
Global Embeddings of
Pseudo-Riemannian Spaces

by

Jothi Moodley

Submitted in fulfilment of the

requirements for the degree of

Master of Science

in the

School of Mathematical Sciences

University of KwaZulu-Natal

Durban

December 2007

As the candidate’s supervisor I have approved this dissertation for submission.

Signed: Name: Date:



Abstract

Motivated by various higher dimensional theories in high-energy-physics and cosmol-

ogy, we consider the local and global isometric embeddings of pseudo-Riemannian

manifolds into manifolds of higher dimensions. We provide the necessary background

in general relativity, topology and differential geometry, and present the technique for

local isometric embeddings. Since an understanding of the local results is key to the

development of global embeddings, we review some local existence theorems for gen-

eral pseudo-Riemannian embedding spaces. In order to gain insight we recapitulate

the formalism required to embed static spherically symmetric space-times into five-

dimensional Einstein spaces, and explicitly treat some special cases, obtaining local

and isometric embeddings for the Reissner-Nordström space-time, as well as the null

geometry of the global monopole metric. We also comment on existence theorems for

Euclidean embedding spaces. In a recent result, it is claimed (Katzourakis 2005a) that

any analytic n-dimensional space M may be globally embedded into an Einstein space

M × F (F an analytic real-valued one-dimensional field). As a corollary, it is claimed

that all product spaces are Einsteinian. We demonstrate that this construction for the

embedding space is in fact limited to particular types of embedded spaces. We analyze

this particular construction for global embeddings into Einstein spaces, uncovering a

crucial misunderstanding with regard to the form of the local embedding. We eluci-

date the impact of this misapprehension on the subsequent proof, and amend the given

construction so that it applies to all embedded spaces as well as to embedding spaces

of arbitrary curvature. This study is presented as new theorems.
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Chapter 1

Introduction

Within the past century the study of higher dimensions has become a popular and

interesting topic. It featured in the 1920’s in the theories of Kaluza (1921) and Klein

(1926) which attempt to unify general relativity and electromagnetism. More recently

it has occurred in high-energy physics – c.f. string theory (Green et al. 1987, Vilenkin

and Shellard 1994, Polchinski 1996, Schwarz 2000, Marolf 2004), Horava-Witten theory

(Horava and Witten 1996) and D-brane models (Polchinski 1996, Sarangi and Tye 2002,

Jones et al. 2003) – in the brane-world models of Arkani-Hamed-Dimopoulos-Dvali

(1998, 1999), Randall-Sundrum (1999a, 1999b) and Dvali-Gabadadze-Porrati (2000);

in spacetime-matter theory (Wesson and Overduin 1997, Wesson 1999), and in Gauss-

Bonnet gravity (Dadhich 2004, 2006). String theory emerged as a way to combine

gravity and quantum theory, and posits that fundamental particles of matter are char-

acterized by one-dimensional strings with vibrational patterns (Green et al. 1987). It

gave rise to five superstring theories that each specify ten dimensions for the universe.

The theory of supergravity involves the problem of unifying general relativity and su-

persymmetry. P -branes, objects having length in p dimensions (Green et al. 1987),

were found to be possible solutions in supergravity theory in eleven dimensions. It

was then realized that the five superstring theories and supergravity are just different

representations of an underlying eleven-dimensional theory called M-theory. In Horava-

Witten theory, the dimensionality is reduced to five by compactifying six of the eleven

dimensions. This has led to a great deal of interest in five-dimensional brane-world

models such as those mentioned above. A brane-world is a particular 3-dimensional
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spatial or 4-dimensional space-time hypersurface embedded into a higher dimensional

space, referred to as the bulk, where gravity propagates freely. Randall and Sundrum

(1999a,b) considered a four-dimensional Riemannian space-time (the brane) embedded

in a five-dimensional Anti-de Sitter bulk (AdS(5)) where the cosmological constant is

negative. Dvali et al. (2000) presented a model in which 4-dimensional Newtonian

gravity emerges on a 3-dimensional brane embedded in 5-dimensional Minkowski space

where the extra dimension is infinite. In spacetime-matter theory (Wesson and Over-

duin 1997, Wesson 1999), matter is described as arising from higher dimensional effects.

One of the most recent developments is Gauss-Bonnet theory (c.f. for instance, Dad-

hich 2004, 2006), which requires a higher-dimensional view of gravity and is based on

the notion that gravity is self-interactive. It involves higher order derivatives of the

metric than those used in general relativity, in order to encapsulate the next iteration

of self-gravity. The new five-dimensional field equations reduce to the usual field equa-

tions of general relativity in four dimensions. All higher-dimensional theories require

the understanding of how to embed one manifold into a higher dimensional manifold,

and so motivate the study of embedding theory.

The subject of embeddings is historically rooted in a purely geometrical perspective:

in exploring pseudo-Riemannian spaces mathematicians debated the “intrinsic” versus

“extrinsic” (i.e. embedded) properties of these spaces. Here, the embedding space was

usually taken to be Euclidean (Rn). Global and local isometric embeddings into Eu-

clidean spaces have been studied extensively in differential geometry (see, for example,

Janet 1926, Cartan 1927, Friedman 1961, Nash 1954, 1956, Clarke 1970, Greene 1970,

Greene and Jacobowitz 1971, Gunther 1989, 1991), with the first global result estab-

lished by Nash in the 1950’s. In all these cases, the embedding codimension is typically

large (Stephani et al. 2003). The Campbell-Magaard theorem (Campbell 1926, Mag-

aard 1963) provided the first local embedding result into a pseudo-Riemannian space

that has a particular non-zero curvature tensor, and the codimension is reduced drasti-

cally to one. Other local results concerning pseudo-Riemannian embedding spaces with

codimension one have been obtained in recent years (Anderson and Lidsey 2001, Dahia

and Romero 2002a,b, Anderson et al. 2003). So, it seems that introducing curvature

in the bulk helps in the reduction of the local codimension, and one might ask whether
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this also holds true globally. In the context of renewed interest in higher dimensional

theories with non-compactified extra dimensions, this problem has become important

to high-energy physics and cosmology, since the relevant natural and/or toy models

are not necessarily posited in a local language (Moodley and Amery 2007). This has

raised concerns as to the utility of the local results as a protective theorem for higher

dimensional gravity models – see reference (Anderson 2004) where it is argued that the

embedding space is not guaranteed to be well behaved with respect to physical prop-

erties such as stability and causality. We refer the reader to Wesson (2005) and Dahia

and Romero (2005a,b) for responses to that paper. We also discuss this in §3.3. Global

embeddings can provide insight on this issue through explicit constructions relating

the local and global geometries of the bulk.

A recent theorem given by Katzourakis (2005a) claims that the Campbell-Magaard-

Dahia-Romero theorem for embedding into Einstein spaces can be made global, and his

subsequent papers (Katzourakis 2005b,c,d) build upon this result . However, it seems

that this result holds only for Ricci-flat embedding spaces (Anderson 2004, Wesson

2005), and careful analysis of the theorem reveals that there has been a crucial mis-

understanding of the local Einstein embedding result by Dahia and Romero (2002b):

it is assumed that the local embedding space always has the form M × F where M is

the embedded space and F is a one-dimensional analytic manifold, but this can only

be true if M is Ricci-flat. Thus, as it is written, Katzourakis’s result is limited since it

does not apply to all embedded spaces. We focus on this problem and aim to correct

and improve on Katzourakis’s proof.

In order to pursue this study of embeddings we require a full understanding of the

mathematics underlying it. So, we begin in Chapter 2 with a review of the necessary

material in general relativity and topology. In Section 2.2 we provide a review of

concepts in topology that are pertinent to this research. We discuss basic differential

geometry in Section 2.3, in particular the Riemann tensor, Ricci tensor and the field

equations. Curvature is an important property of a manifold and so we introduce the

notions of extrinsic and intrinsic curvature in Section 2.4. In Section 2.5 we consider

four-dimensional static spherically symmetric (SSS) space-times, and we present the

form for the metric and calculate the components of the Ricci tensor in Section 2.5.1.
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We choose to embed the Reissner-Nordström (Reissner 1916, Nordström 1918) and

global monopole (Barriola and Vilenkin 1989) space-times which we discuss in Section

2.5.2 and Section 2.5.3, respectively. Both these metrics are significant in astrophysics

and early universe cosmology. They occur as limiting cases for the black hole solutions

in the brane-world scenario (Dadhich et al. 2000) and in Einstein-Gauss-Bonnet gravity

(Maeda and Dadhich 2006). In Section 2.6 we provide definitions for global and local

isometric embeddings of metric spaces, and in Section 2.7 we present the Cauchy-

Kowalewski theorem, which is useful in proving local existence results.

Before proceeding to construct global embeddings, one needs to understand the

local theory. As we just mentioned, misunderstandings of the local results can have an

impact on global constructions. Since causality implies that all physics is local, local

embeddings are interesting in their own right (c.f. Amery et al. 2007, Dadhich 2007).

So, in Chapter 3, we focus on local isometric embeddings. Firstly, in Section 3.2 we

outline the Gauss, Codazzi and Ricci equations that govern an embedding such that

the image of the embedded space coincides with a hypersurface in the bulk, implying

that co-ordinates in the embedded space are “adapted” to the embedding. We review

some local existence results for pseudo-Riemannian and Euclidean embedding spaces

in Section 3.3. In Section 3.4 we concentrate on particular results given by Dahia and

Romero (2002a,b) for an Einstein space and a pseudo-Riemannian space with a non-

degenerate Ricci tensor which is equal, up to a local analytic diffeomorphism, to the

Ricci tensor of an arbitrarily given pseudo-Riemannian manifold. We summarise these

proofs since they are pertinent to the construction of global embeddings. Now the em-

bedding equations are not easily solvable even with specific choices, and a knowledge

of a space-time’s Killing geometry and the concept of the “rigidity” of a manifold’s em-

bedding can be useful, so we discuss these notions in Section 3.5. Then we proceed to

discuss the formalism for the local isometric embedding of static spherically symmetric

space-times into five-dimensional Einstein spaces in Section 3.6. Einstein spaces are

common in high-energy physics – c.f. type IIA super-gravity (Howe et al. 1998, Lavri-

nenko et al. 1998), Wesson’s “space-time-matter theory” (Wesson and Overduin 1997,

Wesson 1999), the Randall-Sundrum (1999a, 1999b) brane-world scenarios, and Gauss-

Bonnet gravity (Dadhich 2004, 2006). We also discuss the nature of four-dimensional
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space-times that may be embedded into spaces of constant curvature. As examples,

we apply the procedure to the Reissner-Nordström and global monopole space-times in

Section 3.7 and Section 3.8, respectively. The Reissner-Nordström embedding is quite

easily obtained as is that for the global monopole’s null-geometry, but the embedding

equations for the full global monopole space-time remain unsolved. The work contained

in this chapter will be submitted for publication (Amery et al. 2007). The application

of the formalism for local embeddings into SSS space-times to specific examples and the

subsequent analysis are the author’s original contribution to this work, which extends

that of Londal (2005).

In Chapter 4, we proceed to the study of global isometric embeddings. Firstly, in

Section 4.2 we provide some background on global embeddings into pseudo-Euclidean

spaces, and then in Section 4.3 we consider the construction given by Katzourakis

(2005a) for embedding into Einstein spaces. We show that careful analysis of the

theorem indicates that it applies only to Ricci-flat embedding spaces. In Section 4.4

we provide an improvement on the given theorem with comments on the stages of the

proof, and in Section 4.5 we extend it to more general pseudo-Riemannian spaces. We

present this work as two theorems: Theorem 1 pertaining to embeddings into Einstein

spaces, and its immediate generalization, Theorem 2, pertaining to embeddings into

arbitrarily specified pseudo-Riemannian spaces. We also contextualize these theorems

as special cases of appropriate (and new, at least to physicists) theorems pertinent to

metric spaces; and, even more generally, to paracompact manifolds. In Section 4.6 we

discuss the papers (Katzourakis 2005b,c,d) that build upon the initial result, and finally,

in Section 4.7 we provide further comments on embeddings. The work contained in this

chapter will be submitted for publication (Moodley and Amery 2007). The analysis of

Katzourakis’s construction and its improvements are original research carried out by

the author.

In Chapter 5, we summarize the work presented in this dissertation, comment on

future prospects in the field, and note the work that we are currently pursuing.

We consistently adopt the following notational conventions: Roman lower case

indices label the co-ordinates of the embedded space, Roman upper case indices label

its spatial co-ordinates and Greek indices label the co-ordinates of the embedding
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space. We use a tilde to denote quantities pertaining to the embedded space and

an overbar to denote quantities obtained from the n-dimensional component of the

higher-dimensional metric. The expression Ck (k ≥ 1) means k-times continuously

differentiable and C∞ means infinitely continuously differentiable.
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Chapter 2

General Relativity and Topology

2.1 Introduction

Einstein’s theory of general relativity introduces the concept that gravitation is an

effect of the curvature of space-time, the four-dimensional universe that we live in.

Prior to the formulation of this theory, gravity was viewed as a force in the same way

that electromagnetism is a force. Einstein realized that the gravitational attraction

between objects can be observed as the objects’ reaction to the curvature of space-

time. Since then, the theory has developed into an extensive subject and it plays

a key role in the understanding of many aspects of astrophysics and cosmology. It

is, so far, the most successful description of gravity. In this chapter we review the

material in topology and general relativity that will be required in the construction of

embeddings. The theory presented here can be found in texts on topology by Bredon

(1997), Choquet-Bruhat et al. (1982), Munkres (1966) and Szekeres (2004), and in texts

on relativity by Hawking and Ellis (1973), Hobson et al. (2006), Sachs and Wu (1977)

and Stephani (2004). Additional references are cited as applicable. We begin in §2.2

where we review some standard concepts in topology that are relevant to the study of

embeddings. In §2.3 we survey the basic structures in differential geometry. There we

define a metric tensor which gives rise to the connection, the Riemann tensor and the

Ricci tensor. We introduce the Einstein field equations, which are the most important

mathematical expressions of general relativity. The concept of extrinsic curvature is

significant in embedding theory and so we provide a detailed discussion of extrinsic and
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intrinsic curvature in §2.4. In §2.5 we consider static spherically symmetric space-times,

as we shall investigate their embeddings later on. In §2.6 we provide definitions for

global and local isometric embeddings of metric spaces, and finally, in §2.7 we present

the Cauchy-Kowalewski theorem, which is useful in proving local existence results.

2.2 Topology

Definition 1. A n-dimensional Ck (C∞) differentiable manifold is a second countable

Hausdorff space Mn together with a collection of charts {(Uα, φα)} such that:

1. each chart is a homeomorphism φα : Uα −→ U
′
α ⊂ Rn where Uα is open in Mn

and U
′
α is open in Rn,

2. each x ∈Mn is in the domain of some chart i.e. the Uα cover Mn,

3. for any two charts φ : U −→ Rn and ψ : V −→ Rn, “the change of co-ordinates”

φ ◦ ψ−1 : ψ(U ∩ V ) −→ φ(U ∩ V ) is Ck (C∞), and

4. the collection of charts is maximal.

Hausdorffness means that, for any two points x 6= y in the manifold, there are disjoint

open sets A and B such that x ∈ A and y ∈ B. We define co-ordinates for a point

p ∈ Uα ⊆Mn by

xa = ua ◦ φα : Uα −→ R, a = 1, . . . , n,

where ua : Rn −→ R.

Consider a topological space M and its cover V . A cover U of M is a refinement

of V if each element in U is a subset of some element in V . The cover U is said to

be locally finite if each point p ∈ M has a neighbourhood which meets, nontrivially,

only a finite number of members of U . The space M is paracompact if any open cover

of M has an open locally finite refinement. It is well known that all metric spaces

are paracompact. A fundamental theorem of dimension theory states that if M is a

n-dimensional manifold, then every open cover V of M has a refinement U such that
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no point of M lies in more than (n + 1) elements of U (Hurewicz and Wallman 1948,

Munkres 1966). The reader is also referred to Pears (1975).

A partition of unity subordinate to a locally finite open cover {Vi} of a manifold M

consists of a family of differentiable functions gi : M −→ R such that (Szekeres 2004)

(1) 0 ≤ gi ≤ 1 on M for all i,

(2) gi(p) = 0 for all p /∈ Vi,

(3)
∑
i

gi(p) = 1 for all p ∈M .

