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Abstract

The study of the impact of fluid rotation and a magnetic field in the development of Rayleigh-

Bénard convective instabilities in a fluid is important due to the wide range of settings where these

occur naturally such as in astrophysical and geophysical flows. In this thesis we investigate the

development of Rayleigh-Bénard convective instabilities in four different flow settings, such as in

a rotating horizontal layer and in an inclined cavity, using analytical and numerical techniques to

solve the flow equations. The numerical methods of particular interest include the multidomain

spectral collocation method.

We first study the onset of instability in a horizontal porous layer of a cross diffusive nanofluid

flow using the Darcy model, with stress-free conditions and zero nanoparticle flux at the boundary.

We consider linear regimes, and use normal mode analysis and the Galerkin method to solve the

evolution equations. The influence of important parameters on the critical Rayleigh number is

investigated. We show, among other results, that increasing the magnetic field parameter, the

Darcy and the nanofluid Lewis numbers delay the onset of flow instabilities.

For weakly nonlinear stability analysis of the convective flow, we assume zero nanoparticle flux

at the wall. A truncated Fourier series is used to reduce the flow equations to a Lorenz-type sys-

tem of nonlinear evolution equations that describe the growth of the convection amplitudes in the

nanofluid flow. These equations are solved using the multidomain spectral collocation method,
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and solutions are obtained as sets of trajectories in the phase plane. Some novel bifurcations are

obtained, and their sensitivity to the Rayleigh number analysed. The influence of the parameters

such as the Dufour and Soret parameters on heat and mass transport are investigated. We further

study thermal instability in double-diffusive convection in an inclined open square cavity subjected

to an inclined magnetic field. Using a truncated Fourier series, we obtain a multi-dimensional trap-

ping region for the convection amplitudes. The changes in heat and mass transport are investigated

for different physical parameters, such as the magnetic field, Prandtl, and Lewis numbers. The

magnetic field and Lewis number are found to increase heat and mass transport.

The study further investigates thermo-convective instability in a rotating ferromagnetic fluid with

temperature modulation at the boundaries. Using the weakly nonlinear stability theory, the impact

of certain physical parameters such as the Taylor number, magnetization parameter and the ratio

of the magnetic force to buoyancy are analyzed. The heat transfer for in-phase and out-of-phase

convective oscillations is analyzed.

In this study, we determine the criteria for the onset of convective instabilities in terms of certain

physical parameters such as the Hartman, Darcy and Taylor numbers. We show that increasing

these parameters has the effect of delaying the onset of convective instabilities and to increase heat

and mass transport in the fluid flow. However, parameters such as the Dufour and Soret parameters

have the effect of, respectively, reducing and increasing the critical Rayleigh number for the onset

of instabilities.
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Chapter 1

Introduction

1.1 Background and Motivation

This study is concerned with the growth of instabilities due to the flow and rotation of fluids sub-

jected to various external stimuli, such as an applied magnetic field and temperature modulation.

The study follows the theoretical framework for the Rayleigh-Bénard convection in hydrodynamic

and hydromagnetic flows and the problem of the onset of thermal convective instability in a hori-

zontal layer of fluid [1]. The flow is due to the development of convective instability if the static

vertical temperature gradient is large. In such flows convection enhances the rate of heat and mass

transfer through the fluid layer compared to the case of simple molecular conduction. The magni-

tude of the heat and mass flux in convective fluids is thus much higher than the heat and mass flux

due to thermal conduction.

Rayleigh-Bénard convection problems play an important role in nature in a wide variety of situa-

tions such as in astrophysical and geophysical flows [2]. Important common examples include the

warming of the atmosphere and oceans through convection currents, the dynamo action of convec-

tion flow in the liquid core of the Earth, crystallization processes and solar heating devices. The
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first significant attempt to explain thermal convection appears to have been made by Thomson [3].

However, the phenomenon of convection in a horizontal fluid layer heated from below was first

investigated experimentally by Rayleigh [1], who also provided the theoretical framework under-

pinning the now common approaches for the solution of the resulting equations. He developed

the linear stability theory for the flow instabilities using the Oberbeck-Boussinesq approximation.

His results showed that instability would occur only when the adverse temperature gradient is very

large, that is, when the Rayleigh number defined by

Ra =
αβgh4

κν
,

exceeds a certain critical value. Here, α is the thermal expansion coefficient, β is the temperature

difference between top and bottom layer, g is the acceleration due to gravity, h is the depth of

the layer of fluid, κ is the thermal diffusivity and ν is the kinematic viscosity. When this critical

value is exceeded, fluid motion takes place only on a large horizontal scale. Finding the value

of the Rayleigh number requires solving an eigenvalue problem for thermal instability in a hor-

izontal fluid layer. The onset of the convection occurs at the critical Rayleigh number, which is

independent of the material properties of the convection fluid. A sketch of the neutral curve of the

convective instability in the (Ra,a)-plane is shown in Figure 1.1, where a denotes the wavenum-

ber. The fluid layer is convectively unstable if the Rayleigh number Ra is greater than the critical

Rayleigh number Rac and stable if it is less than the critical value. The case Ra = Rac corresponds

to neutral or marginal stability. When the Rayleigh number increases, the gravitational forces be-

come more dominant and at the critical Rayleigh number instability sets in and convection cells

appear.
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Figure 1.1: The neutral curve of the convective instability and the critical Rayleigh number, Rac.
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Rayleigh-Bénard convection differs from the Bénard-Marangoni mechanism in certain important

ways. In Bénard-Marangoni convection the temperature fluctuation at the surface induces tangen-

tial stresses that can be amplified by the hot fluid from the inside. In this study our attention is

focussed only on the Rayleigh-Bénard convection, which is a model for many natural flows in-

cluding those undergoing a rotation, radiation and phase changes. The theory of hydrodynamic

stability adequately explains the physics of the motion of a fluid in a horizontal layer, in which top

and bottom boundaries are held at fixed temperatures.

A comprehensive study of thermal convective instability in a horizontal layer is given by Chan-

drasekhar [2] for a linearized problem. The problem of Rayleigh-Bénard convection was extended

to include the effects of rotation and a magnetic field. The derivation of hydrodynamic equations

and an analysis of flow instabilities can also be found in the book by Drazin and Reid [4]. A study

of the structure and dynamics of Rayleigh-Bénard convection has also been reported by Getling [5]

and Koschmieder [6]. In all these studies it was shown that if the Rayleigh number is less than or

equal to its critical value, all disturbance modes are stable, and when the Rayleigh number assumes

a super-critical value, at least one of the disturbance modes is unstable.

Over the last few decades the onset of thermal convective instability in a horizontal layer heated

from below has become an increasingly popular topic for researchers. Among these, Chapman and

Proctor [7] studied thermal convection instability in horizontal layer of fluid heated from below

with the assumption that the heat flux at the boundaries was unaffected by the fluid motion. They

used an expansion method to seek a time independent solution for the two dimensional problem.

At fixed temperature the basic state is unstable if the Rayleigh number is sufficiently large. Their

results showed that when the Rayleigh number is above the critical value for the onset of convec-

tion, the motion in the horizontal layer is much greater than it is at depth. When the Rayleigh

number, on the one hand, exceeded the critical value the heat transport by convection reduces the

potential for instability in the flow. On the other hand, thermal diffusion and viscous friction in-

creases due to the horizontal gradient imposed by the modulation. In addition to the Rayleigh

number the stability of a fluid in a horizontal layer depends on the wave number of the convection
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cells and the Prandtl number, the later defined as

Pr =
ν

κ
,

where ν and κ are as previously defined. A review of Rayleigh-Bénard convection problem in

nonlinear dynamics and the transition to turbulence is given in Busse [8] where the impact of the

Rayleigh number and Prandtl number on the stability of convection cells was studied. Kelly and

Hu [9] investigated thermal convection in nonplanar oscillatory flow. Linear stability analysis was

used to explore the onset of thermal convection in non-planar oscillatory flow. Their results showed

that increasing the Prandtl number destabilizes the system.

Many of the earlier studies were on unsteady fluid motions. Chana and Daniels [10] studied the

onset of thermal convection in an infinite horizontal rectangular channel. The hydrodynamic flow

was assumed to be in steady linear motion and the equations were simplified using the Oberbeck-

Boussinesq approximation. They used a two-dimensional Galerkin method to predict the onset

of the thermal convection instability. The influence of the aspect ratio of the channel on critical

Rayleigh and wave numbers was investigated. Their results showed that values of the critical

Rayleigh number and wave number were in a good agreement with the asymptotic solution for

small and large aspect ratios.

A numerical study of Rayleigh-Bénard convection for a boundary layer turbulent flow was studied

by Shi et al. [11]. They considered a cylindrical cell with aspect ratio of unity for a high Rayleigh

number and Prandtl number Pr = 0.7 representing air at room temperature. Their boundary layer

analysis shows that the near wall dynamics of the flow combine elements of forced Blasius type

and natural convection. A similar study was considered by Scheel et al. [12]. They found that the

mean velocity boundary layer profiles collapsed well for a Rayleigh number above 106, on the other

hand the thermal boundary layer profiles did not collapse for that value of the Rayleigh number.

Although the analysis was similar to Shi et al. [11], but the issue of the collapse of the boundary

layer profiles is not discussed. Hirata et al. [13] adopted linear stability analysis to investigated

viscoelastic fluid flow with a horizontal throughflow and a vertical temperature gradient. A one-

mode Galerkin expansion method and shooting technique was used to solve the boundary value
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problem and predict the onset of thermal instability convection in a viscoelastic fluid. Their results

showed that longitudinal rolls were the most unstable modes at the onset of convection instability.

Further, as the fluid elasticity increases a throughflow stabilization of transverse rolls in weakly

regime was found. Related studies on numerical investigations of Rayleigh-Bénard convection in

viscoelastic/viscoplastic fluids were presented by Park [14], Aghighi et al. [15]. Recently, Wesfreid

[16] gave a detailed historical review of Rayleigh-Bénard studies on thermal convection and vortex

shedding.

Rayleigh-Bénard convection with a zero Prandtl number was investigated by Thual [17] for both

no slip and free-slip boundary conditions. His numerical results suggested that the stationary and

oscillatory instabilities interact closely for a zero Prandtl number. Later, the same problem was

extended to low Prandtl numbers for the bifurcation structure near the onset of convection by

Nandukumar and Pal [18]. They used direct numerical simulation to predict the instabilities and

chaos in the Rayleigh-Bénard convection at low Prandtl numbers. They suggested that the results

for very low Prandtl numbers were similar to those for the zero Prandtl numbers case. However,

the bifurcation structure on the the onset of convective for a zero and low Prandtl numbers fluid

including wavy rolls and stationary cross rolls has been considered in study by Nandukumar and

Pal [18], but this has not been considered in study by Thual [17].

There are many experimental and theoretical investigations of the onset of thermal convection in a

horizontal fluid layer heated from below. Among many others, Chillà and Schumacher [19], Xia

[20], Lowman and Jarvis [21] investigated the experimental aspects of the Rayleigh-Bénard con-

vection. These studies suggested that investigation of an extension of the Rayleigh-Bénard con-

vection to nonclassical Rayleigh-Bénard convection is an important direction for future research.

Recently, Wang et al. [22] studied experimentally thermal convection with mixed thermal bound-

ary conditions. They found that upwelling of hot fluid always occurs beneath lids while on the

other hand downwelling of cold fluid occurs beneath the conducting walls.
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1.2 Convection in a porous layer

A porous medium consists of a solid matrix with interconnected voids that allow the fluid to pass

through the material. Typical examples of porous media include sand, sandstone, wood, limestone

and bread. Studies of convection in a horizontal layer of porous medium heated from below were

reported by Horton and Rogers [23] and Lapwood [24]. The convection in a porous medium differs

from the standard Rayleigh-Bénard convection in a horizontal layer heated from below, although

the onset of thermal convection instabilities of flows is similar. Cheng [25] studied thermal convec-

tive heat transport in porous media with high permeability. He used the integral method to solve

the equations that model free and mixed convection in the medium. The convective heat and mass

transport in a porous medium have very important applications in engineering and geophysics,

such as in thermo-solutal convection in geothermal fields.

The onset of thermal instability in boundary layer flow in a porous medium was investigated by

Wooding [26] who used linear stability to analyse the fluid motion. He calculated critical values

of the Rayleigh and wave numbers. His results showed that the layer is stable at the critical value

and that the wave number of the critical growth disturbance is finite. For convection in a porous

medium, the primary flow is very slow and thermal diffusion from the boundary layer into the

porous medium becomes important and a thermal boundary layer appears. The vertical component

of the flow may be assumed to be constant and the steady state flow density is distributed exponen-

tially. In convection in a porous medium, the system is highly nonlinear due to heat transport. The

boundary conditions of convection in a porous medium are also important for the instability to oc-

cur. Elder [27] investigated, both experimentally and numerically, steady convection in a layer of

homogeneous horizontal porous medium heated from below. He used the steady Darcy model sub-

ject to impermeable and semi-impermeable boundary conditions. His results showed that above

the critical Rayleigh number, the heat transfer across the layer is proportional to the square of

the temperature difference across the layer but is independent of the thermal conductivity of the

porous medium or the depth of the layer. Elder’s results near the critical Rayleigh number were in
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good agreement with those from studies by Horton and Rogers [23] and Lapwood [24]. A similar

analysis, with similar agreement for the critical wave number and corresponding Rayleigh number

was shown by Palm et al. [28] of the onset of convection in a porous medium using the expansion

method up to sixth order of approximation.

A comprehensive study of convection in fluids in saturated porous media is documented in the book

by Nield and Bejan [29]. The onset of convection in a horizontal porous medium layer heated from

below under thermal non-equilibrium conditions was investigated by Rees [30] analytically and

numerically using a multi-dimensional Newton-Raphson iteration scheme. The critical Rayleigh

and wave numbers were modified for the non-equilibrium model. Rees showed that the inter-phase

heat transfer and porosity conductivity ratio have significant effects on modified Rayleigh and wave

numbers. Analytic and numerical study of convective instability in a porous media layer subject

to a temperature gradient inclined with respect to gravitation was investigated by Barletta and

Nield [31]. They used linear stability theory to investigate the transverse and longitudinal rolls.

Their results showed that flow is more unstable for the longitudinal rolls than for the transverse

rolls. Convection in a porous medium has been a topic of interest to many researchers. Among

others, Baytas and Pop [32], Rees [33] and, Chen and Chen [34] investigated convection in a

porous medium cavity. An analytic investigation of the onset of convection in a horizontal fluid

layer overlying a porous layer was carried out by Nield [35]. He considered the steady motion

of a fluid layer subject to constant heat flux boundary conditions. He studied the linear stability

using the Galerkin expansion method. His results suggested that the effect of the surface tension

parameter may be determined from the deflection of upper free surface quantity. Hewitt et al. [36]

investigated convection in a porous medium at high Rayleigh numbers, for which results suggested

that the flow is well described by a steady heat exchange solution.
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1.2.1 Double-diffusive convection

Many of the above studies considered pure heat transfer from natural convection in a porous

medium. There are, however, many situations where convection leads to both heat and mass trans-

fer. These convection processes are driven by buoyancy forces. This type of convection in a porous

medium is usually known as thermohaline, thermosolutal or double-diffusive convection. Double-

diffusion convection is found in engineering applications and geophysical flow, such as found in

seawater flow and the mantle in Earth’s crust. In double-diffusion convection, the density depends

linearly on both the temperature field T and solute concentration field C and takes the form

ρ = ρ0 (1−βT (T −T0)−βC(C−C0)) , (1.2.1)

where βT and βC are the volumetric thermal expansion coefficient and the solute concentration

expansion coefficient. The subscript zero refers to the reference state.

Considerable attention is given to the onset of double-diffusive convection in a porous medium

layer in books by Nield and Bejan [29] and, Vafai [37]. In addition, combined heat and mass

transfer driven by buoyancy forces in a fluid-saturated porous medium was considered by Trevisan

and Bejan [38], who reviewed and summarized the essential elements of linear stability analysis

for natural convection with buoyancy forces in porous media. They assumed all fluid quantities

vanished at the boundary. The onset of convective instability induced by buoyancy due to a vertical

temperature gradient was first considered by Jeffreys [39] for a horizontal layer of viscous fluid.

Nield [40] later extended the idea to double-diffusive convection in a horizontal layer of a viscous

fluid. He applied linear stability analysis to double-diffusive convection using Fourier series. He

found approximate solutions to eigenvalue equations that predict the occurrence of both oscillatory

and monotonic convective instability. For the stability of double-diffusive convection in a regular

viscous fluid the eigenvalue is a linear combination of thermal and solutal Rayleigh numbers. The

solutal Rayleigh number RaS is defined by
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RaS =
βC∆Cgh3

Dν
,

where D is the solutal diffusivity and ∆C is the solute concentration difference between the top and

bottom of the layer.

The onset of thermal instability in double-diffusion convection is dependent on the many dimen-

sionless parameters embedded in the flow equations. The mechanisms of double-diffusion con-

vection are complicated due to the interaction between the porous matrix and the fluid particles.

For a porous media flow heated from the side, attention has been given to double-diffusion con-

vection instability near a vertical wall immersed in a saturated porous layer. For instance, Mojtabi

and Charrier-Mojta [41] studied the linear flow with double-diffusion convection in a situation

where the thermal and solutal buoyancy forces are equal and opposing. The effects of embedded

parameters for the porous medium layer were investigated. They observed that when the thermal

and solutal buoyancy effects opposed each other the flow pattern differed from that for Rayleigh-

Bénard convection. Experimental studies of double-diffusion convection in a porous medium were

reported by Murray and Chen [42]. They observed that the onset of convection in porous media

is marked by a change in the slope of the heat flux. The onset of thermal instability in double-

diffusive convection in a rectangular porous cavity was studied by Mamou et al. [43], who used

Galerkin and finite element methods to predict supercriticality and overstability for the onset of

convection. The influence of parameters values, such as the Lewis number, normalized porosity

and enclosure aspect ratio on the onset of convection, was determined. The Lewis number is an

important parameter for diffusive convection and is defined by

Le =
α

D
,

where α and D are the thermal diffusivity of the fluid and mass diffusivity, respectively.

The diffusion of mass due to the temperature gradient is known as the Soret or thermodiffusion

effect while the energy flux due to mass solute concentration gradient is called the Dufour effect.

Bahloul et al. [44] studied the Soret effect induced by convection in a shallow horizontal porous
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layer. They used normal mode analysis to predict the occurrence of supercritical and subcritical

convection due to the Soret parameter. In many studies on double-diffusive convection in a porous

medium, the effects of Soret and Dufour are generally assumed to be negligible. However, these

effects could be significant when a density difference exists in the flow regime. The effects of Soret

and Dufour parameters on double-diffusive free convection in a fluid saturated porous medium

using the Darcy model were studied by Murthy et al. [45]. They used a finite difference scheme

based on the Keller-Box method to solve the equations. The influence the Dufour and, Soret

parameters and Lewis numbers was analyzed for their impact on the average Nusselt and Sherwood

numbers. Studies on double-diffusive convection in a porous medium where the flows are induced

by buoyancy forces include those by Benzeghiba et al. [46], Da Costa et al. [47], Huppert and

Moore [48] and Radko and Smith [49]. Numerical studies of convection in a porous cavity have

been made by Rees [33] and Mondal and Sibanda [50].

The case of a two-component horizontal layer of fluid in a saturated porous medium subjected

to temperature and solute concentration gradients is often encountered in geophysical flows, such

as saline geothermal fields and groundwater storage. For convection in a two-component fluid,

the temperature diffusivity is usually higher than the diffusivity of the solute concentration. We

note substantial research interest on linear and nonlinear stability analysis of double diffusion-

convection in porous media. Rudraiah and Malashetty [51] studied the effect of molecular diffusion

on double-diffusive convection in a horizontal layer of fluid in a saturated porous medium. They

used linear and nonlinear analysis to study the occurrence of finger and diffusive instabilities. Their

results showed that these flow instabilities could never occur together. A similar analysis is given

by Rudraiah and Siddheshwar [52] for the effect of cross diffusion on double-diffusive convection

in a horizontal layer of fluid in a saturated porous medium. Their study included the nonlinear sta-

bility analysis of the flow. The Fourier series expansion was used to obtain the evolution equations

for finite amplitude convection of the flow. Similar results were obtained for finger and diffusive

instabilities. Quere et al. [53] studied thermally driven laminar flow in rectangular cross-section

cavities. They used the finite difference method to solve the flow equations and then investigated

the effect of the parameters on local heat transfer. Chamkha and Al-Naser [54] investigated the
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laminar double-diffusive convective flow of a binary gas mixture in an inclined rectangular porous

enclosure using the finite difference method. The influence of the buoyancy ratio on the average

Nusselt and Sherwood numbers was analyzed. It was noted that the effect of increasing the en-

closure inclination angle was to reduce both the average Nusselt and Sherwood numbers. Wang

et al. [55] analyzed the natural convection and heat transfer in an inclined porous cavity with time

periodic boundary conditions. The influence of the inclination angle and oscillating frequency on

hydrodynamic stability and heat transfer were investigated. Numerical studies on double-diffusive

convection in an electrically conducting fluid layer in inclined cavities were also studied by Polat

and Bilgen [56] and Khanafer and Chamkha [57].

The double-diffusive convection problem is a fascinating nonlinear phenomenon with possible

density reversal. The influence of boundary conditions defines heat and mass transport processes

and the dynamics of the flow. The effect of heterogeneity and the thermal non-equilibrium on the

onset of thermal convection in horizontal layer saturated porous medium was considered by Nield

and Kuznetsov [58] using hydrodynamic boundary conditions. They presented a linear stability

analysis and solution of the system of equations using the Galerkin expansion method. It was

noted that the major impact on the onset of convection came from the heterogeneity of the fluid

and its conductivity. The problem was extended by Nield et al. [59] to study the local thermal non-

equilibrium on the onset of double-diffusive convection in a porous medium. A similar analysis

using the Galerkin expansion method was performed, where it was also noted that the major impact

on the onset of convection is due to the heterogeneity of the medium.

1.2.2 Nanofluid flow in a porous medium

Recent studies show that the suspension of solid nanoparticles in a fluid can substantially improve

the fluid’s thermophysical properties, including thermal conductivity, Choi and Eastman [60]. The

term "nanofluid" describes a liquid containing a suspension of nanometer-sized solid particle, of

the order 1 to 100nm . Examples of commonly used nanoparticles include metallic particles such as
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aluminium, copper and silver and oxides such as aluminium oxide and cupric oxide. The common

base fluids include water, ethylene-glycol or oil. The enhancement of thermal conductivity and

viscosity of a nanofluid was reported by Masuda et al. [61]. For the analysis of convective transport

in nanofluid flow, two models have been proposed; the homogeneous flow and dispersion models.

In the homogeneous model, the transport equation for a pure fluid may be directly extended to a

nanofluid flow, so that heat transfer is due to the higher thermconductivity of nanofluid flow. For

the dispersion model, heat transfer is due to two mechanisms; a higher thermal conductivity and the

dispersion of nanoparticles. However, it has been shown that results from the homogeneous flow

model not agree with experimental findings. This conflict was resolved by Buongiorno [62]. He

considered nanoparticle dispersion in convective transport of nanofluids and studied the effects of

seven slip mechanisms; namely, inertia, Brownian diffusion, thermophoresis, diffusiophoresis,the

Magnus effect, fluid drainage and gravity. It has been shown that, in the absence of turbulence, the

most significant of these seven mechanisms are the Brownian diffusion and thermophoresis. Tzou

[63] investigated thermal instability in nanofluid flow with natural convection using the method

of eigenfunction expansions and weight residual. It was ascertained that the Brownian diffusion

and thermophoresis both have a significant effect on the onset of convection. His results showed

that the critical Rayleigh number for the onset of instabilities in a nanofluid flow is smaller in

magnitude that of a regular fluid.

