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ABSTRACT 

Production of platinum and associated metals is a major source of revenue for South Africa. 

Significant losses occur in the concentrating stage (10 to 15 per cent) and this research is 

focused on optimising platinum flotation.  Research begins by conducting laboratory batch 

flotation tests. However, subsequent pilot-plant tests often produce different results. It is 

believed these differences arise from the artificial nature of laboratory techniques. This 

project was focused on improving flotation techniques in the laboratory.   

The largest source of platinum in South Africa is the UG2 reef and two samples of this ore 

were used for testing: ‘good’ and ‘bad’ ore. These had different characteristics with regards to 

the recovery of PGMs and the presence of talc. The latter is an unwanted floatable mineral, 

which must be depressed to prevent excessive recovery.   

The conventional laboratory test procedure makes use of batch tests in various sizes of 

flotation cells. The procedure was made more realistic, by using four stages of flotation, 

rather than just two, to mimic a typical platinum flotation plant. The use of four stages made 

it possible to separate the fast-floating and slow-floating stages and to control froth 

conditions accordingly. Attention was also given to the fact that in laboratory tests, water is 

often added to the ‘cleaner’ stage of flotation, to make up the level. Experiments showed that 

this dilution, which does not take place in practice, had a significant impact on overall 

efficiency.  

A method of measuring frother concentration was developed and used to determine the 

realistic level of frother in cleaning tests. Tests at these levels of frother concentration 

showed that significant improvements could be made to plant performance, by making use of 

a thickener to reduce the frother concentration in the cleaning stages. 

The improved test procedure was used on both good and bad ores, and the effect of 

regrinding was also tested. A combined solids recovery of 2 % over both cleaners was 

targeted for all test work.  At this recovery, the regrinding of the bad ore increased the PGM 

recovery from 67 to 76 per cent at the cost of an additional 8 g/t depressant. 

An investigation of the effect of frother concentration in the cleaning stage, using good ore, 

demonstrated that that rejection of chromite could be improved significantly by reducing 

frother concentration. The tests mimicked the use of a thickener to separate some of the water 

with a high concentration of frother. Tests conducted on the good ore showed that use of two 

thickeners, as opposed to none, reduced the Cr2O3 content of the final concentrate from 4.2 to 

3.2 per cent for the equivalent concentrate mass and PGM recovery. The depressant 

requirement was also reduced from 67 to 55 g/t. These tests provided insight on how to 

improve performance on a platinum flotation plant, particularly when floating the bad ore.  
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NOMENCLATURE 

SYMBOL   DESCRIPTION     UNITS 

va   SUPERFICIAL FLUX VELOCITY  m.min
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 or m
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γ   SURFACE TENSION    N.m
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o
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1 INTRODUCTION 

 

Wills and Napier-Munn (2005) stated “Flotation is undoubtedly the most important and 

versatile mineral processing technique, and both its use and application are continually 

being expanded to treat greater tonnages and to cover new areas.” 

Prior to understanding what froth flotation is, it is important to point out exactly where it fits 

into the entire process on a typical platinum concentrator plant. The objective in any 

concentrator plant is to separate valuable minerals, in this case platinum and other metal 

sulphide minerals, from gangue or waste material. The process description given will be 

based upon UG-2 ore, a typical platinum bearing ore in South Africa: 

The beneficiation process shown in Figure 1 contains four stages in the following order: 

Mining, concentrating, smelting and refining. Froth flotation is part of the concentrating 

stage. At each stage, the ratio of PGMs to gangue minerals is increased thus improving the 

overall concentrate grade. UG-2 ore typically contains a mass percentage of 0.0005% PGMs 

(Jones, 1999). In terms of head grade, this is about 5 g/t.  

 

Figure 1: Flow sheet of a typical PGM concentration process 

This mined ore is initially crushed and milled to liberate the PGMs by reducing the particle 

size. This serves as the feed to the flotation process. There is an upgrading of the concentrate 

at each stage of the flotation process to produce a final PGM concentrate grade of 0.01 to 

0.04% (or 0.015% PGMs). The concentrate is then dried, smelted and finally 

hydrometallurgy is used separate the valuable minerals from the base minerals to obtain a 

final concentration of approximately 99.9% PGMs (Jones, 1999). 

At each upgrading stage, there is an inadvertent loss of PGMs in an effort to separate them 

from the gangue minerals. However, the losses incurred during the mining and concentration 

stages account for the largest PGM losses. The cumulative PGM losses are about 15% after 

the flotation stage. The remaining stages have combined PGM losses of less than 5%. Thus, 

most of the research in the mineral beneficiation industry is focused on finding ways of 

improving the recovery and reducing the losses of PGMs in the mining and concentration 

stages, in particular the flotation stage. 

Froth flotation is a process in which valuable and gangue minerals are separated from each 

other. This separation is based on the differences in surface properties of the various 

minerals. The ore is ground in the presence of water to a size at which adequate liberation of 

the valuable minerals from the gangue minerals has been achieved. The water-ore mixture is 

MINING CONCENTRATING SMELTING REFINING 
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referred to as the pulp. The laboratory procedure involves placing the pulp in a flotation cell 

and adding reagents to alter the surface properties of the particles, rendering the valuable 

minerals hydrophobic. The pulp is then agitated by means of a stirring device whilst air is 

simultaneously bubbled through it. The particles are then carried to the surface of the pulp 

where they form a mineralized froth, which migrates to the edge of the vessel (known as the 

launder). Thus, the process is referred to as froth flotation (Jan, 1982). 

There are two main performance factors that describe the flotation process viz. the 

concentrate recovery and grade. The concentrate refers to the minerals obtained from the 

froth, usually removed by scraping in laboratory tests. The recovery of valuable minerals 

obtained in the concentrate is measured as a percentage of the valuable minerals present in 

the feed. The concentrate grade is the concentration of valuable minerals in the concentrate. 

Both the recovery and grade depend on chemical properties (pH, reagents etc.) and 

hydrodynamic conditions (agitation, aeration etc.) within the cell (Çilek and Yılmazer, 2003). 

The aim of any flotation process is to obtain the maximum possible concentrate grade and 

PGM recovery. 

Froth flotation has been successfully employed as a separation technique in the mining, 

mineral, metallurgical and chemical industries. Its major applications are in the minerals 

processing industry where it accounts for about 95% of the world base metal production 

annually. Processing of crushed ore via this technique totals approximately two billion tonnes 

annually (Ives, 1984). 

It was initially used to concentrate the sulphides of copper(Cu), lead(Pb) and zinc(Zn) but 

nowadays it is used to process the sulphides of platinum (Pt) and nickel(Ni) and gold(Au) 

(Wills and Napier-Munn, 2005). 

South Africa is responsible for the bulk of the world’s platinum group metal (PGM) 

production (Deglon, 2005). Platinum is a major source of income and 80% of the world’s 

platinum reserves are found in South Africa. Moreover, South African mines supply 74% of 

the world’s platinum demand (Jones, 1999). The focal point of South African production is 

the Bushveld Igneous Complex (BIC) – a very large ore body containing several layers 

(reefs) in which iron, chromium and platinum minerals are concentrated. There are three 

main types of PGM bearing reefs namely; the Merensky Reef, the Platreef and the UG-2 

chromitite layer (Xiao and Laplante, 2004). Due to the diminishing supplies of Merensky 

Reef and the scarce locations of Platreef, most recent flotation research has been focused on 

improving the recovery of PGM’s from UG-2 ore (Jones, 1999). 

The valuable base metals contained within UG-2 ore account for less than 0.1% of the mass 

of the reef whilst the primary gangue minerals account for approximately 26% (Xiao and 

Laplante, 2004). The PGM’s contained within the UG-2 ore are difficult to recover due to the 

high talc content (1-3 wt. %), high chromite content (75 wt. %) and known liberation 

problems due to composite particles compared to Merensky ore (Hay and Roy, 2010). 

The initial work in this thesis was performed on a sample of UG-2 ore, of unknown origin, 

known to possess poor flotation characteristics. This was termed ‘bad ore’. A new laboratory 
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test procedure was developed to simulate conditions on a plant and tests on the ‘bad ore’ were 

used to illustrate how platinum recovery could be optimised. The test procedure was then 

applied to a UG-2 ore which possessed favourable flotation characteristics, termed ‘good 

ore’. 

According to Deglon (2005), “most South African platinum concentrators use mechanically 

agitated flotation cells” These cells have both a stator and a rotor to suspend the pulp 

minerals. Compressed air is dispersed through the pulp via the stator. It is delivered via a pipe 

through the shaft of the rotor (Jan, 1982). Industrially, these machines are arranged in series 

alongside each other. This is referred to as a cell bank. There are weirs placed between the 

impellers to create the bank series of cells. In the absence of these weirs, it is referred to as 

“open-flow” or “free-flow” flotation (Wills and Napier-Munn, 2005). 

A significant amount of gangue mineral is recovered in a single flotation stage and several 

stages are required to improve the separation, similar in principal to multistage distillation. 

Conventional laboratory work is normally performed in two stages viz. a rougher followed by 

cleaner stage. This two-stage process is used to simulate industrial process conditions. There 

are many different types of circuits designed to optimise both the recovery and grade of the 

flotation process (Wills and Napier-Munn, 2005). Industrially however, there are multiple 

flotation stages with pulp recycles between certain stages in order to recover the maximum 

amount of PGM’s and depress floatable gangue minerals. In order to simulate this, a 

simplified 4 stage circuit consisting of a rougher, scavenger and two separate cleaning stages 

was proposed. This circuit separated the concentrates into two different grades viz. high and 

low, or ‘fast floating’ and ‘slow floating’.  

This circuit allowed each stage to be evaluated and optimised separately. For example, a re-

grind of the rougher tailings was tested to improve the liberation of PGM’s contained within 

the composite particles. The difficulty of this circuit configuration was that experimental 

conditions needed to be optimised in each cell individually and then the circuit needed to be 

optimised as a whole. 

According to Wiese et al. (2011) “Batch flotation tests have long been used to optimise 

reagent performance for application to large scale plants.”  

The objective of this study was to perform batch flotation tests using improved experimental 

techniques to recover the largest possible amount of PGM’s in an economically viable 

concentrate mass. It is believed these improved techniques will make batch flotation tests 

more realistic and hence make them more effective for testing reagent and circuit changes. 

The differences in the recoveries of PGMs between laboratory and industrial scale is due to 

the differences in how the froth phase influences the PGM’s recovery via true flotation 

(Martyn P, 2010). The investigation focused on the cleaner stages where the effect of 

depressant dosage, impeller speed and other factors on the flotation recovery and grade were 

examined.  
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2 LITERATURE REVIEW 

 

 2.1 PRINCIPLE OF FROTH FLOTATION 

Froth flotation is commonly used in the minerals industry for the extraction of valuable 

minerals (Koh and Smith, 2011). This is a selective process and the separation is based upon 

the surface property differences between the minerals involved. These differences can either 

be “naturally occurring or induced by the addition of surfactants” (Muganda et al., 2011).   

Laboratory flotation can either be performed in a batch or continuous mode. Laboratory test 

work is usually performed in a batch mode. This test work is said to provide the basis for the 

design of commercial plants. This description for laboratory froth flotation is summarized in 

Figure 2 below: 

 

Figure 2: Diagram depicting the froth flotation mechanism (Wills and Napier-Munn, 2005) 

UG2 ore is a mixture of both valuable and gangue minerals. The first beneficiation step is to 

liberate some of these valuable minerals from gangue using a suitable grind (Ives, 1984). 

Flotation can only be applied to relatively finely ground ore (Wills and Napier-Munn, 2005). 

However, fine grinding is expensive and there is an economic trade-off between the amount 

of grinding used and the PGM recovery obtained. 

The ore is normally ground in the presence of water and then transferred to a flotation cell, 

before adding chemicals. Compressed air, regulated via a flow measurement device, is drawn 

through a shaft. A rotating impeller disperses this air forming fine bubbles. The hydrophobic 

particles attach to air bubbles that are dispersed through the mixture. These particles are then 

carried to the surface of the mineralised froth where they are scraped off manually (Wills and 

Napier-Munn, 2005, Jan, 1982).  

The process of PGM recovery and upgrading in froth flotation comprises of two primary 

focus areas namely; 

1. Pulp phase 

2. Froth phase 
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 2.2 PULP PHASE 

The pulp phase is primarily concerned with the recovery of valuable minerals (Wiese et al., 

2011). This is achieved by creating the physico-chemical environment to “promote bubble-

particle collision, successful attachment of the valuable hydrophobic particles and the 

transport of these mineral laden bubbles to the froth phase” (Bradshaw et al., 2005). 

The two sub-processes that occur in the pulp phase are; 

 Bubble-particle collision. 

 Transportation of the attached particle to the froth phase. 

Good chemical and hydrodynamic conditions are required for the selective attachment of 

PGM’s to air bubbles. Chemical conditions are responsible for the collection of particles 

whilst hydrodynamic conditions ensure effective solids suspension within the pulp (Van der 

Westhuizen and Deglon, 2007).  

Chemical reagents (or surfactants), which alter the surface properties of either the valuable or 

unwanted mineral, are added to condition the pulp. The surface properties are altered to 

achieve the desired effects, with the particles becoming either hydrophobic (incompletely 

wetted by water phase) or hydrophilic (completely wetted by the water phase).  

Wills and Napier-Munn (2005) noted that the degree of hydrophobicity (or wettability) of a 

particle surface plays an important role in the adsorption of particles onto the surface of 

bubbles. This is measured by the contact angle (θ). According to Muganda et al. (2011) the 

“attachment of a particle to a bubble is influenced by the contact angle…”. This is the angle 

is measured on the liquid phase side, between the solid surface and the tangent to the liquid 

surface at the contact point of the three interface’s viz. solid, liquid, air (Jan, 1982). 

The contact angle is determined by the interfacial tensions of these three interfaces           

(Ives, 1984). These tensions are shown in Figure 3 and are the surface energies between solid 

and air (γs/a), solid and water (γs/w) and water and air (γw/a). The greater the contact angle, the 

greater the forces of adhesion between the bubble and the solid. Thus, hydrophobic particles 

generate higher contact angles compared to hydrophilic particles (Wills and Napier-Munn, 

2005). This means that hydrophobic particles are more selectively recovered in the froth at 

the expense of hydrophilic particles.  

 

Figure 3: Contact angle between bubble and particle in aqueous medium (Wills and Napier-Munn, 

2005) 
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The equilibrium force balance of the above figure is; 

                     

The surfaces of valuable minerals are chemically altered such that they become hydrophobic 

and hence selectively attach to air bubbles and are carried to the surface of the froth phase. 

This mechanism, known as “true flotation”, is the preferred transport mechanism within the 

pulp. However, there is a strong possibility of the recovery of both gangue and valuable 

minerals in the production concentrate. This is the non-selective mechanism of entrainment 

and entrapment within and between the streamlines of the rising bubbles respectively (Wills 

and Napier-Munn, 2005). 

2.2.1 COLLECTORS 

Collectors are organic compounds which react with the surfaces of valuable minerals, making 

them water repellent. They can either be ionising compounds that dissociate completely in 

water or non-ionising compounds that are insoluble in water (Wills and Napier-Munn, 2005).  

Time is needed for the action between the collector and the particle surface to occur (Wills 

and Napier-Munn, 2005). This is achieved by either chemically or physically bonding to the 

surface of the mineral. In the latter, the bonding is weak and reversible. This means that as 

the concentration of collector in the cell decreases, the collector will desorb from the mineral 

surface. The bonding in the former is irreversible and limited to a small area on the active 

sites of the mineral surface (Crozier, 1992). These active sites on the particles refer to “kinks 

and ledges, emerging dislocations and lattice defects” on the surface of the particles (Jan, 

1982).  

Figure 4 below illustrates that collectors consist of both a polar and non-polar group. The 

former reacts with the mineral surface whilst the latter repels the water to create the 

hydrophobic surface (Lotter and Bradshaw, 2010). 

 

Figure 4: Structure of  sodium ethyl xanthate collector (Wills and Napier-Munn, 2005) 

Lotter and Bradshaw (2010) stated that sulphide minerals are semi-conductors viz. “they can 

either accept or donate electrons in an electrochemically active system”. Collectors bond to 

the solid surface with their polar groups. These bonds can be electrical, physical or chemical 

as stated before. The non-polar group is orientated towards the solution and, in this way, the 
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particles become hydrophobic (Wills and Napier-Munn, 2005). This is depicted in Figure 5 

below: 

 

Figure 5: Collector adsorption on mineral surface (Wills and Napier-Munn, 2005) 

Anionic collectors are widely used in mineral flotation. These are classified according to the 

structure of the polar group in the molecules as either oxyhydral or sulphyhydral. Wills and 

Napier-Munn (2005) stated that “the xanthates are the most important for sulphide mineral 

flotation and they are the most widely used thiol collectors. The collector used in this 

investigation was Sodium Isobutyl Xanthate (SIBX). 

SIBX belongs to the group of thiol collectors known collectively as xanthates. They are 

classified as sulphyhydral based on the bivalent sulphur present the molecular structure. 

Typical examples of xanthates used include ethyl, isopropyl, isobutyl and hexyl types. They 

are named after the non-polar hydrocarbon group ‘R’ that consists of hydrocarbon groupings 

with one to six carbon atoms (Wills and Napier-Munn, 2005). The length of this ‘R’ group 

affects the behaviour of the collector. Lotter and Bradshaw (2010) gave the following 

sequence of increasing collector stability, with reference to the ‘R’ group in xanthate 

collectors: 

Methyl< ethyl< n-propyl< n-butyl< isopropyl 

Lotter and Bradshaw (2010) stated that “an increase in the length of the chain reduces the 

concentration of collector needed for effective flotation.” It was also found that the 

orientation of the collector molecules on the surface of the minerals varied according to the 

length of the “R” groups. Shorter chained “R” groups lie perpendicular to the mineral surface 

whilst longer chained “R” groups lie horizontal to the mineral surface (Lotter and Bradshaw, 

2010).  

2.2.2 THE EFFECT OF COLLECTORS ON SULPHIDE MINERAL FLOTATION 

The concentration of collector in the pulp is an important variable in the flotation of sulphide 

minerals. It is generally acceptable practise to minimise collector addition. A thin 

monomolecular layer of collector on the particle is optimal. This will not hinder the non-polar 

group that makes the particle surface hydrophobic. The use of excess collector reduces the 

selectivity of the process. A larger concentration of collector implies multiple monomolecular 

layers on valuable minerals. This reduces the proportion of non-polar groups of the collector 

molecule that are oriented towards the liquid phase. Thus, the recovery of valuable mineral in 
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the concentrate is reduced (Wills and Napier-Munn, 2005). Excess dosages of collector tend 

to coat the surfaces of unwanted particles and make them hydrophobic. These particles are 

then recovered in the concentrate thus reducing the overall grade. There is also the increased 

cost of using a higher collector dosage (Wills and Napier-Munn, 2005). 

It is difficult to remove an anionic collector from the surface of the particle due to the strong 

bonding involved particularly when chemical bonds are formed. A generally acceptable 

practise is to use longer chain (referring to the length of the “R” group) collectors to impart 

hydrophobicity to particles. A lower concentration of longer chain collectors is equivalent to 

a higher concentration of shorter chain collectors. The longer chained collectors thus require 

smaller dosages to achieve the same recovery of mineral (Wills and Napier-Munn, 2005).  

It is important to consider the particle properties before a collector is selected for flotation. In 

some cases, a long chained collector is used initially to float all the valuable minerals. The 

longer chained collectors produce higher recoveries but lower grade concentrates (Crozier, 

1992). They are usually used in the rougher stages, thereafter a short chained collector, of 

high concentration, is used to recover the particles that are difficult to float. In this way, the 

overall selectivity of the process is ensured (Wills and Napier-Munn, 2005). 

The use of excess collector has also been shown to have a negative effect on the movement of 

solids in the froth to cell launder, due to froth weakening. The increased particle 

hydrophobicity results in the froth being dry and immobile (Ata, 2012). 

Composite particles comprise a valuable mineral attached to the surface of an unwanted 

mineral. Thus these minerals behave as a complex particle with varying surface properties. 

Composite particles are a result of ineffective mineral liberation during grinding. These pose 

a significant problem during flotation. The selective collectors merely attach to the surface of 

the valuable mineral in the complex. The effectiveness of the collector action depends on the 

way in which the valuable mineral is orientated in the particle complex. That portion coated 

with collector, usually the exposed surface of the valuable mineral, will behave as 

hydrophobic. The remainder of the uncoated particle surface will behave hydrophilically.  

Thus the probability of flotation of these particles is largely dependent on the proportion of 

the exposed surface containing the valuable mineral. The flotation of this composite particle 

will depend on the impact point of the bubble on the particle. It must strike the particle at the 

exposed surface of the valuable mineral, where it is hydrophobic, so that it can attach. This 

collision period is short so the particle must quickly attach to the bubble in order to be carried 

to the froth. 

2.2.3 FROTHERS 

These heterophilic surface active reagents can be divided into two categories, those that are 

slightly soluble or those that are completely soluble in water (Crozier, 1992, Wills and 

Napier-Munn, 2005). Examples of frothers that are partially soluble in water include aliphatic 

alcohols, alkoxy paraffin’s and natural oils like eucalyptus. Polyglycol and polyglycerol 

ethers are examples of frothers that are completely miscible in water. Crozier (1992) stated 

that these glycols produce “compact, long lasting froths” that disintegrate quickly once in the 
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launders. Glycols produce more selective froths compared to their slightly soluble 

counterparts.  

Frothers manufactured by the Dow Chemical Co. are named according to their molar 

weights. For example, the frother used in this thesis was Dowfroth 200 (DOW200), which 

has a molar weight of 206 g/ mol (Crozier, 1992). These polyglycol frothers are the strongest 

surface active frothers that are used and have been found to be very effective. This means 

they can support the masses of larger particles and high grade feed materials (Wills and 

Napier-Munn, 2005). It has been stated that a good performing frother should have negligible 

collecting properties. When they are similar to ionic collectors, like oleates, frothers form 

froths that are far too stable to allow for sufficient transport of valuable mineral. The froth 

becomes too stable thus causing a problem in further processing. The froth should be just 

stable enough to transport the valuable mineral to the launder, then disintegrate quickly 

thereafter (Wills and Napier-Munn, 2005). 

Frothers play an important role in flotation. They stabilize the bubble formation in the pulp to 

allow for selective drainage of entrained gangue minerals by stabilizing the froth phase to a 

certain extent (Wills and Napier-Munn, 2005).  

2.2.4 MECHANISM OF FROTHER-BUBBLE INTERACTION 

 It is important to note that natural residual charges are present on the particle surface that 

exists at the instant of collision. Jan (1982) said that it is due to the “high degree of 

heterogeneity of the particle surfaces”. It was also stated that another role of a frother is to 

replace the natural repulsive forces at the bubble-particle interface, with those of attraction. 

This is accomplished by frothers aligning their dipoles correctly at the instant of collision. 

This ensures bubble-particle adhesion at the instant they collide.  

Frothers are organic reagents that are adsorbed on the air-water interface. They consist of a 

polar and non-polar group. The polar groups combine with the water phase and the non-polar 

groups, which are hydrophobic, are pushed into the air phase. These molecules form around 

the air bubble, with their polar groups orientated outside the air bubble towards the water 

phase, with their non-polar groups situated on the surface of the air bubble. They stabilize the 

air bubbles by reducing the surface tension between the water and the bubble surface (Wills 

and Napier-Munn, 2005). 

 

Figure 6: Attachment of frother molecules on bubble surface (Wills and Napier-Munn, 2005) 
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There are a number of features which must be considered in selecting a particular frother. It 

usually starts by assessing the PGM recoveries obtained by using a sample set of five 

different frothers (Dowfroth 200, pine oil etc.) (Jan, 1982). A frother must be selected so that 

a suitable froth is formed, ensuring the selectivity of the process is maintained without 

affecting the overall recovery of valuable minerals (Ekmekçi et al., 2003). 

2.2.5 DEPRESSANTS 

Depressants are used to selectively reduce the recovery of certain gangue minerals that are 

recovered in the concentrate (Bradshaw et al., 2005), by making them hydrophilic. This 

means that those particles will not be able to attach to the surface of the air bubble. In this 

way, the overall selectivity of the process is improved. There are many types of inorganic and 

organic depressants (Wills and Napier-Munn, 2005). Examples of inorganic depressants 

include sodium cyanide, zinc sulphate, sulphuric acid etc. These are used when the properties 

of two or more particles are so similar that a collector can’t selectively adsorb onto the 

surface of the valuable particle. Lime and cyanide are the most widely used inorganic 

depressants (Crozier, 1992). Cyanide reacts with most sulphide minerals under alkaline 

conditions, to form a stable metal-cyanide layer, which prevents formation of the metal 

xanthate precipitate on the surface of the particle. It can also displace an existing xanthate 

layer on a mineral. Cyanide is very toxic and has been shown to dissolve Gold and Silver 

(Wills and Napier-Munn, 2005).  

