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ABSTRACT 

Dissolving wood pulp (DWP) is bleached wood pulp that contains high cellulose content, typically 

>95%. The bleaching is done to remove remnants of lignin and hemicelluloses that are not 

necessary for the final DWP.  The pulp is chemically processed to make high-grade products such 

as speciality papers, viscose fabrics, and microcrystalline cellulose used in applications such as 

textile fibres, fillers in pharmaceutical tablets, or as a thickener in food additives, and manufacture 

of paints. Frequently, the fully bleached DWP exhibits an unwanted yellowish haze. This 

phenomenon results in loss of brightness in the pulps and is referred to as brightness reversion.   

Remnants of polysaccharides on DWP are believed to give rise to chromophores responsible for 

the brightness reversion. Such reversion in brightness is viewed as an early sign of ageing or 

deterioration of the pulp.  

The impact of chromophores on the quality of DWP is a pressing issue in the global pulp and 

paper industry. Thus, identification of chromophores in the pulps is an important aspect to solving 

this problem and efforts have been made to develop techniques for identification of the 

chromophores responsible for brightness reversion. For example, an elegant method, termed 

chromophore release and identification, has been developed.  However, application of the 

methodology for analysis of chromophores in pulps is tedious and long. It takes, on average, seven 

days to generate results, and a large quantity of pulp is required for the analysis. Such a long 

processing time is not ideal for industrial applications where time is of the essence. Hence, in this 

study, a novel methodology that allows for rapid and accurate characterization of chromophores 

directly from pulp fibres has been developed. The method entails direct analysis of chromophores 

on pulps without pre-extraction of chromophores, and results are obtained in less than an hour. 

The methodology entails the use of analytical pyrolysis combined with gas chromatography/mass 

spectrometry (Py-GC/MS) for direct detection and identification of chromophores in DWP.  

To develop the method, selected fully bleached DWP samples were induced for brightness 

reversion and then analysed by Py-GC/MS and any chromophores present were identified by mass 

spectrometry. Probable compounds that could have contributed to the brightness reversion were 

also induced for brightness reversion and analysed to ascertain any similarities with the pyrograms 

of the brightness reversed DWP samples as well as mass spectral identities of the compounds. The 

results showed that the pulps that were induced for brightness reversion contained relatively higher 

amounts of chromophores than the original pulps, with ketones and furan-type compounds 

(originating from degraded cellulose and remnants of the hemicelluloses) being the major 

chromophoric groups.  
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Analysis of data on pulps with varying brightness reversion values did not show correlation with 

the relative amounts of chromophores detected by Py-GC/MS. The results confirmed literature 

reports that brightness is not a good indicator of the concentration of chromophores in pulps. 

The developed Py-GC/MS method was then used to identify chromophores in DWP samples 

produced from the industry and the laboratory. Considering that the industry-produced DWP was 

from a wood furnish comprised of a mixture of wood species, it was essential to understand how 

the different clones/species in the wood furnish influenced the formation of chromophores. the 

results showed that different wood species contained the same type of chromophores, with furan-

type compounds and conjugated ketones being the major groups of compounds detected. Pulps 

were sampled from different unit operations in a mill to ascertain the profiles of chromophores 

along the mill process. Additionally to the industrial in-process pulps, a number of single clone 

acid bi-sulphite pulps were bleached in the laboratory to produce pulps (in-process) that were also 

analysed for chromophore content using Py-GC/MS. The main groups of chromophores identified 

in all the samples were still furans-type compounds and conjugated ketones. Wet chemical 

analysis of in-process pulps showed that the remnants of hemicelluloses and degraded cellulose 

in the pulps have a significant impact on the formation of the ketones and furan-type compounds.  

Finally, the developed Py-GC/MS method was tested on other pulps (besides DWP) that contained 

higher amounts of lignin (viz., the newsprint and kraft pulp). This was done to ascertain if the 

method would apply to other pulps besides DWP. As expected, the results showed that newsprint 

contained very high amounts of chromophores due to lignin whereas kraft pulps exhibited smaller 

amounts of lignin-type pyrolysis products. Thus, lignin was the major cause of brightness 

reversion in pulps that contain lignin and residual amounts of lignin.  

Overall, the major chromophoric compounds identified in DWP were conjugated ketones and 

furan-type compounds. These compounds originated from remnants of hemicelluloses and 

degraded cellulose in the pulps: this agrees with literature reports on the origin of chromophores 

in cellulosic materials. The Py-GC/MS is a novel tool for rapid and direct analysis of residual 

chromophores in fully bleached and in-process DWPs and can be utilised for rapidly identifying 

the presence and chemistry of residual chromophores in DWP. The technique is currently being 

used to monitor the quality of industrially-produced DWP from different pulp mills.
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CHAPTER 1 

INTRODUCTION 

1.1 Wood as a raw material 

Wood is a pre-historic material that has always been essential to the life on earth. Over 10 000 

years ago, wood was mainly used by humans for providing shelter, farming, construction, heat 

and for making furniture (Stalnaker and Harris, 1997). However, humans do not have control over 

the properties of wood, the properties vary depending on the species, moisture content and the 

specific gravity, the size and location of structural defects, all these factors affect the end products 

of wood (Stalnaker and Harris, 1997). Developments from different parts of the world have 

enabled the production of wood derived chemicals such as charcoal, tall oil for making adhesives 

and tar for covering road surfaces (Sjöström, 1993). 2200 years ago, wood was shown to be an 

excellent raw material to produce paper in China (Ek et al., 2009).  

Wood is classified into softwoods and hardwoods; Table 1.1 shows the chemical differences in 

the composition of softwoods and hardwoods. It shows that the percentage of cellulose and the 

extractives are the same in both wood types. However, softwoods contain a slightly higher 

percentage of the hemicelluloses and lignin compared to the hardwoods  (Ek et al., 2009). 

Table 1.1: Chemical composition of softwoods and hardwoods. Adapted from Ek et al. (2009). 

Wood type Cellulose Hemicellulose Lignin Extractives 

Softwood 40-44% 20-32% 25-35% 2-5% 

Hardwood 40-44% 15-35% 18-25% 2-5% 

 

Softwoods and hardwoods are both used in the pulp and paper manufacture as a primary source 

of fibre: the choice of wood depends on the availability and the requirements of the product. 

Softwoods are non-seed-bearing plants belonging to a group of plants known as gymnosperms 

and produce pulp with long fibres. Hardwoods are seed bearing plants that belong to a group of 

angiosperms: their resulting pulps have short fibres (Stalnaker and Harris, 1997). Softwoods are 

mainly mechanically pulped and sometimes chemically pulped for the production of high strength 

papers whereas hardwoods are mostly used for chemical pulping (Ek et al., 2009). More 

differences between softwoods and hardwoods are shown in Table 1.2. Most forests of the world 

such as the temperate mixed forests, forests of the tropical circle and tropical rainforests are 

dominated by the hardwoods (Ek et al., 2009).  
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Table 1.2: Differences between softwoods and hardwoods. Adapted from Stalnaker (1997).  

 Softwoods Hardwoods 

Plant group Gymnosperm Angiosperm 

Tree density Low tree density High tree density 

Leaves Needle shape, loose leaves annually 

(deciduous trees) 

Broad leaves, evergreen 

throughout the year 

Uses Pulp and paper making Pulp and paper making and 

manufacture of solid wood 

materials. 

Examples  

 

Wattle, birch, oak, beech, aspen Eucalyptus, spruce, willow, 

redwood, pine 

Hardwoods are mainly used for pulping in countries that have a low density of softwoods, and 

thus, most hardwoods, especially the Eucalyptus species, are cultivated and harvested as 

plantations, usually located closer to the pulp and paper mill. Relative to the natural forests, 

plantations are harvested after five or seven years of growth compared to over 100 years of plant 

growth required for natural forests (Ek et al., 2009). Large industrial plantations are found in 

China, United States, Brazil, Australia, India, Europe and South Africa. In South Africa, 

plantations cover more than 1.2 million hectares of arable land with over 80% located in the 

Mpumalanga, KwaZulu-Natal and the Eastern Cape provinces as shown in Figure 1.1 (safiri.co.za, 

2011). The global pulp and paper industry is moving towards the use of plantations as an 

environmentally friendly strategy to conserve water and to restore damaged land (Ek et al., 2009).  

 

Figure 1.1: Forest distribution in South Africa, showing plantation regions.  

Adapted from safiri.co.za (2011). 
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1.2 The growth of wood in a tree 

The microstructure of wood is illustrated in Figure 1.2 showing the tangential, transverse and 

radial sections of the pine stem (Ek et al., 2009). The growth rings develop annually around the 

pith in a circular arrangement and consist of the earlywood cells that develop early during the 

spring season also known as springwood. The earlywood cells are large and thin-walled thus 

allowing fast movement of water and nutrients. The latewood cells develop in summer during the 

slow growth season, hence, they become thick-walled thus making the latewood cells look darker 

than the earlywood cells (Ek et al., 2009). The earlywood part of the annual ring contains less 

cellulose per unit area than the latewood part of the annual ring. The high cellulose content of the 

latewood cells make wood an important raw material for pulp and paper production (Stalnaker 

and Harris, 1997).     

 

 

Figure 1.2: The microscopic structure of a pine stem showing: (a) a transverse section and (b) a 

detailed sectional view. 

Adapted from Ek et al. (2009). 

1.3 Wood in the pulp and paper industry 

The primary raw materials used in the pulp and paper making are softwoods and hardwoods 

because they are naturally abundant, and they are easily harvested for transportation to the pulp 

mills. Ek et al. (2009) lists the following as vital properties of wood required for the pulping 

process: the colour (dark coloured wood requires intense bleaching), the homogeneity of wood 

cells (required for production of high quality pulps), the amount of extractives (causes pitch 

deposition during mechanical pulping) and the tree density (required for cost effective 

transportation and packing of the boilers) (Ek et al., 2009). 
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Other non-woody cellulosic raw materials used in the pulp and paper production include recycled 

paper and agricultural field residues (Ek et al., 2009). Developing countries mainly use non-woody 

cellulosic materials for pulp and paper production such as bagasse, bamboo and straw reeds 

(Bajpai, 2010). In addition to wood and other non-woody materials, recycled paper is also one of 

the primary fibre sources following wood. (Ek et al., 2009). Figure 1.3 shows the annual 

consumption of the raw materials used in the pulp and papermaking, and it indicates that, 

following wood, the recycled pulp fibres also plays a significant role as a raw material (Ek et al., 

2009).  

 

Figure 1.3: Raw materials for pulp and paper making. 

Adapted from (Ek et al., 2009). 

The harvested cellulosic material is processed either mechanically or chemically to remove the 

lignin in a process known as delignification (for chemical pulps) and then bleached, depending on 

the requirements of the final pulp product. The main steps involved in pulp and paper making are 

the handling and preparation of the cellulosic raw material (debarking, chipping), followed by the 

pulping process (mechanical or chemical), pulp screening and washing, chemical recovery, 

bleaching and pulp drying or paper making as shown in Figure 1.4 (Bajpai, 2010).  
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Figure 1.4: Overview of the pulp and paper making process.  

Adapted from Bajpai (2010). 

pulp and paper mills can exist independently or co-exist as an integrated operation. The pulp 

produced in an integrated mill (Figure 1.5) is packed for further downstream processing, and some 

of it is used for paper production. The main benefit of an integrated operation is the high-energy 

efficiency. The pulp and paper industry was ranked as the fourth industry with a high-energy 

consumption in 2006, consuming about 6% (6.7 EJ per annum) of the annual global industrial 

energy consumption. This was reduced to 2.1-2.4 EJ per annum through the improved efficiency 

brought by the integrated operations (iipnetwork.org, 2008). 

 

Figure 1.5: Schematic of an integrated pulp and paper mill. 

Adapted from Bajpai (2010). 
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1.4 The pulping process 

The pulping process utilises mechanical and chemical methods to produce pulp, hence, the pulps 

are classified into mechanical and chemical pulps. The following paragraphs will introduce the 

mechanical and chemical pulping methods.  

1.4.1 Mechanical pulping 

Mechanical pulping constitutes of three main pulping methods:  

 Groundwood pulping (GWP) 

 Refiner mechanical pulping (RMP) 

 Chemi-mechanical pulping (CMP) 

During GWP, the wood chips are refined at an elevated temperature to break the bonds between 

the fibres while weakening the lignin in the process. In GWP, hardwoods such as aspen are used 

to produce pulps of superior quality, which result in high brightness after bleaching. Figure 1.6 

shows the main steps in GWP and RMP (Bajpai, 2010).  

 

Figure 1.6: Schematic of the mechanical pulping process. 

Adapted from Bajpai (2010). 

The most commonly used RMP method in the pulp and paper industry is the thermomechanical 

pulping (TMP) and the common CMP method is the chemi-thermomechanical pulping (CTMP) 

(Bajpai, 2010). 
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In the TMP process, the wood chips are steamed before the mechanical refining stage. This breaks 

the bonds interconnecting the fibres and softens the lignin. It has been shown that the TMP pulps 

are better quality than the GWP and have been used as a cheaper material (relative to kraft pulps) 

for making newsprints, paperboard and tissue papers. Unlike GWP that uses hardwoods, the TMP 

process only produces good quality pulps from softwoods because the hardwoods do not give pulp 

with excellent strength properties when subjected to the TMP process (Bajpai, 2010).  

In contrast to GWP and TMP, the CTMP produces good quality pulps from either softwoods or 

hardwoods because the wood chips are pretreated with hydrogen sulphite before the steaming and 

the refining stage. This causes the sulphonation of the lignin; the sulphonated lignin is then easily 

removed from the fibres during the refining stage.  

The production cost of mechanical pulps is 50% cheaper than the production of chemical pulps. 

However, the quality of mechanical pulps is poorer compared to chemical pulps. The poor quality 

of mechanical pulps is due to the mixed sizes of fibres, fines and the high content of non-

solubilized lignin (Ek, 2009, Bommarius and Riebel-Bommarius, 2004).  Furthermore, in 

mechanical pulp production the energy consumed is very high, especially the TMP process even 

though GWP process has a lower energy demand compared to the TMP process, it is still energy 

demanding. Table 1.3 shows a comparative summary of the mechanical pulps and the chemical 

pulps. 

Table 1.3: Basic properties of mechanical and chemical pulps. Adapted from Bajpai (2010). 

Pulping Process Pulp colour Yield (%) Uses 

Thermomechanical Brown 95 Paperboard, newsprints, paper bags 

Chemi-thermomechanical Light brown 85-95 Newsprint, speciality paper 

Semi-chemical Beige brown 60-80 Greaseproof papers, corrugating 

medium and bond papers 

Kraft Light brown 40-55 Newsprints, fine papers 

Acid sulphite Light brown 40-50 Speciality paper, viscose/ rayon 

PHK Light brown 40-50 Speciality paper, viscose/ rayon 

1.4.2 Chemical pulping 

Lignin is chemically dissolved during chemical pulping, while cellulose and some hemicelluloses 

remain. The yield of chemical pulps is comparatively lower than the yield of mechanical pulps. 

However, chemical pulps have excellent strength properties (Young, 1994). Traditionally, 

chemical pulps were manufactured using either the sulphate (kraft), the sulphite (Figure 1.7) or 

the soda process (Bohnet, 2003). Recently, chemical pulp manufacturers have introduced the pre-

hydrolysis kraft (PHK) pulping process for the manufacture of DWP. 
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Chemical pulp

Sulphate (Kraft) Sulphite

Acid bi-sulphite

pH 1-2

Bi-sulphite

pH 3-5

Neutral sulphite 

semi chemical

pH 5-7

Alkaline sulphite

pH 9-13.5
Pre-hydrolysis kraft

Dissolving wood pulp

Multistage

sulphite pH 1-10

AQ-sulphite 

pH 9-13

 

Figure 1.7: Types of chemical pulps.  

Adapted from Bohnet (2003). 

Kraft and PHK pulps follow a caustic chemical pulping process, whereas the sulphite process uses 

the entire pH range. During the kraft process, the wood chips are cooked in a solution of caustic 

soda and sodium sulphite, the resulting pulp is dark brown (brown stock) due to the high lignin 

content of the cooking liquor. The brown stock is washed with water to remove the black liquor 

and the pulp washings are collected as part of the chemical recovery process. Among the chemical 

pulping processes, the unbleached kraft pulp has a high yield (40-55%) and is mainly used to 

produce packaging paper products. The bleached grade of kraft pulp gives a lower yield than the 

unbleached kraft pulp, and the bleached grade is primarily utilized for the manufacture of white 

papers.  

The kraft process has been continuously developed since the 1980s due to environmental concerns 

(Bajpai, 2010). The high volumes of the kraft mill effluents containing chlorinated compounds 

(from the chlorinated bleaching agents used) caused toxicity of water in receiving waters to aquatic 

biota and communities that are reliant on the waters. The kraft process dominates chemical pulp 

production, producing over 91% of chemical pulps due to its ability to generate high strength pulps 

while allowing chemical and energy recovery (Bajpai, 2010). Figure 1.8 represents a simplified 

schematic of the kraft process showing the chemical and energy recovery cycle. 
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Figure 1.8: Schematic of the kraft process, showing cycles for chemical and energy recovery.  

Adapted from Bajpai (2010). 

The term “sulphite process” was originally used for acid bisulphite pulping, but due to the 

flexibility of the process over a wide range of pH, several types of pulp are produced using the 

sulphite process. The pulp produced from each of the sulphite processes has different 

characteristics and therefore different industrial applications (Chunilall, 2009). The subdivisions 

of the sulphite process include the acid bi-sulphite, bi-sulphite, neutral sulphite semi-chemical 

(NSSC), alkaline sulphite, multistage sulphite and anthraquinone catalysed sulphite pulping (AQ-

sulphite) as shown in Figure 1.7 (Bohnet, 2003). During sulphite pulping, various chemicals are 

used to solubilize and remove lignin to give brighter pulps (compared to kraft pulps) that are easily 

bleached to high brightness levels (Bajpai, 2010). 

Semi-chemical pulping is one of the chemical pulping processes (Figure 1.9). The most commonly 

used semi-chemical pulping method is the NSSC contributing about 3.9% of the global production 

of the pulp. The process involves a moderate chemical treatment of wood chips before the 

mechanical refining stage. The hardwood chips are cooked in a buffered sodium sulphite solution, 

and then fibre separation is completed through mechanical refining. The NSSC operation is 

usually integrated to a kraft mill to allow effective chemical recovery; the sulphite spent liquor 

was processed with the kraft liquor to provide the required chemical makeup for the kraft process. 

However, modern kraft mills operate independently of the NSSC process for chemical recovery 

(Bajpai, 2010). 
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Figure 1.9: Schematic of the semi-chemical pulping process. 

Adapted from Bajpai (2010). 

In the acid sulphite (AS) process, the wood chips are cooked in a mixture of sulphur dioxide and 

a base. Calcium, sodium, magnesium or ammonium bases are usually used in the AS process 

(Figure 1.10). The choice of the base depends on the chemical and energy recovery requirements 

of the process. Bases of magnesium and sodium are mostly used in the AS process because they 

allow for chemical recovery. The average yield of unbleached AS pulps is between 40-50% and 

is reduced further during the bleaching process. The main by-product generated in the AS process 

are lignosulphonates that find applications as plasticisers during the manufacture of concrete or as 

binders for dust suppression in mining operations or untarred road (Chandra, 1996).  

1.4.3 Dissolving wood pulp 

Dissolving wood pulp (DWP) is the type of chemical pulp with a very high cellulose content and 

meager amounts of non-cellulosic contaminants (Sixta, 2006). The AS and PHK are two main 

processes used for producing DWP, whereas kraft pulp is mainly used for producing paper pulp. 

These processes were developed in the 1950s and are still used to produce DWP across the world 

(Bajpai, 2015, Bajpai, 2012, Sixta, 2006). Most of the residual lignin and hemicelluloses in the 

pulps are removed during the bleaching process to give pulp with a high cellulose content of 91-

98% (Jahan et al., 2008). DWP is also called dissolving cellulose pulp because it can be dissolved 

to increase reactivity and accessibility for the production of viscose/ rayon and other important 

cellulose derivatives (Woodings, 2001).  
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Figure 1.10: Schematic of the acid sulphite process. 

Adapted from Bajpai (2010). 

DWP is mainly produced in parts of the world that have rich forest resources, for example, South 

Africa, Brazil, China, North America and Canada (Pulp-paperworld.com, 2015). These countries 

produced over 6 million tonnes in 2012 that increased to 7.5 million tonnes in 2015 (risiinfo.com, 

2016, Marketersmedia.com, 2016). The major companies producing DWP include Sappi, Aditya, 

Bracell, Fortress Paper, Neucel, Sateri, Lenzing, Rayonier and Sun paper (Marketersmedia.com, 

2016).  

DWP has excellent strength properties and high levels of brightness compared to a regular pulp, 

and the end use application depends on the purity of the cellulose (Sixta, 2006). The quality and 

purity of DWP rely on a combination of factors such as the origin of the wood material and the 

processing conditions employed during pulp manufacture, and these in turn, have an impact on 

brightness reversion (Jahan et al., 2008). Above 75% of globally produced DWP is used for the 

manufacture of cellulose fibres, such as viscose/ rayon and filament yarn used for the production 

of fabrics in the textile industry (Bajpai, 2012, Kaur et al., 2016). Other end products of DWP 

include pharmaceuticals, explosives, acetate film and rayon staple (Figure 1.11) 
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Figure 1.11: DWP: From raw material to finished products.  

Adapted from Flickinger (2011). 

The use of DWP for viscose fabric production started back in 1884 in south-eastern France 

(Echirolles) with viscose production based on a nitration process (Teräs and Jokinen, 2010). 

Developments in the early 1890s led to the use of the xanthation process for viscose production 

(Teräs and Jokinen, 2010) and the method is still used to date by leading manufacturers 

(Lenzing.com, 2015). Since the nitration process was environmentally unfriendly and costly, it 

was then terminated in 1940. 

Forecasts show that global textile fibre consumption will increase by 61 million tonnes between 

2010 and 2030, with an estimated average increase of 3.1% annually due to the increasing human 

population (Haemmerle, 2011, Sixta et al., 2013).   DWP is considered a good substitute for cotton 

since forestry does not require the use of expensive pesticides and is easier to grow. Moreover, the 

forecast shows that cotton production will slow down shortly due to the limited availability of the 

cotton farming land as the population increases (Haemmerle, 2011, Sixta et al., 2013). The only 

feasible solution to this problem is to increase the production of high-quality DWP, meaning that 

the annual global DWP production should increase by 14.8 million tonnes (Shen and Patel, 2010) 

hence, this study will be focused on improving the quality of DWP. 

DWP is bleached to very high brightness levels prior to the chemical processes mentioned in the 

preceding paragraphs to produce high brightness pulp for the manufacture of high-grade products. 

However, at times it has been observed that the brightness (whiteness) of the pulp decreases and 
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imparts an undesirable yellowish haze on the final pulp, depending on the nature and conditions 

of storage of the pulp (Gamble, 2007). This undesirable phenomenon is termed brightness 

reversion or yellowing of DWP and is often viewed as an early sign of deterioration and ageing of 

the pulp: thus, pulp of lower brightness is perceived as low-quality pulp. Figure 1.12 shows fully 

bleached DWPs with high brightness and the pulp with low brightness due to brightness reversion. 

Pulp brightness and yellowness are affected by factors such as the lignin and hemicellulose that 

remain after bleaching, bleaching chemicals, the presence of lipophilic extractives, transition 

metal complexes, the use of additives, environmental storage conditions and the amount of 

degraded cellulose (Bajpai, 2015). These factors result in the formation of chromophores, believed 

to be the main culprits in brightness reversion.  

A chromophore is a structural feature of an organic compound that is responsible for the absorption 

of UV light. Chromophoric compounds contain a conjugated system of alternating, multiple, 

single and double bonds that absorb UV light and are, therefore, responsible for the colour of most 

organic compounds. Such compounds have high extinction coefficients and exhibit absorption and 

fluorescence in the UV-spectral region. Consequently, chromophores are easily noticed by the 

human eye due to their bright-yellow appearance  (Rosenau et al., 2004).   

(a) (b)  

Figure 1.12: DWP with (a) high brightness and (b) low brightness. 

The brightness reversion of fully bleached pulps has major economic implications for the world 

pulp markets in that such pulps are either rejected or sold at lower prices than normal pulps. As a 

result, the pulp and paper industry is looking for solutions to resolve this problem (Sappi.com, 

2015). The problem is more severe in DWP markets since there is a growing demand of DWP in 

food, pharmaceutical, and textile industries. This suggests that research focussed on improving 

the quality of DWP is needed to meet the projected future demands. 

1.5 Thesis statement 

Brightness reversion in DWP is believed to be due to two factors, firstly, the hemicelluloses that 

survive the bleaching process and secondly, the residual lignin that is degraded to form 

chromophoric structures. In the DWP, these, in turn, give rise to chromophores with chemical 
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structures that are dependent on the nature of the wood used as raw material, the mill processing 

conditions, and the pulp storage conditions.  

1.6 Rationale and motivation 

Although a number of studies have been undertaken to understand brightness reversion in fully 

bleached pulps, the causes and mechanisms of the reversion remain unclear in fully bleached 

DWP. Several laboratories have worked on this problem and have developed several approaches 

for the identification of chromophores in cellulosic materials, but no definite identification has 

been made, and no effective solutions to the problem have been proposed.  

In this work, a rapid method was developed for identification of the residual chromophores present 

in DWP.  Such identification was viewed as an essential first step that can lead to the development 

of effective procedures for removal or control of the chromophores.  Novelty aspects of the project 

include: 

 The use of Py-GC/MS for rapid identification of chromophores in DWP fibres, with no 

need for prior extraction from pulps.  This is a novel and desirable technique that should 

significantly simplify the process for the analysis of chromophores in pulp fibres.  

 The method developed in this study enables direct analysis of chromophores in DWP 

fibres – no studies have been reported on this. 

1.7 Aim 

The purpose of this study was to develop a novel and rapid methodology for identification of 

chromophores directly in DWP fibres. The method could then be used to identify unit operations 

that may be conducive to the formation of chromophores in DWP.  

1.8 Objectives 

 Develop a method for rapid chromophore identification on fibres using Py-GC/MS. 

 Identify causes or probable sources of chromophores in DWP.  

 Identify and compare chromophores from different commercial DWPs. 

 Investigate the impact of processing conditions (cooking and bleaching) on DWP on the 

formation of chromophores.  

1.9 Dissertation outline 

This dissertation is organised into five chapters. Following this Chapter (1) is Chapter 2, which is 

a review of the types of chromophores in several types of pulps and previous studies that have 

been conducted to identify the chromophores in the pulps. Chapter 3 describes the development 

of the Py-GC/MS method for direct identification of chromophores on pulp fibres. Other 

supporting experimental procedures used are also described together with descriptions of the 

samples utilized in the study.  The results are presented in Chapter 4, along with a discussion on 
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their significance and reliability. The last Chapter (5) is a summary of the results and suggestions 

for future studies on the subject of chromophores in DWP.  
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  CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The main purpose of pulp bleaching is to improve the brightness of pulps by removing 

chromophores and any impurities that may interfere with pulp brightness. Suess (2010) described 

bleaching as the “destruction of chromophores” (Suess, 2010). The bleaching chemicals reduce 

the conjugation of the chromophoric compounds either by breaking the double bonds by strong 

oxidising agents or by reducing the double bonds using mild reducing agents. Good oxidising or 

reducing bleaching chemicals are characterised by their selectivity such that they avoid reacting 

with cellulose in the pulp. Examples of oxidising bleaching chemicals include oxygen, chlorine 

dioxide, hydrogen peroxide and ozone whereas those of reducing bleaching chemicals include 

sulphur dioxide, formamidine sulphinic acid and sodium dithionite (Suess, 2010).  

Bleached chemical pulps undergo brightness reversion or yellowing over time, especially under 

acidic and humid conditions. Brightness reversion is the reduction of the brightness levels of 

bleached pulps that occur during storage or transportation, measured by calculating the difference 

between the values obtained before and after brightness reversion. An alternative method to 

measure the brightness reversion is the determination of the degree of yellowing, measured as the 

post colour (PC) number (Gullichsen, 1965). The PC number is calculated from the reflectance 

(k) and the light scattering coefficient (s) determined before and after brightness reversion (Suess, 

2010). The values for k and s are calculated according to equation 1 and the PC number is 

calculated according to equation 2 below.  

𝑘

𝑠
=  

(1 − 𝑅∞)

2𝑅∞

2

                                                                             (1) 

 

𝑃𝐶 =  100 (
𝑘

𝑠
 𝑎𝑓𝑡𝑒𝑟 𝑎𝑔𝑖𝑛𝑔 − 

𝑘

𝑠
 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑔𝑖𝑛𝑔)          (2) 

 Even though the cause of brightness reversion is not very clear; a good correlation has been shown 

between the PC number  and the hexenuronic acid (Hex A) content in the kraft pulps as illustrated 

in Figure 2.1 (Ek, 2009).  The PC number is useful when comparing small changes in the colour 

of the pulps; it is considered useful because it magnifies the small differences, low PC numbers 

are indicative of high colour stability (Suess, 2010). In addition to hexenuronic acid, other pulp 

components that are known for causing brightness reversion are residual lignin, chlorinated 

extractives and external factors such as the UV light, temperature, humidity, and time.   
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Figure 2.1: PC number of fully bleached kraft pulps measured over 9 days as a function of 

hexenuronic acid content.  

Adapted from Ek (2009).  

Yellowing pushes down the quality of the pulp and is an early sign of ageing and poor strength 

properties of pulps that negatively affects the downstream products. The manufacture of DWP of 

superior quality relies on the removal or control of the substances that are involved in pulp 

yellowing. Hence, accurate and detailed identification of the factors at play in brightness reversion, 

and finding solutions to this problem, are pressing issues that need resolution for the pulp and 

paper industry to maintain its share of world markets.   

This review chapter includes identification of the causes of yellowing in cellulosic materials and 

the status of research and development on chromophores and their possible effect on brightness 

reversion. The chapter includes a detailed examination of the nature of chromophores in several 

types of pulp, methods that have been used for their identification and characterization, and 

methods used to improve the brightness of pulps.  

