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Abstract

Non-negative matrices arise naturally in population models. In this thesis, we look at the theory

of such matrices and we study the Perron-Frobenius type theorems regarding their spectral

properties. We use these theorems to investigate the asymptotic behaviour of solutions to

continuous time problems arising in population biology. In particular, we provide a description

of long-time behaviour of populations depending on the nature of the associated matrix. Finally,

we describe a few applications to population biology.
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Introduction

Consider a population divided into n classes described by a distribution vector

u(t) = (u1(t), · · · , un(t))T at time t, where ui(t) is the number of individuals in the ith class.

Over a short interval of time dt, individuals move from class j to i at a rate aij , where aij ≥ 0

for i 6= j. The equation showing the rate at which the individuals move from one class to

another is
dui

dt
=

n
∑

j=1

aijuj , ∀1 ≤ i ≤ n. (1)

The problem in (1) can be expressed in a more compact form below:

du

dt
(t) = Au(t),

u(0) = u0,

(2)

where A is an n × n matrix with non-negative off diagonal elements. Any non-negative off

diagonal matrix A can be related to a non-negative matrix B through the equation

A = B − µBI (3)

where

µB ≥ max
1≤i≤n

|aii|.

If the matrix in system (2) were non-negative, we would study its long time behaviour using

Perron-Frobenius theorems. We can still use these theorems for system (2) with a positive off

diagonal matrix A through the relationship in (3) by rescaling as the solutions to (2) are related

to the solution to
dū

dt
= Bū

by ū = eµBtu. Therefore, in order to analyse system (2) and determine its long time and

asymptotic behaviour, we need to study non-negative matrices and apply (3).
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In our work, we study Perron-Frobenius theorems for non-negative matrices and use them,

through Equation (3), to study long time and asymptotic behaviour of system (1). We hope

to extend these studies further to infinite dimensional spaces and to study non-linear structured

populations later on.

The thesis is divided into five chapters. In the first chapter, we give some preliminary results

about general matrices from spectral theory, describe the notation to be used later on and some

definitions.

In the second chapter, we describe non-negative matrices and divide them into two groups:

reducible and irreducible matrices, and describe their properties in terms of associated graphs.

In most of the literature we read, a lot was written about irreducible matrices but very little on

reducible matrices. So in the third chapter, we first describe Perron-Frobenius theorems for both

positive and irreducible matrices following [13], [10]. In some texts such as [10], conditions for

existence of a positive eigenvector for a reducible matrix were given (Theorem 6, page 77). In

that chapter, we recall the proof for this theorem and further provide a more detailed discussion

of Perron-Frobenius type theorems for reducible matrices.

In the fourth chapter, we use the results of Chapters 2 and 3 to study long time behaviour of

solutions to initial value problem (2) by various mathods including the newly developed entropy

method based on the work of Perthame, [16]. Using this method, we find that in the long run,

the solution to the initial value problem tends to a multiple of the positive right eigenvector

corresponding to the eigenvalue 0 if A is irreducible and that this is true for reducible matrices

only under special conditions.

We finally give an application of the results to population biology. However all examples in this

thesis illustrate populations whose dynamics is described by reducible matrices.



Chapter 1

Preliminaries

In this chapter, we recall a few standard definitions, and introduce terms and notations that will

be used in the thesis. Then we outline relevant spectral properties of matrices.

1.1 Basic definitions and notations

Let A = (aij)1≤i,j≤n be a square matrix.

Definition 1.1.1. A is called non-negative (denoted A ≥ 0) if aij ≥ 0 for all 1 ≤ i, j ≤ n. It

is said to be positive (A > 0) if all inequalities are strict.

Definition 1.1.2. Let x be a vector in R
n. Then the absolute value of the vector x is defined

as the vector

|x| = (|x1|, |x2|, · · · , |xn|).

Similarly for a matrix A, |A| = (|aij |)1≤i,j≤n.

Definition 1.1.3. Let B and C be two n × n matrices. We say that B ≤ C if bij ≤ cij for all

i and j.

Definition 1.1.4. Let x be a vector in R
n. The p−norm of x is defined as

‖x‖p =

(

n
∑

i=1

|xi|
p

) 1

p

, for 1 ≤ p < +∞.

When p = ∞, the infinity norm of vector x is defined as

‖x‖∞ = max
1≤i≤n

|xi|.

4
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The p−norm for matrix A is defined by

‖A‖p = max
x 6=0

‖Ax‖p

‖x‖p

= max
‖x‖p≤1

‖Ax‖p.

(1.1)

The norm defined in Equation (1.1) exists because the unit sphere in R
n, defined by

B = {x ∈ R
n | ‖x‖ ≤ 1},

is compact and since the norm is a continuous function on R
n, it follows that the maximum

value stated above exists and so does the minimum ([11], page 83).

It can be shown that

‖A‖∞ = max
x 6=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤n

n
∑

j=1

|aij |, (1.2)

(for example see [13], page 284). We note that since R
n×n is finite dimensional, all matrix

norms are equivalent and thus in particular applications, we shall use the most convenient one.

Definition 1.1.5. The set σ(A) is called the spectrum of the matrix A if and only if the operator

(λI − A) is not injective for any λ ∈ σ(A). The complement of this set is called the resolvent

set, denoted by ρ(A).

Let λ ∈ C be an element in the resolvent set ρ(A). The operator R(λ, A) defined by

R(λ, A) := (λI − A)−1

is called the resolvent of A. Since A is a matrix,

R(λ, A) = (λI − A)−1 =
1

det(λI − A)
M(λ), (1.3)

where M(λ) is the transpose of the matrix of cofactors of λI − A. From (1.3) we see that

R(λ, A) is analytic for λ /∈ σ(A) and that the eigenvalues of A are the poles of R(λ, A).

Definition 1.1.6. [13], page 497

Let A be a square matrix. The spectral radius of A is the number

r(A) = max
λ∈σ(A)

|λ| (1.4)
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Theorem 1.1.7. Let A be a real valued matrix . The spectral radius r(A) is given by the

equation below:

r(A) = lim
k→∞

‖Ak‖1/k.

The proof of this theorem can be found in [13], page 619. From Equation (1.4), we see that

r(A) cannot be negative.

Definition 1.1.8. Let A ≥ 0 be an n×n matrix. An eigenvalue r of A will be called maximum

if |r| ≥ |λ| for any other eigenvalue λ of A, and r will be called dominant if |r| > |λ|.

Lemma 1.1.9. Let A be an n × n matrix on C. If λ is an eigenvalue of A, then λk is an

eigenvalue of Ak.

Proof. If λ ∈ σ(A), then Ax = λx, where x is the eigenvector corresponding to λ. Now

suppose that for k = c > 1, Acx = λcx holds. We want to show that Ac+1x = λc+1x.

Acx = λcx implies that A(Acx) = λcA(x) and this is equivalent to Ac+1x = λc.λx = λc+1x.

Therefore, λk ∈ σ(Ak) for all k ∈ N.

Theorem 1.1.10. [2], Theorem 2.34

The spectral radius of a non-negative matrix A is an eigenvalue associated with a non-negative

eigenvector.

Proof. First we show that

|R(λ, A)| ≤ R(|λ|, A).

From the definition of the resolvent,

R(λ, A) = (λI − A)−1 = λ−1(I − λ−1A)−1

= λ−1
∞
∑

n=0

λ−nAn, |λ| > r(A),
(1.5)

where the series exists by Cauchy-Hadamard criterion and Theorem 1.1.7. From this, we see
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that

|R(λ, A)| = |(λI − A)−1| = |λ−1
∞
∑

n=0

λ−nAn|

≤ |λ−1||
∞
∑

n=0

λ−nAn|

≤ |λ−1|
∞
∑

n=0

|λ−n|An, since A ≥ 0

= R(|λ|, A).

Thus

|R(λ, A)| ≤ R(|λ|, A). (1.6)

Let us now prove the statement of the theorem. Let λ0 be an eigenvalue of A and |λ0| = r(A),

(the spectral radius of A). Define λn = r(A) + 1/n ∈ ρ(A), the resolvent set of A for each

n = 1, · · · . We see that λn → r(A) as n → ∞. Consider another sequence µn = λn
λ0

|λ0|
∈ ρ(A).

|µn| = λn and µn → λ0 as n → ∞. From (1.3), R(λ, A) is analytic for all λ /∈ σ(A), µn → λ0

implies that R(µn, A) is not bounded. Since R(λn, A) = R(|µn|, A) ≥ |R(µn, A)| by (1.6),

R(λn, A) is not bounded too.

If r(A) ∈ ρ(A), then R(r(A), A) is finite, that is |R(r(A), A)| ≤ M for some M < ∞. But

R(λn, A) → R(r(A), A) and R(λn, A) is not bounded, so R(r(A), A) is not bounded. This is

a contradiction since we established that R(r(A), A) is bounded. Thus r(A) ∈ σ(A).

To prove that r(A) ∈ σ(A) has an associated non-negative eigenvector, we see from above that

for λn = r(A) + 1/n, we have limn→∞ ‖R(λn, A)‖ = ∞ and for λ ≥ 0, R(λ, A) ≥ 0, by (1.5).

From Definition 1.1.4, we can see that for each n ∈ N, ‖R(λn, A)yn‖ ≤ ‖R(λn, A)‖, where

‖yn‖ = 1. But equality holds for at least one unit vector yn for each n, so for this particular

vector yn,
1

2
‖R(λn, A)‖ ≤ ‖R(λn, A)yn‖ = ‖R(λn, A)‖ > 0.
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Let xn =
R(λn, A)yn

‖R(λn, A)yn‖
≥ 0. Then

Axn − r(A)xn = (λn − r(A))xn − (λnI − A)xn

=
1

n
xn − (λnI − A)

R(λn, A)yn

‖R(λn, A)yn‖

=
1

n
xn − (λnI − A)

(λnI − A)−1yn

‖R(λn, A)yn‖

=
1

n
xn −

yn

‖R(λn, A)yn‖
.

From this we have

‖Axn − r(A)xn‖ = ‖
1

n
xn −

yn

‖R(λn, A)yn‖
‖

≤
1

n
+

1

‖R(λn, A)yn‖

≤
1

n
+

2

‖R(λn, A)‖

→ 0 as n → ∞ since ‖R(λn, A)‖ → ∞.

But A ≥ 0 and r(A) ≥ 0 and, since ‖xn‖ = 1, the sequence is bounded and, by the compactness

of the unit sphere on R
n, there exists a convergent subsequence (xk)k≥1 of xn, by the Bolzano-

Weierstrass theorem. Let the limit of this subsequence be x 6= 0 as ‖x‖ = 1. Then

lim
k→∞

‖Axk − r(A)xk‖ = ‖Ax − r(A)x‖ = 0

and this implies that Ax = r(A)x.

Theorem 1.1.11. Let A be a square matrix and AT be its transpose. Then A and AT have

the same spectrum, so r(A) = r(AT ).

Proof. If A = (ai,j) is an n × n matrix, then Sn is a set containing all the permutations of

S = {1, · · · , n} and

det(A) =
∑

σ∈Sn

Sgn(σ)
n
∏

i=1

ai,σi

while

det(AT ) =
∑

σ∈Sn

Sgn(σ)
n
∏

i=1

aσi,i

=
∑

σ∈Sn

Sgn(σ)
n
∏

i=1

ai,σi
.
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The last equation is true because σ varies uniquely over S. Thus det(A) = det(AT ) and hence

det(A − λI) = det(AT − λI).

The eigenvectors (refered to as right eigenvectors) of AT are also called left eigenvectors of A;

that is to say, if v is an eigenvector of AT corresponding to eigenvalue λ, then vT A = λvT .

Definition 1.1.12.

1.2 Similarity

Definition 1.2.1. Two square matrices A and B are said to be similar if there exists an invertible

matrix P such that A = PBP−1.

Theorem 1.2.2. Let A and B be similar (square) matrices. Then both matrices have the same

eigenvalues. Moreover, if x 6= 0 is an eigenvector of A corresponding to eigenvalue λ, then

P−1x is an eigenvector of B corresponding to the same eigenvalue.

Proof. Let λ ∈ σ(A). Then det (λI − A) = det (λI − PBP−1).

det (λI − A) = det (λI − PBP−1) = det (λPP−1 − PBP−1)

= det (P (λP−1 − BP−1))

= detP det (λP−1 − BP−1)

= detP det (λP−1P − B) detP−1

= det (λI − B), since detP =
1

detP−1

= 0.

Hence λ ∈ σ(B). However, in general the two matrices do not have the same eigenvec-

tors. Notice that if x 6= 0 is the eigenvector corresponding to eigenvalue λ of A, then

Ax = PBP−1x = λx. From this, we see that BP−1x = λP−1x, implying that P−1x is

the eigenvector of B corresponding to eigenvalue λ.

Theorem 1.2.3. If B is similar to A, then Ak = PBkP−1.
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Proof. Let A = PBP−1. Then Ak = (PBP−1)k for every integer k ≥ 1. But

(PBP−1)k = (PBP−1)(PBP−1) · · · (PBP−1), with PBP−1 repeated k times

= PBP−1PBP−1 · · ·PBP−1

= P (BI)(BI) · · · (BI)BP−1

= PBkP−1.

1.2.1 Jordan forms

A matrix A is called diagonalisable if it is similar to a diagonal matrix. We note that if A

has a full range of eigenvalues (that is, if A has n distinct eigenvalues), then it is similar to

a diagonal matrix D. But a matrix can still be diagonalisable even if not all its eigenvalues

are distinct. A sufficient condition for a matrix to be diagonalisable is that it has a full range

of eigenvectors ([13], page 507). For this to happen, all its eigenvalues must be semisimple.