Natural polysaccharides (i.e. tannic acid, starch and glues etc.) or synthetically produced 

polyglycols can be used to depress minerals that have natural hydrophobicity. There is a 

growing popularity for the use of polymeric organic depressants. They are less hazardous 

than some inorganic depressants. Carboxymethyl cellulose (CMC) and modified guar gum 

(guar) are popular polymeric depressants used in the South African PGM industry (Corin and 

Harris, 2010). The structural units for each of these types of depressants are shown in Figure 

7: 

 

Figure 7: Structural units of (a) CMC  (b) guar (Corin and Harris, 2010) 

These depressants both adsorb onto the surfaces of talcaeous gangue minerals, making the 

surfaces hydrophilic thereby reducing their recovery in the concentrate. The branched 

structural units of guar type depressants (shown in (b) above) possess more hydroxyl groups 
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compared to the straight chained CMC type (shown in (a) above) thus are very soluble in 

water and don’t possess any charge once adsorbed. CMC type depressants ionise in solution 

and have a negative charge. Thus for CMC type depressants, a charge is passed onto the 

mineral when it is adsorbed and particularly at high dosages, these surfaces repel each other 

(Bradshaw et al., 2005). This is due to the presence of a large number of carboxylic groups 

(shown as R in Figure 7(a)). The substitution of the hydroxyl groups by carboxylic groups is 

known as the degrees of substitution (DS).This reflects the average number of carboxylic acid 

groups per glucose unit (Oudhoff K.A  et al., 2004). The DS value can range between 0 and 3 

due to the molecular structure. This value depends on various factors including the molecular 

weight of the anhydrous glucose unit, substituent group etc. CMC depressants have a DS of 

0.7 (Corin and Harris, 2010) compared to guar depressants which have very low DS.   

Guar depressants adsorb more strongly onto talcaeous minerals but require large dosages 

compared to CMC. Thus a CMC type depressant, KU5, was selected for these experiments. It 

is known that increased charge can cause froth destabilising effects and thus reduce the 

recovery of gangue particles. 

2.2.6 MECHANISM OF BUBBLE FORMATION 

The nascent bubble flotation mechanism is widely regarded as an accurate representation of 

bubble-particle interaction. It is governed by the interaction of both frother and collector 

molecules at selective points on the surface of the mineral. This mechanism is only valid at 

low reagent dosages as is the case in sulphide mineral flotation (Crozier, 1992).  

Smaller bubbles (micro-bubbles) are thought to form at these points of frother-collector 

interaction. Secondary bubbles are thought to form simultaneously on the surface between the 

frother and collector molecules. These bubbles are attached to the naturally hydrophobic 

gangue minerals, as is the case with talc embedded in the grains of pyroxene. The minerals 

then nucleate micro-bubbles, which act as transport links for the formation of bigger bubbles. 

These can also attach to other bubbles recirculating in the cell (Crozier, 1992). 

In the case of a batch flotation cell, formation of bubbles occurs in two steps. The initial 

cavitation induced air bubbles form at the impeller blades. These then break up into the micro 

air bubbles described by Crozier (1992). This is shown in Figure 8 below: 

 

Figure 8: Bubble vortex format ion (Ives, 1984) 
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Once a particle has been attached to the surface of a bubble it is carried to the surface of the 

froth. As the bubble rises, it forms streamlines around it. A thin film of liquid surrounds the 

bubble and the collected particles are held within this film. Obviously, larger particles with a 

higher mass have higher momentum compared to smaller particles. This increases the 

probability of them piercing through the streamlines surrounding the bubble. The buoyancy 

of the bubble then lifts the attached particle to the surface where it is collected in the froth 

phase (Jan, 1982). 

The Grainger-Allen theory of bubble formation states that air cavities are formed behind the 

obstruction to the flow (i.e. the impeller). The edge of the cavity is then sucked into the 

blades of the impeller, thus creating finer bubbles from the cavity. This edge of the air cavity 

is known as the “wake” (Ives, 1984 ). This is shown in the Figure 9. The particles tend to 

accumulate here due to their gravity. Once this tail becomes saturated with material, the 

particles begin to detach from it. 

 

Figure 9: Cavitation mechanism of bubble formation (Crozier, 1992) 

 

 2.3 FROTH PHASE 

The froth phase is responsible for the “upgrading of the valuable materials reporting to the 

concentrate without loss of valuable materials” (Bradshaw et al., 2005). 

As the bubbles rise through the mineralised froth, the film between the bubbles becomes 

thinner and coalescence occurs, thus altering the bubble size and proportion of water. This 

implies that these two factors vary at different froth heights.  The liquid fraction is generally 

higher at the froth-pulp interface compared to higher portions of the froth. This results in the 

bubbles themselves becoming distorted as they rise. They can enter the froth-pulp interface as 

spherical in shape and become polyhedral at the top layer of the froth (Ata, 2012). 

As the water drains, the bubble Plateau borders (or distance between the bubbles) becomes 

smaller. This thinning of these borders increases the chances of bubble coalescence. The 

drainage in froth is a function of the viscosity of the liquid. The less viscous the liquid 

surrounding the bubbles, the greater is the rate of drainage of the liquid layers between the 

bubbles (Jan, 1982).  
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2.3.1 MECHANISM OF FROTH DRAINAGE 

Plateau borders are the curved regions that separate the thin films of the bubbles from the 

bulk pulp (Ives, 1984). The thinning of the liquid film occurs initially by drainage due to 

gravity of the liquid, then by movement of the liquid within the film itself (Jan, 1982). These 

films can be either fast or slow draining depending on the properties of the air-water interface 

(Crozier, 1992). The plateau borders are shown in Figure 10: 

 

Figure 10: Plateau borders (Jan, 1982) 

This bubble coalescence, along with bubble bursting and froth overloading, is responsible for 

the detachment of hydrophobic particles originally attached to the bubbles. This bubble 

bursting occurs only at the surface of the froth layer. A portion of these hydrophobic and 

gangue particles is entrained into the froth via the wake of the bubbles (Ross, 1997). 

The detached particles can re-attach to other rising bubbles or be drained all the way back 

into the pulp phase. It is assumed that the amount of detached particles recovered in the froth 

phase far outweighs those recovered by rising bubbles in the pulp phase (Ross, 1997). The 

hydrophilic particles are less likely to re-attach compared to the hydrophobic particles. The 

interstitial liquid, constantly being drained, also contains a large amount of entrained gangue 

minerals. Thus the overall selectivity of the flotation process is improved by a well-drained 

froth. This implies that more hydrophobic, valuable minerals are recovered compared to 

gangue minerals.  

Hydrophobic particles, in addition to froth liquid fraction have been shown to cause bubble 

coalescence and rupture. When a particle channels the gap between two adjacent bubbles, it 

will move to a central position until a contact angle condition is met.  

There exists a critical degree of wetting which enables the prediction of whether or not the 

particle will cause bubble coalescence. This is based on the contact angle that the bubble 

forms. If this angle (θ) is less than 90
0
, then it is deemed below this critical degree of wetting 

and the bubbles will not coalesce. This is shown in A in Figure 11. However, if it is greater 

than 90
0
 then the particle will penetrate both sides of the liquid films resulting in bubble 

coalescence. This is shown in B in Figure 11. 
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Figure 11: Particle behaviour in bubble coalescence (Ata, 2012) 

Hence extremely hydrophobic particles (θ >90
0
) are not easily recovered in the flotation 

concentrate due to bubble coalescence and rupturing. The majority of particles recovered in 

the flotation concentrate have contact angles between 30
0 

to 50
0
 as these particles are 

assumed to attach to and be transported through the froth without penetrating the lamella 

(Ata, 2012).  

Bubble coalescence causes the froth to reach a maximum particle carrying capacity (or froth 

loading). This means that the froth becomes saturated with particles thus any further particle 

recovery is not possible. When bubbles coalesce, the oscillations between the bubbles can 

cause particles to detach. Larger particles, due to their higher mass and momentum detach 

more readily than smaller particles.  Furthermore, it has been found that if a bubble is coated 

with more particles (high particle loading) prior to the coalescence, then particle detachment 

after coalescence is reduced (Ross, 1997). 

 2.4 MECHANICAL FACTORS 

Mechanical impellers and induced air flow are factors responsible for efficient gas dispersion, 

particle suspension and flotation within the cell (Deglon, 2005). Yang and Aldrich (2006) 

stated “Aeration rate and impeller speed are important operational variables in flotation and 
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the controlling of them is significant for improving the flotation performance.” The impeller 

imparts energy to the contacting pulp. This energy is responsible for the creation of pulp 

movement and flow within the float cell.  

2.4.1 HYDRODYNAMICS 

Hydrodynamics refer to the bulk flow of pulp in the cell according to Deglon (2005). The 

rotation of the impeller creates a certain flow pattern within the cell. This is also known as an 

average path of the bulk pulp flow. The dimensions of the flotation cell (viz. size, shape) and 

impeller properties (geometry, rotational speed) affect these flow patterns. 

The fluid is dispersed by the impeller in three directions viz. radial, axial and tangential. 

These form fluid jets that disperse into the bulk of the pulp. These fluid jets carry kinetic 

energy, which is transferred to the pulp translating into turbulence within the cell. The fluid is 

then circulated back to the impeller to be redistributed to the pulp. Thus the flow patterns of 

the fluid within the cell are continuous (Deglon, 2005). 

2.4.2 TURBULENCE 

Turbulence is responsible for basic sub processes like “bubble-breakup, particle dispersion 

and bubble-particle contacting.” The phenomenon responsible for converting the kinetic 

energy possessed by the fluid into turbulence is called “vortex stretching” (Deglon, 2005). 

The modelling of this turbulence is done with the use of Navier Stokes equations relating to 

the formation of physical vortices within the cell volume (Deglon, 2005). There are two main 

types of eddies that have been shown to influence the sub processes of flotation namely 

“inertial sub range eddies” and “viscous dissipation eddies.” Modelling of the turbulence in 

the cell is beyond the scope of this project. 

Çilek and Yılmazer (2003) stated that the hydrodynamics occurring within the cell can be 

described using dimensionless groups such as Reynolds number, Froude number and Air 

Flow Number (AFN). These ratios are based on physical variables occurring within the cell 

viz. aeration rate, impeller speed, pulp density etc. These physical variables are directly 

related to gangue entrainment and water recovery in the concentrate. 

Improved drainage can be achieved by increasing the air flow rate and impeller speeds, for 

example. An increase in these variables causes an increase in the overall number of bubbles 

present in the system. This causes a crowding effect, thus the bubbles push against one 

another. The “squeezing” of the bubbles decreases the thickness of the plateau borders 

between each bubble.   This phenomenon, together with the natural gravity of the draining 

liquid, causes the velocity of the draining liquid to increase (Jan, 1982). 

 2.5 ENTRAINMENT 

As bubbles rise, the thickness present between the respective bubbles films allow for the 

transport of fine particles into the froth phase. This transport process is known as particle 

entrainment (Wiese et al., 2011). 

It has been shown by Çilek and Yılmazer (2003) that mechanical entrainment is a non-

selective process. This means that both valuable and gangue minerals are recovered in the 
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water. This idea has forced researchers to use this realistic problem of mechanical 

entrainment to the benefit of the overall flotation. Research done by Çilek and Yılmazer 

(2003) and Schubert (1999) showed that the turbulence within a cell, affects the overall grade 

and recovery of gangue minerals and the water recovery. Thus, different flow patterns were 

created within the cell by use of baffles, and the water and gangue recovery investigated. 

These baffles are placed at different positions within the cell to change the orientation of the 

flow patterns within the cell. This is shown in Figure 12: 

 

Figure 12: The effect of baffles on flow patterns (Ives, 1984) 

The effects of baffles are shown in Figure 12(a) whilst in Figure 12(b) no baffles were used. 

The use baffles clearly disperse the fluid in different directions as shown by the arrowheads. 

This changes the hydrodynamics within the cell. 

Particle entrainment can be reduced by spraying wash-water over the froth. This water moves 

downwards through the Plateau borders as the bubbles rise. It tends to promote increased 

drainage of particles, which are mainly hydrophilic gangue minerals, back into the froth 

phase. The water must be carefully dispersed such that it does not cause the rupture of the 

rising bubbles that contain valuable minerals. This idea cannot be successfully used in 

mechanical cells however due to the shallow nature of the froths, which limit natural drainage 

(Ata, 2012). 

 2.6 THE BUSHVELD IGNEOUS COMPLEX 

South Africa contains 89% of the world’s PGM reserves (Jones, 1999). These are 

concentrated in layers in the Bushveld Igneous complex, an igneous intrusion which also 

accounts for the world’s largest reserves of both vanadium and chromite ore. In South Africa, 

platinum-group metals (PGMs) are the primary product whilst base metals are obtained as 

by-products of concentration operations (Jones, 1999).  

The six PGMs are ruthenium (Ru), platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh) 

and osmium (Os) (Wagner, 1973). Together with gold (Au) and silver (Ag), these are 

collectively known as precious metals (Xiao and Laplante, 2004). 
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The minerals of the platinum group metals in the Complex occur as cooperite, 

stibiopalladinite or sperrylite. The majority of the base metal sulphides occur as chalcopyrite, 

pentlandite and pyrrhotite. These account for a minor mass portion of the complex i.e. 0.1 wt. 

%. The remainder of the reef (99.9 wt. %) comprises of gangue minerals (chromite, 

pyroxene, feldspar and talc) (Ekmekçi et al., 2003). 

Table 1 shows that South Africa produces 74 % of the world Platinum supply, but that most 

of the Palladium supply (66%) comes from Russia. South Africa produces 60% of the world 

Ruthenium supply. This table validates the need for finding more exploitable reserves in 

South Africa to supply the demands for Platinum and Palladium specifically. Table 2 shows 

the quantity and market value (at February 1999) of PGMs contained within each layer: 

Table 1: Supply and demand figures for 1997 worldwide in millions of ounces (Moz) (Jones, 1999) 

 Pt Pd Rh Ru Ir Os Total Pt, Pd, 

Rh 

PGM reserves 

(Moz) 

SA Supply 3.7 1.81 0.377 0.49* 0.8* 0.016* 5.9 2030 

Russia Supply 0.9 4.8 0.24    5.9 199 

Canada 

Supply 

0.16 0.28 0.012    0.5 10 

USA Supply 0.08 0.27     0.4 23 

Other Supply 0.13 0.10 0.003    0.2 23 

Total World 

Supply 

4.97 7.25 0.632    12.9 2280 

Total World 

Demand 

5.2 7.46 0.460 0.357 0.127 0.005# 13.1  

SA as % of 

world supply 

74 25 60    46 89 

* The estimated figures for South African production of Ru, Ir and Os was based on doubling 

1984 production figures, as has happened with platinum production over the period. 

# The figure for world demand of osmium is based on a 1993 estimate. 

The prices shown in Table 2 are out of date. The boom in the world economy followed by 

major downward adjustments in 2003 and 2008, resulted in significant price movements. 

Several new mines were opened in the boom, followed by mine closures. Nevertheless, Table 

2 provides an overview of the relative contributions of the precious metals.  

There are three types of exploitable PGM layers currently in the Bushveld Complex. These 

are the Platreef, Merensky Reef and the Upper Group 2 (UG-2) chromitite layer (Jones, 

1999).  

Table 2:Average grades (grams per tonne) of the precious metals in the Merensky, UG-2 and Platreef 

ores (Jones, 1999) 

 $/oz Merensky ore UG2 ore Platreef ore 

g/t $/t mass % g/t $/t mass % g/t $/t mass % 

Pt 379 3.25 39.54 59 2.46 29.98 41 1.26 15.35 42 

Pd 350 1.38 15.47 25 2.04 22.96 34 1.38 15.53 46 

Rh 860 0.17 4.56 3 0.54 14.93 9 0.09 2.49 3 

Ru 37 0.44 0.52 8 0.72 0.86 12 0.12 0.14 4 

Ir 395 0.06 0.70 1 0.11 1.45 1.9 0.02 0.30 0.8 

Os 400 0.04 0.57 0.8 0.10 1.31 1.7 0.02 0.23 0.6 

Au 287 0.18 1.62 3.2 0.02 0.22 0.4 0.10 0.94 3.4 

Total 

PGM + 

Au 

 5.5 62.99 100 6.0 71.70 100 3.0 34.99 100 
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From Table 2 it can be clearly seen that UG-2 ore contains the highest collective value of 

precious metals per tonne of ore (71.70 $/t). Merensky ore has the highest value of Platinum 

at 39.54 $/t. It can also be deduced from this table that Platreef ore contains almost 

exclusively Platinum and Palladium reserves (88% of the reef) compared to the Merensky 

(84%) and UG-2(75%) ores. However it accounts for the least collective value (30.88 $/t) 

compared to the Merensky (55.01 $/t) and UG-2(52.94 $/t). This is because it is mined 

exclusively in one location (Potgietersrus Platinum by Anglo) and the reserves are much 

lower than those for the other two reefs. 

The copper and nickel sulphide content of the UG-2 ore is much lower than that found in the 

Merensky reef. Most of the precious minerals are found within copper and nickel sulphide 

minerals. These base metal sulphides therefore assist in the flotation and smelting of trace 

amounts and they are valuable co-products. The lower base metal production from the UG-2 

reef (Xiao and Laplante, 2004) is therefore a disadvantage when processing UG-2 ore. Table 

3 shows the quantity and market value (at February 1999) of base metal sulphides contained 

within each layer: 

Table 3:Base metal content of the Merensky and UG-2 reef (Jones, 1999) 

 $/lb Merensky ore UG2 ore 

% in ore $/t mass % % in ore $/t mass % 

Ni 2.25 0.13 6.44 62 0.07 3.47 80 

Cu 0.66 0.08 1.16 38 0.018 0.25 20 

Total Base 

metals 

 0.21 7.61 100 0.09 3.72 100 

Due to the rapid depletion of exploitable Merensky reserves, the next best option to improve 

the production of Platinum and Palladium was to concentrate the UG-2 ore body (Jones, 

1999). In fact it was stated by Bryson (1998) that a substantial quantity of PGM production 

will be coming from the UG-2 ore body in the coming years. The test work in this thesis was 

conducted using UG-2 ore. 

The majority of PGMs within UG-2 ore occur within base metal sulphides, which are 

associated with silicates. Examples of these PGM sulphides include cooperite, braggite, 

laurite etc (Hay and Roy, 2010). The main gangue minerals, including chromite, are 

pyroxene, feldspar and talc. 

Chromite and talc are siliceous gangue minerals that affect the flotation process (Megraw, 

1916). They pose problems in concentration and subsequent smelting of UG-2 ore (Mailula et 

al., 2003). 

 2.7 TALC 

Talc accounts for between 1 to 3 % of the mass of the reef (Hay and Roy, 2010). Aplan and 

Fuerstenau (1962) cited in Liu et al. (2006) stated that talc crystals are naturally hydrophobic 

gangue minerals.  Contact angle measurements of talcaeous minerals have proved difficult 

and thus the exact degree of hydrophobicity is unknown.  It is known however that these 

minerals have froth stabilising characteristics (Lotter et al., 2008, Bradshaw et al., 2005). 

Talc particles are physically flat sheets.  Each sheet typically consists of brucite Mg (OH) 

sandwiched between two layers of silicates tetrahedral. Ionic bonds hold the atoms within the 

layers in place.  
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It is located within the grain boundaries of the base metal pyroxene. The talc is responsible 

for interfering with the flotation of the slower floating species viz. pyrrhotite, pentlandite and 

composite particles. This is because the talc is fast floating compared to the aforementioned 

species; hence it enters the froth before them, causing a stabilizing effect in the froth. It is 

recovered in the concentrate at the expense of these minerals, lowering the grade of the 

concentrate (Wiese et al., 2010). 

When a talc particle is broken, it forms two very distinct surfaces viz. edges and planes. The 

edges are charged whilst the planes are uncharged (Lotter et al., 2008). The edges form due to 

the breaking of the intermolecular ionic bonds whilst the planes are formed by the brittle 

layers that are easily ruptured. Due to the abovementioned properties, planes are hydrophobic 

whilst edges are hydrophilic in nature (Bradshaw et al., 2005). The depressant thus adsorbs 

onto the planes, and the ionic groups reduce hydrophobicity, reducing recovery of talc, and in 

so doing, it increases the grade of the final concentrate. 

 2.8 CHROMITE 

Chromite is a naturally hydrophilic mineral hence it cannot be transported to the concentrate 

via true flotation. It is usually recovered via entrainment thus has a strong correlation with the 

amount of water recovered in the concentrate. Ekmekçi et al. (2003) showed that the recovery 

of chromite in the concentrate is directly proportional to the water recovery. They also 

demonstrated that the chromite recovery decreases with increased froth height as described in 

the entrainment section previously. Hay (2010) showed that the relationship between the 

chromite and water recovery was independent of the scale of operation viz. the same type of 

relationships exist at plant scale operations. 

The UG-2 reef is a chromitite. A small amount of adjacent material is mined to ensure 

maximum recovery of PGMs ore and to provide sufficient height for mining. Hence, the feed 

to the processing plant has relatively high chromite (         ) content of up to 75% by 

mass (Hay and Roy, 2010). The UG-2 chromitite has a chromium oxide (     ) content of 

between 40-50% (Hay and Roy, 2010).  The percentage of original PGMs associated with 

chromite can vary from as little as 2% to about 10% depending on the properties of the UG-2 

ore (Hay and Roy, 2010). 

However, upon the addition of certain chemical reagents, the surface of the chromite minerals 

can be altered making them hydrophobic. This means that chromite can also appear in the 

concentrate by means of true flotation. Studies conducted by Wesseldijk et al. (1999) and 

Mailula et al. (2003) showed that chromite recoveries in the concentrates were increased by 

the addition of copper sulphate (     ) activator at certain pH values. Wesseldijk et al., 

(1999) stated that       forms a link between the surface of the chromite mineral and the 

xanthate collector. Thus       causes the xanthate collectors to adsorb onto the surface of 

chromite mineral thus they are recovered via true flotation. 

The smelting process is designed to separate the gangue minerals from valuable PGMs 

associated with the Cu and Ni sulphides. This process takes place in electrical furnaces that 

operate at temperatures of above 1600
0
C for UG-2 ore (Jones, 1999). Two distinct phases are 
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formed during this process viz. The matte phase of molten base metal sulphide (and 

associated with the PGMs), and the slag phase associated with the silicate minerals. The 

separation relies on the density difference between matte and slag. 

Chromite and magnetite form stable spinel’s that have intermediate densities compared to the 

matte and slag. This affects the separation of the two phases thus reducing the overall grade 

of the product. Thus, the maximum allowable chromite content for a typical UG-2 

concentrate grade of 400g/t is about 3% by mass (Jones, 1999). This constraint is applied to 

minimise the effect of the accumulation of chromite during the smelting stage of the overall 

concentration process (Hay and Roy, 2010).  

 2.9 COMPOSITE PARTICLES 

Composite particles comprise of a valuable mineral attached to the surface of an unwanted 

mineral. Thus these minerals behave as a complex particle with varying surface properties. 

Composite particles are a result of ineffective mineral liberation during grinding. These pose 

a significant problem during flotation. The selective collectors merely attach to the surface of 

the valuable mineral in the complex. The effectiveness of the collector action depends on the 

way in which the valuable mineral is orientated in the composite particle. That portion of the 

particle surface which reacts with the collector, (the sulphide mineral) will be coated by 

collector and it will be hydrophobic. The remainder of the (uncoated) particle surface will 

behave in a hydrophilic manner. Thus the probability of flotation of these particles is largely 

dependent on the proportion of the exposed surface containing the valuable mineral. The 

flotation of this composite particle will depend on the impact point between particle and 

bubble. It must strike the particle at the exposed hydrophobic surface, so that it can attach. 

This collision period is short so the particle must quickly attach to the bubble in order to be 

carried to the froth. 

 2.10 FLOTATION CIRCUITS 

Flotation circuits are designed to optimise both the recovery and grade of the final 

concentrate. Single stage batch tests cannot achieve the same results as circuits since circuits 

incorporate recycling certain tailing and concentrate products. A simplified circuit, shown in 

Figure 13, consists of banks of cells arranged in the following series to simulate the various 

stages of flotation viz. 

 Rougher stage 

 Scavenger stage 

 Cleaner stage 

 Re-cleaner stage 
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Figure 13: A simplified flotation circuit (Ives, 1984) 

In Figure 13, C and T refer to the concentrate and tailings respectively. R, C1, C2 and S refer 

to the rougher, cleaner and scavenger stages respectively.  Each box represents a bank of 

cells. This circuit is used to concentrate one product. ‘G’ denotes a grinding stage. In this 

case there is only one grinding stage however more complex circuits involve additional 

grinding stages.  

Generally the number and sizes of the cells within these banks varies according to the 

quantity of ore being treated and the economics of the plant. Larger cells are used in the 

initial rougher banks of cells and relatively smaller sized cell used in the cleaner banks. Most 

banks can consist of anywhere between 4-20 cells depending on the requirements of the 

process (Ives, 1984). 

