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Everything should be made as sim­
ple as possible, but not simpler.
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PREFACE

Th is Ph.D. thesis has resulted from work which took place ove r a period of around
four and a half yea rs. During this time I have been involved in seve ral funded
research projects whe re the genera l them e has been that of fl ood forecasting and
spatial rainfall estimation.

Since this topic encompasses a broad range of tasks, techniques and algo­
rithms, my time has been spent focussing on many different issues. Ap art from re­
view ing and intern alizing the extensive literature on the subjects presented herein
(as well as finding ways to make my own contribution); I have had to gain ex­
perti se in computer programming using a number of languages (C, C++, Pyth on,
MATLAB) and related tools; code algorithms; develop and learn to use software
for handling the large datasets associated with Radar and Satellite; assist other
people in the group with man ipulating these data; source, procure and install a
Meteosat receiving station and data server; become profic ient with both Linu x
and Windows operating sys tems and understand the organiza tional set up and re­
lat ionship s betw een the role players in the Flood Forecasting field within South
Africa.

As a result this the sis does not attempt to docum ent in fine detail everything
that I have read , see n or worked on during this period, but rather to brin g together
a selection of these thin gs that is aimed at providin g solutions to real problems.

Sco tt Sinclair - December 2006
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ABSTRACT

Flood s cannot be prevented , but their devastating effects can be minimized if ad­

vance warning of the eve nt is available. The South African Disaster Management

Act (Act 57 of 2002) advocates a paradigm shift fro m the current "bucket and

blanket brigade" response-b ased mind set to one where disaster prevention or mit­

igation are the preferred options. It is in the co ntext of mitigating the effects of

fl oods that the development and impl ementation of a reli able flood forecasting

sys tem has major significance. In the case of flash floods, a few hours lead time

can afford disaster man agers the opportunity to take steps which may significantly

reduce loss of life and damage to property.

The engineering cha llenges in deve loping and imp lementing such a sys tem are

numerous. In this thesis, the design and implement at ion of a flash flood forecast­

ing sys tem in South Afri ca is cr itically exa mined. The technical aspects relating

to spatio-temporal rainfall es timation and nowcasting are a key area in which new

co ntributions are made. In particular, field and optical flow advec tion algorithms

are adapted and refined to help pred ict future paths of storms; fast and pragmatic

algorithms for co mbining rain gauge and remote sensing (rada r and satellite) es ti­

mates are re fi ned and validated; a two-dimensional adaptation of Empirical Mode

Decomposit ion is devised to extrac t the temporally persistent struc ture embedded

in rainfall fi elds. A second area of significant contribution relates to real-time

forecast updates, made in response to the most recent observed information. A

number of techniques embedded in the rich Kalm an and adaptive filtering litera­

ture are adopted for this purpose.

The work captures the curre nt "s tate of play" in the South African context and

hopes to provide a blueprint for future development of an essential tool for disaster

management. There are a number of natural spin-offs fro m this work for related

field s in water resources man agement.
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CHAPTER 1

INTRODUCTION

There is a paucity of work in flood forecasting in South Af rica and most con­
cerning is the fact that functioning systems in operational use are virtually non­
existent. Government has declared a "strategic intent" Buys (2005), to deliver
on the contents of the Disaster Management Act (2002). In this Chapter, a
background is given and the contributions made within the thesis are outlined.

1.1 Background

Severe floods can not be preven ted. Through appropriate plann ing and manage­

ment strategies, the devastatin g effects of floods ca n be reduced. Loss of life and

damage to infrastructure ca n be minimized but never co mpletely eliminated . The

white paper on disaster managem ent (W PDM, 1998) prese nts the data in tabl e 1.1,

show ing the estimated losses resulting fro m several disas ters in South Africa. Of

parti cul ar significance is the prom inence of flood events amo ngs t these disasters.

With large increases in populatio n and increasi ng urbanization (large ly driven

by povert y) there are more people living in informal settleme nts (near cities) .

Th ese settleme nts often encroach on flood plains as this is the only undeveloped

land which rem ains ava ilable. The people living in these settle me nts are those who

are most at risk, not only due to thei r geograp hical location in the floodplain but

also because (w ithout access to insurance policies) they do not have the financial

resources to recover from damage ca used by flooding. In addition man y formal

development s already ex ist (and co ntinue to be developed) in areas that are sus­

ceptible to fl ooding. Wh en the nature of the development is such that significa nt
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Place Disaster Cost
Ladysmith Floods, 1994 400 families evacuated,

R50 million damages

Merriespruit Slimes dam, 1994 17 lives lost,
R45 million damages

Pietermaritzburg Floods, 1995 173 lives lost,
Emergency shelter needed for 5 500

Ladysmith Floods, 1996 Damages to infrastructure: R25 million

South Africa Drought, 1991-92 49 000 agricultural jobs lost,

20 000 non-agricultural jobs lost,
Associated with 27% decline in
agricultural gross domestic product

Northern Province Floods, 1996 RI05 million damages
Mpumalanga Flood s, 1996 R500 million damages

Tab. 1.1: Estimated damages for several floods and a drought in South Africa.
[Adapted from WPDM, 1998]

dam age would result from flooding, ea rly wa rn ing systems provide a possibility

of reducing the risk to acceptable level s.

The recently promulgated Disaster Management Act (Ac t 57 of 2002) advo­

ca tes a paradigm shift from the current "bucket and blanket brigade" response­

based mindset to one where disaster prevention or mitigation are preferred. It is

in the context of mitigating the effects of flood events that the development and

impl em entation of a reliabl e flood forecastin g sys tem has major significance . In

the ca se of flash flood s even a sma ll am ount of lead tim e, of the orde r of a few

hours, can allow disaster manager s to take steps wh ich ma y significantly reduce

loss of life and damage to property.

Th e main requirement of an effec tive flood fore castin g system is the provision

of reliable, intelligible forecasts of flood flows with a rea sonable lead-time and

explicit error bounds. The forecasts mu st be made available at frequent intervals

to hydrological operators, deci sion makers and disaster managers, in a clearly

und erstandable form. Unfortunately, South Afri ca is a lon g way off from realizin g

such a situation in practice.

Important key phrases for on-line operation are: long lead time, frequent up-
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date s, estim ates including an indication of uncertaint y, confirmatory information

from the catchment, redundancy and feedbac k to improve estimates as new infor­

mation becomes available.

For off-line work, the key phrases are : evaluation of the sys tem and instru­

mentation of catchments, improvement of models, co mmitment to recalibration,

ability to simulate alternative scenarios, operator training and the development of

a reliable intelligible alerting system for disaster managers.

In a typical floodin g sce nar io, the alerting sys tem should trigg er the forecast­

ing sys tem to move from standby mode to ye llow alert, upon which, the infor­

mation strea m goes on-line and the models are ca librated at operational, rather

than at standby frequ ency. Once there is a perceived threat of flood damage as a

result of no intervention , the sys tem goes to orange alert and the flood mitigation

strategy is employed. It is at this stage that the information stream arriving in the

operations room is put to best use by disaster managers.

It is well known that in times of flood, thin gs to do not wo rk well: telemeterin g

equipment gets damaged by water or lightning, phone lines go dead, radio links

become erratic, computer links go down and people do unpredi ctable thin gs. The

important key to counteract these phenomena is redundancy in the information

strea m and well trained disaster management personn el. The sys tem needs to

have parallel measuring devices available, alon g with alternative communication

link s.

The tools available can be loosely divided into hard ware, software, algorithms

and the means of communication to the stakeholders . The appropriate hardware

available for use in South Afri ca includes the following: meteorologic al satellites,

weather radar, telemetering rain ga uges, telemeterin g stream gauges, fast com­

puters with large storage, telephones, ce ll phone networks, Internet, solar pan­

elslbatteries and UPS sys tems.

The software useful for flood forecasting, which is currently available and

does not require a large amo unt of modifi cation for incorporation into a sys tem,

includes: meteorol ogical prediction of rainfall - location and probability, satellite

es timation of rainfall , radar es timation of rainfall , Hydrologic catchment models
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and Hydrauli c river channel models.

Th ere is a large number of co nceptual or physically-based catchment models

in use throughout the world. A few of them are full y distr ibuted, the remainder

are either lumped models or semi-distributed models; the latter are effectively

aggregations of the lumped mod els.

In this context, lumping refers primaril y to the spatial dimension , the verti­

cal being compartmentalized into a varying number of storage elements, incor­

porating linear or non-linear models of the water transfer processes between the

elements. A typical lumped model may have a number of adjustable parameters,

which need ca libration.

Physically based catchment models, which may mimic the phy sical processes

on a small plot, need calibra tion when used in lumped for m to model an area

larger than a few square metres. The non-linear processes which are likely to vary

a grea t deal in space and time, are often assumed to maint ain their mathematical

relationships when aggregated ove r tens or hundreds of square kilometres. Not

surprisingly the numbers which come out of the ca libration proc ess (forcing the

model to fit the ca libration data set) in some cases bear no resembl ance to their

physical values in small areas.

There are other approaches to rainfall -run off modelling. The first, discus sed

here , is the "difference equ ation" app roach borrowed from time series analysis.

Th ese models have difficult y in cop ing with losses due to infiltration and evapo­

tran spiration in the relatively dry periods but may be quite reasonable eve nt mod­

els during very wet times where losses are lower and the rainfall to runoff con­

version process is clo se to linear. Method s of est imating the parameters of these

linear models include Least Squares in the time domai n and spectral techniques

using Fouri er and Laplace transforms in the frequency domain .

Another type of model is related to the earliest known form of rainfall/runoff

model used in Hydrology, namely the Unit Hydrograph (UH) and its successors.

If the UH is approx imated by a non-negative transfer funct ion (like the impul se

response function of a linear reser voir), modified by incorporating a loss functi on,

it can convenientl y be fitted to rain fall-runoff data. Its advantage is the small num-
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ber of parameters definin g the UH and the maint enance of positi ve flows due to

the funct ional form of the impulse respon se function. It is no wonder that engi­

neering hydrologists have for many years trus tingly used the Unit Hydrograph in

various forms to estimate extreme floods or for relatively impervious catchme nts.

There are two approaches to producing model forecasts in real time. The first

schoo l chooses to update the model (state variables, input or parameters) on-line.

The second schoo l produces the forecas ts using a model ca librated on histori cal

data, without updating the model parameters. At fi rst sight the parameter updating

approach appears to make better sense; however, in some cases this may result in a

large amount of computation to be done on-line, adjusting the models parameters

to give the best fit to the most recen tly acquired (often noisy) data. The model

updatin g tasks are often performed by filtering techniques (e.g Kalm an filter),

which are efficient and have the add itional benefit of providi ng the means to give

explicit error est imates for the forecasts .

1.2 A proposed framework for flash flood forecast­

ing in South Africa

In this thesis an attempt is made to provide a blueprint for flash flood forecasting

sys tems in South Africa . The foc us is not only on the scie nce required to ove r­

co me the various difficult ies wh ich flood forecasting prese nts, but also to provide

a generic framework which can be adap ted and updated in response to spec ific

needs, as skills in this area are developed. Figure 1.1 shows a schematic over view

of the key components required by a flood forecasting system, the rema ining chap­

ters in this thesis tackle eac h of these co mpo nen ts in greater depth.

Arguably the most important inpu t to any flash flood forecasting sys tem is pre­

cipitation. In most of South ern Africa the influence of snow ca n safely be ignored

and the measurement of rain fall becomes the most import ant factor in determining

the sys tem input. As described in detail in chapter 3, there are three measurement

devices in South Africa which provide estimates of rainfall at suitab le spatial and

temporal resoluti on for fl ash flood forecasti ng. The rainfa ll estimates produced
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Radar Satellite

Streamflow Observations

Fig. 1.1: A schematic overview of the main components required for a successful
flood forecasting system.

from rain gauges, weather radar and meteorological satellite may be combined in

an optimal way to produce the best spatial estimate of rainfall for the region and,

in particular, the catchment of interest. The resulting combined rainfall estimate

can be fed into display systems for direct visualization of instantaneous and ac­

cumulated rainfall. The estimates are also used as input to catchment models and

converted to stream flow, the core output of the flood forecasting system.

The nature of the catchment model is not dictated here as its implementa­

tion and effective use are dependent on the expertise and data which is available.

In South Africa the necessary hydrological expertise does not exist in many of

the municipal structures which are responsible (by law) for ensuring appropriate

flood mitigation strategies, including flood forecasting systems. For useful real­

time operation, the catchment models need to be informed by real-time stream­

flow observations which provide a means of updating the models performance

and improving forecasts. The concepts related to model updating are discussed
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in chapter 2. To improve the lead-time of streamflow forecas ts using current in­

formation , rainfall forecasts can prove useful. Short term rainfall nowcastin g is

dealt with in chapter 4 . Stochastic nowcasti ng models can provi de the means for

extending the information from cur rent best spatial rainfall fields into the future.

1.3 Summary of publications arising from this study

Some of the work presented in this thesis has appeared in the publications listed in

this section. In a few cases the text and figures appear here in an almos t unalt ered

form, while in others, additions, refinements and improvements have been made.

Copies of the peer-reviewed journal articles are included in the App endi x of this

document.

Peer reviewed journal articles

Sincla ir, S. and Pegram , G. (2005a) . Combining radar and rain gauge estimates

using conditional merging. Atmospheric Science Letters, 6:19- 22.

Sinclair, S. and Pegram, G. (2005b) . Empirical Mode Decomposition in 2-D space

and time: a tool for space- time rainfa ll analys is and nowcasting. Hydrology and

Earth System Sciences , 9:127-1 37.

Technical reports

Pegram, G., Sinclair, S., Parak , M. , Sakulski, D., and Nxum alo, N. (2006a) . Na­

tional Flood Nowcastin g System: Towards an integrated mitigation strategy. Tech­

nical Report 1429/1/06, Water Research Commission, Pretoria, South Africa.

Pegram , G., Sinc1air, S., and Wesson, S. (2006b). Daily Rainfall Mapping over

South Africa: Mapping. Techni cal Report 1425/1/06, Water Research Commis­

sion, Pretoria, South Africa.
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Sinclair, S. and Pegram, G. (2004a). A Flood Nowcasting System for the eThek­

wini Metro. Volume I: Umgeni Nowcasting using Radar - An integrated pilot

study. Technical Report 1217/l/04, Water Research Commission , Pretoria, South

Afric a.

Conference proceedings and presentations

Mkwananzi, N., Pegram, G., and Sinclair, S. (2003). Modelling flood inundat ion

in the Mlazi river under uncertaint y. In Proceedings of the 11th South African

Nati onal Hydrology Symposium , Port Elizabeth , Sou th Africa .

Pegram, G., Seed , A., and Sinclair, D. (2002). Comp arison of Meth ods of Short­

term Rainfield Nowcas ting. In Proceedings of the 27th EGS general asse mbly,

Nice , France.

Pegram, G., Deyzel, I. , Sinclair, S., Visser, P., Terblanche, D., and Green, G.

(2004) . Daily mapping of 24 hr rainfall at pixel sca le over South Afric a using

satellite, radar and raingauge data. In Proceedings of the 2nd IPWG Workshop,

Monterey, CA, USA.

Pegram, G. and Sinclair, S. (2004) . National Flood Nowcasting System towards

an integrated mitigation strategy in South Africa. In Proceedings of the 6th Inter­

national Symposium on Hydrological Applications of Weather Radar, Melbourne,

Australia.

Sinclair, S., Ehret, U., Bardossy, A., and Pegram , G. (2003). Comparison of Con­

ditional and Bayesian Methods of Merging Radar and Rain gauge Estimates of

Rainfields. In EGS - AGV - EVG joint assembly, Nice, France.

Sincl air, S. and Pegram, G. (2003b) . The Design and Implementation of a Real­

Time Flood Forecasting System in Durban, South Africa. In EGS - AGV - EVG

j oint assembly, Nice, France.
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Sinclair, S. and Pegram, G. (2003a). Combining Traditional and remote sensing

techniques as a tool for Hydrology, Agriculture and Water Resources Manage­

ment. In Proceedings of the 11th South African National Hydrology Symposium,

Port Elizabeth, South Africa.

Sinclair, S. and Pegram, G. (2004b). Combining radar and rain gauge rainfall

estimates for flood forecasting in South Africa. In Proceedings of the 6th Inter­

national Symposium on Hydrological Applications of Weather Radar, Melbourne,

Australia.

Sinclair, S. and Pegram, G. (200Sc). Empirical Mode Decomposition in 2-D space

and time: A tool for space-time rainfall analysis and nowcasting. In Proceedings

of the 12th South African National Hydrology Symposium, Pretoria, South Africa.

Sinclair, S. and Pegram, G. (200Sd). Space-time rainfall analysis and nowcasting

using Empirical Mode Decomposition in 20. In EGU general assembly, Vienna,

Austria.

1.4 Technical and scientific contributions

The main technical and scientific contributions in this thesis are outlined in this

section. Pointers are given to the relevant sections within the document and further

discussion of each contribution is presented in the concluding chapter (Section

6.1).

1. A two-dimensional extension of Empirical Mode Decomposition (EMD) is

presented and applied to the analysis of spatial rainfall data. EMD analysis

explicitly accepts non-stationarity in the data and does not rely on the pre­

defined basis functions common in other (e.g . Fourier, Wavelet) methods.

The work is a new contribution, published in Sinclair and Pegrarn (200Sb)

and discussed in detail in section 4.2 of the thesis.
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2. A novel technique for the accumulation of spatial rainfall fields is presented.

It uses advection vectors computed between success ive scans to generate

path integrals. The approach presented here refines those reported by Anag­

nostou and Krajewski (1999a) and Hannesen (2002) . The accumulation

scheme is presented in section 3.3.

3. The String of Beads Model (SBM) presented in Pegram and Clothier (1999)

and Clothier and Pegram (2002), is adapted for short term nowcasting and

compared with the Spectral PROGnosis (S-PROG) model (Seed, 200 I ).

SBM in nowcasting mode is a new contribution, described in detail in sec ­

tion 4.1.2.

4. The conditional merging technique of Ehret (2002) has been adopted and

validated using cross-validation techniques for synthetic as well as observed

rainfall data . The technique has been compared with an implementation

of the Bayesian merging technique (Todini, 200 I) and found to perform

competitively. The conditional merging technique has been extended to

provide a more formal discussion of its error structure. The conditional

merging algorithm is discus sed in more detail in section 3.5.

5. Although adaptive time series forecasting is certainly not new (Haykin,

200 I ; Ljung, 1987), the application of these techniques is usefu l in the

Hydrometrological context where traditional time series methods (Box and

Jenkins, 1970) and filters (Kalman filters, Extended Kalman filter) are quite

common (e.g . Seed, 2003 ; Szollosi-Nagy and Mekis, 1987; Todini 1978).

Adaptive filtering techniques are used to forecast non-stationary time series

data . The adaptive filtering techniques and model fitting procedures adopted

in this study are presented in chapter 2.

6. Imp lementation of data transfer mechanisms. A prototype system was set

up in the eThekwini disaster management centre (Durban, South Africa).

This system is a first in South Afri ca and has laid the ground work for the

eventual imp lementation of a more robust countrywide flood warning sys­

tem. This work is expanded upon in chapter 5.



CHAPTER 2

TIME SERIES FORECASTING AND

ADAPTIVE FILTERS

Time series foreca sting refers to the prediction offuture values ofa time series
at a specified lead-time, or range of lead-times. The predictions are typically
made using a model which has outputs based on previous values of the data
that we wish to predict and/or additional time series that are strongly correlated
with the data we wish to foreca st. The fir st section describes the general con­
cepts and the well-known ARMA models for stationary time series (Box and
Ienkins, 1970). The second section describes the AR1MA models of Box and
Ienkins (1970) used for foreca sting non-stationary time series. Section 2.3 pro­
vides a discussion of Adaptive time series models (e.g. Ljung, 1987; Haykin,
2001) and the Kalmanfilter (Kalman, 1960). Recursive models are particularly
suited to online computations, as they do not require all of the data history to
be retained. The strong link between Kalman filters and adaptive time series
models is examined. Finally, some applications ofthe techniques described are
presented which relate to the forecasting of streamfiow and important image
scale statistics measured from images ofobserved radar rainfall fields.

2.1 Stationary models

A time series is a sequence of the measured values of a process. A form al def­

inition of stationarity is given by Box and Jen kins (1970, pp 26 ff.) and para­

phra sed here. Let Zt be the obser ved value of a process at time l and z, =
( Zt , Zt+ 1, . .. ,Zt+ n- 1) be a sample of the process values at n equally spaced tem ­

poral intervals. Further, let Zi+k = ( Zt+k , Zt+ k+ 1, . . . , Zt+ k+ ll- d be a different set

11
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of n sampled process values with times of observation which have all been shifted

forward or backward by an integer amount k. In order for the process to satisfy

the conditions of strict stationarity, the joint probability distribution of the 11 ob­

servations f (zt, Zt+ 1 , . . . , Zt+n - l) must remain unchanged for any integer shift

k,

for all k E IT

Weak stationarity of order m is satisfied if the moments of the distribution

up to order ni are independent of the sampling position. As a special case; for

a Gaussian process to be strictly stationary, it is sufficient that the process have a

constant mean and covariance structure, since the multivariate Normal distribution

is completely characterized by its first and second order moments.

2.1.1 Autoregressive models

Autoregressive time series models use a linear combination of past values of the

process to be modelled, as a means of predicting future values. Following the

treatment of Box and Jenkins (1970), let 'Vt be the deviations of the measured

process Zt from its mean. The process may then be modelled as an Autoregres­

sive (AR) process of order p (where p is to be determined by appropriate model

identification procedures). The AR process model has the following form

where the c/Jj are autoregressive weights and at is a temporally uncorrelated, ran­

dom error term. If at is Gaussian, then 'Vt is a linear combination of Gaussian

variables and is therefore also Gaussian. It is thus conventional to standardize the

sample Z i by its mean 11 and standard deviation (J" such that

Zt - p
Yt = --­

(J"
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and Y , = (Yt, 71'+1 , .. . , Yt+n- 1) is Gaussian. In this case a t has a zero mean and a

variance to be estimated from past values of the process Yt and the model param­

eters . The terms p and a are the sample mean and standard deviation, estimated

as
1 n

fl = - ~ Zt+k- 1nL.-t
k= l

and
1 n 2

(]" = - ~ ( Zt+k - 1 - fl )
nL.-t

k=l

The introduction of the backward shift operator B, for which BYt = 71t-1 and

B i71t = Yt -i, allows the AR model to be written in a more condensed form as

where the AR operator, of order p is in polynomial form :

2.1.2 Moving average models

A moving average model defines the current value of a process as a linear com­

bination of the values of the random process at . Thus a Moving Average (MA)

model of order q is given by

where the moving average weights ei are not constrained to be positive nor sum to

unity, but do have restr ictions related to the stationarity conditions of the process.

As was the case for the AR model, we can define a moving average operator of

order q (again based on the backward shift operator)
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so that the MA model may be written in a condensed notation as

Yt = B(B )at

2.1.3 Autoregressive moving average models

The specification of a mixed Autoregressive Moving Average (ARMA) model is

given as follows

Thi s is an ARMA(p , q) process . It follows easily that this equation can also be

expressed in terms of the AR and MA operators, defined previously, giving the

condensed form for a general ARMA model as

<iJ(B )Yt = B(B )at

2.2 Non-stationary (fixed parameter) models

For certain classes of non-stationary processes the ARIMA models and the ir COUll ­

terparts can be used to model the time series. Autoregressive Integrated Movi ng

Average (ARIMA) models (Box and Jenkins, 1970; pp 85) basically operate on

differences of the original time series on the assumption that the process tends to

exhibit locally stationary behaviour but that the process mean is non-stationary.

The idea is to average (integrate) out the effect of the mean and produce a station­

ary process, which may then be efficiently modelled using the stationary models

described in section 2.1 .

Consider the process Z t described earlier. If the process z, is non- stationary it

is sometimes pos sible to define a stationary process

(2 .1)

= Z t - Z t - <I
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where d is an integer, so that ui, can now be modelled as a stationary ARMA

process

q)(B )Wt = e(B )at

Equation 2.1 can also be written as

(2.2)

where S is the summation operator. Equation 2.2 shows how the non-stationary

process z, can be obtained by summing the stationary process Wt> d times, hence

the name of the model: Autoregressive Integrated Moving Average (ARIMA).

Box and Jenkins ( 1970, pp . 90 ff.) show that the ARIMA model is useful for a

number of non-stationary time series typically encountered in time series mod­

elling applications .

Other alternatives include the ARMAX and ARIMAX models, where the X

stands for eXogenous variables . This class of model is equivalent to the trans­

fer function models described by Dooge (2003) and have been used often in the

Hydrological literature (e.g. Szollosi-Nagy and Mekis, 1987).

2.3 Adaptive models and the Kalman filter

The models described in sections 2.1 and 2.2 are only applicable to time series

which are stationary or can be transformed to stationarity using the methods de­

scribed in section 2.2. The parameters describing these models are assumed to

remain constant in time . Many naturally occurring time series do not conform to

these notions of stationarity but may, nevertheless, be described by similar models

if it is accepted that the parameters will vary in time . The solution is to re-estimate

the parameters as new data becomes available.

This section begins by describing the Kalman filter (Kalman, 1960), and then

moves through rec ursive least squares parameter estimation and finally ends with

univariate and multivariate adaptive filters. There is a close relatio nship between

the adaptive least squares algorithms and the Kalrnan filter (although the Kalman
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filter is only relevant to stationary time ser ies), these links will be emphas ized

where appropr iate, while retain ing a con sistent notation throughout.

2.3.1 The Kalman filter

The Kalm an filter (Kalma n, 1960) is a recur sive estimation scheme. It produces

optimal es timates (in a linear, least squares sense) of a dynamic system's state vec­

tor x. The sys tem may be described by the follow ing linear stochastic difference

equation

(2 .3)

at discrete times k = 0, 1,2 , " " where A k is the state transition matri x defin­

ing the transition of the states from one time-step to the next, B is a dimensional

conversion matrix and X k is the state vector at step k , Th e states are not directly

observable but measurements of the sys tem y are related to the states by the sys ­

tem measurement equ ation

k = 0,1 ,2"" (2 .4)

where Yk is the sys tem measurement vector and H, is the state to mea surement

tran sfer matrix .

The state noise W k and the measurement noise V k are assumed to be white

noise described by their mean and covariance

E [Wkl = w ; E[vkl = v, k = 0, 1, 2, . . .

T T-
E[W kW j ] = Q k Dkj ; E [Vk Vj ] = R k okj

with 15kj the Kronecker delta, ensuring that both W k and V k are serially uncorre­

lated . Although not strictly necessary (Sorenso n, 1985, pp 13) it is also usual to

require that

for all j, k

Th e derivation of the filter equations can be found in various texts (e.g . Gelb,



17

1974 ; Young, 1984) and is omitted here. An excellent review and co llec tion of

key papers on Kalm an filtering and its practical applications is given by Soren son

( 1985).

The filter equations fall into two categories: pred iction (equations 2.5 and 2.6)

and correc tion (equations 2.7-2.9). The prediction eq uat ions produce a priori es­

tim ates of the sys tem states and state error covariance matrix, whil e the correction

equations co mpute the a posteriori estimates of the system sta tes on the basis of

a new observatio n vec tor. Th e mea surements are given by equation 2.4. The ma­

trices A , B , Q,R , H and the measurements Yk are all assumed to be known up

to tim e k; the unkn owns are the values of the noise terms W A, and Vb which are

replaced by their expec ted values (w and v ), A suitab le, applicatio n dependent,

estima te is made for the initi al value of the state vector x Olo.

Prediction Equations: Th e a priori es timate X kl k -l of the sys tem states at

time k is give n by

(2.5)

where Xk-l lk - l is the a posteriori es timate of the system states at time k - 1. The

a priori es timate P k lk- l of the state estimation error covaria nce matri x at time k

is obtained from

(2 .6)

with P k - l lk - l the a posteriori estima te of the state estima tion error cov ariance

matri x at time k - 1.

Correction Equations: K k is the gain of the filter , computed from

(2 .7)

Xklk the a posterior i estimate of the system states at time k is found from

(2.8)
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and P k lk the a posteriori estimate of the error covariance matrix at time k from

Th e filter, summarized by eq uations 2.5-2.9, is app lied rec ursively with initial

estimates of the sys tem states and expected values of the error terms being made

at the first step. Th e predi ct ion equations are used to extrapolate inform ation to

the next time step and the correction are eq uations applied to upd ate the estimates,

once a measuremen t becomes avai lable .

It should be noted that the a posteriori update of the error eovariance matrix

P k1k (equation 2.9) is often given in the followi ng simpl ified form

(2.10)

Altho ught this form is theoretically eq uivalent (if derived by subst ituting equation

2.7 into equation 2.9) better numerical stability is ach ieved by co mputing the up­

date on the basis of equation 2.9 , which is valid for any ga in K k . Equation 2. 10

is only valid for a symmetrical K k since the error covariance matrix P k1k must be

symmet rical by definiti on.

2.3.2 Recursive least squares algorithm

Consider a ge nera l univariate linear process model given by

(2.11)

where Yk is the variable of intere st at time-step k, Z k is an m -vec tor of regression

variables at time- step k: x is the In-vector of model parameters and~k is a zero

mean, Gaussian, random error term. To simplify the discussion , the process Yk

and regression variables Zk are both assumed to have zero mean.

In the context of time series forecasting, the goal is to produce an estimate

Yk+n of the process value Yk+ n using Xk, the best estimate of the parameters x

give n the inform ation up to time k: The lead time of the forecas t is T1. Values of
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f/k+TI are computed using equation 2. 11, by replacin g x with Xk:.

Th e best estimate of X/,; is still to be found. Defining the predi ction erro r at

tim e k as

e /,; = Y/';+n - Y/';+n

T~= dk - Z k X k

where dk and d/,; can be generalized to represent (for example), a sum of forecast

values if this is required as the model fitting criterion, i.e . dk = Yk+1 + Yk+2 and

dl,; = Yk+1+ Yk+2 .

