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ABSTRACT 

 

There is a growing recognition globally that many agrochemicals are hazardous 

to humans, animals and the environment. Therefore, there is a need to 

substitute these chemical products with biological and physical treatments, and 

to change agronomic practices in order to control pests and diseases in 

agriculture. 

 

The primary objective of this thesis was to develop and test in laboratory, field 

and commercial packhouses trials as alternative control measures against 

green mould of citrus (caused by Penicillium digitatum Pers: Fr. Sacc) and 

Penicillium molds of litchi (caused by several Penicillium). 

 

A South African isolate of P. digitatum, isolated from an infected orange fruit, 

was found to be resistant to imazalil (the standard postharvest fungicide used in 

South Africa). Sixty yeast and 92 Bacillus strains were screened for their 

antagonistic activity against this isolate of P. digitatum. None of the yeasts or 

Bacillus isolates produced a curative action against P. digitatum on oranges. 

However, yeast Isolate B13 provided excellent preventative control of P. 

digitatum, superior to all the Bacillus isolates, when it was applied to citrus fruit 

prior to artificial inoculation with P. digitatum. Electron microscopy showed that 

yeast Isolate B13 inhibited conidial germination of P. digitatum. For the control 

of P. digitatum pre-harvest, trees were sprayed with a yeast, Isolate B13, a few 

months or a few days before harvest. However, this treatment alone proved to 

be ineffective in providing preventative control of green mould on Valencia 

oranges. 

 

For the control of P. digitatum preharvest, trees were treated with potassium 

silicate for a full season. Regular potassium silicate treatments resulted in a 

significant preventative control of P. digitatum infection on both navel and 

Valencia oranges. Treatment of Eureka lemons with potassium silicate as a 

postharvest treatment for the control of P. digitatum resulted in reduced 

disease lesion diameters when applied preventatively or curatively. Electron 
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microscopy showed that potassium silicate inhibited germination of P. 

digitatum conidia and growth of its mycelium. 

 

Hot-water dip treatment at 50-58°C for 60-180 seconds (in increments of 

15 seconds), significantly reduced infection development in inoculated wounds 

of Valencia oranges compared with control fruit treated with tap water, without 

causing any rind damage. 

 

The integration of the yeast, a hot water dip and potassium silicate pre-and 

postharvest applications provided control of P. digitatum control in multiple 

packhouse trials. The control achieved by the yeast Isolate B13 or hot-water, 

and potassium silicate in the packhouse alone was superior or equivalent to that 

provided by imazalil. 

 

A similar study was also carried out to determine possible control measures for 

Penicillium sp. on litchis. In this study, a total of 23 yeast and 13 Bacillus 

isolates were obtained from litchi fruit surfaces. Ten yeast and 10 Bacillus 

isolates that had shown good efficacy against P. digitatum of citrus were added 

to these for screening against Penicillium sp. of litchis. None of the yeasts or 

Bacillus isolates produced a curative action against Penicillium sp. infection on 

litchis. However, several yeast isolates (YL4, YL10, YLH and B13) resulted in 

reduced severity of the pathogen, when applied preventatively, compared with 

an untreated control. The yeast isolates were superior to all the Bacillus 

isolates, when applied to litchis prior to artificial inoculation by Penicillium 

infection on litchis. Potassium silicate as a postharvest treatment for the control 

of the pathogen caused reduced lesion diameters when applied preventatively 

or curatively to naturally infected litchis. 

 

The results presented in this thesis highlight the use of biological, physical and 

agronomic practices singly or in combination as an alternative control strategy 

against citrus postharvest green mould. This thesis also provides an insight into 

expanding these strategies, partly or fully, for the control of other postharvest 

Penicillium infections using litchi as an example. 
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 1 

INTRODUCTION 

 
Postharvest diseases caused by pathogenic fungi result in great losses to the 

food industry, and especially to fruit industry (Sommer, 1985). Postharvest 

losses are not easy to estimate reliably (Tian, 2002). However, citrus losses can 

reach to 50% (Janisiewicz and Korsten, 2002). Penicillium spp. causes severe 

postharvest storage problems wherever citrus are grown, with significant annual 

losses up to $50 million in California alone (Eckert and Eaks, 1989). Penicillium 

sp. is also the major postharvest fungal pathogens of litchis (Jiang et al., 2001). 

Losses of litchis are estimated to be 20-30% of the harvested fruit (Jiang et al., 

2001). In severe cases losses of litchis can also reach 50% before consumption 

(Jiang et al., 2001). Global losses of all fruit probably run into hundreds of 

millions of dollars. This is a loss incurred at the end of all the farming activities, 

from land preparation to maturity management, harvesting, packing, and 

transport and storage management. Thus, there is a great demand for effective 

measures to reduce the loss. 

 

Current control measures largely revolve around the application of synthetic 

fungicides. Increasingly, public concern over food safety and the development 

of fungicide resistance by strains of Penicillium has increased the search for 

alternative means which are less harmful to human health and the environment 

(Holmes and Eckert, 1999). The search for microbial antagonists to control 

postharvest decay of fresh fruit has been widely pursued and has emerged as a 

promising approach for managing postharvest fruit diseases (Ippolito and Nigro, 

2000; Palou et al., 2008). Use of materials that are generally regarded as safe 

(GRAS) (Larrigaudiere et al., 2002; Palou et al., 2008), physical control 

measures and changes in agronomic practices (Lurie, 1998; Palou et al., 2008) 

also appear to show promise as alternatives for postharvest control of citrus fruit 

infection. 

 

The overall objective of this study was to investigate the application of a multi-

component approach, combining biocontrol agents (yeast and Bacillus spp.) 

with potassium silicate (preharvest and postharvest) and a hot water dip 

treatment to control of the green mould (caused by Penicillium digitatum Pers: 

Fr. Sacc) of citrus. A preliminary investigation was also conducted on the 
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control of Penicillium sp. of litchi fruit using biocontrol agents (yeast and Bacillus 

spp.) and postharvest application of potassium silicate. 

 

Specific objectives of the thesis were: 

 

1. To investigate the effect of the number of conidia of P. digitatum on its 

pathogenicity on citrus fruit. 

 

2. To evaluate the efficacy of the fungicide imazalil to control P. digitatum. 

 

3. To identify yeast and Bacillus isolates antagonistic to P. digitatum and 

further investigate their efficacy in controlling infection by the pathogen 

under in vivo conditions. 

 

4.  To investigate possible modes of action of effective antagonists in the 

control of P. digitatum by observing interactions in citrus fruit wounds, 

using environmental scanning electron microscopy (ESEM). 

 

5.  To assess the ability of yeast Isolate B13 to colonize citrus fruit surfaces 

and to investigate its efficacy in controlling postharvest infection by P. 

digitatum, when applied prior to harvest. 

 

6.  To investigate the effects of preharvest applications of potassium silicate 

for the control of P. digitatum infection of navel and Valencia oranges, 

and to determine the silicon content of leaves and fruit of navel and 

Valencia oranges after harvest. 

 

7.  To evaluate the effect of potassium silicate as a postharvest application 

in order to manage P. digitatum and to identify possible modes of action 

using ESEM. 

 

8. To evaluate the use of a hot water dip as a stand-alone treatment under 

laboratory conditions. 

 
9. To investigate the individual or combined effect of a hot water dip, yeast 

Isolate B13 and potassium silicate treatments in three commercial 

packhouses for the control of P. digitatum of Valencia oranges. 
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10.  To isolate yeast and Bacillus antagonistic to Penicillium spp. of litchis 

and investigate their efficacy in controlling infection by Penicillium spp. 

on litchis. 

 
11. Use of potassium silicate for the control of Penicillium spp. on litchis. 
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CHAPTER 1 

INTEGRATED CONTROL OF POSTHARVEST GREEN AND 

BLUE MOULDS OF CITRUS FRESH FRUIT 

 

LITERATURE REVIEW 

 

1.1. INTRODUCTION 

Fruit are important food crops (Chakraverty and Singh, 2001) and provide 

important nutritional values for humans (Kays, 1997). There is a need to 

increase food production in order to provide nutritional requirements to the 

world population (Chakraverty and Singh, 2001). 

 

The supply of food can be increased by increasing production and by reducing 

postharvest losses. The use of high yielding cultivars, fertilizers, water and 

modern crop management has been attributed to the significant increase of 

food production during the last few decades (Chakravery and Singh, 2001). 

However, these researchers noted that hunger and malnutrition can still exist, 

despite adequate food production, due to uneven distribution of production, 

biotic and abiotic crop losses and the deterioration of food resources during 

postharvest operations. 

 

Losses of fresh fruits after harvest may be significant and are particularly high in 

under-developed countries, accounting for losses up to 50%, and most of them 

are due to postharvest pathogen attacks (Wilson and Wisniewski, 1989). Fungal 

diseases are the most common sources of postharvest fruit decay and losses. 

Harvested produce has a higher value than the same produce in the field. A 

harvested crop carries the collective cost of the whole farming operation, 

including soil preparation, planting, fertilization, watering, disease, pest and 

weed control, harvesting, storage, distribution, and sales. Hence, a 20% loss of 

a high value produce has substantial impact on the total food production budget 

(Wilson and Pusey, 1985). 

 

Citrus is the world‟s leading fruit crop in terms of volume (quantity) of 

production. Further, it is grown on six continents in over 100 countries 

worldwide, in the tropics and sub-tropics (Saunt, 1999). Citrus fruits are 
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susceptible to a number of postharvest diseases that cause significant losses 

during the marketing of fresh citrus. Green mould (caused by Penicillium 

digitatum Pers: Fr. Sacc) and blue mould (caused by Penicillium italicum 

Wehmer.) are major sources of citrus fruit decay (Brown and Miller, 1999). For 

example, P. digitatum causes an annual loss up to $50 million in California 

alone (Eckert and Eaks, 1989). Global losses may run into hundreds of millions 

of dollars. Other most common postharvest fungal diseases of citrus fruit 

include stem-end rot (caused by Physalospora rhodina Berk. and Curt.) or 

Diaporthe citri H.S. Fawc.), sour rot (caused by Endomyces geotrichum E.E. 

Butler and L.J. Petersen) and brown rot (caused by Phytophthora citrophthora 

R.E. Sm. and E.H. Sm. Leonian), (Brown and Miller, 1999). This review will 

focus on green and blue moulds. 

 

Maintaining the health of the fresh citrus fruit during all the postharvest 

processes such as storage, marketing, and consumption is crucial to the 

achievement of the producer and consumer satisfaction (Brown and Miller, 

1999). Crop losses during the postharvest period results not only in a loss of 

investment or income, but also a loss of consumer confidence, wholesaler 

contracts and market share (Brown and Miller, 1999), undermining the complex 

citrus industry as a whole. 

 

 

1.2. PENICILLIUM MOULDS 

The Penicillium species are ubiquitous, and produce prolific numbers of asexual 

conidia. Their inoculum is found in soil, on plant surfaces, in dump tank water, 

(Spotts et al., 1988; Spotts and Cervantes, 1993), in contaminated wooden bins 

(Sanderson and Cervantes, 1995) as well as in the atmosphere (Eckert and 

Eaks, 1989; Brown, 2006). They are prevalent during the citrus harvest season 

and often infect citrus fruit through wounds incurred during harvesting and 

handling (Eckert and Eaks, 1989). 

 

1.2.1. Green mould (caused by Penicillium digitatum) 

Green mould, caused by P. digitatum, is a widespread postharvest disease of 

citrus. It produced chains of varying size and shape conidia (4-7 × 6-8 µm)” 

(Brown and Eckert, 2000). It is readily recognized by the mass of green conidia 

produced on infected fruit. Infection takes place through wounds and fruit decay 
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begins at the infected injury spots. The initial infection area shows a soft watery 

spot. As the lesion develops, a white mycelium develops and this produces the 

green conidia (Ismail and Zhang, 2004). 

 

After establishing itself in a wound as the primary point of infection, mycelium of 

Penicillium spp. produces cell wall-degrading enzymes that cause a breakdown 

of the fruit epidermal cell walls, allowing for a rapid spreadof the fungus over the 

surface of the infected fruit. The vegetative mycelium then starts to sporulate, 

with the result that the entire fruit surface may be covered with green conidia 

(Ismail and Zhang, 2004; Smilanick et al., 2006). 

 

1.2.2. Blue mould (Penicillium italicum) 

Blue mould, caused by Penicillium italicum, also develops on citrus fruit through 

injuries as in the case of green mould. “It produced chains of cyliderical to 

elliptical or slightly ovate conidia (2-3 × 3-5 µm)” (Brown and Eckert, 2000). It is 

widespread in the citrus growing world. Blue mould is easily recognized by the 

mass of blue conidia produced on infected fruit. Initial lesions are similar to the 

lesions of green mould, but the conidia are blue in colour and are surrounded by 

white mycelium (Ismail and Zhang, 2004). 

 

1.2.3 Penicillium spp. of litchi 

Litchis are susceptible to postharvest infection by microorganisms such as 

bacteria and filamentous fungi (Lonsdale, 1988). Penicillium spp. symptoms 

appear as white foci which later become green to blue (Lichter et al., 2004). 

Penicillium spp. is one of the major postharvest fungal pathogens of litchis and 

the disease is made worse by the fact that it can not be controlled by sulphur 

fumigation (Kremer-Kohne & Lonsdale, 1990; Jacobs & Korsten, 2004). 

 

1.2.4. Penicillium disease epidemiology 

Understanding the epidemiology of the disease organisms is essential in order 

to control postharvest disease (Anonymous, 2005). In particular, understanding 

the different ways by which the pathogens come into contact, and infects fruit is 

important in formulating post-harvest control strategies. 

 

Penicillium lives on in the field, on soil debris and produces conidia that infect 

wounded fruit on the tree and on the ground. The conidia of Penicillium are 
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adaptated to survive unfavourable environmental conditions. Under favourable 

conditions of temperature and moisture, Penicillium develops prolific numbers of 

conidia. Wind currents disseminate conidia to fruit in the tree canopy and 

exposed surfaces of the fruit (Brown, 2006). Even tiny injuries provide points of 

infection for these pathogens (Brown, 2006; Smilanick et al., 2006). 

 

The fungus does not usually spread directly as mycelium from decayed fruit to 

healthy fruit in packed boxes. However, a situation labelled as “soilage” occurs 

when conidia produced on infected fruit are disseminated to healthy fruit 

through contact (Brown, 2006). This ability of P. digitatum to produce conidia 

prolifically enables it to develop strains with resistance to fungicide treatments. 

A fresh infection can cover a whole fruit in only 2-3 days (Brown, 2006). Once 

active growth has occurred and the Penicillium pathogen enters below the 

epidermal layer of the fruit, control becomes difficult (Anonymous, 2005). 

 

 

1.3 CONTROL OF PENICILLIUM MOULD OF CITRUS FRUIT 

1.3.1 Past and current chemical control 

Control of postharvest pathogens has been accomplished mainly with the use of 

chemicals. Penicillium postharvest pathogens developed resistance to the 

fungicide thiabendazole (TBZ) in the California citrus industry in 1981 (Holmes 

and Eckert, 1999).  In a subsequent study, isolates of Penicillium digitatum were 

systematically collected from packhouses in California and screened for 

fungicide resistance.  Some isolates were resistant to the fungicides TBZ, 

sodium ortho-phenylphenate (SOPP) and imazalil 1-[2-(2,4-dichlorophenyl)-2-

(2-prophenyloxy)ethyl]-1H-imidazole (Kinay et al., 2007).  South Africa has also 

experienced fungicide resistance problems in the citrus industry for the last 

30 years (Lesar, 2008). The fungicides sodium ortho-phenylphenate and 

prochloraz have not been used in citrus packhouses for the last 20 years 

because of resistance problems (Lesar, 2008). The fungicide imazalil has been 

the standard fungicide for the treatment of citrus fruit against Penicillium 

postharvest pathogens in South African packhouses for the last 20 years but 

resistant isolates are now widespread in South Africa (Lesar, 2008). 

 

Recently, a new dual component product for postharvest disease control, 

combining imazalil and pyrimethanil, has been formulated into a single 
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formulation known as Philabuster® by Janssen Phamaceutica (Belgium) and 

has been registered in South Africa (Wever, 2008). This fungicide has resulted 

in high levels of control of imazalil resistant strains of P. digitatum (Lesar, 2008). 

However, this applies strong selection pressure for Penicillium to develop 

resistance against pyrimethanil because the dual fungicide is effectively acting 

as a single fungicide since the imazalil is ineffective. 

 

1.3.2 Future regulations and issues related to chemical control 

Although imazalil is still in use in the citrus industry in South Africa, Lesar (2008) 

reported that 20 isolates of Penicillium were found to be resistant to imazalil, 

during the period of 2001-2005 as a result of in vivo screening of several 

hundreds Penicillium isolates. The existence of biotypes of Penicillium resistant 

to imazalil has also been documented in all major citrus production areas 

(Eckert et al., 1994; Wild, 1994) and terminal markets (Bus et al., 1991). 

Resistance to imazalil by Penicillium expansum on apples developed both in the 

field and in packhouses (Kinay et al., 2007). Given the underlying biology of 

fungicide resistance, it is unlikely that any systemic fungicide will provide a long-

term solution to the problem of postharvest Penicillium diseases of citrus. 

 

Over time, chemical control has proved to have other negative side effects such 

as high costs of registrations, negative effects on beneficial microorganisms 

(Utkhede, 1992) and on the environment, causing soil and water pollution 

(Akhtar, 1998). It is widely accepted that there is a need to substitute polluting 

chemicals with less dangerous chemicals or, preferably, cultural practices and 

biological control measures (Walker and Morey, 1999). 

 

 

1.4 SANITATION PRACTICES FOR THE CONTROL OF 

PENICILLIUM POSTHARVEST MOULDS 

1.4.1 Soil and field conditions 

Infected plant material in the field can support large numbers of conidia of 

Penicillium postharvest pathogens, which can be disseminated and distributed 

by wind onto fruit trees (Anonymous, 2005). 
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1.4.2 Contaminated water 

Pond and stream water may be contaminated by runoff from fields and 

packhouses that may have large numbers of Penicillium postharvest 

propagules. Therefore, using water from these sources for irrigation may 

contaminate produce in the field (Anonymous, 2005). 

 

1.4.3 The harvesting and packing pathway 

Injury of the flavedo (peel) of citrus fruit typically occurs during harvesting, and 

subsequent packhouse processes of washing and packing.  These wounds 

provide infection points for Penicillium conidia to enter the epidermal layer of the 

fruit and cause decay. However, careful management of the harvesting and 

packing of fruit can reduce losses significantly (Anonymous, 2004; Smilanick et 

al., 2006) [For more detailed information, refer to Smilanick et al. (2006)]. 

 

Penicillium propagules carried with the fruit into the packhouse will contaminate 

all working surfaces.  The propagules may remain viable for months on surfaces 

such as dump tank, grading lines, and brushes (Anonymous, 2005). All fruit 

handling tools need to be sterilized daily to remove dirt, condia and infected 

fruit. It is important to keep the packhouse and its vicinity clear of any infected 

produce, including culls piles (Anonymous, 2005). 

 

1.4.4 Airborne Conidia  

Sanitation may not completely stop contamination of fresh fruit by Penicillium 

conidia because of their presence in the air as suspended particles. The best 

prevention against such propagules would be sanitation with chlorine 

(Anonymous, 2005), UV or or ozone. 

 

 

1.5 CONTROL OF POSTHARVEST PENICILLIUM MOULDS OF 

CITRUS BY SODIUM CARBONATE, SODIUM 

BICARBONATE AND OTHER FOOD ADDITIVE PRODUCTS 

Several additives have potential for disease control, such as silicates (Belanger 

et al., 1995), essential oils (Arras and Usai, 2001), carbonates and bicarbonates 

(Smilanick et al., 1999; Conway et al., 2007; Janisiewicz et al., 2008; Smilanick 

et al., 2008), chitosan (El-Ghaouth et al., 1992) and various acids (Sholberg, 



 10 

1998). Food additives that control post-harvest diseases would be ideal 

because they may be applied to the food system without restriction (Maga and 

Tu, 1994). 

 

Carbonic acid salts, such as sodium carbonate (soda ash) and sodium 

bicarbonate (baking soda) have been shown to control plant diseases (Palou et 

al., 2001). Treatments of citrus in solutions of sodium carbonate and sodium 

bicarbonate reduce the incidence of postharvest green moulds (Palou et al., 

2001). Good control of green mould of oranges has also been achieved in 

South Africa using both salts (Lesar, 2007). Sodium carbonate has shown the 

potential to control green mould when applied long after pathogen inoculation 

(Smilanick et al., 1995) and are being used in the California citrus industry 

(Smilanick et al., 1999). Sodium silicate and calcium chloride have been shown 

to control green and blue moulds of Clementine mandarins (Ligorio et al., 2007).  

 

Carbonic acids have been shown to provide pathogen control on other crops, 

for example, applications of potassium bicarbonate has reduced postharvest 

infection of sweet pepper (Fallik et al., 1997). This product is inexpensive and 

can be used with minimal danger of injury to fruit (Palou et al., 2001). 

 

Other compounds such as sulphur dioxide and ethanol have also been used to 

control green moulds of lemons without injury to fruit (Smilanick et al., 1995). 

Ethanol occurs in many additives; however, elevated concentrations could be a 

safety concern because of flammability and negative effects on the air quality of 

packhouses (Mlikota et al., 2004). 

 

Soluble silicon applications as a pre- and postharvest treatment have provided 

control of fungal pathogens of many crops (Menzies and Belanger, 1996). 

Some successful examples are given in the Tables 1.1 and 1.2 below. 



 11 

Table 1.1 Some examples of successful preharvest application of soluble 

silicon for the control of fungal pathogens 

 

Crop Pathogen/Disease Reference 

Peas Mycosphaerella pinodes Dann and Muir (2002) 

Rice  Blast  Seebold et al. (2001) 

Cucumber Pythium root rot  Cherif et al. (1994) 

Cucumber Powdery mildew  Menzies et al. (1991) 

 

 

Table 1.2 Some examples of successful postharvest application of soluble 

silicon for the control of fungal pathogens of fruit 

 

Crop Pathogen/Disease Reference 

Chinese Cantaloupe Trichothecium roseum Guo et al. (2007) 

Hami melons Alternaria alternata  

Fusarium spp. 

Trichothecium roseum 

Bi et al. (2006) 

Sweet Cherry  Penicillium expansum  

Monilinia fructicola  

Qin and Tian (2005) 

Peach  Monilinia fructicola  Biggs et al. (1997) 

 

Mechanisms by which silicon provides protection against plant diseases are: 

 

1. Accumulation of the silicon in cell walls around infection sites providing a 

physical wall to pathogen penetration (Heath and Stumpf, 1986; Carver 

et al., 1987; Datnoff et al., 1997). 

2. Triggering biochemical defense activities such as phenolic compounds in 

infected plants (Cherif et al. 1994; Epstein, 1999). 

 

 

1.6 HOT WATER TREATMENT FOR THE CONTROL OF 

PENICILLIUM MOULDS OF CITRUS 

Heat treatment is a promising method for reducing postharvest disease infection 

(Terry, 2007). This treatment can be used on fresh produce after harvest as 
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brief hot water dips, hot dry air, hot vapour or brief water rinsing and brushing 

(Terry and Joyce, 2004). Postharvest hot water treatments have been studied 

for the control of citrus fruit infections and recommendations are provided by 

numerous authors (Barkai-Golan and Phillips, 1991; Lurie, 1999; Palou et al., 

2001) and some examples are given in Table 1.3. A detailed review on hot 

water treatments for the control of postharvest pathogen on a number of crops 

was provided by Fallik (2004). 

 

Ben-Yehoshua et al. (1998) and Schirra et al. (2000) reported that the mode of 

action of heat treatment on citrus fruit is by inducing resistance through 

increased lignin formation, heat shock related proteins and phytoalexins 

production against green mould caused by Penicillium digitatum. 

 

Table 1.3 Some examples of successful hot water treatments for the control of 

Penicillium disease of citrus fruit 

 

Crop Optimal 

Temperature 

(°C) 

Time (seconds) Reference 

Clementine  45 150 Larrigaudiere et al. 

(2002) 

Lemon 52-53 120 Nafussi et al. (2001) 

Minneola tangerines, 

Shamouti oranges and 

„Star Ruby‟ red grapefruit 

56 20 Porat et al. (2000) 

Mandarin  50-54 180 Schirra and D‟hallewin 

(1997) 

Oranges 53 180 Schirra et al. (1997) 

Grapefruit and lemon 53 120-180 Rodov et al. (1995) 
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1.7 CONTROL OF PENICILLIUM MOULDS OF CITRUS USING 

BIOCONTROL AGENTS 

Biocontrol of plant diseases has been defined by Baker (1987) as, “the 

decrease of inoculum or the disease producing activity of a pathogen 

accomplished through one or more organisms”. With inundative biocontrol, 

antagonistic microbes are produced in a laboratory or factory, and are then 

released to compete with disease causing organisms for nutrient resources, 

space, or by attacking them directly with secretions of antibiotics, enzymes, and 

other substances (Baker, 1987). 

 

Biocontrol agents have been widely investigated and promising results have 

been achieved (Droby and Chalutz, 1998; Janisiewicz and Korsten, 2002). 

Biological control agents such as bacteria, yeast, and filamentous fungi have 

been used effectively to protect a number of fresh fruit and vegetables against 

pathogens (Chalutz and Wilson, 1990). They have been selected because of 

their antagonistic activity, suitable mode of action and their harmlessness to 

human beings and to the environment (Arras et al., 1999). Many successful 

laboratory trials have been reported on apples, stone fruit, citrus, grapes, and 

other fruit.  Some semi-commercial scale trials in packhouses have been 

carried out with success using biological control agents (El-Ghaouth et al., 

2000).  However, the large-scale production and sale of commercial biocontrol 

agents against postharvest diseases has been limited to two products, Aspire® 

and YieldPlus® (Droby et al., 2002 b). 

 

1.7.1 Use of Bacillus spp. for the biological control of Penicillium 

moulds of citrus 

The genus Bacillus belongs to the family Bacillaceae. Bacillus spp. are rod-

shaped and generally motile bacteria. The motility is an advantage since it 

enables the bacteria to scavenge more efficiently for limited nutrients (Brock 

and Madigan, 1991). Members of the genus Bacillus are common residents of 

the soil and rhizosphere environment (Holl and Chanway, 1992; Mazzola, 

1999). 
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Advantages of Bacillus spp. for use as biological control agents include: 

 

1. The ability to form resistant endospores. This inherently improves shelf 

life (Emmert and Handelsman, 1999). 

2. Their ability to produce a multitude of broad-spectrum antibiotic 

compounds (Rytter et al., 1989; Mavingui and Heulin, 1994). 

3. Rapid growth and ability to use a wide range of substances as either 

carbon or nitrogen sources (Glick, 1995). 

4. Ease to grow and their spores can be stored as a dried powder (Singh 

and Deverall, 1984). 

 

Bacillus spp. have been used for many years as biocontrol agents for the 

control of plant pathogens and to increase plant growth (Turner and Backman, 

1991; Holl and Chanway, 1992; Manero et al., 1996; Kim et al., 1997). Tables 

1.4, 1.5 and 1.6 below summarize some of the Bacillus spp. that have been 

investigated for their biological control potential against citrus postharvest 

diseases, postharvest diseases of other crops, and the use of preharvest 

applications for the control of postharvest of other crops respectively. In terms 

of human safety, most Bacillus spp. are considered to be safe and of little 

clinical significance, with the exception of Bacillus anthracis and B. cereus that 

pose a risk of infection to humans (Drobniewski, 1993). 

 

Suggested mechanisms of disease control by Bacillus spp. include: 

1- Competitive antagonism with invading pathogens through competition for 

nutrients and suitable niches (Larkin and Fravel, 1998; O‟Sullivan and 

O‟Gara, 1992). 

2- Antibiosis by broad-spectrum antibiotics able to suppress more than one 

pathogen (Fiddaman and Rosal, 1994; Emmert and Handelsman, 1999). 

3- Synthesis of antifungal enzymes such as chitinase and ß-1,3-gluconases 

(Mauch et al., 1988). 

4- Induction of systemically acquired resistance (Liu et al., 1995). 
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Table 1.4 Examples of successful biological control by Bacillus spp. of 

Penicillium postharvest disease of citrus fruit 

 

Antagonist Disease/Pathogen Crop Authors 

Bacillus subtilis Penicillium digitatum Mandarin Leelasuphakul et al. (2008) 

Bacillus subtilis Penicillium digitatum 

and P. italicum 

Valencia 
orange and 
„Shamouti‟  

Obagwu and Korsten (2003) 

Bacillus-

pumilus 

Penicillium digitatum Valencia 
orange 

Huang et al. (1992) 

Bacillus 

pumilus 

Penicillium digitatum Lemon Huang et al. (1992) 

Bacillus subtilis Penicillium digitatum Valencia 
orange 

Singh and Deverall (1984) 

 

 

Table 1.5 Examples of successful biological control by Bacillus spp. of 

postharvest plant pathogenic fungal diseases of fruit crop other than 

citrus 

 

Antagonist Disease/Pathogen Crop Authors 

Bacillus 

subtilis 

Penicillium sp. Litchi 
 

Sivakumar et 

al. (2008) 

Bacillus 

mycoides 

Botrytis cinerea  Strawberry Guetsky et al. 

(2002) 

Bacillus 

subtilis 

Peronophythora litchi Litchi Jiang et al. 

(2001) 

Bacillus 

subtilis 

Penicillium expansum 

and Botrytis cinerea   

Apple Leibinger et al. 

(1997) 

Bacillus 

subtilis 

Monilinia fructicola Peach 
Nectarine 
Apricot  
Plum 

Pusey and 

Wilson (1984) 
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Table 1.6 Examples of successful biological control of plant pathogenic fungal 

diseases on other crops by preharvest application of Bacillus spp. 

 

Crop Disease/Pathogen Antagonist Authors 

Loblolly 

pine 

Fusiform rust  Bacillus pumilus Enebak and Carey (2000) 

Tomato Phytophthora 

infestans  

Bacillus subtilis 
MB1600 and MB 
1205 

Knox et al. (2000) 

Wheat Take-all and 

Rhizoctonia root rot 

Bacillus cereus 
A47 and Bacillus 
subtilis M908 

Ryder et al. (1999) 

Cucumber Pythium 

aphanidermatum 

Bacillus subtilis 
BACT-O 

Utkhede et al. (1999) 

Cucumber 

plants 

Anthracnose  

Angular leaf spot 

Cucurbit wilt 

Bacillus pumilus 
INR7 and B. 
subtilis GB03 

Raupach and Kloepper 

(1998) 

Wheat Rhizoctonia solani 

AG8 and Pythium 

root rot 

Bacillus subtilis 
L324-92 

Kim et al. (1997) 

Avocado Pseudo-cercospora 

purpurea  

Bacillus subtilis Korsten et al. (1997)  

Cotton Fusarium wilt  Bacillus subtilis Zhang et al. (1996) 

Beans Rhizoctonia solani 

AG-4 

Bacillus subtilis Turner and Backman 

(1991) 

Geranium 

leaf 

Geranium rust  Bacillus subtilis Rytter et al. (1989) 

Apple 

seedlings 

Phytophthora 

cactorum 

Bacillus subtilis Utkhede (1984) 

 

 

1.7.2 Biocontrol of citrus green or blue moulds by bacteria other than 

Bacillus sp. 

Penicillium disease of citrus can be inhibited by biocontrol bacteria other than 

Bacillus (Wilson and Chalutz, 1989). Two bacterial isolates, Pseudomonas 

cepacia Palleroni and P. syringae Van Hall were effective at providing 

protection of citrus against green or blue mould (Smilanick et al., 1996). 

Smilanick et al. (1996) discovered an isolate of Pseudomonas cepacia that 
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controlled green mould very effectively.  However, it also caused severe black 

pit of citrus. 

 

Table 1.7 summarizes bacterial species that have been studied for their 

biological control of postharvest diseases. 