The rougher and cleaner stages usually recover the fast floating minerals. In PGM flotation, 

these are chalcopyrite, pentlandite and include naturally floating talc. The tailing from the 

rougher is transferred to another flotation stage known as the scavenger. The grade of 

concentrate resulting from the rougher and cleaner stages is generally higher than that of the 

scavenger stages. This is due to the reduced amount of floatable sulphide and platinum 

minerals that report to the scavenger banks. There are also cleaning stages associated with the 

concentrates from the scavenging stage. The slow floating and composite minerals are also 

found in these banks. 

The use of multiple stages of flotation is a crucial factor in the success of circuits.  This 

ensures that the maximum possible recovery and grade can be achieved from the ore. 

However, there are certain consequences associated with recycling. One such effect is 

recycling of frother, depressant and collector (Ives, 1984). It should also be noted that the 

frother molecules are concentrated at the air/water interface and hence the water associated 

with flotation concentrates will have a higher frother concentration than that of the feed. 

Therefore, addition of frother to roughing and scavenging stages, to achieve adequate froth 

stability, may have the effect of producing undesirable froth stability in the subsequent 

cleaning and re-cleaning stages. 
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A two-staged mill/float circuit is employed in the PGM industry. This is known as the MF2 

circuit. It has a coarser primary grind of between 30-40% passing 75µm. This size is said to 

effectively reduce overgrinding of chromite and reduce overall entrainment. This allows 

certain PGMs to be captured initially without the need of overgrinding thus reducing 

downstream milling costs. The finer secondary grind, between 65-85% passing 75µm, 

effectively liberates fine PGMs trapped within silicate minerals (Hay and Roy, 2010). 

For UG2 ore, the average grain sizes of the PGMs are 12µm depending on the associated 

mineral (Hay and Roy, 2010). However, it should be noted that the PGMs are often 

associated with base metal sulphides and that the grain size of these minerals becomes 

important for recovery of the PGMs.  In order to liberate these minerals from the ore, the ore 

must be ground to an appropriate size fraction for the flotation process. In the case of UG-2 

ore, it has to be ground to about 80% passing 75µm for economic recovery of the PGM 

minerals (Jones, 1999). 

 2.11 THE EFFECT OF FROTHER ON FLOTATION OF PLATINUM FROM UG2 ORE 

Ekmekçi et al. (2003) used hand-scraped batch rougher tests on UG2 ore, (obtained from the 

Crocodile River mine), to evaluate various types of frothers. The key variables manipulated 

were the froth height and frother type. Five different frothers were used, namely SF6005, 

SF6008, SF9325 (all proprietary blends (Senmin)), DOW200 and TEB (1, 1, 3-

Triethoxybutane).The frother dosage was fixed at typical plant dosage of 60 g/t for all tests. 

The froth heights varied from 1, 2 and 3 cm. The dosages of SIBX collector and KU5 

depressant were constant for all the frother types.  

SF6005, SF6008, SF9325 and DOW200 were shown to exhibit consistent froth behaviour 

producing high water recoveries at all froth heights as compared to TEB. The TEB has a 

much lower water solubility compared to the other highly water soluble frothers. Due to 

frother similarities, SF6005, SF6008, SF9325 and DOW200 were labelled as Group A type 

frothers whilst TEB was labelled as a Group B type frother.  

Based on the water, mass and chromite recoveries, Group A frothers were classified as strong 

and stable frothers. Group B produced a brittle froth resulting in low water recoveries. At 

high froth heights, the recovery of water decreased due to the increased drainage resulting in 

an improvement of the selectivity of valuable minerals in both groups.  

The selectivity’s of the frothers were also investigated. It was found that the DOW200 had a 

higher mass recovery than the TEB at all froth heights. This was due to the more stable froth 

phase and also a result of the higher water recoveries. It was shown that the cumulative grade 

of chromite that reported to the concentrate was less than 3% for froth heights 2 cm and 3 cm. 

This was true for the Group A frothers. Group B had a cumulative chromite grade less than 

3% at all froth heights. The Group B frother produced significantly lower mass recoveries at 

all froth heights. The mass of chromite present in the final concentrate decreased as the froth 

height increased. This is due to the increased natural drainage as the froth height is increased 

(Ekmekçi et al., 2003).  
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It was concluded that the group A frothers produced more stable froths with larger bubbles 

allowing for better drainage compared to Group B. The mass recovery of both water and 

minerals using TEB was far too low. The use of Group A frothers was recommended based 

on their good flotation characteristics at froth depths that result in suitable drainage. These 

frothers were able to achieve reasonable mass recoveries compared to the lower mass 

recoveries of Group B frothers. It was also recommended to increase the froth height to 

reduce the grade of chromite present in the concentrate (Ekmekçi et al., 2003). 

 2.12 CASE STUDIES INVOLVING THE USE OF DEPRESSANTS TO SOLVE THE TALC 

PROBLEM 

Depressant are the most expensive of all reagents utilized in the platinum flotation industry 

(Shortridge et al., 2000), and hence there has been a significant investment in research on 

mechanisms for depression of Non-floatable gangue (NFG) minerals (Parolis et al., 2008, 

Corin and Harris, 2010). In particular, Corin and Harris (2010) showed that there is no benefit 

of blending both CMC and guar type depressants. This was based on the fact that similar 

PGE recoveries were obtained for both the blended and pure depressants. 

Talc is a naturally hydrophobic, silicate mineral present in gangue in the South African 

platinum ore bodies (Shortridge et al., 2000). It has a unit structure of Mg3(Si2O5)2(OH)2 and 

is very difficult to separate from valuable mineral. It has been known to be easily recovered 

and thereby reduces the overall grade of the concentrate (Beattie et al., 2006). 

A significant amount of research has been invested in the field of talc depression. Liu et al., 

(2006) found that the adsorption of CMC type depressants onto talc is independent of the pH 

of the pulp. Beattie et al. (2006) did research on the adsorption characteristics of various 

polymeric depressants. The depressants used were either natural or synthetic with a wide 

range of degrees of substitution (DS) to allow for a wide range of chemical properties. The 

contact angle of the adsorbed talc and the thickness of the adsorbed depressant layer on the 

particle were the two primary factors that influenced the depressant effectiveness.  

 Shortridge et al. (2000) investigated the use of CMC and modified guar depressants (at a 

range of molecular weights) and their ability to depress naturally hydrophobic talc. The CMC 

average DS was 0.8 whilst the guar average was 0.1. The CMC possess a high charge 

compared to the low charge guar depressant. A salt solution of 10
-3

 M potassium nitrate 

(KNO3) solution was used in the micro flotation tests. 

It was shown that maximum depression of talc by guar occurs at a dosage of 20 g/t, with no 

further depression noted at higher dosages. CMC depressant showed poor depression 

characteristics at the same dosage. The poor depression could be due to the electrostatic 

repulsion between the talc surface and the negatively charged CMC depressant. 

Guar molecules have an extended adsorbed layer on the talc, forming a tail extension on the 

adsorbed molecule. The CMC adsorbs flat on the surface, with no tail sticking out into the 

pulp. Even though the CMC molecules occupied a 1000 times greater surface area on the talc 
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surface compared to the guar, the guar shows a greater depressing action. The tail structure 

was presumed to provide an extended shielding to the air bubble thus ensuring no adhesion.  

The results found by Shortridge et al. (2000) showed that the higher the molecular weight of 

the guar, the better the depressing action. The CMC showed no improvement in depressing 

action, even as the molecular weight of the depressant was increased at a fixed KNO3 dosage. 

They concluded that the ionic strength of the KNO3 solution impacted negatively on the 

adsorption of the CMC type depressants. 

(Parolis et al., 2008) found that certain metal cations in solution promoted the adsorption of 

CMC onto talc. These were Ca
2+

 and Mg
2+

 cations. These divalent cations caused greater 

coiling of CMC chains on the talc surface compared to the monovalent K
+
 cations. This 

coiling improved the effectiveness of the CMC adsorption onto talc. K
+
 cations were found to 

negatively impact the adsorption of CMC onto talc. This result was similar to that observed 

by Shortridge et al. (2000). 

 2.13 THE EFFECTS OF COLLECTORS AND FROTHERS ON THE PERFORMANCE OF 

DEPRESSANTS 

Wiese et al. (2010) performed batch flotation tests using Merensky ore. They were 

investigating the effects of varying DOW200 frother dosages on the performance of CMC 

and guar depressants. This flotation performance was based upon the recovery of Cu and Ni 

sulphides. The frother dosages ranged from 40 to 70 g/t whilst the depressant dosages ranged 

from 0 to 500 g/t. All other factors, including air flow rate, froth height, SIBX collector 

dosage etc. were kept constant. 

Their results showed that the water recovery increased as the frother dosage was increased 

from 40 to 70 g/t across all depressant dosages. It was also apparent that the use of frother 

displayed little selectivity due to the effect on the concentrate grade. Both the Cu and Ni 

grades decreased as the frother dosage increased.  This was due to the increased gangue 

entrainment as a result of the increased froth stability. It was also observed that froth stability 

was improved by increasing the frother dosage, particularly for CMC depressant at 500 g/t. 

The CMC produced brittle froth at this dosage due to its dispersing characteristics and the 

removal of talc from the froth.  

The use of high frother dosages was demonstrated to improve the recovery of Cu and Ni 

sulphides however it reduced the overall grade of the concentrate. The use of high dosages of 

depressant was found to increase the grade of the concentrate however the overall recovery of 

Cu and Ni sulphides was lower. This was considered to be due losses in the recovery of 

composite or partially liberated sulphide particles. Thus one must find and optimum balance 

between increasing both the frother and depressant dosage.  

Bradshaw et al. (2005) performed flotation tests on Merensky ore. They were investigating 

the effect of SEX and SIBX collectors on the recovery of Cu and Ni sulphides at various 

depressant dosages. Depramin 186 and Depramin 158 were the depressants used at dosages 

ranging from 100 to 500 g/t. The Depramin 186 is highly charged compared to Depramin 
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158. These depressants were used to simulate the behaviour of CMC and guar type 

depressants respectively.   

The SIBX collector has a longer chain length compared to SEX collector and thus produces 

particles with a greater degree of hydrophobicity. This implies that the use of SIBX generates 

particle-bubble aggregates with larger contact angles compared to SEX. Thus one would 

expect higher recoveries using SIBX collector. 

This increased hydrophobicity has an impact on the froth phase. The SIBX coated particles 

caused increased bubble coalescence thus producing bigger bubbles as well as a brittle froth 

structure compared to those coated with SEX. Thus the use of SEX collector produced higher 

mass and water recoveries compared to SIBX at all depressant dosages.  

The grades of concentrate from the SEX were lower than those obtained with the SIBX 

collector. This was due to the lower natural drainage that occurs in a more stable froth. This 

means that SEX froth structure allowed more gangue to be entrained compared to SIBX. This 

reduced the grade of the concentrate. 

The use of both types of depressant lowered the non-floatable gangue (NFG) recovery in the 

concentrate for both collectors. However, it was found that both depressants reduced the 

recoveries of sulphide minerals as the dosage increased. Depramin 186 exhibited higher 

recoveries of NFG but also displayed higher overall concentrate grades. This was due to the 

increased bubble sizes which facilitated improved natural drainage which reduces gangue 

entrainment. The Depramin 158 exhibited lower recoveries of NFG compared to the 

Depramin 158. This implies that it adsorbed more strongly onto the NFG surfaces.  

 2.14 THE EFFECTS OF HYDRODYNAMIC VARIABLES ON THE FLOTATION OF 

PLATINUM ORES 

Hadler and Cilliers (2009) performed studies on a flotation bank of 4 rougher cells at a 

platinum mine in South Africa. The objective was to investigate the influence of air flow rate 

and froth stability on the rougher bank performance. This performance was measured by a 

variable known as the ‘air recovery’. It is defined as the fraction of air entering the cell that 

overflows into the launder as unburst bubbles. The authors had previously demonstrated a 

relationship between the air recovery and mineral recovery in batch tests. 

Initial results showed that an increase in air flow rate increases the air recovery. However at 

higher air flow rates, the air recovery decreases. This meant that the froth structure became 

more brittle at higher air flow rates due to an increase in bubble size (i.e. the impeller has a 

limited capacity to disperse bubbles. It was deduced that there an optimum air flow rate exists 

that will lead to a peak in air recovery. 

In terms of the concentrate grade and PGM recovery there were mixed results. An increase of 

the air flow rate increased the PGM recovery and lowered the concentrate grade. The 

reduction in grade was due to increased entrainment. However, the studies did show that the 

maximum PGM recovery occurred at the peak in air recovery without significant loss in 

concentrate grade.  
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Studies were performed by Deglon (2005) on the influence of agitation on platinum ore 

flotation. Results showed that an increase in agitation increases the particle-bubble 

attachment for both finer and coarser particles. 

The grades and recoveries of platinum ores for two different cell volumes (viz. 60 and 150 

litre) were recorded at different impeller speeds. These cells were part of a pilot plant, 

operating with a continuous feed. The assumption was that the higher the impeller speed, the 

turbulence within the cell. It was shown that both the recoveries and grades of the ore 

increased as the impeller speed increased in the 60 litre cell.  

The effects of two different froth types were observed for this cell namely a shallow froth and 

a deep froth. The shallow froth is a consequence of an average air flow rate and the deep 

froth stems from a high air flow rate. The Platinum recoveries for both froth types increased 

linearly with impeller speed. The recoveries at all impeller speeds were constantly higher in 

the shallow froth compared to the deep froth. This is due to the larger drainage of gangue 

minerals in the deeper froth compared to the shallow froth. 

The 150 litre cell was used to investigate two different grades of material viz. a lower grade 

rougher feed ore and a cleaner tails ore. The feed ore sizes were a 40% passing 75 microns 

feed for the rougher ore and a 90% passing 75 microns for the cleaner ore. The effects of 

different impeller speeds on the platinum recovery were monitored. It was observed that the 

recovery increased linearly with the impeller speed for the cleaner tails ore. However, for the 

rougher tails ore, it was found that the recovery increased linearly to a maximum of 55% at 

950 rpm, then decreased thereafter. The recovery at 780 rpm was about 52% and the recovery 

at 1050 rpm was 53%. These results show an optimum speed at 950 rpm for the flotation of 

this ore. 

Deglon (2005) explained that increasing the impeller speed resulted in an increase in the 

bubble-particle contact resulting in higher concentrate recoveries. However, at high impeller 

speeds, the particle-bubble detachment in the pulp is likely to increase and the froth phase 

likely to become unstable. There will be an optimum impeller speed and air flow rate 

combination for coarser particles. This will be dependent on the feed properties. A rougher 

tails ore has weak flotation behaviour compared to the cleaner ore due to the size of its 

particles. Thus it responds less favourably to the increase in impeller speed. 

The effects of aeration rate and impeller speed on the flotation of sulphide ore were 

investigated by Yang and Aldrich (2006). The investigation involved using impeller speeds 

of 1200, 1500 and 1800 rpm respectively. The aeration rates used ranged from 2 to 8 litres 

per minute (l/min). The effects of the grade of sulphur were reported via rate plots for a 

flotation time of 8 minutes. Their results showed the grade of sulphur in the concentrate 

generally decreased as the aeration rate increased for each of the three impeller speeds up 

until 360 seconds.  Thereafter it can be seen that there was an optimum impeller speed 

between 1800 and 1200 rpm for the sulphur grade. Further investigations showed that an air 

flow rate of 4 l/min and an impeller speed of 1500 rpm optimised the recovery and the grade 
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of sulphur. These investigations incorporated factors like water recovery and gangue 

entrainment. 

It is difficult to compare the results obtained by Deglon (2005) to laboratory results simply 

due to the large difference in cell volumes. Standard laboratory flotation cell volumes were 

used in this project, ranging from 1 to 8 litres. Obviously one cannot simply conduct 

experiments at the same air flow rates used by Deglon (2005) since they utilized much larger 

cells viz. 60 and 150 litres.  

Thus the idea of a superficial air flux velocity (va) must be introduced. This velocity is a 

measure of the flow rate of the air relative to the surface area of the cell and has units of 

m
3
.m

-2
.s

-1
(or m.s

-1
). This flux thus incorporates the size of the cell used thus is an important 

factor in scaling air flow rates between laboratory and industrial flotation cells.  

 2.15 CIRCUIT OPTIMISATION 

Loveday and Hemphill (2006) used simulation to optimise the design of an existing 

multistage platinum flotation plant. The circuit consisted of four stages namely the rougher, 

cleaner, scavenger and re-cleaner stages. There were several flotation cells within each stage. 

Included in this circuit was a re-grinding of the rougher tails. There were three recycle 

streams within the cleaning stages in an effort to improve the separation between the gangue 

and the PGMs. 

A high degree of gangue entrainment occurs during single stage flotation. This necessitates 

multiple concentration stages where gangue entrainment is reduced and concentrate grade is 

improved. In some cases, recycles within certain stages are necessary to improve the 

separation of the gangue minerals from the PGMs.  

The concentrate streams were separated into two grades viz. the higher and lower grade 

concentrates. It is assumed that the higher grade concentrate primarily consists of fast floating 

minerals. The lower grade concentrate is assumed to consist of slower floating minerals. It 

was shown by both Wiese et al. (2011) and Bradshaw et al. (2005) that depressant dosages 

influence the recoveries of Cu and Ni differently. Cu is generally associated with fast floating 

minerals whilst Ni is associated with slower floating species. Hence, by separating the 

material into fast and slow floating species, suitable additions of depressant can be selected.  

The flow sheet of the plant which was simulated by Loveday and Hemphill (2006) is shown in Figure 

14. 
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Figure 14: Flow diagram of platinum flotation plant circuit (Loveday and Hemphill, 2006) 

 

 2.16 INVESTIGATING THE DOWNSTREAM EFFECTS OF FROTHER ADDITION 

It was stated by Wiese et al. (2010) that “increased frother dosages may lead to downstream 

problems in a concentrator”. These problems are due to the impact that frother dosages have 

on froth stability. It is known that the froth stability has a huge impact on both the PGM 

grade and recovery.  

As discussed earlier, frother molecules adsorb onto the surface of air bubbles. These bubbles 

rise through the pulp and form the froth phase. Thus frother molecules are concentrated in the 

froth phase. The concentrate, which is recovered from the froth phase, contains both solids 

and liquid. Frother molecules, unlike depressants and collectors, do not adsorb onto the 

surface of solids. Hence they are largely associated with the liquid containing collapsed 

Item number Description 

1, 2 Primary roughers 

3, 4 Scavengers 

5, 6 HG cleaners 

7, 8, 9 LG cleaners 
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bubbles. Hence, the frother concentration in the water is increased by all stages, relative to 

the feed to that stage. 

In industry, the process of flotation is continuous and tank levels are controlled, for example, 

by use of dart valves. A batch laboratory test relies on a liquid top-up to maintain the flotation 

cell operating level. This liquid is usually fresh water. However, on plants, the cells are 

operated continuously and pulp level is controlled, using dart valves (for example), to 

regulate the tailings flow. Laboratory tests should therefore be designed to mimic plant 

conditions as much as possible. 

Water is recycled on plants as much as possible, bearing in mind the residual reagents in the 

water and salts in solution build up to saturation levels. Some fresh make-up water is added. 

Ores from the Bushveld complex are ultra-basic and react with water to produce a relatively 

high pH of about 9. 

Launder sprays are used in some cases, where the concentrate does not flow well. However, 

launder sprays cause dilution and the consequent loss of cleaner residence time. Most of the 

recycle water (from the tailings dam) and fresh make-up water is therefore added to the 

milling circuit. 

The cell levels in a laboratory test are controlled by using fresh water top-up. This means that 

the cell is being artificially diluted. The result is that the frother concentration is being 

reduced. Hence, the complete circuit must be considered when doing laboratory tests, 

particularly the effects of increasing frother concentration. 

In order to investigate the downstream effect of frother concentration, one would need to 

have a simple way of measuring frother concentration in the presence of other organic 

chemicals. No convenient on-site method for the determination of frother concentration was 

found in the literature. Gas chromatography and calibrations of bubble size and gas holdup 

vs. frother concentration have been employed as means of frother measurements. Finch and 

Gelinas (2005) used a colorimetric technique to measure the concentration of methyl isobutyl 

carbinol (MIBC) and DOW250 in solution. The frothers were extracted in an organic solvent 

and analysed by means of UV–visible spectrophotometry.  The frother concentration was 

predicted with an error of less than 6% and showed good repeatability. This method required 

a short determination time, could be performed on-line and was relatively cheap. These 

factors were incorporated into the design of a device capable of measuring the frother 

concentration. Two methods of measuring frother concentration in water are described later.  

 2.17 SURFACE TENSION AND CAPILLARY ACTION  

As mentioned earlier, one of the primary functions of frother is to reduce the surface tension 

between air and water. This means that the bubbles are less likely to burst upon particle-

bubble collisions. Thus there exists a relationship between the surface tension of a liquid and 

the frother concentration. Initially, it was decided to quantify the frother concentration by 

using the relationship between the surface tension and capillary action of solutions. 
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Surface tension is defined as the “the property of the surface of a liquid that slows it to resist 

an external force, due to the cohesive nature of its molecules” (Survey, 2012b). In an open 

tube filled with water, there exists a natural force of cohesion between all the water 

molecules. The molecules lining the surface have no molecules above them thus exhibit 

stronger forces of attraction between the molecules alongside. This attraction between the 

surface water molecules creates a strong barrier between the atmosphere and water. This 

surface barrier is known as the surface tension and is shown in Figure 15 (Survey, 2012b). 

 

Figure 15: Forces of cohesion between water molecules (Thorpe, 2002) 

A capillary tube is a length of piping, usually of narrow diameter. A glass capillary tube was 

used for this investigation. It is used to demonstrate the capillary action of liquids. Capillary 

action is defined as “the movement of water within the spaces of a porous material due to the 

forces of adhesion, cohesion and surface tension” (Survey, 2012a).  

When a capillary tube is placed in a liquid solution, the water exhibits forces of adhesion 

towards the sides of the glass and cohesion between the molecules themselves. This adhesion 

causes the water to rise up the tube. This height is exaggerated at the sides of the glass since 

the surface tension causes the surface to stay intact (Sophocleous, 2009). The forces of 

adhesion are greater than those of cohesion. This causes a net upward rise of water in the 

tube. The shape that the water forms at the surface is called a meniscus. This is shown in 

Figure 16: 

 

Figure 16: Meniscus formed by water in a capillary tube (Nave, 2012) 

There are various factors that influence the liquid rise viz. gravity due to liquid mass, surface 

tension, tube diameter etc. The relationship between these factors is summarized in the 
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following equations taken from the fundamental equation of dynamics for pure liquids 

(Zhmud et al., 2000): 

Equation 1: For a viscous, non-compressible liquid in a long cylindrical capillary; Newton’s 

dynamic law is as follows: 

 [     (  ) ]   
 

 
      

 

  
          

assuming the Poiseuille flow profile throughout the capillary 

Where h – height to which the fluid rises in the capillary tube 

 γ- liquid/air surface tension 

 θ- contact angle between the liquid and air 

 ρ- density of the liquid 

 g- universal gravitational constant 

 r- radius of the tube 

 η- viscosity of the liquid 

The fluid will rise to a final static level    after the forces of capillarity and gravity cancel 

out. This is given by the following equation: 

Equation 2: Static liquid height 

    
      

   
 

The equation above implies that      . Surfactants, like DOW200 frother reduce the 

surface tension of liquids. Hence one would conclude that the rise of water in a capillary tube 

would be a simple, practical way of measuring the air/water surface tension and hence the 

effective frother concentration. 

 2.18 CONCLUSIONS FROM RESEARCH 

Work done by Deglon (2005) gave rise to the idea of an optimised set of air flow rate and 

impeller speed combinations. These describe the hydrodynamic behaviour of the cell. There 

has been much work done in the recording of such data in the form of ratios and graphs, the 

former referring to an “Air Flow Number (AFN)” and the latter to an “Air-Impeller” 

envelope. The AFN is the ratio of the air flow to the impeller speed for certain ore types. The 

“Air-Impeller” envelope is a series of data points for optimum impeller speeds and air flow 

rates combinations, represented on a graph. These points, once plotted, form an “envelope-

like” shape. An example of a single data point would be the   4 l/min and 1500 rpm obtained 

by Deglon (2005).  



32 

 

It is important to note that these ratios and graphs are mere guidelines in the selection of 

optimised conditions. Çilek and Yılmazer (2003) showed that the hydrodynamic variables of 

flotation cells are effective design and scale-up criteria. Work similar to that done by Yang 

and Aldrich (2006) will have to performed, in order to find optimised air flow rate and 

impeller combinations. This would require large amounts of sample and is not within the 

scope of this project. Their results will be used as guidelines in the selection of suitable air 

flow rate- impeller combinations. 

It is apparent that one cannot simply consider the optimisation of a flotation process by 

simply considering the reagents and experimental conditions individually. All the reagents 

have primary and secondary effects. In the case of collectors, their function is the coating of 

particles that render the surfaces hydrophobic. This is the primary effect and has a positive 

outcome in that particles are able to attach easier to bubbles. The other induced or secondary 

effect of collector dosage is that increased particle hydrophobicity affects the froth phase.  

Bubble coalescence is promoted by hydrophobic particles which causes a decrease in froth 

stability reducing the overall PGM recovery. In order to optimise the PGM recovery or 

concentrate grade, one needs to consider both the primary and secondary effects of any 

chosen reagent dosage. 