If the predicti on errors are req uired to have min imum variance, then the fol­

lowin g objective function
I,;

u= L e;
;= 1

(2 .12)

must be minimized. This is the well known Least Squares criterion and the esti­

mate of XI,; which minimi zes U is given by the solution of the Normal equations:

(2 . 13)

where
k

([> /,; = LZiz?
;=0

and
I,;

V I,; = L Zidi
;=0

Th e solution of the Normal equations (the linear sys tem of equation 2.13 ) re­

qui res the co mputation of ([> I,; - 1 . However, this matrix inversion is computation­

ally was teful for large m and, as it turns out, there is an elegant so lution whi ch

leads naturally to the Recursive Least Squares algo rithm (e.g . Youn g, 1984).
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It is possible to recursively compute

k -1

<I> k = L ZiZ? + Z kZkT

i= l

(2.14)

and as a result of similar reasonin g

What remains is to produce a recurs ive estimate of <P k - 1 in order to solve

A neat solution is provided by the Matrix Inversion Lemma (e.g . Haykin , 200 I ,

pp 440), which can be stated as follows . If matrices A and B are positive-definite

TII x 711, D is a positive-definit e n x 1/1 matrix, C is an 711 x ti matrix and they are

related by

(2.15)

then

(2.16)

Now, let A = <P b B - 1 = <I>k - r. C = Zk and D = 1. Combining equations

2.14, 2. 15 and 2. 16, it follows that

(2.17)

Simplifying the notation, let

and
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it then follows from equation 2.17 that

which is a recursive update of F J.:, as required . Finally, it remains to recursively

compute XA:

= Fk (Vk- l + zkdd

= FkYk-l + Fkz kdk

( 'J' )= F k- 1 - K kz k F k - 1 Vk- l + Fkz kdk
'J'= Fk- 1Vk- l - K kzk Fk- 1Y k- l + Fkz kdk

= Xk- l - K kz kTXk_1+ Fkz kdk

and since it can be shown that K A: = Fkz k, it follows that

Xk = Xk- l + K, [dk - Zk'J'Xk_l]

= Xk-l + Kk~k

where ~k is the a priori measurement estimation error, which (in general) is dif­

ferent from eJ.:, the a posteriori es tima tion error.

The univariate recursive least squares algorithm for upd ating the parameter

estimate Xk, can now be summa rize d in equations 2. 18 to 2.20.

F k - 1Z kK k = ----=---­
1 + ZkTF k_lZk

Xk = Xk-l + Kk~A,

rF ; = F k- 1 - K A:Zk F k - 1

(2 .18)

(2.19)

(2.2 0)

In equations 2.18 - 2.20, K k is the m x 1 gain vector, F k is them x m inverse

of cf> k' Xk is the a posteriori es timate of the parameters and (k is the a priori
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mea surement estimation error

2.3.3 Univariate adaptive time series algorithm

For time series which exhibit non-stationarity, the parameters of the model de­

scribed by equation 2.11 will be time varying. Ad apt ive time series models allow

for the possibility of time varying parameters by modi fying the objective function

U (Equation 2.12) in the following way (e.g. Haykin , 200 I)

I.

U = " e2
>.k - i

~ I

i=l

>. is a factor (0 < >. ::; 1) controlling the "memo ry" of the filter by ensuring

that the most recent value s of ek contribute most towards the objective function.

Thi s factor explicitly allows for the possibility of model parameters that change

with time. If >. = 1 then the algo rithm is exa ctly equivalent to the recursive least

squares algorithm (Equations 2.18 to 2.20) presented in sec tion 2.3.2.

The derivation of the adaptive filter equations (omitted for brevity) clo sely

follow s that presented in section 2.3.2 and result s in a very similar sequence of

equations.

F k - 1Z kK k = - - - - - -
>. + Z k TF k _ 1Zk

X I. = X k - l + Kk~k

In the preceding three equ ations, the variables are the same as tho se discussed in

section 2.3.2 . The equations are applied in the order they are presented above (as

new data become available) and forecast values of the time series may be obtained

USIng
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where n is the lead time of the forec ast, Yk+" is the forecast estimate at time k + ti

given all of the information up to time k and Zk+n = [Yk+n-l ,Yk+n- 2, .. . ,Yk+n_rn ]T

for an autoregressive model. Initial conditions must be specified for some of the

terms, the initial conditions suggested by Haykin (200 I, pp 620) are Xo = 0 and

P o = 16'- 1 with <5 a very small number and I the tti x m identity matrix.

2.3.4 Multivariate adaptive time series algorithm

The univariate algorithm (Section 2.3.3) is ea sily extended to the multivariate case

when the fading memories are all the same. The model retains a similar form

where Y» is a p-vec tor co ntaining the variables of interest at time-ste p k, H, is a

p x d matrix of regress ion variables at time-step k, X k is the d-vector of (possibly)

time varying parameters, v» is a p-vector of error terms and d = rnp2 (if the

model is of an autoregressive type). The algorithm for a recursive update of the

parameter estimate Xk is

K, = Fk_1HkT[AI + H kFk_1HkTt l

Xk = Xk- l + K dY k - H kXk- d

Fk = A- 1[Fk_1 - K kH kFk- 1]

Now, K, is the d x p sys tem gain matrix, Fk is the d x d inverse of the covariance

matrix describing the regression variables H A:, )ck is the estimate of the parameter

vector and AI is a p x p matrix, weighting the contributions of eac h component in

v» to the pred iction error criterion (e.g. the sum of squared, step-ahead, prediction

errors). Forecast values of the multivariate time series may be produced using
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where Y k+n is the p x 1 forecast vector at time k + n, given all of the inform ation

up to time k, and H I.:+n = [YI.:+ Il-1 , YI.:+n- 2, . . . , YI.:+n_ m]T for a multi variate au­

toregressive model. The initial conditions are consistent with the univariate case

described in section 2.3.3.

2.4 Application of recursive filters to the forecasting

of streamftow and spatial rainfall data

2.4.1 Case study - Stream flow forecasting using Kalman filters

Linear reservoir model

In order to demonstrate a simple use for Kalman filters in the context of flood

forecasting, a case study is presented. A linear catchment model is used to forecas t

streamfl ow on the Liebenbergsvlei catchme nt in Sout h Africa. Similar techniques

have been used successfully in the past (Szo llosi-Nagy and Mekis, 1987).

Figure 2.1 shows (schematically) the structure of the linear model used. The

model consists of an arrangement of three interlinked linear reservoirs. The vari­

able Si represents the storage in reservoir i while the k, are parameters which

determine the reser voirs response to a give n storage. Each reservoi r has a loss pa­

rame ter associated with it and the first reservoir is defined as the one that accepts

the rainfa ll inpu t. The model is conveniently represented in state-space form as

(Pegram and Sinclair, 2002)

S, = ASt - 1 + f3 Ut - l

Yt = eSt

with S, the vector of storages at time t, while

1- (1-+1-+1-) 0 01.: 1 1.:2 1.:5

A= 1 1-(1- +1-) 0 and1.: 1 1.:3 k6
1 1 1-(1- +1-)k2 k3 k4 k7
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Precipitation

Loss

Loss

Loss

Fig. 2.1: A linear reservoir model for flood forecasting .

The state-space formulation of the model may be directly interpreted in terms of

equations 2.3 and 2.4. The Kalman filter (equations 2.5 to 2.9) may therefore be

readily applied in order to update the state estimates St.
Figure 2.2 show schematically how the triple re ervoir model de cribed above

has been used in a semi-distributed sense to produce foreca st flows based on the

application of a Kalman filter for state updates. The catchment has been sub­

divided into twelve smaller homogeneous units. Each sub-catchment is then mod­

elled in a spatially lumped sense using average rainfall input and the linear model

shown in figure 2.1. The model parameters were fitted using a different flood

event of similar magnitude to those presented here.

Results

Figures 2.3 and 2.4 show forecasts for a number of lead-times of up to twelve

hours ahead. The forecasts were produced for fl ood events on the Liebenbergsvlei

catchment in the Free State province, South Africa. It is clear from these fi g­

ures that the accuracy of the forecasts reduce s with lead-time, as expected. This

is inescapabl e as the confidence with which forecasts can be made reduce s with

lead-time even for a perfect catchment model , if the rainfall input is not known
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Fig. 2.2: An illu tration showing how a linear reservoir model was u ed to model
a sub-catchment area. The Liebenbergsvlei was sub-divided into 12 relatively
homogeneous areas, each of which is modelled in a spatially lumped manner.

with certainty in advance. It is pleasing to note that the general character of the

events is retained even by the twel ve hour ahead foreca sts, as this indicates a rea­

sonable model respon se to the observed rainfall. In fact, it is quite remarkable

that such a simple catchment model works so well. It is conjectured that the an­

tecedent conditions of the catchment were such that a fairly linear rainfall -runoff

relationship existed in both cases. No investigation was made as to whether this

is the case when the catchment is relatively dry at the on et of a rainfall event.

Figures 2.5 and 2.6 show the square root of the mean sum of squared forecast

errors (Root Mean Sum of Squared Errors - RMSS E) for foreca sts made using the

linear reservoir model with Kalman filtering compared to the RMSSE from simple

per istence forecasts. A persistence forecast is one in which the current value of

streamflow is used as the forecast value for all lead-times. The value is, of course,

updated with each change in the forecast origin. Thi s is equivalent to assuming

that no chan ge in streamfl ow is expected with time. Persistence foreca sts take
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Fig. 2.5: Comparison of the root mean sum of squared forecas t errors (December
1995, Liebenbergsvlei).

no cognisance of the streamflow history and figures 2.5 and 2.6 show that the

Kalman filtered model foreca ts outperform the persistence forecast (despite a

relatively simple rainfall-runoff model), due to their incorporation of the observed

characteristics of the recent flows via the Kalman filter.

Figure 2.7 shows a set of scatter plots comparing observed and forecast stream­

flows for the 1995 event of figure 2.3. The left hand column of the plots show the

comparison for forecasts made using the linear reservoir model and Kalman filter

while the right hand column shows the comparisons for persistence forecasts ­

note the larger R2 values in the plots in the left hand column. Figure 2.8 shows

the ame comparisons for the 1996 event of figure 2.4. These figures provide an

alternative way of showing the model forecasts to be an improvement over the

persistence forecasts .
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Fig. 2.9: A time series plot of WAR and SMF. The data has been sampled at 5
minute intervals over the duration of a rainfall event lasting 42 hours during the
24th and 25th of February 1996. The observations of the event were made with
the SAWS MRL5 radar in Bethlehem, South Africa.

2.4.2 Case study - Adaptive time series forecasting of image

scale statistics

Pegram and Clothier (200 I ) describe the image scale structure of instantaneous

rainfall fields using two parameters, Wetted Area Ratio (WAR) and Spatial Mean

Flux (SMF) - a detailed description of these parameters is given in section 4.1.2.

As a useful test of adaptive forecasting algorithms for observed Hydrometeoro­

logical time series, the ATS models described in sections 2.3.3 and 2.3.4 are fitted

to sample WAR and SMF time eries estimated from South African radar data.

Figure 2.9 shows the WAR and SMF time series for a rainfall event that lasted 42

hours on 24/25 February 1996.

This event, caused the largest flood on record entering the Vaal dam, with

flows of up to 4700 m3/s recorded (Pegram and Terblanche, 1998).

The Vaal dam catchment has an area of 38500 km2 and experiences a mixture

of stratiform and convective rainfall, most often in the summer month s. In Febru­

ary 1996 the reservoir was full and experienced the largest inflow peak on record

4700 m3
. Co-operation between the DWAF Hydrology group and the SAWS
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team in Bethlehem, resulted in controlled releases from the re ervoir such that the

peak outflow was attenuated to 2300 m3 . Rainfall accumulations from the MRL-5

weather radar near Bethlehem, South Africa were produced at hourly intervals for

selected sub-catchments of the Vaal and relayed to the DWAF Hydrology group

by telephone. The rainfall values were then manually input into the rainfall runoff

model running in the DWAF offices and the resulting flow forecasts used to time

releases from the reservoir. This practical solution to a large flood event (with

prior warning due to the size of the catchment) relied on the skilled judgement

of knowledgeable people. In the case of flash flood forecas ting it is unlikely that

these resources can be mobilized or that a large dam exists to allow for some atten ­

uation of the flood. Techniques therefore require more automation and forec asting

becomes critical.

Adaptive time series model fitting

One of the advantages of adaptive model s is that the values of the parameters are

estimated from recent ob ervations in a recursive manner and the model is thus

fitted "on the fly". However, it is necessary to select the number of parameters

defining the model in an objective way (for autoregressive models, the model

length fixes the number of parameters).

A generally accepted measure (Haykin, 200 I), when using autoregressive mod­

els, is the Akaike information criterion , AIC (Akaike, 1973). The AIC balances the

dimen sionality m of the model relative to the sample size ti by penalizing the sum

of squares fi t as m becomes larger. Increasing m increa e the degrees of freedom

in the model which will result in (spuriously) good fi ts to the data as m approaches

ti, However, such close fits will not necessarily contain much structural informa­

tion and the AIC (a common formulation is given below) addre sses this through a

penalty term that enforces parsimony in the selected model.

A IC = n (log 0-2 + 1) + 2 (m + 1)

Here 0-2 is the sum of quared error between the model forecasts and the data , m
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is the model length and n the number of data. The corrected Akaike, AICc (Hur­

vich and Tsai, 1989) has been selected in this case for it' s improved performance

in model selection for non-station ary time series.

1+ !!!
AICc = n (loga

2
) + ti 1 _~

n

The choice of the decay factor A, which controls the "memory" of the algo­

rithm will also have an effec t on the model fit and must therefore be taken into ac­

count. Therefore, the approach adopted here was to minimi ze the sum of squared

errors with respect to A for a number of different model lengths. The best model

length was then selected on the basis of the AICc criterion.

As an example of a suitable methodology for the application of adaptive mod­

els to time serie of the kind we wish to forecast, the followin g is offered. The

decay factors A of two univariate models were selected by minimizing the AICc

with respect to A and the model length for the fi rst 200 data points of the WAR

and SMF sequences shown in fi gure 2.9 (total sequence length 512 data point s).

In both cases it turned out that the optimum model length of each process fitted

independently was 1. Figure s 2.10 and 2.11 show the variation of the AICc and

optimum A's with increasing model length m .

Figures 2. 12 and 2. 14 show comparisons between the observed WAR and SMF

and the corresponding forecasts out to one hour ahead. The left hand panel s show

the forecasts produced using the adaptive time series model and it is evident for the

longer lead times that the foreca sts can occa ionally be very unlikely. A pragmatic

approach to detecting and removing these occasional "outliers" has been adopted.

Ratios of success ive values of both WAR and SMF were examined for the first 200

data points and a threshold ratio elected that is 2 - 3 time as high as the highest

ratio observed durin g this period. This ratio is then applied to screen forecast val­

ues which are very different from the most recent observed value. Any forecast

which doesn 't pass the screening is simply replaced with the most recently ob-

erved value (i.e. a persistence forecast). The plots in the right hand panels show

the foreca sts produced (with the same adaptive model) using this "constrained"
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Fig. 2.10: Plots of the AICc and corresponding optimum A value for a variety of
model lengths. These results are for the WAR time eries shown in fi gure 2.9.

version of the forecas ting algorithm.

Scatter plots of the observed and forecast values are shown in figures 2.13 and

2.15. Again the forecasts are made as far as an hour ahead and the standard appli ­

cation of the adaptive algorithm is shown in the left panel while the constrained

version is shown in the right hand panel. In each plot the linear regression R2 value

is also shown and this indicates a clear impro vement for the constrained algorithm

at the longer lead times. At shorter lead times the results of both approaches are

virtually identic al.

The impro vement in the sum of squared errors (achieved by using the con­

strained algorithm) is indicated in figure 2.16 where the y-axis has been plot­

ted with a logarithmic scale. Note that WAR is a ratio and therefore the sum of

squared errors is a dimensionl ess quantity.
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Chapter Summary: In this chapter two approaches to time series forecasting

were examined as tools for dealing with the non-stationary time series frequently

encountered in Hydrometeorology. The first approach is to make use of structural

time series (ARMA) models (Box and Jenkins, 1970). These are well known

techniques and the main focus of the chapter was therefore on adaptive methods

in an attempt to handle non-stationarity in Hydrometeorological time series. The

ARMA models were outlined for completeness and then the equations for the

Kalman filter presented and discu . sed in some detail.

The set of equations for recursive estimation of the parameters of a linear re­

gression model were developed. This was done for the univariate case in order

to demonstrate the derivation of an adaptive model that allows for the possibility

of time varying parameters. The model equations were then extended to the mul­

tivariate case . These adaptive filters are typically used in non-stationary signal

processing applications for forecasting and control.

Finally, the Kalman filter and the adaptive filter were applied to the forecast­

ing of real data. The Kalman filter was applied to update the states of a con­

ceptual linear reservoir model using data from the Liebenbergsvlei catchment in

South Africa. The model and Kalman filter combination was found to outperform

persistence forecasts of streamflow for two flood events .

The adaptive filters were applied to the forecasting of WAR and SMF time

series. The model length and decay factor>. were fitted by minimizing the AICc

as a fitting criterion. Forecast were produced for lead times of up to an hour

ahead. The adaptive filters did a reasonable job of producing forecasts for these

time series and the correspondence between observed and forecast values at longer

lags was improved using a pragmatic technique of thresholding the ratio between

forecasts and the most recent observation. It is interesting to note that the optimum

model length was one in both cases. Also noteworthy is that the optimum values

for>. are considerably less than one, suggesting that the model parameters vary

throughout the event indicating non-stationary behaviour.



CHAPTER 3

RAINFALL ESTIMATION'AND DATA

MERGING ALGORITHMS

This chapter focuses on obtaining the optimum estimate of spatial rainfall for
input to a catchment model. The challenges and pitfalls associated with com­
bining estimates from different sensors are discussed. There is extensive liter­
ature on the subject indicating the significant research effort that has already
been directed towards solving this difficult problem. Notable techniques and
algorithms from the literature are highlighted and a fa st, pragmatic merging
algorithm suggested for use in South Africa. The chapter also deals with algo­
rithms for the accumulation of spatial rainfall and presents a technique using
advection based morphing ofthe rainfall field between successive observations.

3.1 Estimating rainfall

Stream fl ow is the direct response of a catchment to rainfall. Rainfall is a forc­

ing mechanism which should be properly understood in order to credibly model

and forecas t streamflow. Understanding the dynamics of rainfall and how to mea­

sure it accurately at short space and time sca les is therefore an important factor

in fl ash flood forecasting (but also has obvious uses for rain fall-runoff model cal­

ibration). It is essential that real-time data are available since historical data are

of no practical use in flood forecas ting exce pt for initial calibration of models.

The in truments and data transfer mechanism must be reliable and robust. Re­

dund ancy of the data transfer mechanisms and sources of rainfall measurement

is important in this regard. The data should also be measured at, or converted

43



44

to, spatial and temporal scales which are relevant to the catchment model being

used and the scale of the rainfall processes which most affect streamflow. Thi s

implies that accurate and validated accumulations are requ ired in both space and

time . The temporal accumulation of spatial rainfall fields is specifically dealt with

in section 3.3.

It is beyond the scope of this thesis to focus in great detail on obtaining the best

estimate of rainfall from each of the instruments which may be used to measure

rainfall . This topic remains the focus of extensive international research efforts.

In tead , sections 3.1.1 , 3.1.2 and 3.1.3 provide a brief overview of the three princi­

pal sources of rainfall estimates used in South Africa. The main purpo e of these

three sections is to provide some background for the discu sion that follow s in

the remaining sections of the chapter, which focus on the challenge of combining

these estimates to produce a single "best estim ate" of rainfall.

3.1.1 Rain gauges

The Hydrologist's trad itional tool for measuring rainfall is the rain gauge. Rain

gauge are relatively cheap, easy to maintain and provide a direct and suitably

accurate estimate of rainfall at what is essent ially point scale. What rain gauges

fail to capture well is the spatial variability of rainfall, an important aspect for the

credible modelling of a catchment's response to rainfall. This spatial variability is

particularly evident at short accumulation timescales of up to several days. As the

period of accumulation increases the decay of correlation (between nearby esti­

mates) with distance is less rapid and rain gauges provide improved spatial rainfall

estimates. Due to the highly variable nature of rainfall in space, simple interpo­

lation between rain gauges does not necessarily provide an accurate estimate of

the true spatial rainfall field, particularly at the short time scales relevant for flash

fl ood forecasting.

There are several types of rain gauges in use throughout the world , the two

types of gauge used operationally by the South African Weather Service (SAWS)

are illustrated in figure 3. 1. Climatological records are based mainly on the stan­

dard rain gauge which is read manually, on a daily basis. In mo t cases the gauges
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Fig. 3.1: Rain gauges used by SAWS. The left-hand image shows a 127mm di­
ameter standard rain gauge. The rainfall depth is manually read by an observer
at 08:00 South African standard time (GMT + 2) each day. The right-hand image
shows a tipping bucket gauge. The tips are recorded with a data logger and either
downloaded manually or automatically via a cellphone messaging system.

are read by volunteers. The other source of accessible gauge data is the real-time

tipping bucket gauge network. This consists of tipping bucket gauges which have

been fitted with a cell phone modem and SIM card. The gauges have an embed­

ded micro-controller, programmed to send a message to a central server at 15 min

interval s while it's raining and routinely once a day during dry periods (to indi­

cate that the gauge is functional). The real-time tipping bucket gauges are most

relevant to Flash Flood Forecasting and will start to become more useful as their

numbers are due to be increased by a proposed 200 gauges per year over the next

five years (Terblanche, 2005) .

Gauges are also subject to several sources of error which occur largely as a

result of wind and it's interaction with the obstructions surrounding the gauge

site. Manually read gauges suffer from observer errors, the most notable of which

are spurious readings on Mondays. This problem typically occu rs when gauges

are unmanned during the weekend (Deyzel et aI., 2004) . Wilson and Brandes

(1979) cite studies which indicate that gauges may under estimate by up 20% in

conditions with strong wind . A detailed discussion of rain gauge errors is given in
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Sevruk (1982 ). The errors can be ameliorated by appropriate siting, maintenance,

and data quality control measures. Despite the potential errors, rain gauges are

the only measurement device available which directly catches a volume of water.

Thi s makes the rain gauge a fundamental part of any rainfall measurement system,

and an important tool in rainfall product validation studies.

3.1.2 Weather radars

Weather radar provides (with a single instrument) a highly detailed repre sentation

of the spatial structure and temporal evolution of rainfall over large areas. Esti­

mated rainfall rates are indirectly derived from spatially averaged measurements

of reflectivity and are therefore subject to a combination of systematic and random

errors (e.g Wilson and Brandes, 1979; Austin, 1987; Chumchean et al., 2003 and

many others).

At a very superficial level a weather radar works by sending out a pulse of

electromag netic energy and recording how much is returned due to reflection and

back-scattering caused by water dropl ets in the atmo sphere. In South Africa the

radars scan in azimuth and elevation steps, rapidl y emitting pulses of energy to

produce a complete volume scan. These data are averaged over bins in polar

co-ordinates and subsequently processed into Constant Altitude Plan Position In­

dicators (CAPPI), stored in a three-dimensional cartesian grid .

Figure 3.2 shows a typical representation of the reflectivity data collected by

a weather radar. The polar data colle cted by the radar has been projected into a

Cartesian reference frame (in this case a horizontal surface 2 km above the radar)

using the DISP LACE algorithm (Mittermaier and Terblanche, 1997). Each pixel in

the image represents the average reflectivity over an area of I krrr'.

Instantaneous rainfall rates are estimated from the ob erved reflectivity using

the well known Marshall-Palmer relationship (Marshall and Palmer, 1948):

(3.1)

where R is the rainfall rate in mmfhr, Z is the reflectivity in units of 10 10g(dB Z ),
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Fig. 3.2: Instantaneous reflectivity data measured by weather radar. The radar is
located at the image centre and regions coloured white represent areas with either
'no rain' or 'no data'. Each pixel in this 400 x400 image repre ent an area of
I km". The colour scale to the right represents the magnitude of the reflectivity
meas urement, which is related to the rainfall rate (see figure 3.3).

A and b are calibration parameters. Typical values of the parameters used for

South African radars are, A = 200 and b = 1.6. Figure 3.3 shows the reflectivity

data in figure 3.2 converted into rainfall rate using equation 3.1 (note the change

in units and colour scale) .

3.1.3 Meteorological satellites

Satellite measurements provide an additional source of data for estimating rain­

fall. In this thesis the focus is on Meteorological satellite a thei r rapid update

cycle is more suited to providing information for flood foreca sting. In particular,

the Meteosat-8 (MET-8) platform is considered since it's field of view covers the

Southern African region where this work is focused. Low earth orbit satelli tes

can provide additional useful measurements but their overpass intervals (typically
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Fig. 3.3: Instantaneous rainfall rate data based on weather radar measurements.
The radar i located at the image centre and regions coloured white represent areas
with either 'no rain ' or ' no data '. Each pixel in this 400 x400 image represents
an area of I km". The colour scale to the right repre ents the intensity of rainfall ,
associated with the estimated rainfall rate. The rainfall rates have been estimated
for the reflectivity data of figure 3.2 using equation 3.1.

upward s of six hours) are too long to be directly useful in a nowcasting context.

However, the information from these satellites can be used to inform , correct and

update the MET-8 rainfall estimation algorithms at regular intervals and thereby

reduce the uncertainty of the estimate (Tapiador et aI., 2004a; 2004b).

Radiation measurement

Satellites measure outgoing radiation from the earth by means of radiom eters.

These instruments record the strength of the outgoing radiation in narrow wave­

length (frequency) ranges, typically referred to as channels. Figure 3.4 shows

schematically the processes which result in outgoing radiation in the Infrared (lR)

portion of the spectrum (1-100 Jlm wavelengths). The processes for the visible

(VIS) part of the spectrum are essentially the same, the only difference being that
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Fig. 3.4: Atmospheric ab orption, scattering and transmission of infrared radia­
tion. [After Conway (1997)]

emitted radiation from the earths surface occurs mostly at the longer IR wave­

lengths.

Since the different materials on the earths surface and in the atmosphere have

different emission, scattering, absorbtion and reflection properties for each wave­

length in the electro-magnetic spectrum, it is possible to derive considerable in­

formation about the state of the earth system from atellite based radiation mea­

surements.

The channels measured by the instrument onboard the MET-8 satellite have

been carefully selected to provide insight into cloud, aeroso l and surface prop­

erties at a rapid update cycle of 15 minutes. This makes the satellite especially

useful for meteorological operations and, of course, has potential applications in

flood forecasting.
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Figure panel Channel name Spectral Range
(pm)

(a) Visible 0.6 0.56-0.71

(b) Visible 0.8 0.74-0.88
(c) Near-infrared 1.6 1.50-1.78
(d) Infrared 3.9 3.48-4.36
(e) Water Vapour 6.2 5.35-7.15
(t) Water Vapour 7.3 6.85-7.85
(g) Infrared 8.7 8.3-9.1
(h) Infrared 9.7 9.38-9.94
(i) Infrared 10.8 9.8-11.8

U) Infrared 12.1 11-13
(k) Infrared 13.4 12.4-14.4
(I) High Resolution Visible 0.6-0.9

Tab. 3. 1: Meteosat-B channel descriptions. The letters in the first column of the
table refer to the panels shown in figure 3.5.

Meteosat-8 characteristics

Radiance data is collected in 12 spectral channels by the Spinning Enhanced Visi­

blE and infraRed Imager (SEVERI) in trument onboard the MET-8 satellite. Fig­

ure 3.5 shows a set of grey-scale images representing the data collected by the

satellite for a single scan time (12:00 GMT on 06 December 2005). This data

is collected every 15 minutes and transmitted to user stations with a delay of ap­

proximately 15 minutes. The spatial resolution of the data is dependent on the

position of a data pixel on the earth s surface. MET-8 i a geostationary satellite

and maintains a position at 0° Longitude (Greenwich meridian) and 0° Latitude

(Equator), directly below this position (the sub-satellite point) the spatial resolu­

tion is at its finest. Moving away from this point (in any direction) the viewing

angle between the satellite and a point in space increases, this effectively means

that the constant scan width at the satellite sees a larger area at the surface, or

cloud tops, as the point of interest becomes further away from the sub-satellite

point. The sub-satellite resolution is 1 km2 for the high resolution visible channel

and 2.5 km2 for the remaining eleven channels. These fi gures increase to about

2.5 km2 and 4 km2 respectively over South Africa.
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In figure 3.5 panel s (a) and (b) show the two visible band channels which have

uses including cloud detection and tracking, scene identification and the moni tor­

ing of aerosols and land surfaces. Panel (c) shows the near-infrared channel which

is u ed to distinguish betw een ice and water clouds. Panel (d) is the first of the

infrared channels with a primary purpose of fog and low cloud detection at night.

Panels (e) and (j) are the two water vapour channels, these are used (as their name

suggests) to measure information related to the amount of mid-atmospheric wa­

ter vapour and are also useful in determining the direction of atmospheric wind s.

The panels labelled (g) to (k) are all infrared channels, with the most important

for rainfall estimation bein g 0) and (j) which provide the basic thermal informa­

tion used to estimate rainfall rates from geostationary satellites, (g) is also useful

in this context for its role in the determination of thin Cirrus cloud properties.

Finally, panel (I) hows the high resolution visible channel. Thi s channel has a

sub-satellite spatial sampling re olution of I km2 and a spectral range spanning

that of the two visible channels [(a ) and (b) ] . Table 3.1 provides the names and

more detail on the spectral bands represented in figure 3.5.

The different background colours of the panels in figure 3.5 are a result of the

different information derived from each spectral band. The visible channels (fig­

ure 3.5, panels a, b, c and l) show the most reflective surfaces (clouds) as white and

the least reflective (space) as black , everything else in the images is somewhere

between these two extremes. The therm al channels (lR and WV) use an inverted

colour scale to keep the cloud looking white, since this fit well with our percep­

tion of reality. However, the data are not measuring retlectance but temperature,

thus the cold areas, clouds and space both appear white in the inverted colour scale

since they are both equ ated with low temp eratures (low emitted radiation in the

thermal wavelengths).