It provides a way to “glue” together results obtained for each patch of a manifold. For

every locally finite cover {Vi} of a paracompact manifold M , there exists a partition

of unity {gi} subordinate to this refinement. It is possible to relax the third condition:

for a paracompact manifold E with a locally finite cover W , there exists a “partition

of something” subordinate to this cover. This is fairly standard topology (Choquet-

Bruhat et al. 1982, Szekeres 2004). We follow the explicit construction of Katzourakis

(2005a) which leaves the partition of unity unnormalized. We shall (in §4.4.2) be

particularly interested in the case in which W is obtained from another locally finite

cover Q by taking N copies of each patch of Q, differentiated by means of different

co-ordinates.

Statement. There exists a family {fia} of C∞ non-negative “Bell” functions on E,

with properties:

fia ∈ C∞(E −→ R ∩ [0,+∞)),

supp(fia) ⊆ Wia , ∀ [Wi] ∈ W ,∑
ia∈J

1≤a≤N

fia(p) > 0,∀ p ∈ E ,

and such that the fia’s are real analytic within the set that they are strictly positive

{p ∈ E | fia(p) > 0} ≡ {fia > 0},

(which is open and coincides with int(supp(fia)) ≡
◦

̂supp(fia)):
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fia|{fia>0} = fia| ◦
̂supp(fia )

∈ C∞(E ∩ {fia > 0} −→ R ∩ (0,+∞)).

Proof:

Consider the C∞ non-negative function on Rn+1 :

f ∈ C∞(Rn+1 −→ [0,+∞))

f(x) :=


exp

(
1

‖x‖2−r2

)
, for ‖x‖ < r

0, for ‖x‖ ≥ r,

where r > 0 and which satisfies:

{f > 0} ≡ {x ∈ Rn+1 | f(x) > 0} = B(0, r) $ supp(f)

and

supp(f) = B(0, r).

Here, B(0, r) is a “ball” of radius r. The function f is real analytic in the interior of

its support as it is a composition of analytic functions, and so we have

f |{f>0} = f |B(0,r) ∈ C∞(B(0, r) −→ R).

By the Analytic Continuation Principle (Narasimhan 1968), f can never be analytic

outside of B(0, r), provided that (Da1+···+asf)(x)|x→∂ B(0,r) = 0 ∀ (a1, . . . , as) ∈ Ns.

Now consider the cover W and a refinement WB to the inverse ball located in

the intersection of the images of the N co-ordinate maps for each N -element class of

patches. Following the construction in Rn+1 define a family of smooth real functions

on E :

fia ∈ C∞(E −→ R ∩ [0,+∞)), ∀ ia ∈ J, a = 1, . . . , N
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fia(p) :=


exp

(
1

‖χ(i1)(p)‖2−r2
i

)
, ∀ p ∈ χ−1

(i1)(B(0, ri)) ⊆ Wia

0, ∀ p ∈ E \ χ−1
(i1)(B(0, ri)).

(2.2.1)

Here

{fia > 0} ≡ {p ∈ E | fia(p) > 0} = χ−1
(i1)(B(0, ri)),

supp(fia) = χ−1
(i1)(B(0, r)) ⊆ Wia

and

int(supp(fia)) = χ−1
(i1)(B(0, ri)),

which are consistent with the Rn+1 scenario. Note that
∑
fia(p) > 0. Since fia is

defined on the real analytic manifold E and is a composition of analytic functions, it

is itself real analytic within the interior of its support, and so we have

fia|{fia>0} = fia| χ−1
(i1)

(B(0,ri))
∈ C∞(χ−1

(i1)(B(0, ri)) −→ R).

Note that the supports of the fia ’s (as well as their interior) form a locally finite cover

of E :

⋃
ia∈J

1≤a≤N

supp(fia) =
⋃
ia∈J

1≤a≤N

{fia > 0} = E .

Hence, the statement is proved.

2.3 Differential Geometry

A n-dimensional differentiable manifold M (or Mn) is essentially a topological space

that locally resembles Rn, n-dimensional Euclidean space, and on which points can be

assigned the real co-ordinates (x1, x2, . . . , xn). (We formally defined the concept of a

differentiable manifold in §2.2.) A submanifold of M with m dimensions (m < n) is

characterized by the parametric equations
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xa = xa(u1, u2, . . . , um) a = 1, 2, . . . , n.

In particular, a one-dimensional submanifold is a curve and a (n − 1)-dimensional

submanifold (n ≥ 3) is known as a hypersurface. On a hypersurface the co-ordinates

can be related by the equation

h(x1, x2, . . . , xn) = 0.

Consider two points in the manifold whose co-ordinates differ by an infinitesimal

amount dxa. We define the line element that is a measure of the infinitesimal dis-

tance ds between the neighbouring points by the relation

ds2 = f(xa, dxa).

We also refer to the above relation as the metric. The distance ds2 is invariant since

it remains unchanged under a transformation of co-ordinates. In general relativity we

are concerned with pseudo-Riemannian metric spaces, where the metric is expressed

in the form

ds2 = gab(x
c)dxadxb,

and where gab are the components of the metric tensor g. Here ds2 is indefinite since

it can be positive, zero or negative. If ds2 is strictly positive, then the metric space

is called Riemannian. Many results that are applicable to pseudo-Riemannian spaces

hold for Riemannian spaces also, and conversely. In this dissertation, we consistently

discuss only pseudo-Riemannian spaces, but note that the existence results for local

isometric embeddings (and hence the global isometric embeddings) under discussion

are equally applicable to a Riemannian context (Goenner 1980). The metric tensor g

is a linear map of two vectors into their inner product:

g(u,v) = u · v, u,v ∈ TpM.

It describes the local geometry of the manifold and is a second-rank covariant tensor

having the following properties:

12



(1) gab is symmetric i.e. gab = gba.

(2)

gabg
bc = δc

a =

1 if c = a,

0 if c 6= a.

δc
a is known as the Kronecker tensor.

(3) it can be used to raise or lower indices of tensors

e.g. ua = gabu
b, ua = gabub.

Note that we employ Einstein’s summation convention: for an index that appears as a

superscript and a subscript in a term, one must sum over the index from 1 to n. For

example, δr
r = 1 when r is a fixed co-ordinate, but, in general, δa

a = δ1
1+δ2

2+· · ·+δn
n = n.

The functions gab can be written in matrix form as:

G =


g11 g12 · · · g1n

g21 g22 · · · g2n

...
...

. . .
...

gn1 gn2 · · · gnn

 .

The rank of the metric is the number of independent rows of G and the signature of

the metric is defined as the number of positive eigenvalues of G minus the number of

negative eigenvalues of G. The space-time of general relativity is a four-dimensional

manifold endowed with a metric of signature 2 (also given as (− + ++)). The de-

terminant of the metric tensor is denoted by |gab| and is given by the determinant of

G.

A pseudo-Euclidean space (Rn) is one which has a metric of the form

ds2 = ε1(dx
1)2 + · · ·+ εa(dx

a)2 + · · ·+ εn(dxn)2

where εa = ±1. If εa = 1 for all a, then the space is Euclidean. The Minkowski

space-time ds2 = −dt2 +dx2 +dy2 +dz2 of special relativity is an example of a pseudo-

Euclidean space. We sometimes denote a m-dimensional pseudo-Euclidean space, with
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metric having p positive eigenvalues and q negative eigenvalues, by Rm(p, q) where

m = p+ q.

The fundamental theorem of Riemannian geometry states that there exists a unique

symmetric connection which preserves inner products under parallel transport. This

connection is given by

Γa
bc =

1

2
gad(gcd,b + gdb,c − gbc,d), (2.3.1)

and is referred to as the Christoffel symbol of the second kind. The Christoffel symbol

of the first kind is Γabc = 1
2
(gac,b +gba,c−gbc,a). Both symbols are symmetric: Γa

bc = Γa
cb

and Γabc = Γacb.

The connection (2.3.1) can be used to define the covariant derivative on a manifold.

The covariant derivative of a type (r, s) tensor T is a type (r, s+ 1) tensor ∇T and its

components are:

T a1...ar

b1...bs;d
=T a1...ar

b1...bs,d

+ Γa1
cdT

ca2...ar

b1...bs
+ ...+ Γar

cdT
a1...c

b1...bs

− Γc
b1dT

a1...ar

cb2...bs
− ...− Γc

bsdT
a1...ar

b1...c,

(Here the comma represents partial differentiation with respect to one of the co-

ordinates xa.) Now, in general, the partial derivative of a tensor is not a tensor since

taking the difference of tensors at two different points does not produce a tensor. So,

in forming the covariant derivative, one “parallel transports” the tensor from one point

to the other and then obtains the difference in the same way as the partial derivative.

This differentiation is linear, satisfies a Leibniz rule

∇(U⊗V) = (∇U)⊗V + U⊗ (∇V),

and commutes with contraction. The covariant derivative of a scalar is equal to its

partial derivative. It can be easily shown that the covariant derivative of a metric

tensor vanishes i.e. gab;c = 0.

A geodesic in a manifold is a curve along which all the tangent vectors point in

the same direction. It is also the curve of minimum length between two points in the
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manifold. Geodesics on a pseudo-Riemannian manifold can be space-like, null or time-

like, which corresponds to ds2 > 0, ds2 = 0, or ds2 < 0, respectively. Photons and free

particles travel along null and non-null geodesics, respectively. For a metric space M

with p ∈M , the exponential map

exp : TpM −→M

maps the line tX, where t ∈ R and X is a tangent vector at p, into the geodesic curve

through p (Choquet-Bruhat et al. 1982). This function is particularly useful in defining

local geodesic (or normal) co-ordinates on a metric space.

The Lie derivative of a type (r, s) tensor T with respect to a vector field X is a

type (r, s) tensor LXT and its components are (Hawking and Ellis 1973):

LXT
a1...ar

b1...bs
=T a1...ar

b1...bs,cX
c

− T ca2...ar

b1...bs
Xa1

,c − ...− T a1...c
b1...bs

Xar
,c

+ T a1...ar

cb2...bs
Xc

,b1
+ ...+ T a1...ar

b1...cX
c
,bs
.

This derivative determines the change in a tensor from one point in the direction of

the vector field X to a nearby point. It provides a way to transport tensors along the

integral curves of X. Again, this differentiation is linear, satisfies a Leibniz rule

LX(S⊗T) = LXS⊗T + S⊗ LXT,

and preserves contractions. The Lie derivative is significant in the study of the sym-

metries of a space-time – see §3.5.

From the noncommutivity of covariant differentiation we derive a measure of cur-

vature:

V a
;cd − V a

;dc = Ra
bcdV

b, and Vb;dc − Vb;cd = Ra
bcdVa,

where

Ra
bcd = Γa

bc,d − Γa
bd,c + Γa

edΓ
e
bc − Γa

ecΓ
e
bd, (2.3.2)
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is the curvature tensor or Riemann tensor of the second kind. The Riemann tensor of

the first kind is given by

Rabcd = gaeR
e
bcd = Γabc,d − Γabd,c + ΓafdΓ

f
bc − ΓafcΓ

f
bd.

We may substitute for Γabc in Rabcd to obtain an alternative expression

Rabcd =
1

2
(gad,bc + gbc,ad − gac,bd − gbd,ac) + Γe

adΓebc − Γe
acΓebd.

The Riemann tensor has a high degree of symmetry. Rabcd is antisymmetric on first and

second pairs (i.e. Rabcd = −Rbacd and Rabcd = −Rabdc), symmetric on pair exchange

(i.e. Rabcd = Rcdab) and also satisfies the cyclic identity Rabcd + Radbc + Racdb = 0.

Furthermore, the covariant derivative Ra
bcd;e satisfies the Bianchi identity Ra

bcd;e +

Ra
bde;c +Ra

bec;d = 0.

The symmetric Ricci tensor Rab is obtained by the contraction Rab = Rd
abd. The

full expression is

Rab = Γd
ab,d − Γd

ad,b + Γd
edΓ

e
ab − Γd

ebΓ
e
ad. (2.3.3)

The Ricci scalar is given by

R = Rb
b = gabRab.

The connection coefficient, Riemann tensor and Ricci tensor describe the curvature of

a manifold – see §2.4.

The curvature tensor Rab
cd can be written in the form (Stephani 2004)

Rab
cd = Cab

cd +
1

2
(ga

cR
b
d + gb

dR
a
c − gb

cR
a
d − ga

dR
b
c)

− 1

6
R(ga

c g
b
d − ga

dg
b
c), (2.3.4)

where Cab
cd is the Weyl tensor or conformal curvature tensor. It is the conformally

invariant part of the Riemann curvature tensor and is traceless i.e. Cab
ad = 0.

A conformal transformation takes the metric g to the metric
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ĝ = ∆g, (2.3.5)

where ∆ is a function of xi. We say that the two spaces with metrics g and ĝ are

conformally related. This mapping induces the following change in the Ricci tensor

and scalar:

R̂ab = Rab −
1

2
(2ϕa;b − ϕaϕb + gabϕ

cϕc + gabϕ
c
;c), (2.3.6)

R̂ = ∆−1(R− 3ϕc
;c −

3

2
ϕcϕ

c), (2.3.7)

where ϕc = (ln ∆) ,c. However, the Weyl tensor remains unchanged. Conformal trans-

formations preserve the geometry of null geodesics and so can be used to study the

causal structure of a space-time.

In his theory of general relativity, Einstein postulated the field equations

Gab = Rab − 1

2
Rgab = κT ab + Λgab, (2.3.8)

that relate space-time geometry with matter and energy. Here, T ab is the energy-

momentum or matter tensor, Λ is the cosmological constant and κ = 8πG
c4

is the coupling

constant which is usually set to 1 for convenience. Note that c is the speed of light

which we take to be one in this thesis. Gab is called the Einstein tensor and has

vanishing divergence, which implies energy-momentum conservation T ab
;b = 0. For a

4-dimensional space-time with no cosmological constant, contracting (2.3.8) implies

that

R = −κT.

The field equations (2.3.8) are known as Einstein’s field equations and may be solved

to yield space-time metrics. The field equations are non-linear and cannot always

be solved completely to yield exact solutions. The energy-momentum tensor is often

modelled as a fluid:

T ab =
(
µ+

p

c2

)
uaub + pgab + qaua + qbua + πab, (2.3.9)
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where p is the isotropic pressure, µ is the energy density, qa is the heat flux vector

(qaua = 0) and πab is the anisotropic pressure tensor with πabua = 0 = πa
a. The

comoving fluid four-velocity u is unit and timelike, and so uaua = −c2 for a space with

metric signature (− + ++). For a perfect fluid, πab = 0 and qa = 0 so that (2.3.9)

becomes

T ab =
(
µ+

p

c2

)
uaub + pgab. (2.3.10)

In an empty space (i.e. a vacuum) T ab = 0.

We are particularly interested in Einstein spaces and spaces of constant curvature.

In a n-dimensional Einstein space, the Ricci tensor has the form

Rab =
2Λ

2− n
gab,

where Λ is the cosmological constant, and the Ricci scalar is

R =
2nΛ

2− n
.

The Einstein tensor is Gab = Λgab and so Einstein spaces are empty. The case Λ = 0

corresponds to a Ricci-flat space Rab = 0 = R. In a n-dimensional space of constant

curvature, the Riemann tensor is given by

Rabcd =
R

n(n− 1)
(gacgbd − gadgbc),

where the Ricci scalar R is a constant. The term R
n(n−1)

= εK−2 is defined as the

Gaussian curvature (Stephani 2004). The Ricci and Einstein tensors become

Rab =
R

n
gab, and Gab =

2− n

2n
Rgab.

Spaces of negative constant curvature are known as Anti-de Sitter spaces, and those

with positive constant curvature as de Sitter spaces. This corresponds to Λ < 0 and

Λ > 0, respectively.
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2.4 Extrinsic and Intrinsic Curvature

The concept of curvature of a manifold is significant in general relativity and it can

be perceived in two complementary ways, as intrinsic and extrinsic curvature. The

intrinsic curvature of a manifold is confined to the manifold itself, whereas the extrin-

sic curvature of a manifold is dependent on how it is embedded in a higher dimen-

sional space. Thus, in embedding one space into another, the extrinsic curvature will

provide a description of the embedded space in relation to the embedding space. A

mathematical approach to determining the curvature of a manifold is to consider the

Christoffel symbol and the Riemann tensor defined in §2.3. The Riemann tensor is a

measure of intrinsic curvature, and a manifold is said to be intrinsically flat if Ra
bcd

vanishes. Extrinsic curvature can be expressed in terms of the connection Γa
bc. As an

example (Stephani 2004), the extrinsic curvature of a three-dimensional space in a four-

dimensional space-time with metric ds2 = −φ2dt2 +gABdx
AdxB, where φ = φ(t, x, y, z)

and A and B label spatial co-ordinates, is given by

ΩAB ≡ − 1

2φ

∂gAB

∂t
= −φΓ0

AB.