It was shown by Wiese et al. (2011) that changing any one reagent in a flotation process has 

an effect, either positive or negative, on the froth stability thus has an overall effect on the 

grade and recovery of PGMs. Bradshaw et al. (2005) concluded that reagents should not be 

considered independently of each other, and that the effects of combinations of reagents on 

both the pulp and froth phases should be considered.  

In the past, laboratory batch flotation tests were used to find optimum experimental 

conditions, including reagent suites, which could be subsequently applied to larger scale 

operations like pilot plants. However, in most cases, the results in batch flotation tests do not 

correlate well with those obtained from pilot scale operations. Batch tests often produce 

higher recoveries and grades compared to larger scale operations. According to Wiese et al. 

(2011), it is believed that these differences result from the effects of reagent suites on froth 

stability.  

The circuit used by Loveday and Hemphill (2006) displayed how concentrates are separated 

into different grades thus enabling one to optimise them independently. Due to their 

dissimilar PGM and gangue contents, these concentrates might not respond in a similar 

manner when subjected to identical depressant dosages. Hence it is beneficial for the purpose 

of this study to separate these concentrates. This influenced the design of a circuit capable of 

separating concentrate into two grades viz. high and low. The four stage circuit proposed for 

this test work, shown on Page 43 Figure 35, consisted of rougher, scavenger, high grade and 

low grade cleaning stages. 

The downstream processing problems highlighted by Wiese et al. (2010) could only be 

addressed if one was able to quantify the frother concentration of any stream. Common 

analytical techniques are laborious, expensive and at times cannot be used online in a plant 
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situation. A practical and efficient method of measuring the frother concentration was sought 

after. The frother is concentrated in solution hence it was decided to investigate the use 

surface tension as a means of measuring this concentration. Later on it was discovered that 

the froth height generated by bubbling air through frother solutions could be used to 

effectively quantify the frother concentration.  

This thesis is aimed at addressing some of these laboratory practises which may reduce the 

PGM recovery/ concentrate grade differences between laboratory and pilot scale operations.  
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3 EQUIPMENT 

The following chapter details the equipment used to perform the experimental work in this 

thesis. This chapter has been divided into three sub-sections namely; Milling, flotation and 

frother investigation. 

 3.1 MILLING 

A fixed speed rod mill, operating at 75 r.p.m, was used to grind the sample. It had an internal 

volume of 10 litres and an internal diameter of 200mm. It was fitted with four 5mm high 

lifters, as shown in Figure 17, which ensured that the rods did not slip.  

 

Figure 17: Internals of the mild steel rod mill 

A mild steel conical funnel was used to aid in the un-loading of sample into a collection 

bucket. The aim of this was to reduce mass losses during the transferring process from the 

mill to the flotation cell. This mill setup is shown below: 

 

 

Figure 18: Milling setup  

Lifters 

θ = 200 mm 

Length = 300 mm 

Conical funnel 
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Stainless steel rods, with diameters ranging from 10 to 20 mm, were used to perform the 

grinding. These were all 290 mm in length. The rods together with their mill orientation are 

shown in the figures below: 

 

Figure 19: Steel rods of 20, 15 and 10 mm diameter respectively (from left to right) 

 

Figure 20: Orientation of rods in the mill 

Figure 21 shows the vibrating screen which was used for wet screening of the sample at 75 

microns, prior to dry screening of the oversize. These tests were required to determine the 

grinding time. 

 

Figure 21: Wet screening apparatus 

 

 75 µm sieve 

 Bucket 
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Figure 22: (from left to right) bad ore; good ore 

The dry samples of good ore and bad ore, shown above were sub-sampled using a riffle. The 

riffle was also used for wet splitting of the rougher tailing sample for repeat assays.  The total 

dry mass of samples was used as a measure experimental accuracy.  

 

Figure 23: Riffle splitter apparatus 

Figure 24 shows the pressure drum filter, operated at 5 bar (abs), to filter wet ore samples. 

Compressed air was delivered via a tube. A bucket was placed underneath to collect the 

filtrate or as a sample safety mechanism in the event of filter paper failure. 

 

Figure 24: Pressure filtering apparatus 

The samples of plus 75 micron material obtained by wet screening, were dried in an oven and 

analysed for a size distribution, using a sieve shaker. This was used to generate a size 

distribution of the particles above 75 microns. The apparatus consisted of a √2 series of 

sieves arranged on a vibrating screener. The sieve sizes ranged from 75 to 250 µm. The 

amplitude and frequency of the vibrations were constant. 

 Internal θ=220 mm 
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Figure 25: Sieve shaker 

 3.2 FLOTATION EQUIPMENT 

Three standard Denver flotation cell sizes were used in this work. These were the 1, 2.5 and 8 

litre cells respectively. These values refer to the approximate volume occupied by the 

contents within the cell. The cells were provided together with a new Denver flotation 

mechanism, but were modified by cutting a narrow window on one side and attaching a 

Perspex strip, as shown in Figure 26. The window was used to monitor pulp level. 

 

Figure 26: Standard Denver cells 8, 2.5 and 1 L sizes (left to right) 

The scrapers for the flotation test work were cut, in duplicate, from Perspex glass. These were 

sized according to the froth depth requirements and were constrained by the cell dimensions. 

 

Figure 27: Scrapers for 1, 2.5 and 8 L cells respectively (from left to right) 

 

 

 Window 



38 

 

Two Denver flotation mechanisms were available to perform test work. The new one, which 

has digital speed control, was used to perform test work in combination with the old one. The 

air flow was supplied from a compressed air main and it was set using a rotameter.  The old 

cell, together with the two control devices are shown in Figure 28: 

 

Figure 28: Denver Flotation Cell with subsidiaries 

This work involved the use two different impeller sizes viz. small and large. The diameters of 

the impellers are shown below together with the outer shaft casings. 

 

Figure 29: Impeller sizes/Shaft casings: Small and Large (from left to right) 

The reagents in this work were prepared as 1 % solutions by mass in distilled water. The 

collector used was SIBX, which is a yellow powder in its solid form. DOW 200, a clear 

liquid solution, was the frother used in this work. KU5, which appears as a cream powder 

prior to dilution, was the depressant used. The reagents, in solution form, are shown below: 

Analogue meter 

Air rotameter 

Impeller 

θ = 135 mm 
θ = 95 mm 

θ = 75 mm θ = 95 mm 
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Figure 30: SIBX, KU5 and DOW 200 solutions respectively (from left to right) 

 3.3 FROTHER INVESTIGATION 

A 1 mm (ID) glass capillary tube, together with a glass vial was used in the initial stages of 

this investigation. An attempt was made to quantify the frother concentration using the rise of 

liquids in capillary tubes, shown in the image below, but the rise in level was too small with 

typical samples of concentrate water. 

 

Figure 31: Capillary tube setup 

The next method to be tested was to bubble air through a filtered solution and to measure the 

froth height, using a vertical tube (20 mm internal diameter), which had a sintered disc of fine 

glass sand, fitted to the bottom of the tube (See Figure 33). The perforations in the disc 

created sufficient pressure drop to ensure the air was evenly distributed throughout the tube. 

A tape measure, fixed to side was used to measure froth height. 

Liquid rise 
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Figure 32: Sintered disc tube apparatus 

Upon magnifying the highlighted section, a clearer picture of the 5 mm thick sintered disc is 

obtained and shown below: 

 

Figure 33: Magnified section showing the sintered disc 

The experimental setup for both the flotation tests and frother investigation are shown below. 

A large rotameter delivers air to the flotation cell whilst a smaller rotameter delivers air to the 

frother apparatus: 

 

Figure 34: Flotation experimental setup 

Tape measure 

Air inlet 

Sintered disc 

Large rotameter 

Smaller 

rotameter 
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4 EXPERIMENTAL PROCEDURE 
The following chapter summarizes the experimental procedure for different phases of the 

laboratory test work. Following the format of the previous chapter, this chapter has also been 

split into three sections viz. the milling, flotation and circuit procedure. 

 4.1 MILLING 

This section will detail the procedure for milling the UG-2 ore sample. Initially, a target grind 

for the sample was selected, for example 80%-75µm. A fixed mass of sample was charged 

into the mill together with a selection of 316 SS rods. Tap water was subsequently added to 

create slurry within the mill. The mass of rods and volume of water were based on the 

operating volume within the mill. The ore was then milled for a certain time. Wet followed 

by dry screening was subsequently performed to determine the percentage of the sample 

passing 75µm. Wet screening is performed using water to create a slurry that allows the fine 

material to pass through the sieve, shown in  Figure 21. The remaining sample was then dried 

overnight in the oven. Dry screening of this sample was performed using the apparatus shown 

in Figure 25. This allowed one to determine the additional amount of sample passing 75µm. 

The results from both the dry and wet screenings were combined to determine a final 

percentage passing 75µm. The above process was repeated at various times until the required 

target grind was achieved. The results were then represented in the form of milling curve. A 

milling curve was required to determine the milling time to achieve the target grind. 

 4.2 FLOTATION 

SIBX, DOW 200 and KU5 were the reagents used to perform test work. Solutions of these 

were prepared using distilled water. The concentration of the reagents was 1 % by mass (or 1 

gram per 100 ml solution). The MINTEK standard procedure was used to perform flotation 

tests. A brief summary of this method is given: 

Once the milled sample has been transferred to the flotation cell, the cell contents were 

topped up to a static operating level using water. The impeller motor was then switched on 

whereupon the contents form a new dynamic operating level. The reagents, where necessary, 

were added in the following order; SIBX, DOW 200 and KU5. Conditioning time was 

allowed for the reagents to function in the system. The air was then turned on to allow the 

froth to build up to an acceptable level to perform flotation. 

Upon the commencement of the test, hand scraping was used to skim the froth at 15 second 

intervals. The concentrate obtained from this scraping was collected by means of a tray 

placed below the cell launder. Water was used to maintain a constant dynamic operating pulp 

level for the duration of the test. However, due to certain findings later on, synthetic frother 

water was used. In an effort to maintain constant froth stability, the air flow was incremented 

at various stages of the test. Rate or bulk concentrates were collected at the end of the test and 

prepared for analysis. 
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 4.3 PULP LEVEL AND FROTH DEPTH CONTROL 

The pulp levels for the respective cells were constant for both ore types. The pulp level was 

defined as the distance from the launder lip to the pulp-froth interface at the initial dynamic 

operating conditions. The pulp levels are listed in Table 4 below for the various cells. 

Table 4: Pulp levels at dynamic operating conditions 

Cell Pulp level/[cm] 

Rougher 3.5 

Scavenger 3.5 

HG cleaner 3 

LG cleaner 4 

 

The froth depth was defined as the distance between the pulp-froth interface and the bottom 

of the scraper at dynamic operating conditions. This means that it is the height of the 

remaining froth once a scrape has been performed. Initially all tests on the bad ore were 

performed using water top-up. The froth depths of the various cells are listed in Table 5 

below: 

Table 5: Froth depth for initial tests performed with water top-up 

Cell Froth depth/[cm] 

Rougher 2 

Scavenger 2 

HG cleaner 1 

LG cleaner 1 

 

However, as a result of certain findings, tests on both the good and bad ores were 

subsequently performed using synthetic top-up. The scrapers used in the cleaner cells were 

made smaller to facilitate an increase of the froth depth of the cleaner cells. The froth depths 

of the various cells are listed in Table 6. 

Table 6: Froth depths for subsequent tests performed with synthetic top-up 

Cell Froth depth/[cm] 

Rougher 2 

Scavenger 2 

HG cleaner 2 

LG cleaner 2 

 

 4.4 CIRCUIT DESCRIPTION AND PROCEDURE 

The basic structure of the plant circuit in Figure 14 was simplified and adapted for the current 

laboratory tests.  The circuit used in this work is shown in Figure 35 below, consisting of four 

different stages namely; rougher, high-grade (HG) cleaner, scavenger and low-grade (LG) 

cleaner. 
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FEED FINAL 
TAILINGS

ROUGHER SCAVENGER

HG CLEANER LG CLEANER

HIGH GRADE 
CONCENTRATE

LOW GRADE 
CONCENTRATE

 

Figure 35: Circuit used for this work 

The above four stage circuit was used to optimise both the recovery and grade of PGMs from 

UG-2 ore. This was the circuit utilised in the initial investigation stages however certain 

structural adjustments were made at a later stage. These adjustments were done with the 

intention to improve either the PGM recovery or concentrate grade. Examples of these 

include the insertion of a regrinding stage for the rougher tails and the application of 

thickeners in both the cleaner feed streams.  

4.4.1 CIRCUIT DESCRIPTION 

A rougher cell was used to split the PGMs into two different grades of material. The 

concentrate from this stage contained most of the HG material (including NFG) whilst the 

tailings contained the LG material (including chromite and composite particles). The rougher 

tailing was transferred to the scavenging stage whilst the concentrate reported to the HG 

cleaner. 

The function of the scavenger cell was to extract as much of the remaining ‘difficult’ PGMs 

including the slow floating particles and those associated with composite particles.  Frother 

was used in an attempt to facilitate the recovery of these ‘difficult’ minerals.  
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The LG and HG cleaning stages were used to upgrade the material. This was done either by 

the use of depressant and/or thickeners. The use of a thickener arose from interpretation of 

the research data and it will not be discussed at this stage.  

The use of this circuit enables one to optimise both the PGM recovery and concentrate grade 

based on the quality of material it contains viz. low and high grades. This renders the ability 

to change process conditions on any of the units individually, and monitor the effects those 

changes have, not only on the unit itself, but on the circuit as a whole. This posed some 

difficulties due to the primary and secondary effects of reagents which were described earlier. 

These are known as downstream effects. The frother additions had significant downstream 

effects.  

4.4.2 CIRCUIT PROCEDURE 

This section details the procedure followed for the flotation circuit shown in Figure 35. The 

rougher test was performed initially followed by the scavenger test. The 8 L cell was used to 

perform both the rougher and scavenger flotation tests. The concentrate from the rougher cell 

was collected in a tray, and the test was continued as a scavenger stage, collecting the 

scavenger concentrate in the LG cleaner cell.  The rougher concentrate was then washed into 

the HG cleaner cell (1L). After collection of the HG concentrate from this cell, the HG 

tailings were then filtered to remove all water. This was performed using the pressure drum 

filter. This wet filter cake was then added to the LG cleaner cell. Hence the need to use a 2.5L 

cell for the LG cleaner stage. 
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5 EXPERIMENTAL WORK 

This chapter details the experimental work undertaken using three types of UG-2 ore. They 

were labelled according to their flotation characteristics. The good ore has favourable 

flotation characteristics whilst the opposite is true in the case of the bad ore. A 3
rd

 type of ore 

was used in preliminary test work. This ore possessed similar characteristics to the bad ore. 

 5.1 PRELIMINARY TEST WORK 

It was important to develop methods of controlling the dry mass of the various concentrates, 

prior to sending sample for analysis. A UG-2 sample of unknown origin was used for these 

tests. The work was primarily focused on understanding the basic mechanisms involved in 

the flotation process. 

5.1.1 EXPERIMENTAL DETAILS: PRELIMINARY WORK 

A feed grind of 80%-75µm was targeted. The rod distribution utilised is shown in Table 7: 

Table 7: Rod distribution for preliminary ore 

Rod Diameter/ 

[mm] 

No. of 

Rods 

20 12 

15 12 

10 12 

5 12 

 

The rod distribution selected was based on a fractional media loading within the mill. The 

detailed calculation is shown in Appendix A, Page 97. 

Separate 2 kg samples were milled for 10, 20 and 30 minutes. Wet screening, followed by dry 

screening was performed. A size distribution analysis was undertaken. This data allowed one 

to determine the percentage of material passing 75 microns. The results of both these types of 

screening were combined for each milling time and the total % passing 75 microns is shown 

in Figure 36 for the UG-2 ore used for preliminary tests. 
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Figure 36: Milling calibration curve for preliminary ore 

The linear regression shown in Figure 36 had an R-squared value of 0,999, and hence this 

was more than adequate for calculating the time for achieving the target grind. Similar tests 

were done on the other ore types. 

5.1.2 INITIAL BATCH FLOTATION TESTS 

Single stage batch flotation tests were done using the standard Denver 5L cell, with the larger 

impeller. The experimental details of this work are shown in Table 8: 

Table 8: Experimental conditions for preliminary sample 

SIBX g/t 150 

DOW200 g/t 20 

KU5 g/t 30 

AIR FLOWRATE m.min
-1

 0.51 

IMPELLER SPEED Rpm 1200 

 

A rougher flotation test was performed and a bulk sample was collected after 20 minutes. The 

word ‘bulk’ means that a single concentrate was collected at the end of the allotted test time.  

The results for this test are summarized in Table 9. 

Table 9: Bulk test results for preliminary sample 

Test Type Solids Recovery / [%] 

Original 8.80 

Duplicate 8.89 

 

The recoveries above shown as a percentage of the amount present in the feed. This test was 

performed in duplicate.  The fact that the recoveries were similar showed good repeatability. 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35

C
u

m
. %

 p
as

si
n

g 
7

5
µ

m
 

Time/ [min] 



47 

 

It was noted during the test that the froth stability was reduced over time. This was due to the 

reduction in the amount of floatable solids. However the constant air flow could be 

responsible for the relatively low froth stability. The froth literally ‘collapsed’ after ten 

minutes and this meant that the recovery of solids was drastically reduced. It was decided that 

a steady increase in air flow could be used to improve the solids recovery in the scavenging 

stage. 

In the first few minutes of the test, the fast floating minerals associated with PGMs and talc 

were recovered. This caused a stabilizing effect in the froth. In the latter stages of the test, 

after the recovery of the aforementioned particles, the remaining particles are difficult to 

recover and it was assumed that some of these particles were composite particles.  

It was decided to investigate the effect of steadily increasing the air flow rate to maintain 

constant froth stability. A rate test was conducted over a period of 20 minutes. The 

experimental conditions were similar to Table 8. The air flow however, was varied from 0.41 

m.min
-1

 (at time 0 min) to 1.18 m.min
-1

 (at time 20 min) (See Table 31, Appendix B, and 

Page 103). The results of this duplicate test are shown in Figure 37: 

 

Figure 37: Cumulative solids recovery for preliminary sample 

Tests 1 and 2 in the above figure refer to the original and duplicate tests respectively. The 

cumulative solids recovery at the end of the test 1 was approx. 13%. This is higher than the 

recovery of approx. 8% achieved in earlier tests shown in Table 9. This increase is due to the 

steady incremental increase of the air flow at each time.  

One way to improve the recovery of particles is to increase the air flow. Larger air flows are 

necessary to maintain constant froth stability. It is known that low froth stabilities result in 

brittle froths that reduce solid recoveries. The increase of air flow produces greater amount of 

air bubbles in the pulp. These air bubbles act like ‘vehicles’ to transport solids. This means 

that there are more transport ‘vehicles’ to carry hydrophobic particles to the surface of the 

froth. Hence one obtains a greater recovery of solids. The mere presence of a larger amount 

of solids in the froth stabilizes the froth. The data for these tests are available in Appendix B, 

Table 63 and Table 64, and Page 120. 
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It was decided to employ this technique for all further tests involving both the good and bad 

ores, using targets for the various stages of flotation. 

 5.2 TESTS ON BAD ORE  

The work has been separated into two parts. In the first part of the investigation, work was 

done using the circuit shown in Figure 35. The second part involved the use of a second stage 

of grinding, to improve liberation. 

Table 10: Rod distribution for bad ore 

Rod Diameter / [mm] No. of rods 

20 16 

15 16 

10 16 

In an effort to improve the grinding properties, the smaller 5 mm rods were not used for all 

subsequent milling of both the good and bad ores. The details of the calculations for this new 

rod distribution are shown in Appendix A, Page 98. 

5.2.1 PART ONE 

 

Figure 38: Bad ore milling curve 

The linear regression was used to calculate the milling time (41 min) for the tests on bad ore. 

5.2.2 ROUGHER FLOAT 

The following experimental conditions were used for the rougher float: 

Table 11: Experimental conditions for the bad ore rougher float 

SIBX g/t 150 

DOW200 g/t 20 

KU5 g/t 30 

AIR FLOWRATE m.min
-1

 0.73 

IMPELLER SPEED Rpm 1200 
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The first task was to separate the material into two different grades viz. high and low grade. 

The benefits of doing this have been discussed earlier. This separation was performed in the 

rougher cell. The PGMs associated with high grade material are fast floating minerals that are 

rapidly recovered in the concentrate. These are generally recovered in the initial period of the 

test. PGMs associated with low grade material are slow floating minerals which are difficult 

to recover. Hence they are, if at all, recovered later in the flotation test. 

The high grade material is largely associated with talc. This is because talc is also a fast 

floating gangue mineral. Hydrophobic particles cause bubble coalescence in the froth phase. 

This results in the formation of larger bubbles and produces a slower moving, stickier froth.  

Slow moving froths pose difficulty industrially since the froth slowly migrates to the cell 

launders. This causes a reduction in the rate of solids recovery. In an effort to solve this issue, 

KU5 depressant was added until the froth behaviour was deemed suitable for flotation. The 

role of depressant was to reduce the talc recovery in the concentrate. It also had the effect of 

reducing the contact angle on the talc, thereby preventing excessive coalescence of the 

bubbles. The structures of the froth at various depressant dosages are shown in the images 

below: 

   

Figure 39: Bad ore rougher 

froth structure at 10 g/t KU5 

Figure 40: Bad ore rougher 

froth structure at 20 g/t KU5 

 

Figure 41: Bad ore rougher 

froth structure at 30 g/t KU5 

 

From Figure 39, Figure 40 and Figure 41 it can be seen that as the depressant dosage 

increased, the relative bubble sizes at the froth surface decreased. The depressant selectively 

attaches to the surface of the talc and hence inhibits the natural hydrophobicity of these 

particles. The amount of talc mineral present in the froth was reduced and hence bubble 

coalescence was reduced. It was observed that as the depressant dosage was increased, the 

froth began tipping off the lip more readily.  

It was decided that the proportion of clusters of small bubbles at the start of the test would be 

useful indicator that there was sufficient depressant. It is easy to switch the air off and add 

more depressant.  

30 g/t represented the froth structure most favourable for flotation based on the froth 

behaviour. It was decided not to try any further depressant additions in the rougher cell since 

the primary purpose of this cell, in addition to the separation of the high and low grade 

material, is to recover as much of the PGMs as possible. Further depressant addition was not 

feasible due to the risk of losing PGMs. The froth structure becomes more unstable as the 

presence of hydrophobic particles is reduced.  

Small 

bubble 

cluster 
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The next step involved the separation of the high and low grade material. Initially, the froth 

was dark in colour with big bubbles as shown in Figure 41. The dark colour is the result of 

the presence of hydrophobic solids, particularly talc. This is shown in Figure 42 and Figure 

43, which show the froth colour with and without solids present. The mineralised froth here is 

much more brittle and much lighter in colour compared to the previous Figure 41. This shows 

the importance of particles in stabilizing the froth structure. 

As the froth is skimmed off, there is a removal of those solids present in the froth. These are 

subsequently replaced in the froth by more solids which are captured by rising bubbles. 

However, there is a limited amount of recoverable hydrophobic particles in the pulp. The 

result of this is that there is a decrease in the rate of solids recovery as the test is performed. 

This net effect of this is that the froth becomes steadily lighter in colour as time passes. 

Figure 42 was taken after the first colour change was seen in the froth viz. after 3 minutes: 

  

Figure 42: Rougher froth structure after 3 

minutes 

Figure 43: Froth structure with no solids 

It is apparent from Figure 42 that this froth has a different structure compared to that of 

Figure 41. Firstly the presence of smaller bubbles is indicative of less bubble coalescence. 

The froth is a lighter shade in colour indicating the presence of less solids. 

It was assumed that, after 3 minutes, most of the talc and fast floating hydrophobic minerals 

were recovered in the concentrate. These fast floating PGM minerals constituted the high 

grade material. This represented a solids recovery of about 4 % of the feed material.  

The next phase of the investigation involved optimising the scavenger and HG cleaner cells. 

Due to the structure of the circuit, these cells are independent of each other and hence 

independent adjustments were possible. 
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5.2.3 SCAVENGER 

Table 12: Experimental conditions for scavenger cell 

SIBX g/t 0 

DOW200 g/t 0 – 16 

KU5 g/t 0 

AIR FLOWRATE m.min
-1

 0.73 – 1.24 

IMPELLER SPEED Rpm 1200 

 

The purpose of the scavenger cell was to recover as much of the remaining difficult material 

as possible. This includes composite particles and other slower floating species. Frother was 

used to improve the recovery of solids. The progressive increase in air flow was based on 

visual observations of the froth, and hence, as the frother concentration increased, smaller air 

flows were required to sustain a desirable froth flow (See Table 32, in Appendix B, page 

103).  Figure 44 shows the effect of frother addition (expressed as g/t of original feed) on the 

solids recovery in the scavenger stage (same cell): 

 

Figure 44: Cumulative solids recovery at various frother dosages in scavenger cell- bad ore 

Figure 44 shows that as the frother dosage increased from 0 to 16 g/t, the cumulative 

recovery of solids increased. The frother molecules reduce the air/water surface tension hence 

air bubbles are less likely to rupture or coalesce. This results in the presence of a larger 

proportion of smaller bubbles in the froth. These bubbles have a superior surface area per unit 

volume compared to larger bubbles. This means that a group of smaller bubbles with the 

same volume as a single large bubble will carry significantly more solids to the froth 

overflow. Hence the recovery of solids increased. 

