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Abstract

In this dissertation we study radiating stars in strong gravitational fields. We generate

new classes of exact solutions to the Einstein field equations and the boundary condi-

tion applicable to radiating relativistic stars. The model of a radiating star in general

relativity, matching to the Vaidya exterior spacetime, is reviewed. The boundary con-

dition is converted to a Riccati equation and we consider both cases involving geodesic

and non-geodesic particle trajectories. We present the metrics found previously. We

first solve the boundary condition for the geodesic case and find the gravitational po-

tentials which are expanding and shearing. This is a new result. Secondly the boundary

condition is analysed for the non-geodesic case and we seek new gravitational potentials

which are accelerating, expanding and shearing. We are able to identify only geodesic

solutions for this second case; this appears to be a new class of models. The solutions

found are presented in terms of elementary functions which are helpful in studying the

physical properties. The new solutions found cannot be categorised in existing classes

of known solutions; they are examples of a new generic class different from previous

studies. The matter variables of the model are generated.



Declaration

I declare that the contents of this dissertation are my original work except where due

reference has been made. It has not been submitted before for any degree to any other

institution.

Matsimele Ngwalodi Mahlatji

February 28, 2013



Declaration - Plagiarism

I, Matsimele Ngwalodi Mahlatji, student number: 210554146, declare that

1. The research done in this thesis, except where otherwise indicated, is my original

research.

2. This thesis has not been submitted for any degree or examination at any other

university.

3. This thesis does not contain other persons data, graphics, graphs or other infor-

mation, unless specifically acknowledged as being sourced from other persons.

4. This thesis does not contain other persons writing, unless specifically acknowl-

edged as being sourced from other researchers. Where other written sources have

been quoted, then:

a. Their words have been re-written but the general information attributed to

them has been referenced

b. Where their exact words have been used, then their writing has been placed

in italics and inside quotation marks, and referenced.



5. This thesis does not contain text, graphics or tables copied and pasted from the

Internet, unless specifically acknowledged, and the source being detailed in the

thesis and in the References sections.

Signed

ii



Acknowledgments

Firstly, I would like to thank my supervisors, Professor K S Govinder and Professor

S D Maharaj for providing me this opportunity to do a master’s degree with them.

Their constructive criticism, mentorship, friendship and encouragement has certainly

brought out the best in me. For funding my research, I am grateful to the University of

KwaZulu-Natal and the National Research Fund; not to mention the additional assis-

tance from my supervisors and the entire staff of the School of Mathematics, Statistics

and Computer Science for providing me with assistance whenever I needed it. Thank

you all for the support.

I would like to thank my mother Agnes Ramatsimele Mahlatji, my siblings and to

my late father who passed away on the 20th of February 2012, this is dedicated to him.

I thank them all for their strong support.

i



Contents

1 Introduction 1

2 Geodesic Fluids 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Junction conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Review of known solutions . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 A Riccati approach . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 Solution I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Solution II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 New Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Accelerating Fluids 28

ii



3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Junction conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Review of known solutions . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 A Riccati approach . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Linear equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Bernoulli equation . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.4 Inhomogeneous Riccati equation . . . . . . . . . . . . . . . . . . 37

3.5 New Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Conclusion 48

Bibliography 53

iii



Chapter 1

Introduction

The theory of general relativity is a geometrical theory of gravitation where gravity is

related to the four-dimensional spacetime curvature as developed by Albert Einstein.

This means gravity is generated when the geometry curves. It is an extension of special

relativity where gravitational and inertial forces are the same. It is widely accepted as

the best description of gravity in modern physics. The central feature of the theory are

the Einstein field equations. This is a nonlinear system of partial differential equations.

Applications to the solutions of the field equations are in cosmology and relativistic

astrophysics.

Here we are concerned with radiating relativistic objects in backgrounds with

strong gravitational interactions. In the process of gravitational collapse in an astro-
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physical environment, there is a strong probability that a star emits radiation and

particles. The interior spacetime and exterior spacetime described by the Vaidya so-

lution of the collapsing star should match, taking into consideration the heat flow in

the interior of the star (Thirukanesh and Maharaj 2010). Exact models for relativis-

tic radiating stars are vital in terms of analysing the cosmic censorship hypothesis

and gravitational collapse (Goswami and Joshi 2004a, 2004b). The formulation of the

junction conditions for shear-free collapse was performed by Santos (1985) where the

interior metric is matched with the exterior Vaidya metric at the boundary of the star.

This made it possible to generate exact models. The physical application of this con-

cept assists in the investigation of surface luminosity, dynamical stability, relaxation

effects, particle production at the stellar surface, and temperature profiles for radiating

stars in general relativity (Thirukanesh and Maharaj 2010). A radiating model of an

initial interior static configuration leading to slow gravitational collapse was proposed

by De Oliveira et al (1985). In a recent treatment by Herrera et al (2004), a relativistic

radiating model with vanishing Weyl tensor, in a first order approximation, without

exactly solving the junction condition was proposed. Then the relevant junction con-

dition was solved exactly by Maharaj and Govender (2005) and Herrera et al (2006).

They generated classes of solutions in terms of elementary functions which contain the

Friedman dust solution as a special case. Several other classes of solutions by trans-

forming the junction condition to the form of an Abel equation of the first kind, were
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later investigated by Misthry et al (2008). These exact models have been proved to

be important in analysing relativistic behaviour of a collapsing object in the stellar

consideration. Treatments involving shear involve the works of Rajah and Maharaj

(2008), Naidu et al (2006) and Thirukkanesh et al (2012).

In this thesis we generate new classes of exact solutions to the Einstein field

equations and the boundary condition applicable to radiating relativistic stars by con-

sidering a non-separable form of the the gravitational potential for both the geodesic

and non-geodesic cases. The model of a radiating star in general relativity, matching

to the Vaidya exterior spacetime, is reviewed. The boundary condition is converted

to a Riccati equation by including both the radial and temporal pressures, and we

consider both cases involving geodesic and non-geodesic particle trajectories. We first

solve the boundary condition for the geodesic case and find the gravitational potentials

which are expanding and shearing. Secondly the boundary condition is analysed for

the non-geodesic case and we seek new gravitational potentials which are accelerating

expanding and shearing. This search leads to geodesic trajectories; however the class

of metrics found appear to be new. The solutions found are presented in terms of

elementary functions which are helpful in studying the physical properties.
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This thesis is organised as follows:

• Chapter 1: Introduction.

• Chapter 2: We present the Einstein field equations and line element for the

geodesic case. The boundary condition is found by matching to the Vaidya line element.

Earlier models are reviewed. This is achieved by choosing a non-separable form of the

gravitational potential and generating a Riccati equation. In addition a new class of

solutions is found. We regain a number of results found previously by Thirukkanesh

and Maharaj (2010).

• Chapter 3: We obtain the Einstein field equations and line element for acceler-

ating fluids. The boundary condition is derived by matching the interior to the Vaidya

metric. Solutions found earlier are reviewed. This is achieved by choosing a non-

separable form of the gravitational potential and analysing a Riccati equation. A new

class of exact models is generated. We regain a number of results found previously by

Thirukkanesh et al (2012).

