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Abstract 

Energy is a global fundamental sector and major concerns are inclusive of; making renewable 

power economical, reliable and accessible to all, maintain and improve power quality, voltage 

and frequency, amongst others.  There is need for development of intelligent energy storage 

systems (ESS) that maximise and provides durable storage of electrical power generated.  This 

is a suitable approach towards reducing gas emissions, lowering electricity bills, meet power 

needs at any time and for lowering excess power fluctuations.  Much advancement is required 

on ESS to shift their optimum working regions towards preferred limits with both high 

justifiable power and energy.  Advancement of ESS need to be sought through developing 

effective electrode materials.  Shaped carbon nanomaterials (SCNMs) are suitable for ESS in 

the Smart Grids with potential better cost effective and scalable standards.  The investigation 

of related physicochemical properties of SCNMs, modification of nano-structural parameters 

and development of appropriate strategies that would enhance their functionality in ESS is key 

in this regard. 

In this study, various ESS were reviewed with more focus on development of electrochemical 

capacitors (ECs) with a bias towards the use of SCNMs as electrodes.  The work was aimed at 

understanding the influence of reagent ratio in the physicochemical properties of N-doped 

multiwalled carbon nanotubes (N-MWCNTs) and graphene oxide (GO).  Also, it focused on 

modifying the functionality of MWCNTs, N-MWCNTs and reduced graphene oxide (RGO) in 

ECs via introduction and control of heteroatoms such as nitrogen and its functional moieties or 

introduction of oxygen-containing groups.  Thirdly, the work investigated the effect of 

composite synthesis on the performances of individual components via control of wt.% ratios.  

Characterisation techniques used include transmission and scanning electron microscopies, 

atomic force microscopy, textural characteristics, thermogravimetric analysis, elemental 

analysis, cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron 

spectroscopy, X-ray diffraction, ultraviolet-visible spectrophotometry, Raman and Fourier 

transform infra-red spectroscopies. 

N-MWCNTs were synthesized from N,N’-dimethyl formamide and acetonitrile as sp3 and sp 

hybridized nitrogen sources, respectively, as materials for ECs.  The combination of ferrocene 

carboxaldehyde, N,N’-dimethyl formamide and acetonitrile in N-MWCNTs synthesis was a 

novel approach.  Mixing the sp3 and sp sources in 1:3 ratio enhanced nitrogen content to 9.38% 
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from that of both sp3 (5.87%) and sp (3.49%).  The physical properties such as number of 

concentric shells were tailored by varying synthesis temperature.  Pyrrolic N-doping was 

achieved as the main constituent of nitrogen moieties. 

Furthermore, GO was synthesized as a preliminary step for further N-doping.  The effect of 

graphite: Na2NO4 reagent ratio in the synthesis of GO was studied to elucidate the influence of 

the initial step in GO synthesis, via modified Hummer’s method, and to develop novel 

strategies towards controllable products.  The physicochemical properties such as content of 

oxygen-containing groups on GO and the surface areas were increased from 0% and 2 m2 g-1 

to 30% and 188 m2 g-1, respectively, by increasing the proportion of Na2NO4 in reagents.  The 

manipulation of the initial step was a novel means of tailoring the associated physicochemical 

properties of GO. 

Also, this study determined, for the first time, the most effective group one sulfate electrolyte 

at fixed concentrations.  This aided the selection of the electrolyte used in the application of 

the SCNMs in this thesis. Oxygen moieties were introduced, by ultra-sonic waterbath 

treatment, onto MWCNT surfaces using various reagents namely; HCl, HNO3, H2O2 and 

HNO3/ HCl solutions.  The study highlighted how the various reagents, commonly used to 

purify MWCNTs after synthesis, modify associated physicochemical properties and alter 

charge storage characteristics.  Oxygen-containing groups increased capacitance of pristine 

MWCNTs and introduced pseudo charge storage mechanism via oxygen functionalities.  HNO3 

treated MWCNTs had a 77- and 2.5-fold upgrading from pristine using Li2SO4 and Na2SO4, 

respectively, whilst HNO3/ HCl was the best, 5 times better, in K2SO4.  The oxygen-modified 

MWCNTs performance was highest and of best quality in Na2SO4. 

The effectiveness of common GO reductants, namely; ascorbic acid, hydrazine hydrate and 

sodium borohydride were practically investigated.  This was done to select a reductant for the 

current work.  This study also provided a viable novel chemical tuning approach for nitrogen 

moieties and content as well as to introduce boron, with sodium borohydride.  Thirdly, under 

this particular study, the effect of heteroatoms, boron and nitrogen, as well as nitrogen moieties 

on physicochemical characteristics of RGO was also explored.  Hydrazine hydrate was the 

most effective reductant and was associated with highest surface area and N-content of 390.55 

m2 g-1 and 4.07 at.%, respectively.  The nitrogen groups of RGO reduced by means of ascorbic 

acid, hydrazine hydrate and pristine were pyrrolic, pyridinic and sp3 N-C, respectively.  N-

doped RGO, particularly pyrrolic moieties, were 76-fold better than B-doped.  A further 
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thermal reduction, of RGO from hydrazine hydrate, increased surface area from c.a. 391 to c.a. 

600 m2 g-1 at 750 ℃. 

The effect of oxygen-containing groups was then investigated in composites of titania with 

GO, RGO and cellulose reduced graphene oxide (CRG).  The wt.% ratios of titania were varied; 

i.e., 5, 10, 20 and 40%.  Based on earlier deductions in this thesis, reductant chosen was 

hydrazine hydrate.  Titania enabled better exfoliation of GO but at higher wt.%, it culminated 

in larger agglomerates which in turn increased diffusion path-length.  RGOTi at 5 wt.% titania 

increased surface area from 136.89 to 434.24 m2 g-1.  The study generally showed that 

capacitance was better at lower wt.% titania in RGOTi and that cellulose surface area increase 

was outweighed by associated insulating effect. The present data infers that the impact of 

oxygen moieties on capacitance of SCNMs was subject to specific structures; MWCNTs, GO 

and RGO.  Capacitance of titania and GO were improved by composite synthesis. 

Graphenated N-MWCNTs were targeted, as a means, to lessen agglomeration, without the use 

of surfactants, and to generate 3-D scaffolds for better electrical conductivity channels.  Also, 

better physicochemical characteristics for higher capacitance were obtained via sol-gel than 

CVD method.  The ratios of sp3- and sp-hybridized nitrogen in reagent mixtures, in this thesis, 

was effectively used to tune the composition of pyrrolic nitrogen moieties.  Pyrrolic 

composition of N-MWCNTs was uniquely aimed because studies of typical moieties on RGO 

deduced pyrrolic to be better than pyridinic groups.  The increase of pyrrolic nitrogen 

composition; 35, 45 and 60%, culminated in capacitance deterioration.  Composite synthesis 

reduced Warbug length and amplified associated capacitance.   

The physicochemical properties of RGO, GO, MWCNTs and N-MWCNTs were positively 

tuned from reagent ratios, conditions and composite syntheses.  The conjectured strategies 

could modulate their overall capacitance via manipulation of heteroatom content and functional 

groups, amongst others listed herein.  Several traits that linked physicochemical properties and 

capacitance were successfully elucidated.  This affirms the hypothesized potential of SCNMs 

in ESS through understanding and control of both nano-structural parameters and 

physicochemical properties.  
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Chapter One 

Introduction 

1.1. Energy storage systems 

Currently, there is immense pressure on traditional electrical energy storage systems (ESS) 

[1.1].  The reasons for this include the increasing demand for energy from both industries and 

households, global climate change effects due to use of finite fossils fuels and the rising 

dependence on renewable energy resources.  Hence, there is need for the development of new, 

cost-effective, reliable, long-lasting and environmentally friendly ESS with quick energy 

delivery as a support to ever-rising energy applications.  ESS are structures in power networks 

that are used to convert electrical energy to different forms, from the available source, that can 

be stored and converted back to electricity upon need [1.1-1.3].  The historical background of 

ESS dates back as early as the 20th century.  Here power stations could be shut down overnight 

and lead acid batteries would supply energy directly into the small but established electrical 

grids [1.2].  The ESS arena still needs to be furnished with adequate information with regards 

to the economy of utility scale [1.1] and therefore more research is needed.  ESS are essential 

network components in terms of their influence on consumption and cost of power, and find 

use in network power quality and management [1.3,1.4].  This amongst other reasons has kept 

ESS amongst vital components of a growing industrial economy.  By the year 2012, over 400 

energy storage projects had been established around the world [1.5].  

Several attributes of ESS, and their potential to enhance existing life spans of electric power 

generation plants have spearheaded focus on them.  This is attained when excess power 

generated is stored and this means plants will not be overworked.  Additionally, other 

advantages of ESS include prevention of costly plant upgrades and ability to lower fuel 

consumption on vehicles powered by petrol. They act as buffers to effectively integrate energy 

resources into the network and can damp electrical fluctuations or faults in the power grids 

[1.6].  Integration of ESS is a practical way of improving on sustainability for both non-

renewable and renewable resources such as hydroelectric, tidal, geothermal, wind and solar 

energy sources [1.2,1.7-1.10].  For instance, solar energy, a clean renewable resource, is a 

current public utility for both homes and companies.  The drawbacks of solar energy include 
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lack of available cheap and efficient storage systems, and this in turn hinders transition towards 

newer and ‘greener’ energy generation systems [1.4,1.8,1.11].  Electricity can be produced 

during low demand times and at low generation costs.  Intermittent energy sources are then 

released during peak demand and therefore, ESS are important [1.2,1.5,1.6].  In an extreme 

situation, one would consider, is that without the use of storage devices energy must be used 

immediately when it is produced [1.12].  This is far from reality since energy demands vary 

hourly, daily, seasonally, regionally and also maximum demand only lasts a few hours 

[1.5,1.11].   

In light of all this, energy storage becomes the core for the development of smart grids and 

utilisation of renewable energy [1.1,1.5].  There is need to invest in ESS such as the renewable 

energy grid infrastructures and capacitors in order to match the global levels of market 

competition from other established systems, such as the batteries, [1.8] and to boost energy 

security [1.1].  This is because lack of energy storage devices leads to inefficient, overdesigned, 

shortfalls in energy transmission and distribution, and expensive plant maintenance [1.2,1.11].  

ESS therefore, allows independence of electrical power from its supply and self-generation 

upon need, load monitoring, peak power and standby reserve [1.1,1.8].  Effective ESS has 

potential transform several industrial companies; such as those that deals with turbines, cars 

and consumer electronics; and to meet other energy needs such as relieving power congestion.  

In this way, affordable energy storage bridges the gap between production and demand via 

enhancement efficiency, quality and stability of electrical networks [1.1].  Capacitors are 

normally short duration devices. Technologies or devices such as ESS can be categorised based 

on the methodology utilised i.e., mechanical or electrical [1.1-1.3,1.13]. 

 

1.1.1.  Mechanical storage energy system 

Some of the major mechanical energy storage systems include the fly wheel [1.4], pumped-

hydro energy [1.14] and compressed air [1.5]. 

 

1.1.1.1.  Compressed air energy  

The technique was invented in the year 1978 and it works in a similar way as conventional 

turbines [1.15].  In a typical system (Fig. 1.1.), air is compressed using off-peak electrical 

power and is stored in large reservoirs such as hard rock cavern, salt cavern and depleted gas 
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fields [1.6].  Such systems can produce large amounts of energy on demand [1.6].  Major parts 

(Fig. 1.1) include motor/generator which alternatively engages either the compressor or turbine 

train via use of clutches [1.16].  The compressor has two main stages with an intercooler system 

that reduces the moisture content of the incoming air.  The turbine train is made up of both high 

and low-pressure turbines.  The compressed air is stored in a container or cavity [1.2].  The 

system works in a similar way as gas-based turbine generators but decouples the compression 

and expansion cycles into separate processes.  Energy is stored in the form of gas elastic 

potential energy. This method has efficiencies in the range 40-50%, energy density of 10-30 

Wh kg-1 and power density of 1000 W kg-1 [1.16]. 

 

 

Fig. 1.1. Compressed air energy storage system [1.4]. 

 

Aspects that favour use of compressed air energy storage (CAES) include the fact that they 

produce three times more electrical power than traditional turbines and, involve faster reactions 

that makes it suitable for high energy supply and demand.  CAES systems as a choice of energy 

storage suffers from drawbacks such as, small amount of gases used to heat air produce carbon 

dioxide that is then released into the atmosphere, energy losses as dissipated heat of 

compression, dependence on geological formations and the system is often coupled with other 

energy sources, hence associated with high costs [1.15]. 

 



 

 

4 

 

1.1.1.2.  Pumped-hydro energy 

The first pumped-hydro energy storage system was built in the year 1929 [1.2].  Since then, to 

2005, more than 200 pumped-hydro energy systems (PHS) have been recorded around the 

globe.  ESKOM, South African electricity public utility company, has one typical system in 

the Drakensberg.  Underground PHS have been built from flooded mine shafts and other 

cavities.  The PHS offers the largest energy storage capacity, a large storage period and high 

efficiency [1.2].  Some of the reported performance parameters include an efficiency between 

65-80% and energy density of 0.3 Wh kg-1 [1.16].  The technique stores energy by pumping 

water to an uphill reservoir.  When there is a demand for electrical power, water is allowed to 

flow downhill driving generators in the process [1.4,1.17].  Amount of energy stored is 

proportional to the height difference between two reservoirs and volume of water stored [1.2].  

The major problems associated with this method include large capital cost, high dependency 

on local topography and availability of rain [1.14,1.15].  Also, this method has a direct negative 

impact to the surroundings since it damages natural environment.  Additionally, special 

attention need to be directed towards evaporation and conversion losses to maintain storage 

capacity.  

 

1.1.1.3.  Flywheel 

Flywheel method was introduced in the 1950s and it makes use of the fly wheel design (Fig. 

1.2) [1.1,1.9].  Energy is stored by accelerating the rotor using a motor which maintains the 

energy system at very high speeds with the help of inertia [1.2,1.4,1.11].  This way electrical 

energy is converted to mechanical energy for storage [1.17].  Energy is stored in angular 

momentum of a spinning mass [1.2] of a motor. The motor also acts as an electricity generator 

from the wheel’s rotational energy.  Hence, total energy is a function of power rating of the 

motor, size and speed of the rotor [1.18].  
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Fig. 1.2.  Illustration of the main parts of a flywheel [1.11]. 

 

A flywheel typically has an energy density in the range 5-30 Wh kg-1 and power density of 

1000 W kg-1 [1.16].  The flywheel is often associated with low maintenance costs, long life 

cycles (105-107), long operational life, high power efficiency of about 95%, environmental 

pleasantness and wide operating temperatures [1.1,1.2,1.4,1.16].  Negative traits of this method 

include idling losses due to friction and magnetic force and has problems associated with 

lubrication life.  Other disadvantages are allied high capital costs  ($1000 - 5000 per kW h) and 

high discharge rates (55 - 100% per day) [1.19]. 

 

1.1.2.  Electrical energy storage systems 

The most popular examples of electrical energy storage systems are superconducting magnetic 

energy storage devices (SMES), supercapacitors and batteries.  The following subsections 

present insights on some of common types of batteries. 

 

1.1.2.1.  Batteries 

Batteries are the most common and oldest electrical energy storage devices [1.2,1.7,1.13,1.20].  

A battery is made up of stacked cells in which chemical reactions convert stored chemical 

energy into electrical energy [1.2,1.7,1.20].  A battery typically consists of a positive electrode 

(anode), negative electrode (cathode) and a paste/solid electrolyte [1.2].  In this scheme, 

potential is built up between the terminals during the discharge process.  This allows electrons 

to flow in the system via an external circuit [1.2,1.4,1.17].  A battery can be viewed as an 
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energy device with an efficiency of between 60-95% [1.2,1.20,1.21].  Given voltage (V) and 

charge (Q), useable energy (E) in a battery can be calculated by the equation (1). 

𝐸 = 𝑉𝑄.          (1) 

Voltage in such structures depends on active materials and is closer to the open circuit voltage 

of the respective material [1.20].  For a given time (t), and current (I), Q is given by equation 

(2). 

𝑄 = 𝐼𝑡          (2) 

Some of the common battery types are briefly discussed in the following sub-sections. 

 

1.1.2.1.1. Lead acid battery 

Lead acid batteries are the first commercially successful batteries to store electrical energy.  

Lead acid batteries were  invented in 1859 and are the most developed rechargeable battery 

[1.2].  They constitutes more than 90% of the commercial batteries [1.13] available on the 

market and are widely used in consumer electronics.  They consist of metallic lead anode, 

sponge lead oxide cathode and aqueous sulfuric acid electrolyte [1.4,1.7].  The two electrodes 

are separated by a micro-porous material.  They have an efficiency between 70-80%, limited 

life cycles (approximately 2500), energy density of 20-35 Wh kg-1 and power density of 25 W 

kg-1 [1.16,1.22].  The main benefits of this particular type include; low cost [1.13], simple 

production steps and relatively quick electrochemical reaction kinetics.  They are highly 

criticized because they use lead, a heavy metal, which is toxic and hazardous to the 

environment.  They characteristically perform poorly at low temperatures. 

 

1.1.2.1.2. Nickel battery  

It is a secondary battery type (rechargeable many times before discarding)  that consist of nickel 

hydroxide as a positive electrode [1.4].  The most common examples of this type include Ni-

Cd and NiMH.  The Ni-Cd is nearly 114 years old [1.2].  They have a typical efficiency between 

60-90%, energy density of 40-60 Wh kg-1 and power density in the range 140-180 W kg-1 

[1.16].  This type is made up of NiOH anode, CdOH cathode, a separator and an alkaline 

electrolyte [1.3].  They have low maintenance requirements, higher energy density, usually 50-

75 Wh kg-1 and low cycle life of about 200-2500 [1.2,1.3,1.11].  They are associated with an 
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expensive manufacturing process and cadmium is a toxic heavy metal with associated disposal 

and environmental problems [1.13]. 

 

1.1.2.1.3. Sodium sulfide battery 

Sodium sulfide battery is an advanced secondary form that was pioneered by Tokyo electric 

power co-operation in 1983.  It comprises of molten sodium as negative electrode, sulfide as 

positive electrode and solid beta alumina ceramic as the electrolyte as well as, electrode 

separator [1.2,4,7].  The electrolyte only allows positive electrons to pass through and combine 

with sulfur to form sodium polysulfide [1.7].   

Sodium sulfide batteries have found numerous applications in large scale energy storage 

systems. This is due to high energy densities of 120 Wh kg-1, high efficiency of 

charge/discharge (70%) and zero maintenance [1.16].  They have a cycle life of approximately 

2500 cycles [1.2].  Main setbacks of this type include its requirement for sulfur to be kept in 

molten state at a temperature of approximately 300 ⁰C [1.13].  This means the system partially 

reduces its performance since it uses the battery’s own energy to heat the source.  Also, the 

system must be protected from reacting with the atmosphere.  This is because pure Na metal 

explodes in air and has high corrosion possibilities in insulators.  Corrosion enhances battery 

conductivity and ultimately increase self-discharge rate. 

 

1.1.2.1.4. Lithium battery 

The first lithium battery was produced by Sony © in 1990 but was first proposed in the 1960s 

[1.2].  This type is a primary battery made up of lithium and lithium compound as cathodes.  

The anode comprises of graphitic carbon and the electrolyte is lithium salt dissolved in organic 

carbonates [1.2,1.7].  Upon charging lithium cathode forms lithium ions which migrate to 

anode and are intercalated [1.23], the process is reversed on discharging.    

Their efficiency is within the range of 70-85%, energy density of 100-200 Wh kg-1 and power 

density of 360 W kg-1 [1.16].   Its main positive qualities include light weight, high safety 

levels, low self-discharge effects, less memory effects, higher abundance and low cost of 

cathode material [1.4,1.18].  Hence, this attribute makes them suitable for mobile applications.  

However, such batteries require special packaging and internal overcharge protection circuit 

which ultimately leads to high overall costs.   
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1.1.2.1.5. Metal-air battery 

They comprise of high density metal such as zinc that release electrons when oxidised as an 

anode [1.2,1.7].  Their cathodes are commonly made up of porous carbon structures or metal 

mesh covered with an appropriate catalyst.  They utilise ionic liquids as electrolytes [1.7].  

Also, they are the most compact and potentially cheapest batteries currently on the market 

[1.4].  Their main weakness is that the electrical recharging involved is very complicated and 

leads to it being inefficient [1.2].  

 

1.1.2.1.6. Flow battery 

A flow battery converts chemical energy directly into electricity via chemical reactions (Fig. 

1.3) [1.4].  The system uses externally stored electro-active material in two tanks of electrolysis 

[1.3].  The power is produced by a reversible electrochemical reaction between the two 

electrolytes.  The size of tanks and amount of electrolyte determines energy density [1.2,1.7].  

This specific type can supply energy continuously for up to 10 hours at a higher rate.  This type 

of battery is associated with several advantages.  The advantages include; high stability and 

durability, high safety since electrodes are separated from reactive parts of the systems and 

high tolerance to over-charging [1.4].  However, flow batteries are a complicated system, that 

require pumps, sensors, good flow and power management. 
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Fig. 1.3.  Typical example of a flow battery (Vanadium redox flow battery) [1.3]. 

 

1.1.2.2.  Superconducting magnetic energy storage  

The superconducting magnetic energy storage system make use of a magnetic field to store 

energy, which would have been cryogenically cooled to a temperature below its 

superconducting critical temperature (Fig. 1.4) [1.2,1.4,1.8,1.17].  Once the energy is stored 

the current remains intact, due to the superconductive phase, as long as the system is maintained 

under refrigeration [1.3,1.8].  There are no moving parts in the SMES.  It is suitable for short 

term energy bursts with a very fast responses rate i.e. during a power fluctuation and have long 

cycle life [1.1].  However, SMESs are associated with high costs ($1000 - 10 000 per Kw) 

[1.19].  This is largely due to the cryogenic operating temperatures utilised in the system.  The 

other challenge, related to their use, is environmental considerations due to involvement of 

strong magnetic fields [1.1]. 
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Fig. 1.4. Typical example of SME systems [1.3]. 

 

1.1.3.  Electrochemical capacitors 

Electrochemical capacitors (ECs) are a promising alternative to rechargeable batteries, 

especially, where high power delivery and/or fast energy harvesting capabilities are required 

[1.20,1.24,1.25].  The EC technology has perceived substantial growth over the years with 

associated sales reaching a hundred million dollars per year.  This was triggered by the need 

for better quality of power and other emerging energy management/conservation restrictions.  

ECs will be further discussed in greater detail in Chapter two.  One of the most common 

challenges related to ECs is their low energy density and this is a current research focus [1.1].  

Material development is one of the important active research areas towards EC development.  

Material development has potential to increase EC grid applications.  Additionally, one of the 

key ways to increase specific capacitance (Cs) is the development of porous and nano-sized 

electrode materials that facilitates attainment of various attributes, such as shortening of the 

diffusion path-length of electrolytes [1.24].  In this regard, the following sections presents 

background information about materials that can be utilised in ECs. 

 

1.1.3.1. Transition metal oxide-based materials for electrochemical 

capacitors 

Various nano-sized metal oxides (MOs), as electrode materials, have been explored for ECs.  

This include amorphous ruthenium oxide [1.26], iron oxide [1.27], cobalt oxide, nickel oxide 

[1.28] and manganese oxides (MnOx) [1.29].  The most theoretically promising MO in 

capacitors is MnOx.  The MnOx nanoparticles are suitable for ECs because of their high 
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abundance, wide electrochemical window, rich redox chemistry, low cost, high theoretical 

specific capacitance Cs of 1370 F g-1 and good environmental compatibility [1.29-1.33].  The 

electrodes fabricated using MnOx can function well in neutral aqueous electrolytes [1.34].  

However, due to lower conductivity of MnOx, between 10-5 and 10-6 S cm-1, and low ionic 

conductivity [1.29,1.32], measured Cs is often lower than the theoretical expected value.  Major 

challenges in this regard remains controllable, efficient and reproducible deposition of MnOx 

onto conductive frameworks [1.29].  Textural characteristics, weight percentage, distribution 

and crystal forms of MnOx affect ultimate EC performance.  For these reasons, several other 

materials and nanocomposites morphologies have been investigated to improve the EC 

performance.  For instance, Ni and Co oxides have been reported to be the most alkaline 

electrolyte corrosion resistant transition metals.  They form protective oxide/hydroxide layers 

on their surfaces.  The main reason for using NiO as pseudocapacitor electrode is its superior 

redox behaviour and high capacitance even though it is kinetically unfavourable for fast e-/ion 

transport [1.28].    

Titania, on the other hand, is a widely-investigated semiconductor MO material.  This is due 

to its non-toxicity, chemical inertness, photo-stability characteristics, long term 

thermodynamic stability and cheap production costs [1.35,1.36].  However, titania is 

particularly more common in the photo-catalysis and light harvesting arenas [1.37].  For 

example, Rathee et al. [1.38] deposited TiO2 onto Si using a sol-gel.  They concluded that TiO2 

was suitable for sustainable energy due to high incident photon to electron conversion 

efficiency.  They also observed that their fabrication technique influenced electrical properties 

due to reactions between TiO2 and Si substrate. Despite the presented scenario, titania is also 

scarcely reported as an electrode material for EC applications. Wu et al. [1.39] expounds on 

TiO/NiO core/shell nanorod arrays as EC working electrodes in a three electrode cell.  Their 

counter electrode, electrolyte and reference electrode were Pt foil, 2 M KOH and Hg/HgO, 

respectively.  They experimentally encountered redox peaks similar to the findings by Wu et 

al. [1.40].  Specifically, in their work they reported that TiO2 on carbon cloth offers negligible 

peaks compared to Ni in KOH.  TiO/NiO core/shell showed better peak currents than NiO 

nanoflake array.  Such results inferred better electrochemical activity in TiO/NiO core/shell.  

Also, TiO/NiO core array /shell nanorod gave a smaller polarisation during charge-discharge 

processes of 611 F g-1 at 40 g-1 and 500 F g-1 at 40 g-1, relative to 338 F g-1 and 210 F g-1, 

respectively, for NiO nano flakes arrays.  Such observations imply that Cs decreased with 

increase in current density.  The TiO/NiO core array /shell nanorod was also observed to have 
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better retention time than NiO.  After 5000 cycles at 2 A g-1, retention was 89% and 75% of 

the initial capacitance for the former and latter, respectively.  In their work, they point out that 

core/shell nano-array configuration leads to large surface area, easier electrolyte penetration 

and more contact area between electrolyte and active material.  This ultimately enhanced e-/ion 

transport and their direct growth method eliminated resistance from binders.  In the similar 

work reported by Hsieh et al. [1.41], TiO2 increased Cs from 76.5 to 176.5 F g-1 at 0.2 A g-1.  

They attributed their observations to a higher hydrophilic surface fraction available for EDLC 

electrolyte and the pseudo capacitance behaviour introduced by TiO2 crystals.  In the current 

work, a further study that involves titania, as EC electrode, in composites with shaped carbon 

nanomaterials is presented. 

 

1.1.3.2. Shaped carbon-based materials for electrochemical capacitors  

Numerous carbon-based materials have been discovered over the years.  They have shown 

potential applications as electrode materials in ECs.  The sp2-hybridisation of carbon facilitates 

the occurrence of numerous shapes [1.42].  Kroto et al. [1.43] discovered the first shaped 

carbon nanomaterial (SCNM), C60 molecules (Fig. 1.5a) whilst, in 1991, Iijima reported the 

first tubular nanostructured nanomaterial, multiwalled carbon nanotubes (MWCNTs) (Fig. 

1.5b) [1.44,1.45].  Additionally, the first report on synthesis of single walled carbon nanotubes 

(SWCNTs) was in 1993 [1.46].  Whilst the first report of a successful isolation of graphene 

was in 2004 (Fig. 1.5c) [1.47]. 
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Fig. 1.5.  Examples of shaped carbon nanomaterials [1.48]. 

 

1.1.3.2.1 Graphene 

Graphene (G) is associated with fewer health-related hazards than other carbon allotropes 

[1.49].  The development of sheets of different structure, functionality and sheet sizes is of 

extraordinary interest to several researchers [1.50].  This is due to the numerous associated 
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potential applications.  Current synthetic methods produce defects such as structural 

imperfections and chemical impurities randomly distributed within the graphitic framework 

[1.51].  Use of different starting materials, oxidation methods and reduction processes widen 

possible materials that can be obtained.  In such endeavours, there is a need to control defects 

and locally induced chemical alterations [1.52].  G can be conveniently synthesised in bulk at 

low cost [1.53].  The preparation methods include chemical vapour deposition (CVD), solvent 

thermal reaction, chemical routes from CNTs, exfoliation of graphite through ultra-sonication, 

graphite intercalation compounds and graphite oxide, and thermal desorption of Si from SiC 

and even ‘scotch tape’ [1.50,1.52,1.54].   

Physical exfoliation, such as micromechanical cleavage [1.55] (‘scotch tape’), is the most 

preferred in scenarios were the graphene structure and electronic properties need to be 

preserved [1.56].  However, the procedure produces graphene sheets (GS) of different sizes, 

shapes, thickness and leds to low GS yields [1.55].  The chemical approach via graphene oxide 

(GO, Fig. 1.5d), as the initial stage, is a common synthesis method.  Practically, it is almost 

impossible to synthesise G chemically but reduced graphene oxide (RGO) can be produced via 

synthesis of GO.  GO is a non-stoichiometric graphitic carbon material in which the lamellar 

structure is conserved [1.57].  GO synthesis as a preliminary step to RGO synthesis can be 

achieved by thermal exfoliation, Brodie’s method and Hummer’s as well as several modified 

Hummer’s methods [1.50,1.55,1.58].   

In fact, GO was first reported by Brodie in 1859 [1.59].  The synthesis steps were time 

consuming and involved vigorous reaction kinetics such as explosion of potassium chlorate.  

The Brodie’s approach involved several treatments of Ceylon graphite using potassium 

chlorate and fuming nitric acid.  Later, Hummer’s method, which was relatively safer, was 

reported.  In the Hummer’s way, H2SO4, NaNO3, graphite flakes and KMnO4 were mixed 

sequentially followed by slow addition of deionised water (DI) [1.58,1.59].   

The thermal reduction approach has several attributes relative to chemical synthesis.  These are 

inclusive of simplicity, ease to perform due to the involvement of simultaneous exfoliation and 

reduction of graphite oxide [1.50].  Major challenges common to the thermal methods of GS 

synthesis include large scale production and effective defect control.  Oxidation and reduction 

of G is one of the most effective ways for economical mass production [1.50,1.54].  Yield and 

size of GS can be controlled by varying crystal structure of parent material and or/graphite 

exfoliation conditions.   
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G, amongst other graphitic materials, can also be synthesized from graphite via ultra-sonication 

in organic solvents such N-methyl-2-pyrolidene and dimethyl formamide (DMF).  According 

to Quintana et al. [1.52], ultra-sound waves break the basal structure and produce graphitic 

carbon fragments of variable sizes and such structures are latter intercalated by solvent 

molecules.  Similar views were shared by Dhakate et al. [1.51].  They highlighted that, typical 

reactions are more ideal in solvents with surface tensions in the range 40-50 mJ m-2 to avoid 

enthalpic cost of mixing.  According to their report a balance is required because harsh ultra-

sonication treatments increase both G yield per mL and defect intensity, and shortens sheet 

sizes.  In their work, they also reported that addition of ferrocene carboxaldehyde to G may 

result in formation of both graphenated carbon nanotubes and larger GS layers.  Graphene 

nano-ribbons can be synthesised from unzipping of CNTs and depending on the intensity of 

the procedure, a mixture of starting and product may be obtained [1.60-1.62].  Unzipping of 

CNTs increases their effective surface area [1.63]. 

In the CVD method, direct growth of GS on metal substrates has potential to lower contact 

resistance on current collectors.  It also reduces inter-particle resistance, thus ultimately 

increases power density of electronic devices such as ECs [1.64].  There is a current debate on 

possibility of epoxy and hydroxyl moieties at the basal plane of GS, and the carboxyl groups 

at either defect edges or framework in the GO structure.  The type and amount of such 

functionalities can be varied by modifying preparation methods [1.50].  Additionally, 

mesoporous molecular sieves are preferred in graphene synthesis because of their large surface 

area, pore volume, narrow pore size distribution and easy surface functionalization.  Atchudan 

et al. [1.65] used Si-MCM-41 enhanced through isomorphous substitution of Si with a 

transition metal.  In their work, transition metal stabilised catalytic sites.  Hence, pore sizes 

were tunable and also growth of graphene balls (GBs) depended on metal particles, catalytic 

template nature and reaction temperature [1.65].  

 

1.3.2.2. Multiwalled carbon nanotubes 

Multiwalled carbon nanotubes can be synthesised by several methods such as laser ablation 

[1.66], arch discharge [1.67], sol-gel [1.68] and chemical vapour deposition (CVD) [1.69] 

methods.  The CVD method can easily be scaled to industrial quantities and offers better 

morphology control [1.70].  MWCNTs, due to their 1-D character and their associated 

electronic structure, have extraordinary electrical properties.  Electrical resistance in MWCNTs 
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occurs when an electron collides  with defects in the graphitic structure, i.e. any deflection of 

an electron from its normal path [1.42,1.71].  Defects in MWCNTs include impurity atoms 

(doped-MWCNTs, Fig. 1.5e) or an atom vibrating about its position in the graphitic structure 

but electrons inside MWCNTs are not easily impeded.  This is because of their smaller 

diameters and the higher aspect ratios [1.42].  Additionally, in 1-D materials electrons can only 

travel either forward or backwards.  This infers minimum chances of back scattering, hence, 

MWCNTs are associated with low electrical resistance.  MWCNTs have a Young’s modulus 

of 1.4 TPa [1.42].  This is facilitated by the carbon-carbon sp2 bonding and their thermal 

conductivity is general twice as that of diamond [1.68]. 

 

1.3.2.3. Surface modifications of carbon nano-materials 

Functionalization with organic and inorganic materials offers an alternative way of controlling 

electronic properties of SCNMs [1.52].  Additionally, SCNMs can be modified by both non-

covalent and covalent bonding of moieties.  The most common covalent approach is through 

treatment of MWCNTs by means of oxidative reagents.  Oxidizing reagents, such as acid, often 

used to purify MWCNTs often leaves high oxygen-containing groups on their surfaces, hence, 

introduces new functionality on the MWCNTs [1.72].  Similarly, the degree of GO oxidation 

can influence physicochemical properties such as conductivity [1.73] and hydrophilic 

properties.  This often lead to better intercalation chemistry [1.57].  The negatively charged 

oxygen-containing groups enable chemical integration of metal ions such as titania via 

electrostatic adsorption [1.36,1.74].  Also, radicals, nitrenes, carbenes and arynes can be used 

to functionalise G via free radical reaction, CH insertion or cycloaddition.  High energy barriers 

associated with inter-layer conjugation and interlayer van der Waals forces, makes 

modification of a flat, rigid G structure a challenge [1.75].  This lowers the GS capacitive 

capability [1.76].   

Whereas, in molecular level mixing, carbon nanostructures can act as nucleation sites for metal 

reduction to form metal oxide (MO) SCNMs suspension [1.70].  Thereby facilitating coating 

of SCNMs by a MO, hence, promotes a homogeneous distribution.  A non-covalent attachment 

via use of surfactants is a possible way for SCNM modifications that preserves their integrity 

[1.72].  In this regard, G is soluble in a limited number of solvents such as N-methylpyrolidine 

and 1,2-dichlorobenzene.  Surfactants and polymers are appropriate enhancers of solubility.  
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On the contrary, mechanical integration, via ways such as ball-milling of metal powders and 

GO, is a better approach to achieve the required dispersion [1.74].  However, they introduce 

relatively larger amounts of defects which are often detrimental to their suitability in several 

applications.  On the other hand, in colloidal mixing, SCNMs are dispersed with an ultrasonic 

waterbath, homogeniser, magnetic stirrer or a combination of the strategies.  Dispersion in this 

regard is influenced by both surface area available on the SCNM surface and the solvent used 

[1.70].  This means variations in this respect can be utilised to alter physicochemical 

characteristics.  Additionally, reaction conditions, such as time spent on the ultrasonic bath 

influences overall properties, could affect the defect intensity of the graphitic material. 

 

1.1.3.3.  Composite-based materials 

Composite synthesis of SCNMs provide strategies to tailor properties by varying simple 

variables [1.49,1.70] such as weight percentage (wt.%) ratios of reagents and synthesis 

conditions, amongst others.  Composites that involve ceramic formations are often an option 

where inertness at high temperatures  and high mechanical strength are requirements whilst 

metal matrices are common where nanostructures are tailored to influence physicochemical 

properties [1.49,1.70].  The ultimate application is a very important consideration when 

designing composite synthesis.  For instance, a ceramic nature will be detrimental in cases 

where transfer properties are required. 

The advantages of SCNMs composites synthesis are numerous.  This has been a useful material 

development strategy, particularly in catalysis and energy conversion systems [1.70].  For 

example, synthesis of MWCNTs composites has led their better suitability in industrial scale, 

high throughput manufacturing of lightweight, flexible electronic and energy harvesting 

devices at low costs [1.72].  Also, MWCNT, by virtue of high thermal conductivity, have been 

utilised  in composites  manufactured for thermal management [1.42].  Additionally, MWCNTs 

are used as reinforcement agent in polymer composites because of their elasticity, tensile 

strength and large specific surface area [1.47,1.70].  In addition, they are principally useful 

where low weight and low temperature is a requirement.  Another reported useful utilisation of 

composites is tailoring of polymer conductivity by varying MWCNTs wt.% [1.42].   