2.2 Chromophores and absorption of UV light  

It is important to understand the mechanism by which chromophores give colour in substances. 

The paragraphs below describe pathways that chromophores undergo to produce the observed 

yellowing effect in bleached pulps. 

The mechanism of light absorption in chromophoric compounds is explained by the Jablonski 

energy level diagram (Figure 2.2), which demonstrates the physics of light absorption, 

fluorescence, and phosphorescence in conjugated systems. Absorption of light energy by 

molecules causes the electrons to move to a higher energy level, S1 or S2 excited states (Lakowicz, 

2007). The light energy that was absorbed by the electrons in the ground state (S0) is quickly       

(10-5
 to 10-8 seconds) released from the excited state in the form of light at a longer wavelength, 

through a fluorescence mechanism that allows the colour to be visible to the human eye 

(Lakowicz, 2007). 
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Figure 2.2: Jablonski energy level diagram.  

Adapted from Lakowicz (2007). 

The electrons in the excited state can also return to the ground state through emission of energy in 

a process called phosphorescence, a process that is slightly slower (10-4 seconds) than 

fluorescence. Conversion from S1 to T1 is called intersystem crossing (Lakowicz, 2007).  This 

mechanism happens in a very short interval, converting light of one wavelength to another (Dyer, 

2004, Valeur and Berberan-Santos, 2012). The singlet oxygen produced in the process has been 

shown to result in lignin degradation in wood pulps through oxidative reactions (Bonini et al., 

1998, Bonini et al., 2002). The overall effect of this process in lignin containing pulps is brightness 

reversion. The effect of lignin degradation is observed by a decrease in brightness values of the 

pulp.  

2.3 Measurement of brightness in pulps 

In pulp and paper industries, brightness measurements are used to determine the amount of 

bleaching that the final pulp product has undergone, or they can be employed as an indication of 

how much bleaching is required to reach the set brightness target. Brightness measurement 

provides a means of comparison between bleached pulps.  

Pulp brightness is defined as a measure of the reflection of blue light at 457 nm, expressed as a 

percentage in comparison with an ultimate reference brightness standard. This method provides 

an efficient means for pulp and paper industries to evaluate the changes in pulp grades during the 

production process (Johansson, 2000). However, there is no universal method for pulp brightness 

measurements thus making it difficult to compare pulps from mills across the world.   

The methods for brightness measurement used by the American and European pulp and paper 

industries are directional and diffuse geometry respectively. These two approaches use different 

geometries and therefore give different brightness results because the brightness entirely depends 

on the optical properties of the instrument used as shown in Table 2.1 (RISI, 2006). Both methods 
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are internationally accepted because they offer strong advantages and disadvantages for brightness 

measurements. Directional geometry uses the TAPPI standard T451, whereas diffuse geometry 

uses the ISO standard 2469 (Popson, Technical bulletin No. 101). General differences between 

the diffuse and directional brightness measurements are listed in Table 2.1.   

Table 2.1: Differences between diffuse and directional geometry. Adapted from RISI (2006) and 

Popson (Technical Bulletin No. 101).  

 Diffuse geometry Directional Geometry 

Traditional instrument GE reflection metre Zeiss Elrepho (TAPPI, 2016) 

Year of the instrument 1930 1950 

Angle of illumination 0° 45°-  0° 

Effective wavelength  557 nm 572 nm 

Industry standard 2469 T451 

The technical bulletin by Popson (Technical Bulletin No. 101) describes the relative advantages 

of diffuse and directional geometry. It shows that diffuse geometry is more useful because it allows 

for light scattering, and therefore a larger surface area of the pulp is measured. It gives average 

brightness measurement results: hence, it avoids non-uniformity of the surface measured. 

However, neither method is ideal for determining the optical properties of pulps across the global 

pulp producing industries.  

It is necessary to develop a universal instrument that combines the advantages and avoids the 

disadvantages of both methods. The common factor between the two brightness measurement 

methods is that they are only applicable to naturally coloured materials, such as near white pulp, 

bleached pulp, paper, and paperboard (TAPPI, 2016, ISO, 2009).   

2.4 Chromophore formation in wood 

Since wood is the raw material of interest here for pulp production, it is important to understand 

the possible effect of each of its primary components on the formation of chromophores. The main 

components of wood are cellulose (40-44%), hemicellulose (15-35%), lignin (18-35%) and 

extractives (2-5%) as shown in Table 1.1. (Ek et al., 2009). Upon ageing of wood, oxidative 

reactions result in the formation of oxidised functional groups that act as new absorbing centres 

of UV light that enhance the yellowing effect (Carter, 1996, Mosca Conte et al., 2012). These 

reactions in turn affect the primary components of wood. The following paragraphs discuss the 

contributions of the cellulose, hemicellulose, lignin and extractives in the formation of 

chromophores in DWP. 

2.4.1 The role of cellulose in yellowing of pulps 

The main component of DWP is cellulose, which is one of the most naturally abundant resources 

on earth. Studies have shown that pure cellulose does not absorb UV-light and therefore does not 
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result in the yellowing of pulp (Mosca Conte et al., 2012, Rosenau et al., 2014). However, 

degraded cellulose has been found to be one of the contributors to the formation of chromophores, 

thus the formation of chromophores in DWP occurs because of cellulose oxidation that forms 

degraded cellulose. This results in loss of quality of cellulosic pulp and pulp derivatives. Oxidised 

functional groups, such as the carbonyl moiety of aldehyde groups and conjugated diketones, are 

known to be responsible for the yellowing of DWP (Mosca Conte et al., 2012, Violante et al., 

2014).  During the pulping process, cellulose is irreversibly oxidised by NaOH, in the cooking 

liquor to form water soluble and water insoluble derivatives that also contribute to the yellowing 

of the pulp (Sugano et al., 2014).  

The colour of cellulosic pulps is also induced by bleaching chemicals. Chlorinated bleaching 

chemicals cause yellowing by forming yellow chlorinated compounds (Burgess, 1982). Common 

oxidising bleaching chemicals such as chlorine, ozone and chlorine dioxide are used under acidic 

conditions that induce cellulose degradation into chromophores. Unlike the selective chlorine 

dioxide, chlorine and ozone are non-selective and result in cellulose degradation and reduction of 

pulp strength (Hon and Shiraishi, 2000, John Andelin et al., 1989).  

Cellulose oxidation can also take place under basic conditions by using bleaching agents such as 

hypochlorite, peroxide-alkali and oxygen-alkali systems. Oxidation with oxygen or a peroxide-

alkali systems is selective because it occurs on the OH groups attached to C2 or C3 of the cellulose 

structure, unlike hypochlorite oxidation that is non-selective as it occurs on any hydroxyl group 

to form ketones that absorb UV-light thereby causing brightness reversion (Hon and Shiraishi, 

2000, Knill and Kennedy, 2003).  

2.4.2 The role of hemicellulose in yellowing of pulps 

Brightness reversion due to hemicellulose content in the pulp has been investigated by Beyer et 

al. (2006). Findings from the study showed that the yellowing mechanism is a two-step process: 

the first step is the decay of unstable hemicellulose to form carbohydrate compounds followed by 

dehydration and condensation of the resulting compounds, to form coloured compounds that cause 

brightness reversion (Beyer et al., 2006).  It was also suggested that the brightness reversion in 

the wood pulp is associated with the amount of hydrolysable matter.  

Beyer et al. (2006) used solvent extraction with methanol on a Soxhlet extractor to remove 

chromophores from pulps, and the structures of the isolated compounds were identified, along 

with their formation pathways, as shown in Figure 2.3 (Beyer et al., 2006).  

The mechanism (Figure 2.3) starts from decarboxylation and dehydration of glucose (1) to form 

the reductic acid (2). A condensation reaction of 2 and 5-hydroxymethyl-2 furan aldehyde (7) 

result in the formation of compound 3. A series of reversible reactions lead to the formation of 9, 
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which further condenses with 7 to form 10. A similar pathway was also proposed by Qiang et al. 

(2009) for the formation of low molecular weight furans during catalytic pyrolysis of wood 

biomass (Qiang et al., 2009).  
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Figure 2.3: Chromophores generated from degradation of hemicelluloses. 

Adapted from Beyer et al., (2006). 

2.4.3 The role of lignin in yellowing of pulps 

Lignin is a naturally occurring polymer found in the plant cell walls where it functions in the 

fibrous materials as a binding agent. There is evidence that lignin (in lignin containing pulps) 

inhibits auto-oxidative photodegradation by acting as an antioxidant that stops degradative 

reactions of the free radicals that are formed from cellulose (Schmidt et al., 1995).  It is believed 

that the phenolic groups in lignin prevent cellulose photodegradation by preventing oxidative and 

degradation reactions by absorbing UV-radiation (Barclay et al., 1997, Albinsson et al., 1999).  

However, structural components of lignin such as phenolic, carboxyl, hydroxyl, methoxy and 

hydroxyl moieties, allow it to absorb metal cations such as Cu (II), Fe (II), Zn (II), Cd (II) (Guo 

et al., 2008). During metal ion absorption, coloured metal complexes are formed via d-d 

transitions, charge transfer, or conjugations, between the ligand (lignin moiety) and the metal 

centre. To investigate the effects of transition metal complexes on the colour of pulp, Dyer (2004) 

studied several structures of a metal-ligand complex using a lignin model compound catechol (12) 

and an aqueous solution of copper (11), at different molar ratios as illustrated in Figure 2.4. In an 

aqueous solution, the water molecules in complex 11 were displaced by 12. The reaction starts 

with the replacement of one water molecule by the catechol, to form 13, but due to the instability 
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of the catechol-metal complex formed, another water molecule is replaced by a catechol to form 

14. This reaction continues until the most stable catechol-metal (16) complex is formed. The 

resulting catechol-metal complex is chromophoric and absorbs UV light.  This study revealed that 

the contribution of lignin to yellowing in wood materials could occur via metal complexation.  
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Figure 2.4: Catechol-Cu (II) complex. 

Adapted from Dyer (2004).  

2.4.4 The role of extractives in yellowing of pulps 

In addition to cellulose, hemicellulose and lignin, wood also contains about 2-5% extractives 

(Feldman and Wegener, 1985).  Extractives can be hydrophilic or hydrophobic depending on the 

extraction solvent used.  In this case, the situation is related to hydrophobic extractives. Extractives 

are low-molecular-weight organic compounds found in the lumen and parenchyma cells of most 

tropical plants. Examples of extractives are fatty acids, fatty acid esters, sterols, sterol esters, 

terpineols and waxes that are soluble in water and common organic solvents (Back, 2000). They 

are essential for plant cell metabolism, and they protect plants against fungi and parasites. Pulp 

and paper researchers have extensively studied the roles played by extractives because they have 

been shown to negatively affect the pulp and paper manufacturing process and its products (Back, 

2000). The effects of extractives have been observed mainly during the mechanical pulping 

process, where friction and compression forces are used to extract pulp fibres from wood (Zhang 

et al., 2007). These forces release extractives from the lumen and resin canals, and this has a 

detrimental effect during manufacture of newsprint. The presence of extractives causes problems 

such as sticky deposition reduced physical and optical properties, and results in a reduced machine 

runnability (Zhang et al., 2007).  
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The most common type of extractives are the fatty acids and their esters. During the pulp 

manufacturing process, some of the extractives react with the process chemicals producing mainly 

the ester derivatives of the fatty acids. Depending on the chemical structure of the reaction product, 

extractives get eliminated or survive the bleaching process (Kilulya, 2012).  For example the 

mechanical and sulphite pulping are dominated by the glyceraldehydes, fatty acids and sterols, 

however, in the kraft pulping these extractives undergo saponification reaction to form soluble 

and insoluble soaps (Back, 2000). This shows that in chemical pulps, the sulphite pulps contain 

more extractives than the kraft pulps because the acidic conditions of the sulphite pulps cannot 

dissolve the wood resin (Sitholé et al., 2009).  

The impact of extractives in sulphite (dissolving) pulps causes a severe problem especially in the 

grades intended to produce rayon and pharmaceutical products. In rayon production, the 

extractives make the process more expensive because the costly spinneret (a metallic plate with 

filter nozzles) must frequently be changed and in pharmaceutical products, the extractives 

introduce unnecessary tastes and odours (Sitholé et al., 2009).   

Some of the extractives absorb in the UV spectral region at 457 nm and reflect a bright yellow 

colour, which contributes about 4% to the overall discolouration of the wood raw material 

(Johansson, 2000). Ona (2011) investigated the cause of brightness instability of chemi-

thermomechanical pulps (CTMP) because the CTMP have excellent strength properties and are 

high yield pulps. Findings from the study by Ona (2011) showed a good correlation between the 

brightness of the CTMP and the amount of extractives as shown in Figure 2.5. Hence, it was 

suggested that during harvesting of the trees, the amount of extractives in wood should be 

considered as an important selection index (Ona, 2011) 

 

Figure 2.5: Relationship between wood extractives and CTMP brightness. 

Adapted from Ona (2011). 
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Previous research has shown that each of the wood components contributes to the formation of 

chromophores. When the wood is converted to the pulp, some of the chromophores remains after 

the bleaching process, and some chromophores are formed during pulp ageing (Rosenau et al., 

2007b). The chromophores in DWP occur in ppb concentrations, even though chromophores 

absorb the UV light, there is no direct relationship between the brightness of the DWP because of 

their existence in minor concentrations and their orientation in the pulp fibres (Rosenau et al., 

2007b). However, due to their high extinction coefficient, they exhibit a bright yellow colour that 

is observed as discolouration in DWP (Rosenau et al., 2004).  

2.5 Causes of chromophore formation in different types of wood pulps 

Various types of pulps undergo different processing conditions, and the cause of chromophores 

that are due to the processing conditions varies depending on the conditions employed during 

pulping. The following paragraphs discuss the causes of chromophores in mechanical pulps, 

chemical pulps and recycled pulps.  

2.5.1 Causes of chromophore formation in mechanical pulps  

During mechanical pulping, the cellulose fibres are mechanically separated and thus resulting in 

most of the lignin adhering to the cellulose fibres, which gives rise to a pulp of lower fibre strength 

(Kirwan, 2005). Mechanical pulps are high yield pulps (＞95%) with low brightness, caused by 

photochemical reactions of lignin compounds that result in the formation of chromophores. These 

phytochemical reactions result in an undesirable yellowness and a short the life span of mechanical 

pulps (Schmidt and Heitner, 1993). Another challenge with mechanical pulps is alkaline darkening 

that occurs during peroxide bleaching; it negatively affects the bleaching efficiency. Alkaline 

darkening is caused by transition metals, oxygen, peroxide decomposition, the presence of quinoid 

structures and α,β-unsaturated carbonyl groups (Sain et al., 1999, He et al., 2005, Ragauskas, 

1993). He et al. (2005) reported that the generation of peroxide resistant chromophores is caused 

by the harsh alkaline conditions, which can be avoided by reducing the alkaline treatment time. 

However, alkaline treatment is necessary for mechanical pulping since it enhances fibre strength 

properties (Pan, 2004), and catalyses the decomposition of hydrogen peroxide, as shown in 

equations 3 and 4 (Suss and Nimmerfroh, 1996).  

H2O + HOO-

HOO- + H2O2 H2O + O2 + OH-

     (3)H2O2  + OH-

     (4)

 

For the most part, brightness reversion in mechanical pulps is due to metal-lignin complexes, 

coloured metallic oxides, alkaline darkening and the chromophoric compounds. The following 

paragraphs review the causes of brightness reversion in the commonly used mechanical pulping 
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methods namely: Groundwood pulping (GWP), thermomechanical pulping (TMP) and chemi-

thermomechanical pulping (CTMP).  

2.5.1.1 Groundwood pulp 

In GWP, the wood material is directly ground into pulp at high temperatures, and there is no 

chemical pre-treatment of the pulp. As a result, this is the most cost-effective method for producing 

mechanical pulps, and this type of pulp is mainly used for making newsprints and other low-

quality paper grades. Good quality groundwood pulps are produced when aspen is used as a 

starting material (Bajpai, 2010).  

A study on exposure of GWP to UV light irradiation indicated that the yellowing of GWP was 

caused by chromophores absorbing at wavelengths below 330 nm  (Heitner et al., 2010). There is 

evidence that GWP loses colour at a faster rate in the presence of atmospheric oxygen and under 

humid conditions because of the high lignin content. Under these conditions, the compounds 

produced from the degradation of lignin (Figure 2.6) undergo radical reactions that result in the 

formation of chromophores that absorb the UV-light at shorter wavelengths and cause yellowing 

(Nolan et al., 1945, Paulsson and Parkås, 2012). 

 

Figure 2.6: Absorption maxima of lignin-related compounds in mechanical pulps. 

Adapted from Paulsson and Parkås (2012).  

2.5.1.2 Thermomechanical pulp  

Thermomechanical pulp (TMP) is an improved type of mechanical pulp, which is preferable for 

newsprint manufacture (McDonald et al., 2004). This kind of pulp is manufactured by heating 

wood chips with steam at temperatures above 100 °C, resulting in a mechanical separation of 

cellulose fibres. During thermal treatment, there are two processes that influence brightness 

reversion. The thermal decomposition of wood components described in section 2.4 that yields 

low molecular weight sugar monomers is followed by oxidative reactions in the cellulose surface, 

resulting in the overall yellowing of the TMP (Kocaefe et al., 2008).  
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Free carboxylic acid groups that are formed during the decomposition of polysaccharide chains 

cause yellowing of the TMP. These free carboxylic acid groups further result in the formation of 

“Theander products” that are mainly caused by thermal treatment under acidic or basic conditions 

(Rosenau et al., 2007a). (Johansson, 2000) investigated the stages of formation of the coloured 

compounds in TMP pulping. The findings revealed that the chromophores were formed in the first 

refining stage, this was indicated by an increase in UV-Vis absorption below 400 nm.  

2.5.1.3 Chemi-thermomechanical pulp 

During chemi-thermomechanical pulping (CTMP), the wood chips are pretreated with hydrogen 

sulphite prior to the steaming and the refining stage. The mixture is then heated to temperatures 

above 100 °C.  The CTMP uses very mild conditions during chemical treatment, thus leaving most 

of the lignin adhering to the fibres (Prusas and Ohio, 1984). Studies show that the rate of brightness 

reversion upon irradiation of bleached CTMP is faster than that of bleached TMP (Schmidt and 

Heitner, 1993).  

After mild chemical treatment, the remaining lignin undergoes degradation to yield ketyl and 

phenoxy radicals, which are important intermediates in the formation of lignin chromophores 

(Carter, 1996, Li and Ragauskas, 2000). Reaction pathways for the generation of lignin-based 

chromophores were described by Carter (1996), whereby the lignin molecules undergo 

photodegradation to yield pulp with low brightness (Figure 2.7). 

Primary chromophores

300-400 nm

Radicals

Ketyl radicals Phenyl radicals

Ketones Yellow chromophores

Secondary chromophoresUV Light

Secondary chromophores
 

Figure 2.7: Lignin photodegradation and chromophore formation. 

Adapted from Carter (1996).  

Primary lignin chromophores absorb the UV light, which breaks down ether bonds to form free 

radicals from phenolic compounds and ketones (Carter, 1996). Secondary reaction results in the 

formation of unstable intermediates that rupture to form more phenoxy radicals and ketones, which 

act as secondary chromophores. In the process, oxidation of the phenoxy radicals in the presence 



 

29 

 

of atmospheric oxygen occurs to form yellow compounds, which are referred to as secondary 

chromophores (Carter, 1996, Nemati et al., 2013).  

The preceding discussions indicate that the causes of chromophores in different types of 

mechanical pulps results from the pulping conditions such as the presence of the transition metal 

complexes, the effect of the bleaching process, and the components of the wood raw material. In 

these studies, the chromophores were generally associated with pulp yellowing because of their 

ability to absorb the UV-light resulting in pulp discolouration. In lignin containing pulps, it is 

known that an increased lignin content is interrelated to the low brightness levels of the pulp 

(Wilcox, 1975, John Andelin et al., 1989).  

2.5.2 Causes of chromophore formation in recycled pulp 

Recycled or de-inked pulp (DIP) is manufactured using waste paper. The waste paper undergoes 

chemical processing to remove ink and other unwanted components (Borchardt, 1997). Since the 

raw material is waste paper, DIP may contain mechanical pulps, chemical pulps and semi-

chemical pulps. Therefore, it is hard to determine a specific source of brightness reversion of the 

DIP.   

Factors that cause the loss of brightness in DIP include the ink content, the particle size of the ink 

and size distribution, and the nature of the chromophores present (Bhardwaj and Nguyen, 2007). 

Bleaching of DIP with hydrogen peroxide has been shown to improve the brightness of DIP. 

Previous studies show that an increase in brightness by 10% was noted in one bleaching stage. 

However, a significant yield loss of the pulp was observed due to the alkaline soluble components 

of DIP (Bhardwaj and Nguyen, 2005, Bhardwaj and Nguyen, 2007).  

2.5.3 Causes of chromophore formation in chemical pulps 

In bleached chemical pulps, especially DWP, the lignin content is very low, hence its contribution 

to yellowness is minimal. As a result, studies have shown that there is no correlation between the 

pulp brightness and the content of the chromophores because they occur in minor quantities (Dyer, 

2004, Rosenau et al., 2007c). The following paragraphs review the formation of chromophores in 

chemical pulps. 

2.5.3.1 Causes of chromophore formation in kraft pulps  

Kraft pulping is the most popular chemical pulping method; it accounts for over 90% of the global 

production of chemical pulps (Sixta and Schild, 2009). During kraft pulping, the wood chips are 

cooked in caustic soda and sodium sulphite solution. The advantages of the kraft process, such as 

a shorter cooking time and good fibre strength, compared to other chemical cooking methods, 

make it cost effective and, therefore, preferred by most chemical pulp producing industries (Tran 

and Vakkilainnen, 2008). Furthermore, the kraft process allows for about 97% chemical recovery 
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and accommodates both hardwoods and softwoods. In spite of these advantages, one of the 

shortcomings of kraft pulping is the dark colour or low brightness of the resulting pulp product 

(Dyer, 2004, Tran and Vakkilainnen, 2008).  

Early research has shown that the dark colour of kraft pulps was due to the oxidative reactions and 

the presence of tannins (Holzer, 1934). However, it was assumed that most wood species contain 

tannins, of unknown chemical structures. Dyer (2004) reviewed the factors causing the low 

brightness of kraft pulps, and these factors include the nature of wood species, the presence of 

lignin, carbohydrate degradation products, transition metal complexes and absorption by aromatic 

structures. It was shown that the dark colour of kraft pulps involves, directly or indirectly, the 

chromophores, because all the factors participating in the yellowing of kraft pulps are light 

absorbing compounds (Dyer, 2004). 

The role of hemicelluloses in the yellowing of bleached chemical pulps cannot be ignored. Beyer 

et al. (2006) studied the role of hemicelluloses in heat induced yellowing of totally chlorine free 

and elemental chlorine free kraft pulps. The findings showed that the yellowing mechanism occurs 

in a two-step reaction starting with the degradation of thermally unstable hemicelluloses to form 

low molecular weight carbohydrates that further undergo dehydration and condensation reactions 

to form chromophores. Partial degradation of cellulose was also reported as another contributing 

factor to the yellowing of the pulps.  Chromophores identified from the study were compounds 

that were oligomers derived from furans such as reductic acid. It was further reported that the 

chromophore extraction method reported by Rosenau et al. (2004) did not allow for the detection 

of aromatic compounds, instead, the furans were detected. However, this was attributed to the 

differences in the heating conditions employed (Beyer et al., 2006). 

Organic-matter-bound chlorine has also been reported to cause a significant loss of pulp brightness 

in some of the bleached kraft pulps (Eiras et al., 2009, Parthasarathy and Colodette, 2007). During 

bleaching of kraft pulps, oxidative bleaching chemicals such as chlorine dioxide, oxygen, ozone 

and hydrogen peroxide are employed to achieve high brightness levels of the pulp. In bleaching 

sequences ending with chlorine dioxide or hydrogen peroxide, the pulps showed less brightness 

reversion when the chlorine dioxide was used at higher temperatures than the standard chlorine 

dioxide bleached pulps (Eiras et al., 2009). Even though the chlorine dioxide bleached pulps were 

brighter,  their brightness stability was lower than the pulps bleached with the hydrogen peroxide 

in the final stage, meaning that the addition of H2O2 was necessary to provide brightness stability 

(Parthasarathy and Colodette, 2007).  The chlorine dioxide selectively reacts with the lignin, 

however, in the process, the radicals of chlorine monoxide and chlorine are formed, and they 

further react with lignin to form quinones and also react with the C6 of cellulose to form the 

chromophoric hexenuronic acid (Parthasarathy and Colodette, 2007).  
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There is a good correlation between the amount of hexenuronic acid and the brightness reversion 

of kraft pulps (Ek, 2009, Silva et al., 2011). High amounts of hexenuronic acid and xylan in kraft 

pulping are favoured by lower cooking temperatures (Colodette et al., 2002). These studies 

indicate that the hemicelluloses are the part of the cause of yellowing in bleached kraft pulps. 

Other factors that contribute to yellowing include the degradation of cellulose due to oxidative 

bleaching chemicals (Rosenau et al., 2004, Beyer et al., 2006).  

2.5.3.2 Causes of chromophore formation in acid bi-sulphite pulp 

The acid bisulphite process is the major pulping method for the production of DWP, accounting 

for about 60% of global DWP production (Sixta, 2000). However, it is time and energy consuming 

and is being slowly replaced by the PHK pulping process in some pulp and paper industries (Sixta, 

2006). The main cooking chemicals in the acid bisulphite process are sulphuric acid and bisulphite 

ions. The processes that take place in a stepwise manner during acid bisulphite pulping are the 

chemical penetration, pulping and chemical recovery.  

The chemical penetration step takes about 3 hours, and the temperature can slowly increase to 

reach a maximum of 130 °C in the digester. The pulping process starts immediately after the 

penetration step and the temperature increases to about 135-145 °C, depending on the required 

degree of delignification. Finally, the pressure of the cooking vessel is reduced to below 100 kPa 

to allow for chemical recovery. Chemical recovery generally takes about 90 minutes. The overall 

acid bisulphite pulping process takes about 8,5 hours (Chunilall, 2009).  The resulting pulp 

contains chemically modified lignin, organic compounds and metal ions inherited from the wood 

raw material. Hence, its colour is brown (Gadd, 2001). This raw pulp undergoes a stepwise 

bleaching process to produce different grades of dissolving pulp. The elevated temperatures and 

the bleaching chemicals employed in the acid bisulphite process induce the cellulose degradation 

thus leading to the formation of chromophores.  

2.5.3.3 Causes of chromophore formation in pre-hydrolysis kraft pulp (PHK) 

The PHK pulping process is one of the major processes for the production of DWP following the 

acid bisulphite process (Sixta, 2000). It produces fibres with excellent strength properties and 

requires a short cooking time than the acid bisulphite process. However, fully bleached PHK pulps 

have shown inferior pulp properties such as the darker colour (after bleaching) compared fully 

bleached acid bisulphite pulps (Duan et al., 2015).  

During the PHK pulping process, the wood chips are pre-hydrolysed to remove the hemicelluloses. 

The remaining hemicellulose-free wood chips undergo delignification in the digester that is heated 

to about 170 °C for 2 hours, depending on the required degree of delignification (Li et al., 2010). 

This is an advanced type of kraft pulping since it requires a shorter cooking time and it is cost 

effective.  
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During the kraft process, some of the xylans dissolves into the cooking liquor and precipitates into 

the fibres, and some of it covalently bonds with lignin to form lignin-xylan (lignocarbohydrate) 

complexes (Garg et al., 1998). These lignocarbohydrates adhere to the surface of the pulp fibres, 

where they prevent the penetration of bleaching agents, hence, the bleaching process becomes 

ineffective. Tunc et al., (2010) explained that the chemical bonds in the lignocarbohydrates 

prevent the extraction of hemicelluloses, therefore, hemicellulose-type chromophores remain in 

the PHK pulp after bleaching.  

Bio-bleaches, such as xylanases, have been used to achieve high brightness levels in PHK pulps. 

The rationale behind using bio-bleaches is that the xylanases hydrolyse the precipitated xylan and 

the lignocarbohydrate complexes, which therefore improves delignification (Roncero et al., 2003, 

Garg et al., 1998). Xylanase action allows bleaching chemicals to reach lignin surfaces, thus 

improves the bleaching efficiency and the brightness of PHK  pulps (Thakur et al., 2012). 

However, bio-bleaching does not remove all types of chromophores present in PHK pulps, such 

as the furfurals that are formed during cellulose degradation (Li et al., 2010).  

2.5.3.4 Causes of chromophore formation in dissolving wood pulp  

The unbleached PHK or acid bi-sulphite pulps are the raw materials in the production of DWP. 

The raw pulp is bleached to very high brightness levels, measured as an effective reflectance, at 

495 nm. The bleaching process aims to remove the lignin and hemicelluloses that remain after the 

pulping process, and therefore improves the brightness of pulp to produce high-quality dissolving 

pulp of different grades. Table 2.2 shows a list of bleaching chemicals and the purpose for their 

application. The purity of DWP depends on the bleaching sequence applied in the process. Some 

of the sequences commonly used by American and Canadian pulp mills are C-E-D-E-D, C-E-D-

H, C-E-H-D-E-D, C-E-H and C-E-D (John Andelin et al., 1989), the symbols are summarised in 

Table 2.2.  

Table 2.2: Chemicals for bleaching chemical pulps. Adapted from Bohnet (2003). 

Stage Abbreviation Purpose 

Oxygen O Delignification and oxidation of lignin 

Chlorine C Chlorination and oxidation of lignin 

Chlorine dioxide D Improves brightness, oxidise and solubilize lignin 

Extraction with NaOH E Extraction of hemicellulose and solubilisation of 

degraded lignin 

Hypochlorite (Na/Ca) H Polymer chain scission controls viscosity oxidises and 

solubilizes residual lignin.   