That is; A = Pdiag{λ1, · · · , λr}P
−1, where r is the number of distinct eigenvalues and these

eigenvalues are repeated according to their algebraic multiplicities, and P is the matrix whose

columns are eigenvectors of A, arranged in such a way that if λi has algebraic multiplicity ki

for all i = 1, · · · , r, then the first k1 columns of P are the eigenvectors corresponding to the

eigenvalue λ1, the next k2 columns are eigenvectors corresponding to λ2, and so on until we

reach the last kr columns which are eigenvectors of A corresponding to λr.

More precisely, if A has n linearly independent eigenvectors, then we can construct an invertible

matrix P whose columns are eigenvectors of A. Let the ith column in matrix P be labeled pi.

Then

AP = A(p1, · · · ,pn) = (Ap1, · · · , Apn).

Let D be the diagonal matrix with eigenvalues of A along the main diagonal (counted with their

multiplicities). Then

PD = (p1, · · · ,pn)diag{λ1, · · · , λn}

= (λ1p1, · · · , λnpn).

We now see that AP = PD, implying that Api = λipi; hence (λi,pi) is an eigenpair for all

i = 1, · · · , n.
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Not every square matrix is similar to a diagonal matrix. However, any matrix is similar to an

upper triangular matrix (see [13] page 508). The elements on the main diagonal of the triangular

matrix are still the eigenvalues of A.

Let λj be an eigenvalue of A with algebraic multiplicity kj . If λj is semisimple, then we call

Bj = diag{λj , · · · , λj}, the kj × kj matrix, the Jordan block for this eigenvalue. If however, λj

is not semisimple, then the Jordan block Bj for λj is the matrix

Bj =

















λj 1

. . .
. . .

. . . 1

λj

















= Sj + Nj ,

where

Sj =











λj

. . .

λj











and Nj =

















0 1 · · · 0

0 0
. . .

...
...

...
. . . 1

0 0 · · · 0

















that is, Bj is a matrix with λj on the main diagonal, ones on the super diagonal and zeros else

where. Matrix Nj is nilpotent of order kj . Notice that matrices Nj and Sj commute.

Definition 1.2.4. The Jordan form of a matrix A is the direct sum of all its Jordan blocks.

That is to say J = diag{B1, · · · , Br}.

Definition 1.2.5. [13], page 593

Let x be a vector in R
n and λ be an eigenvalue of the n × n matrix A. If (A − λI)k−1x 6= 0

and (A − λI)kx = 0, then x is called a generalised eigenvector of A associated with λ.

Theorem 1.2.6. Let A be an n × n matrix. If J is the Jordan form of A, then there exists an

invertible matrix P such that A = PJP−1. Moreover, the columns of P are eigenvectors and

generalised eigenvectors of A.

Proof. Since J is the Jordan form of A, then A and J are similar, implying that an invertible

matrix P exists such that AP = PJ by Definition 1.2.1. To show that the columns of P are

eigenvectors and generalised eigenvectors of A, we write matrix P as

P = (P1, · · · , Pr),
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where Pj is an n × kj matrix for all j = 1, · · · , r. Let

Pj = (xj
1, · · · ,xj

kj
),

where x
j
i is a column vector for all i = 1, · · · , kj .

AP = A(P1, · · · , Pr)

= (AP1, · · · , APr)

= (Ax1
1, · · · , Ax1

k1
, · · · , Axr

1, · · · , Axr
kr

).

Since J is block diagonal, we have

PJ = (P1B1, · · · , PrBr)

=
(

(x1
1, · · · ,x1

k1
)B1, · · · , (xr

1, · · · ,xr
kr

)Br

)

.

But

PiBi = (xi
1, · · · ,xi

ki
)

















λi 1

. . .
. . .

. . . 1

λi

















=
(

λix
i
1,x

i
1 + λix

i
2, · · · ,xi

ki−1
+ λix

i
ki

)

,

for all i = 1, · · · , r. Therefore, AP = PJ implies

Axi
1 = λix

i
1 ⇒ (λi,x

i
1) is an eigenpair

Axi
2 = xi

1 + λix
i
2 ⇒ (A − λiI)xi

2 = xi
1

...

Axi
ki

= xi
ki−1

+ λix
i
ki

⇒ (A − λiI)kixi
ki

= 0.

In otherwords, for all i = 1, · · · , r, Pi (and hence P ) is a matrix whose columns are eigenvectors

and generalised eigenvectors of A corresponding to eigenvalue λi.

Definition 1.2.7. Let A be an n × n matrix. The polynomial Pn(λ) defined by

Pn(λ) = det (A − λI)

is called the characteristic polynomial of A.
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Proposition 1.2.8. [13], page 630

Let A ≥ 0 be a square matrix. Then

lim
k→∞

Ak = 0 if and only if r(A) < 1.

When r(A) = 1, the limit exists if and only if r(A) is a semisimple eigenvalue of A and it is the

only eigenvalue on the spectral circle.

Proof.

Suppose that

lim
k→∞

Ak = 0.

If J is the Jordan form of A, then A = PJP−1. From Theorem 1.2.3, Ak = PJkP−1.

Therefore,

lim
k→∞

Ak = 0 implies P

(

lim
k→∞

Jk

)

P−1 = 0

and this is true if and only if Jk → 0 as k → ∞. Since J is upper triangular with the eigenvalues

of A along its main diagonal, Jk → 0 as k → ∞ if and only if |λ| < 1 for every eigenvalue λ of

A. Hence r(A) < 1.

Now suppose that r(A) < 1 and let B1 be the Jordan block corresponding to r(A). Then

Bk
1 = (S1 + N1)

k

= Sk
1 + kSk−1

1 N1 + · · · +





k

r



Sk−r
1 N r

1 + · · · + Nk
1 , 0 ≤ r ≤ k.

Since N1 is nilpotent of finite order, Nk
1 → 0 as k → ∞. S1 is a diagonal matrix with r(A) on

the main diagonal, so Sk
1 → 0 as k → ∞ because r(A) < 1. Therefore,

lim
k→∞

Bk
1 = 0.

Since r(A) < 1, it follows that |λ| < 1 for any other eigenvalue λ of A. Therefore Bk
i → 0,

where Bi is the Jordan block for eigenvalue λi of A. Therefore,

lim
k→∞

Jk = lim
k→∞

diag{Bk
1 , · · · , Bk

r }

= diag{ lim
k→∞

Bk
1 , · · · , lim

k→∞
Bk

r }

= 0.
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Therefore, Ak = PJkP−1 → 0 as k → ∞. Hence Ak → 0 if and only if r(A) < 1.

Now suppose that r(A) = 1 and that the limit of Ak as k → ∞ exists. If r(A) is not semisimple,

then there exists a j × j (j > 1) block in the Jordan form of A with 1 on the main and super

diagonals. Let S1 be the j × j identity matrix and N1 the j × j matrix with 1 on the super

diagonal. The limit of Sk
1 as k → ∞ is still the j × j identity matrix. So

Bk
1 = I + kN1 + · · · +





k

r



N r
1 + · · · + Nk

1 , 0 ≤ r ≤ k,

implying Bk
1 → ∞ as k → ∞. Therefore,

lim
k→∞

Ak does not exist.

This is a contradiction to the assumption that the limit above exists. Therefore, if r(A) = 1

and the limit of Ak as k → ∞ exists, then r(A) is semisimple.

Suppose that r(A) = 1 and that it is semisimple. Then it follows that B1 is the identity matrix

whose dimension is equal to the algebraic multiplicity of r(A). Therefore, Bk
1 → I as k → ∞.

If |λ| < 1 for any other eigenvalue λ 6= r(A) of A, then Bk
i → 0 as k → ∞ for any other

eigenvalue λi 6= r(A) of A. So Jk → diag{I, 0, · · · , 0}, implying that

lim
k→∞

Ak exists.

On the other hand, if there is a λ 6= r(A) such that |λ| = 1, then there exists a θ ∈ (0, 2π)

such that λ = eıθ. This implies that Bλ has eıθ on its main diagonal, and as a result, Bk
λ has

the term eıkθ on its main diagonal which oscillates as k changes. In such a case,

lim
k→∞

Bk
λ does not exist, hence lim

k→∞
Jk does not exist.

This implies that the limit of Ak as k → ∞ does not exist. Therefore, if

lim
k→∞

Ak exists, then r(A) is the only eigenvalue on the spectral circle.



Chapter 2

Further non-negative matrices

In this chapter, we shall describe useful properties of non-negative matrices. We classify non-

negative matrices into two groups; reducible and irreducible. In each case, we describe these

matrices in terms of graphs and we give specific properties of these matrices.

2.1 Matrices and graphs

2.2 Some definitions

Definition 2.2.1. A graph is an ordered pair G = (V, E) containing a non-empty set of vertices

V and a possibly empty set of edges, E. A directed graph is a finite non-empty set V of vertices

together with a set E of ordered pairs of distinct elements of V . The elements of E are called

directed edges or arcs, [3], page 3.

The figures below illustrate the difference between a directed and undirected graph.

Figure 2.1: Directed graph Figure 2.2: An undirected graph

15
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That is, if G is a directed graph and v1 and v2 are any two vertices in the graph G, then the

edge e1,2 = (v1, v2) is directed from v1 to v2. From this point onwards, when we talk about a

graph, we shall mean a directed graph.

Definition 2.2.2. Let G be a directed graph and V (G) and E(G) be the set of all the vertices

and directed edges of G, respectively. Let u, v ∈ V (G) and let e ∈ E(G). We say that the

edge e is incident to v and e is incident from u if e is directed from u to v and this is written

as e = (u, v) ([5], page 15).

In such a case, we also say that u and v are adjacent vertices. Notice that (u, v) 6= (v, u).

Definition 2.2.3. A graph G1 is isomorphic to a graph G2 if there exists a one to one mapping

φ from V (G1) onto V (G2) such that (u, v) ∈ E(G1) if and only if (φu, φv) ∈ E(G2) ([5], page

15).

Example 2.2.4. The two graphs below are isomorphic: The mapping φ acting on V (G1) is

defined below:

φ(1) = 3, φ(2) = 4, φ(3) = 2 and φ(4) = 1.

Definition 2.2.5. Let u, v be vertices of a graph. A u−v walk of graph G is a finite alternating

sequence of vertices and edges, beginning at u and ending with vertex v ([5], page 26). The

number of edges in a walk is the length of the walk.

Definition 2.2.6. A u − v path is a walk in which no vertex is repeated.

Definition 2.2.7. Two vertices i and j are said to be connected if there is a path from i to

j. A directed graph is called strongly connected if for every pair of vertices i, j in G, there is a

directed path from i to j.
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Definition 2.2.8. Let v be a vertex of the graph G. If there is no edge incident to or from v,

then v is said to be isolated.

A graph G with vertex set V = {1, · · · , n} can also be described by means of a matrix ([5],

page 26). For example, the adjacency matrix of a graph G is the n×n matrix D = (dij) where

dij = 1 if (j, i) ∈ E(G), otherwise dij = 0.

Theorem 2.2.9. [5], Theorem 2.2.

If D is the adjacency matrix of a graph G with V = {1, · · · , n}, then d
(k)
ij , the entry in the ith

row and jth column of Dk, k ≥ 1 is the number of different i − j walks of length k in G.

The proof of this theorem can be found in [5] or [3].

2.2.1 Drawing a graph from a matrix

We have seen that every graph with finite vertex set can be represented by a matrix. In this

section, we want to show that any non-negative matrix can be represented by a graph. We now

describe how a graph can be drawn from a non-negative matrix.

Let A ≥ 0 be an n × n matrix. Let V = {1, · · · , n} be a set. The graph of the matrix A, GA,

is the graph with vertex set V and (j, i) ∈ E(GA) is an edge of GA if aij > 0, otherwise no

edge is drawn. Notice that it is possible for two different matrices to have the same graph.

Example 2.2.10. The two matrices below have the same graph:










1 0 2

0 5 4

3 0 0











,











4 0 7

0 5 4

3 0 0











.

The graph for these matrices is

Notice that if D is the adjacency matrix of GA, then d
(k)
ij > 0 implies a

(k)
ij > 0 and conversely.
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Definition 2.2.11. A square matrix P is called a permutation matrix if it is obtained from the

identity matrix by carrying out elementary row operations on it.

Theorem 2.2.12. Let A and B be non-negative n × n matrices such that A = P T BP , where

P is a permutation matrix. Then GA is isomorphic to GB.

Proof. If P is a permutation matrix, then there is a 1 in each row and column. Let ei be the

column vector with 1 in the ith row and zeros else where. Let Π be a permutation on the set

{1, · · · , n} defined by

Π =





1 · · · n

π1 · · · πn



 .

The columns of P are the vectors eπi
; 1 ≤ i ≤ n. Then P = (eπ1

, · · · , eπn) and P T =

(eT
π1

, · · · , eT
πn

)T .

A =P T BP

=











eT
π1

...

eT
πn











B
(

eπ1
· · · eπn

)

.

Therefore

aij = eT
πi

Beπj

= eT
πi























b1πj

...

biπj

...

bnπj























= bπiπj
.

Therefore, aij > 0 if and only if bπiπj
> 0. But bπiπj

> 0 means that there is a path from πj

to πi in the graph of B and since bπiπj
> 0 means that aij > 0, it follows that there is a path

from j to i in the graph of A. Therefore, GA and GB are isomorphic.

2.3 Classification of non-negative matrices

Non-negative matrices can be divided into two classes: irreducible and reducible matrices.
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Definition 2.3.1. A matrix A ≥ 0 is said to be irreducible if there is no permutation matrix

that puts it in the form

Ã = P T AP =





A1 0

A2,1 A2



 , (2.1)

where A1 and A2 are square matrices. If such a permutation exists, then A is reducible.

