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Abstract 

Restoration ecology is a relatively new field. Although a range of attributes have been used 

to assess restoration success, they have not been standardised across studies. Recently, three 

main ecological attributes have been identified as key measures to standardise the 

assessment of restoration success: species diversity, vegetation structure and ecological 

processes. However few studies have combined more than two of these ecological attributes 

when assessing restoration success. The aim of this study was to apply these three ecological 

attributes to determine whether Scarp Forest restoration has been successful from the 

perspective of small mammals at the Buffelsdraai Landfill Site, Durban, South Africa. I 

assessed the response of small mammals to Scarp Forest restoration at 2, 4 and 6 year post-

restoration periods. I surveyed small mammals every three months for one year in three 

restoration treatments (2010, 2012 and 2014 restored), as well as in surrounding sugarcane 

and riverine forest sites. At each site I measured the vegetation structure and small mammal 

diversity. Additionally, I conducted stable isotope analysis on vegetation and invertebrate 

samples to compile a baseline database of potential prey, and compared these data with the 

stable isotope composition of hair and tissue samples collected from rodents and shrews to 

analyse the trophic structure of the small mammal assemblages. In support for the prediction 

that vegetation structure should increase in complexity at restored sites, tree species richness, 

density and height were higher at the 2010 restored than more recently restored sites; and 

grass height and percentage cover were highest at 2012 restored sites. Except, forb and grass 

species richness were higher at newly restored sites. Second, rodent abundance was higher at 

the 2010 restored sites than the 2012 and 2014 restored sites and sugarcane sites. However, 

shrew abundance and species richness were not significantly different among the study sites. 

Third, carbon and nitrogen isotopic composition of rodent hairs suggest that these species 

utilised resources associated with the 2010 restored sites rather than those associated with 

recently restored sites, sugarcane sites and forests. Further, the stable isotope ratios of carbon 

and nitrogen in Mastomys natalensis’ tissues showed that these rodents predominantly 

utilised resources associated with the 2010 restored sites irrespective of the tissue that was 

analysed. Conversely, carbon and nitrogen isotopic composition of shrew hairs suggest that 

these species foraged at the sites where they were captured. Taken together, my results 

suggest that at Buffelsdraai, the restoration efforts have ensured progressive succession in 

the scarp forest after 10 years, at least from the perspective of most small mammals. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1.Human land use and restoration ecology 

Although in recent years the growth rates of world agricultural production and crop yields 

has slowed, species richness has declined by approximately 8.1% on average globally, 

mainly as a result of large increases in croplands and pastures (McGill, 2015). At the same 

time, urban areas are expanding rapidly worldwide (Grimm et al., 2008). These phenomena 

are positively related to an exponentially increasing human population (Kowarik, 2011). 

Human land use affects ecosystems in different ways, for example, removal or conversion of 

vegetation, pollution of air, soil and water, and habitat fragmentation (Grimm et al., 2008). 

Agricultural and urban lands are inhabited by fewer species, fewer organisms, and smaller 

organisms than undisturbed areas (Newbold et al., 2015). Currently, anthropogenically 

modified land occupies the greatest proportion of the Earth’s terrestrial surface (Grimm et 

al., 2008). On the other hand, areas allowed to recover after human land use - like reforested 

lands - can compare in terms of biodiversity as well as areas that hadn’t been touched 

(Newbold et al., 2015).  

Restoration ecology aims to understand the processes necessary to rehabilitate ecosystems 

that have been degraded by anthropogenic activities (Society for Ecological Restoration 

International Science and Policy Working Group, 2004). Globally, it is an increasingly 

important conservation priority (Holl et al., 2000).  One of the most important goals of 

restoration ecology is to create self-sustainable ecosystems that are resilient to disturbance. 

Restoration projects are often implemented at broad spatial scales because of large degraded 

areas (Lamb et al., 2005), the complexity of the drivers of degradation (Holl et al., 2000), 

and the relevant ecological processes that occur at a landscape scale (Kalies et al., 2012). 

However, at these spatial scales it is also challenging to accurately quantify restoration 

ecology success (Bell et al., 2008).  

To quantify restoration success, at least three major ecological attributes need to be 

measured (Ruiz-Jaen & Aide, 2005).  First, vegetation structure such as vegetation cover, 

plant density and biomass (Walters, 2000; Wilkins et al., 2003), which predicts plant 

succession (Wilkins et al., 2003), Second, species diversity of the faunal taxa, including 

abundance and species richness (McCoy & Mushinsky, 2002). Third, ecosystem processes 
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involving the focal taxa and the restored vegetation, for example herbivory or insectivory 

(Rhoades et al., 1998; Ruiz-Jaen & Aide, 2005). Although studies have assessed one or two 

of these ecosystem attributes, to the best of my knowledge, no study has applied all three.  

 

1.2. Using stable isotope analysis to assess diet consumption of animal 

assemblages 
Isotopes are forms of chemical elements that have the same number of protons and electrons, 

yet different masses (Dawson et al., 2002; Crawford et al., 2008). Stable isotopes are 

isotopes that do not decay and therefore differ from radioisotopes (Young et al., 2010).  

Because stable isotopes have different masses, they react differentially in environmental and 

physiological processes (Crawford et al., 2008), and differ in abundance (Post, 2002). 

Isotopic fractionation is a process that results in the lighter, more common isotopes 

proceeding through chemical or physical reactions, whereas the heavier, less common 

isotopes remain behind (O’Brien et al., 2000), results in predictable changes in isotopic 

ratios. These changes can be measured in vegetation and/or animal tissue samples using an 

isotopic mass spectrometer (McKinney et al., 1950).  

Understanding animal foraging preferences in degraded versus restored landscapes is key in 

quantifying restoration success (Hobson, 1999; West et al., 2006; Cernusak & Hutley, 2011). 

One way to estimate foraging patterns is to investigate the variation in the ratios of the stable 

isotopes C, H, N, O and S in the consumer’s tissue. These stable isotope ratios reflect the 

food they consumed (Petersen & Fry, 1987; Samelius et al., 2007; Crawford et al., 2008).  

Different animal tissues have different turnover rates (Crawford et al., 2008), and synthesise 

food intake at different temporal scales (Bearhop et al., 2003; Rubenstein & Hobson, 2004). 

Thus, isotope analysis of different tissues provides different spatial and temporal dimensions 

of the animal’s diet and movement from a single sampling event. This analysis, in turn, can 

indicate whether there has been a strengthening of ecological processes across a restored 

landscape (Crawford et al., 2008). 

 

1.2.1 Carbon and Nitrogen distributions in nature 

Elements play various roles in physical and biochemical processes, hence isotopes can be 

utilised to answer a suite of ecological questions (Fry, 2006).  Stable isotopes most 

commonly used in ecological studies are carbon (C), nitrogen (N), hydrogen (H), oxygen 
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(O), sulphur (S) and strontium (Sr). C and N isotopes are the main elements used in diet 

studies (Petersen & Fry, 1987; Hobson, 1999; Kelly, 2000).  

Stable C isotope ratios are essentially tracers of various C sources in the food web. In 

terrestrial ecosystems, photosynthetic metabolism of plants mediates variation in stable C 

isotopes (δ
13

C) (Lajtha & Michener, 1994). For example, δ
13

C values decrease with 

increased latitude (Rubenstein & Hobson, 2004; Fry, 2006), because the proportions of C3 

and C4 plants change (Abelson & Hoering, 1961). Stable N isotope ratios (δ
15

N) are used to 

reconstruct food webs, partly because they increase at each trophic level (Fry, 2006); δ
15

N 

will usually increase 2
0
/00 - 4

0
/00 at each trophic level (Kelly, 2000). This predictable pattern 

means that hypotheses regarding the diet of consumers and resource partitioning can be 

tested (Caut et al., 2009).  

 

1.2.2. Ecological applications of stable isotope analysis 

The diets of vertebrate species often show seasonal or long term variation (Dalerum & 

Angerbjörn, 2005). Thus, to understand population dynamics of species requires a good 

understanding of seasonal variation in food sources (Reid et al., 1997). 

Traditional methods of analysing diet include stomach content analysis, identification of 

faeces content or direct observations of feeding habits (Monadjem et al.,1997). However, 

these methods have limitations including bias towards less digestible materials in stomach 

content analysis, and untraceable materials in scat. (Crawford et al., 2008; Codron et al., 

2015).  Traditional methods have collected valuable data. However, some are invasive and 

may introduce bias in the results. For example, scat analysis does not include all material 

digested by individuals, only remnants of material are identified which requires a great deal 

of skill, and is time consuming (Soininen et al., 2009). 

Stable isotope analysis may be a better method to analyse trophic niches of species because 

stable isotopes in animal tissues reflect the average dietary record for the consumer, and 

eliminate common problems associated with traditional dietary studies (DeNiro & Epstein, 

1981). There are three approaches to the use of stable isotopes in understanding temporal 

diet variation. First, samples from the same tissue that has been sampled over time can be 

compared to assess long and short term variation. Second, different sections of tissue with 

progressive growth can be compared because they maintain isotopic values in chronological 

order (Hobson, 1993; Bearhop et al., 2003; Schwertl et al., 2003). Third, tissues with 

different turnover rates can be compared to investigate diet over different time periods 
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because each tissue will integrate elements over time scales specific to its metabolic rate. 

The most common tissues for such studies are blood, liver, muscle and bone (Howland et al., 

2003). However, there are few studies that have applied this technique to investigate 

temporal change in diets.  

 

1.3. Small mammals as biological indicators of reforestation 

Rodents and shrews are considered valuable indicators of habitat integrity (Avenant, 2005; 

Kryštufek et al., 2008). They fulfil key ecological roles, for example linking primary 

producers and secondary consumers through prey and predator relations (Perrin & Bodbijl, 

2001; Skinner & Chimimba, 2005; Avenant & Cavallini, 2007). In fact, they are important 

prey for predators such as medium sized mammals and birds of prey (Avenant, 2005; Block 

et al., 2005; Kalies et al., 2012). Further, they alter the amount of biomass in ecosystems 

(Avenant et al., 2008; Habtamu & Bekele, 2013) through consumption of vegetation 

(Keesing, 2000), and are commonly referred to as ecosystem engineers (Avenant & 

Cavallini, 2007). Small mammals are important for nutrient recycling as they process 

vegetation, disperse spores and seeds (Kalies et al., 2012), and aerate soils while digging 

(Avenant & Cavallini, 2007). Further, small mammals respond quickly to disturbance and 

therefore are good indicators of changes in environments or vegetation structure (Avenant, 

2011: Kalies et al., 2012). Previous studies that have investigated restoration success focused 

on changes in abundance, density and diversity of small mammals. For example, Converse et 

al., (2006) found that restoration of pine forests resulted in an increase in small mammal 

densities. Ground cover (shrub vegetation and woody cover) were the most important 

predictors of small mammal densities at restored sites. Further, there were species-specific 

responses to changes at the restored forest patches. Vegetation structure often has 

meaningful impact on South African rodent community structure. For example, Bond et al., 

(1980) suggested that foliage profiles, ground cover estimates and a horizontal diversity 

index were better descriptors of rodent habitat than floristic descriptions. Ferreira & Van 

Aarde (1996) found that small mammal community composition was best explained by 

species-specific habitat preferences, e.g. Otomys irrotatus was captured in sites with tall long 

grass, while Mus minutoides avoided such sites (Armstrong and Hensbergen, 1996). Ferreira 

& Van Aarde (1999) also found that highest vegetation, shrub and herb height, litter depth, 

number of shrub stems, woody profile index and average shrub height significantly 

influenced species densities. Similarly, Els & Kerley (1996) found horizontal and vertical 

foliage density, and shrub canopy cover were best small mammal indicators. Kerley (1992) 
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found a positive association between plant and rock cover, specifically plant cover at an 

intermediate height (40 – 60cm) and small mammal diversity (Kerley, 1992). Avenant & 

Cavallini (2007), split species into ecological groups according to their grazing value, 

specifically decreaser species or increaser species (Van Oudtshoorn, 1994). 

Many forest animals including small mammals, rely on the resources provided by particular 

structural features of forests (Grove, 2002), partly because of the complex structural 

attributes of forests which provide a range of foraging and sheltering options (Walters, 2000; 

Wilkins et al., 2003).  The rate at which reforestation returns structural complexity to land 

previously used for agriculture, is an important determinant of the value of reforested sites to 

wildlife. Therefore, it is expected that newly restored sites that represent recently planted 

trees, will support a lower richness and abundance of forest wildlife than restoration plants in 

long restored sites. Similarly, Ferreira & van Aarde (1996), found lower small mammal 

diversity in younger restored sites, compared to older restored sites. However, most 

restoration studies focused solely on small mammal diversity, they did not consider how 

small mammals utilised the restored landscape as consumers (Hurst et al., 2013; Lamani et 

al., 2014). 