• Chapter 4: The results obtained in this thesis are summarised in the conclusion.
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Chapter 2

Geodesic Fluids

2.1 Introduction

A geodesic is defined mathematically as a curve that locally minimizes the distance

between two points in a space, including a curved manifold. This concept can be used

to study the behaviour of a radiating star where the interior consists of expanding,

shearing fluid particles which are moving in geodesic motion. We demonstrate that it

is possible to find a new class of exact solutions to the boundary condition. Earlier

treatments with geodesic motion include the works of Kolassis et al (1988), Grammenos

and Kolassis (1992), Tomimura and Nunes (1993), and Zhe et al (2008). Recent results

in this direction were found by Herrera et al (2002), Govender et al (1998), Naidu et al

(2006), Rajah and Maharaj (2008), and Thirukkanesh and Maharaj (2009, 2010). In

section 2.2 we outline the model of a radiating star for the geodesic metric using the
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Einstein field equations and the Vaidya metric. The boundary conditions are presented

in section 2.3. Known solutions are reviewed in section 2.4; the particular metrics are

derived. A new solution is given in section 2.5; we derive the metric and present forms

for the matter variables.

2.2 Field equations

We consider the case where the fluid trajectories in the interior spacetime of a spher-

ically symmetric collapsing star with nonzero shear are geodesic. The spacetime is

described by the following line metric

ds2 = −dt2 +B2dr2 + Y 2(dθ2 + sin2 θdφ2), (2.1)

where the quantities B and Y are functions of the temporal and radial coordinates t

and r respectively. They represent the gravitational potentials and need to be explic-

itly determined by solving the Einstein field equations.

The comoving vector u is represented by ua = δa0 which is the fluid four-velocity.
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The kinematical quantities for the line metric (2.1) become

u̇a = 0, (2.2a)

Θ =
Ḃ

B
+ 2

Ẏ

Y
, (2.2b)

σ =
1

3

(
Ẏ

Y
− Ḃ

B

)
, (2.2c)

where u̇a is the four-acceleration vector, Θ is the expansion scalar and σ is the magni-

tude of the shear scalar. Dots on the potentials B and Y represent differentiation with

respect to time t. Note that the acceleration is zero because particle trajectories in the

star are moving with constant velocity. The energy momentum tensor for the interior

matter distribution is represented by

Tab = (ρ+ p)uaub + pgab + qaub + qbua + πab, (2.3)

where ρ is the energy density, p is the isotropic pressure, πab is the stress tensor and

qa is the heat flux vector of the fluid. The mass, luminosity and stability of relativistic

spheres are affected by the anisotropy which forms a critical part in gravitational

collapse. For the physical relevance of anisotropy in astrophysics see the treatments of

Chaisi and Maharaj (2005, 2006), Dev and Gleiser (2002, 2003) and Mak and Harko

(2002, 2003). The stress tensor is represented by

πab = (pr − pt)
(
nanb −

1

3
hab

)
, (2.4)

where pr is the radial pressure, pt is the tangential pressure and n is a unit vector
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defined by na = δa1 . The relationship

p =
1

3
(pr + 2pt) (2.5)

gives the isotropic pressure in terms of the radial and tangential pressures.

The Einstein field equations for the line element (2.1) and the matter distribution

equation (2.3) are given by

ρ = 2
Ḃ

B

Ẏ

Y
+

1

Y 2
+
Ẏ 2

Y 2
− 1

B2

(
2
Y ′′

Y
+
Y ′2

Y 2
− 2

B′

B

Y ′

Y

)
, (2.6a)

pr = −2
Ÿ

Y
− Ẏ 2

Y 2
− 1

Y 2
+

1

B2

Y ′2

Y 2
, (2.6b)

pt = −

(
B̈

B
+
Ḃ

B

Ẏ

Y
+
Ÿ

Y

)
+

1

B2

(
Y ′′

Y
− B′

B

Y ′

Y

)
, (2.6c)

q = − 2

B2

(
Ḃ

B

Y ′

Y
− Ẏ ′

Y

)
, (2.6d)

where qa = (0, q, 0, 0) represents the heat flux which is radially orientated and the

prime indicates differentiation with respect to r . The geodesic anisotropic matter dis-

tribution in a spherically symmetric gravitational field is represented by the system

of equations (2.6) which governs the most general model with geodesic gravitational

collapse. We make the observation from the system of equations (2.6) that if the gravi-

tational potentials B and Y are specified, then the expressions for the matter variables

ρ, pr, pt and q follow by substitution.
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The interior spacetime has to match across the boundary Σ to the exterior space-

time for a relativistic star. The exterior spacetime is described by

ds2 = −
(

1− 2m(v)

R

)
dv2 − 2dvdR +R2(dθ2 + sin2 θdφ2) (2.7)

which represents the familiar Vaidya metric. An observer at infinity measures m(v) as

the mass of the radiating star. The line element (2.7) is used to indicate incoherent

null radiation which flows in a radial orientation relative to the hypersurface Σ which

is the boundary of the star.

2.3 Junction conditions

The junction conditions are generated by the matching of the interior spacetime (2.1)

and exterior spacetime (2.7) and the matching of the extrinsic curvature components

on the surface Σ. This leads to the following set of junction conditions on the stellar

surface Σ:

dt = −
(

1− 2m

RΣ

+ 2
dRΣ

dv

) 1
2

dv, (2.8a)

Y (RΣ,t) = RΣ(v), (2.8b)

m(v)Σ =

[
Y

2

(
1 + Ẏ 2 − Y ′2

B2

)]
Σ

, (2.8c)

(pr)Σ = (qB)Σ. (2.8d)
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Equation (2.8d) describes the nonvanishing of the radial pressure at the boundary Σ.

Note that (2.8d) is an extra constraint which has to be satisfied along with the system

of equations (2.6). The junction condition (2.8d) was first derived by Santos (1985)

in the case of shear-free spacetimes. In order to incorporate spacetimes with nonzero

shear the metric (2.1) was extended by Glass (1989). Substituting equations (2.6b)

and (2.6d) into (2.8d) we obtain the following equation

2Y Ÿ + Ẏ 2 − Y ′2

B2
+

2

B
Y Y ′ − 2

Ḃ

B2
Y Y ′ + 1 = 0, (2.9)

which has to be satisfied on the boundary Σ. The gravitational behaviour of the

radiating anisotropic star with nonzero shear and no acceleration is governed by (2.9).

This equation is difficult to solve without some simplifying assumption as it is highly

nonlinear in nature. The potentials B and Y are two unknown functions in (2.9); to

find a solution we have to specify one of the functions, or introduce another condition,

so that the resulting equation is integrable.

2.4 Review of known solutions

2.4.1 A Riccati approach

We can write (2.9) in the form of a Riccati equation in the gravitational potential B :

Ḃ =

[
Ÿ

Y ′
+

Ẏ 2

2Y Y ′
+

1

2Y Y ′

]
B2 +

Ẏ ′

Y ′
B − Y ′

2Y
. (2.10)
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This Riccati equation has to meet the necessary conditions on the stellar boundary

Σ and is difficult to solve in general. Nogueira and Chan (2004) obtained numerical

solutions in their analysis of a collapsing star. Solutions can be obtained in an ad hoc

fashion by making the assumption that the gravitational potential Y is a separable

function and specifying the temporal evolution of the model as obtained by Rajah

and Maharaj (2008). Thirukkanesh and Maharaj (2010) showed that it is possible

to transform the Riccati equation into separable form by a suitable transformation

which leads to new solutions. Hence it is possible to discover new exact solutions

systematically without assuming separable forms for the function Y . By introducing

the transformation

B = ZY ′, (2.11)

we can show that equation (2.10) becomes

Ż =
1

2Y
[FZ2 − 1], (2.12)

where

F = 2Y Ÿ + Ẏ 2 + 1.