Rainfall estimation

Combining the information from three separate channels (each being used to rep­

resent either the red, green or blue component of the colour spectrum) can produce

simple false colour images like that shown in figure 3.6. The image is produced
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Fig. 3.5: The 12 Meteosat-8 data channels represented as grey-scale images. The
data is for the 12:00 GMT scan time on 06 December 2005. The different back­
ground colours (panels a, b, c and 1) are related to whether the channel is in the
visible or infrared wavelength band (see the text for more detail).
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Fig. 3.6: Meteosat-8 false colour image based on channels in the visible wave­
length band.

using the data from MET-8 channel 3 (figure 3.5c) to represent the red compo­

nent, channel 2 (figure 3.5b) to represent the green component and channel I

(figure 3.5a) the blue component. The turquoise shaded portions of the clouds in

the image represent ice clouds which have a weak spectral signature in channel 3

and hence very little red component. False colour combinations can thus be used

to highlight important or interesting features in a scene. Obviously, the images

can be treated as data arrays and quantitative information relating to the features

extracted, using similar reasoning in an algorithmic form.

More complex processing algorithms including remapping of the data to a

suitable projection (co-ordinate system) can result in the kinds of information

shown in figures 3.7 and 3.8. The first figure shows the result of processing based
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Fig. 3.7: Meteosat-8 false colour image based on channels in the visible wave­
length band. The South African cities of Cape Town (Cpt), Johannesburg (Jhb)
and Durban (Dbn) are marked.

on data in the visible wavelength (figure 3.7). The figure shows a large frontal

system extending over southern Africa, but it is rather difficult to determin e the

regions in the system where convection is occurring and the potential for rainfall

is high.

Using data from the infrared channels (Infrared 10.8 in this case) immediately

highlights the convecti ve regions. Figure 3.8 shows the convective portion s of

the frontal system as the bright orange, red and purple regions. A particularly in­

tense convective region is evident over the western part of Zimbabwe, this detail

is barely evident in figure 3.7. Because areas of convection are typically associ­

ated with high cloud tops, these equate to very low temperatures, estimated from

the thermal (IR) channels. Rainfall rates are inferred from cloud top tempera­

tures on the basis of the correl ation between the low temperatures (evidence of
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Fig. 3.8: Meteosat-8 false colour image based on channels in the infrared wave­
length band. Note the intense convective development over the Western portions
of Zimbabwe (upper right hand corner).

convection) and observed rainfall for historical sequences (e.g. Adler and Negri,

1988). Clearly rainfall produced by orographic forcing and other non-convective

mechanisms is difficult to estimate based on the geostationary satellite data alone.

A detailed review of satellite based rainfall estimation method may be found

in Barrett and Martin (1981) and Levizzani et al. (2002). The satellite rainfall

estimation procedure currently u ed in South Africa (Deyzel et aI., 2004) can be

summarized as a two-stage process: (i) mask out non-raining data and (ii) pro­

duce IR based rainfall estimates from the data classified as raining. The greatest

difficulties are associated with high, cold, cirrus clouds which do not cause rain

and coastal rain from warm clouds, mainly due to orographic forcing. Image tex­

ture and enhancement techniques were used to develop the final satellite rainfall
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Fig. 3.9: A flow chart showing an overview of the Multi -Spectral Rain Rate algo­
rithm (MSRR). The algorithm was developed by Deyzel et al. (2004) .

product. An overview of the algorithm is given in fi gure 3.9, while a detailed de­

scription of the algorithm may be found in Deyzel et al. (2004) and Pegram et al.

(2004).

Meteosat-8 reception station

The University of KZN installed a Meteosat-8 reception station in mid-2005. This

ection de cribes in ome detail how the data get from the satellite to UKZN.

With the exception of the installation of the antenna (which was contracted to

an external organization), the entire data receiving and processing system was

sourced and implemented by the author. This includes hardware and software

procurement and set up in consultation with SAWS and the CSIR . Systems to

manage the data stream were also set up by the author.
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Fig. 3.10: Illustration of the transfer of Meteosat-8 data to C-band users in Africa.
[Adapted from EUMETSAT, 2005]

Radiance data collected in 12 spectral channels by the SEVERI instrument on­

board MET-8 are transmitted from the satellite to the EUMETSAT ground station

in Darmstadt, Germany. The data are processed to produce a spatially rectified

and calibrated 10-bit data array for each of the 12 channels. Transmission of the

data to u ers is achieved via standard Digital Video Broadcast (DVB) technology;

the same system which is used to view satellite television in private homes. Figure

3.10 gives an overview of the broadc ast routing. The data products are transmitted

to the HotBird -6 satellite from EUMETSAT's uplink station in Usigen , Germany;

the HotBird-6 satellite re-broadcasts the data on a 2 MBit/s data link at a fre­

quency of 10.853 GHz in the Ku-band. Europ ean users receive the data using

small (30-50 cm) Ku-band antennas. The data tream is received in Fucino , Italy

and up-linked to the Atlanti cBird-3 satellite from where it is broadcast to African

users over a 2 MBit/s C-band data link, at a frequency of 3.73 17 GHz. Figure

3.11 shows the C-band coverage over Africa. African users need a larger (2.5m)

antenna to receive the data in C-band, fi gure 3. 12 shows the antenna at UKZN,

whose software was set up and installed by the author.

In addition to the antenna, the receiving station consists of two computers.

One acts as the primary receiver machine and the second is a processing server.

In the configuration at UKZN, the eco nd machine also doubles as a data server

(shown in figure 3. 12). The antenna is connected to the receiver PC via coaxial
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Fig. 3.11: Meteo at-8 C-band down-link coverage over the African region .
[Adapted from EUMETSAT, 2005]

Fig. 3.12: Meteosat-8 C-band reception station and processing hardware at
UKZN . The receiving PC and data processing server are shown.

cable and a DVB card installed in the PC. While the data is being received by the

DVB card it must be decrypted in real time, using the EUMETCast client soft­

ware and Encryption Key Unit (EKU). Due to the high data volumes this machine
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is reserved purely for decoding the data stream. The second machine (process ing

server) is connected by a direct GBit link to the receiving machine and runs soft­

ware which manages the raw data file . The raw data are processed into IO-bit

PNG images and archived in a three day rolling buffer. All further data process­

ing is carried out using the IO-bit PNG image format as a basis. The processing

server has a second network card installed and is accessible, to selected users, via

the local area network.

Me teosat-8 rainfall estimation algorithm

The rainfall estimates produced from MET-8 are indirect measurements with pre­

cipitation rates being inferred from cloud top temperatures, using the MultiSpec­

tral Rain Rate (MSRR) algorithm (Deyze l et aI., 2004). The algorithm classi­

fi es the data collected by the satellite into rain/no rain regions. The cIa sification

scheme is based on a combination of cloud top temperatures, cloud texture metrics

and orography from a digital elevation model. The process has been described in

some detail in Deyzel et al. (2004) and Pegram et al. (2006b) and is not repeated

here.

Figure 3.13 shows the total accumulated rainfall using the MSRR algorithm

and MET-7 data for the 24hr period starting at 06:00 GMT on 21/06/2005 and

ending 06:00 GMT on 22/06/2005. The eastern coast of South Africa received

substantial rainfall during this time. The accumulated rainfall estimates using

the algorithm modified for MET-8 data are shown in figure 3. 14. Comparison of

the accumulations clearly shows the advantage of the improved temporal resolu­

tion provided by MET-8. The precipitation shows a smoother and more realistic

texture with fewer artifacts from the masking process employed by the MSRR

algorithm.
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24 hour rainfall accumulation: 21·2210612005

Fig. 3.13: Rainfall accumulation based on Meteosat-7 data. Data captured at 30
minute intervals was used to produce an accumulation over a 24 hour period using
the algorithm described in Deyzel et al. (2004).
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24 hour rainfall accumulation: 21·2210612005
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Fig. 3. 14: Rainfall accumulation based on Meteosat-8 data. Data captured at
15 minute intervals was used to produce an accumulation over a 24 hour period
using the algorithm de cribed in Deyzel et al. (2004). The algorithm has been
re-implemented to take advantage of the improved spatial and temporal resolution
of MET-8 data. but was originally calibrated for the Meteosat-7 spectra l channels.
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3.2 Definition of the data merging problem

Several significant sources of complexity arise when attempting to optimally blend

rainfall estimates from a variety of different sensors. In this ection the major is­

sues pertaining to the data fusion process are discussed and a technique to estimate

the true rainfall field is presented. The key issue in obtaining and assess ing the

accuracy of spatial rainfall estimates is that the true spatial rainfall field cannot be

directly measured using current technologies.

Con sider modelling the rainfall rate as a spatially correlated random field e.g.

as defined by Vanmarcke ( 1988, pp 30) . The field may be described (within a

region D) by

R(s) : sE D C ]Rd

at any instant in time , where R(s) is the value of the rainfall rate at location s, and

d = 3 (2 space and I time dim ension) if we restrict ourselves to a spatial rainfall

field at ground level. For hydrological applications we require an estimate of the

areal average rainfall rate R(A) over an area of interest A E D , where

R(A) = { 1JR(u)du
- ave{R(u) : U E A}

A >O
A =O

and A may repre sent a grid cell for a distributed catchment model or a sub­

catchment area for a emi -distributed model, or even the entire catchment in the

case of a lumped model.

It is usually accepted that the marginal distribution of rainfall rate, when rain­

fall is non-null , is Log-normal (Kede m et al., 1997; Pegram and Clothier, 1999)

therefore it is possible to define Z(s) = In R(s), where Z(s) is a norm ally dis­

tributed random variab le. If A j is an element of a regular grid with t ti rows and n

columns, filling D, then the problem becomes one of estimating each Z (Ad from

the available observation s. H(A j ) is then eas ily obtained as H(A j ) = exp( Z(Aj ) )

It is at this point in the analysis that the difficulti es in estimating spatial rain­

fall begin to become apparent, each of the three sensors we are consider ing have

a different spatial support and temporal ampling frequency. To confound things
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further, the estimates of rainfall to be combined are obtained from sensors measur­

ing independent quantities e.g. radar and satellite measurements produce inferred

estimates of rainfall rates (based on reflectivity and radiation respectively), while

rain gauges measure depths of rainfall as catch volumes over a given period. In

order for credible rainfall estimation and validation to be done, equivalent quan­

tities must be obtained. This implies that the estimates must first be transformed

to common temporal and spatial scales, or that the merging procedure must ac­

count directly for these factors. It is assumed in this section that the best avail­

able estimates of rainfall rate have already been derived from the remotely sensed

quantities (radar and satellite).

Rainfall is variable in space as well as in time, making it important to cap­

ture the spatial structure (in addition to temporal information) to provide a truly

representative estimate. Since each instrument samples the rainfall field at a dif­

ferent spatial resolution, blending the data requires consideration of the change

of support problem (Cressie, 1991; Gotway and Young, 2002). Cre sie (1991, pp

284), in his treatment of the issue, points out that spatial (and temporal) averag­

ing reduces the variance of the resulting averaged data compared to that of the

underlying point process. The magnitude of the cross-correlation between the ag­

gregated variables (compared with the cross-correlation between their 'equivalent'

point neighbours) is also increased, however the sample mean remains unaffected.

The different statistical properties of the processes should therefore be taken into

account in the estimation of the unknown proce s at the spatial and temporal scale

of interest. The differing statistical properties arise as a direct result of the scales

at which measurements are made.

The spatial estimation of rainfall by combining information from multiple en­

sors has received considerable attention in the Hydro-meteorological literature.

Early work (e.g. Brandes, 1975) focussed on the correction of bias in radar es­

timates of rainfall using an adjustment factor. Krajewski (1987) suggests a Co­

kriging procedure that he demonstrate by numerical experiment. A procedure

accounting for the fractional coverage of rainfall (spatial intermittency) is sug­

gested by Seo (I 998a) using conditional expectations. Seo (I 998b) then goes on
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to compute the expectation of rainfall at an ungauged site conditional on the ob­

served rain gauge and radar data in places where these observations are available.

A Bayesian merging technique sugges ted by Todini (200 I) relies on a Kalman

filtering scheme to remove the error variance (after a prior bias reducti on) by

using a Block-Kriged spatial estimate based on rain gauges as the ob ervation

vector. The Block-Kriged estimate is introduced to account for the spatial sam­

pling differences. The novel techn iques developed during the Spatial Interpol ation

and MApping of Rainfall (SIMAR) project (Kroese, 2004; Deyzel et al., 2004;

Pegram, 2004) combine the rainfall estimates from three separate data sources

using an explained variance weighting technique. Recent work which is not di­

rectly related to Hydrometeorology but which propo es an interesting approach to

the problem, is presented by Wikle and Berliner (2005) who suggest a hierarchi ­

cal Bayesian framework for combining information at different spatial scales and

present an example of computing the stream function based on satellite and NWP

model based wind observations with different spatial resolutions.

The greatest challenge in implementing the merging techniques di cus ed here

is estimating the structure of the error covariances between the observations and

the true (unknown) rainfall process. Optim al blending of the information also

requires knowledge of the errors associa ted with each of the measurements in

order to correctly provide a measure of confidence in the combined rainfall esti­

mate. The covariance relationships between the estimates themselves may either

be estimated from historical observations on the assumption of stationarity or es­

timated (and updated) online using a parameter filtering procedure similar to that

employed by Anagnostou and Krajewski (1999a, 1999b) for adjusting radar rain­

fall estimates based on real-time rain gauge observations. It is also possible that

remote sensing based estimates be compared to interpolated information derived

from rain gauge measurements as is done by Todini (200 I). However, the true

rainfall field remain s unknown and Hydrometeorologists must rely on the rela­

tionships between the ob ervational data, to produce space-time rainfall estimates.

Work by Habib and Krajewski (2002) has provided a starting point for quantifyin g

the relationship between data sources and similar studies should continue to have
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a strong emphasis in the future.

In SIMAR the contributions from each sensor are interpolated onto a common

spatial grid. The estimates are then weighted by their expected information con­

tent based on the measured covariance structure in South African radar data for

both radar and gauge observation and a skill score approach is used to determine

the influence of the satellite observations (Deyzel et al., 2004). Given the previous

di cussion, this approach leaves some room for improvement, as do many of the

other approaches cited.

Rain gauges measure "point" rainfall depths at the ground. Remote sensing

techniques provide instantaneous rainfall estimates based on information above

the ground at the cloud top level (satellite) or in 'bins' at several levels above

the surface (radar). Wind effects (and more worryingly Virga - the evaporation

of rain before it falls to the surface) can result in spatial mismatches between the

estimates derived from information aloft and the rainfall sampled by the gauges at

ground level. The significance of these mismatches is difficult to quantify but one

which must be acknowledged. A closely related problem is that of rainfall caused

by low altitude weather systems. If the radar beam elevations are such that they

over hoot these systems then any combined estimates that include the null radar

rainfall estimates will contain substantial errors. Cloud top heights estimated from

Satellite (or NWP) data could provide a useful switch for determining when to

ignore the radar information in the e cases.

Before change of support issues can be addressed and blending of different

data sources attempted, it is imperative that the data are referenced in a consistent

co-ordinate system. The co-ordinate systems in which spatial rainfall data are col­

lected are likely to be different for each data source and may be different from the

co-ordinate system in which combined estimates are required for catchment mod­

elling. Transformations between different co-ordinate systems will very likely

change the properties of the data (particularly where the transformation results

in a significant change of spatial scale) and this aspect of the rainfall estimation

problem appears to have received scant attention in the literature.

Clearly the merging algorithm should al 0 account for availability of data.
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The question posed is: how does one handle the situation where one or all of

the data sources become unavailable? This is a particularly pressing problem

when considering automated algorithms that operate in real-time without human

intervention. The available options are i) produce no output at all when there is

missing data ii) continue to produce a rainfall estimate that i based on the subset

of data available iii) attemp t to infill the missi ng data record based on surrounding

observations iv) some combination of the preceding, depending on which data

source is missing.

Finally, the key to producing a useful rainfall product is performing credible

validation exercises that account for the difficulties presented in this section. This

validation process is non-trivial and needs to be carefully formulated and inter­

preted. Since rain gauges are the only direct measurement of rainfall available,

validation is usually only possi ble at points in space and time where gauge mea­

surements are available. This issue remains to be adequately addressed and is the

subject of many ongoing research initiatives.

3.3 An algorithm for accumulating spatial rainfall

fields measured instantaneously and intermittently

Rain gauges record accumulated rainfall depth. The accumulated totals are recorded

either as the total depth in a given time period or as the times over which a given

(small) depth is recorded. Rainfall information derived from Radar and Satellite

sources are instantaneous samples over large areas, from which the spatial distri­

bution of rainfall rate is estimated.

Temporally accumulated rainfall is the basic input for hydrological mode ls and

water resource management applications while many operational spat ial rainfall

estimation schemes work with accumulated rainfall as a basis (e.g. Smith and

Krajewski, 1991; Seo, 1998a; Seo, 1998b; Anagnostou and Krajewski, 1999a;

Anagnostou and Krajewski, 1999b).

The temporal accumulation of rainfall estimate needs to be handled carefully,

in particular the instantaneous fields from radar and satellite. A first possibi lity is a
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superimposition technique where the rainfall rates from each instantaneous sam­

ple are appropriately scaled and summed together. The method used by Fulton

et al. (1998) for the NEXRAD radar network is to take an average rainfall rate

between consecutive radar scan and apply this rate over the time interval be­

tween scans to produce an accumulated value. The accumulations between scans

are then summed over the required time-period. A more complex method is de­

scribed by Hannesen (2002), who suggests a path integral accumulation scheme

based on a field of derived motion vectors. Hannesen's (2002) scheme turns out to

be in the same spirit as a technique used by Anagnostou and Krajewski (l999a),

with the difference being that they view the accumulation as a time integral which

is approximated by a summation at fixed time-steps. The decision regarding the

complexity of the algorithm as to which to adopt for operational purposes is deter­

mined by the trade off between computational speed and the value of information

lost due to the sampling interval inadequately capturing changes in the rainfall

intensity field. The accumulation method presented here uses the length of com­

puted advection vectors to adaptively select the required computational complex­

ity (providing a trade-off between speed and complexity, which is relevant to the

data). The author believes this is a novel approach.

3.3.1 Algorithm description

The accumulation technique developed here accounts for the spatial and temporal

evolution of the rainfall field between successive radar (or satellite) scans. The

temporal sampling frequency of these instruments is not always short enough to

ensure that important evolutionary features of the field are adequately captured.

The advection of the field between successive scans is computed using an optical

flow algorithm (Bab-Hadiashar et al., 1996), introduced in the context of short

term rainfall nowcasting by Seed (200 I). The optical flow computation (as im­

plemented here) produces a dense field of advection vectors each associated with

a particular grid point (the advection algorithm is introduced in more detail in

section 4.1.1). Figure 3.15 hows a portion of the optical flow field computed be­

tween two con ecutive rainfall intensity images from the SAWS weather radar in
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Fig. 3.15: Advection field computed using the optical flow algorithm of Bab­
Hadiashar et al. (1996). Two consecutive radar scans are shown. with the first
greyed out. The advection vectors in the right hand box are computed from the
information contained in these two scans.

Durban. South Afric a, during November 2000. The left hand side of Figure 3.15,

shows two superimposed radar scans taken five minut es apart. The first sca n is in

greyscale while the second is in colour. A portion of the field of advection vectors.

computed using an optical flow algorithm, is shown on the right of the figure. The

complex nature of the advection is evident from the advection vectors shown in

the right hand panel.

The accumulation algorithm is developed below (following the exposition of

Hann e en, 2002) . For any pixel i in the radar field of view, the accumulation on

the pixel between times to and t l is

(3.2)

where R(Si, t) is the rain fall inten ity at any time I, on a pixel i located at position

Si = (Xi,Yi) on the radar grid.

R(Si, t ) is only known at the radar observation times, but if we assume that the
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radar samples the rainfall field at to and t 1 then it i possible to e timate R(Si , t)

for to ~ t ~ t1 using a linear combination of the radar fields R a and R b observed

at to and t1 respectively.

(3.3)

In equation 3.3, Salt is the location that pixel i would have occupied in R a at

time t, Sblt is the location that pixel i would have occupied in Rb at time t, and

/:). l = II - loo The locations Salt and Sblt are determined by the pixels advection

vector V; . All the Salt must be located on the path between Salto and Si> and all

the Sblt are located along the path between Si and Sbltl . The weighting factors th~t

and tt.~Q provide a smooth transition between Raand Rb while con erving rainfall

volume over the target pixel. In order to change the time integral in equation 3.2

into a path integral, the linear weighting factors in equation 3.3 can be replaced

by

( 1 - t _ ISalt - sil
/:). t /:). s

( - to _ ISblt - si!
/:). t /:). s

where ISalt - si! is the distance between the points Su it and Si , similarly ISbIt - sil
is the distance between Sblt and Si, and /:).s = ISalto - il= ISbltl - s.], Substituting

into equation 3.3 gives

Noting that

Salt - Si ( ) Sw - Si (
R (s i , t) = /:).S R; alt + /:). ~ bit) (3.4)

v = ds
I dt

we can combine equations 3.2 and 3.4 and remove the dependence on time, arriv-
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Fig. 3.16: Schematic representation of the accumulation scheme. The figure
shows the locat ion of a raincell in two consecutive radar scans (R" and Rb) . The
raincell has translated with the distance and direction defined by the motion vec­
tor Vi , The total rainfall on the pixel located at S i is the weighted sum of the
integrals along the paths Su lto - Si and Si - Sbltl ' If the advection were not taken
into account, the pixel at S i would not appear to rece ive any rain during this scan
interval.

ing at

The total depth of rainfall accumulating on any pixel between scan times

is computed from equation 3.5, over the path defined by it's advec tion vector.

The individual depths can then be summed to produce accumulations over longer

timescales, as required.

As a simple illustration of the concept figure 3. 16 shows a raincell with con­

stant contours of inten sity, moving past the target pixel between time to and 11,

The rainfall field measured at time to is Raand the field measured at time t1 is Rs;
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Fig . 3.17: Comparison of accumulated daily rainfall fields , produced by the two
different methods. The greyed out regions indicate regions affected, either by
gro und clutter or missing data. The colour scale on the right indicates the total
rainfall dep th accumu lated in 24 hours.

Since the radar grid is spatially fixed, the rain cell exhibits a translat ion character­

ized by the advection vector Vi . The two integrals along the paths Su lto to Si and Si

to Sbltl are linearly weighted so that the contribution from the data at Su lto is 100

% at time toand the contribution from Sbltl is 100 % at time t1•

The integrals in equation 3.5 are computed using a discrete Trapezoidal rule

approximation. The computational effort of the integration is directly related to

the number of interior poin ts that must be evaluated to compute the path integral

between consec utive scans. To reduce computation time the number of interior

points used is based on the ratio between the length of the advection vector and

the spatial resolution of the data. Thu s for a zero advection case the accumula­

tion reduce to a simple average between the inten sity values for success ive scans

and for large values of advection, many interior points are chosen at a step size

equivalent to the spa tial resol ution of the data (1 km in this case) .

Fig ure 3. 17 shows a qualitative comparison between several accumulated daily

rainfall fields using the currently operational simple averaging technique (top row)

and the accumulations made using the advection based technique (bottom row).

It is clear from qualitative observations that the precipitation swaths produced

by the advection accumulation are smoother and more in keeping with what one
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would expect the spatial pattern of real precipitation swaths to look like. The

technique naturally preserves rainfall volume on the image (through a smoothing

of the peak and trough values) and produces a more realistic spatial distribution

of the precipitation swathes.

3.3.2 Algorithm performance

The performance of the newly proposed accumulation scheme was compared to

the current operational scheme (used for the radar network operated by SAWS) by

generating an entire year's worth of daily accumulations using each method and

computing the total time taken to complete the computations in each case. This

was done so that the performance of the algorithm could be evaluated for a wide

variety of weather types. Figures 3.18 and 3.20 summarize the performance of the

algorithm relative to the operational SIMAR implementation of the accumulation

scheme. Figure 3.18 shows the total time taken to complete the daily accumu­

lations for an entire year's images, where the number of interior points for the

integration was fixed between 0 and 8 and in addition, the operational algorithm

and scaled routine described in section 3.3.1 above.

Considerable effort was put into optimizing the coding and implementation of

the accumulation algorithm. The performance of the first implementation shown

in figure 3.18 was improved significantly as a result. The performance of the

optimized code, compared to the original, is presented in figure 3.19. Although

the scaled advection algorithm is 18.4 times slower than the coarse additive op­

erational algorithm(figure 3.20), its performance is still perfectly reasonable for

operational purposes. The average time (during 1999) taken on currently avail­

able computers for a daily accumulation (the accumulation of approximately 288

radar scans) is 24.5 econds. The biggest component of the computing time is due

to the optical flow computations, thus refinements in this area will significantly

improve the overall performance.
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Fig. 3. 18: Comparison of timings for a variety of accumulation schemes. The
times represent the tota l time taken to perform one year's worth of daily accu­
mulations for the MRL5 radar, using five minute interval data in 1999. (a) is the
current coarse operational algorithm, (h) is the advection algorithm with adaptive
choice of the number of interior points, (c) is the advection algorithm with no inte­
rior points (i.e. the same as for (a) but the advection vectors are computed), (d) is
the advection algorithm with a single interior point, (e) is the advection algorithm
with two interior points, (j) is the advection algorithm with four interior points
and (g) is the advection algorithm using eight interior points.
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Fig. 3.19: Changes in algorithm performance after careful optimi zation of the
code. (a) is the operational algorithm, (b) is the advection algorithm with adapti ve
choice of the number of interior points, (e) is the advection algorithm with no
interior points (Le. the same as for (a) but the advection vectors are computed),
(d) is the advection algorithm with a single interior point , (e) is the advection
algorithm with two interior points.
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Fig. 3.20: Performance of accumulation schemes relative to the operational algo­
rithm, after code optimization. (a) is the operational algorithm, (b) is the advection
algorithm with adaptive choice of the number of interior points, (e) is the advec­
tion algorithm with no interior points(i.e. the same as for (a) but the advection
vectors are computed), (d) is the advection algorithm with a single interior point,
(e) is the advection algorithm with two interior points.
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3.4 Bayesian merging

The Bayesian merging techn ique (Todini, 200 I) is a means to provide an optimal

combination of radar and rain gauge (or satellite and rain gauge) rainfall estimates.

The algorithm requires block Kriging the rain gauge measurements of rainfall onto

a grid which has the same spatial resolution as that of the radar rainfa ll estimates.

Following the Kriging step a single recursion of the Kalman filter (Kalman, 1960)

produces the optimal (in a Bayesian sen e) estimate of the "true" unknown rain­

fall field. This e timate is only optimal insofar as the "true" rainfall field can be

adequately represented by the block Kriged gauge estimate, which is treated as

an unbia ed observation of the true rainfall process. This assumption is obvio usly

dependent on the spatial scale of the Block Kriged e timates, the spatial sampling

of the gauges, the time scale and the nature of the rainfall event.

3.4.1 Algorithm description

The algorithm is most easily descri bed by referring to the sequence of equations

3.6 to 3. 13, where the de cription is limited to the merging of radar and gauges.

Merging satellite and gauge estimate is a trivial extension.

• The fi rst step is to Krige the point rain gauge information onto the radar grid

to obtain the unbiased and minimum variance estimate of the unknown true

rainfall field, given the information content available from the rain gauges

(Equations 3.6, 3.7).

• The a priori estimates of the true field y~ and its error covariance P ] are

given by equations 3.8 and 3.9, where the radar's expected bias and error

structure are derived from historical observations of the errors between the

Kriged gauge and radar fields (on the assumption of statio narity).

• The innovations vector v is computed from equation 3.10 assuming the

Kriged gauge field to be the available observation of the state vector.

• The Kalman gain matrix K t is computed from equation 3. 11.
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• The a posteriori estimate of the rainfall field Y~' and its error covariance P~

are computed from equations 3.12 and 3.13 using the gain matrix to modify

the a priori estimates.

Block Kriging

G AGs; = x t

Kalman filter

I fl
Y t = Y t - JLer

P ; = Ve~

= V" + { [ A t' ][~ ~] [ ~: ] - f " }

G I
u , = Y t - Y t

K V flV - 1
t = et et

P 'y - 1= I et

11 I KY t = Y t + tVt

P~ = P~ - KtP~

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.1 1)

(3. 12)

(3.13)

where; taken in order of appearance:

yf is the vector of Kriged gauge rainfall estimates on each grid square at time t.

A is the matrix of Kriging weight s.

xf is the vector of rain gauge rainfall estimates at time l.

JL is a vector of Lagrange multipliers.

r ib is the covariance matrix between the radar grid squares and rain gauge loca­

tions.

u is a vector of ones.

r is the covariance matrix among the rain gauge locations.
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y~ is the a priori estimate of the Kalman filter state vector (the "true" rainfall

field).

y f is the vector of radar rainfall estimate on each pixel at time t.

" R is the vector of mean radar estimation errors on each grid square (from past
1"'£ 1

observation s).

p~ is the a priori estimate of the Kalman filter state error covariance matrix.

Vef is the covariance matrix of radar estimation errors.

Vet is the covariance of the measurement difference time eries (et = yf - yf )·

r /l is the covariance matrix amon g the radar grid squares .

V t is the vector of Kalman filter innovation s.

Kt is the gain matrix of the Kalman filter.

y~' is the a posteriori estimate of the filter state (the "true" rainfall field).

P ;' is the a posteriori estim ate of the state error covariance matrix.

Becau se the algorithm is computationally intensive it is useful to list the num­

ber of operations required for each step. Denoting the number of radar pixel s (the

1km x 1km radar grid squares) by m and the number of gauge ob ervations by n,

the operation count is as follows, with typical numbers of floating point operations

(FLOPS) given in parentheses for m = 40000 (a 200 x 200 mesh) and n = 50 (a

dense network of rain gauges):

Equation 3.6, m x Tl matrix by n -vector multiplication (2 x 106) .

Equation 3.7, ('11+ 1) x (n + 1)matrix inverse and m x (n+ 1) by (n+ 1) x (n+ 1)

matrix multiplication (625000 ,2 x 106) .

Equation 3.8, m-vector subtraction or scalar subtraction from an m -vector (40000).

