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Abstract

Let G be a prescribed permutation group. We study the question of existence
of self-dual codes over a field F = Fq, q = pl, p a prime, admitting G, that is,
are G-invariant. This depends on the structure of G and its representations
as well as the base field Fq. We investigate what conditions are necessary
and sufficient for the existence of such codes. Representation theoretic as
well as group theoretic methods are used. For the binary case we look at the
existence of self-dual binary codes of length n which are invariant under the
symmetric groups Sn and the alternating groups An, n ≥ 4. We find that such
codes do not exist. Further, for the sporadic simple and almost simple groups
of degree≤ 2000, M11,M12,M22,M23,M24, J1, J2, HS,HS:2, Co3,M12:2,M22:2
and J2:2 we search for G-invariant self-dual codes of various lengths and at-
tempted a classification where computations were possible, or theoretical
methods permitted.
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Chapter 1

Introduction

Given a permutation group G acting on a set Ω of n points, we construct
a binary code C(G,Ω) = 〈Fix(σ)|σ ∈ I(G)〉⊥, where I(G) is the set of
involutions of G and Fix(σ) = {ω ∈ Ω|ωσ = ω} is the set of fixed points of
the permutation σ, i.e., C(G,Ω) is the code generated by the sets of fixed
points of involutions of the group. We use representation theoretic methods
to obtain the permutation representation of G on the cosets of a subgroup
H of G. Since this action is transitive, we can treat Ω as the set G/H where
H is chosen such that |G : H| = n.

The code obtained in the construction above is very useful in the search for
self-dual codes which are invariant under the action of the group G in that
every self-orthogonal code of length n which is invariant under G is contained
in C(G,Ω). Further, every self-dual code C is such that C(G,Ω)⊥ ⊂ C ⊂
C(G,Ω). This provides a good starting point for the search of G-invariant
self-dual codes.

Using libraries of groups in the computer algebra packages GAP [19] and
MAGMA [9] , we construct codes invariant under some sporadic simple and
almost simple groups of degree ≤ 2000. We also apply the method to the
symmetric groups on n = 2m points for 2 ≤ m ≤ 50, and in this case we found
that there are no self-dual codes of length n = 2m invariant under the action
of the symmetric groups. Modular representation theoretic considerations
come in as we regard all the G-invariant codes as F2G modules. A theorem
of Günther and Nebe shows that for a code to be self dual, all the constituents
of the code regarded as an F2G module occur with even multiplicities. We use
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this theorem to further refine our search. Although our treatment is general
and applicable to any prime field, particular attention has been given to
binary codes.

In Chapter 2 we lay down the basics of the theory of linear codes and
designs. In Chapter 3 we show how G-invariant linear codes can be viewed
as FG-modules. We discuss the rudiments of modules and representation
theory. A method of constructing codes spanned by the sets of fixed points
of involutions of some permutation groups due to Chigira et al in [35] is
presented in Chapter 4. This is of interest to us because every self-dual code
is necessarily self-orthogonal. Further, some necessary conditions for the
existence of self-dual codes are embedded within the construction. Given a
permutation group G and a set Ω of n points, we construct the code C(G,Ω),
which is the dual of the code spanned by the sets of fixed points of involutions
of the group G. Chapter 5 surveys existence criteria for self-dual permutation
codes over arbitrary fields of positive characteristic not necessarily 2. Many
of the results in this chapter are due to Fan Yun and Yuan Yuan [49]. We
conclude by giving a catalogue of our results in Chapter 6.

For general representation theory, both ordinary and modular, we used
[13],[14],[15],[32],[18] and [26] as sources. Benson’s notes [7] were found to be
excellent. For the theory of groups, we found [41],[48],[4] and [3] as very good
sources. We refer the reader to [1],[42], [43] and [8] for general ring theory.
For the theory of error-correcting codes and designs, we found [5],[23],[38]
and [33] readable. As general reference books we used [16] and [31].
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Chapter 2

Basics of Coding Theory

In this chapter we lay down the basics of the theory of linear codes and
designs.

2.1 Basic definitions

We use F to denote a finite field, which for the most part will be F2 as
we study binary codes more extensively compared to the other codes. We
however give general definitions because non-binary codes are also considered.
Thus throughout this chapter we assume F = Fq, the field of q elements,
q = pl for some prime p and a natural number l.

Definition 2.1.1. If F is a finite field, then F n, the set of all n-tuples of F
is a vector space over F for some n ∈ N. A linear code C of length n is a
subspace of F n.

The elements of the code C are called codewords. The field F is called the
alphabet. To introduce all the parameters of a code, we need to define a
distance function d called Hamming distance.

Definition 2.1.2. For vectors x = (x1, . . . , xn) and
y = (y1, . . . , yn) ∈ F n the Hamming distance is defined by d(x, y) =
|{i|1 ≤ i ≤ n; xi 6= yi}|. The set {i|1 ≤ i ≤ n; xi 6= 0} is called the support
of x.

In other words, the Hamming distance d(x, y) between x and y is the number
of coordinate places where they differ.
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Definition 2.1.3. For x ∈ F n, the weight w(x), of x is defined as

w(x) := d(x,0).

In other words, the weight of a word is the number of non-zero coordinates
the word has. With this set up, we see that d(x, y) = w(x− y). We now give
another important definition.

Definition 2.1.4. The minimum distance d, of a code C is the minimum of
all the distances between words of the code, that is

d := min{w(x− y)|x, y ∈ C;x 6= y}.

It is not difficult to see that for linear codes, the minimum weight is the
minimum distance. We are now in a position to give the definition of a linear
code with all the parameters.

Definition 2.1.5. A k-dimensional linear subspace C of F n is called an [n, k]
code over F. Further, if the minimum weight d, of C is known, then C is known
as an [n, k, d] code. The numbers n, k, d are called the parameters of the code.

Definition 2.1.6. A code whose codewords have weight divisible by 2 is
called an even code. If a code has weight divisible by 4 then it is called
doubly even. A code is singly even if it is not doubly even.

Definition 2.1.7. Let C be an [n, k] code. Then a k × n matrix E whose
rows are made up of any k linearly independent vectors of C is called the
generator matrix of C.

2.2 Inner products and the dual code.

A concept that pervades the whole of algebra is the formation of new struc-
tures from given old ones. Our definition of linear codes makes it clear
that codes are nothing but subspaces of the vector space F n. Suppose C is
a given [n, k] code. Further, suppose that C as a vector space is endowed
with the standard inner product <,>, where for u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) ∈ C, we have < u, v >= u1v1 + u2v2 + · · · + unvn. Then
we have a natural way of obtaining a new code from C.
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Definition 2.2.1. Let C be an [n, k, d] code. The dual of C, C⊥ is defined
as :

C⊥ := {u| < u, v >= 0 for all v ∈ C}.

It is not difficult to prove that C⊥ is a linear code, that is, a subspace of F n.

Proposition 2.2.1. Suppose C is an [n, k] code. Then C⊥ is an [n, n − k]
code.

Proof. Since< 0, v >= 0 for all v ∈ C, we have C⊥ 6= ∅. Let c1, c2 ∈ C⊥, α, β ∈
F. Then

< αc1 + βc2, c > = α < c1, c > +β < c2, c >

= α.0 + β.0, (c1, c2 ∈ C⊥.)
= 0,

for all c ∈ C. It follows that αc1 +βc2 ∈ C⊥ and by the Subspace Theorem of
elementary linear algebra, C⊥ is a subspace of F n. The last part is a standard
linear algebraic result.

Definition 2.2.2. Let C be a linear code. Then the hull of C is defined as
the intersection C ∩ C⊥.

Definition 2.2.3. Let C be an [n, k] code. A generator matrix of C⊥ is called
the parity check matrix for C.

Having defined the dual of a code, we can now give some important properties
of some codes.

Definition 2.2.4. Let C be an [n, k] code. Then C is said to be self-
orthogonal if C ⊂ C⊥. We say C is self-dual if C = C⊥.

The focus of this work is on self-dual codes. We make a few notes concerning
them.

Proposition 2.2.2. Let C be an [n, k] code. Then (C⊥)⊥ = C.

Proof. For all c ∈ C, we have < c, c∗ >= 0 for all c∗ ∈ C⊥. It follows that
c ∈ (C⊥)⊥ and C ⊆ (C⊥)⊥. But dim((C⊥)⊥) = n − (n − k) = k = dim(C),
thus we must have (C⊥)⊥ = C.

For a self-dual code C, we have dim(C⊥) = n − k = dim(C) = k so we have
n = 2k which is even. Therefore k = n

2
.
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2.3 Group action on codes

We recall a few facts about group action from elementary group theory.

Definition 2.3.1. Let G be a group and let X be a set. We say G acts on
X (from the left) or X is a (left) G-set if there is a map

G×X → X, (g, x) 7→ gx

satisfying

(1) (gg′)x = g(g′x), and

(2) 1Gx = x

for all x ∈ X and g, g′ ∈ G.

If X is a G-set, then the kernel of the action of G on X is the set
K = {g ∈ G| gx = x for all x ∈ X}. We say G acts faithfully on X if the
kernel K of the action is trivial, that is, the set {1G} containing only the
identity element of G. An equivalent concept to the definition of the action
of a group G on a set X is the condition that G be realised as a permutation
group on X, that is, there is a group homomorphism φ : G→ SX .

Definition 2.3.2. Let X be a G-set and x ∈ X. The stabilizer of x under
G,Gx is defined as Gx := {g ∈ G| gx = x}. The orbit of x under the action
of G, denoted OrbG(x), is the set

OrbG(x) := {gx| g ∈ G}.

It is easy to prove that the G-orbits partition X by defining an equivalence
relation ∼ on X : x ∼ y if and only if there exists g ∈ G such that y = gx.
Further, Gx is a subgroup of G for every x ∈ X.

Definition 2.3.3. A G-set X is transitive if there is an x ∈ X such that
OrbG(x) = X, that is there is exactly one orbit under the action of G on X.

The following result is useful in the subsequent sections.

Theorem 2.3.1. Let X be a transitive G-set and x ∈ X. Then the G-action
on X is equivalent to the G-action on G/Gx, the set of all left cosets gGx by
multiplication on the left.
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Proof. We note that it is an elementary exercise to prove that G acts on left
cosets of any subgroup by multiplication on the left. By transitivity all the
elements of X are of the form gx, g ∈ G. Consider the mapping

θ : G/Gx → X, gGx 7→ gx.

Then the mapping is clearly surjective by the transitivity of X. Suppose that
θ(gGx) = θ(hGx) with g, h ∈ G. Then by definition, gx = hx. By the second
axiom of a group action, Definition 2.3.1 (2), we have x = 1x = g−1gx =
g−1hx so g−1h ∈ Gx which forces gGx = hGx establishing that θ is injective.
Therefore, θ is a bijection. Take an arbitrary y ∈ X and assume that y′ ∈ X
is such that y′ = gy. Set y = g0x, g0 ∈ G. Then y corresponds to the coset
θ−1(g0x) = g0Gx. Because y′ = gy = g(g0x) = gg0x, y

′ corresponds to the
coset θ−1(gg0x) = gg0Gx. Thus when y uniquely maps to g0Gx and vice
versa, we see gy maps uniquely to gg0H and conversely so G-actions on X
and G/Gx correspond to each other by the bijection between them.

Let G ≤ Sn be a permutation group. The natural action of the group G
on the set Ω = {1, 2, . . . , n} induces an action of G on a F n (hence on any
[n, k] code ) given by

σ(v) = vσ := (vσ(1), vσ(2), . . . , vσ(n)),

where v = (v1, v2, . . . , vn), σ ∈ G. This action is equivalently given by σ(v) =
(v1σ−1 , v2σ−1 , . . . , vnσ−1 ), where iσ

−1
= σ−1(i). In this dissertation we shall

always use the former notation for the action of a permutation group on a
code. With this notation, we see that (vσ)τ = vτσ.

Definition 2.3.4. Let G ≤ Sn be a permutation group and C be an [n, k]
code. Then

σ(C) = Cσ := {σ(c)|c ∈ C}.

This brings us to an important concept in coding theory, namely that of code
(in)equivalence.

Definition 2.3.5. Two [n, k] codes C1, C2 are equivalent if there exists a
permutation σ ∈ Sn such that C1 = Cσ2 .

The notion of equivalence of codes is important because codes which are
equivalent have the same parameters and properties so the classification of
codes is up to equivalence.
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Definition 2.3.6. Let G ≤ Sn be a permutation group and C be an [n, k]
code. We define G(C) = CG := {cσ|c ∈ C, σ ∈ G}. The code C is said to be
G-invariant if CG = C.

2.3.1 The automorphism group of a code

The concept of automorphisms is very important in algebra. In this section
we briefly look at the automorphism groups of codes.

Definition 2.3.7. The set of automorphisms of an [n, k] code C, denoted
Aut(C), is defined as :

Aut(C) := {σ ∈ Sn|Cσ = C}.

This is the set of all permutations which map C to itself.

It is an elementary group theory exercise to prove that Aut(C) is a group.
The definition above is not general . It can be generalised through the study
of isometries, so that field automorphisms are taken into account. Recall
from elementary linear algebra that given a metric space V, an isometry is a
mapping from V to itself that preserves distance. We give a formal definition
below.

Definition 2.3.8. A mapping ι : F n → F n is called an isometry if it
respects the Hamming distance, that is d(v,0) = d(vι,0).

Definition 2.3.9. A mapping σ : F n → F n is called semilinear if there
exists an automorphism α of F such that for all u, v ∈ F n and κ ∈ F, the
following holds:

(i) σ(u+ v) = σ(u) + σ(v) and

(ii) σ(κu) = α(κ)σ(u).

This gives the following general setting for code equivalence.

Definition 2.3.10. Two codes C and C ′ are equivalent if there exists a semi-
linear isometry ι : F n → F n such that Cι = C ′.

Note that in the definition above we implicitly used the fact that linear
codes are essentially metric spaces, namely Hamming subspaces, as they
are equipped with a distance function, the Hamming distance. We have
the following general definition of automorphisms of a linear code and the
attendant automorphism group.
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Definition 2.3.11. An automorphism of a linear code C is a semilinear
isometry which maps C onto itself. These mappings form a subgroup Aut(C)
of the group of all semilinear isometries. In other words, Aut(C) is the
stabilizer of C in the isometry group G of Hamming space. Equivalently, this
can be viewed as the image of the said subgroup in the group of permutations
of C.

Remark 2.3.2. Definitions 2.3.10 and 2.3.11 are generalizations of definitions
2.3.5 and 2.3.7 respectively. However, because we mostly consider binary
codes in the cases where we use these concepts, we will subsequently use
the later set for equivalence of codes and automorphism groups of codes
respectively.

The Hamming space F n has two natural sources of isometries. One can apply
a permutation of F to each coordinate or an arbitrary permutation to the set
of n coordinates. This generates a group G of n!.q!n isometries which is the
wreath product, that is a semidirect product of Sn acting on (Sq)

n. It can be
shown that in fact G is the full isometry group of the Hamming space.

We now give some results concerning the automorphism groups of codes
and their duals. First we prove a very straight forward result about the
standard inner product.

Lemma 2.3.3. Let V be a subspace of the vector space F n where F is a field
and let <,> be the standard inner product over V. If G ≤ Sn is a permutation
group and V is G-invariant then <,> is G-invariant.

Proof. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ V and σ ∈ G. Then

< σ(x), σ(y) > = < (x1σ , x2σ , . . . , xnσ), (y1σ ,

y2σ , . . . , ynσ) >

=
n∑
i=1

xiσyiσ

=
n∑

i′=1

xi′yi′ ( iσ ∈ {1, . . . , n})

= < x, y >

so <,> is G-invariant as required.

