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Abstract

Measurements of broadband electrostatic wave emissions in conjunction
with particle distributions in the earth’s magnetosphere, have provided mo-
tivation for a number of studies of waves in plasmas with two electron
components. One such wave—the electron-acoustic wave—arises when the
two electron components have widely disparate temperatures (Watanabe &
Taniuti 1977), and has a characteristic frequency that lies between the ion
and electron plasma frequencies. Because of this broadband nature and be-
cause it is predominantly electrostatic, it provides a likely candidate for the
explanation of the electrostatic component of “cusp auroral hiss” observed
in the dayside polar cusp at between 2 and 4 earth radii as well as the broad-
band electrostatic noise (BEN) observed in the dayside polar regions and in
the geomagnetic tail. The electron-acoustic wave and its properties provide
the subjects for much of the investigation undertaken in this thesis.

The thesis is divided into two parts. Part I is concerned with certain
aspects of the linear theory of the electron-acoustic wave and is based on
a kinetic description of the plasma. The dispersion relation for plane elec-
trostatic waves obtained via linearisation of the Vlasov-Poisson system is
studied in detail using analytical and numerical/geometrical techniques, and
conditions under which the electron-acoustic wave arises are expounded.
This work represents an extension of earlier works on Langmuir waves (Dell,
Gledhill & Hellberg 1987) and the electron-acoustic wave (Gary & Tokar
1985).

The effects of electron drifts and magnetization are investigated. These
result, respectively, in a destabilization of the electron-acoustic wave and a
modification of the dispersive properties. In this plasma configuration the
model more closely replicates the conditions to be found in the terrestrial
polar regions. We extend the parameter regimes considered in earlier works
(Tokar & Gary 1984) and in addition, identify another electron sound branch
related to the electron-cyclotron wave/instability.

Effects of ion-beam destabilization of the electron-acoustic wave are also
investigated briefly with a view to explaining BEN in the geomagnetic tail
and also to provide a comparison with the electron-driven instability.

In part II the nonlinear electron-acoustic wave is studied by employing
a warm hydrodynamic model of the plasma components. We first consider
weak nonlinearity and employ the asymptotic reductive perturbation tech-
nique of Washimi & Taniuti (1966) to render the hydrodynamical equations
in the form of simpler evolutionary equations describing weakly-nonlinear
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electron-acoustic waves. These equations admit solitary-wave or soliton so-
lutions which are studied in detail.

Wherever possible we have justified our small amplitude results with full
numerical integration of the original hydrodynamical equations. In so doing
we extended the range of validity of our results to arbitrary wave amplitudes
and also find some interesting features not directly predicted by the small
amplitude wave equations. In this respect we were able to determine the im-
portant role played by the cool-to-hot electron temperature ratio for soliton
existence. This important effect is in accordance with linear theory where
the electron temperature ratio is found to be critical for electron-acoustic
wave existence.

The effects of magnetization on electron-acoustic soliton propagation is
examined. We found that the magnetized electron-acoustic solitons are gov-
erned by a Korteweg—de Vries—Zakharov-Kusnetsov equation. In addition,
it is shown that in very strong magnetic fields ion magnetization can be-
come important yielding significant changes in the soliton characteristics.
Multi-dimensional electron-acoustic solitons, which have greater stability
than their plane counterparts, are also briefly discussed.

Employing a weakly-relativistic hydrodynamic model of the plasma, the
effect of a cool, relativistic electron beam on such soliton parameters as
width, amplitude and speed is studied in detail. Both small- and large-
amplitude solitons are considered. The arbitrary-amplitude theory of Ba-
boolal et al. (1988) is generalised to include relativistic streaming as well
as relativistic thermal effects. The importance of the cool electron (beam)-
to-hot electron temperature in conjunction with the beam speed is pointed
out.

Finally, we derive a modified Korteweg—de Vries (mKdV) equation in an
attempt to establish whether electron-acoustic double layers are admitted
by our fluid model. Although double layers formally appear as stationary
solutions to the mKdV equation, the parameter values required are pro-

hibitive. This is borne out by the full fluid theory where no double layer
solutions are found.
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Part I

Linear theory



We must therefore discover some method of investigation which
allows the mind at every step to lay hold of a clear physical con-
ception, without being committed to any theory founded on the
physical science from which that conception is borrowed, so that
1t is neither drawn aside from the subject in pursuit of analytical
subtleties, nor carried beyond the truth by a favourite hypothesis.
(The Scientific Works of James Clerk Maxwell, Vol. I, p. 156.)



Chapter 1

Introduction to part 1

The study of plasmas dates back to the 19th century when Michael Faraday
investigated electrical discharges through gases. Modern plasma physics,
however, had its beginnings in 1957 and 1958 when the Soviet Sputnik and
American Fzplorer spacecrafts discovered that space near earth is filled with
plasma. At the same time, till then secret research on controlled thermonu-
clear fusion conducted by the U.S., Soviet Union and Europe was revealed
at the Atoms for Peace conference in Geneva, greatly increasing the freely
available information on plasmas.

The richness and diversity of wave modes supportable by plasmas has
provided much of the stimulus for their study. In pace with the ever-
increasing body of experimental and observational data, has been the com-
plexity of plasma models. Nowadays plasmas with multiple ion species (Fried
et al. 1971), multiple electron components (Watanabe & Taniuti 1977),
negative ions (Verheest 1988), positrons (Lominadze, Melikidze & Pataraya
1984, and references cited therein) and charged dust particles (de Angelis,
Formisano & Giordano 1988; Rao, Shukla & Yu 1990) etc. are not uncom-
mon in the literature. This has led to the recognition of an ever-increasing
number of plasma wave modes and instabilities, making a full review an
impossibility in a work such as this.

In this chapter we shall, however, point out some of the applications
of plasma wave theory, with special emphasis on collisionless shock waves,
polar cusp hiss and broadband electrostatic noise (BEN), which have direct
relevance to the electron-acoustic wave/instability. We conclude this intro-
duction with a brief review of pertinent work on the linear electron-acoustic
wave and an outline of the work to be presented in part I.



1.1 Applications of plasma wave theory

Without doubt, one of the most important applications of man-made plas-
mas is the control of thermonuclear fusion reactions, which holds a vast
potential for the generation of power.

The basic problem in achieving corntrolled thermonuclear fusion is to
generate a plasma at very high temperature (with thermal energies at least
in the 10 keV range) and confine its particles long enough for a substantial
number of fusion reactions to take place. The need for the high temperature
comes from the fact that the particles must come sufficiently close together,
~ 10712 cm, for significant wave-function overlap, which requires sufficient
thermal energy to surmount the Coulomb barrier.

Since plasma waves determine the magnetohydrodynamic (MHD) in-
stability time scale, and fusion plasmas are fraught with microinstabilities
and the ensuing turbulence, the understanding of both linear and nonlinear
waves and instabilities has played an important part in the development of
wave theory. Plasma wave heating has also recently come to the forefront,
leading to even more refinement in wave theory as one tries to model success-
fully the scenarios for using plasma waves to raise the plasma temperature
to ignition levels.

Natural plasmas are ubiquitous. Modern astrophysics and especially
radio astronomy have uncovered numerous sources of radiation that are
likely to originate from plasmas. The archetypal Crab nebula is a rich source
of plasma phenomena because it is known to possess a magnetic field. In
addition it contains a visual pulsar. The pulsar, which commonly emits
radiation in the radio-wavelength regime, is a veritable goldmine of plasma
phenomena. Current theories of pulsars generally picture them as rapidly
rotating neutron stars (Gold 1969) with very strong electric and magnetic
fields (Sturrock 1971). Although theories of the pulsar magnetosphere may
differ in certain aspects they all have one common feature: the presence of a
relativistic electron-positron plasma (see Lominadze, Melikdze & Pataraya
(1984) and references cited therein). It is from wave processes in these
plasmas that the radio wave emission is thought to originate (Lominadze et
al. 1984).

In addition to those examples cited above there are numerous other ap-
plications of plasma wave theory, but for want of space we shall not go into
those here. We shall, however, elucidate three of the more important cos-

mic/space applications of plasma waves that are relevant to the application
of electron-acoustic wave theory.



1.2 Collisionless shock waves

In an ordinary gas or aerodynamic shock wave the faster moving fluid par-
ticles in the denser regions of the fluid rush ahead of the others, colliding
with the slower particles ahead of the shock and so bringing these particles
up to the speed of the moving wave. In a collisionless shock, as the name
implies, this process ceases to dominate. In a collisionless shock wave the
collisional process is replaced by the combined effects of wave dispersion and
wave-particle interations (Sagdeev (1966) and references cited therein).

A collisionless shock is defined as one in which the shock width is signif-
icantly less than the characteristic Coulomb collisional mean free path. The
dissipation mechanism which permits such a relatively sharp transition to
be maintained is generally considered to be wave-particle interactions, i.e.
the scattering of plasma particles by fluctuating fields driven to enhanced
amplitudes by plasma instabilities. If it were not for such interactions the
competition between wave dispersion and nonlinearity (see part II) would
lead to the formation of infinitely long trains of solitons. However, given
such dissipation mechanisms the train of solitons is damped leading to the
formation of an oscillatory shock front. The strength of this dissipation
mechanism effectively determines the shock or transition width.

Ness et al (1964), using data collected from the IMP-! spacecraft, de-
tected clear signs that a collisionless shock exists where the solar wind en-
counters the earth’s magnetic field—the so-called bow shock—so providing
the first experimental evidence for this phenomenon. More recent research
has demonstrated that collisionless shocks abound in cosmic and astrophys-
ical settings (see e.g. Kirk & Schneider 1987; Begelman & Kirk 1990). An
important part of the understanding of collisionless shocks is the under-
standing of the dissipation mechanisms. This has led to the investigation of
many wave and instability problems including those involving the electron-
acoustic wave.

Thomsen et al. (1983) undertook a study of electrostatic wave instabili-
ties generated by observed nonequilibrium particle distribution functions in
an effort to explain the significant electric field component parallel to the
static background magnetic field (Rodriguez & Gurnett 1975) in the earth’s
bow shock. They modelled the electron distribution by two components: a
modified Lorentzian distribution and a convected Maxwellian component.
It was found that both the electron-acoustic and ion-acoustic waves were
destabilised by the field-aligned free energy source, and furthermore, that
these instabilities appear to be good candidates for explaining the most



intense waves at near 3 kHz.

Intense electrostatic waves with frequencies ranging up to and above the
electron plasma frequency are often observed upstream of the earth’s bow
shock in conjunction with energetic ions and electrons. It was suggested
(Gurnett & Frank 1978) that this broadband electrostatic noise (BEN) is
due to highly (upward) Doppler-shifted ion-acoustic waves. In a study of the
electron-acoustic instability Marsch (1985) demonstrated that the electron-
acoustic wave provides an alternative explanation for this BEN (or at least
a complementary theory).

1.3 Cusp Auroral hiss

As remarked by Gary (1987), perhaps one of the most convincing applica-
tions of electron-acoustic wave theory concerns its application to cusp hiss—
enhanced electrostatic and electromagnetic field fluctuations extending up
to the local electron gyrofrequency in the terrestrial polar cusp.

First observations of intense electric field noise along the auroral field
lines were made by the OV1-10 spacecraft (Heppner 1969). These waves
were later studied in greater detail by the Hawkeye I and IMP 6 satellites
(Gurnett & Frank 1977), by the Dynamics Ezplorer-1 (DE-1) spacecraft
(Gurnett et al. 1976) and by the Viking satellite (Pottelette et al. 1988;
1990).

The DE-1 satellite made in situ plasma and field measurements across
the polar cusp at radial distances of between 2 and 5 earth radii. In the night-
side auroral zone (Gurnett et al. 1983) the hiss observed by the DE-1 space-
craft was ma.inly’electrosta.tic and believed to consist primarily of whistler
waves propagating upward from a wave source whose lower boundary lay
between 0.7 and 0.9 earth radii. At altitudes lower than about 3000 km the
auroral hiss is electromagnetic and frequently detected by satellites as down-
ward propagating whistler waves (Gurnett & Frank 1972; Shawhan 1979).
Auroral hiss at these lower altitudes has been found to be closely correlated
with intense fluxes of low energy (100eV to 1keV) precipitating electrons
in the dayside auroral zone (Gurnett 1966; Hoffman & Laaspere 1972). In
the nightside auroral zone Gurnett & Frank (1972) specifically showed that
an auroral hiss event occurred in direct association with an intense inverted
V electron precipitation event. It is well known that intense inverted V
electron fluxes are characterised by downward beams with a beam energy
typically about several keV (Lin & Hoffman 1982).



In the dayside polar cusp the electron beams correlated with hiss emis-
sion are not related to inverted V events because these beams are moving in
the upward direction (Lin et al. 1984). These upward electron beams occur
just equatorward of, and extend up into the polar cusp region. Lin et al.
(1984) demonstrated a strong correlation of low-energy electron beams with
auroral hiss emission at a few kHz, at altitudes above two earth radii near
the polar cusp. They reported the occurrence of both upward and downward
electron beams with energies less than 100 eV but the upward beams were
generally more intense than the downward by an order of magnitude in the
number density. These electron beams are believed to be charge carriers of
the dayside region 1 field-aligned currents (Tokar & Gary 1984).

Tokar & Gary (1984) showed that the electron-acoustic instability is a
very likely candidate for the explanation of cusp auroral hiss in the dayside
polar cusp. Plasma in the polar cusp consists of three electron components:
a cool component whose temperature is ~ 1eV, a warm beam component
Ty, ~ 20eV and a much hotter component with a temperature of 100eV
and above. By solving the full electromagnetic dispersion relation for elec-
tromagnetic waves in a plasma with constituents modelled on DE-I data,
they showed that the electron-acoustic wave was unstable for polar cusp pa-
rameters. Furthermore, they demonstrated that the whistler wave is stable
for these same parameters and hence cannot account for the electrostatic
component of cusp hiss. Tokar & Gary (1984) calculated the group ve-
locity of the electron-acoustic wave and demonstated its consistency with
the “funnel-shaped” frequency-time profiles observed by DE-1. Lin et al.
(1985), Roth & Hudson (1986) and Lin et al. (1987) performed particle
simulations which further supported the view that electron-acoustic waves
are responsible for the electrostatic component of cusp hiss.

1.4 Auroral BEN

In addition to auroral hiss, impulsive electrostatic wave emissions extend-
ing over a broad range of frequencies are also frequently observed in the
auroral magnetosphere. Although, in opposition to auroral hiss, these emis-
sions have neither a well-defined cut-off frequency nor a fixed polarization
(which could be explained by the fact that they have different physical ori-
gins (Dubouloz et al. 1991a)), they are often referred to by the same name:
broadband electrostatic noise (BEN).

The physical context of BEN in the auroral zone is quite different from



that in the magnetotail, which justifies a separate study. In particular the
electron plasma frequency in the low density region of the auroral magneto-
sphere is smaller than the electron gyrofrequency, and the highly energetic
(between 1 and 40 keV) field-aligned ion beams are not observed to be cor-
related with BEN emissions, as is the case in the magnetotail (Schriver &
Ashour-Abdalla 1987).

The first observations of BEN in the auroral magnetosphere were re-
ported by Gurnett & Frank (1977), but after the launch of the Swedish
satellite Viking in 1986 it has been possible to study these wave emissions
with a higher degree of time resolution. Viking has revealed the presence of
intense and impulsive BEN in the low-density region along the auroral field
lines in the 2000 to 10000 km altitude range (Pottelette et al. 1988; 1990),
which is somewhat lower than the altitude range covered by DE-1 (~ 13000
to 32000 km). The characteristic variation time of the emission is of the or-
der of a few hundred milliseconds and the total electric field amplitude can
reach up to 100mV m™!. The range of wave frequencies is found to extend
up to and even higher than the electron gyrofrequency, however, most of
the wave power is concentrated in the lower frequencies near the ion plasma
and lower hybrid frequencies (Dubouloz et al. 1991b).

The plasma composition in this region consists of a cool electron com-
ponent (temperature of a few eV), a warm drifting component, and a hot
component whose temperature lies between 100 and 200eV. As discussed by
Dubouloz et al. (1991b) and previously reported by Tokar & Gary (1984)
and Gary (1987), such conditions highly favour the destabilization of the
electron-acoustic wave. Furthermore, the intense bursts of BEN are usually
associated with strong depletions of the cool electron density (Dubouloz et
al. 1991b) which further favours the destabilisation of the electron-acoustic
wave. Under quiescent conditions, however, plasma data suggest that the
cool and hot electron densities are equal.

Dubouloz et al. (1991a) showed that nonlinear effects must play a sig-
nificant role in the generation of BEN in the dayside auroral zone. Evidence
supporting the latter includes: (i) the very high electric field amplitudes
involved, and (ii) the power law shape of most of the BEN spectra above
a few kHz. In fact, Douboloz et al. (1991b) showed that electron-acoustic
solitons passing by the satellite would generate spectra that can explain the

high-frequency part of BEN, above the plasma frequency, in the dayside
auroral zone.



1.5 A brief review of electron-acoustic waves

Electron-acoustic waves are by no means new. They were first identified as
strongly damped acoustic-like solutions of the dispersion relation for electro-
static waves in the work of Fried & Gould (1961). However, because of their
very strong damping under most circumstances, they have not been deemed
worthy, by the majority of researchers in the field, of extensive research,
receiving only passing attention in the literature (Stix 1962; Denavit 1965).
In contrast to the usual criterion for weakly-damped ion-acoustic waves,
when the ion temperature is very much larger than the electron tempera-
ture, Sizonenko & Stepanov (1967), Aref’ev (1970) and Lashmore-Davies
& Martin (1973) showed that a weakly-damped electron-acoustic wave may
arise, which propagates quasi-perpendicularly to the magnetic field. The
wave was found to be destabilised by a perpendicular ion drift ug;, even if
the perpendicular velocity is less than the ion thermal velocity v;, (Sizo-
nenko & Stepanov 1967). The dispersion relation for this electron-acoustic
wave is given by
+ il (1.1)
(1+ k202/Q.0:)1/7 '

(Aref’ev 1970), where Q. and €); are the electron and ion gyrofrequencies,
respectively; and the electron sound speed is given by v,, = (T;/m.)!/2.

Further investigation of this wave/instability by a number of authors,
took place in subsequent years. Goedbloed, Pyatak & Sizonenko (1973)
investigated the electron-acoustic and drift instabilities in a plasma with
a perpendicular current, allowing for electromagnetic effects. Kitsenko,
Panchenko & Stepanov (1974a, 1974b) considered the excitation of the
electron-acoustic and ion cyclotron parametric instabilities by an alternating
electric field perpendicular to the magnetic field.

Mohan & Yu (1983) showed that drift dissipative instabilities could oc-
cur between the jon and electron gyrofrequencies Q; € w < Q.. They fur-
ther demonstrated that these instabilities are associated with the electron-
acoustic and lower-hybrid waves. Dash, Sharma & Buti (1984) generalised
the analysis to include a second hot ion component. Contrary to their own
expectations they found no mode conversion between the electron-acoustic
and ion-ion hybrid resonance waves.

A common factor in all the abovementioned works, is the large ion tem-
perature relative to that of the electrons, necessary for weak Landau damp-
ing of the electron-acoustic wave. Unfortunately, this condition is difficult

w =k ug;



to fulfil in the laboratory but may arise naturally in some regions of the ter-
restrial magnetosphere. In support of the latter remark we cite the plasma
models of Grabbe & Eastman (1984) and Grabbe (1985), which were based
on particle data from the ISEF-I satellite. Today still, however, the com-
ment by Montgomery (1971) that “they (electron-acoustic waves) have not
played an important role in any theories or experiments to date” seems to
hold true—at least as far as plasmas with a single electron component are
concerned.

It was some years after the initial works of Sizonenko & Stepanov (1967),
Aref’ev (1970) and Lashmore-Davies & Martin (1973) that the suggestion
of Watanabe & Taniuti (1977) was put forward. They proposed that if
the electron component was nonisothermal, i.e. it comprised two sepa-
rately isothermal populations with widely disparate temperatures, then an
electron-acoustic wave which suffered only weak Landau damping could oc-
cur without the necessary presence of a magnetic field, and apparently in-
dependently of the ion temperature.

Two approaches to the investigation of the electron-acoustic wave en-
sued: the first was to treat the ions as a hot isothermal component (Yu &
Shukla 1983) yielding the so-called modified electron-acoustic wave; and the
second was to assume cold/cool ions and examine an electron-acoustic wave
due solely to the electron dynamics (Tokar & Gary 1984). The latter ap-
proach rendered interesting results applicable to the understanding of cusp
auroral hiss as well as the broadband electrostatic noise observed upstream
of the earth’s bow shock, as discussed previously.

Yu & Shukla (1983) investigated the linear and nonlinear behaviour of
the modified electron-acoustic wave in a plasma consisting of hot isother-
mal ions, a cool fluid electron component and a hot isothermal electron
component. They derived the following dispersion relation for the modified
electron-acoustic wave

wC

w= , 1.2
(L+ 1/k2XD, + 1/K2XE )12 (1.2)

where w, is the plasma frequency of the cool electron component and Ap;,
Ap; are the Debye lengths of the hot electron and ion components, respec-
tively. In addition, they derived a Korteweg—de Vries equation for the non-
linear wave. The analysis was extended to include a second hot ion compo-
nent by Guha & Dwivedi (1984). They noted the effects of the second ion
species, but conceded that the electron parameters had the more profound
effect on the characteristics of the wave.

10



Ashour-Abdalla & Okuda (1986) and Schriver & Ashour-Abdalla (1987)
investigated the modified electron-acoustic instability in a magnetized plas-
ma, driven by a hot, field-aligned ion beam. The former authors also per-
formed a particle simulation of the instability. Both sets of authors noted the
broadband nature of the instability and pointed out its possible application
to the explanation of the Broadband Electrostatic Noise (BEN) observed
in the magnetotail. In fact, ion beam driven instabilities have played an
important part in the understanding of BEN in the magnetotail (Grabbe &
Eastman 1984; Dusenbery & Lyons 1985; Dusenbery 1986).

The other route to the electron-acoustic wave and instability was taken,
initially, by Thomsen, Barr, Gary, Feldman & Cole (1983). By modelling
the electron distributions observed within the earth’s bow shock with mod-
ified Lorentzian and drifting Maxwellian distributions, respectively, and in-
corporating a cool ion species, they identified two instabilities driven by the
field-aligned free energy of the drifting electrons: the ion-acoustic instability
whose real frequency lay below the ion plasma frequency; and the electron-
acoustic instability with a real frequency of several times the ion plasma
frequency.

Simultaneous plasma and wave observations in the cusp auroral region
(DE-1) at altitudes between 2 and 4 earth radii have shown that there is a
strong correlation between upward electron beams and electrostatic auroral
hiss emissions (Lin, Burch, Shawhan & Gurnett 1984). Undertaking an
instability analysis based on observed electron distribution functions that
were modelled by hot, warm beam, and cool Maxwellian components, Lin et
al. (1984) concluded that the whistler wave near resonance was responsible
for the observed electrostatic emissions.

This conclusion was refuted by Tokar & Gary (1984). Using particle
distributions similar to those of Lin et al. (1984), but employing the full
electromagnetic dispersion relation, they showed that the whistler mode was
stable for parameters relevant to the polar cusp and that it is the electron-
acoustic wave that is unstable. Furthermore, they demonstrated that the
dispersion of the electron-acoustic wave can account for the funnel shaped
frequency-time spectra observed by the DE-1 satellite in the high-altitude
cusp auroral region. '

A comprehensive parameter survey for the electron-acoustic wave was
carried out by Gary & Tokar (1985). They showed that it was distinct
from the electron plasma wave and demarcated regions in parameter space
in which the electron-acoustic wave is weakly Landau damped. Among
the more important results were the approximate existence criteria for the
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electron-acoustic wave T /T, > 10 and ng. < 0.8ng.. They showed that the
dispersion relation for the wave is given by

w = kvge, (1.3)
at small wavenumbers kApr € 1, where v, = (noc/noh)l/zvh, and satisfies

2 2 1+ 3k22%,

= " 1.4
“el+ 1/KIAE, (1.4)

w
at larger wavenumbers.

The electron-acoustic instability was investigated by Gary (1987). It
was shown that a relative drift between the two electron components was
able to provide the free energy necessary to destabilise the electron-acoustic
wave. Two models were employed in the study: the zero-current model in
which the total plasma current was zero, ngVor + nocVor = 0; and the hot
electron current model in which the hot electrons bore a drift relative to the
ions and cool electrons. The salient observations were: (i) in both models
the electron-acoustic wave was unstable; (ii) in the zero-current model the
ion-acoustic wave is also destabilised, and for a range of parameter values
has a lower threshold than the electron-acoustic instability.

Particle simulations of the electron-acoustic wave in the polar cusp have
been carried out by Lin, Winske & Tokar (1985), Roth & Hudson (1986)
and Lin & Winske (1987). In all the simulations it was shown that the
electron-acoustic instability always strongly heats the cool electron compo-
nent, and that under many circumstances, this heating leads to saturation
of the instability. Further, Lin, Winske & Tokar (1985) demonstrated that
the electron-acoustic instability generated by observed distribution functions
can indeed generate the electrostatic component of cusp hiss.

Recently, Bharuthram (1991a) investigated the electron-acoustic insta-
bility driven by a field-aligned anisotropic hot electron beam. It was found
that increasing the temperature anisotropy of the beam and/or the cool elec-
tron component reduced wave growth. Furthermore, it was found that the
electron-acoustic instability could only be excited for beam densities greater
than 0.2ng. where ng. is the total electron density. This result is in agree-
ment with the existence criteria for the electron-acoustic wave reported in
earlier works (Gary & Tokar 1985; Mace & Hellberg 1990).

Bharuthram (1991b) also investigated the electron-acoustic instability
driven by a cross-field hot electron beam. An important difference from
the previous work (Bharuthram 1991a) is that in this case the electron-
acoustic instability transforms into the modified two-stream instability as
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obliqueness of the propagation angle increases relative to the magnetic field.
Furthermore, whereas in the field-aligned scenario (Bharuthram 1991a) the
anisotropy of the beam played a significant role, its effects are less important
when the beam is perpendicular to the magnetic field.

1.6 Outline of part I

We begin with an introductory chapter (chapter 2) introducing the physical
model of the electron-acoustic wave that shall concern us for the main part
of this thesis. The basic wave properties, dispersion relation, damping and
wave frequency are discussed.

Chapter 3 sees the introduction of a novel analytical geometrical tech-
nique of investigating wave behaviour through the topology of the dielectric
function. Such techniques have been used before to investigate ion-acoustic
waves in multi-ion plasmas (Fried et al. 1971; Gledhill & Hellberg 1986),
and Langmuir waves in multi-electron plasmas (Dell, Gledhill & Hellberg
1987). Our work represents an extension of that of the latter. Moreover,
we elucidate the relationship between the electron plasma wave and the
electron-acoustic wave. The work presented in this chapter has appeared in
Journal of Plasma Physics.

In chapter 4 the magnetized electron-acoustic instability driven by a
field-aligned hot electron drift is investigated. The instability in this form
was considered for an unmagnetized plasma by Gary (1987) and for a mag-
netized plasma, by Tokar & Gary (1984). The latter work, however, only
covered a small region of parameter space. In this chapter not only is the
strongly magnetized limit considered, as was the case before, but we also
consider the situation when the electron gyrofrequency is less than the cool
electron plasma frequency, (. < w,, leading to some interesting results. In
addition, the ion driven electron-acoustic instability is also investigated in
this limit and results compared with those for the electron driven case.

This part ends with a brief conclusion summarising the results and bring-
ing attention to possible extensions of the present theory. The derivations
of some of the more important results are provided in the appendices.
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Chapter 2

The electron-acoustic wave

This chapter serves as an introduction to the electron-acoustic wave. The
dispersion, damping and wave dynamics are discussed in some detail. A
more thorough parameter survey for the electron-acoustic wave has been
carried out by Gary & Tokar (1985). The basic electrostatic dispersion
relation derived here shall be the subject of further investigation in chapter 3.

2.1 Basic equations and plasma model

Consider a charge-neutral plasma comprising cool electrons, hot electrons
and cool massive ions. We adopt a kinetic description of each plasma compo-
nent based on the collisionless Boltzmann or Vlasov equation. Furthermore,
we consider only electrostatic waves and make the electrostatic approxima-
tion

E =-V¢. (2.1)
Then the plasma may be described by the Vlasov-Poisson system:
af; 4
a—tJ +v-Vf- m_JJV¢ Vvfi=0, (2.2)
Vzd) = —4rw Z No;49; / fj dV, (23)
J

where the subscript j refers to the jth plasma component and in this case
takes on the values j = (i, h, c), and the operator Vy = 9/0v is the gradi-
ent with respect to velocity. In the above form the Vlasov-Poisson system
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is highly intractable and in order to gain further ground analytically it be-
comes necessary to make some approximations. We assume that the wave
amplitude is so small that it introduces only a small perturbation to the
plasma and the macroscopic electric field, i.e. we suppose

v,y = fO%)+ f(x,v,1) }

(2.4)
¢)(x7t) = 0+¢(1)(X,t),

where only the perturbations have spatial and temporal dependence. Sub-
stitution of (2.4) into (2.2) and (2.3), and ignoring terms quadratic in small
quantities leads to the linearised equations

3f}l) v = Yy .y, fO 925
W +V . f] - m_] 4) ) Vf] ] ( . )
vip) = —47|'En0j(Zj/fJ(1)dv- (2.6)

i

Fourier and Laplace transforming equations (2.5)-(2.6), performing the nec-
essary analytic continuation to the lower half of the complex w—plane (Krall
& Trivelpiece 1973), and assuming that the undisturbed particle distribu-
tions are Maxwellians yields the linear dispersion relation

e(k,w) = 0, (2.7)

where

1 w
e(k,w) =1 - —7( ). (2.8)

jziz.C,h 2K*Ab;  \W2ky;
The subscripts ¢, h, ¢ refer to the ions, hot electrons and cool electrons,
respectively and Z’(() is the derivative of the plasma dispersion function. It
is conveniently written in the form

Z'(¢) = -2 (1 + 2i¢e™¢ / f e dt) :
— 00
(Fried & Conte 1961) and clearly is related to the complex error function.
Temperatures are understood to be measured in energy units throughout.
The parameters are defined as follows: Ap; = (T}/47ng;e?)1/2, the Debye
length of species j; v; = (T;/m;)*/?, the thermal speed of species j; and
w = wy + 17, is the complex wave frequency.
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2.2 The dispersion relation for electron-acoustic
waves

Watanabe & Taniuti (1977), employing a fluid treatment of a plasma con-
sisting of ions, cool and hot electrons, showed that if the temperature of
the hot electrons greatly exceeds that of the cooler, then the dynamical
equations admit wave solutions whose phase velocity satisfies

w, v € T <, (2.9)
and are therefore weakly Landau-damped. They called this wave mode the
electron-acoustic wave. In the context of (2.9) we can expand the relevant
terms in (2.7) in their power or asmptotic series, whichever is the appropri-
ate, to yield an approximate dispersion relation for electron-acoustic waves.
The following expansions of the Z’ function are employed:

2'(¢) ~ =21+ir'2e ), |(l<
7'(¢) ~ (P-2irte (> 1.

2

Furthermore, we assume that the damping is weak, i.e. that |y| € w,. Then
using an expansion of the above form for each of the terms in (2.7) and
separating the resultant equation into real and imaginary parts we obtain
the dispersion relation for electron-acoustic waves (cf. Gary & Tokar 1985)

w2 _ wc2 _ k2v32€
T4 1/k2L, 14+ k2087

(2.10)

where the electron sound speed is defined here by v,. = (noc/ngs)!/?v;, and
the plasma frequency of the cool electrons, w,, is given by (47ng.€?/ me)l/ 2
The damping rate is given by
_ ™\ 1/2 ng, kv,
1= -(3) maTmry

Noc Th 3/2 { -1
1 — . .
+n0h(:rc) exP 2k%6(1+1/k%h)} (211)

Equation (2.11) demonstrates that the Landau damping of the electron-
acoustic wave depends critically on the cool-to-hot electron density ratio:
the larger this ratio, the greater will be the wave damping. Therefore in
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order to observe the electron-acoustic wave the cool electron density should
ideally be less that that of the hot. This was also remarked by Watanabe &
Taniuti (1977), but from a different argument.
In the small-wavenumber regime kAp, < 1 the dispersion relation (2.10)
can be written
Wr ~ kvge (2.12)

and indicates that at sufficiently long wavelengths the waves all propa-
gate at the same phase and group velocities—hence the name “electron-
acoustic”. At such wavelengths, however, equation (2.11) shows that the
wave is strongly-damped by the hot electrons unless the cool electron num-
ber density is substantially less that that of the hot electrons.

At larger wavenumbers where the frequency approaches the cool electron
plasma frequency, w.—the so-called cool plasma regime—the wave damping
begins to decrease with wavenumber approximately like k=3 and at these in-
termediate wavenumbers Landau damping by the hot electrons diminishes.
In addition, the wave mode becomes more oscillatory in nature. The disper-
sion relation at these intermediate and larger wavenumbers satisfies (Gary
& Tokar 1985):

w? ~ Wl Rkl 3k2/\%° :
1+ 1/k2\,

and illustrates the similarity of the wave at these wavelengths, to a plasma
wave based on the cool electron component. The dispersion relation (2.13)
may be derived from (2.7) by expanding the cool electron Z’'-term to higher
order in k than was done when deriving (2.10).

At still larger wavenumbers the wave continues to be cool plasma-like,
but Landau damping due to the cool electrons now becomes significant.
This can be seen by observing the second term in (2.11) which increases
with increasing wavenumber and eventually leads to quenching of the wave
mode.

In figures 2.1 to 2.4 we illustrate the dispersion and damping of the
electron-acoustic wave (obtained by numerical solution of (2.7)) for a number
of cool electron density values with a common value of the temperature ratio
Ti/T. = 100. The dispersion at small wavenumbers is indeed acoustic and
the damping is strongest when the cool electron density is greater than
the hot electron density. In figure 2.5 we illustrate the dispersion relation
over a large range of wavenumbers clearly displaying the three regions: (i)
the strongly-damped acoustic regime; (ii) the weakly-damped cool plasma
regime; and (iii) the short-wavelength, strongly damped regime.

(2.13)
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0 1 < .3 4 )
kKA pe
Figure 2.1: The dispersion relation (— or ———) and damping rate (o) of the

electron-acoustic wave at a cool electron density of ng. = 0.1ng.. In this and
other figures in this chapter the hot electron temperature is 75 = 1007, and
we denotes the plasma frequency calculated from the total electron density.
In all figures the dashed portions of the curves for the real frequency indicate
where —y > w, /2.

18



0 k= 0

Figure 2.2: The dispersion relation and damping rate of the electron-acoustic
wave for a cool electron density of ng, = 0.2ng,.
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Figure 2.3: The dispersion relation and damping rate of the electron-acoustic
wave for a cool electron density of ng, = 0.4n,.
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Figure 2.4: The dispersion relation and damping rate of the electron-acoustic
wave for a cool electron density of ng, = 0.67¢,.
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Figure 2.5: The dispersion relation and damping rate of the electron-acoustic

wave for a cool electron density of ng. = 0.5n¢.. The three regimes are clearly
evident.
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2.3 Comparison with the ion-acoustic wave

The electron-acoustic wave exhibits a number of properties similar to those
of the ion-acoustic wave. The dispersion relation of the latter in a single
electron-ion plasma is given by

k2v2

2 s1
Wwls ——s (2.14)
where the subscript e refers to electron parameters and vy; = (Te/mi)l/2 is
the ion sound speed. Immediately one notices the similarity in form between
(2.10) and (2.14). In fact, the dynamics of the electron-acoustic wave are
analogous to those of the ion-acoustic wave if the following correspondence
is made

ions «— cool electrons,
electrons «— hot electrons,

vacuum/free space «— ions,

where the electron-acoustic wave plasma components occur on the right hand
side of each relation. The ions and cool electrons provide the wave inertia
in each case, which is coupled to the electric field, and the hot electrons
in both cases provide dynamic neutralization of the charge imbalances. In
the ion-acoustic wave no background neutralization is required because the
plasma is already charge-neutral, but in the electron-acoustic wave, which
is intrinsically an electron wave, a background of stationary cool ions is
required to ensure overall charge-neutrality. These and other similarities
are summarized in Table 2.1.
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electron-acoustic

ion-acoustic

dispersion rel.

kvse

kvg;

(1+ kz/\%h)lﬂ

(L4 K2XG 172

We Wy
sound speed — v — v,

Wh We
wave Inertia cool electrons ions

dynamic neutr.

hot electrons

(hot) electrons

backgr. neutr.

cool ions

Table 2.1:

The similarities/differences between the electron-acoustic and

ion-acoustic waves.
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Chapter 3

Higher-order electron modes
in a plasma with two
electron temperatures

It is well known that the electrostatic dispersion relation for waves in an un-
magnetized, homogeneous, collisionless plasma of stationary ions and elec-
trons admits an infinite number of complex solutions. The solutions that
exhibit weak damping, i.e. their imaginary part is small with respect to
their real part, are known as normal modes. It is these modes that govern
the time-asymptotic behaviour of the plasma. The infinite set of solutions
that excludes the normal modes are known as higher order modes (HOMs).
These usually only play a role in the transient behaviour of the plasma, and
are thus, in general physically unimportant.

Fried & Gould (1961) showed that in an electron-ion plasma the electron-
acoustic wave is strongly damped and therefore does not appear as a normal
mode under normal circumstances. The most common electrostatic normal
modes in an unmagnetized plasma are the ion-acoustic and electron plasma
or Langmuir waves/modes. It was pointed out by Watanabe & Taniuti
(1977) that if the electron species consists of two separately isothermal pop-
ulations then the Landau damping of the electron-acoustic wave is consider-
ably decreased, possibly even to the extent that the electron-acoustic wave
becomes a normal mode. They emphasized the roles of the electron densities
and temperature ratio in bringing about this change.

In this chapter we investigate these criteria in detail by examining the
geometrical properties of the dispersion function ¢(k,w) in a manner similar

25



to that used originally by Gledhill & Hellberg (1986) in their study of ion-
acoustic waves in two-ion plasma, and later by Dell, Gledhill & Hellberg
(1987) in a study of Langmuir waves in two-electron plasmas.

We shall find that just as the heavy-to-light ion density ratio plays a
role in determining which of the ion-acoustic waves in a two-ion plasma
is prevalent (Gledhill & Hellberg 1986), so the hot-to-cool electron density
ratio plays a role in the determination of whether the Langmuir or electron-
acoustic wave in a two-electron-temperature plasma is weakly-damped. Fur-
thermore, we show that the “Langmuir wave” investigated by Dell et al.
(1987), whose frequency lies below w,, actually belongs to the electron-
acoustic branch of the dispersion relation. We extend the temperature ratio
to much higher values than have been investigated previously and reinter-
pret the results in terms of the electron-acoustic wave. In addition we calcu-
late the regions in parameter space in which the waves will be only weakly
Landau-damped.

3.1 Normal mode solutions of the dispersion re-
lation

We define a normal mode as one that has —y < w,/27 and thereiore the
amplitude damps by less than e~! in one wave period 7. There are three
electrostatic normal modes in a two-electron-component plasma. We review
each in turn in the following.