Observe that equation (2.12) is integrable provided F is independent of the variable

t . In this approach we emphasize that we have not made any hypothesis about the

separability of the metric coefficients B and Y or have restricted the t-dependence of

the model. This approach leads to new exact solutions.

11



2.4.2 Solution I

We make the assumption

F = 1. (2.13)

As a result, we need to solve

2Y Ÿ + Ẏ 2 = 0.

The solution yields

Y (r, t) = [R1(r)t+R2(r)]
2
3 , (2.14)

where R1(r) and R2(r) are arbitrary functions of r . Then substituting (2.14) into

(2.12) we obtain

Ż =
[Z2 − 1]

2[R1(r)t+R2(r)]
2
3

. (2.15)

Integrating (2.15) we get

Z =
1 + f(r) exp(3(R1t+R2)

1
3/R1)

1− f(r) exp(3(R1t+R2)
1
3/R1)

, (2.16)

where f(r) is the function of integration. By substituting (2.14) and (2.16) into (2.11)

we get

B =
2

3

[
1 + f(r) exp[3(R1t+R2)

1
3/R1]

1− f(r) exp[3(R1t+R2)
1
3/R1]

]
[R′1t+R′2]

[R1t+R2]
1
3

(2.17)

which was first found by Thirukkanesh and Maharaj (2010). The line element has the

form

12



ds2 = −dt2 +
4

9

[
1 + f(r) exp[3(R1t+R2)1/3/R1]

1− f(r) exp[3(R1t+R2)]1/3/R1

]2

× R′1t+R′2
[R1t+R2]2/3

dr2

+[R1(r)t+R2(r)]4/3(dθ2 + sin2 θdφ2), (2.18)

for the assumption (2.13).

For particular forms of the arbitrary functions we can generate models found pre-

viously. When

R1 = 0,

R2 = r3/2,

then the equivalent of (2.18) is

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2), (2.19)

which is the Minkowski metric. If we let

R1 = R3/2,

R2 = aR3/2,

13



then (2.18) becomes

ds2 = −dt2 + (t+ a)4/3

×

{
R′2
[

1 + f(r) exp[3(t+ a)1/3/R]

1− f(r) exp[3(t+ a)1/3/R]

]2

dr2

}

+(t+ a)4/3
{
R2(dθ2 + sin2 θdφ2)

}
, (2.20)

which was discussed by Rajah and Maharaj (2008). If we set

a = 0,

R = r,

then (2.20) becomes

ds2 = −dt2 + t4/3

×

{[
1 + f(r) exp[3(t)1/3/r]

1− f(r) exp[3(t)1/3/r]

]2

dr2

}

+t4/3
{
R2(dθ2 + sin2 θdφ2)

}
(2.21)

which was first found by Naidu et al (2006). Also if we set

R1 = r3/2,

R2 = 0,

f(r) = 0,

then we get

ds2 = −dt2 + t4/3[dr2 + r2(dθ2 + sin2 θdφ2)] (2.22)

14



which corresponds to the Friedmann metric. It is a pleasing feature of the class of

spacetimes (2.18) that it contains a number of known solutions.

2.4.3 Solution II

We now make the assumption

F = 1 +R2
1(r). (2.23)

We need to solve

2Y Ÿ + Ẏ 2 = R2
1(r).

A particular solution is given by

Y (r, t) = [R1(r)t+R2(r)], (2.24)

where R1(r) and R2(r) are arbitrary functions of r . This results in the following

expression

Ż =
[R2

1 + 1]

2[R1t+R2]

[
Z2 − 1

[R2
1 + 1]

]
, (2.25)

after substituting (2.24) into (2.12). The solution of (2.25) after integration becomes

Z =
1√

R2
1 + 1

[
1 + g(r)[R1t+R2]

√
R2

1+1/R1

1− g(r)[R1t+R2]
√

R2
1+1/R1

]
, (2.26)

where g(r) is a function of integration. Substituting (2.26) and (2.24) into (2.11) we

find

B =
1√

R2
1 + 1

[
1 + g(r)[R1t+R2]

√
R2

1+1/R1

1− g(r)[R1t+R2]
√

R2
1+1/R1

]
[R′1t+R′2], (2.27)
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as given by Thirukkanesh and Maharaj (2010). The line element has the form

ds2 = −dt2 +
1

R2
1 + 1

[
1 + g(r)[R1t+R2]

√
R2

1+1/R1

1− g(r)[R1t+R2]
√

R2
1+1/R1

]2

×[R′1t+R′2]2dr2 + [R1(r) +R2(r)]2(dθ2 + sin2 θdφ2) (2.28)

for the choice (2.23).

We can regain previously known models from (2.28). When

R1 = R,

R2 = aR.

then (2.28) becomes

ds2 = −dt2 + (t+ a)2

 R
′2

[R2 + 1]

[
1 + h(r)[t+ a]

√
R2+1/R

1− h(r)[t+ a]
√
R2+1/R

]2

dr2


+(t+ a)2

{
R2(dθ2 + sin2 θdφ2)

}
(2.29)

which is contained in the Rajah and Maharaj (2008) class of models. Once again,

a class of spacetimes was obtained which contained previously known spacetimes as

special cases.

We observe that (2.24) is not the general solution of

2Y Ÿ + Ẏ 2 = R2
1(r).
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If we set

u = Y,

v = Ẏ ,

we can write

dv

du
=
Ÿ

Ẏ
=
Ÿ

v
.

Therefore our equation reduces to the first order equation

2uvv′ + v2 = R2
1(r).

This can be integrated to yield

v2 = R2
1 +

C1(r)

u
, (2.30)

were C1(r) is an arbitrary function of integration. Reverting to the original variables

we have

Ẏ 2 = R2
1(r) +

C1(r)

Y
,

and so ∫
dY

±
√
R2

1(r) + C1(r)
Y

= t+ C2(r). (2.31)

From (2.30) it can be seen that

C1(r) = 0

yields

Ẏ 2 = R2
1(r),

17



and so we have

Y (r, t) = R1t+R2(r)

as before. In our case (2.31), we have the general solution with three arbitrary functions

of r. Unfortunately evaluating the quadrature in (2.31) results in a function of Y (t, r)

that cannot be easily inverted to yield Y (t, r) explicitly. Nonetheless, this form of

solution can be combined with results obtained earlier in this section to provide new

(albeit implicit) solutions.

2.5 New Solution

It is possible to find other new exact solutions to the boundary condition (2.10). To

determine this we make the assumption

Ẏ ′ = 0. (2.32)

Note that this assumption leads to a new class of solutions that do not contain the

cases considered in section 2.4 as those solutions do not satisfy (2.32).

For the assumption

Y (r, t) = [R1(r)t+R2(r)]
2
3

18



used in section 2.4.2, we obtain

Ẏ ′ =
2

3
R′1(R1t+R2)−

1
3 − 2

9
R1(R1t+R1)−

4
3 (R′1t+R′2). (2.33)

This can only equal zero when

R1(r) = 0.