Equation 3.9, m x (11 + 1) by (11 + 1) x (n + 1) and m x (11 + 1) by (11 + 1) x m

matrix multipli cation s and two m x m matrix subtractions (10 , 4 x 1012) .

Equation 3. 10, m- vector subtraction (40000).

Equation 3.11 , 111 X m matrix inverse and 111 x 111 by m x m matrix multiplication

(64 x 1012 , 256 X 1016) .

Equation 3.12, m x m matrix by m -vector multiplication and m -vector addition

(64 x 1012) .
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Equation 3.13, m x m by m x m matrix multiplication and m x m matrix sub­

traction (256 x 1016
) .

The magnitude of matrix arithmetic increases with the size of the radar field

that is to be conditioned, making the method computationally infeasible for very

large fields. The obvious work around is to use moving window methods and split

the field into a number of smaller sub-regions. An extreme case of this thinking is

to treat each pixel in the field separa tely, as was done in the large scale ( 128x 128)

experiments reported in section 3.6. 1. Thi s modification reduces the size of m to

one, making significant sav ings in the computational load .

The disadvantage of the movin g window approach is the loss of information

from neighbouring pixels. Examin ation of equation 3. 12 shows that the estimate

of the "true" field at eac h pixel is a combination of the a prior i es timate at that pixel

and a weighted sum of the innovations at each pixel in the field. The combination

of the innovations at each pixel is determined by the gain matrix K t computed in

equation 3.11. If it is safe to assume that the correlat ion structure is such that the

spatial dependence dies off qu ickly then it makes sense to use the more computa­

tionally efficie nt moving window construc t. A 7 x 7 latt ice was used to determine

the error to be expec ted from using the method suggested here (pixel at a time).

The pixel-wise implementation is compared to the full method described by To­

dini (200 I), who used a similar latt ice. The results appearing in sec tion 3.4.3

show that there appears to be no substantive difference between the two methods

for the 7 x 7 lattice. It is postulated that as the fields become larger the compu­

tational advantages will outweigh the loss of information, particularly once the

dimensions of the field become much larger than the expec ted spatial correlation

lengths associated with common rainfall field structure. Pegram and Clothier

(200 I) cite typical correlation lengths for instantaneous radar rainfall measured in

South Africa as ranging between 12 and 25 km. Creutin and Obled (1982) cite

correlation lengths of approximately 50 km for event accumulations upwards of 6

hours in length. Thi s sugges ts that the resulting information loss will therefore be

greater for accumulations than for instantaneous rainfall data. Therefore it makes

sen e to do the merging for instantaneous data (or short accumulation periods)
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Fig. 3.2 1: A Schematic of the lattice showing the positions of the gauge measure­
ment poin ts.

and accumulate the merged fields when using this algorithm.

In the following two sections, Todini 's (200 I) experiment is replicated (section

3.4.2), then repeated (section 3.4.3) using moving windows of single pixel size,

for comparison.

3.4.2 Verification of the Bayesian merging implementation

Todini (200 I) reports a numerical experiment to demon strate the potential of the

proposed algorithm. Thi s section describes the calculations done to replicate To­

dini 's experiment and therefore verify that the codin g of the relatively complex al­

gorithm was accomplished correctly. This exploratory computation demonstrates

the results achieved in terms of bias and variance reduction. The fi r t step was to

generate 2000 independent standard normally distributed, 1 (0, 1), realization s of

a random fi eld on a 7 x 7 lattice and sample the lattice at 9 gauge measurement

point s as shown in figure 3.2 1. The lattice points are labelled row-wi se from I

to 49 , starting at the top left hand corner. The crossed circles repre sent the "rain

gauge" sampling points.

Next, a spatial correlation structure was imposed on the random field in the

following manner.
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Compute the matrix B where BB?' is defined by

r ll is the covariance matrix amongst the lattice points and is computed from equa­

tion 3.14 using an isotropic Gaussian covariance function (e.g. Cressie, 1991).

(3.14)

where a2 is the simulated field variance, p is the nugget, w the sill, a the range and

h the distance between points.

B is computed by singular value decomposition (SVD), which states (e.g.

Press et al., 1992) that any matrix A may be decomposed in the followin g way:

A = UWyT

if we define A = BBT , then it follows from equation 3.15 that

B = UW 4yT

We can easily verify by multiplication that BBT = A as required

(3. 15)

since U = Y and V?' = y - I if A is a square symmetric matrix. The simulated

rainfall field Yt is computed from the 49-element vector of (0, 1) random noise

~t by premultipling by B to impose the correlation structure.

The gauge measurements are considered unaffected by measurement errors, but a

noise field (with a different covariance structure) is generated on the lattice and

added to the observations to produce a simulation of radar measurements. The
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Fig. 3.22: Stati stics of the simulated rainfall field Yt generated on the lattice
points. Since the lattice points are numbered row-wise, the apparent cyclic struc­
ture is due to the spatial correlation structure imposed for each realization.

noise field is generated in the same way as the "observed" field, but with different

variogram parameters (the param eters for both cases are shown in table 3.2). The

Mean Variance Nugget Sill Range

(J.L) (a2) (P) (w) (a)
Rainfall field parameters 0 10000 0 10000 107

Radar noise field parameters 40 3000 0 3000 106

Tab. 3.2: The Gaussian Variogram parameters used for the numerical experiment.

statistics of the simulated rainfa ll field and the noisy radar measurement of the

true fi eld are summarized in fi gures 3.22 and 3.23. Figure 3.22 shows the average

mean and standard deviation for each pixel on the lattice computed over 2000

realizations of the simulated rainfall field Yt. The apparent cyclic behaviour in

the means is due to the consistent spatial correlation structure imposed for each

realization. Figure 3.23 shows the mean and standard deviations for the noise

affected radar observations yf of the simulated rainfall field.

Figure 3.24, shows a single realization of a pure Gaussian noise field, a spa­

tially correlated simulated rainfall field and a contaminated "radar" field respec­

tively, for visualization purposes.

The coding and implementation of the Bayesian merging algorithm was care­

fully checked for error. , prior to its use. The first check was of the Kalman fi lter-



83

8010 20 30 40
Lattice point

.§100
ftj
"> 80
CIJ
"C 60
'E..
"C
c:
:l
Ul

5010 20 30 40
Lattice point

8O~-----------,

40

c: 30..
CIJ
~ 20

Fig. 3.23 : Statistics of the noise affected radar observatio ns yrof the simulated
rainfall field. As noted for figure 3.22, the apparent cyclic structure is due to the
consistently imposed spatial structure.
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Fig. 3.24: A single realization of a spatially uncorrelated gaussian random field,
the simulated rainfall field (spatially correla ted) and the simulated radar rainfall
field (contaminated field).

ing routine on its own. The simulated Y t was substituted in place of the Kriged

gauge field yf. In this way the efficiency of the Kalman filter in reducing the a

posteriori estimation error (yf - y~/ ) was tested.

Figure 3.25 shows a plan view of the simulated rainfall field Ye (top left) and a

noisy radar estimate y f (top right ) of the true field for a single realization on the

lattice. The figure also shows the prior y~ (bottom left) and posterior YZ(bottom

right) estimates of YI. The prior field is obtained from equation 3.8 by subtracti ng

J-lE:~ ' the mean of the radar noise, from the radar field yf. The plots in figure 3.25
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Fig. 3.25: Verification of algorithm implementation: Example fields representing
a single time realization, with the Kriged gauge field replaced by the true field.

indicate that a large part of the bias is removed by subtraction of the radar error

mean , to produce the prior estimate of the field. The application of the Kalman

filter removes all trace s of bias and also reduce s the standard deviation between

the posterior estimate and the true field to zero, as it should do in this ea e, where

the statistics of the et time series are know a priori and an "error free" observation

of the rainfall field is available.

A second check was carried out to verify that the Kriging portion of the code

did not contain any errors. In this case the set of gauge xf measurements was

replaced with the 49 simulated rainfall field values on the 7 x 7 lattice. The Krig­

ing procedure was employed to Krige these values back onto the lattice points.

Evidently the original field should be recovered exactly, as the matrix of Kriging

weights A must become the identity matrix in this case. This was achieved and for

the single realization of the two fi eld compared in figure 3.26, there is no visible
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Fig. 3.26: Verification of Kriging algorithm implementation: Example fields rep­
resent a single time realization and xf was set to be the "true" simulated rainfall
field.

difference between them.

The mean and standard deviation for the Kriged residuals (the difference be­

tween Y t and the Kriged gauge field yf) were also computed for 2000 applications

of the Kriging routine. The resulting mean over 2000 realizations on the lattice

has a maximum standard deviation, about a zero mean, of 2 x 10- 6 over the 49 lat­

tice points. The negligible errors of estimation can be attributed to floating point

precision errors in the computation, therefore there is a high degree of confidence

that the code performs as designed by Todini (200 I).

Application of Bayesian merging on the latt ice

Having carefully checked the coding of the algorithm, the Bayesian merging tech­

nique was then applied on the 7 x 7 lattice described earlier, the mean and covari­

ance structure of the residuals were measured a priori. The time series of residuals

et between the radar estimate of the true field yf and the Kriged field estimate yf
was examined and the mean /-Let and covariance Vet computed from these residu ­

als. The Kalman filter equations were then applied with
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Fig. 3.27: Comp arison of statistics of residual s. The entire lattice was used in the
calculation of y~/. ote the significant reduction in the posterior error variance.

since the Kriged estimate yf is assumed unbiased. The known covariance struc­

ture (see table 3.2) was used for V eG. The re ults for 2000 realizations on the
I

lattice are summarized in figures 3.27 and 3.28. From the e figures it is shown

that the mean errors becom e close to zero and that the variance of their errors

shows a significant reduction in magnitude. Figures 3.27 and 3.28 qualitatively

match (the random number sequences are different) those presented by Todini

(200 I) very well, verifying and corroborating the implementation of the Bayesian

merging techniqu e.

3.4.3 Testing the moving window implementation

The computationally efficient moving window method sugges ted in section 3.4. 1

was tested on the same set of 2000 random fields to compare the results to those

achieved by the full field Bayesian merging technique. The results are presented

and compared in terms of bias and variance reduction from the noisy "radar" esti­

mates yf of the simulated rainfall field Yt.
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Fig. 3.28: 3D view of fields representing a single time realization. The entire
lattice was used in the calculation of y~' .

Figures 3.29 and 3.30 show the equivalent comparisons to figures 3.27 and

3.28 for a ingle realization on the lattice. The results are similar to those pre­

sented in the previous figures.

Figure 3.31 compares the statistics of the posterior residuals for the two meth-
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Fig. 3.29: Comparison of statistics of residuals. The a posteriori estimate of the
rainfall field y~1 was computed using a pixel-wi e approximation of the Bayesian
merging algorithm.

ods. The figure hows that the means on each lattice square are identical (this is

expected since the bias reduction step is identical) while the variance on each lat­

tice point is very similar for eac h method, with neithe r metho d appearing to have

a clear advantage.
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Fig. 3.30: 3D view of fields repre enting a single time realization. The a posteriori
estimate of the rainfall field y~' was computed using a pixel-wise approximation
of the Bayesian merging algorithm.
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3.5 Conditional merging

In Sinclair and Pegram (2004a) a comparison was presented between the Bayesian

merging technique of Todini (200 I) and the conditional merging technique de­

scribed in this section. Later Mazzetti (2004) used a small-scale numerical exper­

iment to show that the Bayesian merging technique outperformed several others

(Brandes, 1975; Krajewski, 1987; Koistinen and Puhakka, 1981). The experiment

has been discussed in sections 3.4. 1, 3.4.2 and 3.4.3. Sinclair and Pegram (2004a)

showed that conditional merging performed competitively with Bayesian merging

in a comparison experiment (the results of that study are repeated here in section

3.6. 1). Further refinement of the conditional merging technique and case studies

using observed data from South Africa and Spain are presented in sections 3.6.2

and 3.6.3.

Weather radar produces an observation of the unknown rainfall field that is

subject to several well-known source of error (e.g Wilson and Brandes, 1979;

Chum chean et al., 2003) but which retains the general covariance structure of the

true precipitation field. The spatial information from the radar can be used to

condition the spatially limited information obtained by interpolating between rain

gauges and produce an estimate of the rainfall fi eld that contains the appropriate

spatial structure while being constrained to match the rain gauge data (where it

is available). The conditional merging technique of Ehret (2002) makes use of

ordinary Kriging (e.g Journel and Huijbregts, 1978; Cressie, 1991) to extract the

unbiased minimum variance rainfall estimate, given the information content of

the ob erved data. Figure 3.32 gives an overview of the techn ique (for the one

dimensional case) which is adapted from Ehret's (2002) work.

The spatial structure of the merged rainfall field is obtained from the radar

while the rainfall values are "stitched down" to the gauge observa tions of the true

rainfall field . The approach taken here is similar to the technique of conditional

simulation by Kriging discussed in Chiles and Delfiner (1999, pp 452). However,

the key difference in this case is that the radar rainfall estimate is not simply

a simulation, unrelated (except by it's statistical properties) to the rainfall field

to be estimated, but is in fact an independent observation of the true unknown



92

(a)

(c)

(b)

(f)

(c) (d)

(g)

Fig. 3.32: One dimensional overview of the Conditional Merging algorithm. (a)
The rainfall field is observed at discrete points by rain gauges. (b) The rainfall
field is also observed by radar on a regular, volume -integrated grid. (c ) Kriging
of the rain gauge observations is used to obtain the best linear unbiased e timate
of rainfall on the radar grid. (d) The radar pixel values at the rain gauge location s
are interpolated onto the radar grid using Kriging. (e) At each grid point , the
deviation cR(S ) between the observed and interpolated radar value is computed.
(j) The field of deviation s obtained from (e) is applied to the interpolated rainfall
field obtained from Kriging the rain gauge ob ervations. (g) A rainfall field that
follows the mean field of the rain gauge interpol ation , while preserving the mean
field deviations and the spatial structure of the radar field is obtained.

rainfall fi eld. This important link means that the radar data provides an estimate

of the Kriging error (a concept which is distinct from the Kriging variance) and in

particular the spatial structure of this error.

The rainfall field is observed at discrete points by rain gauge and is also ob­

served by radar on a regular, volume-integrated grid (Figure 3.32a, b). Kriging of

the rain gauge observations is used to obtain the best linear unbiased estimate of

rainfall on the radar grid (Figure 3.32c). This can be described by

(3.16)

where Z(s) is the true (unknown) rain fall field at location s and GK(s) is the

Kriged (unbiased field) estimate of Z(s) from the rain gauge data . The term cc (s)

in equation 3.16 cannot be estimated (except at the gauges where it is exactly zero

- if we assume for simplicity that the gauges have no error in estimating Z(s)
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since Z(s) is unknown. The radar pixel values at the rain gauge locat ions are

interpolated onto the radar grid using Kriging (Figure 3.32d), this operation may

be described as

(3. 17)

where R(s) is the measured radar rainfall estimate and RJ« (s) is the Kriged (un­

biased field) estimate of R(s) using the radar values at rain gauge locations. At

each grid point, cn(s) the deviation between the observed and interpolated radar

value (Figure 3.32e) is computed using equation 3. 17. On the basis that R(s) is a

measurement of Z(s), the field of deviations cn(s) is applied to GK(s) the inter­

polated rain fall field obtained from Kriging the rain gauge observations (Figure

3.32t) to produce M(s) , the merged estimate of Z(s)

M(s) = GK(S) + cn(s) (3.18)

Equation 3.18 results in a rainfall field that follows the mean field of the rain gauge

interpolation, while preserving the mean field deviations and the spatial structure

of the radar field (Figure 3.32g).

The expected value of the error between the merged est imate and the true field

is zero if the fields are Gaussian, since the Kriged estimates are unbiased in this

case, i.e.

E [Z( . ) - M (s)] = E [cc(s) - cn(s)] (3. 19)

and E [cc (s)] = 0, E [cn( )] = O. The variance of the merged estimation errors

can be exa mined by consideri ng

V a1" [Z(s) - 1\1(s)] = var [cc(s) - cn(s)]

= (7; C(8) + (7;n (8) - 2c o v [cc;{ ),c/l(S)]

= {3 - 2 (7Ec (S)(7En (8)P

(3.20)

(3.2 1)

(3.22)

where {3 = (72 ( ) + (72 ( )EC 8 en 8

The varianc e of the error estimate given by equation 3.20 can be decomposed

as shown in equations 3.2 1 and 3.22. The variance of the error is (trivially) zero
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at the gauged points, while at any other position in the field it is bounded by

a maximum value of (3 for positive correlations p between the errors ca(s) and

cR(S). If ca(s) and cR(S) are strongly (positively) correlated as one would expect

since both gauges and radar are measurements of Z (s), then the variance of the

error will be significantly less than (3 as suggested in equation 3.22. If O"cc (s) =

O"cn (s) = 0" and p > 0.5, then var [Z(s) - M(s)] = 20"2[1 - p] showing that the

variance of the error between the merged and real rainfall field will be less than

that of either field (Kriged gauge or radar estimate) alone. If p = 0 (the errors

are uncorrelated), then the error is the sum of the errors of the individual fields as

expected.

3.6 Comparison and application of merging meth­

ods

In this section, three case studies are presented. The first compares the relative

performance of the Bayesian merging algorithm (Section 3.4) and the conditional

merging algorithm (Section 3.5) using simulated rainfall fi elds. The experiment

and results of the comparison are presented in section 3.6.1. In section 3.6.2

the conditional merging method is used to estimate daily rainfall on the Lieben­

bergsvlei catchm ent in South Afric a. The quality of the estimated rainfall fields is

asse sed by comparing the merged field to rain gauges, using a cross-validation

procedure. Lastly, a similar study is carried out u ing storm rainfall from a radar

site in Catalunya, Spain (Section 3.6.3).

3.6.1 Case study - Comparing the Bayesian and conditional

merging techniques using simulated rainfall fields

The experiments on small (7 x 7) lattices reported in sections 3.4.1,3.4.2 and 3.4.3

were not thought to be particularly representati ve of realistic rainfall fields. To

test the performance of the merging techniques the experiment presented here

was devised, because it is impossible to measure a real rainfall field to te t the
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algorithms performance in an objective way.

A sequence of 1000 independent 128x 128 pixel rainfall fields was produced

using the "String of Beads" rainfall simulation model (Pegram and Clothi er, 200 I).

These rainfall fields were treated as the "true" rainfall field and "observed" radar

estimates, produced by adding bias and noise. Each pixel in the field represents

an area of size I x I km. The "true" field was sampled at 83 "rain gauge" location s

chosen randomly on the pixel grid. This gives an average coverage of one gauge

for every 198 km", representing a gauge spacing of 14 km, which is a fairly dense

but realistic network (although in South Africa this gauge density is very seldom

realized). The "rain gauge" measurements were assumed to be without error. A

single realization of the "true" field as well as the corre sponding "observed" radar

estimate, the location of the gauges and the Kriged gauge estimate of the field are

shown in figure 3.33, while a more detailed description of the experiment follows.
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Fig. 3.33: A single realization of the modelled instantaneous rainfall fields
(mmfhr) and rain gauge locations. Note that the Kriged estimate captures the gen­
eral structure quite well due to the high sampling frequency, but fails to represent
the finer details.

i) Generate 1000 independent rainfall fields using the "String of Beads" model.

~o

ii) Add bias and noise to simulate radar measurements of the "true" rainfall field.
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Bias + Noise...

iii) Sample the "true" rainfall field (at 83 random locations) to get a set of unbiased

and error free rain gauge observations.

./~
.....,l'

Rain-gauge locations
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iv) Krige the rain gauge observations onto the unobserved radar pixels.

Kriging

....,./'..

r=---'-- - ----.,/

v) Apply the merging procedure to estima te the original field on the basis of the

"ob erved " gauge and radar estimates.

vi) Compute the mean error Ej (i = 1 2 """, m) at each pixel over the 1000 real­

izations.

where Yi(k) is the "true" value of the rainfall field at pixel i for realization k and

11l j(k ) is the merged estimate of the "true" value of the rainfall field at pixel i for

realization k.

vii) Compute the variance of the erro rs at each pixel over the 1000 realizations.

1 N

a; = - L {Yj(k) - mj(k) - Ej (k )}2
k=l

where aris the variance of error between the "true" value of the rainfall field Yi(k)

and 11lj(k). the merged estimate of the "true" value at pixel i . Ej(k) is the error at

pixel i for realization k.
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viii) Compare the mean and variance of the estimate's deviations from the "true"

field, computed from steps vi) and vii) to tho e computed from the radar errors

in order to quantify the improvement (relative to the radar estimate) gained from

each merging technique.

• I

. "t.: .~ I~ ~ __;;l.
.__.10

~..It ' -
<It ••_ ..... ."

..
I . ~ .. r t ..." '-" ,.,

<10 • 10- •... ".

A single realization of the true field, radar observation together with the esti­

mates via Bayesian and conditional merging is shown in figure 3.34.

Figure 3.35 shows histograms of the mean errors on each field. The radar

error mean was computed by taking the mean value (over 1000 realizations) of

the residuals between the "true" field and the radar observation at each pixel. This

results in the 16384 values plotted as a histogram. The mean errors for each

merging technique were computed in the same way. It is clear from the figure

that both techniques provide an improvement over the radar observation and that

the Conditional merging technique performs somewhat better in terms of bias

reduction. The spike of values at zero in each case is due to the 83 rain gauge

observations that are (as noted earlier) without any measurement bias.

The average variance of the errors at each pixel is reported in histogram form

in figure 3.36. Once again both merging techniques give a considerable improve­

ment relative to the "radar", with the conditional merging technique once again

performing better in terms of variance reduction.

All of the Kriging and merging computations were done on the logarithms

of the variables in order to transform the log-normally distributed rainfall rate

imulations to a Gaussian space. Compari ons, however, were done on the back

transformed variable s in rainfall rates (mmlhr).
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Fig. 3.34: Comp arison of Bayesian and Cond itional merged fields for a single
realization. The estimated rainfall field produced by Bayesian merging appears
very similar to the Kriged estimate shown in the bottom right field in figure 3.33,
whereas the Conditi onall y merged field more closely rese mbles the "truth" in the
upper left simulated rainfall field . The reason for this is that the Bayesian mergin g
algorithm uses the Kriged gauge estimate as the a posteriori observation in it' s
Kalman filter.
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Fig. 3.35: Histograms of mean pixel errors relative to the simulated rainfall field.
The error is defined as Ei (k), the difference between the simulated and estimated
fi elds at pixel i for realization k. The average over all the realizations at each
pixel was computed and the resultin g 16384 average values for the entire field are
plotted here as histograms.
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Fig. 3.36: Hi tograms of the variance of the mean pixel errors relative to the
simulated rainfall field. The error is defined as for figure 3.35. The average over
all realizations at each pixel was computed and the result ing 16384 average values
for the entire field are plotted here as histograms.
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Fig. 3.37: The Liebenbergsvlei catchment superimpo ed on the MRL5 radar's 100
km radiu s footprint. The rain gauge network and numbering system are shown by
the red dots in the expanded view of the catchment.

3.6.2 Case study - Conditional Merging, Liebenbergsvlei, South

Africa

The conditional merging algorithm was applied to radar and tipping bucket rain

gauge data from the Liebenbergsvlei catchment in South Africa. The data anal­

ysed consisted of several daily accumulations from the South African Weather

Services MRL5 radar (situated approximately 5 km from the catchment at it's

closest point) and daily total s obtained from a network of 45 tipping bucket rain

gauges. The gauge network and radar coverage are shown in figure 3.37.

The radar collects its data in volume scans at 5 minute intervals. A three

dimensional Kriging algorithm, described in Wesson (2005), as well as Wesson

and Pegram (2006), wa u ed to produce a ground level estimate of rainfall rate
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Fig. 3.38: Comparison of the cross validation errors for daily rainfall totals. The
histogram shows the error in rainfall depth for various rainfall estimates, relative
to the tipping bucket gauge totals. The mean error over all of the gauges is shown
in each case.

from each volume can. These rainfall estimates were accumulated over a number

of 24 hour periods using the algorithm described in ection 3.3. Daily totals for

the same 24 hour periods were computed from the tipping bucket rain gauge data.

Each of the 45 rain gauge totals was compared with the radar rainfall pixel

covering it. To try and determine whether the merging technique gave an improved

estimate, relative to Kriging using the gauges or direct use of the radar rainfall

estimates, a cross-validation technique was used. The cross-validation was carried

out by repeatedly "hiding" one of the gauges and computing the estimated rainfall

field (either by Kriging or using conditional merging) with the remaining gauges.

The hidden gauge value was then directly compared with the estimated pixel value

covering the gauge. This was repeated until each of the 45 gauges had been treated

in turn. The results shown in figure 3.38 ignore the point to area conversion error

because it was not considered to play a significant role with a small pixel size of

1 x 1 km. The conclusion is that conditional merging is a practical method to

apply in this field.

A econd investigation was performed, which takes account of the change of

support issues. A 3 x 3 km block was selected, surrounding each of the gauges. A

block Kriged rainfall estimate was computed over this region using the informa-
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tion from the gauges, where the block Kriged e timate is defined as

ZA = ~1z(s)ds

ZA is the block Kriged estimate over the area A and i (s) is the Kriging estimate

at point B in 11. The average value of the merged field is com puted by hiding the

relevant gauge as before and taking the average of the resulting merged est imate

over the 3 x 3 pixel region. Clearly the Kriged gauge estimate and the merged

estimate both contain information from the remaining gauges, but this was ignored

on the ba is that the influence of the hidden gauge would dominate the Block

Kriged e timate over this relative ly small region. Figure 3.39 shows scatter plots

representing the comparison between merged average rainfall values and Block

Kriged rainfall estimate for daily total . It is clear that there is relatively good

correlation between the estimate , although bias is exhibited on 10/02/1996 in the

bottom left panel.

3.6.3 Case study - Conditional Merging, Catalunyan radar data

set

The conditio nal merging technique described in Sinclair and Pegram (2005a) [see

seco nd paper in the Appendix] was applied to a data set provided by Professor

Daniel Sempere-Torres and Carlos Velasco from GRAHI in Catal unya, Spain, an

experiment which arose from a conversation between Professors Sempere-Torres

and Pegram at the Symposium on Hydrological Applications of Weather Radar in

Melbourne, 2004. The data et consi t of twenty eo-located rainfall rate estimates

for rain gauge and radar, measured at 10-minute intervals for the duration of a

13.5-hour rainfall event. The event began at 17:00 GMT on 28 September 2000

and ended at 06:30 GMT on 29 September 2000 . The radar data consist of the

I x I km radar pixel above each rain gauge and its 8 surrounding neighbours as

indicated schematically in figure 3.40. The pixel labelled 0 is the radar pixel whic h

has it's centre point located nearest to the rain gauge, the numbering scheme is

relevant as it is used in the figures whic h follow.
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Fig. 3.39: Scatter plots comparing block Kriged gauge estimates and Condition­
ally merged average values over the 3 x 3 km regions surrounding each gauge.

The first step in the data analysis was to compute accum ulated event totals for

each of the gauges. The event total rainfall depth was also computed for the 9

radar pixels surrounding each gauge (for the pixel layout see figure 3.40). A sim­

ple accumulation was made which does not account for the effects of advection

and sampling frequency in the radar estimations. The Optical Flow accumulation

scheme described in section 3.3 could not be implemented due to the limited por­

tions of radar data available. Figure 3.41 shows a sample of the gauge and radar

accumulations, for 4 of the 20 gauges examined. In this figure and tho e follow­

ing, the single rain gauge value is plotted as a constant line against each of the

pixel in it 's vicinity. In most cases the radar under-estimated the rainfall accumu­

lation measured by the gauges. There were only 5 cases (out of 20) in which the

radar rainfall estimates were higher than the gauge estimate.
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Fig. 3.40: Schematic local cut-out of the Catalunyan radar data , surrounding each
of the 20 rain gauges. The pixel labe lled zero has its centre point closest to the

rain gauge being con sidered.
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Fig. 3.41: Comparison of the rainfall accumulations over 13.5 hours for a num­
ber of the gauges and the radar rainfall estimates from the 9 surrounding pixel s,
centered on the gauges.

A cros s-validation experiment was carried out to compare the rainfall esti­

mates obtained by i) Kriging the rain gauge data , ii) Conditional Merging and iii)

the raw radar estimates. Figures 3.42 and 3.43 show a sample of comparisons

between gauge rainfall and the estimated rainfall at surrounding pixel s computed

by Kriging and conditional merging when the gauge in que stion is excl uded from

the computation. The main purpose of showing these figures is to highlight the
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Fig. 3.42: Catalunyan gauge and Kriged rainfall estimate cross-validation com­
parison. The gauge accumulations are compared with the Kriged estimate at the
gauges computed by leaving out the gauge in question and using the remaining 19
gauges.
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Fig. 3.43: Catalunyan gauge and Conditionally merged rainfall estimate cross­
validation comparison. The gauge accumulations are compared with the merged
estimate at the gauges computed by leaving out the gauge in question and using
the remaining 19 gauges.
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Fig. 3.44: Scatter plots comparing the gauge and radar rainfall estimates for the
Catalunyan data set. The gauge totals are compared to the estimate from the radar
pixel which is located directly above the gauge in question.

lack of variatio n in the radar rainfa ll estimates over the 3 x 3 km block of radar

data. Figures 3.44, 3.45 and 3.46 summarize the results of this comparison. The

merged estimates clearly sit close r to a I: I relationship despite a sligh tly smaller

R2 value (indicating a wider scatter about their best fi t line) than the raw radar

estimates. The Kriged estimates do not perform as well as the merged estimates

for this event and exhibit a wide scatter about their "best fit" line as indicated by

the low R2 value of 0.49, compared to 0.68 for the latter. The radar is expected

to be better corre lated to the gauges even though biased. Figure 3.44 should not

be directly compared to the cross-validation figures following it as it provides a

measure of the strength of p - see the discussion in section 3.5.
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Fig. 3.45: Catalunyan gauge and Kriged rainfall estimate cross-validation scatter
plot. The gauge accumulations are compared with the Kriged estimate at the
gauges computed by leaving out the gauge in question and using the remaining
19 gauges.
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Chapter Summary: In thi chapter, the three sources of real-time rainfall mea­

surements available (at present) for use in South African flood forecasting systems

have been discussed. The advantages and disadvantages of each have been pre­

sented and a distinction drawn between direct and indirect methods of rainfall

measurement using these instruments.