At 16 g/t, the froth comprises of smaller bubbles hence has a greater stability compared to 0 

g/t. However, the brittle froth obtained at 0 g/t had benefits, namely improved drainage of 

entrained particles. Thus higher solids recoveries were obtained when the frother dosage was 

increased. 
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Another effect of increasing the frother dosage was the reduction in flotation time. At 0 g/t, it 

takes approximately 30 minutes to recover approximately 2.5% of the solids initially present 

in the feed. It takes 15 minutes to achieve the same solids recovery at 6 g/t. This ‘time’ 

translates into residence time used in the design of industrial cells. Thus an increase of frother 

improves the production rate of solids. However, it should be noted that due to the 

entrainment contribution to the overall solids recovery, this does not necessarily imply an 

improved grade in the LG cleaner concentrate.  

The effect of froth height on solids recovery in the scavenger stage was evaluated at 0g/t 

frother addition. The laboratory procedure was based on a 2 cm froth depth, but in view of 

the negative effects of adding additional frother, the froth depth was reduced to 1 cm, as a 

way of increasing solids recovery. This is denoted on the key as ‘0 g/t at increased level’ with 

reference to the increased pulp level. This increase resulted in a reduction of the froth height 

by 1 cm. At 0 g/t it can be seen that the reduction in froth height resulted in a 1.5% increase 

in solids recovery after 20 minutes. As the froth height is reduced, there is a reduction in 

drainage of hydrophilic particles. This implies that there is an increase in the recovery of 

solids via entrainment hence an overall increase in the solids recovery.  

It can be seen from the shape of the graph with the lower froth height, that a close to linear 

relationship exists between solids recovery and time. This type of relationship implies that the 

non-selective process of entrainment is dominant over true flotation and as such, this idea 

was scrapped. 

Samples were sent for analysis of total PGM’s. It was decided that 16 g/t produced the 

targeted solids recovery of 4 % in 23 minutes. This 4% mass accounted for approximately 

15% of the PGMs originally present in the ore. Industrially, no more than 40 g/t of frother is 

added over both the rougher and scavenger stages. Having already added 20 g/t in the 

rougher, this brings the overall frother addition to 36 g/t - still within industrial standards.  

5.2.4 HG CLEANER 

The operating volume of the HG cleaner cell was approximately one litre. This is the pulp 

level necessary to ensure successful flotation. The feed, or rougher concentrate, occupied half 

of this volume. The remaining volume was provided using fresh tap water. 

Table 13: Experimental conditions for bad ore HG cleaner 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 0 – 10 

AIR FLOWRATE m.min
-1

 0.41 – 1.65 

IMPELLER SPEED Rpm 1000 

 

The HG cleaner was used to improve the grade of the rougher concentrate. This was achieved 

by reducing the gangue content of the concentrate, primarily consisting of talc. KU5 

depressant was used to reduce the talc content by suppressing its natural hydrophobicity. The 

effects of depressant addition on the PGM recovery and the concentrate grade were 
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evaluated. The data for air flux velocity is found in Table 33, Appendix B, and Page 103. The 

results are presented in Figure 45 and Figure 46. Recoveries are based on rougher feed. 

 

 

Figure 45: PGM recovery vs. solids recovery at various KU5 dosages for bad ore HG cleaner 

 

Figure 46: Cumulative solids recovery at various KU5 dosages for bad ore - HG cleaner 

From Figure 46, as the depressant dosage increased from 0 to 10 g/t, the cumulative recovery 

of solids gradually decreased. The depressant reduced the amount of talc that is recovered in 

the concentrate. Talc stabilizes the froth; hence it increases the entrainment of other gangue 

minerals including the talc itself. 

The ore is very sensitive to depressant addition. This can be observed when comparing the 5 

and 3 g/t graphs. For a mere 2 g/t depressant increase, the solids recovery decreased by 

approximately 0.5 % after 30 minutes. The solids feed to the HG cleaner is 4 % of the 

original mass. Thus a solids recovery of 0.5 % represents 12.5 % of the initial amount present 

in the cell. 
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Generally, in ores with poor flotation properties, depression of the talc comes at a cost to the 

overall process. This ‘cost’ refers to the effect on the overall PGM recovery. It can be 

explained using Figure 45. This is a plot of the cumulative PGM vs. solids recovery at 

depressant dosages ranging from 0 to 10 g/t.  

Ideally, one would like to remove all the talc from the ore, whilst not losing any PGMs.  

Hence, one would prefer for any curve to lie in the upper left hand region of the graph in 

Figure 45. This is where the PGM recovery is at its highest whilst the overall solids recovery 

at its lowest. 

However this graph showed that as the mass of solids was reduced, there was an inherent loss 

of PGMs. The increase in depressant dosage was responsible for a reduction in cumulative 

solids recovery. This implied the depressant had an adverse effect on the PGM recovery. 

This was due to the froth stabilizing nature of talc. Due to its natural hydrophobicity, talc 

particles cause bubbles to coalesce. When these bubbles coalesce, they form a sticky and 

stable froth. As talc particles are prevented from being recovered, the froth becomes more 

brittle. This causes reduction froth stability. Due to this reduced froth stability, there is a loss 

of entrained particles.  

Ores that present difficulty floating usually have mineral liberation issues. This is due to the 

presence of a large amount of composite particles. These particles consist of talc, PGMs and 

other gangue minerals. When the talc on the surface of a composite is depressed, the chances 

of this particle being captured via a bubble are reduced. This means that this particle, along 

with the PGMs it possesses, might not be recovered hence the overall PGM recovery will 

decrease. 

The largest cumulative PGM recovery, of roughly 70% occurs at 0 g/t. It is observed that the 

solids mass is reduced significantly from when 5 g/t depressant is used, whilst there are 

insignificant PGM losses. However, at 10 g/t it is observed that the overall solids mass has 

been reduced; the PGM content has decreased by roughly 15% compared to the 5 g/t curve. 

This is the unavoidable side effect of over-depressing the ore. 

Thus it was decided that to target a cumulative PGM recovery of 60% in the HG cleaner. 

From Figure 45, it can be seen that a dosage of 5 g/t corresponds to the lowest solid mass 

recovery whilst retaining at least 60% of the PGMs. This was the KU5 dosage selected for all 

further test work involving this cell. 

 5.3 FROTHER TEST WORK 

Work performed on the HG cleaner showed the effect of using a tap water top-up on the froth 

structure. Due to the relatively low amount of feed to the cell, the contents were made up to 

the operating level using fresh water. Industrially, apart from a minor flow of launder water, 

no significant dilution of the frother takes place. There was dilution of the frother in these 

laboratory cleaner tests. This dilution affects the froth structure resulting in lowered stability. 

Thus it accounts for differences in both the PGM recoveries and concentrate grades compared 

to larger scale operations. This dilution affects the overall froth structure and thus affects both 
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the recovery of PGMs and the concentrate grade. The concentration of frother in the cell was 

lowered, but there was no way of measuring the new concentration of frother within the cell. 

In order to investigate this concept of dilution, it was necessary to quantify the frother 

concentration. It is assumed that, of the three reagents that are present within the cell, only 

frother itself is concentrated in the froth phase. The other two, namely depressant and 

collector are assumed to adsorb completely onto the solids surfaces and do not affect the 

frother concentration. 

This chapter details attempts which were made to quantify the frother concentration in liquid 

solutions. Two methods were proposed. The first method relates the capillary action to the 

surface tension of liquids. The second method relates the froth height with no solids present. 

5.3.1 METHOD ONE 

The experimental setup for this method was shown in paragraph 3.3 (Figure 31). This 

involved the use of a capillary tube (1mm ID – 100 mm length) together with a glass vial. A 

brief summary of the experimental procedure follows: 

Standard solutions of DOW200 in distilled water were prepared. The solutions ranged from 0 

to 1.2 % by mass. It was expected that all operating frother concentrations would lie in this 

range. 10 ml aliquots of each solution were pipetted into the glass vial. The weight of the 

capillary tube was recorded before it was inserted into the solution. The weight of all the 

contents within the vial was subsequently recorded. The liquid capillary action was observed. 

Initially, it was decided to relate the capillary liquid height to the surface tension. The 

properties are related via Equation 2 shown in the theory section. The surface tension is 

directly related to the frother concentration. A veneer calliper was used for accurate 

measurements of capillary height. The height was recorded three times for each solution and 

the arithmetic mean at each concentration and is shown in Figure 47 below: 

 

Figure 47: Liquid heights at various frother concentrations 
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The largest height, 48.5 mm occurred at the lowest frother concentration viz. pure water. The 

lowest height, 41.5 mm, occurred at the highest frother concentration viz. 1 %. Frother 

reduces the surface tension of the liquid. Since surface tension is directly proportional to 

liquid height, according to Equation 2, the liquid height should decrease as the surface 

tension is reduced.  

The graph showed no general trend in liquid height for concentrations ranging between 0.3 – 

0.8 %. The significant scatter was perplexing. Possible reasons for this could involve the 

method of measurement. There was a degree of uncertainty since the calliper could not 

measure changes less than a millimetre. Differences in height between concentrations were 

seen to be millimetres. Due to this inconsistency, an adjustment to the apparatus was 

required. 

It was decided that mass measurement should be used to determine the volume and hence the 

level of solution in a vial, prior to insertion of the capillary tube. Once the liquid has reached 

a level in the tube, a finger was placed over the top end of the tube, and the tube was 

withdrawn. Surface liquid was allowed to drip off. The change in mass was used to measure 

the volume of liquid inside the capillary.  

The data used to generate Figure 47 is available in Table 42, Appendix B, and Page 108. 

 

Figure 48: Liquid masses at various frother concentrations 

Figure 48 showed a definite trend in the relationship between the liquid mass and the frother 

concentration. An increase in frother concentration resulted in a decrease in liquid mass. This 

type of result agrees with theory. This is due to the frother, which reduces surface tension, 

thereby reducing the amount of liquid within the capillary tube.  

However certain frother concentrations, for example 0.1 and 0.2 per cent, produced 

indistinguishable liquid masses. This indicated that the method was not sensitive enough to 

detect slight changes in mass, which are particularly prevalent in the dilute concentration 

regime. The data from Figure 48 is tabulated in Table 43, Appendix B, and Page 109. 
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It was decided to investigate this method using a more dilute range of frother solutions. This 

is shown in Figure 49 below. 

 

Figure 49: Liquid masses at various dilute frother concentrations 

Figure 49 also shows there were several frother concentrations which produced near identical 

masses, for example - concentrations 0.04 & 0.05 %. This verifies that the method is not 

reliable for measuring small changes in liquid masses.  

The mass of liquid at the initial concentration of 0 % is 0.0594 g. According to Figure 48, the 

mass at the corresponding initial concentration is 0.0580 g. This shows an inconsistency in 

the ability to replicate results using this method. A possible reason for this uncertainty in 

mass is the wetting of the outside of the tube. The liquid mass on the outside of the capillary 

affects the calibration and cannot be quantified. The data in Figure 49 is tabulated in Table 

43, Appendix B, and Page 110. 

Thus this method was not suitable for either dilute or concentrated frother solutions. A 

different approach was deemed necessary to solve the frother concentration conundrum.  

5.3.2 METHOD TWO 

The flotation experiments were conducted, using increments in air flow to maintain a suitable 

froth depth. During the concentrate removal process via scraping, the frother concentration in 

the cell gradually reduces. In the absence of solids, there is also a relationship between the 

froth height, frother concentration and the aeration rate in a vertical tube. As the aeration rate 

or frother concentration increase, the froth height increases. It was decided to use this simple 

measure of the effect of frother concentration on froth height to measure frother 

concentration in a simple, practical way. One consideration was the limited volume of water 

that could be recovered from concentrate samples by filtration.  

A constant air flow rate was maintained. It was passed through a sintered disc at the bottom 

end of a glass tube, to create a cloud of bubbles. The concentration of frother had an effect on 

bubble size, as expected. The pressure in the air line leading to the sintered disc was 

measured, to ensure that no progressive blockage was occurring. The pressure was also used 
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to correct the reading on the rotameter. A fixed amount of liquid was placed inside. 

Thereafter the froth height was recorded after a minute.  

10 ml aliquots of frother solutions were pipetted, ranging from 0 to 0.1 g/L, into the tube 

apparatus. This apparatus was nicknamed the ‘bubbler’ due to the bubbling nature of the froth 

at higher air flows.  

The air rate was then turned up to 2.5 L/min, which remained constant for all subsequent 

concentrations. This air flow was selected due to the ability to distinguish the froth heights at 

various frother concentrations. The solution was then pipetted and timer started. The froth 

height was subsequently recorded after a minute. This height was determined with the aid of 

a tape measure attached the side of the bubbler. The air was turned on prior to pipetting the 

solution, to prevent seepage through the sintered disc thereby affecting the reliability of 

results. Figure 50 shows what was observed once the froth had formed (after a minute). 

 

Figure 50: Froth generated within bubbler 

The results for this calibration are shown in Figure 51: 
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Figure 51: bubbler calibration at 2.5 L/min with 10 ml samples 

Figure 51 shows the relationship between frother concentration and froth height, at a fixed air 

flow rate. This response is similar to what was observed in flotation tests. The graph shows 

that there is a tailing off in the rate of increase of the height when the concentration exceeded 

0.007% (or 0.07 g/L). This means that there is a maximum froth height that can be achieved 

at any single air flow rate, irrespective of the frother concentration. This height is achieved, 

for this particular setup, at frother concentrations greater than 0.1 g/L. The data used to 

generate Figure 49 is available in Table 45, Appendix B, and Page 111. 

It was decided to further investigate this device by including concentration data at an even 

more dilute range. This range refers to concentrations less than 0.02 g/L. It was found that the 

sensitivity of the bubbler, at the same conditions, was poor in this dilute range. The froth 

heights were indistinguishable at the various concentrations.  

In an attempt to improve the sensitivity of the device, it was then decided to use 20 ml 

aliquots of frother solutions rather than the initial 10 ml aliquots. The aeration rate was 

increased to 3 L/min in an effort to increase the differences in the froth heights at various 

concentrations. The results are shown in the Figure 52: 
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Figure 52: Bubbler calibration at 3 L/min with 20 ml samples 

Figure 52 shows a linear trend with regards to the relationship between the froth height and 

the frother concentration. The froth height at 0.01 g/L is 12 cm. According to Figure 51, it 

was approximately 4 cm. Thus, the froth height was magnified at these new conditions. The 

data used to generate Figure 52 is available in Table 46, Appendix B, and Page 111. 

The above calibration enabled the author to quantify the frother concentration of an unknown 

solution based on the froth height. This method was subsequently applied to all streams in the 

circuit shown in Figure 35. The experimental procedure was identical to the one used to 

generate Figure 52 with the exception that all samples were filtered before using the bubbler. 

(The solids content would obviously affect froth height.) Figure 53 shows typical frother 

concentrations in the various stages, given the additions of frother indicated. The mass 

balance on the frother was not calculated at this stage, as the amounts of water added had not 

been measured. 

This updated circuit together with the concentrations of all the streams are indicated in Figure 

53: 
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0.0074 g/L

0.0051 g/L0.0059 g/L

0.0051 g/L

0.0052 g/L

0.0076 g/L 0.0098 g/L

0.0097 g/L

 

Figure 53: Updated bad ore circuit including frother concentrations 

The next phase of experiments involved preparing standard solutions based on the figures 

shown above. These solutions, prepared using water and DOW 200, were used to maintain 

operating levels in each cell, rather than adding tap water. The rougher cell level was 

maintained with fresh water. The results from this cell remained unchanged using this new 

technique. The HG cleaner results differed with the introduction of this synthetic top-up 

water. The results are detailed in the next section. 

5.3.3 NEW HG CLEANER DATA  

The concentration of frother in the rougher concentrate, shown in Figure 53, was 0.0074 g/L. 

As mentioned previously, the total volume accounted for by the rougher concentrate was 

approximately 45% of the HG cleaner operating cell volume. The remainder of this volume 

was made up using a synthetic solution with the same concentration. This solution was also 

used to maintain the operating level during scraping. The first noticeable difference, 

compared to the previous HG cleaner scheme, was the froth structure.  
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Figure 54: Bad ore HG cleaner froth structure 

with water top-up 

Figure 55: Bad ore HG cleaner froth structure 

with synthetic top-up 

The above two pictures were taken at the commencement of each test. They present 

contrasting froth structures. Figure 54, where water was used to maintain the pulp level, 

indicates a brittle froth with bigger bubbles compared to Figure 55. From these images, one 

would expect the recovery of PGMs to be higher in Figure 55 compared to Figure 54. This 

was largely due to the difference in froth stability. However one would also expect the 

entrainment of gangue particles to be higher in Figure 55 compared to Figure 54. Selected 

results for the HG cleaner are shown in the Table 14: 

Table 14: Comparison of HG cleaner results for bad ore 

Top-up solution Scrape Time / [min] PGM recovery  / [%] Solids recovery / [% ] 

Water 7 62.8 1 

Synthetic soln. 7 62.7 3.13 

 

The results in Table 14 were based on previous depressant dosage of 5 g/t in the HG cleaner. 

The table shows the difference in flotation results obtained from a bulk test conducted over a 

period of 7 minutes. These tests were conducted using different top-up solutions hence the 

contrasting froth structures. Thus, dissimilar solids recoveries were obtained, but the recovery 

of PGM’s was essentially the same. 

The mass recovery was increased substantially when the synthetic top-up solution was used, 

probably due to entrainment. This was seen to have important practical implications. 

Due to industrial smelting constraints, it is not feasible to process a solids recovery of 3 % 

from the HG cleaner. This is since it accounts for a mere 60 odd per cent PGM recovery. It 
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was decided to reduce the solids recovery target to 1% in the HG cleaner. This is in keeping 

with industrial solids recovery standards. Below are both the results and experimental 

conditions of bulk tests in which a 1 % solids recovery was targeted: 

Table 15: Experimental conditions for HG cleaner at 0.0074 g/L 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 5 

AIR FLOWRATE m.min
-1

 0.41 – 0.66 

IMPELLER SPEED Rpm 1000 

 

 

Figure 56: Solids recovery vs. PGM recovery in HG cleaner 

Figure 56 shows both the PGM and solids recovery for several bulk tests conducted in the 

HG cleaner cell using synthetic make-up water. The PGM recoveries varied between 35-50 % 

depending on the solids recovery. It can thus be deduced that there exists a relationship 

between the solids recovery and PGM recovery.  

In order to achieve the target mass pull in the HG cleaner, the air rate was reduced. Due to the 

synthetic make-up water, it is predicted that there will be more entrainment. A more stable 

froth reduces the natural drainage of entrained particles, implying a greater recovery of 

gangue minerals in the concentrate.  

A greater amount of gangue would accompany the PGMs at each scrape interval compared to 

the previous setup. In order to achieve the same PGM recovery as the previous setup, one 

would have scrape for 7 minutes as shown in Table 14. This however would result in a solids 

recovery of over 3 %, due to additional gangue entrainment, which is not desirable. 

The tests used to generate the results in Figure 56 were conducted over a period of 1 minute 

each. This meant that the resulting target recovery of 1 % solids was achieved in less time 

compared to the previous setup which took all of 7 minutes. 
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The air rate required was lower for synthetic top-up compared to water top-up as can be seen 

comparing Table 13 and Table 15. The concentration of frother is lower in a brittle froth 

compared to a stable froth. There is a loss of water that accompanies the solids in the 

concentrate. This water contains frother molecules. This means that these molecules are 

constantly being depleted in the cell. Synthetic top-up replenishes some of this loss of frother 

molecules whilst water top-up does not.  

The air flux varied during the test however the results shown in Figure 56 refer to the 

cumulative recovery in 1 minute. The full set of data points showing the air flux velocity 

range can be found in Appendix B, Table 34, and Page 104.  

5.3.4 EXPERIMENTAL OBSERVATIONS FROM HG CLEANER 

The decision to design scrapers to skim less of the froth in the synthetic solution lies in the 

entrainment characteristics. A large amount of gangue minerals are present at the froth-pulp 

interface. In order to reduce the gangue entrainment, the scrapers were adjusted resulting in a 

froth depth of 2 cm. 

It was observed that the use of synthetic frother method caused changes in the froth structure 

thus affecting the overall recovery of solids and PGMs. The flotation time, to acquire the 

same PGM recovery, differs as seen in the HG cleaner results. This meant that new flotation 

test work would be necessary to optimise the depressant dosage in the HG cleaner. Due to 

sample constraints, this was not possible. 

It was ultimately decided that a 1% solids recovery be targeted in the HG cleaner. Even 

though this accounted for a relatively low PGM recovery, compared to the previous setup, it 

was assumed that the LG cleaner would be designed to recover all the remaining PGMs. 

Another development in the experimental technique was the use of a scale that was placed 

underneath the concentrate trays during the flotation tests. This was used to target a 

consistent ‘wet’ mass in all concentrate streams. The word ‘wet’ refers to the mass of both 

the solids and water in the concentrate. The experimental setup including the scale and 

concentrate collection tray is shown in Figure 57: 
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Figure 57: Experimental improvements made to HG cleaner setup 

Figure 58 shows the new ‘wet’ mass targets for each of the concentrate streams in the HG 

cleaner and rougher cells: 

530 g

100 g

2250 g

 

Figure 58: Wet mass targets for the rougher, scavenger and HG cleaner cells 
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These wet mass targets would only apply if the water-to-solids ratio (w/s) in the concentrates 

remained relatively constant.  The scavenger concentrate accounted for a solids recovery of 

about 5.5-6%. According to the scale, this resulted in a wet mass of 2250 g and a w/s of 14:1. 

The rougher concentrate accounted for a solids recovery of about 4 % in a wet mass of 530 g 

and thus a w/s ratio of 4.3:1. The higher ratio of the rougher concentrate is due to the quality 

of concentrate. 

The difference in these ratios was attributed to the water recovery in each cell. The rougher 

concentrate consists of fast floating material that is easily recovered. The scavenger cell 

consists of low grade material that is difficult to recover. Thus the scavenger cell has a higher 

degree of entrainment compared to the rougher cell. The water content is thus higher 

resulting in the difference in ratios. 

The scavenger cell experimental conditions, using a synthetic frother top-up of 0.0059 g/L, 

are listed in Table 16: 

Table 16: Experimental conditions for scavenger cell at 0.0059 g/L - bad ore 

SIBX g/t 0 

DOW200 g/t 16 

KU5 g/t 0 

AIR FLOWRATE m.min
-1

 0.65 - 1.20 

IMPELLER SPEED Rpm 1200 

 

The list of air flux velocities required to maintain constant froth stability is found in Table 35, 

Appendix B, and Page 104. 

 

Figure 59: Solids recovery for scavenger tests at 0.0059 g/L- bad ore 

Figure 59 shows the solids recovery for five tests performed using the experimental 

conditions listed in Table 16.  The tests were all performed targeting a wet mass of 2250 g. 

This target was achieved after 20 minutes. Due to financial constraints, it was not possible to 

perform PGM analysis to determine the variability of PGM recovery. 
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It was noted that, according to results from the HG cleaner shown in Table 14, the PGM 

recovery using both the water and synthetic top-up was similar. This was true provided that 

the float time was the same. However, the use of a synthetic top-up resulted in a larger solids 

recovery due to entrainment. The objective of the scavenger cell is to recover as much of the 

PGMs as possible irrespective of the overall solids recovery.  

It was assumed the same PGM recovery that was obtained in the previous setup, approx. 

15%, was recovered using synthetic frother top-up. This recovery was obtained in 

approximately 5.5-6% solids recovery. Statistical analysis was performed on the sample set 

of data and summarized in Table 17 below.  

Table 17: Statistical analysis on bad ore scavenger cell data 

 Solids recovery  

Mean 5.44 

Standard Error 0.13 

Median 5.50 

Standard Deviation 0.29 

Sample Variance 0.09 

Kurtosis 3.01 

Skewness -1.68 

Range 0.73 

Minimum 4.94 

Maximum 5.67 

Sum 27.19 

Count 5.00 

Confidence Level (95.0%) 0.37 

 

The excess recovery of gangue minerals in the scavenger concentrate was processed in the 

LG cleaner cell, which was the next phase of investigation. 

5.3.5 LG CLEANER 

This chapter details work performed with the LG cleaner cell. The feed to the LG cleaner 

consists of two different streams, shown in Figure 35. i.e. the tailings from the HG cleaner 

and the scavenger concentrate.   

The quality of LG cleaner feed material is poor compared to that of the HG cleaner. The LG 

cleaner feed consists of composite particles and other slow floating minerals. The scavenger 

concentrate contains a large amount of chromite, recovered via entrainment, which causes 

downstream problems in the smelting process. 