This forces

Y (r, t) = Y (r),

i.e., Y cannot depend on t. As a result the solutions we obtain can only reduce to

solutions given in section 2.4.2, in the case of static spacetimes.

For assumption

Y (r, t) = R1(r)t+R2(r) (2.34)

considered in section 2.4.3, we obtain

Ẏ ′ = R′1(r).

Requiring this to be zero we obtain

Y (r, t) = ηt+R2(r).

Again, only special cases of our solutions can be compared with those in section 2.4.3.

19



Integrating (2.32) results in

Y = a(t) + b(r), (2.35)

where a is a function of t and b is a function of r . For this form of Y we indicate

that it is possible to find a new exact solution. On substituting (2.32) and (2.35) into

(2.10), we get the simpler equation

Ḃ =

[
ä(t)

b′(r)
+

ȧ2(t)

2(a(t) + b(r))b′(r)
+

1

2(a(t) + b(r))b′(r)

]
B2

− b′(r)

2(a(t) + b(r))
. (2.36)

This represents the inhomogeneous Riccati equation which has to be integrated.

We introduce the transformation

B = wb′(r), (2.37)

to obtain

ẇ =
1

2(a(t) + b(r))

[
(2(a(t) + b(r))ä(t) + ȧ2(t) + 1)w2 − 1

]
. (2.38)

We introduce the function f (r) expressed as

f(r) = 2(a(t) + b(r))ä(t) + ȧ2(t) + 1. (2.39)

Clearly f can depend only on the radial coordinate r in the above equation to complete

the integration. Differentiating (2.39) with respect to r we obtain

f ′(r) = 2b′(r)ä(t).
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This result implies that

f(r) = αb(r) + b0, (2.40a)

a(t) =
α

4
t2 + a0 + a1t, (2.40b)

where α is constant. Then (2.39) yields the condition α = 0 for consistency so that we

must have

a(t) = a0 + a1t. (2.41)

Then (2.38) can be expressed as

ẇ =
1

2(a0 + a1t+ b(r))
[(a2

1 + 1)w2 − 1]. (2.42)

This is a separable equation in the variables w and t . We integrate w to obtain

w =
1− exp(tb(r) + 2D + ta0 + 1

2
t2a1 + tb(r)a2

1 + ta0a
2
1 + 1

2
t2a3

1)

1 + exp(tb(r) + 2D + ta0 + 1
2
t2a1 + tb(r)a2

1 + ta0a2
1 + 1

2
t2a3

1)
, (2.43)

where D is the constant of integration. Substituting (2.43) into (2.37) results in the

following form for the metric function:

B =

(
1− exp(tb(r) + 2D + ta0 + 1

2
t2a1 + tb(r)a2

1 + ta0a
2
1 + 1

2
t2a3

1)

1 + exp(tb(r) + 2D + ta0 + 1
2
t2a1 + tb(r)a2

1 + ta0a2
1 + 1

2
t2a3

1)

)
b′(r). (2.44)

The line element has the form

ds2 = −dt2

+

((
1− exp(tb(r) + 2D + ta0 + 1

2
t2a1 + tb(r)a2

1 + ta0a
2
1 + 1

2
t2a3

1)

1 + exp(tb(r) + 2D + ta0 + 1
2
t2a1 + tb(r)a2

1 + ta0a2
1 + 1

2
t2a3

1)

)
b′(r)

)2

dr2

+(a0 + a1t+ b(r))2(dθ2 + sin2 θdφ2) (2.45)
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for the assumption (2.32).

We believe that the metric (2.45) is a new solution to the boundary condition for

an expanding, shearing radiating star with particles in geodesic motion. Models found

earlier cannot be regained from the metric (2.45). It is remarkable that the solution

can be expressed in simple elementary functions and the quantity b(r) is arbitrary.

We can now compute the dynamical quantities from the Einstein field equations

(2.6). We obtain the expressions

ρ = 2
µ

τ

a1

(a0 + a1t+ b(r))
+

1

(a0 + a1t+ b(r))2
+

a2
1

(a0 + a1t+ b(r))2

−1

κ

(
2

b′′(r)

(a0 + a1t+ b(r))
+

b′2(r)

(a0 + a1t+ b(r))2

)
−1

κ

(
2
ε

τ

b′(r)

(a0 + a1t+ b(r))

)
, (2.46a)

pr = − (a1)2

(a0 + a1t+ b(r))2
− 1

(a0 + a1t+ b(r))2

+
1

κ

b′2(r)

(a0 + a1t+ b(r))2
, (2.46b)

pt = −
(

Ω

τ
+
µ

τ

a1

(a0 + a1t+ b(r))

)
+

1

κ

(
b′′(r)

(a0 + a1t+ b(r))
− ε

τ

b′(r)

(a0 + a1t+ b(r))

)
, (2.46c)

q = −2

κ

(
µ

τ

b′(r)

(a0 + a1t+ b(r))

)
, (2.46d)
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in terms of the constants a0, a1 and the arbitrary function b(r). We have introduced

the quantities µ, ε, τ and κ for convenience. If we let

Γ = exp(tb(r) + 2D + ta0 +
1

2
t2a1 + tb(r)a2

1 + ta0a
2
1 +

1

2
t2a3

1)

and

Ψ = exp(2tb(r) + 4D + 2ta0 + t2a1 + 2tb(r)a2
1 + 2ta0a

2
1 + t2a3

1).

These quantities are defined by:
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µ =

(
−Γ(1− Γ)(b(r) + a0 + ta1 + b(r)a2

1 + a0a
2
1 + ta3

1)

(1 + Γ)2

)
b′(r)

−
(

Γ(b(r) + a0 + ta1 + b(r)a2
1 + a0a

2
1 + ta3

1)

1 + Γ

)
b′(r), (2.47a)

Ω =

(
−Γ(1− Γ)(a1 + a3

1)

(1 + Γ)2
− Γ(a1 + a3

1)

1 + Γ

)
b′(r)

+

(
2ΨΓ(b(r) + a0 + ta1 + b(r)a2

1 + a0a
2
1 + ta3

1)2

(1 + Γ)3

)
b′(r)

+

(
2Ψ(b(r) + a0 + ta1 + b(r)a2

1 + a0a
2
1 + ta3

1)2

(1 + Γ)2

)
b′(r)

−
(
Γ(1− Γ)(b(r) + a0 + ta1 + b(r)a2

1 + a0a
2
1 + ta3

1)2)b′(r)

−
(

Γ(b(r) + a0 + ta1 + b(r)a2
1 + a0a

2
1 + ta3

1)2

1 + Γ

)
b′(r) (2.47b)

ε =

((
−Γ(1− Γ)(tb′(r) + ta2

1b
′(r))

(1 + Γ)2
− Γ(tb′(r) + ta2

1b
′(r))

1 + Γ

)
b′(r)

)
b′′(r)

+

(
1− Γ

1 + Γ

)
b′′(r), (2.47c)

τ =

(
1− exp(tb(r) + 2D + ta0 + 1

2
t2a1 + tb(r)a2

1 + ta0a
2
1 + 1

2
t2a3

1)

1 + exp(tb(r) + 2D + ta0 + 1
2
t2a1 + tb(r)a2

1 + ta0a2
1 + 1

2
t2a3

1)

)
×b′(r), (2.47d)

κ =

(
1− exp(tb(r) + 2D + ta0 + 1

2
t2a1 + tb(r)a2

1 + ta0a
2
1 + 1

2
t2a3

1)