The first normal mode solution to (2.7) is the high frequency electron
plasma or Langmuir wave, which is characterized by a very high phase ve-
locity, wr/k > vp. This wave has a real frequency that satisfies

w? = w? + 3k%02, (3.1)

where v, = (T./m.)"/? is the effective electron thermal speed calculated
from the effective electron temperature T, = (no.T: + nonTh)/nge; and
we = (4mng.e?/m,.)1/? is the plasma frequency calculated from the total
electron density ng. = nop + no.. This wave is generally weakly damped at
small wavenumbers because of the high phase velocity in this regime, with
a progressive increase in the electron Landau damping as wavenumber is
increased. The damping rate of the Langmuir wave is given approximately
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by

1/2,,2,,2 —w? n 7.\ 3/? —w?
5 ~ _71' wr(‘;h exp ( - T2> + Oc (_h> exp 2k2 2 s (3,2)
\/§k3vh 2k%v; non \ 1c Vg
where w, satisfies (3.1).
The second normal mode occurs for a relatively low phase velocity, v; <
wr [k < ve. This mode, the ion-acoustic wave in a two-electron-temperature

plasma, is weakly damped if the effective temperature of the electrons (see
below) is much greater than that of the ions. It has a real frequency that

satisfies - T,/
R e SR LA 3.3
(.dr m; Jf' 1+ k2A2De ( )

and damping given by (3.2) with (3.3) incorporated. In equation (3.3) the
effective electron temperature is defined as T, = noT.Th/(nonT: + nocTh)
(Jones et al., 1975). In the long wavelength limit the phase speed reduces
to the ion sound speed v,; = [(T. + 3T;)/mi]Y/? ~ [T./m;]*/2

The third normal mode has an intermediate phase velocity v, < w,/k <
vy, and arises for large temperature ratios T4 /7T, > 10 (Watanabe & Taniuti
1977; Tokar & Gary 1984). The frequency of this wave satisfies (Gary &
Tokar 1985)

wr =~ kvge, (3.4)

in the small wavenumber limit (kApp < 1) and is clearly dispersionless
and thus acoustic in this regime. The electron sound speed is defined by
Vge = (nOC/noh)l/th. We note that by our initial assumptions regarding the
phase speed (3.4) is only strictly valid in the regime ng./non < 1, but we have
found it to hold approximately even for ng./nos > 1. However, the wave is
found to be strongly Landau damped by the hot electron component (see
chapter 2) unless ng. < nox. At larger wavenumbers the frequency satisfies
(Gary & Tokar 1985)
EIERE 3k20%,,
" 1+ 1/k22%,°

and in this wavelength regime the dispersion relation strongly resembles that
of a Langmuir wave based on the cooler electron component. The electron-
acoustic wave has a damping rate given by (3.2) where w, satisfies either
(3.4) or (3.5) depending on the magnitude of the wavenumber. The first term
in (3.2) is the contribution to the Landau damping by the hot electrons and
it dominates at small to intermediate wavenumbers. The second term is the

(3.5)
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contribution from the cool electron component and only becomes substantial
at larger wavenumbers where the phase velocity of the wave is nearer the
cool electron thermal speed.

In addition to these normal modes there are three families of heavily
damped solutions of (2.7). Each family of solutions can be associated with
a Z' term in (2.7). These solutions are normally acoustic in nature in that
their phase velocities are constant at small wavenumbers. The solutions
associated with the ion term have smallest phase speed and |y|, and those
associated with the hot electrons have largest phase speed and |y|. The
roots associated with the cold electron term in (2.7) have phase speeds and
damping that lie between these two extremes. It is these HOMs that concern
us for the purposes of our investigation. Henceforth, unless otherwise stated,
when we talk about a HOM we mean a HOM associated with the cold
electron term in (2.7).

3.2 Double roots of the dispersion relation

We define the following parameters: f = ngr/nge, the concentration of
hot electrons; Ap. = (T./47ng.e?)'/2, the cold electron Debye length; 8 =
Th/T., the electron temperature ratio; and ¢ = (., = w/v/2kv., is the com-
plex wave phase speed normalized with respect to the cold electron thermal
speed.

Since we are concerned only with high-frequency electron waves it is a
valid approximation to neglect the ion contribution to the dispersion rela-
tion. This is readily seen by examining the leading term in the asymptotic
expansion for the Z’'—function, viz. ~ kv;/w.

We define the complex function of complex, normalized phase velocity

¢

6(¢)= 5z (ﬂL,) F(1-HZ(Q-21- PEXB,  (36)
which is related approximately to the dielectric function € by G = 2(1 —
f)k"’)\%ce and provided k¥ > 0 the roots of G correspond to the solutions
of (2.7). Equation (3.6) is similar to that used by Dell et al. (1987) in
their investigation. They write the last term in (3.6) in terms of A\p =
(Tc/41rn0¢ez)1/2, rather than Ap.. We shall discuss the reasons for our choice
of normalizing length later. The equation is also essentially equivalent in
form to that employed by Gledhill & Hellberg (1986) in their study of ion-

acoustic waves in a two ion component plasma. Some remarks about the
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form of GG are appropriate at this stage.

Note that the shape or topology of the surface G; = Im G((;, (;) is in-
dependent of the value of the wavevector k although it does depend on f.
On the other hand the topology of the surface G, = Re G((,,(;) depends
on both the magnitude of the wavevector and the hot electron fraction f.
These observations imply that roots of the dispersion relation (which simul-
taneously must satisfy ReG = 0 and ImG = 0) traverse the zero-height
contour of the “constant” (for f constant) surface, Im G, as the wavenum-
ber is varied. So by studying the topology of the zero-height contour of
the imaginary G surface we have a geometrical method of investigating the
dispersion relations of the various wave modes. However, if we trace root
loci whilst varying f then the surface “dynamics” are more complex.

Gledhill & Hellberg (1986) showed that the topology of the root loci
changes if the imaginary part of G possesses a saddle point with height less
than or equal to zero. This defines a critical criterion for root behaviour:
that of a saddle point at zero height in Im G.

If F(z,y) is an arbitrary real function of real variables z and y then
setting

PF 92F 92F
=l 0 P55 C=%7

Ts,Ys Ts3Ys

A

Ts,Ys

we require that the discriminant satisfy (Salas & Hille 1978)
D=B*-AC >0, (3.7)

if the function F is to have a saddle point at the coordinates z,,y,. In
addition, if this saddle point occurs at zero height then F must further
satisfy F(z,,y,) = 0. That G; satisfies all these conditions if G possesses a
double root at (5 can be seen as follows.

By our hypothesis we require

dG

G(CS) =0, and E

=0, (3.8)

(s

for a double root at (s. Application of the Cauchy-Riemann conditions then
shows that at (g

%G,
&2

_ 0%G,
(s on?

(s
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and

0*G;
862 ¢s

with ¢ = € + in. Now since B? > 0 for all real G; (or G,) and A = —C we
obtain

_ 0%G;
(s - on?

D =B+ A% >0,

and therefore G; possesses a saddle point at zero height at (5. Furthermore
notice that G, also has a saddle point at (5.

From the point of view of wave modes admitted by G, this means that
there will be a critical set of parameters (k*, w*, and f*) at which two
wave modes with exactly the same frequencies, wavenumbers, and damping
rates at (g, simultaneously satisfying the dispersion relation. By varying the
plasma parameters about these critical values we can determine which of the
waves will Landau damp and which will emerge lightly damped. Therefore
the critical curves defined by the parameters which satisfy (3.8) simultane-
ously, are important in that they delineate parameter regimes in which one
of the wave modes, by virtue of its weaker Landau damping, predominates
over the other.

Unfortunately it is not always the case that a double root defined by (3.8)
occurs in a region of the complex plane where the waves are weakly-damped.
Thus in addition to knowing parameter values at which saddle points occur
we must also determine parameter domains in which the competing waves
are weakly-damped. Parameter values that satisfy both of these criteria will
be sought here.

To continue, as discussed by Gledhill & Hellberg (1986), there is a region
in (-space, with small |¢(/3'/?|, where the function Z!((/8Y?) (Z!(¢) =
ImZ'(()) is negative, while Z!(¢) has a large set of saddle points at positive
height. Consequently it may be seen from equation (3.6) that near these
positive saddle points associated with the cool electron Z!, the function
Gi(¢) will have saddle points at zero height for small values of f, i.e. at a
critical value, f*, of f for given 3. We label these saddle points derived from
the cool electron term Sy, Sy, S, ..., where the modulus of Im S; increases
with j. By analogy with the saddle point called Sps by Gledhill & Hellberg
(1986), there is also a saddle point Sg (see Dell et al., 1987), which is not
due to Z;({), but arises solely out of the addition of the Z’ terms in G. Its
position in the complex plane is more dependent on the temperature ratio
B than are the §;, and it is often sited well away from that sequence. The
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influence of this saddle point becomes more profound at larger temperature
ratios where its damping is reduced.

3.3 Numerical results

Simultaneous numerical solution of (3.8) as a function of 3 renders families of
critical curves, f&(8), k5Apc(8), corresponding to the various saddle points
(s. These critical curves delineate regions of parameter space within which
root behaviour remains qualitatively similar as f or kAp. is varied (Dell et
al. 1987). Figure 3.1 (after Dell et al., 1987), illustrates the change in the
topology of root loci which occurs as f passes through f*.

By investigating the root behaviour in complex phase velocity space,
we were able to confirm the results of Dell et al. (1987), for the critical
curves f* and our equivalent curve k*Ap.. We have extended the range
of the temperature ratio 8 well beyond that considered earlier, and find
no significant qualitative changes in the critical curves for higher values of
3, although the damping of the waves is found to decrease as temperature
ratio is increased (see later). The critical curves remain associated with
the saddle point Sz for 8 > 10 (Dell et al. 1987), each exhibiting a slow
monotonic decline with 3 in that regime. As our main concern shall be with
the electron-acoustic wave it is the curves defining the trajectory of S5 that
are of primary importance for us.

Figure 3.2 shows the critical curve in (3, f) space and 3.3 shows the
critical curve in (8, kAp.) space. These composite curves consist of the
critical curves associated with So and Ss (Dell et al. 1987). There are two
types of root behaviour depending on whether the value of f lies above or
below f*. Consider the f* critical curve. We hold f constant and vary kAp..

If f, the fraction of hot electrons, lies below the critical curve, then there
will be no change in the root topology as kAp. is varied and we observe a
continuous variation in wave phase velocity.

If f > f~ then a change in root topology will occur: depending on the
value of the temperature ratio 3, the critical value of f occurs as either the
So or S saddle point in Im G is lowered below zero. As a result, the most
weakly damped or principal mode (PM) at kAp. = 0, undergoes progres-
sively stronger damping as kAp, is increased, with a concomitant decrease
in the damping of a HOM. This gives rise to an exchange of roles between
HOM and PM. If one were to experimentally monitor the phase velocity of
the PM while varying the wavenumber, then a discontinuous variation of the
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Figure 3.1: Influence of the saddle point .5; on paths traced by roots in the
complex (-plane as kAp,. is increased. Root trajectories are shown for three
values of f: —-—, f < fi; —, f = ff;---, f > f;. (After Dell et al.
(1987).)
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phase velocity of that wave would be observed. This case has been called the
discontinuous transition by Gledhill & Hellberg (1986), and the case where
no change in topology occurs has been called the continuous transition.

Figure 3.4 illustrates the topology of the root loci before, and figure 3.5
the topology after the lowering of the Sy saddle point below zero, for low
B. Figures 3.6 and 3.7 show the equivalent change when 8 = 100, where
the saddle point Sg is critical. The S5 saddle point in the latter situation
effects the promotion of a very strongly damped HOM to the status of
PM. By examining the dispersion of this HOM (see later) we shall see that
it approximately satisfies (3.5) in the weakly-damped wavenumber regime
and we thus identify it as belonging to the electron-acoustic branch of the
dispersion relation for electrostatic waves.

Analogous transitions occur for the case of varying f at constant kAp..
In this case we vary the fraction of hot electrons so that we start with
an initially cold plasma and end up with a plasma of hot electrons. The
observed root behaviour depends on the value of kAp. in relation to the
k*Ap. curve (figure 3.3).

If kAp. < k*Ap. then no change in the topology of the root loci (gen-
erated by varying f) occurs and the phase velocity of the principal cold
mode (PCM) varies continuously with increasing f until the wave becomes
the (PHM). This behaviour is shown in figure 3.8 for low 8 (3 = 5) and in
figure 3.10 for higher 8 (8 = 100).

If kApc > k*Apc, then the change in the topology of the root loci causes
the PCM to quench as f is increased and a HOM emerges to become the
PHM at f = 1. This is shown in figure 3.9 for = 5 and in figure 3.11
for 3 = 100. As before the § = 5 case corresponds to a change in topology
effected by the So saddle point, while for 5 = 100 it is the S5 saddle point
that effects the change in topology.

We found that with the definition of Ap given by Dell et al. (1987),
namely Ap = (T./4rngce?)!/? based on the cold electron temperature and
the total electron number density, the modes were not always observable at
f~0and f~1,ie they did not satisfy ~-Im¢ < Re(/2r. We have

rather used Ap. = (Tc/4mno.e?)!/2, the cold electron Debye length, which
varies with the density ratio f.
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Figure 3.2: The critical value of f as a function of the temperature ratio 4.
The dashed portion of the curves show parts of the continuations of the fs,
and f3_ curves.
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Figure 3.3: The critical value of k*Ap, as a function of the temperature ratio
8. The dashed portion of the curves show parts of the continuations of the
k3, ADc and kg-p/\pc curves.
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Figure 3.4: Root loci generated by varying kAp. for § = 5and f = 0.2 < f*
no change occurs in the topology of the PM. Here and in figures 3.5-3.11
the slanted dashed line represents the curve —Im ( = Re(, and here and

in figures 3.5-3.7 the open and full circles mark where kAp, = 0 and 1,
respectively.
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Figure 3.5: Root loci generated by varying kAp. for 8 = 5and f = 0.3 > f*
the topology of the PM changes.
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Figure 3.6: Root loci generated by varying kAp. for 8 = 100 and f=02<
I
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Figure 3.7: Root loci generated by varying kAp. for § = 100 and f = 0.23 >
fr.

39



Re ¢

Figure 3.8: Root loci generated by varying f with kAp. and 3 constant. In
the figure kAp. = 0.2 < k*Ap. and 8 = 5. No change in the topology of the
PM occurs. In figures 3.8-3.11 the open circles indicate points where f = 0
and the solid circles where f = 1, and also in these figures — - — denotes the
locus of the PM (generated by varying kAp.) at f = 0 and — - -— the locus
of the PM for f = 1.
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Figure 3.9: Root loci generated by varying f with kAp. and § constant. In
the figure kAp. = 0.4 > k*Ap. and § = 5. There is a change in the topology

of the PM in this case.

41

._p_




710_

l/'

—12
O

Figure 3.10: Root loci generated by varying f for 8 = 100 and kp.
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Figure 3.11: Root loci generated by varying f for 3 = 100 and kAp, = 0.2 >

k*Ape.
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3.4 Wave dispersion of the PM and HOMs

It was mentioned previously that the principal mode is Langmuir-like and
that the higher order modes are normally acoustic-like, i.e. they have w, /k ~
const. This is not always strictly true especially when the plasma parameters
are near the critical values. The dispersion relations of the plasma wave
modes actually depend on the parameter f in relation to the critical f*
curve.

If f < f* then indeed the PM is characterised by a dispersion relation
similar to the Langmuir wave and the HOMs are acoustic. However, if
f > f*, then one of the HOMs will develop dispersive characteristics at
intermediate wavenumbers that can be associated with Langmuir waves.
Specifically, the mode develops a cold plasma regime, i.e. the frequency is
related to the cold electron density (cf. equation (3.5)). These features are
evident from our diagrams (figures 3.12-3.15).

In figures 3.12 and 3.13 we present the dispersion relations of the PM
and first four HOMs for the two cases, f < f* and f > f*, respectively, at
low 3. In figure 3.12 the principal mode is Langmuir-like (at least in the
long wavelength regime) and the HOMs are all acoustic-like and strongly
damped. In figure 3.13 (f > f*) the principal mode remains Langmuir-
like at small wavenumbers and a HOM develops a cold plasma regime at
intermediate wavenumbers, in addition to an acoustic regime at small kAp..
Examination of the curves for 4 shows that in this case a change in the
root topology has occurred. The HOM, however, does not satisfy the weak
damping criterion —y < w,/27 and hence will be unobservable. It is the
So saddlepoint that effects the change in the topology of the root loci in
figure 3.13.

Figures 3.14 and 3.15 illustrate the dispersion relations for the PM
and selected HOMs for the continuous (figure 3.14) and discontinuous (fig-
ure 3.15) cases at higher § = 100. The dispersive properties of the waves
in this case are similar to those at a temperature ratio of 8 = 5. There is,
however, one important difference: the HOM that exhibits reduced damp-
ing for f > f*, is now weakly damped at intermediate wavenumbers. The
appearance of this mode can be associated with a change in the topology of
the root loci of G, brought about by the S5 saddle point.

For 8 > 10 and f > f*, it was found that the HOM that exhibits weaker
damping has a strongly damped acoustic regime at long wavelengths, a cold
plasma regime at intermediate wavelengths and becomes strongly damped
at shorter wavelengths. These properties of the wave are characteristic of
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Figure 3.12: Complex frequency as a function of kAp. for the PM and first
four HOMs for f = 0.25 and 8 = 5.
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Figure 3.13: Complex frequency as a function of kAp. for the PM and first

four HOMs for f = 0.35 and 8 = 5.
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Figure 3.14: Complex frequency as a function of kAp. for the PM and
selected HOMs for # = 100 and f = 0.2 < f*. Only the 1, 3, 5, 11 and 13
HOMS have been shown for clarity.
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Figure 3.15: Complex frequency as a function of kAp. for the PM and
selected HOMs for # = 100 and f = 0.23 > f*. Only the 1, 3, 5, 11 and 13
HOMS have been shown for clarity.
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the weakly damped electron-acoustic mode (Gary & Tokar 1985) and we
thus identify the emergent HOM as such, rather than as a second electron
plasma wave, as suggested by Dell et al. (1987). We hasten to add, however.
that for values of f ~ f* both waves exhibit dispersive properties that make
them identifiable with Langmuir waves. For values of f significantly larger
than f*, only the PM exhibits Langmuir-like behaviour, which now continues
up to larger wavenumbers, and the electron-acoustic wave branch exhibits
weak damping at smaller wavenumbers where the wave dispersion is given
approximately by (3.4). Such behaviour can be seen in figure 3.21, however,
we defer discussion of this figure till later.

Weak damping at small wavenumbers for large f was first predicted,
using a fluid model, by Watanabe & Taniuti (1977) and verified numerically
by Gary & Tokar (1985). Using (3.4) in (3.2), together with the condition
—% < w, /27, we can derive an analytical expression relating this minimum
limit in kApe, to Th/T, and nop/noc, i-e.

/4 /T, 1/2 non 1/4

e

This equation shows good agreement with the lower branch of the curve for
kApe, at noc/noe = 0.5, presented by Gary & Tokar (1985) in their figure 3.

Watanabe & Taniuti (1977) showed that a necessary condition for the
existence of a weakly damped electron-acoustic wave, is that the plasma
electrons consist of two species at widely different temperatures. Mathe-
matically, the existence of two electron species gives rise to the presence
of the S5 saddle point in G or its equivalent saddle point in €(k,w). This
saddle point, which arises out of the addition of the two electron Z’ terms
in G (or €), is directly responsible for the appearance of the weakly damped
electron-acoustic wave in a two-electron component plasma. The absence of
this saddle point in the dispersion relation for a single electron-temperature
plasma, is the reason why this mode remains strongly damped in such a
plasma.

Thus, we conclude that a necessary condition for observation of a weakly
damped electron-acoustic mode, is that f > f* ~ 0.2 and 8 > 10. Geomet-
rically, in this temperature range, this corresponds to the lowering of the Sg
saddle point in Im G (or Im €) below zero height.
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3.5 Weakly damped parameter regimes

In section 3 we presented conditions under which one might observe one or
two electron modes as kAp. or f is varied. However, we said little about the
damping of the modes. Gary & Tokar (1985) calculated the regions of weak
damping in Ty /T., noc/moe space, for the electron-acoustic and ion-acoustic
waves (figure 4 of Gary & Tokar 1985). They remark that the Langmuir
mode is weakly damped, at small wavenumbers, for all parameters in this
figure (0 < ngc/noe < 1; 5 < Tx/T. < 1000). The upper branch of their
existence curve, for Ty /T, > 20, has ng./nge ~ 0.8 which coincides with
our value of f* ~ 0.2 for 8 > 20, and represents the maximum value of nq.
for which the electron-acoustic wave may occur (although the dispersion is
more Langmuir-like in this regime).

The weakly damped wave regimes in (f, kAp.)-space are illustrated in
figures 3.16(a) to 3.16(f) for 3 values 5, 10, 20, 50, 60 and 100, respectively.
The curves were calculated by solving the dispersion relation, e(k,w) =
0 and the equation —7v(k) — w,(k)/2m = 0, simultaneously while varying
f. The shaded regions indicate where —y < w,/27, i.e. the amplitude of
the wave damps by less than e~! in one wave period and hence the waves
will be sufficiently weakly damped to be observable. The cross-hatched
areas define the regions in which the weakly damped electron-acoustic mode
occurs. We define the left hand boundary of this region representing the
maximum value of f at particular § for which the electron-acoustic wave
occurs, by the value of f*(3) which was read off from figure 3.2 . For the
values that we have considered, we observe that the principal hot Langmuir
mode (PHM), which is defined at f = 1, is weakly damped for all values of
kAp. spanned by the diagrams. The principal cold Langmuir mode (PCM,
f =0), on the other hand, is only weakly damped at smaller wavenumbers,
0 < kApe < 0.58. The regime of weak damping of the electron-acoustic
wave encompasses a progressively larger region of parameter space with
increasing g (figures 3.16(a) to (e)) and for high 8 and f, the wave exhibits
weak damping at small wavenumbers (figure 3.16(f)) and hence the acoustic
regime of the electron-acoustic mode will be observable (figure 3.21). In
fact it is readily seen that there is an optimum electron density ratio that
gives weak electron-acoustic wave damping even at small wavenumbers, viz.
noc =~ 0.1ng. for a hot-to-cool electron temperature ratio of 100. The lower
wavenumber limit, in units of the cool electron Debye length, Ap,, of the
weakly damped region of the electron-acoustic mode, is well approximated
for intermediate values of f by (3.9), which in terms of f and 8 may be
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Figure 3.16: Regions of weak damping in kAp, versus f space. The shaded
regions indicate regions in this parameter space in which the Langmuir
and/or electron-acoustic mode(s) will be weakly damped. Cross-hatched
regions indicate where the electron-acoustic wave will occur. (After Mace &
Hellberg (1990).)
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expressed as

3/4 f 1/4
kAp: > 21/4,31/2 (1 — f) . (3.10)

We note here that by the constancy of the f* curve for 8 > 20, we
obtain an approximate expression for k*Ap. as a function of g for § > 20 if
we substitute f = 0.2 into (3.10). This yields the approximate expression,

1.4

k*/\Dc ~ W,

(3.11)

which is in reasonable agreement with our numerically calculated curve (fig-
ure 3.3) for § > 20.

The utility of the diagrams presented in figure 3.16, is that they provide
the range of wavenumbers kAp. at particular values of f and 3, through
which there will be weakly-damped waves. Alternatively they provide the
range in f over which the plasma can sustain electrostatic oscillations at
a particular wavelength and temperature ratio. By taking a vertical or
horizontal slice through these diagrams one can predict, qualitatively, the
dispersive behaviour of a wave mode as kAp. or f, respectively, is varied.

Consider figure 3.16(c), the curve for 3 = 20. It is seen from the criti-
cal f* curve (figure 3.2) that the transition between the cases of one mode
and a possible second mode occurs at f >~ 0.21. We select slices through
figure 3.16(c) at f = 0.2,0.4,0.6. At f = 0.2 we observe only one mode,
which we know is Langmuir-like, and it will be weakly damped in the re-
gions: 0 < kAp. < 0.13; and 0.17 < kAp. < 0.56. This may be confirmed
by considering figure 3.17, which shows a plot of the dispersion relation.
At f = 0.4 the hot electron fraction lies above the critical value and there-
fore it is possible to observe two wave modes. Figure 3.16(c) indicates that
there is a finite range of wavenumbers over which these waves may be ob-
served. Indeed, referring to figure 3.18, it is seen that we will observe a
Langmuir-like mode for 0 < kAp, < 0.15 which damps out for higher kAp,,
and an electron-acoustic-like mode that emerges for 0.25 5 kAp. < 0.55
(figure 3.18). Following a similar procedure it is found that for f = 0.6 (fig-
ure 3.19) we observe a Langmuir-like mode and, over a very small interval
in kAp. and w,, the electron-acoustic mode. For f > 0.6 we observe only
a Langmuir-like mode, although we have f > f*, because the HOM that
exhibits weaker damping does not satisfy —y < w,/2r (figure 3.20).

Similar slices can be taken at various kAp. values and compared to
k*Apc. A similar analysis can then be undertaken when f is varied yielding
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Figure 3.17: Complex frequency as a function of kAp. for the Langmuir-like
mode and the electron-acoustic mode at a temperature ratio, 3, of 20 and
f = 0.2. Here and in figures 3.18-3.20 the dashed portions of the curves
have —y > w,/2r, while open circles illustrate the damping rate of the

electron-acoustic-like wave.
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Figure 3.18: Complex frequency as a function of kAp, for the Langmuir-like

mode and the electron-acoustic mode at a temperature ratio, 3, of 20 and
f=04.
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Figure 3.19: Complex frequency as a function of kAp. for the Langmuir-like

mode and the electron-acoustic mode at a temperature ratio, g, of 20 and
f=0.6.
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Figure 3.20: Complex frequency as a function of kAp. for the Langmuir-like
mode and the electron-acoustic mode at a temperature ratio, 8, of 20 and

f=08.
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useful information about the damping and wave dispersion of the waves in
such a scenario.

The onset of an interesting phenomenon takes place for § lying some-
where between 50 and 60 (figures 3.16(d) and 3.16(e)). The curve folds
back on itself at larger values of f and smaller kAp., rendering a region of
overlap in which one may observe an electron-acoustic and a Langmuir-like
wave simultaneously. Experimentally this could give rise to beating, as two
modes of the same wavelength but with different frequencies may propagate.
As mentioned above, the critical lower limit of the temperature ratio 3 for
this occurrence lies between 50 and 60, and is restricted to relatively large
values of f (or alternatively small values of ng. relative to ng.) and thus oc-
curs in a region of parameter space where the electron-acoustic wave is very
weakly damped. Such a situation is illustrated in figure 3.16(f). We observe
that for 0.8 < f < 0.95 we can observe two modes, one belonging to the
electron-acoustic w-k spectrum and the other belonging to the Langmuir w-k
spectrum, for 0.062 S kAp. < 0.18. This is confirmed by examination of the
dispersion relations presented in figure 3.21. Figure 3.21 is noteworthy also,
from the point of view that the electron-acoustic wave clearly exhibits the
dispersionless characteristics at these parameter values, as well as suffering
only weak Landau damping in this regime.
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Figure 3.21: Complex frequency as a function of kAp. for the Langmuir
and electron-acoustic waves at 8 = 100 and f = 0.9. There is a range
of wavenumbers over which both waves exhibit weak damping and thus
they may be observed simultaneously. The dashes and dots have the same
meanings as in the previous diagrams.
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Chapter 4

The magnetized
electron-acoustic instability

driven by field-aligned hot
electron streaming

The work in this chapter provides an extension of the work of Tokar &
Gary (1984) on the electron-acoustic instability in magnetized plasma. They
solved the linear kinetic electromagnetic dispersion relation for a few fixed
parameter values relevant to the polar cusp and deduced that the hot elec-
tron beams destabilise the electron-acoustic wave and not the whistler mode
near resonance, as had previously been suggested (Lin et al. 1984). Fur-
thermore, they show that the dispersion of the electron-acoustic wave can
account for the frequency-time structures observed by satellites in that re-
gion (e.g. Dynamics Ezplorer-1 (DE-1)).

The work in this chapter provides a more complete view of the electron-
acoustic instability than was presented by Tokar & Gary (1984) taking into
account such factors as effect of the terrestrial magnetic field, direction of
wave propagation and the possible competition with other electrostatic in-
stabilities in or near the electron-acoustic frequency range.
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4.1 Model and basic equations

Our plasma model is based upon the plasma constituents observed in the
terrestrial polar cusp region, viz. cool ions, and electrons that consist of two
separately isothermal components: a cool component; and a much hotter
component that has mean drift speed directed along the magnetic field.
The whole plasma is immersed in a constant homogeneous magnetic field
B = Bge,, which crudely approximates the magnetic field in the polar
region. This model represents a simplification of the model used by Tokar
& Gary (1984), in which a third electron component was incorporated.

The distribution functions of the ion and cool electron components are
approximated by Maxwellians to lowest order, and the hot electron velocity
distribution is given by the drifting Maxwellian

v+l (v - th)z}
?

2
20

A0 = (2mof) ™ Pexp {

where vgp, is the mean drift speed of the hot electrons relative to the ions
and cool electrons, and vy = (Th/m.)'/? is the hot electron thermal speed.
Furthermore, the ions are assumed to be unmagnetized on electron-acoustic
timescales, due to their much larger mass and hence their much smaller
gyrofrequency.

The wavevector k has components k|| and k| parallel and perpendicular
to B, respectively, and the angle it makes with the magnetic field is defined
by tan6 = k) /k_.

The dispersion relation for linear electrostatic waves in such a plasma
may then be written (see appendix A)

1+ ) K;=0, (4.1)

j=i,c,h
where
1 w
K;=- A :
‘ 2k2A},; (ﬂkvi) ’ (42)
and the electron contributions are:

1 w k2 2
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1 w — k||voh)
K = - Z’( : (4.4)
h 2k202, V2 kuy,

For analytical purposes we assume that the hot electrons are unmagnetized
which, by analysing the Gordeyev integral form for the hot electron suscep-
tibilty, it can be shown requires kﬁvﬁ/ﬂg > 4 (Gary 1971). However, in the
numerical calculations (see §4.3) we have employed the magnetized form for
the hot electron susceptibility.

The definitions of symbols are as follows: Ap; = (T;/4mn;e?)}/? is
the Debye length; w; = (47nje?/m;)'/? is the plasma frequency; v; =
(Tj/mj)l/2 is the thermal speed; and Q; = |g;|B/mjc is the gyrofrequency
of species j, where ;5 denotes one of {i,h,c}. I, is the modified Bessel func-
tion of order n, and Z is the plasma dispersion function. Temperatures are
measured in energy units throughout.

4.2 The dispersion relation for magnetized elec-
tron-acoustic waves

Assuming, as in the unmagnetized case (Gary & Tokar 1985), that the phase
velocity of the magnetized electron-acoustic wave lies between the thermal
velocities of the cool and hot electrons we write

w —nfl, w - k”voh

w
- 1, |—1—=
' V2 kv; \/§k||vc V2 kvy,

Implicit in (4.5) above is the assumption that the wave frequency does not
lie near any cyclotron harmonics. Were this to be the case, the second in-
equality in (4.5) would be reversed implying a power rather than asymptotic
expansion of the relevant Z—function term. For the purposes of this analysis
(a fuller derivation of the results of this section is provided in appendix A.4),
however, we shall suppose that (4.5), as it stands, always holds.

Assuming further, that the cool electrons are strongly magnetized and
hence have small Larmor radii k2 v2/Q? < 1, facilitates the expansion of
the Z- and Z’~, as well as the Bessel functions, in their appropriate asymp-
totic/power series regimes.

Expanding (4.1) in conjunction with (4.2)-(4.4), retaining only lowest
order terms, and summing between n = —1 and n = 1 (which takes into
account only the effects of the cyclotron fundamental) yields the following

> 1, < 1. (4.5)
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approximate dispersion relation in the context of (4.5) (see appendix A.4):

L+ 1 + w?sin?0  w?cos?
k2L, Q2 —w? w?
— kv (w — kyvor )?
. _1/2, 2% T F||Vor [|Yoh -0 4.6
i ————exp{ —————5— ¢ = 0. )

Equation (4.6) has a resonance at w = §, for nonzero 8. This gives rise
to two wave modes that have frequencies, respectively, above and below the
electron gyrofrequency, Q.. If Q. > w, or Q. € w then this resonance is
avoided. We shall take the liberty of calling the case corresponding to the
first inequality the strongly magnetized case, and the case corresponding to
the latter, the weakly magnetized case. We deal with the former first.

4.2.1 Strongly-magnetized electron-acoustic waves

We seek weakly-damped or weakly-growing waves. Therefore it shall be
supposed that |y| < |w,| in addition to our fundamental assumption that
Qe > w,. Solving (4.6) for w, in this parameter regime then yields (see
appendix A.4):

) kvl
T TR, R 47)

where p;e = v5./Qe is an effective electron Larmor radius based upon the
electron sound speed vy, = (noc/nox)/?vs. The term in the denominator
involving the latter is in most instances negligible in comparison to the
others therein, and may be ignored for all but very oblique propagation, i.e.
large & .

In the small wavenumber limit, kAp, < 1, this equation clearly reduces

to
wr = k|Vse = kvye COSH, (4.8)

which illustrates the acoustic nature of the wave at small wavenumbers.

At large wavenumbers kAp, > 1 the wave frequency approximately
satisfies

Wy ~ W Cos B,
(which can be seen from (4.7) by dividing through by k2A%, and letting
kApnr — 00) and in this wavenumber-regime the mode behaves more like a

plasma oscillation at a frequency commensurate with the natural frequency
of the cool electrons.
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4.2.2 Weakly-magnetized electron-acoustic waves

Here it is assumed that Q. < w. and therefore the electrons are less strongly
magnetized. Following an analysis similar to that of Melrose (1986), for
jon-acoustic waves, we assume |y| < |w,|, and equate the real part of (4.6)
to zero to obtain two roots for w? (see appendix A.4),

4w?Q2 cos? §

wZ:%(uf-&-Qg){li\/l—m}, (49)

where wy(k) = wo/(1 + 1/k22%,)Y/2. To facilitate identification of these
waves we investigate (4.9) in the small and large wavenumber regimes.

For those small wavenumbers, kAps, < (w?/Q2 — 1)~1/2 that enable
ws(k) < Qe to be satisfied, the upper and lower frequency solutions, respec-
tively, reduce to (see appendix A.4)

k*v?
OJ7(.+) =~ Qe + QTZe SiIl2 0, (410)
W)~ kv, cosb. (4.11)

For wavenumbers such that w,(k) > ., which reverses the sense of the
above-mentioned wavenumber inequality, the upper and lower frequencies
behave asymptotically like (see appendix A.4)

w ~ , .
r (1 + 1/k2/\2Dh)1/2 ( )

w™ ~ Q,cos. (4.13)

It is evident then that the lower frequency solution wg_) behaves like
an electron-acoustic wave at small wavenumbers (4.11), but has an upper
frequency cut-off at larger wavenumbers given by (4.13).

The higher frequency solution, w£+), is bounded below by the electron
gyrofrequency, )., and behaves like an electrostatic electron-cyclotron wave
(4.10) at small wavenumbers. At intermediate wavenumbers the dispersion
relation (4.12) is approximately acoustic:

kv,

T (1K)

Wr

(4.14)

and therefore the cyclotron-like wave bears some resemblance to the electron-
acoustic wave in unmagnetized plasma in this wavelength region. Akhiezer
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et al. (1975) have called the ion-acoustic analogy of this wave the cyclotron-
sound branch. In similar vein we shall refer to this wave as the electron-
cyclotron-sound wave, or for brevity, just the cyclotron-sound wave.

At large wavenumbers the dispersion of the wave (4.12) is more like a
cool electron plasma wave, the effects of the magnetic field becoming less
apparent at these higher frequencies.

4.2.3 The instability and dynamics of the magnetized wave

From the aforementioned, the dispersion relation of the electron-acoustic
wave in both the strongly- and weakly-magnetized regimes satisfies

Wy =~ k“v,e, (4.15)

for small wavenumbers kApp <€ 1. At larger wavenumbers, kApy > 1 the
dispersion relation ceases to be acoustic and the real frequency satisfies

ki
k b

w; >~ min {we, 2.} (4.16)
in this wavelength regime. Equation (4.16) demonstrates the importance of
the ratio {¢/w, in determining the dispersion at large wavenumbers.

The growth rate of the instability is easily obtained via (4.6) in the limit
|7] € |w,| (see appendix A.4):

7!'1/2 k2 w,% wf (w, et k“th)2

1T TR R G (wr = Kjjvon) exp [‘ W} (&0

with w, given approximately by either of (4.15) or (4.16) above, depend-
ing on the magnitude of the wavevector. Numerical investigations of the
unmagnetized instability (Gary 1987) have shown that growth near thresh-
old occurs in the frequency regime w, ~ w,., which is the regime of weak
damping of the electron-acoustic mode. In the magnetized instability it will
be shown later that growth emerges at the frequency ~ min {we, Qe } cosb.
With this foresight it is probably more accurate to employ (4.16) in the
above. When this is done it is not difficult to see that (4.17) has a cos? 4
dependence and therefore the growth rate maximises for wave propagation
parallel to the magnetic field. This monotonic decrease of the growth rate

with wave propagation angle is confirmed by the numerical calculations (see
later).
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By (4.17) it is clear that the condition for instability is

and therefore the wave is driven unstable when its phase velocity is in reso-
nance with the positive slope of the hot electron distribution i.e. by inverse
Landau damping. When the plasma is strongly magnetized then this con-
dition can be written
Voh 2 e
(1+k2X3), )1/2

At this point it is appropriate to discuss the particle and wave dynamics
of the magnetized electron-acoustic instability.

In the unmagnetized mode, the wave inertia is provided by the cool
electrons. This motion is coupled to the restoring force of the hot electrons
and the particles undergo roughly one-dimensional oscillatory motion in the
direction of the wavevector k.

In the magnetized wave, by contrast, the magnetic field, provided it is
strong enough, effectively restricts electron trajectories to lie along it. The
self-consistent wave E field, which is collinear with the wavevector k, then
gives rise to an E x B force which acts on the electrons in a direction perpen-
dicular to both B and E (assuming k x B # 0). Consequently the electron
trajectories become ellipses with major axes parallel to B and minor axes
perpendicular to both B and k. The more oblique the angle of propagation,
the smaller the angle made by the wavefronts with the magnetic field, and
the further the distance along the magnetic field that the hot electrons must
travel to neutralise any charge imbalances. For this reason the growth rate
of the instability decreases with increasing angle 4.

The direction of energy propagation in the magnetized electron-acoustic
wave can be established by considering the group velocity,

ow, Ow, Ow,

= le“.

Yo =Bk T ok ot Y ok

At small wavenumbers the group velocity of the electron-acoustic wave sat-
isfies

vy = (0, vse). (4.18)

So too, does the direction of wave energy propagation (Melrose 1986). This
means that independent of the direction of k the energy always propagates
along the magnetic field, which contrasts strongly with the unmagnetized
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wave in which the direction of energy propagation usually lies along the
wavevector k.
The group velocity in the large wavenumber limit is readily evaluated:

k ) k)
vy = —min {w, Qe}k—g(kbk”) = —min {wc,Qe}Egk. (4.19)
In this wavenumber regime the energy propagation is in a direction oppo-
site to that of the wavevector, which again contrasts with the unmagnetized
wave. In the latter there is no energy propagation at all, at larger wavenum-
bers the wave reduces to a plasma oscillation at a frequency close to the cool

electron plasma frequency (Gary & Tokar 1985).