Isotopic gradients are well characterised in terrestrial ecosystems (Hobson, 1999). Stable 

isotope analysis has been used to quantify the diet of invasive small mammal species, 

particularly on islands (Hobson et al., 1999; Drever et al., 2000; Major et al., 2007). For 

example, on islands the diet of introduced Norway rats, Rattus norvegicus, included a high 

proportion of seabirds (Hobson et al., 1999). The dietary niche of this species was correlated 

to the size of the island and weather conditions (Stapp & Polis, 2003). Yet Major et al., 

(2007) found that Norway rats had variable diets on islands, and were able to survive when 

their preferred diet resources declined. Additionally, dietary niche breadth of small mammals 

has been quantified using stable isotope analysis. For example, based on carbon and nitrogen 

isotope ratios, individual specialisation was evident in the dusky-footed woodrat, Neotoma 

fuscipes (McEachern et al., 2006). Furthermore, Codron et al., (2015) found that synoptic 

rodent species in African savanna habitats occupied isotopically distinct trophic niches, and 

suggested that competitive exclusion was the driver of these dietary patterns.  

Previous studies on African small mammal assemblages have demonstrated the significance 

of such an approach (Symes et al., 2013, Codron et al., 2015, Robb et al., 2016). Stable 

isotope analysis is particularly useful because stable carbon and nitrogen isotopes separate 

most of the potential food sources of a consumer according to their affiliation to either a C3 

or C4 food web (Bearhop et al., 2003), and their enrichment in δ
15

N and δ
14

N (Stapp & Polis, 
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2003). Additionally, stable isotopes can be used as an endogenous marker, because isotopic 

composition integrate over the period of the tissue growth (Voigt et al., 2003). It is therefore 

possible to obtain insights into temporal aspects of their feeding behaviour and movements. 

Thus, carbon and nitrogen isotopic ratios are ideal to investigate the diets of small mammals 

in restored landscapes, specifically whether there is a strengthening of ecological processes 

over time. 

 

1.4. Study aims, objectives and predictions 
The aim of this study was to assess the success of scarp forest restoration, from the        

perspective of small mammals, at the eThekwini Municipality Community Reforestation 

sites, Buffelsdraai Landfill site.  

My objectives were to: 

1. Measure the vegetation structure in plots. 

2. Survey small mammals during the wet and dry seasons for one year in: three 

treatments representing different starting times of scarp forest restoration (2, 4 and 6 

year periods); sugarcane representing the original land cover prior to forest 

restoration; and riverine forest representing a forest habitat comparison. 

3. Quantify the observed and expected richness of rodents and shrews at each study site 

using species richness indices (Gotelli & Colwell, 2001), and compare species 

richness among study sites using sample-based rarefaction curves (Gotelli & 

Colwell, 2001). 

4. Quantify the diet of small mammal assemblages within and across study sites, using 

stable isotope analysis of hair and tissue samples collected from rodents and shrews. 

I focused on C and N stable isotopes because differences in carbon isotopes can be 

used to assess foraging location (Hobson, 1999; Rubenstein & Hobson, 2004), while 

differences in nitrogen isotopes are used to determine trophic level and diet 

composition (Dahl et al., 2003; Quilfeldt et al., 2005). C and N isotope analysis is 

helpful when trying to understand what is integrated within the tissues of an animal 

from its diet. 

  

I tested the hypothesis that scarp forest restoration will result in more complex vegetation 

structure, increased small mammal diversity, and strengthening of ecological processes, 
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specifically the trophic links between the small mammals as consumers and the restored 

vegetation. 

               

I predicted that:  

1. Complexity of vegetation structure will increase among restored sites. 

2. Rodent and shrew species will exhibit species-specific responses to increased levels 

of forest restoration; more specifically relative abundance and species richness of 

generalist species such as Mastomys natalensis and Suncus lixus that thrive on 

disturbance should be higher than those of species such as Aethomys ineptus and 

Mus minutoides that are more specialist and sensitive to disturbance. 

3.  Small mammal abundance and species richness will increase with increased age of 

forest restoration.  

4. The C/N isotope ratios of small mammal assemblages will be more closely 

associated with older forest restored sites than young restored and sugarcane sites. 
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CHAPTER 2 

METHODS 

 

2.1 Study Site 

I sampled small mammals for three weeks during two wet seasons (November 2015 and 

February 2016) and two dry seasons (May 2016 and July 2016) at the eThekwini 

Municipality Community Reforestation Site, Buffelsdraai Landfill site, in KwaZulu-Natal 

province, South Africa (29.6911° S, 31.0500° E). The study site covered an area of 520 ha, 

at an altitude of ca. 231 m. The climate was warm and temperate with an annual mean 

temperature of 22.5° C and an annual mean rainfall of 110 mm, a mean temperature of 24.4° 

C and a mean rainfall of 113 mm during the wet season, and a mean temperature of 19.3° C 

and a mean rainfall of 44 mm during the dry season (South African Weather Service 2015; 

www.weathersa.co.za/climate).  

The vegetation at Buffelsdraai Landfill site comprised originally sugarcane plantations and 

patches of riparian forest along drainage lines. Replanting of indigenous trees began in 2009 

(Fig. 1). At the time of sampling, the bufferzone was characterised by a mosaic of vegetation 

types. Most sites had a dominant grassy ground layer (Panicum and Themeda species) and an 

upper layer of woody plants that included Acacia karoo, A. nilotica, A. sieberiana, Erythrina 

lysistemon, Millettia grandis and Syzygium cordatum. These indigenous species were chosen 

for replanting because they are characteristic species present in a Scarp Forest (Mugwedi et 

al., 2017). Planting commenced in 2009 and ended in 2016. Approximately 51 indigenous 

tree species were planted. At least seven species were randomly selected and planted at sites 

during each planting event – these included Acacia species, Erythrina lysistemon, Dalbergia 

obovata, Syzygium cordatum, Vangueria infausta and Strelitzia nicolai.  Planting took place 

throughout the years, mostly during the growing season (between November and February), 

and after heavy rain events. 

 All restored sites were former low productive dryland sugarcane fields. The remainder of 

the buffer zone comprised of patches of indigenous forest, woodlands and grasslands. The 

vegetation is broadly classified as KwaZulu-Natal Coastal Belt. The topography of the study 

area is base rich and hard. The dominant geology within the site is the Dwyka Tillite. 

Because Buffelsdraai was previously sugar cane fields, I assumed that the substrate did not 

differ significantly among the study sites. Visual observations supported this assumption. 
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Figure 1: Buffelsdraai Restoration Site  

The bufferzone was classified into six different reforested areas (2009-2010, 2010-2011, 

2011-2012, 2012-2013, 2013-2014, 2014-2015), riparian forest and sugarcane. I sampled 

three replicates of five plots (i.e. 15 plots in total): riparian forest; sugarcane; reforested 

2009-2010; reforested 2011-2012; and reforested 2013-2014.  

 

 2.2. Vegetation structure 

Vegetation structure data were collected by conducting step-point 50m line transects, with 

vegetation data recorded at 5m intervals (Codron et al., 2015). At each interval a 2 x 2m grid 

was placed and vegetation structure was measured for species that fell within the grid. 

Species recorded were identified using van Oudtshoon (1992), Van Wyk & Van Wyk (1997) 

and Koekemoer et al., (2013). Tree height was measured from the base of the tree at ground 

level to the highest point using a measuring tape (for trees greater than 3m an estimation 

method was used by holding a 1m ruler against the tree and estimating how many times the 

ruler would fit the length of the tree), similarly grass height was measured from the base of 

the stem to the highest point using a measuring tape (Kanowski et al., 2003). Area of canopy 

cover for trees and grasses were visually estimated as a percentage (Kanowski et al., 2003). 

Tree density was determined by counting the number of trees within each plot.  
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2.3. Small mammal sampling  
In each plot, I set 25 Sherman live traps (H.B. Sherman Traps, Orlando, Florida), in a 5 x 5 

grid formation with one trap per station placed at 10 m intervals (Kalies et al., 2012). I used 

large and small-sized traps with dimensions 23 x 7.5 x 9 cm and 16 x 5 x 6cm, respectively, 

which were placed alternatively. I used two sizes of Sherman traps to accommodate for 

rodent and shrew species that differ in body size (King et al., 2014). Where possible, traps 

were placed in trees to accommodate arboreal species (Lamani, 2004). I sampled small 

mammals at each plot for four consecutive nights every season. I checked traps at dawn and 

baited at dusk with oats and peanut butter (Rautenbach et al., 2014). 

Caught individuals were identified to species level using Taylor (1998). Each captured 

individual was sexed, and their sexual condition recorded (female imperforate, female 

perforate, male non-scrotal, male scrotal, male sub-scrotal) (Monadjem & Perrin, 2003). I 

weighed each individual with a Pesola scale (to the nearest 0.5 g). I measured total body 

length, tail length and head and body length using a metal ruler. I measured right fore-paw 

and hind-paw lengths (with and without nails) as well as right ear lengths using electronic 

callipers rounded off to the nearest two decimal places. I tagged caught individuals with 

individually marked ear-tags for identification and released them at the point of capture 

(Witmer et al., 2014), however recaptured numbers were too low to use in population 

estimates. If caught individuals were recaptured, their ear tag number was recorded and they 

were released at the point of capture. However individuals recaptured during sampling 

period July 2016 were collected as voucher specimens. Two voucher specimens (one male 

and one female) of each species at each plot were taken to confirm field identification of 

species; voucher specimens were stored at the Durban Natural Science Museum. From each 

voucher specimen, the following tissues and organs were collected for stable isotope 

analyses: whole blood (split into red blood cells and plasma), liver, hair and bone (see 

section 2.5 below). All sampling procedures were approved by the Animal Ethics Committee 

of the University of KwaZulu - Natal (AREC/066//015). 

 

 

2.4. Stable isotope data collection and treatment 

All stable isotope data treatment performed according to protocol provided by the Stable 

Isotope Laboratory, Mammal Research Institute, University of Pretoria. 
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2.4.1. Small mammal hair and tissue samples 

I collected hair samples from the lower dorsal area from every animal captured. Hair was 

pulled out using a pair of forceps (Podlesak et al., 2008), and placed in individual vials. In 

cases where an individual was recaptured a hair sample was recollected, regardless of sample 

period and site.  The whole hair was analysed in all cases. In the laboratory I placed samples 

in test tubes and degreased the hair by soaking them in a 2:1 ethanol/chloroform mixture, 

while agitated in an ultra-sonic bath for 20 minutes. The ethanol/chloroform mixture was 

then poured off and samples were left to dry overnight at 60˚C. Samples were stored at room 

temperature until stable isotope analysis. 

I collected whole blood from voucher specimens. Samples were collected in microcentrifuge 

tubes and spun in a mini-centrifuge for three minutes at 2000 x g to separate red blood cells 

and plasma. Red blood cells were removed using a pipette and placed in clean 

microcentrifuge tubes. Whole blood was stored if separation into red blood cells and plasma 

was not successful. Red blood cells were stored in liquid nitrogen in the field. In the 

laboratory, red blood cell samples were removed from the liquid nitrogen, dried overnight at 

70˚C and ground to a fine powder using a mortar and pestle and stored at room temperature 

until analysis 

I collected liver samples from voucher specimens. Liver samples were degreased for 20 

minutes in a test-tube within a mixture of 2:1 ethanol/chloroform mixture in an ultra-sonic 

bath. After the mixture was poured off, samples were dried overnight in an oven at 60˚C, and 

then ground to a fine powder using a mortar and pestle and stored at room temperature until 

stable isotope analysis  

I removed the femur bone from each voucher specimen. Bone collagen was analysed in this 

study, therefore bone samples were demineralised in 0.5 % HCl for 36 hours at 58˚C. I 

treated samples with three sequential 2h hour soaks in a 2:1 chloroform/ethanol mixture to 

remove lipids. Thereafter, I rinsed samples in deionised water and lypholised them for 48 

hours. Once samples were dried I removed the shaft of the bone which was ground to a fine 

powder using a mortar and pestle and stored at room temperature until stable isotope 

analysis. 

2.4.2. Vegetation samples 

In each plot (Fig 1), I collected vegetation along a 40m transect line at 20m intervals at three 

stations. At each station I laid a 2 x 2m grid and recorded and collected the dominant 

vegetation types (forbs, grasses, trees and sugarcane). I placed plants between folded sheets 
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of newspaper and pieces of cardboard sheets in plant presses to protect specimens and 

ventilate water vapour. I stored plant presses in a cabinet. Plants were collected in November 

2015 and again in May 2016. In the laboratory, I selected leaves, stems and fruit from tree 

samples; seeds, leaves and stems from grass samples;  stems and leaves from forb samples;  

and stems and leaves from sugarcane samples which were oven-dried overnight at 60˚C to 

remove tissue water. Once samples were dried plant parts of each vegetation group (trees, 

grasses, forbs and sugarcane) were pooled, and ground to a fine powder using a mortar and 

pestle and stored at room temperature until stable isotope analysis (Dammhahn & Goodman, 

2014). To standardise plant collections between seasons I pooled samples for analysis rather 

than using a specific part of the plant because I wanted to include plant material that would 

be available to small mammal assemblages during both dry and wet seasons. 

2.4.3. Invertebrate samples 

In each plot (Fig. 1), I laid four pitfall traps using recyclable materials (plastic 125 ml bottle, 

paper funnels, sticks and polystyrene sheets) in a 10 x 10m grid formation for three 

consecutive nights. To limit insects from escaping or crawling out of pitfall traps, I placed a 

funnel at the entrance of each trap. Additionally, I used polystyrene covers to avoid rain and 

debris collecting in traps.  I checked pitfall traps daily. Sampling of invertebrates occurred 

during November 2015 and May 2016. Invertebrates were identified to Order, and data were 

pooled per site. Collected specimens were humanely euthenised in a freezer. In the 

laboratory samples were oven-dried overnight at 60˚C to remove tissue water. Once samples 

were dried they were ground to a fine powder using a mortar and pestle and stored at room 

temperature until analysis (Dammhahn & Goodman, 2014). Additionally, earthworms 

compromise part of shrew species’ diet (Taylor, 1998), therefore shallow pits were dug, 25 x 

25 cm and 10 cm in depth along a 40m transect line at 20m intervals at three stations 

(Decaens & Jimenez, 2002). However, no earthworms were found. 

