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Abstract 

Emerging drug resistance hinders the efforts to control malaria and so novel antimalarial drugs 

are required. Copper is essential for the survival of plasmodial parasites but the proteins 

involved in copper homeostasis are not well characterised. This study looked at plasmodial 

copper homeostasis by identifying and partially characterising two P. falciparum copper 

metallochaperones, Cox11 and Cox19. The Basic Local Alignment Search Tool (BLASTp) 

screen of the Plasmodium database (www.plasmodb.org) identified Cox11 and Cox19 gene 

orthologues in nine Plasmodium spp. The plasmodial Cox11 amino acid sequence contained a 

single N-terminus membrane-spanning region and three conserved cysteine residues, two of 

which are in a CFCF motif. These features are found in mammalian and yeast Cox11 amino 

acid sequences. The plasmodial Cox19 amino acid sequence has a domain containing a twin 

Cx9C motif, and a conserved Tyr-Leu dipeptide between the pair of cysteine of one Cx9C motif, 

similar to the amino acid sequences of human and yeast Cox19. The cloned and expressed 

recombinant MBP-PfCox11Ct and MBP-PfCox19 fusion proteins resolved on SDS-PAGE gels 

as ~62 kDa and ~66 kDa proteins respectively. Polyclonal IgY antibodies raised in chickens 

against rMBP-PfCox11Ct and rMBP-PfCox19 detected the native murine parasite, P. berghei, 

proteins on a western blot. Both recombinant proteins bound copper in the form of the cuprous 

ion in vitro and in vivo using the: bicinchoninic acid release, ascorbic acid oxidation, atomic 

absorption spectroscopy, and differential scanning fluorimetry assays. Three P. falciparum 

Cox11 mutants (two single- and a double-mutant) were engineered with site-directed 

mutagenesis, where an alanine replaced the corresponding cysteine residue and the mutant 

proteins were expressed as MBP fusion proteins. The two P. falciparum Cox11 cysteines, 

Cys155 and Cys157, in a CFCF motif were shown to be essential for the binding of copper in 

several assays. P. falciparum Cox11 and Cox19 bind copper in vitro and in an in vivo 

environment. Both rMBP-PfCox11Ct and rMBP-PfCox19 bound copper in an in vivo 

environment, enabling the growth of E. coli host cells expressing the proteins in the presence 

of toxic concentrations of copper. The localisation of the plasmodial Cox11 and Cox19 proteins 

suggested by proteomic data to be mitochondrial requires experimental confirmation. This 

study provides the foundation for further experiments to study P. falciparum Cox11 and Cox19 

biochemistry and the evaluation of the two proteins as possible drug targets. 

  

http://www.plasmodb.org/


v 
 

Graphical Abstract 

 

 

  



vi 
 

Contents 

Preface ........................................................................................................................................ i 

Declaration – Plagiarism ......................................................................................................... ii 

Acknowledgements ................................................................................................................ iii 

Abstract .................................................................................................................................... iv 

Graphical Abstract .................................................................................................................. v 

Contents ................................................................................................................................... vi 

List of Figures ......................................................................................................................... xii 

List of Tables ......................................................................................................................... xiv 

Abbreviations and symbols ................................................................................................... xv 

 

Chapter 1 .................................................................................................................................. 1 

Introduction and literature review .............................................................................................. 1 

1.1 An overview of malaria .................................................................................................. 1 

1.1.1 The malaria burden .................................................................................................. 1 

1.1.2 A brief history of malaria ........................................................................................ 1 

1.1.3 A brief description of the Plasmodium life cycle .................................................... 2 

1.1.4 Geographical distribution of malaria ....................................................................... 3 

1.1.5 Malaria control ........................................................................................................ 5 

1.1.6 Malaria diagnosis ..................................................................................................... 5 

1.1.7 Rapid diagnostic tests .............................................................................................. 6 

1.1.8 Treatment of malaria ............................................................................................... 7 

1.1.9 Antimalarial drug resistance .................................................................................. 11 

1.1.9.1  Modifications to the antimalarial drug-resistance markers ................................. 11 

1.1.10  Potential antimalarial drug targets ........................................................................ 13 

1.1.11  Novel antimalarial drug candidates .......................................................................... 13 

1.2 Biological role of copper .............................................................................................. 16 

1.2.1 Copper uptake ........................................................................................................ 17 

1.2.2 Intracellular copper delivery .................................................................................. 19 

1.2.3 Copper delivery to the mitochondria ..................................................................... 20 

1.2.4 Role of copper in the malaria parasite ................................................................... 21 

1.3 Role of oxidative respiration in Plasmodium................................................................ 23 

1.4 Cytochrome c oxidase (CcO) ........................................................................................ 23 

1.5 Cox11 ............................................................................................................................ 26 

1.6 Cox19 ............................................................................................................................ 27 



vii 
 

1.7 The aims and objectives of the current study ................................................................ 28 

 

Chapter 2 ................................................................................................................................ 30 

Materials and Methods ............................................................................................................. 30 

2.1 Introduction ................................................................................................................... 30 

2.2 Equipment ..................................................................................................................... 30 

2.3 Bioinformatics............................................................................................................... 30 

2.3.1 Sequence identification and characterisation ........................................................ 31 

2.3.2 Homology modelling ............................................................................................. 32 

2.3.3 Predict7™ ............................................................................................................... 32 

2.4 Propagation and cryopreservation of P. berghei parasites in BALB/c mice ................ 32 

2.5 Generation of expression constructs ............................................................................. 32 

2.5.1 Reagents................................................................................................................. 33 

2.5.2 Agarose gel electrophoresis ................................................................................... 33 

2.5.3 Isolation of Plasmodium falciparum genomic DNA (gDNA)............................... 34 

2.5.4 Primers for rPfCox11Ct and rPfCox19 ................................................................. 34 

2.5.5 Primers for rPfCox11Ct mutant clones ................................................................. 34 

2.5.6 Polymerase chain reaction (PCR) .......................................................................... 35 

2.5.7 Ligation of DNA fragments by T4 DNA ligase .................................................... 37 

2.5.7.1 Ligation of purified DNA fragments into the cloning vector ............................ 37 

2.5.7.2 Ligation of DNA fragments into the pMal-c2x expression vector .................... 40 

2.5.8 Transformation of competent E. coli host cells with plasmid DNA ..................... 40 

2.5.9 Plasmid DNA isolation .......................................................................................... 41 

2.5.10  Restriction digestion of plasmids ............................................................................. 42 

2.5.11  Site-directed mutagenesis by overlap extension polymerase chain reaction ........ 42 

2.5.12   Sequencing........................................................................................................... 43 

2.6 Recombinant protein expression and purification ........................................................ 43 

2.6.1 Reagents................................................................................................................. 44 

2.6.2 Expression of recombinant proteins ...................................................................... 44 

2.6.3 Affinity purification of recombinant proteins ....................................................... 44 

2.6.4 Bradford protein assay ........................................................................................... 45 

2.6.5 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) ....... 45 

2.7 Immunochemical techniques ........................................................................................ 46 

2.7.1 Reagents................................................................................................................. 46 

2.7.2 Antibody production .............................................................................................. 47 



viii 
 

2.7.2.1  Peptide synthesis.................................................................................................. 47 

2.7.2.2 Coupling peptide to rabbit albumin ................................................................... 47 

2.7.2.3  Preparation of immunogen for chicken immunisation ........................................ 48 

2.7.2.4  Isolation of IgY from chicken egg yolk ............................................................... 49 

2.7.2.5  Coupling of recombinant proteins to AminoLink™ resin .................................... 49 

2.7.2.6  Coupling of the PfCox11 peptide to a SulfoLink™ resin ..................................... 50 

2.7.2.7  Affinity purification of IgY ................................................................................. 50 

2.7.3 ELISA .................................................................................................................... 50 

2.7.4 Western blotting .................................................................................................... 51 

2.7.5 Enhanced chemiluminescence ............................................................................... 51 

2.8 Copper binding studies ................................................................................................. 52 

2.8.1 Bicinchoninic acid (BCA) release assay ............................................................... 52 

2.8.2 Ascorbate oxidation assay ..................................................................................... 53 

2.8.3 Atomic absorption spectroscopy ........................................................................... 53 

2.8.4 Differential scanning fluorimetry .......................................................................... 54 

2.8.5 Effect of copper on the growth of E. coli host cells expressing the recombinant 

proteins 54 

2.9 Ethical clearance for the use of experimental animals .................................................. 54 

 

Chapter 3 ................................................................................................................................ 55 

In silico analysis of Plasmodium falciparum Cox11 and Cox19 copper metallochaperones .. 55 

3.1 Introduction ................................................................................................................... 55 

3.1.1 Mitochondrial cytochrome c oxidase of the malaria parasite ................................ 55 

3.2 Results ........................................................................................................................... 57 

3.2.1 Bioinformatic characterisation of the putative P. falciparum Cox11 protein ....... 57 

3.2.2 Bioinformatic characterisation of the putative P. falciparum Cox19 protein ....... 61 

3.2.3 Selection of immunogenic Cox11 peptide for antibody production in chickens .. 65 

3.3 Discussion ..................................................................................................................... 66 

3.3.1 Bioinformatic characterisation of the putative P. falciparum Cox11 protein ....... 66 

3.3.2 Predicting the topology of P. falciparum Cox11 ................................................... 67 

3.3.3 Predicting acetylation sites in the P. falciparum Cox11 sequence ........................ 67 

3.3.4 Bioinformatic characterisation of the putative P. falciparum Cox19 protein ....... 68 

3.3.5 Predicting acetylation sites in P. falciparum Cox19 sequence .............................. 69 

3.3.6 Selecting a Cox11 peptide for antibody production .............................................. 69 

3.3.7 Conclusion ............................................................................................................. 69 



ix 
 

 

Chapter 4 ................................................................................................................................ 70 

The Plasmodium falciparum putative Cox11 copper metallochaperone: Recombinant protein 

copper binding studies ............................................................................................................. 70 

4.1 Introduction ................................................................................................................... 70 

4.1.1 Recombinant protein expression ........................................................................... 70 

4.1.2 Copper delivery to the plasmodial mitochondria .................................................. 71 

4.2 Results ........................................................................................................................... 72 

4.2.1 Identification of the presence of a Cox11 copper metallochaperone sequence in the 

Plasmodium falciparum genome .......................................................................................... 72 

4.2.2 Site-directed mutagenesis to replace Cys60 and Cys157 with Ala in the P. 

falciparum Cox11 sequence ................................................................................................. 74 

4.2.3 Optimising conditions for the recombinant expression of MBP-PfCox11Ct ........ 80 

4.2.4 Isolation of the recombinant MBP-PfCox11Ct protein ......................................... 81 

4.2.5 IgY antibodies were raised in chickens against rMBP-PfCox11Ct ....................... 83 

4.2.6 IgY antibodies was raised in chickens against a PfCox11 peptide ........................ 84 

4.2.7 Detection of the P. berghei Cox11 with antibodies against rMBP-PfCox11Ct .... 86 

4.2.8 Binding of copper to rMBP-PfCox11Ct measured with the bicinchoninic acid 

(BCA) release assay ............................................................................................................. 87 

4.2.9 rMBP-PfCox11Ct inhibition of the copper-catalysed oxidation of ascorbic acid . 91 

4.2.10   Copper binding measured with atomic absorption spectroscopy (AAS) ............ 91 

4.2.11  Copper binding measured with differential scanning fluorimetry ........................... 92 

4.2.12  Copper tolerance of E. coli (BL21) host expressing rMBP-PfCox11Ct .................. 93 

4.3 Discussion ..................................................................................................................... 97 

4.3.1 Cloning the P. falciparum Cox11 sequence .......................................................... 97 

4.3.2 Site-directed mutagenesis of the P. falciparum Cox11 cysteine residues ............. 97 

4.3.3 Recombinant expression and isolation of MBP-PfCox11Ct ................................. 97 

4.3.4 Raising IgY antibodies against rMBP-PfCox11Ct ................................................ 98 

4.3.5 IgY antibodies against the rMBP-PfCox11Ct detected the native Cox11 protein 98 

4.3.6 Assessing  the  binding  of  copper to rMBP-PfCox11Ct using the BCA release 

assay  ............................................................................................................................... 99 

4.3.7 Measuring rMBP-PfCox11Ct inhibition of copper-catalysed ascorbic acid 

oxidation ............................................................................................................................... 99 

4.3.8 Assessing the binding of copper to rMBP-PfCox11Ct using AAS ..................... 100 

4.3.9 rMBP-PfCox11Ct  copper binding evaluated using differential scanning 

fluorimetry .......................................................................................................................... 100 

4.3.10   rMBP-PfCox11Ct enables E. coli host cells to tolerate harmful copper levels . 100 



x 
 

4.3.11  Conclusion .......................................................................................................... 101 

 

Chapter 5 .............................................................................................................................. 102 

The Plasmodium falciparum putative Cox19 copper metallochaperone: Recombinant protein 

copper binding studies ........................................................................................................... 102 

5.1 Introduction ................................................................................................................. 102 

5.1.1 Mitochondrial intermembrane space proteins ..................................................... 102 

5.1.2 Twin Cx9C substrates of the IMS Mia40............................................................. 103 

5.2 Results ......................................................................................................................... 104 

5.2.1 Identification of the presence of a Cox19 copper metallochaperone sequence in the 

Plasmodium falciparum genome ........................................................................................ 104 

5.2.2 Isolation of the recombinant MBP-PfCox19 protein ........................................... 107 

5.2.3 IgY antibodies were raised in chicken against rMBP-PfCox19 .......................... 109 

5.2.4 Detection of the P. berghei Cox19 with antibodies against rMBP-PfCox19 ...... 111 

5.2.5 Binding of copper to rMBP-PfCox19 measured with the bicinchoninic acid (BCA) 

release assay ....................................................................................................................... 112 

5.2.6 rMBP-PfCox19 inhibition of copper-catalysed oxidation of ascorbic acid ........ 114 

5.2.7 Copper binding measured with differential scanning fluorimetry ....................... 114 

5.2.8 Copper tolerance of E. coli (BL21) host cells expressing MBP-PfCox19 .......... 115 

5.3 Discussion ................................................................................................................... 117 

5.3.1 Cloning the P. falciparum Cox19 sequence ........................................................ 117 

5.3.2 Recombinant expression and isolation of MBP-PfCox19 ................................... 117 

5.3.3 Raising IgY antibodies against rMBP-PfCox19 .................................................. 117 

5.3.4 IgY antibodies against the rMBP-PfCox19 detected the native Cox19 protein .. 118 

5.3.5 Assessing  the  binding  of  copper  to  rMBP-PfCox19  using  the BCA release 

assay  ............................................................................................................................. 118 

5.3.6 Measuring  rMBP-PfCox19  inhibition  of  copper-catalysed  ascorbic acid 

oxidation ............................................................................................................................. 118 

5.3.7  rMBP-PfCox19  copper  binding  evaluated  using  differential scanning 

fluorimetry .......................................................................................................................... 119 

5.3.8 rMBP-PfCox19 enables E. coli host cells to tolerate harmful copper levels ...... 119 

5.3.9 Conclusion ........................................................................................................... 119 

 

Chapter 6 .............................................................................................................................. 120 

General discussion ................................................................................................................. 120 

6.1 Brief overview ............................................................................................................ 120 



xi 
 

6.2 Current understanding of plasmodial copper homeostasis ......................................... 120 

6.3 Plasmodial copper homeostasis as a potential antimalarial drug target ...................... 121 

6.4 Identification of a putative P. falciparum Cox11 and Cox19 ..................................... 122 

6.5 Recombinant expression and isolation of C-terminal domain of P. falciparum Cox11 

and Cox19 proteins ................................................................................................................ 123 

6.6 Production  of  polyclonal  IgY  used  for  the detection of Plasmodium Cox11 and 

Cox19 ..................................................................................................................................... 124 

6.7 Copper  binds  to the C-terminal domain of recombinant P. falciparum Cox11 and 

Cox19 ..................................................................................................................................... 124 

6.8 Plasmodial copper proteins bind the cuprous ion ....................................................... 126 

6.9 Plasmodial Cox11 and Cox19 as potential antimalarial drug target ........................... 126 

6.10 Conclusion and future studies ..................................................................................... 127 

 

Bibliography ......................................................................................................................... 129 

  



xii 
 

List of Figures 

Figure 1.1. The Plasmodium life cycle ................................................................................................................... 3 
Figure 1.2. Countries with indigenous cases in 2000 and their status by 2016 ...................................................... 4 
Figure 1.3. Structural model for copper transport proteins ................................................................................... 17 
Figure 1.4. Schematic of the trimeric pore of copper transport proteins .............................................................. 18 
Figure 1.5. Copper homeostasis in eukaryotes ..................................................................................................... 20 
Figure 1.6. Current understanding of plasmodial copper homeostasis ................................................................. 22 
Figure 1.7. Redox-driven electron transfer and proton pumping by CcO............................................................. 24 
 

Figure 2.1. PCR conditions ................................................................................................................................... 37 
Figure 2.2. Map of the pGEM®-T Easy and pTZ57R/T cloning vectors .............................................................. 39 
Figure 2.3. Map of the pMal-2x expression vector ............................................................................................... 40 
Figure 2.4. Overlap extension PCR ...................................................................................................................... 43 
Figure 2.5. Bradford calibration curve.................................................................................................................. 45 
 

Figure 3.1. Alignment of nine putative Plasmodium and five established Cox11 amino acid sequences ............ 59 
Figure 3.2. Predicting membrane-spanning regions in P. falciparum Cox11 ....................................................... 60 
Figure 3.3. Plasmodium falciparum Cox11 modelled on the Sinorhizobium meliloti Cox11 structure ................ 60 
Figure 3.4. Alignment of nine putative Plasmodium and five characterised Cox19 amino acid sequences ......... 63 
Figure 3.5. Plasmodium falciparum Cox19 modelled on Homo sapiens Mia40 structure ................................... 64 
Figure 3.6. Peptide around the putative P. falciparum Cox11 copper binding domain ........................................ 65 
 

Figure 4.1. Localisation of the Cox11 coding domain in P. falciparum chromosome 14 .................................... 72 
Figure 4.2. PCR-amplification, cloning and restriction enzyme digestion of rPfCox11Ct ................................... 73 
Figure 4.3. Alignment of P. falciparum Cox11Ct cloned sequence with the PlasmoDB gene sequence ............. 74 
Figure 4.4. Sites on the gene for site-directed mutagenesis .................................................................................. 75 
Figure 4.5. Site-directed mutagenesis using overlap extension PCR amplification to substitute Cys60 with Ala 76 
Figure 4.6. Site-directed mutagenesis using overlap extension PCR amplification to substitute Cys157 with    

Ala ........................................................................................................................................................................ 77 
Figure 4.7. Site-directed mutagenesis using overlap extension PCR amplification to substitute Cys60 and 

Cys157 with Ala ................................................................................................................................................... 79 
Figure 4.8. P. falciparum Cox11 amino acid sequence ........................................................................................ 80 
Figure 4.9. Effect of 2xYT and LB media on the recombinant expression of MBP-PfCox11Ct ......................... 81 
Figure 4.10. Recombinant expression of MBP-PfCox11Ct with varying IPTG concentration ............................ 81 
Figure 4.11. Recombinant expression and affinity purification of the MBP-PfCox11Ct ..................................... 82 
Figure 4.12. Detection of rMBP-PfCox11Ct by anti-MBP antibodies in a western blot ...................................... 83 
Figure 4.13. Affinity purified antibodies detected rMBP-PfCox11Ct .................................................................. 84 
Figure 4.14. Affinity purified anti-peptide (KIQXFXFEEQMLNAKEEM) antibodies detected rMBP-

PfCox11Ct ............................................................................................................................................................ 85 
Figure 4.15 Anti-rMBP-PfCox11Ct antibody detection of the Cox11 in P. berghei infected mouse red blood cell 

lysate ..................................................................................................................................................................... 86 
Figure 4.16. Diagram of the copper determined with the BCA release assay ...................................................... 88 
Figure 4.17. Binding of copper to rMBP-PfCox11Ct and mutant proteins in vitro measured by BCA release 

assay ..................................................................................................................................................................... 89 
Figure 4.18. The effect of EDTA on copper binding to rMBP-PfCox11Ct in vitro ............................................. 89 
Figure 4.19. Binding of copper to rMBP-PfCox11Ct and mutant proteins in vivo measured by the BCA release 

assay ..................................................................................................................................................................... 90 
Figure 4.20. Copper-catalysed oxidative degradation of ascorbic acid in the presence of rMBP-PfCox11Ct and 

mutants ................................................................................................................................................................. 91 
Figure 4.21. In vitro copper binding of rMBP-PfCox11Ct measured by atomic absorption spectroscopy .......... 92 
Figure 4.22. The first derivative of the differential scanning fluorimetry for rMBP-PfCox11Ct with or without 

copper ................................................................................................................................................................... 93 
Figure 4.23. Effect of copper on growth of E. coli (BL21) cells .......................................................................... 95 
Figure 4.24. Effect of copper on the growth of E. coli (BL21) cells expressing rMBP-PfCox11Ct and mutants 96 
 

Figure 5.1. Localisation of the Cox19 coding domain in P. falciparum chromosome 12 .................................. 104 
Figure 5.2. PCR-amplification, cloning and restriction enzyme digestion of rPfCox19 .................................... 105 
Figure 5.3. Alignment of P. falciparum Cox19 cloned sequence with the PlasmoDB gene sequence ............... 106 
Figure 5.4. P. falciparum Cox19 amino acid sequence ...................................................................................... 107 



xiii 
 

Figure 5.5. Recombinant expression and affinity purification of the rMBP-PfCox19 ....................................... 108 
Figure 5.6. Detection of rMBP-PfCox19 by anti-MBP antibodies in a western blot .......................................... 109 
Figure 5.7. Affinity purified antibodies detected rMBP-PfCox19 ...................................................................... 110 
Figure 5.8. Anti-rMBP-PfCox19 antibody detection of the Cox19 in P. berghei infected mouse red blood cell 

lysate ................................................................................................................................................................... 111 
Figure 5.9. Binding of copper to rMBP-PfCox19 in vitro measured by BCA release assay .............................. 112 
Figure 5.10. The effect of EDTA on copper binding to rMBP-PfCox19 in vitro ............................................... 113 
Figure 5.11. Binding of copper to rMBP-PfCox19 in vivo measured by the BCA release assay ....................... 113 
Figure 5.12. Copper-catalysed oxidative degradation of ascorbic acid in the presence of rMBP-PfCox19 ....... 114 
Figure 5.13. The first derivative of the differential scanning fluorimetry for rMBP-PfCox19 with or without 

copper ................................................................................................................................................................. 115 
Figure 5.14. Effect of copper on the growth of E. coli (BL21) cells expressing rMBP-PfCox19 ...................... 116 
  



xiv 
 

List of Tables  

Table 1.1. Classification and drug-resistance status of available antimalarials. ..................................................... 9 
Table 1.2. WHO approved artemisinin-based combination therapies (ACTs) for treating uncomplicated    

malaria .................................................................................................................................................................. 10 
Table 1.3. Potential antimalarial drugs and targets. .............................................................................................. 15 
Table 1.4. Homologues of CcO assembly factors in S. cerevisiae and P. falciparum .......................................... 25 
 

Table 2.1. Components of a PCR reaction mixture .............................................................................................. 35 
Table 2.2. Primer sequences used for PCR amplifications ................................................................................... 36 
Table 2.3. Recipe to prepare three gels for SDS-PAGE ....................................................................................... 46 
 

Table 3.1. Copper-dependent protein orthologues found in the P. falciparum genome ....................................... 56 
 

Table 4.1. Purification table for the affinity purified rMBP-PfCox11Ct .............................................................. 82 
 

Table 5.1. Purification table for the affinity purified rMBP-PfCox19 ................................................................ 108 

  



xv 
 

Abbreviations and symbols 

Abbreviation Explanation 

2xYT 2x yeast extract, tryptone 

3’-UTR 3’-untranslated region 

3D Three dimensional 

A + X Artemisinin with a partner drug 

AAS Atomic absorption spectroscopy 

ABTS 2,2’-azino-bis(3-ethylbenzothiazoline sulfonate 

Ace1 Ace1 transcription factor 

ACT Artemisinin-based combination therapy 

ANOVA Analysis of variance 

Atox1 Antioxidant 1 copper chaperone 

ATP Adenosine triphosphate 

ATP7A ATPase copper transporter Alpha 

ATP7B ATPase copper transporter Beta 

b.i.d Twice daily 

BCA Bicinchoninic acid 

BCKDH Branch chain ketoacid dehydrogenase 

BLASTp Basic local alignment search tool for proteins 

bp Base pairs 

BSA Bovine serum albumin 

C157A Mutant pMal-c2x-rPfCox11Ct plasmid with Ala codon substituting that of 

Cys157 

C60A Mutant pMal-c2x-rPfCox11Ct plasmid with Ala codon substituting that of 

Cys60 

C60A-C157A Mutant pMal-c2x-rPfCox11Ct plasmid with Ala codon substituting that of 

Cys60 and Cys157 

CcO Cytochrome c oxidase 

CCS Copper chaperone for superoxide dismutase 

CREBBP CREB-binding protein 

Crs5 Metallothionein-like protein Crs5 

C-terminus Carboxy terminus 

Ctr1 Copper transporting protein 1 

Ctr2 Copper transporting protein 2 

Cup1 Copper metallothionein 1 

CuP-ATPase Copper-transporting P-type ATPase 

Cytb Cytochrome b 

Cytc Cytochrome c 

DDC Diethyldithiocarbamate 

DHODH Dihydroorotate dehydrogenase 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxyribonucleoside triphosphate 

DTT Dithiothreitol 

ECL Enhanced chemiluminescence 

EDTA Ethylenediaminetetraacetic acid 

eEF2 Eukaryotic elongation factor 2 

ELISA Enzyme linked immunosorbent assay 

EtBr Ethidium bromide 

FCA Freund’s complete adjuvant 

FIA Freund’s incomplete adjuvant 

FRE1 Cu2+/Fe3+ metalloreductase component 1 

FRE2 Cu2+/Fe3+ metalloreductase component 2 

GAPDH Glyceraldehyde-3- phosphate dehydrogenase 

gDNA Genomic DNA 

GSH Reduced glutathione 



xvi 
 

Abbreviation Explanation 

hnDNA Heterogenous nuclear DNA 

HRP-2 Histidine-rich protein-2 

HRPO Horse radish peroxidase 

Ig Immunoglobulin 

IM Inner mitochondrial membrane 

IMS Mitochondrial intermembrane space 

IPTG Isopropyl-β-D-1-thiogalactopyranoside 

IPTp Intermittent preventive treatment in pregnancy 

IRS Indoor residual spray 

ITS IMS-targeting signal 

KAT Lysine acetyltransferase 

kDa kiloDaltons  

LAMP Loop-mediated isothermal amplification 

LDH Lactate dehydrogenase 

LLIN Long-lasting insecticide nets 

Mac1 Metal-binding activator 1 

MBP Maltose binding protein 

MBS Maleimidobenzoyl-N-hydroxysuccinimide ester 

MCF Mitochondrial carrier proteins 

MEC Molecular exclusion chromatography 

MISS Mitochondrial IMS-sorting signal 

MMV Medicine for malaria venture 

ms Microsatellite 

MT Metallothionein 

mtDNA Mitochondrial DNA 

MTF1 Metal transcription factor 1 

MWCO Molecular weight cut-off 

nDNA Nuclear DNA 

NMCPs National malaria control programs 

NMD Nonsense-mediated mRNA decay 

NMR Nuclear magnetic resonance 

N-terminal Amino terminal 

OD Optical density 

ORF Open reading frame 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDB Protein data bank 

PEG Polyethylene glycol 

PfATP4 P-type Na+ ATPase 

Pfcrt P. falciparum chloroquine resistance marker 

Pfcytb P. falciparum cytochrome b 

Pfdhfr P. falciparum dihydrofolate reductase 

Pfmdr1 P. falciparum multidrug resistance-1 

Pfmrp1 P. falciparum multidrug resistance protein-1 

Pfnhe1 P. falciparum Na+/H+ exchanger 

pGEM®-T Easy-

rPfCox11Ct 

Recombinant pGEM®-T Easy cloning vector with rPfCox11Ct coding sequence 

PI4K Lipid phosphatidylinositol 4-kinase 

pMal-c2x-rPfCox11Ct Recombinant pMal-c2x expression vector with rPfCox11Ct coding sequence 

pMal-c2x-rPfCox19 Recombinant pMal-c2x expression vector with rPfCox19 

PMT Phosphoethanolamine-N-methyltransferase 

pTZ57R/T-rPfCox19 Recombinant pTZ57R/T cloning vector with rPfCox19 coding sequence 

q.d Once daily 

RDTs Rapid diagnostic tests 
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rMBP-PfCox11Ct Recombinantly expressed MBP fused P. falciparum Cox11 carboxy terminal 

domain 

rMBP-PfCox19 Recombinantly expressed MBP fused P. falciparum Cox19 

RNA Ribonucleic acid 

rPfCox11Ct Recombinant P. falciparum Cox11 carboxy terminal coding sequence 

rPfCox19 Recombinant P. falciparum Cox19 coding sequence 

RT Room temperature 

S.E Standard error 

SAP Shrimp alkaline phosphatase 

SCC Small copper carrier 

SD Standard deviation 

SDS Sodium dodecyl sulphate 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SMC Seasonal malaria chemoprevention 

SOC Super optimal broth with catabolite repression 

SOD Cu/Zn superoxide dismutase 

SPR Surface plasmon resonance 

TAE Tris, acetic acid, EDTA buffer 

TCA Tricarboxylic acid 

TEMED N,N’N’N’-tetramethylethylenediamine 

TGN Trans-Golgi network 

Tm Melting temperature 

WHO World Health Organisation 

X α-aminobutyric acid (replacing Cys in the synthetic peptide) 

X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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Chapter 1 

Introduction and literature review 

 

1.1 An overview of malaria  

1.1.1 The malaria burden 

Malaria, a mosquito-borne parasitic disease caused by a protozoan of the genus 

Plasmodium, is a public health problem and a leading cause of death from infectious diseases 

in 91 countries (Murray et al., 2014; WHO, 2017). Only five species of the over 100 

Plasmodium spp.; Plasmodium falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi are 

known to infect humans, with P. falciparum responsible for the largest burden followed by P. 

vivax (Ashley et al., 2018; Daneshvar et al., 2009). About 90% of the 216 million cases 

reported in 2016 were in Africa, accounting for the 91% of the 445000 deaths globally, most 

of which were children under five years old (WHO, 2017). The clinical manifestations of 

malaria may vary from mild (fever) to severe (severe anaemia, and organ failure) and cerebral 

(coma) malaria (Miller et al., 1994a; White et al., 2014). Considerable success has been 

recorded in the global control and eradication of malaria since the beginning of the millennium, 

with a 41% and 62% reduction in incidence and death from malaria respectively (WHO, 2016). 

This success is threatened by the increasing emergence of parasites resistant to the available 

antimalarial drugs including artemisinin (Ashley et al., 2014; Cui et al., 2015; Hyde, 2005). 

Therefore, there is a need to develop new antimalarial drugs (Burrows et al., 2017; Flannery et 

al., 2013; Le Roch et al., 2003). 

 

1.1.2 A brief history of malaria 

The discovery of human malaria parasite antigens in mummified individuals from 

ancient Egypt who lived between 3200 BC and 1085 BC showed that malaria is an ancient 

disease (Miller et al., 1994b). Before the discovery that malaria is caused by a Plasmodium 

spp. infection by Alphonse Laveran in 1880, the disease was thought to be associated with “bad 

air” (mal’aria in Latin) emanating from swamps (Laveran, 1881). The discovery of the avian 

and human malaria vectors, the culicine and the anopheline mosquitoes were made in two 

separate studies by Sir Ronald Ross and a group of Italian scientists respectively (Grassi, 1901; 

Ross, 1898). The discovery in 1947 by Henry Shortt and Cyril Garnham that the liver phase 

precedes the intraerythrocytic phase of the parasite was significant to the understanding of the 

parasite life cycle (Shortt and Garnham, 1948). The dormant liver phase was subsequently 
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discovered by Wojciech Krotoski in 1982 (Krotoski et al., 1982). The identification of the 

Plasmodium spp. with certitude was only possible in 1907. Most of the human-infecting species 

were identified in the 1920s and 1930s, while the first rodent malaria parasite, P. berghei, was 

identified in 1948 (Cox, 2010; Vincke and Lips, 1948). 

 

1.1.3 A brief description of the Plasmodium life cycle 

The human-infecting malaria parasite infects two hosts, the human and the female 

Anopheles mosquito (Figure 1.1). An infected Anopheles mosquito transmits malaria during a 

blood meal by inoculating about 20 sporozoites into the avascular tissue of the skin, marking 

the beginning of a cycle in the human host (Baldacci and Ménard, 2004; Kappe et al., 2010). 

Within three hours of inoculation, the sporozoites exit the inoculation site and penetrate a blood 

vessel to enter the blood and eventually the liver (Cowman et al., 2016; Ponnudurai et al., 

1991). In the liver, the sporozoites access the liver by traversing the sinusoidal barrier targetting 

Kupffer and endothelial cells (Cha et al., 2015; Tavares et al., 2013). Once inside the 

hepatocytes, asexual replication commences with the transformation and division of 

sporozoites into exo-erythrocytic forms (liver stage) over two to ten days leading to the release 

of 10000 to 30000 merozoites per hepatocyte into the bloodstream (Fujioka and Aikawa, 2002; 

Sturm et al., 2006; White et al., 2014).  

The merozoites invade erythrocytes within two minutes of contact in a rapid, energetic, 

and multi-step process (Gilson and Crabb, 2009; Weiss et al., 2015). When erythrocyte 

invasion is established, 16 to 32 merozoites are formed by cell division (schizogony) over 24 

(P. knowlesi), 48 (P. falciparum, P. vivax, P. ovale) or 72 (P. malariae) hours (White et al., 

2014). The merozoites are then released into the bloodstream following the destruction of the 

erythrocyte membrane. The newly infective merozoites go on to infect naïve erythrocytes. 

Following a variable number (often three to ten) of completed asexual cycles, a small 

proportion of the merozoites differentiate into male and female gametocytes which are capable 

of transmitting malaria to mosquitoes (Bousema and Drakeley, 2011; Josling and Llinas, 2015). 

The sexual stage of the parasite life cycle commences upon ingestion of the gametocytes in a 

blood meal by the mosquito. The gametocytes in the midgut fuse to form a zygote which then 

matures into mobile ookinetes which pass through the midgut cell wall and transform into an 

oocyst. The oocysts then undergo sporogony, releasing sporozoites which migrate to the 

mosquito salivary glands where they remain, and ready for onward transmission in the next 

blood meal (Lee et al., 2014). 
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Figure 1.1. The Plasmodium life cycle 

The malaria parasite life cycle is complex and occurs within the mosquito vector (left side of the cycle) and the 

human host (right side of the cycle). Malaria infection begins upon parasite transmission by a female Anopheles 

mosquito to a human host. The parasites undergo sexual (in mosquito) and asexual (in a human host) development. 

Number of cells, n; set of chromosomes in a cell, c. Taken from Lee et al. (2014). 

 

1.1.4 Geographical distribution of malaria 

Malaria is endemic to 91 countries in the tropical and subtropical regions of the world 

(Figure 1.2) (WHO, 2017). Malaria transmission depends on environmental factors – mainly 

temperature, the efficiency of Anopheles mosquito to support parasite growth alongside other 

factors like poverty, natural disasters, war and the implementation of control measures (Ashley 

et al., 2018; Balogun et al., 2016; Cowman et al., 2016; White et al., 2014). Only a few of the 

over 400 anopheline mosquitoes are vectors, and they are indigenous to specific geographical 

regions (Massey et al., 2016; Sinka et al., 2012). 
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Figure 1.2. Countries with indigenous cases in 2000 and their status by 2016 

Malaria endemicity was determined by the number of indigenous cases. Countries with no indigenous cases 

reported to the WHO over the past three consecutive years are considered to have eliminated malaria. This map 

was created using the online MapChart tool (https://mapchart.net/). Adapted from WHO (2017). 

 

P. falciparum and P. vivax are the prepotent species of the human malaria parasites, 

accounting for about 95% and 4% respectively of the global cases of malaria in 2016 (Ashley 

et al., 2018; WHO, 2017). P. falciparum is responsible for the vast majority of malaria cases 

(99%) in Africa with a substantial variation in prevalence within and among countries 

(Nkumama et al., 2017; Snow et al., 2017), while P. vivax malaria is less common. Conversely, 

P. vivax malaria is predominant in the Americas (64%), South-East Asia (30%) and in the 

Eastern Mediterranean regions (40%) (WHO, 2017). The two malaria species, P. malariae and 

P. ovale, accounted for about 1% of the global malaria burden in 2016, a low incidence despite 

their global distribution (WHO, 2017). P. ovale is largely indigenous to Africa and South-East 

Asia. The last of the five human-infecting malaria parasites hitherto ascribed to primate 

malaria, P. knowlesi, was only recently found to infect humans in South-East Asia (Cox-Singh 

et al., 2008; Singh et al., 2004). The lack of P. knowlesi transmitting vectors in Africa and the 

Americas is preventing its global distribution (Kar et al., 2014; Singh and Daneshvar, 2013). 

In South Africa, malaria endemicity is restricted to the low-altitude border regions of 

three of the nine provinces; KwaZulu-Natal, Mpumalanga and Limpopo (Morris et al., 2013). 

The containment of the disease to three provinces is the product of effective malaria control 

strategies initiated in the 1940s (Coetzee et al., 2013). Despite the steady progress towards 
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eradicating malaria since South Africa adopted the elimination strategy in 2012, an increase of 

about 4900 cases were reported between 2013 and 2014 mainly in Mpumalanga and Limpopo 

provinces (Raman et al., 2016). Malaria transmission in South Africa is seasonal often between 

the months of October and May. About 4.9 million persons (~10% of the population) are at 

risk of malaria infection in South Africa (http://www.health.gov.za/index.php/introduction, 

accessed 14/09/18). 

 

1.1.5 Malaria control 

A renewed interest in the eradication of malaria, backed by an increase in international 

funding since the turn of the millennium, has led to the adoption and upscale of malaria control 

interventions in endemic countries (Kesteman et al., 2017). The intervention strategies include 

the use of rapid diagnostic tests in malaria diagnosis, indoor residual spraying (IRS), long-

lasting insecticide nets (LLIN) for mosquito control. Drug interventions include mass drug 

administrations (MDAs), intermittent preventive treatment in pregnancy (IPTp) and in infants 

(IPTi), seasonal malaria chemoprevention (SMC). Changes in drug administration include 

artemisinin-based combination therapy (ACT) as the first-line treatment of uncomplicated 

malaria and monitoring the efficacy and safety of antimalarial drugs and resistance among 

others (WHO, 2015). The adoption and implementation of these interventions are controlled 

by national malaria control programs of each malaria endemic country. 

 

1.1.6 Malaria diagnosis 

Microscopy (thick and thin blood film) and rapid diagnostic tests are the two diagnostic 

methods with the most impact on malaria control. Microscopy remains the gold standard of 

malaria diagnosis for evaluating any new diagnostic test (Alam et al., 2011; Wongsrichanalai 

et al., 2007). The visual identification of parasites within the erythrocytes under the microscope 

relies on the staining of parasite DNA molecules by the Giemsa and other stains (Barcia, 2007; 

Warhurst and Williams, 1996). Since peripheral blood erythrocytes lack DNA, only the 

parasitised erythrocytes contain the stained DNA. In addition to the Giemsa stain, the Wright’s, 

Field’s and Leishman stains are used (Sathpathi et al., 2014; Warhurst and Williams, 1996). A 

skilled microscopist can detect about 5 parasites/µl of blood, while an average microscopist 

detects about 50 to 100 parasites/µl of blood (Kasetsirikul et al., 2016; Tangpukdee et al., 

2009). Microscopy is laborious, dependent on a skilled microscopist, prone to misdiagnosis of 

http://www.health.gov.za/index.php/introduction
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morphologically closely related species (like P. knowlesi and P. malariae), and an 

underestimation of infection in asymptomatic malaria (Kasetsirikul et al., 2016).  