Pseudo-Euclidean spaces are intrinsically and extrinsically flat. If a seemingly curved

space can be transformed into a pseudo-Euclidean space globally, then the space must

be intrinsically flat. To develop intuition, consider a cylinder with open ends whose

surface is represented in cylindrical co-ordinates (z, φ) by

ds2 = dz2 + r2dφ2,

where r is the radius. By making the co-ordinate transformation x = z, y = rφ, the

metric can be written as the 2-dimensional Euclidean metric

ds2 = dx2 + dy2.

This indicates that the surface of the cylinder is intrinsically flat, but it appears curved

in 3-dimensional space. Its extrinsic curvature in the embedding space ds2 = dz2 +

r2dφ2 + dr2 has the non-zero component
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Ωφφ = −r.

In a more physical sense, we observe that the cylinder can be built from a flat sheet

without any distortion. This cannot be done for a spherical surface, which is both

extrinsically and intrinsically curved. These notions of curvature play a key role in

the embedding equations with the extrinsic curvature providing a geometrical relation

between the embedded and embedding spaces – see §3.2.

2.5 Static Spherically Symmetric Space-times

We consider four-dimensional space-times that are static and spherically symmetric

(SSS). We use the co-ordinates (t, r, θ, φ) where t is time-like and (r, θ, φ) are spherical

co-ordinates. The term “static” means that the metric components do not depend on

t and that the metric remains unchanged under the transformation t→ −t (Hobson et

al. 2006). The property of being spherically symmetric implies that the space appears

the same in all directions i.e. is isotropic.

2.5.1 General Space-time

The metric for a SSS space-time is given by

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (2.5.1)

where ν and λ are functions of r. The non-zero Christoffel symbols (2.3.1) calculated

from the metric are:

Γ0
01 = ν ′, Γ1

00 = ν ′e2(ν−λ), Γ1
11 = λ′,

Γ1
22 = −re−2λ, Γ1

33 = −r sin2 θ e−2λ, Γ2
12 = 1/r, (2.5.2)

Γ2
33 = − sin θ cos θ, Γ3

13 = 1/r, Γ3
23 = cot θ.
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Here the prime denotes differentiation with respect to r. The non-vanishing compo-

nents of the Ricci tensor (2.3.3) are given by

R00 = −e2(ν−λ)(−ν ′2 − ν ′′ + ν ′λ′ − 2

r
ν ′),

R11 = −ν ′2 − ν ′′ + ν ′λ′ +
2

r
λ′,

(2.5.3)

R22 = 1− e−2λ − re−2λν ′ + re−2λλ′,

R33 = R22 sin2 θ,

and so the Ricci scalar is a function of r only.

2.5.2 Reissner-Nordström Space-time

The Reissner-Nordström metric (Reissner 1916, Nordström 1918) is given by

ds2 = −
(

1− 2m

r
+
e2

r2

)
dt2 +

dr2

1− 2m
r

+ e2

r2

+ r2(dθ2 + sin2θdφ2), (2.5.4)

which is of the form (2.5.1) with ν(r) = 1
2
ln(1− 2m

r
+ e2

r2 ) and λ(r) = −1
2
ln(1− 2m

r
+ e2

r2 ).

It describes the exterior of a charged non-rotating black hole where m and e represent

the mass and electric charge of the black hole, respectively, and m > 0. The metric is

an asymptotically flat solution to the Einstein-Maxwell equations, and by setting the

charge as zero, we recover the Schwarzschild exterior solution.

The Reissner-Nordström metric has a singularity at r = 0. Now, we may rewrite

(1− 2m
r

+ e2

r2 ) as

(r −m)2 − (m2 − e2)

r2
.

For m2 < e2, the above expression is always positive and so the singularity at r = 0 is

naked. For e2 < m2, we obtain

21



(
1− 2m

r
+
e2

r2

)
=

(r −m+
√
m2 − e2)(r −m−

√
m2 − e2)

r2
.

which indicates that there are two more singularities at r− = m −
√
m2 − e2 and

r+ = m+
√
m2 − e2. These singularities occur as event horizons and may be removed

by a co-ordinate transformation and an extension of the manifold to obtain a maximal

analytic manifold (Graves and Brill 1960, Carter 1966).

Black holes with electric charge are not physically significant since neutralizing

plasma in their surroundings would prevent them from admitting such charge. The

embedding of black holes in higher dimensional theories can provide more physically

reasonable solutions.

A metric identical to the Reissner-Nordström metric was obtained by Dadhich et al.

(2000) as an exact solution to the Einstein field equations for a black hole localized on

the brane in the Randall-Sundrum type scenario, but instead of an electric charge, there

is a tidal charge represented by q. This tidal charge is interpreted as gravitational field

effects in the five-dimensional bulk projected onto the brane, where matter is confined.

The bulk Weyl tensor transmits these effects onto the brane. Since the Weyl tensor

is assumed non-zero, the solution cannot be conformal to 5-dimensional Anti-de Sitter

space-time. Note that the condition of Z2-symmetry is imposed in the bulk since

one expects no flow through the brane. For q ≥ 0, this black hole solution has two

horizons analogous to that of the Reissner-Nordström solution, and both horizons lie

inside the Schwarzschild horizon. For q < 0, there is only one horizon that lies outside

the Schwarzschild horizon. In this case the effects of the bulk tend to strengthen the

gravitational field induced on the brane. This result is quite significant since we cannot

have q < 0 for the classical Reissner-Nordström solution but we do have that property

for this solution. Limits on |q| have been obtained from observations, but these limits

are weak since measurements deal with mostly weak field solar scales. Strong tidal

effects represented by large values of |q| could have implications in the strong-gravity

regime (Chandrasekhar 1983) and in the formation of primordial black holes (Dadhich

et al. 2000).

Maeda and Dadhich (2006) obtained an exact black hole solution in Einstein-Gauss-

Bonnet gravity that, as r →∞, resembles the Reissner-Nordström solution in Anti-de

22



Sitter space-time. The 5-dimensional bulk is assumed to have the topologyM4×AdS(1).

Apart from the AdS background this solution is equivalent to the Reissner-Nordström

type black hole on the brane (Dadhich et al. 2000) with Weyl charge q < 0.

The non-zero Christoffel symbols obtained for the Reissner-Nordström space-time

(2.5.4) are

Γ0
01 =

(
1− 2m

r
+
e2

r2

)−1(
m

r2
− e2

r3

)
, Γ0

10 = Γ0
01,

Γ1
00 =

(
1− 2m

r
+
e2

r2

)(
m

r2
− e2

r3

)
, Γ1

11 = −Γ0
01,

Γ1
22 = −r

(
1− 2m

r
+
e2

r2

)
, Γ1

33 = −r sin2θ

(
1− 2m

r
+
e2

r2

)
, (2.5.5)

Γ2
12 = Γ2

21 =
1

r
, Γ2

33 = − sin θ cos θ,

Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 = cot θ.

Using the above symbols we compute the components of the Ricci tensor:

R00 =
e2

r4

(
1− 2m

r
+
e2

r2

)
, R11 = −e

2

r4

(
1− 2m

r
+
e2

r2

)−1

,

(2.5.6)

R22 =
e2

r2
, R33 =

e2

r2
sin2θ.

The Ricci scalar is

R = 0.

We shall use this in §3.7 to determine an embedding of the Reissner-Nordström space-

time.
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2.5.3 Global Monopole Space-time

In this section we refer to Barriola and Vilenkin (1989) and Vilenkin and Shellard

(1994). Monopoles are topological defects formed due to spontaneous symmetry break-

ing phenomena in the early universe. Consider a symmetry group G breaking down

to a subgroup H of G. If the vacuum manifold M = G/H contains non-contractible

surfaces, then local and global monopoles arise. A particular instance is when G de-

composes into K × U(1), where the multiply connected group U(1) is associated with

electro-magnetism. The simplest global monopole occurs due to the global symmetry

breaking S0(3) −→ SO(2). A metric describing such a global monopole was obtained

by Barriola and Vilenkin (1989) and is given by

ds2 = −dt2 + dr̄2 + (1− 8πGη2)r̄2(dθ2 + sin2 θdφ2),

which can be transformed by r̄ =
√

1− 8πGη2 r into the SSS form

ds2 = −dt2 +K−1dr2 + r2(dθ2 + sin2 θdφ2), (2.5.7)

with ν = 0 and λ = −1
2
lnK, where K = 1− κη2, κ = 8πG.

The energy-momentum tensor (2.3.9) of the defect has the non-zero components:

T t
t = T r

r = −η
2

r2
,

where η ∼ 1016GeV. Since the gravitational mass density ρg = T 0
0 − T i

i = 0, the

monopole does not exert any gravitational force on the matter around it. However,

the monopole can produce strong gravitational fields due to large amounts of energy

in the scalar field surrounding it. The total energy or mass of the monopole is m =∫ R

0
T t

t r
2dr ≈ 4πη2R, where R is known as the cut-off radius and is usually the distance

to the nearest antimonopole. Global monopoles can therefore act as gravitational lenses

(Vilenkin 1984, Vilenkin and Shellard 1994).

In practice, global monopoles cannot occur in large abundances as their combined

energy densities would dominate and so overclose the universe. Their (non-Gaussian)

density fluctuations must be suppressed in order to maintain consistency with cosmo-

logical observations (Vilenkin and Shellard 1994). This would not be a problem if an
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inflationary period took place after the monopoles were formed, since then it would

lead to a dilution in their number density.

Global monopoles can play a significant role in higher-dimensional theories. The

global monopole space-time in an Anti-de Sitter background appears as the r → 0 limit

of the black hole solution in Einstein-Gauss-Bonnet gravity obtained by Maeda and

Dadhich (2006). It is shown that the singularity at r = 0 is weakened by the presence

of the Gauss-Bonnet term.

We calculate the non-zero Christoffel symbols for the global monopole space-time:

Γ1
22 = −Kr, Γ1

33 = −Kr sin2θ,

Γ2
12 = Γ2

21 =
1

r
, Γ2

33 = − sin θ cos θ, (2.5.8)

Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 = cot θ,

from which we obtain the non-zero components of the Ricci tensor:

R22 = 1−K,

(2.5.9)

R33 = (1−K)sin2θ.

Hence, the Ricci scalar is

R =
2(1−K)

r2
.

The dependence of R on r complicates the construction of a local embedding – refer

to §3.8.

2.6 Embeddings

Definition 2. Let M be a smooth manifold. For any p ∈M , TpM denotes the tangent

space of M at p, and is the vector space of all tangent vectors to M at p. Let f : M −→
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N be a smooth map between two smooth manifolds. At p ∈M , f induces a differential

map f∗ : TpM −→ Tf(p)N given by

(f∗X)(α) ≡ X(α ◦ f),

where X ∈ TpM and α is a real-valued function defined in a neighbourhood of f(p)

(Binney 2000).

Suppose f is a function between two manifolds M and N . f is a homeomorphism if

(1) f is continuous,

(2) its inverse f−1 is continuous, and

(3) f is bijective i.e. is 1− 1 and onto.

Furthermore, f is a Ck (C∞) diffeomorphism if it is a homeomorphism with f and f−1

Ck (C∞) differentiable.

Most of embedding theory involves isometric embeddings of metric spaces into

metric spaces.

Definition 3. Suppose Mn is a n-dimensional analytic manifold with metric gij and

Nn+k is a (n + k)-dimensional analytic manifold with metric g̃µν. Then f : Mn −→

Nn+k is a global isometric embedding (Goenner 1980) if:

(1) f is a homeomorphism onto its image,

(2) f∗ : TpM
n −→ Tf(p)N

n+k is injective (1− 1) ∀ p ∈Mn, and

(3) gp(V,W ) = g̃f(p)(f∗(V ), f∗(W )) ∀ V,W ∈ TpM
n, ∀ p ∈Mn.

The condition (2 ) above means that f is an immersion, and together with (1 ) it defines

an embedding. The last condition further implies that the embedding is isometric at

all points of Mn. The embedding is analytic (Ck, C∞) if f is analytic (Ck, C∞). We

also have that a function f : U ⊂ Mn −→ Nn+k, where U is an open co-ordinated

neighbourhood of a point p, is a local isometric embedding if and only if the above

three conditions hold for all points in U (Goenner 1980). In co-ordinate form, f is a
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local isometric embedding if there exist n+ k differentiable functions yα = σα(xi) such

that the Jacobian matrix {∂σα

∂xi } has rank n and

gij =
∂σα

∂xi

∂σβ

∂xj
g̃αβ,

which is equivalent to the existence of solutions to the Gauss, Codazzi and Ricci equa-

tions (defined in §3.2) for local embeddings.

2.7 The Cauchy-Kowalewski Theorem

The Cauchy-Kowalewski theorem (Cauchy 1842a,b,c, Kowalewski 1875) is a local ex-

istence theorem for a system of analytic partial differential equations.

Theorem. Consider the set of partial differential equations:

∂2uA

∂(yn+1)2
= FA

(
yα, uB,

∂uB

∂yα
,
∂2uB

∂yα∂yi

)
, A,B = 1, ...,m (2.7.1)

where u1, . . . , um are m unknown functions of the n+ 1 variables y1, . . . , yn, yn+1, and

α = 1, . . . , n+1 and i = 1, . . . , n. Also, let ξ1, . . . , ξm, η1, . . . , ηm be analytic at 0 ∈ Rn

functions of the variables y1, . . . , yn. If the functions FA are analytic with respect to

each of their arguments around the values evaluated at the point y1 = · · · = yn = 0, then

there exists a unique solution to the equations (2.7.1) which is analytic at 0 ∈ Rn+1,

and that satisfies the initial conditions:

uA
(
y1, . . . , yn, 0

)
= ξA

(
y1, . . . , yn

)
,

∂uA

∂yn+1

(
y1, . . . , yn, 0

)
= ηA

(
y1, . . . , yn

)
, A = 1, . . . ,m.

(A proof of the theorem can be found in Petrovsky (1954).) This theorem is used

extensively in local embedding theorems to ascertain the existence of solutions to the

embedding equations. We shall refer to it in §3.4 where we summarize two of the local

results.
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Chapter 3

Local Isometric Embeddings

3.1 Introduction

In order to construct global embeddings from local embeddings into pseudo-Riemannian

spaces, we require a complete understanding of the local theory. So, in this chapter

we focus on local isometric embeddings. Firstly, in §3.2 we present the Gauss, Codazzi

and Ricci equations that govern an embedding, and then we review some local exis-

tence results for Euclidean and pseudo-Riemannian spaces in §3.3. In §3.4 we provide a

detailed summary of the theorems which are most pertinent to the formation of global

embeddings. Despite results for the existence of embeddings, there are no known gen-

eral solutions to the local embedding equations. Thus, one is motivated to explicitly

construct local embeddings for space-times of particular interest. Once a local em-

bedding has been determined, we can, in principle, use the relevant global existence

theorems to show that a global embedding exists. Even for some specific cases, the

embedding equations are not so easy to solve. The Killing geometry and rigidity of a

manifold can be useful in this regard and so we discuss these concepts in §3.5. We then

proceed to discuss the technique for embedding static spherically symmetric space-

times in §3.6. We show that the embedding is easily obtainable for manifolds with

constant Ricci scalar, however, the general case is more complicated. We comment on

uniqueness of these results, and we discuss the nature of four-dimensional space-times

that may be embedded into spaces of constant curvature. As examples, we consider

the embeddings of the Reissner-Nordström and global monopole space-times in §3.7
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and §3.8, respectively. The work contained in this chapter will shortly be submitted

for publication (Amery et al. 2007).

3.2 The Local Embedding Equations

We want to embed an n-dimensional space Vn into an m-dimensional space Vm as a

hypersurface where m > n. Let the metric in Vn be

ds2
(n) = gijdx

idxj,

and the metric in Vm be

ds2
(m) = aαβdy

αdyβ,

where yα = yα(xi). We refer to Vn as the embedded space and Vm as the embedding

space.

The extrinsic curvature of Vn in Vm has the components (Eisenhart 1926)

Ω
(σ)
ij = aαβn

β(σ)yα
,i;j,

where nβ(σ) are the components of unit normal vectors orthogonal to Vn and each other,

σ = n, . . . ,m− 1, and the terms in brackets are labels and not indices.