In comparison, the G advantages over MWCNTs include high surface area per gram, unique 

electronic properties, high transparency, flexible structure and less tendency to twist 

[1.49,1.73,1.74]. Therefore, culminates in better dispersion in matrices i.e. more suitable for 
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composite formation.  Active research areas that involve G-based materials in composites 

include control of G sheets on matrices, reinforcement and functionalisation with other surface 

moieties and understanding interfacial chemical interactions [1.47,1.49].  The inclusion of 

G/polymer and G/MO nanocomposites have been reported but the G/MO nanocomposites are 

still at infancy stage [1.47].   

Much focus has been given to metal oxide-shaped carbon nanomaterials (MO-SCNMs) 

composites but the dissimilar results, common in literature [1.70], have generated a lot of gaps 

in understanding the physicochemical properties of the several composites reported.  Hence, 

there is still need for new insights with regards to aforementioned materials, particularly for 

EC applications.  The G/MO nanocomposites has potential to meet high strength, stiffness and 

light weight as ideal components of machinery such as batteries and capacitors [1.74].    Most 

reported composites that involves titania are extensively focused on inhibition of electron/hole 

recombination [1.37,1.77].  Also, much has been done on composite synthesis of 

titania/SCNMs for photo-catalysis [1.78,1.79] and other applications.  There is relatively little 

attention on their functionality in energy storage devices.  The nano-metal oxides (MO) can be 

incorporated in various nanostructured morphologies of carbon nanomaterials to enhance 

capacitive characteristics.  Uniform distribution of MO on SCNMs needs to be critically 

considered in classical nanocomposites.  Furthermore, a wide range of combinations of MO 

and SCNMs differences culminates in varied capacitance behaviour. 

 

1.1.3.4.  Electrolytes 

Two main classes of electrolytes can be utilised in ECs, namely, non-aqueous/organic and 

aqueous.  Examples of aqueous electrolytes include acids such as sulfuric acid or alkalis such 

as lithium sulfate and potassium hydroxide [1.11].  The K+ ions have the smallest hydrated 

ionic radius (0.33 nm) and highest ionic radius (72.2 cm2 Ω-1 mol-1).  Lithium ion-based 

electrolytes are common in both batteries and ECs [1.80].  Neutral aqueous electrolytes have 

low cost, are safe, environmentally friendly, and are also associated with high ionic 

conductivity [1.10,1.33].  Hence, neutral aqueous electrolytes are favourable in large scale 

commercial production, i.e. in terms of cost and environmental perspectives.  Aqueous 

electrolytes have higher ionic conductivity, i.e., up to 1 S cm-1, low decomposition voltage 

(approximately 1.23 V) and low electrical resistance [1.17,1.20,1.80-1.82].  Their low voltage 
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window results in low energy density [1.10].  In aqueous acid electrolyte solutions, 

fundamental charge storage process is proton insertion [1.17]. 

Electrochemically active electrolytes containing transition metals such as Fe2+/Fe3+, VO+/VO2+ 

and Cu2+/Cu0 have been reported [1.83].  Recently, ionic liquids such as 1-butyl-1-methyl 

pyrrolidium dicyanamide have been reported to enhance operating voltage of ECs [1.84,1.85].  

Choices of solvents for typical electrolytes depend on the ability to dissociates, solvate and 

form highly concentrated thermodynamically stable ionic salts.  Additionally, low viscosity, 

high ionic conductivity, low melting point, high decomposition temperature and negligible 

vapour pressure of ionic liquids is of equal importance [1.85]. 

Advantages of aqueous over non-aqueous electrolytes include low costs and, less stringent 

purification and drying process requirements.  On the other hand, aqueous electrolytes have 

low thermal stability and ion conductivity, have large dependency on humidity [1.86].  

Examples of non-aqueous electrolytes include triethylmethylammonium tetrafluoroborate, 

propylene carbonate or acetonitrile with dissolved quaternary alkyl ammonium salts 

[1.11,1.81,1.87].  Also, solid state ECs can be fabricated using organic electrolytes such as 

PVA-H3PO4 [1.86].  Cell voltage for organic electrolytes is approximately 3-3.5 V [1.11,1.20].  

Polymer gel electrolytes, such as PMMA-EC-PC-TEACLO4 and PEO-LiClO4-EC-THF, can 

be used but low capacitance values have been so far reported [1.80].  Organic electrolytes have 

high achievable voltages and cell voltage is limited by water content of electrolyte [1.17].  Their 

specific resistance is 20 times higher than the aqueous electrolytes and this reduce maximum 

obtainable power.  However, reduced power outputs are compensated by use of higher voltage 

[1.17]. 

Based on the aforementioned background, this thesis investigated the use GO, RGO, MWCNTs 

and their composites with titania and nanocellulose as electrodes of ECs.  This comprehended 

an investigation and tailoring of physicochemical properties of nanomaterials and linking them 

to their functionality in ECs.  The modification of the typical carbon nanomaterials with oxygen 

and nitrogen was also investigated.  In this regard, the influence of both moieties and content 

on EC performances were also studied.  In summary, the thesis aims, and objectives are as 

started in section 2. 
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1.2. Research aim and objectives 

The aim of the presented study was to provide insights in the development of carbon 

nanostructured-based materials by reagent ratio tailoring, understanding and establishing 

crucial nano-structural parameters together with other related physicochemical properties 

towards better modulation of electrochemical capacitance.  

To achieve the aim, the following objectives were set: 

• Synthesis and physicochemical characterisation of N-MWCNTs. 

• Synthesis and physicochemical characterisation of GO. 

•  Functionalisation of graphene- and MWCNT-based materials with different surface 

moieties and the understanding associated interfacial chemical interactions.  

• Establishing how nano-structural parameters and transformations influences ultimate 

EC characteristics. 

• Investigating functionality and effects of group one sulfate cationic sizes as aqueous 

electrolytes in EC functionality. 

• Investigating the influence of combining either graphene oxide or reduced graphene 

oxide with other abundant functional materials to obtain composites, which can be used 

in the fabrication EC devices. 

• Tailoring of physicochemical properties of GO, RGO, MWCNTs and N-MWCNTs by 

varying wt.% ratios of reagents and reaction conditions towards better functionality in 

ECs. 

 

1.3. Theses outline 

This thesis focuses on the synthesis of SCNMs, particularly MWCNTs and RGO, as suitable 

electrode materials for ECs.  It also investigated the influence of boron- and nitrogen-doping, 

oxygen modifications and synthesis of composites on the EC functionality.  The thesis starts 

with an introduction to the research in chapter one (Introduction) and concludes with chapter 

nine (Conclusions and future works).  Chapters two to chapter eight consisted of a series of 

separate publications/manuscripts that adopted the referencing style, figures and table formats, 

and the general presentation style that fits styles of specific journal were the work was 

published, submitted or intended for submission.  Chapter one introduces the work by setting 

a general background for the various findings communicated within the thesis.  Also, it defines 
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the scope of the work presented and states the research aim, objectives and outline of the current 

work. 

In Chapter two (paper one), the use of carbon nanostructured materials in energy storage 

devices was reviewed.  Also, a comparative discussion of ECs against other energy storage 

devices such as batteries and fuel cells are also presented.  The paper also elucidated possible 

protocols to enhance the suitability of carbon nanostructured materials in ECs. 

Chapter three (paper 2) evaluated the influence of sp3 to sp, dimethyl formamide to 

acetonitrile, reagent ratios in the synthesis and physicochemical properties of nitrogen-doped 

carbon nanotubes (N-CNTs).  This chapter also explains the possibilities of tailoring doping 

type, content and other physicochemical properties of N-CNTs by varying the sp3 to sp reagent 

ratios.  Furthermore, the paper compares N-CNTs from sp3- and sp-hybridized N sources, as 

well as temperature effects to the products. 

Chapter four (paper 3) focused on the synthesis of graphene oxide (GO).  The core focus was 

to optimize graphite to sodium nitrate ratio and the reaction time.  The paper also aimed at 

attaining a better understanding of the influence of oxygen functionalities on the overall 

physicochemical properties of GO. 

Chapter five (paper 4) reported the influence of oxygen moieties, attached on MWCNTs, and 

their associated physicochemical properties on ECs.  The specific objectives in this chapter 

include investigating the influence of HNO3, HCl, H2O2 and HCl/HNO3 in the treatment of 

MWCNTs on both physicochemical properties and EC performance.  It also presented a study 

of functionality of group one sulfates, namely, Li2SO4, Na2SO4 and K2SO4 as electrolytes of 

the aforementioned materials.  Additionally, the paper links the physicochemical properties to 

EC energy storage capabilities. 

In Chapter six (paper 5), chemical transformations associated with the use of ascorbic acid, 

hydrazine hydrate and sodium borohydride to reduce GO are reported.  In addition, the paper 

presents a study of the influence of B- and N-doping of RGO as well as sp3 N-C, pyrrolic- and 

pyridinic-N-doping of RGO on both physicochemical properties and charge storage suitability. 

The aims of Chapter seven (paper 6) was on the synthesis and physicochemical comparison 

of GO/titania (GOTi), RGO/titania (RGOTi) and cellulose/RGO (CRGTi).  The chapter 

focused on possibilities of tailoring properties of titania, GO and RGO towards charge storage 

applications via composite synthesis.  Chapter seven also presents a study of the influence of 

Ti wt.% on the aforementioned composites on EC performance. 
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The focus of Chapter eight (paper 7), was on the synthesis of graphenated N-MWNTs, N-

MWCNT/titania and graphenated N-MWCNTs/titania composites for EC applications.  The 

designed aforementioned composites were investigated as possible material development 

strategy for EC applications. 

Finally, Chapter nine presented the overall summary of the thesis by tying together the major 

findings of each chapter.  The main conclusions were also linked to the specific aim and 

objectives of each chapter as well as to future works emanating from the reported deductions. 
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Summary 

Sustainable and renewable energy resources, as well as energy storage systems (ESS), are 

amongst the current and critical global requirements.  A comparative discussion on batteries, 

fuel cells and electrochemical capacitors (ECs) is presented.  The mechanisms involved in 

various classes of ECs are also elaborated.  Additionally, a historical background highlighting 

some of the major steps associated with EC development over the years is discussed in this 

review.  In particular, carbon nanostructured materials have high potential in the development 

of ESS and hence this review presents an insight on the current ESS with a strong bias towards 

these materials as ECs.  The current status of carbon nanomaterials, such as carbon nanotubes, 

nanofibers, nano-onions, nanorods, fullerenes and graphene nanosheets, in ECs is reviewed.  

The associated effects of nanostructural parameters, such as pore sizes and specific electro-

active areas, amongst others, in terms of energy storage capabilities are also discussed.  Typical 

physicochemical characterisation techniques, that enrich understanding of their characteristics, 

are also reviewed.  The discussion views set platforms for a variety of unique carbon 

nanomaterial designs with high prospective specific capacitance.  Key porosity tailoring 

protocols, such as chemical activation, introduction of heteroatoms in carbon nanostructures 

and template synthesis methods, are also reviewed.  The effects other device components, such 

as electrolyte ion size and solvent system, electrode design and use of binders, to the overall 

capability of EC, are also discussed. 
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2.1.  Introduction 

Energy, and its sustainability, that can save and lower the associated costs, are closely linked 

to its storage phenomenon.  Also, there are concerns on how to scale up energy resources and 

energy storage to meet the growing demand [2.1].  The energy demand has been projected to 

increase by 65% before 2040 [2.2,2.3].  Among other key players, the digitisation of global 

societies doesn’t favour or lessen the severe strain on the energy grids [2.4].  However, efforts 

are being made to decentralise energy generation facilities, alleviate environmental problems, 

minimize energy shortages and to lower the high cost of building new plants through innovative 

technologies [2.2,2.5-2.7].  Amongst the urgent global requirements are sustainable, renewable 

and alternative energy sources, as well as energy storage systems [2.8,2.9].  The storage of 

energy being wasted in industrial, commercial and domestic processes [2.10] is a collective 

global obligation.  Most importantly, minimising energy loss, amongst other aspects in the 

energy grid, can positively impact on the world’s sustainability [2.3].  To improve the overall 

stability and reliability of power systems, advanced storage technologies are particularly 

required, especially in developing countries where less sophisticated means of energy 

generation is the norm [2.11].  Dependable power systems have positive effects on the world 

economy through ways that include reduction of costs needed to improve on the transmission 

and distribution of energy capacity.  There are two main classes of energy storage systems 

(ESS), i.e. mechanical and electrical.  Examples of mechanical energy storage systems include 

compressed air [2.5], pumped hydro-energy [2.12] and the flywheel [2.10]. 

In the case of electrical energy, it can be stored by various methods and Figure 2.1 displays 

common approaches in a Ragone plot.  The figure relates the power and energy density of a 

device, which in turn provides the energy available for a constant power load [2.13].  The areas 

in a typical Ragone plot are a rough guideline of the representative energy storage and 

conversion devices in terms of their specific energy and power outputs [2.14,2.15]. 
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Figure 2.1.  Ragone plot sketch for various energy storage and conversion system in the 

literature. 

 

In general, energy often decreases as a function of power in capacitors [2.13].  In the case of 

electrochemical capacitors (ECs), a class of supercapacitors, their development trend so far is 

to either have a high-power output or high energy storage capacity.  Usually, before disposal, 

ECs are understood to give an almost zero waste emission [2.16].  Hence, through a Ragone 

plot (Figure 2.1), much attention is currently being given to ECs in order to shift their optimum 

working regions towards preferred limits with both high power and energy being justified.  

Therefore, new technologies for electrical energy storage, such as nanotechnology, must be 

sought in the development of ECs. 

In case of  nanotechnology, a vast range of resources are available for enabling the engineering 

of functional systems at the molecular scale [2.17,2.18], which in turn serve as a potential 

approach towards eliminating the current global concerns in the energy sector.  Even though 

there is an over-emphasis on economic gain, with no consideration of the dark side of 

nanotechnology [2.19], it still provides new approaches to generate, store and exchange energy.  

Since conventional physicochemical properties of bulk materials may be altered at the nano-

scale, it is therefore feasible to tailor their characteristics [2.20,2.21] for a beneficial cause.  For 

instance, a material that is normally an insulator can be electrically conductive at the nano-

scale [2.22].  For example, carbon nanostructured materials in this context can be tailor-made 
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to enhance functionalities for various energy applications [2.23].  The basis of unique 

comportment in nanotechnology are size and shape [2.24], textural characteristics [2.25], 

surface energy and surface chemistry [2.26] of the synthesised carbon nanostructured materials.  

A good example are the 1D carbon nanostructured materials which are promising potential 

transport carriers and charge collection components [2.22].  They provide high conductivity, 

short ion diffusion pathways and excellent interfacial integrity [2.27]. 

The focus of this review is on how carbon nanostructured materials can be tailored towards the 

high-power density required of supercapacitors and how conductivity enhancement of these 

typical materials can be achieved.  The role of their pore size distribution in charge storage is 

also illustrated.  The influence of other factors such as binders and carbon nanomaterial packing 

in the performance of ECs is also highlighted in this review.  This sets the consideration of 

crucial parameters in ECs in one platform.  The review also provides an insight into the general 

energy storage phenomena, particularly concerning ECs. The potential of various shaped 

carbon nanostructured materials in designing unique and effective EC devices is also 

elaborated.  The basis of altering their morphology as a way of tailoring other physicochemical 

properties such as electro-active area and conductive pathways towards better performances is 

also expounded. 

 

2.2.  Supercapacitors 

Capacitors are inactive electrical constituents that comprise of two conducting plates 

disconnected with a dielectric material (Figure 2.2a).  They form part of our everyday lives and 

their common applications include television satellite receivers, television channel setting, car 

audio systems, taxi meters, process controllers, cameras and mobile phones, among others 

[2.14].  Hence, companies, such as Panasonic, Maxwell, ELIT, US Army and Siemens 

Matsushita, are investing in capacitors (Figure 2.2b) [2.14,2.28-2.30].  Capacitors store 

electrostatic charges, a form of electrical energy, in the Helmholtz layer with distribution of 

equal and opposite charges on each plate [2.1,2.14,2.29].  The plates are the terminals of the 

ECs and their performance is influenced by electro-active surface area and the separation 

between electrode charge and electrolyte charge [2.1].  The energy storage mechanism in ECs 

is a physical process devoid of chemical changes.  Therefore, stored energy is released upon 

connecting a capacitor to an external circuit and the process is reversible on charging.  
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Supercapacitors are associated with some self-discharge caused by various transfer 

mechanisms or some device imperfections.  One disadvantage associated with EC designs, 

among others, is the need to critically consider mass balance to avoid masking the performance 

of one of the components, i.e. charge balance [2.31,2.32].  Also, performance is influenced by 

design parameters such as the thickness of the ultimate electrode.  

  

 

Figure 2.2.  (a) A schematic diagram showing a typical capacitor [2.28] and (b) images of 

commercially available capacitors [2.14]. 

 

In reality there exists an inverse relationship between energy and power [2.33], i.e. a higher 

rate of releasing energy implies a higher power, and this is associated with smaller energy 

capacity [2.28]. There is need for balance between these two phenomena of ECs and, therefore, 

capacitors are an interesting area of research. 

The dielectric medium, an electrolyte in ECs, determines the permittivity and therefore 

influences or is affected by the electric field [2.14].  In simple terms, it is the quantity of electric 

flux generated per unit charge and high amount implies low electrical flux.  Hence, the capacity 

of a material to polarise in response to the inside field influences its permittivity.  The 

maximum charge storage in this context is determined by the breakdown characteristics of the 

dielectric medium [2.29].  Furthermore, in case of carbon nanostructured material-based ECs, 

the voltage window is subject to the electrolyte solvent [2.34].  This is signal emphasises the 

importance of dielectric materials, i.e. electrolytes in capacitors.  The energy generation 
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processes occurring at the electrolyte/electrode interphase of supercapacitors are similar, 

though the mechanisms are different, to those of fuel cells and batteries [2.35,2.36]. 

Batteries have numerous applications and this is due to a variety of reasons, such as lower cost 

per unit charge [2.37], more established markets with commercial availability [2.7], and the 

ability to store enormous energy quantities in comparatively lesser weight and volume units 

[2.1].  Anticipated energy and power outputs are obtainable by connecting batteries in series or 

parallel [2.11].  However, batteries have several disadvantages relative to supercapacitors and 

these include the use of toxic heavy metals, limited charge/discharge abilities and small power 

densities [2.1,2.38,2.39].  Supercapacitors are preferred to batteries where high power is needed 

because they release energy at faster rates [2.1].  Also, short shelf and cycle life are common 

problems associated with battery use [2.5,2.39].  These shortcomings have become globally 

acceptable due to lack of competitive alternatives.  However, the fast growing and competitive 

markets, compels scientists and engineers in industry, as well as in academia, to search for 

alternatives that can enhance battery capacity  amongst other aspects [2.40]. 

The average life span of conventional capacitors is about five years and they have a 60-70% 

cycle efficiency [2.41].  Supercapacitors have several pluses over other energy storage systems, 

especially fuel cells and batteries, such as high safety levels, absence of rotating parts and 

cooling requirements, large modularity in terms of voltage and capacitance, less chances of 

discharging on their own, high recyclability, low production cost and no service requirements 

[2.14].  Supercapacitors undergo reversible charge storage processes, have better power 

density, longer life cycles, lower internal resistance and a broader range of working 

temperatures compared to batteries (106 W dm-3) [2.14,2.42-2.46].  Supercapacitors undergo 

self-discharge over a period of time and this lowers their voltage in a similar manner to batteries 

but, unlike batteries, without degrading, and thus they retain their maximum capacitance [2.29].  

The uppermost power density of supercapacitors can be 100-fold more than the power output 

of batteries [2.1].  Compared with fuel cells, supercapacitors have a higher efficiency of 

recovery of 85-98% than the 25-85% of fuel cells [2.5].  Disadvantages of fuel cells over 

supercapacitors include lower power density per volume, lower durability, and shortened cell-

life due to pulse strains and impurities associated with the gas stream [2.35].  Fuel cells have a 

reduced dynamic response due to the involvement of air compression at the cathode [2.47] and, 

hence, often require supercapacitors to achieve maximum power outputs [2.39].  They are still 

behind both batteries and supercapacitors in terms of market development [2.35].  Unlike fuel 
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cells, supercapacitors do not involve expensive catalysts, hence they have lower capital costs 

[2.5,2.35].  However, although fuel cells utilise more toxic and corrosive electrolytes than 

supercapacitors, they exist in several forms and are therefore suitable for more applications. 

The major forms of electrical capacitors are electrochemical, electrolytic and electrostatic 

[2.33], and these are discussed in the following sections.  A pair of conductors disjointed by a 

dielectric material [2.14] constitute electrostatic capacitors and energy is stored in the form of 

separated electrical charges [2.1].  Common dielectric media of electrostatic capacitors include 

air and mica.  Electrostatic capacitors have a charge time of approximately 10-9 s and store the 

lowest energy relative to the other two.  Hence, more ideas and research inputs are still required 

in this regard.   

Electrolytic capacitors are made -up of a narrower and greater dielectric constant material built 

on a robust metal [2.14,2.48].  Their response time is approximately 10-4 s and have ten-fold 

better energy storage than electrostatic capacitors.  This makes them commercially preferred 

to electrostatic capacitors and they can be applied in small electronic devices [2.49].  However, 

the interest of this review is towards ECs often referred to as supercapacitors in literature [2.50]. 

 

2.3.  Electrochemical capacitors 

Traditional capacitors regularly found in electronic circuits cannot meet energy volumes and 

mass available for storage and use, hence there is a need for efficient ECs [2.29].  The ECs, 

also recognized as ultracapacitors or supercapacitors, are among the potential energy storage 

system (ESS) [2.1,2.15,2.51].  These terms will be used interchangeably in this article.   

ECs are electrochemical ESS that can accumulate and discharge energy rapidly 

[2.15,2.33,2.37,2.52].  Reasons for their high energy conversion capabilities include their small 

distances of electrode/electrolyte interface charge separation as well as the large amount of 

charge on the electrode surface [2.53].  In terms of voltage per cell, three generations of ECs 

can be derived [2.54].   The first generation, based on aqueous electrolytes and symmetric 

designs, achieved cell voltages of about 1.2 V whilst second and third generations, based on 

organic electrolytes and asymmetric designs, had about 2.7 and 3.8 V/cell, respectively.  ECs 

were first reported around the 1950s with capacitances of fractional Farads [2.55].  By then, in 

the early 1950s, no strategy had been developed to increase the energy density of ECs [2.56].  
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Around 1977, SOHIO designed ECs with several Farads of capacitance [2.55,2.57].  During 

that time and until the 1990s, some incremental performances were recorded.  In the 1990s,  

ECs became more popular and they were prevalent in hybrid electric vehicles [2.14,2.47].  For 

example, Alexander Ivanov was able to achieve a maximum energy of 1.8 MJ in the ECs 

designed for electric vehicles in 1993 [2.55].  A typical illustration of how ECs developed over 

the years is provided by reviewing the Gold Cap capacitors produced by Panasonic (Figure 

2.3). 

 

 

Figure 2.3.  The trend in development of energy and energy prices of electrochemical 

capacitors over the years [2.55,2.58]. 

 

The energy density of ECs improved significantly between the 1990s and 2000s but recently 

the development has been slower (Figure 2.3).  The rapid development of ECs between this 

period also matched the rapid decrease in cost of energy during that period (Figure 2.3 insert) 

[2.58].  By 2008, the energy density of ECs had reached 4.5 W h kg-1 [2.59] and the current 

record is 50-70 W h kg-1 [2.32].  At least by 2010, ECs with capacitances in the range 1000-

5000 Farads were commercially accessible from various companies such as Maxwell, 

Panasonic and Ness [2.37,2.47].  The life cycle of ECs is in the range of 106 cycles and response 

time is approximately 1 s [2.28], this is too fast for most applications [2.50].  Usually ECs have 

high rates of charge and discharge [2.60].  The energy densities of both batteries and ECs 
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depend on time of discharge, i.e. rated power, but ECs have shorter charging durations 

[2.44,2.61].  The energy density and the capacitive performances of ECs are 105 times better 

than conventional capacitors but they require a larger accessible surface area [2.32,2.62].  

Moreover, ECs have higher efficiencies (95%) than batteries [2.63].  Their power density can 

be as high as 10 kW kg-1 [2.41].  Hence, they have attracted great attention where high power 

is a necessity [2.64].  The energy densities of ECs (˂ 50 W h kg-1 [2.63]) are higher than those 

of electrolytic capacitors [2.65].  Batteries and fuel cells have higher energy storage capacity 

than ECs, i.e. 30-200 W h kg-1 and 300-1000 W h kg-1, respectively [2.28, 2.66].  The energy 

density of ECs is in the range of 3-5 W h kg-1 and power density of 300-500 W kg-1 [2.29].  

This is because supercapacitors characteristically have lower working voltages, from 1 to 3.5 

V per cell.  Cell voltage influences their specific energy and power outputs.  Therefore, 

developing ECs with a wider voltage window will be an advantageous step. 

To counteract that, ultracapacitors are often connected in series to match the battery outputs.  

Activated carbon-based electrodes are currently the main components of commercial ECs.  

This is attributable to their high micro porosity as well as associated low costs [2.67], however, 

they typically have low specific capacitance (Cs) and energy density.  In light of this, it is clear 

that ECs have a bridging role in terms of power and energy between the old-style capacitors 

and fuel cells/batteries [2.14,2.15,2.42,2.68,2.69].  The goal is the achievement of several 

common commercial products on the market but there are a couple of setbacks towards such a 

milestone. 

For instance, faster graphene-based supercapacitors have only achieved voltages in the range 

0.8-2.4 V, yet modern electronic devices such as USB chargers and mobile phones use 

capacitors in the 4 - 10 V range.  Supercapacitors only constitute 4% of the $ 18 billion annual 

global market [2.50].  Challenges in commercialisation of supercapacitors include lack of cost 

competitiveness and estimated costs of $ 20 000 per kW h compared with other energy storage 

methods and also because of their low energy densities [2.29,2.41,2.70].  Despite all these 

challenges, ultracapacitors have found numerous applications in electric vehicles, large-scale 

power systems, hybrid power-driven vehicles, memory back-ups and energy management 

systems [2.5,2.14,2.28,2.29].  Attributes of supercapacitors in the representative applications 

include low maintenance requirements, fast charge propagation activities and exceptional 

cyclic performance, high specific capacitance, and are associated with high power densities 

during charge/discharge activities [2.45,2.69].  This makes them superior to conventional 
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capacitors and their market is projected to reach $ 15 billion in 2015 [2.28].  The main attention 

in ECs seems to include development of high cell voltage, high power delivery and long cycle 

stability [2.28,2.68].  High cell voltage implies high energy density.  The current focus area in 

this field is enhancing energy density whilst maintaining high power densities and long cycle 

lives of ECs [2.71].  These are key areas that can positively influence power and energy 

densities for grid power storage. 

 

2.3.1.  Classification of supercapacitors 

The complete assembled device, i.e. the electrode materials and electrolytes, influences the EC 

capacitive properties.  Charges accumulate within the electrolyte at solid electrodes and the 

double layer thickness depends on the ion size and concentration, i.e. the former two determine 

the quantity of ions adsorbed in a given area [2.14,2.72].  The nature of the electrode material 

determines the capacitive behaviour of ECs [2.43,2.46,2.69].  A wide range of materials based 

on carbon nanostructured materials, conducting polymers and transition metal oxides, such as 

Ti, Mo, Mn, Ni, Ir, Co, Fe and V, have been used to fabricate various types of ECs [2.28].  

They can be categorised according to a wider range of criteria such as electrode material, cell 

design and electrolyte [2.14].  Aqueous, non-aqueous or solid state are the three classes arising  

on the basis of the electrolyte system [2.73].  ECs are commonly classified into two categories, 

i.e. as pseudocapacitors and electrochemical double layer capacitors (EDLCs), subject to both 

the charge storage mechanism and material technology exploited in the fabrication of 

electrodes [2.10,2.46,2.74] (Figure 2.4) [2.8,2.43,2.66,2.75,2.76]. 
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Figure 2.4.  Types of ultra-capacitors.  

 

2.3.1.1.  Electrochemical double layer capacitors 

The double layer concept was developed by von Helmholtz in the 1900s and General Electric 

pioneered the EDLCs in 1957 (Figure 2.5) [2.1,2.15,2.30].  Interest in EDLCs is particularly 

growing because of the drive towards ‘greener’ environments and sustainable energy systems.  

An EDLC based on nano-structured carbons can be fabricated by using two carbon electrodes 

with high surface areas that are immersed in an appropriate electrolyte [2.34].  The separator 

must be permeable to ions; charge separation occurs over a small inter-phase space between 

the electrolyte and electrode.  Unlike batteries, EDLCs are independent of chemical phase 

changes and heterogeneous charge transfers [2.77]. 

In EDLCs, charging of the double layer at the electrolyte-electrode interface forms the basis of 

the technique (Figure 2.5) [2.30,2.37].  They operate through a non-Faradaic process 

[2.37,2.75,2.78] which involves no chemical or compositional changes due to the absence of 

electron transfer activities [2.30].  Additionally, the thickness of the dielectric in a solid state 



 

 

44 

 

capacitor is often higher than that in the Helmholtz layer in carbon nanostructured material-

based capacitors, i.e. 0.5 – 1 nm [2.14,2.79].  Hence, EDLCs normally have rapid response and 

reversible interfaces with respect to changes in electrode potentials.  Energy is stored 

electrostatically as opposite electric charges, i.e. through a charge separation mechanism 

(Figure 2.5) [2.37,2.75,2.77,2.80].  Electrolyte ions are reversibly adsorbed into the micropores 

of the electrode material [2.29,2.69].  The basic requirements for quick formation of a double 

layer in such capacitors are porosity and accessible surface area [2.29].  The ion movement, 

associated with the double layer formation in the pores, from the electrode via the electrolyte 

to the counter electrode, is facilitated by a diffusion process [2.1,2.29].  Some authors view 

EDLCs as substitutes for dielectric capacitors [2.12].  ECs have a higher energy density by 

virtue of their quick response, high ion mobility in electrolytes and inverse proportionality 

relationship with double layer thickness, but they usually have a low power density [2.78,2.81, 

2.82]. 

 

 

Figure 2.5.  Representation of an EDLC illustration of Helmholtz layer. 

 

Carbon nanostructured material-based EDLCs are highly conductive, porous, associated with 

low costs and ease of processability, and are electrochemically stable [2.75,2.83].  Related 

energy storage capability is restricted by the electrostatic nature of the finite electrical charge 

separation at the interface, but they store more energy per unit volume/mass [2.76].  Use of 
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carbon nanostructures in this regard is affected by oxidation during recycling and ageing, but 

can exceed 500 000 cycles [2.37,2.76,2.77].  This aspect will be reviewed in later sections. 

 

2.3.1.2.  Pseudocapacitors 

Contrary to EDLCs, pseudo/redox capacitors utilize both double layer charge and Faradaic 

reactions [2.43].  Redox capacitors are battery-like in behaviour but are non-electrostatic in 

nature and transfer charge electrochemically [2.1,2.37,2.44,2.80].  Charge is transported near 

the exterior or in bulk region close to the electrode surface [2.29].  The proposed mechanism 

involves space charge density increase and attraction of protons [2.84].  They are based on 

electrode charge storage mechanisms and require highly reversible surface redox processes 

between electrode-electrolyte interfaces or through intercalation of ions [2.37,2.75,2.80,2.85].  

Their performances are governed by ion kinetics and electrode electron transport as well as the 

electrode-electrolyte interface [2.86].  The electrolyte ions participate in three main processes 

at the working electrode of a pseudocapacitor, i.e. electrosorption, redox reactions and 

intercalation [2.29,2.30].  Their intercalation is a bulk process largely dependent on electrode 

porosity whilst the other two are surface activities with a high dependency on surface area. 

Pseudocapacitors have a high energy storage potential due to the associated specific 

capacitance (Cs), high power density, low self-discharge, safe operation, high cycling stability 

and fast charge/discharge capability [2.28,2.75,2.76].  Hence, their applications include 

aeroplanes, subway trains, power electronics and smart grids.  Conversely, pseudocapacitors 

have low porosity, low mechanical strength and conduct electricity poorly. 

The active electrodes of pseudocapacitors are mostly either transition metal oxides or based on 

conducting polymers [2.30,2.52].  The capability of carbon nanostructured materials in 

supercapacitors can be enhanced by the use of transition metal-based oxides and conducting 

polymers such as polyaniline and polythiophene [2.46].  Pseudocapacitors fabricated from 

transition metal oxides have high energy density and large charge transfer reaction 

characteristics; this is due to variable oxidation-state structures.  For example, noble metal 

oxide-based capacitors of approximately 700 F g-1 have been reported [2.28].  Conducting 

RuO2 and IrO2 were the most preferred in ECs and have found use in space charge and military 

applications [2.14].  However, cost and economic reasons, such as 90% of the cost being linked 
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to the electrode material, point to the necessity of exploring other alternatives.  Also, other 

options, that can offer decent electrical conductivity with sufficient surface area and high 

capability to participate in Faradaic EC reactions, are required for energy storage in distinctive 

devices [2.28]. 

Carbon nanostructured materials such as carbon nanotubes (CNTs) and graphene (G), enhance 

the charge transfer efficiency of pseudocapacitors [2.76].  If functionalised, the acidic oxide 

surfaces serve as adsorption sites for polar molecules and hence improve wettability and 

hydrophilicity.  Consequently, the acid-base nature of carbon nanomaterials enhances the 

pseudocapacitive behaviour.  Thus, modifying the surface chemistry and porous nanostructure 

of carbon materials, particularly man-made carbon nanostructured materials, is necessary 

especially for generating better functionality at high scan speeds and durability for continuous 

short and long pulse power intervals.  The characteristics of the earlier two mentioned classes 

of capacitors can be combined into one device (Figure 2.4) to make a new class, hybrid 

electrochemical capacitors. 

 

2.3.1.3.  Hybrid electrochemical capacitors 

Composites of carbon nanostructured materials and other nanomaterials combine EDLC and 

pseudocapacitance features in hybrid electrochemical devices [2.10,2.30,2.85].  Each ESS 

method and EC, in particular, has their own strengths, limitations and operational 

characteristics [2.6].  Andrew Burke’s [2.29] view is that separating energy and power 

requirements via peak power supply with the use of a capacitor charged periodically using an 

energy storage unit could be a reasonable approach to sustainable energy.  Hence, combinations 

of ECs with either fuel cells or batteries produce advanced hybrid power systems [2.7,2.87].  

Various designs of hybrid EC devices bridging the gap between batteries, fuel cells and EDLCs 

have been reported.  The design of their device is an example of an internal series hybrid 

capacitor since the two electrodes function with different mechanisms [2.88].  Likewise, the 

components of hybrid capacitors can have mechanisms of both pseudocapacitors and EDLCs 

[2.29]. 

Hybrid electrochemical devices rely on Faradaic charge transfer processes of surface atoms 

and non-Faradaic processes [2.28,2.30].  Examples of such capacitors, according to their 
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electrode configurations, include nano-hybrids, battery-like and asymmetrical ECs (AECs) 

[2.30] (Figure 2.4).  An AEC is a combination of an EDLC and a battery in order to improve 

cycleability and energy density [2.66,2.70].  They have two different active materials combined 

to make one device.  The transition metal electrode relies on reversible redox Faradaic 

processes whereas the counter carbon-based electrode is influenced by reversible surface 

adsorption/desorption activities occurring via non-Faradaic mechanisms.  Advantages of AECs 

over EDLCs include their slower self-discharge rate and this arises from the lithium revocable 

redox reactions.  Hence, amongst other reasons, commercial automobile companies such as 

Honda, Nissan, Chrysler and General Motors have become increasingly interested in typical 

hybrid systems [2.64].   

 

2.3.2.  Carbon nanostructured electrodes  

In addition to the drive towards enhancing capacitance through novel designs, the development 

of affordable environmentally friendly materials is also a priority [2.89].  Oxides of transition 

metals, conducting polymers and porous carbon nanostructured materials are the common EC 

materials reported [2.42].  Porous activated carbon currently dominates the market, since it 

possesses large surface areas and ultimately large energy densities but its narrow pores and low 

electronic conductivity limits its applicability due to slow ion diffusion [2.65].  The highest Cs 

for nano-porous activated carbon reported so far is 240 F g-1 [2.33]. 

