 

radius. In [18], the authors propose a deep learning-based initial radius predictor algorithm that 

uses the instantaneous wireless channel conditions and noise statistics to predict the initial radius 

for SD in large MIMO. The traditional SD algorithm calculates the initial radius based on 

average channel conditions. The calculation of the initial radius based on the average channel 

conditions has a disadvantage. When the instantaneous channel is good, the SD will have many 

lattice points inside the hypersphere due to the fixed initial radius, which depends on average 

channel conditions. The authors in [19] propose a low complexity deep learning-based SD for 

large MIMO. This deep learning-based SD algorithm provides low complexity offline training 

and online decoding compared to the deep learning-based SD algorithms in the literature. In 

[20], the authors propose a deep learning-based SD minimum path metric predictor for the sub-

trees. These minimum path metrics are used for early search termination for candidates on the 

SD search tree. The algorithm is developed for a large MIMO architecture and achieves 

considerable low detection complexity while achieving near-optimal BER performances. 

1.1 Motivation 

The low complexity SD-SDS in [16] is shown to achieve lower detection complexity relative to 

the SD-DS in [15] and the SE-SD variant described in [12]. However, the SD-SDS detection 

subset lengths are set based on the average SNR values, as shown in [16, Table 2]. Therefore, 

the SD-SDS fixed-length detection subsets leave room for further reduction in subset lengths 

based on the instantaneous channel and noise statistics. Good instantaneous channel and noise 

statistics may prompt even shorter subset lengths relative to the fixed lengths, as we do not need 

to search through as many symbol candidates under such conditions. Therefore, we are 

motivated to propose instantaneously varying subset lengths that vary based on the 

instantaneous channel quality. The subset lengths can be shortened relative to the average SNR-

based subset lengths determined in [16, Table 2] at high instantaneous SNR. Shorter subset 

lengths shorten the SD-SDS search breadth and thus reduce decoding latency. The SD-SDS 

algorithm also exhibits another opportunity for reduction in detection complexity by ordering 

the search order of the SD-SDS search tree. The SD-SDS in [16] currently has a search order 

that is not ordered based on any instantaneous channel quality. As shown in the paper, a fixed 
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search order has a disadvantage at low SNR since the SD-SDS algorithm has a detection 

complexity dominated by the detection complexity at search layer 1 of the search tree. It thus 

motivates us to propose a worst-first search strategy that ensures that the candidate symbol 

subset with the most petite subset length is always used at search layer 1. This lowers the 

decoding latency at low SNR, as shown in the paper. 

 

The SE-SD variant described in [12] orders the search tree search order or wireless channel 

matrix columns in ascending order, based on the instantaneous wireless fading power. In the 

search order, the M-QAM symbol that experiences the highest instantaneous wireless fading 

power is detected first in the SD search tree. However, the metric used to sort the search tree 

search order is based on the instantaneous wireless fading power and is not an accurate metric 

for determining instantaneous channel quality. The instantaneous noise statistics are not factored 

in by [12]. The approach in [12] is valid for high SNR as the wireless fading power dominates 

the performance at high SNR since the average noise power is very low. However, noise 

statistics dominate the system performance at low SNR as the average noise power is very large. 

Therefore, we are motivated to propose a metric that factors in the instantaneous noise power 

and wireless fading power to sort the SD-SDS search tree search order.  

 

Deep learning-based low complexity SD algorithms are proposed in [17-20]. However, these 

deep learning algorithms are specifically designed to lower the detection complexity of large 

MIMO SD systems where 𝑁𝑡 = 𝑁𝑟 ≥ 8. The number of transmit and receive antennas in a 

MIMO configuration are defined as 𝑁𝑡 and 𝑁𝑟, respectively. The deep learning-based SD 

algorithms also reduce complexity in the traditional SD which is a high complexity decoding 

algorithm. The proposed deep neural networks (DNN) in [19-20] are very complex for small 

MIMO environments, such as 𝑁𝑡 = 2. Further, in [20], the authors rely on the large MIMO 

property of channel hardening to design the DNN architecture that predicts the minimum path 

metrics for the sub-trees. These predicted minimum path metrics are used to initiate early 

termination of the SD search. However, this solution will not apply to small MIMO channels as 

the assumption of channel hardening does not hold. The other drawback of [20] is the DNN 

architecture complexity. The hidden layer is set to have 2𝑁𝑡 + 2𝑀 neurons, and the output layer 

has 𝑀 neurons. It is easy to see that for the high-density M-QAM, 𝑀 ≥ 64 contexts, the DNN 



 

71 
 

complexity will increase the decoding latency for the small MIMO low complexity SD-SDS-

based decoders. Therefore, we are motivated to propose an SD-SDS search tree early stopping 

deep learning-based algorithm with a low inference time DNN architecture that is invariant to 

the M-QAM modulation order. This DNN algorithm prematurely terminates the SD-SDS search 

under learned channel conditions. This has the advantage of lowering the decoding latency of 

the Golden code SD-SDS search tree. 

1.2 Contributions 

This paper proposes two forms of low complexity Golden code SD-based algorithms. We 

present analytical algorithms that further reduce the decoding latency of the low complexity SD-

SDS. We propose a deep learning-based early stopping algorithm that prematurely terminates 

the SD-SDS search under specific instantaneous channel conditions. Based on the literature 

survey, none of the research has attempted to reduce the decoding latency of the low complexity 

Golden code SD-SDS algorithm in a small MIMO environment i.e 𝑁𝑡 = 2 and 𝑁𝑟 ∈ [𝑁𝑡: 8). 

The reduction in decoding latency is necessary for high-density M-QAM modulation as future 

wireless standards will require the use of high-density M-QAM for faster data rates but at the 

same time with a low end-to-end latency constraint. High-density M-QAM increases the search 

breadth of the Golden code SD-SDS search tree, increasing decoding latency and negatively 

affecting the end-to-end latency. Our main contributions of the paper are listed as follows: 

• We propose a simple metric that more accurately describes the channel quality compared to 

the instantaneous wireless fading power described in [12]. Not only does our proposed 

metric consider the wireless fading power gain, but it also indirectly considers the 

instantaneous noise power.  

• We propose a heuristic approach to instantaneously set the sorted candidate symbol subset 

lengths based on the proposed simple metric used to measure the instantaneous channel 

quality. The sorted candidate symbol subset lengths are not necessarily identical for each of 

the estimated M-QAM symbols, 𝑥̂𝑞 ∀𝑞 ∈ [1: 4], as they experience different wireless fading 

power and noise power. The instantaneously varying subset lengths are shorter than the 

average SNR-based fixed subset lengths at high instantaneous SNR. This lowers the 

decoding latency of the SD-SDS search tree.  

• We exploit to our advantage the instantaneously varying wireless channel quality for each 

estimated M-QAM symbol to sort the search tree search order either in ascending or 
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descending order based on the proposed channel quality metric. In literature, the search tree 

search order sorting has mainly been in ascending order or best-first strategy [12]. We show 

in this paper that the worst-first strategy is beneficial in the low SNR regions and further 

reduces decoding latency relative to the best-first strategy. 

• We finally propose a novel early stopping deep learning-based SD-SDS algorithm that takes 

advantage of the sorted candidate symbols in the subsets. The candidate symbols are sorted 

from the most likely transmitted symbol to the least likely transmitted symbol for each search 

layer in the search tree. We thus take advantage of this and the depth-first search strategy to 

prematurely terminate the search on the first lattice point found inside the hypersphere. This 

termination only happens when the instantaneous channel conditions are good. The DNN 

developed in this paper detects when these channel conditions are good enough to perform 

early stopping. In literature, an early termination DNN algorithm is developed, for large 

MIMO [20], using the property of channel hardening. This property does not apply in our 

context of small MIMO. Over and above that, the DNN architecture in [20] is too complex 

for our small MIMO low complexity SD-SDS high-density M-QAM environment. 

The remainder of this paper is organized as follows: in Section 2, the system model of the paper 

is presented. In Section 3, we present the theoretical overview of the SD-SDS algorithm. In 

Section 4, we present the proposed low complexity analytical SD based algorithm. Section 5 

presents the low complexity Deep Learning-based SD algorithm. Section 6 presents the 

Simulations results and discussion. Section 7 concludes the paper. 

 

Notation: Bold lowercase letters are used for vectors and bold uppercase for 

matrices. (. )𝑇 (. )𝐻,|. |, ‖. ‖ and ‖. ‖𝐹 represent the Transpose, Hermitian, Absolute Value, 

Euclidean norm and Frobenius norm operations, respectively. The functions ℜ(. ) and ℑ(. ) are 

the real and imaginary components of a complex number, respectively. j is a complex number. 

The statistical average is represented by the expectation function Ε(. ). The function (∙)∗is the 

complex conjugate of a complex number. The function 𝑣𝑒𝑐(∙) is a matrix vectorization function 

that stacks the column vectors of a matrix on top of each other to form a single column vector. 

 

Acronyms: The salient algorithm acronyms used in this paper are stated as follows together with 

their definitions: 
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SD-SDS: Is a Golden code SD algorithm with fixed candidate symbol subset lengths and fixed 

search tree search order. 

SD-SDS-Descend: Is a Golden code SD algorithm with instantaneously varying subset lengths 

and a search tree search order sorted based on the worst-first search strategy. 

SD-SDS-Ascend: Is a Golden code SD algorithm with instantaneously varying subset lengths 

and a search tree search order sorted based on the best-first search strategy. 

SD-SDS-ES-DNN: Is a Golden code SD-SDS algorithm with a deep learning-based early 

stopping search criterion. 

 

2 System Model 

In this paper we consider an 𝑁𝑡 × 𝑁𝑟 wireless MIMO channel with the transmit and receive 

antenna constraints which are governed by 𝑁𝑡 = 2 and 𝑁𝑟 ∈ [𝑁𝑡: 8). The Golden code wireless 

channel matrix for timeslot 𝑖 is defined as 𝑯𝑖 ∈ ℂ𝑁𝑟×𝑁𝑡 , ∀𝑖 ∈ [1: 2]. The wireless channel is fast 

frequency-flat fading which implies that the wireless channel matrix entries change for each 

transmission timeslot. The wireless channel matrix entries are drawn from an independent and 

identically distributed (i.i.d) zero-mean complex Gaussian distribution ∁𝑁(0,1). This implies 

that each entry's wireless channel fading gain is drawn from a Rayleigh distribution. The 

wireless channel matrix is assumed to be known at the receiver side. 

 

Each Golden code super symbol is formed from a pair of M-QAM symbols that carry the 

log2 𝑀 information data bits. The way the transmission works is that the random data bit 

streams, at the physical layer, are packaged into 4 independent M-QAM complex symbols that 

each carry log2 𝑀 data bits. Then 2 of the 4 complex M-QAM symbols are selected to form the 

first Golden code super symbol, and the remaining 2 M-QAM symbols are used to form the 

second Golden code super symbol. In transmission timeslot 1, the first Golden code super 

symbol, 𝑥11, is sent from transmit antenna 1, and the second Golden code super symbol, 𝑥12, is 

sent from transmit antenna 2. In transmission timeslot 2, the M-QAM symbol pairs used to 

construct the Golden code super symbol 1 are used to construct the third Golden code super 

symbol, 𝑥21, transmitted from transmit antenna 1. In the same transmission timeslot 2, a fourth 

Golden code super symbol is created from the same M-QAM symbol pairs used to construct the 
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second Golden code super symbol. The fourth Golden code super symbol, 𝑥22, is transmitted in 

timeslot 2 from transmit antenna 2. The Golden code super symbols are constructed from the 

complex M-QAM symbol pairs as follows: 𝑥11 =
𝛼

√5
(𝑥1 + 𝑥2𝜃), 𝑥12 =

𝛼

√5
(𝑥3 + 𝑥4𝜃),  𝑥21 =

𝛼̅

√5
(𝑥1 + 𝑥2𝜃̅), and 𝑥22 = 𝑗

𝛼̅

√5
(𝑥3 + 𝑥4𝜃̅). The scalar parameters 𝛼, 𝛼̅, 𝜃 and 𝜃̅ are defined as 

follows:𝛼 ≜ 1 + 𝑗 𝜃̅, 𝛼̅ ≜ 1 + 𝑗 𝜃, 𝜃 =
1+√5

2
 and 𝜃̅ =

1−√5

2
. The complex M-QAM symbols are 

𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ Ω𝑀, where Ω𝑀 is an arbitrary square M-QAM signal constellation. At the 

receiver side, the distorted Golden code super symbols are perturbed using the following system 

equation in (B.1) for timeslot 𝑖, ∀𝑖 ∈ [1: 2]: 

 

𝒚𝑖 = 𝑯𝑖𝒙𝑖 + 𝒏𝑖                                                                                                                                    (B. 1) 

 

where 𝒙𝑖 = [𝑥𝑖1 𝑥𝑖2]𝑇 is the Golden code super symbol transmission vector for timeslot 𝑖, 𝒚𝑖 ∈

ℂ𝑁𝑟×1 is the received perturbed Golden code super symbol signal vector for timeslot 𝑖 and 𝒏𝑖 ∈

ℂ𝑁𝑟×1 is the noise vector for timeslot 𝑖. The Golden code super symbol power is constrained to 

unity, i.e. Ε(|𝑥𝑖1|2) = Ε(|𝑥𝑖2|2) = 1. The noise vectors 𝒏𝑖 noise entries are drawn from an i.i.d 

zero-mean complex Gaussian distribution ∁𝑁(0, 𝜎2) where 𝜎2 =
𝑁𝑡

𝛾̅
. The average received SNR 

per receive antenna is 𝛾̅. The average noise power 𝜎2 is assumed to be known at the receiver 

side.  

 

In our paper, we rely on the alternative representation of the system model in (B.1). As per [12] 

and [16], the transmission vector is based on the complex M-QAM symbols instead of the 

Golden code super symbols. This is achieved by rearranging the system model in (B.1) using 

the following rules in (B.2) 

 

𝒚 = 𝑯̃𝒖 + 𝒏                                                                                                                                          (B. 2) 

 

where 𝑯̃ = [𝑯̃1 𝑯̃2]
𝑇

∈ ℂ2𝑁𝑟×2𝑁𝑡 , 𝒚 = [𝒚1 𝒚2]𝑇 ∈ ℂ2𝑁𝑟×1,   𝒏 = [𝒏1 𝒏2]𝑇 ∈ ℂ2𝑁𝑟×1, 
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𝒖 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 ,   𝑯̃1 =
1

√5
𝑯1 (

𝛼 𝛼𝜃    0 0
0 0     𝛼 𝛼𝜃

) and 𝑯̃2 =
1

√5
𝑯2 (

𝛼̅ 𝛼̅𝜃̅    0 0

0 0     𝑗𝛼̅ 𝑗𝛼̅𝜃̅
). 

The wireless channel matrix 𝑯̃𝑖 ∈ ℂ𝑁𝑟×2𝑁𝑡 is the modified wireless channel matrix, for timeslot 

𝑖, that includes the Golden code super symbol constants 𝛼, 𝜃, 𝛼̅ and 𝜃̅. The rest of the paper will 

use the system model in (B.2) for the Golden code sphere-decoding based detection algorithms. 

3 Golden code SD-SDS Overview 

The authors in [16] introduced the SD-SDS algorithm, a modified version of the SE-SD 

algorithm described in [12]. The SD-SDS algorithm is slightly different from the SE-SD 

algorithm because it does not perform the SD search over the full signal cardinality of the M-

QAM constellations. In [12], the SE-SD algorithm performs the SD search over the full sorted 

M-QAM symbol candidates. The candidate symbols in SE-SD, just like in SD-SDS, are sorted 

in ascending order from the closest complex M-QAM symbol to the furthest. In SD-SDS, the 

furthest sorted candidate symbols are discarded as they are least likely to have been the 

transmitted symbols. The other difference is that the search tree search order of the SD-SDS 

algorithm is not sorted using the best-first search strategy as described in [12]. The SD-SDS 

algorithm search order execution is fixed and not sorted based on channel conditions. The SD-

SDS algorithm is shown in Algorithm B.1. 

 

Algorithm B.1: SD-SDS [16] 

Input: 𝒚, 𝑯̃, 𝛾̅, 𝑁𝑡 

Output: 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 

 

1. global 𝑟𝑒𝑠𝑢𝑙𝑡 ← [ ], 𝑟2 

2. global 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑝𝑜𝑖𝑛𝑡_𝑓𝑜𝑢𝑛𝑑_𝑓𝑙𝑎𝑔 

3. 𝒛, 𝑹̃, 𝑥̂[ ] ← 𝑞𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒚, 𝑯̃) 

4. 𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[ ] ← 𝑔𝑒𝑡𝑆𝑜𝑟𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠(𝑥̂[ ], 𝛾̅) 

5. 𝜎2 ←
𝑁𝑡

𝛾̅
, 𝐾 ← 10, 𝑁 ← 2𝑁𝑡 

6. 𝑟2 ←  2𝜎2𝐾𝑁 − 𝒛𝐻 (𝑰 − 𝑹̃(𝑹̃𝐻𝑹̃)
−1

𝑹̃𝐻) 𝒛 [13, 𝐸𝑞(28)] 

7. 𝑰 is a 2𝑁𝑡 × 2𝑁𝑡 identity matrix. 