The concept of blending different rainfall estimates to produce an optimum

estimate of the unknown rainfall field has been introduced and a selection of the

extensive literature on this subject has been reviewed.

A technique for accumulating instantaneous spatial rainfall estimates has been

presented that allows a direct comparison to gauge based accumulations. The

algorithm takes account of the field advection between sampling interval s. The

resulting accumulated fi elds are then used a input to the conditional merging

algorithm, which has been tested using cross-validation techn iques.

The Bayesian merging algorithm (Todini, 200 I) has been described and an

implementation coded and tested. The algorithm was found to produce results

comparable to those published by Todini (200 I), providing a measure of confi­

dence in the implementation.

In addition, the Conditional merging algorithm (Ehret, 2002) has been revis­

ited and it's error structure investigated.

Using a large number of simulated rainfall fields, the Conditional Merging

algorithm was compared with Baye ian merging and found to be the most com­

petitive in terms of bias and variance reduction on this simulated data set.

The Conditional mergi ng algorithm has also been tested on observed data sets

from South Africa and Spain, and was found to perform well in cross validation

experiments. On this basis the Conditional Merging algorithm is propo ed as the

technique to employ for producing a best estimate of distributed rainfall for flood

forecasting systems in South Africa.



CHAPTER 4

RAINFALL FIELD NOWCASTING

Forecasts of rainfall hold promise for extending the lead time of streamflow
forecasts. Although Numerical Weather Prediction (NWP) models offer the
possibility of significant forecast lead time, they suff er from two serious limi­
tations. First, the spatial resolution of these models must be relatively coarse,
for computational reasons; this limits their use for flash flooding which occurs
by definition on small catchments. Second, the quantitative accuracy ofprecip­
itation estimates by NWP is limited. For short lead times (up to 2 hours ahead)
nowcasts based on advection and stochastic models prove more usefuL In this
chapter a review ofavailable nowcasting techniques is presented and critically
examined. Two stochastic nowcasting models are compared, these are the S­
PROG model and a nowcasting version of the SBM. The final sections of the
chapter focus on a new method for examining the spatial structure of rainfall
fields, on the basis that correctly separating the rainfall field into it 's spatial
components might improve foreca st accuracy. This is shown to be a potentially
fruitful strategy when comparing the SBM and S-PROG forecasting models.
The method decomposes the observed data into a sequence ofhigh through low
frequency spatial components using a set of Wavelet like, data driven, decom­
position bases. The technique is called Empirical Mode Decomposition (EMD)
and a novel use of the two-dimensional extension of the method is presented
here.

4.1 Overview of nowcasting techniques and models

Rainfall forecasts applicable to fl ood forecasting (ideally) span a wide range of

timescales from easo nal outlooks through several days ahead, right down to now­

cas ts for the next few minutes or hours. In order that the longer range forecas ts

11 2
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are of significant use, the uncertainties associated with them need to be reduced

by decreasing the spatial resolution (increasing the basic area from pixel-scale) at

which the forecasts can be made. This unfortunately has the effect of reducing

their usefulness for flood forecasting, even for relatively large catchments.

Rainfall forecasts can be produced using two broad categories of model, these

are; physically based models and stochastic models. Physically based models at­

tempt to directly describe the complex physics of the atmosphere, which would

be an ideal solution if computing re ources were sufficient to rapidly perform the

computations at space and time resolutions which properly characterize the vari­

able nature of rainfall. Global circulation models (GCM) are only able to perform

operational simulations at synoptic scale spatial resolutions. Nesting limited area

models (LAM) in a GCM can provide greater spatial detail up to resolutions of

a few (60 x60 km) kilometres (Engelbrecht et al., 2002), it is certain that future

advances in computing power will allow such models to provide simulations and

forecasts at much higher resolutions than is currently possible. Until such a time,

the output of these models is mostly useful as a qualitative early warning for pos­

sible heavy rains which may occur over sensitive catchments. In South Africa

SAWS has recently (October 2006) begun running the Unified Model (UM) with

a spatial resolution of 12x 12 km. The quality of the Quantitative Precipitation

Forecasts (QPF) outputs from this model have not yet been ascertained.

Stochastic models try to match key statistics of rainfall conditioned on past

observations; for example an application of the Neyman-Scott shot noise model

presented by Cowpertwait (1991) models the arrival times and duration of rain­

fall events as measured by rain gauges, while the "String of Beads" model (Pe­

gram and Clothier, 2001) models the spatial and temporal characteristics of rain­

fall field measured by radar. For the reasons described in section 1.2 (advocating

spatially distributed rainfall fields as input to the catchment model) a decision

was taken to limit this study to models capable of modelling spatial rainfall fields

rather than considering point process models.

Grecu and Krajewski (2000) compared the results obtained from persistence,

advection and a nowcasting scheme based on neural networks. A large radar data
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set was used and the results compared at a range of space and time resolutions.

The key findings were that advection appeared to be the most important factor in

determining the quality of forecast results and that integration in both space and

time reduced forecast errors by reducing the variance of the data.

Hams et al. (2001) compare 3 x 3 km forecasts from a nested numerical model

to observed radar rainfall data. The model forecasts were found to compare

favourably with the observed data for large spatial scales, but the small scale vari­

ability evident in the radar data was not reproduced. Hams et al. (200 1) suggest

that this is a deficiency of the model for applications where the small scale vari­

ability is of importance, but acknowledge that the model forecasts would be useful

in applications where the small scale variability and intermittency do not play a

significant role.

Berenguer et al. (2005) show that S-PROG (Seed, 2003) rainfall forecasts are

able to extend the useful lead time of streamflow forecasts compared to using

persistence and simple advection based forecasts of the rainfall fields. Since S­

PROG filters out small scale variability with lead time this suggests one of two

things. Either small scale variability isn't important relative to areal rainfall totals

for streamftow forecasting or, incorrect forecasting of the small scale variability

(as is likely to occur with persistence or pure advection of the rainfall fields) is

much worse than ignoring it.

Ganguly and Bras (2003) present a modelling strategy for producing precipi­

tation forecasts using a combination of the outputs from an NWP and advection of

radar observations. They show that the resulting model forecasts perform better

than NWP or radar forecasts alone and suggest that NWP outputs might benefit

more from the assimilation of external data (e.g. radar) than from increased spatial

resolution.

Germann and Zawadzki (2002) present a methodology for quantifying the pre­

dictability of composite radar rainfall data at a continental scale. They find that

the range at which rainfall features are predictable is extended by ignoring the

smaller scale features in the fields and note that

"If the predictability is predominantly limited by the smallest scale
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present in an image, then filtering efficiently increases the lifetime."

It is with this in mind that Empirical Mode Decomposition (EMD) based scale

decomposition is studied in sections 4.2 and 4.3. Later, in the first of two follow­

up papers, Germann and Zawadzki (2004) examine how the methodology can be

extended to produce probabilistic foreca sts of the distribution of rainfall rates at

any given point in the forecas t field. In a further extension of the methodology

Turner et al. (2004) examine the use of optimal foreca st filters which are designed

to remove the most unpredictable scales such that a near-optimal foreca st (in terms

of the root mean quared errors) is produced.

Figure 4. 1 indicates the way in which a generic model's forecast skill varies

with time, relative to Eulerian (persistence) and Lagrangian (advection) forecasts

as well as the long term average. The figure shows that a rainfall field foreca sting

model is only useful if there is a period of time for which the model forecast skill

is greater than the skill achieved by Lagrangian foreca sting of the most recent

observed fields or simply using the estima tes obtained from the long term mean.

Clearly it is prudent to consider more than one model as different types of model

will exhibit different levels of skill at any given lead time (e.g. NWP may be most

appropriate for larger lead-times). The most successful approach to foreca sting

rainfa ll is therefore to choose a different method or model as a function of the

forecast lead-time, in order to remain at the upper bound of realizable forecast

skill (dotted line). A good foreca sting system must therefore attempt to maximize

the area under this bounding curve through the proper selection of appropriate

models (from an ensemble) for each forecast lead-time.

Two stochastic models, focussed on single radars, were investigated in this

study. These were the "String of Beads" Model (SBM) (Pegram and Cloth ­

ier, 200 1; Clothier and Pegram, 2002) and the "Spectral PROGnosi s" (S-PROG)

model (Seed, 200 I; Seed, 2003 ).

4.1.1 Estimating rainfall field advection

Several studies (e.g. Grecu and Krajew ski, 2000 ; Germann et al., 2006) show

that advection is an important aspect in rainfall nowcasting. The approaches typi-
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Fig. 4.1: Representation of relative forecast skill. [After Gerrnann et al. (2006)].

cally adopted for determining the advection based on radar data can be classified

accordi ng to one of two broad categories. These are either object based or field

based, with the best recognized object tracki ng technique being the TITAN system

described by Dixon and Wiener (1993) . The field based techniques rely on cor­

relation methods (Seed, 2003) or solutions to the Optical Flow Constraint (OFC)

well-known from image processing literature (Bab-Hadiashar and Suter, 1998)

and implemented, in the context of rainfall field nowcasting, by Seed (200 I) and

later, in an improved form, by Bowler et al. (2004). The Optical flow method was

used in section 3.3 for the accumulation of remotely sensed rainfall fields.

The OF constraint equation is given by equation 4.1 and relates changes in

the image brightness I (or reflectivity value in this case) to the magnitude of the

velocity component U x and uy in the x and y directions, at a particular position

in the image.
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81 81 81
8xU x + 8yU y + Ji = 0 (4.1 )

Clearly the OFC cannot be uniquely determined at a single grid point in the

field as there is one equation in two unknowns. There are several techniques that

have been employed to increase the number of constraints, for example Bowler

et al. (2004) impose a smoothness constraint on the spatial second derivatives of

U x and 'Uy (this constrains the advection field to be smoothly varying in space).

An alternative approach is to find the least squares estimate of U x and uy over

blocks, on the assumption that the motion field is rea onably constant within these

blocks. The OFC for each pixel i within a block is given by

i = 1 2" " , n

where a il and a i2 are the partial derivatives (~~ and ~~ respectively) for pixel i and

b, is ~~ for pixel i . The spatial derivatives are calculated by a central difference

approximation while the temporal derivative is calculated using a backward dif­

ference approximation. The number of pixel s in the block is given by n , The set

of constraints within the block can be visualized as a set of straight lines , which

must all intersect at a single point if the advection is constant throughout the block

and the assumptions implicit in the OFC are valid. Figure 4.2 shows a schematic

representation of this situation.

The least squares solution, which minimizes

n

U = L (ailu:c + a j2Uy - bj )2
i = l

is well known and given by

(4.2)

where x is the vector [u,, uy( containing the least squares estimate, A is the

matrix containing the n . pairs of a ik and b the n- vector of b.. Thu s the estimate of
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Fig. 4.2: Representation of Optical Flow Constraints. Since all of the line do not
intersect at precisely the same point a best estimate must be made using a least
quares approach.

advection for each block is given by the solution of equation 4.2. The estimates

for each block are then linearly interpolated onto the data grid.

4.1.2 Adapting SBM for nowcasting

The "String of Beads" Model (SBM) was developed for the simulation of rainfall

fields measured by radar. Developing a forecasting implementation of the SBM

rainfall field simulation model resulted in some improvements to the models ad­

vection routines. A comprehensive description of the SBM in simulation mode

is given by Clothier and Pegram (2002) and subsequently Clothier (2003). A ba­

sic outline is presented here to provide a stand-alone de cription of the modelling

process and to illustrate the differences between SBM in forecast and simulation

modes.
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Fig. 4.3: An illustration of the SBM noise stack.

Rainfall field simulation

A typical simulation produces a series of wet and dry periods using an alternating

renewal process. The wet periods are the "beads" and the dry periods the "string"

connecting the wet periods, hence the name "String of Beads" model.

The simulation of eac h "bead" begins with the genera tion of a stack of five

Gaussian random fields on a rectangular grid with dimensions m x n . The val­

ues at each point in a field are independent and normally distributed with a zero

mean and unit variance and each field is independent of the others. A new field

is constructed (pixel by pixel) using an AR(5) model and placed at the first po­

sition on the stack, with the previous fields moving backwards one positi on and

the final fi eld falling away (Figure 4.3). The random number generation requires

thought. At five minute intervals on a 128 x 12 grid, one hour of simulation

requires generating 196608 independent random numbers. It is thus important to

ensure that a generator with a long cycle period is u ed for lengthy simulations on

large fields. The SBM uses a fast algorithm by Wichmann and Hill ( 1982), which

has a cycle length of more than 6.95 x 1012
• This equates to approximately 4000

years of simulation at 5 minute resolution for the 128 x 128 km grid mentioned.

A mean field advection vector is used to maintain the appropriate temporal

alignment of the pixel values in each field. A warm up period is required to en­

sure that the sequence of fi elds used in the generation is properly conditioned ­

i.e. the correct serial correlation structure, as defined by the AR(5) model param-
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Fig. 4.4: Simul ated rainfall field s from SBM, using an increasing degree of spatial
correlation. Each field is 256x256 km and 13 the exponent of the power law filter
in the Fourier domain is for panel (a) 0.5, (b) 1.5, (c) 3, (d) 3.75, (e) 5 and (j) 10.

eters, exis ts. Once the stack has been given a sufficient num ber of recursions to

be correctly conditioned, a copy of the most recentl y generated field is made. At

this point the copied field has no spatial correlation. A suitable spatial correlation

structure is impose d, by app lying a patial filter to increa e the spatial correlation

to the desired level. The filter is defined by a power-law function in the Fourier

domain, the structure and parameters of the filter were de fined by Pegram and

Clothi er (1999) on the basis of observed radar rainfall data in South Africa. Once

the field has appropriate spatial correlatio n, the simulated image scale statistic

"Wetted Area Ratio" (WAR) and "Image Mean Flux" (IMF) are impo ed on the

field by a thresholding and sca ling process. In this thesis, IMF will be referred

to as Spatial Mean Flux (SMF) to avoid confusion with the concept of "Intrinsic

Mode Functions" (introduced later in sec tion 4.2.3). The resulting field is ex­

ponentiated to produce a field of simulated rainfall rates. Figure 4.4 shows six
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different simulated rainfall fields produced using SBM. Each of the fields has the

same WAR, SMF and underlyin g noise field , but the degree of spatial correlation

increa es row-wise from top left. The degree of spatial organization exhibited

by observed radar rainfall fields (Pegram and Clothier, 1999) lies somewhere be­

tween the third and the fourth panels and is defined by the exponent of the power

law filter function in the Fourier domain.

Rainfall field forecasting

In forecast mode the process has been streamlined. The spatial correlation struc­

ture from the observed fields is retained and the pixel sca le development , now

using an AR(2) model, computed directly from the observed fields. The image

sca le statistics are forecas t using the bivariate AR(S) WAR-SMF process of the

simulation mode but this time conditioned on the values from the previous five ob­

servations. Additionally, a sophisticated motion-trackin g algorithm (sec tion 4.1.1)

is used to estimate the field advection for each pixcl, rather than assuming a mean

advection vector as is done in simulation mode. A dense grid of advection vec­

tors is computed at each time tep and u ed to advec t the foreca ts a well a for

maintaining the appropriate temporal alignment between pixels. The smoothed

advection grid is updated , at each time step, as new information becomes avail­

able. The computation of the advcc tion vectors is efficient enough to allow it to

be used for real-time applications.

4.1.3 The S-PROG model

The S-PROG model exploits the idea that rainfall fields exist as structures en­

compass ing a range of spatial scales, where the persistence of struc tures within

the field is proportional to their spatial scale i.e. larger scale structures have a

longer persistence time than those at smaller scales (Seed et al., 1999). Th is idea

is explored further in sections 4.2 and 4.3, using a new technique for the spatial

decomposition of rain fall fields.

The first step in the generation of forecast rainfall fields using the S-PROG
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model is to compute an advec tion field using the Opt ical Flow technique described

in section 4. 1.1. The advec tion field is computed using spatially smoothed copies

of the observed data and the result is a den e grid of advec tion vectors for each

pixel.

The observed field is then disaggregated into a multi-l ayered hierarchy of

fields each of which describes the features of the data for a range of different

spatial scales. Thi s disaggregation is achieved by applying a bandpass filter in

the Fourier domain to separate the field into a number of components with well

defined spectral ranges as shown in figure 4.5. The detail of this Fourier filtering

technique is described further in section 4.2. 1.

Each of the fields in the hierarchy is modelled as a dynamically fitted temporal

AR(2) process evolving at the relevant pace scale. The AR(2) model (equation

4.3 is applied to each pixel in the field, with the pixels temp orally matched using

the advec tion field computed from the smoothed data.

(4.3)

The parameters of the AR(2) model are estimated by solving the Yule-Walker

equations, given for an AR(2) model as (e.g Box and Jenkins (1970)):

,I.. _ P2 - P l
2

'1/2 -
1 - Pl 2

Where PI and P2 are replaced with the temporal correlation coeffic ients TI and T2

computed from the two most recent fields at that level in the cascade (matched in

a Lagrangian framework, according to the computed advec tion vectors).

Once a new field has been estimated for each level in the cascade, these are

combined to construct the forecast estimate. Figure 4.5 shows an example of a

reconstructed field, in panel (b). The forecast fields are produced in the same way

as the reconstructed estimate, but the structure of the AR(2) model s ensures that

each level in the cascade decays to a mean value as the lead time increases. Since
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Fig . 4.5: An exa mple of the decomposition of a rainfall field into contributions at
various scales, using a Fourier notch filter. Thi s technique is employed to produce
the S-PROG cascade. Panel (a) shows the original reflectivity field. Panel (c)
shows the components with scales between 4 and 8 km, panel (d) the components
with wavelengths betw een 8 and 16 km and panel (e) shows the components with
scales greater than 16 km. Panel (b) is a reconstruction of the original field using
the components shown in (c), (d) and (e) and therefore is the portion of the data
represented by spatia l sca les greater than 4 km.

the levels representing the smaller spatial sca le have a much smaller life-time

(correlation length) rela tive to the larger sca les, the forecas t quickly decays to a

smooth field dominated by the information representin g the larger scale structures .

The forecast field at each time-step is conditioned to have the same mean

rainfall rate and wetted area as the most recent ob erved data, in order to prevent

complete degradation of the forecas ts. Thi s is in contras t to the SBM approach

where the evolution of these quant ities is predicted using a bivariate AR(5) model

and the forecas t fields condit ioned to the forecas t WAR and SMF.
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The implementation of the S-PROG model used in this study was kindly pro­

vided by Alan Seed of the Australi an Bureau of Meteorology and included an

implementat ion of an optica l flow algorithm that formed the basis of the code

used by the author for computing advec tion fields.

4.1.4 Case study - Comparing S-PROG and SBM in nowcast­

ing mode

A series of qualitative and quant itative com parisons were made between the now­

casts produced by SBM and S-PROG. Both models were configured to produce

nowcasts conditioned on two different observed rainfall events measured by weather

radar in South Africa. The first event is a sequence of 42 instantaneous measure­

ments by the Durban radar on 08 November 2000. Since the radar scans are at

5 minute time steps this equates to a 3.5 hour observation period. Th is event is

referred to a. EventOI in the fi gures. The seco nd event is a sequence of 40 in­

stantaneous measurements by the Bethlehem radar on 24 January 2002 . The total

observation period wa therefore 3.2 hours. Thi s event has been dubbed Event0 2

in the figures. For eac h observed radar can durin g the events, nowcasts were

produced by each model out to a lead time of one hour. The nowcasts were pro­

duced in a sequential way, treating each observation in turn as a new time origin.

The resulting nowcasts were compared to the radar observations at a number of

lead-times a described below.

Figure 4.6 shows a short sequence of qualitative comparisons between the ob­

served data and corresponding nowcasts made using the SBM and S-PROG mod­

els, scaled to the same colour palette. The nowcasts have been produced at time

steps of approx imately 5 minutes (the nowcasts are for the same time as the next

available ob erved field as the radar scan intervals vary lightly [+- 15 s] but scans

are appro ximately 5 minutes apart and this interval will be used for simplicity in

the text) , thus the forecasts in fi gure 4.6 are between 5 and 20 minutes ahead. The

images shown in each panel represent the observed and nowcast reflectivity fields

measured in dBZ. All fields have been set to zero below a threshold value of 10
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Comparison of Observed and Forecast Reflectivity
Durban Radar - 08 November 2000

S-PROG

SBM

Fig. 4.6: Comparative forecasts and observed reflectivity fields (EventOI): top
row - Observed data , second row - S-PROG nowcasts, third row - SBM nowcasts.
Each frame represents the instantaneous reflectivity at 5 minute interval s starting
simultaneously. The blacked out portions of the nowcast images indicate places
where new (unknown) information from outside the data region i advected into
the view.

dBZ as the associated rainfall rates below this level are considered to be negligible

(:5 0.15 mmlhr) for the purposes of comparing nowcast skill.

The foreca st fields have been compared with the observed fields in terms of

two "goodness of fit" measures. The first is the square root of the mean sum of

squared errors over all pixels in the field (RMSSE)

RM SSE =
1 N- L [Yub,,(i) - Yt01-(i)]2

i = 1

where Yobs(i) is the observed reflectivity for pixel i and Ytcrr (i ) is the forecast value
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Fig. 4.7: Root mean sum of squared forecast errors for lead-times up to I hour.
The forecasts are made for 5-min intervals based on the same set of initial data.
This data is produced from a sequence during EventOI.

of reflectivity for pixel i at the same time . The second criterion used was the mean

absolute deviation (MAD)

1 N

!viAD = - L IYobs(i) - YJor(i)!
i= l

this is closely related to the SMF in the rainfall rate domain and gives an indication

of whether the mean flux over the data domain is comparable to the observed flux.

Figures 4.7 and 4.8 compare the magnitude of these two measures out to an hour

ahead for a single forecast origin during EventOI.
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Fig. 4.8: Mean Absolute Deviation of squared forecast error for lead-times up to
I hour. The forecasts are made for 5-min intervals based on the same set of initial
data. This data is produced from a sequence during EventOI.
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Figures 4.9 and 4.10 show in detail the nowcast errors computed for each pixel.

The region s which are blacked out were ignored in the computation of the mean

field "goodness of fit" measures. Histograms of the error fields have been included

in the figures and show two interesting features. First, the bulk of the pixel s exhibit

close to zero error. Thi s can be attributed to the non-raining pixels which match

for both the observed and forecast fields. Second, there is evidence of bi-modality

of the errors in several cases, which can be attributed to the spatial mismatch in

raining areas between ob ervations and nowca sts. Thi s is most pronounced for

the SBM nowcasts and a possible reason is discussed below.
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Fig. 4.9: A comparison of the SBM forecast errors with increasing lead-time for
EventO1. The lag shown in each of the four panel s refers to the number of 5-min
intervals ahead for which the foreca st is made . Therefore, lag I refers to 5-mins
ahead, lag 3 15-mins ahead and so on. The Histogram of the forecast error field
in shown in the left hand side of each panel. The blacked out portions of the field
indicate places where new (unknown) information from out ide the data region
has been advected into the view. The error statistics (and Histograms) ignore
these portions of the field.
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Fig. 4.10: A comparison of the SPROG forecast errors with increasing lead-time
for EventOI. The lag shown in each of the four panels refers to the number of
5-min intervals ahead for which the forecast is made. Therefore, lag I refers to
5-mins ahead , lag 3 15-mins ahead and so on. The Histogram of the forecast
error field in shown in the left hand side of each panel. The blacked out portions
of the field indicate places where new (unknown) information from outside the
data region has been advected into the view. The error statistics (and Histograms)
ignore these portions of the field.
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Comparison of Observed and Forecast Reflectivity
Bethlehem Radar - 24 January 2002

S-PROG

SBM

Fig. 4. 11: Com para tive forecasts and ob erved reflectivity fields (Even t02) : top
row - Observed data, second row - S-PROG nowcasts, third row - SBM nowcasts.
Each frame represents the instantaneous reflect ivity at 5 minute intervals starting
simultaneously. The blacked out portions of the nowcast images indicate places
where new (unknown) information from outside the data region is advected into
the view.

Figure 4.11 shows a similar qualitative comparison to that shown in figure 4.6,

but this time for the Bethl ehem radar on 24 January 2002. A comparison of the

mean field error meas ures for each model is shown in fi gures 4.12 and 4.13, while

the detailed errors per pixel are prese nted in fi gures 4. 14 and 4. 15.
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Fig. 4.12: Root mean sum of quared foreca st errors for lead-times up to 1 hour.
The forecasts are made for 5-min interval s ba ed on the same set of initial data.
This data is produced from a sequence during Event02.
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Fig. 4.13 : Mean Absolute Deviation of squared foreca t errors for lead-times up
to I hour. The forecasts are made for 5-min intervals based on the same set of
initial data. This data is produced from a sequence during Event02.
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Fig. 4.14: A comparison of the SBM forecast errors with increasing lead-time for
Event02. The lag shown in each of the four panel refer to the number of 5-min
intervals ahead for which the forecast is made. Therefore, lag I refers to 5-mins
ahead, lag 3 15-mins ahead and so on. The Histogram of the forecast error field
in shown in the left hand side of each panel. The blacked out portions of the field
indicate places where new (unknown) information from outside the data region
has been advected into the view. The error statistics (and Histograms) ignore
these portions of the field.
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Fig. 4. 15: A comparison of the SPROG forecas t errors with increasing lead-tim e
for Event02. The lag shown in each of the four panels refer to the number of
5-min interval s ahead for which the forecast is made. Therefore , lag 1 refers to
5-mins ahead , lag 3 15-mins ahead and so on. The Histogram of the foreca st
error field in shown in the left hand side of each panel. The blacked out portions
of the fi eld indicate places where new (unknown) information from outside the
data region has been advected into the view. The error statistics (and Histograms)
ignore these portions of the field.
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Figures 4.7 and 4.8 (for EventOl) show the increa ing error with lead time for

nowcasts made from a single time origin. If the origin is incremented to simulate

receiving a new radar scan under operational conditions (for example), then a new

pair of line may be plotted for RMSSE and MAD. Figure 4.16 and 4.17 show a

collection of many pairs of lines for each event.

These two figures clearly show the general tendency for S-PROG to perform

better than SBM. What is also evident from these figures is the increase in the

uncertainty of the forecast errors with lead time. This is expected and is shown in

the widening of the error range (with lead time) for nowcasts made from different

time origins.

It makes ense that S-PROG performs better (in terms of this criterion) since

the model is formulated to give an optimum nowcast in the least squares sen e,

with the nowcast values being degraded towards a mean field value as the lead­

time increases. The resulting errors have a smaller magnitude. On the other hand,

SBM does not behave in this way because the image scale parameters (WAR and

SMF) evolve according to a bivariate AR(5) model. This means that dynamic

changes in intensity and wetted area are evident in the nowcasts. It appears that

this is only a good strategy for error reduction if the forecasts of these parameter

are highly accurate and the placement of raining areas in nowcasts close to the

observed.
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Model Forecast Errors - 08 Nov 2000
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Fig. 4.16: Multiple error comparison (EventOI) for lead-times up to I hour. The
foreca sts are made for 5-min interval s based on the same set of initial data. Red
lines are the SBM results while the blue lines are the S-PROG results.
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Model Forecast Errors - 24 [an 2002
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Fig. 4.17: Multiple error comparison (Event02) for lead-times up to I hour. The
forecasts are made for 5-min intervals based on the same set of initial data. Red
lines are the SBM results while the blue lines are the S-PROG results.
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Fig. 4.18: Sensitivity of RMSSE to the position of peaks.

The RMSSE criterion is very sensitive to di crepancies in the relative posi­

tioning of peaks in the fields. Squaring the error values removes the effects of

sign from the comparison, which further increases the apparent error. Figure 4.18

shows this effect graphically for a single dimen sion (e.g. time) .

4.18a shows the arrival times of three observed rainfall pulses while 4.18b

shows the nowcast arrival times, the magnitude of the rainfall is exactly correct

(an unlikely situation in practi se) but the arrival times of the pulses are not cor­

rectly forecast. Figure 4.18c shows the result of taking the difference between

4.18a and 4.18b. It 's obvious from this that the mean error (over the period shown)

will be zero since the rainfall volume is the same in both cases. However, 4.18d

shows the squared errors and it's clear from inspection of the figure that the sum

of squared errors will be large and non-zero. In this case the RMSSE will be

larger (a poorer "fit" to the observations) than the RMSSE that would result from

making a nowcast that expects no rainfall at all. It is for this reason that the MAD

was considered in addition to RMSSE for comparing the model performance. The

MAD criterion gives a better indication of whether a reasonable rainfall volume

has been forecast. Providing the arrival time of the rainfall is not too poorly fore-



140

cast, getting the correct volume is more significant for producing a good flood

forecast.

On the basis of the nowcast comparisons performed in this section, it seems

that the scale separation approach followed by S-PROG is an appropriate choice

for nowcasting rainfall fields in the presence of many uncertainties. The implica­

tions of this approach are investigated further in sections 4.2 and 4.3.
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Fig. 4.19: An observed convective rainfall field measured by S-Band weather
radar at Bethlehem, South Africa (colour scale indicates instantaneous rain rate in
mm/hr). The image is 100x 200 with 1 km2 pixels.

4.2 Extracting spatial structure from rainfall data

Spatial rainfall data contain information at a broad range of spatial scales (Schertzer

and Lovejoy, 1987; Harris et al., 200 1; Pegram and Clothier, 2001). It has been

suggested in the literature (Seed, 2003; Turner et al., 2004) that the larger spatial

components exhibi t more temporal persistence than the smaller ones; this premise

is used here to prepare the data for nowcasts based on the evolution of the different

spatial scale component of space-time rainfall sequences. A typical instantaneous

estimate of rainfall rate obtained by weather radar is shown in figure 4.19. Exami­

nation of the (radially averaged) power spectrum (Figure 4.20) derived from these

data indicates that most of the power, hence potential for deterministic prediction

in the context of nowcasting, is contained in the high wavelength component , as

exploited by S-PROG.