 

2.3.2.1.  General background on carbon 

Carbon is a flexible group 14 element and is capable of forming a wide range of architectures 

at the nano level [2.90].  Several reasons influence nanostructured carbon as the material of 

choice in energy storage applications.  For example, these include well established fabrication 

methods, tuneable pore sizes, high porosity, large surface areas (between 1 and over 2000 m2 

g-1), ability to be an intercalation host, corrosion resistance, high thermal and chemical stability, 

low mass, compatibility with other materials, desirable architectures and good electronic 

conductivity [2.37,2.66,2.69-2.71,2.75,2.85,2.91].  Ordered allotropes of carbon have received 

much attention in the electronics field.  Their micro-texture, dimensions and variable degrees 
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of hybridisation in the respective carbon nanostructured material play a role in their electronic 

properties as EDLCs [2.92,2.93].  Diamond (sp3 hybridised) and graphite (sp2 hybridised) are 

examples of natural allotropes while carbyne (sp hybridised) and fullerenes (distorted sp2) are 

synthetic [2.37].  The sp2 hybridised carbon materials have found the greatest application in 

electronics.  The delocalised 𝜋-bonds in the carbon sp2 hybrids render electron availability as 

charge carriers.  Furthermore, the capacitive behaviour of carbonaceous nanomaterials is 

structure-dependent [2.94].  For example, flake- or sheet-like nanostructures are highly 

accessible to the electrolyte cations, hence they have increased charge transfer even though 

they have low specific surface areas [2.95].  In most cases internal surfaces of nanostructured 

carbons are inactive in double layer formation.  Various forms of carbon nanostructured 

materials such as carbon nanofibers, nanorods, G nanosheets and CNTs, amongst others, have 

been reported as electrodes in EDLCs [2.16,2.28,2.46,2.53,2.90,2.95] (Figure 2.6).  For 

instance, CNTs and G are common materials used in enhancing electrode surface accessibility 

to electrolytes [2.44].   

 

 

Figure 2.6.  Typical shaped carbon nanomaterials for ECs.  
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While heat treatment has been reported as a way of improving structural order and conductivity, 

this practise reduces the surface areas of the carbon nanostructured materials.  Egashira et al.’s 

[2.12] stance on this aspect is that porous carbon nanostructured materials are usually less 

graphitic and have low electronic conductivity.  Their work also mentions that the graphitic 

structure has a larger double layer capacitance per surface area than basal carbons.  They argued 

that amorphous carbon exposes a larger number of edges on its surface and also that larger 

surface roughness gives a higher Cs and their views were validated by the work of Chen et al. 

[2.96]. 

Preparation methods also affect electrochemical performance of carbon nanostructured 

materials [2.97].  Most of the carbon nanostructured materials for EDLCs are produced mainly 

through either an electro-spinning or chemical vapour deposition (CVD) carbonization process 

[2.79].  In such processes, carbon precursors go through pyrolysis, elimination of volatile 

materials, followed by condensation reactions at high temperatures, culminating in the 

localised graphitic unit formation.  Carbon sources for synthetic carbon nanostructured 

materials are mainly biomass, polymers and hydrocarbons [2.98].  Microwave irradiation as a 

synthesis approach reduces the reaction time, prevents side-reactions, and facilitates yield and 

reproducibility of specific synthesis protocols [2.69].  The best method for carbon 

nanostructured material production is catalytic deposition [2.99].  Acetylene is one of the best 

carbon sources utilized in the syntheses of graphitic nanomaterials.  The main reasons are its 

greater activity and the smaller carbon atom ratio of its molecule compared with most 

hydrocarbons.  High carbon content increases the surface area and conductivity of capacitance 

electrodes [2.76].  Porous carbonaceous structures increase the effective contact area between 

the electrode surface and electrolyte ions, ultimately giving better electrochemical 

performances [2.78].  G is one of the carbonaceous materials reported to have a high surface 

area and is therefore appropriate as an electrode material in ECs. 

 

 2.3.2.2.  Graphene 

The name graphene (G) is derived from graphite and alkene [2.100] and G is a form of graphite 

with less than ten layers of six-membered carbon species in a honeycombed network [2.101-
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2.103].  Applications of G range from flexible electronics to functional nano-devices and G is 

so far the best carbon nanostructured material-based electrode for ECs [2.85,2.104,2.105].  

Types of G include monolayer, plane sheet, mesh and ribbons [2.101,2.106,2.107] and there 

are two generations of G, i.e. first (2D) and second (3D) [2.32].  Focus on G began in earnest 

in 2004 with publications on G increasing exponentially since 2005 [2.80].  G nanosheets are 

now regarded as the next generation electrode, this is principally due to their theoretical 

superior conductivity and surface area [2.8].  The high surface area of G nanosheets comes 

from interconnected open channels between layers, not pores [2.72, 2.108].  Electrons move 

unimpeded at higher speeds throughout the lattice in G than in ordinary metals [2.100].  The 

conductivity, specific surface area, thermal conductivity and intrinsic mobility of G are 

approximately 2000 S cm-1, 3100 m2 g-1, 3000 W m-1 K-1 and 200 000 cm2 V-1 s-1, respectively 

[2.32,2.102,2.109-2.111]. 

Traditionally, G is regarded as the mother of conjugated carbon nanomaterials and is the 

thinnest known material [2.30,2.92,2.105,2.112].  It resembles polycyclic aromatic 

hydrocarbons and benzene.  G is made up of sp2 carbon atoms and its 𝜋-electrons are 

delocalised throughout the 2D network [2.103,2.105,2.109].  However, the role of monatomic 

thick G and the 2D honeycomb network of sp2-hybridised carbons is still not fully understood 

[2.113,2.114].  G is chemically inert, and this is a setback to its manipulation.  Its chemistry 

can be viewed to involve breaking and formation of conjugated sp2 C-C bonds.  Oxidation of 

G enhances the hydrophilic character and enhances agglomeration and precipitation [2.115].  

G easily agglomerates due to van der Waals forces arising from 𝜋 − 𝜋 stacking interactions 

between sheets.  This makes fabrication of a porous electrode a difficult task [2.30], especially 

in the G first generation, due to limited accessibility of internal pores by electrolyte ions [2.32].  

The stacking order and coupling between layers determines the electronic properties.  The 

actual capacitive performance of G-based nanocomposites is often lower than anticipated due 

to aggregation of G sheets [2.116].  Theoretical studies of G postulate high Cs values of 550 F 

g-1 if restacking problems are eliminated [2.32, 2.60]. 

Since G has a zero band gap, the properties of G such as band gap opening and conductivity 

can be enhanced through covalent modification [2.106].  In principle, G modification is 

possible at the edges and surface planes, altering the energetic characteristics in the process.  

The zigzag edges are more reactive than arm chair but in practice G nanosheets have a mixture 

of configurations [2.105].  This makes altering chemical functionalities a difficult task.  
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Controlling the configuration length of a delocalised carbon lattice via covalent 

functionalization influences band gap tunability [2.101,2.106].  Band gap and type of charge 

carriers are important in the semiconductor industry.  Substitution of carbon with heteroatoms 

is a possible way of altering charge carrier types.   

G has found numerous applications in EDLCs mainly as a substrate for nanomaterials, such as 

carbon, and this gives them better functionalities.  For instance, Haiyang et al. [2.74] recently 

reported G nanosheets synthesised at low temperatures of 100 and 400 ºC, with the G 

nanosheets at the latter temperatures achieving the best Cs of 212 F g-1.    The work on G 

nanosheets by Nasbi et al. [2.72] achieved low current responses due to low mobility of OH- 

ions and the large K+ ionic radius in the electrolyte.  Their low surface G nanosheets achieved 

a Cs of 3.62 F g-1 in 3 mol L-1 NaCl electrolyte at a scan speed of 5 mV s-1.   

Recently, a cauliflower-fungus graphene (CFG) with a mesoporous 3D structure, surface area 

of 462 m2 g-1 and rectangular cyclic voltammetry (CV) at 50 mV s-1, achieved a Cs of 103 F g-

1 [2.32].  This value was greater than 92.4 F g-1, the theoretical value, and also their energy 

density was 15.6 W h kg-1.  They attributed these findings to the creation of fast 3D channels 

and hierarchical mesoporous structure for electrolyte ion mobility synthesized from CO2 via a 

one-step exothermic reaction.   

Du et al. [2.53] also reported good charge propagation on oxidised G nanosheets (GO) with 

narrow mesopores of 4 nm and redox peaks from oxygen functionalities.  They also reported 

that disordered G nanosheets with many edges in the electrode store more energy with increase 

in scan rate.  Also, 3D GO, G functionalised with oxygen moieties, achieved a Cs of 352 F g-1 

at a sweep rate of 5 mV s-1 [2.117].  A composite of G/CeO2/carbon black in electrodes with a 

narrow deep morphology was reported to increase charge storage but reduced current response 

[2.95].  This in turn increased the specific surface area, Faradaic reactions and charge storage 

capabilities, but reduced the current response and power delivery capabilities.  The same 

researchers were able to achieve a Cs of 11.84 F g-1 at 10 mV s-1 in their recent report based on 

G nanosheets modified with zirconium dioxide [2.27].   

In another study by Battumur et al. [2.62], an optimum  mass of 5% of multiwalled carbon 

nanotubes (MWCNTs) in 1% G nanosheets and Co3O4 nanocomposites provided additional 

nano-channels for flow of charge and electrolyte penetration.  This therefore improved charge 

storage in their typical G nanosheet materials by reducing diffusion and the migration length 
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of the electrolyte ions.  Higher loadings of G nanosheets were reported to hinder formation of 

a 3D network for an effective conductive system.  G can also add conductivity to nanoparticles 

[2.42,2.80,2.85].  Additionally, electron injection from G into oxides increases the 

concentration of holes in G and may improve the conductivity of the entire hybrid material.  

Corrugations in G nanosheets can achieve a 10-fold enhancement of electron transfer rates 

relative to the basal graphitic plane [2.82] but G has limited capability to store charge in 

aqueous electrolytes [2.85]. 

Cobalt-based composites, such as Co3O4/GO nanosheet, and Co(OH)2/GO nanosheet are also 

reported to have high capacitance values and a capacitance retention of 85-95% after 1000 

cycles with 6 mol L-1 KOH [2.85].  Such observations were attributed to both the Co2+/Co3+ 

system in CoO4/CoOOH and Co3+/Co4+ in the CoOOH/CoO2 phase change.  The Co3O4 form 

is preferred in capacitors because of the low costs involved in using it, environmental 

friendliness, and favourable microstructure and morphology [2.62].  Ramakrishnan et al. [2.85] 

are of the opinion that a uniform distribution of metal oxide (MO) in nano-carbon based 

capacitor architectures is still a common challenge to most reported work.  

Anosori et al. [2.80] designed a hybrid structure consisting of Nb2O5 nanoparticles with sizes 

between 10 and 20 nm deposited on a 3D graphene aerogel.  Their design reduced the diffusion 

limitation of electrolyte ions moving through the electrode and increased electrode 

conductivity.  They attributed their findings to the orthorhombic structure of niobium oxide 

which offers a 2D transport pathway for fast Li+ (cation from electrolyte) intercalation.  Their 

stance was that thin films and microelectrodes perform better in supercapacitors. 

In the report by Deng et al. [2.42], a G/V2O2 composite was prepared by a single-step 

hydrothermal technique.  A nickel foam current collector, Pt counter electrode and SCE 

reference electrode were used with the scan speed applied at 5 mV s-1, whilst 3 mg was the 

mass load.  They observed a deviation from the classic rectangular CV curve with a high profile 

and no redox peaks, this inferred high Cs values.  In explaining their findings, they referred to 

the ability of the star fruit-like V2O2 structure to shorten the path length and this increased the 

contact area between V2O2 and G.  Hence, ion accessibility in pores was improved and 

according to their interpretation, typical structures that shorten electrolyte diffusion length 

during charge/discharge improve electrochemical utilization of nanoparticles.  After 1000 

cycles their capacitance retention for G, VO2 and G/VO2 was 99%, 47% and 65%, respectively.  

They proposed that the star fruit-like G/VO2 conversion to hollow hemispheres during 
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galvanostatic charge/discharge as a manifestation of poor cycle stability.  They ascribed it to 

oxidation of V4+ to V5+.  In their work, they also pointed out the Cs lowering effect of the 

electrode high charge transfer resistance. 

 

2.3.2.3.  Carbon nanotubes 

CNTs are a hollow tubular form of carbon nanostructured materials and they can be classified 

according to the number of tubular layers as single-walled carbon nanotubes (SWCNTs), 

double-walled carbon nanotubes (DWCNTs) and multiwalled carbon nanotubes (MWCNTs).  

The CNT morphology and purity influences Cs,  and the metal residue from the synthesis 

catalyst also affects the electrochemistry of CNTs [2.112].  On the other hand, the low reactivity 

of basal planes on the walls of CNTs limits their energy density [2.65].  CNTs can be used as 

electrodes in both aqueous and non-aqueous electrolytes [2.37,2.78].  Preparation of CNTs as 

electrode materials falls into two main categories.  Firstly, as-grown CNT arrays, such as 

vertically aligned, and, secondly, as designed patterns, such as CNT bundles [2.45].  As-grown 

arrays make use of 1D material in shaping the electrode morphology.  This method is 

straightforward and well-suited for thin film technology of integrated circuits.  Whereas in a 

typical designed pattern, CNTs are grown on a substrate then disbursed in liquids and then 

remoulded on current collectors.  In this approach CNTs act as raw materials that provide more 

accessible interfaces for charging and discharging.  The list of possible nanocomposite designs 

with other constituents in this respect is endless. 

CNTs are good potential electrodes because of the high fraction of surface area accessible to 

electrolytes in EDLCs [2.69].  The mesopores in CNT electrodes are interconnected and 

therefore allow a continuous distribution of charge on the available surface [2.30].  The high 

aspect ratio of CNTs increases the effective surface area, chemical stability of electrodes and 

electrical conductivity [2.78].  CNTs can form electrically conductive networks that are 

suitable for energy storage capabilities [2.81].  CNTs generally have a lower equivalent series 

resistance (ESR) than activated carbon [2.30].  Furthermore, their ESR can be lowered by 

growing CNTs directly on current collectors.  Additionally, CNTs reduce current path-length 

and hence enhance capacitance [2.79].   
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In theory, SWCNTs have a larger surface area than MWCNTs.  The conductivity of SWCNTs 

depends on structural parameters such as chirality; hence, they can be metallic or 

semiconducting [2.1].  Metallic conductivity is of the order 104 S cm-1 [2.1].  Therefore, 

SWCNTs have a classical Cs of 180 F g-1 whilst that of MWCNTs is between 4 and 137 F g-1 

[2.15].  CNTs have been widely applied as an additive rather than being the main component 

[2.45] of EC devices.  Lekakou et al. [2.81] used aligned CNT electrodes perpendicularly to 

the current collector and reported a power rating of 1.5 kW kg-1.  They pointed out that a typical 

Cs of CNTs is from 15 to 80 F g-1 [2.37].  Oxidative treatments of CNTs have been reported to 

increase their capacitive behaviour.  In another parallel study, Chang et al. [2.78] coated 

CNT/carbon cloth with nanostructured NiO in making an electrode.  They justified choosing 

carbon cloth by its flexibility, low mass, corrosion resistance and conductive nature in addition 

to its strong adhesion to CNTs.  The electrolyte was 1 mol L-1 KOH, with a Pt counter electrode 

and a Ag/AgCl reference electrode in saturated KCl.  All the electrodes fabricated with carbon 

cloth, CNT/carbon cloth and NiO/CNT/carbon cloth had a nearly rectangular CV curve and a 

high charge storage at 50 mV s-1 was attained.  The Cs order was carbon cloth < CNT/carbon 

cloth < NiO/CNT/carbon cloth and they explained their observations as being due to the 

Ni2+/Ni3+ Faradaic reaction. 

Wu et al. [2.118] used CNTs decorated with titania nanorods and in their view, a long oleic 

acid chain in a sol-gel synthesis improved the compatibility between titanium sols and pristine 

CNTs, as well as acting as a guide to titania growth on the CNT surface.  Their work was an 

indication that almost complete coverage of the CNT surface with titania nanorods is suitable 

for EC electrodes. 

Jiang et al. [2.119] reported on a cellulose woven fabric as a textile electrode template for CNT-

MnO2 composites with complex surface morphology that comprised of several functional 

groups such as the hydroxyl groups.  They reported a Cs of 247 F g-1 for their CNT/activated 

cellulose textile/MnO2 nanostructure.  They proposed dispersion enhancement due to H-

bonding with acid-treated CNTs to be the main factor of their results. 
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2.3.2.4.  Graphenated carbon nanotubes 

A composite of graphene nanosheets and CNTs can be referred to as graphenated CNTs (G-

CNT).  G-CNTs can also be produced via a microwave plasma enhanced chemical vapor 

deposition method (MPECVD) as perpendicularly oriented foliates on CNT sidewalls 

[2.120,2.121].  The important benefit in such composites is the combined high CNT surface 

area and the high density edges of G [2.120].  The edges from G provide high charge density 

and reactivity.  Understanding the relationship between electrochemical characteristics and 

nanostructures of typical hybrid carbon material-based electrodes is a fundamental aspect in 

this regard [2.121].  For example, Henry et al. [2.121] reported that G-CNTs had faster electron 

transfer kinetics than CNTs, this is important in the charge/discharge rate of capacitors.  

Electro-polymerisation technology can be used to coat a dielectric monolayer onto G-CNTs 

composites in order to enhance charge storage [2.50] 

Yan et al. [2.122] grew CNTs on G sheets by using porous nickel mesh and iron catalysts.  Fan 

et al. [2.115] synthesised CNTs on G sheets.  They reported that CNTs between G sheets lack 

uniformity due to poor wettability between the catalyst and G.  According to their description, 

this caused aggregation and coalescence of catalyst particulates on G during sintering.  Some 

of the key physiochemical attributes pointed out in their materials include improved surface 

area arising from effective CNT intercalation and distribution between G layers.  Their view 

was that increased surface area provided diffusion pathways that facilitate rapid electrolyte 

transport.  The CNT dimensions in their report were less than 100 nm in length, 5-7 nm internal 

diameter (ID) and 7-12 nm outer diameter (OD).  Upon use of KOH and H2SO4 as electrolytes, 

at 10 mV s-1, a negligible cathodic peak was observed and this means the reaction was 

irreversible and the pseudocapacitance behaviour was two times amplified with respect to G.  

The Cs attained in 6 mol L-1 KOH electrolyte was 385 F g-1.  Raising the scan rate increased 

the current response in their study and this implied a good rate capability.  They concluded that 

their material was electrochemically stable since their ECs were still at about 20% of their 

original capacitance after 2000 cycles. 

Romann et al. [2.50] reported the generation of meso-macroporous electrodes with large 

surface areas from a rigid connection in the carbon backbone of G and CNTs.  This prevents 

electrical isolation during dielectric formation.  G-CNTs in their work displayed best capacitive 

performances due to high electrical conductivities and compactness.  They also stressed that 
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thin G-based capacitors have higher energy densities than current commercial capacitors on 

the market. 

In the work reported by Deng et al. [2.68], G, CNTs and G/CNT electrodes in 1 mol L-1 Na2SO4 

showed a rectangular CV curve shape with no Faradaic reactions between -0.1 and 0 V [2.68].  

They reported a large CV curve area from G/CNT electrodes to infer higher Cs.  In the range 0 

to 1.1 V against a SCE the electrodes showed a rectangular CV curve shape with a mirror image 

feature and they interpreted it to be an ideal capacitance character.  Addition of MnO2 to 

G/CNT increased the Cs and changes were noted when the sweep rate was altered from 5 to 

200 mV s-1.  In their work they provided evidence of the thermodynamic relationship between 

the oxygen evolution reaction and the positive potential acquired by an electrode material.   

Li et al. [2.8] synthesised a hierarchically nanostructured porous a-MnOx, 2D G nanosheets 

and ID MWCNT composites.  G sheets were chemically functionalised prior to MWCNT 

insertion via a solution assembly process.  They reported a-MnOx grown on the G-MWCNT 

framework through a potentio-dynamic deposition with a flowery nanostructured morphology 

decorated with slim petals of approximately 5-8 nm.  In their work, the CNT role was to act as 

a spacer and their optimum loading was 10 mass % in terms of surface area.  This corroborated 

the views of several researchers [2.15,2.60].  They reported that the resulting structure was 

highly porous, had a large surface area and had good wetting properties.  In their 

electrochemical characterisation, G-CNT, a-MnOx/G-CNT and a-MnOx all gave a nearly 

rectangular shaped CV curve at 5 mV s-1.  The current density response was higher for a-

MnOx/G-CNT than for a-MnOx.  Also, G-CNT exhibited a better rate capability at high scan 

speeds of 200 mV s-1.  On the contrary, a-MnOx resulted in a skewed CV curve.  They attributed 

their observations to the higher electrical conductivity and active utilization of Mn in the 

resulting hierarchical nanostructured composite.  The Cs for a-MnOx/G-CNT was 535 F g-1, 

140 F g-1 for G-CNT and 233 F g-1 for a-MnOx.  According to their research, such an 

observation was due to excellent electron transport passage in G-CNT nanostructures and better 

electrolyte permeation via Na+ and H+ intercalation.  They also concluded that residual oxygen 

functionalities on G-CNT led to better redox kinetics.  The G-CNT had a capacitance retention 

of 29% whilst that for a-MnOx/G-CNT was 38% and that for a-MnOx was 70% at 200 mV s-1.  
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2.3.2.5.  Carbon nanofibers 

Carbon nanofibers (CNFs) have been extensively studied with respect to EDLCs because of 

their good chemical stability, low resistivity and remarkable conductivity, but exhibit a low Cs 

due to low surface area [2.123].  CNFs are significantly cheaper to produce and are better 

electrical conductors than other carbon nanostructured materials such as CNTs [2.79,2.124].  

The method of preparation and the particular CNF type influence their ultimate performance.  

Some of the reported types of CNFs include fishbone, platelet, ribbon, stacked cap carbon and 

thickened [2.125].  CNFs have a high surface-to-mass ratio of 462 m2 g-1, excellent 

physicochemical stability and have an electrical conductivity of 102 S cm-1 [2.46].  Hence, 

fibrous carbon nanostructured materials, by virtue of good electrical conductivity, are preferred 

for high power density output and large surface area for high energy density [2.81].  CNFs are 

widely used in EDLCs as electrodes and their associated Cs is closely related to their porosity 

[2.126].  Additionally, CNFs have exteriors made up of many edges and such characteristics 

give them a wider range of pore size distribution culminating in large surface area and 

capacitance [2.64].  Their conductivity increases with increase in accessible surface area or 

micropore volume and this in turn enhances capacitance.  Some researchers have synthesised 

CNF-based materials that incorporate heteroatoms in order to enhance functionalities such as 

surface wettability.  Moreover, there is no consensus in the literature on the specific class of 

oxygen groups on CNF surfaces that are involved in pseudo-Faradaic redox reactions. 

Also, incorporating CNFs in nanostructured networks provides efficient electron transport 

networks.  An et al. [2.46] synthesised surface modified RuO2-CNF composites by using 

electro-spinning and acid treatment in sequence.  They recorded an increased performance of 

surface modified RuO2-CNF with a Cs of 224.6 F g-1 when the current density was 0.2 A g-1, 

80% capacitance retention, energy density in the 26.9 – 21.5 W h kg-1 range and a cycling 

stability of 3000 cycles.  They emphasized that the high surface oxygen-containing group 

content and well distributed RuO2 were the chief reasons for better performances.  Saleem et 

al. [2.79] designed a one chip decoupling capacitor based on vertically aligned CNFs and from 

their study they reported a slight decrease in both Cs and resistance but the decrease in 

resistance was larger.  In the opinion of Sliwak et al. [2.126], encapsulated metal is not 

accessible to the electrolyte and their pristine CNFs gave a rectangular CV curve.  They also 

point out that CO2 evolving moieties such as anhydrides, lactonic and carboxylic acids do not 

contribute to capacitance, and that surface oxygen functionalities on CNFs enhance 
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capacitance.  Graphenated CNFs have also been applied in EDLCs [2.109].  Lekakou et al. 

[2.81] challenge the view that adding pseudo capacitance to fibrous nano-carbon electrodes is 

advantageous since they may reduce the lifetimes of capacitors. 

Wang et al. [2.127] reported a 5.6 times enhancement of CNF/MnO2 to 517 F g-1 at a scan 

speed of 5 mV s-1 upon CNT inclusion in a CNT/CNF/MnO2 nanocomposite.  They also 

achieved a 25% capacitance drop after 1000 cycles with accompanying rectangular CV curves 

at 200 mV s-1.  They attributed their results to the hierarchical nanostructure and high surface 

area of their materials.  Ma et al. [2.128] designed a binder-free CNF/G-based EC device with 

a conductivity of 7.7 S cm-1 and they recorded an energy storage of 112 F cm-3 at 0.5 A g-1 as 

the current density. 

 

2.3.2.6.  Fullerenes 

According to Ginsberg [2.129] fullerenes were discovered in the 1980s.  Fullerenes have both 

a conducting and a semiconducting electrical character, are strong and tough [2.3].  Fullerene-

based EDLC electrodes are scarce in the open literature but a single C60 molecule has capacity 

to store charge by virtue of its hollow structure [2.94].  In reality it is almost impossible for 

electrolyte to penetrate the inside of fullerene, C60, because it is non-porous [2.94].  Hence, 

only the outer surfaces participate in EDLCs.  Egashira et al. [2.12] used a heat treatment 

procedure at 900 ℃ to improve the porosity uniformity of fullerene soot.  This in turn positively 

impacted EC behaviour to 58 F g-1.  Winkler et al. [2.130] loaded Pd on C60 to make 

nanocomposite polymers and reported the allowance of polymer swelling and ion transfer by 

the structure.  They also emphasised Cs dependence on electrolyte and solvent, i.e. 295 F g-1 

for tetra(methyl)ammonium ion- and 375 F g-1 for Cs+ ion-containing electrolytes. 

 

2.3.2.7.  Carbon nano-onions 

Carbon nano-onions (CNOs) are spherical nanoparticles that consist of hollow concentric shells 

of sp2 bonded graphitic carbons [2.131-2.134].  They are associated with moderate capacitance 

in the 20 - 50 F g-1 range for both aqueous and organic electrolytes [2.82,2.132].  CNOs can 

maintain capacitive character at high scan rates, i.e. up to 200 mV s-1.  The outer shell of CNOs 
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is easily accessible [2.133] to electrolyte ions.  However, CNOs are associated with some 

setbacks when used as the main electrode material, such as high cost related to their precursors, 

high temperatures during synthesis and moderate EC performances [2.132].  CNOs are 

potential enhancers of capacitance as additives to electrode materials due to their small sizes 

of 5 - 10 nm and surface areas of about 500 m2 g-1 [2.131,2.134].  This allows better dispersion 

on supercapacitor electrodes and the double layer establishment is on the external planes of the 

oxohedral structure of carbons, not pores.  A closed graphitic surface of minimal defects after 

vacuum annealing has been reported to be beneficial for fast charging and discharging [2.131].  

This enables the suitability of ionic liquid and organic electrolytes at temperature of –50 ºC 

and –40 ºC, respectively.  McDonoug et al. [2.131] studied the effects of temperature on 

capacitive performance of CNOs and observed redox peaks at low synthesis temperature upon 

using slow scan rates but the peaks disappeared at higher scan rates.  They accounted for their 

results by the fact that high synthesis temperatures remove impurities and improve nano-

structural order.  The research efforts by Gao et al. [2.133] were able to make the inner shells 

accessible to electrolytes by introducing porosity to outer shells.  They managed to achieve 

more than two-fold Cs and energy density through 6 mol L-1 KOH activation.  Also, Gu et al. 

[2.135] doubled the Cs upon oxidation of CNOs. 

 

2.3.2.8.  Carbon nanorods 

Carbon nanorods (CNRs) [2.85] can also be applied as electrode materials of ECs.  CNRs are 

mostly used as additives to MO capacitors [2.136].  Ramakrishnan et al. [2.85] synthesised 

CNR/Co nanocomposites by the electro-spinning method.  According to their report, the role 

of Co was to improve the conductivity of CNRs, Ag/AgCl was the reference electrode, Pt was 

the counter electrode and electrochemical characterisations were carried out in N2 saturated 0.5 

mol L-1 H2SO4 solution.  In their study, face-centred cubic (FCC) Co nanoparticle sizes were 

between 20-100 nm and an increase in mass % increased the microporosity and mesoporosity 

as well as surface area of the nanocomposites.  They reported that diffusion restriction 

culminated in pseudo capacitance behaviour and high conductivity values.  Additionally, 10 

mass % was the Co percolation threshold in CNRs.  Their electrode material had high structural 

integrity properties as evidenced by absence of Co redox reactions in the CV curve.  The Cs 

decreased with increase in scan rate, i.e. 2-100 mV s-1.  CNR-based nanomaterials reported by 

Sun et al. [2.137] displayed a weak current response but the discharge times were still 
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comparable to those of α-NiS/CNR nanocomposites.  The CNRs enhanced the ultimate 

conductivity of the nanocomposites.  The Cs of CNRs directly deposited on G nanosheets was 

studied with respect to temperature in 1 mol L-1 KOH [2.138].  At 60 ºC, the Cs was 830 F g-1 

and this was attributable to accelerated changes on the electrode surface, i.e. irreversible 

capacitive activities.  From their study they concluded that a combination of G nanosheets and 

CNRs is associated with low internal resistance and better contact than the individual 

components.  They also noted replacement of N atoms in CNRs with electrolyte O atoms.  In 

a similar study, carbon nanowires exhibited a Cs of 200 F g-1 at a charge density of 1 A g-1 with 

good rate capability when high scan rates were applied [2.139]. 

 

2.3.2.9.  Other forms of carbon nanostructures 

Apart from the aforementioned forms of carbon nanostructured materials, there are other types 

such as carbon nanosheets [2.140,2.141] and carbon yolk shell nanospheres [2.89].  Yolk shell 

carbon nanospheres, with sizes of 190 nm, shell breadth of 21 nm and yolk sizes of 60 nm with 

hierarchical nano-porous structures for ECs were reported recently [2.142].  They exhibited an 

associated Cs of 159 F g-1 at a scan rate 10 mV s-1.  Li et al. [2.89] reported Cs of 583 F g-1 at a 

current density of 1 A g-1 in 0.1 mol L-1 Na2SO4 electrolyte by synthesising a MnO2/carbon 

yolk shell structure and MnO2 hollow spheres.   

Carbon nanosheets, prepared from orange peels, have been used as supports for MnO2 nano-

rods [2.140].  This material achieved a high Cs of 656 F g-1 and retained over 80% capacitance 

after 5000 cycles.  The physicochemical properties of nanostructured morphologies of nano-

sized carbon materials ultimately influence EC performance.  Also, combinations of nano-

structural variations from both MO and carbon materials in nanocomposites is a worthwhile 

avenue.  Hence, tailoring nanomaterial properties towards high energy storage capabilities 

without sacrificing power density is crucial [2.143]. 

 

2.3.3. Material characterisation techniques 

The ultimate performance of carbon-based nanomaterial depends on their physicochemical 

properties, which are commonly influenced by the various synthetic routes [2.37,2.66].  Carbon 
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nanomaterials with similar porosity and surface areas might not have similar physicochemical 

properties, and therefore, ultimately have varied resistivity amongst other electronic properties.  

Relating the area of porous carbon nanostructures directly to the surface area is an 

oversimplification.  The BET surface area accessed by adsorption of nitrogen molecules may 

not be available to the electrolyte ions.  Also, application of the BET equation gives the total 

surface area including some surfaces not participating in electrochemical processes 

[2.37,2.144], and is thus a limitation of this method.  Density functional theory (DFT) 

calculations are more advanced than the BET model but the basis of DFT calculations is simple 

pore shapes, different from the micropore structure of carbon nanomaterials.  Computer 

modelling and subsequent calculations have the potential to provide a superior understanding 

of the link between ion adsorption characteristics and EC performances, but in reality carbon 

nanostructures are too complex for simulations since most models involve numerous 

assumptions [2.58]. 

Morphology, surface chemistry and conditions of capacitance measurements influence 

accessibility of the pores of carbon nanostructured materials [2.37].  Therefore, several other 

techniques can be employed in physicochemical characterisation of carbon-based 

nanomaterials and key examples are given.  Energy dispersive X-ray spectroscopy (EDX) is 

used to identify metal catalyst residues or the presence of metal in carbon nanocomposites 

[2.124]. Scanning transmission electron microscopy (STEM) element mapping is used to 

investigate the distribution and presence of metal catalyst residues remaining from the 

synthesis of carbon nanostructured materials [2.8].  Nanomaterial structure and d-spacing can 

be studied by means of X-ray diffraction (XRD) and atomic force microscopy (AFM) while 

film thickness can be deduced from ellipsometry [2.145]. 

 

2.3.4.  Electrochemical characterisation 

X-ray photoelectron spectroscopy (XPS) (Figure 2.7a) is applicable in the determination of 

surface electronic states of nanostructured carbon-based electrode materials [2.42,2.124].  

Additionally, the four probe technique can be employed in measuring electrical conductivity 

[2.62] of carbon nanostructured materials.  Ion adsorption sites on carbon nanomaterials can 

be identified by means of neutron scattering [2.58].  Methods of EC characterisation are not 

yet fully standardised [2.146] and studies have shown that the two electrode cell is more similar 
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to the physical configuration.  Capacitance and charge transfer mechanisms can be understood 

by the use of CV (Figure 2.7b).  Traditionally, this is done via the use of a three electrode 

scheme made up of a working, counter and reference electrode immersed in relevant 

electrolytes [2.33].  From this technique, the specific capacitance can be evaluated.  A common 

interpretation, though not always the case in literature, is the direct relationship between 

decreases in scan rate with increase in capacitance.  The electrochemical measurements done 

by CV are extraordinarily sensitive but the technique does not give an insight on the structural 

changes associated with redox processes in electrodes [2.40], and such details are vital in 

material design for ECs.  Constant power and current tests are usually involved in evaluating 

ECs [2.59]; the former allows the determination of energy storage characteristics.  The 

charge/discharge behaviour of electrodes can be studied by a chronopotentiometry method 

[2.33] (Figure 2.7c) and the technique involves varying the current density while voltage is the 

dependable variable.  Typically, charging curves are almost identical to discharging curves 

with a slight variation from the initial.  This technique is a simple and quick method of 

determining the capacitance of ECs and it is similar to electrochemical impedance spectroscopy 

(EIS) at frequencies above 0.1 Hz [2.147].  EIS (Figure 2.7d) is a technique used to measure 

and analyse the resistance at various interfaces on the device [2.8,2.45,2.62].  This way specific 

capacitance can be ultimately evaluated [2.33].  Nyquist plots of imaginary impedance (Zim) 

and real impedance (Zre) obtained by using a frequency range from high to low are useful in 

this area.  A plot through a 45⁰ phase angle resembles the Warburg impedance which implies 

a high resistance to ion diffusion [2.8,2.33].  Common inference in literature has been that a 

decrease in Faradaic resistance entails an increase in power density.  Self-discharge can be 

tested by fully charging an EC, followed by disconnection of the terminals, and the voltage is 

determined across the capacitor plates with a dc voltammeter.  
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Figure 2.7.  Key techniques namely (a) XPS [2.149], (b) CV [2.150], (c) chronopotentiometry 

[2.148] and (d) EIS [2.151] for ECs. 

 

2.4. Tailoring nanomaterial properties towards high 

supercapacitance 

Some theoretical aspects and possible routes of enhancing supercapacitance of carbon 

nanostructured materials are discussed in this section. 

 

2.4.1. Theoretical basis 

Physical adsorption of solvated ions takes place along the electrode surface [2.28,2.85].  If the 

peak current is directly proportional to the square root of sweep rate then a diffusion-controlled 

non-surface adsorption process is involved [2.82].  Large quantities of charge accumulate on 
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the available exterior area of electrodes.  Each electrode-electrolyte inter-phase represents a 

capacitor and therefore, the whole cell is essentially two capacitors in series.   

Therefore, by use of equation (1) [2.37], the overall cell capacitance, C can be determined, 

1

𝐶
=

1

𝐶1
+

1

𝐶2
          (1) 

 

Hence, the double layer capacitance, Cdl, of each electrode with dielectric constant, 𝜀, often 

referred to as relative permittivity, area, A, and thickness, t, is given by equation (2) [2.37]: 

𝐶𝑑𝑙 =
𝜀𝐴

4𝜋𝑡
            (2) 

 

Also, capacitance, C, can be expressed as in equation (3): 

𝐶 =
𝜀𝜀0𝐴

𝑑
          (3) 

where d is the distance between the electrode surface and ions in the electrolyte, 𝜀 is the relative 

permittivity, 𝜀0 is the permittivity in a vacuum and A is the external area of the electrode 

accessible to the ions [2.44].  Consequently, if t is the film thickness then the relative 

permittivity is given by equation (4) [2.145]: 

𝜀 =
𝐶𝑡

𝜀0𝐴
         (4) 

Assuming that ∆V is a voltage window in volts and i is the discharge current density in A g-1 

functional in a period (∆t), then the specific capacitance (Cs) in F g-1 is given by equation (5) 

[2.43,2.78,2.85,2.86]: 

𝐶𝑠 =
𝑖∆t

m∆V
          (5) 

Since i∆t is voltammetry charge that means dividing the integral area of non-symmetrical CV 

curves by scan speed is more accurate [2.96].  Columbic efficiency (ɳ) is the ratio of 

discharging time (tD) to charging time (tC) as shown by equation (6) [2.33]:  
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ɳ =
𝑡𝐷

𝑡𝐶
× 100%          (6) 

 

Increasing the energy density requires increasing either the capacitance or the voltage window.  

The energy density (Ed) in W h kg-1 can be calculated by use of equation (7) [2.9,2.68,2.76]: 

 

𝐸𝑑 =
1

2
𝐶𝑠𝑉2          (7) 

 

and also if m is mass in mg at that juncture then Cs is given by equation (8) [2.42,2.76]: 

𝐶𝑠 =
𝐼

−(
∆𝐸

∆𝑡
)𝑚

          (8) 

with power density (P) in kW kg-1 then power is expressed in equation (9) as [2.42,2.76]: 

𝑃 =
𝐸

𝑡
          (9) 

Connected capacitors will have an equivalent resistance associated with them.  Sources of ESR 

take account of: 

• Electrical impedance of the fabricated working electrode in terms of shape and form. 