 

1.1.7 Rapid diagnostic tests 

Rapid diagnostic tests (RDTs) are based on the immunological detection of a number of 

malaria antigens like histidine-rich protein-2 (HRP-2), lactose dehydrogenase (LDH) and 

aldolase in blood on an immunochromatographic test strip impregnated with the respective 

colloidal gold-labelled antibody and a control. Recently two constitutively expressed 

plasmodial proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Krause et al., 

2017) and phosphoethanolamine-N-methyltransferase (PMT) (Krause and Goldring, 2018) 

were shown to be potential malaria diagnostic biomarkers. In a bid to enhance the applicability 

of rapid diagnostic tests for malaria detection, specific aptamers targetting malaria LDH were 

recently shown to discriminately bind their targets (Frith et al., 2018). With rapid diagnostic 

tests, the confirmation of infection is timely, cost-effective, and little or no expertise is required 

(Boyce et al., 2015; Hansen et al., 2015). However, rapid diagnostic tests are expensive and 

liable to false-positive diagnosis owing to the presence of malaria antigens like HRP-2 in the 

blood after parasite clearance (Mayxay et al., 2001; Swarthout et al., 2007).  

In addition to the two diagnostic tests – microscopy and RDTs described above, PCR-

based tests are also common. PCR-based tests provide higher specificity and sensitivity 

(<5 parasites/µl of blood) compared to the RDTs and can differentiate different plasmodial 

species (Lee et al., 2015; Ongagna-Yhombi et al., 2013). Though the PCR-based tests have 

low limits of detection, they take a longer time to perform, are dependent on electricity and are 

often laboratory-based and so are not suited for point of care application in the field. The PCR-

based tests can be grouped into nested, single, multiplex, real-time and quantitative PCR. The 

least technically demanding among the PCR-based tests is the loop-mediated isothermal 

amplification (LAMP) (Cook et al., 2015). LAMP uses isothermal amplification directly from 

blood samples by a mutant Taq DNA polymerase resistant to the PCR inhibitors in the blood 

(Kermekchiev et al., 2009; Kersting et al., 2014). LAMP is suited for field application and 

could take less time than the conventional PCR reactions using heat-blocks and viewed under 

UV light without the requirement for imaging equipment. 
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1.1.8 Treatment of malaria 

To effectively treat malaria, the disease has to be correctly diagnosed and promptly 

treated with the appropriate antimalarial drug. The management of malaria requires the use of 

safe, cheap and accessible, effective, well tolerated, and easy to administer antimalarials 

(Kremsner and Krishna, 2004). Antimalarials are classified based on their structure (Cui et al., 

2015; Schlitzer, 2008) or the parasite life-cycle stage target (Bruce-Chwatt, 1962) (Table 1.1). 

Based on the parasite life-cycle stage target, antimalarial drugs are either; tissue schizontocides, 

blood schizontocides, gametocytocides, sporontocides, or anti-relapse drugs (Bruce-Chwatt, 

1962; Frederich et al., 2002). Despite their differing modes of action, almost all the currently 

antimalarials in use are blood schizontocides. Primaquine is the only licensed anti-relapse drug 

of all the antimalarials in use for treating hypnozoites in P. vivax and P. ovale infections. 

Structurally, antimalarial drugs are grouped as 4-aminoquinolines, arylamino alcohols, 8-

aminoquinolines, artemisinin derivatives, antifolates, naphthoquinone, or antibiotics (Antony 

and Parija, 2016; Cui et al., 2015; Schlitzer, 2008). 

The treatment regimens for the two prepotent malaria parasites, P. falciparum and P. 

vivax, are different chiefly due to their varying pathophysiology. Owing to the emergence and 

spread of resistance against the established antimalarial drugs, artemisinin-based combination 

therapy (ACT) has now been adopted as the first-line treatment for uncomplicated falciparum 

malaria in endemic regions (Nosten and White, 2007). The combination of chloroquine for 

treating blood stage and primaquine for hypnozoites (dormant liver stages) clearance, stands 

as the first-line treatment for P. vivax malaria (WHO, 2010). The primary aim of adopting 

ACTs as the first-line treatment for malaria was to curb the emergence of drug-resistant 

parasites. ACTs comprise a fast-acting artemisinin component and a long-acting partner drug 

that clears the residual parasites evading artemisinin clearance, thus, arresting the emergence 

of possible artemisinin resistance (Egan and Kaschula, 2007; Nosten and White, 2007). 

Therefore, the long-acting partner drug in ACTs compensates for the poor pharmacokinetics 

of the artemisinin component (Egan and Kaschula, 2007; Nosten and White, 2007). Both 

component drugs in an ACT-regimen have different modes of action. The blood stages of non-

falciparum malaria are also cleared by ACTs. With the exception of the artemether-

lumefantrine combination therapy, which is a six-dosage regimen (twice daily for three days), 

all the WHO-approved ACTs in use are taken as a three-dosage regimen (once daily for three 

days) (Table 1.2) (WHO, 2015). Due to an elongation effect of piperaquine on the electrical 

repolarisation and depolarisation of the ventricles (QT interval) (Darpo et al., 2015; 
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Vanachayangkul et al., 2017), an electrocardiogram is required before prescribing the 

dihydroartemisinin-piperaquine combination therapy to a patient (WHO, 2015). In endemic 

regions in Africa, intermittent preventive treatment is recommended for pregnant mothers and 

infants (with sulfadoxine/pyrimethamine), and in areas with high seasonal malaria transmission 

(with amodiaquine + sulfadoxine/pyrimethamine) (WHO, 2015). Travellers from nonendemic 

to high-risk areas are advised to take malaria chemoprophylaxis (Cui et al., 2015; Schlagenhauf 

and Petersen, 2008). The antimalarials; mefloquine, atovaquone/proguanil (Malarone) or 

doxycycline are the recommended chemoprophylactic for long-term travellers (Schlagenhauf 

and Petersen, 2008; WHO, 2015).
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Table 1.1. Classification and drug-resistance status of available antimalarials. 

Class Drug Parasite life-cycle stage target Drug 

resistance 

Drug-resistance marker gene 

4-Aminoquinoline Chloroquine 

 

Amodiaquine 

 

Piperaquine 

 

Blood-stage schizontocide*, sporontocide, 

 

Blood-stage schizontocide* 

 

Blood-stage schizontocide* 

 

Yes 

 

Yes 

 

Yes 

Pfcrt, Pfmdr1, Pfmrp1 

 

Pfmdr1 

 

plasmepsin 2-3, exo-E415G 

 

8-Aminoquinoline Primaquine Tissue-stage schizontocide, sporontocide, gametocide, anti-relapse 

 

Yes Not yet identified 

Arylamino alcohol Quinine 

 

Lumefantrine 

 

Mefloquine 

Blood-stage schizontocide*, gametocide¶ 

 

Blood-stage schizontocide* 

 

Blood-stage schizontocide* 

 

Yes 

 

Yes 

 

Yes 

Pfcrt, Pfmdr1, Pfmrp1, Pfnhe1 

 

Pfmdr1 

 

Pfmdr1 

Sesquiterpene lactone 

endoperoxides 

Artemether 

 

Artesunate 

 

Dihydroartemisinin 

Blood-stage schizontocide*, gametocide 

 

Blood-stage schizontocide*, gametocide 

 

Blood-stage schizontocide*, gametocide 

 

Yes 

 

Yes 

 

Yes 

Pfmdr1, Kelch13 

 

Pfmdr1, Kelch13 

 

Pfmdr1, Kelch13 

Antifolate Sulfadoxine 

 

Pyrimethamine 

 

Proguanil 

Blood-stage schizontocide#, tissue schizontocide, sporontocide 

 

Blood-stage schizontocide#, tissue schizontocide, sporontocide 

 

Blood-stage schizontocide#, tissue schizontocide, sporontocide 

 

Yes 

 

Yes 

 

Yes 

Pfdhps 

 

Pfdhfr 

 

Pfdhfr 

Naphthoquinone Atovaquone Blood-stage schizontocide#, sporontocide 

 

Yes Pfcytb 

Antibiotics Doxycycline 

Clindamycin 

Blood-stage schizontocide# 

Blood-stage schizontocide# 

No 

No 

- 

- 

* Quick onset, ¶ P. vivax and P. ovale only, # Slow onset, Pfcrt; P. falciparum chloroquine resistance marker, Pfmdr1; P. falciparum multidrug resistance-1, Pfmrp1; P. falciparum multidrug 

resistance protein-1, Pfnhe1; P. falciparum Na+/H+ exchanger, Pfdhps; P. falciparum dihydropteroate synthase, Pfdhfr; P. falciparum dihydrofolate reductase, Pfcytb; P. falciparum cytochrome 

b. Information from this table was from; (Amato et al., 2017; Bruce-Chwatt, 1962; Cui et al., 2015; WHO, 2015; Witkowski et al., 2017).
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Table 1.2. WHO approved artemisinin-based combination therapies (ACTs) for treating uncomplicated malaria 

Drug components Formulation / Tablet 

          (A + X) 

Bodyweight (kg) (dose) Prescription Comment(s) 

Artemether + 

Lumefantrine 

20 mg + 120 mg # 

40 mg + 240 mg  

5 – <15 (20 mg +120 mg) 

15 – 25 (40 mg + 240 mg) 

25 – <35 (60 mg + 360 mg) 

≥35 (80 mg + 480 mg) 

 

3 x b.i.d. 

(total, 6 doses) 

- Lumefantrine absorption is enhanced by fat intake. 

 

- Lumefantrine is not available as a monotherapy. 

Artesunate + 

Amodiaquine 

25 mg + 67.5 mg 

50 mg + 135 mg 

100 mg + 270 mg 

4.5 – <9 (25 mg + 67.5 mg) 

9 – <18 (50 mg + 135 mg) 

18 – <36 (100 mg + 270 mg) 

≥36 (200 mg + 540 mg) 

 

3 x q.d. 

(total, 3 doses) 

- Pharmacokinetics of amodiaquine is not affected by age 

or pregnancy. 

Artesunate + 

Mefloquine 

25 mg + 50 mg 

100 mg + 200 mg 

5 – <9 (25 mg + 50 mg) 

9 – <18 (50 mg + 100 mg) 

18 – <30 (100 mg + 200 mg) 

≥30 (200 mg + 400 mg) 

3 x q.d. 

(total, 3 doses) 

- Symptoms due to mefloquine include nausea, vomiting, 

dizziness, dysphoria and sleep disturbances. 

 

- Co-administration with rifampicin results in decreased 

mefloquine bioavailability. 

 

Artesunate + 

Sulfadoxine-

Pyrimethamine 

50 mg + 500 mg +25 mg* 5 – <10 (25 mg + 250 mg + 12.5 mg) 

10 – <25 (50 mg + 500 mg + 25 mg) 

25 – <50 (100 mg + 1000 mg + 50 mg) 

≥50 (200 mg + 1500 mg + 75 mg) 

 

3 x q.d. 

(total, 3 doses) 

- Not available as a fixed dose combination. 

Dihydroartemisinin 

+ Piperaquine 

20 mg + 160 mg 

40 mg + 320 mg 

5 – <8 (20 mg + 160 mg) 

8 – <11 (30 mg + 240 mg) 

11 – <17 (40 mg + 320 mg) 

17 – <25 (60 mg + 480 mg) 

25 – <36 (80 mg + 640 mg) 

36 – <60 (120 mg + 960 mg) 

60 – <80 (160 mg + 1260 mg) 

≥80 (200 mg + 1600 mg) 

3 x q.d. 

(total, 3 doses) 

- Electrocardiogram is required before prescription, as 

piperaquine prolongs QT interval (electrical 

repolarisation and depolarisation of the ventricles). 

 

# Dispersible formulation; * not available as a single dose combination; b.i.d. twice daily; q.d. once daily; A artemisinin component; X partner drug. 

Information from this table was from WHO (2015). 
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1.1.9 Antimalarial drug resistance 

The goals to control and possibly eradicate malaria are threatened by emerging 

resistance to the available antimalarials. P. falciparum is proficient at acquiring and spreading 

resistance to antimalarials often from low-transmission areas (Southeast Asia and South 

America) to high-transmission areas in sub-Saharan Africa (White, 2004). The acquisition of 

antimalarial drug resistance is a consequence of genetic modifications that confer reduced drug 

susceptibility to the parasite. The genetic modifications are either point mutations or changes 

to the copy number of genes encoding or associated with the drug’s parasite target, or transport 

proteins regulating the intraparasitic drug level (Menard and Dondorp, 2017; White, 2004). 

These modifications can arise at any of the developmental stages of the parasite 

(Pongtavornpinyo et al., 2009). The genetic modifications must not be at the cost of the 

parasite’s fitness (Menard and Dondorp, 2017; White, 2004).  The identification of an 

antimalarial drug-resistance gene marker is vital to understanding the extent and spread of 

antimalarial drug resistance. So far, the antimalarial drug-resistance gene markers (Table 1.1) 

identified are; P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum multidrug 

resistance-1 (Pfmdr1), P. falciparum multidrug resistance-associated protein-1 (Pfmrp1), P. 

falciparum Na+/H+ exchanger (Pfnhe1), dihydropteroate synthase (Pfdhps), P. falciparum 

dihydrofolate reductase (Pfdhfr), P. falciparum cytochrome b (Pfcytb), and, most recently, 

Kelch K13 propeller domain (Kelch13), plasmepsin 2-3 and an exonuclease gene 

polymorphism on chromosome 13 (exo-E415G). Together, these antimalarial drug-resistance 

gene markers are responsible for the poor efficacy of the available antimalarial drugs. 

 

1.1.9.1  Modifications to the antimalarial drug-resistance markers 

The development of resistance to an antimalarial drug is a consequence of either a single 

or concerted molecular changes to some of the known antimalarial drug-resistance markers. 

These changes are either amino acid substitutions or changes to the gene copy number. The 

substitution of lysine 76 in PfCRT to threonine (K76T) in both clinical and field isolates is 

implicated in P. falciparum chloroquine resistance (Durand et al., 2001; Fidock et al., 2000). 

The K76T mutation renders chloroquine inactive by preventing its accumulation and actively 

transporting it out of the food vacuole (Martin and Kirk, 2004). PfMDR1 like the PfCRT is a 

transmembrane transport protein, and both mutation and variation in gene copy number of the 

Pfmdr1 gene has been associated with resistance to some 4-aminoquinoline and arylamino 

alcohol antimalarials, and artemisinin derivatives in vitro (Table 1.1) (Foote et al., 1990; Price 
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et al., 1999; 2006; Reed et al., 2000; Sidhu et al., 2005). The single amino acid substitutions 

in PfMDR1 protein implicated in multidrug-resistance are; N86Y, S1034C, Y184F, D1246Y 

and N1042D. Two single amino acid substitutions, Y191H and A437S in PfMRP, also a 

transmembrane transport protein, are linked to chloroquine and quinine resistance (Antony and 

Parija, 2016; Mu et al., 2003). The gene knockout of Pfmrp1 gene in chloroquine-resistant 

parasites not only increased their sensitivity to chloroquine and quinine, but also to multiple 

antimalarial drugs (Raj et al., 2009). Repeat polymorphisms (DNNND and NHNDNHNNDDD 

motifs) in the microsatellite region (ms4760) of the P. falciparum transmembrane proton efflux 

protein, PfNHE1, was demonstrated to be associated with quinine resistance (Ferdig et al., 

2004). However, two subsequent independent in vitro studies on field isolates in Africa 

demonstrated the lack of association between the repeat polymorphisms of the two motifs to 

quinine resistance (Andriantsoanirina et al., 2010; Briolant et al., 2011). Therefore, the Pfnhe1 

gene cannot serve as a global marker for quinine-resistance. Resistance to the antifolate 

antimalarial drugs is the result of a mutation to the gene markers Pfdhfr (proguanil and 

pyrimethamine) and Pfdhps (sulfadoxine) of the folate synthesis pathway (Cowman et al., 

1988; Gregson and Plowe, 2005). Pyrimethamine resistance results from triple mutations in the 

Pfdhfr gene coding for N51I, C59R and S108N single amino acid substitutions (Peterson et al., 

1988). Sulfadoxine resistance results from multiple combinations of the single amino acid 

substitutions; S/A436F, A437G, K540E, A581G, and A613S/T in PfDHPS (Brooks et al., 

1994). Resistance to atovaquone is conferred by mutations in Pfcytb gene coding single amino 

acid substitutions of Y268N/S (Fivelman et al., 2002; Korsinczky et al., 2000). Whole-genome 

sequencing of artemisinin-resistant isolates from Africa and Cambodia revealed a strong 

association between artemisinin resistance and the single amino acid substitutions, Y493H, 

R539T, I543T, and C580Y, in the Kelch13 (Ariey et al., 2014). Most recently, the two gene 

markers for piperaquine-resistance, plasmepsin 2-3 and exo-E415G, were identified (Amato et 

al., 2017; Witkowski et al., 2017). The amplification of plasmepsin 2-3 gene and mutation in 

the exo-E415G gene confers reduced primaquine susceptibility to the parasite (Amato et al., 

2017; Dondorp, 2017; Witkowski et al., 2017). To date, the lone P. vivax malaria resistance to 

have emerged is against chloroquine (Rieckmann et al., 1989) and its molecular marker is yet 

to be identified (Menard and Dondorp, 2017). 
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1.1.10  Potential antimalarial drug targets 

With the efficacy of the current antimalarial drugs being limited by drug resistance, 

concerns about their long-term usefulness are raised. This then emphasises the need for 

developing new drugs with different or similar molecular targets to the existing antimalarial 

drugs in order to realise malaria control and eradication goals. To this end, a number of public-

private partnerships like Medicines for Malaria Venture (MMV) were initiated to advance the 

use of medicinal chemistry-based approaches and high-throughput drug screens for identifying 

new promising antimalarial drug targets. A number of potential drug candidates, as well as new 

drug targets, have been identified in high-throughput whole-cell screens of compounds against 

the parasite (Table 1.3) (Blasco et al., 2017; Cowman et al., 2016; Flannery et al., 2013). The 

new antimalarial drug targets identified so far for the new drug candidates at different 

developmental stages are; i) P-type Na+ ATPase (PfATP4), ii) lipid phosphatidylinositol 4-

kinase (PI4K), iii) dihydroorotate dehydrogenase (DHODH) iv) eukaryotic elongation factor 2 

(eEF2), and v) phenylalanyl-tRNA synthetase (Blasco et al., 2017; Cowman et al., 2016). 

 

1.1.11  Novel antimalarial drug candidates 

Cipargamin (KAE609), a spiroindolone compound currently in advanced clinical trials, 

was identified from whole-cell screens of asexual stages of P. falciparum. Cipargamin inhibits 

the parasite asexual blood-stage progression and transmission to mosquitoes by targetting 

PfATP4, which results in the disruption of sodium homeostasis (Rottmann et al., 2010; 

Spillman et al., 2013). Two other PfATP4 inhibitors, a dihydroisoquinolone, SJ733, currently 

in clinical trials (Jiménez-Díaz et al., 2014) and a pyrazoleamide compound, PA21A092, a 

preclinical drug candidate (Vaidya et al., 2014), have also been identified. Like cipargamin, 

SJ733 and PA21A092 block the asexual blood-stage progression and transmission of the 

parasite (Jiménez-Díaz et al., 2014; Vaidya et al., 2014). Two classes of compounds targetting 

PI4K, imidazopyrazines (McNamara et al., 2013) and a 2-aminopyridine (MMV390048) 

(Paquet et al., 2017) were identified from whole-cell screens. Imidazopyrazines alters the 

intracellular phosphatidylinositol-4-phosphate distribution by interacting with the ATP-

binding pocket of PI4K to inhibit the blood-stages of P. falciparum and P. vivax as well as the 

hypnozoites of P. cynomolgi (McNamara et al., 2013). Unlike the imidazopyrazines, 

MMV390048 inhibits all life-stages of the parasite but the hypnozoites (Paquet et al., 2017). 

DSM265, a triazolopyrimidine compound currently in clinical trials is a long-acting 

antimalarial drug inhibiting both the blood- and liver-stages by targetting DHODH (McCarthy 
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et al., 2017; Phillips et al., 2015). DSM265 is suited for use as a partner drug in a single-dose 

combination treatment (McCarthy et al., 2017). A 2,6-disubstituted quinoline-4-carboxamide 

scaffold, DDD107498, and a bicyclic azetidine (BRD3444) identified from whole-cell screens 

inhibit protein synthesis by targetting eEF2 and phenylalanyl-tRNA synthetase respectively 

(Baragaña et al., 2015; Kato et al., 2016). The imidazolopiperaquine, KAF156, currently in 

clinical trials is also active against multiple life-cycle stages, however, its molecular target is 

yet to be identified (Kuhen et al., 2014; Meister et al., 2011).
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Table 1.3. Potential antimalarial drugs and targets. 

Drug target Drug name Previous name(s) Parent structure Efficacy Status* Reference 

PfATP4 

Cipargamin NITD609, KAE609 Spiroindolone - Asexual blood stage 

 

- Blocks transmission 

- Completed first phase IIa (short 

duration monotherapy POC in 

patients) 

 

- Phase II study in patients started in 

February 2018 to be completed 

2019/20 

 

Rottmann et al., 2010; 

Spillman et al., 2013 

SJ733 (+)- SJ000557733 Dihydroisoquinolone - Asexual blood stage 

 

- Blocks transmission 

 

- First-in-human study recruiting Jiménez-Díaz et al., 

2014 

PA21A092 - Pyrazoleamide - Asexual blood stage 

 

- Blocks transmission 

 

Pre-clinical Vaidya et al., 2014 

PI4K 

KA1407, KA1715 

and KDU691 

- Imidazopyrazines - Blood-stages 

 

- Hypnozoites of P. cynomolgi  

 

Pre-clinical McNamara et al., 2013 

MMV390048 - 2-aminopyridine - Liver and blood stages 

 

Pre-clinical Paquet et al., 2017 

DHODH DSM265  Triazolopyrimidine - Asexual blood stage 

 

- Chemoprotection 

 

- Phase IIa in Peru with P. falciparum 

or P. vivax completed 

 

- Controlled human malaria infection 

study of combination with OZ439 

completed 

 

McCarthy et al., 2017; 

Phillips et al., 2015 

eEF2 DDD107498 - 2,6-disubstituted 

quinoline-4-

carboxamide 

 

- Liver and blood stages Pre-clinical Baragaña et al., 2015 

Phenylalanyl-

tRNA synthetase 

BRD3444 - Bicyclic azetidines - Liver and blood stages Pre-clinical Kato et al., 2016 

Unknown 
KAF156 GNF156 Imidazolopiperaquine - Liver and blood stages - Phase IIb combination study 

ongoing to be completed in 2019 

Kuhen et al., 2014; 

Meister et al., 2011 

 

* Clinical status obtained from https://www.mmv.org/research-development/mmv-supported-projects. 

PfATP4; P. falciparum P-type Na+ ATPase,  PI4K; lipid phosphatidylinositol 4-kinase,  DHODH; dihydroorotate dehydrogenase, eEF2; eukaryotic elongation factor 2, POC; point of care. 

https://www.mmv.org/research-development/mmv-supported-projects
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1.2 Biological role of copper 

Copper is an indispensable component of a large range of essential biochemical 

processes in living organisms. Examples of copper-dependent processes are; oxidative 

respiration, neurological function (synthesis of neurotransmitters as well as neuromodulation), 

defence against oxidative damage, tissue repair, skin pigmentation, peptide hormone 

production and iron homeostasis among others (Kaplan and Maryon, 2016; Kim et al., 2008; 

Lutsenko, 2010; Scheiber et al., 2014). Several of these processes exploit the dual redox states 

of copper, Cu(I) and Cu(II), for its structural, regulatory and catalytic roles. Cu2+ and Cu+ 

coordination to the prion protein and the human copper chaperone for superoxide dismutase 

(CCS) respectively, results in conformational changes in the proteins (Kim et al., 2008). 

However, the redox activity of copper when left unchecked could potentially lead to oxidative 

stress from free-radical (reactive oxygen species) production. The damaging effect of copper 

stems from its propensity under aerobic conditions to produce the highly reactive hydroxyl 

radical which causes damage to the macromolecules via the Fenton (Cu+ + H2O2 → Cu2+ + OH- 

+ .OH) and Haber-Weiss (Cu2+ + .O2 → Cu+ + O2) reactions (Halliwell and Gutteridge, 1984; 

Hodgkinson and Petris, 2012). Oddly, copper can potently inhibit many biological processes 

as it reacts indiscriminately with the sulphur, nitrogen and oxygen atoms of a diverse spectrum 

of protein side chains (Kaplan and Maryon, 2016). Selective damage via radical formation can 

arise from copper binding at side-chains (containing O, S or N) of catalase, BSA, thyrotropin-

releasing hormone, glutamine synthetase and amyloid precursor proteins (Davies, 2016; 

Levine, 1983; Marx and Chevion, 1986; Multhaup et al., 1998; Rivett and Levine, 1990). 

Therefore, free cellular copper must be tightly regulated. In line with this, organisms have 

evolved mechanisms to keep intracellular copper content within the required threshold and 

ensure copper delivery to the target site. The human pathologies, Menkes and Wilson’s 

diseases, are directly linked to disturbed copper metabolism from the mutations of ATP7A and 

ATP7B genes, respectively (Scheiber et al., 2014). Other human pathologies like cancer, 

Alzheimer’s, Parkinson’s and Huntington’s are indirectly linked to an imbalance of copper 

metabolism (Dudzik et al., 2013; Hung et al., 2010; Millhauser, 2007; Tisato et al., 2010; Xiao 

et al., 2013). About 100 mg of copper is present in an average human adult (Kim et al., 2008). 

Most of the copper present in the blood plasma is bound to ceruloplasmin (~70%), and the rest 

is bound to albumin (~18%) and other components, but none of the copper is free (Linder, 

2001; Tapiero et al., 2003). 
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1.2.1 Copper uptake 

The processes involved in the intracellular copper utilisation including signalling, 

transport across biological membranes, delivery and insertion of copper at the targetted 

destination are regulated with a high degree of specificity (Argüello et al., 2012; Kim et al., 

2008; Turski and Thiele, 2009). Together, these processes regulate copper acquisition from the 

immediate surrounding of the cell (Nevitt et al., 2012). The high-affinity copper transport 

protein 1, Ctr1, is responsible for the bulk (~70%) of copper uptake in eukaryotic cells (Lee et 

al., 2002a), while other low-affinity divalent metal transporters contribute to the cellular 

demand for copper (~30%) (Arredondo et al., 2014; Lee et al., 2002b; Liu et al., 1997; Nevitt 

et al., 2012). High-affinity copper acquisition is triggered when the copper levels of the 

immediate surrounding of the cell are below the binding threshold of the ever-present low-

affinity metal transporters on the cell surface (Nevitt et al., 2012). 

 

 

Figure 1.3. Structural model for copper transport proteins 

Copper transport proteins (Ctr1 and Ctr2) are characterised by three transmembrane domains (TM), with the 

essential copper uptake motif, Mx3M, in the second TM. The Met-rich N-terminal domain is localised 

extracellularly, while the Cys-His cluster-containing C-terminal tail is localised intracellularly.  

 

Ctr1, an integral membrane protein (Figure 1.3), is composed of three membrane-

spanning domains, an extracellular methionine-rich N-terminal domain, a conserved Mx3M 

motif in the second transmembrane domain, and an intracellular C-terminal tail (Eisses and 

Kaplan, 2002; Wang et al., 2011). The several methionine motifs within the N-terminal 

domain, although not essential for copper transport, bind and coordinate copper to facilitate 

high-affinity transfer (Eisses and Kaplan, 2005; Puig et al., 2002). Functional studies 

demonstrated the essentiality of the Mx3M motif for copper uptake via the formation of Cu-S 
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linkages (De Feo et al., 2009; Puig et al., 2002). Copper transport relies on the oligomerisation 

of Ctr1 to a homotrimer (Figure 1.4), which forms a copper-permeable pore through which 

copper is ferried across the membrane (Aller and Unger, 2006; De Feo et al., 2009). Ctr1 is 

specific to Cu+, therefore, copper uptake is subject to a preliminary reduction of Cu2+ to Cu+ 

by the cell surface Cu2+/Fe3+ metalloreductases (Figure 1.5), Fre1 and Fre2 in yeast, and the 

Steap family metalloreductases in mammals (Georgatsou et al., 1997; Hassett and Kosman, 

1995; Martins et al., 1998; Ohgami et al., 2006; Rees and Thiele, 2007). Small copper carriers 

(SCC) in the mammalian plasma and liver are thought to be extracellular ligands from which 

copper is delivered to Ctr1 (Cabrera et al., 2008; Gray et al., 2012; Linder, 2016). The high-

affinity copper transport by Ctr1 is not ATP-dependent (Lee et al., 2002a). Prior to copper 

transport across the membrane by Ctr1 in yeast, the detection of cellular copper status is 

mediated by the reciprocal activities of the two copper-binding transcription factors, Ace1 and 

Mac1, which are activated in copper-replete and copper-deficient cells respectively (Keller et 

al., 2005; Rutherford and Bird, 2004). Under copper shock, cells show a rapid activation of 

Ace1 and a corresponding rise in Mac1 inactivation leading to accumulation of cellular copper. 

The activation of Ace1 and Mac1 results in the upregulation and downregulation, respectively, 

of copper homeostatic proteins. In mammals, the metal transcription factor 1 (MTF1) helps 

with the regulation of cellular copper content in response to starvation or repletion (Heuchel et 

al., 1994). 

 

 

Figure 1.4. Schematic of the trimeric pore of copper transport proteins 

Nine transmembrane domains from a homotrimer of Ctr1 forms a pore of stacked rings of Met, His, and Cys in 

the bilayer that participates in the transchelation – a successive chelation of Cu+ between the Met residues along 

the homotrimeric pore of Ctr1 protein during Cu+ uptake through the Ctr1 protein. Taken from Howell et al. 

(2010). 
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The second copper transport protein, Ctr2, in yeast and mammals, is structurally similar 

to Ctr1 with a high degree of sequence similarity (Rees et al., 2004; Zhou and Gitschier, 1997). 

In contrast to Ctr1, Ctr2 is a low-affinity (van den Berghe et al., 2007) vacuolar membrane 

transporter in yeast which releases copper from the intracellular stores during copper starvation 

and delivers it to different chaperones (Rees et al., 2004). The human Ctr2 has is localised to 

the intracellular organelles, lysosome and endosomes (van den Berghe et al., 2007). However, 

the main physiological role of the human Ctr2 remains unresolved (Öhrvik and Thiele, 2015). 

 

1.2.2 Intracellular copper delivery 

The intracellular handling and distribution of copper is a tightly regulated mechanism 

which keeps the undesirable redox activity of copper in check. Evidence from several studies 

has demonstrated that almost no free intracellular copper is present within a cell (Linder, 2001; 

Tapiero et al., 2003). The two cytosolic copper chaperones, copper chaperone for superoxide 

dismutase (CCS) and Antioxidant 1 copper chaperone (Atox1) (Atx1 in yeast) supply copper 

to Cu/Zn superoxide dismutase (SOD1) and membrane-bound copper-transporting P-type 

ATPases in the secretory pathway, respectively (Figure 1.5) (Field et al., 2002). Examples of 

the copper-transporting P-type ATPases (CuP-ATPase) are ATP7A and ATP7B in mammals, 

and Ccc2 in yeast. The P-type ATPases are mainly located in the terminal compartment of the 

Golgi apparatus, the trans-Golgi network. Atox1 and CCS were demonstrated to engage the 

negatively charged lipid bilayer and directly interact with the copper-bound Ctr1 (Flores and 

Unger, 2013; Pope et al., 2013). These findings support the model that copper release from 

Ctr1 is effected by protein-protein interaction between the chaperones and the transporter 

(Lutsenko, 2016). Conversely, an independent study demonstrated glutathione (GSH) to be the 

initial Cu+ acceptor after its translocation through Ctr1 (in human Ctr1), which then delivers 

copper to the chaperones from a Cu-GSH complex (Maryon et al., 2013). The 

metalloreductase, Fre6, together with Ctr2 in yeast mobilises vacuolar copper (Rees et al., 

2004). Copper is also required in the mitochondria for cytochrome c oxidase (CcO) assembly 

and SOD1 activity. The mechanism by which copper is delivered to the mitochondria is yet to 

be resolved, however, a low molecular weight carrier (L) is implicated (Cobine et al., 2004; 

2006). In a copper-depleted environment, copper is made available to critical biological 

processes from a pool of intracellular copper partly maintained by the chaperones, 

metallothioneins (MTs) (Cup1 and Crs5 in yeast), and GSH (Nevitt et al., 2012). 



20 
 

 

 

Figure 1.5. Copper homeostasis in eukaryotes 

A synopsis of copper sensing, acquisition, intracellular distribution, sequestration and mobilisation in eukaryotes. 

Both the S. cerevisiae (left) and the generic mammalian (right) models for copper homeostasis are depicted. The 

importance of these proteins to copper homeostasis are discussed in the text. Image modified from Nevitt et al. 

(2012). 
 

1.2.3 Copper delivery to the mitochondria 

Copper in the mitochondria is primarily needed for SOD1 activation and CcO assembly 

(Fontanesi et al., 2006). The mitochondrial matrix copper content is about an order of 

magnitude above the expected threshold for the activation of the CcO (Cobine et al., 2004). 

This suggests that mitochondria contain a pool of copper not associated with the copper-

dependent CcO assembly, hence, possibly serving as a copper storage organelle. This now 

leaves the question of how the mitochondrion acquires copper. As stated earlier, the mechanism 

by which copper gets to the mitochondria is not well described, however, it is mediated by four 

mitochondrial copper chaperones; Cox17, Cox11, Sco1 and Sco2. Cox17 was first identified 

in yeast as an essential component of CcO when mutant cells were unable to respire despite 

having all the CcO components (Glerum et al., 1996). Cox17 supplies copper to two inner 

mitochondrial membrane (IM)-associated copper-binding proteins (Maxfield et al., 2004), 

Sco1 and Cox11, which are responsible for the metallation of the CuA and CuB centres of Cox2 
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and Cox1 respectively (Hiser et al., 2000; Horng et al., 2004; Lode et al., 2000; Timón-Gómez 

et al., 2018). Initially, Cox17 was thought to convey copper from the cytosol into the 

mitochondrial intermembrane space (IMS) owing to its dual localisation in both compartments. 

However, Cox17 was demonstrated in experiments tethering it to the inner mitochondrial 

membrane to serve a copper chaperone role to the CcO assembly without having to leave the 

mitochondrial intermembrane space (Maxfield et al., 2004). So far, the only clue with regards 

copper entry into the mitochondria is the low molecular weight carrier (L) which is thought to 

bind copper in the cytosol and the complex (CuL) is ferried across the outer mitochondrial 

membrane (Cobine et al., 2004; 2006). Thereafter, the mitochondrial Cox17 obtains copper 

from the complex for onward supply to Cox11 and Sco1 respectively. Vest et al. (2013) 

demonstrated that the mitochondrial carrier family (MCF) protein, Pic2, supplies the pool of 

copper in the mitochondrial matrix in yeast by transporting copper as CuL complex across the 

inner mitochondrial membrane. Mrs3, an IM-associated high-affinity iron transporter was 

subsequently demonstrated in yeast to complement Pic2 in the generation of the mitochondrial 

matrix copper pool by transporting CuL across the inner mitochondrial membrane (Vest et al., 

2016). Despite the lack of evidence of a bi-directional copper transport across the inner 

mitochondrial membrane by Pic2 and Mrs3 (Baker et al., 2017; Vest et al., 2013; 2016), an 

unidentified protein mobilises copper from the matrix copper pool into the mitochondrial 

intermembrane space (Baker et al., 2017). 

 

1.2.4 Role of copper in the malaria parasite 

Copper has been shown to be important for P. falciparum in red blood cells (Asahi et 

al., 2014). The chelation of copper ions in the parasite growth medium resulted in the inhibition 

of the progression of the ring-trophozoite-schizont stages of erythrocytic development (Asahi 

et al., 2013). Similarly, when the copper-binding proteins in the P. falciparum were inhibited 

with neocuproine (a copper chelator) the parasite ceased to grow (Asahi et al., 2014). In two 

separate studies, the presence of the membrane transport proteins, CuP-ATPase and Ctr1 in P. 

falciparum (Choveaux et al., 2012; Rasoloson et al., 2004) were reported (Figure 1.6). CuP-

ATPase is expressed in all Plasmodium life cycle stages and localised in the cell to unidentified 

vesicle-like structures as shown in Figure 1.6 (Kenthirapalan et al., 2014). Gene knock-out of 

the CuP-ATPase and Ctr1 genes in P. berghei, severely affected parasite fertility and 

transmission through the mosquito vector but did not affect the exponential propagation of 

asexual blood stages (Kenthirapalan et al., 2014; 2016). The poor parasite transmission in the 
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mosquito host arising from the loss of function of the two copper transporting proteins, CuP-

ATPase and Ctr1, implied copper homeostasis in Plasmodium spp. could be targetted in 

transmission-blocking strategies (Kenthirapalan et al., 2014; 2016). The critical role of copper 

in the liver stage of P. cynomolgi was demonstrated when neocuproine treatment of hepatocytes 

showed a pronounced effect on the viability of both liver schizonts and hypnozoites (Voorberg-

van der Wel et al., 2017). Together, this evidence suggests the requirement for copper and a 

copper-homeostatic mechanism in the parasite. However, the strategy employed by the parasite 

to acquire extracellular copper is yet to be elucidated (Asahi et al., 2016). Rasoloson et al. 

(2004) demonstrated that extracellular copper is made available to the parasite following 

degradation of the host Cu/Zn superoxide dismutase in the parasite’s food vacuole. Using a 

bioinformatics approach, four putative copper metallochaperones, Cox11, Cox17, Cox19 and 

Sco1 were identified in Plasmodium falciparum (Choveaux et al., 2015). Two of the four 

metallochaperones, Cox11 and Cox19, were chosen for characterisation in this study. 

 

 

Figure 1.6. Current understanding of plasmodial copper homeostasis 

A synopsis of the current understanding of plasmodial copper homeostasis relative to the established yeast copper 

homeostasis. Both S. cerevisiae (left) and the P. falciparum (models) for copper homeostasis are depicted. P. 

falciparum Cox11 and Cox19 ( ) are characterised in this study. P. falciparum Sco1 has been identified using 

bioinformatics but has not yet been characterised. The importance of these proteins to copper homeostasis are 

discussed in the text. Leftside image modified from Nevitt et al. (2012). 
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1.3 Role of oxidative respiration in Plasmodium 

Despite glycolysis being preferred over oxidative respiration in Plasmodium spp. 

(Vander Jagt et al., 1990), all tricarboxylic acid (TCA) cycle enzymes are encoded in the 

Plasmodium genome (Gardner et al., 2002) and expressed in asexual stages (Bozdech et al., 

2003). The Plasmodium mitochondrion lacks pyruvate dehydrogenase (Foth et al., 2005), an 

enzyme that catalyses acetyl CoA production from pyruvate, thus implying a deviation from 

the canonical oxidative TCA cycle. However, isotopic labelling studies demonstrated an active 

oxidative TCA cycle with glutamine and glucose as the two primary carbon sources in P. 

falciparum (Cobbold et al., 2013; MacRae et al., 2013). Subsequently, a branched chain 

ketoacid dehydrogenase (BCKDH) was implicated in the production of acetyl CoA from 

pyruvate (Oppenheim et al., 2014).  The electrons in the form of reducing equivalents are 

channelled into the mitochondrial electron-transport chain solely for the regeneration of 

ubiquinone for pyrimidine biosynthesis, atypical of the canonical oxidative respiration in 

eukaryotes (Painter et al., 2007). To some extent, oxidative phosphorylation takes place with 

minimal contribution to the overall ATP required by the parasite (Balabaskaran Nina et al., 

2011; Uyemura et al., 2004). However, the mitochondrial electron transport chain is 

indispensable to the parasite, as the antimalarial drug, atovaquone targets the cytochrome bc1 

complex (Fry and Pudney, 1992; Mather et al., 2005).  