Hydrogen Peroxide P Improves brightness removes residual hemicellulose 

 Approximately 80% of globally produced DWP and fully bleached kraft pulps (Gehmayr and 

Sixta, 2011)  are converted to viscose fibres. Other uses of DWP include the production of 
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cellophane wraps and microcrystalline cellulose for applications such as fillers for pharmaceutical 

tablets, or as food additives such as thickeners in plain fat-free yoghurt (Sappi.com, 2014). DWP 

is mainly composed of cellulose, approximately 91- 96% of DWP is cellulose, and the remainder 

comprises hemicelluloses and residual lignin. 

The global pulp producing industry is very concerned about brightness reversion in DWP because 

it is a raw material for the manufacture of many daily used products. There is a need for 

technologies that can permanently remove the chromophores in a cost-effective manner since they 

are suspected to be involved in the low brightness of the DWP. Thus the pulp and paper industry 

is searching for methods that do not damage the cellulose fibres and leave no trace of chemicals 

after the removal of chromophores  (Sappi.com, 2015).     

DWP contains small amounts of chromophores that are responsible for the off-white 

discolouration observed in cellulose derivatives. There is no known precise origin of 

chromophores in dissolving pulp; they could originate from the unbleached pulp, bleaching 

chemicals, or during further chemical derivatization of DWP (Rosenau et al., 2004). The type of 

chromophores identified so far in DWPs are hydroxyl-1,4-benzoquinones, hydroxyl-1,4-

naphthoquinones, and hydroxyacetophenones (Korntner et al., 2015).  

Furthermore, there is evidence that chemically pure cellulose (bacterial cellulose) does not initially 

contain chromophores. However, ageing treatment induces the formation of oxidised and 

degraded carbohydrates that result in the formation of chromophores. (Rosenau et al., 2014). 

Further research is needed to investigate the effect of bleaching chemicals to ascertain how they 

induce the formation of chromophores in DWP. 

 2.6 Previous studies undertaken to understand brightness reversion in DWP 

It has been demonstrated in the previous section, that different types of pulp may have various 

causes of chromophore formation. Research has been undertaken to understand the driving forces 

for chromophore formation, especially in DWP. Researchers have achieved this through pulp 

ageing studies using heat, pulp exposure to various light sources and, irradiation sources that 

induce brightness reversion.  

2.6.1 Studies on the effect of pulp ageing using heat and UV light  

Chemical pulps are subjected to various temperatures during processing. At higher temperatures 

above 100 °C, thermal decomposition of the polysaccharide chains in pulp fibres takes place. In 

order to study the effect of high temperatures in pulp ageing, the pulp is subjected to thermal 

reactions to cause yellowing, which has a negative result in the overall pulp production process 

(Beyer et al., 2006). 
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Studies investigating thermal reactions during pulp production show that thermal decomposition 

and condensation reactions are necessary mechanisms that form chromophores in aged cellulosic 

materials. Thermal decomposition results in oxidised structures that further form chromophores 

upon ageing (Rosenau et al., 2007c).  The main compounds involved in brightness instability 

during heat exposure are oxidised compounds with functional groups such as the carbonyl, 

carboxy, ketones, furans and phenols (in lignin containing pulps) (Chirat and De La Chapelle, 

1999).  

Pulp ageing studies have also been undertaken by exposing pulp to UV light sources, such as 

sunlight, carbon arc, Xenon lamp, vapour lamp, and lasers, for accelerated ageing (Chirat and De 

La Chapelle, 1999).  UV-light induces cellulose degradation by means of photolytic reactions at 

wavelengths below 340 nm. However, at wavelengths above 340 nm, photolysis reactions stop 

and the degradation proceeds by means of photosensitized reactions, that further result in pulp 

discolouration. The extent of pulp degradation depends on factors such as the thickness of pulp, 

impurities contained in the pulp sample, the intensity of the light source, and the energy 

distribution of the light source (Padfield, 1965). 

Heat has been shown to causes a decrease in pulp viscosity and results in more brightness reversion 

than light exposure (Chirat and De La Chapelle, 1999). This suggests that different oxidative 

reactions occur during exposure to light and heat. It can also be deduced that more polymer chain 

scission takes place during heat exposure, thus forming more carbonyl compounds that cause 

yellowing. Heat and light ageing of pulps are used to simulate the properties of historical materials, 

but there is no evidence that the oxidative reactions that take place under natural conditions are 

similar to the reactions that occur at elevated temperatures and UV light.  

The advantage of using heat is that it can introduce reactions that are unlikely to occur at room 

temperature, hence, it gives the opportunity to explore more reactions that can occur under adverse 

pulp storage conditions. UV light exposure has potential to cause ageing without significantly 

changing pulp properties. It is, therefore, better than heat ageing for imitating natural ageing 

conditions (Yatagai and Zeronian, 1994).  

2.6.2 Studies on the effect of pulp irradiation 

Irradiation of pulp using a source of energy, is usually used in studies aiming to improve the 

reactivity of dissolving pulp for downstream chemical processing, during the production of 

cellulose derivatives (Iller et al., 2002). In effect, pulp irradiation results in two major reactions, 

the depolymerization and the oxidation of cellulose. Depolymerisation results in reduced 

cellulosic fibre strength due to the breaking of bonds and the formation of low molecular weight 

oxidised compounds. Cellulose oxidation results in colour reversion of the cellulose fibres 
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(Bouchard et al., 2006). Both reactions that take place during irradiation of pulp lead to the 

formation of chromophores hence, brightness reversion.  

The mechanism for cellulose oxidation occurs through a radical pathway, resulting in the 

formation of many oxidised compounds. In earlier studies, carbonyl compounds were believed to 

cause yellowing in pulps and then, later studies indicated that it was mainly ketones and furans 

that are formed during cellulose degradation, that result in the yellowing of cellulosic pulp (Beyer 

et al., 2006, Shen and Gu, 2009, Mosca Conte et al., 2012).  

Chemical pulps are bleached extensively to reach high brightness levels. This means that the 

cellulose is not chemically pure, due to the presence of residual bleaching chemicals that can 

induce degradative reactions in the cellulose. There is evidence that chemically pure cellulose does 

not contain chromophores. However, the aged cellulose - either chemically induced ageing or 

natural ageing - results in the formation of chromophores (Rosenau et al., 2014).  

2.7 Methods to control chromophores 

The dark colour of unbleached pulps is removed through bleaching. In the pulp and paper industry, 

the efficiency of the bleaching process is measured by the kappa number or the brightness levels 

of the final products (Barbosa et al., 2013a). Beyond chemical bleaching of wood pulps, 

environmentally friendly techniques have been developed to improve the brightness of the pulp.  

2.7.1 Chemical bleaching of pulps 

Bleaching chemicals used in the pulp and paper industry are oxidising and reducing agents that 

achieve high brightness through solubilization, chlorination, decolonization and removal of the 

lignin (Bajpai, 2010). The lignin is the primary target during bleaching because it is the leading 

cause of the dark colour in unbleached pulps, (especially unbleached kraft pulps) due to its 

structural complexity, high molecular weight, and its hydrophobic nature (Heitner et al., 2010).  

In addition to the removal of lignin, the bleaching process also aims to remove impurities inherited 

from the digesters, hemicelluloses and extractives with the purpose of achieving high brightness 

pulp with a high cellulose content (Sixta et al., 2006, Bajpai, 2010). In the manufacture of DWPs 

destined for making cellulose derivatives, it is important that the bleaching agents remove all the 

wood components other than cellulose.  

Bleaching is carried out in a multi-stage sequence that alternates delignification and removal of 

dissolved material through alkaline extraction (Bajpai, 2010). The bleaching sequence is described 

using the following abbreviations: C (Chlorination), D (Chlorine dioxide), E (alkali, extraction 

with sodium hydroxide), H (Calcium or sodium hypochlorite), N (nitrogen dioxide), P (Hydrogen 

peroxide), O (Oxygen) and Z (ozone) as noted in Table 2.2 (Bohnet, 2003). For example, the five-
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stage bleaching sequence (CEDED) was popular in the 1950s for the bleaching of kraft pulps to 

achieve a high brightness pulps with good fibre strength (John Andelin et al., 1989). 

Due to environmental concerns and regulations regarding the release of toxic halogenated 

compounds, bleaching was achieved with or without chlorine-based chemicals (Bajpai, 2010). 

Elemental chlorine free (ECF) and totally chlorine free (TCF) procedures have been employed to 

comply with environmental regulations. The ECF uses chlorine dioxide within the set limits for 

the discharge of adsorbable halogenated organic compounds, and the TCF eliminates all the 

chlorine-based chemicals in the bleaching process (Suess, 2010).  

Limitations: It has been shown that the use of bleaching chemicals can be harmful to the 

environment due to the release of toxic compounds. If the bleaching process is not done correctly, 

it can damage the pulp fibres and therefore resulting in reduced fibre strength. Furthermore, it has 

been shown that the bleaching chemicals induce cellulose degradation thus leading to the 

yellowing of the pulp through the formation of chromophoric compounds.  

2.7.2 Microbial and enzymatic bleaching of pulps 

To reduce environmental pollution resulting from chemical bleaching industries, microbial 

techniques have been used to treat the yellowing of wood pulps. These techniques have been 

developed over several years, and they seem to be successful in some of the pulping industries. 

Chuphal et al. (2005) studied the anaerobic treatment of pulp using six different types of bacterial 

colonies. Findings show that the aerobic treatment was more successful than anaerobic treatment. 

Aerobic treatment of the pulp resulted in a significant reduction of the yellow colour, the lignin 

and the total phenol content were significantly reduced (Chuphal et al., 2005).    

Pulp yellowing has also been reduced by introducing microbial enzymes during the bleaching 

process. This process is known as bio-bleaching, and it requires the control of parameters such as 

pH and temperature to prevent enzyme degradation. Kannan and Oblisami (1990) observed that 

the colour of the mill effluent was light brown due to the presence of lignin compounds resulting 

from blow-heat condensate washing (Kannan and Oblisami, 1990). To reduce the light brown 

colour, they used Aspergillus niger at various concentrations of glucose since earlier studies 

(Belsare and Prasad, 1988, Pellinen et al., 1988, Yin et al., 1989)  had shown that the addition of 

a co-substrate like glucose improves the degradation of lignin and related compounds. 

Subsequent studies of similar nature employed the xylanases for bleaching of kraft pulps. 

Xylanases are a class of enzymes responsible for the degradation of hemicellulose-based 

heteropolymers into useful sugars. It is well known for breaking the conjugated bonds of 

hexenuronic acid (18) that are formed from the dehydration of 4-methyl-glucuronic acid units (17) 

in xylan, Figure 2.8 (Kenealy and Jeffries, 2003, Petit-Breuilh et al., 2004, McCarthy et al., 1985). 
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Since some of the hemicelluloses are degraded during bleaching, the process of bleaching with 

the xylanases is simplified because the accessibility of the pulp is increased (Jeffries et al., 1996). 

This pulp decolourization method has been widely used and has been shown to significantly 

improve the level of brightness in DWPs (Gangwar et al., 2014, Nagar et al., 2014). 
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Figure 2.8: Formation of chromophoric hexenuronic acid. 

Adapted from Petit-Breuilh et al. (2004).  

Limitations: Studies show that a few chromophoric compounds were identified during the 

microbial and enzymatic extraction. Most of them were eliminated by removing the yellow or 

light brown colour. It shows that this method does not determine the chemical structures (except 

for the hexenuronic) acid and the nature of chromophores. Thus, it cannot prevent the formation 

of chromophores, which is the ideal solution to brightness reversion. 

2.8 Analysis of chromophores in wood pulps 

The analysis of chromophores in pulps is difficult because of their existence in small quantities at 

ppm or ppb scales. A number of analytical methods that have been developed for the determination 

of chromophores are summarised below.   

2.8.1 Chromophore release and identification method 

The common challenge in the isolation and characterization of chromophores is their minute 

quantities in the pulps, and this is a typical problem in natural product isolation. However, this 

technique, of identifying and extracting the offending chromophores, remains relevant since it 

provides access to the discovery of new compounds that may be causing brightness reversion in 

wood pulps. Recently, compound isolation has been simplified by employing new technologies 

such as HPLC and NMR for the identification of novel compounds (Sasidharan et al., 2011).  

The most efficient technique known thus for the analysis and identification of chromophores in 

cellulosic fibres was described by Rosenau et al. (2004). The technique, termed, chromophore 

release and identification (CRI) method was described as a three step process commencing with 

the pre-treatment of pulp fibres with boron trifluoride acetic acid complex (BF3.2HOAc) and an 

antioxidant, followed by chromatographic purification of the resulting residue, and finally, 

identification of the structures of chromophores using mass and NMR spectroscopy techniques, 

in comparison to authentic compounds (Rosenau et al., 2004, Rosenau et al., 2005). A schematic 

of the method is illustrated in Figure 2.9. 
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Figure 2.9: Chromophore release and identification procedure. 

Adapted from Rosenau et al. (2004). 

The CRI method enabled identification of two classes of chromophores that are believed to 

contribute to brightness reversion of chemical pulps; the primary and secondary chromophores 

(Rosenau et al., 2004). Primary chromophores originate from wood pulp components such as 

cellulose, hemicellulose, lignin and extractive whereas secondary chromophores are formed by 

process chemicals used during pulping and bleaching, and contain functional groups inherited 

from the process chemicals (Rosenau et al., 2007a).  

The main compounds identified were substituted quinones and acetophenones arising from the 

oxidation and degradation reactions of the polysaccharides in pulp, belonging to the group of 

primary chromophores (Rosenau et al., 2014). The primary chromophores are structurally 

composed of carbon, hydrogen and oxygen, whereas the secondary chromophores contain 

compounds like sulphur, inherited during pulp processing (Korntner et al., 2015). Rosenau and 

co-workers isolated primary (19-23) and secondary chromophores (24-28) from lyocell fibres (19-

25), cellulose triacetate (26) and viscose (rayon) fibres (27-28) (Rosenau et al., 2004, Korntner et 

al., 2015), as shown in Figure 2.10. 
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Figure 2.10: Primary and secondary chromophores isolated from lyocell fibres.  

Adapted from Rosenau et al. (2004) and Korntner et al. (2015). 

Limitations: The chemical extraction of chromophores is only applicable to pulp materials 

containing very low amounts of lignin or lignin-free materials. Substantial quantities of lignin can 

overload the column and therefore lead to a poor separation and analysis of the compounds. The 

method is unable to provide quantitative data on the of  amounts of individual chromophores due 

to their miniscule amounts of the purified extracts as well as  the complexity of the technique 

(Korntner et al., 2015). Furthermore, the CRI method is limited to the identification of quinoid 

and aromatic structures meaning that non-aromatic chromophores cannot be identified using this 

approach (Rosenau et al., 2011). In general, the chemical extraction method uses expensive 

organic solvents, and the procedure is laborious in that it can takes about a week to generate results.  

2.8.2 Spectroscopic methods 

Several spectroscopic methods have been used for direct and indirect characterization of 

chromophores in wood pulps. These techniques include UV/Vis, FT-Raman, FTIR, NIR, NMR, 

mass spectrometry, and fluorescent spectroscopy (Schmidt and Heitner, 1993, Sikorska et al., 

2006, Wójciak et al., 2014).  Listed below are advantages and disadvantages of the techniques 

used to study chromophores in pulps.  

Advantages 

 Chromophores absorb UV light and are, therefore, easy to detect. 

 Allows for quantitative analysis of chromophores. 
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 Can be used with solids and liquids. 

 Usually fast and can detect a broad range of functional groups. 

Disadvantages 

 Spectra can overlap due to mixtures of molecules. 

 Spectra are not highly specific to molecules. 

 Light absorption can be dependent on sample conditions. 

The spectroscopic techniques can yield accurate results if used in conjunction with other analytical 

techniques, such as chromatography, to compensate for the disadvantages, such as the overlap of 

the spectra.  

2.8.3 Chromatographic methods 

Chromatographic techniques, such as HPLC, TLC, column chromatography, gas chromatography, 

and size exclusion chromatography, have been commonly used for the study of chromophores in 

cellulosic materials (Gellerstedt and Dahlman, 2003, Rosenau et al., 2004). Their pros and cons 

are listed below: 

Advantages 

 Can separate very complex mixtures. 

 Individual components can be collected separately. 

 Quick and accurate results are possible. 

 Work well with most spectroscopic methods. 

Disadvantages 

 The sample must be able to dissolve in an organic solvent. 

 May require the use of many expensive organic solvents. 

 Can be laborious. 

 Require the use of other analytical techniques for structural elucidation. 

Since chromophores occur in very low concentrations in DWP, good separation of the compounds 

before structural elucidation is essential. However, achieving good separation of compounds that 

occur in small quantities can be tough to do. Since chromatographic techniques work well with 

most spectroscopic methods, it shows that chromatography in conjunction with spectroscopy can 

be a useful component in chromophore identification in DWP.  

2.8.4 Analytical methods specific for carbonyl and carboxyl groups 

Carbonyl and carboxyl functional groups found in pulps are originally present in wood as part of 

the 4-o-methyl glucuronic acid units of xylan and further generated during pulp bleaching. During 

pulp bleaching, the polysaccharides are oxidised, thus resulting in the formation of oxidised 
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functional groups such as carbonyl, carboxyl, keto and aldehyde groups (Sjöström and Alén, 

2013). These functional groups, especially the carbonyl groups have a significant contribution to 

reducing the strength of cellulose and most importantly, they result in the yellowing of bleached 

chemical pulps by  forming chromophores (Lewin, 1997). Furthermore, the effect of the carbonyl 

groups is exacerbated by the presence carboxylic acid groups in the pulps (Barbosa et al., 2013b).  

Quantitative analysis of these functional groups is difficult due to their maniscule concentrations. 

As a result, these functional groups cannot be identified using conventional spectroscopic 

techniques such as UV, IR, NMR and Raman spectroscopy (Röhrling et al., 2002).  Determination 

of the carbonyl groups in pulp relies on their ability to form stable complexes with chelating agents 

such as phenylhydrazine through titration  (Sjöström and Alén, 2013). Conventional methods for 

carbonyl determination such as copper number, oxime and cyanohydrin methods have largely 

been criticised for providing indirect determination  by the copper number and low reproducibility 

provided by the oxime and cyanohydrin methods (Röhrling et al., 2002).  

The effect of carbonyl groups in cellulosic pulps has been widely investigated following the 

incompetence of the conventional methods. Innovative approaches for carbonyl analysis such as 

fluorescence spectroscopy have been introduced (Potthast et al., 2003).  The analysis of the 

carbonyl groups in cellulosic pulp was achieved through fluorescence spectroscopy because of its 

ability to identify oxidised functional groups at very low concentrations.  Highly selective 

fluorescent labels such as carbazole-9-carboxylic acid [2-(2-aminooxyethoxy)ethoxy]amide and 

9H-fluoren-2-yl-diazomethane have been used to selectively mark the carbonyl groups followed 

by analysis with gas permeation chromatography (Röhrling et al., 2002, Potthast et al., 2003, 

Bohrn et al., 2006). A linear correlation between the post colour number and the carbonyl content 

was established in fully bleached kraft pulps with carbonyl groups that were introduced by the 

oxidising hypochlorous acid (Zhou et al., 2011).  The advantage of using the fluorescence markers 

is that they allow for the determination of the total carbonyl content, thus measuring the oxidising 

effect of the bleaching chemicals during bleaching that leads to pulp yellowing (Röhrling et al., 

2002).  

It has been shown that the study of chromophores in the pulp is very challenging in terms of 

identification and characterization. It is evident that a lot of work still needs to be done about 

developing analytical techniques that can identify chromophores so that the occurrence of 

chromophores can be eliminated. To this end, a combination of spectroscopic and 

chromatographic techniques presents a promising means to be explored for chromophore 

identification in DWP. 
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2.9 Py-GC/MS as a novel and rapid analytical method for chromophore identification 

In light of the disadvantages of the aforementioned methods, analytical techniques that allow for 

in-situ identification of chromophores in DWP are needed. Ideally, the techniques should be rapid, 

accurate, and applicable to pulps with minimal processing.  Rapidity would allow for their use in 

monitoring industrial process samples where “time is money” and mills cannot afford to wait for 

results from procedures that take long times to process. Hence, in this study, a novel method was 

developed for direct analysis of chromophores in DWP.  

Analytical pyrolysis, coupled with gas chromatography/mass spectrometry (Py-GC/MS), was 

used for direct analysis of chromophores in DWP. Unlike the previously reported methods for 

chromophore analysis, the Py-GC/MS analysis does not involve pre-extraction, and therefore, 

artefacts that may arise during extraction were avoided, hence, allowing the greater accuracy of 

results. 

It is important to understand the primary aspects of analytical pyrolysis because it is the heart of 

this study.  

2.10 Introduction to pyrolysis 

Pyrolysis is defined as the breakdown of chemical bonds in an organic material at elevated 

temperatures and inert atmosphere. The two types of pyrolysis are applied pyrolysis and analytical 

pyrolysis (Sitholé, 2006). Applied pyrolysis involves the use of thermal reactions to produce 

useful chemicals, such as catalytic cracking used to produce hydrocarbons and hydrothermal 

treatments employed in the conversion of waste into valuable chemicals. Analytical pyrolysis is a 

technique that is used to study the molecular fragments released during pyrolysis in order to 

identify the nature and identity of the original substance (Sitholé, 2006, Wampler, 2006). The 

following paragraphs will focus on analytical pyrolysis and its application in the studies of 

biomass composition.  

2.10.1 Analytical pyrolysis  

The different types of analytical pyrolysis techniques include the isothermal furnace, inductively 

heated (curie point) filament, resistively heated filament and thermal extraction pyrolyzer. Sitholé 

(2006) reviewed the application of the different pyrolysis techniques, and the advantages and 

disadvantages of the techniques were outlined. Each of these pyrolysis techniques can use 

temperatures over 800 °C while providing reproducible results for pyrolysis of small samples. The 

choice of pyrolysis technique depends on factors such as the instrument availability, experimental 

requirements, the financial needs and personal preference. In this study, the isothermal furnace 

pyrolyzer was used due to its availability and its suitability for the experimental requirements.  



 

43 

 

The temperature of the isothermal furnace is constantly maintained at a specific temperature 

required for pyrolysis of the sample. The sample is introduced into the hot isothermal furnace for 

pyrolysis and then flushed into the GC column in order to prevent secondary reactions from taking 

place (Wampler, 2006). Traditional furnace pyrolyzers used to be large consisting of large 

pyrolysis tubes, hence, making the furnace to take longer to heat up to the set pyrolysis temperature 

(Figure 2.11). This type of pyrolysis used to require large sample sizes for analysis and required 

the use of a splitter for reducing the flow rate into the analytical flow rates before the analyte 

reaches the GC column (Sitholé, 2006). Modern isothermal furnace pyrolyzers are designed such 

that they fit directly into the inlet of the GC column and they are suitable for analysis of the small 

quantities of samples (Tsuge et al., 2011).  

 

Figure 2.11: Schematic of a traditional furnace pyrolyzer.  

Adapted from Sitholé (2006). 

The sample can be introduced into the furnace pyrolyzer in the form of a liquid or a solid. Liquid 

samples are introduced by injection into the furnace where they are vaporised and pyrolyzed. Solid 

samples are also injected using a needle that is suitably designed for injection of solids (Sitholé, 

2006). Soluble solid samples can be dissolved in a solvent and then injected in the form of a 

solution. However, insoluble solid samples were not suitable for this method. A modern method 

for introducing solid samples was developed by Emeritus Professor Shin Tsuge of Nagoya 

University in Japan. Tsuge’s method uses a small stainless steel cup for containing the sample that 

free-falls into the ceramic heater of the micro-furnace (Frontier-Laboratories, 2013). 

According to Tsuge’s method, the stainless-steel cup (containing a sample) is attached to the 

pyrolyzer, and the sample drop button (Figure 2.12) is pressed when the instrument indicates that 

it is “ready for injection”. This occurs when the temperature and pressure have stabilised. The 

stainless-steel cup containing the sample is then released into the ceramic heater where the 

pyrolysis of the sample takes place once the start button is clicked as indicated by the dialogue 
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box on the computer. The pyrolysis products are flushed by the high-pressure carrier gas into the 

GC column for separation. The GC and MS analysis start immediately after the pyrolysis has been 

completed. Figure 2.12 shows a modern furnace pyrolyzer with the sample cup in a standby 

position and a dropped position where the pyrolysis occurs.   

 

Figure 2.12: Schematic of a modern furnace pyrolyzer. 

Adapted from Frontier-Laboratories (2013).  

The fragments released during the pyrolysis are flushed into the GC column by the carrier gas 

shown in Figure 2.13. The main advantage of this method is that it allows for analysis of soluble 

and insoluble solid materials in minute quantities and has an improved reproducibility (Sitholé, 

2006). 

2.10.2 Pyrolysis temperature 

The two processes involved during analytical pyrolysis are the thermal decomposition of the 

material followed by the detection of the pyrolysis products, with a suitable detector (Sitholé, 

2006). The thermal decomposition of the sample is initiated by elevated pyrolysis temperatures. 

The isothermal furnace is heated by the heating element that is coiled around the furnace (Figure 

2.11). The temperature of the pyrolyzer is monitored by a sensor that communicates to the 

controller where the temperature changes are made. The physical properties of the furnace 

(diameter, mass, length and thickness) can cause differences from the temperature experienced by 

the sample and the temperature inside the pyrolysis tube. Similarly, the physical properties of the 

sample such as the size and heat capacity can determine the heating rate and the temperature 

experienced by the sample (Wampler, 2006).  
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Pyrolysis of samples at a very low temperature does not cause fragmentation but can dry the 

sample and remove moisture and other volatile components that can cause interference in the 

analysis of the sample. Mild pyrolysis temperatures produce low amounts of pyrolysis products, 

and some polymers cannot be degraded at low temperatures. High pyrolysis temperatures result 

in high amounts of pyrolysis products that cannot be easily interpreted by a detector (Sitholé, 

2006). To overcome this, the pyrolysis products can be flushed into the GC column by the carrier 

gas immediately after pyrolysis for chromatographic separation. Commonly used detectors in 

analytical pyrolysis are the mass spectrometer, FTIR spectrometer and flame ionisation detector 

(Sitholé, 2006, Wampler, 2006). In this study, the pyrolysis was coupled to the GC and the MS 

(Py-GC/MS) for effective identification of chromophores in DWP.  

In Py-GC/MS, the pyrolysis products are flushed by the carrier gas into the GC where they are 

separated based on their volatility. The carrier gas is usually used at high flow rates, above 50 

mL/min to prevent chromatographic co-elution and secondary pyrolysis reactions from taking 

place. An appropriate split ratio can be used to avoid column saturation. However, there is 

maximum sensitivity through the direct flow, without applying the split ratio. After adequate 

separation by the GC, the pyrolysis products are then detected by the MS. The complexity of the 

resulting chromatogram makes it difficult to identify individual peaks from the total ion 

chromatogram manually, and therefore the library attached to the instrument with thousands of 

compounds becomes a useful part of the instrument.   

The ability of the Py-GC/MS to analyse insoluble materials, with complex structures at trace 

concentrations, makes it versatile and applicable for analysis of a wide range of samples. The 

combination of a multi-shot pyrolysis with a Py-GC/MS detector supersedes the performance of 

any other analytical techniques because it gives a complete analysis of a sample with minimal or 

no sample preparation. The multi-shot pyrolyzer labelled in Figure 2.13 allows for four analysis 

methods to be used, namely, single shot, double shot, evolved gas analysis and heart-cut EGA 

(Frontier-Laboratories, 2013). In this study, we used the single shot analysis using the stainless-

steel cup as per method developed by Professor Tsuge.   
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Figure 2.13: Schematic of the Py-GC/MS. 

Adapted from Frontier-Laboratories (2013). 

2.11 Previous studies on pyrolysis of biomass 

To understand the pyrolysis of the lignocellulosic biomass, several studies have been undertaken 

with the focus on the three components of wood namely the cellulose, hemicellulose and lignin. 

The following paragraphs review the pyrolysis of these components with interest in the pyrolysis 

products.  

2.11.1 Pyrolysis of cellulose 

Cellulose is one of the most abundant polymers in the world accounting about 50% of the 

lignocellulosic biomass, and it is therefore used for understanding the changes that occur in 

biomass under various reaction conditions (Wang et al., 2012). Cellulose is located in the 

secondary cell wall of the wood matrix where it is divided into three layers that are known as S1, 

S2 and S3 (Figure 2.14) (Behzad and Ahmadi, 2016). The structure of cellulose is composed of 

repeating units of β-D-glucopyranose linked through the 1,4-glycosidic bonds. The primary 

reaction during cellulose pyrolysis involves the breaking of the 1,4-glycosidic linkages; 

subsequent reactions include polymerization, dehydration and reforming reactions resulting in the 

formation of active cellulose (Demirbaş, 2000, Patwardhan et al., 2011).  
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Figure 2.14: The location of cellulose in wood. 

Adapted from Behzad and Ahmadi (2016). 

The pyrolysis of cellulose starts at low temperatures (150 °C) however, low temperatures delays 

the first process that allows the formation of the active cellulose (Shen and Gu, 2009). At 

temperatures above 300 °C, cellulose pyrolysis occurs in two competitive reactions. Firstly, 

forming the char and gaseous products (carbon dioxide, carbon monoxide) followed by the 

formation of tars, mainly the levoglucosan (Kawamoto et al., 2003). It has been shown that 

levoglucosan is the main pyrolysis product of cellulose among other anhydrosugars formed 

(Kawamoto et al., 2003, Shen and Gu, 2009).  

Wang et al. (2012) studied the mechanism of cellulose (microcrystalline cellulose) pyrolysis at 

600 °C using the Py-GC/MS technique. From this study, it was shown that the main pyrolysis 

products of cellulose were the pyrans (such as levoglucosan and levoglucosenone) followed by 

the furans (such as furfural and 5-hydroxymethyl furfural) and other low molecular weight linear 

compounds as shown in Table 2.3.  The area percentage of the furans was the highest in a range 

of temperatures between 450 °C and 700 °C (Wang et al., 2012).  