• Electrode/current collector interfacial impedance and the degree of cleanliness are 

important in this regard. 

• Ionic resistance since they move in minute pores. 

• Ionic impedance through the separator during diffusion. 

• Electrolyte resistance to conduct an electric current. 

This implies device architectures, as well as type of electrode material, are crucial components 

of ECs that need careful designing.  In addition, connecting N capacitors of capacitance (C) 

with a cell resistance (R), then the total capacitance (C) is given by equation (10) [2.81]: 

C =
𝐶

𝑁
          (10) 
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In such a set-up, the overall resistance comes from individual cells.  A better contact in typical 

devices plays a critical role in nullifying high resistance problems.  Compaction pressure used 

in electrode preparation reduces resistivity through contact improvements and reduction of path 

length.  Thin films also reduce equivalent series resistance in this regard.  However, excessive 

adherence may reduce the electrolyte concentration below desirable thresholds in the pores.  

This means material packaging on electrodes will affect the overall charge stored no matter 

how good the nature of the carbon nanomaterial.  The charge (Q) stored by each capacitor is 

given by equation (11) [2.77]: 

𝑄 = 𝐶𝑉          (11) 

 

2.4.2.  Porosity of carbon nanostructured materials for electrodes 

General prerequisites for a good electrode material include suitable pore size ranges of 

numerous nm, ease of fabrication and high electrical conductivity [2.12,2.48,2.49,2.64].  High 

Cs with respect to electrical conductivity can be achieved through designing of devices with 

appropriate electron conductive pathways [2.148].  High electrode electronic conductivity 

plays a role in distribution and collection of electron current [2.29].   

Various aspects related to typical carbon nanostructured materials such as defect intensity, 

dimensions with respect to chirality, surface functional groups and metal impurities can 

influence electron transfer kinetics in a complicated way [2.149].  Imperfections, carbon 

orientation and phases in nanostructured carbons can act as sites of electron transfer.  A large 

crystalline structured material with large d-spacing would be expected to have high charge 

accumulation abilities [2.94,2.143].  In EDLCs, high active electrode surface areas, typically 

greater than 1500 m2 g-1, and tiny distances between charges theoretically implies high 

capacitance values [2.37].  Most of the literature seems to reach a consensus on the argument 

that the BET surface area is not directly related to the electrochemically effective surface area 

[2.12].  A high surface area limits the volumetric capacitance [2.150].  In addition, Cs is not 

always proportional to the BET surface area because not all micropores, i.e. < 2 nm, are 

available for electrolyte permeation.  This is mainly because of either sealed narrow pores or 

bottle neck pores [2.72,2.151].  In practice, studies that involved simultaneous increase in pore 

size and specific surface area were not able to raise Cs [2.58].  Therefore, with most carbon 
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nanostructured materials containing pores that cannot be reached by the electrolyte ions [2.29], 

the selection of a suitable carbon nanostructured materials depends mainly on either the 

required performance or electrolyte choice [2.28].  This is mainly because intercalation of 

electrolyte ions tends to be amongst the main factors that drive capacitive behaviour.   

Electrolyte ion penetration into carbon nanomaterial pores depends on structural parameters, 

surface properties and pore size distribution [2.37].  Uniform pore size of electrode materials 

has been associated with clear EC behaviour [2.12].  Additionally, porous carbon 

nanostructured materials for use in EDLCs are the most studied due to their availability and 

low price, amongst other reasons [2.150].  Porous nano-based structural designs facilitate rapid 

ion/electron transfer and offer an enhanced active surface [2.86].  Electrolyte ion penetration 

into carbon nanomaterial pores, especially for organic electrolytes, is subject to ion sieving 

effects and size, which eventually has an effect on capacitance [2.37,2.58].  Pores sizes < 0.5 

nm were reported to be unavailable to hydrated ions [2.56].  A nanoporous carbon with a large 

portion of pore volume and pore sizes ranging between 1-5 nm is more appropriate [2.29].  

Capacitance can be optimised by use of pores which are twice the size of solvated ions [2.59].  

Additionally, charge can also be stored in pores with sizes smaller than those of solvated ions 

and this is facilitated with the distortion of the ion solvation shell [2.58,2.152,2.153].  Solvation 

shell distortion depends on both the electrolyte ion and solvent [2.58].  Since intercalation is 

also significant in carbon nanostructures [2.58], this means electrolyte ions approach the 

surface of nanostructured carbons more closely [2.59].  Carbon nanomaterials with pore 

diameters less than 1 nm typically have discharge currents of less than 100 mA cm-1 especially 

upon use of organic electrolytes [2.29].  Large diameters, on the other hand, have current 

densities typically of not more than 500 mA cm-1 with minimum capacitance loss.  

Furthermore, increasing porosity of the nanostructured carbon may be associated with a 

decrease in electro-conductivity due to non-compatible conductive pathways [2.150].  

Appropriate pore sizes are important in quick ion diffusion and mass transfer [2.154].   

Mesopores (2 - 50 nm) of nanocarbon materials participate  in transportation of electrolyte ion 

to micropores   [2.142], i.e. act as transport channels [2.133], and this way they mainly affect 

rate capability of ECs [2.156].  This means wider mesopores favour electrolyte ion diffusion 

[2.37] and high rate capability.  On the other hand, the function of micropores in charge storage 

is to house electrolyte ions  [2.142].  The micropores enhance surface area [2.150], surface to 

volume ratio of carbon nanostructures and they also play a crucial role in the ion selectivity 
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during the double layer formation [2.37].  In addition, pores large enough to house electrolyte 

ions are preferred for high electro-sorption efficiency.  From the above views, it means the 

contributions of mesopores and micropores towards enhanced charge storage of ECs are 

interlinked.  In fact, there have been reports on the high effectiveness of micropores in double 

layer formation whilst mesopores increase accessibility of micropores to electrolytes 

[2.37,2.133,2.142,2.150,2.155].  It is also important to emphasize that charges stored in pores 

of a given nano-carbon based electrode have an upper limit [2.23].  Excessive existence of 

micropores limits electrolyte ions transportation towards the electrode, thus causing ohmic 

resistance [2.150].  Micropores tend to decrease Cs when the electrolyte cationic sizes are large 

[2.156].  In fact, adsorption/desorption becomes a surface process since cations cannot fit into 

the small micropores [2.37] whilst macropores ( ˃ 50 nm) allow ion buffering [2.142], i.e. act 

as transport paths [2.37].  Based on the aforementioned views, different pore sizes have 

different roles in charge storage.  In designing nanostructured carbons, the electrolyte ion 

solvation energy, electrolyte solvent system, electrolyte ion size and carbon nanomaterial pore 

sizes need to be matched towards high capacitance [2.59,2.152].  A mismatch will render some 

pores of carbon nanomaterials inaccessible to the electrolyte and this means poor utilisation of 

the electrolyte ions in forming the double layer [2.152].  Also, with the need to optimise pore 

sizes for the operational mode and electrolyte in terms of ion size and mobility [2.132,2.143], 

the implication is that the subject of pore sizes in ECs is a critical area that still requires 

focussed studies.  

Several approaches can be carried out to tailor the porosity of electrode nanomaterials in order 

to enhance their capacitance.  For example, carbonate and hydroxide co-precipitation approach 

to nanomaterial based electrodes have higher surface areas with suitable pore size distribution 

[2.66].  This is advantageous in that it increases the self-discharge stability and lowers current 

leakages.  Such compensations imply high energy storage capacity.  The characteristics of ECs, 

especially those derived from the nanostructure of the carbon material, highly depend on the 

concentration of defects, average pore sizes, pore shapes and distribution [2.58,2.59].  The 

norm is that a narrow pore size distribution is preferred to those broadly distributed because 

the relative increase in surface area is better and this means energy storage capabilities can 

easily be controlled [2.157].  Hence, nanotechnology enables fabrication of novel carbon 

nanomaterials, nano-structures and nano-devices with tailored properties for EDLCs [2.18].  In 

fact, from the electrode point of view, energy storage and power delivery rate of nano-structural 

carbons can be enhanced by tuning their porosity to match the electrolyte ion size 
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[2.71,2.75,2.143,2.151].  For example, in a recent study, pores were tailored from 

microporosity (0.6 nm) to mesoporosity (40 nm) by varying the thickness of silica on yolk shell 

carbon nano-spheres [2.142]. 

In addition, nanostructured carbon nanomaterial can be tailored to be pseudocapacitive by the 

introduction of heteroatoms, such as nitrogen and phosphorus 

[2.23,2.97,2.123,2.155,2.158,2.159], oxygen-containing surface moieties including carboxyl 

and hydroxyl groups [2.91], and the use of redox materials such as MO and polymers.  The 

pseudo-capacitive character is associated with charge/mass transfer between the electrode 

material and electrolyte ions [2.150].  Heteroatoms modify the electron donor-acceptor 

properties of carbon nanostructures [2.159].  Oxygen-containing moieties are naturally acidic 

and therefore induce electron acceptor features to the nanomaterials of carbon but they bring 

detrimental outcomes in organic electrolytes [2.159].  For example, Gu et al. [2.135] reported 

undesirable interactions between the electrolyte and CNO surface functionalities.  The 

diminishing consequences were noticeable and highly undesirable current leakages with 

respect to solvent used.  This is due to associated high surface activities culminating in 

irreversible reactions between oxygen and electrolyte ions [2.150].  Hence, oxygen-containing 

groups can be sites of electrolyte decomposition and reduce the overall cycle stability of the 

device especially at high scan rates [2.53].  Surface functionalities also enhance the wettability 

of  carbon nanostructures [2.46].  Wettability is increased due to an increase in the quantity of 

hydrophilic polar regions on the working electrode surface [2.123].  High capability for charge 

accumulation at the interface depends on availability and wettability of ideal pore dimensions.  

The amount and nature of functionalisation of the carbon nano-forms, in this view, can be 

tailored to suit a particular electrolyte in EDLCs [2.97].   

 

2.4.3.  Carbon nanomaterial activation 

One key example of tuning porosity in carbon nanostructures is by physical or chemical 

activation, which enriches pore networks [2.160].  Activation of carbon nanostructures via 

traditional methods has limited pore size control, however, with the development of template 

synthesis methods, better control capabilities have been achieved, i.e. in the 2-10 nm range 

[2.59] .  Examples of physical activation include O2, CO2 and steam whereas the chemical 

approach is inclusive of KOH, HNO3, H2SO4 and ZnCl2.  Chemical activation results in high 
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yields, reduced time, high surface area and large pore volume even though it is associated with 

some disadvantages.  For instance, in KOH activation, special attention needs to be given to 

the amount used as well as the activation temperature [2.71,2.161].  Jäckel et al. [2.132] 

activated CNOs  with 6 mol L-1 KOH and achieved 100% surface area enhancement with a 

corresponding 200% Cs increase.   

Electrochemical oxidation of carbon nanostructures is also a possible way of enhancing 

capacitance [2.134].  This is due to the increased electrode surface area from opening and 

breaking of graphitic units in layers as well as the creation of a Faradaic current from reactions 

of chemical moieties located at the edges. 

Additionally, introduction of electro-active metallic particles in nanostructured carbon 

materials can positively modify the pore size distribution [2.64].  The MO nanoparticles are 

useful in supercapacitors and variable oxidation states of transition metals contribute to their 

characteristic fast redox reactions at the surface of active nanomaterials in supercapacitors 

[2.8,2.78].  Hence, there are more articles on MO-based supercapacitors than there are on nano-

carbons [2.33].  This means the performance of carbon nanostructures still needs special 

attention and MOs can be useful for their advancement.  Nano-structuring of the capacitor 

carbon electrode material increases charge storage efficiency, electrical energy and electrode 

stability against induced swelling from ion uptake.  However, in some cases heteroatoms can 

facilitate degradation of supercapacitors upon cycling [2.97]. 

Another important electrode material related parameter in storing energy and homogenization 

of an electric field is the relative permittivity.  Reducing dielectric loss and maintaining the 

relative permittivity of a system is preferred.  This can be achieved through ways like varying 

electron densities around the carbon nanostructured materials in the electrode active material.  

Changing transition metals used in coating carbon surfaces is a possible way of attaining this 

goal.  In this view, creating sophisticated surface morphologies and utilisation of Faradaic 

materials are possible ways of enhancing energy density [2.44,2.71].  Nitrogen-doping is a 

possible way of changing the electronic structure of nanostructured carbon materials. 
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2.4.4.  Nitrogen-doping of carbon nanostructured materials 

Nitrogen is the best n-type dopant of carbon nanomaterials [2.162], because it has a similar size 

to carbon, and its inclusion in the carbon lattice is related to two main roles as far as ECs are 

concerned.  Firstly, nitrogen atoms act as electron donors in the framework since each atom 

has five outermost shell electrons and this shifts the Fermi level towards the valence band in 

the nanostructured carbon [2.84].  Secondly, they introduce nitrogen and oxygen functionalities 

resulting in an altered charge storage mechanism [2.163,2.164].  However, nitrogen-containing 

moieties from N-doping [2.98] may introduce instability during recycling [2.123].  Nonetheless 

and by and large, N-doping in nanostructured carbon has shown improvement in Cs of 

supercapacitors [2.21].  This is due to their corresponding tailored physicochemical properties 

[2.113] such as increased wettability [2.159], mass transfer efficiency [2.123], electron transfer 

rate [2.150, 2.158], enhanced electron donor capability [2.151], stability and pseudo 

capacitance [2.97], as well as decrease in ESR [2.23].  Literature suggests that nitrogen-rich 

carbon nanostructured materials synthesised at high temperatures results in pyrrolic, pyridinic, 

quaternary and pyridinic-nitrogen oxides [2.113,2.158].  Pyridinic and pyrrolic nitrogen have 

unpaired p electrons that are available for the aromatic 𝜋-system and neighbouring species.  

Hence, they are more electro-catalytically active than quaternary sites.  Furthermore, low 

carbonisation temperature with a nitrogen-containing precursor can preserve high nitrogen 

content [2.123].  In N-doped carbon nanomaterials, pseudocapacitance is due to functionalities 

with negative charges found at the boundaries of the graphitic network such as the pyridinic 

and pyrrolic arrangements [2.97,2.158].   

The work reported by Hulicova-Jurcakov et al. [2.150] demonstrated that surface area and 

porosity of nitrogen-enriched carbon materials are not the only crucial parameters for high 

performance electrode materials.  They also highlighted the effectiveness of ultra-micropores, 

i.e. < 0.7 nm in charge electro-sorption processes but such pores are not detected by nitrogen 

in textural analysis.  This is probably part of the reason why BET surface area tends to be 

independent of capacitive character of N-doped carbon nanostructured materials.  This 

observation corroborated with the conclusions by Yun et al. [2.155] in which they observed an 

increase in both micro-porosity and Cs upon N-doping but with no significant increase in BET 

surface area.  The work recently reported by Yen et al. [2.113] on pyridinic N-doping in 

epitaxial G nanowalls with a 3D architecture reached a Cs of 991.6 F g-1.  Song et al. [2.151] 

developed a hierarchical N-doped carbon with micropores pierced on mesoporous walls.  Their 
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unique structure was typically of high surface area of 1344 cm2 g-1, mesopore sizes of 4.6 nm 

and micropores sizes of 0.7, 097 and 1.61 nm drilled walls.  Their electrodes displayed 

rectangular CV curves and Cs of 325 F g-1 in 1 mol L-1 H2SO4 as well as a broadened redox 

peak due to 7.51% N2 content.   

Nitrogen has been reported to reduce oxygen content in N-doped G synthesised via a NH3-

assisted hydrothermal technique [2.165].  In that report, 7.2% nitrogen content and a supreme 

Cs of 144.6 F g-1 was attained.  In addition, Chen et al. [2.67] similarly reported N-doped 

phenolic resin-based carbon with a high Cs of 216 F g-1 at 0.1 A g-1 current density, and 10000 

cycle stability.  Their explanation was related to the mesopore channels and interconnections 

enhancing Cs.  Chen at al. [2.108] recorded a Cs of 139 and 100 F g-1 at current densities of 3 

and 6 A g-1, respectively.  The Cs enhancement was explained by the adsorption/desorption 

improvement due to positive N+ introduced in their G nanosheets from p-phenylene diamine 

by electrophoretic deposition.  In the report by Yuanyun et al. [2.160] novel 3D N-doped 

hierarchical porous carbon/G synthesised from beer yeast cells and graphite oxide attained a 

conductivity of 3096 S m-1, a surface area of 3108.7 m2 g-1 and Cs of 318 F g-1 at 1 A g-1 in 

tetraethylammonium tetrafluoroborate electrolyte.  The direct proportionality between sweep 

rate and topmost currents noted by Hou et al. [2.141] by using N-doped G nanosheets was 

attributed to a capacitive process independent of diffusion and mesoporosity.  They reported 

239 F g-1 as Cs when the current density was 0.5 A g-1. 

Salinas-Torres et al. [2.97] reported nitrogen-containing nanostructures synthesised from 

carbonisation of polyaniline (PANI)-containing activated CNF that were comparable to 

commercial activated carbon-based supercapacitors with better capacitance retention than 

pristine CNF.  Ordered nitrogen-doped mesoporous CNF arrays with hierarchical structure 

synthesized via a hard templating technique coupled with a surfactant-oriented self-assembly 

was reported to achieve a Cs of 264 F g-1 [2.123].  The associated capacitance retention was 

86%, over 10000 cycle stability in 1 mol L-1 H2SO4, a pore volume of 2.35 cm3 g-1, surface area 

of 1030 m2 g-1 and 6.7% nitrogen content.  Similarly, a novel electro-spinning synthesis 

approach to porous N-doped CNF from polyacrylonitrile (PAN)-based solution was reported 

to achieve 5.4% doping, 94.6% capacitance retention after 2000 cycles and a Cs of 302 F g-1 in 

6 mol L-1 KOH and at a current density of 0.2 A g-1 [2.67]. 

The role of particular nitrogen functional groups in supercapacitors is still to be fully 

understood [2.113,2.162].  Theoretical studies suggest that lactams and imides contain 
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electrochemically active nitrogen groups [2.150].  Imides and amines bonded onto the nano-

carbon structures do not affect electron donor characteristics.  Presently, there have been 

suggestions that quaternary nitrogen and oxidised nitrogen do not participate in 

pseudocapacitance [2.97] but earlier reports by authors such as Hulicova-Jurcakova et al. 

[2.158] suggested that they enhance capacitance.  Some researchers have opted for the route of 

depositing nitrogen-containing groups on the surface rather than on the bulk via polymers such 

as polypyrrole [2.159].  Coating carbon with nitrogen enhances both surface chemistry and 

electrode impedance due to diffusivity and surface charge resistance.  For instance, Lota et al. 

[2.93] enhanced cycleability and electrical conductivity of carbon materials by synthesizing 

CNT-polypyrrole based composites.  Polypyrrole provides a flexible skeleton adaptable to any 

form of mechanical stress.  In their work they reported good cycle stability, 99.6% efficiency 

and an increase in Cs upon addition of CNTs to polypyrrole.  They also highlighted the 

influence of carbon nanomaterial type, dimensions and ratio in typical nanocomposites on 

charge storage of EDLCs.  From the work of Liu et al. [2.134], the N-CNO capacitance reliance 

on scan rate was noted.  They attributed such outcomes to high electrical conductivity of the 

mesoporous structure that allows fast contact of electrolyte ions to the electrode surface and 

their admittance into inner pores, and insignificant contact impedance of the N-CNO 

framework.  They also observed a decrease in Cs due to resistance introduced by N-CNO edge 

locations with oxygen functionalities.  Negative effects associated with coating nanostructured 

carbon surfaces include the blocking of the pores by the polymer, swelling and shrinking of the 

polymer culminating in a decrease in cycle stability [2.159]. 

Relative to N-doping, B-doping induces more defects in the carbon framework through the 

induction of an uneven charge distribution facilitating charge transfer between neighbouring 

carbon atoms [2.110].  This enhances electrochemical properties.  Also, unlike in N-doping, 

the oxygen content in synthetic carbon nanostructures increases upon B-doping [2.110,2.163].  

Niu et al. [2.110] reported a Cs of 172.5 F g-1 at a current density of 0.5 A g-1, cycle strength of 

96.5% after 5000 cycles and 80% capacitance increase upon B-doping of G. 

 

2.4.5.  Binders 

Bonding of carbon nanomaterials to the current collector is one of the major problems 

accompanying their use [2.29] in supercapacitors.  Mechanically strong and electrically 



 

 

74 

 

conductive electrode materials with stable structures are vital for repeatability of 

electrochemical results.  A good contact implies reduced internal resistance.  The ECs contain 

only small amounts of active material [2.45] and usually require a binder material to improve 

contact with the current collector.  Use of small amounts of non-conductive polymers (5 - 10 

mass%) as binders in nanocomposites can be prolific in terms of obtaining a stable matrix 

[2.32,2.37].  Polymer binders help attach electrode material to the substrate [2.43].  Small 

amounts and good distribution will minimise chances of compromising conductivity of carbon 

nanomaterial-based electrodes [2.166].  Metal binders can enhance electronic properties of 

capacitors as well.  The hydrophilic nature of the surface strongly enhances electrolyte 

penetration into the pores of the material.  Hence, a tight contact between electrode material 

and current collector will be achieved.  It is also important to use a suitable current collector 

for the electrolyte system and the voltage range, i.e. non-corroding [2.37,2.75].   

 

2.4.6.  Ideal EDLC behavior 

The ideal behaviour of EDLC electrodes is a rectangular shape in the CV curve 

[2.75,2.77,2.150].  This means the sign of the current is reversed instantaneously when the 

voltage sweep is reversed.  This suggests great reversibility and less Ohmic loss, i.e. high 

conductivity [2.64].  A delay in potential during reversing the potential sweep means there will 

be a kinetically slow electron transfer reaction during charging of a pseudocapacitor.  Most 

carbon nanomaterials become less capacitive and more resistive at scan rates above 20 mV s-1, 

i.e. deviation from square CV curve [2.131].  The decrease in Cs with increase in scan rate is 

linked to poor electrical conductivity [2.51].  A non-rectangular CV form is mostly attributed 

to the contribution of electrode species pseudocapacitance character [2.62].  Other sources of 

deviations from rectangular CV include low conductivity, low mechanical strength, limited 

access of the electrolyte into the material pores and irreversible charge transfer [2.93].  

Additionally, a two electrode cell better imitates EC performance of a real capacitor but ideally 

ECs must supply equal amounts of energy despite operational conditions [2.150].  This makes 

the study of capacitance retention at high current loads a significant practise.   
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2.4.7.  Electrolytes 

Electrolytes are also important in the performance and functioning of EDLCs.  It is crucial to 

choose an appropriate electrolyte system that suits the pore sizes of the synthetic carbon 

electrode material [2.12].  Interfacial chemistry between nanostructured carbon-based 

electrodes and electrolytes still requires more focussed studies.  The voltage window is 

restricted by the electrolyte decomposition temperature at elevated potentials [2.44,2.50,2.68].  

The importance of electrolyte temperature on carbon-based nanomaterials for EDLCs was 

recently mentioned in the work reported by Chen et al. [2.73].  They observed a decline in Cs 

upon drop of electrolyte temperature and attributed this effect to increase in charge transfer 

resistance.  If EDLCs are to be suitable for colder regions of the world then temperature needs 

to be critically considered in the development of carbon nanomaterial-based devices.  Ion 

mobility and electrochemical stability, i.e. potential range of usage, are vital in this regard 

[2.81].  Electrolyte concentration should be large enough relative to available area [2.14].  If 

electrostatic interactions are operative in EDLCs then surface charges and pH of the electrolyte 

should impact charge storage [2.149].   

 

2.5.  Conclusion 

A combination of factors associated with electrode design, fabrication methods, electrolyte ion 

dimensions, solvent characteristics and physicochemical properties of carbon nanostructured 

materials influence the ultimate efficiencies of ECs.  Several carbon nanostructured materials 

have high potential in the design of unique ECs with decent electrochemical capacitance 

capability.  Chemical activation, template synthesis methods and N-doping are promising ways 

of tailoring physicochemical properties of carbon nanostructured materials for EC applications.  

In addition, architectures and morphologies that create good electron transport pathways, lower 

equivalent series resistance, enhance electro-active area and porosity of the carbon 

nanostructured material enriches their suitability in ECs.  

Carbon nanomaterial/substrate adhesion is influential to long cycle stability.  A critical 

consideration of nanostructured carbon material use in ECs is a lucrative approach in enhancing 

their energy densities and this ultimately lowers the associated costs of the technology.  This 

goes a long way in their wide application in industry and their commercialisation. 
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Abstract 

This work reports on the influence of the ratio of sp3 (N,N’-dimethyl formamide, DMF) to sp 

(acetonitrile) hybridised nitrogen within the carbon source used in the synthesis of nitrogen-

doped carbon nanotubes (N-CNTs) by means of the floating catalyst chemical vapour 

deposition method.  The physicochemical properties of the N-CNTs were investigated by 

means of scanning and transmission electron microscopies, textural characteristics, powder X-

ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis and elemental 

analysis.  When the two nitrogen sources were compared before mixing, it was found that sp3 

hybridised nitrogen in DMF was a more effective source for the incorporation of nitrogen 

atoms (5.87%) than sp hybridised nitrogen in acetonitrile (3.49%).  The number of walls within 

the N-CNT synthesised from the sp3 nitrogen source was tailored by changing the synthesis 

temperature.  Overall, a 1:3 sp3:sp ratio produced N-CNTs with the highest nitrogen content of 

9.38% and a general abundance of pyrrolic nitrogen moieties within the samples.  The best 

synthesis temperature in terms of nitrogen content and largest composition of N-CNTs with 

least residual iron was found to be 900 °C.  Varying ratio of sp3:sp hybridised nitrogen is 

suitable for tailoring the physicochemical properties of N-CNTs towards preferred 

applications.   

Keywords:  nitrogen-doping, carbon nanotubes, nitrogen sources, N,N’-dimethyl formamide, 

acetonitrile 

* Corresponding author:  Vincent Nyamori, School of Chemistry and Physics, University of 

KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa 

Email: nyamori@ukzn.ac.za Tel.: +27-31 2608256; Fax: +27-31 260 3091 

 

3.1 Introduction 

Carbon nanotubes (CNTs) can be synthesised by chemical vapour deposition method in 

scalable quantities [3.1,3.2].  CNTs are formed when both the carbon source and the catalysts 

are passed through a hot region of a suitable vessel in a temperature controlled furnace.  

Nitrogen-doped carbon nanotubes (N-CNTs) can be synthesised by either post or in situ doping 

[3.3].  In the in-situ synthesis of N-CNTs, the nitrogen source can either be part of the carbon 

source [3.3] or the catalyst [3.4].  As an example of the latter, Keru et al.,[3.5] synthesised N-
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CNTs using (4-{[(pyridine-4-yl)methylidene]amino}phenyl)ferrocene that acted as both 

catalyst and nitrogen source [3.1].  On the other hand, Yadav et al., synthesised N-CNTs using 

acetonitrile, N,N’-dimethyl formamide (DMF), triethylamine, and hexamethylenetetramine as 

nitrogen sources [3.6].   

Nitrogen gas is a suitable post-synthesis chemical vapour deposition N-doping strategy, but 

studies have shown that there is little incorporation of nitrogen in the graphitic frameworks 

[3.7-3.9].  NH3 has been widely used in the preparation of N-CNTs [3.10] and is popularly 

reported in post-synthesis N-doping [3.11,3.12].  The final amount and functionalities of N-

doping are of paramount importance for practical application in different fields [3.12].  Hence, 

different precursors and tuning strategies need to be explored to achieve better control of the 

above-mentioned attributes.  The different approaches to N-CNTs production have resulted in 

differences in both nitrogen species and effects on carrier concentration with distinctive allied 

electronic structures, amongst other physicochemical properties [3.4,3.11].  Additionally, NH3 

mainly produces graphitic N-CNTs [3.12], whereas the current study is one of the approaches 

sought to produce higher composition of other nitrogen moieties, such as pyridinic and pyrrolic, 

using less toxic nitrogen sources, that also act as carbon sources, at relatively lower 

temperatures.  Furthermore, according to theoretical studies [3.10], NH3 doping effectiveness 

in the in-situ synthesis of N-CNTs is subject to 1) the pre-existing defects; 2) the ability to trap 

the -NH2, -NH, -N active species, from NH3 thermal decomposition, at appropriate locations; 

and 3) their associated dehydrogenation.  This has been proved difficult to control and achieve.  

Hence, the current report utilises a different doping strategy in which different active species 

are involved as building blocks of the graphitic framework.  Where NH3 has been used in in-

situ growth of N-CNTs, some of the common adversities have been poor uniformity and widely 

varied nitrogen content of lower levels.  Zhu et al. [3.13] attributed these observations to the 

low NH3 flow rate requirement in similar approaches. 

Doping CNTs with nitrogen creates nitrogen rich centres such as pyridinic moieties that 

improve electrical properties (charge storage and oxygen reduction reactions, being two 

examples of those), and alters other physicochemical properties in devices that include fuel 

cells, organic solar cells and electrochemical capacitors [3.4,3.5,3.14-3.16].  The addition of a 

lone pair of electrons to the delocalised pi system enhances electronic properties [3.17,3.18].  

Additionally, N ions in the N-CNTs create channels for electron transport [3.19].  The 

possibility of nitrogen inclusion in the graphitic network is due to the similar bond lengths of 

1.38 Å and 1.34 Å for C=C and C=N, respectively.  The shorter C=N bond length of N-CNTs, 
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relative to the C=C in pristine-CNTs, introduces defects in the carbon framework.  Hence, N-

CNTs typically display bamboo compartments by virtue of strain from the presence of nitrogen.  

This is explained theoretically through the mechanism that suggests the introduction of defects 

and pentagon rings in the graphitic network, [3.1,3.20] culminating in the formation of a 

positive curvature of the tube layers.  Typically, nitrogen can be incorporated into the graphitic 

structure of N-CNTs as either pyridinic, pyloric, nitrogen oxide, cross-linked sp3, nitrile or 

quaternary [3.16,3.18,3.21-3.23]. 

Growth-limiting reactions are subject to composition of reagents in the hot zone of the furnace, 

amongst other factors [3.24].  Understanding of the N-doping process is key for better control 

of N-CNT properties [3.16].  Hence, nitrogen-doping is still a research focus towards better 

understanding of N-CNTs.  This includes the study of the influence of numerous parameters 

such as effect of nitrogen source [3.17,3.20], synthesis temperature, reaction time, gas flow 

[3.15] and different catalysts.  For example, Kim et al., [3.16] recently reported on the influence 

of dopant amount in nitrogen content and doping type.  Also, Ombaka et al., [3.4] reported on 

the enhancement of nitrogen content of N-CNTs through the use of various oxygen containing 

moieties.   

This study builds upon these earlier findings and explores the use of ferrocenecarboxaldehyde 

(Fc), an oxygen-containing organometallic compound, as the catalyst.  The chemical nature of 

reactants controls species of products [3.25]. Additionally, small molecules have been reported 

to be suitable sources of carbon in synthesis of CNTs.  Therefore, DMF and acetonitrile were 

chosen in this work.  The use of DMF in the synthesis of N-CNTs has been done before, though 

not common.  For instance Tang et al., [3.17] achieved a nitrogen doping level of 20 at.% using 

Fe2O3 /AlO3 catalyst and ammonia in an aerosol assisted CVD method.  The current work 

investigates influence of mixing ratios of reagents different from previously reported works.  

Furthermore, it specifically investigates the effect of mixing sp3-hybridised nitrogen in DMF 

and sp-hybridised nitrogen in acetonitrile and the physicochemical properties of the ultimate 

products.  Additionally, DMF and acetonitrile were compared as both carbon and nitrogen 

sources in the synthesis of N-CNTs. 
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3.2.  Experimental 

The materials were synthesised with chemicals given in the subsequent sections and 

characterised as elaborated in the following subsections. 

 

3.2.1 Chemical reagents 

Acetonitrile (99.9%) was purchased from Merck, Germany while N,N’-dimethyl formamide 

(DMF) (99.8%) and ferrocene carboxaldehyde (98%) were procured from Sigma Aldrich. 

 

3.2.2 Synthesis of N-CNTs 

Synthesis of two series of N-CNTs at 900 °C was carried out by mixing DMF and acetonitrile, 

as both carbon and nitrogen sources, by means of the floating catalyst CVD method.  The series 

was synthesised by firstly, varying the ratio of DMF (x) to a fixed mass of acetonitrile, which 

was generally referred to as DxA1 whilst the reverse was D1Ax.  The DxA1 samples were 

named D0A1, D1A1, D2A1, D3A1, D4A1 and D5A1 for DMF:acetonitrile ratio of 0:1, 1:1, 

2:1, 3:1, 4:1 and 5:1, respectively.  D1Ax samples, with reverse ratios, were similarly named 

as D1A0, D1A1, D1A2, D1A3, D1A4 and D1A5, referring to DMF:acetonitrile ratio of 1:0, 

1:1, 1:2, 1:3, 1:4 and 1:5.  A similar notation based on the mol fractions of DMF and acetonitrile 

in the reagents is also presented in Table 3.S1 (supplementary information) for reference, 

otherwise the notation based on the mass ratios was used.  Secondly, the influence of 

temperature on the products was also investigated by using the ratios that gave the highest level 

of nitrogen-doping, as determined by elemental analysis.   

In general, the synthesis procedure used a quartz tube with length and inner diameter of 0.85 

m and 0.027 m, respectively.  The quartz tube was placed inside a tube furnace (model 

TSH12/50/610, Elite Thermal Systems Ltd) equipped with a main zone temperature controller 

(Eurotherm 2416).  The purging and reducing gas used was 10% hydrogen in argon (v/v) at a 

flow rate of 100 mL min-1.  With the aid of a syringe pump (model NE 300, New Era Inc), a 

solution of 2.4 wt.% Fc catalyst and the carbon/nitrogen source were injected at a rate of 0.8 

mL min-1 at the chosen synthesis temperature.  The reaction temperature was held for 30 

minutes during synthesis.   
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The products were collected from the hot zone of the furnace and typical yields were between 

100-500 mg.  8-10 runs were done per sample.  Products from various runs, using a specific 

ratio, were then mixed together to form an amalgamated sample.  Samples were then 

characterized by scanning electron microscopy (SEM, JEOL JSM 6100) and transmission 

electron microscopy (TEM, JEOL TEM 1010).  The image J software was used in the 

determinations of diameters to ascertain size distribution by counting at least 150 nanotubes.  

The TEM images used in this analysis were from several images taken from different sample 

areas.  Thermogravimetric analysis (TGA, TA Instruments Q seriesTM Thermal Analyser 

DSC/TGA Q600), Raman spectroscopy analysis (100 mW Delta Nu Advantage 532TM 

spectrometer of 10 cm-1 resolution with a 2D CCD detector and grating lines were 1800 mm-1 

with a laser source (Nd:YAG) at wavelength of 532 nm), Micromeritics TriStar II 3020 2.00 

instrument at 77 K in N2, LECO CHNS-932 elemental analyzer standardized with acetanilide 

and powder X-ray diffraction (PXRD, Rigaku MiniFlex 600) were also used to further 

characterise the samples. X-ray photoelectron spectroscopy (XPS) measurements were carried 

out at room temperature using a SPECS PHOIBOS 150 hemispherical electron energy analyser 

and a monochromatised Al source (h𝑣 = 1487.1 eV).  The overall energy resolution was 

approximately 0.7 eV.  Due to surface charging a low energy flood gun was used.  The binding 

energies were calibrated to the C1s core level which was arbitrarily set to 284.3 eV.  Sample 

preparations for conductivity measurements were done by suspending N-CNTs in ethanol via 

ultrasound water treatment for 10 minutes.  The mixture was then vacuum filtered through a 

Whatman filter paper.  A consistent pressure was applied in making the bulky paper of all 

samples.  The bulky paper was thereafter dried and analysed with a four-point probe.  The 

Whatman filter paper, with no electrical conductivity, was used as control and the thickness 

was measured by means of a micrometer screw gauge.  The N-CNTs film thickness was 

determined by subtracting thickness of filter paper from that of film and filter paper. 

 

3.3. Results and discussion 

Effects of both temperature variation and that of acetonitrile/N,N’-dimethyl formamide ratios 

on the physicochemical properties of N-CNTs are reported herein. 
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3.3.1 Effect of acetonitrile: N,N’-dimethyl formamide ratio  

N-doping of CNTs creates defects that changes their physicochemical properties [3.1].  The 

influence of sp- (acetonitrile) and sp3-hybridised (DMF) nitrogen source ratios, as both carbon 

and nitrogen sources, on the physicochemical properties of N-CNTs is discussed in this section. 