 

Table 1.7 Examples of successful biological control of postharvest plant 

pathogenic fungal diseases on other fruit crops by application of bacterial 

antagonists other than Bacillus sp. 

 

Antagonist Disease/Pathogen Crop Authors 

Pseudomonas 

cepacia 

Monilinia fructicola Nectarine/peach Smilanick et al. (1993) 

Pseudomonas 

syringae 

Botrytis cinerea / 

Penicillium expansum 

Pear Janisiewicz and Marchi 

(1992) 

Pseudomonas 

cepacia 

Penicillium digitatum Lemon Smilanick and Denis-

Arrue (1992) 

Pseudomonas 

cepacia 

Botrytis cinerea / 

Penicillium expansum 

Apple/pear Janisiewicz et al. 

(1991) 

Pseudomonas 

cepacia 

Botrytis cinerea / 

Penicillium expansum 

Apple/pear Janisiewicz and 

Roitman (1988) 

Pseudomonas 

fluorescens 

Monilinia fructicola Peach/nectarine, 

apricot and plum 

Pusey and Wilson 

(1984) 

 

1.7.3 Use of yeasts for the biological control of green and blue moulds of 

citrus 

Several yeast biocontrol agents have been reported to effectively control 

postharvest infection on a variety of fruit (Chalutz and Wilson, 1990; 

Gholamnejad et al., 2009; 2010). Tables 1.8, 1.9 and 1.10 summarize some of 

the successful biocontrol agents that have been studied for their biological 

control potentials for citrus postharvest Penicillium control, other postharvest 

diseases of other crops and preharvest applications for the control of 

postharvest diseases respectively. The mode of action of yeast biocontrol 

agents include: 

1. Competing for space and nutrients (Arras et al., 1998; Lima et al., 1999), 
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2. Colonizing the fungal hyhae and a direct effect of live yeast cells on 

germination of pathogen conidia (Janisiewicz and Korsten, 2002), 

3. Extracellular lytic enzymes, such as glucanase and chitinase 

(Janisiewicz and Korsten, 2002), and 

4. Eliciting host resistance (Arras, 1996; Arras et al., 1998). 

 

Table 1.8 Examples of postharvest application of yeasts for the control of 

Penicillium diseases of citrus fruit 

 

Antagonist Crop Pathogen/Disease Reference 

Various yeasts  Mandarins and 

tangelo 

Penicillium digitatum Arras et al. 

(2007) 

Candida spp. Lemon  Penicillium italicum El-Neshawy 

(2007) 

Various yeasts Orange Penicillium digitatum Bouzerda et 

al. (2003) 

Candida oleophila Grapefruit Penicillium digitatum Droby et al. 

(2002 a) 

Candida saitoana Orange, lemon  Penicillium digitatum El-Ghaouth et 

al. (2000) 

Pichia guilliermondii Grapefruit Penicillium digitatum Droby et al. 

(1997) 

Pichia guilliermondii, 

Aureobasidium 

pullulans, 

Debaryomyces hanseii 

Various citrus fruit Penicillium digitatum/ 

Penicillium italicum 

Chalutz and 

Wilson (1990) 

Various yeasts Lemon Penicillium digitatum  Cheah and 

Tran (1995) 
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Table 1.9 Examples of postharvest application of yeasts for the control of fungal 

pathogens of crops other than citrus 

 

Antagonist Crop Pathogen/Disease Reference 

Cryptococcus laurentii Sweet 

cherry  

Penicillium 

expansum 

Monilinia fructicola 

Qin and Tian (2005) 

Kloeckera apiculata and 

Candida guilliermondii 

Grape/ 

Peach/ 

Apple 

Rhizopus stolonifer McLaughlin et al. 

(1992) 

Sporobolomyces roseus Apple Penicillium 

expansum 

Janisiewicz et al. 

(1994) 

Various yeasts Chilli  Colletotrichum 

capsici 

Chanchaicha-ovivat 

et al. (2007) 

Candida guilliermondii/ 

Pichia membranefaciens 

Peach/ 

nectarine 

Botrytis cinerea  Tian et al. (2002) 

Candida spp. Apple Botrytis cinerea/ 

Penicillium 

expansum 

McLaughlin et al. 

(1990) 

Candida spp. Peach/ 

nectarine 

Botrytis cinerea/ 

Penicillium 

expansum 

Karabulut et al. 

(2002) 

Candida saitoana Apple Botrytis cinerea/ 

Penicillium 

expansum 

El-Ghaouth et al.  

(2000) 

Candida sake  Pear Botrytis cinerea/ 

Penicillium 

expansum 

Nunes et al. (2002)  
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Table 1.10 Examples of successful preharvest application of yeasts for the 

control of fungal pathogens of crops other than citrus 

 

Antagonist Crop Pathogen/Disease Reference 

Candida sake Apple Penicillium expansum Teixido et al. 

(1998)  

Aureobasidium 

pullulans and  

Rhodotorula glutinis  

 

Apple 

Penicillium expansum Leibinger et al. 

(1997) 

Cryptococcus 

infirmo-miniatus,  

C. laurentii and  

Rhodotorula glutinis 

 

Pear 

Penicillium expansum Benbow and 

Sugar (1999) 

 

 

1.8 INTEGRATION OF BIOCONTROL AGENTS WITH OTHER 

CONTROL PRACTICES IN THE PROCESSING CYCLE OF 

CITRUS 

Innovative research techniques suggest that biocontrol agents may be 

important alternatives to chemicals (Lima et al., 2007). Bacteria and yeast 

isolated from fruit surfaces possess properties considered useful for postharvest 

biocontrol of fruit and vegetables (Lima et al., 2007). However, biocontrol 

agents often fail to consistently control postharvest infections. For this reason, 

optimizing or improving the performance of biocontrol agents by combining 

them with other control methods is essential (Karabulut et al., 2002). 

 

Several studies have shown that biocontrol efficacy of different selected 

antagonists can be improved by combining them with: (1) other antagonists, (2) 

adjuvants (see Table 1.11) on citrus fruit [For more detailed information refer 

Lima et al. (2007)], (3) low dosages of fungicides, (4) physical treatments such 

as a hot water treatment, (5) preharvest applications of antagonists, or (6) a 

multi-component approach, as proposed by Lima et al. (2007). 

 

Preharvest application of biocontrol agents in the field prior to harvest may 

enable early colonization of fruit and better protection of wounds from pathogen 
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infection (Ippolito et al., 2004). Hot water, sodium carbonate and sodium 

bicarbonate have shown poor protection against conidia. Thus, additional 

treatments would be essential to provide protection for the fruit from reinfection 

with biocontrol agents that can persist for longer periods, which may achieve 

this objective as suggested by Smilanick et al. (1999). The same author found 

that the effectiveness of sodium carbonate and sodium bicarbonate against 

green mould was significantly enhanced when these treatments were followed 

by the application of P. syringae Strain ESC10. Obagwu and Korsten (2003) 

also found that combining Bacillus strain (F1) with sodium bicarbonate was as 

effective as the recommended fungicide (guazatine and imazalil) treatment, 

which provided complete control of both green and blue molds of Valencia and 

Shamouti orange cultivars. 

 

Research by Karabulut et al. (2002) has shown that a postharvest treatment 

combination of hot water brushing at 60°C followed by a yeast antagonist 

(Candida spp.) as a postharvest treatment was very successful in controlling 

natural infections of Monilinia fructicola (G. Winter) Honey. and Penicillium 

expansum (Link) Thom. of peach and nectarine, compared with the hot water 

treatment alone. 

 

Research by Tian et al. (2007) has shown that a postharvest treatment 

combination of sodium silicate with yeast antagonists (Cryptococcus laurentii 

Kufferath C.E. Skinner. and Rhodotorula glutinis Harrison.) provided synergistic 

effects in controlling postharvest diseases caused by P. expansum, M. fructicola 

and A. alternata in sweet cherry, peach and jujube fruit. It also increased the 

population density of the antagonistic yeasts. 

 

The application of a multi-component approach that combines biocontrol agents 

with other control measures would optimize antagonistic efficacy. This could 

include combining biocontrol agents with more than one of the common field 

and/or postharvest methods (Lima et al., 2007). According to Lima et al. (2007), 

a number of studies have shown that a multi-component approach can provide 

enhanced or synergistic effects to biocontrol and noted that it should be able to 

totally control the development of postharvest infections. The multi-component 

approach has been successfully applied to apples in order to control Penicillium 

expansum (Link) Thom optimum control of postharvest fungal infection has 
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been achieved by combining heat treatment, calcium chloride and the 

antagonist P. syringae (Conway et al., 1999) or a biocontrol mixture, applied 

with a heat treatment and/or sodium bicarbonate (Conway et al., 2005). 

 

Table 1.11 Examples of preharvest application of yeasts in combination with 

adjuvant to enhance efficacy against Penicillium disease of citrus 

 

Antagonist Adjuvant(s) Pathogen/

Disease 

Fruit Reference 

Candida 

saitoana 

Glycolchitosan Penicillium 

digitatum 

Oranges El-Ghaouth et 

al. (2000)  

Pichia 

guillermondii 

Ca-chloride Penicillium 

digitatum 

Grapefruit Droby et al. 

(1997) 

 

In conclusion, citrus is susceptible to a number of postharvest diseases. The 

green and blue moulds are the most prevalent postharvest diseases affecting 

citrus fruit. Implementation of an integrated disease control program that 

includes sanitation, physical treatments, inorganic salts, biocontrol agents as 

both preharvest and postharvest measures, as discussed in this review, would 

minimize postharvest losses of citrus, enhance consumer confidence and 

increase economic returns to the producer. 
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CHAPTER 2 

THE PATHOGENICITY OF PENICILLIUM DIGITATUM AND ITS 

SENSITIVITY TO THE FUNGICIDE IMAZALIL, IN SOUTH AFRICA 

 

ABSTRACT 

Wounded navel oranges were inoculated with one ml of Penicillium digitatum 

suspension at concentrations of 1, 10, 20, 50, 100, 500, 1 × 103, 1 × 104, and 

1 × 105 conidia ml-1 in the laboratory. There was no significant effect in the 

wound lesion diameters as the result of the different conidial concentrations. A 

one conidia ml-1 suspension caused damage equivalent to the higher 

concentrations of conidial inoculum. Other samples of wounded navel oranges 

inoculated with P. digitatum were treated with 100 μl of imazalil suspension at 

the recommended concentration. Penicillium digitatum infection was not 

significantly reduced by the fungicide treatment compared to the untreated 

control. This indicates that the pathogen used is resistant to imazalil. 

 

 

2.1 INTRODUCTION 

Green mould caused by Penicillium digitatum (Pers: Fr. Sacc.) is the most 

important postharvest infection of citrus fruit worldwide (Bancroft et al., 1984), 

including South Africa (Lesar, 2007). This wound-dependent pathogen has a 

relatively short disease cycle (3-5 days) at 25°C and, on a single fruit, can 

produce 1-2 billion conidia with relative ease (Holmes and Eckert, 1995). 

Potentially, P. digitatum arising from a single conidium can produce about 

100 million conidia on an infected fruit in seven days under optimum 

environmental conditions (Brown and Miller, 1999). 

 

Varying conidial concentrations of P. digitatum in green mould disease 

evaluations have been used by different researchers, e.g. Droby et al. (1997) on 

grapefruit and Porat et al. (2000) on citrus fruit inoculated 104 conidia ml-1, while 

Palou et al. (2001) and Eckert et al. (1994) used 106 conidia ml-1 on oranges, 

Holmes and Eckert (1999) on Eureka lemons inoculated with 107 or 

108 conidia ml-1. It demonstrates that a wide range of conidial concentrations of 
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the pathogen have been recorded to induce infection. However, the minimum 

dose of pathogenic conidia has not been investigated. 

In most South African packhouses, citrus fruit are treated with imazalil to control 

the incidence of P. digitatum infection and sporulation (Holmes and Eckert, 

1999). Imazalil (1-[2-(2,4-dichlorophenyl)-2-(2-prophenyloxy)ethyl]-1H-

imidazole) was first adopted by the Californian citrus industry in 1981 as an 

additive to fruit coating formulations to replace thiabendazole, which was 

rendered ineffective due to the development of pathogen resistance (Holmes 

and Eckert, 1999).  Kinay et al. (2007) reported that isolates of Penicillium 

digitatum in Californian citrus packhouses were found to be resistant against the 

fungicide imazalil. Boubaker et al. (2009) also reported that 19% (55/290) 

isolates were found to be resistantant against imazalil. This fungicide is used in 

a manner that is highly conducive to the selection and proliferation of resistant 

biotypes of P. digitatum. Continuous selection pressure for resistance to the 

fungicide is applied in the farm and packhouse environments because the 

fungicide is continuously used for a six months harvest period in a multitude of 

packhouses, dump tanks, on conveyor belts and inside timber lug boxes.  The 

fungicide is also applied to all citrus fruit surfaces.  Furthermore, in the case of 

exported fruit, the fungicide is exposed to a six week period in refrigerated 

containers, followed 2-3 weeks at room temperature in the market place. This 

provides for additional selection pressure on the pathogen population to 

develop resistance against the fungicide (Holmes and Eckert, 1999). 

 

Imazalil-resistant biotypes of P. digitatum were reported just five years after its 

introduction as a commercial treatment in California packhouses (Holmes and 

Eckert, 1999). The existence of resistant biotypes of P. digitatum to imazalil has 

been documented in all major citrus production areas (Eckert et al., 1994; Wild, 

1994) and terminal markets (Bus et al., 1991). 

 

This investigation was undertaken: (1) to evaluate the influence of conidial 

concentration on P. digitatum pathogenicity and (2) to determine the imazalil 

sensitivity of the strain of P. digitatum used in subsequent trials. 
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2.2 MATERIALS AND METHODS 

2.2.1 Isolation of P. digitatum from navel oranges 

A single spore isolate of P. digitatum was cultured from conidia of infected navel 

oranges obtained from Gateway packhouse (29.53 S 30.17 E), Thornville, 

Pietermaritzburg, South Africa by directly plating the conidia onto PDA (Merck 

Laboratory, South Africa) amended with 0.15 g ℓ-1 of Rose Bengal (BDN 

Laboratory, England). Plates were incubated at 25°C for 10 days. Pure cultures 

of P. digitatum isolate were established by sub-culturing on malt extract agar 

(MEA) (Merck Laboratory, South Africa) plates after identification and 

verification of P. digitatum conidia under a compound microscope. For long term 

storage the conidia were maintained in double autoclaved, distilled water 

storage at 25°C. Regular transfers onto fresh citrus fruit were performed to 

maintain the aggressiveness of the pathogen. A conidial suspension was 

prepared by washing a 10 days old culture of P. digitatum onto MEA medium, 

with sterile distilled water containing 0.01% (wt/vol) Tween 80 (Uni Laboratory, 

South Africa) for inoculation purposes. 

 

2.2.2 Pathogenicity of an isolate of P. digitatum on navel oranges 

Penicillium digitatum conidia isolated from navel oranges as described in 

Section 2.2.1 was used. Navel fruit were collected from citrus trees at Ukulinga 

Research Farm, University of KwaZulu-Natal, Pietermaritzburg, South Africa 

(29.36 S 30.24 E). They were surface disinfected with 70% alcohol for one 

minute, dried, and were wounded with a dissecting needle (25 mm in length 

× 3 mm in depth) at one site at the equator of the fruit. The wounded fruit were 

inoculated with one ml (applied as two deposits) of the conidia suspension of P. 

digitatum at concentrations of 1, 10, 20, 50, 100, 500, 1 × 103, 1 × 104, or 

1 × 105 conidia mℓ -1, adjusted with a haemocytometer and applied as two 

deposits. Distilled water (one mℓ) was pipetted into wounds to serve as controls. 

Inoculated fruit were kept at room temperature (24±1°C). Two boxes, with 

five fruit per box (each fruit was placed in a discrete compartment to avoid fruit 

touching other fruit) were used per treatment and placed on a bench in a 

complete randomized block design (CRBD). Lesion diameters (mm) of each 

infected wound were determined 10 days after inoculation. Lesion diameter was 

measured taking the mean of horizontal and vertical diameter of the lesion. 
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2.2.3 Sensitivity of an isolate of P. digitatum to imazalil on lemons 

To assess the effects of imazalil (500 mg ℓ-1) for the control of P. digitatum on 

lemon, fruit were treated similarly to that described in Section 2.2.2. Wounded 

fruit were separately treated with a 100 μℓ of imazalil. After the wound site had 

dried for three hours, each wound was inoculated with 100 μl of conidial 

suspension of P. digitatum (1 ×104 conidia mℓ-1). Wounds inoculated with 100 μℓ 

of conidial suspension of P. digitatum only served as the control. Fruit were kept 

at room temperature (24±1°C). Two boxes, with five fruit per box, were used per 

treatment and placed on a laboratory bench in a CRBD. The lesion diameters 

(mm) of infected wounds were determined 10 days after inoculation. Lesion 

diameter was measured by taking the mean of the horizontal and vertical 

diameters of each lesion. 

 

2.2.4 Statistical analysis 

Data were subjected to an analysis of variance (ANOVA) using Genstat® 

Executable Release 9.1 Statistical Analysis Software (Anonymous, 2006). To 

determine differences between treatments, Fisher‟s Least Significant Difference 

Test was used (P<0.05). 
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2.3 RESULTS 

2.3.1 Pathogenicity of an isolate of P. digitatum on navel oranges  

Lesion diameter of navel oranges wounds inoculated with P. digitatum at 

10 conidia per ml was significantly lower than those navel fruit wounds 

inoculated with 500, 10,000 or 100, 000 conidia per ml. However, it was not 

significantly lower than the rest of the fruit inoculated at different concentrations 

of P. digitatum (a detailed statistical analysis of the data in Figure.2.1 is 

provided in Appendix 2A). 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Lesion diameter as a result of different inoculum doses applied, as 

conidia mℓ
-1, of P. digitatum (p≤ 0.05), 10 days after inoculaion. 

 

2.3.2 Sensitivity of P. digitatum isolate to imazalil on lemons  

There was no significant difference in lesion diameter between the inoculated 

control and treated with imazalil suspension on lemons (a detailed statistical 

analysis of the data in Figure 2.2). 
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Figure 2.2 Sensitivity of of P. digitatum isolate to imazalil treatment on 

artificially inoculated lemons 10 days after inoculation. 

 

 

2.4 DISCUSSION 

All the conidial concentrations of P. digitatum caused similar lesion sizes. This 

may have been due to competition between conidia. Alternatively, disease 

development could be limited by the availability of nutrients, limiting pathogen 

development to close to that of a conidial concentration of 1 conidia mℓ-1. A 

lesion diameter of 20 mm was recorded on uninoculated navel oranges. This 

could have been caused by pre-existing infection of the pathogen on the fruit, 

which may have occurred during preharvest activities or transport or 

contamination due to interplot interference. 

 

A single conidium of P. digitatum can infect a citrus fruit. Brown and Miller 

(1999) recorded that a single conidium of P. digitatum produced up to 

100 million conidia on an infected fruit within one week. Therefore, it is not 

necessary to use high concentrations of conidial suspensions of P. digitatum for 

inoculations for disease evaluations. 

 

The isolate of P. digitatum used was not effectively controlled by imazalil, 

indicating that the P. digitatum isolate used in this research was resistant to 

imazalil. This isolate was also found to be resistant in an agar plate test (Moon, 

2008). Similar findings have been reported by Eckert (1987); Bus et al. (1991); 
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Eckert et al. (1994) and Wild (1994). Additional reports suggest that resistance 

problems with imazalil have also occurred on soft skin citrus fruit in the Western 

Cape Province of South Africa (Beghin, pers. comm. 2006).  Further incidences 

of resistance have occurred in Richmond, KwaZulu-Natal, South Africa (Herrer, 

pers. comm. 2006). Subsquent research by Moon (2008) showed that 10 out of 

10 isolates of P. digitatum that were collected in packhouses in northern 

KwaZulu-Natal were resistant to imazalil. Boubaker et al. (2009) found that 55 

out of 290 isolates of P. digitatum developed resiatnce against imazalil. To the 

best of our knowledge, this is the first formal report of an imazalil resistant P. 

digitatum isolate derived from citrus fruit grown in KwaZulu-Natal, South Africa. 

 

 

2.5 CONCLUSION 

Clearly, postharvest disease of citrus fruit can result from exposure to very low 

levels of inoculum. This coupled with the failure of imazalil to control of some 

isolates of green mould (Boubaker et al., 2009), poses a serious threat to the 

citrus industry in South Africa. These results suggest that there is a need for 

alternative methods for control of P. digitatum in the citrus industry in South 

Africa, and globally. 
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CHAPTER 3 

ISOLATION AND IN VIVO SCREENING OF YEAST AND 

BACILLUS ANTAGONISTS TO INHIBIT PENICILLIUM 

DIGITATUM AND CONTROL GREEN MOULD OF CITRUS FRUIT 

 

ABSTRACT 

A total of 60 yeast and 92 Bacillus isolates were isolated from the fruit surface 

of papaya and several varieties of citrus from various orchards in South Africa, 

and screened for antagonism to Penicillium digitatum. Ten yeast and 

10 Bacillus isolates reduced the surface area of visible P. digitatum growth 

≥50%, when applied three hours before inoculation with the pathogen. Two 

yeast isolates (B13 and Grape), when applied 48 hours prior to inoculation with 

P. digitatum, prevented decay of navel oranges and lemons, and ≤5% 

incidence on Valencia oranges, compared with an untreated control that had 

≥50% incidence of infection. The application of isolates to lemons and Valencia 

oranges did not produce a curative action against P. digitatum when applied 

three hours post infection. The yeast isolates B13 and Grape were superior to 

all the Bacillus isolates, and provided excellent control of P. digitatum, when 

applied to citrus fruit prior to artificial inoculation by P. digitatum. 

 

 

3.1 INTRODUCTION 

Green mould of citrus, caused by Penicillium digitatum (Pers.: Fr) Sacc. is a 

major cause of postharvest disease of citrus fruit worldwide (Bancroft et al., 

1984). Control of the disease has depended upon the use of synthetic 

fungicides. However, the development of strains of P. digitatum and other fungi 

that are resistant to fungicides (El-Goorani et al., 1984; Eckert et al., 1994) and 

increasing public concern over food safety, and the environment (Holmes and 

Eckert, 1999) are driving a search for alternative postharvest disease control 

methods. Biological control has been proposed as a key alternative control 

method, and some effective antagonistic microorganisms have already been 

used in the global fruit industry (McLaughlin et al., 1992). 
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Successful control of infections caused by a number of postharvest pathogens 

using biological control agents have been reported on citrus fruit (Wilson and 

Chalutz, 1989; Chalutz and Wilson, 1990; Cheah and Tran, 1995; El-Ghaouth et 

al., 2000; Bouzerda et al., 2003). Numerous yeast antagonists have been 

reported to successfully control postharvest infection on a variety of fruit 

(Chalutz and Wilson, 1990; Leelasuphakul et al., 2008; Gholamnejad et al., 

2009; 2010). Yeasts are particularly suitable as antagonistic agents because 

they grow rapidly, colonizing fruit surfaces and limiting nutrient availability to 

pathogens through competition, and are tolerant of most agrochemicals 

(Richard and Prusky, 2002). Two yeast products, Aspire® (Candida oleophila 

Montrocher) and Yield-Plus® (Cryptococcus albidus (Saito) Skinner) are 

commercially available (Vero et al., 2002). 

 

Bacillus spp. are also used as biological control agents (Leifert et al., 1995; Kim 

et al., 1997; Enebak and Carey, 2000). Bacillus subtilis Ehrenberg Cohn strains 

typically have the ability to survive on citrus fruit surfaces and some are 

antagonistic to pathogens (Gutter and Littauer, 1953). 

 

The objectives of the study were: (1) to identify yeast and Bacillus isolates 

antagonistic to P. digitatum; and (2) to investigate their efficacy in controlling 

infection by P. digitatum in vivo. 

 

 

3.2 MATERIALS AND METHODS 

3.2.1 Fruit used for isolation of potential antagonists 

Fruit of papaya (Carica papaya L.), granadilla (Passiflora quadrangularis L.) and 

a range of citrus [i.e., navel orange (Citrus sinensis [L] Osbeck), Valencia 

orange (Citrus sinensis [L] Osbeck), lemon (Citrus limon Burmann), grapefruit 

(Citrus paradisi Macf) and mandarin (Citrus reticulata Blanco)] were harvested 

from commercial orchards and home guardens in KwaZulu-Natal and 

Mpumalanga, South Africa. Undamaged fruit were processed either 

immediately, after storage for 2-3 days at room temperature or after storage in a 

cold room at 8±1°C for 5-7 days. 

 

http://www.desert-tropicals.com/Plants/Passifloraceae/Passiflora.html
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3.2.2 Preliminary investigation of microorganisms on the fruit surface 

Navel and Valencia oranges that had not been sprayed with fungicides were 

collected from citrus orchards located at Ukulinga Research Farm, University of 

KwaZulu-Natal, Pietermartizburg (29.36 S 30.24 E), South Africa, and stored at 

25°C for two weeks. Whole oranges were rinsed with sterile water in order to 

remove any potential antagonists. The rinsing water was then serially diluted 

(10 fold dilution series was made up to 10-4) and plated onto potato dextrose 

agar (PDA) (Merck Laboratory, South Africa). The plates were incubated at 

25°C for four days. Yeasts or/and Bacillus colonies were selected and identified 

visually by their typical colony morphologies. 

 

3.2.3 Isolation of antagonistic yeasts and Bacillus 

Bacillus and yeast isolates were recovered from the peel of 3-5 mature fruit 

from a range of the fruit samples, as described in Section 3.2.2. The fruit peel 

was cut into 10-15 small pieces, weighing 50 grams and placed in separate 

250 mℓ Erlenmeyer flasks containing 100 mℓ sterile distilled water plus quarter 

strength Ringer‟s Solution and shaken in a water bath (G.F.L. 1083, 

Labortechnik, Germany) at 120 rotations per minute (rpm) for one hour at 30°C. 

Fruit peel pieces were removed and the liquid suspension was used to make a 

serial dilution of 10-1, 10-2, 10-3 and 10-4. An aliquot of 0.2 mℓ of each dilution 

was plated onto PDA amended with 0.15 g ℓ-1 of Rose Bengal (BDN Laboratory, 

England) for recovery of yeast isolates and incubated at 25°C for three days. 

Pure cultures of yeast were made by sub-culturing from discrete colonies on the 

plates. For isolation of Bacillus, the same serial dilution prepared for the yeast 

isolates was used, after heat treatment at 80°C for 15 minutes in a water bath. 

Each aliquot of 0.2 mℓ was poured onto a tryptone soy agar (TSA) (Merck 

Laboratory, South Africa) plate. Plates were incubated for 3 days at 28°C, after 

which representative colonies were arbitrarily selected and streaked onto fresh 

TSA plates to obtain single colonies. Isolates were stored in sterile distilled 

water and -80°C freeze in 20% glycerol. 

 

3.2.4 Screening of yeasts and Bacillus isolates against P. digitatum 

3.2.4.1 Preliminary Screening 

A total of 60 yeast and 92 Bacillus isolates (see Section 3.2.1) were tested on 

navel oranges. Each fruit was surface disinfected with 70% alcohol for 

one minute, dried, and then wounded (2 mm in width and 1 mm in depth) with a 
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disinfected needle 10 times at both ends of the fruit. The wound was dipped into 

a suspension of yeast cells or Bacillus (1 × 108 cells mℓ-1) for one minute. Three 

hours after the wound site had dried, each wounded fruit was dipped into a 

suspension of conidia of P. digitatum at 1 × 104 conidia mℓ-1, isolated from 

infected navel oranges, collected at Gateway Packhouse (29.53 S 30.17 E), 

Thornville, Pietermaritzburg, South Africa. The conidial suspension was 

quantified using a haemocytometer and then adjusted to the final 

concentrations by dilution. Control fruit were treated with sterile distilled water. 

Fruit were kept at room temperature (24±1°C) for 10 days. One box with 

three fruit was used per treatment. Treatments were placed on a bench. Fruit 

were examined for percentage fruit surface area covered by P. digitatum using 

visual estimations for the initial screening. The criterion used to select the 

antagonists was the ability to reduce growth or development of P. digitatum to 

≤50%. 

 

3.2.4.2 Secondry Screening 

Further tests were conducted on the most promising yeast (10) and Bacillus 

(10) isolates (a detailed description of locations from where fruit has been 

obtained and isolates of yeast and Bacillus recovered is presented in Appendix 

3A) following the procedures described in Section 3.2.4.1. However, in this 

instance Valencia oranges were used for the evaluation, and fruit was wounded 

(3 mm in length × 3 mm in depth) at one site on the fruit equator with a 

dissecting needle. The wound was then treated with a 100 μℓ cell suspension of 

the test organism (yeast or Bacillus at 1 ×108 cells mℓ-1). After the wound site 

had dried for three hours, 100 μℓ of the conidial suspension of P. digitatum 

(1 × 104 conidia mℓ-1) was inoculated into the wound. Wounds inoculated with 

the same amount of P. digitatum isolate, but no biocontrol pretreatment, served 

as the control. Fruit were kept at room temperature (24±1°C). Two boxes, with 

five fruit per box, were used per treatment and placed on a bench in a complete 

randomized block design (CRBD). The criterion used to select the antagonist 

was the reduction of lesion diameters (mm) caused by P. digitatum 10 days 

after inoculation. Lesion diameter was measured by taking the mean of the 

horizontal and vertical diameters of each lesion. 
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3.2.5 A selected yeast and Bacillus isolates antagonistic against P. 

digitatum 

3.2.5.1 Preventative Action 

Ten yeasts and 10 Bacillus isolates were tested for their preventative action 

against P. digitatum. This was achieved by treating fruit with an antagonist 

48 hours before inoculation with the pathogen. The procedures described in 

Section 3.2.4.2 were followed for the preparation of the antagonist, P. digitatum, 

and for the treatment application. Navel and Valencia oranges, as wellas 

lemons were used in this trial. The fruit wound was extended to 25 mm in length 

× 3 mm in depth. The wound was treated with 100 μℓ of cell suspension of the 

test organism (yeast or Bacillus at 1 × 108 cells mℓ-1). After the wound site had 

dried for 48 hours, each wound was inoculated with 100 μℓ of the suspension of 

conidia of the P. digitatum isolate (1 × 104 conidia mℓ-1). Wounds inoculated with 

the same amount of P. digitatum isolate served as the control. Fruit were kept at 

room temperature (24±1°C). Two boxes, with five fruit per box, were used per 

treatment and placed on a bench in a CRBD. Lesion diameter (mm) of each 

infected wound was determined 10 days after inoculation. Lesion diameter was 

measured by taking the mean of the horizontal and vertical diameters of each 

lesion. 

 

3.2.5.2 Curative Action 

Similar procedures as described in Section 3.2.5.1 were followed, with the 

difference that navel oranges were not included because they were out of 

season. Valencia oranges or lemons were wounded, and then inoculated with 

100 μℓ of the suspension of P. digitatum conidia (1 × 104 conidia mℓ-1). After the 

wound site had dried for three hours, the wound was treated with a 100 μl of the 

test organism (yeast or Bacillus at 1 × 108 cells mℓ1). Wounds inoculated with P. 

digitatum conidial suspension served as a control. Fruit were kept at room 

temperature (24±1°C). Two boxes, with five fruit per box, were used per 

treatment and placed on a bench in a CRBD. Lesion diameter was measured by 

taking the mean of the horizontal and vertical diameters of each lesion. 
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3.2.6 Dose effect of two yeast isolates, B13 and Grape, applied 

preventatively on lemons for the control of P. digitatum 

The effect of various concentrations of two yeast isolates, namely, B13 and 

Grape (identified as strains of Candida fermentati (Saito) Bai. by Botes1, were 

studied for their preventative action on lemons against P. digitatum. Lemons 

were surface disinfected with 70% alcohol for 1 minute, dried, and then 

wounded. Fruit were wounded (25 mm in length × 3 mm in depth) at one site on 

the equator with a dissecting needle as described in Section 3.2.5.1. Cell 

suspensions (100 μℓ) of both yeasts of 1 × 105, 1 x 106, 2.5 × 106, 1 × 107 and 

1 x 108
 cells mℓ-1 were inoculated into each wound site.  The technique used 

was based on that reported by Tian et al. (2002). Wounds treated with 100 μℓ of 

distilled water served as a control. After 48 hours, all yeast-treated wounds and 

control wounds were inoculated with a 100 μℓ conidial suspension of P. 

digitatum (1 × 104 conidia mℓ-1). Fruit were kept at room temperature (24±1°C). 