Extensive studies on convection in nanofluid flow through a saturated porous medium using linear

stability have been made by the pair of researchers, Kuznetsov and Nield [64, 65, 66, 67] and Nield

and Kuznetsov [68, 69]. In these studies, these researchers analyzed nanofluid flow in a horizontal

layer porous medium using linear stability theory. They used a model that incorporates the effects

of Brownian motion and thermophoresis, as proposed by Buongiorno [62] for a Darcy model with

imposed vertical temperature and concentration gradients. It was shown that the critical Rayleigh

number can be reduced or increased depending on whether the basic nanoparticle distribution is

top heavy or bottom heavy. In addition, one of the key parameters for determining the onset of
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convection in nanofluid flows is the Darcy parameter, which is defined by

Da =
µ̂K
µh2 ,

where µ̂ and K are the effective viscosity and permeability respectively, while µ and h are as previ-

ously defined. Most previous studies of convection in porous media have used the Darcy model for

the flow equations. The magnitude of the Darcy number has an important influence on the critical

Rayleigh number and corresponding critical wave number. The transition to convection instabil-

ity when Darcy models are used differs from the case obtained when using the full Naiver-Stokes

equations to model the flow. It is thus important to consider the effect of the Darcy number on

the onset of convection in a porous medium. It has been observed that for large Lewis numbers

the structure of a nanofluid flow is strongly influenced by both buoyancy and the contribution of

nanoparticles to the thermal energy. The effect of cross-diffusion in nanofluid flow was investi-

gated by Kuznetsov and Nield [70] and Nield and Kuznetsov [71, 72]. Their studies considered a

horizontal layer of nanofluid in a saturated porous medium. In addition, they used models that in-

corporated the effect of Brownian motion and thermophoresis. The linear stability of the flow was

investigated using a one-term Galerkin expansion method. The influence of parameters such as the

Prandtl number and nanoparticle Lewis number on the onset of stationary and oscillatory convec-

tion was analyzed. Also, the effects of the Soret and Dufour parameters on the onset of convection

were investigated. It was noted that the onset of oscillatory instability depends on buoyancy forces

acting in opposite directions. When the effects of the Soret and Dufour parameters was neglected,

nonoscillatory modes of convection are expected to occur.

The study by Siddheshwar and Titus [73] focussed on the investigation of stability in Rayleigh-

Bénard convection in a Newtonian liquid. They obtained the Ginzburg-Landau equation describing

the Rayleigh-Bénard convection from three low order modes in a double Fourier expansion. They

showed that three order modes in the double Fourier expansion are sufficient for the weakly non-

linear stability regime. Recently, Siddheshwar et al. [74] studied Rayleigh-Bénard convection in

nanofluid flow using a two-phase model. Weakly nonlinear stability theory was used to analyze the

heat transfer for different base fluids such as water, ethylene-glycol and engine oil. It was observed
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that the convection is much stronger in the center of cells for ethylene-lycol silver nanofluids com-

pared with the other nanofluids. This suggests that this nanofluid may be the best suited, so far, for

heat transfer. Furthermore, it was observed that thermophoresis has the effect of delaying the onset

of convection. Double-diffusive convection in a nanofluid flow also occurs in the case of binary

fluid mixtures. The study by Yadav et al. [75] focussed on the stability of a horizontal layer for a

binary nanofluid flow in a saturated porous medium heated and salted from below. They used linear

theory to analyze three different boundary conditions namely, stress-free, rigid-rigid and rigid-free

boundary conditions. The influence of parameters such as the Dufour and Soret parameters on the

onset of stationary convection was analyzed. It was noted that the Dufour and Soret parameters

both had a stabilization effect on the onset of stationary convection. Double-diffusive convection in

the binary viscoelastic fluid in a horizontal layer was investigated by Narayana et al. [76], by appli-

cation of linear and weakly nonlinear stability analysis to study the onset of convection in a binary

viscoelastic fluid. It was noted that finger and diffusive instabilities did not occur simultaneously.

The influence of Soret and Dufour parameters on heat and mass transport was also analyzed. The

study by Agarwal et al. [77] focussed on convection in a nanofluid flow along a horizontal layer

heated from below using a thermal non-equilibrium model. The effects of increasing the parame-

ters on the onset of thermal convective instability and heat transfer were analyzed. It was shown

that increasing the parameters have a stabilizing effect on the onset of convection. In addition, it

was noted from the study that convection sets is earlier for local thermal non-equilibrium than for

local thermal equilibrium. Related studies of thermal convection in a horizontal layer of nanofluid

include those by Nield and Kuznetsov [78], Umavathi and Kumar [79], Narayana et al. [80] and

Rees et al. [81]. Recently, Siddheshwar [82] studied the effect of local thermal non-equilibrium on

the onset of Brinkman-Rayleigh-Bénard convection with isothermal boundary conditions. They

used the linear stability theory and an asymptotic expansion for a small value of the inter-phase

heat transfer coefficient. Here the stability was studied using a Fourier series expansion method. It

was observed that the onset of convection was delayed for the rigid-rigid isothermal boundary con-

dition compared to the case of free-free isothermal boundary conditions. Studies on the instability

of Darcy-Bénard convection in an inclined layer were reported by Rees and Bassom [83]. They
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used a numerical scheme based on the eigenvalue matrix to examine the linear stability. It was

observed that the inclination angle of 31.49◦ is the maximum angle of inclination for transverse

modes to become unstable. They noted that the convective instability could arise only when the

inclination angle is less than or equal to 31.30◦.

Studies on double-diffusive magneto-convection have received considerable attention because they

have applications in oceanography, geophysics, astrophysics and engineering. Turner [84] studied

the buoyancy effect on fluid flow. Rudraiah [85] applied linear and nonlinear stability theories to

study double-diffusive magneto-convection, in which the effects of cross diffusion, rotation and

chemical reaction on double-diffusive magneto-convection were analyzed. Comprehensive studies

on hydromagnetic convection in a conducting fluid in an inclined cavity are given by Bian et al.

[86], Revnic et al. [87] and Mansour et al. [88]. In these studies, the Darcy model for a porous

medium was used for the fluid flow. The effect of inclination angle, Rayleigh number and heat

generation were examined using streamline patterns in the numerical experiment.

1.3 The effect of rotation and a magnetic field

The onset of convection in a horizontal layer heated from below is a classical problem in hydro-

dynamic stability. The problem of the onset of convection in a horizontal layer of an electrically

conducting fluid subjected to a magnetic field is often referred to as hydromagnetic stability. For

this problem, the critical Rayleigh number depends on the Chandrasekhar number or the magnetic

field parameter, [2]. This is defined by

Q =
σµ2

mH2
0 h2

ρν
,

where σ is the electrical conductivity, µm is the magnetic permeability and H0 is the strength of the

uniform magnetic field, the other parameters are as previously defined. Magneto-convection occurs

in many natural processes in astrophysics and hydrology and in material processing technologies;

thus generating an interest in studying its effects. Chandrasekhar [2] focussed on hydromagnetic
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stability in a horizontal layer of a Newtonian fluid. The study showed that the magnetic field pa-

rameter plays the same role as does the Taylor number when applied in a rotating layer of fluid. In

the outer layers of the sun and other stars, thermal convection is affected by the magnetic field. The

phenomenon of magneto-convection was studied by Proctor and Weiss [89]. Recently, Narayana

et al. [90] investigated the effect of the magnetic field on heat and mass transport in double-diffusive

convection for a viscoelastic fluid layer heated from below using linear and nonlinear stability the-

ories. Their results showed that the magnetic field parameter has a stabilizing effect on the onset

of convection in a viscoelastic fluid. Investigation were reported by Yadav et al. [91] and Gupta

et al. [92] on the effect of a vertical magnetic field with free-free, rigid-rigid and rigid-free bound-

ary conditions for an electrically conducting nanofluid layer. The influence of parameters such as

the magnetic field parameter on the onset of convection was analyzed. They found that increasing

values of the magnetic field parameter has the effect of making the system more stable by delaying

transition to chaotic flow. Further, they observed that the system is more stable for the rigid-rigid

boundary condition than for the free-free or free-rigid boundary conditions. In the study by Yadav

et al. [91] the effects of Brownian motion and thermophoresis were neglected whereas Gupta et al.

[92] considered these effects. It was observed that an increasing magnetic field parameter increases

the critical Rayleigh number.

The effect of rotation on thermal convection instability in a fluid layer heated from below was

considered by Chandrasekhar [2]. In studying thermal convective instability in a rotating horizontal

layer, the Taylor number plays an important role in the onset of convection. This dimensionless

parameter is defined by

Ta =
4Ω2h4

ν2 ,

where Ω is a constant angular velocity, an h and ν are as previously defined. It has been shown

that increasing the Taylor number has a stabilizing effect on the onset of convection. Studies by

Van et al. [93], Hunter and Riahi [94] and Cox and Matthews [95] focussed on theoretical and

experimental investigations of the convective instability in a horizontal fluid layer rotating about

vertical axes. Hunter and Riahi [94] studied the nonlinear convection regime and showed that when

the Taylor number exceeds a certain value the rate of heat transfer decreases. Hence increasing the
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Taylor number reduces the rate of heat transfer and the layer becomes stable.

The Darcy model has been extended to the Darcy-Brinkman and Darcy-Forchheimer models in re-

cent studies. Many researchers have used these model to study convective instability in a horizon-

tal layer of a nanofluid in a porous medium subjected to rotation or an external magnetic or other

fields. Agarwal et al. [96] investigated convective instability in a rotating nanofluid in a horizontal

layer using the Darcy model with Brownian motion and thermophoresis effects. They applied the

linear stability theory to study the onset of stationary and oscillatory convection. They showed

that increasing the Taylor number had the effect of delaying the onset of convection. The same

problem was extended by Chand and Rana [97] to study the effect of rotation on thermal convec-

tive instability in a nanofluid in a porous medium, but they used the Darcy-Brinkman model. They

showed that increasing the Darcy number may be both stabilizing and destabilizing depending on

the Taylor number.

The recent study by Yadav et al. [98] focussed on investigating rotation in double-diffusive con-

vection assuming zero nanoparticle flux at the boundaries. They applied linear stability theory

using the Galerkin expansion method. A numerical study of the boundary layer convection in a

rotating fluid layer was investigated by Liao et al. [99]. They showed that the basic structure of

the boundary layer convection does not change in the strongly nonlinear regime. The combined

effect of rotation and introduction of a magnetic field on the onset of convection in an electrically

conducting fluid heated from below has been an attractive topic to many researchers. Among these

researchers, Chand and Rana [100], Gupta et al. [101] and Soward [102] and Sanchez-Alvarez et al.

[103] investigated the combined effects of rotation and a magnetic field on the onset of convection

in horizontal fluid layer. The onset of steady two-dimensional convection, subject to a magnetic

field and rotation, was investigated by Cox and Matthews [104]. They noted that the convective

instabilities are dependent on the boundary conditions; for a rotating layer, the convective instabili-

ties required stress-free boundary conditions, whereas the magnetoconvection instabilities required

Neumann boundary conditions. However, most experimental studies used the rigid-rigid boundary

as the most appropriate boundary condition for studying the onset of convective flow. Recently,
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Yadav et al. [105] studied magneto-convection instability in a rotating horizontal layer of an elec-

trically conducting nanofluid. They used the linear stability theory and three different boundary

conditions. They investigated the onset of convection analytically for stress-free boundary condi-

tion and numerically for rigid-rigid boundary conditions. It was ascertained that the critical value

for the onset of magnetoconvection is lower than the critical value for the onset of convection in a

regular fluid.

The study by Yadav et al. [106] focussed on an numerical investigation of the onset of convection

in a rotating nanofluid layer. They used a six-term Galerkin approximation expansion method to

obtain the eigenvalue equations, which they then solved numerically. The effect of parameters

including the Taylor number on the onset of convection was analyzed. Recently, Duba et al. [107]

used linear and weakly nonlinear stability theories to study double-diffusive convection in a ro-

tating fluid including Soret and Dufour effects. They used a minimal double Fourier series for

the weakly nonlinear stability. The influence of parameters such as the Taylor number, Soret and

Dufour parameters on the onset of convection was investigated. Thermal instability in a nanofluid

subjected to a vertical magnetic field was studied by Gupta et al. [101]. They used a model that

incorporated the effects of Brownian motion and thermophoresis with free-free boundary condi-

tions. Here, they observed that the instability occurs due to fluid buoyancy coupled and the effect

of nanoparticles. They also noted that the instability set in as oscillatory convection rather than

stationary convection. The impact of increasing the magnetic field parameter was to delay the on-

set of convection. A similar problem was considered by Yadav et al. [108] where they studied the

flow with nanoparticle flux at the boundaries.

1.4 Temperature modulation

Thermal instability in a horizontal layer of fluid in a saturated porous medium with a steady tem-

perature gradient has been considered in many earlier studies. There are many situations where the

temperature gradient and gravity are functions of both space and time. This non-uniform tempera-

19



ture gradient is known as temperature modulation or a time-periodic temperature boundary. In the

investigation of Rayleigh-Bénard convection, the amplitude and the frequency of modulation are

used as effective mechanisms to control the onset of convection. In such a case, the temperature at

the lower wall may be defined by

T = T0 +
∆T
2

(1+ εcos(ωt)) ,

and at the upper wall by

T = T0−
∆T
2

(1− εcos(ωt +φ)) ,

where T0 is the reference temperature, ε is a small amplitude, ω is the modulation frequency and

φ is the phase angle. These temperature boundary conditions with a free-free surface boundary

condition were used in an earlier study by Venezian [109] in which linear stability was assumed

and a perturbation method used. The shift in the critical Rayleigh number was calculated. It

was observed that a large frequency modulation and amplitudes had a small effect on the onset

of convection. A similar study, also with a free-free boundary condition, was reported by Roppo

et al. [110] using the weakly nonlinear stability theory and temperature modulation at the walls.

They showed that temperature modulation led to stable hexagonal rolls at the critical Rayleigh

number. In addition, it was found that the system destabilized at lower modulation frequencies and

stabilized at higher modulation frequencies. The authors, however, did not give an analysis of the

heat transport.

Recently, the study by Bhadauria et al. [111] used the weakly nonlinear stability theory to inves-

tigate the effect of temperature and gravity modulation on thermal instability in a rotating viscous

fluid layer. They derived the Ginzburg-Landau equation for the stationary mode of convection.

The effect of modulation on heat transport was also investigated. In general there are three types of

temperature modulation; namely, in-phase modulation when the phase angle φ = 0, out-of-phase

modulation when φ = π, and lower boundary modulation when φ = −i∞. They confined their

analysis to limited values of the Prandtl number and Rossby number. Based on their findings, they

suggested that the temperature and gravity modulation could be used as external means to increase

or reduce the heat transport in a rotating viscous fluid layer. The study by Kiran and Bhadauria
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[112] focussed on the weakly nonlinear oscillatory mode of convection in a rotating fluid layer,

subjected to temperature modulation. They gave some analysis of the bifurcation of the solutions

of the complex Ginzburg-Landau equation and showed the existence of supercritical bifurcation.

They further observed that increasing the Prandtl number has the effect of enhancing heat transport

for in-phase, out-of-phase and lower boundary modulations.

In general, there are many natural phenomena, or applications, where flows are significantly influ-

enced by the existence and the magnitude of buoyancy forces, temperature modulation, rotation

and a magnetic field. There are thus sound reasons to study changes in a fluid rotating about hori-

zontal or vertical axes or with a vertical magnetic field or temperature modulation. These types of

problems are relevant in astrophysical and geophysical phenomena, including oceanic convection.

Bhadauria [113] investigated Rayleigh-Bénard convection subject to a magnetic field in a saturated

porous medium with temperature modulation. It was found that temperature modulation may have

the effect of either stabilizing or destabilizing the system. They also found that increasing the mag-

netic field parameter could delay the onset of convection. Two studies by Bhadauria [114, 115]

considered Rayleigh-Bénard convection with rotation, magnetic field and temperature modulation

using Flouquet theory. As in related previous studies, they observed that temperature modulation

may either stabilize or destabilize the system. Bhadauria and Kiran [116] studied the effect of

temperature modulation in a binary viscoelastic fluid-saturated porous medium. Using nonlinear

stability theory, they derived a Lorenz type system of nonlinear ordinary differential equations that

described the amplitude of convection in the viscoelastic fluid. They observed a transition between

regular and chaotic behaviours for various values of the modulation frequency and amplitude of

temperature modulation. Siddheshwar et al. [117] studied double-diffusive convection in a viscous

fluid in a saturated porous medium subjected to temperature and gravity modulations. It was noted

that increasing the Darcy number reduced the heat transfer for in-phase modulation, while it in-

creased heat transfer for both out-of-phase modulation and modulation at the lower boundary. In

addition, it was observed that the heat transfer for out-of-phase modulation is much more than at

in-phase modulation and modulation at the lower boundary. Other relevant studies on thermal con-

vective instability in a horizontal fluid layer with temperature modulation include those by Suthar
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et al. [118], Bhadauria and Kiran [119], Siddheshwar et al. [120] and Siddheshwar and Abraham

[121].

1.5 Ferrofluid convection

Ferromagnetic fluids are magnetic colloids consisting of nanometer-sized magnetic particles sus-

pended in a fluid carrier. The first synthesis of ferromagnetic fluids was reported in the pioneering

work by Stephen [122]. The theory of ferrohydrodynamics deals with the mechanics of fluid

motion influenced by strong forces of magnetic polarization. In this respect, there are important

differences between the theories of magnetohydrodynamics and ferrohydrodynamics. In the mag-

netohydrodynamic theory, the fluid force is the Lorentz force that arises when an electric current

flows at an angle to the direction of an imposed magnetic field whereas in ferrohydrodynamics the

fluid force is due to the polarization force. In general, the magnetization of a ferromagnetic fluid is

dependent on the temperature, magnetic field, and density of the fluid. The magnetic force and the

thermal state of the fluid may give rise to convection currents in magnetic fluids. An authoritative

introduction to convective instability in magnetic fluids was given by Rosensweig [123]. The study

by Finlayson [124] focussed on the convective instability in a ferromagnetic fluid. He considered

free-free and rigid-rigid boundary conditions for his study, which used the linear stability theory.

The critical Rayleigh number for the onset of convection with both magnetic and buoyancy forces

was predicted.

There are many studies of heat transfer in a horizontal layer of ferromagnetic fluids. These have

technological applications in the sealing of rotating shafts, ink and electronic cooling. Schwab

et al. [125] presented an experimental study of the problem that had been proposed by Finlayson

[124] in the case of a strong magnetic field. The onset of convection was determined by plotting the

Nusselt number against the Rayleigh number and findings were in good agreement with the results

that had been obtained by Finlayson [124]. Stiles and Kagan [126] extended the experimental

study to the case of a strong magnetic field. A weakly nonlinear stability study was presented by
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Russell et al. [127] for a horizontal layer of magnetized ferrofluids heated from above. The control

parameter for the onset of convection was the Rayleigh number and the magnetic Rayleigh number.

They showed that heat transfer depends on the nonlinearity in the temperature difference. More

recently, Shivakumara et al. [128] investigated the thermogravitational convection in a horizontal

layer where viscosity depended exponentially on the temperature. They showed that the onset

of convection depends strongly on the viscosity and magnetic parameters. The effect of rotation

on ferrofluids, subject to stress-free, rigid-rigid paramagnetic and rigid-rigid ferromagnetic effects,

was studied by Venkatasubramanian and Kaloni [129]. They showed that rotation delayed the onset

of the convective instability. Further, they showed that the stabilization of the system depended on

the chosen boundary conditions.

Convection in a horizontal ferromagnetic fluid layer heated from above with magnetic modulation

was considered by Aniss et al. [130]. They used both the Galerkin method and the Floquet theory

in this study where they noted that the occurrence of harmonic and subharmonic modes of con-

vection depended on the ratio between the magnetic and the gravitation forces. Nanjundappa and

Shivakumara [131] studied the effect of velocity and temperature boundary condition on the onset

of ferromagnetic convection. It was observed that suitable values for the ratio of magnetic to buoy-

ancy forces and the Biot number stabilized the system. Further, they ascertained that nonlinearity

of fluid magnetization has no effect on the onset of convective instability in ferromagnetic fluids.

Studies by Sharma et al. [132] and, Mittal and Rana [133] focussed on the investigation of double-

diffusive convection in a micropolar ferromagnetic fluid layer heated from below. They determined

the critical value of Rayleigh number for influencing of the ratio of magnetic to buoyancy forces.

In this study we give analytical and numerical solutions of the convective instability in different

flow configurations. It is now well understood that linear stability analysis provides neither suf-

ficient information about the amplitude of convection nor the rate of heat and mass transfer in

Rayleigh-Bénard convection problems. We thus use the nonlinear stability theory to study the evo-

lution of the convection amplitudes and the heat and mass transport. Vadasz [134] and, Vadasz

and Olek [135] presented investigations of centrifugally driven free convection in a rotating porous
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layer. They used a truncated Galerkin approximation method to derive a nonlinear system of

differential equations to describe the amplitude of convection. These equations were solved nu-

merically using Adomain decomposition techniques. Their results showed that there is a transition

from steady convection to non-periodic convection via a Hopf bifurcation and from chaos to pe-

riodic convection for different Rayleigh numbers. Following these earlier studies, we use linear

and nonlinear stability theories to study Rayleigh-Bénard convection in diverse flows such as a

nanofluid flow through a horizontal porous medium heated from below and cooled from above,

double-diffusive natural convection in an inclined open cavity with an inclined magnetic field and

ferromagnetic fluids in a rotating horizontal layer with temperature modulation at the boundaries.

1.6 Method of Solution

In this section, we describe the method that will be used in thesis to solve the nonlinear initial

value problems that describe the amplitude of convection instabilities. We use the multidomain

spectral collocation method which is a powerful technique for solving differential equations when

the physical domain is smooth. Motsa et al. [136] have shown that it has higher accuracy than some

other common numerical methods such as finite differences and the finite element method. This

multidomain spectral collocation technique uses the Chebyshev differentiation matrix, for which

details can found in Canuto et al. [137] and Trefethen [138].

To describe the multidomain spectral collocation method, consider the system of nonlinear initial

value problems, defined by

dyn

dt
+an,nyn +

M

∑
k=1

an,kyk(1−δnk)+ fn (y1, · · · ,yn−1,yn+1, · · · ,yM) = gn, (1.6.1)

subject to the initial condition

yn(0) = α
0
n, (1.6.2)

where an,n and gn are known constants but in general can be functions of t, yn are unknown vari-

ables, fn are the nonlinear term in the nth equation, α0
n are the initial condition in the nth equation
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and t ∈ [0,T ] is time. Here n,k = 1,2,3, · · · ,M and the Kronecker delta function is defined as

δnk =





1 if n = k,

0 if n 6= k.
(1.6.3)

For simplicity we consider the case when M = 3 and following the iteration scheme proposed by

[136], we introduce the following:

dy1,r+1

dt
+a1,1y1,r+1 +a1,2y2,r +a1,3y3,r + f1 (y2,r,y3,r) = g1, (1.6.4)

dy2,r+1

dt
+a2,1y1,r+1 +a2,2y2,r+1 +a2,3y3,r + f2 (y1,r+1,y3,r) = g2, (1.6.5)

dy3,r+1

dt
+a3,1y1,r+1 +a3,2y2,r+1 +a3,3y3,r+1 + f3 (y1,r+1,y2,r+1) = g3, (1.6.6)

subject to the initial condition

yn,r+1(0) = α
0
n,r+1, n = 1,2,3. (1.6.7)

The multidomain method assumes that the interval Ω = [0,T ] can be decomposed into p non-

overlapping subintervals. To this end, we let t ∈Ω so that each subinterval Ωi is defined as

Ωi = [ti−1, ti], i = 1,2,3, · · · , p, (1.6.8)

with

0 = t0 < t1 < t2 <, · · · ,< tp = T.