1 + exp(tb(r) + 2D + ta0 + 1
2
t2a1 + tb(r)a2

1 + ta0a2
1 + 1

2
t2a3

1)
b′(r)

)2

×(b′(r))2. (2.47e)

A physical analysis of the matter variables in (2.46)-(2.47) will be carried out in future

work. We have verified the accuracy of the results in this chapter with the help of

Mathematica (Wolfram 2008).
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We note that the quantities a0, a1 and b(r) are arbitrary quantities in the above so-

lution. Particular choices simplify the expressions found for the gravitational potentials

and the matter variables. As an example we make the choice

a0 = 0,

a1 = 1,

b(r) = r,

without any loss of generality. Then the line element (2.45) becomes

ds2 = −dt2

+

(
1− exp(2tr + 2D + t2)

1 + exp(2tr + 2D + t2)

)2

dr2

+(t+ r)2(dθ2 + sin2 θdφ2). (2.48)
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The dynamical quantities (2.46) can be written in the form

ρ = 2
µ

τ

1

(t+ r)
+

2

(t+ r)2
− 1

κ

(
1

(t+ r)2

)
−1

κ

(
2
ε

τ

1

(t+ r)

)
, (2.49a)

pr = − 2

(t+ r)2
+

1

κ

1

(t+ r)2
, (2.49b)

pt = −
(

Ω

τ
+
µ

τ

1

(t+ r)

)
− 1

κ

(
ε

τ

1

(t+ r)

)
, (2.49c)

q = −2

κ

(
µ

τ

1

(t+ r)

)
, (2.49d)

which is much simpler than the general expressions that appeared earlier.

The quantities µ, Ω, τ and κ also take on a simpler form. They are given by
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µ =

(
−Γ(1− Γ)(2r + 2t)

(1 + Γ)2

)
−
(

Γ(2r + 2t)

1 + Γ

)
, (2.50a)

Ω =

(
−2Γ(1− Γ)

(1 + Γ)2
− 2Γ

1 + Γ

)
+

(
2ΨΓ(2r + 2t)

(1 + Γ)3

)
+

(
2Ψ(2r + 2t)2

(1 + Γ)2

)
−
(
Γ(1− Γ)(2r + 2t)2)

−
(

Γ(2r + 2t)2

1 + Γ

)
(2.50b)

ε = 0, (2.50c)

τ =

(
1− exp(2tr + 2D + t2)

1 + exp(2tr + 2D + t2)

)
, (2.50d)

κ =

(
1− exp(2tr + 2D + t2)

1 + exp(2tr + 2D + t2)

)2

, (2.50e)

where Γ and Ψ become

Γ = exp(2tr + 2D + t2)

and

Ψ = exp(6tr + 4D + 2t2).
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Chapter 3

Accelerating Fluids

3.1 Introduction

In this chapter we study the behaviour of a relativistic spherically symmetric radia-

tive star with accelerating, expanding and shearing interior matter distribution where

there is anisotropic pressure. We integrate the boundary condition to find new solu-

tions. Unlike the previous chapter the boundary condition is more difficult to integrate.

Consequently fewer treatments with accelerating particles have been attempted in the

past. Nogueira and Chan (2004) modelled shear and bulk viscosity but needed to

utilise numerical methods to make progress. Herrera and Santos (2010) and Goven-

der et al (2010) found solutions for Euclidean stars where the areal radius and proper

radius are equal in the interior of the star. It is possible to write the boundary condi-

tion as a linear, Bernoulli, and Riccati equation in standard form as demonstrated by
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Thirukkanesh et al (2012). In section 3.2 we outline the model of a spherically sym-

metric collapsing star for the non-geodesic metric using the Einstein field equations

and the Vaidya metric. The boundary conditions are presented in section 3.3. Known

solutions that have been published are recovered in section 3.4; the relevant particular

metrics are derived. A new solution is given in section 3.5; we derive the metric and

present forms for the matter variables.

3.2 Field Equations

We now study a spherically symmetric collapsing star which is expanding, acceler-

ating and shearing. The fluid trajectories are no longer geodesic as the particles are

accelerating. The interior spacetime is represented by the following general form of the

line metric

ds2 = −A2dt+B2dr2 + Y 2(dθ2 + sin2 θdφ2), (3.1)

where A, B and Y are functions of both the temporal and radial coordinates t and r

respectively. The functions A, B and Y represent the gravitational potentials.

The presence of a four-velocity vector u enables us to introduce the kinematical
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quantities

u̇a = ua;bu
b, (3.2a)

Θ = ua;a, (3.2b)

σab = hcah
d
bu(c;d), (3.2c)

where hab = gab + uaub (habu
a = 0) represents the symmetric projection tensor. The

acceleration of the fluid particles relative to the congruences of u is represented by the

acceleration vector u̇a(u̇aua = 0). The rate of increase of a volume of fluid element

is represented by the expansion scalar Θ, and the shear σab(σabu
b = 0 = σa

a) is the

tendency of a sphere to distort to an ellipsoid. The comoving fluid four-velocity is

ua = 1
A
δa0 . The acceleration vector u̇a, the expansion scalar Θ and the shear scalar œ

are given by

u̇a =

(
0,

A′

AB2
, 0, 0

)
, (3.3a)

Θ =
1

A

(
Ḃ

B
+ 2

Ẏ

Y

)
, (3.3b)

σ = − 1

3A

(
Ḃ

B
− Ẏ

Y

)
, (3.3c)

where the dots represent differentiation with respect to t and primes are differentiation

with respect to r on the metric functions A, B and Y . The energy momentum tensor

for the interior matter distribution is represented by the following

Tab = (ρ+ p)uaub + pgab + qaub + qbua + πab, (3.4)
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where æ is the density of the fluid, p is the isotropic pressure, qa is the heat flux vector

and ßab is the stress tensor. The stress tensor is represented by

πab = (pr − pt)
(
nanb −

1

3
hab

)
(3.5)

where pr and pt represent the radial pressure and the tangential pressure, and n is a

unit radial vector defined by na = 1
B
δa1 . The relationship

p =
1

3
(pr + 2pt) (3.6)

defines the isotropic pressure in terms of the radial and the tangential pressures.

The Einstein field equations for the line element (3.1) and the matter distribution

(3.4) are given by

ρ =
2

A2

Ḃ

B

Ẏ

Y
+

1

Y 2
+

1

A2

Ẏ 2

Y 2
− 1

B2

(
2
Y ′′

Y
+
Y ′2

Y 2
− 2

B′

B

Y ′

Y

)
, (3.7a)

pr =
1

A2

(
−2

Ÿ

Y
− Ẏ 2

Y 2
+ 2

Ȧ

A

Ẏ

Y

)
+

1

B2

(
Y ′2

Y 2
+ 2

A2

A

Y ′

Y

)
− 1

Y 2
, (3.7b)

pt = − 1

A2

(
B̈

B
− Ȧ

A

Ḃ

B
+
Ḃ

B

Ẏ

Y
− Ȧ

A

Ẏ

Y
+
Ÿ

Y

)
(3.7c)

+
1

B2

(
A′′

A
− A′

A

B′

B
+
A′

A

Y ′

Y
− B′

B

Y ′

Y
+
Y ′′

Y

)
, (3.7d)

q = − 2

AB2

(
− Ẏ

′

Y
+
Ḃ

B

Y ′

Y
+
A′

A

Ẏ

Y

)
, (3.7e)

where the heat flux represented by qa = (0, q, 0, 0) comprises only of the nonvanishing

radial component. The Einstein field equations govern the general model when charac-
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terising matter distributions with anisotropic pressures and heat flux for a spherically

symmetric relativistic stellar object. The nonlinear gravitational interactions for a

shearing matter distribution which it is expanding and accelerating is described by the

above Einstein field equations. The physical relevance of shear in general relativity has

been studied by Ivanov (2012), Krasinski (1997) and Stephani et al (2003).

