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Abstract

The demand for spectrum is increasing particularly due to the accelerating growth in

wireless data traffic generated by smart phones, tablets and other internet access devices.

Most of prime spectrum is already licensed. The licensed spectrum is underutilized or

used inefficiently, i.e. spectrum sits idle at any given time and location. Opportunistic

Spectrum Access (OSA) is proposed as a solution to provide access to the temporarily

unused spectrum commonly known as white spaces to improve spectrum utilization,

increase spectrum efficiency and reduce spectrum scarcity. The aim of this research is to

investigate potential impact of cooperative spectrum sensing techniques technologies on

spectrum management. To fulfill this we focused on two spectrum sensing techniques

namely; Firstly energy efficient statistical cooperative spectrum sensing in cognitive ra-

dio networks, this work exploits the higher order statistical (HOS) tests to detect the

status of PU signal by a group of SUs. Secondly, an optimal energy based cooperative

spectrum sensing in cognitive radio networks was investigated. In this work the perfor-

mance of optimal hard fusion rules are employed in SU’s selection criteria and fusion

of the decisions under Gaussian channel and Rayleigh channels. To optimize on the

energy a two stage fusion and selection strategy is adopted to minimize the number of

collaborating SUs.
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Introduction

1 Introduction

The license of electromagnetic spectrum is a preserve of governments world over for

purposes of wireless communication band allocations. The licensed radio spectrum is

within the range of frequencies between 3000 Hz and 300 GHz [38]. Spectrum scarcity is

the main problem as the demand for additional bandwidth unreservedly increases. Re-

search has shown that the licensed spectrum is relatively unused. The report published

by Federal Communications Commission (FCC) revealed by Spectrum Policy Task Force

(SPTF) established that to large extend, some allocated spectral bands are underutilized

while others are extensively used most of the time [35].

Cognitive Radio (CR) is an intelligent electronic gadget employed in wireless communi-

cation technologies with the ability to sense and adopt to its surrounding environment.

The CR technology is envisaged to enable identification, use and management of idle

channels. CR has the ability to sense the environment and reconfigure its internal sta-

tus to the statistical changes in the incoming radio frequency stimuli. It responds by

making corresponding changes in certain operation parameters (e.g., transmit-power,

carrier-frequency, and modulation strategy) in real-time [13]. What makes CR better

than normal radio is its ability to opportunistically, quickly and autonomously access

the vacant bands without interfering with the primary users which are licensed to trans-

mit on these channels. It can transmit and receive signals simultaneously and there-

fore automatically detect (sense the existence of) idle channels in a wireless spectrum.

The CR must understand the primary user’s channel status, and consequently create a

knowledge data base that can be used later to determine network decisions through the

cognition cycle by changing their transceiver parameters [19].

The spectrum utilization can be improved greatly by allowing secondary users to dy-
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2. Cognitive Radio Cycle

namically access spectrum holes temporally unoccupied by the primary user in the geo-

graphical environment of interest. A spectrum hole is a theoretical hyperspace occupied

by radio signals which has dimensions of location, angle of arrival, frequency, time, en-

ergy and possibly many others parameters. A radio built on cognitive radio concept has

the ability to sense and understand its local radio spectrum environment. It does this

by identifying the spectrum holes in radio spectrum space and developing autonomous

decisions models on how to access spectrum. The CR using dynamic spectrum access

has the potential to significantly improve spectrum efficiency utilization, resulting in

easier and flexible spectrum access for current or future wireless services. An illustra-

tion of hole concept is shown in Fig. 1 [3]. Based on this model, the CR dynamically

evaluates the available channel selection alternatives, access and opportunistically use

the channels for the period that the licensed users are idle.

Fig. 1: Illustration of Spectrum Hole Concept [3].

2 Cognitive Radio Cycle

The cognition capability of a CR allows it to continually observe the dynamically chang-

ing surrounding environment in order to interactively come up with the prudent trans-

mission strategies to be used. The block diagram in Fig. 2 describes the four main

components of the cognitive radio cycle [22].

3



2. Cognitive Radio Cycle

Fig. 2: Functional Architecture of Cognitive Radio [21]

2.1 Spectrum Sensing

Spectrum sensing is one of the most critical functions of a CR. Spectrum sensing refers

to the ability of a cognitive radio to sense the spectral band in order to capture the

parameters related to cumulative power levels and user activities of a licensed primary

users. A CR must make up to date real-time decisions about which primary user channel

is idle, when and for how long. The sensed spectrum information must be adequate

enough for the CR to reach accurate conclusions regarding the radio environment [21].

Furthermore, spectrum sensing must be quick to track the temporal variations of the

radio environment. Such requirements of spectrum sensing puts stringent requirements

on the hardware implementation of cognitive radios in terms of the sensing bandwidth,

the processing power and the radio frequency (RF) circuitry.

2.2 Spectrum Analysis

Spectrum analysis takes care of estimation of the channel state information (CSI), it

refers to the existence of spectral opportunities in the surrounding radio network based

on the sensed wireless communication parameters. A spectral band opportunity is con-

ventionally defined as a band of frequencies that are not being used by the licensed

primary user of that band at a particular time in a defined geographic environment.

However, such a definition covers three dimension of the spectrum space: frequency,

time, and space [22].

4



2. Cognitive Radio Cycle

2.3 Spectrum Access Decisions

In the cognition cycle CR should be able to make decisions from a set of transmission

actions based on the outcome of the spectrum sensing and analysis procedures. The CR

utilizes the information collected regarding the PU’s channel opportunities identified as

available for the secondary users to opportunistically access [21]. The set of transceiver

parameters to be decided on depends on the inherent transceiver architecture. Examples

include; which spectrum is more favorable for the preceding transmission, the maximum

transmission power, modulation rate, the angle of arrival for directional transmissions,

the time instant a transmission over a certain band should start, the spread spectrum

hopping scheme, and the number and identity of the antennas [22]. Based on the sensed

spectrum information and the transceiver architecture, CR defines the values of the

parameters to be configured for an upcoming transmission.

2.4 Adaptability (Reconfiguration) of Cognitive Radio

A key feature that distinguishes CR from an integrated radio is it ’s ability to adapt

and reconfigure its transceiver parameters based on the assessment of surrounding ra-

dio environment. While today’s radios have considerable flexibility in terms of their

ability to reconfigure some transmission parameters such as the transmission rate and

power, they are typically designed to operate over certain frequency band(s) according

to a certain communication protocols [21]. However CR transceiver are robust and agile

towards the utilizing the emerging spectral opportunities over a wider spectrum range.

For instance, a cognitive radio must be able to configure the transmission bandwidth to

adapt to spectral opportunities of different sizes. Furthermore, CR is not restricted to

a certain communication protocol only but should be able to adjust and adapt. It must

determine the appropriate communication protocol to be used over different spectral

opportunities based on its recognition of the radio environment [21, 22].

This work focuses on spectrum sensing, which is the pivot component of the cogni-

tive radio cycle. The CR is faced with a myriad of sensing challenges which this work

endeavors to address in order to improve on it core mandate of effective and reliable

detection of the licensed primary user with minimal interference.

5



3. Spectrum Sensing Challenges

3 Spectrum Sensing Challenges

The major challenge in CR is that the secondary users need to detect the presence of

licensed primary users on spectrum with precision and quit the spectral band as quickly

as possible when the primary user emerges to transmit on it’s channel in order to avoid

interference [1]. Spectrum sensing in cognitive radio networks is challenged by several

sources of uncertainties ranging from channel randomness at device level to network-

level uncertainties. Such uncertainties usually have implications in terms of the required

channel uncertainty, noise uncertainty, and detection sensitivity.

3.1 Channel Uncertainty

The hidden node problem is a classic issue with radio systems that opportunistically

share the same spectral resources and can result in significant performance degrada-

tion. The reason for the degradation is due to the fact that an interfering node (or node

pair) may be unaware that they are causing interference to another transmission, which

is normally an essential prerequisite for radio coexistence etiquette. This is caused by

many factors including severe multipath fading or shadowing observed by secondary

users while scanning the primary users’ transmission channels [31]. Multipath fading

and shadowing attenuates the signal power as it travels through space. The attenuation

is exponentially proportional to the distance the signal travels. The energy loss along

the path from the transmitter to the receiver is defined as path loss in wireless commu-

nication. The block diagram in Fig. 3 illustrates the concept of interference as a function

Fig. 3: Interference Range in Cognitive Radio

6



3. Spectrum Sensing Challenges

of the distance in a cognitive radio network. In this network only one secondary user

(SU) detects a number of primary users (PUs) as a receiver of transmitted information

data from the primary user transmitter (PUTX). The interference range of the secondary

user, is determined as follows [14]

λ =
PpL(D)

PsL(d) + Pb
(1)

where λ is the threshold determined by the regulating bodies, Pp and Ps denotes the

transmitted power of the primary user and secondary user respectively, D is the cov-

erage radius between the primary user and the primary transmitter (PUTX), L(D) is

the path loss (including shadowing and multipath fading effects) at distance range D,

L(d) is the path loss at the distance range d and Pb is the power of background interfer-

ence. Since path loss varies with frequency, terrain characteristics and antenna heights,

these parameters should be taken into account. Here, the CR device causes unwanted

interference to the primary user (receiver) as the primary transmitter’s signal can not be

detected because of the locations of SU’s devices. Under channel fading or shadowing, a

low received SNR of the PU signal does not necessarily mean that the PU is located out

of the secondary user’s interference range, as the PU may be undergoing a deep fade

due to shadow obstacles [2]. Therefore, spectrum sensing mitigates channel uncertainty

in this respect the CRs have the capacity and sensitivity to differentiate between a faded

or shadowed primary signal from a white space.

3.2 Noise Uncertainty

Spectrum sensing is further challenged by noise uncertainty when energy detection

is used as the underlying sensing technique. More specifically, a very weak primary

signal will be indistinguishable from noise if its SNR falls below a certain threshold

determined by the level of noise uncertainty [14]. Feature detectors, on the other hand,

are not susceptible to this limitation due to their ability to differentiate between signal

and noise [2]

3.3 Detection Sensitivity

Detection sensitivity drops quickly with the increase of the averaged noise power fluc-

tuations and becomes worse at low SNR. Interference due to a cognitive radio network

is deemed harmful if it causes the SNR at any primary receiver to fall below a certain

threshold (λ) set up by the wireless communication regulatory bodies world over. This

7



4. Spectrum Sensing Techniques

threshold depends on the receiver’s robustness toward interference and varies from one

primary band or service to another [14]. It should, however, come as no surprise that

this threshold in general may depend on the characteristics of the interfering signal

(e.g., signal waveform, and intermittent interference). This may in turn influence cog-

nitive radio’s choice of transmission waveform in certain licensed bands. Building on

the above definition, the interference range of a secondary transmitter may be defined

as the maximum distance from a primary receiver at which the incurred interference is

still considered harmful [2]. The interference range depends not only on the secondary

user’s transmitted power, but also on the primary user’s interference tolerance.

This works addresses channel uncertainty and noise uncertainty issues in part. To miti-

gate the impact of these challenges, cooperative spectrum sensing has been employed to

improve the detection performance by exploiting spatial diversity. In this work a group

of SUs collaborate to determine the final decision on the presence or absence of the PU.

In cooperative spectrum sensing, detection performance and relaxed sensitivity require-

ment can be realized. The noise uncertainty and detection sensitivity are specifically

addressed by utilization of higher order statistics (HOS) test to detect the PU.

4 Spectrum Sensing Techniques

Spectrum sensing refers to a process of detecting spectrum holes in an opportunis-

tic manner without causing interference to the primary user. The block diagram of

Fig. 4 describes the spectrum sensing techniques. They are classified into three: non-

cooperative, cooperative detection and interference detection. These approaches fall

under the category of spectrum overlay wherein SUs only transmit over the spectrum

when the licensed PUs are not using the band [29, 44].

4.1 Non-Cooperative Detection

Non cooperative detection, also called transmitter detection, is based on the sensing the

signals from a primary user through the local observation by secondary users. Transmit-

ter detection is classified into three main detection schemes; energy detection, matched

filter detection and cyclostationary feature detection [3]
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Fig. 4: Classification of Spectrum Sensing Techniques.

4.1.1 Energy Detection

It is a non-coherent sensing technique that detects the primary signal based on the

sensed energy. Due to its simplicity and non requirement on a priori knowledge of

primary user signal energy detection (ED) is the most popular sensing technique [44].

The block diagram of Fig. 5 describes the energy detection technique. In this model the

Fig. 5: Energy Detection Spectrum Sensing Scheme [29]

signal X(t) is passed through radio frequency (RF) and intermediate frequency (IF) pre-

processing stages where it is demodulated, amplified, converted from analog to digital

and selected by a band pass filter [29]. The PU signal is computed as the energy spectral

density or power spectral density (PSD) measured over a specific time interval. Summa-

tion or integration of the spectral components yields the total power which is measured

as a statistical phenomena. The received primary user signal is expressed as [15]

E{x(t)} = 1
T

∫ t

t−T
x2(τ)dτ (2)

where E is the energy of the input signal x(t) at any time over a period interval T. The

input signal x(t) consists either of noise alone or a signal plus noise. The output from

the integrator block is then compared to a predefined threshold whose value is based on

9
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the channel conditions. The major drawback of the energy detector is it’s inability to dis-

tinguish between different sources of received energy, i.e., it cannot distinguish between

noise and licensed user’s signal. This makes it unreliable technique to be employed in

detecting the presence of the primary user especially at low SNR conditions. Energy

detection is simple to implement, and hence widely adopted in spectral sensing. Part of

this work is focused on energy detection in a cooperative spectrum sensing network.

4.1.2 Matched Filter Detector

In cognitive radio networks, matched filter detection is obtained by correlating a known

signal or template with an unknown signal to determine the presence of the template

in the unknown signal conditions. This is equivalent to convolving the unknown signal

with a conjugated time-reversed version of the template [44]. The block diagram of Fig.

6 shows matched filter (MF) [26]. The primary signal x(t) is converted from analog to

digital and subsequently passed through the band pass filter to select the desired pri-

mary signal. The hypothesis statistical test H0 shows that the primary user is absent and

H1 when it is present. In a scenario where secondary user has a priori knowledge of

Fig. 6: Block Diagram of Matched Filter Spectrum Sensing Technique [26]

primary user signal, matched filter detection (MFD) is considered to be the most appro-

priate detection scheme. The matched filter is the optimal linear filter on maximizing

the signal to noise ratio (SNR) in the presence of additive stochastic noise. In this form

of detection paradigm the PU transmitter sends a pilot stream simultaneously with the

data, the SU receiver therefore has a perfect knowledge of the pilot stream to verify its

transmission on the frequency band [34]. However, the most significant disadvantage of

MFD is that a CR would need a dedicated receiver for every type of primary user. The

sensing decision is based on the knowledge of the statistical distribution of the autocor-

relation function. For random noise, the first lag of the autocorrelation is very small or

negative, but when there is a signal the autocorrelation at the first lag will represent a

significant value. In signal processing, for a given signal Y[n], as a general convolution
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sum equation is expressed as [26]

Y[n] = ∑ h[n− k]x[k] (3)

where x is the unknown signal (vector) and is convolved with the h, the impulse re-

sponse of matched filter that is matched to the reference signal for maximizing the SNR.

Due to the fact that MFD requires a prior knowledge of every primary signal, if the

information is not accurate MFD performs very poorly. Also the most significant dis-

advantage is that CR needs a dedicated receiver for every type of primary user. This

technique is not used much in cooperative sensing and therefore not considered in this

work.

4.1.3 Cyclostationary Feature Detection

Cyclostationary is a statistical process with properties to exploits the inherent cyclosta-

tionary characteristics of the received PU’s signal. The scheme deals with the periodicity

inherent in sinusoidal carriers, spreading code, hopping sequences or cyclic prefixes and

pulse trains of the primary signals. Such features have a periodic statistics and spectral

correlation that cannot be found in any interference signal or stationary noise. That is

why the cyclostationary feature detection method possesses higher noise immunity than

any other spectrum sensing method [44]. The block diagram of Fig. 7 shows the stages

Fig. 7: Cyclostationary Spectrum Sensing Scheme [5]

of cyclostationary detection scheme [5]. The signal x(t) is passed through the filter circuit

which selects the center frequency, and bandwidth of interest (primary user channel).

The ADC electronic circuit reconverts the signal from analog to digital. Fast Fourier

transform (FFT) algorithm computes the discrete Fourier transform (DFT) of a sequence

i.e., converts the signal of interest from its original domain (often time or space) to a

representation in the frequency and vice versa. The signal in cyclostationary processes

is periodic in time duration (T), which also possess a periodic autocorrelation function.