We now state a result which establishes the relationship between Aut(C) and
Aut(C⊥).
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Proposition 2.3.4. Let C be a code and C⊥ its dual. Then Aut(C) =
Aut(C⊥).

Proof. Let σ ∈ Aut(C). Then Cσ = C and σ−1 ∈ Aut(C). Further, let c ∈ C
and c∗ ∈ C⊥ be arbitrary. It follows that

0 = < c, c∗ > (By definition of C⊥.)
= < σ−1(c), c∗ > (Cσ = C.)
= < σ−1(c), σ−1(σ(c∗)) >

= < c, σ(c∗) > (By Lemma 2.3.3).

Therefore σ(c∗) ∈ C⊥ for all σ ∈ Aut(C), c∗ ∈ C⊥. This shows that for any
arbitrarily chosen σ ∈ Aut(C), C⊥ = (C⊥)σ and σ ∈ Aut(C⊥). We then have
the inclusion Aut(C) ⊆ Aut(C⊥). A reversal of the argument establishes the
reverse inclusion from which equality follows.

A consequence of this result which is of immense importance is that if a code
C is G-invariant for some permutation group G, then C⊥ is also G-invariant.

2.4 Designs

Designs and codes have many links. Designs turn up in the study of codes
and vice versa. In this section we introduce some elementary ideas of design
theory.

Definition 2.4.1. A t-(v, k, λ) design is a collection D of k-subsets, called
blocks, of a set X of v points such that any t-subset of X is contained in
exactly λ blocks of D. The parameters t, v, k, λ are such that v > k > t > 0
and λ > 0.

Definition 2.4.2. Two designs having the same parameters t, v, k, λ are
isomorphic if there is a bijection between their point sets mapping the
blocks of one design to the blocks of the other.

A t-(v, k, 1) design is called a Steiner system. These special designs are
customarily given by the notation S(t, k, v).

Definition 2.4.3. A projective plane of order n is an S(2, n+ 1, n2 + n+ 1)
Steiner system.
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Definition 2.4.4. The block intersection numbers of a design D are the
cardinalities of the intersections of any two distinct blocks.

Definition 2.4.5. A t-(v, k, λ) design is self-orthogonal if the block inter-
section numbers have the same parity as the block size k. Further, a 2-(v, k, λ)
design is symmetric if all block intersection numbers are λ.

The concept of self-orthogonal designs was introduced by V. D. Tonchev [46].

Remark 2.4.1. In the literature, it is more common to define a symmetric
design as a design in which the number of blocks equals the number of points.
However, from this definition we can show equivalence with the one given
above.

Definition 2.4.6. (Incidence Matrix)
Let D = (P ,B, I) be a t-(v, k, λ) design where P = {p1, p2, . . . , pv} is the
point set of the design, B = {B1, B2, . . . , Bk} is the set of blocks of the design
and I ⊆ P×B. Then the incidence matrix of D is defined to be the matrix
A = [aij]k×v, where

aij =

{
1 (pj, Bi) ∈ I,
0 (pj, Bi) /∈ I.

The concept of a code being a vector space naturally lends to a description of
codes as spaces spanned by some q-ary vectors, where F = Fq is the ground
field over which the vector space is defined. Often times it is a matter of
expediency that one consider codes as subspaces of vector spaces spanned by
sets. Such considerations arise in the study of codes obtained from combi-
natorial designs for example. Because of our construction in Chapter 5, we
are interested in such considerations. The following notation follows that of
Assmus and Key [5].

Definition 2.4.7. For a field F and a set Ω, denote by FΩ the vector space
of functions from Ω to F with addition and multiplication being point-wise.
For a subset Y of Ω, denote the characteristic function on Y by the vector
vY , that is ,

vY (ω) =

{
1 if ω ∈ Y
0 otherwise.

We can easily show that the standard basis for FΩ is {v{ω}|ω ∈ Ω}. The
standard basis for F n, the space of n-tuples, has a natural ordering through
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the numbers 1 to n. To avoid ordering, we may take V = FX , where X is a
set of cardinality n. Then by the foregoing discussion, a code is a subspace
of V whose basis is specified through the coordinate functions vi, for i ∈ X,
that is vi(i) = 1 and vi(j) = 0 for j 6= i. Note that for the case where Ω is a
singleton we may write vω for v{ω} where there is no danger of confusion.

Definition 2.4.8. Let V be a vector space. Then by V ∗ we denote the
dual space of V, the space of all linear transformations from V to the 1-
dimensional vector space F. Let C be a subspace of V = F n. Then the
functionals, ϕi : C → F for i ∈ {1, 2, . . . , n} are defined by cϕi = ci where ci
is the i-th coordinate of c, that is, c = (c1, c2, . . . , cn). It follows that ϕi ∈ C∗,
the dual of C. We use this to define codes spanned by sets. This follows from
the ideas expressed by Assmus and Mattson in their expository paper [6].
The next result is taken from [5].

Proposition 2.4.2. Let U be a vector space of dimension k over the field
F = Fq and let S be a sequence, {f1, . . . , fn} of functionals in U∗ such that
S spans U∗. Taking V = F n, the set

C = {(f1(u), f2(u), . . . , fn(u))|u ∈ U}

is a linear code of length n and dimension k over F.

Proof. Let θ : U → F n, θ(u) = (f1(u), f2(u), . . . , fn(u)). Then

θ(u+ v) = (f1(u+ v), f2(u+ v), . . . , fn(u+ v))

= (f1(u) + f1(v), f2(u) + f2(v), . . . , fn(u) + fn(v))

= (f1(u), f2(u), . . . , fn(u)) + (f1(v), f2(v), . . . , fn(v))

= θ(u) + θ(v),

using the fact that the fi are linear functionals and the definition of function
addition. It follows that θ is linear. Because the functionals span U∗, the
kernel of θ is {0}. Thus C has dimension k as required.
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Chapter 3

Background from Group
Representation Theory

In this chapter we show how G-invariant linear codes can be viewed as FG-
modules. We discuss the rudiments of modules and representation theory.
Throughout this chapter G denotes a finite group and R is a commutative
unital ring, unless stated otherwise. Further, provided the contrary has been
declared, we assume F to be a field, unless stated otherwise.

3.1 Basics

In this section a brief background of the module theory required in this survey
up to the level of self-containment is given.

Definition 3.1.1. Let R be a ring. Then AR, or just A if the context is
clear, is a right R-module if A is an abelian group, written additively, and
there is a map θ : A×R→ A

θ((a, r)) = ar

which satisfies

1) (a+ b)r = ar + br,

2) a(r + s) = ar + as,

3) a(rs) = (ar)s,

13



4) a1R = a.

Thus left modules can be defined analogously with multiplication by the
elements of the ring on the left instead of the right. If a module is finitely
generated by a subset and has a basis then such a module is referred to as a
free module.

Definition 3.1.2. The right regular R-module RR (analogously RR for
left modules) is defined to be the additive group of R made into a right
(respectively left) module by multiplication to the right (respectively left).

Because of convenience, from now on we will assume that every module
is a left module.

Definition 3.1.3. Let M be an R-module. Then a subgroup N ≤ M is a
submodule of M if for all r ∈ R and n ∈ N, rn ∈ N.

Definition 3.1.4. Let M and N be R-modules. Then a group homomor-
phism f : M → N is an R-module homomorphism if for all r ∈ R and
m ∈M, f(rm) = rf(m).

The concept of modules is a generalisation of the notion of vector spaces over
arbitrary rings instead of fields. If F is a given field and G is a finite group,
then the study of FG-modules will be of central importance.

Definition 3.1.5. Let F be a field and V be a finite dimensional vector space
over F. A representation ρ is a homomorphism from G to GL(V ), the group
of all invertible linear transformations over V. The dimension n = dimF (V )
of V is called the degree of the representation.

If V is of dimension dim(V ) = n and a basis B is chosen for V, then we
can obtain an isomorphism from GL(V ) to GL(n, F ). Therefore we have the
following equivalent concept of group representations.

Definition 3.1.6. Let G be a finite group and let F be a commutative ring
of coefficients. A representation of G over F is a group homomorphism
G→ GL(n, F ) for some n.

The later definition is usually called the matrix representation.

Definition 3.1.7. A representation ρ : G → GL(V ) is faithful if ker(ρ) =
{1G}.
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Certain authors sometimes refer to a representation ρ : G → GL(V ) as an
F -representation of G on V. As usual the group algebra FG consists of
linear combinations of elements of G with coefficients in F. Addition and
multiplication are defined as follows:(∑

g∈G

αgg

)
+

(∑
g∈G

βgg

)
=

∑
g∈G

(αg + βg)g,(∑
g∈G

αgg

)(∑
g∈G

βg

)
=

∑
g∈G

(∑
hh′=g

αhβh′

)
g.

The structure FG is a ring, an F -algebra even.

Remark 3.1.1. An R-algebra is a ring A together with a ring homomorphism
λA : R→ Z(A) satisfying λA(1R) = 1A, where Z(A) is the centre of A.

Definition 3.1.8. Let ρ : G → GL(V ) be an F -representation. The cen-
tralizer of ρ is the algebra of all linear transformations A : V → V for which
Aρ(g) = ρ(g)A for all g ∈ G. If ρ̄ is a matrix representation, the centralizer
algebra is the algebra of all n×n matrices which commute with ρ̄(g) for all
g ∈ G.

3.1.1 The link between codes and FG-modules

Here we give the important link between linear codes and FG-modules which
will be of importance in the sequel. Given a representation ϕ : G →
GL(n, F ), V = F n is made into a FG-module via

(
∑
g∈G

αgg).v :=
∑
g∈G

αgϕ(g)(v), v ∈ V.

Conversely, provided that an FG-module M, regarded as an F -module via
the inclusion F ↪→ FG, is finitely generated and free, a representation ϕ :
G → GL(n, F ) can be obtained by choosing an F -basis for M and setting
ϕ(g)(v) = g.v, g ∈ G, v ∈ V. It follows from the definition of linear codes as
subspaces of F n for some finite field F that they are simply FG-submodules.
Thus, for a permutation group G, the G-invariant codes are precisely the
FG-submodules of F n.

Example 3.1.2. For a field F the representations of G correspond to finite
dimensional FG-modules.
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Definition 3.1.9. Two representations
ϕ : G → GL(n, F ) and ψ : G → GL(m,F ), are similar if n = m and there
exists X ∈ GL(n, F ) such that Xϕ(g)X−1 = ψ(g) for all g ∈ G. In general
an intertwining operator is an n×m matrix X with the property that

ϕ(g)X = Xψ(g),∀g ∈ G.

This is equivalent to a homomorphism between the corresponding FG-modules.

Example 3.1.3. For G = Z/2Z = {1, t}, F = F2, define ϕ : G → GL(2, F )
by

ϕ(1) =

(
1 0
0 1

)
, ϕ(t) =

(
1 1
0 1

)
.

Then the corresponding FG-module is given by

(
∑
g∈G

µgg).v =
∑
g∈G

µgϕ(g)(v)

= (α.1 + β.t)v

= (αϕ(1) + βϕ(t))v

=

(
α

(
1 0
0 1

)
+ β

(
1 1
0 1

))(
x
y

)
=

((
α 0
0 α

)
+

(
β β
0 β

))(
x
y

)
=

(
α + β β

0 α + β

)(
x
y

)
=

(
(α + β)x+ βy

(α + β)y

)
.

3.1.2 The dual of a module.

The concept of dual modules will be important in establishing a criterion for
the existence of self-dual codes invariant under some permutation group. We
give the definition of this notion below.

Definition 3.1.10. Let V be a right FG-module. Then the dual module,
V ∗ = HomF (V, F ), the set of all homomorphisms from V to F is a right
FG-module where if f ∈ V ∗, g ∈ G and v ∈ V, then fg(v) := f(vg−1). The
module V ∗ is called the contragredient module to V. If V ∼= V ∗ then we
say V is self-dual.
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3.2 Reducibility and decomposability

Before we discuss the important subject of decomposition and irreducibility,
we give a definition of invariant spaces.

Definition 3.2.1. Let ρ be a representation of G on V. Then a subspace W
of V is ρ-invariant if ρ(g)W ⊆ W for all g ∈ G.

Definition 3.2.2. A representation ϕ : G → GL(n, F ) is reducible if it is
similar to a representation ψ such that

ψ(g) =

(
∗ ∗
0 ∗

)
∀g ∈ G.

A representation is irreducible if it is non-zero and not reducible.

Given an n-dimensional vector space, the subspace spanned by the first i < n
basis vectors is an invariant subspace. (W ≤ V is invariant if gw ∈ W ∀g ∈
G,∀w ∈ W.)

Definition 3.2.3. Let F be a commutative unital ring (not necessarily a
filed). An FG-module V is reducible if there is a submodule W of V with
0 6= W 6= V. Provided that F is a field this concept corresponds to the
reducibility of the representation. A FG-module is irreducible or simple
if it is non-zero and not reducible.

Definition 3.2.4. A representation ϕ : G→ GL(n, F ) is decomposable if
it is similar to a representation ψ such that

ψ(g) =

(
∗ 0
0 ∗

)
,∀g ∈ G.

This says that V = W1⊕W2, dim(W1) = i, dim(W2) = j with W1,W2 invari-
ant subspaces.

Definition 3.2.5. A FG-module V is decomposable if V = W1⊕W2 with
W1,W2 non-zero submodules of V. If V is non-zero and not decomposable,
then V is indecomposable. We say that V is completely reducible or
semisimple if it can be written as a direct sum of irreducible submodules.

We now define absolutely irreducible representations but we will try to
avoid using the technicalities of tensor products in our definition. From
elementary algebra we recall that if F is a field and K is another field with
F ⊆ K, then we say K is an extension of F.
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Definition 3.2.6. Let ρ : G→ GL(V ) be an F -representation of G. We say
the representation ρ is absolutely irreducible if it is irreducible for any
extension K of F. If K is the smallest field containing F such that all the
F representations of G are absolutely irreducible, then any extension field
K ⊆ L containing K is called a splitting field for G.

It was shown in Section 3.1 that having a representation of G is equivalent
to having an FG-module so the definition above can be equivalently stated
in terms of FG-modules.

Lemma 3.2.1. (Schur’s Lemma) Suppose ρ and ϕ are irreducible
F -representations of G on vector spaces V and W respectively, and ψ : V →
W is a linear transformation such that

ψρ(g) = ϕ(g)ψ

for all g ∈ G. Then ψ = 0 or else ψ is an isomorphism (hence ρ ∼ ϕ.)

Proof. Suppose that ψ 6= 0. Let V1 = ker(ψ) and W1 = Im(ψ). If v ∈ V1, then
0 = ϕ(g)ψv = ψρ(g)v for all g ∈ G, so ρ(g)v ∈ ker(ψ) and ρ(g)V1 ⊆ V1 =
ker(ψ), that is V1 is ρ-invariant. But V1 6= V so V1 = 0 since ρ is irreducible
and hence ψ is injective.

If w ∈ W1, write w = ψ(u), u ∈ V. Then

ϕ(g)w = ϕ(g)ψ(u)

= ψ(ρ(g)u) ∈ Im(ψ) = W1

for all g ∈ G. Therefore W1 is ϕ-invariant and non-zero, so W1 = W by
irreducibility. It follows that ψ is surjective. Thus ψ is a bijection so an
isomorphism.

3.3 Homomorphisms, tensors and exact se-

quences

The study of the set of all homomorphisms from one algebraic structure to
another gives insight into the properties of the structures themselves. Tensor
products, which are defined in terms of homomorphisms, provide a way of
constructing new modules from old ones. The study of these is the basis for
this section. First the concept of bimodules is introduced.
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Definition 3.3.1. Let R, S be rings. A commutative group A, additively
written, is an (R,S)-bimodule if it is a left R-module and it is also a right
R-module.

