by
Pinky Ncomela Mjwara
216045884

Thesis
Submitted in fulfilment of the academic requirements for the degree of Master of Science in Chemistry.

College of Agriculture, Engineering and Science,
University of KwaZulu-Natal
Pietermaritzburg

Supervisor(s): Dr S. Sithebe \& Dr T.R Papo

February 2023

DECLARATION 1

I, Pinky Ncomela Mjwara, hereby declare that:

1. The research report in this thesis, except where otherwise indicated, is my original research.
2. This thesis has not been submitted for any degree or examination at any other university.
3. This thesis does not contain other persons' data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons.
4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then:
(a) Their words have been re-written, but the general information attributed to them has been referenced.
(b) Where their exact words have been used then their writing has been placed in italics and inside quotation marks and referenced.
5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged and the source being detailed in the thesis and in the References sections.

As the supervisor of the student, I approve the submission of this MSc Thesis for examination.

Dr S. Sithebe (Supervisor)

Dr T.R Papo (Co-supervisor)

DECLARATION 2 - CONFERENCE PRESENTATIONS AND PUBLICATIONS

Some parts of this research have been presented in the following conferences:

1. Pinky N. Mjwara, Dr Siphamandla Sithebe \& Dr Tshephiso Papo. College of Agriculture, Engineering and Science Online Postgraduate Research and Innovation Symposium (PRIS). December 2022. Flash Presentation. Synthesis and Substitution Kinetics Studies of Pyridyl N, N '-Bidentate Palladium(II) Complexes.
2. Pinky N. Mjwara, Dr Siphamandla Sithebe \& Dr Tshephiso Papo. $44^{\text {th }}$ SACI National Convention, Chemistry for Sustainable Development in Africa. Stellenbosch. January 2023. Flash \& Poster Presentation. Synthesis and Substitution Kinetics of Pyridyl N, N ' -Bidentate Palladium(II) Complexes.

Publication:

1. Pinky N. Mjwara, Tshephiso R. Papo \& Siphamandla Sithebe. bis[N-(4-Bromophenyl)pyridine-2-carboxamidato]palladium. Molbank 2022, 2022(4), M1496; https://doi.org/10.3390/M1496.

DEDICATION

This work is dedicated to my mother, Mrs D.C Mjwara, thank you Ma.

ACKNOWLEDGEMENTS

My utmost gratitude goes to my supervisors, Dr S. Sithebe and Dr T.R Papo, for granting me the opportunity to work on this project; their encouragement, guidance and patience made this all possible. I would also like to thank UKZN and the National Research Foundation for their financial support. Thank you to all my colleagues from Warren Laboratory and Room 22, for the laughter and meaningful talks. Lastly, I am grateful to my family and close friends, for their love and emotional support.

Table of Content

DECLARATION 1 i
DECLARATION 2 - CONFERENCE PRESENTATIONS AND PUBLICATIONS ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
Table of Content v
List of Abbreviations viii
List of Figures xi
List of Schemes xiii
Abstract xiv
CHAPTER 1 1

1. Introduction 1
1.1 The Development of Cancer 1
1.2 Causes of Cancer 2
1.3 Treatment of Cancer 2
1.4 Use of Metals in Cancer Treatment 3
1.4.1 Mechanism of Action of Pt-based Drugs 3
1.4.2. Drawbacks of Cisplatin 5
1.5 Use of Pd(II) Complexes in Cancer Treatment 6
1.5.1 Mononuclear Palladium Complexes 7
1.5.2 Mononuclear Nitrogen Containing Pd(II) Complexes 7
1.5.3 N'N Bidentate Pd(II) Complexes 9
1.6 References 11
CHAPTER 2 14
2.1 Substitution Reactions of Pd (II) Complexes 14
2.1.1 The Influence of Spectator Ligands on the Rate of Substitution in Pd(II) Complexes 14
2.1.2 Influence of Ionic Strength on The Rate of Substitution in Pd(II) Complexes 19
2.1.3 Influence of Incoming Biomolecules on The Rate of Substitution in Pd(II) Complexes 20
2.2 Instrumental Techniques Used in Chemical Kinetics 20
2.2.1 UV-Visible Spectrophotometry 20
2.2.2 Stopped Flow Spectrophotometry 21
2.3 Statement of Problem 22
2.4 Justification of Study 23
2.5 Aims and Objectives 23
2.5.1 Aims 23
2.5.2 Objectives 23
2.6 References 24
CHAPTER 3 27
3.1 General Introduction 27
3.2 Chemicals and Reagents 28
3.3 Physical Measurements 28
3.3.1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectroscopy 28
3.3.2 FTIR Spectroscopy 28
3.3.3 Mass Spectrometry 29
3.3.4 DFT-Computational Modelling 29
3.3.5 Stopped Flow \& UV-Visible Spectrophotometer 29
3.3.6 Preparation of Solutions for Kinetic Analysis 29
3.4 Synthesis of Ligands 30
3.5 Synthesis of Pd(II) Complexes 33
3.6 Results and Discussion 36
3.6.1 Synthesis of Ligands and Complexes 36
3.7 DFT-Computational Modelling and Analysis 42
3.8 Substitution Kinetic Analysis 47
3.8.1 Kinetic Measurements 47
3.8.2 ${ }^{1} \mathrm{H}$ NMR Spectroscopy 47
3.8.3 First Substitution Step 49
3.8.3.1 Concentration Dependence 49
3.8.3.2 Temperature Dependence 52
3.8.4 Second Substitution Step 53
3.8.4.1 Concentration Dependence 54
3.8.4.2. Temperature Dependence 57
3.9 Conclusion 58
3.10 References 60
CHAPTER 4 63
Synthesis of Novel Palladium(II)-Pyridine Carboxamide Complexes 63
4.1 Introduction 63
4.2 Chemicals and Reagents 63
4.3 Physical Measurements 64
4.4 Synthesis of the Ligand 64
4.5 Synthesis of the Pd (II) Complexes 65
4.6 Results and Discussion 66
4.6.1 Synthesis of Ligand and Complexes 66
4.6.2 X-ray Crystallography 68
4.7 Conclusion 70
4.8 References 71
CHAPTER 5 74
5.1 Overall Conclusions and Future Work 74
5.1.1 Conclusion 74
5.1.2 Recommendations for Future Work 74
Appendix 76

List of Abbreviations

B3LYP	Becke-3-Lee-Yang-Parr
BRCA1	Breast cancer gene 1
BRCA2	Breast cancer gene 2
COSY	Correlated spectroscopy
DFT	Density function theory
DMTU	Dimethylthiourea
DNA	Deoxyribonucleic acid
d	Doublet
ΔH^{\neq}	Enthalpy of activation
ΔS^{\neq}	Entropy of activation
eV	Electron volt
FT-IR	Fourier-transform infrared spectroscopy
$5-G M P$	Guanosine-5-monophosphate
GSH	Glutathione
K	Selvin
HOMO	Highest occupied molecular orbital radiation
Hz	Hertz
I	Ionic strength
I	Trapling constant
H	

$K_{\text {obs }}$	Observed pseudo first-order constant
kPa	Kilopascal
l	Length
L-Cys	L-Cysteine
L-Met	L-Methionine
LANL2DZ	Los Alamos National Laboratory 2 double ζ
LC-MS	Liquid chromatography - mass spectroscopy
LUMO	Lowest unoccupied molecular orbital
m	Multiplet
M	Molar
MHz	Megahertz
mM	Millimolar
NBO	Natural bond orbital
NMR	Nuclear magnetic resonance
Nu	Nucleophile
η	Chemical hardness
PDT	Photodynamic therapy
ppm	Parts per million
s	Singlet
T	Temperature
t	Triplet
TMTU	Tetramethylthiourea
TOF-MS	Time-of-flight mass spectrometry
TU	Thiourea

UV-Vis

WHO
ω
$\mathrm{s}, \mathrm{m}, \mathrm{hr}$ (time)

Ultraviolet-visible

World health organisation

Electrophilicity index

Second, Minute, Hour

List of Figures

Figure 1. 1: Different DNA-Pt adducts formed from the interaction of cisplatin with DNA. ${ }^{29} 5$
Figure 1. 2: Cisplatin and follow-up platinum-based anticancer drugs. ${ }^{32}$ 6
Figure 1. 3: Mononuclear ethylenediamine-palladium(II) complexes with different substituents on the pyridine. ${ }^{49}$ 8
Figure 1. 4: trans-Palladium bis(quinonyl-phosphonate) and the quinolmethylphosphonate ester complexes as early examples of $\operatorname{Pd}(I I)$ anticancer complexes. ${ }^{50,51}$ 9
Figure 1.5: Bipyridine and phenanthroline based palladium complexes for binding with phage PMA2 DNA. ${ }^{54}$ 10
Figure 2. 1: Pyridine- and pyrrole-based complexes designed to study the influence of electronic and steric effects on the reactivity of $\mathrm{Pd}($ II $)$ complexes. ${ }^{3,6}$ 15
Figure 2. 2: $\mathrm{Pd}(\mathrm{II})$ complexes with ligands containing bis(2-pyridylmethyl)amine and bis(8- quinolinyl)amine moieties. ${ }^{4}$ 16
Figure 2. 3: Palladium(II) complexes with π-conjugated carboxamide ligands. ${ }^{7}$ 17
Figure 2. 4: Tridentate 2,6 -bis(benzazole)pyridine $\mathrm{Pd}($ II $)$ complexes designed to study the effects of heteroatoms on the cytotoxicity of palladium(II) complexes. ${ }^{8}$ 18
Figure 2. 5: Palladium (II) complexes with different pyrazolyl ligands. ${ }^{9}$. 19
Figure 2. 6: Schematic diagram of a stopped-flow reaction analyser. 22

Figure 3. 1: An overlay ${ }^{1} \mathrm{H}$ NMR spectra of ligand $\mathbf{L} 1$ and corresponding PdL1 complex showing a notable downfield shift of all the aromatic protons and distinct changes in the methylene and amine protons.38
Figure 3. 2: COSY NMR spectrum showing the $A B X$ spin system for the protons of themethylene group of the chelating ring $\left(\mathrm{H}^{\mathrm{A}}\right.$ and $\left.\mathrm{H}^{\mathrm{B}}\right)$ and the aniline proton $\left(\mathrm{H}^{\mathrm{X}}\right)$ in PdL1. 39Figure 3. 3: An overlay ${ }^{13} \mathrm{C}$ NMR spectra of ligand $\mathbf{L} 5$ and corresponding PdL5 complexshowing a notable downfield shift of all the aromatic and amine protons and no changes in themethylene hydrogen atoms40
Figure 3.4: An overlay FT-IR spectra of ligand L4 and corresponding PdL4 complex showing distinctive peaks to characterize the free ligand and its complex 41
Figure 3. 5: ${ }^{1} \mathrm{H}$ NMR spectra of L1, PdL1 and the substituted reaction of PdL1 with six equivalents of $\mathbf{T U}$ at $30^{\circ} \mathrm{C}$ 48

Figure 3. 6: Kinetic trace obtained from the Stopped-Flow spectrophotometer showing a single exponential fit for the reaction between PdL1 and TU in ultra-pure water followed at 295 nm , $\mathrm{I}=0.1 \mathrm{M}$ at 298 K .

Figure 3. 7: Dependence of $\mathrm{k}_{\mathrm{obs}}$ on the concentration of the entering nucleophiles for the displacement of chloride on PdL4 complex in water, $\mathrm{I}=0.1 \mathrm{M}(\mathrm{LiCl})$, $\mathrm{T}=298 \mathrm{~K}$. 50

Figure 3. 8: Plot of $\ln \left(\mathrm{k}_{2} / \mathrm{T}\right)$ against $1 / \mathrm{T}$ for the reaction of PdL4 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$52

Figure 3. 9: UV-Visible spectral changes for the reaction between PdL1 and DMTU at 298 $\mathrm{K}, \mathrm{I}=0.1 \mathrm{M}$.54

Figure 3. 10: Kinetic trace obtained from the UV-Vis spectrophotometer showing a single exponential fit for the reaction between PdL1 and DMTU in ultra-pure water followed at 295 $\mathrm{nm}, \mathrm{I}=0.1 \mathrm{M}$ at 298 K .55

Figure 3. 11: Plots of $\mathrm{k}_{\text {obs }}$ against concentration of the $\mathbf{P d L 1}$ complex with TU, $\mathrm{I}=0.1 \mathrm{M}$ (LiCl), $\mathrm{T}=298 \mathrm{~K}$ 56

Figure 3. 12: Plot of $\ln \left(\mathrm{k}_{2} / \mathrm{T}\right)$ against $1 / \mathrm{T}$ for the reaction of $\mathbf{P d L 3}$ with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Figure 4. 1: The ORTEP diagram of Pd1 and Pd2 with the thermal ellipsoids drawn at the 50\% probability level

Figure 5. 1: Alternative biomolecules for further studies. Error! Bookmark not defined.

List of Schemes

Scheme 3. 1: Synthesis route of the ligands (L1-L5) and their corresponding Pd(II) complexes (PdL1 - PdL5).36
Scheme 3. 2: Proposed stepwise substitution reaction with the thiourea nucleophiles. 47
Scheme 4. 1: Synthesis of N-(4-bromophenyl) pyridine-2-carboxamide and corresponding $\mathrm{Pd}($ II) complexes, Pd1 and Pd2. 67

Abstract

The influence of structural as well as electronic properties of bidentate N, N chelates with different substituents on the mononuclear $\mathrm{Pd}(\mathrm{II})$ complexes were investigated. The complexes were synthesized and characterized by various spectroscopic methods such as ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR, FT-IR, LC-MS, CHN and single x-ray crystallography. For the first set of complexes (Chapter 3), we studied the unexplored kinetics and mechanistic behaviour of N, N '-pyridyl $\mathrm{Pd}(\mathrm{II})$ complexes, viz. dichloro-(N-((pyridin-2-yl)methyl)aniline)palladium(II) (PdL1), dichloro-(4-fluoro-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL2), dichloro-(4-bromo-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL3), dichloro-(4-methoxy-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL4) and dichloro-(4-ethyl-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL5). The substitution behaviour of coordinated chloride atoms by three bio-relevant thiourea nucleophiles, viz. thiourea (TU), N, N '-dimethylthiourea (DMTU) and $N, N, N^{\prime}, N^{\prime}$-tetramethylthiourea (TMTU), of different steric demands was studied in a 0.1 M solution of ultra-pure water under p seudo-first order conditions. The reactions were studied as a function of concentration and temperature using standard Stopped-Flow and UVVis spectrophotometric technique. The substitution of the chloride atoms from the Pd metal by thiourea nucleophiles was a two-step reaction where the chloride trans to the pyridine ligand was substituted first, since the pyridine has a stronger trans effect compared to the amine group. The reactivity of mononuclear $\mathrm{Pd}(\mathrm{II})$ complexes containing bidentate N, N '-donor ligands with different substituents depends on the electronic effects of the complexes. The reactivity of the complexes increased with the presence of electron withdrawing substituents and decreased when an electron donating group was attached on the para position of the aniline moiety. The electron withdrawing groups influence the pull of electrons from the electron deficient amine that is coordinated to the metal center which results in the loss of electron density from the ligand moiety and increases the electrophilicity of the metal center and thus the substitution reaction. The reactivity of the nucleophiles depends on steric effects, with the bulky TMTU being the least reactive. The negative entropies and second order kinetics for all the substitution reactions support an associative mode of substitution mechanism. DFT calculations were performed to account for the observed reactivity of all the complexes studied.

For the second set of novel $\mathrm{Pd}(\mathrm{II})$ complexes (Chapter 4), viz. bis[N -(4-bromophenyl)pyridine-2-carboxamidato] Palladium (Pd1) and Palladium(II) [N-(4-bromophenyl)-2pyridinecarboxamide), pyridine chloride (Pd2), crystals were obtained and the structures were studied. Pd1 crystallizes in the monoclinic crystal system and in the P21/c space group, and Pd2 crystallizes in the orthorhombic system, with the space group Pbca.

CHAPTER 1

1. Introduction

1.1 The Development of Cancer

Cancer remains one of the greatest threats to increased human life expectancy in the $21^{\text {st }}$ century. ${ }^{1}$ It is ranked the number one cause of death in developed countries and the second leading cause of death in developing countries. ${ }^{2}$ According to a 2021 report by the World Health Organization (WHO), cancer claimed the lives of nearly 10 million people in 2020 alone. Of these deaths, the most common were caused by cancer of the lung (1.8 million), colorectum (935 thousand), liver (830 thousand), stomach (768 thousand), breast (684 thousand), esophagus (544 thousand), pancreas (466 thousand) and prostate (375 thousand) cases. ${ }^{3}$

Cancer is a group of chronic or acute diseases characterized by an uncontrollable growth in normal cells, leading to the formation of a tissue mass of cells known as a tumor. ${ }^{4}$ The primary tumor can be life-threatening by obstructing vessels or organs and disrupting their function. If diagnosed early, this initial tumor can be treated through local surgery, aided by a combination of other methods such as chemotherapy, radiotherapy, or vaccine-related treatments. This type of tumor is usually benign as it remains confined to its location of origin. ${ }^{4-6}$

The most common cause of death is usually metastasis, the spread of the primary tumor throughout the body via the circulatory or lymphatic systems to vital body organs, establishing secondary tumors. ${ }^{5}$ During the process of metastasis, the tumor cells can penetrate through the walls of lymphatic vessels and distribute to draining lymph nodes or directly invade the thin walls of the blood capillaries and spread to far-reaching sites in the body. Furthermore, tumors can also spread across body cavities via organs. This type of tumour cell is known as malignant, and its ability to distribute throughout the body makes local surgery infeasible. ${ }^{4-6}$

The cloning of cancerous cells and their proliferation is a multistep process in which cells undergo a series of changes that gradually become malignant. ${ }^{5}$ This process, known as tumorigenesis, commences from tumor initiation, a result of genetic alteration leading to abnormal proliferation of a single cell and clinical derivation of tumor cells. With additional mutations occurring in the cell, the population of tumor cells increases; this stage is typically known as tumor progression. ${ }^{5,6}$ Only a slow rise in the rate of cancer cell proliferation is required to outgrow the average cell population. It is worth noting that tumor progression
depends on the type of tissue or organ; for example, organs such as the bone marrow account for cell loss by a high rate of cell division. ${ }^{6}$ In contrast, the adult tissue of the liver typically maintains a steady number of cells and therefore, the gradual growth in population of cancerous cells rapidly exceeds that of normal cells.

1.2 Causes of Cancer

Biomedical research has revealed that proliferation is a common characteristic of all cancers. However, the etiology of these diseases can be explained by various theories attributed to internal, external, or hereditary factors. Mutations cause majority of cancers, and changes in DNA, i.e., addition or loss of DNA, or alternate epigenetics. ${ }^{5,6}$

There are two types of genetic mutations: point mutation and translocation mutations. ${ }^{5}$ The former is when only one base of a DNA sequence is altered, resulting in a new codon that encodes for a specific (incorrect) amino acid at a corresponding protein position. Translation mutation involves the movement of an entire gene from one chromosome to another. Cancer genesis may occur if the proteins corresponding to these specific altered DNA sequences are crucial in the control of cell growth. ${ }^{6}$

In humans, mutations often arise from external factors such as virus or bacterial infections, exposure to chemicals (such as tobacco smoke, or asbestos), potent carcinogens (such as exhaust fumes) and harmful radiation (including alpha, beta and gamma rays). ${ }^{7,8}$ Additionally, several genes have been identified that, if inherited, can potentially form certain types of cancer. An example would be BRCA1 and BRCA2, genes closely associated with breast cancer, which can be inherited from one generation to the next. ${ }^{5}$

1.3 Treatment of Cancer

Treatment of cancer often involves a combination of methods and approaches, depending on the type and stage of cancer, and most crucially, the location of the cancerous cells. ${ }^{5}$ To date, the main treatments are surgery, chemotherapy, and radiotherapy, while other less common treatments such as biochemical therapy, photodynamic therapy (PDT), and antibody-related treatments are being employed. ${ }^{9-12}$ Primarily, localized tumors are surgically removed, followed by chemotherapy or radiotherapy to remove the cancerous cells from the affected tissue.

Chemotherapy involves using drugs to destroy tumors or at least prevent proliferation of cancerous cells. ${ }^{5}$ This method affords better effects, as the drugs can access multiple sites in the body. However, cancer is complex, and each type is distinct. ${ }^{5,6}$ As such, no single chemical drug with a broad spectrum can actively cure all cancer types. Consequently, cancer treatment remains a monumental task as the commonly used methods are often associated with resistance. ${ }^{13}$ Such drawbacks have encouraged efforts towards the design of metal-based drugs as potential antitumor agents.

1.4 Use of Metals in Cancer Treatment

The use of inorganic complexes in cancer chemotherapy stems from Barnett Rosenberg's discovery of cis-diamminedichloroplatinum(II), commonly known as cisplatin, in 1969 (Figure 1.2a). ${ }^{14}$ To date, cisplatin is the most prestigious anticancer drug used for the treatment of ovarian, testicular, lung and cervical cancers, among others. ${ }^{15-18}$

1.4.1 Mechanism of Action of Pt-based Drugs

Anti-cancer drugs have different mechanisms by which they interfere with cancer cell growth. Research focused on cisplatin's molecular mechanism of action has assisted researchers in understanding how the drug terminates cancerous cells. It has also been reported that the mode of function of cis-Pt based anti-cancer complexes resemble that of cisplatin. ${ }^{19}$ These drugs are known as DNA interactive agents, they interfere with DNA processing by forming DNA adducts, inter- and intrastrand crosslinks, and DNA-protein crosslinks, which ultimately leads to programmed cell death, apoptosis, through initiation of major signaling pathways. ${ }^{20}$

Cisplatin is typically administered through the veins instead of ingestion through the acidic gastrointestinal tract to prevent premature hydrolysis. The blood plasma contains high concentrations of chloride ions, approximately 100 mM , and these conditions aid the neutral cisplatin complex to reach its target unaltered. ${ }^{20}$ Upon absorption into the cancer cell through passive and active diffusion, cisplatin undergoes hydrolysis to form a positively charged aqua species. This is due to low concentration of the chloride ions, $\sim 4 \mathrm{mM}$, which results in the loss of one or both chloride ligands. ${ }^{21,22}$ Inside the cell, the platinum complex encounters numerous biomolecules with a strong affinity for the platinum center, including sulfur donors such as thiols and thioethers. Some of the $\mathrm{Pt}(\mathrm{II})$ complex may interact with these molecules to form kinetically stable platinum-sulfur bonded adducts. ${ }^{23}$ However, at neutral pH , the positively
charged platinum complex preferably binds with nucleophilic nitrogenous sites of DNA which have less hindrance. The binding of the complex to nitrogen is expected since platinum is a soft metal and therefore have a strong affinity for hard bases such as nitrogen. Cisplatin preferably binds to the N7 atoms of guanine and adenine, although the N 1 of adenine and the N3 atom of cytosine are also suitable binding sites. ${ }^{24}$ The N7 atom of guanine has shown to be the most preferred coordinate site due to accessibility, strong basicity, and the intermolecular hydrogen bond interactions between the $\mathrm{N}-\mathrm{H}$ proton of cisplatin with O6 atom of guanine. This interaction stabilize the binding of $\mathrm{Pt}(\mathrm{II})$ complex to the N 7 site and consequently, this $\mathrm{N} 7-\mathrm{Pt}$ binding is proposed to be responsible for the antitumor activity of cisplatin. ${ }^{25,} 26$ The N 1 of adenine and the N 3 of cytosine are primarily involved in DNA base pairing and therefore, these sites are less likely available for metal binding. ${ }^{27}$

The interaction of cisplatin with DNA leads to the formation of DNA-Pt adducts, including interstrand, intrastrand and intramolecular crosslinks (Figure 1.1). ${ }^{24}$ The most prominent platination is the intrastrand crosslinks between two neighboring deoxyguanosines (GG) which accounts for 65% of all DNA adducts. Intrastrand crosslinks at the AG sequence form about 20% DNA adducts. However, no adducts are observed at the GA sequence. Additionally, a cross-link between two deoxyguanosines separated by a third nucleoside, the GNG sequence, forms about 9% of DNA adducts. ${ }^{24}$ Furthermore, DNA interstrand crosslinks have been found to exist between two deoxyguanosines,.However, this rarely occurs as it leads to the twisting of the DNA structure and may only occur when an alternate purine is not in proximity on the same strand and thus only accounts for 1% of the DNA adducts. ${ }^{24}$ One other adduct has been observed to form a crosslink between deoxyguanosine and glutathione. ${ }^{24}$ Although the mechanism of toxicity of these DNA adducts is still vaguely understood, it is generally accepted that the adducts inhibit DNA replication or suppress DNA transcription by distortion through unwinding, bending, and flattening the minor grooves of the superhelix, and shortening of the double helix, which ultimately induces cell death by apoptosis. ${ }^{22,28}$

Figure 1.1: Different DNA-Pt adducts formed from the interaction of cisplatin with DNA. ${ }^{29}$

1.4.2. Drawbacks of Cisplatin

Despite the use of cisplatin as the leading anti-cancer drug for over five decades, its efficacy is primarily compromised by inherent and acquired resistance, and severe side effects including neurotoxicity, nephrotoxicity, gastrointestinal toxicity, nausea, and vomiting. ${ }^{30,31}$ Many factors contribute to these side effects, including the aquation of the cisplatin complex in the blood plasma before diffusion into the cytoplasm, which could lead to an aqua species that is likely to react with non-target cells. This nonspecific attack may lead to toxicity of the drug. ${ }^{20}$ However, this can be controlled by high concentrations of chloride ions.