The primary user signal is then averaged over a given period of time. Feature detector,

is used to extract the signal features achieved by decimation of the cyclic spectrum. In

11



4. Spectrum Sensing Techniques

this method, the cyclic spectral correlation function (or SCF) is the parameter that is

used for detecting the primary user signals. The cyclic SCF of received signal can be

formulated as [5, 26]

Syy( f ) =
∞

∑
τ=−∞

Rα
yy(τ)e

−j2π f (4)

where Rα
yy(τ) is the cyclic autocorrelation function obtained from the conjugate time

varying autocorrelation function of PU’s signal s(t) periodic in time (t). When the pa-

rameter α is the cyclic frequency and equal to zero, the SCF becomes power spectral

density. A peak cyclic SCF value implies that the primary user is present on that band.

Although this scheme requires a priori knowledge of the signal characteristics, it’s ca-

pable of distinguishing the CR transmissions from other types of PU signals [44]. It has

an advantage over energy detection since it eliminates the synchronization requirement

when applied in cooperative spectrum sensing networks. Moreover, cognitive radio

users may not be required to keep silent during cooperative sensing and thus improving

the overall cognitive radio throughput. This method has its own shortcomings owing to

its high computational complexity and long sensing time [26]. Due to these issues, this

detection method is less common than energy detection in cooperative sensing and is

not featured in this work.

4.2 Interference Based Detection

Interference based detection model attempts to regulate interference at the primary re-

ceiver. The CR users are allowed to transmit on the spectrum band as long as they do not

exceed the interference temperature limit. That is, during the interference based detec-

tion, the CRs have to measure the interference temperature and adjust their transmission

in a way to avoid raising the interference temperature over the interference temperature

limit [44]. Typically, CR user-transmitters control their interference by regulating their

transmission power (their out-of-band emissions) based on their locations with respect

to primary users. The CR users’ are allowed to coexist and transmit simultaneously

with primary users using low transmit power that is restricted by the interference tem-

perature level so as not to cause harmful interference [26].

However, the main drawback of interference based detection is that the CR users can-

not transmit their data with higher power even if the licensed system is completely idle

since they are not allowed to transmit with higher than the preset power to limit the

interference at primary users. It is noted that the CR users in this method are required
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to know the location and corresponding upper level of allowed transmit power levels,

otherwise they will interfere with the primary user transmissions [5]. This spectrum

scheme is seldom used and is not part of this work.

4.3 Cooperative Spectrum Sensing

In cooperative spectrum sensing (CSS) paradigm, each secondary user shares the infor-

mation acquired from sensing the primary user. In this technique, a group of secondary

users collectively gather the information concerning channel status and spectrum map

used as a database of the information [20]. A group secondary users detect the PU at

regular sensing intervals and forwards their decisions to the cluster center or fusion

center (cognitive radio nerve center), where the final global decision is made about the

primary user channel status and feedback given back to the respective secondary users

hence allocating them the spectrum.

In wireless communication the detection performance on large extent depends on a

number of factors, among them effects such as shadowing, multipath fading, and hid-

den nodes problem [31]. Under cooperative spectrum sensing some SUs may suffer from

the receiver uncertainty challenges because they are not aware of the PU’s presence and

as a consequence, those SUs experiencing uncertainty problem end up interfering with

the signal reception at PU receiver. However, due to spatial diversity, it is rare for all

spatially distributed SUs in a CR network to simultaneously experience fading or re-

ceiver uncertainty problems.

To alleviate fading problems SUs which observe a strong PU signal can be allowed

to collaborate and share the detection results with those SUs observing weak signal.

The combined cooperative decision derived from the spatially collected individual SUs

data is used to overcome the shortcomings of individual decisions made by only one

SU [20]. Thus, the overall detection performance can be greatly improved. This is the

reason why cooperative spectrum sensing is an attractive and efficient approach to mit-

igate multipath fading and shadowing and receiver uncertainty problems. Cooperative

spectrum sensing can be classified into three categories depending on how cooperating

SUs share the sensing data in the network; distributed, relay-assisted and centralized

schemes [40]
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4.3.1 Distributed (Decentralized) Spectrum Sensing

Distributed, also referred to as decentralized, spectrum detection scheme refers to the

set of algorithms where cognitive sensors group themselves based on a distribution

statistics. They combine their individual results and communicate among themselves

regarding presence or absence of white spaces in the cognitive radio network [44]. The

Fig. 8: Decentralized Spectrum Sensing Network

CR network shown in Fig. 8 describes a decentralized spectrum sensing [40], this sens-

ing architecture does not rely on a fusion center in making global collaborative decisions.

In this scenario, SUs exchange the sensing observations in a given cluster and converge

to a unified decision. Based on a distributed decision algorithm, each SU sends its own

sensing data to other users, combines its data with the received sensing data, and de-

cides whether or not the primary user’s transmission is present by using a local decision

criterion. If the decision threshold is not met, SUs send their combined results to other

users again, and iterate this process until the decision algorithm converges and a final

decision is made. Authors in [43] argue that this approach greatly increases detection

reliability and certainty. An efficient decentralized scheme requires a user selection pro-

tocol responsible for determining how many and which SU are going to collaborate so

that not all SUs participate simultaneously. The criteria is pegged on the SUs proximity

to the PU and its SNR at the time of transmitting. However, they agree the scheme may

add a lot of system overhead and compromise throughput of the SU network. In decen-

tralized cooperative sensing, SUs sense the presence of PU periodically, the information
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sensed becomes obsolete very fast due to factors like mobility, and channel impairments.

Decentralized cooperative spectrum sensing raises new challenges including detection

delay, coordination algorithms complexity, and asynchronous sensing design. These

schemes are susceptible to higher error probability than the other two schemes and are

not the focus of this work.

4.3.2 Relay-Assisted Cooperative Sensing

The relay-assisted cooperative sensing can exist in a distributed scheme. In fact, when

the sensing results need to be forwarded by multiple hops to reach the intended receiver

node, all the intermediate hops acts as relays [45]. In practice both sensing channel and

reporting channels are imperfect and SUs that observe strong PU signals may suffer from

a weak reporting channel. Those SUs with a strong reporting channel can serve as relays

to assist in forwarding the sensing results of those SUs with strong sensing channel but

with weak reporting channel to the fusion center [47]. The relay-assisted cooperative

sensing scheme requires more than one antenna at the transmitter. However, many

wireless devices are limited by antenna size and hardware design complexity [37]. This

cooperative spectrum sensing scheme is not the focus of this work due to its complexity

in implementation.

4.3.3 Centralized Spectrum Sensing

In this paradigm there is a master node (cognitive radio) within the spatially spaced

secondary users network that collects the sensing information from all the sense nodes

or secondary users within the network. It then analyzes the PU’s signal to determine the

spectral bands that are idle [35]. Fig. 9 shows centralized cooperative spectrum sensing

model, where a group of spatially distributed secondary users sense the primary user

channel and report their observed individual local decisions to central processor or the

fusion centre. The absence or presence of the PU on channel can be modeled by null

hypothesis (H0) and alternative hypothesis (H1) test statistics respectively [3]. In this

scheme FC controls a three-step cycle of cooperative spectrum sensing. Firstly, the FC

selects a frequency band of interest to be sensed and commands all collaborating SUs to

individually perform local sensing. Secondly, all cooperating SUs transmit their sensed

data results via the control channel to the FC. Thirdly the FC integrates and fuses the

received local sensing information from the SUs to perform a global decision on the

presence or absence of PUs, and retransmits the decision back to the SUs, instructing
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Fig. 9: Centralized Spectrum Sensing Model [3]

them on status of the channel [45] . One of the chief problems with non-cooperative

spectrum sensing is that even though the secondary user may not be able to detect the

PU it may still interfere with it. By using a centralized cooperative sensing system, it is

possible to reduce the possibility of this happening because a greater number of SUs will

build up a more accurate detection picture of the primary user transmissions conditions.

The CR perform spectral sensing at periodic intervals, the challenge with this is that

the sensed information from the PU become obsolete fast due to factors like mobility

and fading issues. The CR then needs, a big capacity to hold the data as it updates

its current information. It is without doubt that this greatly increases storage and sen-

sory space resulting in the data overheads, this has a ripple effect on the system in

terms of data throughput, and energy consumption. Even with this challenges coop-

erative sensing based on hard fusion schemes can be implemented without incurring

much overheads because only approximate sensing digital data is required. It therefore

eliminates the need for complex signal processing schemes at the receiver and reduce

the data over load. In centralized spectrum sensing, SUs collaborate in the sensing and

decision making. This helps to acquire accurate information which further reduces the

false alarms and subsequently maximizes the system reliability, hence this is the focus

of this work.

5 Higher Order Statistics Detection Techniques

In literature a number of new spectrum sensing paradigms based on higher order statis-

tic (HOS) have been proposed. These algorithms perform non-Gaussianity check on

the signal distribution, and they are based on the fact that noise follows Gaussian dis-
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tribution whereas the signal does not [42]. Estimated value of third and fourth or-

der cumulants are employed in Gaussian tests on the real and imaginary parts of the

FFT spectrum. Some of the known HOS tests include skewness, kurtosis, Jarque Bera

and omnibus tests. These methods are evaluated by simulation and the results have

shown increased robustness against noise uncertainty as compared to energy detection

schemes. This has shown a paradigm shift towards achieving robust spectrum sensing

based on goodness-of-fit. The major challenge in cognitive radio networks is the noise

uncertainty, however HOS performs extremely well in this conditions and is the focus

this work.

5.1 Kurtosis and Skewness

The skewness and kurtosis of a received signal has predetermined statistical pattern

which is compared to a set threshold to determine the deviation from a normal distri-

bution [18]. These techniques are used to measure the statistical properties of a set of

randomly distributed data samples. Kurtosis as a fourth and skewness third moments

both measures the degree of departure from Gaussian probability distribution function

(PDF). Large positive values of kurtosis indicate a highly peaked PDF that is much nar-

rower than a Gaussian distribution while negative kurtosis indicates a broad PDF that

is much wider and flatter than a Gaussian distribution. The main difference between

kurtosis and skewness is that while kurtosis measures the peakness of a distribution rel-

ative to the Gaussian distribution, skewness on the other hand measures the statistical

asymmetry of the distribution [18].

Fig. 10 shows a block diagram of kurtosis and skewness tests as utilized in spectrum

sensing [33]. The received primary user signal to be tested by this model is converted

from analog to digital by an analog to digital converter (ADC) circuit, the power spectral

density (PSD) of the received signal is then calculated. Periodogram of the estimated

PSD is employed to accurately determine the frequency-domain statistical properties of

primary user’s signal to be detected in the network.

The statistical tests are derived by calculating a Fast Fourier Transform (FFT) over the

digital signal samples which is compared to a predetermined threshold (λ) value of the

Gaussian noise. Thresholding is calculated based on fixed probability of false alarm and

usually 10 percent is the commonly accepted standard value [8, 10]. This threshold set-
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Fig. 10: Block diagram for kurtosis & skewness detection tests

ting is done on every detected sample frame size (N) such as the number of FFT points.

As noise varies for each hardware, this threshold setting method will guarantee noise

adaptability. It’s assumed that the noise is stationary and follows the additive white

Gaussian noise (AWGN) distribution property. The AWGN is a channel model where

the only impairment to communication is noise; with a constant spectral density. In this

model noise possesses zero mean, and is assumed to be white over the bandwidth of

consideration; i.e. samples of the noise process are uncorrelated [18].

5.2 Jarque Bera Test

The JB test is HOS spectrum sensing technique employed to compute normality test on a

given data sample in order to determine how close the data is to a normal distribution. It

is non-parametric tests most preferred because it does not require previous information

of the PU’s status on the channel to make a decision (blind detection) [8]. The JB

test is a asymptotically chi-squared distributed with two degrees of freedom. It uses

the unbiased samples of skewness and kurtosis to verify the adherence to Gaussian

distribution [18]. Fig.11 shows a block diagram of JB spectrum sensing scheme [11],

where the PU signal X(t) is demodulated through RF and IF preprocessing stages and

converted from analog to digital by ADC electronic circuit. The signal is shifted to a base

band to reduce the sampling frequency needed to obtain Nyquist digital samples of the

spectral band. The FFT points are then calculated, subdivided into N frames of NFFT

points and concatenated. The JB values are compared with a predefined threshold to

distinguish between occupied spectrum and white space. The threshold is calculated

from empirical estimation of system’s noise, that acknowledges the distribution of the
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signal Y(n), as being Gaussian (channel is idle) or non-Gaussian (channel occupied)

[18]. Considering a AWGN channel where the PU’s transmitted signal is well defined,

Fig. 11: Block diagram of Jarque Bera spectrum sensing scheme

the probability distribution for an idle channel is given as a Gaussian random variable

with zero mean and unit variance. Under normal distribution the statistical values are

known, the SUs can therefore use this statistic to determine the presence or absence of

the primary user on the channel. Authors in [8] have shown that JB test as applied

in spectrum sensing algorithms can obtain better detection performance than existing

higher order statistics (HOS) methods, since it is more robust to noise uncertainty even

when investigated on a small sample size.

5.3 Omnibus (K2) test

Omnibus (K2) is applied to assess the normality of random variables by calculating kur-

tosis and skewness [39]. Omnibus is a moment test derived from the recognition of

departure to normality from a Gaussian distribution. A statistical test implemented on

the overall hypothesis that tends to find general significance between parameters’ vari-

ance, while examining parameters of the same type. In statistical research test, a random

sample from a population distributed with unspecified mean and variance, omnibus K2

will test whether the explained variance in a set of data is significantly greater than the

unexplained variance. A successful omnibus K2 test would lead one to reject the null

hypothesis if and only if the data comes from another distribution [30]. It is formu-

lated based on the standardized third and fourth moments to assess the normality of

random variables. Generally omnibus K2 statistic integrates the standardized sample

moments of transformed skewness and kurtosis into normal variants respectively. It

combines them into single test statistic designed to detect a broad range of departures

from a specific null hypothesis [25]. A correctly sized omnibus test as a chi-squared
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(χ2) distribution test can be specified to determine the information originating from

two moments. The main advantage of this the test is the simplicity provided by the χ2

distribution statistical framework [30].

6 Spectrum Sensing over Fading Channels

Many wireless communication networks are subjected to fading caused by multipath

propagation due to reflections, refractions and scattering by buildings and other large

structures. In PU detection, flat fading delivers the poorest performance since frequency

selectivity provides multiple “observations” simultaneously. Furthermore, in a com-

posite fading/shadowing environment, apart from the multipath fading, wireless sig-

nals may undergo shadowing process typically modeled as a Log-normal distribution

and multipath fading which can be modeled as a Rayleigh, Rice or Nakagami distribu-

tions [23]. In this environment the receiver does not average out the envelope fading

due to multipath but rather reacts to the instantaneous composite multipath/shadowed

signal. This is often the scenario in congested areas with slow moving objects. There-

fore, some practical communication channels can be modeled as a multipath fading

superimposed on Log-normal shadowing.

6.1 Rayleigh Fading Channels

This is a statistical distribution commonly employed to model the signal amplitude

variation when the signal is not received on a line-of-sight path between the transmit-

ting antenna and the receiver. The channel fading amplitude follows the distribution

function of a statistical time varying nature of the received envelope of a flat fading or

the envelope of an individual multipath component. This fading model considers ur-

ban multipath features, including effects of the ionosphere and troposphere. When this

model is employed, attenuation of the signal is Rayleigh distributed and therefore the

SNR at every node follows an exponential distribution [7]. Due to the hidden terminal

problem, a cognitive radio may fail to identify the presence of the PU and then will

allow erroneous access the licensed channel, causing interference to the licensed system.

In order to deal with the hidden terminal problem in cognitive radio networks, multiple

cognitive users can cooperate to conduct spectrum sensing [31].
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6.2 Nakagami-M Fading

This statitic technique is preferred to model multipath propagation in indoor mobile

communications and radio links for ionosphere communications. The Nakagami fading

distribution is a convenient model for analyzing the performance of digital communi-

cation systems over generalized fading channels. This fading distribution is assumed

in the analysis of many terrestrial wireless communication systems. It is flexible and

embraces scattered, reflected and direct components of the original transmitted sig-

nal [7, 48].

6.3 Lognormal Fading

This statistical technique models the envelope of received signal when affected by shad-

owing effect due to blockage caused by buildings and hills among others obstructing

objects. The probability density function, empirically models an outdoor and indoor

wireless propagation environments. In the presence of lognormal channel interference,

computing the outage probability (or its bounds) often involves calculating the mean

and variance of the sum of lognormal random variables [48]. Several approximate meth-

ods have been suggested in the literature to compute both the outage probability and the

underlying lognormal sum distribution. Shadowing is usually statistically independent

however in some cases it may be statistically correlated. Estimation of outage probability

requires pdf of sum of lognormal random variables representing the shadowing, heuris-

tics or local optimization algorithms can be used to find (local) solutions to the problem

of minimizing the total transmitter power subject to outage probability constraints [17].