Definition 3.3.2. Let R, S be rings, M an (R, S)-bimodule and N an S-
module. The map f : M ×N to an R-module U is balanced if

• f(m1 +m2, n) = f(m1, n) + f(m2, n), for all m1,m2 in M and n ∈ N.

• f(m,n1 + n2) = f(m,n1) + f(m,n2) for all m ∈M,n1, n2 ∈ N.

• f(ms, n) = f(m, sn) for all m ∈M,n ∈ N and s ∈ S.

• f(rm, n) = rf(m,n) for all m ∈M,n ∈ N and r ∈ R.

Definition 3.3.3. Let R, S,M and N be as in the previous definition. The
tensor product of M and N over S is an R-module denoted by M ⊗S N,
equipped with a balanced map η : M × N → M ⊗S N such that if U is an
R-module and f : M×N → U is a balanced map there is a unique R-module
homomorphism α : M ⊗S N → U such that f = α ◦ η, or such that the fol-
lowing diagram commutes:

M ×N M ⊗S N

U

η

f

∃!α

Tensor products exist and are unique up to isomorphism. We write m⊗
n = η(m,n) for some m ∈ M and n ∈ N. The tensor product M ⊗S N is
the R-module generated by the set {m ⊗ n|m ∈ M,n ∈ N} where m ⊗ n
satisfies:

(1) (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n for all m1,m2 ∈M and n ∈ N,

(2) m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2 for all m ∈M and n1, n2 ∈ N,

(3) (ms)⊗ n = m⊗ (sn) for all m ∈M,n ∈ N and s ∈ S.
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Example 3.3.1. Consider the case where R is a field F and U and V are
finite-dimensional F -vector spaces. Then U is an (F, F )-bimodule so that
the vector space U ⊗F V can be constructed. If {u1, · · · , ur} and
{v1, · · · , vs} are bases for U and V respectively, then U ⊗F V is an rs-
dimensional F -vector space having as a basis the set {ui ⊗ vj| 1 ≤ i ≤
r, 1 ≤ j ≤ s}. If u =

∑
i aiui ∈ U and v =

∑
j bjvj ∈ V, then u ⊗ v =∑

i,j aibj(ui ⊗ vj).

Example 3.3.2. If R is a commutative ring then left and right modules
are equivalent. Given any two (left) R-modules M and N,M ⊗R N can be
formed and this again is an R-module via

r(m⊗ n) = rm⊗ n = m⊗ rn, r ∈ R,m ∈ N, n ∈ N.

A ring R can be regarded as an (R,R)-bimodule via left and right multiplica-
tion. If S is a subring ofR,R can similarly be regarded as an (R, S)-bimodule.
If H is a subgroup of G, then FH can be regarded as a subring of FG and
FG is viewed as a (FG,FH)-bimodule. If M is a FH-module, FG⊗FH M
is a left FG-module called the induced module M ↑G. In this work we also
use the notation IndGH for induced modules. The group Hom(N,Hom(M,A))

corresponds bijectively to the set of bilinear maps M×N → A. The right ac-
tion of R on M gives a left action of R on Hom(M,A) by (rϕ)(m) = ϕ(mr)
where ϕ ∈ Hom(M,A),m ∈ M and r ∈ R. Thus it makes sense to look
at Hom(N,Hom(M,A)). It corresponds bijectively to the set of R-balanced
bilinear maps M ×N → A. Hence the definition of the general tensor prod-
uct given (also called the universal property of tensor products) gives an
isomorphism of abelian groups

HomR(N,Hom(M,A)) ∼= HomS(M ⊗R N,A).

If M is an (S,R)-bimodule and A is a left S-module then this isomorphism
restricts to

HomR(N,HomS(M,A)) ∼= HomS(M ⊗R N,A).

In particular we have

HomFH(U,HomFG(FG, V )) ∼= HomFG(FG⊗FH U, V ).
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Since FG is viewed as a (FG,FH)-bimodule,we can regard HomFG(FG, V )
as a left FH-module by restriction, V ↓H . Thus the isomorphism theorem
of Nakayama or the Frobenius Reciprocity Theorem

HomFH(U, V ↓H) ∼= HomFG(U ↑G, V )

is obtained. If U and V are two FG-modules, then U ⊗F V becomes an

FG-module via

g(u⊗ v) = gu⊗ gv, g ∈ G, u ∈ U, v ∈ V.

Remark 3.3.3. Elements of the group algebra FG act in a way extended
linearly from the action of G. From this we deduce that

(g + h)(u⊗ v) = gu⊗ gv + hu⊗ hv
6= (g + h)u⊗ (g + h)v,

where g, h ∈ G, u ∈ U and v ∈ V.
Similarly, HomF (U, V ) becomes an FG-module: if f ∈ HomF (U, V ) and

g ∈ G,
(gf)(u) = f(g−1u).

With these definitions, if U, V and W are FG-modules, then

HomF (U,HomF (V,W )) ∼= HomF (U ⊗F V,W )

is an isomorphism of FG-modules. Taking G-fixed points on both sides,

HomFG(U,Hom(V,W )) ∼= HomFG(U ⊗F V,W )

is obtained.

Definition 3.3.4. A short exact sequence of FG-modules is a sequence
of FG-modules and FG-module homomorphisms of the form

0→ V1 → V2 → V3 → 0

such that for each pair of composable arrows the image of the left one is the
kernel of the right one. A short exact sequence

0→ V1
α→ V2

β→ V3 → 0

is split if there is a map V3
γ→ V2 (a splitting) such that β ◦ γ = idV3 .
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In the case of a split short exact sequence in Definition 3.3.4 V2 =
α(V1) ⊕ γ(V3) ∼= V1 ⊕ V3. This is because for a short exact sequence the
homomorphisms α, β are necessarily injective and surjective respectively.
Further, given v2 ∈ V2, β(v2) ∈ V3 and γ(β(v2)) ∈ V2. Taking an element
z = v2 − γ(β(v2)) ∈ V2, then

β(z) = β(v2 − γ(β(v2)))

= β(v2)− β(γ(β(v2)))

= β(v2)− idV3(β(v2))

= β(v2)− β(v2) = 0.

Thus z ∈ ker(β) = Im(α) = α(V1), since the sequence is short exact. There-
fore, v2 = z + γ(β(v2)) ∈ α(V1) + γ(V3), where β(V3) = V3 by surjectivity
of β. Hence V2 = α(V1) + γ(V3). It remains to show that the sum is direct.
Suppose that v2 ∈ α(V1)∩γ(V3). Then v2 = α(v1) for some v1 ∈ V1. But then
α(V1) = ker(β) so β(α(v1)) = 0. Since v2 = α(v1) ∈ γ(V3), α(v1) = γ(v3) for
some v3 ∈ V3. Thus 0 = β(γ(v3)) = β ◦ γ(v3) = v3 from which v2 = α(v1) =
γ(v3) = 0. This establishes the directness of the sum. The map

θ : α(V1)⊕ γ(V3)

such that
α(v1) + γ(v3) 7→ v1 + v3

furnishes the required isomorphism.

Remark 3.3.4. Given a short exact sequence

0→ V1 → V2 → V3 → 0,

we may represent it as below in matrix notation

0→ (ϕ)→
(

(ϕ) ∗
0 (ψ)

)
→ (ψ)→ 0.

The notion of short exact sequences is a particular case of the notion of
exact sequences which will be defined below.

Definition 3.3.5. Let R be a ring and M1,M2, · · · ,Mn be R-modules. A

sequence M1
f1→M2

f2→M3
f3→ · · · fn−2→ Mn−1

fn−1→ Mn of R-homomorphisms fi
is exact at Mi if Imfi−1 = kerfi. The sequence is exact if it is exact at each
Mi, i ∈ {2, · · · , n}.
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If L is a submodule of M, then 0 → L
1L→ M

nat→ M/L → 0 is exact.

Conversely, if 0 → L
f→ M

g→ M/L → 0 is exact, then L ∼= f(L), a
submodule of M and N ∼= M/f(L). The following lemma follows naturally
from the definition.

Lemma 3.3.5. Assume that 0→ L
f→M

g→ N → 0 is an exact sequence of
R-modules. Then the following are equivalent:

(1) There is an R-map i : N →M with g ◦ i = 1N (splitting),

(2) There is an R-map j : M → L with j ◦ f = 1L,

(3) For some submodule M1 of M,M = f(L)⊕M1 and M1
∼= N.

Proof. It can easily be proven that (1) and (2) are equivalent to (3).

At this stage a module-theoretic version of Maschke’s Theorem can be
stated.

Theorem 3.3.6. (Maschke’s Theorem) If |G| ∈ F× and 0 → V1
α→ V2

β→
V3 → 0 is a short exact sequence of k-modules then it splits as a short exact
sequence of FG-modules.

Proof. Given a k-splitting ϕ : V3 → V2, set
γ = 1

|G|
∑

g∈G g
−1ϕg. If x ∈ V3,

βγ(x) =
1

|G|
∑
g∈G

βg−1ϕgx =
1

|G|
∑
g∈G

g−1βϕxg = x,

since β ◦ γ = idV3 . Thus γ is an FG-splitting. Further, if h ∈ G, then

γ(hx) =
1

|G|
∑
g∈G

g−1ϕghx =
1

|G|
∑
g∈G

hh−1g−1ϕghx

= h
1

|G|
∑
g∈G

(gh)−1ϕ(gh)x

= hγ(x).

Equivalently, we can say that under the hypothesis of the theorem above,
every FG-module is completely reducible.
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3.4 Structure theorems

In this section we state without proof two important structure theorems
which we need in subsequent sections, namely the Jordan-Hölder Theorem
and the Wedderburn Structure Theorem, which is sometimes referred to as
the Artin-Wedderburn Theorem.

Definition 3.4.1. A module M has a composition series if there exists a
finite series of submodules M = Mk ⊃ Mk−1 ⊃ · · · ⊃ M1 ⊃ M0 = {0}
such that the quotient modules Mi/Mi−1 are simple for all 1 ≤ i ≤ k. The
modules Mi/Mi−1 are called composition factors of the series and k is called
the length of the series. Two composition series are equivalent if there is an
isomorphism between the composition factors.

Theorem 3.4.1. (Jordan-Hölder) If a module V has a composition series
then any two composition series are equivalent.

Theorem 3.4.2. (Wedderburn Structure Theorem).
Let R be a finite-dimensional algebra over a finite field F and suppose that
R is semisimple. Then

R ∼=
m∏
i=1

Matdi(∆i)

where ∆i is a division ring containing F in its centre and finite-dimensional
over F and Matdi(∆i) denotes the ring of all di×di matrices over the division
ring ∆i.

3.5 Characters

As it may not be easy to deal computationally with FG-modules especially
when the degrees of the corresponding representations are large as finding all
FG-submodules is a computationally intractable problem. However, there
is an equivalent way which is relatively easier to handle, namely character
theory. In this section we introduce some basic notions of character theory
and use them to show how an existence criterion for self-dual binary codes
can be tested computationally.

Definition 3.5.1. Let T : V → V be a linear transformation. Then we define
tr(T ) = tr(A) for any representing matrix A of T. As usual if A = [aij]n×n,
then tr(A) =

∑n
i=1 aii.
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It is an exercise in elementary Linear Algebra to show that tr(AB) = tr(BA).
We will use this simple yet useful result in some work that follows.

Definition 3.5.2. If ρ is an F -representation of G then the character χ =
χρ of ρ (or afforded by ρ) is the function from G to F defined by

χ(g) = tr(ρ(g))

for all g ∈ G.

All the adjectives used to describe representations can be used with charac-
ters as well, for example reducible, irreducible, faithful, linear and so on. We
now give the following simple but extremely useful result.

Proposition 3.5.1. Let χ = χρ be a character of G. Then χ is a class
function, that is it is constant on conjugacy classes of G.

Proof. If g, h ∈ G then

χ(g−1hg) = tr(ρ(g−1hg))

= tr(ρ(g−1)ρ(h)ρ(g))

= tr(ρ(h)ρ(g−1)ρ(g)), (tr(AB) = tr(BA))

= tr(hg−1g)

= tr(ρ(h)) = χ(h)

Proposition 3.5.2. If ρ, ϕ are equivalent as F -representations of G, then

χρ = χϕ.

Proof. For suitable chosen bases, [ρ] = [ϕ], where [ρ], [ϕ] are the matrix
representations corresponding to ρ, ϕ respectively.

Proposition 3.5.3. If ρ, ϕ are F -representations, then

χρ⊕ϕ = χρ + χϕ.

Proof. Since [ρ⊕ ϕ] is similar to

(
[ρ] 0
0 [ϕ]

)
the result is clear.
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Corollary 3.5.4. Suppose char(F ) - |G| and that χ is an F -character of G.
Then there are irreducible F -characters χ1, . . . , χk of G such that

χ = χ1 + · · ·+ χk.

Proof. Let χ = χρ for some F -representation ρ. Then by Maschke’s Theorem,
we have

ρ ∼ ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρk.
Let χi be the character afforded by ρi for each i. Applying Proposition 3.5.3
the result follows.

We define the concept of inner products of functions.

Definition 3.5.3. If ϕ and θ are functions from G to F define a symmetric
bilinear form on the space of all functions f : G→ F by

< ϕ, θ >=
∑
g∈G

ϕ(g)θ(g−1).

Many results in ordinary representation and character theory require the field
to be algebraically closed. As a result the field C is often used as a ground
field, or in some instances its subfields which are splitting fields for a given
group G.

Theorem 3.5.5. If F ⊆ C is a splitting field for G, and if χ1, . . . , χk are all
absolutely irreducible F -characters of G, then

< χi, χj >= δij

for all i, j.

Proof. This is a special case of a result proved in the standard texts of the
subject which states that the inner product of two distinct irreducible char-
acters of G is zero and that the inner product of an irreducible character
with itself is 1.

Corollary 3.5.6. If χ1, . . . , χr are all absolutely irreducible characters of G
and χ is any F -character, then

χ =
r∑
i=1

< χ, χi > χi.
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Proof. From Corollary 3.5.4, χ =
∑r

i=1 niχi where 0 ≤ ni ∈ Z for all i. Thus

< χ, χj > = <

r∑
i=1

niχi, χj >

=
r∑
i=1

ni < χi, χj >

=
r∑
i=1

niδij

= nj

for all j.

All the irreducible characters χi for which < χ, χi >6= 0 are called the con-
stituents of χ and the integers ni =< χ, χi > are called the multiplicities
of the constituents.

3.6 Brauer characters

In the previous sections many of the results relied on the fact that the char-
acteristic of the field does not divide the order of the group. However, in the
study of G-invariant codes it is often the case that the characteristic of the
field divides the order of the group. Thus a need arises to develop a theory
that will work in the event that this important condition is not met. In this
section we will briefly discuss modular characters. Let M be a CG-module.
Then there is a class function

χM : {conjugacy classes of G} → C

given by g 7→ tr(g,M). The following proposition is a characterization of
ordinary characters of finite groups. We will state it without proof here.

Proposition 3.6.1. Let M and M ′ be CG-modules. Then the following holds
for characters χ of G.

(1) χM⊕M ′ = χM + χM ′ .

(2) χM⊗M ′ = χMχM ′ .
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(3) If χM = χM ′ , then M ∼= M ′.

The goal of this section is to develop character theory over fields of non-
zero characteristics p, p prime, such that (1) and (2) hold and χM = χM ′
if and only if M and M ′ have the same composition factors with the same
multiplicities. However, we soon have a problem. If M is a direct sum of
p copies of M ′, then for all g ∈ G, tr(g,M) = p.tr(g,M ′) = 0. Thus Brauer
character theory has to be used in such cases.

Theorem 3.6.2. Let F be an algebraically closed field of characteristic p, p
a prime. Then the following are equivalent.