 

1.4 Cytochrome c oxidase (CcO) 

Cytochrome c oxidase (CcO) (also termed complex IV) is a multimeric enzyme of eleven 

in yeast or thirteen in mammals (Capaldi, 1990), nuclear and mitochondrially encoded subunits 

assembled by more than 30 accessory proteins (Tzagoloff and Dieckmann, 1990). The three 

subunits of yeast CcO constituting the catalytic core; Cox1, Cox2 and Cox3, are 

mitochondrially encoded, and the remaining subunits are nuclear-encoded proteins (Fontanesi 

et al., 2006). In Plasmodium spp., Cox1, Cox3 and Cytb are the three mitochondrially encoded 

proteins (Vaidya and Mather, 2009). The catalytic core in yeast is a complex of integral 

membrane proteins lacking significant extramembrane domains except the IMS-extending β-

barrel of Cox2 that binds soluble cytochrome c (CytC). Cox1 consists of two redox centres; i) 

a low-spin haem a centre, and ii) a heterobimetallic centre of a high-spin haem a3 and CuB. The 

CuB is a mononuclear copper site situated about 13 Å below the membrane surface (Tsukihara 

et al., 1995), which is metallated by the copper chaperone, Cox11 (Hiser et al., 2000). A third 

redox centre, CuA, is a binuclear centre formed by two copper ions within the Cox2 subunit. 
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The CuA centre is metallated by the copper metallochaperone Sco1 (Lode et al., 2000). 

Conversely, the third member of the catalytic core of CcO, Cox3, has no prosthetic groups. 

 

 

Figure 1.7. Redox-driven electron transfer and proton pumping by CcO 

A synopsis of the electron transduction along the CcO subunits. In each catalytic cycle, two molecules of water 

are produced from the reduction of an oxygen molecule by four electrons furnished by four protons. Only four of 

the eight protons are translocated across the IM per catalytic cycle. 
 

CcO is the terminal electron acceptor of oxidative respiration in eukaryotes and many 

bacteria. Oxidative respiration in aerobic organisms involves electron transfer to oxygen via a 

chain of membrane-associated protein complexes. The electron flow sustains a transmembrane 

electrochemical proton gradient that drives ATP synthesis. CcO accepts electrons from reduced 

CytC (cytc-Fe2+) (Wang et al., 1999) to catalyse the four-electron reduction of oxygen to water 

via its redox centres; haems a and a3, CuA and CuB (Figure 1.7). The CuA centre of Cox2 first 

accepts the electrons from CytC. The electrons flow to haem a of Cox1 and then the haem a3-

CuB centre where oxygen is reduced to water (Babcock and Wikström, 1992). For each 

catalytic cycle, eight protons are involved – four protons are translocated across the inner 

mitochondrial membrane while two pairs of electron from four other protons are transferred 

through CcO to reduce oxygen to water (Wikstrom, 1977).  Conversely, the terminal electron 

from CcO in Plasmodium is used for the regeneration of ubiquinone (Painter et al., 2007; 

Vaidya and Mather, 2009).
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Table 1.4. Homologues of CcO assembly factors in S. cerevisiae and P. falciparum 

Components Yeast P. falciparum PlasmoDB ID Role in yeast 

Catalytic core subunit (mtDNA encoded structural subunits) 

Cox1 + + mal_mito_2 

Catalytic core subunit Cox2* + + PF3D7_1430900 

Cox3 + + mal_mito_1 

Core protective shield (nDNA encoded structural subunits) 

Cox4 + - - 

CcO assembly and function subunits 

Cox5a + - - 

Cox5b + + PF3D7_0927800 

Cox6a + - - 

Cox6b + + PF3D7_0928000.1 

Cox7 + - - 

Cox7a + - - 

Cox8 + - - 

Expression of catalytic core subunits 

Mss116 + + PF3D7_1307300.1 Helicase required for Cox1 and Cytb intron splicing 

Component of the RNA degradosome 

Suv3 + + PF3D7_0623700.1 Stabilises the Cox1 and Cytb primary transcripts (hnRNA) 

Helicase required for Cox1 aI5β intron splicing 

Component of the RNA degradosome 

Mrs1 + - - Cox1 aI5β intron splicing 

Excision of the Cytb b13 intron 

Mne1 + - - Cox1 aI5β intron splicing 

Mss18 + - - Cox1 aI5β intron splicing 

Cox24 + - - Splicing of aI2 and aI3 Cox1 introns 

Cox1 mRNA translation 

Nam2 + + PF3D7_0828200.1 Cox1 aI4 intron splicing 

Ccm1 + - - Cox1 aI4 intron splicing 

Pet309 + - - Activation of Cox1 mRNA translation 

Mss51 + - - Activation of Cox1 mRNA translation 

Ygr021w + - - Not yet identified  

Pet111 + - - Activation of Cox2 mRNA translation 

Pet54 + - - Activation of Cox3 mRNA translation 

Cox1 aI5β intron splicing and translation 

Pet122 + - - Activation of Cox3 mRNA translation 

Pet494 + - - Activation of Cox3 mRNA translation 

Membrane insertion and processing of catalytic core subunits 

Oxa1 + + PF3D7_0828400.1 Membrane insertion of CcO subunits Cytb and ATPase proteolipid 

Cox20 + - - Cox2 chaperone 

Cox18 + - - Export of the Cox2 C-terminus to the IMS 

Mss2 + - - Export of the Cox2 C-terminus to the IMS 

Pnt1 + - - Export of the Cox2 C-terminus to the IMS 

Imp1 + - - Maturation of Cox2 precursor 

Imp2 + + PF3D7_0730400.1 Imp1 stability and activation 

Som1 + - - Component of the IMP complex 

Copper metabolism and insertion into catalytic core subunits 

Cox17 + + PF3D7_1025600 Copper delivery to Cox11 and Sco1 

Sco1 + + PF3D7_0708900 Copper delivery to the CuA site of Cox2 

Cox11 + + PF3D7_1475300 Copper delivery to the CuB site of Cox1 

Cox19 + + PF3D7_1201800 Interact with Cox11 to facilitate copper delivery to the CuB site of Cox1 

Cox23 + - - 

Copper trafficking and distribution to CcO. Mia40-dependent IMS import  
Pet191 + + PF3D7_0825600.1 

Cmc1 + + PF3D7_0729600.1 

Cmc2 + - - 

Haem A biosynthesis 

Cox10 + + PF3D7_0519300.1 Protoheme IX farnesylation 

Cox15 + + PF3D7_1435000.1 biosynthesis of haem a from haem o 

Yah1 + + PF3D7_1214600.1 Haem a biosynthesis 

Arh1 + + PF3D7_1139700.1 Haem a biosynthesis 

Assembly/unknown 

Cox16 + - - Could be involved in the merging of Cox1 and Cox2 

Pet117 + + PF3D7_1458100.1 Not yet identified 

Pet100 + - - Assembly of the Cox7, Cox8 and Cox9 intermediates 

Shy1 + - - Formation Mss51-Cox14 complex for Cox1 translation 

Cox14 + + PF3D7_1422000.1 Stability, maturation and assembly of Cox1 

Coa1 + - - Stability, maturation and assembly of Cox1 

Coa2 + - - Stability, maturation and assembly of Cox1 

Coa3 + - - Stability, maturation and assembly of Cox1 

Coa4 + - - CcO assembly and stability 

*Nuclear-encoded in P. falciparum. +; present, -; absent, CcO; cytochrome c oxidase, mtDNA; mitochondrial DNA, nDNA; nuclear DNA, 

Cytb; cytochrome b, IMS; mitochondrial intermembrane space, hnRNA; heterogenous nuclear RNA. The structure and some components of 

the table were adapted from Soto et al. (2012). Other information from this table was from; (Aurrecoechea et al., 2009; Chen et al., 2017; 

Pundir et al., 2017).  
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The orthologues of some genes encoding components of the CcO assembly in 

Plasmodium have been identified (Table 1.4) (Choveaux et al., 2015; Feagin, 1992; Gardner 

et al., 2002; Vaidya et al., 1989), and the presence of CcO confirmed in the P. berghei (Howells 

et al., 1969), P. yoelii and P. falciparum genomes (Fry and Beesley, 2009). However, only a 

few of these plasmodial orthologues have so far been characterised. Native P. berghei CcO has 

been partially purified and characterised (Krungkrai et al., 1993). 

 

1.5 Cox11 

Cox11 is a nuclear-encoded mitochondrial protein tethered to the inner mitochondrial 

membrane by a single membrane-spanning domain in eukaryotes and bacteria (Banci et al., 

2004; Carr et al., 2002; Timón-Gómez et al., 2018; Tzagoloff et al., 1990). The N- and C-

terminal domains are exposed within the mitochondrial matrix and the mitochondrial 

intermembrane space respectively (Banci et al., 2004; Carr et al., 2002; Hiser et al., 2000; 

Tzagoloff et al., 1990). Cox11 is a copper-binding protein critical for the metallation of the 

CuB centre of the Cox1 in the assembly of CcO (Hiser et al., 2000). Copper is supplied to 

Cox11 by the copper chaperone, Cox17 (Maxfield et al., 2004). Cox11 is characterised by three 

conserved cysteines within the C-terminal domain in the mitochondrial intermembrane space. 

A pair of the conserved cysteine residues are in a CFCF motif implicated in copper 

coordination, while the third cysteine is a short distance away and few residues from the 

transmembrane domain (Banci et al., 2004; Carr et al., 2002; Thompson et al., 2010). The lone 

cysteine residue by the transmembrane domain facilitates the transfer of bound Cu(I) to the 

CuB centre from the Cu(I)-Cox11 cluster (Thompson et al., 2010; Timón-Gómez et al., 2018). 

Cox11 adopts an immunoglobulin-like fold (Banci et al., 2004), and its soluble C-terminal 

domain forms a homodimer that binds one Cu(I) per monomer via thiolate bonds (Banci et al., 

2004; Carr et al., 2002). The coordinated Cu(I) is stabilised by the dimeric C-terminal domain 

structure until inserted in the CuB centre (Banci et al., 2004). Cox11 transiently interacts with 

Cox19 via its lone cysteine residue at the inner mitochondrial membrane interface to facilitate 

a vectorial metallation of CuB centre without forming a stable complex (Bode et al., 2015). 

Cox11 null yeast cells were respiratory deficient, had low levels of Cox1 devoid of a CuB centre 

with an inactive CcO (Hiser et al., 2000; Tzagoloff et al., 1990). In what seems to be an 

auxiliary function, Cox11 is required for the stable accumulation of Cox19 in the mitochondrial 

intermembrane space, while the biogenesis of Cox11 is not influenced by the Cox19 (Bode et 

al., 2015). In an attempt to identify a secondary role of Cox11, analysis of the yeast Cox11 
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gene promoter for peroxidase-responsiveness at stationary phase using the LacZ assay failed 

to establish any correlation between the expression level of Cox11 with time in culture and β-

galactosidase activity or peroxide concentration (Dubinski et al., 2018). Thus, implying Cox11 

has no functional role in the growth of the yeast cells at stationary phase. 

 

1.6 Cox19 

Cox19 is a nuclear-encoded mitochondrial protein found in eukaryotes and contains a 

twin Cx9C sequence motif, which adopts a helical hairpin structure like the copper chaperone, 

Cox17 (Arnesano et al., 2005; Rigby et al., 2007). Cox19 is characterised by a [Coiled coil 1]-

[Helix 1]-[Coiled coil 2]-[Helix 2] (CHCH) domain, where each helix contains two cysteine 

residues separated by nine amino acids. Cox19 is an essential CcO assembly accessory protein 

which is essential for the survival of yeast cells (Bode et al., 2015; Nobrega et al., 2002; Rigby 

et al., 2007). Cox19 transiently accumulates in the cytosol in yeast and humans following 

synthesis, before localising to the IMS by a membrane potential driven Mia40-dependent 

import across the mitochondrial outer membrane (Fischer et al., 2013). The Mia40 gene was 

not found in P. falciparum genome, while the sulfhydryl oxidase in P. falciparum, PfErv1 

(essential for the Mia40 shuttle in yeast and humans), did not complement the yeast Erv1 

orthologue (Eckers et al., 2013). Perhaps a yet to be identified protein is involved in shuttling 

the plasmodial IMS protein across the mitochondrial outer membrane into the IMS (Allen et 

al., 2008; Carrie and Soll, 2017). Cox19 has been shown to partition between the cytosol and 

IMS in a copper-dependent manner in fibroblast cells, where the cytosolic Cox19 level is 

proportional to the intracellular copper content (Leary et al., 2013). Cox19 was demonstrated 

to exist as a fully oxidised molecule with two disulphides (Bien et al., 2010; Fischer et al., 

2013; Rigby et al., 2007) after import into the IMS by Mia40 (Fraga et al., 2014). 

The specific role of  Cox19 in CcO assembly remains unclear. The recombinant Cox19 

protein has been shown to bind copper in a 1:1 stoichiometry via its cysteine residues, while 

the native protein binds a variable amount of copper in the IMS (Rigby et al., 2007). Thus, 

implying a possible copper-binding role in the mitochondria. However, the copper-binding role 

of Cox19 is questionable since all four cysteine residues are oxidised, and Cox19 lacks the 

Cu(I)-binding CCxC motif found in Cox17 (Rigby et al., 2007). This could be an indication of 

Cox19 possibly having a moonlighting role – a secondary role other than the suggested Cu(I) 

binding role in the CcO assembly (Leary et al., 2013). Recent studies implicate Cox19 in 

keeping the Cys111 (Cys60 in P. falciparum) in yeast Cox11 reduced (Bode et al., 2015; 
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Mansilla et al., 2018) to facilitate copper insertion at the CuB centre of Cox1 subunit 

(Thompson et al., 2010; Timón-Gómez et al., 2018). There seems to be a synergy between 

Cox11 and stable accumulation of Cox19 in the IMS (Bode et al., 2015). The buildup of Cox19 

in the cytosol was demonstrated to be a signal for copper overload, potentially regulating 

copper efflux from the ATP7A copper-transporting ATPase of the trans-Golgi network  (Leary 

et al., 2013). Cox19 null yeast cells were more susceptible to oxidative damage than the wild-

type strains (Bode et al., 2015) due to copper reactivity. Yeast Cox19 mRNA was recently 

demonstrated to be directly regulated in response to copper availability by a nonsense-mediated 

mRNA decay (NMD) pathway (Murtha et al., 2018; Peccarelli et al., 2016), a pathway 

responsible for degrading aberrant mRNAs (Celik et al., 2017; Guan et al., 2006; He et al., 

2003). The regulatory action of the NMD pathway on yeast Cox19 mRNA is facilitated by an 

atypically long 3’-untranslated region (3’-UTR) (Peccarelli et al., 2016). Cox19 mRNA 

accumulates under high copper conditions in NMD mutant cells compared to the wild-type 

cells, further suggesting a role of Cox19 in copper homeostasis (Murtha et al., 2018). Cox19 

like most of the mitochondrial intermembrane space proteins was recently demonstrated to be 

degraded in wild-type yeast cells by the ubiquitin-proteasome system but remained stable in 

mutant cells lacking the proteasomal function (Kowalski et al., 2018). 

 

1.7 The aims and objectives of the current study 

This study sought to contribute to the understanding of the plasmodial copper 

homeostasis by identifying and characterising two novel copper metallochaperones. The study 

addressed the following: 

 

1) The genes coding for copper metallochaperones in Plasmodium spp., Cox11 and 

Cox19, were identified and characterised using bioinformatics tools. 

2) The genes for two P. falciparum copper metallochaperones, Cox11 and Cox19, were 

cloned, recombinantly expressed and polyclonal antibodies against the recombinant 

proteins raised in chickens. 

3) The copper binding abilities of P. falciparum Cox11 and Cox19 copper 

metallochaperones, in vitro and in vivo were tested using; the bicinchoninic acid release 

assay, the ascorbic acid oxidation assay, atomic absorption spectroscopy, differential 

scanning fluorimetry, and assessing the influence of the copper chaperones on the 

growth of E. coli host cells expressing them in the presence of toxic levels of copper. 
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4) The copper binding motifs of P. falciparum Cox11 were assessed by mutational studies 

using site-directed mutagenesis.
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Chapter 2 

Materials and Methods 

 

2.1 Introduction 

This chapter describes the general materials and methods used for bioinformatics, 

parasitological, molecular, immunochemical and biochemical techniques in this study. 

 

2.2 Equipment  

The following the equipment were purchased from Bio-Rad (California, USA): T100™ 

Thermal cycler, Basic Powerpac™, Miniprotean®3 system with 1 mm spacer; Thermo Scientific™ 

NanoDrop 2000 from Thermo Fisher Scientific (Massachusetts, USA); PCR Rotorgene 6000 from 

Corbett Research (Massachusetts, USA). BG-subMINI horizontal electrophoresis from 

Baygenebiotech (China); TEZZ Mighty Small Transphor Unit from Hoefer Inc. (California, USA); 

VersaMax™ ELISA plate reader from Molecular Devices Corporation (California, USA); Minis 

Pro DNR Bio-imaging Systems (Israel); Syngene G:Box system (UK). The centrifuges: Avanti™ 

J-26 XPI and Allegra™ X-22R were purchased from Beckman Coulter (California, USA); 

Virsonic™ cell disruptor from VirTis (New York, USA); Micro Tube Peristaltic pump MP-3 from 

EYELA Tokyo Rikakikai Co. Ltd. (Tokyo, Japan); Orbital shaking incubator from New 

Brunswick Scientific (New Jersey, USA); UV-1800 Shimadzu spectrophotometer from Shimadzu 

Corporation (Kyoto, Japan); Water bath from GFL (Burgwedel, Germany); benchtop orbital 

shaker and Spectrafuge bench top centrifuge from Labnet International Inc. (USA); weigh balance 

from Denver Instruments (USA); pH meter from HANNA instruments; magnetic stirrers from 

Velp Scientifica (Europe); Agilent Varian AA280FS was purchased from Agilent (California, 

USA).  

 

2.3 Bioinformatics 

This section describes the bioinformatics tools employed in the identification and structural 

characterisation of the two Plasmodium falciparum putative copper chaperones. 
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2.3.1 Sequence identification and characterisation 

The need for copper by Plasmodium has been established by the identification of copper-

requiring protein orthologues in the P. falciparum genome (Choveaux et al., 2015; Gardner et al., 

2002). Herein, the in silico analysis of two of eleven copper-requiring protein orthologues, putative 

Cox11 and Cox19 are described. 

 

Cox11 and Cox19 

From the P. falciparum Cox11 (PF3D7_1475300) and Cox19 (PF3D7_1201800) 

orthologues, similar orthologues of both proteins in eight other Plasmodium spp. were identified 

by the Basic Local Alignment Search Tool for proteins (BLASTp) search of the PlasmoDB site 

(www.plasmodb.org/). Plasmodium spp. Cox11 nucleotide sequences were aligned with five 

characterised Cox11 sequences: Homo sapiens (Accession No. NP_004366.1), Mus musculus 

(Accession No. NP_950173.1), Saccharomyces cerevisiae (Accession No. NP_015193.1), 

Arabidopsis thaliana (Accession No. NP_171743.1) and Sinorhizobium meliloti (GenBank: 

KKA13892.1) obtained from NCBI (ncbi.nlm.nih.gov) and aligned using Clustal Omega 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). The single transmembrane region of the Cox11 

protein sequence was identified using the TMHMM 2.0 program 

(http://www.cbs.dtu.dk/services/TMHMM/). As with Cox11, Cox19 orthologues in eight other 

Plasmodium spp. were identified by the BLASTp search of PlasmoDB site (www.plasmodb.org/). 

The sequence identity of the Plasmodium spp. Cox19 nucleotide sequences to five characterised 

Cox19 sequences from NCBI (ncbi.nlm.nih.gov) was assessed by sequence alignment, using 

Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The five characterised nucleotide 

sequences obtained from NCBI (ncbi.nlm.nih.gov) were: Homo sapiens (Accession No. 

NP_932097.1), Mus musculus (Accession No. NP_001243736.1), Gallus gallus (Accession No. 

NP_001243736.1), Arabidopsis thaliana (Accession No. NP_564879.1) and Saccharomyces 

cerevisiae (GenBank: GAX71665.1). The characteristic [Coiled coil1]-[Helix 1]-[Coiled coil 2]-

[Helix 2] (CHCH) domain feature in Cox19 was verified in Plasmodium sequence using the 

conserved domain search tool (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).  

 A query for both plasmodial Cox11 and Cox19 orthologues for the parasite-specific signal 

peptide was made on PlasmoAP (http://v4-4.plasmodb.org/restricted/PlasmoAPcgi.shtml) and 

iSMP-Grey (http://www.jci-bioinfo.cn/iSMP-Grey) servers. The sequences of both Cox11 and 

http://www.plasmodb.org/
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.plasmodb.org/
http://www.ebi.ac.uk/Tools/msa/clustalo/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://v4-4.plasmodb.org/restricted/PlasmoAPcgi.shtml
http://www.jci-bioinfo.cn/iSMP-Grey
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Cox19 orthologues were screened for the presence of ubiquitylation and acetylation post-

translational modification sites using the UbiProber (http://bioinfo.ncu.edu.cn/UbiProber.aspx) 

and GPS-PAIL 2.0 (http://pail.biocuckoo.org/online.php) online servers. 

 

2.3.2 Homology modelling 

Homology models of the P. falciparum Cox11 (Pf3D7_1475300) and Cox19 

(Pf3D7_1201800) sequences were constructed using NMR-solved structures of Sinorhizobium 

meliloti Cox11 (1SO9) and Homo sapiens Mia40 (2K3J) templates respectively. Each of these 

templates was used to model the malaria protein using the Swiss-Pdb DeepView program (Guex 

et al., 2009). 

 

2.3.3 Predict7™ 

The Cox11 copper binding site peptide sequence with 90% conservation in amino acid 

composition in Plasmodium was identified using Predict7™ (Cármenes et al., 1989). Predict7™ 

analyses amino acid sequences based on hydrophilicity, surface probability, antigenicity, and 

flexibility to identify immunogenic peptide sequences for antibody production.  

 

2.4 Propagation and cryopreservation of P. berghei parasites in BALB/c mice  

Parasites were propagated in male BALB/c mice by intraperitoneal injection of the parasite 

stabilate (1 x 107 parasitised mouse red blood cells) (Burns et al., 1989; Suckow et al., 2001). 

Parasitaemia was monitored daily on a Giemsa-stained thin blood smear of tail blood (Warhurst 

and Williams, 1996). The number of infected RBC was expressed as a percentage of total RBC. 

Once parasitemia reached a suitable level, mice were bled, and the blood collected in a heparinised 

vacuum test tube. Parasite-infected red blood cells were preserved in 10% glycerol-PBS at 1 x 107 

parasitised-RBC (pRBC) per 100 µl of stabilate. The stabilate was labelled, flash-frozen and 

immediately stored in a liquid nitrogen cryo-tank. 

 

2.5 Generation of expression constructs 

This section describes the techniques employed to generate recombinant gene fusion 

constructs of P. falciparum Cox11 and Cox19. 

http://bioinfo.ncu.edu.cn/UbiProber.aspx
http://pail.biocuckoo.org/online.php
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2.5.1 Reagents 

Agarose, T4 DNA ligase, 10x T4 DNA ligase buffer, DNA MassRuler™, 6X MassRuler 

DNA Loading Dye, 10 mM dNTP mix, Sal1, PstI, Buffer O™, shrimp alkaline phosphatase (SAP), 

AluI, Platinum™ Taq DNA polymerase High fidelity, 10x high fidelity buffer, 50 mM MgSO4, 

GeneJET™ Plasmid Miniprep Kit, GeneJET™ Gel Extraction Kit, 5-bromo-4-chloro-3-indolyl-β-

D-galactopyranoside (X-gal) and unstained protein molecular weight marker ranging from 14.4 to 

116 kDa were purchased from Fermentas (Vilinius, Lithuania). pGEM®-T-Easy Cloning vector 

was purchased from Promega (Madison, WI, USA). Ethidium bromide (EtBr) and isopropyl-β-D-

thiogalactopyranoside (IPTG) were purchased from Sigma-Aldrich-Fluka (Steinheim, Germany). 

The Zymo Research Clean and Concentrator™ Kit was purchased from Zymo Research (Orange, 

CA, USA). The following molecular biology reagents were purchased from Solis Biodyne (Tartu, 

Estonia): 10x PCR buffer (MgCl2 and detergent-free), PCR MgCl2 stock solution (25 mM) and 

FIREpol® Taq polymerase. The pMal-c2x expression system, Q5® High fidelity DNA polymerase, 

5x Q5 reaction buffer, 5x Q5 High GC enhancer and Quick-Load® 100 bp DNA Ladder purchased 

from New England Biolabs (Massachusetts, USA). Tryptone, bacteriological agar, yeast extract, 

D(+) glucose anhydrous, magnesium chloride hexahydrate, magnesium sulphate, and calcium 

chloride were from Merck (Darmstadt, Germany). All oligonucleotide primers used in this study 

were synthesised by the Molecular and Cell Biology synthetic DNA unit at the University of Cape 

Town (Cape Town, South Africa). The Escherichia coli host cells: BL21 and JM109 glycerol 

stocks purchased from Novagen (Darmstadt, Germany). Bovine serum albumin (BSA) purchased 

from Roche (Mannheim, Germany). 

 

2.5.2 Agarose gel electrophoresis 

The purity of the isolated genomic and plasmid DNA, PCR amplicons, or restriction 

digestion products were analyzed on agarose gels. A 1 or 3% (w/v) agarose (0.6 or 1.8 g agarose 

respectively) in TAE buffer (2 M Tris; 50 mM EDTA; 0.95 M glacial acetic acid; pH 8.0) was 

heated until dissolved. Once the solution had cooled to ~45oC, EtBr (1% (w/v) 0.5 µg/ml) was 

added. The molten agarose was poured and allowed to set in an assembled gel cassette with a comb 

in place. The cassette was placed in the BG-subMINI horizontal electrophoresis system containing 

TAE buffer. Samples were prepared in sample loading buffer (0.25% (w/v) bromophenol blue and 
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40% (w/v) sucrose in TAE buffer) and loaded into the wells. The gels were run at 70 V for 45 min, 

and images captured under UV light using a Syngene G:Box system. The sizes of the DNA bands 

(bp) of interest were extrapolated from a graph of relative distance travelled from the loading well 

to log size of DNA standards (bp) (DNA MassRuler™, Fermentas)  

 

2.5.3 Isolation of Plasmodium falciparum genomic DNA (gDNA) 

The P. falciparum genomic DNA (gDNA) was isolated using the Fermentas™ DNA 

Purification Kit as per manufacturer’s instruction. The yield and purity of DNA were assessed by 

spectrophotometry and on 0.5% (w/v) agarose electrophoresis gel. The isolated P. falciparum 

genomic DNA (gDNA) served as the DNA template for the PCR-amplification of the PfCox11 

and the PfCox19 sequences. 

 

2.5.4 Primers for rPfCox11Ct and rPfCox19 

Primers amplifying the sequences of the PfCox11 (PF3D7_1475300) and the PfCox19 

(PF3D7_1201800) genes were designed with the Primer3 software (http://bioinfo.ut.ee/primer3-

0.4.0/primer3/). The primers included additional restriction endonuclease sites to facilitate 

subsequent subcloning, and a stop codon was added to the 3’ end to exclude the β-galactosidase α 

fragment. Primer characteristics are listed in Table 2.2. 

 

2.5.5 Primers for rPfCox11Ct mutant clones 

Overlap extension PCR (Heckman and Pease, 2007; Ho et al., 1989) was used to introduce 

the desired point mutations in the recombinant plasmid (pMal-c2x-rPfCox11Ct). A set of four 

primers: two internal and two flanking (external), was required for each mutation. These primers 

were designed with the aid of PrimerX software (http://www.bioinformatics.org/primerx/). The two 

internal primers are complementary and contain the desired mutant codon with overlapping 

nucleotides sequence. The mutant codon is flanked on both 5’ and 3’ ends with a minimum of nine 

nucleotides. The two external primers contained a minimum of eighteen pMal-c2x expression 

vector nucleotides flanking the PfCox11Ct gene. The primers and their characteristics are listed in 

Table 2.2. 

 

http://www.bioinformatics.org/primerx/
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2.5.6 Polymerase chain reaction (PCR) 

All PCR reactions were performed in a 20 µl reaction volume with the T100™ Thermal 

cycler. Unless otherwise stated the PCR reaction components were mixed (Table 2.1) and the PCR 

reactions were run. DNA inserts cloned into TA cloning vector (pGEM®-T-Easy), were amplified 

from the P. falciparum gDNA with Platinum™ Taq DNA polymerase High fidelity. The 

identification of recombinant plasmids by colony PCR was carried out with FIREpol® Taq 

polymerase. 

 

Table 2.1. Components of a PCR reaction mixture 

Reaction component Concentration 

5x PCR buffer 1x 

MgSO4 / MgCl2
 2 mM / 2.5 mM 

dNTP mix  0.2 mM (each) 

Forward primer 0.5 µM 

Reverse primer 0.5 µM 

Sterile dH20 - 

Template DNA 1-100 ng 

DNA polymerase* 1 U 

*Taq or Phusion DNA polymerases. 

PCR reaction volume was 20 µl. 

 

The PCR reaction conditions are represented in Figure 2.1. The annealing temperatures used 

for each reaction were determined by the melting temperatures for the set of primers used (Table 

2.2). The PCR products were resolved on a 1% (w/v) agarose gel and images captured under UV 

light using the Syngene G:Box system. 
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Table 2.2. Primer sequences used for PCR amplifications 

Primer Sequence 
% 

GC 

Tm 

(oC) 

Annealing 

temp. (oC) Application 

rPfCox11Ct-Fwda 

rPfCox11Ct-Revb 

cc GTC GAC CAA TTA TTT TGT CAA TCC ACA GG 

tt CTG CAG TCA GGA AAT AGC CCT TGA GAG G 

45 

60 

70.9 

72.1 65 

PCR-amplification of the carboxy-terminus of P. 

falciparum Cox11. Expected size is 505 bp. 

 

rPfCox11CtC60A-F1 

rPfCox11CtC60A-R1 

rPfCox11CtC60A-f2
c 

rPfCox11CtC60A-r2
c 

GAA AGA CGC GCA GAC TAA TTC GAG CTC 

GGC CAG TGC CAA GCT TGC CTG CAG 

GTC GAC CAA TTA TTT GCG CAA TCC ACA GG 

CC TGT GGA TTG CGC AAA TAA TTG GTC GAC 

52 

67 

48 

48 

69.9 

72.2 

70.3 

70.3 

65 

Site-directed mutagenesis in a two-stage PCR 

step. Amplification of a C60A mutant of P. 

falciparum Cox11. The expected sizes of the 

lagging and leading fragments from the first PCR 

are 129 bp and 519 bp respectively. The 

expected size of the full-length fragment from the 

second PCR is 648 bp. 

 

 

rPfCox11CtC157A-F1 

rPfCox11CtC157A-R1 

rPfCox11CtC157A-f2
c 

rPfCox11CtC157A-r2
c 

GAA TTC GGA TCC TCT AGA GTC 

TGC CAA GCT TGC CTG CAG 

CAA TGT TTT GCC TTT GAA GAA C 

G TTC TTC AAA GGC AAA ACA TTG 

48 

61 

36 

36 

59.5 

58.4 

56.4 

56.4 

52.4 

Site-directed mutagenesis in a two-stage PCR 

step. Amplification of a C157A mutant of P. 

falciparum Cox11. The expected sizes of the 

lagging and leading fragments from the first PCR 

are 337 bp and 210 bp respectively. The 

expected size of the full-length fragment from the 

second PCR is 547 bp. 

 

 

rPfCox19-Fwda 

rPfCox19-Revb 

at GTC GAC AGG CAG CTT GTT AAG AAG CC 

at CTG CAG TCA CAG CTA AAT AAC CCT CAG C 

50 

47 

70.1 

70.8 

65 PCR-amplification of the P. falciparum Cox19. 

Expected size is 575 bp 

  

a bold bases are Sal1 restriction sites 
b bold bases are Pst1 restriction sites 
c underlined bases are degenerate alanine codons 
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Figure 2.1. PCR conditions 

The annealing temperature “a” used in each run was determined by the melting temperatures (Tm) of each set of 

primers. 

 

All PCR products, except for colony PCR, were cleaned and concentrated with Zymo 

Research Clean and Concentrator™ Kit as per manufacturer’s instructions. The DNA bound to 

the agarose in the mini-spin column was washed with ethanol and subsequently eluted in TE 

buffer (10 mM Tris; 1 mM EDTA; pH 8.0). The cleaned DNA was quantified with Thermo 

Scientific™ NanoDrop 2000 at 260 nm. The PCR products were further confirmed by AluI 

restriction digestion before sequencing (section 2.5.12). 

 

2.5.7 Ligation of DNA fragments by T4 DNA ligase 

Ligation is a molecular technique used in joining two nucleotide fragments via 

phosphodiester bond between the 3’-hydroxyl of one DNA strand with the 5’-phosphoryl of 

another. Ligation is an energy driven process catalysed by T4 DNA ligase. PCR products or 

excised genomic DNA fragments are ligated into a plasmid vector for downstream molecular 

applications. 

 

2.5.7.1 Ligation of purified DNA fragments into the cloning vector 

Both the pGEM®-T Easy and pTZ57R/T cloning vectors were employed in the 

propagation of the recombinant genes in this study. The pGEM®-T Easy and pTZ57R/T (Figure 

2.2) are linearised, high copy number vectors with 3’-terminal thymidines at both ends. The 

efficiency of ligation of PCR products amplified by a Taq polymerase, to the vector DNA is 

enhanced by the T-overhangs that prevent recircularization of the vector. The multiple cloning 

regions are flanked by T7 and SP6 RNA polymerase promoters within the α-peptide coding 
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region of β-galactosidase. The α-peptide is inactivated upon insertion of a foreign DNA, 

thereby allowing the identification of recombinants by blue/white colony screening. 

 The cleaned P. falciparum Cox11 and Cox19 PCR-amplicons (section 2.5.6), were 

ligated into the pGEM®-T Easy and pTZ57R/T vectors respectively in a ratio of 3:1. The 

ligation reaction mixture contained: 1x ligation buffer; 50 ng cloning vector; 25 ng gene insert 

and 1U T4 DNA ligase made up to 10 µl with sterile dH2O. The reaction was kept at 4oC 

overnight (16 h). Subsequently, recombinant plasmids were propagated in JM109 E. coli host 

(section 2.5.8), selected, purified (section 2.5.9) and digested (section 2.5.10) with SalI and 

PstI respectively. The resulting sticky ended gene fragments were ligated with the pMal-c2x 

expression vector digested with SalI and PstI restriction enzymes. 
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Figure 2.2. Map of the pGEM®-T Easy and pTZ57R/T cloning vectors 

Features of (A) pGEM®-T Easy, a 3015 bp vector, and (B) pTZ57R/T, a 2886 bp vector. The features include a 

gene coding for β-galactosidase (LacZ); ampicillin resistance gene (Ampr or bla (Apr)); RNA polymerase 

promoters (T7 and SP6); multiple cloning sites ApaI – NsiI (pGEM® T Easy) and EcoRI – HindIII (pTZ57R/T); 

T-overhangs for ligation of the insert. (Adapted from the Promega pGEM®-T and pGEM®-T Easy vector systems 

technical manual and Thermo Scientific InsTAclone PCR Cloning Kit product information manual). 
 

 

A 

B 
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2.5.7.2 Ligation of DNA fragments into the pMal-c2x expression vector 

The pMal-c2x is a 6646 bp expression vector containing the malE gene of E. coli which 

encodes the maltose-binding protein gene sequence (MBP) (Figure 2.3). The malE gene in 

pMal-c2x is lacking its periplasm-specific signal sequence, leading to the cytoplasmic 

expression of MBP fusion proteins. The vector uses the strong “tac” promoter and malE 

translation signal to give a high-level of protein expression. DNA inserts are cloned 

downstream from the malE gene inactivating the β-galactosidase’s α-peptide. The gene 

fragments (section 2.5.10) of the rPfCox11Ct clones and rPfCox19 were ligated ratio 3:1 into 

pMal-c2x digested with the SalI and PstI. The ligation reaction mixture contained: 1x ligation 

buffer; 50 ng digested pMal-c2x; 11.4 ng rPfCox11Ct (for each clone) insert or 13 ng 

rPfCox19; 1U T4 DNA ligase and made up to 10 µl with sterile dH2O. The reaction was kept 

at 4oC overnight (16 h). The recombinant plasmids were transformed (section 2.5.8) into E. 

coli BL21 host cells. The pMal-c2x constructs of rPfCox11Ct and rPfCox19 are referred to as 

pMal-c2x-rPfCox11Ct and pMal-c2x-rPfCox19 respectively. 

 

 

Figure 2.3. Map of the pMal-2x expression vector 

Features of pMal-2x expression vectors and include a gene coding for β-galactosidase (LacZ); ampicillin 

resistance gene (Ampr); maltose-binding protein gene (malE); tac promoter (Ptac); multiple cloning sites 

(polylinker). (Adapted from NEB pMal™ protein fusion and purification system manual). 

 

2.5.8 Transformation of competent E. coli host cells with plasmid DNA 

The recombinant plasmids generated above were transformed into competent E. coli 

JM109 or BL21 host cells (Cohen et al., 1972; Sambrook et al., 1989). A single E. coli colony 

was grown overnight (16 h) in 2xYT media (1.6% (w/v) tryptone, 1% (w/v) yeast extract, 
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85 mM NaCl, 11 mM glucose) at 37oC, 200 rpm. A 1:100 dilution of the overnight culture was 

made in 50 ml 2xYT media and grown at 37oC, 200 rpm until an optical density measured at 

600 nm (OD600) of between 0.3-0.4 was reached. The culture was cooled on ice for 10 min. 

Thereafter, 45 ml of the culture was transferred into ice-cold tubes and pelleted (4500 x g, 4oC, 

10 min) in a pre-cooled centrifuge (Allegra™ X-22R). The cells were resuspended in 20 ml ice-

cold sterile 100 mM CaCl2 and pelleted again (4500 x g, 4oC, 10 min). The resulting cells were 

resuspended in 1 ml of ice-cold sterile 100 mM CaCl2 and kept on ice. The competent cells 

(50 µl) were added to the ligation mix (5 µl), incubated on ice for 30 min and then heat shocked 

at 42oC for 20 s. The transformed cells were immediately incubated on ice for 5 min. The cells 

were incubated in pre-warmed 250 µl SOC media (2% (w/v) tryptone, 0.5% (w/v) yeast extract, 

10 mM NaCl, 2.5 mM MgCl2, 10 mM MgSO4 and 20 mM glucose) at 37oC, 200 rpm for an 

hour. Thereafter, the cells (100 µl) were plated on pre-warmed 2xYT agar plates (1.6% (w/v) 

tryptone, 1% (w/v) yeast extract, 85 mM NaCl, 11 mM glucose, 1.5% (w/v) bacteriological 

agar, 100 µg/ml ampicillin) and incubated overnight at 37oC. For transformations with 

recombinant pGEM®-T Easy plasmid, the 2xYT agar plates, in addition, contain 0.16 mM 

IPTG and 32 µg/ml X-gal for the blue/white colony selection. The recombinant pGEM®-T 

Easy and pMal-c2x plasmids were transformed into E. coli JM109 and E. coli (BL21) hosts 

cells respectively. 

 Single transformed colonies were picked and incubated overnight (16 h) in 5ml 2xYT 

media containing 100 µg/ml ampicillin at 37oC, 200 rpm. Glycerol stocks of the transformed 

cells were prepared in glycerol (7.5% (v/v) and kept at -80oC. 