4.3 Numerical

In this section we present numerical results based on the solution of the
dispersion relation (4.1) incorporating (4.2)—(4.3) retaining their full ana-
lytical complexity and furthermore, including hot electron magnetization,
i.e. incorporating

1 w — kyjvon (k?ﬁ>
Ky = 1+ exp | ——Lt
tT D, [ Vakon P\ Q2

had k? v? w —nQe — kyvon
In( L ’*)Z( I ) (4.20
Z Q? \/ik“vh (4.20)

n=—0oo

instead of (4.4). Since only the electrons are magnetized we henceforth omit
the subscript e on ..

The dispersion relations and growth rates of the electron-acoustic and
electron-cyclotron-sound instabilities are illustrated in figures 4.1-4.3 for a
number of wave propagation angles §. The magnetization of the electrons
is weak, /w, = 0.25, and the mean hot electron drift speed is vor = 10v,.
In this instance oblique wave propagation gives rise to two instabilities.

Based on the approximate dispersion relations (4.15) and (4.16) we iden-
tify the lower frequency wave, w, <  for § > 0, with the electron-acoustic
wave, where the acoustic nature w,/k = const. is clearly evident from fig-
ure 4.1. We identify the upper frequency mode as the cyclotron-sound-like
wave (see figure 4.2). The latter mode may nevertheless exhibit a substan-
tial acoustic regime depending upon the cyclotron harmonic onto which it
connects. Indeed, the dispersion of this mode/instability at intermediate to
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large wavenumbers reduces to the dispersion of the electron-acoustic mode
in an unmagnetized plasma (cf. equation (4.14) and figure 4.2). Growth
may occur in the acoustic regime for this mode also, giving rise to acoustic-
like instability at frequencies greater than the electron gyrofrequency (see
figure 4.2).

At this point it is appropriate to comment on the early (k # 0) termi-
nation of the dispersion curves for the cyclotron sound wave. The reason
is numerical in origin and comes about because we have not considered full
electromagnetic and relativistic effects in our dispersion relation (4.1). As
demonstrated in Cuperman (1981), if one projects the full (nonrelativistic)
electromagnetic wave tensor A;;, where

AGE; =0,

is the wave equation and E; are the electric field components, along the
wavevector then one obtains (4.1) with additional contributions due to elec-
tron current-induced coupling to the transverse waves. Callen & Guest
(1971) have shown that unless

W2
02122 <1

these contributions should be considered. As is evident from the diagrams k
is tending toward zero with w, # 0 when the curves terminate and therefore
this contribution would become important. In addition, the frequency of the
cyclotron-sound wave tends toward a cyclotron harmonic at small k, where
the arguments of the Z functions become indeterminate (0/0 as k — 0)
suggesting unphysical behaviour there. As discussed by Swanson (1989)
this shortcoming can be overcome by employing a full relativistic treatment
of the plasma particles.

A similar mode to the cyclotron-sound wave arises in a magnetized
electron-ion plasma when the ions are much hotter than the electrons. Akhie-
zer et al. (1975) have called this latter wave the low-frequency electron
sound branch and it is related to the electron-acoustic instability studied by
Aref’ev (1970) and Lashmore-Davies & Martin (1973).

In each of the electron-acoustic and cyclotron-sound instabilities dis-
cussed above the growth rate is observed to decrease with increasing propa-
gation angle in agreement with our earlier discussions. However, in contrast
the real frequency of the electron-acoustic wave is observed to decrease, while
the frequency of the cyclotron-sound wave is observed to increase with pro-
gressively larger propagation angles.
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Figure 4.3 illustrates the dispersion relation and growth rate of the
strongly magnetized electron-acoustic instability. The electron gyrofrequen-
cy in this case is @ = 2w, and lies well above the range of electron-acoustic
frequencies—so avoiding any resonances. In this situation, also, the growth
rate as well as the frequency, decreases with propagation angle.

In figures 4.4-4.9 we illustrate the effect of increasing the magnetization
on the instability dispersion and growth rate, for oblique propagation angles.
The drift velocity is vop = 10v, and the wavevector, k, makes an angle of 20°
with B. In all the figures one observes a “coupling” between the electron-
acoustic and cyclotron-sound waves at wavenumbers kp. ~ 0.1 — 0.2 and
frequencies lying just below €. This coupling, as is evident from the figures,
becomes weaker as the ratio Q/w, is increased.

The lower frequency acoustic instability is observed to span a progres-
sively larger range of frequencies relative to the plasma frequency, as the
gyrofrequency is increased. More important, however, is the dramatic de-
crease in the growth rate of the cyclotron-sound-like instability as the elec-
tron gyrofrequency is increased. This leads to the eventual stabilisation of
the wave at Q/w, ~ 0.75 (see figure 4.7). This phenomenon is shown clearly
in figure 4.10. Here we cite cyclotron damping as the main reason for the
suppression of the growth rate.

In contrast, the growth rate of the electron-acoustic instability appears
to be less strongly affected by this parameter.

Figures 4.11 and 4.12 show a more detailed view of the growth rates of
the instabilities at various 6 values. As discussed earlier the waves grow by
inverse Landau damping due to resonance with the positive slope of the hot
electron distribution. Figure 4.11 illustrates the scenario when Q < w,, and
figure 4.12 the corresponding scenario when the inequality is reversed, 0 >
we. The former shows the far greater maximum growth rate of the cyclotron-
sound-like instability at values of 2/w, less than one. Nevertheless, at small
wavenumbers kp. < 1, the growth rate of the electron-acoustic instability
is larger than that of the cyclotron-sound-like instability.

Figure 4.12 shows that at larger gyrofrequency-plasma frequency ratios
Q/w. > 1, i.e. stronger magnetization, the cyclotron-sound mode is sta-
ble for a wide range of propagation angles, and only the electron-acoustic
instability prevails.

At quasi-parallel propagation, 0 < |k X B| <« 1, and weak electron
magnetization Q/w, < 1, we find that the electron-acoustic instability is
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60°

Figure 4.1: The dispersion relation and growth rate of the electron-acoustic
instability. The parameter labelling the curves is §. Other parameters are:
Q/w. = 0.25, vop = 10v.. Unless otherwise stated, in all figures in this
chapter n, = ny, Ty = 1007, T; = T. and m; = 1836m,.. Here and in
figures 4.44.9, 4.14, and 4.20-4.22 the dashed section of the curves indicate
strongly damped waves where —y < w,/2r.
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Figure 4.2: The dispersion relation and growth rate of the higher-frequency
electron-cyclotron-sound-like instability. The parameter labelling the curves
is 8; and Q/w, = 0.25, vy = 10v,.
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Figure 4.3: The dispersion relation and growth rate of the electron-acoustic
instability in the strongly magnetized regime (/w. = 2. The parameter
labelling the curves is 8; and vg, = 10v,.
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Figure 4.4: Figures 4.4-4.9 illustrate the dispersion relation and growth
rate of the electron-acoustic- and electron-cyclotron-sound instabilities for
various values of the ratio 2/w.. The wavevector makes an angle § = 20°
with respect to the magnetic field. The open circles correspond to the growth
rate for the electron-cyclotron-sound instability, whereas the shaded circles
show the growth rate of the electron-acoustic instability. In the above figure
) /w, has the value 0.25.
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Figure 4.5: Q/w,. = 0.5
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Figure 4.6: Q/w, = 0.75
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Figure 4.7: Q/w, =1
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Figure 4.8: Q/w, = 1.25
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Figure 4.9: Q/w,. = 1.5

7




Figure 4.10: Growth rate of the electron-cyclotron-sound instability for var-
ious values of the ratio Q/w. (on curves). The hot electron drift speed is
von = 10v. and the wavevector makes an angle of 20° with the magnetic

field.
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Figure 4.11: The growth rate of the instabilities at various angles, 8 for
Q/w, = .25. The smaller peaks correspond to the growth rate of the electron-
acoustic instability and the larger to the electron-cyclotron-sound instbility.
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Figure 4.12: The growth rate of the electron-acoustic instability at various
angles, 0, for 1/w, = 2. The cyclotron-sound wave is stable.
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unaffected by the magnetic field. The dispersion of the wave is given by

2
2 We

IR,
and under these circumstances the results of Gary (1987) apply, approxi-
mately.

If > 2°, however, and the hot electron drift speed is not too far from
its threshold value, then there arises a local maximum in the growth rate
corresponding to wave growth at frequencies ~  cos 8 (see figure 4.13). This
peak signals the onset of the lower frequency electron-acoustic instability.
For larger propagation angles the waves/instabilities are clearly distinct,
each with its own separate dispersion curve one above and one below 2 (see
figure 4.14).

Figure 4.15 illustrates the thresholds of the instabilities as a function of
6, for various values of /w.. The instability with lower threshold as § — 0
is electron-cyclotron-sound-like, and the other, corresponding to a larger
threshold drift speed as § — 0 is electron-acoustic-like. For sufficiently
oblique propagation angles, however, the electron-acoustic instability be-
comes the instability with lower threshold (and larger growth rate—see later)
and it becomes increasingly more difficult to destabilize the cyclotron-sound-
like wave by a hot electron drift. As the ratio Q/w, is increased towards ~ 1
we find only one threshold curve pertaining to an electron-acoustic-like in-
stability. It is noteworthy that as 8 — 0 the higher frequency instability,
which reduces to the electron-acoustic instability in an unmagnetized plasma
in this limit, has vop, > 4.7v. at § — 0, which agrees with the finding of Gary
(1987), that the hot electron drift speed must be approximately 5v. for the
onset of the electron-acoustic instability.

At larger magnetization Q/w, > 1, the threshold exhibits very weak de-
pendence on the wave propagation angle. Consequently, a hot electron drift
speed greater than 5v, will excite electron-acoustic turbulence in all propaga-
tion directions. However, wave growth is non-isotropic and will be enhanced
along the magnetic field direction (cf. §4.2.3 and figure 4.12). Furthermore,
Tokar & Gary (1984 ) have solved the full electromagnetic dispersion relation
and shown that the electron-acoustic mode has a lower threshold than the
whistler mode for both Q/w, > 1 and Q/w, < 1—the latter is more usually
destabilised by strong temperature anisotropies in the particle distribution
functions. Therefore field-aligned electrostatic turbulence between the ion
and electron plasma frequencies in a strongly magnetized plasma, could be a
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Figure 4.13: The local maximum in the growth rate of the electron-acoustic
instability that occurs for Q/w, < 1 and 0 < |kxB| € 1. 8 = 5° and
Q/w. = 0.424. The parameter labelling the curves is voa/v..
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Figure 4.14: The dispersion relation and growth rate of the electron-acoustic
and higher frequency cyclotron-sound instabilities for § = 5° near the critical
value at which the “unmagnetized” electron-acoustic instability couples to
the cyclotron-sound wave giving rise to instabilities above and below 2. The
hot electron drift velocity, vos, is 7v.. Open circles correspond to the growth
rate of electron-cyclotron-sound-like instability, whereas the shaded circles
indicate the growth rate of the electron-acoustic instability.
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strong indication of the occurrence of the electron-acoustic instability (Gary
1987).

In figures 4.16 and 4.17 we illustrate the maximum growth rates of the
instabilities under conditions of weak magnetization, at wave propagation
angles of 20° (figure 4.16), and 40° (figure 4.17). Here and in figures 4.18-
4.19 the growth rates have been maximized with respect to k¥ = |k|. In
figures 4.16-4.18 the ratio 2 /w, = 0.424 and this corresponds to  /w, = 0.3.

In figure 4.16 the propagation angle is such that the cyclotron-sound-like
instability has lower threshold (cf. previous figure) and it also has larger
maximum growth rate for hot electron drift speeds of just above 6v. to over
20v,.

In figure 4.17 the situation is reversed: the electron-acoustic wave has
lower threshold and also larger maximum growth rate for a drift speed such
that 6v. < wvor < 13v.. For vop > 13v. the cyclotron-sound instability
has the larger maximum growth rate. This means that for such angles the
electron-acoustic instability will appear as an instability “island” which for
this particular case takes the form 6v, < vor < 13v, being swamped by the
electron-cyclotron-sound instability at larger beam speeds due to its larger
growth rate there. Because it has the lower threshold of instability, however,
the electron-acoustic wave could grow to such a large amplitude that it
sufficiently scatters the plasma components, thus preventing the emergence
of the electron-cyclotron-sound instability. In the event of this occuring
the hot electron drift-induced turbulence would be dominated by electron-
acoustic waves.

Figure 4.18 illustrates the maximum growth rate of the lower frequency
electron-acoustic instability for Q/w. = 0.424 < 1 and a number of wave
propagation angles #. Clearly, for large drift speeds there is a monotonic
decrease in the maximum growth rate of this instability as the propaga-
tion angle increases. This trend breaks down for drift speeds close to their
threshold values where the behaviour of the maximum growth rate curves
is more complex, but is in keeping with the threshold predictions.

In the strongly magnetized plasma, Q/w, = 4.24, the behaviour of the
maximum growth rate with 6 is strictly monotonic (see figure 4.19); there
being very little variation in the threshold drift speed with the angle of wave
propagation. In addition we point out that, as discussed by Gary (1987),
the electron-acoustic instability transforms into the electron/electron two-
stream instability at large values of the electron drift speed ~ 20v..
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Figure 4.15: The thresholds of the instabilities that arise for various values
of /w, as a function of wave propagation angle §. The parameter labelling
the curves is the ratio Q/w,.
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Figure 4.16: A comparison of the maximum growth rate of the electron-
cyclotron-sound- and electron-acoustic instabilities for § = 20°, Q/w. =
0.424.
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Figure 4.17: A comparison of the maximum growth rate of the electron-

cyclotron-sound-like and the electron-acoustic instabilities for 8 = 40°,
Q/w, = 0.424.
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Figure 4.18: The maximum growth rate of the weakly magnetized (/w. =
0.424) electron-acoustic instability as a function of hot electron drift speed
for various values of § (labelling curves).
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Figure 4.19: The maximum growth rate of the strongly magnetized (Q/w, =
4.24) electron-acoustic instability as a function of hot electron drift speed.
The parameter labelling the curves is 6.
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4.4 The hot ion driven instability

It is well known that the modified electron-acoustic mode may be driven
unstable by a hot ion drift (Ashour-Abdalla & Okuda, 1986; Schriver &
Ashour-Abdalla, 1987). Under the assumption that the phase velocity of
the modified electron-acoustic wave satisfies

W
e K % & Vip, Vh, (4.21)

Yu & Shukla (1983) showed that the modified electron-acoustic mode has
the following dispersion relation in an unmagnetized plasma,

We

T L+ 1/k2AE, + 1/R2AE )17

Wr

where Ap;; is the Debye length of the hot drifting ion species. However, the
condition (4.21) imposes the rather restrictive condition on the ratio of ion-
to-cool electron temperature ratio Tj,/T. > m;/m, (Gary & Tokar 1985).
Such large ion-electron temperature ratios rarely occur in space/cosmic
plasma, situations and are virtually impossible to attain in the laboratory.

Using kinetic theory Schriver & Ashour-Abdalla (1987) were able to
show that the situation is not as bleak as a first glance might imply. They
showed that the modified electron-acoustic instability emerges when the
temperature of the ion beam is of the order of 250 times greater than the
cool electron temperature, which represents a significant improvement over
the value of 1836. Although this still requires that the ions be very hot, it is
certainly more tenable than the formidable temperature ratio of very much
larger than m;/me..

Moreover, ion temperatures larger than 2507, are believed to occur in
the geomagnetic tail (Schriver & Ashour-Abdalla, 1987) and therefore, the
unstable spectrum of modified electron-acoustic waves could be responsible,
at least in part, for broadband electrostatic noise (below the electron plasma
frequency) observed there. We present in this section a comparison of the
hot ion driven instability with that of the hot electron driven instability of
the foregoing sections.

A model similar to that of Schriver & Ashour-Abdalla (1987) is em-
ployed: the plasma consists of stationary cold unmagnetized ions; hot un-
magnetized ions that drift along B with drift speed wvp;; hot magnetized
electrons; and cold magnetized electrons that are both stationary. Once
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again we write the dispersion relation
1+ Z Kj =0,
J
but in this instance the summation includes a term of the form
1 w — kyjvoip
K=~ A ( , 4.22
SRRIFTOYI V2kvip (422)

where v is the mean velocity of the drifting hot ions. Kj, K. and K} are
given by (4.2), (4.3) and (4.20) (with vor = 0), respectively.

In the strongly magnetized regime (Q/w; 3> 1), the dispersion of the
unstable mode satisfies (cf. Yu & Shukla 1983)

we cos b
1+ 1/k2/\2Dh + 1/k2/\2Dl.b)1/2’

Wy =

and as with the hot electron-driven instability, the effect of the magnetic
field is to introduce a factor of cos 6 into the numerator of the unmagnetized
dispersion relation. As the strongly magnetized case has been investigated
by Schriver & Ashour-Abdalla we shall concentrate primarily on the weakly
magnetized regime /w, < 1.

Figure 4.20 illustrates the dispersion and growth rate of the modified
electron-acoustic instability for a propagation angle of § = 0°. In this case
the wave dispersion and growth are unaffected by the magnetic field.

In figure 4.21 the wave propagation angle is § = 25°. There is a notable
change in the dispersion of the mode at w, ~ §) as well as the emergence of
a peak in the curve for 7 there.

For still larger angles of propagation (figure 4.22, § = 30°) one observes
two modes: one that propagates at w, < {; and another that is weakly
damped for w, > Q. This behaviour of the dispersion relation for oblique
wave propagation is similar to that of the weakly magnetized electron-
acoustic instability, however, there are two main differences. Firstly, the
resonance at { only affects the dispersion of the modified electron-acoustic
instability at larger propagation angles, 6, than it does the electron-acoustic
instability in the absence of hot ions. Secondly, the mode that has the higher
frequency has constant phase velocity at small wavenumbers (kp. < 1),
whereas, when the hot electrons are drifting they drive a high frequency
cyclotron-sound mode that has w, ~ n) at small kp.. A similar instability
in a more strongly magnetized plasma, that had constant phase velocity at
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Figure 4.20: The dispersion and growth rate of the weakly-magnetized
modified electron-acoustic instability for § = 0°. Other parameters are
ne = 0.1n., Tp = T = 5007, T; = 125T,, Q/w. = 0.2 and vo; = 4.95v,.
Solid circles correspond to the growth rate of the modified electron-acoustic
instability.
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Figure 4.21: The dispersion and growth rate of the weakly-magnetized mod-
ified electron-acoustic instability for § = 25°. Other parameters are as in

figure 4.20. Solid circles correspond to the growth rate of the modified
electron-acoustic instability.
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Figure 4.22: The dispersion and growth rate of the weakly-magnetized mod-
ified electron-acoustic instability for § = 30°. Other parameters are as in

figure 4.20. Solid circles correspond to the growth rate of the modified
electron-acoustic instability.
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small wavenumbers was also observed by Schriver & Ashour-Abdalla (1987).
They called this instability the beam-resonant instability.

Figure 4.23 illustrates the threshold of the magnetized modified electron-
acoustic instability as a function of 8 for two values of the ratio 2/w.. The
shape of the curves are qualitatively similar to those found in the electron
driven case (figure 4.15). For the strongly magnetized (2/w. > 1) curve,
the threshold drift speed slowly increases with angle of propagation from a
starting (parallel propagation) value of vo;5 ~ 4.1v.. In the case of weak mag-
netization (/w, < 1), we observe two instabilities: an ion beam-resonant
instability (Schriver & Ashour-Abdalla 1987) which has lower threshold as
6 — 0, and a weakly-magnetized modified electron-acoustic instability with
larger threshold as § — 0.

The weakly-magnetized modified electron-acoustic instability, has an up-
per frequency of ~ Qcosf (figure 4.22) as does the hot electron-driven
electron-acoustic instability. We note also that in the regime Q/w, < 1, the
modified electron-acoustic instability has smallest threshold at intermediate
angles 6, only, as does the hot electron-driven electron-acoustic instability.

The maximum growth rate curves (not shown) are qualitatively similar
to those of the electron-acoustic instability, but there is a critical velocity
above which the modified electron-acoustic instability switches to a beam-
resonant instability (Schriver & Ashour-Abdalla, 1987).
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Figure 4.23: The threshold ion drift speed for the magnetized modified
electron-acoustic instability as a function of §. The parameter labelling the
curves is Q/we.
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Chapter 5

Conclusion

5.1 Summary

In part I of the thesis we dealt with aspects of the linear theory of the
electron-acoustic wave and instability. Chapter 2 was introductory. Chap-
ter 3 dealt with existence criteria for weakly-damped electron-acoustic and
Langmuir waves, and chapter 4 was an investigation of the magnetized
electron-acoustic instability driven by a relative hot—cool electron drift. The
most salient features of the investigation are summarised in the following.

In an extension of the work of Dell, Gledhill & Hellberg (1987) we
showed, in chapter 3, that the electron-acoustic wave is distinct from the
electron plasma or Langmuir wave. However, for parameters near their crit-
ical values, i.e. parameter values at which the dielectric function has saddle
points at zero height in its imaginary surface, the dispersion relation of the
electron-acoustic wave behaves more like that of an electron plasma wave
whose dynamics are based on the cool electron component. It is for this
reason that Dell et al. (1987) originally identified this wave as a plasma
wave with frequency below the electron plasma frequency.

The critical curves also furnish the minimum hot electron density for
the occurrence of the electron-acoustic wave. This minimum density of
non/nge = 0.2 agrees well with that found by independent methods (Gary &
Tokar 1985). Furthermore, it was demonstrated, explicitly, that the electron-
acoustic wave is only weakly Landau-damped at small wavenumbers for val-
ues of the hot electron density nop/mge very near to unity, and for large
values of the temperature ratio 7,/7. > 10. This too, agrees well with
earlier works (Watanabe & Taniuti 1977; Gary & Tokar 1985). In a more
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abstract sense the temperature ratio 7,/T, = 10 represents the approximate
weak damping criterion for the saddle point introduced by the weighted ad-
dition of the Z’-functions in the dispersion relation. In fact this saddle
point was shown to play a decisive role in the interplay between the electron
plasma and electron-acoustic waves.

The electron-acoustic instability in a magnetized plasma was investigated
in chapter 4. This work builds on previous works on the instability. We
extend the parameter regime considered by Tokar & Gary (1984) as well
as consider the effects of varying the magnetic to plasma pressure ratio.
Whereas Gary (1987) considered only parallel wave propagation, we have
considered a much wider range of propagation angles which could prove
useful in the understanding of BEN in the auroral regions. In contrast
to cusp hiss, which is predominantly field-aligned, auroral BEN is fairly
isotropic (Dubouloz et al. 1991a) and requires a more general instability
analysis.

In this chapter it was found that the ratio of the electron-gyrofrequency
to cool electron plasma frequency was critical in determining dispersion
and damping characteristics of the electron-acoustic wave. Furthermore
a cyclotron-sound type instability, which is closely related to the electron-
acoustic instability, was identified. At small wave propagation angles rela-
tive to the magnetic field, the cyclotron-sound instability is found to have
the larger growth rate, but becomes increasingly difficult to destabilize by
the field-aligned free energy of the hot electron beam at progressively more
oblique angles. At larger propagation angles the electron-acoustic instabil-
ity exhibits the lower threshold and larger growth rate provided the beam
speed is not too large.

At very large values of the electron-gyrofrequency to cool electron plasma
frequency ratio it was demonstrated that the cyclotron sound branch is
strongly damped and that the electron-acoustic instability is prevalent.

Finally, the similarities between the electron driven and ion driven in-
stabilities were pointed out.

5.2 Suggestions for further work

As far as the saddle point method of chapter 3 is concerned further work
might involve the inclusion of the effects of particle drifts and/or the effects
of magnetization on higher order electron mode behaviour. Particle drifts
have been investigated from the point of view of the saddle point method
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by Gledhill (1982), for ion-acoustic waves in a multi-ion-beam plasma. It
appears, however, that no such work has been performed for waves in a
multi-electron beam plasma.

A further refinement of the saddle point method would be the introduc-
tion of a magnetic field. Neither Gledhill (1982) nor Dell (1984) considered
this scenario. The problem, however, becomes substantially more involved
when a magnetic field is introduced because it greatly increases the num-
ber of wave modes. Nevertheless such an investigation may render some
interesting results.

In the consideration of the magnetized electron-acoustic instability we
have neglected to take into account inhomogeneities. In the polar cusp
plasma one would expect some variation of the plasma parameters and mag-
netic field from place to place. Effects such as density and magnetic field
gradients should be investigated for a better undestanding of the electron-
acoustic instability in the polar cusp. In fact, bursts of BEN have been shown
to be correlated with gradients in the cool electron density (Dubouloz et al.
1991a, 1991b).

We have neglected to take into account possible electromagnetic effects.
These effects would become especially important when the plasma parti-
cle pressure is of the order of the magnetic field pressure, or put another
way we. ~ .. In this frequency regime, were one to include an oscillating
magnetic field component one may find intermediate frequency Alfvén and
magnetosonic waves that arise due to the inertia of the cooler electron com-
ponent rather than that of the ion component. This would presumably lead
to the identification of new magnetosonic waves.

There still remains a lot of scope for work on the linear electron-acoustic
wave/instability itself, especially on the experimental side. As indicated
in the introduction (chapter 1) the body of work devoted to the electron-
acoustic wave is by far smaller than that afforded to the ion-acoustic wave.
Moreover, it appears that very little, if any, experimental work on the
electron-acoustic wave has been undertaken in the laboratory.

Whereas it can be said fairly conclusively (Tokar & Gary 1984; Gary
1985; Lin et al. 1985; Roth & Hudson 1986; Lin et al. 1987; Gary 1987;
Pottelette et al. 1988, 1990; Dubouloz et al. 1991a, 1991b) that electron-
acoustic waves occur in the terrestrial polar regions it remains to be conclu-
sively shown that they occur upstream of the earth’s bow shock (Thomsen
et al. 1983; Marsch 1985). This will require further detailed analyses of

electron distributions in that region, as well as wave instability analyses
modelled on such distributions.
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Part 11

Nonlinear theory
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. the success of any physical investigation depends on the ju-
dicious selection of what is to be observed as of primary impor-
tance, combined with a voluntary abstraction of the mind from
those features which, however attractive they appear, we are not
yet sufficiently advanced in science to investigate with profit.
(The Scientific Works of James Clerk Maxwell, Vol. II, p. 217)
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Chapter 6

Introduction to part 11

In the following chapters we shall be concerned primarily with electron-
acoustic solitons. These arise, however, as special case solutions of more
general nonlinear evolutionary equations of the type first derived by Kor-
teweg & de Vries (1895) in a study of long wavelength water waves in a
shallow canal, which often bear their names. For this reason we begin this
introduction by way of a discussion of nonlinear dispersive waves in general.

6.1 Nonlinear dispersive waves and solitons

When waves propagate in a medium which is both nonlinear and dispersive
they may exhibit some truly remarkable phenomena.

Nonlinearity, or the dependence of the wave packet on its amplitude, as
a rule, coordinates the phases and frequencies of the Fourier components
of which the wave packet consists. It also leads to the generation of higher
wavenumber harmonics, which if unchecked, ultimately bring about the col-
lapse or ‘breaking’ of the waveform.

Dispersion, or the dependence of the phase velocity of a wave on the
wavenumber, results in the shearing of a wave packet caused by phase mixing
of the spatial Fourier components with time.

Dispersion causes each new harmonic generated by nonlinearity to travel
at a different speed. By this process of phase mixing it can suppress the
infinite steepening of an initial wave disturbance, which might otherwise
result in a nonlinear, dispersionless medium. On some wave mode branches
nonlinearity and dispersion may achieve a delicate balance resulting in wave
profiles that propagate unchanged with time over great distances. One such
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disturbance in which this fine balance is attained is the solitary-wave or
soliton. One might suppose that if the balance is so critical then such
entities would be very rare. On the contrary, the detailed balance gives rise
to stability. Thus any finite disturbance in a nonlinear, dispersive medium
generally leads, in the time asymptotic limit, to an ordered sequence of
solitons.

The discovery of the soliton is generally attributed to J. Scott Russell
who in 1834 observed such a ‘great wave of translation’ on the Edinburgh-
Glasgow canal (Drazin & Johnson 1989).

Solitons are ubiquitous in nature. They may be subclassified in many
ways and into many different types, but a rather important fundamental
subclassification is the distinction between topological and nontopological
solitons—those that do or do not, respectively, change the state of a system
by their passage. A domain wall in a ferromagnet is an example of a topo-
logical solitary wave: its passage reverses the direction of magnetization.
Russell’s water-wave soliton is nontopological: its passage leaves the water
behind the ‘hump’ as before. Recent years have seen the recognition of more
and more examples of solitons in physical systems and here we do no more
than provide a partial list.

Nontopological solitons include water-wave solitons (Korteweg & de Vries
1895) of several types, ion-acoustic wave solitons (Washimi & Taniuti 1966),
nonlinear optics solitons, optical fiber solitons, biomolecular polaron soli-
tons, high-intensity shock solitons and nerve conduction solitons.

Topological solitons include kinks in charge-density waves, some dislo-
cations, epitaxial disclinations, charge localization in low-dimensional con-
ductors, ‘bags’ and ‘lumps’ in quantum gauge fields, domain walls in ferro-
electrics and in ferro- and antiferromagnets, critical droplets and nucleation,
instantons, ‘boojums’ in superfluids, large scale structures in cosmology and
ion-acoustic double layers (Torvén 1981) amongst others.

In plasma physics the distinction between topological and nontopological
solitons is hardly ever recognised. Indeed, the definition of a soliton is
somewhat narrower than was implied in the above. Generally, in plasma
physics a soliton is regarded as a symmetric single peak perturbation of
the potential, density, etc. A double layer, which is an abrupt change in
the plasma properties over a relatively short length scale, is regarded as a
seperate, quite distinct entity. However, the topological nature of the latter
is fully exploited within the realms of space and cosmic plasma physics,
where it is often invoked to explain the acceleration of charged particles (see
the review by Raadu (1989)).
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Within the broader definition, the electron-acoustic soliton falls into the
nontopological category. The electron-acoustic soliton is an electrostatic
phenomenon, which in its most simple aspect consists of a ‘slab’ of nega-
tive space-charge adjacent on either side to slabs of positive space-charge.
The surrounding plasma asymptotically approaches the same equilibrium
state in either direction, and is charge neutral. This charge density profile
is associated, in a self consistent way, with a dip in the plasma potential
whose width is of the order of several hot electron Debye lengths and whose
depth is ~ =T} /e. The deviation from quasineutrality is caused entirely by
variations in the electron fluid densities: the cool ions are massive and slow
to respond on electron-acoustic wave time scales. At the soliton centre the
cool electrons experience a sharp local increase in number density, whereas
the hot electron density undergoes a somewhat slower decrease. The dis-
cussion of the electron-acoustic soliton shall be taken up in more detail in
chapters 7-9. '

Electron-acoustic and ion-acoustic solitons are not the only types of soli-
ton that may occur in a plasma. In fact, much of the interest in plasmas
has to do with the multitude of wave types that they can support. Further
examples of solitons in plasmas include solitary electrostatic ion cyclotron
waves (Yu 1977), Langmuir solitons which take the form of an amplitude
modulation of the Langmuir wave (Zakharov 1972), whistler wave solitons
governed by a nonlinear Schrodinger equation (Mann 1986) and of course
the solitons corresponding to the magnetosonic (Ogino & Takeda 1975) and
Alfvén waves (Spangler et al. 1982). The latter three examples are electro-
magnetic phenomena, demonstating that plasma solitons are not necessarily
electrostatic in character.

Within the broader definition of a soliton one might also include in
this list the various solitary vortices that can occur in plasmas with in-
homogeneities (Hasegawa & Mima 1978; Spatschek et al. 1990 [and ref-
erences cited therein]). Furthermore, Bharuthram & Shukla (1988) have

investigated monopolar and dipolar vortices based on the modified electron-
acoustic wave also.

6.2 Theoretical developments

The idea of Korteweg and de Vries, that the dynamical equations of a phys-
ical system may be reduced to a simpler wave equation embodying the es-
sential physics of the phenomenon, has shown, through recurrence of such
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equations, that there must be deeply shared concepts underlying many and
varied nonlinear phenomena. A much used method of obtaining such evolu-
tionary equations, today, is the so-called reductive perturbation technique
of Washimi & Taniuti (1966), which is based on the pioneering work of
Gardner & Morikawa (1965).

In this technique one introduces slow time and length scales suggested
by the problem at hand, which are usually functions of (say) e—a small
parameter. In addition, the wave amplitude is assumed to deviate from
its equilibrium state, by at most O(e) to lowest order. This sets the non-
linearity, and dissipation or dispersion, on an equal footing so that these
competing effects may attain a balance. Completing the expansion of the
wave amplitude to the desired order in € yields a system of equations, which
upon order by order solution, yield the governing evolutionary equation.
Such techniques, are not new, however, and can be traced back to antiquity.
They (and other techniques) have led to the recognition of a wide variety
of one- and multi-dimensional nonlinear wave equations such as nonlinear
Schrodinger equations, KdV equations (Washimi & Taniuti 1966), modi-
fied KdV equations with both cubic and quadratic nonlinearities (Torvén
1981), Boussinesq equations (Rao, Shukla & Yu 1990) and Benjamin-Bona-
Mahoney equations (Broer & Sluijter 1977) to name a few.

The broad class of problems that can be reduced to the solution of such
nonlinear evolutionary equations has had a decisive influence on the devel-
opment of nonlinear wave theory. Elegant analytical techniques have been
developed for the solution of the Korteweg—de Vries and other exactly inte-
grable equations. One such much celebrated technique is the method of the
inverse scattering transform (Gardner et al. 1967). Further developments
and methods of solution of the KdV equation as initial-value problem can
be found in the work of Drazin & Johnson (1989).

Another common way of approaching the problem of nonlinear waves,
especially in plasmas, (Sagdeev 1966; Bharuthram & Shukla 1986; Baboolal,
Bharuthram & Hellberg 1988; Baboolal, Bharuthram & Hellberg 1989), is
to reduce the problem to the solution of the energy equation for a ‘particle’
in a potential well. Although, on the one hand, the more general temporal
dependence of the evolutionary equation is lost, on the other one gains the
advantage of retaining the full nonlinearity of the problem.

In this technique the wave profile is assumed to be time-stationary in
some inertial frame of reference. This results in considerable analytical
simplification of the dynamical equations, facilitating their reduction to a
single equation, which by analogy with classical mechanics, can be thought of
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as describing a particle in a potential well. Integration of this equation with
suitable ‘initial conditions’ yields a plethora of simple wave types including
cnoidal, soliton and double layer solutions (Lee & Kan 1981; Song, Lee &
Huang 1988; Baboolal, Bharuthram & Hellberg 1988; Baboolal, Bharuthram
& Hellberg 1989).

6.3 A brief review of nonlinear electron-acoustic
waves

Nonlinear ion-acoustic waves and solitons have received much attention in
the literature (see Pécseli 1985 and references cited therein). By comparison,
the nonlinear electron-acoustic wave has been the subject of relatively few
investigations.

In this section we trace the theoretical development of the nonlinear
electron-acoustic wave in all its incarnations. In so doing we review the
work undertaken on the nonlinear electron-acoustic wave, as well as intro-
duce and compare the various plasma models for nonlinear electron-acoustic
waves. As may be expected, many of the models have been met before in
part I, and in this section there will necessarily be some overlap with the
introduction to that part. However, we have striven to keep such duplication
to a minimum. Where material is of a highly specific or technical nature
it has been cited in context within the main text. From the point of view
of the preceding remarks this section does not represent a comprehensive,
up-to-date literature survey.

It appears that Pokroev & Stepanov (1973) first considered the non-
linear evolution of the electron-acoustic wave. Employing a magnetized
plasma model similar to that used originally by Sizonenko & Stepanov
(1967), Aref’ev (1970) and Lashmore-Davies & Martin (1973), they derived
a Boussinesq equation that admits electron-acoustic soliton solutions for
quasi-perpendicular propagation directions cos § < (m./m;)!/2. Some years
later Buti, Mohan & Shukla (1980) investigated the same physical situation
from the point of view of a pseudo-potential theory incorporating the full
nonlinearity of the initial dynamical system at the expense of the Poisson
equation. The latter was discarded in favour of the analytical simplification
brought about by the assumption of quasineutrality.

Mohan & Buti (1980) derived an evolutionary equation for electron-
acoustic waves in the presence of an electron current. By consideration of
electron inertia effects they showed that the nonlinear electron acoustic wave
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was governed by a ‘perturbed’ KdV equation which contained an integral
damping/growth term. Using the method of inverse scattering it was shown
that damping/growth of the wave amplitude led to the formation of a ‘tail’
behind the soliton. The rate of damping/growth was shown to be strongly
dependent on the angle of propagation of the soliton with respect to the
background magnetic field.

The works of Pokroev & Stepanov (1973) and Buti, Mohan & Shukla
(1980) were generalised by Buti (1980) to include a second hot isothermal
ion component. It was found that in such a plasma configuration, in addi-
tion to solitons, which correspond to density ‘humps’, there may also arise
supersonic holes (density depressions).

The inclusion of a second electron component was investigated by Yu &
Shukla (1983). They showed that if the electrons were non-isothermal, i.e.
they comprised two separately isothermal components, then electron acous-
tic solitons could occur without the necessary introduction of a magnetic
field. They called this kind of wave the modified electron-acoustic wave,
and the associated soliton, the modified electron-acoustic soliton. The the-
ory of the modified electron-acoustic soliton was generalised by Guha &
Dwivedi (1984) to include the effects of a second ion component.

Kinetically modelled electron-acoustic solitons and double layers based
on the slow electron-acoustic wave (Stix 1962, Schamel 1979), were in-
vestigated by Kim (1983). The electron and ion distribution functions
were prescribed a priort, from which the Sagdeev or pseudo-potential was
constructed. By expanding the Sagdeev potential in the small-amplitude
regime, |¢| < 1, it was shown that the equations admit solitary wave and
double layer solutions.

Double layers based on an Aref’ev (1970) model were constructed using a
magnetized fluid theory in which the Poisson equation was replaced by the
charge quasi-neutrality condition (Goswami, Kalita & Bujarbarua 1986).
Rarefactive and compressive double layers were found when the electrons
were isothermal (Boltzmann distribution) and non-isothermal (included a
reflected component), respectively.

The effects of higher-order nonlinear terms on electron-acoustic soliton
propagation was investigated by Sarma, Kalita & Bujarbarua (1986). They
derived a modified KdV equation for the first order potential contribution,
and a linear homogeneous equation for the second order potential. The
plasma was based on an Aref’ev (1970) model but differed in that the elec-
trons had a drift relative to the ions. Both amplitude and width modifica-
tions due to higher order effects on linearly damped and linearly growing
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solitons were established by employing the method of renormalisation ad-
vanced by Kodama & Taniuti (1978).