(i) For all g ∈ G, tr(g,M) = tr(g,M ′).

(ii) For each simple FG-module S, the multiplicities of S as a composition
factor of M and M ′ are congruent modulo p.

Proof. For 0→M1 →M2 →M3 → 0, the following situation arises:

M2 =

(
M1 ∗
0 M3

)
.

Thus tr(g,M2) = tr(g,M1) + tr(g,M3), and if M and M ′ have the same
composition factors then for all g ∈ G, tr(g,M) = tr(g,M ′). Without loss of
generality, suppose that M and M ′ are semisimple. Since tr(g, pS) = 0, (ii)
implies (i). Conversely, if tr(g,M) = tr(g,M ′) for all g ∈ G, we have
tr(x,M) = tr(x,M ′) for all x ∈ FG. Using the Wedderburn structure Theo-
rem, there are elements xi ∈ FG such that

tr(xi, Sj) =

{
1 i = j,

0 i 6= j.

Thus tr(xi,M) equals the number of copies of Si as a composition factor of
M modulo p.

3.7 p and p′ elements

Definition 3.7.1. We set F to be a field of characteristic p, p a prime. A
p-element of a finite group G is an element whose order is a p power, that
is, the order is pa for some a ∈ N. A p′-element is an element whose order
is relatively prime to p.
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Lemma 3.7.1. Let G be a finite group. Given g ∈ G, g can be written as
g = xy such that

(i) x is a p-element.

(ii) y is a p′-element.

(iii) Every element of G that commutes with g commutes with x and y.

The elements x and y are known as the p-part (p-regular part) and the
p′-part (p′-regular part) of g respectively.

Proof. Let the order of g be n = pam, with p - m. Since gcd(pa,m) = 1,
there exist s, t ∈ Z such that spa + tm = 1. Then g = gtmgsp

a
. Take x to be

gtm and y to be gsp
a
. Because x, y are powers of g, they commute with any

element that commutes with g.

In the literature p-elements are sometimes called p-singular elements while
p′-elements are called p-regular elements. Suppose F and G are as in Defini-
tion 3.7.1. Suppose further that F has all the |G|p′ = |Gp′ |-th roots of unity
where Gp′ is the set of all p′ elements. These form a cyclic group of order
|G|p′ under multiplication. All eigenvalues of elements of G belong to this
cyclic group. Choose an isomorphism of cyclic groups, namely ψ from the
set {|G|p′-th roots of unity in F×} to the set
{|G|p′-th roots of unity in C}. If g is a p′-element (i.e., an p-regular element)

of G and M a finite dimensional FG-module, then g ∼

λ1

. . .

λd

 ,

and d = dimFM. Define

ϕM(g) :=
d∑
i=1

ψ(λi).

Here we note that ϕM(g) is a cyclotomic integer which gives a map

ϕM : {conjugacy classes of p′-elements of G} → C.

(Recall from elementary number theory a cyclotomic integer is an integral
linear combination of powers of a primitive nth root of unity, that is, if ζ is
a primitive nth root of unity, a cyclotomic integer is of the form a0 + a1ζ +
· · ·+ an−1ζ

n−1, ai ∈ Z.)
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Theorem 3.7.2. For finite-dimensional modules M and M ′ the following
are equivalent:

(1) ϕM = ϕM ′

(2) The multiplicities of each simple FG-module as composition factors of
M and M ′ are equal.

Proof. Without loss of generality, assume that M and M ′ are semisimple.
The conditional statement (2) ⇒ (1) is self-evident. For the converse, a
counter example of smallest dimension is looked at. If M and M ′ have a
composition factor in common this can be removed to get a smaller example.
Therefore, assume that they do not. If ϕM = ϕM ′ , by reducing back to F
we obtain tr(g,M) = tr(g,M ′) for all g ∈ G so that the multiplicities are
congruent modulo p. Thus, all multiplicities are divisible by p. Therefore
M = pM1 and M ′ = pM ′

1. Further, ϕM = pϕM1 and ϕM ′ = pϕM1 . Hence M1

and M ′
1 give a smallest counter example.

3.8 Choice of ψ and Brauer character table.

Let G be a finite group with order |G| = pam, p - m and let F be a field of
characteristic p, p a prime. Suppose that F has all the mth roots of unity.
Let C, Ĉ be the groups of mth roots of unity in F and C respectively. Let
K := Q[Ĉ], the field formed by adjoining the complex mth roots of unity to
the field of rationals. Then from the theory of field extensions and Galois
theory,

Gal(K/Q) ∼= Aut(Ĉ) ∼= Z/ϕ(m)

where ϕ is the Euler totient function. Let OK be the ring of integers in K.
Then Z[Ĉ] = OK . We note that OK is a Dedekind domain and in particular,
every prime ideal in OK is maximal. Choose a prime ideal p of OK lying
over p, that is p ∩ Z = pZ. Then the following holds:

Proposition 3.8.1. The field OK/p is the smallest field containing mth roots
of unity: if pr is the smallest power of p such that m | pr − 1, then

OK/p ∼= Fpr ↪→ F,

Ĉ + p ∼= C

and Gal(Fpr/Fp) ∼= Stabilizer of p in Gal(K/Q) ∼= Z/rZ.
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Proof. We note that since gcd(m, p) = 1, we have m | pϕ(m) − 1 by Euler’s
Theorem. Let ζ be a primitive mth root of unity in C. Then OK/p is the
field extension of Fp generated by the image of ζ + p. Since

Xm − 1

X − 1
= Xm−1 +Xm−2 + · · ·+ 1 =

m−1∏
j=1

(X − ζj),

setting X = 1 gives 1− ζj | m in OK for all j = 1, . . . ,m− 1. If 1− ζj ∈ p,
then m ∈ p∩Z = pZ, contradicting gcd(m, p) = 1. Thus ζ + p is a primitive
mth-root of unity so OK/p ∼= Fpr and Ĉ + p ∼= C.

Definition 3.8.1. (Brauer character table) The Brauer character table
of a finite group G (modulo p) is a table with rows indexed by simple FG-
modules S and columns indexed by conjugacy classes of p′ elements of G and
whose entries are the values of Brauer characters ϕS(g).

Note that once the isomorphism ψ : C → Ĉ has been established, all other
isomorphisms C → Ĉ are obtained by applying elements of Gal(K/C). Rows
of the Brauer table of G are the irreducible Brauer characters ϕS where S is
a simple FG-module. The columns of the Brauer character table of G are
the ring homomorphisms χ−(g) : R(G)→ C, where g is a p-regular element
of G.

Proposition 3.8.2. (1) If an element of Gal(K/Q) is applied to a column
of the Brauer character table, then another column is obtained.

(2) If an element of the stabilizer of p in Gal(K/Q) is applied to a row of
the Brauer character table, then another row is obtained.

Proof. (1) Let ζ be a primitive mth root of unity in C. Then K = Q(ζ) and
an element σ of Gal(K/Q) sends ζ to ζt for some t such that gcd (m, t) =
1. Then for each p-regular element g of G,χσ−(g) = χ−(gt).

(2) The element σ of Gal(K/Q) stabilizes p when t is a power of p. Let S be a
simple FG-module with corresponding representation ρ : G→ GLn(F ).
Then Sσ is an FG-module with the corresponding representation

ρσ : G
ρ→ GLn(F )

g 7→ (λij(g)) 7→ (λij(g)t).
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Thus the Brauer character table is determined by the choice of p up to
permutations of rows and columns.

Remark 3.8.3. If an element of Gal(K/Q) which does not stabilize p is ap-
plied to a row of the Brauer character table, another row is not necessarily
obtained.

Example 3.8.4. Let p = 2 and m = 7. Then the seventh roots of unity in
F have two possible minimal polynomials, X3 +X2 + 1 or X3 +X + 1. Let
ζ be a seventh root of unity in C. Then there are two prime ideals in Z[ζ],
namely p1 = [2, ζ3 + ζ2 + 1] and p2 = [2, ζ3 + ζ + 1] lying over 2 (that is,
pi ∩ Z = piZ, i = 1, 2) such that Z[ζ]/p1

∼= F8
∼= Z[ζ] ∼= Z[ζ]/p2.

3.9 Condition for the existence of self-dual

codes.

We end this chapter by giving a result which gives a necessary and sufficient
condition for the existence of self-dual binary codes due to A. Günther and
G. Nebe [22].

Theorem 3.9.1. Let G ≤ Sn. Then there exits a self dual code C ⊆ Fn2 with
G ≤ Aut(C) if and only if every simple self-dual F2G-module S occurs with
even multiplicity in the F2G-module Fn2 .

As in the original paper, we present the proof as a series of lemmas.

Lemma 3.9.2. Let V be a simple self-dual F2G-module and assume that V
carries a non-degenerate symmetric G-invariant bilinear form ϕ : V × V →
F2. Then ϕ is unique up to isometry (an isometry is a distance preserving
linear map).

Proof. Consider the map αϕ : V → V ∗ given by v 7→ (v′ 7→ ϕ(v, v′)). By the
non-degeneracy of the bilinear form, we have that ϕ(v, v′) = 0 for all v′ if and
only if v = 0. Thus ker(αϕ) = 0 and the map is injective. The map is clearly
homomorphic and surjective so is an isomorphism. Let ψ : V × V → F2 be
another non-degenerate symmetric bilinear form on V. Then αψ = αϕ ◦ ϑ for
some ϑ in the field

C := EndG(V )
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of all F2G-endomorphisms of V. Thus

ψ(v, v′) = αψ(v)(v′) = αϕ(ϑ(v))(v′) = ϕ(ϑ(v), v′)

for all v, v′ ∈ V. Consider the involution τ on C given by

ϕ(v, α(v′)) = ϕ(ατ (v), v′)

for v, v′ in V. Since both ϕ and ψ are symmetric,

ϕ(ϑ(v), v′) = ψ(v, v′) = ψ(v′, v)

= ϕ(ϑ(v′), v)

= ϕ(v, ϑ(v′))

= ϕ(ϑτ (v), v′)

for all v, v′ ∈ V therefore ϑ ∈ F = {α ∈ C|ατ = α}. We have that the
involution τ is either the identity on C or a field automorphism of order
2. In the first instance F = C = {αατ = α2|α ∈ C} as squaring is a field
automorphism of the finite field C. In the second case the map C → F, α 7→
αατ is the norm map onto the field F. In either case there exists γ ∈ C with
γγτ = ϑ. It follows that γ induces an isometry between the spaces (V, ϕ) and
(V, ψ) since ψ(v, v′) = ϕ(ϑ(v), v′) = ϕ(γτ (γ(v)), v′) = ϕ(γ(v), γ(v′)) for all
v, v′ ∈ V.

Lemma 3.9.3. Let G ≤ Sn and N ⊆M ⊆ Fn2 be G-submodules (G-invariant
codes). Then (M/N)∗ ∼= N⊥/M⊥.

Proof. Let M∗
N := {f ∈ HomF2(M,F2)|f(n) = 0 ∀n ∈ N} ⊆ M∗. Then M∗

N

is canonically isomorphic to
(M/N)∗. Let

β : N⊥ →M∗
N , n

′ 7→ (m 7→ b(m,n′)).

Then β is well defined and surjective since Υ : Fn2 → F×, v 7→ (m 7→ b(m, v))
is surjective and Υ (v) ∈ M∗

N if and only if v ∈ N⊥. The kernel of β is M⊥

and hence by The First Isomorphism Theorem of modules

Im(β) = M∗
N , (by surjectivity)

∼= N⊥/ ker(β) = N⊥/M⊥

∼= (M/N)∗.
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Corollary 3.9.4. Let G ≤ Sn. If there exists a self-dual code C ⊆ Fn2 with
G ≤ Aut(C) then every self-dual simple G-module occurs with even multi-
plicity in a composition series of the F2G-module Fn2 .

Proof. Let C = Nk ⊇ Nk−1 ⊇ . . . ⊇ N1 ⊇ N0 = {0} be a composition series
of the F2G-module C. Then

C = C⊥ = N⊥k ⊆ N⊥k−1 ⊆ . . . N⊥1 ⊆ N⊥0 = Fn2

is a composition series of Fn2/C⊥ as dualizing gives an automorphism W 7→
W⊥ of the submodule lattice of Fn2 . The composition factors satisfy

N⊥i−1/N
⊥
i
∼= (Ni/Ni−1)∗

by Lemma 3.9.3. The result follows.

Lemma 3.9.5. Let V be a simple self-dual F2-module endowed with a non-
degenerate G-invariant symmetric bilinear form ϕ. The module
(U, ψ) :=⊥ki=1 (V, ϕ) contains a submodule X with

X = X⊥,ψ := {u ∈ U | ψ(u, x) = 0 for all x ∈ X}

if and only if k is even.

Proof. If U contains such a module X = X⊥,ψ then k is even by Corollary
3.9.4. Conversely, if k is even, then X = {(v1, v1, v2, v2, . . . , vk/2, vk/2)} ⊆ V
satisfies X = X⊥,ψ.

We are now in a position to prove Theorem 3.9.1.

Proof of Theorem 3.9.1. If C ⊆ Fn2 := V is a self-dual G-invariant code then
every self-dual simple module occurs with even multiplicity in a composition
of V by Corollary 3.9.4. Conversely, assume that every self-dual composition
factor occurs in V with even multiplicity and M ⊆M⊥ ⊆ V is a maximally
self-orthogonal code (there is no G-invariant self-dual code properly contain-
ing M). Then there exists a G-invariant non-degenerate symmetric bilinear
form on the G-module M⊥/M, that is,

ϕ : M⊥/M ×M⊥/M → F2

such that
(m′ +M,m′′ +M) 7→ (m′,m′′).
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Now, any proper F2G-submodule X of (M⊥/M,ϕ) with X ⊆ X⊥,ϕ would
lift to a self-orthogonal G-invariant code in V properly containing M, which
is impossible. This implies that every F2G-submodule X ⊆M⊥/M has a G-
invariant complement X⊥,ϕ, that is M⊥/M is isomorphic to a direct sum of
simple self-dual modules, (M⊥/M,ϕ) ∼=⊥V∼=V ∗ (V, ϕV )nV , where ϕV is a non-
degenerate G-invariant bilinear form on V which is unique up to isometry, by
Lemma 3.9.2. By hypothesis, every simple self-dual G-module occurs with
even multiplicity in M⊥/M, that is all the nV are even. But by Lemma 3.9.5
this means that the nV must all be zero, that is, M = M⊥ is a self-dual code
in V.

Testing this condition in practice is not easy. A more computationally conve-
nient way of carrying out the test is to use character theory. From standard
character theory texts, we have that if F is the complex number field, V an
FG-module and V ∗ is its dual, then

χV = χV ∗ .

If a G-module V is self-dual then we have

χV = χV ∗

= χV .

This is equivalent to saying that the character χV is real.

Using GAP or MAGMA, we get the Brauer (2-modular) character of the
F2G-module Fn2 and decompose it into the sum of irreducible Brauer char-
acters, which is equivalent to decomposing the module Fn2 into irreducible or
simple modules. To see which irreducible characters correspond to self-dual
modules, we look at the real character constituents. We then check the par-
ity of their multiplicities. Subsequently we use Theorem 3.9.1 to check if a
self-dual G-invariant code exists. This serves as a good preliminary check for
existence in the binary case.
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Chapter 4

A construction of
self-orthogonal codes from
permutation groups

In this chapter we present a method of constructing codes spanned by the
fixed points of involutions of some permutation groups due to Chigira et al
[35]. This is of interest to us because every self-dual code is necessarily self-
orthogonal. Further, some necessary conditions for the existence of self-dual
codes are embedded within the construction. Given a permutation group G
and a set Ω of n points, we construct the code C(G,Ω), which is the dual of
the code spanned by the sets of fixed points of involutions of the group G.
We first lay down some notation.