In this section, the focus is on developing a data-driven technique to remove

the short wavelength (less persistent in time) modes as the first step towards a rain-
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Fig. 4.20: Radially averaged power spectrum of instantaneou s rainfall rate from
typical radar rainfall data shown in figure 4.19.

fall nowcasting scheme and as a useful tool for studying the structure of rainfall

fields. The technique employed is a two-dimensional (2D space) generalization

of the one-dimensional Empirical Mode Decomposition (EMD) technique intro­

duced by Huang et al. (1998). Alternative techniques for extracting the spatial

structure are also noted , those considered are Fourier and Wavelet analysis.

4.2.1 Fourier analysis

Time varying signals may be described in both the time and frequen cy domains.

In the time domain, the signal f (t ) is described by it's amplitude as a function

of time . If this signal is transformed into the frequency dom ain, the transformed

signal is de cribed by it' s amplitude as a function of frequency. Thi s can be easily

generalized to other units. For example, the signal of interest may be described as

a function of position x in metres, the analogue of this function in the "frequency"

domain would be amplitudes as a function of inver e wavelength (wavenumber).

The Fourier transform provides a means of switching between these repre senta -
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tions, using the following relationship .

P(k ) = [ f (x )e2rrikxdx

f (x ) = [ F(k )e- 2rrikxdk

(4.4)

where f (x ) is the signal and F(k ) is it's Fourier transform.

Data encountered in practice is discretely sampled, not continuous. A discrete

analogue of the continuous Fourier transform is therefore required. Following the

exposition in Press et al. (1992 ), consider sampling a function f( x) at n equally

spaced point s

Xj = j 6., j= 1,2, · · · ,1I

where 6. is the length of the sampling interval.

Define
s

ks = ~ ,
nu

n n
s = -- ... -

2 ' , 2

Using the preceding, the integral in equation 4.4 can be approximated by a discrete

urn

n-1 n-1

~ L !ie2rrik.xj6. = 6. L f je2rrijs/n
j=O j =O

The discrete Fourier transform is thus given by

71 - 1

r, = L !ie2rrijs/n
j=O

and can be viewed as a discretely sampled version of the continuous transform
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The transform can be efficiently implemented using the Fast Fourier Transform

(FFT) algorithm developed by Cooley and Tukey (1965). There are many corn­

putationally expensive operations (such as convolution) that have more efficient

analogues in the frequency domain. This makes the FFT a popular and powerful

tool for numerical analysis.

Two dimensional Four ier transform

The focus in this chapter is on spatial rainfall data, represented as two dimensional

fields. Thus a two dimensional discrete Fourier transform i required. Consider a

function !(Xl , X2 ) defined on a disc rete grid 0 ::; X l::; ti - 1, 0 ::; X2 ::; m - 1.

The two dimensional Fourier transform is defined as

m -l n -l

F(k1, k2 ) = L L e 27rix2k2/m e 27rixlk l/n ! ( X l , X 2)

X2=OX I=O

This amounts to performing two passes of the transform, first along one dimension

and subsequently along the second, because the exponential can be separated

and computed independently. Thus spatial information between data in adjacent

columns (or rows) is ignored due to the directional orthogonality of the transform.

Fourier filtering to extract spatial structure

The Discrete Fourier approximation of a signal can be fundamentally defined in

terms of the Euler-Fourier coefficients (ao, ak, bk) with k= l, 2, "' , 7Il (Equation

4.5). The signal is approximated as the sum of sine and cosine terms. The coeffi­

cients are all that are required to reconstruct the series and any signal can be well

approximated (as long as it satisfie s the Dirichlet conditions), provided m is suffi­

ciently large. In equation 4.5, F(xj ) is the Fourier approximation of the signal Yj

at each of the n discrete (evenly spaced) data points :Z:j ' L is the range of values
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Xj over which the data set is assumed periodic.

m
F{Xj ) = ~ + L { ak cos{21fkXj/L) + bk sin{21fkxj/ L)}

k=l
n

ak - 2 L cos{21fkXj/L)Yjln
j= l

n

bk - 2 L sin{21fkxj/ L)Yj/n
j= l

(4.5)

This approach does not often yield much practical information about the signal

(unless it truly is per iodic) as there is an infinite number of components in a con­

tinuou s signal, and n in a finite sample. A potentially more useful approach is to

use band pass filtering to separate the signal into a small number of components,

each of which represents the inform ation contained over a distinct frequency range

(wavenumber in this case) . The fi ltering process is achieved by the convolution

of a filter function with the data (an efficient operation, consisting of an element

wise multiplication, in the frequency domain). This approach is employed in the

S-PROG model described earli er (section 4.1.3) and a typical decomposition is

shown in figure 4.5. FFf filtering is used in a slightly different ense to impose

spatial correlation structure on the random noise fields for SBM rainfall simula­

tions.

4.2.2 Wavelets

The Wavelet transform provides a means to perform a space-scale decomposition

of a signal using a basis function with finite spatial support. The basis function

is called a Wavelet and needs to satisfy certain criteria in order to qualify. These

criteria include (e.g Daubechies, 1992)

• Admissibility In order to be a wavelet the basis function 't/J {x ) must satisfy

C,p < 00

where
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and ~(k) is given by

and t i is the number of spatial dimensions. If 7j; (x) is an integrable function

this implies that the wavelet must have a zero mean.

• Similarity The set of basis functions used to perform the decomposition

should all be scaled and translated derivatives ofthe same waveform ("mother"

wavelet). Thi s mean s that each of the analysing wavelets will have the same

shape, proportional to the support (scale) of the wavelet. This results in the

well known properties of the Wavelet transform which dictate that good

spatial resolution is available for the small scale (high wavenumber) fea­

tures and good scale resolution is available for large scales. Figure 4.21

summarizes this idea schematically.

• Invertibility The invertibility condition requires that there be at least one

formula for exact recon struction of the signal from it' s Wavelet transform

coefficients. Thi mean s that there must be a way to perform an inverse

transform.

• Regularity The wavelet function should be continuous and have a finite

spatial support.

• Cancelations The wavelet should not only have a zero mean as required

by the admissibi lity condition, but also have at least some high-order van­

ishing moments. Thi s is to prevent the wave let from reacting to low order

variations in the signal when the higher order fluctuations are of interest. If

fluctuations of order A'/ are of importance then

r 7j; (x )xTll d"x = 0,JRn for all rn ::; !vi

The Wavelet coefficients x(a,b) are computed by performing a convolution

between the function (data) being analy sed and the wavelet corresponding to a
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Fig. 4.21: Schematic indicating the information contained in a typical space­
scale plot of wavelet coefficients. ote that there is good spatial resolution at
small scales and increasing scale resolution (with poor spatial resolution) at larger
scales.

partic ular scale and position

x(a,b) = ( f (x )l/J (a,b,x)cf'x
JR."

where '!f; (a,b,x) is a scaled and translated version of the mother wavele t '!f; (x )

1 x - b
'l/J (a,b,x) = G'l/J(-)

va a

A signal analysed using Wavelets can be decomposed into components that are

a function of both position and scale. The Wavelet coefficients at a particular scale

can be used to construct band pass fillers and decompose a rainfall field according

to spatial scale (Turner et al., 2004).

4.2.3 Empirical mode decomposition (EMD)

In a sing le dimension, EM D analysis produces a set of Intrinsic Mode Func­

tions (IMF) that are very near ly orthogonal; in two dime nsions a set of Intrinsic
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Mode Surfaces (IMS) is produced with similar quasi-orthogonal properties. Two­

dimensional EMD appears to have first been introduced by Linderhed (2002) in

the context of image compression ; the key contribution in this section is to in­

troduce 2D EMD in a Hydrometeorological context as a tool for the analysis of

space-time rainfall data. More specifi cally, the focus is on the implementation and

development of the two-dimensional extension of the EMD algorithm in this con­

text, decomposing spatial rainfall data into its intrinsic spatial scale components.

In the application presented here, the least persistent IMS (exhibiting the high­

est local wavenumber and least amount of spatial correlation - hence nearly white

noise) is computed and removed from the raw rainfall data leaving a residual com­

posed of the more persistent lower frequency structural components in the data .

This process is equival ent to applying a low-pa ss spatial filter, based on the ob­

served properties of the data rather than the predefined basis functions used in

traditional Fourier or Wavelet decompositions. The idea can be easily extended to

produce the EMD equivalent of the Fourier notch filters emp loyed by Seed (2003)

to decompose rainfall fields into their characteristic spatial frequency components.

In sections 4.2.4 and 4.2.5, simple theoretical examples, showing the power of

EMD in one and two dimensions, are presented as a "proof of concept" before ap­

plying the procedure to observed radar rainfall data from Bethlehem, South Africa

(Section 4.3). These complement and extend the original presentation by Huang

et al. (1998) and the work of Flandrin et al. (2004). Computational aspects relat ­

ing to image processing and surface fitting are covered in detail and conclusions

drawn.

4.2.4 Empirical mode decomposition in a single dimension

The basic idea embodied in EMD analy sis, is to allow for an adapti ve and unsu­

pervised representation of the intrinsic components of linear and non-linear sig­

nals based purely on the properties observed in the data witho ut requiring that the

signals exhibit stationarity. As Huang et al. ( 1998) point out in their abstract

"This decomposition method is adaptive and theref ore highly effi-
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dent. Since the decomposition is based on the local characteris­

tic time scale of the data, it is applicable to non-linear and non­

stationary processes."

Few sequences of ob ervations of natural phenom ena are long enough to jus­

tify the hypothesis of stationarity and frequently the phenomena are patently non­

stationary. This tacitly applies in the measurement of rainfall at a point or in space­

time because sequences of rain are interspersed with dry period (intermittency)

and during the raining periods, the variability of the intensity due to mixtures of

rainfall type (stratiform, convective, frontal) confound the homogeneity defini­

tion. The EMD algorithm copes with stationarity (or the lack of it) by ignoring

the concept, embracing non-stat ionarity as a practical reality. For a fuller discus­

sion of the genesis of these ideas, see the introduction of Huang et al. (1998), who

also heuristically demon strate the implicit orthogonality of the sequences of IMFs

defined by the EMD algorithm.

In the application of the EMD algorithm, the possibly non-linear signal, which

may exhibit varying amplitude and local frequency modulation , is linearly decom­

posed into a finite number of (zero mean) frequency and amplitude modulated sig­

nals, as well as a residual function which exhibits a single extremum, is a mono­

tonic trend or is simply constant. Although EMD is a relatively new data analysis

technique, its power and simplicity have encouraged its application in a myriad

of fields. It is beyond the scope of this thesis to give an exhaustive review of the

applications, however a few interesting examples are cited here to give the reader

a feeling for the broad scope of applications. Chiew et al. (2005) examine the

one-dimensional EMD of several annual streamfl ow time series to search for sig­

nificant trends in the data, using bootstrapping to test the statistical significance of

identified trends. The technique has been used extensively in the analysis of ocean

wave data (Huang et al., 1999; Hwang et al., 1999) as well as in the analysis of

polar ice cover (Gloersen and Huang, 2003). EMD has also been applied in the

analysis of seismological data by Zhang et al. (2003) and has even been used as

an aid in diagnosing heart rate fl uctuations (Balocchi et al., 2004).
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Computing the one-dimensional EMD

The EMD algorithm recursively extracts the oscillatory mode that exhibits the

highest local frequency from the data ("detail" in the Wavelet context or the result

of a high-pass filter in Fourier analysis) , leaving the remainder as a "residual"

("approximation" in Wavelet analysis). Successive applications of the algorithm

on the sequence of residuals produce a complete frequency decomposition of the

data. The final residual is a constant, a monotone trend or a curve which only has

a single extremum.

The EMD of a one-dimensional data set z(k) is obtained using the following

procedure:

1. Set ro(k)=z(k) and set i = 1.

2. Identify all of the extrema (maxima and minima) in Tj-l (k).

3. Compute a maximal envelope, maxj_l(k), by interpolating between the

maxima found in step 2. Similarly compute the minimal envelope, min.i., (k).

Cubic splines (as suggested by Huang et aI., 1998) appear to be the most ap­

propriate interpolation method for deriving these envelopes in one dimen­

sion (Flandrin et al., 2004).

4. Compute the mean value function of the maximal and minimal envelopes
. (k) Imaxi- l (k)+ min i- dk»)rn ,_l 2 '

5. The estimate of the IMF is computed from IMFj(k )= Tj_l (k)- mj_l (k).

Each IMF is (by definition) supposed to oscillate about a zero mean and

in practice it is necessary to perform a "s ifting" process by iterating steps

2-5 (setting Ti -l = IMF i before each iteration) until this is achieved.

6. Once the IMFj has a mean value that is sufficiently close to zero over the

length of the data (defined by a topping criterion within some predefined

tolerance e: ) the residual r j(k)=rj_l (k) - IMFj(k) is computed. Alterna­

tively the sifting procedure can be stopped when the difference in the stan­

dard deviation of success ive estimates of IMF j falls below a critical thre sh­

old (Huang et al ., 1998).
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Fig. 4.22: EMD based signal eparation; all IMFs are plotted to the same vertical
scale. Top panel is the combined signal; lower 3 panels are the decomposition
which recaptures, almost exactly, the original components.

7. If the residual Ti (k) is a constant or trend then stop; else increment i and

return to step 2.

Figure 4.22 shows the EMD of a composite data series (shown in the first

panel) that is the summation of a sine wave, a triangular waveform and a slowly

varying trend. The compact representation obtained by EMD extracts (almost per­

fectly - except near the ends) the three separate data series (shown in panels 2 to

4) that make up the composite signal, without resorting to Fourier or Wavelet tech­

niques with restrictive assumptions about the form of the underlying oscillatory

modes (in the form of predefined basi functions). Figure 4.23 show the analysis

of the same data, using Wavelet decomposition. Here a fifth order Daubechie

wavelet basis wa (arbitrarily) cho en for illustration purposes; this choice of ba­

sis function may not be optimal for detrending but serves to demonstrate a typical

decomposition. Seven levels of decomposition were required before the trend

became apparent; this decomposition is clearly far less compact and physically

meaningful than the EMD results in this case.
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Fig. 4.23: Wavelet based signal separation - The "data" are the same as in fig­
ure 4.22, the vertical scale has been compressed for a compact presentation. An
arbitrarily chosen db5 wavelet decomposition basis has been used for illustrative
purposes.

A similar decomposition analysis can be carried out using Fourier techniques.

Figures 4.24 and 4.25 show the result of decomposing the data using a finite

Fourier series approximation (see equation 4.5). Figure 4.24 shows the first 5

harmonics; while figure 4.25 shows the series reconstruction by accumulating the

lower harmonics up to m. Computing the Euler-Fourier coefficients provides a

compact approximation of the original signal (useful for data compression) but

fails to extract physically meaningful information. The ability to determine mean­

ingful structural information is clearly important in a nowcasting context, which

cannot be bound by the periodicity assumption implicit in Fourier methods.
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Fig. 4.24: Fourier based signal separation, the first 5 of 75 components - The
dashed lines show the sine component and the solid lines the cosine component.
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Fig. 4.25: Reconstruction of the signa l from the sine and cosine components, m
represents the number of Euler-Fourier coefficients used in each reconstruction.
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4.2.5 Extending empirical mode decomposition to two dimen­

sions

In two dimen sions the EMD process is conceptually the same as for a single

dimension, except that the curve fitting exercise becomes one of surface fitting

and the identification of extrem a becomes (slightly) more compl icated. Very lit­

tle work appears to have been done which applies the EMD technique to two­

dimen sional data. Han et al. (2002) use EMD in one dimension along four dif­

ferent direction to smooth Synthetic Aperture Radar (SAR) images and remove

speckle. Nunes et al. (2003) develop a technique, which they term "Bidimensional

Empirical Mode Decomposition" (BEMD) in the context of texture analysis in

image data where they demon strate several examples of intrinsic mode extraction

from image data. Linderhed (2002, 2004) examined the use of EMD in two di­

mensions for image compression. Both of these implementations are very similar

to what is proposed here, with the exception that in the rain fall field context there

are raining and non-raining areas on the same image. The 2D EMD provides a

truly two-dimensional analysis of the intrinsic oscillatory modes inherent in the

data. Two-dimensional Fourier and Wavelet analyses are really applications of

their one-dimensional counterparts in a number of principal directions. Fourier

analysis concentrates on orthogonal "East-West" and "North-South" directions

(e.g. Press et al., 1992). Wavelet analysis can, in general , consider any direction

of the wavelet relative to the data, however a typical 2D Wavelet analysis exam­

ines only horizontal, vertical and diagonal orthonormal wavelet basis function s

(Daubechies, 1992, pp. 3 13; Kumar and Foufoula-Georgiou, 1993). In contrast,

EMD produces a fully two-dimensional decomposition of the data , based purely

on spatial relationships between the extrema, independent of the orient ation of the

coordinate system in which the data are viewed.

Description of the algorithm

The algorithm follows intuitively from the one-dimensional case and may be

briefly summarized as follows:
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1. Locate the extrema in the 20 space including maximal and minimal plateaus.

2. Generate the bounding envelopes using appropriate surface fitting tech­

niques. Conical Multiquadrics are suggested (for reasons explained later).

3. Compute the mean surface function as the average value of the upper and

lower envelopes.

4. Determine the first estimate of an IMS by subtracting the mean surface from

the data.

5. Iterate until the IMS mean surface function is close to zero everywhere.

6. Estimate the IMS and Residual.

7. If the Residual is a constant or a monotone trend, then stop; else return to

step 2.

Surface fitting for extremal envelope generation

The generation of maximal and minimal envelopes is of key importance to a suc­

cessful 20 EMD implementation and is the most computationally intensive task.

The problem is a familiar one of collocating a smooth surface to randomly scat­

tered data points in two-dimensions. There are several options available to achieve

this. Ultimately the fitting procedure reduces to computing the unknown value of

the surface at a point Si=(Xi Y i ), by some linear (or nonlinear) weighting of the

known data. In general, a basis function determines the influence of each known

data point based on its spatial position relative to the unknown point S i ' Nunes

et al. (2003) use radial basis functions while Linderhed u es bi-cubic splines (Lin­

derhed, 2002) and later (Linderhed, 2004) chooses the more suitable option of

Thin Plate Splines. The choice here is radial basis functions (technically, conical

Multiquadrics), which are identical to Kriging with a purely linear erni-variograrn

model (Borga and Vizzaccaro, 1997). It could perhaps be argued that it would be

more appropriate to fit a serni-variogram model to the maxima and minima, but

this would be over-elaborate and presumptuous, as the extrema are only related by



156

distance and cannot be considered drawn from a homogeneous correlated random

field. Invoking Occam's razor in the spirit of Huang's original derivation of EMD,

the idea is to let the data do the talking and conical Multiquadrics assume the least

structure of any linear surface fitting algorithm.

The Ordinary Kriging estimate Zi at any point i based on n observed data

points is
n

Zi = l::AkZk
k=l

where Zk are the observations and Ak are weights as ociated with each observa­

tion and the target point. The mean is assumed unknown and the weights Ak are

constrained to sum to unity. The vector of weight A is obtained by solving the

linear system in equation 4.6

(4.6)

where 1 is a vector of semivariogram values, in this application simply defined by

the linear distance basis function i ( Sij )= ISijl with Sij the distance between point

i and the j= l , 2, " "" ! n.observation locations. r is the matrix of distances between

the observations, u is a vector of n ones and J1. is a Lagrange multiplier ensuring

that the Kriging weights A sum to unity, as required. The solution of equation 4.6

is obtained using Singular Value Decomposition (SVD), to ensure that a stable

solution is assured (when the matrix is ill conditioned). This is achieved by trun­

cating singular and near-singular components. Although SVD is computationally

less efficient than (for example) LV decomposition as a means of solving a dense

linear system, it's use is preferred here because of robustness in the face of the

near-singular Kriging systems which are frequently encountered in gridded data

applications (Wesson and Pegram, 2004).

A more efficient choice of interpolation technique would be useful and more

work could be done in this regard, however care is required. Moving-neighbourhood

Kriging (a possible alternative to reduce the number of control points) can pro­

duce unwanted discontinuities in regions that are data sparse (Chiles and Delfiner,
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Fig. 4.26: Example of EMO used for noise remo val on a 20 sine wave. The bulk
of the additive white noise in the corrupted signal is well captured by the first IMS.

1999, pp 20 I), such discontinuities would be amplified through the EMO sifting

process. In addition, the particular choice of Ordinary Kriging as a method of

generating the bounding envelopes was (partially) directed by the property that

the estimates decay asymptotically to the mean of the observed extrema.

Simple two-dimensional EMD

In this section, application s of the 20 EMO technique are presented. As an ar­

tificially constructed example figure 4.26 shows the successful removal of noise

added to a synthetically generated two-dimensional sine signal. The noise (with

it' s high local spatial frequency) is almost completely described by the first IMS

leaving a residual, which is closely representative of the underlying signal.

Turn ing to a more realistic example, figure 4.19 showed an instantaneous radar

rainfall field with dimensions lOO x 200 km. A complete EMO of this fi eld is

shown in figure 4.27 using a direct application of the 20 EMO process described

in this section; note the change in scale of the individual IMS. The final residual
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Fig. 4.27: Naive EMD of the observed rainfall field shown in figure 4.19 - note
the change in scale of the rain rates in the IMS.

(with a single extremum) gives a clear indication of the position of the largest con­

vective raincell evident in the field. Co-incidently it turns out that this particular

raincell is in fact the feature which persists for the longes t time in the observed

rainfall sequence.

4.3 Case Study - Application of two dimensional EMD

to rainfall data

The simple 20 EMO application presented in the previous section is computation­

ally burdensome when applied to rainfa ll data. In this section, to overcome this

drawback, a number of specific refinements are presented which com bine to make

EMO tractable in practical real-time situations.
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4.3.1 Image processing techniques and optimizations

Since an application of 20 EMO requires the use of surface fitting techniques,

large linear systems must be solved. The ize of a system is determined by the

number of known data point s which are to be used in combination to find the

unknown values of the surface at each remaining position in the field. The highly

variable nature of rainfall data means that the fields may contain a large number

of extrema from which the bounding envelopes must be constructed. Additionally

there are a large number of zero (no rain) data, which constitute minima. By only

considering raining areas, the size of the linear systems requiring a solution are

greatly reduced since each raining area (if more than one exists) will contain a

considerably smaller number of extrema than the entire data region and each can

be treated separately. Furthermore, it makes no sense to consider an EMO in areas

where the variable of interest does not exist, in this case the areas with no rain .

A number of well-known image processing techniques are implemented to

isolate and process each raining area. Figure 4.28 summarizes the steps taken in

processing the data with the boxes numbered 1-7 indicating different steps in the

process. First a mask is generated to separate the raining and non-raining pixels

(Figure 4.28 , Box 1) in the instantaneous radar image; pixel s below a threshold

of 1 mm/hr are considered as non-raining and the remaining pixels are marked as

raining.

An outer boundary border-tracing algorithm (Sonka et aI., 1999) is used to

establi sh a boundary "fence" around each rainin g area (Figure 4.28, Box 2) and a

flood-fill procedure is then used to fill each raining area with a unique identifier,

resulting in separately labelled raining region s (Figure 4.28 , Box 3). To reduce the

computational burden of the algorithm even further, the boundary "fence" is dec­

imated by a factor of 5 to reduce the continuous string of border poin ts to "fence

posts" while retaining the gross shape of the rainin g areas (Figure 4.28 , Box 4).

The next step in the processing of the data is to isolate the extrema in the rainfall

field (Figure 4.28, Boxes 5 and 6). There are numerous possible techniques for

identifying extrem a in the rainfall field. Nunes et al. (2003) use a morphological

reconstruction technique. One alternative, which was explored, is based on image
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Fig. 4.28: Summary of data processing 1. Mask the wet and dry areas; 2. Trace
the boundary of each wet region; 3. Separately label each wet region; 4. Decimate
the fence by a factor of 5, isolating the "fence posts"; 5. Isolate the maxima in
each sub-region; 6. Isolate the minima in each sub-region; 7. EMD analysis de­
compo ses the data into the fir t IMS and the first residual using the maximal and
minimal envelopes defined using the points in 4, 5 and 6.

segmentation and detection of extremal plateaus. However, the chosen method

was to use a simple 8 neighbour search routine for identification of pixels with

extreme values as done by Linderhed (2004). The choice was partly for conve­

nience and computational speed, but also because the majority of the (non-zero)

extreme values in the rainfall fields studied turned out to consist of single pixels.

There is a rich literature on image processing techniques and an introductory text

such as Sonka et al. (1999) will provide the detail omitted here. Finally, the EMD

analysis is carried out using the extrema within each raining area and the zeros at

the "fence posts" of non-raining border pixels to specify the extremal envelopes

(Figure 4.28, Box 7). Only one step of decomposition is shown - the data is

decomposed into the noisy first IMS and the first residual.
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4.3.2 Results

An analysis of over 800 individual radar scans, embodying mixtures of various

ratios of Strati form and Convective rainfall types, was carried out to determine the

effectiveness of the 20 EMO algorithm in eparating the high wavenumber spatial

components from the low wavenumber components of the original rainfall data.

Working on the basis that the average characteristics of the data over a range of

spatial scales summarized by the power spectrum is intuitively useful, the (radially

averaged) power spectra of (i) the original data, (ii) the first IMS and (iii} the first

residual of each image were examined and compared. Figure 4.29 shows a typical

result; the power spectrum of the residual shows a very close correspondence with

that of the original data at large wavelengths while it contains far less power at the

shorter wavelengths (note the logarithmic scale on both axes of the figure). In

contrast, the spectrum of the first IMS has very little power relative to the data's

spectrum at high wavelengths but shows a strong correspondence at the lowest

wavelengths. Figure 4.29 clearly indicates how the 20 EMO technique moves the

bulk of the high frequency components in the original data into the first IMS and

leaves the high power, lower frequencies in the first residual. The decomposition

behaves as a low pass spatial filter, without presupposing the shape of the filter

function. Figure 4.30 shows a time average of this behaviour by plotting the mean

values at each wavelength of the three spectra over five consecutive radar scans

(beginning with the data used to produce figure 4.29). The radar scans are captured

at approximately five-minute intervals. It is interesting to observe that the average

of the spectra of the first IMS is flat (constant mean) for wavelengths longer than

10 km, suggesting nearly white noise over this range.

The temporal persistence exhibited at the spatial scales represented in each of

the three sequences of: (i) the data, (ii) the first IMS and (iii) the first residual was

examined by considering the persistence of their temporally consecutive power

spectra. The notion of "spectral persistence" was used to determine how variable

the spatial structure (at a particular spatial scale) is in time and hence to give an

indication of the temporal predictive capability at each spatial scale. A summa­

rized example of the analysis of a sequence of 5 radar rainfall images is presented
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Fig. 4.29: Comparison of individual radially-averaged power spectra of the radar
rainfall data (of figure 4.19 ) with its EMD components: the first IMS and the first
residual. Note the logarithmic scale on both axe .

in figures 4.31, 4.32 and 4.33 where a "matrix" of scatter plots is shown in each

case. Scatter-plot s of the pairs of power values at each discrete wavelength for

five consecutive spectra (with the I: I line indicated) are shown for the origi nal

data (Figure 4.3 1), the first IMS (Figure 4.32), and the first residual (Figure 4.33).

The rows and columns of the scatter-plot matrice s are labelled from To to T4 and

indicate separate radar scans between time T =Oand time T =4. Each block in the

scatter-plot matrix represents a scatter-plot of the power at each wavelength for

the spectrum computed at T, versus that of the spectrum computed at Tj • Clearly

the plots on the "matrix" diagonal each compare a spectrum to itself and a perfect

1:I relationship is observed in this case. For the off-diagonal plots, the degree

of scatter among st the data points indicates the degree of similarity between the

spectra at individual wavelength s at increasing time lags with a large scatter indi­

cating a weak similarity. The trends shown here are typical of the data analysed

and show how the first (high average wavenumber) IMS has a temporally inco­

herent spatial structure, while the first (low average wavenumber) residual shows
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Fig. 4.30: The same as figure 4.29 but for the mean of individual power spec tra for
five consec utive, radar scans - Beginning with the spectra shown in figure 4.29.
Note the logarithmic sca le on both axes.

a temporally consistent structure. The behaviour shown in Figures 4.29 - 4.33

sugges ts that the high frequency IMS components in spatial rainfall data do not

contain much predictive capabil ity. Thi s observation supports the sugges tions of

Seed (2003) and Turner et al. (2004) who propose to increase the degree of spa­

tial smoothing and give more credibility to the information contained in the lower

frequency components as forecast lead times increase.
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Fig. 4.31: Spectral persi stence scatter plots of the original data for a sequence of
rainfall fields and those at successive intervals. This is constructed by plotting
the values of power for each field at corre sponding wavelengths coaxially. For
example points A and B at the 10 km wavelength are plotted against each other
and appear ringed in the upper right diagram.
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Fig. 4.32: Spectral persistence scatter plots of the sequence of 1st IMS of each
pair of rainfall fields To,' . " T4 •
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Fig. 4.33: Spectral persistence scatter plots of the equence of 1st Residual of
each pair of rainfall fields To. . . ., T4 •
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Chapter Summary: This chapter began with a brief overview of some of the

nowcasting techniques and model in the literature. This was followed by a dis­

cussion of the Optical Flow method as a technique for determining the advection

of rainfall fi elds measured by radar or satellite. This techn ique is a core com­

ponent of the S-PROG and SBM stochastic nowcasting models, as well as the

accumulation scheme presented in section 3.3.

The SBM rainfall simulation model (Pegram and Clothier, 1999) was de­

scribed and extended to provide a nowcasting implementation. The differences

between the simulation and nowcasting modes were highlighted. In addition, a

well known nowcasting model called S-PROG (Seed, 200 I) was described and

it' s main features discussed.

With the nowcasting models introduced some comparitive investigations were

carried out using observed radar reflectivity data from two South African radars.

It turns out that S-PROG's strategy of decomposing the observed rainfall fields

according to pre-specified spatial scales gave it a performance advantage when

compared with SBM in nowcasting mode for two mean fi eld error statistics.