Table 2.3: Major pyrolysis products of MCC. Adapted from Wang et al. (2012). 

Retention time (min) Compound Area%  

1.45 Carbon dioxide 5.52 

1.77 Acetaldehyde 4.19 

2.22 Furan 0.57 

3.44 2,3-Butanedione 2.35 

8.20 1-Hydroxy-2-propanone 3.60 

9.14 2-Cyclopenten-one 0.47 

10.55 Acetic acid 2.12 

10.84 Furfural 15.91 

10.93 2(5H)-Furanone 1.80 

11.46 Ethanone,1-(2-furanyl)- 2.84 

11.93 Propanoic acid 1.39 
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12.51 5-Methyl furfural 1.64 

13.75 Furan methanol 1.28 

15.37 1,2-Cyclopentanedione 2.86 

16.15 2-Hydroxy-3-methyl-2-cyclopenten-1-one 1.09 

16.46 Dihydro-4-hydroxy-2(2H)-furanone 2.53 

18.00 Maltol 0.84 

18.40 Levoglucosenone 8.71 

21.71 3,5-Dihydroxy-2-methyl-4H-pyranone 3.52 

23.17 1,4:3,6-Dianhydro-α—D-glucopyranose 2.53 

24.23 5-Hydroxymethyl furfural 6.41 

42.91 Levoglucosan 4.52 

A similar study of microcrystalline cellulose pyrolysis was performed at temperatures ranging 

from 300 – 700 °C and over 5 s, 10 s and 30 s (Lu et al., 2011).  Figure 2.15 shows the results 

obtained at 600 °C over 5 s and 30 s. The names of the numbered peaks (1-13) are given in Table 

2.4. Lu et al. (2011) indicated that the anhydrosugars (peak 11 and peak12) were the main cellulose 

pyrolysis products in both 5 s and 30 s pyrolysis times. Figure 2.15 shows that at 5 s, the major 

pyrolysis products were the compounds represented by peaks 1 and 11 (hydroxyacetaldehyde and 

1,5-anhydro-4-deoxy-D-glycerohex-1-en-3-ulose) followed by peak 12 (levoglucosan). However, 

when the pyrolysis time was increased to 30 s, the levoglucosan peak (12) was most dominant 

peak. This indicates that longer pyrolysis time and higher temperature favour the formation of 

levoglucosan.  

 

Figure 2.15: Chromatograms from Py-GC/MS analysis of MCC at 600 °C over 5 s and 30 s. 

Adapted from Lu et al. (2011). 
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Table 2.4:  Peak identification for MCC at 600 °C. Adapted from Lu et al. (2011). 

 

 

Table 2.5 shows that some of the anhydrosugars are favoured by low temperatures and longer 

pyrolysis time. However, some of the anhydrosugars and derivatives are similar to levoglucosan, 

they can survive higher pyrolysis temperatures and longer pyrolysis time.  

Table 2.5: Peak area percentage of anhydrosugars and derivatives at different pyrolysis 

conditions. Adapted from Lu et al. (2011). 

Temperature (°C) Time (Seconds) Peak Area (%) 

400 30 83.7 

450 5 77.3 

10 58.3 

30 63.8 

500 5 54.8 

10 50.2 

30 72.1 

550 5 41.5 

10 43.2 

30 69.8 

600 5 39.3 

10 44.8 

30 69.8 

700 5 44.3 

10 52.1 

30 64.0 

2.11.2 Pyrolysis of hemicellulose 

Hemicellulose forms part of the primary cell wall of wood; it is the second most abundant 

component of wood. Relative to the crystalline and strong structure of cellulose, the structure of 

hemicellulose is random and amorphous with lower strength, organised around the cellulose 

matrix (Guo et al., 2011), Figure 2.14. Sugars such as xylose, mannose, rhamnose and fructose, 

are the saccharides contained in hemicellulose. The composition of hemicelluloses differs in 

Compound No. Compound 

1 Hydroxyacetaldehyde 

2 1-hydroxy-2-propanone 

3 Methyl pyruvate 

4 Furfural 

5 4-hydroxydihydro-2(3H)-furanone 

6 1,2-Cyclopentanedione 

7 Levoglucosenone 

8 1-Hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one 

9 1,4:3,6-Dianhydro-α-D-glucopyranose 

10 5-Hydroxymethyl-furfural 

11 1,5-Anhydro-4-deoxy-D-glycerohex-1-en-3-ulose 

12 Levoglucosan 

13 1,6-anhydro-β-D-glucofuranose 
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hardwoods and softwoods, the hardwoods are dominated by o-acetyl-(4-o-

methylglucorono)xylan, and the softwoods are dominated by galactoglucomannan and a small 

amount of arabino-(4-o-methylglucorono)xylan (Ek et al., 2009). Xylan is the most abundant 

hemicellulose, and therefore it is commonly used as a model compound for studies involving 

reactions of hemicellulose. In contrast to studies of cellulose and lignin pyrolysis, there has not 

been much interest in pyrolysis studies of the hemicelluloses.  

Pyrolysis of xylan at low temperatures between 220 – 315 °C resulted in a rapid weight loss 

producing mainly gaseous products such as methane, carbon monoxide and carbon dioxide (Yang 

et al., 2007). Xylan pyrolysis at high temperatures above 800 °C produced gases, tar, water and 

char with the furans being the most abundant constituents of the tar residue (Khezami et al., 2005). 

Heating of xylan at temperatures between 450 – 700 °C over 10 seconds showed that a short 

retention time resulted in a high conversion of xylan with a rapid weight loss by 4.7% and longer 

retention times resulted in severe decomposition of xylan (Wang et al., 2013). The main pyrolysis 

products identified were the carboxylic acids such as acetic acid and propanoic acids, the 

aldehydes, furans and ketones. The chromatogram obtained from fast pyrolysis of xylan is shown 

in Figure 2.16, and the major compounds are listed in Table 2.6 (Wang et al., 2013).  

 

Figure 2.16: Chromatograms from Py-GC/MS analysis of xylan showing the main pyrolysis 

products. 

Adapted from Wang et al. (2013). 

Table 2.6: Pyrolysis degradation products of xylan. Adapted from Wang et al. (2013). 

Retention time (min) Compound Area (%) 

8.26 1-Hydroxy-2-propanone 3.31 

8.54 Glycolic aldehyde 0.68 

9.15 2-Cyclopenten-1-one 0.65 

10.64 Acetic acid 20.11 

10.88 Furfural 20.24 
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11.60 Formic acid 7.60 

11.99 Propanoic acid 2.16 

12.57 5-Methyl furfural 3.37 

15.40 1,2-Cyclopentanedione 0.86 

16.47 2(3H)-Furanone, dihydro-4-hydroxy 3.56 

18.39 Levoglucosenone 2.12 

23.13 1,4:3,6-Dianhydro-α-d-glucopyranose 1.23 

24.17 5-Hydroxymethyl furfural 6.39 

42.56 Levoglucosan 1.07 

2.11.3 Pyrolysis of lignin 

Lignin is one of the primary components of the middle lamella of the plant cell wall and therefore 

forms an important part of the lignocellulosic biomass. Similar to hemicellulose, the composition 

of lignin is different between softwoods and hardwoods. Softwoods contain about 28%, and 

hardwoods contain about 20% of lignin (Heitner et al., 2010).  The complex structure of lignin is 

composed of three alcohol monomers known as p-coumaryl (29), coniferyl (30) and syringyl 

alcohol (31) as shown in Figure 2.17. Further degradation of the lignin monomers results in the 

formation of low molecular weight aromatic compounds such as compounds 32 – 35.  The 

aromatic rings of the lignin monomers are named based on the number of methoxy (OMe) groups 

attached to the aromatic ring.  

OH
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MeO OMe

OH
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OH

OH
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OMe MeO

OH
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29 30 31

32 33 34 35
 

Figure 2.17: Examples of lignin monomers and their degradation products. 

Adapted from Heitner et al. (2010). 

The aromatic ring without the OMe group is known as the p-hydroxyphenyl monomer, derived 

from the p-coumaryl alcohol, the ring with one OMe group is known as the guaiacyl monomer, 

derived from the coniferyl alcohol and the ring with two OMe groups is known as the syringyl 

alcohol. Softwood lignin is mainly composed of the coniferyl alcohol, and the hardwood lignin 
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mainly consists of the coniferyl and sinapyl alcohol (Heitner et al., 2010, Kutscha and Gray, 1970). 

This shows that the coniferyl alcohol is the main component of lignin in both softwoods and 

hardwoods.  

Due to the complexity of the lignin structure, the pyrolysis of lignin is usually carried out at higher 

temperatures above 550 °C. The pyrolysis of unbleached softwood kraft lignin was conducted at 

580 °C for 2 seconds (Figure 2.18), findings showed that the main degradation products of lignin 

were the hydroxyphenyl compounds originating from the polysaccharides formed during kraft 

pulping (Ohra-aho et al., 2005). The main compounds identified were the guaiacyl type 

compounds, and a few p-hydroxyphenyl compounds were identified (Table 2.7). A portion of the 

softwood lignin structure is presented in Figure 2.19.  Units A and C indicate branches from the 

main chain (B), with the numbers 1-10 showing the linkages of the coniferyl alcohol unit (Heitner 

et al., 2010).  

 

Figure 2.18: Chromatogram of unbleached kraft pulp showing peaks of main pyrolysis 

products.  

Adapted from Ohra-aho et al. (2005). 

 

Figure 2.19: Schematic of softwood lignin.   
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Adapted from Heitner et al. (2010).  

The brown colour of kraft lignin is usually associated with the presence of lignin, hence, it was 

interesting to compare the pyrolysis products of the kraft pulp to those of lignin. The Py-GC/MS 

analysis of unbleached kraft pulps resulted in a very low amount of lignin degradation products 

such as guaiacol and syrinyl compounds indicating that there were significant changes that 

occurred in the structure of the lignin during kraft pulping (del Rıó et al., 2001).  

Table 2.7: Aromatic pyrolysis products of unbleached kraft pulp. Adapted from Ohra-aho et al. 

(2005). 

Peak number Compound Structure 

1 Phenol H 

2 Guaiacol G 

3 2-Methylphenol H 

4 4-Methylphenol H 

5 4-Methylguaiacol G 

6 4-Ethylguaiacol G 

7 4-Vinylguaiacol G 

8 Eugenol G 

9 cis-Isoeugenol G 

10 trans-Isoeugenol G 

11 Vanillin G 

12 Homovanillin G 

13 Acetoguaiacone G 

14 4-(Oxy-allyl)guaiacol G 

15 4-(Hydroxy-prop-2-enyl)guaiacol G 

16 Dihydroconiferyl alcohol G 

17 cic-Coniferyl alcohol G 

18 trans-Coniferyl alcohol G 

19 Coniferaldehyde G 

H: Hydroxyphenyl-type; G: Guaiacyl-type 

2.11.4 Summary on pyrolysis of biomass 

The reviewed studies on pyrolysis of the main components of the wood show that the cellulose, 

hemicellulose and lignin consist of some common pyrolysis products. Besides the gaseous 

pyrolysis products (CO2 and CO), compounds such as levoglucosan, levoglucosenone, furfural 

and 5-hydroxymethylfurfural were common pyrolysis in both cellulose and xylan (Wang et al., 

2012, Wang et al., 2013). Lignin pyrolysis products were distinct from cellulose and xylan 

pyrolysis products, they were mainly aromatic compounds. Furthermore, it was shown that there 

were minor quantities of lignin-type compounds in kraft pulp (unbleached and bleached) due to 

the structural changes that occur in lignin during pulping (del Rıó et al., 2001).  
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2.12 Conclusion 

This chapter has covered the background on chromophores and their formation in diverse types of 

wood pulps with the focus on DWP. Previous methods of identification of chromophores were 

reviewed with their advantages and disadvantages. A review of the previously used methods 

intimated that PY-GC/MS could be used as a viable method for rapid analysis of chromophores 

directly on pulps fibres without pre-extraction of the compounds from the pulp fibres. Thus, a 

novel, rapid, and efficient technique (Py-GC/MS) for identification of chromophores in DWP was 

introduced, and the method will be outlined in Chapter 3.  
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CHAPTER 3  

MATERIALS AND METHODS 

3.1 Summary of experimental design 

Analytical pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) has been 

widely used for the analysis of diverse components of biomass (Sithole, 2000; Wampler, 2000). 

In this study, the Py-GC/MS was specifically employed for identification of chromophores in 

dissolving wood pulp (DWP). To achieve this, a method for chromophore analysis needed to be 

developed. The development of the method entailed analysis of fully bleached DWPs with high 

brightness and the pulps that exhibited brightness reversion; other cellulosic materials that were 

unlikely to contain impurities were also analysed to ascertain if there are any differences in 

pyrograms of these samples.  This was followed by analyses of probable compounds that could 

have induced brightness reversion to ascertain any similarities with the pyrograms of the 

brightness reversed samples.  These were xylan, sugar monomers and several types of lignin. 

Following the successful development of the method, it was then tested for reproducibility through 

replicate analysis of selected DWP samples. Finally, the method was applied for analysis of 

industry and laboratory produced pulps.  

The developed method was first used for chromophore analysis in a fully bleached industrial 

DWP, of known brightness. With fully bleached DWP, it was important to evaluate all possible 

factors that influence both the chromophore content and the brightness and to understand how 

these relate to the effect of heat ageing and the effect of pulping and bleaching.  

DWP undergoes several process stages before reaching the fully bleached stage. The fully 

bleached pulp is prone to ageing (brightness reversion), depending on the conditions of storage. 

Thus, the industry produced fully bleached pulps were induced for brightness reversion as 

described in section 3.4.3, with brightness and yellowness measurements recorded before and after 

brightness reversion. Both sets of samples were then analysed for chromophore content using Py-

GC/MS.  

During the industrial production of microcrystalline cellulose (MCC) at one mill, it was observed 

that the brightness of the MCC was lower than the brightness of the corresponding DWP samples 

used to produce the MCC: the cause needed to be investigated. Hence, the brightness and 

yellowness of fully bleached DWPs with their corresponding MCC samples were determined and 

compared. The chromophore content of these samples was determined using the developed Py-

GC/MS method.  
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Since the industrial pulp is manufactured from of a mixture of wood species, the effect of cooking 

and bleaching processes needed to be identified. Thus, acid bisulphite and PHK pulps were 

collected from the different stages of cooking and bleaching (in-process pulps) unit operations.  

The samples were air dried and then analysed using the Py-GC/MS. Furthermore, the laboratory 

prepared fully bleached DWP samples were prepared from several Eucalyptus tree species (E. 

dunnii, E. Grandis and E. Smithii) (Figure 3.1). In both laboratory and industrial samples, pulps 

were collected after each unit operation to ascertain the effects of the unit operations on the 

formation of chromophores in pulps.  

The wet chemical properties of the pulps, viz., solubility (total hemicellulose content and degraded 

cellulose/ short chain glucan) and lignin content were analysed to determine the relationship, if 

any, between the properties and the amounts of chromophores determined in the pulps as measured 

by Py-GC/MS. Finally, the Py-GC/MS method was applied to other pulps to ascertain if it would 

be applicable to other pulps besides DWP.  The experimental design is summarised in Figure 3.1.  

Preriminaly Py-GC/MS analysis of DWP

High brightness pulp

Low brightness pulp

Analysis of possible chromophore sources in 
pulp

Xylan: Brightness reversion and  Py-GC/MS 
analysis 

Sugar monomers: Py-GC/MS analysis

Klasson Lignin: Py-GC/MS analysis

Fully bleached DWP

Brighness reversion at 105 oC

Brightness and yellowness analysis

Py-GC/MS analysis

Laboratory pulps: Single species 
acid bisulpite pulp

Industrial pulps: Multiple spicies 
acid bisulphite and PHK pulps

Analysis of cellulosic materials

Brightness reversion

Py-GC/MS analysis

Fully bleached pulp with MCC

Brightness and yellowness analysis

Py-GC/MS analysis

In-process PHK pulp

Industry bleaching sequence

Air dried at room tempetrature 

Wet chemistry analysis

Py-GC/MS analysis

Method development Application of the method

Reproducibility test of Py-GC/MS 
method

In-process acid bi-sulphite pulp

Industry bleaching sequence

Air dried at room temperature 

Wet chemistry analysis

Py-GC/MS analysis 

In-process acid bi-sulphite pulp

Industry bleaching sequence

Air dried at room tempetarure

Wet chemistry analysis

Py-GC/MS analysis 

 

Figure 3.1: Schematic of experimental design.  
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3.2 Experimental samples 

3.2.1 Fully bleached pulps  

Fully bleached pulps were obtained from local and international DWP mills. The samples included 

acid bisulphite and pre-hydrolysis (PHK) pulps.  

3.2.2 Cellulosic materials 

Cellulose-rich materials such as the laboratory filter paper and cotton linters were analysed for 

chromophore content using Py-GC/MS. Cotton linters were obtained from a local pulp mill, and 

the filter papers were purchased from Sigma-Aldrich.  

3.2.3 Microcrystalline cellulose 

Microcrystalline cellulose (MCC) is a partially depolymerised, pure cellulose that was discovered 

in 1955 (Thoorens et al., 2014). It is a major product of DWP, conventionally generated in the 

presence of mineral acids at elevated temperatures (Trache et al., 2016). MCC is a renewable, 

biodegradable, non-toxic material with excellent strength properties. These properties make MCC 

a versatile product that finds a broad range of applications such as binders in pharmaceutical 

formulations and food processing, agricultural formulations, house care products, such as 

detergents and personal care products, such as cosmetics (Kopesky and Ruszkay, 2003).  

Since MCC is a derivative of DWP, it was interesting and informative to investigate whether DWP 

and MCC contain the same type of chromophores that contribute to brightness reversion. To 

investigate this, samples of MCC with their corresponding (original) pulp samples were collected 

from a local pulp mill for analysis and used without any chemical modification.  

3.2.4 In-process pulps 

Pulps collected from different stages of cooking and bleaching (in-process) in the industry and in 

our research laboratory were subjected to wet chemistry analysis according to the method 

described in section 3.4.7 and analysed for chromophore content using Py-GC/MS.  

3.2.5 Potential sources of chromophores in pulps 

According to studies cited in the literature, it appears that chromophore formation in fully bleached 

pulps is caused by cellulose degradation, and the presence of hemicelluloses and remnants of 

lignin (Carter, 1996, Beyer et al., 2006, Loureiro et al., 2010). Accordingly, representative 

components of hemicellulose and lignin were isolated and examined to study the formation of 

chromophores. 

3.2.5.1 Xylan  

Xylan from beechwood was purchased from Aldrich and used without any chemical treatment. It 

was subjected to brightness reversion according to the method described in section 3.4.3, and the 
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samples were analysed for chromophore content by Py-GC/MS before and after brightness 

reversion.  

3.2.5.2 Sugar monomers 

The sugar monomers: glucose, arabinose, xylose, galactose, rhamnose and mannose, were 

purchased from and used without further purification. The sugar monomers were analysed for 

chromophore content using Py-GC/MS according to the temperature program shown in Method 1 

(Figure 3.2).  

3.2.5.3 Klason lignin 

The Klason lignin samples were obtained through extraction from the sawdust and precipitation 

from kraft black liquor. The methods employed for obtaining the lignin from the sawdust and the 

kraft liquor are described in sections 3.4.4 and 3.4.5 respectively.  

3.2.6 Lignin-containing materials 

3.2.6.1 Newsprints 

Blank newsprints were obtained from a local paper producing mill to understand the effect of 

chromophores in fresh and aged newsprints. Brightness reversion of the blank newsprints was 

carried out using the method described in section 3.4.3. The Py-GC/MS analysis of the newsprints 

was performed before and after brightness reversion.  

3.2.6.2 Kraft pulps 

Unbleached and fully bleached kraft pulps obtained from a local kraft mill were analysed for 

chromophore content using Py-GC/MS. The chromophores identified in the unbleached kraft pulp 

were compared to the chromophores identified in fully bleached kraft pulp. The type of 

chromophores identified in the kraft pulps was also compared to the chromophores identified in 

the acid sulphite and PHK pulp.  
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Method 1 Method 2 

Method 3 
Method 4 

Method 5 

Figure 3.2: Column oven temperature program for the Py-GC/MS method development.  
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3.3 Development of the Py-GC/MS method  

As described in section 2.8, current methods for analysis of chromophores in pulp samples are 

long and tedious and can take up to a week to generate results.  This is not ideal for troubleshooting 

industrial production where time is money, and rapid analytical procedures are a major 

requirement.  The desire was to develop a rapid test that could be used to troubleshoot production 

problems, e.g., ascertain what unit operations or pulp storage conditions are conducive to the 

formation of chromophoric compounds.  Analytical pyrolysis was selected as an ideal technique 

because: 

 It is a rapid method that can generate results in about an hour. 

 Very little sample preparation is required. 

 Very little sample is required. 

 It is a very sensitive technique that can detect compounds at ppb levels. 

 Very good library databases are available that facilitate identification of the pyrolysis 

products. 

 In-house libraries can be created for compounds that are not available in commercial 

library databases. 

3.3.1 Py-GC/MS experimental details 

A multi-shot pyrolyzer, EGA/PY-3030 D (Frontier Lab, Japan), attached to an ultra-alloy capillary 

column (30 m x 0.25 mm, 0.25 µm), was used for analysis. An autosampler (AS-1020E/ET) was 

attached to the pyrolyzer to allow for automatic and continuous analysis of up to 48 samples 

(Figure 3.3). The mass of each sample, ranging between 100 – 500 µg, was determined by means 

of an AND microbalance (AD-1672). The samples were pyrolyzed at 550 °C for 20 seconds, and 

the interface temperature was set at 350 °C.  

The chromatographic separation of the volatile components released by pyrolysis was performed 

using an ultra-alloy column. The injection temperature was set to 280 °C, and the flow rate of the 

GC column was set at 1.0 mL per minute, with helium used as a carrier gas. The ion source and 

the interface temperatures of the mass spectrometer were set to 200 °C, and 300 °C respectively. 

The scan range used for the mass selective detector was m/z 40-650.  Initially, the column oven 

temperature was programmed as follows (Method 1, Figure 3.2):   

(i) 50 °C for 2 minutes 

(ii) 320 °C for 1 minutes 

(iii) Rate 5 °C per minute 

The total program time for Method 1 was 57 minutes. Following this, the initial temperature was 

adjusted to 35 °C with a hold time of 2 minutes and the final temperature was reduced to 250 °C 

with a hold time of 10 minutes (Method 2, Figure 3.2), this resulted in a decrease in the total 
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program time from 57 minutes to 55 minutes. However, the results obtained were not satisfactory, 

hence the column oven temperature was further modified as shown in methods 3-5 (Figure 3.2) 

until satisfactory results were obtained. 

 

 

 

 

Figure 3.3: Photograph of the autosampler Py-GC/MS. 

The column oven temperature of the successfully used method (Method 5) was programmed as 

follows:  

(i) 50 °C for 2 minutes 

(ii) 200 °C for 4 minutes 

(iii) Rate 5 °C per minute 

The advantage of this temperature program was that it allowed the identification of all the 

compounds within a period of 36 minutes. This shows that this method is efficient and can be used 

for rapid identification of chromophores in pulps.   

3.3.2 Identification of chromophores using Py-GC/MS 

Data analysis was carried out using the Shimadzu Postrun analysis software. The area percentage 

of the individual peaks in the chromatogram was measured using a peak integration function. The 

peak areas of all the compounds identified per sample added up to 100 %.  

The pyrolysis products were identified using the NIST library search function that shows the name 

and structure of compounds. This option allows one to see the structure of a compound, and then 

to classify it as a chromophore if it contains a conjugated bond system or other UV absorbing 

functional groups. Peak fittings >90% were considered acceptable in the identification of 

compounds.  

The pyrolysis products were identified by comparing their mass spectra with the mass spectrum 

NIST library attached to the instrument. The relative amounts of chromophores of the individual 

compounds that were quantitatively determined by the chromatogram were further classified by 

the NIST library. Based on their structure, these chromophoric compounds were classified into 

Helium inlet Auto shot sampler Top view of the auto shot sampler 
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compound groups, such as furan-type compounds, ketones, arenes and other low molecular weight 

chromophores.  

3.3.3 Optimisation of the Py-GC/MS method 

It was observed that there were no chromophores identified after 35 minutes, thus, the conditions 

were optimised as shown in Method 5 (Figure 3.2). Method 5 showed promising results, hence, 

the remainder of the samples were analysed using the method.  

3.3.4 Validation of the Py-GC/MS method 

Five replicates of selected DWP samples were analysed using the same approach and the same 

experimental conditions to validate the methodology. The results obtained were within the same 

range per sample. A small shift in the results was attributed to the lack of homogeneity of the pulp 

samples.  

3.3.5 Application of the Py-GC/MS method 

Chromophores in industrial and laboratory-produced pulps were identified using the developed 

Py-GC/MS method. The fully bleached pulps were subjected to brightness reversion using the 

method described in section 3.4.3. The pulp and paper industry uses the brightness scale to 

determine the quality of the fully bleached pulps because it is an efficient method to identify 

variations in the pulp quality during production (Johansson, 2000). The brightness and yellowness 

were, therefore, measured before and after brightness reversion, and compared to chromophore 

content as determined by the Py-GC/MS. The second set of samples were fully bleached DWP 

and their corresponding MCC samples. These pulp samples were not induced for brightness 

reversion. However, their chromophore content, brightness and yellowness levels of the original 

pulp and MCC samples were compared. The methods used for measuring brightness and 

yellowness of the industrially produced fully bleached pulps are described in sections 3.4.1 and 

3.4.2, respectively.  

The pulps collected from different unit operations of cooking and bleaching processes (in-process 

pulps) were analysed for wet chemical properties, and their chromophore contents were 

determined using the Py-GC/MS method.  The wet chemistry data was compared to the 

chromophore content to investigate any relationship between the wet chemical properties and the 

chromophores. Pulp bleaching and wet chemistry analysis procedures for the laboratory produced 

in-process pulps are described Sections 3.4.6 and 3.4.7.  
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3.4 Other experimental methods 

3.4.1 Brightness measurements 

The brightness of the pulp is described as the absorption at a wavelength of 457 nm expressed on 

a scale of 0-100%. The brightness was measured using a reflectometer according to the ISO 2470-

1:2009 method.  

3.4.2 Yellowness measurement 

Yellowing, or discolouration of pulps, was determined using the DIN 6167 test method. The 

degree of yellowing was expressed as a yellowing number (REF description of yellowness of near-

white or near-colourless materials. DIN 6167 1979-12). 

3.4.3 Brightness reversion 

Previous studies have shown that accelerated heat exposure resulted in the formation of 

chromophores (Rosenau et al., 2007, Fischer and Beyer, 2000); hence, similar brightness reversion 

inducements were done on samples used in this study. Heat-induced brightness reversion was 

carried out in an oven at 105±2 °C overnight. The chromophore content was measured before and 

after brightness reversion using Py-GC/MS analysis to evaluate the effect of heat induced 

brightness reversion on the formation of chromophores. Samples that were induced for brightness 

reversion were the cellulosic materials, xylan, fully bleached acid bisulphite pulp, PHK pulp, 

newsprints and fully bleached kraft pulps.  

3.4.4 Extraction of lignin from sawdust 

Accurately weighed (0.70 g), fine single clone Eucalyptus sawdust samples were dissolved in 

sulphuric acid (72%, 3 mL), in test tubes (12 x 15 mL). The contents of the test tubes were heated 

in a constant temperature water bath (30 ± 3 °C) for 1 hour, with occasional stirring, using a glass 

rod. The resulting mixture was washed into Schott bottles (250 mL) with deionized water (85 mL), 

and placed in an autoclave (103 ± 7 kPa, 120 °C) for 1 hour. Afterwards, the samples were cooled 

to room temperature and filtered under vacuum using Büchner filtration apparatus with a pre-

weighed nylon filter paper (0.45 µm). After drying at room temperature for two days, the mass of 

the acid insoluble lignin and the filter papers were accurately recorded to four decimal places, 

using an analytical balance. The air-dried lignin was analysed for chromophore content using Py-

GC/MS.  

3.4.5 Precipitation of lignin from kraft black liquor 

Softwood (SW) and hardwood (HW) kraft liquor were obtained from a South African kraft pulp 

mill. Each solution was stirred at room temperature for 1 hour. The SW and HW kraft lignin were 

extracted according to the following procedure: A portion (50 mL) of the stirred kraft liquor was 

sampled into a conical flask (100 mL) and allowed to stir at room temperature for 15 minutes. To 
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the stirring liquor, H2SO4 (6M) was slowly added until pH 9 was reached. The mixture of the black 

liquor and the H2SO4 (6M) was stirred at room temperature for 1 hour before further addition of 

H2SO4 (6M) to pH 4. When pH 4 was reached, the mixture formed a highly viscous liquid that 

was filtered using a Büchner funnel. The filtrate was washed successively with H2SO4, starting 

from 6M, reducing to 3M and finally, 1M H2SO4 was added until the filtrate was clear. The lignin 

was further washed several times with deionized water until the pH of the filtrate was 5. The 

obtained lignin was dried at room temperature for two days before it was ground, using a mortar 

and pestle, to be made ready for analysis (Namane et al., 2015, Zhu and Theliander, 2015). 

3.4.6 Laboratory pulp bleaching 

Single species/clone, acid bisulphite pulp samples of E. dunnii, E. Grandis and E. Smithii were 

prepared in the laboratory after which they were subjected to oxygen delignification at a constant 

temperature and pressure. The pulps were then bleached, using a 5-stage sequence that mimicked 

industrial bleaching sequence for an acid bi-sulphite pulp (Chunilall, 2009). The purpose of each 

bleaching stage is shown in Table 3.1. 

Table 3.1: Laboratory pulp bleaching stages. 