8. 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑝𝑜𝑖𝑛𝑡_𝑓𝑜𝑢𝑛𝑑_𝑓𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒, 
9. 𝑙𝑎𝑦𝑒𝑟 ← 2𝑁𝑡 , 𝑑𝑖𝑠𝑡 ← 0 

10. 𝑠𝑝ℎ𝑒𝑟𝑒_𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (
𝒛, 𝑹̃, 𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[ ],

𝑑𝑖𝑠𝑡,
𝑙𝑎𝑦𝑒𝑟

) 

11. if 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑝𝑜𝑖𝑛𝑡_𝑓𝑜𝑢𝑛𝑑_𝑓𝑙𝑎𝑔! = 𝐹𝑎𝑙𝑠𝑒 then 

12.     𝑖̂4 ← 𝑟𝑒𝑠𝑢𝑙𝑡[4], 𝑖̂3 ← 𝑟𝑒𝑠𝑢𝑙𝑡[3], 𝑖̂2 ← 𝑟𝑒𝑠𝑢𝑙𝑡[2], 𝑖1̂ ← 𝑟𝑒𝑠𝑢𝑙𝑡[1] 
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13. else 

14.     𝒛, 𝑹̃, 𝑥̂[ ] ← 𝑞𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒚, 𝑯̃) 

15.     for 𝑞 ← 1 𝐭𝐨 4 do 

16.           𝑑 ← [ ] 
17.           for 𝑖 ← 1 𝐭𝐨 𝑀 do 

18.                 𝑑[𝑖] ← |𝑥̂[𝑞] − 𝑢𝑖|2, ∀𝑢𝑖 ∈ Ω𝑀   
19.           end for 

20.           𝑖̂𝒒 ← argmin
𝒊

(𝑑[ ]) 

21.     end for 

22. end if 

23. function 𝑞𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒚, 𝑯̃) 

24.       𝑸̃, 𝑹̃ ← 𝑞𝑟(𝑯̃) 

25.       𝒛 ← 𝑸̃𝐻𝒚, 𝑥̂ ← [ ] 
26.       for 𝑞 ← 4 𝐭𝐨 1 do 

27.             𝑥̂[𝑞] ←
(𝒛[𝑞]−∑ 𝑹̃[𝑞]4

𝒍=𝑞+1 [𝑙]𝑥̂[𝑙])

𝑹̃[𝑞][𝑞]
 

28.       end for 

29. return z, 𝑹̃, 𝑥̂[ ] 
30. function 𝑔𝑒𝑡𝑆𝑜𝑟𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠(𝑥̂[ ], 𝛾̅) 

31.       𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡 ← [ ] 
32.       if 𝛾̅ ≤ 𝛾𝑇

𝑀 then 

33.           𝐿 ← 𝐿𝑙𝑜𝑤
𝑀  

34.       else 

35.           𝐿 ← 𝐿ℎ𝑖𝑔ℎ
𝑀   

36.       end if 

37.       for 𝑞 ← 1 𝐭𝐨 4 do 

38.           𝑑𝑖𝑐𝑡 ← [ ] 
39.           for 𝑖 ← 1 𝐭𝐨 𝑀 do 

40.                 𝑑𝑖𝑐𝑡[𝑖] ← |𝑥̂[𝑞] − 𝑢𝑖|
2, ∀𝑢𝑖 ∈ Ω𝑀   

41.           end for 

42.           𝑖𝑛𝑑𝑖𝑐𝑒𝑠[ ] ← 𝑠𝑜𝑟𝑡(𝑑𝑖𝑐𝑡[ ], "𝑎𝑠𝑐𝑒𝑛𝑑") 

43.           𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[𝑞] ← 𝑖𝑛𝑑𝑖𝑐𝑒𝑠[1: 𝐿]           
44.       end for 

45. return 𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[ ] 

It is evident from Algorithm B.1 that the sorted subsets are generated by sorting the candidate 

symbols, in ascending order, using the square of the Euclidean distance between the estimated 

complex M-QAM symbols from the QR decoder and the exact complex M-QAM symbols from 

the signal constellation. The sorted symbol candidates are then truncated by taking the first 𝐿 

symbol indices of the sorted candidates. Each SD-SDS search layer will have its own 𝐿-

dimensional sorted detection subset list for the candidate symbols since each of the M-QAM 

symbols in the set {𝑥1 𝑥2 𝑥3 𝑥4} are perturbed by different instantaneous fading channels 
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and noise conditions.  The order of execution of the SD-SDS search tree search order is shown 

in the following one-to-one correspondence [𝑥̂4 ⟼ 4, 𝑥̂3 ⟼ 3, 𝑥̂2 ⟼ 2, 𝑥̂1 ⟼ 1]. The 

correspondence shows the mapping of which symbols are estimated in each search layer, 

numbered 1 to 4, and which order are the layers executed in the search tree. This order does not 

change, unlike in the case of the SE-SD algorithm, in which the search order changes based on 

the instantaneous wireless channel fading power. The SD-SDS search tree searches for lattice 

points, 𝑹̃𝒖, that lie inside the hypersphere, ‖𝒛 − 𝑹̃𝒖‖
𝐹

2
≤ 𝑟2, with radius 𝑟. The vector 𝒛 =

𝑸̃𝐻𝒚 = 𝑹̃𝒖 + 𝑸̃𝐻𝒏 ∈ ℂ2𝑁𝑡×1  is the received signal vector, 𝑹̃ ∈ ℂ2𝑁𝑡×2𝑁𝑡 is a random upper 

triangular matrix related to the wireless channel matrix, 𝑯̃, via the reduced QR decomposition 

𝑯̃ = 𝑸̃𝑹̃. The matrix 𝑸̃ ∈ ℂ2𝑁𝑟×2𝑁𝑡 is a unitary matrix.  

 

If no lattice point lies inside the hypersphere, the sub-optimal QR decoder is used to output the 

estimated transmitted symbol indices directly. If a lattice point lies inside the hypersphere, then 

the closest lattice point to the received signal vector is found using the Schnorr-Euchner (SE) 

search strategy as described in [12]. This closest lattice point contains the indices of the 

estimated transmitted symbols.  

 

Fig. B. 1 SD-SDS Search Tree. 
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Looking at Fig. B.1, we see the SD-SDS search tree with each of the 4 search layers having a fixed 

length 𝐿-dimensional sorted candidate symbol subset shown as nodes 1 to 𝐿. The search for the 

closest lattice point to the received signal vector is performed using a search tree that combines 

the depth-first search strategy with the SE strategy. The depth-first search strategy ensures that the 

SD-SDS algorithm finds the closest lattice point to the received signal vector earlier in the search 

as possible. This is especially true for SE-SD and SD-SDS as the most likely transmitted candidate 

symbols are placed first in the candidate symbol subset and therefore are used first in the search 

on all search layers. This limits the number of lattice points found inside the hypersphere, lowering 

the detection complexity. The limitation occurs because after finding the first lattice point 

candidate inside the hypersphere, the SD-SDS adjusts the radius of the hypersphere to a smaller 

radius based on the distance between the lattice point and the received signal vector. It means only 

lattice points closer to the received signal vector will be considered going forward. Since the best 

candidate symbols are placed first at each search layer, it implies that at high instantaneous SNR, 

we can expect that the first lattice point found inside the hypersphere is the closest lattice point to 

the received signal vector.  However, despite finding the closest lattice point, the SD-SDS 

algorithm continues searching all the unvisited nodes of the search tree, using the SE strategy and 

testing if they possibly lie inside the hypersphere. Therefore, this is an opportunity to lower the 

decoding latency by prematurely terminating the SD-SDS search the moment the first lattice point 

is found inside the hypersphere, under good instantaneous channel conditions.  

 

The best-case scenario for the search tree is that the average SNR will be as high as possible, i.e. 

𝜎2 ⇢ 0, such that there is a very high occurrence of high instantaneous SNR channel conditions. 

This leads to a smaller Hypersphere radius since 𝑟2 ∝ 𝜎2 [13]. The sorted candidate subsets, for 

each search layer, and the depth-first search strategy can be relied upon to find the closest lattice 

point to the received signal vector as the first lattice point inside the Hypersphere. The first lattice 

point exists on the far left of the search tree in Fig. B.1. This is because at high instantaneous SNR, 

the transmitted symbols experience minimal perturbation, and thus, any candidate symbol closest 

to the estimated M-QAM symbol is most likely the transmitted symbol. This makes the sorted 

candidate symbol subset a reliable subset containing the most likely transmitted symbols as the 

first symbols in the subset. 
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The worst-case scenario exists when the average SNR is low, i.e 𝜎2 → ∞, and the search radius 

becomes very large. A low average SNR also implies a high occurrence of low instantaneous SNR 

channel conditions. This makes the sorted candidate symbol subset unreliable as it no longer holds 

that the first symbols in the sorted candidate symbol subset are the most likely transmitted 

symbols. It then becomes possible that the closest lattice point to the received signal vector exists 

at the far right of the search tree in Fig. B.1, i.e last lattice point. Under the worst-case scenario, it 

is obvious to see that the search tree detection complexity is dominated by the detection 

complexity at search layer 1. For the search tree to find the lattice point at the far right of the 

search tree, it will have to compute the Euclidean distance calculations in layer 1 𝐿4 times. For 

layer 2 up to layer 4, the search tree computes the Euclidean distance calculations 𝐿3, 𝐿2, and 𝐿 

times, respectively. The worst-case scenario makes the search tree equivalent to the ML detector, 

with detection subset length of 𝐿, as the order of execution of the search tree approaches 𝑂(𝐿2𝑁𝑡). 

 

The next Section 4 presents the proposed low complexity analytical modified SD-SDS algorithm. 

The proposed algorithm exploits the inherent weaknesses of the SE-SD and the SD-SDS 

algorithms to offer a detection algorithm with lower Golden code decoding latency compared to 

SD-SDS and SE-SD. 

4 Proposed Low Complexity Analytical Sphere-Decoder 

In this Section we propose a low detection complexity analytical modified Golden code SD-

SDS based algorithm. This algorithm is presented in Algorithm B.2. We will explain the new 

concepts as we go along as we explain the workings of Algorithm B.2. Before we discuss the 

workings of Algorithm B.2, we will illuminate the salient differences between Algorithm B.1 

and B.2.  

• Since the search tree search order for Algorithm B.2 is dynamic, unlike in Algorithm B.1 

where it is fixed, we need the candidate symbol subsets to follow the search tree search order 

of the M-QAM symbols. The function 𝑠𝑜𝑟𝑡𝑆𝑢𝑏𝑠𝑒𝑡𝑂𝑟𝑑𝑒𝑟(∙) in Algorithm B.2 makes sure that 

the candidate symbol subsets follow the M-QAM symbol search order. The 𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑟𝑑𝑒𝑟[ ] 

array in Algorithm B.2 is used to track the search tree search order of the M-QAM symbols. 

• Algorithm B.2 sorts the wireless channel based on the dynamic search tree search order. 

Algorithm B.1 does not sort the wireless channel since its search tree search order is fixed. The 
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function 𝑠𝑜𝑟𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙(∙) in Algorithm B.2 is responsible for sorting the wireless channel based 

on the search tree search order. 

• Algorithm B.2 uses the function 𝑢𝑛𝑆𝑜𝑟𝑡𝑂𝑢𝑡𝑝𝑢𝑡(∙) to restore the M-QAM symbol order to 

prior sorting so that the decoded output order of M-QAM symbols is predictable. Algorithm 

B.1 has a fixed order of M-QAM symbols output from the sphere decoder; hence it does not 

need this function. 

Algorithm B.2 is presented below: 

 

Algorithm B.2: SD-SDS-Descend 

Input: 𝒚, 𝑯̃, 𝛾̅, 𝑁𝑡 

Output: 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 

 

1. global 𝑟𝑒𝑠𝑢𝑙𝑡 ← [ ], 𝑟2 

2. global 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑝𝑜𝑖𝑛𝑡_𝑓𝑜𝑢𝑛𝑑_𝑓𝑙𝑎𝑔 

3. 𝑥̂[ ] ← 𝑞𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒚, 𝑯̃) 

4. 𝜎2 ←
𝑁𝑡

𝛾̅
 

5. 𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[ ], 𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑟𝑑𝑒𝑟[ ] ← 𝑔𝑒𝑡𝑆𝑜𝑟𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠(𝑥̂[ ], 𝛾̅, 𝜎2) 

6. 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠[ ] ← 𝑠𝑜𝑟𝑡𝑆𝑢𝑏𝑠𝑒𝑡𝑂𝑟𝑑𝑒𝑟 (
𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[ ],

𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑟𝑑𝑒𝑟[ ]
) 

7. 𝒛′, 𝑹̃′ ← 𝑠𝑜𝑟𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙(𝒚, 𝑯̃, 𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑟𝑑𝑒𝑟[ ]) 

8. 𝐾 ← 10, 𝑁 ← 2𝑁𝑡 

9. 𝑟2 ←  2𝜎2𝐾𝑁 − 𝒛′𝐻
(𝑰 − 𝑹̃′ (𝑹̃′𝐻

𝑹̃′)
−1

𝑹̃′𝐻
) 𝒛′ [13, 𝐸𝑞(28)] 

10. 𝑰 is a 2𝑁𝑡 × 2𝑁𝑡 identity matrix 

11. 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑝𝑜𝑖𝑛𝑡_𝑓𝑜𝑢𝑛𝑑_𝑓𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒, 
12. 𝑙𝑎𝑦𝑒𝑟 ← 2𝑁𝑡 , 𝑑𝑖𝑠𝑡 ← 0 

13. 𝑠𝑝ℎ𝑒𝑟𝑒_𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (
𝒛′, 𝑹̃′, 𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠[ ],

𝑑𝑖𝑠𝑡,
𝑙𝑎𝑦𝑒𝑟

) 

14. if 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑝𝑜𝑖𝑛𝑡_𝑓𝑜𝑢𝑛𝑑_𝑓𝑙𝑎𝑔! = 𝐹𝑎𝑙𝑠𝑒 then 

15.     𝑜𝑢𝑡𝑝𝑢𝑡 ←     𝑢𝑛𝑆𝑜𝑟𝑡𝑂𝑢𝑡𝑝𝑢𝑡(𝑟𝑒𝑠𝑢𝑙𝑡[ ], 𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑟𝑑𝑒𝑟[ ]) 

16.     𝑖̂4 ← 𝑜𝑢𝑡𝑝𝑢𝑡[4], 𝑖̂3 ← 𝑜𝑢𝑡𝑝𝑢𝑡[3], 𝑖̂2 ← 𝑜𝑢𝑡𝑝𝑢𝑡[2], 𝑖1̂ ← 𝑜𝑢𝑡𝑝𝑢𝑡[1] 
17. else 

18.     𝑥̂[ ] ← 𝑞𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒚, 𝑯̃) 

19.     for 𝑞 ← 1 𝐭𝐨 4 do 

20.           𝑑 ← [ ] 
21.           for 𝑖 ← 1 𝐭𝐨 𝑀 do 

22.                 𝑑[𝑖] ← |𝑥̂[𝑞] − 𝑢𝑖|2, ∀𝑢𝑖 ∈ Ω𝑀   
23.           end for 

24.           𝑖̂𝒒 ← argmin
𝒊

(𝑑[ ]) 
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25.     end for 

26. end if 

27. function 𝑞𝑟𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒚, 𝑯̃) 

28.       𝑸̃, 𝑹̃ ← 𝑞𝑟(𝑯̃) 

29.       𝒛 ← 𝑸̃𝐻𝒚, 𝑥̂ ← [ ] 
30.       for 𝑞 ← 4 𝐭𝐨 1 do 

31.             𝑥̂[𝑞] ←
(𝒛[𝑞]−∑ 𝑹̃[𝑞]4

𝒍=𝑞+1 [𝑙]𝑥̂[𝑙])

𝑹̃[𝑞][𝑞]
 

32.       end for 

33. return 𝑥̂[ ] 
34. function 𝑔𝑒𝑡𝑆𝑜𝑟𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡𝑠(𝑥̂[ ], 𝛾̅, 𝜎2) 

35.       𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡 ← [ ], 𝑑𝑀𝑖𝑛𝐿𝑖𝑠𝑡 ← [ ] 
36.       𝑔𝑟𝑎𝑑 ← [2.4,1.8,1.6,1.4,1.2,1.0,0.8,0.4] 
37.       𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ← [5,4,3,2,1,0, −1, −2] 
38.       𝑜𝑟𝑑𝑒𝑟 ← "𝑑𝑒𝑠𝑐𝑒𝑛𝑑" 

39.       for 𝑞 ← 1 𝐭𝐨 4 do 

40.           𝑑𝑖𝑐𝑡 ← [ ] 
41.           for 𝑖 ← 1 𝐭𝐨 𝑀 do 

42.                 𝑑𝑖𝑐𝑡[𝑖] ← |𝑥̂[𝑞] − 𝑢𝑖|
2, ∀𝑢𝑖 ∈ Ω𝑀   

43.           end for 

44.           𝑖𝑛𝑑𝑖𝑐𝑒𝑠, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← 𝑠𝑜𝑟𝑡(𝑑𝑖𝑐𝑡[ ], "𝑎𝑠𝑐𝑒𝑛𝑑")           

45.           𝑑𝑚𝑖𝑛 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[1] 
46.           if 𝛾̅ ≤ 𝛾𝑇

𝑀 then 

47.              𝐿 ← 𝐿𝑙𝑜𝑤
𝑀  

48.           else 

49.              𝐿 ← 𝐿ℎ𝑖𝑔ℎ
𝑀   

50.           end if 

51.           𝑆 = 𝐿 

52.           for 𝑣𝑣 ← 1 𝐭𝐨 8 do 

53.                  if 𝑑𝑚𝑖𝑛 < 𝑔𝑟𝑎𝑑[𝑣𝑣]𝜎2  then  

54.                     𝑆 ← ⌊
𝐿

2
+ 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡[𝑣𝑣]⌋      

55.                  end if 

56.           end for 

57.           𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[𝑞] ← 𝑖𝑛𝑑𝑖𝑐𝑒𝑠[1: 𝑆]           
58.           𝑑𝑀𝑖𝑛𝐿𝑖𝑠𝑡[𝑞] ← 𝑑𝑚𝑖𝑛 

59.       end for 

60.       𝑞𝐿𝑖𝑠𝑡[ ] ← 𝑠𝑜𝑟𝑡(𝑑𝑀𝑖𝑛𝐿𝑖𝑠𝑡[ ], 𝑜𝑟𝑑𝑒𝑟)    

61.       𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑟𝑑𝑒𝑟[ ] ← 𝑞𝐿𝑖𝑠𝑡[ ]  
62. return 𝑠𝑢𝑏𝑠𝑒𝑡𝐿𝑖𝑠𝑡[ ], 𝑠𝑒𝑎𝑟𝑐ℎ𝑂𝑟𝑑𝑒𝑟[ ] 

Algorithm B.2 explains the workings of the worst-first search algorithm denoted by SD-SDS-

Descend. Like in Algorithm B.1, the SD-SDS-Descend algorithm determines the sub-optimal 