A derivation by Eisenhart (1926) produces three equations required for embedding

Vn into Vm as a hypersurface. Note that given Vn these equations are equivalent to

solving the field equations for Vm. The equations are known as the Gauss, Codazzi and

Ricci (GCR) equations and are given, respectively, by

Rhijk =
∑

σ

e(σ)(Ω
(σ)

hjΩ
(σ)

ik − Ω(σ)
hkΩ

(σ)
ij) +Rαβγδy

α
,hy

β
,iy

γ
,jy

δ
,k,

(3.2.1)

Ω(σ)
ij,k − Ω(σ)

ik,j =
∑

τ

e(τ)(t
(τσ)

kΩ
(τ)

ij − t(τσ)
jΩ

(τ)
ik) +Rαβγδy

α
,iy

γ
,jy

δ
,kn

β(σ), (3.2.2)
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t(τσ)
j,k − t(τσ)

k,j =
∑

%

e(%)(t
(%τ)

jt
(%τ)

k − t(%τ)
kt

(%τ)
j ) + glh(Ω(τ)

lkΩ
(σ)

hj − Ω(τ)
ljΩ

(σ)
hk)

−Rαλµνy
µ

,jy
ν
,kn

λ(σ)nα(τ). (3.2.3)

In the above, e(σ) = ±1 and t
(τσ)

j represents the twisting of the nα(σ) vectors in relation

to one another, where σ, τ = n, . . . ,m − 1, σ 6= τ . The Gauss and Codazzi equations

must be solved on the hypersurface Vn and the Ricci equation must be solved off the

hypersurface. For embeddings with codimension one, the Ricci equation is void and the

space-space components for the Ricci tensor for Vm are typically used as a propagation

equation (Dahia and Romero 2002b). There does not exist any known general solution

to these equations, so we must consider particular embedding spaces.

3.3 Local Existence Results

The problem of embedding a n-dimensional Riemannian manifold locally into an Eu-

clidean manifold was first discussed by Schläfli in 1873. It was suggested that the

dimension of the embedding space should be n(n+1)
2

. In the 1920’s, Janet (1926) and

Cartan (1927) proved this true in their local existence theorem.

The Janet-Cartan theorem :

A n-dimensional Riemannian manifold with analytic positive definite metric can be

locally, analytically and isometrically embedded into an Euclidean manifold Rm with

dimension m = n(n+1)
2

(Janet 1926, Cartan 1927).

The indefinite case was treated much later by Friedman (1961). Embedding locally into

Euclidean spaces has been useful as a way of investigating various properties of general

relativistic space-times, and serves to classify solutions to Einstein’s field equations

and to obtain new exact solutions (Stephani 1967, 1968). However, there is no physical

reason for preferring Euclidean embedding spaces, and other Riemannian manifolds,

such as spaces of constant curvature (Rund 1972), have been utilized (Campbell 1926,

Magaard 1963, Goenner 1980). In particular, the Campbell-Magaard theorem, stated

by Campbell (1926) and proved by Magaard (1963), is a local existence theorem for
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embeddings into Ricci-flat pseudo-Riemannian spaces. It is interesting that now with

a curved embedding space, the codimension of the embedding reduces to one.

The Campbell-Magaard Theorem :

A n-dimensional Riemannian manifold with analytic metric can be locally, analytically

and isometrically embedded into a (n + 1)-dimensional Ricci-flat (R̃αβ = 0) manifold

(Campbell 1926, Magaard 1963).

This theorem, which appeals to the Cauchy-Kowalewski theorem, led to several gen-

eralizations (Anderson and Lidsey 2001, Anderson et al. 2003, Dahia and Romero

2002a,b). Anderson and Lidsey (2001) presented constructions embedding Einstein

spaces into Einstein spaces and for the embedding of plane-wave backgrounds and

Ricci-flat space-times into 5-dimensional space-times sourced by massless scalar fields.

It was further shown that Einstein and Ricci-flat space-times may be embedded into

space-times sourced by self-interacting scalar fields (Anderson et al. 2003). Dahia and

Romero (2002a,b) extended the Campbell-Magaard theorem to Einstein embedding

spaces, and later to a given pseudo-Riemannian manifold.

The Dahia-Romero Theorems :

• A n-dimensional pseudo-Riemannian manifold can be locally, analytically and

isometrically embedded in a (n + 1)-dimensional Einstein manifold (Dahia and

Romero 2002b).

• A n-dimensional pseudo-Riemannian manifold can be locally, analytically and

isometrically embedded in a (n + 1)-dimensional pseudo-Riemannian manifold

with a non-degenerate Ricci tensor which is equal, up to a local analytic diffeo-

morphism, to the Ricci tensor of an arbitrarily given pseudo-Riemannian manifold

(Dahia and Romero 2002a).

We provide a summary of these theorems in the next section. A crucial observation

drawn from these results is that the local embedding space has the metric

diag [ḡik, εφ
2],
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where both ḡik and φmay have functional dependence on y and xi. This is significant for

the global situation. Note that the second Dahia-Romero theorem does not guarantee,

for example, the existence of embeddings into constant curvature spaces.

Embedding spaces having singular energy-momentum tensors have been considered

(Dahia and Romero 2004), and the existence of harmonic (volume minimizing) locally

analytic and isometric embeddings into Ricci-flat and Einstein spaces has also been

established (Chervon et al. 2004). Note that local embedding results obtained for

strictly Riemannian manifolds can be quite simply extended to the indefinite case

(Goenner 1980).

Since the above results are based on the Cauchy-Kowalewski theorem, concerns have

been raised regarding their relevance to physics (Anderson 2004). There is no reason

to expect that the embedding space will be well-behaved with respect to physical

properties such as causality and stability. In response to this, it is emphasized (Wesson

1999) that the Campbell-Magaard theorem is a local result and does not claim to

guarantee a well-posed initial value problem. Furthermore, an alternative approach

(Dahia and Romero 2005a,b) to the embedding problem has been considered, using the

theory of local Sobolev spaces. It asserts that, for any 4-dimensional space-time, there

exist initial data sets whose Cauchy development for the Einstein vacuum equations is

a 5-dimensional vacuum space into which this space-time may be locally, analytically

and isometrically embedded. This guarantees that we have causality and stability

within particular domains for both the embedded and embedding spaces. In the same

papers (Dahia and Romero 2005a,b), it is shown that perturbations outside the (local)

initial hypersurface do not affect the future domain of dependence, and so causality is

not violated. These results can be extended to embedding spaces with cosmological

constants, but the singular energy-momentum of the brane-world scenario is more

problematic (Dahia and Romero 2005a).

3.4 Summary of the Dahia-Romero Theorems

Dahia and Romero (2002b) first proved that any n-dimensional pseudo-Riemannian

manifold can be locally, analytically and isometrically embedded in a (n+1)-dimensional
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Einstein manifold. They also considered a pseudo-Riemannian embedding space with

a non-degenerate Ricci tensor which is equal, up to a local analytic diffeomorphism,

to the Ricci tensor of an arbitrarily given pseudo-Riemannian manifold (Dahia and

Romero 2002a). The proofs for these results are essentially the same. Nevertheless, we

summarize both their proofs here.

Suppose Mn is a n-dimensional analytic manifold with metric gij and Nn+1 is a

(n + 1)-dimensional manifold with metric g̃µν . The following theorem indicates the

conditions for the existence of a local isometric embedding of Mn into Nn+1 and is an

extension of the Riemannian case proven by Magaard (1963).

Theorem. There exists a local isometric analytic embedding of a pseudo-Riemannian

manifold (Mn, g) at p ∈ U ⊂ Mn into a pseudo-Riemannian manifold (Nn+1, g̃) if

and only if there exist analytic functions ḡik(x
1, . . . , xn, y) and φ̄ (x1, . . . , xn, y) in a

neighbourhood of (x1
p, . . . , x

n
p , 0) with φ̄ 6= 0, ḡik = ḡki, |ḡik| 6= 0 and ḡik(x

1, . . . , xn, 0) =

gik(x
1, . . . , xn), and such that the metric for some V ⊆ Nn+1 is

ds2 = g̃αβdy
αdyβ

= ḡikdx
idxk + εφ̄2(dy)2, (3.4.1)

where ε2 = 1.

Note that here the metric is expressed in Gaussian-normal form. We may also, without

loss of generality, set φ = 1. While this is not mandated by the definition of a local

isometric embedding, we may always rewrite an arbitrary metric in this form, and so

this imposes no restrictions on the subsequent proof. It is sufficient to show that the

embedding functions exist for an embedding of Mn into Nn+1 given in this form. In

order to prove the result, one only needs to show that the conditions of the above

theorem hold.

Now, at each point in Nn+1 there exists a co-ordinate neighbourhood in which the

metric is given by (3.4.1). Consider the inclusion map

ι (x1, . . . , xn) = (x1, . . . , xn, 0),
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that represents an embedding of an open set of the hypersurface Σ0, defined by y = 0,

in Nn+1. The metric for Σ0 is given by

gik(x
1, . . . , xn) = ḡik(x

1, . . . , xn, 0),

where gik is unspecified for now, and the extrinsic curvature of Σ0 is

Ω̄ik = − 1

2φ̄

∂ḡik

∂y
.

The Gauss and Codazzi equations relate the intrinsic curvature of Σ0 and Nn+1 at Σ0.

The following forms of the Gauss and Codazzi equations and R̃ik are obtained from

the metric for Nn+1:

R̃ik = R̄ik + εḡjm(Ω̄ikΩ̄jm − 2Ω̄jkΩ̄im)− ε

φ̄

∂Ω̄ik

∂y
+

1

φ̄
∇̄i∇̄kφ̄ , (3.4.2)

R̃i(n+1) = φ̄ḡjk(∇̄jΩ̄ik − ∇̄iΩ̄jk), (3.4.3)

G̃(n+1)
(n+1) = −1

2
ḡikḡjm(R̄ijkm + ε(Ω̄ikΩ̄jm − Ω̄jkΩ̄im)). (3.4.4)

Equation (3.4.4) is the Gauss equation and (3.4.3) is the Codazzi equation. Since

the codimension has reduced to one and there can be no twisting in only one extra

dimension, the Ricci equation falls away. It is replaced by (3.4.2), which are the

space-space components of the Einstein field equations, and which we refer to as the

propagation equation because it is used to propagate off the hypersurface to specify

the rest of the bulk.

Einstein embedding space

Now take Nn+1 to be an Einstein space where

R̃αβ =
2Λ

1− n
g̃αβ and G̃αβ = Λg̃αβ.

Then the equations (3.4.2) – (3.4.4) become
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R̄ik + εḡjm(Ω̄ikΩ̄jm − 2Ω̄jkΩ̄im)− ε

φ̄

∂Ω̄ik

∂y
+

1

φ̄
∇̄i∇̄kφ̄ =

2Λ

1− n
ḡik, (3.4.5)

φ̄ḡjk(∇̄jΩ̄ik − ∇̄iΩ̄jk) = 0, (3.4.6)

−1

2
ḡikḡjm(R̄ijkm + ε(Ω̄ikΩ̄jm − Ω̄jkΩ̄im)) = Λ. (3.4.7)

Using the fact that the quantity G̃αβ − Λg̃αβ has vanishing divergence, one can prove

that if the functions ḡik and φ̄ are analytic at 0, with φ̄ 6= 0, ḡik = ḡki and |ḡik| 6= 0,

and if they satisfy (3.4.5) in a neighbourhood of 0 and (3.4.6) and (3.4.7) on the

hypersurface y = 0, then they also satisfy (3.4.6) and (3.4.7) in a neighbourhood of 0.

Take φ̄ to be any non-zero function that is analytic at 0. Noting that ḡik = ḡki and

using the expression for the extrinsic curvature Ω̄ik, the propagation equation (3.4.5)

can be rewritten as a set of partial differential equations for the unknown functions ḡik

(i ≤ k). These functions must satisfy the initial conditions

ḡik(x
1, . . . , xn, 0) = gik(x

1, . . . , xn),

∂ḡik

∂y
(x1, . . . , xn, 0) = −2 φ̄ (x1, . . . , xn, 0) Ωik(x

1, . . . , xn),

where gik and Ωik are arbitrary functions that are analytic at 0 with

gik = gki, |gik| 6= 0 and Ωik = Ωki,

in a neighbourhood of 0 ∈ Rn. Note that |ḡik| 6= 0 in a neighbourhood of 0. Now the

Cauchy-Kowalewski theorem can be applied to ensure that there exists a unique and

analytic at 0 solution ḡik to the set of equations. If this ḡik and φ̄ also satisfy the Gauss

and Codazzi equations on y = 0, then they satisfy the equations in a neighbourhood

of 0.

Now, take the image of embedding Mn to coincide with the hypersurface y = 0 in

Nn+1 so that gik is the analytic metric for Mn, and let p ∈Mn have the co-ordinates

x1
p = · · · = xn

p = 0.

35



Then Mn has a local isometric embedding (at p) in Nn+1 if and only if there exist

analytic at 0 functions Ωik satisfying

Ωik = Ωki,

gjk(∇jΩik −∇iΩjk) = 0, (3.4.8)

gikgjm(Rijkm + ε(ΩikΩjm − ΩjkΩim)) = −2Λ. (3.4.9)

To proceed, note that since |gik| 6= 0 there exists an index r′ obeying gr′n 6= 0. From the

n(n+1)
2

independent functions Ωik (i ≤ k), choose the n functions Ωr′n and Ω1k (k > 1)

as unknown and take the remaining functions (except Ω11 which can be determined

in terms of the other Ωik) to be arbitrarily specified. Then, keeping (3.4.9) as a con-

straint equation, the equation (3.4.8) can be rewritten to obtain a set of n partial

differential equations that must be solved subject to certain initial conditions. The

Cauchy-Kowalewski theorem is applied to ensure that there exist unique and analytic

solutions to the p.d.e. system. Thus, there exist analytic at 0 symmetric functions

Ωik satisfying (3.4.8) and (3.4.9), and so the local isometric embedding of Mn in an

Einstein space Nn+1 is guaranteed.

Now the proof leads to three conditions that must be satisfied for the metric of

embedding space to be unique:

(1) the n(n−1)
2

−1 arbitrarily specified functions Ωik for i ≤ k, i > 1, and (i, k) 6= (r′, n)

must be analytic at 0 ∈ Rn,

(2) the n functions Ω1k(0, x
2, . . . , xn) = fk(x

2, . . . , xn) (k > 1) and Ωr′n(0, x2, . . . , xn) =

f1(x
2, . . . , xn) must be analytic at 0 ∈ Rn−1, and grs

r,s>1
(Ωrs

r≤s
+ Ωsr

s<r
) |0 6= 0,

(3) a non-zero function φ̄ that is analytic at 0 ∈ Rn+1 must be chosen.

pseudo-Riemannian embedding space

One may follow the same approach to prove the existence of the local isometric embed-

ding of Mn into a pseudo-Riemannian space Nn+1 with a non-degenerate Ricci tensor
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R̃αβ which is equal, up to a local analytic diffeomorphism f̄ , to the Ricci tensor Sαβ of

an arbitrarily given pseudo-Riemannian space. So

R̃αβ(xγ) =
∂f̄µ

∂xα

∂f̄ ν

∂xβ
Sµν(x

′κ),

in a neighbourhood of 0 ∈ Rn+1 where x
′κ = f̄κ(xγ) and det(∂f̄µ

∂xα )|0 6= 0. With this

expression for R̃αβ, the Gauss, Codazzi and propagation equations become

R̄ik + εḡjm(Ω̄ikΩ̄jm − 2Ω̄jkΩ̄im)− ε

φ̄

∂Ω̄ik

∂y
+

1

φ̄
∇̄i∇̄kφ̄ =

∂f̄µ

∂xi

∂f̄ ν

∂xk
Sµν(f̄

α), (3.4.10)

φ̄ḡjk(∇̄jΩ̄ik − ∇̄iΩ̄jk) =
∂f̄µ

∂y

∂f̄ ν

∂xi
Sµν(f̄

α), (3.4.11)

− 1

2
ḡikḡjm(R̄ijkm + ε(Ω̄ikΩ̄jm − Ω̄jkΩ̄im)) =

ε

2φ̄2

∂f̄µ

∂y

∂f̄ ν

∂y
Sµν(f̄

α)− ḡjm

2

∂f̄µ

∂xj

∂f̄ ν

∂xm
Sµν(f̄

α).

(3.4.12)

Define

F̃α
β = G̃α

β −
(
g̃αγ ∂f̄

µ

∂xγ

∂f̄ ν

∂xβ
Sµν −

1

2
δα
β g̃

γλ∂f̄
µ

∂xγ

∂f̄ ν

∂xλ
Sµν

)
,

and impose that the f̄α satisfy

∇̃α

(
g̃αγ ∂f̄

µ

∂xγ

∂f̄ ν

∂xβ
Sµν −

1

2
δα
β g̃

γλ∂f̄
µ

∂xγ

∂f̄ ν

∂xλ
Sµν

)
= 0, (3.4.13)

so that F̃α
β has vanishing divergence. Using this fact, it can be shown that if ḡik, φ̄ and

f̄α are analytic at 0, with φ̄ 6= 0, ḡik = ḡki and |ḡik| 6= 0, and if they satisfy (3.4.10)

and (3.4.13) in a neighbourhood of 0, and (3.4.11) and (3.4.12) on the hypersurface

y = 0, then they also satisfy the equations (3.4.11) and (3.4.12) in a neighbourhood of

0.