Bleaching Stages Purpose  

Stage 1 Oxidation and solubilization of the lignin remaining after pulping 

Stage 2 Lignin oxidation and solubilization to improve pulp brightness 

Stage 3 Hydrolysis of lignin and removal of hemicelluloses and degraded 

carbohydrates 

Stage 4 Lignin oxidation and solubilization to improve pulp brightness 

Stage 5 Lignin oxidation and solubilization to improve pulp brightness 

3.4.7 Wet chemistry analysis 

Pulp samples from each of the bleaching stages were allowed to dry at room temperature for 24 

hours. The wet mass of the pulp samples was determined using a measuring balance (Ohaus, 

PioneerTM), and the dry mass of the pulp samples was determined using a moisture analyser 

(Ohaus, MB45), before wet chemistry analysis. The wet chemical properties, total lignin content 

(Klason lignin and acid soluble lignin) and solubility (S10/S18), were determined as described in 

the following paragraphs.  

3.4.7.1 Determination of acid insoluble lignin  

Acid-insoluble lignin (Klason lignin) is defined as the insoluble remnants of the pulp in 72% 

H2SO4 solution. The 72% H2SO4 solution solubilizes most of the carbohydrates in the pulp, and 

the Klason lignin remains. Analysis of the acid-insoluble lignin was determined using the TAPPI 

test method T 222 om-88 (TAPPI, 1996a), described as follows: Pulp samples collected from the 

different stages of bleaching were hand torn and shredded using a coffee blender until fine pulp 
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was obtained. The moisture content of the pulp was determined using the moisture analyser at 180 

°C. The pulp samples were accurately weighed to about 0.2 g using an analytical balance. The 

weighed samples were transferred into test tubes (15 mL) using a glass rod. The weighed samples 

in the test tubes were treated with sulphuric acid (72%, 3 mL), and heated at a constant temperature 

in a water bath (30 ± 3 °C) for 1 hour with occasional stirring, using a glass rod.  

The resulting mixture was washed into Schott bottles (250 mL) using deionized water (85 mL), 

and placed in an autoclave (103 ± 7 kPa, 120 °C) for 1 hour. Afterwards, the samples were cooled 

to room temperature and filtered under vacuum through pre-weighed nylon filter paper (0.45 µm). 

The filter papers were allowed to dry at room temperature, and the final mass of the filter papers, 

containing the lignin, were measured to obtain the amount of the acid insoluble lignin. The filtrates 

were used as described in the following section. 

3.4.7.2 Determination of acid soluble lignin 

Analysis of the acid-insoluble lignin was determined using the TAPPI test method UM 250 

(TAPPI, 1996a), described as follows: The filtrates (from section 3.4.7.1) were transferred into 

separate volumetric flasks (200 mL), and the volume was made up to 200 mL using deionized 

water. The diluted samples were kept in gas-tight vials (50 mL) in a refrigerator, ready for UV/Vis 

analysis. The refrigerated samples, with volumes ranging between 1-5 mL, were pipetted into 

separate volumetric flasks (10 mL). The volume was made up to 10 mL, using a sulphuric acid 

solution (3%) as a blank. The blank was prepared by diluting H2SO4 (15mL, 72%) in a volumetric 

flask (1000 mL). The volume of the blank was made up to 1000 mL using deionized water.  

 

The UV/Vis absorption was measured using a Varian spectrophotometer (Cary, 50 Conc), and an 

absorbance ranging between 0.2 and 0.7 at 205 nm was recorded. If the absorbance was not within 

the range of 0.2 to 0.7, the solution was diluted further, until the correct absorbance was obtained.  

The determination of acid insoluble lignin (section 3.8.3.1) and acid-soluble lignin (section 

3.8.3.2) in the pulp allows for the identification of the total lignin content in the pulp that is 

calculated according to equations 5-9 shown below. The Symbols used in equations 5-9 are 

described in Table 3.2.  

𝐿𝑖𝑔𝑛𝑖𝑛 (𝑔/𝐿) =
𝐴

𝑏 𝑥 𝑎
      (5) 

𝐿𝑖𝑔𝑛𝑖𝑛 (𝑔/𝐿), 𝐵 =
𝐴

110
 (𝑖𝑛 𝑢𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒)  (6) 

𝐿𝑖𝑔𝑛𝑖𝑛 (𝑔/𝐿), 𝐵 =
𝐴

110
 𝑥 𝐷 (𝑖𝑛 𝑢𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑒)  (7) 

𝐷 =
𝑉𝐷

𝑉𝑜
        (8) 

𝐿𝑖𝑔𝑛𝑖𝑛 % =
𝐵 𝑥 𝑉 𝑥 100

1000 𝑥 𝑊
      (9) 
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Table 3.2: Description of symbols 

Symbol Units Description 

A - Absorbance 

a 1g-1cm-1 Absorptivity (110) in 1g-1cm-1 

B g/L Undiluted filtrate 

b cm Light path length  

V mL Total volume of the filtrate 

W g Oven dry weight of the pulp 

VO mL Volume of original filtrate 

VD mL Volume of diluted filtrate 

D - Dilution factor 

3.4.7.3 Alkali solubility (S10 and S18)  

Pulp samples from each of the bleaching stages were torn by hand and shredded using a coffee 

blender until fine pulp was obtained. The fine pulp was analysed for moisture content using a 

moisture analyser at 180 °C. The alkali solubility of the pulp was determined using TAPPI 

classical method T235 cm-85 (TAPPI, 1996b), described as follows: The pulp samples were 

accurately weighed to about 1.6 g using an analytical balance. The pulps were stirred into a NaOH 

(100 mL, 18%) solution for S18 determination (for S10, 10% NaOH was used), for 3 minutes in 

a stoppered glass bottle (250 mL).  The mixture was allowed to stir for 1 hour at 20±0.2 °C and 

filtered under vacuum using a dry G3 filter crucible. The initial filtrate of about 10 to 15 mL was 

discarded, and the remainder was collected into a conical flask and used for titration as described 

in the following paragraph:  

The filtrate (10 mL) was pipetted into a conical flask (1L), followed by the addition of potassium 

dichromate (10 mL, 0.4M), and fast addition of concentrated H2SO4 (30 mL) to increase the 

temperature of the solution to about 120-130 °C. Deionized water (500 mL) was added 10 minutes 

later to decrease the temperature of the solution to about 15 °C. A solution of potassium iodide 

(20 mL) was pipetted into the conical flask and stirred for 5 minutes before titrating with a solution 

of sodium thiosulphate (10 N). The solution was stirred continuously while titrating. The end point 

was observed when the colour changed from brown to yellow-green. When the colour changed to 

yellow-green, a starch indicator was added, and the solution changed to a dark-blue colour, and 

later turned to light blue, when the end point was reached. The volume at the end point was 

recorded.  

A blank titration was carried out by pipetting NaOH (10 mL, 18%) into a 1L conical flask instead 

of using the filtrate and the rest of the procedure was similar. The alkali solubility was calculated 

using equations 10 and 11 shown below with the factor 0.685% representing the amount of 

cellulose and other dissolved carbohydrates. Description and units for the symbols used in 

equations 10 and 11 are presented in Table 3.3. 
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𝐺 =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑢𝑙𝑝 𝑥 (100−% 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒)

100
    (10) 

% 𝐴𝑙𝑘𝑎𝑙𝑖 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 (𝑆10 𝑜𝑟 𝑆18) =
(𝐵−𝐴) 𝑥 0.685%

𝐺
  (11) 

Table 3.3: Description of symbols 

Symbol Units Description 

A mL Volume used for titrating the pulp 

B mL Volume used for blank titration  

G g Oven dried mass of the pulp 
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CHAPTER 4 

RESULTS AND DISCUSSIONS  

4.1 Introduction 

The results obtained during the development of the Py-GC/MS method for identification of 

chromophores in the experimental samples are presented and discussed in this chapter. The 

method was developed using a variety of samples as described in Chapter 3. After successful 

development of the method, it was then used for the analysis of industrially and laboratory 

produced pulps. It has already been determined that identification of chromophores in dissolving 

wood pulp (DWP) is complex due to the low amount (ppb range) of chromophores. As explained 

in section 2.8.1, the most efficient method used, known thus far, is time-consuming and is limited 

to the identification of quinoid and aromatic structures.  

To overcome this challenge, the use of analytical pyrolysis gas chromatography-mass 

spectrometry (Py-GC/MS) for chromophore identification was undertaken, as a new alternative 

means to analyse residual chromophores in DWP. In addition to Py-GC/MS analysis, brightness 

and yellowness measurements were performed for fully bleached industrial pulps so that any 

relationship between chromophores and the brightness, or the yellowness, could be established. 

Furthermore, wet chemistry analysis was performed to understand the impact of degraded 

cellulose, hemicellulose and lignin on the formation of chromophores in industrial and laboratory 

prepared pulps, collected from various stages of bleaching. Afterwards, the pulps were analysed 

for chromophore content using the developed Py-GC/MS method.  Finally, other pulp samples 

such as newsprints and kraft pulps were also analysed for chromophore content using Py-GC/MS. 

4.2 Development of the Py-GC/MS method 

Trial analyses for the detection of chromophores were performed using DWPs that exhibited high 

and low brightness levels. In addition to DWPs, other cellulose-rich materials were also analysed 

for chromophore content using Py-GC/MS. Afterwards, a variety of samples that are possible 

sources of chromophores in pulps were also analysed for chromophore content. The samples 

included xylan, hemicellulose compounds, and several types of lignin. Selected samples were 

induced for brightness reversion (as described in section 3.4.3) to observe the changes in the 

chromophore content after heat-induced brightness reversion. Following this, the method was 

modified based on the experimental observations. Subsequently, selected DWP samples were 

analysed in replicates using the developed method to evaluate its reproducibility.  
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4.2.1 Preliminary study on chromophore identification  

Fully bleached DWP samples with different brightness levels, ranging from 89.4% to 93.3%, were 

analysed for chromophore content using Py-GC/MS.  Results obtained during the analysis of the 

high and low brightness pulps are outlined below.  

4.2.1.1 Analysis of high brightness DWPs 

The pyrogram of the high brightness (93.3%) DWP sample T1 exhibited chromophores that 

totalled 20.9%. The pyrogram of T1 is shown in Figure 4.1 and the chromophoric compounds 

detected are listed in Table 4.1. The chromophores eluted between 2 and 20 minutes, these 

compounds have been previously identified by other researchers (Shen and Gu, 2009, Lu et al., 

2011). 

 

Figure 4.1: Pyrogram of pulp T1. 

Figure 4.2 shows a summary of the chromophoric compounds identified during the trial analysis 

of pulp samples T1, T2, T3 and T4. The pulp samples were arranged in the order of decreasing 

brightness (Table 4.2), with T1 having the highest brightness (93.3%), and T4 had the lowest 

brightness (89.4%) in this set of samples. Findings indicated that there was no relationship 

between the measured brightness of the pulps and the amounts of chromophoric compounds 

detected. 

Table 4.1: Peak identification for pulp T1. 

Peak 

number 

Retention 

time (min) 

Area % Compound 

1 2.35 0.7 4-Methyl-5H-furan-2-one 

2 2.58 0.6 Vinyl crotonate 

3 2.73 0.7 2(5H)-Furanone 

4 3.05 0.5 2(5H)-Furanone 

5 3.70 0.2 3-Furaldehyde 

6 3.83 0.2 4-Methyl-5H-furan-2-one 
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7 4.01 0.3 Furan-2-carbonyl chloride, tetrahydro- 

8 4.09 1.0 Furfural 

9 4.27 0.4 Vinyl crotonate 

10 4.87 0.6 4-Hexen-2-one 

11 5.16 0.2 4-Cyclopentene-1,3-dione 

12 5.29 0.1 Cyclopent-4-ene-1,3-dione 

13 5.94 0.2 Ethanone, 1-(2-furanyl)- 

14 6.09 1.2 2(5H)-Furanone 

15 6.29 1.5 1,2-Cyclopentanedione 

16 6.37 1.7 1,2-Cyclopentanedione 

17 6.72 0.2 2(5H)-Furanone, 5-methyl- 

18 6.86 0.3 2,5-Furandione, 3-methyl- 

19 7.51 0.3 2(3H)-Furanone, 5-acetyldihydro- 

20 7.68 0.1 2-Cyclopenten-1-one, 3,4,4-trimethyl- 

21 9.27 1.0 1,2-Cyclopentanedione, 3-methyl- 

22 9.53 0.4 2-Cyclopenten-1-one, 2,3-dimethyl- 

23 10.05 0.6 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

24 10.15 0.3 Phenol, 2-methyl- 

25 10.61 0.4 4H-1,3-Benzodioxin-4-one, hexahydro-4a,5-dimethyl-, 

[4as-(4a.alpha.,5.beta.,8a.beta.)]- 

26 11.91 0.9 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

27 12.22 0.6 2,4(3H,5H)-Furandione, 3-methyl- 

28 12.59 0.5 2-Cyclohexen-1-one, 3,4-dimethyl- 

29 13.24 0.8 2,5-Dihydroxybenzaldehyde 

30 14.12 0.4 4H-Pyran-4-one, 3,5-dihydroxy-2-methyl- 

31 15.17 0.4 2-Coumaranone 

32 15.66 0.6 5-Hydroxymethylfurfural 

33 16.47 0.3 1H-Inden-1-one, 2,3-dihydro- 

34 16.53 0.5 2,6,6-Trimethyl-2-cyclohexene-1,4-dione 

35 16.74 0.3 2,6,6-Trimethyl-2-cyclohexene-1,4-dione 

36 18.36 0.4 7-Methylindan-1-one 

37 18.50 0.4 4-Hydroxy-1-indanone 

38 19.09 0.3 1-(4-Methoxyphenyl)-1,5-pentanediol 

39 19.24 0.5 2-Carbamyl-9-[.beta.-d-ribofuranosyl]hypoxanthine 

40 19.48 0.4 7-Methylindan-1-one 

Total chromophore 

area % 

20.9 

Furthermore, the data in Figure 4.2 indicates that compounds containing furan and ketone moieties 

were major classes of chromophores in DWPs.    

Table 4.2: Brightness of trial DWP pulp samples. 

Pulp name Description  Brightness (%) 

T1 High brightness pulp 93.3 
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T2 High brightness pulp 92.1 

T3 Low brightness pulp 90.2 

T4 Low brightness pulp 89.4 

 

Figure 4.2: Summary of chromophores identified in the trial analysis of DWPs. 

Analysis of the second sample, T2 (pulp brightness 92.1%) revealed the presence of similar 

compounds but with a lower total chromophoric content of 10.5%.  The pyrogram of sample T2 

and the identified chromophores are shown in Figure 4.3 and Table 4.3, respectively. The 

chromophores eluted between 2 and 18 minutes (Figure 4.3). 

 

Figure 4.3: Pyrogram of pulp T2 

Classification of the chromophores into different compound groups shown in Figure 4.2 revealed 

that the ketones were the most dominant compounds in pulp T2 followed by the furan-type 

compounds. 
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Table 4.3: Peak identification for pulp T2. 

Peak 

number 

Retention 

time (min) 

Area % Compound 

1 2.21 0.4 Furan, 2,5-dimethyl- 

2 2.36 0.4 4-Methyl-5H-furan-2-one 

3 3.06 0.9 2(5H)-Furanone 

4 3.60 0.3 4-Methyl-5H-furan-2-one 

5 4.01 0.2 Furan-2-carbonyl chloride 

6 4.16 0.3 2-Cyclopenten-1-one 

7 4.50 0.1 1,2-Hydrazinedicarboxamide 

8 5.18 0.1 2H-Pyran-3(4H)-one, dihydro- 

9 5.74 0.0 6,7-Dihydropyrido(2,3-d)pyridazine-5,8-dione 

10 5.81 0.2 2-Cyclopenten-1-one, 2-methyl- 

11 6.30 4.0 1,2-Cyclopentanedione 

12 7.27 0.1 3-Methylcyclopentane-1,2-dione 

13 8.19 0.0 1-(1H-Imidazol-2-yl)-ethanone 

14 8.24 0.1 1,2-Cyclohexanedione 

15 9.23 1.1 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 

16 9.51 0.2 2-Cyclopenten-1-one, 2,3-dimethyl- 

17 9.61 0.1 1,3-Benzodioxol-2-amine, hexahydro-N,N-dimethyl- 

18 10.03 0.1 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

19 10.86 0.1 Furaneol 

20 10.97 0.1 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

21 11.94 0.1 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

22 11.98 0.0 o-Fluorothiophenol 

23 12.11 1.3 2,4(3H,5H)-Furandione, 3-methyl- 

24 17.23 0.1 Phenol, 2-(1,1-dimethylethyl)-4-(1-methyl-1-

phenylethyl)- 

Total chromophore 

area % 

10.3 

The loss of brightness in fully bleached pulps is usually associated with the presence of 

chromophores. However, analysis of the high brightness pulps T1 and T2 did not show any 

relationship between pulp brightness and the chromophores identified by Py-GC/MS.  

4.2.1.2 Analysis of low brightness DWPs 

In pulp T3 (brightness 90.2%) the corresponding chromophore compounds totalled 16.7% and 

eluted between 2 and 17 minutes (Figure 4.4). Similar to samples T1 and T2, the major 

chromophoric compounds detected were furans and ketones as illustrated in the pyrogram in 

Figure 4.4 and the data shown in Table 4.4.  



 

82 

 

 

Figure 4.4: Pyrogram of pulp T3. 

Figure 4.2 shows that the major group of compounds in pulp T3 were the furan-type compounds 

with a total area percentage of 8.2% followed by the ketones at 6.5%. Arenes and other low 

molecular weight chromophores had total area percentages of 0.6% and 1.3%, respectively. 

Table 4.4: Peak identification for pulp T3.  

Peak 

number 

Retention 

time (min) 

Area % Compound 

1 2.585 0.4 Vinyl crotonate 

2 2.734 0.6 1-Penten-3-one 

3 3.044 0.3 2(5H)-Furanone 

4 3.696 0.1 3-Furaldehyde 

5 4.076 0.9 3-Furaldehyde 

6 5.356 0.3 2-Furanmethanol 

7 5.897 0.1 Ethanone, 1-(2-furanyl)- 

8 6.088 0.5 2(5H)-Furanone 

9 6.35 2.1 1,2-Cyclopentanedione 

10 6.695 0.2 2(5H)-Furanone, 5-methyl- 

11 6.833 0.3 2,5-Furandione, 3-methyl- 

12 7.485 0.3 2(3H)-Furanone, 5-acetyldihydro- 

13 8.575 0.1 N-(2-Furoyl)glycine, 2,2,3,3,3-pentafluoropropyl ester 

14 8.769 0.2 2-Cyclohexen-1-one, 4,4-dimethyl- 

15 8.966 0.3 2-Cyclopenten-1-one,3-hydroxy-2-methyl- 

16 9.218 0.6 1,2-Cyclopentanedione, 3-methyl- 

17 9.479 0.4 2-Cyclopenten-1-one, 2,3-dimethyl- 

18 9.756 0.5 4-Methyl-5H-furan-2-one 

19 9.995 0.4 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

20 10.095 0.2 Phenol, 2-methyl- 

21 10.175 0.2 3-Furoic acid, anhydride with acetic acid 

22 10.821 1.1 2,5-Dimethylfuran-3,4(2H,5H)-dione 

23 11.841 0.5 Maltol 

24 12.285 0.6 2,4(3H,5H)-Furandione, 3-methyl- 
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25 12.539 0.4 2-Cyclohexen-1-one, 3,4-dimethyl- 

26 12.641 0.3 But-1-ene-3-yne, 1-ethoxy- 

27 12.851 0.5 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- 

28 13.201 0.4 2,5-Dihydroxybenzaldehyde 

29 15.634 3.1 5-Hydroxymethylfurfural 

30 16.415 0.4 1H-Inden-1-one, 2,3-dihydro- 

Total chromophore 

Area % 

16.1 

As can be seen in Figure 4.5 and Table 4.5, pulp T4 with the least brightness level (89.4%), also 

exhibited the same types of chromophores as in the other pulp samples, but the total chromophore 

amount was 17.0%.   The major chromophore identified was peak 14 (Figure 4.5) representing 

1,2-cyclopentanedione (4.1%) as shown in Table 4.5. Grouping of the compounds in Table 4.5 

showed that the ketones (6.8%) were the major group of compounds in pulp T4, followed by the 

furan-type compounds (4.9%), (Figure 4.2). The arenes were the smallest group of chromophores 

with a total area percentage of 1.3%, and the other low molecular weight chromophores totalled 

3.5%.  

 

Figure 4.5: Pyrogram of pulp T4. 

Table 4.5: Peak identification for pulp T4. 

Peak 

number 

Retention  

time (min) 

Area 

% 

Compound 

1 2.36 0.9 4-Methyl-5H-furan-2-one 

2 2.60 0.7 Vinyl crotonate 

3 2.76 0.7 1,4-Pentadien-3-one 

4 3.05 0.7 2(5H)-Furanone 

5 3.60 0.2 4-Methyl-5H-furan-2-one 

6 3.71 0.1 3-Furaldehyde 

7 4.11 1.0 3,5-Dimethylpyrazole-1-methanol 

8 4.27 0.4 Vinyl crotonate 

9 4.87 0.7 4-Hexen-2-one 
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10 5.38 0.2 2-Furanmethanol 

11 5.78 0.2 2-Cyclopenten-1-one, 2-methyl- 

12 5.92 0.1 Ethanone, 1-(2-furanyl)- 

13 6.29 4.1 1,2-Cyclopentanedione 

14 6.69 0.0 2(5H)-Furanone, 5-methyl- 

15 6.90 0.1 2,5-Furandione, 3-methyl- 

16 7.40 0.3 2-Cyclopenten-1-one, 3-methyl- 

17 8.09 0.0 Phenol 

18 8.15 0.1 4,4-Dimethyl-2-cyclopenten-1-one 

19 8.39 0.3 2-Furanone, 2,5-dihydro-3,5-dimethyl 

20 8.72 0.1 Benzyl alcohol 

21 9.18 0.9 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 

22 9.48 0.2 2-Cyclopenten-1-one, 2,3-dimethyl- 

23 9.52 0.1 6-Phenyl-5-hexyn-3-ol 

24 9.79 0.4 4-Methyl-5H-furan-2-one 

25 10.00 0.2 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

26 10.12 0.6 dl-Leucine, N-[(phenylmethoxy)carbonyl]- 

27 10.29 0.3 1H-Cyclopenta[c]furan-1,4(3H)-dione, tetrahydro- 

28 10.34 0.3 Imidazole-4-acetic acid 

29 10.81 0.4 2,5-Dimethylfuran-3,4(2H,5H)-dione 

30 11.78 0.1 Maltol 

31 11.85 0.1 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

32 12.06 1.1 2,4(3H,5H)-Furandione, 3-methyl- 

33 13.20 0.3 2,5-Dihydroxybenzaldehyde 

34 13.49 0.0 Benzenemethanol, 4-methyl- 

35 14.00 0.2 4H-Pyran-4-one, 3,5-dihydroxy-2-methyl- 

36 14.21 0.1 1,3-Cyclohexanediol, 5-(1,1-dimethylethyl)-, 

(1.alpha.,3.beta.,5.alpha.)- 

37 16.06 0.1 5-(Furan-3-yl)-2-methylpent-1-en-3-ol 

38 16.32 0.1 Ethanone, 1-(2,5-dihydroxyphenyl)- 

39 16.44 0.1 1H-Inden-1-one, 2,3-dihydro- 

40 16.58 0.1 (1-Methylenebut-2-enyl)benzene 

Total chromophore 

area% 

16.1 

A comparative analysis of the data can be summarised as follows: 

 A few lignin pyrolysis products were detected, this confirms that the pulps were fully 

bleached and contained very low amounts of lignin residuals. 

 The major pyrolysis products were levoglucosan, ketones and the furans-type compounds. 

 Since levoglucosan is a major pyrolysis product of cellulose and low amounts of lignin 

compounds were detected in the pyrolysis products, it can be deduced that the presence 

of ketones and furan-type compounds is indicative of the presence of chromophoric 

compounds emanating from cellulose degradation.  This is in accordance with literature 
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reports (Chapter 2) that implicate ketones and furans as causatives of brightness reversion 

in pulps. For example, these compounds are known to form complexes with the ferrous 

salts and cause pulp yellowing (Loureiro et al., 2012).  

 With respect to the pulps analysed, there appears to be no correlation between pulp 

brightness and the amounts of chromophores detected in the pulps. 

The non-correlation between brightness reversion and amount of chromophore content was 

investigated further to understand this observation better. Cellulose-rich materials and compounds 

that are potential sources of chromophores in pulps were analysed. The cellulose-rich samples 

used were the cotton linters and a laboratory filter paper. Compounds considered as possible 

sources of chromophores included hemicelluloses (represented by xylan in this study), sugar 

monomers, and Klason lignin.  

4.2.2 Analysis of cellulosic materials 

Cellulose-rich materials, viz., a laboratory filter paper (98% cellulose content) and cotton linters 

(99% cellulose content) were analysed for chromophore content using Py-GC/MS. These 

materials were induced for brightness reversion and then analysed for chromophore content before 

and after brightness reversion. The results are discussed below.  

4.2.2.1 Analysis of the laboratory filter paper 

The pyrogram obtained from the analysis of a laboratory filter paper is presented in Figure 4.6. 

The numbered compounds in the pyrograms indicate chromophoric compounds. Small amounts 

of chromophores were detected as shown in Table 4.6. The chromophores detected were 1,2-

cyclopentanedione (0.2%), furazane, 3-amino-4-iodo- (0.1%), 6,7-dihydropyrido(2,3-

d)pyridazine-5,8-dione (0.1%), and  2,5-dimethyl-4-hydroxy-3(2H)-furanone (0.1%) as listed in 

Table 4.6. The presence of these compounds in a cellulose rich sample indicates that part of the 

cellulose was degraded during storage and transportation of the filter papers. 

 

Figure 4.6: Pyrogram of the laboratory filter paper.  
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Table 4.6: Peak identification for the laboratory filter paper. 

Peak 

number 

Retention time 

(min) 

Area% Compound 

1 3.49 0.1 Furazane, 3-amino-4-iodo- 

2 3.93 0.1 6,7-Dihydropyrido(2,3-d)pyridazine-5,8-dione 

3 6.33 0.2 1,2-Cyclopentanedione 

4 10.85 0.1 2,5-Dimethyl-4-hydroxy-3(2H)-furanone 

Total chromophore area % 0.5 

Analysis of the filter paper after brightness reversion showed that the total chromophore content 

increased by 2.2%. The heat induced brightness reversion resulted in the formation of new 

chromophores that were not present before brightness reversion. They included compounds such 

as 2(5H)-furanone (0.1%), furfural (0.6%) and 2,4(3H,5H)-furandione, 3-methyl- (0.2%). The 

amounts of some of the chromophores that were detected in the original sample increased after 

brightness reversion.   These included 1,2-cyclopentanedione and 2,5-dimethyl-4-hydroxy-3(2H)-

furanone. The pyrograms of the filter paper samples, with and without brightness reversion, are 

compared in Figure 4.7.  
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Figure 4.7: Pyrogram of the laboratory filter paper before (Control) and after (Heated) 

brightness reversion.  

4.2.2.2 Analysis of the cotton linters  

The cotton linters are regarded as the purest form of natural cellulose/ pulp. Analysis of the 

pyrolysis products of the cotton linters showed that four chromophoric compounds were present 

in the sample. The chromophores are labelled in Figure 4.8, and listed in Table 4.7. The major 

chromophores identified were furfural (2.8%) followed by 5-hydroxymethylfurfural (1.9%). The 

total area percentage of the chromophores identified was 7.6%. Since the cotton linters are 

regarded as the purest form of cellulose, the chromophores identified in the samples can be 
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associated with ageing of cellulose that occurred due to storage conditions or transportation that 

resulted in the degradation of cellulose (Rosenau et al., 2011).  

 

Figure 4.8: Pyrogram of cotton linters. 

Table 4.7: Peak identification for cotton linters. 

Peak number Retention time (min) Area% Compound  

1 2.81 1.1 1-Penten-3-one 

2 4.16 2.8 Furfural 

3 9.39 1.8 1,2-Cyclopentanedione, 3-methyl- 

4 15.53 1.9 5-Hydroxymethylfurfural 

Total chromophore area % 7.6 

Figure 4.9 compares pyrograms of the cotton linters before and after brightness reversion. From 

the pyrograms, it is evident that the amount of some of the compounds increased after brightness 

reversion. For example, 1,2-cyclopentanedione, 3-methyl- was identified before and after 

brightness reversion, the percentage increased by 0.9%. The total chromophore area percentage 

increased from 7.6% to 8.4% due to the heat accelerated ageing. Similar to the laboratory filter 

paper, the chromophores increased as a result of cellulose degradation that was induced by the 

heating process.  
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Figure 4.9: Pyrograms of the cot
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ton linters before (Control) and after (Heated) brightness reversion.  

The analysis of the cellulosic materials showed that the cotton linters contained more 

chromophores (7.6%) than the laboratory filter paper (0.5%).  As expected, the major pyrolysis 

product in both samples was levoglucosan that eluted between 24 and 26 minutes. In both samples, 

the area percentage of the levoglucosan decreased after brightness reversion. Levoglucosan is the 

primary degradation product of cellulose. The reduction of the levoglucosan percentage due to 

brightness reversion indicates that some of the cellulose was degraded during the ageing process 

and contributing to the formation of chromophores. Furthermore, it was observed that it was 

mainly furan-type compounds that dominate when the cellulose is degraded. This concurs with 

studies that employ degradation of cellulose for conversion into furans (Barbosa et al., 2014, 

Mascal and Nikitin, 2008). The chromophores identified in both samples, the filter paper, and the 

cotton linters were non-aromatic structures; they are different from the compounds that were 

identified from old cotton linters in the study by (Rosenau et al., 2011).  This difference may be a 

function of the brightness reversion mode in action. 

4.2.3 Analysis of possible chromophore sources in pulp 

It is reported in the literature that the most likely sources of chromophores in fully bleached pulps 

are the hemicelluloses that survive the bleaching process and residual lignin (Kato and Cameron, 

1999, Li et al., 2012, Beyer et al., 2006).  Therefore, studies to determine the contributions of 

these compounds to the formation of chromophores in DWP were conducted. This was done by 

pyrolyzing the most likely sources of chromophores such as hemicelluloses and lignin. The 

pyrolysis products of these samples were analysed for the presence of chromophoric compounds. 