The exterior spacetime

ds2 = −
(

1− 2m(v)

R

)
dv2 − 2dvdR +R2(dθ2 + sin2 θdφ2), (3.8)

is described by the Vaidya metric for a radiating star where m(v) is the mass of the

fluid at infinity as measured by an observer. This represents incoherent null radiation.

3.3 Junction conditions

The flow of null radiation is in the radial direction relative to the hypersurface Σ, which

indicates the boundary of the star. The junction conditions on the hypersurface Σ are

produced by the matching of the metric potentials and extrinsic curvature components

for the interior spacetime (3.1) and the exterior spacetime (3.8). These conditions are
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represented by the following

A(RΣ, t)dt =

(
1− 2m

RΣ

+
dRΣ

dv

) 1
2

dv, (3.9a)

Y (RΣ, t) = RΣ(v), (3.9b)

m(v)Σ =

[
Y

2

(
1 +

Ẏ 2

A2
− Y

′2

B2

)]
Σ

, (3.9c)

(pr)Σ = (qB)Σ. (3.9d)

Note that the radial pressure is nonzero at the boundary Σ.

Substituting (3.7a) and (3.7d) into (3.9d) we get the boundary condition which

has to be satisfied at the stellar surface

2Y Ÿ + Ẏ 2 − 2

(
Ȧ

A
+
A′

B

)
Y Ẏ + 2

A

B
Y Ẏ ′

−2
A

B2
(A′ +B)Y Y ′ − A2

B2
Y ′2 + A2 = 0. (3.10)

This is the governing equation that describes the gravitational behaviour of the ra-

diating anisotropic star with nonzero shear, acceleration and expansion. Rewriting

the above equation by making Ḃ subject of the formula, we get the following Riccati

equation

Ḃ −

[
Ÿ

AY ′
+

Ẏ 2

2AY Y ′
− ȦẎ

A2Y ′
− A

2Y Y ′

]
B2

−

[
Ẏ ′

Y ′
− A′

A

Ẏ

Y ′

]
B +

[
A′ +

AY ′

2Y

]
= 0. (3.11)

This can be solved for special cases.
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3.4 Review of known solutions

3.4.1 A Riccati approach

In spite of the nonlinearity and complexity of (3.11), we can find particular exact

solutions of (3.11) by considering it as a first order differential equation in the variable

B and placing restrictions on the bracketed expressions as indicated in the following

three cases.

3.4.2 Linear equation

Equation (3.11) becomes a linear equation if we set the following restriction

Ÿ

AY ′
+

Ẏ 2

2AY ′
− ȦẎ

A2Y ′
+

A

2Y Y ′
= 0, (3.12)

which can be represented as

Ȧ−

[
Ÿ

Ẏ
+

Ẏ

2Y

]
A =

A3

2Y Ẏ
. (3.13)

This represents a Bernoulli equation with respect to the variable A. Integrating this

equation where Y is an arbitrary function we get

A2 =
Y Ẏ

h(r)− Y
, (3.14)

where h(r) is a function of integration. Using (3.14), (3.11) becomes

Ḃ −

[
Ẏ ′

Y ′
− A′

A

Ẏ

Y ′

]
B +

[
A′ +

AY ′

2Y

]
= 0, (3.15)
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making it linear in B . Even though A and Y are arbitrary in (3.15), it is possible to

obtain B . Hence the solution for the junction condition (3.11) can be represented by

A =

√
Y Ẏ 2

h(r)− Y
, (3.16a)

B = Y ′ exp

(
−
∫
A′Ẏ

AY ′
dt

)

×

{
k(r)−

∫ [(
A′

Y ′
+

A

2Y

)
exp

(∫
A′Ẏ

AY ′
dt

)]
dt

}
, (3.16b)

Y = Y (t, r), (3.16c)

where k(r) is a function of integration. Equations (3.16) are a new solution to the

boundary condition (3.10) as found by Thirukkanesh et al (2012). Note that a choice

for Y should be made to provide us with a physically reasonable model. The line

element is therefore given by

ds2 = −

√ Y Ẏ 2

h(r)− Y

2

dt

+

(
Y ′ exp

(
−
∫
A′Ẏ

AY ′
dt

))2

×

({
k(r)−

∫ [(
A′

Y ′
+

A

2Y

)
exp

(∫
A′Ẏ

AY ′
dt

)]
dt

})2

dr2

+(Y (t, r))2(dθ2 + sin2 θdφ2). (3.17)
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3.4.3 Bernoulli equation

Equation (3.11) becomes a Bernoulli equation if we set

A′ +
AY ′

2Y
= 0. (3.18)

By integrating this equation we get the following result

Y =
C1(t)

A2
, (3.19)

where C1 (t) is a function of integration. By substituting (3.19) into (3.11) we get the

equation

Ḃ −

[
3

2

Ċ1

C1

− 4
Ȧ

A
+
Ȧ′

A′

]
B

=

[
7

2

ȦĊ1

AA′C1

− 5
Ȧ2

A2A′
− C̈2

1

2C1A′
+

Ä

AA′
− Ċ2

1

4C2
1A
′ −

A6

4C2
1A
′

]
B2,

(3.20)

which represents a Bernoulli equation in the variable B . Integrating (3.20) we get the

solution for B as

B =
A′C

3
2
1

A4[
∫
Idt+ g(r)]

, (3.21)

where g(r) is a function of integration. We also define

I = −7

2

C
1
2
1 ȦĊ1

A5
+ 5

Ȧ2C
3
2
1

A6
+
C̈1C

1
2
1

2A4
− ÄC

3
2
1

A5
+

Ċ2
1

4C
1
2
1 A

4
+

A2

4C
1
2
1

(3.22)
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for convenience. Hence, the following functions satisfy the junction condition (3.11):

A = A(t, r), (3.23a)

B =
A′C

3
2
1

A4[
∫
Idt+ g(r)]

, (3.23b)

Y =
C1

A2
. (3.23c)

Note that A(t , r) is an arbitrary function in this class of solution and once it is specified

along with the integration constant C1 , then an explicit form for I can be found as

shown by Thirukkanesh et al (2012). The line element is therefore given by

ds2 = −(A(t, r))2dt+

(
A′C

3
2
1

A4[
∫
Idt+ g(r)]

)2

dr2

+

(
C1

A2

)2

(dθ2 + sin2 θdφ2). (3.24)

3.4.4 Inhomogeneous Riccati equation

Equation (3.11) has an inhomogeneous Riccati equation form if we set

Ẏ ′

Y ′
− A′

A

Ẏ

Y ′
= 0. (3.25)

Integrating the above equation we get

A = Ẏ α(t), (3.26)

where ff (t) is defined as a function of integration. On substitution, (3.11) becomes

Ḃ =

[
Ẏ (1 + α2)