Another factor is the binding of the $\mathrm{Pt}(\mathrm{II})$ complex to sulfur containing thiols, forming stable $\mathrm{Pt}-\mathrm{S}$ bonds, which are inert and considered one of the causes of the development of resistance. In instances where these inert Pt-S compounds are bound to an amino residue of proteins, they are responsible for the acute side effects. ${ }^{32-34}$ As a consequence, $\mathrm{Pt}(\mathrm{II})$ drugs are usually administered with chemo protecting agents which are S-containing compounds such as thiourea (Tu), cysteine, biotin, glutathione and amifostine. Most of the severe side effects are linked with administration and the lack of selectivity of the drug. ${ }^{34}$

The discovery of cisplatin and the side effects associated with the drug has since led to the design of numerous platinum analogues of this drug such as carboplatin (cis-diammine(cyclobutane-1,1-dicarboxylate-O,O')platinum(II)) (b), oxaliplatin (trans-R,R-
cyclohexane-1,2-diamine](ethanedioato-O,O')platinum(II)) (c) and satraplatin (bis-acetato-ammine-dichloro-cyclohexylamine-platinum(IV)) (d) (Figure 1.2). ${ }^{32}$ Carboplatin is a secondgeneration $\operatorname{Pt}(\mathrm{II})$ based anticancer drug effectively used in the treatment of ovarian cancer and has shown fewer side effects than cisplatin. ${ }^{35}$ Oxaliplatin is used to treat colon and rectum cancer and has been observed to be applicable at a broader spectrum than cisplatin. The drug satraplatin is still in development stages with potential to improve oral administration of anticancer drugs and to treat patients with prostate cancer. ${ }^{32,35}$ Despite these efforts, researchers have a challenge in the design and synthesis of metal-based drugs with better efficacy, improved application spectrum, and limited solubility with reduced toxicity.

a

C

d

Figure 1.2: Cisplatin and follow-up platinum-based anticancer drugs. ${ }^{32}$
Amongst others, complexes of transition metals such as gallium, copper, ruthenium, gold, and palladium have shown the most promising anti-cancer activity. ${ }^{36-40}$ Considering the structural similarities between $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$, there has been enormous interest in the study of $\mathrm{Pd}(\mathrm{II})$ complexes as potential anticancer drugs. ${ }^{41}$ Therefore, the subsequent subsection reviews some of the synthesized palladium complexes and their activity against cancerous cells in comparison to cisplatin and other Pt-based drugs commercially used worldwide.

1.5 Use of Pd(II) Complexes in Cancer Treatment

The structural and coordination behavior of $\mathrm{Pd}(\mathrm{II})$ complexes closely resemble that of their $\mathrm{Pt}(\mathrm{II})$ analogues, on these basis, researchers have pursued the design of $\mathrm{Pd}(\mathrm{II})$ compounds as
alternative drugs in cancer treatment. ${ }^{42}$ It has been reported that some $\mathrm{Pd}(\mathrm{II})$ complexes have significant anticancer activity, with reduced side effects and better solubility when compared to clinically used therapeutic drugs. The challenge, however, has been the rapid aquation and ligand exchange rates in $\mathrm{Pd}(\mathrm{II})$ complexes, which is about 10^{5} faster than their $\mathrm{Pt}(\mathrm{II})$ analogues. ${ }^{43}$ This drawback has been observed particularly when comparing the activity of cisplatin and that of cispalladium, cis- $\left[\operatorname{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, which does not show any antitumor activity. ${ }^{44}$ The $\mathrm{Pd}(\mathrm{II})$ analogue undergoes rapid hydrolysis in vivo, through interaction with other biomolecules in the cell which prevents it from reaching its target DNA. An effort has been made to develop $\operatorname{Pd}(\mathrm{II})$ complexes with slower rates of hydrolysis through the coordination of the metal to different types of ligands and suitable leaving groups. ${ }^{45}$ In general, the design of palladium based antitumor drugs follows the same strategies used in the synthesis of platinum drugs, which aids in understanding the mechanism and activity of palladium analogs. ${ }^{46}$

1.5.1 Mononuclear Palladium Complexes

Palladium(II) complexes in which a single Pd (II) central atom is coordinated with monodentate or multidentate ligands are generally known as mononuclear palladium(II) complexes. Multidentate (bi- and tridentate) ligands have attracted considerable attention due to their ability to easily influence the stability of the Pd atom through their steric and electronic properties. ${ }^{47}$ Furthermore, the structural diversity of these ligands allows them to possess biological properties that influence reaction pathways. A wide variety of neutral multidentate ligands have been employed to stabilize $\operatorname{Pd}($ II) complexes and maintain their structural integrity long enough to reach their targets in vivo. ${ }^{46}$

1.5.2 Mononuclear Nitrogen Containing Pd(II) Complexes

The rapid hydrolysis of cis-palladium complexes, such as cis-[$\left.\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and the related cis- $\left[\operatorname{Pd}(\mathrm{dach}) \mathrm{Cl}_{2}\right]$, and hence their inactivity against cancerous cells have advocated for the design of $\mathrm{Pd}(\mathrm{II})$ complexes with aromatic chelating ligands to impose the cis-coordination of the leaving groups. ${ }^{48}$ The introduction of aromatic N-containing ligands such as pyridine, imidazole, and 1,10-phenanthroline, and their derivatives to antitumor agents has drawn attention. ${ }^{19}$ Nitrogen-containing donor ligands exhibit distinct advantages over other coordinate systems, due to their accessibility and strong chelating properties. As such, a class of mononuclear complexes with the general formula $[\mathrm{Pd}(\mathrm{en}) \mathrm{Cl}(\mathrm{L})] \mathrm{NO}_{3}$ (Figure 1.3), where en
is ethylenediamine; L is the N -chelate ligand (pyridine) which has varying substituents on the para position. This class of $\operatorname{Pd}(I I)$ complexes were reported by Zhao et. al. and indicated significant cytotoxicity activity against the human leukemia cell line HL-60. ${ }^{49} \mathrm{~A}$ trend was also observed with the change in the substituent, from $\mathrm{H}, \mathrm{CH}_{3}, \mathrm{OH}$, to NH_{2}. The increase in electron donor strength consequently increases the affinity of the nitrogen atom of the pyridine ligands to the palladium center, thereby resulting in a pronounced decrease of the cytotoxic activities of the palladium complexes. ${ }^{49}$

Figure 1.3: Mononuclear ethylenediamine-palladium(II) complexes with different substituents on the pyridine. ${ }^{49}$

In attempts to further slowdown the rate of hydrolysis of Pd(II) complexes, bulky monodentate spectator ligands have been utilized to exploit their electronic and steric effects. It has been observed that complexes of this type of ligands tend to adopt a trans-geometry, which is different from the cisplatin analogue. One of the early examples was put forward by TusekBozic et. al. through the synthesis of the Pd complexes, trans-[PdCl_{2} (2-dqmp)] (Figure 1.4 e). ${ }^{50}$ Monoethylphosphonate and diethylphosphonate moieties on the quinolmethyl substructure were introduced on these complexes, yielding better solubility of the corresponding complexes. A comparative study revealed that the diethylphosphonate moiety outperformed its monoethylphosphonate analog, the better activity was attributed to the easy dissociation of the chloride ligands from the metal center. ${ }^{47}$ This work laid the foundation for designing trans-palladium complexes as potential anticancer drugs.

As an extension to the above study, the same group synthesized trans-Pd(II) complexes of diethyl and dibutyl esters of (α-anilino-N-benzyl) phosphonic acid and [α-(4-benzeneazoanilino)-N-benzyl]phosphonic acid (Figure 1.4 f, g). These complexes were studied against KB cell line29 and L1210 cell line and exhibited comparable cytostatic activity to cisplatin and the quinolmethylphosphonate ester was found to have better cytotoxicity. The
improvements were due to the presence of N -bonded hydrogen suitable for hydrogen bonding, resulting in potent binding to the nucleic acid fragments. ${ }^{51}$

e

$\mathrm{R}=\mathrm{Et}, \mathrm{Bu}$
f

$\mathrm{R}=\mathrm{Et}, \mathrm{Bu}$
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$
g

Figure 1.4: trans-Palladium bis(quinonyl-phosphonate) and the quinolmethylphosphonate ester complexes as early examples of $\mathrm{Pd}(\mathrm{II})$ anticancer complexes. ${ }^{50,51}$

Notable anticancer activity by trans-palladium complexes has been observed. However, the structure - activity relationship of $\operatorname{Pt}(\mathrm{II})$ anticancer agents stipulates that the cis-geometry is a necessary requirement for anticancer activity. As such, attempts have been made to either obtain $\mathrm{Pd}(\mathrm{II})$ complexes with a cis-geometry or coordinate the metal ion to bidentate ligands to decrease the cis-trans isomerism effects.

1.5.3 N'N Bidentate Pd(II) Complexes

The coordination of N ' N chelate ligands to the $\mathrm{Pd}(\mathrm{II})$ metal centre has been shown to decrease the cis-trans isomerism. N,N-coordinate bidentate systems typically involves a $2,2^{\prime}$-bipyridyl substructure, substituted ethylene diamine or other nitrogen-containing mixed heterocyclic compounds. ${ }^{52}$ Ligands such as $2,2^{\prime}$-bipyridyls have attracted considerable attention due to their natural occurrence in molecules such as caerulomycins or collismycin. ${ }^{53}$ Similarly, 1,10phenanthroline exhibits the same characteristics but also has distinct properties such as rigidity and entropically-favored chelation with different metal ions. ${ }^{53}$

The bidentate properties of substituted-bipyridines and phenanthroline were first exploited by Newkome and co-workers (Figure 1.5). ${ }^{54}$ The ligands were later modified to change their coordination mode from bidentate to tri- and tetradentate. Studies were performed by binding the complexes to Phage PM2 DNA with aims to understand their interactions based on the
difference in the ligand backbone. A significant difference in the level of DNA binding was observed for tetradentate ligands, even at lower concentration, as compared to other ligands. Although cytotoxicity studies were not conducted on these complexes, these DNA binding results paved a way for developments in this area. ${ }^{47,54}$

$\mathrm{R}^{1}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Et}\right)$
h

$$
\mathbf{j} \quad \mathrm{R}^{2}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}, \mathrm{R}^{3}=\mathrm{CO}_{2} \mathrm{Et}
$$

Figure 1.5: Bipyridine and phenanthroline based palladium complexes for binding with phage PMA2 DNA. ${ }^{54}$

Many $\operatorname{Pd}($ II $)$ complexes have shown similar or even better anticancer activities than cisplatin and other $\mathrm{Pt}(\mathrm{II})$ analogues. However, the application of these complexes as pharmaceuticals is still limited. Thus, this area of research is still developing, and further studies are still required, particularly on the mode of action of these complexes against cancer cell lines. A mechanistic understanding of these complexes' targets would aid in the design of more efficient Pd-based drugs. In-depth kinetics and mechanistic studies of palladium complexes would assist in understanding the influence of the spectator ligands on the activity of these complexes. These studies would also aid in understanding the interactions between $\mathrm{Pd}(\mathrm{II})$ complexes and sulfur containing biomolecules and DNA, however, the area remains barely explored.

1.6 References

1. Hong, Z.; Zan, X.; Yu, T.; Hu, Y.; Gou, H.; Zheng, S.; Gao, X.; Zhou, P., Local delivery of superagonist gene based on polymer nanoparticles for cancer immunotherapy. Chinese Chemical Letters 2022.
2. Organization, W. H., World health statistics 2008. World Health Organization: 2008.
3. Piñeros, M.; Mery, L.; Soerjomataram, I.; Bray, F.; Steliarova-Foucher, E., Scaling up the surveillance of childhood cancer: a global roadmap. JNCI: Journal of the National Cancer Institute 2021, 113 (1), 9-15.
4. Yadav, A. R.; Mohite, S. K., Cancer-A silent killer: An overview. Asian Journal of Pharmaceutical Research 2020, 10 (3), 213-216.
5. Thurston, D. E.; Pysz, I., Chemistry and pharmacology of anticancer drugs. CRC press: 2021.
6. Patrick, G. L., An introduction to medicinal chemistry. Oxford university press: 2013.
7. Parkin, D. M.; Boyd, L.; Walker, L., 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. British journal of cancer 2011, 105 (2), S77-S81.
8. Lewandowska, A. M.; Rudzki, M.; Rudzki, S.; Lewandowski, T.; Laskowska, B., Environmental risk factors for cancer-review paper. Annals of Agricultural and Environmental Medicine 2018, 26 (1), 1-7.
9. DeVita Jr, V. T.; Chu, E., A history of cancer chemotherapy. Cancer research 2008, 68 (21), 8643-8653.
10. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W., Cancer and radiation therapy: current advances and future directions. International journal of medical sciences 2012, 9 (3), 193.
11. Gubin, M. M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W.-J., Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515 (7528), 577-581.
12. Vahrmeijer, A. L.; Hutteman, M.; Van Der Vorst, J. R.; Van De Velde, C. J.; Frangioni, J. V., Image-guided cancer surgery using near-infrared fluorescence. Nature reviews Clinical oncology 2013, 10 (9), 507-518.
13. Enriquez-Navas, P. M.; Gatenby, R. A., Evolutionary strategies to overcome cancer cell resistance to treatment. In Phenotypic Switching, Elsevier: 2020; pp 691-703.
14. Rosenberg, B.; Van Camp, L.; Krigas, T., Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205 (4972), 698-699.
15. Ozols, R. F.; Young, R. C. In High-dose cisplatin therapy in ovarian cancer, Seminars in oncology, 1985; pp 21-30.
16. de Vries, G.; Rosas-Plaza, X.; van Vugt, M. A.; Gietema, J. A.; de Jong, S., Testicular cancer: Determinants of cisplatin sensitivity and novel therapeutic opportunities. Cancer Treatment Reviews 2020, 88, 102054.
17. O’Grady, S.; Finn, S. P.; Cuffe, S.; Richard, D. J.; O’Byrne, K. J.; Barr, M. P., The role of DNA repair pathways in cisplatin resistant lung cancer. Cancer treatment reviews 2014, 40 (10), 1161-1170.
18. Lorusso, D.; Petrelli, F.; Coinu, A.; Raspagliesi, F.; Barni, S., A systematic review comparing cisplatin and carboplatin plus paclitaxel-based chemotherapy for recurrent or metastatic cervical cancer. Gynecologic oncology 2014, 133 (1), 117-123.
19. Zhao, G.; Lin, H., Metal complexes with aromatic N-containing ligands as potential agents in cancer treatment. Current Medicinal Chemistry-Anti-Cancer Agents 2005, 5 (2), 137-147.
20. Fuertes, M.; Castilla, J.; Alonso, C.; Prez, J., Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Current medicinal chemistry 2003, 10 (3), 257-266.
21. Judson, I.; Kelland, L. R., New developments and approaches in the platinum arena. Drugs 2000, 59 (4), 29-36.
22. Jamieson, E. R.; Lippard, S. J., Structure, recognition, and processing of cisplatinDNA adducts. Chemical reviews 1999, 99 (9), 2467-2498.
23. Reedijk, J., Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 1999, 99, 2499-2510.
24. Lippert, B., Impact of Cisplatin on the recent development of Pt coordination chemistry: a case study. Coordination chemistry reviews 1999, 182 (1), 263-295.
25. Teuben, J.-M.; Reedijk, J., Reaction of DNA oligonucleotides with [Pt (dien) GSMe] $2+(\mathrm{GSMe}=\mathrm{S}$-methylated glutathione) and cis-[Pt (NH3) 2 (GSMe) 2] 2+: evidence of oligonucleotide platination via sulfur-coordinated platinum intermediates. JBIC Journal of Biological Inorganic Chemistry 2000, 5 (4), 463-468.
26. Zaki, M.; Arjmand, F.; Tabassum, S., Current and future potential of metallo drugs: Revisiting DNA-binding of metal containing molecules and their diverse mechanism of action. Inorganica Chimica Acta 2016, 444, 1-22.
27. Eastman, A., The mechanism of action of cisplatin: from adducts to apoptosis. Cisplatin: chemistry and biochemistry of a leading anticancer drug 1999, 111-134.
28. Marques, M., Platinum and palladium polyamine complexes as anticancer agents: the structural factor. International Scholarly Research Notices 2013.
29. Wang, Z.; Zhu, G., DNA Damage Repair Pathways and Repair of Cisplatin-Induced DNA Damage. 2018.
30. Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F., Advances in toxicological research of the anticancer drug cisplatin. Chemical research in toxicology 2019, 32 (8), 1469-1486.
31. Chu, E.; Sartorelli, A., Cancer chemotherapy. Lange's Basic and Clinical Pharmacology 2018, 948-976.
32. Pinato, O.; Musetti, C.; Sissi, C., Pt-based drugs: the spotlight will be on proteins. Metallomics 2014, 6 (3), 380-395.
33. Bugarčić, Ž. D.; Bogojeski, J.; van Eldik, R., Kinetics, mechanism and equilibrium studies on the substitution reactions of Pd (II) in reference to Pt (II) complexes with bio-molecules. Coordination Chemistry Reviews 2015, 292, 91-106.
34. Bugarčić, Ž. D.; Bogojeski, J.; Petrović, B.; Hochreuther, S.; van Eldik, R., Mechanistic studies on the reactions of platinum (II) complexes with nitrogen-and sulfur-donor biomolecules. Dalton Transactions 2012, 41 (40), 12329-12345.
35. Bond, G.; Hartley, F., Chemistry of the platinum group metals: recent developments. Elsevier, Amsterdam: 1991.
36. Chitambar, C. R., Gallium complexes as anticancer drugs. Met. Ions Life Sci 2018, 18, 281-302.
37. Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C., Advances in copper complexes as anticancer agents. Chemical reviews 2014, 114 (1), 815-862.
38. Lee, S. Y.; Kim, C. Y.; Nam, T.-G., Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Design, Development and Therapy 2020, 14, 5375.
39. Lu, Y.; Ma, X.; Chang, X.; Liang, Z.; Lv, L.; Shan, M.; Lu, Q.; Wen, Z.; Gust, R.; Liu, W., Recent development of gold (I) and gold (III) complexes as therapeutic agents for cancer diseases. Chemical Society Reviews 2022.
40. Hussaini, S. Y.; Haque, R. A.; Razali, M. R., Recent progress in silver (I)-, gold (I)/(III)-and palladium (II)-N-heterocyclic carbene complexes: A review towards biological perspectives. Journal of Organometallic Chemistry 2019, 882, 96-111.
41. Onunga, D. O. Controlling the reactivity of mononuclear palladiun (II) complexes. Substitution kinetics and mechanisms. 2019.
42. Montana, A. M.; Batalla, C., The rational design of anticancer platinum complexes: the importance of the structure-activity relationship. Current medicinal chemistry 2009, 16 (18), 2235-2260.
43. Abu-Surrah, A. S.; Kettunen, M., Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Current medicinal chemistry 2006, 13 (11), 1337-1357.
44. Wimmer, F.; Wimmer, S.; Castan, P.; Cros, S.; Johnson, N.; Colacio-Rodrigez, E., The antitumor activity of some palladium (II) complexes with chelating ligands. Anticancer research 1989, 9 (3), 791-793.
45. Lazarević, T.; Rilak, A.; Bugarčić, Ž. D., Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. European journal of medicinal chemistry 2017, 142, 8-31.
46. Jahromi, E. Z.; Divsalar, A.; Saboury, A. A.; Khaleghizadeh, S.; Mansouri-Torshizi, H.; Kostova, I., Palladium complexes: new candidates for anti-cancer drugs. Journal of the Iranian Chemical Society 2016, 13 (5), 967-989.
47. Kapdi, A. R.; Fairlamb, I. J., Anti-cancer palladium complexes: a focus on PdX 2 L 2, palladacycles and related complexes. Chemical Society Reviews 2014, 43 (13), 47514777.
48. Abu-Surrah, A. S.; Al-Sa’doni, H. H.; Abdalla, M. Y., Palladium-based chemotherapeutic agents: routes toward complexes with good antitumor activity. Cancer therapy 2008, 6 (6), 1-10.
49. Zhao, G.; Lin, H.; Ping, Y.; Sun, H.; Zhu, S.; Xuncheng, S.; Chen, Y., Ethylenediamine-palladium (II) complexes with pyridine and its derivatives: synthesis, molecular structure and initial antitumor studies. Journal of inorganic biochemistry 1999, 73 (3), 145-149.
50. Tusek-Bozic, L.; Matijasic, I.; Bocelli, G.; Calestani, G.; Furlani, A.; Scarcia, V.; Papaioannou, A., J. Chem. Soc., Dalton Trans. 1991.
51. Coluccia, M.; Nassi, A.; Loseto, F.; Boccarelli, A.; Mariggio, M., , D. Giordano, FP Intini, P. Caputo, G. Natile. J. Med. Chem 1993, 36, 510.
52. Mongin, F.; Trécourt, F.; Gervais, B.; Mongin, O.; Quéguiner, G., First synthesis of caerulomycin B. A new synthesis of caerulomycin C. The Journal of Organic Chemistry 2002, 67 (10), 3272-3276.
53. Trecourt, F.; Gervais, B.; Mongin, O.; Le Gal, C.; Mongin, F.; Quéguiner, G., First syntheses of caerulomycin E and collismycins A and C. A new synthesis of caerulomycin A. The Journal of Organic Chemistry 1998, 63 (9), 2892-2897.
54. Newkome, G. R.; Puckett, W. E.; Kiefer, G. E.; Gupta, V. K.; Fronczek, F. R.; Pantaleo, D. C.; McClure, G. L.; Simpson, J. B.; Deutsch, W. A., Chemistry of heterocyclic compounds series. 94. Square-planar cis-and trans-C-palladium (II) complexes of N electron-deficient heteroaromatic ligands. Ligand synthesis, complexation, and spectral analyses and complex interaction with phage PM2 DNA. Inorganic Chemistry 1985, 24 (6), 811-826.