Thus equations (1.6.4)-(1.6.7) can be written in the form

dyi
1,r+1

dt
+a1,1yi

1,r+1 +a1,2yi
2,r +a1,3yi

3,r + f1
(
yi

2,r,y
i
3,r
)

= g1, (1.6.9)

dyi
2,r+1

dt
+a2,1yi

1,r+1 +a2,2yi
2,r+1 +a2,3yi

3,r + f2
(
yi

1,r+1,y
i
3,r
)

= g2, (1.6.10)

dyi
3,r+1

dt
+a3,1yi

1,r+1 +a3,2yi
2,r+1 +a3,3yi

3,r+1 + f3
(
yi

1,r+1,y
i
2,r+1

)
= g3, (1.6.11)

subject to the initial condition

yi−1
n,r+1(ti−1) = α

i
n,r+1, n = 1,2,3. (1.6.12)
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To apply the spectral collocation method, we need to transform each subinterval Ωi into [−1,1]

using the transformation

t =
ti− ti−1

2
τ+

ti + ti−1

2
. (1.6.13)

Each subinterval is discretized using Chebyshev-Gauss-Lobatto collocation points, as defined in

Motsa et al. [136], Trefethen [138] and Canuto et al. [137],

τ j = cos(
π j
N
), j = 0,1,2, · · · ,N. (1.6.14)

The Lagrange basis polynomials are given by

lk(t) =
N

∏
k=0
j 6=k

t− t j

tk− t j
, (1.6.15)

and

lk(t j) = δk j =





1 if j = k,

0 if j 6= k,
(1.6.16)

where δk j is the Kronecker delta function. The solution in each subinterval is approximated by the

Lagrange interpolation polynomial of the form

yi
n,r+1(t)|t=τ j ≈

N

∑
k=0

yi
n,r+1(τk)lk(τ j). (1.6.17)

Thus, the derivatives at the collocation points are approximated by

dyi
n,r+1

dt
|t=τ j =

2
∆ti

N

∑
k=0

yi
n,r+1(τk)

dlk(τ j)

dt

=
N

∑
k=0

D jkyi
n,r+1(τk)

=
N

∑
k=0

D jkyi
n,r+1(τk), (1.6.18)

where ∆ti = ti− ti−1, D jk =
2

∆ti
D jk and D jk =

dlk(τ j)

dt
is the Chebyshev differentiation matrix of

size (N +1)× (N +1), as given in Motsa et al. [136], Trefethen [138] and Canuto et al. [137].
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Now, substituting equations (1.6.17) and, (1.6.18) into equations (1.6.9) to (1.6.12) and applying

the initial condition, we obtained

N−1

∑
k=0

D jkyi
1,r+1(τk)+a1,1yi

1,r+1(τ j) = g1−D jNyi
1,r+1(τN)−a1,2yi

2,r(τ j)−a1,3yi
3,r(τ j)

− f1
(
yi

2,r(τ j),yi
3,r(τ j)

)
, (1.6.19)

N−1

∑
k=0

D jkyi
2,r+1(τk)+a2,2yi

2,r+1(τ j) = g2−D jNyi
2,r+1(τN)−a2,1yi

1,r+1(τ j)−a1,3yi
3,r(τ j)

− f1
(
yi

1,r+1(τ j),yi
3,r(τ j)

)
, (1.6.20)

N−1

∑
k=0

D jkyi
3,r+1(τk)+a3,3yi

3,r+1(τ j) = g3−D jNyi
3,r+1(τN)−a3,1yi

1,r+1(τ j)−a3,2yi
2,r+1(τ j)

− f1
(
yi

1,r+1(τ j),yi
2,r+1(τ j)

)
, (1.6.21)

Equations (1.6.19)–(1.6.21) can be expressed in the matrix form as follows:

AnYi
n,r+1 = Ri

n, (1.6.22)

where

An = D+an,nI, Yi
n,r+1 =

(
yi

n,r+1(τ0),yi
n,r+1(τ1), · · · ,yi

n,r+1(τN−1)
)T
,

and

Ri
n =

(
Ri

n(τ0),Ri
n(τ1), · · · ,Ri

n(τN−1)
)
,

with

Ri
1(τ j) = g1−

(
D jNα

i
1,r+1 +a1,2yi

2,r(τ j)+a1,3yi
3,r(τ j)+ f1

(
yi

2,r(τ j),yi
3,r(τ j)

))
, (1.6.23)

Ri
2(τ j) = g2−

(
D jNα

i
2,r+1 +a2,1yi

1,r+1(τ j)+a2,3yi
3,r(τ j)+ f2

(
yi

1,r+1(τ j),yi
3,r(τ j)

))
, (1.6.24)

Ri
3(τ j) = g3−

(
D jNα

i
3,r+1 +a3,1yi

1,r+1(τ j)+a3,2yi
2,r+1(τ j)+ f3

(
yi

1,r+1(τ j),yi
2,r+1(τ j)

))
.

(1.6.25)
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The identity matrix I has size N×N. Thus starting from the initial condition in equation (1.6.12)

the approximate solutions are obtained by solving equation (1.6.22). Although we consider the

case of three nonlinear differential equations, this procedure is valid for any number of nonlinear

ordinary differential equations.

1.7 Thesis Objectives

The main objective of this study is to investigate the development of convective instabilities in

various fluid flows, such as in a rotating horizontal layer and flow through an inclined open cavity.

We investigate the influence of dimensionless parameters on fluid convection using both the linear

and weakly nonlinear stability theories. The specific problems addressed, and for which solutions

are determined in this thesis include

• The effect of a magnetic field and Darcy numbers on cross-diffusive convection in a nanofluid

flow in a horizontal layer in a porous medium.

• The effect of Soret and Dufour parameters on finite amplitude convection in a nanofluid flow

subjected to cross-diffusion.

• The effect of magnetic field in double-diffusive convection in an inclined open square cavity

with an inclined magnetic field.

• The effect of rotation on convective ferromagnetic fluid flow in a rotating horizontal layer

with temperature modulation at the walls.

• The influence of fluid parameters on the rate of heat and mass transfer in a horizontal ferro-

magnetic fluid layer and an inclined magnetic field.

We solve the evolution equations for the amplitude of convection of fluid using the multidomain

spectral collocation technique.
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1.8 The structure of the thesis

This thesis consists of six chapters with Chapters 1 and 6 being the introduction and conclusion of

the study, respectively. Chapters 2 to 5 consists of research papers that form the main body of the

study.

Chapters 2 and 3 deal with the analysis of a nanofluid flow in a horizontal layer in a saturated

porous medium. Studies of this nature are important in engineering and science due to their wide

range of applications in many physical settings. In Chapter 2 we model the flow of a nanofluid in a

horizontal layer subjected to an applied magnetic field. We use the linear stability theory to analyze

the flow and determine the effect of the magnetic field parameter and Darcy number on the onset

of convection in the nanofluid flow in Part I of Chapter 2 and the effect of all, other parameters on

the onset of convection were given in Part II of Chapter 2 . In Chapter 3 we extend the problem

presented in Chapter 2 to nanofluid flow in horizontal layer, and there use the weakly nonlinear

stability theory to study the evolution of small disturbances. A truncated Fourier series is used

to transform the flow equations to a Lorenz type system of nonlinear initial value problems that

describe the amplitude of convection in the nanofluid. These equations were solved numerically

using a multidomain spectral collocation technique. The influence of parameters on the rate of heat

and mass transfer is analyzed.

In Chapter 4 we study double-diffusive convection in an inclined open square cavity subjected

to an inclined magnetic field. We adopt both linear and nonlinear stability theories for the flow

analysis using the Galerkin expansion method. The influence of dimensionless parameters on

double-diffusive convection in an inclined cavity and the onset of convection were investigated.

The rate of heat and mass transport is studied.

Chapter 5 focuses on the convective instability in a ferromagnetic fluid flow in a rotating horizontal

layer subject to a time-periodic temperature at the walls. A weakly nonlinear stability analysis is

given. The influence of dimensionless parameters, such as the Taylor number and magnetization
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parameter on flow behaviour and structure were investigated. The Ginzburg-Landau equation is

derived and the heat transfer analyzed for in-phase and out-of-phase modulation. In Chapter 6, we

give our overall conclusion and suggest ideas for possible future work.
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Chapter 2

Onset of instability in a horizontal porous

layer in a cross diffusive nanofluid flow

In this chapter, we study the stability and cross-diffusion in nanofluid flow through a horizontal

layer of a saturated porous medium subjected to a magnetic field. The Galerkin method is used to

solve the equations derived from a linear stability analysis. The chapter is in two parts. In Part I

we study the effect of the magnetic field parameter and the Darcy number on the stability of the

flow. In Part II we extend the study to consider the effects of parameters such as the Dufour and

Soret parameters, and the Lewis and Prandtl numbers for a nanofluid. The momentum equations

have been modified using the Darcy model and the Galerkin method is used to solve the equations

derived from a linear stability analysis.

Part I: Onset of instability in a horizontal porous layer: Effect of the magnetic field and the

Darcy number
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The instability in a horizontal porous layer of infinite extent of a cross diffusive nanofluid 
with magnetic field subject to stress free and revised nanopraticle boundary conditions is studied 
here. A Galerkin-type method is used in linear stability. The influence of the important 
parameters such as Chandrasekher number (Q) and Darcy number (Da) on both stationary 
Rayleigh number is to stabilize the system. 
Keywords: Instability; Nanofluid flow; Porous medium, Galerkin method. 
1. Introduction 

The enhancement of the thermal conductivity of a fluid is a matter of great interest to 
engineers due to the important applications of nanofluids in heat and mass transfer processes. 
Kuznetsov and Nield [1] investigated the thermal instability in a porous layer saturated with a 
nanofluid using a Brinkman model. They investigated the onset of instability in a horizontal 
porous layer using a model for the nanofluid that incorporated particle Brownian motion and 
thermophoresis. In recent decades many researchers have investigated thermal instability in a 
horizontal nanofluid layer subject to an applied magnetic field under different assumptions. 
Chandrasekher [2] was among the first to study thermal instability in a Newtonian fluid under 
various assumptions. The effects of a magnetic field on convection and the onset of instability has 
important applications in varies problems such as in cooling systems, pumps, 
magnetohydrodynamic generators, etc. The onset of Darcy-convection in fluid saturated porous 
medium in the presence of a magnetic field and subject to temperature modulation at the 
boundaries was investigated by Bhadauria et al. [3]. They examined the effect of the Darcy- 
Chandrasekhar number in stabilizing the system. Gupta et al. [4] studied Rayleigh-Benard 
convection of nanofluid with magnetic field and permeability effects. The influence of study 
parameters such as the Darcy number, magnetic field parameter etc. on both stationary and 
oscillatory Rayleigh number are analyzed. 
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2. Mathematical Formulation 
Consider viscous incompressible MHD nanofluid in an infinitely extended horizontal porous 

layer, confined between two boundaries at z = 0 and z = h, which is heated from below and cooled 
from above. A Cartesian frame of reference has been chosen in which the z-axis is vertically upwards. 
The boundaries are perfectly conducting. The temperature at the lower and upper walls is taken to be 
Tc and Th respectively with Th<Tc. The Oberbeck - Boussinesq approximation and the Darcy law are 
assumed to be applicable. The continuity equation, momentum equation, energy equation, 
concentration equation and volumetric fraction nanoparticle equation describing the above 
configuration are given as 

where V* is the fluid velocity, T*is  the temperature field, C* is the  solutal concentration and 𝜙𝜙𝜙𝜙∗  is the  volumetric 
fraction of  nanoparticle. While  ρf, ρp, 𝜇𝜇𝜇𝜇~, β1, β2, κm, δ, ε and K are the fluid density, nanoparticle density, effective 
viscosity of porous medium, thermal volumetric expansion coefficient of the fluid, solutal volumetric expansion 
coefficient, the thermal conductivity of porous medium, the electrical conductivity, the porosity, and permeability of 
porous medium respectively. The gravitational acceleration vector is denoted by g and DB is the Brownian diffusion 
coefficient, DT is the thermophoresis diffusion coefficient, DS is the solutal diffusion coefficient, DTC is the Dufour 
parameter and DCT is the Soret parameter. The heat capacity of the fluid is (ρc)f, (ρc)p is the effective heat capacity of 
the nanoparticle, (ρc)m is the effective heat capacity of the porous medium and B0 is the uniform magnetic field 
strength. We assume that the temperature and concentration are constant at the boundaries. The volumetric fraction of 
nanoparticle flux is vanishes at the boundaries. Then the boundary conditions are given as 

 

We define dimensionless variables as follows, 
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Substituting the dimensionless variables in equations (1)-(7) and neglecting the products of ϕ and T, 
we have, 

 

 
subject to boundary conditions, 

 

where Da is the Darcy number modified by the viscosity ratio, Pr is the Prandtl number, Q is the 
Hartmann-Darcy number, Ra is the thermal Rayleigh-Darcy number, Rn is the nanoparticle Rayleigh 
number and Rm is the basic density Rayleigh number. The parameter NA is a modified diffusivity 
ratio, Le is the Lewis number, Rs is solutal Rayleigh number, NB is a modified nanoparticle density 
increment and Du is a modified Dufour parameter. The parameter Les is the thermo-nanofluid Lewis 
number, ν is the kinematic viscosity and Sr is a modified Soret parameter. 

 
3. The Basic State 

The basic state is time independent solution of the equations (8) – (14) which depends on z 
only. To determine the linear stability of the nanofluid flow, we superimpose perturbations on the 
basic state defining the nanofluid quantities as 
V = V́, P = Pb  + Ṕ, T = Tb + T́, C = Cb + C  ϕ = ϕb + ϕ.́ (15) 

We reduce the number of unknowns by taking the curl, twice of equation (9). Then equations (8) – 
(14), after neglecting the nonlinear terms reduce to 
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subject to boundary conditions, 

 

 
 

4. Linear Stability Analysis 

 
 
 
 
 
 
 
 

(17) 

(16) 

To study the linear stability of the flow, we linearized equations (16) which we get from the basic 
state section by neglecting the nonlinear terms. Thus, employing the normal modes defined the 
perturbation quantities in the form 

(Ẃ, T́, Ć, ϕ́ ) = ( W(z), Ɵ (z), F(z), Ф (z)) exp [ st + i (lx +my)]. (19) 
 

 
These equations are to be solved subject to the free-free boundary conditions 

 

 
where D = d/dz. A related analysis for rigid-rigid, and rigid-free boundary conditions is given in [1]. 
Here we present results for free-free boundary conditions. Here, the dimensionless horizontal wave 
number is denoted by α and s is denoted the complex quantity. To apply Galerkin approximation the 
flow quantities are defined as follows: 
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and chose the trial functions 

Apply the orthogonality of trial functions from these previous equations in this section to introduce the 
Rayleigh number (Ra) as eigenvalue of the system in terms of the other parameters. 

 
5. Stationary convection 

In this case we assume s = 0 and for the first approximate we take M = 1. From the linear 
stability equations, we obtain, 

Here Raα is the stationary Rayleigh number for marginal instability convection. In the case of Rs =  
0; Du = 0 and Sr = 0 with absence of magnetic field has been discussed in details in [1]. The   
corresponding critical Rayleigh number equations depend on Da and Q. When Da →∞, the critical 

wave number will be 𝛼𝛼 = 𝜋𝜋
√2

 and the corresponding critical Rayleigh number will be 𝑅𝑅𝛼𝛼 = 27
4
𝜋𝜋4 = 657.5. This result 

agrees with the literature such as [1] and [2]. 
 

 

6. Results and Discussion 
 

In this paper, we have studied the linear stability of nanofluid flow in a horizontal layer in the 
case of stress-free and revised nanoparticles boundary conditions. The critical Rayleigh number 
for stationary convection has been determined in the linear stability regime. The parameter values 
for simulations are chosen from the literature on nanofluid flow. Furthermore, the instability of 
nanofliud was demonstrated by [1]. Figure 1, presents the neutral stability curves for stationary 
Rayleigh number (Raα ) versus wave number α for the influence of different parameters. It is 
interesting to note that the value of stationary Rayleigh number starts from a higher note, then falls 
rapidly with increasing wave number and then increases steadily. Figure 1(a) shows that 
increasing the Chandrasekhar number (Q) increases the stationary Rayleigh number leading to a 
stabilization of the nanofluid convection. Also, it is observed that the effect of magnetic field 
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Fig 1. The effect of (a) the Chandrasekhar number (Q), (b) the Darcy number (Da), on the stationary 
Rayleigh number. 
parameter on stationary Rayleigh number is very small, so we can deny that magnetic field effect on 

nanofluid flow. The effect of increasing the Darcy number (Da) in Figure 1(b) is to increase the 
stationary Rayleigh number, thus delaying the onset of stationary instability. This may be explained by 
the observation that increasing the Darcy number increases the effective viscosity which has the 
tendency to retard the nanofluid flow, hence more heating is required for the onset of convection. 

 
7. Conclusion 

In this work, the results illustrate the onset of instability in a horizontal porous layer of infinite 
extent in a cross diffusive nanofluid flow with magnetic field. The effects of the Darcy number (Da) 
and Chandrasekhar number (Q) on the onset of stationary instability have been studied. An increase in 
the Darcy number (Da) increases the critical Rayleigh number for the onset of instability. The effect of 
the Darcy number is thus to delay the onset of instability in the nanofluid in the porous medium. Also 
the Chandrasekher number (Q) stabilizes the instability of nanofluid convection. 
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Part II: Onset of instability in a horizontal porous layer: Effect of the Soret and Dufour

parameters

In this section, we investigate the influence of the Dufour and Soret parameters, nanofluid Lewis

and Prandtl numbers on the onset of stationary and oscillatory convection.

For the case of stationary convection we have Raα the stationary Rayleigh number for marginal

instability convection, given by

Raα =
γ3Da+ γ2 + γα2Q

α2 λ1 +Rsλ2 +RnNAλ3, (2.0.1)

where

λ1 =
DuSr−1
Du−1

,λ2 =
Sr−1
Du−1

and λ3 =
ε(DuLe−1)+Les(DuSrLe−1)

εLe(Du−1)
.

The condition of oscillatory convection occurs when the real part of s is zero. Hence s = iω where

the ω denotes dimensionless oscillations frequency. We have

ω
2 =

σNAλ5 +LePrλ4

DaLe
+

α2Rs(σNA− (1−Sr)Les)
Daγ

− α2σN2
A(ε+(1+Le)Les)

εDaγ
, (2.0.2)

where λ4 = Daγ2 + γ+α2Q and λ5 = Da(1+Pr)+Pr(γ+α2Q). For the oscillatory Rayleigh

number, we obtain

Raosc =
σNAγ(Daγ2ω2λ6 +Prλ4λ7)+PrLeγω2λ4 +DaLesγω2λ8

α2(LeLesω2 +σNAγ2λ9)

+
σRnN2

A(LeLes(DuSrγ2 +ω2)− γ2(Le2Les+σ)−σDuLeγ2)

LeLesω2 +σNAγ2λ9
−

−RsLe(σNAγ(Sr−1)+Lesω2)

LeLesω2 +σNAγ2λ9
, (2.0.3)

where

λ6 = (1+Le), λ7 = DuSrLeγ
2− γ

2 +Leω
2, λ8 = γ

2−SrLeγ−Leω
2

and λ9 = DuLe−1.
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Results and discussion

We studied the stability of nanofluid flow in a horizontal layer in the case of stress-free boundary

conditions. The critical Rayleigh numbers for stationary and oscillatory convection have been

determined. For simulations, the parameter values are chosen from the literature on nanofluid

flow, such as in Tzou [63] and Yadav et al. [91].

The influence of the parameters on the onset of convection is presented in Figures 2.1 to 2.4.

Here the neutral stability curves for stationary and oscillatory Rayleigh numbers Raα are plotted

against the wave number α. Figure 2.4(a), shows that the effect of increasing the value of the

Dufour parameter Du is to increase the critical value of the stationary Rayleigh number. Hence the

influence of the Dufour parameter is to stabilize the system by delaying the onset of convection.

Figure 2.4(b) shows that the Soret parameter Sr reduces the critical stationary Rayleigh number at

which instabilities set in.

In Figure 2.1(a) it can be seen that increasing the porosity ε causes a slight decrease in the crit-

ical stationary Rayleigh number, thus the effect of increasing porosity is to reduce the critical

stationary Rayleigh number. This has a destabilizing effect on the onset of stationary convection.

Figure 2.1(b) shows the effect of the nanofluid Lewis number Le on the stationary Rayleigh num-

ber. Increasing the nanofluid Lewis number reduces the critical stationary Rayleigh number. This

destabilized the nanofluid flow. Figure 2.2 and 2.3 show the effect of the thermo-nanofluid Lewis

number Les, nanoparticle density increment NA and the nanoparticle Rayleigh number Rn on the

stationary Rayleigh number. Increasing each of these parameters increases the critical value of the

stationary Rayleigh number. Hence these parameters have the effect of stabilizing the system by

delaying the onset of convection instabilities.

Figure 2.5 to 2.9 show the neutral stability curves for oscillatory convection. In the set of figures,

for most of parameters, increasing their values has the effect of increasing the critical oscillatory

Rayleigh number, which delays the onset of oscillatory convection. However, increasing porosity

reduces the critical oscillatory Rayleigh number; hence it has a destabilization effect.
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(a) (b)

Figure 2.1: The effect of (a) the porosity and (b) the Lewis number on the onset of stationary

convection. Here Q = 50,σ = 0.05,Da = 0.05,Du = 0.2,Sr = 0.3.

(a) (b)

Figure 2.2: The effect of (a) the nanofluid Lewis number and (b) the nanoparticle density incre-

ment parameter on the onset of stationary convection. Here Q = 50,σ = 0.05,Da = 0.05,Du =

0.2,Sr = 0.3.
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Figure 2.3: The effect of the nanoparticle Rayleigh number on the onset of stationary convection.

Here Q = 50,σ = 0.05,Da = 0.05,Du = 0.2,Sr = 0.3.

(a) (b)

Figure 2.4: The effect of (a) the Dufour parameter Du, and (b) the Soret parameter Sr on the onset

of stationary convection. Here Le = 10,ε = 0.04,Les = 100,σ = 0.05,NA = 4,Rn = 10.
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(a) (b)

Figure 2.5: The effect of (a) the Chandrasekhar number and (b) the Darcy number on the onset of

oscillatory convection. Here Le = 10,ε = 0.04,Les = 100,σ = 0.05,NA = 4,Rn = 10.

(a) (b)

Figure 2.6: The effect of (a) the Dufour parameter and (b) the Soret parameter on the onset of

oscillatory convection. Here Le = 10,ε = 0.04,Les = 100,σ = 0.05,NA = 4,Rn = 10.
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(a) (b)

Figure 2.7: The effect of (a) the porosity and (b) the Lewis number on the onset of oscillatory

convection. Here Q = 50,σ = 0.05,Da = 0.05,Du = 0.2,Sr = 0.3.

(a) (b)

Figure 2.8: The effect of(a) the nanoparticle Rayleigh number and (b) the nanoparticle density in-

crement parameter on the onset of oscillatory convection. Here Q = 50,σ = 0.05,Da = 0.05,Du =

0.2,Sr = 0.3.
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(a) (b)

Figure 2.9: The effect of (a) the Prandtl number and (b)the nanofluid Lewis number on the onset

of oscillatory convection. Here Q = 50,σ = 0.05,Da = 0.05,Du = 0.2,Sr = 0.3.
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Summary

In this chapter we have used the linear theory to analyze the stability of a horizontal layer of a

nanofluid flow in a porous medium. The results show how certain parameters influence the onset

of convection in the cross-diffusive nanofluid flow. The focus of the study has been on stress-free

boundary conditions with zero nanoparticle flux at the boundary.

The following conclusions can be drawn from the study;

1- An increase in the value of the nanofluid Lewis number Les increases both the stationary and

oscillatory Rayleigh numbers. This has the effect of increasing the value of the Rayleigh

number at the turning point of the neutral stability curve, which in turn has a stabilizing

effect on the system.

2 - The Soret and Dufour parameters, have the effect of reducing and increasing the critical

Rayleigh number, respectively.

3- The critical stationary and oscillatory Rayleigh numbers are both independent of modified

nanoparticle density increment.
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Chapter 3

Weakly Nonlinear Stability Analysis of a Nanofluid

in a Horizontal Porous Layer Using a Mul-

tidomain Spectral Collocation Method

In this chapter, we used weakly nonlinear stability theory to analyze the onset of instabilities in a

nanofluid flow in a porous medium with zero nanoparticle flux at the walls. A truncated Fourier

series is used to derive the evolution equations that describe the amplitudes of convection. A

multidomain spectral collocation method is used to solve the evolution equations. The influence

of parameters on the heat and mass transfer characteristics is determined. A limited phase space

analysis is presented.
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Weakly Nonlinear Stability Analysis of a Nanofluid in a
Horizontal Porous Layer Using a Multidomain Spectral
Collocation Method
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Additional information is available at the end of the chapter
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Abstract

In this chapter, we present a weakly nonlinear stability analysis of the flow of a nanofluid
in a porous medium with stress-free boundary conditions. Some previous studies have
investigated cross-diffusion in a nanofluid layer although in most cases these studies
mostly deal with linear stability analysis. It is important to study the nonlinear stability in
flows subject to cross-diffusion due to the wide range of applications where such flows
arise such as in hydrothermal growth, compact heat exchanges, the solidification of binary
mixtures, geophysical systems, solar pond, etc. Here we consider flow between parallel
plates with an applied magnetic field and zero nanoparticle flux at the boundaries. A
truncated Fourier series is introduced reducing the flow equations to a Lorenz-type system
of nonlinear evolution equations. The multidomain spectral method is used to solve the
equations that describe the growth of the convection amplitudes. The solutions are
obtained as sets of trajectories in the phase space. Some interesting spiral trajectories and
their sensitivity to the Rayleigh number are given.

Keywords: nonlinear instability, nanofluid flow, porous medium, multidomain spectral
collocation method

1. Introduction

The enhancement of thermal conductivity of a fluid is a matter of supreme interest to engineers

due to the important applications of fluids in heat transfer processes. Natural and forced convec-

tion plays an important role in heat transfer processes due to continuous molecular movements

in fluid. Recent studies show that the suspension of solid nanoparticles in a fluid can substan-

tially improve the fluid’s thermophysical properties, including thermal conductivity.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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The term nanofluid describes a liquid containing a suspension of nanometer sized 1–100 nm

solid particles [1]. Examples of commonly used nanoparticles include metallic particles such as

Al, Cu and Ag, and oxides such as Al2O3 and CuO. The base fluid is often a common liquid

such as water, ethylene, glycol, or oil. The enhancement of thermochemical properties of a

fluid due to the addition of nanoparticles has been observed in experimental studies such as in

[2, 3]. Researchers have investigated the influence of seven slip mechanisms, namely, inertia,

Brownian diffusion, thermophoresis, diffusiophoresis, magnus effect, fluid drainage, and

gravity in nanofluids. It has been shown that, in the absence of turbulence, the most significant

among these mechanisms are the Brownian diffusion and thermophoresis.