7 Cooperative Spectrum Fusion Techniques

In cooperative spectrum sensing, the major challenge is how SUs share information

amongst themselves to make the final decisions on whether PU is active or not on the

channel. The shared information transmitted by individual SUs are combined to make

a global decision at the fusion center (FC). In literature two main fusion techniques

namely, soft or hard decisions have been proposed to determine the global decisions

done at the fusion center in a cooperative spectrum sensing networks [12].
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7.1 Soft Fusion Decision Schemes

This refers to a spectrum sensing technique where SUs send their instantaneous received

signal-to-noise ratios (SNRs) or any other detection metric to a central unit known as the

fusion center. The sensing results in form of likelihood ratios are combined using soft

combination strategies to fuse the observed instantaneous energy [28]. Algorithms such

as equal gain combining (EGC), maximal ratio combining (MRC), square law combining

(SLC) and selection combining (SC) approaches have been adopted. In all cases, the

observed energies from N number of cooperative users are scaled by weight factors and

added up. The decision is a result of the weighted sum expressed as [12]

X =
N

∑
j=1

wjXj (5)

where Xj is the observed energy of the j-th secondary user and wj denotes the weight

factor for the j-th secondary user. The resulting decision statistic is compared to a deci-

sion threshold (λ) to decide between H1 (the channel is occupied) and H0 (the channel

is idle) 
X > λ Accept alternative hypothesis H1

X < λ Accept null hypothesis H0

(6)

The threshold (λ) is set to achieve the desired probability of false alarm or miss detection.

The main difference between MRC and EGC fusion techniques is on how the weights

are evaluated. The MRC is expressed as [16]

XMRCj =
Xj√

∑N
k=1 X2

k

1 ≤ j ≤ N (7)

where Xj represents the measured instantaneous signal to noise ratio of the j-th SU.

The SUs with strong signals are then amplified, while weak signals are attenuated.

MRC shows in practice the optimal performance but it is hardly employed as it requires

prior knoweledge on the estimated channel gain. Similarly the weights of EGC soft

combination technique formulated as in eqn. (8) [1]

WEGCj =
1√
N

1 ≤ j ≤ N (8)

where N is the number of samples of the PU signal over a given period of time. Sec-

ondary users are assigned same weights based on the number of N collaborating SUs. If

the channel state information (CSI) between the primary users and the secondary users

is perfectly known, MRC could achieve higher probability of detection hence achieves

22



7. Cooperative Spectrum Fusion Techniques

optimal performance at low SNR as compared to EGC. However, EGC is less complex

in design since it does not require channel estimation [1, 16]. In [41], authors studied

collaborative detection in wireless transmissions using soft decision and the likelihood

ratio test. It was shown that soft decision combination in spectrum sensing achieved

more precise and reliable PU detection than hard decision combination. However this

comes at the cost of large overheads in terms of bandwidth which is already a scare

resource.

7.2 Hard Fusion Decisions Schemes

In this scheme a group of SU performs local spectrum sensing to determine the presence

or absence of the PU on channel and retransmits their individual decisions in binary

logic form to the FC. At the FC, decisions are collated, analyzed and integrated to make

the final global decision on the status of PU [6]. Three hard combining decision rules

used to arrive at the global decision include; Majority, OR and AND rules [41]. Due

to cost implied on the bandwidth, the hard decision combination is preferred since

utilizes less spectrum as compared to soft fusion decision hence remains an attractive

option in CSS networks, this has informed the choice of hard fusion schemes over soft

combination schemes in this work.

7.2.1 Majority Counting Rule

This is also called k out of n counting rule where the FC decides on the presence of

the PU on condition that k or more number of SUs out of the total n collaborate to

determine the final decision on the status of PU on the channel. Therefore if k number

of SU or more decide in favor of PU’s presence then the global decision reached at the

FC is a binary 1 formulated by a null hypothesis test (H1/H1), implying that the PU is

transmitting on the channel [4].

7.2.2 Logical OR Rule

This is a hard logic combination rule made by the FC in a central cooperative spectrum

sensing network confirming the presence of PU on the channel on condition that at least

one or more SUs declares presence of PU. Since SUs transmits on a licensed frequency

band may cause interference to the PUs, the risk of SUs causing interference to the PU

under the logical OR fusion rule is greatly increased [7, 12].
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7.2.3 Logical AND Rule

In this hard fusion scheme all SUs in a central cooperative spectrum sensing network

(CCSS) must declare and report the presence of PU on the channel to the FC before it

confirms that indeed the PU is transmitting on the channel (binary 1), otherwise the

global decision at the FC will show absence of PU (binary 0). Therefore, global decision

is given by the hypothesis (H1) only if all of the SUs decide on presence of PU (H1/H1)

[4].

8 Optimization by Lagrange Criterion

In this work Lagrange criterion is used to optimize the number of participating SUs in

cooperative spectrum sensing. Limiting the number of SUs communicating is important

in minimizing the energy consumption in the cognitive radio network (CRN). An adap-

tive distributed iterative algorithm is proposed to solve this problem by using Lagrange

dual theory and logarithmic transformation. In [46], the authors investigated the perfor-

mance in CRN based on the Lagrange criterion algorithm in optimal resource allocation

and indeed guaranteed high QoS as compared to the other optimization algorithms. A

Lagrange criterion problem can be formulated as

Maximize
x∈X

f (x)
g(x)

Subject to hi(x) ≤ 0 ∀ i = 1, 2, ..., N
, (9)

where f (·), g(·) and hi(·), i = 1, 2, ..., N, denote real valued functions which are defined

on the set, X of Rn. Lagrange as a function program is a concave fractional program if

it satisfies the following two conditions

1. f (·) is the concave and g(·) is the convex on X

2. f (·) is positive on S if g(·) is not affine,

where S = {x ∈ X : hi(x) ≤ 0 ∀ i = 1, 2, ..., N}. It is noted that in a concave frac-

tional program, any local maximum is a global maximum i.e. a differentiable concave

fractional program solution of the Lagrange condition provides maximum solution. It

can be seen that the function in the numerator is concave function and the denominator

is affine and all the constraints are affine. The optimal problem of eqn. (9) above is

differentiable and satisfies the Lagrange criterion. This optimization technique has been

used in this research work.
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9 Neyman-Pearson Optimization

The optimal fusion strategy based on hard fusion schemes in CCSS network is impor-

tant in minimizing the probability of false alarm or maximizing probability of detection.

Neyman-Pearson (NP) criterion is used to solve this optimization problem. In this de-

tection paradigm unknown deterministic signals developed as a binary hypothesis test

problem represented by H0 as a default model also called the null hypothesis is com-

pared to H1 also called the alternative hypothesis as a likelihood ratio test. The binary

hypothesis statistics test is solved by the Neyman-Pearson criterion wherein the perfor-

mance of the system is expressed in terms of false alarm and detection probability [48].

The NP test compares the likelihood ratio of a set threshold to the optimal threshold as

a function of the prior probabilities and the costs assignment on different errors. The

choice of costs is subjective and depends on the nature of the problem, but the prior

probabilities must be known [12]. NP just like other statistics, needs to preselect a

threshold (λ) to balance the trade-off between false positive error and false negative er-

ror. In the NP classification setting, the threshold can be optimized by introducing a risk

to the objective function as described in eqn. (10). Let α be the risk of false positive and

β be the risk of false negative, the formulation of NP classification can be formulated as

follows [36]

Minimize
λ

( f (λ)− α) + β

Subject to β ≤ α

, (10)

The optimal λ can be selected as a trade-off problem. A classic result due to NP has

showed that the solution to this type of likelihood ratio test is optimal [32]. This work

focuses on both Lagrange and NP optimization techniques used to achieve a two stage

spectrum sensing optimization paradigm.

10 Energy Efficiency in Cooperative Spectral Sensing Networks

Cognitive radio networks are considered as a novel and reliable paradigm shift in en-

ergy efficient wireless communication systems. The SU devices are powered by batteries

and often embedded into the system permanently, it is often impractical to charge or

replace the exhausted battery. Energy-efficiency is therefore an important component

for cognitive radio operations and communications over the wireless channels. While
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energy efficiency is the most important parameter in designing secondary user detec-

tion networks, other quality of service QoS parameters such as throughput and system

reliability are investigated in this work [7]. An energy efficiency metric can be defined

as the effective throughput per one unit of transmitted power. That implies, we can call

a scheme energy-efficient or green if we can reduce the total network power without in-

troducing significant impact on the network throughput. Energy efficiency is measured

in bits per Joule. This means energy is required in Joules to transfer one bit from one

point to the other [27]. The number of SUs determine the total energy consumed in

the CRN, an efficient CSS network is one where a minimum number of SU collaborate

to make the final decision with high reliability and probability of detection. The term

green is synonymous to energy-efficiency for wireless sensing network (WSN) design,

since maximizing energy efficiency reduces the power usage in a WSN life cycle, and

subsequently reduces air pollutants.

11 Performance Metrics in CSS Network

The reliability of the spectral band information availability is defined by the performance

metrics. In cooperative spectrum sensing they are specified by the following general

metrics; local probability of detection (Pd), local probability of false alarm (Pf a), local

probability of misdetection (Pm), global probability of detection (Qd), global probability

of false alarm (Q f a) and global probability of misdetection (Qm).

11.1 The Local Probability of Detection (Pd)

In opportunistic spectrum sensing, local probability of detection (Pd) specifies that SU

in a cognitive radio network makes the correct decisions on the presence or absence of

primary user (PU) on the channel. This is informed by the (H1|H1) hypothesis test,

where the SUs correctly determines the status of PU. The (Pd) is an indicator on the

level of interference protection provided to the PU. Hence, a large (Pd) denotes precise

sensing; which translate to small chance(s) of interference [24].

11.2 The Local Probability of False Alarm (Pf a)

The local probability of false alarm (Pf a) event occurs when the SU assumes that the

PU is transmitting on the channel when in fact it is not. This is represented by the

hypothesis (H1|H0) where the SU makes a decision of presence of the PU (H1) when

actually it is idle H0. When a false alarm event occurs, the SU would not exploit the free
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spectrum, thus missing a chance to utilize the free channel. The Pf a should be kept as

small as possible in order to prevent underutilization of transmission opportunities. The

performance of the spectrum sensing technique is usually influenced by the Pf a, since

this is the most essential metric [9, 24].

11.3 The Local Probability of Misdetection (Pm)

The probability of declaring the PU is idle (H0), when it is indeed transmitting on the

channel (H1), is referred to as the probability of missed detection (Pm) represented by

hypothesis (H0|H1). A high (Pm) implies an increase in the chance of interference to

PU by the corresponding SU. If the detection fails, or a miss detection occurs, the SU

initiates a transmission resulting in interference with the PU signal; contravening the

opportunistic access concept. In essence, the spectrum sensing method should record a

high probability of detection (minimal misdetection probability) and low probability of

false alarm [9, 24].

11.4 The Global Probabilities in CCSS Networks

The global probability of detection (Qd) is the joint probability for all the SUs in a CSS

network carried out at the fusion center or the cluster head in a cognitive radio network.

The global detection (Qd) is a joint probability of correctly determining the presence of

the PU on the channel after a summation of individual local probabilities of detection

(Pd) done by individual SUs in the cognitive radio network. The joint probability is

determined by two forms of fusion schemes; soft and hard fusion rules as described in

previous sections of this work. The global probability of misdetection (Qm) is a joint

probability of SUs wrongly determining the absence of the PU on the channel when in

fact the PU is transmitting. This will definitely cause interference of the SUs to a trans-

mitting PU in cooperative spectrum sensing networks. It should be minimized as much

as possible to improve on the detection reliability of the SUs. The global probability of

false alarm (Q f a) on the other hand is the joint probability summed from individual

SUs local false alarm probabilities. This decision makes the spectrum to be underuti-

lized and hence should be minimized as much as possible to make efficient use of the

spectrum [45]. This work addresses the methods utilized to minimize the global prob-

ability false (Q f a) and maximize the global probability of detection (Qd) as applied on

the hard fusion rules using Neyman Pearson and Lagrange criterions.

The SUs performance is analyzed by depicting the receiver operating characteristics
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(ROC) curves. The plots serve to display graphically the performance of sensing schemes

as applied in cognitive radio networks [2]. ROC graphs are employed to show trade-

offs between detection probability against false alarm, (i.e. Pd versus Pf a), probability

of detection against SNR ( Pd versus SNR) and probability of misdetection (Pm) versus

the probability of false alarm (Pf a). The plots enable an investigation of the relationship

between sensitivity (probability of detection) and reliability (false alarm rate) [6].

12 Problem Statement

Spectrum resource scarcity is the greatest challenge in wireless communication due to

growth of demand for the spectrum. However most of the frequency band is left un-

derutilized and therefore the need for opportunistic spectrum access and hence the

inception of cognitive radio network. This problem can be solved by allowing cognitive

users (unlicensed users) to occupy the spectral band at the time when the primary users

(licensed users) are not transmitting on the channel. However, it is difficult for a single

SU to make a right decision due to multi-path fading, noise uncertainty, hidden nodes

and shadow effects in wireless environment. Cooperative spectrum sensing (CSS) is em-

ployed in this work to alleviate this problem. CSS utilize multiple secondary users (SUs)

to sense the vacant spectrum and send their decision to the fusion center (FC) for a final

global decision to be made regarding the presence of the primary user (PU). Too many

secondary users also increase the total energy consumption in CSS network. This work

optimizes on the number of SUs employed in detection of a PU in order to minimize

the energy consumption in the CRN. Spectrum sensing in cognitive radio networks has

raised a number of concerns such as noise uncertainty and sensing interference. HOS

tests are preferred in local sensing because they perform better under noise uncertainties

as compared to energy detection techniques.

13 Scope of the Study

This work focuses on centralized cooperative spectrum sensing based on energy de-

tection and higher order statistical (HOS) detection tests. A group of spatially placed

SUs sense a PU in a cooperative spectrum network. The models are analyzed based on

the local probability of detection (Pd) and probability of false alarm (Pf a) performance

metrics. The decisions of SUs are transmitted to the FC center through wireless fading

channels where global detection probability Qd is made. Optimization is done on the
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hard fusion techniques to improve on the spectrum sensing and energy consumption in

CRN.

14 Specific Objectives

The following is an enumerated summary of the main objectives of this thesis:

1. To derive a hard fusion strategy to be utilized in the fusion of the secondary users

decisions at the fusion center in cooperative spectrum sensing network.

2. To derive an selection criteria of collaborating SUs in cooperative spectrum sensing

networks to achieve optimal energy efficiency.

3. To investigate on performance of energy efficient higher order statistics (HOS)

techniques over wireless cooperative spectrum sensing schemes in cognitive radio

networks.

15 Thesis Organization

This thesis is composed of two parts: Part I presents a general introduction to the

cognitive radio networks, cooperative spectrum sensing techniques and optimization

strategies. Part II is focused on paper A, titled, "Optimal Energy Based Cooperative

Spectrum Sensing under Gaussian and Rayleigh channels". Paper B, titled, "Energy Effi-

cient Higher Order Statistical (HOS) tests in a centralized cooperative spectrum sensing

network".

16 Research contribution

The following papers are the main contributions related to this thesis:

16.1 Paper A: Optimal Energy Based Cooperative Spectrum Sensing Schemes

in Cognitive Radio Networks

Abstract

Cooperative spectrum sensing (CSS) alleviates the problems of multipath, shadowing

and hidden nodes experienced in wireless communication. Both the selection crite-

rion of collaborating secondary users and the fusion schemes used in CSS affect the
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reliability of detecting the status of primary user (PU) on the channel. This paper in-

vestigates the performance of optimal energy based hard fusion schemes as employed

in secondary users’ selection criteria and fusion under Additive White Gaussian Noise

and Rayleigh faded channels. To minimize energy not all SUs participate in detecting

the PU on the channel. This is achieved by a two tier optimization paradigm. Firstly,

by optimal selection of secondary users (SUs) in the network using Lagrange criterion

and secondly by optimizing on the energy based hard fusion techniques achieved by

Newton-Raphson optimization criterion. The results indicate that an optimal energy

based majority counting fusion rule shows greater detection capability than the AND &

OR energy based detection schemes, and reduces overall system energy consumption in

CSS networks.