CHAPTER 2

2.1 Substitution Reactions of Pd(II) Complexes

The lability of $\mathrm{Pd}(\mathrm{II})$ complexes is 10^{5}-fold more than their $\mathrm{Pt}(\mathrm{II})$ analogues. Such high reactivities suggests that these complexes are ideal models for kinetic and mechanistic studies in the presence of sulfur and nitrogen donor biomolecules. Pd (II) complexes, like $\mathrm{Pt}(\mathrm{II})$ complexes, have a remarkably high affinity for sulfur and nitrogen donor ligands. Substitution reactions of these complexes are of fundamental importance for understanding their toxicity and anti-tumor activity, and predicting their possible interaction with the DNA. ${ }^{1}$ Palladium complexes have shown that their reactivities depends on the ligand environment surrounding the metal center. The challenge to date is finding ligands that would stabilize specific oxidation states of the central Pd atom. These ligands crucially play an important role in modifying lability and lipophilicity, and imparting ligand exchange behavior. ${ }^{2}$

The study of mechanistic behavior of complexes involves their reaction with relevant $\mathrm{S}-/ \mathrm{N}$ donor biological nucleophiles and monitoring of the substitution reaction. The rate of ligand substitution by nucleophiles can be influenced by many factors including the electronic properties of spectator, and labile ligands, the nucleophilicity and/or bulkiness of the incoming biomolecules, and the solvent system. The ligands' structural orientation influences the steric and chemical properties of the complex, hence its interaction with the labile ligands in substitution reactions. Studying substitution mechanism of complexes against model biomolecules assists in predicting their mechanistic behavior against DNA and other biomolecules in the human body.

2.1.1 The Influence of Spectator Ligands on the Rate of Substitution in Pd(II) Complexes

The effect of spectator ligands on the rate of substitution was explored by Onunga et al. ${ }^{3-6}$ by designing a series of $\mathrm{Pd}(\mathrm{II})$ complexes with varying electronic and steric properties. The substitution reactions of the $\mathrm{Pd}(\mathrm{II})$ complexes were studied with neutral thiourea nucleophiles. The results have shown that the substitution of the chloride ligand is controlled by the electrophilicity of the $\operatorname{Pd}(\mathrm{II})$ central atom, which is in turn influenced by the electronic and steric properties of the non-labile bulky ligands. For instance, the reactivity of palladium(II) complexes of pyrazolyl-based terpyridyl type of ligands was investigated. ${ }^{3}$ The results showed that pyridine-based complexes had higher rates of substitution due to their compelling π -
acceptor character than the pyrazole-based (Figure 2.1). The pyrazole complexes with poor π acceptor ability and the strong σ-donor effect caused by the pyrazolic N -atom were observed to have lower rates of substitution due to decreased ability of π-back bonding (Figure $\mathbf{2 . 1} \mathbf{~ m}$, $\mathbf{n})$. The electron-donating or electron-withdrawing strength of the substituents on the ligand was also investigated. ${ }^{6}$ A decrease in reactivity was observed for the $\mathrm{Pd}(\mathrm{II})$ complex with methyl groups, which donate electrons to the pyrazolic N -atom. This effect causes the electron rich $-N$, to accumulate excess electron density around the palladium(II) metal center and thus makes the metal less electrophilic (Figure 2.1 o).

I

$\mathbf{R}=\mathbf{H}(\mathbf{m})$
CH_{3} (n)

0

Figure 2.1: Pyridine- and pyrrole-based complexes designed to study the influence of electronic and steric effects on the reactivity of $\operatorname{Pd}\left(\right.$ II) complexes. ${ }^{3,6}$

To further demonstrate the influence of electron density around the palladium(II) metal center, the π-acceptor and σ-donor abilities of ligands were investigated. This was achieved by replacing bis(2-pyridylmethyl)amine ligands with bis(8-quinolinyl)amine ligands (Figure 2.2), in an attempt to tune the reactivity of palladium(II) complexes. ${ }^{3,4}$ It was observed that σ donation of the 8 -quinolinyl moiety weakens the π-back donation effect of the ligand, resulting in a less electrophilic metal center and hence less reactivity. When a strong π-acceptor ligand (bis(2-pyridylmethyl)amine) is replaced by a good σ-donor ligand (bis(8-quinolinyl)amine), the reactivity of the Pd complex with thiourea nucleophiles is reduced by factors of between 25 to 30 fold.

p

r

q

s

Figure 2.2: $\mathrm{Pd}(\mathrm{II})$ complexes with ligands containing bis(2-pyridylmethyl)amine and bis(8quinolinyl)amine moieties. ${ }^{4}$

Omondi and co-workers ${ }^{7}$ extended the study by Onunga et. al., by investigating the role of π conjugation on the substitution reactions of carboxamide palladium(II) complexes (Figure 2.3) with thiourea (Tu), L-methionine (L-Met) and guanosine 5^{\prime}-diphosphate disodium salt. Through substitution reactions they observed that the reactivity of the complexes towards the biological molecules was controlled by the electronic properties of the spectator ligands. For instance, when the strong π-acceptor pyridinyl group was replaced by a good σ-donor quinoline group, the reactivity of the $\mathrm{Pd}(\mathrm{II})$ complex was reduced by a factor of 2.81 . The decrease in reactivity was due to the reduction of the π-acceptor ability of the ligands through σ-inductive effects, which caused electron build up around the $\mathrm{Pd}(\mathrm{II})$ ion of the complex. The presence of a pyrazine unit caused an increase in reactivity when compared to a pyridine unit, due to the higher acidity of the pyrazine group. The replacement of the pyridine moiety with the isoquinolinyl moiety also caused a decrease in reactivities of the complexes. This observation was due to the increased cis- σ-inductive effects, which reduced the π-acceptor abilities of the spectator ligand and thus caused the metal centre to be less electrophilic.

t

v

u

w

Figure 2.3: Palladium(II) complexes with π-conjugated carboxamide ligands. ${ }^{7}$
Another study of the influence of ligands on the reaction rates was conducted by Omondi et.al ${ }^{8}$ who investigated substitution kinetics, DNA interactions and cytotoxicity of tridentate 2,6bis(benzazole)pyridine Pd(II) complexes (Figure 2.4). They studied the substitution reactions of four complexes with thiourea, L-methionine and guanosine-5'-diphosphate disodium salt. From the results, they concluded that the electronic properties of both the inert ligand and incoming nucleophile controlled the rate of substitution. The -NH substituted Pd (II) complexes demonstrated the highest kinetic reactivity due to the acidic amine proton, which is more electron deficient compared to the sulfur and oxygen atoms. The -NH assists with electron withdrawal from the metal center and thus makes the Pd(II) metal center more electrophilic. This complex also displayed cytotoxicity and selectivity comparable to that of cisplatin. A comparison of the reactivity between the Pd complex with -O- and -S-, showed that the complex with the more electronegative oxygen as a spectator ligand was more reactive. The complex without the additional pyridine moiety on the bis-benzazole ligand demonstrated the least kinetic reactivity.

\mathbf{x}

Z

y

aa

Figure 2.4: Tridentate 2,6 -bis(benzazole)pyridine $\mathrm{Pd}(\mathrm{II})$ complexes designed to study the effects of heteroatoms on the cytotoxicity of palladium(II) complexes. ${ }^{8}$

To further expand the above study, Fadaka et.al. ${ }^{9}$ studied the competing roles of transheteroatoms on carrier ligands on kinetic and biological activities of pyrazolyl $\mathrm{Pd}(\mathrm{II})$ complexes. The rates of substitution were studied using biological nucleophiles: thiourea (Tu), L-methionine (L-Met) and guanosine-5-monophosphate (5-GMP). The electron abilities of the auxiliary ligands influenced the kinetic reactivity of the complexes. The complex with sulphur in the trans position to the leaving group was found to be the most reactive due to preference of Pd atom (soft acid) to coordinate with the soft donor S atom as opposed to NH and O atom (hard bases), which leads to the electron accumulation in the bonding. This phenomenon leads to a weak and elongated bond trans to the Cl atom, which in turn causes a higher reactivity. The presence of a strong π-acceptor pyridine group in the trans position increased the reactivity of the complex in comparison to the complexes with NH and O atoms. The pyridine moiety reduces electron cloud on the $\mathrm{Pd}(\mathrm{II})$ ion while NH donates electrons to the metal centre.

bb

dd

cc

Figure 2.5: Palladium (II) complexes with different pyrazolyl ligands. ${ }^{9}$
The above results, amongst others, indicate that the kinetic reactivity of $\mathrm{Pd}(\mathrm{II})$ complexes can be controlled by meticulous manipulation of electronic and steric properties of inert ligands.

2.1.2 Influence of Ionic Strength on The Rate of Substitution in Pd(II) Complexes.

Supported by our discussion of the mechanism of action of cisplatin, it is known that upon injection $\mathrm{Pt}(\mathrm{II})$ complexes exist as chlorido species in the blood plasma as it contains high concentrations of chloride ions, approximately 100 mM , conditions that aid in preventing hydrolysis of the neutral complexes. However, due to relatively low concentrations of the chloride ions inside the cell, $\sim 4 \mathrm{mM}$, the complexes are hydrolyzed and converted into aqua species. ${ }^{10-12}$ Therefore, it is crucial to study and understand the kinetic behavior of chlorido and aqua species of $\mathrm{Pd}(\mathrm{II})$ complexes in comparison with $\mathrm{Pt}(\mathrm{II})$ complexes.

One example of such a study was conducted by Burgarcic et. al ${ }^{1}$ who investigated the reactivity of both the chlorido and aqua complexes and studied the effects of different chloride concentrations on the rate of substitution with aims to find the optimum chloride concentration that would prevent the rapid hydrolysis of the chlorido $\mathrm{Pd}(\mathrm{II})$ complexes. The reaction of $[\mathrm{Pd}($ tripyridinedimethane $) \mathrm{Cl}]$ with Thiourea nucleophile showed a shift in the equilibrium from the labile aqua complex to the more inert chlorido complex when the chloride concentration was increased to at least 5 mM NaCl . Therefore, an optimum chloride concentration of 10 mM NaCl was maintained to prevent the aquation of the species completely.

2.1.3 Influence of Incoming Biomolecules on The Rate of Substitution in $\operatorname{Pd}($ II $)$ Complexes.

Although DNA is the main target of anticancer agents, it is crucial to take into consideration other molecules in the human cells such as enzymes, proteins, amino acids, and other biomolecules that interact with the drug before it reaches its target and understand the influence of such interactions on the reactivity of the drug. These biomolecules include sulfur donors such as thiols and thioethers, hard molecules with a strong affinity for the soft platinum center and hence, the related palladium center. Since the concentration of these biomolecules is remarkably high in the human body, it is essential to study their substitution reactions with $\mathrm{Pd}(\mathrm{II})$ complexes. ${ }^{13}$

Burgarcic et. al. studied the interaction of sulfur-donor biomolecules with $\mathrm{Pd}(\mathrm{II})$ complexes. The group studied reaction of nucleophiles such as $\mathrm{L}-\mathrm{Methionine}$ ($\mathrm{L}-\mathrm{Met}$), $\mathrm{L}-\mathrm{Cysteine}$ ($\mathrm{L}-\mathrm{Cys}$), Glutathione (GSH), and thiourea nucleophiles namely, Thiourea (TU), Dimethylthiourea (DMTU) and Tetramethylthiourea (TMTU). ${ }^{14}$ The use of these biomolecules was for different purposes. For instance, L_{L}-Met and L_{L}-Cys are examples of sulfur-containing amino acids in the human body. GSH is used as a model of peptides, while the thiourea nucleophiles, which resemble urea, are used to study the biological role played by sulfur-containing molecules in the human blood. ${ }^{15}$ The results showed that the rate of substitution is influenced by the electrophilicity of the metal center, the nucleophilicity of the biomolecule and the steric effects of both the inert and the incoming biomolecule. ${ }^{1}$ The leaving group and the incoming nucleophile have relative effect on the rate of substitution. Thus, the effect of the leaving group is not discussed in this chapter.

2.2 Instrumental Techniques Used in Chemical Kinetics

The rate of substitution of complexes can be practically measured by physical methods such as spectroscopic techniques. Two spectroscopic techniques viz. UV-Visible spectrophotometry and stopped-flow spectrophotometry used in this project are discussed in detail below.

2.2.1 UV-Visible Spectrophotometry

UV/visible spectrophotometry is a technique used to monitor the transmittance or absorbance of reactions at different concentrations ranging from 10^{-4} to $10^{-6} \mathrm{M}$, absorbance is measured at a specified wavelength range of electromagnetic radiation. The UV-Vis spectrophotometer
generally comprises of two light sources, the deuterium arc lamp (visible region 160-375 nm) and the tungsten-halogen lamp (350-2500 nm), however, most recently a single xenon flash lamp has been used to cover the entire ultraviolet-visible region with good intensity. ${ }^{16}$ The light sources produce a broad-spectrum white light; thus, the instrument is also equipped with a monochromator which narrows down the light to a specific wavelength band. In a double beam spectrophotometer, the light from the monochromator is split into two beams: a reference and a sample beam, using a rotating wheel with mirror segments. Each beam enters the sample chamber through separate optical paths, allowing for the blank and sample to be measured simultaneously. ${ }^{17}$ The stray light of selected wavelength that passes through the monochromator with an intensity I_{0}, enters the sample compartment where it passes through glass, plastic, or quartz cuvettes with length l, containing the sample of interest. The amount of light absorbed by the sample is the difference between the incident radiation (I_{0}) and the transmitted radiation $(I) .{ }^{16}$ A detector then converts the light from the sample into an electrical signal. UV-Vis typically consists of a photomultiplier tube detector or silicon diode detector. The signal from the detector is thereafter displayed on a readout device. ${ }^{16}$

2.2.2 Stopped Flow Spectrophotometry

This technique is typically used to monitor rapid reactions which would be untraceable by standard absorption spectroscopy. It is a great instrument to use for substitution reactions of $\mathrm{Pd}(\mathrm{II})$ complexes since these reactions are fast. For instance, the $\mathrm{Pd}(\mathrm{II})$ complexes investigated in this study had reactions that completed in less than 6 seconds. Stopped flow allows for the reaction rate to be determined within milliseconds and requires a small volume of reactants. This involves rapid mixing of two reactants which are held in two separate reservoirs (syringe pumps) in equal amounts, at a desired temperature. ${ }^{18,19}$ The reaction is initiated by a gas-piston driven mechanism (800 kPa) compressing the reactant syringes, forcing the reactant solutions into the "mixing chamber" where they are mixed. The reaction solution then proceeds into the stop syringe, which fills up until it strikes the stop block, thereby stopping the flow of solution but leaving the reaction mixture in the observation cell. ${ }^{18,19}$

With the mixed solution stationary in the observation cells, detection (usually by UV-Vis spectrophotometry) commences in the reaction analyzer. The monochromatic light that passes through the sample mixture in the observation chamber at a specific wavelength is measured as the reaction progresses into completion. Using a photomultiplier, the transmitted light is
converted into an electrical signal, which is then interpreted as absorbance and recorded as a function of time. ${ }^{18,19}$ A representation of the stopped flow analyzer is indicated in Figure 2.6.

Figure 2.6: Schematic diagram of a stopped-flow reaction analyser.

2.3 Statement of Problem

In spite of the accomplishments of current platinum drugs, these compounds are still predominantly associated with acute toxicity, limited anticancer applications and resistance. ${ }^{20}$, ${ }^{21}$ The resistance occurs due to drug accumulation in cancer cells, inactivation of thiol containing molecules, and enhanced DNA repair. ${ }^{21}$ Thus, there is a critical need to design and identify novel alternative metal complexes with reduced toxicity as they are expected to have different chemical behavior, hydrolytic rates, and improved application spectrum. ${ }^{22-25}$ The kinetic behavior of metal complexes largely depends on the steric and electronic properties of the ligands coordinated to the metal center. While the substitution rates of these metal complexes have been explored and reported in literature, there is still a wide range of ligands that have not been coordinated to palladium with intentions of fine tuning the kinetic reactivity of these complexes, especially those coordinated to bidentate ligands.

2.4 Justification of Study

The shortcomings of platinum-based drugs have advocated for the development of alternative metal-based therapeutics that possess reduced toxicity, improved selectivity and a broader spectrum of application. ${ }^{24}$ Amongst the promising transition metallodrugs are palladium(II) complexes which closely resemble the platinum-based complexes in structure and thermodynamics. ${ }^{20,26}$ Despite the similarities, some palladium(II) drugs have shown good cytotoxicity against numerous cell lines, fewer side effects, and better aqueous solubility than their platinum-based counterparts. However, with the use of palladium(II) anticancer drugs, researchers have encountered great challenges since these drugs exchange ligands $10^{4}-10^{5}$ times faster than their platinum (II) analogues. ${ }^{27}$ This then results in poor antitumor activity due to their rapid hydrolysis of the leaving groups that are prone to dissociate in solution which in turn prevents the complexes from reaching their DNA targets for effective therapeutic function. ${ }^{28}$ To counteract these limitations, previous reports have shown that the proper choice of ligands coordinated to palladium(II) is crucial, as they play an important role in modifying reactivity by stabilizing specific oxidation states while maintaining their non-labile state. ${ }^{1}$ Additionally, the biological activity of platinum(II) drugs involves binding with DNA and other thiol containing biomolecules. ${ }^{29,30}$ Therefore, it is crucial to study the kinetic and substitution behavior of the palladium(II) drugs using appropriate sulfur containing nucleophiles to monitor their mechanistic interactions in comparison to the intensely investigated platinum(II) drugs. In the current project we focus on designing $\mathrm{Pd}(\mathrm{II})$ complexes with bidentate ligands and investigating their kinetic and mechanistic reactions in aqueous media. We want to understand the mode of substitution with complexes bearing bidentate N, N donor ligands.

2.5 Aims and Objectives

2.5.1 Aims

The aim of this work was to synthesize, characterize, and study the substitution kinetics of chloride ligands from pyridyl N, N '-bidentate mononuclear $\mathrm{Pd}(\mathrm{II})$ complexes with different substituents.

2.5.2 Objectives

1. To synthesize bidentate mononuclear palladium(II) complexes of N -(pyridin-2ylmethyl) aniline chelate ligands with different substituents and N -(4-bromophenyl)-pyridine-2-carboxamide.
2. To characterize the $\operatorname{Pd}(\mathrm{II})$ complexes with ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, FT-IR, LC-MS, CHN elemental analysis, and single X-Ray crystallography.
3. To conduct kinetics of ligand substitution reactions of the synthesized palladium(II) complexes with bio-relevant thiourea nucleophiles; thiourea (Tu), N,N'dimethylthiourea (Dmtu) and $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethylthiourea (Tmtu).
4. To elucidate the experimental results by utilizing density function theory (DFT) calculations.

2.6 References

1. Bugarčić, Ž. D.; Bogojeski, J.; van Eldik, R., Kinetics, mechanism and equilibrium studies on the substitution reactions of Pd (II) in reference to Pt (II) complexes with bio-molecules. Coordination Chemistry Reviews 2015, 292, 91-106.
2. Jahromi, E. Z.; Divsalar, A.; Saboury, A. A.; Khaleghizadeh, S.; Mansouri-Torshizi, H.; Kostova, I., Palladium complexes: new candidates for anti-cancer drugs. Journal of the Iranian Chemical Society 2016, 13 (5), 967-989.
3. Onunga, D. O. Controlling the reactivity of mononuclear palladiun (II) complexes. Substitution kinetics and mechanisms. 2019.
4. Onunga, D. O.; Jaganyi, D.; Mambanda, A., The role of 8-quinolinyl moieties in tuning the reactivity of palladium (II) complexes: a kinetic and mechanistic study. Journal of Coordination Chemistry 2019, 72 (3), 499-515.
5. Onunga, D. O.; Bellam, R.; Mutua, G. K.; Sitati, M.; BalaKumaran, M. D.; Jaganyi, D.; Mambanda, A., Controlling the reactivity of [Pd-(II)(N boolean AND N boolean AND N) Cl] plus complexes using 2, 6-bis (pyrazol-2-yl) pyridine ligands for biological application: Substitution reactivity, CT-DNA interactions and in vitro cytotoxicity study. 2020.
6. Onunga, D. O.; Bellam, R.; Mutua, G. K.; Sitati, M.; BalaKumaran, M. D.; Jaganyi, D.; Mambanda, A., Controlling the reactivity of $\left[\mathrm{Pd}(\mathrm{II})\left(\mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}\right) \mathrm{Cl}\right]+$ complexes using 2, 6-bis (pyrazol-2-yl) pyridine ligands for biological application: Substitution reactivity, CT-DNA interactions and in vitro cytotoxicity study. Journal of Inorganic Biochemistry 2020, 213, 111261.
7. Omondi, R. O.; Sibuyi, N. R.; Fadaka, A. O.; Meyer, M.; Jaganyi, D.; Ojwach, S. O., Role of π-conjugation on the coordination behaviour, substitution kinetics, DNA/BSA interactions, and in vitro cytotoxicity of carboxamide palladium (ii) complexes. Dalton Transactions 2021, 50 (23), 8127-8143.
8. Omondi, R. O. Tuning the steric and electronic parameters of mixed-donor palladium (II) complexes: coordination chemistry, substitution kinetics and biological activities. 2021.
9. Fadaka, A. O.; Omondi, R. O.; Fatokun, A. A., Synthesis, substitution kinetics, DNA/BSA binding and cytotoxicity of tridentate $\mathrm{N}^{\wedge} \mathrm{E}^{\wedge} \mathrm{N}(\mathrm{E}=\mathrm{NH}, \mathrm{O}, \mathrm{S})$ pyrazolyl palladium (II) complexes. 2022.
10. Fuertes, M.; Castilla, J.; Alonso, C.; Prez, J., Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Current medicinal chemistry 2003, 10 (3), 257-266.
11. Jamieson, E. R.; Lippard, S. J., Structure, recognition, and processing of cisplatinDNA adducts. Chemical reviews 1999, 99 (9), 2467-2498.
12. Judson, I.; Kelland, L. R., New developments and approaches in the platinum arena. Drugs 2000, 59 (4), 29-36.
13. Reedijk, J., Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 1999, 99, 2499-2510.
14. Bugarčić, Ž. D.; Bogojeski, J.; Petrović, B.; Hochreuther, S.; van Eldik, R., Mechanistic studies on the reactions of platinum (II) complexes with nitrogen-and sulfur-donor biomolecules. Dalton Transactions 2012, 41 (40), 12329-12345.
15. Alessio, E., Bioinorganic medicinal chemistry. John Wiley \& Sons: 2011.
16. Penner, M. H., Ultraviolet, visible, and fluorescence spectroscopy. In Food analysis, Springer: 2017, 89-106.
17. \quad Østergaard, J., UV/VIS spectrophotometry and UV imaging. In Analytical Techniques in the Pharmaceutical Sciences, Springer: 2016, 3-27.
18. Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of analytical chemistry. Cengage learning: 2013.
19. Wilkins, R. G., Kinetics and mechanism of reactions of transition metal complexes. VCH Weinheim: 1991; Vol. 4.
20. Chen, X.; Xie, M.; Liu, W.; Ye, Q.; Yu, Y.; Hou, S.; Gao, W.; Liu, Y., Synthesis and structure of platinum (II) complexes containing an asymmetric chelating diamine 2-morpholinoethylamine as the carrier. Inorganica chimica acta 2007, 360 (8), 28512856.
21. Raguz, S.; Yagüe, E., Resistance to chemotherapy: new treatments and novel insights into an old problem. British journal of cancer 2008, 99 (3), 387-391.
22. Warad, I.; Eftaiha, A. a. F.; Al-Nuri, M. A.; Husein, A. I.; Assal, M.; Abu-Obaid, A.; Al-Zaqri, N.; Hadda, T. B.; Hammouti, B., Metal ions as antitumor complexesReview. J. Mater. Environ. Sci 2013, 4 (4), 542-557.
23. Storr, T.; Thompson, K. H.; Orvig, C., Design of targeting ligands in medicinal inorganic chemistry. Chemical Society Reviews 2006, 35 (6), 534-544.
24. Farrell, N., Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chemical Society Reviews 2015, 44 (24), 8773-8785.
25. Lazarević, T.; Rilak, A.; Bugarčić, Ž. D., Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. European journal of medicinal chemistry 2017, 142, 8-31.
26. Hadizadeh, S.; Najafzadeh, N.; Mazani, M.; Amani, M.; Mansouri-Torshizi, H.; Niapour, A., Cytotoxic effects of newly synthesized palladium (II) complexes of diethyldithiocarbamate on gastrointestinal cancer cell lines. Biochemistry Research International 2014.
27. Coskun, M. D.; Ari, F.; Oral, A. Y.; Sarimahmut, M.; Kutlu, H. M.; Yilmaz, V. T.; Ulukaya, E., Promising anti-growth effects of palladium (II) saccharinate complex of terpyridine by inducing apoptosis on transformed fibroblasts in vitro. Bioorganic \& medicinal chemistry 2013, 21 (15), 4698-4705.
28. Heydari, M.; Moghadam, M. E.; Tarlani, A.; Farhangian, H., DNA as a target for anticancer phen-imidazole Pd (II) complexes. Applied Biochemistry and Biotechnology 2017, 182 (1), 110-127.
29. Divsalar, A.; Saboury, A. A.; Ahadi, L.; Zemanatiyar, E.; Mansouri-Torshizi, H., Investigation of effects of newly synthesized Pt (II) complex against human serum albumin and leukemia cell line of K562. BMB reports 2010, 43 (11), 766-771.
30. Barry, N. P.; Sadler, P. J., Exploration of the medical periodic table: towards new targets. Chemical Communications 2013, 49 (45), 5106-5131.