The nonlinear excitation of electron-acoustic waves by an electromag-
netic pump has also been the subject of a few investigations. Sharma, Ra-
mamurthy & Yu (1984) showed that in a plasma in which the ions are much
hotter than the electrons an ordinary or O-mode pump can decay into an
upper-hybrid and an electron-acoustic wave. They further pointed out that
the excitation threshold of the latter is quite low. In a similar investigation
Saleem & Murtaza (1986) demonstrated that an extraordinary electromag-
netic pump wave can parametrically decay into an upper-hybrid and an
electron-acoustic wave. They obtained the threshold power flux and growth
rate of the instability.

Goswami & Bujarbarua (1987) studied weak modified electron-acoustic
double layers (MEADLSs) in a plasma comprising a hot ion, and two sepa-
rately isothermal electron components. They find that provided the hot elec-
tron distribution function contains free and reflected components, MEADLs
can occur. However, if the hot electrons are isothermal (Boltzmann distri-
bution) then no self consistent double layer solutions can be found.

Relativistic solitons have also received passing attention in the litera-
ture. Chowdhury, Pakira & Paul (1988) investigated relativistic solitons in
what they term an electron-acoustic plasma of fluid ions and warm kinet-
ically determined electrons. In particular they investigate damping effects
for comparison with earlier works (Ott & Sudan 1969). It was found that
electron Landau damping was increased when relativistic effects were taken
into account, because the electron component was able to absorb more mass-
energy.

More exotic nonlinear structures based on the modified electron-acoustic
wave have been investigated recently. With the inclusion of a magnetic
field Bharuthram & Shukla (1988) obtained monopole and dipole solitary
vortex solutions for a plasma in which the cool electrons were governed
by a fluid guiding centre model, and the densities of the hot electrons and
ions were given by the Boltzmann distribution. In addition they investigated
spectrum cascading by mode-coupling in the modified electron-acoustic wave
turbulence. Such spectral cascade processes were also the subject of an
earlier work by Rahman & Shukla (1982)

Dey, Goswami & Bujarbarua (1988) studied modified electron-acoustic
double layers and solitons in a four-component plasma consisting of two hot
ion components and two, respectively, hot and cool electron components.
It was found that if the hot electron component was non-isothermal, i.e.
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contained trapped electrons, then in addition to permitting the usual rare-
factive modified electron-acoustic soliton solution, the equations also admit
compressive soliton and double layer solutions.

Ironically, the more tenable cool ion model of the electron-acoustic wave
originally proposed by Watanabe & Taniuti (1977) has received very little
attention insofar as nonlinear waves are concerned, even though it was re-
marked by Watanabe & Taniuti (1977) in their letter that solitary waves
might well occur. This initial indifference to the electron-acoustic wave
may have been due to a lack of physical applicability of the theory. Since
then, however, satellite observations in the dayside polar region have demon-
strated that plasmas with hot and cool electron components do occur in the
presence of relatively cool ions. The observation of strong electrostatic fluc-
tuations between the ion plasma and electron gyrofrequencies in this region
has aroused even further interest in the electron-acoustic wave as proposed
by Watanabe & Taniuti (1977).

At the risk of repetition of the introduction to part I, we cite here only
a few of the main works supporting the hypothesis of the occurrence of
nonlinear electron-acoustic waves in the terrestrial polar region.

The existence of two electron populations of widely disparate temper-
ature, together with intense electrostatic fluctuations below the electron
gyrofrequency, in this region, was reported by Lin, Burch, Shawhan & Gur-
nett (1984) based on data gathered by the Dynamics Ezplorer-1 (DE-1)
satellite. These large amplitude electrostatic fluctuations, which constitute
a substantial portion of the so-called cusp auroral hiss, are now widely be-
lieved to be of electron-acoustic origin (Tokar & Gary 1984; Lin, Winske &
Tokar 1985; Roth & Hudson 1986; Lin & Winske 1987; Gary 1987). Fur-
thermore, recent studies of Viking satellite data (Pottelette et al. 1988,
1990; Dubouloz et al 1991) collected in the dayside polar region at alti-
tudes between 2000 and 10000 km, have added further evidence to suggest
that electron-acoustic waves occur in the dayside polar regions. Moreover,
the significance of nonlinear effects has been demonstrated (Dubouloz et
al. 1990). In fact, electron-acoustic solitons passing by the spacecraft have
been suggested as possible explanation for the high-frequency part of BEN
(Dubouloz et al. 1991).

Particle simulations of the electron-acoustic wave in the polar cusp have
been undertaken by Lin, Winske & Tokar (1985), Roth & Hudson (1986) and
Lin & Winske (1987). The first set of authors observe that at saturation of
the electron-acoustic instability the cool electrons exhibit a vortex trapping
pattern in phase space implying strongly nonlinear behaviour. The last set
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of authors investigated finite beam-dimension effects. A common theme
of all the above investigations, however, is the large saturation amplitudes
of the electron-acoustic turbulence, conceivably indicating that nonlinear
effects become important.

6.4 Outline of part II

The principal concern of part II of this thesis is to investigate the nonlinear
electron-acoustic wave in a plasma model based on the plasma constituents
found in the terrestrial polar cusp. Of course the models used are often
oversimplifications, but this has the advantage of exposing the underlying
physics of the phenomena.

In chapter 7 the nonlinear electron-acoustic wave in an unmagnetized
plasma is investigated. The work represents an extension to finite wave am-
plitude, of the linear theory of Gary & Tokar (1985). Both small-amplitude
nonlinear waves and arbitrary-amplitude solitons are investigated for a wide
range of plasma parameters. For small-amplitude electron-acoustic waves
we derive KdV and Kadomtsev—Petviashvili (KP) equations which admit
electron-acoustic solitons corresponding to negative potentials. At larger
amplitude a pseudo-potential theory based on earlier work by Baboolal,
Bharuthram & Hellberg (1989) for ion-acoustic solitons, is presented for
electron-acoustic solitons. The soliton solutions predicted by this large am-
plitude theory reduce to the soliton and planar soliton solutions of the KdV
and KP equations, respectively, at small amplitude. At larger amplitudes
significant differences in the soliton widths and amplitudes as predicted by
each theory, arise. A large part of chapter 7 has been published in an article
in Journal of Plasma Physics.

Chapter 8 deals with the effects of a strong magnetic field on weakly-
nonlinear electron-acoustic waves. Two different fluid models for the ion
component are considered: (i) strongly magnetized ions; and (ii) unmagne-
tized incompressible ions. These two models render quite different results
for electron-acoustic soliton propagation, and are compared in detail. Their
relative merits and general applicability are also discussed. Furthermore,
multi-dimensional electron-acoustic solitons are briefly considered.

In chapter 9 the stationary plasma results of chapter 7 are generalised to
allow for nonzero relativistic fluid drifts. In addition to pursuing the more
common small-amplitude approach (cf. Nejoh 1987a), a relativistic pseudo-
potential theory, which takes into consideration finite fluid temperatures is
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presented in full generality. This work too, is to appear in an article in
Journal of Plasma Physics.

In chapter 10 we investigate the possible existence of electron-acoustic
double layers. Both small- and arbitrary-amplitude theories are employed,
each yielding contradictory predictions when double layer solutions are as-
sumed. The implications of this for the present and past works on electron-
acoustic double layers are discussed.

Finally, we conclude this part with a summary and suggestions for fur-
ther work.

The analytical details of many of the more tedious derivations are pro-
vided in the appendices.
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Chapter 7

Nonlinear electron-acoustic
waves in an unmagnetized
plasma

In this chapter the nonlinear evolution of the electron-acoustic wave in its
most simple aspect is investigated employing a fluid model for the plasma
components. The work presented here represents a nonlinear extension
of the theory of the electron-acoustic wave put forward by Gary & Tokar
(1985).

7.1 Model and basic equations

An infinite, one-dimensional, collisionless, homogeneous, unmagnetized fluid
plasma consisting of a number of cool fluid components and a single hot
Boltzmann electron component

np = Ngp exp @, (7.1)

is considered. The validity of the assumption of a Boltzmann component
of electrons is subject to the conditions that on the one hand the velocity
of a wave-packet be significantly less than the hot electron thermal speed,
and on the other hand, that the electron inertia be negligible. The speed of
transmission of thermal information of the hot electron component is then
far greater than the speed of the waveform or wave-packet and therefore this
component may be treated as isothermal. The approximation that the hot
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electrons be inertialess may be realised in the case of the electron-acoustic
wave, because of the enhanced mobility of the hot electrons over the fluid
components, afforded to them via their large thermal velocity. In contrast,
the fluid components are assumed to be cool or massive with thermal speeds
significantly less than the speed of the waveform and therefore their response
is adiabatic.

When the above assumptions are met the system of normalized equations
governing the dynamics of the plasma are (cf. (B.6)-(B.8)):
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where the subscript j refers to the jth fluid component and the subscript h
refers to the hot electrons. In the equilibrium state the plasma is assumed
stationary and charge-neutral. At large distances from any disturbances we
demand that these equilibrium conditions apply, i.e. we impose the following
boundary conditions:

d¢ 0%
020 5270 520 e (79
n; = Moj, Pp;j — Poj  u; — 0

These boundary conditions ensure that the solutions of the system (7.1)-
(7.5) are localised in space, i.e. they prohibit infinite wavetrain-like solu-
tions. Although such wave train solutions of (7.1)~(7.5) exist under more
general conditions they shall be of no concern to us here.

In (7.1)~(7.6) spatial lengths have been normalized by the Debye length
(Th/47ng.e?)!/2, time by wyt = (me/4dmngce?)/2, densities by the total elec-
tron density ng., pressures by ng. T}, temperatures by T}, electrostatic po-
tential by T} /e, velocities by the hot-electron thermal speed vj, = (Th/m.)'/?
which is closely related to the (characteristic) electron sound speed, v, =
(noc/mon)?vy, (Gary & Tokar 1985), masses by m.; and Z; = ¢;/e.

7
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7.2 Small-amplitude electron-acoustic waves

Assuming weak nonlinearity, i.e. assuming that the magnitude of the elec-
trostatic potential is small |¢| < 1, and that the perturbations in the den-
sities, velocities and pressures are all small when compared to unity, one
may employ asymptotic (reductive perturbation) techniques based on that
of Washimi & Taniuti (1966) to derive from (7.1)-(7.5) evolutionary equa-
tions describing weakly-nonlinear electron-acoustic waves.

7.2.1 The 1-D Korteweg—de Vries equation

The derivation is similar to that of Verheest (1988) for ion-acoustic waves
and only the salient steps are indicated here; the details of the derivation
may be found in appendix D.

Consider a wave-packet propagating along the zr—axis. The wavenum-
bers of the harmonics that constitute the wave-packet are small and satisfy
kApr < 1. Then the approximate dispersion relation of the system can be
written in the form (cf. equation (2.10))

w(k) ~ kvge — 2k°AE), v,
Consideration of the phase argument kz — w(k)t then yields

T — Vgel

ADh

v

kx —wt = kApn + %(k/\Dh)s

Se
t,
ADh

which implies the following relative spatial and temporal coordinate depen-
dence

E=eHe-Vit), r=é7% (7.7)

The parameter € is a measure of the wave dispersion, which is considered
small ¢ € 1. The stretchings (7.7), similar to those used by Washimi &
Taniuti (1966) in their study of ion-acoustic waves, are based on a Gardner—
Morikawa type transformation (Gardner et al. 1965; Taniuti 1974: Taniuti
& Nishihara 1983).

The densities, velocities, partial pressures and electrostatic potential may
all be expanded in terms of some variable related to their amplitude. By
choosing the expansion variable to be ¢ we imply a relation between the
nonlinearity and dispersion of the wave-packet, effectively tying these two
opposing effects so that a balance is attained. We employ the following
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expansions of these macroscopic quantities:

nj = ()+en()+en()+---,1
( ) o 2, (2)
;= € U + ey
Y * (7.8)
p; = ()+€p(1)+cp§-)+---,
¢ = €¢(1+€2¢2)+...’ )
where ngo) = nyj, pgo) = ng;T;, and j refers to the jth fluid component.

Note that the deviations of the macroscopic quantities from their equilibrium
values are in all cases at most O(e€) and therefore (7.8) satisfies our initial
assumptions.

Substituting (7.7) and (7.8) into the the system (7.1)-(7.5) yields an hier-
archy of equations in orders of € which may be combined (see appendix D) to
yield the Korteweg—de Vries (KdV) equation for the first-order contribution
to the electrostatic potential ¢(1);

060 | s 9%
or o€ €3

The coefficients of the nonlinear and dispersive terms a, b, respectively, are
defined as follows:

(7.9)

B 1
a=2 b=, (7.10)
where
Z2 (O)V
A = .
Z _301) (7.11)
Z3 (0)(V2 + o )
B = 213_3—V2_3 ok (7.12)

o; = T;/m;, and the electron sound speed in the weakly-dispersive limit, V,
satisfies the O(¢) “dispersion relation”

©, .
Zin;" [m;

nop — —_
V?-30;

_ =0. (7.13)

The KdV equation (7.9) describes the spatial and temporal evolution of
nonlinear, long-wavelength electron-acoustic waves of small amplitude. The
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second term of the KdV equation leads to steepening of the leading edge of
an initial disturbance by the generation of higher wavenumber harmonics,
and the third term governs the dispersion of the wave-packet. These terms,
by our initial assumptions, are of the same order of magnitude so that one
effect does not dominate over the other. It is noteworthy (see appendix D)
that all the other quantities ng-l), ug-l), and pgl) obey similar KdV equations,
the only differences being in the definitions of the coefficients a, b, in each
case.

The coefficients a and b are amenable to some simplification if we as-
sume that there is a large disparity in the masses of the ions and electrons,
as is usually the case. In this context, m; > 1, and terms O(m; ') in (7.10)-
(7.12) can, to a very good approximation, be neglected. This approximation,
is validated by our arbitrary-amplitude calculations (see later) and is essen-
tially equivalent to the assumption of a constant ion density (incompressible
flow). Under this approximation (7.13) furnishes the following expression
for the electron sound speed,

1/2
Vo ("OC + 3Tc> . (7.14)

Mok

Subtitution of (7.14) into (7.10)—(7.12) in the context of the above yields

(noc/mor)? + 3(noc/non + 4T.)

tE T ) 7.15

2(noc/non)(noc/non + 3T.)1/2 (7.15)
(noc/mor)?

' = ’ 1

2n0c(noc/non + 3T,)1/2 (7.16)

for the coefficients of the KdV equation. Immediately one notices that for
nonzero electron densities a < 0 and b > 0. Moreover, the coefficient of
nonlinearity only vanishes for vanishing cool electron density. Therefore,
there are no nonzero critical densities for which this nonlinear coefficient
vanishes, as may be the case with ion-acoustic waves in multi-component
plasmas (Verheest 1988), and hence there is no need for the elaborate coor-
dinate stretchings that must be introduced to describe soliton propagation
at such densities.

Stationary solutions of the KdV equation (7.9) may be sought by writing
it in terms of the variable

n=§€6-Ur. (7.17)
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Integrating the resultant ordinary differential equation and imposing the
boundary conditions (7.6) yields the solitary-wave solution (Tagare 1973),

1/2
o) = %sech2 [(%) (&- UT)] , (7.18)

In terms of the original coordinates this becomes, using (7.7)

¢ = gsechz [(%)1/2 {z - Mt}] : (7.19)

where 8V = €U and the soliton speed, M, is given by M =V + V.

We remark here, parenthetically, that equation (7.18) is not the only
solitary-wave solution of (7.9). The latter admits rational soliton solutions
(Drazin & Johnson 1989), the first in the hierarchy may be obtained by
setting @/0t = 0. Then integrating twice yields the solution

o) = % or ¢= }-z—l—)[z - Vi
Although this solution satisfies the boundary conditions it is singular at
€ = 0 (z = Vt), quite apart from the fact that |¢(1)] > 1 for €| < 1. Such
singular rational soliton solutions shall not concern us here, however.

At this juncture some remarks about the properties of the solution (7.19)
are in order. The latter takes the form of a solitary wave pulse in which the
harmonic producing effects of nonlinearity are delicately balanced against
the phase mixing of Fourier components caused by wave dispersion. The
amplitude of the soliton is proportional to V" and the width

1/2
- [4]"
v

is proportional to &V ~1/2 with the soliton speed given by V 4+ V. This
means that larger amplitude solitons are narrower and travel faster than
their smaller counterparts—which is a general characteristic of soliton solu-
tions of the KdV equation. Computer simulations (Zabusky 1967; Zabusky
& Kruskal 1965; Zabusky 1968) have shown that solitons of the form (7.19)
interact nonlinearly with each other thereafter retaining their individual
identities. Thus a localized initial disturbance at 7 = 0 that evolves accord-
ing to the KdV equation usually emerges, for 7 — 00, as a finite number
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of solitons arranged in order of increasing height. It was because of these
quasi-particulate properties that the term soliton was coined for such solu-
tions.

Electron-acoustic solitons given by (7.19) in conjunction with (7.15) and
(7.16) are supersonic: they all travel at speeds greater than the electron
sound speed defined by (7.14)

n 1/2
M>V= ( 4 3Tc) . (7.20)
Mok

This is evident from the solution (7.19) by noting b > 0.

Unlike the classical ion-acoustic soliton in a single electron-ion compo-
nent plasma (Chen 1984), which exhibits a positive potential (compressive
soliton), the electron-acoustic soliton has a potential which is negative, i.e.
¢ < 0. Such solitons are normally termed “rarefactive”. On the other hand,
in recent years the observation of two separately isothermal electron compo-
nents in auroral plasmas has led a number of authors (Baboolal, Bharuthram
& Hellberg 1989, Das & Tagare 1975) to investigate ion-acoustic solitons in
two-electron-temperature plasmas. One then finds that both compressive
and rarefactive ion-acoustic solitons can occur, and in addition, that such a
plasma supports ion-acoustic double layers (Bharuthram & Shukla 1986).

Unfortunately, the term rarefactive proves something of a misnomer for
electron-acoustic solitons because, as will be observed later, the negative
potential is accompanied by an overfilling of that region by cool electrons
and in this sense the soliton should be regarded as compressive. However,
because of its widespread use we shall accept this “abuse” of terminology,
and hereafter when we refer to a rarefactive soliton we mean one that has
negative potential amplitude.

The modified electron-acoustic soliton also exhibits a negative potential
(Yu & Shukla 1983). The model of the modified electron-acoustic wave em-
ployed by the latter authors differs from our plasma model in that the ions
in their model are treated as Boltzmann-like. This, however, restricts the
range of allowable ion to cool electron temperature ratios to values larger
than T;/T, > m;/m,. and because of this it finds sparse application in the
terrestrial magnetosphere and well-nigh none in the laboratory. Neverthe-
less, Yu & Shukla (1983) also observe an overfilling of the negative potential
by cool electrons.

The dependence of the soliton width and amplitude on such factors as
electron density and temperature is contained within the coefficients a and
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b. We defer discussion of these effects till later when we consider arbitrary-
amplitude solitons.

7.2.2 The Kadomtsev-Petviashvili equation

The assumption of a wave-packet whose harmonic components propagate
ezactly parallel to the z—axis is something of an idealisation which is hardly
ever realised in nature. For purposes of completeness, and to account for
the interactions of electron-acoustic solitons which propagate obliquely with
respect to one another, we derive the two-dimensional generalization of the
KdV equation of the previous subsection.

Historically, the Kadomtsev—Petviashvili (KP) equation has been used to
prove the stability of planar one dimensional solitons to perturbations in all
directions (Infeld, Rowlands & Hen 1978; Kuznetsov, Spector & Fal’kovich
1984; Gabl, Bulson & Lonngren 1984) and, it appears, has never been de-
rived for electron-acoustic waves.

The two dimensional generalization of the basic dynamical equations are
employed

on; \

aJ a ( J J)+ 8 (n]vJ) —0
‘ Ou; Ou; Ou;\ _ Op; _0¢
n;m; ( c’it +UJ 8 +'UJ ay) —%—Z]TLJ%,
[ 9v; Ovy dv;\ _ Op; 09
( It + Uj o oz +v vj 6:(/) —a_y - ZJnJ a_y’ (7.21)

%_*_ _ap, 3pJ+3 (8u1+8v.) 0,

ot T e 7 0y 0 Ay
82¢ 3243
81:2 Z Zinj»

with n, given by the Boltzmann distribution (7.1). We impose the same
boundary conditions as in the 1-D case.
We now consider a wave packet propagating nearly parallel to the z—axis.

The wavenumbers of the various harmonics constituting the wave-packet
satisfy the somewhat more general conditions than those used in §7.2.1:

KAph € 1;  ky> k. (7.22)

119



It is well known (Petviashvili 1986) that nonlinear acoustic waves steepen
(by the generation of higher wavenumber harmonics) in the direction of
group propagation, and so the second inequality develops naturally with
time. This allows the following expansion of the dispersion relation for the
system (cf. equation (2.10))

2

1.3 2 Y
w= krvse - Ekzvse)\Dh + ﬂvse,
T

and by consideration of the phase we adopt the following coordinate stretch-
ings:

£ =¥z - Vi), n = €y, r =%, (7.23)
In view of the second inequality in (7.22) the dependence of the macroscopic

variables on z will be much stronger than the dependence on y, therefore
we employ the following expansions in terms of e:

n; = ng-o) + engl) + e2n§2) 4o )

u; = eugl) + €2u§-2) +--,

v = &y Sy (7.24)
p; = p§°) + €p(l) + €2p§2) T

¢ = ) 4242 ..., )

in which the motion perpendicular to z appears at higher order than the
motion in the z-direction. A similar set of expansions was used by Nejoh
(1987b) to derive a Kadomtsev—Petviashvili equation for relativistic ion-
acoustic waves.

Substituting the expansions (7.24) and the stretchings (7.23) into the
system (7.21), and once again reducing the resultant system of equations
into a single equation for ¢(1) (see appendix E) furnishes the Kadomtsev—
Petviashvili (KP) equation (Kadomtsev & Petviashvili 1970)

d | 9V (1)3¢(1) 331 92¢(1)
85{ +ag b +c o =0. (7.25)

The coefficients a and b are the same as those found in the previous subsec-

tion and are given by (7.15) and (7.16), respectively; and the coefficient ¢ is
given by

or 4 o + o€

—1
C—EV’
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where V satisfies (7.14). The KP equation above describes the propagation
of nonlinear electron-acoustic waves in a direction almost along the z-axis. In
addition, with its full time dependence it can account for oblique interactions
of planar electron-acoustic solitons.

By analogy with Nejoh (1987b) the one soliton solution to the KP equa-
tion is found by writing it in terms of the new variable

x = Ki§ + Ko — Qr.

The resulting equation is readily integrated yielding

3U U\ K, Q
M) = Zsech? || — Ep-— 7.26
¢ = ook [(41;) {e+ K" K,T} ’ (7.26)
where Q K2

= — -2, 7.27
U K CK12 (7.27)

In terms of the original coordinates the above solution becomes

o= e |(D)" (v ankey, _[v(14 S5 4 ]}
- 1b ek 2K?

(7.28)
which clearly indicates the weak dependence on y. If K3 is zero then this
soliton solution reduces to (7.19), the solution of the one-dimensional KdV
equation, whereas for nonzero K, the soliton amplitude is smaller than in
the former case (at the same soliton speed).

7.3 Arbitrary-amplitude theory

To incorporate stronger nonlinearity and wave dispersion we employ the
pseudo-potential approach of Baboolal, Bharuthram & Hellberg (1988,
1989). In short, this involves the reduction of the system (7.1)—(7.5) to
a single ordinary differential equation which is integrated with suitable “ini-
tial conditions” (more correctly a one sided boundary condition) to yield
soliton profiles. Unlike the small-amplitude theory, this approach does not
formally allow for time dependence in the wave frame and hence only sta-
tionary potential structures are admitted. Furthermore, in this approach
there is no prescription of the relation tying the nonlinearity to the wave
dispersion which, formally, allows for a richer spectrum of wave profiles. For
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example, Baboolal, Bharuthram & Hellberg (1988) have used this method
to construct double layer as well as soliton profiles for ion-acoustic waves,
and Lee & Kan (1981); Song, Lee & Huang (1988) have also found cnoidal
wave-like solutions using a similar approach.

We shall suppose that all the harmonics constituting the wave-packet
move along the z—direction, or alternatively, that the plasma is one dimen-
sional. Then the system of equations (7.1) - (7.5) govern the plasma and
wave dynamics.

Seeking solitary solutions that retain their original form with the evolu-
tion of time we introduce the new coordinate,

s =z — Mt, (7.29)

upon which, we assume, the various macroscopic quantities depend. This
yields a dramatic simplification of the initial partial differential equations
which in terms of this new coordinate become a system of coupled ordinary
differential equations.

The equation of continuity (7.2) may be integrated at once. Using the
latter equation in the pressure equation (7.4) and integrating, the well known

adiabatic law
3

-3 -
p]n_a, = pOjnoJ' 3

is recovered, which permits integration of the momentum equation (7.3). In

the integrations the transformed boundary conditions have been imposed,

viz.

d

—¢—-+0, u; — 0, u, — 0,

ds as [|s| - o0. (7.30)

ni > 1, n¢—mnoe, pi—Ti pc— noT.

¢ —0,

Eliminating p; and u; from the resultant system of equations yields:

2 2
Noc ¢
Mz(n‘)) +3Tc(: ) = M?+3T, + 2, (7.31)
c Oc
1\* T T, 2

for the cool-electron and ion densities, respectively, where it was tacitly
assumed that the ion species is hydrogen-like.

Equations (7.31) and (7.32) express the conservation of cool electron and
lon momentum, respectively. They are structurally similar to those obtained
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by Baboolal et al. (1988, 1989) in their investigation of ion-acoustic solitons
and double layers. In the cold fluid limit T,, T; — 0 they yield on solving
for n., n;

Noc
Ne = (1+2¢/M2)1/2’ (733)
ni = ! (7.34)

(1= 2¢/m;M2)1/?’
respectively, while for T, T; # 0 one obtains

= L v M?* +3T. + 26
Ne = Noc 6T ( + c+

1/2
+ \/ (M2 + 3T, + 2¢)* - 12M?TC> . (7.35)

1/2
R s 2,0 29
o= <6T,-) <M +3m,~ m;
1/2

. 2 .
T _UMzg_) )

Clearly, for finite fluid temperature the cool electron and ion densities are
multi-valued. To select the correct density branch we require, for continuity
of the densities, that equations (7.35) and (7.36) coincide with (7.33) and
(7.34), respectively, in the limits T, T; — 0. Application of L’ Hospital’s
rule shows that the branches with the positive surd must be discarded.
Similar correspondence was used by Baboolal et al. (1988, 1989) for the ion
densities in a study of ion-acoustic solitons and double layers, however, in
their investigation the correct density branch was determined numerically.
Real-valuedness of the densities imposes the following restrictions on ¢,

H-M? - 3T. + M\/12T.] < ¢ < [m;M? + 3T; - M\/12m,T;],

which for T}, T. — 0 becomes —M?/2 < ¢ < m;M?/2, a condition sim-
ilar to that placed on ¢ in the jon-acoustic case (Baboolal et al. 1989).
Although these inequalities seem to imply the existence of compressive
electron-acoustic solitons we have seen that in the present case such soli-
tons are not found, i.e. there is a further constraint leading to ¢ < 0.
With (7.29) Poisson’s equation becomes
d?¢
FE e nonexp ¢ + n. — n; = N(¢), (7.37)
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where, following Baboolal et al. (1988, 1989), we have defined the normal-
ized charge density by N(¢). Now, in the usual way, (7.37) can be integrated
formally (Baboolal et al., 1988, 1989) to yield

% (%)2 +¥(¢) =0, (7.38)

with ¥(@), the Sagdeev potential, defined by

]
¥($) = - /0 N(#)dd. (7.39)

Equation (7.38) expresses the conservation of total momentum of the system.
¥(¢) may be evaluated analytically if the fluids are cold, ie. T, =1T; =0
substituting (7.33) and (7.34) into the above equation for ¥, and integrating,
yields

U(¢) = noa(1 - exp ¢) + no.M* (1 —4/1+ % )

2¢
Af2 _ _
+m;M (1 1 VT ) .

For nonzero T, T;, the integral in (7.39) must be calculated numerically
incorporating the density equations (7.35) and (7.36).

If (7.38) is to admit soliton solutions then the Sagdeev potential, ¥, must
satisfy the usual conditions (Sagdeev, 1966)

dv(0)

v(0) = o - 0 (7.40)
U(po) =0 for some ¢y, (7.41)
¥(¢) <0 in0 <[] < |pol. (7.42)

It is interesting to investigate the behaviour of equation (7.38) by thinking
of it as an energy integral of a particle in a potential well. Then, by analogy
with classical mechanics, the equations (7.41) and (7.42) impose the condi-
tion that the potential ¥ have a potential well shape, and equation (7.40)
ensures that a “particle” starting off at ¢ = 0 makes a single transit to the
point ¢ and then returns to its starting point ¢ = 0.
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Finally, equations (7.33)-(7.36) and (7.39) are used to numerically con-
struct the Sagdeev potential (Baboolal et al. 1988), and (7.38) is integrated
numerically as an initial-value problem with initial condition

¢(0) = ¢)07

where ¢ is obtained by numerical solution of (7.41).

7.4 Large amplitude theory: numerical results

In this section equations (7.38) and (7.39), incorporating the density equa-
tions (7.33)-(7.36) are solved without approximation for stationary soli-
ton structures. Parameter values similar to those used by Tokar & Gary
(1984) have been chosen. They are approximately what one might expect
for plasma in the polar cusp at altitudes exterior to the upward electron
beams. In this numerical work we have defined the Mach number by
M Y (7.43)
(noc/mor)'/?  (moc/mon)'/?vy

where v is the soliton velocity and (noc/nOh)l/zvh = v, 1S the electron sound
speed (Gary & Tokar, 1985).

Figures 7.1 and 7.2 illustrate the effect of finite cool-electron and ion
temperature on the Sagdeev and real potentials ¥, ¢, respectively. As is
evident, an increase in the fluid temperatures causes the Sagdeev potential
to become shallower and also decreases the magnitude of the maximum
soliton potential |¢g|. These effects are brought about almost entirely by
the finite cool-electron temperature, for the ion temperature has virtually
no effect on the Sagdeev or soliton potential profiles (cf. (7.15) and (7.16)).

The maximum soliton amplitude was calculated as a function of ion
temperature for temperatures ranging from 0 to 500 (not shown). Extremely
weak dependence was observed over this range, which is not unexpected,
bearing in mind the small contributions of the T; terms to the KdV equation
in §7.2.1. This insensitivity to ion temperature is in accordance with linear
theory (Watanabe & Taniuti 1977, Gary & Tokar 1985, Mace & Hellberg
1990) where ion parameters do not appear in the linear dispersion relation
for electron-acoustic waves. Thus we deduce that in the nonlinear, as well
as in the linear theory of electron-acoustic waves, the only function of the

ions is to provide a neutralizing background. The dynamic neutralization is
provided by the hot electrons.

M
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Sagdeev potentials
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Figure 7.1: Sagdeev potentials corresponding to a Mach number M = 1.4
for a plasma with ng. = 0.5. The parameter labelling the curves is the
temperature T, = T;. In all figures in this chapter m; = 1836 and ng; = 1,
corresponding to a hydrogen plasma.
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Soliton profiles
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Figure 7.2: The corresponding real potentials associated with the Sagdeev

potentials in figure 7.1
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Figure 7.3 shows some typical arbitrary-amplitude, finite temperature,
electron-acoustic soliton profiles for various Mach numbers. Clearly, the
width of the solitons decreases with increasing amplitude, which is related
to the Mach number M (cf. the small-amplitude result (7.19)). Also, the
shapes of the larger amplitude solitons, especially the curves for n. the cool
electron density, and p the total charge density, differ from those predicted
by the small-amplitude theory.

Small-amplitude theory predicts that the perturbation in the cool elec-
tron density should be proportional to the perturbation in the electrostatic
potential (D.23). In the large-amplitude theory this is clearly not the case
and the cool electron density profile becomes very steep for large nonlin-
earity, indicating that there is a large overfilling of cool electrons near the
centre of the soliton, and indicating the generation of very high wavenum-
ber harmonics. This behaviour is also reflected in the total charge density
p. The ion density is for all practical purposes constant and equal to ng;
which lends support to our small-amplitude approximations.

Unlike ion-acoustic solitons, in which the charge separation arises from
the disparities in the densities of the ions and cool electrons, in the electron-
acoustic soliton the charge separation arises entirely because of the difference
in the densities of the hot and cool electron fluids. The former exhibits a
depletion in number density, whereas the latter shows a density enhancement
at the soliton centre. The final set of curves in this figure, for the total charge
density, indicate that the electron-acoustic soliton manifests itelf as a slab
of negative space charge “sandwiched” by adjacent wedges of positive space
charge. This sytem of charge moves perpendicular to the face of the slab.

It is noteworthy that the curve for M = 1.8 is a large-amplitude soliton,
|#o| > 1, and as such has no counterpart in the weakly-nonlinear theory
where, by assumption, the soliton potential is less than unity.

Figure 7.4 illustrates the influence on the maximum soliton amplitude
of increasing the Mach number M. The effect is an approximately linear
increase in |¢o| with M, the deviation from linearity becoming more pro-
found at larger M values. As the temperature of the cool electrons and ions
is increased, the range of Mach numbers over which soliton solutions can
be obtained, decreases. This occurs because above a critical cool-electron
temperature (7.31) can only be satisfied by a complex-valued cool-electron
density, implying the violation of cool electron momentum “conservation”.
We have found that in the vicinity of such critical points the nonlinearity
generates very high wavenumber harmonics in the cool electron density pro-
file (see previous figure) allowing us to infer that at the critical points there
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Figure 7.3: Soliton potential, density and charge profiles ranging from small
to large amplitude. The Mach numbers depicted are M = 1.1,1.2, 1.4, 1.6,
1.8. In the —¢, n. and —p plots the soliton amplitude increases monotoni-
cally with Mach number, in the n; plot it decreases monotonically, and in
the n; profiles there is no visible variation with M. Other fixed parameters
are: ng. = 0.5 and T, = T; = 0.01.
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is a breakdown in the balance between nonlinearity and dispersion: the lat-
ter being too weak to balance the former. At these critical points the system
(7.1)~(7.5) does not admit single stationary soliton solutions.

On the other end of the Mach number scale it is seen that the threshold
Mach number for solitons increases with increasing cool electron tempera-
ture. This threshold condition is well described analytically by the small-
amplitude existence condition (7.20) in conjunction with (7.14), which in
terms of the present normalization is written

T 1/2

M>(1+3 - ) : (7.44)
Noc/ Mok

In the arbitrary-amplitude theory this condition arises because the Sagdeev

potential exhibits a local maximum value at ¢ = 0, i.e.

v

8_¢2— < 0. (745)

¢=0

In terms of the analogy with classical mechanics this condition implies that

the particle comes to rest at ¢ = 0. Differentiating (7.39) twice one then
gy gm0 o
T4 ne Ne
W— 6(]5_ a¢—n0heXP¢—"a — Mok €XP P, (7.46)

and calculating dn./0¢ from either of (7.31) or (7.35) yields

on. Ne

— == . (7.47)

ad) ]\'42("7'%/7%)2 + 3Tc("7fc/77'0c)2
Finally, substitution of (7.47) and (7.46) into (7.45), and taking ¢ — 0
yields (7.44) after renormalization. As discussed by Baboolal (1988), it is
not necessary to specify (7.45) a priori in order to integrate the Poisson
equation, but in this case the condition arises naturally as a consequence of
our boundary conditions.

Figure 7.5 illustrates the monotonic decrease in |@g| with cool-electron
temperature for various Mach numbers. The effect of a finite cool-electron
temperature is to increase the phase velocity of the linear electron-acoustic
wave (7.14). An increase in T, decreases &V ~ M — (nOC/n0h+3TC)1/2 result-
ing in weaker nonlinearity. That increasing T, decreases wave-packet dis-
persion may be seen by considering the quantity A = |dQ/dK| - |d?Q/dK?|
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Figure 7.4: The maximum soliton amplitude as a function of Mach number
M. The parameter labelling the curves is T, = T; and ng. = 0.5.
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where the larger the value of A the weaker the dispersion (Taniuti & Nishi-
hara 1983). The quantities Q and K are normalised frequency and wavenum-
ber, respectively, such that V' = Q/K. Clearly, in the weakly-dispersive limit
equation (7.14) implies

1/2
2 - ("°°+3TC> :
K

Tok
_ 4
T dK’
d*Q
dK? 0,
and therefore
Noe 1/2
Az( +3TC> )
Nop

Hence, increasing T, also increases A and therefore decreases the dispersion.
Baboolal et al. (1989) arrived at an analogous conclusion for ion-acoustic
solitons, where it was found that finite ion temperature weakened wave
dispersion. It is noteworthy that larger amplitude solitons exist only over
progressively smaller values of T,. Physically this occurs because of the
violation of cool electron momentum conservation discussed earlier.

Figure 7.6 illustrates the maximum soliton amplitude as a function of
the cool-electron number density for a Mach number of M = 1.4. The
maximum value of |¢o| increases with increasing ng.. However, it must be
borne in mind that our definition of M (equation (7.43)) includes a factor
né?. Thus, for fixed M, the use of progressively larger values of ng, implies
that we are considering increasing values of the absolute velocity of the
soliton, v, in our calculations. On the other hand, some computations have
been carried out in which the soliton velocity v was kept constant. The
results confirmed the KdV prediction for this case (cf. equations (7.19) in
conjunction with (7.15) and (7.16)) that there should be a decrease in the
maximum amplitude with ng. for &V held constant.

Finally, in figures 7.7-7.10 the range of applicability of the small-ampli-
tude KdV theory is illustrated. Curves from figures 7.2-7.6 which were
calculated using the arbitrary-amplitude theory have been selected and com-
pared with the corresponding curves predicted by weakly-nonlinear theory.
As expected, there is good correspondence for |[¢| < 1, and in fact even up
to values |¢| < 0.5. For intermediate-amplitude solitons 0.5 < |¢| < 1 there
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Maximum soliton amplitude

1.3

Figure 7.5: Maximum soliton amplitude as a function of 7. The parameter
labelling the curves is M. Other parameters are: ng. = 0.5 and T; = 0.
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Maximum soliton amplitude

Figure 7.6: Maximum soliton amplitude as a function of ng. for a Mach
number M = 1.4. The parameter labelling the curves is T, = T;. The curve
for T, = 0.01 terminates early because the surd in equation (7.35) evaluates
to an imaginary number for smaller values of nq,.
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is at best only qualitative agreement, whilst for large-amplitude solitons
|¢| > 1 the small-amplitude theory breaks down.

In addition, these diagrams illustrate the following noteworthy features.
We observe in figure 7.7 that for large-amplitude solitons, the width of
the KdV solitons differs markedly from that obtained from the arbitrary-
amplitude theory. Furthermore, the maximum amplitude ¢ predicted by
the two theories can differ by several percent for large amplitude solitons.
This leads us to emphasize that the weakly nonlinear theory of electron-
acoustic waves cannot simply be applied without further thought to nonlin-
ear electron-acoustic structures, unless they are really of small amplitude.
Finally, and most importantly, the KdV curves in figures 7.8 and 7.9 do
not exhibit the cut-offs in temperature that are predicted by the arbitrary-
amplitude theory.
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Soliton half profiles

15

Figure 7.7: A comparison of the soliton half profiles predicted by arbitrary-
amplitude theory (solid curves) with those predicted by small amplitude
KdV theory (dashed curves). The parameter labelling the curves is M and
other parameters are as in figure 7.3.
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Figure 7.8: A comparison of the maximum soliton amplitude predicted by
the arbitrary-amplitude theory with that predicted by the small-amplitude

theory as a function of M. The parameters and labelling of curves are as
in figure 7.4.
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Maximum soliton amplitude
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Figure 7.9: A comparison of the maximum soliton amplitude predicted by
the arbitrary-amplitude theory with that predicted by the small-amplitude
theory, as a function of T,. The parameters and labelling of curves are as in
figure 7.5.
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Maximum soliton amplitude

Figure 7.10: A comparison of the maximum soliton amplitude as a function
of ng. for various values of M; other parameters are 7. = T; = 0.