16.2 Paper B: Energy Efficient Statistical Cooperative Spectrum Sensing in

Cognitive Radio Networks

Abstract

Cooperative spectrum sensing (CSS) alleviates the problem of imperfect detection of

primary users (PU)’s in cognitive radio (CR) networks by exploiting spatial diversity of

the different secondary users (SUs). The efficiency of CSS depends on the accuracy of

the SUs in detecting the PU and accurate decision making at the fusion center (FC). This

work exploits the higher order statistical (HOS) tests of the PU signal for blind detection

by the SUs and combination of their decision statistics to make a global decision at the

FC. To minimize energy, a two stage optimization paradigm is carried out, firstly by

optimal iterative selection of SUs in the network using Lagrange criterion and secondly

optimized fusion techniques achieved by Neyman Pearson. The probability of detecting

the PU based on HOS and hard fusion schemes is investigated. The results indicate

that the Omnibus HOS test based detection and optimized majority fusion rule greatly

increases the probability of detecting the PU and reduces the overall system energy

consumption.

17 Conclusion

This work presented two journal papers; The first paper is titled "Optimal Energy Based

Cooperative Sensing Schemes in Cogntive Radio Networks", in this paper a two-stage

optimization detection scheme was modeled. Performance analysis on energy based
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hard fusion techniques were investiagted and from the simulated results k out of n

counting rule showed better detection performance both in AWGN and Rayleigh chan-

nels as compared to AND & OR logic rules. The second paper titled, " Energy Efficient

Statistical Cooperative Spectrum Sensing in Cognitive Radio Networks", in this model

the performance of HOS tests in PU detection was done. The simulated results showed

that optimal k out of n based omnibus (K2) statistics test was superior to the other HOS

tests operating under noisy conditions. The overall system energy was tremendously

reduction in the network due to the two-stage optimization since fewer cooperative SU

made the final decision on the status of the PU on the channel but still maintained reli-

able decision outcomes. From the two papers it was observed that energy in cooperative

spectrum sensing network was reduced by employing an optimal number of SUs from

the total number of SUs in the network.

18 Future Work

This work has not compared the energy detection as presented in the paper A with the

higher order statistics detection schemes as presented in paper B, this can be done in

future work. The complexity of the models was not done in the two papers and this is

proposed for future work.
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1. Introduction

Abstract

Cooperative spectrum sensing (CSS) alleviates the problems of multipath, shadowing and hid-

den nodes experienced in wireless communication. Both the selection criterion of collaborating

secondary users and the fusion schemes used in CSS affect the reliability of detecting the sta-

tus of primary user (PU) on the channel. This paper investigates the performance of optimal

energy based hard fusion schemes as employed in secondary users’ selection criteria and fusion

under Additive White Gaussian Noise and Rayleigh faded channels. To minimize energy not all

SUs participate in detecting the PU on the channel. This is achieved by a two tier optimization

paradigm. Firstly, by optimal selection of secondary users (SUs) in the network using Lagrange

criterion and secondly by optimizing on the energy based hard fusion techniques achieved by

Newton-Raphson optimization criterion. The results indicate that an optimal energy based ma-

jority counting fusion rule shows greater detection capability than the AND & OR energy based

detection schemes, and reduces overall system energy consumption in CSS networks.

1 Introduction

Spectrum sensing is the first step towards efficient utilization of the available spec-

trum resource in cognitive radio network (CRN). The non-cooperative spectrum sensing

(NCSS) comprises of energy detection, matched filter and cyclostationary feature detec-

tion techniques [1]. In NCSS schemes, only one SU detects and determines the presence

or absence of the PU on the channel. Energy detection is the most commonly used

spectrum sensing technique as it is easy to implement and does not require a priori

knowledge. However, it is well known that the performance of NCSS energy detection

is very vulnerable to multipath fading, shadowing, hidden nodes and noise uncertainty

due to the fact that the detection decisions are made only by a single SU [2]. This has

necessitated a spectrum sensing paradigm shift to cooperative spectrum sensing where

multiple SUs share their decisions to make a unified final decision. The concept behind

CSS is to improve the sensing performance by making use of the spatial diversity in the

observations of spatially distributed SUs in a geographical environment [3]. Central-

ized cooperative spectrum sensing employs a central identity called fusion center (FC)

to collate and control all the decision processes of secondary users (SUs) [4]. Depending

on the form in which the SUs transmit the PU’s signal information to the FC, soft and

hard combination are utilized. In the soft data combination scheme, each SU transmits

the real value of its sensing data to the fusion center. Practically a large number bits
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1. Introduction

are required since it measures the instantaneous signal energy over a periond of time,

resulting into large communication bandwidth. This has necessitated the adoption of

hard combination schemes in which only one-bit local decision is forwarded to the FC

by individual SUs for decision making. Hard fusion decisions consists of AND, OR and

majority rules depending on how the SUs are selected to make the final decisions [5]. In

this paper, we model a two stage CSS energy detection scheme based on optimal major-

ity fusion rule in both Gaussian and Rayleigh channels. This has not been adequately

addressed in literature. This is realized by a two level optimization, firstly an optimal

selection of the SUs that qualify to participate in detection process in a CRN is done.

To achieve this, an iterative optimization threshold algorithm is employed on the SUs’

signal to noise ratio (SNR) based on majority rule also called r out of n counting rule.

This is actualized by Lagrange optimization criterion, where the probability of detection

is maximized subject to minimized error probability cost function. It should be noted

that those SUs that do not meet this threshold are rejected at this point in time. Sec-

ondly those SUs selected during the first level optimization are subjected to the second

level optimization process. This is realized by a prudent and optimal choice of majority

counting rule. A strategic k out of n counting rule is employed to determine the com-

binatorial order of the different ways the selected SUs’ decisions combine to make the

final global decision. Neyman Pearson optimization criterion is employed to actualize

this objective. Newton Pearson optimization is numerically determined by an iterative

Newton Raphson algorithm search on k out of n counting rule. The objective function

is to maximize on the probability of detection subject to minimized probability of false

alarm. The selection of fewer cooperating SUs at the two tiers in the sensing, fusion and

optimization leads to a reduction of about 30 percent energy consumption in CRN. The

power demand that maximizes the energy-efficiency of this model is formulated by the

optimization on the ratio of network throughput and the energy objective function. The

number of cooperating SUs is minimized by k out of n fusion counting rule with a con-

straint on the probability of detection and false alarm while maximizing the throughput

of the cognitive radio network. In summary, we propose a two level optimization energy

efficient CSS model on a Rayleigh and Gaussian distributed wireless channels.

The rest of this paper is structured as follows. Section II, presents the related work,

section III, describes the system models, section IV, describes local spectrum sensing

techniques, section V, presents the fusion schemes, section VI, shows the energy effi-

ciency on CSS network. Simulation results illustrating the effectiveness of the proposed
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scheme are given in section VII and finally, section VIII, draws our conclusions.

2 Related Work

Spectrum sensing schemes have fairly been studied in literature. In [6], authors pro-

posed an improved model of energy detection scheme used in the spectrum sensing.

The improved detection technique employed the classical energy detection algorithm.

In [7], authors investigated the performance of a CSS scheme where a group of SUs

cooperated to detect the presence or absence of PU in Rayleigh fading channel envi-

ronment. They made comparative study on the three main hard fusion techniques i.e.

OR-logic, AND-logic and Majority-logic to make global decisions at the FC. In [8] the

authors formulated Barlett’s estimate used as an energy decision statistic. The authors

analyzed the performance for PU’s signal under Rician and Rayleigh fading channels.

The reliability of their method was compared with periodogram techniques. The mod-

els stated in [6–8] are not optimal, the number of SUs employed to make final decisions

on the presence of PU are unlimited and as a consequence a large amount of energy

is wasted in the spectrum sensing network. This compromises the system energy con-

sumption hence the efficiency of the models. They also assumed that the SUs have the

same signal to noise ratio (SNR). In a practical situation SUs experience different signal

strengths (SNRs) depending on their actual positions with respect to the FC. If those

SUs with low SNR are allowed to participate in the decision making, then they com-

promise on the reliability of the final decisions. This challenges have been addressed

in our model. In [9] the authors proposed and analyzed the different hard decision

fusion rules based on energy detection with an aim to minimize the total error rate in

centralized CSS network in both AWGN and Rayleigh fading channels. The authors

in [10], proposed on the optimality of k out of n fusion strategy and cooperative-user

number. The optimizing on fusion strategy was done under both the Neyman-Pearson

(N-P) and Bayesian criteria. The models in [9, 10] considered SUs with same SNR which

practically is not correct due to the effect of fading and shadowing experienced in a

CSS network. The optimization was derived from fixed decision thresholds which def-

initely may compromise on the reliability of final decisions made on the presence of

the SUs on the channel. In [11], the authors proposed and optimized the detection

threshold in order to minimize both the error detection probabilities of single-channel

and multichannel cooperative spectrum sensing. In single-channel cooperative spec-

trum sensing, the iterative optimal thresholds with AND logic, OR logic, and k out of n
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counting rule are respectively proposed. In multichannel cooperative spectrum sensing,

the non-restrained multichannel threshold optimization (NRMTO) and the restrained

multichannel threshold optimization (RMTO) was proposed. In [12], the authors pro-

posed a dynamic threshold energy detection algorithm, in which, two threshold levels

are fixed based upon the average energy received from the primary user (PU) during a

specified period of observation. In [13], authors proposed selection technique based on

iteratively setting different thresholds for different SNR of SUs in CSS with OR logic fu-

sion technique done at the FC. In the models in [11–13] optimization was done only on

the SUs’ selection criteria. However, in our model we proposed a two tier optimization

strategy, firstly on the optimal SUs’ selection criteria based on iterative decision thresh-

olding and secondly an optimized fusion technique applied in CSS network. Authors

in [14], proposed a strategy to minimize the number of SUs making decisions in the cen-

tralized CSS system. They proposed scheme based on maximizing the throughput and

minimizing the number of transmitting SUs. In [15], authors improved the energy effi-

ciency in cognitive radio by optimization of the fusion rule (FR) by which the individual

results were processed. They optimized the k out of n by maximizing energy efficiency

and detection accuracy. In [16], the authors investigated on throughput optimization of

the hard fusion based sensing using the k out of n rule. They maximized the throughput

of the cognitive radio network subject to a constraint on the probability of detection and

energy consumption per cognitive radio in order to derive the optimal number of users.

In [17], authors proposed an energy efficient setup. The number of cooperating cogni-

tive radios was minimized in a k out of n fusion rule with constraint on the probability of

detection, false alarm and throughput. However, unlike the models in [14–17] that pro-

posed one stage optimization this work proposes a two stage optimization paradigm.

This paper proposes a two level optimization, firstly optimal selection of SUs based on

SUs’ SNR to participate in the decision making and secondly optimization on hard fu-

sion rules. This positively improved on the energy consumption in the CCSS network

and detection reliability.
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3 System Model

3.1 Practical Cooperative Sensing Scheme

The system model in Fig. A.1 shows a group of spatially distributed SUs which observe

a physical phenomenon on the presence or absence of the PU. The sample observations

(y1, y2, ..., yn) of the PU are received by individuals SUs through the licensed sensing

channels. The SUs then make local decisions (u1, u2, ..., un) and retransmits their deci-

sions through the reporting channels to the fusion centre (FC). In this model all SUs are

assumed to be synchronized with the FC to detect the channel or the frequency band of

interest. The FC finally combines the reported local sensing decisions to make coopera-

tive global decision (u) that is relayed back to the SUs for necessary assignment of the

channel to the varoius SUs depending on available resource allocation schemes which

are not part of this work.

Fig. A.1: The practical cognitive radio network

3.2 Proposed Cooperative Spectrum Scheme

In the proposed lower level model of fig. A.2 secondary users (SU1, SU2, ..., SUn) sense

the presence or absence of a single PU on the channel independently. The SUs exe-

cute the detection individually based on the measured energy (ED1, ED2, ..., EDn). The

sensed instantaneous energy of the PU’s received signal is integrated to determine the

detection decision hypothesis test statistics. The local decision data is then transmit-

ted over either a Gaussian distributed or Rayleigh fading channels (CH1, CH2, ..., CHn).

The FC is the nerve center of the cognitive radio network where hard fusion decisions

(u1, u2, ..., un) are fused to form a global decision u. In this model decisions are taken

only from a selected number of SUs for the purpose of achieving energy optimality and
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Fig. A.2: The structure of proposed cooperative spectrum scheme

at the same time attain high detection reliability.

4 Local Spectrum Sensing

4.1 Energy Detection Hypothesis Test

The measured energy decision test statistics of the PU signal (Y(yi)) during the sensing

observation time as detected by the i-th SU signal is given in algorithm 1, as in [11, 18].

Y(yi) =
M

∑
m=1
|yi(m)|2 m = 1, ..., M (A.1)

where M the number of digital samples, yi(m) is the received PU signal, m is binary digit

of either 0 or 1 numbering M. The spectrum sensing phenomena can be formulated as

a binary hypothesis testing problem with two hypothesis H0 and H1 given as [4]

H0 : y(m) = w(m) m = 0, ..., M− 1 (A.2)

H1 : y(m) = s(m) + w(m) m = 0, ..., M− 1 (A.3)

where y(m) is the received signal, w(m) is the noise and s(m) is the PU signal. In order

to derive the detection and false alarm probabilities, a probability density function (PDF)

of the test statistic is developed for both H0 and H1 as

Y(yi) < λd,i H0 (A.4)

Y(yi) > λd,i H1 (A.5)

where Y(yi) is the energy test statistic for the binary hypothesis test and λd,i is the

decision threshold for the i-th SU.
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4.2 Additive White Gaussian Noise Statistics (AWGN)

The wireless channel (CH1, CH2, ..., CHn) in Fig. A.2 can be modeled as AWGN, where

white noise is the only impairment to the equality of the transmitted signal with zero

mean and unity variance. The test statistics (Y(yi)) can be accurately approximated as

Algorithm 1 Energy detection algorithm

Input: γ = −15 : 2 : 25, M = 103, Pf a = 0.01 : 0.01 : 1

Output: Pd = decision{H1, H0}

s(m)← generate M random data eqn. (A.3)

y(m)← modulate the signal (PSK mod) and add noise

Initialize: Pf a = 0.01, γ = −5

Simulated probability of detection(Pd)

for i = length(Pf a), j = length(γ)

while i← 0, j← 0 do

yi(m)← calculate energy statistics eqn.(A.1)

λd,i ← calculate the threshold eqn. (A.9)

FFT on energy statistics

FFT(yi(m))← FFT{yi+1, ..yMFFT−1}

yFFT ← break FFT(yi(m), MFFT, M)

Y(yi(m))← concatenation of yFFT

Y(yi(m)) = real parts (yFFT) + img. parts (yFFT)

if average(Y(yi(m))) ≥ λd,i then

decision = H1

increment counter← H1 = H1 + 1

else {average(Y(yi(m))) ≤ λd,i }

decision = H0

increment counter← i = i + 1, j = j + 1

probability of detection(Pd) = sum( H1
MFFT )

Plot Pd vs γi

end if

end while

normal distribution by [18]

Y(yi) ≈


Mσ2

z , 2Mσ4
z H0

Mσ2
z + Mγiσ

2
z , 2Mσ2

z + 4Mγiσ
4
z H1

(A.6)
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where σ2
z is the noise variance σ4

z is the square of noise variance, γi is SNR of the i-th SU,

M is the number of digital samples. In testing the (H0) and (H1), two types of errors

are formulated; the probability of false alarm (Pf a) and probability of detection (Pd). In

AWGN distribution, the Pf a is statistically formulated as

Pf a = Prob(Y(yi) < λd) H0 (A.7)

Similarly probability of detection (Pd) is given as

Pd = Prob(Y(yi) > λd) H1 (A.8)

It should be noted that if M is large, then by using central limit theory, the energy based

metric in equation (A.6) can be approximated as Gaussian random process. Based on the

test statics Y(yi) the probability of false alarm (Pf a,i) for the i-th SU can be formulated

as [18]

Pf a,i = Q
(

λd,i − 2M√
4M

)
(A.9)

where M is the number of data samples, λd,i is the decision threshold for the i-th SU and

Q(·) is the the Gaussian Q-function. Similarly the probability of misdetection (Pmd,i =

1− Pd,i) for the i-th SU is expressed as [16]

Pmd,i = 1−Q

(
λd,i − 2M(1− γ)√

4M(1 + 2γ)

)
(A.10)

where Pf a,i and Pmd,i represent the individual SU probabilities of false alarm and misde-

tection on the local decisions (u1, u2, ..., un) as shown in Fig. A.2.