 

2.4.4. Stable isotope analysis sample preparation 

Ground vegetation sampled were weighed to 1.00 - 1.20 mg. Ground hair, red blood cells, 

bone and insect samples were weighed to 0.50 - 0.60 mg. The amount of sample that must be 

weighed is dependent on the amount of carbon and nitrogen present in the dry tissue (Voigt 

et al., 2003). Because live plant material contains more water than animal material, more 

ground sample is required for stable isotope analysis (Hobson, 1999). 
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I placed samples in Costech 3.5 x 5 mm pressed tin capsules (Codron et al., 2015). Samples 

were analysed for 13C/12C and 15N/14N isotope ratios. Samples were combusted at 1000°C 

in a reactor packed with chromium oxide and silvered copper oxide. Following combustion, 

oxides were removed in a reduction reactor (reduced copper at 650°C), and the resultant CO2 

and N2 gases separated on a Carbosieve GC column (65°C, 65 mL/min) before entering the 

stable light isotope for mass spectrometry analyses. 

Isotopic analysis was performed on a Flash EA 1112 Series coupled to a Delta V Plus stable 

light isotope ratio mass spectrometer via a ConFlo IV system (all equipment supplied by 

Thermo Fischer, Bremen, Germany), housed at the Stable Isotope Laboratory, Mammal 

Research Institute, University of Pretoria. 

A laboratory running standard (Merck Gel: δ
13

C = -20.57‰, δ
15

N=6.8‰, C%=43.83, 

N%=14.64) and a blank sample was run after every 12 samples with unknown C and N 

isotopic values. Every 12
th
 sample was a replicate of the 11

th
 sample to test the 

reproducibility of results. All results were referenced to Vienna Pee-Dee Belemnite for C 

isotope values, and to air for N isotope values. Results were expressed in delta notation and 

per mille scale using the standard equation: 

  

δX(‰) = [(Rsample-Rstandard)/Rstandard-1]x1000 

 

where X= 
15

N or 
13

C and R represents 
15

N/
14

N or 
13

C/
12

C respectively (Darimont and 

Reimchen, 2002). 

 

2.5. Statistical analyses 

2.5.1. Vegetation response to reforestation 

Richness data were square root-transformed; tree density, tree height and grass height data 

were log-transformed; and tree canopy cover and grass canopy cover data were arcsine-

transformed. I tested the transformed data for normality using the Shapiro Wilks test, and 

homoscedasticity of variances using the Levene’s test. To assess the influence of season and 

study site on forb, grass and tree species richness, tree density, grass and tree height, and 

grass and tree canopy cover, I performed Two-Way ANOVAs with season and study sites as 

factors. All statistical analyses were conducted using R (v.3.2.2.0, R Core Team, 2015).  
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2.5.2. Diversity index 

I calculated the Simpsons diversity index of small mammal assemblages at study sites using 

EstimateS (version 8.2, Colwell, 2009). I used this index because, it measures dominance by 

identifying the probability that two individuals will be belong to the same species, 

incorporating both species richness and abundance (Magurran, 2004). Additionally, this 

index has been widely used, allowing for comparisons with other studies (Makundi et al., 

2010; King et al., 2014). 

 

2.5.3. Completeness of small mammal inventory 

I calculated expected species richness for each treatment using two species richness 

estimators: Chao 1 and Jacknife 1 indices (Gotelli & Colwell, 2001), using EstimateS 

(version 8.2, Colwell, 2009). Chao 1 provides a robust estimation of the minimum species 

richness, whereas Jacknife 1 reduces the bias of the estimator by removing subsets of the 

data and recalculating the estimator with the reduced sample (Colwell et al., 2004). These 

species richness estimators have been shown to perform well in datasets with a limited 

number of samples (Walther & Morand, 1998). To assess the completeness of the 

inventories, I calculated the ratio between the observed and expected richness based on the 

species richness estimators (Schoeman & Jacobs, 2011).  Percentage completeness of 

sampling effort (%) was calculated as:  

% completeness = Observed species x 100 / value of the species richness estimator. 

To compare rodent and shrew species richness between the plots, I calculated sample-based 

rarefaction curves (Gotelli & Colwell, 2001) using EstimateS (version 8.2, Colwell, 2009). 

Sample based rarefaction curves standardise comparisons of species richness among 

assemblages, assuming random sampling of taxonomically similar individuals that are 

randomly distributed (Gotelli & Colwell, 2001). 

 

2.5.4. Response of small mammals to reforestation 

Richness and abundance data were square root-transformed, and diversity data log-

transformed, to meet the assumptions of normality using the Shapiro Wilks test, and 

homoscedasticity of variances using the Levene’s test. To assess the influence of season and 

study site on rodent and shrew abundance, species richness and diversity, I performed Two-

Way ANOVAs with season and study sites as factors, and Tukey post hoc tests with multiple 
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comparison tests when significant. All statistical analyses were conducted using R (v.3.2.2.0, 

R Core Team, 2015).  

 

2.5.5. Diet composition of rodents and shrews 

Even after transformation, the carbon and nitrogen isotope data were not normally 

distributed. Thus, I ranked the data, and performed Two-Way ANOVAs, to test the influence 

of season and study sites on carbon and nitrogen isotope values of rodent and shrew hair 

samples, and M. natalensis tissue samples, and Tukey post hoc tests with multiple 

comparison tests when significant. Four tissue samples from M. natalensis were analysed: 

bone, hair, liver and red blood cells. In all cases, dry and wet season data were treated 

separately. All statistical analyses were conducted using R (v.3.2.2.0, R Core Team, 2015).  

I assessed the relative contribution of isotopic plant and invertebrate categories in the diets of 

rodent and shrew species at different study sites by applying a Bayesian isotope mixing 

model using the package SIAR version 4.1.3. (Parnell et al., 2010; Jackson et al., 2011) in R 

(v.3.2.2.0, R Core Team, 2015). SIAR produces a range of solutions concerning the 

contribution of each food source to a consumer’s diet, incorporating many sources of 

variability and multiple dietary sources (Robb et al., 2016). Forbs, grasses, tree material and 

invertebrates were entered as individual food items. Raw stable isotope data were corrected 

with diet-tissue fractionation values.  There are many factors that influence diet-tissue 

fractionation values, ranging from food type to inter species variation (Tiezen et al., 1983; 

Fry, 1988; Ambrose, 1991; Hobson et al., 1993; Bearhop et al., 2002; Ogden et al., 2004; 

Cherel et al., 2005; Podlesak & McWilliams, 2006; Miller et al., 2008; Symes et al., 2013). 

Because I did not determine species-specific diet-tissue fractionation factors under 

laboratory conditions, I used derived diet-tissue fractionation values for δ
13

C of 3.5 ‰ for 

bone (DeNiro & Epstein, 1981), 3.0‰ for hair (MacAvoy et al., 2012; Symes et al., 2013), 

and 1.6  ‰ for liver (MacAvoy et al., 2005); and derived diet-tissue fractionation values for 

δ
15

N of 4.4‰ for bone (DeNiro & Epstein), 2.7‰ for hair (Galleti et al., 2016), and 5.0 ‰ 

for liver (MacAvoy et al., 2005). Diet-tissue fractionation values have not been derived for 

red blood cells in smaller mammals, therefore I used 1‰ for carbon and 3‰ for nitrogen 

(DeNiro & Epstein 1978, 1981). 

Prior to running models, dietary sources were checked for isotopic separation.  The isotope 

values of the four vegetation groups did differ significantly and therefore were included as 

separate entities. Diet composition was examined at the population level (calculating the 
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mean value for the proportion of each food source for all individuals in the area). 

Additionally, standard ellipse area (SEA) was calculated for hair samples of rodents and 

shrews; bone, hair, liver and red blood cell tissues of M. natalensis; and combined dietary 

sources for each site. This provided measures of isotopic niche widths of the rodent and 

shrew populations. Further, I calculated the mean distance to centroid as the mean Euclidean 

distance of each individual of a population to the δ
13

C - δ
15

N as an estimator of the 

population isotopic diversity, and the mean nearest neighbour distance which reveals the 

packing of individuals in the two-dimensional space.  

These were produced using the program SIAR by fitting a standard ellipse to the bivariate 

(carbon and nitrogen) data using maximum likelihood estimators (Robb et al., 2016).  
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CHAPTER 3 

RESULTS 

3.1 Differences in vegetation structure among study sites 

To test normality of data, Shapiro-Wilk tests were used and to test homogeneity of variance 

Levene’s tests were used. Where assumptions were violated data were log transformed and 

tested again - the assumptions for parametric tests were met (Table 1, 2).  

 

Table 1. Shapiro-Wilk test of differences in forb, tree and grass species richness, tree 

density, tree height and site of tree canopy cover among five study sites (2014 restored, 2012 

restored, 2010 restored, forest and sugarcane sites) at the Buffelsdraai Landfill Site between 

November 2015 and July 2016.  

 

 

 

 

 

 

 W p - value 

Species richness   

   Forb 0.765 0.084 

   Grass 0.792 0.061 

   Tree 0.901 0.072 

Tree density 0.825 0.092 

Tree height 0.864 0.075 

 Canopy cover 0.932 0.095 

Grass height 0.894 0.094 

Grass % cover 0.872 0.081 
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Table 2. Levene’s Test of equality of variance in forb, tree and grass species richness, tree 

density, tree height and site of tree canopy cover among five study sites (2014 restored, 2012 

restored, 2010 restored, forest and sugarcane sites) at the Buffelsdraai Landfill Site between 

November 2015 and July 2016. 

 df F-value p-value 

Species Richness    

   Forb 9 0.20 0.991 

   Grass 9 0.19 0.993 

   Tree 9 0.91 0.537 

Tree density 9 0.68 0.714 

Tree height 9 1.03 0.451 

Canopy cover 9 1.03 0.456 

Grass height 9 0.69 0.705 

Grass % cover 9 0.52 0.845 
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I found significant differences in forb species richness between seasons (Table 3). Tukey 

HSD post hoc test showed that forb species richness was significantly higher during the wet 

season than the dry season (p = 0.004, Fig. 2A). Forb species richness also differed 

significantly among sites (Table 3), with Tukey HSD post hoc tests showing that forb species 

richness was significantly higher at 2014 restored sites than at 2012 restored (p = 0.014, Fig. 

2B), 2010 restored (p = 0.041, Fig. 2B), forest (p = 0.001, Fig. 2B) and sugarcane (p = 0.058, 

Fig. 2B); and at sugarcane sites than at forest (p = 0.0389, Fig. 2B). I found no significant 

interactions between forb species richness, season and sites (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mean (±SD) forb species richness (A) during wet and dry seasons, and (B) at five 

study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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I found significant differences in grass species richness between seasons (Table 3). Tukey 

HSD post hoc tests showed that grass species richness was significantly higher during the 

wet season than the dry season (p < 0.001, Fig. 3A). Grass species richness differed 

significantly among sites (Table 3), with Tukey HSD post hoc tests showing that grass 

species richness was significantly higher at 2014 restored sites than at forest (p =0.004, Fig. 

3B) and sugarcane (p = 0.014, Fig. 3B); at 2012 restored sites than at sugarcane (p = 0.054, 

Fig. 3B), forest (p = 0.003, Fig. 3B); and at 2010 restored sites than at forest (p = 0.011, Fig. 