The classical Rayleigh-Benard convection problem in a heated horizontal layer has been exten-

sively studied in the literature. Among recent studies on nanofluids, Tzou [4] studied the

thermal instability and natural convection in nanofluid flow using an eigenfunction expansion

method. Narayana et al. [5, 6] studied convection and the stability of aMaxwell fluid in a porous

medium. Yadav et al. [7] investigated thermal instability of a rotating nanofluid layer. The

studies by Kuznetsov and Nield [8–11] focused on thermal instability in a porous layer satu-

rated with a nanofluid. They investigated the onset of instability in a horizontal porous layer

using a model for the nanofluid that incorporated particle Brownian motion and thermo-

phoresis. Related studies with various assumptions on the geometry and flow structure have

been made by [12–15]. In the last few decades, researchers have also investigated thermal

instability in a horizontal nanofluid layer subject to an applied magnetic field [16, 17]. The

effects of a magnetic field on convection and the onset of instability have important applications

in problems such as in cooling systems, pumps, magnetohydrodynamics and generators. The

experimental study by Heris et al. [18] showed that thermal efficiency could be achieved by

subjecting the flow to a magnetic field. The studies by Ghasemi et al. [19] and Hamad et al. [20]

focused on the flow behavior and heat transfer in an electrically conducting nanofluid under the

influence of a magnetic field and subject to Brownian diffusion and thermophoresis. They used

a water-based nanofluid containing different types of nanoparticles such as copper, alumina and

silver in their numerical simulations. Related studies of interest include [21–24]. Rana et al. [25]

studied thermal convection in a Walters (Model B) fluid in a porous medium. They showed that

a magnetic field may introduce oscillatory instability modes and acts to stabilize the system.

In this chapter, we give a weakly nonlinear stability analysis of a nanofluid layer with an

applied magnetic field, stress free boundary conditions and under the assumption of zero

nanoparticle flux at the boundary. The studies by Kuznetsov and Nield [9] and Nield and

Kuznetsov [10, 11] investigated cross-diffusion in a nanofluid layer. However, these studies

mostly presented a linear stability analysis. It is important to study the nonlinear regime for a

nanofluid flow subject to cross-diffusion due to the wide range of applications where such

flows may arise. Typical examples may be found in hydrothermal growth, compact heat

exchanges, solidification of binary mixtures, geophysical systems, and so on. Hence, with this

in mind, we studied the finite amplitude convection in a nanofluid flows subject to cross-

diffusion. By introducing a truncated Fourier series, a Lorenz-type system of seven nonlinear

differential equations is obtained. The recent multidomain spectral method is used to solve the

nonlinear equations. This method is accurate and very easy to implement compared to older

methods such as finite difference methods. An analysis of heat and mass transfer for different

parameters such as the Prandtl number, the Dufour and thermophoresis is presented.
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2. Mathematical formulation

Consider viscous incompressible MHD nanofluid flow in an infinitely extended horizontal

porous layer, confined between two boundaries at z ¼ 0 and z ¼ h. The layer is heated from

below and cooled from above, see Figure 1. A Cartesian frame of reference is chosen in which

the z-axis is vertically upward. The boundaries are perfectly conducting. The temperature at

the lower and upper walls is Tc and Th, respectively with Th > Tc. The Oberbeck-Boussinesq

approximation and the Darcy law are assumed to be applicable. The continuity equation,

momentum equation, energy equation, concentration equation and volumetric fraction nano-

particle equation, which describe the above configuration in dimensionless form, are given as

∇ � V ¼ 0, (1)

Da

Pr

∂V

∂t
¼ �∇PþDa∇2V � V þQVbez � Rmbez þ RaTbez þ RsCbez � Rnϕbez, (2)

∂T

∂t
þ V � ∇T ¼ ∇

2T þ
NB

Les
∇ϕ � ∇T þ

NANB

Les
∇T � ∇T þDu∇2C, (3)

∂C

∂t
þ V � ∇C ¼

1

Le
∇

2Cþ Sr∇2T, (4)

1

σ

∂ϕ

∂t
þ
1

ε
V � ∇ϕ ¼

1

Les
∇

2ϕþ
NA

Les
∇

2T, (5)

subject to the boundary conditions

V ¼ 0, T ¼ 1, C ¼ 1
∂ϕ

∂z
þNA

∂T

∂z
¼ 0 at z ¼ 0, (6)

V ¼ 0, T ¼ 0, C ¼ 0
∂ϕ

∂z
þNA

∂T

∂z
¼ 0 at z ¼ 1, (7)

where V is the fluid velocity, T is the temperature, C is the solute concentration and ϕ is the

volumetric fraction of nanoparticles. The dimensionless parameters are the Darcy number

(modified by the viscosity ratio) Da, Prandtl number Pr, Hartmann-Darcy number Q, thermal

Rayleigh-Darcy number Ra, nanoparticle Rayleigh number Rn and the basic density Rayleigh

number Rm. The parameter NA is a modified diffusivity ratio, Le is the Lewis number, Rs is

solutal Rayleigh number, NB is a modified nanoparticle density increment and Du is a modi-

fied Dufour parameter. The parameter Les is the thermo-nanofluid Lewis number, ν is the

kinematic viscosity and Sr is a modified Soret parameter. These parameters have the form

Da ¼
~μK

μh2
, Pr ¼

μ

rfαm
, Q ¼

δB2
0K

μ
, Ra ¼

rf βKhg T∗

h � T∗

c

� �

μαm

, Les ¼
αm

DB
, (8)

Rn ¼
rp � rf

� �
ϕ∗

1 � ϕ∗

0

� �
gKh

μαm

, Rm ¼
rpϕ

∗

0 þ 1� ϕ∗

0

� �
rf gKh

μαm

, Le ¼
αm

DS
, (9)
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NB ¼
ε rcð Þp

rcð Þf
ϕ∗

1 � ϕ∗

0

� �
, NA ¼

DT T∗

h � T∗

c

� �

DBT
∗

c ϕ∗

1 � ϕ∗

0

� � , Rs ¼
rf βKhg C∗

h � C∗

c

� �

μαm

, (10)

Du ¼
σDTC C∗

h � C∗

c

� �

αm T∗

h � T∗

c

� � , Sr ¼
σDCT T∗

h � T∗

c

� �

αm C∗

h � C∗

c

� � , (11)

where rf , rp, ~μ, β1, β2,κm, δ, ε and K are the fluid density, nanoparticle density, effective viscos-

ity of porous medium, thermal volumetric expansion coefficient of the fluid, solutal volumetric

expansion coefficient, the thermal conductivity of porous medium, the electrical conductivity,

the porosity, and permeability of porous medium, respectively. The gravitational acceleration

is denoted by g and DB is the Brownian diffusion coefficient, DT is the thermophoresis diffu-

sion coefficient, DS is the solutal diffusion coefficient, DTC is the Dufour parameter and DCT is

the Soret parameter. The heat capacity of the fluid is rcð Þf , rcð Þp is the effective heat capacity of

the nanoparticle, rcð Þm is the effective heat capacity of the porous medium and B0 is the

uniform magnetic field strength.

The basic state is the time independent solution of Eqs. (1)–(5). Solving these equations with

boundary conditions, we obtain

Tb ¼ 1� z, Cb ¼ 1� z, ϕb ¼ ϕ0 þNAz: (12)

3. Weakly nonlinear stability analysis

In this section, we restrict the analysis to the case of two-dimensional disturbances. We define

the stream function Ψ by the equations

Figure 1. A schematic diagram of the problem.
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u ¼
∂Ψ

∂z
, w ¼ �

∂Ψ

∂x
:

Eqs. (1)–(5) may now be simplified by introducing the truncated Fourier series

Ψ 0 ¼ A11 sinαx sinπz, T0 ¼ B11 cosαx sinπzþ B02 sin 2πz, (13)

C0 ¼ C11 cosαx sinπzþ C02 sin 2πz, ϕ0 ¼ �NA D11 cosαx sinπzþD02 sin 2πzð Þ, (14)

where A11, B11, B02, C11, C02, D11 and D02 are amplitudes that depend on time. This leads to the

Lorenz-type system of nonlinear ordinary differential equations

_Y1 ¼
Pr

Da
�BY1 �N Y2 þ Y4ð Þ þ

NARn

R
Y6

� �
(15)

_Y2 ¼ RY1 � Y2 �DuY4 � Y1Y3 (16)

_Y3 ¼
1

2
Y1Y2 � G Y3 þDuY5ð Þ (17)

_Y4 ¼ RY1 �
1

Les
Y4 � SrY2 � Y1Y5 (18)

_Y5 ¼
1

2
Y1Y2 � G

1

Les
Y5 þ SrY3

� 	
(19)

_Y6 ¼
σR

ε
Y1 �

σ

Le
Y6 � Y2ð Þ �

NAσ

ε
Y1Y7 (20)

_Y7 ¼
NAσ

2ε
Y1Y7 �

G

Le
Y7 � Y3ð Þ (21)

subject to Yn 0ð Þ ¼ Y0
n for n ¼ 1, 2,⋯, 7: The following variables have been introduced in the

equations above:

Y1 ¼
απ

γ
A11, Y2 ¼ �πRB11, Y3 ¼ �πRB02, Y4 ¼ �πRC11, Y5 ¼ �πRC20,

Y6 ¼ �πRD11, Y7 ¼ �πRD20, t∗ ¼ γt, R ¼
α2

γ3
Ra, G ¼

4π2

γ
and N ¼

Rs

Ra
,

B ¼
Daγ2 þ γ� α2Q

γ2
:

Eqs. (15)–(21) give an approximate description of the full dimensional nonlinear system. An

analytical solution of the system of nonlinear ordinary differential Eqs. (15)–(21) is not possible

for the general time variable t. However, it is possible to discuss the stability of the nonlinear

system of equations. The system of equations is uniformly bounded in time and dissipative in

the phase space. We can easily show that

Weakly Nonlinear Stability Analysis of a Nanofluid in a Horizontal Porous Layer Using a Multidomain Spectral…
http://dx.doi.org/10.5772/intechopen.71066

153

51



X7

i¼1

∂ _Y i

∂Yi
¼ �

DaB

Pr
þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1


 �
: (22)

This is always true if B ≥ 0. As has been shown in previous studies, the trajectories may be

attracted to a fixed point, limit cycle or other attractor. For a set of initial points in the phase space

occupying a region V 0ð Þ at time t ¼ 0, after a time t > 0, the end point of the corresponding

trajectories fills a volume

V tð Þ ¼ V 0ð Þexp �
DaB

Pr
þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1


 �
t

� �
: (23)

Eq. (23) shows that the volume decays exponentially with time. Further, it can be noted that

the system of Eqs. (15)–(21) are invariant under the transformation

S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ ! �S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ: (24)

We obtain the possible stationary points of the nonlinear system of equations by setting _Y i ¼ 0

for i ¼ 1, 2,⋯, 7. One of these stationary points is Yi ¼ 0 and by linearizing about this point, we

obtain the Jacobian matrix

A ¼

�
PrB

Da
�

Pr

Da
0

PrN

Da
0

PrNARn

DaR
0

R �1 0 �Du 0 0 0

0 0 �G 0 �GDu 0 0

R �Sr 0 �Les�1 0 0 0

0 0 �GSr 0 �GLes�1 0 0
σR

ε
σLe�1 0 0 0 �σLe�1 0

0 0 GLe�1 0 0 0 �GLe�1

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

: (25)

The eigenvalues of the above matrix depend on the various parameters. For the specific param-

eters R ¼ 103, Da ¼ 20,Pr ¼ 10, N ¼ 25, Du ¼ 0:2, Sr ¼ 3, Les ¼ 10, Le ¼ 5, σ ¼ 0:05, G ¼ 3 and

ε ¼ 0:04, the characteristic polynomial is

P λð Þ ¼ λ7 þ 21:41λ6 þ 651:5λ5 þ 5391:7λ4 þ 12772:232λ3 � 370:962λ2 � 2996:712λþ 545:8

with eigenvalues

λ1 ¼ 0:2955056985, λ2 ¼ 0:2402382976, λ3 ¼ �0:6139990637, λ4 ¼ �4:886000936,

λ5 ¼ �5, λ6 ¼ �5:7228719981� 21:9033954659i, λ7 ¼ �5:7228719981þ 21:9033954659i:

This stationary point is a saddle point. Nonetheless, because the eigenvalues depend on

various parameters, we cannot make general conclusions as to the stability of the system. We

note, however, that if we denote the trace of the matrix A by T and the determinant d, then
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T ¼ �
DaB

Pr
þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1

� 	
, (26)

and

d ¼
σPrG3

DaLeLes
�
DuNRSr

Le
�
DuNRSr

ε
þ
BDuSr

Le
þ
DuRSr

Le
þ

NR

LeLes
þ

NR

Lesε
�

B

LeLes
�

R

LeLes

	
:

�
(27)

The trace is always negative, but the sign of determinant depends on the parameter values. If

d < 0 then

1�Nð ÞεDuSrRLesþ εB�NRLeð ÞDuSrLesþ εþ Leð ÞNLe < Bþ Rð Þε, (28)

suggesting a saddle point.

4. Method of solution

To study the influence of various physical parameters on the average Nusselt and Sherwood

numbers, we solved the nonlinear system of Eqs. (15)–(21) numerically using the multidomain

spectral collocation method. This is a novel technique for solving nonlinear initial value problems

and parabolic equations with large time domains. It has been suggested in the literature that the

method gives better accuracy compared to other methods such as finite difference and Runge-

Kutta methods [26]. To apply the multidomain spectral collocation to the nonlinear system of

equations, we first divide the interval 0;T½ � into subintervals Ωi ¼ ti�1; ti½ � for i ¼ 1, 2,⋯, p. The

transformation

t ¼
ti � ti�1

2
τþ

ti þ ti�1

2
(29)

is used to transform each subinterval Ωi into the interval �1; 1½ �. The system of Eqs. (15)–(21)

can be written in the form

dYi
1

dt
¼

Pr

Da
�BYi

1 �N Yi
2 þ Y4

� �
þ
NARn

Ra
Yi
6

� �
, (30)

dYi
2

dt
¼ RYi

1 � Yi
2 �DuYi

4 � Yi
1Y

i
3, (31)

dYi
3

dt
¼

1

2
Yi
1Y

i
2 � G Yi

3 þDuYi
5

� �
, (32)

dYi
4

dt
¼ RYi

1 �
1

Les
Yi

4 � SrYi
2 � Yi

1Y
i
5, (33)

dYi
5

dt
¼

1

2
Yi

1Y
i
2 � G

1

Les
Yi
5 þ SrYi

3

� 	
, (34)
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dYi
6

dt
¼

σR

ε
Yi
1 �

σ

Le
Yi
6 � Yi

2

� �
�
NAσ

ε
Yi
1Y

i
7, (35)

dYi
7

dt
¼

NAσ

2ε
Yi
1Y

i
7 �

G

Le
Yi

7 � Yi
3

� �
, (36)

subject to

Yi
n ti�1ð Þ ¼ Yi�1

n ti�1ð Þ for n ¼ 1, 2,⋯, 7: (37)

The first step in using the multidomain spectral collocation method (MDSCM) concerns the

quasilinearization of Eqs. (30)–(36) leading to a system of equations in the form

X7

n¼1

ai j;nð ÞrY
i
n, rþ1 �

dYi
j, rþ1

dt
¼ Ri

jr, (38)

subject to

Yi
n, rþ1 ti�1ð Þ ¼ Yi�1

n, rþ1 ti�1ð Þ for n ¼ 1, 2,⋯, 7: (39)

where ai j;nð Þr and Ri
jr for j ¼ 1, 2,…, 7 are given in the Appendix. Having linearized the equa-

tions, the second step is to integrate Eqs. (30)–(36). To this end, we use the Gauss-Lobatto nodes

τij ¼ cos
πj

Nc
, for j ¼ 0, 1,⋯, Nc: (40)

We approximate the derivatives of the unknown functions Yi
n, rþ1 tð Þ at the collocation points by

dYi
n, rþ1

dt
τij

� �
¼

XNc

k¼0
DjkY

i
n, rþ1 τ

j
j

� �
¼ DUi

n, rþ1

h i

j
, (41)

where D ¼ 2D= ti � ti�1ð Þ, D is the Chebyshev differentiation matrix and

Ui
n, rþ1 ¼ Yi

n, rþ1 τi0
� �

;⋯Yi
n, rþ1 τiNc

� �� �T
,

is a vector of the unknown functions at the collocation points. Substituting Eq. (41) into

Eqs. (38) and reducing the result into matrix form, we obtain

AUi
n, rþ1 ¼ Ri

n,

Ui
n, rþ1 τi�1

Nc

� �
¼ Ui

n τi�1
Nc

� �
, n ¼ 1, 2,⋯, 7:

(42)

where the matrices A ¼ Aij

� 

and Ri

n are given in the Appendix.
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5. Heat and mass transfer

The study of heat and mass transfer in a horizontal nanofluid layer heated from below and

cooled from above has important engineering applications. We define the rate of heat transfer

by the average Nusselt number Nu tð Þ where

Nu tð Þ ¼ 1þ
α
2π

Ð 2π
α

0
∂T
∂z dx

α
2π

Ð 2π
α

0
∂Tb

∂z dx

2

4

3

5

z¼0

þDu 1þ
α
2π

Ð 2π
α

0
∂C
∂z dx

α
2π

Ð 2π
α

0
∂Cb

∂z dx

2

4

3

5

z¼0

8
<

:

9
=

;: (43)

Substituting Eqs. (12) and (13) into Eq. (43), we obtain

Nu tð Þ ¼ 1þ
2

R
Y3 þDu 1þ

2

R
Y5

� 	
: (44)

Similarly, the rate of mass transfer stated in terms of the average Sherwood number is

Sh tð Þ ¼ 1þ
2

R
Y5 þ Sr 1þ

2

R
Y3

� 	
(45)

6. Results and discussion

We have studied the weakly nonlinear instability of nanofluid flow in a horizontal layer with

stress free boundary conditions. For numerical simulations, the parameter values were chosen

from the literature on nanofluid flow such as [4, 7]. In the literature, the critical Rayleigh

number is found when the Darcy number is very large. In this study, we investigated the

critical Rayleigh number for low Darcy numbers.

The method of solution described in Section 4 was used to solve Eqs. (15)–(21). All computations

are carried out up to a value of maximum time tmax ¼ 1, and solutions are obtained using initial

conditions selected in the neighborhood of stationary points. Periodic solution sets were

obtained for the system of nonlinear equations. We determined the rate of heat andmass transfer

as functions of time for different parameter values. The results are shown in Figures 2–4. Figure 2

shows the effect of the Dufour and Soret parameters on the Nusselt and Sherwood numbers with

time t. Figure 2(a) shows how the heat transfer coefficient changes with both the Dufour

parameter and time. The heat transfer coefficient increases with the Dufour parameter but

eventually settles to a steady value with time. In Figure 2(b), the Soret parameter is similarly

shown to enhance the mass transfer coefficient. We investigated the effect of the Prandtl and

Lewis numbers (see Figures 3 and 4). An increase in the Lewis number enhances both heat and

mass transfer in a nanofluid layer heated from below. However, Figure 3 shows that increasing

the Prandtl number reduces the amplitude of oscillatory heat and mass transfer. The Prandtl

number can lead to both positive and negative contributions to the Nusselt and Sherwood

numbers. It is interesting to note that our investigation shows that the magnetic field parameter

has very little effect on the heat and mass transfer for this type of flow.
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Figures 5–11 show the effect of the Rayleigh number on the trajectories projected onto the Yi;Yj

� �

phase planes. The solution sets provide a visual representation of the system’s behavior with

every phase point on the phase space representing the physical state of the system. The convective

solution sets for different values of R have been presented with the trajectories projected onto the

Yi;Yj

� �
phase planes. These trajectories spiral toward the fixed point for Rayleigh numbers from

102 to 104. The solution sets give spiral phase portraits as R increases and for the high Rayleigh

numbers, the trajectories spiral many times before they reach a fixed point.

Figures 5–8 show the phase portraits projected onto the Yi;Yj

� �
- plane correspond to a

simple spiral for R ¼ 100. As R is increased to 104, the complexity of the trajectories

Figure 2. The effect of cross-diffusive parameters on (a) the Nusselt number Nu and (b) the Sherwood number Sh for

Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5, Ra ¼ 1000 and various values of the Dufour and Soret

parameters.

Figure 3. The effect of Prandtl number Pr on (a) the Nusselt number Nu and (b) the Sherwood number Sh when

Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.
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increases leading to certain chaotic forms. Figures 8–11 show the trajectories in the three-

dimensional phase space. Here, we observe similar solution sets as in the two-dimensional

phase portraits.

Figure 5. The trajectories of the system of nonlinear equations projected on the Y1, Y2-plane when revised Rayleigh

number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2,

Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.

Figure 4. The effect of Lewis number on (a) the Nusselt number Nu and (b) the Sherwood number Sh when Da ¼ 0:05,

Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.

Figure 6. Trajectories of the system of nonlinear equations projected on the Y1;Y3ð Þ plane when the revised Rayleigh

number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 whenDa ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04,Q ¼ 10,Du ¼ 0:2, Sr ¼ 0:3,

Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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Figures 12 and 13 show the streamline, isotherm and isoconcentration contours in the nanofluid

flow for different values of the Darcy number and buoyancy ratio. Figure 12 displays the stream-

lines for various values of the buoyancy ratio term. Two different eddies are observed. The

clockwise and anticlockwise flows are shown via negative and positive stream function values,

respectively. The anticlockwise rotating flow occupies the largest area of the nanofluid layer.

For low buoyancy ratio parameters, the flow structure is significantly influenced by the buoyancy

within the whole enclosure. Increasing the buoyancy ratio causes the boundary layer thickness to

Figure 7. Trajectories of the system of nonlinear equations projected on the Y1;Y5ð Þ-plane showing the sensitive depen-

dence of the trajectories on the revised Rayleigh number for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05,

Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.

Figure 8. Trajectories of the system of nonlinear equations projected on the Y1;Y6ð Þ-plane showing the sensitive depen-

dence of the trajectories on the revised Rayleigh number for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05,

Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5:

Figure 9. The bifurcations in the three-dimension solution space Y1;Y2;Y3ð Þ for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104

when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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become thinner. Also, a high buoyancy ratio changes the flow structure, and this impacts signif-

icantly on the concentration field, which builds up a vertical stratification in the enclosure. It is

interesting to note that for N ¼ �25, the effect of the solutal buoyancy force is in the opposite

direction of the thermal buoyancy force. The isothermal and isoconcentration profiles are situated

toward the left wall, while for N ¼ 1, the thermal and solutal buoyancy forces are equal. For

N ¼ 25, the effect of solutal buoyancy force is in the same direction as the thermal buoyancy force.

In such cases, the isothermal and isoconcentration contours are mostly toward the right wall.

We observe that when N ¼ �25, the stream function values in the central eddies increase

because the thickness of the boundary layer increases with the buoyancy ratio. The streamlines

and the flow behavior are affected by the change in the buoyancy ratio, but the flow pattern

remains unaltered. As N decreases from 1 to�25, the streamlines become very dense to the left

side of nanofluid layer while when N increases from 1 to 25, the streamlines are less so. The

buoyancy forces that drive the nanofluid motion are mainly due to the temperature gradient.

Three different types of eddies are observed for the isoconcentration contours when N ¼ 25. Of

these, two have a clockwise rotation and one is anticlockwise. It is seen that the small eddy at the

right bottom edge is diminished asN decreases from 1 to�25. Here, the concentration boundary

layer decreases due to increasing N values, hence the buoyancy ratio has a significant influence

on the concentration gradient. As the buoyancy ratio N increases from 1 to 25 the isoconcen-

trations become very dense at the bottom of nanofluid layer.

Figure 10. Flow trajectories and bifurcations in the three-dimensional space Y1;Y2;Y6ð Þ for Rayleigh numbers (a)

R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.

Figure 11. Flow trajectories and bifurcations in the three-dimensional space Y1;Y6;Y7ð Þ for Rayleigh numbers (a)

R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.
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The effect of the Darcy number on the nanofluid flow in the porous medium is shown in detail in

Figure 13. The streamline patterns are similar to those depicted in Figure 12. However, as Da

increases from 0.05 to 0.07, the rotation of the streamlines changes. Similarly, the isotherm

patterns change with increasing Darcy numbers. The value of the center eddies increases with

increasingDa. IncreasingDa has the effect of increasing the effective fluid viscosity and reducing

the thermal and solutal boundary layers.