4.1 Notation

Definition 4.1.1. Let G be a group. A non-trivial element g ∈ G is called
an involution if g2 = 1G where 1G is the identity of the group.

Definition 4.1.2. A group G is almost simple if G0�G ⊆ Aut(G0) for some
non-abelian simple group G0.

We denote the set of all involutions of G by I(G). Since we are dealing with
permutation groups, we can form the sets of fixed points of involution as
follows:

Fix(σ) = {i ∈ Ω|iσ = i}
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where Ω is an n-point set, n the degree of the permutation group G and
σ some element of G. By iσ we mean σ(i). We will take Ω to be the set
{1, 2, . . . , n}. By P(Ω) we refer to the power set of Ω, the collection of all
subsets of Ω. We will show below that P(Ω) can be regarded as a vector
space over F2, the binary field, by defining addition as the symmetric set
difference. With this notation in place, we define the code C(G,Ω).

Definition 4.1.3. The binary code C(G,Ω) is defined as :

C(G,Ω) := 〈Fix(σ)|σ ∈ I(G)〉⊥,

where 〈Fix(σ)|σ ∈ I(G)〉 is the span of the sets Fix(σ), of fixed points of
involutions σ, of the group G.

Chigira et al [35, Theorem A] proved that if C is any self-orthogonal code of
length n, then C ⊆ C(G,Ω). They further proved that if C is a self-dual code
of length n, invariant under G, then

C(G,Ω)⊥ ⊆ C ⊆ C(G,Ω).

For our work to be self contained, we present the details of the proof. We
note that the last result gives us a starting point in the search for self-dual
codes of a certain length which are invariant under permutation groups.

4.2 The results

With the notation of the last section, we note that we have C(G,Ω) ∈ P(Ω).
The following holds.

Lemma 4.2.1. The collection P(Ω) can be regarded as an n-dimensional
vector space over F2, the field of two elements with addition in P(Ω) taken to
be the symmetric set difference. Additionally, the vector space can be endowed
with an inner product <,> defined by

< X, Y >:= |X ∩ Y | mod 2.

Proof. By definition, the symmetric set difference of X and Y is given as :

X M Y := {a ∈ X ∪ Y |a /∈ X ∩ Y }.
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Clearly, if A,B ∈ P(Ω), then A M B ∈ P(Ω). Further, by definition of the
symmetric set difference, A M B = B M A. For any X ∈ P(Ω) we have X M
∅ = X. Therefore ∅ is the additive identity. We also have X M X = ∅ for all
X ∈ P(Ω) so each X is self-inverting. Thus, (P(Ω),M) is an additive group.
Defining scalar multiplication by 1.X = X and 0.X = ∅, distributivity
follows trivially. Closure of P(Ω) under the scalar multiplication is also trivial
so P(Ω) is a vector space. To prove that the dimension of P(Ω) is n, we set
Xi = {i}, i ∈ Ω. Then the Xi are disjoint for different i ∈ Ω. Let B = {Xi}i∈Ω.
We claim that B spans P(Ω). Let X ∈ P(Ω). Then

X = Mn
i=1 Xi

= α1X1 M α2X2 · · · M αnXn,

where

αi =

{
1 i ∈ X
0 otherwise.

Thus our claim is proved. If ∅ =Mn
i=1 αiXi, then by definition of αi and

disjointness of the Xi, we have that all the αi = 0 which shows that B is a
linearly independent set and so is a basis for P(Ω). Given X, Y ∈ P(Ω) by
definition,

< X, Y > = |X ∩ Y |
= |Y ∩X|
= < Y,X >

so <,> is symmetric. It is not difficult to check that
< αX, Y >= α < X, Y > since there are only two scalars. We check linearity.
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To this end, let X, Y, Z ∈ P(Ω). Then working mod 2,

< X M Y, Z > = |[(X \ Y ) ∪ (Y \X)] ∩ Z|
= |((X \ Y ) ∩ Z) ∪ ((Y \X) ∩ Z)|
= |(X \ Y ) ∩ Z|+ |(Y \X) ∩ Z|
− |[(X \ Y ) ∩ Z] ∩ [(Y \X) ∩ Z]|
= |(X \ Y ) ∩ Z|+ |(Y \X) ∩ Z|
− |X ∩ Y c ∩ Z ∩ Y ∩Xc ∩ Z|
= |(X \ Y ) ∩ Z|+ |(Y \X) ∩ Z|
−|∅|

= |(X \ Y ) ∩ Z|+ |(Y \X) ∩ Z| − 0

= |[(X \ Y ) ∪ (X ∩ Y )] ∩ Z|
+|[(Y \X) ∪ (Y ∩X)] ∩ Z|

= |X ∩ Z|+ |Y ∩ Z|,

using set-theoretic definitions and in the penultimate line adding 2|X∩Y | ≡ 0
mod 2. It follows that <,> is linear and hence an inner product.

Using this inner product, the weight of X is the integer |X|. We now discuss
the specifics of the construction. If H is the stabilizer of a point and satisfies
NG(I(H)) = H, where as usual I(H) denotes the set of involutions of H,
then the codes C(G,G/H) are formed. The condition that NG(I(H)) = H
given above is equivalent to saying that the minimum weight of C(G,Ω) is
greater than 2. The scheme is as follows:

1. Define a group G and a subgroup H, such that NG(I(H)) = H.

2. Determine a permutation representation of G on
G/H by calculating the coset table.

3. Calculate the sets of fixed points of involutions of G.

4. Form the code C(G,G/H). We note that here Ω = G/H.

We then use the in-built functions of MAGMA to determine code invariants
like the dimensions, weights, minimum distances and so on. For ease of
manipulation for every X ∈ P(Ω) we form vectors vX with all the entries
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zero except at the i-th coordinate place if i ∈ X. In fact, the map θ : P(Ω)→
Fn2 , X 7→ vX = (v1, . . . , vn) where

vi =

{
1 if i ∈ X
0 otherwise

is an isomorphism of vector spaces. For example, if n = 4, we have Ω =
{1, 2, 3, 4}. If we let X = {2, 3}, then vX = (0, 1, 1, 0). In the subsequent
discussions we identify X ∈ P(Ω) with vX . From the previous chapter, we
saw that any G-invariant code can be regarded as a G-submodule over F2. In
general finding G-submodules is not any easy task but GAP and MAGMA
calculate these for degrees n which are not too large. Further, MAGMA has
a classification of G-submodules which can be used to classify G-invariant
self-dual codes. We now give the details of the proofs of the results stated
at the start of this chapter. We note that since the action of G on Ω =
G/H is transitive and a permutation representation of degree n is uniquely
determined up to equivalence, we write C(G,Ω) as C(G, n).

Theorem 4.2.2. Let C be a G-invariant binary self-orthogonal code of length
n. Then C ⊆ C(G,Ω).

Proof. Take a non-zero codeword X ∈ C, (that is let ∅ 6= X). Further, let
σ ∈ I(G). Then the subgroup 〈σ〉 of G acts on X ∩ Xσ. Since C is self-
orthogonal, the weight of X ∩ Xσ, |X ∩ Xσ| is even. Set Y = (X ∩ Xσ) \
(Fix(σ) ∩X). By definition of Y, y ∈ Y implies that y = xσ for some x ∈ X
and x 6= y. Thus x, xσ are different elements. Thus Y is a disjoint union
of the sets {a, aσ} for a ∈ Y since σ is well-defined, that is, if a 6= b, then
aσ 6= bσ. It follows that

|Y | = N |{a, aσ}|
= N.2

for some N. It follows that |Y | is even and therefore

|Fix(σ) ∩X| = |X ∩Xσ| − |Y |

is even being the difference of two even numbers and by the fact that X ∩
Xσ = Y ∪ (Fix(σ) ∩ X) is a disjoint union. Thus < X,Fix(σ) >= |X ∩
Fix(σ)| ≡ 0 mod 2 and hence X ∈ 〈Fix(σ)|σ ∈ I(G)〉⊥ so the result follows.
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The theorem above allows the characterisation of self-orthogonal or self-dual
codes with a fixed automorphism group.

Lemma 4.2.3. Let K act on Ω and G be a normal subgroup of K. Then
C(G,Ω) is K-invariant.

Proof. Let x ∈ K and σ ∈ I(G). For i ∈ Fix(σ), we have

(xσx−1)(x(i)) = xσ(x−1x(i))

= xσ(i)

= x(i) (iσ = i for i ∈ Fix(σ)).

Therefore, Fix(xσx−1) = x(Fix(σ)). We note that
xσx−1(x(i)) = x(i) shows that x(i) ∈ Fix(xσx−1). But x(i) ∈ x(Fix(i)) so
x(Fix(σ)) ⊆ Fix(xσx−1). Conversely, if y ∈ Fix(xσx−1), then y = (xσx−1)(y)
and

x−1(y) = x−1(xσx−1)(y)

= (x−1xσx−1)(y) = σx−1(y) = σ(x−1(y)).

It follows that x−1(y) ∈ Fix(σ). Therefore,

y = x(x−1(y))

= x(σ(x−1(y)))

and y ∈ xFix(σ) which gives the reverse inclusion and so equality follows.

Lemma 4.2.4. Let K act on Ω and G be a normal subgroup of K. If C(G,Ω)
is self-orthogonal, then C(G,Ω) = C(K,Ω).

Proof. Since I(K) ⊇ I(G) we have

Fix(I(K)) ⊇ Fix(I(G)).

Taking duals and using definition, we have

C(K,Ω) ⊆ C(G,Ω). (i)

On the other hand, by Lemma 4.2.3, C(G,Ω) is K-invariant. By hypothesis,
C(G,Ω) is self-orthogonal and by Theorem 4.2.2,

C(K,Ω) ⊇ C(G,Ω). (ii)

By (i) and (ii), equality follows and the result is established.
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Lemma 4.2.5. Suppose G = Aut(C(G,Ω)). If C1, C2 are distinct subcodes
of C(G,Ω) satisfying the condition G = Aut(C1) = Aut(C2), then they are
inequivalent.

Proof. Suppose for a contradiction that there exists π ∈ SΩ such that Cπ1 =
C2. Then πGπ−1 = Aut(Cπ1 ) = Aut(C2) = G. Thus, π preserves 〈Fix(σ)|σ ∈
I(G)〉, so π ∈ Aut(C(G,Ω))(= Aut(C1)). It follows that C1 = Cπ1 = C2

contradicting the fact that C1, C2 are distinct.

Lemma 4.2.6. Let D be a self-orthogonal t-(n, k, λ) design with k even.
Suppose that D is invariant under a permutation group G on the set Ω. Then
the code generated by the rows of the block incidence matrix of D is contained
in C(G,Ω).

Proof. Because k is even and the design is self-orthogonal, the code formed
in the hypothesis of the lemma is G-invariant and self-orthogonal and so the
result follows by Theorem 4.2.2.

4.2.1 An example

Many known self-orthogonal codes have sporadic almost simple groups as
automorphism groups. The following shows how one such relates to C(G,Ω).

Example 4.2.7. Let G = M24 and n = 24. The set of fixed points of 2A-
involutions forms the Witt system W24, the 5-(24, 8, 1) design or (5, 8, 24)
Steiner system. The 2B-involutions are fixed point free. Since the extended
Golay code G24 is generated by W24, we have C(G, 24)⊥ = G24. The code G24

is also obtained as C(M12:2, 24). The details of the calculation are below.
Using the table of Marks in GAP we construct the Mathieu group M24 as
follows:

gap> tom:=TableOfMarks("M24");

TableOfMarks( "M24" )

gap> m24:=UnderlyingGroup(tom);

Group([ (1,2)(3,4)(5,24)(6,12)(7,9)(8,10)

(11,17)(13,14)(15,16)(18,23)(19,21)(20,22),

(1,8,17)(2,18,7)(3,13,14)(4,20,19)

(5,6,15)(21,24,23) ])
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We then transfer to MAGMA. We do :

> M24:=PermutationGroup<24|[ (1,2)(3,4)

(5,24)(6,12)(7,9)(8,10)(11,17)(13,14)

(15,16)(18,23)(19,21)(20,22),(1,8,17)

(2,18,7)(3,13,14)(4,20,19)(5,6,15)(21,24,23) ]>;

We then calculate the conjugacy classes of M24:

>X:=ConjugacyClasses(M24);

A typical entry in X is

> X[2];

<2,11385,(2, 18)(3, 16)(4, 24)(8, 10)(9, 20)

(11, 23)(12, 15)(13, 17)>

which gives the order, size and representative of each conjugacy class respec-
tively. We find the conjugacy classes which contain involutions;

> l:=[];

> for i in [1..#X] do

for> if X[i,1] eq 2 then

for|if> l:=Append(l,i);

for|if> end if;

for> end for;

> l;

[ 2, 3 ]

which shows that M24 has two conjugacy classes, namely class 2 and class 3,
which contain involutions. The sets of involutions for each conjugacy class
are calculated:

>M24c2A:=Conjugates(M24,X[2,3]);

>M24c2B:=Conjugates(M24,X[3,3]);
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We now calculate the sets of fixed points of involution for each conjugacy
class:

>FixedPoints2AInvs:=[];

>for i in M24c2A do

for>set:={j:j in [1..24]|j^i eq j};

for|if>if #set ne 0 then

for|if>FixedPoints2AInvs:=Append(FixedPoints2AInvs, set);

for|if>end if;

for>end for;

> #FixedPoints2AInvs;

11385

FixedPoints2BInvs:=[];

for i in M24c2B do

for>set:={j:j in [1..24]|j^i eq j};

for|if> #set ne 0 then

for|if>FixedPoints2AInvs:=

Append(FixedPoints2AInvs,set);

for|if>end if;

for>end for;

>FixedPoints2BInvs;

[]

showing that the first set is non-empty and that the 2B-involutions act fixed-
point freely on a set of 24 points. We wish to change all the sets of involutions
into vectors, using the isomorphism of the earlier section.

The following lines of code gives what we want:

>FixedPointsVecs:=[];

>for i in FixedPoints2AInvs do

for>t:=[];

for>for j in [1..24] do

for|for|if>if j in i then t[j]:=1;

for|for|if>else

for|for|if>t[j]:=0;

for|for|if>end if;

for|for>end for;

for>end for;
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>FixedPointsVecs:=Append(FixedPointsVecs,t);

end for;

As an example, choose i to be the set of fixed points of the first involution
in the 2A class, that is

>i:=FixedPoints2AInvs[1];

> i;

{ 6, 9, 10, 14, 16, 19, 22, 23 }.

We then run the loop

> t:=[];

> for j in [1..24] do

for> if j in i then t[j]:=1;

for|if> else

for|if> t[j]:=0;

for|if> end if;

for> end for;

> t;

[ 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,

0, 1, 0, 0, 1, 0, 0, 1, 1, 0 ]

which correctly gives a list with 1’s in the 6th, 9th, 10th, 14th, 16th, 19th,
22nd and 23rd positions. The next task is to form a vector space spanned
by these vectors. We do the following:

>V:=sub<VectorSpace(GF(2),24)|

[VectorSpace(GF(2),24)!i:i in FixedPointsVecs]>; .

We finally put this in linear code form so that we can use MAGMA intrinsic
functions:

> code:=LinearCode(V);

> code;

[24, 12, 8] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0]
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[0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1]

[0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0]

[0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1]

[0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1]

[0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1]

[0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1]

[0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1]

[0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0].

We test the self-duality of C(M24, 24) := code.

> dual:=Dual(code);

> dual eq code;

true.