3B). I found no significant interactions between grass species richness, season and sites 

(Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Mean (±SD) grass species richness (A) during wet and dry seasons, and (B) at five 

study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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I found no significant differences in tree species richness between seasons (Table 3). Tree 

species richness differed significantly among sites (Table 3), with Tukey HSD post hoc tests 

showing that tree species richness was significantly lower at sugarcane sites than 2014 

restored (p < 0.001, Fig. 4B), 2012 restored (p < 0.001, Fig. 4B), 2010 restored (p < 0.001, 

Fig. 4B) and forest (p = 0.002, Fig. 4B). I found no significant interactions between tree 

species richness, season and sites (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mean (±SD) tree species richness (A) during wet and dry seasons, and (B) at five 

study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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I found no significant differences in tree density between seasons (Table 3). I found 

significant differences in  tree density among sites (Table 3), with Tukey HSD post hoc tests 

showing that tree density was significantly lower in sugarcane sites than at 2010 restored (p 

< 0.001, Fig. 5B), 2012 restored (p < 0.001, Fig. 5B) and 2014 restored (p < 0.001, Fig. 5B); 

at forest sites than at 2010 restored (p < 0.001, Fig. 5B),  2012 restored (p < 0.001, Fig. 5B) 

and 2014 restored (p = 0.004, Fig. 5B). Tree density was also significantly higher at forest 

sites than at sugarcane (p = 0.006, Fig. 5B). I found no significant interactions between tree 

density, season and sites (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Mean (±SD) tree density (A) during wet and dry seasons, and (B) at five study 

sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. Asterisks 

indicate significant differences (p < 0.05). 
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I found no significant differences in tree height between seasons (Table 3). Tree height 

differed significantly among sites (Table 3), with Tukey HSD post hoc tests showing that 

tree height  was significantly higher at forest sites than at 2010 restored (p < 0.001, Fig. 6B), 

2012 restored (p < 0.001, Fig. 6B), 2014 restored (p < 0.001, Fig. 6B) and sugarcane (p = 

0.002, Fig. 6B); at 2010 restored sites than at 2014 restored (p = 0.011, Fig. 6B) and 

sugarcane (p = 0.002 Fig. 6B); and at 2012 restored sites than at 2014 restored (p = 0.014, 

Fig. 6B) and sugarcane (p = 0.003, Fig. 6B). I found no significant interactions between tree 

height, season and sites (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Mean (±SD) tree height (A) during wet and dry seasons, and (B) at five study 

sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. Asterisks 

indicate significant differences (p < 0.05). 
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I found no significant differences in site of tree canopy between seasons (Table 3). Site of 

tree canopy cover differed significantly among sites (Table 3), with Tukey HSD post hoc 

tests showing that site of tree canopy was significantly higher at forest sites than at 2012 

restored  (p = 0.003, Fig. 7B), 2014 restored (p = 0.003, Fig. 7B), 2010 restored (p = 0.002, 

Fig. 7B) and sugarcane (p < 0.001, Fig. 7B); at 2010 restored sites than at 2012 restored (p = 

0.002, Fig. 7B), 2014 restored (p = 0.002, Fig. 7B) and sugarcane (p = 0.002, Fig. 7B); and 

at 2012 restored sites than at 2014 restored (p = 0.002, Fig. 7B) and sugarcane (p < 0.001, 

Fig. 7B). I found no significant interactions between site of tree canopy, season and sites 

(Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Mean (±SD) tree canopy (A) during wet and dry seasons, and (B) at five study 

sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. Asterisks 

indicate significant differences (p < 0.05). 
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I found no significant differences in grass height between seasons (Table 3). Grass height 

differed significantly among sites (Table 3), with Tukey HSD post hoc tests showing that 

grass height was significantly lower at forest sites that at 2010 restored (p = 0.005, Fig. 8B), 

2012 restored (p = 0.007, Fig. 8B), 2014 restored (p = 0.024, Fig. 8B), and sugarcane (p = 

0.018, Fig. 8B). Grass height was significantly higher at 2012 restored sites than at 2014 

restored (p = 0.008, Fig. 8B). I found no significant interactions between grass height, season 

and sites (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Mean (±SD) grass height (A) during wet and dry seasons, and (B) at five study 

sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. Asterisks 

indicate significant differences (p < 0.05). 
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I found significant differences in grass percentage cover between seasons (Table 3). Tukey 

HSD post hoc tests showed that grass % cover was significantly higher during the wet season 

than the dry season (p = 0.003, Fig. 9A). Grass percentage cover also differed significantly 

among sites (Table 3), with Tukey HSD post hoc tests showing that grass percentage cover 

was significantly higher at 2012 restored sites than at 2010 restored (p = 0.009, Fig. 9B), 

2014 restored (p = 0.048, Fig. 9B), forests (p = 0.003, Fig. 9B), and sugarcane (p = 0.002, 

Fig. 9B); 2010 restored sites than at forests (p = 0.010, Fig. 9B), sugarcane (p = 0.008, Fig. 

9B), and 2014 restored (p = 0.021, Fig. 9B); and at 2014 restored sites than at sugarcane (p = 

0.024, Fig. 9B), and forests (p = 0.017, Fig. 9B). I found no significant interactions between 

grass percentage cover, season and sites (Table 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Mean (±SD) grass percentage cover (A) during wet and dry seasons, and (B) at 

five study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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3.2 Completeness of small mammal inventory 

During 720 trapping hours, I captured 210 small mammals, representing 12 species, 

classified to 11 genera and three families: Muridae (n=189), Gliridae (n=3) and Soricidae 

(n=18). The most numerous species caught was Mastomys natalensis  (n=165) representing 

79 % of all captures,  followed by Crocidura cyanea (n=12), Lemniscomys rosalia (n=12), 

Steatomys pratensis (n=6), Crocidura flavescens (n=5), Aethomys ineptus (n=2), Dendromus 

melanotis (n=2), Grammomys dolichurus (n=2), Graphiurus murinus (n=1), Mus minutoides 

(n=1), Otomys auratus (n=1) and Suncus infinitesimus (n=1).  

Sample-based rarefaction curves of rodents reached asymptotes, and indicated that species 

richness was higher in forests, than restored sites and sugarcane sites (Figure 10). At 

identical sampling efforts (cumulative trapping days = 45), species richness was 5 (SD ± 

1.91) at forest sites, 4 (SD ± 1.54) at 2012 restored sites, 4 (SD ± 1.30) at 2014 restored sites, 

3 (SD ± 1.47) at sugarcane sites and 3 (SD ± 1.27) at 2010 restored sites.  

 

 

 

Figure 10. Rarefaction curves of rodent species captured at five study sites of the 

Buffelsdraai Landfill Site, between November 2015 and July 2016.  
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Sample-based rarefaction curves of shrews did not reach asymptotes at restored sites (Figure 

11). Shrew species richness was higher in 2012 restored sites, than other restored sites, 

sugarcane sites and forests. At identical sampling efforts (cumulative trapping days = 38), 

species richness was 2 (SD ± 0.61) at sugarcane sites, 3 (SD ± 0.79) at 2012 restored sites, 2 

(SD ± 0.35) at 2014 restored sites and 2 (SD ± 0.61) at 2010 restored sites.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Rarefaction curves of shrew species captured at four study sites of the 

Buffelsdraai Landfill Site, between November 2015 and July 2016.  

 

The Chao 1 richness estimator indicated that species inventories for rodents were > 82% 

complete for all study sites (Table 4). The Jacknife 1 richness estimator indicated that all 

sites were > 72% complete, except sugarcane sites where the species richness estimator 

showed 62% completeness and forest sites where the species richness estimator showed 60% 

completeness (Table 4). 

The Chao 1 richness estimator indicated that species inventories for shrews were > 70% 

complete for sites (Table 5). The species richness estimator showed that 2010 restored sites 

were 100% complete. The Jacknife 1 richness estimator indicated that all sites were > 65% 

complete (Table 5). 
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Table 4. Observed species (Obs spp) and expected species richness of rodent assemblages 

based on Chao 1 and Jacknife 1 richness estimators at five study sites of the Buffelsdraai 

Landfill Site. 

 

 

Table 5. Observed species (Obs spp) and expected species richness of shrew assemblages 

based on Chao 1 and Jacknife 1 richness estimators at four study sites of the Buffelsdraai 

Landfill Site. 

 

 

3.3 Response of small mammals to restoration 

Mastomys natalensis was captured at all study sites. Lemniscomys rosalia, C. cyanea and C. 

flavescens were captured at all restoration and sugarcane sites, but not at forest sites. 

Steatomys pratensis was captured at 2010 restored sites, sugarcane sites and forest sites. 

Dendromus melanotis was captured at 2014 and 2012 restored sites. Grammomys dolichurus, 

G. murinus and A. ineptus were captured at forest sites only. The rodent M. minutoides and 

the shrew S. infinitesimus were captured at the 2012 restored sites only. Otomys auratus was 

captured at sugarcane sites only (Table 6).  

Study Site  Obs spp Chao 1 %  

Completeness 

Jacknife 1 % 

Completeness 

Sugarcane 4 4.8 83.3 6.5 61.5 

2014 restored 3 3.3 90.9 3.8 79.0 

2012 restored 4 4.2 95.2 5.5 72.7 

2010 restored 3 3.2 93.8 3.7 81.1 

Forest 5 6.1 82 8.4 59.5 

Study Site  Obs spp Chao 1 % 

Completeness 

Jacknife 1 % 

Completeness 

Sugarcane 2 2.9 69.0 2.5 80.0 

2014 restored 2 2.8 71.4 3.1 64.5 

2012 restored 3 3.7 81.1 3.9 76.9 

2010 restored 2 2 100.0 3 66.7 
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A Shapiro-Wilk test was used to determine normality of data and a Levene’s test was used to 

determine homogeneity of variance. Where assumptions were violated data were log 

transformed and assumptions of parametric tests were re-tested - the assumptions were met 

(Table 7, 8).  

 

Table 7.  Shapiro-Wilk tests of differences in rodent and shrew abundance, species richness 

and diversity among five study sites at the Buffelsdraai Landfill Site between November 

2015 and July 2016. 

 W p - value 

Rodent   

   Abundance 0.9405 0.1387 

   Species Richness 0.7094 0.1756 

   Diversity 0.8390 0.0653 

Shrew   

   Abundance 0.2638 0.2563 

   Species Richness 0.6004 0.0757 

   Diversity 0.9405 0.1387 

 

 

Table 8.  Levene’s Tests of equality of variances in rodent and shrew abundance, species 

richness and diversity among five study sites at the Buffelsdraai Landfill Site between 

November 2015 and July 2016. 

 df F-value p-value 

Rodent    

   Abundance 9 1.06 0.433 

   Species Richness 9 0.14 0.998 

   Diversity 9 0.73 0.612 

Shrew    

   Abundance 9 1.18 0.357 

   Species Richness 9 1.04 0.446 

   Diversity 7 1.08 0.796 
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I found significant differences in rodent abundance between seasons (Table 10). Tukey HSD 

post hoc tests showed that rodent abundance was significantly higher during the dry season 

than the wet season (p = 0.001, Fig. 12A). Rodent abundance also differed significantly 

among sites (Table 10). Tukey HSD post hoc tests showed that rodent abundance was 

significantly higher at 2010 restored sites than at 2012 restored (p < 0.001, Fig. 12B), 2014 

restored (p < 0.001, Fig. 12B), sugarcane  (p = 0.008, Fig. 12B) and forest (p < 0.001, Fig. 

12B) sites. Additionally I found significant interactions between rodent abundance, season 

and sites: rodent abundance was significantly higher at 2010 restored sites in the dry season 

than at the other sites and seasons (Table 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Mean (±SD) rodent abundance (A) during wet and dry seasons, and (B) at five 

study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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I found significant differences in shrew abundance between seasons, but not among sites 

(Table 13). Tukey HSD post hoc tests showed that shrew abundance was significantly higher 

during the dry season than the wet season (p = 0.025, Fig. 13A). There were no significant 

interactions between shrew abundance, season and sites (Table 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Mean (±SD) shrew abundance (A) during wet and dry seasons, and (B) at five 

study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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I found no significant differences in rodent species richness between seasons, sites and the 

interaction between season and sites (Fig. 14, Table 10). However, I found significant 

differences in shrew species richness between seasons, but not among sites or interactions 

between sites and seasons (Table 10). Tukey HSD post hoc tests showed that shrew species 

richness was significantly higher during the dry season than the wet season (p = 0.039, Fig. 

15A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Mean (±SD) rodent species richness (A) during wet and dry seasons, and (B) at 

five study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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Figure 15. Mean (±SD) shrew species richness (A) during wet and dry seasons, and (B) at 

five study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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I found significant differences in rodent diversity between seasons (Table 10), with Tukey 

HSD post hoc tests showing that rodent diversity was significantly higher during the dry 

season than the wet season (p = 0.022, Fig. 16A). Rodent diversity also differed significantly 

among sites (Table 10). Tukey HSD post hoc tests showed that rodent diversity was 

significantly higher at forest sites than at 2010 restored (p < 0.001, Fig. 16B), 2012 restored 

(p = 0.003, Fig. 16B), 2014 restored (p = 0.001, Fig. 16B) and sugarcane (p < 0.001, Fig. 

16B) sites. Additionally, I found significant interactions between rodent diversity, season 

and sites: rodent diversity was significantly higher in 2010 restored sites in the dry season 

than at other sites and seasons (Table 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.  Mean (±SD) rodent diversity (A) during wet and dry seasons, and (B) at five 

study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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I found significant differences in shrew diversity between seasons (Table 10), with Tukey 

HSD post hoc tests showing that shrew diversity was significantly higher during the dry 

season than the wet season  (p = 0.008, Fig. 17A). Shrew diversity differed significantly 

among sites (Table 10), with Tukey HSD post hoc tests showing that shrew diversity was 

significantly higher at sugarcane sites than at 2014 restored (p = 0.003, Fig.15B) and 2012 

restored (p = 0.006, Fig. 17B), at 2010 restored sites than at 2014 restored (p = 0.002, Fig. 

17B) and 2012 restored (p =0.035, Fig. 17B) sites, and at 2012 restored sites than at 2014 

restored sites (p = 0.002, Fig. 17B). I found no significant interactions between shrew 

diversity, season and sites (Table 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Mean (±SD) shrew diversity (A) during wet and dry seasons, and (B) at five 

study sites of the Buffelsdraai Landfill Site between November 2015 and July 2016. 

Asterisks indicate significant differences (p < 0.05). 
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Table 9. Simpson’s diversity index of rodent and shrew assemblages at study sites of the 

Buffelsdraai Landfill Site between November 2015 and July 2016. 