 To confirm the identity of recombinant clones, plasmids were isolated (section 2.5.9) 

and colony PCR performed with the appropriate gene primers (Table 2.2). The recombinant 

plasmids were sequenced (section 2.5.12) and aligned with the sequences obtained from the 

PlasmoDB site (www.plasmodb.org/). 

 

2.5.9 Plasmid DNA isolation 

A single E. coli colony with the plasmid of interest was grown overnight (16 h) in 5 ml 

2xYT containing ampicillin (100 µg/ml) at 37oC, 200 rpm. The cells were pelleted in a 

centrifuge (12000 x g, RT, 1 min), and the plasmid DNA isolated using the GeneJET™ Plasmid 

Miniprep Kit as per manufacturer’s instructions. 

 

http://www.plasmodb.org/
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2.5.10  Restriction digestion of plasmids 

The purified plasmid (section 2.5.9) was digested in a 30 µl reaction volume containing: 

1x buffer O; 5 U SalI; 5 U PstI; 1-1.5 µg plasmid and incubated overnight (16 h at 37oC). The 

reaction was stopped by incubation at 65oC for 20 min. For pMal-c2x digestion, the 5’-

phosphoryl group was removed by adding 0.5 U shrimp alkaline phosphatase (SAP) to the 

digestion mix and incubated at 37oC, 20 min, and the reaction stopped by incubation at 75oC 

for 5 min. The digested products were electrophoresed on agarose gel electrophoresis and 

viewed in the presence of crystal violet under white light. The products were excised from the 

gel and gel purified with GeneJET™ Gel Extraction Kit as per manufacturer’s instructions. The 

cleaned DNA was quantified with the Thermo Scientific™ NanoDrop 2000. 

 

2.5.11  Site-directed mutagenesis by overlap extension polymerase chain reaction 

Two of the three conserved cysteines (Cys60 and Cys157) were investigated for their 

possible roles in copper binding in rPfCox11Ct. Either Cys60 and Cys157 or both cysteines 

were mutated to alanine by employing the method earlier outlined in two separate studies 

(Heckman and Pease, 2007; Ho et al., 1989) with some modifications. The cysteine codon 

(TGT) was mutated to two degenerate alanine codons: GCG or GCC at positions C60 and C157 

respectively. The mutations were designated as C60A, C157A, and C60A-C157A for the 

double mutant respectively. 

Overlap extension PCR (Figure 2.4) was used to introduce a point mutation by site-

directed mutagenesis in rPfCox11Ct. Two PCRs: first and second PCR with similar reaction 

conditions (section 2.5.6) were required for the reactions. A Phusion (Q5® High fidelity) DNA 

polymerase was used. In the first PCR, two pairs of primers: a flanking forward (F1) with an 

internal reverse (r2), and internal forward (f2) with flanking reverse (R1) primers were used. To 

construct C60A and C157A recombinant plasmids, the pMal-c2x-rPfCox11Ct plasmid DNA 

served as template in the first PCR generating two contiguous gene fragments. The C60A 

plasmid DNA served as a template for C60A-C157A mutagenesis. In the leading and lagging 

fragments, the mutant codon was overlapped with nucleotides at the 3’ and 5’ ends 

respectively. In the second PCR reaction, F1 and R1 primers were used to amplify the entire 

rPfCox11Ct with flanking vector nucleotides (pMal-c2x). An equimolar concentration of the 

two fragments served as DNA template in the second PCR. Samples of the first and second 

PCR products were resolved on a 3% (w/v) agarose gel respectively. Images were captured 

under UV light using Syngene G:Box system. Both PCR products were then cleaned and 
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concentrated with Zymo Research Clean and Concentrator™ Kit as per manufacturer’s 

instructions. The cleaned products were quantified with Thermo Scientific™ NanoDrop 2000 

at 260 nm. 

 The amplified product from the second PCR was digested with Sal1 and Pst1 (section 

2.5.10) and ligated (section 2.5.7.2) into the pMal-c2x vector digested with Sal1 and Pst1. 

 

 

Figure 2.4. Overlap extension PCR 

A schematic of site-directed mutagenesis by overlap extension PCR. The first PCR produces two contiguous 

fragments with flanking pMal-c2x expression vector nucleotide on both ends of the gene. The second PCR 

produces the entire gene flanked by pMal-c2x nucleotide sequences. Open horizontal bars (pMal-c2x nucleotide 

sequence); solid bars (rPfCox11Ct coding sequence); hatched bars (contiguous nucleotides); black circle (point 

mutation); X (lagging fragment) and Y (leading fragment). 

 

2.5.12   Sequencing 

The recombinant pMal-c2x-rPfCox11Ct and pMal-c2x-rPfCox19 plasmid sequences 

were confirmed by sequencing (Central Analytical Facility, Stellenbosch University). For all 

rPfCox11Ct clones, the primers rPfCox11Ctc60A-F1 and rPfCox11Ctc60A-R1 were used for the 

sequencing reaction, while the primers for rPfCox19 listed on Table 2.2 were used for the 

sequencing of the pMal-c2x-rPfCox19 plasmid. 

 

2.6 Recombinant protein expression and purification 

The techniques used in the recombinant expression, purification and partial 

characterisation of PfCox11Ct clones and PfCox19 are described in this section. 
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2.6.1 Reagents 

The following were purchased from Merck (Darmstadt, Germany): Tryptone, 

bacteriological agar, yeast extract, D(+) glucose anhydrous, glycerol, dipotassium hydrogen 

orthophosphate, potassium chloride, sodium hydroxide, sodium chloride, disodium hydrogen 

orthophosphate anhydrous, maltose, and an Amicon® Ultra-15 Centrifugal Filter Units (10 kDa 

MWCO). The following were purchased from Sigma-Aldrich-Fluka (Steinheim, Germany): 

Bradford reagent, N,N’-methylenebisacrylamide, bromophenol blue, β-mercaptoethanol, 

acrylamide, glycine, Coomassie Brilliant Blue R-250 as well as G-250, sodium dodecyl 

sulphate (SDS), Tris, ammonium persulfate, ovalbumin, Sephacryl S200, N,N’,N’,N’-

tetramethylethylenediamine (TEMED), SYPRO® Orange, ampicillin, isopropyl-β-D-

thiogalactopyranoside (IPTG), acid (EDTA), copper(II) chloride dihydrate and L(+)-ascorbic 

acid. Amylose resin was purchased from New England Biolabs (Massachusetts, USA). Snake 

skin™ dialysis membrane (10 kDa MWCO) was purchased from Pierce Perbio Science 

(Erembodegem, Belgium). 0.22 and 0.45 µm syringe filters were from PALL Life Sciences 

(Ann Arbor, MI, USA). 

 

2.6.2 Expression of recombinant proteins 

All recombinant proteins were expressed as MBP-fusion proteins. Unless otherwise 

stated, bacteria cultures were grown in 2xYT media (30oC, 200 rpm) containing ampicillin 

(100 µg/ml) in culture volumes not exceeding 20% of the flask volume. A single bacterial 

colony was grown overnight (16 h) in 2xYT media. A 1:100 dilution of the overnight culture 

was made in 400 ml 2xYT media and grown to OD600 between 0.5-0.6. Recombinant protein 

expression was induced for 4 h with 0.5 mM IPTG and the culture had additional ampicillin 

(100 µg/ml) added. The bacterial cells were pelleted by centrifugation (4000 x g, 4oC, 10 min) 

in the Avanti™ J-26 XPI (Rotor, JLA-10.500) and the supernatant discarded. 

 

2.6.3 Affinity purification of recombinant proteins 

All recombinant proteins in lysed bacterial culture in this study were affinity purified 

with an amylose resin. Bacterial pellets (section 2.6.2) were resuspended in 10% of the original 

culture volume in column buffer (20 mM Tris, 200 mM NaCl, 1 mM EDTA, pH 7.4). Cell 

suspensions were lysed with nine freeze-thaw cycles (-196oC and 37oC) followed by sonication 

on ice (3 cycles, 30 s/burst, 30 s between bursts). The cell lysates were then centrifuged 

(12000 x g, 4oC, 25 min). The supernatant was added to a 1 ml amylose resin pre-equilibrated 
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with 10 ml column buffer. The resin was washed with column buffer until an OD280 absorbance 

of ≤ 0.02 was observed and the resin was washed with two more column volumes of buffer 

(100 mM NaH2PO4, 200 mM NaCl, pH 7.4). Recombinant proteins were eluted with elution 

buffer (100 mM NaH2PO4, 200 mM NaCl, 0.3 mM maltose, pH 7.4) and 1 ml fractions were 

collected. Protein fractions were pooled and concentrated with an Amicon® Ultra-15 

Centrifugal Filter Units (10 kDa MWCO) by centrifugation (5000 x g, 4oC, at 10 min 

intervals). The proteins were dialysed at 4oC against three buffer changes (16-2-2 h) in an 

appropriate buffer (200 x protein volume). Finally, the dialysed protein sample was quantified 

by the Bradford method (section 2.6.4) and stored at -20oC. 

 

2.6.4 Bradford protein assay 

Protein samples were quantified using the Bradford assay from triplicate readings using 

BSA as the standard protein (Bradford, 1976; Goldring, 2015). Refer to the image (Figure 2.5). 

Protein samples were also quantified using absorbance at 280 nm. 

 

 

Figure 2.5. Bradford calibration curve 

All values are average values of triplicate readings with standard deviations shown. 

 

2.6.5 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

The purity and size of protein samples were assessed using SDS-PAGE as described by 

Laemmli (1970). Protein samples were resolved on a 12.5% separating gel and 4% stacking 

gel prepared according to Table 2.3. The reagents used in preparing the SDS-PAGE gel were: 

monomer solution (4.1 M acrylamide, 52 mM N,N’-methylenebisacrylamide); separating gel 

buffer (1.5 M Tris, pH 8.8) and stacking gel buffer (0.5 M Tris, pH 6.8). The solution was 

mixed (Table 2.3) and poured into an assembled Bio-Rad Miniprotean®3 gel-casting cassettes 
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and overlaid with dH2O. The water was decanted, and the stacking gel solution was poured on 

top of the polymerised separating gel. A ten or fifteen well comb was inserted, and the gel 

allowed to polymerise. The polymerised gel was assembled according to the manufacturer’s 

instructions and submerged in tank buffer (25 mM Tris, 192 mM glycine and 0.1% (w/v) SDS). 

 

Table 2.3. Recipe to prepare three gels for SDS-PAGE 

Reagent Separating gel Stacking gel 

Monomer solution 6.25 ml 940 µl 

Separating gel buffer 3.75 ml - 

Stacking gel buffer - 1.75 ml 

10% SDS 150 µl 70 µl 

Distilled water 4.75 ml 4.3 ml 

10% Ammonium persulfate 75 µl 35 µl 

TEMED 7.5 µl 15 µl 

 

Samples were prepared in 2x sample buffer (125 mM stacking gel, 20% glycerol, 4% 

(w/v) SDS, bromophenol blue) for non-reducing gels. For reducing gels, β-mercaptoethanol 

(1:10) was added to the sample buffer before mixing with the samples. The samples were boiled 

for 5 min, loaded into the wells and electrophoresed at 20 mA per gel. 

 

2.7 Immunochemical techniques 

This section describes the protocols used in the production, isolation and affinity 

purification of chicken IgY antibodies, ELISA, western blotting, and enhanced 

chemiluminescence. 

 

2.7.1 Reagents 

The following were purchased from Sigma-Aldrich-Fluka (Steinheim, Germany): 

Ellman’s reagent, Dimethyl sulfoxide (DMSO), Dimethylformamide (DMF), Freund’s 

complete adjuvant (FCA), Freund’s incomplete adjuvant (FIA), maleimidobenzoyl-N-

hydroxysuccinimide ester (MBS), rabbit albumin (RA), L-cysteine, sodium azide, Sodium 

cyanoborohydride solution, Sephadex G-25, Sephadex G-104-chloro-1-naphthol, Biomax® X-

ray film, p-iodophenol, luminol, Ponceau S and Tween-20. Polyethylene glycol 6000 (PEG 

6000), citrate and hydrogen peroxide were purchased from Merck (Darmstadt, Germany). 

Molecular biology grade DTT was purchased from Fermentas (Vilinius, Lithuania). 2,2’-azino-

bis(3- ethybenzothiazolinesulfonate) (ABTS) was purchased from Boehringer (Mannheim, 

Germany). SulfoLink™ and AminoLink™ resins were purchased from Pierce Perbio Science 

(Erembodegem, Belgium). Synthetic PfCox11 peptide (KIQXFXFEEQMLNAKEEM) was 
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synthesised by GL Biochem (Shanghai, China). Hybond-CTM Extra nitrocellulose membrane 

was purchased from GE Healthcare (Buckinghamshire, England). Peroxidase-conjugated 

rabbit anti-IgY and peroxidase conjugated goat anti-mouse IgG antibodies were from Jackson 

Immunochemicals (Pennsylvania, USA). Nunc MaxiSorp™ 96-well ELISA plates were from 

Nunc products (Roskilde, Denmark). 

 Affinity purified MBP fused rPfCox11Ct and rPfCox19 were used in the construction of 

the AminoLink™ affinity matrices. 

 

2.7.2 Antibody production 

This section describes the protocols used in the preparation of proteins and peptides for 

the immunisation of chickens and the isolation and affinity purification of chicken IgY. 

 

2.7.2.1  Peptide synthesis 

The selected PfCox11 peptide (section 2.3.3) was synthesised by replacing the two 

internal cysteines with α-aminobutyric acid and a C-terminal cysteine added to the original 

sequence to allow for coupling to rabbit albumin (section 2.7.2.2) or the SulfoLink™ resin 

(section 2.7.2.6). 

 

2.7.2.2 Coupling peptide to rabbit albumin 

The PfCox11 peptide was coupled to rabbit albumin, to improve its immunogenicity 

(Saravanan and Satish, 2010). The coupling was achieved with maleimidobenzoyl-N-

hydroxysuccinimide ester (MBS), using the terminal cysteine sulfhydryl group of the peptide 

and free amine group on the rabbit albumin. The coupling of 4 mg of the peptide involved two 

steps: 1) Activation of the rabbit albumin carrier protein with MBS, and 2) reduction of the 

peptide’s cysteine sulfhydryl group. 

 

1) Activation of the rabbit albumin carrier protein with MBS 

The peptide was coupled to rabbit albumin at a ratio of 40:1. The mass of the rabbit 

albumin required for the coupling was determined using the formula below, where the 

molecular mass of the rabbit albumin is 68.2 kDa. 

 

68200 ×
1

40
×  

4 ×  10−3 g (𝑝𝑒𝑝𝑡𝑖𝑑𝑒)

𝑀𝑟 (𝑝𝑒𝑝𝑡𝑖𝑑𝑒)
× 1000 = 𝑐𝑎𝑟𝑟𝑖𝑒𝑟 (𝑚𝑔) 
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The rabbit albumin carrier was activated with MBS at a ratio of 1:40. The mass of the 

MBS required for coupling was determined using the formula below, where the molar mass of 

the MBS is 314.26 g/mol. 

314.26 × 40 ×
𝑐𝑎𝑟𝑟𝑖𝑒𝑟 (𝑚𝑔)

68200
× 1000 = 𝑀𝐵𝑆 (𝑚𝑔) 

 

The calculated amount of MBS was dissolved in 200 µl dimethylformamide (DMF) and 

made up to 500 µl with PBS and mixed with an equal volume of PBS containing the rabbit 

albumin, and the solution was left to stand at room temperature for 30 min. The incubation was 

started 30 min into the peptide incubation with DTT. Then, the solution was loaded onto a 

Sephadex G-25 molecular exclusion chromatography (MEC) column previously washed with 

two column volumes of 0.2 M NaOH and pre-equilibrated in MEC buffer (100 mM NaH2PO4, 

0.02% (w/v) NaN3, pH 7.0). The MBS-rabbit albumin complex was eluted with MEC buffer 

and 1 ml fractions were collected. Fractions with A280 ≥ 0.3 were pooled. 

 

2) Reduction of the peptide’s cysteine sulfhydryl group 

Peptide (4 mg) was dissolved in 50 µl DMSO and made up to 500 µl in reducing buffer 

(100 mM Tris, 1 mM EDTA, 0.02% (w/v) NaN3, pH 8.0). Then, 500 µl 10 mM DTT was 

added to the peptide solution, mixed and incubated at 37oC in a water bath for 90 min. The 

reduced peptide was separated from DTT on a Sephadex G-10 MEC column pre-equilibrated 

in MEC buffer. Then, 500 µl fractions were collected and the presence of reduced peptide 

determined by adding freshly prepared Ellman’s reagent. Fractions containing reduced peptide 

produced a yellow reaction with the Ellman’s reagent were pooled. 

 The activated rabbit albumin fractions were combined with the reduced peptide fractions 

and incubated at room temperature for 3 h with gentle stirring. The conjugated peptide was 

aliquoted into four equal volumes and stored at -20oC until required for immunisation. 

 

2.7.2.3  Preparation of immunogen for chicken immunisation 

Chickens were immunised four times (weeks zero, two, four and six). For each 

immunisation, 50 µg of recombinant protein in PBS or the conjugated peptide sample were 

triturated 1:1 with Freund’s complete adjuvant (1st immunisation) or Freund’s incomplete 

adjuvant (2nd, 3rd and 4th immunisations) was injected intramuscularly in the breast muscles of 

each chicken. 
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2.7.2.4  Isolation of IgY from chicken egg yolk 

Chicken eggs were collected throughout the immunisation schedule up to 16 weeks post-

immunisation and kept at 4oC. IgY from a single egg before immunisation (non-immune) and 

eggs collected at the end of each week post-immunisation were isolated to monitor antibody 

production by ELISA. 

 The egg yolk was carefully separated from the albumin fraction and rinsed with water. 

The yolk content was obtained by puncturing the yolk sac and the yolk volume noted. An 

equivalent of two yolk volumes of phosphate buffer (100 mM NaH2PO4, 0.2% (w/v) NaN3, 

pH 7.6) was added to the yolk. Then, 3.5% (w/v) PEG was added and the mixture stirred to 

equilibrate and centrifuged (4420 x g, 4oC, 30 min). The supernatant was filtered through 

cotton wool to trap the floating fat cake and the volume of the filtrate noted. The PEG 

concentration in the filtrate was increased to 12% (w/v), allowed to equilibrate and centrifuged 

(12000 x g, 4oC, 10 min). The supernatant was discarded and the pellet resuspended in a 

volume of phosphate buffer equivalent to the original egg yolk volume. Then, 12% (w/v) PEG 

was added, equilibrated and centrifuged (12000 x g, 4oC, 10 min). The final pellet was 

resuspended in one-sixth of the initial egg yolk volume in storage buffer (100 mM NaH2PO4, 

0.1% (w/v) NaN3 at pH 7.6) and stored at 4oC. The final IgY concentration was determined 

using the extinction coefficient 𝐸280 𝑛𝑚
1 𝑚𝑔/𝑚𝑙

= 1.25 (Polson et al., 1985). 

 

2.7.2.5  Coupling of recombinant proteins to AminoLink™ resin 

AminoLink™ resin contains aldehyde groups that spontaneously react with primary 

amines on proteins to allow for the covalent immobilisation of proteins. 

 A suspension of 2 ml AminoLink™ (50% slurry) in storage buffer was poured into a 

BioRad affinity column and the storage buffer drained. The resin was equilibrated with 6 ml 

coupling buffer (100 mM NaH2PO4, 300 mM NaCl, 0.05% (w/v) NaN3, pH 7.2) and drained. 

Then, 1.5 mg recombinant protein in 2 ml coupling buffer was added to the resin. The slurry 

was mixed end-over-end for 4 h. The resin was then washed with 6 ml of the coupling buffer 

and drained. Then, 2 ml coupling buffer and 40 µl cyanoborohydride solution (5 M NaCNBH3, 

1 M NaOH) were added to the resin in a fume hood, and the column was mixed end-over-end 

for 4 h at RT. The column was drained in the fume hood, and the resin washed with 4 ml of 

quenching buffer (1 M Tris-HCl, pH 7.4). Then, 2 ml of quenching buffer and 40 µl of 

cyanoborohydride solution were added to the resin and mixed gently for 30 min and drained. 
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The column was washed with 10 ml of washing buffer (100 mM NaH2PO4, 0.2% (w/v) NaN3, 

pH 6.5) followed by two column volumes of storage buffer and stored at 4oC until needed. 

Coupling efficiency was assessed by measuring the protein concentration bound to the column 

from the retained flow-through after coupling and expressing it as a ratio of the initial protein 

concentration passed over the column. 

 

2.7.2.6  Coupling of the PfCox11 peptide to a SulfoLink™ resin 

SulfoLink™ resin contains iodoacetyl groups that react with free sulfhydryls to form 

irreversible thioether bonds attaching peptides or proteins to the resin. 

 The PfCox11 peptide (5 mg) was reduced as described above (section 2.7.2.2). Fractions 

containing the reduced peptide were pooled and added to 1 ml SulfoLink™ resin pre-

equilibrated in coupling buffer (50 mM Tris-HCl, 50 mM EDTA, pH 8.5), mixed for 15 min, 

and left to stand for 30 min, then drained. Following washes with three column volumes in 

coupling buffer, 1 ml of 50 mM L-cysteine solution was added to the resin, mixed for 15 min 

on an end over end mixer and left to stand for 30 min. The column was drained and washed 

with 16 column volumes washing buffer followed by two column volumes of storage buffer 

and stored at 4ºC until required. 

 

2.7.2.7  Affinity purification of IgY 

The pool of isolated IgY from eggs from weeks with high antibody titres was circulated 

through the affinity resin overnight at room temperature. The column was washed with PBS 

until the A280 was ≤ 0.02. Bound antibodies were eluted with 950 µl elution buffer (100 mM 

glycine, 0.02% (w/v) NaN3, pH 2.8) into a 1.5 ml tube containing 50 µl neutralization buffer 

(1 M NaH2PO4, 0.02% (w/v) NaN3, pH 8.5). Fractions with A280 ≥ 0.2 were pooled and the IgY 

concentration was calculated. The affinity purified IgY was stored at 4oC until use. 

 

2.7.3 ELISA 

Each of the wells in a 96-well microtiter plate was coated with 150 µl of 1 µg/ml antigen 

prepared in PBS (137 mM NaCl, 3 mM KCl, 7 mM Na2HPO4, pH 7.2). The plate was 

incubated at 37oC for 1 h, then overnight (16 h) at 4oC to allow for coating of the wells. All 

subsequent incubations were done at 37oC, except for the addition of substrate, which was left 

at room temperature. The plates were washed between incubations with PBS containing 0.1% 

(v/v) Tween 20 at RT. The plates were blocked with 200 µl 0.5% (v/v) BSA-PBS per well and 



51 
 

incubated for 1 h, and then washed three times. Plates were incubated for 2 h with 100 µl 

primary antibody and washed three times. The plate was then incubated with 120 µl of the 

rabbit-anti-chicken HRPO secondary antibody (1:15000) for 1 h and washed three times. 

Antibodies were prepared in 0.5% (w/v) BSA-PBS. The plates were incubated with 150 µl 

substrate (0.05% (w/v) ABTS, 0.0015% (v/v) H2O2 prepared in a 0.15 M citrate-phosphate 

buffer at pH 5.0) per well. The plate was read in an ELISA-plate reader at 405 nm. Background 

controls included: no antigen (or no coat), no primary antibody and no detection antibody in 

separate wells during each of the respective ELISA incubation steps. All results were corrected 

for background. Positive controls included a no blocking control. 

 

2.7.4 Western blotting 

The western blotting method used in this study was described by (Towbin et al., 1979). 

After resolving the protein samples as described in an SDS-PAGE gel, the proteins were 

electrophoretically transferred to a nitrocellulose membrane. The gel and nitrocellulose 

membrane were sandwiched between blotting paper and sponges in a blotting cassette. The gel, 

nitrocellulose membrane and blotting papers were soaked in blotting buffer (50 mM Tris, 

192 mM glycine, 20% (w/v) methanol) for 10 min before assembling the apparatus. Proteins 

were transferred to the nitrocellulose membrane overnight at 20 mA, stained with Ponceau S 

stain (0.2% (w/v) Ponceau S in 1% (v/v) acetic acid) and the position of the molecular weight 

marker proteins marked with a pencil. The membrane was washed in dH2O to remove the stain 

and blocked with 10 ml of 5% (w/v) low-fat milk powder in TBS (20 mM Tris, 200 mM NaCl, 

pH 7.4) for 1 h at 4oC. The nitrocellulose membrane was washed three times in 10 ml TBS for 

5 min/wash, followed by a 2 h incubation with the primary antibody in 0.5% (w/v) BSA-TBS. 

The nitrocellulose membrane was again washed three times in 10 ml TBS for 5 min/wash and 

incubated with the secondary antibody 1:12000 in 0.5% (w/v) BSA-TBS, followed by three 

washes in 10 ml TBS for 5 min/wash. The nitrocellulose membrane was developed for 5-

20 min using a substrate solution (0.06% (w/v) 4-chloro-1-naphthol, 0.012% (v/v) H2O2 

prepared in TBS). Finally, the developed nitrocellulose membrane was washed with dH2O, 

dried and the image taken. 

 

2.7.5 Enhanced chemiluminescence 

The enhanced chemiluminescence (ECL) (Mruk and Cheng, 2011) follows a similar 

procedure as the western blotting (section 2.7.4) with the following modifications; TTBS (0.1% 
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(v/v) Tween 20 was added to the TBS buffer), blocking was performed with 8% (w/v) low-fat 

milk powder in TTBS, and the wash steps were increased to 8 min/wash in 10 ml TTBS. After 

blocking for 1 h and washing three times, the nitrocellulose membrane was incubated for 2 h 

with the primary antibody in 0.5% (w/v) BSA-TTBS and washed three times. The 

nitrocellulose membrane was then incubated with the secondary antibody (1:12000 in 0.5% 

(w/v) BSA-TTBS), followed by three washes. The chemiluminescent reagent (0.2 mg/ml 

luminol, 0.25 mM p-iodophenol, 0.075% (v/v) H2O2 prepared in a 0.1 M Tris-HCl buffer at 

pH 8.5) was poured directly onto the nitrocellulose membrane and exposure time was 

optimised per sample. 

 

2.8 Copper binding studies 

The binding of copper to the recombinant proteins was evaluated using the following 

techniques. 

 

2.8.1 Bicinchoninic acid (BCA) release assay 

The BCA release assay (Brenner and Harris, 1995), was employed to assess presence of 

copper attached to the recombinant protein. The method exploits BCA complexation with Cu(I) 

(Cu(I)-BCA) at alkaline pH to give a purple colour detectible at 562 nm which absorbs with a 

higher intensity than at 354 nm. Although oxygen was not excluded in the experiment, 

incubation of the recombinants protein with copper was done under reduced (with ascorbate) 

or non-reduced (without ascorbate) conditions to allow for recombinant protein complexation 

with Cu(I) and Cu(II) respectively. In this assay, protein-copper complexes are disrupted by 

denaturation with trichloroacetic acid to release copper into a reducing solution which 

facilitates the Cu(I)-BCA complex formation. Cu(II) in the reaction medium must be reduced 

to Cu(I) by a reducing agent for the Cu(I)-BCA complex to be formed. 

 For the BCA assay, 10 µM recombinant protein in phosphate buffer (100 µM NaH2PO4, 

0.01% (w/v) NaN3, pH 7.5) was denatured with 30% (w/v) trichloroacetic acid. The protein 

precipitates formed were pelleted by centrifugation (12000 x g, RT, 2 min), and the supernatant 

aliquoted (4 x 250 µl) into clean microfuge tubes. Then, 50 µl of 2 mM ascorbic acid or distilled 

water (dH2O) was added to two samples. The four reactions were neutralized with 200 µl 

0.15 mM BCA, 0.9 M NaOH, 0.2 M HEPES, mixed and allowed to stand for 2 min at RT 

before reading the absorbance at 354 nm. The assay was used to assess the binding of copper 

by recombinant proteins in vivo and in vitro. The potential influence of azide in the assay was 
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minimalized by the molar excesses of copper present. An independent control with azide was 

included. 

 

In vitro copper binding by recombinant proteins 

For the in vitro copper binding by recombinant proteins, duplicate samples of 10 µM 

purified recombinant protein were mixed with 200 µM CuCl2 (ratio 1:20). Then, 10 mM 

ascorbic acid was added to one sample, while distilled water was added to the other. The 

samples were briefly mixed and allowed to stand at RT for 15 min. The excess unbound copper 

was removed by dialysis as described. Bound copper was then determined by BCA release 

assay. 

 

In cellulo copper binding by recombinant proteins 

In vivo copper binding by the recombinant proteins was measured by adding 0.5 mM 

CuCl2 to the bacterial growth media. This copper concentration has been shown to be tolerated 

by growing E. coli cells with no significant effect on the growth rate (Lutsenko et al., 1997). 

Expression of recombinant proteins was induced (section 2.6.2), and the proteins affinity 

purified (section 2.6.3). The bound copper was determined by BCA release assay. 

 

2.8.2 Ascorbate oxidation assay 

The inhibition of copper-catalysed ascorbic acid oxidation by the recombinant proteins 

was measured in vitro. A 1 ml reaction with 120 µM ascorbic acid, 8 µM copper(II) chloride 

and 5 µM recombinant protein (variable) was set up at RT. The reaction was started with the 

addition of the ascorbic acid solution to the rest of the reaction components. The OD255 of the 

solution was monitored at pH 4.5 for 300 s, at 5 s intervals and the rate of inhibition of ascorbic 

acid oxidation followed in a UV-1800 Shimadzu spectrophotometer. The experiment was 

repeated thrice. 

 

2.8.3 Atomic absorption spectroscopy 

The amount of copper bound to the recombinant proteins was quantified by atomic 

absorption spectroscopy (AAS) using an Agilent Varian AA280FS atomic absorption 

spectrophotometer. Samples were prepared as described for the in vitro copper binding 

assessment using BCA release assay (section 2.8.1). 
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2.8.4 Differential scanning fluorimetry 

The recombinant protein samples were prepared as described for the in vivo copper 

binding assessment (section 2.8.1). Differential scanning fluorimetry using the fluorescent dye 

SYPRO® Orange dye (Lo et al., 2004) was employed to assess the melting temperature (Tm) 

of the recombinant malaria proteins. The assay was performed in 25 µl reaction volume 

containing 500 ng recombinant protein and 10x SYPRO® orange and phosphate buffer (pH 7.4) 

using the Rotorgene® 6000. The Tm of the recombinant protein over a temperature range of 25 

to 90oC at a ramp of 0.3oC/min was monitored by SYPRO® fluorescence at λex 470 nm and λem 

570 nm. The data obtained was transformed to a negative first derivative (-d(RFU)/dT) and the 

melting temperature extrapolated from the curve. 

 

2.8.5 Effect of copper on the growth of E. coli host cells expressing the recombinant proteins 

E. coli host cells expressing the recombinant proteins were grown in the presence of 

varying copper concentrations to assess the effect of the recombinant proteins on the copper 

tolerance of E. coli host cells during growth. The concentration of copper inhibiting 50% cell 

growth (IC50) was determined. 

 Overnight (16 h) cultures of single colonies of naïve or transformed E. coli (BL21) cells 

with pMal-c2x and recombinant pMal-c2x plasmids were grown in 2xYT media (30oC, 

200 rpm) containing ampicillin (100 µg/ml). The cultures were diluted 1:100 into fresh 2xYT 

media containing ampicillin (100 µg/ml) and grown in the same conditions. At an OD600 

between 0.5-0.6, recombinant expression was induced with 0.5 mM IPTG and additional 

ampicillin (100 µg/ml) and in the presence of varying copper concentrations (0-20 mM). The 

cultures were then incubated for 6 h. The growth rate was monitored at hourly intervals at 

OD600. 

 

2.9 Ethical clearance for the use of experimental animals 

The use of experimental animals for this study was approved by the animal ethics 

committee of the University of Kwa-Zulu Natal (UKZN) (Ethics no.:004/15//Animal). Mice 

were housed and cared for at the School of Life Sciences animal house, Pietermaritzburg. 

Chickens were housed and cared for at the UKZN farms at Ukulinga, Pietermaritzburg. Two 

chickens were used per immunogen. 
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Chapter 3 

In silico analysis of Plasmodium falciparum Cox11 and Cox19 copper metallochaperones 

 

3.1 Introduction  

Advances in the field of biomedicine are attributable to the application of genomics, 

proteomics and structural biology to understanding diseases hitherto untreatable or unmanageable. 

These studies are facilitated with the application of bioinformatics, a tool integrating computer 

science, mathematics, engineering and biology to analyse and interpret biological data (Martin-

Sanchez et al., 2004). The bioinformatics tools employed to characterise two novel putative P. 

falciparum copper metallochaperones earlier identified in the P. falciparum genome (Choveaux et 

al., 2015; Gardner et al., 2002) are described in this chapter.  

  

3.1.1 Mitochondrial cytochrome c oxidase of the malaria parasite 

Cytochrome c oxidase (CcO) is the terminal enzyme of the mitochondrial electron transport 

chain situated in the inner mitochondrial membrane. CcO is a complex of eleven (in yeast) or 

thirteen (in mammals) subunits (Capaldi, 1990) with other accessory proteins involved in its 

assembly. An active CcO contains five cofactors: two haems, three copper ions, magnesium, zinc 

and sodium ions (Carr and Winge, 2003; Tsukihara et al., 1995). In yeast, the catalytic core of 

CcO is comprised of Cox1, Cox2 and Cox3 transmembrane subunits encoded by the mitochondrial 

genome (mtDNA), while other subunits are encoded by the nuclear genome (Fontanesi et al., 

2006). Plasmodium parasites have limited mitochondria of highly reduced gene content encoding 

only three proteins, Cox1, Cox3 and Cytb (Vaidya and Mather, 2009). Cox1 has two redox centres, 

one formed by haem A, and the other by haem a3 and a CuB centre containing one copper atom. 

The Cox2 subunit has the binuclear CuA centre, containing two copper atoms. Since Cox1 is 

synthesised in the mitochondria, the copper atoms must be imported from outside the organelle. 

The accessory proteins in mammalian and yeast systems implicated in the delivery of copper to 

CcO are Cox11, Cox17, Cox19 and Sco1 respectively (Beers et al., 2002; Bode et al., 2015; Hiser 

et al., 2000; Nobrega et al., 2002; Timón-Gómez et al., 2018). Using a bioinformatics approach, 

four putative copper metallochaperones, Cox11, Cox17, Cox19 and Sco1 were identified in the 

Plasmodium falciparum genome (Table 3.1) (Choveaux et al., 2012). Two of the four 

metallochaperones, Cox11 and Cox19, were chosen for initial characterisation in this study. 
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 Presence of the two copper metallochaperones, Cox11 and Cox19 orthologues in eight other 

Plasmodium spp. was confirmed in a BLASTp search of the malaria genome at PlasmoDB 

(Aurrecoechea et al., 2009) using PF3D7_1475300 and PF3D7_1201800 protein as the query 

sequence. Both the P. falciparum Cox11 and the P. falciparum Cox19 protein sequences were 

characterised and antibodies raised in chickens. 

 
Table 3.1. Copper-dependent protein orthologues found in the P. falciparum genome 

Protein name PlasmoDB ID Chromosome 

(#) 

Characterised Function in 

Plasmodium 

Reference 

S-adenosyl-L-

homocysteine 

hydrolase 

 

PF3D7_0520900 5 No No data N/A 

Copper-

transporting 

ATPase (CuP-

ATPase) 

PF3D7_0904900 9 Yes Copper efflux 

malaria 

fertility. 

Rasoloson et 

al., 2004; 

Kenthirapalan 

et al., 2014. 

 

Ctr1 PF3D7_1439000 14 Yes Copper 

binding 

Choveaux et 

al., 2012. 

 

Ctr2 PF3D7_1421900 14 Yes Copper 

binding 

Choveaux et 

al., 2012. 

 

Cox1 mal_mito_2 Not assigned No No data N/A 

 

Cox2 PF3D7_1361700 13 No No data N/A 

PF3D7_1430900 

 

14 

 

No  

Cox3 mal_mito_1 Not assigned No No data N/A 

 

Cox5B PF3D7_0927800 9 No No data N/A 

 

Cox6B PF3D7_0928000.1 9 No No data N/A 

 

Cox11 PF3D7_1475300 14 No No data N/A 

 

Cox17 PF3D7_1025600 10 Yes Copper 

binding 

Choveaux et 

al., 2015. 

 

Cox19 PF3D7_1201800 12 No No data N/A 

 

Sco1 PF3D7_0708900 7 No No data N/A 

 

Table modified from Choveaux et al., 2012  
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3.2 Results 

3.2.1 Bioinformatic characterisation of the putative P. falciparum Cox11 protein 

The role and contribution of the TCA cycle to the bioenergetics of the erythrocytic stages 

of malaria parasites has been a long-standing debate (Vaidya and Mather, 2009). For a functional 

CcO protein, Cox11 is required for the formation of the CuB centre (Hiser et al., 2000). Choveaux 

et al., (2012) identified a putative Cox11 alongside 13 copper-dependent protein orthologues in P. 

falciparum from a BLASTp search of the PlasmoDB genome database (Aurrecoechea et al., 2009). 

Of the 14 P. falciparum copper-binding protein orthologues identified, only four have been 

characterised to date as shown in  

Table 3.1. Despite the increasing evidence suggestive of the importance of copper 

homeostasis to the malaria parasite, not much has been studied on malaria parasite copper 

homeostasis (Asahi et al., 2013; 2014; Choveaux et al., 2012; 2015; Kenthirapalan et al., 2014; 

2016; Rasoloson et al., 2004). 

 The putative P. falciparum Cox11 (PF3D7_1475300) protein sequence (~45% identity to 

human Cox11) having met the minimum identity (>30%) (Pearson, 2013) to make a homologue,  

the sequence was used in a BLASTp search of the PlasmoDB genome database (Aurrecoechea et 

al., 2009) to identify Cox11 in eight plasmodial species. The Cox11 sequences were from; P. vivax 

(PVX_118645), P. knowlesi (PKNH_1245600), P. reichenowi (PRCDC_1474400), P. cynomolgi 

(PCYB_127810), P. yoelii (PY17X_1304500), P. chabaudi (PCHAS_1304100), P. berghei 

(PBANKA_1300900) and P. gallinaceum (PGAL8A_00196000). To identify common 

characteristics, the amino acid sequence of Cox11 from nine Plasmodium sequences were aligned 

with five well characterised Cox11 sequences, including Cox11 from, Homo sapiens 

(NP_004366.1), Mus musculus (NP_950173.1), Saccharomyces cerevisiae (NP_015193.1), 

Arabidopsis thaliana (NP_171743.1) and Sinorhizobium meliloti (GenBank: KKA13892.1). The 

aligned sequences (Figure 3.1), showed that 48 to 67 amino acids are missing from the N-terminal 

sequence in Plasmodium compared to the human, mouse, yeast and plant  Cox11 orthologues. 

However, in comparison with the bacterial orthologue, Plasmodium has 17 extra amino acids at 

the N-terminus. The intergenic region upstream of the suspected initiation codon for each gene 

sequence was assessed for the presence of a nearby open reading frame (ORF). The nearest ORF 

to Plasmodium spp. Cox11 was 460 nucleotide bases away in P. berghei. Similarly, downstream 
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amino acid deletions in Plasmodium spp., at residues eight, 27, 73 and 96 of P. falciparum in 

relation to the human sequence were found. The alignment shows amino acid conservation within 

the predicted transmembrane and the C-terminal domains of all 14 sequences. The sequences all 

contained three cysteine residues (Figure 3.1). Two of the three cysteines are in a conserved CFCF 

motif, and the third a short distance from this motif. The cysteines are at residue 60, 155 and 157 

in P. falciparum sequence, with the cysteines 155 and 157 included in the CFCF motif. 