7. Conclusion

We have investigated the onset of thermal instability in a horizontal porous layer of infinite

extent in a cross-diffusive nanofluid flow. The focus of the study has been on stress free

boundary conditions with zero nanoparticle flux at the wall. A multidomain spectral colloca-

tion method was used to solve the system of nonlinear evolution equations. As the Rayleigh

Figure 12. The pattern of streamlines (top), isotherms (middle) and isoconcentration (bottom) for different values of the

buoyancy ratio N.

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals162

60



number increases to 104, the trajectories spiral many times before reaching a fixed point. The

nanofluid convection regime is complex for Rayleigh numbers higher than R ¼ 104, and the

flow pattern presents difficulties in interpreting correctly.

Additionally, a change in system parameters, such as an increase in the flow Lewis number,

improves the rate of heat and mass transfer in the nanofluid saturated porous media. The

Dufour parameter has the effect of increasing heat transfer, while increasing the Soret param-

eter increases the rate of mass transfer.
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A. Appendix

The terms ai j;nð Þr and Ri
jr for j ¼ 1, 2,…, 7 in Eq. (38) are given by

ai1;1ð Þr ¼ �γ3B, ai1;2ð Þr ¼ �γ3, ai1;4ð Þr ¼ �γ3N, ai1;6ð Þr ¼
γ3NARn

Ra
,

ai1;3ð Þr ¼ ai1;5ð Þr ¼ ai1;7ð Þr ¼ 0, ai2;1ð Þr ¼ R� Yi
3, r, ai2;2ð Þr ¼ �1, ai2;3ð Þr ¼ �Yi

1, r,

ai2;4ð Þr ¼ �Du, ai2;5ð Þr ¼ ai2;6ð Þr ¼ ai2;7ð Þr ¼ 0ai3;1ð Þr ¼ �
απ

2
ui2, r, ai3;2ð Þr ¼

1

2
Yi
1, r,

ai3;3ð Þr ¼ �G, ai3;5ð Þr ¼ �GDuai3;4ð Þr ¼ ai3;6ð Þr ¼ ai3;7ð Þr ¼ 0, ai4;1ð Þr ¼ R� Yi
5, r,

ai4;2ð Þr ¼ �Sr, ai5;3ð Þr ¼ �GSr

ai4;4ð Þr ¼ �
1

Les
, ai4;5ð Þr ¼ �Yi

1, r, ai4;3ð Þr ¼ ai4;6ð Þr ¼ ai4;7ð Þr ¼ 0, ai5;1ð Þr ¼
1

2
Yi
4, r,

ai5;4ð Þr ¼
1

2
Yi
1, r, a

i
5;5ð Þr ¼ �

G

Les
, ai5;2ð Þr ¼ ai5;6ð Þr ¼ ai5;7ð Þr ¼ 0, ai6;1ð Þr ¼ γ1 � γ2Y

i
7, r,

ai6;2ð Þr ¼
σ

Le
, ai6;6ð Þr ¼ �

σ

Le
, ai6;7ð Þr ¼ �γ2Y

i
1, r, ai6;3ð Þr ¼ ai6;4ð Þr ¼ ai6;5ð Þr ¼ 0,

ai7;1ð Þr ¼
γ2

2
Yi
6, r, a

i
7;3ð Þr ¼

G

Le
, ai7;6ð Þr ¼

γ2

2
Yi
1, r, ai7;7ð Þr ¼ �

G

Le
,

ai7;2ð Þr ¼ ai7;4ð Þr ¼ ai7;5ð Þr ¼ 0,

Ri
1r ¼ 0, Ri

2r ¼ �Yi
1, rY

i
3, rR

i
3r ¼

1

2
Yi

1, rY
i
2, r, Ri

4r ¼ �Yi
1, rY

i
5, r, Ri

5r ¼
1

2
Yi
1, rY

i
4, r,

Ri
6r ¼ �

σNA

ε
Yi
1, rY

i
7, r, Ri

7r ¼
σNA

2ε
Yi
1, rY

i
6, r,

where γ1 ¼
σR
ε , γ2 ¼

NAσ
ε and γ3 ¼

Pr
Da.

B. Appendix

The matrices Aij in Eq. (42) are given by

Ann ¼ diag an,nÞr
i

� �
�D, A12 ¼ diag ai1;2ð Þr

� �
, A16 ¼ diag ai1;6ð Þr

� �
,

A13 ¼ A14 ¼ A15 ¼ A17 ¼ O,

A21 ¼ diag ai2;1ð Þr

� �
, A23 ¼ diag ai2;3ð Þr

� �
, A24 ¼ diag ai2;4ð Þr

� �
, A25 ¼ A26 ¼ A27 ¼ O,

A31 ¼ diag ai3;1ð Þr

� �
, A32 ¼ diag ai3;2ð Þr

� �
, A35 ¼ diag ai3;5ð Þr

� �
, A34 ¼ A36 ¼ A37 ¼ O,

A41 ¼ diag ai4;1ð Þr

� �
, A42 ¼ diag ai4;2ð Þr

� �
, A45 ¼ diag ai4;5ð Þr

� �
, A43 ¼ A46 ¼ A47 ¼ O,

A51 ¼ diag ai5;1ð Þr

� �
, A53 ¼ diag ai5;3ð Þr

� �
, A54 ¼ diag ai5;4ð Þr

� �
, A52 ¼ A56 ¼ A57 ¼ O,

A61 ¼ diag ai6;1ð Þr

� �
, A62 ¼ diag ai6;2ð Þr

� �
, A67 ¼ diag ai6;7ð Þr

� �
, A63 ¼ A64 ¼ A65 ¼ O,
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A71 ¼ diag ai7;1ð Þr

� �
, A73 ¼ diag ai7;3ð Þr

� �
, A76 ¼ diag ai7;6ð Þr

� �
, A72 ¼ A74 ¼ A75 ¼ O,

where O is an N þ 1ð Þ � N þ 1ð Þ matrix of zeros and diag is an N þ 1ð Þ � N þ 1ð Þ diagonal

matrix.
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Chapter 4

Thermal instability in double-diffusive nat-

ural convection in an inclined open square

cavity

In this chapter, we present a study of thermal instability in double-diffusive convection in an in-

clined open cavity subjected to an inclined magnetic field. The evolution equations that describe

the amplitude of convection are obtained. These equations are solved numerically using a mul-

tidomain spectral collocation method. A trapping region for the solutions is obtained. In addition,

streamlines and heat transfer coefficients for different Rayleigh numbers and inclination angles are

presented.
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Thermal instability of double-diffusive
natural convection in an inclined open

square cavity1

O.A. I. Noreldin2, S.Mondal3, 4, P. Sibanda2

Abstract. The thermal instability of fluid layer is investigated in an inclined open square
cavity with an inclined magnetic field. A Galerkin-type method is used to solve the equations
in the case of linear stability, and in the nonlinear case a truncated Fourier series is used to
obtain a system of five general Lorenz type equations. A multi-domain spectral collocation method
was used to solve the differential equations that describe the evolution of the disturbances in the
nonlinear regime. The influence of the important physical parameters on the thermal instability is
investigated. The results are presented in terms of streamlines, isotherms, isoconcentrations, the
Nusselt and the Sherwood numbers. The trapping region provide useful information about the
trajectories. A limited phase space analysis with trajectories of the disturbances is presented.

Key words. Thermal instability, double-diffusive convection, inclined open cavity, multi-
domain spectral collocation method.

1. Introduction

The thermal instability of a Rayleigh–Benard problem with various physical con-
figuration is well reported in Chandrasekhar [1] and Drazin and Reid [2]. Also, Simó
et al. [3] examined the dynamics of particle trajectories in a Rayleigh–Benard prob-
lem. Laroze and Pleiner [4] studied thermal convection in a nonlinear non-Newtonian
magnetic fluid. Double diffusive convection in a fluid-saturated porous medium in
a square cavity has received considerable attention in recent years due to its wide
range of applications in engineering and science, for example in nuclear reactors,
packed beds, the cooling of electronic devices, solar energy, drying technologies and

1The authors are grateful to the University of KwaZulu-Natal, South Africa and Amity Univer-
sity, Kolkata, India for the necessary support.

2School of Mathematics, Statistics & Computer Science University of KwaZulu-Natal,
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3Department of Mathematics, Amity University, Kolkata, Newtown-700135, West Bengal, India
4Corresponding author; e-mail: sabya.mondal.2007@gmail.com

http://journal.it.cas.cz
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high performance insulation buildings, etc. Studies on natural convective heat trans-
fer in fluid-saturated porous media includes those by Nield and Bejan [5], Ingham
and Pop [6, 7], Bejan et al. [8] and Vafai [9]. In these studies it was shown that the
effect of the Lorentz force in an electrically conducting fluid is to suppress convection
currents by reducing the fluid velocity. For this reason, it has been suggested that
the presence of an external magnetic field can thus be an active control mechanism
in manufacturing processes.

Le Quere et al. [10] studied thermally driven laminar flow in cavities of rect-
angular cross-section. Chamkha and Al-Naser [11] investigated the laminar double
diffusive convective flow of a binary gas mixture in an inclined rectangular porous
enclosure. Wang et al. [12] analyzed natural convection and heat transfer in an in-
clined porous cavity with time-periodic boundary conditions. Double diffusive con-
vection in an electrically conducting fluid layer in inclined cavities was also studied
by Polate et al. [13] and Khanafer et al. [14]. Double diffusive magneto-convection
has received considerable attention because of its wide application in oceanography,
geophysics, astrophysics and engineering problem, Turner [15] and Rudraiah [16].
Hydromagnetic convection in a conducting fluid flow through a porous medium has
been studied by Bian et al. [17]. They found that the temperature and the velocity
are significantly modified through the application of a magnetic field. Revnic et al.
[18] studied the magnetic field effect on the unsteady free convection flow in a square
cavity filled with porous medium and with a constant heat generation. Mansour et
al. [19] investigated the effects of an inclined magnetic field on unsteady natural
convection in a porous inclined cavity with a heat source in the solid phase.

Recently, Mondal and Sibanda [20] studied unsteady double diffusive convection
in an inclined rectangular lid-driven enclosure for different magnetic field angles and
non-uniform boundary conditions. They found that different angles of the magnetic
field may suppress the convection flow with significant changes in the flow pattern.
Narayana et al. [21] studied double diffusive magneto-convection in viscoelastic
fluids. They found that the magnetic field has the effect of delaying the onset of
convection. Siddheshwar and Pranesh [22, 23] investigated the effect of the magnetic
field on the thermal instability under temperature and gravity modulation for an
electrically conducting fluid with internal angular momentum. Rudraiah et al. [24]
studied finite amplitude convection in a two-component fluid saturated porous layer.
They found that subcritical instabilities are possible for such fluid flow. Gaikwad
and Kouser [25] studied double diffusive convection in a porous layer saturated with
a couple stress fluid with an internal heat source, using linear and weakly nonlinear
stability analysis.

The interaction between the fluid velocity and electromagnetic forces gives rise to
the flow structure. The electromagnetic effect tends to stabilize the flow and suppress
the oscillatory instabilities. The instability in double diffusive convection can occur,
depending on whether the solute gradient is stabilizing or destabilizing. If the solute
gradient is destabilizing and the temperature gradient is stabilizing, the stationary
conductive state becomes unstable through a super-critical bifurcation. On the
contradictory, if the solute gradient is stabilizing and the temperature gradient is
destabilizing,the instability occurs in the form of a sub-critical bifurcation where
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the conductive state may lose stability to a growing oscillatory mode or may even
lead to the formation of convection rolls well below the critical Rayleigh number
[21]. Lehotzky et al. [26] studied the extension of the spectral element method for
stability analysis of time-periodic delay-differential equations.

From the literature, there are many studies on double diffusive convection in
square inclined open cavities. To the best of our knowledge none of the studies
deal with the analysis of double diffusive convection in open square inclined cavity.
The objective of this paper is to investigate thermal instability in double diffusive
natural convection in an inclined open cavity. The non-oscillatory and oscillatory
convection addressed in this work. The trapping region of the trajectories are de-
termined. The general Lorenz types equations have been solved numerically. The
multi-domain spectral collocation method (see [27]) has been used to solve the dif-
ferential equations. The effects of various controlling parameters are discussed in
terms of streamlines, isotherms and iso-concentrations and phase space analysis.

2. Mathematical formulation

Consider the two-dimensional laminar flow of an incompressible and electrically
conducting Newtonian fluid which is permeated by a uniform magnetic field B̄ with
strength B0 and an inclination angle φ. The inclined open square cavity has incli-
nation angle ϕ from the horizontal plane in an anticlockwise direction. We assume
that gravity acts in the vertical direction, all the fluid properties are constant and
fluid density variations are neglected except in the buoyancy force term. Under
these assumption the continuity, momentum, energy and concentrations equations
are given as follows (see Fig. 1):

Fig. 1. Physical configuration and coordinate system
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∂u

∂x
+
∂v

∂y
= 0, (1)

ρ0
(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ∇2u+ ρ0β1g(T − T∞) cosϕ

− ρ0β2g(C − C∞) cosϕ+ σ|B0|2(v sinφ cosφ− u sin2 φ),
(2)

ρ0
(∂v
∂t

+ u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ∇2v + ρ0β1g(T − T∞) sinϕ

− ρ0β2g(C − C∞) sinϕ+ σ|B0|2(u sinφ cosφ− v cos2 φ),
(3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α∇2T, (4)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= Ds∇2C. (5)

The variables (u, v) are the velocity components in the x and y directions re-
spectively, T,C are the temperature and concentration fields, respectively, g is the
gravitation acceleration, p is the pressure and the µ, ρ0, β1, β2, σ, α,Ds are the viscos-
ity, density, thermal expansion coefficient, solute expansion coefficient, the electrical
conductivity, thermal diffusivity and mass diffusivity, respectively.

Introducing the dimensionless variables

(X,Y ) =
(x, x)

L
, (U, V ) =

(u, v)L

α
, P =

pL2

ρ0α2
, (6)

τ =
αt

L2
, θ =

T − T∞
T1 − T∞

, S =
C − C∞
C1 − C∞

(7)

and substituting equations (6)–(7) into equations (1)–(5) we have

∂U

∂X
+
∂V

∂Y
= 0, (8)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+ Pr∇2U + Pr (Ra θ − RsS) cosϕ

+ Pr Ha2(V sinφ cosφ− U sin2 φ), (9)
∂V

∂τ
+ U

∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+ Pr∇2V + Pr (Ra θ − Rs) sinϕ

+ Pr Ha2(U sinφ cosφ− V cos2 φ), (10)
∂θ

∂τ
+ U

∂θ

∂X
+ V

∂θ

∂Y
= ∇2θ, (11)

∂S

∂τ
+ U

∂S

∂X
+ V

∂S

∂Y
=

1

Le
∇2S, (12)
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where Pr = ν/α is the Prandtl number, Ha = B0L/
√
ν is the Hartmann number,

Ra = gβ1(T1−T∞)L3/(αν) is the thermal Rayleigh number, Le = α/Ds is the Lewis
number, and Rs = gβ1(C1 − C∞)L3/(αν) is the concentration Rayleigh number.

The basic state solution is described as follows:

Ub = Vb = 0, Pb = Pb(Y ), θb(Y ) = 1− Y, Sb(Y ) = 1− Y. (13)

We superimpose small perturbation on the basic state solution to determine the
stability of the fluid and define the fluid quantities as follows:

U = Ub + U ′, V = Vb + V ′, θ = θb + θ′, S = Sb + S′, (14)

where the prime describes a perturbed quantity. Substituting (14) into equations
(8)–(12), introducing the stream function ψ as U ′ = ∂ψ′/∂Y, V ′ = −∂ψ′/∂X and
eliminating the pressure terms in equations (9)–(10) we obtain the perturbed equa-
tions
{

Pr∇4 − ∂

∂τ
∇2 + Pr Ha2

(
∂2

∂X∂Y
sinφ cosφ+

∂2

∂X2
cos2 φ+

∂2

∂Y 2
sin2 φ

)}
ψ′

+ Pr Ra

(
∂θ′

∂Y
cosϕ− ∂θ′

∂X
sinϕ

)
− Pr Rs

(
∂S′

∂Y
cosϕ− ∂S′

∂X
sinϕ

)
= J (ψ′,∇2ψ′),

(15)
∂ψ′

∂X
+

(
∂

∂τ
−∇2

)
θ′ = J (ψ′, θ′), (16)

∂ψ′

∂X
+

(
∂

∂τ
− Le−1∇2

)
S′ = J (ψ′, S′), (17)

where J (., .) is the Jacobian determinant.

3. Linear stability analysis

In this section we give a linear stability analysis of the fluid flow. We linearized
equations (15)–(17) by neglecting the nonlinear terms. Assume that all perturbed
quantities have the following form

ψ′ = Ψ ′(Y )esτ sin ax, (18)
θ′ = Θ′(Y )esτ cos ax, (19)
S′ = S′(Y )esτ cos ax, (20)
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where a is the wave number, and s = iω, where ω is the frequency of the oscillations.
We obtain the following eigenvalue problem by substituting (18)–(20) into (15)-(17)

{
Pr(D2 − a2)2 − s(D2 − a2) + Pr Ha2(D2 sin2 φ− a2 cos2 φ)

}
Ψ′

+Pr Ra(DΘ′ cosϕ+ a sinϕΘ′)− Pr Rs(DS′ cosϕ+ a sinϕS′) = 0, (21)

aΨ ′ +

{
(D2 − a2)− s

}
Θ′ = 0, (22)

aΨ ′ +

{
Le−1(D2 − a2)− s

}
S′ = 0, (23)

where D(·) = d
dY (·). Subject to the boundary conditions

Ψ ′ = D2Ψ ′ = DΘ′ = DS′ = 0 at Y = 0 and 1. (24)

We employ a Galerkin type weighted residual method to obtain approximate
solutions of the above system of ordinary differential equations by setting

Ψ ′ =

N1∑

n=1

anΨn, Θ
′ =

N1∑

n=1

bnΘn, S
′ =

N1∑

n=1

cnSn, (25)

and choosing the trial functions:

Ψn = sinnπY, Θn = Sn = cosnπY. (26)

Substituting (25)–(26) into (21)–(23), we obtain a system of (3 × N1) linear
algebraic equations with (3 × N1) unknowns an, bn, cn for n = 1, 2, · · · , N1. For
simplicity we confine ourselves to the one-term Galerkin approximation with N1 = 1.
Thus gives

AX̃ = 0 (27)

where X̃ = (a1, b1, c1) and

A =




Prγ2 − sγ − Pr Ha2δ1 −Pr Raδ2 PrRsδ2
a −γ − s 0
a 0 − γ

Le − s


 , (28)

where γ = π2 + a2. For non-trivial solutions, we require the determinant of (28) to
vanish. We obtain the thermal Rayleigh number Ra in terms of other parameters,

Ra =

(
γ2 − s

Prγ −Ha2δ1
)
(γ + s)

aδ2
+ Rs Le

γ + s

γ + sLe
, (29)

where δ1 = π2 sin2 φ+ a2 cos2 φ and δ2 = π cosϕ− a sinϕ.
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Stationary convection occurs when s = 0 and oscillatory convection occurs when
s = iw. The non-oscillatory and oscillatory convection regimes are discussed below.

3.1. Non-oscillatory convection

Non-oscillatory convection arise when s = 0, we obtain the stationary Rayleigh
number,

Rast =
(π2 + a2)3 −Ha2δ1(π2 + a2)

aδ2
+ Rs Le. (30)

When Rs = 0, the magnetic field inclination angle φ = 3π/2 and the inclination
angle of the cavity ϕ = π/2, then we obtain the stationary Rayleigh number

Rast =
π2 + a2

a2
((π2 + a2)2 + Ha2π2). (31)

This result agrees with the result obtain by Chandreasekhar [1]. We obtain the crit-
ical wave number ac and corresponding critical Rayleigh number Rac by minimizing
the stationary Rayleigh number,

∂

∂a2
(Rast) =

∂

∂a2

(
(π2 + a2)3 + Ha2π2(π2 + a2)

a2

)
= 0, (32)

which implies that

2a6 + 3π2a4 − π6 − π4Ha2 = 0. (33)

By setting x = a2/π2 we obtain

2x3 + 3x2 − 1−Ha2/π2 = 0. (34)

This equation depends only on the Hartmann number hence, the influence of the
magnetic field on the onset of convection will be significant. If we assume Ha to
be very large then we obtain ac = π/

√
2 and the corresponding critical Rayleigh

number Rac is Rac = 27
4 π

4.
This result again agrees with Chandrasekhar [1] and Nield and Kuznetsov [28].

3.2. Oscillatory convection

Substituting s = iω into equation (29) and imposing the condition ω2 > 0 (which
is required for ω to be real to get over stability) we obtain

Raosc =

(
γ2 − iω

Prγ −Ha2δ1
)
(γ + iω)

aδ2
+ Rs Le

γ + iω

γ + iωLe
. (35)
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Equation (35) can be reduced to

Raosc = ∆1 + iω∆2, (36)

where ∆1 and ∆2 are the real and imaginary parts given as follows:

∆1 =
γ
(
Pr
(
γ2 − δ1Ha2

)
+ ω2

)

aδ2Pr
+

Le Rs
(
γ2 + ω2Le

)

γ2 + ω2Le2
, (37)

∆2 = ω

(
Pr
(
γ2 − δ1Ha2

)
− γ2

aδ2Pr
− γ (Le− 1) Le Rs

γ2 + ω2Le2

)
. (38)

Since the Rayleigh number is always real, this implies that ∆2 = 0. Therefore, we
obtain the angular frequency ω of the oscillatory convection as

ω2 =
aδ1Pr(γ(Le− 1)Le Rs− γ2(Pr(γ2 − δ1Ha2)− γ2)

Le2(Pr(γ2 − δ2Ha2)− γ2)
. (39)

The oscillatory convection is then defined by

Raosc =
γ
(
Pr
(
γ2 − δ1Ha2

)
+ ω2

)

aδ2Pr
+

Le Rs
(
γ2 + ω2Le

)

γ2 + ω2Le2
. (40)

4. Nonlinear stability

The nonlinear stability analysis is presented using a minimal truncated Fourier
series that consists of two terms. The linear stability analysis fails to provide insights
into the convection amplitudes and the rate of heat and mass transfer.

We assume a minimal truncated Fourier series to describe the finite amplitude
convection defined by

ψ′ = A11(τ) sin ax sinπy, (41)
θ′ = B11(τ) cos ax sinπy +B02(τ) sin 2πy, (42)
S′ = C11(τ) cos ax sinπy + C02(τ) sin 2πy, (43)

where A11, B02, B02, C11 and C02 are time dependent convective amplitudes. Non-
linear autonomous equations are obtained after substituting equations (41)–(43) into
(15)–(17) and introducing new variables

Y1 =
aπ

γ
A11, Y2 = −πRB11, Y3 = −πRB02, (44)

Y4 = −πRC11, Y5 = −πRC02, τ
∗ = γτ,G =

4π2

γ
. (45)
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After dropping the asterisk from τ for clarity, we obtain

Ẏ1 = Pr(−bY1 + sinϕ(Y2 −NY4)), (46)

Ẏ2 = RY1 − Y2 − Y1Y3, (47)

Ẏ3 =
1

2
Y1Y2 −GY3, (48)

Ẏ4 = RY1 − Y1Y5 − Le−1Y4, (49)

Ẏ5 =
1

2
Y1Y4 −

G

Le
Y5, (50)

where b = Ha2(a2 cos2 φ+π2 sin2 φ)/γ2−1, R = a2Ra/γ3 is revised Rayleigh number
and N = Rs/Ra is the buoyancy ratio.