 

Study sites Simpsons diversity index 

Rodents  

Sugarcane 0.25 

2014 restored 0.68 

2012 restored 0.31 

2010 restored 0.28 

Forest 0.63 

Shrews  

Sugarcane 0.43 

2014 restored 0.23 

2012 restored 0.27 

2010 restored 0.48 
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3.4. Stable isotope composition of small mammals in response to restoration. 

Plant and invertebrate samples were analysed to provide a habitat baseline of isotopic 

variation. I collected and analysed 128 plant and 101 invertebrate samples in the wet season, 

and 113 plant and 89 invertebrate samples in the dry season. Plant samples collected at study 

sites across Buffelsdraai Landfill Site had a mean δ
13

C of - 25.30 
0
/00 (range - 36.18 

0
/00 – -

13.14
 0
/00) and a mean δ

15
N of 0.27 

0
/00 (range - 3.90 

0
/00 – 5.51 

0
/00). Mean δ

13
C of 

invertebrate samples collected at study sties: -20.74
 0
/00 (range - 32.64 

0
/00 – - 24.83 

0
/00), and 

mean δ
15

N of invertebrate samples: 4.27 
0
/00 (range - 1.01 

0
/00 – 9.30 

0
/00). 

 

δ
13

C values of rodent hair indicated that the group consumed food items across the whole C3-

C4 spectrum of terrestrial vegetation (Table 12). There were significant differences in the 

carbon and nitrogen composition of rodent hairs between seasons (Table 13). Tukey HSD 

post hoc tests showed that carbon composition were more negative during the wet season 

than the dry season (p < 0.001, Fig. 18), likely due to the abundance of C4 plants present in 

the wet season. Tukey HSD post hoc tests showed that nitrogen composition of rodent hairs 

were higher in the dry season than the wet season (p < 0.001, Fig. 18).  Nitrogen but not 

carbon composition of rodent hairs differed significantly among sites (Table 13). Tukey 

HSD post tests showed that nitrogen composition of rodent hairs were lower at 2010 restored 

sites than 2012 restored (p < 0.001, Fig. 18), 2014 restored (p < 0.001, Fig. 18), forests (p = 

0.035,  Fig. 18), and sugarcane (p < 0.001, Fig. 18) sites. I found no significant interactions 

between the carbon and nitrogen composition of rodent hair, season and sites (Table 13).  

In the wet season, the total overall isotopic niche occupied by rodents was greater at 2010 

restored sites than other restored sites, forests and sugarcane sites (Fig. 18A). Rodent species 

aggregation in the δ
13

C - δ
15

N plot was high (Table 12; Fig. 18A). The lowest average δ
13

C 

values were recorded for G. murinus whereas the highest δ
13

C values were recorded for M. 

natalensis (Table 14). 

Rodents had narrower δ
13

C ranges in the dry season than wet season (Table 12). The total 

overall isotopic niche occupied by rodents was also greater at 2010 restored sites than at 

other restored sites, forests and sugarcane sites (Fig. 18B). Rodent species aggregation in the 

δ
13

C - δ
15

N plot was high (Table 12).  Among the species captured in the dry season, G. 

dolichurus had the lowest δ
13

C values whereas the highest δ
13

C values were recorded for O. 

auratus (Table 14; Fig. 18B).  
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Figure 18. Standard ellipses for rodent’s main sources of food based on hair collected at 

2010, 2012 and 2014 restored sites, sugarcane sites and forest sites of the Buffelsdraai 

Landfill Site between November 2015 and July 2016 during the (A) wet season and (B) dry 

season. Individuals caught at the same study site are depicted in the same symbol (symbols 

depicted in legend), and species are coded by colour. Plant communities are delineated as 

ellipses (colours according to legend). 
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Using SIAR analysis I estimated dietary contributions based on rodent hair samples for 

rodent species within each study site during the wet and dry seasons to investigate whether 

species’ relative consumption differed among restored sites, sugarcane sites and forests.  

According to the Bayesian model at forest sites during the wet season, A. ineptus fed mostly 

on tree material and G. murinus fed mostly on invertebrates. During the dry season, G. 

dolichurus fed mostly on grasses (Fig. 19, Table 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Relative proportions of isotopically distinct categories of prey in the diet of (A) 

A. ineptus, (B) G. murinus at forest sites during the wet season, and (C) G. dolichurus at 

forest sites during the dry season, as determined by a Bayesian isotopic mixing model. Box 

plots show the relative proportions for each food source with 95% (dark grey), 75%, 25% 

(medium grey) and 5% (light grey) confidence intervals. 
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At 2010 restored sites during the wet season, A. ineptus, L. rosalia and M. natalensis fed 

mostly on tree material, and D. melanotis fed predominantly on grasses. During the dry 

season, D. melanotis, L. rosalia, M. minutoides, O. auratus and S. pratensis fed mostly on 

grasses, and M. natalensis fed mostly on tree material (Fig. 20, Table 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Relative proportions of isotopically distinct categories of prey in the diet of (A) 

A. ineptus, (B) D. melanotis, (C) L. rosalia, (D) M. natalensis at 2010 restored sites during 

the wet season, and (E) D. melanotis, (F) L. rosalia, (G) M. minutoides, (H) M. natalensis, 

(I) O. auratus and (J) S. pratensis at 2010 restored sites during the dry season, as determined 

by a Bayesian isotopic mixing model. Box plots show the relative proportions for each food 

source with 95% (dark grey), 75%, 25% (medium grey) and 5% (light grey) confidence 

intervals. 
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At 2012 restored sites during the dry season, M. natalensis fed mostly on tree material (Fig. 

21, Table 16). At sugarcane sites during the wet season, M. natalensis fed mostly on grasses, 

and forbs during the dry season (Fig. 22, Table 16). 

 

 

 

 

 

Figure 21. Relative proportions of isotopically distinct categories of prey in the diet of (A) 

M.. natalensis at 2012 restored sites during the dry season, as determined by a Bayesian 

isotopic mixing model. Box plots show the relative proportions for each food source with 

95% (dark grey), 75%, 25% (medium grey) and 5% (light grey) confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Relative proportions of isotopically distinct categories of prey in the diet of M. 

natalensis at sugarcane sites during the (A) wet season, and (B) dry season, as determined by 

a Bayesian isotopic mixing model. Box plots show the relative proportions for each food 

source with 95% (dark grey), 75%, 25% (medium grey) and 5% (light grey) confidence 

intervals. 
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In total 165 M. natalensis individuals were sampled at all restoration sites, forests and 

sugarcane sites. I therefore analysed the carbon and nitrogen isotopic values and C/N 

isotopic ratios of the bone, hair, liver and red blood cells of M. natalensis to investigate how 

this generalist species utilised the sites across the Buffelsdraai landscape.  

I found significant differences in carbon and nitrogen composition of M. natalensis bone 

between seasons (Table 13). Tukey HSD post hoc tests showed that carbon composition of 

M. natalensis bone were higher during the wet season than the dry season (p < 0.001), and 

nitrogen composition of M. natalensis bone were higher during the wet season than the dry 

season (p = 0.039). Carbon but not nitrogen composition of M. natalensis bone differed 

significantly among sites (Table 13). Tukey HSD post hoc tests showed that carbon 

composition of M. natalensis bone were significantly higher at 2014 restored sites than 2010 

restored sites and sugarcane sites (p<0.05). I found no significant interactions between M. 

natalensis bone, season and sites (Table 13).  In the wet season δ
13

C values of M. natalensis 

bone had narrower ranges than in the dry season (Table 12; Fig. 23A). Aggregation in the 

δ
13

C - δ
15

N plot was high (Table 12; Fig. 23A).  

I found significant differences in carbon and nitrogen composition of M. natalensis hair 

between seasons (Table 13). Tukey HSD post hoc tests showed that carbon composition of 

M. natalensis hair were higher during the wet season than the dry season (p = 0.002), and 

nitrogen composition of M. natalensis hair were higher during the wet season than the dry 

season (p < 0.001). I found no significant differences in carbon and nitrogen composition of 

M. natalensis hair among sites (Table 13). I found no significant interactions between M. 

natalensis hair, season and sites (Table 13). In the wet season δ
13

C values of M. natalensis 

hair had narrower ranges than in the dry season (Table 12: Fig. 23C). Aggregation in the 

δ
13

C - δ
15

N plot was high (Table 12; Fig. 23C).   

I found significant differences in nitrogen but not carbon composition of M. natalensis liver 

between seasons (Table 13). Tukey HSD post hoc tests showed that nitrogen composition of 

M. natalensis liver were higher during the wet season than the dry season (p < 0.001).  I 

found no significant differences in carbon and nitrogen composition of M. natalensis liver 

among sites (Table 13). I found no significant interactions between M. natalensis liver, 

season and sites (Table 13). In the wet season δ
13

C values of M. natalensis liver were 

narrower ranges than in the dry season (Table 12: Fig. 23E). Aggregation in the δ
13

C - δ
15

N 

plot was higher in the dry season than during the wet season (Table 12; Fig. 23E).  

I found significant differences in carbon but not nitrogen composition of M. natalensis red 

blood cells (RBC) between seasons (Table 13). Tukey HSD post hoc tests showed that 
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carbon composition of M. natalensis RBC were higher during the dry season than the wet 

season (p < 0.001). I found no significant differences in carbon and nitrogen composition of 

M. natalensis RBC among sites (Table 13). I found no significant interactions between M. 

natalensis RBC’s season and sites (Table 13).. In the wet season δ
13

C values of M. natalensis 

RBC’s  has narrower ranges than in the dry season (Table 12: Fig. 23G). Aggregation in the 

δ
13

C - δ
15

N plot was higher in the dry season than during the wet season (Table 12Fig. 23G).  

According to carbon and nitrogen isotope composition of M. natalensis bone, I found 

indirect evidence of dispersal movements of M. natalensis between 2010 and 2012 habitat 

types, with many individuals having values outside the non-outlier range of the habitat in 

which they were trapped (Fig. 23). The overall isotopic niche based on carbon and nitrogen 

isotope composition of M. natalensis bone were highly correlated to the carbon and nitrogen 

isotopic composition of 2010 restored sites, (Fig. 23A, 23B). Individuals were captured at all 

restoration sites, forests and sugarcane, however their carbon and nitrogen isotopic 

composition aggregated within those of 2010 restored sites.  This pattern was true for all 

tissue types (Fig. 23). The overall isotopic niche of carbon and nitrogen composition of M. 

natalensis hair was highly correlated to the carbon and nitrogen isotopic composition of 

2010 restored sites (Fig. 23C, 23D). During the dry season individuals captured at 2010 and 

2014 restored sites aggregated within 2014 restored sites. The overall isotopic niche of 

carbon and nitrogen composition of M. natalensis liver was highly correlated to the carbon 

and nitrogen isotopic signature of  2010 restored sites, (Fig. 23E, 23F), with few outliers of 

individuals captured at sugarcane sites. The overall isotopic niche of carbon and nitrogen 

composition of M. natalensis RBC was highly correlated to the carbon and nitrogen isotopic 

composition of 2010 restored sites, (Fig. 23G, 23H), however during the wet season the 

isotopic niche of carbon nitrogen composition of M. natalensis RBC was most similar to 

those of 2012 restored sites.  SIAR analysis revealed that the most important food source for 

M. natalensis was vegetation from the 2010 restored sites. This pattern was true for all 

tissues types. 
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Figure 23. Standard ellipses for different tissues of M. natalensis individuals (A) bone 

collected during the wet season and (B) bone collected during the dry season; (C) hair 

collected during the wet season and (D) hair collected during the dry season; (E) liver 

collected during the wet season and (F) liver collected during the dry season; and (G) red 

blood cells collected during the wet season and (H) red blood cells collected during the dry 

season, in relation to the isotopic composition of plant communities at 2010, 2012 and 2014 

restored sites, sugarcane sites and forest sites between November 2015 and July 2016. 

Individuals captured at the same study site are depicted in the same colour. Plant 

communities are largely delineated standard ellipses (colours according to legend). 
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According to the SIAR analysis, there were no changes in M. natalensis’ diet over time, 

because there were no changes in isotopic niches between tissues (Fig. 24, Table 17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Relative proportions of isotopically distinct categories of prey in the diet of M. 

natalensis tissues at 2010 restored sites during the (A - D) wet season, and (E - H) dry 

season, as determined by a Bayesian isotopic mixing model. Box plots show the relative 

proportions for each food source with 95% (dark grey), 75%, 25% (medium grey) and 5% 

(light grey) confidence intervals. 
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Shrew hair had a range of δ
15

N values: (1.07 ‰ - - 6.93 ‰) indicating that the group 

consumes predominately protein-rich insect food. I found no significant differences in 

carbon and nitrogen composition between seasons (Table 13). Carbon, but not nitrogen 

composition differed significantly among sites (Table13). Tukey HSD post hoc tests showed 

that carbon composition of shrew hair were significantly higher at 2014 restored sites than 

2012 restored (p = 0.003, Fig. 25) and sugarcane (p = 0.020, Fig. 25) sites. I found no 

significant interactions between the carbon and nitrogen composition of shrew hair, season 

and sites (Table 13). 

In the wet season, only one species, C. cyanea, was captured. The isotopic niche occupied by 

this species correlated to the site at which individuals were captured (Table 14; Fig. 25A).   

Shrew hair had wider δ
15

N ranges in the dry season compared to the wet season (Table 15). 