Theorem 2.3.2. A non-negative n × n matrix A is irreducible if and only if it has a strongly

connected graph.

Proof. Suppose that A is reducible, then there is a permutation matrix P that such that

Ã = P T AP =





A1 0

A2,1 A2



 ,

where A1 is an r × r matrix and A2 is (n − r) × (n − r) matrix. The zero matrix in Ã means

that the vertices from the set V1 = {v1, · · · , vr} are not accessible from any vertex in the set

V2 = {vr+1, · · · , vn}; that is, if vi ∈ V1 and vj ∈ V2, then there is no path (of any length) from

vj to vi. Therefore, the directed graph of Ã is not strongly connected. Since the graph of A,

GA, is isomorphic to that of Ã (by Theorem 2.2.12), we conclude that the graph of A is not

strongly connected.

Now suppose that GA is not strongly connected. Then there are at least two vertices vi and vj

such that one is inaccessible from the other. If vi is inaccessible from vj , then relabel the vertices

such that vi becomes v1 and vj becomes vn. Any other vertices that are inaccessible from vj are

renamed v2, · · · , vr. Therefore the set of vertices that are inaccessible from vj (relabeled vn) is

V1 = {v1, · · · , vr}. All other vertices that are accessible from vj are relabeled vr+1, · · · , vn−1

and no vertex vl ∈ V1 can be accessed from any vertex vk ∈ V2 = {vr+1, · · · , vn} because if

there is a vk ∈ V2 such that the edge (vk, vl) exists, then the vertex vl would be accessible from

vn by taking the path vn → vk → vl which is not possible.

Let Π be a permutation on the set {1, · · · , n} such that if i ∈ {1, · · · , n} then Π transforms

i into πi. Then aπi,πj
= 0 for each πj ∈ {r + 1, · · · , n} and πi ∈ {1, · · · , r}. So if P is the

permutation matrix defined by Π and Ã = P T AP , then ãij = aπiπj
= 0 for πj ∈ {r+1, · · · , n}

and πi ∈ {1, · · · , r}. Thus

Ã =





A1 0

A2,1 A2



 .
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Example 2.3.3. The matrix below

A =











0 1 1

1 1 0

0 0 0











,

is reducible. Its graph is shown below:

Figure 2.3: Connected but not strongly connected

Lemma 2.3.4. (Lemma 8.17 of [1])

Let A ≥ 0. If A is irreducible then it has no zero rows or columns.

Proof. Let A be irreducible. If the ith row is a zero row, then there is no path (of any length)

from any vertex j ∈ {1, · · · , n} to state i. Thus there is no edge incident to vertex i in the graph

GA of A. Therefore, GA is not connected and hence, A is not irreducible. If the jth column is

a zero column, then there is no path starting from vertex j to any other vertex i ∈ {1, · · · , n}.

Therefore, there is no edge incident from j in the directed graph of A, hence GA is not strongly

connected and therefore not irreducible.

Lemma 2.3.5. If A ≥ 0 is irreducible, then there is a non-zero element in each row and column,

different from the diagonal element. Moreover, if A ≥ 0 is irreducible and x > 0, then Ax > 0.

Proof.

Let A ≥ 0 be irreducible. From the previous lemma, A has at least one positive entry in each

row and each column. Suppose that in the ith row there is only one positive entry which is also

in the ith column. Then it follows that in the directed graph GA of A, there is no edge incident

to vertex vi except the trivial loop (path of length 1 from i to i). Therefore GA is not connected,

hence not strongly connected and therefore, A is not irreducible. So if A is irreducible, then

there is at least one positive element in each row and column different from aii for each i ∈ S.

If x > 0, notice that for each i,

(Ax)i =
n
∑

j=1

aijxj .



21

Since xj > 0 and there is at least one j for which aij > 0, then

n
∑

j=1

aijxj > 0.

Thus (Ax)i > 0 for all i ∈ S ⇒ Ax > 0

The converse of this lemma is not true. To illustrate this point, consider the example below:

Example 2.3.6. Let

A =

















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

















.

This matrix has a non-zero element in each row and column different from the main diagonal

and it is also block diagonal, therefore it is already in the form (2.1). Therefore the permutation

matrix in Definition 2.3.1 is P = I4, the 4 × 4 identity matrix, hence A is reducible.

Lemma 2.3.7. If A ≥ 0 is irreducible, then so is AT .

Proof. AT is a matrix whose columns are the rows of A and the rows are the columns of A.

Therefore the directed graph of AT is the reversed directed graph of A. In other words, if there

is a k path from state i to j, in the graph of A, then there is a k path in the graph of AT from

state j to i. Thus AT has a strongly connected graph.

Theorem 2.3.8. A non-negative matrix A is irreducible if and only if for every i and j in

{1, · · · , n}, there exists a positive integer k = k(i, j) ≤ n − 1 such that a
(k)
ij > 0.

Proof. Suppose that A ≥ 0 is irreducible. Then its graph GA is strongly connected. By

Definition 2.2.7, there is a path from j to i for every i and j. This means that there exist

indices h1, · · · , hk−1 such that

j → hk−1 → · · · → h1 → i,

implying that d
(k)
ij > 0, hence a

(k)
ij > 0.

Now suppose that for every i and j, there exists a k = k(i, j) such that a
(k)
ij > 0. Then d

(k)
ij > 0

for every i and j. This is because A and D have their zeros in exactly the same positions and

they have the same graph. That is; if aij > 0, then dij > 0. But d
(k)
ij is the number of paths
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of length k from j to i by Theorem 2.2.9. Therefore, if a
(k)
ij > 0 for each i and j, then there

is a path of length k from j to i for each i and j and by Definition (2.2.7), the graph of A is

strongly connected. By Theorem 2.3.2, A is irreducible.

Theorem 2.3.9. (Theorem 8.3.5 of [13])

If A ≥ 0 is an irreducible n × n matrix, then:

1. I + A is irreducible.

2. (I + A)n−1 > 0

Proof. If A is irreducible, then it has a strongly connected graph, GA; that is for every i, j ∈ S,

there is a path from i to j and from j to i in GA. We can draw the directed graph of B = I +A

by simply adding a loop to each vertex of graph GA. This does not alter the connectedness of

the graph, therefore, the graph of I + A is strongly connected as well and B is irreducible.

To prove that (I + A)n−1 > 0, let Ak = (a
(k)
ij )1≤i,j≤n. If k = 2, then the entry in the ith row

and jth column of A2 is given by

a
(2)
ij = (ai1, · · · , aij , · · · , ain)























a1j

...

aij

...

anj























= ai1a1j + ai2a2j + · · · + a2
ij + · · · + ainanj .

This can be simply put as

a
(2)
ij =

n
∑

h1=1

aih1
ah1j . (2.2)

So suppose that for k = l > 2,

a
(l)
ij =

n
∑

h1=1

· · ·
n
∑

hl−1=1

aih1
ah1h2

· · · ahl−1j
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holds. Then the jth column of Al is given by























∑n
h1=1 · · ·

∑n
hl−1=1 a1h1

· · · ahl−1j

...
∑n

h1=1 · · ·
∑n

hl−1=1 aih1
· · · ahl−1i

...
∑n

h1=1 · · ·
∑n

hl−1=1 anh1
· · · ahl−1j























.

Therefore,

a
(l+1)
ij = (ai1, ai2, · · · , aij , · · · , ain)























∑n
h1=1 · · ·

∑n
hl−1=1 a1h1

· · · ahl−1j

...
∑n

h1=1 · · ·
∑n

hl−1=1 aih1
· · · ahl−1i

...
∑n

h1=1 · · ·
∑n

hl−1=1 anh1
· · · ahl−1j























= ai1

n
∑

h1=1

· · ·

n
∑

hl−1=1

a1h1
· · · ahl−1j + · · · + aii

n
∑

h1=1

· · ·

n
∑

hl−1=1

aih1
· · · ahl−1i

+ · · · + anj

n
∑

h1=1

· · ·
n
∑

hl−1=1

anh1
· · · ahl−1j

=
n
∑

h1=1

· · ·
n
∑

hl−1=1

ai1a1h1
· · · ahl−1j + · · · +

n
∑

h1=1

· · ·
n
∑

hl−1=1

aiiaih1
· · · ahl−1i

+ · · · +
n
∑

h1=1

· · ·
n
∑

hl−1=1

ainanh1
· · · ahl−1j

=
n
∑

hl=1

n
∑

h1=1

· · ·
n
∑

hl−1=1

aihl
ahlh1

· · · ahl−1j ,

and this is equivalent to

a
(l+1)
ij =

n
∑

h1=1

n
∑

h2

· · ·
n
∑

hl

aih1
ah1h2

· · · ahlj . (2.3)

Therefore, for any N ∋ k > 1,

a
(k)
ij =

n
∑

h1=1

n
∑

h2=1

· · ·
n
∑

hk−1=1

aih1
ah1h2

· · · ahk−1j , (2.4)

which implies that a
(k)
ij > 0 if and only if there is a sequence of indices h1, h2, · · · , hk−1 such

that aih1
> 0 and ah1h2

> 0 and · · · and ahk−1j > 0. Since A is irreducible, for every i and j



24

in {1, · · · , n}, there exists a k = k(i, j) ≤ n − 1 such that a
(k)
ij > 0 (by Theorem 2.3.8). But

since I and A commute, the formula

(I + A)n−1 =

n−1
∑

k=0

(

n − 1

k

)

Ak

holds. Therefore,
[

(I + A)n−1
]

ij
=

n−1
∑

k=0

(

n − 1

k

)

a
(k)
ij

and this is positive since a k ∈ {1, · · · , n − 1} exists that makes a
(k)
ij positive for all i and j.

therefore, (I + A)n−1 > 0.

We consider two kinds of reducible matrices; those with completely disconnected graphs and

those whose graphs are connected (but not strongly connected). Consider the directed graphs

below: Graph(i) has no edges except loops. It represents a diagonal matrix. In graph (ii), the

Figure 2.4: Graph(i) Figure 2.5: Graph(ii)

subgraph with vertices 2, 3, 4 is strongly connected but this subgraph is not connected at all

to the sub graph with vertex 1. Therefore graph(ii) is not strongly connected. The matrix for

graph (ii) is block diagonal
















a11 0 0 0

0 0 a23 a24

0 a32 0 0

0 0 a43 0

















.

These two graphs are examples of disconnected graphs. In both these cases, the matrix A2,1

described in (2.1) is a zero matrix. For the preceding 4 × 4 matrix A1 = (a11) while

A2 =











0 a23 a24

a32 0 0

0 a43 0











.

If A is a block diagonal matrix with each block being irreducible, then we say that the blocks

of A are isolated.
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Figure 2.6: Graph(iii)

Figure 2.7: Graph(iv)

Now consider the graphs above: In these graphs, no vertex is completely isolated and none of

the graphs is strongly connected. The matrices they represent are reducible with A2,1 ≥ 0, 6= 0.

As seen in Definition 2.3.1, every reducible matrix can be put in the form

A∗ =





A1 0

A2,1 A2



 . (2.5)

The matrix A∗ has the same eigenvalues as A by Theorem 1.2.2. The process of obtaining A∗

is equivalent to simply renaming the vertices of the graph of A using the same index set with

out changing the direction of the paths. In other words, we find graphs that are isomorphic to

the graph of A and write down their corresponding matrices. This eventually gives the required

matrix A∗. Consider the matrix below:

A =











0 a12 a13

a21 0 0

0 0 a33











.

The matrix above is reducible since its directed graph (2.8) is not strongly connected. Notice

Figure 2.8: GA

that vertices 1 and 2 form a strongly connected graph. A can be put in the form (2.1). The
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Figure 2.9: GA′

graph GA′ below is isomorphic to GA and it is obtained by renaming state 3 to become 1′ and

1 becomes 2′ and 2 becomes 3′, and the matrix for GA′ is as shown below:

A∗ =











a33 0 0

a13 0 a12

0 0a21 0











.

We also note that A∗ is not unique. For the preceding matrix A, notice that A∗ can also be the

matrix










a33 0 0

0 0 a21

a13 a12 0











.

Theorem 2.3.10. [18], Theorem 2.1

Let A ≥ 0 and r = r(A) > 0. Then (s1I − A)−1 exists and (s1I − A)−1 ≥ 0 if and only if

s1 > r. Moreover, (s1I − A)−1 > 0 if A is irreducible.

Proof. Suppose that (s1I − A)−1 exists. Then for some vector c ≥ 0, 6= 0, there exists x ≥ 0

such that x = (s1I − A)−1c. Rewriting this, we get s1x = c + Ax, which implies that

s1x ≥ Ax. (2.6)

s1 cannot be negative since Ax ≥ 0, 6= 0. So let s1 > 0. By Theorem 1.6 of [18] together with

(2.6), s1 > r.

Now suppose that s1 > r, then r( A
s1

) < 1. By Theorem 1.2.8, ( 1
s1

A)k → 0 as k → ∞. Since

s1 > r, then s1 > |λ| for every λ ∈ σ(A), hence s1 − λ 6= 0 for all λ. Therefore, s1I − A is

invertible because 0 /∈ σ(s1I − A).

(s1I − A)−1 = s−1
1 (I − s−1

1 A)−1

= s−1
1

∞
∑

k=0

(s−1
1 A)k ≥ 0
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If A is irreducible, then for all 1 ≤ i, j ≤ n, a
(k)
ij > 0 for some k = k(i, j) ≤ n − 1 (Theorem

2.3.8). Thus

s−1
1

∞
∑

k=0

(s−1
1 A)k > 0,

hence (s1I − A)−1 > 0.