2αY Y ′
− α̇

α2Y ′

]
B2 −

[
Ẏ ′α +

Ẏ Y ′α

2Y

]
(3.27)
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which is an inhomogeneous Riccati equation which is difficult to solve. By placing

particular restrictions on ff and Y , it is possible to integrate the above equation. If we

define α to be a real constant and Y to be a separable function, we get the following

form

Y (t, r) = K(r)C(t), (3.28)

where K (r) and C (t) are arbitrary functions of r and t respectively. On substitution

(3.27) becomes

Ḃ =
(1 + α2)Ċ

2αK ′
Ċ

C2
B2 − 3

2
αK ′Ċ. (3.29)

To write the Riccati equation (3.29) in standard form, we introduce the following

transformation

B = wC (3.30)

so that it reduces to

[
2αK ′

(1 + α2)w2 − 2αK ′w − 3α2K ′2

]
ẇ =

Ċ

C
. (3.31)

Since (3.31) is a separable equation in the variables w and C , it can be integrated if

the constant α is defined. Taking α = −2, then (3.31) becomes

ẇ

(5w − 6K ′)(w + 2K ′)
= − 1

4K ′
Ċ

C
. (3.32)

Integrating the above equation we get

w =
2K ′[3C4 + f(r)]

5C4 − f(r)
, (3.33)
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where f (r) is the function of integration. The new solution of the inhomogenous Riccati

equation (3.27) is given by

A = −2KĊ, (3.34a)

B =
2K ′C[3C4 + f(r)]

5C4 − f(r)
, (3.34b)

Y = KC, (3.34c)

where functions K , C and f are arbitrary. The line element is therefore given by

ds2 = (2KĊ)2dt

+

(
2K ′C[3C4 + f(r)]

5C4 − f(r)

)2

dr2 + (KC)2(dθ2 + sin2 θdφ2). (3.35)

3.5 New Solution

Equation (3.11) is an inhomogeneous Riccati equation if we set

Ẏ ′

Y ′
− A′

A

Ẏ

Y ′
= 0. (3.36)

Integrating the above equation we get

A = Ẏ α(t), (3.37)

where α(t) is a function of integration. On substitution, (3.11) becomes

Ḃ =

[
Ẏ (1 + α2)

2αY Y ′
− α̇

α2Y ′

]
B2 −

[
Ẏ ′α +

Ẏ Y ′α

2Y

]
(3.38)
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which is an inhomogeneous Riccati equation which is difficult to solve. However again

placing particular restrictions on ff and Y , it is possible to integrate the above equation.

We take ff to be a real function and Y to be a sum of two functions of the following

form

Y (t, r) = a(t) + b(r), (3.39)

where a(t) and b(r) are arbitrary functions of k and r respectively. The class of solu-

tions derived here are different from those described in section 3.4 as those models do

not satisfy (3.39).

By introducing the transformation

B = wb′(r), (3.40)

and using (3.39), (3.38) becomes

ẇ =
αȧ

2(a(t) + b(r))

[(
(1 + α2)

α2
− 2α̇(a(t) + b(r))

α3

)
w2 − 1

]
. (3.41)

We introduce the function g(r) expressed as

g(r) =
1 + α2

α2
− 2α̇(a(t) + b(r))

α3
. (3.42)

Note g(r) can be defined only on the coordinate r to complete the integration. Differ-

entiating (3.42) with respect to r we obtain

g′(r) = −2α̇b(r)

α3
.
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This result implies that

g(r) = γb(r) + γ0, (3.43a)

α =
1

(γ1 + γt)
1
2

. (3.43b)

For consistency we have α is a constant from (3.42). Then (3.41) can be expressed as

ẇ =
αȧ(t)

2(a(t) + b(r))

[
1 + α2

α2
w2 − 1

]
. (3.44)

We integrate (3.44) to obtain

w(t) =
αtanh(1

4
(−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C))
√

1 + α2
(3.45)

where C is the constant of integration. Substituting equation (3.45) into (3.40) results

in

B =

(
αtanh(1

4
(−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C))
√

1 + α2

)
×b′(r). (3.46)

The line element has the form

ds2 = −(αȧ(t))2dt+ ($)2dr2 + (a(t) + b(r))2(dθ2 + sin2 θdφ2), (3.47)

where

$ =

(
αtanh(1

4
(−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C))
√

1 + α2

)
b′(r),
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for the assumption (3.39) and the gravitational potential A = Ẏ α(t) from (3.37).

Our objective was to obtain a new solution to the boundary condition for an

expanding shearing star with particles in non-geodesic motion. For the metric (3.47)

we observe from (3.3a) that the acceleration vanishes; consequently the particles are

travelling on geodesic paths. Even though the particle motion is geodesic this model

is a new solution to the Einstein field equations. Models obtained earlier cannot be

regained from the metric (3.47). We note that the solution has a simple form and

the quantities a(t) and b(r) are arbitrary. It is possible that the other choices for

the potential Y (t, r) may lead to an accelerating model; this is an objective of future

research.

We can now compute the dynamical quantities from the Einstein field equation
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(3.7). We obtain the expressions

ρ =
2

(αȧ(t))2

ζ

$

ȧ(t)

a(t) + b(r)
+

1

(a(t) + b(r))2

+
1

(αȧ(t))2

ȧ2(t)

(a(t) + b(r))2

− 1

ϕ

(
2

b′′(r)

a(t) + b(r)
− 2

ν

$

b′(r)

a(t) + b(r)

)
, (3.48a)

pr =
1

(αȧ(t))2

(
−2

ä(t)

a(t) + b(r)
− ȧ2(t)

(a(t) + b(r))2
+ 2

αä(t)

αȧ(t)

ȧ(t)

a(t) + b(r)

)
+

1

ϕ

(
b′2(r)

(a(t) + b(r))2
+ 2

(αȧ(t))2

αȧ(t)

b′(r)

a(t) + b(r)

)
− 1

(a(t) + b(r))2
, (3.48b)

pt = − 1

(αȧ(t))2

(
ϑ

$
− αä(t)

αȧ(t)

ζ

$
+
ζ

$

ȧ(t)

a(t) + b(r)

)
− 1

(αȧ(t))2

(
−αä(t)

αȧ(t)

ȧ(t)

a(t) + b(r)
+

ä(t)

a(t) + b(r)

)
− 1

ϕ

(
ν

$

b′(r)

a(t) + b(r)

)
+

1

ϕ

(
b′′(r)

a(t) + b(r)

)
, (3.48c)

q = − 2

(αȧ(t))$2

(
ζ

$

b′(r)

a(t) + b(r)

)
, (3.48d)

in terms of the constants α, C and the arbitrary functions a(t) and b(r). We have

introduced the new quantities ζ, ϑ, ν and ϕ for convenience. These are defined by:
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ζ =
1

4
√

1 + α2

×αsech

(
1

4

(
−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C
))2

×(−2
√

1 + α2a(t)a′(t)− 2
√

1 + α2b(r)a′(t))b′(r), (3.49a)

ϑ = − b′(r)

8
√

1 + α2

×αsech

(
1

4

(
−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C
))2

×tanh

(
1

4

(
−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C
))

×
(
−2
√

1 + α2a(t)a′(t)− 2
√

1 + α2b(r)a′(t)
)2

+
b′(r)

4
√

1 + α2

×αsech

(
1

4

(
−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C
))2

×(−2
√

1 + α2a′2(t)− 2
√

1 + α2a(t)a′′(t)− 2
√

1 + α2b(r)a′′(t)), (3.49b)

ν = −1

2
αa(t)

×

(
sech

(
1

4

(
−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C
))2

b′(r)

)
b′(r)

+

(
αtanh(1

4

(
−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C
)
)

√
1 + α2

)
×b′′(r), (3.49c)

ϕ =

(
αtanh(1

4

(
−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C
)
)

√
1 + α2

)2

×b′2(r). (3.49d)

A physical analysis of the variables in (3.48)-(3.49) will be pursued in the future.
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We have checked the accuracy of the results in this chapter with the help of Mathe-

matica (Wolfram 2008).