Two boxes, with five fruit per box, were used per treatment and placed on a 

bench in a CRBD. Lesion diameter was measured by taking the mean of the 

horizontal and vertical diameters of each lesion. 

 

3.2.7 Statistical analysis 

With one exception, all data sets were analysed using a REML (REsidual 

Maximum Likelyhood) Variance Component Analysis using Genstat® 

Executable Release 9.1 Statistical Analysis Software (Anonymous, 2006).  

Where the F test was significant, differences between treatment means were 

determined using Duncan‟s Multiple Range Test (P  0.05).  Detailed analyses 

are presented in Appendixes 3B-3E. 

 
The exception was in the case of measuring dose effects of two yeast isolates, 

B13 and Grape, for the control of P. digitatum, when applied preventatively on 

lemons.  In this case, the data was subjected to an analysis of variance 

(ANOVA) using Genstat® Executable Release 9.1 Statistical Analysis Software 

(Anonymous, 2006). To determine differences between treatments, Fisher‟s 

Least Significant Difference Test was used (P<0.05). 

                                                 
1 Dr Botes, A. University of Stellenbosch, South Africa. 
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3.3 RESULTS 

3.3.1 Preliminary investigation of microorganisms on the fruit surface 

The potato dextrose agar plates yielded dense bacterial and yeast populations 

with little growth of filamentous fungi being apparent (Figure 3.1). 

 

 

 

 

 

 

Figure 3.1 Cultures of microorganisms isolated from the surface of navel and 

Valencia oranges, after four days growth on potato dextrose agar: direct 

plating of the rinsing water (left), plating of rinsing water after a tenfold 

dilution with sterile water (right). 

 

3.3.2 Preliminary screening of antagonistic yeast and Bacillus isolates 

against P. digitatum on navel oranges 

All 60 yeasts and 92 Bacillus isolates recovered from the surface of numerous 

different fruit reduced P. digitatum development compared to the untreated 

controls, which developed 90% infection by P. digitatum (Table 3.1). Only 

20 isolates (10 yeast and 10 Bacillus isolates) (for the source of isolates see 

Appendix 3A) reduced the fruit surface area infected by P. digitatum on navel 

oranges by ≥50% (Table 3.1). Among the 10 yeast isolates, four isolates 

(Grape, ON3, EP and RG2) reduced the area of the fruit surface to P. digitatum 

≤30%. The best Bacillus isolate (Si-1) reduced P. digitatum deases 

development by 53% (Table 3.1). Yeast and Bacillus isolates that reduced the 

percentage of fruit surface area infected to ≤50% were chosen for further 

screening. 
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Table 3.1 Preventative treatment of navel oranges with yeast and Bacillus 

isolates to control Penicillium digitatum 

 

Isolate and Control Isolate Type % Surface Area 
of Fruit Infected 
by P. digitatum  

% Reduction of 
P. digitatum by 
Antagonists 

S1-1 Bacillus 42 53 

B7  Bacillus 43 52 

B9 (1) Bacillus 45 50 

B9 (2) Bacillus 48 47 

Papaya Bacillus 49 46 

B3  Bacillus 50 44 

B6  Bacillus 50 44 

B8  Bacillus 50 44 

GW1 Bacillus 50 44 

S1-2  Bacillus 50 44 

Grape Yeast 19 79 

ON3 Yeast 21 77 

EP Yeast 24 73 

GR2 Yeast 26 71 

Lemon P Yeast 30 67 

UL3 Yeast  37 59 

SPL Yeast 38 58 

GR1 Yeast 40 56 

B13  Yeast 48 47 

B-a Yeast 50 44 

Others (132 

isolates) 

Bacillus and 

yeasts 

>50 44 

Water (control) Penicillium 

digitatum only  

90 0 
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3.3.3 Screening of selected yeast and Bacillus isolates antagonistic to P. 

digitatum on Valencia oranges 

Yeast isolates, Grape, EP, ON3, RG2, Lemon P, GR1, B13, and B-a, and the 

Bacillus isolate B3 (for the original source of the isolate see Appendix 3A) 

significantly (p≤0.05) reduced lesion diameter on Valencia oranges compared to 

the other treatments and the untreated control in reducing lesion diameter (a 

detailed statistical analysis of the data in Table 3.2 is provided in Appendix 3B). 

 

Table 3.2 Preventative treatment of Valencia oranges with 10 yeast and 

10 Bacillus isolates to control Penicillium digitatum 

 

Isolate and Control Isolate type % surface area of fruit 
covered by P. digitatum  

B3  Bacillus 28.6 ab 
B7  Bacillus 35.8 bcdf 
B9 (2) Bacillus 37.0 bcdef 
GW1 Bacillus 39.8 cdefg 
Papaya Bacillus 40.3 cdefg 
S1-1 Bacillus 41.8 defg 
S1-2  Bacillus 42.2 efg 
B6  Bacillus 44.1 fg 
B8  Bacillus 48.6 g 
B9 (1) Bacillus 48.9 g 
Grape Yeast 24.2 a 
EP Yeast 28.4 ab 
GR1 Yeast 30.8 abc 
GR2 Yeast 30.9 abc 
B13  Yeast 31.4 abc 
ON3 Yeast 32.1 abc 
B-a Yeast 32.5 abcd 
Lemon P Yeast 33.4 abcd 
SPL Yeast 36.9 bcdef 
UL3 Yeast  39.2 cdef 
Water (control) Penicillium digitatum only  45.2 fg 

P Value   <0.001*** 
 
*= 0.05 significant,   **=0.01 highly significant, ****=0.001 very highly significant 
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3.3.4 Preventative action of selected yeasts and Bacillus isolates 

antagonistic to P. digitatum on navel and Valencia oranges and 

lemons 

On navel oranges, yeast isolates B13, Grape, SPL, B-a, and RG2 provided 

significant control (p≤0.05) of P. digitatum, relative to the untreated control. The 

Bacillus isolate from papaya did not reduce the level of green mould relative to 

the untreated control. The other yeast and Bacillus isolates tested developed 

significantly less green mould than the untreated control (a detailed statistical 

analysis of the data in Table 3.3 is presented in Appendix 3C). 

 

On Valencia oranges, Bacillus isolates B3, B6 and B9 (2) did not control green 

mould. The other yeasts and Bacillus isolates reduced the levels of green 

mould, relative to the untreated control.  Yeast isolates Grape and EP provided 

the best control of P. digitatum. (A detailed statistical analysis of the data in 

Table 3.3 is presented in Appendix 3D). 

 

On lemons, yeast isolates B13, Grape, EP, ON3, SPL, B-a, RG2 and GR1 (for 

the source of isolates, see Appendix 3A) gave significant protection against P. 

digitatum, when compared with the control. Yeast isolate UL3 and Bacillus 

isolates B3, B9 (2), B6, B8, and S1.1 did not control green mould effectively (a 

detailed statistical analysis of the data in Table 3.3 is provided in Appendix 3E). 

 

The two yeast isolates, B13 and Grape, provided complete protection against P. 

digitatum infection on navel oranges and lemons, but did not provide complete 

protection on Valencia oranges (Table 3.3 and Figure 3.3). Three other yeast 

isolates, SPL, B-a, and RG2, also provided excellent protection on navel 

oranges and lemons, but less protection on Valencia oranges. The Bacillus 

isolate Papaya did not perform significantly better than the control on navels 

and lemons; however, it reduced disease development relative to the control on 

Valencia oranges. The best yeast isolates were more effective than the Bacillus 

isolates on navel oranges (Table 3.3). Two yeast isolates, Grape and EP, 

provided the best protection on Valencia oranges (Table 3.3). The Bacillus 

isolates B3, B6 and B9 (2), did not protect Valencia oranges and lemons from 

green mould. Bacillus isolates B8 and S1-1, and yeast isolate UL3 did not 

lemon fruit, but provided significant protection of navels and Valencia oranges 

(Table 3.3). 
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Table 3.3 Preventative treatment of navel and Valencia oranges and lemons 

with 10 yeast and 10 Bacillus isolates to control Penicillium digitatum 

 

 
Isolate and 
control 

 
Biocontrol Agent 

Green Mould Lesion Diameter (mm) 
Navels  Valencia Lemon 

B3 Bacillus 18.9 b 63.0 jk 59.1 e 
B9 (2) Bacillus 18.9 b 68.0 k 54.0 de 
GW1 Bacillus 19.4 b 46.5 fg 16.9 b 
B7  Bacillus 22.1 bc 54.1 h 39.9 c 
B6  Bacillus 29.9 d 64.5 jk 56.6 de 
B8  Bacillus 30.7 d 55.7 hi 57.0 de 
S1-1  Bacillus 34.8 de 53.5 h 53.8 de 
B9 (1) Bacillus 38.8 ef 53.4 h 10.9 b 
S1-2  Bacillus 46.9 g 51.6 gh 44.3 c 
Papaya Bacillus 62.0 h 49.8 gh 50.7 d 
Grape Yeast 0.0 a 2.8 ab 0.0 a 
B13  Yeast 0.0 a 25.3 c 0.0 a 
SPL Yeast 1.7 a 41.2 ef 1.37 a 
B-a Yeast 2.9 a 33.2 d 3.6 a 
GR2 Yeast 6.1 a 22.7 c 3.9 a 
GR1 Yeast 18.2 b 24.3 c 3.4 a 
Lemon P Yeast 21.1 b 19.3 c 11.6 b 
EP Yeast 28.1 cd 6.2 b 0.0 a 
ON3 Yeast 28.5 cd 38.0 de 0.0 a 
UL3 Yeast 44.5 fg 40.4 e 58.0 e 
Water (control) None (Penicillium 

digitatum only) 
68.4 h  60.4 ij 58.2 e 

P Value - <0.001*** <0.001*** <0.001*** 

 
*= 0.05 significant, **=0.01 highly significant, ****=0.001 very highly significant. 
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Figure 3.2 Preventative control of navel and Valencia oranges as well as 

lemons with three yeast isolates to control Penicillium digitatum.  

Untreated (inoculated with P. digitatum only), on top row navel oranges 

(left), Valencia oranges (center), and lemons (right). Center row shows 

fruit treated with yeast isolate Grape, (1 × 108 cells mℓ-1) and inoculated 

with P. digitatum (1 × 104 conidia mℓ-1), navel oranges (left), Valencia 

oranges (center) and lemons (right). The bottom row shows fruit treated 

with yeast Isolate B13 (1 × 108 cells ml-1) and inoculated with P. 

digitatum (1 × 104 conidia mℓ-1), navel oranges (left), Valencia oranges 

(center) and lemons (right). 
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Grape 
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3.3.5 Curative action of selected yeast and Bacillus isolates antagonistic 

to P. digitatum on Valencia oranges and lemons 

When tested on Valencia oranges and lemons by application to wounds 

three hours after inoculation with the pathogen, none of the yeasts or Bacillus 

isolates produced a significant curative action against P. digitatum (Table 3.4). 

 

Table 3.4 Curative treatment of Valencia oranges and lemons with 10 yeast and 

10 Bacillus isolates to control Penicillium digitatum 

 

 

Treatment 

 

Isolate types 

Green Mould Lesion diameters (mm) 

Valencia Lemon 

B7  Bacillus 48.1 59.8 
B6 Bacillus 49.5 60.5 
B8 Bacillus 52.2 60.7 
B9 (2) Bacillus 55.3 51.7 
GW1 Bacillus 55.9 58.5 
B3 Bacillus 56.5 58.1 
S1-2 Bacillus 59.5 61.3 
B9 (1) Bacillus 61.0 59.2 
S1-1 Bacillus 60.1 57.1 
Papaya Bacillus 62.0 59.6 
Lemon P Yeast 48.5 58.6 
B-a Yeast 48.9 58.9 
Water P. digitatum only  49.3 57.9 
GR2 Yeast 49.5 60.3 
EP Yeast 49.5 57.9 
ON3 Yeast 51.2 58.6 
Grape Yeast 52.2 58.1 
B13  Yeast 52.3 60.2 
SPL Yeast 54.9 61.0 
GR1 Yeast 55.5 60.3 
UL3 Yeast 60.2 53.9 

P Value 
 

 0.08 
NS 

0.074 
NS 

 

NS= Not significant (>0.05), *= 0.05 significant, **=0.01 highly significant, 

****=0.001 very highly significant. 

 

3.3.6 Dose effect of two yeast isolates, B13 and Grape, on the control of P. 

digitatum, when applied preventatively on lemons 

The results of the different concentrations of the two yeast isolates against P. 

digitatum showed that both yeast isolates B13 and Grape provided significantly  

smaller lesion diameters compared to the control (0 cells ml-1) (a detailed 

statistical analysis of the data in Figure 3.3 is provided in Appendix 3F). 
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Figure 3.3 Dose effect of two yeasts (isolates B13 and Grape) on the the lesion 

diameter of Penicillium digitatum on lemon, when applied preventatively. 

 

 

3.4 DISCUSSION 

The major objective of this study was to isolate yeasts and Bacillus spp. 

antagonistic to P. digitatum and to assess their potential ability for biological 

control of green mould of citrus. This approach has been reported by others 

(Wilson and Chalutz 1989; Chalutz and Wilson, 1990; Smilanick et al., 1993; 

Bouzerda et al., 2003). However, it is the first reported study in which yeasts 

and Bacillus have been isolated in South Africa and their potential antagonistic 

ability assessed against P. digitatum. Isolation of yeast and Bacillus isolates 

from a particular geographical location may be more effective and specific 

against the pathogen isolates present in that region (Vero et al., 2002; 

Bouzerda et al., 2003). 

 

A pilot study on the microorganisms present on the surfaces of mature citrus 

was conducted.  Dense bacterial and yeast populations were found, with little 

growth of filamentous fungi. This indicates that microorganisms present on fruit 

in orchards may be used as a rich source of yeast and Bacillus isolates (Figure 

3.1). The presence of microorganisms on mature fruit reflect the 

microorganisms‟ abilities to tolerate the hostile conditions present on the 

surface of fruit, namely: low nutrient availability, UV radiation, rapid climatic 

changes (Leibinger et al., 1997), the presence of agrochemicals (Köhl and 
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Fokkema, 1998); and reflect their ability to colonize and survive on the target 

host tissue. 

 

All 60 yeasts and 92 Bacillus isolates recovered from the surface of the fruit 

reduced disease development by P. digitatum on navel oranges in the initial 

screening. However, only 20 isolates (10 yeast and 10 Bacillus isolates) 

reduced the fruit surface area infected by P. digitatum on navel oranges by 

≤50% (Table 3.1). Isolates of yeast and Bacillus which failed to reduce infection 

levels by P. digitatum to ≤50 on the fruit surface were considered inadequate to 

warrant further screening (Table 3.1). 

 

In subsequent screenings, yeast isolates provided superior control of P. 

digitatum compared with the best Bacillus isolates (Table 3.3). In general, yeast 

isolates effectively reduced disease development by P. digitatum on navel and 

Valencia oranges, and lemons. In a preventative trial with 20 yeast and Bacillus 

isolates, yeast isolates B13 and Grape, originally isolated from the skin of a 

Valencia orange and a grapefruit, respectively, exhibited the highest 

antagonistic activity against P. digitatum infection on navel oranges and lemons 

(Table 3.3). On Valencia oranges, Isolate Grape was more effective than Isolate 

B13. However, in the dosage trial, which compared the performance of these 

two isolates at a range of cell concentration, Isolate B13 consistently, provided 

better control of green mould on lemons than Isolate Grape (Figure 3.3). Isolate 

B13 was therefore selected for further studies. 

 

In these trials, yeast antagonists were effective when applied preventatively but 

not when applied curatively. This is in agreement with the results obtained by 

Qing and Shiping (2000), who showed that the yeast Pichia membranefaciens 

Hansen was only effective when applied to nectarine fruit 24-48 hours before 

inoculation with Rhizopus. Similarly, de Capdeville et al. (2002) showed that 

yeasts reduced the progress of Penicillium expansum (Link) Thom. on apple 

fruit more effectively when applied to the fruit 24 hours or 96 hours before 

inoculation with the pathogen than when applied 24 hours after inoculation. 

Chalutz and Wilson (1990) also found that the efficacy of a yeast isolate of 

Debaryomyces hansenii (Zopf) Lodder and Kreger-van Rij against green and 

blue moulds of grapefruit was reduced if application was delayed by three hours 

or more after inoculation of the pathogen. 
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The lack of curative disease control by yeast antagonists could be due to the 

pathogen penetrating into the fruit tissues and therefore being out of reach of 

the antagonist, as suggested by Mercier and Smilanick (2005). An alternative 

hypothesis is that biocontrol yeasts act by competitively colonizing wounds 

faster than Penicillium.  Once established in a fruit wound, the yeasts utilize all 

the nutrients released from the wound.  In this scenario, no nutrients are left to 

stimulate Penicillium spores to germinate. However, if the Penicillium spores 

have access to wound nutrients for three hours before the yeasts are applied, 

then the stimulation of Penicillium spores to germinate will have already 

occurred before the yeasts are applied. Hence, yeasts isolates would not be 

effective in a curative role. 

 

The study of the biocontrol activities of different concentrations of the two yeast 

isolates B13 and Grape against P. digitatum demonstrated that both yeasts 

reduced the lesion diameters of P. digitatum on lemon, irrespective of the yeast 

concentrations. Isolate B13 demonstrated greater biocontrol efficacy and 

completely controlled P. digitatum development at 1 × 108 cells mℓ-1. Similar 

findings were reported by Tian et al. (2002) with Candida guilliermondii 

(Castellani) Langeron and Guerra and P. membranefaciens at a concentration 

of 108 cells mℓ-1, which completely controlled infection by Rhizopus stolonifer on 

peaches and nectarines. Chanchaichaovivat et al. (2007) were able to control 

anthracnose on chilli (6.5% disease incidence) caused by Colletotrichum 

capsici, with a yeast P. guilliermondii Strain R13, applied at 108 cells mℓ-1. 

Zheng et al. (2005) were also able to control green mould of oranges with yeast 

Rhodotorula glutinis (Harrison), applied at a concentration of 1 × 109 cells mℓ-1. 

Reports by Janisiewicz (1988) and Hong et al. (1998) demonstrated that a 

direct relationship exists between the population density of the biocontrol agents 

and the effectiveness of the postharvest biological control treatment. 

 

Isolate B13 is an isolate of Candida fermentati, which was previously thought to 

be the anamorph of Pichia guilliermondii, cosmopolitan yeast associated with 

numerous habitats (Kurtzman and Fell, 2000). However, low DNA base 

sequence relatedness, different electrophoretic karotypes and nucleotide 

divergence of the D1/D2 region have all lead to the reinstatement of Candida 

fermentati as a separate species (Vaughan-Martini et al., 2005). To the best of 

our knowledge, this yeast has not been reported as a biocontrol agent, possibly 
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because its activities as an effective biocontrol agent have been credited to P. 

guilliermondii. 

 

Candida fermentati has been isolated from the gut of beetles (Suh and 

Blackwell, 2004). It has not been reported to pose a risk to human health. 

Therefore, rigorous toxicological tests would be needed before its use as a 

biocontrol agent could be commercialized. 
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CHAPTER 4 

SCANNING ELECTRON MICROSCOPY STUDIES OF THE 

INTERACTIONS OF YEAST ISOLATE B13 AND PENICILLIUM 

DIGITATUM IN LEMON WOUNDS 

 

ABSTRACT 

Environmental scanning electron microscopy (ESEM) studies showed effective 

colonization of lemon wounds by yeast Isolate B13. Based on ESEM 

observations, when applied preventatively to control Penicillium digitatum, yeast 

Isolate B13 (Candida fermentati (Saito) Bai.) inhibited or restricted conidial 

germination of P. digitatum. The yeast Isolate B13 demonstrated good 

colonization of lemon wounds and provided protection against P. digitatum. 

 

 

4.1 INTRODUCTION 

Yeasts that occur naturally on fruit have been targeted by many researchers as 

potential antagonists of postharvest pathogens because they exhibit a number 

of traits that enhance their potential for colonizing fruit surfaces (Droby et al., 

2000). Yeasts protect a variety of harvested commodities against a number of 

postharvest pathogens (Janisiewicz et al., 1994; Chand-Goyal and Spotts, 

1996; Leibinger et al., 1997). Successful control of Penicillium digitatum (Pers: 

Fr. Sacc.) of citrus has been reported by a number of workers. Chalutz and 

Wilson (1990) found that the yeast strain Pichia guilliermondii Wickerham and 

Debaryomyces hansenii (Zopf) Lodder and Kreger-van Rij inhibits the incidence 

of P. digitatum; El-Ghaouth et al. (2000) controlled P. digitatum with Candida 

saitoana; and Bouzerda et al. (2003) found that yeast isolates L13 and L22 

limited the level of infection of citrus by P. digitatum. 

 

Although the biocontrol activity of antagonistic yeasts has been demonstrated 

on a variety of commodities, evaluation of control of P. digitatum has been 

largely based on percentage of infected fruit (El-Ghaouth et al., 2000; Chalutz 

and Wilson, 1990) or lesion diameter (Droby et al., 2002). Similarly, assessment 

of the antagonist on the fruit wound has been based on cell counts on plates, as 

demonstrated by Bouzerda et al. (2003). This technique does not provide 
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information on the colonization and establishment ability of biocontrol agents, 

nor does it provide information on the mode of action of specific biocontrol 

agents on a pathogen. Suggested mechanisms of biocontrol include: antibiosis, 

lysis, competition and mycoparasitism (Chet and Baker, 1980; Papavizas, 1985; 

Sid Ahmed et al., 1999). The purpose of this study was therefore to investigate 

the ability of the yeast Isolate B13 (Candida fermentati (Saito) Bai.) to colonize 

fruit wounds and to determine the modes of action of Isolate B13 by observing 

surface colonization and pathogen germination and infection processes, using 

environmetal scanning electron microscopy. 

 

 

4.2 MATERIALS AND METHODS 

4.2.1 In vitro reaction of yeast Isolate B13 against Penicillium 

digitatum 

Yeast Isolate B13, grown on nutrient agar (NA) (Merck Laboratory, South 

Africa) was streaked on potato dextrose agar (PDA) (Merck Laboratory, South 

Africa) on both sides at a distance of about 10 mm from edge of the petri dish 

with agar with a 4 mm plug of Penicillium digitatum (grown on PDA) occupying 

the center of the plate and incubated (incubator: Babotec, South Africa) at 25°C 

for seven days. The treatments were evaluated for evidence of inhibition of P. 

digitatum by Isolate B13 by measuring the width of the inhibition zone between 

the two fungi. 

 

4.2.2 Preparation of the yeast Isolate B13 on agar, and investigation of its 

colonization ability in lemon wounds, using scanning electron 

microscopy 

A quarter of a loop filled with culture of the yeast Isolate B13 was taken from a 

discrete colony grown on nutrient agar (NA) (Merck Laboratory, South Africa).  

This was then streaked onto nutrient agar plates. The plates were incubated 

(Incubator: Labotec, South Africa) at 25°C for four days. Blocks of 

10 mm × 10 mm agar with a colony of the yeast on the surface were prepared 

for electron microscopy studies. 

 

To assess colonization by the yeast Isolate B13 in wounds of lemons, lemon 

fruit was surface disinfected with 70% alcohol for one minute, dried, and then 

wounded (25 mm in length × 3 mm in depth) at one site at the equator of the 
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fruit using a dissecting needle. A 100 μl aliquot of cell suspension of Isolate 

B13 (1 × 108 cells mℓ-1) was pipetted into each wound site. This concentration 

was used because it provided a complete inhibition of P. digitatum in a previous 

trial (Chapter 3.3.6). Fruit were kept on a laboratory bench at room temperature 

(24±1°C). After three days, colonized wounds on the fruit were excised and 

prepared for observation by scanning electron microscopy. 

 

4.2.3 Preparation of the yeast Isolate B13 and P. digitatum to examine 

their interactions in lemon wounds, using scanning electron 

microscopy 

Lemons were surface disinfected (with 70% alcohol for one minute, dried) and 

wounded as described avove in Section 4.2.2. A cell suspension of 100 μℓ of 

the yeast Isolate B13, at 1 × 108
 cells mℓ-1, was pipetted into each wound site. 

Wounds treated with the same amount of distilled water served as a control. 

After 48 hours, all wounds were inoculated with a conidial suspension of 100 μℓ 

of P. digitatum (1 × 104 conidia mℓ-1). Fruit were kept at room temperature 

(24±1°C). Two boxes (disinfected with 70% alcohol), with five fruit per box, were 

used per treatment and placed on a bench. Ten days after inoculation, wounded 

tissue from the treated and the control fruit were excised and used for scanning 

electron microscopy studies. 

 

4.2.4 Scanning electron microscopy studies of the growth of the yeast 

Isolate B13 on nutrient agar and its colonization ability in wounds of 

lemon 

Samples were taken of yeast Isolate B13 grown on nutrient agar, together with 

excised wounds of lemons inoculated with combinations of Isolate B13 and P. 

digitatum, plus a control treatment. The samples were fixed for eight hours in 

2% buffered osmium tetroxide (10 ml 4% OsO4, 5ml 0.2M sodium cacodylate 

buffer and 5 ml distilled water) the samples were dehydrated in an ethanol 

series (10 minutes each in 30%, 50%, 70%, 80%, 90%, and 3 × 10 minutes in 

100% ethanol) in a fume cupboard. The specimens were then transferred into 

critical point drier baskets under 100% ethanol and placed in a pre-cooled 

Hitachi HCP-2 critical point drier. Following critical point drying (CPD) and gold-

palladium sputter coating (Polaron Equipment Limited ESEM, coating unit 

E5100), the samples were viewed in an ESEM (Philips, FEI XL 30, Holland) at 
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an accelerating voltage of 15 keV. Samples from five fruit from each treatment, 

and a sample of yeast Isolate B13 on the surface of nutrient agar were viewed. 

 

4.2.5 Scanning electron microscopy studies of the interactions of yeast 

Isolate B13 and P. digitatum in wounds of lemon fruit 

Sample tissue from the untreated wounded lemon was excised (Figure 4.1A) for 

ESEM observations. Similarly, tissue sample were obtained from wounded 

lemon fruit that were treated with the yeast Isolate B13 and subsequently 

inoculated with P. digitatum (Figure 4.1B), after which tissue samples were 

excised for ESEM observations (Figure 4.2C). The tissue samples were held 

overnight in a fixative of 3% (v v-1) glutaraldehyde in 0.05 M sodium cocodylate 

buffer (pH 7.2) and dehydrated in an ethanol series (as reported in Section 

4.2.4), transferred into critical point drier baskets and gold-palladium sputter 

coated.  The ESEM equipment used was as described above in Section 4.2.4. 

Samples from five fruit from each treatment were viewed. 
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Figure 4.1 (A) Penicillium digitatum inoculated into a lemon wound, showing 

infection and how sample tissue was taken from the wounded fruit for 

ESEM; (B) In vivo interaction of the yeast Isolate B13 and P. digitatum on 

lemon, with no infection developing; (C) the same fruit surface used for 

electron microscope studies by excising surface samples from the 

wounded fruit. 

 

 

4.3 RESULTS 

4.3.1 In vitro reaction of yeast isolate B13 against Penicillium 

digitatum 

Yeast isolate B13 showed no inhitory activity against P. digitatum.  There was 

no gap between colonies of B13 and the pathogen.  Furthermore, there was no 

visual or microscopic evidence of hyperparasitism by Isolate B13 on the 

pathogen. 

 

 

Wound 

 

 
B13 + Penicillium 
digitatum  
 
 
gitatum 

B 

Wound 

A 
 

Penicillium digitatum 
inoculated only 

Removed peel  

B13 + Penicillium digitatum 

C 
Removed flavedo 

Wound 

Wound 
 



 66 

4.3.2 Scanning electron microscopy observations of the yeast Isolate B13 

on nutrient agar and its colonization ability in wounds of lemons 

Environmental scanning electron microscopy observation showed growth of the 

yeast Isolate B13 on agar (Figure 4.2A). Environmental scanning electron 

microscopy observations showed good colonization of lemon wounds by the 

yeast Isolate B13, where it densely colonized the fruit surface after 3 days of 

treatment as in Figure 4.2B making the wound invisible. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 (A) Scanning electron micrographs of the yeast Isolate B13 cells on 

nutrient agar; (B) ESEM of the yeast Isolate B13 cells growing in a lemon 

wound. YC= yeast cells. 

 

4.3.3 Visual observation of wounds of lemons inoculated with P. digitatum 

only 

Observation on lemon wounds inoculated with P. digitatum showed visible 

green conidia of P. digitatum and/or softening on the fruit surface 10 days after 

inoculation (Figure 4.3). 
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Figure 4.3 Lemons infected with Penicillium digitatum (P) 10 days after 

inoculation. 

 

4.3.4 Scanning electron microscopy observations of wounds of lemon 

inoculated with P. digitatum only 

Environmental scanning electron microscopy showed hyphal growth of the P. 

digitatum infection on the wounded lemon fruit (Figure 4.4A). Dense hyphal 

growth and conidiophore formation was evident under 1200× magnification 

(Figure 4.4B). Conidia were densely packed on the fruit inoculated with P. 

digitatum only (Figure 4.4C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wound 
Wound 

P 

P P 

P 

Wound 
 

Wound 
 



 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Scanning electron micrographs of the untreated control (inoculated 

with Penicillium digitatum only): (A) mycelial growth of P. digitatum in the 

lemon wound surface; (B) hyphal growth of P. digitatum in the wound 

surface; (C) hyphae and conidial structures of P. digitatum. Co = 

conidium. 

 

4.3.5 Visual observation of wounds of lemons treated with the yeast 

Isolate B13 and subsequently inoculated with P. digitatum 

In vivo interactions on wounded lemons treated with the yeast Isolate B13, then 

48 hours later inoculated with P. digitatum, showed no visible P. digitatum 

mycelium or softening of the wounded fruit surface (Figure 4.5) 10 days after 

inoculation. 
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Figure 4.5 In vivo interactions of the yeast Isolate B13, applied preventatively 

on lemon wounds, and Penicillium digitatum, inoculated 48 hours later. 

 

4.3.6 Scanning electron microscopy observations of interaction of the 

yeast Isolate B13 and P. digitatum in lemon wounds 

Inhibition of conidial germination of P. digitatum was observed as a result of the 

prior inoculation of the yeast Isolate B13 onto wounds of lemons, using ESEM 

(Figures 4.6A and B). Restricted conidial germination of P. digitatum was 

observed in some cases (Figure 4.6C), compared with the untreated control 

(Figures 4.4B and C). In addition, no mycelial growth was observed on 

wounded lemons treated with the Isolate B13 and then inoculated with P. 

digitatum (Figure 4.6), compared to the dense mycelia that grew when the 

pathogen was applied alone (Figure 4.4). 
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Figure 4.6 Scanning electron micrographs of the yeast Isolate B13 and 

Penicillium digitatum interacting in wounded lemons: (A and B) 

germination of conidia of P. digitatum was inhibited; yeast cells 

dominated the wound surface; (C) germinating P. digitatum conidia 

in a lemon wound. Co= conidium; YC= yeast cells; GT= germ tube. 

 

 

4.4 DISCUSSION 

Germination and growth of P. digitatum in lemon wounds, treated preventatively 

with the yeast Isolate B13, were observed using ESEM (Figure 4.6). 