2.3.1 Normal form of a reducible matrix

Let A ≥ 0 be reducible. By permuting its rows and then the columns by the same permutations,

A can be written in the form defined in (2.1). If A1 or A2 is still reducible, it is again put in a

form similar to that of A (as in 2.1) so that now

A∗ =











B1 0 0

C1 B2 0

C2 C3 B3











.

This process is repeated until all the matrices on the main diagonal are irreducible or 0. The

matrix A is then said to be in normal form. In general an n × n reducible matrix A can be

written in normal form given below:

A =





































A1 0

0 A2

...
. . .

0 0 · · · Ag

Ag+1,1 Ag+1,2 · · · Ag+1,g Ag+1

...
...

...
...

. . .

As,1 As,2 · · · As,g As,g+1 · · · As





































, (2.7)

where the matrices Ai for 1 ≤ i ≤ s are either irreducible or zero matrices of dimension 1, see

[10], Equation (69). The matrix in (2.7) is lower triangular, so the empty spaces contain zeros.



Chapter 3

Perron-Frobenius type theorems

Perron and Frobenius independently studied the spectral properties of non-negative matrices. In

this chapter, we begin with a discussion of these theorems for positive and irreducible matrices.

In [10], the author extended the study of spectral properties of reducible. Thus we also provide

a detailed description of the Perron-Frobenius type theorems for reducible matrices and give

several examples illustrating the (spectral) differences from their irreducible counterparts.

3.1 Positive matrices

Theorem 3.1.1. Perron-Frobenius theorem for positive matrices

Let A > 0 be an n × n matrix. Then r(A) has an associated positive eigenvector x.

Proof. By Theorem 1.1.10, r(A) is an eigenvalue of A associated with a non-negative eigen-

vector, so let x ≥ 0 be the eigenvector corresponding to r(A). Then Ax = r(A)x > 0 since

A > 0. But r(A)x > 0 if and only if x > 0. Indeed, if there is 1 ≤ i ≤ n such that xi = 0, then

r(A)xi = 0 implying that r(A)x ≥ 0 and the inequality is not strict, and this is a contradiction

to Ax > 0.

Lemma 3.1.2. If A > 0, then r(A) is the only eigenvalue of A having strictly positive eigen-

vectors.

Proof. We have already established that r(A) has an associated positive eigenvector x and

that σ(A) = σ(AT ) by Theorem 1.1.11. Since A > 0, so is AT . By Theorem 3.1.1, there

28
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exists a positive eigenvector y of AT . Suppose that there is an eigenvalue λ ∈ σ(AT ) with

corresponding positive eigenvector y such that ATy = λy. From Ax = r(A)x,

yT Ax = r(A)yTx

⇒ λyTx = r(A)yTx

⇔ (λ − r(A))yTx = 0

⇔ (λ − r(A)) = 0 because both x and yT are positive ,yTx > 0

⇔ λ = r(A).

So r(A) is the only eigenvalue with strictly positive eigenvector.

Theorem 3.1.3. If A > 0, then r(A) is a simple eigenvalue of A.

Proof. We shall start by showing that r(A) is semisimple. We rescale matrix A so that it

becomes Ã = A/r(A) and r(Ã) = 1. Suppose that r(Ã) is not semisimple. Then the Jordan

block corresponding to r(Ã) is given by

B1 =

















1 1 0

0 1
. . .

...
...

. . . 1

0 0 · · · 1

















,

implying that Bk
1 → ∞ as k → ∞. This also means that Jk → ∞, therefore,

‖Jk‖∞ = ‖P−1ÃkP‖∞ ≤ ‖P−1‖∞‖Ãk‖∞‖P‖∞,

hence

‖Ãk‖∞ ≥
‖Jk‖∞

‖P−1‖∞‖P‖∞
→ ∞

so that ‖Ãk‖∞ → ∞ as k → ∞. Let Ãk = (a
(k)
ij ). The infinity norm of Ãk is the maximum of

all row sums, so let ik be the row of Ãk that gives maximum sum. By Lemma 3.1.2, there is a

positive eigenvector x > 0 such that x = Ãx. By Lemma 1.1.9, x = Ãkx; therefore,

‖x‖∞ = max
i

|xi| ≥ xik =
n
∑

j=1

a
(k)
ik,jxj

≥





n
∑

j=1

a
(k)
ik,j



min
i

xi

= ‖Ãk‖∞ min
i

xi → ∞.
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Therefore, ‖x‖∞ → ∞. But x is a constant vector, so ‖x‖∞ cannot go to infinity. Therefore

r(Ã) = 1 is semisimple, implying that r(A) is semisimple.

Now suppose that its algebraic multiplicity is m > 1. Since r(Ã) is semisimple, it follows that

there are m linearly independent eigenvectors of Ã corresponding to the eigenvalue r(Ã) = 1.

Let x and y be two eigenvectors of Ã corresponding to 1 such that x 6= αy for any α ∈ C. We

pick a non-zero entry from vector y, say yi. Notice that

Ã(x −
xi

yi
y) = x −

xi

yi
y,

implying that

z = x −
xi

yi
y

is also an eigenvector of Ã corresponding to 1. From (8.2.7) of [13], Ã|z| = |z| = x > 0,

implying that zi 6= 0 for all i = 1, · · · , n. But this is a contradiction since

zi = xi −
xi

yi
yi = 0

for at least one i. Therefore, the algebraic multiplicity of r(Ã) is one.

3.2 Irreducible matrices

Theorem 3.2.1. Perron-Frobenius Theorem for irreducible matrices

Let A ≥ 0 be an irreducible matrix. Then there exists an eigenvalue r such that

1. r is real and r > 0

2. there exists strictly positive left and right eigenvectors associated with the eigenvalue r.

3. the eigenvectors associated with r are unique to constant multiples.

Proof. From Theorem 1.1.10, r = r(A) is an eigenvalue of A and from the definition of r(A),

r(A) is real and non-negative. r(A) is also associated with a non negative eigenvector x by

Theorem 1.1.10. Therefore, Ax ≥ 0. Matrix A is irreducible, so there is a positive element

in each row and column, hence the vector Ax has at least one positive entry. Suppose that

r = r(A) = 0, then rx = 0, implying that Ax 6= rx which is a contradiction to the fact that r

is an eigenvalue of A corresponding to eigenvector x. Therefore, r(A) > 0.
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If A is irreducible, then (I + A)n−1 > 0, by Theorem 2.3.9. Since r(A) has a corresponding

non-negative eigenvector x (by Theorem 1.1.10), then (I + A)n−1x > 0. Hence,

(I + A)n−1x = (1 + r(A))n−1x > 0.

Suppose that there is 1 ≤ i ≤ n such that xi = 0. Then (1 + r(A))n−1xi = 0, implying that

(I + A)n−1x 6= (1 + r(A))n−1x in position i, hence (I + A)n−1x 6= (1 + r(A))n−1x. This is

clearly impossible, so no such i with xi = 0 exists. This implies that x > 0. By Theorem 1.1.11,

A and AT have the same spectrum, so r(A) = r(AT ). Let v ≥ 0 be the eigenvector for AT

corresponding to r = r(A). By Lemma 2.3.7, AT is also irreducible. Therefore, (I+AT )n−1 > 0

by Theorem 2.3.9. Hence, (I + AT )n−1v = (1 + r(A))n−1v > 0. If there is a 1 ≤ j ≤ n such

that vj = 0, then (1 + r(A))n−1vj = 0, which is a contradiction since 1 + r(A))n−1v > 0.

Therefore, v > 0.

We show that the positive eigenvector is unique up to constant multiples in two steps. First,

we show that r(A) is the only eigenvalue with strictly positive eigenvectors. Suppose that there

is another eigenvalue λ0 with eigenvector y > 0. Then Ay = λ0y. Let v > 0 be the left

eigenvector of A corresponding to r. Then

vAy = λ0vy

⇒ rvy = λ0vy

⇒ (r − λ0)vy = 0

⇒ r = λ0

Therefore, r(A) is the only eigenvalue of A with strictly positive eigenvectors.

We now show that 0 < y = αx, where α is a positive scalar and x is the positive eigenvector of

A corresponding to r = r(A). But x and y are eigenvectors of A corresponding to r(A) if and

only if they are eigenvectors of I+A corresponding to 1+r(A). We also note that if (1+r(A),x)

and (1 + r(A),y) are eigenpairs of I + A, then ((1 + r(A))n−1,x) and ((1 + r(A))n−1,y) are

eigenpairs of (I + A)n−1, by Lemma 1.1.9. If y 6= αx for any α ∈ R, then (I + A)n−1 has at

least two linearly independent eigenvectors, a contradiction to Theorem 3.1.3. Therefore, there

exists α ∈ R
+ such that y = αx.
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3.3 Reducible matrices

3.3.1 Existence of a positive eigenvector

The following theorem states the conditions for existence of a positive eigenvector for a reducible

matrix.

Theorem 3.3.1. [10], Theorem 6

To the maximal eigenvalue r(A) of a general reducible matrix A ≥ 0, there belongs a positive

eigenvector if and only if each Ai for i = 1, · · · , g in the normal form of A has eigenvalue r and

r /∈ σ(Aj) for any j = g + 1, · · · , s.

Proof. Suppose that A has a positive eigenvector x such that Ax = r(A)x. Matrix A in

normal form contains block matrices. So we divide vector x into blocks (ni × 1 blocks, where

ni is the dimension of Ai for 1 ≤ i ≤ s). That is; x = (x1, · · · ,xs)T . If s = g, then A is block

diagonal and Ax = r(A)x together with the condition that x > 0 implies that r(A) ∈ σ(Ai)

for all i = 1, · · · , g.

If s > g, then Ax = r(A)x can be separated into parts

Aix
i = r(A)xi for i = 1, · · · , g (3.1)

and
h−1
∑

j=1

Ah,jx
j + Ahx

h = r(A)xh for h = g + 1, · · · , s. (3.2)

Since xi > 0, then it follows that r(A) ∈ σ(Ai) for every i = 1, · · · , g. From Equation (3.2),

we have

Ahx
h ≤ r(A)xh for h = g + 1, · · · , s

which implies that r(A) ≥ rh by Theorem 1.6 of [18] (where rh is the maximal eigenvalue of

Ah for all h = g + 1, · · · , s). But if r(A) = rh, then it follows that

h−1
∑

j=1

Ah,jx
j = 0,

which is impossible since Ah,j 6= 0 for some j and xj > 0. Thus rh < r(A).

Now suppose that rh < r(A) for h = g + 1, · · · , s. Then

Aix
i = r(A)xi for all i = 1, · · · , g.
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Irreducibility of Ai implies that xi > 0 by Theorem 3.2.1. We also have

h−1
∑

j=1

Ah,jx
j + Ahx

h = r(A)xh for all h = g + 1, · · · , s

and, from this we see that

(r(A)I − Ah)xh =

h−1
∑

j=1

Ah,jx
j

⇒ xh = (r(A)I − Ah)−1
h−1
∑

j=1

Ah,jx
j , for all h = g + 1, · · · , s.

From Lemma 2.3.10, we have that if Ah is irreducible, then (r(A)I−Ah)−1 exists and is positive

since rh < r(A). Notice that
h−1
∑

j=1

Ah,jx
j ≥ 0, 6= 0

since there is at least one j ∈ {1, · · · , h − 1} such that Ah,j ≥ 0. Therefore,

(r(A)I − Ah)−1
h−1
∑

j=1

Ah,jx
j > 0,

implying that xh > 0 for all g + 1 ≤ h ≤ s.

If Ah = 0, a matrix of dimension 1, then xh is just a scalar and Ah,j are all scalars for all

j = 1, · · · , h − 1. At least one of the scalars Ah,j is positive and xj > 0 for j = 1, · · · , h − 1.

Therefore,

xh = (r(A))−1
h−1
∑

j=1

Ah,jx
j > 0,

and so x > 0.

Theorem 3.3.2. Let A ≥ 0 be a reducible matrix and r(A) be its spectral radius. Both A

and AT have positive eigenvectors corresponding to r(A) if and only if A is block diagonal and

r(A) ∈ σ(Ai) for all i = 1, · · · , s.

Proof. Suppose A ≥ 0 is block diagonal. Then it follows that AT is also block diagonal. By

Theorem 3.3.1, both A and AT have a positive eigenvector r(A) if and only if r(A) ∈ σ(Ai)

for all i = 1, · · · , s.

Now suppose that both A and AT have positive eigenvectors x and v respectively such that

Ax = r(A)x and ATv = r(A)v. If x > 0, then by the first part of the proof of Theorem 3.3.1,



34

r(A) ∈ σ(Ai) for all i = 1, · · · , g and rh < r(A) for all h = g + 1, · · · , s.

AT =











































AT
1 0 · · · 0 AT

g+1,1 AT
g+2,1 · · · AT

s,1

AT
2 0 AT

g+1,2 AT
g+3,2 · · · AT

s,2

. . .
...

...
...

AT
g AT

g+1,g AT
g+2,g · · · AT

s,g

AT
g+1 AT

g+2,g+1 · · · AT
s,g+1

AT
g+2 · · · As,g+2

. . .
...

AT
s











































,

writing this in normal form (by interchanging row 1 with row s followed by column 1 and column

s, row 2 and row s − 1 followed by column 2 and column s − 1 and so on,) we get





































AT
s 0

AT
s,s−1 AT

s−1

...
...

. . .

AT
s,g+1 AT

s−1,g+1 · · · AT
g+1

AT
s,g AT

s−1,g · · · AT
g+1,g AT

g

...
...

...
. . .