139



Chapter 8

Small-amplitude solitons in
magnetized plasma

Because of its occurrence in the polar cusp region, the electron-acoustic
wave and the associated plasma dynamics will be influenced by the terres-
trial magnetic field unless the plasma pressure completely dominates the
magnetic pressure. With the introduction of a magnetic field the plasma
acts as an anisotropic medium for electrostatic wave propagation. In this
chapter the small-amplitude results of chapter 7 are generalized to include
a strong homogeneous, constant, magnetic field. Even for this relatively
simple configuration, the presence of a magnetic field so complicates the
dynamical equations that no arbitrary-amplitude theory along the lines of
that chapter, can be formulated.

Lee & Kan (1981) have constructed a theory of nonlinear ion-acoustic
waves in magnetized plasma which involved direct integration of the fluid
equations but there they dispensed with Poisson’s equation and used the
quasineutrality condition instead. Song, Lee & Huang (1988) improved upon
this theory by including the Poisson equation, but only after assuming that
the deviation from quasineutrality was of order € = Q?/ wfn- & 1, a very small
quantity. We pursue neither of these approaches in this chapter. Rather,
we employ the reductive perturbation technique to reduce the system of dy-
namical equations to an evolutionary equation describing weakly-nonlinear
electron-acoustic waves in strongly magnetized plasma.
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8.1 Basic equations

An infinite homogeneous, collisionless, magnetized plasma is considered.
The magnetic field is in the direction of e,. The hot electron density is
given by the Boltzmann distribution and the dynamics of the fluid compo-
nents are determined by

O LV (nyu;) = 0, (8.1)
ot
Ju;
m;n; (a—t‘7 +u;- Vuj> = -Vp; - Zjﬂde) + ijjnjﬂju]- X e,, (8.2)
0 .

The system of equations is coupled by the Poisson equation

V%¢ = nopexp ¢ — ZZjnj, (8.4)

J

and the index j runs over the fluid components (j = ¢, ¢). The following
normalizations have been used in the above equations: lengths by the ‘De-
bye length’ (Th/47ngee?)!/2, time by the inverse electron plasma frequency
wp‘el = (mc/41rn0362)1/2, number densities by the total electron density nqe,
pressures by ng.Th, temperatures by T}, velocities by the hot electron ther-
mal speed (T}, /m.)!/?, electrostatic potential by T} /e, masses by the electron
mass m.; and Z; = g;/e, Q; = Q' /wp. is the gyrofrequency (2 = eB/mjcL
in unnormalized quantities; ¢y, is the speed of light) divided by the electron
plasma frequency. Furthermore, the usual soliton boundary conditions are
imposed in three dimensions

¢—0, Vo0, V-0,

n-—»n(o) C— Dos u;, — 0
J j » Pj = Poj, 3

} as |x| — oo. (8.5)

8.2 The KdV-ZK equation

8.2.1 Magnetized ions

In this subsection we follow a procedure similar to that of Das & Verheest
(1989) in their study of ion-acoustic waves in plasmas with negative ions,
to derive the Korteweg—de Vries—Zakharov-Kuznetszov (KdV-ZK) equation
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for electron-acoustic waves in a plasma in which both the electron and ion
fluids are magnetized. The essential difference between the work presented
here and that of the aforementioned, is that we allow for some of our electron
components to be fluid-like (the balance being isothermal or Boltzmann) and
therefore our model can describe electron-acoustic waves. A fuller derivation
of the results of this section can be found in appendix F.

We consider an electron-acoustic wave packet propagating in some ar-
bitrary direction with respect to the magnetic field. The wavenumbers of
the harmonics constituting the wave packet are assumed small relative to
the hot electron Debye length, and the the perpendicular wavenumbers are
small when compared to the “Larmor” radius pye, i.e.

Edprn €1, and kppse = kv /0 < 1.
Then the dispersion relation for the system can be written:
w = k;vse(l - 1]‘72’\Dh - 1kJ_pse

Furthermore we assume that the ion gyrofrequency, as well as the electron
gyrofrequency, is much larger than the characteristic wave frequencies of the
harmonics in the wave packet. Then the electron and ion fluids behave as

if they were strongly magnetized, moving primarily in the magnetic field
direction.

Introducing the coordinate stretchings
E=ex, n=¢ly, (= 2z - Vt), 1=¢0%, (8.6)
into the above dynamical equations yields

VL SV L)
or

5 + €2V - (nju;) = 0, (8.7)

Ou (9 ;
—¢l/? mJn]V— + 63/2 (97'] + el/zmjnju_,- - Veu; 4+ 61/2V£pj

¢
= —61/2Z'n]’v5¢ + Z-mjn_,-Q '(u]- X ez),(8.8)
0 0
2y 9P 612:? + /2 aPJ + /%, . Vep; + €2 3p;Ve-u; =0, (8.9)
Vo =non(1+ 0+ 16* +46%) - 3 Zimj, (8.10)

3
where the operator V¢ = (0/9¢, 8/9n, 8/0¢) and the flow velocity is defined
by u; = (uj,v;,w;). The stretchings (8.6) reflect the same spatial and
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temporal dependence that was employed in chapter 7, however, the number
of spatial dimensions has now been increased to three.
We expand the various macroscopic variables as follows

n; = ngo) + cngl) + €2TL§~2) +0y (8.11)
w;, = ew§1) + €2w§_2) oeen, (8.12)
p; = p§0) n €p§1) + éng?) FE (8.13)
¢ = e+ ... (8.14)
w = 63/2u§1) + €2,,52) 4o (8.15)
v o= Mgy (8.16)

Observe that the expansions (8.11-8.16) reflect the anisotropy introduced
into the system by the strong magnetic field; which is manifested in the
fact that the perpendicular motion appears at higher order in ¢ than the
motion parallel to B, implying a preferred direction of motion along the
magnetic field. This complies with our initial assumption that the perpen-
dicular wavenumbers are small, or alternatively, that the fluids are strongly
magnetized.

Upon substitution of (8.11)-(8.16) into (8.7)—(8.10) there results the fol-
lowing set of equations to order O(€¥/?):

U %qsm, (8.17)
)

w = _ijj(“//;—?»Uj)agnl’ (815)

W = % el (8.20)

NUN ?VZ;’_‘_%;J ), (8.21)

where ¢; has the same meaning as in chapter 7.
The perpendicular fluid velocity at this order u(Ll) = ugl)ez + v](l)ey
is proportional to the E x B drift Vg, whereas the velocity parallel to
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B, namely wgl)ez, is the same as for the unmagnetized case (see equation
(D.22)).

The phase velocity V must satisfy the O(¢) relation
(o

) 1o
Zing” [m;

_—-_-0’
; V2—30'j

L (8.22)

for non-trivial ¢(1). This relation (8.22) is exactly the same as was found in
the unmagnetized case in chapter 7, which is not surprising recalling that
V is the electron sound speed in the direction of the magnetic field (cf. the
stretchings (8.6)).

At O(€?) the continuity equation requires

augl) 81)51)
+
o€ an

=0,

which is satisfied identically by (8.18) and (8.19) above. The &- and 7-
components of momentum at O(€?) which now incorporate both E x B and
polarization fluid drifts, yield, after partial differentiation by ¢

8u§»2) _ V3 33¢(1) (8.23)
85 ijjQﬂV? - 301') (9( 862’ )

8’0](-2) ~ V3 33¢(1) (8.24)
617 - ZJ‘TnJ‘Q?(V2 - 30‘j) (9( 6772 ’ .

where (8.18) and (8.19) have been used.
Combining these expressions with the other O(€%/2) equations derived
from the momentum and continuity equations yields the following expression

for (‘)ng-?) /0¢

6n§2) _ 2Zjn§'0)V/mj 9t Z?"EO)(VZ Foi)/m ) 96

¢ ~ “(V2-30;)% o1 (V2 —30;)3 %
+ 2Oy 9 (8% 4 926M\ | Z;n\") /m; 92
Zim;Q}(V2 - 30;)20¢ \ 0€? on? VE=30; 0C
(8.25)
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Substitution of the above equation into the O(¢%/?) equation derived from
Poisson’s equation, i.e.

o (9% 324 3345(1)_ g2
ac \ o T o acc " ac

(2)
8(

(1 a )
tropeD Z ! (8.26)

results in the KdV-ZK equation

A1) 109 (1) 36 8 (82 92p(1)
— = =0, 8.27
o + agp®) o +b 55 T | ae t 5 (8:27)

for the first order contribution to the potential ¢(!). The similarity of the
above equation to the KdV equation is obvious. The anisotropy inherent in
the system is apparent through the appearance of the 2-D Laplacian in the
above.

The coefficients a, b and c are defined as follows:

5,1 __cC
a= A’ - A, c= Aa
with
Z2 (O)V/m]
= 8.2
A Z (VZ = 30,2 (8.28)
z? (V2 +0;)
B = 3) mg ) —1)3 Nok, (8.29)
i %
0)1/""/m
J
C = 1+ Z V30,7 (8.30)

A and B and hence a and b are the same as in the one dimensional un-
magnetized KdV equation. Consequently, ignoring the ion terms which are
negligible in comparison to those of the electrons, a and b reduce to those
found in chapter 7, viz. (7.15) and (7.16). Because the ion gyrofrequency is
a small quantity when compared to the electron gyrofrequency, and because
the former appears in the denominator of C, we cannot do away with ion
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terms in this coefficient. Also, letting m; — oo causes C to diverge because
of the definition of the ion gyrofrequency eB/[m;crwpe]. One is thus forced
to include the ion magnetization in C' and therefore ¢. The inability to
ignore ion magnetization comes about as a result of our initial expansions
where it was a priori assumed that the ion fluid was strongly magnetized.
Thus, in view of the above discussion, ¢ is written

— l (n0c/n0h)2(1 + no;‘/mgQ?) (noc/mon + 3Tc)3/2 s31)
=3 noc(noc/non + 3T:)1/2 Q2 ) .

and is most often dominated by the first term involving the ion magnetiza-
tion. This means that wave dispersion in this case is greatly influenced by
the ion magnetization.

8.2.2 Unmagnetized ions

The assumption that the ions are magnetized, i.e. that the ion gyrofrequency
is much larger than the characteristic frequencies of the wave packet, is
restrictive because it requires the existence of very strong magnetic fields.
This is especially relevant for the electron-acoustic wave where the frequency
is characteristically larger than the ion plasma frequency. On the other hand,
because of their very much larger mass and therefore Larmor radius, and
their very much smaller gyrofrequency, it is often a good approximation to
assume that the ions are unmagnetized when considering electron-acoustic
waves. Furthermore, previous analyses and computations (Tokar & Gary
1984; Mace et al. 1991) (see chapters 2—4) have shown that the ion dynamics
plays very little role in the physics of the electron-acoustic wave.

In this subsection we shall treat the ions as an incompressible, unmag-
netized fluid with constant density

n; = No;.

Here our analysis differs from previous works (Das & Verheest 1989). The
former assumption has been used in previous chapters and was shown to be a
valid approximation by our arbitrary-amplitude calculations (cf. chapter 7).
The assumption that the fluid is unmagnetized requires that the ion gyro-
frequency be less than the characteristic frequencies of the electron-acoustic
wave packet. In this context Poisson’s equation becomes

V2¢ = nop exp ¢ + n, — no;
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and the equation analogous to (8.26) derived therefrom takes the form:

5 (a2¢(1) 8%‘”) 5341 8¢(2) (10t on'?

6_C 5€2 o 303 = Moh ac +nond ac + ac

(8.32)

The term 8n§2)/8( is given by (8.25) with the subscript ¢ substituted for
j. Then the weakly-nonlinear waves are once-again governed by a KdV-ZK
equation but the quantities A, B and C in this situation become

2nocV
= - 8.33
A (V2 _ 3TC)27 ( )
3n0c(V2 + TC)
= —— - 8.34
B (V2 — 3Tc)3 Mok, ( )
TLOCV4
= 14—, 8.35
¢ T UEEETAL (8.35)
where the electron sound speed, V, satisfies the relation
Noc =0
Mok (V2 _ 3TC)2 -
whose solution is
ng 1/2
V= ( : +3Tc> : (8.36)
Tk

On comparing (8.33)—-(8.35) with (8.28)-(8.30) we observe that the former
are merely a special case of the latter in which the ion terms have been
neglected. This is as a result of our assumption that the ion fluid is incom-
pressible. It is noteworthy also, that we could have arrived at (8.33)—(8.35)
from (8.28)-(8.30) by letting m; — oo, but at the same time making the
rather artificial assumption that £2; = const.

Thus, once again a and b are given by (7.15) and (7.16) of chapter 7, but
now ¢ takes the form

c= 1 (noc/non)? N (noc/mon + 3T:)3/?
2 nOc("Oc/nOh + 3Tc)1/2 Qg '

(8.37)

and is devoid of ion terms. Note that ¢ contains both the dispersive coef-
ficient b of the KdV equation and a contribution involving Q2 which arises
from the dispersion caused by electron magnetization.

147



8.3 Solitary-wave solutions of the KdV-ZK equa-
tion

8.3.1 One-dimensional solitons

We seek solutions of the KdV-ZK equation that depend on the variable (cf.
Das & Verheest 1989)

x=(cosa+Esina —Ur,

where a is the angle between the wavevector and the magnetic field B. No
loss of generality is incurred in assuming that the wave propagation direction
lies in the £-(—plane because of the cylindrical symmetry about the ¢ axis.
Transforming the KdV-ZK equation, using the above, and integrating yields
the single soliton solution

3U 1 U 1/
M = 2= . 8.38
¢ acos asech [2 (cos3 a(b + ctan® a)) X (8.38)

Defining 8V = €U/ cos a and the soliton velocity M = V + éV, the solution
expressed in terms of our original coordinates becomes:

1/2
¢ = @sechz [l( 4 - ) {zsina+zcosa—(Mcosa)t}
a a

bcos? a + csin

(8.39)
Evidently, as a — 0, i.e. for propagation parallel to the magnetic field, the
solution reduces to that obtained in the unmagnetized case and represents
a plane soliton propagating in the z—direction with speed M. In contrast to
this, for @ — 7 /2 we observe that the soliton speed vanishes and therefore
it ceases to propagate. For oblique angles and constant nonlinearity, V', the
soliton speed decreases with increasing a. This type of behaviour was also
observed in the linear theory of the magnetized electron-acoustic wave where
the phase velocity exhibited a cos a dependence on angle, being maximum
for wave propagation along the magnetic field direction, and vanishing for
propagation perpendicular to it.

The soliton width is given by (Das & Verheest 1989)

bcos?a + csin?a]/?

éV b

=
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and is clearly bounded by (4b/8V)/2 < L < (4¢/&V)/2 (because ¢ > b).
Clearly, for fixed &V the soliton width increases with an increase in o. Such
behaviour has been noted by other authors (Das & Verheest 1989) in studies
of magnetized ion-acoustic solitons. Das & Verheest (1989) have investigated
the stability of such solutions to transverse sinusoidal perturbations. We do
not address that question here but summarise their findings in the following.
They find that there is always instability if (in the present notation)

Ctan’a < %,

and in particular if @ = 0, i.e. for propagation parallel to B. If the above
inequality is not satisfied then the condition for instability becomes
5C tan®a — 3
‘- 12> 0, 8.40
3cos? a + 3Csin? a (840)

where I, m, n are the direction cosines of the sinusoidal perturbation. Das
and Verheest (1989) have calculated the growth rates of these instabilities
and found for the latter case

4CU*
45(cos? a + Csin? a)?

gh = [m2(3 cos? a + 3C sin? a) + 13(3 — 5C tan? @) |,

and for the particular case @ = 0 the growth rate obeys
g4 = f—SCU2(1 -n?) = %C’U%in2 Xs

where x is the angle made by the direction of the perturbation with the
magnetic field. They showed, in addition, that maximum growth rates occur
for perturbations in the plane perpendicular to the direction of propagation
of the soliton.

Continuing, some plane soliton solutions of the KdV-ZK equation are
shown in figures 8.1-8.3 for the case in which both the ion and electron
fluids are magnetized. The soliton potential is plotted against s = zsina +

zcosa— (M cosa)t. In all the figures the condition C tan? a > 2 is satisfied,
viz.

No; nOC(nOC/nOh + 3Tc)2
1+ +
{ miQ? Q2(noc/non)?

and hence the solitons are stable (at least so long as condition (8.40) is not
satisfied). The figures show that the effect of increasing the magnetization
(gyrofrequencies) of the fluids is to cause the solitons to become narrower,

}ta.n""a> ﬁ,
5
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and that the effect of increasing the angle of soliton propagation with respect
to B is to increase the width of the soliton. The dashed curves represent
the “unmagnetized” o = 0° soliton profile. Although this soliton is unstable
(Ctan?a < 2) we have included it in the diagrams as a comparison with
the unmagnetized scenario.

Figures 8.4-8.5 depict the scenario when the ion fluid is considered un-
magnetized. Using (8.35) the condition for instability can be written

noc(noc/non + 37T)? 2 3
t < -,
{1 T T 2(n0s/mon)? Mmas3

In this case the effects of magnetization, which now only apply to the cool
electrons, are far less profound. As the electron gyrofrequency is increased
beyond unity the profile tends asymptotically (but rather quickly so) to its
unmagnetized shape. The relative widths of the solitons in the magnetized
as opposed to the unmagnetized ion cases, can be understood by comparing
the relative magnitudes of ¢ in each. In the former, for the parameters that
we have selected the size of ¢ is of the order of 1/m;Q? = m;/Q? and in
the figures ). is not greater than 10. Therefore the value of ¢ ranges over
approximately m;/100 < ¢ < m; and represents a large value (¢ > 18).
Thus, it is not surprising that in the magnetized ion case the soliton width
is large. On the other hand, in the unmagnetized ion case ¢ > 1, and thus
the soliton width is only maginally greater than that obtained in chapter 7
where the plasma was unmagnetized and isotropic.

It is noteworthy that in the absence of ion magnetization the solitons
are unstable at a = 10° for the values used for the other parameters. Hence
only propagation angles of 30° and 60° have been shown.

8.3.2 Multi-dimensional solitons

Defining the new normalized coordinates

£ ;M

! __ UL _ r_ >
T _T7 5—61/27 Ir’ —01/27 C_ 61/2,

the KdV-ZK equation may be cast in the form

o) a0 1 4 _,

-+ b1/2¢( ) Y O W =0, (8.41)
where Vg, =0%/0¢'t +0%/0n'* + 82O’ ? is the Laplacian in three dimen-
sions.
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Soliton profiles
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Figure 8.1: The soliton potential for various values of Q. (normalized) at a
propagation angle of 10° with respect to B. The ion and electron fluids are
cold (T, =T; = 0), M = 1.1, ng. = nop = 0.5, no; = 1 and m; = 1836. Here,
and in figures 8.2-8.5, the curve (- - —) denotes the unmagnetized case.
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Soliton profiles
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Figure 8.2: The soliton potential for various values of {2, (normalized) at
a propagation angle of 30° with respect to B. Other parameters are as in
figure 8.1.
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Soliton profiles
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Figure 8.3: The soliton potential for various values of {2, (normalized) at
a propagation angle of 60° with respect to B. Other parameters are as in
figure 8.1.
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Soliton profiles

.20 —

Figure 8.4: The soliton potential for various values of {}. (normalized) at
a propagation angle of 30° with respect to B. Other parameters are as in
figure 8.1.

Soliton profiles

.20 -

Figure 8.5: The soliton potential for various values of ). (normalized) at
a propagation angle of 60° with respect to B. Other parameters are as in
figure 8.1.
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With the change of variable
C” — CI _ UTI,
and dropping primes in the sequel, one obtains after integration

a

1
o 76" + Vi = 0, (8.42)

1
- UM + Ve

under the supposition that ¢{1) and its derivatives vanish at || — oco. Seek-
ing spherically symmetric solutions to (8.42), the Laplacian Vg can be writ-
ten in the form 10,0

~ 929
r29r Or’

which when substituted into (8.42) yields the equation

2 _
Vi =

926 2941
or? +; or

(020 - LagW]p) = 0. (8.43)

This equation is structurally similar to the one derived by Zakharov & Kus-
netsov (1975) for ion-acoustic solitons in a low-pressure magnetized plasma.
Numerical calculation shows that this equation admits spherical soliton solu-
tions that travel along the magnetic field direction. Zakharov & Kuznetsov
(1975) have proven the stability of these three-dimensional soliton solutions,
which, in contrast to their plane one-dimensional counterparts, are stable
for propagation parallel to B.

We have numerically solved (8.43) for spherical solitons and a typical
one is shown in figure 8.6.

Because of the normalizations these solitons are actually ellipsoidal in
shape and the real transverse radius differs from the longitudinal radius
by a factor of (¢/b)!/2, which means for the electron-acoustic wave, that
they are larger in the transverse than in the logitudinal direction. When
the magnetized ion model for ¢ is used, then this ellipsoidal shape is more
pronounced owing to the much larger value of ¢ in that case. In fact, in that
case the solitons are quasi-planar due to the large disparity between ¢ and b.
When only electron magnetization is taken into account the solitons are very
nearly spherical for strong magnetization, and represent a radially decreasing
(in magnitude) potential profile that propagates along the magnetic field.

Frycz & Infeld (1989) have investigated the stability of plane wave solu-
tions of the KdV-ZK equation (8.27) in a form where the differential coeffi-
cients are unity by solving it in two dimensions as an initial-value problem.
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Soliton profiles

—-10 =5 ' 0 5 10

Figure 8.6: A typical spherical soliton solution of the equation (8.43) for
Noe = nor = 0.5, n0; =1, T, =T; =0,U = 1.1, Q. = 1, m; = 1836 and the
ion fluid is magnetized.

As initial-value they used a plane soliton that was sinusoidaly perturbed
in a direction perpendicular to the propagation direction. They found that
the perturbations undergo temporal growth with the eventual result that
the plane soliton disintegrates into an array of the more stable cylindri-
cal solitons. Unfortunately, the calculations were done in only two spatial
dimensions (hence the appearance of cyclindrical solitons), however, they
argue that in the full three dimensional situation these would further break
up into the still more stable spherical solitons.

Finally, we conclude this chapter with some comments on the model of
spherical solitons employed here. In the model we have employed a pressure
equation which was derived (see appendix B) by making the assumption that
the fluid component underwent one-dimensional compressions. In the case
of spherical solitons, however, in which the fluids undergo approximately
spherically symmetric compressions it would be more correct to employ the
pressure equation

Op;
ot
This equation is obtained by assuming that the fluid is ideal and therefore the
pressure tensor P; = p;l, and then contracting equation (B.3) of appendix B
by the unit tensor | = e;®e; +e,®e,+e,®e, with respect to both indices.

+u;-Vpj+3V.u; =0.
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Thus, for finite fluid pressures and therefore temperatures, the model of 3-D
solitons employed here represents only a rough approximation. This does
not invalidate our graphical result (figure 8.6), however, in which the fluids
were supposed cold.
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Chapter 9

Electron-acoustic solitons in
a weakly-relativistic electron
beam plasma

Relativistic plasmas play an important role in understanding many space
and astrophysical phenomena such as plasma processes near black holes,
quasars, pulsars, neutron stars and other ultra-dense cosmic bodies.

Of particular relevance to this chapter are the cool electron beams and
associated BEN observed upstream of the earth’s bow shock (Thomsen et
al. 1983; Marsch 1985). Although the beams are generally non-relativistic
they do border on the relativistic regime (see figures 1 and 2 of Thomsen
et al 1983 where the beam speeds are ~ 5 x 108cms~!) and conceivably,
under conditions of intense solar activity become weakly-relativistic. In this
chapter we show that relativistic beam effects on electron-acoustic solitons
appear at relatively low electron beam speeds ~ 0.1c¢ and therefore may have
some importance as far as nonlinear electron-acoustic waves and solitons
upstream of the earth’s bow shock are concerned.

Although this work was done with the region upstream of the earth’s bow
shock in mind, the KdV equation derived here could also provide a model for
solitons in the pulsar magnetic polar regions wherein an electron-positron
plasma is continually produced (Beskin et al. 1983). The very strong lon-
gitudinal electric fields near the pulsar surface accelerate the plasma com-
ponents to ultra-relativistic velocities in the cusp region, nevertheless, there
may be regions in the pulsar magnetosphere near the poles in which the
plasma is weakly relativistic, and where our KdV equation would become
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applicable. Moreover, low frequency waves whose dispersion resembles that
of the ion-acoustic wave have been found in theoretical studies of electron-
positron plasmas (Lominadze, Melikidze & Pataraya 1984). It may be that
these waves are describable by a KdV equation similar to the one derived in
this chapter.

There have been a number of studies of ion-acoustic solitons in relativistic
plasmas (Das & Paul 1985; Roychoudhury & Bhattacharyya 1987; Nejoh
1987a; Nejoh 1987b; Das, Karmakar & Paul 1988; Chowdhury, Pakira &
Paul 1989; Yadav & Sharma, 1989; Salahuddin 1990; Singh & Dahiya 1990),
however, the electron-acoustic wave has only had passing attention in this
respect (Chowdhury, Pakira & Paul 1988). This chapter investigates, in
the main, electron-acoustic solitons at both small and large amplitude, in a
plasma composed of a weakly-relativistic electron beam as well as stationary
hot electrons and ions.

9.1 Basic equations

The equations governing the dynamics of a relativistic (relativistically cool
T < mc?), infinite, one-dimensional, homogeneous, unmagnetized, collision-
less plasma comprising Boltzmann electrons and any number of electron and
(positive or negative) ion fluid species are (cf. Nejoh 1987a, appendix G)

on; 0
8_t] + éz(nju]') =0, (9.1)
0 0 op; 0
njm; (E +u; 6—2) (vju;) = —% - Zjn,-a—i, (9.2)
op; Op; 0
o T w35 () =0, (9-3)
62
3_3:% = Noh equS - E Zjn]'. (9.4)

j=t,c

Considering only weakly-relativistic effects we expand 7; as follows

1 u?
‘7j:1+§—2,

where the subscript j refers to the jth fluid component.
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In addition, we impose the following boundary conditions

0 82¢
=0 50 52T e (99)
n; — Noj, Pj — Poj, U; — Uoj,

It is appropriate to point out that a number of authors (Das & Paul 1985; Ne-
joh 1987a; Nejoh 1987b; Das, Karkamar & Paul 1988; Singh & Dahiya 1990)
have considered plasmas in which there is equilibrium relativistic streaming
with velocity ug, but have imposed the condition that v — 0 as |z| — co. We
take the view of Roychoudhury & Bhattacharyya (1987) that the boundary
conditions are more correctly specified in this case by u — ug as |z]| — 00, as
in (9.5) above. The normalizations of the above equations are the same as
those employed in chapter 7 (Mace et. al. 1991b), viz. lengths by the hybrid
Debye length (T} /4mng.e?)'/2, time by the inverse electron plasma frequency
(me/4mngee?)/?, number densities by the total electron density ng,, pres-
sures by ng.Th, temperatures by T}, electrostatic potential by T} /e, veloci-
ties by (Th/me)*/?, masses by the electron proper mass m.; and Z; = ¢;/e.

9.2 Small-amplitude solitons

9.2.1 Multispecies plasma

We employ the now familiar asymptotic technique of reducing the original
system of dynamical equations to the KdV equation. The derivation of the
relativistic KdV equation is essentially a generalisation of the derivation
outlined in chapter 7 and is presented in appendix G.

We consider a weakly-relativistic electron-acoustic wave packet propa-
gating along the z—direction. As before the wavenumbers of the harmonics
that constitute the wave packet are assumed small, kAp, < 1, allowing the
following expansion of the dispersion relation (obtained by a linearisation of
(9-1)-(9.4) in unnormalized form),

v v
w ~ ku k== - 1p3)\%3, =
0c + I-\C 2 Dh rc ’
where I'. =1 + %(uoc/c)z. To comply with the assumption that the waves
are weakly-relativistic we furthermore require that ug, < .
The above dispersion relation implies the usual one dimensional coordi-
nate stretchings, cf. chapter 7,

E=Ye-Vi) 1=él%, (9.6)
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and we expand the macroscopic quantities in terms of e:

n; = EO)+en§)+£n§)+ ",’
(0) (1) (2)
.= +€u +€u + -
u’ ’0 1 i ) (9.7)
p; = P)+€P()+€P()+

¢ = € 1)+€2¢(2

/

We remark here, parenthetically, that although we consider in the main
electron-acoustic waves, the following analysis is fairly general, applying to
all waves admitted by the plasma, whose dispersion relation can be written
w ~ ak + Bk® in the weakly-dispersive limit (see § 9.2.3).

Following the same procedure that was employed for the non-relativistic
case in chapter 7, we substitute the above stretchings (9.6) and expan-
sions (9.7) into (9.1)-(9.4) and solve for ¢(!) (see for e.g. Nejoh 1987a and
appendix G) yielding the Korteweg-de Vries (KdV) equation for weakly-
relativistic waves:

) 4 ag) ) 33

5 ta 7€ + 963 =0. (9.8)
The coefficients a and b are given by
B 1
a = Z, b = Z,
72 0)y.
A= % (9.9)

7 ™ 10 = 30,7

B = 32 Z n{(A2 + (3T; - 2)o;) ) W ROy
2 1“12(,\? - 30']-)3 c2 F?(’\f _ 30j)2 — Mok,

J

(9.10)

where

) 2 © .
/\sz—ug-O), PJ:1+§(UJ_) , 0= pJ :&
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and V, the phase velocity in the weakly-dispersive limit, satisfies the linear
(O(€)) dispersion relation

)Z2/m]
Z (07 = 30,) =0. (9.11)

The KdV equation admits the familiar soliton solution

1/2
¢ = %sechz [(%) {z - Mt}} , (9.12)

in terms of the original coordinates. As before the soliton speed is defined
by
M=V4+&=V+el,

with the soliton amplitude given by

The soliton solution (9.12) differs from that obtained in chapter 7 only in
the definitions of a and b (A and B).

It is interesting to note that the coefficients a, b only include relativistic
contributions due to the zeroth-order drifts ug;. Thus, if ug; — 0 then the
relativistic effects disappear altogether (see later). This is fundamentally
different to the pseudo-potential (arbitrary-amplitude) approach to be in-
troduced later, where relativistic effects due to the fluid velocity are included
to all orders, as well as allowing for the possibility that the soliton speed,
itself, may be relativistic even if there is no equilibrium streaming.

It is instructive to consider the following limiting cases of the equations
for A and B, viz. the zero drift case,

W=0, T;=1, =V, (9.13)

and the non-relativistic drift situation,

20

]
— =0, Tj-L (9.14)
In the first case (9.13), the relativistic effect disappears completely and one

recovers (7.11) and (7.12). In the second case (9.14) the coefficients A and
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B become

— e B
h e 2;”’:‘(/\2—301)2’

23 (A} + ;)

B 32 ]22—‘77«0}“
j J (/\J 30])

and the dispersion relation reduces to

Z2/mJ

Z A2 - 30;

These equations differ from those obtained in the former case (9.13) by the
appearance of A\; = V — ug; in place of V, only, and describe a plasma in
which each fluid species j has a non-relativistic drift ug-o) = ug; parallel/anti-
parallel to the direction of wave propagation. They represent still a further
generalisation of the KdV equation derived in chapter 7.

Thus the KdV equation incorporating non-relativistic fluid drifts remains
similar, in form, to that obtained in the stationary case, provided we intro-
duce the relative velocities A; with respect to the jth drifting species to
replace V in the stationary theory. On the other hand, the KdV equation
incorporating weakly-relativistic drifts exhibits relativistic effects, but only
due to the zeroth-order (equilibrium) drift speeds of each particle compo-
nent.

9.2.2 Case study: electron-acoustic solitons

Restricting the number of fluid components to two—a stationary, massive
ion, and a cool, relativistically-streaming electron component—we recover
the KdV equation for weakly-nonlinear, weakly-relativistic electron-acoustic
waves. Neglecting the ion terms in (9.9), (9.10) and (9.11), as was done in
previous chapters, results in considerable simplification: the sound speed

reduces to 12
V = uge + <"°°r/"°" +30 ) : (9.15)

and is illustrated, for a number of cool electron temperatures, in figure 9.1;
and the nonlinear and dispersive coefficients of the KdV equation become,
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respectively

Y = 3w (moc/non) +3lnoc/non + 0 le(1+30)] g e

M2 2P2/2(n0c/n0h)(n0c/n0h + 30.T)1/2
2
b = 1/2 (nOC/nOh) : (9'17)
QFC/ nOc(nOC/noh + 30’62[‘0)1/2

(We have used o, = T in the above to avoid confusion of T, with I';, the
temperature and relativistic factor, respectively.)

These coefficients differ in two respects from those found in chapter 7
for the non-drifting situation: (i) they contain the relativistic factor I'. due
to the cool electron streaming; and (ii) the relativistic beam introduces a
positive contribution to the nonlinear coefficient, b. Compressive electron-
acoustic solitons are ruled out, however, by the unphysically (and inconsis-
tently) large velocities required for their existence, ug ~ ¢?. The functional
form of these coefficients is similar to that found by Nejoh (1987a) for ion-
acoustic waves in a weakly-relativistic plasma, but in that case only com-
pressive solitons were found, and the relativistic beam introduced a negative
contribution to the nonlinear coefficient.

Thus, on physical grounds we expect ¢o < 0 and for real-valuedness of
our soliton solution, (9.12), we further demand M > V, i.e. the weakly-
nonlinear, relativistic electron-acoustic solitons are respectively, rarefact-
ive and travel at velocities greater than the linear electron-acoustic sound
(phase) speed. We defer discussion of the effects of beam velocity and tem-

perature on the electron-acoustic solitons, until §9.4 where they are discussed
in detail.

9.2.3 Case study: solitons in an electron-positron plasma

Considering one of the simpler models for an electron-positron plasma,
i.e. assuming that the electrons are hot and Boltzmann-like and that the
positrons are cool and fluid-like, and stream relativistically with velocity
ugp one obtains from (9.11) (the sum reduces to j = p) the sound speed for
acoustic waves in a streaming electron-positron plasma:

V =upp + (— + 30p) , (9.18)
Tp

where the subscript p refers to positron parameters. Low frequency sound
solutions to the dispersion relation for electrostatic waves in a relativistic
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Figure 9.1: The linear phase velocity of the electron-acoustic wave as a
function of cool electron beam speed for various cool electron and ion tem-
peratures. The parameter labelling the curves is T, = T;. The increment in
temperature from a lower curve to one immediately above is 0.01.
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electron-positron plasma have been found before (Polyakov 1983), however
their physical essence is vague (Lominadze et al. 1984). Comparing (9.18)
with (9.15) one immediately observes the similarity in form.

It is easy to show that in this model the coefficients @ and b reduce to

1+ %Uprp(l +30p) § Uop

— 9.19
[I‘p(l + 30,,1‘,,)]1/2 2 I‘pcz’ ( )
1
b= , 9.20
2,01+ 30,1 )12 (9:20)

which, are the same coeflicients (disregarding multiplicative constants) ob-
tained by Nejoh (1987a) in his investigation of ion acoustic waves in which
the ions formed a warm beam component. It must be remembered, how-
ever, that our normalizations are based on electron parameters whereas in
the former work the normalizations were based on those of the ions. There-
fore the phase velocity of the wave in the former is much smaller than that
presented here and, in addition, the time-scales implied in the former are
much slower than those here.

Inspecting the coefficients a and b it is immediately apparent that for
realistic parameters, both are positive. Therefore, solitons given by (9.12)
with (9.19) and (9.20) will be compressive, ¢ > 0, with an overfilling of the
positive potential by positrons, and a depletion in the number density of
hot electrons in that region. Furthermore, they are supersonic and travel at
speeds greater than the sound speed given by (9.18).

9.3 Arbitrary-amplitude formulation

Assuming as in the nonrelativistic theory of chapter 7, that the various
macroscopic quantities depend on the variable

s=z— Mt,

where M is a normalized velocity, enables (9.1) to be integrated immediately,
yielding u; as a function of n;:
N
u; = %(uoj - M)+ M. (9.21)
J
Substitution of the latter equation into (9.3) and solving for p; as a function
of n;:

n.

P; = DPoj (—J

3(1+3M?/2c2)
)
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+%MWW-M(-—@Q}. (9-22)

The above equation is the generalization of the more familiar adiabatic law
pjnj‘3 = pojngf' to include the effects of special relativity. The momentum
equation (9.2), after integration, may be cast in the form

1, 1Mad 3ut]™ 1 [p M
[—MuJ KR T3 mj [n;],
ugj 03
1 ™ p; Z;
s / "B = Lig (9.23)
my no; nj m;

which, together with (9.21) and (9.22) above, yields an implicit relation
for the function n;(¢). Recall that in the non-relativistic pseudo-potential
theory of chapter 7 we were able to explicitly solve for n;(¢) and found that
it was double-valued. Plotting (9.23) shows that this is still the case when
relativistic effects are included, and as was done in that chapter, we select
the smaller root for the definition of n;(¢). This ensures the continuity of
n; at o; = 0.

It is noteworthy that both equations (9.22) and (9.23) exhibit weakly rel-
ativistic effects even at vanishing beam velocity ug;, which contrasts strongly
with the small-amplitude theory (see earlier discussions). In the absence of
a relativistic beam these effects may nevertheless arise if the soliton velocity
(‘Mach number’ M) is relativistic.

With n;(¢) determined the Poisson equation can be integrated in the
usual way by defining the Sagdeev potential

¢
‘I’(¢) = / (Z Zjnj(¢’) — Top €XP ¢’) d¢”
0 .
j
yielding (on using the boundary conditions)
1(do\?
2 (E) + ¥(¢) = 0. (9.24)
Subjecting the Sagdeev potential to the following constraints

Mm=aym=m U(go)=0; U(p)<0 for 0<|¢|<|pol; (9.25)
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enables soliton solutions of (9.24) to be found by a method similar to that of
Mace et al. (1991a) and Baboolal et al. (1989) which was used in chapter 7.

9.4 Intermediate- to large-amplitude solitons: nu-
merical results

In this section we present the full nonlinear solution of the system of equa-
tions (9.21)-(9.25) for intermediate- to strongly-nomnlinear solitons. The
number of fluid components has been restricted to two—a stationary proton
(ugi = 0) and a cool, relativistically-streaming electron component (hence-
forth we omit the ¢ subscript on ug.). This plasma configuration permits
the investigation of electron-acoustic solitons in weakly-relativistic plasma.
The calculations are performed in the inertial frame of the protons and hot,
Boltzmann electrons, hereafter referred to as the laboratory frame. The
following standard parameter values have been used in the calculations:
Nnge = Mo = 0.5, ng; = 1, m; = 1836 and ug; = 0.