CHAPTER 3

3.1 General Introduction

The study of alternative transition metal complexes, other than Pt-based complexes, as potential anticancer drugs has gained momentum over the last few decades due to the side effects associated with cisplatin and its derivatives. ${ }^{1,2}$ Amongst these metals, palladium(II) complexes have emerged as potential candidates, owing the interest to their structural and thermodynamic resemblance to $\mathrm{Pt}(\mathrm{II})$ complexes. Essentially, $\mathrm{Pd}(\mathrm{II})$ complexes have demonstrated better solubility, reduced toxicity and improved activity against cisplatinresistant cells. ${ }^{3-5}$

Nonetheless, the main challenge with the development of $\mathrm{Pd}(\mathrm{II})$ antitumor agents is their fast hydrolysis (10^{5} more than Pt) and strong affinity for nitrogen and sulphur containing biomolecules. ${ }^{6}{ }^{7}$ The interactions of palladium complexes with sulphur-coordinating biomolecules result in the formation of side products that hinder the complexes from reaching their DNA targets and performing their anticancer function. Consequently, the careful design of suitable ligands to fine-tune the stability and reactivity of $\mathrm{Pd}(\mathrm{II})$ complexes is crucial. ${ }^{8,9}$

In efforts to control the kinetic reactivity of $\mathrm{Pd}(\mathrm{II})$ complexes, inert N -donor chelate ligands have been studied due to their affinity for palladium. The strong coordination of the nitrogen atom to the metal centre ensures stability of the $\mathrm{Pd}(\mathrm{II})$ complex while the ligands maintain their non-labile state. ${ }^{10,11}$ For instance, the kinetic reactivity of palladium complexes coordinated to pyrazolyl, pyridyl, quinolinyl and benzoazole containing ligands has been intensely studied by Onunga et. al. ${ }^{12-14}$ In essence, the results have shown that the thermodynamic stability and kinetic reactivity of $\mathrm{Pd}(\mathrm{II})$ complexes can be fine-tuned through careful manipulation of electronic and steric properties of the chelating ligands. ${ }^{15}$

Pyridylmethyl-amines are common bidentate ligands that have been coordinated to several transition metals. The structural versatility of these ligands has allowed for various modifications through the introduction of substituents on the amine and pyridyl units. ${ }^{16,17}$ However, there remains limited information on the thermodynamic and kinetic reactivity of $\mathrm{Pd}(\mathrm{II})$ complexes coordinated to N, N-bidentate pyridyl-methylamine ligands.

In this study, five ligands L1, L2, L3, L4 and $\mathbf{L 5}$ and their corresponding $\operatorname{Pd}(I I)$ complexes PdL1, PdL2, PdL3, PdL4 and PdL5 were synthesized using literature methods. ${ }^{16-18}$ The compounds have similar pyridyl units but differ in substituents on the aniline moiety. We herein report the substitution behaviour of these complexes with thiourea nucleophiles namely, thiourea (TU), dimethylthiourea (DMTU) and tetramethylthiourea (TMTU).

3.2 Chemicals and Reagents

All syntheses of ligands and $\mathrm{Pd}(\mathrm{II})$ complexes were performed under inert nitrogen atmosphere. The solvents hexane and dichloromethane (DCM) were purchased from Sigma-Aldrich and dried following relevant methods: hexane was dried through standard distillation methods, while dichloromethane was stored in activated $3 \AA$ molecular sieves. Other solvents such as ethyl acetate, acetonitrile, ethanol, deuterated chloroform, deuterated DMSO and deuterated DMF were purchased from Sigma-Aldrich and were used without further purification. Furthermore, the chemicals 2-pyridinecarboxaldehyde, aniline, 4-fluoroaniline, 4bromoaniline, 4-methoxyaniline, 4-ethylaniline, sodium triacetoxyborohydride, sodium hydrogen carbonate, magnesium sulfate, silica gel, and palladium (II) chloride were also purchased from Sigma-Aldrich and used without any further purification.

3.3 Physical Measurements

Physical properties such as colour, percentage yield and melting points of each synthesized compound were determined and summarized under each compound.

3.3.1 ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectroscopy

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were acquired on Bruker Avance III 500 MHz or 400 MHz and 100 MHz spectrometers with a 5 mm TBIZ probe at $30^{\circ} \mathrm{C}$. Chemical shifts were recorded in ppm relative to the solvent residual peak, CDCl_{3} and $\mathrm{DMSO}-\mathrm{d}_{6}$ for ligands and complexes, respectively. NMR abbreviations $\mathrm{s}, \mathrm{d}, \mathrm{t}$ and m were used to denote singlet, doublet, triplet and multiplet. All coupling constants (J) were calculated and reported in Hertz (Hz). Exemplary ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the ligands and the complexes are shown in the appendix section.

3.3.2 FTIR Spectroscopy

Spectral data was acquired using a Bruker Alpha II FT-IR spectrometer and the data was recorded as percentage transmittance at the respective wavenumber $\left(\mathrm{cm}^{-1}\right)$ within the range 500 $-4000 \mathrm{~cm}^{-1}$. Exemplary IR spectra of the ligands and the complexes are shown in the appendix section.

3.3.3 Mass Spectrometry

Low-resolution spectral data was collected on a Waters TOF Micro-mass LCT Premier spectrometer for the synthesized complexes. Elemental compositions of the complexes were determined using CHNS Thermo Scientific Flash 2000 analyser. Exemplary LC-MS spectra of the ligands and the complexes are shown in the appendix section.

3.3.4 DFT-Computational Modelling

Using Gaussian 09 program suite ${ }^{19}$, the theoretical ground-state structures of PdL1 - PdL5 were optimized at gas phase using B3LYP (Becke 3-Lee-Yang-Parr) functional mode in combination with 6-31G (C and H), 6-311+G (N, S and Cl), and (Los Alamos National Laboratory 2 double ζ) LANL2DZ (Pd) basis sets. ${ }^{20-22}$

3.3.5 Stopped Flow \& UV-Visible Spectrophotometer

An Applied Photophysics SX 20 stopped-flow spectrophotometer and a Cary 3500 UV-Vis spectrometer coupled with an online acquisition system were used to follow the substitution reactions.

3.3.6 Preparation of Solutions for Kinetic Analysis

Stock solutions of $\mathrm{Pd}(\mathrm{II})$ complexes and freshly prepared solutions of nucleophiles were prepared by dissolving known amounts of each in ultra-pure water with an ionic strength of 0.1 M (LiCl). Lithium chloride was added to prevent spontaneous solvolysis of the chloro $\mathrm{Pd}($ II) complexes. The complex concentrations were maintained at 0.05 mM , while the solutions of TU and DMTU were prepared at concentration of 50 -fold in excess. TMTU solutions were prepared to afford concentrations 100 -fold more than that of the metal complex. This was due to an observed slow reactivity of the nucleophile, in comparison to $\mathbf{T U}$ and DMTU. Consecutive dilutions of the stock solutions of nucleophiles (TU and DMTU) afforded solutions $10,20,30$ and 40 -fold more than the concentration of the complexes. The subsequent TMTU solutions were $20,40,60$, and 80 -fold more concentrated than the metal complexes. The subsequent dilutions of nucleophile solutions ensured pseudo first-order conditions. Equal volumes of complexes and nucleophiles were administered for mixing on the Stopped-Flow spectrophotometer. All concentration dependence reactions were carried out at a constant temperature of 298 K , while temperature dependence reactions were investigated over a range of $288-308 \mathrm{~K}$, at 5 K intervals to determine the activation parameters; ΔH^{\neq}and ΔS^{\neq}.

3.4 Synthesis of Ligands

To prepare $\mathbf{L} 1 \mathbf{- L 5}$, the para substituted anilines (1 mmol) and 2-pyridinecarboxaldehyde ($0.0951 \mathrm{ml}, 1 \mathrm{mmol}$) were dissolved in dry dichloromethane (10 mL) and then solid sodium triacetoxyborohydride $(0.3179 \mathrm{~g}, 1.5 \mathrm{mmol})$ was added. The reaction mixture was stirred at room temperature under nitrogen gas for 6 hours and the progress of the reaction was monitored by TLC using Hexane/Ethyl acetate 7:3. The resulting reaction mixture was quenched with saturated sodium hydrogen carbonate solution which was then extracted three times with dichloromethane. The combined organic phase layer was dried over magnesium sulfate and the solvent was removed under reduced pressure to obtain an oily yellow liquid. The crude product was purified using column chromatography (Hexane/Ethyl acetate 7:3). The desired ligands isolated are described hereafter.

3.4.1. N-(pyridin-2-ylmethyl) aniline (L1):

L1 was obtained as a yellow oil ($95.6 \mathrm{mg}, 51.89 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 8.60 $\left(\mathrm{d}, 1 \mathrm{H},-\mathrm{H}_{\mathrm{a}^{-}}, J=4.81 \mathrm{~Hz}\right), 7.65\left(\mathrm{t}, 1 \mathrm{H}, J=7.65 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}^{-}}\right), 7.36\left(\mathrm{~d}, 1 \mathrm{H}, J=7.92 \mathrm{~Hz},-\mathbf{H}_{\mathrm{d}}-\right), 7.24$ $\left(\mathrm{m}, 3 \mathrm{H},-\mathrm{H}_{\mathrm{b}^{-}},-\mathrm{H}_{\mathrm{j}^{-}}\right), 6.78-6.67\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{H}_{\mathrm{i}^{-}},-\mathrm{H}_{\mathrm{l}^{-}}\right), 4.35\left(\mathrm{~s}, 2 \mathrm{H},-\mathbf{H}_{\mathrm{f}}\right)$), 4.27 ($\mathrm{s}, 1 \mathrm{H},-\mathbf{H}_{\mathrm{g}^{-}}$). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 158.58,149.09,147.93,136.76,129.27$, 122.14, 121.66, 117.61, 113.09, 49.26. FT-IR (liquid neat; cm^{-1}) 3386.90 (-NH), 1597.51 (C=C), 1264.76 (C-N aromatic).

3.4.2. 4-Fluoro- N-(pyridin-2-ylmethyl) aniline (L2):

$\mathbf{L 2}$ was obtained as an orange oil ($127.9 \mathrm{mg}, 63.24 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 8.57 $\left(\mathrm{d}, 1 \mathrm{H}, J=4.90 \mathrm{~Hz},-\mathbf{H}_{\mathrm{a}^{-}}\right), 7.62\left(\mathrm{t}, 1 \mathrm{H}, J=7.75 \mathrm{~Hz},-\mathrm{H}_{\mathrm{c}^{-}}\right), 7.30\left(\mathrm{~d}, 1 \mathrm{H}, J=7.95 \mathrm{~Hz},-\mathrm{H}_{\mathrm{d}}-\right), 7.16$ $\left(\mathrm{t}, 1 \mathrm{H}, J=5.63 \mathrm{~Hz},-\mathrm{H}_{b^{-}}\right), 6.68\left(\mathrm{t}, 2 \mathrm{H}, J=8.84 \mathrm{~Hz},-\mathrm{H}_{\mathrm{j}^{-}}\right), 6.59\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{H}_{\mathrm{i}^{-}}\right), 4.41\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{H}_{\mathrm{g}}\right)$, $4.40\left(\mathrm{~s}, 2 \mathrm{H},-\mathbf{H}_{\mathrm{f}} \text {) }\right)^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 158.32,149.16,144.36,144.35,136.69$, 122.18, 121.66, 115.74, 115.52, 113.86, 113.79, 49.81. FT-IR (liquid neat; cm^{-1}) $3264.34(\mathrm{NH})$, 1501.16 (C=C), 1301.22 (C-N aromatic), 1203.19 (C-F).

3.4.3. 4-Bromo-N-(pyridin-2-ylmethyl) aniline (L3):

$\mathbf{L 3}$ was obtained as a dark orange oil ($135.7 \mathrm{mg}, 51.57 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$: $8.52\left(\mathrm{~d}, 1 \mathrm{H}, J=4.58 \mathrm{~Hz},-\mathrm{H}_{\mathrm{a}}-\right), 7.68\left(\mathrm{t}, 1 \mathrm{H}, J=7.69 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}^{-}}\right), 7.32\left(\mathrm{~d}, 1 \mathrm{H}, J=8.21 \mathrm{~Hz},-\mathbf{H}_{\mathrm{d}}\right)$, $7.22\left(\mathrm{~m}, 3 \mathrm{H},-\mathbf{H}_{\mathrm{b}^{-}},-\mathbf{H}_{\mathrm{j}^{-}}\right), 6.47\left(\mathrm{~d}, 2 \mathrm{H}, J=8.77 \mathrm{~Hz},-\mathbf{H}_{\mathrm{i}^{-}}\right), 4.41\left(\mathrm{~s}, 2 \mathrm{H},-\mathbf{H}_{\mathrm{f}^{-}}\right), 3.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathbf{H g}_{\mathrm{g}}\right)$. ${ }^{13} \mathrm{C}^{2}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): 157.57, 148.01, 146.56, 138.04, 131.98, 122.70, 122.29, 114.68, 109.46, 48.50. FT-IR (liquid neat; cm^{-1}) $3283.65(-\mathrm{NH}), 1589.74$ (C=C), 1312.06 (C-N aromatic), $605.60(\mathrm{C}-\mathrm{Br})$.

$\mathbf{L 4}$ was obtained as a dark orange oil ($96.6 \mathrm{mg}, 45.08 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $8.59\left(\mathrm{~d}, 1 \mathrm{H}, J=5.16 \mathrm{~Hz},-\mathrm{H}_{\mathrm{a}}-\right), 7.66\left(\mathrm{t}, 1 \mathrm{H}, J=1.83 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}^{-}}\right), 7.37\left(\mathrm{~d}, 1 \mathrm{H}, J=7.73 \mathrm{~Hz},-\mathrm{H}_{\mathrm{d}}\right)$, $7.20\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.19 \mathrm{~Hz},-\mathrm{H}_{\mathrm{b}^{-}}\right), 7.81-6.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{H}_{\mathrm{j}^{-}}\right), 6.78-6.63\left(\mathrm{~m}, 2 \mathrm{H},-\mathbf{H}_{\mathrm{i}^{-}}\right), 4.44(\mathrm{~s}, 2 \mathrm{H}$, $-\mathbf{H}_{\mathrm{f}}$), $4.09\left(\mathrm{~s}, 1 \mathrm{H},-\mathbf{H}_{\mathrm{g}}-\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H},-\mathbf{H}_{-}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 158.77,152.36$, $148.95,141.98,136.90,122.17,121.83,114.93,114.45,55.78,50.20$. FT-IR (liquid neat; $\left.\mathrm{cm}^{-1}\right) 3277.26(-\mathrm{NH}), 1502.66(\mathrm{C}=\mathrm{C}), 1290.3(\mathrm{C}-\mathrm{N}$ aromatic), $1225.65(\mathrm{C}-\mathrm{O})$.

3.4.5. 4-Ethyl-N-(pyridin-2-ylmethyl) aniline (L5):

$\mathbf{L 5}$ was obtained as a dark orange oil ($102 \mathrm{mg}, 48.04 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $8.62\left(\mathrm{~d}, 1 \mathrm{H}, J=5.11 \mathrm{~Hz},-\mathrm{H}_{\mathrm{a}}-\right), 7.63\left(\mathrm{t}, 1 \mathrm{H}, J=7.60 \mathrm{~Hz},-\mathrm{H}_{\mathrm{c}^{-}}\right), 7.36\left(\mathrm{~d}, 1 \mathrm{H}, J=7.94 \mathrm{~Hz},-\mathrm{H}_{\mathrm{d}}\right)$, $7.18\left(\mathrm{t}, 1 \mathrm{H}, J=6.25 \mathrm{~Hz},-\mathrm{H}_{\mathrm{b}}-\right), 7.07\left(\mathrm{~d}, 2 \mathrm{H}, J=8.53 \mathrm{~Hz},-\mathbf{H}_{\mathrm{j}}\right.$) , $6.66\left(\mathrm{~d}, 2 \mathrm{H}, J=8.53 \mathrm{~Hz},-\mathrm{H}_{\mathrm{j}}\right)$, $4.48\left(\mathrm{~s}, 2 \mathrm{H},-\mathbf{H}_{\mathrm{f}^{-}}\right), 4.39\left(\mathrm{~s}, 1 \mathrm{H},-\mathbf{H}_{\mathrm{g}^{-}}\right), 2.60\left(\mathrm{~m}, 2 \mathrm{H},-\mathbf{H}_{\mathrm{l}^{-}}\right), 1.25\left(\mathrm{t}, 3 \mathrm{H},-\mathbf{H}_{\mathrm{m}}-\right),{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $100 \mathrm{MHz}): 158.98,149.16,145.98,136.69,133.40,128.62,122.07,121.64,113.24,49.69$, 27.99, 15.99. FT-IR (liquid neat; cm^{-1}) 3385.35 (-NH), 2947.94 (C-H alkane), 1512.12 (C=C), 1261.96 (C-N aromatic).

3.5 Synthesis of $\mathbf{P d}($ II $)$ Complexes

3.5.1 dichloro-(N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL1)

A solution of $\mathbf{L 1}(40 \mathrm{mg}, 0.22 \mathrm{mmol})$ in dry DCM (10 ml) was added to a solution of $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}\right](57.07 \mathrm{mg}, 0.22 \mathrm{mmol})$ in 5 ml of dry DCM. $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$ was synthesized from the reflux reaction of PdCl_{2} and acetonitrile. The reaction mixture was stirred overnight at room temperature, under nitrogen gas. The solvent was reduced by rotary evaporator, the resulting solid residue was filtered and washed with cold ethanol ($10 \mathrm{ml} \times 3$), to obtain a yellow solid ($64.85 \mathrm{mg}, 81.53 \%$). Mp: 246.3-249.6 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz DMSO- ${ }_{-d 6}$, ppm $): 8.76\left(\mathrm{~m}, 2 \mathrm{H},-\mathbf{H}_{\mathrm{g}^{-}},-\mathbf{H}_{\mathrm{a}^{-}}\right), 8.18\left(\mathrm{t}, 1 \mathrm{H}, J=7.90 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}}-\right), 7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.00$ $\left.\mathrm{Hz},-\mathbf{H}_{\mathrm{d}}-\right), 7.61\left(\mathrm{t}, 1 \mathrm{H}, J=6.60 \mathrm{~Hz},-\mathbf{H}_{\mathrm{b}}-\right), 7.32\left(\mathrm{t}, 2 \mathrm{H}, J=7.43 \mathrm{~Hz},-\mathbf{H}_{\mathrm{j}}-\right), 7.23(\mathrm{t}, 1 \mathrm{H}, J=7.33$ $\left.\mathrm{Hz},-\mathbf{H}_{l^{-}}\right) 7.11\left(\mathrm{~d}, 2 \mathrm{H}, J=7.77 \mathrm{~Hz},-\mathbf{H}_{\mathrm{i}^{-}}\right), 4.98\left(\mathrm{~m}, 1 \mathrm{H},-\mathbf{H}_{\mathrm{f}}-\right), 4.40\left(\mathrm{~d}, 1 \mathrm{H}, J=16.66 \mathrm{~Hz},-\mathrm{H}_{\mathrm{f}}\right)$. ${ }^{13}$ C NMR (100 MHz , DMSO-d6, ppm): 164.33, 149.40, 146.85, 141.00, 129.81, 126.40, 124.79, 122.53, 121.46, 61.29. FT-IR (liquid neat; cm^{-1}) $3372.10(-\mathrm{NH}), 1649.06(\mathrm{C}=\mathrm{N})$. TOF-MS ES ${ }^{+}$: $m / z=384.94($ calculated $m / z 361.56),\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$.
3.5.2 dichloro-(4-fluoro-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL2)

The complex PdL2 was prepared according to a similar procedure as PdL1 except for the use of L2 ($47 \mathrm{mg}, 0.2 \mathrm{mmol}$). PdL2 was obtained as a yellow solid ($68.7 \mathrm{mg}, 90.50 \%$). Mp: 244.5 $-247.2{ }^{\circ}{ }^{\circ}$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $-\mathrm{d} 6, ~ p p m$):): 8.83 (s, broad, $1 \mathrm{H},-\mathrm{H}_{\mathrm{g}}$) $8.77(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $\left.5.81 \mathrm{~Hz},-\mathbf{H}_{a^{-}}\right), 8.17\left(\mathrm{t}, 1 \mathrm{H}, J=7.74 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}^{-}}\right), 7.76\left(\mathrm{~d}, 1 \mathrm{H}, J=8.18 \mathrm{~Hz},-\mathbf{H}_{\mathrm{d}}\right), 7.60(\mathrm{t}, 1 \mathrm{H}, J$ $=6.65 \mathrm{~Hz},-\mathbf{H}_{\mathrm{b}^{-}}$), $7.18\left(\mathrm{t}, 4 \mathrm{H},-\mathbf{H}_{\mathrm{i}^{-}}-\mathbf{H}_{\mathrm{j}^{-}}\right), 4.92\left(\mathrm{dd}, 1 \mathrm{H},-\mathbf{H}_{\mathrm{f}}\right.$), $4.44\left(\mathrm{~d}, 1 \mathrm{H}, J=17.04 \mathrm{~Hz},-\mathrm{CH}_{2}\right.$ $\mathrm{NC}_{5} \mathrm{H}_{4}-$). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- ${ }_{-d 6}, \mathrm{ppm}$): 163.89, 149.43, 143.18, 140.99, 124.83, $123.60,123.53,122.60,116.36,61.56$. FT-IR (liquid neat; cm^{-1}) 3374.34 (-NH), 1652.33 $(\mathrm{C}=\mathrm{N}), 992.91(\mathrm{C}-\mathrm{F})$. TOF-MS ES ${ }^{+}, m / z=422.98$ (calculated $m / z 379.55$), $\left[\mathrm{M}^{+}-\mathrm{Cl}+\mathrm{DMSO}\right]$. Anal. \% Calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{FCl}_{2} \mathrm{~N}_{2} \mathrm{Pd}$: C, 37.97; H, 2.92; N, 7.38. Found (\%): C, 37.69; H, 2.97; N, 7.22.