4.3 Rayleigh Fading Channel Statistics.

The wireless channel (CH1, CH2, ..., CHn) in fig. A.2 can be modeled as a Rayleigh fading

channel. If the signal amplitude follows a Rayleigh distribution, then the SNR will also

follow an exponential probability density function (PDF), given by [7]

f (γi) =
1
γi

exp
(
−γi

γ

)
γi ≥ 0 (A.11)

where γ is the average SNR and γi is the instantaneous SNR for the i-th SU. In the

Rayleigh fading channel the probability of misdetection of the i-th SU is formulated

in [10].

Pmd,i = 1− e−
λd,i

2

U−2

∑
s=0

(
1
s!

)(
λd,i

2

)U

−
(

1− γ

γ

)U−1

∗[
e
(
−

λd,i
2(1+γ)

)
+ e−

λd,i
2

U−2

∑
s=0

(
1
s!

)(
λd,i γ

2(1 + γ)

)s
] (A.12)
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where λd,i is the decision threshold for the i-th SU, U = WT is the product of spectrum

sensing time (T) and channel bandwidth (W) over Raleigh fading channel. Under the

Rayleigh fading channel, the probability of false alarm for i-th SU Pf a,i is given by [18]

Pf a,i =
Γ(U, λd,i

2 )

Γ(U)
(A.13)

where λd,i is the decision threshold, U is the time bandwidth product, Γ(·, ·) is the

incomplete gamma function and Γ(·) is the gamma function. The probabilities given

in equations (A.12) and (A.13) are local probabilities misdetection and false alarm of

(u1, u2, ..., un) decisions made by SUs shown in fig. A.2.

5 Fusion Schemes

5.1 First Stage Optimization on SU’s Selection Criteria

The aim is to iteratively select the number of SUs subject to minimizing the local error

detection (Pe). The global probability misdetection Qmd and false alarm Q f a are for-

mulated as a result of the individual local probabilities Pmd,i and Pf a,i for the i-th SU

respectively. The decisions from n number of SUs are selected from a larger sample of

N SUs in a centralized CSS network. The criteria on selection is based on SUs’ decre-

menting SNR as formulated in algorithm 2. The error detection (Pe,i) for the i-th SU is

expressed as

Pe,i = P(H0)Pf a,i + P(H1)Pmd,i (A.14)

where P(H0) is the null hypothesis, and P(H1) the alternative hypothesis. The sum of

global probability of false alarm (Q f a) and misdetection (Qmd) are formulated as cost

functions subject to the global decremental error probability (Qe). The minimization

problem is formulated based on the work done in [11, 15, 17]

Min
λ

(
Qmd(λ

∗
d,i) and Q f a(λ

∗
d,i)
)

Subject to Qe > 0
(A.15)

where λ∗d,i is the optimal decision threshold on the i-th SU in the network. Considering

equations (A.9), (A.10),(A.12) and (A.13) in AWGN and Rayleigh channels respectively,

the optimal global decision threshold (λ∗d,i) is formulated as

λ∗d,i =arg min
λd

(
Pe,i = (βPf a,i + Pmd,i)P(H1)

)
(A.16)
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Algorithm 2 First Stage Optimal Selection of SUs

Input: N = 18, SNR = −15 : 2 : 5

Output: λ∗d,n, n, Q(r,n)
e

intialize: n = 1, r = N
2

N ← sort all SUs in descending SNR

calculate the following parameters

step 1: Pf a,1 and Pd,1 ← 1stiter. eqn. (A.9), (A.10) (A.12)&(A.13)

step 2: λ∗d,i ← the threshold of ith SU, eqn. (A.19),(A.27)

step 3: Qr,n
f a ← cal. false alarm , eqn. (A.22), (A.26), (A.29)

step 4: Qr,n
gd ← cal.detection prob, eqn. (A.20), (A.25), (A.28)

step 5: Qr,n
e ← the decremental error , eqn. (A.24)

for i = length (n) and r = length(N
2 )

while n ≤ N, n← 0 do

if Qr,n
e ≥ 0 then

i = n + 1

increment counter← n = n + 1

λ∗n ← cal. the optimal threshold

go to step 3

else {Qr,n
e ≤ 0}

n = n− 1← delete the SU from the list

go to step 1

else ← soln. found

n=n+1

end if

end while
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where β = P(H0)
P(H1)

is the detection factor. Consequently from equation (A.16), the thresh-

old is maximized as follows

λ∗d,i =arg max
λd,i

(
(Pd,i − βPf a,i − 1)P(H1)

)
=arg max

λd,i

(
Pd,i − βPf a,i

) (A.17)

where Pd,i = 1− Pmd,i is the local probability of detection for the i-th SU. By the Lagrange

theorem the threshold is maximized by differentiating in parts as follows [11]

∂Pd,i

∂λd,i
λ∗d,i

= β
∂Pf a,i

∂λd,i
λ∗d,i

i = 1, ..., n, (A.18)

where n is the number of SUs selected to participate in fusion and λ∗d,i is derived as

λ∗d,i =
σ2

s
2

+ σ2
s

√
1
4
+

γi

2
+

4γi + 2
Uγi

log
(

β
√

2γi + 1 ∗ ψ
)

(A.19)

where σ2
s is the noise variance, r ∈ [1, n], ψ =

Q(r−1,n−1)
f a −Q(r,n−1)

f a

Q(r−1,n−1)
d −Q(r,n−1)

d

is the decremental detec-

tion factor, γi is the SNR of the i-th SU and U = 2TW is time bandwidth product.

5.1.1 Majority Counting Rule

The optimal SU selection in CSS network can be iteratively found by utilizing the

r out o f n counting rule in algorithm 2. The global probability of detection (Qgd) can be

formulated as [19]

Q(r,n)
gd =

2n−1

∑
B=0

n

∏
r=1

(Pd,r)
B(r)
(n,2)(1− Pd,r)

1−B(r)
(n,2) (A.20)

where Pd,r is the probability of detection for the r-th SU in the r out of n counting rule,

where r ∈ [i, n], Bn,2 is the n-th bit binary vector representing the binary transform of

an integer number B ∈ {0, 1, ..., 2n − 1} SUs to be selected and Br
n,2 is the r-th bit of the

Bn,2. However, n ∈ [1, N], where N is the total number of SUs in the CSS network. The

value of Q(r,n)
gd in equation (A.20) can be iteratively derived as follows

Q(r,n)
gd = Q(r−1,n−1)

gd (Pd,r) + Q(r,n−1)
gd (1− Pd,r) (A.21)

Similarly the global probability of false alarm Q(r,n)
f a is given as

Q(r,n)
f a =

2n−1

∑
B=0

n

∏
r=1

(
Pf a,r

)B(r)
(n,2)
(
1− Pf a,r

)1−B(r)
(n,2) (A.22)

where Pf a,r is the local probability of false alarm for the r-th SU. Similarly Q(r,n)
f a can be

iteratively derived from the equation (A.22) as

Q(r,n)
f a = Q(r−1,n−1)

f a (Pf a,r) + Q(r,n−1)
f a (1− Pf a,r) (A.23)
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The global decremented error probability is expressed as

Q(r,n)
e =P(H1)Pd,r

(
Q(r−1,n−1)

gd −Q(r,n−1)
gd

)
− P(H0)Pf a,r

(
Q(r−1,n−1)

f a −Q(r,n−1)
f a

)
,

(A.24)

where the P(H0) and P(H1) are probabilities of false alarm and probability of detection

respectively, n is the number of SUs selected to participate from a total of N SUs in the

CSS network.

5.1.2 Logic AND Rule

The AND logic is hard fusion scheme which is employed at the FC to make global

decisions on the status of the PU on the channel in algorithm 2. Here the decision is

given as a binary 1 only if all the SUs detect the presence of PU. Otherwise the decision

is binary 0 representing the absence of the PU. The global probability of detection (Qgd)

determined at the FC is expressed as [11]

Q(n)
gd =

n

∏
i=1

Pd,i n ∈ {i = 1, 2, .., N} (A.25)

where Q(n)
gd is iteratively derived as follows Qgd

(n) = Q(n−1)
dp Pd,n but Pd,n is the probability

of detection for the n-th SU and N is the total number of SUs in the CSS network.

Similarly the global probability of false alarm Q f a is expressed as

Q(n)
f a =

n

∏
i=1

Pf a,i n ∈ {i = 1, 2, .., N} (A.26)

where Q(n)
f a is iteratively expressed as Q(n)

f a = Q(n−1)
f a Pf a,n, but Pf a,n is the probability of

false alarm for the n-th SU. The optimal decision threshold λ∗d,i is given as [11]

λ∗d,i =
σ2

s
2

+ σ2
s

√
1
4
+

γi

2
+

4γi + 2
Uγi

log
(

β
√

2γi + 1 ∗Ψ
)

(A.27)

where Ψ =
Q(n−1)

f a

Qn−1
gd

is the preceding detection factor and U is the time bandwidth product.

5.1.3 Logic OR Rule

The OR rule is a hard fusion technique utilized to determine the global decision at the

FC. In this scheme the global decision is given as binary 1 when at least one of the SUs

detect the presence of the PU on the channel. The global probability detection (Qgd) in

a CSS network with N SUs is formulated by [11]

Q(n)
gd = 1−

n

∏
i=1

Pd,i n ∈ {i = 1, 2, .., N} (A.28)
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where n is the SUs selected from a total of N SUs in CSS network, Qgd
(n) is iteratively

derived as Qgd
(n) = Q(n−1)

gd +
(

1−Q(n−1)
gd

)
Pd,n , where Pd,n is the local probability of

detection for the n-th SU. Subsequently the global probability of false alarm (Q f a) is

given as

Q(n)
f a = 1−

n

∏
i=1

Pf a,i n ∈ {i = 1, 2, .., N} (A.29)

where Q(n)
f a = Q(n−1)

f a +
(

1−Q(n−1)
f a

)
Pf a,n. The optimal threshold (λ∗d,i) for OR rule is

same as that in AND rule formulated in eqn. (A.27) but Ψ =
1−Q(n−1)

f a

1−Q(n−1)
gd

is the preceding

detection factor.

5.2 Second Stage Optimal Strategy

At the FC a numerical iterative as in algorithm 3 is employed to find the optimal number

of SUs in a k strategy. It should be noted that k SUs are selected from a subset k ∈ [1, n]

of a larger set of n ∈ [1, N] SUs, where the lager set compromises of n selected SUs

from first optimization stage and N is the total number of SUs in CSS network before

selection. The objective is to determine an optimal combinatorial strategy of k out of n

counting rule subject to minimal probability of false alarm. Optimization is achieved by

Neyman-Person (N-P) criterion. To achieve this an upper-threshold of global probability

false alarm (Q f ) of less than utilization level (ε) is formulated based on the work done

in [7, 14, 15]

Maximize
1≤k≤n

(Qd)

Subject to Q f < ε

(A.30)

The global probability of false alarm is formulated as

Q f =
n

∑
k=j

(
n
k

)(
Pk

f a,i

) (
1− Pf a,i

)n−k (A.31)

where k = 1, ..., n, and Pf a,i is the probability false alarm of the i-th SU. Similarly the

global probability of detection (Qd) is given as

Qd =
n

∑
j=k

(
n
k

)(
Pk

d,i

)
(1− Pd,i)

n−k (A.32)

The roots of Pf a,i is found by optimizing Q f , this is achieved by differentiating eqn.

(A.31) as follows

Q f (Pf a,i)

d(Pf a,i)
= n

(
n− 1

k

)(
Pk

f a,i

) (
1− Pf a,i

)n−k−1
> 0 (A.33)
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From equations (A.9) and (A.10) the following eqn. (A.34) must hold true

Pd,i

Pf a,i
>

d(Pd,i)

d(Pf a,i)
>

1− Pd,i

1− Pf a,i
(A.34)

The goal is to find the optimal k out of n defined by differentiating Qd with respect to

Q f , formulated as

Qd

Q f
=

d(Qd)
d(Pf a,i)

d(Q f )

d(Pf a,i)

=
Pd,i (1− Pd,i)

n−k−1

Pd,i
(
1− Pf a,i

)n−k−1

(
d(Pd,i)

d(Pf a,i)

)
> 0 (A.35)

Similarly the equations (A.31),(A.32),(A.33), (A.34) and (A.35) can be formulated as an

integrated optimal solution to k out of n counting rule as follows [15].

Qd(k)
Q f (k)

=
∂Qd(k)

∂Pf a,i(k)
∗

∂Pf a,i

∂Q f
=

∂Qd(k)
∂Pd,i(k)

∗ ∂Pd,i
∂Pf a,i

∂Q f
∂Pf a,i

(A.36)

From the above equation it is true to say Qd(k) is linearly increasing function of Q f (k).

The procedure is to determine the values for all k ∈ [1, n] are the roots of Q f (k, Pf a,i).

However, the closed form solution of the eqn. (A.36) can be complicated hence the

need for a numerical search to achieve the solution. An explicit optimal solution can

be iteratively obtained by utilizing the Newton-Raphson (NR) criterion as expressed in

algorithm 3 in reference [14]. The algorithm is broken down as follows; For each Pf a,i

determine the corresponding Pd,i and Qd(k, Pf a,i). Compare the listed values of global

Qd(k, Pf a,i) for all the numbers of k SUs and select the highest among the list, this gives

the optimal number of k for the optimal k out of n rule.

6 Energy Efficiency

In order to achieve a good tradeoff between these contrasting objectives of through-

put and energy consumption, it is more convenient to optimize the parameters of the

k out of n for the maximum energy efficiency (η).

6.1 Energy Optimization Setup

The global probability of false alarm (Q f ) determines the throughput which shows the

chances of fully utilizing the spectrum in the cognitive radio network. The optimization

problem can be formulated by minimizing the golbal probability of false alarm (Q f ),

subject to set global of detection (Qd) threshold as follows [9, 15, 20]

min(k, Q f λ∗d,i)

Subject to Qd ≥ α 1 ≤ k ≤ n
(A.37)
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Algorithm 3 Second stage optimization by NR criterion

Input: k, n = 14, Pf a,i = 0.01 : 0.01 : 1

Output: Qd(k,n), kopt

Initialize: ε = 0.01, k = 1, Pf a,i = 0.01, i = 0, j = 0

Function: f (Pf a,i) = Q f (i,j)(Pf a,i) ≤ ε← eqn. (A.31)

for k j ← {j = length(n)}, Pf a,i ← {i = length(Pf a)}

cal. initial probability (Q f (Pf a,1))

while
(

f ′(Pf a,i)
)
> ε do

Pf a,i ← Pf a,i+1 − 1
f ′′(Pf a,i)

f ′(Pf a,i+1)

increment counter← i = i + 1, j = j + 1

return← roots of(Pf a,i) for ∈ [k, n]

For all (Pf a,i) calc. Qd,(k,n), (Pd,i)← eqn.(A.10), (A.32)

choose Qd,k ←Max. Then

k = kopt ← optimal number of k SUs

end while

where α is the target performance, k is the participating SUs from n total number of SU

in k out of n counting rule. The average throughput of the cognitive radio network(CRN)

in [21] is given as

ϕ(λi, k, n, τ) = Pr(H0)(1−Q f )(Γ− τ)C (A.38)

where λi is the decision threshold for i-th SU, Pr(H0) denotes the probabilities of the PU

not transmitting, C is the rate when a SU occupies spectrum to transmit data with no

interference from PU given as C = log2(1− SNRs), Γ = T − nr indicate the maximum

value of the sensing time (τ), r is the time taken by each SU to send its sensing results

to the FC and T is the length of sensing frame. The average energy consumed in CRN

can be expressed as

Υ(λi, k, n, τ) = x + y(1−Qd) + z(1−Q f ) (A.39)

where x = n(Esτ + Etr), y = Pr(H1)Et(Γ − τ), z = Pr(H0)Et(Γ − τ), Es is the power

consumed by each SU in the process of spectrum sensing, Et is the power consumed by

each SU to send its sensing results to the FC. The energy efficiency can be given as [20]

η(λi, k, N, τ) =
ϕ(λi, k, N, τ)

Υ(λi, k, n, τ)
(A.40)
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The optimal efficiency can be numerically formulated under the constrains on probabil-

ity of detection and false alarm expressed as [11, 17, 20]

max
τ

η(τ) =

(
ω(τ)(1−Q f (τ))

x(τ) + (1−Qd(τ)) y(τ) + (1−Qd(τ)) zτ

)
Subject to 0 ≤ τ ≤ Γ

(A.41)

where ω(τ) = Pr(H0)(Γ − τ)C, x(τ) = N(Es τ + Et r), y(τ) = Pr (H1) Et(Γ − τ) and

z(τ) = Pr (H0)Et (Γ− τ).