Observations showed that complete inhibition of conidial germination (Figure 

4.6A and B) or restricted germination of conidia (Figure 4.6C), compared with 

the water-treated control where normal conidial germination, germ tube growth, 

hyphal growth and sporulation were evident (Figure 4.4). 

 Co 

GT 

C 

B 

    Co 

YC 

YC 

A 

Co 
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Yeast antagonists often exert antagonistic activity through competition for 

nutrients or space (Roberts, 1990). For effective biocontrol activity, antagonists 

must multiply and colonize wounds rapidly (Wilson and Wisiniewski, 1989; 

Wilson et al., 1993). The yeast Isolate B13 was able to multiply, colonize and 

survive in lemon wounds (Figure 4.2B). It also densely colonized wounds in the 

presence of P. digitatum conidia (Figure 4.6A and B). Although no population 

counts of the Isolate B13 were done in these studies, but research on other 

yeasts have shown good adaptation, colonization and multiplication in citrus 

fruit wounds (Tian et al., 2002; Bouzerda et al., 2003). Rapid and 

comprehensive colonization of the wound environment by the yeast Isolate B13 

was observed (Figures 4.2B and 4.6A and B).  We hypothesize that the prolific 

colonies of Isolate B13 used up all available nutrients and that this resulted in 

the observed control of P. digitatum by inhibiting its conidia from germinating, a 

theory proposed earlier by Wilson and Wisiniewski (1989). 

 

This hypothesis of nutrient competition was supported by in vitro tests, in which 

Isolate B13 failed to produce any antagonistic activity by antibiosis, or to display 

any evidence of hyperparasitic activity against P. digitatum (see Section 4.3.1). 

Similar findings were reported by Zheng et al. (2005) that tests on agar plates 

with yeast isolate Rhodotorula glutinis (Harrison) did not inhibit growth of P. 

digitatum. 
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CHAPTER 5 

FRUIT SURFACE COLONIZATION AND BIOLOGICAL CONTROL 

OF PENICILLIUM DIGITATUM ON VALENCIA ORANGES BY 

PREHARVEST YEAST APPLICATION 

 

ABSTRACT 

Preharvest application of a yeast, Isolate B13 (Candida fermentati (Saito) Bai.), 

as a field spray for the control of Penicillium digitatum, was investigated for two 

seasons. In 2006, Valencia oranges at Caterall‟s Farm (Site 1), Richmond, 

KwaZulu-Natal, South Africa were sprayed with the yeast Isolate B13 at 1 × 105, 

1 × 106 or 1 × 107 cells mℓ-1, one, three or seven days before harvest, with or 

without the adjuvant Breakthru®. At harvest, some fruit were inoculated with P. 

digitatum by dipping wounded fruit into a suspension of conidia (1 × 104 

conidia mℓ-1) for one minute.  The fruit were then stored at 24±1°C for 

one month. Another batch of fruit was wounded, but was not inoculated 

artificially.  This batch was also stored at room temperature (24±1°C) at ambient 

relative humidity (RH) for one month. A third batch of 10 fruit were not wounded 

and not inoculated, and were stored in a cold room (7±1°C) at 90% RH for 

one month before evaluation. In 2007, an additional site, Maywood Farm (Site 

2), Richmond, KwaZulu-Natal, South Africa was used, as well as the site used 

in 2006, Caterall‟s Farm (Site 1). At Site1 the yeast Isolate B13 was sprayed at 

1 × 106 cells mℓ-1, with or without Breakthru®, either one month or one day 

before harvest. At Site 2 the yeast Isolate B13 was sprayed at the same rate, 

but it was applied twice, at two months and one month before harvest, or only 

for one day before harvest, on separate trees. Fruit harvested from trees after 

one day of application of treatment were wounded. Natural inoculum was used 

for all trials, so conidia of P. digitatum were not applied artificially. Preharvest 

application of yeast Isolate B13 did not reduce P. digitatum disease incidence 

on unwounded Valencia oranges with natural infestation stored at 7±1°C or 

24±1°C at either farms. There was no significant control of lesion diameter at 

24±1°C on wounded and artificially inoculated fruit compared with the control at 

Site 1.  Furthermore, there was no control of P. digitatum infection by Isolate 

B13 with or without the application of Breakthru®, or by Breakthru® alone, on 

either farm in 2007. The population of yeasts on the surface of Valencia 

oranges sprayed with Isolate B13 was higher than the control at harvest at both 
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sites. However, this higher population of yeast populations did not control the 

incidence of P. digitatum. Application of the yeast Isolate B13 as a field 

treatment was not effective in controlling P. digitatum. 

 

5.1 INTRODUCTION 

A number of researchers have reported that antagonistic microorganisms failed 

to control previously established infections of fruit by post-harvest pathogens 

(Janisiewicz, 1988; Pratella and Mari, 1993; Roberts, 1994). Earlier research in 

this thesis (Chapter Three) demonstrated that yeast biocontrol agents were not 

effective in controlling already established infections of P. digitatum (Pers: Fr. 

Sacc.). This poses a serious problem because infection of citrus fruit by P. 

digitatum often takes place in the field prior to or during harvesting processes 

(Green, 1932; Kavanagh and Wood, 1967; Pelser et al. 1977). 

 

This highlights the potential for early applications of biocontrol agents.  Their 

application in the field prior to injury that often occurs during harvest (Spotts et 

al., 1998) should provide protection against subsequent infection by 

P. digitatum. Some success has been achieved with preharvest applications of 

antagonistic microorganism on storage rot of fruit, e.g., the yeast Candida 

oleophila Montrocher was more effective against Botrytis cinerea (De Bary) 

Whetzel storage rots on strawberries when applied in the field at bloom, 

compared to treatments applied immediately after harvesting, which fail to 

combat latent infections (Lima et al., 1997). 

 

For this approach to be successful, an important consideration in the preharvest 

application of microbial antagonists is the ability of the antagonists to survive in 

sufficiently large populations on the fruit surface after application. Yeasts may 

be negatively affected by pesticide sprays (Chand-Goyal and Spotts, 1996) or 

be washed off from the fruit surface during irrigation or rain. The antagonists 

must be able to tolerate low nutrient availability, UV radiation, high and low 

temperatures, and climatic changes (Leibinger et al., 1997). However, since 

potentially effective biocontrol yeasts were originally isolated from the fruit 

surfaces after or prior to harvest (Roberts, 1990; Chand-Goyal and Spotts, 

1997), they should be tolerant of these conditions. Moreover, some yeast 

antagonists can colonize plant surfaces or wounds under unfavorable 
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conditions by protecting themselves with extracellular polysaccharides 

(Wisniewski and Wilson, 1992). 

 

The primary objectives of this study were to assess the fruit surface colonization 

ability of the yeast Isolate B13 (Candida fermentati (Saito) Bai.) when applied 

prior to harvest, and to investigate the efficacy of the yeast Isolate B13 in 

controlling postharvest infection by P. digitatum when applied prior to harvest. A 

secondary objective was to assess the level of infection by P. digitatum of 

Valencia oranges in the field under natural conditions. 

 

5.2 MATERIALS AND METHODS 

5.2.1 In vitro compatibility of yeast Isolate B13 with the adjuvant 

Breakthru® 

A loop full of the yeast Isolate B13 grown on nutrient agar plate for three days 

was mixed with 10 ml of undiluted Breakthru® (a silicone wetter and spreader). 

Sterile distilled water was used for the control (Isolate B13 only). After 

10 minutes of mixing, 0.1 ml of both suspension was inoculated onto duplicate 

plates of potato dextrose agar (PDA) (Merck Laboratory, South Africa), 

amended with 0.15 g ℓ-1 Rose Bengal (RB) (BDN Laboratory, England). Plates 

were incubated at 25°C for three days under dark conditions and the growth of 

the yeast isolate was observed. 

 

5.2.2 Culture preparation of the yeast Isolate B13 for the preharvest 

application 

A formulation of the yeast, Isolate B13, was prepared by Plant Health Products 

(PHP)2, Ltd. A 30 mm × 30 mm sponge containing the yeast was placed in one ℓ 

of sterile distilled water until most yeast cells were released into the water. 

Yeast concentration was determined using a haemocytometer. The 

concentration was adjusted to 1 × 105
,
 or 1 × 106

,
 or 1 × 107 cells mℓ-1. 

Haemocytometric determination of the yeast concentrations was confirmed by 

dilution plating of the treatment suspension on culture plates containing 3 g of 

malt extract, 3 g of yeast extract, 5 g of peptone 10 g of dextrose and 20 g ℓ-1 

agar (all from Merck Laboratory, South Africa) (according to Benbow and Sugar, 

1999). 

 

                                                 
2
 Plant Health Products (Pty) Ltd., P.O. Box 207, Nottingham Road, South Africa, 3280 
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5.2.3 Determination of preharvest application of the yeast Isolate B13 for 

the control of P. digitatum infection of Valencia oranges during the 

seasons of 2006 and 2007 

In the season of 2006, the study was conducted in one orchard of Valencia 

orange trees grown at Caterall‟s Farm, Richmond (29.53 S 30.17 E), KwaZulu-

Natal, South Africa. Trees were over five years old. Trees for treatments with 

yeast and untreated control trees were selected in a randomized blocks design, 

with four replicates, with a single tree acting as a replicate. 

 

The trial treatments are summarized in Table 5.1. Treatment sprays were 

applied seven days, three days and one day prior to fruit harvest. The yeast 

Isolate B13 was applied at three concentrations (1 x 105, 1 x 106, 1 x 107 cfu), 

with or without a silicone wetting agent, Breakthru®, which was added at a 

concentration of 0.125 mℓ ℓ-1 of water.  Water alone and a Breakthru® 

suspension were sprayed as controls (Table 5.1). 

 

The yeast and adjuvant suspensions were applied to the selected trees using a 

motorized knapsack mist blower ensuring that each tree was carefully sprayed 

to the point before runoff. 

 

In the season of 2007, two similar trials were conducted in two different 

orchards. Site 1, Caterall‟s Farm, is located in the immediate vicinity of 

Richmond, KwaZulu-Natal, while Site 2, Maywood Farm, is located about 

10 Km from Richmond, towards Pietermaritzburg. At Site 1, the citrus trees did 

not receive any irrigation, nor were any agrochemical sprays applied.  At Site 2, 

the trees, over five years old, were regularly irrigated with microjet irrigation 

sprinklers, and were sprayed according to a scheduled programme of 

agrochemicals. 

 

In the 2007 season, application of the yeast Isolate B13 was done once before 

harvest at Site 1 and two applications in Site 2 (once a month for two months), 

with or without Breakthru®, in order to provide the yeast with ample time to 

establish itself on the fruit surface and subsequently give protection against P. 

digitatum infection. During the 2007 season period, treatment application was 

extended to one month or two because previous season‟s results showed no 

difference between the treatments when applied seven, three and one day 
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before harvest. It was also supported by observations of P. digitatum on fruit or 

damage on orange fruit at the early green stage in the field, approximately 3-

4 months prior to harvest (Figure 5.1). Yeast Isolate B13 was applied once a 

one month prior to harvest (27 July 2007) at Site 1 to trees different to those 

ones used in the 2006 season. In the second orchard (Site 2), the biocontrol 

agent was applied twice at monthly intervals prior to harvest (27 July 2007 and 

27 August). The yeast Isolate B13 was applied in the same manner to a 

separate set of trees one day prior to harvest for both sites. Three trees (a tree 

as a replicate) per treatment were used. 

 

Table 5.1 Trial design for preharvest application of yeast Isolate B13, at 7, 3 or 

1 day prior to harvest for the control of Penicillium digitatum on Valencia 

oranges for the seasons of 2006 

 

 

Treatment 
Preharvest application of B13  Wetter or spreader 

7 d 3 d 1 d Breakthru® 

Untreated - - - - 

Untreated 
 

- - - + 

Pre7d+ B13  + - - + 

Pre7d+ B13 + - - - 

 
Pre3d+ B13  

 
- 

 
+ 

 
- 

 
+ 

Pre3d+ B13  - + - - 

 
Pre1d+ B13 

 
- 

 
- 

 
+ 

 
+ 

Pre1d+ B13  - - + - 

NB: B13= yeast isolate, Pre= preharvest application, 7d= seven days, 3d= three 

days, 1d= one day  
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Figure 5.1 Pre-harvest infection by Penicillium digitatum of Valencia oranges, 

showing field infection. 

 

5.2.4 Assessment of preharvest application of the yeast Isolate B13 for the 

control of P. digitatum infection of Valencia oranges during the 

seasons of 2006 and 2007 

In 2006, 30 fruit were sampled per tree from a total of four trees per treatment 

and were divided into three batches of 10 fruit. Ten fruit were wounded with a 

sterile dissecting needle (25 mm in length and 3 mm in depth) at the equator, 

and inoculated by dipping the wounded fruit into a suspension of P. digitatum 

(1 × 104 conidia mℓ-1) for one minute and stored at 24±1°C for one month and 

lesion diameter (mm) was recorded (measured as a mean of two dimensions of 

horizontal and vertical diameter of the lesion). Another batch of fruit was 

wounded and not inoculated artificially and also stored at room temperature 

(24±1°C) at ambient relative humidity (RH) of 70-90% for one month. The third 

batch of 10 fruit were not wounded and not inoculated and were stored in a cold 

room (7±1°C) at 90% RH for one month before evaluation. 

 

In 2007, the number of fruit used was similar to those described above. 

However, fruit that were sprayed with the yeast one day before harvest were 

wounded 5 times on both ends of each fruit with a sterile dissecting needle 

(2 mm in length and 3 mm in depth). Fruit was not artificially inoculated with P. 

digitatum. Two fruit boxes, disinfected with 70% alcohol, with five fruit per box, 

were used in each of the 14 treatments and placed on a bench in a complete 
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randomized block design (CRBD). Lesion diameter (mm) of infected wounds, 

(measured as a mean of the horizontal and vertical diameters of the lesion) and 

percentage incidence (%) of P. digitatum were determined one month after 

inoculation for each batch of fruit which was stored at room temperature 

(24±1°C). 

 

5.2.5 Evaluation of colonizing capability of the yeast Isolate B13 on 

Valencia oranges at harvest when applied a month prior to harvest 

during the 2007 season 

Three uniformly sized fruit from each treatment batch, as described in Section 

5.2.3, were sampled at harvest to determine the number of cells of the yeast 

Isolate B13 (colony forming unit, CFU) on the fruit surfaces. Three fruit (whole 

fruit) were put together into beakers containing 900 ml of 0.05 M sterile 

phosphate buffer (SPB: 2.7 g NH2HPO4.12H2O, 0.4 g NaH2PO4.2H2O and 8.0 g 

NaCl from Merck, South Africa) with 0.006% (vol/vol) Tween 20 (UniLab, Merck, 

South Africa). The fruit and the buffer were stirred for 10 minutes, using a 

magnetic stirrer and then placed in a sonicating bath for five min. A one ml 

sample was removed from each beaker immediately after sonication 

(Sonication bath: Whaledent Biosonic, Germany), and a 10 fold dilution series 

was made up to 10-5 dilution in SPB solution. Samples of each dilution were 

then inoculated on petri dishes containing a selective, yeast malt dextrose agar 

(YMDA) medium (Merck, South Africa) [(1.5 g malt extract, 1.5 g yeast extract, 

2.5 g peptone, 5 g dextrose, 18 g agar, 100 mg ℓ-1) and chloramphenicol 

(Merck, South Africa) and 50 mg ℓ-1 of ampicillin (Sigma, Germany) in 1 ℓ of 

distilled water)]. Chloramphenicol and ampicillin were incorporated to inhibit 

bacterial growth. Plates were incubated for 2-3 days at 25°C according to 

Chand-Goyal and Spotts (1994). After incubation (Incubator: Labotec, South 

Africa), population levels were determined using the plate dilution frequency 

technique of Harris and Sommers (1968). 

 

The distinctive morphological characteristic of the yeast isolate was used to 

visually distinguish the yeast isolate recovered from the fruit. A pure culture of 

the yeast Isolate B13 was concurrently cultured to assist in identifying specific 

colonies. For a given treatment, only yeast species that were applied to that 

treatment were counted in the population sample. To determine population 

levels on the untreated controls, only colonies resembling those of yeast 
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species used in the treatments were counted, as described by Benbow and 

Sugar (1999). The population count trial was conducted for the season of 2007 

only. 

 

5.2.6 Statistical analysis 

Lesion diameter (mm) and P. digitatum incidence (%) data were subjected to an 

analysis of variance (ANOVA) using Genstat® Executable Release 9.1 

Statistical Analysis Software (Anonymous, 2006). To determine differences 

between treatments, Fisher‟s Least Significant Difference Test was used 

(P<0.05). 

 

 

5.3 RESULTS 

5.3.1 Compatibility of the yeast Isolate B13 with Breakthru® 

Breakthru® was found to be compatible with the formulated or unformulated 

yeast Isolate B13 and did not affect growth of B13 on the plate compared with 

B13 without Breakthru®. There was no obvious difference in the growth of 

Isolate B13 when grown with or without Breakthru®. 

 

5.3.2 Control of P. digitatum infection by the yeast Isolate B13 applied 1, 3 

and 7 days prior to harvest in the 2006 season 

There were no significant differences between any treatments of yeast Isolate 

B13 applied 1, 3 and 7 days prior to harvest for control of P. digitatum of 

Valencia oranges (Table 5.2). Breakthru® alone or with B13 did not result in 

better control of P. digitatum compared with control or B13 applied alone (Table 

5.2). There were not enough fruit available to test lesion diameter at 7±1°C. 
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Table 5.2 Control of Penicillium digitatum incidence or lesion diameter by the 

yeast Isolate B13 and Breakthru® when applied 1, 3 and 7 days prior to 

harvest, in the 2006 season (fruit stored at 24±1°C) 

 

 

 

B13/Bth 

concentration   

Disease incidence % Lesion diameter 

(mm) 

24±1°C 7±1°C 24±1°C 

1 d 3 d 7 d 1 d 3 d 7 d 1 d 3 d 7 d 

0 12.0  13.0  13.0  12.0  12.0 12.0 100 100 100 

Bth only 7.0 8.0  7.0  13.0  12.0 13.0 100 100 100 

1 x 105  10.0  14.0  4.0  10.0  14.0 5.0 70 85 80 

1 x 105 +Bth 6.0  25.0  20.0  5.0  25.0 19.0 100 88 86 

1 x 106  5.0  15.0  4.0  5.0  15.0 5.0 93 100 91 

1 x 106 +Bth 15.0  7.0  10.0  12.0  10.0 9.0 95 100 100 

1 x 107  5.0  5.0  6.0  5.0  5.0 0.0 85 83 91 

1 x 107 +Bth 17.0 13.0  15.0  14.0 10.0 19.0 93 94 100 

P Value   0.058 0.07 0.065 

 NS NS NS 

 
Note: 
Bth= Breakthru®  

d=day 

P>0.05 = Non significant (NS) 

 

5.3.3 Control of P. digitatum infection by the yeast Isolate B13, applied 

prior to harvest in the 2007 season 

There were no significant differences between any treatments of yeast Isolate 

B13 applied 1, 3 and 7 days prior to harvest for control of P. digitatum of 

Valencia oranges (Table 5.3). Breakthru® alone or with B13 did not significantly 

improve control of P. digitatum compared with the control or B13 applied alone 

(Table 5.3). 
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Table 5.3 Control of Penicillium digitatum incidence by the yeast Isolate B13 

and Breakthru® when applied 1day, 1 month and 2 moths prior to harvest 

in the 2007 season (fruit stored at 24±1°C) 

 

 

 

 

 

 

B13/Bth 

 concentrations  

Site 1 (Richmond Town) Site 2 (Maywood Farm, 10 km 

from Richmond Town) 

P. digitatum incidence (%) 

for the preharvest 

treatments after  

P. digitatum incidence (%) for the 

preharvest treatments after   

1 month 1 day 2 month 1 day 

0 75  81  87 76  

Breakthru® (Bth) 85  82  83  70  

B13: 1 × 106 70  76  84  74  

B13: 1 × 106 +Bth 73  75 80  81  

B13: 1 × 107 85  91  93  77  

B13: 1 × 107 +Bth 95  100  71  86  

P Value 0.08 0.074 

 NS  NS 

 

Note: 

Bth= Breakthru® 

P>0.05 = Non significant (NS) 

 

5.3.4 Colonization of Valencia oranges by the yeast Isolate B13 when 

applied as preharvest 

At Site 1 yeast Isolate B13 was applied to the fruit trees one month before 

harvest at two concentrations, 1 × 106 or 1 × 107 cells mℓ-1, with/without 

Breakthru®.  The Valencia oranges treated with B13 had significantly higher 

numbers of yeast cells compared with the untreated control or Breakthru® alone 

(Table 5.4). The cell numbers of yeasts of the untreated control was not 

significantly higher in Site 2 compared with Breakthru® only (Table 5.4). The cell 

counts of yeasts with Breakthru® only application were significantly increased 

(Table 5.4). 
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At Site 2, where yeast Isolate B13 was applied to fruit trees with 

two applications for two months (one application per month) before harvest, all 

treatments at harvest had significantly higher numbers of yeast cells (Table 

5.4). There was no statistical difference between treatments at 1 × 106 and 

1 × 107 cells mℓ-1 of the yeast Isolate B13 with Breakthru®, compared with the 

Breakthru® alone (Table 5.4). However, treatment of Valencia oranges with 

Isolate B13 at 1 × 107 cells mℓ-1 without Breakthru® resulted in the highest yeast 

population recovery at harvest at Site 2 (Table 5.4). At Site 1 application of 

Isolate B13 at both concentrations, with or without Breakthru®, resulted in 

increased yeast populations compared to treatment with Breakthru® alone. 

Treatment with Breakthru® alone did not result in an increase in yeast 

populations compared to the water-sprayed control.  At Site 2 the yeast 

populations after treatment with Breakthru® alone was significantly higher than 

the equivalent yeast population at Site 1. In general, the yeast population 

significantly increased with the increased applications of Isolate B13 without 

Bth, as shown (Table 5.4) for Site 2. 

 

Table 5.4 Cell counts of the yeast Isolate B13 on Valencia oranges at harvest, 

when Isolates B13 was applied prior to harvest (in the 2007 season) 

 

 

 

 

 

 

Treatments 

Total B13 yeast cell counts at harvest 

Site 1 (in 

Richmond Town, 

received one 

applications of 

B13) 

Site 2 (Maywood Farm, 10 km from 

Richmond Town, received two 

applications of B13) 

 

Untreated control 1.33 × 102 a 3.06 × 102 a  

Breakthru (Bth) 5.81 × 102 a 1.73 × 104 c 

B13: 1 × 106 1.02 × 103 b 3.06 × 103 b 

B13: 1 × 106 +Bth 1.02 × 103 b 5.81 × 104 c 

B13: 1  ×107 2.28 × 103 b 1.33 × 105 d 

B13: 1 × 107 +Bth 1.33 × 103 b 5.81 × 104 c 

 

Bth= Breakthru® 

Values within a column followed by the same letter are not significantly different 

based on method used by Benbow and Sugar (1999). 
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5.4 DISCUSSIONS 

Proper coverage of fruit surfaces during preharvest applications with biocontrol 

yeasts is crucial in order to provide protection against target organisms 

(Roberts, 1994). Wetters such as Breakthru® may be used during spraying for 

enhancing spread and thus coverage of the targeted plant material or tissue. 

Breakthru® was shown to be compatible with the yeast Isolate B13. Thus, 

Breakthru® was used as a spreader for the yeast Isolate B13 during these 

preharvest applications. 

 

The yeast Isolate B13 survived on Valencia orange fruit for at least one month 

after application when applied once or twice (one application per month), one or 

two months before harvest. The cell count of yeasts was higher when Isolate 

B13 was applied twice, compared with only one application (Table 5.4). With a 

single application of the yeast Isolate B13, cell counts were not as high as those 

reported for Candida laurentii on apple fruit (final population of 1 × 105 CFU per 

fruit) by Benbow and Sugar (1999). At Site 2 yeast populations were higher than 

at Site 1.  This was probably because of double applications of yeast at Site 2. 

However, at both farms the yeast isolate survived on the fruit at elevated levels 

after preharvest application, irrespective of the timing, the dose used, or the use 

of a wetter. 

 

A higher yeast population was measured for fruit treated with Isolate B13. 

However, yeast cells were counted from the untreated fruit or the Breakthru® 

only treatment.  These yeast cells may have been moved to the control fruit and 

Breakthru® treated fruit by spray drift, or rain splash, creating interplot 

interference. It would be necessary to design the trial differently in order to 

eliminate interplot interference. They may also have been part of the original 

epiphytic community on the fruit, as suggested by Benbow and Sugar (1999) on 

apple fruit preharvest yeast treatments. In our study, fruit were not sampled 

prior to treatment to determine which species were common epiphytes in the 

orchard. Fruit were also not sampled prior to treatment to determine the initial 

population levels of yeasts on the fruit which would have helped to determine 

adaptability, multiplication or relative levels of yeast populations. However, 

several studies have established that yeasts, including Candida sp., are major 

components of the epiphytic microbial community of mature fruit (Clark et al., 

1954; Buhargiar and Barnett, 1971; Clark and Lorbeer, 1977). 
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Most fruit decay originates in wounds that develop during harvesting or 

transportation process (Spotts et al., 1998). Therefore application of 

antagonistic agents before the period of wounding should provide the 

antagonists with the opportunity to pre-emptively colonize wound sites before 

pathogens (Wilson and Pusey, 1985; Roberts, 1994). However, Penicillium 

digitatum incidence was not controlled by application of Isolate B13 at all 

concentrations, with/without Breakthru®, with all application frequencies. 

Similarly, preharvest application of Isolate B13 failed to inhibit P. digitatum 

lesion diameter, when tested on Valencia fruit from Site 1 in trials in 2006. 

 

Based on these findings, and observations of many cases of early infection of 

orange fruit by P. digitatum (at the green stage, approximately 3-4 months 

before harvest) in the field, a second trial was conducted, with application of 

Isolate B13 over an extended time period; application were made one or 

two months before harvest, or applied one day before harvest, at two sites. 

However, there was no significant difference in the control of P. digitatum 

incidence as a result of applications of Isolate B13, whether applied over one or 

two months, or one day preharvest (Table 5.3). 

 

Although field applications of biocontrol agents to reduce preharvest diseases 

have not met with much success (Peng and Sutton, 1991), some success has 

been reported of biocontrol using Trichoderma harzianum Rifai sprayed alone 

or in combination with dichlofluanid to control natural infestations of B. cinerea 

on apples (Tronsmo and Ystaas, 1980), and on avocado for the control of 

Pseudocercospora purpurea (Cooke) Deighton using Bacillus subtilis Ehrenberg 

(Korsten et al., 1997). 

 

In our trials, when Isolate B13 was applied as preharvest treatment during 

seasons 2006 and 2007, no effective control of P. digitatum was provided by 

various concentrations of the yeast isolate treatments compared with the 

controls. This is in agreement with Korsten et al. (1997) who suggested that 

satisfactory control of plant disease through biological control is not always 

evident in the first season and therefore requires persistence on the part of the 

grower. These authors confirmed this with follow-up experiments, where 

biological control proved to be as effective as fungicide programmes. They also 

further proved that integrated control with a biocontrol agent (B. subtilis) was 
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more effective over time than commercial fungicides applied against avocado 

postharvest diseases. 

 

Variability in the degree of control provided by biocontrol agents can be due to 

initial high levels of disease pressure (Tronsmo and Ystaas, 1980; Lonsdale, 

1991), built up over time in the field. Hence, it may take time to reduce the 

disease to manageable levels with antagonistic organisms, such as yeasts in 

the orchard. Therefore, preharvest treatments with biocontrol should be tested 

successively over several years at more than one location for commercial 

acceptance of the antagonistic microorganisms for the control of P. digitatum. 

 

Many researchers stress that biological control agents alone have not often 

provided acceptable levels of control of plant diseases, but are more effective 

when used in combination with other strategies (Janisiewicz and Korsten, 2002; 

Tian et al., 2002). Some strategies such as heat treatment (Kim et al., 1991) or 

silicon application have shown synergistic effects for control of fruit decay of 

apples (Qin and Tian, 2005). 

 

 

5.5 CONCLUSIONS 

The application of the yeast Isolate B13, with or without Breakthru®, at different 

concentrations, and different application frequencies on two citrus farms, 

resulted in significantly higher overall yeast cell counts on Valencia orange fruit 

surfaces than occurred on the control.  However, none of the preharvest 

applications of yeast Isolate B13 reduced the incidence of P. digitatum disease. 
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CHAPTER 6 

PREHARVEST APPLICATION OF POTASSIUM SILICATE FOR 

THE CONTROL OF PENICILLIUM DIGITATUM ON ORANGES 

 

ABSTRACT 

Preharvest applications of potassium silicate (K2SiO3), with a concentration of 

20.5% was used as a silicon source, in the preharvest experiment.for the 

control of Penicillium digitatum (Pers: Fr. Sacc), on eight years old navel and 

Valencia orange trees were investigated for two consecutive seasons. Each 

tree was drenched with 5 ℓ of K2SiO3 solution at concentrations of 0, 100, 500, 

1000, and 10000 mg ℓ-1. In the first season, K2SiO3 was drenched once a week 

or once every two weeks for four months before harvest. Water was used as the 

control drench. The K2SiO3 application during this period did not reduce the 

incidence of the pathogen on oranges stored at either 24±1°C or 9±1°C. 

However, continued application of K2SiO3 onto the same trees for a full year, 

applied once a month or once every two months, resulted in significant 

reductions in the incidence of P. digitatum decay of both varieties of oranges. 

Application of K2SiO3 at a concentration of 100 mg ℓ-1 or more provided good 

control on both oranges. There was no significant difference in the level of 

silicon extracted from leaves or fruit flavedo and albedo of navel and Valencia 

oranges. Potassium silicate has shown potential to reduce the levels of 

postharvest P. digitatum infection of navel and Valencia oranges when applied 

as a preharvest treatment. 

 

6.1 INTRODUCTION 

Silicon (Si) is an integral component of plants, ranging from 0.1-10.0% dry 

weight (Epstein, 1999). Silicon is absorbed by plants as monosilicic acid (Si 

(OH)4) or its anion (Youshida, 1975). Recent research has established that Si 

can control a number of diseases of a wide range of plants (Guo et al., 2007; Bi 

et al., 2006; Qin and Tian, 2005; Dann and Muir, 2002 and Menzies and 

Belanger, 1996). 

 

Optimization of Si nutrition can result in a positive effect on citrus seedling 

growth, e.g., in a greenhouse experiment, Si fertilization for 1 and 2 year-old 
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orange trees yielded increased shoot mass during a 6 months period 

(Wutscher, 1989). Matichenkov et al. (1999) also reported that Si optimization 

increased shoot and root mass of grapefruit seedlings by 20-60% and improved 

branching of their root systems. In field experiments, Si applications resulted in 

increased tree height of 14-41% and accelerated branching by 31-48% over a 

6 month period (Matichenkov, 2001). 

 

In recent years, research into the role of Si in the control of plant fungal disease 

has shown promising results (Belanger et al., 1995; Menzies and Belanger, 

1996). Use of Si in hydroponic growth media can reduce the severity of 

powdery mildew and Pythium root rot of cucumbers (Menzies et al., 1991a, b; 

Cherif et al., 1994). Application of Si into potting mixes or soils reduced rice 

blast disease (Seebold et al., 2001) and fungal infections in peas caused by 

Mycosphaerella pinodes (Berk. and A. Bloxam) Vestergr (Dann and Muir, 

2002). 

 

Although Si applications have resulted in improved citrus seedling development 

under greenhouse and field conditions (Wutscher, 1989), to date no information 

is available on root application of K2SiO3 for the control of postharvest P. 

digitatum of citrus fruit. 

 

The objective of this study was to investigate whether K2SiO3 preharvest 

applications could control P. digitatum infection of navel and Valencia oranges. 