AT
s,1 AT

s,1 · · · AT
g+1,1 0 · · · AT

1





































. (3.3)

Using this normal form, if AT has a positive eigenvector corresponding to r(A), then r(A) ∈

σ(As) by Theorem 3.3.1 above. But this is a contradiction to the condition that rh < r(A) for

all h = g + 1, · · · , s which is necessary for x to be positive. Therefore, both A and AT have

positive eigenvectors if and only if A is block diagonal.

From these two theorems, we see that the best we can expect from general reducible matrices

is that the maximal eigenvalue r(A) has non-negative eigenvectors.

Remark 3.3.3. If r(A) is a simple eigenvalue of A and r(A) ∈ σ(Aj) for atmost one j ∈

{1, · · · , g}, then x = (0, · · · , 0,xj , 0, · · · ,xg+1, · · · ,xs)T and if i ∈ {g + 1, · · · , s},

x = (0, · · · , 0,xi, · · · ,xj)T but in each case, the eigenvector for AT corresponding to r is

v = (v1, · · · ,vi, 0, · · · , 0)T .
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3.3.2 Uniqueness of positive eigenvectors

Unlike irreducible matrices that have unique positive eigenvectors (up to constant multiples)

corresponding to r(A), reducible matrices generally do not have positive eigenvectors, and even

when they do exist, they are not unique.

Example 3.3.4. If A is block diagonal and x > 0 is an eigenvector corresponding to r(A), then

y = (α1x
1, · · · , αsx

s)T , where αi, i = 1, · · · , s are any scalars

is also an eigenvector of A. For instance, picking α1 = 1, α2 = 2, · · · , αg = g, we find that

y > 0 is not proportional to x.

Example 3.3.5. Let

A =











A1 0 0

0 A2 0

A3,1 A3,2 A3











.

If r(A) ∈ σ(A1) and r(A) ∈ σ(A2) and r3 < r(A), then x1 > 0, x2 > 0,

x3 = (r(A)I − A3)
−1[A3,1x

1 + A3,2x
2]

and x = (x1,x2,x3)T > 0. Notice that

y = (2x1, 3x2, (r(A)I − A3)
−1[2A3,1x

1 + 3A3,2x
2])T

is also an eigenvector of A corresponding to r and it is positive. Clearly, y is not proportional

to x.

3.3.3 Semisimplicity of the maximal eigenvalue

Theorem 3.3.6. Let A ≥ 0 be reducible. If there exists a positive eigenvector of A or AT

corresponding to r(A), then r(A) is semisimple.

Proof. Suppose that a positive eigenvector x for A exists. Then by Theorem 3.3.1, r(A) ∈

σ(Ai) for all i = 1, · · · , g and r(A) /∈ σ(Aj) for any j = g+1, · · · , s, so its algebraic multiplicity
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is g. In the proof of Theorem 3.3.1, we found that

x =































x1

...

xg

xg+1

...

xs































=































x1

...

xg

(r(A)I − Ag+1)
−1
∑g

j=1 Ag+1,jx
j

...

(r(A)I − As)
−1
∑s−1

j=1 As,jx
j































> 0.

But notice that if r(A) ∈ σ(Ai) for all i ∈ {1, · · · , g}, then

x1 =
(

x1, 0, · · · , 0,yg+1
1 , · · · ,ys

1

)T

x2 =
(

0,x2, 0, · · · , 0,yg+1
2 , · · · ,ys

2

)T

· · ·

xi =
(

0, · · · ,xi, 0, · · · , 0,yg+1
i , · · · ,ys

i

)T

· · ·

xg =
(

0, · · · , 0,xg,yg+1
g , · · · ,ys

g

)T
,

are also eigenvectors of A corresponding to r(A), where xi > 0, and each xi is a positive

eigenvector of Ai corresponding to r(A), for each i ∈ {1, · · · , g} and

y
g+1
i = (r(A)I − Ag+1)

−1Ag+1,ix
i, (3.4)

together with

yh
i = (r(A)I − Ah)−1



Ah,ix
i +

h−1
∑

j=g+1

Ah,jy
j
i



 , for h ≥ g + 2 (3.5)

hold. Since rh < r(A) for all h ≥ g+1, it follows that yh
i > 0 for all i = 1, · · · , g and h ≥ g+1.

Therefore,

α1x1 + · · · + αgxg = 0

if and only if α1 = · · · = αg = 0, implying that x1,x2, · · · ,xg are linearly independent.

Therefore, A has g linearly independent eigenvectors corresponding to r(A), implying that r(A)

is semisimple.

Now suppose that AT has a positive eigenvector v. Then using the normal form of AT in (3.3)

and the first part of this proof, r(A) is a semisimple eigenvalue of AT .
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When (r(A),x) is not a positive eigenpair of A, the structure of the matrix (the mixing terms

Ah,j for h ≥ g + 1 and 1 ≤ j ≤ h− 1) generally plays a bigger role. To illustrate this, consider

the example below:

Example 3.3.7. Let

A =











A1 0 0

A21 A2 0

A31 A32 A3











.

Let r(A) ∈ σ(A2) and r(A) ∈ σ(A3) and r(A1) < r(A). If A32 = 0, then r(A) is semisimple

since the vectors x1 = (0,x2,0)T and x2 = (0,0,x3)T are eigenvectors of A corresponding to

r(A).

However, if A32 6= 0, then there is only one eigenvector x2 associated with r(A), hence r(A) is

not semisimple.



Chapter 4

Long time behaviour

4.1 Introduction

In this chapter, we use the Perron-Frobenius type theorems to study the long time behaviour of

the continuous time problem
du

dt
= Au(t)

u(t = 0) = u(0)

(4.1)

4.1.1 Background

We note that if X is a complete space, then absolute convergence of a series implies convergence.

Definition 4.1.1. Let A ∈ Mn(R) be an n × n matrix. The exponential of A is given by

eA =
∞
∑

k=0

Ak

k!
.

This series is well defined and is convergent for any A on R
n×n. To see that it is convergent,

notice that
∥

∥

∥

∥

Ak

k!

∥

∥

∥

∥

≤
‖A‖k

k!
, so if ‖A‖ = m ≥ 0, then

∥

∥

∥

∥

Ak

k!

∥

∥

∥

∥

≤
mk

k!
.

But
∞
∑

k=0

mk

k!
= em, therefore

∞
∑

k=0

‖
Ak

k!
‖ ≤

∞
∑

k=0

mk

k!
= em

which means that the series is absolutely convergent. Since R is complete, it follows that R
n×n

is also complete, hence eA is convergent.

38
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Lemma 4.1.2. [11], page 84

Let S and T be any two matrices on R
n×n. If S and T commute, then eS+T = eSeT .

Proof. If ST = TS, then

(S + T )n = Sn + nSn−1T + n(n − 1).
1

2!
Sn−2T 2 + n(n − 1)(n − 2).

1

3!
Sn−3T 3 + · · ·

+





n

k



Sn−kT k + · · · + Tn, defined for k ≤ n

= n!

[

Sn

n!
+

Sn−1

(n − 1)!

T

1!
+

Sn−2

(n − 2)!

T 2

2!
+ · · · +

S0

0!

Tn

n!

]

= n!
n
∑

k=0

Sn−k

(n − k)!

T k

k!

eS+T =
∞
∑

n=0

(S + T )n

n!
, ( from the definition of matrix exponential)

=
∞
∑

n=0

(

n!

n!

n
∑

k=0

Sn−k

(n − k)!

T k

k!

)

=
∞
∑

n=0

(

n
∑

k=0

Sn−k

(n − k)!

T k

k!

)

=
∞
∑

k=0

∞
∑

n=k

Sn−k

(n − k)!

T k

k!
,

where the change of order of summation is justified by absolute convergence on R
n×n. Let

n − k = j. When n = k, j = 0 so

eS+T =
∞
∑

k=0





∞
∑

j=0

Sj

j!

T k

k!



 =





∞
∑

j=0

Sj

j!





(

∞
∑

k=0

T k

k!

)

= eSeT .

4.1.2 Matrix exponentials and Jordan forms

Theorem 4.1.3. Let A be an n × n matrix. If there exists an invertible matrix P such that

A = PJP−1, then

etA = PetJP−1.
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Proof.

etA = I + t(PJP−1) +
(tPJP−1)2

2!
+

(tPJP−1)3

3!
+ · · ·

= I + P (tJ)P−1 +
t2

2!
(PJP−1)2 +

t3

3!
(PJP−1)3 + · · ·

= I + P (tJ)P−1 +
t2

2!
PJ2P−1 +

t3

3!
PJ3P−1 + · · · , by (1.2.3)

= P (I + tJ +
t2

2!
J2 +

t3

3!
J3 + · · · )P−1

= PetJP−1.

If A is diagonalisable, then P contains the eigenvectors of A and

etA = P diag {etλ1 , · · · , etλr}P−1,

where etλi for every i = 1, · · · , r is repeated according to the algebraic multiplicity of λi. Let

ki be the algebraic multiplicity of λi. We rewrite matrices P and P−1 in the form

P = [P1, · · · , Pr] and P−1 =











Q1

...

Qr











, respectively,

where Pi is an n × ki matrix and Qi is a ki × n matrix for every i = 1, · · · , r. Then

etA = [P1, · · · , Pr]diag{etλ1 , · · · , etλr}











Q1

...

Qr











= etλ1P1Q1 + · · · + etλrPrQr,

where the eigenvalues in the diagonal matrix diag{etλ1 , · · · , eλrt} are repeated according to their

algebraic multiplicities. The product PiQi = Gi is called the projection matrix corresponding

to the eigenvalue λi. Therefore, if A is diagonalisable, then

etA =
r
∑

i=1

etλiGi. (4.2)

If some of the eigenvalues are not semisimple, then the matrix exponential takes a more compli-

cated form. Let λj be the eigenvalue which is not semisimple and let its algebraic multiplicity
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be kj , then etBj = etSjetNj = diag{etλj , · · · , etλj}etNj , where

etNj =































1 t t2

2!
t3

3! · · · tkj−1

(kj−1)!

0 1 t t2

2! · · · tkj−2

(kj−2)!

0 0 1 t
. . .

...

0 0 0 1
. . . t2

2!
...

...
...

. . . t

0 0 0 0 · · · 1































(4.3)

by Example 2.3 of [8].

If A is not diagonalisable, the columns of P are the generalised eigenvectors of A, arranged in

the same order as the eigenvalues in the Jordan form of A. That is; if λ1 is an eigenvalue of

multiplicity kj , then the first kj columns of P are the eigenvectors and generalised eigenvectors

of A corresponding to λj . We still divide matrices P and P−1 into blocks corresponding to

those in the Jordan form of A. Let ki be the index of λi; that is, let ki be the smallest integer

k for which the null space of (A − λiI)k is the same as that of (A − λiI)k+1. Then

etA = [P1, · · · , Pr]diag{etB1 , · · · , etBr}











Q1

...

Qr











= P1e
tB1Q1 + · · · + Pre

tBrQr,

where etBi = etλietNi and etNi is as defined in (4.3). Therefore,

etA = etλ1P1

























1 t t2

2! · · · tk1−1

(k1−1)!

1 t
. . .

...

1
. . . t2

2!

. . . t

1

























Q1 + · · · + etλrPr

























1 t t2

2! · · · tkr−1

(kr−1)!

1 t
. . .

...

1
. . . t2

2!

. . . t

1

























Qr

= etλ1P1

[

I + tN1 +
t2

2!
N2

1 + · · · +
tk1−1

(k1 − 1)!
Nk1−1

1

]

Q1 + · · · + etλrPr

[

I + tNr +
t2

2!
N2

r

+ · · · +
tkr−1

(kr − 1)!
Nkr−1

r

]

Qr,
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where

Ni =

















0 1 0

0 0
. . .

...
...

...
. . . 1

0 0 · · · 0

















.

The exponential described above can now be simplified to

etA =
r
∑

i=1

ki−1
∑

j=0

etλi
tj

j!
PiN

j
i Qi.

Notice that J−λI = P−1AP−λI = P−1(AP−λP ) = P−1(A−λI)P , and that Ni = Bi−λiI,

where Bi is the Jordan block corresponding to λi. We also have PiN
j
i Qi = (A − λiI)jGi. To

see this, notice that P−1P = I implies that























Q1

...

Qi

...

Qr























[P1, · · · , Pi, · · · , Pr] =























Q1P1 Q1P2 · · · Q1Pi · · · Q1Pr

...
...

...
...

QiP1 QiP2 · · · QiPi · · · QiPr

...
...

...
...

QrP1 QrP2 · · · QrPi · · · QrPr























= I.

This implies that QiPi = I for all i = 1, · · · , r and QiPj = 0 for i 6= j. Therefore,

P−1Pi =























Q1

...

Qi

...

Qr























Pi =























0
...

QiPi

...

0























, hence P−1PiQi =























0
...

Qi

...

0























.
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Therefore,

(A − λiI)jGi = P (J − λi)
jP−1PiQi

= [P1, · · · , Pr]

















(B1 − λiI)j

(B2 − λiI)j

. . .

(Br − λiI)j







































0
...

Qi

...

0























= [P1, · · · , Pi, · · · , Pr]































0
...

(Bi − λiI)jQi

0
...

0































= Pi(Bi − λiI)jQi

= PiN
j
i Qi.

Hence

etA =
r
∑

i=1

ki−1
∑

j=0

etλi
tj

j!
(A − λiI)jGi, (4.4)

where again Gi is the projection matrix onto the generalised eigenspace corresponding to eigen-

value λi with the property that GiGj = 0 if i 6= j ([13], page 604). Notice that if all eigenvalues

are semisimple, (4.4) collapses to the same equation as shown in (4.2).

4.2 Existence and uniqueness of solution

Consider the differential equation in (4.1) where A is an n × n matrix. The theorem below

ensures that the initial value problem has a solution and moreover, this solution is unique.