 

3.3.1.1 Effects of varying acetonitrile ratio (sp hybridised nitrogen source) 

D1A0 (DMF alone) consisted mainly of agglomerated ‘spaghetti-like’ N-CNTs (Fig. 3.1a) 

whilst D1A4 and D1A5 had noticeable amounts of amorphous carbon but D1A3 had a slight 

quantity (green circles in Fig. 3.1d-f).  From the Fig. 3.1, it can be deduced that addition of 

acetonitrile increased the amount of amorphous carbon in the product.  Additionally, the D1A1 

N-CNTs were more aligned unlike the rest (green rectangle on Fig. 3.1b and supplementary 

information Fig. 3.S1).  The Fe:C ratio (Table 3.S1 in supplementary material), decreased with 

addition of acetonitrile, and in the feedstock for D1Ax it was not responsible for increase in 

amorphous carbon in the product (Fig. 3.S1).    
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Fig. 3.1.  The representative images for the D1Ax samples (a) D1A0, (b) D1A1, (c) D1A2, (d) 

D1A3, (e) D1A4 and (f) D1A5. 

 

All samples displayed visible bamboo compartments (Fig. 3.2), a preliminary indicator of 

foreign atom doping and in this case nitrogen.  The appearance of bamboo compartments is 

caused by incorporation of nitrogen in the graphitic structure culminating in a curvature 

graphitic layer.  This correlates with several works reported on N-CNTs synthesised using iron-
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based catalyst [3.15,3.26].  Iron metal residues, qualitatively determined by EDX and XPS, 

were noticeable on both tube walls and encapsulated inside N-CNTs (Fig. 3.2a and e-f).  As 

the metal catalyst is deposited onto the N-CNT walls, it can be inferred that the injection rate 

does not match growth dynamics, i.e. the rate was too high and hence excess is deposited [3.15].  

Considering that injection rate was the same in synthesis of all samples, the absence of iron 

residues on the D1A1, D1A2 and D1A3 N-CNT walls possibly points out on the changes in 

growth dynamics as a consequence of different ratios.  The ratio of nitrogen sources influenced 

the product, for instance, D1A0 had some tubes with few bamboo compartments and the sizes 

of the compartments varied greatly (Fig. 3.2a).  Addition of acetonitrile, in sample D1A1, 

produced N-CNTs with irregular shaped walls and fishbone-like shapes (Fig. 3.2b).   
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Fig. 3.2. Representative TEM images for the D1Ax samples (a) D1A0, (b) D1A1, (c) D1A2, 

(d) D1A3, (e) D1A4 and (f) D1A5. 

 

The general observation in the D1Ax series was N-CNTs were bent and a possible explanation 

is the fact that radicals involved in the N-CNT growth are from sources with different 

hybridisation.  Hence, pentagonal and heptagonal structures are formed [3.27,3.28] from the 

different associated reaction kinetics and this culminates in different growth dynamics.  From 
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the dimensional analysis (Table 3.S2) the average wall thickness, obtained by subtracting 

average inner diameter (ID) from outer diameter (OD), increased from 9.3 nm (D1A0) to 40 

nm in D1A1.  The wall thickness thereafter decreased, although it was thicker than D1A0 in 

all samples, with increase in sp ratio except for sample D1A5.  Whilst Thurakitseree et al., 

[3.29] reported reduction of diameters of N-CNTs upon introduction of sp-hybridised-N to 

ethanol, the current study showed an opposite trait.  In the current study, this is possibly due to 

the involvement of sp3-hybridised-N source in the reagents for N-CNT synthesis culminating 

in active species different from the former. 

All samples, as noticed from the SEM and TEM images, had high iron metal residues and this 

is a setback in applications were the metal interferes with functionality.  There is a possibility 

of residual iron to be bound to nitrogen and therefore removal of the metal may result in 

reduction of nitrogen content [3.3].  However, the main reason of presenting the products as 

synthesised, before purification, in the current work was to get the traits of catalyst deactivation 

in the obtained N-CNTs.  More studies will be done on the purified N-CNTs and 

physicochemical properties are also expected to change.  The focus of the study was to 

elucidate how the mixing ratios of the two-small nitrogen/carbon sources with sp and sp3 

hybridised nitrogen, acetonitrile and DMF, influence the ultimate product as synthesised, 

without further purification.  The thrust was to communicate the best ratio with respect to 

residual catalyst wt.%, nitrogen content and functionality, and overall physicochemical 

properties of the obtained products.   

From thermogravimetric analysis, N-CNTs from D1A1 had the highest metal residues (70%) 

followed by D1A2 (38%) then D1A5 (32%) (Fig. 3.3a1 and b1).  A plausible elucidation is 

that the N-CNT growth rate compete with catalyst deactivation [3.30] and hence, reagents 

mixtures (carbon sources) of the aforementioned samples facilitated high catalyst deactivation.  

On the other hand, D1A3 (84%), then D1A0 (82%) and D1A4 (79%) had the largest wt.% of 

N-CNTs.  This means by controlling the ratios of reagents the composition of the product, 

particularly the wt.% of metal residues, can be altered.  In addition, the occurrence of a sharpest 

derivative weight curve for D1A0 suggest the highest level of sample homogeneity and the 

almost flat curve for D1A1 means there was minimal carbonaceous material in the product 

(Fig. 3.3a2).  Fig. 3b1-2 (green circle in Fig 3.3b2) shows that D1A4 and D1A5 had noticeable 

amount of amorphous carbon and D1A3 had a slight amount.  The results corroborated SEM 

observations and a possible reason is that high ratio of sp hybridised nitrogen source results in 

formation of some radicals not favourable for N-CNT growth.  



 

 

106 

 

 

 

Fig. 3.3. Representative TGA (a1 and b1) thermograms and (a2 and b2) derivative weight curve 

for the D1Ax samples.  

 

The N-CNTs decomposition range was between 450 and 700 °C (Fig. 3.3a2 and b2).  The 

derivative weight curve shoulders above 550 °C in all samples (arrows in Fig. 3.3a2 and b2) 

and SEM images (Fig. 3.1), suggest the presence of either two different species of sp2 

hybridized carbon networks, carbon nanotubes and platelets, or existence of defective and non-

defective sp2 hexagonal structures.  Several possibilities exist in this regard, such as either 

existence of doped and un-doped CNTs or the presence of various nitrogen functionalities.  

There was no clear trend on thermal stability but D1A1 was the most thermally stable mainly 

because of the limited exposure of the N-CNTs to air during decomposition due to high iron 

content.  Again, the existence of N-CNTs with different levels of defects is a possible reason 

for lack of pronounced trend. 



 

 

107 

 

 

3.3.1.2 Effects of varying N,N’-dimethyl formamide (sp3 hybridised nitrogen 

source) ratio 

All the N-CNTs synthesized with varying ratios of DMF, DxA1 series, showed spaghetti-like 

morphologies with small quantities of amorphous carbon (Fig. 3.4a-f).  The lumps of deposits 

on tubes were largest in D4A1 (green circle on Fig. 3.4e).  In addition to bent N-CNTs (green 

arrows on Fig. 3.4), the DxA1 series had some coiled tubes, for instance D3A1 (green circle 

on Fig. 3.4d). 

  



 

 

108 

 

 

Fig. 3.4.  The representative SEM images for the DxA1 samples (a) D0A1, (b) D1A1, (c) 

D2A1, (d) D3A1, (e) D4A1 and (f) D5A1. 

 

Fig. 3.5 shows presence of bamboo compartments as well as a variety of N-CNT dimensions 

(Table 3.S2 in supplementary material) and the observed bent N-CNTs morphology 

corroborated with SEM images at all ratios.  D3A1 displayed some rippled tube walls (Fig. 

3.5d) and this can similarly be attributed to defects on the tube walls in the form of pentagons 
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and heptagons.  Additionally, D1A1 and D5A1 had some tube with compartments that 

displayed wrinkled appearances on the walls (Fig. 3.5b and f).  Encapsulated iron was also 

noticeable in some N-CNTs (Fig. 3.5e). 

 

 

Fig. 3.5.  The representative TEM images for the DxA1 samples (a) D0A1, (b) D1A1, (c) 

D2A1, (d) D3A1, (e) D4A1 and (f) D5A1. 
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Increase of sp3:sp hybridised nitrogen source ratio, DMF:acetonitrile, in the DxA1 samples 

culminated in a decrease in average wall thickness from 95 nm in D0A1 to 40 nm in D1A1 and 

a decrease to approximately 11 nm then slightly increased (Table 3.S1 in supplementary 

information).  All samples had high metal residues of 40, 70, 20, 29, 38 and 28% for D0A1 to 

D5A1, respectively (Fig 3.6 a1 and b2).  Additionally, only D4A1 and D5A1 showed clear 

weight losses due to amorphous carbon (circle in Fig. 3.6b2).  Samples D3A1, D4A1 and D5A1 

displayed a slight kink at ca 500 °C (Fig. 3.6b1), within the main weight loss region, suggesting 

possibility of slight variations in thermal stability of N-CNTs as the ratio of DMF was raised 

in DxA1 samples.  This can be attributable to different nitrogen species content, shapes and 

defect nature, amongst other factors, that arose from growth dynamics due to different 

composition of radicals in the reaction chamber.  D2A1 had the largest N-CNTs wt.% (80%), 

the steepest thermogram (Fig. 3.6a) and the sharpest derivative weight curve (Fig. 3.6a2).  

These occurrences suggest that D2A1 was the most homogenous sample.  Shoulders above 500 

°C (arrows in Fig. 3.6a2 and b2), similar to that of D1Ax, were observed in the derivative 

curves of DxA1 and were attributed to the aforementioned reasons.  The decomposition 

temperature range of DxA1 N-CNTs was 400-700 °C. 
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Fig. 3.6. Representative TGA (a1 and b1) thermograms and (a2 and b2) derivative weight curve 

for the DxA1 samples.  

 

3.3.1.3 Comparative discussion 

The elemental composition resulting in varying the aforementioned reagents is provided in the 

supplementary materials (Table 3.S1).  The wt.% of carbon in the reagent were comparable 

with slight variations in both series and the results below show that despite being small carbon 

source molecules, the amount of carbon injected in the reaction chamber was sufficient for 

formation of CNTs.  Ferrocenecarboxaldehyde (Fc), as catalyst, is also a source of carbon 

source but was applied as a constant parameter in this current work and hence the wt.% of Fe 

catalyst was also a constant but the above variations slightly changes the Fe:C, Fe:N, Fe:O and 

Fe:H ratios due to associated elemental variations (Table 3.S1).  The variations in elemental 

compositions are negligible to be considered as the main contributors of the observed traits.  
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The ratios of DMF and acetonitrile (sp3:sp nitrogen hybridisation) influence physicochemical 

properties such as thermal stability, elemental composition and morphology of N-CNTs.  For 

instance, the number of N-CNT walls were approximated by the formula: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑙𝑙𝑠 = (
𝑂𝐷−𝐼𝐷

2×0.34
) + 1                                               (Equation 1) 

The approximate number of walls decreased significantly with increase in ratio of DMF, in the 

DxA1, up to D2A1 then marginally increased thereafter (Table 3.S2 in supplementary 

information).  The current work suggestively shows that the number of N-CNT walls formed 

from sp nitrogen source (acetonitrile) can be reduced by addition of sp3 source (DMF) and vice 

versa. 

Incorporation of nitrogen introduces some defects on N-CNT walls, manifesting in various 

forms such as rippled walls and bent structures, as seen on TEM images (Fig. 3.2 and 5).  The 

study shows that synthesizing N-CNTs at 900 °C using DMF and acetonitrile may produce 

amorphous carbon depending on the reagent composition (Fig. 3.S1a-b).  Both wt.% of oxygen 

atoms in the reagent mixture and amorphous carbon composition in the product for DxA1 was 

higher than D1Ax series (Fig. 3.S1 and Table 3.S1).  This suggests that the cleaning effect of 

oxygen with respect to amorphous carbon [3.5] was minimal in the current work.  Instead of 

reacting with amorphous carbon in the product and leaving reaction chamber as COx gases, a 

possible role of oxygen was the removal of the reactive hydrogen radicals [3.31].  This could 

have nullified the effect of oxygen in the reaction chamber because hydrogen was in excess 

from the carrier gas.  Hence, insufficient oxygen available for the cleaning role led to 

appearance of amorphous carbon in the product.  This was favourable because hydrogen 

radicals inhibit growth of sp2 carbons for N-CNTs formation [3.31]. 

The N-CNTs from both series had a mixture of open and hemispherical capped tube ends.  A 

possible reason for morphological variations with respect to mixing ratio in the samples is 

associated with the dynamics of radical diffusion and growth direction.  The supplementary 

information (Fig. 3.S2-S3) show that OD sizes can be tailored by varying the ratios of sp3:sp 

species in the reagent mixture.  No correlation was observed between Fe:C ratio (reagent 

mixture) and the resulting N-CNT diameters and a possible explanation is that the associated 

ratios were too low to cause formation of large iron particles at 900 °C.  D0A1 N-CNTs were 

more thermally stable and had more residual iron wt.% than D1A0 whilst it was the same case 

for D1A2 and D2A1, respectively.  The samples D3A1 and D1A3 had similar thermal 

stabilities but the latter had a higher iron residue wt.%.  D1A4 and D5A1 had less residual iron 
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than their counterparts.  Again, the aforementioned variations in iron residues showed no 

correlation with differences between Fe:C ratios in reagents of the corresponding samples in 

the two series. 

Molecular hydrogen reduces Fe2+ to Fe0 and this favours formation of CNTs [3.19].  D1Ax 

samples and the product composition (Fig. 3.S1) indicates that D1A4 and D1A5 had higher 

amorphous carbon, despite the expected higher amount reduced catalyst in feedstock.  A 

possible explanation is that the higher oxygen content in the reagents cancels out the reducing 

effect of hydrogen [3.32] and also removes the reactive hydrogen radicals [3.31].  In addition, 

there was low amount of oxygen content (Table 3.S1 in supplementary information) in the 

feedstock to sufficiently remove hydrogen radicals in D1A4 and D1A5.  Hence, the radicals 

attack sp2 carbons forming sp3 carbons, hence, more amorphous carbon content was obtained.   

Nyamori et al., [3.32] reported on the influence of Fe:C ratios in the range 0 to 0.467 and 

recorded 30 wt.% of amorphous carbon in the product at Fe:C ratio of 0.016.  The composition 

of amorphous carbon in the current study was considerably below and this was attributed to 

the significantly lower Fe:C ratios (Table 3.S1 and Fig. 3.S1 in supplementary information).  

Hence, the variations in Fe:C ratios were negligible to be considered as the main influence in 

this regard in the current work.  The plausible differences introduced from the two sources, 

under study, was that DMF decompose to active species such as OHCN, CHO and CH3 [3.17] 

whilst acetonitrile decomposes mostly into HCN and CH3 [3.15].  The C-N bond-lengths in the 

original sources determine the nature of the active species [3.17].  The different sizes of the 

active species are associated with different radical diffusion kinetics, amongst other factors.  

Henceforth, another possible reason for the existence of amorphous carbon in N-CNT products 

at constant temperature is that the kinetics of the associated active species are dependent on the 

mixing ratio of DMF and acetonitrile (sp3:sp).  The general excellent N-CNT yield relative to 

amorphous carbon (Fig. 3.S1) can be attributed to high oxygen content in the reagents which 

was responsible for the reduction of reactive hydrogen radicals and the cleaning of the 

amorphous carbon.  Another possibility is that different compositions of the active species 

(from the varied reagent ratios) are associated with different extents of dissolution in the 

catalysts and hence, also influences the yield composition [3.16].  The current work opens more 

room for the detailed determination of the mechanism involved. 

The contribution of BET surface area from residual iron catalyst is negligible because the 

catalysts constitute a small proportion of the total surface [3.33].  Hence, the changes in surface 

area in the current work can only be significantly linked to the surface on the carbon materials.  
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Increasing the DMF to acetonitrile ratio in the DxA1 enhanced the BET surface area for N-

CNTs from D0A1 up to D3A1 then decreased for samples D4A1 and D5A1 (Fig. 3.7a).  

Whereas in the D1Ax series, D1A0 had the highest surface area, higher than samples from both 

series, but it was noted that DxA1 series had larger surface areas when opposing ratios were 

compared, such as D2A1 and D1A2, were compared (Fig. 3.7b).  The rationale behind the 

observed traits in the current work, that may possibly be deduced from the approximated 

number of tube walls (Table 3.S2 in supplementary information), is that smaller sizes 

culminated in higher surface areas.  This concurs with the theoretical view that BET surface 

area is a function of the number walls in CNTs [3.28]. 

In general, the samples in the current work had small BET surface areas.  A possible 

enlightenment is that there was less contribution from the inner surfaces of the tubes due to 

closed hemispherical caped ends in some MWCNTs (Fig. 3.2 and 5).  Additionally, 

encapsulated metal as well as residues on the tube surface also reduces the MWCNT exterior 

available for appreciable nitrogen sorption.  A possible way to enhance the textural properties, 

which was beyond the scope of the current work, is opening capped ends and purification of 

tubes by means of chemical treatment [3.28].  D0A1 and D5A1 had the least pore volumes but 

the rest were comparable (Fig. 3.7c).  On the other hand, in the D1Ax, D1A0 had the highest 

and D1A4 had the least pore volumes (Fig. 3.7d).  Except for D4A1 and D1A4, pores sizes in 

DxA1 series generally decreased from D0A1 to D5A1 (Fig. 3.7e) whereas for D1Ax series an 

almost constant value of 25 nm was noted (Fig. 3.7f).   
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Fig. 3.7.  Textural characteristics of samples synthesized at different ratios and constant 

temperature.  

 

In the DxA1 series, nitrogen content initially increased with increase in DMF ratio, i.e. from 

D0A1 to D2A1 then decreased thereafter whereas no clear trend was perceived for the counter 

series but D1A3 and D1A0 had the highest nitrogen content of 9.38% and 5.87%, respectively 

(Table 3.1).  Similar studies have been done by Kaushik et al., [3.34] but they achieved lesser 

nitrogen content (5.5%) upon addition of 45% DMF as nitrogen source.  The highest nitrogen 

content in D2A1 matched the smallest ID, OD and number of N-CNT walls in the DxA1 

samples.  This corroborates with deduction by Liu et al., [3.15] in that incorporation of nitrogen 

reduces diameter of N-CNTs.  This trait was not apparent in the D1Ax but the D1A0 (second 
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highest nitrogen content) had the smallest diameters and number of N-CNT walls.  The most 

probable explanation of the lack of correlation in this regard is linked to the etching effect of 

oxygen on the tube walls contributing to the decrease of diameters.  Additionally, the mismatch 

may infer the encapsulation of molecular nitrogen in the tubes [3.15].  This was supported by 

the XPS data (in the following sections). 

The samples with high nitrogen content exhibited poorer thermal stabilities and this is due to 

the strain in the carbon framework upon introduction of nitrogen.  Similar observations were 

reported by Nxumalo et al., [3.2]  Additionally, from statistical analysis of D1Ax (Table 3.S2 

in supplementary material), samples D1A0 and D1A3 had smallest average compartment sizes 

and this corroborated with their high nitrogen content.  According to the elemental analysis 

data in Table 3.1, it is clear that sp3 hybridised was better than sp hybridised nitrogen precursor 

in terms of higher level of nitrogen-doping of the products.  A possible reason for high nitrogen 

incorporation in D1A0 relative to D0A1 is higher O:C ratio (in the reagent, Table 3.S1 in 

supplementary material). Additionally, the current work further showed a link between the 

higher nitrogen content in D1A0 (N-CNTs from DMF) and smaller OD, ID, number of N-CNT 

walls as well as compartment size than D0A1 (N-CNTs from acetonitrile).  Basing on the 

molecular formulas of the precursor, (CH3)2NCOH and CH3CN, it may be deduced that the 

extra CH3, H and O atom in DMF, culminating in structural differences, enhances the nitrogen 

incorporation in the N-CNTs.  This may infer that (CH3)2NCOH produced more C-N units in 

the reaction chamber than CH3CN.  The C-N units play a crucial role in the incorporation of 

nitrogen in the graphitic structure [3.15].  Ombaka et al., [3.4] reported on enhancement of 

nitrogen-doping content of N-CNTs by addition of oxygen in the reagent.  Whilst the trends in 

O:C ratio (i.e. 1:2 and 2:1 ratio in reagent) was able to similarly account for the trends in 

nitrogen content for D1Ax and DxA1, respectively, however, this correlation could not account 

for tendencies at higher ratios of 1:3 and 3:1 and beyond.   A probable reason is that the latter 

ratios introduces more radical influence as explained in earlier sections.  In addition, Table 3.1 

shows that a higher H atom wt.% in the carbon source does not necessarily imply higher 

hydrogen content in the product.  Higher hydrogen content in the product could mean high 

amount of dangling bonds on N-CNTs walls.  
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Table 3.1: Elemental analysis and Raman ID/IG ratios of N-CNTs synthesised with varying 

reagent ratios at 900 °C 

Sample H N ID/IG 

D0A1 0.06 3.49 2.03 

D1A1 0.32 3.75 0.32 

D2A1 0.12 4.11 1.61 

D3A1 0.02 3.02 1.13 

D4A1 0.08 1.89 1.50 

D5A1 0.04 1.99 1.02 

    

D1A0 0.07 5.87 1.27 

D1A1 0.32 3.75 0.32 

D1A2 0.07 3.19 0.80 

D1A3 0.89 9.38 0.36 

D1A4 0.17 3.30 0.32 

D1A5 0.09 3.38 0.28 

 

A representative Raman spectrum of the N-CNTs, showing the D- and the G-band located at 

1350 and 1550 cm-1, respectively, was given in the supplementary information (Fig. 3.S15).  

The given representative Raman spectrum is for D4A1 N-CNTs.  Both D1A0 and D0A1 had 

the highest ID/IG ratios for D1Ax and DxA1 samples, respectively (Table 3.1).  This infer higher 

defect nature in the aforementioned samples, but the current work suggests that mixing sp and 

sp3 hybridised nitrogen sources reduced defects.  Additionally, DxA1 samples were more 

defective than D1Ax (Table 3.1) and this infers that high sp3-hybridised nitrogen in reagents, 

in DMF, increased the defects in the N-CNTs products.  Whilst, high sp-hybridised nitrogen 

had an opposite effect.  Also, no direct relationship was observed between ID/IG and nitrogen 

wt.% in N-CNTs. 
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PXRD shows that D1Ax N-CNTs were more crystalline than DxA1 and the most plausible 

reason is the lower defect nature, i.e. lower ID/IG ratios, in D1Ax N-CNT (Fig. 3.8 and Table 

3.1).  All samples showed peaks at two theta of 25°, 38°, 45°, 65°, 54°, 78° and 82° attributed 

to reflection of C(002) graphitic structure, Fe3C, C(101), C(006), FeO, C(110) and Fe, respectively 

[3.4,3.35].  The presence of Fe3C reflection suggests that it is the most predominant catalytic 

phase.  The PXRD data substantiated the SEM, TEM and TGA residual metal in the product 

deductions.  The peak at 25°, ascribed to graphitic structure, increased noticeably with increase 

in acetonitrile ratio in the D1Ax N-CNTs whereas in that of DxA1 peak intensification was 

negligible.  This means, both Raman and PXRD spectroscopies, infers that D1Ax samples were 

more crystalline than DxA1 N-CNTs and that higher composition of sp source enhanced crystal 

quality of N-CNTs.  This a clear indication of the influence of sp3:sp ratios. 

 

 

Fig. 3.8. The powder X-ray diffraction spectrums for (a) DxA1 and (b) D1Ax N-CNT samples. 

 

The X-ray photoelectron spectroscopy analysis was done on representative samples, D1A0, 

D0A1, D1A3, D3A1 and D3A1, and the Fe2p peaks observed were accounted for as residual 

iron noticed in both TGA and PXRD.  All the typical Fe peaks were of similar shapes and this 

infers they were in similar chemical states.  This correlates well with the PXRD deductions.   

Additionally, the C1s peaks at 285 eV (Fig. 3.S14 in supplementary information) was assigned 

to the graphitic carbons in the N-CNTs.  The slight peak at 288.5 eV in D3A1 can be attributed 

to oxygen-containing groups such as carbonyl moieties [3.36].  However, they are various 

components of C1s peaks that are not due to bonding configurations.  These are principally the 
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energy-loss peaks, which are part of the photo-emission process.  These are particularly strong 

in N-CNTs [3.37].  Hence, no further peak assignments for C1s moieties were done. 

In addition, the peaks at 399 to 403 eV (Fig. 3.9) are due to various nitrogen species.  The peaks 

at  398.2, 399.3, 400.6, 402.5 and 404.6 eV were attributed to pyridinic  and carbonitrile 

molecules (N1), quaternary amine (N2), pyrrolic functionalities (N3), various nitrogen oxides 

(N4) whilst the fifth peak was accredited to either adsorbed or encapsulated nitrogen molecules 

within the graphitic framework (N5), respectively [3.38]. 

 

 

Fig. 3.9.  The X-ray photoelectron spectroscopy spectra for representative N-CNT samples. 

 



 

 

120 

 

The spectra also show that the main N species was the N3 followed by the N1 and this agreed 

with the quantification in Fig. 3.10.  The N3 functionality was the reason for the observed 

capped tube ends and the disordered and bent structures of N-CNTs (Fig. 3.1, 3.4-3.5) [3.21].  

The representative N-CNTs samples show that varying reagent composition had no effect on 

the N4 (Fig. 3.10).  From the current XPS data, D1A0 had higher N5 than D0A1 and this means 

the sp3-hybridised nitrogen source, DMF, was a better source than sp source, acetonitrile.  In 

addition, both sp and sp3 sources had a similar composition of N1 and N2 but mixing the 

reagent slightly increased N1 whilst severely dropping the N2 species.  This ties in well with 

the view that the composition of active species and associated kinetics influences the ultimate 

physicochemical properties. 

 

 

 

Fig.  3.10.  The composition of the nitrogen species of the representative N-CNT samples. 

 

In terms of the representative DxA1 N-CNTs, the trend for N3 species, upon increasing sp3 

source in reagent, was D0A1 ˂ D1A1 ˂ D3A1 but the effect was a decrease in both N2 and N5 

moieties (Fig. 3.10).  This is a manifestation of the ability to modify the nitrogen functionality 

using reagent composition.  On the other hand, for D1Ax, both N1 and N3 reaches a plateau 

with D1A1 and decrease at D1A3 (Fig. 3.10).  
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States at the Fermi level means carriers can be excited into the conduction band, hence, the 

density of states at Fermi level is used as a gauge of metallicity [3.21].  All the representative 

N-CNTs, except D3A1, had similar metallicity (area enclosed by dotted rectangle in Fig. 3.11).  

The current data infers the D3A1 was less metallic than the rest of the N-CNTs and this can be 

rationalised by the oxygen-containing moieties ascribed in Fig. 3.S14 (Supplementary data), 

which introduce insulating effects. 

 

 

Fig. 3.11.  Determination of metallicity of representative N-CNTs. 

 

Conductivity measurements were done on selected samples, namely, D1A0, D0A1, D1A3 and 

D4A1. The rationale behind selection was that, D1A0 and D0A1 were samples synthesised 

from DMF (sp3 source) and acetonitrile (sp source) as the only nitrogen sources, whilst D1A3 

gave the highest nitrogen content.  The D3A1 N-CNTs were non-conductive or conductivity 

values were below the detection limit, hence the data was not included in Fig. 3.12.  The reason 

for poor conductivity was attributed to the poor metallicity as determined by the the density of 

states at the Fermi level (Fig. 3.11).  The sample D4A1 had the least nitrogen content and 

hence, included for comparison with D1A3.  A four-point probe was utilised in carrying out 

these measurements and the actual conductivity was calculated by use of the following 

equations: 

𝜌 =
𝜋𝑡

𝐼𝑛 2
(

∆𝑉

𝐼
)                                               (Equation 2) 
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𝜎 = 𝜌−1                                                       (Equation 3) 

Where, 𝜎 , 𝑡 , ∆𝑉 , 𝐼 is resistivity, conductivity, film thickness, change in voltage and measured 

current, respectively. 

Electrical conductivity of N-CNTs is subjected to interactions amongst individual tubes, 

dimensions, purity, doping type and preparation method [3.4].  The data in Fig. 3.1a suggest 

that the D0A1 N-CNTs had the highest interactions and therefore the least internal resistance.  

The D1Ax generally had similar but lower conductivity values than DxA1 N-CNTs.  This tend 

to suggest that high nitrogen content does not necessarily imply high electrical conductivity in 

the current work.  A possible reason is likely linked to the composition of the pyrrolic nitrogen 

moieties, higher content was associated with better conductivity (Fig 3.10 and 3.12).  No direct 

relationship between dimensions and conductivity was deduced and this is a clear indication 

that influence from either decrease in mean freepath of charge carriers or increase in Columbic 

repulsion between layers from decrease in OD [3.4,3.39] was negligible in the current work.  

Another general inference in the current work was the semiconducting behaviour of all N-CNT 

samples as exhibited by an increase in conductivity with increase in temperature.  The semi 

conducting behaviour of N-CNTs can be explained theoretically via three models namely Mott 

variable range hopping, Efros-Shklovskii variable range hopping and Fluctuation induced 

tunnelling [3.40].  Mott variable range hopping view is that electrons traverse the material by 

hopping through different localised impurity states, Efros-Shklovskii variable range hopping 

suggest that that a Coulomb gap is formed as the density of states vanish at the Fermi level 

whilst in the Fluctuation induced tunnelling a material is modelled as a series of metallic 

regions with small barriers separating them.  Similar observations have been reported in earlier 

studies [3.4,3.18,3.40].  A probable reason for a slight drop in conductivity of D0A1 at c.a. 330 

K thermal desorption of nitrogen. 
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Fig. 3.12.  Representative conductivity measurements of some selected N-CNTs samples. 

 

The N-CNTs synthesised herein were tested for their potential application in charge storage, 

particularly, in electrochemical capacitors.  Typically, the as-synthesised N-CNTs were 

purified to remove residual metal catalysts (Fig. 3.S16 in the supplementary information) and 

thereafter used as electrode materials for electrochemical capacitors (ECs). This means the 

associated physicochemical properties were altered during purification [3.41,3.42].  Hence, the 

scope of the current report was tuning associated physicochemical characteristics of N-CNTs 

using reagent compositions.  The D0A1 N-CNTs were selected for the preliminary tests of the 

materials in ECs since they have the least internal resistance (Fig. 3.12).  A representative 

cyclic voltammetry curve shown in Fig. 3.13 displays an enhanced current response and a more 

rectangular curve with increase in scan rate.  This is an indication of an ideal capacitive 

behaviour and exhibition of physical adsorption/desorption of solvated electrolyte cations at 

higher scan rates [3.41,3.43].  Hence, this reflects their great potential as electrodes of ECs.  

Further studies will be done on D1A1 and D3A1 with higher N3 species, respectively, to 

investigate the associated effect on EC functionality. 
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Fig. 3.13.  The representative cyclic voltammetry curve for N-CNT samples, specifically for 

D0A1.  The electrochemical characteristics were investigated at various scan rates of 10, 20, 

50 and 100 mV s-1 in a three-electrode system. 

 

3.3.2 Temperature effects on N-MWCNTs 

The samples with the highest nitrogen content, i.e. D1A0 and D1A3, were used to investigate 

the optimum synthesis temperature and the outcomes are elaborated in the following sections. 

 

3.3.2.1 Temperature effects on D1A0 

Similar SEM images were obtained for D1A0 N-CNTs at different synthesis temperatures but 

products at 1000 °C had the largest number of N-CNT walls than the rest (Fig. 3.14 and Table 

3.S3 in supplementary information).  N-CNTs synthesised at 850 °C and 950 °C were 

debundled whilst those at 1000 °C were haphazardly oriented and slightly agglomerated.  

Similar observations at high temperatures were reported by van de Burgt et al., [3.24] and 

similarly the observations in the current work can be explained with the mechanism that refer 

to the carbon diffusion in the catalyst as the rate determining step.  The mostly likely 

explanation is the differences in growth directions due to enhanced diffusion rate of active 

species towards the catalyst at higher synthesis temperatures. 
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Fig. 3.14.  The representative SEM images for the D1A0 samples (a) 800 °C, (b) 850 °C, (c) 

900 °C, (d) 950 °C and (e) 1000 °C. 

 

From Fig. 3.15, tubes of variable dimensional uniformity in terms of diameters and number of 

tube walls with respect to synthesis temperature (Fig. 3.S8-9 and Table 3.S3 in supplementary 

information).  The number of N-CNT walls formed from synthesis from sp3 source, DMF alone 

(D1A0), increased with increase in synthesis temperature from 800 °C to 1000 °C.  This 
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conjectures that dimensions of the N-CNTs in the current work can be tailored by varying 

temperature of synthesis.  This correlates with the view reported by van de Burgt et al., [3.24] 

that high temperatures may lead to more efficient dissociation of carbon sources and thickening 

of the resulting tube walls.  D1A0 at 850 °C showed some Y-shaped N-CNTs with nodes whilst 

at 900 °C coiled tubes were obtained (Fig. 3.15b-c).  At 950 °C and 1000 °C, N-CNTs with 

irregular walls and thicker tubes were noticed on the later temperature of synthesis (Fig. 3.15d-

e, Table 3.S2 and Fig. 3.S8 in supplementary information).    A possible reason for the irregular 

wall thickness, bent structures and nodes on the N-CNT surfaces is the existence of pentagons 

and heptagons on their graphitic framework [3.28].  The average wall thickness increased as 

the synthesis temperature was raised from 800 °C to 1000 °C.   This is instigated by higher 

catalyst sizes in the reaction vessel, due to agglomeration, at higher temperatures.  A possible 

basis of this outcome is that at 800 °C, unlike at 1000 °C, the iron catalyst particles have 

minimal chances of agglomeration due to low kinetic energy.   
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Fig. 3.15.  The representative TEM images for the D1A0 samples (a) 800 °C, (b) 850 °C, (c) 

900 °C, (d) 950 °C and (e) 1000 °C. 

 

In terms of thermal stability, D1A0 synthesised at 850 °C had a slight weight loss at 150 °C 

due to water loss (Fig. 3.16a).  Weight loss due to amorphous carbon was noticed at synthesis 

temperatures of 800, 850 and 950 °C (Fig. 3.16b).  The slight kink on thermograms of samples 

synthesised at 950 °C and 1000 °C was attributed to various forms of defects on tube surface 
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such as irregular shaped and bend walls of N-CNTs as (Fig. 3.16a).  The defects on the N-CNT 

walls are points of weakness in the graphitic framework, hence easily decompose [3.28].  The 

main weight loss, due to N-CNTs, was between 400 and 600 °C.  Again, temperature at which 

N-CNTs were synthesised determined the residual iron content, at 800 °C, 950 °C and 1000 °C 

N-CNTs had similar quantities of iron but lower values were obtained at 850 °C and 900 °C 

(Fig. 3.16a).  Similar observation of higher metal catalyst residue were obtained at high 

temperatures by Tang et al., [3.17] but unlike their report, lowest temperature in the current 

work also had higher wt.%.  Whilst at high temperatures high growth rate reduced the catalyst 

life time [3.30], a plausible reason for higher metal residue at the lowest temperature, 800 °C, 

in the current work is linked to the low number of N-CNT walls (Table 3.S3 in supplementary 

material) and this culminates in higher carbon to iron ratio in the product.  In addition, D1A0 

produced predominantly N-CNTs in the products with respect to other shaped carbon materials 

(Fig 3.S1c in supplementary material).  Therefore, in terms of residual iron catalyst and N-

CNTs wt.% in the product, 900 °C was the best temperature of synthesis. 
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Fig. 3.16. Representative TGA (a) thermograms and (b) derivative weight curve for the D1A0 

samples synthesised at different temperatures.  

 

The products at 800 °C had a relatively remarkable BET surface area and BJH pore volume 

(Fig. 3.17a-b) and this corroborates with the smallest number N-CNT layers whilst 950 °C had 

the largest pore sizes (Fig. 3.17c).  The textural characteristics data did not show a trend but it 

may be noted that synthesis temperature prompts changes.   

 

Fig. 3.17.  Textural characteristics of D1A0 samples synthesized at different temperatures. 
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In the elemental quantification, hydrogen decreased with increase in synthesis temperature 

from 900 °C to 1000 °C (Table 3.2).  A possible motive is that at higher temperatures, dangling 

bonds are minimal.  The highest nitrogen content was achieved at 800 and 900 °C (Table 3.2) 

and these samples corresponded with smallest N-CNT diameters (Table 3.S3 and Fig. 3.S11-

12 in supplementary material).  The decrease in nitrogen content at 950 and 1000 °C 

corroborated the works of Yadav et al. [3.6]  In addition, from the study, it is clear that DMF 

is a suitable carbon and nitrogen source for the synthesis of N-CNTs with between 2.5 and 6 

% nitrogen depending on temperature of synthesis 

 

Table 3.2:  Elemental analysis and Raman spectroscopy data of D1A0 

Sample Temperature H N ID/IG 

D1A0 

800 0.90 5.86 0.79 

850 1.15 4.88 0.19 

900 0.07 5.87 1.27 

950 0.04 2.98 1.13 

1000 0.00 2.47 1.19 

 

Raman data (Table 3.2) suggest that lower temperatures of synthesis were associated with low 

defect concentrations in N-CNTs.  Also, from critical examination of the data from TEM 

analysis (Table 3.S3 in supplementary information), elemental composition (Table 3.2) and 

textural characteristics (Fig. 3.17), it was eminent that high nitrogen doping using a sp3 source 

induced a decrease in ID, OD and wall thickness and increase in BET surface area of N-CNTs.   