The isotopic niche occupied by species correlated to the site at which individuals were 

captured (Table 14; Fig. 25B). Species aggregation within the δ
13

C - δ
15

N plot was relatively 

low (Table 15; Fig. 25B). Two new species were captured in the dry season: C. flavescens 

which had higher δ
13

C values than S. infinitesimus (Table 14; Fig. 25B).  
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Figure 25. Standard ellipses for shrew’s main sources of food based on hair collected at 

2010, 2012 and 2014 restored sites, sugarcane sites and forest sites of the Buffelsdraai 

Landfill Site between November 2015 and July 2016 during the A) wet season and B) dry 

season. Individuals caught at the same study site are depicted in the same symbol (symbols 

depicted in legend). Invertebrate communities are delineated as ellipses (colours according to 

legend). 



52 
 

52 
 

Using SIAR analysis I estimated dietary contributions based on shrew hair samples for shrew 

species within each study site during the wet and dry seasons to uncover whether species’ 

relative consumption differed among restored sites and sugarcane. 

According to the Bayesian model, irrespective of site, captured shrew species displayed diets 

with negligible differences, C. cyanea, C. flavescens and S. infinitesimus fed exclusively on 

invertebrates (Fig. 26, Table 18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Relative proportions of isotopically distinct categories of prey in the diet of C. 

cyanea at 2012 restored sites (A) during the wet season, (B) during the dry season, (C) S. 

infinitesimus at 2012 restored sites during the dry season, C. cyanea at 2014 restored sites 

(D) during the wet season, (E) during the dry season, (D) C. flavescens at 2014 restored sites 

during the dry season, (G) C. flavescens at 2010 restored sites during the dry season, (H) C. 

cyanea at sugarcane sites during the dry season, and (I) C. flavescens at sugarcane sites 

during the dry season at Buffelsdraai Landfill Site during, as determined by a Bayesian 

isotopic mixing model. Box plots show the relative proportions for each food source with 

95% (dark grey), 75%, 25% (medium grey) and 5% (light grey) confidence intervals. 
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Table 11. Test of rank equality of variances in carbon and nitrogen isotopic values of  rodent 

and shrew hair, and M. natalensis tissues, between wet and dry seasons at sugarcane sites, 

2014 restored, 2012 restored, 2010 restored and forest sites, of the Buffelsdraai Landfill Site 

between November 2015 and July 2016.  

 

 Isotopes df F-value p-value 

Rodent hair Carbon 10 0.911 0.524 

 Nitrogen 10 0.637 0.781 

Shrew hair Carbon 5 0.807 0.568 

 Nitrogen 5 0.397 0.841 

M.natalensis     

Bone Carbon 8 1.39 0.214 

 Nitrogen 8 1.23 0.294 

Hair Carbon 9 0.99 0.452 

 Nitrogen 9 0.822 0.597 

Liver Carbon 8 1.50 0.168 

 Nitrogen 8 1.26 0.274 

RBC Carbon 6 0.85 0.565 

 Nitrogen 6 0.79 0.604 
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Table 14: Mean δ
13

C and δ
15

N isotope values of hair samples collected from rodent and 

shrew species between wet and dry seasons at sugarcane sites, 2014 restored, 2012 restored, 

2010 restored and forest sites, of the Buffelsdraai Landfill Site between November 2015 and 

July 2016.  

Species Season δ
13

C (Mean) 
0
/00 δ

15
N (Mean) 

0
/00 

  Rodents    

Aethomys ineptus Wet -25.27 2.17 

Dendromus melanotis Wet -23.86 3.07 

Graphiurus murinus Wet -27.61 4.77 

Lemniscomys rosalia Wet -18.17 1.87 

Mastomys natalensis Wet -17.18 2.45 

Dendromus melanotis Dry -13.20 3.88 

Grammomys dolichurus Dry -26.09 2.53 

Lemniscomys rosalia Dry -15.73 1.45 

Mastomys natalensis Dry -18.00 2.04 

Mus minutoides Dry -15.47 3.62 

Otomys auratus Dry -13.21 5.26 

Steatomys pratensis Dry -23.48 1.52 

  Shrews    

Crocidura cyanea Wet -15.81 4.00 

Crocidura cyanea Dry -15.79 7.47 

Crocidura flavescens Dry -13.08 5.42 

Suncus infinitesimus Dry -18.03 6.50 
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CHAPTER 4 

DISCUSSION 

In this study, I measured three major ecological attributes to investigate forest-restoration 

success at Buffelsdraai Landfill Site. I measured the vegetation structure at sites, quantified 

the expected species richness and diversity of rodents and shrews at each site; and 

investigated the diet and trophic structure of small mammal assemblages within and among 

sites, using stable isotope analysis of hair and tissue samples collected from rodents and 

shrews. I found mixed support for the three proposed hypotheses.  Complexity of vegetation 

structure increased with age of restoration sites. Rodent and shrew species exhibited species-

specific responses to increased levels of forest restoration; abundance of the generalist M. 

natalensis was higher than those of A. ineptus and M. minutoides that are more sensitive to 

disturbance. Small mammal abundance but not species richness increased with increased age 

of forest restoration. The C/N isotope ratios of small mammal assemblages were closely 

associated with older, well-established restored sites. 

 

4.1. Vegetation structure of restored sites 

I found evidence for successional changes in vegetation at the restored sites. The 2010 

restored sites had the highest tree species richness and tree density. Additionally, the 2010 

restored sites had significantly greater tree heights than the 2014 restored sites and a greater 

tree canopy cover than the other restored sites. The vegetation structure at 2010 restored sites 

had good canopy cover and less ground cover, similar to forests. Structural complexity of 

these restoration sites can be attributed to the high density of diverse trees that vary in 

growth rates and canopy cover, as well as the dominant grassy ground cover that was present 

prior to planting events. To restore the forest at Buffelsdraai, the  goal was to produce a 

closed canopy within a few years of establishment, which would suppress grasses and other 

shrubs, and maintain a microclimate that facilitates the recruitment of mature forest trees 

(Kooyman, 1991; Parrotta, 1995; Parrotta and Knowles, 1999). This was largely achieved at 

the 2010 restored sites, because they had the longest time to establish themselves and 

suppress grasses. Reference forests had the highest tree height and canopy cover, and the 

lowest forb and grass species richness, and grass height and cover, indicating that the 

restored sites lack mature forest trees.   
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The 2012 restored sites had the highest grass height and cover probably because more time is 

required for the planted trees to suppress grasses similarly to the 2010 restored sites. Further, 

2012 restored sites had greater tree height and canopy cover than 2014 restored sites. The 

2014 restored sites had the highest forb and grass species richness, yet lowest grass height 

and canopy cover, because trees planted across these sites are young and are not established 

and these sites are recently disturbed and recovering.  

Newly restored forests are unlikely to quickly develop into a complex forest on land that was 

used for agricultural production for an extended period of time (Wade et al., 2008). 

Rehabilitation of human-disturbed land can take more than 7 years. For example, following 

the abandonment of coffee plantations, it took 30 – 40 years for forests to become similar to 

mature forests in Puerto Rico (Zimmerman et al., 2007). Similarly, only after 35 years of 

limestone forest restoration in Vietnam more than 30 species of rare and endemic mammal 

species were recorded (Poffenberger, 2006).  A forest restoration project in Tanzania took 18 

years before the landscape was restored to a state where the community could continue their 

pastoralist practices (Monela et al., 2004). Nicolas et al., (2009) found that restoration of 

vegetation structure, which involved clear-cutting of cultivated lands and planting of 

seedlings aided by natural vegetation, was evident 10 – 34 years post-restoration. A 

restoration project in South Africa found that the highest diversity of small mammals was in 

8-11 year old rehabilitated sites, suggesting that coastal dune forest restoration was 

successful (Ferreira & Van Aarde, 1996).Clearly there is great variability in the amount of 

time required for replanted forests to be considered mature forests (Aide et al., 2000).  

 

4.2 Does diversity of small mammals increase in response to reforestation? 

A total of nine rodent species belonging to the family Muridae were captured at Buffelsdraai 

Landfill Site. Muridae is the largest mammal family worldwide and is represented in 

southern Africa by 64 species from 25 genera (Skinner and Chimimba, 2005). Based on the 

Chao 2 and Jacknife 2 species richness estimators, my species inventories for rodents at the 

restored sites and sugarcane fields were fairly complete (59% - 96%). The low estimate for 

completeness (~60%) of the forest sites can be attributed to the high number of singletons 

and doubletons (n = 5; G. murinus and G. dolichurus) because the richness estimators are 

strongly influenced by rare species in the assemblages (Gotelli & Colwell, 2001). 

Individuals which are trapped more frequently than others are referred to as trap happy. Trap 

happy animals such as Mastomys natalensis are animals that recall rewards (bait) upon 
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capture and are captured repeatedly (Schradin & Pillay, 2004). This may explain why 

M.natalensis was the most commonly captured species in my study.  By contrast, species 

like G. murinus and G. dolichurus are considered trap shy (Rautenbach et al., 2013),  they 

learn to avoid traps once they are captured. This may be the reason I seldomly captured these 

species at Buffelsdraai. However, Avenant & Cavallini (2007) found that during winter 

when resources were scarce trap shy species often entered traps to eat the bait. 

As predicted, rodent abundance was significantly higher at 2010 restored sites than newly 

restored sites and sugarcane sites. The 2010 restored sites had some grassy layers with well-

established tree species, providing ample food resources (Habtamu & Bekele, 2013), 

microhabitats (Kryštufek et al., 2008) and protection from predators for rodent species 

(Avenant & Cavallini, 2007). Two rodent species represented most of the captures at the 

Buffelsdraai landfill Site: M. natalensis and L. rosalia. Mastomys natalensis often dominates 

rodent assemblages in southern Africa (Monadjem, 1997; Caro, 2001; Avenant, 2002; 

Monadjem and Perrin 2003; Sluydts et al., 2009). This highly adaptable species (Meester et 

al., 1979, Smith et al., 2002) is widely distributed, and has a wide habitat tolerance (van 

Deventer & Nel, 2006) and generalist diet (Monadjem, 1997; Rowe-Rowe, 1995; Mulungu 

et al., 2011). Further, M. natalensis has a high breeding rate with short intervals between 

exceptionally large litters (Coetzee, 1975; Leirs et al., 1993). It is among the most pervasive 

and successful invasive mammals in Africa (Leirs, 1995; Sluydts et al., 2009), and is 

responsible for major changes in ecological communities in areas where they have been 

introduced (Mwanjabe et al., 2002). Its presence is indicative of habitat disturbance 

(Kneidinger, 2008; Avenant, 2011; MacFadyen et al., 2012). 

In contrast, I found no significant differences in rodent species richness among study sites. 

At identical sampling efforts rodent species richness was highest at forest sites, and lowest at 

2010 and 2012 restored sites. Forests often have high rodent species richness (Ecke et al., 

2002; Williams et al., 2002), probably because they are structurally complex environments, 

with a greater number of trophic and habitat niches available (Tews et al., 2004). Two rare 

species, G. dolichurus and G. murinus (Delcros et al., 2015) were only captured in forest 

sites. Both species are well adapted to forest environments. G. murinus is an arboreal 

species, that nests in tree holes and rock crevices (Wirminghaus & Perrin, 1993; Skinner & 

Smithers, 1990; Lamani, 2014) that are located well off the ground (Lamani, 2014). It 

forages solitary in trees searching for fruits (Skinner & Chimimba, 2005), beetles (Baxter et 

al., 2005) and tiny lizards (Lamani, 2014). The species uses high densities of arboreal 

connections to forage effectively (Kaplan, 1995). Indeed, this species avoids isolated trees, 
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and the colonisation of this species is highly dependent on wooded corridors (Madikiza et 

al., 2010). Grammomys dolichurus requires thick vegetation (Monadjem et al., 2015), and 

has been well documented in forests (Bayliss et al., 2014). However, this species is not 

considered a forest specialist as it has also been found in habitats with thick herbaceous 

cover and shrublands (Ralaizafisoloarivony et al., 2014). Rodent forest communities are 

negatively influenced by disturbance in the surrounding landscapes, which might explain 

why other common forest-dwelling species such as Grammomys cometes, were not captured 

in this study (Happold, 1975; Malcolm & Ray, 2000). 

Rodent assemblage structure depends strongly on local disturbances and the structure and 

history of the surrounding landscape (Malcolm & Ray, 2000). In southern Africa recently 

restored sites are often dominated by M. natalensis (Meester et al., 1979; Ferreira & van 

Aarde, 1999). Additionally, recently restored sites exhibit lower rodent diversity than older 

restored sites (Ferreira & van Aarde, 1996). Low rodent species richness at recently restored 

sites indicates high level of disturbance, and species composition comprises mainly 

opportunistic species, with specialist species largely absent (Mbugua, 2002). Fire events play 

important roles in small mammal community dynamics. Small mammal populations often 

decline post-fire (Sutherland & Dickman, 1999; Fuller & Perrin, 2001; Letnic & Dickman, 

2005). These declines in abundance have been linked to changes in vegetation structure 

(Monadjem & Perrin, 2003), specifically  reduced vegetation cover , increased predation risk 

(Sutherland & Dickman, 1999), and reduces the availability of food (Yarnell et al., 2007). 