Theorem 4.2.1. [11] Let A be a real n × n matrix and u(0) ∈ R
n. Then the initial value

problem in (4.1) has a unique solution of the form u(t) = eAtu(0).



44

Proof. We show that u(t) = etAu(0) is a solution.

d

dt
u(t) =

d

dt
(etAu(0))

= lim
h→0

eA(t+h)u(0) − etAu(0)

h
= lim

h→0

etAehAu(0) − etAu(0)

h

since t, h are scalars, tA and hA commute, so eA(t+h) = etAehA. Hence

d

dt
u(t) = lim

h→0

ehA − I

h
(etAu(0))

To show that

lim
h→0

1

h

[

ehA − I
]

= A, it is enough to show that

∥

∥

∥

∥

1

h

[

ehA − I
]

− A

∥

∥

∥

∥

→ 0 as h → ∞.

‖
ehA − I

h
− A‖ = ‖

1

h

∞
∑

k=1

(hA)k

k!
− A‖ =

∥

∥

∥

∥

∥

∞
∑

k=1

hk−1Ak

k!
− A

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∞
∑

k=2

hk−1Ak

k!

∥

∥

∥

∥

∥

≤
∞
∑

k=2

|hk−1|‖A‖k

k!
= ‖A‖

∞
∑

k=2

|hk−1|‖A‖k−1

k!

But

‖A‖
∞
∑

k=2

|hk−1|‖A‖k−1

k!
= ‖A‖

[(

1 +
|h|‖A‖

2!
+

|h|2‖A‖2

3!
+ · · ·

)

− 1

]

,

therefore

‖
ehA − I

h
− A‖ ≤ ‖A‖

[(

1 +
|h|

2!
‖A‖ +

|h|2‖A‖2

3!
+ · · ·

)

− 1

]

≤ ‖A‖

[

1 + |h|‖A‖ +
|h|2‖A‖2

2!
+ · · · − 1

]

= ‖A‖
(

e|h|‖A‖ − 1
)

→ 0 as h → 0.

Therefore, ‖ ehA−I
h − A‖ → 0, thus

lim
h→0

ehA − I

h
= A, hence

du(t)

dt
= etAAu(0).

Therefore, u(t) = etAu(0) is a solution to (4.1). Now to show that the solution is unique,

suppose that u1(t) is another solution to the initial value problem. Then u′
1 = Au1 and

u1(0) = u(0). Let v(t) = e−Atu1(t). Then v′ = e−Atu′
1(t) − e−AtAu1(t) = 0. Therefore, v

is a constant. Moreover, v(0) = e0u1(0) = Iu(0) = u(0). Therefore, v = u(0), implying that

u1(t) = etAu(0) = u(t).
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Example 4.2.2. If all the eigenvalues of A are simple, then

u(t) = P diag {etλ1 , · · · , eλnt}P−1u(0).

Let

P = [p1,p2, · · · ,pn],

where pi are the eigenvectors of A. Then P−1u(0) is an n×1 column vector K = (k1, k2, · · · , kn)T .

u(t) = Pdiag{etλ1 , · · · , etλn}P−1u(0)

= Pdiag{etλ1 , · · · , etλn}K

= [p1,p2, · · · ,pn](etλ1k1, e
tλ2k2, · · · , etλnkn)T

= k1e
tλ1p1 + k2e

tλ2p2 + · · · + knetλnpn.

4.2.1 Stability of the solution

Definition 4.2.3. The matrix function t → etA is called stable if

lim
t→∞

‖etA‖ = 0.

We note that the zero solution to (4.1) is asymptotically stable (in the Liapunov sense) if etA

is stable. In this section, we explore the conditions ensuring stability of etA.

Theorem 4.2.4. [8], Theorem 3.6

etA is stable if and only if all eigenvalues of A have negative real parts.

Proof. Suppose that etA is stable. Then ‖etA‖ → 0 as t → ∞. Assume that there is at least

one eigenvalue λk = ak + ıbk with positive real part. If λk is semisimple, then Bk is a diagonal

matrix with λk on the main diagonal. Therefore,

etBk = etak











eıbkt

. . .

eıbkt











,

and since ak > 0, it follows that etak → ∞ as t → ∞ and since ‖diag{eıbkt, · · · , eıbkt}‖ = 1,

‖etBk‖ = etak

∥

∥

∥

∥

∥

∥

∥

∥

∥











eıbkt

. . .

eıbkt











∥

∥

∥

∥

∥

∥

∥

∥

∥

→ ∞ as t → ∞.
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Therefore,

‖etJ‖ = ‖diag{etB1 , · · · , etBk , · · · , etBr}‖ → ∞ as t → ∞.

But if etA is stable, it follows that ‖etJ‖ = ‖P−1etAP‖ → 0 which is a contradiction. Therefore,

the assumption that ak > 0 is false.

If λk is not semisimple, then

etBk = etak











eıbkt

. . .

eıbkt











etNk , (4.5)

where etNk is the matrix given in (4.3). Since etNk is a matrix of polynomials in t, ‖etNk‖ → ∞

as t → ∞, and ak > 0 implies that etak → ∞. Therefore, ‖etBk‖ → ∞, implying that

‖etJ‖ → ∞, which is again a contradiction since ‖P−1etAP‖ → 0 as t → ∞. Therefore, there

is no λk with positive real part.

Let ak = 0. Then it follows that if λk is semisimple, then

etBk =











eıbkt

. . .

eıbkt











But eıbkt = cos(bkt) + ı sin(bkt), therefore, ‖etBk‖ = 1, implying that ‖etJ‖ = 1 as t → ∞.

But again we get a contradiction since etA being stable implies that ‖etJ‖ = ‖P−1etAP‖ → 0.

If λk is not semisimple, then (4.5) holds with etak = 1 and again ‖etBk‖ → ∞ which is not

possible since etA is stable. Therefore, ak < 0.

Conversely, suppose that ℜλ < 0 for every λ ∈ σ(A). If all eigenvalues are semisimple, then etJ

is a diagonal matrix with etλ, λ ∈ σ(A) on its main diagonal. Therefore, ‖etJ‖ → 0 as t → ∞,

implying that ‖etA‖ = ‖PetJP−1‖ → 0 as t → ∞. If, however, some of the eigenvalues are

not semisimple, then

etJ = diag{etλ1 , · · · , etλr}etN ,

where etλi for all i = 1, · · · , r is repeated according to the algebraic multiplicity of λi, J is the

Jordan form of A, N is a nilpotent matrix and ‖etN‖ = Pn(t), a polynomial of degree at most

n. However, for any real number ǫ > 0, there exists a constant ωǫ such that

|Pn(t)| ≤ ωǫe
ǫt.



47

Let

max
1≤i≤r

ℜλi = λ∗ < 0.

Then, choosing ǫ = −λ∗/2, we find that

eλ∗t‖etNk‖ ≤ ωǫe
λ∗teǫt = ωǫe

tλ∗/2 → 0.

Therefore, ‖etBk‖ = ‖diag{etλ1 , · · · , etλr}Pn(t)‖ → 0 as t → ∞. So we conclude that etA is

stable.

If there is a zero eigenvalue, then we still have a stable behaviour of solutions as t → ∞ provided

zero is semisimple.

Theorem 4.2.5. Let A be an n × n matrix with dominant eigenvalue 0. Then

lim
t→∞

etA = E 6= 0

if and only if 0 is semisimple, otherwise the limit does not exist.

Proof. Suppose that etA → E 6= 0 as t → ∞. If 0 is not semisimple, then the Jordan block

corresponding to this eigenvalue is

B0 =

















0 1 0

0 0
. . . 0

...
...

. . . 1

0 0 · · · 0

















,

so etB0 = IetN0 → ∞ componentwise as t → ∞. This in turn means that etJ → ∞ and from

this, we have PetJP−1 → ∞ which is impossible since E is a finite matrix. Therefore 0 is

semisimple.

Now suppose that 0 is semisimple. So B0 is a zero matrix of dimension k0 (the multiplicity of

0). Thus etB0 = Ik0
. Since etJ = diag{etB0 , etB1 , · · · , etBr} and since all other eigenvalues

have negative real part, etBj → 0 componentwise as t → ∞, j 6= 0. This means that

etJ → diag{Ik0
, 0 · · · , 0}

so

lim
t→∞

etA = P lim
t→∞

etJP−1

= Pdiag{Ik0
, 0, · · · , 0}P−1

= E 6= 0.
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If we write P , diag{Ik0
, 0, · · · , 0} and P−1 in the form

P = [P1, · · · , Pr], diag{Ik0
, 0, · · · , 0} =





Ik0
0

0 0(n−k)×(n−k)



 , P−1 =











Q1

...

Qr











,

where P1 is an n × k0 matrix and Q1 is a k0 × n, we find that Pdiag{Ik0
, 0, · · · , 0}P−1 =

P1Q1 = G1. Therefore, E = G1; the projection matrix corresponding to eigenvalue 0. P1 is a

matrix whose columns are the eigenvectors of A corresponding to 0.

4.3 Irreducible ML matrices

Definition 4.3.1. Let A ∈ Mn×n(R). A is called an ML matrix if aij ≥ 0 for i 6= j.

Definition 4.3.2. An ML matrix A is said to be irreducible if there exists an irreducible matrix

B ≥ 0 and a µ ∈ R
+ such that B = A + µI.

In order to have B ≥ 0, it is sufficient to have

µ ≥

∣

∣

∣

∣

min
1≤i≤n

aii

∣

∣

∣

∣

.

The matrix A inherits a good number of its properties from the matrix B.

Definition 4.3.3. Let A be an ML matrix. An eigenvalue τ of A will be called dominant if

ℜτ > ℜλ for any other eigenvalue λ of A.

From Theorem 2.6 of [18], we have the result below for irreducible ML matrices:

Theorem 4.3.4. Let A be an irreducible ML matrix. Then there exists an eigenvalue τ such

that

1. τ is real

2. τ is associated with strictly positive right and left eigenvectors which are unique up to

constant multiples.

3. τ > ℜ(λ) for any other eigenvalue λ 6= τ of A
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Proof. Let A = B − µI with B ≥ 0 and irreducible. Let αi be an eigenvalue of B. The

eigenvalue of A corresponding to this eigenvalue is λi = αi − µ. Irreducibility of B implies

that there is a dominant eigenvalue rµ in its spectrum. This means that τ = rµ − µ is also a

dominant eigenvalue of A. Furthermore, from Perron-Frobenius theorem, rµ is a real eigenvalue

of B, thus τ is also real.

To see that τ is associated with positive right and left eigenvectors, notice that all eigenvectors

of B are also eigenvectors of A and since rµ > |αi|, the right eigenvector x associated with rµ is

positive (by Perron’s theorem). But Bx = rµx implies that Bx−µx = rµx−µx which is true

if and only if Ax = (rµ−µ)x = τx. Therefore, x > 0 is an eigenvector corresponding to τ . Let

v > 0 be the left eigenvector of B associated with eigenvalue r. Then vB = rµv = v(A+µI).

This implies that rµv = vA + µv, so that (rµ − µ)v = τv = vA. So v is also an eigenvector

of A associated with τ . Therefore we conclude that τ is associated with positive eigenvectors

which are unique up to constant multiples.

Let λj = aj + ıbj ∈ σ(A) and λj 6= τ . If aj > τ , then there is αj ∈ σ(B) such that

αj = µ+λj = µ+aj+ıbj . In particular, aj+µ > τ+µ, this implies that |αi| = |(µ+aj)+ıbj | > r

which is impossible since r is dominant in σ(B). If τ = aj , and bj 6= 0, then λj = τ + ıbj so

that αj = (τ + µ) + ıbj but then again, |α| > r, which is impossible. Therefore, τ > ℜ(λ) for

any other eigenvalue.

For irreducible ML matrices, a stronger form of Theorem 4.2.5 can obtained as shown below.

Corollary 4.3.5. Let A ∈ Mn×n(R) be an irreducible ML matrix such that A = B − rI, where

B ∈ Mn×n(R+) and let r be the dominant eigenvalue of B. Then 0 is the dominant eigenvalue

of A and it is a simple pole of the resolvent of A. Moreover,

lim
t→∞

etA = lim
t→∞

etA = G1 := (x ∗ v) > 0, (4.6)

where G1 is the projection matrix corresponding to the eigenvalue 0 associated with the right

eigenvector x and left eigenvector v and x∗v represents vector tensor product (that is, an n×n

matrix whose ith row is given by (xivj)1≤j≤n for all i = 1, · · · , n)

Proof. If B is irreducible, then by the Perron-Frobenius theorem, r = r(A) is simple. The

eigenvalues of A are given by λ − r for every λ ∈ σ(B). So τ = 0 is an eigenvalue of A. Since

r ≥ |λ| and r > ℜλ for any λ ∈ σ(B), then 0 > r − ℜλ, for any other eigenvalue λ 6= r of B.
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Therefore, 0 is a dominant eigenvalue of A. Let the number of distinct eigenvalues of A be m

with each eigenvalue having index mi. From equation (4.4),

eAt =
m
∑

i=1





mi−1
∑

j=0

etλi
tj

j!
(A − λiI)j



Gi, (4.7)

Let x and v be the right and left eigenvectors of A corresponding to the eigenvalue 0. Let

λ1 = 0. We have already shown that this eigenvalue is simple. Thus m1 = 1 and

u(t) = e0tG1 +
m
∑

i=2





mi−1
∑

j=0

etλi
tj

j!
(A − λiI)j



Gi. (4.8)

All the other eigenvalues λi, i > 1 have negative real parts so that

lim
t→∞

m
∑

i=2





mi−1
∑

j=0

etλi
tj

j!
(A − λiI)j



Gi = 0,

hence

lim
t→∞

etA = G1. (4.9)

Notice that x ∗ v > 0 since x > 0,v > 0 and vx > 0. We shall normalise these two vectors

so that vx = 1. Let G = (x ∗ v). Then G2 = (x ∗ v).(x ∗ v) = x(vx)v = x ∗ v. Therefore,

G2 = G, implying that G is a projection matrix, by Equation 5.9.13 of [13]. Since x and v are

eigenvectors of A corresponding to 0 and projections corresponding to an eigenvalue are unique

(see page 386 of [13]), it follows that G = G1. Therefore,

lim
t→∞

etA = (x ∗ v).