Each of the putative Plasmodium Cox11 sequences alongside the five characterised 

sequences was submitted to the GPS-PAIL online server to predict potential acetylation sites 

(Deng et al., 2016). At the highest threshold, a minimum of two internal lysine acetylation sites 

(Figure 3.1) were predicted in Plasmodium spp. In the two mammalian and yeast Cox11 sequences, 

no acetylation sites were predicted. However, the plant and bacterial Cox11 were predicted to have 

one and three acetylation sites respectively. The predicted sites are predicted to be acetylated by 

the two lysine acetyltransferases (KAT), EP300 and CREBBP. A third is lone KAT2B site 

predicted in the plant Cox11 sequence. In the Plasmodium spp., the predicted EP300 acetylation 

sites are at the N-terminus within the predicted mitochondrial matrix domain, while the CREBBP 

acetylation sites are within the C-terminal domain in the mitochondrial intermembrane space 

(Figure 3.2). The P. falciparum Cox11 was predicted to have three EP300 acetylation sites. In 

furtherance of the search for possible post-translation modification sites, the prevalence of lysine 

in the P. falciparum Cox11 sequence prompted the query for ubiquitination site. The UbiProber 

server (Chen et al., 2013) predicting the ubiquitination site did not identify any site in any of the 

Plasmodium sequences. Also, no signal peptide was predicted in Plasmodium Cox11 sequences 

by the PlasmoAP and iSMP-Grey servers (Lin et al., 2012). 

 The Plasmodium Cox11 sequences were analysed for a membrane-spanning region using 

the TMHMM (Krogh et al., 2001) transmembrane (TM) prediction server. A common 23-amino 

acid membrane-spanning domain tethering Cox11 to the inner mitochondrial membrane (IM) was 

predicted in all Plasmodium sequences. Figure 3.2 illustrates the predicted orientation of P. 

falciparum Cox11 as it relates to the S. meliloti Cox11 reference sequence. The position of the 

transmembrane domain in Plasmodium spp. is variable, contained between amino acid residue 33 

to 59 (Figure 3.1). The P. falciparum transmembrane domain is located between amino residues 

34 to 56.
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Figure 3.1. Alignment of nine putative Plasmodium and five established Cox11 amino acid sequences 

Clustal Omega was used to align the plasmodial Cox11 sequence with Cox11 from: Hs, Homo sapiens (NP_004366.1); Mm, Mus musculus (NP_950173.1); Sc, 

Saccharomyces cerevisiae (NP_015193.1); At, Arabidopsis thaliana (NP_171743.1); Sm, Sinorhizobium meliloti (GenBank: KKA13892.1); Pf, P. falciparum 

(PF3D7_1475300); Pv, P. vivax (PVX_118645); Pk, P. knowlesi (PKNH_1245600); Pr, P. reichenowi (PRCDC_1474400); Pc, P. cynomolgi (PCYB_127810); 

Py, P. yoelii (PY17X_1304500); Pch, P. chabaudi (PCHAS_1304100); Pb, P. berghei (PBANKA_1300900); Pg, P. gallinaceum (PGAL8A_00196000). The 

annotation “*”, denote conserved residue, while “:”and “.” denote conserved and semi-conserved substitutions respectively. The three conserved cysteine residues 

are shown in blue by the box region. Arrow indicates the two cysteines implicated in copper binding. The brown, green and red Lys residues denote the predicted 

acetylation sites for EP300, CREBBP and KAT2B acetyltransferases respectively. Predicted transmembrane regions are highlighted in grey.

Hs       KDRIIKISFNADVHASLQWNFRPQQTEIYVVPGETALAFYRAKNPTDKPVIGISTYNIVP 205 

Mm       KDRVIKVTFNADVHASLQWNFRPQQTEIYVVPGETALAFYKAKNPTDKPVIGISTYNVVP 204 

Sc       TEKRIRISFTSEVSQILPWKFVPQQREVYVLPGETALAFYKAKNYSDKDIIGMATYSIAP 196 

At       TEREIVVQFNADVADGMQWKFTPTQREVRVKPGESALAFYTAENKSSAPITGVSTYNVTP 207 

Sm       LDEKIKVTFDANVAAGLPWEFVPVQRDIDVRIGETVQIMYRAKNLASTPTTGQATFNVTP 122 

Pf       KNRLIEINFTS--QSNMPWVFEPEQKYIIVKPGETVLAFYKAKNLMDKPIIGIALYHVLP 143 

Pv       KNRLIEVNFTS--QSNMPWVFEPEQKSIIVKPGETVLAFYKAKNLLDKPIIGIALYHVLP 144 

Pk       KNRLIEVNFTS--QSNMPWVFEPEQKKIIVKPGETVLAFYKAKNLLDKPIIGIALYHVLP 144 

Pr       KNRLIEINFTS--QSNMPWVFEPEQKYIIVKPGETVLAFYKAKNLMDKPIIGIALYHVLP 143 

Pc       KNRLIEVNFTS--QSNMPWVFEPEQKKIIVKPGETVLAFYKAKNLLDKPIIGIALYHVLP 144 

Py       KDRLIEVNFTS--QSNMPWAFKPEQKSIIVKPGETVLAFYKAKNLLDKPVIGIALYHVLP 142 

Pch      KDRLIEVNFTS--QSNMPWAFKPEQKSIIVKPGETVLAFYKAKNLLDKPVIGIALYHVLP 142 

Pb       KDRLIEVNFTS--QSNMPWAFKPEQKSIIVKPGETVLAFYKAKNLLDKPVIGIALYHVLP 142 

Pg       KNRLIEINFTS--QSNMPWVFEPEQKSIIVKPGETVLAFYKAKNLLDKPIIGIALYHVLP 142 

          :. * : * :     : * * * *  : *  **:.  :* *:*  .    * : : : * 

 

 

Hs       FEAGQYFNKIQCFCFEEQRLNPQEEVDMPVFFYIDPEFAEDPRMIKVDLITLSYTFFEAK 265 

Mm       FEAGQYFNKIQCFCFEEQRLNPQEEVDMPVFFYIDPEFAEDPRMVNVDLITLSYTFFEAK 264 

Sc       GEAAQYFNKIQCFCFEEQKLAAGEEIDMPVFFFIDPDFASDPAMRNIDDIILHYTFFRAH 256 

At       MKAGVYFNKIQCFCFEEQRLLPGEQIDMPVFFYIDPEFETDPRMDGINNLILSYTFFKVS 267 

Sm       MAAGAYFNKVQCFCFTETTLEPGEEMEMPVVFFVDPEIVKPVETQGIKTLTLSYTFYPRE 182 

Pf       EEAGLYFNKIQCFCFEEQMLNAKEEMDLPILFFIDPEILNDSRLKNLEKITLSYIFFESD 203 

Pv       DEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFFIDPDILNDSRLKNLEKITLSYIFFESD 204 

Pk       DEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFFIDPDILNDSRLKNLEKITLSYIFFESD 204 

Pr       EEAGLYFNKIQCFCFEEQMLNAKEEMDLPILFFIDPEILNDSRLKNLEKITLSYIFFESD 203 

Pc       DEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFFIDPDILNDSRLKNLEKITLSYIFFESD 204 

Py       DEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFFIDPEILNDSRLKNLEKITLSYIFFESD 202 

Pch      DEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFFIDPEILNDSRLKNLEKITLSYIFFESD 202 

Pb       DEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFFIDPEILNDSRLKNLEKITLSYIFFESD 202 

Pg       DEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFFIDPDILNDSRLKNLEKITLSYIFFESD 202 

           *. ****:***** *  *   *::::*:.*::**::        :. : * * *:    

 

Hs       EGHKLPVPGYN--------------------------------------- 276 

Mm       EGHKLPVPGYN--------------------------------------- 275 

Sc       YGDGT------AVSDSKKEPEMNADEKAASLANAAILSPEVIDTRKDNSN 300 

At       EENTTETVNNNNSVPV-QETN----------------------------- 287 

Sm       PSKPVAQVKAKAENKL---------------------------------- 198 

Pf       SEIPEEYQNLSRAISPYKKTEIQVI------------------------- 228 

Pv       SEIPEEYQHLSRAIAPKKKPEIQVI------------------------- 229 

Pk       SEIPEEYKHLSRAIAPKKKPEIQVI------------------------- 229 

Pr       SEIPEEYQNLSRAISPYKKTEIQV-------------------------- 227 

Pc       SEIPEEYQHLSRAIAPKKKPEIQVI------------------------- 229 

Py       SDIPEEYQHLSRAIAPKKKTEIQVI------------------------- 227 

Pch      SDIPEEYQHLSRAIAPKKKTEIQVI------------------------- 227 

Pb       SDIPEEYQHLSKAIVPKKKAEIQVI------------------------- 227 

Pg       SEIPEEYQHLSRAISSKKKPEIQVI------------------------- 227 

 

Hs       MGGLWRPGWRCVPFCGWRWIHPGSPTRAAERVEP----------FLRPEWSGTGGAERGL 50 

Mm       MGGLWCPGWRLVASCGRGWRQPGWSGRTVVNAEL----------VLRPGWDGLGGAERGL 50 

Sc       ----------------------------MIRICP----------IVRSKVPLLGTFLRSD 22 

At       ----------------MSWSKACRGTRISSYLENLHRTSQYPRTILCSRYYTHGACKSNE 44 

Sm       ------------------------------------------------------------ 0 

Pf       ------------------------------------------------------------ 0 

Pv       ------------------------------------------------------------ 0 

Pk       ------------------------------------------------------------ 0 

Pr       ------------------------------------------------------------ 0 

Pc       ------------------------------------------------------------ 0 

Py       ------------------------------------------------------------ 0 

Pch      ------------------------------------------------------------ 0 

Pb       ------------------------------------------------------------ 0 

Pg       ------------------------------------------------------------ 0 

                                                                      

 

Hs       RWLGTWKRC-----S----LRARHPALQPPRRP---------KSSNPFTRAQEEERRRQN 92 

Mm       RRLGTWKRP-----C-----GVRGPATQPPRRP---------RSSNPFQRAQEDEWRRRN 91 

Sc       SWLAPHALALRRAICKNVALRSYSVNSEQPKHTFDISKLTRNEIQQLRELKRARERKFKD 82 

At       HYLRSKRVFWGS--SSSWSLNSH---SATAKSML--------DS-AHRQYSTHSPSETKS 90 

Sm       --------------------------------MA--------DN-GQA-----DRKERSN 14 

Pf       --------------------------MKILKTFF--KRLHLRNKKNVISPYRILE-RKEK 31 

Pv       --------------------------MSVIKRIL--SRLSMNRTNKGKNNFLVLE-KKEK 31 

Pk       --------------------------MSAIKRIL--SRLRMNRTNKAKNNFLVLE-KKEK 31 

Pr       --------------------------MKILKTFF--KRLHLRNKKNVISPYRILE-RKEK 31 

Pc       --------------------------MSVIKRIL--SRLRMNRTNKGKNNFLVLE-KKEK 31 

Py       --------------------------MNKFKFFF--SRLNIKRKNNVKNIFFVPS-KREK 31 

Pch      --------------------------MNKFKFFF--SRLNIKRKNNVKNIFFVPS-KREK 31 

Pb       --------------------------MNKFKFFF--SRLNIKRKNNVKKFFFVPS-KREK 31 

Pg       --------------------------MSIIKNFF--NRFNLRNR-NKVNNFMIIE-KKER 30 

                                                                 .    

 

Hs       KTTLTYVAAVAVGMLGASYAAVPLYRLYCQTTGLGGSAVAGHASDKIENMV-------PV 145 

Mm       KTVLTYVAAAAVGMLGASYAAVPLYRLYCQTTGLGGSAVAGHSSDQIENMV-------PV 144 

Sc       RTVAFYFSSVAVLFLGLAYAAVPLYRAICARTGFGGIPITDRRKFTDDKLI------PVD 136 

At       QKMLYYLTAVVFGMVGLTYAAVPLYRTFCQATGYGGTVQRKETV---EEKIARHSESGTV 147 

Sm       GVIVGTCLAFVAGMIGMAYAAVPLYDMFCRVTGYNGTTQRVEQA---SD---------LI 62 

Pf       LDIPYACLSLSAIMFGLSFAFVPLYQLFCQSTGYGGTIQKRL---DIGKIFN--RK-KDE 85 

Pv       LETPYLYLSLSACMLGLSFAFVPLYQLFCQSTGYGGTIQNKI---DIRKVLE--KKKANN 86 

Pk       LETPYLYLSLSACMLGLSFAFVPLYQLFCQSTGYGGTIQNQI---DIRKMLE--KKKANN 86 

Pr       LDIPYACLSLSAIMFGLSFAFVPLYQLFCQSTGYGGTIQKRL---DIGKIFN--RK-KDE 85 

Pc       LETPYLYLSLSACMLGLSFAFVPLYQLFCQSTGYGGTIQNKI---DIRKMLE--RKKANN 86 

Py       FVTPYLFLSMSGLMFGLSFAFVPLYQLFCQSTGYGGTTQKTF---DISELFN--K--KVN 84 

Pch      FVTPYLFLSMSGLMFGLSFAFVPLYQLFCQSTGYGGTTQKTF---DISELFN--K--KVN 84 

Pb       FVTPYLFLSMSGLMFGLSFAFVPLYQLFCQSTGYGGTTQKTF---DISELFN--K--KVN 84 

Pg       LEIPYVYLSISAFMFGLSFAFVPLYQLFCQSTGYGGTIQKKL---DINKILK--K-KENH 84 

                 :    :.* ::* ****   *  ** .*            .            
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Figure 3.2. Predicting membrane-spanning regions in P. falciparum Cox11 

The TMHMM plots with the amino acid sequences for P. falciparum (A) and the reference characterised S. meliloti Cox11 

(B). Sections of the sequences of the proteins are predicted to be on the outer surface of the inner mitochondrial membrane, 

OM (pink horizontal line), a transmembrane domain, TM (red horizontal line and underlined sequences) or within the 

mitochondrial matrix, IM (blue horizontal line). 

 

 

Figure 3.3. Plasmodium falciparum Cox11 modelled on the Sinorhizobium meliloti Cox11 structure 

The NMR-solved structure of S. meliloti (PDB: 1so9) Cox11 (A) (Banci et al., 2004) amino acid sequence served as a 

template (brown ribbon) for homology modelling of the P. falciparum Cox11 amino acid sequence (grey ribbon) (B). The 

PfCox11 model shows two of three conserved cysteines (Cys155 and Cys157) (blue structures) implicated in copper 

coordination (C) (Carr et al., 2002). The annotation “*”, denote conserved residue, while “:”and “.” denote conserved and 

semi-conserved substitutions respectively. The model was constructed by sequence alignment (D). The three conserved 

cysteines residues are in blue by the box region. 

>PfCox11 

MKILKTFFKRLHLRNKKNVISPYRILERKEKLDIPYACLSLSAIMFGLSFAFVPLYQLFC 

QSTGYGGTIQKRLDIGKIFNRKKDEKNRLIEINFTSQSNMPWVFEPEQKYIIVKPGETVL 

AFYKAKNLMDKPIIGIALYHVLPEEAGLYFNKIQCFCFEEQMLNAKEEMDLPILFFIDPE 

ILNDSRLKNLEKITLSYIFFESDSEIPEEYQNLSRAISPYKKTEIQVI 

>SmCox11 

MADNGQADRKERSNGVIVGTCLAFVAGMIGMAYAAVPLYDMFCRVTGYNGTTQRVEQASD 

LILDEKIKVTFDANVAAGLPWEFVPVQRDIDVRIGETVQIMYRAKNLASTPTTGQATFNV 

TPMAAGAYFNKVQCFCFTETTLEPGEEMEMPVVFFVDPEIVKPVETQGIKTLTLSYTFYP 

REPSKPVAQVKAKAENKL 

SmCox11      -------------------MADNGQADRKERSNGVIVGTCLAFVAGMIGMAYAAVPLYDM 41 

PfCox11      MKILKTFFKRLHLRNKKNVISPYRILERK--EKLDIPYACLSLSAIMFGLSFAFVPLYQL 58 

                                ::     :**  .:  *  :**:: * *:*:::* ****:: 

 

SmCox11      FCRVTGYNGTTQRVEQASDLILDEK----IKVTFDANVAAGLPWEFVPVQRDIDVRIGET 97 

PfCox11      FCQSTGYGGTIQKRLDIGKIFNRKKDEKNRLIEINFTSQSNMPWVFEPEQKYIIVKPGET 118 

             **: ***.** *:  : ..::  :*      : :: .  :.:** * * *: * *: *** 

 

SmCox11      VQIMYRAKNLASTPTTGQATFNVTPMAAGAYFNKVQCFCFTETTLEPGEEMEMPVVFFVD 157 

PfCox11      VLAFYKAKNLMDKPIIGIALYHVLPEEAGLYFNKIQCFCFEEQMLNAKEEMDLPILFFID 178 

             *  :*:**** ..*  * * ::* *  ** ****:***** *  *:  ***::*::**:* 

 

SmCox11      PEIVKPVETQGIKTLTLSYTFYPREPSKPVAQVKAKAEN------KL--- 198 

PfCox11      PEILNDSRLKNLEKITLSYIFFESDSEIPEEYQNLSRAISPYKKTEIQVI 228 

             ***::  . :.::.:**** *:  : . *    : .         ::   
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The P. falciparum Cox11 structure (Figure 3.3C) was modelled on the S. meliloti, SmCox11 

(Figure 3.3A) NMR structure (PDB: 1so9) (Banci et al., 2004) template using the Swiss-Pdb 

DeepView program (Guex et al., 2009). Both SmCox11 and PfCox11 have a similar structure of 

the β-immunoglobulin (Ig)-like fold   (Figure 3.3B) (Banci et al., 2004). The distinctive feature 

between them is a 30 amino acid residue extension in the PfCox11 sequence (Figure 3.3D). The 

modelled PfCox11 structure fitted well into the SmCox11 structure. 

 

3.2.2 Bioinformatic characterisation of the putative P. falciparum Cox19 protein 

As with Cox11, the P. falciparum Cox19 (PF3D7_1201800) protein sequence (40% identity 

to human Cox19) having met the minimum identity (>30%) (Pearson, 2013) to make a homologue, 

the sequence was used to identify eight Plasmodium spp. Cox19 sequences from a BLASTp search 

of the PlasmoDB (Aurrecoechea et al., 2009). The sequences identified were; P. vivax 

(PVX_084115), P. knowlesi (PKNH_1301700), P. reichenowi (PRCDC_1201200), P. cynomolgi 

(PCYB_131060), P. yoelii (PY17X_0603400), P. chabaudi (PCHAS_0602700), P. berghei 

(PBANKA_0600800) and P. gallinaceum (PGAL8A 00319900). To identify common 

characteristics, all nine Plasmodium spp. sequences were aligned using Clustal Omega (Li et al., 

2015) with five characterised Cox11 sequences; Homo sapiens (NP_001026788.1), Mus musculus 

(NP_932097.1), Gallus gallus (NP_001243736.1), Arabidopsis thaliana (NP 564879.1) and 

Saccharomyces cerevisiae (GenBank: GAX71665.1).  

 From the sequence alignment (Figure 3.4) six and 22 N-terminal amino acid deletions in 

Plasmodium spp. relative to the vertebrate and plant Cox19 sequences respectively were revealed. 

The C-termini of all malaria species had 116 to 129 extra amino acids relative to the five other 

species. Within the Plasmodium spp., there were some amino acid deletions and insertions. Two 

conserved deletions of six and four amino acids were found in the three murine malaria parasites, 

between residues 128 to 135, and 162 to 167 compared to the P. falciparum sequence. Four 

conserved cysteines were found within the [Coiled coil 1]-[Helix 1]-[Coiled coil 2]-[Helix 2] 

(CHCH) domain in a twin Cx9C motif. The cysteines are at positions 24, 34, 45 and 55 respectively 

in the P. falciparum amino acid sequence. These cysteines form two disulphide bonds, between 

Cys34 – Cys45 and Cys24 – Cys55 respectively in the yeast and human sequences (Fischer et al., 

2013; Rigby et al., 2007). Also present is an Arg residue adjacent to the carboxy-proximal cysteine, 
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which is conserved in all 14 Cox19 sequences (Figure 3.4). This Arg is at position 56 in the P. 

falciparum amino acid sequence. 

 As with Cox11, each of the putative Plasmodium spp. Cox19 sequences alongside the five 

characterised sequences was submitted to the GPS-PAIL online server for predicting acetylation 

sites (Deng et al., 2016). Using the most stringent criteria, Plasmodium spp. had a minimum of 

one predicted acetylation site. In contrast to the predictions in Cox11, acetylation sites were 

predicted in the mammalian and yeast Cox19 sequences but none in the plant sequence. The lysine 

acetyltransferase sites predicted were specific to EP300, CREBBP and KAT2B respectively.  The  

EP300 acetylation site predicted at position four in P. falciparum sequence is conserved in 12 of 

the 14 sequences but not A. thaliana and S. cerevisiae. All predicted acetylation sites are outside 

the CHCH domain. No ubiquitination site in Plasmodium spp. was predicted by the UbiProber 

server (Chen et al., 2013). Subjecting the sequences to the PlasmoAP and iSMP-Grey servers (Lin 

et al., 2012) found no signal sequences. 
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Figure 3.4. Alignment of nine putative Plasmodium and five characterised Cox19 amino acid sequences 

Clustal Omega was used to align plasmodial and human and other Cox19 sequences. The sequences are: Hs, Homo sapiens (NP_001026788.1); Mm, Mus musculus 

(NP_932097.1); Gg, Gallus gallus (NP_001243736.1); At, Arabidopsis thaliana (NP_564879.1); Sc, Saccharomyces cerevisiae (GenBank: GAX71665.1); Pf, P. falciparum 

(PF3D7_1201800); Pv, P. vivax (PVX_084115); Pk, P. knowlesi (PKNH_1301700); Pr, P. reichenowi (PRCDC_1201200); Pc, P. cynomolgi (PCYB_131060); Py, P. 

yoelii (PY17X_0603400); Pch, P. chabaudi (PCHAS_0602700); Pb, P. berghei (PBANKA_0600800); Pg, P. gallinaceum (PGAL8A_00319900). The annotation “*”, 

denote conserved residue, while “:”and “.” denote conserved and semi-conserved substitutions respectively. The [Coiled coil1]-[Helix 1]-[Coiled coil 2]-[Helix 2] (CHCH) 

domain is shown by the box region. The conserved cysteine residues in Cx9C motif within the CHCH domain are shown in blue. Arrows indicate the two cysteines implicated 

in copper binding. The brown, green and red Lys residues denote the predicted acetylation sites for EP300, CREBBP and KAT2B acetyltransferases respectively. The 

conserved residues essential for an active Cox19 in yeast; Tyr-Leu dipeptides and Arg are highlighted in grey.

Hs       ----------------MSTAMNFGTKSFQPRPPDKGSFPLDHLGECKSFKEKFMKCLHNN 44 

Mm       ----------------MSTAMNFGTKSFQPRPPDKGSFPLDHFGECKSFKEKFMRCLRDK 44 

Gg       ----------------MSTAMNFSAKSFKPRPPDKGAFPLDHFGECSAFKERFMQCLRDS 44 

At       MMITIKFDLNRYSCSWGAGGAFGGNRGLRPIPPEKGIFPLDHLHECDAEKKEYLGCLKSS 60 

Sc       ----------------MSGNPGSSLSALRPTPPERGSFPLDHDGECTKYMQEYLKCMQLV 44 

Pf       ----------------------MDIKRQLVKKPDRGSFLLDHNNECTSIKQKYLKCLKEN 38 

Pv       ----------------------MDKKRSIVKKPERGSFLLDHNSECTPIKNDYLKCLKEH 38 

Pk       ----------------------MDKKRSIVKKPDRGSFLLDHNSECTSIKNDYLKCLKEH 38 

Pr       ----------------------MDIKRQLVKKPDRGSFLLDHNNECTSIKEKYLKCLKEN 38 

Pc       ----------------------MDKKRSIVKKPDRGSFLLDHNSECTSIKNDYLKCLKEH 38 

Py       ----------------------MDIKRSIVKKPDRGSFPLDHSNECTSIKNNYLKCLKEH 38 

Pch      ----------------------MDTKRSIVKKPDRGSFPLDHSNECTSIKNNYLKCLKEH 38 

Pb       ----------------------MDIKRSIVKKPDRGSFPLDHSNECTSIKNNYLKCLKEH 38 

Pg       ----------------------MDKKRSLVKKPDRGSFLLDHNNECTSIKNKYLKCLKEN 38 

                                .        *::* * ***  **    : :: *::   

 

Hs       NFEN-ALCRKESKEYLECRMERKLMLQEPLEKLGFGDLTSGKSEAKK------------- 90 

Mm       NYEN-ALCRNESKEYLMCRMQRQLMAPEPLEKLGFRDLMEGKPEAKDEC----------- 92 

Gg       GFES-GACRERAMAYLQCRMDRQLMANEPLEKLGFKDLMDEKSEAEPGKL---------- 93 

At       AHKS-EQCRHLSKKYLQCRMAKNLMAKQDMAELGFSGVKELDSTEDKNTESIEH------ 113 

Sc       QNENAMNCRLLAKDYLRCRMDHQLMDYDEWSHLGLPEDAPGNKGKPI-KDATDNK----- 98 

Pf       NNDH-ICCRDHSKEYFICRMDNNLLERQSLNDLGFIEHEEKNESRIKNFKDVYSYNIYNE 97 

Pv       NNDH-VSCREYSKEYFICRMDKNLLERQSLNDLGFSENETNHESRIKHFKDVYSYNVYNE 97 

Pk       NNDH-VSCREYSKEYFICRMDRNLLEKQSLNDLGFSENEINHESRIKHFKDVYSYNMYNE 97 

Pr       NNDH-ICCREHSKEYFICRMDNNLLERQSLNDLGFIEHEEKNESRIKNFKDVYSYNIYNE 97 

Pc       NNDH-VSCREYSKEYFICRMDKNLLEKQSLNDLGFSENEINHESRIKHFKDVYSYNMYNE 97 

Py       KNDH-ISCKKYSKEYFMCRIDNNLLEKQDLSNLGFFENELNNESRLKNFKNVYSYNAYKE 97 

Pch      KNDH-ISCKKYSKEYFICRIDNNLLEKQDLSNLGFYENESDHESRLKNFKNVYSYNAYKE 97 

Pb       KNDH-ISCKKYSKEYFMCRIDNNLLEKQDLSNLGFYENELNNESRLKNFKNVYSYNAYKE 97 

Pg       YNDH-VSCREYSKQYFTCRMDNNLLEKQSLNNLGFSENEVNHESRIKNFKDVYSYNTYNE 97 

           .    *:  :  *: **: .:*:  :   .**:      .                   

 

Hs       ------------------------------------------------------------ 90 

Mm       ------------------------------------------------------------ 92 

Gg       ------------------------------------------------------------ 93 

At       ------------------------------------------------------------ 113 

Sc       ------------------------------------------------------------ 98 

Pf       NMERISRNMHDNIK-SNNLL--LNENNMLSKLNKNDHIKFVDINEKNDRNDFILLD-INN 153 

Pv       TMESFPKGRALKRT-DTASG----AVFVEEKLTQGKRDNKAD-MKPARGDDFLLLN-LRN 150 

Pk       TMENFPKGWTPKRT-DIESG----AITKEEKFTQEKRDNNAD-MKIAVGDDFLLLN-LRN 150 

Pr       NMERISRNTHDNIK-SNNLL--LNENNMLSKLNKNDHIKFVDINEKNDRNDFILLD-INN 153 

Pc       TMENFPKGWALKRT-DTASG----AVPKEDKFTQGKQDNKAD-MKLAVGDDFLLLN-LRN 150 

Py       RMEASKEKNKMKEHNDIK----KNVIYHGKEIEN------KDEITRKDSDGFLNLQTIKN 147 

Pch      RMEASKEKNKMKEYNDTKLDNKKNTIYPAKEIEN------KDKIARKDRDGLLNLQTIKN 151 

Pb       KMEASKEKNKMKEYNDIKFDKKKNDIYHAKEIEN------KNEITRKDSNGFLNLQTIKN 151 

Pg       KMEELSMNKLNNKN-NTPII----ETFPSKEVKQNNNKNSVD-TKKVKKKEFLLLN-INN 150 

 

Hs       ------------------------------------------------------------ 90 

Mm       ------------------------------------------------------------ 92 

Gg       ------------------------------------------------------------ 93 

At       ------------------------------------------------------------ 113 

Sc       ------------------------------------------------------------ 98 

Pf       KENTNKKINTDDLKNSEINDEKKIAIRRKEAEGYLAGKEYIKTLLEKKQKKTFFFLNEIF 213 

Pv       DKEGEQKINGK---VFEITQEKKIAVKRKEEEGYLAGKEYIKTLVEKKKRHPLF-SYNIF 206 

Pk       DKEGEQNLNGK---VFEITQEKKIAVKRKEEEGYLAGKEYIKTLVQKKKKHPLF-SYNIF 206 

Pr       KENTNKKINTDDLKNSEINDEKKIAIRRKEAEGYLAGKEYIKTLLEKKQKKTFFFLNEIF 213 

Pc       DKEGEQNLNGK---VFEITQEKKIAVKRKEEEGYLAGKEYIKTLVEKKKRHPLF-SYNIF 206 

Py       DVSDNNSIK----ENMPMEMNEKITIKRKEESGYLAGKEYLKVLLEKKKNKKSF-LSSIF 202 

Pch      DIGDSNNMK----ENMPMETNGQIAIKRKEESGYLAGKEYLQVLLEKKKNKKSF-LSSLF 206 

Pb       DVSDNNNIK----ENMPMEMNEKIAIKRKEESGYLAGKEYLKVLLEKKK-KKSF-LSSIF 205 

Pg       KNEREKNLNSE---SAEKIEEKKITIKRKEADGYLAGKEYIKALSKKK-KKSFF-LNNIF 205 

                                                                      

 

Hs       ----- 90 

Mm       ----- 92 

Gg       ----- 93 

At       ----- 113 

Sc       ----- 98 

Pf       KSNNV 218 

Pv       KSSNT 211 

Pk       KNSNA 211 

Pr       KSNNV 218 

Pc       KNSNT 211 

Py       KSNNT 207 

Pch      KNSNT 211 

Pb       KSNNT 210 

Pg       KNNNT 210 
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Figure 3.5. Plasmodium falciparum Cox19 modelled on Homo sapiens Mia40 structure 

The NMR-solved structure of Homo sapiens Mia40 (PDB: 2K3J) (A) amino acid sequence (Banci et al., 2009) 

served as a template (brown ribbon) for homology modelling of the P. falciparum Cox19 (grey ribbon) (B). The 

PfCox19 model shows three of the four conserved cysteines (Cys34, Cys45 and Cys55) in twin Cx9C motif (C). 

The model was constructed by sequence alignment (D). Only the overlapping sequence was modelled on the 

HsMia40 structure. The annotation “*”, denote conserved residue, while “:”and “.” denote conserved and semi-

conserved substitutions respectively. The conserved cysteines residues are in blue, while the Cx9C motif is shown 

by the box region. 

 

Like Cox11, an attempt was made to construct a hypothetical P. falciparum Cox19 

(PfCox19) structure. However, no Cox19 structure was found at the protein data bank. To this 

end, the NMR-solved H. sapiens Mia40 (HsMia40) structure (PDB:2K3J) (Banci et al., 2009) 

(Figure 3.5A) was used to model the putative PfCox19 which has been used for yeast Cox19 

(Bode et al., 2015; Timón-Gómez et al., 2018). Mia40 is a twin Cx9C protein that catalyses the 

oxidative folding and import of twin Cx9C and Cx3C substrates into the mitochondrial 

intermembrane space via a conserved CPC motif (Banci et al., 2009; Bien et al., 2010; Fraga 

et al., 2014; Koch and Schmid, 2014). Mia40 like twin Cx9C proteins has a CHCH domain. 

Cox19 is thought to have structure similar to Mia40 that has a conserved critical twin Cx9C 

D 

HsMia40      GSFTMSYCRQEGKDRIIFVTKEDHETPSSAELVADDPNDPYEEHGLILPNGNINWNCPCL 60 

PfCox19      ----MDIK------------RQLVKKPDRGSFLLDHNNECTSIK-------QKYLKCLKE 37 

                 *.              ::  :.*. ..:: *. *:  . :       :   :*    

 

HsMia40      GGMASGPCGEQFKSAFSCFHYST----EEIKGSDCVDQFRAMQECMQKYPDLYPQEDEDE 116 

PfCox19      NNNDHICCRDHSKEYFICRMDNNLLERQSLNDLGFIEHEEKNESRIKNFKDVYSYNIYNE 97 

             ..     * :: *. * *   ..    :.::. . ::: .  :. :::: *:*  :  :* 

 

HsMia40      EEEREKKPAEQ------------------------------------------------- 127 

PfCox19      NMERISRNMHDNIKSNNLLLNENNMLSKLNKNDHIKFVDINEKNDRNDFILLDINNKENT 157 

             : ** .:  .:                                                  

 

HsMia40      --AEETAPIE----------ATATKEEEGSS----------------------------- 146 

PfCox19      NKKINTDDLKNSEINDEKKIAIRRKEAEGYLAGKEYIKTLLEKKQKKTFFFLNEIFKSNN 217 

                 :*  ::          *   ** **                                

 

HsMia40      -  146 

PfCox19      V  218 
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domain that forms a helix-loop-helix fold in which the two antiparallel α-helices are connected 

by two parallel disulfide bonds. The homology modelling was done using the Swiss-Pdb 

DeepView program. As shown in Figure 3.5B, both HsMia40 and PfCox19 have a similar 

structure. However, the first 28 P. falciparum residues are not included in the present model. 

Only the overlapping sequence that fit into the HsMia40 structure was included in the 

modelling. P. falciparum Cys24 was not included in the model. Thus, only three conserved 

cysteines residues were included in the modelled structure assuming the CHCH conformation 

(Figure 3.5B and C). 

 

3.2.3 Selection of immunogenic Cox11 peptide for antibody production in chickens 

A peptide of 18 amino acid residues was selected (Figure 3.6) around the putative P. 

falciparum Cox11 binding domain using Predict7™ (Cármenes et al., 1989) for synthesis. 

Antibodies against the synthetic peptide, KIQXFXFEEQMLNAKEEM were raised in chickens 

for copper binding competition assays. The “X” in the synthetic peptide denotes α-

aminobutyric acid. To improve antibody specificity, chickens were immunised with the 

KIQXFXFEEQMLNAKEEM peptide epitope coupled to a carrier protein, rabbit albumin 

(Hurdayal et al., 2010; Tomar et al., 2006). The two internal cysteines were substituted with 

α-aminobutyric acid, and a C-terminal cysteine added to allow for specific N-terminal coupling 

to rabbit albumin via maleimidobenzoyl-N-hydroxysuccinimide ester (MBS).  

 

 

 

 

Figure 3.6. Peptide around the putative P. falciparum Cox11 copper binding domain 

Predict7™ analysis showing hydrophilicity, surface probability, flexibility and antigenicity of the selected P. 

falciparum Cox11 peptide (KIQXFXFEEQMLNAKEEM), containing the implicated copper-binding site. The 

two internal cysteines (C) residues were replaced with α-aminobutyric acid (X) in the synthetic peptide. A C-

terminus cysteine was added to the synthetic peptide for peptide conjugation to MBS. 
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3.3 Discussion 

The membrane potential generated across the inner mitochondrial membrane forms the 

driving force for the ATP synthesis in most eukaryotes. In contrast, glycolysis is preferred over 

oxidative respiration in Plasmodium spp. (Vander Jagt et al., 1990). However, oxidative 

respiration is essential for the regeneration of ubiquinone for pyrimidine biosynthesis required 

by the actively dividing parasite. The turnover of the electron transfer cascade is maintained 

by CcO, the terminal enzyme of the mitochondrial electron transport chain. A functional CcO 

requires three copper residues within its Cox1 and Cox2 subunits, which have been 

demonstrated in yeast to be supplied by the metallochaperones Cox11, Cox17, Cox19 and Sco1 

(Beers et al., 2002; Glerum et al., 1996; Nobrega et al., 2002). Plasmodial Cox11 and Cox19 

were characterised in silico. 

  

3.3.1 Bioinformatic characterisation of the putative P. falciparum Cox11 protein  

In an attempt to add to the existing knowledge on the Plasmodium copper pathways and 

homeostasis, the Cox11 sequence was analysed. The Cox11 orthologues were present in the 

genome of all the nine Plasmodium spp., implying a significant role of the protein for the 

parasite. The multiple sequence alignments of the Plasmodium sequences with other 

characterised Cox11 sequences revealed sizeable N-terminal differences. Deletions in two 

regions within the C-terminal domain of Plasmodium spp. were revealed. These deletions, in 

part, could be attributed to the substantial reduction in the genome and gene sizes accompanied 

in the evolution of parasitism in apicomplexans (Jackson et al., 2016; Vivares et al., 2002; 

Wolf and Koonin, 2013). The reductions could be explained as a loss of functional redundancy 

with an increased functional complexity. As shown in Figure 3.1, the N-terminal sequence (the 

region predicted to be in the mitochondrial matrix) of the extant Plasmodium spp. genes lack 

amino acid conservation in relation to the characterised Cox11 orthologues in other organisms. 

Earlier, mutational analysis of the S. cerevisiae Cox11 demonstrated the lack of essential 

function of the N-terminal domain within the mitochondrial matrix (Banting and Glerum, 2006; 

Carr et al., 2005). The importance of the transmembrane domain was however demonstrated 

in a study where the matrix and transmembrane domains of Cox11 were supplanted with those 

of Sco1, resulting in a respiratory deficiency in yeast (Khalimonchuk et al., 2005). Three-

conserved cysteines, a feature of Cox11 was observed with two cysteines in a conserved CFCF 

motif and the third a short distance from the motif. Yeast Cox11 has been shown to form a 

dimer that binds one mole equivalent of Cu(I) per monomer via three thiolate bonds (Carr et 
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al., 2002). The NMR-solved structure of S. meliloti Cox11 revealed Cu(I) coordination via two 

thiolate bonds by the two cysteines in the CFCF motif per monomer, while the third cysteine 

was proposed to be in a disulphide bond with a cysteine from another monomer forming a 

dimer (Banci et al., 2004). Subsequent studies proposed the third cysteine to be involved in the 

transfer of Cu(I) from the Cu(I)-Cox11 cluster to the CuB centre, and not required for 

dimerisation (Thompson et al., 2010). All three cysteines are conserved suggesting their 

importance. 

 

3.3.2 Predicting the topology of P. falciparum Cox11 

The outcome of the predicted topology (Figure 3.2) in all putative Plasmodium spp. 

Cox11 is in concordance with the knowledge of the presence of a membrane-spanning helix 

tethering the protein to the inner mitochondrial membrane (Banci et al., 2004; Carr et al., 2002; 

Hiser et al., 2000; Tzagoloff et al., 1990). As expected, Plasmodium spp. Cox11 orthologues 

do not have a signal peptide or a motif for targetting to the apicoplast.  The homology model 

for P. falciparum Cox11, shows the protein adopting a similar conformational orientation to 

the corresponding S. meliloti Cox11 template (Figure 3.3B). This structural similarity suggests 

that Plasmodium Cox11 may employ a similar mode of operation, which is the transfer of 

copper to the CuB of the Cox1 subunit. 

 

3.3.3 Predicting acetylation sites in the P. falciparum Cox11 sequence 

Protein lysine acetylation is a reversible, highly regulated post-translational modification 

(PTM) crucial in regulating a wide range of cellular function in eukaryotes and some 

prokaryotes. Before the discovery of lysine acetylation in p53, a nonhistone protein, lysine 

acetylation was ascribed to histones (Gu and Roeder, 1997). Subsequently, over 2000 

acetylated proteins involved in diverse cellular processes in mammalian and bacteria cells were 

identified from four independent studies (Choudhary et al., 2009; Kim et al., 2006; Wang et 

al., 2010; Zhao et al., 2010). Although some acetylated lysines were predicted in the 

Plasmodium spp. Cox11 sequence, none of these lysines is surrounded by any of the established 

predicted motif patterns known to be associated with acetylated lysines in mitochondrial 

proteins. (Choudhary et al., 2009; Miao et al., 2013). 
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3.3.4 Bioinformatic characterisation of the putative P. falciparum Cox19 protein 

To study copper homeostasis in Plasmodium, the Cox19 orthologue was also analysed. 