Take φ̄ 6= 0 to be any analytic at 0 function. Now using the fact that |ḡik| 6= 0,

ḡik = ḡki and the expression for the extrinsic curvature Ω̄ik, one may rewrite equations

(3.4.10) and (3.4.13) as a set of partial differential equations for the unknown functions

ḡik (i ≤ k) and f̄α that must satisfy the initial conditions
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ḡik(x
1, . . . , xn, 0) = gik(x

1, . . . , xn),

∂ḡik

∂y
(x1, . . . , xn, 0) = −2 φ̄ (x1, . . . , xn, 0) Ωik(x

1, . . . , xn),

f̄α(x1, . . . , xn, 0) = ξα(x1, . . . , xn),

∂f̄α

∂y
(x1, . . . , xn, 0) = ηα(x1, . . . , xn).

where gik, Ωik, ξ
α and ηα are analytic at 0 ∈ Rn and det(∂f̄µ

∂xα )|0 6= 0. The Cauchy-

Kowalewski theorem is applied to ensure that there exist unique and analytic at 0

solutions ḡik and f̄α to the set of equations. Now one only needs to show that if ḡik,

f̄α and φ̄ also satisfy the Gauss and Codazzi equations on y = 0, then they satisfy the

equations in a neighbourhood of 0.

Now specify gik to be the analytic metric for Mn so that Mn is embedded as the

hypersurface y = 0 in Nn+1 and set

ξi = xi, ξn+1 = 0, ηi = 0 and ηn+1 = 1,

so that det(∂f̄µ

∂xα )|0 6= 0. Then the embedding exists if and only if there exist analytic

at 0 functions Ωik that are symmetric and satisfy the Gauss and Codazzi equations

on y = 0. By appealing again to the Cauchy-Kowalewski theorem, one can prove that

there do exist such solutions Ωik and hence, the local isometric embedding of Mn in

Nn+1 exists.

Note that a similar construction may be carried out at any analytic point p ,with

co-ordinates (x1
p, . . . , x

n
p ), throughout the manifold Mn. While we usually take the

image of the embedding to coincide with the hypersurface y = 0, we may take it to

coincide with any hypersurface y = yc.

3.5 Killing Geometry and Rigidity

A conformal Killing vector X of a metric space is defined by the action of the Lie

derivative on the metric tensor (Stephani et al. 2003):

LXgab = 2ψ(xi) gab, (3.5.1)
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where ψ is the conformal factor. If ψ = 0, then X is a proper Killing vector, and (3.5.1)

gives

Xa;b −Xb;a = 0,

which may be solved to yield the Killing vectors. Killing vectors are useful in simplifying

the field equations and in the classification of space-times. Killing vectors generate

conservation laws by Noether’s theorem and play a role in the analysis of the causal

structure of space-times (Hawking and Ellis 1973). Conformal Killing vectors can be

applied to perturbation theory (Katz et al. 1997), and singularity theorems (Hawking

and Ellis 1973, Joshi 1993). Note that conformal motions leave the Weyl tensor Cab
cd

unchanged.

Now suppose that the extrinsic curvature Ωab of a manifold is generated from intrin-

sic quantities and their derivatives only. If these quantities are uniquely determined,

then the embedded space is said to be intrinsically rigid (Goenner 1980). For a Killing

vector X, we have

LXΓa
bc =

1

2

(
LXg

ad
)

+
1

2
gad

(
LX

∂gdc

∂xb
+ LX

∂gdb

∂xc
− LX

∂gbc

∂xd

)
= 0,

since LXgab = 0 and LX and ∂
∂xi commute. It follows that LXΩab must vanish for a

space-time since Ωab = εφΓ4
ab. This concept can be used to determine the variables

upon which the extrinsic curvature depends, and so allows one to make simple assump-

tions for the extrinsic curvature which help in the construction of explicit embeddings.

We also note that, if the extrinsic curvature depends on the Ricci tensor and the met-

ric of the hypersurface only, then the space is said to be energetically rigid (Goenner

1980).

The Killing vectors for a static spherically symmetric space-time are (Maartens et

al. 1995, 1996):

Ai = (1, 0, 0, 0),

Bi = (0, 0, 0, 1),

Ci = (0, 0, sinφ,− cot θ cosφ),

Di = (0, 0,− cosφ, cot θ sinφ).

39



By considering the vanishing Lie derivative of Ωab with respect to each of these vectors,

it can be shown that the extrinsic curvature of the embedded space-time depends on r

only. Furthermore, insisting that the 5-dimensional metric possess the Killing vectors

Bµ = Aiδµ
i ,

implies that ḡab must have a time-independent diagonal form with spherical symmetry

(Amery et al. 2007). These assumptions shall be used to simplify the embedding of a

SSS space-time.

3.6 Embedding SSS Space-times

Motivated by astrophysical considerations, we aim to embed static spherically symmet-

ric (SSS) space-times M , with metric of the form (2.5.1), into five-dimensional Einstein

spaces N . The formalism presented here is drawn from Londal (2005) and Amery et

al. (2007).

3.6.1 The Equations

The equations (3.4.5) – (3.4.7) for an Einstein embedding space can be written as

∂2ḡik

∂2y
= −4εΛḡik

3
− 2ḡjm(ΩikΩjm − 2ΩimΩjk)− 2εRik, (3.6.1)

0 = gjk(∇jΩik −∇iΩjk), (3.6.2)

−2Λ = R + gikgjmε(ΩikΩjm − ΩjkΩim)), (3.6.3)

ḡik(x
0, . . . , x3, 0) = gik(x

0, . . . , x3), (3.6.4)

∂ḡik(x
0, . . . , x3, 0)

∂y
= −2 Ωik(x

0, . . . , x3). (3.6.5)

40



Note that we have, without loss of generality, set φ = 1 in the line element for N . Recall

that the overbars denote quantities obtained from ḡik. The propagation equation (3.6.1)

can also be written as

∂2ḡik

∂2y
= −4εΛḡik

3
− ḡjm

2

(
∂ḡik

∂y

∂ḡjm

∂y
− 2

∂ḡim

∂y

∂ḡjk

∂y

)
− 2εRik. (3.6.6)

The procedure to determine the embedding is as follows: we make an ansatz for Ωik in

M in order to solve (3.6.2) and (3.6.3) on the hypersurface y = 0, and then by making

a related ansatz for Ωik in the bulk, we attempt to solve (3.6.1) in N subject to the

conditions (3.6.4) and (3.6.5). We take dots and primes to denote differentiation with

respect to y and r, respectively.

3.6.2 The General Case

In §3.5 we explained that the extrinsic curvature for a static spherically symmetric

space-time depends only on r. This idea, and also the fact that a SSS space-time has

R = R(r), motivates the ansatz

Ωik = c(r)uiuk + d(r)gik, (3.6.7)

for the extrinsic curvature in M . Since u0u0 = g00u0u
0 = −g00 and ui = 0 for i = 1, 2, 3,

the above assumption is equivalent to

Ωik = diag[(d(r)− c(r))g00, d(r)gAB],

= diag[a(r)g00, b(r)gAB].
(3.6.8)

If the matter content is well modelled by a perfect fluid, then (3.6.7) means that we

are actually assuming energetic rigidity for M (Amery et al. 2007). Following Londal

(2005), we substitute the ansatz (3.6.7) in (3.6.2) and (3.6.3) to solve for Ωik on the

hypersurface y = 0.

Firstly, since the covariant derivative of the metric vanishes, we can rewrite (3.6.2)

as

0 = gjk(∇jΩik)−∇i(g
jkΩjk).
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Then, applying the ansatz we obtain

−∇i(g
jkΩjk) = c

′
δ1
i − 4d

′
δ1
i , and gjk(∇jΩik) = cν

′
δ1
i + d

′
δ1
i ,

so that the Codazzi equation becomes

c
′ − 3d

′
+ cν

′
= 0. (3.6.9)

The Gauss equation (3.6.3) becomes

c = 2d+
2Λ +R

6εd
. (3.6.10)

Now we may differentiate (3.6.10), substitute for c
′
using (3.6.9), and simplify to obtain

−d′ [6εd2 + (2Λ +R)] + [R
′
+ (2Λ +R)ν

′
]d+ 12εd3ν

′
= 0.

Multiplying the above equation by eν

d2 , rewriting and integrating by parts we obtain

I =
2Λ +R

d
eν + 12εdeν − 18ε

∫
eν ,

where I is a constant. Multiply the above equation by d
12εeν and rewrite it as

d2 +

(
−18ε

∫
eν − I

12εeν

)
d+

2Λ +R

12ε
= 0,

which is an algebraic equation that can be solved for d. Hence, we have

d =
18ε
∫
eν + I

24εeν
±

√(
(18ε

∫
eν + I)

24εeν

)2

− 2Λ +R

12ε
. (3.6.11)

So, the extrinsic curvature on the hypersurface y = 0 is expressed by (3.6.8) with c(r)

and d(r) given by (3.6.10) and (3.6.11), respectively.

Now, to propagate into the bulk, we make the ansatz

Ωik(y, r) = diag[a(y, r)g00, b(y, r)gCD], (3.6.12)

where a(y, r) and b(y, r) must obey the initial conditions a(0, r) = d(r) − c(r) and

b(0, r) = d(r). The definition

Ωik = −1

2

∂ḡik

∂y
,
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implies that

ḡik(y, r) = diag[A(y, r)g00, B(y, r)gCD], (3.6.13)

where A(y, r) = −2
∫
a(y, r)dy and B(y, r) = −2

∫
b(y, r)dy. From the condition

(3.6.4) we obtain

A(0, r) = 1, B(0, r) = 1, (3.6.14)

and the condition (3.6.5) implies that

Ȧ(0, r) = −2a(r) and Ḃ(0, r) = −2b(r). (3.6.15)

With the assumption (3.6.13) the propagation equation (3.6.6) leads to the time-time

and space-space equations:

Ä+
Ȧ

2

(
3Ḃ

B
− Ȧ

A

)
+

4εΛ

3
A = −2εR00g

00, (3.6.16)

B̈ +
Ḃ

2

(
Ȧ

A
+
Ḃ

B

)
+

4εΛ

3
B = −2ε

3
RCDg

CD. (3.6.17)

To determine the expressions R00g
00 and RABg

AB, we first calculate the non-zero con-

nections Γ
k

ij from ḡij. We obtain:

Γ
0

ij = Γ0
ij +

A
′

2A
δ0
j δ

1
i +

A
′

2A
δ0
i δ

1
j ,

Γ
1

ij = Γ1
ij −

A
′

2B
g11g00δ

0
i δ

0
j +

1

2

(
1− A

B

)
g11g00,1δ

0
i δ

0
j

+
B

′

2B
δ1
i δ

1
j −

B
′

2B
g11(g22δ

2
i δ

2
j + g33δ

3
i δ

3
j ), (3.6.18)

Γ
2

ij = Γ2
ij +

B
′

2B
δ2
j δ

1
i +

B
′

2B
δ2
i δ

1
j ,
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Γ
3

ij = Γ3
ij +

B
′

2B
δ3
j δ

1
i +

B
′

2B
δ3
i δ

1
j ,

where the Γk
ij are given by (2.5.2). Using the above connections we find

R00g
00 = e−2λ

[
A

B
(−ν ′′ − ν

′2
+ ν

′
λ
′ − 2

r
ν
′
)− A

′

B
ν
′ − AB

′

2B2
ν
′

+
A

′

2B
λ
′ − A

′′

2B
− A

′

rB
− A

′
B

′

4B2
+

A
′2

4AB

]
, (3.6.19)

=
A

B
R00g

00

+ e−2λ

[
−A

′

B
ν
′ − AB

′

2B2
ν
′
+
A

′

2B
λ
′ − A

′′

2B
− A

′

rB
− A

′
B

′

4B2
+

A
′2

4AB

]
,

RABg
AB =

2

r2
+ e−2λ

[
−ν ′′ − ν

′2
+ ν

′
λ
′ − 2

r2
+

4λ
′

r
− 2ν

′

r

−A
′′

2A
+
A

′2

4A2
+
A

′

2A
λ
′ − A

′

A
ν
′ − A

′

rA
− A

′
B

′

4AB

−2B
′′

B
+

3B
′2

2B2
− B

′

2B
ν
′
+

2B
′

B
λ
′ − 4B

′

rB

]
(3.6.20)

= RABg
AB + e−2λ

[
−A

′′

2A
+
A

′2

4A2
+
A

′

2A
λ
′ − A

′

A
ν
′ − A

′

rA

−A
′
B

′

4AB
− 2B

′′

B
+

3B
′2

2B2
− B

′

2B
ν
′
+

2B
′

B
λ
′ − 4B

′

rB

]
.

The equations (3.6.16) and (3.6.17) must be solved subject to the conditions (3.6.14)

and (3.6.15) in order to specify the embedding completely. However, solutions to these

equations are not immediately clear, even though strong simplifying assumptions were

made.
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3.6.3 The Case R = constant

For SSS space-times with constant Ricci scalar, the calculation can be simplified by

setting c(r) = 0 and replacing d(r) by the constant −f
2

, so that the extrinsic curvature

on the hypersurface is

Ωik =
−f
2
gik.

The Codazzi equation (3.6.9) is satisfied and the Gauss equation (3.6.10) gives

f =

√
−2εΛ

3
− εR

3
.

Now we make the assumption

Ωik = −f(y)gik

2
,

where f(0) = f . This implies that

ḡik = F (y)gik, (3.6.21)

where F (y) =
∫
f(y)dy, and with the initial conditions F (0) = 1 and Ḟ (0) = f . The

propagation equation simplifies to

F̈ +
Ḟ 2

F
+

4εΛ

3
F = − ε

2
Rikg

ik. (3.6.22)

With the assumption (3.6.21) we have Rik = Rik, and so (3.6.22) becomes

F̈ +
Ḟ 2

F
+

4εΛ

3
F = −εR

2
. (3.6.23)

This equation can be solved (Londal 2005) subject to the above initial conditions to

give the five-dimensional metric

ds2 =

[
cosh

(
1

2

√
−2

3
εΛy

)
+

(
1 +

R

8ΛA

)
sinh

(
1

2

√
−2

3
εΛy

)]2

gikdx
idxk + εdy2,

(3.6.24)

where A must satisfy the consistency equation
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(
1 +

R

8ΛA

)√
− 2ε

3Λ
=

√
− 2ε

3Λ
− εR

3
.

3.6.4 The Case R = 0

For SSS space-times with Ricci scalar R = 0, the propagation equation (3.6.23) becomes

1

2
(F 2).. +

4εΛ

3
F 2 = 0, (3.6.25)

with the initial conditions F (0) = 1 and Ḟ (0) = f =
√
−2εΛ

3
. By making the substi-

tution w = F 2 this equation reduces to a second order linear equation which is easily

and uniquely solvable. Thus, the metric for the 5-dimensional local embedding space

is

ds2 = exp

(√
−2εΛ

3
y

)
gikdx

idxk + εdy2. (3.6.26)

3.6.5 Comments

The uniqueness of embeddings is an interesting question. Dahia and Romero (2002b)

assert three conditions that must hold for the embedding metric to be unique – see

§3.4. We explicitly check the uniqueness of the R = constant solution presented in

§3.6.3. Note that we only consider the embedding about the points in M for which the

metric components are analytic. Choose r′ = 3. Then we have:

(1) Ω11 = −f
2
g11,Ω22 = −f

2
g22,Ω12 = Ω13 = Ω23 = 0 are all analytic at 0 ∈ R4 since f

is a constant,

(2) at t = 0, Ω33 = −f
2
g33,Ω01 = Ω02 = Ω03 = 0 are all analytic at 0 ∈ R3, and

(g11Ω11 + g22Ω22 + g33Ω33)|t=0 = −3f
2

is non-zero since f is assumed non-zero,

(3) we have chosen φ = 1 which is analytic at 0 ∈ R4.

Note that Ω00 is also analytic. Thus, the embedding metric (3.6.24) is unique.

We can also check the uniqueness of solutions by noting the linearity of the embed-

ding equations. Observe that for the case of the hypersurface having zero Ricci scalar,
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the propagation equation (3.6.25) can be reduced to a linear equation which has a

unique solution. For the general case of static spherical symmetry on the hypersurface,

the solutions (3.6.10) and (3.6.11) to the first order linear equation (3.6.9) and the

algebraic equation (3.6.10) are unique. However, the propagation equations (3.6.16)

and (3.6.17) do not appear linear and so one cannot say whether they admit unique

solutions.