If A is reducible, then 0 may not be semisimple, but if it is a semisimple dominant eigenvalue,

then from Theorem 4.2.5, we see that

lim
t→∞

u(t) = P1Q1u(0).

The product Qu(0) is a k0 × 1 vector. So let Qu(0) = (c1, · · · , ck0
)T = c. Then

lim
t→∞

u(t) = P1c

= [x1, · · · ,xk0
](c1, · · · , ck0

)T

= c1x1 + · · · + ck0
xk0

,
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where x1, · · · ,xk0
are the linearly independent eigenvectors corresponding to 0.

If k0 = 1, that is, 0 is a simple eigenvalue, and if its eigenvectors are normalised according to

(4.12), then

lim
t→∞

u(t) = c1N. (4.10)

But this is also the same as

lim
t→∞

u(t) = G1u(0),

and since 0 is simple, by ([13], page 520),

G1 =
N ∗ φ

∑n
i=1 φiNi

= N ∗ φ,

implying that

lim
t→∞

u(t) = (N ∗ φ)u(0) = ρN. (4.11)

Therefore, (4.10) and (4.11) are equal if and only if c1 = ρ. Hence, if 0 is a simple dominant

eigenvalue of an n × n matrix A, then u(t) → ρN.

4.3.1 More on the nature and asymptotic behaviour of solutions

We consider problem (4.1) with matrix A given by A = B − rI, where r is the dominant

eigenvalue of irreducible matrix B ≥ 0. Then it follows that A has a simple eigenvalue τ = 0

with corresponding right and left eigenvectors, x > 0 and v > 0 respectively. To obtain

uniqueness of the vectors x and v, we shall normalise them and we shall call this normalised

right eigenvector N and the left eigenvector φ so that these vectors satisfy the equations below:

n
∑

i=1

Niφi = 1 and
n
∑

i=1

Ni = 1. (4.12)

Before we state the main result, we need the following lemma ( [16], Lemma 6.1.3). This lemma

is an extension of Lemma 6.1.3 of [16] to irreducible matrices.

Lemma 4.3.6. Let φ,N > 0 and (aij)1≤i,j≤n be an irreducible matrix. Then there is a constant

α > 0 such that for any vector m satisfying

n
∑

i=1

φimi = 0, (4.13)
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the inequality
n
∑

i=1

n
∑

j=1

φiaijNj

(

mj

Nj
−

mi

Ni

)2

≥ α
n
∑

i=1

φi

Ni
m2

i (4.14)

holds

Proof. Let ℓ2 be the weighted space with inner product between two vectors x and y defined

as

〈x,y〉 =
n
∑

i=1

φi

Ni
xiyi ∀x,y ∈ ℓ2. (4.15)

Let m be a vector satisfying (4.13). We shall normalise m and call this normalised vector m

so that
n
∑

i=1

φi

Ni
m2

i = 1.

We notice that m still satisfies
n
∑

i=1

φimi = 0. (4.16)

Dividing Equation (4.14) with the weighted norm of m gives

n
∑

i=1

n
∑

j=1

φiaijNj

(

mj

Nj
−

mi

Ni

)2

≥ α > 0. (4.17)

Now suppose that there is no α satisfying (4.17). This means that for each k there exists a

vector (mk)k≥1, satisfying

n
∑

i=1

φim
k
i = 0,

n
∑

i=1

φi

Ni
(mk

i )
2 = 1,

and
n
∑

i=1

n
∑

j=1

φiaijNj

(

mk
j

Nj
−

mk
i

Ni

)2

≤
1

k
. (4.18)

The sequence (mk)k≥1 is bounded and its terms are on the n−sphere of radius 1. This sphere

is compact, so by the Bolzano-Weierstrass theorem, there exists a subsequence of (mk)k≥1 that

converges to a vector m which is also on the n−sphere. Taking limits on both sides of inequality

(4.18), we find that
n
∑

i=1

n
∑

j=1

φiaijNj

(

mj

Nj
−

mi

Ni

)2

= 0. (4.19)

Since A is irreducible, by Theorem 2.3.8, for every pair i and j, there exists a sequence of indices

j, ir, ir−1, · · · , i1, i such that ai,i1ai1,i2 · · · air−1,irair,j > 0. This means that: ai,i1 > 0, which

implies that for that particular pair i and i1, Equation (4.19) holds if and only if

mi

Ni
=

mi1

Ni1

;
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ai1,i2 > 0 which implies that Equation (4.19) holds if and only if

mi1

Ni1

=
mi2

Ni2

=
mi

Ni
;

If we continue with the same reasoning for all the terms in the product, we find that

mir−1

Nir−1

=
mir

Nir

=
mij

Nij

;

hence
mi

Ni
=

mi1

Ni1

=
mi2

Ni2

= · · · =
mir−1

Nir−1

=
mir

Nir

=
mj

Nj
.

By the process we have just described, it follows that for every arbitrary pair, i and j, mi/Ni =

mj/Nj . Therefore, mi = νNi for some constant ν. Then,

0 =
n
∑

i=1

miφi =
n
∑

i=1

νNiφi = ν.

But if ν = 0, then mi = 0 for all 1 ≤ i ≤ n. This means that the sequence of vectors

(m
k
)k≥1 converges to a zero vector which is a contradiction since the zero vector does not

satisfy Equation (4.16). Therefore, α > 0 satisfying (4.17) exists. Hence

n
∑

i=1

n
∑

j=1

φiaijNj

(

mj

Nj
−

mi

Ni

)2

≥ α
n
∑

i=1

φi

Ni
m2

i (4.20)

Remark 4.3.7. We note that having a positive element in each row and column of A, different

from the diagonal element, is not enough for the preceding lemma to hold. For illustration

purposes, consider the matrix in Example 2.3.6. This matrix and its transpose have positive

eigenvectors N = (0.25, 0.25, 0.25, 0.25)T and φ = (1, 1, 1, 1)T respectively. These vectors

satisfy Equation (4.12). The left hand side of Equation (4.19) is given by

LHS =
1

4

4
∑

i=1

[

ai1

(

m1

0.25
−

mi

0.25

)2

+ ai2

(

m2

0.25
−

mi

0.25

)2

+ai3

(

m3

0.25
−

mi

0.25

)2

+ ai4

(

m4j

0.25
−

mi

0.25

)2
]

Since a12 = a21 = a34 = a43 = 1 and all other entries in A are zero, we simplify this equation

to

LHS = 4
(

m2 − m1

)2
+ 4

(

m1 − m2

)2

+ 4
(

m4 − m3

)2
+ 4

(

m3 − m4

)2

= 8
(

m2 − m1

)2
+ 8

(

m4 − m3

)2

= 0
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This holds if and only if m2 = m1 and m3 = m4, implying that m2/N2 = m1/N1 and

m3/N3 = m4/N4. However, this does not tell us that m3/N3 = m1/N1, and without this, we

cannot conclude that m = νN.

The result below was proved by B. Perthame [16] for positive off-diagonal matrices. We extend

this to irreducible ML matrices.

Theorem 4.3.8. Let B ≥ 0 be an irreducible matrix with dominant eigenvalue r > 0 and let

A = B − rI. Then for any solution u(t) satisfying (4.1), the following is true:

ρ :=
n
∑

i=1

φiui(t) =
n
∑

i=1

φiui(0), (4.21)

n
∑

i=1

φi|ui(t)| ≤
n
∑

i=1

φi|ui(0)|, (4.22)

and there exist α > 0 such that

n
∑

i=1

φiNi

(

ui(t) − ρNi

Ni

)2

≤ e−αt
n
∑

i=1

φiNi

(

ui(0) − ρNi

Ni

)2

(4.23)

Proof. φ > 0 and it is independent of t. Therefore,

φ
d

dt
(u(t)) = φAu(t)

⇒
d

dt
(φu(t)) = φAu(t)

But φ is a left eigenvector of A corresponding to eigenvalue 0. Therefore, φA = 0, implying

that φAu(t) = 0 hence
d

dt
(φu(t)) = 0,

thus φu(t) = φu(0) and from this, we can conclude that (4.21) holds. From Theorem 4.2.1,

the solution to (4.1) is given by u(t) = eAtu(0), therefore

u(t) = eAtu(0) = et(B−rI)u(0) = etBe−rtu(0)

so that |u(t)| = etBe−rtu(0) ≤ |e−rt||eBt||u(0)|. But

|e−rt||eBt||u(0)| ≤ e−rte|B|t|u(0)|

= e−rteBt|u(0)|, ( since |B| = B ≥ 0)

φ|u(t)| ≤ e−rtφeBt|u(0)|

= e−rtertφ|u(0)|

= φ|u(0)|,
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that is,
n
∑

i=1

φi|ui(t)| ≤
n
∑

i=1

φi|ui(0)|.

To prove the last inequality of Theorem 4.3.8, notice that

du

dt
= Au(t)

implies that
d

dt
(u(t) − ρN) = A(u(t) − ρN).

Taking the dot product of both sides by u(t) − ρN in the weighted Hilbert space defined in

(4.15), we get
(

d

dt
(u(t) − ρN)

)

. (u(t) − ρN) = (A(u(t) − ρN)) . (u(t) − ρN) ,

which can be simplified as

d

dt
[(u(t) − ρN).(u(t) − ρN)] = 2 (A(u(t) − ρN)) . (u(t) − ρN) .

The left hand side of the equation is simply

d

dt

n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2

while the right hand side is

RHS = 2

n
∑

i=1

n
∑

j=1

φi

Ni
aij(uj(t) − ρNj)(ui(t) − ρNi)

= 2
n
∑

i=1

n
∑

j=1

φiaijNj

(

uj(t) − ρNj

Nj

)(

ui(t) − ρNi

Ni

)

.

Now we also have that
n
∑

j=1

aijNj = 0, for all i

and for all j,
n
∑

i=1

φiaij = 0.

Therefore,

RHS = −





n
∑

i=1

φi

(

ui(t) − ρNi

Ni

)2 n
∑

j=1

aijNj

−2
n
∑

i=1

n
∑

j=1

φiaijNj

(

uj(t) − ρNj

Nj

)(

ui(t) − ρNi

Ni

)

+
n
∑

j=1

(

uj(t) − ρNj

Nj

)2

Nj

n
∑

i=1

φiaij





= −
n
∑

i=1

n
∑

j=1

aijφiNj

(

uj(t) − ρNj

Nj
−

ui(t) − ρNi

Ni

)2

.
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If i = j, then RHS equals 0, and since aij ≥ 0 for i 6= j, the sum is positive. Therefore,

d

dt

n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2 ≤ 0, (4.24)

implying that
n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2

is a non-increasing function of time. Notice that by using (4.21)

n
∑

i=1

φi(ui(t) − ρNi) = 0,

so the vector u(t) − ρN satisfies the conditions of Lemma 4.3.6 above. Therefore, there is

α > 0 such that

d

dt

n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2 = −
n
∑

i=1

n
∑

j=1

aijφiNj

(

uj(t) − ρNj

Nj
−

ui(t) − ρNi

Ni

)2

≤ −α
n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2.

Hence, as in Gronwall’s lemma,

d

dt

n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2 + α
n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2 ≤ 0

implies

d

dt

(

eαt
n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2

)

≤ 0.

Thus

eαt
n
∑

i=1

φi

Ni
(ui(t) − ρNi)

2 −

n
∑

i=1

φi

Ni
(ui(0) − ρNi)

2 ≤ 0

and from this, we get (4.23).

If A is reducible, we note that Equation (4.21) and Inequality (4.22) still hold because φ and

N are non-negative. On the other hand, Inequality (4.23) is not valid for general reducible

matrices. Consider the example below:

Example 4.3.9. Let

A =





−1 0

0 0



 .
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The eigenvalues of A are 0 and −1, and their eigenvectors are N = (0, 1)T and (1, 0)T ,

respectively. The left eigenvector φ corresponding to 0 is φ = (0, 1). Let u(0) = (u01, u02)
T .

Then the solution to (4.1) is given by

u(t) = k1





0

1



+ k2e
−t





1

0



 ,

where k1 = u02 and k2 = u01. Therefore, ρ = φu(0) = u02. However, since N is not strictly

positive, we see that φ1/N1 is not defined. Therefore, Theorem 4.3.8 doesnot hold for this

matrix.

However, there are certain special cases of reducible matrices for which the theorem holds.

Example 4.3.10. Let

A =





0 0

1 −1



 .

The matrix has one eigenvalues 0 and −1 with corresponding eigenvectors N = 0.5(1, 1)T

and x = (0, 1)T , respectively. The left eigenvector φ corresponding to 0 is φ = (2, 0). Let

u(0) = (u01, u02)
T . Then the solution to (4.1) is given by

u(t) = k1





1/2

1/2



+ k2e
−t





0

1



 ,

where k1 = 2u01 and k2 = u02 − u01. Therefore, ρ = φu(0) = 2u01,

2
∑

i=1

φi

Ni
(ui(0) − ρNi)

2 =
2

0.5

(

u01 −
2u01

2

)2

= 0,

and
2
∑

i=1

φi

Ni
(ui(t) − ρNi)

2 =
2

0.5

(

u01 −
1

2
(2u01)

)2

= 0.