3.5.3 dichloro-(4-bromo-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL3)

The complex PdL3 was prepared according to a similar procedure as PdL1 except for the use of $\mathbf{L 3}$ ($52.40 \mathrm{mg}, 0.2 \mathrm{mmol}$). PdL3 was obtained as a yellow solid ($71.4 \mathrm{mg}, 81.05 \%$). Mp: 266.2-268.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz DMSO-d6, ppm): 8.89 (s, broad, $1 \mathrm{H},-\mathbf{H g}_{\mathrm{g}}-$) 8.77 (d, 1 H , $\left.J=5.98 \mathrm{~Hz},-\mathbf{H}_{\mathrm{a}^{-}}\right), 8.18\left(\mathrm{t}, 1 \mathrm{H}, J=7.82 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}^{-}}\right), 7.77\left(\mathrm{~d}, 1 \mathrm{H}, J=7.82 \mathrm{~Hz},-\mathbf{H}_{\mathrm{d}}-\right), 7.61(\mathrm{t}, 1 \mathrm{H}$, $\left.J=6.62 \mathrm{~Hz},-\mathbf{H}_{\mathrm{b}}-\right), 7.53\left(\mathrm{~d}, 2 \mathrm{H}, J=8.43 \mathrm{~Hz},-\mathbf{H}_{\mathrm{j}}-\right), 7.10\left(\mathrm{~d}, 2 \mathrm{H}, J=9.03 \mathrm{~Hz},-\mathbf{H}_{\mathrm{i}}\right) 4.93(\mathrm{~m}, 1 \mathrm{H}$, $-\mathbf{H}_{\mathrm{f}^{-}}$), $4.49\left(\mathrm{~d}, 1 \mathrm{H}, J=16.54 \mathrm{~Hz},-\mathbf{H}_{\mathrm{f}}\right.$). -). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{-\mathrm{d} 6}, \mathrm{ppm}$): 163.91, $149.44,146.18,141.03,132.58,124.85,123.79,122.60,118.90,61.09$. FT-IR (liquid neat; $\left.\mathrm{cm}^{-1}\right) 3447.85(-\mathrm{NH}), 1651.75(\mathrm{C}=\mathrm{N}), 616.98(\mathrm{C}-\mathrm{Br})$. TOF-MS ES ${ }^{+}, m / z=482.92$ (calculated $m / z 440.46),[\mathrm{M}-\mathrm{Cl}+\mathrm{DMSO}]$.

3.5.4 dichloro-(4-methoxy-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL4)

The complex PdL4 was prepared according to a similar procedure as PdL1 except for the use of $\mathbf{L 4}(26.7 \mathrm{mg}, 0.12 \mathrm{mmol})$. PdL4 was obtained as a yellow solid ($37.3 \mathrm{mg}, 79.38 \%$). Mp: 214.2-216.8 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz DMSO- ${ }_{-\mathrm{d} 6}, \mathrm{ppm}$): 8.77 ($\left.\mathrm{s}, 1 \mathrm{H},-\mathrm{H}_{\mathrm{a}^{-}}\right) 8.65\left(\mathrm{~s}, 1 \mathrm{H},-\mathbf{H}_{\mathrm{g}^{-}}\right.$), $8.17\left(\mathrm{t}, 1 \mathrm{H}, J=7.71 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}^{-}}\right), 7.76\left(\mathrm{~d}, 1 \mathrm{H}, J=7.81 \mathrm{~Hz},-\mathbf{H}_{\mathrm{d}^{-}}\right), 7.60\left(\mathrm{t}, 1 \mathrm{H}, J=6.61 \mathrm{~Hz},-\mathbf{H}_{\mathrm{b}^{-}}\right)$, $7.07\left(\mathrm{~d}, 2 \mathrm{H}, J=8.89 \mathrm{~Hz},-\mathbf{H}_{\mathrm{j}^{-}}\right), 6.88\left(\mathrm{~d}, 2 \mathrm{H}, J=8.89 \mathrm{~Hz},-\mathbf{H}_{\mathrm{i}}\right) 4.94\left(\mathrm{~m}, 1 \mathrm{H},-\mathbf{H}_{\mathrm{f}}\right), 4.34(\mathrm{~d}, 1 \mathrm{H}$, $J=16.87 \mathrm{~Hz},-\mathbf{H}_{\mathrm{f}}$) , $3.73\left(\mathrm{~s}, 3 \mathrm{H},-\mathbf{H}_{1}-\right)$. FT-IR (liquid neat; cm^{-1}) $3376.48(-\mathrm{NH}), 1652.38(\mathrm{C}=\mathrm{N})$, 993.18 (C-O).

3.5.5 dichloro-(4-ethyl-N-((pyridin-2-yl)methyl)aniline)-palladium(II) (PdL5)

The complex PdL5 was prepared according to a similar procedure as PdL1 except for the use of $\mathbf{L 5}(25.46 \mathrm{mg}, 0.12 \mathrm{mmol})$. PdL5 was obtained as a yellow solid ($27.2 \mathrm{mg}, 58.18 \%$). Mp: 187.3-190.2 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz DMSO-d ${ }^{-1}, \mathrm{ppm}$): 8.76 (d, $1 \mathrm{H}, J=5.96 \mathrm{~Hz},-\mathbf{H}_{\mathrm{a}-}$), 8.69 $\left(\mathrm{s}, 1 \mathrm{H},-\mathrm{H}_{\mathrm{g}}-\right), 8.17\left(\mathrm{t}, 1 \mathrm{H}, J=7.86 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}}-\right), 7.77\left(\mathrm{~d}, 1 \mathrm{H}, J=7.56 \mathrm{~Hz},-\mathbf{H}_{\mathrm{d}-}\right), 7.60(\mathrm{t}, 1 \mathrm{H}, J=$ $6.65 \mathrm{~Hz},-\mathbf{H}_{\mathrm{b}}$), $7.15\left(\mathrm{~d}, 2 \mathrm{H}, J=8.61 \mathrm{~Hz},-\mathbf{H}_{\mathrm{j}^{-}}\right), 7.02\left(\mathrm{~d}, 2 \mathrm{H}, J=8.48 \mathrm{~Hz},-\mathbf{H}_{\mathrm{j}^{-}}\right), 4.97(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathbf{H}_{\mathrm{f}}\right), 4.34\left(\mathrm{~d}, 1 \mathrm{H}, J=16.83 \mathrm{~Hz},-\mathbf{H}_{\mathrm{f}}\right), 2.5\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{H}_{\mathrm{l}^{-}}\right), 1.25\left(\mathrm{t}, 3 \mathrm{H}, J=7.50 \mathrm{~Hz},-\mathbf{H}_{\mathrm{m}}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6, ppm): 164.38, 149.39, 144.59, 142.04, 140.95, 128.63, 124.74,
122.54, 113.09, 61.50, 28.05, 16.47. FT-IR (liquid neat; $\left.\mathrm{cm}^{-1}\right) 3372.91(-\mathrm{NH}), 1651.42(\mathrm{C}=\mathrm{N})$. TOF-MS ES ${ }^{+}, m / z=433.04$ (calculated $m / z 389.62$), $\left[\mathrm{M}^{+}-\mathrm{Cl}+\mathrm{DMSO}\right]$.

3.6 Results and Discussion

3.6.1 Synthesis of Ligands and Complexes

The ligands (L1-L5) were synthesized according to a modified method by Mundinger, et. al. ${ }^{18}$ via a condensation reaction of 2-pyridinecarboxaldehyde and the corresponding para substituted aniline: aniline (L1), 4-fluoroaniline (L2), 4-bromoaniline (L3), 4-methoxyaniline (L4) and 4-ethylaniline (L5), in the presence of sodium triacetoxyborohydride. The sodium triacetoxyborohydride is used as a reducing agent in the reaction. The ligands were obtained as orange-yellow oils in moderate yields (45-63\%). The corresponding Pd(II) complexes (PdL1 - PdL5) were synthesized according to a procedure reported by Kim, et. al ${ }^{17}$, by treating the ligands with $\left[\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}\right]$ (Scheme 3.1) to obtain products in good to excellent yields (58 $-90 \%)$. The ligands were characterised by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and FTIR spectroscopy. Whilst the purity of the $\mathrm{Pd}(\mathrm{II})$ complexes were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, COSY NMR, FTIR spectroscopy, melting point, TOF-Mass Spectrometry and elemental analysis.

Scheme 3.1: Synthesis route of the ligands (L1-L5) and their corresponding Pd(II) complexes (PdL1 - PdL5).

The ${ }^{1} \mathrm{H}$ NMR spectra of ligands $\mathbf{L} \mathbf{1} \mathbf{-} \mathbf{L} \mathbf{5}$ were obtained in chloroform $\left(\mathrm{CDCl}_{3}\right)$ to confirm their purity. In general, a signature peak at 4.41-4.51 ppm was observed for all synthesized ligands (Figure A1, A4, A7, A10, A13, in the appendix section). This singlet signal was assigned to the protons of the diastereotopic methylene group of the ligand, this validates the reduction of the aldehyde carbonyl $(\mathrm{C}=\mathrm{O})$ by the sodium triacetoxyborohydride reagent and hence the coupling of the pyridyl moiety to the aniline. The chemical shifts recorded for this signature peak correspond to those reported for ligand $\mathbf{L} 1{ }^{16}$ and for ligand $\mathbf{L} 2 .{ }^{17}$ Further confirming occurrence of the condensation reaction and hence formation of the ligands is the presence of a broad $(-\mathrm{NH})$ peak observed as a singlet adjacent to the region of the methylene group protons. This amine hydrogen atom resonates at $3.95-4.55 \mathrm{ppm}$ for all synthesized ligands. Similar observations were reported by Gomez et. al. ${ }^{16}(\mathbf{L} 1)$ and Kim et. al ${ }^{17}(\mathbf{L} 2)$.
${ }^{1} \mathrm{H}$ NMR spectra of the Pd(II) complexes (PdL1 - PdL5) were obtained in DMSO-d ${ }_{6}$, (Figure A16, A20, A24, A28, A30, in the appendix section). When comparing of the ${ }^{1} \mathrm{H}$ NMR spectra of the ligands to the corresponding spectra of the $\mathrm{Pd}(\mathrm{II})$ complexes (Figure 3.1) an overall downfield shift was observed for all the aromatic protons of the complexes. For instance, while \mathbf{H}_{a} proton resonated at 8.61 ppm in $\mathbf{L} 1$, a downfield shift to 8.76 ppm was observed for the same proton on the corresponding complex PdL1. Additionally, while the diastereotopic methylene group protons were observed as a singlet on the free ligand ${ }^{1} \mathrm{H}$ NMR spectra, a wellresolved $A B X$ spin system for the protons of the methylene group of the chelating ring $\left(\mathrm{H}^{\mathrm{A} / \mathrm{b}}\right.$ and $\left.\mathrm{H}^{\mathrm{B} / \mathrm{A}}\right)$ and the amine proton $\left(\mathrm{H}^{\mathrm{X}}\right)$ was observed for all complexes. Furthermore, a diagnostic change was observed for the amine proton through a significant shift from the $4.0-4.5 \mathrm{ppm}$ region to about 8.8 ppm for all complexes. This shift indicates a successful coordination of the ligand with the palladium atom.

Figure 3.1: An overlay ${ }^{1} \mathrm{H}$ NMR spectra of ligand $\mathbf{L 1}$ and corresponding PdL1 complex showing a notable downfield shift of all the aromatic protons and distinct changes in the methylene and amine protons.

To further elucidate the coupling between the diastereotopic methylene group protons and the amine proton, COSY spectra for the complexes was obtained. In all the complexes (PdL1PdL5 $)$, the protons of the methylene group of the chelating ring $\left(\mathrm{H}^{\mathrm{A} / \mathrm{B}}\right.$ and $\left.\mathrm{H}^{\mathrm{B} / \mathrm{A}}\right)$ coupled to the amine proton $\left(\mathrm{H}^{\mathrm{X}}\right)$, as shown in Figure 3.2. This coupling, combined with the downfield shift of the aniline hydrogen atom indicates a successful coordination of the ligand with the palladium atom.

Figure 3.2: COSY NMR spectrum showing the $A B X$ spin system for the protons of the methylene group of the chelating ring $\left(\mathrm{H}^{\mathrm{A}}\right.$ and $\left.\mathrm{H}^{\mathrm{B}}\right)$ and the aniline proton $\left(\mathrm{H}^{\mathrm{X}}\right)$ in PdL1.
${ }^{13} \mathrm{C}$ NMR was also used to structurally characterize the synthesized ligands (L1-L6) and their corresponding complexes (PdL1 - PdL5) (Appendix section, Figure A2, A5, A8, A11, A14, A17, A21, A25, A31). The data obtained from ${ }^{13} \mathrm{C}$ NMR were consistent with the ${ }^{1} \mathrm{H}$ NMR data and the number of carbons observed in the spectra correspond to that calculated in the molecular formula of the ligands and their respective complexes. For the ligand $\mathbf{L 5}$ and the corresponding complex PdL5 (Figure 3.3), two distinctive peaks were observed at 16.0 ppm $\left(\mathrm{CH}_{3}\right)$ and $28.0 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$ for both the ligand and the complex. A notable downfield shift was observed for all other protons upon complexation, including a shift from 49.8 ppm to 55.2 ppm for the carbon corresponding to the methylene group. Distinctively, the carbon corresponding to $\mathbf{C e}$, the additional carbon of the chelating ring, also showed a significant downfield shift upon complexation, these observations further validate the coordination of the ligands with the palladium metal atom.

Figure 3.3: An overlay ${ }^{13} \mathrm{C}$ NMR spectra of ligand $\mathbf{L 5}$ and corresponding PdL5 complex showing a notable downfield shift of all the aromatic and amine protons and no changes in the methylene hydrogen atoms.

FT-IR was also employed for the spectroscopic elucidation of the ligands and the complexes (Appendix section, Figure A3, A6, A9, A12, A15, A18, A22, A26, A29, A32). For instance, the -NH stretch of ligand L4 and the corresponding complex, PdL4 were observed at $3277.26 \mathrm{~cm}^{-1}$ and $3376.48 \mathrm{~cm}^{-1}$, respectively. Distinctively, the amine stretch is broader and more pronounced on the complex spectrum, which indicates a change in the chemical properties of the - NH group and suggest coordination of the ligand to the palladium metal atom.
Table 3.1 indicates the summarised FTIR and LC-MS spectroscopic data.

Figure 3.4: An overlay FT-IR spectra of ligand L4 and corresponding PdL4 complex showing distinctive peaks to characterize the free ligand and its complex.

Table 3.1: Selected infrared spectroscopic and mass spectral data for free ligands and their corresponding complexes.

$\mathbf{U}^{\left(\mathbf{c m}^{-1}\right)}$					
Compound	-NH	C-N	C-R *	Theoretical	Experimental $\left[\mathrm{M}^{+}-\mathrm{Cl}+\mathrm{DMSO}\right]$
L1	3386.90	1264.76	-		
L2	3264.34	1301.22	1203.19		
L3	3283.65	1312.06	605.60		
L4	3277.26	1290.30	1225.60		404.99
L5	3385.35	1261.96	2947.94		422.98
					482.92
PdL1	3372.10	1649.06	-	359.94	-
PdL2	3374.34	1652.33	992.91	377.93	433.04
PdL3	3447.85	1651.75	616.98	437.85	
PdL4	3376.48	1652.38	993.18	389.95	
PdL5	3372.91	1651.42	-	387.97	

3.7 DFT-Computational Modelling and Analysis

In efforts to gain insight on the electronic and structural properties of the synthesized $\mathrm{Pd}(\mathrm{II})$ complexes, computational simulations and optimized DFT calculations were performed. The data obtained was used to elucidate the reactivity of the synthesized complexes. The optimized geometry of frontier molecular orbitals (HOMO and LUMO) and planarity of the complexes are presented in Table 3.2, while the calculated DFT data is summarized in Table 3.3.

Table 3.2: Geometry optimized structures and DFT calculated HOMO and LUMO maps.
Complex

Table 3.3: Summary of DFT calculated parameters for the $\operatorname{Pd}(\mathrm{II})$ complexes.

Property

Bond lengths (\mathbf{A})

$\mathrm{Pd}-\mathrm{Cl}_{1}$	2.372	2.370	2.370	2.374	2.374
$\mathrm{Pd}-\mathrm{Cl}_{2}$	2.382	2.383	2.383	2.385	2.384
$\mathrm{Pd}-\mathrm{N}_{1}$	2.068	2.067	2.068	2.067	2.068
$\mathrm{Pd}-\mathrm{N}_{2}$	2.139	2.140	2.142	2.134	2.137

Bond angles (${ }^{\circ}$)

$\mathrm{N}_{1}-\mathrm{Pd}-\mathrm{N}_{2}$	81.51	81.49	81.49	81.55	81.46
$\mathrm{~N}_{1}-\mathrm{Pd}-\mathrm{Cl}_{1}$	93.75	93.79	93.82	93.75	93.74
$\mathrm{~N}_{2}-\mathrm{Pd}-\mathrm{Cl}_{2}$	89.09	88.90	88.84	88.75	89.04
$\mathrm{Cl}_{1}-\mathrm{Pd}_{2}-\mathrm{Cl}_{2}$	95.64	95.82	95.85	95.99	95.77

Natural charges

Pd	0.094	0.093	0.094	0.093	0.091
C 11	-0.272	-0.267	-0.266	-0.277	-0.275
C 12	-0.301	-0.299	-0.299	-0.307	-0.303
N 1	-0.258	-0.259	-0.259	-0.258	-0.258
N 2	-0.535	-0.534	-0.534	-0.532	-0.532

Point group symmetry

Dipole moment (Debye)	13.7083	13.3631	13.3631	12.6360	13.9099
μ	-4.3449	-4.4939	-4.9468	-4.2752	-4.2911
η	1.8089	1.8042	1.7973	1.8225	1.8156
ω	5.3180	5.5967	6.8076	5.0144	5.0711
HOMO (eV)	-6.154	-6.298	-6.292	-6.098	-6.107
LUMO (eV)	-2.536	-2.690	-2.697	-2.453	-2.475
$\Delta \mathrm{E}(\mathrm{eV})$	3.618	3.608	3.595	3.645	3.631

[^0]The frontier orbitals of all complexes have similar features due to the similar basic structures. The DFT optimized structures in Table 3.2 reveal that the highest occupied molecular orbital (HOMO) electron densities of all the Pd complexes are predominantly localized on the $4 d$ orbitals of the $\mathrm{Pd}(\mathrm{II})$ metals and the $3 p$-orbitals of the chloride ligands. PdL4 shows a minimal electron contribution on the methoxy substituent of the inert ligand. The HOMO of the $\mathrm{Pd}(\mathrm{II})$ metal center demonstrate a transfer of electrons from the metal to the LUMO of the inert ligand. On the other hand, the LUMOs are distributed in all the complexes along the chloride, palladium, and N -(pyridin-2-ylmethyl) aniline ligand. The presence of LUMO electrons on the inert ligands further indicate their potential π-acceptor abilities, which may be attributed to the presence of the π-acceptor pyridyl ring.

Also presented in Table 3.2, are DFT optimized planarity structures showing a similar planarity of all the complexes, with the pyridyl moiety and chloride ligands in-plane with the metal center, while the para substituted aniline moiety is noticeably out-of-plane for all the complexes. This is due to the flexibility brought by the methylene group within the inert ligand. The computational data is comparable with that reported in literature for PdL1, PdL2 and PdL4. ${ }^{17,23-26}$

Even though the structure modification and different substitutions almost have no impact on the composition of the frontier orbitals, the trend in the computed energy gap, $\Delta \mathrm{E}_{\text {Lumо-номо }}$ noticeably increases in the order PdL3 < PdL2 < PdL1 < PdL5 < PdL4 (Table 3.3). This trend indicates an increase of electron donation density around the $\mathrm{Pd}(\mathrm{II})$ metal center. The increase in the HOMO energy level followed a similar trend. Similarly, this trend was observed in the increase in the LUMO energy level, signifying a decrease in the π-acceptor abilities of the chelating ligands.

Based on the computational data presented in Table 3.3, the introduction of alternate electron withdrawing and electron donating substituents on the inert ligand have little to no significant effect on the $\mathrm{Pd}-\mathrm{Cl}$ bond length, bond angle or NBO charges of the palladium metal. However, a notable impact is observed in the overall electrophilicity of the complexes; with an increase in electrophilicity in the presence of electron withdrawing substituents, i.e., $\operatorname{Br}(6.8076)$ and F (5.5968), and reduced electrophilicity for electron donating groups, $\mathrm{CH}_{2} \mathrm{CH}_{3}$ (5.0711) when using PdL1 as a reference. The dipole moment of complexes with electron withdrawing groups PdL2 and PdL3 is lower than that of PdL1, the unsubstituted aniline complex, while the PdL5, with electron donating group $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ has the highest dipole moment (13.9099).

3.8 Substitution Kinetic Analysis

3.8.1 Kinetic Measurements

Substitution of labile chloride ligands from the $\mathrm{Pd}(\mathrm{II})$ complexes by three thiourea nucleophiles, viz. thiourea (TU), N,N'-dimethylthiourea (DMTU) and N,N,N',N'tetramethylthiourea (TMTU) was studied under pseudo first-order conditions, as a function of concentration and temperature using the UV-Visible and Stopped-Flow spectrophotometer. The UV-Visible spectrophotometer allowed for the determination of the best suitable wavelength to use for the kinetic analysis by following the change in absorbance spectrophotometrically. Wavelengths selected for kinetic analysis are presented in Table A.1, Appendix section.

Since the $\mathrm{Pd}(\mathrm{II})$ complexes used in the study contain two types of nitrogen bonded to the Pd metal, i.e. the aromatic pyridine and the sp^{3}-hybridized primary amine, it is therefore important to understand which chloride ligand will be substituted first. The chloride trans to the pyridine ligand will be substituted first, since the pyridine has a stronger trans effect compared to the amine group. This difference in trans effect is strongly supported by the trends in the DFT data in Table 3.3. The natural bond orbital (NBO) charges of $\mathrm{N}_{1 \text { (py) }}$ and $\mathrm{N}_{2 \text { (amine) }}$ or the bond lengths $\mathrm{Pd}-\mathrm{N}_{1(\text { py })}$ and $\mathrm{Pd}-\mathrm{N}_{2 \text { (amine) })}$ are significantly different. A similar trend was observed for $\mathrm{Pt}(\mathrm{II})$ complexes with similar ligands. ${ }^{27-32}$ Scheme 3.2 shows the stepwise substitution reaction of the chloride from the Pd metal by thiourea nucleophiles.

Scheme 3.2: Proposed stepwise substitution reaction with the thiourea nucleophiles.

3.8. ${ }^{1}{ }^{1} \mathrm{H}$ NMR Spectroscopy

To confirm that the first substitution step is due to the displacement of one chloride ligand by the thiourea nucleophile (TU, DMTU, TMTU) while the second substitution step is assigned to second chloride ligand as shown in Scheme 3.2, the product of the substitution reaction of PdL1 by six equivalents of TU was monitored using ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 3.5). Due
to the fast rate of reaction for the $\mathrm{Pd}(\mathrm{II})$ complexes, we could not follow the substitution reaction, but instead we analyzed the product that formed after the reaction was complete.

Figure 3.5: ${ }^{1} \mathrm{H}$ NMR spectra of L1, PdL1 and the substituted reaction of PdL1 with six equivalents of $\mathbf{T U}$ at $30^{\circ} \mathrm{C}$.