M-QAM estimates from the QR decoder. These M-QAM estimates are then used to sort the 

candidate M-QAM symbols, from the M-QAM constellation, in ascending order from the 
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closest candidate symbol to the estimated M-QAM symbol to the furthest. The candidate 

symbols are sorted for each M-QAM symbol estimate, 𝑥̂𝑞 ∀𝑞 ∈ [1: 4]. The metric used for 

sorting in ascending order is the Euclidean distance between the estimated or noisy M-QAM 

symbol and the exact M-QAM symbol from the M-QAM constellation, i.e 𝑑𝑖
𝑞 =

|𝑥̂𝑞 − 𝑢𝑖|
2

, ∀𝑢𝑖 ∈ Ω𝑀, ∀𝑞 ∈ [1: 4], ∀𝑖 ∈ [1: 𝑀]. Now, to set the candidate symbol subset lengths 

based on the instantaneous channel conditions experienced by each estimated M-QAM symbol, 

we first define a metric that considers the instantaneous fading power and noise power. The 

metric is the distance between the closest M-QAM complex symbol candidate to the estimated 

M-QAM complex symbol, i.e. 𝑑𝑚𝑖𝑛
𝑞 ≜ min|𝑥̂𝑞 − 𝑢𝑖|

2
, ∀𝑢𝑖 ∈ Ω𝑀, ∀𝑞 ∈ [1: 4]. This minimum 

distance metric, 𝑑𝑚𝑖𝑛
𝑞  ∀𝑞 ∈ [1: 4], is defined for each estimated M-QAM symbol. We make the 

following assumptions to show that the distance metric, 𝑑𝑚𝑖𝑛
𝑞

, is a function of the instantaneous 

wireless fading power and the noise power. We will carry out the proof assuming that the 

previously estimated M-QAM symbols from the QR decoder are estimated without error. In the 

QR decoder, we estimate the M-QAM symbols in the order, 𝑥̂𝑞 ∀𝑞 ∈ [4: 1], 𝑥̂4, 𝑥̂3, . . , 𝑥̂1. To 

estimate the complex M-QAM symbol, 𝑥̂𝑞 using the QR decoder, we use the following 

expression in (B.3) 

 

  𝑥̂𝑞 =
(𝑧𝑞−∑ 𝑅̃𝑞,𝑙

4
𝒍=𝑞+1 𝑥̂𝑙)

𝑅̃𝑞,𝑞
                                                                                                                       (B. 3)  

 

where 𝑧𝑞 is the 𝑞𝑡ℎ scalar element in the received vector 𝒛 and 𝑅̃𝑞,𝑞 is the scalar element in row 

𝑞 and column 𝑞 of the upper triangular matrix 𝑹̃. It is obvious to see from (B.3) that the 

subsequent M-QAM symbol estimates are dependent on the previously estimated M-QAM 

symbols. It then follows that if the previously estimated M-QAM symbols are estimated without 

error, then the currently estimated M-QAM symbol has its estimation errors dependent only on 

its own instantaneous wireless channel and noise perturbation, as shown in (B.4) 

 

𝑥̂𝑞 =
𝑅̃𝑞,𝑞𝑥𝑞 + 𝑛𝑞

𝑅̃𝑞,𝑞

= 𝑥𝑞 +
|𝑛𝑞|𝑒𝑗𝜃𝑞

|𝑅̃𝑞,𝑞|𝑒𝑗𝜃𝑞,𝑞
, ∀𝑞 ∈ [1: 4]                                                                    (B. 4) 
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where 𝑛𝑞 is the 𝑞𝑡ℎ complex scalar element of the noise vector 𝑸̃𝐻𝒏 and 𝑅̃𝑞,𝑞 is the scalar 

element in row 𝑞 and column 𝑞 of the upper triangular matrix 𝑹̃. The terms |𝑛𝑞|𝑒𝑗𝜃𝑞  and 

|𝑅̃𝑞,𝑞|𝑒𝑗𝜃𝑞,𝑞  are the complex exponential version of the terms 𝑛𝑞 and 𝑅̃𝑞,𝑞, respectively. The 

complex M-QAM symbol 𝑥𝑞 is the exact transmitted symbol. If we take the best-case scenario, 

which is at high instantaneous SNR, then the closest candidate symbol to the estimated M-QAM 

symbol is the transmitted symbol. If we assume that the instantaneous SNR is high for all QR 

decoder estimated M-QAM symbols, then the metric 𝑑𝑚𝑖𝑛
𝑞

 is represented mathematically in 

(B.5) 

 

 𝑑𝑚𝑖𝑛
𝑞 = |𝑥̂𝑞 − 𝑥𝑞|

2
=

|𝑛𝑞|
2

|𝑅̃𝑞,𝑞|
2 , ∀𝑞 ∈ [1: 4]                                                                                    (B. 5) 

  

From (B.5) we can see that at high instantaneous SNR, for all estimated M-QAM symbols, 

𝑑𝑚𝑖𝑛
𝑞 = 𝑓(𝑛𝑞 , 𝑅̃𝑞,𝑞). Therefore, the metric 𝑑𝑚𝑖𝑛

𝑞
 is a function of the instantaneous noise power 

and the instantaneous wireless fading power. The random upper triangular matrix entries 

represent the wireless channel fading. For the low instantaneous SNR scenario with estimation 

errors in the previously estimated M-QAM symbols, the simplification in (B.5) does not apply. 

However, the metric 𝑑𝑚𝑖𝑛
𝑞

 will still be a function of the noise and wireless channel fading. The 

noise will be compounded from the previously estimated M-QAM symbols via error 

propagation. 

 

The metric 𝑑𝑚𝑖𝑛
𝑞

 is used in Algorithm B.2 to set the instantaneously varying subset length of the 

candidate symbol subset for each estimated M-QAM symbol. The subset lengths, 𝑆𝑞, are set 

based on the heuristic method shown in (B.6) 

 

𝑆𝑞 = 𝐿; 𝑖𝑓 𝑑𝑚𝑖𝑛
𝑞 < 𝑘𝜎2 𝑡ℎ𝑒𝑛 𝑆𝑞 = ⌊

𝐿

2
+ 𝑐⌋ , ∀𝑞 ∈ [1: 4]                                                           (B. 6) 

 

where 𝐿 is the initial subset length which is set as 𝐿 = 20 when the average SNR is at most 

16dB, else it is set as 𝐿 = 30 for an average SNR above 16dB for the case of 64-QAM. The 
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initial subset length values for 64-QAM are extracted from the SD-SDS algorithm in [16, Table 

2]. For the case of 256-QAM, the initial subset length is set to 𝐿 = 80 for an average SNR, 

which is at most 21dB and 𝐿 = 120 for an average SNR above 21dB. The constants are set as 

follows: 𝑘 ∈ Δ = {2.4,1.8,1.6,1.4,1.2,1.0,0.8,0.4} and 𝑐 ∈ 𝛽 = {5,4,3,2,1,0, −1, −2}. The 

function ⌊∙⌋ returns the largest integer less than or equal to the argument. The intuition behind 

this method is that if the instantaneous SNR is sufficiently high, we set the instantaneous subset 

lengths to a very short length. If the instantaneous SNR worsens, we increase the instantaneous 

length of the subset. This is intuitive as we can expect that at high instantaneous SNR, we do 

not need to search through many candidate symbols as compared to when the instantaneous 

SNR is low. The gradual shortening of the instantaneous subset lengths as the instantaneous 

SNR increases, lowers the average decoding latency relative to the SD-SDS algorithm using 

fixed-length subsets that depend on average channel conditions. 

 

Algorithm B.2 sets the instantaneous subset lengths, for each estimated M-QAM symbol, by 

looping through the set Δ to set the constant 𝑘 and comparing the metric 𝑑𝑚𝑖𝑛
𝑞

 to each threshold 

level set as 𝑘𝜎2. If the metric 𝑑𝑚𝑖𝑛
𝑞

 is not less than any threshold level, then the subset length is 

set as 𝑆𝑞 = 𝐿 else if it falls into one of the threshold levels, then the corresponding constant 𝑐 

value from set 𝛽 is used to set 𝑆𝑞 = ⌊
𝐿

2
+ 𝑐⌋. The loop index is used to extract the value of 𝑐 

from the set 𝛽.  

 

It is obvious to see that each estimated M-QAM symbol candidate symbol subset has a 

possibility of having a different subset length, 𝑆𝑞, to the other candidate symbol subsets of the 

other estimated M-QAM symbols. Using this property of differing instantaneous subset lengths 

for each candidate symbol subset, we can easily see that it will be beneficial at low SNR to have 

the subset with the smallest length being used at Layer 1 of the search tree. The layer 1 detection 

complexity dominates the search tree complexity at low SNR. We, therefore, propose the worst-

first search strategy of sorting the search order of the search tree using the descending order of 

the metric 𝑑𝑚𝑖𝑛
𝑞

. From Algorithm B.2 we can see that 𝑑𝑚𝑖𝑛 is calculated for each value of 𝑞 ∈

[1: 4]. This means we get the following unordered set of values of the metric 𝑑𝑚𝑖𝑛
𝑞 : 𝜌 =

{𝑑𝑚𝑖𝑛
1 , 𝑑𝑚𝑖𝑛

2 , 𝑑𝑚𝑖𝑛
3 , 𝑑𝑚𝑖𝑛

4 }. We then sort the set 𝜌 in descending order to get an ordered set 𝛿 =
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𝑠𝑜𝑟𝑡(𝜌, "𝑑𝑒𝑠𝑐𝑒𝑛𝑑"). The descend string is used to signify that we are sorting the items in 

descending order. For sorting items in ascending order, we use the ascend string. Let us illustrate 

with an example. Let us assume the unordered set 𝜌 = {𝑑𝑚𝑖𝑛
1 = 0.5, 𝑑𝑚𝑖𝑛

2 = 2.5, 𝑑𝑚𝑖𝑛
3 =

0.15, 𝑑𝑚𝑖𝑛
4 = 0.9}.  

The one-to-one correspondence which shows the mapping between the metric and the estimated 

symbol is as follows [𝑥̂4 ⟼ 𝑑𝑚𝑖𝑛
4 , 𝑥̂3 ⟼ 𝑑𝑚𝑖𝑛

3 , 𝑥̂2 ⟼ 𝑑𝑚𝑖𝑛
2 , 𝑥̂1 ⟼ 𝑑𝑚𝑖𝑛

1 ]. Based on the SD-SDS 

[16] algorithm, the wireless channel matrix 𝑯̃ columns are unordered as follows together with 

the unordered M-QAM transmission vector 𝒖 entries: 

 

𝑯̃𝒖 = [𝑯̃1 𝑯̃2 𝑯̃3 𝑯̃4][𝑥1 𝑥2 𝑥3 𝑥4]𝑇                                                                                    (B. 7) 

 

where 𝑯̃𝑞 ∈ ℂ2𝑁𝑟×1 are the column vectors of the wireless channel matrix from (B.2). After 

sorting the unordered set 𝜌 in descending order, we get the following ordered set 𝛿 =

{𝑑𝑚𝑖𝑛
2 = 2.5, 𝑑𝑚𝑖𝑛

4 = 0.9, 𝑑𝑚𝑖𝑛
1 = 0.5, 𝑑𝑚𝑖𝑛

3 = 0.15}. As we can see, the estimated M-QAM 

symbol with a metric with the highest value will be searched for first in the search tree. We call 

it the worst-first search strategy because the metric 𝑑𝑚𝑖𝑛
𝑞

 in (B.5) appears as an approximate 

inverse of the instantaneous SNR. Therefore, a good instantaneous SNR will yield a smaller 

𝑑𝑚𝑖𝑛
𝑞

 value relative to a bad instantaneous SNR. Using the sorted set 𝛿 we sort the wireless 

channel matrix 𝑯̃ column vectors and the corresponding transmission vector 𝒖 entries as shown 

in (B.8) 

 

𝑯̃′𝒖′ = [𝑯̃3 𝑯̃1 𝑯̃4 𝑯̃2][𝑥3 𝑥1 𝑥4 𝑥2]𝑇                                                                                 (B. 8) 

 

From (B.8) we can see that the one-to-one correspondence mapping that maps the estimated M-

QAM symbols and the search layers becomes [𝑥̂2 ⟼ 4, 𝑥̂4 ⟼ 3, 𝑥̂1 ⟼ 2, 𝑥̂3 ⟼ 1]. Search 

layer 1 estimates the M-QAM symbol 𝑥̂3 and this is because 𝑥̂3 is mapped to a metric 𝑑𝑚𝑖𝑛
3  with 

the smallest value. Based on the heuristic method in (B.6), there is a high probability that the 

subset length, 𝑆3, of the candidate symbol subset for 𝑥̂3 is the smallest amongst the other 

estimated M-QAM candidate symbol subset lengths. For this example, the subset lengths are 

sorted as follows 𝑆3 ≤ 𝑆1 ≤ 𝑆4 ≤ 𝑆2. This then shows why the worst-first search strategy is best 
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at the low average SNR region since the search layer 1 complexity dominates the search tree 

complexity. The sorted channel matrix 𝑯̃′is then used to produce the modified received signal 

vector 𝒛′ = 𝑸̃′
𝐻𝒚 since 𝑯̃′ = 𝑸̃′𝑹̃

′. The SD-SDS search is then performed on the sorted search 

tree search order to find the lattice points, 𝑹̃′𝒖′, that lie inside the hypersphere ‖𝒛′ −  𝑹̃′𝒖′‖
𝐹

2
≤

𝑟2. When at least 1 lattice point is found inside the hypersphere, the 𝑙𝑎𝑡𝑡𝑖𝑐𝑒_𝑝𝑜𝑖𝑛𝑡_𝑓𝑜𝑢𝑛𝑑_𝑓𝑙𝑎𝑔 

is set to True. The result array, 𝑟𝑒𝑠𝑢𝑙𝑡[ ], is populated with the M-QAM symbol indices derived 

from the most optimal lattice point found inside the hypersphere. The one-to-one 

correspondence [𝑥̂2 ⟼ 4, 𝑥̂4 ⟼ 3, 𝑥̂1 ⟼ 2, 𝑥̂3 ⟼ 1] or search order is used to unsort the SD-

SDS M-QAM symbol output accordingly. If no lattice points are found inside the hypersphere, 

then the suboptimal QR decoder is used to determine the M-QAM symbol estimates. 

 

5 Proposed Deep Learning-Based Sphere-Decoder 

This Section proposes a deep learning-based SD-SDS search early stopping algorithm. The early 

stopping criteria of the SD-SDS search is performed on the SD-SDS Algorithm B.1. The idea is 

that we want to find a suitable mapping between the input and output of a deep neural network 

(DNN) that can predict when the SD-SDS search must be terminated prematurely. This DNN 

mapping will take on a structure like a typical DNN shown in Fig. B.2. 

 

 

Fig. B. 2 Typical DNN structure [21]. 



 

87 
 

In our case, we want to find a function approximator that maps the instantaneous channel 

conditions and noise to a binary state that determines whether early termination should take 

place. When early termination is deemed appropriate, it is carried out as soon as the first lattice 

point is found inside the hypersphere. When the first lattice point is found inside the 

hypersphere, the SD-SDS search tree is terminated, and we immediately output the estimated 

M-QAM symbol indices. There is no need to visit all the unvisited nodes in the search tree to 

determine if there is a closer lattice point to the received signal vector. This is because we take 

advantage of the fact that the candidate symbol subsets are sorted so that the most likely 

transmitted symbols are placed first in the candidate symbol subset. We also take advantage of 

the depth-first search strategy that produces lattice points quicker than the breadth-first search. 

The job of the DNN is to learn the channel conditions that necessitate early termination.  

 

We define the DNN function approximator as shown in (B.9)  

 

𝜇 ≜ Φ(𝝎, 𝝉)                                                                                                                                          (B. 9) 

 

where 𝜇 is the probability of initiating early termination, 𝝎 is the input vector of the DNN 

function approximator, and 𝝉 is the vector of the DNN model parameters that need tuning during 

offline training. We further define the input vector of the DNN as 𝝎 ≜ [𝒛̂𝑅 , 𝒛̂𝐼 , 𝒓̃1
𝑅 , 𝒓̃1

𝐼 ] ∈ ℝ28 

where 𝒛̂𝑅 ≜ (ℜ(𝒛))
𝑇
, 𝒛̂𝐼 ≜ (ℑ(𝒛))

𝑇
, 𝒓̃1

𝑅 ≜ 𝑣𝑒𝑐 (ℜ(𝑹̃))
𝑇

 and 𝒓̃1
𝐼 ≜ 𝑣𝑒𝑐 (ℑ(𝑹̃))

𝑇

. The input 

vector is a 28-dimensional vector in our case since we will simulate over a 2 × 4 MIMO wireless 

channel. For a generic 𝑁𝑡 × 𝑁𝑟 MIMO wireless channel, the input vector dimension will vary 

depending on the number of non-zero entries found in the input vector. The input vector-only 

considers non-zero entries. As can be seen, the DNN uses instantaneous wireless channel fading 

and noise statistics to determine when early termination is suitable. The instantaneous noise 

statistics are indirectly catered for via the received signal vector 𝒛. The instantaneous wireless 

channel fading is represented using the random upper triangular matrix 𝑹̃, which is related to 

the wireless channel matrix 𝑯̃ via the reduced QR factorization 𝑯̃ = 𝑸̃𝑹̃. 

 

The DNN function approximator Φ(∙) has an architecture shown in Table B.1. 
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Table B. 1: DNN Function Approximator Architecture 

Layer Parameter Description 

Input (28) 28 dimensional input vector 𝝎 

(Input Layer) Dense+LeakyReLU 128 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 

Dropout Probability of 0.5 

(Hidden Layer 1) Dense+LeakyReLU 128 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 

Dropout Probability of 0.5 

(Output Layer) Dense+Sigmoid 1 neuron 

For 64-QAM: Batch Size=1428, Learning Rate=0.00312,                                                                 

Pseudo random seed value=70 and Maximum Epochs=2000 

For 256-QAM: Batch Size=8000, Learning Rate=0.0001,                                                                 

Pseudo random seed value=70 and Maximum Epochs=2000 

 

The 64-QAM and 256-QAM DNN training learning rate, pseudo-random seed value, and batch 

size are determined using a meta-heuristic Genetic algorithm [22] with a fitness function 

dependent on the validation accuracy metric. As shown in Table B.1, the DNN architecture does 

not increase in size based on the M-QAM modulation order 𝑀 unlike in [20]. Our architecture 

is thus suitable for a high-density M-QAM Golden code environment as the DNN architecture 

inference time will not increase as the M-QAM modulation order increases. The DNN 

architecture in Table B.1 is only valid for the 2 × 4 MIMO wireless configuration implying that 

any other MIMO configuration will require the re-designing and training of a new architecture. 