7 Simulation Results

In order to evaluate the performance of energy detection based on hard fusion tech-

niques in CSS network , this paper considered a cognitive radio network with 18 SUs

transmitting on PSK modulated signal built in matlab software for analysis. It should

be noted that any other modulation scheme can be used to model the SU signal. In all

subsequent figures, the numerical results are plotted on receiver operating character-

istics curves (ROC). Simulation results are denoted with discrete marks on the curves,

simulation parameters are give in table A.1.

Table A.1: Simulation parameters

Simulation Parameters Actual Values Used

P(H0) and P(H1) 0.5

Frequency range 0-2000

Monte Carlo trials 103 to 104

Noise variance (σ2
s ) 1

FFT 2048

Average SNR (γ) -5

Mean 0

Time bandwidth product 10

Et, Es 1 Joule, 500 mJoule

T,r,τ 200ms,100µ,10ms

Data rate (R) 500 kbps

In Fig. A.3, the ROC curves show probability of detection Pd against the SNR, energy

detection statistics in both AWGN and Rayleigh channels as shown in algorithm 1. From
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the plot, as expected the probability of detecting the PU increases with increase in SNR.

The energy detection statistics test in AWGN channel showed higher probability of de-

tection as compared to Rayleigh channel progressively from a low SNR of about -15dB

to -8dB then rapidly thereafter with maximum detection probability attained at -5dB. In

summary the deduced performance of energy based detection test under AWGN was

better than in Rayleigh channel for all ranges of SNR. The results of the test conform to

those in [7, 11, 20, 21].

Fig. A.3: Energy detection test in AWGN and Rayleigh channels

Fig. A.4, shows a gragh of global probability of detection Qd against probability of

false alarm Q f in a two tier optimization hard fusion schemes over AWGN channel as

shown in alogorithm 3. It should be noted that optimal combination of k out of n is

k = 10 and n = 14, as determined by the algorithm 2. It can be deduced from the plot

that optimal combination of (10 out o f 14) counting rule showed a probability of detec-

tion of about 0.95 at a defined probability of false alarm of 0.10 which is within the IEEE

802.22 regulation standards [5]. From the plot, the optimal (10 out o f 14) counting rule

combination strategy displayed higher probability of detection as compared to AND

fusion rule. The performance was followed by the AND rule which showed about 0.7

probability of detection at 0.1 and lastly OR fusion rule which displayed 0.5 detection

probability. Theoretically OR rule should have higher detection but this is under a fixed

probabilty of false alarm. In summary k out of n counting rule displayed the highest

detection probability for all ranges of false alarm.
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Fig. A.4: The performance of hard fusion rules in AWGN channel

Fig. A.5, shows a plot of global probability of misdetection Qm against global false

alarm Q f in a two tier optimization energy detection tests over AWGN channel. The

plot shows effect of interference of the SUs on the licensed PU also referred to as mis-

detection analyzed as a function of probability of false alarm. From this plot, it can be

deduced that the optimal 10 out o f 14 based on a two stage optimization global detec-

tion scheme displayed lowest probability of misdetection to that of the optimal AND

rule. However, AND rule deduced a lower misdetection to that of the OR rule respec-

tively. From the plots in fig. A.4 and A.5 it can be shown that the optimal k out of n

counting is a superior fusion technique in terms of providing higher detection of the PU

with the lowest misdetection in AWGN channel hence would therefore be preferred to

AND & OR fusion rules.

In fig. A.6, the ROC shows global probability detection Qd against global false alarm

Q f as determined in second stage optimization strategy and shown in algorithm 3 over

Rayleigh channel. It should be noted that optimal combination of k out of n is given

as k = 10 and n = 14. From the plot it can be inferred that the optimal 10 out o f 14

counting rule showed the highest probability of detection. At 0.1 probability of false

alarm the optimal 10 out o f 14 counting rule strategy presented about 0.6 probability of

detection. This was followed by optimal AND fusion rule with probability of detection

of 0.5 and lastly the OR fusion rule with 0.3. From this plot, it can be concluded that

k out of n is the most reliable hard fusion technique with the highest probability of de-
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Fig. A.5: The performance of hard fusion schemes in AWGN channel.

Fig. A.6: The performance of optimal hard fusion techniques in Rayleigh channel
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tection all ranges of probability of false alarm.

Fig. A.7: The comparative performance of hard fusion schemes in Rayleigh channel

In fig. A.7, the ROC curves shows global probability of misdetection Qm against global

false alarm Q f in two tier optimization hard fusion schemes over Rayleigh fading chan-

nel. The plot display the levels of interference of the SUs to the PU in the utilization of

the channel. From this plot it can be inferred that 10 out o f 14 counting rule has the low-

est degree of misdetection. This is followed by AND and lastly the OR fusion rule. From

the fig. A.6 and fig. A.7 it can be concluded that k out of n has the highest probability

of detecting the presence of the PU on the channel and with the lowest misdetection as

compared to AND & OR fusion rules. It must be noted here that k out of n performed

better in AWGN channel as compared to the Rayleigh channel.

Fig. A.8, shows a gragh of global probability detection Qd against global false alarm Q f ,

two tier optimization k out of n counting rule as compared to single stage energy detec-

tion test over Rayleigh fading channel. From this plot, it can be deduced that 10 out o f 14

counting rule was better than single stage optimization. At probability of 0.1 the two

stage showed probability of detection of 0.85 against 0.5 for single stage. From this plot

it can be deduced that a two stage k out of n counting rule showed the highest probabil-

ity of detection.

Fig. A.9, shows a plot of energy efficiency against the number of SUs for different op-

timal hard fusion rules under three scenarios; optimal majority counting rule and total

number of 14 SUs utilized in OR & AND fusion rules. From the plot it can be observed
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Fig. A.8: The optimal counting rule based on two stage against single stage in Rayleigh channel.

Fig. A.9: Comparison on energy efficiency in hard fusion schemes
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8. Conclusion

that the optimal efficiency is given as 2 ∗ 104 Bits per Joule, that is when 8 SUs employed.

However from this plot it can be shown that for the optimal 10 out o f 14 counting rule,

the energy efficiency reduced to about 1.8 ∗ 104 Bits per Joule. This is when 10 SUs are

employed in the final decision as arrived at in the first optimization stage. It is still

better than AND & OR fusion techniques in terms of the throughput. This was followed

by AND rule which delivered about 1.4 ∗ 104 Bits per Joule when 10 SUs are used and

lastly OR fusion rule with about 1.5 ∗ 104 Bits per Joule for 10 SUs employed. It should

also be noted that OR fusion technique shows improved efficiency as the number of SUs

increase as observed with more than 12 SUs. It outperforms the majority counting rule

& AND fusion rule when a larger number of SUs are employed. In conclusion an opti-

mal k out of n counting hard fusion rule displayed the most efficient energy technique

which delivered the highest throughputs with minimum number of cooperating SUs in

the CSS network.

8 Conclusion

In the proposed energy detection model, an optimal k out of n counting rule showed

to be better than other hard fusion rules in detection reliability both in AWGN and

Rayleigh channels. Another advantage of this model was on the overall reduction in

energy consumption in the network due to the two tier optimization strategy. Fewer

SUs were employed to determine the final global decision on the presence or absence of

the PU on the channel but still maintained high throughput and energy efficiency.
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1. Introduction

Abstract

Cooperative spectrum sensing (CSS) alleviates the problem of imperfect detection of primary

users (PUs) in cognitive radio (CR) networks by exploiting spatial diversity of the different

secondary users (SUs). The efficiency of CSS depends on the accuracy of the SUs in detecting

the PU and accurate decision making at the fusion center (FC). This work exploits the higher

order statistical (HOS) tests of the PU signal for blind detection by the SUs and combination

of their decision statistics to make a global decision at the FC. To minimize energy, a two stage

optimization paradigm is carried out, firstly by optimal iterative selection of SUs in the network

using Lagrange criterion and secondly optimized fusion techniques achieved by Neyman Pearson.

The probability of detecting the PU based on HOS and hard fusion schemes is investigated.

The results indicate that the Omnibus HOS test based detection and optimized majority fusion

rule greatly increases the probability of detecting the PU and reduces the overall system energy

consumption.

1 Introduction

Cooperative spectrum sensing (CSS) utilizes multiple secondary users (SUs) to sense the

vacant spectrum and send their decision to the fusion centre (FC) for a final global de-

cision to be made regarding the presence of the primary user (PU) on the channel. CSS

overcomes the challenges of wireless channel characteristics such as multipath fading,

shadowing or hidden terminal problem experienced when only one SU is employed

to detect the PU. This is due to the spatial diversity of the different SUs cooperating

to make the final decision on the status of the PU on the channel [1, 2]. A number

of spectrum detection schemes have been proposed to detect the presence or absence of

PU, among them include energy, matched filter and cyclostationary methods [3]. In most

practical systems the transmission channels are usually noisy hence causing tremendous

reduction in signal to noise ratio (SNR) of the PU received signals. This has prompted

the need for the higher order statistical (HOS) detection techniques which have very

high sensitivity at low SNR signal condition while maintaining reasonable circuit com-

plexity [4]. CSS can generally be divided into two detection stages; local update stage

and global fusion stage. At the local update stage, the individual SU’s detect the re-

ceived PU’s signals based on HOS. The SU then computes a local decision and sends

it to the FC for fusion. The commonly used metrics that utilize the HOS properties to

detect the PU’s received signals include Jarque-Bera, kurtosis, skewness and omnibus
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tests. These statistical tests are utilized to determine the probability distribution func-

tion (PDF) of a group of data samples. This is crucial for benchmarking the distribution

in order to make an informed inference on a physical phenomena (existence of PU on

the channel) [5]. In this paper, the performance analysis of the HOS tests on the PU sig-

nal is investigated with aim of selecting the best statistical technique in determining the

status of the PU on the channel. This has not been adequately addressed in literature.

The global fusion stage is performed at the fusion centre where either soft or hard com-

bination schemes are employed to fuse the received signals from individual SUs [6].

Furthermore to reduce energy consumption in the cooperative network not all the SU

need to report their individual decisions. To optimize on the number of SUs selected to

participate in the fusion process, this paper proposes a two stage optimization strategy.

The first stage is to select the SUs which qualify to transmit their individual decision

data to the fusion centre. To achieve this an iterative optimization threshold algorithm

is employed and determined based on the SUs’ SNR. However, this is at the cost of

minimizing on the error probability formulated by the Lagrange optimization criterion.

The rest of SUs that do not meet this threshold are rejected at this sensing point in time

(they are not allowed to transmit). Those SUs selected during the first optimization

stage are subjected to the second stage optimization process, realized by a prudent and

optimal choice of hard fusion criteria taken to fuse the SUs’ binary decisions. A strate-

gic k out of n counting rule is adopted to determine the optimal combinatorial order

of the SUs to be considered for final global fusion. To realize this, Neyman- Pearson

optimization criterion is employed through an iterative Bisection numerical search al-

gorithm formulated on k out of n rule. The cost function is to maximize the probability

of detection subject to minimizing of the probability of false alarm. In summary, a hy-

brid detection strategy of HOS local detection test and optimal global fusion technique

was implemented. The simulated results show an optimal k out of n fusion rule based

on omnibus test perform better than other HOS tests in terms of detection probability.

In this model, not all SUs participate in detection at any one sensing time frame hence

great energy cost saving in the cooperative spectrum sensing network.

The rest of the paper is organized as follows. Section II presents the related work, sec-

tion III describes the system model, section IV is devoted on local spectrum sensing,

section V focuses on the fusion techniques, section VI presents the energy efficiency.

Simulation results illustrating the effectiveness of the scheme are given in section VII

and finally, section VIII, draws the conclusions.
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2 Related Work

Cooperative spectrum sensing schemes have not been exhaustively studied in the cur-

rent literatures. In [7], authors investigated the performance of energy based CSS

scheme where a group of SUs cooperated to detect the presence or absence of primary

user (PU) in fading channel environment. They also made comparative study on the

three main hard fusion techniques i.e. OR-logic, AND-logic and Majority-logic to make

global decisions at the fusion centre. In [8], authors proposed selection technique based

on iteratively setting different thresholds for different signal to noise ratio (SNR) of SUs

in cooperative spectrum sensing with OR logic fusion technique done at the fusion cen-

tre. This scheme highly outperformed the traditional energy spectrum sensing with the

same threshold in terms of reduced probability of false alarm. Higher order test (HOS)

have been utilized in literature to analyze data distribution and its degree of departure

from the normal distribution. The concept of separation is based on the maximization

of the non-Gaussian property of separated signals to improve the robustness against

noise uncertainty. The authors in [9], proposed kurtosis and skewness (goodness-of-fit)

test to check the non-Gaussianity of an averaged periodogram of received SUs signal.

This is computed from the Fast Fourier transform (FFT) of the PU signal to justify its

existence and hence the availability or not of the spectrum for a cognitive radio trans-

mission. Their findings showed improved detection of the PU signals especially under

very low SNR conditions i.e the SUs are able to detect the primary channel with cer-

tainty even under very noisy environment. In [10], authors proposed Jarque-Bera tests

based spectrum sensing algorithm and compared it to a kurtosis & skewness combina-

tion test statistics. From their simulated results they concluded that Jarque-Bera showed

better detection performance than the kurtosis & skewness in terms of the reliability

i.e. improved probability of detection for different values of SUs’ SNR. In the emerging

research on spectrum sensing schemes, researchers considered a number of modula-

tion schemes on multipath fading channel based on Jarque-Bera test in detection of the

primary user. These schemes were considered to transcend the absence of a priori in-

formation of the spectrum occupancy under additive white Gaussian noise channel [4].

In [11], authors showed Jarque-Bera as having rather poor small data sample properties,

slow convergence of the test statistic to its limiting distribution. In their findings the

power of the statistical tests showed the same eccentric form, the reason being skewness

and kurtosis are not independently distributed, and the sample kurtosis especially at-
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tains normality very gradually. However, the JB test is simple to calculate and its power

has proved to match other powerful statistical tests. A genuine omnibus test is consis-

tent to any departure from the null hypothesis. In [12], authors formulated omnibus test

which is based on the standardized third and fourth moments. This was done to assess

the normality of random variables by calculating the transformed samples of kurtosis &

skewness. In the computational economics these authors showed omnibus’s simplicity

provided by the chi-squared framework. In this work the omnibus test is applied in CSS

and compared to other well known Jarque-Bera, kurtosis and skewness tests.

Fusion of the decisions received at the fusion centre with a view to make the final global

decision on the status of the primary user is also another important challenge that has

not been exhaustively studied. Fusion techniques are classified into soft and hard com-

bination schemes. In hard decision strategy the FC combines binary decisions using

standard hard decision rules to achieve the global decision. Three hard combining de-

cision rules used to arrive at the final decision are classified as AND, OR and majority

also called k out of n counting rule [13]. In [14], authors made a comparative study of the

performance of the three hard fusion techniques. In their findings they concluded that

AND rule was the most reliable fusion scheme followed by majority and the lastly the

OR rule. Another comparative study on the performance of hard fusion schemes and

soft decision schemes was done by authors in [15]. In their study they confirmed earlier

research done to justify that soft fusion decision reported better PU signal detection, al-

beit having significant data communication overheads. Hard combination schemes how-

ever have attracted most attention from researchers since these fusion schemes are easy

to implement by simple logics gates. The authors in [16], proposed strategies on how

the AND, majority and OR fusion rules are optimized based on the Neyman-Pearson

criterion. Under this strategy the sensing objective was to maximize the probability of

detection with the constraint on the probability of false alarm of less than 10 percent.

Their findings showed AND rule had higher detection performance than the other two.