4.1. Steady finite amplitude convection

The general Lorenz type model (46)–(50) has the steady state solutions

Y 2
1 =

−B ±
√
B2 − 4AC

2A
, Y2 =

2GRY1
2G+ Y 2

1

,

Y3 =
RY 2

1

2G+ Y 2
1

, Y4 =
2GLeRY1

2G+ Le2Y 2
1

, Y5 =
Le2RY 2

1

2G+ Le2Y 2
1

, (51)

where A = bLe2, B = 2G(b(1+Le)+RLe(Le−N) sinϕ) and C = 4G2(1+R(1−
N Le) sinϕ). The equations (46)–(50) are uniformly bounded in time and dissipative
in the phase space. To this end, we obtain

5∑

n=1

∂Ẏn
∂Yn

= −
(

Prb+ 1 +G+ Le−1 +GLe−1
)

(52)

Equation (52) will always be negative if and only if b ≥ 0 implies that Ha2 ≥
γ/(a2 cos2 φ + π2 sin2 φ). Therefore, the trajectories may be attracted to a fixed
point or limit cycle or any strange attractor. Also, from equations (46)–(50), the
volume V0 at time t = 0 is contracted by the flow into a volume element defined by

V = V0 exp

{
−
(

Pr b+ 1 +G+ Le−1 +GLe−1
)
t

}
(53)

in time t. Thus, each volume containing the trajectory of this system of equations
shrink to zero as t → ∞. Further, the system of equations (46)–(50) are invariant
under the transformation S(Yn) = −Yn for n = 1, 2, · · · , 5.
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4.2. The trapping region

In the classical Lorenz model, the trajectories are known to remain within a
finite volume. The trapping region of the trajectories of the system of equations
(46)–(50) is a smooth real-valued function Σ(Λ(t)), where Λ(t) is the solution of the
system of equations (46)–(50) (see [29]). This function has to satisfy the condition
Σ(Λ(t)) −→ ∞ as ‖ Λ ‖−→ ∞. The nonlinear terms keep the trajectories confined.
We follow the procedure of Sidddheshwar and Titus [29] to find the trapping region
Σ(Λ) as follows

dΣ

dt
= Y1

dY1
dt

+
1

2
Y2

dY2
dt

+ (Y3 −R−
sinϕ

2
)

d(Y3 −R− sinϕ
2 )

dt
+

1

2
Y4

dY4
dt

+ (Y5 −R+
N sinϕ

2
)

d(Y5 −R+ N sinϕ
2 )

dt
. (54)

We obtain the trapping region of the system (46)–(50) as an ellipsoid in five
dimensions by integrating the above equations which gives

Y 2
1 +

Y 2
2

2
+ (Y3 −R−

sinϕ

2
)2 +

Y 2
4

2
+ (Y5 −R+

N sinϕ

2
)2 = 2. (55)

For the stability of the fixed point we linearized the general autonomous Lorenz-
type equations (46)–(50) around the fixed point, we obtain

J(0, 0, 0, 0, 0) =




−Pr b Pr sinϕ 0 −NPr sinϕ 0
R −1 0 0 0
0 0 −G 0 0
R 0 0 −Le−1 0
0 0 0 −GPr−1



. (56)

The eigenvalues of equation (56) are

λ1 = −1, λ2 = −G, λ3 = −GLe2, λ±4 =
−ζ ±

√
ζ2 − 4Prη

2
, (57)

where ζ = Pr b+ Le−1 and η = b
,Le−1 +R sinϕ(N −Le−1). It’s clear that λ1, λ2 and λ3 all have negative real parts.
While λ±4 are have negative real part if and only if ζ2− 4Prη < 0. Hence, the fixed
point (0, 0, 0, 0, 0) is stable.

5. Method of solution

Since an analytical solution of equations (46)–(50) is not possible, we solved the
equations numerically. We used a newly developed multi-domain spectral collocation
method to solve this system of equations [27]. To apply the method first divided
the interval [0, T ] into sub-intervals Ωi = [ti−1, ti] for i = 1, 2, · · · , p and use the
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transformation
t =

ti − ti−1
2

τ +
ti + ti−1

2
(58)

to transform each sub-interval to [−1, 1]. The Gauss-Lobatto collocation points are
defined by

τ ij = cos
πj

M
, for j = 0, 1, · · ·M. (59)

The derivatives at the collocation points of the unknown functions Y in,r+1(t) are
given by

dY in,r+1

dt
(τ ij) =

M∑

k=0

DjkY
i
n,r+1(τ jj ) = DU i

n,r+1, (60)

where D = 2D/(ti − ti−1). D is the Chebyshev derivative which is given in [27]
and U i

n,r+1 = (Y in,r+1(τ i0), · · ·Y in,r+1(τ iM )) is the vector of the unknown functions at
the collocation points and r is the number of iteration. Now substituting these into
equations (46)–(50) and reducing the outcomes in the matrix form




A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55







U i
1,r+1

U i
2,r+1

U i
3,r+1

U i
4,r+1

U i
5,r+1




=




Ri
1,r

Ri
2,r

Ri
3,r

Ri
4,r

Ri
5,r




(61)

where the matrices Aij and Ri
n are given as follows:

A11 = d(−bPr), A12 = d(Pr sinϕ), A14 = d(−N Pr sinϕ), A13 = A15 = 0

A21 = d(R− Y i3,r), A22 = d(−1), A23 = d(−Y i1,r), A24 = A25 = 0

A31 = d(
Y i2,r

2
), A32 = d(

Y i1,r
2

), A33 = d(−G), A34 = A35 = 0

A41 = d(R− Y i5,r), A44 = d(− 1

Le
), A45 = d(−Y i1,r), A42 = A43 = 0

A51 = d(
Y i4,r

2
), A54 = d(

Y i1,r
2

), A55 = d(− G
Le

), A52 = A53 = 0,

(d denoting diagonal matrix) and the right-hand side matrices are

Ri
1,r = 0, Ri

2,r = −Y i1,rY i3,r, Ri
3,r = 1/2(Y i1,rY

i
2,r),

Ri
4,r = −Y i1,rY i5,r, Ri

5,r = 1/2(Y i1,rY
i
4,r).
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6. Heat and mass transfers

Heat and mass transfer rates in terms of the Nusselt number (Nu) and Sherwood
number (Sh) can be calculated with the help of the above solution method. The
dimensionless temperature gradient and concentration gradient of the hot wall are
defined as

Nu = − a

2π

∫ a
2π

0

(
∂Θ

∂Y

)
|Y=0 dX = −2πC =

2

R
Y3 (62)

Sh = − a

2π

∫ a
2π

0

(
∂S

∂Y

)
|Y=0 dX = −2πE =

2

R
Y5. (63)

7. Results and discussion

The main purpose of our investigation was to study the thermal instability in
double-diffusive convection in an electrically conducting fluid in an inclined open
square cavity using linear and weakly nonlinear stability analysis. Analytical expres-
sions for the stationary and oscillatory Rayleigh numbers have been obtained using
linear stability analysis. Moreover, the critical Rayleigh number and correspond-
ing critical waver number for the onset of non-oscillatory convection are determined
here. The linear stability theory fails to give a good analysis of nonlinear regime.
Therefore, the finite amplitude convection is employed here to study the chaotic
behavior of the system and investigate the heat and mass transfer rate of the fluid.
So, the nonlinear stability analysis has been discussed here numerically using multi-
domain spectral collocation method. Also, the effects of various parameters on heat
and mass transfer in terms of Nusselt number and Sherwood number are seen here.
In this study, the Lewis number has to change its value from 0.1 to 10, the buoyancy
ratio various its value from −10 to 10 and Prandtl number has the value 0.7 and
above.

Figure 2 shows the stationary Rayleigh stability curves for various parameters.

Fig. 2. Effect of critical Rayleigh number Ra with wave number α for various
values of the Lewis number Le–left, of the concentration Rayleigh number

Rs–middle, of the Hartmann number Ha–right

Its left and middle parts show the effect of increasing the Lewis number Le and
concentration Rayleigh number Rs on stationary Rayleigh number. It can be seen
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that an increasing value of Le and Rs increase the value of stationary Rayleigh
number, which means that both Le and Rs have significant effect on stabilizing
the system. The right part of Fig. 2 shows the effect of different values of Hartmann
number Ha on the stationary Rayleigh number. It can be observed that an increasing
values of Ha increases the value of stationary Rayleigh number which stabilize the
system. It is conventional that the magnetic field offers a resistance to the motion
of the fluid due to Lorenz force. As a result a huge amount of energy is used by the
system to overcome this resistance. Then the convection is delayed the stabilization
effect of those parameters on fluid.

Figure 3 shows the effect of different values of Ha on oscillatory Rayleigh num-
ber with respect to the concentration Rayleigh number, Lewis number and Prandtl
number, respectively. It is seen that increasing value of Ha has a significant effect
on increasing oscillatory Rayleigh number which stabilize the system. Hence, the
influence of these parameters are used to stabilize the double diffusive convection on
an inclined cavity.

Fig. 3. Effect of Hartmann number Ha on critical oscillatory Rayleigh number
Raosc for various values of the concentration Rayleigh number Rs–left, of the

Lewis number Le–middle, of the Prandlt number Pr–right

Figure 4 shows the effect of Ha on behavior of the Nusselt and Sherwood numbers
with respect to time.

Fig. 4. Variation of average Nusselt number Nu (left) and average Sherwood
number Sh (right) with time t for different values of Hartmann number Ha

It was found that increasing Ha increases both the rate of heat and mass transfer.
It was also observed that both the Nusselt and Sherwood numbers tend to the state
steady faster for small values of Ha than for large values of Ha.

Figure 5 shows the influence of Pr on the Nusselt and Sherwood numbers with
respect to time. It is seen that increasing Pr increases both the Nusselt and Sherwood
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numbers. Also, it is seen that the rates of heat and mass transfers tend to their steady
state after some time faster for large value of Pr than small value of Pr.

Fig. 5. Variation of average Nusselt number Nu (left) and average Sherwood
number Sh (right) with time t for different values of Prandtl number Pr

Figure 6 displays the transient behavior of Nusselt number and Sherwood number
for various values of Le.

Fig. 6. Variation of average Nusselt number Nu (left) and average Sherwood
number Sh (right) with time t for different values of Lewis number Le

The Nusselt number and Sherwood number decrease with increasing value of Le
from 0.1 to 10. It is seen that the Nusselt number and Sherwood number attain
their steady state faster for the larger values of Le. It is seen that initially Nusselt
number and Sherwood number fluctuate and this fluctuation decrease as the time
increases to the steady state values. Again, it is observed that increasing Pr increases
the amplitude of fluctuations in these transient curves but also helps Nusselt and
Sherwood numbers to reach their steady state values much earlier where the opposite
trend can be found for Ha. But for increasing values of Le increases the amplitude of
fluctuations in these transient curves and the Nusselt and Sherwood numbers reach
their steady state values much earlier than small value of Le.

Figures 7–10 display the phase space of YiYj plane for the sensitivity of different
revised Rayleigh number Ra. However, these phase space plots are staying within
the finiteness of an ellipsoid nature given by equation (55) (within the trapping
region). It can be observed that the trajectories occupies a finite phase space region.
However this finiteness of the phase space region is due to the nonlinear terms in
the system of equations (46)–(50), which turn the trajectories into a finite region.
Furthermore, these trajectories enter into trapping region and look like an ellipsoid
given by equation (55) toggling between the phase space around the critical points.
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The "saddle points" can be observed in "butterfly diagrams". Its seem that various
bifurcations reported in Sparrow [30] and Siddheshwar and Titus [29] hold good
comparison with the present results. Also our results show that there exist closed
orbits.

Fig. 7. Evolution of system of nonlinear equation solution shown the sensitivity to
Rayleigh number when the solution is projected into Y1Y2 plane: left–R = 50,

middle–R = 100, right–R = 150

Fig. 8. Evolution of system of nonlinear equation solution shown the sensitivity to
Rayleigh number when the solution is projected into Y1Y3 plane: left–R = 50,

middle–R = 100, right–R = 150

Fig. 9. Evolution of system of nonlinear equation solution shown the sensitivity to
Rayleigh number when the solution is projected into Y3Y4 plane: left–R = 50,

middle–R = 100, right–R = 150

Figure 11 displays the three-dimensional bifurcations which are solution of equa-
tions (46)–(50) as the revised Rayleigh number changed from 50 to 150 with fixed
Prandtl number Pr = 10 and Lewis number 0.1. These chaotic structures are similar
to those in the two-phase space. The only differences are in the shape of the phase
space. The phase space in three-dimensional bifurcations are different for different
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Fig. 10. Evolution of system of nonlinear equation solution shown the sensitivity
to Rayleigh number when the solution is projected into Y2Y5 plane: left–R = 50,

middle–R = 100, right–R = 150

space combinations. Some of these bifurcations have not been seen in literature be-
fore. It can, however, be observed that the system stabilizes with increasing values
of R.

Fig. 11. Evolution of system of nonlinear equation solution shown the sensitivity
to Rayleigh number when the solution is projected into Y2Y3Y4 plane:

left–R = 50, middle–R = 100, right–R = 150

The relative importance of the thermal and solutal buoyancy forces is denoted
by the buoyancy ratio N , and is defined as the ratio of the solutal buoyancy force
and the thermal buoyancy force. Here, this parameter is varied through the range
−10 < N < 10. The concentration-dominated opposing flow can be seen when
N = −10, pure thermal convection dominated flow for N = 0, and concentration-
dominated aiding flow can be seen for N = 10. The flow is steady when N = 1, this
is because the two buoyancy forces are equal and oppose each other. The buoyancy
forces that drive the fluid motion are mainly due to the gradients of temperature
if N is sufficiently small which indicates that the mass buoyancy is greater than
the thermal buoyancy. Negative value of N represents the opposing nature of two
buoyancy forces due to the negative coefficient of concentration expansion. In this
limit, the so-called heat transfer-driven flows, the distribution of constituent does
not influence the flow pattern and the heat transfer rate. The flow are mainly due
to gradients of solute concentration due to solutal gradients if N > 1. The negative
values of streamlines, isotherms and iso-concentration indicate clockwise rotation
and positive value indicate anticlockwise rotation.

Figures 12–14 display the effect of different buoyancy ratios on the streamline,
isotherm and iso-concentration profiles for different magnetic field angle when the
inclination angle of the cavity is fixed at angle 90◦ and the bottom wall is heated.
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Fig. 12. The streamlines, isotherms and iso-concentration for different values of
the buoyancy ratio N , inclination angle ϕ = 90◦ and magnetic angle φ = 45◦

As expected, due to the cold vertical walls, fluids rise up from middle portion of
the bottom wall and flow down along the two vertical walls forming two symmetric
rolls clockwise and anticlockwise rotations inside the cavity. Actually, the fluid
circulation is strongly dependent on buoyancy ratio and different magnetic field
angles. Figure 12 illustrates that the streamlines, isotherms and iso-concentrations
for magnetic field angle φ = 45◦ and different values ofN which are mentioned above.
It is seen from this figure that the flow is seen to be very week for N = −10 and
N = 1 compared to other streamline graph for N = 10. Therefore, the temperature
distribution is similar to that with stationary fluid and the heat transfer will be
purely conduction. During conduction dominant heat transfer, some isotherms ≤ 5
occur symmetrically near the top corners of the side walls in the enclosure and some
isotherm are concentrated at the bottom wall. The other isotherms are smooth
curves which span entire enclosure in clockwise and anticlockwise directions. But
the isotherms are mainly concentrated near two bottom edges and top wall of the
cavity when N = 0. And single eddy with clockwise rotation can be found at the
center of the cavity with highest value 15. The similar type of iso-concentrations
can be found as isotherms for N = −10 and N = 1. But, it can be seen five different
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types of iso-concentration contours due to the higher value of N i.e, N = 10 and
magnetic field angle φ = 45◦.

Figures 13 and 14 show the streamlines,isotherms and iso-concentration for high
values of the magnetic field angle φ and different values of N compared to Fig. 12.
Figure 13 depicts the effect of changing the magnetic field angle to φ = 90◦ and
different values of N on streamlines, isotherms and iso-concentrations. The main
difference compared to Fig. 12 is that the flow is stronger for any value ofN compared
to the streamline values in Fig. 12. The isotherms are due to heat conduction when
N = −10 and similar patterns as in Fig. 12 can be observed. However, the isotherms
patterns change as N increases in value, showing that the isotherm pattern depends
on N . It is also observed that the iso-concentrations depend mainly on the magnetic
field angle since large changes can be seen as the magnetic field angles. We found at
least four eddies with different patterns of iso-concentrations due to the increasing
value of the magnetic field angle.

Fig. 13. The streamlines, isotherms and iso-concentration for different values of
the buoyancy ratio N , inclination angle ϕ = 90◦ and magnetic angle φ = 90◦

Figure 14 displays the effect of a higher magnetic field angle i.e., 135◦ for dif-
ferent values of N on the streamlines, isotherms and iso-concentrations. When the
magnetic field angle changes from φ = 90◦ to φ = 135◦, the streamlines pattern does
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no change while the values of central eddies changed. As the magnetic field angle
increased from 45◦ to 135◦, the isotherm and iso-concentration patterns changed and
the values of the central eddies increased. The isotherms are smooth curves which
span the entire enclosure in clockwise and anticlockwise directions for higher values
of N . Also, as the buoyancy ratio increased from 1 to 10, the iso-concentration
eddies became larger due to increasing solutal concentration gradients.

Fig. 14. The streamlines, isotherms and iso-concentration for different values of
the buoyancy ratio N , inclination angle ϕ = 135◦ and magnetic angle φ = 90◦

8. Conclusion

In this paper, the focus of the study was on the linear and nonlinear stability
analysis of flow in an open inclined square cavity. The effect of Hartmann number
on the stationary and oscillatory convection has been presented graphically. The
stability of general Lorenz types equations has been studied. The nonlinear equa-
tions were solved numerically using a multi-domain spectral collocation approach.
The influence of various parameters on the flow has been discussed. The following
conclusion can drawn from this study.
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1 . The magnetic field parameter has the effect of increasing both stationary and
oscillatory convection, hence this has the effect of stabilizing the fluid motion.

2 . The trajectories in phase space of the general Lorenz types equations has been
shown to be bounded within a finite ellipsoidal trapping region. Also, the
chaotic behaviour is shown for the inclined open square cavity.

3 . The streamlines are seen to be weak when φ = 45◦ but stronger for higher value
of φ than φ = 45◦. While some isotherms occur symmetrically near the top
corners of the side walls in the enclosure and some isotherm are concentrated
at the bottom wall due to the conduction dominant heat transfer for N = −10
when φ = 45◦ and 90◦ but opposite trend is observed for φ = 45◦ and φ = 135◦.
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Chapter 5

Thermoconvective instability in a rotating fer-

romagnetic fluid layer with temperature mod-

ulation

In this chapter, we study the thermoconvective instability in ferromagnetic fluid confined between

two parallel infinite plates with temperature modulation at the walls. Analytical expressions for the

Rayleigh number and the magnetic Rayleigh number are obtained. The heat transfer coefficient is

analyzed in both in-phase and out-of-phase modulation. The bifurcation solutions for some values

of the Rayleigh number are presented. In addition, streamlines and heat transfer coefficients for

different Rayleigh numbers are presented.
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aries. We use weakly nonlinear stability theory to ana-
lyze the stationary convection in terms of critical Rayleigh
numbers. The influence of parameters such as the Taylor
number, the ratio of the magnetic force to the buoyancy
force and the magnetization on the flow behaviour and
structure are investigated. The heat transfer coefficient is
analyzed for both the in-phase and the out-of-phase mod-
ulations. A truncated Fourier series is used to obtain a
set of ordinary differential equations for the time evolu-
tion of the amplitude of convection for the ferromagnetic
fluid flow. The system of differential equations is solved
using a recent multi-domain spectral collocation method
that has not been fully tested on such systems before. The
solutions sets are presented as sets of trajectories in the
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1 Introduction
Ferromagnetic fluids are colloids consisting of nanometer-
sized magnetic particles suspended in a fluid carrier. The
magnetization of a ferromagnetic fluid depends on the
temperature, the magnetic field, and the density of the
fluid. The magnetic force and the thermal state of the fluid
may give rise to convection currents. Studies on the flow
of ferromagnetic fluids include, for example, Finalyson [1]
who studied instabilities in a ferromagnetic fluid using
free-free and rigid-rigid boundaries conditions. He used
the linear stability theory to predict the critical Rayleigh
number for the onset of instability when both a magnetic
and a buoyancy force are present. The generalization of
Rayleigh Benard convection under various assumption is
reported by Chandrasekhar [2]. In the last few decades the
study of heat transfer in ferromagnetic fluids has attracted
many researchers due to the potential application of these
fluids in industry, such as in the sealing of rotating shafts,
ink, and so on. An authoritative introduction to research
on magnetic fluids is given by Rosensweig [3].

Schwab et al. [4] studied the Finlayson problem exper-
imentally in the case of a strong magnetic field and deter-
mined the parameters for the onset of convection. Their
results were shown to be in good agreement with those
of Finlayson [1]. Stiles and Kagan [5] extended the experi-
mental problem reported by Schwab et al. [4] by introduc-
ing a strong magnetic field. A weakly nonlinear stability
analysis was used by Russell et al. [6] for magnetized fer-
rofluids heated from above with the Rayleigh number as
the control parameter for the onset of convection. They
showed that heat transfer depends on the temperature dif-
ference between the bounding surfaces.

The rotation of fluids is an interesting topic that has
been studied by, for example, Greenspan [7]. The classical
Rayleigh-Benard problem when the fluid layer is rotating
is well known in the case of ordinary viscous fluids and
has been reported by Chandrasekhar [2]. However, ferro-
magnetic fluids are known to exhibit very peculiar char-
acteristics when set to rotate. Demonstrating the effect of
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rotation on convection in ferromagnetic fluids is scientif-
ically important to researchers. Gupta and Gupta [8] ex-
amined the onset of convection in a ferromagnetic fluid
heated from below and rotating about a vertical axis sub-
ject to a uniformmagnetic field. They concluded that over-
stability may not occur for Prandtl numbers smaller than
unity. The thermo-convective instability in a rotating fer-
rofluid was further analyzed by Venkatasubramanian and
Kaloni [9]. They presented both analytical and numerical
results for free and rigid boundary conditions. Their re-
sults were in good agreement with those of Finlayson [1]
and Chandrasekhar [2] for some limiting cases. Thermo-
convection in a ferromagnetic fluid has been studied by
other researchers, for instance, [10, 12].

The problem associated with convection in ferromag-
netic fluids is both relevant and mathematically challeng-
ing. The unmodulated Rayleigh Benard problem of a ferro-
magnetic fluid has been extensively studied. The effect of a
magnetic modulation on the stability of a magnetic liquid
layer heated from above was studied by Aniss et al. [13].
They used the Floquet theory for their study of the onset
of convection. The study showed the possibility of a com-
petitive interaction between harmonic and subharmonic
modes at the onset of convection. Convective instability in
a ferromagnetic fluid layer with time-periodic modulation
in the temperature field was investigated by Singh and Ba-
jaj [14] using the linear stability theory and the classical
Floquet theory. Their result agrees with those of Aniss et
al. [13].

Convection in a rotating horizontal fluid layer con-
fined in a porous medium with temperature modulation
at the boundary was studied by Bhadauria [19]. He investi-
gated the stability of the flow using the Galerkin method
and the Flouquet theory. In this study we analyze ther-
moconvective instability in a rotating ferromagnetic fluid
layerwith timeperiodic temperature boundary conditions.
The fluid layer is heated from below and rotates about the
vertical axis subject to a uniform magnetic field. We as-
sume two stress free and two rigid boundary conditions.
The Ginzburg Landau equation is obtained, see [20] for de-
tails on the relevance of the Ginzburg Landau equation.
Nonlinear ordinary differential equations of the Lorenz
type are obtained and solved numerically using the multi-
domain spectral collocation method [16–18]. This method
has not been fully tested before on evolution equations of
this nature, hence the accuracy of solutions obtained us-
ing this method is also a matter of concern in this study.
Heat transfer in the rotating horizontal fluid layer is dis-
cussed.

2 Mathematical formulation
Consider a ferromagnetic fluid confined between two infi-
nite horizontal plates at z = −h/2 and z = h/2. The layer
is heated from below and cooled from above, and is rotat-
inguniformly about the vertical axiswith constant angular
velocity Ω. The lower and upper plates are subjected to an
oscillatory temperature T0+∆T[1+ϵ2 cos(ωt+φ)] whereω
is the modulation frequency and φ is the phase angle. The
Oberbeck-Boussinesq approximation is assumed to be ap-
plicable. ThemagnetizationM of the ferrofluid is assumed
to be parallel to the magnetic field H. The equations de-
scribing the fluid motion under these assumptions are the
continuity equation, modified momentum equation, en-
ergy equation and Maxwell’s equations (Finlayson [1] and
Gupta and Gupta [8]):

∇ · V = 0, (1)

ρ0
DV
Dt = −∇P′ + µ∇2V + ρg

+∇ · (HB) + 2ρ0V × Ω) +
ρ0
2 ∇(|Ω × r|), (2)

[︃
ρ0CV .H − µ0H ·

(︂
∂M
∂T

)︂

V ,H

]︃
DT
Dt

+µ0T
(︂
∂M
∂T

)︂

V ,H
· DHDt = κ∇2T + Φ, (3)

∇ · B = 0; ∇ ×H = 0, (4)

where V is the velocity field, ρ0 is the density at the am-
bient temperature, P′ = P + µ0

2 H
2 is the pressure, µ is the

viscosity, g is the gravitational body force, B is the mag-
netic induction, µ0 is the magnetic permeability, T is the
temperature, κ is the thermal conductivity, CV ,H is the heat
capacity at constant volume and magnetic field, α is the
thermal expansion coefficient and Φ is the viscous dissi-
pation. The magnetization and magnetic field are related
by the formula

B = µ0(H +M). (5)

The magnetization is dependent on the temperature and
magnitude of magnetic field, so that

M = H
HM(H, T). (6)

Equation (6) is linearized using the Taylor expansion

M = M0 + χ(H −H0) − K(T − T1), (7)
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where χ ≡ (∂M/∂H)H0 ,T1 is the magnetic susceptibility
and K ≡ −(∂M/∂T)H0 ,T1 is pryomagnetic coefficient, H0 is
the uniform magnetic field and T1 = (T∞ + T0)/2, T∞ and
T0 are the temperatures at h/2 and −h/2, respectively. The
study is restricted to the casewhenmagnetization induced
by the temperature variation is much smaller than that in-
duced by the external magnetic field. The density varies
linearly with temperature as

ρ = ρ0(1 − α(T − T1)). (8)

3 Weakly nonlinear stability
In this section we use weakly nonlinear stability analysis
to study the evolution of disturbances in a ferromagnetic
fluid with two free and two rigid boundary conditions and
temperature modulation. Using Eqs. (4) and (5) and as-
suming that themagnetic fieldH is collinear with themag-
netic induction B, Eq. (2) reduces to

ρ0
DV
Dt = −∇P + µ∇2V + ρg + µ0M ·∇H (9)

+ 2ρ0V × Ω) +
ρ0
2 ∇(|Ω × r|).