Cox19 orthologues were present in the genome of all nine Plasmodium spp. In contrast to 

Cox11, the multiple sequence alignment of Cox19 amino acid sequences revealed C-terminus 

amino acid insertions in Plasmodium spp., about the same size as the extant Cox19 orthologues 

in the five other organisms (Figure 3.4). This implied the Plasmodium Cox19 sequences are 

twice as large as their orthologues in other organisms. This observed size variation, however, 

raises a  question on the evolution of parasitism accompanied by loss of functional redundancy. 

Upon closer examination of all Cox19 genes, Plasmodium Cox19 amino acid sequences are 

the product of one exon from a mRNA transcript, while the characterised Cox19 sequences are 

formed by three to four exons contained on the mRNA transcript. Thus, implying that 

Plasmodium spp. have deleted the non-coding DNA within the Cox19 gene, leaving a small 

functional gene over the course of parasitism. Hence, the apparent C-terminal insertions in 

Plasmodium spp. are resultant of loss of functional redundancy with an increased functional 

complexity (Jackson et al., 2016; Vivares et al., 2002; Wolf and Koonin, 2013). The 

identification of the CHCH domain with all four conserved cysteines, a characteristic of Cox19 

in the Plasmodium sequences imply the formation of two disulphides is probable within the 

protein structure (Bode et al., 2015; Fischer et al., 2013; Rigby et al., 2007). Only the proximal 

disulphide (Cys24 – Cys55) is essential for an active Cox19, as double mutations of Cys34 and 

Cys45 in yeast had no significance to the functionality (in vivo) and copper binding (in vitro) 

of the protein (Rigby et al., 2007). Two conserved Tyr-Leu dipeptides at positions seven and 

eight between the cysteine residues (twin Cx6YLxC ) (Bode et al., 2015) and an adjacent Arg 

to the carboxy-proximal cysteine (Nobrega et al., 2002) were shown to be essential to the 

functionality of Cox19 in yeast. One of the two essential Tyr-Leu dipeptides in yeast Cox19 

has its Leu residue substituted with Phe in the Plasmodium Cox19 sequences (Figure 3.4). The 

mammalian and avian Cox19 sequences have only one Tyr-Leu dipeptide in the second Cx9C 

motif. 

The conformation of the putative PfCox19 model (Figure 3.5) is in concord with the 

proposed Cox19 structure, of having distal and proximal disulphide (Fischer et al., 2013; Rigby 

et al., 2007). An extended model would position the omitted Cys24 in place for a proximal 

disulphide with Cys55. This suggests that Plasmodium Cox19 is likely to bind copper. 
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3.3.5 Predicting acetylation sites in P. falciparum Cox19 sequence 

Recent studies have implicated dysfunctional KATs and lysine deacetylases (KDACs) 

in diseases such as Asthma, diabetes, retroviral pathogenesis, neurodegenerative disorders 

among others (Drazic et al., 2016; Kaypee et al., 2016; Selvi and Kundu, 2009). Currently, 

KATs and KDACs inhibitors are being explored in the treatment of diseases like cancer (Gajer 

et al., 2015; Shrimp et al., 2017). Like the P. falciparum Cox11 sequence, none of the predicted 

acetylated lysines in the Plasmodium spp. Cox19 sequence is surrounded by any of the 

established predicted motif patterns around acetylated lysines in mitochondrial proteins or 

Plasmodium spp. (Choudhary et al., 2009; Miao et al., 2013). 

 

3.3.6 Selecting a Cox11 peptide for antibody production  

To assist with the characterisation of PfCox11, anti-peptide antibodies against the 

putative copper-binding domain were raised in chickens. A 19-amino acid peptide was 

selected, synthesised and conjugated to a rabbit albumin carrier protein for immunisation into 

chickens. The antibodies raised against the peptides were to be used for immunochemical 

studies and characterisation of PfCox11. 

 

3.3.7 Conclusion 

 Both of the P. falciparum Cox11 and Cox19 sequences were found to contain features 

common to other characterised orthologues in yeast and other higher organisms. Therefore, to 

establish the putative functions of both malaria copper metallochaperones, the genes were 

recombinantly cloned, expressed and characterised.
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Chapter 4 

The Plasmodium falciparum putative Cox11 copper metallochaperone: Recombinant 

protein copper binding studies 

 

4.1 Introduction 

Copper, a transition metal, is an essential micronutrient required by living organisms. 

As a transition metal, copper ions exist between Cu(I) and Cu(II) redox states. The redox 

activity makes copper a suitable cofactor for enzymes in diverse biological processes like 

cellular respiration, iron mobilisation, antioxidant defence and immune responses (Nevitt et 

al., 2012; Samanovic et al., 2012). Unregulated copper activity generates reactive oxygen 

species (ROS) which can result in cellular oxidative damage. Organisms have evolved complex 

regulatory mechanisms to keep cellular copper concentrations in check (Nevitt et al., 2012). 

The identification of copper-dependent protein orthologues in Plasmodium (Choveaux et al., 

2015; Gardner et al., 2002; Rasoloson et al., 2004), implies similar regulatory mechanisms 

may be in place in the parasite. The P. falciparum Cox11 gene was characterised in silico. Here 

the PCR-amplified gene was cloned, and the recombinant protein expressed and characterised. 

 

4.1.1 Recombinant protein expression 

The characterisation of a putative native protein from natural host cells is often a difficult 

task to undertake. This entails enrichment of the protein from a large pool of the natural host 

cells. Often, recombinant protein expression has been undertaken in a significant number of 

expression hosts. Of the numerous hosts, Escherichia coli is preferentially used owing to the 

well-studied genetics, rapid growth, ease of expression, cheap and rapid high-density 

cultivation (Singha et al., 2017; Sørensen and Mortensen, 2005). Since the expression vector 

used in the entire study uses a “tac” promoter (section 2.5.7.2), the E. coli (BL21) host was 

used as the expression host. The BL21 host lacks the ompT and lon proteases that are capable 

of degrading the recombinantly expressed proteins (Overton, 2014; Sørensen and Mortensen, 

2005). The bulk of the solved 3D-structure of proteins curated at the protein data bank (PDB) 

were recombinantly expressed in E. coli (Sørensen and Mortensen, 2005). Likewise, about 30% 

of the current biopharmaceuticals on the market are produced in bacterial hosts (Overton, 

2014). Earlier, our laboratory successfully used the E. coli system to characterise two malaria 

copper metallochaperones (Choveaux et al., 2012; 2015) and other constitutive malaria 

proteins (Krause and Goldring, 2018; Krause et al., 2017). 
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4.1.2 Copper delivery to the plasmodial mitochondria 

Copper from the external milieu destined for the mitochondria is ferried across the 

plasma membrane into the cytoplasm as Cu(I) via a copper transport protein (Ctr1) (Dancis et 

al., 1994; Lee et al., 2001; Zhou and Gitschier, 1997). Ctr1 is a high-affinity transporter that 

functions as a pore-forming homotrimer complex, facilitating translocation of Cu(I) across the 

plasma membrane (Aller and Unger, 2006; De Feo et al., 2009). The exact mechanism by 

which Cu(I) gets to the mitochondria in Plasmodium is yet to be identified, perhaps Cox17 is 

involved (Choveaux et al., 2015). In mammalian and yeast cells, copper in the mitochondria 

could either be delivered to Cu/Zn superoxide dismutase (SOD) or used in the assembly of the 

cytochrome c oxidase (CcO) complex at the CuA and CuB centres respectively. Plasmodium 

spp. lack the SOD and the copper chaperone for SOD (CCS) orthologues (Choveaux et al., 

2015; Gardner et al., 2002). Eukaryotic CCS is a trimeric protein required for the delivery and 

insertion copper into SOD (Nevitt et al., 2012). The lack of plasmodial SOD and CCS could 

imply the parasite does not utilise these proteins, or their roles have been supplanted by other 

proteins. Therefore, copper within the plasmodial mitochondria would likely be utilised for the 

formation of the CcO complex. Copper from the cytoplasm is attached to Cox17, which then 

delivers copper to the two inner mitochondria membrane-associated proteins (Maxfield et al., 

2004), Sco1 and Cox11, implicated in the metallation of the CuA and CuB centres of the Cox2 

and Cox1 subunits of the CcO complex respectively (Hiser et al., 2000; Horng et al., 2004; 

Lode et al., 2000; Timón-Gómez et al., 2018). 
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4.2 Results 

4.2.1 Identification of the presence of a Cox11 copper metallochaperone sequence in the 

Plasmodium falciparum genome 

The PF3D7_1475300 gene encoding the putative Cox11 in P. falciparum from a 

monocistronic mRNA is predicted to be localised between bases 3 085 496 to 3 086 182 of 

chromosome 14 (Figure 4.1A). A 486 bp sequence encoding the C-terminal domain of the 

putative P. falciparum Cox11 of the 687 bp coding domain (Figure 4.1C), was cloned and 

recombinantly expressed (Figure 4.1D).  Two restriction sites, a stop codon and two adapter 

gene nucleotides at the 5’ end of the restriction enzyme to enhance the specificity of the primers 

to the DNA template were added to the primer design. A  505 bp PCR-amplicon was expected. 

 

 

Figure 4.1. Localisation of the Cox11 coding domain in P. falciparum chromosome 14 

PF3D7_1475300 coding domain localisation on P. falciparum chromosome 14 (A). An expanded view of the 

chromosome 14 gene organization relative to PF3D7_1475300 (B). An exploded PF3D7_1475300 gene, 687 bp, 

encoding the complete protein (C). The recombinantly cloned putative C-terminal domain, 486 bp (D).  denotes 

the excluded gene segments at both N- and C-termini. 

 

The C-terminal domain of P. falciparum Cox11 was PCR-amplified and cloned into a 

pMal-c2x expression vector for characterisation. Figure 4.2 illustrates the steps taken in the 

PCR-amplification, cloning and subcloning of the PfCox11 C-terminal domain (rPfCox11Ct). 

Agarose gel analysis of the PCR-amplicons revealed a product of about 506 bp (Figure 4.2A), 

corresponding to the size predicted from the gene sequence. The amplicon was cloned into a 



73 
 

pGEM®-T Easy cloning vector, and colonies harbouring the recombinant plasmid (pGEM®-T 

Easy-rPfCox11Ct) selected. Colony-PCR of each colony produced amplicons of about the 

same size as the gene insert from all three colonies (Figure 4.2B). The pGEM®-T Easy-

rPfCox11Ct and pMal-c2x expression plasmid were digested with SalI and PstI. The agarose 

gel (Figure 4.2C) showed the pGEM®-T Easy-rPfCox11Ct plasmid at ~2000 bp. The product 

of enzyme digestion was two DNA fragments at ~3000 bp and ~500 bp corresponding to the 

predicted sizes for pGEM®-T Easy plasmid (3015 bp) and rPfCox11Ct respectively. 

 

 

Figure 4.2. PCR-amplification, cloning and restriction enzyme digestion of rPfCox11Ct 

(A) rPfCox11Ct amplification product from the P. falciparum gDNA (lane 1). (B) rPfCox11Ct amplified from 

three pGEM®-T Easy-rPfCox11Ct plasmid-containing bacterial colonies (lanes 1-3). (C) pGEM®-T Easy-

rPfCox11Ct plasmid alone (lane 1) and digested with SalI and PstI (lane 2). (D) pMal-c2x plasmid alone (lane 1) 

and digested with SalI and PstI (lane 2). (E) rPfCox11Ct amplified from three pMal-c2x-rPfCox11Ct plasmid-

containing bacterial colonies (lanes 1-3). (F) rPfCox11Ct alone (lane 1) and digested with AluI. Samples in A-E 

were analysed on a 1%, and F on a 3% (w/v) agarose gel. M in all images refers to the DNA ladder. The arrows 

refer to the key molecular weight band in each stance. 

 

In a similar experiment (Figure 4.2D), the digested pMal-c2x plasmid resolved as a 

~6550 bp molecule, similar to the predicted size. The rPfCox11Ct was cloned into the pMal-

c2x expression vector at the SalI and PstI sites, transformed, and colonies harbouring the 

recombinant plasmid (pMal-c2x-rPfCox11Ct) selected. Colony-PCR analysis for three 
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colonies resulted in three ~500 bp amplicons (Figure 4.2E). A unique AluI site, AGCT occurred 

once in the rPfCox11Ct sequence enabling the AluI product of ~280 bp and ~230 bp to be 

produced (Figure 4.2F). 

 

 

Figure 4.3. Alignment of P. falciparum Cox11Ct cloned sequence with the PlasmoDB gene sequence 

The P. falciparum Cox11Ct cloned sequence in pMal-c2x-rPfCox11Ct plasmid (PfCox11Ct_vect) and the 

PlasmoDB sequence (PfCox11Ct_pldb) (PF3D7_1475300) were aligned using Clustal Omega. The underlined 

nucleotide bases at the 5’ and 3’ ends indicate the primer sequences used to amplify PfCox11Ct from the P. 

falciparum gDNA. The reverse complement of the underlined sequence at the 3’ end was used as the reverse 

primer. 

 

The rPfCox11Ct coding region cloned into a pMal-c2x-rPfCox11Ct plasmid was 

sequenced and found to be identical to the PlasmoDB sequence, except for the additional stop 

codon at the 3’ end (Figure 4.3). 

 

4.2.2 Site-directed mutagenesis to replace Cys60 and Cys157 with Ala in the P. falciparum 

Cox11 sequence 

Two of the three conserved cysteine residues in Cox11 corresponding to Cys60 and 

Cys157 in the P. falciparum sequence were investigated for their roles in copper binding in 

PfCox11. Overlap extension PCR was employed to mutate either Cys60 and Cys157 or both 

PfCox11Ct_vect      CCGTCGACCAATTATTTTGTCAATCCACAGGTTATGGTGGTACAATACAAAAGCGATTGG 60 

PfCox11Ct_pldb      --------CAATTATTTTGTCAATCCACAGGTTATGGTGGTACAATACAAAAGCGATTGG 52 

                            **************************************************** 

 

PfCox11Ct_vect      ATATAGGTAAAATATTTAATAGGAAAAAGGATGAAAAGAATAGATTAATTGAAATAAATT 120 

PfCox11Ct_pldb      ATATAGGTAAAATATTTAATAGGAAAAAGGATGAAAAGAATAGATTAATTGAAATAAATT 112 

                    ************************************************************ 

 

PfCox11Ct_vect      TTACTAGTCAATCTAATATGCCATGGGTATTTGAACCTGAACAAAAATATATTATAGTAA 180 

PfCox11Ct_pldb      TTACTAGTCAATCTAATATGCCATGGGTATTTGAACCTGAACAAAAATATATTATAGTAA 172 

                    ************************************************************ 

 

PfCox11Ct_vect      AGCCAGGAGAAACAGTATTAGCTTTTTATAAGGCAAAAAATTTAATGGATAAGCCTATTA 240 

PfCox11Ct_pldb      AGCCAGGAGAAACAGTATTAGCTTTTTATAAGGCAAAAAATTTAATGGATAAGCCTATTA 232 

                    ************************************************************ 

 

PfCox11Ct_vect      TTGGAATTGCTTTATATCATGTATTACCAGAAGAAGCTGGACTATATTTTAATAAAATTC 300 

PfCox11Ct_pldb      TTGGAATTGCTTTATATCATGTATTACCAGAAGAAGCTGGACTATATTTTAATAAAATTC 292 

                    ************************************************************ 

 

PfCox11Ct_vect      AATGTTTTTGTTTTGAAGAACAAATGTTAAATGCTAAAGAAGAAATGGATTTACCTATAC 360 

PfCox11Ct_pldb      AATGTTTTTGTTTTGAAGAACAAATGTTAAATGCTAAAGAAGAAATGGATTTACCTATAC 352 

                    ************************************************************ 

 

PfCox11Ct_vect      TCTTTTTTATCGATCCAGAAATATTAAATGATTCAAGATTAAAAAATTTAGAAAAAATTA 420 

PfCox11Ct_pldb      TCTTTTTTATCGATCCAGAAATATTAAATGATTCAAGATTAAAAAATTTAGAAAAAATTA 412 

                    ************************************************************ 

 

PfCox11Ct_vect      CACTATCATATATTTTTTTTGAATCCGATTCAGAAATACCTGAAGAATACCAAAACCTCT 480 

PfCox11Ct_pldb      CACTATCATATATTTTTTTTGAATCCGATTCAGAAATACCTGAAGAATACCAAAACCTCT 472 

                    ************************************************************ 

 

PfCox11Ct_vect      CAAGGGCTATTTCCTGACTGCAGAA 505 

PfCox11Ct_pldb      CAAGGGCTATTTCC----------- 486 

                    ************** 
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cysteines to alanine (Figure 4.4). Substituting a cysteine with an alanine at position 155 – the 

third conserved cysteine, was not possible owing to constraints in the design of the two internal 

primers for the mutant codon. 

 

 

Figure 4.4. Sites on the gene for site-directed mutagenesis 

Residues Cys60 and Cys157 were mutated to Ala on the P. falciparum Cox11Ct. 

 

Figure 4.5 summarises the steps taken to substitute a cysteine with an alanine at position 

60. The process involved a two-step PCR reaction (Figure 4.5A). Agarose gel analysis of the 

first PCR amplicons (Figure 4.5B) showed lagging and leading fragments with estimated sizes 

of ~130 bp and ~500 bp, which correspond to their predicted sizes of 131 bp and 519 bp 

respectively. The second PCR amplicon (Figure 4.5C) ran as ~620 bp, similar to the predicted 

size of 648 bp. This amplicon was digested with SalI and PstI restriction endonucleases and 

cloned into the pMal-c2x expression vector at the corresponding restriction sites. The 

recombinant plasmid harbouring the desired mutant codon “GCG” corresponding to Ala60 

(C60A) was sequenced and was identical to the curated PlasmoDB sequence, barring the 

mutation and the stop codon as expected (Figure 4.5D). 
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Figure 4.5. Site-directed mutagenesis using overlap extension PCR amplification to substitute Cys60 with Ala 

The overlap extension PCR was conducted in a two-step PCR reaction substituting Cys60 with Ala using the pMal-c2x-rPfCox11Ct plasmid as the template DNA. (A) A 

diagram of the two PCR products in overlap extension PCR. Open bars, pMal-c2x nucleotide sequence; solid bar, PfCox11Ct; hatched bar, contiguous overlap; black circle, 

point mutation; F1 and r2, lagging gene fragment primers; f2 and R1, leading gene fragment primers. (B) First PCR products were; a lagging gene fragment (lanes 1, 2), and a 

leading gene fragment (lanes 3, 4). (C) The full-length mutated gene including pMal-c2x fragment was amplified in the second PCR from the two fragments. Lanes 1 and 2, 

full-length mutated gene including pMal-c2x fragment. PCR products were analysed on a 3% (w/v) agarose gel. DNA ladders are designated M. (D) Sequence alignment of 

the C60A mutant with PlasmoDB sequence (PfCox11Ct_pldb) (PF3D7_1475300) using Clustal Omega. The box indicates the site of mutagenesis with the mutant codon in 

red. 
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Figure 4.6. Site-directed mutagenesis using overlap extension PCR amplification to substitute Cys157 with Ala 

The overlap extension PCR was conducted in a two-step PCR reaction substituting Cys157 with Ala using the pMal-c2x-rPfCox11Ct plasmid as the template DNA. (A) A 

diagram of the two PCR products in overlap extension PCR. Open bars, pMal-c2x nucleotide sequence; solid bar, PfCox11Ct; hatched bar, contiguous overlap; black circle, 

point mutation; F1 and r2, lagging gene fragment primers; f2 and R1, leading gene fragment primers. (B) First PCR products were; a lagging gene fragment (lanes 1, 2), and a 

leading gene fragment (lanes 3, 4). (C) The full-length mutated gene including pMal-c2x fragment was amplified in the second PCR from the two fragments. Lanes 1 and 2, 

full-length mutated gene including pMal-c2x fragment. PCR products were analysed on a 3% (w/v) agarose gel. DNA ladders are designated M. (D) Sequence alignment of 

the C157A mutant with PlasmoDB sequence (PfCox11Ct_pldb) (PF3D7_1475300) using Clustal Omega. The box indicates the site of mutagenesis with the mutant codon in 

red. 
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A similar experiment substituting alanine for cysteine at position 157 from overlap 

extension PCR was conducted (Figure 4.6). Agarose gel analysis of the first PCR amplicons 

(Figure 4.6B) revealed lagging, and leading fragments sizes estimated as ~330 bp and ~210 bp 

which are in agreement with the predicted 337 bp and 210 bp sizes respectively. The full-length 

mutant gene including the pMal-c2x fragment was analysed on an agarose gel and ran as 

~530 bp, which is similar to the predicted size of 547 bp (Figure 4.6C). The mutated gene 

sequence was cloned into pMal-c2x at the SalI and PstI sites. The recombinant plasmid with 

the desired mutant codon “GCC” corresponding to Ala157 (C157A) was sequenced and was 

shown to be identical to the curated PlasmoDB sequence, barring the mutation and the stop 

codon (Figure 4.6D). 

 Like C60A and C157A, the double mutant plasmid (C60A-C157A) was engineered from 

the overlap extension PCR (Figure 4.7A). Agarose gel analysis of the first PCR amplicons 

(Figure 4.7B) revealed an estimated size of about 340 bp and 220 bp for the lagging and leading 

fragments corresponding to the predicted sizes of 337 bp and 210 bp respectively. The full-

length mutant gene including the pMal-c2x fragment was analysed on agarose gel and ran as 

~550 bp corresponding to predicted size, 547 bp (Figure 4.7C). The sequenced plasmid 

contains the desired “GCG” and “GCC” Ala codons corresponding to position 60 and 157 in 

the amino acid sequence, and again the sequences were identical to the curated PlasmoDB 

sequence, apart from the stated mutations and the stop codon (Figure 4.7D). 
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Figure 4.7. Site-directed mutagenesis using overlap extension PCR amplification to substitute Cys60 and Cys157 with Ala 

The overlap extension PCR was conducted in a two-step PCR reaction substituting Cys60 and C157 with Ala using the pMal-c2x-rPfCox11Ct plasmid as the 

template DNA. (A) A diagram of the two PCR products in overlap extension PCR. Open bars, pMal-c2x nucleotide sequence; solid bar, PfCox11Ct; hatched bar, 

contiguous overlap; black circle, point mutation; F1 and r2, lagging gene fragment primers; f2 and R1, leading gene fragment primers. (B) First PCR products were; 

a lagging gene fragment (lanes 1, 2), and a leading gene fragment (lanes 3, 4). (C) The full-length mutated gene including pMal-c2x fragment was amplified in the 

second PCR from the two fragments. Lanes 1 and 2, full-length mutated gene including pMal-c2x fragment. PCR products were analysed on a 3% (w/v) agarose 

gel. DNA ladders are designated M. (D) Sequence alignment of the C60A-C157A double mutant with PlasmoDB sequence (PfCox11Ct_pldb) (PF3D7_1475300) 

using Clustal Omega. The box indicates the site of mutagenesis with the mutant codon in red.
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The cloned 486 bp encodes 162 amino acids within the putative C-terminal domain of 

the P. falciparum Cox11 amino acid sequence, excluding the first 56 and last ten amino acid 

(Figure 4.8). 

 

 

 

 

Figure 4.8. P. falciparum Cox11 amino acid sequence 

(A) The cloned PfCox11 soluble C-terminal amino acid sequence derived from the P. falciparum gDNA is shown 

in bold print. (B) The recombinant MBP-PfCox11Ct protein amino acid sequence derived from the pMal-c2x-

rPfCox11Ct plasmid. The three conserved Cys are in blue. The selected peptide sequence for antibody production 

is underlined. 

 

4.2.3 Optimising conditions for the recombinant expression of MBP-PfCox11Ct 

To establish the optimum conditions for recombinant MBP-PfCox11Ct expression, 

firstly, different growth medium were tested (Figure 4.9). The rMBP-PfCox11Ct cell lysate 

grown in Luria-Bertani (LB) (Figure 4.9A), and 2xYT (Figure 4.9B) media after a 6 h 

induction period was analysed on an SDS-PAGE gel. A similar protein profile of increasing 

concentration of all proteins of different sizes with time was observed on both gels. A 60 kDa 

band of low intensity in the uninduced sample had increased in intensity over time upon 

induction on both gels. This band corresponds to the predicted size for rMBP-PfCox11Ct of 

A 
 
>PfCox11  
MKILKTFFKRLHLRNKKNVISPYRILERKEKLDIPYACLSLSAIMFGLSFAFVPLYQLFC 

QSTGYGGTIQKRLDIGKIFNRKKDEKNRLIEINFTSQSNMPWVFEPEQKYIIVKPGETVL 

AFYKAKNLMDKPIIGIALYHVLPEEAGLYFNKIQCFCFEEQMLNAKEEMDLPILFFIDPE 

ILNDSRLKNLEKITLSYIFFESDSEIPEEYQNLSRAISPYKKTEIQVI 

B 
 

>rMBP-PfCox11CtMBP-PfCox11Ct 
MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDI 

IFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNK 

DLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIK 

DVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSK 

VNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL 

GAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDE 

ALKDAQTNSSSNNNNNNNNNNLGIEGRISEFGSSRVDQLFCQSTGYGGTIQKRLDIGKIF 

NRKKDEKNRLIEINFTSQSNMPWVFEPEQKYIIVKPGETVLAFYKAKNLMDKPIIGIALY 

HVLPEEAGLYFNKIQCFCFEEQMLNAKEEMDLPILFFIDPEILNDSRLKNLEKITLSYIF 

FESDSEIPEEYQNLSRAISLQ 
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62.7 kDa. The expressed band intensity was more in 2xYT than that in LB medium. 2xYT 

medium and a time of 4 h induction time were chosen for subsequent expression. 

 

 
 
Figure 4.9. Effect of 2xYT and LB media on the recombinant expression of MBP-PfCox11Ct 

E. coli cells harbouring the pMal-c2x-rPfCox11Ct plasmid were grown in (A) LB and (B) 2xYT media at 30oC 

and analysed on a 12.5% reducing SDS-PAGE gel. Recombinant protein expression was induced with 0.5 mM 

IPTG. Uninduced lysate after 6 h (lanes 1 and 2), expression was monitored at 2 h (lanes 3 and 4), 4 h (lanes 5 

and 6) and 6 h (lanes 7 and 8) post-induction. Molecular weight marker, M; arrow indicates rMBP-PfCox11Ct. 

 

 

 

Figure 4.10. Recombinant expression of MBP-PfCox11Ct with varying IPTG concentration 

E. coli cells harbouring the pMal-c2x-rPfCox11Ct plasmid grown in 2xYT media at 30oC and induced for 4 h 

with 0 to 1 mM IPTG were analysed on a 12.5% SDS-PAGE. Molecular weight marker, M; Lanes 1 and 2, no 

IPTG added; lanes 3 and 4, 0.1 mM IPTG; lanes 5 and 6, 0.2 mM IPTG; lanes 7 and 8, 0.3 mM IPTG; lanes 9 and 

10, 0.4 mM IPTG; lanes 11 and 12, 0.5 mM IPTG; lanes 13 and 14, 1 mM IPTG; arrow indicates rMBP-

PfCox11Ct. 

 

As was shown in Figure 4.10, a 60 kDa protein appeared after induction with IPTG. The 

intensity of the expressed band increased with the IPTG concentration up to 0.4 mM. There 

was no apparent increase in the concentration of the protein above 0.4 mM IPTG. 

 

4.2.4 Isolation of the recombinant MBP-PfCox11Ct protein 

After expressing rMBP-PfCox11Ct (see section 2.6.2), the protein was isolated using an 

amylose affinity resin. A maltose gradient was used to elute the protein, 0.3 mM was chosen 

for subsequent purifications. A ~62 kDa protein and a 45 kDa protein corresponding to the size 
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of the MBP forming portion were observed (Figure 4.11B). A form of the cleaved MBP fusion 

does often occur (pMAL™ Protein Fusion and Purification System, Instruction manual), and 

the addition of glucose to the bacterial growth medium did not change the expression the MBP 

protein. 

 

 

Figure 4.11. Recombinant expression and affinity purification of the MBP-PfCox11Ct 

The rMBP-PfCox11Ct was purified with an amylose affinity column. (A) Elution profile from the amylose affinity 

matrix showing the maltose gradient. (B) Samples from the purification steps were analysed on a 12.5% reducing 

SDS-PAGE. Molecular weight marker (M); soluble cell lysate (lane 1); unbound fraction from the amylose 

affinity matrix (2); final wash (lane 3); eluents from the amylose affinity matrix (lanes 4 to 14). 

 

Table 4.1 is a protein purification table showing protein yield from the purification steps 

of the rMBP-PfCox11Ct protein from duplicate 400 ml cultures. About 122 mg protein was 

obtained in the soluble lysate from the lysis of ~2.91 g bacterial pellet, corresponding to a yield 

of ~42 mg/g bacterial pellet.  About 0.49 mg/g bacterial pellet of rMBP-PfCox11Ct was 

obtained. 

 

Table 4.1. Purification table for the affinity purified rMBP-PfCox11Ct 

 Total vol. 

(ml) 

Total protein* 

(mg) 

Yield 

(%) 

Yield 

(mg/g bacterial 

pellet) 

Soluble cell lysate 30.15 ± 1.91 122.41 ± 2.20 100 42.07 ± 0.76 

Unbound fraction 27.46 ± 2.06 103.33 ± 0.70   84.41 ± 2.09 35.51 ± 0.24 

Washes 58.50 ± 7.78   11.08 ± 1.10     9.04 ± 0.74  3.81 ± 0.38 

Affinity purified rMBP-PfCox11Ct 23.59 ± 1.47     1.43 ± 0.19     1.17 ± 0.18  0.49 ± 0.06 

 

Data presented are Mean ± SD values from duplicate purifications. 

Bacterial pellet = 2.91 ± 0.22 g 

* Determined with Bradford assay 
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The identity of the purified rMBP-PfCox11Ct protein was confirmed on a western blot 

probed with a mouse monoclonal anti-MBP antibody (Figure 4.12). Both a ~62 kDa protein 

rMBP-PfCox11Ct and a 45 kDa MBP protein with some minor proteins were detected by the 

anti-MBP antibody (Figure 4.12B). 

 

 

Figure 4.12. Detection of rMBP-PfCox11Ct by anti-MBP antibodies in a western blot 

The rMBP-PfCox11Ct was identified on a western blot. (A) Coomassie-stained 12.5% reducing SDS-PAGE 

reference gel. (B) Western blot probed with mouse monoclonal anti-MBP IgG. Molecular weight marker (M); 

lane 1, soluble cell lysate; lane 2, unbound fraction from the amylose affinity matrix; lane 3, final wash; lanes 4 

to 8, eluents from the amylose affinity matrix. Antibodies were; mouse monoclonal anti-MBP IgG (1:12000) and 

goat anti-mouse IgG-HRPO (1:12000). 
 

4.2.5 IgY antibodies were raised in chickens against rMBP-PfCox11Ct 

Two chickens were immunised four times with purified rMBP-PfCox11Ct and IgY was 

isolated from the eggs of the chickens. Antibody titres in eggs were monitored by ELISA over 

a 16-week period (Figure 4.13A). Antibody responses increased from week two and remained 

high from week three to week 16. IgY was isolated from eggs and affinity purified with a 

rMBP-PfCox11Ct AminoLink™ affinity matrix (Figure 4.13B). About 21 mg of affinity 

purified anti-rMBP-PfCox11Ct IgY was obtained from a chicken. The chicken affinity-purified 

antibodies detected rMBP-PfCox11Ct and lower proteins but did not detect any protein in the 

uninfected red blood cell lysate or E. coli host cell (Figure 4.13C). 

 The purified recombinant MBP from the pMal-c2x plasmid was expressed with the β-

galactosidase α fragment as a ~50 kDa protein. 



84 
 

 

Figure 4.13. Affinity purified antibodies detected rMBP-PfCox11Ct 

Antibodies against rMBP-PfCox11Ct were monitored in chicken eggs by ELISA over 16 weeks. (A) Plates were 

coated with 150 ng/well rMBP-PfCox11Ct. IgY (25, 50 and 100 µg/ml) primary antibody and rabbit anti-chicken 

IgG-HRPO (1:15 000), and plates read at OD405. (B) Pools of isolated IgY from eggs were affinity purified with 

a rMBP-PfCox11Ct AminoLink™ column. (C) A 12.5% reducing SDS-PAGE Coomassie-stained reference gel 

(left panel). Affinity-purified IgY detected rMBP-PfCox11Ct on a western blot (right panel). Molecular weight 

marker (M); lane 1, uninfected human red blood cell lysate; lane 2, untransformed E. coli (BL21) lysate; lane 3, 

soluble rMBP-PfCox11Ct lysate; lane 4, affinity purified MBP-PfCox11Ct; lane 5, recombinant MBP. 

 

4.2.6 IgY antibodies was raised in chickens against a PfCox11 peptide 

An antibody against PfCox11 targetting a selected peptide sequence 

(KIQXFXFEEQMLNAKEEM) within the putative copper binding site (see section 2.3.3) was 

also raised in two chickens and the IgY isolated from the eggs of the chickens. The antibody 

titres in chickens over a 16-week period was monitored by ELISA (Figure 4.14A). Antibodies 

against the KIQXFXFEEQMLNAKEEM peptide were generated from week three to four in 

both chickens, remained high for six weeks and then slowly decreased. The pool of IgY was 

affinity purified with a KIQXFXFEEQMLNAKEEM SulfoLink™ affinity matrix (Figure 

4.14B). About 21 mg of affinity purified anti-KIQXFXFEEQMLNAKEEM peptide IgY was 

obtained from each chicken. The chicken affinity-purified antibodies detected rMBP-

PfCox11Ct and did not detect any protein in the uninfected red blood cell lysate, E. coli host 

lysate or recombinant MBP (Figure 4.14C).
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Figure 4.14. Affinity purified anti-peptide (KIQXFXFEEQMLNAKEEM) antibodies detected rMBP-PfCox11Ct 

Antibodies against the peptide, KIQXFXFEEQMLNAKEEM, were monitored in chicken eggs by ELISA over 16 weeks. (A) Plates were coated with 150 ng/well rMBP-

PfCox11Ct. IgY (10, 25, 50 and 100 µg/ml) primary antibody and rabbit anti-chicken IgG-HRPO (1:15 000), and plates read at OD405. (B) Pools of isolated IgY from eggs 

were affinity purified with a KIQXFXFEEQMLNAKEEM SulfoLink™ column. “X”, α-aminobutyric acid. (C) A 12.5% reducing SDS-PAGE Coomassie-stained reference gel 

(left panel). Affinity-purified IgY detected rMBP-PfCox11Ct on a western blot (right panel). Molecular weight marker (M); lane 1, uninfected human red blood cell lysate; 

lane 2, untransformed E. coli (BL21) lysate; lane 3, soluble rMBP-PfCox11Ct lysate; lane 4, affinity purified MBP-PfCox11Ct; lane 5, recombinant MBP. 
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4.2.7 Detection of the P. berghei Cox11 with antibodies against rMBP-PfCox11Ct 

Owing to an 85% amino acid sequence identity between the soluble C-terminal of P. 

falciparum and P. berghei Cox11 (Figure 4.15A), the anti-rMBP-PfCox11Ct antibody was 

used to detect the expression of native Cox11 in the murine malaria parasite cell lysate. 

Detection of lactate dehydrogenase (LDH) with LDH antipeptide (APGKSDKEWNRDDL) 

antibody in the parasite lysate served as a reference and internal control. 

 

 

 

 

Figure 4.15 Anti-rMBP-PfCox11Ct antibody detection of the Cox11 in P. berghei infected mouse red blood 

cell lysate 

(A) Alignment of the P. falciparum and P. berghei Cox11 soluble C-terminal amino acid sequences. The 

annotation “*”, denote conserved residue, while “:”and “.” denote conserved and semi-conserved substitutions 

respectively. Cox11 was detected in P. berghei infected BALB/c mouse red blood cell lysate using enhanced 

chemiluminescence (ECL). (B) A 12.5% reducing SDS-PAGE Coomassie-stained reference gel. (C) Western 

blots probed with lactate dehydrogenase antipeptide antibody or (D) IgY anti-rMBP-PfCox11Ct, and goat anti-

mouse IgG-HRPO (1:12000). Molecular weight marker (M); uninfected (lane 1) and infected (lane 2) P. berghei 

BALB/c mouse red blood cell lysates. 

PfCox11Ct      QLFCQSTGYGGTIQKRLDIGKIFNRKKDEKNRLIEINFTSQSNMPWVFEPEQKYIIVKPG 60 

PbCox11Ct      QLFCQSTGYGGTTQKTFDISELFNKKV-NKDRLIEVNFTSQSNMPWAFKPEQKSIIVKPG 59 

               ************ ** :**.::**:*  :*:****:**********.*:**** ****** 

 

PfCox11Ct      ETVLAFYKAKNLMDKPIIGIALYHVLPEEAGLYFNKIQCFCFEEQMLNAKEEMDLPILFF 120 

PbCox11Ct      ETVLAFYKAKNLLDKPVIGIALYHVLPDEAGLYFNKIQCFCFEEQMLNANEEIDLPVLFF 119 

               ************:***:**********:*********************:**:***:*** 

 

PfCox11Ct      IDPEILNDSRLKNLEKITLSYIFFESDSEIPEEYQNLSRAIS 162 

PbCox11Ct      IDPEILNDSRLKNLEKITLSYIFFESDSDIPEEYQHLSKAIV 161 

               ****************************:******:**:** 

 

A 

B C D 
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The pan-specific LDH antipeptide control antibody detected a 35 kDa protein 

corresponding to the P. berghei LDH in the P. berghei infected BALB/c mouse red blood cell 

lysate (Figure 4.15B). The anti-rMBP-PfCox11Ct antibody detected the protein in the P. 

berghei infected BALB/c mouse red blood cell. The anti-rMBP-PfCox11Ct detected proteins 

at 106 kDa, 58 kDa, 38 kDa and a ~28 kDa within a kDa of the expected P. berghei Cox11 

size, 26.5 kDa, and a large molecular weight aggregate above the 116 kDa protein marker. 

Excluding the 38 kDa band, the proteins correspond to a dimer, tetramer and higher oligomeric 

forms of the P. berghei Cox11. 

 

4.2.8 Binding of copper to rMBP-PfCox11Ct measured with the bicinchoninic acid (BCA) 

release assay 

The BCA release assay exploits the BCA complexation with Cu(I) (Cu(I)-BCA) at 

alkaline pH producing an intense purple colour detectable at 354 nm (Brenner and Harris, 

1995). Protein-copper complexes were disrupted by acid denaturation to release copper into 

the reducing solution containing ascorbate to facilitate Cu(I)-BCA complexation (Figure 

4.16A). 
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Figure 4.16. Diagram of the copper determined with the BCA release assay 

(A) Protocol for the BCA assay. (B) Diagram of the copper binding in vitro to a recombinant protein in the 

presence or absence of ascorbic acid. (C) Diagram of recombinant protein expressed with copper in the growth 

medium (in vivo). A modified BCA assay was used to determine the oxidation state of protein-bound copper. 

 

The in vitro copper binding characteristics of the rMBP-PfCox11Ct were assessed by 

incubating the purified recombinant proteins with a 20-fold molar excess of copper in the 

presence or absence of ascorbic acid and dialysis (16-2-2 h) (Figure 4.16B). The addition of 

ascorbic acid, a reducing agent, was to ascertain the oxidation state of bound copper. Copper 

was detected by the BCA assay using ascorbic acid to facilitate the formation of the purple 

Cu(I)-BCA complex. An experiment conducted showed that the unbound copper was removed 

from the reaction mixture in the first 16 h of dialysis (data not shown). 