We note that the Schwarzschild space-time

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2,

is Ricci-flat and hence, can be locally embedded into the Einstein space (3.6.26) as an

unique solution (Dahia and Romero 2002b). However, this result does not apply to the

singularity at r = 0 since the metric is not analytic at that point.

Now we want to investigate the embedding of SSS space-times into 5-dimensional

spaces of constant curvature which obey

R̃abcd =
R̃

20
(g̃acg̃bd − g̃adg̃bc).

Explicitly calculating the Riemann tensor for (3.6.26), we find

R̃ijkl = Rijkl −
Λ

6
(g̃ikg̃jl − g̃ilg̃jk) .

Thus, it is of constant curvature only if the embedded space is Riemann flat. As a

special case, a Ricci-flat space-time of constant curvature can be embedded into a Λ = 0

constant curvature space (also known as Minkowski space). The general question of

the embeddability of space-times into 5-dimensional constant curvature remains open.

The study of this issue is underway (Amery and Moodley 2008).

3.7 Embedding the Reissner-Nordström Space-time

The Reissner-Nordström space-time (see §2.5.2) has Ricci scalar R = 0, and so the

five-dimensional Einstein embedding space has the metric

ds2 = exp

(√
−2εΛ

3
y

)
g

(RN)
ik dxidxk + εdy2 (3.7.1)

47



where g
(RN)
ik represents the Reissner-Nordström metric. Here, Λ cannot be zero, or else

it would yield the bulk M (RN) × AdS(1) (M (RN) representing the Reissner-Nordström

space-time), and this is not an Einstein embedding since M (RN) is not Ricci-flat.

Letting

dŷ2 = exp

(
−
√
−2εΛ

3
y

)
dy2,

we find that

ŷ = −
√
−6ε

Λ
exp

(
−1

2

√
−2εΛ

3
y

)
,

which transforms the metric (3.7.1) into the form

ds2 = ∆(ŷ)[gikdx
idxk + εdŷ2],

where ∆(ŷ) = −6ε
Λŷ2 . Thus, the embedding space is conformal to M (RN) × AdS(1).

3.8 Embedding the Global Monopole Space-time

The global monopole space-time (see §2.5.3) has Ricci scalar R = 2(1−K)
r2 that depends

on r, and has ν = 0 and λ = −1
2
lnK in the SSS form of the metric. The Codazzi

equation (3.6.9) can be integrated to obtain

c = 3d+ 2I,

where I is an integration constant. Substituting this expression for c in (3.6.10) gives

d(r) = −I ±
√
I2 +

εΛ

3
+
ε(1−K)

3r2
.

So the extrinsic curvature on the hypersurface y = 0 is given by (3.6.8) with

a(r) = −2b(r)− 2I, b(r) = −I ±
√
I2 +

εΛ

3
+
ε(1−K)

3r2
. (3.8.1)

Now with ν
′
= 0 = λ

′
the propagation equations (3.6.16) and (3.6.17) become
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Ä+
Ȧ

2

[
3Ḃ

B
− Ȧ

A

]
+

4εΛ

3
A = −2εK

[
−A

′′

2B
− A

′

rB
− A

′
B

′

4B2
+

A
′2

4AB

]
, (3.8.2)

B̈ +
Ḃ

2

[
Ȧ

A
+
Ḃ

B

]
+

4εΛ

3
B =

4ε(K − 1)

3r2
− 2ε

3
K

[
−A

′′

2A
+
A

′2

4A2
− A

′

rA

−A
′
B

′

4AB
− 2B

′′

B
+

3B
′2

2B2
− 4B

′

rB

]
. (3.8.3)

These equations must be solved subject to the initial conditions (3.6.14) and (3.6.15)

to obtain the five-dimensional Einstein embedding space. By local existence results

(Dahia and Romero 2002b), we know that there does exist a solution for the embedding,

however actually solving these equations is certainly nontrivial and we have not yet

obtained any solutions.

We can make a negative comment on the conformal geometry of the bulk. Let us

suppose that there exists a conformal Killing vector in the y-direction. This means

that we are specifying isometry on null geodesics only, which is sufficient here since our

bulk is empty of matter. In this case, we have A(y, r) = kB(y, r) for some constant

k (Amery et al. 2007), and so a(y, r) = kb(y, r). The relations for a and b on the

hypersurface imply that k be −2. However, then the condition (3.6.14) cannot be

satisfied and so the assumption fails. It is impossible for the Einstein embedding space

to have static spherical symmetry and a conformal Killing vector in the y-direction.

Refer also to Amery et al. (2007).

We can obtain an explicit embedding of a space-time that is conformal to the global

monopole space-time and that has zero Ricci scalar. The conformal transformation is

given by

ĝik = ∆(r)gik.

where gik represents the metric of the global monopole. Note that we take the conformal

factor ∆ as a function of r only, motivated by the dependence of the global monopole’s

Ricci scalar on r. We seek R̂ = 0. The expression (2.3.7) gives
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ϕ′ +
1

2
ϕ2 +

2

r
ϕ+

2(K − 1)

3Kr2
= 0,

where ϕ = (ln ∆)′ = ∆′

∆
. This equation has solutions

ϕ =
P

r
, P = −1±

√
1− 4

(K − 1)

3K
,

where P is real since 0 < K < 1. Solving ∆′

∆
= P

r
we obtain

∆ = rP , and so ĝik = rPgik.

Note that this metric is not Ricci-flat. Since R̂ = 0, there exists an embedding of ĝik

into the 5-dimensional Einstein space with metric

ds2 = exp

(√
−2εΛ

3
y

)
rPgikdx

idxk + εdy2. (3.8.4)

Note that this metric is not an isometric embedding of the global monopole space-

time itself, since at y = 0 it reduces to ĝik and not gik, unless P = 1. However,

P = 1 implies that K = 1, and so we regain the 4-dimensional Minkowski space-time.

The composition of an embedding with a conformal transformation is not necessarily

an embedding – see also §4.7. Since the conformal transformation preserves the null

geometry of the global monopole space-time, this embedding of its conformally related

metric can provide insight into the causal structure of the defect.
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Chapter 4

Global Isometric Embeddings

4.1 Introduction

The problem of the nature of the possible global embedding manifolds for some arbi-

trary embedded manifold has a long history as a purely geometrical problem. Early

work in the field concentrated on the embedding of Riemannian manifolds into Eu-

clidean spaces. This was a natural historical consequence of the geometric analysis of

(pseudo)-Riemannian spaces. It was found that the codimension of the embeddings

are typically quite large. In §4.2 we provide a background of existence results for

Euclidean embedding spaces. In §4.3 we consider a recent theorem by Katzourakis

(2005a) in which it is claimed that the Campbell-Magaard-Dahia-Romero theorem for

embedding into Einstein spaces can be made global. We show that careful analysis of

the theorem indicates that it works only for Ricci-flat embedding spaces. There seems

to have been a crucial misunderstanding of the local Einstein embedding result (Dahia

and Romero 2002b): it is assumed that the local embedding space has the form M ×F

where M is the embedded space and F is a one-dimensional analytic manifold, but this

is really only valid for Ricci-flat manifolds M . So, as written, the result (Katzourakis

2005a) is limited and in need of extension. Following Katzourakis’s methodology to a

large extent, we attempt to correct the given theorem in §4.4, and in §4.5 we extend

its scope. In §4.4.1 we first provide an overview of the proof, before proceeding to the

detailed proof in §4.4.2 which is separated into six steps. We also comment on the steps

carried out in §4.4.3. These results are presented as two theorems: Theorem 1 per-
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tains to embeddings into Einstein spaces, and Theorem 2 pertains to embeddings into

arbitrarily specified pseudo-Riemannian spaces. We also provide even more general

theorems pertinent to metric spaces and paracompact manifolds. In §4.6 we discuss

the papers (Katzourakis 2005b,c,d) that build upon the initial result, and finally, in

§4.7 we provide further comments on embeddings. The work contained in this chapter

will be submitted for publication (Moodley and Amery 2007).

4.2 Euclidean Embedding Spaces

The first global existence result for isometric embeddings was given by Nash (1954),

and states that

• any closed n-d Riemannian manifold has a C1 isometric embedding in R2n, and

• any n-d Riemannian manifold has a C1 isometric embedding in R2n+1.

The proof begins with a “short” embedding of a Riemannian manifold M in some

Rk where the induced metric hij for M is smaller than its actual metric gij, and the

embedding undergoes a series of perturbations until it is isometric. The existence of

the initial embedding is guaranteed by results of Whitney (1936). More generally it is

shown that

• if a closed n-d Riemannian manifold has a C∞ embedding in Rm with m ≥ n+2,

then it also has an isometric embedding in Rm, and

• if an open n-d Riemannian manifold has a “short” C∞ embedding in Rm with

m ≥ n + 2 and which does not coincide with its limit set (if any), then it also

has an isometric embedding in Rm.

These results were improved by Kuiper (1955) for m ≥ n + 1. The limit set of an

embedding refers to the set of points in the embedding space with the property that

for each point in the set, there is a divergent sequence in the embedded space whose

image converges to that point (Friedman 1965).

Nash (1956) further established that every n-dimensional Riemannian manifold M

is embeddable in Rm with
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• m = n
2
(3n+ 11) for M compact, or

• m = n
2
(n+ 1)(3n+ 11) for M non-compact,

and the embeddings are Ck isometric where k ≥ 3. The result indicates that a greater

number of dimensions are required for a smoother embedding.

Extensions by Clarke (1970) and Greene (1970) to the indefinite case followed later.

Clarke (1970) showed that any n-dimensional C∞ pseudo-Riemannian space M with

Ck (k ≥ 3) metric of rank r and signature s has a global Ck isometric embedding into

Rm(p, q) where

• p ≥ n− 1
2
(r + s) + 1, and

• q ≥ n
2
(3n+ 11), for compact Mn, or

• q ≥ n
6
(2n2 + 15n+ 37) + 1, for non-compact Mn.

Note that m = p+q. By applying this result to a strictly Riemannian and non-compact

manifold, it was found that the dimension of the Euclidean embedding space is lower

than that given by Nash, and so the result can be regarded as an alternative proof

of Nash’s theorem. Unlike the local theory, Clarke’s extension of Nash’s result to the

indefinite case is not so trivial. Greene (1970) demonstrated that the embedding can

be made C∞ isometric with p = q and m = n(n + 5) for the compact case, or m =

4(2n+1)(n+3) for the noncompact case. Furthermore, Gunther (1989, 1991) provided

a much simplified approach to proving the existence of smooth isometric embeddings in

Rm (see also (Yang 1998)). The case of analytic embeddings has also been considered

(Greene and Jacobowitz 1971, Gromov 1970). Besides these general results, explicit

embeddings of particular spaces have also been obtained: for example, Blansula (1955)

showed that a n-dimensional hyperbolic space has a global C∞ isometric embedding

in Rm with m = 6n− 5 if n > 2, or m = 6 if n = 2.

Global embedding theory is useful as a way to find new solutions in general relativity

(Stephani 1967, 1968). Classical relativistic applications of global embedding theory

also include the maximal analytic extensions of the Schwarzschild solution given by

Fronsdal (1959), and of the Reissner-Nordström and Kerr space-times by Plazowski

(1973), as well as results by Friedman (1965) and Penrose (1965). Global embeddings
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provide insight into global features of a manifold, such as causality. Indeed, causal

properties are related to the existence of particular embeddings (Clarke 1970). For

example, a manifold M that has a smooth embedding in a normally hyperbolic pseudo-

Euclidean space E cannot contain any closed time-like curves since this is impossible

for such E (Clarke 1970). We note that the systematic analysis of global embeddings

of exact solutions has not yet been carried out (Stephani et al. 2003).

4.3 Einstein Embedding Spaces

The problem of embedding a Riemannian space globally into an Einstein space was

considered by Katzourakis (2004, 2005a). Initially, he treated the case of Ricci-flat

embedding spaces by using the theory of fibre bundles. It is shown that a (n + k)-

dimensional Ricci-flat bulk space-time can be constructed as a bundle structure over

the embedded submanifold, which is taken to be the base space. In his later ver-

sions, Katzourakis (2005a) claims to have provided the first global generalization of

the Campbell-Magaard-Dahia-Romero theorem by proving that there exists a global

isometric embedding of an arbitrary n-dimensional pseudo-Riemannian space M into

a (n + 1)-dimensional Einstein space E := M × Y , where Y is a 1-dimensional ana-

lytic manifold. Repeated application of the theorem would show that M can also be

embedded into a space with any codimension greater than one. As a corollary to his

theorem, Katzourakis (2005a) further claims that any analytic product manifold of the

form E (n+d) ∼= M (n) × Y (d), d ≥ 1 admits an Einstein metric, and so is an Einstein

space.

Through a careful analysis of the proof for the Katzourakis theorem, it appears

to rest on the assumption that the local Einstein embedding has the form M × Y

for any embedded space M . Now, Dahia and Romero (2002b) showed that any n-

dimensional pseudo-Riemannian space M can be locally embedded into a (n + 1)-

dimensional Einstein space equipped with metric diag[ḡik(x
i, y), εφ2(xi, y)] where ḡik,

in general, depends on the (n+1)th co-ordinate y, and only reduces to the metric for M

along the hypersurface y = c. So, it is not true that the form of the local embedding

is M × Y for any M . Thus, there seems to be a misunderstanding about the local
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embedding theorem, which is the crucial limitation of Katzourakis’s result (Amery et

al. 2007).

We illustrate this problem further with the following counter-example to his theo-

rem. Consider a static spherically symmetric space-time (2.5.1), where the Ricci scalar

is a function of r only, and set ḡik = gik and φ = φ(y) in the embedding equations

(3.4.5) – (3.4.7) for an Einstein embedding space. Since ḡik has no functional depen-

dence on y, the extrinsic curvature Ω̄ik vanishes and so the Codazzi equation is trivially

satisfied. The Gauss and propagation equations become

R = −2Λ, (4.3.1)

Rik =
2Λ

1− n
gik, (4.3.2)

respectively, where Λ represents the cosmological constant. Immediately we see that

Katzourakis’s construction fails because (4.3.1) is not always true since R is generally

not constant.

Substitute (4.3.1) in (4.3.2) so that

Rik =
Rgik

n− 1
, (4.3.3)

⇒ Re
k =

Rδe
k

n− 1
,

⇒ R =
Rn

n− 1
,

which implies that R = 0, and hence Rik = 0 by (4.3.3). Thus, there does not exist

a local Einstein embedding M × Y for any non-Ricci-flat space M , and so the global

Einstein embedding M × Y fails.

Furthermore, since Λ = 0, we have that the global embedding space M×Y must be

Ricci-flat. So the Katzourakis theorem is actually a partial global generalization (for

Ricci-flat embedded spaces) of the Campbell-Magaard theorem. Thus, as it is given,

this result by Katzourakis (2005a) is certainly limited. (See also Amery et al. (2007)).
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4.4 Theorem: Global Isometric Embedding into an

Einstein Space

Next, we extend the given result so that it applies to any pseudo-Riemannian embedded

space. We provide a similar detailed proof to that of the Katzourakis (2005a) theorem,

and while we largely follow the methodology of his proof, we also comment on the

deviations from his approach.

Theorem 1. Any n-dimensional real analytic pseudo-Riemannian manifold (M, gM)

has a global isometric analytic embedding into a (n+1)-dimensional Einstein manifold

(E , g̃E) where

R̃µν =
2Λ

1− n
g̃µν (Λ ∈ R).

4.4.1 Overview of the Proof

Before we proceed to the full development of the proof, we outline the methodology

used to prove the result. First assume a global embedding space Ē of similar topology

(Einsteinian metric structure) to that of the specified local embedding space, which

contains the embedded space as a hypersurface. For non-Ricci-scalar-constant space-

times this is necessarily more subtle than a product topology: one has to manually

insert the embedded manifold into the global embedding manifold. Note that it must

be paracompact, and so one may consider a “partition of unity”, though in an unnor-

malized fashion, to construct particular “Bell” functions that are essential in specifying

the global analytic metric. Paracompactness further implies the existence of a locally

finite cover from which one may construct several more locally finite covers. Ultimately

one constructs two types of covers, both cases having as domain precisely those subsets

of the original patches on which the “Bell” functions are strictly positive, but the one

case having N “copies” of each domain, being distinguished by different co-ordinate

systems. The arbitrariness of N allows one to “sew” together the patches (and metrics)

by means of a finite number of (finite) linear systems of equations in a large (unspeci-

fied) number of arbitrary functions ψ
(ia)
αβ . By choosing the number of these functions to

be sufficiently large, the existence of solutions to this (meta-)system is guaranteed. We

thus have a construction which ensures that the global embedding space is everywhere
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locally a space possessing the specified Ricci-curvature. Note that as the field equations

are typically expressed in co-ordinate form, a complete local specification is not only

sufficient, but also convenient.