 

5.1 Offline Training of the DNN 

The DNN architecture in Table B.1 is trained once offline but separately for the 64-QAM and 

256-QAM scenarios. The training sample sizes are set to 20000 and 80000 for the case of 64-

QAM and 256-QAM, respectively. The training samples are collected by logging the values of 

the instantaneous wireless fading channel and noise statistics using the definition of the input 

vector 𝝎 ≜ [𝒛̂𝑅 , 𝒛̂𝐼 , 𝒓̃1
𝑅 , 𝒓̃1

𝐼 ] and logging the corresponding output labels since this is supervised 

learning. The input vector features are each normalized into the range of [0,1] to aid good 

training performance by putting all features into the same scale. We prematurely terminate the 

SD-SDS search for each wireless channel realization when we find the first lattice point inside 

the hypersphere. This sole lattice point is used to deduce the estimated M-QAM symbols.  If all 
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the estimated M-QAM symbols match the transmitted M-QAM symbols, i.e 𝑥̂𝑞 = 𝑥𝑞 ∀𝑞 ∈

[1: 4], then the output label is set to an integer value 1 else it is set to 0. We then use this training 

data, with a training-to-test ratio split of 75:25, to train and evaluate the DNN architecture in 

Table 1. However, before training the DNN architecture in Table 1, we observe that the output 

labels will be unbalanced. At high SNR, we can expect most of the output labels to be 1 and at 

low SNR to be 0. This is because at high average SNR, the high instantaneous SNR is more 

frequent, and thus we can expect that the first lattice point, found inside the hypersphere, 

produces the correct estimates of the transmitted symbols. At low average SNR, we can expect 

that the high instantaneous SNR frequency is low, and hence the first lattice point found inside 

the hypersphere, will rarely produce reliable symbol estimates. Figs. B.3 and B.4 illuminate this 

observation for the distribution of output label values for the 64-QAM and 256-QAM scenarios. 

 

Fig. B. 3 64-QAM output label distribution. 



 

90 
 

 

Fig. B. 4 256-QAM output label distribution. 

To get the best performance from the DNN function approximator, we will need to balance the 

output label distribution such that the distribution of the class states 1 and 0 are close to 50:50 

for all SNR values. We employ the synthetic minority over-sampling technique (SMOTE) 

developed by [23] to balance the output label distribution, which creates synthetic data sample 

points using the minority class data. The majority class data is under-sampled as per [23], 

leading to a class distribution ratio of 50:50 for all SNR values.  

 

We then train the DNN architecture in Table B.1 with this balanced output label training data 

and use the validation accuracy metric to evaluate the performance of the DNN function 

approximator. The training process repeatedly feeds the DNN function approximator with the 

input vector training data 𝝎, and the DNN outputs a probability value in the range [0,1], which 

is then compared to the target output label data. The ADAM optimizer [24] is used to minimize 
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the binary cross-entropy loss function by tuning the DNN architecture model parameter weights, 

and biases found in the vector 𝝉.  

 

5.2 Online Decoding Process 

The tuned model parameters in vector 𝝉 and the DNN architecture in Table B.1 are then saved 

and deployed in the simulation environment for online SD-SDS search tree early termination 

prediction. To determine whether early termination of the SD-SDS search is desirable, under 

specific wireless channel and noise conditions, we feed the trained DNN function approximator 

with the online input vector 𝝎 with normalized features. The input vector 𝝎 contains the 

instantaneous wireless channel realization. The output of the DNN will be a probability value 

𝜇 ∈ [0,1] ∈ ℝ that is then compared to a fixed threshold value 𝜇𝑡. The threshold values for 64-

QAM and 256-QAM are documented in Table B.2 and are found using a heuristic approach that 

balances the decoding latency reduction and the BER performance at different SNR values. 

Table B. 2: 64-QAM and 256-QAM Probability thresholds 

 64-QAM Parameters 256-QAM Parameters 

Probability 

Thresholds 
𝛾̅ ≤ 16 𝑑𝐵 𝛾̅ > 16 𝑑𝐵 𝛾̅ ≤ 21 𝑑𝐵 𝛾̅ > 21 𝑑𝐵 

𝜇𝑡 = 0.2 𝜇𝑡 = 0.5 𝜇𝑡 = 0.25 𝜇𝑡 = 0.65 
 

The rule for prematurely terminating the SD-SDS search is straightforward. For every 

probability value 𝜇 ≥ 𝜇𝑡 we prematurely terminate the SD-SDS search on the first encounter of 

a lattice point that lies inside the hypersphere. If the probability 𝜇 < 𝜇𝑡, then we continue the 

SD-SDS search despite finding the first lattice point inside the hypersphere. This early 

termination technique prevents the unnecessary execution of the Euclidean distance calculations 

in each of the unvisited nodes in the search tree. This has the obvious effect of lowering the 

decoding latency of the SD-SDS search while achieving near-optimal error rate performances. 

The algorithm described in this section is named as SD-SDS-ES-DNN. 

 

6 Simulation Results and Discussion 

The Monte-Carlo simulation for uncorrelated wireless channels is performed for the 2 × 4 

wireless MIMO configuration. The number of transmit antennas in the MIMO configuration is 

𝑁𝑡 = 2, and the number of receive antennas is 𝑁𝑟 = 4. The high-density Golden code M-QAM 

modulation orders considered for this simulation are the 64-QAM and 256-QAM variants. The 
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average M-QAM symbol power and Golden code super symbol power is set to 1. The Monte-

Carlo simulation only shows the low complexity Golden code SD-based detection algorithms 

from literature versus our proposed SD-based algorithms. The performance comparison between 

the SE-SD [12], SD-SDS [16], and our proposed algorithms is done using the error rate 

performance, average decoding latency, and the average number of lattice points found inside 

the hypersphere. The average decoding latency is measured for each algorithm under the same 

computer platform. 

 

6.1 Complexity Analysis 

The detection complexity is assessed using the simulated average decoding latency and the 

average number of lattice points found inside the hypersphere. From Fig. B.5, we see that the 

SD-SDS-ES-DNN algorithm has the lowest average number of lattice points found inside the 

hypersphere at lower SNR. This is because the early termination algorithm terminates the SD-

SDS search under good instantaneous channel conditions after finding exactly 1 lattice point 

inside the hypersphere. There is no difference in performance at high SNR because all the 

algorithms find their most optimal lattice point as the first lattice point inside the hypersphere 

at high instantaneous SNR. This is because the candidate symbol subset has M-QAM symbols 

sorted so that the most likely transmitted symbols are placed first in the subset. This coupled 

with the depth-first search strategy, yields a high probability, at high SNR, of finding the most 

optimal lattice point as the first lattice point inside the hypersphere. We must remember that the 

moment the SD-SDS search tree finds a lattice point closer to the received signal vector, the 

search tree updates the hypersphere radius to the distance of this lattice point to the received 

signal vector. If the first lattice point found inside the hypersphere is the most optimal or closest 

lattice, no other lattice points will be found inside the hypersphere.  
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Fig. B. 5 64-QAM Golden code SD-based detection algorithms average number of lattice 

points inside hypersphere for 𝟐 × 𝟒 MIMO. 
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Fig. B. 6 64-QAM Golden code SD-based detection algorithms average decoding latency 

for 𝟐 × 𝟒 MIMO. 

Fig. B.6 exhibits the Golden code SD-based detection algorithms' average decoding latency. At 

low SNR, we observe that the SD-SDS-Descend algorithm, which is the proposed Algorithm 

B.2 in this paper, has the lowest average decoding latency with at most 57% reduction in 

decoding latency relative to the SD-SDS from literature. At high SNR, the SD-SDS-Descend 

and SD-SDS-Ascend algorithms produce similar decoding latency reduction of at most 40% 

relative to SD-SDS. At high SNR, the source of decoding latency reduction is the smaller 

instantaneous subset lengths generated by the heuristic method in Eq.(B.6) of this paper. This is 

because the SD-SDS-Descend and SD-SDS-Ascend algorithms use the instantaneous subset 

lengths, which will be in the range 𝑆𝑞 ∈ [13: 20] for 64-QAM at high SNR. Despite the narrow 

instantaneous subset length range, it is approximately 66% of the subset length used by the SD-

SDS algorithm, which uses fixed-length subsets of 30 candidate symbols for 64-QAM at high 

SNR. Because at high instantaneous SNR the instantaneous subset lengths are shorter than that 

required at high average SNR by the SD-SDS with fixed-length subsets, the search tree search 

breadth is shortened and thus decoding latency is lowered. The BER performance is not affected 
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because this shortening of subset lengths only occurs at sufficiently high instantaneous SNR as 

per Eq.(B.6).  The SD-SDS-Ascend algorithm is just the reverse of the SD-SDS-Descend 

because the search tree search order is sorted in ascending order using the defined metric in this 

paper. Despite the SD-SDS-ES-DNN having the lowest average number of lattice points inside 

the hypersphere, at low SNR, it has a greater decoding latency than the SD-SDS-Descend 

algorithm because of the effect of its DNN architecture inference time. The SD-SDS-Descend 

algorithm has lower decoding latency at low SNR than the other analytical decoding algorithms 

because it orders the search tree search order such that search tree layer 1 has the smallest 

candidate symbol subset. The search tree layer 1 dominates the search tree complexity at low 

SNR, therefore, assigning it a subset with the smallest length lowers the decoding latency of the 

search tree. The SE-SD algorithm has the worst decoding latency because it uses the full signal 

cardinality of the M-QAM constellation to search for the optimal solution. The other algorithms 

use candidate symbol subsets shorter than the M-QAM signal constellation cardinality. The SD 

algorithms are known to have their decoding complexity dependent on the search signal 

cardinality and search depth of the search tree [14]. 

 

Fig. B. 7 256-QAM Golden code SD-based detection algorithms average number of 

lattice points inside hypersphere for 𝟐 × 𝟒 MIMO. 
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Fig. B.7 shows that the SD-SDS-ES-DNN algorithm continues to deliver the lowest average 

number of lattice points inside the hypersphere for the case of 256-QAM at low SNR. The 

reasons advanced are identical to those ventilated for the case of 64-QAM baseband modulation 

in Fig. B.5.  However, at high SNR, the SD-SDS-ES-DNN algorithm has the same performance 

as the analytical SD algorithms. This is because, at high SNR, the SD-SDS-ES-DNN is virtually 

not prematurely terminating the SD-SDS search because of the error rate performance 

sensitivity at high SNR. The SD-SDS-ES-DNN algorithm relies on a DNN output probability 

to activate the early termination based on the wireless channel quality. Because of the inevitable 

prediction errors present in the DNN output, there are times when the DNN erroneously outputs 

a probability that enables premature termination of the SD-SDS search in unfavorable channel 

conditions. This will negatively impact the error rate performance at high SNR. To counter this, 

the SD-SDS-ES-DNN algorithm infrequently prematurely terminates the SD-SDS search to 

maintain the near-optimal error rate performance at high SNR. 

 

Fig. B.8 exhibits that the proposed SD-SDS-Descend algorithm has the lowest decoding latency 

among the analytical SD-based algorithms, at low SNR, for the same reasons advanced in the 

case of 64-QAM modulation in Fig. B.6. 
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Fig. B. 8 256-QAM Golden code SD-based detection algorithms average decoding latency 

for 𝟐 × 𝟒 MIMO. 

The difference here is that for the 256-QAM case, the SD-SDS-ES-DNN algorithm has the 

lowest decoding latency, at low SNR, compared to all other algorithms. A decoding latency 

reduction of 70% is achieved relative to the SD-SDS algorithm at low SNR. This is because, for 

256-QAM, the analytical SD-based algorithms visit all the unvisited nodes in the large search 

tree. The 256-QAM search tree is larger than the 64-QAM tree because the signal cardinality or 

search breadth is larger for 256-QAM. Whether the instantaneous SNR is good or not, the 

analytical SD-based decoding algorithms visit unvisited tree nodes to determine if a more 

optimal lattice point can be found inside the hypersphere. The SD-SDS-ES-DNN algorithm 

prematurely terminates the search when it finds 1 lattice point inside the hypersphere under good 

instantaneous SNR conditions. This lowers the decoding latency. Over and above this, for the 

256-QAM case, the DNN architecture remains the same as that for the 64-QAM case. This 

implies that the DNN inference time has a marginal effect on the decoding latency for the case 

of 256-QAM.  At high SNR, the SD-SDS-ES-DNN algorithm has a decoding latency that 

matches the SD-SDS algorithm decoding latency. This is because, at high SNR, the SD-SDS-
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ES-DNN algorithm performs virtually no early termination of the SD-SDS search. After all, it 

needs to maintain a near-optimal BER performance at the expense of increased decoding 

latency. At high SNR, the SD-SDS-Descend and SD-SDS-Ascend algorithms achieve 

approximately 37% decoding latency reduction relative to the SD-SDS algorithm from the 

literature. This is because the SD-SDS-Descend and SD-SDS-Ascend algorithms use the 

instantaneous subset lengths in the range 𝑆𝑞 ∈ [58: 65] for 256-QAM at high SNR. Despite the 

narrow instantaneous subset length range, it is approximately 50% of the subset length used by 

the SD-SDS algorithm, which uses fixed-length subsets of 120 candidate symbols for 256-QAM 

at high SNR. Because at high instantaneous SNR the instantaneous subset lengths are shorter 

than that required at high average SNR by the SD-SDS with fixed-length subsets, the search tree 

search breadth is shortened and thus decoding latency is lowered. The BER performance is not 

affected because this shortening of subset lengths only occurs at sufficiently high instantaneous 

SNR as per Eq.(B.6). The SE-SD [12] algorithm still exhibits the worst decoding latency 

performance relative to the proposed algorithms and the SD-SDS [16] algorithm. 

 

6.2 Error Rate Performance 

Figs. B.9 and B.10 show that the proposed SD-SDS-Descend and SD-SDS-ES-DNN algorithms 

achieve near-optimal BER performances despite reducing decoding latency relative to the state-

of-the-art low complexity Golden code detection algorithms SE-SD [12] and SD-SDS [16].  
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Fig. B. 9 64-QAM Golden code SD-based detection algorithms error rate performance 

for 𝟐 × 𝟒 MIMO.

 

Fig. B. 10 256-QAM Golden code SD-based detection algorithms error rate performance 

for 𝟐 × 𝟒 MIMO. 
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7 Conclusion 

In this paper, we successfully proposed a more appropriate channel quality metric to sort the SD-

SDS search tree search order. The channel quality metric considered both the instantaneous 

wireless channel fading power and the instantaneous noise power. The SE-SD search order sorting 

metric, in literature, considered only the instantaneous wireless channel fading power. This is not 

an accurate assessment of channel quality as noise statistics dominate the SNR performance at 

low SNR instead of fading. We also proposed instantaneously varying candidate symbol subset 

lengths per search layer. The candidate symbol subset lengths varied with the instantaneous 

channel conditions for each estimated M-QAM symbol and allowed the search tree search order 

to be sorted based on the subset lengths. This led to the proposal of the worst-first search strategy, 

which was employed by the detection algorithm SD-SDS-Descend. The SD-based search trees 

have their detection complexity dominated by the search layer 1 detection complexity at low SNR. 

The worst-first search strategy ensured that the candidate symbol subset with the smallest subset 

length always got assigned to search layer 1. This assisted the SD-SDS-Descend algorithm to 

achieve a reduction in decoding latency of 57% relative to the SD-SDS algorithm for the case of 

64-QAM modulation at low SNR. The paper also proposed a deep learning-based early 

termination algorithm, i.e. SD-SDS-ES-DNN, for low complexity SD-SDS small MIMO. For 

256-QAM, the SD-SDS-ES-DNN algorithm achieved 70% reduction in decoding latency at low 

SNR relative to the SD-SDS algorithm proposed in the literature. The SD-SDS-Descend algorithm 

achieved 40% and 37% decoding latency reduction relative to SD-SDS, at high SNR, for the case 

of 64-QAM and 256-QAM, respectively. All these gains were shown to be achieved without 

losing any error rate performance relative to the near-optimal BER performances of SE-SD and 

SD-SDS. 
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Abstract 

Golden code is a space-time block coding (STBC) scheme that has spatial multiplexing gain 

over the Alamouti STBC which is widely used in modern wireless communication standards. 

Golden code has not been widely adopted in modern wireless standards because of its inherent 

high detection complexity. However, detection algorithms like the sphere-decoding with sorted 

detection subsets (SD-SDS) have been developed to lower this detection complexity. Literature 

indicates that the SD-SDS algorithm has lower detection complexity relative to the traditional 

sphere-decoding (SD) algorithm, for all signal-to-noise ratio (SNR) values. The SD-SDS 

algorithm exhibits low detection complexity at high SNR; however, at low SNR the detection 

complexity is higher. We propose a deep neural network (DNN) aided SD-SDS algorithm (SD-

SDS-DNN) that will lower the Golden code's SD-SDS low SNR detection complexity, whilst 

maintaining the bit-error-rate (BER) performance. The proposed SD-SDS-DNN is shown to 

achieve a 75% reduction in detection complexity relative to SD-SDS at low SNR values for 16-

QAM, whilst maintaining the BER performance. For 64-QAM, the SD-SDS-DNN achieves 

99% reduction in detection complexity relative to the SD-SDS at low SNR, whilst maintaining 

the BER performance. The SD-SDS-DNN has also shown to achieve low detection complexity 

comparable to that of the Alamouti linear maximum likelihood (ML) detector for a spectral 

efficiency of 8 bits/s/Hz. For a spectral efficiency of 12 bits/s/Hz, the SD-SDS-DNN achieves 

a detection complexity that is 90% lower than the Alamouti linear ML detector. 
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1 Introduction 

ITH the ever-increasing demand for higher data transmission rates and link reliability for 

wireless radio access networks (RAN), because of increasing real-time and mission-

critical applications, it becomes necessary to research and develop wireless schemes that can 

provide high spectral efficiency, good link reliability, and low detection complexity. Multiple-

input multiple-output (MIMO) wireless techniques can deliver on these requirements through 

space-diversity and spatial multiplexing. Space-time block coding (STBC) schemes such as 

Alamouti [1], uncoded space-time labeling diversity (USTLD) [2], and Golden code [3] provide 

time-diversity over and above space diversity. These schemes further improve wireless link 

reliability over MIMO wireless channels. Of the three STBC schemes, Golden code is the only 

full-rate, full-diversity wireless scheme, whilst the USTLD and Alamouti are half-rate and full-

diversity schemes. This paper's coding rate is defined as the number of M-QAM symbols 

transmitted per transmit antenna per transmission timeslot. The advantage of the Golden code 

is that it offers full spatial-multiplexing gain relative to the Alamouti and USTLD STBC 

schemes. However, Alamouti STBC has the advantage of having much lower linear detection 

complexity relative to the Golden code STBC scheme under block-fading wireless channels. 