 

3.3.2.2 Temperature effects on D1A3 

A similar study on the influence of temperature was done with D1A3 samples and N-CNTs 

synthesised at lower temperatures tended to be more agglomerated (Fig. 3.18).  Amorphous 

carbon was also present in the product synthesised at 800-950 °C (green circle in Fig. 3.18 and 

Fig. 3.S1d in supplementary information).  At 800 °C and 850 °C haphazard N-CNTs were 

produced whilst at 900 °C bundled but aligned tubes were noticed (Fig. 3.18).  Additionally, 

carbon spheres were also obtained at both 950 °C and 1000 °C (green rectangle in Fig. 3.18d).  
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This is because at high temperatures iron particles agglomerated due to high collision rates and 

therefore carbon sphere formation was facilitated [3.1]. 

 

 

Fig. 3.18.  The representative SEM images for the D1A3 samples (a) 800 °C, (b) 850 °C, (c) 

900 °C, (d) 950 °C and (e) 1000 °C.  

 

D1A3 synthesised at 800 °C had N-CNTs with lower intensities of bamboo compartments (Fig. 

3.19a) and at 850 °C N-CNTs appeared to have wrinkled surfaces.  At 900 °C defective tubes 
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walls were also observed whilst at 950 °C some Y shaped tubes were obtained (Fig. 3.19c-d).  

Defective walls at 900 °C were due to inclusion of heptagons and pentagons in the graphitic 

structures of N-CNTs.  

 

 

Fig. 3.19.  The representative TEM images for the D1A3 samples (a) 800 °C, (b) 850 °C, (c) 

900 °C, (d) 950 °C and (e) 1000 °C. 
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Temperature influenced morphology and dimensions, for instance synthesis at 850 °C 

produced cup shaped tube ends but at 1000 °C cap shaped tube ends were noticed.  

Additionally, OD, wall thickness and number of tube walls increased in the synthesis 

temperature range of 800-900 °C (Table 3.S2 in supplementary information).  Beyond 900 °C, 

the number of N-CNT walls decreased.  The different synthesis temperature produced different 

product composition and physical properties, and therefore decompose at different 

temperatures.  Hence, different TGA profiles were obtained for the 5 samples shown in Fig. 

20 a. 

D1A3 samples at different synthesis temperatures had similar thermal stabilities (Fig. 3.20a), 

however, they had different residual iron wt. %.  Residual iron wt.% decreases with increase 

in synthesis temperatures from 800 °C to 900 °C then increases at 950 °C (Fig. 3.20a).  The 

reason for the decrease of iron residue wt.%., more inclined thermogram and a wider 

decomposition temperature for D1A3 sample synthesised at 1000 °C (Fig. 3.20) was attributed 

to formation of both carbon spheres and N-CNTs.  The decomposition temperature region of 

the D1A3 N-CNTs was between 400 and 700 °C.  This means beyond 700 °C all the 

carbonaceous material would have decomposed, and the catalyst residues are exposed to heat 

and oxygen.  This led to formation of a metal oxides and hence, weight increased.  Compared 

to D1A0, D1A3 samples decomposed over a wider range of temperature and had lower 

amounts of amorphous carbon (derivative weight curve on Fig. 3.20b).  The composition of 

amorphous carbon decreased with increase in temperature and the parallel broadening of the 

derivative weight peak is an indication of decrease in sample homogeneity.  This was attributed 

to the formation of both N-CNTs and carbon spheres at 1000 °C as well as increase in both OD 

and ID between 800 and 950 °C due catalyst agglomeration. 
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Fig. 3.20. Representative TGA (a) thermograms and (b) derivative weight curve for the D1A3 

N-CNTs synthesised at different temperatures.  

 

For D1A3, BET surface area decreased with increase in synthesis temperature (Fig. 3.21a). and 

no clear trend was noticeable on pore volume and size (Fig. 3.21b-c).  A possibly reason for 

this trend is similarly linked to size variations.  The lowest values of pore volume and sizes 

noticed at 1000 °C (Fig. 3.21b-c) were due to presence of carbon spheres.  Hence, the presented 

data clearly shows mixing DMF with acetonitrile, 1:3 ratios, clearly allowed tailoring of BET 

surface area of the obtained products. 
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Fig. 3.21.  Textural characteristics of D1A3 samples synthesized at different temperatures.  

 

A possible source of hydrogen, determined by means of elemental analysis, in the products 

(Table 3.3) was the existence of dangling bonds.  Nitrogen content increased from 800 °C to 

900 °C then decreased at 950 °C and this an indication of temperature effect on nitrogen doping 

(Table 3.3).  The decrease in nitrogen amount in the product in both D1A0 and D1A3 from 

900°C  to 950 °C corroborates with the report by Chazari et al., [3.5]  Unlike the optimum 

temperature of 850 °C reported by Keru et al., [3.1] Ombaka et al., [3.4] and Yadav et al., [3.6] 

highest nitrogen content in the current work was achieved at 900 °C.  This suggests the 

dynamics in the effect of nitrogen availability from source, influenced by nitrogen 

hybridisation in reagent, in addition to catalyst and growth temperature.  Upsurge of nitrogen 

at 1000 °C can also be a result of the presence of carbon spheres.  A critical analysis of the 

Table 3.2 - 3.3, unlike earlier reports [3.17,3.26], shows that nitrogen content does not 

necessarily decrease with increase in temperature.  In addition, the two tables clearly indicate 

that at 900-1000°C D1A3 N-CNTs had higher nitrogen content composition unlike at 800-850 

°C for D1A0.  This means that enhancement of N-doping in N-CNTs is not obvious upon 

mixing sp3 and sp nitrogen sources, DMF and acetonitrile, but is subject to the choice of 

synthesis temperature selected.  A possible inference is the independence of N-doping to metal-
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nitride pre-existence in the current work (low Fe:N ratios in Table 3.S1 supplementary 

information).  Additionally, a further manifestation of induced differences in growth dynamics, 

it may be noted that the link between decrease in diameters, enhancement in BET surface area 

and increase N-doping levels was disrupted upon mixing sp and sp3 sources in the current work. 

 

Table 3.3:  Elemental analysis and Raman spectroscopy data of D1A3 

Sample Temperature H N ID/IG 

D1A3 

800 0.68 2.90 0.37 

850 0.12 3.40 0.44 

900 0.89 9.38 0.36 

950 0.05 3.69 0.76 

1000 0.35 4.16 0.33 

 

Similarly, D1A3 was less defective than D1A0 at the temperatures under study despite the 

higher nitrogen content in D1A3 N-CNTs (Table 3.2-3.3) and this corroborates with the earlier 

deductions about lessening of defect concentration upon mixing reagents. Also, the peaks on 

the PXRD spectrum were similarly assigned as in Fig. 3.8.  Upon comparing the graphitic peak 

at two theta of 25°, D1A3 N-CNTs were less crystalline than D1A0 at 900-1000 °C and this 

can be explained by the high nitrogen doping in D1A3 unlike at lower temperatures (Table 3.2 

- 3.3).  Whereas, an analysis of rest of the peaks showed an opposite trend probably due to the 

high defect nature in D1A0 than D1A3 N-CNTs.  The general trend observed was increase in 

crystallinity of both Fe3C and N-CNTs with increase in temperature for both D1A0 and D1A3 

(Fig. 3.22).  
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Fig. 3.22.  The powder X-ray diffraction spectrums for (a) D1A0 and (b) D1A3 N-CNT 

samples synthesised at different temperatures. 

 

The current results show several attributes when compared to most similar studies in literature; 

for instance, the nitrogen content was higher than most of the literature values obtained from 

analogous experimental set-ups [3.2,3.12,3.21].  The nitrogen content obtained was 

comparable to what Ombaka et al., [3.38] obtained after introducing oxygen to acetonitrile.  

The selectivity towards formation of tubes rather than other shaped carbon nanomaterials (such 

as amorphous carbon, spheres and nano-rods, amongst others) was one of the key attributes of 

the current approach when compared to other works [3.1,3.2,3.4,3.8,3.18].  Also, it was a 

simpler strategy of tailoring physicochemical properties such as dimensions and chemical 

moieties, amongst others. 

 

3.4. Conclusions 

Varying the sp3:sp hybridised nitrogen source ratio can be a manipulative step towards tailoring 

N-CNT growth dynamics and physicochemical properties.  This can change several 

physicochemical properties such as inner and outer diameter, number tube walls, porosity and 

nitrogen content and moieties towards desired parameters.  Increase in the ratio of acetonitrile 

(sp ratio) in the reagent solution increased wall thickness but reduced BET surface areas 

whereas higher DMF (sp3 ratio) introduced coiling and wrinkling in some tubes.  The sp3 

hybridised nitrogen containing hydrocarbon was a better source of nitrogen than sp.  DMF gave 

N-CNTs with high values of pore volume and the associated inner diameters were enhanced 
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by increasing synthesis temperatures.  Number of N-CNT walls from sp3 nitrogen source, 

DMF, can be controlled by varying the synthesis temperature.  Both synthesis temperature and 

sp: sp3 mixing ratio have an influence in the number of tube walls.  The enhancement of N-

doping in N-CNTs by mixing sp3 and sp hybridised N sources is subject to synthesis 

temperature.  The main N functionality in the N-CNTs reported herein was pyrrolic.  N-CNTs 

synthesised at 900 °C from both sp: sp3 hybridised nitrogen source ratios of 1:0 and 1:3 had 

the lowest residual iron and highest N-CNTs composition.  Therefore, according to the current 

work, DMF and acetonitrile in 1:3 ratio and 900 °C were the best synthesis conditions for N-

CNTs. 
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Appendix: Supporting information for Chapter 3 

 

Table 3.S1:  Elemental composition in reagents 

Mass 
ratios 

Mol ratios % in the reagent/catalyst 
mixture 

Ratios in the catalyst/reagent 
mixture 

 
 

C% N% O% H% Fe% 
Fe:C 
ratio 

Fe:N 
ratio 

Fe:O 
ratio 

O:C 
ratio 

D1A0 D1A0 49.60 18.73 21.55 9.48 0.64 0.0128 0.00068 0.0295 0.4345 
D1A1 D0.36A0.64 52.82 24.00 13.84 8.70 0.64 0.0121 0.00050 0.0460 0.2620 
D1A2 D0.21A0.78 54.38 26.44 10.23 8.31 0.64 0.0117 0.00044 0.0622 0.1881 
D1A3 D0.16A0.84 55.16 27.90 8.18 8.11 0.64 0.0115 0.00041 0.0778 0.1483 
D1A4 D0.12A0.87 55.85 28.78 6.82 7.92 0.64 0.0114 0.00039 0.0934 0.1221 
D1A5 D0.1A0.90 56.24 29.46 5.84 7.82 0.64 0.0113 0.00038 0.1090 0.1038 

           
D0A1 D0A1 58.58 33.37 0.18 7.24 0.64 0.0109 0.00033 3.4800 0.0031 
D1A1 D0.36A0.64 52.82 24.00 13.84 8.70 0.64 0.0121 0.00050 0.0460 0.2620 
D2A1 D0.53A0.47 51.55 21.95 16.87 8.99 0.64 0.0123 0.00056 0.0377 0.3273 
D3A1 D0.63A0.37 51.07 20.98 18.23 9.09 0.64 0.0125 0.00059 0.0349 0.3369 
D4A1 D0.69A0.31 50.77 20.49 18.91 9.19 0.64 0.0125 0.00061 0.0337 0.3725 
D5A1 D0.74A0.26 50.48 20.20 19.40 9.29 0.64 0.0126 0.00062 0.0328 0.3843 

 

 

Table 3.S2:  The average outer-diameter (OD), inner-diameter (ID) and compartment sizes 

Sample OD (nm) ID (nm) Thickness 

(nm) 

Number 

of walls 

Compartment 

size (nm) 

D0A1 136.78 41.55 95.22 141 36.32 

D1A1 115.07 74.93 40.14 60 45.47 

D2A1 31.75 20.82 10.94 17 26.60 

D3A1 51.40 39.40 12.00 19 25.05 

D4A1 37.26 24.12 13.15 20 23.11 

D5A1 51.95 37.64 14.31 22 29.13 

      

D1A0 30.79 21.50 9.29 15 21.52 

D1A1 115.07 74.93 40.14 60 45.47 

D1A2 42.70 23.12 19.58 30 31.36 

D1A3 55.71 36.43 19.28 29 29.78 

D1A4 59.95 42.35 17.59 27 44.23 

D1A5 47.05 28.84 18.20 28 32.25 
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Table 3.S3:  The average OD, ID and compartment sizes for samples D1A0 and D1A3. 

Sample Temperature OD (nm) ID (nm) Thickness 

(nm) 

Number 

of walls 

Compartment 

size (nm) 

D1A0 

800 23.29 14.29 9.00 13 20.54 

850 42.43 30.30 12.13 19 43.99 

900 31.18 17.75 13.43 21 20.80 

950 47.13 30.07 17.06 26 21.23 

1000 82.14 53.20 28.94 44 36.46 

D1A3 

800 34.85 21.81 13.03 20 30.99 

850 55.02 37.37 17.64 27 31.91 

900 55.71 36.43 19.27 29 29.78 

950 68.29 50.88 17.41 27 36.58 

1000 53.67 36.48 17.20 26 29.18 

 

 

Fig. 3.S1.  The distribution of products of (a) D1Ax, (b) DxA1, (c) D1A0 and (d) D1A3. 
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Fig. 3.S2.  The representative OD for the D1Ax samples (a) D1A0, (b) D1A1, (c) D1A2, (d) 

D1A3, (e) D1A4 and (f) D1A5. 

 

 

Fig. 3.S3.  The representative OD for the DxA1 samples (a) D0A1, (b) D1A1, (c) D2A1, (d) 

D3A1, (e) D4A1 and (f) D5A1. 
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Fig. 3.S4.  The representative ID for the D1Ax samples (a) D1A0, (b) D1A1, (c) D1A2, (d) 

D1A3, (e) D1A4 and (f) D1A5. 

 

Fig. 3.S5.  Compartment sizes for the D1Ax samples (a) D1A0, (b) D1A1, (c) D1A2, (d) D1A3, 

(e) D1A4 and (f) D1A5. 
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Fig. 3.S6.  The representative ID for the DxA1 samples (a) D0A1, (b) D1A1, (c) D2A1, (d) 

D3A1, (e) D4A1 and (f) D5A1. 

 

 

Fig. 3.S7.  Compartment sizes for the DxA1 samples (a) D0A1, (b) D1A1, (c) D2A1, (d) D3A1, 

(e) D4A1 and (f) D5A1. 
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Fig. 3.S8.  The OD for D1A0 samples synthesised at (a) 800 °C, (b) 850 °C, (c) 900 °C, (d) 

950 °C and (e) 1000 °C. 

 

 

Fig. 3.S9.  The ID for D1A0 samples synthesised at (a) 800 °C, (b) 850 °C, (c) 900 °C, (d) 950 

°C and (e) 1000 °C. 
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Fig. 3.S10.  The compartment sizes for D1A0 samples synthesised at (a) 800 °C, (b) 850 °C, 

(c) 900 °C, (d) 950 °C and (e) 1000 °C. 

 

 

Fig. 3.S11.  The OD for D1A3 samples synthesised at (a) 800 °C, (b) 850 °C, (c) 900 °C, (d) 

950 °C and (e) 1000 °C. 
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Fig. 3.S12.  The ID for D1A3 samples synthesised at (a) 800 °C, (b) 850 °C, (c) 900 °C, (d) 

950 °C and (e) 1000 °C. 

 

 

Fig. 3.S13.  The compartment sizes for D1A3 samples synthesised at (a) 800 °C, (b) 850 °C, 

(c) 900 °C, (d) 950 °C and (e) 1000 °C. 

 



 

 

151 

 

 

 

Fig. 3.S14.  The C1s XPS spectra for representative N-CNT samples. 

 

 

Fig. 3.S15.  The Raman representative spectrum for N-CNT samples, D4A1 N-CNTs. 



 

 

152 

 

 

Fig. 3.S16.  A representative thermogram of the purified N-CNT samples showing an almost 

zero residual catalyst mass. 

 

  



 

 

153 

 

Chapter Four 

 

 

 

  



 

 

154 

 

Effect of graphite/sodium nitrate ratio and reaction time 

on physicochemical properties of graphene oxide 

Edwin T. Mombeshora,1 Patrick G. Ndungu2 and Vincent O. Nyamori1 * 

1School Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private 

Bag X54001, Durban, 4000, South Africa 

2Department of Applied Chemistry, University of Johannesburg, P.O. Box 17011, 

Doornfontein, Johannesburg, 2028, South Africa  

 

Graphical abstract  

 

 

   



 

 

155 

 

Abstract 

Graphene oxide (GO) synthesis was done by varying graphite: sodium nitrate ratio and the 

reaction time.  The study aimed at investigating the optimum graphite: sodium nitrate ratio and 

reaction time for obtaining the highest oxygen content in GO and it also explained the effect 

of oxygen content on physicochemical properties.  GO was characterized by transmission 

electron microscopy, scanning electron microscopy, atomic force microscopy, powder X-ray 

diffraction, Raman spectroscopy, infra-red spectroscopy, thermogravimetric analysis, 

ultraviolet-visible spectrophotometry, and elemental analysis.  Increasing sodium nitrate ratio 

amplified elemental oxygen content, BET surface area, pore volume and pore size but reduced 

crystallite sizes in the GO samples.  Variation in reaction time did not show a clear trend in 

terms of oxygen amount.  Physicochemical properties such as d-spacing and defect intensity 

increased whilst thermal stability decreased with increase in oxygen elemental properties.  

Varying graphite: sodium nitrate ratio and reaction time modifies physicochemical properties 

such as oxygen content, crystallinity, thermal stability and overall morphology. 

Keywords:  graphene oxide; oxygen content; reaction time; carbon; Hummer’s method 

* Corresponding author:  Vincent Nyamori, School of Chemistry and Physics, University of 

KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa 

Email: nyamori@ukzn.ac.za Tel.: +27-31 2608256;  Fax: +27-31 260 3091 

 

4.1 Introduction  

Graphene is one of the thinnest known material and there have been numerous reports in the 

open literature since its discovery [4.1, 4.2].  The most explored aspect of graphene in these 

reports, even though some biomedical [4.3] and hydrogen storage [4.4] applications exist in 

literature, is electronic properties.  Graphene has found numerous applications as both electron 

and hole transport layer in solar cells [4.5-4.13], as additives in batteries [4.14-4.16], components for 

field emission cathodes [4.17-4.19], transistors [4.20] and as electrochemical capacitors [4.2].  Single 

layers of graphene were initially made via mechanical separation of sheets [4.1].  However, 

availability of graphene oxide in solution has allowed functionalization, characterization and 

processing of graphene layers through numerous solution-based techniques [4.21].  This is 

facilitated by ionizability and hydrophilicity of most oxygen moieties on GO sheets [4.22]. 

mailto:nyamori@ukzn.ac.za
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The chemical route especially the modified Hummers methods are the most popularly utilized 

in graphene, a two-dimensional single atomic layer of sp2 carbon atoms, synthesis [4.1,4.23-4.26].  

The chemical route is easy, scalable and associated with reasonable costs [4.24,4.27-4.29].  The 

structural properties of graphene due to preparation routes via graphene oxide (GO) has 

attracted much attention due to their influence on quantum Hall effect, sensitivity, mechanical 

hardness, hydrophilicity, sheet size, defects and electrical conductivity amongst others 

[4.23,4.24,4.27,4.30,4.31].  For instance, even though GO from chemical oxidation is a suitable 

precursor of graphene, oxidation reduces conductivity but enhances exfoliation in water under 

ultrasonic treatment [4.24].  Additionally, in practice GO can only be partially reduced to form 

graphene-like sheets, i.e. only partial restoration of the conjugation system is achieved [4.25].  

Therefore, it is critical to select suitable graphene synthesis parameters on the basis of intended 

application. 

The main role of NaNO3 in the Hummers methods is oxidizing effect [4.32], it aids H2SO4 and 

KMnO4.  Additionally, H2O2 also has an oxidizing effect via its decomposition to active oxygen 

atoms that oxidize graphite in the presence of H2SO4 
[4.32].  Also, H2O2 reduces residual 

permanganate and manganese dioxide to a colourless manganese sulfate during the reaction.  

More research is still needed in understanding the synthesis routes for a number of reasons 

such as the exact GO structure elucidation [4.23,4.33] and the elimination of sodium nitrate 

because it generates toxic gases, NO2 and N2O2.  The main reason, amongst others, is the 

sample variation due to different synthesis parameters and therefore lack of standardized 

products [4.33].  This study brings out some insights towards controllable oxidation of graphite 

to GO.  Also, a few studies have been dedicated to synthesis conditions.  Similar studies were 

done on effect of oxidation time on graphite exfoliation using perchloric and nitric acids, and 

potassium chromate [4.29].  Wu and Ting [4.28] investigated the effect of sodium nitrate to 

potassium permanganate ratio using a fixed graphite amount on GO yield.  They proposed that 

to form GO, Na+ and NO3
- are initially intercalated (equation 1) followed by reaction of 

expandable graphite with diamanganese heptoxide i.e. oxygen containing moieties from the 

KMnO4 hydrolysis [4.33] (equation 3).   

 𝐶(𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒) + 𝑁𝑎𝑁𝑂3 → 𝐶𝑁𝑎𝑁𝑂3                                                                                                        (1) 

4 𝐾𝑀𝑛𝑂4 + 2𝐻2𝑂 → 4𝐾𝑂𝐻 + 4𝑀𝑛𝑂2 + 3𝑂2                                                                             (2) 

𝐶𝑁𝑎𝑁𝑂3 + 𝑛𝑂2 →    𝐺𝑂                                                                                                                          (3) 
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This hints on the importance of the ratio of graphite to sodium nitrate in the synthesis of GO.  

This work highlights that the initial step in GO synthesis is affected by graphite to sodium 

nitrate ratio.  Hence, the study elaborates the outcomes when either sodium nitrate or graphite 

mass was in excess as well as when it was the same.  The influence of reaction duration on the 

physicochemical properties of GO is also explained.   

 

4.2 Experimental 

This section describes the materials, chemicals and other experimental parameters. 

 

4.2.1 Materials 

The procurement of graphite powder (< 150 µm, 99.99%) was from Sigma Aldrich, USA.  

KMnO4 (99%) and NaNO3 (99%) were both purchased from Associated Chemical Enterprise, 

South Africa.  H2SO4 (98.37%, C.C. Imelmann Ltd, South Africa) was used as-received 

without dilution and H2O2 (30%, Merck ltd, South Africa) was diluted to the required 

concentrations in the respective methods as stated in the subsequent procedures.  The product 

was washed with double deionized water (DI).  

 

4.2.2 Method 

In the general procedure, graphite was added to a round-bottomed flask with H2SO4 (98%, 12 

mL) cooled in an ice water bath and stirred.  After stirring for a few minutes, sodium nitrate 

was added to this mixture and allowed to further stir for 30 minutes.  Thereafter, to the mixture, 

KMnO4 (1.5 g) was slowly added while maintaining the temperature below 10 ℃.  Afterwards, 

the reaction mixture was further stirred at room temperature for the required duration and DI 

(15 mL) was added slowly.  The reaction temperature was raised to 98 ℃ and maintained for a 

specified time under stirring.  H2O2 (30%, 50 mL) was added to the mixture prior to several 

cycles of washing using DI until the filtrate was at neutral pH.  The samples were dried at 50 

℃ for 48 hours.  The samples used to investigate effect of graphite: sodium nitrate ratios, i.e. 

2:1, 1:1 and 1:2, were named as G2N1-t12,24, G1N1-t12,24 and G1N2-t12,24, respectively.  Where 

t12,24 in this case means each sample was stirred for 12 hours at room temperature and 24 hours 
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at 98 ℃.  Another series of samples with graphite: sodium nitrate ratios of 1:1 were synthesised 

and used to study the effect of reaction times.  They were named as G1N1-t3,3, G1N1-t6,12, 

G1N1-t12,12, G1N1-t12,24, where the subscript t and the two sets of numbers refers to the reaction 

time at room temperature and at 98 ℃, respectively.   

Similarly, samples G2N1-t0,0.25 and G1N1-t3,0 were synthesised as above, however with some 

slight variations, i.e. as for G1N1-t3,0, the graphite: sodium nitrate ratio was 1:1 and the mixture 

was heated for 3 hours at 35 ℃.  Thereafter, 3% H2O2 (150 mL) was added slowly followed by 

stirring for 30 minutes.  This was done to investigate outcomes if reaction at room temperature 

in the previous series was changed to 35 ℃, a higher temperature without ramping temperature 

to 98 ℃.  Whereas for G2N1-t0,0.25, the graphite: sodium nitrate ratio was 2:1 and the 

temperature of the mixture was raised to 50 ℃.  Thereafter, it was ramped to 98 ℃ and 

maintained at this temperature for 15 minutes.  The reason for this case was to determine 

outcomes when reaction at room temperature in previous series was changed to 50°C, an 

intermediate temperature before reaction at 98°C for a short time of 15 minutes. 

 

4.2.3 Materials characterization 

Structures of the GO were examined with transmission electron microscopy (TEM, JEOL TEM 

1010 transmission electron microscope) and scanning electron microscopy (SEM, JEOL JSM 

6100 microscope).  The GO sheet roughness was analysed in the tapping mode and in the 

micron level using as-synthesized sheets without use of a substrate using an atomic force 

microscopy (AFM, Bruker Inova).  Images were captured and processed using Nano Drive 

software and Nanoscope analysis, respectively.  The crystal structures of the GO samples were 

characterized by means of an X-ray diffractometer (Rigaku MiniFlex 600).  The graphitic 

crystal quality was analyzed by Raman spectroscopy (100 mW Delta Nu Advantage 532TM 

spectrometer of 10 cm-1 resolution with a 2D CCD detector and grating lines were 1800 mm-1 

with a laser source (Nd:YAG) at wavelength of 532 nm).  Thermal stability analyses were done 

with TGA thermal analyser (TA Instruments Q seriesTM Thermal Analyser DSC/TGA (Q600) 

with TA instruments Universal Analysis 2000 software for data acquisition and analysis) from 

room temperature to 1000 ℃.  Absorption characteristics were investigated with a Uv-Vis 

spectrometer (Perkin Elmer Lambda 35 double beam spectrometer with FL Winlab software) 

and infra-red transmission spectra were taken by Perkin Elmer spectrometer (Perkin Elmer 

spectrum 100 series with universal ATR accessory).  Samples were prepared for textural 



 

 

159 

 

characterisation by degassing at 90 ⁰C for one hour then at 200 ⁰C for 10 hours.  Nitrogen 

sorption analyses were done using a Micromeritics TRI STAR 3020V1.03(V1.03) instrument 

at 77 K in nitrogen.  Elemental compositions determinations were done by use of LECO 

CHNS-932 elemental analyzer standardized with acetanilide. 

 

4.3 Results and discussion 

The samples were named according to the parameter under study and physicochemical 

properties of the materials synthesized were determined with PXRD, TGA, FT-IR, Uv-Vis, 

Raman, AFM, SEM and TEM.  

 

4.3.1 Microscopic studies 

The shape and morphology of GO was studied via TEM and SEM, respectively, whereas 

topography was done with AFM technique.  

 

4.3.1.1 Transmission electron microscopy 

TEM images show formation of transparent and wrinkled, paper-like materials, upon oxidative 

treatment of graphite at different ratios (Fig. 4.1).  Such observations indicate graphite layer 

exfoliation and introduction of defects on the GO layers due to incorporation of oxygen atoms.  

All samples showed these traits regardless of reaction ratios of graphite and NaNO3.  Similar 

observations have been reported for typical GO synthesised by modified Hummer’s methods 

[4.32].  On comparison, images in Fig. 4.1(b-d) showed different levels of transparency, and this 

is an indication of exfoliation.  A possible explanation is that different ratios of graphite to 

NaNO3 generated different levels of intercalated GO intermediate that facilitated different 

extents of exfoliation of layers upon release of oxygen molecules from the hydrolysis of 

KMnO4.  
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Fig. 4.1  TEM images for (a) graphite and GO samples from (b) G2N1-t12,24, (c) G1N1-t12,24 

and (d) G1N2-t12,24. 

 

4.3.1.2 Scanning electron microscopy 

SEM was used to further characterize the GO samples microscopically.  Images of the samples 

obtained from SEM show different degrees of geometric wrinkling and rippling (Fig. 4.2).  

Such morphological variations are caused by nanoscale interlocking of GO nanosheets [4.34] 

shown in Fig 4.2b.  On comparing starting material with the obtained products, SEM images 

clearly showed that the pristine graphite comprised of irregularly shaped flat platelet like 

structures with very little wrinkling or corrugation, typically observed with graphite unlike the 

GO samples.  GO samples were arranged more intermittently edge to edge (Fig. 4.2 b-d).  This 

is an indication of the effect of oxidative treatment on graphite morphology.  Repulsive forces 

were generated between graphene layers as the increase in number of oxygen-containing 

groups [4.30] on the GO sheet were facilitated by the increase in ratio of NaNO3 supplied for the 

initial step.  Similar corrugation has been reported in material development towards better 

electron transport relative to basal graphite plane [4.34], their study inferred that once corrugated 

GO morphology is formed from graphite, superior electronic properties are attained.  Hence, 
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the high NaNO3: graphite ratios during GO synthesis can be used to tailor materials towards 

excellent electronic properties in this regard. 

 

 

Fig. 4.2  SEM images for (a) graphite and SEM images of GO samples from (b) G2N1-t12,24, 

(c) G1N1-t12,24 and (d) G1N2-t12,24. 

 

Different graphite: sodium nitrate ratios culminated in different extends of agglomeration and 

was ranked as pristine graphite (Fig 4.2a) ˃ G2N1-t12,24 (Fig 4.2b) ˃ G1N2-t12,24 (Fig4. 2d) ˃ 

G1N1-t12,24 (Fig 4.2c).  The contrast with Fig 4.2b and remanence of structure (some 

agglomeration between sheets) is indicative of less exfoliation, and agglomeration between 

sheets.  The lower contrast with Fig 4.2c and Fig 4.2d, is that because of a greater amount of 

exfoliation, and greater amount of sheet like structures.  This corroborates with the idea of 

creation of repulsive forces between GO sheets during synthesis. 
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4.3.1.3 Atomic force microscopy 

The various wrinkling levels observed in the micron level, due to the different graphite: sodium 

nitrate ratios, culminated in different surface roughness (Fig. 4.3 a-d).  This was attributed to 

the introduction of oxygen moieties onto the sheet inducing structural disorder.  Such 

observations have been reported in literature by several authors [4.22,4.35].  The samples can be 

ranked in terms of roughness as G2N1-t12,24 ˃ G1N2-t12,24 ˃ graphite ˃ G1N1-t12,24 (Table 4.S1 

in supplementary information).  This inferred that matching mass ratios of graphite to sodium 

nitrate (1:1) reduces GO sheet roughness relative to pristine graphite whilst a mismatch 

enhances it.  This can be explained with reference to the intercalation mechanism, an equal 

graphite: sodium nitrate mass ratio culminates in uniform Na+ and NO3
- intercalation between 

sheets, hence less sheet roughening. 

 

 

Fig. 4.3  The AFM images for (a) graphite and GO samples from (b) G2N1-t12,24, (c) G1N1-

t12,24 and (d) G1N2-t12,24. 

 

Comparison of Fig. 4.3b-d, highlights G1N1-t12,24 (1:1 graphite: sodium nitrate ratio) to have 

the most sharp-point projections whilst G2N1-t12,24 (2:1 ratio) was the least.  Quantification of 

surface roughness indicated the effects of reagent ratios, the G1N1-t12,24 and G2N1-t12,24 
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corroborated with lowest and highest values, respectively, for both root mean square roughness 

(Rq) and average roughness (Ra) measurements (Table 4.S1 in supplementary material).   

 

4.3.2 Powder X-ray diffraction 

The peak at 2θ of 30° was associated with a d-spacing of 0.34 nm and was assigned to 002 

plane of graphite (Fig. 4.S1 and Table 4.1) [4.32,4.36].  The main peak for pristine graphite was at 

2θ of 30° and other less prominent peaks at 25°, 50° and 63° (Fig. 4.S1a in supplementary 

material).  Both G2N1-t12,24 and G1N2-t12,24 still had a peak at 2θ of 30° after the oxidation 

reaction (Fig. 4.S1b) and this means an initial mass ratio mismatch of graphite relative to 

NaNO3 in the starting material resulted with some residual graphite.  Only G1N1-t12,24 had no 

peak at 2θ of 30° and this means only 1:1 graphite: sodium nitrate ratio resulted in completion 

of the reaction.  The oxidative treatment resulted in the appearance of a new peak at 2θ of 13° 

(Fig. 4.S1b in supplementary material and Table 4.1).  This peak was associated with a d-

spacing of 0.80 nm and a 001 plane, it is attributed to increase in interlayer spacing along the 

c-axis due to oxygen functionalities from the oxidation process [4.23,4.27,4.32,4.36].  The peak is an 

indication of presence of GO in the product [4.32].  The increase in d-spacing is effected by 

repulsive forces between GO layers [4.37] and a possible explanation is the destruction of of H-

bonding and  𝜋 − 𝜋 interactions [4.38]. 

The d-spacing declined with a decrease in the ratio of graphite to sodium nitrate, i.e. 2:1, 1:1 

and 1:2 in the starting material (indicated by data for G2N1-t12,24, G1N1-t12,24 and G1N2-t12,24 

in Table 4.1, respectively).  As the ratio of graphite: sodium nitrate was varied from 2:1, 1:1 

and 1:2 in the starting materials, the full width at half maxima (FWHM) of the peak at 2θ of 

13° increased (Table 4.1).  This is indicative of decrease in crystallite sizes as graphite: sodium 

nitrate ratio decreases.  A possible inference is that a higher amount of Na+ and NO3
- initially 

intercalated reduces the crystallite sizes of the ultimate GO layers.  
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Table 4.1 Summary of Powder X-ray diffraction data for samples synthesised using 

different ratios of graphite: sodium nitrate. 

Sample 2θ d-spacing (nm) 
FWHM 

(deg) 

Graphite 30.92 0.34 0.22 

G2N1-t12,24 
13.22 0.78 0.82 

30.58 0.34 0.93 

G1N1-t12,24 13.33 0.77 2.79 

G1N2-t12,24 
13.61 0.76 3.35 

30.76 0.34 4.99 

 

4.3.3 Textural characteristics 

Textural characteristics studies of the GO samples indicate that the oxidation treatment of the 

graphite sheets significantly enhanced the BET surface area (Table 4.2).  This is due to the 

contribution of the spaces between sheets as indicated by the increase in d-spacing (Table 4.S1 

in supplementary material) due to enhanced repulsive forces between them.  Additionally, the 

increase in BET surface area, BJH pore volume and pore sizes corroborated with decrease in 

crystallinity as inferred by the peak at 2θ of 13° ( Fig 4.S1 in supplementary material and Table 

4.2), i.e. G2N1-t12,24 ˃ G1N1-t12,24 ˃ G1N2-t12,24.  This is due to the decrease in crystallite sizes 

as deduced from PXRD analysis data as graphite: sodium nitrate ratio decreases. 

 

Table 4.2  Textural characteristics of GO synthesized at different graphite: sodium 

nitrate ratio. 

Sample Surface area (m g-1) Pore volume (cm3 g-1) Pore size (nm) 

Graphite 2.32 0.010 14.87 

G2N1-t12,24 8.10 0.006 4.50 

G1N1-t12,24 185.43 0.260 6.36 

G1N2-t12,24 187.85 0.980 23.87 

 

From the textural characteristics data (Table 4.2), it is clear that only graphite: sodium nitrate 

ratio of 1:2 enhances pore size of graphite.  Porosity in GO samples culminates from voids 

between layers and this corroborates with earlier explanations in that higher sodium nitrate 

ratio enhances the cavities between layers. 
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4.3.4 Raman analysis 

The common peaks often encountered in vibrational analyses of GO by the Raman 

spectroscopy are the G-, G’- and D-bands at 1580, 2700 and 1350 cm-1, respectively 

[4.22,4.39,4.40].  Similarly, in the current work, Raman peaks were observed at the aforementioned 

peak positions.  The D- and G’-bands were attributed to sp3 bonding defects and second order 

Raman scattering, respectively.  The G-band was associated with the tangential in-plane 

graphitic sp2 hybridised carbons [4.40].  In the current work, a comparison of the effect of 

graphite: sodium nitrate ratio culminated in changes in the G-band (Fig. 4.4a), this peak was 

not observable in the starting material, i.e., graphite.  The spectra in Fig. 4.4a showed that as 

the ratio of sodium nitrate was increased the width and intensity of the G-band also increased.  

The intensity of G-band is proportional to the number of GO layers [4.40].  Therefore, the sample 

ranking in terms of number of layers was G1N2-t12,24 > G1N1-t12,24 > G2N1-t12,24 (Fig. 4.4a), 

hence it may be deduced that a higher ratio of NaNO3 leads to poor exfoliation of layers. 
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Fig. 4.4  (a) Raman spectroscopy G-band for graphite and GO at different mass ratios and (b) 

ID/IG ratios. 

 

The slight shift in the G-band position observed in Fig. 4.4a showed that varying graphite: 

sodium nitrate ratios resulted in deviations in the distribution of oxygen-containing groups [4.27].  