Figure 3.5, shows the ${ }^{1} \mathrm{H}$ NMR overlay spectra of the ligand (L1), PdL1 and the product of the reaction between PdL1 and TU. The complex with coordinated TU, shows the methylene protons at 4.46 ppm and is now showing as a doublet with a coupling constant of 6.32 Hz . In PdL1 these protons gave two different signals, 4.98 and 4.40 ppm . The NH appears at as a broad singlet at 6.26 ppm , which when compared to the ligand (4.27 ppm) it is further downfield and indicates that the Pd is still coordinated to it. The proton next to the pyridine ring $\left(\mathrm{H}_{\mathrm{a}}\right)$ for the ligand is at 8.60 ppm , for $\mathbf{P d L} 1$ is at 8.76 ppm and for the substituted Pd complex is at 8.58 ppm . All the other proton signals in the substituted product shifted downfield when compared with the unsubstituted complex, this is mainly due to the solvent used to run the NMR. Therefore, in this case the pyridine ring is still coordinated to the Pd metal. Also, the broad signals in the region, $9.04-8.66 ; 8.54-8.20 ; 7.39-7.15 \mathrm{ppm}$ are due to the coordinated sulfur from the thiourea nucleophile.

3.8.3 First Substitution Step

3.8.3.1 Concentration Dependence

All kinetic traces obtained from concentration and temperature dependence analysis gave excellent fits to the single-exponential decay function. Using an online Pro-Data SX programme, the kinetic traces were fitted into a non-linear least square fit to generate the observed pseudo first-order rate constant, $k_{\text {obs }}$ (equation 3.1). All the reported rate constants represent an average of at least five to eight independent kinetic runs for each experimental condition. A typical kinetic trace generated from the stopped-flow technique is shown in Figure 3.6 for the reaction between PdL1 and TU nucleophile.

$$
\begin{equation*}
A_{t}=A_{o}+\left(A_{o}-A_{\infty}\right) \exp \left(-k_{o b s} t\right) \tag{3.1}
\end{equation*}
$$

Where, $\mathrm{A}_{\mathrm{t}}=$ absorbance at time $\mathrm{t}, \mathrm{A}_{0}=$ absorbance of reaction mixture initially and $\mathrm{A}_{\infty}=$ absorbance at the end of the reaction.

Figure 3.6: Kinetic trace obtained from the Stopped-Flow spectrophotometer showing a single exponential fit for the reaction between PdL1 and TU in ultra-pure water followed at 295 nm , $\mathrm{I}=0.1 \mathrm{M}$ at 298 K .

Plots of average $k_{\text {obs }}$ against nucleophile concentrations, [Nu], afforded a linear regression with zero intercepts for all complexes, from which the second-order rate constants, $k_{2}\left(1^{\text {st }}\right)$, were obtained from the slope of these graphs according to equation 3.2. A representative plot of k_{obs}
versus concentration of all three nucleophiles for PdL4 is shown in Figure 3.7; similar plots are presented in Figure A34-38 of the appendix. The zero-intercept indicates that the substitution was irreversible. The second-order rate constants, k_{2}, of the complexes ae summarized in Table 3.4.

$$
\begin{equation*}
k_{o b s}=k_{2}[\mathrm{Nu}] \quad \text { where } \mathrm{Nu}=\mathrm{TU} \text {, DMTU, TMTU } \tag{3.2}
\end{equation*}
$$

Figure 3.7: Dependence of $\mathrm{k}_{\mathrm{obs}}$ on the concentration of the entering nucleophiles for the displacement of chloride on PdL4 complex in water, $\mathrm{I}=0.1 \mathrm{M}(\mathrm{LiCl}), \mathrm{T}=298 \mathrm{~K}$.

The second-order rate constants, k_{2}, for the substitution of chloride ligands by thiourea nucleophiles increases in the order PdL4 < PdL5 < PdL1 < PdL2 < PdL3 for TU and DMTU nucleophiles. The trend in reactivity is attributed to the difference in electronic effects within the complexes, which is supported by the electrophilicity index, chemical potential, chemical hardness and the $\Delta \mathrm{E}_{\text {Luмо-номо, }}$ Table 3.3.

The second-order rate constants, k_{2}, in Table $\mathbf{3 . 4}$ show that the reactivity of the complexes increases with the presence of electron withdrawing substituents and decreases when an electron donating group is attached on the para position of the phenyl group attached the amine. The amine proton in the -NH substituted atom is acidic, and therefore more electron deficient, this assists with electron withdrawal from the Pd metal center. The presence of an electron withdrawing group in PdL2 and PdL3 leads to increased reactivity when compared to the
unsubstituted PdL1 complex. Using the rate constants for $\mathbf{T U}$ to compare the reactivity of the complexes, PdL1 $\left(k_{2}=1.45 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$, PdL2 $\left(k_{2}=1.58 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ and $\mathbf{P d L} 3\left(k_{2}=1.75\right.$ x $10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}$) and we can clearly see that the reactivity increases with the electron withdrawing strength of the atom on the aniline moiety. The fluorine and bromine groups in PdL2 and PdL3 withdraw electrons from aniline moiety of the ligand which in turn pulls electrons from the electron deficient amine that is coordinated to the metal center. This phenomenon results in the loss of electron density from the ligand moiety and increases the electrophilicity of the metal center, which is supported by the DFT calculated electrophilicity index (ω). Complexes with a high value for ω characterise strong electrophiles. ${ }^{33,34} \mathbf{P d L 3}$, with a bromo substituent has the highest electrophilicity index, 6.8076, which further supports the high reactivity when compared for all the other complexes. The reactivity of PdL3 is further supported by the more negative chemical potential (-4.9468), lower strength of electron acceptor (-4.9468) and lower dipole moment (13.3631), when compared with all the Pd complexes.

Even though fluorine is more electronegative than bromine, the reactivity of PdL3 is greater than the reactivity of PdL2 by a factor of 1.11 . The slight increase in reactivity of PdL3, can be accounted for by looking at the DFT calculated electronic parameters (Table 3.3). The presence of either a -F or -Br as an ancillary substituent on the aniline group does not result in a significant change in electronic effects (bond lengths, bond angles or natural charges). However, the electrophilicity index and chemical potential is higher for PdL3, whilst the chemical hardness is lower.

In the case of PdL4 and PdL5, with electron donating groups, $-\mathrm{CH}_{2} \mathrm{CH}_{3}$ and $-\mathrm{OCH}_{3}$ on the para position of the aniline moiety, the reactivity is lower than that of PdL1 and complexes with electron withdrawing substituents, PdL2 and PdL3. The positive σ-inductive effect of the ethyl or methoxy substituents increases electron density of the phenyl ring and hence the acidic amine coordinated to the metal. This reduces the electrophilicity of the metal centers, as supported by the lower electrophilicity index of PdL4 (5.0143) and PdL5 (5.0711) compared to those for PdL1 (5.3180), PdL2 (5.5967) and PdL3 (6.8076).

The general trend for the substitution of chloride ligands by thiourea nucleophiles follows the order TMTU < DMTU < TU . This order is compatible with the steric demands of the different nucleophiles with the bulkier TMTU reacting slower than the less sterically hindered TU. However, an exception was observed in the reaction of PdL3 with DMTU, where the k_{2} value and hence, the substitution was faster than that of PdL3 with TU. This phenomenon has been
reported in literature, where the inductive effect of DMTU overcompensates for the steric effect of this nucleophile. ${ }^{35}$

3.8.3.2 Temperature Dependence

Temperature dependence reactions of the second-order rate constants were observed over the temperature range of $288-308 \mathrm{~K}$, at 5 K intervals. Typical Eyring plots for PdL4 with the three nucleophiles are shown in Figure 3.8; similar plots are presented in Figure A39-43, of the appendix. Using the Eyring equation (3.3), the enthalpy of activation $\left(\Delta H^{\neq}\right)$and entropy of activation $\left(\Delta S^{\neq}\right)$were extrapolated from the slope and the y-intercept, respectively. The enthalpy of activation $\left(\Delta H^{\neq}\right)$and entropy of activation $\left(\Delta S^{\neq}\right)$are summarized in Table 3.4.

$$
\begin{equation*}
\ln \left(\frac{k_{2}}{T}\right)=-\left(\frac{\Delta H^{\neq}}{R T}\right)+\left(\ln \frac{k_{b}}{h}+\frac{\Delta S^{\neq}}{R}\right) \tag{3.3}
\end{equation*}
$$

Figure 3.8: Plot of $\ln \left(\mathrm{k}_{2} / \mathrm{T}\right)$ against $1 / \mathrm{T}$ for the reaction of $\mathbf{P d L 4}$ with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Based on the results tabulated in Table 3.4, the values of enthalpy of activation are positive, while the entropy of activation values are largely negative. This trend in thermodynamic parameters supports an associative mode of activation for the substitution step, which is in line with the square-planar d^{8} metal complexes. ${ }^{36}$

Table 3.4: Rate constants and activation parameters for the first substitution reactions.

Complex	Nucleophile	$K_{2}\left(\mathbf{1}^{\text {st }}\right) / \mathbf{M}^{-\mathbf{1}} \mathbf{s}^{\mathbf{1}}\left(\mathbf{1 0}^{\mathbf{4}}\right)$	$\Delta \boldsymbol{H}^{\neq}\left(\mathbf{1}^{\text {st }}\right) / \mathbf{k J m o l}^{-\mathbf{1}}$	$\Delta \boldsymbol{S}^{\neq}\left(\mathbf{1}^{\text {st }}\right) / \mathbf{J K}^{-\mathbf{1} \mathbf{m o l}^{-\mathbf{1}}}$
PdL1	TU	1.45 ± 0.026	28.06 ± 1.30	-122.44 ± 5.35
	DMTU	1.35 ± 0.019	25.10 ± 1.51	-135.85 ± 5.09
	TMTU	0.62 ± 0.014	22.09 ± 2.11	-146.91 ± 7.07
PdL2	TU	1.58 ± 0.032	10.67 ± 0.67	-182.02 ± 2.26
	DMTU	1.45 ± 0.023	26.68 ± 1.38	-130.07 ± 4.63
	TMTU	0.32 ± 0.002	30.39 ± 1.82	-125.13 ± 6.12
PdL3	TU	1.75 ± 0.040	21.15 ± 0.17	-147.37 ± 0.57
	DMTU	1.87 ± 0.039	18.71 ± 1.15	-154.66 ± 3.86
	TMTU	0.71 ± 0.013	32.67 ± 2.62	-114.33 ± 8.79
PdL4	TU	1.10 ± 0.012	27.77 ± 0.53	-124.63 ± 1.77
	DMTU	0.84 ± 0.004	22.47 ± 0.81	-146.70 ± 2.70
	TMTU	0.36 ± 0.004	58.70 ± 4.86	-29.90 ± 16.32
PdL5	TU	1.12 ± 0.010	42.52 ± 2.63	-79.20 ± 8.83
	DMTU	1.10 ± 0.015	32.07 ± 2.24	-113.65 ± 7.52
	TMTU	0.82 ± 0.013	27.20 ± 0.89	-127.15 ± 2.97

3.8.4 Second Substitution Step

The second substitution step is the displacement of the chloride that is trans to the $\mathrm{N}_{\text {amine }}$ ligand by TU, DMTU and TMTU. The reaction was followed under the same conditions as the first substitution step. Figure 3.9 shows the spectral changes for the second substitution step, where a steady increase in absorbance was observed until the end of the reaction was reached. The wavelengths selected for kinetic analysis are presented in Table A.1, appendix section, and are similar to those used for the first substitution step.

Figure 3.9: UV-Visible spectral changes for the reaction between PdL1 and DMTU at 298 K , $\mathrm{I}=0.1 \mathrm{M}$.

3.8.4.1 Concentration Dependence

All the kinetic traces obtained from concentration dependence analysis gave excellent fits to the single-exponential decay function, and we used to generate the observed pseudo first-order rate constant, $k_{\text {obs. }}$. The reported rate constants represent an average of at least five independent kinetic runs for each experimental condition. A typical kinetic trace generated by the UVVisible is shown in Figure $\mathbf{3 . 1 0}$ for the reaction between PdL1 and DMTU nucleophile.

Figure 3.10: Kinetic trace obtained from the UV-Vis spectrophotometer showing a single exponential fit for the reaction between PdL1 and DMTU in ultra-pure water followed at 295 $\mathrm{nm}, \mathrm{I}=0.1 \mathrm{M}$ at 298 K .

The second substitution step is slower due to the coordinated thiourea nucleophile, and the steric effects caused by the first coordinated nucleophile and electron donation towards the $\operatorname{Pd}($ II) metal center, which makes it less electrophilic. The second substitution step for all complexes is independent of concentration, i.e., as concentration increases, the observed rate constant does not change significantly. Figure 3.11 indicates the effect of concentration change on the first and second substitution steps for PdL1 and TU.

Figure 3.11: Plots of $\mathrm{k}_{\mathrm{obs}}$ against concentration of the $\mathbf{P d L 1}$ complex with $\mathbf{T U}, \mathrm{I}=0.1 \mathrm{M}$ (LiCl), $\mathrm{T}=298 \mathrm{~K}$.

Since the observed rate constant, $k_{\text {obs }}$ for the second substitution step does not depend on the change in concentration of the nucleophiles, it implies that second order rate constant, ($k_{2}\left(2^{\text {nd }}\right)$, for the second substitution can be expressed by equation 3.4. ${ }^{27,30,37}$

$$
\begin{equation*}
k_{o b s}=k_{2} \tag{3.4}
\end{equation*}
$$

The rate of substitution follows the same increasing order as the first substitution step, PdL4 < PdL5 < PdL1 < PdL2 < PdL3 for all the nucleophiles (Table 3.5).

Table 3.5: Rate constants and activation parameters for the second substitution reactions.

Complex	Nucleophile	$k_{2}\left(2^{\text {nd }} / M^{-1} \mathrm{~s}^{-1}\left(10^{-3}\right)\right.$	$\Delta H^{\ddagger}\left(2^{\text {nd }}\right) / \mathrm{kJmol}^{-1}$	$\Delta S^{\neq}\left(2^{\text {nd }}\right) / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
PdL1	TU	2.60 ± 0.025	40.32 ± 1.44	-276.46 ± 4.36
	DMTU	1.73 ± 0.045	50.26 ± 3.93	-130.17 ± 12.01
	TMTU	0.94 ± 0.020	64.11 ± 3.83	-88.50 ± 11.52
PdL2	TU	4.44 ± 0.008	18.14 ± 0.49	-229.47 ± 1.48
	DMTU	2.15 ± 0.023	48.33 ± 3.60	-136.03 ± 11.01
	TMTU	0.97 ± 0.024	79.66 ± 3.66	-119.14 ± 10.99
PdL3	TU	8.94 ± 0.012	34.02 ± 2.60	-169.61 ± 8.02
	DMTU	4.61 ± 0.009	43.03 ± 2.06	-146.10 ± 6.22
	TMTU	1.01 ± 0.021	34.46 ± 0.82	-188.36 ± 2.61
PdL4	TU	2.22 ± 0.008	38.29 ± 0.45	-168.31 ± 1.52
	DMTU	0.88 ± 0.018	59.48 ± 1.06	-103.24 ± 3.57
	TMTU	0.23 ± 0.019	109.46 ± 4.07	-153.09 ± 13.66
PdL5	TU	2.37 ± 0.018	50.47 ± 4.24	-127.72 ± 12.25
	DMTU	1.09 ± 0.015	65.50 ± 2.99	-81.83 ± 9.98
	TMTU	0.48 ± 0.016	62.44 ± 2.74	-104.30 ± 9.35

3.8.4.2. Temperature Dependence

Temperature dependence reactions of the observed rate constants were monitored over the temperature range of $288-308 \mathrm{~K}$, at 5 K intervals. Typical Eyring plots for PdL3 with the three nucleophiles are shown in Figure 3.12; similar plots are presented in Figure A44-48, in the appendix. The enthalpy of activation $\left(\Delta H^{\neq}\right)$and entropy of activation $\left(\Delta S^{\neq}\right)$for this step are summarized in Table 3.5. The thermodynamic parameters support an associative mode of activation for the second substitution step.

Figure 3.12: Plot of $\ln \left(\mathrm{k}_{2} / \mathrm{T}\right)$ against $1 / \mathrm{T}$ for the reaction of $\operatorname{PdL} 3$ with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

3.9 Conclusion

Five bidentate $\mathrm{Pd}(\mathrm{II})$ complexes containing different para substituted N -((pyridin-2yl)methyl)aniline chelating spectator ligands of different electronic properties were synthesized. The purity of the synthesized ligands and complexes were confirmed using ${ }^{1} \mathrm{H}$ NMR, ${ }^{13}$ C NMR, FTIR, LC-MS and elemental analysis. The kinetics and mechanism of their substitution reactions with sulfur-donor nucleophiles were studied under pseudo first-order conditions. The substitution of two chloride ligands by the nucleophiles from the $\operatorname{Pd}(\mathrm{II})$ complexes was consecutive. The chloride trans to the pyridine ligand was substituted first, since the pyridine has a stronger trans effect compared to the amine group. The rate of consecutive chloride substitution from the complexes by the nucleophiles followed the order PdL4 < PdL5 < PdL1 < PdL2 < PdL3. The higher reactivity of PdL3 and PdL2 is due to the withdrawal of electron density from the aniline moiety of the ligand by the -F and -Br substituents which in turn pulls electrons from the electron deficient amine that is coordinated to the metal center. This results in the loss of electron density from the ligand moiety and increases the electrophilicity of the metal center and thus the substitution reaction. The addition of an electron-donating groups as substituents (PdL4 and PdL5), leads to a decrease in reactivity compared to the electron withdrawing groups (PdL2 and PdL3) and the unsubstituted complex (PdL1). The reactivity of the nucleophiles depends on steric effects, with the bulky TMTU being the least reactive. The first and second substitution steps are
associatively activated given that the enthalpy of activation are positive while the entropy of activation are negative, which suggest an associative mode of activation for the substitution process.

3.10 References

1. Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F., Advances in toxicological research of the anticancer drug cisplatin. Chemical research in toxicology 2019, 32 (8), 1469-1486.
2. Chu, E.; Sartorelli, A., Cancer chemotherapy. Lange's Basic and Clinical Pharmacology 2018, 948-976.
3. Abu-Surrah, A. S.; Kettunen, M., Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Current medicinal chemistry 2006, 13 (11), 1337-1357.
4. Abu-Surrah, A. S.; Al-Sa’doni, H. H.; Abdalla, M. Y., Palladium-based chemotherapeutic agents: routes toward complexes with good antitumor activity. Cancer therapy 2008, 6 (6), 1-10.
5. Kapdi, A. R.; Fairlamb, I. J., Anti-cancer palladium complexes: a focus on PdX 2 L 2, palladacycles and related complexes. Chemical Society Reviews 2014, 43 (13), 47514777.
6. Coskun, M. D.; Ari, F.; Oral, A. Y.; Sarimahmut, M.; Kutlu, H. M.; Yilmaz, V. T.; Ulukaya, E., Promising anti-growth effects of palladium (II) saccharinate complex of terpyridine by inducing apoptosis on transformed fibroblasts in vitro. Bioorganic \& medicinal chemistry 2013, 21 (15), 4698-4705.
7. Bugarčić, Ž. D.; Bogojeski, J.; van Eldik, R., Kinetics, mechanism and equilibrium studies on the substitution reactions of Pd (II) in reference to Pt (II) complexes with bio-molecules. Coordination Chemistry Reviews 2015, 292, 91-106.
8. Lazarević, T.; Rilak, A.; Bugarčić, Ž. D., Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. European journal of medicinal chemistry 2017, 142, 8-31.
9. Jahromi, E. Z.; Divsalar, A.; Saboury, A. A.; Khaleghizadeh, S.; Mansouri-Torshizi, H.; Kostova, I., Palladium complexes: new candidates for anti-cancer drugs. Journal of the Iranian Chemical Society 2016, 13 (5), 967-989.
10. Zhao, G.; Lin, H., Metal complexes with aromatic N-containing ligands as potential agents in cancer treatment. Current Medicinal Chemistry-Anti-Cancer Agents 2005, 5 (2), 137-147.
11. Zhao, G.; Lin, H.; Ping, Y.; Sun, H.; Zhu, S.; Xuncheng, S.; Chen, Y., Ethylenediamine-palladium (II) complexes with pyridine and its derivatives: synthesis, molecular structure and initial antitumor studies. Journal of inorganic biochemistry 1999, 73 (3), 145-149.
12. Onunga, D. O. Controlling the reactivity of mononuclear palladiun (II) complexes. Substitution kinetics and mechanisms. 2019.
13. Onunga, D. O.; Bellam, R.; Mutua, G. K.; Sitati, M.; BalaKumaran, M. D.; Jaganyi, D.; Mambanda, A., Controlling the reactivity of $\left[\mathrm{Pd}(\mathrm{II})\left(\mathrm{N}^{\wedge} \mathrm{N}^{\wedge} \mathrm{N}\right) \mathrm{Cl}\right]+$ complexes using 2, 6-bis (pyrazol-2-yl) pyridine ligands for biological application: Substitution reactivity, CT-DNA interactions and in vitro cytotoxicity study. Journal of Inorganic Biochemistry 2020, 213, 111261.
14. Onunga, D. O.; Jaganyi, D.; Mambanda, A., The role of 8-quinolinyl moieties in tuning the reactivity of palladium (II) complexes: a kinetic and mechanistic study. Journal of Coordination Chemistry 2019, 72 (3), 499-515.
15. Omondi, R. O. Tuning the steric and electronic parameters of mixed-donor palladium (II) complexes: coordination chemistry, substitution kinetics and biological activities. 2021.
16. Gómez, J.; García-Herbosa, G.; Cuevas, J. V.; Arnáiz, A.; Carbayo, A.; Munoz, A.; Falvello, L.; Fanwick, P. E., Diastereospecific and Diastereoselective Syntheses of Ruthenium (II) Complexes Using N, N 'Bidentate Ligands Aryl-pyridin-2-ylmethylamine ArNH-CH2-2-C5H4N and Their Oxidation to Imine Ligands. Inorganic chemistry 2006, 45 (6), 2483-2493.
17. Kim, S.; Kim, D.; Lee, H.-J.; Lee, H., Palladium (II) complexes containing N, N'bidentate N-(pyridin-2-ylmethyl) aniline and its derivatives: Synthesis, structural characterisation, and methyl methacrylate polymerisation. Polyhedron 2014, 77, 66-74.
18. Mundinger, S.; Jakob, U.; Bichovski, P.; Bannwarth, W., Modification and optimization of the bis-picolylamide-based relay protection for carboxylic acids to be cleaved by unusual complexation with cu2+ salts. The Journal of Organic Chemistry 2012, 77 (20), 8968-8979.
19. G.W. Trucks, M.J. Frisch, H.B. Schlegel, G.E. Scuseria, J.R. Cheeseman, M.A. Robb, G. Scalmani, V. Barone, G.A. Petersson, B. Mennucci, H. Nakatsuji, M. Caricato, X. Li, A.F. Izmaylov, H.P. Hratchian, J. Bloino, G. Zheng, M. Hada, J.L. Sonnenberg, M. Ehara, K. Toyota, R. Fukuda, M. Ishida, J. Hasegawa, T. Nakajima, Y. Honda, O. Kitao, T. Vreven, H. Nakai, J.A. Montgomery Jr., J.E. Peralta,M. Bearpark, F. Ogliaro, J.J. Heyd, E. Brothers, K.N. Kudin, R. Kobayashi, V.N. Staroverov, J. Normand, K. Raghavachari, J.C. B.A. Rendell, S.S. Iyengar, J. Tomasi, M. Cossi, J.M.M.N. Rega, M. Klene, J.E. Knox, J.B. Cross, C. Adamo, V. Bakken, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, R.L. Martin, J.W. Ochterski, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, O. Farkas, A.D. Daniels, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09 (Revision A. 1), Inc., Wallingford, CT, 2009.
20. Gaussian09, R. A., 1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian. Inc., Wallingford CT 2009, 121, 150-166.
21. Hay, P. J.; Wadt, W. R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of chemical physics 1985, 82 (1), 299-310.
22. Becke, A. D., Density functional calculations of molecular bond energies. The Journal of Chemical Physics 1986, 84 (8), 4524-4529.
23. Park, S.; Lee, J. K.; Lee, H.; Nayab, S.; Shin, J. W., Zinc (II), palladium (II) and cadmium (II) complexes containing 4-methoxy-N-(pyridin-2-ylmethylene) aniline derivatives: Synthesis, characterization and methyl methacrylate polymerization. Applied Organometallic Chemistry 2019, 33 (4), e4797.
24. Lin, Y.-C.; Yu, K.-H.; Huang, S.-L.; Liu, Y.-H.; Wang, Y.; Liu, S.-T.; Chen, J.-T., Alternating ethylene-norbornene copolymerization catalyzed by cationic organopalladium complexes bearing hemilabile bidentate ligands of α-aminopyridines. Dalton Transactions 2009, (41), 9058-9067.
25. Diez, V.; Cuevas, J. V.; García-Herbosa, G.; Aullón, G.; Charmant, J. P.; Carbayo, A.; Munoz, A., 1H NMR Direct Observation of Enantiomeric Exchange in Palladium (II) and Platinum (II) Complexes Containing N, N 'Bidentate Aryl-pyridin-2-ylmethylamine Ligands. Inorganic chemistry 2007, 46 (2), 568-577.
26. Al-Allaf, T.; Castan, P.; Turpin, R.; Wimmer, S.; Bernardinelli, G., Solvolysis of palladium (II) and platinum (II) complexes of asymmetric ligands: Synthesis and
structural characterization of $[\mathrm{Pd}(\mathrm{AMP})(\mathrm{dmso}) \mathrm{Cl}] \mathrm{BF} 4$ and $[\mathrm{Pt}(\mathrm{AMP})(\mathrm{dmso}) \mathrm{Cl}] \mathrm{ClO}$ 4. Transition Metal Chemistry 1992, 17, 579-582.
27. Ghosh, G. K.; Misra, K.; Linert, W.; Moi, S. C., Interaction of glutathione with cis-(2-aminomethylpyridine) diaqua platinum (II) perchlorate in aqueous medium: their kinetics and mechanism. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2013, 43 (6), 714-721.
28. Hochreuther, S.; Nandibewoor, S. T.; Puchta, R.; van Eldik, R., Thermodynamic and kinetic behaviour of [Pt (2-methylthiomethylpyridine)(OH 2) 2] 2+. Dalton Transactions 2012, 41 (2), 512-522.
29. Papo, T. R.; Jaganyi, D.; Mambanda, A., Substitution reactions of cis-platinum (II) complexes containing bidentate N , N -donor pyridinecarboxamide ligands with different substituents. Journal of Coordination Chemistry 2022, 75 (19-24), 2557-2573.
30. Summa, N.; Schiessl, W.; Puchta, R.; van Eikema Hommes, N.; van Eldik, R., Thermodynamic and kinetic studies on reactions of Pt (II) complexes with biologically relevant nucleophiles. Inorganic Chemistry 2006, 45 (7), 2948-2959.
31. Kinunda, G.; Jaganyi, D., A kinetic study of aqua ligand substitution in dinuclear Pt (II) complexes containing four non-coplanar pyridine ligands. Transition Metal Chemistry 2014, 39, 939-949.
32. Hochreuther, S.; Puchta, R.; van Eldik, R., Thermodynamic and kinetic studies on novel dinuclear platinum (II) complexes containing bidentate N , N -donor ligands. Inorganic Chemistry 2011, 50 (18), 8984-8996.
33. Shoeib, T.; Sharp, B. L., Interactions of oxaliplatin with the cytoplasmic thiol containing ligand glutathione. Metallomics 2012, 4 (12), 1308-1320.
34. Banjo, S., Density Functional Theory studies on electronic properties of thiophene Soxides as aromatic dienophiles for reactivity prediction in Diels-Alder reactions. Pakistan Journal of Scientific \& Industrial Research Series A: Physical Sciences 2013, 56 (1), 14-18.
35. Jaganyi, D.; Tiba, F.; Munro, O. Q.; Petrović, B.; Bugarčić, Ž. D., Kinetic and mechanistic study on the reactions of [Pt (bpma)(H2 O)] 2+ and [Pd (bpma)(H2 O)] $2+$ with some nucleophiles. Crystal structure of $[\mathrm{Pd}(\mathrm{bpma})(\mathrm{py})](\mathrm{ClO} 4)$ 2. Dalton Transactions 2006, (24), 2943-2949.
36. Tobe, M. L.; Burgess, J., Inorganic Reaction Mechanisms. Longman: 1999.
37. Hochreuther, S.; Puchta, R.; van Eldik, R., Novel dinuclear platinum (II) complexes containing mixed nitrogen-sulfur donor ligands. Inorganic Chemistry 2011, 50 (24), 12747-12761.