 

 

6.2 MATERIALS AND METHODS 

6.2.1 Use of potassium silicate for the control of P. digitatum on navel and 

Valencia oranges by field drench application for four months before 

harvest 

 
A liquid formulation of dissolved potassium silicate (K2SiO3), with a 

concentration of 20.5% provided by PQ Silicas3 was used as a silicon source in 

the preharvest experiment. 

 
                                                 
3
 PQ Silicas South Africa (Pty) Ltd, 169 Tedstone Road, Wadeville, 1407, P. O. Box 12062, 

Gauteng, South Africa. 
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In 2006, a trial was conducted at Ukulinga (29.36 S 30.24 E), Research Farm 

(University of KwaZulu-Natal, Pietermaritzburg) on the control of P. digitatum of 

navel and Valencia orange fruit, commencing four months before harvest. Each 

treatment was replicated three times. A single tree (eight old) served as a 

replicate. Each tree was drenched with 5 ℓ of 20.5% of K2SiO3 solution once a 

week or once every two weeks at different concentrations as given in Table 6.1. 

Water was used as the control drench. The potassium silicate had a pH of 10 to 

12). Treatments provided in Table 6.1 were laid out in a complete randomized 

block design (CRBD). At harvest fruit from navel and Valencia orange trees 

were divided into two groups, with each group having 36 fruit per tree. Thirty six 

of these oranges were wounded (25 mm in length and 3 mm in depth) at one 

site at the equator with dissecting needle) and were dipped for one minute in a 

suspension of P. digitatum conidia at a concentration of 1 × 104 conidia mℓ-1 as 

used previously. Eighteen of the 36 fruit were kept at room temperature 

(24±1°C) and the other 18 fruit were placed in cold storage (9±1°C) with a 

relative humidity of 90%. Similarly, the second group of 36 oranges was not 

wounded.  However, all fruit were dipped for one minute into a suspension of P. 

digitatum conidia at a concentration of 1 × 104 conidia mℓ-1. Eighteen of the 36 

fruit were kept at room temperature (24±1°C) and the other 18 fruit were placed 

in cold storage (7±1°C) with a relative humidity of 90%. Eighteen fruit, placed 

into three boxes, were used per treatment for each storage condition in a 

CRBD. Percentages of navel or Valencia oranges with visible P. digitatum 

infection (%) were recorded after one month of storage, either at room 

temperature or cold storage (9±1°C). 
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Table 6.1 Treatments for control of Penicillium digitatum by field drench 

application of potassium silicate for four months before harvest, on navel 

and Valencia oranges 

 

Treatment K2SiO3 (mg ℓ-1) Application frequency 

T1 (control) 0 0 

T2 100 1* 

T3 100 2* 

T4 500 1 

T5 500 2 

T6 1000 1 

T7 1000 2 

T8 10000 1 

T9 10000 2 

 
Key: 1* = once a week, 2* = once every 2 weeks in season 2006 for 

four months. 
 

6.2.2 Further determination of the efficacy of potassium silicate for the 

control of P. digitatum on navel and Valencia oranges by field 

drench application for 11 months before harvest 

In the 2007 season, the trial design was the same as described in Section 

6.2.1. Treatments were continued for the entire growing season on the same 

experimental trees except application of K2SiO3 was made once a month or 

once every two months instead of once a week or once every two weeks as in 

2006 season. At harvest, fruit samples were collected but not wounded and not 

inoculated artificially because the trial depended on natural infection. The same 

sample sizes, storage conditions, design and assessment parameters were 

followed as in 2006, as described in Section 6.2.1. 

 

6.2.3 Silicon and potassium extraction from navel and Valencia orange 

leaves and fruit tissues from field silicon pre-treated trees 

Ten leaf samples per tree adjacent to the fruit were collected according to Vock 

et al. (1997). Three fruit samples per tree were also collected where the flavedo 

(peel) was separated and the fruit albedo (pith) was also separated from the 
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same fruit. The method and procedure for the determination of silicon as 

described by Kanamugire (2007) was followed, with some modification. 

 

6.2.3.1 Extraction solution 

A 15% solution of NaOH was made up by dissolving NaOH (Merck Laboratory, 

South Africa) pellets (150 g) in a one ℓ volumetric flask with twice-deionised 

water. Concentrated HCl (Merck Laboratory, South Africa) (54 mℓ) was diluted 

in a one ℓ volumetric flask with twice-deionised water. The solutions were used 

as Si extraction reagents. 

 

6.2.3.2 Extraction procedure 

The plant samples were dried at 70°C for 24 h in an oven (Labotec South 

Africa). Samples were milled and sieved through a 5 mm size sieve. One gram 

of oven dried plant material was ashed overnight at 650°C. The ashed material 

was transferred to a nickel crucible. To this, 5 mℓ of 15% NaOH was added and 

evaporated at a low heat on a hot plate until dried. A little deionised water was 

added to dissolve the sample which was then transferred into a 100 mℓ 

volumetric flask containing 40 mℓ of 0.06N HCl and topped up with deionised 

water to 100 mℓ. Inductively Coupled Plasma (ICP) analysis was performed, in 

order to determine the concentration of Si and potassium (K) from the plant 

material. Silicon standards of 0, 0.1, 1, 5, 10, 20, 50 mg ℓ-1 were prepared from 

a 1000 mg ℓ-1 of (NH4)2SiF6 (in H2O) (Merck Laboratory, South Africa) and used 

for a standard curve. Similarly, for determination of the concentration of 

potassium (K) from plant material the same extract prepared for the Si 

extraction was used. Potassium standards of 0, 0.1, 1, 5, 10, 20, 50 mg ℓ-1 were 

prepared from a 1000 mg ℓ-1 of KNO3 (in HNO3 0.5 mol ℓ-1) (Merck Laboratory, 

South Africa) used for a standard curve. A Varian 720-ES ICP-OES was used 

according to the operating conditions outlined in Table 6.2. The analytical 

wavelength (nm) was set at Si (251.611 nm) and for K (766.491 nm). 
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Table 6.2 Experimental conditions for ICP-OES 

 

ICP Spectrometer Varian 720-ES ICP-OES 

Power  (kw) 1.00 

Argon Plasma Flow (ℓ min-1) 15.0 

Auxiliary Argon Flow (ℓ min-1) 1.50 

Photomultiplier (V)  800 

Integration time (sec) 1 

Nebuliser (kPa) 240 

 

6.2.4 Evaluation of the effect of potassium silicate on total soluble solids 

of navel and Valencia oranges 

Total soluble solids (TSS) were determined by squeezing juice directly onto a 

refractometer (Atago, Japan). Three fruit were used per K2SiO3 treatment and 

one reading was taken from each navel or Valencia orange 11 months after 

treatment with K2SiO3 at mature stage of the fruit for the seasons 2007. 

 

6.2.5 Statistical analysis 

Data were subjected to an analysis of variance (ANOVA) using Genstat® 

Executable Release 9.1 Statistical Analysis Software (Anonymous, 2006). To 

determine differences between treatments, Fisher‟s Least Significant Difference 

Test was used (P<0.05). 

 

 

6.3 RESULTS 

6.3.1 Effect of field drench applications of potassium silicate four months 

before harvest for the control of P. digitatum of navel and Valencia 

oranges 

When applied for four months prior to harvest, none of the K2SiO3 treatments, at 

any concentration, or at any frequency of application, caused a significant 

reduction in the severity of P. digitatum, compared with the control treatment on 

navel and Valencia oranges (Tables 6.3 and 6.4). 
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Table 6.3 Effect of four months potassium silicate field applications on severity 

of Penicillium digitatum (%) on navel oranges in the 2006 season one 

month after harvest  

 

Treatments K2SiO3 

(mg ℓ-1) 

Frequency of 

application 

Severity of P. 

digitatum (%) 

on unwounded 

fruit 

24±1°C    9±1°C 

Severity of P. 

digitatum (%) 

on wounded 

fruit 

24±1°C    9±1°C 

T1(Control) 0 0 11 0 100 83 

T2 100 1* 0 0 85 93 

T3 100 2* 3 2 98 84 

T4 500 1 0 3 97 86 

T5 500 2 13 11 91 85 

T6 1000 1 14 12 100 88 

T7 1000 2 6 5 99 93 

T8 10000 1 0 0 97 94 

T9 10000 2 13 3 95 87 

P Value   0.054 0.062 0.058 0.060 

   NS NS NS NS 

 
Note: Fifty four fruit per treatment were used for each wounded and 
unwounded. 
 
Key:  1*: Weekly application 
 2*: 2 weekly application 

NS= Non significant at (P≥0.05). 
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Table 6.4 Effect of four months potassium silicate field applications on severity 

of Penicillium digitatum (%) on Valencia oranges in the 2006 season, one 

month after harvest  

 

Treatments K2SiO3 

(mg ℓ-1) 

Frequency 

of application 

Severity of P. 

digitatum (%) on 

unwounded fruit 

24±1°C     9±1°C 

Severity of P. 

digitatum (%) on 

wounded fruit 

24±1°C     9±1°C 

T1 (Control) 0 0 0 0 100 98 

T2 100 1* 0 0 94 97 

T3 100 2* 2 2 100 100 

T4 500 1 0 3 97 93 

T5 500 2 6 0 98 95 

T6 1000 1 0 0 93 91 

T7 1000 2 0 0 97 99 

T8 10000 1 0 10 96 94 

T9 10000 2 0 0 100 91 

P Value   0.060 0.056 0.062 0.071 

   NS NS NS NS 

 
Note: Fifty four fruit per treatment were used for each wounded and 
unwounded. 
 
Key:  1*: Weekly application 
 2*: 2 weekly application 

NS= Non significant (P≥0.05). 

 

6.3.2 Effects of potassium silicate field applications for 11 months 

preharvest, in the 2007 season, on the severity of P. digitatum on 

navel oranges, stored at 24±1°C or 9±1°C for one month 

Navel orange fruit harvested from trees drenched at a concentration of 

100 mg ℓ-1 once a month, and fruit from trees drenched at a concentration 

of 1,000 mg ℓ-1 applied either once a month or once every 2 months, showed 

reduced levels of P. digitatum compared with fruit from trees treated with K2SiO3 

concentrations at 100 mg ℓ-1 applied once every two months, 500 mg ℓ-1 applied 

at both frequencies and 10,000 mg ℓ-1 applied once a month or the control 
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(0 mg ℓ-1) (a detailed statistical analysis of the data in Figure 6.1 is provided in 

Appendix 6A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on navel oranges stored at 24±1°C, 

in the 2007 season. Treatments with different letters differ significantly 

(P≤0.05). 

 

When stored at 9±1°C navel oranges treated with K2SiO3 at all concentrations 

applied, developed significantly lower incidences of P. digitatum compared with 

the untreated control (Figure 6.2) (a detailed statistical analysis is presented in 

Appendix 6B).  
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Figure 6.2 Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on navel oranges stored at 9±1°C, 

in the 2007 season. Treatments with different letters differ significantly 

(P≤0.05). 

 

6.3.3 Effect of Potassium silicate field application for eleven months 

before harvest on the levels of P. digitatum developing on 

Valencia oranges, stored at 24±1°C or 9±1°C, in the 2007 season 

Valencia oranges harvested from trees drenched with potassium silicate at all 

concentrations applied with exception of 10000 mg ℓ-1 applied once every 

month, developed significantly lower incidences of P. digitatum compared with 

the untreated control (a detailed statistical analysis of the data in Figure 6.3 is 

presented in Appendix 6C). 
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Figure 6.3 Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on Valencia oranges, stored at 

24±1°C, in the 2007 season. Treatments with different letters differ 

significantly (P≤0.05). 

 

Valencia oranges harvested from trees drenched with potassium silicate, at all 

concentrations and frequencies of application, developed significantly fewer 

cases of P. digitatum compared with the untreated control, when stored at 

9±1°C (a detailed statistical analysis of the data in Figure 6.4 is provided in 

Appendix 6D). 
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Figure 6.4 Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on Valencia oranges stored at 

9±1°C, in the 2007 season. Treatments with different letters differ 

significantly (P≤0.05). 

 

6.3.4 Effect of preharvest application of potassium silicate for 11 months 

before harvest on levels of silicon extracted from navel and 

Valencia oranges leaves and fruit tissues from mature fruit, in the 

2007 season 

There was no significant difference in the levels of extracted Si at all drenching 

concentrations and application frequencies compared with the untreated 

control, for leaves, fruit flavedo or albedo of navel or Valencia oranges (Figure 

6.5). There was no significant difference in the levels of extracted K at all 
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drenching concentrations and application frequencies compared with the 

control for leaves of navel orange (Table 6.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Quantity of Si extracted from leaves and fruit tissue (peel and pith) of 

navel and Valencia oranges at maturity after 11 months of preharvest 

applications of potassium silicate in the 2007 season. 
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Table 6.5 Effect of preharvest applications of potassium silicate for 11 months 

before harvest on potassium extraction from navel tree leaves when fruit 

were mature, in the 2007 season 

 

Treatments K2SiO3 

(mg ℓ-1) 

Frequency 

of application 

K extracted (mg/g plant leaf) 

T1 (Control) 0 0 193.9 

T2 100 1* 215.5 

T3 100 2* 238.1 

T4 500 1 185.5 

T5 500 2 240.1 

T6 1000 1 204.7 

T7 1000 2 219.7 

T8 10000 1 229.7 

T9 10000 2 190.9 

P Value   0.884 

   NS 

 
NS= Non significant (P≥0.05). 

Key:  1*: Once/ 2 monthls application 
 2*: Once/ 1 month application 
 

6.3.4 Effect of preharvest application of potassium silicate on total soluble 

solids of navel and Valencia oranges 

Total soluble solids extracted from navel and Valencia oranges after 11 months 

of treatment of the trees with various application levels of K2SiO3 did not differ 

statistically between treatments with and without K2SiO3 (Table 6.6). 
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Table 6.6 Effect of preharvest application of potassium silicate for 11 months 

before harvest on total soluble solids of navel and Valencia oranges at 

fruit maturity stage for 2007 season 

 

Treatments K2SiO3 

(mg ℓ-1) 

Frequency 

of application 

% Total soluble solids  

Navel  Valencia 

T1 (Control) 0 0 9.1 9.8 

T2 100 1* 9.0 9.9 

T3 100 2* 8.3 9.6 

T4 500 1 9.2 9.9 

T5 500 2 8.9 9.4 

T6 1000 1 9.5 10.0 

T7 1000 2 9.0 9.3 

T8 10000 1 9.1 9.6 

T9 10000 2 9.0 9.9 

P Value   0.478 0.296 

   NS NS 

 
NS= Non significant (P≥0.05). 

Key:  1*: Once/ 2 monthls application 
 2*: Once/ 1 month application 
 

 

6.4 DISCUSSION 

Potassium silicate was not effective in reducing the incidence of P. digitatum of 

navel and Valencia oranges when drenched for only four months before harvest 

(Tables 6.3 and 6.4). However, K2SiO3 was generally effective in reducing the 

incidence of P. digitatum on both orange varieties, when drenched once a 

month or once every two months for the whole growing season in 2007 on the 

same trees which received K2SiO3 treatments for four months in 2006 (Figures 

6.1; 6.2; 6.3 and 6.4). The ineffectiveness during the first season of K2SiO3 

application was probably due to the short period of time for the K2SiO3 to be 

taken up by the trees. 

 

Application of potassium silicate as a preharvest treatment on Valencia oranges 

generally resulted in a decreased incidence of P. digitatum, at most 
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concentrations tested, compared with navel oranges that received similar 

treatments, at 24±1°C as shown in Figures 6.1 and 6.3, respectively. This result 

seems to indicate that K2SiO3 reduces the incidence of P. digitatum on Valencia 

oranges better than on navel oranges. Plant responses to Si applications may 

be different depending on the crop genotype, as suggested by Rodrigues et al. 

(2001). 

 

Application of potassium silicate at all concentrations as a preharvest treatment 

on navel and Valencia trees resulted in a significant decrease in the incidence 

of P. digitatum on navel and Valencia oranges, when stored at 9±1°C (Figures 

6.2 and 6.4). This finding indicates that oranges can be protected from P. 

digitatum infection during shipping to distant markets of four to six weeks by 

preharvest application of K2SiO3. 

 

A further finding was on the effect of wounding before inoculation with P. 

digitatum on navel and Valencia fruit from trees that received K2SiO3 preharvest 

application. Normally wounds occur during harvesting.  The wounds inflicted 

artificially on fruit here were substantial, in order to replicate a worst case 

scenario (usually such wounded fruit would be picked up on packhouse sorting 

line). Orange fruit that received preharvest treatment with K2SiO3, and were then 

wounded and then inoculated with P. digitatum did not develop less disease 

than the untreated control oranges. On unwounded fruit (but with already 

infected with latent infections) of navel and Valencia oranges, fruit from trees 

that received K2SiO3 preharvest applications did not develop significantly fewer 

infections (Tables 6.3 and 6.4). 

 

Incidence of Penicillium digitatum on Valencia oranges was reduced by K2SiO3 

applications at concentrations as low as 100 mg ℓ-1, if applied once every 

two month for an entire growing season. This result established that levels of 

control of P. digitatum are not affected by the levels of Si applied within the 

range tested (100-10,000 mg ℓ-1). Achieving good levels of control of P. 

digitatum with lower level of K2SiO3 application would make it easier and more 

economical to apply the product in the field. Potassium silicate costs R120.00 

per hectare and citrus trees will require four applications per season (Paterson, 

pers. comm. 2008). 

 



 105 

Potassium silicate applications in our experiments had no effect on total soluble 

solids in navel and Valencia oranges. However, other researchers, such as 

Ayres (1996), have shown that applications of soluble silicon increased the 

sugar content in sugar beet and sugar cane. 

 

It has been reported that Si accumulation on the epidermal tissues of the shoot 

(leaves) causes epidermal thickening of the cellulose layer (Epstein, 1999; 

Matichenkov et al., 1999). In this study, the level of Si extracted from navel and 

Valencia orange leaves and particularly the fruit flavedo and albedo did not 

significantly differ compared with the untreated control. The results 

demonstrated that the theory that the application of soluble silicon to crops 

reduces disease because of a physical barrier may not be a viable theory. An 

induced resistance response enhanced or primed by K2SiO3 may have 

contributed to reduced incidence of P. digitatum. This theory is supported by 

Liang et al. (2005) who reported that continuous root-applied Si enhanced 

resistance to infection by powdery mildew. Other researchers have also 

suggested that Si stimulates host resistance mechanisms against pathogen, 

such as enhancing the production of phenolic compounds in crops, e.g., 

cucumbers and barley (Carver et al., 1987; Menzies et al., 1991b; Cherif et al., 

1992; Fawe et al., 1998). Liang et al. (2003) found that drenching cucumber 

with Si significantly enhanced enzyme activity in the roots of salt-stressed plants 

compared to Si-deprived plants. The same authors also showed that the Si 

effect was time-dependent and became more effective with extended, long-term 

trials. 

 

The effect of potassium (K) in disease control is well documented (Schneider, 

1985). For example, fertilization with K demonstrated reduced Fusarium yellow 

disease of celery caused by Fusarium oxysporum (Schneider, 1985); reduced 

Sphaerotheca fuliginea in cucumber plants (Reuveni et al., 2000) and 

controlled gray mold in table grape (Karabulut et al., 2005). However, there 

was no significant difference in the levels of K extracted from treated and 

untreated plants in these trials (Table 6.5). Therefore, it is unlikely that 

potassium alone was responsible for the reduced incidence of P. digitatum in 

this trial. 
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A body of evidence is available for the physical role of silicon versus diseases 

(Epstein, 1999; Matichenkov et al., 1999), as well as evidence of enhanced 

development (speed and level) of systemic acquired resistance (SAR) and 

induced systemic resistance (ISR), and accelerated accumulation of 

phytoalexins (Carver et al., 1987; Menzies et al., 1991b; Cherif et al., 1992; 

Fawe et al., 1998; Liang et al., 2003). Applications of soluble silicon have the 

potential to reduce levels of a range of diseases (Belanger et al., 1995; Menzies 

and Belanger, 1996; Liang et al., 2005), and to provide for relief of abiotic 

stresses (Liang et al., 2003).  We therefore propose that this is the role played 

by preharvest potassium silicate application.  This is, to the best of our 

knowledge, the first report of the beneficial effect of K2SiO3 as a preharvest 

treatment for the control of P. digitatum on citrus fruit. 
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CHAPTER 7 

PREVENTATIVE AND CURATIVE EFFECT OF POTASSIUM 

SILICATE POSTHARVEST TREATMENT FOR THE CONTROL OF 

PENICILLIUM DIGITATUM ON LEMONS  

 

ABSTRACT 

Postharvest application of potassium silicate (K2SiO3) reduced disease lesion 

diameter caused by P. digitatum on wounds of lemon fruit at 24±1°C. Fruit 

treated with potassium silicate at a concentration of 100,000 mg ℓ-1 developed 

the smallest lesion diameter when the potassium silicate was applied as a 

preventative treatment (3 hours before inoculation with P. digitatum) or 

curatively (inoculated with P. digitatum 3 hours before treatment). Scanning 

electron microscopy revealed that growth of P. digitatum conidia was 

significantly inhibited or restricted up to 10 days when K2SiO3 was applied 

preventatively into the wounds of lemons. This study demonstrated the potential 

of K2SiO3 for the control of P. digitatum infection on lemons when applied as a 

postharvest treatment. Scanning electron microscopy studies confirmed that 

K2SiO3 applications to lemon wounds stopped germination of conidia of P. 

digitatum. 

 

7.1 INTRODUCTION 

Several additives have potential for disease control, such as silicates (Belanger 

et al., 1995), carbonates and bicarbonates (Smilanick et al., 1999; Conway et 

al., 2007; Janisiewicz et al., 2008; Smilanick et al., 2008), chitosan (El-Ghaouth 

et al., 1992) and various acids (Sholberg, 1998). Food additives that control 

post-harvest diseases would be ideal because they may be applied to the food 

system without restriction (Maga and Tu, 1994). 

 

Carbonic acid salts, such as sodium carbonate (soda ash) and sodium 

bicarbonate (baking soda) have been shown to control plant diseases (Palou et 

al., 2001). Treatments of citrus in solutions of sodium carbonate and sodium 

bicarbonate reduce the incidence of postharvest green moulds (Palou et al., 

2001). Good control of green mould of oranges has also been achieved in 

South Africa using both salts (Lesar, 2007). Sodium carbonate has shown the 

potential to control green mould when applied long after pathogen inoculation 
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(Smilanick et al., 1995) and are being used in the California citrus industry 

(Smilanick et al., 1999). Sodium silicate and calcium chloride have been shown 

to control green and blue moulds of Clementine mandarins (Ligorio et al., 2007). 

 

Several researchers have reported that silicon applications reduce plant 

diseases when applied as a fertilizer, using soil or foliar applications (Menzies et 

al., 1991a; Menzies et al., 1992; Cherif et al., 1994; Belanger et al., 1995; 

Menzies and Belanger, 1996; Rodrigues et al., 2003). Silicon applications for 

control of postharvest fungal infections have also shown promising results. For 

example, application of silicon dioxide and sodium silicate reduced the severity 

of pink rot of Chinese cantaloupe caused by Trichothecium roseum (Pers.) Link. 

(Guo et al., 2007); Bi et al. (2006) used sodium silicate to control pink rot 

caused by Alternaria alternata (Fr.) Keissl. Fusarium spp. and Trichothecium 

roseum on Hami melons (Cucumis melo L. var. inodorus Jacq.). Qin and Tian 

(2005) found that silicon in the form of sodium metasilicate reduced infection 

development caused by Penicillium expansum (Link) Thom. and Monilinia 

fructicola (G. Winter) Honey of sweet cherry fruit and Biggs et al. (1997) also 

found silicon to control M. fructicola on peach fruit. 

 

The mechanisms by which silicon provides protection to plants against fungal 

pathogens are not yet fully elucidated. Several studies have revealed that 

deposition of the silicon in the cell wall around infection sites provides a physical 

barrier to pathogen penetration (Heath and Stumpf, 1986; Carver et al., 1987; 

Datnoff et al., 1997). However, potassium silicate may also be effective by 

catalyzing or accelerating the rapid release of biochemical defense products 

such as phenolic compounds and pathogenesis-related proteins in infected 

plants (Cherif et al. 1992; Epstein, 1999). 

 

There does not appear to be any other reports documenting the effect of silicon 

salts on the postharvest control of P. digitatum on citrus fruit. The objective of 

this study was to investigate the value of applying K2SiO3 as a postharvest 

treatment in order to manage P. digitatum. 
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7.2 MATERIALS AND METHODS 

7.2.1 Dissolved potassium silicate 

A liquid formulation of dissolved potassium silicate (K2SiO3), with a 

concentration of 20.5%, provided by PQ Silicas4, was used as the silicon source 

in this postharvest experiment. 

 

7.2.2 Evaluation of the preventative activity of potassium silicate against 

P. digitatum as a postharvest treatment on lemons 

Freshly harvested lemons (ten fruit per treatment) were washed in 70% alcohol 

for one minute, and then air dried. Each fruit was wounded (25 mm in length 

and 3 mm in depth) at the equator, and then treated with 100 μl of potassium 

silicate solution at concentrations of 10, 100, 1000, 10000 and 100,000 mg ℓ-1. 

After the wound site had dried for three hours, each wound was inoculated with 

100 μℓ of conidia of P. digitatum suspension containing a concentration of 

1 × 104 conidia mℓ-1. Wounds inoculated with the same amount of P. digitatum 

conidia served as a control. Fruit were kept at room temperature (24±1°C). Two 

boxes, with five fruit per box, were used per treatment and placed on a bench in 

a randomized block design (RBD). Lesion diameter (mm) of each infected 

wound was determined 10 days after inoculation. Lesion diameter was 

measured by taking the mean of the horizontal and vertical diameters of each 

lesion. Data were subjected to an analysis of variance (ANOVA) using Genstat® 

Executable Release 9.1 Statistical Analysis Software (Anonymous, 2006). To 

determine differences between treatments, Fisher‟s Least Significant Difference 

Test was used (P<0.05). 

 

7.2.3 Determination of the curative activity of potassium silicate against P. 

digitatum as a postharvest treatment on lemons 

Similar procedures as in Section 7.2.2 were followed, except individual 

wounded fruit were first inoculated with 100 μl of P. digitatum conidia at a 

concentration of 1 × 104 conidia mℓ-1. After the wound site had dried for 

three hours, each fruit wound was treated with 100 μℓ solution of potassium 

silicate at the concentrations described in Section 7.2.2. Wounds inoculated 

with the same amount of P. digitatum conidia served as a control. Fruit were 

                                                 
4
 PQ Silicas South Africa (Pty) Ltd, 169 Tedstone Road, Wadeville, 1407, P. O. Box 12062, 

Gauteng, South Africa. 
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kept at room temperature (24±1°C). Two boxes, each with five fruit per box, 

were used per treatment and placed on a bench in a RBD. Lesion diameter 

(mm) of each infected wound was determined 10 days after inoculation, as 

described in Section 7.2.2. Data were subjected to an analysis of variance 

(ANOVA) and least significant differences were determined as described above. 

 

7.2.4 Observations of in vivo interaction of potassium silicate and P. 

digitatum in lemon wounds using scanning electron microscopy 

Lemon fruit were wounded, then treated with K2SiO3 at a concentration of 

100,000 mg ℓ-1, (this concentration was chosen because it provided complete 

control of infection by the pathogen) and were then inoculated with P. digitatum, 

as described in Section 7.2.2. Ten days after inoculation, tissue from the treated 

(Figure 7.1A and B), and the control wounds, was excised. The tissue samples 

were fixed overnight in 3% glutaraldehyde in a 0.05 M sodium cacodylate buffer 

(pH 7.2). Residual fixative was removed with repeated sodium cacodylate buffer 

washes. The samples were subsequently dehydrated in an alcohol series 

(10 minutes each in 30%, 50%, 70%, 80%, 90%, and 3 × 10 minutes in 100%) 

in a fume cupboard. The specimens were then transferred into critical point drier 

baskets under 100% alcohol and placed in a pre-cooled Hitachi HCP- 2 critical 

point drier. Following critical point drying (CPD) and gold-palladium sputter-

coating (Polaron Equipment Limited ESEM, coating unit E5100), the samples 

were viewed in an ESEM (Philips, FEI XL 30) at an accelerating voltage of 15 

keV. Samples from five fruit from each treatment were viewed; five fields of 

observation were taken from each fruit sample tissue. For the evaluation criteria 

of the effects of potassium silicate on P. digitatum, counts of germinated, 

ungerminated or partially germinated conidia of P. digitatum were recorded for 

the interaction tests of P. digitatum with potassium silicate.  For each treatment 

five fields from five fruit were viewed and counts were taken. 
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Figure 7.1 (A) Visual effects of a potassium silicate solution at 100,000 mg ℓ-1 

on the development of Penicillium digitatum (P) on lemon.  In (A), no 

infection of P. digitatum developed in the wounded lemon fruit surface.  

The second picture (B) shows how skin samples were excised from the 

wounded fruit of to be used for electron microscope studies  

 

 

7.3 RESULTS 

7.3.1 Preventative activity of potassium silicate against P. digitatum, when 

applied as a postharvest treatment on lemons three hours before 

pathogen inoculation 

Application of K2SiO3 at all concentrations tested resulted significantly in smaller 

lesion diameters (Figure 7.2). Increasing the concentration of K2SiO3 from 10 to 

100 mg ℓ-1 reduced lesion diameters from 17.17 mm to 10.85 mm, but the 

difference was not statistically different. As the K2SiO3 concentration was 

increased from 10,000 to 100,000 mg ℓ-1, the lesion diameter was significantly 

reduced from 23.00 mm to 7.09 mm (Figure 7.2). However, the lesion diameter 

that developed after treatment of the fruit with K2SiO3 at 1,000 was not 

significantly different to the treatment with 10,000 mg ℓ-1 (a detailed statistical 

analysis of the data in Figure 7.2 is provided in Appendix 7A). 
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Figure 7.2 Lesion diameter as an indicator of postharvest control of Penicillium 

digitatum on lemons treated preventatively with various concentrations of 

potassium silicate. 

 

7.3.2 Curative activity of potassium silicate against P. digitatum, applied 

as a postharvest treatment on lemons three hours after pathogen 

inoculation 

When potassium silicate was applied curatively to lemons at 10 and 

100,000 mg ℓ-1 it reduced the lesion diameter significantly.  However, the higher 

concentration was more effective, and it caused a significantly smaller lesion 

diameter than the lesion diameter that resulted from the application of 10 mg ℓ-1 

potassium silicate. Curiously, when potassium silicate was applied curatively at 

100, 1000 and 10,000 mg ℓ-1 the control provided was not significant (a detailed 

statistical analysis of the data in Figure 7.3 is provided in Appendix 7B). 
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Figure 7.3 Postharvest control of Penicillium digitatum on lemons treated 

curatively with various concentrations of potassium silicate 
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7.3.3 Visual observation of wounds of lemons inoculated with P. digitatum  

Lemons inoculated with P. digitatum showed visible green conidia of P. 

digitatum and /or softening of the fruit surface (Figure 7.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Wounded lemons infected with Penicillium digitatum (P), 10 days 

after inoculation. 
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7.3.4 Scanning electron microscope observations of wounds of lemon 

inoculated with P. digitatum 

Scanning electron microscope observations showed hyphal growth (Figures 

7.5A, B and C), and conidia of P. digitatum developing in wounds of lemon fruit 

causing decay (Figure 7.5D). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5 Scanning electron micrograph of untreated (control) lemons: (A and 

B) mycelia of Penicillium digitatum in the wounds of lemon; (C) mycelia 

and conidiophores of P. digitatum in wounds of lemon; (D) dense 

production of conidia of P. digitatum in lemon wounds. Cd= 

Conidiophores; Co= conidia. 
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7.3.5 Visual observation of wounds of lemons treated with potassium 

silicate and inoculated with P. digitatum  

When potassium silicate applied to wounds of lemons three hours before 

inoculation with P. digitatum, little visible growth of P. digitatum developed, nor 

did softening of the wounded fruit surface occur (Figure 7.6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.6 Postharvest control of Penicillium digitatum on lemons treated 

preventatively with potassium silicate at a concentration of  

100,000 mg ℓ -1 10 days after inoculation with the pathogen. 
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7.3.6 Scanning electron microscope observations of the interaction 

between potassium silicate and P. digitatum in lemon wounds 

Inhibition of conidial germination of P. digitatum was observed as a result of the 

pre treatment with K2SiO3 at 100,000 mg ℓ-1 into wounds of lemons. Deposition 

of the K2SiO3 was evident in wounds of the fruit (Figures 7.7A and B). Complete 

inhibition of conidial germination of P. digitatum was observed (Figures 7.7A 

and B) in 19 cases out of 25 observations (Table 7.1).  In 6 cases out of the 25 

observations there was restricted germination of conidia (Figures 7.7C and D) 

(Table 7.1).  This contrasted markedly with rapid germination of conidia and 

subsequent vigorous growth by the fungus on the control wounds (Figure 7.5). 