The ratio of the area under D- and G-bands (ID/IG) is often used as measure of the graphitic 

nature.  In the current work, it is an indication of variation in both defects on the GO sheet and 

content of oxygen-containing moieties [4.37].  The order of the ID/IG ratio was G1N2-t12,24 > 

G1N1-t12,24 > G2N1-t12,24 (insert in Fig. 4.4b).  This clearly means ID/IG ratio was sensitive to 

proportion of the NaNO3 in the reaction, i.e., the higher the amount of NaNO3 the higher the 

defect density detected by Raman spectroscopy [4.41].  This corroborates with the decrease in 

crystallinity according to PXRD spectrum (Fig 4.S1b in supplementary material).  This can be 

attributed to the development of an amorphous character on graphite sheet upon oxidation [4.22]. 

 

4.3.5 Thermal stability 

A GO sample decomposed in several stages (Fig. 4.5a), the weight loss due to moisture and 

interstitial water was at ca. 100 ℃.  The thermal stability of adsorbed water is influenced by 

interactions with oxygen-containing groups on GO surface [4.32,4.37].  Water strongly interact 

with GO via hydrogen bonding [4.33].  The loss at ca. 200 ℃ can be assigned to loss due to sp3 
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hybridized carbons in the GO network, introduced by the oxidative treatment, i.e. carboxyl 

moieties [4.42].  The decline at ca. 450 ℃ and 800 ℃ (Fig. 4.6a), for GO and graphite samples, 

respectively, was due to sp2 carbon atoms in the hexagonal structure.  This implies that thermal 

decomposition temperature decreased after the oxidative reactions (Fig. 4.6b) and the reduction 

of thermal stability of GO relative to graphite corroborates with the findings by El-Khodary et 

al. [4.32]  The decrease in decomposition temperature of hexagonal carbons relative to pristine 

graphite was due to various degrees of strains introduced onto the graphitic framework via the 

oxidative treatment.   

 

Fig. 4.5 Thermogravimetric analysis (a) thermogram and (b) derivative weight curve in oxygen, 

and under nitrogen (c) thermogram and (d) associated derivative weight curve. 

 

No clear trend was observed in terms of thermal stability in air, for instance, below 450 ℃ 

G1N2-t12,24 was the least thermally stable but was ranked second above that temperature (Fig. 

4.5a).  To further investigate the degree of oxidative treatments, thermal stability studies were 

done under nitrogen atmosphere (Fig. 4.5c and 4.5d).  Similar trends were observed and the 
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loss between 150 and 300 ℃ implied the presence of oxygen-containing moieties in carbon 

networks, and particularly carboxylic acid groups [4.27,4.37].  The loss from 350 to 800 ℃ was 

assigned to decomposition of carbonyl groups formed on the graphite surface, i.e. more stable 

oxygen-containing functionalities [4.23,4.32].  A clear ranking in terms of oxygen moieties content 

in the product was obtained when TGA was performed under nitrogen, i.e. G1N2-t12,24 > G1N1-

t12,24 > G2N1-t12,24 (Fig. 4.5c and 4.5d).  This infers that NaNO3 enhances the oxidation reaction 

of graphite.  The order of thermal stability was opposite to the content of oxygen functionalities; 

this means increase in oxygen content reduced thermal stability.  Graphite had no weight loss 

in nitrogen and this means atleast 30% of oxygen-containing groups were introduced during 

the oxidation reactions (Fig. 4.5c).  The thermogram also show that GO was composed of a 

variety of oxygen-containing moieties [4.24] and this is indicated by a weight loss of about 70% 

at 900 ℃.  From the comparison of TGA curves under nitrogen, it is clear that the lower the 

graphite: sodium nitrate ratios the higher the amount of oxygen-containing groups in the 

sample. 

 

4.3.6 Uv-Vis analysis 

In Uv-Vis analyses, the peak at ca. 200 nm red shifted in all samples and the corresponding 

absorption intensity was stronger relative to pristine graphite (Fig. 4.6).  This peak was assigned 

to 𝜋 → 𝜋* transition and this is associated with the transmission from C=C aromatic moieties 

[4.27,4.30,4.43].  This means oxidative treatment involved in GO synthesis did not severely interfere 

with the conjugation in the 𝜋 system.  The presence of the peak also suggests existence of more 

extensive oxygen-containing groups on GO surface that weakens van der Waals forces 

originally on graphite [4.27]. 
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Fig. 4.6  The Uv-Vis samples at different mass ratios of reagents. 

 

G1N1-t12,24 and G1N2-t12,24, especially the latter, had shoulder peaks at 308 and 235 nm, 

respectively.  These peaks were assigned to 𝜋 → 𝜋* transition of C=O and COOH groups 

[4.27,4.43].  This means lower graphite: sodium nitrate ratio during GO synthesis tailors the 

graphite towards visible light absorption range via introduction of substantial content of 

oxygen-containing moieties. 

 

4.3.7 IR analysis  

From the ATR analyses, several new peaks appeared in the obtained products (Fig. 4.7).  All 

samples had a broad peak at ca. 3500 cm-1 which is due to O-H (H-bonded) stretch vibration.  

The peak at ca. 2700 cm-1 due to overlap C-H stretching vibrations on graphite disappeared 

after oxidative treatment.  Additionally, the peak at ca. 2300 cm-1 disappeared on the spectrum 

of G1N1-t12,24.  The peak at ca. 2000 cm-1, due to C=C asymmetric stretch, was red-shifted on 

all GO samples (Fig. 4.7).  Peaks at 1615 and 1720 cm-1 assigned to in plane C=C stretch 

(oxidised sp2 C=C bonds in ring) and C=O stretch (COOH of carbonyl or carboxyl groups), 

respectively, appeared in all samples.  Additionally, all oxidized samples exhibited a new peak 
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at ca. 1340 cm-1 due to O-H deformation (of the C-OH group).  The ATR data clearly suggest 

the introduction of oxygen-containing moieties onto pristine graphite via chemical bonds. 

 

 

Fig. 4.7  ATR for GO samples synthesised from different graphite: sodium nitrate mass ratios.  

 

All oxidatively treated samples had a peak at ca. 580 cm-1, broadest for G1N1-t12,24, from 

sulfur-containing moieties.  This is the same position were diamond, sp3 peak would appear, 

however, since the peak was absent in pristine graphite it means it came from oxidative 

treatments.  This points out on possibility of sulfate groups bonding to O groups during H2SO4 

treatment [4.27].  The absorption peak intensities for all the functional groups were in the 

following order G2N1-t12,24 > G1N2-t12,24 > G1N1-t12,24 (Fig. 4.7). 

 

4.3.8 Elemental analysis  

Elemental analyses were carried out to determine H, N and O elemental composition in the 

products (Table 4.3).  The H, N and O atoms were absent in the pristine graphite.  This means 
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their presence after oxidative treatment is either directly or indirectly linked to synthesis steps.  

From elemental analyses data, it was apparent that 1:1 ratio had the highest N composition, i.e. 

G1N1-t12,24.  The presence of H atoms in all GO samples is attributed to presence of both 

hydroxyl groups and adsorbed water [4.33]; this agrees with weight loss at ca. 100 ℃ in TGA 

curves (Fig. 4.5).  This means some of the oxygen atoms present in the samples was from the 

DI (water molecules).  Only half of the percentage composition of H atoms in Table 4.3 minus 

H atoms due to hydroxyl groups is equivalent to the oxygen atom contribution from DI in each 

sample.  This is because the ratio of H: O is 2:1 in DI, hence, a substantial amount of elemental 

oxygen was introduced onto the graphitic network of the samples. 

 

Table 4.3  Elemental analysis for GO samples. 

Sample name H N O 

Graphite - - - 

G2N1-t12,24 1.46 0.13 27.60 

G1N1-t12,24 1.61 0.45 29.36 

G1N2-t12,24 1.45 0.19 30.18 

 

From elemental analysis, the order elemental oxygen content was G1N2-t12,24 ˃ G1N1-t12,24 ˃ 

G2N1-t12,24 (Table 4.3).  This order verified the deductions from TGA in N2 (Fig. 4.5c and d), 

and this means high NaNO3 ratio culminated in high oxygen content in GO samples.  High 

content of oxygen-containing functionalities agreed with increase in BET surface area, 

porosity, FWHM and decrease in d-spacing and crystallinity (data in Table 4.1 and 4.2).  

Additionally, the large number of layers and increase in defect intensity (G-band intensity and 

ID/IG data in Fig. 4.4) as well as decrease in thermal stability corroborate with high oxygen 

content.  This means the ratio of sodium nitrate during GO synthesis modifies the associated 

physicochemical properties and hence avoiding the use of sodium nitrate brings out some 

variation in the ultimate product.  Furthermore, the data from PXRD, TGA and elemental 

analysis techniques infers that high content of oxygen does not necessarily mean completion 

of reaction.  The oxygen moieties have been reported to facilitate hydration and exfoliation of 

GO sheets in synthesis of graphene [4.30] but the current work suggest that their disruption of 

the 𝜋 system reduces the crystal quality. 
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4.4 Variation of reaction time 

From the earlier sections, it was deduced that the product from 1:1 graphite: sodium nitrate 

ratio had no residual graphite.  Hence, the effect of reaction duration on the obtained GO 

products was studied mainly using this ratio.  Reaction duration variations at both room 

temperatures and at 98 ℃, tA,B, were investigated.  The t3,3 and t12,12 were chosen to compare 

shorter and longer reaction times which were equal at both room temperature and at 98 ℃.  

Additionally, t6,12 and t12,24 were chosen to investigate the effect of reducing and increasing 

reaction time at room temperature and at 98 ℃, respectively.  Whereas t0,0.25 and t3,3 were 

selected to further study the influence of even shorter reaction times relative to t3,3 and to 

determine if a higher temperature instead of room temperature followed by no reaction or a 

shorter reaction at 98 ℃, respectively, would introduce substantial elemental oxygen in the 

samples. 

 

4.4.1 Microscopic studies 

Similarly, microscopic analyses were done with the AFM, SEM and TEM techniques. 

 

4.4.1.1 Transmission electron microscopy 

There was no clear relationship between reaction durations and exfoliation levels detectable 

from TEM.  Longer reaction times, except for G2N1-t0,0.25, led to small GO fragments as shown 

in Fig. 4.8.  Since samples were prepared similarly for TEM analysis, it means prolonged 

stirring during GO synthesis break GO sheets into smaller fragments.  The unusual observation 

on G2N1-t0,0.25 is due to slight variations in the synthesis method (experimental section), i.e. a 

combination of variation in both reagent ratio, minimal reaction time and temperature. 
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Fig. 4.8  TEM images for GO samples (a) G2N1-t0,0.25, (b) G1N1-t3,0, (c) G1N1-t3,3, (d) G1N1-

t6,12, (e) G1N1-t12,12 and (f) G1N1-t12,24. 

 

4.4.1.2 Scanning electron microscopy 

Similar morphological observations were obtained from SEM analysis of GO samples 

synthesized by varying reaction durations, i.e. wrinkling and rippling of GO sheets (Fig. 4.S2).  

The synthesis conditions for G2N1-t0,0.25 and G1N1-t3,0, despite shorter reaction times, 

introduced significant wrinkling of GO sheets (Fig. 4.S2 a-b in supplementary material).  The 
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morphology of the sample G1N1-t3,3 was closer to that of pristine graphite and this can be 

explained by the introduction of fewer defects on the GO sheets due to the shorter reaction time 

(Fig. 4.2c and Fig. 4.S2 c-e in supplementary material). 

 

4.4.1.3 Atomic force microscopy 

Similarly, different surface topography culminated from varying reaction time at constant 

graphite: sodium nitrate ratio (Fig. 4.9 b-f).  Comparison of GO relative to reaction times, from 

3 to 24 hours, shows that the spike-like topography was generated as reaction time increased 

(Fig. 4.9 c-f).  However, G1N1-t3,0 exhibited the most spike-like projections and this can be 

attributed to the minor variations in the synthesis method.  The roughening of the sheets is an 

indication of oxidation [4.22]. 

  



 

 

175 

 

 

Fig. 4.9  The AFM images for GO samples (a) G2N1-t0,0.25, (b) G1N1-t3,0, (c) G1N1-t3,3, (d) 

G1N1-t6,12, (e) G1N1-t12,12 and (f) G1N1-t12,24. 

 

In terms of reaction duration, 12 hours tends to be the threshold for highest Ra and Rq values, 

when samples G1N1-t3,3, G1N1-t6,12, G1N1-t12,12 and G1N1-t12,24 were compared (Table 4.S2 

in supplementary material).  Again, the samples with the most pronounced roughened sheet 

surfaces, i.e. G1N1-t3,0 and G1N1-t12,24 tend to be the least roughened.  
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4.4.2 Powder X-ray diffraction 

The oxidative treatment resulted in the appearance of a new peak at 2θ of 13° and the 

corresponding peak for G1N1-t3,0 was blue shifted from the rest (Fig. 4.S3b in supplementary 

material and Table 4.4).  Only G1N1-t3,0 and G1N1-t12,24 did not show the peak at 2θ of 30° 

after oxidation (Fig. 4.S3b) and this infers reaction completion.  Ranking in terms of residual 

graphite, as determined from Fig 4.S3, is G1N1-t12,24 < G1N1-t3,0 < G1N1-t6,12 < G1N1-t12,12 < 

G1N1-t3,3 < G2N1-t0,0.25.  For G2N1-t0,0.25, it means the synthesis conditions, i.e. the 

combination of reaction duration, temperature and graphite: sodium nitrate ratio did not 

introduce substantial number of oxygen-containing moieties on all the graphite sheets whereas 

for the rest of the samples it means 24 hours is the optimum reaction time at 98 ℃ (Table 4.4).  

Also, a possible explanation, amongst others, is that reaction at 98 ℃ for 15 minutes was not 

adequate reaction time in the current work.  Additionally, the peak broadening at the 2θ of 30° 

on the GO is an indication of random packing of the sheets [4.30]. 

The d-spacing, with exception of G1N1-t12,12 and G2N1-t0,0.25, tend to upsurge with decrease 

in reaction durations (Table 4.4).  This can be explained by the decrease in effective repulsion 

forces as the GO sheet size decreases, longer reaction duration exhibited smaller fragments in 

Fig 4.8.  The order of FWHM was G2N1-t0,0.25 < G1N1-t3,3 < G1N1-t3,0 < G1N1-t6,12 < G1N1-

t12,12 < G1N1-t12,24, hence, PXRD analyses for samples synthesised by varying only reaction 

duration showed correlation of increase in reaction time with increase in FWHM of the peak 

at 2θ of 13° (Table 4.4).   
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Table 4.4  Summary of powder X-ray diffraction data. 

Sample 2θ 
d-spacing 

(nm) 

FWHM 

(deg) 

Graphite 30.92 0.34 0.22 

G2N1-t0,0.25 
12.71 0.81 0.94 

30.37 0.34 1.88 

G1N1-t3,0 11.79 0.87 1.23 

G1N1-t3,3 
12.40 0.83 1.16 

30.02 0.35 0.98 

G1N1-t6,12 
13.22 0.78 1.65 

29.78 0.35 5.43 

G1N1-t12,12 
13.56 0.76 2.73 

30.88 0.34 1.32 

G1N1-t12,24 13.33 0.77 2.79 

 

4.4.3 Raman analysis 

Effect of varying reaction durations on the G-band of the synthesised GO did not give a clear 

trend but stirring at both room temperature and 98 ℃ for 3 hours resulted in the broadest peaks 

(Fig. 4.10a).  The slight shift in the G-band position observed in Fig. 4.10a showed that varying 

reaction durations also culminated in deviations in the distribution of oxygen-containing 

groups [4.27].   

 

Fig. 4.10  Comparison of Raman spectroscopy (a) G-band and (b) ID/IG ratios for GO samples 

synthesised at different reaction durations. 
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The spectra suggest that the order of the number of sheets, i.e. the order of G-band intensity 

was G2N1-t0,0.25 > G1N1-t12,12 > G1N1-t3,0 > G1N1-t3,3 > G1N1-t12,24 > G1N1-t6,12.  For 

samples with reaction time being the only variable, ID/IG ratio tends to decrease with increase 

in reaction time except for sample G1N1-t3,3, which had no noticeable D-band, i.e. order was 

G1N1-t6,12 > G1N1-t12,12 > G1N1-t12,24 (Fig. 4.10b).  This trend is an indication of mainly 

increase in defects in the form of oxygen functionalities.  Also, the D-band of G1N1-t3,3 could 

have been obscured since the observed peak stretched over the wavenumbers for both D- and 

G-band peaks, i.e. peak overlap (Fig. 4.10a).  

 

4.4.4 Thermal stability 

All samples had loss of weight due to water, oxygen-containing groups and graphitic carbons.  

On comparison of G1N1-t12,24 and G1N1-t12,12, with different reaction times at 98 °C, it is noted 

that G1N1-t12,24 with longer reaction duration had a larger ratio of both sp2 and sp3 carbons 

(Fig. 4.11a).  It Was also noted that reducing the reaction time at room temperature increased 

the homogeneity of sp2-hybridised carbons particularly in comparing G1N1-t12,12 and G1N1-

t6,12.  For G1N1-t3,3 and G2N1-t0,0.25, with an even shorter reaction duration, showed a further 

increase in sample homogeneity, i.e. less skewed thermograms (Fig. 4.11a).   
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Fig. 4.11  Thermogravimetric analysis (a) in oxygen curve and (b) associated derivative weight 

curve, (c) in nitrogen and (d) associated derivative weight curve. 

 

G1N1-t3,0 was the least thermally stable followed by G2N1-t0,0.25 (Fig. 4.14a).  G2N1-t0,0.25 had 

two decomposition stages whilst the rest of the samples had weight loss in three stages.  G2N1-

t0,0.25 showed a sharp decrease in weight at ca. 200 ℃, no other weight loss was noticeable, and 

this suggest presence of homogenous amorphous species of carbons.  All samples, except for 

G2N1-t0,0.25, decreased in weight at ca. 450 ℃ and this decline was attributed to sp2 carbon 

atoms in the GO hexagonal structure.   

The thermogram in air tends to suggest introduction of high levels of sp3 carbon atoms in the 

G1N1-t3,3 and G2N1-t0,0.25 (Fig. 4.11b), this could mean high content of oxygen moieties, and 

hence, an analysis under nitrogen atmosphere was carried out (Fig. 4.11 c-d).  The thermal 

analyses in nitrogen suggest that G2N1-t0,0.25 had the lowest amount of oxygen-containing 
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groups and this was attributed to the shortest reaction time in synthesizing GO in this sample.  

Again, the effect of combination of synthesis temperature and reaction time is highlighted by 

this observation.  From the TGA (Fig. 4.11 c-d), though the order of the last three was almost 

the same or varied slightly, order of oxygen-containing groups derived is G1N1-t3,0 > G1N1-

t12,24 > G1N1-t3,3 > G1N1-t6,12 > G1N1-t12,12 > G2N1-t0,0.25.  This means substantial amount of 

elemental oxygen can also be introduced to graphite sheets at a temperature of 35℃. 

 

4.4.5 Uv-Vis analysis 

Similar observations were made on samples with varied oxidation durations (Fig. 4.S4 in 

supplementary material).  Additionally, the corresponding peak at ca. 200 nm for G2N1-t0,0.25 

was broad and all samples had shoulder peaks at 311 nm.  These peaks were attributed to the 

same functionalities as in earlier sections. 

 

4.4.6 IR analysis  

Functional groups similar to those elaborated in earlier sections were obtained.  There was a 

slight peak at ca. 1226 cm-1 in all samples, especially for G2N1-t0,0.25 and G1N1-t3,0 (Fig. 4.S5 

in supplementary material).  This was from the skeletal in-plane C=C stretching vibrations in 

the graphitic domains.  All GO samples had a peak at ca. 580 cm-1, highly intense for G1N1-

t3,0.  On varying reaction durations, the peak at ca. 2200 cm-1 disappeared in G1N1-t12,24, but 

was still noticeable in all the GO samples (Fig. 4.S5 in supplementary material).  This peak can 

be associated with graphite, the starting material.  The order of peak intensities was G1N1-t6,12 

˃ G2N1-t0,0.25 ˃ G1N1-t12,12 ˃ G1N1-t3,3 ˃ G1N1-t3,0 ˃ G1N1-t12,24.   

 

4.4.7 Elemental analysis 

Upon scrutinizing elemental analysis data for samples synthesised by varying reaction times, 

the ranking according to percentage amount of O atoms was G1N1-t3,0 ˃ G1N1-t12,24 ˃ G1N1-

t3,3 ˃ G1N1-t12,12 ˃ G2N1-t0,0.25 ˃ G1N1-t6,12.  This order corroborated with the trend deduced 

from TGA in N2 and the decrease in absorption intensities from IR analysis.  Additionally, a 

possible deduction with reference to PXRD data and TEM analysis is that larger pieces of GO, 
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from shorter reaction durations, culminated in bigger gaps between layers.  There was no clear 

relationship between increase in ID/IG ratio and oxygen content determined by elemental 

analyses (Table 4.5 and Fig. 4.10).  In addition, the FWHM and peak intensity at 2θ of 13° 

tends to be influenced by reaction time rather than oxygen content. 

 

Table 4.5  Elemental analysis for GO samples. 

Sample H N O 

Graphite - - - 

G2N1-t0,0.25 1.09 - 23.58 

G1N1-t3,0 1.87 - 30.10 

G1N1-t3,3 1.44 - 27.45 

G1N1-t6,12 0.61 1.07 18.53 

G1N1-t12,12 1.52 0.54 27.09 

G1N1-t12,24 1.61 0.45 29.36 

 

If  25-30% oxygen intercalated in disordered cyclohexenyl carbon matrix is the basis of 

classifying samples as GO [4.32], therefore it implies that G2N1-t0,0.25 and G1N1-t6,12 are not 

forms of GO.  Since a reaction at 35 ℃ introduced substantial amount of oxygen, this further 

supports earlier deductions that an initial reaction at 50 ℃, instead of room temperature 

followed by a reaction at 98 ℃ for 15 minutes was not adequate for reaction completion.  From 

the angle of different reaction times, it was seen that shorter periods, i.e. G2N1-t0,0.25, G1N1-

t3,0, G1N1-t3,3 had no N atoms (Table 4.5).  Additionally, G1N1-t6,12 had the highest N atom 

percentage and thereafter N content decreased in samples, G1N1-t12,12 and G1N1-t12,24.  This 

means reaction time enhanced N-doping up to a certain maximum threshold and thereafter 

decreased. 

 

4.5 Conclusions 

Fourier transform infra-red and Uv-Vis spectroscopies, and thermal stability analyses in 

nitrogen showed the presence of oxygen-containing groups.  Oxidative treatment creates 

defects in the form of wrinkled paper-like morphology and reduced agglomeration of sheets by 

introducing repulsive forces between them.  This culminates in increase of d-spacing from 0.34 

to 0.80 nm.  The ratio of graphite: sodium nitrate in the starting material, affect reaction 

completion.  Graphene oxide samples, G1N1-t3,0 (at graphite: sodium nitrate ratio of 1:1) and 
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G1N1-t12,24 (at graphite: sodium nitrate ratio of 1:1 with longer reaction time) had no residual 

graphite.  High sodium nitrate ratio in the starting material increased the oxygen content of GO 

whilst graphite: sodium nitrate mass ratio mismatch enhances sheet roughness.  From thermal 

stability and elemental analyses, G1N2-t12,24 and G1N1-t3,0 had the highest number of oxygen-

containing groups whilst G2N1-t0,0.25 had the least amount.  Additionally, high sodium nitrate 

ratio creates more defects on the GO sheets, but long reaction durations improved the crystal 

quality reduced sheet sizes.  Samples, namely, G1N2-t12,24, G1N1-t3,0, G1N1-t12,24, G2N1-t12,24, 

G1N1-t3,3 and G1N1-t12,12 had enough amount of oxygen to be classified as GO.  GO samples 

had lower thermal stability than graphite and also longer reaction times may introduce N in the 

GO samples.  A short reaction time of 15 minutes did not introduce substantial amount of 

oxygen.  The ratio of graphite: sodium nitrate in the starting material and reaction durations 

affect physicochemical properties such as number of oxygen-containing groups, crystal quality, 

absorption characteristics, thermal stability, topography, textural characteristics and overall 

morphology.  Hence, the amount of Na+ and NO3
- ions intercalated in the initial step of GO 

synthesis and reaction duration are critical parameters that influences the overall quality of GO. 
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Appendix: Supporting information for Chapter 4 

 

Table 4.S1  The root mean and average surface roughness.  

Sample Rq (nm) Ra (nm) 

Graphite 642 487 

G2N1-t12,24 704 570 

G1N1-t12,24 243 193 

G1N2-t12,24 644 515 

 

Table 4.S2  The root mean and average surface roughness.  

Sample Rq (nm) Ra (nm) 

Graphite 642 487 

G2N1-t0,0.25 832 683 

G1N1-t3,0 439 350 

G1N1-t3,3 447 350 

G1N1-t6,12 466 378 

G1N1-t12,12 812 644 

G1N1-t12,24 243 193 
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Table 4.S3  Summary of sample names and how they were synthesized. 

Sample name 

Mass ratio Stirring time 

at room 

temperature/ 

hours 

Stirring time 

at 98 ℃/hours graphite NaNO3 

G2N1-t0,0.25 2 1 - 0.25 

G1N1-t3,0 1 1 3 - 

G2N1-t12,24 2 1 12 24 

G1N1-t12,24 1 1 12 24 

G1N1-t12,12 1 1 12 12 

G1N1-t6,12 1 1 6 12 

G1N1-t3,3 1 1 3 3 

G1N2-t12,24 1 2 12 24 

 

 

Fig. 4.S1  The powder X-ray diffractogram for pristine (a) graphite and (b) GO samples from 

(b) G2N1-t12,24, G1N1-t12,24 and G1N2-t12,24. 
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Fig. 4.S2  SEM images for GO samples (a) G2N1-t0,0.25, (b) G1N1-t3,0, (c) G1N1-t3,3, (d) G1N1-

t6,12, and (e) G1N1-t12,12 
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Fig. 4.S3  The powder X-ray diffractogram for (a) pristine graphite, GO samples (b) G2N1-

t0,0.25, (c) G1N1-t3,0, (d) G1N1-t3,3, (e) G1N1-t6,12, (f) G1N1-t12,12 and (g) G1N1-t12,24. 

 

Fig. 4.S4  The Uv-Vis spectra of samples synthesised to investigate effect of different reaction 

times. 
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Fig. 4.S5  ATR for GO samples synthesised at varied reaction times. 
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Summary 

Multiwalled carbon nanotubes (MWCNTs) have found numerous applications in energy 

conversion systems.  The current work focused on introduction of oxygen moieties onto the 

walls of MWCNTs by five different reagents and investigating the associated physicochemical 

properties.  Oxygen-containing groups were introduced onto MWCNTs using an ultrasound 

water-bath treatment with HNO3, HCl, H2O2 or HCl/HNO3 solution.  Physicochemical 

properties were characterised by Fourier transform infra-red spectroscopy, scanning electron 

microscopy, transmission electron microscopy, Raman, thermal gravimetric analysis, textural 

characteristics, cyclic voltammetry and electrochemical impedance spectroscopy.  The study 

focus was mainly on linking the physicochemical properties of oxygen functionalised 

MWCNTs and suitability in electrochemical capacitors using group one sulfates.  From the 

FTIR KBr pellet protocol, peaks at 3400, 2370 and 1170 cm-1 suggest oxygen-containing 

functionalities on MWCNTs.  HNO3 treatment introduced highest oxygen-containing moieties 

and achieved highest specific capacitance in Li2SO4 and Na2SO4 electrolytes of 36.200 F g-1 

(77 times better than pristine) and 45.100 F g-1 (2.5 times enhancement), respectively.  For 

K2SO4 it was 33.600 F g-1 (4.9 times better) with HNO3/HCl treated samples.  Oxygen 

functionalised MWCNTs displayed both pseudo and electrochemical double layer mechanism 

of enhanced charge storage and cycle stability in group one sulfates electrolytes.  The 

dominating charge storage mechanism was pseudo and Na2SO4 was the best electrolyte 

amongst the three group one sulfates investigated. 
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5.1.  Introduction 

Shaped carbon nanomaterials (SCNMs), such as carbon nanospheres, graphene, carbon 

nanofibers and carbon nanotubes (CNTs) have been shown to be suitable for various 

applications, such as catalyst supports, solar cells, fuel cells and electrochemical systems [5.1-

5.5].  SCNMs are particularly suitable for use within electrochemical based energy conversion 

systems [5.6] due to their 3D nanoporous structure, stability in the potential range used, 

synergistic effects with included additives, and excellent electrical conductivity [5.7].  In 

addition, the effective surface area and any treatment that reduces the inherent agglomeration 

of these materials, also plays a key role on enhancing physicochemical properties and overall 

performance [5.8-5.11]. 

Electrochemical capacitors (ECs) are charge storage devices with relatively high-power 

densities and longer life cycles when compared to batteries [5.12,5.13].  ECs are classified 

according to the charge storage mechanisms as either electrochemical double layer capacitors 

(EDLCs) or pseudo capacitors [5.14].  EDLCs store charge through formation of a double layer 

at the interphase between the electrode and electrolyte [5.15,5.16].  On the other hand, pseudo 

capacitors are based on redox reactions of electro-active materials with several oxidation states 

[5.17]. 

Surface chemistry, such as oxygen-containing functionalities, plays a critical role in 

determining the suitability of a material for various applications [5.1,5.9,5.18].  Acid treatment 

of multiwalled carbon nanotubes (MWCNTs) is often undertaken prior to their use in ECs or 

any other application [5.18-5.20].  Acid treatment is done to remove metal catalyst residues, 

enhance hydrophilic character [5.10,5.15] and introduce oxygen containing moieties or other 

types of heteroatoms onto the surface of the nanotube [5.21].  Several reports within the open 

literature have highlighted how acid treatment on MWCNTs can add various chemical groups 

such as lactones, lactol, carbonyl, quinone and phenolic hydroxyl onto the nanotube surface, 

and such treatments can also be used as preliminary steps for further functionalization [5.22-

5.25].  The current work accounts for the influence of these functionalities in electrochemical 

capacitors.  The acidity of the different groups changes slightly, and is affected by the treatment 

duration, concentration of the acids used, the number of repeated treatment cycles and the use 

of sonication.  Additionally, sonochemistry is associated with better dispersion, shortened 

reaction periods and ultimately reduces energy consumption [5.26].  In this regard, the current 

study, investigates the influence of ultrasonic treatment of MWCNTs in different reagents on 
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the ultimate functionality in EDLCs.  Acid treatment can also result in physical changes to the 

nanotubes, and this can include opening of the tube ends, cutting or shortening of the 

MWCNTs, and surface damage or roughening of the nanotube walls.  Since the electronic 

properties of MWCNTs are sensitive to physical and chemical properties such as length, 

diameter, doping, and alteration or introduction surface groups amongst other factors 

[5.18,5.21].  Hence, in this study, capacitive behaviour of acid treated MWCNTs in group one 

sulfates was investigated.  The key objectives of the current work include comparing 

physicochemical properties of MWCNTs treated by means of ultrasonic waterbath in various 

reagents, linking the physicochemical properties of oxygen functionalised MWCNTs with 

charge storage capabilities, elucidation of the influence of oxygen-containing modifications 

and comparing performance of group one sulfates in electrochemical capacitors.  

Studies have focused on experimental designs that used a combination of different acids and 

variations in the duration of the oxidation treatment on the MWCNTs [5.15].  The treated 

MWCNTs were annealed and then applied in manganese-based composites.  The reaction 

conditions such as time and temperature were kept constant in this study.  Additionally, 

Likodimos et al. [5.27] were able to vary the textural characteristics of the MWCNTs using 

different concentrations of HNO3 along with hydrothermal treatment techniques.  Pumera 

[5.28] treated CNTs in HNO3 at 80 °C for 24 hours under reflux and reported enhanced 

capacitance due to a rugged surface and an increase in the porosity of double-walled carbon 

nanotubes (DWCNTs) and single walled-carbon nanotubes (SWCNTs).  Huang et al. [5.29] 

studied the effect of concentrated nitric acid treated MWCNTs loading on activated carbon in 

ECs and reported a 15% enhancement at 10 wt.%.  Wang et al. [5.30] reported on a threefold 

enhancement in the capacitance of MWCNTs after activating the material with KOH, and then 

treating the MWCNTS with H2SO4.  Hu et al. [5.31] increased the capacitance of MWCNTs 

by 2.5 times, after treating the nanotubes with HNO3.  The improved capacitance was attributed 

to the enhancement of the accessible electrochemical surface area and the high density of 

functional groups on the surface of the MWCNTs.  The results from the current work, show 

different traits in terms of the influence of textural characteristics on EDLC functionality, 

points out on major contributions from other physical-chemical properties.  Understanding the 

physical-chemical characteristics of oxidative treated MWCNTs is a crucial step towards 

further modifications and their successful commercialisation in energy conversion or storage 

devices.  Additionally, purification of MWCNTs with H2O2 is not well documented in literature 

[5.20].  In this paper we communicate on the suitability of oxygen functionalities introduced 
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by various reagents namely, HNO3, HCl/HNO3, HCl, and H2O2 relative to pristine MWCNTs 

as working electrodes in EDLCs.  The associated physical-chemical properties such as thermal 

stability, vibrational modes and crystallinity, textural characteristics charge storage mechanism 

and ultimately the electrochemical capacitive performance were also thoroughly investigated 

and compared.  Since the size of the ion in the electrolyte can influence capacitive performance 

[5.2], and the selection of an appropriate electrolyte is crucial in enhancing the rate capability 

of MWCNTs [5.32], three group one metal salts were compared in the current study.  To the 

best of our knowledge, the performances of group one sulfates using MWCNTs and oxygen 

functionalised MWCNTs, with the aforementioned reagents, as electrode active materials in 

EDLCs are being evaluated for the first time. 

 

5.2.  Experimental 

The experimental procedures are presented in the sub-sections that follow. 

 

5.2.1.  Initial treatment of MWCNTs 

MWCNTs (8 - 15 nm OD, length 10 - 50 𝜇 m, Ash 1.5 wt %, EC  10-2 S/ cm, SKU number 

030102) were purchased from Cheaptubes.com (MA, USA).  HCl (32%) was purchased from 

C.c. Imelmann (South Africa) and HNO3 (70%) was procured from Associated Chemical 

Enterprise (South Africa). 

As received pristine MWCNTs (0.5 g) were added to (30 mL) of HNO3, HCl, H2O2, or a 

mixture of HCl/HNO3 (1:3, v/v) solution.  The mixtures were then treated in an ultrasound 

water bath for a period of 4 hours.  During sonication, the ultrasound water bath was allowed 

to rest for 15 minutes after every 1-hour interval and the average temperature was 50 °C.  

Thereafter, the samples were washed with deionised water (DI) and filtered until the filtrate 

was neutral in pH.  The samples were dried overnight in an Economy Series oven (Model 220-

224) at 120 °C and thereafter stored in a desiccator until when there were being characterized. 
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5.2.2.  Instrumentation and sample preparation 

For FTIR analysis, samples were prepared by mixing MWCNTs and KBr in the ratio 1:750 

(m/m ratio) followed by grinding using quartz pestle and motor for 5 minutes.  The mixture 

was then pelletized using a 25-ton ring press (00-25 model supplied by Research Industrial 

Company, England.  The disk was analysed using a spectrum RXI, version 5.3, Perkin Elmer 

FTIR spectrometer.  Transmission electron microscopy (TEM) was carried out by treating a 

typical sample in absolute ethanol for 5 minutes using an ultrasound water bath.  Thereafter, 

either lacey or holey carbon grids were dipped in the dispersed sample/ethanol mixture and 

allowed to dry at room temperature.  The analyses were done with a JEOL TEM 1010 

transmission electron microscope.  The images were taken at different magnifications on 

separate areas using Megaview 3 camera.  Image J software was used to measure the diameters 

of at least 200 MWCNTs followed by plotting of histograms.  For scanning electron 

microscopy (SEM), typical samples were stuck on aluminium stubs using double sided carbon 

tape and analysis were carried out with a JEOL JSM 6100 microscope.  Thermogravimetric 

analyses were done using TA Instruments Q seriesTM Thermal Analyser DSC/TGA (Q600) 

with a TA instruments Universal Analysis 2000 software for data acquisition and analysis.  The 

gases used were oxygen and nitrogen, flow rate was 100 mL min-1.  The heating was from 

ambient temperatures to 1000 ⁰C at 10 ⁰C min-1.  Raman spectroscopy analysis was done with 

a 100 mW Delta Nu Advantage 532TM spectrometer of 10 cm-1 resolution with a 2D CCD 

detector and grating lines were 1800 mm-1.  Excitation wavelength of the laser was 532 nm and 

integration time was 35 s.  The graphitic (G-band) and disorder band (D-band) for several spots 

were fitted using a Lorenztian function, and the full analysis was done with the NuSpec 

software.  Samples were prepared for textural characterisation by degassing at 90 ⁰C for one 

hour then at 200 ⁰C for 10 hours.  Nitrogen sorption analyses were done using a Micrometrics 

TRI STAR 3020V1.03 (V1.03) instrument at 77 K in N2.  

 

5.2.3.  Electrochemical characterisation 

Typically, 10 mg of the sample was mixed with 100 µL of nafion exchange resin solution (20 

wt.% solution in lower aliphatic alcohols/H2O contains 34% water, Sigma Aldrich).  The 

working electrode was prepared by casting the sample mixed with nafion onto a platinum 

electrode.  The MWCNTs sample deposited on the platinum electrode (3 mm diameter) was 
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dried under room temperature conditions.  Electrolytes, characteristically 1 M, were degassed 

with nitrogen for 5 minutes prior to cyclic voltammetry (CV) analysis.  The electrolytes used 

were Li2SO4 (99%), Na2SO4 (97%), K2SO4 (99-100%) and were all purchased from Merck.  