Prior to mixing the two streams, the concentration of frother in each was measured using the 

bubbler. The HG cleaner tailings had a frother concentration of 0.0059 g/L compared to the 

scavenger concentrate, whose frother concentration was 0.0097 g/L. In light of this 

significant difference in concentration, it was decided to design the LG cleaner to process for 

the worst case conditions viz. at the highest possible frother concentration of 0.0097 g/L. This 

is the highest possible concentration when the two streams are mixed. 
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The results from the HG cleaner showed that the higher the frother concentration, the greater 

the entrainment of solids. This causes a reduction of the concentrate grade. It was assumed 

that if one can attain a quality product at a frother concentration of 0.0097 g/L, then one 

should obtain a similar quality concentrate at lower frother concentrations. This can be done 

by making the necessary adjustments to the depressant dosage. 

The HG tailings were filtered to remove all water and transferred to the LG cleaner cell. The 

scavenger concentrate was collected into the LG cleaner cell since it was at the desired 

frother concentration of 0.0097 g/L. A synthetic solution of 0.0097 g/L was used to maintain 

the flotation operating level.  

In order to attain a good quality concentrate, it was decided to apply only the use of KU5 

depressant in order to reduce the naturally floating gangue that would otherwise be recovered 

in the concentrate. Five different depressant dosages were investigated and the results and 

experimental conditions are listed below: 

Table 18: Experimental conditions for LG cleaner at 0.0097 g/L- bad ore 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 8 – 32 

AIR FLOWRATE m.min
-1

 0.59 – 1.33 

IMPELLER SPEED Rpm 1200 

 

The superficial air flux velocity data required to maintain constant froth stability is found in 

Table 36, Appendix B, Page 104. 

 

Figure 60: Combined PGM recovery vs. solids recovery for LG and HG cleaners at various KU5 

dosages- bad ore 

It was decided, in an effort to simplify the analysis, to combine the results for both the HG 

and LG cleaners. This meant that the KU5 dosages reflected are the ‘effective’ dosages 
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across the entire circuit. The PGM and solids recovery across both cleaners were combined 

and shown in Figure 60. 

For example, one of the five dosages investigated in the LG cleaner cell itself, was 8 g/t. A 

fixed dosage of 30 g/t was added in the rougher whilst a further 5 g/t are added in the HG 

cleaner. No additional depressant was added in the scavenger cell. Hence, with the 8 g/t in the 

LG cleaner, this totals 43 g/t as seen in the figure above. Similarly, KU5 dosages of 16, 20, 

24 and 32 g/t in the LG cleaner are reflected as effective dosages of 51, 55, 59 and 67 g/t 

respectively. 

The PGM recovery was the highest at the highest solids content. This corresponds to the 

lowest depressant dosage of 43 g/t. This implied that an increase in depressant dosage caused 

a reduction in solids mass.  

The PGM recovery, at a dosage of 43 g/t is 75% whilst the recovery is reduced to 67% at a 

dosage of 67 g/t. The effect of depressant on froth structure and talc recovery has been 

explained in the HG cleaner analysis section and it will not be reiterated here. The reasons for 

reduced PGM recovery at higher depressant dosages have also been described previously. 

The solids target in the LG cleaner was 1%. Thus, effectively across both the HG and LG 

cleaners, the total solids recovery target was 2%. According to the above graph, the highest 

PGM recovery at this solids recovery target was 67%. This corresponded to a depressant 

dosage of 67 g/t. This was regarded as the optimum KU5 dosage to process this ore using in 

the circuit. However, this is a low PGM recovery compared to industrial standards. 

The sensitivity of the ore with respect to depressant addition was highlighted by the reduction 

of PGM recovery from 70 to 67% with a slight increase in KU5 dosage from 59 to 67 g/t. 

This loss of PGMs implied that this ore was difficult to concentrate without risking the loss of 

PGMs. It was decided to investigate ways of improving the recovery of PGMs from this ore.  

The froth structure of the LG cleaner at 67 g/t is shown in Figure 61: 

 

Figure 61: Froth structure of LG cleaner at 67 g/t - bad ore 
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The picture shown in Figure 61 was taken at the commencement of the test. It has a different 

froth structure compared to the HG cleaner in Figure 55. Obviously, due to the different 

frother concentrations, the froth stability will differ. The LG cleaner had smaller bubbles, 

indicating greater froth stability. This was due to the higher frother concentration at the 

commencement of the test. Thus, one would expect a larger entrainment in the LG cleaner 

compared to the HG cleaner. 

Two duplicate tests were performed at an effective depressant dosage of 67 g/t to determine 

the chromite content of this ore. The tests also served to check the reproducibility of results. 

The tests were conducted in an identical manner to the above, however only bulk samples 

were collected. They are combined results over both the LG and HG cleaners. 

The results are summarized in Table 19: 

Table 19: Summary of Results from bad ore investigation at 67 g/t KU5 

 Original Duplicate 1 Duplicate 2 

PGM recovery / [%] 67.4 66.3 68.5 

Cr2O3 content / [%] 3.9 3.9 3.9 

Solids recovery / [%] 2.05 2.06 2.07 

 

Table 20: Statistical analysis of bad ore test work 

 PGM recovery  Cr2O3 content Solids recovery 

Mean 67.43 3.89 2.06 

Standard Error 0.64 0.00 0.01 

Median 67.42 3.89 2.06 

Standard Deviation 1.11 0.01 0.01 

Sample Variance 1.22 0.00 0.00 

Skewness 0.04 1.73 0.00 

Range 2.21 0.01 0.02 

Minimum 66.33 3.89 2.05 

Maximum 68.54 3.90 2.07 

Count 3.00 3.00 3.00 

Confidence Level 

(95.0%) 2.75 0.01 0.02 

Mean 67.43 3.89 2.06 

 

The above results show good repeatability for both the PGM and solids recovery. The Cr2O3 

content is fairly similar between all these tests. The statistical analysis of this data was 

summarized in Table 20 above. 

 5.4 REGRINDING INVESTIGATION 

Industrially, one would target a PGM recovery of at least 80% from the primary cleaners. The 

primary cleaners in this case refer to the HG and LG cleaners. The low PGM recovery was 

indicative of possible liberation problems in the ore. 
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Composite particles, as described earlier consist of both valuable PGMs and gangue minerals 

and are usually very difficult to recover. Thus, they can be considered slow floating species 

and are mainly concentrated in the scavenger concentrate. It was decided that regrinding of 

the rougher tailings would be investigated, in an effort to improve the liberation of PGMs 

from these composite particles. A grind of 90% passing 53µm was chosen since it was finer 

than the original grind of 80% -75µm. The rougher tailing was filtered and transferred to the 

mill, where filtrate was added back to prevent frother dilution. The scavenger cell thus 

comprised of the milled sample and the excess original filtrate. 

The milling curve for this new grind is shown in the Figure 62: 

 

Figure 62: Milling curve for regrind investigation - bad ore 

Figure 62 shows that the target grind was achieved at a time of 42 minutes. It was not 

possible to determine the initial feed % passing 53µm due to insufficient sample. It was 

important to note that the water that was originally associated with the rougher tailings was 

used in the mill. This ensured that the milling process introduced no additional dilution of the 

frother concentration. It was shown previously that this dilution affects the overall PGM 

recovery and concentrate grade. 

Once the PGMs were liberated from the composite particles, their surfaces need to be made 

hydrophobic to ensure they are captured by bubbles. This required the addition of SIBX 

collector. 

The experimental conditions for the scavenger cell are shown in Table 21: 

Table 21: Experimental conditions for Scavenger cell with regrinding - bad ore 

SIBX g/t 76 

DOW200 g/t 16 

KU5 g/t 0 

AIR FLOWRATE m.min
-1

 0.66 – 0.94 

IMPELLER SPEED Rpm 1200 
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The scavenger cell used the same frother dosage as with the previous setup. This was done in 

order to maintain a similar froth structure and solids recovery. The scraping was performed 

until the wet mass of 2250 g, as was the case with the previous setup, was obtained. The 

previous setup refers to that involving no regrind of the rougher tailings.  

The time required to obtain this wet mass was reduced from 20 minutes to 14 minutes. The 

details of the air flux velocities required to maintain froth stability are found in Table 37, 

Appendix B, and Page 105. This can be attributed to the additional fast floating minerals 

liberated from the composite particles, which previously would not be captured easily. The 

three types of minerals obtained when composite particles are broken down include PGMs, 

talc and chromite. The first two of these minerals are recovered by true flotation whilst the 

latter is recovered via entrainment.  

This means that faster floating material was present; hence more solids were recovered in a 

shorter time. This reduced the overall time required to achieve the same wet mass. It is also 

important to note that, due to the liberation of chromite from the composite particles, the 

chromite entrainment would be greater in this new setup as opposed to the previous setup. 

The objective of the scavenger cell was to achieve as much solids recovery as possible. 

Hence the flotation test was performed until no solids were visible in the froth. This 

corresponded to a wet mass of approximately 2800g. This was achieved after 18 minutes. The 

froth was fairly white in colour at this point, portraying low solids content. This is shown in 

the image below: 

 

Figure 63: Scavenger cell after 18 minutes - bad ore 

There was an increase in the solids to water ratio compared to the previous scavenger 

experiment. This meant that there was less water recovered in the concentrate. Hence the 

frother concentration in the concentrate was higher than previously obtained. This 

concentration was 0.0135 g/L.  

Due to financial constraints, it was not possible to perform any PGM or chromite analysis on 

the scavenger concentrate. 
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5.4.1 LG CLEANER WITH REGRINDING 

The LG cleaner analysis was performed in much the same way as with the previous setup. A 

range of depressant dosages were utilised and their effects on both PGM and solids recovery 

were noted. The frother solution used to maintain the level was 0.0135 g/L. Experimental 

conditions are listed in Table 22: 

Table 22: Experimental conditions for LG cleaner with regrinding - 0.0135 g/L bad ore 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 8 – 40 

AIR FLOWRATE m.min
-1

 0.85 – 1.33 

IMPELLER SPEED Rpm 1200 

 

 

Figure 60: Combined PGM recovery vs. solids recovery for LG and HG cleaners at various KU5 

dosages- bad ore (repeat) 

 

Figure 64: PGM vs. Solids recovery at various depressant dosages for combined HG and LG cleaners 
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Figure 64 was generated in the same way as Figure 60, with combined PGM and solids 

recovery data from the HG and LG cleaners. Figure 64 shows the relationship between the 

PGM and solids recovery at five different depressant dosages, ranging from 8 to 40 g/t in the 

LG cleaner. As explained previously, the dosages have been combined to denote an 

‘effective’ depressant dosage across the entire circuit in order to simplify the analysis of 

results. 

Considering the PGM recoveries, it can be seen that there is an improvement in the PGM 

recovery which can be attributed to the regrinding stage. This caused liberation of additional 

PGMs, in addition to other gangue minerals.  

For example, if one compares the dosages of 43 g/t for each of Figure 60 and Figure 64, the 

PGM recovery improvement became more apparent. These tests were performed with near 

identical conditions, except for the regrinding of the rougher tailings. The overall PGM 

recovery has increased from 77 to 83 per cent. This was due to the liberation of additional 

PGMs from composite particles. 

At the same time, one can see the solids recovery has increased from 6.2 to 7.5 %. It became 

apparent that regrinding had a negative impact. The word ‘composite’ refers to the fact that 

these particles consist of different minerals. As mentioned previously, they consist of PGMs 

and other gangue minerals including talc and chromite. Finer grinding implies the release of 

finer particles into the pulp phase. These finer particles report to the quiescent zone near the 

pulp-froth interface and are more likely to be entrained in the water, particularly Cr2O3. This 

implies a larger Cr2O3 content in the concentrate. 

In fact, due to the increased amount of talc in the pulp phase, one would require a larger 

amount of depressant to suppress its flotation. The two circuits can be compared by analysing 

the PGM recovery at an approximate mass pull of 2 %. Regrinding increased the PGM 

recovery from about 67 to 76 per cent. The KU5 requirement to produce this final concentrate 

increased from 67 to 75 g/t. The regrinding required a further 42 minutes of milling. This is 

approximately double the rougher feed milling time. Hence there is approximately a doubling 

of the initial total energy costs. 

The depressant had a profound effect on the froth structure for the LG cleaner. The image 

below was taken after adding 40 g/t depressant, for an effective dosage of 75 g/t, in the LG 

cleaner: 
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Figure 65: LG cleaner froth structure at 75 g/t - bad ore regrind 

Figure 65 was taken at the commencement of the test. There are the particles that migrate to 

the launder and collect at the edge of the cell. Compared to Figure 61, one can notice the 

presence of more hydrophobic solids in this froth as a result of the regrind. The frother 

concentration in the LG cleaner with regrinding is 0.0135 g/L which is higher than that 

without regrinding, 0.0097 g/L. Thus one would expect the entrainment to be greater in the 

regrinding investigation. This entrainment was heightened due the excess liberation of 

chromite from composite particles. 

The chromite content of the concentrate is of particular interest, particularly after regrinding. 

Hence, one of the main functions of the LG cleaner is rejection of entrained chromite from 

the scavenger stage. Figure 66 shows the compromise between PGM recovery and Cr2O3 

content. The first data point refers to the HG concentrate. 

 

 

Figure 66: Cum. PGM recovery vs. Cum. Cr2O3 content at 75 g/t KU5 - bad ore regrind 
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The last point on Figure 66 showed the cumulative Cr2O3 content, 4.1 per cent, of the final 

concentrate. This was greater than the final concentrate of the bad ore with no regrind at 67 

g/t, shown as a single point on Figure 66, which had a cumulative Cr2O3 content of 3.9 per 

cent.  

As discussed earlier, there were differences in the LG cleaner top-up solutions used in both 

circuits. Frother concentration has a significant impact on the froth stability which, in turn, 

affects Cr2O3 entrainment. Thus, one can only speculate that this increased Cr2O3 content in 

the regrinding circuit was due to the additional liberation of chromite. However, more tests 

would be necessary to draw a definitive reason for these differences.  

 

Figure 67: Cum. Cr2O3 recovery vs. Cum. water recovery at 75 g/t KU5 - bad ore regrind 

Figure 67 shows that the relationship between Cr2O3 recovery and water is almost linear, 

indicating that the main mechanism is one of entrainment. Water is part of the froth structure. 

Chromite is entrained in the water. Thus as the water recovery increases one would expect the 

Cr2O3 recovery to increase.  

A repeat bulk test was conducted to confirm the results obtained in the above test. The air 

flux velocities required to maintain a stable froth at 75 g/t KU5 are shown in Table 38, 

Appendix B, and Page 105.The results of that test are summarized in Table 23: 

Table 23: Summary of results obtained in regrinding investigation at 75 g/t KU5 

 Original Duplicate 

PGM recovery / [%] 76 75.4 

Cr2O3 content / [%] 4.1 4.1 

Solids recovery / [%] 2 1.9 

 5.5 GOOD ORE INVESTIGATION 

The results from the bad ore investigation highlighted the processing difficulties associated 

with this kind of ore. It was decided to perform an investigation using ore with better 

flotation performance characteristics, aptly named “good ore”.  
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It was decided to use the circuit without a regrind stage, as shown in Figure 35. The same 

experimental techniques were used. 

5.5.1 MILLING CURVE 

The experimental procedure used for the bad ore, was used to determine the milling time for 

the good ore. A target grind of 80%-75µm was chosen. All other experimental conditions 

were the same. This includes, for example the rod distribution, feed water etc. The milling 

curve is shown in Figure 68: 

 

Figure 68: Good ore milling curve 

From the above graph, it was seen that the target grind was achieved at approximately 42 

minutes. It is also observed that the feed size was 15%-75µm. This was attained using the 

vibratory screening apparatus shown in Figure 25. This is slightly finer than the bad ore (20% 

-75 µm) 

5.5.2 ROUGHER CELL 

It was decided to use the same rougher concentrate wet mass as used previously of 530 g for 

all experiments. A similar process was undertaken with the depressant as was the case for the 

rougher cell in the bad ore investigation. 10 g/t increments were added until the froth 

structure was deemed suitable for flotation. This occurred after 30 g/t depressant and the froth 

structure, similar to Figure 41 is shown below: 
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Figure 69: Good ore rougher froth structure at 30 g/t KU5 

The experimental conditions for the rougher cell are shown in Table 24: 

Table 24: Experimental conditions for Rougher cell – good ore 

SIBX g/t 150 

DOW200 g/t 20 

KU5 g/t 30 

AIR FLOWRATE m.min
-1

 0.73 

IMPELLER SPEED Rpm 1200 

It was observed that the time required to obtain a wet mass of approximately 530 g was 2 

minutes. This was a minute quicker than the time required to achieve the same wet mass in 

the rougher concentrate for the bad ore. One can only assume it is due to the good ore 

containing more fast floating PGM minerals compared to the bad ore. As with the bad ore 

investigation, water was used to control the operating cell level. 

5.5.3 SCAVENGER CELL 

It was assumed that recovery of PGM’s would be easier in the scavenger cell.  Frother was 

used to improve the solids recovery in the concentrate. Since this ore had less composite 

particles, it was felt that a reduction frother concentration in the cleaners would be beneficial. 

The experimental conditions are listed in the Table 25: 

Table 25: Experimental conditions for Scavenger at 0.012 g/L – good ore 

SIBX g/t 0 

DOW200 g/t 8 

KU5 g/t 0 

AIR FLOWRATE m.min
-1

 0.73 – 0.93 

IMPELLER SPEED Rpm 1200 

 

The test was performed until a cumulative wet mass of 2800 g was obtained. The flotation 

time required to achieve this mass was 15 minutes. The details for the air flux velocities 

required to maintain a stable froth are given in Table 39, Appendix B, and Page 105. Again, it 
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was observed that the good ore achieved a larger wet mass in a quicker time compared to the 

bad ore. The fact that a lower amount frother and flotation time were required further 

highlights the positive flotation characteristics of the good ore. The bubbler was used to 

measure the synthetic top-up water necessary to maintain the flotation level. A frother 

solution of 0.012 g/L was used to maintain the scavenger cell operating level. 

 5.6 THICKENER INVESTIGATION 

Thickeners have been used extensively in flotation plants, particularly on cleaner 

concentrates. One application has been a reduction in the water content, to reduce the size 

and maintenance costs of complex cleaner circuits. It has also enabled companies to achieve 

better overall control of the flotation process. The reduction of water implies an increase in 

the solids content of the slurry. Depending on the ore quality, an increase in the solids 

concentration could result in an improvement in the recovery of valuable minerals. However, 

for flotation of UG2 ore, this would have the effect of increasing the stability of the froth and 

an increase in the entrainment of chromite. The idea of thickening, followed by dilution using 

water with a lower frother concentration, appears to be a novel solution for reducing 

entrainment. 

The results from the bad ore investigation, with particular reference to the HG cleaner cell, 

showed that a reduction of chromite entrainment in cleaner cells occurred when water was 

used to make up and maintain level. The frother concentration had been reduced by dilution.  

One way of achieving this in a plant, without increasing volumetric flow in the cleaners, 

would be to thicken the concentrate and then use make-up water to re-dilute the sedimented 

solids. The water from the thickener overflow could then be recycled to a suitable part of the 

circuit, where frother was required. 

5.6.1 DILUTION INVESTIGATION 

It was decided to investigate the maximum possible concentrate dilution under laboratory 

conditions. This test was performed on a sample of rougher concentrate obtained from 

previous work. This sample was used as a basis for the rest of the test work. It was transferred 

into a column and allowed to settle for 30 minutes. Industrially, this is analogous to the 

residence time used in designing a thickener. The concentrate separated into two phases after 

this time viz. water and solids. The experimental setup prior to the commencement is shown 

below: 
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Figure 70: Thickener contents before separation 

 

Figure 71: Thickener after 30 minutes showing two phase separation 

The total volume occupied by the concentrate was 670 ml. After a settling time of half an 

hour, the separation of the solids and water occurred resulting in two different phases shown 

in Figure 71 above. According to the column reading, the volume occupied by the pulp was 

140 ml.  

The water was removed by slow decantation. This pouring was carefully performed such that 

no solids were allowed to leave with the water.  The maximum allowable water removal 

corresponded to a level in the cylinder of 160 ml. The sedimented slurry was then dried to 

determine the mass/volume of associated water. The solids in the concentrate accounted for a 

mass of 100 g. This implied a volume of 33 ml. Hence the maximum water removal was 

calculated as follows: 

Maximum water removal = 
((      ) (      ))  

(      )   
      = 80.3 % 

Solids level 
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This means it is only possible to remove 80.3 % of the water from a concentrate without 

losing any solids and it depends upon the w/s ratio in that concentrate, or cleaner tails.  This 

was relaxed by 5 % to include a safety factor for use of a continuous thickener.   Thus it was 

decided to use 75 % as the maximum under laboratory conditions.  

5.6.2 CLEANER CELLS 

It was decided to investigate water removal from the stream entering in the HG cleaner only 

and then the feed to both cleaning stages. It was decided to utilize water removals of 55 % 

and 73% for the HG and LG cleaners respectively.  This is a conservative approach to the 

benefit for the HG cleaner, in view of the possibility that tailings from a re-cleaner stage may 

have a relatively high solids content. Plant samples could be used to make realistic estimates 

of the fractional removal of water. The concentrations of frother calculated from the Bubbler 

measurements were reduced accordingly. 

5.6.3 HG CLEANER 

The HG cleaner experimental conditions are listed in the Table 26. There was, however a 

lack of adequate good ore sample. Hence it was decided to use the depressant dosage for the 

HG cleaner in the bad ore investigation. The LG cleaner would be used to optimise the PGM 

recovery/concentrate grade relationship.  

Table 26: Experimental conditions for HG cleaner at 0.013 g/L –good ore 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 5 

AIR FLOWRATE m.min
-1

 0.66 

IMPELLER SPEED Rpm 1000 

 

A total of six tests were performed in this cell. The first two tests were done without resorting 

to any dilution of the cell contents. The bubbler was used to measure the frother 

concentration of the rougher concentrate. The solution used to maintain the levels in these 

two tests had a concentration of 0.013 g/L. The froth structure at the beginning of each of 

these two tests is shown below: 

 

Figure 72: Froth structure of the HG cleaner at 0.013 g/L – good ore 
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The remaining four tests were performed using a thickener at the inlet of the HG cleaner. As 

mentioned before, a water removal of 55 % was investigated. This corresponded to a frother 

concentration of 0.006 g/L, as measured by the bubbler. It is significantly lower than the 

previous concentration due to the cell contents being diluted. The experimental conditions for 

these tests are listed in the Table 27. 

Table 27: Experimental conditions for the HG cleaner at 0.006 g/L - good ore 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 5 

AIR FLOWRATE m.min
-1

 0.82 

IMPELLER SPEED Rpm 1000 

 

The froth structure corresponding to the above concentration is shown below, taken at the 

commencement of the each of the four tests. 

 

Figure 73: Froth structure of HG cleaner at 0.006 g/L - good ore 

Comparing the froth structures shown in Figure 72 and Figure 73, it was apparent that the 

0.006 g/L froth had bigger bubbles compared to the 0.013 g/L froth. Evidently the 0.006 g/L 

froth structure was brittle hence it required a greater air flux to maintain a stable froth. The air 

rate required for the 0.006 g/L froth was 0.88 m.min
-1

 compared to 0.66 m.min
-1 

for the 0.013 

g/L froth. 

5.6.4 LG CLEANER 

The tailings from the HG cleaner were filtered before being mixed with the concentrate from 

the scavenger cell. This represented the feed to the LG cleaner cell. Depressant was used to 

reduce the talc recovery in the LG cleaner concentrate. As with the HG cleaner, a total of six 

tests were performed. They were performed using two different synthetic frother top-up 

concentrations. The first concentration of 0.013 g/L corresponded to the first two tests 

performed without thickeners. The remaining four tests used 0.0033 g/L, based on a water 

removal of 73 % in the thickener. The experimental conditions for experiments conducted 

using each synthetic top-up solution are given in the tables below: 
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Table 28: Experimental conditions for LG cleaner at 0.0033 g/L - good ore 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 8 – 32 

AIR FLOWRATE m.min
-1

 0.82 – 1.53 

IMPELLER SPEED Rpm 1200 

 

Table 29: Experimental conditions for LG cleaner at 0.013 g/L - good ore 

SIBX g/t 0 

DOW200 g/t 0 

KU5 g/t 8 – 32 

AIR FLOWRATE m.min
-1

 0.82 – 1.24 

IMPELLER SPEED Rpm 1200 

 

Again, as with the HG cleaner in the previous section, similar trends were observed with 

regards to the air flux required in order to maintain froth stability. The required flux was 

higher in the experiments that used synthetic frother top-up solutions of 0.0033 g/L compared 

to 0.013 g/L. The reasons for this have been explained previously. 

Three circuit configurations were used to perform flotation work on the good ore. They are 

shown in the figures below: 

 

S

 

Figure 74: Circuit configuration A  
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Figure 74 shows the insertion of a thickener at the inlet to the HG cleaner only denoted by 

‘S’. A 55% water removal was applied in this thickener. This resulted in a frother 

concentration of 0.006 g/L, measured by the bubbler. The concentration of frother was 0.013 

g/L in the LG cleaner. Synthetic frother top-up solutions were made up to these 

concentrations and used to maintain the operating levels in the respective cells. 