The basic state solution of Eqs. (1)–(4) with (9) is obtained
as

V = 0, (10)

Tb(z, t) = T1 +
∆T
2 − βz + ϵ2(F(z, t)),

where

F(z, t) = Re
{︂

∆T
sinh λ

[︀
eiφ sinh λ(1/2 − z/h)

+ sinh λ(1/2 − z/h)
]︀
eiωt

}︂
,

λ2 = iωρ0Ch2/κ, β = ∆Th .

Following [1, 3] we define

Mb +Hb = constant, (11)

and

Hb =
(︂
H0 −

K(Tb − T1))
1 + χ

)︂
êz , (12)

Mb =
(︂
M0 +

K(Tb − T1))
1 + χ

)︂
êz .

We superimpose small perturbations on the basic state.
The perturbed quantities are defined as

T = Tb + T′, Hi = H′
i , Mi = M′

i for i =1,2; (13)

H3 = Hb +H′
3, M3 = Mb +M′

3,

where the prime represents a perturbed quantity. The lin-
earization of Eqs. (6) and (7) gives

H′
i +M′

i =
(︂
1 + M0

H0

)︂
H′

i , i = 1, 2. (14)

H′
3 +M′

3 = (1 + χ)H′ − KT′. (15)

We assume that K∆T << (1+ χ)H0. For more details see [1].
Substituting Eq. (13) and using the curl operator on Eq. (9)
we obtain the vorticity equation

ρ0
∂ζ ′
∂t = µ∇2ζ ′ + ρ0Ω

∂w′

∂z . (16)

SubstitutingEqs. (12), (14) and (15) inEq. (9) andusingH′ =
∇ϕ′ where ϕ is the magnetic potential, the z−component
of the resulting equation can be written as,

ρ0
∂
∂t∇

2w′ − µ∇4w′ = ρ0gα∇2
l T

′ (17)

+ µ0K
2β

1 + χ ∇2
l T

′ − µ0Kβ
∂
∂z∇

2
l ϕ

′

− 2ρ0Ω
∂ζ ′
∂z .

On using Eq. (13) in Eq. (3) and linearizing we obtain

ρ0C
∂T′
∂t + ρ0Cw′ ∂T′

∂z − µ0T0K
(︂
∂
∂t

(︂
∂ϕ′

∂z

)︂
(18)

+w′ ∂2ϕ′

∂z2

)︂
+
(︂
ρ0Cβ −

µ0T0K2β
1 + χ

)︂(︂
−1 + ϵ ∂F∂z

)︂
w

= ∇2T′.

Finally, substituting Eqs. (14) and (15) into Eq. (4) we have

(1 + χ)∂
2ϕ′

∂z2 −
(︂
1 + M0

H0

)︂
∇2
l ϕ

′ − K ∂T
′

∂z = 0, (19)

where ρoC = ρ0CV ,H + µ0KH0 and ∇2
l = ∂

2/∂x2 + ∂2/∂y2

is the Laplace operator in two dimension. For the clarity
we drop the prime from the perturbed quantities and in-
troduce the following dimensionless variables

(x*, y*, z*) = (x, y, x)/h, w* = w′h/ν, (20)
t* = µt/ρ0h2,

ζ * = ζ ′h2/ν, θ* = (κRa
1
2 T′)/(ρ0Cβνh),

ϕ* = ((1 + χ)κRa
1
2ϕ′)/(ρ0Cβνh2).

The linearized perturbed Eqs. (16)–(19) in the dimension-
less form can be written as,

∂
∂t*∇

2w* −∇4w* + Ta
1
2
∂ζ *
∂z (21)
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− Ra
1
2 (1 +M1)∇2

l θ* + Ra
1
2M1

∂
∂z∇

2
l ϕ* = 0,

−Ta
1
2
∂w*
∂z* + ∂ζ

*

∂t* −∇
2ζ * = 0, (22)

(Ra
1
2 − Ra

1
2M2)

(︂
−1 + ϵ2 ∂F∂z*

)︂
w* + Pr ∂θ

*

∂t* (23)

+ Prw* ∂θ
*

∂z* −∇
2θ* − PrM2

∂
∂t*

(︂
∂ϕ*
∂z*

)︂

− PrM2w*
∂2ϕ*
∂z*2 = 0,

−∂θ
*

∂z* +
∂2ϕ*
∂z2 +M3∇2

l ϕ* = 0, (24)

where Ta = 4Ωh4
ν2 is the Taylor number, Ra = ρ0Cβαgh4

νκ is the
Rayleigh number, M1 = µ0K2β

(1+χ)ρ0αg is the ratio of the mag-

netic force to the buoyancy force,M2 = µ0T0K2

(1+χ)ρ0C is a nondi-
mensional parameter, Pr = µC

κ is the Prandtl number and
M3 = (1 + M0

H0
)/(1 + χ) is a measure of nonlinearity of the

magnetization. The magnetic Rayleigh number can be ob-
tained from the formula N = RaM1. Hereafter the asterisk
will be dropped from Eqs. (21)-(24).

The associated boundary conditions for the system of
Eqs. (21)-(24) are

– Free boundary conditions

w = 0, D2w = 0, Dζ = 0, θ = 0, Dϕ = 0, (25)

at z = ±12 .

– Rigid boundary conditions

w = 0, Dw = 0, ζ = 0, θ = 0, (26)

at z = ±12 ,

where
D = ∂/∂z.

3.1 The solution for stress free boundaries

The solution for stress free boundaries has been discussed
in [1, 3, 9]. Here we only emphasize the solution aspects
which have not been discussed before. We solve the eigen-
value problemwith two stress free boundaries to study the
onset of instability in the ferromagnetic fluid. We consider
a small variation in time scale τ = ϵ2t such that stationary
convection occurs at lower orders of ϵ and introduce the
following asymptotic expansions

Ra
1
2 = (Raα)

1
2 + ϵ2Ra

1
2
2 + ϵ4Ra

1
2
4 + · · · , (27)

w = ϵw1 + ϵ2w2 + ϵ3w3 + · · · , (28)

ζ = ϵζ1 + ϵ2ζ2 + ϵ3ζ3 + · · · , (29)

θ = ϵθ1 + ϵ2θ2 + ϵ3θ3 + · · · , (30)

ϕ = ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 + · · · . (31)

Substituting Eqs. (27)–(31) into Eqs. (21)–(24), at the lowest
order of ϵ we obtain

BZ1 = R1, (32)

where

B =

⎛
⎜⎜⎜⎝

−∇4 √
Ta ∂

∂z −
√
Raα(1 +M1)∇2

l
√
RaαM1

∂
∂z∇

2
l

−
√
Ta ∂

∂z −∇2 0 0
−
√
Raα(1 −M2) 0 −∇2 0

0 0 − ∂
∂z

∂2
∂z2 +M3∇2

l

⎞
⎟⎟⎟⎠,

Z1 =

⎛
⎜⎜⎜⎝

w1
ζ1
θ1
ϕ1

⎞
⎟⎟⎟⎠ and R1 =

⎛
⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎠ . This equation corresponds

to the linear equations in [1, 9]. Solving Eq. (32) we obtain
the solution

w1 = A(τ) sin ax cos πz, (33)

ζ1 = −
Ta 1

2 π
π2 + a2 A(τ) sin ax sin πz, (34)

θ1 =
(Raα) 12 (1 −M2)

π2 + a2 A(τ) sin ax cos πz, (35)

ϕ1 = −
(︃

(Raα) 12 (1 −M2)π
(π2 + a2)(π2 + a2M3)

)︃
(36)

A(τ) sin ax sin πz,

where a is a dimensionless wave number. Thus, the sta-
tionary Rayleigh number is given as

Raα = ((π2 + a2)3 + π2Ta)(π2 + a2M3)
(1 −M2)(a2π2M1 + a2(M1 + 1)(π2 + a2M3))

.

(37)

To find the critical wave number and the corresponding
critical Rayleigh number we set a2 = π2x. Then the sta-
tionary Rayleigh number can be written as

Raα = (π4(1 + x)3 + Ta)(1 + xM3)
(1 −M2)x(1 + xM3(M1 + 1))

. (38)
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This result agreeswith [1, 3, 9]. SinceM2 is very small as in-
dicated in [1, 9] it can be neglected in the subsequent anal-
ysis.

The critical wave number and the corresponding criti-
cal Rayleigh number are obtained from

∂Raα
∂x = 0,

then we have

− Ta − 2Ta (xM3 + xM1M3) (39)

− Ta
(︁
x2M2

3 + x2M1M2
3

)︁

+ π4 (1 + x)2
(︂
− 1 + 2x − 2xM3 − 2xM1M3 − 4x2M3

+ x2M2
3M1 + 2x3M2

3 + 2x3M1M2
3

)︂
= 0.

For the case Ta = 0,M1 = 0 and M3 = 0, the classical
critical wave number is

ac =
π√
2

with corresponding classical critical Rayleigh number

Raαc =
27
4 π

4.

The magnetic Rayleigh number is also of an interest and
can be expressed as

Nα = RaαM1 =
(π4(1 + x)3 + Ta)M1(1 + xM3)

x(1 + xM3(M1 + 1))
. (40)

For large values of M1 the magnetic Rayleigh number in
the absence of buoyancy effects is obtained as

Nα = (π4(1 + x)3 + Ta)(1 + xM3)
x2M3

. (41)

The critical wave number and corresponding critical mag-
netic Rayleigh number are obtained from solving the equa-
tion

−2Ta+M3x+π4(1+ x)2(−2+ x−M3x+2M3x2) = 0. (42)

The critical wave number and corresponding Rayleigh
numbers are given for different values of the Taylor num-
ber Ta in Tables 1 and 2.

At second order O(ϵ2) we obtain the following equa-
tions:

BZ2 = R2 (43)

where Z2 =

⎛
⎜⎜⎜⎝

w2
ζ2
θ2
ϕ2

⎞
⎟⎟⎟⎠ and R2 =

⎛
⎜⎜⎜⎝

R21
R22
R23
R24

⎞
⎟⎟⎟⎠ with

R21 = 0, R22 = 0, R24 = 0, (44)

Table 1: Comparison of the critical wave number and corresponding
Rayleigh number for M1 = 1 and M3 = 5.

Present study Ref [9]
Ta ac Raαc ac Raαc
1 2.11212 269.6382 2.7348 461.5368
10 2.15849 275.0998 3.7827 883.4022
100 2.49953 322.9328 5.7215 2727.2022
1000 3.65242 608.4028 8.6174 10619.856
10000 5.66466 1862.582 12.8255 45606.430

Table 2: Comparison of the critical wave number and corresponding
Magnetic Rayleigh number for M1 → ∞ and M3 = 3.

Present study Ref [9]
Ta ac Nαc ac Nαc
1 2.6084 880.7959 2.7348 1037.8896
10 2.62069 897.4541 3.8770 1885.6592
100 2.72574 1050.072 5.7736 5617.3574
1000 3.2225 2083.258 8.6487 21520.978
10000 4.28305 7315.093 12.8455 91759.273

R23 = −
Prπ(Raα) 12
2(π2 + a2) A

2(τ) sin2 ax sin 2πz.

The solution at the second order is

w2 = 0, ζ2 = 0, (45)

θ2 = −
(︃

Prπ(Raα) 12
4(π2 + a2)(2π2 + a2)

)︃
(46)

A2(τ) sin2 ax sin 2πz,

ϕ2 = −
(︃

Prπ2(Raα) 12
4(2π2 + a2)(π2 + a2)(2π2 + a2M3)

)︃
(47)

A2(τ) sin2 ax cos 2πz.

At the third order, we obtain

BZ3 = R3, (48)

where Z3 =

⎛
⎜⎜⎜⎝

w3
ζ3
θ3
ϕ3

⎞
⎟⎟⎟⎠ and R2 =

⎛
⎜⎜⎜⎝

R31
R32
R33
R34

⎞
⎟⎟⎟⎠ with

R31 =
{︂
− 𝛾2 dAdτ +

a2(Raα) 12 R
1
2
a2(1 +M1)

𝛾2(π2 + a2M3)
(49)

((1 +M1)π2 + a2M3)A(τ)
}︂
sin ax cos πz,
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R32 = −
Ta 1

2 π2
𝛾2

dA
dτ sin ax sin πz, (50)

R33 = −
(︂(︀

(Raα)
1
2
∂F
∂z − Ra

1
2
2
)︀
A(τ) (51)

+ Pr(Ra
α) 12

𝛾2
dA
dτ

)︂
sin ax cos πz + Pr2π2(Raα) 12

2𝛾2(2π2 + a2)
A3(τ) sin3 ax cos πz cos 2πz,

R34 = 0. (52)

Here, 𝛾2 = a2 + π2. To obtain the Ginzburg Landau equa-
tion we applied the Fredholm solvability condition [11, 18]

1
2∫︁

0

2π
a∫︁

0

[︂
ŵ1R31 + ζ̂1R32 + θ̂R33

]︂
dxdz = 0, (53)

where ŵ1, ζ̂1 and θ̂1 are the solutions of the adjoint system
of the first order. This gives

[︂
π𝛾2
4a + PrRa

απ
4a𝛾4 − Taπ

4

4a𝛾4

]︂
dA
dτ =

{︂
πRaα 1

2 Ra
1
2
2

4a𝛾2 (54)

− πRa
α

a𝛾2 I +
aπRaα 1

2 Ra
1
2
2 (1 +M1)

4𝛾2(π2 + a2M3)(︂
(1 +M1)π2 + a2M3

)︂}︂
A − 3Pr2π3Raα

64a𝛾4(2π2 + a2)A
3.

The above equation reduces to

dA
dτ = ∆1A − ∆2A3, (55)

where ∆1 = 𝛾2/(𝛾6 + PrRaα − Taπ3)(︁
Ra* − 4RaαI + a2Ra*(1+M1)((1+M1)π2+a2M3)

π2+a2M3

)︁
,

Ra* = Raα 1
2 Ra

1
2
2 , ∆2 = 3Pr2 π3Raα/

(︀
16
(︀
2π2 + a2

)︀)︀
,

and

I =

1
2∫︁

0

dF
dz cos

2(πz)dz.

In this study we are also interested in heat transfer
in ferromagnetic fluids. The Nusselt number for ferromag-
netic fluids is defined as

Nu(τ) = Heat transfer by conduction+convection
Heat transfer by conduction (56)

= 1 + Prπ2(Raα) 12
4𝛾2(2π2 + a2)A

2(τ).

3.2 The general Lorentz type equations

We restrict the analysis to the case of two-dimensional dis-
turbances so that all physical quantities are independent

of y. Using the stream function defined by

u = ∂ψ∂z and w = −∂ψ∂x

equations (1)–(4) reduce to

∂
∂t∇

2
Lψ − |J(ψ,∇2

Lψ)| = ∇4
Lψ −M1Raα

1
2
∂2ϕ
∂x∂z (57)

− Raα
1
2 (1 +M1)

∂θ
∂x + Ta

1
2
∂ζ
∂z ,

∂ζ
∂t + |J(ψ, ζ )| = ∇2

Lζ − Ta
1
2
∂ψ
∂z , (58)

Pr
(︂
∂θ
∂t + |J(ψ, θ)|

)︂
= ∇2

Lθ − Raα
1
2
∂ψ
∂x , (59)

∂2ϕ
∂z2 +M3

∂2ϕ
∂x2 = ∂θ∂z , (60)

where J is the Jacobian matrix. The solution of Eqs. (57)–
(60) represented as a minimal double Fourier series of
modes (1,1) for the stream function andmagnetic potential
and modes (0,2) and (1,1) for temperature and vorticity of
the finite amplitude convection of the ferromagnetic fluid
flows as

ψ =11 sin ax sin πz, (61)

θ = B11 cos ax sin πz + B02 sin 2πz, (62)

ζ = C11 sin ax cos πz + C02 sin 2πz, (63)

ϕ = D11 cos ax cos πz, (64)

where A11, B11, B02, C11, C02 and D11 are time t depen-
dent amplitudes. This is equivalent to a truncatedGalerkin
method. Substituting and integrating over the domain, we
obtain a set of four ordinary differential equations for the
time evolution of the amplitudes of convection of a ferro-
magnetic fluid in the form

dA11
dt = −𝛾2A11 −

aπRaα 1
2

𝛾2(π2 + aM3 )
B11 (65)

− aRa
α 1
2 (1 +M1)
𝛾2

B11 +
πTa 1

2

𝛾2
C11,

dC11
dt = −𝛾2 − πTa

1
2 A11, (66)

dB11
dt = aRa

α 1
2

Pr A11 −
𝛾2

Pr B11 − aπA11B02, (67)
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dB02
dt = aπ2 A11B11 −

4π2
Pr B02. (68)

To simplify the equations we introduce new variables

X1 =
aπ
𝛾2
A11, X2 =

−a2πRaα 1
2

𝛾6
B11, τ = 𝛾2t, (69)

X3 =
−a2πRaα 1

2

𝛾6
B02 and X4 =

aπ2Ta 1
2

𝛾6
C11. (70)

This reduces Eqs. (65)-(68) to general Lorentz type equa-
tions

dX1
dτ = −X1 + KX2 + X4, (71)

dX2
dτ = RX1 − Pr−1X2 − X1X3, (72)

dX3
dτ = 1

2X1X2 − bPr
−1X3, (73)

dX4
dτ = −TaX1 − X4, (74)

where R = a2
𝛾6 Raα, b = 4π2

𝛾2 ,

and K = (2π2+a2M3)+M1(π2+a2M3)
π2+a2M3

.

3.3 Stability of Lorentz equations

In this section we discuss the stability of the nonlinear
systems of differential equations that describe the evolu-
tion of the convection amplitudes for a ferromagnetic fluid
flow. Firstly, we note that the nonlinear Eqs. (71)–(74) are
invariant under the transformation

S(X1, X2, X3, X4) = (−X1, −X2, −X3, −X4). (75)

These equations are also uniformly bounded and dissipa-
tive in the phase space

4∑︁

i=1

∂Ẋi
Xi

= −
[︂
1 + Pr−1 + bPr−1

]︂
< 0 (76)

Thus the volume of the phase space moving with the flow
for time τ > 0 is given by

V(t) = V(0) exp
(︁
−
[︀
1 + Pr−1 + bPr−1

]︀
τ
)︁
. (77)

We find that the stationary points of the system of nonlin-
ear Eqs. (71)–(74) are:

– The motionless conduction solutions (0, 0, 0, 0).

– The steady solution represented by the point

(x*1, x*2, x*3, x*4) =
(︂
±

√︃
2b(PrKR − (Ta + 1))

Pr2(1 + Ta) ,

± Ta + 1K

√︃
2b(PrKR − (Ta + 1))

Pr2(Ta + 1) , kPrR − (Ta + 1)kPr ,

∓
√︃

2b(PrKR − (Ta + 1))
Ta2Pr2(1 + Ta)

)︂
.

The stability of the stationary point associated with the
motionless solutionX* = (0, 0, 0, 0) is determinedby roots
of the following characteristic polynomial equation

P(ξ ) = ξ3 + d1ξ2 + d2ξ + d3 = 0, (78)

where
d1 = Pr−1, d2 = Ta − 1 − KR

and
d3 =

Ta − PrKR − 1
Pr

for the eigenvalues ξi , (i = 2, 3, 4) and ξ1 = −
b
Pr . It is clear

that ξ1 is always negative as Pr > 0. The remaining eigen-
values are obtained from Eq. (78), and using the Routh-
Hurwitz criteria [21], the polynomial Eq. (78) has negative
real roots if and only if

R < Ta − 1KPr

and Pr > 1. This implies that the stationary solution is a
stable node. Hence the critical value of R where the sta-
tionary solution of ferromagnetic fluid flow loses stability
and steady convective flow takes over is

R = Ta − 1KPr .

The stability of the stationary point corresponding to the
steady convective flow is determined by the roots of the
characteristic equation

p(ξ ) = ξ4 + c1ξ3 + c2ξ2 + c3ξ + c4 = 0, (79)

where

c1 = 2Pr + 2bPr,
c2 = 2b − 2Pr2 − 2KPr2R + 2Pr2Ta

+ Pr2x*21 + 2KPr2x*3,
c3 = −2Pr − 2bPr − 2bKPrR − 2KPr2R + 2PrTa

+ 2bPrTa + KPr3x*1x*2 + 2bKPrx*3 + 2KPr2x*3,
c4 = −2b − 2bKPrR + 2bTa − Pr2x*21 + Pr2Tax*21

+ KPr2x*1x*2 + 2bKPrx*3.
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Applying the Routh-Hurwitz criteria to Eq. (79), it is clear
that c1 > 0, and c3 > 0 if and only if

Ta + 1 < PrKR

and
R < −

(︂
b + 1
bK + Pr

)︂
.

Also, c4 > 0 if and only if

x*21 < −
(︂
2b(1 + PrKR)

Pr2

)︂

with
Ta + 1 < PrKR.

Hence the fixed point is stable if the condition

Pr3c*3 + Pr2c*2 + Prc*1 + c*0 (80)
> Pr3d*3 + Pr2d*2 + Prd*1 + d*0,

is satisfied where

c*3 =
(︂
8KR + 8K2R2 + 4KTax*1x*2

+ 2Kx*31 x*2 + 4Kx*21 x*3 + 4K2x*1x*2x*3

+ 8K2x*23 + 8KTax*3
)︂(︂

1 + b
)︂
,

c*2 = 8(KR + 1) + 16b + 8b2 + 8KR(3 + 2b)
+ 8K2R2(b + 1) + 8Ta2(b2 + 2b + 1)
+ 8KTax*3(2b2 + 3b + 1) + (4Kx*21 x*3
+ 8K2x*23 )(b + b2) + 4K2R(x*21 x*2 + 2x*3),

c*1 = 8KR(b3 + b2) + 4Kx*21 x*2(2b + b2)
+ (8Kx*3 + 8KRTa + 4K2Rx*21 x*2)(1 + b)
+ 16bK2Rx*3, c*0 = 8b + 4b2 + 8Ta(b2

+ 2b + 1) + 8Kx*3(b3 + 2b2 + b)
+ 8KRTa(b2 + b) + 8b2K2Rx*3,

and

d*3 =
(︂
8KRTa + 4KRx*21 + 4(K + K2)x*21 x*2

+ 8Kx*3 + 16K2Rx*3
)︂(︂

1 + b
)︂
,

d*2 =
(︁
16Ta + 4Kx*1x*2

)︁(︁
b2 + 2b + 1

)︁

+
(︁
8KRTa + 8Kx*3

)︁(︁
2b2 + 3b + 1

)︁

+ 16K2Rx*3
(︁
b2 + b

)︁
+ K2(x*21 x*22 + 4x*1x*2x*3 + 4x*3),

d*1 = 8Kx*3(b3 + b2) +
(︀
* KTax*3 + 4KTax*1x*2

+ 8K2R2
)︀
(b + 1) + 4bK2(x*1x*2x*3 + 2x*23 ),

d*0 = 8KR(b3 + 2b2 + b) + 4Ta(b2 + 2b + 1)
+ 8KTax*3(b2 + b) + 4b2K2x*23 .