In our proposed energy detection model as shown in the previous journal paper, an

optimal k out of n counting rule showed to be better than other hard fusion rules in

detection performance both in AWGN and Rayleigh channels. Another advantage of

this model was on the overall reduction in energy consumption in the network due to

the two tier optimization strategy. Fewer SUs were employed determine the final global

decision on the presence or absence of the PU on the channel but still maintained high

throughput and energy efficiency. Spectrum sensing in the IEEE 802.22 standard, for ex-
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ample requires stringent sensing of a false alarm probability of less than 0.1 for a signal

as low as -20 dB (SNR) [17]. In [18], authors proposed an iterative threshold cooperative

spectrum technique. Their objective was to optimize the thresholds of the cooperative

spectrum sensing with different fusion rules including AND logic & OR logic. This was

done in order to obtain the optimal SUs in cooperative spectrum sensing and their op-

timal thresholds. Their algorithm achieved better detection performance for SUs’ with

different SNR. The optimal scheme also employed fewer SUs in collaborative sensing

at the fusion center. In [19], the authors proposed an optimized detection threshold in

order to minimize both the error detection probabilities of single-channel and multi-

channel cooperative spectrum sensing. In single-channel cooperative spectrum sensing,

they performed an iterative optimal thresholds with AND logic, OR logic and k out of n

rule respectively. Their findings showed a great decrease in the error on detecting PU

status on the channel. Energy efficiency in the cognitive radio network is defined as

the ratio of throughput (average amount of successfully delivered bits transmitted from

SUs to the fusion center) to the total average energy consumption in the system [20]. In

order to reduce the energy consumed in spectrum sensing network, not all SUs in each

cluster send their sensed results to the fusion center of local cluster. In [21], authors

optimized k out of n by allowing those SUs with reliable sensing results to transmit to

the FC. This showed some reduction in energy consumption of the cognitive radio net-

work. In this paper an optimal k out of n is applied to improve on the probability of

detection and reduce on the energy system consumption by employing fewer SUs in the

final detection on the presence or absence of the PU. To minimize energy a two tier opti-

mization paradigm is employed; firstly, by optimal selection of secondary users (SUs) in

the network using Lagrange criterion and secondly by optimizing on the energy based

hard fusion techniques achieved by Newton-Raphson optimization criterion. The re-

sults indicate that an optimal energy based majority counting fusion rule shows greater

detection capability than AND & OR based energy detection schemes and also overall

system energy consumption in CSS networks is reduced since not all SUs participate in

the sensing of the PU

Notations : E[·] is the expectant operator, var is the variance, Im[·] and Re[·] are the

imaginary and real parts of the signal X(·), erfc(·) is complementary error function and

h is the circular Gaussian channel.
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3 System Model

3.1 Practical Cooperative Sensing Model

The system model in Fig. B.1 shows a practical CSS network. In this scheme, a group of

SUs sense the spectral band to determine the presence or absence of PU. They receive

this information through the control channel and independently analyze it by utilizing

the statistical properties of the received PU’s signal and subsequently communicate their

individual decisions through the reporting channel to the FC. At the fusion centre, the

Fig. B.1: A practical cognitive radio network

decisions from individual SUs are integrated together to finally make the global decision

on whether the PU is transmitting on the channel or not. The fusion center then allocates

the idle channel to the SUs depending their demands against the available bandwith.

3.2 Proposed Cooperative Spectrum Model

In the proposed lower level system model of fig. B.2, the secondary users (SU1, SU2, ..., SUn)

collectively sense the PU channel based on HOS tests namely, kurtosis & skewness

(kurt & skew), omnibus (omnb) and Jarque-Bera (JB) statistics tests. The hard binary lo-

cal decisions made by SUs are transmitted over wireless Gaussian channel represented

as (CH1, CH2, ..., CHn) to the data FC. The binary data (b1, b2, ..., bn) is fused to achieve

the final global decision on the presence or absence of the primary user.
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Fig. B.2: Proposed cooperative spectrum sensing model

4 Local Spectrum Sensing

4.1 Spectrum Sensing Hypothesis

Generally the spectrum sensing problem can be formulated by the following two hy-

pothesis [4, 9]

H0 : x(t) = w(t) t = 0, ..., T − 1 (B.1)

H1 : x(t) = s(t) + w(t) t = 0, ..., T − 1 (B.2)

where H0 and H1 are null and alternative hypothesis respectively, t is the digital samples

numbering T, w(t) is the additive white Gaussian noise, s(t) is the PU’s signal and

x(t) is the signal received at the fusion centre. The received signal plus additive white

Gaussian noise x(t) as function of SNR (γ) is given as

x(t) = f [(s(t) + w(t)], γ (B.3)

where γ is the PU signal to noise ratio (SNR). The probability of detection is formu-

lated as hypothesis test Pd = Prob(Signal Detected |H1), whereas the probability of

false detection is determined as Pf = Prob(Signal not Detected |H1). Another form of

formulation is thresholding on the statistical test parameter. To detect the PU’s spectrum

effectively there is need to first estimate and analyze the power spectral density (PSD) of

the SU’s received signal. A strategic periodogram PSD estimation technique can be used

to accurately present the frequency-domain statistical properties of a signal [9]. Based

on the periodogram method and as formulated in algorithm 1, the received signal x(t)

of T samples is firstly subdivided into L smaller segments. Then the i-th segment signal
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4. Local Spectrum Sensing

can be formulated as [9]

xi(t) = x[t + iM] (B.4)

where i = 0, ..., T− 1 is the number of data samples, M = T/L is the length of each seg-

ment and t = 0, ..., M− 1 are the Fast Fourier transforms (FFT) points in one segment.

Performing FFT on signal sample xi(t), periodogram of the i-th SU, yi(t) is given by

yi(t) =
1
M

M−1

∑
t=0

xi[t] e−
j ω t
M

2

(B.5)

where i ∈ [t, T] is the number of samples, M is the length of each segment representing

the elements of discrete Fourier transform (DFT) and ω = 2π f . The function yi(t) is

modeled as the PU signal and is utilized in the next section to determine the skewness

and kurtosis.

4.2 Spectrum Sensing HOS Techniques

4.2.1 Skewness and Kurtosis

The estimated skewness (skew) is defined as third standard moment of a random vari-

able xi(t) of a Gaussian distribution. Estimated kurtosis (kurt) on the other hand is

given by fourth standard moment of a random distribution. The value tends to 3 as

the sample size considered for the test increases [20]. For given sample set of yi(t) the

estimated sample of skew is given as

skew(y(t)) =
1
M ∑M−1

i=0 (yi(t)− y)3(
1
M ∑M−1

i=0 (yi(t)− y)2
) 3

2
(B.6)

where y is the mean of a given signal data. Similarly, the estimated kurt of a random

sample is formulated as

kurt(y(t)) =
1
M ∑M−1

i=0 (yi(t)− y)4(
1
M ∑M−1

i=0 (yi(t)− y)2
)2 (B.7)

The test statistics ST(st) of the periodogram (power spectral density) is represented as

the square root of the sum of squares of skew(y(t) and kurt(y(t)) as used in algorithm

1. When the value of test statistics is larger than a set threshold Tλ, the distribution of

the received signal’s averaged periodogram deviates from the AWGN’s power spectral

density which is an indicator of the presence of PU’s signal. The test statistics of the

periodogram estimate can be formulated as

ST(St) =
√

skew(y(t))2 + kurt(y(t))2 (B.8)
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Algorithm 1 Algorithm for HOS test detection

Input: M = MFFT, T = 3000, γj = −30 : 5, Pf = 0.1 : 1

Output: Pd,kurt & skew, Pd,JB, Pd,omnb

x(t)← generate T random data, eqn. (B.2)

xi(t)← modulate x(t) (16 QAM) plus noise, eqn. (B.4)

fast Fourier transform on modulated signal

yi(t)← FFT on xi(t)(mod), eqn. (B.5)

yFFT ← break(yi(t), MFFT, T)

yi(t)← concatenation of yFFT

yi(t) = real parts (yFFT) + imaginary parts (yFFT)

for j = length (γ) , i = length (MFFT)

Calculate kurtosis & skewness

skew(y(t))← skewness test, eqn. (B.6)

kurt(y(t))← kurtosis test, eqn. (B.7)

while γj ≤ 0, n← 0 do

St ← test statistics, eqn. (B.8) & Tλ ← thr’d, eqn. (B.9)

if ST(St) ≥ Tλ then

decision = H1 increment counter← H1 = H1 + 1

else {ST(St) ≤ Tλ}

decision = H0(discard) incrt. count← i = i + 1, j = j + 1

Pd,kurt/skew = sum( H1
MFFT )

end if

end while

Jarque Bera& Omnibus K2 test

while γj ≤ 0, n← 0 do

JB & K2 ← test statistics, eqn. (B.11) (B.14)

JBλ & K2
λ ← the threshold, eqn.(B.13)(B.16)

if JB ≥ JBλ & K2 ≥ K2
λ then

decision = H1 inct. counter← H1 = H1 + 1

else {JB ≤ JBλ & K2 ≤ K2
λ}

decision = H0 incrt. count← i = i + 1, j = j + 1

Pd,JB & Pd,K2 = sum( H1
MFFT )

end if

end while
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where skew(y(t)) and kurt(y(t)) are the test statistics for skew and kurt respectively of

the signal x(t). For a given probability of false alarm (Pf ), the threshold (Tλ) for skew

and kurt tests the null hypothesis (H0). This is a chi-squared distribution defined as

Pf = 1− f (Tλ : H0) and hence is formulated as [9]

Tλ =
√
− log(Pf ) (B.9)

In order to derive the probability of detection (Pd) and (Pf ), the PDF for the test statistic

is developed for both H0 and H1 as
ST(St) ≥ Tλ H1

ST(St) < Tλ H0

(B.10)

4.2.2 Jarque-Bera (JB)

The Jarque Bera statistic has asymptotic chi-squared distribution with two degrees of

freedom [10], formulated by considering the estimated skew and kurt on the transmitted

PU signal, defined as [11]

JB =
M
6

[
skew2 +

(
kurt2 − 3

)2

4

]
(B.11)

where M=MFFT is the number FFT points. In order to derive the Pd and Pf the hypoth-

esis tests H1 and H0 are formulated as
JB ≥ JBλ H1

JB < JBλ H0

(B.12)

For a given probability of false alarm (Pf ), the threshold for JB test based on null hy-

pothesis (H0), for an MFFT points is expressed as [11]

JBλ = 0.0688 MFFT (B.13)

For the null hypothesis to be accepted the test statistics must be smaller than a critical

value that is positive and near zero. Higher values of JB indicate the sample do not

follow the Gaussian distribution. The probability of detection is iteratively determined

as shown in pseudo code for algorithm 1.

4.2.3 Omnibus (K2) Test

Omnibus is defined as the square root of a transformed skewness (skewT) and kurtosis

(kurtT) test statistics. The asymptotic normal values for (skew) and (kurt) are used to
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4. Local Spectrum Sensing

construct a chi-squared test involving the first two moments of the asymptotic distribu-

tions [12], mathematically expressed as

K2 =
√

skewT2 + kurtT2 (B.14)

The hypothetical omnibus test is derived by comparing to defined threshold (K2
λ) for-

mulated as 
K2 ≥ K2

λ H1

K2 < K2
λ H0

(B.15)

For a predetermined Pf the threshold for omnibus test is a fixed value determined by

K2
λ = 0.0688 MFFT (B.16)

where MFFT is the number of FFT points. The (skewT) on the estimated data sample is

given as [11, 12]

skewT = δ log

Y
Φ

+

√(
Y
Φ

)2

+ 1

 (B.17)

where Φ =
√

2
W2−1 is a small deviation from the critical value on the skewness of the

estimated distributed random data, W2 = (
√

4B2 − 4− 1) is a constant of normalization

on skewness, δ = 1√
logW

is the skewness parameter and (Y) is the estimated skewness

value of the random distributed data given as

Y = skew
[
(M + 1)(M + 3)

6(M− 2)

]
(B.18)

where skew = skew(y(t)) is estimated skewness of the sampled signal data as given in

eqn. (B.7), M is the number FFT data sample points. The skewness as a function of the

variance µ2(skew) is formulated as

µ2(skew) = B2 =
3(M2 + 27M− 70)(M + 1)(M + 3)
(M− 2)(M + 5)(M + 7)(M + 9)

(B.19)

The transformed kurtosis (kurtT) on the random distributed received PU’s signal is also

formulated as [11, 12]

kurtT =

(1− 2
9D )

[
1− 2

D

1+x
√

2
D−4

] 1
3

√
2

9D

(B.20)

where D is a constant that denotes the degrees of freedom for the chi-squared distribu-

tion. Solving for D to equate the third moment of theoretical and sampling distributions,

it is possible then to compute D as follows

D = 6 +
8
B1

[
2
B1

+

√
1 +

4
B1

]
(B.21)
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where B1 = µ1(kurt) is the kurtosis as a function of the mean (µ1), given as

µ1(kurt) = B1 =
6(M2 − 5M + 2)
(M + 7)(M + 9)

√
6(M + 3)(M + 5)
M(M− 2)(M− 3)

(B.22)

where kurt = kurt(y(t)) is the estimated kurtosis given in eqn. (B.7) and M is the

number of samples. It is possible to standardize kurtosis by formulating the expression

as

x =
kurt− E[kurt]√

var[kurt]
(B.23)

where the mean as a function of kurtosis is given as E[kurt] = 24M(M−2)(M−3)
(M+1)2(M+3)(M+5) and

variance as a function of kurtosis is expressed as var[kurt] = 3(M−1)
M+1 , are all computed

to determine transformed estimated kurtosis.

5 Fusion Schemes

5.1 Fusion Strategy Hypothesis Tests

The null hypothesis (H0) for decision statistics of the omnibus test can be derived as
K2 ≥ H1 λ

K2 < H0 λ

(B.24)

where λ is the decision threshold which has to be optimized. The cost functions are

formulated in terms of probability of misdetection and false alarm as conditioned on

the channel, the probability of misdetection is formulated as [22]

Pm,i|γ,θ = 1− 1
2

erfc

(
λi − K2
√

2σ1(γ, θ)

)
+

1
2

erfc

(
λi + K2
√

2σ1(γ, θ)

)
(B.25)

where γ = |h|2
(

E[ |x(t)|2 ]
E[ |w(t)|2 ]

)
is given as the instantaneous SNR. The instantaneous chan-

nel phase angle θ is defined as θ = tan−1
(

Im[ x(t)2 ]

Re[w(t)2 ]

)
, w(t) is the AWGN. The prob-

ability of misdetection (Pm,i|γ, θ) is the sum of the lower bound probability Pm,1|γ,θ =

1
2 erfc

(
λi−K2
√

2σ1(γ,θ)

)
and upper bound probability Pm,2|γ,θ = 1

2 erfc
(

λi+K2
√

2σ1(γ,θ)

)
. Unlike in

[22], this paper uses omnibus test (K2) instead of kurtosis. λi is the decision thresh-

old, σ1(λ, θ) is expressed in terms of instantaneous SNR and phase angle of a circular

Gaussian channel and is given as,

σ1(λ, θ) =

= a00 + a10γ +
[
a20 + a21 sin2(2θ)

]
γ2 +

[
a30 + a31 sin2(2θ)

]
γ3

+
[

a40 + a41 sin2(2θ + a42 sin4(2θ)
]

γ4 (B.26)
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The following constants; a00, a10, a20, a21, a30, a31, a40, a41 & a42 are given in table B.1. The

conditional (on the channel) probability of false alarm is given as

Pf ,i|γ,θ =
1
2

erfc
(

λi − µ0√
2σ0

)
+

1
2

erfc
(

λi + µ0√
2σ0

)
(B.27)

where θ is the phase angle, γ is the SNR of the signal, σ0 is the modulation constant and

µ0 is the mean of the data distribution as given in table B.1.

Table B.1: Modulation Constants

Parameters Actual values used

a00, a10, a20, a21
24ρ8

n
M , 96ρ8

n
M , 46ρ8

n
M , −48.96ρ8

n
M

a30, a31, a40, a41
33.28ρ8

n
M , 128.64ρ8

n
M , 10.33ρ8

n
M , −1.93ρ8

n
M

a42, σ0, µ0
1.74ρ8

n
M , 24ρ8

n
M , 1

5.2 First Stage Optimization on SU Selection Criteria

The aim of the first stage optimization is to iteratively select n SUs in ∀ n ∈ [1, N] SUs,

in an r out of n counting rule where r is the number of SUs that form the combinatorial n

fusion order and N is the total number of SUs in CSS network. The criteria on selection

is based on SUs’ decrementing SNR as formulated in algorithm 2. The error probability

is further expressed as

Pe,i = P(H0)Q f + P(H1)Qm (B.28)

where P(H0) is the null hypothesis, P(H1) is the alternative hypothesis, Q f is the global

probability of false alarm and Qm is probability of misdetection. The sum of probability

of false alarm and misdetection is derived as a cost function to determine the global

decremental error probability (Qe) in the detection of the primary user in CSS network.