Thus the code C(M24, 24) is self-dual. But by [38, Theorem 104 ], a binary
[24, 12, 8] code is unique so C(M24, 24) must be the extended Golay code G24.
Further, filtering the sets of fixed points of the 2A-involutions so that distinct
ones only are included, we have

> Bl:=[];

> for i in FixedPoints2AInvs do

for> if not (i in Bl) then

for|if> Bl:=Append(Bl,i);

for|if> end if;

for> end for;

> #Bl;

759

showing that there are 759 such distinct sets. It is well known that these
fixed points of 2A-involutions of M24 form the Witt system W24.

>D:=Design<5,24|Bl>;

>D;

5-(24, 8, 1) Design with 759 blocks.
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Because W24 generates G24, we reach the same conclusion as before, that is,

C(M24, 24) = G24.

The calculation:

gap> tom2:=TableOfMarks("M12:2");

TableOfMarks( "M12.2" )

gap> M12:=UnderlyingGroup(tom);

Group([ (1,2)(3,4)(5,24)(6,12)(7,9)(8,10)

(11,17)(13,14)(15,16)(18,23)(19,21)(20,22),

(1,8,17)(2,18,7)(3,13,14)

(4,20,19)(5,6,15)(21,24,23) ])

M12ext2:=PermutationGroup<24|(1,2)(3,4)(5,24)

(6,12)(7,9)(8,10)(11,17)(13,14)(15,16)(18,23)

(19,21)(20,22), (1,8,17)(2,18,7)(3,13,14)

(4,20,19)(5,6,15)(21,24,23)>;

> c:=SparseFixPointsCode(M12ext2);

> LinearCode(c);

[24, 12, 8] Linear Code over GF(2)

Generator matrix:

[1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 0]

[0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1]

[0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1 0 0]

[0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1]

[0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 1 0]

[0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1]

[0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 1]

[0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0]

[0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1]

[0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 1 1]

[0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1]

[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0]

shows that G24 = C(M12:2, 12).

We now give a result which gives a refinement in the search for self-dual
permutation codes invariant under a particular permutation group.
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Lemma 4.2.8. If there is a G-invariant self-dual code C, then C ⊆ C(G,Ω)
and C(G,Ω)⊥ ⊆ C ⊆ C(G,Ω). In particular, the code 〈Fix(σ)|σ ∈ I(G)〉 is
self-orthogonal.

Proof. Since a self-dual code is necessarily self-orthogonal, we have

C ⊆ C(G,Ω)

by Theorem 4.2.2. Therefore C(G,Ω)⊥ ⊆ C ⊆ C(G,Ω). Note that

〈Fix(σ)|σ ∈ I(G)〉 = C(G,Ω)⊥.

We use this lemma to find all self-dual codes invariant under a permutation
group G of modest degree n. As an example, self-dual codes of length 132
with automorphism groups M11 are constructed from C(M11, 132). We note
however that there does not always exist a G-invariant self-dual code even if
C(G,Ω)⊥ ⊆ C(G,Ω).

Example 4.2.9. Let G = S4(3) ∼= PSU4(2) and H := 31+2
+ :2A4. We get

these groups in MAGMA by doing the following:

> load simgps;

Loading "/opt/magma/libs/simgps/simgps"

> G:=SimGroup("PSU42");

> Order(G);

25920

> Subs:=Subgroups(G:OrderEqual:=8*81);

> for i in Subs do

for> if (Order(Center(i‘subgroup))eq 3) then

for|if> H:=i‘subgroup;

for|if> end if;

for> end for;

> Order(H);

648

> 25920/648;

40.

The calculations of the orders agree with those given in the ATLAS [27]. We
find the image of the action of G on the right coset space of H as follows:
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> Gon40:=CosetImage(G,H);

> Gon40;

Permutation group Gon40 acting on a set of

cardinality 40

(1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 14)

(11, 12)(15, 19)(16, 21)(17, 23)(18,24)

(20, 25)(22, 27)(26, 31)(28, 32)(29, 33)

(30, 34)(35, 37)(36, 38) (39,40)

(2, 4, 8, 13)(5, 9, 15, 20)(1, 3, 6, 11)

(7, 12, 17, 19)(10, 16, 22, 28)(14,18)

(21, 26)(23, 29, 27, 31)

(25, 30, 35, 34)(32, 33, 36, 39).

We use the MAGMA program

FixPointsCode

written to automate the calculations given in Example 4.2.7 to find the code
spanned by the fixed point sets of involutions of the action image Gon40.

> V:=FixPointsCode(Gon40);

> dualcode:=LinearCode(V);

> dualcode;

[40, 15, 8] Linear Code over GF(2).

Note that we remove the generator matrices for all codes in our MAGMA
output for spacial reasons. By definition, C(G,G/H) is the dual of the code
spanned by the fixed point sets of involutions. Thus

> code:=dual_code(V);

> code:=LinearCode(code);

> code;

[40, 25] Linear Code over GF(2)

> MinimumWeight(code);

4

which shows that C = C(G,G/H) is a [40, 25, 4] code and C⊥ is a [40, 15, 8]
code. We now determine the G-invariant codes between C⊥ and C as follows:
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> module:=GModule(Gon40,GF(2));

> module;

GModule module of dimension 40 over GF(2)

> Submods:=Submodules(module);

> bases:=[Basis(m):m in Submods];

> codebases:=[];

> for i in bases do

for> theta:=map<i->VectorSpace(GF(2),40)|

x:->x>;

bas:=[theta(v): v in i];

for> codebases:=Append(codebases,bas);

for> end for;

> codes:=[LinearCode(sub<VectorSpace

(GF(2),40)|b>):b in codebases];

> codes:=[c:c in codes|c subset code];

> codes:=[c:c in codes|dualcode subset c];

> #codes;

4

> codes;

[

[40, 15, 8] Linear Code over GF(2),

[40, 16, 8] Linear Code over GF(2),

[40, 24] Linear Code over GF(2),

[40, 25, 4] Linear Code over GF(2)

]

We see that the subcodes above have dimensions 15, 16, 24 and 24. It follows
that there are no G-invariant self-dual codes of length 40 because there is no
20-dimensional subcode. We write a program

GInvSelfDualCodes

to automate the procedure above. Using this program gives:
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> time se:=GInvSelfDualCodes(Gon40);

Time: 0.020

> #se;

0

The following shows that C(G,Ω)⊥ ⊂ C(G,Ω), where Ω = G/H.

> dualcode subset code;

true

showing that the condition C(G,Ω)⊥ ⊂ C(G,Ω) does not guarantee existence
of self-dual codes invariant under G.

If all the involutions of G act fixed point freely on Ω, then C(G,Ω) is the
entire space P(Ω). In this case the theorem only yields a trivial result. In the
ensuing discussion, we assume, for simplicity that G acts transitively on Ω
so we may consider Ω = G/H for some subgroup H of G.

Lemma 4.2.10. Let σ be an involution of G. If
σ(aH) = aH for some a ∈ NG(I(H)), then σ(bH) = bH for all b ∈
NG(I(H)).

Proof. If σ(aH) = aH, then we have

(a−1σa)2 = a−1σ2a

= a−1.1.a = 1

so σ is an involution of H, that is σ ∈ I(H). Take an arbitrary b ∈ NG(I(H)).
Then b−1σb ∈ H and σ(bH) = bb−1σ(bH) = b(b−1σbH) = bH.

Lemma 4.2.11. For a ∈ G \H, the following conditions are equivalent:

(1) a ∈ NG(I(H));

(2) {H, aH} ∈ C(G,G/H).

In particular, NG(I(H)) 6= H if and only if the minimum weight of
C(G,G/H) is equal to 2.

Proof. Let a ∈ NG(I(H)) \ H and σ ∈ I(H). By Lemma 4.2.10 if aH ∈
Fix(σ), then bH ∈ Fix(σ) for all NG(I(H))\H. Thus |{H, aH}∩Fix(σ)| ≡ 0
mod 2, that is {H, aH} ∈ C(G,G/H).

Conversely, suppose {H, aH} ∈ C(G,G/H). Let s ∈ I(H). Then sH = H
so s fixes aH as well. Thus saH = aH and a−1sa ∈ I(H).
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Suppose that NG(I(H)) 6= H. Let N = NG(I(H)), r = |G : N |,m = |N : H|,
that is n = |G : H| = |G : N ||N : H| = mr. Further, suppose that Ω′ = G/N.
Let {g1N, . . . , grN} and set

Xi = gi(N/H) = {giaH|a ∈ N}, i ∈ {1, . . . , r}.

Then Ω = G/H =
⋃̇r

i=1Xi and |Xi| = m for each i. For σ ∈ I(H), set

F1(σ) = {giN |Xi ⊂ Fix(σ)},

F2(σ) = {giN |Xσ
i = Xi}.

By definition of C(G,Ω), we have C(G,Ω′) = 〈F2(σ)|σ ∈ I(G)〉⊥ ⊂ P(Ω′).
Let

C ′ = 〈F1(σ)|σ ∈ I(G)〉⊥ (⊂ P(Ω′)).

Proposition 4.2.12. With the notation as above,

C(G,G/H) = {W ⊂ Ω|{giN | |W ∩Xi| = odd} ∈ C ′}.

The group Aut(C(G,G/H)) is isomorphic to the wreath product Sm oAut(C ′).

Proof. Let W ⊆ Ω. Suppose E(W ) = {giN | |W ∩Xi| = odd}. Then we have
W ∈ C(G,G/H) if and only if |W ∩ Fix(σ)| is even for each σ ∈ I(G). This
bi-conditional statement is equivalent to the condition that |E(W ) ∩ F1(σ)|
is even, that is, E(W ) ∈ C ′ as required. Since |τ(W ) ∩ Xi| = |W ∩ Xi| for
all permutations τ on Xi, by the well defined property of permutations, we
have SXi ⊆ Aut(C(G,G/H)).

Let ρ ∈ Aut(C(G,G/H)). Denote by ρ̄ the permutation on Ω′ induced

by ρ. Then the image of the map ρ
θ7→ ρ̄ is Aut(C ′). Furthermore, the kernel

of this map is the direct product of the SXi . Therefore we have

Aut(C(G,G/H)) ∼= Sm o Aut(C ′).

Proposition 4.2.13. With the same notation as Proposition 4.2.12, the fol-
lowing statements hold:

(1) If m is even, then C(G,G/H)⊥ is self-orthogonal ;
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(2) If m is odd, then C(G,G/H)⊥ is self-orthogonal if and only if C ′⊥ is
self-orthogonal;

(3) If NG(I(H)) \ H contains no involutions (the assumption holds if m is
odd), then C ′ = C(G,Ω).

Proof. For (1) and (2) by Lemma 4.2.10, the set Fix(σ), σ in I(G) is a union
of some Xi’s. Since the condition Xi ⊂ Fix(σ) is equivalent to giN ∈ F1(σ),
we have

|Fix(σ) ∩ Fix(τ)| = m× |F1(σ) ∩ F1(τ)|

for σ, τ ∈ I(H).
To prove (3), we have F1(σ) ⊂ F2(σ). Let giN ∈ F2(σ). Then

σ(gi(N/H)) = gi(N/H), that is, g−1
i σgi ∈ N. By hypothesis g−1

i σgi ∈ H
and therefore giH ∈ Fix(σ). Thus Xi ⊂ Fix(σ) and giN ∈ F1(σ). Hence
F1(σ) = F2(σ). The result follows.
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Chapter 5

Survey on existence criteria for
self-dual permutation codes

In this chapter we give a survey of existence criteria for self-dual permutation
codes over arbitrary fields of positive characteristic not necessarily 2 we have
been considering so far. Many of the results in this chapter are due to Fan
Yun and Yuan Yuan [49]. In Theorem 3.9.1 we have already given a criterion
for the existence of self-dual codes invariant under some permutation group
due to Günther and Nebe. We will not refer to it here. We assume F to be
a finite Galois field of order q = pl, where p is a prime. We use X to denote
a finite set. The F -vector space with basis X is denoted by FX. If X is a
group then we have the group algebra discussed in Chapter 2. Any left ideal
C of such a group algebra is called a group code.

5.1 Permutation codes

As in the introduction to this chapter, let X be a finite set and F be a
Galois field of finite order. Let FX = {

∑
x∈X axx| ax ∈ F} be the F -vector

space with basis X. Suppose X is a G-set for some group G. Extending the
G-action on X linearly results in FX becoming an FG-module, that is if
X = {x1, x2, . . . , xn}, for g ∈ G and

∑
i cixi ∈ FX, then

g

(∑
i

cixi

)
=
∑
i

ci(gxi).

Such a module is called a permutation module.
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Definition 5.1.1. We call C a G-permutation code of FX, denoted C ⊆
FX if C is an FG-submodule of the FG-module FX.

Example 5.1.1. A finite group G is a G-set by left multiplication. The
regular module of the group algebra FG is an FG-permutation module. A
permutation module turns out to be just a left ideal of the algebra FG which
is the group code defined in the introductory section of the chapter.

Example 5.1.2. Let G = {1, g, g2, . . . , gn−1} ∼= Zn be a cyclic group of order

n. Further, let X =

m︷ ︸︸ ︷
G× · · · ×G, a G-set by multiplication on the left. Then

FX =

m︷ ︸︸ ︷
FG⊕ · · · ⊕ FG

which is
{(a0,0 + a0,1g + · · ·+ a0,n−1g

n−1, . . . , am−1,0 + am−1,1g + · · ·+ am−1,n−1g
n−1)

|ai,j ∈ F}. Then a subset C of FX is a permutation code if and only if for
arbitrary

(c0,0, c0,1, . . . , c0,n−1, . . . , cm−1,0, cm−1,1, . . . , cm−1,n−1) ∈ C

then
(c0,n−1, c0,0, . . . , c0,n−2, . . . , cm−1,n−1, cm−1,0, . . . , cm−1,n−2)

is in C, that is, if and only if C is a cyclic code.

Though group codes can be viewed as permutation codes, permutation
codes may not be group codes. The F -vector space FX is endowed with a
non-degenerate symmetric bilinear form〈∑

x∈X

axx,
∑
x∈X

bxx

〉
=
∑
x∈X

axbx

for all a =
∑

x∈X axx,b =
∑

x∈X bxx ∈ FX. This is called the classical inner
product on FX. For g ∈ G,

< g(a), g(b) > =

〈
g

(∑
x∈X

axx

)
, g

(∑
x∈X

bxx

)〉

=

〈∑
x∈X

axgx,
∑
x∈X

bxgx

〉
=
∑
x∈X

axbx

= < a,b > .
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The penultimate line follows because X is a G-set. Thus the classical inner
product is G-invariant in the sense < g(a), g(b) >=< a,b > for all g ∈ G
and a,b ∈ FX.
Remark 5.1.3. Let U ⊆ FX. We set the dual of U with respect to <,> as
usual, that is, U⊥ = {a ∈ FX| < u, a >= 0 for all u ∈ U}. Recall from
Chapter 1 that if C is any FG-submodule of FX then for any g ∈ G, c∗ ∈ C⊥
and c ∈ C, we have < gc∗, c >=< gc∗, gg−1c >=< c∗, g−1c >= 0, by the G-
invariance of the inner product <,> .

Thus C⊥ is also an FG-submodule. All the definitions of self-orthogonality,
self-duality and other code-related definitions apply to permutation codes.
We also recall the fact that self-duality of codes and of modules are different
concepts. If C ⊆ FX is a permutation code, that is a submodule of FX,
then from Definition 3.1.10 we saw that C∗, the dual module of C, can be
made into an FG-module via gf(c) = f(g−1c) for all g ∈ G, f ∈ C∗ and
c ∈ C. We have the following result.

Lemma 5.1.4. Let C ⊆ FX be an FG-permutation code. Then the classical
inner product induces a homomorphism β : FX → C∗ such that the following
sequence of FG-modules is exact:

0→ C⊥ → FX
β→ C∗ → 0.