Figure 9.2 illustrates the effect on the electron-acoustic soliton profiles,
of increasing ug/c whilst keeping 6V, a measure of the nonlinearity (or dis-
persion) of the system, constant and equal to 0.3. The magnitude of the
amplitude of the solitons is found to increase with increasing ug/c, i.e. rela-
tivistic beam speed. This effect is also predicted by KdV theory where the
coefficient, a, (9.16) is found to decrease (in magnitude) with uq yielding an
increase in the magnitude of the soliton amplitude.

In figure 9.3 we quantify this. In addition, we illustrate the effect of vary-
ing the beam temperature on the soliton maximum amplitude. The effect of
a finite temperature is twofold: it causes a decrease in soliton amplitude |¢g|
(cf. chapter 7 for the non-relativistic case); but more importantly it restricts
the allowable range of ug over which soliton solutions can be found. This
effect becomes more profound for stronger nonlinearity (see figure 9.4). Al-
though the KdV theory does exhibit the decrease in soliton amplitude with
temperature (cf. equation (9.16)), it does not put any further constraints on
the value of ug other than those necessary to ensure only weak relativistic
effects.

We have found that if the beam is cold, 0. = T. = 0, then there is
no cutoff value of ug within the allowable, weakly-relativistic range (0 <
up < 0.5¢). On the other hand, for finite 7T, there is an upper limit on ug
determined by the condition that equation (9.23) is satisfied by a complex
value of n.. This point indicates parameter values for which cool electron
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Figure 9.2: Soliton profiles for various cool electron beam speeds: &V = 0.3,
T, =T; = 0.01, ¢ = 10, and the parameter labelling the curves is the beam

speed. The increment in beam speed from a lower curve to one immediately
above is 1.

169



momentum “conservation” is violated.

The physical reason for this occurrence lies in the fact that finite beam
temperature weakens the wave dispersion, which in turn reduces the phase
mixing, of an electron-acoustic wave packet similar to that discussed in
chapter 7. This can be seen by consideration of the soliton solution, (9.12).
Increasing T, increases b and hence the soliton width, which is coupled to the
decrease in soliton amplitude (increase in a). Thus, we deduce that there
has been a reduction in the dispersion of the wave packet which consists
primarily of low-k Fourier components.

More generally, this can be seen by analysing the dispersion relation
Q(K), where Q and K are normalized frequency and wavenumber, respec-
tively. The larger the quantity |dQ/dK| - |d?Q/dK?| = A, the weaker the
wave dispersion and hence the effects of phase mixing (Taniuti & Nishihara
1983). Equation (9.15), valid in the long-wavelength regime, implies

Q _ noc/noh 1/2 _ dQ
E—u05+(r—c+3TC) —'dK’

—— =0,
dK?

and clearly, increasing 7 increases A which in turn weakens the wave dis-
persion. The dispersion relation obtained via linearization of (9.1)-(9.4) and
valid at shorter wavelengths,

1/2

0
nOc/ ok +3T, :

= Yoo | T (014 K2/non)

E— Oc

though rendering more cumbersome expressions, exhibits this same trend.

Now by increasing the beam speed we eventually reach a point at which
the dispersion can no longer balance the nonlinearity, and where a single
soliton solution ceases to be valid. At such points the soliton structure may
break down rendering a train of solitons together with a precursor (Nejoh
1987b).

Although KdV theory does not explicitly yield these critical tempera-
tures and beam speeds (which really lie ouside of the region of applicability
of the theory anyway), such points have been predicted by many authors
(Das & Paul 1985; Nejoh 1987a; Nejoh 1987b) on the basis of the increase in
soliton amplitude with beam velocity exhibited in small-amplitude theories
(and by implication, an argument similar to that given above). However,
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Maximum soliton amplitude

Figure 9.3: Maximum soliton amplitude as a function of beam speed for
various cool electron and ion temperatures, for weak nonlinearity §V = 0.3.
The value of ¢ = 10 and the parameter labelling the curves is T, = T;.
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Maximum soliton amplitude

Figure 9.4: Maximum soliton amplitude as a function of beam speed for
various cool electron and ion temperatures for relatively large nonlinearity
&V = 0.6. The value of ¢ = 10 and the parameter labelling the curves is
T.=T;.
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it would appear that until now there has been no quantitative evidence for
them in relativistic plasmas, as illustrated here.

Recall that we have normalized all velocities by the hot electron thermal
velocity, which for realistic electron density ratios is commensurate with the
electron sound speed v, = (ngc/noh)lnvh. Thus by choosing different values
of the speed of light c, one is actually varying the ratio of the speed of light
to the hot electron thermal speed. The soliton amplitude as a function of ug
is illustrated for various values of ¢ in two different scenarios. In figure 9.5,
for fixed ug, one finds that there is a strong dependence of |¢g| on ¢ and
hence ug/c, i.e. the strength of the relativistic effect. We note (i) that for
¢ = 100, which implies a very weak relativistic effect, there is very little
dependence of |¢o| on ug, agreeing with the results for the non-relativistic
case (§9.2.1), and (ii) for ¢ = 10, the beam velocity ug = 5 lies at the limits
of our approximation.

In figure 9.6 we have plotted the soliton magnitude versus up/c. By
altering the value of ¢ at constant ug/c one changes only the value of the
hot electron thermal velocity and hence the beam/soliton ‘Mach number’.
It is observed that increasing ¢ decreases the value of the soliton magnitude,
which is in agreement with figure 9.5, however, now the change is not as
dramatic as in that case. This may be seen, qualitatively, from equation
(9.16), where an increase in ¢ for constant ug/c yields a small increase in
the magnitude of a and hence a decrease in |¢g|. It is noteworthy that the
larger the value of ¢, the more supersonic/hypersonic the beam speed, e.g.,
when ¢ = 100 and ug/c = 0.5 the ‘Mach number’ of the beam is 50.

Figure 9.7 provides a comparison of the arbitrary-amplitude theory with
the small-amplitude KdV theory. One observes that there is a significant
difference in the amplitudes predicted by the two theories, even for the
relatively small value of 6V = 0.3 depicted here. More importantly, the
small-amplitude theory does not exhibit the cutoff beam speeds where the
balance between nonlinearity and dispersion breaks down.

9.5 A note on interpretation

In non-relativistic studies of solitons and/or double layers one often encoun-
ters the phrase “...and tranforming into the stationary frame defined by
8 =z — Mt,. ..”. This phrase, although quite correct in non-relativistic the-
ories, is completely incorrect in relativistic theories and for this reason we
have judiciously steered away from its use in this chapter. Were we to trans-
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Figure 9.5: Maximum soliton amplitude as a function of beam speed for
various values of ¢. The fluid temperatures are T. = T; = 0, and &V = 0.6.
The parameter labelling the curves is .
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Maximum soliton amplitude

Figure 9.6: Maximum soliton amplitude as a function of beam speed relative
to ¢, for various values of ¢. The electron and ion fluids are cold T, = T; = 0,
and &V = 0.6. The parameter labelling the curves is c.
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Maximum soliton amplitude

Figure 9.7: Maximum soliton amplitude as a function of beam speed for var-
ious cool electron and ion temperatures: &V = 0.3. The parameter labelling
the curves is T, = T; and other parameters are ¢ = 10. (—) Arbitrary-
amplitude theory, (— - —) small-amplitude KdV theory.
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form to the “stationary frame”, i.e. the soliton rest frame, then we would be
transforming away almost all relativistic effects except those arising due to
thermal motions, quite apart from the fact that we would require a special
Lorentz transform to do so. To clarify, when we assume dependence on the
variable

s =1 — Mt,

we do nothing other than prescribe the functional dependence of a macro-
scopic variable on z and t—we do not make any underlying physical assump-
tions about changing frames of reference in doing so. Having said this, our
plots of soliton potential versus s are to be interpreted as “snapshots” of
the soliton potential made by an observer located in spacetime at (z = 0,
t = 0), as the soliton passes by the origin.
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Chapter 10

On the existence of
electron-acoustic double
layers

In chapter 7 it was shown that electron-acoustic waves could support nonlin-
ear potential structures whose time-evolution was governed by the Korteweg—
de Vries equation; in particular we noted the existence of solitons. It was
also observed that the nomlinear coefficient, a, of the KdV equation for
electron-acoustic waves could never vanish (for nonzero electron densities),
thereby preventing the occurrence of a modified KdV equation with only
cubic nonlinearity.

In this chapter we shall nevertheless assume that for some parameter
values this coefficient can be made small—O(€!/?)—then the term involving
this coefficient, i.e.

2982
¢
will be O(€3) which is of higher order than the other terms in the equation
(O(€%/?)) and consequently higher-order nonlinearities will start to become
significant.

It then becomes necessary to seek an evolutionary equation that contains
both quadratic and cubic nonlinearities on an equal footing, which can be
accomplished by employing a coordinate stretching that allows for a higher
degree of nonlinearity (see later). This equation, known as the modified
Korteweg—de Vries equation (mKdV) with quadratic and cubic nonlinearity,
usually admits double-layer solutions for some parameter values. In a natu-
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ral extension of our earlier work then, we seek such solutions in this chapter.
However, it will be shown that although such solutions exist formally, they
violate the consistency conditions necessary for the validity of the mKdV
equation.

Double layers in plasmas are regions of adjacent enhanced positive and
negative charge. Within the broader definition of a soliton given in chapter 6
the double layer falls into the category of topological solitons because it al-
ters the state of the plasma by its passage. The charge separation produces
a localized electric field whose corresponding potential jumps from some
®min to another potential ¢nax over a relatively small spatial distance—
typically of the order of tens of electron Debye lengths—and usually propa-
gates through the plasma at supersonic speed. For this reason double layers
are sometimes called electrostatic shock waves (Torvén 1981). Ion-acoustic
double layers have been found to occur in plasmas whose electrons consist of
two separately isothermal components with distinct temperatures (Baboolal,
Bharuthram & Hellberg 1988 and references therein).

10.1 Basic equations

As in chapter 7 we shall suppose that the plasma is infinite, homogeneous,
unmagnetized and collisionless. The plasma dynamics are then governed by
the one-dimensional fluid-Poisson system

on; 0

a—J + %("""") =0, (10.1)
ou; Ou; dp; 0

m;n; (3_; + uja—J) = _8_2:] - Zjnja—f, (10.2)
Opj Opi o Ouj _
W+UJE+3PJ% =0, (10'3)
0% 7
5oz = Mok exp ¢ — Z in;. (10.4)
j

The usual normalizations have been used. In this chapter we employ the
somewhat less stringent boundary conditions

0¢ ¢
¢ —0, %-—»0, m—»() as 2 — oo, (10.5)
nj = Moj, Pj = Poj, u; —0

which are one-sided as opposed to the two-sided boundary conditions im-
posed previously (cf. equation (7.6)).
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10.2 The mKdV equation

Our basic assumptions concerning the wave packet are similar to those used
in §7.2.1. We employ the reductive perturbation technique with the following
coordinate stretchings

E=¢z-VH), T = €4, (10.6)

which imply that the magnitude of the dispersion effect is k2%, ~ €2 and
differ from those used in chapter 7 in which it was assumed k%)%, ~ e.
Because € <« 1 the stretchings (10.6) allow for the incorporation of even
higher wavenumber harmonics in the wave-packet, than was permitted there.
Consequently they admit stronger wave dispersion, which for balance implies
a greater degree of nonlinearity.

We employ the expansions

n; = (O)+en(l)+en +63n ,‘

R (0) (1) (2) 3)

p;i = P+l +ep® 4™y

! P P b > (10.7)
uj = ()-}-eu +€3‘ll. .

¢ = €¢(1 +52¢2)+€3¢)3)+..., )

which in this case are carried out to O(€3).
Proceeding as in chapter 7 we obtain to O(e?)

©
a0 _ Z"_)/m]d,m U = Mw W0 = ZVIms g
I V2 - 30; 7 V2 - 30; Y1 TV 3, 30,

(10.8)
where V, the sound speed, satisfies the long-wavelength linear (O(¢)) dis-
persion relation

Z2 (0)/m]
Noh — . —V2 30, =0. (10-9)
Equations (10.8) and (10.9) are none other than the linear perturbations
and dispersion relation obtained in the derivation of the KdV equation (see
appendix D).
To next highest order O(€®) one obtains

@ ()
n® Zin;" [m; (2) 3Zn; (V2 + aj)/m?(¢(l))2 (10.10)
) V? =30, 2(V2 = 30,)3 ’ '
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3Zjn§0)aj 3Z12n§-0)aj(5V2 - 30;)/m;

(2) _ (2) (1y2 (10.11

pJ V2 _ 3UJ d) 2(V2 _ 30_j)3 (¢ ) b ( 0 )
2 2 2

(2) _ Z; V/m] (2) Zj V(V + 90‘j)/m]- (1)y2 10.12

Y10 T V230, 30; 2(V?=30;)3 (677 (10.12)

where, in contrast with §7.2.1 (and appendix D), one can immediately solve
for the second-order quantities in terms of the first-order potential. To O(€?)
the Poisson equation yields

L 32 (V24 o)/m? | g
2 {nOh - ; (JV2 —30;) ()" =0. (10.13)

We have already noted that the term in braces cannot vanish for electron-
acoustic waves and even if it could this condition would severely restrict
the range of parameters over which the resulting mKdV equation would be
valid.

This O(e€?) equation may still be satisfied, however, by requiring that
the term in braces is O(e€) or higher. The left hand side then becomes
O(€) and satisfies (10.13) at O(e€?). In this case the term involving (10.13)
must be retained in the O(€®) expansion of the Poisson equation. Thus, the

Poisson equation becomes, after partial differentiation by ¢ (which increases
the order to O(et)),

P . )
0e3 ~ " 5e

+ nok 5z (¢(1)¢[2 )

323n(~0)(V2 + 0;)/m?

1 3 )
+§ {nOh B XJ: : Zv2 - 30.)3 : } 6_£(¢(1))2

+6noha€ (¢V)3 ZZ’E){J (10.14)

At O(e*) one obtains from the continuity equation,

onl 9l ould N d
i _ 3 () Y, 2N 9 @), 1)y _
o 1% 7€ +n; af £(nj u; )+a§(n]- u; )=0,
from the momentum equation,
(1) (3) (2) (1)
{0 8u1 n 0)Va . ni! Vauj ni? Vau]



Ou; au Bu(
©,,(1) (1,1 (0),,2)
e T e T e
Z 008  Z; 1)06®  Z; os0) 1 9p

m; '7 65 mj J 8E m; J 65 —m_j 85 ’

and
2 1
apg-l) B Vapg-s) n u('l)apg ) n u(-2)8p§ )
or o€ 7 0¢ I 0¢
8u(3) (')u(-2) oul!
+3p0—L 43— 4 3B g,

0¢ ? 55 70

3 (3)

J
tions yields the following equation for Bn /8{ (where (10.8) and (10.10)-
(10.12) have been used)

from the pressure equation. Elimination of u;™" and p;™’ from the above equa-

oY 22OV /m; g . 3220 (V2 + 0;)/m? g Ly
o¢  (V2-30;)?% Or (V2 -30;)3 i3
Z’)Z?ngo)(5V2 + 13crj)/m? 48Z3n 0)0](2V2 + 301)/m (6V)? (9<z5
2(V? - 30;)4 2(V? - 30,)° K3

Zjng-o)/m_.,- 3
V2-30; 0¢°

Substituting this equation into the Poisson equation at O(e?) and ignoring
the O(€®) term involving 9($(V¢(?))/0€ one obtains the mKdV equation at

O()

3¢ (1) (1) 6 (1)\3 83¢(1)
or f(¢ ) £(¢ )+ 56—53 =0, (10.17)
where
LB ._C 1
- A, - A, - A’
and
Z V2_3a =X (10.18)
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323n\0(V2 + o;)/m?
=y 7T 30,7 — Mok, (10.19)
J

O)(5V4 + 300,;V% + 902)/m?
= — Inon. 10.20
¢ - LAy e 10
3

Of course, validity of the mKdV equation is subject to the requirement that
1p|=1 \b’ (10.21)

Note that @ and b are identical to the corresponding a and b of the
KdV equation (chapter 7). For electron-acoustic waves in which the ions
are massive the electron sound speed determined by (10.9) becomes

n 1/2
V= ( %+ 3TC) , (10.22)
Tokh

and the coefficients can be written

3 (noc/mon)? + 3(noc/non + 47T)

2(noc/mow)(noc/mon + 3Te)H/2’

(noc/non)* = 15(noc/non)? — 180T (noc/non) — 432T?
B 12(noc/non)*(noc/non + 3T.)M/? ’
b = (noc/mon)?

2""'Oc(nOC/"'th + 3Tc)l/2 .

These enable us to write the consistency condition (10.21) in the form

2
+ 12T, ("0")
Noc
It is noteworthy that the left hand side of (10.23) is less than unity only for
ng. > ngp which sets a lower bound on the allowable density ratio for the
validity of the mKdV equation.
It is at this point that we encounter the first inconsistency. It has noth-
ing to do with the small-amplitude mKdV theory, however, but is of a more
fundamental nature. In the density regime ng./nos > 1 the electron sound

speed is larger than the hot electron thermal velocity. This raises serious
questions about the validity of the assumption of isothermality for the hot

Toh
Noc

370k [1 +3 = O(e). (10.23)
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electrons. On the other hand, because of the large nonlinearity and hence
dispersion (for balance) it could be argued that the wavenumbers of the
Fourier components constituting the wave packet are large enough so that
wlk ~ vee(l = 2k*A},) < vh, and the assumption of approximate isother-
mality remains intact. However, let us for the moment take the fluid model
for what it is worth and continue unabated.

10.3 Double layer solutions

We seek simple solutions of (10.17) that depend only on the variable s =
€ — Ut. Then the mKdV equation can be integrated twice yielding
LdgWhe U oye @ gapa_ = _g(s)

S(T5) = 0 - (W) - Z(eM)t = —w(e®).  (1029)
The function ¥ must satisfy the following conditions if (10.24) is to admit
double layer solutions (Bharuthram & Shukla 1986)

dv dv
v(0) = ¥(4)) =0, — = — =0, 10.25
(0) = ¥(en)) 360 |y~ 380 |0, (1025)
as well as the usual
dz_‘Il < 0 dz—\Il < [)
d(eM)? o0 1 A2 o0 T

By analogy with classical mechanics the derivative condition at ¢$,P in
(10.25) ensures that the particle starting from ¢(!) = 0 will eventually come

to rest at ¢>$,{) undergoing no reflection. From a physical point of view this
condition demands quasineutrality at qu,f’.
Equation (10.25) can be satisfied if

2
¢g)=_3;‘c and Uz_l“_&:. (10.26)

When these conditions are met then (10.24) formally yields the double layer
solution

oM = 1411 — tanh B{¢ - U7}], (10.27)

where
2 \ 1/2
B=(-o 10.28
72bc ) (10.28)
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In terms of the original coordinates the solution (10.27) may be written

¢ =—3X [l — tanh { (—%1—6)1/2 {x —(V - %ch)t}}} , (10.29)

where we have defined x = €a/3c.

From previous results (chapter 7) we know that a < 0 and b > 0 for
electron-acoustic waves. Therefore in order for the solution (10.29) to hold
we demand that 3 be real and hence ¢ < 0. We thus arrive at the following
necessary condition for the existence of electron-acoustic double layers

(noc/noh)4 — 15(noc/n0h)2 - 180Tc(n06/n0h) — 432T62 > 0. (1030)
Treating the left hand side of (10.30) as a quadratic in T, with roots given

by
1728 1/2
T. = 180 [1 + {1 - ——(15- 52)} , (10.31)

T 864 32400

where 6 = ng./ngn, we see that both are negative unless 62 > 15 in which
case the larger root represents an upper bound for the allowable temperature.
Note that this criterion, i.e. ng./non > V15 satisfies the consistency condi-
tion (10.23), but unfortunately places a question mark over the fundamental
physical assumptions underlying the fluid model (see earlier remarks).

For such parameter values, however, the double layer solution is invali-
dated by the excessively large values of (;‘)5,1;) necessary for its existence. The
following table clarifies this (T, = 0 has been chosen for simplicity),

Toc/ Mok a/2 c b Q)
4 —-0.875 | —0.0104 | 5.00 | —56
5 —0.894 | —-0.0745 | 6.71 -8
6 -0.919 | -0.119 | 8.57 | —5.14

We have refrained from admitting too large values for ng./nop for reasons
mentioned before.

Immediately we notice the very small magnitude of the coefficient of
the cubic nonlinearity |c| when compared to 7|a|. This indicates the very
small role of the cubic nonlinearity in the present model of electron-acoustic
waves. Furthermore, it gives rise to intolerably large values of gbs,{) in the
case of electron-acoustic double layers (recall that d>£,11) is required to be
O(¢€) to guarantee convergence of the small-amplitude expansions (10.7)).
We are thus led to conclude that (10.27) is not a valid solution of the mKdV
equation for electron-acoustic waves in the present model.
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10.4 Soliton solutions

Under more general circumstances the mKdV equation admits solitary wave
solutions. In appendix H we show that equation (10.24) has the following
solitary-wave solution (cf. Yadav & Sharma (1989) in a study of relativistic
ion-acoustic waves)

o2 1/2 7\ 172 a -1
oM = U [;t (% + cU/Q) cosh { (z) (&- UT)} + 6] , (10.32)

provided
2 2

a a
—— i ; -—— i . 10.33
U > 18 if ¢ > 0; U< 18 ife<0 ( )

The first condition above effectively states that if ¢ > 0 then U > 0 because
the quantity —a?/18c under these circumstances is negative. On the other
hand if ¢ < 0 then the second condition in (10.33) places an upper bound
for the occurrence of a soliton, on the allowable velocity, U. Furthermore
the sign of the first term must be equal to the sign of a if the solution is to
be non-singular.

Comparing these conditions with those necessary for the occurrence of
a double layer we see that the latter is a rather special solution that occurs
if the velocity U takes on the particular value U = —a?/18¢, with ¢ < 0.
However, as was seen in the previous section this value is large in the case of
the electron-acoustic wave and the theory breaks down there. The mKdV
equation formally admits solutions for even larger values of U, but we do
not dicuss these here.

10.5 Discussion

We have investigated the fully nonlinear Sagdeev potential as defined in
chapter 7 over an extensive set of parameter values but could not satisfy the
tangency criterion d¥/d¢ = 0 at ¢ = ¢,n.

Comparing this fully nonlinear Sagdeev potential with the small-ampli-
tude approximation defined by (10.24) we find satisfactory agreement be-
tween the two if the parameter U is sufficiently small and ng. > ngp (see
figure 10.1). In this situation the solutions to the mKdV equation are of the
solitary-wave type and are given by (10.32).

However, for those parameters calculated in §10.3 that predict double
layers (10.26), the small- and arbitrary-amplitude theories diverge: the full
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Figure 10.1: The Sagdeev potentials predicted by the full (—) and small-

amplitude (— - —) theories for parameter values of no. = 0.8, U = 0.1,
T.=T =0.

theory indicates that the tangency condition is not met (see figure 10.2),
lending further support to our earlier suggestion that weak electron-acoustic
double layers do not occur for the two-electron-component model used.

In physical terms the plasma cannot support electron-acoustic double
layers because it always sustains a net charge at ¢,, which destroys the
quasineutrality required for the existence of the weak DL, i.e.

d_‘I!
d¢ d=ém

We have been reluctant to investigate very large values of the ratio
noc/non for three reasons. Firstly, the wave speed at these large values

=-np—nc+n #0,  |ém|>0.
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Figure 10.2: The Sagdeev potentials predicted by the full (—) and small-

amplitude (— - —) theories for parameter values of ng, = 0.8, U = 16.33333,
T.=T; =0.
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exceeds the hot electron thermal speed, thus invalidating our fundamental
assumtion of isothermality for this component. Secondly, at large values of
this ratio the electron-acoustic and electron plasma wave become indistin-
guishable (see chapter 3). Thirdly, at such large density values the linear
Landau damping by the hot electron component would become appreciable
(see chapter 2).

Recently, by employing a pseudo-potential approach, Baboolal, Bharu-
thram & Hellberg (1991) showed that ion-acoustic double layers supported
by negative ions do not occur unless the negative ion concentration is negli-
gibly small. Their plasma was similar to that considered here: it consisted of
Boltzmann electrons; and any number of positive and negative ion species,
which for numerical calculations they limited to one of each. The positive
to negative ion mass ratio was of the order of one.

By comparing the O(e?) expansion of the Sagdeev potential with that
of the closed form they were able to show that the term of O(¢e®) which is
neglected in the expansion is of the same order of magnitude as the po-
tential amplitude ¢,,, and apart from this, the potential does not satisfy
the consistency relation |¢,,| = O(€) where ¢ € 1. In fact the disparity
between the pseudo-potentials predicted by mKdV theory and the Sagdeev
potential method was pointed out earlier by Watanabe (1984) in a study of
ion-acoustic solitons in negative ion plasmas.

Since our model differs from that of Baboolal et al. (1991) only in the
positive to negative ‘ion’ mass ratio, and as we have seen, the discrepan-
cies between the arbitrary and small amplitude theories are in accord with
the findings of the latter, it is our belief that the result of Baboolal et al.
(1991) holds approximately even if the negative ‘ion’ species is substituted
by an electron species. Then, using the result of Baboolal et al. (1991), we
conclude that the the neglect of the O(€®) term implied in (10.17) is invalid
under most circumstances and in particular for double layers, and gives rise
to the discrepancies between the small and large amplitude theories which
are observed here.

A number of authors (Goswami & Bujarbarua 1987; Goswami, Kalita
& Bujarbarua 1986; Dey, Goswami & Bujarbarua 1988) have considered
small-amplitude electron-acoustic double layers in multi-component plas-
mas. Considering modified electron-acoustic (MEA) waves in a plasma
composed of hot electrons, Boltzmann ions and fluid electrons and using
a small-amplitude expansion for the MEA Sagdeev potential, Goswami &
Bujarbarua (1987) were able to show that no MEA double layers occur when
the hot electron species is Boltzmann-like, but when the hot electrons have
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both trapped and reflected components then MEA double layers can exist.
These results were generalized by Dey, Goswami & Bujarbarua (1988) to a
plasma with two Boltzmann ion components. Again double layers were only
obtained when the hot electron component was non-isothermal in the sense
that it was composed of both trapped and reflected populations. Goswami,
Kalita & Bujarbarua (1986) considered modified electron-acoustic double
layers in a magnetized plasma composed of Boltzmann ions, hot electrons
and fluid cold electrons (T, = 0)—which is essentially a generalization of the
Ar “ev (1970)-model for electron-acoustic waves. They found that rarefact-
ive and compressive DLs could occur when the hot electron component was
considered isothermal (Boltzmann) and non-isothermal, respectively. How-
ever, apart from the fact that they use a small-amplitude expansion for their
Sagdeev potential, they dispense with the Poisson equation and employ the
quasineutrality condition. Such simplification may yield questionable results
because of the very nature of the double layer.

As shown by Baboolal, Bharuthram & Hellberg (1991) when negative
ions and/or electrons are considered one must be especially careful to en-
sure that one’s solutions meet the criteria for convergence of the original
expansions. This aspect has been emphasized in the present work. Having
said this it is our view that the works mentioned in the preceding paragraphs
require vindication through a full nonlinear treatment of the problems.

Kinetic models of slow electron-acoustic double layers (SEADLSs) have
been employed by Kim (1983) and Schamel (1983). In these models the
electron and ion distribution functions are modelled on data obtained from
particle simulations and elsewhere. Such models have yielded the correct

form of the real potential but lack the support of experimental evidence in
the case of the electron-acoustic wave.
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Chapter 11

Conclusion

11.1 Summary

Part II of this thesis has been concerned, in the main, with nonlinear
electron-acoustic waves, and in particular solitons. We considered five dif-
ferent physical models of electron-acoustic solitons, each progressively more
involved than the next. A common feature of all the models considered,
however, is the presence of an isothermal component of hot electrons. We
summarise our findings in the following.

The first model, outlined in general in §7.1 and in more detail in §7.2.1,
was the simplest: the unmagnetized plasma consisted of cool ions, cool
electrons and hot Boltzmann electrons. By considering only one-dimensional
waves propagating unidirectionally, we derived a KdV equation for weakly-
nonlinear electron-acoustic waves. The soliton solutions of this equation
were investigated in detail and compared with those predicted by the full
fluid system of equations. This comparison unequivocally shows that for
intermediate to large amplitude solitons, |e¢/Ty| > 0.5, the KdV equation
gives at best only a qualitative description of electron-acoustic solitons.

Our results demonstrate the importance of the cool electron tempera-
ture in determining the characteristics of electron-acoustic solitons as well as
in determining their existence domains. This strong dependence of soliton
behaviour on the cool electron temperature (relative to the hot) has been
a common theme in all of our studies of electron-acoustic solitons. Fur-
thermore, it was found that ion parameters have negligible effect on soliton
characteristics. This was borne out in all our investigations except when the
ions were treated as strongly magnetized.
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In §7.2.2 we allowed for more generality by considering the electron-
acoustic wave packet constituting the nonlinear wave to be “weakly” two-
dimensional. Under these assumptions we found that nonlinear electron-
acoustic waves are governed by a Kadomtsev-Petviashvili (KP) equation.
An interesting feature of the KP equation is that two obliquely propagat-
ing solitons can produce a third by a resonant interaction (see for example
Pécseli (1985)) and therefore we deduce that electron-acoustic solitons can
exhibit such behaviour.

Introducing strong fluid magnetization (chapter 8) we derived a three-
dimensional generalisation of the KdV equation for electron-acoustic waves
in a magnetized plasma: the KdV-ZK equation. In contrast to the preceding
work (chapter 7), when strong magnetization is introduced the contribution
due to the ion dynamics becomes important for electron-acoustic soliton
propagation. On the other hand, if the ions are a priori considered un-
magnetized because of their large Larmor radii and gyrofrequencies (when
compared to those of the electrons), then it is shown that the magnetic field
only brings about a relatively small change in the soliton shape. In either
case, however, there is a broadening of the soliton profile as the angle of
soliton propagation with respect to the magnetic field is increased. This
broadening is accompanied by a decrease in the soliton speed. When the
angle of propagation with respect to the magnetic field was held constant
while increasing the ratio of {./wp, it was found that the soliton width
decreased towards the width of an unmagnetized electron-acoustic soliton.

When weakly-relativistic beam effects were investigated (chapter 9) we
found some interesting results. We employed a model in which the cool elec-
tron fluid streamed relativistically with repect to stationary background ions
and isothermal hot electrons. It was found that the amplitude of electron-
acoustic solitons is greatly affected by relativistic streaming. The magnitude
of the amplitude is found to increase nonlinearly with beam speed, but this
is shown to be strongly dependent on the temperature of the cool electron
fluid. Such increases in amplitude with beam speed have previously been
predicted for ion-acoustic solitons in the presence of a relativistic ion beam
by Nejoh (1987a).

Furthermore, we developed a theory which allows direct numerical in-
tegration of the relativistic fluid equations incorporating relativistic ther-
mal effects. Although such effects were small by comparison with beam
effects, they were nevertheless detectable numerically (being orders of mag-
nitude larger than our numerical precision). This arbitrary-amplitude theory
was used to reinforce and extend our small-amplitude (KdV) results, and
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moreover, to determine approximate parameter regimes in which relativistic
electron-acoustic solitons might occur. In so doing we were able to quanti-
tatively predict (for the first time in relativistic plasma, it appears) points
at which the nonlinearity introduced by the beam overcomes the dispersion,
leading to break-up of the original soliton into a finite train of solitons. As
discussed by Nejoh (1987a, b) this may lead to the formation of a precursor.

Finally in chapter 10, by employing a small-amplitude analysis with
the hope of being able to determine parameter regimes in which electron-
acoustic double layers might occur, we derived a modified KdV equation
for electron-acoustic waves. Whereas this equation formally admits double
layer solutions it was found that the conditions under which they are valid
are irreconcilable with the conditions under which the mKdV equation was
derived. Investigating the Sagdeev potential obtained by reducing the origi-
nal fluid equations (without approximation) to an ‘energy’ equation we were
able to establish fairly conclusively that the tangency condition required for
double layers does not occur, hence preventing the formation of stationary,
weak double layers in our fluid model.

This brings us to an important final point. There is an increasing
awareness of the shortcomings of small-amplitude theories of solitons and
double layers (Baboolal et al. 1988; Baboolal et al. 1989), especially
when negatively charged fluids are present (Baboolal et al. 1991). Thus,
wherever possible we have substantiated our small-amplitude theories with
large/arbitrary-amplitude calculations. Good agreement between the two
theories was generally found at small soliton amplitudes |e¢/Tx| < 0.5, how-
ever, at larger amplitudes significant differences in soliton widths and am-
plitudes arose. This suggests that small-amplitude theory only really gives
accurate quantitative results for weak nonlinearity, although qualitatively
the predictions are the same as those of the larger-amplitude theory over
a wide range of nonlinearities. When double layers are considered, how-

ever, small-amplitude theories can yield completely incorrect predictions
(Baboolal et al. 1991).

11.2 Limitations of the present, and suggestions
for further work

Many of the remarks made in the conclusion of part I carry over to this part,
but in addition, the following questions still need to be addressed.
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11.2.1 Damping of solitary-waves

Although we took cognizance of finite fluid temperatures in our analyses
through a somewhat idealised model of the pressure tensor, notably conspic-
uous in the work of part I was our neglect of the effects of wave damping
by the interaction of the waveform with resonant particles.

The simplest such interaction is of course the linear Landau damping
introduced in part I (chapter 2). Ott & Sudan (1969) considered the effects
of linear electron Landau damping on nonlinear ion-acoustic waves and ob-
tained an equation of the form

o . 0¢  0°¢ 8¢>/3n
15 0956 T ges fOV)’P/ 4y =0, (11.1)

where P denotes principal value. Such equations are normally known as
perturbed Korteweg—de Vries equations (Pécseli 1985) because often the
integral term is treated as being smaller in magnitude than the others. Ott
& Sudan (1969) demonstrated that an initial waveform may either steepen
or not depending of the relative strengths of the nonlinearity as opposed to
linear Landau damping.

Equations of the form (11.1) are only strictly valid for times less than the
resonant interaction time 7g, which for periodic waves corresponds to the
trapping time (Pécseli 1985). For times larger than 7p a modification term
based on linear Landau damping becomes inadequate and particle reflection
by the soliton must be taken into account. In this regard more complex
integral damping terms have been considered by Karpman et al. (1979)
and Karpman et al. (1980) for Trivelpiece—~Gould solitons, and by Karpman
(1979) for ion-acoustic solitons.

Employing coordinate stretchings that allow for time dependence in the
wave velocity, Sanuki & Todoroki (1972) demonstrated that in such a case
extra terms are introduced into equation (11.1).

Mohan & Buti (1980) derived a perturbed KdV equation of the form
(11.1) for electron acoustic waves propagating across a magnetic field in
a current-carrying plasma. The electrons bore a drift perpendicular to B
and the ions were assumed much hotter that the electrons. Only Landau
damping due to the hot ion component was considered. They showed that
the Landau damping term gives rise to tail formation behind the soliton.
Furthermore, the height of the tail remains almost constant, but the width
increases linearly with time. Apart from this work, we are not aware of any
other works on the damping of electron-acoustic solitary waves other than
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that by Chowdhury, Pakira & Paul (1988), where a relativistic plasma was
considered. '

In part I it was shown that the linear Landau damping of electron-
acoustic waves in the small-wavenumber regime could be quite substantial if
the cool electron density ng. was not much less than the hot electron density
nor. One might then expect that for times less than the time of resonant
interaction linear Landau damping of electron-acoustic solitons would be
important, leading to a modification of our KdV equation to include an
integral term as in (11.1). For times larger than g one is forced to consider
nonlinear Landau damping for an accurate description of reality, and an
analysis analogous to that of Karpman (1979) for ion-acoustic waves might
prove interesting.

The collisionless damping of electron-acoustic solitons could lead, per-
haps, to the formation of a collisionless electron-acoustic shock wave just as
collisonless damping of ion-acoustic waves can lead to ion-acoustic shocks.
Electron-acoustic shocks may well be accessible to an arbitrary-amplitude
pseudo-potential model similar to that used in chapter 7, but which includes
the effects of (collisionless) dissipation. Once again calling on our analogy
with classical mechanics, in the case of collisionless shocks the ‘particle’
would oscillate in the potential well (Chen 1984) as it underwent damping,
eventually coming to ‘rest’ at a potential ~ ¢o/2. Thus we speculate on
the grounds of our previous work that a collisionless electron-acoustic shock
would constitute a negative dip in the potential which has an oscillatory tail.
The dip is associated with a sharp increase in cool electron number density.

Clearly, from the previous discussion there is vast scope for study of
nonlinear wave-particle (or wave-wave for that matter) scattering by large
amplitude electron-acoustic waves/turbulence. Such investigations would
yield valuable information in determining the fate of electron-acoustic soli-
tons and nonlinear waves as studied in part II.

11.2.2 Electron-acoustic double layers

The question of electron-acoustic double layers is still an open one. We have
considered only the most simple fluid model of nonlinear electron-acoustic
waves in which we showed that the weak electron-acoustic double layer does
not exist. The introduction of particle drifts, trapped particle effects—which
are essentially kinetic effects, etc. might well lead to the succesful formation
of an electron-acoustic double layer. Indeed, slow electron-acoustic double
layers (SEADLs), based on the slow electron-acoustic wave (Stix 1962) have
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been constructed using kinetic models, by Kim (1983) and Schamel (1983).

Furthermore, we have considered only stationary electron-acoustic dou-
ble layers. It remains to be seen whether non-stationary electron-acoustic
double layers are admitted by our plasma model.

11.2.3 Large-amplitude soliton interactions

Soliton interactions governed by a host of evolutionary equations are now
well known (see Drazin & Johnson (1989)). Such evolutionary equations,
however, usually result only after some basic assumption as to the magnitude
of the wave amplitude (and hence dispersion) has been made.

The arbitrary-amplitude wave model employed in part II for electron-
acoustic solitons, and by Baboolal et al (1989) for ion-acoustic waves, has
shown that whereas the KdV equation is a good approximation for weak
nonlinearity, it fails to predict the correct soliton amplitudes and widths for
strongly nonlinear solitons. Consequently, we expect the interaction of the
fully nonlinear solitons to differ from that predicted by the KdV equation.

Perturbations of solitons due to higher-order nonlinearity (‘soliton dress’)
were considered by e.g. Konno et al. (1977). Indeed, such works have
been carried out for the modified electron-acoustic soliton (Sarma, Kalita &
Bujarbarua 1986) but no time dependent investigation of interactions was
carried out by the latter. Notwithstanding these works, it still remains to
be seen what kind of interactions occur when the full nonlinearity is taken
into account.

11.2.4 Soliton stability

Although it is now a fairly well-established fact that plane soliton solu-
tions of the KdV equation are stable, the same cannot be said of the two-
and three-dimensional generalisations. Moreover, it appears that very lit-
tle (if any) work has been carried out on the three-dimensional stability
of large/arbitrary-amplitude solitons as presented in part II. Such a work
would necessarily be numerical in nature because of the unavailability of
exact soliton solutions of the fully nonlinear fluid-Poisson system. It might
entail the numerical solution of the abovementioned system of equations
as an initial-value problem with an arbitrarily large amplitude perturbed
soliton profile as initial profile. In addition, it might be interesting to in-

vestigate the evolution of an arbitrarily large electron-acoustic double layer
initial profile.
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Appendix A

The dispersion relation for
electrostatic waves in a
magnetized plasma

In this appendix we derive the dispersion relation for electrostatic waves in
a magnetized, multi-species plasma. Because the waves are electostatic we
shall assume that the electric field is derivable from a scalar potential

E=-Vé.