Therefore local fire regimes should be considered in future analyses. Although the 2010, 

2012 and 2014 restored sites in this study were subject to different fire management 

practices and differed in vegetation structure, there were no significant differences in rodent 

richness, perhaps because there were no differences in microclimate (Stevens & Husband, 

1998; Osbourne et al., 2005; Püttker et al., 2008), yet this was not tested. Similarly, Hurst et 

al., (2013) found no significant differences in rodent diversity between restored and 

sugarcane sites.  

Contrary to predictions, rodent species composition at all restoration sites were similar to the 

rodent composition of the original land cover, sugarcane. Caro (2001) found that small 

mammal species richness was lower within a national park in western Tanzania compared to 

agricultural sites outside the reserve. Additionally, Jeffery (1977) found that the removal of 

forests for agricultural use resulted in an increase in diversity and abundance of rodents. 

These studies suggest that agricultural practices may be beneficial to certain rodent species. 

One reason may be because predator abundance is lower in agricultural sites (Caro, 2001). 
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By contrast, Hurst et al., (2013) found that sugarcane sites had lower rodent species richness 

than restored sites. Specifically, sugarcane sites were dominated by M. natalensis and L. 

rosalia. Agricultural practices may have minimal effects on generalist and herbivorous 

species, but negatively affect more specialised rodent species (Atkeson & Johnson, 1979; 

Wretenberg et al., 2006). On the other hand, Van Aarde et al., (1996), found that the rodent 

species composition at restored sites was most similar to species composition at unaltered 

sites, suggesting restoration sites at Buffelsdraai Landfill Site are not yet completely 

restored. To better understand rodent species composition at restored sites, more data on 

species-specific habitat preferences, movement between unaltered and restored sites and 

interactions between species are necessary (Ferreira & Van Aarde, 2000). 

 

Three shrew species from two genera were captured at Buffelsdraai Landfill Site. Seventeen 

shrew species from four genera belonging to the family Soricidae are found in southern 

Africa (Skinner & Chimimba, 2005). Thirteen of those species are found in KwaZulu-Natal. 

Based on the species richness estimators, species inventories for shrews at the restored sites 

and sugarcane fields were fairly complete (64% - 100%). Shrews were captured at all sites 

except forests. At identical sampling efforts species richness was highest at the 2012 restored 

sites (n = 3 spp), and lowest at the 2010 restored sites (n = 2 spp). Contrary to predictions, 

there were no significant differences in shrew abundance among study sites.  

The shrew species that represented most of the captures was C. cyanea. This species often 

dominates southern African assemblages (Monadjem, 1997; Avenant, 2002). Crocidura 

cyanea has a wide habitat tolerance, is predominantly nocturnal and terrestrial (Happold & 

Happold, 2013), and selects habitats with dense ground cover that provides shelter from 

predators (Dickman, 1995). Additionally, habitats with dense ground cover increase their 

access to preferred types of prey as they are able to forage through leaf litter easily 

(Dickman, 1995).  

The second most common shrew species captured, C. flavescens, is commonly associated 

with habitats modified by humans (Rowe-Rowe & Meester, 1982). In support, C. flavescens 

was trapped at sugarcane sites, and all the restored sites, except forests. This shrew has a 

wide habitat tolerance and is commonly found at sites close to water with sufficient ground 

cover (Dippenaar & Baxter, 2013). Similarly, shrew species including C. flavescens were 

captured near a large pond at the sugarcane sites. 
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Only one S. infinitesimus was captured at one 2012 restored site, hence the high shrew 

species richness of this site. However, this species occurs in a wide range of habitats and is 

regarded as fairly common in KwaZulu-Natal (Taylor, 1998). The low presence of this 

species suggests that historical, environmental or biotic processes prevented their 

establishment at restored sites (Dippenaar & Baxter, 2013). When environmental conditions 

are not favourable S. infinitesimus reduces its cost of metabolism by using abandoned 

termitaria where microclimates are stable, and in some cases enters a state of torpor 

(Dippenaar & Baxter, 2013). Further, S. infinitesimus rarely enters traps even in cases where 

traps are situated alongside termitaria (Avenant, 2011). These behavioural traits may explain 

the low trap success of this species at Buffelsdraai. 

Although the main difference in species richness across sites can be attributed to the capture 

of a single S. infinitesimus, differences in shrew richness among sites could be due to 

differences in habitat features. Shrew species richness is strongly correlated to vegetation 

features such as tree height and grass height because these characteristics provide protection 

against predators (Monadjem & Perrin, 2003). Additionally, low leaf litter depth can 

negatively impact the abundance of shrew species (Greenberg et al., 2007), however leaf 

litter depth was not measured. Additionally, earthworms make up an important component of 

many shrew species’ diet, however I did not find earthworms at any of the study sites. 

Earthworm diversity may be low at Buffelsdraai because earthworms are sensitive to land 

use changes including agricultural practices (Tondoh et al., 2007; de Vries et al., 2013; Dewi 

& Senge, 2015). An environmental assessment performed in 2011 recorded one shrew 

species at Buffelsdraai Landfill Site: a single Suncus lixus individual which was caught in 

the forest. This suggests that shrew abundance and species richness has increased at the 

Buffelsdraai Landfill Site. 

Both rodent and shrew abundance was higher in winter (dry season) than summer (wet 

season). This is surprising given that food supply and plant cover is usually higher in the wet 

season (Mortelliti & Boitani, 2009; Lima et al., 2001). In support, Habtamu & Bekele 

(2008), Lamani (2014), Workeneh et al., (2012), Hurst et al., (2013) and Rautenbach et al., 

(2014), found that small mammal diversity was higher during the wet summer months. 

Indeed, seasonal variation in rainfall influences the breeding season of small mammals 

(Monadjem, 1998; Makundi et al., 2007). On the other hand, previous studies in southern 

Africa also found higher small mammal diversity during the dry winter months (Cheeseman 

& Delany, 1979; Fuller & Perrin, 2001; Monadjem & Perrin, 2003; Schradin & Pillay, 2006, 

Habtamu & Bekele, 2013). One reason may be the delayed response in the temporal 
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availability of resources (Hernandez et al., 2005). Alternatively, high food availability during 

the wet season may have rendered the bait in the traps less attractive to rodents than during 

the dry season when food abundance is low (Monadjem, 1999). Additionally, rodent species 

richness and abundance may decrease when productivity is high because strong competitors 

may exclude other species when resources are limiting (Perrin & Bodbijl, 2001).  

 

4.3. Stable isotope composition of small mammals in response to restoration 

Regardless of season, the overall isotopic niche occupied by rodent species was greatest at 

the 2010 restored sites. Stable isotope composition of D. melanotis, G. dolichurus, L. 

rosalia, M. natalensis, M. minutoides, O. auratus and S. pratensis aggregated within the 

stable isotope composition of the vegetation and insects of the 2010 restored sites. This 

suggests that these species’ diets were most similar to the plants and invertebrates present at 

the 2010 restored sites. Except, A. ineptus and G. murinus were strongly associated with 

forest sites where they were captured. These results are consistent with evidence that small 

mammals utilised restored sites more than reference sites (Converse et al., 2006). 

Rodents conformed to their presumed diets (Hanney, 1965; Rowe-Rowe, 1986; Ellison, 

1990; Wirminghaus & Perrin, 1992; Leirs et al., 1994; Miller, 1994; Monadjem 1997; 

Monadjem, 1999). Further, diets of rodents exhibited little variation between sites and 

seasons. Except M. natalensis captured at 2010 and 2012 restored sites had diets that 

comprised largely of tree material and grass leave, seeds and stems, whereas individuals 

captured at sugarcane sites fed mainly on forbs and grass seeds and stems. Further, M. 

natalensis captured at 2010 restored sites consumed a higher percentage of grasses during 

the dry months compared to the wet months, and individuals captured at the sugarcane sites 

consumed mainly grasses during the wet months, and green plant material during the dry 

months. Mastomys natalensis is a highly opportunistic generalist, whose diet reflects what its 

habitat provides (Caro, 2001). 

Nonetheless, rodents exhibited some plasticity in their diets. Rodents consumed both C3 and 

C4 plants, yet carbon composition of rodent hairs were more enriched during the dry season 

because rodents consumed primarily abundant C4 plants (Symes et al., 2013). Nitrogen 

isotopic composition were more enriched during the dry season. An enrichment of nitrogen 

isotopes in animal tissues is generally associated with aridity (Popa-Lisseanu et al., 2015), 

when an animal is fasting or resources are limiting (Hobson et al., 1993), and increase in the 

consumption of seeds because vegetation is less abundant  (Nakagawa, 2007).  
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My results show that irrespective of site captured and tissue type analysed, M. natalensis 

exhibited diet most similar to the carbon and nitrogen isotopic composition of vegetation at 

the 2010 restored sites. The stable isotopes of bone, hair, liver and RBC tissues collected 

from M. natalensis represented different periods of feeding, because each tissue has a 

different metabolic turnover (Tiezen et al., 1983). Specifically, red blood cells - two weeks 

(Russel & Bernstein, 1966); liver - one month (MacAvoy et al., 2005); hair - four to six 

months (Kurle, 2009); and bone - a year (DeNiro & Epstein, 1981).The isotope values of the 

different tissues reflected a consistent pattern: diets of M. natalensis remained most similar 

to the trophic resources available at the 2010 restored sites. This indicates that consistently, 

for up to a year M. natalensis individuals, had diets comprising vegetation most similar to 

the isotopic composition of vegetation at the 2010 restored sites, irrespective of the site of 

capture.  

 

 Conversely, isotopic composition of shrew hairs were most similar to the site at which 

individuals were captured. Additionally, there were no seasonal differences in carbon and 

nitrogen isotopic composition of shrew hairs. Shrews consumed invertebrates exclusively.  

There were no differences in C. cyanea, C. flavescens and S. infinitesimus diets among sites 

and between seasons. To the best of my knowledge, this is the first study to investigate 

carbon and nitrogen isotopic composition of shrew hairs at restoration sites. 

 

4.4. Caveats 

The main caveats of this study are as follows. Cryptic rodent or shrew taxa may have been 

overlooked. In southern Africa, there are probably a number of cryptic species complexes in 

small mammal lineages such as Aethomys (Linzey et al., 2003), Grammomys (Monadjem et 

al., 2015) and Mastomys (Venturi et al., 2004). Future studies should include DNA analyses 

of specimens captured in the field. Additionally, future studies should consider the influence 

of body condition on dietary niches. 

Future studies should analyse the substrates of different sites, and determine if substrate per 

se plays a role in community structure and diversity at restored sites.  Additionally, more 

detailed analyses of vegetation structure and diversity should be included in future studies. 
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Fire events play important roles in small mammal community dynamics. Small mammal 

populations have been recorded to decline post-fire (Sutherland & Dickman, 1999; Fuller & 

Perrin, 2001; Letnic & Dickman, 2005). Such observations are linked to changes in 

vegetation structure (Monadjem & Perrin, 2003), with reduced vegetation cover there is 

increased predation risk (Sutherland & Dickman, 1999). Fire also influences the availability 

of food (Yarnell et al., 2007). Therefore this should be considered in future analyses. 

A limited number of sites were sampled using only sherman-like traps. Although species 

richness indicators suggest that inventories were fairly complete, small mammal diversity, 

particularly shrew diversity at Buffelsdraai may be an underestimate. Specifically, pitfall 

traps may be more effective than sherman traps to sample shrews (Rautenbach et al., 2014). 

Future studies should incorporate additional sites and use different trapping methods to 

verify the small mammal diversity reported in this study. 

Additionally I sampled small mammal communities for 1 year only. Small mammal 

assemblage dynamics often show marked changes among seasons and across years 

(Monadjem & Perrin, 2003, but see Avenant, 2005, 2011; Avenant & Cavallini 2007; 

Avenant et al., 2008 for contrasting results. Long term studies are necessary to consider 

seasonal and yearly variation in rodent and shrew population levels (Pearce & Venier, 2005), 

therefore future studies should increase sampling intensity so that fine-grained dietary 

patterns can be analysed. 

Three processes can potentially complicate the reconstruction of diets from stable isotopes 

(Gannes et al., 1997): dietary components may be integrated at different efficiencies; 

isotopic fractionation changes isotopic values in tissue relative to the source; and metabolic 

routing which will disproportionally distribute the source element among different tissues. 

All three approaches are based on the basic principle of tissue specific isotopic turnover. 

Because I analysed different tissues with different turnover rates, the results reflect the 

average diet of individuals (Tiezen et al., 1983). Furthermore, species-specific diet-tissue 

fractionation factors should be determined under laboratory conditions for southern African 

rodents (Arneson & MacAvoy, 2005; Miller et al., 2008; MacAvoy et al., 2012). 

 

4.5 Management implications 

The results of this study have important implications for the design and management of 

forest restoration projects in agricultural and urban landscapes. First, forests cannot be 

restored in a short period of time (Kanowski et al., 2003). For example, only after 18 years 
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did ant assemblages in restored sites in KwaZulu-Natal begin to resemble ant assemblages in 

reference forests (Majer & de Kock, 1992). Nonetheless, the 2010 restored sites did appear 

to provide trophic resources that most resident rodents preferred, hence there is evidence that 

there has been progressive succession in the scarp forest after 10 years.   