The Alamouti optimal linear decoder has order 𝜗(𝑀1) detection complexity, in block-fading 

channels [1], relative to the Golden code optimal detector with 𝜗(𝑀4) detection complexity. 

The variable 𝑀 is defined as the M-QAM signal modulation order. The USTLD STBC has a 

coding gain advantage over the Alamouti STBC whilst achieving the same rate and diversity 

order [2]. However, USTLD STBC has a detection complexity of order 𝜗(𝑀2) since it uses joint 

maximum likelihood (ML) detection to decode the two transmitted symbols [2]. This USTLD 

STBC decoding complexity is higher than the Alamouti STBC linear detection complexity in 

block-fading channels. The Alamouti STBC linear decoder is shown to under-perform in terms 

of bit-error-rate (BER) in fast-fading channels [4] due to inter-symbol interference (ISI). The 

optimal detector for the Alamouti STBC scheme, in fast-fading channels, is shown in [4] to be 

the joint ML detector with order 𝜗(𝑀2) detection complexity. 

 

Golden code STBC is a promising wireless scheme which is already incorporated into the 

WiMAX IEEE 802.16e standard [5]. Golden code offers spatial multiplexing gain relative to 

the Alamouti STBC scheme, at the expense of higher detection complexity. In modern wireless 

W 
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communication systems, the following standards incorporate the Alamouti STBC scheme 

namely, the long-term evolution (LTE) 3GPP standard [6], wireless fidelity (WiFi) IEEE 

802.11n [7] and IEEE 802.11ah low power WiFi [8]. This makes research into the reduction of 

the Golden code detection complexity interesting and relevant to modern wireless 

communication systems. The practical application of Golden code is limited due to its high 

detection complexity despite its advantages of spatial multiplexity gain over the Alamouti and 

USTLD STBC schemes. Thus, to extract the benefits of Golden code in a practical use case, 

researchers have embarked on developing various detection schemes to lower the Golden code's 

detection complexity. Therefore, this paper particularly concentrates on the Golden code STBC 

due to its disadvantage of being a high detection complexity scheme. The high detection 

complexity has a negative implication of increasing telecommunications operator base-station 

processing power consumption, including that of the end-users. High complexity detection 

schemes may also increase end-to-end link latency if powerful detection processors are not used. 

An increase in link latency has detrimental effects on real-time low latency applications. Our 

research aims to reduce this detection complexity. 

 

In literature, [9] develops an efficient ML detection scheme that can reduce the Golden code's 

detection complexity to approximately 𝜗(𝑀2.5). Using dimensionality reduction of the search 

tree in sphere-decoding (SD), [10] manages to reduce the detection complexity to approximately 

𝜗(𝑀1.5). However, [10]'s side effect is that the BER performance suffers a 1dB SNR loss 

compared to optimal ML detection. The fast-essentially maximum likelihood (FML) detection 

is developed in [11] with a detection complexity of 𝜗(𝑀2). FML proves to be computationally 

intensive at higher modulation orders. In literature, a near-optimal detection algorithm called 

SD, with detection complexity of 𝜗(𝑀2), is modified in [12] by minimizing the search depth, 

to reduce detection complexity, using the Schnorr-Euchner strategy. It is known from literature 

that SD detection complexity relies on the signal modulation order and the search depth [13]. 

The authors in [14] further optimize the FML and SD algorithms by reducing the signal 

cardinality by creating detection subsets. This can further reduce the detection complexity whilst 

maintaining the BER performance close to that achieved by FML and SD. In [15], the authors 

propose SD-SDS, which has low detection complexity for Golden code at high SNR with an 

increasingly high detection complexity as the SNR approaches 0dB. However, it has detection 
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complexity which is at least 1 order lower than the sphere-decoding detection subset algorithm 

(SD-DS) developed in [14]. 

 

Part of the challenge in [15] is that the SD initial radius is fixed per average SNR, thus at lower 

average SNR values, the initial radius is larger which causes a selection of many signal 

candidates under good instantaneous SNR conditions. This creates a high detection complexity 

at lower SNR values and suggests that we may need an SD initial radius calculated using the 

instantaneous channel conditions instead of average channel conditions. In [16], the authors 

develop a deep learning-based initial radius predictor that predicts an initial radius based on 

instantaneous channel conditions. This approach lowers the detection complexity of MIMO SD 

detection whilst maintaining the BER performance. Another interesting MIMO SD technique is 

developed by [17]. The initial radius of SD is selected and fed into a deep neural network that 

predicts the number of lattice points inside the hypersphere. If the predicted number of lattice 

points is high, then the initial radius is adjusted downwards and re-fed into the deep neural 

network. This is done iteratively until the number of predicted lattice points is low, at which 

point SD is performed with this lower initial radius that is predicted to yield a small number of 

lattice points inside the hypersphere. This technique yields lower detection complexity for SD. 

However, in our experiments, we found that [16] yields better performance than [17]. In [18], 

the authors propose a deep learning (DL)-aided SD for large MIMO detection. Because SD 

detection for large MIMO has a prohibitive computational complexity, the DL-aided SD 

generates a highly reliable initial candidate to accelerate the SD search for the transmitted 

symbols. The DL-aided SD is beneficial both from an offline training phase and online 

application relative to the DL-aided SD in literature. In [19], a neural network is proposed that 

predicts the minimum path metrics of subtrees of a SD and these predicted minimum path 

metrics are used for early termination in the SD search for candidates. The scheme shows 

significant computational complexity reduction relative to the conventional SD scheme for large 

MIMO, whilst exhibiting a BER performance close to the optimal detector. 

 

Based on the literature review, we are motivated to lower the detection complexity of the Golden 

code SD-SDS decoder, at low SNR, for the traditional MIMO architecture. This reduction of 

low SNR Golden code detection complexity is important for low power wireless 
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communications. The algorithms in [16-19] perform deep learning-aided complexity reduction 

in the conventional SD algorithm, for large MIMO (𝑖. 𝑒 𝑁𝑡 ≥ 8), except for the Golden code 

context with a small number of transmit antennas (𝑖. 𝑒 𝑁𝑡 = 2).  Therefore, no literature has 

performed complexity reduction of the Golden code specific SD-SDS detection algorithm. The 

reduction in detection complexity is performed to give Golden code an edge over the Alamouti 

STBC scheme which is already implemented in modern wireless communication standards. 

Golden code has greater spectral efficiency, for the same link reliability, relative to the Alamouti 

STBC but at the expense of higher detection complexity which prevents it from being 

incorporated into broader wireless standards as an STBC scheme of choice.  By embarking on 

lowering the detection complexity of Golden code SD-SDS, at low SNR, our paper makes the 

following contributions: 

(i) The SD initial hypersphere radius computation is well discussed in [20-23]. However, the 

computation in literature is performed for a single timeslot whereas Golden code is a 2-

timeslot STBC scheme. In this paper, we derive the 2-timeslot Golden code SD-SDS [15] 

fixed initial radius and show that this SD-SDS has an initial radius dependent only on a 

single timeslot, which makes the formulas discussed in [20-23] also relevant for our use 

case.  

(ii) We present a modified version of the low complexity deep learning-based algorithm in 

[16]. This modified algorithm lowers the SD-SDS detection complexity at low SNR. The 

reason for the modification is because the algorithm in [16] is developed for a single 

timeslot scheme, whereas Golden code is a 2-timeslot STBC system. This has the effect of 

changing the DNN input vector length and thus requires us to design and train a new DNN 

architecture for the radius prediction. The algorithm in [16] is also developed for a very 

high detection complexity large MIMO (𝑁𝑡 ≥ 10) SD environment whereas our scheme 

needs to work for a lower detection complexity traditional MIMO (𝑁𝑡 = 2) SD-SDS 

environment. Because of the lower complexity traditional MIMO SD-SDS environment, 

we only predict one radius at the output of the DNN unlike in [16]. To counter the error in 

prediction accuracy of a single radius prediction, we use the reverse of the approach in [17] 

to determine the subsequent radius predictions. This DNN algorithm is named as the SD-

SDS-Radius-DNN. 
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(iii) SD based algorithms are generally more complex than the sub-optimal QR decomposition 

detector. However, under good instantaneous channel and noise conditions, the sub-optimal 

QR decomposition detector produces M-QAM symbol estimates that are reliable. We, 

therefore, propose a novel DNN channel state predictor that uses the instantaneous channel 

conditions and received signal vectors to predict whether the low complexity sub-optimal 

QR decomposition detector estimates are good enough to be used as the actual transmitted 

symbols without performing the more complex SD based search.  

(iv) We also propose a low complexity detection algorithm called the SD-SDS-DNN. The 

proposed SD-SDS-DNN algorithm combines the high SNR low complexity benefits of the 

SD-SDS detector from [15], the low SNR low complexity benefits of the SD-SDS-Radius-

DNN detector, and the benefits of the proposed novel DNN channel state predictor that 

selects between the very low complexity QR decomposition detector output and search 

using the SD-SDS-Radius-DNN detector. 

(v) We perform the DNN architecture designs and training for the two DNNs in the paper and 

perform Monte-Carlo simulations of the BER and complexity analysis of the Golden code 

detection algorithms discussed in this paper. 

 

The remainder of this paper is organized as follows: Section 2, the system model of the paper is 

presented. In Section 3, we present the theoretical overview of SD-SDS. In Section 4, we deal 

with the derivation of the Golden code 2-timeslot SD initial radius. In Section 5, we present the 

SD-SDS deep learning algorithms. In Section 6, we perform the complexity analysis of the 

Golden code detection algorithms relative to SD-SDS. Section 7 presents the simulation results 

and discussion. Section 8 concludes the paper. 

 

Notation: Bold lowercase letters are used for vectors and bold uppercase for 

matrices. (. )𝑇 (. )𝐻,|. |, ‖. ‖ and ‖. ‖𝐹 represent the Transpose, Hermitian, Absolute Value, 

Euclidean norm and Frobenius norm operations, respectively. The functions ℜ(. ) and ℑ(. ) are 

the real and imaginary components of a complex number, respectively. j is a complex number. 

The statistical average is represented by the expectation function 𝐸(. ). The function (∙)∗ is the 

complex conjugate of a complex number. The function 𝑣𝑒𝑐(∙) is a matrix vectorization function 

that stacks the column vectors of a matrix on top of each other to form a single column vector. 
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2 Golden Code System Model 

In this paper we consider a Golden code system that operates over an 𝑁𝑡 × 𝑁𝑟 wireless MIMO 

channel where 𝑁𝑡 = 2 and 𝑁𝑟 ≥ 𝑁𝑡 for optimal operation according to [24]. The parameters 𝑁𝑡 

and 𝑁𝑟 are the number of transmit and receive antennas in the MIMO configuration, respectively. 

Golden code works by separating information bitstreams into 4 parallel streams. Each stream has 

bits packaged into log2 𝑀 bit length words and these words are used as symbol indices to select 

the complex M-QAM symbols from the M-QAM complex signal constellation Ω𝑀 . This generates 

4 M-QAM complex symbols that are transmitted over a wireless channel by mapping pairs of the 

M-QAM complex symbols onto the Golden code super symbols. The mapping of M-QAM 

symbol pairs onto the Golden code super symbols is performed as follows: Let 𝑥11, 𝑥12, 𝑥21 and 

𝑥22 be the transmitted Golden Code super symbols in which  𝑥11 =
𝛼

√5
(𝑥1 + 𝑥2𝜃) and 𝑥12 =

𝛼

√5
(𝑥3 + 𝑥4𝜃) and 𝑥21 =

𝛼̅

√5
(𝑥1 + 𝑥2𝜃̅) and 𝑥22 = 𝑗

𝛼̅

√5
(𝑥3 + 𝑥4𝜃̅). The scalar parameters 

𝛼, 𝛼̅, 𝜃 and 𝜃̅ are defined as follows: 𝛼 ≜ 1 + 𝑗 𝜃̅, 𝛼̅ ≜ 1 + 𝑗 𝜃, 𝜃 =
1+√5

2
 and 𝜃̅ =

1−√5

2
. The 

complex M-QAM symbols are 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ Ω𝑀, where Ω𝑀 is an arbitrary square M-QAM 

signal constellation. The average M-QAM symbol power is set to 1, 𝐸 (|𝑥𝑞|
2

) = 1, ∀𝑞 ∈ [1: 4]. 

These Golden code super symbols are transmitted over the air using the 𝑁𝑡 transmit antennas with 

the transmit power per antenna fixed to  
𝛾̅

𝑁𝑡
  where γ̅ is the average SNR at each receive antenna.  

 

During wireless transmission, the Golden code transmission vector for timeslot 𝑖, 𝑖 ∈ [1: 2] is 

set to 𝒙𝑖 = [𝑥𝑖1 𝑥𝑖2]𝑇. The wireless MIMO channel matrix for timeslot 𝑖 is 𝑯𝑖, where 𝑯𝑖 ∈

ℂ𝑁𝑟×𝑁𝑡 is a fast frequency-flat fading wireless channel which is fully known at the wireless 

receiver. As a result of the wireless channel being fast fading, this means the wireless channel 

changes its complex channel gains for every transmission timeslot. The wireless channel fading 

gain is assumed to be Rayleigh distributed to mimic multipath fading without line of sight 

(LOS). Each entry of the wireless channel matrix 𝑯𝑖 varies according to the independent and 

identically distributed (i.i.d) zero mean complex Gaussian distribution ℂ𝑁(0,1). The received 

wireless signal vector for timeslot 𝑖 is given by (C.1) 

 

𝒚𝑖 = 𝑯𝑖𝒙𝑖 + 𝒏𝑖                                                                                                                                     (C. 1) 
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where 𝒚𝑖 ∈ ℂ𝑁𝑟×1 is the received signal vector for timeslot 𝑖 and 𝒏𝑖 ∈ ℂ𝑁𝑟×1 is the noise vector 

for timeslot 𝑖. Each entry of the zero mean complex Gaussian noise vector, 𝒏𝑖, is distributed 

according to ℂ𝑁 (0,
Nt

γ̅
). For this work, the detection algorithms used to detect the transmitted 

M-QAM symbols are the SD-SDS-DNN, SD [14] and SD-SDS [15]. These detection algorithms 

are evaluated against each other based on BER performance and detection complexity. 

3 Golden Code SD-SDS Overview 

The authors in [15] propose a low complexity detection algorithm called SD-SDS for a 

generalized Golden code full-rate and full-diversity STBC scheme called multiple complex 

symbol Golden code (MCS-GC). MCS-GC involves transmitting 2 or more complex M-QAM 

symbols inside a Golden code super symbol over 2 or more timeslots. The transmission happens 

over an 𝑁𝑡 × 𝑁𝑟 wireless MIMO channel where 𝑁𝑡 = 2 and 𝑁𝑟 ≥ 𝑁𝑡. The conventional Golden 

code system is represented as 2CS-GC in [15] since only 2 complex symbols are transmitted per 

Golden code super symbol over 2 timeslots. The 2CS-GC system model used by the SD-SDS 

detection algorithm does not take the form of the one presented in (C.1) in this paper. Instead of a 

transmission vector of Golden code super symbols as shown in (C.1), the system model uses a 

transmission vector of complex M-QAM symbols. The Golden code super symbols are just a 

linear combination of the complex M-QAM symbol pairs and thus the linear combination 

constants of the Golden code can be factored into the wireless channel matrix and have the 

transmission vector composed purely of M-QAM symbols. The channel matrix with the Golden 

code linear combination constants is a modified wireless channel matrix. The equivalence relation 

that relates the Golden code system model with a transmission vector of Golden code super 

symbols and the system model with a transmission vector of M-QAM complex symbols is shown 

in (C.2): 

 

𝑯𝑖𝒙𝑖 = 𝑯𝑖 [
𝑥𝑖1

𝑥𝑖2
] = 𝑯̃𝑖𝒖                                                                                                                      (C. 2) 

          

Where 𝒖 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 ,   𝑯̃1 =
1

√5
𝑯1 (

𝛼 𝛼𝜃    0 0
0 0     𝛼 𝛼𝜃

) and 𝑯̃2 =

1

√5
𝑯2 (

𝛼̅ 𝛼̅𝜃̅    0 0

0 0     𝑗𝛼̅ 𝑗𝛼̅𝜃̅
).  
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Wireless channel matrix 𝑯̃𝑖 ∈ ℂ𝑁𝑟×2𝑁𝑡 is the modified wireless channel matrix, for timeslot 𝑖, that 

includes the Golden code super symbol linear combination constants based on the equivalence 

relations in (C.2). The received signal vectors in (C.1), over timeslot 𝑖, are combined using the 

methodology as shown in [15] to produce (C.3) 

 

𝒚 = 𝑯̃𝒖 + 𝒏                                                                                                                                          (C. 3) 

 

where 𝑯̃ = [𝑯̃1 𝑯̃2]
𝑇

∈ ℂ2𝑁𝑟×2𝑁𝑡 , 𝒚 = [𝒚1 𝒚2]𝑇 ∈ ℂ2𝑁𝑟×1,  and 𝒏 = [𝒏1 𝒏2]𝑻 ∈ ℂ2𝑁𝑟×1.  