The most important outcome was that no mycelial growth was observed on any 

wounded lemons treated with K2SiO3 solutions and then inoculated with P. 

digitatum (Figure 7.7 and Table 7.1), compared to the dense mycelium that 

developed on the control wounds (Figure 7.5 and Table 7.1). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.7 Scanning electron micrograph of the interactions of potassium silicate and 

Penicillium digitatum in wounds of lemons.  In (A) and (B) inhibition of 

germination of conidia of P. digitatum (conidia on top of K2SiO3 depositions in 

fruit wounds); In (C) and (D): partial germination of conidia of P. digitatum or 

germ tube forming in the fruit mesocarp. 

Co= Conidium, GCo= Germinating Conidium, UGCo= Ungerminated Conidium, GeT= Germ 
Tube. 
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Table 7.1 Number of germinated, inhibited and cessation of germination of P. 

digitatum conidia observed using scanning electron microscope 

observations of the interaction between potassium silicate and P. 

digitatum and P. digitatum alone in lemon wounds 

 

 

 

7.4 DISCUSSION 

Potassium silicate was effective in preventing or suppressing P. digitatum 

infection of lemon fruit (Figures, 7.2, 7.3, 7.6, 7.7 and Table 7.1). Lesion 

diameters of Penicillium digitatum on fruit treated with K2SiO3 were significantly 

smaller than the control when wounded lemons were treated three hours before 

inoculation. Similar results were reported with A. alternata, Fusarium spp., and 

T. roseum on Hami melons by Bi et al. (2006) and with P. expansum and M. 

fructicola on sweet cherry fruit by Qin and Tian (2005). This suppression could 

have been due to induction of phenolic compounds produced within the 

three hour period of time before inoculation of P. digitatum. This suggestion is 

supported by work of Bi et al. (2006) on melons and by Qin and Tian (2005) on 

sweet cherry fruit. The efficacy was influenced by the applied concentration of 

K2SiO3 in which application of the highest concentration (100,000 mg ℓ-1) 

resulted in the smallest lesion development (7.09 mm), although it was not 

significantly different than the lesion diameter of 10.85 mm provided when 

K2SiO3 was applied at 100 mg ℓ-1 (Figure 7.2). This finding is in agreement with 

the observations of Menzies et al. (1991b), who found that powdery mildew 

caused by Sphaerotheca fuliginea (Schltdl.) Pollacci on cucumber plants was 

reduced significantly with an increasing concentration of K2SiO3 in nutrient 

solutions. 

 

Treatment  Germinated conidia 
(mycelia, hyphae) 

Germination 
inhibited (germ 
tube formation) 

Germination 
stopped (remain 

as conidia) 

P. digitatum  25 b 0 a 0 a 

P. digitatum + 
K2SiO3 

0 a 6 b 19 b 

P Value  <0.001 <0.001 <0.001 

LSD(0.05) 0.46 1.4 2.3 

CV % 2.500974 32.2749 28.00 
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Effects of K2SiO3 applied to wounds of lemon preventatively at 100,000 mg ℓ-1 

on P. digitatum control were observed with ESEM (Figure 7.1). Observations 

showed complete inhibition of conidial germination in the presence of K2SiO3 

deposits (Figure 7.7A and B) and this was also supported by observation of 19 

out of 25 cases that were viewed, which showed complete inhibition of conidial 

germination of P. digitatum (Table 7.1). This inhibition could be due to a direct 

K2SiO3 effect on conidia and subsequently affect conidial germination as a 

result of fungicidal effect as reported by Bekker et al. (2006) on several 

phytopathogenic fungi from avocado. These authors showed that soluble 

potassium silicate suppressed fungal growth effectively in vitro (plate test) of 

several phytopathogenic fungi from avocado and the effect was largely a 

fungicidal effect. 

 

Germination of conidia on the albedo of fruit (Figures 7.7C and D) was severely 

restricted, compared with the water-treated control, where normal conidial 

germination, germ tube growth, hyphal growth and sporulation were obvious 

(Figure 7.5). This could have been due to fungistatic properties of K2SiO3 in the 

fruit mesocarp where K2SiO3 deposition was not evident (Figures 7.7C and D). 

Conidial germination was inhibited even when K2SiO3 deposits were not in 

direct contact with the P. digitatum conidia (Figures 7.7A and B), compared to 

obvious deposition of K2SiO3, where germination of conidia was inhibited 

completely. Similar results were found by Qin and Tian (2005) with potassium 

silicate applications where conidial germination or restricted conidial 

germination or complete inhibition of mycelial growth of P. expansum and M. 

fructicola was found in wounds of sweet cherry fruit. 

 

The reduction in lesion diameter was concentration dependent, where the best 

prevention was achieved at the highest concentration of K2SiO3. This could 

have been related to the fungistatic properties of K2SiO3, which inhibited 

conidial germination or delayed germination, as seen in the ESEM study. 

Results supporting this were reported by Bowen et al. (1992), who found that 

sodium silicate at lower concentrations mildly promoted conidial germination 

and germ tube development of Uncinula necator (Schwein.) Burrill. The same 

author noted that it is not unusual for a chemical to enhance fungal growth at 

lower concentrations and yet to be fungistatic at higher concentrations. It should 

be realized that potassium silicate solutions are highly alkaline (pH of 9-12) and 

http://en.wikipedia.org/wiki/Thomas_Jonathan_Burrill


 122 

it is therefore possible that their fungistatic activity was due to strong alkalinity. 

Tissue browning of lemon wounds was observed after K2SiO3 treatment and 

could possibly be in line to the alkaline condition created by K2SiO3 around the 

site of treatment. 

 

The mechanisms involved in the inhibition or restriction of P. digitatum conidial 

germination on lemon wounds as the result of potassium silicate treatment 

could be due to accumulation of K2SiO3 on wounded fruit forming a physical 

barrier (Heath and Stumpf, 1986; Carver et al., 1987; Datnoff et al., 1997) as 

shown in Figures 7.7A and B or its ability to induce defence responses (Cherif 

et al. 1992; Epstein, 1999) on the lemons or of its fungistatic properties (Bekker 

et al., 2006), or a combination of all three modes of action. It was shown that 

K2SiO3 applications can prevent P. digitatum infection in the postharvest 

situation. Its ability to suppress pathogen infection of wounded lemons was 

confirmed by ESEM studies. This potential of K2SiO3 as a postharvest treatment 

of fruit could be extended to the treatment of other fruit for the control of other 

postharvest fungal diseases. 

 

 

7.5 CONCLUSION 

This study has demonstrated the potential of K2SiO3 for controlling P. digitatum 

infection of lemons when applied preventatively or curatively as a postharvest 

treatment. ESEM studies confirmed that germination and development of 

conidia of P. digitatum were inhibited by K2SiO3 treatment on lemons. 
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CHAPTER 8 

INTEGRATED CONTROL OF PENICILLIUM DIGITATUM USING A 

HOT WATER DIP, POTASSIUM SILICATE AND YEAST ISOLATE 

B13 

 

ABSTRACT 

The use of a hot water dip, potassium silicate (K2SiO3) and yeast Isolate B13 

(Candida fermentati (Saito) Bai.) treatments, alone or in combination, were 

investigated for their capacity to reduce the development of Penicillium 

digitatum (Pers. Fr.) Sacc. On Valencia oranges during postharvest storage In 

vivo studies indicated that a hot-water dip at  50-56°C for 45-180 seconds, 

reduced disease development in inoculated wounds to less than 20% compared 

with control fruit treated with tap water (60%), without causing any rind injuries. 

Yeast Isolate B13 was found to be compatible with commercial waxes and its 

growth was not affected by K2SiO3 postharvest applications. A stand-alone 

treatment or combinations of a hot-water dip and K2SiO3, combined with yeast 

Isolate B13, applied under commercial packhouse conditions have shown 

potential to reduce postharvest losses to P. digitatum. In trials carried out at two 

commercial packhouses, control of the pathogen by hot-water, K2SiO3 and the 

yeast Isolate B13 were superior or equivalent to that achieved with imazalil. 

 

 

8.1 INTRODUCTION 

The valuable effect of pre-storage hot water immersion treatments in preventing 

development of postharvest diseases has been applied to various fruit and 

vegetables (Hara et al., 1996; Lurie, 1998; Schirra et al., 2000; Fallik, 2004). 

Hot water treatments are relatively easy to use, require short treatment periods, 

and can make use of reliable monitoring of fruit and water temperatures (Couey, 

1989; Lurie, 1998).  According to Tsang et al. (1995), hot water units are easily 

assembled, simple to operate, and affordable. 

 

Postharvest hot water treatments have been investigated for the control of 

postharvest infection of citrus fruit and recommendations are provided by 

numerous authors (Barkai-Golan and Phillips, 1991; Lurie, 1999; Porat et al., 

2000; Palou et al., 2001; Smilanick et al., 2003). For example, immersion of 
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citrus fruit in 50-53°C water for 2-3 minutes controls Penicillium and/or 

Alternaria spp., which causes infection in oranges, lemons, and grapefruit 

(Couey, 1989; Schirra et al., 1997; Nafussi et al., 2001). Palou et al. (2001) 

showed that hot water controlled blue mould at 50-55°C when applied for 

150 seconds. However, physiological responses of different citrus fruit to heat 

treatments may differ with growing location and season (Hara et al., 1996; 

Schirra et al., 1997). 

 

Considerable laboratory success has been reported with antagonistic 

microorganisms for the control of postharvest diseases, and much information is 

now available regarding postharvest biocontrol antagonists (Wilson et al., 

1996), including our recent research with yeast Isolate B13 (Candida fermentati 

(Saito) Bai.) for the control of Penicillium digitatum (Pers: Fr. Sacc.), presented 

in Chapter Three. Antagonistic yeasts isolated from fruit surfaces have shown 

activity against a number of postharvest pathogens on a variety of fruit (Wilson 

and Chalutz, 1989; MacLaughlin et al., 1990; Roberts, 1990; Janisiewicz, 1994; 

Chad-Goyal and Spotts, 1997; El-Ghaouth et al., 1998). Presently, the yeast 

Candida oleophila Montrocher is available commercially as Aspire®. Acceptance 

of antagonistic biocontrol agents as an alternative to synthetic fungicides will 

depend on their commercial results (El-Ghaouth et al., 2000). 

 

The objectives of this study were: 

Firstly to conduct an unreplicated, observational trial (Rayner, 1967) over a wide 

range of temperature x exposure period combinations, in order to identify a 

narrower range of temperature x exposure period combinations that would 

control Penicillium digitatum without causing damage to rind quality of Valencia 

oranges. 

 

Secondly, to conducted a replicated, clinical trial in this narrower range of 

temperatures x exposure period combinations in order to find the best 

combination of temperature x exposure period that would control P. digitatum 

infection on Valencia oranges without causing rind damage. These tests have 

not been dealt in great detail by other researchers (see Table 1.3) and to the 

best of our knowledge no research on this field has been conducted in South 

Africa. Research has shown that physiological responses of citrus to heat 
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treatments vary with citrus variety, cultivar, growing location, and even the 

season (Hara et al., 1996; Schirra et al., 1997). 

 

Thirdly, the study aimed to investigate the effects of hot water, the yeast Isolate 

B13 and potassium silicate treatments, alone or in combination, in trials 

conducted at three commercial packhouses for the control of P. digitatum of 

Valencia oranges. Semi-commercial trials are important because 

commercialization of antagonistic biocontrol agents always depend on their 

performance under commercial conditions (El-Ghaouth et al., 2000).  

Acceptance of novel treatments by farmers usually depends on positive large 

scale experimental results. These experiments have not been conducted by 

other researchers.  In particular, the application of potassium silicate as a 

postharvest treatment on citrus is new approach. Similarly, the combination of 

hot water, potassium silicate and a yeast biocontrol agent has not been tested 

previously. 

 

 

8.2 MATERIALS AND METHODS 

8.2.1 Fruit 

Mature, fully coloured Valencia oranges from Caterall‟s farm in Richmond 

(29.53 S 30.17 E), KwaZulu-Natal, South Africa, were harvested from the field 

and were used in this experiment before any other postharvest treatments were 

applied. The fruit was stored for three days at 9±1°C and 90% relative humidity 

(RH) before use. 

 

8.2.2 Observational Trial 1: hot water treatments to determine a safe 

temperature x exposure time for Valencia oranges 

Tap water was heated to test temperatures in a 100 ℓ water tank invented as 

novel hot water bath with an electronic control unit to maintain water at a 

constant temperature for the duration of experiment. Temperature controlled for 

hot water bath using a full proportional integral derivative (PID) temperature 

controller. The PID controller used has an accuracy of less than 0.2% of the 

displayed temperature value, plus one digit, with a sampling time of 250mS. 

The components of the hot water bath include: a temperature controller with full 

PID functions, with solid state relay (SSR) output to control the heating element, 

a pressure switch, a circulating pump, the heating element (immersion type) 
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indicating lamps, fuses, a main switch and a contactor. The water bath was 

insulated, and water was pumped around the bath at 30 L s-1 to keep an even 

distribution of water temperature. The unit was built in-house by the Department 

of Plant Pathology, University of KwaZulu-Natal, Pietermaritzburg, South Africa. 

Valencia oranges were placed in stainless steel wire baskets to immerse them 

in the water tank. 

 

In the first experiment, the tested temperatures were 20 (control), 50, 52, 54, 

56, 58, 60, 62, 64, 66, 68, 70 and 80°C (±0.1°C). For each temperature, the 

Valencia oranges were exposed for a period of 20, 30, 45, 60, 75, 90, 105, 120 

and 180 seconds. Each treatment was applied to three oranges as a single 

replicate (Rayner, 1967). The treated fruit were then air dried, placed in open 

carton board boxes and stored at 24±1°C. After seven days of storage, the fruit 

were classified into one of two categories: (1) no visible rind damage, which 

were marked as “NO”; (2) presence of slight or moderate rind blemishes or 

severe rind injury, marked as “YES”. 

 

8.2.3 Observational Trial 2: hot water treatments followed by cold water 

dip for the control of rind injury of Valencia oranges 

In the second experiment, a similar experimental set up was followed as for the 

first experiment, as described in Section 8.2.2.  Again an unreplicated, 

observational trial was conducted (Rayner, 1967). The only difference was that, 

following the hot water treatment, the Valencia oranges were immediately 

immersed for 1 minute into tap water cooled to 1°C in a hydro-cooling tank. The 

experiment was conducted to determine whether the cold water treatment could 

stop the heat energy damaging the fruit rind. Each treatment was applied to 

three oranges as a single replicate. 

 

8.2.4 Replicated Trial 1: efficacy of hot water treatments for the control of 

P. digitatum infection of Valencia oranges 

Valencia oranges were harvested and stored as described in Section 8.2.1. 

These oranges were wounded 5 times with a sterile dissecting needle (2 mm 

deep × 2 mm in diameter) at two sites around the stem ends. The wounded fruit 

were dipped for 1 minute into a P. digitatum conidial suspension of 

1 × 104 conidia mℓ-1. The inoculated Valencia oranges were air dried on a 

laboratory bench at 24±1°C. After 24 hours, the fruit were immersed in hot 
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water for the test temperatures and time periods of 50-700C x 20-180 seconds, 

as described in Section 8.2.2. Fruit that had been dipped in tap water (20°C) or 

were not treated at all served as controls. Each treatment was applied to 

10 oranges, independently, as ten replicates. Treated fruit was air dried, placed 

in open carton board boxes and kept at 24±1°C. After two weeks of storage the 

percentage incidence of P. digitatum infection on the fruit was determined. In 

some treatments, some fruit had to be discarded because of fruit fly 

infestations. 

 

8.2.5 In vitro compatibility of yeast Isolate B13 with commercial wax 

A loop full of yeast Isolate B13 grown on a nutrient agar plate for three days 

was added into 10 mℓ of a commercial wax (Polygreen®). Sterile distilled water 

was used in place of the wax for the control. After ten minutes, a 0.1 mℓ of 

suspension was plated in duplicate onto potato dextrose agar (PDA) amended 

with Rose Bengal. Plates were incubated at 25°C for three days and the growth 

of the yeast isolate was observed. 

 

8.2.6 In vitro compatibility of the yeast Isolate B13 with potassium silicate 

A loop full of the yeast Isolate B13, taken from a discrete colony grown on a 

nutrient agar plate for three days, was added into 10 mℓ of K2SiO3 diluted with 

sterile distilled water to concentrations of 10, 100, 1,000, 10,000 and 

100,000 mg ℓ-1. Sterile distilled water was used for the control (without K2SiO3). 

Ten minutes later 0.1 mℓ of suspension was plated onto nutrient agar plates in 

duplicate. The plates were incubated at 25°C for three days and growth of the 

yeast Isolate B13 with and without K2SiO3 was observed. 

 

8.2.7 Preliminary investigation of the ability of yeast Isolate B13 to control 

P. digitatum, Phytophthora rot and sour rot of Valencia oranges at 

the Katopé packhouse 

At the Katopé packhouse (28.53 S 30.17 E), Richmond, KwaZulu-Natal, 

Valencia oranges were submerged in a 24,000 ℓ capacity water tank containing 

sodium hypochlorite at pH 7.2. Fruit were then lifted out of the solution and 

moved onto a conveyer belt for washing. The fruit then passed over foam-

rubber rollers for drying and then onto a moving-belt sorting table, where sub-

standards fruit were removed. 
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Twenty-five Valencia oranges with four replicates were used for each treatment. 

Treatments included three concentrations of the antagonistic yeast Isolate B13 

at 1 × 105, 1 × 106 and 1 × 107 cells mℓ-1. Oranges were treated by dipping them 

into a tank for 1 minute. There were two controls: an untreated control, i.e., with 

no yeast Isolate B13 and no fungicide; and a fungicide control, with imazalil 1-

[2-(2,4-dichlorophenyl)-2-(2-propenyloxy) ethyl]-1H-imidazole at 500 mg ℓ-1 

(670 g of the chemical in 1000 ℓ of water). Oranges were treated with the 

fungicide by dipping them for one minute into a 200 ℓ capacity tank heated to 

37°C. After treatment all fruit were passed through a high-velocity air drier 

operating at 32°C, waxed, and dried again by passing them through a high-

velocity air drier. Rollers were washed extensively between applications of 

different treatments. 

 

Treated Valencia oranges were packed in plastic mesh bags and placed in a 

completely randomized design (CRD) on shelves at 7±1°C for two months at 

90% RH. After this, they were placed on a bench in a CRD at 24±1°C for one 

month to simulate shelf life. The percentage of diseased fruit with visible conidia 

of P. digitatum or any other diseases were recorded for each replicate. 

 

8.2.8 Assessment of a hot water dip, yeast Isolate B13 and potassium 

silicate treatments, applied alone or in combination, for the control 

of P. digitatum of Valencia oranges at the Katopé packhouse 

The same experimental set up was used as described in Section 8.2.7. The 

differences were that hot water and/or K2SiO3 were added as treatments in this 

test, with or without the yeast Isolate B13. The trial treatments are summarized 

in Table 8.1. The yeast Isolate B13 was used at a concentration of 

1 × 106 cells mℓ-1. Fruit was stored at 9±1°C for one month, followed by 

one month at 24±1°C before evaluating incidence of diseases. 

 

In earlier experiments, a hot water dip at 56°C for 60–180 seconds had 

provided good control of P. digitatum infection of Valencia oranges (Figure 8.2) 

and did not cause any damage to the fruit used. For this reason, a hot water 

treatment with temperature of 56°C x one minute period was chosen. Valencia 

oranges were therefore treated at 56°C x one minute, as described in Section 

8.2.2.  Other Valencia oranges were treated by dipping them into 1,000 mg ℓ-1 of 

K2SiO3 for one minute in a separate tank. The yeast Isolate B13 
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(1 × 106 cells mℓ-1) and K2SiO3 (1,000 mg ℓ-1) were combined in the same 

container for a combination treatment, where Valencia oranges were dipped 

for one minute. Valencia oranges used for the combination of all three 

treatments were first dipped for one minute in hot water at 560C, followed by 

dipping in a combination of the yeast Isolate B13 at 1 × 106 cells mℓ-1 and 

K2SiO3 at 1,000 mg ℓ-1. The normal packhouse practices, storage and 

assessment of the treatments were followed as described in Section 8.2.6. 

 

Table 8.1 Treatments for screening of yeast Isolate B13, hot water, and 

potassium silicate, alone or in combination, for control of Penicillium 

digitatum on Valencia oranges at Katopé Packhouse 

 

Treatment Hot water 

(56°C) 

K2SiO3 B13 Imazalil 

1 (control) No No No No 

2 No No No Yes 

3 Yes No No No 

4 No Yes No No 

5 No No Yes No 

6 Yes Yes No No 

7 Yes No Yes No 

8 No Yes Yes No 

9 Yes Yes Yes No 

 

8.2.9 Assessment of a hot water dip, yeast Isolate B13 and potassium 

silicate treatments, alone or in combination, for the control of P. 

digitatum of Valencia oranges at Gateway Packhouse 

A similar experimental set up as described in Section 8.2.8 was followed at 

Gateway Packhouse, Thornville Junction, Richmond, South Africa 

(28.53 S 30.17 E). The trial treatments were the same, as summarized in Table 

8.1. The only differences were that the water tank capacity was 30,000 ℓ, with 

imazalil added into it at 500 mg ℓ -1 (670 g of the chemical in 1000 ℓ of water). A 

high-pressure overhead washer was in the processing line, and a high-velocity 

air drier operating at 32°C was not present. Similar procedures were followed 

for all the treatment concentrations, procedures, period of storage, and 
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assessment of P. digitatum incidence on Valencia oranges, as detailed in 

Section 8.2.8. 

 

8.2.10 Assessment of a hot water dip, yeast Isolate B13 and potassium 

silicate treatments, alone or in combination, for the control of P. 

digitatum of Valencia oranges at Maywood Packhouse 

A similar experimental set up as described in Section 8.2.8 was followed for the 

Maywood Packhouse, Richmond, South Africa (28.53 S 30.17 E). The trial 

treatments were also the same, as summarized in Table 8.1. Experimental 

differences included that the water holding capacity of the tank was only 

10,000 ℓ, with no imazalil added into it. Valencia oranges were treated with 

imazalil in a separate tank at the recommended rate (670 g of the chemical in 

1000 ℓ of water). Similar procedures were followed for all the treatment 

concentrations, procedures, period of storage, and assessment of the incidence 

of P. digitatum infection on Valencia oranges, as detailed in Section 8.2.8. 

 

8.2.11 Statistical analysis 

Data for the hot water and temperature interactions experiment for the control of 

P. digitatum was analyzed using SAS Logit Linear Regression Model procedure 

(SAS, 1987), with P at the 5% level (Hosmer, 1989). 

Data for the commercial trials were subjected to an analysis of variance 

(ANOVA) using Genstat® Executable Release 9.1 Statistical Analysis Software 

(Anonymous, 2006). To determine differences between treatments, Fisher‟s 

Least Significant Difference Test was used (P<0.05). 

 

 

8.3 RESULTS 

8.3.1 Observational Trial 1: effects of hot water dip treatments at different 

temperatures and exposure periods on the quality of Valencia 

orange rind 

No rind damage was observed on Valencia oranges when treated at 

temperatures of 58°C and less (regardless of exposure times). Similarly, no 

damage was noted at 60°C except at 180 seconds (Table 8.2) and at 62°C with 

an exposure time of 45 seconds or less (Table 8.2). There was no damage 

observed on the controls at 20°C (Table 8.2). However, Valencia oranges 

dipped at 62°C for a period of 180 seconds, and at 80°C for a period of 20 
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seconds, showed slight to moderate rind blemishes (Figures 8.1 A, B) 

respectively.  The primary objective of this trial was to find a narrower range of 

temperature x time combinations that did not cause physiological damage to the 

fruit. The best temperature range without damage was 50-58°C at all exposure 

times (Table 8.2). 

 

Table 8.2 Effect of hot water dip treatments at different temperatures and 

exposure periods, on the quality of rind of Valencia oranges stored at 

24±1°C for 2 weeks. 

 

Exposure 

Temperature (°C) 

Exposure period (seconds) 

20 30 45 60 75 90 105 120 180 

20 - - - No - - - - - 

50 No No No No No No No No No 

52 No No No No No No No No No 

54 No No No No No No No No No 

56 No No No No No No No No No 

58 No No No No No No No No No 

60 No No No No No No No No Yes 

62 No No No Yes Yes Yes Yes Yes Yes 

64 Yes Yes Yes Yes Yes Yes Yes Yes Yes 

66 Yes Yes Yes Yes Yes Yes Yes Yes Yes 

68 Yes Yes Yes Yes Yes Yes Yes Yes Yes 

70 Yes Yes Yes Yes Yes Yes Yes Yes Yes 

80 Yes Yes Yes Yes Yes Yes Yes Yes Yes 

No= No damage  
Yes= Presence of damage  
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Figure 8.1 Peel scalding of Valencia oranges treated only with hot water, after 

two weeks of storage. Fruit were dipped into water at 62°C for 180 

seconds (A), and into water at 80°C for 20 seconds (B). 

 

8.3.2 Observational Trial 2: effects of hot water dip treatments at different 

temperatures and exposure periods followed by a cold water dip for 

one minute, on rind quality of Valencia oranges 

The cold water treatment did not reduce physiological damage caused by the 

hot water treatment on Valencia oranges. Rind damage observed on the fruit 

was similar to those observed earlier with the hot water treatment at 

temperatures of 60°C at 180 seconds and temperatures of above 62°C and 

exposure period of 45 seconds, as presented in Table 8.2. 

 

8.3.3 Replicated Trial 1: effectiveness of hot water dip treatments of 

Valencia oranges in the control of artificially inoculated P. digitatum  

Temperatures from 50-60°C, for all immersion periods, consistently reduced the 

incidence of P. digitatum infection to 0-30% (Appendix 8A), compared to the 

treatment at 20°C that developed an incidence of 60% after two weeks (Table 

8.3 and Figure 8.3A). Observations from this trial also provided further support 

for the earlier findings (Table 8.2) regarding the damage caused to fruit rind at 

specific temperature × time combinations. 
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Hot water immersion treatment at 66-70°C resulted in differing responses in 

terms of P. digitatum control depending on the immersion period (Table 8.3 and 

Figures 8.2 C and D). When fruit were exposed to higher temperatures (e.g., 

70°C) for 90–180 seconds, incidence of P. digitatum increased to 100% (Table 

8.3 and Figure 8.3D) and the rind of the Valencia oranges was severely injured. 

However, oranges treated at 66-70°C for shorter periods developed lower 

infection levels (Figure 8.3) but still showed rind damage. 

 

Logit regression model analysis showed that significant levels of control of P. 

digitatum resulted from treatments with hot water, with the main effects of 

temperature and time, and their interaction effect, temperature x time, being 

significant at (P=0.05) =<0.0001 (a detailed statistical analysis of the data in 

Figure 8.2 is provided in Appendix 8A). 

Interpretation of the trial is dominated by the interaction effect of temperature × 

time. From the Logit Regression Model equation below, the graph in Figure 8.3 

was generated.  

 

Logit (not diseased fruit) = -6.7355 + 0.1541 × (temperature, °C) + 
                                    0.1476 × exposure period, seconds) –  

                                            0.00254 × (temperature × exposure period) 
 

The graph in Figure 8.2 showed that control of P. digitatum on Valencia oranges 

as a result of treatment with a hot water dip at temperatures of 50, 56, 60 and 

70°C for 20 seconds was positive. However, at a temperature of 70°C, a dip in 

water for 20 seconds caused rind injury (Table 8.2). When the exposure period 

was increased to 45 seconds, all water temperatures of 50, 56, 60 and 70°C 

provided the same level of control. As the exposure time was increased to 60 

seconds, water temperatures of 50, 56, and 60°C showed increased positive 

control, while the water temperature of 70°C at 60 seconds showed negative 

control. Similarly, as the exposure period increased for the water temperatures 

of 50 and 56°C, the rate of P. digitatum control was increased.  At a 

temperature of 60°C the exposure time had little effect on control of the 

pathogen. However, at a water temperature of 70°C increased exposure 

periods resulted in increasingly poor control of the pathogen (Figure 8.2). 
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The optimum range of temperature x exposure period for the control of P. 

digitatum was 50-56°C × 60-180 seconds (Figure 8.2).  No rind injuries were 

caused at this range of temperature x exposure period (Table 8.2). 

 

Logit (not diseased fruit) = -6.7355 + 0.1541 × (temperature, °C) + 
                                    0.1476 × exposure period, seconds) –  

                                            0.00254 × (temperature × exposure period) 
 

 

Figure 8.2 Efficacy of hot water dip treatments for the control of artificially 

inoculated Penicillium digitatum on Valencia oranges stored at 24°C for 

two weeks in a replicated trial. 
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Table 8.3 Efficacy of hot water dip treatments for the control of artificially 

inoculated Penicillium digitatum on Valencia oranges stored at 24°C for 

two weeks. 

 

Exposure 

Temperature 

(°C) 

Disease Incidence (%) 

Exposure Period (seconds) 

20 30 45 60 75 90 105 120 180 

20 (not dipped)    20      

20 (dipped)    60      

50 10 20 10 10 10 0 0 0 0 

52 20 30 0 0 0 10 0 0 10 

54 10 0 0 0 0 0 10 20 0 

56 10 0 0 0 0 0 10 10 10 

58 10 0 20 10 10 0 0 0 0 

60 10 10 0 0 10 30 10 10 0 

62 0 20 10 20 0 0 0 10 100 

64 0 0 20 0 10 0 0 10 10 

66 10 0 0 30 0 30 50 20 40 

68 0 0 25 12.5 38 0 12.5 0 50 

70 12.5 12.5 12.5 12.5 37.5 77 75 50 100 

 
The purple block shows a zone of the temperature × exposure period 

combinations (52-560C × 45-75 seconds) in which disease control is 100% and 

rind damage is zero. It also fits into the existing exposure periods of fruit in hot 

water baths in packhouses in KwaZulu-Natal. 
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Figure 8.3 Effects of hot water dip treatments using various temperature x 

exposure periods for the control of Penicillium digitatum on Valencia 

oranges 

 

8.3.4 In vitro compatibility of the yeast Isolate B13 with commercial wax 

The three commercial waxes tested, Polygreen® (Figure 8.4 A) or Gateway wax 

(Quick dry poly) or Avoshine®, did not inhibit the growth of the formulated yeast 

Isolate B13, compared with yeast Isolate B13 without wax (Figure 8.4 B). 

20°C for 1min 

A 

56°C for 1min 

B 

66°C for 1min 

 

C 

70°C for 3min 

 

D 



 140 

 
 
 

 

 

 

 

 

 

 

 

Figure 8.4 Growth of yeast Isolate B13 with (A) /without (B) commercial wax 

(poly green) on PDA media amended with Rose Bengal after three days 

of incubation at 25°C. 