S S

 

Figure 75: Circuit configuration B 

Figure 75 shows the insertion of thickeners at the inlets of both the HG and LG cleaners 

denoted by ‘S’. The frother concentration of the top-up water was 0.006 g/L in the HG 

cleaner and 0.0033 g/L in the LG cleaner. Synthetic frother top-up solutions were made up to 

these concentrations and used to maintain the operating levels in the respective cells. 



85 

 

 

Figure 76: Circuit configuration C 

Figure 76 is the base case for no thickeners at the inlets of either the HG or LG cleaners. In 

essence, this circuit resembles the circuit used to perform the bad ore investigation. The 

frother concentration of the top-up water was 0.013 g/L in both the HG and LG cleaners. 

Synthetic frother top-up solutions were made up to these concentrations and used to maintain 

the operating levels in the respective cells. 

As mentioned previously, the above circuits were used to conduct a total of six experiments. 

The results were compiled in a similar manner to that used to analyse the bad ore. For 

simplicity sake, it was decided to combine the PGM, Cr2O3 and solids recovery results from 

both the HG and LG cleaners. The results from these experiments follow in the graphs below: 

 

Figure 77: Cum. PGM recoveries vs. Cum. Solids recoveries at various depressant dosages - good ore 
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Figure 77 shows the combined cumulative solids and PGM recoveries across the LG and HG 

cleaners. The depressant dosages are listed for each individual curve. These dosages are the 

‘effective’ dosages across the entire circuit. The letters next to each dosage refer to the circuit 

used to perform that specific experiment at that particular dosage. For example, ‘59 g/t – C’ 

means that 24 g/t depressant was used in the LG cleaner cell with the entire test performed 

using circuit configuration C. The circuit configurations, along with their individual 

descriptions are given in Figure 74, Figure 75 and Figure 76.  

Referring to Figure 77, one can observe the solids recovery is reduced as the depressant 

dosage increases. This is true for all depressant dosages used in the various circuits. The 

PGM recovery remained consistent at approximately 80% for all circuits irrespective of the 

depressant dosage. This implies that the ore could possibly have been treated with a higher 

depressant as it showed very little sensitivity, in terms of PGM recovery, at the various 

depressant dosages. 

In particular, with reference to Figure 77 and Figure 60 (on Page 68), one can compare the 

good and bad ores in terms of their respective sensitivities to depressant addition. Circuit C 

used in Figure 77 is identical to that used to generate Figure 60. Again, one can only make 

valid comparisons at the same cumulative mass and  if one compares 67 g/t – C from Figure 

77 to the result for the bad ore, in Figure 60, the PGM recovery increases from 67% to about 

75%. 

From Figure 60, one can observe that the PGM recovery is reduced from 77 to 67% as the 

depressant dosage was increased from 43 to 67 g/t. At the same time, the solids recovery was 

reduced from 6.2 to 2 per cent. In comparison, Figure 77 showed that the PGM recovery 

changed minimally across all depressant dosages ranging from 43 to 67 g/t. The solids 

recovery was reduced from 4.8 to 3.1%.  

This means that, in general, the good ore is less sensitive to depressant addition compared to 

the bad ore. This means that the use of higher depressant dosages in the good ore can produce 

lower solids recoveries whilst maintaining fairly consistent PGM recoveries. The froth, using 

the bad ore, depends on the presence of talc for stability. This was due to the comparably low 

amount of hydrophobic solids that are recoverable via flotation. They are difficult to recover 

due to the presence of composite particles.  

If one considers the first points on each of the curves, they correspond to the cumulative 

recovery of both PGMs and solids in the HG cleaner. It is evident that all dosages involving 

circuits A and B have similar PGM/solids recoveries. Circuits A and B have thickeners at the 

inlets to the HG cleaner. They had similar froth structure hence similar PGM/solids 

recoveries were obtained. 

Dosages used in conjunction with circuit C have higher solids recoveries in the HG cleaner 

compared to those used in circuits A and B. A higher synthetic make up water, in the HG 

cleaner, of 0.013 g/L was used in circuit C whilst 0.006 g/L was used in both circuits A and 
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B. A more stable froth was formed due to the higher frother concentration. This resulted in a 

larger entrainment of hydrophilic minerals, responsible for the difference in solids recovery. 

This entrainment can be justified according to analysis performed on the Cr2O3 content of the 

concentrate in the HG cleaner. This is a hydrophilic mineral that is recovered by entrainment. 

The graph is shown in Figure 78: 

 

Figure 78: Cum. PGM recoveries vs. Cum. Cr2O3 content at various depressant dosages - good ore 

Figure 78 shows the relationship between the Cr2O3 content and PGM recovery at various 

depressant dosages. Similar to Figure 77, the first point on each curve corresponded to the 

PGM recovery/ Cr2O3 content in the HG cleaner. The HG cleaner concentrate in Circuit C 

had much higher Cr2O3 contents compared to circuits A and B. This verified that the larger 

solids recovery of circuit C, shown in Figure 78, was attributed to the entrainment of Cr2O3.  

This was due to the higher frother concentration in the HG cleaner, which resulted in greater 

froth stability. 

Figure 78 shows a decrease in the Cr2O3 content with an increase in depressant dosage. As 

the depressant dosage increases, the recovery of talc in the concentrate is reduced. Since talc 

is hydrophobic, it is necessary to maintain froth phase stability. Reduction in talc recovery 

results in decreased froth stability. This improves froth drainage characteristics thereby 

reducing the Cr2O3 recovery via entrainment. 

The effect of circuit choice on the Cr2O3 content at different depressant dosages proved 

interesting. As expected, Circuit B had lower Cr2O3 contents than those associated with 

circuits A and C, due to reduced frother concentration in both cleaning stages. For example, 

at the end of each test, 55 g/t- B had Cr2O3 content of 3.2% compared to 67 g/t – A whose 

Cr2O3 content was 4.1%. 

It is of particular interest to compare the experiments with circuits B and C, with depressant 

dosages of 55 g/t- B (orange) and 67 g/t- C (green). The two curves follow the same 

trajectory in the region of 2 % mass (Figure 77), but when one refers to the Cr2O3 content in 

Figure 78, the lower value of depressant is significantly better. This result is difficult to 

explain and further tests may be required.  
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There exists a relationship between the water and Cr2O3 recovery. Figure 79 depicts the 

relationship between these two variables: 

 

 

Figure 79: Cum. water vs. Cr2O3 recovery at various depressant dosages - good ore 

Figure 79 shows the relationship between both the Cr2O3 and water recoveries at different 

depressant dosages. Water is not recovered by entrainment. It is part of the froth structure. 

Chromite is recovered to a large extent by entrainment in the water. Addition of depressant 

reduces flow of solids in the froth and hence the w/s ratio increases with time as the froth 

becomes ‘barren’. 

Comparing 55 g/t - B to 67 g/t – C, it was observed that the insertion of two thickeners 

significantly reduced both the water and Cr2O3 recoveries. Similar PGM recoveries were 

obtained in both cases. Furthermore, it was achieved at a lower depressant dosage, which 

implies a direct financial saving.  

The recovery of Cr2O3 poses downstream processing problems in the smelters hence it is an 

important operational parameter. The response of the good ore to the inclusion of thickeners 

has validated the idea of using these tanks to reduce both the Cr2O3 and water recoveries.  
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6 SIGNIFICANCE OF RESULTS 

 

This chapter has highlights some of the concerns faced by flotation technologists and how 

these were addressed in this thesis.  

The chromite content in PGM concentrates is a major concern industrially. Besides reducing 

the overall flotation concentrate grades, it also affects downstream processing.  

There is a trade-off between the chromite content and PGM recovery to the concentrate. 

Chromite is typically hydrophilic, hence one would expect little recovery in the concentrates. 

However due to its abundance in UG-2 ore, it is recovered largely by entrainment in water 

which forms part of the froth structure. This is the dilemma faced by UG-2 ore concentrators 

worldwide: How can one effectively reduce the chromite entrainment in the concentrate 

without risking the loss of PGMs to the tailings?  

As mentioned in the theory section, increased chromite levels reduce the operating volume of 

the smelting furnace. This means that some PGMs are lost during the smelting process due to 

ineffective separation between the phases. Thus operating limits are imposed on the chromite 

content of the feed to the smelters.  

According to Jones (1999), based on a solids recovery of 1%, typical UG-2 final concentrate 

grades and PGM recoveries are 430 g/t and 87% respectively. This ensures a reasonable 

profit is obtained. The Cr2O3 content limit for typical concentrates is 2.9%. This constraint 

can be increased to between 4-9% provided the grade of the product is improved to about 

1000 g/t. In light of this, it is apparent that the concentrates obtained in this investigation raise 

certain concerns since the Cr2O3 contents were significantly greater than 2.9%.  

The results obtained in this thesis can be used to solve an industry wide problem. Industrial 

concentrator plants consist of many different flotation circuits that treat various ore bodies i.e. 

good and bad ores. Thus they produce various grades of concentrates depending on the ore 

quality and flotation characteristics. These concentrates ultimately combine to form the 

smelting process feed. These form a single concentrate with an ‘effective’ grade which is a 

combination of all the concentrate grades. This analogy is best expressed using Figure 80: 
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Figure 80: Block diagram showing different smelter feeds (Jones, 1999) 

In this investigation, it was found that the good and bad ores produced different chromite 

grades. Figure 80 shows how the two concentrates combine to form the smelting feed. The 

installation of thickeners and re-routing of certain tailing streams to the milling circuit can 

prove to be advantageous. If, for any reason, the smelter feed contains too much chromite, 

then perhaps the plant can switch to process ore using thickeners in the cleaner feeds. This 

was shown to significantly reduce the chromite content. If the PGM recoveries are too low, 

then one can consider regrinding the bad ore rougher tailings to increase the PGM liberation.  

The results obtained from the good ore investigation showed potential for the chromite 

content to be reduced whilst maintaining similar PGM recoveries. The use of thickeners was 

shown to reduce the chromite entrainment by reducing the frother concentration thereby 

affecting the froth structure.  

The purpose of lab test work is to obtain preliminary experimental conditions which are then 

used as the basis for larger scale pilot plants. However this thesis highlighted the 

shortcomings of regular laboratory procedures, particularly in the cleaner cells. Due to 

insufficient volume of concentrate obtained in the rougher concentrate, the remaining cleaner 

cell operating volume is usually made up by using tap water. However the use of synthetic 

frother produced significantly different solids recoveries, due to entrainment in the water of 

the froth structure. The use of synthetic make-up water replicates the continuous operation of 

pilot plants. This is seen as a significant step in making laboratory tests more ‘realistic’. 

It is hoped that this thesis provides some insight into ways to improve the flotation laboratory 

procedure, so that these results match those obtained from pilot plant and larger scale 

operations. It is believed that certain improvements proposed in this thesis can be utilized by 

the technologist to solve problems typically faced on a UG-2 ore flotation concentrating 

plant. 
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7 CONCLUSIONS 

The flotation of two UG-2 ore types was investigated using laboratory scale equipment. The 

procedure was made more realistic, by using four stages of flotation, rather than just two, to 

mimic a typical platinum flotation plant. Attention was also given to the fact that water is 

often added to the second stage of flotation, to make up the level in a ‘cleaner’ test. 

Experiments showed that this dilution, which does not take place in practice, had a significant 

impact on overall efficiency. For example, with reference to the bad ore, the use of tap water 

to make-up the HG cleaner operating volume reduced the solids recovery from 3.1 to 1 per 

cent. 

A method of measuring frother concentration was developed and used to determine the 

realistic level of frother in cleaning tests. The device, nicknamed the ‘bubbler’ was able to 

measure the frother concentration of any stream in the circuit. Tests at these levels of frother 

concentration showed that significant improvements could be made to plant performance, by 

making use of a thickener to reduce the frother concentration in the cleaner stages. For 

example, a water removal of 55 % in the HG cleaner reduced the overall frother 

concentration from 0.013 to 0.006 g/L. 

The improved test procedure was used on both good and bad ores and the effect of regrinding 

was investigated. These tests provided insight on how to improve performance on a platinum 

flotation plant, particularly when floating the bad ore. 

Initial tests on the rougher cell and primary cleaner cell were used to optimise these stages. 

However, for the sake of simplicity, the following PGM and solids recoveries refer to the 

combination of both cleaner concentrates and referred to as a single concentrate. The 

depressant dosage which produced the most favourable result for each ore type and circuit 

configuration is described. The following conclusions were drawn from the bad ore 

investigation: 

 At a combined depressant dosage of 67 g/t over the entire circuit, the PGM and solids 

recoveries were 67 and 2 per cent respectively. The addition of a regrinding stage, which 

reduced the rougher tailings to 90%-53µm, improved the PGM recovery to 76 per cent at a 

solids recovery of 2 per cent. This was achieved at the expense of an additional 8 g/t 

depressant. However, the Cr2O3 content increased from about 3.9 to 4.1 per cent. It is 

believed that these increases could be attributed to regrinding and differences in top-up 

frother concentrations in the LG cleaner. 

Whilst regrinding did improve the overall performance of this bad ore in terms of PGM 

liberation, the ore was particularly sensitive to depressant addition. The results showed that 

both the PGM and solids recovery were reduced significantly with the use of depressant.  

With no regrinding, the solids recovery was reduced from 6 to 2 per cent whilst the PGM 

recovery was reduced from 78 to 67 per cent at the expense of an additional 24 g/t KU5. 

Regrinding the rougher tails reduced the solids recovery from 7 to 2 per cent whilst the PGM 

recovery was reduced from 83 to 75 per cent at the expense of an additional 32 g/t KU5. 
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This investigation illustrated that simple changes in the circuit could be used to improve 

results. The good ore was used to investigate the effects of reducing frother concentration in 

the cleaners by using thickeners and dilution with fresh water. Three different circuit 

configurations were tested, namely A, B and C and the following conclusions were drawn: 

Circuit C involved the use of no thickeners.  The PGM and solids recoveries of the combined 

final concentrate were 79.2 and 2.7 and per cent respectively at an effective depressant 

dosage of 67 g/t. The Cr2O3 content at this dosage was 4.2 per cent.  

The use of thickeners involved water removals of 55 and 73 per cent in the HG and LG 

cleaners respectively.  

The use of a single thickener in the HG cleaner was investigated in Circuit A. The PGM and 

solids recoveries of the combined final concentrate were 79.6 and 2.7 per cent respectively at 

an effective depressant dosage of 67 g/t. The Cr2O3 content was reduced to 4.1 per cent. 

The use of two thickeners was investigated in Circuit B. The PGM and solids recoveries of 

the combined final concentrate were 79.6 and 2.7 per cent respectively. Perhaps the most 

significant finding was that an effective depressant dosage of a mere 55 g/t was required to 

reduce the Cr2O3 content to 3.2 per cent. 

Good ore tests conducted using Circuit B produced the lowest Cr2O3 content in the 

concentrates as described above. However it involved the use of two thickeners for each of 

the cleaner cells. This implies the additional capital investment to install these tanks. In a 

similar fashion, the regrinding of the bad ore rougher tails, though it improved the liberation 

and recovery of PGMs, also implies an additional milling energy utility compared to the 

circuit with no regrinding. It would thus be difficult to select the optimum circuit without 

conducting a detailed economic analysis on the various circuits, taking into account all the 

associated costs. 
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8 RECOMMENDATIONS 

I. The superficial air flux velocity data, located from Table 31 to Table 41, can be 

used as a guideline to map appropriate air flux as a function of solids 

concentration. This model can subsequently be utilized in developing control 

schemes for maintaining cell levels in industrial cells.  

II. It is suggested that samples of plant water and water associated with concentrates 

be taken to evaluate the potential for using thickeners improve plant performance. 

III. It is recommended that regrinding of high grade cleaner tailings be investigated to 

improve the PGM liberation. The data obtained from tests on the bad ore showed 

that residual PGMs were not liberated. 

IV. It is suggested that additional work be done on the ‘bubbler’, to develop it into a 

reliable on-line device. 

V. It is suggested that a continuous flotation test be done, using a pilot plant, be 

conducted using the experimental conditions listed in this work. These results can 

be used to verify the effectiveness of the laboratory method. 
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10 APPENDIX A – SAMPLE CALCULATIONS 

 10.1 MILLING SAMPLE CALCULATIONS 

The individual masses of the rods are summarized in Table 30: 

Table 30: Mass of various rods 

Rod diameter(mm) Mass(g) 

5 64 

10 180 

15 463 

20 717 

 

A single set of rods (i.e. comprising of one of each of the rods) = (64+180+463+717) g 

         = 1425 g 

Mill dimensions 

Diameter (d) = 0.2 m 

Length (l) = 0.3m 

Volume = π
  

 
*l 

    = 9.42 litres (L) 

Assuming 40% of this volume is occupied by the total charge into the mill 

Charge Volume (Vc) = 0.4*9.42 L= 3.77 L 

Assuming 60% of the Vc represents the media volume (Vm) 

Vm = 0.6*3.77L = 2.26 L 

Density of stainless steel = 8000kg/m
3
 

Mass of media (M) = 8kg/L*2.26L =18.09 kg 

Thus no. of each rod = 18.09/1.425 = 12.5 
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Hence 12 of each rod were used. 

 10.2 BAD/GOOD ORE 

It was decided to use only the 10, 15 and 20 mm rods in these investigations. The masses of 

these rods are given in Table 30.  

A single set of rods (i.e. comprising of one of each of the rods) = (180+463+717) g 

         = 1360 g 

The total internal volume of the mill was calculated before as 9.42 L. 

Assuming 50% of this volume is occupied by the total charge into the mill 

Charge Volume (Vc) = 0.5*9.42 L= 4.71 L 

Assuming 60% of the Vc represents the media volume (Vm) 

Vm = 0.6*4.71 L = 2.826 L 

Density of stainless steel = 8000kg/m
3
 

Mass of media (M) = 8kg/L* 2.826 L =22.608 kg 

Thus no. of each rod = 22.608/1.360 = 16.62 

Hence 16 of each rod were used. 

 

 

 

 

 

 

 

 

 

 



99 

 

 10.3 SUPERFICIAL AIR FLUX VELOCITY DATA 

The calculation for superficial air flux velocity is as follows: 

The formula is given as: va = 
 

 
 

Where Q is the air flow rate in m
3
.min

-1
 

And A is the cross sectional area of the cell. 

This area is based on the square dimensions of the cell base. It is known that there exists a 

cell lip at the top of the cell. For the purposes of this investigation, this additional area of the 

lip has been ignored. It is assumed therefore that the cross sectional area is the same at all 

points in the cell including the base. 

The dimensions at the base of each cell are given below: 

 8 L cell 

Length -  18.5 cm  

Breadth -  18.5 cm 

 2.5 L cell 

Length -  13 cm  

Breadth - 13 cm 

 1 L cell 

Length -  11 cm 

Breadth - 11 cm 

Thus if the value of the rotameter tube reading is 13.5 initially in the large 8 L cell, the 

calculation for the va is as follows: 

Initially, the calibration chart, found in Figure 82, was used to convert from the tube reading 

to the air flow rate. The corresponding flow rate at a tube reading of 13.5 is 26 l/min.  

Thus the  Q = 
  

    
 m3

.min
-1 

  
Q = 0.026 m

3
.min

-1
 

  A = 18.5 * 18.5 = 342 cm
2
 = 0.0342 m

2
 

Hence   va = 
     

      
 

  va = 0.73 m.min
-1

 

A similar type of calculation was undertaken to calculate all the va values for the various cells 

listed in the tables below. 
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 10.4 FLOTATION SAMPLE CALCULATIONS 

The following example is based on test work done on the good ore. It is based on circuit 

configuration B, shown in Figure 75. A version of this circuit is attached below with stream 

labels.  

A

B

T

LH

 

Figure 81: Circuit with stream labels 

The sample was split using the riffle splitter, shown in Figure 23, and weighed to a 2.5 kg 

sample. This sample was subsequently ground to 80%-75µm according to the manner 

described in Section 4.1. The flotation circuit procedure was described in Section 4.4. The 

rougher float was conducted according to the methods outlined in these sections. The 

experimental conditions are given in Table 24.  

The concentrate obtained from this was transferred to the HG cleaner for processing. The HG 

cleaner cell, according to this circuit configuration, possessed a thickener. The bubbler was 

used to obtain the frother concentration of the concentrate from the rougher cell. 

Frother concentration of feed concentrate (Go)      = 0.013 g/L 

Initial volume of concentrate (Vo)     = 670 ml 

Assuming 100 g of solids were obtained, volume of solids (So)  = 100/3 = 33 ml 

Remaining liquid volume       = 670 - 33 = 637 ml 

Assuming a 55% removal of water volume 

Volume of liquid after removal     = (1- 0.55)*637 = 287 ml 
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Hence final calculated concentration (Cc) after dilution back up to original 637 ml in 

apparatus: 

Cc = 
         

   
        = 0.00585 g/L 

Measured concentration (Cm) using bubbler apparatus   = 0.006 g/L. 

Percentage error(Er) associated with bubbler    = 
             

       
       

Er         =2.5 %. 

Hence it was decided to measure all concentrations using the bubbler due to the low 

percentage error. 

A synthetic solution was made up to this concentration of 0.006 g/L and used to maintain the 

cell operating level. The experimental conditions for the cell are listed in Table 27. This 

calculation was based upon a 5 g/t KU5 depressant addition.  

A concentrate was obtained from this cell. It was dried overnight in the oven and weighed 

subsequently to record a dry mass (MHG) of 22.4 g. This concentrate was bagged and sent for 

PGM and Cr2O3 analysis.  

The tailings from the rougher cell were transferred to the scavenger cell. Conditioning was 

allowed for according to the experimental conditions listed in Table 25. The frother 

concentration was determined using the bubbler as 0.012 g/L. A solution was prepared 

according to this concentration and used to maintain the operating level. The tailings of the 

HG were filtered before being transferred to the LG cleaner cell. 

The concentrate obtained from the scavenger cell was measured using the bubbler to 

determine the frother concentration viz. 0.013 g/L. This concentrate was combined with the 

tailings from the HG cleaner to form the complete feed to the LG cleaner cell. The tailings 

were dried then subsequently weighed before being sent for further PGM and Cr2O3 analysis.  

According to this circuit, the insertion of another thickener was necessary. A water removal 

of 73% was selected. In a calculation similar to that with the HG cleaner, the following was 

obtained based on a concentrate volume of 2000 ml: 

The frother concentration was measured using the bubbler as 0.0033 g/L. 

The calculated value was 0.003314 g/L. Hence the error was minimal. 

A top-up solution was prepared using a concentration of 0.0033 g/L and used to maintain the 

operating level of the LG cleaner cell. The other experimental details for the LG cleaner cell 

are listed in Table 28. This calculation was based upon a 55 g/t KU5 depressant addition. 

Samples were taken at various collection points and a rate plot was obtained. The dry mass of 

these samples was obtained and they were sent for further PGM and Cr2O3 analysis. 
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The data and results were summarized and presented in Table 47. The table is labelled 

according to the combined depressant dosage, followed by circuit B, used across the entire 

circuit viz. 55 g/t. This was the method used in to describe all subsequent data tables. 

The PGM, solids and Cr2O3 recoveries were based on the amount present in the feed. For 

example, if one considers the PGM recovery for the 1st minute in stream L: 

Data:   PGM grade : 177 g/t 

  Mass  : 7.9 g 

Feed Data: PGM grade : 4.3 g/t 

  Mass  : 2514.9 g 

Hence the PGM recovery  = 
       

          
       

    = 12.92 %.  

For the 2
nd

 point of stream L, at 3 minutes, a PGM recovery of 7.67% was obtained. The solid 

mass obtained was 9.2 g. Hence the cumulative PGM recovery, after 3 minutes, was 

calculated as follows: 

Cum. PGM recovery = 12.92 + 7.67 = 20.59 %. 