With the results of the nowca t comparisons in mind, a new technique for

analysing the spatial scaling structure of rainfall fields was presented. The tech­

nique is a two dimen sional extension of Empirical Mode Decomposition for the

analysis of non-linear and non-homogeneous time series. An EMD analysis in two

dimen sions linearly decomposes the spatially distributed rainfall data into a set of

Intrinsic Mode Surfaces, which are approximately mutually orthogonal (Huang

et al., 1998) and sum back to the original data. Each IMS contains an oscillatory

mode inherent in the data at a different (narrow) range of spatial frequencie . The

EMD analysis success ively extracts the IMS with the highest local wavenumbers

in a recursive way, which is effectively a set of success ive low-pass spatial filters

based enti rely on the properties exhibited by the data . The utility of the EMD

technique for signal separation has been demonstrated in both one and two di­

mensions and applied to the analysis of a large set of 800 radar rainfall images in

South Africa. The 2D EMD technique is proposed here in the context of rainfall

nowcasting to separate the less persistent high wavenumber components from the
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more persistent low wavenumber ones in the data. The aim is to isolate the high

wavenumber components, which do not exhibit a strong temporal correlation and

add little structural information to nowcasting algorithms. The scale separation

achieved by 20 EMO has been analysed using radially averaged power spectra

to summarize the spatial structure of the data and filter outputs. In addition these

power spectra have also been used to examine the temporal persistence of the spa­

tial structure exhibited by the first IMS and residual. The results presented here

support other work in the Hydrometeorologicalliterature, which suggests that the

low frequency spatial components in rainfall data are most useful in a nowcasting

context.



C HAPTER 5

COMBINING THE METHODOLOGIES

FOR FLASH FLOOD FORECASTING

Earlier chapters in this thesis have presented techniques f or overcoming a num­
ber the challenges presented in relation to fla sh flood forecasting. In this chap­
ter the various methodologies are drawn together into a coherent system to
provide a road-map for the implementation of a fla sh flood forecasting system
in South Africa. Particular emphasis is given to the organizational structures
which will be required to implement a flood forecasting system. Acquisition,
processing and transfer ofdata are discussed in terms ofa prototype system in
the eThekwini municipality, Durban, South Af rica and shortcomings notedfor
future improvements.

In section 1.2 a brief discussion was presented relating to a proposed system

for flood forecasting in South Africa . With the exception of a model for portions

of the Orange river and Vaal dam catchment maintained by the Department of Wa­

ter Affairs and Forestry (DWAF) hydrology gro up, there are no operational fl ood

warning systems anywhere in South Africa. Thi s is a dire situation in a country

where so many are impoverished and without the mean to recover from disasters.

The Vaal system model uses the Sacremento rainfall runoff model calibrated for

the region and rainfall data is manually fed into the model during periods of heavy

rain. This model is mainly intended to assist with the management of Water Re­

sources and was not designed with disaster management in mind. The model is

suitable for the large Vaal catc hment but it is not automa ted and would be cum­

bersome to run on smaller catchments with shorter response times. In addition

169
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skilled personal to man the system are in short supply in South Africa. This criti­

cal personnel situatio n will need to receive urgent atten tion.

Sinclair and Pegram (2004a) provide the details of a prototype system set-up

for the Mgeni and Mlazi catchments near Durban, South Africa. The implemen­

tation provides several of the components of a flood forecasting system shown in

figure 5.1 and these are described, along with suggested ways to "complete the

puzzle" by providing the remaining components of the system.

Radar Satellite

Streamflow Observat ion s

Fig. 5.1: A schematic overview of the main components required for a successful
flood forecasting system. The "best" option for each of the components is depen­
dant on factors such as the size (hence response time) of the catc hment, available
data and skills within the team tasked with implementing the system.

5.1 Rainfall estimation

The most important input to any flash flood forecasting system is precipitation. In

Southern Africa the influence of snow can safely be ignored (except in a few select
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Fig. 5.2: 23 July 2004 Met-8 false colour image. A typical frontal system over the
Western Cape Peninsula , South Africa.

high areas) and the measurement of rainfall becomes the most important facto r in

determining the input to the catchment. As described in detail in chapter 3, there

are three measurement devices available in South Africa which provide estimates

of rainfall at suitable spatial and temporal resolut ion for flash flood foreca sting .

In the short term any flood foreca sting system will be forced to rely on the e.

The rainfall estimates produced from rain gauges, weather radar and meteo­

rological satellite can be combined in an optimal way using conditional merging

to produce the best spatial estimate of rainfall for the catchment of interest. The

resulting combined rainfall estimate can be fed into display system s for direct vi­

sualization of instantaneous and accumulated rainfall (section 5.5.1). Figure 5.2

shows an example of the kind of useful visual information that may be provided

in real time via remote sensing data. The estimates are also used as input to catch-
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ment model s and converted to streamflow, the core output of the flood foreca sting

system. It is essential that processes are put in place to produce rainfall estimates

in real-time using the most current available data streams.

The respon sibility for this will ultimately lie with SAWS, but a countrywide

implementation at the short time- scales relevant to flash flood foreca sting is still

some way off. The mos t pragmatic approach at this juncture will be site specific

implementations of the appropriate merging algorithms. These specific imple­

mentations will direct the rollout to a wider area and provide operational experi­

ence with the algorithms and data systems.

5.2 Catchment model

The nature of the catchment model is not dictated here as its implementation and

effective use are (almost entirely) dependent on the expertise and data which are

available when the forecasti ng system is implemented. In South Africa the nec­

essary hydrological expertise does not exist in many of the municipal structures

which are responsible (by law, Disaster Management Act 2002) for ensuring ap­

propriate flood mitigation strategies, including flood forecasting and warning sys­

tems. For useful real-time operation, the catchment models need to be informed

by real- time streamflow observations (Sec tion 5.4) whic h provide a means of up­

dating the models performance and improving forecasts . The concepts related to

model updating are discus ed in chapter 2.

Model s should also be suitable for automation, or be available in a form which

exposes a suitable Application Programmi ng Interface CAPI) for systems develop­

ment. Once again , the level of sophistication in the system implementation will

be highly dependent on a combination of funding and expertise.

Most of the larger Metros have by now completed the process of producing

flood vulnerability assessments for the areas where they have respon sibility. A

key component in the vulnerability assesmen t is the production of floodlines for

multiple return periods. In some cases this may have entailed Hydrological mod­

elling. In these cases it may be possible to re-use the existing model if the relevant
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data related to its set-up and calibration can be retrieved from the consultants hired

to produce the floodline s.

5.3 Rainfall forecasts

Nowcasting of rainfall fields holds considerabl e promise for improving the lead­

time of streamfl ow foreca sts. While accurate quantitative estimates remain trou­

blesome using radar and satellite information , properly foreca sting the arrival

times of runoff producing rainfall will likely provide some assistance to the Hy­

drological forecasting efforts. Short term rainfall nowcasting is dealt with in

chapter 4, where two stochastic nowcasting models are investiga ted as a means

for extendin g the information from current best spatial rainfall fields into the fu­

ture . Operation al implementation of uch schemes in South Africa falls within

the purview of SAWS . The nowcasting schemes will be well complemented by

the outputs of NWP model s, which provide advance warning of heavy falls.

5.4 Real-time streamflow observations

Real-time streamfl ow observations, upstream of vulnerable areas provid e many

advantages for a flood foreca sting system. If a Hydraulic model has been set up

for the river reaches down stream of the gauging station it is possible to get an

estimate of the flood levels in real-t ime. Thi s is po sible either through a lookup

system, or by runn ing the Hydraulic model online. This is discussed in more

detail in section 5.5.2. The Hydraulic modelling effort becomes far more useful if

forecasts of streamflow can be used as input. Feedback to improve Hydrological

model outputs using filtering techniques (e.g. Kalman filters) is an important way

to produce better forecas ts and therefore real-time streamflow obse rvations hold

great importance.

The current situation is South Africa is that DWAF has instrumented a large

number of flow gauging structures with telemetering flow gauges . The data are

recorded at short time intervals (12 minutes in most cases) and transmitted to a
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Fig. 5.3: An outline of the procedure for downloading and extracting real-time
flow records from the DWAF web ite. The system can be set up to run at regular
intervals, depending on the application.

central server with a frequency of five times daily (on average). The frequency of

data transmissions is limited by cost and increased cost can only be justified by

increased demand. In times of high flows the data could conceivably be requested

on demand at a higher temporal frequency . The data are freely accessible via

DWAF's website and returned in an HTML format as a rolling buffer of the most

recent data. Quality controlled historical records for each gauge are also available

through a similar interface. The author (Sinclair and Pegram, 2004a) developed

software to request the web page containing data for a relevant gauge, read and

parse the page and extract the relevant flow (or stage) data. Where dams are

used as the gauging structure (and flow rates are not provided by DWAF), the

author developed additional software to convert the dam levels to flows via the

appropriate rating table. Figure 5.3 gives a diagrammatic representation of the

data retrieval process.
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Fig. 5.4: Examples of automatically down loaded real-time flow records. The
data have been down loaded from the DWAF website and converted into graph­
ical form. The software is set-up to run at regular intervals, which can be varied
depending on the specific application.
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Fig. 5.5: Example of an automatically downloaded real-time reservoir level
record. The data have been downloaded from the DWAF website and converted
into graphical form. The software is set-up to run at regular intervals, which can
be varied depending on the specific application.

The resulting flow record can be used to provide information about current

flow conditions as well as feedback (through a suitable filter) for the catchment

model. This ystem has been successfully implemented and run at UKZN and

in the eThekwini municipality 's disaster management centre. Since the software

is easily scheduled to run at any time interval , improved frequency of data col­

lection from gauging stations on elected catchments will make this a reasonably

robust and effective method for obtaining real-time streamfl ow estimates. Figures

5.4 and 5.5 how recent examples of the data collected automatically using the

oftware.
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5.5 Visualizing the output

In this section the kind of information presented to the end user of the flood fore­

casting system, in this case the disaster managers (DMs) is discussed. The prod­

ucts which are relevant have been informed by consultation with the members of

the disaster management team at eThekwini Metro and other role players such

as SAWS and DWAF. The role of the fl ood forecasti ng system in the process of

disaster management is to provide a warning of the possibility and seriousness of

an impending flood event, the actions and decisions taken on the basis of that in­

formation are then in accordance with the action plans of the relevant authorities.

The consultation process yielded two major requirements from the DMs point of

view; some warning should be provided ahead of a likely flood and the affected

areas should be clea rly defined (prefera bly in a graphical format). To meet these

requirements, the Arcview GIS was chosen as a display tool since there is already

considerable skill and experience within the major Metros in South Africa with

regard to this system. Images of current and historical rainfall were made avail­

able for real-time display in the eThekwini Metro disaster management control

room and a system devised for the dynamic selection of flood lines in response to

currently ob erved or forecast streamflows. These systems are discussed in more

detail in sections 5.5. 1 and 5.5.2.

5.5.1 Integration of the radar rainfall images into a GIS

When radar rainfall images are presented in an animated spatial context they can

provide a simple means for providing advance warning of heavy rainfall approach­

ing sensitive (flood-prone) catchments. Figure 5.6 shows an example of an instan­

taneous radar image of a major storm event that moved over the Mlazi catc hme nt

and the lower reaches of the Mgeni catchme nt.

The image data were made available in an Arcview compatible format at the

eThekwini municipality's disaster management centre in near real-time. The data

transfer process and relevant software were developed by the author in consulta­

tion with the DMs and SAWS. A brief description of the transfer methodology is
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Fig. 5.6: Visualization of rainfall in the Disaster Management centre. Th is figure
shows a large convective storm over the upper Mlazi catchment (17 December
2002 at 14:58 SA standard time).

presented in the following paragraphs.

SAWS make use of the Meteorological Data Volume (MDV) file format to

transfer and archive spatial radar data. In order to make use of this primary dataset

it is necessary to have a means of extracting the data from MDV files.

An overview of the MDV file format

MDV is a fl exible binary file format designed for the storage and transfer of grid­

ded meteorological data. The SAWS radar data processing system is built around

the MDV format and uses the TITAN system extensively. The main advantages of

the MDV format are the fast data access speeds that result from it's binary nature,

portability of the format between operating systems (the libraries handle issues

such as Endianness) and the possibilities for data compression included as part
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of the format. Each MDV file consists of a file header which defines the layout

and contents of the data portion which follows. The data sets are organized as a

hierarchy of "Fields" each field may (for example) represent a different variable.

Within each field there is the capacity to store a number of "Levels". The struc­

ture of the format is designed to be appropriate for storing data sets collected at

various levels relative to the sensor.

The South African radar data is stored in a single MDV file for each instan­

taneous scan. The raw radar data is resampled onto a stack of 18 Cartesian grids

with a I x I km grid cell size and I km vertical discretisation.

Using the MDV data

The C language source code for MDV file handling was obtained from METSYS

and adapted to compile under Microsoft Windows using the MSVC compiler. A

set of statically linked libraries was produced. Linking to these libraries and call­

ing the routines contained therein allows the user to make use of the MDV file

handling routines in custom software u ed to extract and manipulate the MDV

data. A full under tanding of the MDV routines has been achieved and they are

now an integral part of many of the software products developed within the re­

search group at UKZN.

The raw radar data-stream is processed into MDV format at each of the II

radar sites around the country (Figure 5.7). The MDV data are then transferred

to the METSYS server in Bethlehem where SAWS publishes data products on

their web page and archives the data in real-time. The relatively static products

currently available on the web page do not provide the powerful data analysis

capabilities of a GIS. Software developed during this project was run routinely

on SAWS' METSYS server to produce ArcGIS compatible geolocated images

from the Durban radar. The software accepts the MDV format data as input and

produces radar rainfall images in a spatially referenced format. The data are com­

pressed to reduce the size and tored on the METSYS erver in a rolling buffer

with 2 days of data stored before deletion. There is no need to preserve these data

as the products can readily be extracted from the archived MDV data if required.
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Fig. 5.7: The South African weather radar network. The location of each of the 11
radars is indicated by the red points and the range is indicated by the rings which
surround the points . The range shown in this figure is the 200 km range, some of
the radars (notably Cape Town) have an increased range.

Software developed in this project using the Python language wa tested for

several months at the Durban Metro DM offices to retrieve the latest images from

METSYS. The software makes use of the File Transfer Protocol (FTP) to access

the METSYS server remotely via the Internet at five to ten minute intervals. The

METSYS FTP server is queried for new data at frequent intervals and when new

data are found they are downloaded to the client machine; data that reside on the
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clien t but are no longer on the serve r are automatica lly deleted (but could be stored

if this was required).

5.5.2 Generation and display of ftoodlines and inundation depth

It' s all very well having a sequence of observed streamflows and possible fore­

casts of the future flows but without these numbers being interpreted in term s of

flood levels, and depths of inundation, they are of no real significance to the DMs.

The process of translating flows in the Mlazi river into inundation depths for the

eThekwini Municipality is dealt with in Mkwananzi and Pegram (2004) . The de­

tails of the methods used for the determin ation of flood lines and inundation depths

will not be repeated here as they are well known. Instead a brief description of the

process and the application of the e products in the prototype flood forecasti ng

system are presented.

In general the computation of floodlines is a fairly laborious process which ,

despite the proliferation of software packages, requ ires a large degree of human

interaction. This does not encourage online computation of current and forecast

inundation depths as a fi rst choice of modus opera ndi.

A possible process for producing fl oodl ines is as follow , based on the Mlazi

river study. A Hydraulic model of the river channel and adjacent flood plain s must

be produced, using a Digital Elevation Model (DEM) in combination with field

surveys . This is a once-off procedure since the same model may be used to model

the effec ts of many different flow rates (this assumes that there are no disturbances

to the geometry of the channel, which would require revising the model). The hy­

drauli c model used in this study was the well-known HEC-RAS model (Brunner,

200 I). HEC-RAS routes the fl ood-wave along the modelled channel and com­

putes flood level at eac h of the modelled cross-sections . A typical output from

HEC-RAS (steady state) is shown in figure 5.8. The model can also output the

flood levels (to a file) as a set of points in a three-dim ensional co-ordinate system.

In order to interpret these point s as fl ood lines and inundation levels an interpo­

lation between channel cross-sections is requ ired, preferably in conjunction with

additional information from a DEM. A polygon can then be produced in a suit-
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Fig. 5.8: HEC-RAS output for the lower reaches of the Mgeni river, Durban,
South Africa.

able GIS format for viewing in the disaster management centre. In this case an

Arcview shapefi le like that show in figure 5.9 needs to be produced. A separate

floodline must be produced for each flow rate considered. In typica l flood hazard

studies the fl ow rates are chosen by recurren ce interval.

The main issue with automating this process is that the DEM terrain data have

limited precision in following the topography and the resulting flood map may

not be entirely realistic . The problem can be partially resolved using improved

resolution for the DEM data and suitable mapping software. This approach is still

not foolproof in automation and would require considerable technical skill (and

therefore expense) to set up.

For the purposes of this study a simple alternati ve solution was proposed as

a starting point. Flood lines at various recurrence interval s are available for the

Mgeni and Mlazi rivers through studies commi ssioned by the eThekwini munici-
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Fig. 5.9: A 2% Annual exceedance probability (50 year Recurrence Interval) flood
line: (Mgeni catchment Downstream of Inanda dam), Durban, South Africa.

pality. These serve as the starting point and an Arcview script was written which

can select the appropriate flood lines to display based on the most recent observed

streamflow, or alternatively the forecast flow.

Although the flood-wave is dynamic, it is assumed (for teep channels with

negligible off-channel storage) that the inundation levels traced by the flood peak

will be closely approximated by the corresponding steady-state peak, who e in­

undation level is the dynamic wave 's upper bound.

Since steep coastal catchments are the most flood prone in South Africa (Pe­

gram et aI., 2006a). Using the peak of the inflow Hydrograph gives a conservative '

estimate of inundation depths and if there is little off-channel storage they should

effectively behave as a channel and experience a Kinematic flood wave.



CHAPTER 6

CONCLUSION

The first section of this chapter summarizes the technical contributions pre­
sented in this thesis. Discussion and recommendations are given in the second
section.

6.1 Summary of main results and contributions

The purpose of this section is to summarize the main results and highlight the new

contributions which have been made by thi work. The work presented in this

thesis has been carried out in the context of providing flood forecasting capabil­

ities in South Africa. In this context, contributions have (of necessity) been split

between science and implementation. The main contri butions are outlined below.

• A two-dimensional extension of Empirical Mode Decomposition (EMD)

has been presented and applied to the analysis of spatial rainfall data. EMD

analysis explicitly accepts non-homogeneity in the data and does not rely

on the predefined basis functions integral to other methods (e.g. Fourier,

Wavelet). The work is a new contribution , publis hed in Sinclair and Pegram

(2005 b) and discussed in detail in sect ion 4.2 of the thesis . The significance

of this contribution is that the spatial wavenumber components inherent in

the data can be eparated in an unsupervised manner. The resulting cascade

of fields can be used for forecasting using the ideas of Seed (2003) and

Turner et al. (2004).

184
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• A novel technique for the accumulation of spatial rainfall fields has been

presented. Advection vectors computed between successive radar scans are

used to generate path integrals. The approach presented adds a refinement to

those reported by Anagnostou and Krajewski (1999a) and Hannesen (2002).

The accumulation scheme is presented in section 3.3 and it's significance is

that it provides a way to compare rain gauge accumulations and accumu­

lations from instantaneous fields in a sensible way. The advection routine

used also has benefits in rainfall field nowcasting.

• The String of Beads Model (SBM) presented in Pegram and Clothier (1999)

and Clothier and Pegram (2002), has been adapted for short term nowcast­

ing and compared with the Spectral PROGnosis (S-PROG) model (Seed,

200 1). SBM in nowcasting mode is a new contribution, described in de­

tail in section 4.1.2. It turns out that it is useful for ensemble forecasting

(Berenguer et aI., 2006) but does not perform as well as S-PROG for mean

field forecasts.

• The conditional merging technique of Ehret (2002) has been adopted and

validated using cross-validation techniques for synthetic as well as observed

rainfall data. The technique has been compared with an implementation

of the Bayesian merging technique (Todini, 2001) and found to perform

competitively. The conditional merging technique has also been extended

to provide a more formal discussion of its error structure. The conditional

merging algorithm was discussed in section 3.5.

• Although adaptive time series forecasting is certainly not new (Haykin,

200 I; Ljung, 1987), the application of these techniques is useful in the

Hydrometrological context where traditional time series methods (Box and

Jenkins, 1970) and filters (Kalman filters, Extended Kalman filter) are quite

common (e.g. Seed, 2003; Szollosi-Nagy and Mekis, 1987; Todini 1978).

Adaptive filtering techniques are used to forecast non-stationary time series

data. The adaptive filtering techniques and model fitting procedures adopted

in this study are pre ented in chapter 2 and are suggested as an alternative
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to tationary models where these fail to provide structural information.

• Implementation of data transfer mechanisms. Components of a prototype

flood forecasting system were set up in the eThekwini disaster management

centre (Durban, South Africa). This system is a first in South Africa and

has laid the ground work for the eventual implementation of a more robust

countrywide flood warning system. This work was expanded upon in chap­

ter 5 and included rainfall and flood line visualization in a GIS environment,

as well as the automated collection of real-time stream flow data.

6.2 Discussion and recommendations

The focus of this thesis has largely been on the estimation and nowcasting of spa­

tial rainfall fields for the purposes of flash tlood forecasting. A second theme has

been to suggest strategies (partially based on working implementations) for in­

stalling and operating practical flash flood forecasting systems in a country where

there are virtually no existing mechanisms in place. This is a dire situation in a

country where so many are impoverished and without the means to recover from

disasters. The government has recognized this and therefore the South African

Disaster Management Act (Act 57 of 2002) advocates a paradigm shift from the

current "bucket and blanket brigade" response-based mind-set to one where dis­

aster prevention or mitigation are the preferred option.

The Act mandates that local municipalities in South Africa have in place ef­

fective and properly financed mitigation strategies for disaster management, this

specifically includes flood warning systems. It is in the context of mitigating the

effects of flood events that the development and implementation of a reliable flood

forecasting system has major significance. The research reported on in this thesis

is part of a broader contribution aimed at solving these problems.

Perhaps the most important aspect of the development and finally implemen­

tation of flood forecasting systems in South Africa is the provision of reliable and

robust data gathering and distribution links. The capacity does not exist, in gen­

eral, at local government level to perform this task and it is here that SAWS and
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DWAF play a key role in realizing the letter of the laws set out in the Act. Most

of the work presented in this thesis has been carried out in support of the roles

that SAWS and DWAF play and the focus is therefore on pragmatism rather than

rigorous attention to fine details. Clearly, where these details are important they

have received the attention that they deserve.

Finally, the greatest challenge facing provision of appropriate flood forecast­

ing and warning systems in South Africa is not the technological limits but a crit­

icallack of people with relevant skill sets. Progress will become far more rapid if

this situation can be adequately addressed.
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Abstract
Th e Hydrologist 's traditional tool for measuring rainfall is the rain gauge. Rain gauges are
relatively cheap, easy to maintain and pro vide a direct and suitably accura te estimate of
rainfall at a point . What rain gauges fail to capture well is the spatial variability of rainfall
with time, an important aspect for the credible modellin g of a catchm ent ' s response to
rainfall. Thi s spatia l variability is particularly evident at short timescales of up to severa l
days, As the peri od of accumulation increases, the expected spatial variability is redu ced and
rain gauges pro vide improved spatial rainfall estimates. Because of the fractal variability
of rainfall in space, simple interpolation between rain gauges does not pro vide an accurate
estimate of the tru e spa tia l rainfall field, a t short time scales.

Weather radar pro vides (with a single instrument ) a highly detailed rep resentation of the
spatial stru cture and temporal evolution of rainfall over a large area. Estimated rainfall
ra tes are deri ved indirectly from measurements of reflectivity and are therefore subjec t 10

a combination of systematic and random errors.
Thi s art icle describes a recently proposed merging technique and presents an application

tu simulated rain fall fields. The technique employed is Conditional Merging (Ehret, 2002),
which makes use of Kriging to extrac t the optimal information content from the observed
data. A mean field based on the Kriged rain gauge dat a is adopted, while the spatial detail
from the ra da r is reta ined, reducing bias, but keepin g the spatial variability observed by
the radar. Th e varia nce of the estima te is reduced in the vicinity of the gauges where they
are abl e to pro vide good information on the tru e rain fall field. Copyright © 2005 Royal
Meteorological Society

Keywords: Kriging; conditional merging; multi- sensor rainfall estimation

I. Introduction

The spatial estimation of rainfa ll by combining infor­
mation from multiple sensors has received consider­
able attention in the Hydro-meteorological literature.
Early work (e.g. Bra ndes, 1975) focussed on the cor­
rection of bias in radar estimates of rainfa ll using an
adjustment factor. Krajewski (1987) suggests a Cok­
riging proced ure that he demonstrates by a numerical
experiment. A procedure that accounts for the frac­
tiona l coverage of rainfall (spatia l intermittency) is
suggested by Seo (I 998a,b) using conditional expecta­
tions. Seo (1998b) computes the expectation of rainfa ll
at an ungauged site, conditional on the observed rain
gauge and radar data . A Bayesian merging technique
suggested by Todini (200 I) relies on a Kalman filtering
cheme to remove the error variance (after a separate

bias reduction) by taking a Block-Kriged spatial esti­
mate based on rain gauges as the observation vector
repre enting the true rainfa ll field.

The greatest challenge in impleme nting the merg­
ing techniques mentio ned above is the difficu lty of
estimating the error tructure of rain gauge and radar
observations. This structu re may either be estimated
from historical observations on the assumption of

Copyright © 2005 Royal Meteorological Society

statio narity or estimated (and updated) online using
ome parameter updating procedure similar to that

employed by Anagnostou and Krajewski (I999a,b)
for adjusting radar rainfall estimates based on real­
time rain gauge observations. However, the true rain­
fall field remain s unknown and Hydro-meteorologists
must rely on the relationships between the observa­
tional data 10 draw conclusions regarding the unknown
error structure.

2. Conditional merging

Radar produces an observation of the unknown true
rainfall field that is subject to evera l well-known
sources of error (e.g. Wilson and Brandes, 1979;
Habib and Krawjewski , 2002 ), but retains the general
covariance structure of the true precipitation field. The
information from the radar can be used to condition the
spatially limited information obtained by interpolating
between rain gauges and produce an estimate of the
rainfa ll field that contains the correct spatial structure
while being constrained to the rain gauge data (where
it is avai lable). The conditional merging technique of
Ehret (2002 ), suggested by Pegram (2002), doe just
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Figure I. The conditional merg ing process. (a) The rainfall field
is observed at discrete points by rain gauges. (b) The rainfall field
is also observed by radar on a regular. volume-integrated grid.
(c) Kriging of the rain gauge observations is used to obtain the
best linear unbiased estimate of rainfallon the radar gr id. (d) The
radar pixel values at the rain gauge locations are interpolated
onto the radar grid using Kriging. (e) At each grid point. the
deviation C between the observed and interpolated radar value
is computed. (I) The field of deviations obtained from (e) is
applied to the interpolated rainfall field obtained from Kriging
the rain gauge observations. (g) A rainfall field that follows the
mean field of the rain gauge interpolation. while preserving the
mean field deviations and the spatial structure of the radar field
is obtained

this, making use of Ordinary Kriging (e.g Cressie ,
1991) to extract the information content from the
observed data . Figure I and the text following give
an overview of the technique (for the one-dimensional
case), which is adapted from Ehret' s (2002) work .

The spatial structure of the merged field is therefore
obtained from the radar, while the rainfall values are
'stitched' to the gauge observations of the true rainfall
field. The approach taken here has great imilariti es
to the technique of Conditional Simulation by Kriging
discussed by Chiles and Delfiner ( 1999). However, the
key difference in this case is that the radar rainfall
estimate is not a simulation, unrelated (except by
its statistical properties) to the rainfall field we want
to observe, but is in fact an observation of the true
unknown field. This important link means that the
radar data provides an estimate of the actual Kriging
error and, in particular, its spatial structure.

The error structure of the merged estimate can be
examined by considering Equations I to 7 below:

Kriged rain gauge field

Conditional rainfall fieldSimulated radar field

Simulated rainfall field

An artificial experiment was carried out to test the effi­
ciency of the technique at estimating the true rainfall
field. Since the true rainfall is unknowable in reality ,
a sequence of 1000 independent 128 x 128 pixel rain­
fall fields was produced using the 'string of beads'
simulation model (pegram and Clothier, 2(01 ). Each
pixel is representative of a I x I km area and all
1000 simulated fields were generated with identical

3. An illustration based on the 'string of
beads' model

rain gauge data, R(s) is the radar rainfall e tirnate,
RK(s) is the Kriged (mean field) estimate of R(s) using
the radar values at rain gauge locations and M (s) is
the merged estimate of Z (s).

The term EG(S) in Equation I is unknown since
Z (s) is unknown. In Equation 2, ER(s) is known and,
on the basis that R(s) is a measurement of Z (s),
Equation 3 can be used to estimate Z (s) . Equation 4
shows that the expected value of the error between
the merged estimate and the true field is zero if
the fields are Gaussian , since the Kriged estimates
are unbia ed in this case. The variance of the error
estimate given by Equation 5 can be decomposed, as
shown in Equation 6. The variance of the error is
(trivially) zero at the gauged points, while at any other
po ition in the field, it i bounded by a maximum
value of /3 , for positive correlations P between EG (s)
and ER(S ). If EG(S) and ER(S ) are strongly (positively)
correlated as one would expect since both gauges and
radar are measurements of Z (s) , then the variance of
the error will be significantly less than {3 , as suggested
by Equation 7.