3.4 The method of solution

In this section, we describe the multi-domain spectral col-
location method [15–18] used to obtain the solutions to
Eqs. (71)–(74). The multi-domain technique assumes that
the interval Λ = [0, T] can be decomposed into p non over-
lapping sub-intervals. The sub-intervals are defined as

Λi = [τi−1, τi], i = 1, 2, · · · , p. (81)

In each sub-interval, the system of Eqs. (71)–(74) is written
in the form

Ẋi1,s+1 + α1,1Xi1,s+1 + α1,2Xi2,s + α1,3Xi3,s (82)

+ α1,4Xi4,s + f1(Xi2,s , Xi3,s , Xi4,s) = g1
Ẋi2,s+1 + α2,1Xi1,s+1 + α2,2Xi2,s+1 + α2,3Xi3,s
+ α2,4Xi4,s + f2(Xi1,s+1, Xi3,s , Xi4,s) = g2
Ẋi3,s+1 + α3,1Xi1,s+1 + α3,2Xi2,s+1 + α3,3Xi3,s+1
+ α3,4Xi4,s + f3(Xi1,s+1, Xi2,s+1, Xi4,s) = g3
Ẋi4,s+1 + α4,1Xi1,s+1 + α4,2Xi2,s+1 + α4,3Xi3,s+
+ α4,4Xi4,s+1 + f4(Xi1,s+1, Xi2,s+1, Xi3,s+1) = g4,

with initial conditions

Xin,s+1(τi−1) = Xi−1n (τi−1), n = 1, 2, 3, 4. (83)

Here αn,k and gn (n, k = 1, 2, 3, 4) are constants while fn
is the nonlinear component of each equation. Each sub-
interval Λi is transformed to [−1, 1] using the transforma-
tion

τ = τi−1 − τi2 t* + τi−1 + τi2 , t* ∈ [−1, 1]. (84)

The Chebyshev-Gauss-Lobatto collocation points are used
to discretize the unknown functions

t*ij = cos
(︂
πj
N

)︂
, j = 0, 1, · · · , N . (85)

The derivative of the unknown function at the collocation
point is given by

dXin,s+1
dτ (τi) =

N∑︁

k=0
DjkXin,s+1(t*ik ) = DXin,s+1 (86)

where
D = 2D/δτi

with δτi = τi−1 − τi and D is Chebyshev differentiationma-
trix. The vector functions at the collocation points are

Xin,s+1 =
(︁
Xin,s+1(t*i0 ), · · · , Xin,s+1(t*iN )

)︁T
.
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Substituting Eq. (86) into Eq. (82) and reducing to matrix
form we obtain the system

AnXin,s+1 = Rin (87)

with An = D + αn,nI and

Ri1 = g1 −
[︂
α1,2Xi2,s + α1,3Xi3,s + α1,4Xi4,s (88)

+ f1(Xi2,s ,Xi3,s ,Xi4,s)
]︂

Ri2 = g2 −
[︂
α2,1Xi1,s+1 + α2,3Xi3,s + α2,4Xi4,s (89)

+ f2(Xi1,s+1,Xi3,s ,Xi4,s)
]︂

Ri3 = g3 −
[︂
α3,1Xi1,s+ + α3,2Xi2,s+1 + α3,4Xi4,s (90)

+ f3(Xi1,s+1,Xi2,s+1,Xi4,s)
]︂

Ri4 = g4 −
[︂
α4,1Xi1,s+1 + α4,2Xi2,s+1 + α4,3Xi3,s+1 (91)

+ f4(Xi1,s+1,Xi2,s+1,Xi3,s+1)
]︂

where gn is gn multiplied by a vector of ones of size (N +
1) × 1 and I is an identity matrix of size (N + 1) × (N + 1).

4 Results and discussion
Wehave presented a weakly nonlinear stability analysis of
a rotating layer of a ferromagnetic fluid with temperature
modulation at the boundary.We have obtainedmathemat-
ical expressions for the stationary Rayleigh number Raα

and the magnetic Rayleigh number Nα . Our results agree
qualitativelywith the results in [1, 9]. To provide ameasure
of validation of our results we give a comparison with [9]
in Tables 1 and 2 of the influence of the Taylor number on
the critical wave number and the corresponding Rayleigh
numbers. Although the results in the two studies are not
directly comparable, of interest is the general trend ob-
served, namely that in both cases, increasing Ta increases
the critical wave number and the Rayleigh numbers sug-
gesting that the influence of Taylor number is to stabilize
the system.

The instability curves are given in Figures 1–3. Fig-
ure 1(a)–1(d) shows the influence of various parameters

(a)

(b)

(c)

(d)

Figure 1: The effect of stationary Rayleigh number Raα versus wave
number a for various values of (a) the Taylor number Ta, (b)the
ratio of magnetic force to the buoyancy force parameter M1 with
Ta = 0 (c) the ratio magnetic force to the buoyancy force parameter
M1 with Ta = 10 (d) the nonlinearity of magnetization parameter
M3
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(a) (b)

Figure 2: The effect of magnetic Rayleigh number Nα versus wave number a for various values of (a) the Taylor number Ta (b) the nonlinear-
ity of magnetization parameter M3

(a) (b)

(c) (d)

Figure 3: The variation of Nusselt number Nu with time τ in in-phase modulation (ϕ = 0) for different values of : (a) the Prandtl number Pr,
(b)the Taylor number Ta, (c) the ratio of magnetic force to buoyancy force M1 and (d) the nonlinearity of magnetization M3

on the stationary Rayleigh number. It can be seen in Fig-
ures 1(a)and 2(a) that as Ta increases from 0 to 50 the val-
ues of the stationary Rayleigh and the magnetic Rayleigh
numbers both increase. This shows that rotation has a

stabilizing effect on the system. This result is similar to
that of an ordinary viscous fluid. Rotation has a stabiliz-
ing influence on ferromagnetic fluid flow. Figures 1(b) and
1(c) show the relative influence of the size of the magnetic
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(a) (b)

(c) (d)

Figure 4: The variation of Nusselt number Nu with time τ in out-phase modulation (ϕ = π) for different values of : (a) the Prandtl number Pr,
(b)the Taylor number Ta, (c) the ratio of magnetic force to buoyancy force M1 and (d) the nonlinearity of magnetization M3

force to the buoyancy force parameterM1. AsM1 increases
from 0 to 5 the stationary Rayleigh number is reduced.
This suggest themagnetic and the buoyancy force are both
destabilizing to the ferromagnetic fluid flow. Further, as
M1 increases with Ta = 10 fixed, the stationary Rayleigh
number decreases, suggesting M1 has a destabilizing ef-
fect for both low and high Taylor numbers. From Figures
1(d) and 2(b) it is observed that increasing M3 from 1 to
20 reduces both the Rayleigh number and the magnetic
Rayleigh number, this is destabilization to the system.

The Ginzburg-Landau equation is obtained using
the nonlinear stability analysis at the third order of ϵ.
The equation was solved using a multi-domain spectral
method. The heat transfer coefficient, represented by the
Nusselt number, is presented graphically for in-phase and
out-phase modulation in Figures 3–4. Figure 3(a)–3(d)
show the effect of Pr, Ta,M1 and M3 on the Nusselt num-
ber with time τ. It can be observed that on increasing the
Pr and M3, the Nusselt number decreases. Hence increas-
ing these parameters reduces the rate of heat transfer. In-

creasing Ta and M1 increases the Nusselt number, thus
the rate of heat transfer increases. Figures 4(a)–4(d) show
changes in the Nusselt number with respect to time τ due
to the influence of various parameters in the case of out
of phase modulation. It can be observed that the Nusselt
number for in-phase modulation is less than for out of
phase modulation.

Amulti-domain spectral collocationmethodwas used
to find the nonlinear amplitudes in ferromagnetic fluid
convection equations for various values of R. The solu-
tion sets were obtained using initial conditions selected
in the neighborhood of the stationary points correspond-
ing to the motionless solutions. The simulations were
done to a maximum time τmax = 20. For a sense of
the accuracy of the method, the solutions were com-
pared with solutions obtained using the Runge-Kutta
based ode45 routine. Figures 5(a)–5(d) show the time se-
ries solution of X1(τ) for different supercritical values of
R. As R increases, periodic solutions are obtained. Here
a comparison between the multi-domain spectral collo-
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(a) (b)

(c) (d)

(e)

Figure 5: Comparison between a Multi-domain spectral collocation methods and ode45 methods for the solution of X1(τ) for different val-
ues of R (a) R = 2, (b) R = 4, (c) R = 10, (d) R = 20 and (e)R = 100

cation method and the ode45 is given. In Figures 6–
11 we present a projection of the trajectories onto the
(X1, X2), (X1, X3), (X1, X4), (X2, X3), (X2, X4) and (X3, X4)
phase planes, respectively. The initial supercritical con-
vective solution R = 2 is presented in part a in each fig-
ure. We observe that the trajectories attracted to equilib-

rium points that correspond to themotionless solution are
stable spirals. The solutions are presented in part c and d
of each figure when R = 20 and R = 25, respectively. For
these Rayleigh numbers, chaotic solutions are obtained.
These changes in solutions are further presented in Fig-
ures 6(c)–6(d), 7(c)–7(d) and 9(c)–9(d). The results pre-
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(a) (b)

(c) (d)

(e)

Figure 6: The evolution of trajectory over times in phase space for increasing values of Rayleigh number.( in term of R) corresponding to
(a)R = 2, (b)R = 4, (c)R = 10, (d) R = 20 and (e)R = 100. The graph represented the projection of the solution into X1X2 plane

sented in Figures 8(c)–8(d) and 10(c)–10(d) show a tran-
sition to a limit cycle. Increasing the values of R, for exam-
ple, when R = 100 the results are complex with a signifi-
cant level of unpredictability.

Figure 12 shows the streamlines patterns for the flow
of a ferromagnetic fluid. Twodifferent eddies are observed.

The clockwise and anti-clockwise flows are shown via neg-
ative and positive stream function values, respectively.
With the Rayleigh number increasing from 2 to 200, the
magnitude of the stream function values increase. The
sense of motion in the subsequent cells is opposite that
of an adjoining cell, indicating symmetry in the forma-
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(a) (b)

(c) (d)

(e)

Figure 7: The evolution of trajectory over times in phase space for increasing values of Rayleigh number. (in term of R) corresponding to (a)
R = 2, (b) R = 4, (c) R = 10, (d) R = 20 and (e) R = 100. The graph represented the projection of the solution into X1X3 plane

tion of ferromagnetic convective cells. Figure 13 shows the
isotherm patterns as the Rayleigh number changes from 2
to 200. Three different eddies are observed. The small eddy
at the left corner diminishes as R increases from 2 to 200.

Also, increasing R reduces the density of the isotherms im-
plying a delay of the onset of instability.
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(a) (b)

(c) (d)

(e)

Figure 8: The evolution of trajectory over times in phase space for increasing values of Rayleigh number. (in term of R) corresponding to (a)
R = 2, (b) R = 4, (c) R = 10, (d) R = 20 and (e) R = 100. The graph represented the projection of the solution into X1X4 plane
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(a) (b)

(c) (d)

(e)

Figure 9: The evolution of trajectory over times in phase space for increasing values of Rayleigh number. (in term of R) corresponding to (a)
R = 2, (b) R = 4, (c) R = 10, (d) R = 20 and (e) R = 100. The graph represented the projection of the solution into X2X3 plane
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(a) (b)

(c) (d)

(e)

Figure 10: The evolution of trajectory over times in phase space for increasing values of Rayleigh number. (in term of R) corresponding to (a)
R = 2, (b) R = 4, (c) R = 10, (d) R = 20 and (e) R = 100. The graph represented the projection of the solution into X2X4 plane
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(a) (b)

(c) (d)

(e)

Figure 11: The evolution of trajectory over times in phase space for increasing values of Rayleigh number. (in term of R) corresponding to (a)
R = 2, (b) R = 4, (c) R = 10, (d) R = 20 and (e) R = 100. The graph represented the projection of the solution into X3X4 plane
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(a) (b)

(c) (d)

(e) (f)

Figure 12: The streamlines for different values of the Rayleigh number R e.g. R = 2, 4, 10, 20, 100, 200
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Figure 13: The isotherms for different values of the Rayleigh number R e.g. R = 2, 4, 10, 20, 100, 200
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5 Conclusion
We investigated the thermoconvective instability in a ro-
tating ferromagnetic fluid layer with time periodic temper-
ature boundary conditions. The influence of flow parame-
ters such as theRayleighnumber on the onset of instability
was determined using a weakly nonlinear stability anal-
ysis. The results are broadly in line with the earlier find-
ings in [1, 3, 8]. The heat transport has been analyzed for
both the in-phase and out of phase temperature modula-
tions. The influence of the parameters such as the Prandtl
number, Taylor number and the magnetization parameter
on the Nusselt number for the in-phase modulation was
found to be less significant compared to the case of out of
phase modulation.

The set of nonlinear differential equations for con-
vection amplitude was solved using a multi-domain spec-
tral collocationmethod. The accuracy of the solutions was
determined by comparison with solutions using a differ-
ent independent method, namely the Runge-Kutta based
ode45 Matlab solver. The stability of the equilibrium solu-
tions of the nonlinear differential equations has been ana-
lyzed. Transitions from different states have been demon-
strated for different parameter values, for example from
steady convection to chaotic solutions at high Rayleigh
numbers.
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Chapter 6

Conclusion

In this study we have formulated and given an analysis of the behaviours and solutions of mathe-

matical models that describe Rayleigh-Bénard type convection in various fluid flows using linear

and weakly nonlinear stability theories. We have, in particular, investigated thermal instability

in a horizontal nanofluid layer, double-diffusive convection in an inclined open cavity and ther-

moconvective instability in a rotating ferromagnetic fluid with temperature modulation. We have

determined criteria necessary for the onset of convective instabilities in terms of certain fluid pa-

rameters such as the Darcy, Hartman, Prandtl, Taylor and Rayleigh numbers. We have solved the

Lorentz type convective amplitude equations using the recently published multidomain spectral

method.

In Chapter 2, we used the linear stability theory to study the onset of convection in a porous medium

of infinite extent saturated with a nanofluid and subjected to a magnetic field. Here we assumed

stress-free conditions, constant temperature and solute concentration, and zero nanoparticle flux at

the boundaries. An analytic expression for the critical stationary Rayleigh number was derived.

The effects of both the Darcy number and magnetic field parameter on the onset of convection

were investigated. It has been shown that increasing both the Darcy number and the magnetic field

parameter increases the critical Rayleigh number, which has the effect of delaying the onset of
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stationary convection. Hence, increasing both the Darcy number and the magnetic field parameter

has the effect of stabilizing the nanofluid flow. The effect of the magnetic field parameter on the

onset of convection in a cross-diffusive nanofluid is similar to that observed in pure thermal con-

vection, as reported by [2]. We also noted that an increase in the value of nanofluid Lewis number

increases both the stationary and oscillatory Rayleigh numbers. This has the effect of increasing

the value of the Rayleigh number at the turning point of the neutral stability curve. Hence, increas-

ing the nanofluid Lewis number has a stabilizing effect the system. Further, increasing the Soret

and Dufour parameters has the effect of, respectively, reducing and increasing the critical Rayleigh

number.

In Chapter 3, we studied convective instability for a nanofluid flow in a horizontal porous medium.

Using a stress-free boundary condition, and assuming zero nanoparticle flux at walls, and applying

a truncated Fourier series expansion, a system of nonlinear ordinary differential equations that de-

scribe the convection amplitudes for the nanofluid flow was derived. The multidomain spectral col-

location was used to solve the system of equations. A limited phase space analysis was presented

for different Rayleigh numbers. As the Rayleigh number Ra increased to 104 the trajectories of

the amplitude convection are spirals that approach a fixed point. The flow is far more complex

and unpredictable for Rayleigh numbers higher than 104. We have presented the flow structure in

terms of streamlines, isotherms and iso-concentrations for different values of the Darcy numbers

and the buoyancy ratio parameter. As the Darcy number increases from 0.05 to 0.07, the rotation

of the flow circulations changes. Increasing the Darcy number has the effect of increasing the ef-

fective nanofluid viscosity and reducing the thermal and solute concentration boundary layers. The

nanofluid flow structure is significantly influenced by buoyancy within the fluid layer. Increasing

the buoyancy ratio decreased the boundary layer thickness. A high buoyancy ratio changes the

nanofluid flow structure, which impacts on the concentration field that builds up a vertical strati-

fication in the layer. Additionally, a change in the system parameters, such as an increase in the

flow Lewis number, improves the rate of heat and mass transfer in the nanofluid flow. Increasing

the Dufour parameter also has the effect of increasing the rate of heat transfer, and increasing the

Soret parameter increases the rate of mass transfer.
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In Chapter 4, we investigated thermal instability in double-diffusive convection in an inclined open

cavity with an inclined magnetic field. For the linear case, we obtained an analytical expression

for the critical wave number and corresponding critical Rayleigh number at the onset of double-

diffusive convective instability. The influence of parameters such as the Hartman, Prandtl, Lewis

and solute concentration Rayleigh numbers on the onset of the stationary and oscillatory convection

were investigated. We noted, for example, that on increasing the Hartman number from Ha = 5

to 20 the critical Rayleigh number for the onset of both the stationary and oscillatory convection

increased. This shows that increasing the Hartman number delays the onset of the double-diffusive

convective instability. We note that the magnetic field offers resistance to the motion of the fluid

in the inclined cavity due to the Lorenz force generated and, as a result, a considerable amount of

energy is used by the system to overcome this resistance.

We further used the weakly nonlinear stability to investigate the evolution of flow perturbations in

double-diffusive convection. The influence of the parameters such as the Lewis number, Hartman

number, Prandtl number, buoyancy ratio parameter and the inclination angles of the cavity and

magnetic field was investigated. We determined the steady state solutions and the trapping region

for the trajectories in the phase space. The rates of heat and mass transfer were further analyzed. It

was observed that increasing the Hartman and Lewis numbers increases both heat and mass transfer

coefficients. A limited phase space analysis is presented for Rayleigh numbers from R = 100 to

R = 150. For the higher Rayleigh number a chaotic state of the system was observed, showing

the unpredictability of double-diffusive convective flow for high Rayleigh numbers. We presented

the flow structure in terms of streamlines, isotherms and iso-concentrations contours for buoyancy

ratio of N = −10,1,10 with a fixed cavity inclination angle ϕ and varying the magnetic field

inclination angle φ. It was ascertained that the fluid circulation strongly depends on the buoyancy

ratio and magnetic field parameters. Further, we observed that the streamlines are weak for φ =
π

4
,

but are stronger for higher values of φ. The isotherms and iso-concentrations occur symmetrically

near the top corners of the side walls in the cavity and are also concentrated at the bottom walls of

the cavity for buoyancy ratio N = −10 when φ =
π

4
and,

π

2
but the opposite trend is observed for

3π

4
.
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In Chapter 5, we investigated thermoconvective instability in a rotating ferromagnetic fluids in a

horizontal layer with time periodic temperature at the walls. The effects of parameters such as the

Taylor number, the ratio of the magnetic and buoyancy forces, and the magnetization parameter

on the onset of convection are analyzed. Increasing the Taylor number increased both the critical

Rayleigh number and the magnetic Rayleigh number. Hence, increasing the Taylor number delays

the onset of convective instability in ferromagnetic fluid flow. This shows that Taylor number has

the effect of stabilizing the system. On the other hand, the effect of increasing the magnetization

parameter is to reduce the critical Rayleigh number, showing that the magnetization parameter

increase has a destabilizing effect on the system.

For the nonlinear stability regime, we obtained Ginzburg-Landau equation and analyzed the flow

for both in-phase and out-of-phase modulation. The influence of parameters such as the Taylor

number, Prandtl number and magnetization parameter on the rate of heat transfer for in-phase

modulation was found to be significantly less than that for out-of-phase modulation. The system

of nonlinear differential equations that describes the amplitude evolution for a ferromagnetic fluid

in a rotating horizontal layer was solved numerically. The stability of the equilibrium solutions of

this system was analyzed. A limited phase space analysis was presented and transition between

different states was demonstrated for changes in bifurcation parameters. We observed a transition

from steady convection to chaotic convective flow at higher Rayleigh number. The flow pattern is

further shown in terms of streamlines and isotherms. For large Rayleigh numbers, we observed

three types of flow circulation as well as symmetry in the formulation of ferromagnetic convection

cells in the rotating layer.

We have investigated flow instabilities in nanofluid and ferromagnetic flows, both in a horizontal

layer and an inclined cavity. We have demonstrated how instabilities set in for different param-

eters and how the parameters influence the flow patterns. In these studies we have confined our

analysis mostly to stress-free boundary conditions. In future, it is suggested to extend this study to

include both free-rigid and rigid-rigid boundary conditions with temperature and gravity modula-

tion. Further, we have used linear and weakly nonlinear stabilities to study double-diffusive con-
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vection, with the key parameter being the buoyancy ratio, which has applications in, for instance,

ocean studies. It is suggested to extend this work to triple-diffusive convection in Newtonian and

non-Newtonian fluid flow for different settings, such as a rotating cylinder and rotating spherical

shells. Triple-diffusive convection is found in many applications; for example aqueous suspension

of deoxyribonucleic acid (DNA) contain more than two independently diffusive components, each

having different diffusivities. It would therefore be interesting to study the effects of Soret and Du-

four for triple-diffusive convection in an inclined cavity, subjected to both temperature and solute

concentration modulation.
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Appendix

A.1 Errata to Chapter 3

• Page 47, Line 1: "supreme" should be replaced with "great"

• Page 47, Line 4: "fluid" should be replaced with "fluids".

• Page 48, Last paragraph, line 8: "exchanges" should be replaced with "exchangers".

• Page 48, Last paragraph, line 11: "The recent" should be replaced with "The recently devel-

oped".

• Page 48, Last paragraph, line 12: the statement "compared to older methods such as the finite

difference methods" should be removed.

• Page 49, Paragraph 1, line 5: the inequality ”Th > Tc” should be replaced with ”Th < Tc”.

• Page 49, Paragraph 1, line 7: "momentum equation" should be replaced with "momentum

equations".

• Page 49, Equation 6 and 7 : ”V = 0” should be replaced with ”V = 0”, where 0 is zero vector.

• Page 51, Equations 15-21: "commas" should be inserted in equations 15-21.

• Page 55, Equation 45: "fullstop" should be inserted in equation 45
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A.1 Errata to Chapter 4

• Page 68, Introduction, line 5: "Double diffusive" should be replaced with "Double-diffusive".

• Page 69, Paragraph 3, lines 5 and 12: "Double diffusive" should be replaced with "Double-

diffusive".

• Page 69, Paragraph 4, 2nd from the last line: "contradictory" should be replaced with "con-

trary".

• Page 70, Paragraph 2, lines 1 and 3: "double diffusive" should be replaced with "Double-

diffusive".

• Page 70, Section 2, line 4: "anticlockwise direction" should be replaced with "anticlockwise

direction, see Fig.1".

• Page 70, Section 2, line 8 : the statement, "given as follows ( see Fig.1 )" should delete "(

see Fig.1 )"

• Page 70, Fig.1 : The angles φ and ϕ should be switched to φ being the angle of inclination

of the magnetic field and ϕ being the angle of inclination of the square cavity.

• Page 70, Fig.1 : The derivative boundary conditions for C and T should be replaced with
dC
dy

=
dT
dy

= 0.

• Page 70, Fig.1: The zero velocity boundary conditions should be removed.

• Page 76, Equations 52 and 53: "fullstop" should be inserted in equation 52 and "comma"

should be inserted in equation 53

• Page 78, Equations 58 and 61: "commas" should be inserted in equation 58 and 61

• Page 85, Fig.14: The values of ”ϕ = 135◦” and ”φ = 90◦” should be replaced with”ϕ = 90◦”

and ”φ = 135◦”.
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• Page 86, Conclusion 3: "The streamlines are seen to be weak when φ = 45◦ but stronger ...."

must change to "For a limited inclination angle of the magnetic angle φ, the streamlines are

seen to be weak when φ = 45◦, but stronger for higher values of φ that φ = 45◦".
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A.3 Errata to Chapter 5

• Page 91,Equation 2: The notation ”CV.H” should be replaced with ”CV,H”

• Page 91, Equation 6: ”M =
H
H

M(M,T )” should be replaced with ”M =
H
H
·M(M,T )”.

• Page 92, Equation 9: The parentheses ) after Ω should be deleted it.

• Page 92, Equation 10 :”V = 0” should be replaced with ”V = 0”, where 0 is zero vector.

• Page 92, Equation 16: ζ′ and w′ should be denotes the vorticity and velocity in z-direction

of the fluid.

• Page 94: "comma" should be inserted in the equation of the classical critical wavenumber

• Page 96, after Equation 78: "comma" should be inserted in equation after equation 78

• Page 97: "comma" should be inserted in the inequalities

• Page 97, Equation 86: "comma" should be inserted in equation 86

• Page 98: Equation 87-91: "commas" should be inserted in equations 87-91
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