4.4.2 Detailed Proof

The proof is separated into 6 steps, loosely matching those of the original proof (Kat-

zourakis 2005a): Step 1 involves a different construction; Step 2 is essentially unchanged

with slightly different notation and some commentary; Steps 3, 4 and 5 corresponding

to Steps 4, 5 and 6, respectively, in the original proof contain some changes due to the

different initial construction; and Step 5 is a little more technical than its correspond-

ing step in the original. Katzourakis’s step 3, which pertains to a standard topological

proof, is presented in Section 2.2.

Step 1: The construction of the bulk E containing M .

We assume that there exists an Ē which is an arbitrary (n+1)-dimensional real analytic

pseudo-Riemannian space. Recall that Ē is paracompact and Hausdorff since it is a

metric space. We shall further insist that Ē is an Einstein space globally, and hence

locally. We note that Ē is a manifold and so it has an open cover U ≡ {Ui | i ∈ I}

where I may be infinite. Since Ē is paracompact, there exists a locally finite refinement

of this cover, given by

Q̄ := {Q̄j | j ∈ J̄},

where J̄ ⊆ I, and such that no point of Ē lies in more than (n + 1) + 1 = n + 2 of

its elements (by dimension theory). Now we construct a set Q′ from Q̄ by excising all

points on the hypersurface Σc defined by y = c. Any patch of Q̄ that includes points

on the the y = c plane is split into two open patches not containing those points with

y = c. Thus, we have that Q′ is a cover for Ē \Σc, the complement of the hypersurface

Σc in Ē . Any point in Ē \ Σc that is covered by the maximum of n + 2 elements of Q̄

will still be covered by n+2 elements of Q′. We then specify another (locally) Einstein

space E via its cover
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Q̃ := {Q̃j | j ∈ J},

as the union of Q′ and the (n + 1)-dimensional patches generated through the appli-

cation of the local (Einsteinian) embedding theorem Dahia and Romero (2002b) to a

locally finite cover for M . We denote these additional patches by M ′ which covers

all points on the y = c plane. Locally this procedure yields at most n + 1 additional

patches since M is a n-dimensional manifold. Thus, each element of E lies in at most

d = (n+ 1) + (n+ 2) = 2n+ 3 elements of the cover Q̃. Note that the cover Q̃ may be

refined further, subject to the fact that we would like to retain the (n+1)-dimensional

patches generated by the local embeddings. However, the finitude of d is sufficient to

proceed with our proof. Note also that, on every patch in Q̃, the above construction

guarantees that there exists a (local) Einstein metric.

Step 2: The covers W, WB and Q of E.

At each p ∈ E , we have p ∈ Q̃j for some j ∈ J . For every Q̃j we construct N

additional distinct neighbourhoods (Wia , χ(ia)), 1 ≤ a ≤ N , such that the Wia cover

the same domain Q̃j in E , but are distinguished by their different co-ordinate functions

χ(ia) : Wia −→ Rn+1, 1 ≤ a ≤ N . Here, N ∈ N is large but finite and unspecified for

now, and each χ(ia) = (x1
(ia), . . . , x

α
(ia), . . . , x

n+1
(ia) ), where xα

(ia) := τα ◦ χ(ia) : Wia −→ R,

τα : Rn+1 −→ R. Since E is a pseudo-Riemannian manifold, these neighbourhoods

on E can be chosen distinct with geodesic (or normal) co-ordinates, and an arbitrarily

large but finite number of such patches do exist (Eisenhart 1926, Hawking and Ellis

1973, Sachs and Wu 1977, Campbell 1926): choose co-ordinates {xα
(ia)} of Wia and a

basis {Eα} of the tangent space TpWia such that the curve with initial point p and

passing through the point r = exp(xαEα) in Wia is a geodesic. In these co-ordinates,

the connection at p vanishes and the initial direction of the curve at p depends on the

choice of the basis {Eα} at p. By choosing different initial directions at p, one obtains

different geodesics and so different co-ordinate functions.

We form a N -element class of patches at each p ∈ E :

[Wj] := {(Wia , χ(ia)) | a = 1, . . . , N | dom(Wia) = dom(Q̃j)}.

Thus, we obtain the locally finite cover:
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W : = {[Wj] | j ∈ J},

= {(Wia , χ(ia)) | a = 1, . . . , N | dom(Wia) = dom(Q̃j) | j ∈ J}, (4.4.1)

where the last equality provides a more verbose description of the abbreviated notation

in the preceding line. Here, dom(Q̃j) denotes the domain of the patch Q̃j. Now, using a

Euclidean transfer, we can identify each of the N distinct points χ(i1)(p), . . . , χ(iN )(p)

as the origin 0 ∈ Rn+1. Consider the intersection
⋂N

a=1 χ(ia)(Wia) which is an open

set in Rn+1. Within this set lies an open (n+1)-dimensional ball B(0, Ri) of maximum

radius Ri > 0. Choose any ri < Ri. Then,

B(0, ri) ⊆
N⋂

a=1

χ(ia)(Wia).

Invert B(0, ri) via 1 of the coordinates, say the 1st, χ(i1)|B(0,ri). So each Wia contains

an analytically diffeomorphic copy of the ball B(0, ri):

χ−1
(i1)(B(0, ri)) ⊆ Wia , a = 1, . . . , N.

We denote χ−1
(i1)(B(0, ri)) by WBia . At each p ∈ E , form a class of N -elements of inversed

balls, each with different induced coordinates:

[Bj] := {(WBia , χ(ia)|WBia
) | a = 1, . . . , N | dom(WBia) = dom(Q̃j)|WBia

}.

Thus, we obtain the locally finite cover:

WB : = {[Bj] | j ∈ J},

= {(WBia , χ(ia)|WBia
) | a = 1, . . . , N | dom(WBia) = dom(Q̃j)|WBia

| j ∈ J}.

(4.4.2)

Finally, we restrict each element of Q̃ on its corresponding inversed ball to obtain the

locally finite cover:

Q := {(Qj, {yA
(j)}1≤A≤n+1) | Qj = Q̃j|χ−1

(i1)
(B(0,ri))

| j ∈ J}, (4.4.3)
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where yA
(j) : Qj −→ R. Note that Qj ⊆ Q̃j, and hence is locally Einsteinian by the

construction in Step 1.

While all three covers are locally finite, W andWB each contain more elements than

Q, and while any p ∈ E is covered by a maximum of d elements of Q, it is also covered

by a maximum of Nd elements of W (respectively, WB). We also observe that, even

though WBia ⊆ Wia ∀ ia, and a maximum of Nd elements of each cover contain any

given point p, these bounds need not be realized, and dim (WB) ≤ dim (W). On the

other hand, there exist at least N Wia ’s (WBia ’s) containing any given point p, because

p lies in some Qj ⊆ Q̃j and hence lies in N Wia ’s (WBia ’s). This observation shall be

used later in our counting arguments – see Step 5. We need to “sew” together the

patches of W to obtain the global embedding space with metric gE , and such that it

matches the local embedding patches where required. Every patch in Q is Einsteinian,

and so provided these patches are sewn together appropriately, then E will be a global

Einstein space. So, we require the cover W to specify gE globally, and the cover Q to

evaluate it locally. This dual perspective gives rise to a system of equations that must

be satisfied to ensure the existence of the global metric – see Step 5. The cover WB of

inversed balls will be used in defining the “Bell” functions (in Step 3), which will give

the metric gE the nature of being real analytic on every patch.

Step 3: The global smooth and locally analytic metric gE on E.

We have assumed E to consist of real analytic Einstein patches. It remains to specify the

global metric appropriately. Consider the cover W and the idea of “sewing” together

the Wia patches to obtain the global metric. For each ia let ψ
(ia)
αβ ∈ C∞(Wia −→ R)

be 1
2
(n + 1)(n + 2) symmetric analytic functions on Wia for α, β ∈ {1, . . . n + 1}, and

consider the co-ordinate functions xα
(ia) : Wia −→ R where α = 1, . . . , n+ 1. Define

gE(U, V ) :=

 ∑
α,β∈{1,...,n+1}

∑
ia∈J

1≤a≤N

fia ψ
(ia)
αβ dxα

(ia) ⊗ dxβ
(ia)

 (U, V ),

where U, V ∈ TE and the fia are “Bell” functions (refer to §2.2) defined on W , and

strictly positive on WB. The composition of the analytic functions fia and ψ
(ia)
αβ is

analytic which implies that gE is real analytic. Set
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ψ̆
(ia)
αβ ≡ fia ψ

(ia)
αβ ∈ C∞(E −→ R).

Then we have

gE(U, V ) :=

 ∑
α,β∈{1,...,n+1}

∑
ia∈J

1≤a≤N

ψ̆
(ia)
αβ dxα

(ia) ⊗ dxβ
(ia)

 (U, V ). (4.4.4)

Now we employ the cover Q to evaluate the metric locally. Taking any Qj ∈ Q with

co-ordinates yσ
(j), 1 ≤ σ ≤ n+ 1, we have:

gE |Qj
=
∑
τ,σ

 ∑
α,β∈{1,...,n+1}

∑
ia∈J

1≤a≤N

ψ̆
(ia)
αβ

∂xα
(ia)

∂yτ
(j)

∂xβ
(ia)

∂yσ
(j)

 |Qj
dyτ

(j) ⊗ dyσ
(j),

having used that

dxα
(ia) =

∂xα
(ia)

∂yτ
(j)

dyτ
(j).

Thus, the components of gE |Qj
are

[g
(j)
E ]τσ =

 ∑
α,β∈{1,...,n+1}

∑
ia∈J

1≤a≤N

ψ̆
(ia)
αβ

∂xα
(ia)

∂yτ
(j)

∂xβ
(ia)

∂yσ
(j)

 |Qj
, 1 ≤ τ, σ ≤ n+ 1, (4.4.5)

which are all analytic functions on Qj.

Consider the metric evaluated at a point p ∈ Wia . Note that the fia are only

non-zero on the WBia ⊆ Wia , which implies that the metric has zero contribution from

these Wia containing p outside of the corresponding WBia . Note also that the sums over

ia ∈ J , 1 ≤ a ≤ N , have at least N terms for each α, β – c.f. Step 2. The evaluation

of the global metric in the locally Einsteinian cover Q shall be employed to generate

(finite) systems of equations that must be solved in order for the global metric to have

the desired local properties.
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Step 4: The specification of the local nature of E.

This follows by construction: since the local embedding result stipulates that the local

Einstein metric has the form diag(ḡab, 1), for any patch Qj in M ′, we must have

[g
(j)
E ]ab = ḡab , 1 ≤ a, b ≤ n, (4.4.6)

[g
(j)
E ]a(n+1) = 0 , 1 ≤ a ≤ n, (4.4.7)

[g
(j)
E ](n+1)(n+1) = 1. (4.4.8)

where [g
(j)
E ]τσ is given by (4.4.5). These relations ensure that the global metric gE

coincides with the local Einstein metric on any local embedding patch. Any other

patch of E has a metric given by the local representation of the metric for the arbitrarily

specified global Einstein space Ē . Thus, [g
(j)
E ]τσ is known for all patches Qj. This local

specification of E is utilized in the next step, where we show the existence of the

unspecified functions ψ
(ia)
αβ .

Step 5: The existence of functions ψ
(ia)
αβ on E.

As yet we have not completely specified the global embedding since we need to ensure

that where patches overlap, their metrics coincide, and that the functions ψ
(ia)
αβ do in-

deed exist on E . Since the fiaψ
(ia)
αβ are defined on Wia but are non-zero only inside WBia ,

and since dom(WBia) = dom(Qj), the components (4.4.5) of gE |Qj
can be rewritten as:

[g
(j)
E ]τσ =

∑
α,β∈{1,...,n+1}

∑
Υ

{
fia

∂xα
(ia)

∂yτ
(j)

∂xβ
(ia)

∂yσ
(j)

}∣∣∣Qj
ψ

(ia)
αβ , (4.4.9)

where 1 ≤ τ, σ ≤ n+ 1, and Υ = {ia ∈ J | 1 ≤ a ≤ N | dom(Wia) ∩ dom(Qj) 6= ∅}.

Note that the ψ
(ia)
αβ are the only unknown functions in the above relation since [g

(j)
E ]τσ

is specified. The components of (4.4.9) yield 1
2
(n + 1)(n + 2) equations on every Qj.

Now fix τ, σ ∈ {1, . . . , n+ 1}, and let

[g
(j)
E ]τσ = Φ(j), and

{
fia

∂xα
(ia)

∂yτ
(j)

∂xβ
(ia)

∂yσ
(j)

}∣∣∣Qj
= Θαβ

(ia)(j) (4.4.10)

Then (4.4.9) becomes a linear functional equation with analytic coefficients, where

the ψ
(ia)
αβ are linearly independent since the patches are distinguished by different co-

ordinate functions:
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Φ(j) =
∑

α,β∈{1,...,n+1}

∑
Υ

{Θαβ
(ia)(j) ψ

(ia)
αβ }. (4.4.11)

From (4.4.10), the positivity of fia|Qj
, and the fact that at least one of the

∂xα
(ia)

∂yτ
(j)

is

non-zero for any given τ , we may conclude that (4.4.11) evaluated at a point will have

at least N variables ψ
(ia)
αβ with non-zero coefficients. (See also the comment to Step 2.)

Recall that any point in E lies in a maximum of d elements of the cover Q. So

consider the domain in E that consists of the maximum d overlaps of the Qj’s:

Qj1

⋂
· · ·
⋂

Qjd
=

d⋂
r=1

Qjr .

Now we want to show that there exist solutions ψ
(ia)
αβ on this intersection. Thus, (4.4.11)

must be solved on Qj1 , . . . , Qjd
simultaneously. So on ∩d

r=1Qjr we have one system

consisting of d equations:

(Σ1)


Φ(jr) =

∑
α,β

d∑
ia=1

N∑
a=1

{Θαβ
(ia)(jr) ψ

(ia)
αβ },

1 ≤ r ≤ d

that must be solved. The number of independent variables in (Σ1) is at least N , by

the above argument. Now we follow a stepwise procedure to extend the ψ
(ia)
αβ solutions

on

Qj1

⋂
· · ·
⋂

Q̂js

⋂
· · ·
⋂

Qjd
,

then

Qj1

⋂
· · ·
⋂

Q̂js

⋂
· · ·
⋂

Q̂jk

⋂
· · ·
⋂

Qjd
,

and so on until we have solutions on each Qj1 , . . . , Qjd
, and so on ∪d

r=1Qjr . Note that

the ̂ means that the expression underneath must be omitted.

Now on Qj1

⋂
· · ·
⋂
Q̂js

⋂
· · ·
⋂
Qjd

we have a system of d− 1 equations:

(Σ2)


Φ(jr) =

∑
α,β

d∑
ia=1

[Bi]*Qjs

N∑
a=1

{Θαβ
(ia)(jr) ψ

(ia)
αβ },

1 ≤ r ≤ d , r 6= s.

63



and there are
(

d
d−1

)
such systems. The number of independent variables here is again at

least N . On Qj1

⋂
· · ·
⋂
Q̂js

⋂
· · ·
⋂
Q̂jk

⋂
· · ·
⋂
Qjd

we have a system of d−2 equations:

(Σ3)


Φ(jr) =

∑
α,β

d∑
ia=1

[Bi]*Qjs

⋃
Qjk

N∑
a=1

{Θαβ
(ia)(jr) ψ

(ia)
αβ },

1 ≤ r ≤ d , r 6= s, k

and there are
(

d
d−2

)
such systems, each having at least N independent variables. We

continue in this way until on Qjr we have a system consisting of 1 equation:

(Σ(d))


Φ(jr) =

∑
α,β

d∑
ia=1

[Bi]*Qj1

⋃
...

⋃
Q̂jr

⋃
...

⋃
Qjd

N∑
a=1

{Θαβ
(ia)(jr) ψ

(ia)
αβ },

and there are
(

d
1

)
= d such systems, each having at least N independent variables. So,

for each choice of τ and σ, the total number of systems is

(
d

d

)
+

(
d

d− 1

)
+

(
d

d− 2

)
+ · · ·+

(
d

1

)
=

d∑
m=1

(
d

m

)
,

and the total number of equations that must be solved is

M = (d) ·
(
d

d

)
+ (d− 1) ·

(
d

d− 1

)
+ (d− 2) ·

(
d

d− 2

)
+ · · ·+

(
d

1

)
=

d∑
t=1

t ·
(
d

t

)

Now this procedure must be carried out 1
2
(n + 1)(n + 2) times to solve ψ

(ia)
αβ for all

τ, σ ∈ {1, . . . , n + 1}. If there are more variables than equations, then there will exist

solutions ψ
(ia)
αβ on ∪d

r=1Qjr . So set

N =
1

2
(n+ 1)(n+ 2)M + 1.