 

 

8.3.5 In vitro compatibility of the yeast Isolate B13 with potassium silicate 

The yeast Isolate B13 was compatible with potassium silicate (K2SiO3) at 

concentration of 10000 mg ℓ-1, when grown on agar plates with or without 

potassium silicate, as shown in Figure 8.5 A and 8.5 B, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5 Growth yeast Isolate B13 mixed with potassium silicate (Si) at 

10,000 mg ℓ-1 grown on agar plates (A) and growth of yeast Isolate B13, 

without potassium silicate on nutrient agar plates (A).  
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8.3.6 Preliminary evaluation of the yeast Isolate B13 for the control of 

natural infections of green mould decay, brown rot and sour rot of 

Valencia oranges at Katopé Packhouse 

In the preliminary packhouse trials, commercially harvested Valencia oranges 

were kept for two months at 7±1°C. The fruit were not artificially inoculated with 

P. digitatum, rather depended on natural infections by the pathogen. The 

untreated control (no yeast and no fungicide) developed 6% P. digitatum. 

Imazalil treated fruit developed 12% P. digitatum (Table 8.4). The yeast Isolate 

B13 significantly reduced P. digitatum to 4%, 5% and 2% when applied at three 

concentrations of 1 × 105 cells mℓ-1, 1 × 106 cells mℓ-1, and 1 × 107 cells mℓ-1, 

respectively, compared with imazalil treated fruit (Table 8.4). After storage for 

one month at 22±1°C, fruit treated with the yeast Isolate B13 at  

1 × 106 cells mℓ-1 had an incidence of 2% P. digitatum, which was lower than 

that for imazalil treated fruit (6%), but was not significantly different (p≤0.05). 

The yeast Isolate B13 also significantly reduced mixed infections of brown rot 

(caused by Phytophthora citrophthora (R. E. Sm. & E. H. Sm.) Leanian) and 

sour rot (caused by Geotrichum citri-aurantii (Ferraris) Butler) resulting in a 6% 

incidence, compared with 15% and 20% for the control and imazalil treatments, 

respectively, after storage for two months at 7±1°C. It also significantly reduced 

mixed disease incidence level after one month of storage at 22±1°C (5% 

compared with 20% and 24% for the control and imazalil, respectively) (Table 

8.4). 
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Table 8.4 Control of natural infection of Penicillium digitatum and Phytophthora 

and sour rot incidence (%) of Valencia oranges under commercial 

packhouse condition with the yeast Isolate B13 after two months at 

7±1°C and one month 22±1°C. 

 

 

Other pathogens = Phytophthora rot and sour rot 

*= 0.05 significantly, **= 0.01 highly significant, ****=0.001 very highly significant,  
NS= Non Significant  

 

8.3.7 Effects of hot water dip, yeast Isolate B13 and potassium silicate 

treatments, alone or in combination, on the control of P. digitatum 

of Valencia oranges at Katopé Packhouse 

All treatments provided significantly better control of P. digitatum infection, 

compared with imazalil treated oranges.  None of the treatments were 

significantly different from the untreated control (a detailed statistical analysis of 

the data in Figure 8.6 is provided in Appendix 8B), 

 

 

 

 

 

 

 

 

 

Treatment 

7± 1°C 22 ± 1°C 

P. digitatum Other 

pathogens 

P. 

digitatum 

  Other 

pathogens  

Untreated control      6.0 ab 15.0 cd 6.0  24.0 b 

Imazalil 12.0 c 20.0 d 5.0  20.0 b 

B13: 1 X 105   4.0 a    8.0 ab 4.0   7.0 a 

B13: 1 X 106   5.0 a 12.0 bc        7.0   7.0 a 

B13: 1 x 107   2.0 a 6.0 a 2.0   5.0 a 

P value 0.017*** 0.006****  NS (0.06) 0.001**** 

LSD 4.5984 5.3921 - 5.392 

CV % 30.84 17.19 27.16 16.65 
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Figure 8.6 Incidence of Penicillium digitatum on Valencia oranges after 

treatment with hot water, and/or yeast Isolate B13 or K2SiO3 (KSi), alone 

or in combination, at the Katopé packhouse 

 

8.3.8 Effects of a hot water dip, yeast Isolate B13 and potassium silicate 

treatments, alone or in combination, on the control of P. digitatum 

of Valencia oranges at Gateway Packhouse 

There was no significant difference in incidence of P. digitatum as a result of the 

treatments applied, and the untreated control, on Valencia oranges (a detailed 

statistical analysis of the data in Figure 8.7 is given in Appendix 8C). 
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Figure 8.7 Incidence of Penicillium digitatum on Valencia oranges after 

treatment with hot water, and/or yeast Isolate B13 and/or K2SiO3 (KSi), 

alone or in combination, at the Gateway packhouse. 

 

8.3.9 Effects of a hot water dip, yeast Isolate B13 and potassium silicate 

treatments, alone or in combination, for the control of P. digitatum 

of Valencia oranges at the Maywood Packhouse 

The incidence of P. digitatum on Valencia oranges was significantly reduced by 

all treatments, compared with the untreated control (a detailed statistical 

analysis of the data in Figure 8.8 is presented in Appendix 8D).  
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Figure 8.8 Incidence of Penicillium digitatum on Valencia oranges after 

treatment by hot water, and/or yeast Isolate B13, and/or K2SiO3 (KSi), 

alone and in combination, at the Maywood packhouse. 

 

 

8.4 DISCUSSION 

“Increased public awareness has, in recent years, brought about a renewed 

interest in the use of non-chemical treatments for the protection of fresh 

produce” (Fallik et al., 2000). Postharvest heat treatment has been 

demonstrated to control or delay pathogen development in different fruit while 

maintaining quality (Lurie, 1998). Here we have shown that treating artificially 

inoculated Valencia oranges at a temperature of 50- 56°C for 60-180 seconds 

successfully controlled P. digitatum (Figure 8.2) without causing rind injury 

(Table 8.2). Smoot and Melvin (1963) found that immersion of oranges in water 
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at 53°C controlled P. digitatum of artificially inoculated oranges. Houck (1967) 

as well showed that a hot water dip at 52°C was able to control P. digitatum on 

Eureka lemon, which falls within temperature range of our results. 

 

Porat et al. (2000) reported similar findings to ours, using hot water brushing 

(HWB) treatment, to reduce decay development by rinsing and brushing the fruit 

24 hours after artificial inoculation with a P. digitatum conidial suspension on 

'Minneola' tangerines, Shamouti' oranges and 'Star Ruby' red grapefruit.  When 

treated at 56, 59 and 62°C for 20 seconds, disease incidence was 20%, 5% and 

less than 1%, respectively, of the disease incidence on untreated fruit or fruit 

treated with tap water. 

 

Smilanick et al. (2003) also reported a significant reduction of P. digitatum 

decay of lemons and Valencia oranges using a brief hot water drench 

treatment. 

 

Rind injury on Valencia oranges did not occur at a water temperature of 56°C 

and exposure periods of 45-180 seconds in this experiment. Similar test on 

lemons carried on by Schirra and D‟hallewin (1997) found that hot water 

treatment was injurious on Fortune mandarins dipped at 56°C, which could be 

due to the thinner peel layer of Fortune mandarin compared to Valencia orange. 

The different effects of similar temperature x time treatments on fruit rind quality 

of different citrus varieties indicate that different cultivars of citrus fruit respond 

to hot water treatment differently. The efficiency of hot water treatment is 

dependent on the temperature used x time of exposure, as shown graphically 

and statistically and in Figure 8.2 and Appendix 8A, respectively. Palou et al. 

(2001) reported that a hot water treatment failed to control P. digitatum after 

two weeks of storage. In contrast, these results have shown that the hot water 

treatment provided control for up to four weeks. 

 

In the Observational Trial 2, the use of cold water treatment following hot water 

treatment did not cause a reduction of rind injury of Valencia oranges, and was 

therefore discarded as a viable treatment. 

 

At higher temperatures, from 66°C-70°C, Valencia oranges were severely 

injured and P. digitatum control was actually reduced. For example, Valencia 
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oranges treated at 70°C for 180 seconds were all infected by the pathogen 

(100% incidence) (Table 8.3). The higher disease incidence that occurred in this 

treatment indicate that the mycelium of P. digitatum survived treatment with 

high temperature water, and that hot water treatments at high temperatures 

were ineffective in killing conidia of P. digitatum. Hot water treatment at the 

higher temperatures also caused damage to the fruit rind, which may have 

increased the susceptibility of the tissue to the pathogen. Karabulut et al. (2002) 

also showed that hot water treatments were not able to kill conidia of P. 

expansum Link of apples. 

 

The hot water treatment showed that the pathogen was not controlled by heat 

energy because the treatments at the highest temperature resulted in 100% 

incidence of disease. In contrast brief treatments of 30-120 seconds at 50-56°C 

resulted in high level of disease control. We concluded that induced resistance 

must be triggered by the heat shock of these treatments, but if the heat level 

was too high or far too long, then the mechanism of induced resistance was 

damaged or diabled. 

 

These findings are in agreement with those of Ben-Yehoshua et al. (1998) and 

Schirra et al. (2000) who reported that the mode of action of heat treatment on 

citrus fruit is via induction of resistance; which results in increased lignin 

formation, release of heat shock related proteins and phytoalexin production 

against green mould caused by Penicillium digitatum. Similarly, Nafussie et al. 

(2001) showed that after hot water treatment of lemons, lignin-like materials 

were produced at the pathogen inoculation site, followed later by an 

accumulation of phytoalexins. 

 

In preliminary packhouse trials, commercially harvested Valencia oranges were 

kept for two months at 7±1°C. The fruit were not artificially inoculated with P. 

digitatum, the outcome of the trial depending upon natural infections by P. 

digitatum. The untreated control (no yeast and no fungicide) developed 6% P. 

digitatum. Imazalil treated fruit developed 12% P. digitatum, possibly due to the 

elimination of naturally competing organisms from the fruit surface compared to 

the untreated control (Table 8.4). The yeast Isolate B13 resulted in reduced 

mixed infection by providing control of infection by multiple pathogens after 

one month of storage at 22±1°C, with a 5% incidence compared with 20% and 
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24% for the control and imazalil treated fruit, respectively, (Table 8.4). This 

result indicated that the yeast Isolate B13 may control postharvest pathogens 

other than just P. digitatum (e.g., Phytophthora citrophthora R.E. Sm. and E.H. 

Sm.) Leonian. and Endomyces geotrichum E.E. Butler and L.J. Petersen.). 

 

In semi-commercial scale packhouse trials at Katopé, Gateway and Maywood 

packhouses, a hot water dip, yeast and/or K2SiO3 treatments, and their 

combinations, were compared. Oranges were stored at 24±1°C for one month 

under natural infections of the pathogen. Results from the Katopé packhouse 

showed that the untreated control (no yeast and no fungicide) fruit developed 

significantly less P. digitatum infections than imazalil treated fruit (Figure 8.6). 

This may have been due to imazalil eliminating natural competing organisms 

from the fruit surface compared with the untreated control.  Alternatively there 

may have been high levels of P. digitatum inoculum in the imazalil tank. This 

finding was in agreement with the preliminary screening trial performed in the 

same packhouse. 

 

Penicillium digitatum was not significantly controlled by applied treatments at 

the Gateway packhouse (Figure 8.7). This was probably because of a delay 

between initial infections and the application of treatments because the fruit was 

kept for longer than five days in the packhouse before the treatments were 

applied. 

 

In the Maywood packhouse trial all treatments significantly reduced infection by 

the pathogen. The imazalil treatment also significantly reduced the P. digitatum 

infection of the fruit (Figure 8.8). Clearly the inoculum of P. digitatum at this 

packhouse was susceptible to imazalil. 

 

In the preliminary commercial trial at the Katopé packhouse, the level of control 

provided by the yeast Isolate B13, when used alone, was equal or superior to 

the level of control provided by commercially recommended fungicides, which 

differs with reports by Droby et al. (1993; 1998). However, in subsequent trials 

in different packhouses, there was a varying level of control provided by the 

treatments that can be attributed to differences in fruit quality, inoculum density, 

pathogen susceptibility, and the time between initial infection and the 

application of treatments, as suggested by Droby et al. (1993). 
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8.5 CONCLUSIONS 

In in vivo studies, carried out by dipping Valencia oranges 24 hours after 

inoculation with P. digitatum conidial suspension, hot water dip treatments 

at 50-56°C for 45-180 seconds reduced disease development, when compared 

with fruit treated with tap water, without causing any rind injuries. 

 

Treating Valencia orange fruit with hot water, a yeast (Isolate B13) and K2SiO3 

in combination resulted in control of P. digitatum comparable with imazalil, in 

two commercial packhouses. 
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CHAPTER 9 

CONTROL OF POSTHARVEST PENICILLIUM SPP. OF LITCHI 

FRUIT USING MICROBIAL ANTAGONISTS AND POTASSIUM 

SILICATE 

 

ABSTRACT 

Twenty three yeast and 13 Bacillus isolates were obtained from litchi fruit 

surfaces, and tested with 10 yeast and 10 Bacillus isolates that provided good 

control of Penicillium digitatum of citrus fruit (Chapter Three). These isolates 

were screened for antagonism against postharvest Penicillium sp. on litchi fruit. 

In a preliminary study, six yeast and three Bacillus isolates reduced the 

percentage surface area of litchi fruit infected to ≤50%, when applied 

three hours pre-inoculation. Further screening of the best six yeast and 

three Bacillus isolates, showed that four yeast isolates (YL4, YL10, YLH and 

B13), when applied 3 hours prior to inoculation with Penicillium sp., reduced 

infection on litchi fruit to ≤40%, compared with an untreated control that had 

96.7% infection. The application of isolates to litchi fruit did not produce a 

curative action against Penicillium spp. when applied 3 hours post-infection. 

Postharvest application of potassium silicate (K2SiO3) significantly reduced 

severity of already established Penicillium spp. on litchi fruit at all 

concentrations tested. Control was achieved at concentrations as low as 

10 mg ℓ-1 but the best control was achieved at 1,000 mg ℓ-1 of K2SiO3 solution. 

The best yeast isolates were superior to all the Bacillus isolates, and provided 

good preventative control of Penicillium spp., while K2SiO3 provided good 

preventative and curative control. 

 

 

9.1 INTRODUCTION 

Litchi (Litchi chinensis Son.) is grown as a commercial fruit crop in Australia, 

China, India, Israel, South Africa, South East Asia, Taiwan, USA and Vietnam 

(Underhill et al., 1997). Litchi fruit are susceptible to postharvest infection by 

microorganisms such as bacteria and filamentous fungi (Lonsdale, 1988). 

Losses are estimated to be 20-30% of the harvested fruit. In severe cases 

losses can reach 50% before consumption (Jiang et al., 2001). Penicillium spp. 

are the major postharvest fungal pathogens of litchi (Figures 9.1B). The 
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pathogen is not well controlled by sulphur fumigation (Kremer-Koehne and 

Lonsdale, 1990; Jacobs and Korsten, 2004).  Furthermore, the sulphur causes 

undesirable residue (Kremer-Koehne, 1993), changes fruit taste (Lonsdale and 

Kremer-Koehne, 1991), and constitutes a potential health hazard for consumers 

and workers (Koening et al., 1983). To date, there are no registered chemicals 

for the control of postharvest diseases of litchi fruit. 

 

The absence of effective chemical controls, together with strict regulatory 

control of chemical residues that enforced by importing countries (Wilson et al., 

1991), as well as public pressure and concern over food safety, have all 

increased the incentive to find alternative control methods (Holmes and Eckert, 

1999). Biological control has been proposed as an alternative to fungicides, and 

some success has been accomplished by utilizing antagonistic biological agents 

(McLaughlin et al., 1992). Limited research in the area of biological control of 

postharvest pathogens has been encouraging. Korsten (2004) has reported 

some success in developing biological control agents for postharvest disease 

control of litchi fruit. However, the researcher only tested Bacillus sp., and no 

formulated product of Bacillus is yet available for testing. Furthermore, 

application of silicon has not been attempted to address the problem. 

 

The objectives of this study were therefore: (1) to isolate yeast and Bacillus 

strains antagonistic to Penicillium spp.; (2) to investigate their efficacy in 

controlling infection by Penicillium spp. on litchi; and (3) to investigate the use of 

K2SiO3 for control of Penicillium spp. on litchi. 

 

 

 
 

 

 
 
 
 
 
 
 
Figure 9.1 Healthy litchi fruit (A) and conidia of a Penicillium sp. covering a litchi 

fruit (B) 

 

A B 
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9.2 MATERIALS AND METHODS 

9.2.1 Fruit used for isolation of potential antagonists 

Litchi fruit were obtained from Fruit and Veg City or from Pick‟n Pay stores in 

Pietermaritzburg, KwaZulu-Natal, South Africa. Undamaged fruit were either 

used immediately, or after storage for 2-3 days at room temperature, or after 

storage in a cold room at 8°C for 5-7 days. 

 

9.2.2 Isolation of a Penicillium sp. from litchi fruit 

An isolate of a Penicillium sp. was isolated from infected litchi fruit by directly 

plating conidia onto potato dextrose agar (PDA) amended with 0.15 g ℓ-1 of 

Rose Bengal (RB). Plates were incubated at 25°C for 10 days. Pure cultures of 

an isolate of Penicillium sp. was established by sub-culturing onto malt extract 

agar (MEA) plates, after identification of conidia under a compound microscope. 

The pathogen was maintained in double autoclaved, distilled water with regular 

transfers onto fresh litchi fruit to maintain the aggressiveness of the isolate. A 

conidial suspension was prepared for inoculation by washing 10 day old 

cultures of Penicillium sp. on MEA medium, with sterile distilled water. 

 

9.2.3 Isolation of antagonistic yeasts and Bacillus 

Bacillus and yeast isolates were recovered from the surface of 3-5 mature litchi 

fruit. This was done by placing the fruit in 250 mℓ Erlenmeyer flasks containing 

100 mℓ sterile distilled water plus 25% Ringer‟s Solution and shaking in a water 

bath (G.F.L. 1083, Labortechnik, Germany) at 120 rotations per minute (rpm) for 

1 hour. Fruit were removed and the liquid suspension was used to make a serial 

dilution of 10-1, 10-2, 10-3 and 10-4 of the rinsing water before plating. An aliquot 

of 0.2 mℓ of each dilution was plated onto PDA agar amended with 0.15 g ℓ-1 of 

RB for recovery of yeast isolates. The resulting plates were incubated at 25°C 

for 3 days. Pure cultures of yeast isolates were made by sub-culturing from 

discrete colonies on the plates. For isolation of Bacillus spp. similar serial 

dilutions were used, but were heat treated at 80°C for 15 minutes, in a water 

bath to eliminate non-spore-forming microbes. Aliquots of 0.2 mℓ were then 

poured onto tryptone soy agar (TSA) plates. Plates were incubated for 

three days at 28°C, after which representative colonies were arbitrarily selected 

and streaked onto fresh TSA plates to obtain single colonies. 
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9.2.4 Preliminary screening of antagonistic yeast and Bacillus isolates 

against Penicillium sp. on litchi fruit 

A total of 23 yeasts and 13 Bacillus isolates were obtained from litchi fruit. The 

10 most effective yeast and 10 most effective Bacillus isolates obtained from 

citrus fruit in earlier research (Chapter Three) were also assessed for their 

preventative action against the selected Penicillium sp. on litchi.See Appendix 

9A for details of the isolates used. 

 

The litchi fruit were treated by dipping them into 70% alcohol for one minute, 

dried, and then dipped into a suspension of yeast or Bacillus cells 

(1 × 108 cells mℓ-1) for 1 minute. Three hours after drying, each fruit was sprayed 

with one mℓ of a conidial suspension of Penicillium sp. at 1 × 104 conidia mℓ-1, 

adjusted using a haemocytometer. Control fruit were sprayed with 1 mℓ of sterile 

distilled water. Fruit were kept at room temperature (24±1°C) for 10 days. One 

plastic tray with five fruit per treatment was used. Treatments were placed on a 

bench in a completely randomized block design (CRBD). Fruit were examined 

for percentage surface area of the fruit covered by mycelium and/or conidia 

Penicillium sp. initial screening was based on observation by making a 

subjective estimation visual estimation (using visual rating scale) 10 . Yeast and 

Bacillus isolates that reduced the percentage of fruit surface area infected by 

Penicillium to ≤50% were chosen for further screening. 

 

9.2.5 Evaluation of preventative action of the six best yeast and three best 

Bacillus isolates against Penicillium sp. on litchi fruit 

A total of six yeasts and three Bacillus isolates were assessed for their 

preventative action against Penicillium spp. on litchi fruit. 

 

Similar procedures as described in Section 9.2.4 were followed, however, litchi 

fruit were sprayed with a suspension of conidia of Penicillium sp. (1 × 104 

 conidia ml-1) 24 hours after the fruit had been treated by dipping them into a cell 

suspension of the test organism (yeast or Bacillus at 1 × 108 cells ml-1). Fruit 

sprayed with the same amount of distilled water served as a control. Fruit were 

kept at 24±1°C. Two trays, with five fruit per tray, were used per treatment and 

placed on a bench in a CRBD. Fruit were evaluated for percentage fruit surface 

area covered by mycelium and/or conidia Penicillium sp. by making a subjective 
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estimation based on a visual rating scale 10 days after inoculation with the 

pathogen. 

 

9.2.6 Determination of the curative action of the six best yeasts and 

three best Bacillus antagonists against Penicillium sp. on litchi fruit 

Similar procedures as described in Section 9.2.4 were followed; however, litchi 

fruit were dipped in a Penicillium conidial suspension (1 × 104 conidia mℓ-1) 

before treatment with each antagonist. After the fruit had dried for three hours, it 

was sprayed with one mℓ of the test organisms (yeast or Bacillus at 

1 × 108 cells mℓ -1) per fruit. Fruit sprayed with the same amount of distilled 

water served as a control. Fruit were kept at 24±1°C. Two trays, with five fruit 

per tray, were used per treatment and placed on a bench in a CRBD. Fruit were 

evaluated for percentage fruit surface area covered by mycelium and/or conidia 

Penicillium sp. by making a subjective estimation based on a visual rating scale 

10 days after inoculation with the pathogen. 

 

9.2.7 Determination of the curative activity of potassium silicate against 

Penicillium sp. as a postharvest treatment on litchi fruit 

Litchi fruit, naturally infected with Penicillium sp., were used (Figure 9.2). Fruit 

were dipped for 1 minute in potassium silicate (K2SiO3) solutions at 

concentrations of 10, 100, 1,000, and 10,000 mg ℓ-1. Fruit dipped in sterile 

distilled water served as control. Fruit were kept at 24±1°C. Two trays, with five 

fruit per tray, covered with a plastic bag, were used per treatment and placed on 

a bench in a CRBD. Fruit were evaluated for percentage fruit surface area 

covered by Penicillium sp. by making a subjective estimation based on a visual 

rating scale 10 days after treatment. 
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Figure 9.2 Litchi fruit infected with Penicillium spp. 

 

9.2.8 Statistical analysis 

All data were subjected to an analysis of variance (ANOVA) using Genstat® 

Executable Release 9.1 Statistical Analysis Software (Anonymous, 2006). To 

determine differences between treatments, least significant differences were 

determined at P<0.05. 

 

 

9.3 RESULTS 

9.3.1 Preliminary screening of antagonistic yeasts and Bacillus isolates 

against Penicillium sp. on litchi fruit applied preventatively 

From a total 23 yeast and 13 Bacillus isolates, plus the 10 yeast isolates and 

10 Bacillus isolates from citrus (Chapter Three) (for source of the fruit see 

Appendix 9A), only six yeast and three Bacillus isolates reduced Penicillium 

development on litchi fruit  to ≤50%, compared to the untreated control that 

developed 96% infection (Table 9.1). 
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Table 9.5 Severity of Penicillium sp. infection of litchi fruit as affected by 

antagonistic yeasts or Bacillus isolates, applied preventatively 

 

Isolate and Control Isolate type % surface area of fruit 
covered by Penicillium 
sp. 

BL4  Bacillus 50 

BL6  Bacillus 50 

FMV110  Bacillus 44 

B13  Yeast 49 

Grape Yeast 45 

YL4 Yeast 33 

YL7 Yeast 48 

YL 10 Yeast 35 

YLH Yeast 50 

Others (45 isolates) Bacillus and yeasts >55 

Water (control) Penicillium sp. only  96 

 

 

9.3.2 Further screening of the six best antagonistic yeasts and three best 

Bacillus isolates against Penicillium sp. on litchi fruit, when applied 

preventatively 

Four yeast isolates, YL4, YL10, B13 and YLH, were highly effective at reducing 

the severity of Penicillium spp. infection on litchi fruit (Figure 9.3 and Figure 9.4 

for yeast isolates, YL4, YL10 and YLH). Yeast isolates, YL7, Grape, and the 

Bacillus isolates, BL4, BL6 and FMV110 significantly reduce the severity of 

Penicillium sp. on litchi fruit compared with the untreated control (a detailed 

statistical analysis of the data in Figure 9.3 is provided in Appendix 9B). 
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Figure 9.3 Effectiveness of antagonistic yeast and Bacillus isolates, applied 

preventatively, for the reduction of Penicillium infection of litchi fruit 
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Figure 9.4 Control of Penicillium sp. on litchi fruit by antagonistic yeast isolates, 

applied preventatively: (A) Untreated control (inoculated with Penicillium 

sp. only).  (B), (C) and (D) show fruit dipped in yeast isolates YL4, YL10 

and YLH (1 × 108 cells mℓ-1), respectively, and subsequently sprayed 

with 1 mℓ of Penicillium sp. (1 × 104 conidia mℓ-1). 

 

9.3.3 Screening of antagonistic yeasts and Bacillus isolates against 

Penicillium sp. on litchi fruit, when applied curatively 

Yeast isolates YL4 and YL10 highly significantly provided curative control of 

Penicillium sp. infection more successfully than any of the other treatments.  

The yeast isolate YLH, YL7 and Bacillus isolates BL4 and FMV110 did not 

provide curative control of Penicillium sp. Infection (a detailed statistical analysis 

of the data in Figure 9.5 is presented in Appendix 9C). 
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Figure 9.5 Effectiveness of antagonistic yeast and Bacillus isolates in reducing 

the severity of Penicillium infection of litchi fruit, when applied curatively, 

three hours after the pathogen. 

 

9.3.4 Effect of potassium silicate as a postharvest curative treatment for 

the control of Penicillium sp. on litchi fruit 

When potassium silicate (K2SiO3) was applied curatively for the control of 

Penicillium sp. infection on litchi fruit it was effective at all concentrations tested 

(Figure 9.6). Increasing the concentration of K2SiO3 from 10 mg ℓ-1 to 100 mg ℓ-1 

did not reduce the severity of the pathogen (Figure 9.6). Increasing the 

concentration of K2SiO3 from 100 mg ℓ -1 to 1,000 mg ℓ 1 did not significantly 

reduced infection severity. Increasing the concentration of K2SiO3 from 

1,000 mg ℓ -1 to 10,000 mg ℓ -1 did not further reduce infection severity (a 

detailed statistical analysis of the data in Figure 9.6 is provided in Appendix 9D). 
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Figure 9.6 Effectiveness of potassium silicate applied curatively against 

Penicillium sp. of litchi fruit. 

 

 

9.4 DISCUSSION 

The major objective of this study was to isolate yeasts and Bacillus spp. 

antagonistic to Penicillium sp. on litchi fruit and to assess their potential for the 

biological control of this pathogen. This approach has been reported by others 

(Korsten et al., 1993; Korsten, 2004; Sivakumar et al., 2008). However, it is the 

first study in which both yeasts and Bacillus have been isolated in South Africa 

and their antagonistic activity evaluated against Penicillium sp. Yeast isolates 

and Bacillus spp. were isolated from the surface of litchi fruit in South Africa, 

and were then screened for inhibitory activity against Penicillium sp. on both 

artificially inoculated and naturally infected fruit. 

 

In the initial screening 6 yeasts and 3 Bacillus isolates reduced infection by 

Penicillium sp. on litchi fruit to <50%. In a subsequent screening, all six yeast 

and three Bacillus isolates significantly reduced the fruit surface area infected 

by Penicillium sp. on litchi to <50% when applied preventatively (Figure 9.3). 

However, only four yeast isolates (YL4, YL10, Grape and B13) and one Bacillus 

isolate (BL6) provided curative control of Penicillium sp. on litchi fruit. The yeast 

isolates YL4, YL10 and B13 exhibited the highest antagonistic activity, providing 

the best control both preventatively and curatively (Figures 9.3 and 9.4). 
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The curative effect of these yeast isolates on litchi contradicts the findings of 

Qing and Shiping (2000) who found that there was no effective curative control 

of Rhizopus by the yeast Pichia membranaefaciens Hansen when the yeast 

was applied to nectarines 24-48 hours after inoculation with Rhizopus. Similarly, 

de Capdeville et al. (2002) showed that selected antagonistic yeasts reduced 

the progress of disease more effectively when applied to apples 24 - 96 hours 

before inoculation with Penicillium expansum (Link) Thom than when applied 

24 hours after inoculation. It is also a different outcome than our earlier 

research on citrus (Chapter Three), where biocontrol by yeast isolates for the 

control of P. digitatum of navel and Valencia oranges and lemons was only 

preventative and not curative. 

 

Potassium silicate was effective in suppressing Penicillium sp. infection of litchi 

fruit in the postharvest situation. Postharvest silicon application has also been 

reported to control Alternaria alternata, Fusarium spp., and Trichoderma 

roseum on Hami melons by Bi et al. (2006) and to control P. expansum and 

Monilinia fructicola (Wint.) Honey on sweet cherries by Qin and Tian (2005). 

This suppression could be due to induction of phenolic compounds by K2SiO3, 

as determined with the treatment of melons (Bi et al., 2006), and on sweet 

cherries (Qin and Tian, 2005). Control of P. digitatum on lemons, using K2SiO3 

as a postharvest treatment, was recorded in earlier research (Chapter Seven). 

 

The reduction in disease severity was concentration dependent, and the best 

suppression was achieved at higher concentrations of K2SiO3. This finding 

agrees with results of Menzies et al. (1991) who found that powdery mildew 

caused by Sphaerotheca fuliginea (Schltdl.) Pollacci on cucumbers was better 

controlled with increasing concentration of K2SiO3 in nutrient solutions. This 

could be related to the fungistatic properties of K2SiO3. Bowen et al. (1992) 

found that sodium silicate at lower concentrations mildly promoted conidial 

germination and germ tube development of Uncinula necator (Schwein.) Burrill. 

It should be recognized that K2SiO3 solutions are highly alkaline (pH of 9-12) 

and it is therefore possible that their fungistatic activity is due to strong 

alkalinity. The mechanisms involved in the suppression of Penicillium sp. 

infection could be due to either (1) direct contact of K2SiO3 with Penicillium sp.; 

(2) with the silicon acting as a physical barrier (Carver et al., 1987; Datnoff et 

al., 1997); (3) the soluble silicon acting as a priming agent to enhance host plant 

http://en.wikipedia.org/wiki/Thomas_Jonathan_Burrill
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defence responses (Cherif et al. 1992; Epstein, 1999); (4) or because of its 

fungistatic properties, Bekker et al., 2006); or a combination of the four putative 

modes of action. 

 

This was a preliminary study and therefore there is a need for further research 

on the integrated control of Penicillium sp. of litchi: 

 

 To investigate the modes of action of antagonistic yeasts by observing 

surface colonisation by yeast isolates using scanning electron 

microscopy. 

 To investigate possible mode of action by observing the interaction of 

Penicillium sp. and potassium silicate on the fruit using scanning electron 

microscopy. 

 Because infection of the fruit by P. digitatum often occurs in the field 

before or during harvest (Biggs, 1995), it may be important to apply 

biocontrol agents early. i.e., their greatest value may be realized by 

application in the field prior to wounding that often occurs during harvest. 

 A postharvest hot water treatment may be effective against Penicillium 

spp. on litchi fruit when applied alone, or as a part of an integrated 

control package, combined with a biocontrol yeast and potassium silicate 

in a single treatment. 