We observe that the quantities α, C, a(t) and b(r) are arbitrary quantities in the

solution given above. Particular choices simplify the form of the solution. We illustrate

this by making the choice

α = 1, (3.50a)

C = 1, (3.50b)

a(t) = t, (3.50c)

b(r) = r, (3.50d)

without losing generality. Then the matter variables (3.49) can be written in the
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simpler form

ρ = 2
ζ

$

1

t+ r
+

2

(t+ r)2

+
1

ϕ

(
2
ν

$

1

t+ r

)
, (3.51a)

pr = − 2

(t+ r)2

+
1

ϕ

(
1

(t+ r)2
+ 2

1

t+ r

)
, (3.51b)

pt = −
(
ϑ

$
+
ζ

$

1

t+ r

)
− 1

ϕ

(
ν

$

1

t+ r

)
, (3.51c)

q = − 2

$2

(
ζ

$

1

t+ r

)
, (3.51d)

which has a simpler form than the expressions given earlier.

The quantities ζ, ϑ, ϕ and ν also take on a simple form. They are given by
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ζ =
1

4
√

2

×sech

(
1

4

(
−
√

2t2 − 2
√

2tr − 4
√

2
))2

×(−2
√

2t− 2
√

2r, (3.52a)

ϑ = − 1

8
√

2

×sech

(
1

4

(
−
√

2t2 − 2
√

2tr − 4
√

2
))2

×tanh

(
1

4

(
−
√

2t2 − 2
√

2tr − 4
√

2
))

×
(
−2
√

2t− 2
√

2r
)2

+
1

4
√

2

×sech

(
1

4

(
−
√

2t2 − 2
√

2tr − 4
√

2
))2

, (3.52b)

ν = − t
2

×

(
sech

(
1

4

(
−
√

2t2 − 2
√

2tr − 4
√

2
))2

)
, (3.52c)

ϕ =

(
tanh(1

4

(
−
√

2t2 − 2
√

2tr − 4
√

2
)
)

√
2

)2

. (3.52d)
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Chapter 4

Conclusion

In this thesis we have studied radiating relativistic stars which are expanding, ac-

celerating and shearing. We found that the boundary condition, matching the interior

spacetime to the exterior spacetime, can be written as a Riccati equation in general.

This is the fundamental equation that governs the radiating star in spherical symme-

try. The goal of this thesis was to generate a new solution for the Riccati equation

by assuming that the gravitational potential possesses a non-separable form. We first

considered the geodesic case with particles travelling with constant velocity. Exact so-

lutions were reviewed for various forms of the gravitational potential and we regained

the models of Thirukkanesh and Maharaj (2010). A new solution was generated which

results in a new class of Einstein field equations and line element.
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We then used the same analogy for the non-geodesic case with accelerating par-

ticles. We solved the Riccati equation by using a particular form of the gravitational

potential. Exact solutions were reviewed by regaining linear, Bernoulli and inhomoge-

neous Riccati equations. We regained the known models of Thirukkanesh and Maharaj

(2012). A new (non-shearing) solution was found which results in a new class of Ein-

stein field equations and line metric.

We now present an overview of the main results which are achieved during the

course of this thesis:

In chapter 2 we considered the case of geodesic motion for the fluid particles. We

derived the new line element

ds2 = −dt2

+

((
1− exp(tb(r) + 2D + ta0 + t2a1

2
+ tb(r)a2

1 + ta0a
2
1 + 1

2
t2a3

1)

1 + exp(tb(r) + 2D + ta0 + t2a1
2

+ tb(r)a2
1 + ta0a2

1 + 1
2
t2a3

1)

)
b′(r)

)2

dr2

+(a0 + a1t+ b(r))2(dθ2 + sin2 θdφ2),

with the assumption Y (t, r) = a(t) + b(r). If we let

a0 = 0,

a1 = 1,
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then the above metric takes the simple form

ds2 = −dt2

+

((
1− exp(tb(r) + 2D + t2

2
+ tb(r) + 1

2
t2)

1 + exp(tb(r) + 2D + t2

2
+ tb(r) + 1

2
t2)

)
b′(r)

)2

dr2

+(t+ b(r))2(dθ2 + sin2 θdφ2).

This is a new solution which has not been published elsewhere and it is not contained

in the papers of Naidu et al (2006), Rajah and Maharaj (2008) and Thirukkanesh and

Maharaj (2009, 2010). The simple form of the solution allows us to present expressions

for the matter variables energy density, radial and tangential pressures, and heat flux.

In Chapter 3 we considered the case of non-geodesic motion for the fluid particles.

We derived the new line element

ds2 = −(αȧ(t))2dt+ ($)2dr2 + (a(t) + b(r))2(dθ2 + sin2 θdφ2),

where

$ =

(
αtanh(1

4
(−
√

1 + α2a2(t)− 2
√

1 + α2a(t)b(r)− 4α
√

1 + α2C))
√

1 + α2

)
b′(r),
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with the assumption Y (t, r) = a(t) + b(r). If we let

a(t) = t,

b(r) = r,

C = 1,

α = 1,

then the above metric takes the form

ds2 = −dt+ ($)2dr2 + (t+ r)2(dθ2 + sin2 θdφ2),

where

$ =

(
tanh(1

4
(−
√

2t2 − 2
√

2tr − 4
√

2))
√

2

)
.

This is a new solution, it has not been published elsewhere, and it is not contained in

the papers of Herrera and Santos (2010), Govender et al (2010) and Thirukkanesh et al

(2012). We observe that we were seeking a non-geodesic solution but our solution turns

out to be geodesic. However, we note that this still constitutes a new solution. This

solution allows us to find simple expressions for the matter variable: energy density,

radial and tangential pressures, and heat flux.

In summary, we have generated a new solution of a radiating star when the interior

expanding, shearing fluid particles are moving in geodesic motion when the condition
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of separability in the metric function has been relaxed. Similarly a second new solu-

tion has been found, when considering the non-geodesic case, where the gravitational

potential has a non-separable form. Therefore two new classes of solutions, satisfying

their respective boundary conditions, have been found.

The new exact solutions for geodesic fluids make it possible to investigate the

physical features of the model such as luminosity, rate of collapse, particle production,

neutrino flux, and temperature profiles as demonstrated by Thirukkanesh and Maharaj

(2010). To determine particular explicit forms for the causal temperature, we need to

solve the Maxwell-Catteneo heat transport equation

τhbaq̇a + qa = −κ(hba∇bT + T u̇a).

This is a causal transport equation and generalises the Fourier law as indicated in

Naidu et al (2006) and Maharaj (2008). This will be pursued in the future.
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