The following paragraphs present the results obtained from the analysis of these samples. 
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4.2.3.1 Analysis of xylan 

Xylan was used as a model compound to study the pyrolysis products of the hemicellulose because 

it is the most abundant polymer of the hemicelluloses (Bendahou et al., 2007, Wang et al., 2006). 

Using the method described in Chapter 3, xylan was induced for brightness reversion to observe 

the chemical changes that occur as a result of brightness reversion. The pyrogram of a control 

sample (before brightness reversion) of xylan is shown in Figure 4.10 with the numbering 

indicating the peaks of the chromophoric compounds that were identified. A detailed listing of the 

chromophores is provided in Table 4.8.  
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Figure 4.10: Pyrogram of xylan. 

The total area percentage of the chromophores identified in the control xylan sample was 35.6% 

as shown in (Table 4.8). The major chromophoric compounds identified were furfural (4.8%), 1,2-

cyclopentanedione (4.9%) and 1,2-cyclopentanedione, 3-methyl- (3.3%). The identified 

chromophores were grouped into furan-type compounds, ketones, arenes and other low molecular 

weight chromophores as summarised in Figure 4.11. The total area percentage of the furan type 

compounds was 8.7%, the ketones added up to 14.0%, the arenes were 10.4%, and the other low 

molecular weight chromophores were added up to 2.8%. 

Table 4.8: Peak identification for xylan. 

Peak 

number 

Retention 

time (min) 

Area % Compound 

1 3.75 0.3 2(3H)-Furanone, 5-methyl- 

2 3.90 2.8 2,3-Pentanedione 

3 4.66 0.5 3-Penten-2-one, (E)- 

4 5.33 0.5 2(5H)-Furanone 

5 6.37 0.3 3-Furanmethanol 

6 6.71 4.8 Furfural 

7 7.66 0.4 2(3H)-Furanone, 5-methyl- 

8 7.88 0.2 4-Cyclopentene-1,3-dione 

9 8.73 0.8 2-Cyclopenten-1-one, 2-methyl- 

10 9.01 0.8 2(5H)-Furanone 
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11 9.26 4.9 1,2-Cyclopentanedione 

12 9.48 0.6 2(5H)-Furanone, 3-methyl- 

13 9.83 1.0 2,5-Furandione, 3-methyl- 

14 10.50 0.8 2-Cyclopenten-1-one, 3-methyl- 

15 10.93 0.4 2(5H)-Furanone, 3-methyl- 

16 11.04 0.7 Phenol 

17 12.00 1.5 5-Pyrimidinecarboxaldehyde, 1,2,3,4-tetrahydro-2,4-

dioxo- 

18 12.22 0.9 4-Methyl-2-oxo-(1H)-pyrimidine 

19 12.43 3.3 1,2-Cyclopentanedione, 3-methyl- 

20 12.81 0.8 2-Cyclopenten-1-one, 2,3-dimethyl- 

21 12.98 0.7 Glutaric acid, 3-methylbut-2-en-1-yl 2-nitrophenyl 

ester 

22 13.67 0.3 6-Methoxy-2-phenacyloxy-3(2H)-pyridazinone 

23 13.95 1.1 Phenol, 3-methyl- 

24 14.06 0.2 Indolizine, octahydro- 

25 14.90 0.2 Phenol, 2,6-dimethyl- 

26 15.09 0.4 Maltol 

27 15.97 0.2 2,3,4,4a,8,8a-Hexahydro-pyrano[3,2-b]pyran 

28 16.14 0.6 2,4-Imidazolidinedione, 5,5-dimethyl- 

29 16.48 0.3 2,3-Methylenedioxyphenol 

30 16.69 1.1 2,3-Dihydroxybenzaldehyde 

31 17.49 0.2 2(1H)-Naphthalenone, 4a,5,6,7,8,8a-hexahydro-4a-

methyl-, trans- 

32 19.49 0.5 1,2-Benzenediol, 4-methyl- 

33 19.62 0.6 Guanosine 

34 19.92 0.4 Resorcinol, 2-acetyl- 

35 20.03 0.2 1H-Inden-1-one, 2,3-dihydro- 

36 20.76 0.3 Benzaldehyde, 3-hydroxy- 

37 20.92 0.5 2-Methoxy-4-vinylphenol 

38 21.19 0.2 Ethanone, 1-(6-methyl-3-pyridinyl)- 

39 21.71 0.2 2-Nitrophenethyl alcohol, pentafluoropropionate 

40 21.90 0.2 Phenol, 2,6-dimethoxy- 

41 24.46 0.4 2-Hydroxy-5-methylisophthalaldehyde 

42 25.67 0.2 Benzoic acid, 3-formyl-4,6-dihydroxy-2,5-dimethyl-, 

methyl ester 

43 26.22 0.9 2H-1-Benzopyran-2-one, 3,4-dihydro-6-hydroxy- 

44 27.31 0.2 4-Methyl-2,5-dimethoxybenzaldehyde 

Total chromophore 

area% 

35.6 

Heat induced brightness reversion in xylan resulted in 4.9% increase in the total area percentage 

of the chromophores. A comparison of the pyrograms of the control and the brightness reversed 

xylan shown in Figure 4.12, indicates that there was an increase in peak areas of chromophores 

after brightness reversion, e.g., the growth in peak area of 1,2-cyclopentanedione is highlighted. 

The furan-type compounds and ketones each increased by 2.1% (Figure 4.11).  
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Figure 4.11: Summary of chromophores identified in xylan (control and heated). 
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Figure 4.12: Pyrograms of xylan before (control) and after (heated) brightness reversion. 

4.2.3.2 Analysis of sugar monomers 

Sugar monomers, viz., glucose, arabinose, xylose, galactose, rhamnose, and mannose were 

analysed for chromophore content using Py-GC/MS and the results are illustrated in Figures 4.13-

4.15 and Tables 4.9-4.11.  

 

Figure 4.13: Pyrogram of glucose. 
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Table 4.9: Peak identification for glucose. 

Peak number Retention time Area% Compound 

1 21.60 14.6 Sucrose 

2 22.34 39.2 β-D-Glucopyranose 

3 24.30 2.9 α-D-Glucopyranose 

4 24.53 7.4 Heptadecane 

5 25.18 36.0 Glucose 

Py-GC/MS analysis of glucose (Figure 4.13) produced mainly β-D-glucopyranose (levoglucosan) 

with an area percentage of 39.2% followed by glucose (36.0%) and sucrose (14.6%). Only five 

compounds were produced during the pyrolysis of glucose, and no chromophores were identified 

(Table 4.9). These findings indicate that glucose is not a potential source of chromophores in 

pulps.  

 

Figure 4.14: Pyrogram of arabinose. 

Table 4.10: Peak identification for arabinose. 

Peak 

number 

Retention 

time (min) 

Area% Compound 

1 9.16 1.8 D-Limonene 

2 14.20 8.8 1,3-Propanediol, 2-(hydroxymethyl)-2-nitro- 

3 24.51 84.9 Heptadecane 

4 42.32 3.5 Diisooctyl phthalate 

The analysis of the pyrolysis products of arabinose also showed no evidence for the presence of 

chromophores (Figure 4.14). The diisooctyl phthalate (Peak number 4, Table 4.10) is an aromatic 

hydrocarbon. However, it was regarded as a contaminant since the phthalates are well-known 

contaminants in pulp and paper production (Xue et al., 2010). The primary pyrolysis product of 

arabinose was heptadecane with an area percentage of 84.9%. These results confirm that the 

arabinose sugar is not a potential source of chromophores in pulps.  
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Figure 4.15: Pyrogram of xylose. 

Table 4.11: Peak identification for xylose, highlighting the chromophoric compounds. 

Peak 

number 

Retention 

time (min) 

Area% Compound 

1 2.17 1.1 2-Pyrrolidinone 

2 2.69 3.1 Glyceraldehyde 

3 2.79 0.2 Glyceraldehyde 

4 2.93 5.4 3-Furaldehyde 

5 3.68 0.2 2-Furanmethanol 

6 3.95 1.3 2(3H)-Furanone 

7 5.54 0.3 2-Cyclohexen-1-ol 

8 5.68 0.1 6-Methoxypiperidin-2-one 

9 6.23 0.3 Piperazine, 1,4-dimethyl- 

10 6.53 0.1 N-Methylvaleramide 

11 6.79 2.7 Butanedioic acid, cyclic hydrazide 

12 7.95 0.8 Oxazolidine, 2,2-diethyl-3-methyl- 

13 9.47 0.2 N-Methoxymethyl-N-methylacetamide 

14 10.35 0.6 6-Oxa-bicyclo[3.1.0]hexan-3-ol 

15 11.32 0.6 .alpha.-D-Glucose 

16 14.72 2.6 1-(.beta.-d-Arabinofuranosyl)-4-O-

difluoromethyluracil 

17 15.46 2.1 1,3-Propanediol 

18 16.28 3.9 1,3-Propanediol 

19 17.68 62.9 1,3-Propanediol 

20 19.84 0.3 2-(5-[1,3]Dioxolan-2-yl-pentyl)-3-methylaziridine 

21 23.43 2.7 L-Lyxose 

22 24.52 1.1 Heptadecane 

23 37.88 5.9 .beta.-d-Lyxofuranoside 

24 39.48 1.6 .alpha.-D-Glucopyranose 

The major pyrolysis product of xylose was 1,3-propanediol with an area % of 68.9% (Table 4.11, 

Peak number 17-19). Xylose was different from the other sugars because it produced conjugated 

compounds such as 3-furfural (5.4%) and 2(3H)-furanone (1.3%) as listed in Table 4.11.  This 

indicates that that the presence of trace amounts of xylose in pulps can result in the formation of 
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chromophores. Xylose and xylan have also been used as starting materials in the production of 

furfural (Bunzel and Ralph, 2006). Furthermore, the furans and their derivatives are formed as 

reaction products of the aldol condensation and have been identified as chromophores that cause 

yellowing of fully bleached chemical pulps (Beyer et al., 2006).  

The analysis of the sugar monomers indicated that only xylose degrades to chromophores. The 

chromophores identified in xylose degradation were similar to the pyrolysis products of xylan. It 

was expected that the xylose would produce chromophoric compounds during pyrolysis since it is 

a monomer of xylan.   

4.2.3.3 Analysis of lignin samples 

To understand the type of chromophores released during lignin pyrolysis, Klason lignin samples 

were analysed. The compounds identified by Py-GC/MS analysis of the lignin samples were 

mainly aromatic compounds.  

Figure 4.16 shows the pyrogram of the lignin that was isolated from E.Dunnii sawdust using the 

acid hydrolysis procedure described in Chapter 3. Most of the pyrolysis products of the E. Dunni 

lignin were chromophoric compounds that accounted for 96.1% of the peaks that were detected.  

The major chromophores identified are listed in Table 4.12. It is evident that the primary pyrolysis 

products of lignin were substituted aromatic chromophores such as 1,2-benzenediol, 3-methoxy- 

(6.1%), 1,2,4-trimethoxybenzene (9.5%), phenol, 2,6-dimethoxy- (12.7%) and ethanone, 1-(4-

hydroxy-3,5-dimethoxyphenyl)- (4.5%). 
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Figure 4.16: Pyrogram of E.Dunnii lignin. 

Table 4.12: Peak identification for E.Dunnii lignin. 

Peak 

number 

Retention 

time (min) 

Area% Compound 

1 14.39 3.8 Phenol, 2-methoxy- 

2 17.50 3.2 Creosol 

3 19.49 6.1 1,2-Benzenediol, 3-methoxy- 
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4 19.95 1.6 Phenol, 4-ethyl-2-methoxy- 

5 20.94 1.2 4-Hydroxy-3-methylacetophenone 

6 21.76 1.2 Phenol, 2,6-dimethoxy- 

7 21.93 12.7 Phenol, 2,6-dimethoxy- 

8 22.22 2.8 Phenol, 3,4-dimethoxy- 

9 22.65 1.7 1,2,3-Trimethoxybenzene 

10 23.24 1.1 Benzaldehyde, 3-hydroxy-4-methoxy- 

11 24.43 9.5 1,2,4-Trimethoxybenzene 

12 24.53 1.5 3-Allyl-6-methoxyphenol 

13 24.99 1.0 1,2,4-Trimethoxybenzene 

14 25.77 1.8 Benzene, 1,2,3-trimethoxy 

15 26.38 1.7 Benzene, 1,2,3-trimethoxy-5-methyl- 

16 27.33 2.7 3',5'-Dimethoxyacetophenone 

17 27.87 1.2 Butyrovanillone 

18 29.55 3.5 Benzaldehyde, 4-hydroxy-3,5-dimethoxy- 

19 30.01 1.0 3-(2-Methoxy-5-methylphenyl)acrylic acid 

20 30.45 2.3 (E)-2,6-Dimethoxy-4-(prop-1-en-1-yl)phenol 

21 31.18 4.5 Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- 

22 31.96 2.9 3,5-Dimethoxy-4-hydroxyphenylacetic acid 

23 33.16 2.6 Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- 

Total chromophore 

area % 

96.1 

Analysis of lignin samples from other Eucalyptus species yielded virtually the same type of 

compounds as illustrated in Figure 4.17.  
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Figure 4.17: Pyrograms of Eucalyptus lignin. 

The pyrolysis products were grouped into furans, ketones, arenes and catch all group termed 

“others”. The total area percentage of the chromophores identified in E. GC G438 and E. GU 

W962 were 92.3% and 96.1% respectively. Compounds such as furans, ketones and other low 

molecular weight chromophores were found at percentages below 0.4%.  However, the area 
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percentages of the arenes were above 90% in all the samples, hence, Figure 4.18 was split into 

parts (a) and (b), with part (a) showing all the chromophores identified and part (b) showing the 

chromophores that were below 0.4%.  

 

 

Figure 4.18: Py-GC/MS analysis of acid insoluble Eucalyptus sawdust lignin; (a) shows all the 

group of chromophores and (b) shows the chromophore groups that were present in small 

amounts. 

Further analysis of the arenes identified in the Eucalyptus lignin samples revealed that the main 

constituents were the phenolic, syringyl, guaiacol and other aromatic compounds such as aromatic 

hydrocarbons and methoxybenzenes (Figure 4.19). These chromophores are well-known lignin 

degradation products that have been identified in previous studies on lignin pyrolysis (Ohra-aho 

et al., 2005, Ibarra et al., 2005). The quantities of the identified aromatic compounds agree with 

the results reported in the literature (Alves et al., 2006, del Rı́o et al., 2001, Gu et al., 2013).  

 

Figure 4.19: Distribution of aromatic compounds from pyrolysis of Eucalyptus lignin.  
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Further analysis of the aromatic pyrolysis products showed that the different Eucalyptus lignin 

samples contained different amounts of the grouped aromatic compounds (Figure 4.19). Studies 

have shown that the constituent compounds of lignin vary depending on the method used for lignin 

extraction, the origin of the plant material, the type of wood species and the age of the wood 

material (Brebu and Vasile, 2010, Rencoret et al., 2007, Ház et al., 2013). In this study, the three 

lignin samples were obtained using the same method, hence, the similarity in chromophores 

identified can be attributed to the method employed. However, the relative area percentages of the 

common compounds differ – this may possibly be reflective of the different growing sites of the 

trees.    

Figure 4.20 only shows the major chromophoric compounds identified after pyrolysis of a 

hardwood kraft lignin. A total of 138 chromophoric compounds were identified with a total area 

percentage of 91.6%. The retention times, area percentages and names of the major peaks in Figure 

4.20 are shown in Table 4.13. The major chromophores identified in the hardwood kraft lignin 

were furfural (6.8%), 1,2-benzenediol, 3-methoxy- (8.2%), phenol, 2,6-dimethoxy- (11.1%) and 

3,5-dimethoxy-4-hydroxytoluene (7.3%), Table 4.13.  
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Figure 4.20: Pyrogram of hardwood kraft lignin. 

Table 4.13: Peak identification for hardwood kraft lignin.  

Peak 

number 

Retention 

time (min) 

Area % Compound 

1 6.73 6.8 Furfural 

2 14.39 4.4 Phenol, 2-methoxy- 

3 17.69 1.8 Catechol 

4 19.50 8.2 1,2-Benzenediol, 3-methoxy- 

5 20.28 1.1 1,2-Benzenediol, 4-methyl- 

6 20.94 2.2 2-Methoxy-4-vinylphenol 

7 21.93 11.1 Phenol, 2,6-dimethoxy- 

8 22.21 2.1 Phenol, 3,4-dimethoxy- 

9 24.42 7.3 3,5-Dimethoxy-4-hydroxytoluene 

10 24.52 1.5 Phenol, 2-methoxy-4-(1-propenyl)-, (Z)- 



 

98 

 

11 26.38 2.0 Benzene, 1,2,3-trimethoxy-5-methyl- 

12 26.51 1.0 2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- 

13 27.32 3.1 3',5'-Dimethoxyacetophenone 

14 29.54 1.6 Benzaldehyde, 4-hydroxy-3,5-dimethoxy- 

15 30.44 1.6 (E)-2,6-Dimethoxy-4-(prop-1-en-1-yl)phenol 

16 31.17 2.2 Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- 

17 31.95 2.0 3,5-Dimethoxy-4-hydroxyphenylacetic acid 

18 33.15 1.0 Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- 

Total chromophore area %  91.6 

A comparison of softwood and hardwood kraft lignin pyrograms shows that most of the 

chromophores present in the lignin samples are similar; however, their relative area percentages 

are different (Figure 4.21). For example, the area percentage of furfural in softwood lignin was 

0.6%, whereas, in the hardwood lignin, it was 6.8%. Overall, the chromophore content was 92% 

in hardwood lignin and   95% in softwood lignin. 
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Figure 4.21: Pyrograms of softwood and hardwood kraft lignin. 

Similarly, in the Eucalyptus lignin, the dominant pyrolysis products in both softwood and 

hardwood kraft lignin were aromatic compounds. The softwood lignin contained 93.3% of 

aromatic (arenes) compounds, whereas the hardwood lignin contained 82.5% of aromatic 

compounds (Figure 4.22). The hardwood lignin contained more furan-type compounds (8.2%) 

than the softwood lignin that only contained 1.2% of the furan-type compounds. The ketones were 

less than 1% in both kraft lignin samples. In contrast to the lignin samples that were extracted 

from the sawdust, the kraft lignin contained more furan-type compounds and ketones. These 

compounds are a good indication of the presence of hemicelluloses and degraded carbohydrates 

remaining after the kraft pulping process (Lin et al., 2015).  
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Figure 4.22: Chromophores identified in softwood and hardwood kraft lignin; (a) shows the 

total chromophore content and (b) shows the chromophore groups that were present in small 

amounts. 

In kraft lignin, the major aromatic compounds were phenolics (Figure 4.23), and softwood lignin 

contained 11.6% more phenols than the hardwood lignin. The guaiacol type compounds were also 

found at a higher percentage (24.3%) in the softwood lignin, compared to 11.5 % found in the 

hardwood lignin. In contrast to hardwood lignin, the syringyl type compounds were found in minor 

amounts in the softwood lignin (0.4%) compared to 14.5% found in the hardwood lignin. This 

shows that in the softwood lignin, more demethoxylation reactions occurred, thus converting most 

of the syringyl type compounds to form more guaiacol type compounds. However, in the 

hardwood lignin, there was less demethoxylation even though the pyrolysis temperature used was 

the same. These findings are in agreement with the results obtained in previous studies on the 

thermal degradation of hardwood and softwood lignin (Zhao et al., 2014).   

 

Figure 4.23: Distribution of aromatic compounds identified after pyrolysis of kraft lignin. 
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The findings obtained from the analysis of the trial samples of DWP, cellulosic materials and the 

potential sources of chromophores in pulps, show that most of the chromophores eluted within 30 

minutes with the developed Py-GC/MS method.    

4.2.4 Reproducibility of the Py-GC/MS method 

The reproducibility of the Py-GC/MS method was tested using two acid bisulphite pulps, a high 

brightness pulp (Pulp A) and a low brightness pulp (Pulp B) as shown in Figure 4.24 and Figure 

4.25.  Replicate analyses of the pulp samples showed excellent reproducibilities in the pyrograms 

obtained and in the peak areas of the identified chromophoric compounds. Chromophores such as 

1,2-cyclopentadione, 4H-pyran-4-one, 3,5-dihydroxy-2-methyl and 2-furancarboxaldehyde-5-

hydroxymethyl were common in both pulp samples as shown in Figure 4.24 and Figure 4.25.  
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Figure 4.24: Pyrograms from replicate analyses of a high brightness DWP (Pulp A). 

Figure 4.24 shows five replicate analyses of pulp A. The retention times, and the area percentages 

of the three labelled chromophores are shown in Table 4.14.  

Table 4.14: Peak identification for pulp A. 

1,2-Cyclopentadione 4H-Pyran-4-one 2-

Furancarboxaldehyde-

5-hydroxymethyl 

Run Retention 

time (min) 

Area % Retention 

time (min) 

Area % Retention 

time (min) 

Area % 

1 10.58 4.0 18.94 0.3 20.16 1.4 

2 10.70 3.7 19.06 0.3 20.31 1.8 

3 10.63 3.6 19.02 0.3 20.27 2.5 

4 10.66 3.1 19.06 0.3 20.32 1.4 

5 10.71 3.5 19.10 0.3 20.36 2.1 

Mean ± SD 10.62±0.05 3.6±0.3 19.04±0.06 0.3±0.0 20.28±0.08 1.9±0.5 

The chromophores identified in pulp A were grouped into furans-type, ketones, arenes and other 

low molecular weight compounds (Table 4.15). The average area percentage and standard 

deviation of the different chromophore groups also presented in Table 4.15. In pulp A. the highest 

amounts of chromophore groups were the furans-type compounds (7.3±1.4%) followed by ketones 
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(5.5±1.6%). The arenes and other low molecular weight chromophores were minimal or not 

present in pulp A. This shows that the main contributors to yellowness of pulp A were furan and 

ketones type compounds. 

Table 4.15: Chromophores identified in pulp A. 

Run Furans (Area %) Ketones 

(Area %) 

Arenes 

(Area %) 

Other 

(Area %) 

1 5.6 5.7 0.4 0.0 

2 7.9 7.5 0.0 0.7 

3 8.5 6.5 0.0 0.0 

4 8.2 4.7 0.0 0.0 

5 6.0 3.3 0.0 0.0 

Mean±SD 7.3±1.4 5.5±1.6 0.1±0.2 0.1±0.3 

Replicate analyses of pulp B also produced similar pyrograms for the five runs (Figure 4.25). The 

reproducibility of the retention times and the area percentages of the selected chromophores are 

shown in Tables 4.16 and 4.17.  
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Figure 4.25: Pyrograms from replicate analyses of a low brightness DWP (pulp B). 

The retention times of the selected chromophores in pulp A and pulp B were similar: for example, 

1,2-cyclopentadione was identified at 10.62±0.05 minutes in pulp A and identified at 10.61±0.03 

minutes in pulp B (as shown in Table 4.14 and Table 4.16, respectively). The average retention 

times for 4H-pyran-4-one and 2-furancarboxaldehyde-5-hydroxymethyl were also very similar in 

both samples. This demonstrates the reproducibility of the method regarding identifying similar 

compounds at the same retention times. 

Table 4.16: Peak identification for pulp B. 
 

1,2-Cyclopentadione 4H-Pyran-4-one 2-Furancarboxaldehyde-

5-hydroxymethyl 

Run Retention 

time (min) 

Area % Retention 

time (min) 

Area % Retention 

time (min) 

Area % 

1 10.64 2.9 19.03 0.2 20.27 1.5 
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2 10.58 2.1 18.97 0.4 20.20 1.6 

3 10.63 2.0 19.01 0.3 20.28 2.3 

4 10.65 1.8 19.10 0.4 20.37 2.9 

5 10.61 1.6 19.07 0.3 20.33 2.6 

Mean 

± SD 

10.61±0.03 2.1±0.5 19.04±0.05 0.3±0.1 20.29±0.06 2.2±0.6 

 Similarly, to pulp A, the chromophores identified in pulp B were grouped into furans, ketones, 

arenes, and other low molecular weight compounds. The average area percentages were highest 

for furans at 5.4±0.8% and ketones at 4.1±1.1% (Table 4.17). Arenes and other low molecular 

weight chromophores were identified at deficient amounts. The furans and ketones were also the 

dominant chromophores in pulp B. However; their average area percentages were lower than in 

Pulp A, i.e., the amount of chromophores detected did not correlate with pulp brightness since 

pulp A was of higher brightness than pulp B.  

Table 4.17: Chromophores identified in pulp B. 

Run Furans (Area%) Ketones (Area%) Arenes (Area%) Other (Area%) 

1 5.7 5.2 0.0 0.0 

2 4.4 5.4 0.0 0.5 

3 5.5 3.6 0.0 0.0 

4 6.5 3.0 0.4 0.3 

5 4.8 3.3 0.0 0.3 

Mean±SD 5.4±0.8 4.1±1.1 0.1±0.2 0.2±0.2 

Thus far it has been observed that the analysed DWPs contain deficient amounts of lignin-type 

chromophores (arenes) and there is no relationship between chromophores and brightness or 

yellowness. The data and results from the preceding paragraphs confirm the development of a 

novel and rapid method for analysis and identification of chromophoric compounds in pulp and 

paper matrices. 

4.3 Application of the Py-GC/MS method 

The developed method was used for analysis and identification of chromophores in various pulps.  

These were: 

 Fully bleached industrial dissolving pulps 

 In-process industrial pulps collected from various unit operations 

 In-process laboratory pulps collected from various unit operations 

4.3.1 Analysis of fully bleached industrial pulps 

As mentioned in Chapter 3, fully bleached, acid bisulphite and PHK pulps, obtained from different 

mills across the world, were induced for brightness reversion by conditioning in an oven at 105 

°C overnight. Brightness, yellowness measurements, and chromophore content were recorded 



 

103 

 

before and after brightness reversion to observe the effect of brightness reversion on the formation 

of chromophores. The second set of fully bleached pulps were DWPs with their corresponding 

microcrystalline cellulose (MCC). The brightness, yellowness and chromophore content of the 

DWPs were compared to those of the MCC.  

4.3.1.1 Analysis of fully bleached acid bisulphite pulp 

Table 4.18 shows the effect of brightness reversion on the brightness and yellowness of fully 

bleached acid bi-sulphite pulps. It was observed that the brightness values on average, decreased 

by 1.8% and the degree of yellowness increased by 1.7% after the samples were induced for 

brightness reversion (Table 4.18). To understand the role of chromophores in the loss of brightness 

and the increase in the yellowness, further analysis was performed using Py-GC/MS. Pulp number 

2 showed the highest brightness (93.4%) and lowest yellowness (3.4%) before brightness 

reversion. Pulp number 3 was the opposite, with a brightness of 89.3% and the yellowness of 6.4% 

hence, it was of interest to take a closer look at the type of chromophores present in these two 

samples.   

Table 4.18: Brightness and yellowness of fully bleached acid bisulphite pulps. 

 Before brightness reversion (A) After brightness reversion (B) 

Pulp number Brightness (%) Yellowness (%) Brightness (%) Yellowness (%) 

1 90.5 5.0 89.0 6.4 

2 93.4 3.4 90.9 5.8 

3 89.3 6.4 87.2 8.2 

4 90.8 4.6 88.4 6.8 

5 90.6 5.1 89.4 6.2 

6 90.4 6.2 89.3  7.3 

Figure 4.26 shows the pyrogram of pulp number 2 with the numbered peaks indicating the 

chromophoric compounds. Similar to the laboratory filter paper and the cotton linters, the main 

peak in the pyrogram of pulp number 2 was the to levoglucosan peak since it is the main pyrolysis 

product of cellulosic materials.  
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Figure 4.26: Pyrogram of a fully bleached acid bisulphite pulp number 2. 
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In comparison to the laboratory filter paper and the cotton linters, pulp number 2 had a higher total 

chromophore content with 31 chromophoric compounds with a total area percentage of 15.7% 

(Table 4.19). The major chromophores identified in the pulp was 2-cyclopenten-1-one, 2-hydroxy- 

(peak number 18) with an area percentage of 3.7%. The identified compounds were grouped into 

furans, ketones, arenes and other low molecular weight chromophores and changes in the 

compound groups before and after brightness reversion for the acid bisulphite pulps were 

summarised in Figure 4.27.   

Table 4.19: Peak identification for pulp number 2. 

Peak 

number 

Retention 

time (min) 

Area% Compound  

1 2.38 0.1 1,3-Cyclopentadiene 

2 3.95 0.1 2,3-Pentanedione 

3 4.75 0.1 Furan, 3-methyl- 

4 4.93 0.2 3-Penten-2-one, (E)- 

5 5.06 0.3 2,5-Furandione, 3,4-dimethyl- 

6 5.19 0.2 Furan, 2-methyl- 

7 5.29 0.3 1-Penten-3-one 

8 6.57 0.9 (S)-5-Hydroxymethyl-2[5H]-furanone 

9 6.91 0.2 3-Furaldehyde 

10 7.37 0.2 Furan-2-carbonyl chloride, tetrahydro- 

11 7.51 1.1 1H-Pyrazole, 3,5-dimethyl- 

12 8.11 0.1 Furan, 2-(2-propenyl)- 

13 8.47 0.3 2-Furanmethanol 

14 8.61 0.5 2(3H)-Furanone, 5-methyl- 

15 9.15 0.9 2-Cyclopentene-1,4-dione 

16 10.02 0.1 Ethanone, 1-(2-furanyl)- 

17 10.30 1.2 2(5H)-Furanone 

18 10.90 3.7 2-Cyclopenten-1-one, 2-hydroxy- 

19 14.17 1.5 1,2-Cyclopentanedione, 3-methyl- 

20 14.50 0.3 4-Methyl-5H-furan-2-one 

21 15.00 0.7 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

22 16.94 0.5 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

23 18.57 0.1 2(1H)-Naphthalenone, 4a,5,6,7,8,8a-hexahydro-8a-

methyl-, trans- 

24 19.32 0.3 4H-Pyran-4-one, 3,5-dihydroxy-2-methyl- 

25 20.93 1.9 2-Furancarboxaldehyde, 5-(hydroxymethyl)- 

26 21.39 0.4 Ethanone, 1-(2,5-dihydroxyphenyl)- 

27 24.13 0.1 Ethyl Vanillin 

28 24.48 0.2 7-Methylindan-1-one 

29 26.33 0.1 2H-1-Benzopyran-2-one, 3,4-dihydro-6-hydroxy- 

30 26.95 0.1 Naphthalene, 1,4-dimethoxy- 

31 34.58 0.2 Benzene, 1,2,4-trimethoxy-5-(1-propenyl)-, (Z)- 
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Total chromophore area 

%                               

15.7 

Py-GC/MS analysis showed that the effect of brightness reversion resulted in an increase in the 

groups of chromophores in the individual samples as illustrated in Figure 4.27. This means that 

the amount of chromophores increases when the pulp was induced for brightness reversion. 