The minimization problem is formulated as [15, 16, 18, 19]

Min
λ

(
Qm(λ

opt) and Q f (λ
opt)
)

Subject to Qe > 0
(B.29)

where λopt is the optimal decision threshold. Considering eqn. (B.25) and eqn. (B.27),

the optimal threshold is formulated as

λ∗i =arg min
λ

(
Pe,i = (βPf ,i|γ,θ + Pm,i|γ,θ)P(H1)

)
(B.30)
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Algorithm 2 First Stage optimal selection of SUs

Input: N = 15, SNR = −30 : 2 : −5.0

Output: λ
opt
n , n, r = N

2

intialize: n = 1← sort all SUs in descending order SNR

calculate the following

step1: λ∗i ← the threshold of ith SU, eqn. (B.34)

step2: Pr,n
e ← the error detection, eqn. (B.28)

step3: Pf ,1|γ,θ and Pd,1|γ,θ ← 1stiterate, eqn. (B.27) & (B.31)

step4: Qr,n
d ← the detection prob, eqn. (B.35)

step5: Qr,n
f ← the false alarm , eqn. (B.36)

step6: Qr,n
e ← the decremental error , eqn. (B.41)

for i = length (n) and r = length(N
2 )

while n ≤ m, n← 0 do

if Qr,n
e ≥ 0 then

i = n + 1

increment counter← n = n + 1

λ
opt
n ← the optimal threshold, eqn. (B.40)

go to step 4

else {Qr,n
e ≤ 0}

n = n− 1← delete the SU

go to step 4 otherwise have attained the solution

end if

end while
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where β = P(H0)
P(H1)

is the detection factor, Pf ,i|γ,θ is the false alarm and Pm,i|γ,θ is the

misdetection of the ith SU. From eqn. (B.25), the probability of detection is similarly

given as

Pd,i|γ,θ = 1− Pm,i|γ,θ (B.31)

Consequently from eqn. (B.30), the threshold is maximized as follows

λ∗i =arg max
λ

(
(Pd,i|γ,θ − βPf ,i|γ,θ − 1)P(H1)

)
=arg max

λ

(
Pd,i|γ,θ − βPf ,i|γ,θ

) (B.32)

By the Lagrange theorem, the maximum threshold is obtained by differentiating by parts

as follows
∂Pd,i|γ,θ

∂λi
λ∗i

= β
∂Pf ,i|γ,θ

∂λi
λ∗ (B.33)

where i = 1, ..., n is the number of SUs selected to participate in fusion and λ∗i is the

initial optimal threshold derived as

λ∗i =
σ2

s
2

+ σ2
s

√
1
4
+

γi

2
+

4γi + 2
Mγi

log
(

β
√

2γi + 1
)

(B.34)

where σ2
s is the noise variance, γi is the SNR of the i-th SU and M is the number of

signal data samples. The global probability of detection in r out o f n rule is derived as

Q(r,n)
d =

n

∑
j=r

(
n
j

) j

∏
i=1

Pd,i|γ,θ

n

∏
i=j+1

(
1− Pd,i|γ,θ

)
(B.35)

where n ∈ {j = 1, .., N}, N is the total number of SUs, Pd,i|γ,θ = 1− Pm,i|γ,θ is probability

of detection as given in eqn. (B.25), r is the actual number of SUs that form r out of n

counting rule and n is the total number of SUs selected to participate in decision making.

Similarly, the global probability of false alarm is formulated as

Q(r,n)
f =

n

∑
j=r

(
n
j

) j

∏
i=1

Pf ,i|γ,θ

n

∏
i=j+1

(
1− Pf ,i|γ,θ

)
(B.36)

where n ∈ {j = 1, .., N}, Pf ,i|γ,θ is probability of false alarm as given in eqn. (B.27). The

selection criteria is done by the iterative calculation of global probability detection and

false alarm simultaneously, as performed in algorithm 3. The minimization problem

stated in eqn. (B.29) is formulated mathematically as

Qr,n
d = Q(r−1,n−1)

d (Pd,n|γ,θ) + Q(r,n−1)
d (1− Pd,n|γ,θ) (B.37)

where Qd = 1−Qm is the global probability of detection, the probability of false alarm

is similarly derived as

Qr,n
f = Q(r−1,n−1)

f (Pf ,n|γ,θ) + Q(r,n−1)
f (1− Pf ,n|γ,θ) (B.38)
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The final iteration gives the optimal threshold λ
opt
n given for n number of SUs, formu-

lated as

Q(r,n−1)
d

∂Pd,n|γ,θ

∂λn λ
opt
n

= β Q(r,n−1)
f

∂Pf ,n|γ,θ

∂λn
λopt (B.39)

where the optimal threshold is given in this scenario as

λ
opt
n =

σ2
s

2
+ σ2

s

√
1
4
+

γn

2
+

4γi + 2
Mγn

log
(

β
√

2γi + 1 ∗ B
)

(B.40)

where B =
Q(r−1,n−1)

f −Q(r,n−1)
f

Q(r−1,n−1)
d −Q(r,n−1)

d

is the detection factor, γn is the SNR for the n-th SU, σ2
s is

the noise variance and M is the signal data samples. The decremented detection error

is expressed as

Q(r,n)
e =P(H1)Pd,n|γ,θ

(
Q(r−1,n−1)

d −Q(r,n−1)
d

)
− P(H0)Pf ,n|γ,θ

(
Q(r−1,n−1)

f −Q(r,n−1)
f

) (B.41)

where the P(H0) and P(H1) are the weights for probability of false (Pf ,n|γ,θ) and proba-

bility of detection (Pd,n|γ,θ) respectively, n is the number of SUs participating in detection

of the presence or absence of the PU on the channel, γ is the SNR and θ is the uniformly

distributed phase angle.

5.3 Second Stage Optimal Strategy

At the FC, a specific k out of n strategy is employed to process the SUs’ received decisions

at the FC. Where k is number of SUs in the range of (1 ≤ k ≤ n) and n is the total

number of SUs selected from a total of N as realized in the first optimization stage. The

idea behind this rule is to find the number of SUs whose local binary decisions is 1. If

this number is larger than or equal k, then the spectrum is said to be used otherwise

the spectrum is unused. An iterative algorithm search to find an optimal number of

k SUs in k out of n combinatorial order is done at the FC. To achieve this an upper-

threshold of global probability false alarm (Q f ) of less than utilization level (ε) is set.

The maximization problem can be formulated as [7, 15, 16]

Maximize
1≤k≤n

(Qd(k))

Subject to Q f (k) < ε

(B.42)

The global probability of false alarm Q f based on k out of n counting rule is formulated

in algorithm 3 and mathematically derived as

Q f (k) =
n

∑
j=k

(
n
j

)(
Pk

f ,i|γ,θ

) (
1− Pf ,i|γ,θ

)n−k
= ε (B.43)
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where ε is the utilization level, k is number of SUs selected to participate in the k out of n

fusion process, n is number of SUs iteratively found in the first optimization stage sec-

tion 5.2. The derivative of global probability of false alarm (Q f ) as function of (Pf ) is

derived as
∂Q f (Pf )

∂(Pf )
=n
(

n− 1
k− 1

)
Pk

f ,i|γ,θ

(
1− Pf ,i|γ,θ

)n−k−1

=nϕ(k− 1, n− 1, Pf ,i|λ,θ) > 0

(B.44)

From eqn. (B.44) it follows that ϕ is the binomial cumulative function given as

ϕ =

(
n− 1
k− 1

)(
Pk

f ,i|γ,θ

) (
1− Pf ,i|γ,θ

)n−k
(B.45)

Subsequently the global probability of detection in k out of n case is given as

Qd(k) =
n

∑
j=k

(
n
j

)(
Pk

d,i|γ,θ

) (
1− Pd,i|γ,θ

)n−k
> 0 (B.46)

To optimize the eqn. (B.46), we differentiate by parts the function as follows

∂Qd(Pd)

∂(Pd)
= n

(
n− 1
k− 1

)
Pk

d,i|γ,θ

(
1− Pd,i|γ,θ

)n−k−1
> 0 (B.47)

From eqn. (B.25) and eqn. (B.27) the following probabilities must hold true.

Pd,i|γ,θ

Pf ,i|γ,θ
>

∂(Pd,i|γ,θ)

∂(Pf ,i|γ,θ)
>

1− Pd,i|γ,θ

1− Pf ,i|γ,θ
(B.48)

Similarly the above equation can be further formulated as follows

Qd(k)
Q f (k)

=
∂Qd(k)
∂Pf (k)

∗
∂Pf

∂Q f
=

∂Qd(k)
∂Pd(k)

∗ ∂Pd
∂Pf

∂Q f
∂Pf

(B.49)

From the above equation it is true to say Qd(k) is linearly increasing function of Q f (k).

For all k ∈ [1, n] then the roots of Q f (k, Pf ) are formulated in Bisection algorithm 3.

The algorithm is broken down as follows; for each Pf ,i|γ,θ determine the corresponding

Pd,i|γ,θ and Qd(k, Pf ), select the highest global probability, the value of k is the optimal

number of SUs.

6 Energy Efficiency

Energy efficiency is the ratio of throughput to average energy consumed during the

cooperative spectrum sensing time. The throughput (THR) is formulated as [21]

THR = P(H0)(1−Q f )Rt (B.50)
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Algorithm 3 Second Stage Bisection Algorithm

Input: Pf = Pf ,i|γ,θ , ε = 0.001

Output: k, Qd(k)

n← from algorithm 2

intialize: endpoints← Pf ,L = 0.01, Pf ,U = 0.1

for i = length (Pf ) and k = length(n)

while Q f (k) ≤ ε, k← 1← from eqn.B.43 do

if Pf ,U ≤ Pf ,L, Q f (Pf ,L) ≤ 0 and Q f (Pf ,L) > 0 then

mid (Pf ) =
Pf ,L−Pf ,U

2

condition: if Q f (mid (Pf )) = 0 then

solution is found else

Determine the following;

Pd,1|γ,θ ← cal. detection probability, eqn. (B.31)

Q f (1)← cal.the false alarm, eqn. (B.43)

Qd(1)← cal. detection probability, eqn. (B.46)

else {Q f (Pf ,L) > 0 and Q f (Pf ,U) < 0}

mid (Pf ) =
Pf ,U−mid (Pf )

2

if sign Q f (mid (Pf )) = sign Q f (Pf ,U) then

Pf ,L ← mid (Pf )

else

Pf ,U ← mid(Pf )

increment counter← k = k + 1 and i = i + 0.01

untill Q f (k) < ε

determine the biggest Qd(k)

optimal value of (k) found.

end if

end while
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where R is the data rate, t is the transmission time length, P(H0) is the probability that

the spectrum is not being used, Q f is the global probability of false alarm. The average

energy consumed in the network by all SUs Ec is derived as

Ec = n esu + Pu est (B.51)

where n is the total number of SUs selected from first optimization stage, esu is the

energy consumed during CSS by all the SUs, est is the energy consumed during data

transmission, Pu is the probability of identifying if the spectrum is idle, given as

Pu = P(H0)(1−Q f ) + P(H1)(1−Qd) (B.52)

where P(H1) = 1− P(H0) is the probability of the spectrum being used, Q f is the global

probability of false alarm and Qd is the probability of detection. Note that the energy

consumption during transmission occurs only if the spectrum is identified as unused.

The efficiency (η) can be formulated as [20, 21]

η =
THR

Ec
=

P(H0)(1−Q f )Rt
n esu + (1− P0Q f − P1Qd)est

(B.53)

where n is number of SUs in equation (B.53), computed as

n = ln
(

P(H1)(1−Q f )est

Nesu + P(H1)(1−Qd)est

)
− k ln

(
Py(1− Px)

Px(1− Py)

)
(B.54)

where N is the total SUs in CSS network, k is the number of SUs in the k out of n

counting rule. A noisy channel is modeled as binary symmetric channel with error

probability (Pe) and it is the same among all SUs. px = Pd,i|γ,θ(1− Pe) + (1− Pd,i|γ,θ)Pe

is the probability of receiving a local binary decision of 1 when the spectrum is busy

and py = Pf ,i|γ,θ(1− Pe) + (1− Pf ,i|γ,θ)Pe is the probability of receiving a local binary

decision of ”1” when the spectrum is idle.

7 Simulation Results

In order to evaluate the HOS test for cooperative spectrum sensing capability, we con-

sidered a cognitive radio network with 15 SUs transmitting on 16 QAM constellation

modulated signal built in matlab software for analysis. It should be noted that any other

modulation scheme can be used to model the PU signal. In all subsequent figures, the

numerical results are plotted on receiver operating characteristics curves (ROC). Simu-

lation results are denoted with discrete marks on the curves. The simulation parameters

are given in table B.2.
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Table B.2: Simulation parameters

Simulation parameters Actual values used

P(H0) and P(H1) 0.5

Frequency range 0-800

Monte Carlo trials 103 to 104

Noise variance σn 1

phase angle 0 ≤ θ ≤ 2π

Range of δ 0≤ δ ≤ 1

mean (µ0) for (H0) 0

est, esu 1 Joule, 100 mJoule

Transmission time (t) 0.5 sec

Data rate (R) 100 kbps

In Fig. B.3, the ROC curves shows the probability of detection (Pd) against SNR as

formulated in the algorithm 1 for omnibus (omnb), Jarque Bera (JB), kurtosis & skew-

ness (kurt & skew) and kurtosis (kurt) test statistics. In this scheme 2048 FFT sample

points were considered. From the plot, as expected, the probability of detection in-

creased with increase in SNR starting from a low SNR. The omnb test displayed the high-

est probability of detection progressively from a low SNR up to about -16 dB. The plot

shows that omnb performs better at low SNR. This was followed by JB, then kurt & skew.

The results of the other HOS tests are close to those in [9, 10, 20].

In Fig. B.4, the graph illustrates the probability of detection (Pd) against SNR for the

HOS tests considered under a smaller data sample of 512 FFT points. The plot shows

omnb still has higher detection probability for all ranges of SNR and even better under

extremely low SNR (-30dB). The omnb test technique therefore tends to suppress the

Gaussian noise showing an improved performance. From the two results displayed in

fig. (B.3) and (B.4), it can be concluded that omnibus is a superior statistical test for both

small and big data sample at low SNRs.

In Fig. B.5, the shows the global probability of detection (Qd) against false alarm (Q f )

as discribed in the second stage optimization, for optimal k out of n counting rule based

on HOS tests. The rules are for omnibus and majority rule (omnb and maj), Jarque-Bera
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Fig. B.3: Detection probability for HOS tests against a range of SNR in 2048 FFT data points

Fig. B.4: Detection probability for HOS tests against a range of SNR in 512 FFT data points
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Fig. B.5: Global probability of detection against false alarm for HOS tests

and majority (JB and maj), kurtosis & skewness and majority (kurt & skew and maj).

The optimal number of 8 out of 10 SUs was determined by a two stage optimization as

given in algorithms (2) and (3). From ROC curves, it can observed that a combination

of omnb and maj displays a higher probability of detection for a false alarm of less than

0.1. This is as per the requirement of IEE 802.22 standards [17]. The performance was

then followed by JB and maj and lastly kurt & skew and maj.

Fig. B.6, shows global probability of misdetection (Qm) against false alarm (Q f ), com-

parative performance for HOS based optimal majority rules; omnb and maj, JB and maj,

kurt & skew and maj and lastly kurt and maj is done. The optimal number of 8 out o f 10

SUs was realized in the algorithm 3. From the plot, it can be deduced that omnb and maj

combination strategy displayed the lowest probability of misdetection for all values of

probability of false alarm as compared to the three other combinations. In conclusion,

based on the fig. (B.5) and (B.6), omnb and maj rule showed the highest probability of

detection and the lowest misdetection as compared to all the other HOS based majority

rule for all ranges of false alarm.

Fig. B.7, shows performance of a hybrid spectrum sensing scheme of k out of n counting

rule, based omnibus test for different numbers of SUs. The plot shows the comparative

performance of different numbers of SUs as selected in single stage compared to two

stage optimization. Where n = 10, k = 5 and k = 8 respectively. From this plot, it

can be deduced that omnibus a local detection test based on a two stage optimization
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Fig. B.6: Global probability of misdetection against false alarm for HOS tests

Fig. B.7: Comparative analysis on single and two stage optimization
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global detection scheme displayed higher probability of detection to that of single stage

optimization for all ranges of false alarm.

Fig. B.8: Energy efficiency in k out of n counting rule.

Fig. B.8, shows the energy efficiency for different k out of n counting rules representing

three scenarios. The first case is when all the SUs in the cooperative spectrum sensing

N = 15 participate in the detection of the PU. The second case is when an optimal num-

ber of SUs as found in the first optimization stage n = 10 and the third case is when

n = 8 just for the purpose of benchmarking. From this plot the optimal case showed

the greatest energy efficiency of about 2 ∗ 104 Bits per Joule. This was achieved when

k = 8 SUs in the combinatorial order of 8 out o f 10 counting rule. Note that due to the

k out of n rule the number of k can only go up to n number of SUs.
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8. Conclusion

8 Conclusion

In the proposed hybrid model, an optimal k out of n based omnibus (K2) statistics test

was shown to be more superior to the other HOS tests. This model would be preferred

to detect the PU in cognitive radio networks operating under noisy conditions. Another

advantage of this model is the overall reduction in energy consumption in the network

due to the two stage optimization. Fewer SUs make the final decision on the status of

the PU on the channel but still maintain reliable decision outcomes.
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