 Figure 4.17 illustrates the in vitro binding of copper to rMBP-PfCox11Ct and all three 

mutant proteins measured with the BCA release assay. The rMBP-PfCox11Ct and all three 

mutant proteins bind Cu(I) and not Cu(II) as indicated in the absence and presence of ascorbate 

in vitro. The MBP control binds less copper. There was no significant difference in the in vitro 

copper binding between the rMBP-PfCox11Ct and the three mutant proteins. 
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Figure 4.17. Binding of copper to rMBP-PfCox11Ct and mutant proteins in vitro measured by BCA release 

assay 

Affinity-purified rMBP-PfCox11Ct and mutant proteins (C60A, C157A and C60A-C157A) or MBP alone were 

incubated with CuCl2 in the absence (–) or presence (+) of ascorbic acid in vitro. The BCA release assay was used 

to detect copper without (open bars) or with (solid bars) the addition of ascorbic acid. The copper standard (CuCl2) 

was equimolar to the amount of protein. The horizontal broken line represents the cut-off for copper bound to 

MBP. Results are means ± S.E. of triplicate measurements from duplicate samples. A two-way ANOVA with 

Bonferroni multiple comparison tests were conducted on samples incubated with CuCl2 in the presence of 

ascorbate (+). Comparison between MBP and rMBP-PfCox11Ct/C60A/C157A/C60A-C157A is illustrated with 

“*”. Data were considered significant at P<0.05 (*), P<0.01 (**), P<0.001 (***). 

 

 

 

Figure 4.18. The effect of EDTA on copper binding to rMBP-PfCox11Ct in vitro 

Affinity-purified rMBP-PfCox11Ct and MBP was incubated with CuCl2 and ascorbate in the absence (-) or 

presence (+) of EDTA. Copper was detected without (open bars) or with (solid bars) the addition of ascorbic acid 

in BCA release assay at 354 nm. The data presented are mean ± SD of a duplicate. “*” denotes statistical 

significance (P<0.05) as determined by Student’s t-test. 
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An additional control showed that EDTA, which chelates copper, inhibited the Cu(I)-

BCA complexation (Figure 4.18). 

 

In vivo copper binding of rMBP-rPfCox11Ct 

To see if the rMBP-PfCox11Ct bound copper in vivo, copper was added to the growth 

medium of E. coli cells expressing the rMBP-PfCox11Ct and the three mutant proteins. The 

recombinant proteins were affinity purified and the presence of copper assessed (Figure 4.16C). 

The oxidation state of copper binding to rMBP-PfCox11Ct could not be assessed in vivo, 

however, copper is reported (Davis and O'Halloran, 2008) to be reduced inside cells. As seen 

with the in vitro results, the rMBP-PfCox11Ct bound copper in vivo (P<0.001) compared to 

the MBP control (Figure 4.19). Two single mutants, C60A and C157A (P<0.001), and the 

C60A-C157A (P<0.05) double mutant significantly bound copper. Both rMBP-PfCox11Ct 

and C60A mutant bound copper equally well in vivo. The C157A bound copper less well and 

the C60A-C157A mutant poorly, but above the levels shown by the MBP control. 

 

 

Figure 4.19. Binding of copper to rMBP-PfCox11Ct and mutant proteins in vivo measured by the BCA 

release assay 

0.5 mM CuCl2 was added to the E. coli growth medium after the induction of recombinant protein expression. 

Following affinity purification of the recombinant proteins, copper bound in vivo was detected by the BCA release 

assay without (open bars) or with (solid bars) the addition of ascorbic acid. The BCA-Cu+ complex was detected 

at 354 nm. The horizontal broken line represents the cut-off for copper bound to MBP. Results are mean ± S.E. 

of triplicate measurements from duplicate samples. A two-way ANOVA with Bonferroni multiple comparison 

tests were conducted on samples expressed with CuCl2 (+). Data were considered significant at P<0.05 (*, # or $  

), P<0.01 (**, ## or $$), P<0.001 (***, ### or $$$). Comparison between MBP and rMBP-PfCox11Ct and mutant 

proteins is illustrated with “*” and comparison of mutants to rMBP-PfCox11Ct  is illustrated with “#”, whereas, 

“$” signifies comparison between C157A and C60A-C157A. 
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4.2.9 rMBP-PfCox11Ct inhibition of the copper-catalysed oxidation of ascorbic acid 

The effect of the rMBP-PfCox11Ct and mutant proteins on the copper-catalysed ascorbic 

acid oxidation was investigated (Figure 4.20). Ascorbic acid had a relatively stable absorbance 

reading over 300 s. The addition of 8 µM copper to ascorbic acid produced a rapid and 

progressive ascorbic acid oxidation. The inhibition of this oxidation was examined with the 

addition of 5 µM of the rMBP-PfCox11Ct and mutant proteins or MBP. MBP had little effect 

on the oxidation. rMBP-PfCox11Ct inhibited the oxidation. The C60A mutant inhibited the 

oxidation less well, while the C157A and the C60A-C157A mutants poorly inhibited the 

oxidation. 

 

 

Figure 4.20. Copper-catalysed oxidative degradation of ascorbic acid in the presence of rMBP-PfCox11Ct 

and mutants 

Measurement of the rate of ascorbic acid oxidation by 8 µM Cu2+ over 300 s at pH 4.5 in the presence or absence 

of 5 µM rMBP-PfCox11Ct and mutants. MBP was included as a control. Ascorbic acid (Asc); Ascorbic acid with 

copper (Asc + Cu). 
 

4.2.10   Copper binding measured with atomic absorption spectroscopy (AAS) 

Atomic absorption spectroscopy (AAS) was used to quantify the bound copper to the 

rMBP-PfCox11Ct. Samples from the in vitro BCA assay (rMBP-PfCox11Ct and MBP) were 

diluted 1:1 in the reaction buffer and copper content analysed at 324.5 nm. A similar pattern of 

data as the BCA release assay was obtained from the AAS data (Figure 4.21). The data 
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revealed, 1.437 µg/ml (22.63 µM) copper was bound to 5 µM MBP-PfCox11Ct, whereas 0.684 

µg/ml copper was detected bound to MBP. 

 

 

Figure 4.21. In vitro copper binding of rMBP-PfCox11Ct measured by atomic absorption spectroscopy 

Affinity-purified rMBP-PfCox11Ct or MBP were incubated with CuCl2 in the absence (open bars) or presence 

(solid bars) of ascorbic acid. The bound copper was quantified using atomic absorption spectrophotometer at 

324.5 nm. The data presented are mean ± SD of a duplicate. 

 

4.2.11  Copper binding measured with differential scanning fluorimetry 

The melting temperature (Tm), an extrinsic property of proteins, was explored to 

determine the copper binding of rMBP-PfCox11Ct using the SYPRO® orange dye. The Tm of 

the rMBP-PfCox11Ct and MBP proteins was scanned through a range of 25 to 90oC at 

0.3oC/min by monitoring the SYPRO® orange fluorescence emission. 



93 
 

 

 

Figure 4.22. The first derivative of the differential scanning fluorimetry for rMBP-PfCox11Ct with or 

without copper 

The figure shows the change in rMBP-PfCox11Ct and MBP melting temperatures with and without copper. 

 

Figure 4.22 illustrates the thermal denaturation profile for the rMBP-PfCox11Ct and 

MBP with or without copper. MBP had a melting temperature (Tm) of 49.12 ± 0.25oC and 49.61 

± 0.35oC in the absence and presence of copper respectively, with a change in Tm (ΔTm) of 

+0.49oC. rMBP-PfCox11Ct had a Tm of 55.68 ± 0.12oC and 53.42 ± 0.49oC in the absence and 

presence of copper respectively, with a ΔTm of -2.26oC. 

 

4.2.12  Copper tolerance of E. coli (BL21) host expressing rMBP-PfCox11Ct 

The effect of rMBP-PfCox11Ct on the copper tolerance of the E. coli host cell during 

growth was investigated. 

 Firstly, the copper tolerance of an untransformed E. coli host (Figure 4.23A) was 

established using a range of copper concentrations between 0 to 20 mM (Figure 4.23A, left 

panel) for six hours after adding copper at the exponential growth phase. E. coli host-cells grew 

in the presence of copper below 10 mM, and 8 mM copper slows growth considerably (Figure 

4.23A, right panel). This confirmed that the 0.5 mM copper used for in vivo copper binding 

studies does not affect the host-cell growth. The concentration of copper required to reduce the 
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E. coli host growth by 50% (IC50), 7.19 mM copper, was deduced from a growth inhibition 

curve (data not shown) of E. coli host cells. 

 Unlike the E. coli cells alone, E. coli cells harbouring the pMal-c2x plasmid stopped 

growing at 8 mM copper concentration (Figure 4.23B). The experiment was repeated with the 

same result. The IC50 of 5.7 mM copper was estimated from a growth inhibition curve (data 

not shown) of transformed E. coli host expressing MBP. 

 When E. coli cells harbouring the pMal-c2x-rPfCox11Ct plasmid were grown in the 

presence of copper (Figure 4.24), The E. coli cells were able to tolerate 8 mM copper compared 

to the lack of growth observed in E. coli host expressing MBP alone. An IC50 of 6.72 mM was 

estimated from the inhibition curve. The importance of the three conserved cysteines in Cox11 

to enable the E. coli cells to grow in the presence of 8 mM copper was determined (Figure 

4.24B). Only the E. coli cells with the rMBP-PfCox11Ct and C60A mutant protein tolerated 

8 mM copper. The C157A and C60A-C157A mutant proteins clones did not protect the cells 

from copper inhibition of growth.
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Figure 4.23. Effect of copper on growth of E. coli (BL21) cells 

E. coli (BL21) growth was monitored by OD600 at an hourly interval for 6 h. (A) Cultures of untransformed E. coli (BL21) with 0 to 20 mM (left panel) and 0 to 8 mM (right 

panel) copper. (B) Cultures of E. coli (BL21) with pMal-c2x expression vector, with 0 to 8 mM copper. The dotted lines indicate the addition of IPTG (in transformed) and 

copper in E. coli (BL21) cultures.
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Figure 4.24. Effect of copper on the growth of E. coli (BL21) cells expressing rMBP-PfCox11Ct and mutants 

E. coli (BL21) with the pMal-c2x-rPfCox11Ct plasmid was grown in the presence of 0 and 8 mM copper and growth was monitored at an hourly interval by OD600 for 6 h.  (A) 

Triplicate E. coli (BL21) cultures with pMal-c2x-rPfCox11Ct, with or without copper. (B) Cultures of E. coli (BL21) with pMal-c2x-PfCox11Ct or mutants, with or without 

copper. The dotted lines indicate the addition of copper and IPTG. 



97 
 

4.3 Discussion 

4.3.1 Cloning the P. falciparum Cox11 sequence  

P. falciparum Cox11 is encoded by an open reading frame of 687 bp. A 486 bp encoding 

162 amino acid of the C-terminal domain excluding the transmembrane N-terminal domain 

and  33 bp of the 3’ end was amplified (Figure 4.8). The 33 bp 3’ end were left out to facilitate 

primer design. The 486 bp sequence was amplified from P. falciparum genomic DNA and 

cloned into the pGEM®-T Easy cloning vector and subcloned into a pMal-c2x expression 

vector to be recombinantly expressed as an MBP fusion protein (Figure 4.2). Attempts to 

express the protein as a His-tagged protein (data not shown) were not successful. Others have 

reported difficulties expressing bacterial and yeast Cox11 as a His-tagged protein (Banci et al., 

2004; Carr et al., 2002; Thompson et al., 2010). Two methods confirmed the identity of the 

cloned sequence. Alu sequences are the most abundant middle repetitive sequences found in 

eukaryotic DNA sequences (Jelinek and Schmid, 1982). Only one AluI site is contained within 

the cloned gene which was used to “fingerprint” the cloned gene sequence. The cloned insert 

was sequenced and had 100% identity to the P. falciparum Cox11 gene PlasmoDB sequence.  

 

4.3.2 Site-directed mutagenesis of the P. falciparum Cox11 cysteine residues 

Site-directed mutagenesis is a useful tool for deciphering protein structure-function 

relationships. To understand the possible role of the three conserved cysteines in the P. 

falciparum Cox11 protein, three mutants, C60A, C157A and C60A-C157A were engineered 

by overlap extension PCR (Heckman and Pease, 2007; Ho et al., 1989). The choice of Ala 

residue to substitute for Cys was based on size and polarity. Substituting A for C should not 

affect the conformation and net charge of the proteins since the size and polarity of Ala is about 

that of Cys. Substituting a cysteine with an alanine at position 155 was not possible owing to 

constraints in the design of the two internal primers for the mutant codon. Sequencing the 

mutant clones confirmed the successful introduction of the two single and the double mutant. 

In a similar mutagenic study with yeast Cox11, amino acid substitutions in all three 

corresponding cysteines were obtained (Carr et al., 2002; Thompson et al., 2010). 

 

4.3.3 Recombinant expression and isolation of MBP-PfCox11Ct 

rMBP-PfCox11Ct expression was achieved with 0.5 mM IPTG induction in 2xYT at 

30oC for 4 h. The rMBP-PfCox11Ct protein eluted from the amylose affinity resin with 

0.25 mM maltose and the eluted protein was detected on a western blot with an anti-MBP 
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antibody. The table following the purification steps of the protein records that 1.43 mg rMBP-

PfCox11Ct was obtained from 400 ml (~2.91 g wet weight bacterial pellet) bacterial cultures, 

corresponding to about 1.17% of the soluble cell lysate. In a study with a repertoire of 

recombinant proteins, a yield of about 25 to 34 mg per 50 ml culture was obtained 

(Sivashanmugam et al., 2009). The rMBP-PfCox11Ct yield is higher than the 2 mg/L yield 

obtained from the recombinantly expressed thioredoxin-fused soluble C-terminal domain of 

Rhodobacter sphaeroides Cox11 (Thompson et al., 2010), and the yield is similar to that 

obtained for the P. falciparum copper transport protein (Ctr1) (Choveaux et al., 2012). 

 

4.3.4 Raising IgY antibodies against rMBP-PfCox11Ct 

Polyclonal antibodies against the whole recombinant protein and against a specific 

peptide epitope were raised in chickens. Chickens are a good host for antibody production as 

they are evolutionarily distant from mammals and other organisms, which increases the 

probability of antibody production (Larsson and Sjoquist, 1990). Since antibodies are isolated 

from the egg yolk, and many eggs are laid by each chicken, high antibody yields can be attained 

which are better than antibody yields from the sera of immunised animals (Gassmann et al., 

1990; Lee et al., 2017). About 21 mg of affinity purified IgY antibodies were obtained from a 

chicken. The antibody response to both the rMBP-PfCox11Ct protein and the internal peptide 

sequence was similar to that reported by others (Hurdayal et al., 2010; Krause et al., 2015). 

Both of the antibodies detected rMBP-PfCox11Ct protein and did not detect proteins from the 

uninfected red blood cell or E. coli host cell. 

 

4.3.5 IgY antibodies against the rMBP-PfCox11Ct detected the native Cox11 protein 

Using enhanced chemiluminescence, the anti-rMBP-PfCox11Ct IgY antibody detected 

a protein band which is marginally larger than the expected size of P. berghei Cox11 at 

~28 kDa (Figure 4.15B). Helical membrane proteins have been demonstrated to run at either 

higher or lower than their expected sizes on SDS-PAGE gels due to the hydrophobic 

transmembrane domain (Rath and Deber, 2013). Thermal aggregation of membrane proteins 

can occur in SDS-PAGE gels, partly due to the hydrophobic transmembrane domain, which 

results in the formation of bands between the monomer and higher aggregates following heat 

treatment (Huang et al., 2013; Okada et al., 2011). This may explain the 58 kDa, 106 kDa and 

a protein aggregate above the 116 kDa bands corresponding to a dimer, tetramer and higher 

oligomeric forms of the P. berghei Cox11. An attempt to detect the protein in a P. falciparum 
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lysate was unsuccessful, possibly due to the protein not being expressed during developmental 

stage of the sample. Transcriptional analysis suggests P. falciparum Cox11 to be expressed 

mainly in the trophozoite stage (Aurrecoechea et al., 2009; Mok et al., 2007). 

 

4.3.6 Assessing the binding of copper to rMBP-PfCox11Ct using the BCA release assay 

In vitro and in vivo copper binding of rMBP-PfCox11Ct was demonstrated using 

multiple strategies which are now discussed in turns. First was the spectrophotometric based 

BCA copper release assay which showed that the rMBP-PfCox11Ct protein bound copper in 

vitro (Figure 4.17) and in vivo during E. coli host cell culture (Figure 4.19). Like earlier studies, 

rMBP-PfCox11Ct bound Cu(I) and not Cu(II) (Banci et al., 2004; Carr et al., 2002). In vitro 

copper binding of rMBP-PfCox11Ct was inhibited by the metal chelator, EDTA.  The data 

from studies with the three mutants suggest that the Cys60 amino acid is not essential for copper 

binding in rMBP-PfCox11Ct (Figure 4.19). This implies that copper is coordinated between 

the Cys155 and Cys157 of the C155FC157F (CFCF) motif. There was lower binding of copper 

to the C157A mutant. The binding of copper to the C60A-C157A double mutant was also low. 

The data for the in vivo copper assay like earlier findings (Banci et al., 2004; Carr et al., 2002; 

Thompson et al., 2010), suggests the CFCF motif to be the likely site for copper coordination. 

The data here does not agree with the role of Cys60 in copper coordination as proposed by Carr 

et al. (2002). 

 

4.3.7 Measuring rMBP-PfCox11Ct inhibition of copper-catalysed ascorbic acid oxidation 

The second approach was testing rMBP-PfCox11Ct’s propensity to bind copper by 

monitoring the rate at which copper-catalysed ascorbic acid oxidation was inhibited by the 

protein. Ascorbic acid is stable to atmospheric oxidation, but susceptible to copper or iron ions 

catalysed oxidative degradation (Martell, 1982). Metal chelators decrease the rate of metal-

catalysed ascorbic acid oxidation via the formation of a mixed ligand chelate complex (Khan 

and Martell, 1967). The rMBP-PfCox11Ct inhibited the copper-catalysed oxidation of ascorbic 

acid (Figure 4.20). The mutant proteins were also assessed. The rMBP-PfCox11Ct had the 

highest inhibition followed by the C60A, then C157A and C60A-C157A mutants having about 

the same degree of inhibition. This data supports earlier findings that the CFCF domain in P. 

falciparum Cox11 like the orthologues is involved in copper binding. 

 



100 
 

4.3.8 Assessing the binding of copper to rMBP-PfCox11Ct using AAS 

The third strategy to assess copper binding to rMBP-PfCox11Ct was the use of atomic 

absorption spectroscopy. Quantitative, as well as qualitative copper assessment using AAS,  

has been shown to agree with the BCA assay (Brenner and Harris, 1995). The AAS data for 

the assessment of the in vitro copper binding of rMBP-PfCox11Ct revealed a similar profile to 

the BCA assay (Figure 4.21). 

 

4.3.9 rMBP-PfCox11Ct copper binding evaluated using differential scanning fluorimetry 

The fourth strategy employed to measure copper binding was the use of differential 

scanning fluorimetry. Binding of substrate, coenzyme, or small molecules to proteins could 

either stabilise or destabilise proteins, leading to a change in the melting temperature of proteins  

(ΔTm). From the profile (Figure 4.22), the binding of copper to rMBP-PfCox11Ct showed a 

destabilising effect, with a ΔTm of -2.26oC. This implies that binding of Cu(I) to rMBP-

PfCox11Ct results in a significant change to the conformation, as ΔTm ≥2oC is considered 

significant (Boivin et al., 2013; Ericsson et al., 2006; Krishna et al., 2013). The -ΔTm also 

implies Cu(I) binds the non-native rMBP-PfCox11Ct conformation. Although the primary 

form of the soluble domain of Cox11 predominantly exists as a dimer (Carr et al., 2002), 

tetrameric and hexameric forms that bind more Cu(I) than the sum of the dimers have been 

purified (Thompson et al., 2010). Therefore, it could be suggested that Cu(I) preferentially 

binds the less thermodynamically stable oligomeric conformations to the more stable 

conformation. 

 

4.3.10   rMBP-PfCox11Ct enables E. coli host cells to tolerate harmful copper levels 

A fifth approach was assessing the ability of rMBP-PfCox11Ct to confer copper 

tolerance to the E. coli (BL21) host cell. The IC50 value for copper is directly proportional to 

the copper tolerance of the E. coli host cell. E. coli cells expressing MBP (IC50, 5.7 mM) or 

rMBP-PfCox11Ct (IC50, 6.72 mM) had a reduced copper tolerance, shown by the reduced IC50 

values compared to the IC50 of the untransformed E. coli host (IC50, 7.19 mM). Since a 

significant amount of the E. coli host’s resources are channelled towards heterologous 

recombinant protein expression (Carneiro et al., 2013; Glick, 1995), this could have left the E. 

coli host vulnerable, hence, a reduced copper tolerance. The 0.5 mM copper used in the in vivo 

BCA assay does not affect the E. coli host growth (Figure 4.23A). Untransformed E. coli host 

cells tolerated 8 mM copper, similar to the levels tolerated by the Gram-positive bacteria 
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Enterococcus hirae (Solioz and Stoyanov, 2003). E. coli host cells expressing MBP was 

sensitive to 8 mM copper (Figure 4.23B). Interestingly, the expression of rMBP-PfCox11Ct 

enabled the growth of E. coli host cells in the presence of 8 mM copper (Figure 4.24A). Similar 

studies have demonstrated recombinantly expressed copper binding proteins can improve the 

levels of copper tolerated by E. coli expression hosts (Vita et al., 2016; Yang et al., 2017). To 

establish the role of the CFCF motif in copper binding, the growth rate of the E. coli host 

expressing the rMBP-PfCox11Ct and the mutant proteins was compared. Of the four mutant 

proteins, only the E. coli hosts expressing rMBP-PfCox11Ct and C60A tolerated 8 mM copper, 

while 8 mM copper killed the C157A and C60A-C157A expressing E. coli hosts. The 

observation is similar to the in vivo copper binding assay, where rMBP-PfCox11Ct and C60A 

proteins had similar copper binding characteristics that differed from that of the C157A and 

C60A-C157A proteins. The C157A and C60A-C157A mutant clones did not influence the 

growth of the E. coli host suggesting that the CFCF motif is the more likely site for the binding 

of copper. 

 

4.3.11  Conclusion 

The results in this chapter from the characterisation of the recombinant protein using; 

the BCA release assay, AAS, differential scanning fluorimetry, inhibition of the ascorbic acid 

oxidation and assessment of the E. coli host cell copper tolerance,  established the copper 

binding ability of the P. falciparum Cox11. The Cys60 residue which is a short distance away 

from the CFCF motif is not involved in copper coordination. While Cys155 was not 

investigated, it does seems Cys157 is likely involved with copper coordination. Therefore, 

copper coordination is likely within the two cysteine residues, Cys155 and Cys157 of the CFCF 

motif. These results to the best of my knowledge are the first to characterise Cox11 in any 

malaria parasite. 
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Chapter 5 

The Plasmodium falciparum putative Cox19 copper metallochaperone: Recombinant 

protein copper binding studies 

 

5.1 Introduction 

The aim of the work described in this chapter was to PCR-amplify and recombinantly 

express the putative P. falciparum Cox19 gene previously identified in silico (Chapter 3). The 

recombinant protein was expressed as an MBP-fusion protein. The second aim was to 

characterise the recombinant, as well as the native protein through immunochemical and copper 

binding studies. 

 

5.1.1 Mitochondrial intermembrane space proteins 

All mitochondrial intermembrane space (IMS) proteins are nuclear encoded and 

synthesised in the cytosol. Most of the IMS proteins contain internal cysteine motifs essential 

for import into the IMS known as the mitochondrial IMS-sorting signal (MISS) (Milenkovic 

et al., 2009) or IMS-targeting signal (ITS) (Sideris et al., 2009). The cysteine motifs are 

recognised by Mia40 protein (an oxidoreductase), a component of the mitochondrial import 

assembly (Chacinska et al., 2004; Naoé et al., 2004) required in the import and folding of the 

IMS-proteins (Banci et al., 2009; Kawano et al., 2009; Weckbecker et al., 2012) in eukaryotes. 

Mia40 consists of a redox-active cysteine-proline-cysteine (CPC) motif maintained in an 

oxidised state by Erv1, a sulfhydryl oxidase (Banci et al., 2009; Kawano et al., 2009). Both 

Mia40 and Erv1 constitute the disulphide relay system of the mitochondria. The two primary 

substrates of the disulphide relay system are the twin Cx3C and twin Cx9C proteins. Mia40 like 

some of its substrates is a twin Cx9C protein. The characteristic feature between these substrates 

is the [Coiled coil 1]-[Helix 1]-[Coiled coil 2]-[Helix 2] (CHCH) domain, where each helix 

contains two cysteine residues separated by three and nine amino acid residues in the twin 

Cx3C and twin Cx9C proteins respectively. Twin Cx3C proteins function as chaperones 

facilitating the movement of hydrophobic proteins through the IMS (Koehler et al., 1998; 

Sirrenberg et al., 1996), while most of the twin Cx9C proteins are needed in the assembly or 

stability of the respiratory chain complexes (Chatzi and Tokatlidis, 2013). Plasmodium spp. 

has no Mia40, and the Erv1 in P. falciparum did not complement the yeast Erv1 orthologue 

despite a successful import of IMS proteins from across the mitochondrial outer membrane  

(Eckers et al., 2013). Perhaps an unidentified oxidoreductase is responsible for shuttling the 
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plasmodial IMS proteins across the mitochondrial outer membrane into the IMS (Allen et al., 

2008; Carrie and Soll, 2017) 

 

5.1.2 Twin Cx9C substrates of the IMS Mia40 

As earlier stated, twin Cx9C proteins, substrates of the Mia40 oxidoreductase are 

associated with the respiratory chain. The most studied of the twin Cx9C Mia40 substrates is 

Cox17. Cox17 is a copper metallochaperone that delivers copper to the two cytochrome c 

oxidase (CcO) assembly proteins, Cox11 and Sco1, responsible for inserting copper at the CuB 

and CuA centres of Cox1 and Cox2 subunits respectively (Hiser et al., 2000; Horng et al., 2004; 

Lode et al., 2000; Timón-Gómez et al., 2018). Cox17 has been demonstrated to be essential 

for the survival of yeast and mammalian cells (Glerum et al., 1996; Takahashi et al., 2002). 

Malaria parasite Cox17 has been identified and characterised in the malaria parasite (Choveaux 

et al., 2015). One of the two putative malaria parasite copper metallochaperones understudy, 

Cox19, an essential CcO assembly accessory protein is also a twin Cx9C Mia40 substrate. Like 

Cox17, Cox19 was demonstrated to be essential for the survival of yeast cells (Bode et al., 

2015; Nobrega et al., 2002; Rigby et al., 2007). 

 Following the in silico characterisation of the P. falciparum Cox19 sequence 

(Chapter 3), the cloning, recombinant expression, purification and the characterization of the 

putative coding sequence is discussed in this chapter. 
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5.2 Results 

5.2.1 Identification of the presence of a Cox19 copper metallochaperone sequence in the 

Plasmodium falciparum genome 

The PF3D7_1201800 gene encoding the putative Cox19 in P. falciparum is localised 

between bases 105 483 to 106 539 of chromosome 12 of the P. falciparum genome (Figure 

5.1A). A 556 bp sequence of the 657 bp coding region lacking twelve and 89 bases at the 5’ 

and 3’ ends respectively of the P. falciparum Cox19 (Figure 5.1C) was cloned.  Two restriction 

sites, a stop codon and two adapter gene nucleotides at the 5’ end of the restriction enzyme to 

enhance the specificity of the primers to the DNA template were added to the primer design. 

A  575 bp PCR-amplicon was expected. 

 

 

 

Figure 5.1. Localisation of the Cox19 coding domain in P. falciparum chromosome 12 

PF3D7_1201800 coding domain localisation on P. falciparum chromosome 12 (A). An expanded view of the 

chromosome 12 gene organisation relative to PF3D7_1201800 (B). An exploded PF3D7_1201800 gene, 657 bp, 

encoding the complete protein (C). The recombinantly cloned gene segment, 556 bp (D).  denotes the excluded 

gene segments at both N- and C-termini. 

 

Figure 5.2 shows data from the PCR-amplification, cloning and subcloning of the 

PfCox19 sequence (rPfCox19). Agarose gel analysis of the PCR-amplicons from the P. 
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falciparum gDNA showed a product of ~580 bp (Figure 5.2A), corresponding to the 575 bp 

predicted from the gene sequence. The amplicon was cloned into a pTZ57R/T cloning vector, 

and colonies with the recombinant plasmid (pTZ57R/T-rPfCox19) selected. Colony-PCR from 

three colonies produced a ~580 bp amplicons (Figure 5.2B). The pTZ57R/T-rPfCox19 vector 

and the pMal-c2x expression plasmid were digested with the SalI and PstI restriction 

endonucleases. An agarose gel (Figure 5.2C) showed the undigested pTZ57R/T-rPfCox19 

plasmid ran at three different estimated sizes of ~8360 bp, ~6050 bp and ~4080 bp thought to 

represent the multiple conformations of the circular pTZ57R/T-rPfCox19 plasmid. The product 

of enzyme digestion was two DNA fragments at ~2900 bp and ~580 bp corresponding to the 

pTZ57R/T plasmid and rPfCox19 insert respectively. 

 

 

Figure 5.2. PCR-amplification, cloning and restriction enzyme digestion of rPfCox19 

(A) rPfCox19 amplification product from the P. falciparum gDNA (lane 1). (B) rPfCox19 amplified from three 

pTZ57R/T-rPfCox19 plasmid-containing bacterial colonies (lanes 1-3). (C) pTZ57R/T-rPfCox19 plasmid alone 

(lane 1) and digested with SalI and PstI (lane 2). (D) pMal-c2x plasmid alone (lane 1) and digested with SalI and 

PstI (lane 2). (E) rPfCox19 amplified from three pMal-c2x-rPfCox19 plasmid-containing bacterial colonies (lanes 

1-3). (F) rPfCox19 alone (lane 1) and digested with AluI. Samples in A-E were analysed on a 1%, and F on a 3% 

(w/v) agarose gel. M in all images refers to the DNA ladder. The arrows refer to the key molecular weight band 

in each stance. 
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Figure 5.2D shows the ~6550 bp product of the pMal-c2x plasmid digested with SalI 

and PstI restriction endonucleases. rPfCox19 was cloned into the pMal-c2x expression vector 

at the SalI and PstI sites, transformed, and colonies with the recombinant plasmid (pMal-c2x-

rPfCox19) were selected. Colony-PCR analysis for three colonies resulted in three ~580 bp 

amplicons (Figure 5.2E). A unique AluI site, AGCT, occurred four times in rPfCox19 sequence 

enabling AluI products of ~300 bp and ~150 bp to be produced. Three other products below 

100 bp were not resolved on the agarose gel (Figure 5.2F). 

 

 

Figure 5.3. Alignment of P. falciparum Cox19 cloned sequence with the PlasmoDB gene sequence 

The P. falciparum Cox19 cloned sequence in pMal-c2x-rPfCox19 plasmid (PfCox19_vect) and the PlasmoDB 

sequence (PfCox19_pldb) (PF3D7_1201800) were aligned using Clustal Omega. The underlined nucleotide bases 

at the 5’ and 3’ ends indicate the primer sequences used to amplify PfCox19 coding region from the P. falciparum 

gDNA. The reverse complement of the underlined sequence at the 3’ end was used as the reverse primer. 

 

The sequence of rPfCox19 from the recombinant pMal-c2x-rPfCox19 plasmid was 

found to be identical to the PlasmoDB sequence, except for the additional stop codon at the 3’ 

end (Figure 5.3). The cloned 556 bp sequence encodes 185 amino acids of the P. falciparum 

PfCox19_vect      ATGTCGACAGGCAGCTTGTTAAGAAGCCTGATAGGGGGAGTTTCTTACTTGATCATAATA 60 

PfCox19_pldb      --------AGGCAGCTTGTTAAGAAGCCTGATAGGGGGAGTTTCTTACTTGATCATAATA 52 

                          **************************************************** 

 

PfCox19_vect      ATGAATGTACGTCAATAAAACAGAAATATTTAAAGTGTTTAAAGGAAAATAACAATGACC 120 

PfCox19_pldb      ATGAATGTACGTCAATAAAACAGAAATATTTAAAGTGTTTAAAGGAAAATAACAATGACC 112 

                  ************************************************************ 

 

PfCox19_vect      ATATTTGTTGTCGAGATCATTCTAAAGAATATTTCATATGTCGCATGGATAATAATTTAT 180 

PfCox19_pldb      ATATTTGTTGTCGAGATCATTCTAAAGAATATTTCATATGTCGCATGGATAATAATTTAT 172 

                  ************************************************************ 

 

PfCox19_vect      TGGAAAGGCAAAGCTTAAATGATTTAGGTTTTATTGAACATGAAGAAAAAAATGAAAGCC 240 

PfCox19_pldb      TGGAAAGGCAAAGCTTAAATGATTTAGGTTTTATTGAACATGAAGAAAAAAATGAAAGCC 232 

                  ************************************************************ 

 

PfCox19_vect      GAATAAAAAATTTTAAAGATGTATATAGTTACAATATATATAATGAAAACATGGAACGTA 300 

PfCox19_pldb      GAATAAAAAATTTTAAAGATGTATATAGTTACAATATATATAATGAAAACATGGAACGTA 292 

                  ************************************************************ 

 

PfCox19_vect      TATCAAGAAATATGCATGATAATATTAAAAGTAATAATTTATTGTTGAATGAGAATAATA 360 

PfCox19_pldb      TATCAAGAAATATGCATGATAATATTAAAAGTAATAATTTATTGTTGAATGAGAATAATA 352 

                  ************************************************************ 

 

PfCox19_vect      TGTTATCAAAATTAAATAAGAATGACCATATAAAATTTGTGGATATAAATGAAAAAAATG 420 

PfCox19_pldb      TGTTATCAAAATTAAATAAGAATGACCATATAAAATTTGTGGATATAAATGAAAAAAATG 412 

                  ************************************************************ 

 

PfCox19_vect      ATAGGAATGATTTTATTCTCTTAGATATTAATAATAAGGAAAATACAAATAAAAAGATAA 480 

PfCox19_pldb      ATAGGAATGATTTTATTCTCTTAGATATTAATAATAAGGAAAATACAAATAAAAAGATAA 472 

                  ************************************************************ 

 

PfCox19_vect      ATACAGACGATTTAAAAAATTCAGAAATTAACGATGAAAAAAAAATAGCTATAAGAAGAA 540 

PfCox19_pldb      ATACAGACGATTTAAAAAATTCAGAAATTAACGATGAAAAAAAAATAGCTATAAGAAGAA 532 

                  ************************************************************ 

 

PfCox19_vect      AAGAGGCTGAGGGTTATTTAGCTGTGACTGCAGAT 575 

PfCox19_pldb      AAGAGGCTGAGGGTTATTTAGCTG----------- 556 

                  ************************ 
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Cox19 amino acid sequence, excluding the first four and the last 29 amino acid residues (Figure 

5.4). 

 

 

 

 

Figure 5.4. P. falciparum Cox19 amino acid sequence 

(A) The cloned PfCox19 amino acid sequence derived from the P. falciparum gDNA is shown in bold print. (B) 

The recombinant MBP-PfCox19 protein amino acid sequence derived from the pMal-c2x-rPfCox19 plasmid. The 

four conserved cysteines are in blue. 

 

5.2.2 Isolation of the recombinant MBP-PfCox19 protein 

After expressing rMBP-PfCox19 (section 2.6.2), the protein was isolated using an 

amylose affinity resin and protein eluted from the matrix in a single step with maltose 

concentration of 0.3 mM (Figure 5.5). The unbound protein eluted over the first 15 fractions 

and the bound recombinant protein was eluted between fractions 36 to 41 (Figure 5.5A). Both 

a 45 kDa protein corresponding to the size of the MBP fusion partner and the expressed 

~66 kDa band consisting of MBP and PfCox19 was observed (Figure 5.5B). 

 Table 5.1 is a protein purification table showing protein yield from the purification steps 

of the rMBP-PfCox19 protein from duplicate 400 ml cultures. About 109 mg protein was 

obtained in the soluble cell lysate from the lysis of 2.22 g bacterial pellet, corresponding to a 

A 
 

>PfCox19 

MDIKRQLVKKPDRGSFLLDHNNECTSIKQKYLKCLKENNNDHICCRDHSKEYFICRMDNN 

LLERQSLNDLGFIEHEEKNESRIKNFKDVYSYNIYNENMERISRNMHDNIKSNNLLLNEN 

NMLSKLNKNDHIKFVDINEKNDRNDFILLDINNKENTNKKINTDDLKNSEINDEKKIAIR 

RKEAEGYLAGKEYIKTLLEKKQKKTFFFLNEIFKSNNV 

B 
 

>rMBP-PfCox19 

MKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDI 

IFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNK 

DLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYENGKYDIK 

DVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSK 

VNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPL 

GAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDE 

ALKDAQTNSSSNNNNNNNNNNLGIEGRISEFGSSRVDRQLVKKPDRGSFLLDHNNECTSI 

KQKYLKCLKENNNDHICCRDHSKEYFICRMDNNLLERQSLNDLGFIEHEEKNESRIKNFK 

DVYSYNIYNENMERISRNMHDNIKSNNLLLNENNMLSKLNKNDHIKFVDINEKNDRNDFI 

LLDINNKENTNKKINTDDLKNSEINDEKKIAIRRKEAEGYLAAA 
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yield of ~49 mg/g bacterial pellet. About 0.44 mg/g bacterial pellet of rMBP-PfCox19 was 

obtained. 

 

 

Figure 5.5. Recombinant expression and affinity purification of the rMBP-PfCox19 

The rMBP-PfCox19 was purified with an amylose affinity column. (A) Elution profile from the amylose affinity 

matrix. Arrow indicates the point of elution with maltose. (B) Samples from the purification steps were analysed 

on a 12.5% reducing SDS-PAGE. Molecular weight marker (M); soluble cell lysate (lane 1); unbound fraction 

from the amylose affinity matrix (2); final wash (lane 3); eluents from the amylose affinity matrix (lanes 4 to 8). 

Lanes 4 to 8 corresponds to fractions 36 to 40 (on panel A) respectively. The arrow indicates the point of elution 

of rMBP-PfCox19. 

 

Table 5.1. Purification table for the affinity purified rMBP-PfCox19 

 Total vol. 

(ml) 

Total protein* 

(mg) 

Yield 

(%) 

Yield 

(mg/g bacterial 

pellet) 

Soluble cell lysate 32.50 109.50 ± 2.12 100 49.01 ± 0.94 

Unbound fraction 32 100.87 ± 0.26   92.11 ± 2.05 45.44 ± 0.12 

Washes 70     3.45 ± 0.06     3.15 ± 0.07   1.55 ± 0.03 

Affinity purified rMBP-PfCox19   0.26 ± 0.04     0.98 ± 0.10     0.90 ± 0.11   0.44 ± 0.04 

 

Data presented are Mean ± SD values from duplicate purifications. 

Bacterial pellet = 2.22 ± 0.04 g. 

* Determined with Bradford assay 

 

Figure 5.6 illustrates that purified rMBP-PfCox19 was identified on a western blot by 

mouse monoclonal anti-MBP antibodies. The 66 kDa rMBP-PfCox19 and the 45 kDa MBP 

were both detected by the anti-MBP antibody as expected (Figure 5.6B). 

 



109 
 

 

Figure 5.6. Detection of rMBP-PfCox19 by anti-MBP antibodies in a western blot 

The rMBP-PfCox19 was identified on a western blot. (A) Coomassie-stained 12.5% reducing SDS-PAGE 

reference gel. (B) Western blot probed with mouse monoclonal anti-MBP IgG. Molecular weight marker (M); 

lane 1, uninduced soluble cell lysate; lane 2, induced soluble cell lysate; lane 3, unbound fraction from the amylose 

affinity matrix; lane 4, final wash; lanes 5 to 8, eluents from the amylose affinity matrix. Antibodies were; mouse 

monoclonal anti-MBP IgG (1:12000) and goat anti-mouse IgG-HRPO (1:12000). 