 

 

9.5 CONCLUSIONS 

Out of the 33 yeasts and 23 Bacillus isolates screened, 6 yeasts and 3 Bacillus 

isolates caused a reduction of ≥50% in the severity of Penicillium sp. infection, 

when applied preventatively as postharvest treatments on the surface of litchi 

fruit. None of the citrus-sourced antagonists were effective on litchi fruit. 

 

The best yeast isolates, YL4 and YL10, were superior to all the Bacillus isolates 

tested, and provided good control of Penicillium sp., both preventatively and 

curatively (three hours). 

 

This study also demonstrated the potential of K2SiO3 for preventative and 

curative action against Penicillium spp. on litchi fruit. 
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CHAPTER 10 

THESIS OVERVIEW 

 

The purpose of this overview is to look back at the objectives presented in the 

introduction, to review progress made towards these objectives, to identify 

future research needs and then recommend future research directions.  Finally, 

it is to make recommendations to the citrus industry based on the research 

outcomes of this thesis.  The overview is not to be viewed as a scientific paper, 

but rather to clarify the objectives and outcomes of this thesis, and as an 

industry advisory document. 

 

Research Objectives and Outcomes 

The research results are summarized in the following points with respect to the 

specific objectives referred at the beginning of the thesis: 

 

Objective 1: To investigate the effect of the number of conidia of P. digitatum 

on its pathogenicity on citrus fruit. 

 

Penicillium digitatum suspension at concentrations of 1, 10, 20, 50, 100, 

500, 1 × 103, 1 × 104, and 1 × 105 conidia ml-1 caused equally significant 

navel orange fruit decay. 

 

Objective 2: To evaluate the efficacy of the fungicide imazalil to control P. 

digitatum. 

 

An isolate of P. digitatum, isolated from an infected orange fruit, showed 

resistance to imazalil (the industry standard postharvest fungicide). 

Subsequent research showed that 10 out of 10 isolates of P. digitatum 

from KwaZulu-Natal packhouses were resistant to imazalil. This situation 

poses a serious threat to the citrus industry in South Africa (Chapter 

2.3.2). 

 

Objective 3: To isolate yeast and Bacillus strains antagonistic to P. digitatum 

and to investigate their efficacy in controlling infection by the pathogen under in 

vivo conditions on citrus fruit. 



 169 

 

a) A total of 60 yeast and 92 Bacillus isolates were obtained from the 

surfaces of several citrus varieties from various orchards in South 

Africa. 

 

b) Ten yeast and 10 Bacillus isolates reduced infection by P. digitatum 

by more than 50% when applied three hours before inoculation. 

 

c) Two yeast isolates, B13 and Grape (both isolates of Candida 

fermentati (Saito) Bai.), provided good preventive action to navel and 

Valencia oranges, and lemons, when applied 48 hours prior to 

inoculation with the pathogen  

 

d) The two yeast isolates, B13 and Grape, did not produce any curative 

action to lemons and Valencia oranges against P. digitatum when 

applied three hours post infection,  

 

e) Two yeast isolates, B13 and Grape, were superior to all the Bacillus 

isolates. 

 

Objective 4: To investigate the modes of action of effective antagonist yeast 

B13 for the control of P. digitatum, by observing fruit surface colonization using 

scanning electron microscopy. 

 

a) Environmental scanning electron microscopy (ESEM) studies 

showed effective colonization of lemon wounds by yeast 

Isolate B13. 

 

b) Scanning electron microscopy observations demonstrated that 

yeast Isolate B13 inhibited or restricted conidial germination of 

P. digitatum, when it was applied preventatively. 
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Objective 5: To assess the ability of yeast Isolate B13 to colonize citrus fruit 

surfaces and to assess its efficacy in controlling postharvest infection by P. 

digitatum, when applied prior to harvest. 

 

a) Spraying citrus trees with yeast Isolate B13 a few months (1-

 2 months) or few days (1, 3 and 7 days) before harvest was 

not effective in providing preventative control of P. digitatum of 

Valencia oranges. 

 

b) The population of the yeast Isolate B13 on sprayed Valencia 

oranges was higher than the untreated control at harvest at 

two locations. However, this higher population of the yeast 

Isolate B13 did not reduce the incidence of P. digitatum. 

 

Objective 6: To investigate the effects of preharvest applications of potassium 

silicate for the control of P. digitatum infection of navel and Valencia oranges. 

 

Regular potassium silicate drenches in the field resulted in a 

significant preventative control of P. digitatum infection, on both 

navel and Valencia oranges. 

 

Objective 7: To investigate the effects of applying potassium silicate as a 

postharvest treatment in order to manage P. digitatum. 

 

Potassium silicate as a postharvest resulted in preventative and 

curative control of P. digitatum.  

 

Objective 8: To evaluate the use of a hot water dip as a stand-alone treatment 

under laboratory conditions. 

 

Hot-water dip treatments at 50-56°C for 60-180 seconds (in 

increments of 15 seconds) significantly reduced pathogen 

development in inoculated wounds of Valencia oranges, without 

causing any rind damage. 

 



 171 

Objective 9: To investigate the individual or combined effects of hot water, the 

yeast Isolate B13 and potassium silicate treatments in three commercial 

packhouses for the control of P. digitatum of Valencia oranges. 

 

The individual use of the yeast Isolate B13, a hot water dip and 

application of potassium silicate as postharvest treatments 

provided excellent control of P. digitatum in the packhouses, 

superior or equivalent to the control provided by the fungicide 

imazalil. Their combinations did not improve their effectiveness 

against the pathogen. 

 

Objective 10 (a): To isolate yeast and Bacillus isolates antagonistic to 

Penicillium sp. of litchi fruit. 

 

A total of 23 yeast and 13 Bacillus isolates were obtained 

from litchi fruit surfaces. 

 

Objective 10 (b): 10to investigate their efficacy in controlling the pathogen 

under in vivo conditions on litchi fruit. 

 

 

i. Six yeast and three Bacillus isolates reduced infection by 

Penicillium sp. (≥50% reduction), when applied three hours 

before inoculation. 

 

ii. Four yeast isolates, YL4, YL10, YLH and B13, provided 

good preventative control of Penicillium when applied to 

litchi fruit three hours prior to inoculation with the pathogen. 

However, YL4 and YL10 were consistently more effective.  

 
 

iii. The yeast Isolate B13 isolated from oranges also showed 

good biocontrol activity against Penicillium sp. of litchi fruit, 

but was not effective as isolates YL4 or YL10. 

 



 172 

iv. Two of the yeasts isolates (YL4 and YL10) provided 

curative action against Penicillium infection of litchi fruit. 

 

v. The yeast isolates were superior to all Bacillus isolates, 

when applied to litchi fruit, before or after artificial 

inoculation with Penicillium sp. 

 

Objective 11: To investigate the effectiveness of applying potassium silicate as 

a postharvest treatment in order to manage Penicillium sp. of litchi fruit. 

 

Application of potassium silicate as a postharvest treatment for the 

control of the pathogen resulted in a reduced level of disease 

severity, when applied preventatively or curatively, on naturally 

infected litchi fruit. 

 

Future Research 

The following research studies would complement this body of research. 

 Investigation of the sensitivity of Penicillium pathogens of citrus in 

South African packhouses to imazalil and other fungicides, such as 

thiabendazole (TBZ) and sodium ortho-phenylphenate (SOPP), 

because the findings of this research would reflect the need to tackle 

the issue with appropriate resources. 

 

 Continue screening yeast isolates for biological control, an addition to 

consolidating research involving Isolate B13. 

 

 Conduct toxicological study of Isolate B13 to enable it to be released 

to the citrus industry for routine postharvest treatment of citrus fruit. 

 

 Continue preharvest applications of yeast Isolate B13 in citrus 

orchards for more than one season for the control of P. digitatum and 

other postharvest pathogens. Multi-season applications may be 

needed before this approach starts to control the pathogen. 
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 Use of DNA fingerprinting to track the colonization and performance 

of Isolate B13 in the field, associated with the proposed research 

above. 

 

 Investigate whether the catalysis of enhanced levels of systemic 

acquired resistance (SAR) is responsible for the preventative and 

curative activity of potassium silicate against P. digitatum of citrus and 

litchi fruit. 

 

 Investigate the use of potassium silicate added to the hot water dips 

at reduced concentrations. This may reduce any browning effect on 

the fruit and reduce the cost of treatment, without compromising 

postharvest disease control. 

 

 Evaluate the use of a hot water dip and a hot water dip plus 

potassium silicate treatment of litchi fruit for the control of Penicillium 

disease. 

 

 Investigate whether hot water treatment triggers and enhances the 

level of systemic acquired resistance (SAR) in the citrus fruit for the 

control of P. digitatum. 

 

 Investigate whether Isolate B13, a hot water dip and/or potassium 

silicate treatments may control blue mould of citrus caused by P. 

italicum. 

 

 Investigate the possibility of using hot water treatment for the control 

of black spot and fruit fly. 

 

 Conduct more commercial trials on the use of yeasts, hot water dips 

and potassium silicate in South Africa and other parts of the world, to 

provide further data as basis for the global adoption of these 

techniques as treatments of citrus, litchi and other fruit crops. 
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Relevance of the Research to the Citrus Industry 

Penicillium digitatum causes a serious disease of citrus fruit (Figure 10.1A). It is 

present wherever citrus fruit are grown, such as in the field (Figures 10.1B and 

C), on equipment (Figure 10.1D), in storage rooms (Figure 10.1E), on 

packhouse lines (Figure 10.1F) and in the market place. 

 

The scale of losses to P. digitatum is significant because firstly, as little as 

one conidium of the pathogen can cause citrus fruit to be unmarketable. 

Because the pathogen is present almost everywhere, it is not possible to grow 

and process citrus fruit that are completely free of the inoculum of P. digitatum. 

Secondly, mutant strains of P. digitatum have developed resistance to imazalil 

(Figure 10.1E) and other key postharvest fungicides. As such, the citrus 

industry needs non-chemical control options in order to combat this disease. 

 

We have developed a range of control options that are effective against P. 

digitatum of citrus fruit, specifically, biological control using yeast isolates, pre- 

and postharvest applications of potassium silicate, and hot water dips. 
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Figure 10.1 Presence of P. digitatum in various places where citrus is handled 

(A-F). 
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Proposed Practices to Minimize P. digitatum Incidence in the 

Citrus Industry 

The following control measures are proposed as practical control options that 

will reduce the incidence of P. digitatum. 

 

Preharvest 
 
Sanitation practices, combined with pre-harvest application of potassium silicate 

(103 mg ℓ -1 × 2 months × 12 months). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.2 (A) Penicillium digitatum infected fruit on the ground under tree 

(indicated by arrow) and (B) drenching an orange tree with potassium 

silicate solution. 
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Postharvest  

Postharvest treatments of citrus fruit with a hot water dip containing potassium 

silicate, followed by a spray application of Isolate B13. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.3 (A) Treating fruit in hot water bath and (B) Flow diagram of 

Proposed Postharvest Handling of Citrus Fruit to Control Penicillium 

digitatum and Other Postharvest Pathogens (Brown and Sour Rots). 

 

Hot water dip + 
potassium silicate  

Vacuum drier  

Apply B13  

Dry and then 

followed by waxing 

B 

Hot water bath at 55-56°C for 45-60 seconds 
and/or potassium silicate added to the dip. 
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Flow Chart for the Postharvest Practices to Minimize P. digitatum Disease 

in the Citrus Packhouse 

 

The following flow chart represents typical packhouse facility for the washing, 

waxing, and sorting of citrus. We propose the addition of the two control 

measures developed as part of this thesis at two points in the flow chart, 

namely, the hot water bath, and ULV spray to deposit biocontrol agent after the 

first drying station. This would not disrupt the current system of handling citrus 

fruit. The costs of the interventions we propose would also be relatively low, 

requiring only ULV spray unit and an additional drying unit. As soon as the 

potassium silicate and Isolate B13 are registered for the postharvest use on 

citrus, their application in packhouse handling of citrus could be implemented.



 179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.4 Flow chart of Proposed Postharvest Handling of Citrus Fruit to Control Penicillium digitatum and Other Postharvest 

Pathogens (Brown and Sour Rots); two changes are proposed to existing packlines, shown in colour.  All other steps are are 

already in place. 

Dump 
Tank 

High pressure 
water 

Roller brushes 
for initial washing 

Drain excess 
solution 

Heater/
Blower 

ULV spray to deposit 
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Appendices 

 
Appendix 2A: Pathogenicity of an isolate of P. digitatum on navel oranges 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Means followed by the same letter are not significantly different 
 
 
 

 

 

 

 

Number of P. digitatum conidia  
inoculated per dose of 1 ml 
 

Lesion diameter (mm) 

0 23.3 a 

1 57.5 bc 

10 47.2 b 

20 61.5 bc 

50 69.3 bc 

100 66.9 bc 

500 69.5  c 

1000 65.3 bc 

10000 75.5  c 

100000 76.0  c 

P Value <0.001    

LSD 19.98 

CV % 34.8 
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Appendix 3A Location and fruit source for isolation of yeast and Bacillus isolates 

Yeast and Bacillus 
names 

Isolate type Fruit used for 
isolation 

Location fruit obtained 

B3  Bacillus Navel oranges  Thornville, KwaZulu-Natal 

B6  Bacillus Valencia oranges  Thornville, KwaZulu-Natal 

B7  Bacillus Navel oranges  Richmond, KwaZulu-Natal  

B8  Bacillus Valencia oranges  Thornville, KwaZulu-Natal 

B9 (1) Bacillus Rough Lemon  Richmond, KwaZulu-Natal 

B9 (2) Bacillus Rough Lemon  Richmond, KwaZulu-Natal 

GW1 Bacillus Granadilla fruit Nelspruit, Mpumalanga 

Papaya Bacillus Papaya fruit Nelspruit, Mpumalanga 

S1-1 Bacillus Valencia orange Nelspruit, Mpumalanga 

S1-2  Bacillus Valencia orange Nelspruit, Mpumalanga 

B-a Yeast Valencia oranges  Pietermaritzburg, KwaZulu-

Natal 

B13  Yeast Valencia oranges  Thornville, KwaZulu-Natal 

EP Yeast Mandarins Hilton, KwaZulu-Natal 

Grape Yeast Grapefruit  Nelspruit, Mpumalanga 

GR1 Yeast Rough lemon Nelspruit, Mpumalanga 

Lemon P Yeast Eureka lemon  Hilton, KwaZulu-Natal 

ON3 Yeast Navel orange  Richmond, KwaZulu-Natal 

RG2 Yeast Rough lemon  Nelspruit, Mpumalanga 

SPL Yeast Valencia oranges  Pietermaritzburg, KwaZulu-

Natal 

UL3 Yeast  Eureka lemon Hilton, KwaZulu-Natal 

Others (132 

isolates) 

Bacillus, yeasts Various citrus fruit KwaZulu-Natal, 

Mpumalanga 
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Appendix 3B: Preventative treatments of Valencia oranges (three fruits per treatment) 
with 10 yeast and 10 Bacillus isolates to control Penicillium digitatum 

 

** Wald tests for fixed effects *** 

  

  

   Fixed term              Wald statistic      d.f.    Wald/d.f.    Chi-sq prob 

  

* Sequentially adding terms to fixed model 

  

   Variety                      181.16           19        8.63      <0.001 

  

* Dropping individual terms from full fixed model 

  

   Variety                      181.16           19        8.63      <0.001 

  

 Standard error of differences:     Average        10.97 

                                    

 Average variance of differences:                  120.3 

  

 

Duncan's multiple range test 

           Identifier     Mean 

            

               Grape      24.17 | 

               EP         27.39 || 

               B3         28.55 || 

               GR1        30.76 ||| 

               RG2        30.96 ||| 

               B13        31.39 ||| 

               ON3        32.06 ||| 

               B-a        32.49 |||| 

               Lemon P    33.36 ||||| 

               B7         35.82  ||||| 

               SPL        36.96  ||||| 

               B9 (2)     37.04  ||||| 

               UL3        39.24   |||| 

               GW 1       39.84   ||||| 

               Papaya     40.25   ||||| 

               S1 1       41.84    |||| 

               S1 2       42.16     ||| 

               B6         44.11      || 

            Inoculated    45.20      || 

               B8         48.58       | 

               B9 (1)     48.94       | 
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Appendix 3C: Preventative treatments of navel oranges with 10 yeast and 10 Bacillus 
isolates against Penicillium digitatum 

 

** Wald tests for fixed effects *** 

  

  

   Fixed term              Wald statistic      d.f.    Wald/d.f.    Chi-sq prob 

  

* Sequentially adding terms to fixed model 

  

   Variety                      134.05           19        6.38      <0.001 

  

* Dropping individual terms from full fixed model 

  

   Variety                      134.05           19        6.38      <0.001 

  

 Standard error of differences:     Average        10.97 

                                    

 Average variance of differences:                  120.3 

  

 

Duncan's multiple range test 

           Identifier     Mean 

            

               B13        0.00 | 

               Grape      0.00 | 

               SPL        1.74 | 

               B-a        2.96 | 

               RG2        6.11 | 

               GR1       18.28   | 

               B3        18.92   | 

               B9 (2)    18.93   | 

               GW 1      19.41   | 

               Lemon P   21.08   | 

               B7        22.12   | | 

               EP        28.11     | | 

               ON3       28.47     | | 

               B6        29.88       | 

               B8        30.71       | 

               S1.1      34.84       | | 

               B9 (1)    38.83         | | 

               UL3       44.50           | | 

               S1.2      46.97             | 

               Papaya    62.04               | 

          Inoculated     68.41               | 
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Appendix 3D: Preventative treatments of Valencia oranges with 10 yeast and 10 
Bacillus isolates aginst Penicillium digitatum 

 
 
*** Wald tests for fixed effects *** 

   

   Fixed term              Wald statistic      d.f.    Wald/d.f.    Chi-sq prob 

  

* Sequentially adding terms to fixed model 

  

   Variety                      291.23           19        13.87      <0.001 

  

* Dropping individual terms from full fixed model 

  

   Variety                      291.23           19       13.87      <0.001 

  

  

Standard error of differences:     Average        7.878 

 

Average variance of differences:                  62.24 

 

  Duncan's multiple range test 

        

      Identifier        Mean 

  

           Grape         2.75 | | 

           EP            6.22   | 

           Lemon P      19.33     | 

           RG2          22.71     | 

           GR1          24.31     | 

           B13          25.25     | 

           B-a          33.16       | 

           ON3          38.04       | | 

           UL3          40.42         | 

           SPL          41.23         | | 

           GW1          46.53           | | 

           Papaya       49.79             | | 

           S1.2         51.57             | | 

           B9(1)        53.44               | 

           S1.1         53.47               | 

           B7           54.07               | 

           B8           55.68               | | 

           Inoculated 60.41                 | | 

           B3           62.95                   | | 

           B6           64.48                   | | 

           B9(2)        67.96                     | 
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Appendix 3E: Preventative treatments of lemons with 10 yeast and 10 Bacillus 
isolates against Penicillium digitatum 

 
*** Wald tests for fixed effects *** 

   

   Fixed term              Wald statistic      d.f.    Wald/d.f.    Chi-sq prob 

  

* Sequentially adding terms to fixed model 

  

   Variety                      422.79           19        21.14      <0.001 

  

* Dropping individual terms from full fixed model 

  

   Variety                      422.79           19        21.14      <0.001 

  

  

Standard error of differences:     Average        8.575 

                                    

Average variance of differences:                  77.68 

 

  Duncan's multiple range test  

    

           Identifier        Mean 

  

            Grape         0.00 | 

            ON3           0.00 | 

            Ep            0.00 | 

            B13           0.00 | 

            B-a           1.27 | 

            RG1           3.38 | 

            SPL           3.55 | 

            RG2           3.98 | 

            B9(1)       10.92   | 

            Lemon P      11.66   | 

            GW1          16.92   | 

            B7           39.95     | 

            S1.2         44.34     | 

           Papaya        50.70       | 

           S1.1          53.81       | | 

           B9(2)         54.02       | | 

           B6            56.62       | | 

           B8            57.02       | | 

           UL3           57.95         | 

           Inoculated    58.16         | 

           B3            59.10         | 
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Appendix 3F: Dose effects of two yeast isolates, B13 and Grape, on the control of P. 
digitatum, applied preventatively on lemons 

 

Yeast isolate concentration 
(cells per ml) 

Lesion diameter (mm) 

Control    75.365        d 

B13(1x105) 12.1406      ab 

B13(1x106)   8.76375    ab 

B13(2.5x106)   6.90625    ab 

B13(1x107) 11.2956      ab 

B13(1x108)     0.00        a  

Grape(1x105) 33.2644       bc 

Grape(1x106) 19.9575      ab 

Grape(2.5x106) 21.1106      ab 

Grape(1x107) 9.51625      ab 

Grape(1x108) 23.4613      ab 

P Value <0.001    

LSD 30.371 

CV % 25.3 

 

Means followed by the same letter are not significantly different 
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Appendix 6A: Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on navel oranges stored at 24±1°C, in the 

2007 season. 

 

 
Application of K2SiO3 (mg ℓ-1) 

 

Frequency 

of application 

 
Penicillium digitatum incidence 
(%) 

0 0 32 d 

100 1* 31 d 

100 2* 16 ab 

500 1 26 cd 

500 2 25 cd 

1000 1 10 a 

1000 2 15 ab 

10000 1 21 bc 

10000 2 29 cd 

P Value  0.0002 

LSD  8.5515 

CV %  21.89 

 

Means followed by the same letter are not significantly different 
 
Key:  1*: Once/ 2 monthls application 
 2*: Once/ 1 month application 
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Appendix 6B: Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on navel oranges stored at 9±1°C, in the 

2007 season. 

 

 
Application of K2SiO3 (mg ℓ-1) 
 

Frequency 

of application 

 
Penicillium digitatum 
incidence (%) 

0 0 28.0 b 
 

100 1* 10.7 a 
 

100 2* 11.0 a 

500 1 16.7 a 

500 2   9.7 a  

1000 1   7.7 a 

1000 2 11.7 a 

10000 1 13.7 a 

10000 2 15.7 a 

P Value  0.0264 

LSD  10.392 

CV %  43.74 

 
Means followed by the same letter are not significantly different 
 
Key:  1*: Once/ 2 monthls application 
 2*: Once/ 1 month application 
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Appendix 6C: Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on Valencia oranges stored at 24±1°C in 

the 2007 season. 

 

 
Application of K2SiO3 (mg ℓ-1) 

 

Frequency 

of application 

 
Penicillium digitatum incidence 
(%) 

0 0 20.3 d 

100 1* 11.0 abc 

100 2* 10.7 abc 

500 1    9.0 ab 

500 2 10.0 abc 

1000 1 11.7 abc 

1000 2   8.0 a 

10000 1 15.0 cd 

10000 2 14.0 bc 

P Value  0.0062 

LSD  5.5438 

CV %  26.52 

 

Means followed by the same letter are not significantly different 
 

Key:  1*: Once/ 2 monthls application 
 2*: Once/ 1 month application 
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Appendix 6D: Effect of preharvest potassium silicate applications for 11 months on 

the incidence of Penicillium digitatum on Valencia oranges stored at 9±1°C, in 

the 2007 season. 

 

 
Application of K2SiO3 (mg ℓ-1) 

 

Frequency 

of application 

 
Penicillium digitatum incidence 
(%) 

0 0 19. 7 d  

100 1*   3.0 a  

100 2*   4.0 ab  

500 1   9.0 c  

500 2   4.0 ab  

1000 1   4.0 ab  

1000 2   5.7 abc 

10000 1   7.0 bc 

10000 2   4.0 ab 

P Value  0.0098 

LSD  3.86405 

CV %  33.60188 

 

Means followed by the same letter are not significantly different 
 
Key:  1*: Once/ 2 monthls application 
 2*: Once/ 1 month application 
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Appendix 7A: Lesion diameters as an indicator of postharvest control of Penicillium 

digitatum on lemons treated preventatively with various concentrations of 

potassium silicate 

 

 
Application of K2SiO3 (mg ℓ-1) 

 

 
Lesion diameter (mm) 

0 (control) 37.36 d 

10 17.34 bc 

100 10.69 ab 

1000 21.81 c 

10000 23.81 c 

100000   7.17 a 

P Value 0.001 

LSD 6.764 

CV % 14.00    

 

Means followed by the same letter are not significantly different 

 
 

Appendix 7B: Lesion diameters as an indicator of postharvest control of Penicillium 

digitatum on lemons treated curatively with various concentrations of potassium 

silicate 

 

 
Application of K2SiO3 (mg ℓ-1) 

 

 
Lesion diameter (mm) 

0 (control) 47.62 d 

10 23.04 b        

100 45.74 d         

1000 33.96 c       

10000 38.90 cd        

100000   6.24 a       

P Value 0.001 

LSD 8.343 

CV % 17.00 

 

Means followed by the same letter are not significantly different 
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Appendix 8A: Statistical analysis for efficacy of hot water dip treatment in the control 

of artificially inoculated Penicillium digitatum on Valencia oranges stored at 24 

°C for 2 weeks. 

 
The LOGISTIC Procedure 
 
                            Analysis of Maximum Likelihood Estimates 
 
                                                         Standard          Wald 
         Parameter                        DF       Estimate       Error    Chi-Square    Pr > ChiSq 
 
         Intercept                             1     -6.7355        1.8855       12.7614                0.0004 
         Temperature_                    1      0.1541        0.0316       23.8075              <.0001 
         Exposure_period               1      0.1476        0.0238       38.3327              <.0001 
         Temperatu*Exposure_p    1    -0.00254      0.000385       43.4651           <.0001 
 
 
 
 
Appendix 8B: Control of Penicillium digitatum incidence on Valencia oranges by hot water, 

the yeast Isolate B13 and/or K2SiO3 treatments (KSi), alone or in combination, at 
Katopé Packhouse 

 

Treatments (Imazalil, B13, Hot water, 
Potassium silicate and their 
combinations)  

% infected fruit with 
Penicillium digitatum  

0 (Control) 2.00 a 

Imazalil 9.67 b 

B13 3.00 a 

56°C 2.00 a 

KSi 2.00 a 

B13+KSi 3.00 a 

56°C+B13 3.00 a 

56°C+KSi 2.00 a 

56°C+KSi+B13 2.00 a 

P Value 0.001 

LSD 2.448295 

CV % 44.80895 

 

Means followed by the same letter are not significantly different 
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Appendix 8C: Control of Penicillium digitatum incidence on Valencia oranges by hot 

water, the yeast Isolate B13 and/or K2SiO3 (KSi) treatments, alone or in 

combination, at the Gateway packhouse 

 

Treatments (Imazalil, B13, Hot water, 
Potassium silicate and their 
combinations)  

% infected fruit with 
Penicillium digitatum  

0 (Control) 37.37  

Imazalil 34.00  

B13 22.12  

56°C 30.00  

KSi 20.02  

B13+KSi 27.98  

56°C+B13 26.23   

56°C+KSi 23.94  

56°C+KSi+B13 25.01 

P Value 0.3754 (NS) 

LSD 15.482 

CV % 32.93 

 

NS= Non Significant at P≤0.05  
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Appendix 8D: Control of Penicillium digitatum incidence on Valencia oranges by hot 

water, the yeast Isolate B13 and/or K2SiO3 (KSi) treatments, alone or in 

combination, at the Maywood packhouse 

 

Treatments (Imazalil, B13, Hot water, 
Potassium silicate and their 
combinations)  

% infected fruit with 
Penicillium digitatum  

0 (Control) 25.07 b 

Imazalil   9.06 a 

B13 10.01 a 

56°C 14.97 a 

KSi   7.96 a 

B13+KSi 11.02 a 

56°C+B13   7.99 a 

56°C+KSi   9.98 a 

56°C+KSi+B13   7.99 a 

P Value 0.0176 

LSD 9.0787 

CV % 45.78 

 
Means followed by the same letter are not significantly different 
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Appendix 9A. Litchi trials: Details of yeast and Bacillus isolates screened for 

antagonism of Penicillium spp. 

Yeast and Bacillus 
names 

Isolate type Fruit used for 
isolation 

Location fruit obtained 

B3  Bacillus Navel oranges  Thornville, KwaZulu-Natal 

B6  Bacillus Valencia oranges  Thornville, KwaZulu-Natal 

B7  Bacillus Navel oranges  Richmond, KwaZulu-Natal  

B8  Bacillus Valencia oranges  Thornville, KwaZulu-Natal 

B9 (1) Bacillus Rough Lemon  Richmond, KwaZulu-Natal 

B9 (2) Bacillus Rough Lemon  Richmond, KwaZulu-Natal 

GW1 Bacillus Granadilla fruit Nelspruit, Mpumalanga 

Papaya Bacillus Papaya fruit Nelspruit, Mpumalanga 

S1-1 Bacillus Valencia orange Nelspruit, Mpumalanga 

S1-2  Bacillus Valencia orange Nelspruit, Mpumalanga 

B-a Yeast Valencia oranges  Pietermaritzburg, KwaZulu-Natal 

B13  Yeast Valencia oranges  Thornville, KwaZulu-Natal 

EP Yeast Mandarins Hilton, KwaZulu-Natal 

Grape Yeast Grapefruit  Nelspruit, Mpumalanga 

GR1 Yeast Rough lemon Nelspruit, Mpumalanga 

Lemon P Yeast Eureka lemon  Hilton, KwaZulu-Natal 

ON3 Yeast Navel orange  Richmond, KwaZulu-Natal 

RG2 Yeast Rough lemon  Nelspruit, Mpumalanga 

SPL Yeast Valencia oranges  Pietermaritzburg, KwaZulu-Natal 

UL3 Yeast  Eureka lemon Hilton, KwaZulu-Natal 

YL4 Yeast Litchi Fruit and Veg city, Pietermaritzburg  

YL7 Yeast Litchi Fruit and Veg city, Pietermaritzburg   

YL 10 Yeast Litchi Pick‟n Pay, Pietermaritzburg  

YLH Yeast Litchi Pick‟n Pay, Pietermaritzburg  

Others (45 isolates) Bacillus, 

yeast 

Litchi  KwaZulu-Natal 
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Appendix 9B: Effectiveness of antagonistic yeast and Bacillus isolates, applied 

preventatively for the reduction of Penicillium infection of litchi fruit 

 

Treatments (yeast and Bacillus 
isolates)  

Infected fruit surface with 
Penicillium spp. (%) 

0 (Control) 91.30 e 

YL4 24.81 a 

YL7 70.37 c 

YL10 23.33 a 

B13 34.81 ab 

Grape 65.93 c 

BL4 69.07 c 

BL6 74.81 cd 

FMV110 71.48 c 

YLH 46.67 b 

P Value 0.001 

LSD 12.295 

CV % 40.07 

 
Means followed by the same letter are not significantly 
 
 
Appendix 9C: Effectiveness of antagonistic yeast and Bacillus isolates, applied 

curatively for the reduction of Penicillium infection of litchi fruit (three hours) 

 

Treatments (yeast and Bacillus 
isolates)  

Infected fruit surface with 
Penicillium spp. (%) 

0 (Control) 96.11 d 

YL4 58.15 a 

YL7 94.07 cd 

YL10 59.26 a 

YLH 93.15 cd 

B13 84.63 bc 

Grape 80.74 b 

BL4 95.56 cd 

BL6 84.44 bc 

FMV110 86.30 bcd 

P Value 0.001 

LSD 10.107 

CV % 22.65 

 

Means followed by the same letter are not significantly different 
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Appendix 9D: Effectiveness of potassium silicate applied curatively against 

Penicillium spp. of litchi fruit 

 

Application of K2SiO3 (mg ℓ-1) 
  

Infected fruit surface with 
Penicillium spp. (%) 

0 (Control) 89.74 b 

10 44.63 a 

100 44.26 a 

1000 33.15 a 

10000 33.07 a 

P Value 0.001 

LSD 12.459 

CV % 47.25 

 

Means followed by the same letter are not significantly different 