To decode the transmitted M-QAM symbols 𝑥1, 𝑥2, 𝑥3, 𝑥4, SD-SDS is used based on the system 

model presented in (C.3). QR factorization is first performed on the modified wireless channel 

matrix 𝑯̃ such that we get (C.4) 

 

𝑯̃ = 𝐐̃𝐑̃                                                                                                                                                  (C. 4) 

The matrix 𝐐̃ ∈ ℂ2𝑁𝑟×2𝑁𝑟 is a unitary matrix and matrix 𝐑̃ = [𝑹̃1 𝑹̃2]
𝑇

∈ ℂ2𝑁𝑟×2𝑁𝑡 has an upper 

triangular matrix 𝑹̃1 ∈  ℂ2𝑁𝑡×2𝑁𝑡 and also a zero matrix 𝑹̃2 ∈ ℝ(2𝑁𝑟−2𝑁𝑡)×2𝑁𝑡. The vector 𝐳 =

𝐐̃𝐻𝒚 ∈ ℂ2𝑁𝑟×1 is the modified received signal vector over 2-timeslots, which is given by (C.5) 

 

𝐳 = 𝐑̃𝐮 + 𝐐̃𝐻𝒏                                                                                                                                     (C. 5) 

 

The low complexity SD-SDS detection algorithm proposed in [15] is summarized as follows: 

SD-SDS Algorithm: 

Step 1: Determine the complex M-QAM symbol estimates using QR-decomposition. Estimate 

𝑥̂𝑞 where 𝑞 ∈ [1: 4].  

 

𝑥̂𝑞 =
𝒛𝑞

𝑹̃𝑞,𝑞

, 𝑞 = 4 

. 

𝑥̂𝑞 =
𝒛𝑞−∑ 𝑹̃𝑞,𝑙∗𝑥̂𝑙

4
𝑙=𝑞+1

𝑹̃𝑞,𝑞
, ∀𝑞 ∈ [3: 1]                                                                                                (C. 6.1). 



 

113 
 

where 𝒛𝑞 is the 𝑞𝑡ℎ scalar element stored in vector 𝒛 and 𝑹̃𝑞,𝑞 is the scalar element stored in the 

𝑞𝑡ℎ  row and 𝑞𝑡ℎ  column of the matrix 𝑹̃.  

       

Step 2: Determine the Fixed SD-SDS initial radius 

 

From [15], the initial radius is calculated based on [20, Eqn (28)]. 

 

Step 3: Create the sorted detection subsets 

 

Using the M-QAM symbol estimates found in (C.6.1), sort in ascending order the M-QAM 

signal constellation for each estimated symbol based on the Euclidean distance squared metric 

in (C.6.2). The sorting is done in such a way that the complex symbols in the signal constellation 

are ordered in ascending order based on which complex symbol is closest to the estimated M-

QAM symbols 

 

. m𝑞(i) = |x̂𝑞 − u𝑖|
2

, ∀ i ∈ [1: M], u𝑖 ∈ ΩM                                                                               (C. 6.2). 

          

This implies that for each estimated M-QAM symbol, x̂𝑞, we need to find the associated M-

QAM symbols, sorted in ascending order, of the 𝑀 − 1 nearest neighbors from the M-QAM 

signal constellation. Furthermore, depending on the average SNR, a subset of the sorted M-

QAM constellation symbol order is used for detection. The subset lengths (𝐿) are stated in [15, 

Table 2]. The sorting and 𝐿-dimensional subset determination is shown in (C.6.3): 

 

Sq = 𝑠𝑜𝑟𝑡 (mq(i)) [1: L]                                                                                                                (C. 6.3) 

 

where Sq, ∀𝑞 ∈ [1: 4], are the 𝐿-dimensional sorted subsets used in the detection of the optimal 

estimated transmitted symbols 𝑥1, 𝑥2, 𝑥3, and 𝑥4. 

 

Step 4: Perform SD-SDS to determine candidates in hypersphere 
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The lattice point candidates which are being searched for, using SD-SDS, must lie inside the 

hypersphere stated in (C.6.4) as per [15] 

 

‖𝐳 − 𝐑̃𝐮‖
F

2
≤ r2                                                                                                                                (C. 6.4)

      

where 𝑟 is the fixed initial radius determined in Step 2. The SDS found in Step 3 are used to search 

for these lattice point candidates that satisfy (C.6.4).  

 

4 Golden Code 2-Timeslot SD-SDS Initial Radius 

This section presents two approaches to calculate the SD-SDS initial radius for the 2-timeslot 

Golden code scheme. The first approach is the fixed initial radius that we will derive for the 2-

timeslot scheme and show that the single timeslot initial radius formula used by [15] is valid but 

was not justified in their paper. The fixed initial radius approach brings the disadvantage of finding 

many lattice points meeting the constraint stated in (C.6.4), under low average SNR conditions, 

in situations where the instantaneous SNR is high. This creates high detection complexity at lower 

average SNR values as it will be shown that at low average SNR values, the initial radius is large. 

The second approach involves a deep learning model that is used to predict the initial radius. The 

difference here is that the predicted initial radius depends on the instantaneous channel conditions 

instead of the average channel conditions. This means for each channel use, the initial radius is 

adapted to select a minimal number of lattice point candidates and thus reduce complexity. This 

idea is borrowed from [16] with a modification of the algorithm. Section 4.1 presents the fixed 

initial radius derivation justifying using a single timeslot initial radius calculation for a 2-timeslot 

scheme. Section 4.2 presents the adaptive initial radius deep neural network model. 

4.1 Derivation of Fixed Initial Radius 

This section presents the proof of the 2-timeslot Golden code SD-SDS fixed initial radius as 

dependent only on a single timeslot. Hence, the traditional single timeslot initial radius formulae 

can be used for the 2-timeslot SD-SDS. We simplify (C.6.4) using (C.5) to get the expression 

 

‖𝐐̃𝐻𝒏‖
F

2
≤ r2                                                                                                                                    (C. 7.1) 
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But we know that 𝐐̃ is unitary which implies that 𝐐̃𝐻𝐐̃ = 𝑰2𝑁𝑟
= 𝐐̃𝐐̃𝐻 where 𝑰2𝑁𝑟

∈ ℝ2𝑁𝑟×2𝑁𝑟 

is an identity matrix. This also implies that the matrix 𝐐̃𝐻 is unitary. We know from linear algebra 

that a vector's Frobenius norm is invariant to the multiplication with a unitary matrix [25]. 

Therefore, we can simplify (C.7.1) to get (C.7.2) 

 

‖𝐐̃𝐻𝒏‖
F

2
= ‖𝒏‖F

2 ≤ r2                                                                                                                     (C. 7.2) 

           

Lemma 1: We know that the noise vectors 𝒏1 and 𝒏2 are 𝑁𝑟-dimensional and that each entry 𝑛𝑤 

is distributed based on the zero-mean complex Gaussian distribution ℂ𝑁(0, 𝜎2). We also know 

that each noise vector entry is defined as a complex number as show in (C.7.3) 

 

𝑛𝑤 = 𝑥𝑤 + 𝑗𝑦𝑤                                                                                                                                 (C. 7.3) 

 

where 𝑥𝑤~𝑁 (0,
1

2
𝜎2) and 𝑦𝑤~ 𝑁 (0,

1

2
𝜎2). Taking the square of a Frobenius norm of a 2𝑁𝑟-

dimensional noise vector 𝒏 yields the following in (C.7.4) 

 

‖𝒏‖𝐹
2 = ∑|𝑛𝑤|2 = ∑(𝑥𝑤

2 + 𝑦𝑤
2) 

2𝑁𝑟

𝑤=1

2𝑁𝑟

𝑤=1

                                                                                           (C. 7.4) 

 

Using the laws of linear combination of variances, we have (C.7.4) being re-written as (C.7.5) 

 

‖𝒏‖𝐹
2 =

𝜎2

2
[∑(𝑁(0,1))

2
+ (𝑁(0,1))

2

2𝑁𝑟

𝑤=1

]                                                                                (C. 7.5) 

 

But since our sphere decoding algorithm will only search for lattice points using the upper half of 

the 2𝑁𝑟-dimensional received signal vector 𝒛, as per [15], the lower half only contains noise and 

no signal. Therefore, we only need to consider the upper half of the 2𝑁𝑟-dimensional noise vector 

𝒏. This means (C.7.6) becomes the relevant expression for our use case  
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‖𝒏1‖𝐹
2 =

𝜎2

2
[∑ (𝑁(0,1))

2
+ (𝑁(0,1))

2

𝑁𝑟

𝑤=1

] ~
𝜎2

2
(𝜑1)                                                             (C. 7.6) 

 

From Lemma 1 it follows that ‖𝐧1‖F
2 is a random variable where (φ1)~χ2(2Nr) is χ2 distributed 

with 2Nr degrees of freedom. The random variable (φ1)~Γ(shape = Nr, scale = 2) is also 

Gamma distributed with a shape of Nr and a scale of 2. In order to get the sphere decoder initial 

radius r we need to set 
σ2

2
(φ1) ≤ r2, thus (φ1) ≤

2r2

σ2
. Therefore, we can set the probability that 

the Gamma distributed random variable φ1 is always less than or equal to 
2r2

σ2
. Prob(φ1 ≤

2r2

σ2
) =

ε where ε → 1. In our case, we set ε = 0.995 for 16-QAM and 0.9999 for 64-QAM. This implies 

that Prob(φ1 ≤ Pε) = ε. So, we will find the 99.5% or 99.99% percentile value Pε for the Gamma 

distributed random variable φ1. Then we derive the sphere decoder initial radius squared as: 

 

𝑟2 =
σ2

2
Pε                                                                                                                                           (C. 7.7) 

         

But we know that σ2 =
Nt

γ̅
. This derivation proves that even though Golden code is a 2-timeslot 

scheme, the fixed initial radius is only dependent on the first timeslot, as shown in (C.7.6). Hence 

the single timeslot initial radius formulas in literature may be applied in SD-SDS. It also proves 

that as the average SNR γ̅ → 0 dB then r2 approaches a large value based on (C.7.7) since r2 ∝
1

γ̅
. 

4.2 Adaptive Initial Radius 

In this section we present a Golden Code 2-timeslot deep neural network (DNN) SD-SDS radius 

predictor by extending the single timeslot DNN SD radius predictor found in [16] to a 2-timeslot 

DNN. Our DNN SD-SDS radius predictor has inputs from both timeslots 1 and 2. The inputs are 

stacked into a vector of size 2𝑁𝑟(𝑁𝑡 + 1) as shown in (C.8)  

 

𝒗 = [(𝒚1)𝑇 , 𝑣𝑒𝑐(𝑯1)𝑇, (𝒚2)𝑇, 𝑣𝑒𝑐(𝑯2)𝑇]                                                                                      (C. 8) 

 

The entries (𝒚𝑖)
𝑇 , 𝑖 ∈ [1: 2], 𝑙 ∈ [1: 𝑁𝑟] are the 𝑁𝑟-dimensional received signal row vectors from 

(C.1). The entries 𝑣𝑒𝑐(𝑯𝑖)
𝑇, 𝑖 ∈ [1: 2]  are the vectorized channel matrix entries from (C.1). We 
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then convert the complex-valued vector in (C.8) into a real-valued matrix 𝚯 ∈ ℝ2×4𝑁𝑟(𝑁𝑡+1) as 

shown in (C.9) from [26] 

 

𝚯 = (
ℜ(𝒗) −ℑ(𝒗)

ℑ(𝒗) ℜ(𝒗)
)                                                                                                                  (C. 9) 

              

Since this is supervised learning, the offline training of the DNN is done with an output label in 

the form of the distance squared of the lattice point closest to the upper half of the received signal 

vector z. This translates to the closest lattice radius to the upper half of the received signal vector 

z. The radius is found from the SD-SDS assisted ML detector output distances for each possible 

combination of the 4 M-QAM symbols. The radius or distance squared for the lattice point with 

the smallest distance from the received signal vector is computed in (C.10) [16] 

 

𝑟𝑘
2 = ‖𝒛 − 𝑹̃𝒖𝑘‖

𝐹

2
                                                                                                                             (C. 10) 

          

where 𝒖𝑘 is the 𝑘𝑡ℎ smallest radius lattice point found inside the hyper-sphere of radius r2. The 

initial radius used for the SD-SDS is based on the derived fixed initial radius in (C.7.7) of this 

paper. The radii or distances squared for the candidate lattice points are sorted in ascending order 

as follows: 𝑟1
2 < 𝑟2

2 < 𝑟3
2 < ⋯ < 𝑟𝐾 

2 [16], where 𝐾 is a large number of candidates, especially at 

lower SNR as shown in (C.7.7). The smallest radius squared is loaded into a 1-dimensional vector 

r=[𝑟1
2] and is used as the output label data for the input training data generated using (C.8) and 

(C.9).  

 

We only select one radius as the output label because during training we realized that because SD-

SDS is a lower complexity detection algorithm relative to SD, sometimes there is only one lattice 

point that lies within the hypersphere radius. The number of lattice points found inside the 

hypersphere fluctuates from one-to-many candidates. To collect as many training data points as 

possible, we select all possible number of lattice points from 1 point to the largest possible number. 

The input and output training data are normalized or scaled into the interval [0,1].  The scaling for 

the input feature data 𝑋 is carried out using the formula 𝑋 = (
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
)  per input feature. 
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𝑋𝑚𝑖𝑛 is the smallest feature value over all training SNR values and 𝑋𝑚𝑎𝑥 is the highest feature 

value over all training SNR values.   

 

The DNN in Table C.1 is trained from 30dB to 2dB SNR range from the highest SNR value to 

the lowest. The output label data  𝑌 is scaled using the formula 𝑌 = (
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
). 𝑌𝑚𝑎𝑥 is the 

maximum radius squared value of the lattice points and 𝑌𝑚𝑖𝑛 is the minimum radius squared value 

over the whole SNR training range. From experimentation, we observe that the output linear 

activation function used in [16] yields negative radiuses. This motivates us to use a bounded 

activation function such as the Sigmoid activation function since the radius values cannot be 

negative and further to that, the radius values do get quite large at low average SNR which 

negatively affects the training performance of the DNN. The training data is then used to train the 

neural network in Table C.1 to minimize the mean squared error loss function using the ADAM 

optimizer [27]. 

Table C. 1: DNN Radius Predictor Architecture 

Layer Parameter Description 

Flatten 1 × 2 × 4𝑁𝑟(𝑁𝑡 + 1) input data dimension 

(Input-Layer) Dense+LeakyReLU 8 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 

Dropout Probability of 0.5 

(Hidden-Layer) Dense+LeakyReLU 8 neurons. LeakyReLU slope of 0.3 

BatchNormalization void 

Dropout Probability of 0.5 

(Output-Layer) Dense+Sigmoid 1 neuron 

Batch Size=1829, Learning Rate=0.0076, Seed Value=16 and Maximum Epochs=4000 
 

We notice from observation that the DNN architecture is sensitive to the input Matrix or Vector 

shape or size. This implies that the DNN architecture in Table C.1 is valid for a 2 × 4 MIMO 

configuration since our training is based on this MIMO configuration. The baseband modulation 

schemes used in training the DNN in Table C.1 are the 4-QAM, 8-QAM, 16-QAM and 64-QAM 

data symbols. For any other MIMO configuration and modulation schemes, a new architecture 

will need to be selected and trained. During operation, the DNN in Table C.1 will be used as an 

adaptive initial radius squared predictor based on the normalized instantaneous received signal 

vectors and wireless channel matrices from timeslot 1 and 2 as per (C.8) and (C.9). The predicted 

output radius squared from the DNN in Table C.1 is de-normalized back to the initial radius 
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squared original scale. The formula used for de-normalizing the predicted radius squared is 

𝑟2 = (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) × 𝑟𝑝𝑟𝑒𝑑
2 + 𝑌𝑚𝑖𝑛 where 𝑟𝑝𝑟𝑒𝑑

2  is the normalized predicted radius squared in 

the range [0,1] and 𝑟2 is the de-normalized predicted radius squared. 

5 Golden Code SD-SDS Deep Learning Algorithms 

This section is dedicated to exhibiting the algorithms developed to lower complexity in Golden 

code SD-SDS detection. Section 5.1 ventilates the SD-SDS-Radius-DNN algorithm that aims to 

lower the detection complexity of SD-SDS at mid-to-low SNR. This algorithm uses the adaptive 

initial radius DNN predictor, in Table C.1, to predict the SD-SDS initial radius based on the 

instantaneous channel conditions as per [16]. Section 5.2 exhibits the novel SD-SDS-DNN 

algorithm that executes the SD-SDS-Radius-DNN algorithm under unfavorable instantaneous 

channel or noise conditions and the QR decomposition sub-optimal detector is preferred in 

favorable instantaneous channel and noise conditions. The SD-SDS-DNN algorithm lowers the 

detection complexity of the SD-SDS at low SNR by preferably running the low complexity QR 

decomposition sub-optimal detector under favorable instantaneous channel and noise conditions. 