The plasma particles are assumed to be drifting parallel/antiparallel to the
magnetic field B.

A.1 Basic equations

Our starting equations are the Vlasov-Poisson system of equations:

V2<f> = —47an0jqj/f_,- dV, (Al)
J
ofi . 0fi | 4 1 f; _
at+V 6_x+m_j(_v¢+ZVXB).W—O’ (A?)

where j refers to the jth particle species. Linearizing about a static back-
ground, we put ¢ = ¢()(x,t), B = B and fi= fj(o)(v) + f}l)(x,v,t),
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and obtain to zeroth order

4#2 ng;q; /fj(o) dv =0, (A.3)
3
. af
q—’(lv X B(O)) : g—g =0, (A4)
m; c v

and to first order

Vi) =~ Yoy [ kv b, (49
1

| e af
(5+v_i+‘1_a<lva<o>).Biv)fj(n:q_:a‘f’_.f_:, (A6)

ot Ox  mj \¢ m; 0x ov

Equation (A.3) expresses the charge quasineutrality condition and equation
(A.4) states that the zeroth-order distribution function is a function of vy
and v, i.e.

f}o)(v) = fJ(O)(vJ.a”H)'
A.2 The dispersion relation
The left hand side of equation (A.6) is just the rate of change following an

unperturbed orbit in phase space. Thus we may write the latter equation
as follows

0
40 oy _ g 900 917
dt *J m; 0x Ov '’
where the operator d(°)/dt is the operator on the left hand side of (A.6).
The above equation has formal solution

vty = fOXE), V()¢ = )

. (0)
- / t dt’q—Jaqs(l)(X(t'),t’)-aaf—i,(V(t’)), (A7)

—oo M Ox

where the point X(¢'), V(t') is the unperturbed orbit in phase space that
will arrive at x, v at ¢/ = t.

Seeking plane-wave solutions we set

oM (x,t) = ®y, expi(k - x — wi)
[P060v,0) = fi(v)expilk-x - wt) [
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where it is assumed that Imw > 0. By the latter assumption one must have
f;l)(X(t’),V(t’), t' = —o0) = 0 since a finite amplitude at ¢’ = ¢ implies that
the amplitude must tend to zero as t’ tends to —oo. Then, by (A.7) above
one obtains

t ' P (0)
fio(v) = iy, / at’ %k : g—Jv(V(t'))expi[k (X = x) - w(t - t)] ,

—00 7
(A.9)
which, with the change of variable 7 = ¢/ — ¢, becomes

a5
f]v (V(r))expi [k (X —x) - wr], (A.10)

Z.kaq‘ 0

where it is now understood that X(7), V(7) is the unperturbed orbit that
will arrive at x, v at 7 = 0.

It is easy to show that a charged particle immersed in, and drifting in the
direction of a constant homogeneous magnetic field, B = Bge,, has velocity

Ve = wycos(p—Q;7),
Vy = wysin(p - Q;1),
V, = U+ Y|

(A.11)

where v = \/Vl?’ +VE= \/vf: +v2, 0=V, =U =v,-U, Qj = ¢jBo/mjc,
(Note: ¢ is the azimuthal coordinate in a cylindrical system and is not to be
confused with the electrostatic potential ¢) with corresponding trajectory

VL v

X = z+ 0, sin ¢ — 0, sin(p — Q;7),
Y = y- LeS cos p + oL cos(p — Q;1), (A.12)
Q; Q;

7 = z+U‘r+v“r,

and clearly these satisfy X(0) = x, V(0) = v. Now, because f}o)(v) =

f](O)('UJ_, v)|) one obtains

£
Z-(V(7) =

o500 070w, 0f oy
F ovy vy Y ov, ov, € Oy 0Ov,

as
= 051_ (eI cos(p — Q;7) + ey sin(p — Qj‘r))

Vir)
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af

+eZa—U“, (A.13)
and without loss of generality we assume k = k e, + ke, then
f(O) 9 (0) 9 (0)
(1)) = k1 (')vJ_ cos(p — ;7) + ky 81)” (A.14)

Substitution of (A.11), (A.12) and (A.14) into (A.10) yields

0 (0) 7
]
fixw(V) = z—@kw /_Oo dr (k_j_ a;L cos(p — Q;7) + k| 3oy )

k k
-expi ( L1 sin g — 104 sin(p — Q;7) + k(U + )7 - w‘r) .
(A.15)

By definition of the cosine in terms of the complex exponential one can write
the equation (A.15) in the form

- 0 91 kv
. q;
fiko(V) = 1=, / dr[ ki expi(p— Q7+ —— smcp
J my —00 0 V] ( QJ

kLUL
QJ

sin(p — Q; T)+k||(U+v||)T—wT)]

0 (0) kv

1 ]

+/;oodr[2kl Fo. expz( e+ Qir+ —— 0, sm(p

sin(@ — Q;7) + k(U + vy)7 — u‘r)]

kL”L

k
k“ exp z L% Sin ¥
a"H Q;

Q = sin(p - Q;7) + k(U + o) “‘”)]}

(A.16)

Consider the first integral in (A.16) above. Employing the following identi-
ties

exp(ta sin ) Z Jn(a) exp(ing),

n=-0oo
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exp(—iasing) = Z Jn(a)exp(—ingp),

n=—oo

one can write
a5

0
g, =2 exp icp/ dr exp[i(k“(U +uy) = Q5 - w)‘r]
vy

2

oo

_2_: ;OOJ (kL )exp(mgo)J (k;'zl)

exp[ imp + im§Q;7]

_ S i1t — kuu kivy
0
/_ dr exp[i(ky(U + v)) + (m — 1)Q; — w)7]
T exp[i(n — m)¢]
- lklav Z Z ik (U + ) + mQ; - v
k v kJ_'U_L
() () )

where we have used the assumption Imw > 0 and made the substitution
m +— m — 1 in the last step. Similarly, the second integral may be written

_ expli(n — m)¢]
= lkJ_ n—X—:oo m—X:oo z[k“ U + v” + mQ — w]
() s

J J

and summing these two integrals (A.17) and (A.18)—recalling that

Tnt1(2) + Jn-1(2) = (2n/2) Ju(2),

one obtains

AB)n B IEE

e exp[z(n - m)y]
B =Z ; k”(U + 'U“ + mQ; — w|

201



The third integral is handled by much the same procedure; one obtains

expli(n — f( kivy kivy
Z Z z[k“(Ui[v”)ﬁ-m)(f]—w]k‘ du ( Q; )Jm( Q; )

(A.20)

Finally, summing the three integrals using (A.19) and (A.20) yields the
desired expression

4 exp[i(n — m)¢]
fjkW(V) = q)kw Z Z k"(U + v||) + mQj —w

n=—00 M=—00

()
klvl kJ_’UJ_ mQ 6f af
I Q; )J’"( Q, )(u 5ur T iy, (A-21)

Substitution of (A.21) into the linearized Poisson equation (A.5), and inte-
grating over ¢, noting that

2m
/ exp[i(m — n)p] dp = 2Témn,
0

yields the dispersion relation

kivy du
1—21rzk2/ dv, vy Z J"’( )/ BT o)+ 70—

n=—oo

Q (9f(0) Lk af(o)
V1 61)J_ ” (91)”

)—0 Imw > 0,

where the plasma frequency of the jth component is defined by w; =
(4mno;q; [m;)M2.

The dispersion relation as it stands is only valid in the upper half of the
complex w plain. The integral over v is in the form of a Hilbert transform.
In order for the dispersion relation to be an entire function of w it must be
analytically continued to the lower half of the w plain. This can be done
by prescribing that the integral over v be taken along a Landau contour as
described in, for example, Krall & Trivelpiece (1973). Thus the dispersion
relation valid in the entire complex plain is given by

= 2r Z e d’l)_L Vy d'U“ Z k“ J
'UL avl 60”
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 Ja(kiv/Qy)
k”(U + 'U“) + nQJ— —w’

(A.22)

where L denotes the Landau contour which passes under all the poles of the
integrand.

A.3 Maxwellian distributions

We seek the dispersion relation when the plasma components have Maxwel-
lian distributions, viz.

v? + vl
f}o)(vl, ‘U”) = (27!"0]')-3/2 exp {— J—2’U2- I } . (A23)
J

Substituting this into (A.22) and considering only the double integral we
obtain:

nf; /v + k 2 vd
/./ _ _(27rv]2)—3/2/ v, i/v7 + Ky /o] exp [_ ||2]
9 L k(U4 y)+0nQ; —w 2v?
| I ] J
e 'U2 kJ_'U
[ - L (). .
/0 vlviexp[ 27 n( o ) (A.24)
The second integral is readily evaluated by employing (Ichimaru 1973)

00 ) 1 p* + ¢ Pq
_ Jn. Jn. = — - n\a o
-/t; zexp[—a“z"]Jn(pz)Jn(gz) dz 242 exp[ 4q? ]I (202)’

rendering

/; = v?— exp [— kg;? ] I, (%})i) , (A.25)

where I,,(z) is the modified Bessel function of order n.

Consider now the first integral. Defining s = v/ ﬁvj it can be cast in
the form

/ _ ﬁ 3+an/\/§k”vj
1

= exp[—s?] ds,
v; JL 8 — (w - an - k||Uj)/\/§k||vj P[ ] ®

_ V2 (w = kyU;)/ V2 kyp; 2
vy JL {1 * 8 — (w - an - k”UJ)/\/ﬁk”v]) exP[—s ]dS,

V2 w— k) U; - nf; — kyU;
= YR (2D (A.26)
; V2ky; V2K,
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where we have used the definition
-s?]ds
(=i [ 2L
©) [

Finally, substituting (A.26) and (A.25) into (A.22) yields the dispersion
relation

LD 3 oo
2

) n=—x
w—k‘HUj (w—an—k”Uj)
{ V2k)v; V2ky;
which on using
> expl-z|Li(2) = 1,
yields
wz W - k”U k2 1;2
* ; k2o’ { BT p( 2 )
b k2 v? w—n8; — kyU;
: L(=1)z i (e )
n:z_oo ( ; )2 vk, )

A.4 The dispersion relation for electron-acoustic
waves

In this section we pursue a derivation analogous to that of Melrose (1986)
for ion-acoustic waves in magnetized plasma. We assume that the ions and
hot electrons are unaffected by the magnetic field i.e. they are unmagne-
tized, and that the cool electrons are strongly magnetized. Furthermore, we
assume that the phase velocity of the wave satisfies

w w — n, w — k| von
— >, |——|>»1, |—| <1 A28
’\/ﬁkv; V2 kv, V2 kv, (4.28)
The dispersion relation can be written
1+ > K;=0, (A.29)



where

1 w
K, =— 7' ( ) , A.30
2k20E. 7 \V2ky; (4.30)

and the electron contributions are:

K L PP ( kL e )
=3 VAl T A W

> k2 v? w — nfd
. L —+%1)Z7 “’) , (A31
nzz_:oo ( Qg ) ( \/ik“vc ( )
1 w— k||v0h>
K, = - Z' . A.32
h 2k20L, ( V2 kuy, (&.32)

Consider the term K: because I,(z) = I_,(z) we can write

1 k2 2 k2 2 w
K. = — I 1
e mf)c exP( 02 ) O( ) ¥ \/—kch (\/Ek”%)

K2 o2 K2 02
kw Ze""( 0 ) ( 0 )
w w — nfl. w + nfl,

z +z( )

* \/§k||vc { (\/ﬁk”vc) \/ik”vc }

By (A.28) we employ the following asymptotic expansion of the Z-functions
in the above

(A.33)

Z(C) =TT~ 573 " ’ (A34)

and we assume that k2 v?/Q2 < 1 which allows the following expansion of
the exp(—z)I.(z)

1 sz\»
exp(—z)I(z) ~ ] (5) . (A.35)
The terms in the first set of square brackets in (A.33) are readily expanded
yielding
k2v?
w w | Ve
1+ Z ~ - . A.36
l \/—Q-k”vc (\/ik“vc)1 w? ( )
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The sum of Z—functions in the second set of square brackets in (A.33) can
be written

w—nf w+nQe> ( 1 1 )
= Z = —V2 kv, +
Z( \/§k||vc) + ( \/ik”l)c I W — nQe W+ nQe

~V2ki: (( —iﬂ 7 Gy

2w + 6wn2Q? .
= —\/—k“Uc o2 — \/_kﬁva(—zm (A37)
Using (A.35), (A.36) and (A.37) in (A.33) yields
1
Be=

kﬁ g+§: 2 (k202\" . w? k2 ywt + 3w?n?Q?
w? n! \ 202 w? — n2Q? IV (W2 —n2Q2)3 | |~
n=1
The second term in the above rapidly decreases with increasing n and we

take into account only the terms corresponding to n = 1 in the sequel. Fur-

thermore, we neglect the last term in square brackets in the above involving
kZv2. Then K. becomes

Ve

Koot L e (A.38)

For the K, term (A.32) we employ the following power series (see (A.28))
expansion of the Z’—function:

Z'(¢) ~ —2[1 + in /%3¢ exp(—¢?)). (A.39)

Then K becomes

1 . w - k“vgh w — k”voh 2
i~ oo 14 im0 [_(_) ] (A0
", { VZko, T V2kuy, (4.40)

Finally, neglecting the ion contribution K, which is comparatively small,

yields the following dispersion relation from (A.29) in conjunction with
(A.38) and (A.40)

2
14 1 B ﬂw_g_}_ ﬂ w2 +”r1/2w}1 k||'U0h ox [— (Ld - k||voh) 2]
D w? e \/_k3 \/-Q_k’vh '
(A.41)
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A.4.1 Weakly-magnetized electron-acoustic waves

We seek solutions of (A.41) that are either weakly-damped or weakly-grow-
ing, i.e. we set
w=w, +ty where |y]|< |wr|. (A.42)

Then employing the binomial theorem yields

11
w?  (wr i7)?
1 -2
- —2<1+il) :
w3 Wy
1 .2y
~ —3(1—zw—r+---). (A.43)

Similarly it is easy to show that

1 1
P_u? T (o) to)
1 . 2ywy
~ Qg—w;" (1+lm+"'). (A.44)

Substituting (A.42), (A.43) and (A.44) into (A.41) and separating into real
and imaginary parts yields

1 k2 g2 2
1% 2L _Fe ), (A.45)

1 SL_ Yo o
T T rateeos

for the real part, and neglecting small quantities one obtains

-1
y = (1)1/2(‘)_}%(19“1)0]1—(0,-)(.&)? {c|_2|+ﬂ wﬁ
8 w? k3v2 k2 k% (Q2 - w2)?
(Ko — wr)*
- exp [-W} ) (A.46)

from the imaginary part.
Consider (A.45), multiplying throughout by w?(Q2 — w?2) we obtain the
following quadratic in w?

re

wy — [Q2 + W(k)w? + WA (k)2 cos? 6 = 0, (A.47)
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where we have defined w,(k) = w./(1 + 1/k2X%,)1/2, cosf = ky/k, and
sin = k, /k. This equation has solutions

r

(w2 = LO2 + wl(k) £ V/(Q2 + w2 (k))? — 4wd(k)Q2cos? ). (A.48)

We investigate the behaviour of these solutions at small and large wave-
numbers. Firstly we rewrite (A.48) in the form

2 2 2
1i\/1_4w,(k)(lecos 9

Y

(“"£+’—))2 = %(wf(k) + QZ) (W2(k) + Q2)2

~ LW3(k) +02) [1 + (1 - 2(“’53((’2)95 :f;f)] . (A.49)

For small wavenumbers, defined by w,(k) < 2., we employ the approxima-
tion

Q2 /(Wi (k) +02) = 1,

in w£+’—) yielding the solution

(W) ~ 02 + w,(k)sin? 6, (A.50)

which implies (using w,(k) < Q. and expanding w,(k) for small k):
2,2

kv
(+) ~ Z_se gin?
w, > Q4 20, sin‘ 6, (A.51)

where we have used the definition of the electron sound speed, i.e. v, =

(noc/mon ) ?vy,. The other root wi™) s readily calculated from (A.49) yield-
ing

w{™) ~ w,(k) cos @ ~ kv, cos 6. (A.52)

The large-wavenumber regime defined by w?(k) 3> Q2 yields, on approx-
imating
wi(k)/ (Wi (k) +Q2) = 1,
from (A.49):
(W2 ~ W2(k) + Q2 sin? 9, (A.53)
and therefore
W) ~ wy (k). (A.54)
The other root is given by

w{™) ~ Q, cosd. (A.55)
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A.4.2 Strongly-magnetized electron-acoustic waves

We define the strongly magnetized regime by the condition €, > |w|. This
allows us to write (A.41) in the form

14 1 3 k—ﬁw—g-{-ﬁw—z-}-iwl/zwﬁw“k”%h exp[—(w_kHth)zjl.
k2L k2w? k2 Q2 V2 k303 V2 kvy,
(A.56)
Then once again seeking solutions that are either weakly-damped or weakly-
growing, i.e. those that satisfy (A.42) we may expand w~? as in (A.43).
Substituting (A.43) into (A.56) and separating into real and imaginary parts
we obtain

2 kﬁ w3
or 2
2 _ l kaZe
T RTT R 4k (4.58)
where we have defined p;. = v4./2; and
T\1/2 k2 w? (kjvon — wy w3 kyvon — wy )?
- (§> ﬁ_};( : Oks 3 ) ex [_( : th 2 ) ] (A.59)
| we vy 2k%vy
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Appendix B

The hydrodynamical
equations for a
nonrelativistic fluid

Solution of the Vlasov-Maxwell system of equations, even in their linearised
form, presents formiddable mathematical difficulties and, one could even
say, lies on the bounds of tractability. In some instances, especially when
nonlinear effects are considered, it is advantageous to descibe plasma pro-
cesses within the framework of a macroscopic fluid model. In such a model
one discards the microscopic information contained within the distribution
function and works with averaged quantities describing the macroscopic be-
haviour of the fluid.

B.1 The hydrodynamical model

Defining the following averaged quantities
wxt) = [dvixv,
we) = oo [aveitvo,
P(x,t) = m / av (v = u(x,1)) (v = uGe, ) fx,v, ),
Ax,t) = m / av (v = w6, 1)) (v = w6, 0) (v = u(x, ) £x,v,1),
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and taking velocity moments of the Vlasov equation one obtains an inter-
connected chain of moment equations (Volkov 1966)

on
oLy, _ B.1
5 + V() =0, (B.1)
0 ! _M(gyl
E(nu)%— EV-(nmu@u—{- P)= — (E+ Jux B), (B.2)
%—:+V-(Q+u®P)+P-Vu+(Vu)T-P
- S (PxB-BxP), (B3
mc

where the macroscopic electric and magnetic flelds E and B evolve according
to Maxwell’s equations. These equations describe the spatial and temporal
evolution of the averaged quantities n, u, P and Q.

Clearly, the above system of moment-Maxwell equations is not closed
and it is necessary to prescribe certain further constraints to ensure closure.
There are two commonly used procedures. The first of these assumes that
the divergence of the pressure tensor vanishes V - P = 0, which is called
the cold plasma model, and the system above reduces to (B.1)-(B.2). The
second procedure allows for finite pressure but now assumes that there is no
heat flow so that the divergence of the heat flux tensor V- Q = 0. This is
called the warm plasma model. (We adopted the latter model for most of
the plasmas studied in part II.) Furthermore, we shall assume that the fluid
is ideal and hence the pressure tensor has vanishing off-diagonal elements

P=

o oR

00
p 0 [,
0 p

which amounts to the assumption that the fluid viscosity is zero.

For longitudinal plane waves the plasma components undergo only one
dimensional compressions/rarefactions which, without loss of generality, we
may take along the z-direction. Thus, contracting the pressure equation
with respect to e; ® e, we obtain, with the above assumptions,

0
(E+u-v)p+3pv-u=0, (B.4)
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which, upon using the equation of continuity (B.1), yields the adiabatic law
for a fluid undergoing one-dimensional compressions

(% tu- v) (%) =0. (B.5)

The latter equation states that the rate of change of the ratio p/n? following
a fluid element, remains constant. Also, using the equation of continuity
(B.1), one can write the momentum equation in the so-called Euler form.
We summarize the three equations here for reference:

on

- ) - B.

o + V- (nu) =0, (B.6)
ot m m c

op

For longitudinal electrostatic waves in which the electric field vector lies
parallel/antiparallel to the velocity field u, the electric field can be derived

from a scalar potential E = —V¢. Then the only independent Maxwell
equation is the Poisson equation

Vip = —4rp, (B.9)

where p is the total charge density. It is assumed that a set of equations
of the form (B.6)—(B.8) hold for each plasma component. These equations
provide the basis for most of the analysis performed in part II.
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Appendix C

Relativistic fluid equations

In this appendix we follow an analysis similar to that employed by Sakai &
Kawata (1980) in deriving the ultra-relativistic fluid equations for a plasma.
However, here we reduce the basic equations to their weakly-relativistic
limit.

C.1 Basic equations governing the dynamics of a
charged relativistic fluid

Suppose M* is a four-dimensional Riemannian manifold that possesses met-
ric g,, with hyperbolic signature + — — — and invariant line element

(ds)? = g,,dz*dz”.

Then the equations governing the dynamics of a charged conducting fluid
in this curved space-time are:

(nu*)., =0, (particle conservation);

TH ., =0, (from Bianchi’s identity);

Fr., = gk, (Maxwell’s equations I); (C.1)
Fopwt Fuvypt Fpuyp =0, (Maxwell’s equations II);

Sk, =0, (isentropic);

where 7 is the proper density of the fluid, F#¥ is the Maxwell tensor, S* is
the entropy flux density, “.” denotes covariant differentiation and

uv _ mpv ny
T =T t Tiemy
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is the energy-momentum-stress tensor. We have split the latter into two
separate component tensors: T(“A;) is the energy-momentum tensor of the
material fluid; and T‘gM is the energy momentum tensor of the electro-
magnetic field. The energy-momentum tensor contains contibutions from
all sources of energy contained by the fluid because in relativity one loses
the distinction between matter and energy, and all forms of energy possess
inertia and can act as a source of the gravitational field.

Assuming a perfect, non-viscous fluid the material component of the
energy-momentum tensor can be written (see for example Foster & Nightin-
gale (1979))

Tiary = (ue® + p)uru” — pg*”, (C.2)
where p is the pressure and p is the proper mass density which includes the

internal energy density. The electromagnetic field component is written in
terms of the Maxwell tensor,

v 1 v 14 o
Tiony = == (FF = 10" Foo ), (C.3)

The latter is given by
Foo=4,,,-4,., (C4)

where A, is the vector potential. The four-velocity and four-current are
defined by
, _ dz# )
u- = 'K’ Ju = 4Tpuy, (CS)
respectively, and p is the proper charge density.
In a fully relativistic treatment these equations would be supplemented
by the Einstein equation

87 G

Ry -39uR=—T,, (C.6)

pr
where Ry, is the Ricci tensor, R = g#“R,, is the curvature scalar (Ricci

scalar), and G = 6.67 x 1078 cm®g~1s~3 is the gravitational constant.

C.2 The relativistic Euler and energy continuity
equations

In this section we shall establish the relativistic Euler and energy continuity
equations for a charged conducting fluid.
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With this in mind we introduce the projection tensor (Straumann 1984)
Py = guw — uuuy, (C.7)

which projects orthogonal to u#. It projects into the instantaneous rest-
space of an observer moving with world velocity u#. Following Straumann
(1984) we assert that the equations

T, = 0, (C.8)

’

hﬁTW’;a = 0, (Cg)

represent the equation of energy continuity and Euler’s equation for a charged
relativistic fluid, respectively.

To prove the above assertion let us first evaluate the divergences im-
plied in equations (C.8) and (C.9). Consider the divergence of the energy
momentum tensor representing the electromagnetic field

v 1 v v a
Tu;u(EM) = —E<FuﬂFp_%6#FP0Fp )_’

HZ

1 y v
= _E(FwFp;u+Fup;VFp—%(Fp”FW);“).

By Maxwell I in (C.1) and the antisymmetry of F*” (cf. (C.4)) we obtain
—F,,j* for the first term in the above. The second term becomes, noting the
role of v and p as dummy indices and the former remark about the Maxwell
tensor,

vp
FupF

%Fup;uFVp + %Fuu ;pFW
%(Fup;v + Fou ;p)FVp
= %F,,,, W,

where the Maxwell II equation in (C.1) was used in the last step. This can
further be written

%Fpu ;uFW = %(FPUFW)
which yields the required result

g

1
T ., = —F";,. .
w(EM) = = F"] (C.10)
Similarly performing the divergence of T(“A'}) and employing (C.10) yields
™, = pt(u*,u”+ uu’y, ) + utu¥ (uc?) w + p(wfut +ututy,)
14 v 1 .
W - g*)py + —F*j, = 0. (C.11)
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Now contracting with respect to u, as in (C.8) (noting the normalization
condition u,u* = 1, u,u*,, = 0 and the antisymmetry of F,,) we obtain
the energy continuity equation:

(#02“'“) st puty, =0, (C.12)

By contracting (C.11) with A, as prescribed by (C.9) we obtain the rela-
tivistic Euler or momentum equation:

1 :
(pe? + p)u*,u’ — h*p,, = -4—ﬂ_F‘“’],,. (C.13)
We introduce the internal energy density via

pc? = o(c* +¢),

where p is the proper density of the mass alone and ¢, the specific internal
energy density, is given by

_ D
€= —Q(F —1y (C.14)

for an ideal fluid; and T is the fluid’s adiabatic index. With this definition
equation (C.12) can be written, using the particle conservation equation
(C.1) (in its conservation of proper mass density form),

p.ut 4+ Tpu#,, = 0. (C.15)

Upon using (C.15) and particle conservation once more we obtain the adia-
batic law for a relativistic fluid,

d
(b~ ) =0 or —(pn7") =0, (C.16)

which shows that the ratio p/n' is conserved along a fluid element’s world
tube.

C.3 Special relativity and the weakly-relativistic
limit

In the rest of this chapter we shall assume that we are far away from any
gravitating masses so that the metric can be approximated by the Minkowski
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metric of special relativity i.e.

1 0 0 0
0 -1 0 0

(g#l’) = (nlﬂ’) - 0 0 _1 0 3 (C17)
0 0 0 -1

in a rectilinear coordinate system where the coordinates z# are defined by

xozct, 1:1=:c, xzzy, z° = z.

In such a coordinate sytem the covariant derivative “,” reduces to the
ordinary derivative “” because the affine connections (Christoffel symbols)
vanish identically. We shall also make the assumption that the fluid is cool,
i.e. p < oc? and that the fluid velocity is not an appreciable fraction of c,
i.e. the fluid is weakly-relativistic. We wish to separate the equations into
their time and 3-space components, thus, with (C.17), the world-velocity
(C.5) becomes

. J
o_ 1 i v

1= h NI 7=

where the v7 are the components of the normal three-velocity v.
The antisymmetric Maxwell tensor has covariant components

1,2,3, (C.18)

0 E E, Es
-E, 0 =-B; B,
-E; Bs 0 -B; |’
~E; -B, By 0

(Fu) = (C.19)

where the F; and B; are the three-space components of the electric and
magnetic fields, E, B, respectively. With our assumption of flat spacetime

and by equation (C.14) for the internal energy the Euler equation (C.13)
may be cast in the form

2 v v
(QC + T— 1) ut ’yu” - Ipufu v ﬂ“up,u - _4_7rFu v, (C.QO)

where we have used the pressure equation (C.15). Now separating the above
equation into its time and space components and remembering p/c? < o we
obtain for p = 0

o
510+ V-(ev) = ZE.v, (C21)
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and for p =1,2,3
. 9 1
Yo (E +v- V) (yv) = -V +7p (E +ovx B) ) (C.22)

where we have introduced v = (1 — v?/c?)~1/2,

The latter equation is the relativistic 3-momentum equation for a weakly-
relativistic fluid whereas the former equation is like a mass continuity equa-
tion with source term. The appearance of the factor 42 in these equations
is due to two effects: length contraction of an elementary volume element in
the direction of motion reduces volumes by a factor of ¥, and the second
factor of v arises due to the increase in mass of a particle travelling with
speed v > 0. We therefore define the following quantities: the mass den-
sity o' = 7429, the particle number density n’ = yn, and the charge density
p' = vp. It is important to note that these quantities are not scalars in the
relativistic theory because they vary depending upon in which inertial ref-
erence frame they are measured. With these definitions the above equations
become

/

0
50 TV (V)= f—;,E "V, (C.23)

mnt (4% ) () = ~Vp 4 (B+ivxB)  (cay

and the equation of particle continuity reduces to

!
%—Z +V-(n'v)=0. (C.25)

Returning to (C.15) and writing out in full using the definition of the world
velocity (C.18) we obtain

0 Ip [0y _
(2 +v-5)p 2 (245 )

Now, noting y=! = 1 - 1v?/c? — ..., 3v/0t = y3v/c? - Ov/dt, and our
assumption that the fluid is cool and weakly-relativistic, we neglect the
smaller terms to yield the weakly-relativistic pressure equation

(% +v- V) p+TpV-(yv)=0. (C.26)
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Appendix D

The Korteweg—de Vries
equation

In this section the reductive perturbation technique (Washimi & Taniuti
1966) is used to derive a Korteweg—de Vries equation for weakly-nonlinear
waves in a multi-fluid plasma. The method assumes that the Fourier com-
ponents constituting the weakly-nonlinear wave packet have a dispersion
relation that behaves like

w ~ ak + Bk,

D.1 Basic equations

An infinite, collisionless, unmagnetized, multi-fluid plasma is assumed (there
being little gained in terms of economy, in limiting the number of fluids).
The plasma dynamics are governed by the following normalized equations:

BnJ 0

ot ax(njuj) =0, (Dl)
Ou; Ju;\ _ Op; _0¢
m;n; ( 5 + u; E)z) %2 ZJnJB_z’ (D.2)
0p; Op; Ou;
6t + Uy (9 +3PJ% = U, (D3)
82¢

Z Zin;, (D.4)
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and the hot electron density is given by the Boltzmann distribution
Nk = Ngh €Xp ¢. (D.5)

The subscript j denotes the jth fluid component, assumed to have thermal
velocity much less than the wave phase velocity. The normalizations are as
follows: spatial lengths by the length (Th/47ng.e?)!/2, time by the inverse
electron plasma frequency (me/47rn0862)1/ 2 number densities by the total
electron density ng., pressures by ng.T}, electrostatic potential by T} /e, ve-
locities by the hot electron thermal speed (T7,/m,)!/?, masses by the electron
mass me; and Z; = g;/e.
In addition, we impose the following boundary condtitions

0¢ 0%¢
¢=0 %_*0’ W_)O as |z| — oo. (D.6)
nj = noj, Pj = Po;  uj =0

D.2 The reductive perturbation technique

We employ the following spatial and temporal stretching of the coordinates
(Washimi & Taniuti 1966)

£ =z = Vi), T =, (D.7)

where € < 1is a small parameter related to the wave amplitude. In addition,
we expand the macroscopic variables in terms of e:

nJ = n(.o) + 5n(.1) + €2n(.2) + .- )
pj = (°)+fp§)+€p1 T
(1) ) ) > (D.8)
u; = + € u + .-
¢ = €¢(1) + €2¢(2) + - )
In terms of the new coordinates (D.7) the equa.tions (D.1)~(D.4) become
on; on;
1/2 3/2
-V PG4 ) =0 (09

0 .
n; (—61/2‘/3% + 3/2(?,;:_3 + 61/2uj%—ug)

_l2 1 31’1 _ 1/2zn1 9¢
m; 0 m; o’

(D.10)
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op; 0p; Op; Ou;
_ /2y, Yy 3/2Yry /2, J 1/2 J _
€ V(?E+€ a1_+€ 8§+ 3105 =0, (D.11)
2
68—65 =noa(1+ ¢ + 3¢ + §6°) - Z Zin;. (D.12)
i

Upon substituting the expansions (D.8) into the above system and solving
order by order we obtain from Poisson’s equation (D.12)

0(%) nor = Z;nl) =0, (D.13)
O(e") non® - " Z;nl) = o, (D.14)
J
9?2 (1)
0(é) B—‘ZQ_ = nond® + nOh (62 Z zn?, (D.15)

from the equation of continuity,

012 —Vagg) + 2l agg) =0, (D.16)
0 _Vaggs) . 3;,_5:) N ngl)a;(;) . ngo) a;g;)
+ulV agi” =0, (D.17)
from the momentum equation,
oulV  Z:al® 54 ) ()
0(&/?) _VnEO)aTl‘iz_) _ Vng;)@;;;) N ngo) 523,1) . ng ) a;;)

__zn szl 960 1 op? (b.19)
m; af m; 85 mj 66 )

and
Bp(l) oull)
0(3/?) -V aje 3p\” a]§ =0, (D.20)

221



o o) o) o0
I S e = e
3u(~1)
W3 _ D.21

from the pressure equation.

Note that the O(¢3/2) equations (D.16), (D.18) and (D.20) may be inte-
grated at once, using the boundary conditions (D.6), yielding a similar set of
equations without the partial derivations in £. Substituting the so-derived
equation resulting from (D.20) into the corresponding equation resulting
from (D.18) one obtains

(1) _ Z;V]m; ¢(1

ul (D.22)
7T V2= 30

for the first-order velocity of the jth fluid component. The parameter o; =
pgo)/mjngo) = T;/m;. Employing this equation in the integral of (D.16)
yields , (0)/m
1 i j
ni) = T~ 3, g, (D.23)
and by (D.20) one has
W _ 3Z; n® )ovJ

P; 2

(1),
723, (D.24)

Substituting the expression for ng- ) (D.23) into the O(e) equation arising
from Poisson (D.14) furnishes

Z2 (0)/m.7
1
Nor — Z —V2 30-J ¢( ) =0
J

where for non-trivial ¢(1) one must demand that the term in braces vanish,
yielding a linear dispersion relation to be satisfied by the long-wavelength
phase velocity V,

2,00/

Mok = V2 - 30'J'
J

= 0. (D.25)

The O(e%/?) equations are dealt with as follows. The term involving

( ) in the momentum equation (D.19) is eliminated by using (D.21). This
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results in the following equation for ugz)

(2) (1) (0) (1)
n('o)auj _ V2 n(l){)uj N n; 'V Ou;
7 0¢ V2-30; 7 0¢  VZ-30; Ot
() ey
LY W ZVImg )08l

V2-3¢; 7 06  V?-30; AT
Z]ngo)V/mj 02 1/m; 6p§-1)
V:-30; 0¢ Vi-30; Or

(1)
1/m;  (1)0p; 3/m; (1)‘9
V2 - 30’]' uj 65 V2 - 30']‘pj (D 26)

Substitution of (D.26) into (D.17) and writing the first order quantities in
terms of ¢(1) using (D.22)~(D.24) one obtains

Bngz) B 2Zn V/mJ a1

ot (V2-30g;)% Or
3230 (V2 4 05)/m3 1\ gV
(V"’ 30;)3 o€
(0)
ZJ-nJ- /mj 8¢(2)
VT30, O (D.27)
and partially differentiating the O(e?) equation (D.15) we obtain to O(€%/?)
336V 92 a¢>( o'V
= pol) —— —
T T Z e

Substitution of (D.27) into the latter equation yields the Korteweg—de Vries
equation for the first-order potential ¢(1):

22200V /m; 940
F (V?-30;) oOr

( )
+ {Z pmy top)fm) _ n h} ¢(1)‘9¢(1)

: (V2 - 30;)3 o€

33
+8—§3 =0, (D.28)

223



where the dispersion relation (D.25) has been used.
Defining

(0) A
_ ZQZJ?nj V/m;
 (V3-30;)?"

37300V 4 6.)/m?
B — E 272 ( J)/ 7 nok,
(V2 = 30;)°

3

with
1

- — b= —
a=-, and 1

the Korteweg—de Vries equation may be cast in the form

3p(1)
909 = 0.

el (1) 9™
or T4 o T e
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Appendix E

The Kadomtsev—Petviashvili
equation

This appendix allows for more generality than appendix D in that the wave
packet may have components with wavevectors at small angles to the z—
direction. We assume the Fourier components constituting the wave packet
have a dispersion relation satisfying
1,3 2 ’%3
W~ kpvge — 5Kk VseADy + %vse.
T

E.1 Basic equations

As in appendix D we assume an infinite, collisionless, unmagnetized, multi-
fluid plasma. The two-dimensional dynamics are governed by the following
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system:

on; 0 0

8_tj+8(]])+3_y(n]v])_0’ 1

8uj vau]' _8uj _ 8p]- _ 7. ?_(é
n;m; (WWL Ja_+v10—y =~ Zimi g0

(%-{-u% v-%>:—apj Z 0¢ L

nim; | —; igz T Vi, By jnjgg» (E.1)
e (%i; %—’;1) -0,
%nLgiﬁ:nh—zj:Zjnj,
and the hot electron density is given by the Boltzmann distribution
np = Nop eXp P. (E.2)

We have employed the same normalizations and boundary conditions as in
appendix D.