However, Figure 4.27 shows that with samples 4 and 5, not all the chromophore groups increased 

as a result of brightness reversion and this was attributed to the slight differences that may have 

occurred in the mill unit operations such as slight changes and in temperature. The ketones and 

furan-type compounds were at a higher amount than the low molecular weight chromophores. The 

average increase of the amount of ketones in the acid bisulphite pulps after brightness reversion 

was 0.5% and the amount of furan-type compounds increased by 0.7%. Other low molecular 

weight chromophores were less than 3% in all the fully bleached acid bisulphite pulps, and the 

arenes were less than 2.5%. However, sample 6 was different because it contained over 4% of 

other low molecular weight chromophores, this can also be attributed to slight differences that 

may have occurred in the mill unit operations.  

 

Figure 4.27: Chromophores identified in fully bleached acid bisulphite pulp before (A) and after 

(B) brightness reversion.  

Before brightness reversion, pulp number 2 showed a higher brightness and a lower yellowness 

than pulp number 3 (Table 4.15). The pyrogram of pulp number 3 before brightness reversion is 

shown in Figure 4.28 with the labelled peaks showing the chromophoric compounds. The retention 

times, area percentages and the names of the identified chromophores are shown in Table 4.20. 

The total area percentage of the chromophores identified in pulp number 3 was 14% (Table 4.20), 

a value that was 1.7% lower than the total chromophore area percentage of pulp number 2. This 
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further confirms that there is no relationship between the brightness/ yellowness parameters of the 

pulps and their chromophore content.  

 

Figure 4.28: Pyrogram of pulp number 3. 

Similarly, the summary of the Py-GC/MS data in Figure 4.27 shows that pulp number 2 (93.4% 

brightness) had a higher total chromophore content (15.2%) than pulp number 4 (11.3%) with 

90.8% brightness, before brightness reversion. This data also confirms that the chromophore 

content is not related to brightness or yellowness of the sample. This indicates that high brightness 

or low yellowness of fully bleached acid bisulphite pulp does not necessarily imply lower 

chromophore content in the pulp. These findings confirm the results from previous studies on 

chromophores in pulps (Dyer, 2004, Rosenau et al., 2007). However, it must be noted that the 

total chromophore content on individual samples the chromophores increase as a result of 

brightness reversion.  

Table 4.20: Chromophore peak identification for pulp number 3 

Peak 

number 

Retention time 

(min) 

Area % Compound  

1 2.43 0.1 1,3-Cyclopentadiene 

2 2.81 0.6 2-Butanone, 1-(2-furanyl)- 

3 3.80 0.02 2(3H)-Furanone, 5-methyl- 

4 4.01 0.1 2,3-Pentanedione 

5 4.98 0.2 3-Penten-2-one, (E)- 

6 5.11 0.1 2,5-Furandione, 3,4-dimethyl- 

7 5.24 0.1 Furan, 2-methyl- 

8 5.35 0.3 1-Penten-3-one 

9 6.62 1.0 (S)-5-Hydroxymethyl-2[5H]-furanone 

10 6.96 0.3 Furfural 

11 7.75 0.1 Carbamic acid, phenyl ester 

12 8.15 0.03 Furan, 2-(2-propenyl)- 

13 8.65 0.7 3-Furanmethanol 

14 9.90 0.3 2-Cyclopenten-1-one, 2-methyl- 

15 10.33 0.9 2(5H)-Furanone 

16 10.90 2.8 2-Cyclopenten-1-one, 2-hydroxy- 
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17 11.47 0.2 2(3H)-Furanone, 5-methyl- 

18 11.61 0.3 6-(Hydroxy-phenyl-methyl)-2,2-dimethyl-

cyclohexanone 

19 12.76 0.1 Benzofuran 

20 12.86 0.1 1,2-Cyclohexanedione 

21 14.18 1.5 1.2-Cyclopentanedione. 3-methyl- 

22 14.77 0.1 2-Cyclohexen-1-one, 2-methyl- 

23 15.02 0.2 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

24 15.13 0.1 Phenol. 2-methyl- 

25 15.37 0.3 Imidazole-4-acetic acid 

26 15.47 0.3 2-Cyclopenten-1-one. 3-ethyl- 

27 15.78 0.4 2.5-Dimethyl-4-hydroxy-3(2H)-furanone 

28 15.89 0.3 2-Cyclohexen-1-one. 3-(hydroxymethyl)-6-(1-

methylethyl)- 

29 16.82 0.2 Maltol 

30 16.95 0.3 2-Cyclopenten-1-one. 3-ethyl-2-hydroxy- 

31 17.62 0.2 4-Cyclopentene-1.3-dione. 4-propyl- 

32 18.32 0.2 2.3-Dihydroxybenzaldehyde 

33 18.60 0.1 2(1H)-Naphthalenone. 4a.5.6.7.8.8a-hexahydro-

8a-methyl-. trans- 

34 19.36 0.2 4H-Pyran-4-one. 3.5-dihydroxy-2-methyl- 

35 21.48 0.9 1H-Inden-1-one. 2.3-dihydro- 

36 22.43 0.3 Benzofuran-4(5H)-one. 6.7-dihydro-. oxime 

37 24.33 0.2 Cyclopenta[c]pyran-4-carboxylic acid 

38 27.61 0.2 Phenol. 2.6-bis(1.1-dimethylethyl)- 

Total chromophore area % 14.0 

In the study by Dyer (2004), the total visible absorption (integral of the absorption coefficient 

throughout the visible region) and the chromophore index (integral of the Kubelka-Munk 

remission function throughout the visible region) of kraft pulp were measured. The results showed 

a linear correlation between the total visible absorption and the chromophore index. However, 

there was no relationship between the brightness of the pulp, the total visible absorption and the 

chromophore index (Dyer, 2004).  

Rosenau and co-workers (2007) isolated a number of different chromophoric structures using the 

chromophore release and identification procedure described in Chapter 2. Findings from this study 

showed that there was no correlation between the number and the overall concentration of the 

chromophores: a small number of chromophores does not imply that the concentration of the 

chromophores was lower because there may be a few compounds occurring in high amounts. It 

was also mentioned that the concentration of the chromophores was not related to the brightness 

of the pulp (Rosenau et al., 2007).  
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These observations show that chromophores in pulps absorb the UV light but do not directly affect 

the pulp brightness since the ISO brightness depends on two factors, the light absorption 

coefficient and the light scattering coefficient. The value of the light absorption coefficient varies 

according to the chemical composition of the pulp, and the value of the light scattering properties 

depends on the physical composition of the pulp (Johansson, 2000).  This means that the brightness 

of the pulp is affected by the changes in both the chemical and physical properties occurring in 

the pulp. However, the chromophores do not represent the overall chemical structures or chemical 

information (the chromophores were present amongst other compounds that are not 

chromophores) of the pulp and are not related to the physical properties of the pulp. 

4.3.1.2 Analysis of fully bleached PHK pulps 

Table 4.21 shows the effect of brightness reversion on brightness and yellowness of the PHK 

pulps. Similar to the fully bleached acid bi-sulphite pulps, the brightness decreased with an 

increase in yellowness after the samples were induced for brightness reversion. The average 

decrease in brightness was 2.6% and the average increase in the yellowness was 2.4%. Further 

analysis of the chromophores in fully bleached PHK pulps was carried out using the Py-GC/MS.  

Table 4.21: The effect of brightness reversion on fully bleached PHK pulps. 

 Before brightness reversion (A) After brightness reversion (B) 

Pulp number Brightness (%) Yellowness (%) Brightness (%) Yellowness (%) 

7 93.3 4.4 88.9 7.4 

8 90.0 4.7 88.7 7.6 

9 89.7 5.6 86.7 7.9 

10 92.0 5.0 87.5 7.7 

11 91.0 5.2 89.1 6.7 

12 88.4 5.1 88.1 6.8 

Pulp number 7 contained 42 chromophores as shown in the pyrogram in Figure 4.29 and in the 

list in Table 4.22. The total area percentage of the identified chromophores was 11.6% with major 

compounds being 2,3-butanedione (1.5%) and 2-cyclopenten-1-one, 2-hydroxy-3-methyl- (1.3%).  
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Figure 4.29: Pyrogram of pulp number 7. 

Table 4.22: Peak identification for pulp number 7. 

Peak 

number 

Retention time 

(min) 

Area % Compound  

1 2.39 0.2 1,3-Cyclopentadiene 

2 2.65 1.5 2,3-Butanedione 

3 3.12 0.1 1,3-Cyclohexadiene 

4 3.52 0.1 3-Buten-2-one, 3-methyl- 

5 3.79 0.1 2-Propenoic acid, 2-methyl-, ethenyl ester 

6 3.84 0.1 2,3-Pentanedione 

7 4.28 0.1 4-Methyl-5H-furan-2-one 

8 4.70 0.3 3-Penten-2-one, (E)- 

9 4.81 0.1 1,3-Butadiene 

10 4.99 0.5 2H-Pyran, 3,4-dihydro- 

11 5.43 0.3 2(5H)-Furanone 

12 6.41 0.1 Furfural 

13 6.53 0.2 Pyrrolidine 

14 6.62 0.1 4-Methyl-5H-furan-2-one 

15 7.01 0.5 Furfural 

16 7.12 0.1 1H-Imidazole, 2,4-dimethyl- 

17 7.75 0.5 2-Furanmethanol 

18 7.92 0.2 2(3H)-Furanone, 5-methyl- 

19 8.09 0.1 2-Cyclopenten-1-one, 2-methyl- 

20 8.22 0.1 4-Cyclopentene-1,3-dione 

21 9.09 0.3 2-Cyclopenten-1-one, 2-methyl- 

22 9.33 0.8 2(5H)-Furanone 

23 10.08 0.3 2(5H)-Furanone, 5-methyl- 

24 10.31 0.1 2,5-Furandione, 3-methyl- 

25 10.79 0.1 1-Penten-3-one, 2,4-dimethyl- 

26 10.90 0.3 2H-Pyran-2-one, 4,6-dimethyl- 

27 11.61 0.1 Phenol 

28 12.31 0.2 2-Furanmethanol 

29 12.47 0.1 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 

30 12.57 0.1 4(1H)-Pyrimidinone, 6-methyl- 
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31 12.94 1.3 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 

32 13.21 0.1 2-Cyclopenten-1-one, 2,3-dimethyl- 

33 13.84 0.2 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

34 14.16 0.2 Furan, 3-methyl- 

35 14.54 0.1 1,4-Benzenediol, 2-methyl- 

36 14.60 0.1 Methyl 2-furoate 

37 15.61 0.1 Maltol 

38 15.66 0.2 2,4(3H,5H)-Furandione, 3-methyl- 

39 15.79 0.3 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

40 16.41 0.1 2-Cyclopenten-1-one, 3-methyl- 

41 17.80 0.1 2(3H)-Furanone, dihydro-5-propyl- 

42 19.09 0.9 5-Hydroxymethylfurfural 

Total chromophore area %                           11.6 

The chromophores in the PHK pulps were also grouped as done for the previous samples.  As 

shown in Figure 4.30 ketones and furan-type compounds were found at higher amounts than in 

fully bleached acid bisulphite pulps. After brightness reversion, the ketones increased by an 

average of 2.2% whereas the furans increased by an average of 0.8%. Arenes were detected at low 

amounts, below 0.8% and other low molecular weight chromophores were found at amounts 

below 3%. Pulp samples 11 and 12 showed a decrease in the percentage of furans than the other 

PHK pulps after brightness reversion. The amounts of ketones in sample 12 also decreased after 

brightness reversion. These differences in the behaviour of the same type of fully bleached pulp, 

when induced for brightness reversion under controlled conditions, was probably a result of the 

slight differences that may have occurred in the mill unit operations.  

 

Figure 4.30: Chromophores identified in fully bleached PHK pulp before (A) and after (B) 

brightness reversion.  
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In the case of fully bleached PHK pulps, sample 12 had the lowest amount of chromophores and 

displayed the lowest brightness as shown in Figure 4.30. The pyrogram of sample 12 and the 

identified chromophores are shown in Figure 4.31 and Table 4.23, respectively. Pulp samples 7 

and 10 exhibited very high brightness levels and lower yellowness values, however, their total 

amount of chromophore was also very high. Thus, there is no correlation between the brightness 

or yellowness and the total chromophore content of the fully bleached PHK pulps in the samples 

analysed. 

 

Figure 4.31: Pyrogram of pulp number 12. 

The brightness decreased with increase in yellowness for both the acid bisulphite and PHK pulps, 

and this shows that there is a correlation between pulp brightness and yellowness: the brightness 

is inversely proportional to the yellowness of the pulp (Rosenau et al., 2007). The brightness value 

of both the acid bisulphite and PHK pulps were similar, ranging from 88.4 - 93.3% and the 

yellowness ranged from 3.4 to 6.4% for the acid bisulphite pulp and 4.4 to 5.6% for the PHK pulp 

prior to brightness reversion (Table 4.21). Brightness reversion resulted in an increase of the 

chromophore content in both samples. However, intra-sample comparison of the chromophore 

content and the brightness did not show any correlation. Thus, the brightness of the pulp samples 

were not indicative of the amount of chromophores identified in the pulp samples: indeed, in some 

cases, pulps with high brightness levels also contained high chromophore content (e.g., samples 

1, 2 and 12).  

Table 4.23: Peak identification for pulp number 12. 

Peak 

number 

Retention 

time (min) 

Area% Compound  

1 2.58 0.1 1,3-Cyclopentadiene 

2 3.93 0.2 2(3H)-Furanone, 5-methyl- 

3 4.14 0.2 2,3-Pentanedione 

4 5.10 0.1 3-Penten-2-one, (E)- 

5 5.36 0.1 Furan, 2-methyl- 

6 5.44 0.3 1-Penten-3-one 

7 6.85 0.1 4-Methyl-5H-furan-2-one 
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8 7.03 0.1 Furfural 

9 7.35 0.1 3-Furanmethanol 

10 7.62 0.6 Furfural 

11 8.71 0.2 2(3H)-Furanone, 5-methyl- 

12 9.41 0.1 2-Furanmethanol 

13 9.93 0.1 2-Cyclopenten-1-one, 2-methyl- 

14 10.03 0.3 1-Penten-3-one, 2,4-dimethyl- 

15 10.20 0.1 Imidazole, 1,4,5-trimethyl- 

16 10.44 0.1 2(5H)-Furanone 

17 10.71 0.1 2-Furanmethanol 

18 11.05 0.1 2(5H)-Furanone, 5-methyl- 

19 11.21 0.1 2,5-Furandione, 3-methyl- 

20 11.48 0.2 2(3H)-Furanone, 5-methyl- 

21 12.34 0.1 2,4-Diaminopyrimidine 

22 12.87 0.1 1,2-Cyclohexanedione 

23 12.93 0.1 2-Cyclopenten-1-one, 2,3-dimethyl- 

24 14.14 0.4 1,2-Cyclopentanedione, 3-methyl- 

25 14.29 0.1 2-Cyclopenten-1-one, 2,3-dimethyl- 

26 15.00 0.1 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

27 15.78 0.3 2,5-Dimethyl-4-hydroxy-3(2H)-furanone 

28 16.56 0.1 2-Furanmethanol 

29 16.83 0.1 Maltol 

30 16.94 0.1 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

31 17.27 0.6 2,4(3H,5H)-Furandione, 3-methyl- 

32 18.39 0.1 2,3-Dihydroxybenzaldehyde 

33 19.34 0.2 4H-Pyran-4-one, 5-hydroxy-2-(hydroxymethyl)- 

34 21.50 0.3 5-Hydroxymethylfurfural 

35 21.57 0.1 5-Hydroxymethylfurfural 

Total chromophore area %                       6.1 

Ketones were the largest group of chromophores, followed by the furans; low molecular weight 

compounds and arenes were at lower amounts. The amount of chromophore groups in both pulp 

types were similar, since the acid bisulphite and PHK processes give rise to the same type of 

chromophores. This indicates that the mechanism of chromophore formation is similar, 

irrespective of the pulp processing conditions.  

4.3.1.3 Analysis of DWP and its corresponding microcrystalline cellulose 

To understand the effect of pulp derivatization during the MCC production, on the formation of 

chromophores, fully bleached DWP samples with their corresponding MCC samples were 

analysed for chromophore content using the Py-GC/MS. The pyrogram of pulp sample P1 is 

shown in Figure 4.32 and details of the chromophores are shown in Table 4.24. The total area 

percentage of the chromophores added up to 19.4%. The major chromophores were 2,3-
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butanedione (1.3%), 2(5H)-furanone (1.9%), 1,2-cyclopentanedione (5.7%), and 2-cyclopenten-

1-one, 2-hydroxy-3-methyl- (1.5%) as shown in Table 4.24.  

 

Figure 4.32: Pyrogram of pulp sample P1. 

Table 4.24: Peak identification for pulp sample P1. 

Peak number Retention 

time (min) 

Area% Compound  

1 2.71 1.3 2,3-Butanedione 

2 3.99 0.1 2,3-Pentanedione 

3 4.48 0.1 1-Penten-3-one, 2-methyl- 

4 4.93 0.1 3-Penten-2-one, (E)- 

5 5.18 1.0 1-Penten-3-one 

6 6.86 0.1 Furfural 

7 7.11 0.2 3-Furanmethanol 

8 7.53 0.1 Vinyl crotonate 

9 7.65 0.1 2-Cyclopentene-1,4-dione 

10 8.27 0.8 2-Furanmethanol 

11 8.56 0.2 2(3H)-Furanone, 5-methyl- 

12 8.88 0.1 2-Cyclopentene-1,4-dione 

13 9.05 0.1 2-Cyclopentene-1,4-dione 

14 9.72 0.2 Vinyl crotonate 

15 9.77 0.2 2-Cyclopenten-1-one, 2-methyl- 

16 10.03 1.9 2(5H)-Furanone 

17 10.15 0.1 2-Cyclohexen-1-one, 2-methyl- 

18 10.57 5.7 1,2-Cyclopentanedione 

19 10.84 0.1 2(5H)-Furanone, 5-methyl- 

20 11.51 0.1 2-Benzoyl-3-isobutylidene-hexahydro-

pyrrolo[1,2-a]pyrazin-1,4-dione 

21 12.55 0.1 Phenol 

22 13.42 0.4 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 

23 13.55 0.1 2,5-Furandione, dihydro-3-methyl- 

24 13.78 0.1 2-Cyclohexene-1,4-dione  

25 13.92 1.5 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 
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26 14.14 0.1 2-Cyclopenten-1-one, 2,3-dimethyl- 

27 14.25 0.2 4-Methyl-5H-furan-2-one 

28 15.53 0.4 3-Furancarboxylic acid, methyl ester 

29 16.02 0.2 Benzenamine, 3-methoxy-4-[3-(1-

piperidinyl)propoxy]- 

30 16.17 0.1 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- 

31 16.56 0.2 Maltol 

32 16.90 0.1 2(3H)-Furanone, 5-acetyldihydro- 

33 16.98 0.1 1H-Imidazole, 2-ethyl- 

34 17.37 0.3 2-Cyclohexen-1-one, 3,4-dimethyl- 

35 18.07 0.2 2,3-Dihydroxybenzaldehyde 

36 20.08 0.9 2-Furancarboxaldehyde, 5-(hydroxymethyl)- 

37 21.38 0.1 1H-Inden-1-one, 2,3-dihydro- 

38 22.40 0.2 Benzaldehyde, 3-hydroxy- 

39 23.18 0.1 1,3-Bis(trimethylsiloxy)benzene 

40 24.70 0.1 4-Hydroxy-2-methylbenzaldehyde 

41 25.08 0.6 Phenol, 4,4'-methylenebis[2,6-dimethyl- 

42 35.80 0.7 1,2-Benzenedicarboxylic acid, diisooctyl ester 

Total chromophore Area % 19.4 

The brightness and yellowness of fully bleached DWP and with corresponding MCC samples were 

analysed and compared to determine if there was any relationship between chromophores and 

brightness of these samples. The brightness of the pulp samples was higher than the brightness of 

the MCC produced from each pulp sample. For example, the brightness of pulp sample P1 pulp 

was 6% greater than the brightness of P1(MCC), as shown in Figure 4.33. The average reduction 

in brightness when the pulps were converted to MCC was about 8%. Pulp sample P1 showed the 

highest brightness (93.2%) and the lowest yellowness (3.7%), Figure 4.33.   

 

Figure 4.33: Brightness of the pulp vs. MCC. 
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The pyrogram of P1(MCC) is shown in Figure 4.34, with the labelled peaks indicating the 

chromophores. The retention times, area percentage and the names of the chromophores identified 

are listed in Table 4.25.  

 

Figure 4.34: Pyrogram of P1(MCC). 

Table 4.25: Peak identification for P1(MCC). 

Peak 

number  

Retention 

time (min) 

Area % Compound 

1 2.71 0.3 Methyl vinyl ketone 

2 2.84 0.1 Furan, 2-methyl- 

3 6.87 0.4 Furfural 

4 7.89 0.2 2(3H)-Furanone, 5-methyl- 

5 8.33 0.1 4-Cyclopentene-1,3-dione 

6 9.17 0.1 Ethanone, 1-(2-furanyl)- 

7 9.23 0.1 2(5H)-Furanone 

8 10.31 0.1 3(2H)-Pyridazinone 

9 12.37 0.1 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- 

10 12.84 0.1 1,2-Cyclopentanedione, 3-methyl- 

11 13.28 0.1 4-Methyl-5H-furan-2-one 

12 14.53 0.1 Methyl 2-furoate 

13 14.61 0.1 2,5-Dimethyl-4-hydroxy-3(2H)-furanone 

14 15.39 0.1 2-Furanmethanol 

15 15.68 0.1 2,4(3H,5H)-Furandione, 3-methyl- 

16 16.56 0.1 2(3H)-Furanone, dihydro-4-methyl- 

Total chromophore area % 1.8 

In sample P1(MCC), a total of 38 chromophores were identified (Table 4.25 only shows the major 

chromophores). However, the total area percentage of the identified chromophores added up to 

1.8% that is much lower than the total area percentage of the chromophores identified in the 

original pulp sample P1. This proves the fact that the number of chromophores is not 

representative of their amount nor the brightness levels of the cellulosic material (Rosenau et al., 

2007). 
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Pulp samples P2 and P3 had similar brightness levels of 92.2% and 92.0%, respectively, with a 

yellowness of 4.9% for P2 and 4.2% for P3 (Figure 4.33). The brightness decreased, and the 

yellowness was observed to increase after the pulps were converted to MCC. The average increase 

of the yellowness as a result of pulp derivatisation to MCC was 1.2%. The decrease in brightness 

levels and the increase in yellowness observed when the pulp was converted to MCC can be 

attributed to the degradative reactions that occur during cellulose hydrolysis. 

The results showed that the pulp samples contain a higher amount of the chromophores compared 

to the corresponding MCC samples (Figure 4.35). The average difference in the chromophore 

amount between the pulp and the corresponding MCC samples was 12.4%. The main 

chromophore groups identified in the pulp samples were the furan-type compounds followed by 

ketones. Pulp sample P1 had the highest amount of chromophores, and sample P3 had the lowest 

amount of chromophores. The difference in the chromophore amount in these pulp samples can 

be attributed to the slight variations in the mill unit operations. The concentration of the arenes in 

P1 was 2.3% and was significantly higher than 0.6 and 0.7%, detected in P2 and P3 samples 

respectively.   

 

Figure 4.35: Comparison of chromophores identified in DWP and MCC. 

P2 (MCC) showed the highest total chromophore content followed by P3 (MCC) and then P1 

(MCC) (Figure 4.35). The total chromophore content in P2 (MCC) was 3.2% with the furan-type 

compounds contributing 1.7% and the ketones contributing 1.3% to the total chromophore content. 

This shows that the chromophore content of the MCC is independent of the chromophore content 

of the pulp sample from which the MCC was produced. If the total chromophore content was 

dependent on the amount of chromophores in the pulp sample, P1 (MCC) would have had the 

highest chromophore content, and P3 (MCC) would contain the lowest chromophore content. 
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It was expected that the MCC samples would exhibit a higher brightness than the original pulp 

samples because it is considered as a high purity material that is used to produce high-grade 

products. However, the brightness of the MCC was lower than the brightness of the pulp. These 

results further confirm that there is no relationship between the brightness and the total 

chromophore content. Figure 4.32 and Figure 4.33 show that sample P1 had a very high brightness 

and a high chromophore content. However, the corresponding MCC, P1(MCC) had the highest 

brightness (93.2%) and the lowest chromophore content.  

The MCC is produced from DWP under harsh acidic conditions and elevated temperatures, 

furthermore, the amount of chromophores in the MCC has been observed to be about 3% on 

average, compared to the average of 15% found in DWP. This can be attributed to the degradation 

of hydroxymethylfurfural (HMF) to the non-chromophoric levulinic acid (38) and formic acid (39) 

under acidic conditions (Figure 4.36), HMF (7) is one of the pre-cursors for chromophore 

formation in cellulosic materials (Shen and Gu, 2009). 

As explained in Chapter 2, the main component of DWP is cellulose, described as a polymer 

consisting repeating glucose monomers that are connected through 1,4-β-glucosidic covalent 

bonds (Ben, 2014). When cellulose is converted to MCC under harsh acidic conditions using 

H2SO4 (Eartrakulpaiboon and Tonanon, 2015) and elevated temperatures, reactions of glucose 

such as reversion, condensation, isomerization and dehydration reactions take place (Van Dam et 

al., 1986). However, the main reaction that occurs is the dehydration reaction.  

During the dehydration reaction, the 1,4-β-glucosidic bonds in the cellulose (36) are cleaved to 

release glucose monomers (37), Figure 4.36 (Kupiainen et al., 2012). Under acidic conditions, the 

glucose decomposes to form 7 that further reacts with the acid to form levulinic acid (38) and 

formic acid (39) (Kupiainen, 2012, Van Dam et al., 1986). The conversion of HMF to these acids 

(does not occur in pulp) eliminates the formation of many chromophoric structures such as 

furfuraldehyde, cyclopentadiene and 5-methyl-furfural, hence, the MCC ends up having a lower 

amount of chromophores than the original pulp sample.  
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Figure 4.36: Acid-catalyzed hydrolysis of cellulose (Kupiainen, 2012). 

The observation that brightness of the MCC was significantly lower than the brightness of the 

pulps from which it was produced does not imply that the MCC has higher chromophore content 

than the pulp as shown by the experimental results. This indicates that the amount of 

chromophores in the pulp or MCC was not related to the levels of brightness or yellowness of the 

material. Part of the cellulose was degraded during derivatization, however, a minimum amount 

of chromophores were formed, this indicates that the degraded cellulose only contributes a small 

percentage of the chromophores in the pulp.  

4.3.2 Analysis of in-process industrial pulps 

To understand the changes in brightness and the chromophore content (as determined by the Py-

GC/MS) of the fully bleached industrial pulps, wet chemical properties of in-process industrial 

pulp (acid bisulphite and PHK pulp) from different stages of bleaching were determined.  

4.3.2.1 Analysis of in-process acid bisulphite pulps  

In-process pulp samples were collected from the acid bisulphite pulp mill at each stage of the unit 

operation to understand the effect of bleaching unit operations on chromophore formation. Table 

4.26 presents the wet chemical properties of the industry produced in-process acid bi-sulphite pulp 

processed using 92α bleaching conditions. Table 4.26 shows the changes in the total lignin content 

and the changes in the S10, S18, S10-S18 were further summarised in Figure 4.37.  

Terminology 

S10 (%): Degraded cellulose and hemicellulose (total extractable material)  

S18 (%): Hemicellulose 

S10-S18 (%): Degraded cellulose 

It is evident that there was a significant reduction in the total lignin content from the raw stage 

(8.2%) to the O2 stage (3.0%), Table 4.26. Afterwards, the total lignin content decreased slowly 

and finally reached 1.2% in the hypo stage. The difference in the total lignin content between the 

raw stage and the hypo stage was 6.9%, and this shows that it is only a fraction of lignin that 

remains after bleaching that can be a potential source of chromophores in the final pulp.  

Table 4.26: Wet chemical properties of the in-process acid bisulphite pulp.  

 Unbleached Bleaching Stages 

Acid bi-sulphite pulp Raw  O2 D1 E D2 Hypo 

Lignin (%) 8.2 3.0 1.8 1.5 1.3 1.2 

S10 (%) 7.9 7.4 7.8 7.2 6.8 7.5 

S18 (%) 6.2 6.2 6.4 5.9 4.7 4.7 

 S10-S18 (%) 1.7 1.3 1.4 1.2 2.1 2.8 
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The effect of bleaching on the S10 (%), the S18 (%) and the S10-S18 (%), through the bleaching 

process, was summarised in Figure 4.37. The S10 (%) and the S18 (%) decreased by 0.5% and 

0.3%, respectively, from the raw pulp to the O2 bleaching stage. This shows that the increase of 

the chromophore content (Figure 4.38) from the raw pulp to the O2 stage was not because of the 

total extractable material. 