 

5.1 SD-SDS-Radius-DNN Algorithm 

SD-SDS-Radius-DNN algorithm: 

Input: 𝒚1, 𝒚2, 𝑯1, 𝑯2, 𝒛, 𝑹̃, ΩM, 𝛾̅ 

Output: 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 

1. 𝑆𝑞 = 𝑆𝐷𝑆(𝒛, 𝑹,̃ ΩM) ∀𝑞 ∈ [1: 4] 

2. 𝐼𝑓 γ̅ > 𝛾𝑡 𝑇ℎ𝑒𝑛 

a. r2=
σ2

2
P𝜀 

b. 𝑐𝑒𝑥𝑖𝑡 = 0 

3. 𝐸𝑙𝑠𝑒  

a. Stack 𝒚1, 𝒚2, 𝑯1, 𝑯2 entries as shown in (C.8) and (C.9) to obtain 𝚯 

b. Feed 𝚯 to the trained DNN in Table C.1 to get the radius squared prediction 

r2 = 𝐷𝑁𝑁𝑟𝑎𝑑𝑖𝑢𝑠(𝚯) 

c. 𝑐𝑒𝑥𝑖𝑡 = 4 

4. 𝑐 = 0 

5. Implement sphere decoding with initial radius r2 

6. 𝐼𝑓 𝐷𝑠𝑝(𝒛, 𝑹̃, 𝑆𝑞 , 𝑟2) ≠ 𝑛𝑢𝑙𝑙 𝑂𝑅 𝑐 = 𝑐𝑒𝑥𝑖𝑡 𝑇ℎ𝑒𝑛 

a. GO TO Step 8 

7. 𝐸𝑙𝑠𝑒 

a. 𝑐 = 𝑐 + 1 
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b. 𝑟2 = 𝑟2 ∗ 2 

c. GO TO Step 5 

8. 𝐼𝑓 𝐷𝑠𝑝(𝒛, 𝑹̃, 𝑆𝑞 , 𝑟2) ≠ 𝑛𝑢𝑙𝑙 𝑇ℎ𝑒𝑛 

a. 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 = 𝐷𝑠𝑝(𝒛, 𝑹̃, 𝑆𝑞 , 𝑟2) 

9. 𝐸𝑙𝑠𝑒 

a. 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 = 𝐷𝑠𝑢𝑏(𝒚1, 𝒚2, 𝑯1, 𝑯2, γ̅) 

10. 𝐸𝑛𝑑 

where 𝐷𝑠𝑝(. ) is the SD algorithm as implemented in [15], 𝐷𝑠𝑢𝑏(. ) is the sub-optimal detector 

of M-QAM symbols when the SD algorithm finds no lattice points candidates. 𝛾𝑡 is the average 

SNR threshold below which the adaptive initial radius DNN algorithm is activated. 𝛾𝑡 is defined 

as 11 dB for 16-QAM and 19 dB for 64-QAM. The SD-SDS algorithm has low detection 

complexity at high SNR and higher detection complexity at lower SNR values as stated in [15]. 

The values 11 dB and 19 dB are found via experimentation after observing that the SD-SDS-

Radius-DNN algorithm effectively reduces complexity below a specific average SNR threshold. 

The 16-QAM case was found to be effective from 11 dB downwards and for 64-QAM it was 

found to lower detection complexity from 19 dB downwards. In this paper, we are targeting the 

high detection complexity at lower SNR values for SD-SDS. Therefore, the thresholds basically 

determine when the adaptive initial radius predictor must take effect and reduce detection 

complexity. 𝑆𝐷𝑆(. ) is the sorted detection subset algorithm as detailed in Step 3 of Section 3. 

𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 are the decoded M-QAM symbol indices. 

 

The SD-SDS-Radius-DNN algorithm is a modified version of the algorithm in [16]. The SD-

SDS-Radius-DNN algorithm is modified to suit the SD-SDS context of having only 1 predicted 

radius squared output. This means that if no lattice point candidates are found within the 

predicted radius squared of the hypersphere, we need a way to increase the hypersphere radius 

and perform the sphere-decoding again. We are inspired by the idea in [17] of iteratively 

dividing the hypersphere radius by 2 and feeding the updated radius to a DNN to predict the 

number of lattice points inside a hypersphere. In our case, we do the opposite; if we do not find 

lattice point candidates inside the hypersphere, we increase the radius squared by multiplying it 

by a factor of 2 until we reach a pre-determined iteration limit of 5 set as 𝑐𝑒𝑥𝑖𝑡 = 4. The 

𝑐𝑒𝑥𝑖𝑡 limit is set via a heuristic method by considering that a high iteration limit leads to higher 

detection complexity or latency. A lower iteration limit leads to sub-optimal BER performance 
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as the sub-optimal detector will be relied on more often. The algorithm also has the DNN 

prediction of the initial radius squared only done below a certain average SNR threshold since 

SD-SDS has a high detection complexity at lower SNR values whilst at higher SNR values, it 

has low detection complexity. When the SD-SDS-Radius-DNN algorithm fails to find lattice 

point candidates inside the hypersphere of a pre-determined radius squared, the LMMSE 

estimator 𝒙̂𝑖 = (𝑯𝑖
𝐻𝑯𝑖 + 𝜎2𝑰𝑁𝑡

)
−1

𝑯𝑖
𝐻𝒚𝑖 𝑖 ∈ [1: 2] from [16] is used as a sub-optimal detector 

for Golden code symbol estimates. The vector 𝒙̂𝑖 is the sub-optimally estimated transmitted 

Golden code symbol vector for timeslot 𝑖. The 4 square M-QAM symbols conveyed by these 

estimated Golden code symbols are then found using expression (C.11.1) to (C.11.2) which are 

adapted from [14] 

 

𝑥̂2𝑘−1 =
√5

(𝜃 − 𝜃̅)
{𝜃

𝒙̂2[𝑘 − 1]

𝛼̅
− 𝜃̅

𝒙̂1[𝑘 − 1]

𝛼
}                                                                    (C. 11.1)  

                              

𝑥̂2𝑘 =
√5

(𝜃 − 𝜃̅)
{
𝒙̂1[𝑘 − 1]

𝛼
−

𝒙̂2[𝑘 − 1]

𝛼̅
}                                                                                 (C. 11.2) 

 

where 𝑘 ∈ [1: 2].        

Therefore, we can search for the symbol indices that minimize the following Euclidean distances 

squared based on (C.12) for each estimated 𝑥̂𝑞 square M-QAM symbol. 

 

 𝑖̂𝑞 = 𝑎𝑟𝑔𝑚𝑖𝑛 (|𝑥̂𝑞 − 𝑢𝑖|
2

) , ∀ 𝑖 ∈ [1: 𝑀], 𝑢𝑖 ∈ Ω𝑀                                                                  (C. 12) 

 

5.2 SD-SDS-DNN Novel Algorithm 

The SD-SDS-DNN algorithm uses the instantaneous channel conditions and received signal 

vectors to predict, using a DNN, whether the sub-optimal QR decomposition M-QAM symbol 

estimates, found in Step 1 of the SD-SDS algorithm in Section 3, are good enough to be used as 

the actual transmitted symbols without performing the SD-SDS-Radius-DNN based search. The 

output of the DNN is a probability value in the range [0,1] that is used to determine whether the 

channel conditions and instantaneous noise values in the received signal vectors are good 
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enough to directly output the transmitted M-QAM symbols from the QR decomposition sub-

optimal detector. If the probability is greater than a specific threshold, then the QR 

decomposition sub-optimal detector output is taken as the transmitted symbols. If it is less, then 

the more complex SD-SDS-Radius-DNN based search is performed.  

 

Let us define the proposed DNN which predicts the channel condition state probability based 

on the instantaneous channel conditions and noise statistics. We define the DNN as 

 

 𝑝 = Φ(𝝅, 𝝉)                                                                                                                                       (C. 13) 

 

where 𝑝 ∈ [0,1] is the probability that the channel conditions are sufficient to use the QR 

decomposition sub-optimal detector estimated M-QAM symbols as the transmitted M-QAM 

symbols. The function Φ(∙) is the DNN channel condition state predictor which takes the input 

vector 𝝅 ≜ [𝒛̂𝑅 , 𝒛̂𝐼 , 𝒓̃1
𝑅 , 𝒓̃1

𝐼 ] ∈ ℝ28 which is a combination of the modified received signal vector 

in (C.5) and the upper triangular matrix 𝑹̃1. The entries of the vector 𝝅 are real valued as the 

DNN function approximator can only take real numbers. We define 𝒛̂𝑅 ≜ (ℜ(𝒛[0:𝑁𝑟)))
𝑇

, 𝒛̂𝐼 ≜

(ℑ(𝒛[0:𝑁𝑟)))
𝑇

, 𝒓̃1
𝑅 ≜ 𝑣𝑒𝑐 (ℜ(𝑹̃1))

𝑇

 and 𝒓̃1
𝐼 ≜ 𝑣𝑒𝑐 (ℑ(𝑹̃1))

𝑇

. The notation 𝒛[0:𝑁𝑟) means 

that we take the first 𝑁𝑟 elements of the vector 𝒛 since the last 𝑁𝑟 elements are just noise without 

any signal. With regards to the upper triangular matrix 𝑹̃1, we only take the non-zero real valued 

elements of the matrix entries. The DNN input vector 𝝅 is a 28-dimensional vector because the 

DNN architecture in Table C.2 is trained for a fixed MIMO configuration of 𝑁𝑡 = 2 and 𝑁𝑟 =

4. For any other MIMO configuration the DNN architecture in Table C.2 will change and will 

need to be re-trained. The vector 𝝉 is a vector of all hyperparameters that need to be tuned during 

the training phase of the DNN.  

 

The DNN function approximator Φ(∙) has an architecture shown in Table C.2. 

Table C. 2: DNN Channel Condition State Predictor Architecture 

Layer Parameter Description 

Input (28,) 28 dimensional input vector 𝝅 

(Input Layer) Dense+LeakyReLU 𝑁𝑖 neurons. LeakyReLU slope of 0.3 



 

123 
 

Layer Parameter Description 

BatchNormalization void 

Dropout Probability of 0.5 

(Hidden Layer) Dense+LeakyReLU 𝑁ℎ neurons. LeakyReLU slope of 0.3 

BatchNormalization void 

Dropout Probability of 0.5 

(Output Layer) Dense+Sigmoid 1 neuron 

Batch Size=1800, Learning Rate=0.00009, Seed Value=16 and Maximum Epochs=2000 

 

where 𝑁𝑖 is the number of input layer neurons and 𝑁ℎ is the number of hidden layer neurons. 

For the architecture in Table C.2 to be useful, we need to train the DNN architecture with 

appropriate training samples and test the DNN before deploying it. The next section attends to 

this. 

 

5.2.1 DNN Training and Testing Phase 

The objective of this phase is to tune the weights and biases of the DNN function which are 

found in the vector 𝝉. The DNN function in Table C.2 is trained using approximately 10 000 

samples of data over an average SNR range of [0,21] dB for 16-QAM modulation and [10,28] 

dB for 64-QAM modulation. The DNN is trained from the highest average SNR value to the 

lowest average SNR value. The way the training data is collected is based on the following 

pseudocode: 

 

Training Pseudocode: 

###Start Comment ### 

### 𝑋 is the input sample array and 𝑌 is the output label sample array  

###end comment### 

 

Step 1: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑎𝑟𝑟𝑎𝑦𝑠 𝑋 = [], 𝑌 = [].  
Step 2: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0, 𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 = 10000 

Step 3: 𝐼𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑠𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 𝑇ℎ𝑒𝑛 

a):𝐼𝑓 𝑥̂1 = 𝑥1 𝐴𝑁𝐷 𝑥̂2 = 𝑥2 𝐴𝑁𝐷 𝑥̂3 = 𝑥3 𝐴𝑁𝐷 𝑥̂4 = 𝑥4 𝑇ℎ𝑒𝑛 

i) 𝑋[𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 𝝅  

ii) 𝑌[𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 1 

b) 𝐸𝑙𝑠𝑒 

i) 𝑋[𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 𝝅  

ii) 𝑌[𝑐𝑜𝑢𝑛𝑡𝑒𝑟] = 0 

     𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

     𝐺𝑂𝑇𝑂 𝑆𝑡𝑒𝑝 3 
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Step 4: 𝐸𝑙𝑠𝑒 

     𝐺𝑂𝑇𝑂 𝑆𝑡𝑒𝑝 5 

             

Step 5: 𝐸𝑛𝑑 
 

The idea is that when the instantaneous channel conditions are very good, then the condition in 

Step 3a) can be easily met and the training output label value is set to 1. When the instantaneous 

channel conditions are not favorable then the condition in 3a) is most likely not met and the 

output label value is set to 0. The reasoning is that when the instantaneous fading channel 

conditions are good and instantaneous noise power is low, the QR decomposition M-QAM 

symbol estimates 𝑥̂𝑞 , ∀𝑞 ∈ [1,4] will be a good enough estimate for the actual transmitted M-

QAM symbols 𝑥𝑞 , ∀𝑞 ∈ [1,4]. After collecting the input and output training data, since this is a 

supervised learning problem, we trained the DNN and realized that the validation accuracy of 

the DNN under test conditions was in excess of 99% for high and low SNR values. In the mid-

SNR range, the validation accuracy went as low as 36%.  

 

Upon inspection of the training data, we realized that the collected training samples were 

skewed. The output label distribution was not evenly distributed between the 0 state and 1 state 

for both high and low average SNR values. Figs. C.1 and C.2 illuminate the distribution of the 

output label states for 16-QAM and 64-QAM, respectively. 
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Fig. C. 1 16-QAM skewed output label distribution for the training data. 

 

Fig. C. 2 64-QAM skewed output label distribution for the training data. 
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This explained why the DNN was underperforming in the mid-SNR range whilst performing in 

the high and low SNR region. This is because the DNN became lazy to learn and decided to 

memorize the output state and retain the output predicted state on one state depending on 

whether it is the low SNR or high SNR region. In the high SNR region, the DNN will constantly 

output a predicted state of 1 because over 99% of the output labels have values of 1.  The 

objective is to maximize the validation accuracy and the DNN can achieve this by just outputting 

a predicted state of 1 for the high SNR case. The same logic applies for the low SNR case. 

 

To force the DNN to learn during training, we decided to perform over-sampling of the minority 

state/class and under-sampling of the majority state/class for the full SNR range. The over-

sampling is performed using the synthetic minority over-sampling technique (SMOTE) [29] and 

the under-sampling is performed using randomized under-sampling of the majority class [29]. 

The SMOTE works by randomly selecting a minority class/state feature sample in the training 

data and then using the 𝐾-nearest neighbor (KNN) algorithm to select the 𝐾 nearest neighbors 

to that selected feature sample. It then randomly selects one nearest neighbor from the selected 

𝐾 neighbors and randomly creates a new synthetic feature sample point on the line joining the 

chosen nearest neighbor feature sample and the originally selected feature sample on the ℝ28 

dimensional cartesian plane. The process is repeated until a desired sample size of the minority 

class is achieved. The under-sampling is performed by randomly selecting a feature sample in 

the majority class/state and then deleting it from the training samples. This is repeated until a 

desired ratio between the majority class and minority class is achieved. In our case, we 

performed this until the majority class was approximately 60% of the training sample size and 

the minority class 40% for the full average SNR range for both 16-QAM and 64-QAM training 

data. 

 

We then went ahead to train the DNN architecture in Table C.2 using this modified training data 

with 25% of the training samples being used for testing purposes and 75% for training. The 

input feature training data in array 𝑋 was scaled into the range [0,1] using the methodology 

explained in Section 4.2. The loss function selected for the optimization of the DNN 

hyperparameters was the binary cross entropy loss function with the validation accuracy used 

as the metric to measure performance. The ADAM optimizer [27] was used to perform the 

optimization of the DNN weights and biases in the vector 𝝉 by comparing the output of the DNN 
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to the target values in array 𝑌. During the testing phase, the DNN is fed multiple test vectors 𝝅 

from the test samples and the output of the DNN predicts a probability value in the range [0,1]. 

Table C.3 shows the probability thresholds 𝑝𝑡 and number of neurons used in the architecture 

for the case of 16-QAM and 64-QAM. The probability thresholds are used to determine the 

channel condition state. If the predicted probability exceeds a given probability threshold 𝑝𝑡, 

then the channel condition state is 1. If the predicted probability is less than or equal to the 

probability threshold 𝑝𝑡, then the channel condition state is 0. 

Table C. 3: 16-QAM and 64-QAM DNN Channel Condition State Predictor Parameters 

 16-QAM Parameters 64-QAM Parameters 

Probability 

Thresholds 
𝛾̅ ≤ 9 𝑑𝐵 𝛾̅ > 9 𝑑𝐵 𝛾̅ ≤ 16 𝑑𝐵 𝛾̅ > 16 𝑑𝐵 

𝑝𝑡 = 0.5 𝑝𝑡 = 0.9 𝑝𝑡 = 0.5 𝑝𝑡 = 0.9 

Number of 

Neurons 
𝑁𝑖 = 160 𝑁ℎ = 160 𝑁𝑖 = 64 𝑁ℎ = 64 

 

5.2.2 SD-SDS-DNN Algorithm Explained 

The DNN function approximator in Table C.2 is used to predict when the QR decomposition 

M-QAM symbol estimates can be used as appropriate estimates for the transmitted M-QAM 

symbols. The SD-SDS-DNN algorithm combines this DNN function approximator in Table C.2, 

the SD-SDS algorithm developed in [15] and the SD-SDS-Radius-DNN algorithm. The SD-

SDS-DNN algorithm is presented as follows: 

 SD-SDS-DNN algorithm: 

Input: 𝒚1, 𝒚2, 𝑯1, 𝑯2, 𝒛, 𝑹̃, 𝑹̃1, ΩM, 𝛾̅ 

Output: 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 

 

1. 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 =getQRDecompositionSymbolEstimates() from Step 1 of SD-SDS 

algorithm in Section III 

2. 𝐼𝑓 𝛾̅ ≤ 𝜁𝑡  𝑇ℎ𝑒𝑛 

a. 𝒛̂𝑅 = (ℜ(𝒛[0:𝑁𝑟)))
𝑇

, 𝒛̂𝐼 = (ℑ(𝒛[0:𝑁𝑟)))
𝑇

, 𝒓̃1
𝑅 = 𝑣𝑒𝑐 (ℜ(𝑹̃1))

𝑇

 and 𝒓̃1
𝐼 =

𝑣𝑒𝑐 (ℑ(𝑹̃1))
𝑇

 

b. 𝝅 = [𝒛̂𝑅 , 𝒛̂𝐼 , 𝒓̃1
𝑅 , 𝒓̃1

𝐼 ] 

c. 𝑝 = Φ(𝝅, 𝝉) 

d. 𝐼𝑓 𝑝 > pt 𝑇ℎ𝑒𝑛 

i. 𝐺𝑂𝑇𝑂 𝑆𝑡𝑒𝑝 4 

e. 𝐸𝑙𝑠𝑒 
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i. 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 =run SD-SDS-Radius-DNN Algorithm 

3. 𝐸𝑙𝑠𝑒 

a. 𝑖1̂, 𝑖̂2, 𝑖̂3, 𝑖̂4 =run SD-SDS Algorithm 

4. 𝐸𝑛𝑑 

From the SD-SDS-DNN algorithm we can see that when the average SNR 𝛾̅ exceeds the 

threshold 𝜁𝑡 the SD-SDS algorithm from [15] is executed. This is because at high SNR values 

the detection complexity of the SD-SDS algorithm is very low. The objective of this paper is to 

reduce the detection complexity of the SD-SDS algorithm at low SNR values. At lower SNR 

values, 𝛾̅ ≤ 𝜁𝑡 , the SD-SDS-DNN algorithm executes the DNN channel predictor in Table C.2 

that is used to select between the very low complexity sub-optimal QR decomposition detector 

and the execution of the low complexity near-optimal SD-SDS-Radius-DNN detector. The 

average SNR thresholds for 16-QAM and 64-QAM modulation are 𝜁𝑡 = 6 dB and 𝜁𝑡 = 19 dB, 

respectively. The thresholds pt and 𝜁𝑡 are found using a heuristic method. 