(I )

(2)

(3)

(4)

(5)

(6)

(7)

~
(g)

~
(I)

2 (s ) = Gds) + cG(s )

R(s) = RK(S) + ER(S)

M (s) = Gds) + ER(S)

£[Z (s) - M (s)] = £ [EG(S) - ER(S)]

var[Z (s ) - M (s)J = var[EG(s ) - ER(S)J

2 2=° Ea (s ) + ° FR(S)

- 2COV[EG(S) . ER(S)]

= {3 - 2oEa (s )OER(S) P

EG(S) = Z (s) - Gd s)

ER(S) = R(s) - RK(s)
R _ 2 2
fJ - 0 Ea (S) + 0 ER(S)

~
(e)

where Z (s) is the true rainfall field at location s, GK (s) Figure 2. A single realization of the simulated and merged
is the Kriged (mean field) estimate of Z (s ) from the rainfall fields

Copyright © 2005 Royal Meteo rologicalSociety Atmos. Sci. Let 6: 19-22 (2005)
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statistical properties. The simulated rainfall fields were
treated as the 'true' rainfall and 'observed' radar esti­
mates produced by adding systematic (bias) and ran­
dom (noise) error components to the simulated fields.
The ' true ' field was then sampled at 83 ' rain gauge'
locations distributed randomly on the pixe l grid . Thi s
give an approximate coverage of one gauge for every
200 km2. A single realization of the 'true' field as well
as the corresponding 'observed' radar estimate and the
computed Kriged gauge field are shown in Figure 2,
while a more detailed description of the experiment
and the results obtained follows. Figure 3 shows the
correlation structure in the simulated fields.

For each of the 1000 simulated radar rainfall fields
and rain gauge observations, the conditional merging
technique was applied and the sub equent merged field
compared with the true simulated rainfa ll field in terms
of the mean and variance of its deviation s from the true
field. All of the Kriging and merging computations
were done on the logarithms of the variab les in
order to transform the log-normally distributed rainfall

21
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Figure 3. A plot of the exponential correlation function used
in generating rainfields

rate simulations to a Gaus ian space. Comparisons,
however, were done on the back transformed variab les.
The mean error of the merged field (over 1000
realizations) was computed for each of the 16 384
pixels and plotted as a histogram (Figure 4). Also
plotted in Figure 4 are histograms for the simulated
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radar deviations from the true field and the Kriged
rain gauge dev iations for compari on. The figure
clearly shows the improve ment of the merged fields
in estimating the true field when com pared with the
simulated radar and Kriged gauge fields. Figure 5
shows similar plots for the variance of the errors, again
the merged estimate performs well.

4. Conclusion

A conditional merging technique for combining rain­
fall informatio n from radar and rain gauges ha been
presented and its efficiency in terms of reducing the
bias and variance of error estimate has been shown
using an artificia l simulation experi ment. The tech­
nique is to be used for spatial rainfa ll estimation at
short timesca les releva nt to a National Flood Forecast­
ing and Warning Sy tern in South Africa . Rain gauge
observations provide good point rainfall accuracy, but
poor spatial detail. The techniqu e presented in this arti­
cle uses radar ob ervations of rainfa ll fields to estimate
the errors associated with using Kriging to interpolate
between the rain gauge observations and condition the
Kriged gauge field according ly. Thus, the spatial detai l
of the final merged field is improved whi le maintaining
the mean field characteristics measured by the gauges.
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Abst ract. A data-driven method for extracting temporal1y
persistent information, at different spatial scales, from rain­
fall data (as measured by radar/satellite) is described, which
extends the Empirical Mode Decomposition (EMD) algo­
rithm into two dimensions. The EMD technique is used here
to decompose spatial rainfal1 data into a sequence of high
through to low frequency components. This process is equiv­
alent to the applica tion of successive low-pass spatial filters,
but based on the observed properties of the data rather than
the predetermined basis functions used in traditional Fourier
or Wavelet decompositions. It has been suggested in the liter­
ature that the lower frequency components (those with large
spatial extent) of spatial rainfal1 data exhibit greater tempo­
ral persistence than the higher frequency ones. This idea is
explored here in the context of Empirical Mode Decompo­
sition . The paper focuses on the implementation and devel­
opment of the two-dimensional extension to the EMD algo­
rithm and it's application to radar rainfal1 data, as wel1 as
examining temporal persistence in the data at different spa­
tial scales.

In troduction

Spatia l rainfal1 data contain information at a broad range
of spatial sca les (Schertzer and Lovejoy, 1987; Harris et
al., 200 I; Pegram and Clothier, 200 I). It has been sug­
gested in the literature (Seed, 2003; Turner et al., 2004)
that the lower frequency components exhibit more tempo­
ral persistence than the higher ones; this premise is used here
to prepare the data for nowcasts based on the evolution of
the lower frequency components of space-time rainfal1 se­
quences. Examination of the (radially averaged) power spec­
trum (Fig. Ib) derived from a typical instantaneous estimate
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(sinclaird@ukzn .ac.za)

of rainfal1 rate obtained by weather radar (Fig. Ia) indicates
that most of the power, hence potential for deterministic pre­
diction in the context of nowcasting, is contained in the low
frequency components.

In this paper we focus on a data-driven technique to ex­
tract the high frequency (less persistent in time) modes as
the first step in a rainfa l1 nowcasting scheme. The tech­
nique employed is a two-dimensional (2-D space) general­
ization of the one-dimensional Empirical Mode Decomposi­
tion (EMD) technique introduced by Huang et al. (1998) . In
a single dimension, EMD analysis produces a set of Intrin­
sic Mode Functions (IMFs) that are very nearly orthogonal;
in two dimensions a set of Intrinsic Mode Surfaces (IMSs)
is produced with similar quasi-orthogonal properties. Two­
dimensional EMD appears to have been first introduced by
Linderhed (2002) in the context of image compression; the
key contribution in this paper is to introduce the concept of
2-D EMD to the Hydrometeorological literature as a tool
for the analysis of space-time rainfal1 data. This paper fo­
cuses on the implementation and development of the two­
dimensional extension of the EMD algorithm in this con­
text, decomposing spatial rainfall data into its intrinsic spatial
scale components.

In the application presented here, the least persistent IMS
(exhibiting the highest local spatial frequency and least
amount of spatia l corre lation - hence nearly white noise) is
computed and removed from the raw rainfall data leaving
a residual composed of the more persistent low frequency
structural components in the data . This process is equivalent
to using a low-pass spatial filter, based on the observed prop­
erties of the data rather than the predefined basis functions
used in traditional Fourier or Wavelet scale decompositions.
In Sects. 2 and 3, simple theoretical examples , showing the
power of EMD in one and two dimensions, are presented as a
"proofofconcept" before applying the procedure to observed
radar rainfal1 data from Bethlehem, South Africa (Sect. 4).
These complement and extend the original presentation by

© 2005 Author(s). This work is licensed under a Creative Commons License .
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Fig. 1. (b) Radially averaged power spectrum of in tantaneou s rain­
fall rate from typical radar rainfall data shown in (a) .
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Fig. 1. (a) An observed convective rainfall field measured b~ ~­

Band weather radar at Bethlehem, South Africa (colou r scale indi­
cates instantaneous rain rate in mmlh) . The image is 100x 200 with
I km2 pixels.

Huang et al. ( 1998) and Flandrin et al. (2004). Computa­
tional aspects relating to image processing and surface fitting
are covered in detail (Sect. 4) and concl usions are drawn in
Sect. 5.

2 Empir ica l Mode Decomposit ion in a single dim ension

The basic idea embodied in the EMD analysis, as introduced
by Huang et al. (1998), is to allow for an adaptive and un­
supervised representation of the intrinsic components of lin­
ear and non-linear signals based purely on the propert ies ob­
served in the data without appea ling to the concept of sta­
tionarity. As Huang et al. (1998) point out in their abstract:
"This decomposition method is adaptive and therefore highly
efficient. Since the decomposition is based on the local char­
acteristic time scale of the data, it is app licable to nonlinear
and non-s tationary processes."

Few sequences of observations of natural phenomena are
long enough to test the hypothesis of stationarity and fre­
quent ly, the phenomena are patently non-s tationary. This
tacit ly applies in the measuremen t of rainfall at a point or in
space-time because sequences of rain are interspersed with
dry periods and during the raining periods, the variability
of the intensity due to mixtures of rainfa ll type (strati form,
convective, fronta l) confound the stationarity definition. The
EMD algorithm copes with stationarity (or the lack of it) by
ignoring the concept, embracing non-stationarity as a prac­
tical reality. For a fuller discussion of the genesis of these
ideas, see the Introduction of 1-1 uang et al. (1998) , who also
heuristically demonstrate the implicit orthogonality of the se­
quences of Intrinsic Mode Functions (IMFs) defined by the
EMD algorithm.

In the application of the EMD algorithm, the possibly non­
linear signa l, which may exhibi t varying amp litude and local
frequency modulation, is linearly decomposed into a finite
number of (zero mean) frequency and amplitude modulated
signals, as well as a residual function which exhibits a sin­
gle extremum, is a monoton ic trend or is simply a constant.
Although EMD is a relatively new data analysis technique,
its power and simp licity have encouraged its application in a
myriad of fields. It is beyond the scope of this paper to give
a comp lete review of the applications, however a few inter­
esting examp les are cited here to give the reader a feeling for
the broad scope of app lications. Chiew et al. (2005) exam­
ine the one-dimensional EMD of several annual streamflow
time series to search for significant trends in the data, using
bootstrapping to test the statistical significance of identified
trends. The techn ique has been used extensively in the anal­
ysis of ocean wave data (Huang et aI., 1999; Hwang et aI.,
2003) as well as in the analysis of polar ice cover (Gloersen
and Huang, 2003). EMD has also been applied in the analy­
sis of seismo logica l data by Zhang et al. (2003) and has even
been used to diagnose heart rate fluctuations (Balocchi et aI.,
2004) .

2.1 Computing the one-dimensional EMD

The EMD algori thm extracts the oscilla tory mode that ex­
hibits the highest local frequency from the data ("detail"
in the Wavelet context or the result of a high-pass filter in
Fourier analysis), leaving the remainder as a "residual" ("ap­
proximation" in Wavelet analysis). Successive applications
of the algorithm on the sequence of residuals produce a com­
plete decomposition of the data. The final residual is a con­
stant, a monotone trend or a curve with a single extremum.

The EMD of a one-dimensional data set z(k ) is obtained
using the following procedure:

I. Set ro(k)=z(k) and set ;= l.
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Fig. 2. EMD based signal separation; all IMFs are plotted to the
same vertical scale. Top panel is the combined signal; lower 3
panels are the decomposition which recaptures. almost exactly. the
original components.

2. Identify all of the extrema (maxima and minima) in
Ti-I (k) .

3. Compute a maxima l envelope, maxr..] (k) . by interpo­
lating between the maxima found in step 2. Simi­
larly compute the minimal envelope, mini-I (k) . Cubic
splines (as suggested by Huang et al., 1998) appear to
be the most appropriate interpolation method for deriv­
ing these envelopes in one dimension (Flandrin et al.,
2004) .

4. Com pute the mean value function of the maximal and
. . 1 I (k ) [maxi_ I(k)+ mini_ 1(kl ]mInima enve opes l1I i -1 . = 2 .

5. The estima te of the IMF is computed from
IM Fi (k )= Ti _ 1(k) - l1Ii_1(k).

Each IMF is supposed to oscillate about a zero mean and
in practice it is necessary to perform a "sifting" process
by iterating steps 2-5 (setting r;-I = IMFi before each
iterat ion) until this is achieved.

6. Once the IMFi has a mean value that is sufficiently close
to zero over the length of the data (defined by a stopping
criterion within some predefined tolerance e) the resid­
ual Ti (k )=r;- I (k) - IM Fi(k ) is comp uted. Alternatively
the sifting procedure can be stopped when the differ­
ence in the standard deviation of successive estimates
of IMFi falls below a critical thresho ld (Huang et al.,
1998).

Fig. 3. Wavelet based signal separation - The "data" are the same
as in Fig. 2. the vertical scale has been compressed for a compact
presentation. An arbitrarily chosen db5 wavelet basis has been used.

Figure 2 shows the EMD ofa composite data series (shown
in the first panel) that is the summation of a sine wave, a tri­
angu lar waveform and a slowly varying trend. The compact
representation obtained by EMD extracts (almost perfectly ­
except near the ends) the three separate time series (shown
in panels 2 to 4) that make up the composi te signa l, with­
out resorting to Fourier or Wavelet techniques with restric­
tive assumptions about the form of the underlying oscillatory
modes or basis functions. Figure 3 shows the analysis of
the same data, using Wavelet decomposition . Here a fifth
order Daubechies wavelet basis was (arbitrari ly) chosen for
illustration purposes; this choice of basis function may not
be optimal for detrending but serves to demonstrate a typi­
cal decomposition. Seven levels of decomposition were re­
quired before the trend became apparent; this decomposition
is clearly far less compact and physically meaningful than
the EMD results in this case.

A simila r decomposition analysis can be carried out using
Fourier techniques. The Discrete Fourier approximation of
a signal can be defined in terms of the Euler-Fourier coef­
ficients (ao. ab bt) with k= 1.2• .... 111 (Eq. 1). The coeffi­
cients are all that are requ ired to reconstruct the series and
any signal can be well approximated (as long as it satisfies
the Dirichlet conditions), provided 111 is sufficiently large. In
Eq. ( I), F(x j) is the Fourier approximation of the signal )'j
at each of the n discrete (evenly spaced) data points Xj . L
is the range of values x j over which the data set is assumed
period ic.

In

F(x j ) = ~o +L (a k cos(2JTkxj j L) + bk sin(2JTkx j j L)}(1)
k= 1

7. If the residua l Ti (k) is a constant or trend then stop; else
increme nt i and return to step 2.

n

ak = 2 L cos(2JT kx j/L»' j/n
j = 1

(2)
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Fig. 4. Fourier based signal separation , the first 5 of75 components
- The dashed lines show the sine component and the solid lines the
cosine component.

Fig. S. Reconstruct ion of the signal from the sine and cosine com­
ponents, m represent s the number of Euler-Fourier coefficient s used
in each reconstruct ion.

3 Empirical Mode Decomp osition in two dimensions

Figures 4 and 5 show the result of decomposing the data us­
ing a finite Fourier series. Figure 4 shows the first 5 har­
monics; while Fig. 5 shows the series reconstruction by ac­
cumu lating the lower harmonics up to m. Computing the
Euler-Fourier coefficients provides a compact approximation
of the original signal but fails to extract physically meaning­
ful information. The ability to determine meaningful struc­
tural information is clearly important in a nowcasting con­
text, which cannot be bound by the periodicity assumption
implicit in Fourier methods.

n

bk = 2 L sin(27r kx j / L )Yj / lI.
j = 1

(3) dimensional analysis of the intrinsic oscillatory modes inher­
ent in the data. Two-dimensional Fourier and Wavelet anal­
yses are really applications of their one-dimensional coun­
terparts in a number of principal directions. Fourier analysis
concentrates on orthogonal "East-West" and" orth-South"
directions (e.g. Press et al., 1992). Wavelet analysis can, in
general, consider any direction of the wavelet relative to the
data, however a typical 2-D Wavelet analysis examines only
horizontal, vertical and diagonal orthonormal wavelet basis
functions (Daubechies, 1992, pp. 313; Kumar and Foufoula­
Georgiou , 1993). In contrast, EMD produces a fully two­
dimensional decomposition of the data, based purely on spa­
tial relationships between the extrema , independent of the
orientation of the coordinate system in which the data are
viewed.

In two dimensions the EMD process is conceptually the same
as for a single dimension, except that the curve fitting ex­
ercise becomes one of surface fitting and the identification
of extrema becomes (a little) more complicated. Very little
work appears to have been done which applies the EMD tech­
nique to two-dimensional data. Han et al. (2002) use EMDs
in one dimension along four different directions to smooth
Synthetic Aperture Radar (SAR) images and remove speckle .
Nunes et al. (2003) develop a technique, which they term
"Bidimensional Empirical Mode Decomposition" (BEMD)
in the context of texture analysis in image data where they
demonstrate several examples of intrinsic mode extraction
from image data. Linderhed (2002, 2004 1) examined the use
of EMD in two dimensions for image compression. Both
of these implementations are very simi lar to what we pro­
pose in this paper. The 2-D EMD provides a truly two-

I hllp://www.icg.isy.liu.se/-annalemd-samp.pdf
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3.1 Description of the algorithm

The algorithm follows intuitively from the one-dimensional
case and may be briefly summarised as follows:

I. Locate the extrema in the 2D space including maximal
and minimal plateaus.

2. Generate the bounding envelopes using appropriate sur­
face fitting techniques. We suggest conica l Multi­
quadrics (for reasons explained in Sect. 3.2).

3. Compute the mean surface function as the average value
of the upper and lower envelopes.

4. Determine the first estimate of an IMS by subtracting
the mean surface from the data.

5. Iterate until the IMS mean surface function is close to
zero everywhere.

www.copernicus.org/EGU/hess/hess/9/127/



S. Sinclair and G. G. S. Pegram: Empirical mode decomposition in 2-D space and time 131

'0

·5

·'0

..0

20•'r6-.•...
• IllS

2nd IMS

..0

.2Q

20

"hIllS

, . I IMS
Sit... HolM co""pI" ~NI

5 j.t
' 0 .0

40 40

o 0 o 0

hUMS "tRnidul

5 1.t
'0 .0

o 0 o 0

(4)

Fig. 6. Example of EMD used for noise removal on a 2-D sine
wave. The bulk of the additive white noise in the corrupted signal
is well capturedby the first IM .

6. Estimate the IMS and Residual.

7. If the Residual is a cons tant or a mono tone trend. then
stop ; else return to step 2.

3.2 Surface fitting for extremal envelope generation

The generation of maximal and minimal envelopes is of key
importa nce to a successful 2-D EMD implemen tation and is
the most computationally intensive task. The problem is a fa­
miliar one of collocating a smooth surface to randomly scat­
tered data points in two-dimensions. There are several op­
tions avai lable to achieve this. Ultimately the fitting proce­
dure reduces to computing the unknown value of the surface
at a point s;=(x ;. y; ). by some linear (or nonlinear) weigh t­
ing of the known data. In general. a basis function determines
the influence of each known data point based on its spatia l
position relative to the unknown point S;. Nunes et al. (2003)
use radial basis functions while Linderhed uses bi-cubic
splines (Linderhed, 2002) and later chooses the more suit­
able option of Thin Plate Splines (Linderhed, 2004) . We use
radial basis functions (technically. conical Mult iquadrics),
whic h are identical to Kriging (Cressie, 1991) with a purely
linear semi-variogram model. It could perhaps be argued that
it wou ld be more appropriate to fit a semi -variogram model
to the maxima and minima. but we feel this would be over­
elaborate and presumptuous. as the extrema are only related
by dista nce and cannot be considered drawn from a station­
ary corre lated random field. Invoking Occam's razor in the
spirit of Huang 's original deriva tion of EMD. we wish to let
the data do the talking and conical Multiquadrics assume the
least structure of any linear surface fitting algorithm.

Fig. 7. Naive EMD of the observed rainfall fieldshown in Fig. Ia ­
note the change in scale of the rain rates in the IMSs.

The Ordinary Kriging estimate z; at any point i based on
fI observed data points is

n

Zi = L).·kZko
k= 1

whe re Zk are the observations and Ak are weights associated
with each observation and the target point. The mean is as­
sumed unknown and the weights At are constrained to sum
to unity. The vector of weights A is obtained by solving the
linear system in Eq. (5)

(5)

whe re y is a vector of semiva riogram values. in this appli­
cation simply defined by the linear distance basis function
y(sij )= ISij I with S;j the distance between point i and the
j = I. 2• .. .. 11 observation locations . r is the matrix of dis­
tances betwee n the observations. u is a vector of 11 ones and
11 is a Lagrange multiplier ensuring that the Kriging weights
Ak sum to unity. as required. The solution of Eq. (5) is ob­
tained using Singular Value Decomposition (SVD) in this ap­
plication to ensure that a stable solution is assured (when
the matrix is ill conditioned). This is achieved by truncat­
ing singular and near-singular components. Althou gh SVD
is computationally less efficient than (for example) LU de­
composition as a means of solv ing a dense linear system. it' s
use is preferred here because of it's robustness in the face of
the near-singular Kriging systems which are frequent ly en­
coun tered in gridded data applications (Wesson and Pegram,
2004).

A more efficient choice of interpolation techn ique would
be useful and more work could be done in this regard. how­
ever care is required. Movi ng-neighbourhood Kriging (a
possible alternative to reduce the number of control points)
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Fig. 8. Summary of data processing I. Mask the wet and dry areas; 2. Trace the boundary of each wet region; 3. Separately label each wet
region; 4. Decimate the fence by a factor of 5, isolating the " fence posts" ; 5. Isolate the maxima in each sub-region; 6. Isola te the minima
in each sub-region; 7. EMD analysis decomposes the data into the first IM and the first residual using the maximal and minimal envelopes

defined using the points in 4, 5 and 6.
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Fig. 9. Compari son of individual radially-averaged power spectra
of the radar rainfall data (of Fig. la) with its EMD compo nents: the
first IM and the first residual.

can produce unwan ted discon tinuities in regions that are data
sparse (Chiles and Delfiner, 1999, pp. 20 I), such disconti­
nuities would be amplified through the EMO sifting process.
In add ition, the particu lar choice of Ordinary Kriging as a
method of generating the bounding envelopes was (partially)
directed by the property that the estimates decay asymptoti­
cally to the mean of the observed extrema.

3.3 Simple two-dimensional EMOs

In this section , applications of the 2-0 EMO technique are
presented. As an artificia lly const ructed example Fig. 6
shows the successfu l remova l of noise added to a synthe ti-

Hydrology and Earth System Sciences, 9, 127- 137,2005

Fig. 10. The same as Fig. 9 but for the mean of individual power
spectra for five consecu tive, radar scans - Beginning with the spec­
tra shown in Fig. 9.

cally genera ted two-di mensio nal sine signa l. The noise (with
it's high local spatial frequency) is almost completely de­
scribed by the first [MS leaving a residual, which is close ly
representative of the under lying signal.

Turning to a realistic examp le of the type we have been
aiming for, Fig. [a showed an instantaneo us radar rainfa ll
field with an area of 100x 200 km. A complete EMO of this
field is shown in Fig. 7 using a direct application of the 2-0
EMO process described in Sect. 3. l ; note the change in scale
of the individua l [MSs. The final residual (with a single ex­
tremum) gives a clear indication of the position of the largest
convective raincell evident in the field.
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constructed by plotting the values of power for each field at corresponding wavelengths coaxially. Forexample points A and B at the 10km
wavelength are plottedagainst each other and appear ringed in the upper right diagram.

4 Application of 2-D Empir ical Mode Decompo sition to
rainfall data

The simple 2-D EMD application presented in the previous
section is computationally burdensome when applied to rain­
fall data. In this section, to overcome this drawback, a num­
ber of specific refinements are presented which combine to
make EMD tractable in practical real-time situations.

4. 1 Image processing techniques and optimisations

Since an application of 2-D EMD requires the use of sur­
face fitting techniques, large linear systems must be solved.
The size of a system is determined by the number of known
data points which are to be used in com bination to find the
unknown values of the surface at each remaining position in
the field. The highly varia ble nature of rainfall data means
that the field contains a large number of extrema from which
the bounding envelopes must be constructed. Additionally

there are a large number of zero (no rain) data , which con­
stitute minima. By only considering raining areas, the size
of the linear systems requiring a solution are great ly reduced
since each raining area (ifmore than one exists) will contain a
considerably sma ller number of extrema than the entire data
region and each can be treated separately. Furthermore, it
makes no sense to consider an EMD in areas where the vari­
able of interest does not exist , in this case the areas that are
not raining.

A number of well-known image processing techniques are
imp lemen ted to isola te and process each raining area. Fig. 8
summarises the steps taken in processing the data with the
boxes numbered 1- 7 indicating different steps in the pro­
cess . First a mask is generated to separate the raining and
non-raining pixe ls (Fig. 8, Box I) in the instan taneo us radar
image ; pixe ls below a threshold of I mmlhr are considered as
non-raining and the remaining pixe ls are marked as raining.
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Fig. 12. Spectral persistence scatter plots of the sequence of 1st IM s ofeach pair of rainfall fields TO, .. ., T4.

An outer boundary border-tracing algorithm (Sonka et al.,
1999) is used to establish a boundary "fence" around each
raining area (Fig. 8, Box 2) and a flood-fill procedure is then
used to fill each raining area with a unique identifier, result­
ing in separately labelled raining regions (Fig. 8, Box 3). To
reduce the comp utationa l burden of the algorithm even fur­
ther, the boundary "fence" is decima ted by a factor of 5 to
reduce the continuous string ofborder points to "fence posts"
while retaining the gross shape of the raining areas (Fig. 8,
Box 4). The next step in the processing of the data is to
isolate the extrema in the rainfall field (Fig. 8, Boxes 5 and
6). There are numerous possib le techniques for identifying
extrema in the rainfall field. unes et al. (2003) use a mor­
phological reconstruction technique. One alternative , which
was explored, is based on image segmentation and detection
of extremal plateaus. However, our method of choice was to
use a simple 8 neighbour search routine for identification of
pixels with extreme values as done by Linderhed (2004) . The
choice was partly for convenience, but also because the ma­
jority of the (non-zero) extreme values in the rainfall fields

studied turned out to consis t of sing le pixels. There is a rich
literature on image processing techniques and the reader is
referred to an introductory text such as Sonka et al. (1999) to
explore the field further. Finally, the EMD analysis is carried
out using the extrema within each raining area and the zeros
at the "fence posts" of non-raini ng borde r pixels to specify
the extrema l envelopes (Fig. 8, Box 7). Only one step of de­
composition is shown here - the data is decomposed into the
noisy first IMS and the first residual.

4.2 Results

An analysis of over 800 individual radar scans, embodyi ng
mixtures of various ratios of Stratiform and Convective rain­
fall types, was carried out to determine the effectiveness of
the 2-D EMD algorithm in separating the high frequency spa­
tial components from the original rainfall data. Working on
the basis that the average charac teristics of the data over a
range of spatia l scales summarised by the power spectrum
is intuitively usefu l, the (radia lly averaged) power spectra
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of (i) the original data, (ii) the first IMS and (iii) the first
residua l of each image were examined and compared. Fig. 9
shows a typical result; the power spectrum of the residual
shows a very close correspondence with that of the original
data at high wavelengths while it contains far less power at
the lower wavelengths. In contrast, the spectrum of the first
(noisy) IMS has very little power relative to the data's spec­
trum at high wavelengths but shows a strong correspondence
at the lowest wavelengths. Fig. 9 clearly indicates how the
2-D EMD technique moves the bulk of the high frequency
components in the original data into the first IMS and leaves
the high power, lower frequencies in the residual. Fig. 10
shows a time average of this behavio ur by plotting the mean
values at each wavelength of the three spectra over five con­
secutive radar scans (beginning with the data used to produce
Fig. 9). The radar scans are captured at approximately five­
minute interva ls. It is interesting to observe that the average
of the spectra of the first IMSs is flat for wavelengths longer
than 10km, suggesting nearly white noise over this range.

The tempora l persistence exhibited at the spatial scales
represented in each of the three sequences of: (i) the data,
(ii) the first IMS and (iii) the first residual was examined by
considering their temporally consecutive power spectra . The
notion of "spectral persistence" was used to determine how
variable the spatia l structure (at a particular spatia l scale) is
in time and hence to give an indication of the temporal pre­
dictive capabi lity at each spatial sca le. A summarised exam­
ple of the analysis of a sequence of 5 radar rainfall images
is presented in Figs. 11 , 12 and 13 where a "matrix" of scat­
ter plots is shown in each case. Scatter-p lots of the pairs of
power values at each discrete wavelength for five consecutive
spectra (with the I: I line indicated) are shown for, the origi­
nal data (Fig. 11 ) the first IMS (Fig. 12) and the first residual
(Fig. 13). The rows and columns of the scatter-plot matri­
ces are labelled from To to T4 and indicate separate radar
scans between time T=O and time T=4. Each block in the
scatter-plot matrix represents a scatter-plot of the power at
each wavelength for the spectrum compu ted at T; versus that
of the spectrum computed at T] . Clearly the plots on the
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"matrix" diagonal each compare a spectrum to itself and a
perfect I: I relationship is observed in this case. For the off­
diagonal plots, the degree of scatter amongst the data points
indicates the degree of similarity between the spectra at indi­
vidual wavelengths at increasing time lags with a large scat­
ter indicating a weak similarity. The trends shown here are
typical of the data analysed and show how the first (high
average frequency) IMS has a temporally incoherent spa­
tial structure, while the first (Iow average frequency) resid­
ual shows a temporally consistent structure. The behaviour
shown in Figs. 9-13 suggests that the high frequency IMS
components in spatial rainfall data do not contain much pre­
dictive capability, supporting the suggestions of Seed (2003)
and Turner et al. (2004) to increase the degree of spatial
smoothing and rely more on the information contained in the
lower frequency components as forecast lead times increase .

5 Conclusions

A new technique for analysing the spatial scaling structure of
rainfall fields has been presented. The technique is a two di­
mensional extension of Empirical Mode Decomposition for
the analysis of non-linear and non-stationary time series. An
EMD analysis in two dimensions linearly decomposes the
spatially distributed rainfall data into a set of Intrinsic Mode
Surfaces, which are approximately mutually orthogonal and
sum back to the original data. Each IMS contains an oscilla­
tory mode inherent in the data at a different (narrow) range
of spatial frequencies. The EMD analysis successively ex­
tracts the IMS with the highest local spatial frequencies in a
recursive way, which is effectively a set of successive low­
pass spatial filters based entirely on the properties exhibited
by the data. The utility of the EMD technique for signal sep­
aration has been demonstrated in both one and two dimen­
sions and applied to the analysis of a large set of 800 radar
rainfall images in South Africa. The 2-D EMD technique is
proposed here in the context of rainfall nowcasting to sepa­
rate the less persistent high frequency components from the
more persistent low frequency ones in the data. The aim is to
remove the noisy high frequency components, which do not
exhibit a strong temporal correlation and add little structural
informa tion to nowcasting algorithms. The scale separation
achieved by 2-D EMD has been analysed using radially aver­
aged power spectra to summarise the spatial structure of the
data and filter outputs. In addition these power spectra have
also been used to examine the temporal persistence of the
spatial structure exhibited by the first IMS and it's residual.
The results presented in this paper agree with other work in
the hydrometeorological literature, which suggests that the
low frequency spatial components in rainfall data are most
useful in a nowcasting context. This methodo logy is being
exploited in ongoing research into rainfall nowcasting.
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