However, the oxygen that was used at this stage is a strong oxidising agent, hence, the increase in 

the chromophore content at this stage (Figure 4.38) can be attributed to the oxidising ability of the 

oxygen, i.e., the oxidation of the carbohydrate structures resulted in the formation of 

chromophores. The oxygen allows for the use of low temperatures and, therefore, thermal 

degradation reactions are unlikely to occur at this bleaching stage (Suchy and Argyropoulos, 

2002). The effect of oxygen delignification was also shown by the significant reduction of lignin 

from the raw stage to the O2 stage, as shown in Table 4.26. The lignin further decreased throughout 

the stages of bleaching, hence, the increase in chromophore content at in the O2 stage cannot be 

fully associated with lignin (Figure 4.38). The S18 (%) increased from 6.2% (raw stage) to 6.4% 

in the D1 stage (Figure 4.37). As a result, the total chromophore content was observed to increase 

(Figure 4.38). 

 

Figure 4.37: Alkali solubility of industrial acid bi-sulphite pulp. 

The second bleaching stage (D2) involved the use of chlorine dioxide that is a strong oxidising 

agent. A significant increase in the amount of the furan-type compounds and ketones was noted 

in the D2 bleaching stage. Figure 4.38 shows that the total chromophore content increased from 

8.7% (O2 bleaching stage) to 15.4% in the D1 bleaching stage, with the furan-type compounds at 

9.1% and the ketones at 5.2%. The formation of oxygen-rich compounds along with furan-type 

compounds and conjugated ketones can be associated with chlorine bleaches and oxidation of 

hemicelluloses and cellulose fibres. Furthermore, chlorinated bleaches are associated with the 

formation of yellow chlorinated pulp fibres (Burgess, 1982). 
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Figure 4.38: Chromophores identified at different stages of bleaching the acid bi-sulphite pulp. 

Figure 4.37 shows a decrease in the S10 (%) by 0.4% from the D1 stage to the E Stage, and this 

corresponds to the reduction in the total chromophore content by 7.1% (Figure 4.38). A significant 

reduction of furan-type compounds from 9.1% in the D1 stage to 4.5% in the E stage followed by 

a decline of ketones from 5.24% in the D1 stage to 2.6% in the E stage was observed. This 

reduction was a result of the removal of oxidised structures and degraded carbohydrates in the E 

stage. This result demonstrates the effectiveness of pulp washing using sodium hydroxide.  

The second chlorine dioxide treatment (D2 stage) opposed the effect of the E stage, the total 

concentration of chromophores increased by 2.2% from the E stage to the D2 stage (Figure 4.38) 

due to the strong oxidising ability of the chlorine dioxide. At this stage, there was a slight increase 

in the amount of S10-S18 (%), Figure 4.37. This shows that the chlorine dioxide induced 

depolymerization in the cellulose. As a result, the degraded cellulose, probably increased the 

concentration of chromophores.  

A further increase of the furan-type compounds upon treatment with the sodium hypochlorite 

(Hypo stage) was noted, the concentration of ketones decreased, thus making the total 

chromophore area percentage to be slightly lower in the Hypo stage (10.3%) compared to the D2 

stage (10.5%). The sodium hypochlorite causes chain scission of the polymers and the formation 

of short chains compounds. Due to the strong oxidising ability of hypochlorites under acidic or 

basic conditions (Chirat and De La Chapelle, 1999), most compounds were oxidised to 

corresponding chromophores as a result, there was no significant decrease in the total 

chromophore content in the Hypo stage. The effect of the hypochlorite bleach also had a 

pronounced effect on the increase of the S10 (%) by 0.8% that resulted in a slight increase of 

chromophores.  
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Figure 4.39 shows a decrease in the peak area of levoglucosan from the raw stage (80.7%) to the 

hypo stage (24.6%). This decrease is indicative of the reduction of degraded cellulose during the 

bleaching process. This shows that towards the final stages of bleaching, there is a low percentage 

of degraded cellulose that could be responsible for chromophore formation, hence, the increase in 

the chromophore content towards the hypo stage observed in figure 4.38 cannot be solely 

attributed to the degraded cellulose. 
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Figure 4.39: Pyrograms of the acid bisulphite pulp. 

The wet chemical properties and the total lignin content of the industrial in-process PHK pulps 

are listed in Table 4.27, the alkali solubility data was summarised in Figure 4.40. Similar to the 

in-process acid bisulphite pulp, the lignin decreased significantly from the raw pulp to the Ex O2 

bleaching stage. The percentage of the total lignin further decreased by 0.4% from the Ex Do stage 

to the final pulp (Table 4.27). 

4.3.2.2 Analysis of in-process PHK pulps 

Table 4.27: Wet chemical properties of the in-process PHK pulp.  

 Unbleached Bleaching Stages 

PHK pulp Raw  Ex O2 Ex Do Ex Z Ex Eop Ex D1 Final 

Lignin (%) 8.3 2.7 1.6 1.3 1.3 1.2 1.2 

S10 (%) 9.0 8.1 7.0 9.1 9.2 10.8 9.6 

S18 (%) 6.9 5.2 6.1 8.8 8.5 5.4 7.4 

 S10-S18 (%) 2.1 2.9 0.92 0.3 0.6 5.4 2.2 

Figure 4.40 shows that the S10 (%) and S18 (%) decreased from the raw stage to the Ex O2 stage 

while the S10-S18 (%) increased. In effect, the total chromophore content (Figure 4.41) increased 

as the ketones sharply increased by 3.5% from the raw pulp to the Ex O2 stage while the furan-

type compounds, arenes and other low molecular weight chromophores decreased. The increase 

of the total chromophore content towards the O2 stage was attributed to the increase of the 

degraded cellulose. The total chromophore content decreased towards the final stage of bleaching, 
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responding to the decrease of the S10 (%) and the S10-S18 (%), meaning that both the 

hemicellulose and degraded cellulose were involved in chromophore formation.  

 

Figure 4.40: Alkali solubility of industrial PHK pulp. 

In this case, it shows that both the S10-S18 (%) and the S18 (%) are responsible for generating the 

furan-type compounds and the ketones during pyrolysis of the pulp. However, the S18 (%) seem 

to have a major effect on the formation of these chromophores. In the final stages of bleaching, 

there is less degraded cellulose, and there are some bleach resistant hemicelluloses that may have 

survived the bleaching process and gave rise to the chromophores.  

 

Figure 4.41: Chromophores identified at various stages of bleaching the PHK pulp. 
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The analysis of fully bleached DWP showed that the brightness and yellowness levels of the acid 

bisulphite and PHK pulps were similar. Py-GC/MS analysis also showed that the type of 

chromophores identified in the acid bisulphite and PHK pulps were the same type of compounds. 

The comparison of the brightness/yellowness, when the samples were induced for brightness 

reversion, and Py-GC/MS results showed that there was a decrease in brightness (increase in 

yellowness) with the increase in the chromophore content in each of the DWP samples analysed. 

However, the inter-sample comparison did not show any relationship between the brightness and 

the chromophore content. This was verified through the analysis of the MCC with the 

corresponding pulps which had a lower brightness and very low chromophore content than the 

original pulp samples. These findings were also useful because they showed that pulp 

derivatisation reduces the chromophores that are present in the fully bleached pulp. Further 

analysis through wet chemistry analysis of the in-process industrial pulps revealed that the 

degraded cellulose and the hemicellulose were responsible for the chromophore formation in the 

industrial pulps.  

4.3.3 Analysis of laboratory produced in-process pulps  

Single clone laboratory produced pulps, collected from each of the acid bisulphite bleaching stages 

were analysed for wet chemical properties to understand the relationship between the components 

of the pulp and the chromophores identified by Py-GC/MS. The O2 delignified acid bisulphite 

pulps were bleached using the 92α bleaching conditions. The raw pulp was bleached using the 

bleaching chemicals in the following order: chlorine dioxide (D1)-sodium chloride (E)- chlorine 

dioxide (D2)-hypochlorite (H).  

Figure 4.42 shows the changes in the total lignin content in raw pulp and through four stages of 

bleaching of the E. Dunnii, E. Grandis and E. Smithii species. A sharp decrease of the total lignin 

content was observed as the raw pulp was bleached with the oxygen (O2 stage) during oxygen 

delignification. This shows the effectiveness of oxygen delignification in removing the lignin that 

remained after the acid bisulphite pulping. The lignin percentage decreased continuously through 

the bleaching process, but a minimal decrease was observed from the E stage to the hypo stage, 

thus indicating that the remaining lignin was recalcitrant to the bleaching chemicals.  The residual 

lignin from the O2 stage to the fully bleached pulp in the hypo stage resulted in a low percentage 

of arenes, observed during the analysis of the fully bleached pulps and the in-process pulps. 



 

124 

 

 

Figure 4.42: Comparison of total lignin content in E. Dunnii, E. Grandi and E. Smithii. 

Figure 4.43 shows a decrease in the S10 (%) and the S18 (%) from the raw pulp to the D1 bleaching 

stage while the S10-S18 (%) increased. The S10 (%) decreased from 10.7% in the raw stage to 

9.6% in the O2 stage but decreased by 0.9% to the D1 stage. The S18 (%) also showed a decrease 

by 1.3% from the raw stage to the D1 stage. Towards the hypo stage, the S10(%), S18 (%) and 

S10-S18 (%) showed a slight increase, indicating that the bleaching conditions favoured the 

formation of hemicellulose type compounds and also encouraged cellulose degradation.  

4.3.3.1 Analysis of E. Dunnii in-process pulps 

 

Figure 4.43: Comparison of the S10 (%), S18 (%) and the S10-S18 (%) of the E. Dunnii. 

In the E. dunnii in-process pulps, the furan-type compounds were found at the highest 

concentration followed by the ketones. The arenes and the other low molecular weight 

chromophores were observed at the lowest concentration throughout the stages of bleaching 

(Figure 4.44). The increase of the furan-type compounds and ketones from the raw stage to the D1 
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stage was attributed to the slight increase of the S10-S18 (%). A similar increase of the S10-S18 

(%) was observed towards the D2 stage, as a result, the total chromophore content also showed an 

increase (Figure 4.44). This was evidenced by the increase of the furan-type compounds, ketones 

and other low molecular weight chromophores. The pyrograms of the E.Dunnii pulps through the 

bleaching stages are shown in Figure 4.45. 

 

Figure 4.44: Chromophores identified in the E. Dunnii in-process pulp.   
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Figure 4.45: Pyrograms of E.Dunnii in-process pulps. 

It is evident that the hemicellulose and degraded cellulose contribute to the formation of 

chromophores in the pulp. Therefore, it is important to understand the behaviour of these 

substances during pyrolysis. The following paragraphs explain the thermal degradation pathway 

of hemicellulose and cellulose during pyrolysis. 

Hemicelluloses constitute about 6.5% of fully bleached pulps, and cellulose (36) is the main 

component of DWP (over 90%) (Beyer et al., 2006). Xylan (40) is the most abundant 

hemicellulose and is, therefore, typically used as a model compound to study the reactions of 
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hemicelluloses (Figure 4.46). During thermal degradation of 40, (2E)-3-(4-hydroxy-3-

methoxyphenyl) prop-2-enoic acid (41) and hydroxymethylfurfural (7) are formed as primary 

degradation products. The chemical structure of 41 resembles the structure of coniferyl alcohol, a 

degradation product of lignin. Further degradation of 41 results in fragments that are similar to the 

degradation products of coniferyl alcohol. This moiety brings a challenge when trying to 

differentiate between xylan and some of the lignin degradation products because it resembles the 

structure of the guaiacol moiety of lignin.  
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Figure 4.46: Degradation pathway of xylan (40). 

Depolymerization of cellulose results in the formation of levoglucosan (48) which is considered 

as the main degradation product of cellulose (Qiang et al., 2009). (4Z)-2,3,5,6-tetrahydroxyhex-

4-enal (49) is also formed during cellulose depolymerization followed by the ring opening 

reactions (Figure 4.47). Condensation of 49 results in the formation of (2Z,4Z)-2,5,6-

trihydroxyhexa-2,4-dienal (50) which further forms 7 through dehydration and cyclisation 

reactions.  During thermal degradation of cellulose, 48 and 50 are the main producers of 7 that 

result in the formation of furans and other low molecular weight chromophores (42-46).  
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Secondary reactions, such as ring opening and cyclisation reactions of the pyran ring of 40 are the 

main producers of chromophores. During pyrolysis of 40 and 36, the secondary reactions result in 

the formation of 5-hydroxymethyl furaldehyde (7), which is further degraded to light furan-type 

compounds (42-46) (Shen and Gu, 2009, Shen et al., 2013). The carbohydrate chains of 40 and 36 

are very similar, hence, they produce similar thermal degradation products during pyrolysis (Qiang 

et al., 2009) and this makes it difficult to differentiate between degradation products of 40 and 36. 

Furthermore, furan-type compounds are known to be the main contributors to the yellowness of 

chemical pulps (Loureiro et al., 2010).  

4.3.3.2 Analysis of E. Grandis in-process pulps 

Figure 4.48 shows that the raw pulp contained a high S10% and S18%, 10.7%, and 8.7% 

respectively. Towards the O2 stage, the S10 (%) decreased by 1.1%. The Py-GC/MS results 

(Figure 4.49) indicated that there was a high percentage of the total chromophore content (25.3%) 

in the raw pulp that decreased to 22.2% after the O2 bleaching stage. The main contributing 

compound group to the high chromophore content observed at this stage were the other low 

molecular weight chromophores (Figure 4.49).  

 

 

Figure 4.47: Degradation pathway of cellulose (36). 
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Figure 4.48: Comparison of the S10 (%), S18 (%) and S10-S18 (%) of the E. Grandis. 

During the O2 stage, the furans, arenes and other low molecular weight chromophores decreased 

while the ketones increased by 2.6% (Figure 4.49). The increase of the ketones was atributed to 

the slight increase (0.3%) of the S10-S18 as shown in figure 4.48. Bleaching with the chlorine 

dioxide at the D1 stage resulted to an increase of S10%, S18%, and S10-S18%; and thus, the total 

chromophore content increased by 2.1% (Figure 4.48). The S10 (%) decreased after the alkaline 

extraction in the E stage, and the chromophore content declined by 4.2%. From the E stage to the 

Hypo stage, the total chromophore content increased by 2.4% following the increase of the S10 

by 0.58%.  Pyograms of the E-grandis pulps through the stages of bleaching are shown in Figure 

4.50. 

 

Figure 4.49: Chromophores identified during Py-GC/MS analysis of E. Grandis. 
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Figure 4.50: Pyrograms of E.Grandis in-process pulps. 

4.3.3.4 Analysis of E. Smithii in-process pulps  

In the analysis of E. Smithii, the S10 decreased from the raw stage to the O2 stage (Figure 4.51). 

The pyrograms of the E.Smithii pulps through the bleaching stages are shown in Figure 4.52. Py-

GC/MS results in Figure 4.53 shows that the arenes decreased by 1.8%, showing that at this stage, 

a significant amount of lignin was removed, causing a reduction in the aromatic chromophores. 

However, the total chromophore content increased by 2.9% due to the increase of the furans, 

ketones and other low molecular weight chromophores. This increase can be attributed to the 

oxidation reactions induced by the oxygen used in the O2 bleaching stage. In comparison to the E. 

Grandis, these two species reacted differently towards the O2 bleaching.  

 

Figure 4.51: Solubility analysis of E. Smithii 
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Figure 4.52: Pyrograms of the E.Smithii in-process pulps. 

 Chlorine dioxide bleaching (D1) resulted in an increase of the S10 (%). In effect, a further increase 

of the total chromophore content was observed. However, the alkaline extraction (E stage) reduced 

the S10 (%) by 2.3% hence resulted in the overall decrease of the total chromophore content by 

7.9% (Figure 4.53).  

The second chlorine dioxide bleaching stage (D2) resulted in an increase in the S10 (%), and as a 

result, the chromophores increased by 0.9%. In the hypo stage, there was a slight increase of the 

S10 (%) and the degraded cellulose while the S18 (%) showed a slight decrease. At this stage, the 

total chromophore content increased due to the increase in the percentage of the furan-type 

compounds, indicating that the slight increase of the degraded cellulose resulted in a pronounced 

effect on the chromophore formation.  

 

Figure 4.53: Py-GC/MS analysis of E.Smithii. 

The analysis of single clones of E.Dunnii, E.Smithii, and E.Grandis have shown that different 

species react differently to pulping and bleaching conditions. Even though the bleaching 

conditions were controlled, different results were obtained for each of the species analysed.  The 

wet chemical properties differ for all species and the chromophore content determined at each 
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bleaching stage differs from species to species. However, the E stage has shown to reduce the 

chromophores present in the pulp. It can, therefore, be deduced that the amount of chromophores 

differs with wood species. This means that, in addition to the cooking and bleaching conditions, 

the chromophores identified in industrial pulps originate from the mixture of wood species used.  

4.3.4 Py-GC/MS analysis of newsprint and kraft pulp 

Additional samples were analysed to further investigate the effect of lignin and heat induced 

brightness reversion. Unprinted newsprint and fully bleached kraft pulp samples were analysed 

for chromophore content using Py-GC/MS before and after brightness reversion. The results 

obtained were summarized below.  

A lignin-rich material, blank (unprinted) newsprints were analysed for chromophore content using 

Py-GC/MS. The newsprints were heated at 105 °C overnight to induce brightness reversion in 

order to investigate the changes of the chromophore content in the newsprints before and after 

brightness reversion. The identified chromophores were grouped into furan-type compounds, 

ketones, arenes and other low molecular weight chromophores. Figure 4.54 shows that the arenes 

were the most abundant compounds in all the three samples of newsprints both before and after 

heating, contributing about 30-40% to the total chromophore content per sample. Similar to fully 

bleached pulps, the amount of all chromophore groups in the newsprints increased after brightness 

reversion. 

 

Figure 4.54: Py-GC/MS analysis of newsprint before (C) and after brightness reversion (H). 

The comparison of the chromatograms of the control and heated newsprints (NP1) revealed that 

some of the compounds increased in area percentage because of heating. Thus, the chromophore 

concentration increased after brightness reversion (Figure 4.55).   
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Figure 4.55: Pyrogram of NP1 before (control) and after (heated) brightness reversion. 

Peaks of the chromophores identified in the control sample of NP1 are shown in Figure 4.56, the 

area percentages and the names of the identified compounds are shown in Table 4.28. The total 

area percentage of the chromophores identified in control NP1 was 44.6%, and the heated NP1 

sample contained a total area percentage of 49.3%, with the arenes being the dominant compound 

group. 
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   Figure 4.56: Pyrogram of NP1 before brightness reversion. 

Table 4.28: Peak identification for control newsprints (NP1). 

Peak 

number  

Retention time 

(min) 

Area 

% 

Compound 

1 6.72 1.2 Furfural 

2 8.98 1.2 2(5H)-Furanone 

3 9.26 2.2 1,2-Cyclopentanedione 

4 12.42 1.0 1,2-Cyclopentanedione, 3-methyl- 

5 14.39 2.7 Phenol, 2-methoxy- 

6 15.23 1.4 2,4(3H,5H)-Furandione, 3-methyl- 

7 20.94 2.4 2-Methoxy-4-vinylphenol 

8 23.21 1.4 Vanillin 
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9 24.51 3.5 trans-Isoeugenol 

10 29.26 1.1 Benzenepropanol, 4-hydroxy-3-methoxy- 

11 29.79 1.2 (E)-4-(3-Hydroxyprop-1-en-1-yl)-2-

methoxyphenol 

12 31.29 10.0 (E)-4-(3-Hydroxyprop-1-en-1-yl)-2-

methoxyphenol  

Total chromophore area % 44.6 

Fully bleached kraft pulps were analysed for chromophore content before and after brightness 

reversion. Heat-induced brightness reversion of the fully bleached kraft pulp resulted in the 

increase of the total chromophore content of the pulp. As shown in Figure 4.57, some of the 

compounds resulted in a higher area percentage after heating. The total chromophore content 

before brightness reversion was 20.1% (Table 4.29) and increased to 22.2 % after brightness 

reversion. The main contributing compound groups before brightness reversion were the furan-

type compounds (4.9%) followed by the ketones (1.9%). The arenes and other low molecular 

weight chromophores were found at a lower concentration, 1.9% and 0.8% respectively. After 

brightness reversion, the furan-type compounds and the ketones increased by 6.4% and 3.9% 

respectively.  
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Figure 4.57: Pyrogram of fully bleached kraft pulp before (control) and after (heated) brightness 

reversion. 

The major chromophores (with an area percentages above 1 percent) identified in the kraft pulp 

before heating were labelled with numbers in Figure 4.58. The compound names of the numbered 

peaks are shown in Table  4.29. These results indicate that the type of chromophores identified in 

kraft pulps are similar to the type of chromophores identified in DWP samples. This implies that 

the source of chromophores in the chemical pulps is similar in nature, thus confirming that the 

mechanism for the formation of chromophores in chemical pulps is similar.  
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Figure 4.58: Pyrogram of fully bleached kraft pulp before brightness reversion. 

In comparison to the DWPs, the kraft pulp resulted in a higher percentage of the arenes after 

brightness reversion. However, the percentage of the arenes in the kraft pulp was much lower 

compared to the arenes identified in the newsprint samples. This confirms that there are structural 

changes that occur in the lignin during chemical pulping (del Rıo et al., 2001).  

Table 4.29: Peak identification for kraft pulp before brightness reversion. 

Peak number Retention time (min) Area% Compound 

1 6.73 2.3 3,5-Dimethylpyrazole-1-methanol 

2 9.32 3.5 2-Cyclopenten-1-one, 2-hydroxy- 

3 12.47 1.7 1,2-Cyclopentanedione, 3-methyl- 

4 18.59 1.7 5-Hydroxymethylfurfural 

Total chromophore area % 20.1 

4.4 Summary of main results 

Analysis of chromophores in xylan and lignin using Py-GC/MS showed that the sources of 

chromophores in DWP are the oxidation and degradation products of carbohydrates. The aromatic 

compounds were found at the lowest concentration in the majority of pulp samples analysed, 

confirming that lignin is not the primary source of chromophores in fully bleached DWP. The 

major pyrolysis product of all the pulps samples analysed in this study was the levoglucosan, the 

main degradation product of cellulose. Identified chromophores were grouped into furan-type 

compounds, ketones, arenes and other low molecular weight chromophores.The newsprints 

contained a very low percentage of the levoglucosan and a high percentage of lignin-related 

chromophores. This confirms that in the pulp samples or in the cellulose rich materials, cellulose 

degradation is the primary cause of chromophore formation whereas, in the materials with a low 

cellulose content, cellulose-type chromophores were minimal. In addition to cellulose 

degradation, it has also been demonstrated that the hemicelluloses have a significant contribution 

towards chromophore formation. However, it is known that DWP contain minute amounts of 
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hemicellulose and therefore, it can be concluded that most of the chromophores originate from 

cellulose degradation.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The original motivation for this study was to identify a link between the presence of chromophores 

and brightness reversion in dissolving wood pulps (DWPs), proceeding from the belief that 

chromophores were the cause of brightness reversion. Surprisingly, not long into the study, it 

became evident that no direct link could be identified between chromophores and brightness or 

brightness reversion. To determine and analyse the role of chromophores in causing brightness 

reversion, it was first necessary to develop a tool to perform this investigation, since the current 

methods have some significant limitations as described in chapter 2. Pyrolysis-gas 

chromatography-mass/spectrometry (Py-GC/MS) was chosen as the means to undertake this 

study, and it has been successfully used as a novel tool for chromophore identification in DWPs.  

Since no accounts could be found in the use of Py-GC/MS for the identification of chromophores 

in DWPs, a method was developed using several types of samples such as DWP with and without 

signs of brightness reversion, cellulose-rich materials and samples of materials that could be 

potential sources of chromophores in the pulp such as the xylan, sugar monomers and lignin.  

As part of method development, the cellulose-rich materials and the xylan were induced for 

brightness reversion, and the chromophore content was analysed before and after brightness 

reversion. Results showed an increase of chromophores after brightness reversion. It was observed 

that some of the chromophores that were identified before brightness reversion had an increased 

area percentage after brightness reversion and new chromophores were identified, meaning that 

more cellulose was degraded in the ageing process and thus forming more chromophores.   

The xylan contained ketones, the furan-type and aromatic compounds. Upon brightness reversion 

of xylan, the identified chromophores’ percentage increased showing that the chromophores 

produced by xylan are promoted by heat ageing. This also implies that some of the chromophores 

in DWP that originate from the residual xylan (hemicellulose) increase when the heating 

conditions are employed during pulp processing and contribute to pulp discolouration.  

Among the six sugar monomers analysed, the xylose was the only sugar that contained 

chromophoric compounds, the furan-type compounds were identified in xylose. The cellulose-rich 

materials contained the ketones and the furan-type chromophores; no aromatic compounds were 

identified in these samples, indicating the absence of lignin.  

The chromophore analysis of lignin was undertaken through Py-GC/MS analysis of Klason lignin 

samples, obtained by acid hydrolysis of sawdust, and through precipitation from kraft liquor. 
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Although the sources of the Klason lignin were different, both sets of lignin contained over 80% 

of arenes. The furans, ketones and other low molecular weight chromophores were detected in 

minor amounts. Further analysis of the arenes showed that the main constituents of the lignin were 

the phenolic, guaiacol and syringyl type compounds, and other groups of aromatic compounds 

such as alkylated and methoxylated aromatic rings. It was observed that the kraft lignin contained 

a slightly higher amount furans and ketones, compared to the lignin that was isolated from the 

sawdust. The presence of the furans and ketones was associated with hemicelluloses and degraded 

carbohydrates resulting from the kraft pulping process.  

Once the method was developed and tested for reproducibility using selected DWP samples, the 

Py-GC/MS was employed as an effective tool to examine chromophores. Specific sets of samples 

(industry and laboratory produced pulps) were used to achieve the aim of the study that was to 

develop a novel and rapid methodology for efficient identification of chromophores directly in 

DWP fibres.  

Firstly, using the Py-GC/MS, residual chromophores were analysed in a set of industrially 

produced fully bleached DWPs, with known brightness and yellowness, collected from various 

pulp producing mills across the world. The effect of heat induced brightness reversion was 

observed by a decrease in brightness, an increase in yellowness and finally, an increase of the 

chromophore content in all the fully bleached DWP samples analysed. In each of the fully 

bleached DWP samples, the chromophores increased after brightness reversion. However, the 

inter-sample comparison showed that the changes of the chromophore content of the pulps were 

not consistent with the changes in brightness and yellowness, and this was attributed to the 

differences in the processing conditions. It was established that the major classes of chromophores 

found in fully bleached were the conjugated ketones and furan-type chromophores. Arenes and 

other low molecular weight chromophores were found in low amounts.  

Further analysis of fully bleached pulps was undertaken by investigating the effect of 

derivatization on the formation of chromophores. Fully bleached DWP with corresponding 

microcrystalline cellulose (MCCs) were analysed for chromophore content. It was evident that 

some of the chromophores were diminished during derivatization since the MCC samples had a 

lower chromophore content than the parent pulp samples. However, the brightness of the MCC 

samples was lower than the brightness of the original DPWs, hence, it was expected that the 

chromophore content of the MCC would be higher.  Findings from this part of the study confirmed 

that there was no relationship between the pulp brightness and the chromophore content. 

Secondly, the effect of each of the process steps in the formation of chromophores, during the 

production of DWP, was investigated through the analysis of pulps collected at various processing 
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stages (in-process pulp). Industrially produced in-process DWPs and laboratory produced in-

process DWPs were subjected to wet chemistry analysis to understand the effect of the processing 

steps in the pulp components and the formation of chromophores. Even though the composition 

of the industrial and laboratory pulps was different, the results showed that the hemicelluloses and 

the degraded cellulose/short chain glucan were the chief contributing factors in the formation of 

chromophores in the in-process and fully bleached pulps.  

Newsprints samples were analysed before and after brightness reversion, findings showed that 

they mainly contained lignin because the analysed samples contained at least 35% of the aromatic 

compounds, the furans and ketones were found in amounts less than 10%. The effect of heat 

induced brightness reversion of the newsprints was also accompanied by an increase of the 

chromophores identified before brightness reversion. Unlike DWP, it is known that newsprints 

contain more lignin than cellulose. Hence, this component of the study revealed the ability of the 

PY-GC/MS technique to distinguish between cellulose rich materials and lignin-rich materials.  

Unbleached and bleached kraft pulps were also analysed for chromophore content. The fully 

bleached kraft pulps were subjected to brightness reversion. Like fully bleached DWP, the 

unbleached and bleached kraft pulps contained a deficient percentage of the aromatic compounds. 

The heat induced brightness reversion also resulted in an increased total chromophore content of 

the fully bleached kraft pulps.  

The use of Py-GC/MS to identify chromophores in DWP has shown the following advantages:  

 It allows for identification of a wide range of chromophore classes even at minor amounts. 

Chromophores identified were grouped into furans, ketones, arenes and other low 

molecular weight chromophores.  

 It is the most efficient method for chromophore identification in DWP reported thus far. 

 It does not involve pre-extraction and laborious sample preparation.  

From this study, it can be deduced that the Py-GC/MS has enabled the identification of residual 

chromophores and it is evident that the amount of chromophores is affected by ageing and the 

bleaching chemicals.  Further studies through wet chemical analysis showed that the chromophore 

content was also affected by the hemicelluloses and the degraded carbohydrates. It was evident 

that there was no correlation between the brightness or yellowness and chromophores in the pulp 

when a range of similar samples was compared. However, within individual samples, the 

brightness decreased with an increase in the chromophore content. This was attributed to the 

differences in the processing conditions and the lack of homogeneity within a given set of samples.  
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Results from this study will allow researchers to focus specifically on the control of the furans, 

ketones, arenes and other low molecular weight chromophores. Since it was shown that the main 

contributors to the formation of chromophores in DWP were the hemicelluloses and degraded 

cellulose, future studies should focus on the removal of the recalcitrant hemicellulose and the 

stabilisation of cellulose to avoid degradative reactions to reduce chromophore formation from 

these substances. Py-GC/MS analysis of chemically pure cellulose, i.e. bacterial cellulose, will be 

beneficial regarding understanding the pyrolysis products of the cellulose without any interference 

from the bleaching chemicals.  