 

5.2.3 IgY antibodies were raised in chicken against rMBP-PfCox19 

Two chickens were immunised four times with purified rMBP-PfCox19 and IgY was 

isolated from the eggs of the chickens. Antibody titres in eggs were monitored by ELISA over 

a 14-week period (Figure 5.7A). Antibody responses increased from week two and remained 

high to week 14. IgY was isolated from eggs and affinity purified with a rMBP-PfCox19 

AminoLink™ affinity matrix (Figure 5.7B). About 33 and 41 mg of affinity purified anti-

rMBP-PfCox19 IgY were obtained from chickens one and two respectively. The chicken 

affinity-purified antibodies detected rMBP-PfCox11Ct and lower proteins but did not detect 

any protein in the uninfected red blood cell lysate or E. coli host cell (Figure 5.7C).
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Figure 5.7. Affinity purified antibodies detected rMBP-PfCox19 

Antibodies against rMBP-PfCox19 were monitored in chicken eggs by ELISA over 14 weeks. (A) Plates were coated with 150 ng/well rMBP-PfCox19. IgY (25, 50 and 

100 µg/ml) primary antibody and rabbit anti-chicken IgG-HRPO (1:15 000), and plates read at OD405. (B) Pools of isolated IgY from eggs were affinity purified with a rMBP-

PfCox19 AminoLink™ column. (C) A 12.5% reducing SDS-PAGE Coomassie-stained reference gel (left panel). Affinity-purified IgY detected rMBP-PfCox19 on a western 

blot (right panel). Molecular weight marker (M); lane 1, uninfected human red blood cell lysate; lane 2, untransformed E. coli (BL21) lysate; lane 3, soluble rMBP-PfCox19 

lysate; lane 4, affinity purified rMBP-PfCox19; lane 5, recombinant MBP.
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5.2.4 Detection of the P. berghei Cox19 with antibodies against rMBP-PfCox19 

Due to a 53% amino acid sequence identity between the cloned P. falciparum Cox19 

region and the P. berghei orthologue (Figure 5.8A), the anti-rMBP-PfCox19 antibody was used 

to detect the presence of native Cox19 in the murine malaria parasite cell lysate. Detection of 

lactate dehydrogenase (LDH) with LDH antipeptide (APGKSDKEWNRDDL) antibody in the 

parasite lysate served as a reference and internal control. 

 

 

 

Figure 5.8. Anti-rMBP-PfCox19 antibody detection of the Cox19 in P. berghei infected mouse red blood cell 

lysate 

(A) Alignment of the P. falciparum and P. berghei Cox19 amino acid sequences. The annotation “*”, denote 

conserved residue, while “:”and “.” denote conserved and semi-conserved substitutions respectively. Cox19 was 

detected in P. berghei infected BALB/c mouse red blood cell lysate using enhanced chemiluminescence (ECL). 

(B) A 12.5% reducing SDS-PAGE Coomassie-stained reference gel. (C) Western blots probed with lactate 

dehydrogenase antipeptide antibody or (D) IgY anti-rMBP-PfCox19, and goat anti-mouse IgG-HRPO (1:12000). 

Molecular weight marker (M); uninfected (lane 1) and infected (lane 2) P. berghei BALB/c mouse red blood cell 

lysates. 

PfCox19      RQLVKKPDRGSFLLDHNNECTSIKQKYLKCLKENNNDHICCRDHSKEYFICRMDNNLLER 60 

PbCox19      RSIVKKPDRGSFPLDHSNECTSIKNNYLKCLKEHKNDHISCKKYSKEYFMCRIDNNLLEK 60 

             *.:********* ***.*******::*******::****.*:.:*****:**:******: 

 

PfCox19      QSLNDLGFIEHEEKNESRIKNFKDVYSYNIYNENMERISRNMHDNIKSNNLLLNENNMLS 120 

PbCox19      QDLSNLGFYENELNNESRLKNFKNVYSYNAYKEKMEASKEKNKMKE-YNDIKF------- 112 

             *.*.:*** *:* :****:****:***** *:*:**  ..: : :   *:: :        

 

PfCox19      KLNKNDHIKFVDIN-----EKNDRNDFILLDI-NNKENTNKKINTDDLKNSEINDEKKIA 174 

PbCox19      DKKKNDIYHAKEIENKNEITRKDSNGFLNLQTIKNDVSDNN----NIKENMPMEMNEKIA 168 

             . :***  :  :*:      ::* *.*: *:  :*. . *:    :  :*  :: ::*** 

 

PfCox19      IRRKEAEGYLA 185 

PbCox19      IKRKEESGYLA 179 

             *:*** .**** 

 

A 

B C D 
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A 35 kDa protein corresponding to P. berghei LDH was detected by the pan-specific 

LDH antipeptide antibody in the P. berghei infected BALB/c mouse red blood cell lysate 

(Figure 5.8B). The anti-rMBP-PfCox19 antibody detected a ~27 kDa protein in the P. berghei 

infected BALB/c mouse red blood cell corresponding to the expected size, ~26.2 kDa. Proteins 

of molecular weight higher than 45 kDa were also detected. 

 

5.2.5 Binding of copper to rMBP-PfCox19 measured with the bicinchoninic acid (BCA) 

release assay 

The in vitro and in vivo copper binding potential of rMBP-PfCox19 was assessed using the 

BCA-release assay (section 2.8.1). The formation of a purple Cu(I)-BCA following protein-

complex disruption at an alkaline pH was monitored at 354 nm as described in Figure 4.16. 

 

 

Figure 5.9. Binding of copper to rMBP-PfCox19 in vitro measured by BCA release assay 

Affinity-purified rMBP-PfCox19 or MBP alone were incubated with CuCl2 in the absence (–) or presence (+) of 

ascorbic acid in vitro. The BCA release assay was used to detect copper without (open bars) or with (solid bars) 

the addition of ascorbic acid. The copper standard (CuCl2) was equimolar to the amount of protein. The horizontal 

broken line represents the cut-off for copper bound to MBP. Results are means ± S.E. of triplicate measurements 

from duplicate samples. *** denotes statistical significance (P<0.001), while, ns denotes no significant difference 

as determined by Student’s t-test. 

 

rMBP-PfCox19 binds Cu(I) and not Cu(II) as indicated in the absence and presence of 

ascorbate in vitro (Figure 5.9). The MBP control binds less copper. EDTA, which chelates 

copper, inhibited the Cu(I)-BCA complexation (Figure 5.10). 
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Figure 5.10. The effect of EDTA on copper binding to rMBP-PfCox19 in vitro 

Affinity-purified rMBP-PfCox19 and MBP was incubated with CuCl2 and ascorbate in the absence (-) or presence 

(+) of EDTA. Copper was detected without (open bars) or with (solid bars) the addition of ascorbic acid in BCA 

release assay at 354 nm. The data presented are mean ± SD. of a duplicate. ** and *** denotes statistical 

significance at P<0.01 and P<0.001 respectively, as determined by Student’s t-test. 

 

 

 

Figure 5.11. Binding of copper to rMBP-PfCox19 in vivo measured by the BCA release assay 

0.5 mM CuCl2 was added to the E. coli growth medium after the induction of recombinant protein expression. 

Following affinity purification of the recombinant proteins, copper bound in vivo was detected by the BCA release 

assay without (open bars) or with (solid bars) the addition of ascorbic acid. The BCA-Cu+ complex was detected 

at 354 nm. Results are mean ± S.E. of triplicate measurements from duplicate samples. *** denotes statistical 

significance (P<0.001) as determined by Student’s t-test. 

 

In vivo copper binding of rMBP-PfCox19 

Copper was added to the growth medium of E. coli cells expressing rMBP-PfCox19. 

The protein was affinity purified and the presence of copper in rMBP-PfCox19 assessed. 

rMBP-PfCox19 was shown to bind copper in vivo (P<0.001) compared to the MBP control 
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(Figure 5.11). The oxidation state of copper binding to rMBP-PfCox19 could not be assessed 

in vivo, however, copper is reported (Davis and O'Halloran, 2008) to be reduced inside cells. 

 

5.2.6 rMBP-PfCox19 inhibition of copper-catalysed oxidation of ascorbic acid 

The effect of rMBP-PfCox19 on copper-catalysed ascorbic acid oxidation was assessed 

(Figure 5.12). Ascorbic acid had a relatively sustained absorbance reading over 300 s. The 

addition of 8 µM copper to the solution of ascorbic acid resulted in an ascorbic acid oxidation. 

The oxidation of ascorbic acid with copper was inhibited by rMBP-PfCox19 and to a lesser 

extent by MBP. 

 

 

Figure 5.12. Copper-catalysed oxidative degradation of ascorbic acid in the presence of rMBP-PfCox19 

Measurement of the rate of ascorbic acid oxidation by 8 µM Cu2+ over 300 s at pH 4.5 in the presence or absence 

of 5 µM rMBP-PfCox19. MBP was included as a control. Ascorbic acid (Asc); Ascorbic acid with copper (Asc + 

Cu). 
 

5.2.7 Copper binding measured with differential scanning fluorimetry 

The melting temperature (Tm) of rMBP-PfCox19 without or with copper was explored 

to determine the copper binding of rMBP-PfCox19 using SYPRO® orange dye (Figure 5.13). 

The Tm of affinity purified rMBP-PfCox19 and MBP was scanned through a range of 25 to 

90oC at a ramp of 0.3oC/min by monitoring the SYPRO® orange fluorescence emission. The 

intensity of the rMBP-PfCox19 fluorescence compared to MBP control is much higher, 

implying the rMBP-PfCox19 has more hydrophobic regions exposed when it is heated. MBP 
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had a melting temperature (Tm) of 48.6 ± 0.44oC and 48.99 ± 0.23oC in the absence and 

presence of copper respectively, with a change in Tm (ΔTm) of +0.39oC. rMBP-PfCox19 had a 

Tm of 54.2 ± 0.09oC and 55.04 ± 0.23oC in the absence and presence of copper respectively, 

with a ΔTm of +0.84oC. 

 

 

 

Figure 5.13. The first derivative of the differential scanning fluorimetry for rMBP-PfCox19 with or without 

copper 

The figure shows the change in rMBP-PfCox19 and MBP melting temperatures with and without copper. 

 

5.2.8 Copper tolerance of E. coli (BL21) host cells expressing MBP-PfCox19 

E. coli cells harbouring the pMal-c2x-rPfCox19 plasmid were grown in the presence of 

0 to 8 mM copper (Figure 5.14B). E. coli cells expressing rMBP-PfCox19 tolerated 8 mM 

copper with an IC50 of 7.55 mM copper (data not shown).
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Figure 5.14. Effect of copper on the growth of E. coli (BL21) cells expressing rMBP-PfCox19 

E. coli (BL21) with the pMal-c2x plasmid or pMal-c2x-rPfCox19 plasmid was grown in the presence of 0 and 8 mM copper and growth was monitored at an hourly interval 

by OD600 for 6 h.  (A) Triplicate E. coli (BL21) cultures with pMal-c2x, with or without copper. (B) Cultures of E. coli (BL21) with pMal-c2x-rPfCox19, with 0 to 8 mM 

copper. The dotted lines indicate the addition of copper and IPTG.
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5.3 Discussion 

5.3.1 Cloning the P. falciparum Cox19 sequence  

The P. falciparum Cox19 open reading frame contains 657 bp, and 556 bp encoding 185 

amino acids, excluding the first four and the last 29 amino acid residues were amplified (Figure 

5.4). The exclusion of these amino acid residues was to facilitate primer design. A 556 bp 

sequence was amplified from P. falciparum genomic DNA and cloned into the pTZ57R/T 

cloning vector, then subcloned into a pMal-c2x expression vector to be recombinantly 

expressed as an MBP fusion protein (Figure 5.2). Expressing the recombinant P. falciparum 

Cox19 as a His-tagged protein is likely to interfere with downstream characterisation, as His-

tags have been shown to interact with copper (Watly et al., 2014; Wijekoon et al., 2016). MBP 

interacts minimally with copper (LaGier et al., 2001). The cloned insert was sequenced and 

had 100% identity to the P. falciparum Cox19 gene PlasmoDB sequence. 

 

5.3.2 Recombinant expression and isolation of MBP-PfCox19 

rMBP-PfCox19 expression was induced with 0.5 mM IPTG in 2xYT medium at 30oC 

for 4 h, and affinity purified with an amylose resin. The affinity-purified rMBP-PfCox19 was 

detected on a western blot with a monoclonal anti-MBP antibody. About 0.98 mg rMBP-

PfCox19 was obtained from 400 ml (~2.22 g wet weight bacterial pellet) bacterial cultures, 

which is about 0.9% of the soluble cell lysate. A yield of about 25 to 34 mg per 50 ml culture 

was obtained in a study with a repertoire of proteins (Sivashanmugam et al., 2009). The rMBP-

PfCox19 yield is higher than that obtained for the recombinantly expressed strep-tag II fused 

yeast Cox19 (Rigby et al., 2007). Choveaux et al. (2012) reported similar yields for the P. 

falciparum copper transport protein (Ctr1) protein. 

 

5.3.3 Raising IgY antibodies against rMBP-PfCox19 

Purified rMBP-PfCox19 served as an immunogen for the production of polyclonal 

antibodies in chickens. Chickens being evolutionarily distant from mammals make them a good 

host for antibody production against mammalian proteins (Larsson and Sjoquist, 1990). Since 

chicken antibodies are isolated from egg yolk, and many eggs are laid by chickens, high 

antibody yields are attainable compared to the sera of immunised animals (Gassmann et al., 

1990; Lee et al., 2017). About 33 and 41 mg of affinity purified anti-rMBP-PfCox19 IgY were 

obtained from each chicken. The antibody response to the rMBP-PfCox11Ct protein in both 

chickens was similar to that reported in previous studies for other plasmodial antigens 
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(Hurdayal et al., 2010; Krause et al., 2015). The antibodies detected rMBP-PfCox19 protein 

and did not detect proteins from the uninfected red blood cell or E. coli host cell. 

 

5.3.4 IgY antibodies against the rMBP-PfCox19 detected the native Cox19 protein 

Anti-rMBP-PfCox19 IgY antibodies detected a protein band of ~27 kDa P. berghei 

Cox19 on a western blot (Figure 5.8). Protein bands above 45 kDa were also detected, and the 

nature of these proteins is unknown. An attempt to detect the protein in a P. falciparum lysate 

was unsuccessful, possibly due to the proteins not being expressed during developmental stage 

of the sample. Transcriptional analysis suggests P. falciparum Cox19 to be expressed mainly 

in the trophozoite stage (Aurrecoechea et al., 2009; Mok et al., 2007). 

 

5.3.5 Assessing the binding of copper to rMBP-PfCox19 using the BCA release assay 

The in vitro and in vivo copper binding of rMBP-PfCox19 was measured with different 

approaches. The spectrophotometric based BCA copper release assay showed that the rMBP-

PfCox19 protein bound copper in vitro (Figure 5.9) and in vivo during E. coli host cell culture 

(Figure 5.11). Like an earlier study (Rigby et al., 2007), rMBP-PfCox19 bound Cu(I) and not 

Cu(II). Similarly, the P. falciparum copper transport protein (Ctr1) and P. falciparum Cox17 

bound Cu(I) and not Cu(II) (Choveaux et al., 2012; 2015). Recombinant yeast Cox19 was 

previously shown to bind copper in a 1:1 stoichiometry, while the native protein binds variable 

amount of copper in the mitochondrial intermembrane space (Rigby et al., 2007). In vitro 

copper binding of rMBP-PfCox19 was inhibited by the metal chelator, EDTA. 

 

5.3.6 Measuring rMBP-PfCox19 inhibition of copper-catalysed ascorbic acid oxidation 

The second approach was to assess the rate at which copper-catalysed ascorbic acid 

oxidation was inhibited by rMBP-PfCox19. Ascorbic acid is relatively stable to atmospheric 

oxidation, but undergoes metal-catalysed oxidative degradation (Martell, 1982). The rate of 

metal-catalysed ascorbic acid oxidation is decreased by metal chelators through the formation 

of a mixed ligand chelate complex (Khan and Martell, 1967). rMBP-PfCox19 inhibited the 

copper-catalysed ascorbic acid oxidation (Figure 5.12) as has been reported for the P. 

falciparum copper transport protein (Ctr1) and Cox17 (Choveaux et al., 2012; 2015). 
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5.3.7  rMBP-PfCox19 copper binding evaluated using differential scanning fluorimetry 

The third approach to assess copper binding was differential scanning fluorimetry. A 

substrate or coenzyme binding to a protein could stabilise or destabilise the protein structure, 

leading to a change in the melting temperature (ΔTm) of the protein. The binding of copper to 

rMBP-PfCox19 appeared to stabilise the protein, with a Tm increase of 0.84oC. This suggests 

that Cu(I) binds native rMBP-PfCox19 leading to an ordered conformation of the protein 

structure (Boivin et al., 2013; Pace and McGrath, 1980). Although the free and copper bound 

Cox19 exists as stable dimeric molecules, tetrameric and higher oligomeric forms of both 

species have been identified (Rigby et al., 2007). 

 

5.3.8 rMBP-PfCox19 enables E. coli host cells to tolerate harmful copper levels 

The fourth approach was to assess the ability of the rMBP-PfCox19 to confer copper 

tolerance to the E. coli (BL21) host cell. The E. coli cells expressing MBP were sensitive to 

8 mM copper (Figure 5.14A). The expression of rMBP-PfCox19 enabled the growth of E. coli 

host cells in the presence of 8 mM copper (Figure 5.14B). This implies the rMBP-PfCox19 

enables E. coli host cells growth despite the metabolic stress induced by the heterologous 

expression of recombinant proteins and the oxidant, copper (Carneiro et al., 2013; Glick, 1995). 

An earlier study has shown the Gram-positive bacteria Enterococcus hirae to tolerate 8 mM 

copper (Solioz and Stoyanov, 2003). The overexpression of Cox19 in yeast at toxic copper 

levels was recently demonstrated to increase the copper tolerance of the yeast cells (Murtha et 

al., 2018). Other studies have shown recombinantly expressed copper binding proteins improve 

the levels of copper tolerated by the E. coli host cells (Vita et al., 2016; Yang et al., 2017). 

 

5.3.9 Conclusion 

The results in this chapter from the characterisation of the recombinant protein using; 

the BCA release assay, differential scanning fluorimetry, inhibition of the ascorbic acid 

oxidation and assessment of the E. coli host cell copper tolerance, showed the P. falciparum 

Cox19 bound copper in vitro and in an in vivo setting. These results to the best of my knowledge 

are the first to characterise Cox19 in malaria parasite.  
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Chapter 6 

General discussion 

 

6.1 Brief overview 

The global adoption of artemisinin-based combination therapies (ACTs) as first-line 

treatment for P. falciparum malaria has been instrumental in the success achieved in the control 

and cure of malaria. This success is dependent on the clinical efficacy of the first-line ACTs. 

Despite progress in the eradication of malaria, the disease remains a global burden, killing 

hundreds of thousands of individuals annually (WHO, 2016; 2017). Several novel antimalarials 

at different developmental stages target membrane structure and transport, nucleotide synthesis 

and protein translation in the parasite (Blasco et al., 2017; Cowman et al., 2016; Flannery et 

al., 2013). There is a need to further explore the potential of other biological processes in the 

parasite as targets for novel antimalarial drugs. 

 

6.2 Current understanding of plasmodial copper homeostasis 

The genes for 14 Plasmodium copper-binding proteins have been identified in the 

plasmodial genome and four proteins have been characterised (Choveaux et al., 2015). The 

physiological processes involved in the uptake, distribution, utilisation and regulation of 

copper in Plasmodia are yet to be characterised. Orthologues of some eukaryotic copper protein 

genes could not be identified in the parasite (Choveaux et al., 2015). The unidentified copper 

protein orthologues may not be needed by the parasite or the parasite utilises the host proteins 

or the proteins have been supplanted by as yet unidentified copper proteins in a similar manner 

to the ADP/ATP translocase in Encephalitozoon cuniculi which supplants the function of the 

ATPase complex (Katinka et al., 2001). Though Plasmodium lacks Cu/Zn superoxide 

dismutase and catalase, the parasite imports erythrocyte Cu/Zn superoxide dismutase which 

could be used by the parasite as a source of copper (Fairfield et al., 1983). Erythrocyte Cu/Zn 

superoxide dismutase is digested in the parasite’s food vacuole, releasing copper and zinc 

(Rasoloson et al., 2004). Plasmodium Ctr1 and CuP-ATPase proteins have been proposed as 

two channels for copper uptake by the parasite due to their localisation to the plasma membrane 

and the recombinant proteins bind copper (Choveaux et al., 2012; Rasoloson et al., 2004). The 

role of CuP-ATPase in copper uptake by the parasite is debatable following evidence that the 

protein is localised to unidentified intracellular vesicle-like structures at the cell periphery, and 

not the plasma membrane in P. berghei (Kenthirapalan et al., 2014). CuP-ATPase was then 
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proposed to be involved in intracellular copper redistribution and storage (Kenthirapalan et al., 

2014), or copper export, deduced from the decrease in intracellular copper in P. falciparum 

infected erythrocyte as the parasite develops compared to the uninfected erythrocyte 

(Kenthirapalan et al., 2014; Rasoloson et al., 2004). The P. falciparum Ctr1 protein is a likely 

channel for copper uptake by the parasite. P. falciparum Cox17 is found in the cytoplasm and 

the recombinant protein bound copper (Choveaux et al., 2015). Two plasmodial copper 

chaperones, Cox11 and Cox19 were identified and characterised in this study. 

 

6.3 Plasmodial copper homeostasis as a potential antimalarial drug target 

The increase in drug resistance in malaria outpaces efforts to develop new drugs, leading 

to an expanded search for novel molecular drug targets. This study focused on Plasmodium 

copper homeostasis as a possible antimalarial drug target. Copper regulation by Plasmodium 

was demonstrated with the finding that intracellular copper concentration decreased in P. 

falciparum infected erythrocyte compared to an uninfected erythrocyte (Rasoloson et al., 

2004). However, the mechanism involved in lowering the copper levels in the infected 

erythrocyte is not understood. When copper available to the parasite is decreased the parasite’s 

fertility and development in the blood and liver stages are affected (Kenthirapalan et al., 2014; 

2016; Rasoloson et al., 2004; Voorberg-van der Wel et al., 2017). The growth of P. falciparum 

parasites was inhibited in vitro using the copper chelators, diethyldithiocarbamate (DDC) and 

neocuproine (Asahi et al., 2014; Meshnick et al., 1990; Rasoloson et al., 2004), suggesting 

copper to be essential for the parasite development. Similarly, the viability of both liver 

schizonts and hypnozoites in P. cynomolgi was affected by neocuproine (Voorberg-van der 

Wel et al., 2017). Preventing copper uptake and mobilisation by gene knockout of copper 

transport protein (Ctr1) and copper-transporting P-type ATPase (CuP-ATPase) in P. berghei 

impaired parasite fertility and transmission through the mosquito vector (Kenthirapalan et al., 

2014; 2016). Targetting plasmodial copper homeostasis could be vital to developing new 

antimalarial drugs. 

Interestingly, copper(II) complexation to three antimalarial drug candidates; 

buparvaquone, pyridine-2-carboxamidrazone, and 3-arylazo-4-hydroxy-1,2-naphthoquinone 

potentiated their antimalarial activities (Gokhale et al., 2003a; 2003b; 2006). Though the 

mechanism for the improved activities was not determined, it was however proposed that the 

four-coordinate planar geometry coupled with a positive reduction potential of the Cu(II)-
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complex enhanced the internalisation and efficacy of these compounds (Gokhale et al., 2003a; 

2003b). 

 

6.4 Identification of a putative P. falciparum Cox11 and Cox19 

Some novel molecular drug targets and essential genes for the development and 

pathogenesis of the parasite have been identified in the P. falciparum genome (Jiménez-Díaz 

et al., 2014; McNamara et al., 2013; Paquet et al., 2017; Spillman et al., 2013; Vaidya et al., 

2014). Only a few of the ~5300 P. falciparum genes identified to date have been confirmed to 

code for protein (Mehlin et al., 2006) and 14 have been identified as copper-binding proteins 

including the cytochrome c oxidase (CcO) assembly accessory proteins, Cox11 and Cox19 ( 

Table 3.1) (Choveaux et al., 2015; Gardner et al., 2002; Rasoloson et al., 2004). 

The current study analysed the amino acid sequences for plasmodial Cox11 and Cox19 

in silico. An analysis of Cox11 orthologues in multiple plasmodial species showed the presence 

of three conserved C-terminal cysteines (Cys60, Cys155 and Cys157), two of which (Cys155 

and Cys157) span the copper-binding CFCF motif (Banci et al., 2004; Carr et al., 2002; 

Thompson et al., 2010) and the third is a short distance from the motif. All Plasmodium Cox11 

sequences, like the well characterised sequences of other species, have a single transmembrane 

spanning domain (Figure 3.2). The yeast Cox11 transmembrane domain was demonstrated to 

be essential for cellular respiration when the matrix and transmembrane domains of S. 

cerevisae Cox11 were supplanted with those of S. cerevisae Sco1 (Khalimonchuk et al., 2005). 

The copper-binding Cox11 C-terminal domain in yeast and bacteria was shown to form a dimer 

that binds one mole equivalent of Cu(I) per monomer via the CFCF motif (Banci et al., 2004; 

Carr et al., 2002; Thompson et al., 2010). The extant Plasmodium Cox11 genes lack a 

conserved N-terminal amino acid region compared to Cox11 in five other organisms (Figure 

3.1). The mitochondrial matrix-localised yeast Cox11 N-terminal domain was demonstrated by 

mutational analysis to lack essential function (Banting and Glerum, 2006; Carr et al., 2005). 

The P. falciparum Cox11 modelled structure fitted well into the β-immunoglobulin (Ig)-like 

fold Sinorhizobium meliloti Cox11 NMR-solved structure (Banci et al., 2004). 

Plasmodial Cox19 contained common features shared with the amino acid sequences 

from other organisms and a C-terminal insertion about the size of the extant Cox19 amino acid 

sequences in five other organisms (Figure 3.4). This implied the Plasmodium Cox19 amino 

acid sequences are twice as large as their orthologues in other organisms. This increment in 

plasmodial Cox19 amino acid structure is apparent, and a consequence of gene size reduction 
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(Aurrecoechea et al., 2009; Gardner et al., 2002). Unlike most eukaryotic Cox19 amino acid 

sequences that are synthesised from mRNA transcripts comprising three to four exons, 

plasmodial Cox19 amino acid sequences are synthesised from a single exon gene. This 

phenomenon is typical of apicomplexans to loss functional redundancy in the evolution of 

parasitism by reducing their genomes or some gene sizes compared to the gene orthologues in 

other organisms, leaving only the essential genes or gene components (Jackson et al., 2016; 

Vivares et al., 2002; Wolf and Koonin, 2013). Four conserved cysteines found in twin Cx9C 

motif in yeast Cox19, which are in a CHCH domain, were identified in the Plasmodium Cox19 

(Cys24, Cys34, Cys45 and Cys55) amino acid sequences. These four cysteines have been 

shown to form two disulphide bridges (Cys34 – Cys45 and Cys24 – Cys55) in the yeast protein 

(Bode et al., 2015; Fischer et al., 2013; Rigby et al., 2007). One of the two essential Tyr-Leu 

dipeptides in yeast Cox19 between the two cysteine residues in the twin Cx9C motif (Bode et 

al., 2015), has its Leu residue substituted with Phe in the Plasmodium Cox19 sequences (Figure 

3.4). The mammalian Cox19 sequences have only one Tyr-Leu dipeptide found in the second 

Cx9C motif, while Phe-Met dipeptide replaces the other Tyr-Leu dipeptide in the first Cx9C 

motif. The variation in the conservation of Tyr-Leu dipeptide across organisms could be 

exploited to identify inhibitors targetting P. falciparum Cox19 as antimalarial drugs. Though 

the structure of Cox19 is not yet resolved, the P. falciparum Cox19 structure was modelled on 

the twin Cx9C protein, human Mia40 (Bode et al., 2015). The conformation of the P. 

falciparum Cox19 model agreed with the proposed Cox19 structure (Bode et al., 2015; Fischer 

et al., 2013; Rigby et al., 2007).  

Plasmodium Cox11 and Cox19 share amino acid sequences with several characterised 

Cox11 and Cox19 proteins, suggesting that the plasmodial proteins are copper chaperones in 

plasmodial cells. 

 

6.5 Recombinant expression and isolation of C-terminal domain of P. falciparum Cox11 and 

Cox19 proteins 

The presence of an insoluble transmembrane domain and AT-rich regions meant that 

only sections of the sequences coding for P. falciparum Cox11 and Cox19 proteins were 

recombinantly expressed as MBP fusion proteins. Proteins fused to MBP have improved 

solubility (Ahmad et al., 2018). A recombinant 162-amino acid C-terminal domain of the 224 

amino acids encoding P. falciparum Cox11 gene was cloned and expressed as an MBP fusion 

protein. Recombinant MBP-PfCox11Ct was isolated and identified with a mouse monoclonal 

anti-MBP antibody (Figure 4.12). A yield of ~1.43 mg was obtained from 400 ml (~2.91 g wet 
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weight bacterial pellet) of bacterial culture. Three P. falciparum Cox11 mutants; C60A, C157A 

and C60A-C157A with alanine substitutions at the corresponding cysteine residues were 

engineered (Heckman and Pease, 2007; Ho et al., 1989) and expressed as MBP fusion proteins. 

The recombinant Cox11 proteins were characterised. 

 A 185-amino acid sequence of the 218 amino acids encoding P. falciparum Cox19 

protein was cloned and expressed as an MBP-fusion protein. About 0.98 mg rMBP-PfCox19 

was isolated from 400 ml (~2.21 g wet weight bacterial pellet) of bacterial culture. The 

recombinant protein was identified with a mouse monoclonal anti-MBP antibody. The rMBP-

PfCox19 was characterised. 

 

6.6 Production of polyclonal IgY used for the detection of Plasmodium Cox11 and Cox19 

Antibodies against rMBP-PfCox11Ct and rMBP-PfCox19 were raised in chickens and 

affinity purified. Chicken IgY antibodies have been previously used in the characterisation of 

several malaria proteins (Choveaux et al., 2012; 2015; Hurdayal et al., 2010; Krause and 

Goldring, 2018; Krause et al., 2015; 2017). The three antibodies; anti-

KIQXFXFEEQMLNAKEEM peptide, anti-rMBP-PfCox11Ct and anti-rMBP-PfCox19 

antibodies did not detect proteins from a lysate of uninfected red blood cells or the E. coli host 

cells. The anti-rMBP-PfCox11Ct and anti-rMBP-PfCox19 antibodies both detected the native 

Plasmodium Cox11 and Cox19 respectively on a western blot of lysed P. berghei infected 

blood. An attempt to detect both proteins in a P. falciparum lysate was unsuccessful, possibly 

due to the proteins not being expressed during developmental stage of the sample. 

Transcriptional analysis suggests P. falciparum Cox11 and Cox19 to be expressed mainly in 

the trophozoite stage (Aurrecoechea et al., 2009; Mok et al., 2007). The presence of P. berghei 

Cox11 and Cox19 proteins suggests the expression of the proteins in Plasmodium.  

 

6.7 Copper binds to the C-terminal domain of recombinant P. falciparum Cox11 and Cox19 

In vitro and in vivo binding of copper by recombinant MBP-PfCox11Ct and MBP-PfCox19 

was demonstrated using the bicinchoninic acid (BCA) copper release assay; the inhibition of 

copper-catalysed ascorbic acid oxidation; atomic absorption spectroscopy; differential 

scanning fluorimetry; and assessing the copper tolerance of E. coli host cells expressing the 

recombinant proteins. Data from the BCA copper release assay suggests that both rMBP-

PfCox11Ct and rMBP-PfCox19 bind the cuprous ion (Figure 4.17 and Figure 5.9). Native P. 

falciparum Cox11 and Cox19 proteins are predicted to bind the cuprous ions as they are the 
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dominant intracellular copper species (Davis and O'Halloran, 2008) and considering the 

reducing potentials of the cell cytoplasm (Schafer and Buettner, 2001).  Binding of cuprous 

ions was reported for P. falciparum Ctr1 and Cox17 (Choveaux et al., 2012; 2015), and the 

metal binding domain of P. falciparum CuP-ATPase (Rasoloson et al., 2004). Data from 

studies with the three mutants; C60A, C157A and C60A-C157A proteins assessed by the BCA 

copper release assay suggests that the Cys157 in the CFCF motif is likely involved with copper 

coordination in P. falciparum Cox11, while Cys60 appears not to be essential for copper 

binding. However, data from the double mutant suggested that copper may bind to other amino 

acids. A possible candidate may be the Cys155 in the CFCF motif, since this motif in yeast 

Cox11 was shown to be the site for copper coordination (Banci et al., 2004; Carr et al., 2002; 

Thompson et al., 2010). The order of importance of the cysteine residues in rMBP-PfCox11Ct 

copper coordination could have been validated using analytical methods like the surface 

plasmon resonance (SPR) but this was not done due to access and availability of instruments. 

The specificity of the BCA copper release assay for copper was affirmed when a similar profile 

was observed for the atomic absorption spectroscopy copper binding data. Binding of copper 

to copper proteins either increases or decreases their stability. Copper increases the stability of 

azurin, Cu/Zn superoxide dismutase and ascorbate oxidase, but decreases the stability of 

ceruloplasmin and prion protein (Baker and Agard, 1994; Milardi et al., 2003; Pozdnyakova et 

al., 2001; Rodriguez et al., 2002; Savini et al., 1990; Sedlák et al., 2008; Stockel et al., 1998). 

The binding of copper in differential scanning fluorimetry experiment caused a decrease 

(Figure 4.22) and an increase (Figure 5.13) in the Tm of rMBP-PfCox11Ct and rMBP-PfCox19 

respectively. The change in Tm can be interpreted as either a decrease or an increase in the 

thermal stability of the protein. Both recombinant proteins chelated copper from their 

immediate surrounding under in vivo and presumably reduced conditions (Figure 4.20 and 

Figure 5.12). The recombinant proteins both enabled the growth of the E. coli bacteria host 

cells at toxic copper levels (Figure 4.24A and Figure 5.14B). The overexpression of Cox19 in 

yeast cells (Murtha et al., 2018) and some copper proteins in E. coli host cells (Vita et al., 2016; 

Yang et al., 2017) promoted an increase in the copper tolerance of the expression host cells. E. 

coli host cells expressing the rMBP-PfCox11Ct C60A mutant grew under toxic copper levels 

while the E. coli host cells expressing the C157A and C60A-C157A did not grow. The Cys155 

and Cys157 CFCF motif was considered essential for the coordination of copper within the E. 

coli host cells and possibly in P. falciparum. 
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6.8 Plasmodial copper proteins bind the cuprous ion 

Six recombinant plasmodial copper proteins that have been investigated to date were 

shown to preferentially bind cuprous ion (Choveaux et al., 2012; 2015; Rasoloson et al., 2004). 

Cuprous ion being the dominant intracellular copper species (Davies and O’Halloran, 2008) 

contained in a reducing cytoplasmic environment (Schafer and Buettner, 2001), is likely to be 

the preferred copper species for binding by the native plasmodial copper proteins. Like most 

eukaryotes, Plasmodium probably obtains copper in a reduced form. Reduction may be by 

proteins with functions similar to those of yeast cell surface Cu2+/Fe3+ metalloreductases and 

the Steap family metalloreductases in mammals (Georgatsou et al., 1997; Hassett and Kosman, 

1995; Martins et al., 1998; Ohgami et al., 2006; Rees and Thiele, 2007). However, orthologues 

of these proteins were not found in the plasmodial genome. Comparison of copper binding 

potentials between the six studied plasmodial copper proteins could not be achieved because 

the copper bound to the proteins was in all cases qualitatively and not quantitatively assessed. 

However, where the bound copper was quantitatively assessed using AAS in the case of Cox11, 

there was not enough supporting data to confirm any findings. This study was the first to 

employ multiple strategies to demonstrate the copper binding potential of plasmodial copper 

proteins including the assessment of copper tolerance of the E. coli hosts expressing the 

recombinant proteins. 

 

6.9 Plasmodial Cox11 and Cox19 as potential antimalarial drug target 

The significance of the electron transport chain to eukaryotes makes the pathway’s 

enzymes attractive to antimalarial target like atovaquone, a lethal inhibitor of plasmodial 

cytochrome bc1 complex (Fry and Pudney, 1992; Mather et al., 2005). The three constitutive 

respiration pathways – glycolysis, tricarboxylic acid cycle and the electron transport chain – 

are essentially driven by the CcO enzyme complex which serves as the terminal electron 

acceptor in aerobes and facultative organisms during oxidative respiration. The plasmodial 

CcO donates its acquired electron for the regeneration of ubiquinone in priming for the next 

round of oxidative respiration (Painter et al., 2007; Vaidya and Mather, 2009). Therefore, a 

functional CcO is critical for the parasite development. Targetting the enzyme complex or 

components forming the complex could be important in the development of antimalarial drugs 

(Krungkrai et al., 1997). 

The two plasmodial proteins studied in this thesis, Cox11 and Cox19, are two of the 

multiple CcO assembly proteins which happen to be copper proteins. With the confirmation 
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that copper homeostasis is essential to plasmodial development (Asahi et al., 2014), these 

proteins could prove to be vital to antimalarial drug development. Although, there is much to 

be done before establishing their potentials as antimalarial drug targets, findings from this study 

forms a basis for the exploitation of these proteins. Targetting the plasmodial Cox11 and/or 

Cox19 implies two biological processes, copper homeostasis and the electron transport chain, 

essential to the parasite’s development will be inhibited (Asahi et al., 2014; Painter et al., 

2007). This could then make the inhibitor(s) potent against the parasite. 

 

6.10 Conclusion and future studies 

The present study provided an insight into the possible role of two copper chaperones in 

P. falciparum copper homeostasis. Given the importance of copper to Plasmodium metabolism 

suggested by previous studies, drug-targetted inhibition of plasmodial copper homeostasis 

could be effective in preventing parasite development. Having established copper binds to the 

recombinant P. falciparum Cox11 and Cox19 in this study, there is a possibility of a copper-

binding role of the native proteins in the parasite. Mutational analysis of the P. falciparum 

Cox11 protein affirming the copper-binding role of the CFCF motif further consolidates the 

likely functional role of the protein as a copper binding protein. Mutation of key cysteines; 

Cys24, Cys34, Cys45 and Cys55 in the amino acid structure of P. falciparum Cox19 to non-

polar amino acid(s) with similar structure as cysteine will help identify the amino acid 

residue(s) that bind copper. The limitation of this study was the fact that further empirical 

studies like the SPR, transmission emission microscopy or other imaging experiments 

validating the order and the intracellular coordination of copper by the two copper proteins 

studied was not done. This was largely due to access and availability of instruments. The 

identification of genes encoding other CcO assembly accessory proteins in P. falciparum 

(Gardner et al., 2002; Painter et al., 2007; Vaidya and Mather, 2009) implies that P. falciparum 

Cox11 and Cox19, like their orthologues in eukaryotes, are likely to be involved in the CcO 

assembly. The role of these proteins in the Plasmodium CcO assembly will be strengthened by 

establishing their mitochondrial localisation in the parasite by immunolocalisation, electron 

microscopy, stable isotopic labelling of proteins and pulse-chase experiments. The importance 

of each protein to the parasite could be inferred from gene knock-out studies using transgenic 

parasites (Günther et al., 2009; Kanjee et al., 2017; Wang et al., 2017). Having established the 

copper binding ability of the two P. falciparum proteins involved in copper homeostasis, 

further studies are needed to assess their potentials as novel drug targets. This could be achieved 
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by identifying inhibitors specific to plasmodial Cox11 and Cox19 and not the human protein 

orthologues through in silico molecular docking analysis or in vitro inhibition kinetic studies. 
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