CHAPTER 4

Synthesis of Novel Palladium(II)-Pyridine Carboxamide Complexes

4.1 Introduction

The success of cis-diamminedichloro-platinum(II) (cisplatin) as an anticancer drug led to an increase in the synthesis and biological application of Pt-based anticancer agents. ${ }^{1-6}$ Due to several side effects associated with the administration of cisplatin and Pt based anticancer agents such as nephrotoxicity to drug resistance of the tumour cells, researchers are exploring alternatives. One such alternate is the use of transition metal-based anticancer drugs. ${ }^{7-11}$ Palladium-based complexes have gained significant attention due to their structural and thermodynamic similarities, and significant overlap of coordination chemistry to $\mathrm{Pt}(\mathrm{II})$ complexes. $\mathrm{Pd}($ II $)$ complexes exhibit promising activity towards cisplatin-resistant cells. ${ }^{12-14}$

The coordination of biologically active molecules to metal centres shows promising activity due to the ability of the complexes to bind to different biological targets. ${ }^{15,16}$ The incorporation of carboxamide groups in the ligands and preparation of new complexes allows for the unique electronic and the steric effect control of the properties of the coordinated Pd (II) metal. The carboxamide ligand has a diverse chemistry due to its multifunction coordination modes. ${ }^{17-19}$ The carboxamide group is an important biological molecule which forms part of the primary structure of proteins and forms metal complexes that are similar to metal peptides. ${ }^{10}$ Pyridine carboxamides ligands are a class of mono/bidentate ligands that are formed from condensation reactions between pyridyl-bearing carboxylic acid and amine precursors, promoted by triphenylphosphite coupling agent. ${ }^{11-16}$

As such, the N-(4-bromophenyl)-pyridine-2-carboxamide ligand, which acts as a bidentatechelating ligand, was reacted with a $\mathrm{Pd}(\mathrm{II})$ metal precursor to form two $\mathrm{Pd}(\mathrm{II})$ complexes, i.e. Pd1 and Pd2.

4.2 Chemicals and Reagents

All synthesis was performed under nitrogen using the standard Schlenk line techniques. Potassium tetrachloropalladate, 2-picolinic acid, 4-bromoaniline and triphenylphosphite were purchased from Sigma-Aldrich and used without further purification. All solvents (pyridine, diethyl ether, dichloromethane) were procured from Sigma-Aldrich and were of analytical grade.

4.3 Physical Measurements

${ }^{1} \mathrm{H}$ NMR spectra were acquired on Bruker Avance III 400 MHz NMR spectroscopy with a 5 mm TBIZ probe at $30^{\circ} \mathrm{C}$. Chemical shifts were reported in ppm in relation to the solvent residual peak. Coupling constants (J) were calculated in hertz (Hz). The infrared spectrum was recorded using a Bruker Alpha II FT-IR spectrometer and the data were reported as a percentage transmittance at the respective wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Exemplary ${ }^{1} \mathrm{H}$ NMR and IR spectra of the ligand and Pd1 and Pd2 are shown in the appendix section (Figure A49-A55).

The X-ray crystallographic data of the complexes were collected and evaluated on a Bruker APEX Duo ${ }^{17} \mathrm{CCD}$ area detector diffractometer with an Incoatec micro source working at 30 W power. The crystal was kept at 99.97 K during data collection using an Oxford Instruments Cryojet accessory. The data were collected with $\mathrm{Cu}(\mathrm{K} \alpha), \lambda=1.54178$), at a crystal-to-detector distance of 50 mm . The SAINT ${ }^{18}$ program was used to reduce the structure using the outlier rejection, scan speed scaling and the standard Lorentz and polarization correction factors. The non-hydrogen atoms were initially refined isotropically and then by anisotropic refinement with a full-matrix least-squares method based on F^{2}. All hydrogen atoms were included and positioned geometrically on their parent atoms. The crystal structure was solved with Olex2 ${ }^{19}$, while the SHELXS ${ }^{20}$ and SHELX ${ }^{21}$ programs were used for structural refinement. The crystallographic data were visualized using WinGX ${ }^{22}$ and Mercury v.4.3. ${ }^{23}$ The crystallographic data and structure refinement parameters of Pd1 and Pd2 are given in Table 1.

4.4 Synthesis of the Ligand

The N-(4-bromophenyl)pyridine-2-carboxamide was synthesized following a reported procedure with slight modifications. ${ }^{24}$ Solutions of 2-picolinic acid (5 mmol) and 4bromoaniline (5 mmol) in pyridine (5 mL) were mixed for 15 minutes under stirring. The temperature was raised to $100{ }^{\circ} \mathrm{C}$ followed by the dropwise addition of triphenylphosphite (5 mmol). The mixture was further stirred for 4 hours at $100{ }^{\circ} \mathrm{C}$, then cooled to room
temperature. The cooled solution was concentrated, and an off-white precipitate was formed and washed with cold diethyl ether.
N-(4-bromophenyl)pyridine-2-carboxamide was obtained as an off-white solid ($0.629 \mathrm{~g}, 45.39$ \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): 9.96 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{Hg}^{-}$), 8.53 (d, $1 \mathrm{H}, J=8.46 \mathrm{~Hz},-\mathrm{H}_{\mathrm{a}}-$), 8.20 $\left(\mathrm{d}, 1 \mathrm{H}, J=8.46 \mathrm{~Hz},-\mathbf{H}_{\mathrm{d}}\right), 7.83\left(\mathrm{td}, 1 \mathrm{H}, J_{1}=8.08 \mathrm{~Hz}, J_{2}=1.72 \mathrm{~Hz},-\mathbf{H}_{\mathrm{c}}-\right), 7.61(\mathrm{~d}, 1 \mathrm{H}, J=9.23$ $\mathrm{Hz},-\mathbf{H}_{\mathrm{b}^{-}}$), 7.41 (m, 4H, - $\mathbf{H}_{\mathrm{i}^{-}},-\mathrm{H}_{\mathrm{j}}-$). FT-IR (liquid neat; cm^{-1}) 3001 (-NH), 1709 (C=C), 1357 (C-N aromatic), 1217, 902, 525. TOF-MS ES ${ }^{+}, m / z=279.01$ (calculated $m / z 278.11$), $\left[\mathrm{M}^{+}+\right.$ $\mathrm{H}]$.

4.5 Synthesis of the Pd(II) Complexes

4.5.1 bis[N-(4-bromophenyl)pyridine-2-carboxamidato]Palladium, Pd1

N-(phenyl) pyridine-2-carboxamide ligand was coordinated to $\mathrm{Pd}(\mathrm{II})$ using a literature method. ${ }^{25}$ An aqueous solution of potassium tetrachloropalladate ($0.3063 \mathrm{mmol}, 0.10 \mathrm{~g}$) was added dropwise to a solution of the N-(phenyl) pyridine-2-carboxamide ligand $(0.6127 \mathrm{mmol}$, $0.17 \mathrm{~g})$ in DCM (10 mL) under inert nitrogen. The mixture was stirred under reflux for 6 hours and allowed to cool to room temperature. The precipitate formed was filtered and washed with cold ultra-pure water and methanol. The resulting product was crystallized from the $1: 1$ dichloromethane and hexane solution to obtain crystals suitable for X-ray crystallography. Yield: $0.085 \mathrm{~g}(42 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, \mathrm{ppm}\right): 8.67$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{1-}$ py), 8.23 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}$-py), 8.06 (td, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}-\mathrm{py}$), 7.93 (d, $J=8.8 \mathrm{~Hz}, 4 \mathrm{H}$, H_{5} and H_{8}), $7.64\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{2}\right.$-py), $7.54\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{6}\right.$ and $\left.\mathrm{H}_{7}\right)$. FT-IR $\left(\mathrm{cm}^{-1}\right)$: 3001, 1709, 1357, 1217, 902, 525.

To an aqueous solution of potassium tetrachloropalladate ($0.3063 \mathrm{mmol}, 0.10 \mathrm{~g}$) was added a solution of the N-(phenyl) pyridine-2-carboxamide ligand ($0.3063 \mathrm{mmol}, 0.085 \mathrm{~g}$) in DCM $(10 \mathrm{~mL})$ and pyridine ($0.3063 \mathrm{mmol}, 24.2 \mathrm{mg}$) under inert nitrogen. The mixture was stirred under reflux for 6 hours and allowed to cool to room temperature. The precipitate formed was filtered and washed with cold ultra-pure water and methanol. The resulting product was crystallized from the 1:1 dichloromethane and hexane solution to obtain crystals suitable for X-ray crystallography. Yield: $0.054 \mathrm{~g}(35.29 \%),{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, \mathrm{ppm}\right): 8.37$ (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}$), 8.06 (d, $J=5.44 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{td}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.05(\mathrm{t}, J=7.71 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{t}, J=7.71 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$. FT-IR ($\left.\mathrm{cm}^{-1}\right)$: $3411,3005,1709,1533,1358,1220,895,830,604,528 . \mathrm{TOF}-\mathrm{MS} \mathrm{ES}$. $: m / z=496.91$ (calculated $\mathrm{m} / \mathrm{z} 497.08$).

4.6 Results and Discussion

4.6.1 Synthesis of Ligand and Complexes

N-(4-bromophenyl)-pyridine-2-carboxamide ligand was synthesised from the reaction of 2picolinic acid and 4-bromoaniline in the presence of triphenylphosphite to produce the corresponding ligand in excellent yield. Treatment of N-(4-bromophenyl)-pyridine-2carboxamide ligand with aqueous potassium tetrachloropalladate $\left(\mathrm{K}_{2} \mathrm{PdCl}_{4}\right)$ produced $\mathbf{P d 1}$ in moderate yield (Scheme 4.1). Pd2 was synthesized using a similar procedure as Pd1, with the addition of pyridine. The ligand and the corresponding $\mathrm{Pd}(\mathrm{II})$ complexes were characterised using ${ }^{1} \mathrm{H}$ NMR, FT-IR spectroscopy, mass spectrometry and X-ray crystallography.

Scheme 4. 1: Synthesis of N-(4-bromophenyl) pyridine-2-carboxamide and corresponding Pd(II) complexes, Pd1 and Pd2.

In the subsequent $\mathrm{Pd}(\mathrm{II})$ complexes ($\mathbf{P d} \mathbf{1}$ and $\mathbf{P d} 2$), the N-(4-bromophenyl)-pyridine-2carboxamide ligand acted as bidentate and was coordinated via anionic $\mathrm{N}_{\text {amide }}$ and neutral $\mathrm{N}_{\text {pyridine }}$ sites via two five-membered chelate rings. ${ }^{1} \mathrm{H}$ NMR spectra of the ligand and the corresponding $\mathrm{Pd}(\mathrm{II})$ complexes show the expected peak multiplicities and integrations (Appendix, Figure A49 \& A52). In the ${ }^{1} \mathrm{H}$ NMR spectrum of the $\mathrm{Pd}(\mathrm{II})$ complexes the expected chemical shifts of the protons were observed and deshielded compared to the free ligand. The formation of the Pd1 complex was revealed by the disappearance of the NH peak at 9.803 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum, which was attributed to the coordination of the Pd to the $\mathrm{N}_{\text {amido }}$. A similar trend was observed for $\mathbf{P d} 2$, where the pyridine peak that is coordinated to the Pd ion was also observed. The formation of Pd1 and Pd2 was further confirmed using FT-IR, where the $\mathrm{N}-\mathrm{H}$ stretches of the ligand at $3321 \mathrm{~cm}^{-1}$ (Figure A50) disappeared when compared to the FT-IR spectrum of Pd1 and Pd2 (Figure A53 \& A54). The FTIR spectra of the Pd1 and Pd2 showed that the peaks for the $\mathrm{C}=\mathrm{O}$ amide bands $\left(1709 \mathrm{~cm}^{-1}\right)$ shifted by a small margin when
compared to the corresponding ligand $\left(1673 \mathrm{~cm}^{-1}\right)$. This observation clearly indicates that the $\mathrm{C}=\mathrm{O}$ group is uncoordinated to the $\mathrm{Pd}(\mathrm{II})$ metal the of two complexes.

4.6.2 X-ray Crystallography

The molecular structure of Pd1 and Pd2 were further confirmed by X-ray crystallography. Both complexes were crystallized from the $1: 1$ dichloromethane and hexane solution to obtain crystals suitable for X-ray crystallography. The crystallographic data and structure refinement parameters of the complexes are given in Table 4.1.

Table 4.1. Crystal structure and structure refinement for $\mathbf{P d} 1$ and $\mathbf{P d} 2$.

Identification Code		$\underset{\text { (Pd2) }}{\text { cu_SS_PM_P_Ani_Comp_0ma }}$
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{BrN}_{2} \mathrm{OPd}_{0.5}$	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrClN}_{3} \mathrm{O}_{2} \mathrm{Pd}$
Formula weight	329.31	515.08
Temperature (K)	99.97	100.00
Crystal system	monoclinic	Orthorhombic
Space group	P21/c	Pbca
a (A)	6.22590(10)	16.5311(3)
b/Å	12.9253(3)	8.6466(2)
c (\AA)	13.6735(3)	25.0634(5)
$\alpha{ }^{\circ}$)	90	90
$\beta{ }^{\circ}$)	94.8170(10)	90
$\gamma{ }^{\circ}$)	90	90
Volume (\AA^{3})	1096.44(4)	3582.51(13)
Z	4	8
$\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.995	1.910
$\mu\left(\mathrm{mm}^{-1}\right)$	11.358	12.484
F (000)	640.0	2016.0
Crystal size (mm^{3})	$0.205 \times 0.075 \times 0.065$	$0.25 \times 0.18 \times 0.15$
Radiation source, λ (\AA)	$\mathrm{Cu}\left(K_{\alpha}\right), \lambda=1.54178$	$\mathrm{Cu}\left(K_{\alpha}\right), \lambda=1.54178$
2θ range for data collection $\left(^{\circ}\right.$)	9.432 to 144.36	7.054 to 144.266
Index ranges	$\begin{aligned} -7 & \leq \mathrm{h} \leq 6, \\ -15 & \leq \mathrm{k} \leq 15, \\ -16 & \leq 1 \leq 16 \end{aligned}$	$\begin{aligned} -20 & \leq h \leq 20, \\ -10 & \leq k \leq 10, \\ -30 & \leq 1 \leq 30 \end{aligned}$
Reflections collected	14012	31164
Independent reflections	$2097\left[\mathrm{R}_{\text {int }}=0.0247, \mathrm{R}_{\sigma}=0.0160\right]$	$3526\left[\mathrm{R}_{\text {int }}=0.0292, \mathrm{R}_{\sigma}=0.0160\right]$
Data/restraints/parameters	2097/0/151	3526/0/229
Goodness-of-fit on F^{2}	1.125	1.135
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0213, \mathrm{wR}_{2}=0.0513$	$\mathrm{R}_{1}=0.0210, \mathrm{wR}_{2}=0.0519$
Final R indexes (all data)	$\mathrm{R}_{1}=0.0216, \mathrm{wR}_{2}=0.0515$	$\mathrm{R}_{1}=0.0214, \mathrm{wR}_{2}=0.0523$
Largest diff. peak/hole (e \AA^{-3})	0.49/-0.79	0.45/-0.63

The crystal structure of Pd1 (Figure 4.1) assumes the distorted square-planar coordination geometry around the metal centre and belongs to the monoclinic system, with the space group $\mathrm{P} 21 / c$. The selected bond lengths and bond angles of Pd1 are represented in Table 4.2. Pd1 adopts a distorted square-planar coordination geometry around the metal centre, with the angles $\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{N} 1, \mathrm{~N} 2^{1}-\mathrm{Pd} 1-\mathrm{N} 1^{1}, \mathrm{~N} 2-\mathrm{Pd} 1-\mathrm{N} 1^{1}$ and $\mathrm{N} 2^{1}-\mathrm{Pd} 1-\mathrm{N} 1$ deviating by approximately 10° from the expected square-planar angle of 90°. The bond lengths reported in Table 4.2 indicate that the values relative to the pyridine N donors (Pd1-N1, Pd1-N1 ${ }^{1}$) are slightly longer by ca. $0.038 \AA$ than those of the amide nitrogen atoms.

Figure 4. 1: The ORTEP diagram of Pd1 and Pd2 with the thermal ellipsoids drawn at the 50% probability level.

Table 4.2. Selected geometrical parameters for Pd1.

Atom	Length/Å	Atom	Angle ${ }^{\circ}$
Pd1-N2 ${ }^{1}$	2.0361(19)	N2 ${ }^{1}$-Pd1-N2	180.0
Pd1-N2	2.0361(19)	N2-Pd1-N1	80.35(8)
Pd1-N1 ${ }^{1}$	2.0399 (19)	$\mathrm{N} 2{ }^{1}-\mathrm{Pd} 1-\mathrm{N} 1^{1}$	80.35(8)
Pd1-N1	2.0400 (19)	$\mathrm{N} 2-\mathrm{Pd} 1-\mathrm{N} 1^{1}$	99.65(8)
		$\mathrm{N} 2^{1}$-Pd1-N1	99.65(8)
${ }^{1} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z}$		N1 ${ }^{1}$-Pd1-N1	180.0

The crystal structure of Pd2 (Figure 4.1) belongs to the orthorhombic system, with the space group Pbca. The selected bond lengths and bond angles of $\mathbf{P d} 1$ are represented in Table 4.3. Pd2 also adopts a distorted square-planar coordination geometry around the metal centre, with the bidentate ligand angle deviating (N1-Pd1-N3) from 90° by approximately 10°. The bond lengths for Pd1-N1 ($\mathrm{N}_{\mathrm{amide}}$) and Pd1-N2 ($\mathrm{N}_{\text {pyridine }}$) of the N -(4-bromophenyl)-pyridine-2carboxamide ligand are similar, while the bond length of the coordinated pyridine ligand (Pd1-

N 3) is slightly elongated. The Pd1-Cl1 bond length is the longest when compared to the N donor ligands coordinated to the metal centre.

Table 4.3. Selected geometrical parameters for Pd2.

Atom	Length/̊	Atom	${\text { Angle } /{ }^{\circ}}^{\circ}$ P3-Pd1-Cl1
Pd1-N3	$2.0224(18)$	N3.94(5)	
Pd1-N1	$2.0191(17)$	N1-Pd1-Cl1	$175.22(5)$
Pd1-N2	$2.0190(18)$	N1-Pd1-N3	$93.98(7)$
Pd1-Cl1	$2.3157(5)$	N2-Pd1-Cl1	$95.78(5)$
		N2-Pd1-N3	$171.31(7)$
${ }^{1} 1-\mathrm{X}, 1-\mathrm{Y}, 1-\mathrm{Z}$		N2-Pd1-N1	$80.65(7)$

4.7 Conclusion

We have successfully synthesized two palladium(II) (Pd1 and Pd2) complexes with N -(4-bromophenyl)-pyridine-2-carboxamide ligand. The ligand binds to the palladium in a bidentate fashion, forming a five-membered chelate ring through N -bonding of the $\mathrm{N}_{\text {pyridine }}$ and $\mathrm{N}_{\text {amide }}$. In Pd1 coordination of the Pd metal to the ligand was through the formation of two five membered chelate rings. Whilst in Pd2, the metal is coordinated to the bidentate N-(4-bromophenyl)-pyridine-2-carboxamide, a pyridine and a chloride ligand. The two complexes were characterised with ${ }^{1} \mathrm{H}$ NMR, FT-IR, LC-MS spectroscopic techniques and single X-ray crystallography. Pd1 crystallizes in the monoclinic crystal system and in the P21/c space group, and Pd2 crystallizes in the orthorhombic system, with the space group Pbca.