Proof. For arbitrary a ∈ FX define βa : C → F, c 7→< a, c > . Then the map
β : FX → C∗ given by a 7→ βa is clearly surjective. Further, a + b 7→ βa+b

and

βa+b(c) = < a + b, c >

= < a, c > + < b, c > (linearity)

= βa(c) + βb(c) = (βa + βb)(c)

so β is a linear map. For g ∈ G, a ∈ FX and c ∈ C, by G-invariance of the
classical inner product, we have

βga(c) =< ga, c > = < ga, gg−1c >=< a, g−1c >

= βa(g−1c)

= gβa(c),
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that is βga = gβa for all g ∈ G and a ∈ FX. Thus β is an FG-homomorphism.
The kernel of β is

ker(β) = {a ∈ FX| βa(c) =< a, c >= 0 for all c ∈ C}
= C⊥,

that is C⊥ = Im(inc) = ker(β), where inc is the inclusion map C⊥ → FX,
so we have the desired exact sequence.

The next corollary is just a restatement of a very basic result in coding
theory.

Corollary 5.1.5. If C ⊆ FX is a self-orthogonal permutation code, then
C is self-dual if and only if dim(C) = |X|/2. In particular, if FX has a
self-dual code, then X is even.

Proof. We note that because of the exact sequence of Lemma 5.1.4, we have
Im(β) ∼= FX/ ker(β) by the First Isomorphism Theorem for modules from
which we have dim(Im(β)) + dim(ker(β)) = dim(FX) which is

dim(C∗) + dim(C⊥) = |X|, (*)

by the exactness of the sequence. But it is well known that as vector spaces
C ∼= C∗ so dim(C) = dim(C∗) so (*) becomes dim(C) + dim(C⊥) = |X|. It
follows that C = C⊥ if and only if |X| = 2.dim(C).

5.2 Transitive permutation codes

In this section we look at transitive permutation codes, that is, X is a transi-
tive G-set. Recall from Theorem 2.3.1, the action of G on X is equivalent to
the G-action on G/Gx. In particular, if Gx �G, then the permutation mod-
ule FX is equivalent to the regular module of the quotient group G/Gx. The
stabilizer of Gx in G is {g ∈ G| gGx = Gx} = Gx. The following corollary
follows immediately from Corollary 5.1.5.

Corollary 5.2.1. Let X be a transitive G-set and x ∈ X. If there is a self-
dual code in FX, then |G : Gx| is even.
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Proof. Suppose C ⊆ FX is a self-dual code. Then considering the transitive
action of G on G/Gx, by the Orbit-Stabilizer Theorem

|G| = |OrbG(Gx)||GGx|
= |G/Gx||Gx|,

by transitivity and the observation about the stabilizer GGx of Gx in G given
in the introduction. We have |G : Gx| = |G|/|Gx| = |G/Gx| = 2.dim(C)
which is even.

We recall from representation theory that if V is an FG-module there is
a (composition) series of submodules V = V0 ⊇ V1 ⊇ V2 ⊇ . . . ⊇ Vr = 0 such
that every quotient module Vi−1/Vi is a simple FG-module for i = 1, . . . , r.
The series is independent, up to isomorphism, of the choice of the factors,
by the Jordan-Hölder Theorem for modules. It makes sense to refer to the
multiplicity of a simple FG-module S in V.
If FG is a semisimple algebra, then it is a direct sum

FG =
n⊕
i=1

Mni(∆i)

of matrix algebras Mni(∆i) of degree ni over ∆i, corresponding to a simple
module Si where ∆i = EndF (Si) is the endomorphism algebra of Si and
ni is the multiplicity of Si in the regular module FG, by the Wedderburn
Structure Theorem. In particular, the trivial FG-module F appears in the
regular module FG exactly once.

Lemma 5.2.2. Let X be a transitive G-set. If the characteristic p of F is
prime to the order of G, then the trivial FG-module F appears in FX exactly
once.

Proof. Let x ∈ X. Then FX is the induced module IndGGx(F ) of the triv-
ial FGx-module F. On the other hand, the regular FGx-module FGx =
IndGx1 (F ) is an induced module. Under the conditions of the hypothesis,
both FGx are semisimple, since by Maschke’s Theorem, FG is semisimple
and very submodule of a semisimple module also has this property. Thus
FGx = F ⊕ . . . and

FG = IndGGx(F )⊕ . . . ∼= FX ⊕ . . .

in which the trivial module F appears once. The result follows.
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Before we state a non-existence criteria for self-dual permutation codes
we state some group-theoretic results we need.

Definition 5.2.1. Let π be a set of primes and x ∈ G. We say x is a π-
element if the order o(x), of x is divisible only by primes in π. In particular,
if π = {p}, we have the notion of a p-element. In a similar manner, G is a
π-group if |G| is divisible only by primes in π. A complementary set of primes
to π will be denoted by π′. By |G|p we mean the highest power of a prime p
dividing |G|.

Thus, from the definition above, we also have the notion of π′- and p′-
elements as well as π′- and p′-groups. For example, a 2′-element (group) is
simply an element (group) of odd order.

Definition 5.2.2. A subgroup H of G is called a Sylow p-subgroup of G if
H is a maximal p-group for some prime p dividing the order of G. In other
words, a Sylow subgroup is a group of order |G|p.

Definition 5.2.3. A subgroup H of G is called a Hall π-subgroup if H is a
π-group and the index |G : H|, of H in G is not divisible by any prime in π.
When π = {p}, H is a Sylow p-subgroup of G.

Theorem 5.2.3. (Sylow) Let G be a group and p a prime. Then

(i) G possesses a subgroup of order |G|p and every p-subgroup of G is con-
tained in a subgroup of order |G|p (A Sylow p-subgroup).

(ii) Any two Sylow p-subgroups are conjugate in G.

(iii) The number of distinct Sylow p-subgroups is of the form 1+kp for some
non-negative integer k.

The following theorem is also useful.

Theorem 5.2.4. (i) G is a π-group if and only if each element of G× is
a π-element.

(ii) A normal p-subgroup of G is contained in every Hall p-subgroup of G.

(iii) G possesses a unique Hall p-subgroup if and only if a Hall subgroup of
G is normal in G.

59



For proofs of the theorems above we refer the reader to Algebra intro-
ductory texts such as [1, 41]. An exercise in elementary group theory shows
that if |G| = pn, then for 1 ≤ k ≤ n, G possesses a normal subgroup of order
pk (See for example [41, Ex 4.2 page 77]). We now state the results giving
(non)existence criteria for self-dual permutation codes.

Proposition 5.2.5. Let F be a field of odd characteristic. Further let X be
a transitive G-set and x ∈ X. If the intersection of the stabilizer Gx of x
with a Sylow 2-subgroup of G is a Sylow 2-subgroup of Gx, then there is no
self-dual code in FX.

Proof. Let T be a Sylow 2-subgroup of G. Assume that |T | = 2a, |T∩Gx| = 2b

(T ∩ Gx is a Sylow 2-subgroup of Gx) and |Gx| = 2bn . Then |G| = 2anm
with nm an odd integer. Consider the action of T on X and let Y ⊂ X be a
T -orbit. Choose an arbitrary y ∈ Y. Then by the transitivity of X there is a
g ∈ G such that gx = y. Therefore if h ∈ Gx, we have ghg−1y = ghg−1(gx) =
g(hx) = gx = y giving ghg−1 ∈ Gy. It follows that gGxg

−1 = Gy. Therefore,

T ∩Gy = T ∩ gGxg
−1 = gg−1T ∩ gGxg

−1

= g(g−1T ∩Gxg
−1)

= g(g−1Tgg−1 ∩Gxg
−1)

= g(g−1Tg ∩Gx)g
−1.

In particular |Ty| = |T ∩ Gy| = 2b by the conjugacy of Gy and Gx. An
application of the Orbit-Stabilizer Theorem gives the size of Y,

|Y | = |T : Ty| = |T |/|Ty| = 2a/2b = 2a−b.

By transitivity of X and the Orbit-Stabilizer Theorem, |G| = |X||Gx| giving
|X| = |G : Gx| = |G|/|Gx| = 2anm/2bn = 2a−bm. It follows that the total
number of T -orbits is |X|/|Y | = 2a−bm/2a−b = m, an odd integer. Therefore,

as FT -modules we have FX ∼=
m︷ ︸︸ ︷

FY ⊕ . . .⊕ FY . By Lemma 5.2.2, the trivial
module F appears in FY exactly once, so the multiplicity of the trivial FT -
module F in FX is the odd number m. Suppose that FG-module FX has a
self-dual code C, that is, a submodule of FX and C = C⊥. By Lemma 5.1.4,
we have an exact sequence of FG-modules: 0→ C → FX → C∗ → 0, which
is also an FT -sequence. Suppose the multiplicity of the FT -module F in C is
m′. Then the multiplicity of the dual of the trivial FT -module F in C∗ is also
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m′. But the multiplicity of the trivial module F in C∗ is m′, by self-duality
of F as an FT -module so the multiplicity of the trivial FT -module F in FX
is 2m′ contradicting the hypothesis that this multiplicity is odd.

Corollary 5.2.6. Assume that F is of odd characteristic. Let X be a tran-
sitive G-set and x ∈ X. Then there is a self-dual code in FX if one of the
following holds:

(1) |Gx| is odd.

(2) Gx is normal.

(3) G has a normal Sylow 2-subgroup.

Proof. In any of the three cases, the intersection of Gx with any Sylow 2-
subgroup of G is a Sylow 2-subgroup of Gx so the result follows.

Recall from ring theory that a Galois ring GR(pr, k) is the unique Galois
extension Z/prZ. Willems proved the following result.

Proposition 5.2.7. (Willems)[47, Proposition 3.1] If p and r as above are
odd, then no self-dual group codes exist over R = GR(pr, k).

Proposition 5.2.8. (Willems) Let r be odd. Then GR(2r, k)G contains a
self-dual group code if and only if the order of G is even.

Taking X = G to be the regular G-set and x = 1G, in Corollary 5.2.6,
then FX = FG and G1G = {1G}. Conditions (1) and (2) of the hypothesis
are satisfied and Willems’ result Proposition 5.2.7 is obtained for the case of
finite fields.

Proposition 5.2.9. Suppose F is of characteristic 2. Let X be a finite tran-
sitive G-set and x ∈ X. If there is a subgroup H of G containing Gx such
that |H : Gx| = 2, then there is a self-dual permutation code in FX.

Proof. By hypothesis we can assume that H = Gx∪̇hGx where h ∈ H \ Gx

and h2 ∈ Gx. The last condition is necessary otherwise h2Gx would be a
distinct coset, contradicting the hypothesis. Further assume that |G : H| =
n and G = g1H∪̇ · · · ∪̇gnH with g1 = 1G. Let Y = {x, hx} ⊂ X. Then
X = Y ∪ g2Y ∪ · · · ∪ gnY is a disjoint union and as an F -vector space we
have the following orthogonal direct sum:

FX = FY ⊕ F (g2Y )⊕ · · · ⊕ F (gnY ).

61



Consider the FH-submodule FY and let

C1 = F.(x+ hx) = {ax+ a(hx)| a ∈ F}.
Then it is not difficult to see that C1 is an FH-submodule of FY and C1 ⊆
C⊥1 . Because dim(C1) = 1 and
dim(FY ) = 2, by Corollary 5.1.5, C1 = C⊥1 which is a self-dual code of FY.
For i = 1, 2, . . . , n we have giC1 is a subspace of F (giY ) and is such that
giC1 = (giC1)⊥. Further,

C = C1 ⊕ g2C1 ⊕ · · · ⊕ gnC1

is an FG-submodule of FX and C = C⊥, that is C is a self-dual permutation
code in FX.

If we take X = G, the regular G-set and x = 1, then we have G1G . By
applying Sylow’s Theorem, there exists a subgroup H of G such that |H :
{1G}| = 2 if and only if |G| is even. Thus we deduce Willems’ second result,
Proposition 5.2.8 for the case of finite fields.

The following theorem settles completely the question of existence of G-
invariant self-dual codes in the case where G is a direct product of finite 2-
and 2′-groups.

Theorem 5.2.10. Let F be a finite field and G = T × S be a direct product
of a finite 2-group T and a finite 2′-group S and let X be a finite transitive
G-set. Then the permutation FG-module FX has a self-dual code if and only
if both the characteristic of F and the length of X are even.

Proof. If X is odd, then by Corollary 5.2.1 FX has no self-dual code. Given
that the characteristic p of the field F is odd, by Corollary 5.2.6 (3), FX has
no self-dual code. This establishes necessity.

Assume that both p and X are even. Let x ∈ X and Gx be the stabilizer
of x in G. Then for a, b ∈ Gx ∩ S, we have 2 - o(a) and 2 - o(b) as S
is a 2′ group. Because a, b ∈ Gx, a.x = x and b.x = x. It follows that
a−1.x = a−1.(a.x) = (a−1a).x = 1.x = x so a−1, b−1 ∈ Gx and hence Gx ∩ S.
For all g ∈ Gx and h ∈ Gx ∩ S, we have

(g−1hg).x = (g−1h).(g.x) = (g−1h).x, (g.x = x, g

= g−1.(h.x),

= g−1.x, (h.x = x)

= x, (g−1 ∈ Gx).
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We conclude that Gx∩S�Gx. Clearly, the elements of (Gx∩S)× are of odd
order, S being a group of odd order. It follows that Gx ∩ S is a 2′ subgroup
of Gx, by Theorem 5.2.4 (i). Because Gx contains at least one 2-element,
|Gx : Gx∩S| is even. Therefore, we claim Gx∩S is a normal Hall 2′-subgroup
of Gx and Gx ∩ T is a normal Sylow 2-subgroup of Gx by a similar line of
argument. Because Gx ∩ T and Gx ∩ S are normal subgroups of Gx which
intersect trivially, ((Gx∩T )× comprises 2-elements while (Gx∩S)× comprises
2′-elements). Further, it is not difficult to show that Gx = (Gx∩T )(Gx∩S).
Hence

Gx = (Gx ∩ S)× (Gx ∩ T ).

But |T | = |T : Gx ∩ T ||Gx ∩ T | and
|S| = |S : Gx ∩ S||Gx ∩ S|. We have

|G : Gx| =
|G|
|Gx|

=
|G|

|(Gx ∩ T )× (Gx ∩ S)|

=
|G|

|(Gx ∩ S)||(Gx ∩ T )|

= |G|. |S : Gx ∩ S|
|S|

|T : Gx ∩ T |
|T |

= |S : Gx ∩ S|.|T : Gx ∩ T |,

since |G|
|T ||S| = 1. Thus |G : Gx| = |S : Gx∩S|.|T : Gx∩T |. Since |X| = |G : Gx|

is even, |T : Gx∩T | = 2b with b ≥ 1. Note that |S : Gx∩S| is odd because |S|
is odd so |G : Gx| even implies that |T : Gx ∩ T | is even. Because |T | = 2n,
the result in the discussion following Theorem 5.2.4 implies that there is a
subgroup R ≤ T with order 2k, 1 ≤ k ≤ n such that R ⊃ Gx ∩ T and
|R : Gx ∩ T | = 2. Set

H = (Gx ∩ S)×R ≤ S × T = G.
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Then H ⊃ Gx and

|H : Gx| =
|H|
|Gx|

=
|Gx ∩ S||R|

|(Gx ∩ S)|Gx ∩ T |

=
|Gx ∩ S|(|R : Gx ∩ T ||Gx ∩ T |)

|Gx ∩ S||Gx ∩ T |

=
|Gx ∩ S|.2.|Gx ∩ T |
|Gx ∩ S||Gx ∩ T |

= 2.

Therefore, by Proposition 5.2.9 the permutation module FX has a self-dual
code.