Therefore,
2
∑

i=1

φi

Ni
(ui(0) − ρNi)

2 =
2
∑

i=1

φi

Ni
(ui(t) − ρNi)

2 = 0,

implying that α > 0 that satisfies the theorem can be any positive number.

As seen in the preceding example, the matrix doesnot satisfy all the conditions of Lemma 4.3.6

and Theorem 4.3.8, but the theorem holds in this case. Therefore, we plan to extend this theory

to general ML matrices in the future.



Chapter 5

Applications to population biology

5.1 Introduction

In this chapter, we look at the applications of the theory studied in the previous chapters to

populations structured by age. Population growth is directly affected by three major factors;

birth, death and migration. For most species, reproduction occurs only at certain stages of an

individual’s lifetime and fertility tends to decrease with age. It is therefore important to take

these into account when studying the structure of such populations. In such a case, we say

that the population is structured by age. In this thesis, we consider a population that is divided

into a finite number of age classes and thus our model is called a continuous time-discrete age

model [12]. The assumptions of the models are as follows:

1. That only the female population is responsible for birth and that the population growth

rate of the male population is the same as that for the female population.

2. Birth rate only depends on the age of the individual.

3. The probability of survival from one age class to another only depends on the age of the

individual.

4. The system is open; that individuals can migrate into and out of the system

Consider a system with population at time t given by u(t) which is not structured in any way,

with birth rate λ and death rate µ. If emigration and immigration are allowed, then immigration
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contributes to the population’s growth while emigration contributes to decrease. Let the number

of individuals emigrating out of the system be E and those immigrating into it be I. Let B(t) and

D(t) be the number of births and deaths per unit time, respectively. If B(t)+ I > D(t)+E(t),

then the population will grow, and decay will occur otherwise. The population after a short

interval of time h will be given by u(t + h),

u(t + h) = u(t) + (B(t) + I(t) − E(t) − D(t))h

u(t + h) − u(t)

h
= B(t) + I(t) − E(t) − D(t)

lim
h→0

u(t + h) − u(t)

h
=

du(t)

dt
= B(t) + I(t) − E(t) − D(t)

Therefore
du

dt
= B(t) + I(t) − (D(t) + E(t)). (5.1)

5.2 Birth, death and migration problem

Consider a hypothetical system whose population is structured by age, with six age classes.

Classes 1 and 2 are for juveniles with individuals in class 1 having a higher mortality rate than

those in 2. Classes 3, 4 and 5 are the reproductive age classes while 6 is the post reproductive

class. Let µi and λi be the death and birth rates, respectively, of the population in class i and

let si be the fraction of the population in class i that migrates to the next age class through

ageing. Let the population at time t be u(t), where u(t) is a vector defined by

u(t) = (u1, u2, · · · , u6)
T ,

where ui is the population in the ith age class.

5.2.1 Closed system

Definition 5.2.1. A population system is called closed if migrations into and out of the system

can be neglected, otherwise it is called open ([17], page 11).

In this subsection, we consider the system described above with no emigration or immigrations.

The only migration that occurs is within the system due to ageing.
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In the interval (t, t + ∆t) the population of individuals in age class 1 will increase due to birth

by individuals in age classes 3, 4, 5 and can decrease due death among members of class 1 and

growth of some children to age class 2. The population of juveniles in class 2 will be increased

by a fraction of juveniles in age class 1 that are mature enough to join 2 and can be decreased by

death of some of the individuals in this age class and ageing, where some individuals mature to

age 3 within the same time interval. Populations in age classes 3, 4, 5, 6 can only be increased by

a fraction of individuals that mature physiologically from age classes 2, 3, 4, and 5 respectively;

and the populations in these age classes can be decreased by death and ageing (classes 3, 4, 5)

and death alone for 6.

We assume that the number of births (for the reproductive classes) and deaths per unit time

in age class i is proportional to the number of individuals in the particular age class, ui. Thus

D1(t) = µ1u1(t), B1(t) = λ3u3 + λ4u4 + λ5u5. The system of differential equations describing

this population change is given below:

u̇1(t) = −(µ1 + s1)u1 + λ3u3 + λ4u4 + λ5u5

u̇2(t) = s1u1 − (µ2 + s2)u2

u̇3(t) = s2u2 − (µ3 + s3)u3

u̇4(t) = s3u3 − (µ4 + s4)u4

u̇5(t) = s4u4 − (µ5 + s5)u5

u̇6(t) = s5u5 − µ6u6,

(5.2)

The diagram showing the dynamics of the system is drawn below where the arrows pointing

Figure 5.1: Diagram showing the population changes in an age structured population

down represent permanent removal from the system by death. The matrix for the system above
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is given below

A =





























−(µ1 + s1) 0 λ3 λ4 λ5 0

s1 −(µ2 + s2) 0 0 0 0

0 s2 −(µ3 + s3) 0 0 0

0 0 s3 −(µ4 + s4) 0 0

0 0 0 s4 −(µ5 + s5) 0

0 0 0 0 s5 −µ6





























.

By analysing this matrix, we can determine the reproductive structure of the population and its

long time behaviour. This ML matrix has only one non-zero element in the sixth column, which

is also in the sixth row. So A is associated with a non-negative matrix B through the equation

A = B − rI, where

r ≥ max
1≤i≤6

µi + si > 0. (5.3)

B =





























v1 0 λ3 λ4 λ5 0

s1 v2 0 0 0 0

0 s2 v3 0 0 0

0 0 s3 v4 0 0

0 0 0 s4 v5 0

0 0 0 0 s5 v6





























,

where r−vi = µi +si for i = 1, · · · , 5 and v6 = r−µ6. By Lemma 2.3.5, matrix B is reducible,

hence A is also reducible by Definition (4.3.2). Matrix B is already in the form of (2.1) where

A1 is the 5 × 5 matrix,






















v1 0 λ3 λ4 λ5

s1 v2 0 0 0

0 s2 v3 0 0

0 0 s3 v4 0

0 0 0 s4 v5























,

obtained from B by removing the sixth row and column and A2 = (v6) and A21 = (0, 0, 0, 0, s5).

Notice that vi ≥ 0 for all i = 1, · · · , 5 (from Inequality 5.3), si > 0 and λ1, λ2 and λ3 are all

positive. The graph of A1 is strongly connected, implying that A1 is irreducible. Therefore B,

and thus A, are in normal form.
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1 2 3 4 5

Figure 5.2: Graph of A1

Parameter values were varied until we got two different situations but in each case, an initial

distribution of (1, 1, 1, 1, 1, 1)T was assumed. In the first case, the parameter values that were

used are; µ1 = 0.2, µ2 = 0.13, µ3 = 0.08, µ4 = 0.062, µ6 = 0.09, µ6 = 0, s1 = 0.7, s2 =

0.8, s3 = 0.5, s4 = 0.4, s5 = 0.9, λ3 = 0.2, λ4 = 0.062, λ5 = 0.1, and the corresponding matrix

has a dominant eigenvalue 0 which is simple. From Theorem 4.2.5, the total population is

expected to become constant in the long run, and this can be seen from Figure 5.3.

Because 0 is also an eigenvalue of the submatrix corresponding to the post reproductive class,

the population of post reproductive individuals initially increases and asymptotically tends to a

constant value after a long time. After 40 years, the population was found to be distributed

as follows, (0.00144083, 0.00133734, 0.00264709, 0.00462506, 0.00227229, 5.58839)T . In the

Figure 5.3: Population dynamics with birth rate

greater than death rate for class 3, 4 and 5.

Figure 5.4: The birth rates are now less than

the death rates. Similar behaviour is obtained

with equal birth

next simulation, the parameter values that were used are; µ1 = 0.2, µ2 = 0.13, µ3 = 0.08,

µ4 = 0.062, µ5 = 0.09, µ6 = 0.17, s1 = 0.7, s2 = 0.8, s3 = 0.5, s4 = 0.4, s5 = 0.9, while the

birth rates were set to 0.08, 0.062, 0.09 for λ3, λ4 and λ5 respectively. In each case, an initial
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population of 1 was assumed for each age class. The dominant eigenvalue in this case is −0.17,

so by Theorem 4.2.4, the system is stable. From the definition of stability given in (4.2.3), it

means that the total population becomes extinct in the long run.

This is what is observed numerically from Figure 5.4. The population for age classes 3, 4 and 6

initially increases but for class 3, it starts falling after just one year while that of class 4 increases

for the first 5 years. The population for the post reproductive class increases for the first 15

years and then starts declining slowly. After 30 years, the population in the system was found to

be distributed as (0.000610191, 0.000642678, 0.0016341, 0.00415513, 0.00229366, 0.182925)T

From figure 5.4, we see that in the long run the population becomes extinct as predicted by

Theorem 4.2.4.

5.2.2 An open system

Consider a life cycle graph for a spatially structured population with migration shown below (this

is discussed in example 4.2 of [4] in discrete time). In each habitat, the population is divided

Figure 5.5: Life cycle graph for a species distributed in two habitats

into three age classes and individuals in age class 1 and 2 can move to habitat 2. Let m1 and

m2 be the migration rate from class 1 and 2 respectively and si be the fraction of individuals

from age class i that mature to age i + 1 and µi be death rate. The equations describing the
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rate of change of the population at time t are given by

u̇1(t) = −(µ1 + m1 + s1)u1 + λ2u2 + λ3u3

u̇2(t) = s1u1 − (µ2 + s2 + m2)u2

u̇3(t) = s2u2 − µ3u3

u̇4(t) = −(µ4 + s4)u4 + λ5u5 + λ6u6

u̇5(t) = m1u1 + s4u4 − (µ5 + s5)u5

u̇6(t) = m2u2 + s5u5 − µ6u6.

(5.4)

This system can be written as u̇(t) = Au(t), where

A =





























−(s1 + m1 + µ1) λ2 λ3 0 0 0

s1 −(µ2 + s2 + m2) 0 0 0 0

0 s2 −µ3 0 0 0

0 0 0 −(µ4 + s4) λ5 λ6

m1 0 0 s4 −(µ5 + s5) 0

0 m2 0 0 s5 −µ6





























.

A plot of the population of the age classes as a function of time with different parameter values is

shown below. For the values µ1 = 0.2, µ2 = 0.13, µ3 = 0.08, µ4 = 0.062, µ5 = 0.09, µ6 = 0.17,

s1 = 0.7, s2 = 0.8, s3 = 0.5, s4 = 0.4, s5 = 0.1, λ2 = 0.26, λ4 = 0.41, λ5 = 0.14, λ6 = 0.19,

m1 = 0.3, m2 = 0.12, the system of equations was solved using Mathematica software with

the matrix A obtained by substituting these parameters in (5.4). In order to have 0 as the

dominant eigenvalue, A was rescaled to Ã = A − 0.09613498858202665I. The matrix Ã has

eigenvalues −1.3092+0.14037ı,−1.3092− 0.14037ı,−0.656739,−0.371753, 0,−0.0819135. 0

is clearly the dominant eigenvalue with corresponding right and left eigenvectors

x = (0.236215, 0.144268, 0.655261, 0.246413, 0.592133, 0.287544)T and

v = (0.318676, 0.590066, 0.7418, 0., 0., 0.) respectively .

Normalising these vectors according to (4.12), we obtain

N =
1

2.16183
x, φ =

2.16183

0.646477
v hence ρ =

2.16183

0.646477
v.1 = 5.51945.

The population at time t is shown in the diagram below: Since 0 is the dominant eigenvalue and
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Figure 5.6: A graph showing the population in all the six subclasses as it changes with time

is simple, we see that the populations do not increase indefinitely but settle to some constant

values. By Equation (4.11), u(t) → ρN. That is:

u(t) →
5.51945

2.16183





























0.236215

0.144268

0.655261

0.24641

0.592133

0.287544





























=





























0.603089

0.368336

1.67297

0.629126

1.51179

0.734138





























and from the figure above, we see that this is true. In particular, after 50 years, the population

will be distributed as (0.603089, 0.368336, 1.67297, 0.629948, 1.5134, 0.735011)T .

5.3 Conclusion and further work

Matrix models are very common in biological problems. They are used in ecology and in epi-

demiology. Although these matrices are not non-negative in general, the theory of non-negative

matrices can be used to understand these population matrices. Therefore, in the second chap-

ter, we studied the theory of non-negative matrices and provided an overview of their properties

which make the study of long time behaviour of matrix population models easier. We showed

the relationship between matrices and graphs and the motivation for this is that in epidemiol-
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ogy we often have compartmentalised diagrams while in ecology, we may consider structured

populations. These are graphical representations of movement of individuals in and out of

compartments or classes.

In the third chapter, we studied Perron-Frobenius theorems for both positive and irreducible

matrices and discussed some of their proofs. We also provided a complete description of the

Perron-Frobenius type theorems for reducible matrices.

In the fourth chapter, we discussed the nature and asymptotic behaviour of solution to the

linear initial value problem (4.1). We discussed long time behaviour of solutions to the problem

for both reducible and irreducible matrices, and we concluded the chapter with an analysis of

the nature of solutions based on Perthame’s [16] entropy methods. We found that when A is

irreducible and 0 is its dominant eigenvalue, then

u(t) → ρN.

This was further justified by inequality (4.23). If A is reducible, results similar to those obtained

for an irreducible matrix are possible only when 0 is a simple dominant eigenvalue of A; that is,

u(t) → P (N ∗ φ)P−1u(0)

= PN[(φP−1)u(0)]

= ρ̂PN as t → ∞,

where ρ̂ = (φP−1)u(0) is a scalar.

In the future, we intend to find an analogue of Theorem 4.3.8 for reducible matrices and to

extend the results to infinite dimensional spaces.
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