4.8 References

1. Rosenberg, B.; Vancamp, L.; Trosko, J. E.; Mansour, V. H., Platinum compounds: a new class of potent antitumour agents. nature 1969, 222 (5191), 385-386.
2. Reedijk, J., Improved understanding in platinium antitumour chemistry. Chemical Communications 1996, (7), 801-806.
3. Kostova, I., Platinum complexes as anticancer agents. Recent patents on anti-cancer drug discovery 2006, 1 (1), 1-22.
4. Reedijk, J., New clues for platinum antitumor chemistry: kinetically controlled metal binding to DNA. Proceedings of the National Academy of Sciences 2003, 100 (7), 36113616.
5. Guo, Z.; Sadler, P. J., Medicinal inorganic chemistry. In Advances in inorganic chemistry, Elsevier: 1999; Vol. 49, pp 183-306.
6. Wang, D.; Lippard, S. J., Cellular processing of platinum anticancer drugs. Nature reviews Drug discovery 2005, 4 (4), 307-320.
7. Casini, A.; Messori, L., Molecular mechanisms and proposed targets for selected anticancer gold compounds. Current topics in medicinal chemistry 2011, 11 (21), 26472660.
8. Bindoli, A.; Rigobello, M. P.; Scutari, G.; Gabbiani, C.; Casini, A.; Messori, L., Thioredoxin reductase: A target for gold compounds acting as potential anticancer drugs. Coordination Chemistry Reviews 2009, 253 (11-12), 1692-1707.
9. Jakupec, M. A.; Galanski, M. S.; Arion, V. B.; Hartinger, C. G.; Keppler, B. K., Antitumour metal compounds: more than theme and variations. Dalton transactions 2008, (2), 183-194.
10. Ott, I., On the medicinal chemistry of gold complexes as anticancer drugs. Coordination Chemistry Reviews 2009, 253 (11-12), 1670-1681.
11. Mukherjee, R., Coordination chemistry with pyrazole-based chelating ligands: molecular structural aspects. Coordination Chemistry Reviews 2000, 203 (1), 151-218.
12. Barnes, D.; Chapman, R.; Vagg, R.; Watton, E., Synthesis of novel bis (amides) by means of triphenyl phosphite intermediates. Journal of Chemical and Engineering Data 1978, 23 (4), 349-350.
13. Munro, O. Q.; Wilson, C., Amide hydrogen bonding: control of the molecular and extended structures of two symmetrical pyridine-2-carboxamide derivatives. Acta

Crystallographica Section C: Crystal Structure Communications 2010, 66 (11), o535o539.
14. Khavasi, H. R.; Ghanbarpour, A.; Tehrani, A. A., The role of intermolecular interactions involving halogens in the supramolecular architecture of a series of Mn (II) coordination compounds. RSC advances 2016, 6 (3), 2422-2430.
15. Lumb, I.; Hundal, M. S.; Corbella, M.; Gómez, V.; Hundal, G., Copper (II) Complexes of N, N-Diisopropylpicolinamide-Solvatochromic and Thermochromic Phase Change of a Monomeric Complex to a Ferromagnetically Coupled Dimeric Complex. European Journal of Inorganic Chemistry 2013, 2013 (27), 4799-4811.
16. Biswas, M. K.; Patra, S. C.; Maity, A. N.; Ke, S.-C.; Weyhermüller, T.; Ghosh, P., Asymmetric cleavage of 2, 2^{\prime}-pyridil to a picolinic acid anion radical coordinated to ruthenium (ii): splitting of water to hydrogen. Chemical Communications 2013, 49 (40), 4522-4524.
17. CrysAlis, C., CrysAlis Red. Rigaku Oxford Diffraction 2008.
18. SAINT, B., Data Reduction Software, Bruker AXS. Inc., Madison, WI 2009.
19. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H., OLEX2: a complete structure solution, refinement and analysis program. Journal of applied crystallography 2009, 42 (2), 339-341.
20. Sheldrick, G. M., SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances 2015, 71 (1), 3-8.
21. Sheldrick, G. M., A short history of SHELX. Acta Crystallographica Section A: Foundations of Crystallography 2008, 64 (1), 112-122.
22. Farrugia, L. J., WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography 2012, 45 (4), 849-854.
23. Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Streek, J.; Wood, P. A., Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography 2008, 41 (2), 466-470.
24. Ray, M.; Ghosh, D.; Shirin, Z.; Mukherjee, R., Highly stabilized low-spin iron (III) and cobalt (III) complexes of a tridentate bis-amide ligand 2, 6-bis (N phenylcarbamoyl) pyridine. Novel nonmacrocyclic tetraamido-N coordination and two unusually short metal- pyridine bonds. Inorganic chemistry 1997, 36 (16), 3568-3572.
25. Shi, C.-Y.; Gao, E.-J.; Ma, S.; Wang, M.-L.; Liu, Q.-T., Synthesis, crystal structure, DNA-binding and cytotoxicity in vitro of novel cis-Pt (II) and trans-Pd (II) pyridine carboxamide complexes. Bioorganic \& medicinal chemistry letters 2010, 20 (24), 7250-7254.

CHAPTER 5

5.1 Overall Conclusions and Future Work

5.1.1 Conclusion

Five bidentate $\mathrm{Pd}(\mathrm{II})$ complexes containing different para substituted N -((pyridin-2yl)methyl)aniline chelating spectator ligands of different electronic properties (PdL1, PdL2, PdL3, PdL4 and PdL5) and two $\operatorname{Pd}(\mathrm{II})$ complexes with N-(4-bromophenyl)-pyridine-2carboxamide ($\mathbf{P d} 1$ and $\mathbf{P d} 2$) were synthesized. The purity of the complexes was confirmed using ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, FTIR, LC-MS, elemental analysis and X-ray crystallography. Pd1 crystallizes in the monoclinic crystal system and in the P21/c space group, and Pd2 crystallizes in the orthorhombic system, with the space group Pbca. The kinetics and mechanism of substitution reactions of the para substituted N -((pyridin-2-yl)methyl)aniline $\mathrm{Pd}(\mathrm{II})$ complexes with sulfur-donor nucleophiles were studied under pseudo first-order conditions with TU, DMTU and TMTU nucleophiles. The reactivity of the complexes is influenced by electronic effects, while that of the nucleophiles is influenced by steric effects.

5.1.2 Recommendations for Future Work

This study revealed that the synthesized N, N^{\prime} 'pyridyl $\mathrm{Pd}(\mathrm{II})$ complexes have a relatively high kinetic reactivity towards less sterically hindered nucleophiles, viz. thiourea (TU), N, N^{\prime} 'dimethylthiourea (DMTU), compared to the bulky $N, N, N^{\prime}, N^{\prime}$-tetramethylthiourea (TMTU). Therefore, it would be interesting to study the kinetics of these complexes against bulkier nucleophiles such as Glutathione (GSH) or l-Methionine (l -Met), Figure 5.1. Studies involving models of amino acids ($\mathrm{L}-\mathrm{Met}$) and peptides (GSH), would also assist in understanding the interactions of the $\mathrm{Pd}(\mathrm{II})$ complexes with DNA.

Further studies should also involve DNA binding analysis of these complexes against human cancer cell lines, as well as cytotoxicity studies. Such information would broaden the knowledge on the design of alternative Pd-based anticancer agents.

GSH

$L^{-M e t}$

Figure 5. 1: Alternative biomolecules for further studies.

Figure A1 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{L} 1$ ligand.

Figure A2 ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{L} 1$ ligand.

Figure A3 IR spectrum for L1 ligand.

Figure A4 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{L} 2$ ligand.

Figure A5 ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{L} 2$ ligand.

Figure A6 IR spectrum for L2 ligand.

Figure A7 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{L} 3$ ligand.

Figure A8 ${ }^{13} \mathrm{C}$ NMR spectrum for L 3 ligand.

Figure A9 IR spectrum for L3 ligand.

Figure A10 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{L} 4$ ligand.

Figure A11 ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{L} 4$ ligand.

Figure A12 IR spectrum for $\mathbf{L 4}$ ligand.

Figure A13 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{L 5}$ ligand.

Figure A14 ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{L 5}$ ligand.

Figure A15 IR spectrum for L5 ligand.

Figure A16 ${ }^{1} \mathrm{H}$ NMR spectrum for PdL1 complex.

Figure A17 ${ }^{13} \mathrm{C}$ NMR spectrum for $\operatorname{PdL} 1$ complex.

Figure A18 IR spectrum for PdL1 complex.

Figure A19 lrms spectrum for PdL1 complex.

Figure A20 ${ }^{1} \mathrm{H}$ NMR spectrum for PdL2 complex.

Figure A21 ${ }^{13} \mathrm{C}$ NMR spectrum for $\operatorname{PdL} 2$ complex.

Figure A22 IR spectrum for PdL2 complex.

Figure A23 lrms spectrum for PdL2 complex.

Figure A24 ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{P d L} 3$ complex.

Figure A25 ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{P d L} 3$ complex.

Figure A26 IR spectrum for PdL3 complex.

Figure A27 lrms spectrum for PdL3 complex.

Figure A28 ${ }^{1} \mathrm{H}$ NMR spectrum for $\operatorname{PdL} 4$ complex.

Figure A29 IR spectrum for PdL4 complex.

Figure A30 ${ }^{1} \mathrm{H}$ NMR spectrum for PdL5 complex.

Figure A31 ${ }^{13} \mathrm{C}$ NMR spectrum for $\operatorname{PdL} 5$ complex.

Figure A32 IR spectrum for PdL5 complex.

Figure A33 1rms spectrum for PdL5 complex.

Table A1 Selected wavelengths (nm) used for studying the kinetic reactions of $\operatorname{Pd}(\mathrm{II})$ complexes with the thiourea nucleophiles.

Complex	Nucleophile	Wavelength, $\mathbf{n m}$
PdL1	TU	295
	DMTU	300
	TMTU	305
PdL2	TU	295
	DMTU	300
	TMTU	305
PdL3	TU	295
	DMTU	300
	PdL4	TMTU
	TU	305
PdL5	DMTU	305
	TMTU	310
	TU	315
	DMTU	305
	TMTU	310
		315

Table A2 Average $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ for the reaction of PdL1 with thiourea nucleophiles at 298 K .

$[\mathrm{Nu}] / \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$		
	TU	DMTU	TMTU
$5 \mathrm{E}-4$	8,38659	13,828724	
$1 \mathrm{E}-3$	15,71827	20,46773	
0,0015	22,02881	27,5083	13,44462
0,002	28,91626	33,05594	
0,0025	35,34436		19,23206
0,003			24,2184
0,004		30,51809	
0,005			

Figure A34 Dependence of $k_{\text {obs }}$ on the entering nucleophile concentration for the displacement of chloride ${ }_{1}$ on PdL1 complex in water, $\mathrm{I}=0.1 \mathrm{M}(\mathrm{LiCl}), \mathrm{T}=298 \mathrm{~K}$.

Table A3 Average $k_{o b s}\left(\mathrm{~s}^{-1}\right)$ for the reaction of PdL2 with thiourea nucleophiles at 298 K .

$[\mathrm{Nu}] / \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$		
	TU	DMTU	TMTU
$5 \mathrm{E}-4$		8,59634	
$1 \mathrm{E}-3$	17,69165	15,04729	3,31477
0,0015	25,0257	22,05998	

0,002	32,70792	29,19449	6,59285
0,0025	39,40044	35,4036	
0,003	45,75664		9,75402
0,004			13,20481
0,005		16,00193	

Figure A35 Dependence of $k_{\text {obs }}$ on the entering nucleophile concentration for the displacement of chloride ${ }_{1}$ on PdL2 complex in water, $\mathrm{I}=0.1 \mathrm{M}(\mathrm{LiCl}), \mathrm{T}=298 \mathrm{~K}$.

Table A4 Average $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ for the reaction of PdL3 with thiourea nucleophiles at 298 K .

$[\mathrm{Nu}] / \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$		
	TU	$\mathbf{D M T U}$	TMTU
$5 \mathrm{E}-4$	11,10406	10,99755	
$1 \mathrm{E}-3$	19,27723	20,44256	8,4122
0,0015	25,55497	28,90848	
0,002	35,40424	37,12629	15,24913
0,0025	43,57588	45,4378	
0,003			21,62503
0,004		28,45985	
0,005		34,55511	

Figure A36 Dependence of $k_{\text {obs }}$ on the entering nucleophile concentration for the displacement of chloride ${ }_{1}$ on PdL3 complex in water, $\mathrm{I}=0.1 \mathrm{M}(\mathrm{LiCl}), \mathrm{T}=298 \mathrm{~K}$.

Table A5 Average $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ for the reaction of PdL4 with thiourea nucleophiles at 298 K .

$[\mathrm{Nu}] / \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$		
	TU	$\mathbf{D M T U}$	TMTU
$1 \mathrm{E}-3$	10,63101	8,22445	5,08328
0,0015	17,36058	12,54762	
0,002	21,77975	17,0761	7,65118
0,0025	26,90649	21,13419	
0,003	33,38247	25,08066	11,04213
0,004			14,25341
0,005			17,984

Figure A37 Dependence of $k_{\text {obs }}$ on the entering nucleophile concentration for the displacement of chloride ${ }_{1}$ on PdL4 complex in water, $\mathrm{I}=0.1 \mathrm{M}(\mathrm{LiCl}), \mathrm{T}=298 \mathrm{~K}$.

Table A6 Average $k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$ for the reaction of PdL5 with thiourea nucleophiles at 298 K .

$[\mathrm{Nu}] / \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{s}^{-1}\right)$		
	TU	DMTU	TMTU
$5 \mathrm{E}-4$	7,18999	6,29023	
$1 \mathrm{E}-3$	11,496	11,4255	9,28011
0,0015	16,6402	16,47458	
0,002	22,05958	22,35079	17,68069
0,0025	28,46814	26,97597	
0,003			24,95068
0,004		31,96058	
0,005		40,7972	

Figure A38 Dependence of $k_{\text {obs }}$ on the entering nucleophile concentration for the displacement of chloride ${ }_{1}$ on PdL5 complex in water, $\mathrm{I}=0.1 \mathrm{M}(\mathrm{LiCl}), \mathrm{T}=298 \mathrm{~K}$.

Table A7 Temperature dependence of k_{2} for the reaction of PdL5 with thiourea nucleophiles at $288-308 \mathrm{~K}$.

$(1 / \mathbf{T}) / \mathrm{K}^{-1}$	$\ln \left(k_{2} / \mathbf{T}\right)$		
	$\mathbf{T U}$	$\mathbf{D M T U}$	$\mathbf{T M T U}$
0,00347	$-2,9753$	$-3,02343$	$-3,1872$
0,00341	$-2,7702$	$-2,84346$	-2.9171
0,00335	$-2,62138$	$-2,67824$	$-2,7003$
0,0033	$-2,47292$	$-2,5407$	$-2,4487$
0,00325	$-2,18985$	$-2,31107$	$-2,2636$

Figure A39 Erying plot for the reaction of PdL1 with the three nucleophiles at various temperatures in the temperature range 288-308 K.

Table A8 Temperature dependence of k_{2} for the reaction of PdL2 with thiourea nucleophiles at $288-308 \mathrm{~K}$.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\ln \left(k_{2} / \mathbf{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-2,5586$	$-3,01201$	$-3,9659$
0,00341	$-2,4936$	$-2,77659$	$-3,7207$
0,00335	$-2,4022$	$-2,58236$	$-3,46098$
0,0033	$-2,333$	$-2,42102$	$-3,2983$
0,00325	$-2,2512$	$-2,28834$	$-3,15067$

Figure A40 Erying plot for the reaction of PdL2 with the three nucleophiles at various temperatures in the temperature range 288-308 K.

Table A9 Temperature dependence of k_{2} for the reaction of PdL3 with thiourea nucleophiles at 288-308 K.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\ln \left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-2,7571$	$-2,64$	$-3,62532$
0,00341	$-2,6037$	$-2,45556$	$-3,33943$
0,00335	$-2,4617$	$-2,33296$	$-3,11045$
0,0033	$-2,3142$	$-2,23365$	$-2,86539$
0,00325	$-2,1858$	$-2,11862$	$-2,75606$

Figure A41 Erying plot for the reaction of PdL3 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Table A10 Temperature dependence of k_{2} for the reaction of PdL4 with thiourea nucleophiles at 288-308 K.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\ln \left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-2,78959$	$-3,22837$	$-4,41441$
0,00341	$-2,58436$	$-3,07807$	$-3,80041$
0,00335	$-2,39947$	$-2,89801$	$-3,3903$
0,0033	$-2,19591$	$-2,74361$	$-3,09295$
0,00325	$-2,04393$	$-2,6355$	$-2,78671$

Figure A42 Erying plot for the reaction of PdL4 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Table A11 Temperature dependence of k_{2} for the reaction of PdL5 with thiourea nucleophiles at 288-308 K.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\ln \left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-3,53657$	$-3,30904$	$-2,86688$
0,00341	$-3,13294$	$-2,99307$	$-2,64378$
0,00335	$-2,83419$	$-2,7708$	$-2,45092$
0,0033	$-2,59693$	$-2,59131$	$-2,3024$
0,00325	$-2,36788$	$-2,42649$	$-2,11717$

Figure A43 Erying plot for the reaction of PdL5 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Table A12 Average $k_{o b s}\left(\mathrm{~min}^{-1}\right)$ for the reaction of PdL1 with thiourea nucleophiles at 298 K .

$\mathrm{Nu}] / \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$		
	TU	DMTU	TMTU
$5 \mathrm{E}-4$	0.161	0.101	
0.001	0.162	0.103	0.045
0.0015	0.164	0.104	
0.002	0.162	0.105	0.055
0.0025	0.162	0.105	
0.003			0.058
0.004			0.061
0.005			0.062

Table A13 Average $k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$ for the reaction of PdL2 with thiourea nucleophiles at 298 K .

[\mathrm{Nu}]$/ \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$		
	TU	DMTU	TMTU
$5 \mathrm{E}-4$	0,266	0,129	
0.001	0,266	0,129	0.058

0.0015	0,267	0,129	
0.002	0,267	0,129	0.058
0.0025	0,267	0,128	
0.003			0,058
0.004			0,0589
0.005			0,0609

Table A14 Average $k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$ for the reaction of PdL3 with thiourea nucleophiles at 298 K .

[\mathrm{Nu}]$/ \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$		
	TU	DMTU	TMTU
$5 \mathrm{E}-4$	0,595	0,277	
0.001	0,597	0,277	0.06
0.0015	0,597	0,277	
0.002	0,597	0,276	0.06
0.0025	0,297	0,276	
0.003			0,06
0.004			0,06
0.005			0,06

Table A15 Average $k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$ for the reaction of PdL4 with thiourea nucleophiles at 298 K .

$[\mathrm{Nu}] / \mathrm{M}$	$k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$		
	TU	DMTU	TMTU
$5 \mathrm{E}-4$	0,133	0,053	
0.001	0,133	0,053	0.017
0.0015	0,133	0,053	
0.002	0,133	0,053	0,015
0.0025	0,135	0,053	
0.003			0,013
0.004			0,012
0.005			0,011

Table A16 Average $k_{\text {obs }}\left(\mathrm{min}^{-1}\right)$ for the reaction of PdL5 with thiourea nucleophiles at 298 K .

[\mathrm{Nu}]$/ \mathrm{M}$	$k_{\mathrm{obs}}\left(\mathrm{min}^{-1}\right)$			
	TU	DMTU		TMTU
$5 \mathrm{E}-4$	0,142	0,071		
0.001		0,142	0,069	0.029
0.0015		0,142	0,065	
0.002		0,142	0,062	0,0029
0.0025		0,142	0,062	
0.003				0,029
0.004				0,029
0.005				0,029

Table A17 Temperature dependence of k_{2} for the reaction of PdL1 with thiourea nucleophiles between the temperature range $288-308 \mathrm{~K}$.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\operatorname{In}\left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-11,6638$	$-12,8854$	$-13,5625$
0,00341	$-11,6311$	$-12,4776$	$-13,2501$
0,00335	$-11,6104$	$-12,0587$	$-12,6703$
0,00330	$-11,5596$	$-11,7432$	$-12,2227$
0,00325	$-11,5205$	$-11,5674$	$-11,9233$

Figure A44 Eyring plot for the reaction of PdL1 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Table A18 Temperature dependence of k_{2} for the reaction of PdL2 with thiourea nucleophiles between the temperature range $288-308 \mathrm{~K}$.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\operatorname{In}\left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-11,3769$	$-12,753$	$-13,7972$
0,00341	$-11,227$	$-12,4252$	$-13,1737$
0,00335	$-11,1134$	$-11,99409$	$-12,7449$
0,00330	$-11,0016$	$-11,6724$	$-12,0497$
0,00325	$-10,8805$	$-11,50841$	$-11,685$

Figure A45 Eyring plot for the reaction of PdL2 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Table A19 Temperature dependence of k_{2} for the reaction of $\mathbf{P d L} 3$ with thiourea nucleophiles between the temperature range $288-308 \mathrm{~K}$.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\operatorname{In}\left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-10,7657$	$-11,7277$	$-13,2639$
0,00341	$-10,5524$	$-11,4663$	$-12,9934$
0,00335	$-10,37139$	$-11,0766$	$-12,7048$
0,00330	$-10,0778$	$-10,8432$	$-12,5092$
0,00325	$-9,85904$	$-10,5945$	$-12,3502$

Figure A46 Eyring plot for the reaction of PdL3 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Table A20 Temperature dependence of k_{2} for the reaction of PdL4 with thiourea nucleophiles between the temperature range $288-308 \mathrm{~K}$.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\operatorname{In}\left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-12,4907$	$-13,4147$	$-15,2788$
0,00341	$-12,1284$	$-13,0500$	$-14,4631$
0,00335	$-11,8058$	$-12,6289$	$-13,7509$
0,00330	$-11,6147$	$-12,2281$	$-12,8905$
0,00325	$-11,4643$	$-11,8269$	$-12,3910$

Figure A47 Eyring plot for the reaction of PdL4 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Table A21 Temperature dependence of k_{2} for the reaction of PdL5 with thiourea nucleophiles between the temperature range $288-308 \mathrm{~K}$.

$(1 / \mathrm{T}) / \mathrm{K}^{-1}$	$\operatorname{In}\left(k_{2} / \mathrm{T}\right)$		
	TU	DMTU	TMTU
0,00347	$-12,7152$	$-13,3187$	$-14,7896$
0,00341	$-12,2027$	$-12,9884$	$-14,3864$
0,00335	$-11,8434$	$-12,5126$	$-13,93319$
0,00330	$-11,5943$	$-11,9833$	
0,00325	$-11,3271$	$-11,6202$	

Figure A48 Eyring plot for the reaction of PdL5 with the three nucleophiles at various temperatures in the temperature range $288-308 \mathrm{~K}$.

Figure A49 ${ }^{1} \mathrm{H}$ NMR spectrum of N -(4-bromophenyl)pyridine-2-carboxamide.

Figure A50 IR spectrum of N -(4-bromophenyl)pyridine-2-carboxamide.

Figure A51 LRMS for N-(4-bromophenyl)pyridine-2-carboxamide.

Figure A52 ${ }^{1} \mathrm{H}$ NMR spectrum of bis[N-(4-bromophenyl)-2-pyridinecarboxamide]Palladium (Pd1).

Figure A53 IR spectrum of bis[N-(4-bromophenyl)-2-pyridinecarboxamide]Palladium (Pd1).

Figure A54 IR spectrum of Palladium(II) [N-(4-bromophenyl)-2-pyridinecarboxamide), pyridine chloride (Pd2).

Figure A55 LRMS of [N-(4-bromophenyl)-2-pyridinecarboxamide), pyridine chloride (Pd2)

[^0]: \dagger All complexes studied follow the same numbering.