The theorem above gives a complete answer for the existence of self-dual
permutation codes for direct products of finite 2 and 2′ groups. Hughes
proved this result in [24] where there are stringent conditions on the group
structure. Willems gave a complete classification in [47] in the case of group
codes over Galois rings.
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Chapter 6

Collection of results

In this chapter we give results obtained from our study.

6.1 Existence of self-dual codes of length n

invariant under Sn

We first state the result for the action of the symmetric groups on their
natural (regular) sets. We note that since a necessary condition for the
existence of self-dual codes of length n is that the dimension of the code
should be n

2
precludes odd n. Thus we study Sn, n = 2m, for m ≥ 2. The

case of S2 produces a unique self-dual code.

Proposition 6.1.1. Let G = Sn or An, n = 2m with 2 ≤ m ≤ 50. Then
there are no self-dual codes of length n admitting G as automorphism group.
(Note that G does not necessarily have to be the full automorphism group).

6.2 Self-dual codes invariant under some spo-

radic simple and almost simple groups

In this section we give the results of existence and non-existence of self-
dual codes invariant under some sporadic simple and almost simple groups.
In some cases complete classification was possible but in many instances
we could only determine the number of self-dual codes invariant under a
prescribed permutation group but no information on the (non)equivalence
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or (non)isomorphism of the codes of a particular length could be obtained
with computational resources available. Further, MAGMA can compute the
minimum weights of codes of modest dimension. Where possible we provide
such data. We use libraries of groups in the algebra packages GAP and
MAGMA to obtain permutation groups and their subgroups to construct
the code spanned by the sets of fixed points of involutions of these groups.
For many of the groups, the GAP Burnside Table Of Marks was used to get a
group and its representations of various degree. In the ensuing tables, by Rep
we refer to the representation index in the GAP table of marks, Length is the
cardinality of the G-set Ω = G/H for some H ≤ G, Number is the quantity
of self-dual codes of length “Length” invariant under the group “Group” and
] is placed where information could not be obtained about minimum weights
and equivalence. In instances where information about minimum weights
and isomorphism could not be determined we use the symbol ] under the
remarks column. In some of the cases we have [n, k, d] (α) under the remarks
column to signify that there are α codes with the parameters [n, k, d].

We now catalogue results obtained from sporadic simple and almost sim-
ple groups in the following tables.
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Table 6.1: M11-invariant self-dual codes.

Group Length Rep Number Remarks
M11 12 37 0

22 36 1 [22, 11, 2]-code
66 34 0
110 33 1 [110, 55, 2]-code

32 1 [110, 55, 2]-code
isomorphic with the one above

31 3 2 isomorphic
[110, 55, 6]-codes and

one [110, 55, 2]-code isomorphic to
the one of the previous representation

132 30 3 [132, 66, 12] (2)
[132, 66, 6] (1)

29 3 [132, 66, 4] (2)
[132, 66, 2] (1), ]

144 28 0
220 26 9 ]

25 27 [220, 110, 4] (14), [220, 110, 10] (2)
[220, 110, 12] (10), [220, 110, 2] (1)

24 27 [220, 110, 4] (24), [220, 110, 2] (3)
330 23 3 [330, 165, 6] (1), [330, 165, 8] (2)

22 1 [330, 165, 2] (1)
396 21 0
440 20 15 [440, 220, 8] (12), [440, 220, 4] (2),

[440, 220, 2] (1)
19 ] ]

660 17 0
16 567 ]

720 15 0
792 14 ] ]
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Table 6.2: M12-invariant self-dual codes.

Group Length Rep Number Remarks
M12 12 146 0

145 0
66 144 0

143 0
132 142 3 [132, 66, 2] (1), [132, 66, 4] (2)

141 3 [132, 66, 2] (1), [132, 66, 4] (2)
140 9 [132, 66, 8] (4), [132, 66, 6] (2)

[132, 66, 4] (2), [132, 66, 2] (1)
139 3 [132, 66, 2] (1), [132, 66, 4] (2)
138 9 [132, 66, 8] (4), [132, 66, 6] (2),

[132, 66, 4] (2), [132, 66, 2] (1)
137 3 [132, 66, 2] (1), [132, 66, 4] (2)

144 136 0
135 0

220 134 3 [220, 110, 18] (1), [220, 110, 20] (2)
133 3 [220, 110, 18] (1), [220, 110, 20] (2)

264 132 183 ]
131 183 ]

396 130 0
440 129 11 ]

128 11 ]
660 125 0

124 0
123 0
122 0

792 121 243 ]
120 735 ]
119 243 ]

880 118 0
990 117 5

116 5
1320 113 0
1728 101 0
1980 97 0

96 0
95 0
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Table 6.3: M12:2-invariant codes.

Group Length Rep Number Remarks
M12:2 24 211 1 d = 8. See Example 3.2.1

132 210 3 ]
144 209 0

208 0
264 207 27 ]

206 187 ]
205 27 ]

288 204 57 ]
203 267 ]

396 202 0
440 201 35 ]
792 196 327 ]

195 615 ]
880 194 0

192 299 ]
990 189 439 ]

188 439 ]
187 299 ]

1320 185 0
1584 183 555 ]
1728 178 0
1980 174 0
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Table 6.4: M22,M22:2-invariant self-dual codes.

Group Length Rep Number Remarks
M22 22 155 1 d = 6

176 153 0
152 0

330 150 1 d = 10
149 0

462 148 83 ]
147 171 ]

616 146 0
672 145 0
770 144 0
1232 140 549
1386 137 0

M22:2 22 488 1 d = 6
44 487 6 [44, 22, 2] (1), [44, 22, 4] (2),

[44, 22, 6] (1), [44, 22, 8] (2)
154 485 6 [154, 77, 2] (1), [154, 77, 8] (1),

[154, 77, 10] (4), ]
330 483 1 d = 10
352 482 10 ]

481 0
480 53 ]

462 479 106 ]
478 55 ]
477 99 ]

616 476 0
672 474 0
770 473 0
1386 462 0
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Table 6.5: M23,M24, J1, HS,HS:2 and Co3-invariant codes

Group Length Rep Number Remarks
M23 506 200 0

199 16 ]
1288 198 0
24 1528 1 G24. See Example 2.3.1

M24 276 1527 0
562 1526 20 ]
1288 1524 0
266 39 0

J1 1540 36 0
1596 35 0
100 588 0
176 587 0
176 586 0

HS 352 585 7 ]
352 584 7 ]
1100 583 0
1100 582 0

2 533 1 [2, 1, 2]
100 2056 0
200 532 13 [200,100,4] (2),[200,100,2] (1)

[200,100,12](6),[200,100,16](4)
HS:2 352 531 3 ]

704 530 31 ]
1100 2055 0
1100 2054 0

Co3 276 2482 0
552 2481 0

71



Table 6.6: Self-dual codes invariant under J2 and J2:2

Group Length Rep Number Remarks
100 145 3 ]
280 144 0
560 141 0

J2 840 140 0
1008 139 0
1050 138 240 ]
1800 135 0
1890 134 0
100 371 1 a [100, 50, 10]-code
200 370 23 ]
280 369 0

366 165 ]
560 365 295 ]

364 201 ]
J2:2 630 363 25 ]

840 362 0
1008 361 0

360 61 ]
1050 359 25 ]

358 25 ]
1800 353 0
1890 352 0
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6.3 Concluding remarks

Remark 6.3.1. For the case of G = M12:2 or M24, and |Ω| = 24 we obtain
C(G,Ω) = G24, the extended Golay code. See Example 4.2.7.

Remark 6.3.2. Let G = M22 or M22:2 and let |Ω| = 22. Then C(G,Ω) is a
[22, 11, 6]-code. This result was reported in [35].

Remark 6.3.3. Take G = J2:2 and |Ω| = 100. Then C(G,Ω) is the unique
self-dual code invariant under G for this length. In particular, this code has
parameters [100, 50, 10]. This result appears in [35].

Remark 6.3.4. If G = M22:2 and |Ω| = 330. Then we have C(G,Ω) is a
[330, 165, 10]. This result appears in [35].

Remark 6.3.5. In the case G = J2 and |Ω| = 100, the three self-dual codes
found are according to [35, Theorem 3.9], each one of C10, C16 or C ′16 the
authors constructed in [36].

Remark 6.3.6. Let G = M11 and |Ω| = 132. By the GAP Table of Marks,
[19], M11 has two inequivalent imprimitive representations of degree 132,
namely those of indices 30 and 29 in the list of subgroups (see Table 6.1).
Let Ω1 and Ω2 be the corresponding coset spaces for the groups which are
the images of the permutation action of G on 132 points. Then by MAGMA,
we have C(G,Ω1) is a [132, 67, 6]-code and C(G,Ω2) is a [132, 67, 2]-code.
There are three self-dual codes between C(G,Ω1)⊥ and C(G,Ω1), C1, C2 and
C3, say. Two of these, C1 and C2, have minimum weight 12 and C3 has min-
imum weight 6. The group G acts on the set {C1, C2, C3} of the codes Ci.
By the Orbit-Stabilizer Theorem, we have |G : GCi| ≤ 3, using the fact
that the set {C1, C2, C3} has three elements. But G has no subgroups of in-
dex ≤ 3, (see [37]). It follows that Ci, 1 ≤ i ≤ 3 is G-invariant. Further,
G = Aut(C(G,Ω1)), whence G ⊆ Aut(Ci) ⊆ Aut(C(G,Ω1)) = G. Therefore
Aut(Ci) = G for i = 1, 2, 3 and by Lemma 4.2.5, the three codes are inequiv-
alent. These codes are the same as those obtained in [35].

There are three self-dual codes between C(G,Ω2)⊥ and C(G,Ω2). We
could not ascertain (in)equivalence of the codes.
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Appendix A

MAGMA Routines

//=============================================

//code_gen_by is a function that forms the

// vector space spanned by vectors <bas> given

// as sequences

//===============================================

code_gen_by:=function(bas)

V:=VectorSpace(GF(2),#bas[1]);

l:=[V!bas[j]:j in [1..#bas]];

return sub<V|l>;

end function;

//============================================

//the routine dual_code finds the dual

// of the vector space <code>

//==============================================

dual_code:=function(code)

if Dimension(code) eq 0 then

basis:=[[i*0:i in [1..Degree(code)] ]];

else

basis:=Basis(code);

basis:=[Eltseq(v): v in basis];

end if;

if Dimension(code) eq Degree(code) then

return code_gen_by([[i*0:i in [1..Degree(code)]]]);
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end if;

return Nullspace(Transpose(Matrix(GF(2),basis)));

end function;

//=================================================

// is_self_dual is a function that tests whether a

//given code is self-dual

//=================================================

is_self_dual:=function(code)

local dual;

dual:=dual_code(code);

if dual eq code then

return true;

else

return false;

end if;

end function;

//===============================================

// Invoulutions(<group>) is a function that returns

//the conjugacy class representatives of a group

// <group> that are invoulutions of the group

//==============================================

Involutions:=function(group)

local X,l;

X:=ConjugacyClasses(group);

l:=[];

for i in [1..#X] do

if X[i,1] eq 2 then

l:=Append(l,X[i,3]);

end if;

end for;

return l;

end function;

//==================================================

//the function FixedPoints(permutation,setsize) returns

//the fixed points of the action of the permutation
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// <permutation> on the set of size setsize

//==================================================

FixedPoints:=function(permutation,setsize)

if Degree(permutation) gt setsize then

print "fail";

end if;

return [x:x in [1..setsize]|x^permutation eq x];

end function;

//===================================================

//SetFixedPointsOnConjClass returns the sets of fixed

//points of the involutions in the conjugacy class

// with representative <rep>

//===================================================

SetFixedPointsOnConjClass:=function(group,setsize,rep)

Cl:=Setseq(Conjugates(group,rep));

Bl:=[];

for i in [1..#Cl] do

if not (FixedPoints(Cl[i],setsize) in Bl) then

Bl:=Append(Bl,FixedPoints(Cl[i],setsize));

end if;

end for;

return Bl;

end function;

//================================

//==================================================

//PointsToBinary takes a set of points and returns

//a binary vector given as a list.

//==================================================

PointsToBinary:=function(codelength,points)

if #points eq 0 then

return [a*0: a in [1..codelength]];

end if;

if Maximum(points) gt codelength then

return "Error! Code Length not sufficient";

end if;

code:=[];
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for i in [1..codelength] do

if i in points then

code[i]:=1;

else

code[i]:=0;

end if;

end for;

return code;

end function;

//======================================================

//SetPointsToBinary(codelength,points) takes a list

//<points> of vectors and applies PointsToBinary

// to each

//======================================================

SetPointsToBinary:=function(codelength,points)

return [PointsToBinary(codelength,x):x in points];

end function;

//-------------------------

//=====================================================

//SparseFixPointsCode is a subroutine of the next

// code

//======================================================

SparseFixPointsCode:=function(group)

setsize:=Degree(group);

invconjreps:=Involutions(group);

fixpts:=[];

temp_code:=code_gen_by([[i*0:i in [1..setsize]]]);

V:=VectorSpace(GF(2),setsize);

for x in invconjreps do

temp:=SetFixedPointsOnConjClass(group,setsize,x);

binaries:=SetPointsToBinary(setsize,temp);

for v in binaries do

if (V!v in temp_code) eq false then

fixpts:=Append(fixpts,v);

temp_code:=code_gen_by(fixpts);

end if;
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end for;

end for;

return temp_code;

end function;

//========================================================

//FixPointsCode(<group>) is a routine that returns the

//code spanned by the sets of fixed points of

// involutions of the group <group>

//=======================================================

FixPointsCode:=function(group)

setsize:=Degree(group);

sparse:=SparseFixPointsCode(group);

module:=GModule(group,GF(2));

code:=sub<module|Basis(sparse)>;

bas:=Basis(code);

if #bas eq 0 then

bas:=[b*0:b in [1..setsize]];

return code_gen_by([bas]);

else

phi:=Morphism(code,module);

bas1:=[phi(b):b in bas ];

theta:=map<bas1->VectorSpace(GF(2),

Dimension(module))|x:->x>;

bas2:=[theta(x):x in bas1];

return sub<VectorSpace(GF(2),Dimension(module))| bas2>;

end if;

end function;

//====================================================

//GInvSelfDualCodes is a Function that finds the

// G-Invariant self-dual codes for a group G.

//====================================================

GInvSelfDualCodes:=function(group)

if (Degree(group) eq 1 mod 2) then

return [];

end if;

dualcode:=FixPointsCode(group);

V:=VectorSpace(GF(2),Degree(group));
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if Dimension(dualcode) eq 0 then

modu:=GModule(group,GF(2));

dim:=Dimension(modu);

bases:=[Basis(m):m in Submodules(modu)];

bases:=[m:m in bases|#m eq dim/2];

bases1:=[];

for i in [1..#bases] do

theta:=map<bases[i]->V|x:->x>;

bas:=[theta(v):v in bases[i]];

bases1:=Append(bases1,bas);

end for;

return [sub<V|b>:b in bases1];

end if;//First case

code:=dual_code(dualcode);

if not (dualcode subset code) then

return [];

end if;

if is_self_dual(code) eq true then

return [code];

end if;

modu:=GModule(group,GF(2));

submods:=Submodules(modu);

bases:=[Basis(m):m in submods];

codebases:=[];

for i in [1..#bases] do

theta:=map<bases[i]->V|x:->x>;

bas:=[theta(v):v in bases[i]];

codebases:=Append(codebases,bas);

end for;

codes:=[sub<V|b>: b in codebases];

codes:=[c:c in codes|c subset code];

codes:=[c:c in codes|dualcode subset c]; //dito

d:=Degree(group)

selfdualcodes:=[c:c in codes|Dimension(c)eq d/2];

selfdualcodes:=[c:c in selfdualcodes|dual_code(c) eq c];

return selfdualcodes;

end function;
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