Second, rodents may be better bioindicators of restoration success than shrews. Herbivores 

and granivores may be better bioindicators than insectivores because they have direct trophic 

links with the restored vegetation, whereas insectivores are indirectly related via the 

invertebrates that they feed on (Keesing, 2000; Goheen et al., 2004; Hurst et al., 2014). 

However, the results for shrews may simply be an artefact of sampling methods, given that 

shrews were sampled with less effective methods than the rodents. 

4.6 Conclusions 

To assess restoration success I took a multi-pronged approach, investigating three ecological 

attributes that are key indicators (Ruiz-Jaen & Aide, 2005). My results suggest that the 

reforestation effort at Buffelsdraai Landfill site has been successful: vegetation structure 

increased significantly in complexity and cover from sugarcane to 2010 restored sites; small 

mammal abundance increased at the restored sites with the highest abundance recorded at the 

2010 restored sites; and trophic resources found at the 2010 restored sites were preferred by 

most rodents. 

This study is the first to assess restoration success using these three ecological attributes, and 

therefore provides baseline data to assess the restoration success in other human-impacted 

landscapes. This study highlights the value of focussing on the smaller, less conspicuous 

small mammal species and taking a holistic research approach to restore biodiversity in 

human-impacted landscapes, with a view to achieve goals within the broader conservation 

agenda (Entwistle & Dunstone, 2000). 
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APPENDICES 
 

Appendix 1: Collection dates and number of invertebrate specimens collected of each 

order present at each study site of the Buffelsdraai Landfill Site between November 2015 

and July 2016. 

Date collected Study Site Order No. of specimens collected 

06 - 11 - 2015 Sugarcane Araneae 5 

  Hymenoptera 32 

  Orthoptera 12 

 2014 restored Araneae 9 

  Coleoptera 5 

  Hemiptera 6 

  Hymenoptera 20 

  Orthoptera 13 

13 - 11 - 2015 2012 restored Araneae 4 

  Diplopoda 3 

  Hymenoptera 21 

  Lepidotera 2 

  Orthoptera 7 

 2010 restored Araneae 8 

  Hemiptera 12 

  Hymenoptera 29 

  Lepidotera 11 

  Orthoptera 18 

20 - 11 - 2015 Forest Araneae 14 

  Coleoptera 8 

  Hemiptera 21 

  Hymenoptera 35 

  Orthoptera 13 

13 – 05 - 2016 Sugarcane Araneae 1 

  Hemiptera 10 

  Hymenoptera 23 

  Orthoptera 15 

 2014 restored Araneae 5 

  Coleoptera 7 

  Hymenoptera 33 

  Lepidotera 12 

  Orthoptera 25 

20 - 05 - 2016 2012 restored Araneae 2 

  Coleoptera 10 

  Hemiptera 11 

  Hymenoptera 23 

  Lepidotera 17 

  Orthoptera 20 

 2010 restored Araneae 3 

  Hemiptera 4 

  Hymenoptera 13 

  Orthoptera 18 

21 - 05 - 2016 Forest Araneae 8 

  Coleoptera 12 
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  Hymenoptera 24 

  Lepidotera 9 

  Orthoptera 15 

 

Appendix 2: Collection dates and the part of each plant collected at each study site of the 

Buffelsdraai Landfill Site between November 2015 and July 2016. 

Date collected Study Site Species Tree/ Forb/ Grass/ 

Sugarcane 

Leaves/Stem/Fruit/Seeds 

05 - 11 - 2015 Sugarcane Acacia caffra Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 

  Erythrina lysistemon Tree Leaves & stem 

  Melia azedarach Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem & fruit 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 2 Forb Leaves & stem 

  Forb spp. 3 Forb Leaves & stem 

  Forb spp. 4 Forb Leaves & stem 

  Forb spp. 5 Forb Leaves & stem 

  Forb spp. 6 Forb Leaves & stem 

  Aristida spp. Grass Leaves & stem 

  Eragrostis curvula Grass Leaves & stem & seeds 

  Panicum natalense Grass Leaves & stem & seeds 

  Saccharum officinarum Sugarcane Leaves & stem 

06 – 11 - 2015 2014 restored Acacia caffra Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 

  Brachylaena discolor Tree Leaves & stem 

  Bridelia micrantha Tree Leaves & stem & fruit 

  Erythrina lysistemon Tree Leaves & stem 

  Millettia grandis Tree Leaves & stem 

  Strelitzia nicolai Tree Leaves & stem 

  Syzigium cordatum Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem 

  Ziziphus mucronata Tree Leaves & stem 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 2 Forb Leaves & stem 

  Forb spp. 3 Forb Leaves & stem 

  Forb spp. 4 Forb Leaves & stem 

  Forb spp. 5 Forb Leaves & stem 

  Forb spp. 6 Forb Leaves & stem 

  Forb spp. 7 Forb Leaves & stem 

  Forb spp. 8 Forb Leaves & stem 

  Forb spp. 9 Forb Leaves & stem 

  Eragrostis curvula Grass Leaves & stem & seeds 

  Melinis repens Grass Leaves & stem & seeds 

  Panicum maximum Grass Leaves & stem & seeds 

  Panicum natalense Grass Leaves & stem & seeds 

  Themeda trianda Grass Leaves & stem & seeds 

12 - 11 - 2015 2012 restored Acacia caffra Tree Leaves & stem 

  Acacia natalitia Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 
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  Brachylaena discolour Tree Leaves & stem 

  Bridelia micrantha Tree Leaves & stem & fruit 

  Clerodendrum glabrum Tree Leaves & stem 

  Erythrina lysistemon Tree Leaves & stem 

  Ficus glumosa Tree Leaves & stem 

  Millettia grandis Tree Leaves & stem 

  Strelitzia nicolai Tree Leaves & stem 

  Syzigium cordatum Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem & fruit 

  Ziziphus mucronata Tree Leaves & stem 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 2 Forb Leaves & stem 

  Forb spp. 4 Forb Leaves & stem 

  Forb spp. 6 Forb Leaves & stem 

  Forb spp. 10 Forb Leaves & stem 

  Eragrostis curvula Grass Leaves & stem & seeds 

  Melinis repens Grass Leaves & stem & seeds 

  Panicum maximum Grass Leaves & stem & seeds 

  Panicum natalense Grass Leaves & stem & seeds 

  Themeda trianda Grass Leaves & stem & seeds 

13 - 11 - 2015 2010 restored Acacia caffra Tree Leaves & stem 

  Acacia natalitia Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 

  Albizia adianthifolia Tree Leaves & stem 

  Brachylaena discolour Tree Leaves & stem 

  Bridelia micrantha Tree Leaves & stem & fruit 

  Clerodendrum glabrum Tree Leaves & stem 

  Dombeya rotundifolia Tree Leaves & stem 

  Erythrina lysistemon Tree Leaves & stem 

  Ficus glumosa Tree Leaves & stem 

  Ficus sur Tree Leaves & stem 

  Millettia grandis Tree Leaves & stem 

  Schotia brachypetala Tree Leaves & stem 

  Strelitzia nicolai Tree Leaves & stem 

  Syzigium cordatum Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem 

  Ziziphus mucronata Tree Leaves & stem 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 2 Forb Leaves & stem 

  Forb spp. 4 Forb Leaves & stem 

  Forb spp. 7 Forb Leaves & stem 

  Forb spp. 10 Forb Leaves & stem 

  Forb spp. 11 Forb Leaves & stem 

  Eragrostis curvula Grass Leaves & stem & seeds 

  Melinis repens Grass Leaves & stem & seeds 

  Panicum maximum Grass Leaves & stem & seeds 

  Panicum natalense Grass Leaves & stem & seeds 

20 - 11 - 2015 Forest Albizia adianthifolia Tree Leaves & stem 

  Combretum edwardsii Tree Leaves & stem 

  Dalbergia armata Tree Leaves & stem 

  Dalbergia obovata Tree Leaves & stem 

  Dichrostachys cinerea Tree Leaves & stem 

  Dombeya rotundifolia Tree Leaves & stem 
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  Ficus burtt-davyi Tree Leaves & stem 

  Ficus glumosa Tree Leaves & stem 

  Heteropyxis natalensis Tree Leaves & stem 

  Schotia brachypetala Tree Leaves & stem 

  Scolopia zeyheri Tree Leaves & stem 

  Searsi chirindensis Tree Leaves & stem 

  Tabernaemontana 

ventricosa 

Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem & fruit 

  Forb spp. 3 Forb Leaves & stem 

  Forb spp. 6 Forb Leaves & stem 

  Forb spp. 12 Forb Leaves & stem 

  Forb spp. 13 Forb Leaves & stem 

  Aristida spp. Grass Leaves & stem 

  Oplismenus hirtellus Grass Leaves & stem 

12 - 05 - 2016 Sugarcane Acacia caffra Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 

  Erythrina lysistemon Tree Leaves & stem 

  Melia azedarach Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 2 Forb Leaves & stem 

  Forb spp. 3 Forb Leaves & stem 

  Forb spp. 5 Forb Leaves & stem 

  Aristida spp. Grass Leaves & stem 

  Eragrostis curvula Grass Leaves & stem & seeds 

  Saccharum officinarum Sugarcane Leaves & stem 

03 – 05 - 2016 2014 restored Acacia caffra Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 

  Brachylaena discolour Tree Leaves & stem 

  Bridelia micrantha Tree Leaves & stem 

  Erythrina lysistemon Tree Leaves & stem 

  Millettia grandis Tree Leaves & stem 

  Strelitzia nicolai Tree Leaves & stem 

  Syzigium cordatum Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem  

  Ziziphus mucronata Tree Leaves & stem 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 2 Forb Leaves & stem 

  Forb spp. 4 Forb Leaves & stem 

  Forb spp. 5 Forb Leaves & stem 

  Forb spp. 6 Forb Leaves & stem 

  Forb spp. 9 Forb Leaves & stem 

  Eragrostis curvula Grass Leaves & stem & seeds 

  Melinis repens Grass Leaves & stem & seeds 

  Panicum maximum Grass Leaves & stem & seeds 

  Panicum natalense Grass Leaves & stem & seeds 

  Themeda trianda Grass Leaves & stem & seeds 

19 - 05 - 2015 2012 restored Acacia caffra Tree Leaves & stem 

  Acacia natalitia Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 

  Brachylaena discolour Tree Leaves & stem 

  Bridelia micrantha Tree Leaves & stem 
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  Clerodendrum glabrum Tree Leaves & stem 

  Erythrina lysistemon Tree Leaves & stem 

  Ficus glumosa Tree Leaves & stem 

  Millettia grandis Tree Leaves & stem 

  Strelitzia nicolai Tree Leaves & stem 

  Syzigium cordatum Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem 

  Ziziphus mucronata Tree Leaves & stem 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 4 Forb Leaves & stem 

  Forb spp. 6 Forb Leaves & stem 

  Forb spp. 10 Forb Leaves & stem 

  Panicum maximum Grass Leaves & stem & seeds 

  Panicum natalense Grass Leaves & stem & seeds 

  Themeda trianda Grass Leaves & stem & seeds 

20 - 05 - 2015 2010 restored Acacia caffra Tree Leaves & stem 

  Acacia natalitia Tree Leaves & stem 

  Acacia sieberiana Tree Leaves & stem 

  Albizia adianthifolia Tree Leaves & stem 

  Brachylaena discolour Tree Leaves & stem 

  Bridelia micrantha Tree Leaves & stem 

  Clerodendrum glabrum Tree Leaves & stem 

  Dombeya rotundifolia Tree Leaves & stem 

  Erythrina lysistemon Tree Leaves & stem 

  Ficus glumosa Tree Leaves & stem 

  Ficus sur Tree Leaves & stem 

  Millettia grandis Tree Leaves & stem 

  Schotia brachypetala Tree Leaves & stem 

  Strelitzia nicolai Tree Leaves & stem 

  Syzigium cordatum Tree Leaves & stem 

  Trichilia dregeana Tree Leaves & stem 

  Ziziphus mucronata Tree Leaves & stem 

  Forb spp. 1 Forb Leaves & stem 

  Forb spp. 4 Forb Leaves & stem 

  Forb spp. 7 Forb Leaves & stem 

  Forb spp. 11 Forb Leaves & stem 

  Eragrostis curvula Grass Leaves & stem & seeds 

  Melinis repens Grass Leaves & stem & seeds 

  Panicum natalense Grass Leaves & stem & seeds 

27 - 05 - 2015 Forest Albizia adianthifolia Tree Leaves & stem 

  Combretum edwardsii Tree Leaves & stem 

  Dalbergia armata Tree Leaves & stem 

  Dalbergia obovata Tree Leaves & stem 

  Dichrostachys cinerea Tree Leaves & stem 

  Dombeya rotundifolia Tree Leaves & stem 

  Ficus burtt-davyi Tree Leaves & stem 

  Ficus glumosa Tree Leaves & stem 

  Heteropyxis natalensis Tree Leaves & stem 

  Schotia brachypetala Tree Leaves & stem 

  Scolopia zeyheri Tree Leaves & stem 

  Searsi chirindensis Tree Leaves & stem 

  Tabernaemontana 

ventricosa 

Tree Leaves & stem 
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  Trichilia dregeana Tree Leaves & stem 

  Forb spp. 3 Forb Leaves & stem 

  Forb spp. 12 Forb Leaves & stem 

  Forb spp. 13 Forb Leaves & stem 

  Aristida spp. Grass Leaves & stem 

  Oplismenus hirtellus Grass Leaves & stem 

 

 