Similar calculations were undertaken for all experiments and used to generate various PGM, 

Cr2O3 and solids graphs. 
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11 APPENDIX B. SUMMARY OF RAW DATA 

 11.1 AIR FLUX VELOCITY DATA 

Table 31: Air flux velocities for Preliminary Sample - Rougher 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

6.2 0.014 0 0.410 

8.0 0.017 3 0.495 

10.0 0.020 5 0.589 

12.0 0.023 7 0.683 

15.0 0.028 10 0.824 

18.0 0.033 17 0.965 

22.5 0.040 20 1.177 

6.2 0.014 0 0.410 

8.0 0.017 3 0.495 

 

Table 32: Air flux velocities for Preliminary Sample / bad ore - Scavenger 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

13.5 0.026 0 0.730 

14.5 0.027 1 0.801 

15.0 0.028 3 0.824 

17.0 0.031 4 0.918 

18.5 0.034 7 0.989 

20.0 0.036 10 1.059 

22.0 0.039 17 1.153 

23.5 0.042 30 1.240 

 

Table 33: Air flux velocity for bad ore - HG cleaner 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

0.6 0.005 0 0.410 

3.0 0.009 1 0.734 

6.0 0.014 3 1.134 

7.0 0.015 5 1.267 

9.0 0.019 6 1.533 

10.0 0.020 7 1.666 

15.0 0.028 15 2.331 

20.0 0.036 30 2.996 
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Table 34: Air flux velocities for bad ore - HG cleaner at 0.0074 g/L 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

0.6 0.0050 0 0.410 

1.0 0.0057 15 s 0.468 

2.0 0.0073 30 s 0.601 

2.4 0.0080 1 0.660 

 

Table 35: Air flux velocity bad ore at 0.0059 g/L- Scavenger cell 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

11.5 0.0226 0 0.659 

13.0 0.0250 1 0.730 

14.0 0.0266 3 0.777 

14.5 0.0274 5 0.801 

15.5 0.0290 7 0.848 

16.0 0.0298 10 0.871 

17.0 0.0314 13 0.918 

19.0 0.0346 16 1.012 

21.0 0.0379 17 1.106 

21.5 0.0387 19 1.130 

23.0 0.0411 20 1.200 

 

Table 36: Air flux velocity for bad ore at 0.0097 g/L- LG cleaner cell 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

3.7 0.0100 0 0.593 

4.5 0.0113 1 0.669 

5.0 0.0121 3 0.716 

7.0 0.0153 5 0.907 

8.0 0.0169 6 1.002 

8.5 0.0177 7 1.050 

10.0 0.0202 10 1.193 

11.0 0.0218 11 1.288 

11.4 0.0224 12 1.326 
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Table 37: Air flux velocity bad ore - Scavenger regrinding investigation 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

11.5 0.0226 0 0.659 

12.0 0.0234 1 0.683 

12.5 0.0242 3 0.707 

13.5 0.0258 5 0.754 

15.0 0.0282 8 0.824 

15.5 0.0290 10 0.848 

16.0 0.0298 12 0.871 

16.5 0.0306 13 0.895 

17.5 0.0322 14 0.942 

 

Table 38: Air flux velocity bad ore - 0.0135 g/L- LG cleaner regrinding investigation 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

6.5 0.0145 0 0.859 

7.0 0.0153 1 0.907 

8.5 0.0177 3 1.050 

9.0 0.0185 4 1.097 

10.0 0.0202 6 1.193 

11.0 0.0218 8 1.288 

11.5 0.0226 10 1.336 

 

Table 39: Air flux velocity good ore - 0.012 g/L- Scavenger 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

13.0 0.025 0 0.730 

14.0 0.027 3 0.777 

14.5 0.027 5 0.801 

15.5 0.029 8 0.848 

16.0 0.030 12 0.871 

17.5 0.032 15 0.942 
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Table 40: Air flux velocity good ore – LG cleaner at 0.013 g/L 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

6.0 0.014 0 0.812 

6.5 0.015 1 0.859 

7.0 0.015 3 0.907 

7.5 0.016 6 0.955 

9.0 0.019 9 1.097 

10.0 0.020 10 1.193 

10.5 0.021 11 1.240 

11.0 0.022 12 1.288 

 

Table 41: Air flux velocity good ore– LG cleaner at 0.013 g/L 

TUBE READING AIR FLOW 

RATE / [m
3
.min

-

1
] 

TIME / [min] SUPERFICIAL 

FLUX VELOCITY 

/ [m.min
-1

] 

6.0 0.014 0 0.812 

7.0 0.015 1 0.907 

8.0 0.017 3 1.002 

9.5 0.019 5 1.145 

10.5 0.021 9 1.240 

11.0 0.022 12 1.288 

12.0 0.023 14 1.383 

13.5 0.026 15 1.526 
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Figure 82: Air rotameter calibration chart 
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 11.2 FROTHER INVESTIGATION 

Table 42: Raw data for liquid heights at various frother concentrations 

Liquid height / [mm] 

Frother Concentration / [%] Experimental values Arithmetic mean 

48.67 48.67 0 

48.66     

48.68     

46.32 46.32 0.1 

46.37     

46.27     

46.48 46.48 0.2 

46.5     

46.46     

44.08 44.08 0.3 

44.04     

44.12     

48.005 48.005 0.4 

47.68     

48.33     

44.05 44.05 0.5 

44     

44.1     

41.88 41.88 0.6 

41.9     

41.86     

44.055 44.055 0.7 

44.02     

44.09     

45.58 45.58 0.8 

45.59     

45.57     

41.9 41.9 0.9 

41.85     

41.95     

41.67 41.67 1 

41.7     

41.64     
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Table 43: Raw data for frother calibration using capillary method  

Frother concentration 

/ [%] 

Beaker mass before 

/ [g] 

Beaker mass 

after/ [g] 

Capillary tube 

mass/[g] 

Solution 

mass/[g] 

0 19.783 19.57 0.155 0.058 

0.1 19.541 19.325 0.16 0.056 

0.2 20.991 20.778 0.157 0.056 

0.3 19.668 19.461 0.155 0.052 

0.4 20.765 20.559 0.154 0.052 

0.5 20.779 20.561 0.165 0.052 

0.6 19.942 19.737 0.155 0.05 

0.7 19.758 19.549 0.159 0.05 

0.8 20.785 20.568 0.159 0.05 

0.9 19.791 19.584 0.159 0.048 

1 19.872 19.663 0.156 0.047 
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Table 44: Raw data for frother calibration using capillary method in dilute solution 

Frother 

concentration / 

[%] 

Capillary Tube 

mass / [g] 

Beaker mass 

before/ [g] 

Beaker mass 

after/[g] 

Solution 

mass/ [g] 

Arithmetic 

mean / [g] 

0.000 0.158 20.838 20.621 0.059 0.059 

  0.158 20.838 20.620 0.060   

  0.158 20.837 20.619 0.059   

0.010 0.156 19.374 19.159 0.059 0.059 

  0.156 19.373 19.158 0.059   

  0.156 19.372 19.158 0.059   

  0.156 19.366 19.150 0.060   

  0.156 19.364 19.146     

  0.156 19.363 19.145     

0.020 0.155 19.638 19.430   0.057 

  0.155 19.638 19.429     

  0.155 19.637 19.428     

  0.155 19.626 19.416     

  0.155 19.624 19.412 0.056   

  0.155 19.622 19.410 0.057   

0.030 0.159 19.390 19.178   0.056 

  0.159 19.389 19.179     

  0.159 19.389 19.177     

  0.159 19.379 19.164 0.056   

  0.159 19.377 19.163     

  0.159 19.377 19.162     

0.040 0.154 19.837 19.629   0.055 

  0.154 19.836 19.627     

  0.154 19.835 19.626 0.055   

0.050 0.160 19.528 19.314 0.055 0.055 

  0.160 19.527 19.313     

  0.160 19.526 19.313     

0.060 0.155 19.619 19.408   0.056 

  0.155 19.617 19.407     

  0.155 19.616 19.405 0.056   

0.070 0.160 19.710 19.496   0.055 

  0.160 19.709 19.495     

  0.160 19.708 19.493 0.055   

0.080 0.159 20.804 20.589 0.056 0.055 

  0.159 20.802 20.589 0.054   

  0.159 20.802 20.588 0.055   

 

N/B: All outlier points have been omitted from the calculation of the arithmetic mean in the 

above table. 
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Table 45: Raw data - bubbler calibration- 10 ml aliquots 

Concentration/ [g.L
-1

 ] Height/[cm] 

0 0 

0.01 3.8 

0.02 6.9 

0.03 9 

0.04 11 

0.05 12.4 

0.06 13 

0.08 13.8 

0.09 14 

0.1 14 

 

Table 46: Raw data- bubbler calibration - 20 ml aliquots 

Concentration/ [g.L
-1

 ] Height/[cm] 

0 0 

0.006 6.6 

0.008 8.5 

0.01 12 

0.013 16 

0.015 19 

0.02 23 
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Table 47: Raw data- good ore- 55 g/t – B 

Stream 
 

Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

Min g g % % g/ton % % g/ton % % % % 

T 
 

2360.50 2360.50 93.86 93.86 0.58 12.65 12.65 0.58 26.65 98.35 98.35 26.65 

A 

 

2514.90 2514.90 100.00 100.00 4.30 100.00 100.00 4.30 25.43 100.00 100.00 25.43 

H 1 22.40 22.40 0.89 0.89 235.00 48.65 48.65 0.00 1.55 0.05 0.05 1.55 

L 1 7.90 7.90 0.31 0.31 177.00 12.92 12.92 177.00 2.73 0.03 0.03 2.73 

 

3 9.20 17.10 0.68 0.37 90.20 7.67 20.59 130.30 2.95 0.04 0.08 2.85 

 
7 14.00 31.10 1.24 0.56 48.10 6.22 26.82 93.30 4.02 0.09 0.16 3.38 

 

15 14.20 45.30 1.80 0.56 31.30 4.11 30.93 73.86 5.36 0.12 0.28 4.00 

B 

 

86.70 86.70 3.45 3.45 9.69 7.77 7.77 9.69 9.82 1.33 1.33 9.82 

 

Table 48: Raw data- good ore- 51 g/t - B 

Stream 
Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

min g g % % g/ton % % g/ton % % % % 

T 

 

2330.00 2330.00 93.58 93.58 0.65 13.49 13.49 0.65 27.00 98.12 98.12 27.00 

A 
 

2489.90 2489.90 100.00 100.00 4.51 100.00 100.00 4.51 25.75 100.00 100.00 25.75 

H 1 18.50 18.50 0.74 0.74 301.00 49.62 49.62 0.00 1.64 0.05 0.05 1.64 

L 1 16.10 16.10 0.65 0.65 102.00 14.63 14.63 102.00 2.75 0.07 0.07 2.75 

 

3 11.40 27.50 1.10 0.46 58.40 5.93 20.56 83.93 3.83 0.07 0.14 3.19 

 

7 14.40 41.90 1.68 0.58 42.80 5.49 26.06 69.79 4.75 0.11 0.24 3.73 

 
15 13.90 55.80 2.24 0.56 28.90 3.58 29.64 59.61 6.12 0.13 0.38 4.32 

B 

 

85.60 85.60 3.44 3.44 9.51 7.25 7.25 9.51 10.90 1.46 1.46 10.90 
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Table 49: Raw data- good ore- 43 g/t - B 

Stream Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

Min g g % % g/ton % % g/ton % % % % 

T 

 

2315.00 2315.00 94.14 94.14 0.79 16.56 16.56 0.79 27.00 98.31 98.31 27.00 

A 
 

2459.00 2459.00 100.00 100.00 4.49 100.00 100.00 4.49 25.86 100.00 100.00 25.86 

H 1 20.40 20.40 0.83 0.83 260.00 48.03 48.03 0.00 1.74 0.06 0.06 1.74 

L 1 21.20 21.20 0.86 0.86 70.00 13.44 13.44 70.00 3.13 0.10 0.10 3.13 

 

3 18.50 39.70 1.61 0.75 56.10 9.40 22.84 63.52 3.94 0.11 0.22 3.51 

 

7 19.70 59.40 2.42 0.80 32.30 5.76 28.60 53.17 5.98 0.19 0.40 4.33 

 
15 14.90 74.30 3.02 0.61 23.60 3.18 31.79 47.24 7.37 0.17 0.58 4.94 

B 

 

49.30 49.30 2.00 2.00 8.10 3.62 3.62 8.10 13.60 1.05 1.05 13.60 

 

Table 50: Raw data- good ore- 67 g/t - A 

Stream 
Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

min g g % % g/ton % % g/ton % % % % 

T 

 

2321.90 2321.90 93.46 93.46 0.63 13.66 13.66 0.63 26.50 98.15 98.15 26.50 

A 

 

2484.40 2484.40 100.00 100.00 4.31 100.00 100.00 4.31 25.23 100.00 100.00 25.23 

H 1 21.10 21.10 0.85 0.85 248.00 48.88 48.88 0.00 1.74 0.06 0.06 1.74 

L 1 4.30 4.30 0.17 0.17 301.00 12.09 12.09 301.00 3.00 0.02 0.02 3.00 

 
3 7.40 11.70 0.47 0.30 120.00 8.29 20.38 186.52 4.00 0.05 0.07 3.63 

 

7 13.80 25.50 1.03 0.56 50.00 6.44 26.83 112.64 5.88 0.13 0.20 4.85 

 

15 20.40 45.90 1.85 0.82 20.70 3.94 30.77 71.78 5.50 0.18 0.38 5.14 

B 

 

95.50 95.50 3.84 3.84 7.50 6.69 6.69 7.50 9.32 1.42 1.42 9.32 
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Table 51: Raw data - good ore-  59 g/t - C 

Stream 
Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

Min g g % % g/ton % % g/ton % % % % 

T 
 

2335.40 2335.40 93.95 93.95 0.69 15.79 15.79 0.69 25.30 98.53 98.53 25.30 

A 

 

2485.90 2485.90 100.00 100.00 4.11 100.00 100.00 4.11 24.12 100.00 100.00 24.12 

H 1 26.40 26.40 1.06 1.06 170.00 43.98 43.98 0.00 2.07 0.09 0.09 2.07 

L 1 14.50 14.50 0.58 0.58 120.00 17.05 17.05 120.00 4.20 0.10 0.10 4.20 

 

3 11.20 25.70 1.03 0.45 100.00 10.98 28.03 111.28 6.50 0.12 0.22 5.20 

 
7 14.10 39.80 1.60 0.57 32.40 4.48 32.50 83.34 6.60 0.16 0.38 5.70 

 

15 17.10 56.90 2.29 0.69 18.10 3.03 35.54 63.73 7.00 0.20 0.58 6.09 

B 

 

67.20 67.20 2.70 2.70 7.13 4.70 4.70 7.13 11.60 1.30 1.30 11.60 

 

Table 52: Raw data - good ore- 67 g/t - C 

Stream Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

min g g % % g/ton % % g/ton % % % % 

T 
 

2337.90 2337.90 94.25 94.25 0.65 14.87 14.87 0.65 26.00 98.36 98.36 26.00 

A 

 

2480.60 2480.60 100.00 100.00 4.12 100.00 100.00 4.12 24.91 100.00 100.00 24.91 

H 1 26.30 26.30 1.06 1.06 175.00 45.05 45.05 0.00 1.99 0.08 0.08 1.99 

L 1 8.90 8.90 0.36 0.36 203.00 17.68 17.68 203.00 4.03 0.06 0.06 4.03 

 

3 7.70 16.60 0.67 0.31 120.00 9.04 26.73 164.50 5.73 0.07 0.13 4.82 

 

7 10.40 27.00 1.09 0.42 39.40 4.01 30.74 116.31 6.16 0.10 0.23 5.33 

 

15 14.30 41.30 1.66 0.58 24.40 3.42 34.16 84.49 6.02 0.14 0.37 5.57 

B 
 

75.10 75.10 3.03 3.03 8.05 5.92 5.92 8.05 9.71 1.18 1.18 9.71 
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Table 53: Raw data 67 g/t bad ore 

Stream Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

Min g g %  %  g/ton %  %  g/ton % %  %  % 

T   2238.60 2238.60 90.33 90.33 0.58 18.90 18.90 0.58 25.60 97.54 97.54 25.60 

A   2478.30 2478.30 100.00 100.00 2.75 100.00 100.00 2.75 23.61 100.00 100.00 23.61 

H 1 38.20 38.20 1.54 1.54 89.08 49.96 49.96 0.00 1.94 0.07 0.07 1.94 

L 1 1.00 1.00 0.04 0.04 425.00 6.24 6.24 425.00 0.00 0.00 0.00 0.00 

  3 2.20 3.20 0.13 0.09 144.00 4.65 10.89 231.81 0.00 0.00 0.00 0.00 

  7 4.90 8.10 0.33 0.20 61.40 4.42 15.31 128.72 0.00 0.00 0.00 0.00 

  15 4.40 12.50 0.50 0.18 33.20 2.14 17.45 95.10 5.78 0.08 0.08 5.78 

B   189.00 189.00 7.63 7.63 4.93 13.68 13.68 4.93 6.18 2.17 2.17 6.18 

 

Table 54: Raw data 51 g/t bad ore 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

min g g %  %  g/ton %  %  g/ton 

T   2276.40 2276.40 91.06 91.06 0.65 16.70 16.70 0.65 

A   2500.00 2500.00 100.00 100.00 3.54 100.00 100.00 3.54 

H 1 26.40 26.40 1.06 1.06 146.00 43.49 43.49 146.00 

L 1 28.00 28.00 1.12 1.12 63.80 20.16 20.16 63.80 

  3 17.90 45.90 1.84 0.72 29.00 5.86 26.02 50.23 

  7 22.20 68.10 2.72 0.89 17.10 4.28 30.30 39.43 

  15 26.30 94.40 3.78 1.05 12.00 3.56 33.86 31.79 

B   102.80 102.80 4.11 4.11 5.13 5.95 5.95 5.13 
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Table 55: Raw data - 43 g/t - bad ore 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

Min g g %  %  g/ton %  %  g/ton 

T   2263.90 2263.90 90.56 90.56 0.64 16.78 16.78 0.64 

A   2500.00 2500.00 100.00 100.00 3.45 100.00 100.00 3.45 

H 1 23.50 23.50 0.94 0.94 127.00 34.56 34.56 127.00 

L 1 51.20 51.20 2.05 2.05 45.50 26.97 26.97 45.50 

  3 24.30 75.50 3.02 0.97 22.40 6.30 33.28 38.07 

  7 29.70 105.20 4.21 1.19 16.40 5.64 38.91 31.95 

  15 26.30 131.50 5.26 1.05 14.30 4.35 43.27 28.42 

B   81.10 81.10 3.24 3.24 5.75 5.40 5.40 5.75 

 

Table 56: Raw data - 55 g/t - bad ore 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

min g g %  %  g/ton %  %  g/ton 

T   2258.90 2258.90 90.36 90.36 0.72 18.49 18.49 0.72 

A   2500.00 2500.00 100.00 100.00 3.49 100.00 100.00 3.49 

H 1 29.90 29.90 1.20 1.20 112.00 38.33 38.33 112.00 

L 1 23.50 23.50 0.94 0.94 83.20 22.38 22.38 83.20 

  3 15.40 38.90 1.56 0.62 36.70 6.47 28.85 64.79 

  7 18.50 57.40 2.30 0.74 20.60 4.36 33.21 50.55 

  15 29.80 87.20 3.49 1.19 11.00 3.75 36.96 37.03 

B   124.00 124.00 4.96 4.96 4.38 6.22 6.22 4.38 
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Table 57: Raw data - 59 g/t - bad ore 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

Min g g %  %  g/ton %  %  g/ton 

T   2312.75 2312.75 92.51 92.51 0.75 20.07 20.07 0.75 

A   2500.00 2500.00 100.00 100.00 3.46 100.00 100.00 3.46 

H 1 47.90 47.90 1.92 1.92 95.10 52.70 52.70 95.10 

L 1 4.10 4.10 0.16 0.16 205.00 9.72 9.72 205.00 

  3 3.15 7.25 0.29 0.13 106.00 3.86 13.59 161.99 

  7 6.00 13.25 0.53 0.24 45.80 3.18 16.77 109.37 

  15 10.50 23.75 0.95 0.42 26.70 3.24 20.01 72.82 

B   115.60 115.60 4.62 4.62 5.40 7.22 7.22 5.40 

 

Table 58: Raw data - 43 g/t - bad ore regrind 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

min g g %  %  g/ton %  %  g/ton 

T   2237.20 2237.20 89.51 89.51 0.58 14.27 14.27 0.58 

A   2499.40 2499.40 100.00 100.00 3.64 100.00 100.00 3.64 

H 1 25.30 25.30 1.01 1.01 138.00 38.39 38.39 138.00 

L 1 61.30 61.30 2.45 2.45 41.70 28.11 28.11 41.70 

  3 33.50 94.80 3.79 1.34 20.00 7.37 35.47 34.03 

  7 39.50 134.30 5.37 1.58 13.00 5.65 41.12 27.85 

  15 27.50 161.80 6.47 1.10 10.00 3.02 44.14 24.81 

B   75.10 75.10 3.00 3.00 3.88 3.20 3.20 3.88 
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Table 59: Raw data -51 g/t - bad ore regrind 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

min g g %  %  g/ton %  %  g/ton 

T   2200.70 2200.70 89.16 89.16 0.45 12.75 12.75 0.45 

A   2468.30 2468.30 100.00 100.00 3.15 100.00 100.00 3.15 

H 1 29.00 29.00 1.17 1.17 100.00 37.33 37.33 100.00 

L 1 45.90 45.90 1.86 1.86 40.00 23.64 23.64 40.00 

  3 41.40 87.30 3.54 1.68 22.30 11.88 35.52 31.61 

  7 35.70 123.00 4.98 1.45 14.00 6.43 41.95 26.50 

  15 30.50 153.50 6.22 1.24 10.10 3.97 45.92 23.24 

B   85.10 85.10 3.45 3.45 3.65 4.00 4.00 3.65 

 

Table 60: Raw data – 59 g/t – bad ore regrind 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

Min g g %  %  g/ton %  %  g/ton 

T   2237.20 2237.20 89.51 89.51 0.60 15.24 15.24 0.60 

A   2499.40 2499.40 100.00 100.00 3.52 100.00 100.00 3.52 

H 1 18.60 18.60 0.74 0.74 172.00 36.33 36.33 172.00 

L 1 12.90 12.90 0.52 0.52 137.50 20.14 20.14 137.50 

  3 20.60 33.50 1.34 0.82 50.90 11.91 32.05 84.25 

  7 29.70 63.20 2.53 1.19 20.30 6.85 38.90 54.20 

  15 45.50 108.70 4.35 1.82 7.63 3.94 42.84 34.70 

B   134.90 134.90 5.40 5.40 3.65 5.59 5.59 3.65 
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Table 61: Raw data - 67 g/t - bad ore regrind 

Stream Time 

SOLIDS PGM 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade 

min g g %  %  g/ton %  %  g/ton 

T   2217.20 2217.20 92.81 92.81 0.59 18.57 18.57 0.59 

A   2388.90 2388.90 100.00 100.00 2.95 100.00 100.00 2.95 

H 1 27.30 27.30 1.14 1.14 100.00 38.75 38.75 100.00 

L 1 8.40 8.40 0.35 0.35 150.00 17.88 17.88 150.00 

  3 7.50 15.90 0.67 0.31 100.00 10.65 28.53 126.42 

  7 16.70 32.60 1.36 0.70 25.00 5.93 34.46 74.46 

  15 26.60 59.20 2.48 1.11 10.00 3.78 38.23 45.50 

B   85.20 85.20 3.57 3.57 3.68 4.45 4.45 3.68 

 

Table 62: Raw data - 75 g/t - bad ore regrind 

Stream 
Time 

SOLIDS PGM Cr2O3 

Mass Cum. Mass Cum.Mass distribution Mass rec Grade Distribution Cum. Recovery Cum. Grade Grade Distribution Cum. Recovery Cum.Content 

Min g g %  %  g/ton %  %  g/ton % %  %  % 

T   2229.80 2229.80 89.12 89.12 0.54 13.43 13.43 0.54 26.40 97.51 97.51 26.40 

A   2502.10 2502.10 100.00 100.00 3.58 100.00 100.00 3.58 24.13 100.00 100.00 24.13 

H 1 15.90 15.90 0.64 0.64 188.00 33.34 33.34 188.00 1.99 0.05 0.05 1.99 

L 1 7.00 7.00 0.28 0.28 296.00 23.11 23.11 296.00 3.04 0.04 0.04 3.04 

  3 7.00 14.00 0.56 0.28 123.00 9.60 32.71 209.50 4.74 0.05 0.09 3.89 

  7 8.50 22.50 0.90 0.34 58.80 5.57 38.29 152.57 6.00 0.08 0.17 4.69 

  15 8.70 31.20 1.25 0.35 37.50 3.64 41.93 120.48 6.37 0.09 0.27 5.16 

B   225.20 225.20 9.00 9.00 4.50 11.30 11.30 4.50 5.81 2.17 2.17 5.81 
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Single stage batch flotation was used for the preliminary test work. Rate tests were conducted at various times according to the following labels 

for each concentrate: RC1, RC2 et al. The rougher tails, collected at the end of the test, was labelled as RT.  

Table 63: Preliminary ore - Test 1 

Stream 
Time Mass Cum. Mass Mass distribution Cum. Mass rec 

min G G % % 

RC1 1 58.50 58.50 4.29 4.29 

RC2 3 34.20 92.70 2.51 6.80 

RC3 7 38.30 131.00 2.81 9.61 

RC4 20 44.40 175.40 3.26 12.86 

RT 

 

1188.20 1363.60 87.14 100.00 

Total (cal.)   1363.60       

Total (meas.)   1427.50       

Variance   4.48%       

 

Table 64: Preliminary ore - Test 2 

Stream 
Time Mass Cum. Mass Mass distribution Cum. Mass rec 

min G g % % 

RC1 1 62.10 62.10 4.54 4.54 

RC2 3 32.20 94.30 2.35 6.89 

RC3 7 39.70 134.00 2.90 9.79 

RC4 20 45.90 179.90 3.36 13.15 

RT   1188.20 1368.10 86.85 100.00 

Total (cal.)   1368.10       

Total (meas.)   1427.50       

Variance   4.16%       

 

 