 

From the SD-SDS-DNN algorithm we observe that when the predicted probability from the 

DNN exceeds the probability threshold pt, as shown in Table C.3, then the SD-SDS-Radius-

DNN algorithm does not get executed at all. The estimated transmitted M-QAM symbols come 

directly from the very low complexity QR decomposition sub-optimal detector. If the predicted 

probability is less than or equal to the probability threshold pt, then the SD-SDS-Radius-DNN 

algorithm gets executed as the QR decomposition sub-optimal detector output is deemed 

unreliable by the DNN predictor. 

6 Complexity Analysis of Proposed Algorithms 

In this section, we will deal with the detection complexity analysis of the three different Golden 

code detection algorithms discussed here and in literature. The detection complexity is defined 

in various ways using different metrics. We will extend the detection complexity metric of 

evaluating complexity using the number of complex-valued operations [30] performed by a 

detection algorithm. Since some of the algorithms rely on deep neural networks, which only 

process real values, we will only consider complexity analysis of real-valued floating-point 

operations (FLOPS) [14]. The real-valued binary operators of interest are the multiplication, 

addition, subtraction, and division as per [14]. We also neglect the sub-optimal detector's 

detection complexity since it is only executed 0.5% of the time for 16-QAM and 0.01% for 64-
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QAM Monte-Carlo simulations. Its contribution to the average detection complexity is 

marginal. The DNN complexity analysis of the offline training and data collection is ignored 

because offline training is done only once [16]. We are only performing the DNN complexity 

analysis for the online decoding process. 

 

In [16], the detection complexity metric used is the decoding time and order of execution, whilst 

[17] uses the number of lattice points inside the hypersphere and the average processing time 

for the decoding process. Our complexity analysis is based on the number of floating-point 

operations; hence we cannot use any of the complexity results in [16] and [17] as a benchmark 

against our detection complexity. Our complexity analysis is relative between the Alamouti 

linear ML, Golden code SD, SD-SDS, and SD-SDS-DNN algorithms for the 2 × 4 MIMO 

configuration. In [15], they use the number of Euclidean distance calculations as the metric for 

the complexity analysis of SD-SDS. This again is different from our metric and makes the results 

in [15] not comparable to ours. 

 

The detection complexity of the three Golden code detection algorithms, SD, SD-SDS, and SD-

SDS-DNN is determined using simulations. The results are exhibited in Figs. C.3 and C.4. The 

detection complexity of the Alamouti STBC linear ML detector is also exhibited in Figs. C.3 

and C.4. The Golden code detection algorithms are evaluated in a fast-fading wireless 

environment; however, it is interesting to see its performance against the Alamouti STBC in a 

block-fading wireless channel. The reason for this is that we aim to achieve lower detection 

complexity relative to the low complexity Alamouti linear ML detector which performs 

optimally in block-fading wireless channels [4]. The Alamouti STBC scheme’s modulation 

order is selected as 256-QAM so that the spectral efficiency of the scheme matches that of the 

16-QAM Golden code STBC scheme which is 8 bits/s/Hz. The Alamouti STBC scheme’s 

modulation order is also selected as 4096-QAM so that the spectral efficiency of the scheme 

matches that of the 64-QAM Golden code STBC scheme which is 12 bits/s/Hz. This makes the 

comparison fair between the two schemes as we want to see the detection complexity of the two 

competing STBC schemes for the same achieved spectral efficiency. 
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As can be seen in Fig. C.3, the proposed SD-SDS-DNN algorithm outperforms the SD-SDS 

algorithm developed in [15] at low SNR. We observe that the detection complexity is identical 

between 6 dB and 18 dB because the SD-SDS algorithm is executed when the average SNR 

exceeds the 6 dB threshold as per the SD-SDS-DNN algorithm. This is because the SD-SDS 

algorithm exhibits low detection complexity at high SNR values. The low complexity SD-SDS-

Radius-DNN algorithm, that runs within the SD-SDS-DNN algorithm, only has an opportunity 

to be executed when the average SNR is equal to or less than 6 dB. From 6 dB and below, the 

SD-SDS-DNN algorithm exhibits lower detection complexity relative to the SD-SDS algorithm. 

This is because the low complexity QR decomposition detector or the SD-SDS-Radius-DNN 

algorithm are being selected as M-QAM symbol detectors depending on instantaneous channel 

conditions and noise. In Table C.4, we get the insight of the percentage distribution of how many 

times the predicted transmitted symbols were determined by the sub-optimal QR decomposition 

method, SD-SDS decoder or the SD-SDS-Radius-DNN decoder, for 16-QAM modulation. 

 

 

 

 

 

Table C. 4: Estimated Transmitted Symbols Decoder Execution Percentage Distribution 

for 16-QAM 

SNR (dB) 0 3 6 9 12 15 18 

SD-SDS-Radius-DNN 

Decoder (%) 

31.4 31.6 36.7 0 0 0 0 

Sub-optimal QR 

Decomposition Decoder (%) 

68.6 68.4 63.3 0 0 0 0 

SD-SDS Decoder (%) 0 0 0 100 100 100 100 

 

It is clear from Table C.4 that the SD-SDS algorithm is solely used at high SNR for its low 

detection complexity. For 6 dB SNR and below, the QR decomposition sub-optimal detector is 

used in most cases to predict the transmitted symbols compared to the SD-SDS-Radius-DNN 

decoder. Hence the 75% reduction in detection complexity at low SNR relative to the SD-SDS 

decoder, as shown in Fig. C.3, is due to the mix in the low complexity detection of the QR 

decomposition sub-optimal detector and the SD-SDS-Radius-DNN decoder. 
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Fig. C. 3 Complexity analysis of 𝟐 × 𝟒 MIMO 16-QAM Golden Code detection 

algorithms versus 256-QAM Alamouti detection algorithm 

In Fig. C.3, we also notice that the SD-SDS-DNN algorithm has a detection complexity that is 

4 times greater than that of the Alamouti STBC linear ML detector, at low SNR. At high SNR, 

the SD-SDS-DNN algorithm has 90% lower detection complexity relative to the Alamouti 

STBC linear ML detector. This shows that Golden code has a future in practical MIMO 

applications since the detection complexity has been reduced such that it is comparable to that 

of the Alamouti linear ML detector. With regards to the traditional SD algorithm, it is shown in 

Fig. C.3 that its detection complexity is the highest amongst the STBC detection algorithms 

discussed in this paper. 

 

In Fig. C.4, the proposed SD-SDS-DNN algorithm outperforms the SD-SDS algorithm 

developed in [15] at low SNR. We observe that the complexity is identical between 19 dB and 

25 dB because the SD-SDS algorithm is executed as a detector of choice above the 19 dB 

average SNR threshold as per the SD-SDS-DNN algorithm. Below 19 dB, the instantaneous 

channel and noise conditions are used to select between the very low complexity sub-optimal 

QR decomposition detector and the low complexity SD-SDS-Radius-DNN detector.  When the 

instantaneous channel and noise conditions are very good, the DNN channel condition predictor 
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in Table C.2 selects the very low complexity QR decomposition detector as a detector of choice. 

When the instantaneous channel conditions are unfavorable, the more complex SD-SDS-

Radius-DNN detector is executable as it produces reliable symbol estimates even when the 

instantaneous channel and noise conditions are unfavorable. 

 

In Table C.5, we exhibit the percentage distribution of how many times the predicted transmitted 

symbols were determined by the sub-optimal QR decomposition method, SD-SDS decoder or 

the SD-SDS-Radius-DNN decoder, for 64-QAM modulation.  

 

Fig. C. 4 Complexity analysis of 𝟐 × 𝟒 MIMO 64-QAM based Golden code detection 

algorithms versus 4096-QAM Alamouti detection algorithm. 

Table C. 5: Estimated Transmitted Symbols Decoder Execution Percentage Distribution 

for 64-QAM 

SNR (dB) 10 13 16 19 22 25 

SD-SDS-Radius-DNN Decoder 

(%) 

0.5 1.6 1.1 99.8 0 0 

Sub-optimal QR 

Decomposition Decoder (%) 

99.5 98.4 98.9 0.2 0 0 

SD-SDS Decoder (%) 0 0 0 0 100 100 
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It is clear from Table C.5 that the SD-SDS algorithm is solely used at high SNR for its low 

detection complexity. For 16 dB SNR and below, the QR decomposition sub-optimal detector 

is used at least 98% of the time to predict the transmitted symbols compared to the less than 2% 

utilization of the SD-SDS-Radius-DNN decoder. Hence the 99% lower detection complexity, 

at low SNR, relative to the SD-SDS decoder, as shown in Fig. C.4, is largely due to the low 

complexity detection of the QR decomposition sub-optimal detector. 

 

From Fig. C.4, we observe that the proposed SD-SDS-DNN algorithm outperforms the 

Alamouti linear ML detector by exhibiting a detection complexity that is 90% lower for the 

greater part of the SNR range. We also observe that the traditional SD algorithm is the most 

computationally complex detection algorithm relative to the STBC detection algorithms 

discussed in this paper. 

 

7 Simulation Results and Discussions 

The Monte-Carlo wireless simulation environment was setup as a 2 × 4 MIMO, where 𝑁𝑡 = 2 

and 𝑁𝑟 = 4, with a wireless channel with Rayleigh frequency-flat fast fading in which the channel 

gain changes per transmission timeslot. The wireless channel transmit-and-receive antennas are 

sufficiently spaced such that the wireless channels are de-correlated. The information symbol 

modulation order used in the simulation was 16-QAM and 64-QAM. The average power 

constraint for the 16-QAM and 64-QAM symbols was set to 1. The SD fixed initial radius 

probability was set to ε=0.995 for 16-QAM and ε=0.9999 for 64-QAM. The Monte-Carlo 

simulation determined the BER performance of the three detection algorithms SD, SD-SDS and 

SD-SDS-DNN for 16-QAM and 64-QAM. We also simulated the BER performance of the 256-

QAM Alamouti STBC scheme within a block-fading wireless channel. We chose the 256-QAM 

constellation for the Alamouti scheme so that the spectral efficiency of the Alamouti STBC and 

16-QAM Golden code schemes were identical. This allowed us to compare the BER performance 

of Alamouti against that of the Golden code STBC. The 64-QAM Golden code STBC produced 

the same spectral efficiency as the 4096-QAM Alamouti scheme. 
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Fig. C. 5 BER for 𝟐 × 𝟒 MIMO 16-QAM Golden Code Sphere Decoding Detection 

Algorithms versus 256-QAM Alamouti Detection 

If we look at Fig. C.5, we see that the proposed SD-SDS-DNN algorithm achieves the same BER 

performance as SD and SD-SDS algorithms from literature for 16-QAM. This means that the 

detection algorithm achieves the objective of lowering the detection complexity of SD-SDS, at 

low SNR, without compromising the BER performance. The Golden code STBC scheme has an 

8 dB signal power gain over the Alamouti STBC scheme at a BER of 10−3 for a spectral efficiency 

of 8 bits/s/Hz. This implies that the Golden code STBC can achieve the same spectral efficiency 

as the Alamouti STBC scheme but at a much higher link reliability and comparable detection 

complexity with the linear ML detector as shown in Fig. C.3. 

 

In Fig. C.6, we see that the proposed SD-SDS-DNN algorithm achieves the same BER 

performance as SD and SD-SDS algorithms from literature for 64-QAM. This means that the 

detection algorithm achieves the objective of lowering the detection complexity of SD-SDS, at 

low SNR, without compromising the BER performance. The Golden code STBC scheme has a 

13 dB signal power gain over the Alamouti STBC scheme at a BER of 10−3 for a spectral 
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efficiency of 12 bits/s/Hz. This implies that the Golden code STBC can achieve the same spectral 

efficiency as the Alamouti STBC scheme but at a much higher link reliability and 90% lower 

detection complexity relative to the linear ML detector as shown in Fig. C.4. 

 

Fig. C. 6 BER simulation results for 𝟐 × 𝟒 MIMO 64-QAM Golden Code Sphere 

Decoding Detection Algorithms versus 4096-QAM Alamouti Detection 

8 Conclusion and Future Work 

The SD-SDS-DNN algorithm was developed in our research to lower detection complexity of 

SD-SDS, at low SNR, whilst maintaining the BER performance. The SD-SDS-DNN algorithm is 

shown to reduce the detection complexity relative to SD-SDS by at least 75%, at low SNR, for 

16-QAM. For 64-QAM, the detection complexity of the SD-SDS-DNN algorithm is at least 99% 

lower than that of SD-SDS at low SNR. This is all achieved whilst maintaining the BER 

performance close to that of SD-SDS and SD from literature. The SD-SDS-DNN algorithm lowers 

the detection complexity of Golden code to the point that it approaches the detection complexity 

of the Alamouti STBC linear ML detector for a spectral efficiency of 8 bits/s/Hz. For a spectral 

efficiency of 12 bits/s/Hz, the SD-SDS-DNN detection complexity is 90% lower than the 

Alamouti linear ML detector detection complexity.  
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In future research, the SD-SDS-DNN algorithm DNN channel condition predictor may be 

replaced with a low computational complexity random forest ensemble decision tree which may 

further reduce detection computational complexity in terms of number of FLOPS. Determination 

of the order of execution of the DNN detection algorithms in terms of inference time will be of 

value from a detection latency point of view. 
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Conclusion 

Channel estimation is an important component of a wireless MIMO receiver. Our study 

concentrated on the training-based channel estimation methods which unfortunately come with 

a training sequence overhead that uses up expensive channel bandwidth. Because of this 

drawback of the training-based channel estimation, our research proposed a transmit power-

sharing equivalent noise power optimization technique, for the USTLD-MIMO system, that 

reduced the number of required pilot training sequences, for channel estimation, without 

compromising the error rate performance. Our study also proposed the use of deep learning, for 

channel estimation, to eliminate the need to have prior knowledge of the training sequence 

matrix, average noise power and the wireless channel covariance matrix as needed by some of 

the traditional training-based channel estimators. The study concluded that a saving of 80% in 

the number of pilot training sequences, required to perform channel estimation without loss in 

error rate performance, was achieved for the case of 16-QAM and 16-PSK modulation in 

USTLD-MIMO. This saving was achieved relative to the traditional LS and MMSE channel 

estimators. 

 

Golden code is a full-rate full-diversity two transmit antenna STBC system that can deliver both 

spatial multiplexing gain and higher link reliability in IoT based low power wireless MIMO 

links. Golden code can also help deliver high data throughputs and high link reliability that is a 

QoS requirement for the next generation wireless networks. However, the Golden space-time 

block code has the drawback of exponential detection complexity which may violate the ultra-

low latency QoS requirement, especially for high-density M-QAM modulation, for next 

generation wireless networks. The exponential detection complexity also implies a very high 

number of FLOPS in decoding transmitted Golden code encoded M-QAM symbols. The high 

number of FLOPS required during decoding has a negative implication when it comes to 

receiver node power consumption, and this is not suitable for battery powered IoT devices. To 

meet the next generation wireless networks ultra-low latency QoS requirement and the low 

power wireless communication needs of IoT devices, our study proposed low complexity 

Golden code analytical and deep learning-based sphere-decoding algorithms. The proposed 

decoding algorithms achieved as much as 70% reduction in decoding latency, for the high-

density M-QAM scenario, relative to the SD-SDS algorithm without loss in error rate 
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performance. For the reduction in number of detection FLOPS, and hence receiver power 

consumption, the proposed Golden code deep learning-based sphere-decoding algorithm 

achieved at most 99% reduction in detection complexity, at low SNR, relative to the SD-SDS 

algorithm whilst maintaining the error rate performance. The SD-SDS algorithm has been 

shown in literature to deliver lower Golden code detection complexity relative to the traditional 

SE-SD algorithm. 

 

For future work, it will be interesting if the following scenarios could be investigated: 

• The USTLD-MIMO bandwidth-efficient channel estimation, in this thesis, is optimized 

for a quasi-static Rayleigh fading wireless channel. It will be interesting to perform the 

optimization over a mobile wireless environment where the user is in motion relative to 

the RAN base station. The wireless fading channel becomes time-selective under the 

mobile conditions due to Doppler shift. It will be interesting to investigate if the number 

of pilot training sequences can be optimized for a time-selective wireless fading channel 

without loss in error rate performance.  

• The USTLD-MIMO deep learning-based blind channel estimator, in this thesis, is 

trained using a wireless channel matrix that is assumed to be known without estimation 

errors. In this thesis, the MMSE wireless channel second order statistics are also assumed 

to be known without estimation errors. These assumptions are not valid for practical 

scenarios as the wireless channel and its covariance matrix will need to be estimated 

which inherently introduces errors. An investigation into the performance of a blind 

USTLD-MIMO deep learning-based channel estimator, trained using an estimated 

wireless channel, will need to be carried out. The deep learning-based wireless channel 

estimator performance needs to be compared to an MMSE channel estimator with an 

estimated wireless channel covariance matrix.  

• The Golden code low complexity deep learning-based decoding algorithm developed to 

lower the number of detection FLOPS, uses a DNN architecture based on artificial neural 

networks (ANN) which rely on FLOPS arithmetic to perform predictions. It will be 

interesting to see if an ensemble random forest decision tree can be used for predictions 

instead of the FLOPS intensive ANN based architecture. An investigation could be 

carried out to find out if the ensemble random forest decision tree can further lower the 
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number of FLOPS required to perform the Golden code detection without loss in error 

rate performance. 

 

 

 

 

 

 

 

 

 

 
 

  