This value is acceptable since N is finite but arbitrarily large. Thus, we have shown

that the metric gE |∪Qj
exists.

Now, we want to extend the ψ
(ia)
αβ on the whole of E . For any p ∈ E there exists

a maximum of d patches Qj covering p. Choose any one of these patches, say Qj0 ,

and take any other point q in Qj0 . Now q may lie in a maximum of d patches Qj′
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including Qj0 . So we have 2 unions of patches
⋃
Qj and

⋃
Qj′ that are overlapping

on Qj0 . Their corresponding metrics gE |∪Qj
, gE |∪Qj′

must coincide on the intersection

(
⋃
Qj′)

⋂
(
⋃
Qj′) ⊆ Qj0 , provided that the equation

Φ(j0) =
∑

α,β∈{1,...,n+1}

d∑
ia=1

[Bi]⊆Qj0

N∑
a=1

{Θαβ
(ia)(j0) ψ

(ia)
αβ },

holds on both the systems solved on
⋃
Qj and

⋃
Qj′ , which it does, by construction.

This implies that there exist solutions ψ
(ia)
(αβ) on

⋃
Qj

⋃ ⋃
Qj′ . Thus, by considering

all such overlapping unions, we have shown that the ψ
(ia)
(αβ) exist on the whole of E . This

implies that the patches of the global space are appropriately “sewn” together, and the

global metric gE is fully specified.

Step 6: The isometry condition.

We recall that an embedding is globally isometric if it is isometric at all points of the

embedded space. Consider any p ∈ M and note that this point is mapped to a point

f(p) on the hypersurface y = c in E . Now f(p) lies in some Qj ∈M ′ and y
(n+1)
(j) = c at

f(p). The metric gE at f(p) coincides with the metric gM at p:

gE |f(p) =
(
[g

(j)
E ]τσ dyτ

(j) ⊗ dyσ
(j)

) ∣∣∣∣y(n+1)
(j)

= c

= [g
(j)
E ]ab |y(n+1)

(j)
= c

dya
(j) ⊗ dyb

(j)

= ḡab |y(n+1)
(j)

= c
dya

(j) ⊗ dyb
(j)

= gab dya
(j) ⊗ dyb

(j)

= gM |p.

This can be done for all p ∈M . Thus, f : M −→ E is a global isometric embedding.

By construction, the global embedding is analytic. Hence, there exists a global

isometric analytic embedding of M into E .
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4.4.3 Comments on the Proof and Discussion

Now we provide several comments on the above theorem.

The principal differences between Katzourakis’s proof and the one presented here

lie in Steps 1 and 5: the specification of the bulk cover and the counting arguments

demonstrating the existence of the global metric.

Katzourakis begins by taking Y to be a 1-dimensional analytic pseudo-Riemannian

manifold with co-ordinate y, and specifying E to have the topology M × Y that re-

sembles the topology of the local embedding space for M , and which is a trivial fibre

bundle with projections π := E −→M and prY := E −→ Y . Due to its product struc-

ture, E inherits the properties of being real analytic, Hausdorff and paracompact from

M and Y via their property of being metric spaces. Crucially for Step 4, the product

structure also ensures that every neighbourhood of E is of precisely the form of the

(n + 1)-dimensional neighbourhoods induced by the local embedding theorems (the

Cauchy-Kowalewski theorem applied to the n-dimensional initial data), and hence, are

Einsteinian.

The product structure of E yields a natural cover consisting of the product charts

of M and Y , from which one may form the locally finite refinements W , WB and Q,

that are required to fully specify the global metric gE . We have not assumed as much

for the topology of E , so we must proceed through a more elaborate construction first

in Step 1.

Katzourakis takes gE as the product metric on M ×Y after assuming that topology

for the embedding space, and uses an (unspecified) analytic function ψ(ia) : Wia −→ R

to represent part of the (n + 1)-th component of the global metric. We necessarily

require more functions, but the central idea is the same though: the specification of a

global metric on W via the introduction of analytic maps from patches in W to R.

Katzourakis specifies the global Einsteinian nature of E through its (assumed) local

Einsteinian nature on every patch of the cover Q, whereas we construct a bulk that

is globally Einstein, and therefore locally Einstein. His misinterpretation of the local

embedding result (Dahia and Romero 2002b) is evident here, as he claims that the bulk

E with topology M × Y , where M is any given analytic pseudo-Riemannian manifold,

is locally Einstein. However, this fails if M is not Ricci-flat. If it is, Katzourakis’s
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construction of E as a product manifold ensures that every patch will be a local em-

bedding space. Since we do not pose any restrictions on M , our local specification

of E is different from his: we have to manually embed M in E to generate the local

embedding patches – see Step 1.

Our construction necessarily requires 1
2
(n + 1)(n + 2) sets of systems, rather than

the one set as is the case for Ricci-flat embedding spaces. Note that the required N

may be made smaller by first placing the global metric in Gaussian normal form. By

construction, the local isometry induces global isometry.

4.5 Generalized Results

The above result may be extended to arbitrarily given pseudo-Riemannian embedding

spaces.

Theorem 2. Any n-dimensional real analytic pseudo-Riemannian manifold (M, gM)

has a global isometric analytic embedding into an arbitrarily specified (n+1)-dimensional

pseudo-Riemannian manifold (E , g̃E).

Overview of the proof:

We do not provide a detailed proof since the methodology is essentially the same as

for Theorem 1, but with a few modifications. In Step 1, we begin with a more general

assumption by taking Ē to be the arbitrarily specified pseudo-Riemannian space (with

Ricci tensor Sαβ) of the second Dahia-Romero Theorem (Dahia and Romero 2002a).

We then construct another pseudo-Riemannian space E having a cover formed from

some cover for Ē and the (n+1)-dimensional patches generated by the local embedding

theorem (Dahia and Romero 2002a) applied to the n-dimensional manifold M . We

denote the Ricci tensor of these patches by R̃µν which is equivalent, up to a local

analytic diffeomorphism, to Sαβ. M is embedded as the hypersurface Σc, defined by

y = c, in E . The global metric must now include additional factors that take the

y = c patches in E to the Ricci equivalent (diffeomorphic) patches on which the local

embeddings are guaranteed. So we define
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gE(U, V ) :=

∑
µν

∑
α,β

∑
ia∈J

1≤a≤N

fia ψ
(ia)
αβ

∂gα
(ia)

∂xµ
(ia)

∂gβ
(ia)

∂xν
(ia)

dxµ
(ia) ⊗ dxν

(ia)

 (U, V ),

where

gα
(ia)(x

µ
(ia)) = x′ α

(ia) =

x
α
(ia) if Qi 6∈M

′
,

ḡα
(ia)(x

µ
(ia)) if Qi ∈M

′
,

and the ḡα
(ia) satisfy

R̃µν(x
γ
(ia)) =

∂ḡα
(ia)

∂xµ
(ia)

∂ḡβ
(ia)

∂xν
(ia)

Sαβ(x′ κ
(ia)).

Note that the above expression specifies the local analytic diffeomorphism.

In fact, we may present the results yet more generally as:

Theorem 3. If any n-dimensional real analytic metric space has a local isometric

analytic embedding into some specified m-dimensional metric space (m ≥ n+ 1), then

there exists a global isometric analytic embedding into that space.

or even, dropping the isometry requirement,

Theorem 4. If any n-dimensional real analytic paracompact space has a local analytic

embedding into some specified m-dimensional paracompact space (m ≥ n + 1), then

there exists a global analytic embedding into that space.

The proof of Theorem 4 is essentially the “sewing” argument presented above. Theorem

3 is at a metrical level so that we may speak of isometry and rests on our constructions

for the bulk and the global metric.

In light of the above, we may consider Theorem 2 and Theorem 1 to be corollaries,

in which the conditional statement in Theorem 3 is guaranteed by the Dahia-Romero

results.
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4.6 Singularities and Multiple Brane Scenarios

Katzourakis (2005b,c,d) generalizes his embedding theorem for Einstein spaces to in-

clude situations in which the bulk contains differential-topological singularities, or in

which several branes are globally and analytically embedded into the bulk, or where

there is a combination of both. The proofs for all three scenarios rely on the (limited)

main result for Einstein spaces, which indicates that these results may also be limited.

First, we investigate the situation (Katzourakis 2005b) in which several, say m,

branes are embedded into the bulk. The branes are specified as pseudo-Riemannian

manifolds M
(n1)
1 , . . . ,M

(nk)
k , . . . ,M

(nm)
m with dimension n1, . . . , nk, . . . , nm, respectively.

Set

M ≡M
(n1)
1 × · · · ×M

(nk)
k × · · · ×M (nm)

m .

By the property of its product structure, M is a pseudo-Riemannian manifold with

dimension n =
∑m

k=1 nk. Now, Katzourakis uses the same methodology as that of

his Einstein embedding theorem applied to this M . It is claimed that E = M × Y ,

where Y is a 1-dimensional analytic manifold, is an Einstein space globally. In this

way, each brane has a global isometric embedding into E and all the branes are disjoint

submanifolds in the bulk. However, we know that this can only work provided thatM is

Ricci-flat, which implies that each brane must be Ricci-flat. So, this generalized result

by Katzourakis is certainly limited. An analysis of the application of our construction

to this situation is underway (Amery and Moodley 2008), and further work is also

motivated by the physical interest in cases with singular brane energy-momentum.

Next, we consider the situation in which a n-dimensional analytic space-time M is

embedded into a (n+d)-dimensional Einstein space E with unsmoothable singularities

in E\M , the complement ofM in E . If the codimension d > 1, there can exist countable

many singularities of dimension (d − k), 0 ≤ k ≤ d, but if d = 1, there can exist only

one singularity that is either pointlike (0-d) or linelike (1-d). Katzourakis defines a

space Ĕ := M × F (where F is an analytic manifold of dimension d ≥ 1) and chooses

a set of distinct points (or spatial “anomalies”) in F to be the singularities. This set

is denoted by FΣ and it is assumed that F \FΣ remains connected. The product of FΣ

with points in M gives rise to a set of points in Ĕ . The complement of these points in
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Ĕ is taken as the analytic manifold E , which Katzourakis claims is a global Einstein

embedding of M . It seems that this proof also rests on misapprehensions about the

form of the local (and hence global) embeddings similar to those in the original result.

This issue will be the subject of future study.

4.7 Further Discussion

Now we consider the composition of an embedding with a diffeomorphism (and vice

versa). The resultant embedding is not guaranteed to be isometric. We demonstrate

this with the following example. Let (M, gM) be a Ricci-flat manifold and (N, gN) be

any other Riemannian manifold that satisfy the conformal mapping σ (Stephani et al.

2003)

gM = e2u(xi)gN .

It is well-known that such transformations are diffeomorphisms (Choquet-Bruhat et al.

1982). Since M is Ricci-flat, it has a global isometric embedding ε into M × Y with

metric (gM , φ). Composing this embedding with the above diffeomorphism yields the

metric (e2ugN , φ). For this composition ε ◦ σ to be an isometric embedding of N into

M × Y , we require

e2ugN = gN at y = 0,

which implies that u = 0 at y = 0. However, since u is a function of xi only, this

gives u = 0 for all y. Thus, we have gm = gN , which is a contradiction since M and

N are different manifolds. Hence, ε ◦ σ is not an isometric embedding. Similarly, we

can show that the composition of a conformal mapping with an embedding fails the

isometric condition. This suggests that it is not sufficient to consider only embeddings

for representative members of classes of diffeomorphic space-times (as is the case for

the homotopy analysis carried out by Katzourakis (2005a)).

We observe that our theorems demonstrate that the work in reducing the codi-

mension is done locally, and at a metrical level. The latter point indicates that the

above construction of the global embedding is not necessarily unique from a topologi-
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cal view: the metrical formulation in general relativity constrains the global topology,

but does not completely specify it (Lachieze-Rey and Luminet 1995, Reboucas 2004).

This is evident, in the global construction, as the freedom to specify the functions

ψ
(ia)
αβ in many different ways since we have requested only that the number of func-

tions be more than the number of equations. We have shown that there do exist such

functions, but we have not actually solved them. Moreover, the global embedding is

not even unique at a metrical level as it appeals to the local results, which do not

necessarily guarantee uniqueness. In a sense, these considerations avoid concerns that

the Campbell-Magaard theorem and its extensions do not ensure a well-posed initial

value problem or the non-occurrence of singularities, since while such (global) proper-

ties may be present in other constructions, here we deal only with analytic manifolds

embedded, via one particular construction, into analytic manifolds. Note that the pre-

ceding caveats do not compromise the existence results: any embedding has the same

existential level as any solution to the field equations.
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Chapter 5

Closing Remarks

The study of higher dimensions is a popular and fertile field. The consequences of higher

dimensional cosmological models in astrophysics allows one to check the consistency of

these models with current observations, which may lead to new ideas of possible tests.

Embedding into Euclidean spaces has been useful in the classification of space-times

and in obtaining new solutions to the field equations.

The main task in this thesis was to construct global from local embeddings into

pseudo-Riemannian spaces. In order to carry out this research, we required a good

knowledge of concepts in general relativity and topology, which we have presented

in Chapter 2. In Chapter 3, we considered the Gauss, Codazzi and Ricci equations

that enable an embedding of one manifold into a higher-dimensional one. We focussed

our attention on static spherically symmetric space-times which have significance in

astrophysics, and discussed the formalism for embedding these space-times into five-

dimensional Einstein spaces. General solutions to the resulting sets of equations are

not yet known, and so it motivates one to investigate explicit embeddings of particular

space-times. Embeddings of astrophysical objects into higher dimensions can provide

insight into the properties of such objects. In this thesis, we have chosen to embed

the Reissner-Nordström and global monopole space-times because of their relevance to

astrophysics and early universe cosmology. The embedding for the Reissner-Nordström

space-time is quite easily obtained, but the equations governing the embedding of the

global monopole space-time are extremely complicated and remain to be solved. We

then proceeded to consider global embeddings in Chapter 4. We analyzed a result by
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Katzourakis (2005a) for Einstein embedding spaces and found that it applies only to the

Ricci-flat case. Moreover, there seemed to be a crucial misunderstanding that the local

Einstein embedding has the formM×F for any embedded spaceM , but this is only true

for Ricci-flat manifolds M . We followed most of the construction given by Katzourakis

and extended the proof to Einstein embedding spaces, and even more generally to

pseudo-Riemannian embedding spaces satisfying a local analytic diffeomorphism. We

also presented two further results pertaining to metric and paracompact manifolds.

As future work, one should consider space-times that possess singularities i.e. points

at which the metric diverges. An example is the Schwarzschild interior space-time

which is not analytic at r = 0. This is not such a problem for local embeddings since

one can simply remove the singularity. This idea is consistent with the local notions

of general relativity (Lachieze-Rey and Luminet 1995). However, the global situation

is more problematic as we need to take the singularity into account when embedding

M in E . In the case of stacking a manifold M , with a point singularity, along the

extra (n+ 1)th co-ordinate, one obtains a global embedding space that now has a line

singularity. Of course, one could say that singularities are not physical in reality. In

this case, the existence of analytic global isometric embeddings for (say) the Reissner-

Nordström or Schwarzschild exterior space-times are clearly beneficial to the study of

the astrophysical effects of higher dimensions, hitherto only studied numerically – c.f.

Wiseman (2002).

Other future directions include, at a global level:

• Relating the topological invariants for the global embedding space to those for

the local embedding space and the embedded space,

• A revisitation of Katzourakis’s homotopy analysis, using our construction,

• A similar treatment of Katzourakis’s extensions to singular and multiple brane

scenarios using our arguments.

A study of these questions is underway (Amery and Moodley 2008). At a local level,

the following issues seem particularly interesting and are the subject of current inves-

tigation:
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• Solutions to other specific embedding scenarios. This is essentially the task of

solving the 5-dimensional field equations exactly, for given initial/boundary data.

• An analysis of the conditions for which a given 4-dimensional space-time is embed-

dable into a 5-dimensional constant curvature space. This shall involve revisiting,

in detail, the original Dahia and Romero (2002a,b) proofs.
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aux dérivées partielles, Comptes Rend. Acad. Sci. Paris 15, 44 (1842)
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