E.2 The reductive perturbation technique
The following coordinate stretchings are used (cf. Nejoh 1987b)
= 61/2(1' - Vt), n = ey, r =%, (E.3)

in conjunction with the expansions

3\

n; = ngo) + eng-l) - €2n§2) +--
u; = eugl) + 62u§_2) 4+,
’UJ' = 63/2’17.51) + 65/21)}2) + e

p] — pgo) + epgl) + €2p§2) + .. ,

¢ = (¢(1) + €2¢(2) + e, )

(E.4)

b
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Substituting the stretchings (E.3) into (E.1) yields the following system
of equations:

—any s om0t an b () + 5 g (ny13) = 0.

o€ or
ou; ou; Ju Ju
A _2y 9ty 329 a2 j
TZJ(G V3€+€ 8T+ 33£+613)
— 2 1 8p] _ 1/2Z " 8¢>
m; BE m; BE
0v; Ov 0v; (%-
a2y YY 3/29Y; 1/2 J
nJ(e V8§+€ aT-{—e af+ )
_ 1 Op; ZnJ 8d>

1/2V3PJ +63/26ﬂ+€1/2 _QP_J+€,U.5PJ'

o€ or BT n
ou; ov;
N Yk e T I
82
3£ t+e ¢ = noa(1+¢+ 587+ 36°) = Y Zjn;.
J

Upon substituting the expansions (E.4) into the above system we obtain
from Poisson’s equation

0(¢%) now — . Zind) = 0, (E.5)
j
O(eh) now — Y Zind) =0, (E.6)
j
2 4(1)
0(62) ¢

o = ot + (0 - Yz (B
J

The equation of continuity yields the following equations:

(1) (1)
anj (0) auj

3/2 0% " _
O(e'*) o€ +n; o€ 0, (E.8)
ontd  ont) ou'? ovtH)
02 _y 2 ] (0 "5 05
(%) o0& + or + o€ + on
0, 1) ()
+5e(m) My = 0. (E.9)
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The é—component of the momentum equation yields the equations:

oul) 1 Bp(vl) Z; ngo) ()

3/2 I )1y St S St
0(e%) vV 3 m; 0§ m; 0’ (E.10)
oul? oul!) u Bu
5/2 _ (0 PR ¢ J © 77 0, (1)
O(e’*) n; 'V o€ nV 7€ +n; B +n; u 35
1 0P Z;a gg Zinl gg0)

i o e T e (B

The n—component of momentum yields:

avtV) 1 Bp(. ) Z n(o) eV

0 2 _ (O)V J_ _ J .
() "V e o m on (E.12)
(9v(-2) 81}(1) Bv( ) ootV
3 _,0 ] (1) (0) (0), (1) "5
O(€e) n; Vv o Vv 8§ +n; 37’ +n; 3¢
1 9P Z;nl? gg  Z;nl gg) .
T m; O m; dn  m; o (E-13)
From the pressure equation we obtain
ol o ou®
0(e/?) Va—’£+3 ) 02 =0, (E.14)
3p(.2) 31)(1) ap( ) ) oult
O(/2 v i (1) 7F; 077 S5 R
() o T ar T Tae YO e T
vt
(0) —
+3p; —a’n— =0. (E.15)

Integrating the O(€/2) equations (E.8), (E.10) and (E.14), and solving
in terms of ¢(1) yields

(1) Z;V/m; ),
U = =0 E.16
i V230, (E.16)
Z; n(o)/m
1 _ J (1)
n:’ = ——¢> E.17
V2 3o; ( )
3Z~n(~ )a'
(1) _ J J
i = vz —J3<Tj a (E18)
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where we have defined o; = pgo)/ngo)mj as before.
Employing (E.17) in (E.6) we obtain the following relation if ¢(!) is to
be non-trivial

Zzn(-o)/m~
17 J
_ 0, E.19
oY (E.19)
which is to be satsfied by the velocity V.
At O(€?) we substitute (E.18) into (E.12) yielding
(1) - - 961
v\ Z;V/m; 0¢ (E.20)

06 V2?-30; On

We deal with the O(e%/2) equations as follows: we substitute (E.16)-
(E.18) into equations (E.11), (E.15) and (E.9); and after some manipulation
we obtain

8n§_2) _ 2Zjn§0)V/mja¢(1) 3Z1?n5.°)(V2+o-j)/m? (1)3¢(1)
o¢ (V2= 3a;) (V2 - 30;)° o
WOV 90l Znl fm; g2
V2 -30; dn V2-30; 0

+

(E.21)

Differentiating (E.7) with respect to £ and using the above equation and
(E.19) yields

(0)
e - {noh Z 3Zin;” (V2 + 0j)/m} } ¢(1)3¢(1)

o¢3 (V2 =30;)° o€

3
2Zn 0)V/mJ 3¢(1 Z; n(O)V Bv(
_Z(V2—3¢7 ZV"’—Bcr 817 (E:22)

Finally, differentiating the above equation with respect to ¢ and using
(E.20) yields the Kadomtsev-Petviashvili (KP) equation

2Z2 V/mj o)
8{ (V2-30;)? Or

+ [Z (V2= 30;)3 L — nog ¢(1 3_6 + 3_63—

i

3220(V2 + o) /m 06 934 }
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22OV fm; 92(1)

Defining

22V /m;
- Z (V2_30])2 ’

: 3Z3n(-0)(V2 + 0;)/m?
B = Z 2 D) - ; 2 - ok,
(V2 - 30;)

J

with B )
a=z, b:X and cz%V,

the KP equation may be cast in the form
(1) (1) 34(1) 25(1)
562{% a2 20 }+ 70

gt Y E (Y

230

= 0.

(E.23)

(E.24)

(E.25)

(E.26)

(E.27)



Appendix F

The Korteweg—de
Vries—Zakharov—Kuznetszov
equation

In this appendix we derive the Korteweg-de Vries-Zakharov-Kuznetszov
(KdV-ZK) equation for electron-acoustic waves. The derivation is essen-
tially similar to Das & Verheest (1989) but we have filled in the missing
steps.

We assume the Fourier components constituting the wave packet obey
the following dispersion relation in the small amplitude limit

w = kovee(1 - 3620L, - 1K 02)).

For the definitions of symbols see chapter 8.

F.1 Basic equations
An infinite homogeneous, collisionless, magnetized plasma is considered.
The magnetic field is in the direction of e,. The hot electron density is

given by the Boltzmann distribution and the dynamics of the fluid compo-
nents are determined by

—2 +V - (nju;) =0, (F.1)

Ou;
m;n; (a_tJ +u; - Vuj) ==Vp; - Z;n;Vo+ Z;m;n;jQu; X e,,(F.2)
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op;

5 +u;-Vp; +3p;V-u; =0. (F.3)

The system of equations is coupled by the Poisson equation

V2¢ = nopexpd — ZZjn_,,-, (F.4)

J

and the index j runs over the fluid components (5 = ¢, ¢). The following
normalizations have been used in the above equations: lengths by the ‘De-
bye length’ (T}/47ng.e?)'/2; time by the inverse electron plasma frequency
whe = (me/4mnoee?)/?; number densities by the total electron density ng;
pressures by ng.T}; temperatures by T}; velocities by the hot electron ther-
mal speed (T} /m.)!/?; electrostatic potential by T} /e; masses by the electron
mass me; and Z; = gj/e; Q; = Q' /wye is the gyrofrequency (Q; = eB/mjcy,
in unnormalized quantities; cr, is the speed of light) divided by the electron
plasma frequency. Furthermore, the usual soliton boundary conditions are

imposed in three dimensions
$—0, V-0, V-0,

R Y

} as x| — oo. (F.5)

F.2 The reductive perturbation technique
Introducing the coordinate stretchings
€=z, =V, (= 61/2(2 -Vt), r=é/%, (F.6)

into the above dynamical equations yields

on; on;
1/2 3/2 2
-/ Va—C’+e/ a—rj“l/ Ve - (nu;) =0, (F.7)
Ou; Ju;
—e 2 in VL 63/2mjnj% + &y u; - Veu; + /29,

a¢
= -51/2Zjnjv€¢ + Z;m;n;Q;(u; X e;),(F.8)

Op; . 720;
-61/2V6LZ + P2 Ly Vepy + 3,V = 0, (F)

Vio =non(1+9+ 367 +16%) - Y Zjnj, (F.10)
7
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where the operator V¢ = (0/0€, 0/0n, 0/0¢) and the flow velocity u; =
(uj,vj,w;). The stretchings (F.6) reflect the same spatial and temporal
dependence that was employed in appendix D, however, the number of spa-
tial dimensions has now been increased to three. Upon substitution of the
expansions

no= 2 bl 4@ (F.11)
w; = ew +uw® 4. (F.12)
pj = ()+ep§)+6p§)+ ) (F.13)
o = V)4 2o™ 4. (F.14)
u o= Syl )+ N (F.15)
v = e3/2v§-1)+6 v§2) T (F.16)

into the above equations and solving order by order we obtain from Poisson’s
equation

0() o — Y Z;nl” = 0, (F.17)
O() nond™ - Yzl = g, (F.18)

J
9260 920 g2g0)
O() aer T a(fyz + 6?2 = nor? + fnon(¢1V)?

- Z zin,  (F.19)

from the equation of continuity

0(e¥?) ag—? + ; <(n(")w(”) 0, (F.20)
0(€?) n§°)a;—§;) + % a;n =0, (F.21)

o -Va;‘f) . agin 0 aa(: a0 3;_?
+n§0)a;§2) - %(ng lwity = 0, (F.22)

233



from the £-component of momentum

ol Z;n® g

3/2 i B | Z; (O)Q () (F.23
0/ T e + vy 1y (F.23)
Ou (1) 0y, (2)

O(€) —n(O)V 8( = Zin; Qv (F.24)

from the n-component of momentum

1 51)(1) B Zjng-o) a1

J
m; On m; On

8v(1)
O(e) —al0y L 5

from the (—~component of momentum

0% -z, (F.25)

~Z;n 000, (F.26)

o 0wl 10zl gy

3/2 _ [ =" _ , F.27
O(e”) n; vV a¢ +mj o¢ m; 0 (F.27)
6w ow!) 0wt ow'V)
5/2 (0) v, 09”775 0, (175
0(e’?) V— 3( Vi, aC I 9r Ty 0¢
(0)
f LT ZmRadh 2 ool gy
m; aC m; 3( m; J 3C ’
and finally, from the pressure equation
ap(l) aw(l)
3/2 i (9 - F.29
O(e’'*) -V— o + 3p; 8( 0, ( )
ap(2) dp (1) ap(l) 3u(_2) 61)(-2)
5/2 _ J 9p; - O R (0) J J
O(e’*) V— aC + - or + w; R + 3p; B¢ + on
(2) 0 (1)
@%% " . %Y
+3p; 3C + 3p; ac = 0. (F.30)

The O(€/?) equations (F.20), (F.27) and (F.29) may be integrated im-
mediately using the boundary conditions (F.5). Substituting the equation
so obtained from (F.29) into that so obtained from (F.27) and solving for

( )

we obtain:

(1 _ ZiV/m; ZiVimi ya)

w; (F.31)
I T Vr-30; 30;
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where 0; = pg-o)/mjng-o). Substituting (F.31) into the remaining equations
obtained from (F.20) and (F.29) yields

ROy
(1 _ Ziny 1M

- —_— F.32
n] VZ_30; © (F.32)
and for the first-order pressure
32:0%0.
p) = g, (F.33)

V2 - 30;

From the other O(¢%/2) equations, namely (F.23) and (F.25), we can write
ugl) and v]m in terms of derivatives of ¢(1) by employing (F.33), yielding

o _ _ V2 V)
u-’ - ijj(V2 -—30']') 877 ’ (F.34)

and ) )
oV = 4 9¢ (F.35)

J -ijj(Vz-?)aj) oc

Employing the Poisson equation at O(€) and using (F.32) yields the following
equation determining V (on supposing non-trivial ¢(1)):

©),
Z}nj /m;j B

Mok = V2-30;
j 2

(F.36)

At next highest order we proceed as follows. Firstly note that (F.21) is
satisfied identically by (F.34) and (F.35). The other O(e?) equations (F.24)
and (F.26) yield on using (F.34) and (F.35)

3u§2) V3 o)
06~ Z;m MV ~30;) 0008 (F37)
and @
ov' V3 9341
’ ? (F.38)

o Z;m;Q(V? - 30;) 9o
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At O(¢%/%) we eliminate p§2) from (F.28) by using (F.30) yielding (on
using (F.31)—(F.33) and (F.37), (F.38))

00?2V +30;)/m; gg)

i ¢ - (V% - 30;)? or
N 22nOV(V? 4 905)/m? ) 9g)
(V2= 30,)3 a¢

3n\7V3g, 5 (az¢(1) az¢(1)>
+

Zym (VT = 30,20 \ 96 | o
Zjng-o)V/mj d(?)
V2 —30‘j 8( .

(F.39)

Substituting this into (F.22) where again we use (F.31)—~(F.33) and (F.37),
(F.38) yields

o 22 dV/ms g9 32 (V2 +o)/m] ) 060
5C T Wi 307 o (V2 =30, ¢

TL;O)V‘; i 82¢(1) . a2¢(1)
ijjQ_?(Vz - 30’_7‘)2 6( (9{2 8172

+

z;n\? Jmj 9g(2)
V2-30; 0C

(F.40)

Finally, differentiating (F.19) with respect to ¢ and substituting the above
into it; and using (F.36) to eliminate the term involving ¢(?) yields
0
)3 20OV /m; g41)
(V2 -30;)% 0Ot

j
5 32300V + ;) /m? 96() 3361
' { ] (JV2 — 3aj)Js > — non ¢(1)_¢ + 22

¢ a¢?

J

(O)yr4
n; 'V 9 %) 92\
+{1+;m19§(V2—30j)2}3C( ser T o | =0 (F4D)
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Defining

with

(1)

A - Z Z}ngo)V/mJ
Ve
VA V2
- i o (Vi+0))
B o= 30 00 gy
7 7
(0)y/4
B n; Vi [m;
C = 142 gy —go
7 J
T A’ A
the KdV-ZK equation may be cast in the form
(1)a¢(1) . b33¢(1) ci 3 9291
¢ 0¢® o¢ \ o9¢? on?

or
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(F.43)

(F.44)
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Appendix G

The Korteweg—de Vries
equation for relativistic,
streaming plasma

In this appendix we employ the reductive perturbation technique to derive a
KdV equation for a relativistic streaming plasma. The derivation represents
a generalization of that done previously in appendix D, and is moreover, a
generalization of the work of Nejoh (1987a) to a plasma consisting of k fluid
components.

G.1 Basic equations

An infinjte, collisionless, unmagnetized, weakly-relativistic (7; < mjc2),
multi-fluid plasma is assumed. The plasma dynamics are governed by the
following normalized equations (see appendix C; Nejoh 1987a):

6n_, 0
Ty 8z(nJuJ) =0, (G.1)
(0. O\ . __10p Zn;d¢
n; (5 +uJa )(%u")_—mja_z—m_ja_x’ (G.2)
Op; Op; 0
5 T g TPig () =0, (G.3)
32
o - T, (G4)

238



np = Ngh €Xp @,

(G.5)

where j denotes the jth fluid component, whose thermal velocity is assumed
to be much less than the wave phase velocity. The normalizations are as
follows: spatial lengths by the length (T%/4mng.e?)!/2, time by the inverse
electron plasma frequency (m,/4mngee?)!/2, number densities by the total
electron density ng., pressures by no. T}, electrostatic potential by T} /e, ve-
locities by the hot electron thermal speed (T4/m.)!/2, masses by the electron

proper mass me, and Z; = g;/e.
In addition, the following boundary conditions are imposed

0¢ 9%
¢)-—>0, -5;—>0 W—»O,} as |I|—)OO

n; — Noj, Pj — Poj, Uj —* Upj,

G.2 The reductive perturbation technique

As in the nonrelativistic case, the following coordinate stretchings
€=z - Vi), r=el%,
and expansions

n; = ngo) + eng-l) + 62n§-2) +

’

‘U.J' = u(o) + eu(.l) + (_2u(.2) + cee

’

p] - (0) + epgl) + €2 (2) + Ty

$ = e¢‘“ + et 4

/

(G.6)

(G.7)

(G.8)

are employed. In terms of the new coordinates the equations (G.1)~(G.4)

become
on; on;
—61/2V8_£J+€3/2E_J—+ 1/2 (nJuJ)—O
. 1 0 10
s (0 gt + 0 ) = e L
1/2Z nJ 3([)
m; aE’

dp; Op; 9
_ €1/2(‘, _ uj)aig + E3/2_61”71 + 51/231)1'8_5(7]‘111') =0,
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(G.10)
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2

egqu :noh(1+¢+%¢2+ %¢3)‘ZZJ'"J" (G.12)
J

The “world velocity”, ¥ju;, is expanded as follows

1
Yiu; = (0) + eu(l) + e u(z) + — {(ugo)) + 3e(u ) (1)

2c2
4 3e ((ugo))z ()+( g))Z 5))}’

{ 22( 0))} 0)+€F u()+e2fu(2)

+e (u(l)) (G.13)

22.1

3 (v’
=141 .

Upon substituting the expansions (G.8) and (G.13) into the above sys-
tem, and solving order by order we obtain the following: from Poisson’s
equation

where we have defined

0(&)  now—Y zn® =0, (G.14)
J
O()  nowsV =Szl =0, (G.15)
J
2o 1
O(é%) 6‘?2 = nor® + Znon() - 3 zn®,  (G.16)
J

from the equation of continuity

ont) oult)
3/2 , (0) _
0(e"%) —,\,6—’5+n]. 3—2_0, (G.17)
on'?  on) E)u(z)
5/2 9 ] (0) 9%
R A T R

from the momentum equation,

(n(l) Wy =0, (G.18)

3u(1) 1 ap Z-n(-o) A1)
oy —al\T; = 1 G.19
) ’ 36 “m; 9 m; 0Of ( )
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Ou (2) 3 0, 9, (1 (1) Y;
0(65/2) —nj ; 66 2?7"5‘0)“5 )/\ja—f(uj ))2 —-n; A; F_, BE
e (v (2)
0,0 24 Jop 24 _ 19
0€ 37 97 m; 0
(1) zm 99
_Ziny 08 Ziny 99 (G.20)
m; 85 m; (9f
and
op\! oul")
3/2 _ ] O 77 _ G.21
0(6 ) A.7 85 + 3p] 2 86 0’ ( )
(2) (1) (1) (2)
0(65/2) _AapJ +a J (1)817] du
7 o€ or I 9¢ ] 85
(1)
9 0,09 Wy, g mp % _
+2c2pj u; 85( ) +3p, Tj—— 8§ =0, (G.22)

from the pressure equation. The parameter A; is defined by A; =V — ugo).

Note that as in the non-relativistic case, the O(e3/?) equations (G.17),
(G.19) and (G.21) may be integrated at once using the boundary conditions
(G.6), yielding a similar set of equations without the partial derivations in £.
Following a similar proceedure to that employed in appendix D, i.e. substi-
tuting the so-derived equation resulting from (G.21) into the corresponding
equation resulting from (G.19) we obtain

) _  ZjAj/m;

ut) = 22297 9 4(1) G.23
J 1“,-(/\§ - 30’j) ( )

for the first-order velocity of the jth fluid component. The parameter o; =

pg-o)/ mjng-o) = T;/m;. Employing this equation in the integral of (G.17)
yields

0
(1) _ Z;n® m;

I L7 B BTV
rj(xg—aaj)d’ ’ (G.24)

and by (G.21) one has

(G.25)
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Substituting the expression for n( ) into the O(¢) equation (G.15) arising
from the Poisson equation furmshes

) m
{ Z T ,\2 —/301) } =0, (G.26)

where for non-trivial ¢{1) we demand that the term in braces vanish, yielding
a linear dispersion relation to be satisfied by the long-wavelength phase
velocity V.

The higher-order equations are dealt with in a manner similar to that
in appendix D. However, we now have to contend with the extra algebraic
baggage introduced by the zeroth order drifts.

The term involving p§-2) in the momentum equation (G.20) is eliminated

by substitution from the O(¢%/2) pressure equation (G.22). This yields the
following equation

(2) {0}, (0) (1)
nvo)au]' _ _3nJ 'U.J- u(_l) a'U,J 3 A? (1)au
7 9€ ;7 O¢ /\3 - 30; " o€
0 1
ng )/\j (1)8u§- ) ngo)/\j Bug-l)

/\;‘?—3ajuj 0l3 +A?—30’j or

Um im0
Fj(/\f —30;) 7 0¢ l‘j(/\§ —30;) OT
/\? - 30']' J 65 Fj(/\f - 30’1‘) J 36
Zin®\;[m; g
Tj(A} - 30;) 0¢

(G.27)

Substitution of this equation into equation (G.18) and writing the first order
quantities in terms of ¢(!) using (G.23)~(G.25) we obtain
2
on?) _ 2Z;n VN /m; 9o
o€ T;(A2 - 30;)? or

0
'3 { 2P (N2 + (3T, — 2)o,)/m]
I?(/\? —30,)3
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! 22 m? } (1) 08V
c? F?(Az—BO'j)z 0¢
Z;n\ fm; g

00 30,) €

. (G.28)

Partially differentiating the O(e?) equation (G.16) obtained from the
Poisson equation, one obtains to O(¢%/2):

Pol) 9o 1) 08 anl?)

J

Substitution of (G.28) into the latter equation yields the Korteweg—de Vries
equation for the first-order potential ¢(!)

Z 2Z2n I\ i/m; 9V
- I‘,(/\J - 30;)? Ot

32300 ()2 4+ (3T} - 2)0;)/m

2
+ 1 J J J
{Z T?(\2 - 30,)3

j
(0) 373,00y /2
u; 3Z3n;7 A /m’ _nOh}¢(1)8¢(l)

o2 I3(A2 - 30;)? 0¢
3o
+a—€3 =0, (G.29)
where the dispersion relation (G.26) was used. Defining
VA a9\
A =2y L J 7 G.30
; m; 1—"()\2 - 30'_,')2 ( )
0
o 32 323 (a7 (A4 @31 -2)0y)  u? Py
I%(A? - 30;)3 ¢z T3(A? - 30;)?
—Tioh, (G.31)
with B
1
a= -, and b= T (G.32)
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the Korteweg—de Vries equation may be cast in the form

9oV (1)a¢(1) ‘b

3oV
or T e e

= 0. (G.33)
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Appendix H

Simple wave solutions of the

KdV and mKdV equations

H.1 Solution of the KdV equation
We consider the following problem

o6 8¢9 0%
7 T 95 tham =0, (H.1)

subject to the boundary conditions

d¢ 9%*¢

¢,52,5€—2——>0 as |€]| — oc. (H.2)

By simple waves we mean solutions of the form
¢=¢(s) =o(§-Ur), (H.3)

where U is some velocity. Assuming solutions of the form (H.3) we can write
the KdV equation in the form

do | d , d%
~UT e dt Hbog =0, (H.4)

Integrating twice using (H.2) yields
dd\* U, a 4
(E) =39 3¢ (H.5)
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which is readily rearranged and integrated (formally) with respect to s yield-

ing

- <%)1/2/ o1 - (ad/ﬁmasll“ =etA

where A is an arbitrary constant. With the substitution

a

V= 3U

¢

equation (H.6) becomes

4b\ 1/? dep
i (ﬁ) /—¢[1 _ w2]1/2 = S+A

The left hand side is now in the standard form

- / d—:c = arcsech z
sv/l-22
yielding
U\ 2
+ arcsechy = (41)) (s+ A).

Inverting and using (H.7) yields the required result

¢= %sech { (%) v (s+ A)}

or in terms of the original coordinates

1/2
o= %sech2{(4£b) (I—UT+A)}.

Of course validity of the solution requires b > 0.

H.2 Solutions of the mKdV equation
We seek solutions of the mKdV equation

3¢> 2 3, 0%
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(1L.7)

(H.8)

(H.9)

(H.10)

(H.11)

(H.12)



that satisfy

d¢ d?¢ _
b, PR 0 as s— oo. (H.13)
Seeking solutions of the form
¢ =¢(s) = (- Ur), (H.14)
where U is some velocity, we write the mKdV equation in the form
d¢ , d 5 d 5 ,d%
—Ua;+§ad—s¢ +Cd5¢ +bd33 ={. (Hl5)

Then equation (H.15) is readily integrated (twice) yielding on using the
boundary conditions,

Ao\  _ Uy a5 ¢ 4
(E) =39 " n? Tt (H.16)

H.2.1 Solitary-wave solutions

Taking the square root of both sides of (H.16) and manipulating this equa-
tion is easily cast in the form '

b 172 i ]
8 (ﬁ) / o1 — (a/3U)p — (c/2U)p2H/2 — s+ 4, (H.17)

where we have integrated with respect to s (A is an arbitrary constant).
The substitution

1
6=— H.18
5 (H.18)
transforms the integral on the right hand side of the above into the form
b\ df
| = H.1
(U) /[6)2—(a/3U)6—c/2U]1/2 (H.19)

and after completing the square in the denominator we obtain

b 1/2 10
i (ﬁ) -/ [(0 — a/6U)? — (a?/36U2 + c/2U)]H/2" (H.20)

This is readily cast in the standard form

/\/% = arccosh (%),
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by the transformation

v=0- ik (H.21)

yielding
AR v A H.22
* (ﬁ) arccosh {:i:[a2/36U2 n c/2U]1/2} =s+ A (H.22)

However, this is subject to the condition that

Cl.2 C

< 5o H.23
ez o 7 (H.23)

Upon using (H.18) and (H.21) and inverting we obtain the solution (in
terms of the original coordinates)

a?  cU\Y? U\Y? a

subject to (H.23).

-1

o=U , (H.24)

H.2.2 Double layer solutions

If it happens that

(12 [

— 1= =9
3602 20

which may be satisfied if U = —a?/18c¢, then the solution (H.24) is invali-

dated and we are forced to pursue a different approach. In this case equation

(H.16) can be written in the form

do\? ¢ a2
(d—s) = (e+ ) - (H.25)

Upon taking the square-root and completing the square on the right hand
side we obtain on integration with respect to s

2\ /2 do
) (_7) / (af607 — (6 + afocy - T T A (H.26)
The substitution .
V=90t (H.27)
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renders the integral on the left hand side of (H.26) in the standard form

/ %_Izda: = arctanh (2)

which may be inverted yielding

a a? \'/?
’d) = i&tanh{(—ﬁ) (S-I-A)} . (HQS)

In terms of the original coordinates the solutions become

a a2 1/2
o= oy [litanh{(—ﬁ) (& - UT-{—A)}

where we discard the solution with the upper sign because it does not satisfy
the boundary conditions.

, (H.20)
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List of commonly used symbols

Latin alphabet

a,b,c
A,B,C,D
B

¢, cL,

€

e;, ey, €,

E
f]'(X,V,t),fj
F,

gul/

Uj, V5, Wj

coefficients of KdV, KP, KdV-ZK and mKdV equations
coefficients of KdV, KP, KdV-ZK and mKdV equations
magnetic field

speed of light

electronic charge

cartesian unit vectors

electric field

distribution function for particle species j
Maxwell tensor

metric tensor

unit tensor

modified Bessel function

imaginary part

four-current density

Bessel function

wavevector and its magnitude

cartesian components of k

parallel and perpendicular components of k
normalised wavevector magnitude

mass of particle species j

soliton speed (Mach number)

number density of particle species j

background number density (part II) of species j
normalised charge density

of order z

partial pressure of particle species j

pressure tensor for particle species j

charge of particle species j

radial coordinate

real part

moving coordinate

temperature (in energy units) of particle species j
energy-momentum tensor

fluid velocity of particle fluid j, and its magnitude
cartesian components of u;
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X(t)
Z(¢)
Z'(¢)
Z;

world velocity (four-velocity)

particle velocity

(part I) thermal speed of particle species j
mean drift speed of particle species j
ion beam mean drift speed

group velocity

electron sound speed

ion sound speed

sound speed

E x B drift

position vector

particle orbit

plasma dispersion function

derivative of Z(()

normalized charge of particle species j

Greek alphabet

5
751

€
e(k,w)
0

Aj» ADj
ADib

Aj

L

0

pj

p

p.96

a;

T’ E? n? C
¢

%o

P
V(¢), ¥

imaginary part of w

relativistic factors for particle species 7

(part II) expansion parameter

dielectric function

angle of wavevector w.r.t B

Debye lengths of particle species j

ion beam Debye length

(chapter 9) phase relative to drift speed of particle species j
proper mass (energy) density

mass density

Larmor radius of particle species j

(proper) charge density

effective Larmor radius

square of the normalised thermal speed of particle species j
stretched variables

electrostatic potential

maximum (in modulus) soliton amplitude

double layer “potential” (§10.3)

Sagdeev (pseudo) potential
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complex wave frequency

plasma frequency of particle species j

real part of w

dispersion relation for electron-acoustic waves
gyrofrequency of particle species j

electron gyrofrequency; (part II) normalised wave frequency

260



	Mace_Richard_Lester_1991.front.p001
	Mace_Richard_Lester_1991.front.p002
	Mace_Richard_Lester_1991.front.p003
	Mace_Richard_Lester_1991.front.p004
	Mace_Richard_Lester_1991.front.p005
	Mace_Richard_Lester_1991.front.p006
	Mace_Richard_Lester_1991.front.p007
	Mace_Richard_Lester_1991.front.p008
	Mace_Richard_Lester_1991.front.p009
	Mace_Richard_Lester_1991.p001
	Mace_Richard_Lester_1991.p002
	Mace_Richard_Lester_1991.p003
	Mace_Richard_Lester_1991.p004
	Mace_Richard_Lester_1991.p005
	Mace_Richard_Lester_1991.p006
	Mace_Richard_Lester_1991.p007
	Mace_Richard_Lester_1991.p008
	Mace_Richard_Lester_1991.p009
	Mace_Richard_Lester_1991.p010
	Mace_Richard_Lester_1991.p011
	Mace_Richard_Lester_1991.p012
	Mace_Richard_Lester_1991.p013
	Mace_Richard_Lester_1991.p014
	Mace_Richard_Lester_1991.p015
	Mace_Richard_Lester_1991.p016
	Mace_Richard_Lester_1991.p017
	Mace_Richard_Lester_1991.p018
	Mace_Richard_Lester_1991.p019
	Mace_Richard_Lester_1991.p020
	Mace_Richard_Lester_1991.p021
	Mace_Richard_Lester_1991.p022
	Mace_Richard_Lester_1991.p023
	Mace_Richard_Lester_1991.p024
	Mace_Richard_Lester_1991.p025
	Mace_Richard_Lester_1991.p026
	Mace_Richard_Lester_1991.p027
	Mace_Richard_Lester_1991.p028
	Mace_Richard_Lester_1991.p029
	Mace_Richard_Lester_1991.p030
	Mace_Richard_Lester_1991.p031
	Mace_Richard_Lester_1991.p032
	Mace_Richard_Lester_1991.p033
	Mace_Richard_Lester_1991.p034
	Mace_Richard_Lester_1991.p035
	Mace_Richard_Lester_1991.p036
	Mace_Richard_Lester_1991.p037
	Mace_Richard_Lester_1991.p038
	Mace_Richard_Lester_1991.p039
	Mace_Richard_Lester_1991.p040
	Mace_Richard_Lester_1991.p041
	Mace_Richard_Lester_1991.p042
	Mace_Richard_Lester_1991.p043
	Mace_Richard_Lester_1991.p044
	Mace_Richard_Lester_1991.p045
	Mace_Richard_Lester_1991.p046
	Mace_Richard_Lester_1991.p047
	Mace_Richard_Lester_1991.p048
	Mace_Richard_Lester_1991.p049
	Mace_Richard_Lester_1991.p050
	Mace_Richard_Lester_1991.p051
	Mace_Richard_Lester_1991.p052
	Mace_Richard_Lester_1991.p053
	Mace_Richard_Lester_1991.p054
	Mace_Richard_Lester_1991.p055
	Mace_Richard_Lester_1991.p056
	Mace_Richard_Lester_1991.p057
	Mace_Richard_Lester_1991.p058
	Mace_Richard_Lester_1991.p059
	Mace_Richard_Lester_1991.p060
	Mace_Richard_Lester_1991.p061
	Mace_Richard_Lester_1991.p062
	Mace_Richard_Lester_1991.p063
	Mace_Richard_Lester_1991.p064
	Mace_Richard_Lester_1991.p065
	Mace_Richard_Lester_1991.p066
	Mace_Richard_Lester_1991.p067
	Mace_Richard_Lester_1991.p068
	Mace_Richard_Lester_1991.p069
	Mace_Richard_Lester_1991.p070
	Mace_Richard_Lester_1991.p071
	Mace_Richard_Lester_1991.p072
	Mace_Richard_Lester_1991.p073
	Mace_Richard_Lester_1991.p074
	Mace_Richard_Lester_1991.p075
	Mace_Richard_Lester_1991.p076
	Mace_Richard_Lester_1991.p077
	Mace_Richard_Lester_1991.p078
	Mace_Richard_Lester_1991.p079
	Mace_Richard_Lester_1991.p080
	Mace_Richard_Lester_1991.p081
	Mace_Richard_Lester_1991.p082
	Mace_Richard_Lester_1991.p083
	Mace_Richard_Lester_1991.p084
	Mace_Richard_Lester_1991.p085
	Mace_Richard_Lester_1991.p086
	Mace_Richard_Lester_1991.p087
	Mace_Richard_Lester_1991.p088
	Mace_Richard_Lester_1991.p089
	Mace_Richard_Lester_1991.p090
	Mace_Richard_Lester_1991.p091
	Mace_Richard_Lester_1991.p092
	Mace_Richard_Lester_1991.p093
	Mace_Richard_Lester_1991.p094
	Mace_Richard_Lester_1991.p095
	Mace_Richard_Lester_1991.p096
	Mace_Richard_Lester_1991.p097
	Mace_Richard_Lester_1991.p098
	Mace_Richard_Lester_1991.p099
	Mace_Richard_Lester_1991.p100
	Mace_Richard_Lester_1991.p101
	Mace_Richard_Lester_1991.p102
	Mace_Richard_Lester_1991.p103
	Mace_Richard_Lester_1991.p104
	Mace_Richard_Lester_1991.p105
	Mace_Richard_Lester_1991.p106
	Mace_Richard_Lester_1991.p107
	Mace_Richard_Lester_1991.p108
	Mace_Richard_Lester_1991.p109
	Mace_Richard_Lester_1991.p110
	Mace_Richard_Lester_1991.p111
	Mace_Richard_Lester_1991.p112
	Mace_Richard_Lester_1991.p113
	Mace_Richard_Lester_1991.p114
	Mace_Richard_Lester_1991.p115
	Mace_Richard_Lester_1991.p116
	Mace_Richard_Lester_1991.p117
	Mace_Richard_Lester_1991.p118
	Mace_Richard_Lester_1991.p119
	Mace_Richard_Lester_1991.p120
	Mace_Richard_Lester_1991.p121
	Mace_Richard_Lester_1991.p122
	Mace_Richard_Lester_1991.p123
	Mace_Richard_Lester_1991.p124
	Mace_Richard_Lester_1991.p125
	Mace_Richard_Lester_1991.p126
	Mace_Richard_Lester_1991.p127
	Mace_Richard_Lester_1991.p128
	Mace_Richard_Lester_1991.p129
	Mace_Richard_Lester_1991.p130
	Mace_Richard_Lester_1991.p131
	Mace_Richard_Lester_1991.p132
	Mace_Richard_Lester_1991.p133
	Mace_Richard_Lester_1991.p134
	Mace_Richard_Lester_1991.p135
	Mace_Richard_Lester_1991.p136
	Mace_Richard_Lester_1991.p137
	Mace_Richard_Lester_1991.p138
	Mace_Richard_Lester_1991.p139
	Mace_Richard_Lester_1991.p140
	Mace_Richard_Lester_1991.p141
	Mace_Richard_Lester_1991.p142
	Mace_Richard_Lester_1991.p143
	Mace_Richard_Lester_1991.p144
	Mace_Richard_Lester_1991.p145
	Mace_Richard_Lester_1991.p146
	Mace_Richard_Lester_1991.p147
	Mace_Richard_Lester_1991.p148
	Mace_Richard_Lester_1991.p149
	Mace_Richard_Lester_1991.p150
	Mace_Richard_Lester_1991.p151
	Mace_Richard_Lester_1991.p152
	Mace_Richard_Lester_1991.p153
	Mace_Richard_Lester_1991.p154
	Mace_Richard_Lester_1991.p155
	Mace_Richard_Lester_1991.p156
	Mace_Richard_Lester_1991.p157
	Mace_Richard_Lester_1991.p158
	Mace_Richard_Lester_1991.p159
	Mace_Richard_Lester_1991.p160
	Mace_Richard_Lester_1991.p161
	Mace_Richard_Lester_1991.p162
	Mace_Richard_Lester_1991.p163
	Mace_Richard_Lester_1991.p164
	Mace_Richard_Lester_1991.p165
	Mace_Richard_Lester_1991.p166
	Mace_Richard_Lester_1991.p167
	Mace_Richard_Lester_1991.p168
	Mace_Richard_Lester_1991.p169
	Mace_Richard_Lester_1991.p170
	Mace_Richard_Lester_1991.p171
	Mace_Richard_Lester_1991.p172
	Mace_Richard_Lester_1991.p173
	Mace_Richard_Lester_1991.p174
	Mace_Richard_Lester_1991.p175
	Mace_Richard_Lester_1991.p176
	Mace_Richard_Lester_1991.p177
	Mace_Richard_Lester_1991.p178
	Mace_Richard_Lester_1991.p179
	Mace_Richard_Lester_1991.p180
	Mace_Richard_Lester_1991.p181
	Mace_Richard_Lester_1991.p182
	Mace_Richard_Lester_1991.p183
	Mace_Richard_Lester_1991.p184
	Mace_Richard_Lester_1991.p185
	Mace_Richard_Lester_1991.p186
	Mace_Richard_Lester_1991.p187
	Mace_Richard_Lester_1991.p188
	Mace_Richard_Lester_1991.p189
	Mace_Richard_Lester_1991.p190
	Mace_Richard_Lester_1991.p191
	Mace_Richard_Lester_1991.p192
	Mace_Richard_Lester_1991.p193
	Mace_Richard_Lester_1991.p194
	Mace_Richard_Lester_1991.p195
	Mace_Richard_Lester_1991.p196
	Mace_Richard_Lester_1991.p197
	Mace_Richard_Lester_1991.p198
	Mace_Richard_Lester_1991.p199
	Mace_Richard_Lester_1991.p200
	Mace_Richard_Lester_1991.p201
	Mace_Richard_Lester_1991.p202
	Mace_Richard_Lester_1991.p203
	Mace_Richard_Lester_1991.p204
	Mace_Richard_Lester_1991.p205
	Mace_Richard_Lester_1991.p206
	Mace_Richard_Lester_1991.p207
	Mace_Richard_Lester_1991.p208
	Mace_Richard_Lester_1991.p209
	Mace_Richard_Lester_1991.p210
	Mace_Richard_Lester_1991.p211
	Mace_Richard_Lester_1991.p212
	Mace_Richard_Lester_1991.p213
	Mace_Richard_Lester_1991.p214
	Mace_Richard_Lester_1991.p215
	Mace_Richard_Lester_1991.p216
	Mace_Richard_Lester_1991.p217
	Mace_Richard_Lester_1991.p218
	Mace_Richard_Lester_1991.p219
	Mace_Richard_Lester_1991.p220
	Mace_Richard_Lester_1991.p221
	Mace_Richard_Lester_1991.p222
	Mace_Richard_Lester_1991.p223
	Mace_Richard_Lester_1991.p224
	Mace_Richard_Lester_1991.p225
	Mace_Richard_Lester_1991.p226
	Mace_Richard_Lester_1991.p227
	Mace_Richard_Lester_1991.p228
	Mace_Richard_Lester_1991.p229
	Mace_Richard_Lester_1991.p230
	Mace_Richard_Lester_1991.p231
	Mace_Richard_Lester_1991.p232
	Mace_Richard_Lester_1991.p233
	Mace_Richard_Lester_1991.p234
	Mace_Richard_Lester_1991.p235
	Mace_Richard_Lester_1991.p236
	Mace_Richard_Lester_1991.p237
	Mace_Richard_Lester_1991.p238
	Mace_Richard_Lester_1991.p239
	Mace_Richard_Lester_1991.p240
	Mace_Richard_Lester_1991.p241
	Mace_Richard_Lester_1991.p242
	Mace_Richard_Lester_1991.p243
	Mace_Richard_Lester_1991.p244
	Mace_Richard_Lester_1991.p245
	Mace_Richard_Lester_1991.p246
	Mace_Richard_Lester_1991.p247
	Mace_Richard_Lester_1991.p248
	Mace_Richard_Lester_1991.p249
	Mace_Richard_Lester_1991.p250
	Mace_Richard_Lester_1991.p251
	Mace_Richard_Lester_1991.p252
	Mace_Richard_Lester_1991.p253
	Mace_Richard_Lester_1991.p254
	Mace_Richard_Lester_1991.p255
	Mace_Richard_Lester_1991.p256
	Mace_Richard_Lester_1991.p257
	Mace_Richard_Lester_1991.p258
	Mace_Richard_Lester_1991.p259
	Mace_Richard_Lester_1991.p260