CV was done using the three electrode 797 VA Computrace Metrohm CT798 application 

model with a 57970110 dosing processor (Metrohm, Switzerland).  The prepared electrodes 

were scanned at 10, 25, 50, 100 and 200 mV s-1 in the potential range of 0 - 0.8 V.  The specific 

capacitance, Cs was obtained using equation 1: 

𝐶𝑆 =
1

2

∫ 𝑖𝑑𝑉

𝑚𝑠∆𝑉
                        (1) 

Where m is mass of active material, s is scan rate, i is the current and ΔV is the voltage window.  

The electrochemical impedance (EIS) analyses were done on the sample by using a CHI 600E 

work station (CHI Instruments, Inc, USA). 

 

5.3.  Results and discussion 

This section presents the data and discussion from the physicochemical study of the acid treated 

MWCNTs. 

 

5.3.1.  Identification of chemical moieties on MWCNT surfaces 

The oxidative treated MWCNTs samples were characterized using IR.  Despite the well-known 

difficulties in using this technique to determine surface oxygen functionalities due to poor 

absorption intensities [5.1], an appearance of a new peak at ca. 2370 cm-1 was observed from 

all oxidative treatments (Figure 5.1).  Whilst there is a possibility of trapping CO2 from the 

atmosphere in the samples, culminating in the appearance of this peak, the samples were 

analysed in the same manner with pristine MWCNTs but the peak was not observed.  Hence, 

this peak could be assigned to oxygen-containing functionalities associated with the OH 

moieties in H-bond-COOH introduced by the ultrasound treatment [5.18,5.33].  The proposed 

mechanism is that carboxylic acid and phenolic moieties comes from transformation of 

carbonyl or quinone groups initially formed from the sp2 carbons [5.27,5.34].  Also, a peak at 

ca 1387 cm-1 was visible on spectra of all treated MWCNTs and this peak is attributed to CH3 

bending vibrations [5.35,5.36].  This shows the presence of defects in the form of oxygen-
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containing groups.  Furthermore, since the samples were prepared similarly for FTIR analysis, 

the amplified peaks at ca 1170 cm-1 for MWCNTs treated with HCl, H2O2 and HCl/HNO3 

suggest an increase in alcohols, lactones and ether groups manifesting as classical C-O 

stretching vibration in the C-O-C bonds [5.22,5.34,5.35,5.37].  In addition, these MWCNT 

samples exhibited a more intense peak at ca 2930 cm- 1 assigned to symmetric stretching 

vibrations of CH2 [5.22,5.35].  This demonstrates that the KBr pellet protocol was able to 

provide samples that could be analysed using FTIR spectroscopy, and detect the formation of 

defects on the tube walls. 
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Figure 5.1.  IR spectra for (a) pristine MWCNTs and after the first treatment step using (b) 

HNO3, (c) HCl, (d) H2O2 and (e) HCl/ HNO3. 
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Although there is possibility of water adsorption in the samples by the KBr, this was eliminated 

in the current work by preparing the pellets below sodium lamp and thereafter dried in an oven 

overnight and analysed from the oven.  All the samples including pristine MWCNTs had peaks 

at ca. 3470 and 1650 cm-1 associated with absorbed hydroxyl molecules and skeletal graphitic 

vibration, respectively [5.22,5.25,5.35-5.38].   The TGA (Section 3.3) supported this 

deduction.   

 

5.3.2.  Morphology analysis 

Pristine MWCNTs were typically tubular with traces of metal catalyst from synthesis, shown 

by an arrow in Figure 5.2a and EDX spectra (Figure 5.S1 in supplementary information).  Such 

observations were scarcely noticeable on images from treated MWCNTs, hence treated 

samples had small amounts of metal residues.  Nitric acid treatment was the most destructive, 

and this was inferred from the numerous thin walled MWCNTs observed within these samples 

(indicated by arrow in Figure 5.2b and 2f).  In contrast, when comparing the pristine and HCl 

treated MWCNTs, there were fewer notable changes, but it was observed that the walls of the 

MWCNT were damaged.  Whereas the HCl/HNO3 resulted in similar differences when 

compared to the pristine sample, but the damage was not as extensive as HCl alone, and did 

seem to increase the surface roughness.  This is because HCl attacks the tube walls [5.39] and 

hence a possible explanation based on the ODs determined from TEM images (Figure 5.2f) is 

that HCl/HNO3 solution reduces the etching rate of HCl.  
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 Figure 5.2.  TEM images for (a) pristine MWCNTs and MWCNTs treated by (b) HNO3, (c) 

HCl and (d) H2O2 (e) HCl/HNO3 acids and (f) the outer diameter distribution of the pristine 

and treated MWCNTs.  

 

At least 200 tubes were counted, and the data used to plot the histogram showing the 

distribution of outer diameter (OD) of pristine and treated MWCNTs.  Pristine MWCNTs 

exhibited the highest ratio of MWCNTs with large OD (33.6% in the 26-35 nm range) and the 

least percentage of small OD (25% in the 4-15 nm).  From Figure 5.2f, the order of treatment 

with highest ratio of small OD (4-15 nm) MWCNTs is HNO3 (52.6%), HCl/HNO3 (45.4%), 
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HCl (39.7%) then H2O2 (37.1%).  For the interval 16 -25 nm, the order was HCl (44.7%), H2O2 

(41.6%), HCl/HNO3 (40.7%) and HNO3 (36.6%), whilst H2O2 (13.3%) followed by HCl/HNO3 

(10%), HCl (9.7%) then HNO3 (8.8%) was the trend for the 26-35 nm range.  A similar trend 

was noticed above 36 nm, i.e. H2O2 (8.2%), HCl (5.9%), HCl/HNO3 (3.9%), then HNO3 (2%).  

This indicates the possibility that the treatments peeled off the outermost walls MWCNT.  This 

further implies etching of sidewalls of MWCNTs as well as creation of carboxyl groups on 

sidewalls and MWCNT tips [5.18].  The decrease in OD is due to interaction of outermost 

walls with the solutions [5.1].  Hence, the derived order is a comparison of the oxidising effect 

of the reagents during an ultrasound water bath treatment of MWCNTs.   

Bulky morphological analysis was done by use of SEM (Figure 5.3), all the samples were 

analysed using an accelerating voltage of 10 KV except for the H2O2 treated MWCNTs.  The 

main reason for slightly reducing the accelerating voltage was to enhance image quality.  The 

H2O2 treated MWCNTs was relatively associated with high charging effects, causing slight 

poor imaging at 10 KV, and this was due to its comparatively noticeable metal residues on the 

tube ends closer to the surface (Figure 5.2d).  Additionally, since the samples were all prepared 

similarly for SEM analysis, the slightly lower surface area of H2O2 treated MWCNTs could 

have limited electron penetration culminating in relatively poor images at 10 KV [5.40]. 
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Figure 5.3.  SEM micrographs of MWCNTs (a) pristine MWCNTs and MWCNTs treated by 

(b) HCl, (c) HNO3 and (d) H2O2 (e) HCl/HNO3 acid simultaneously. 

 

From the SEM micrographs, the effects of water bath ultrasound treatment are not clear, i.e. no 

large morphological variations were noticeable (Figure 5.3).  All the samples displayed a 

‘spaghetti-like’ morphology, characteristic of MWCNTs.  HCl treatment was expected to show 

the highest degree of MWCNT tube debundling [5.41].   
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5.3.3.  Thermal stability analysis and quantification of oxygen-

containing groups  

Thermogravimetric analysis in air or pure oxygen can be used to estimate the purity and thermal 

stability of MWCNT samples [5.35].  From Figure 5.4, the pristine MWCNTs had a clear gain 

in mass at temperatures above 700 ⁰C (inset in Figure 5.4a), and this mass gain is due to 

oxidation of the residual iron particles (FeOx) from the synthesis of the CNTs.  In addition, on 

visual inspection of the residues a reddish colour was observed, indicative of iron oxides, and 

similar observations have been reported in the literature by Osswald et al. [5.41].  The water 

bath ultrasound oxidative treatment reduced the metal catalyst residue in pristine MWCNTs, 

as seen with the difference in residues shown in the insert in Figure 5.4a.  Similar results were  

reported by Motchelaho et al. [5.1].  The oxidative treatments resulted in different extents of 

metal catalyst removal.  This corroborates with most chemical purification methods which are 

known for higher efficiencies in selectivity and faster rate kinetics [5.20].  The treatments with 

HNO3 and HCl were the most effective in removing metal catalyst residual.  H2O2 treatment 

with the most noticeable metal residues on the tube ends (Figure 5.2d), had the highest metal 

residues of all the treated samples.  A possible explanation is linked to inefficiencies of H2O2 

solutions in removal of residual catalyst materials at low pH [5.20]. 
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Figure 5.4.  Thermogravimetric analysis of pristine and treated MWCNTs (a) thermogram and 

(b) derivative weight curve. 

 

The temperatures of maximum thermal decomposition in air, deduced from derivative weight 

curve (Figure 5.4b), were 636, 634, 618, 614 and 612 ⁰C for HCl/HNO3 (1:3, v/v), pristine, 

H2O2, HNO3 and HCl treated MWCNTs, respectively.  The decrease in thermal stability upon 

treatment is often associated with attachment of oxygen-containing groups on MWCNT walls 

and destruction of the MWCNTs hexatomic structure [5.35].  The oxygen-containing groups 

identified by the FTIR include the COOH and COC moieties.  These functionalities can be 

possibly associated with the slight humps at around 450 ⁰C (indicated by circle in Figure 5.4b).  

Additionally, decrease in OD of MWCNTs, especially after HNO3 treatment, could mean the 

most defective shells were removed leaving the most thermally stable inner layers.  Also, the 

minimal surface roughness (Figure 5.2b) associated with HCl treatment is a possible reason for 

them being the more thermally stable than those from harsh treatments like HNO3.  This 

culminates in diverse reactivity of inner and outer layers of MWCNTs and hence, also 

contributes to the slight peaks at ca. 450 ⁰C.  Removal of metal catalyst led to a slight negative 

shift on the thermal decomposition temperature of H2O2, HNO3 and HCl treated MWCNTs.  
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HCl/HNO3 treated MWCNTs were the most thermally stable and the rest of the treatments 

induced a decrease in thermal stability (Figure 5.4b).  The views by Osswald et al. [5.41] 

suggest that residual Fe catalyses thermal decomposition of MWCNTs.  Their study implies 

increase of thermal stability upon reduction of residual Fe content and annealing MWCNTs.  

Their report corroborates with this work in that structural defects in the typical samples 

outweigh Fe decomposition catalytic effect.  This work also highlights the possible effects of 

other factors such decrease in MWCNTs concentric shells, quantity of oxygen moieties and 

surface roughness on the overall thermal stability of MWCNTs. 

The creation of local defects such as variations in curvature, bond-lengths and strains also cause 

decrease in oxidation temperature [5.41].  The first decrease in weight (indicated by a circle in 

Figure 5.4b) which occurred above 500 ⁰C is assigned to functionalities on the MWCNTs 

surface [5.22,5.33].  Also, HCl/HNO3 had the widest decomposition temperature range.  An 

increase in carbon-containing defect intensity and decrease in thermal stability was observed 

in all samples except for H2O2 treated samples (Figure 5.6).  Hence, it suggests that the decrease 

in thermal stability of the H2O2 treated samples, when compared with the pristine MWCNTs, 

is mainly due to carbon-free defects such as incorporation of oxygen in formation of lactone 

and phenolic groups (data on Table 5.1) on carbon framework. 

The TGA profiles obtained under nitrogen atmosphere can be used to deduce oxygen-

containing groups on the MWCNT surface [5.1,5.25,5.42].  The thermograms obtained under 

nitrogen are shown in Figure 5.5.  The weight loss below 100 °C is due to water evaporating 

from the samples whilst the loss in the range 100 - 900 °C is attributed to loss from oxygen-

containing groups (–COOH and CO groups), 150 - 400 °C is assigned to the decomposition of 

–COOH moieties on the MWCNTs surface, 400 - 500 °C from lactones and 650 - 700 °C for 

phenols [5.1,5.25].   
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 Figure 5.5.  (a) Thermogravimetric profile under nitrogen atmosphere and (b) corresponding 

derivative weight curve. 

 

The integrated area under the derivative weight curves correlates with thermal transitions due 

to loss of various oxygen-containing moieties (Table 5.S1 and 5.S2 in supplementary 

information).  Table 5.1 shows the calculated weight losses attributed to water, CO2 and CO 

from the weight loss curves recorded under nitrogen atmosphere.  Since the samples were dried 

under the same conditions, the results show that the H2O2 and HCl treatments reduced the 

hygroscopic nature of the MWCNT walls whilst HNO3/HCl raised it.  This concurs with the 

view that OH groups identified by means of FTIR analysis was chiefly an effect of surface 

functionalities not KBr adsorption (Section 5.3.1). 
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Table 5.1.  The determination of oxygen-containing groups on the MWCNTs surface. 

Treatment 

% weight loss due to 

ID/IG 

MWCNT 
5 – 15 nm 
OD (%) 

water 
Oxygen-containing 

groups 
Carboxylic 

groups 
Lactones Phenols  

HNO3 6.00 20.14 9.00 1.37 1.02 3.11 52.6 
HNO3/HCl 1.25 8.52 2.34 0.69 0.54 1.50 45.4 

H2O2 0.59 3.49 0.97 0.27 0.09 0.86 37.1 
HCl 0.50 2.95 0.88 0.37 0.09 2.00 39.7 

pristine 0.45 3.15 1.15 0.28 0.09 1.60 25.0 

 

 

Only the HNO3 and HNO3/HCl treatments significantly increased the amount of carboxylic 

acid, lactones, oxygen-containing and phenolic groups (Table 5.1) on the MWCNT walls.  This 

is a possible explanation for their ultimate increased hygroscopic nature.  H2O2 treatment 

slightly increased oxygen-containing groups whilst HCl only had a slight increase of lactones.  

The oxygen-containing moieties typically form at MWCNT defect sites and tube ends [5.42].  

In terms of the acid treatments, the decrease in oxygen-containing groups in Table 5.1 (HNO3, 

HNO3/HCl, H2O2 then HCl), follows a similar trend with the measured outer diameters from 

the TEM analysis (Figure 5.2f; specifically, the 5-15 nm range, also provided in Table 5.1 for 

ease of reference).  This means the strong oxidative reagents reduced the outer diameter and 

HCl treatment resulted in the lowest wt.% of oxygen containing groups.  The less oxidative 

nature of HCl relative to HNO3 agreed with the report by Datsyuk et al. [5.43].  The H2O2 and 

HCl treatments, unlike HNO3 and HNO3/HCl, had very little effect on the wt.% of phenolic 

groups on the MWCNTs walls.  Based on the results in Table 5.1, HNO3 is the most favourable 

treatment for increasing the wt.% of carboxylic, lactone and phenolic moieties on MWCNT 

tube walls. 

 

5.3.4.  Raman analysis on MWCNT  

The key Raman peaks used in ascertaining the crystallinity of MWCNTs are the G-band, due 

to first order tangential in-plane vibrations, located at 1580 cm-1 and the defect induced D-band 

at 1350 cm-1.  The highest ID/IG ratio, the quotient of area under D-band by the G-band, was 

observed with the HNO3 treated MWCNTs (Table 5.1) and this correlated with highest amount 

of the oxygen-containing groups as calculated from the TGA data (using nitrogen atmosphere).  
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There were no other noticeable forms of carbon such as amorphous carbon in the data from 

TEM, SEM and TGA techniques.  Hence, an increase in D-band area observed was due to 

lattice distortion in MWCNTs geometry associated with binding of oxygen functional groups 

onto the tube walls [5.22,5.44,5.45].  This is in agreement with Table 5.1 data and the FTIR 

results which also showed the introduction of defects onto MWCNTs.  The introduction of 

defects onto the sidewalls of MWCNT, due to acid treatment has been reported in the literature 

[5.18,5.41].  Samples treated with HCl were more crystalline than HNO3 treated MWCNTs, 

and both treatments resulted in a larger ID/IG ratio when compared to the pristine MWCNTs 

(Table 5.1).   

From this study, it was seen that the HNO3 /HCl mixture had a smaller effect on the crystallinity 

of the MWCNTs when compared with the individual acids.  From the thermogravimetric 

analysis in nitrogen (Table 5.1), the HCl treatment of MWCNTs had less oxygen-containing 

groups than HCl/HNO3 treated samples.  Thus, these results show that HCl, in the HCl/HNO3 

solution, is a suitable additive for mitigating the HNO3 defect intensity on MWCNT sidewalls 

with minimal compromise on carboxylic and lactone moieties content.  There is no change in 

phenol groups between pristine and HCl treated MWCNTs, but moderate increase in lactones, 

and a decrease in COOH groups, so this means HCl does not introduce new defects onto the 

sidewalls of the MWCNTs.  Instead, it simply attacks defects on the walls and the ends of the 

MWCNTs and this is probably the reason for slower peeling off of the walls which occurred 

since OD of 5-15 nm increased relative to pristine.  Basically, the HCl treatment only attacked 

the pre-existing defects, does not add any new defects, unlike the HNO3.  The differences in 

ODs in the 5-15 nm range due to variation in etching rates corroborated with the Raman ID/IG 

ratios (Table 5.1).  From TEM images, H2O2 treated MWCNTs were the least damaged and 

had more pronounced metal particles on tube ends relative to other treated MWCNTs samples 

(indicated by arrow on Figure 5.2d).  Moreover, the metal residue wt.% in MWCNT samples 

treated with H2O2 was less than that in pristine MWCNTs (Figure 5.4).  Also, H2O2 treatment 

of MWCNTs resulted in the least introduction of defects expressed as the smallest ID/IG ratio 

(Table 5.1).  This means a typical H2O2 treatment play an effective role in removal of metal 

residues and also preserves and/or improves [5.41] the quality of the MWCNTs as evident from 

Raman spectroscopy, TGA and TEM analysis.  From the IR analysis (Figure 5.1), it is seen 

that all treatments introduced carboxyl and lactone moieties amongst others.  This means the 

variation in defect intensity is due to variation of content of functionalities and from 

deformation due to etching of the MWCNT tube walls as shown in Table 5.1. 
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5.3.5.  Textural characteristics 

There was no pronounced difference on sorption isotherms due to various treatments; all 

samples showed a type IV isotherm with H1 hysteresis loop.  This means all the samples were 

meso-porous.  A shift towards smaller pores sizes was observable on the Barrett-Joyner-

Halenda (BJH) pore sizes distribution plot (Figure 5.6f) on the treated MWCNTs.  Pristine 

MWCNTs had the highest ratio of larger pore sizes followed by HCl/HNO3, H2O2, HNO3 and 

eventually HCl treated MWCNTs.  
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Figure 5.6.  Nitrogen sorption isotherms for (a) pristine and treated MWCNTs with (b) HNO3, 

(c) HCl, (d) H2O2 and (e) HCl/HNO3 and (f) BJH pore size distribution.  
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The highest pore volume recorded for the MWCNTs samples oxidative treated with HCl/HNO3 

fits earlier reports [5.15] and the treatment with HNO3 also enhanced porosity of MWCNTs 

(Table 5.2).  This shows their ability to open tube ends culminating in enhancement of sorption 

surfaces.  It is known that the attraction between the MWCNTs, and consequently their 

bundling, is reduced when treated with acids and not increased (i.e. their dispersibility in 

solvents increases) [5.46].  It is interesting to note that BET surface area of all treated 

MWCNTs in the current study were lower than that of pristine.  The textural experiments were 

repeated two times, to verify the results in the current work, and the associated standard 

deviations show good precision and reproducibility (Table 5.2).  The data can be explained 

with reference to the BET equation which accounts for the total surface area of MWCNTs from 

outer surface area, inner cavity and spaces between concentric rings.  Therefore, even though 

smaller particle sizes are usually associated with large surface areas, the current study 

deductions are that decrease in tube sizes may possibly have been out-weighed by exfoliation 

of layers.  Hence, the slight decrease in BET surface area on all oxidative treated MWCNTs 

relative to pristine can be linked to the decrease in the number of concentric layers; this is 

deduced indirectly via decrease in OD (Figure 5.2) whilst inner diameter (ID) was a constant.  

Also, the meso-pores are closely linked to the bundle free space between layers in MWCNTs 

[5.27].  Therefore, Figure 5.6f infers that oxidative treatments de-bundled the MWCNTs even 

though this was not clear from the SEM analysis (Figure 5.3).  The pore size centres shifted 

slightly towards smaller values compared to the pristine MWCNTs (Figure 6f).   
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Table 5.2.  The textural characteristics of the treated and pristine MWCNTs. 

Treatment 
BET area ± Std Dev 

(m2g-1) 

Pore volume± Std Dev 

(cm3g-1) 

HNO3 139.93±1.30 0.86±0.30 

HCl/HNO3 142.26±0.15 0.95± 0.02 

HCl 138.33±1.20 0.63±0.02 

H2O2 136.17±1.17 0.63±0.06 

pristine 149.49±0.30 0.77±0.22 

 

5.3.6.  Electrochemical characterization  

The capacitive analyses were done using lithium sulfate, sodium sulfate and potassium sulfate 

electrolytes. 

 

5.3.6.1.  Lithium sulfate electrolyte 

Absence of redox peaks, even though TGA (Figure 5.4) infers presence of small residual Fe 

after treatment, is a clear indication that metal particle levels inside the MWCNT tubes or 

encapsulated metal particles are not active in capacitive redox activities.  This is in agreement 

with reports by Zhang et al. [5.7].  The ideal EDLC device should have current reversed 

instantly upon reversing voltage sweep, i.e., a rectangular CV.  Only H2O2 and HNO3 showed 

some substantial ELDC capacitive character at a scan rate of 10 mV s-1 (Figure 5.7a).  The 

HNO3 treated MWCNTs showed good EDLC capacitive property at scan rate of 10 and 25 mV 

s-1.  A possible explanation for the ‘dumbbell-like’ shape, exhibited by HNO3 treatment at 10 

and 25 mV s-1 as well as at 25 and 50 mV s-1 for HCl/HNO3, is the contribution from either ion 

adsorption inside tubes or pseudo redox reactions from oxygen functionalities [5.16].  The 

observed steeper slope of the CV curves at switching potentials is attributed to either small ion 

diffusion resistance or kinetically faster redox reactions [5.11,5.47,5.48] introduced by the 

oxygen-containing groups on the surface of MWCNTs.  The appearance of oval shaped CV 

curves with increase in scan rate is typical of increase in mass transfer resistance [5.11].  Also, 

typically EDLCs behaviour are usually interpreted based on textural properties [5.16], but in 

the current case, the oxygen functionalities are key, although this may have been reported 

previously in the literature, what is key here, is the importance on the type of oxygen moiety, 

i.e. the COOH plays a big role.  At higher scan rates, i.e. 25, 50 and 100 mV s-1, the HCl/HNO3 
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treated MWCNTs exhibited better capacitive properties with the scan rate of 25 mV s-1 

particularly having the best quality (Figure 5.7a, b and c). 

 

 

Figure 5.7.  Cyclic voltammetry curves at scan rate of (a) 10, (b) 25, (c) 50, (d) 100 and (e) 

200 mV s-1 using lithium sulfate as electrolyte. 
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All MWCNT treatments, except for HNO3, displayed poor capacitive properties at higher scan 

rates in Li2SO4 electrolyte.  Additionally, from the specific capacitance (Cs) values in Table 

5.3, the order from the highest was HNO3 (36.200 F g-1 at 25 mV s-1), HCl/HNO3 treated 

(23.700 F g-1 at 50 mV s-1), H2O2 (9.599 F g-1 at 10 mV s-1), HCl (3.190 F g-1 at 25 mV s-1) and 

pristine (0.47 F g-1 at 100 mV s-1).  This highlighted the treatment effect on charge/discharge 

capability of MWCNTs and from the current results it shows that treatment improved charge 

storage capabilities.   

Also, since BET surface area of treated MWCNTs decreased relative to pristine (Table 5.2), 

the deductions in this work could be that Li2SO4 electrolyte works better for MWCNTs with 

higher porosity and oxygen-containing functionalities.  This could infer the pseudo capacitive 

charge storage as the main mechanism in Li2SO4 electrolyte.  A relationship is expected 

between sizes of pores and Li+ cations in an EDLC mechanism dominated electrode, however, 

the slight variation in pore sizes after MWCNT treatment limits a clear judgement.   

The increased surface roughness [5.49] indicated by corresponding TEM image (Figure 5.2) 

for HNO3 treated MWCNTs and their high ID/IG ratio (Table 5.1) also corroborates with their 

higher Cs.  Contribution from high defect intensity acting as charge traps is a possibility but 

this trend was not noticed with respect to rest other samples.  In short, all the treated samples 

performed quantitatively better than pristine MWCNTs.  The results particularly show a 

relationship between the number of oxygen-containing groups and quantitative capacitance 

(similar trend in Table 5.1 for treated samples).  This is could be validated by the effect of 

oxygen-containing groups on the electronic structure and surface activities of MWCNTs [5.18].  

The hydrous layers in this case facilitate electron and proton transfer [5.50]. 
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Table 5.3.  Specific capacitance in F g-1 using lithium sulfate. 

Sample 
Scan rate (mV s-1) 

10 25 50 100 200 

pristine 0.026 0.178 0.429 0.470 0.333 

HNO3 33.821 36.200 26.350 13.400 4.613 

HCl 2.045 3.190 1.195 1.543 1.263 

H2O2 9.599 1.720 0.655 0.360 0.108 

HNO3/HCl 2.045 22.100 23.700 21.650 14.938 

 

5.3.6.2.  Sodium sulfate electrolyte 

All the samples showed a quasi-rectangular and symmetrical cyclic voltammograms in Na2SO4 

electrolyte at a scan rate of 10 mV s-1 and similar CV curves, except for HCl treated, were seen 

with 25 mV s-1 (Figure 5.8a and b).  This is an indication of rapid current response to voltage 

reversal, minimal ion mass-transfer resistance and an excellent double layer capacitance at low 

scan rates [5.11,5.45,5.51,5.52].  This is a general notable difference between the capacitive 

characteristics of the samples in the current work when the group one cationic radius is changed 

from Li+ to Na+.  At this scan rate MWCNT treatments involving HCl showed the highest Cs 

values (Table 5.4) whilst H2O2 had the best EDLC qualitative character (most rectangular 

curve).   

Overall, H2O2 treated MWCNTs, after HNO3 (Cs of 45.100 F g-1), had the second highest Cs 

of 37.353 F g-1 followed by HNO3/HCl (Cs of 31.136 F g-1), HCl (Cs of 27.727 F g-1) treated 

then pristine MWCNTs (Cs of 23.922 F g-1).  This trend was similar to that of Li2SO4 electrolyte 

in that the oxygen-containing moieties were the key influence.  Additionally, larger ion results 

in slower diffusion, this is played out by the fact that the shape of the CV curve changes to 

oval/ellipsoidal at higher scan rates, so slower ion movement and slight differing textural 

characteristics with the different treatments occur.  
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Table 5.4.  Specific capacitance in F g-1 using sodium sulfate. 

Sample 
Scan rate (mV s-1) 

10 25 50 100 200 

pristine 18.886 23.922 18.800 15.600 12.838 

HNO3 21.364 26.667 45.100 18.150 2.475 

HCl 27.727 10.196 15.100 8.000 2.488 

H2O2 26.364 37.353 21.050 3.025 9.300 

HNO3/HCl 31.136 7.657 1.860 0.116 2.213 

 

 

 

Figure 5.8.  Cyclic voltammetry curves at scan rate of (a) 10, (b) 25, (c) 50, (d) 100 and (e) 

200 mV s-1 using sodium sulfate as electrolyte. 
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Also, at scan rates of 10 and 25 mV s-1, pristine MWCNTs showed a small redox peak at ca 

0.45 V and this can be attributed to reversible oxygen evolution reactions [5.6,5.23].  At the 

scan rate of 25 mV s-1 (Figure 5.8b), H2O2 treated MWCNTs exhibited the best EDLCs 

characteristic followed by pristine MWCNTs.  This can be attributed to low levels of oxygen-

containing groups, reduced hydrophilic character and the least defective nature compared to 

the rest of the samples.  The rest of the samples showed severely symmetrical distorted 

rectangles, i.e. deviation from EDLC character.  According to this study, it is possible that 

pseudo charge storage mechanism, from oxygen-containing groups, was dominating and also 

that sodium sulfate required longer diffusion time in order to effectively form a double layer 

on all the samples [5.45].  The variations in ion mobility rates between Na+ and Li+ is related 

to their differences in size, i.e. larger Na+ cation has a slower speed.  This an interesting 

indicator of domination of physical properties, for MWCNTs treated in H2O2 opposed to 

oxygen moieties in the rest of the samples, such as opening of tube ends and pore size effects 

in relation to Na+ cationic size [5.53] with sodium sulfates as electrolyte.  At the scan rate of 

50 mV s-1 (Figure 5.8c), all samples except HCl/HNO3 treated sample exhibited symmetrical 

pseudo rectangular CVs.  The pronounced shift of the cathodic peak to the right and that of the 

anodic peak to the left at scan rate of 25, 50 and 100 mV s-1 for HNO3 treated MWCNTs is a 

clear indication of increase in internal resistance [5.51] and is common with open tubes [5.16].  

It is noted that HNO3 treated samples had the highest current response at a scan rate of 50 mV 

s-1 and that all treatments reduced current response at high scan rates.  In a nutshell, the section 

3.6.2 data similarly infers that treating MWCNTs quantitatively enhanced charge storage 

capabilities in Na2SO4 electrolyte. 

 

5.3.6.3.  Potassium sulfate electrolyte 

Changing the electrolyte to K2SO4 resulted in outcomes different from those obtained using 

both Li2SO4 and Na2SO4 (Figure 5.9).  At a scan rate of 10 mV s-1, HCl/HNO3 treated 

MWCNTs displayed the best capacitive performances (Figure 5.9a and Table 5.5).  

Additionally, HCl/HNO3 treated MWCNTs displayed the highest current responses and had 

the highest Cs at all scan rates except at 200 mV s-1.  This is an indication of better 

electrochemical activities [5.54] of MWCNTs treated with HCl/HNO3 solution.  The 

HCl/HNO3 treated MWCNTs performed better in K2SO4 than in Na2SO4 at scan rates of 25, 50 

and 100 mV s-1.  Additionally, the associated ‘dumbbell-like’ shape indicates differences in ion 
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accessibility to the adsorption surfaces and pseudo character is attributed to oxygen moieties 

introduced by treatment.   

 

 

Figure 5.9.  Cyclic voltammetry curves at scan rate of (a) 10, (b) 25, (c) 50, (d) 100 and (e) 

200 mV s-1 using potassium sulfate as electrolyte. 

 

Moreover, the transformation of CV curve to an oval/ellipsoidal at higher scan rate is again 

attributed to increase in mass transfer resistance.  Again, H2O2 treated MWCNTs demonstrated 

a good EDLC capacitive quality at scan rates of 25 and 50 mV s-1.  This is an indication of a 
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better working rate [5.55] of MWCNTs treated with H2O2.  This is corroborated relatively to 

the least porosity and surface area along with slight increase in oxygen containing-groups.  A 

reversible redox peak at ca. -0.45 V was noticed on H2O2 treated MWCNTs and was probably 

due to differences in diffusion capabilities between solvated cations and anions, saturation of 

electrolyte ions at the electrode surface and ‘electrolyte starvation’ phenomenon inside the 

tubes [5.52] resulting from poor ion accessibility into pores.  According to the results obtained, 

the scan rate of 50 mV s-1 tends to be the optimum scan rate for H2O2 treated MWCNTs. 

 

Table 5.5.  Specific capacitance in F g-1 using potassium sulfate electrolyte. 

Sample Scan rate (mV s-1) 

10 25 50 100 200 

pristine 2.323 1.450 6.850 4.575 1.011 

HNO3 0.103 0.645 1.180 2.075 2.038 

HCl 0.132 0.245 0.067 0.203 0.168 

H2O2 4.200 21.600 23.550 8.675 12.950 

HNO3/HCl 29.000 33.600 32.200 23.875 7.875 

 

Pristine MWCNTs as well as samples treated by HNO3 and HCl performed dismally in terms 

of both EDLC quality and quantity of charge storage at all scan rates in K2SO4 electrolyte 

(Figure 5.9 and Table 5.4).  This indicates that the increase in cationic size of the electrolyte 

from Na+ to K+ reduced charge/discharge ability of these treated samples [5.15].  The 

corresponding performance order was HCl/HNO3 (Cs of 31.600 F g-1), H2O2 (Cs of 23.550 F g-

1), pristine (Cs of 6.850 F g-1), HNO3 (Cs of 2.075 F g-1), and HCl (Cs of 0.245 F g-1).  A 

comparison of this order with Table 5.1 infers that capacitive performance increase with 

increase in the oxygen-containing functionalities (HCl, pristine, H2O2 and HNO3/HCl), reach 

a threshold with HNO3/HCl and thereafter decreased with excess oxygen moieties content 

(HNO3).   

A scrutiny of CV curves and the aforementioned possibilities from all electrolytes suggest that 

the cation size difference down the group one metal is also crucial to the outcomes.  In addition, 

the disappearance of humps with respective to each electrolyte at higher scan rate can be 

attributed to large ionic resistance [5.52].  In short, they were noted differences when 

MWCNTs with different oxygen-containing groups when electrochemically characterised 

using different cationic radius of group one sulfate electrolyte systems.  This corroborates with 

earlier studies that concluded that electrolyte transport characteristics change with local electric 
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fields [5.56].  An ideal EDLC character is one which is classically associated with fast 

reversible reactions, i.e. rectangular CV.  Unlike at higher scan rates, a steep slope on current 

changes at switching potentials indicate minimal storage mass-transfer resistance when the 

scan rate was 10 and 25 mV s-1 for all electrolytes. 

The HCl treated samples had comparable quantities of oxygen-containing groups with pristine 

MWCNTs.  Generally, the best performances for pristine and HCl treated MWCNTs (with 

lowest oxygen-containing groups) was obtained using Na2SO4 electrolyte (Table 5.3-5.5 and 

Figure 5.S2 in supplementary information), for H2O2 (lowest surface area) and HNO3 (highest 

oxygen-containing groups) treatment it was with Na2SO4 whilst K2SO4 worked best for 

HNO3/HCl treatment (highest pore volume).   

The differences noted on other treated samples were because ultrasound treatment introduced 

new surface functionalities which influence physicochemical properties such as different ion 

affinities [5.33] and hence, cation adsorption capacity was altered from that of pristine 

MWCNTs.  Also, since functionalization alters the wettability of MWCNTs [5.1,5.38], charge 

storage capabilities changes with respect to electrolyte.  The shapes of the CVs for HNO3 and 

HNO3/HCl in this study, with high oxygen-containing groups and pore volume, concurred with 

the views by An et al. [5.57] in that increase in oxygen-containing groups provide better 

electrochemical performances in ECs.  This is due to synergistic effects of pseudo-capacitance 

and improved wettability.  Hence, ion transport is enhanced.   

From the textural characteristics (Table 5.2), it is apparent that pristine MWCNTs had the 

largest BET surface area, but they generally performed poorer than the treated MWCNTs.  Also 

from Figure 5.2f, it is clear that pristine MWCNTs had the largest ratios of tubes with thicker 

diameters.  This means there was some contribution from spaces between MWCNT bundles to 

surface area, which was highest in pristine MWCNTs.  However, such spaces did not 

effectively participate in the formation of a double layer.  In addition, pores available for N2 

sorption are not necessarily available to the electrolyte and there is a possibility of MWCNTs 

agglomeration during device fabrication [5.46].  

Cycle stability tests were done in Na2SO4 at a scan rate of 50 mV s-1 (Figure 5.S3 in 

supplementary work) and cycles of 10, 50 and 100 were compared.  From Figure 5.S3a 

(supplementary information) it was seen that capacitance decreases with increase in number of 

cycles.  Upon modification of tube walls with oxygen moieties, EDLC character was seen to 

change with increase in cycle numbers relative to pristine MWCNTs (Figure 5.S3b).  With the 
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HNO3 treatment, both current response and capacitance decreased but EDLC behaviour 

increased when cycles were increased from 10 to 50.  However, capacitance slightly increased 

on the 100th cycle relative to cycle number 50.  For the MWCNTs treated with HCl, both 

capacitance and EDLC quality increased when cycle number was raised from 10 to 50 (Figure 

5.S3c) but slightly decreased on the 100th cycle.  A similar trend was observed with H2O2 

treatment but capacitance drastically deteriorates on the 100th cycle (Figure 5.S3d).  The 

HCl/HNO3 treatment had poorest cycle stability (Figure 5.S3e). 

 

5.3.6.4.  Electrochemical impedance analysis 

Even though the highest Cs was obtained by treating MWCNTs with HNO3 (in Li2SO4 and 

Na2SO4) and HCl/HNO3 (in K2SO4), this was not clearly noticeable from EIS (Figure 5.10).  

The two treatments displayed the highest ratio of smaller OD tubes and the highest oxygen-

containing moieties.  Hence, a possible explanation is associated with the main contribution of 

pseudo capacitive character to the overall capacitance.  Oxygen-containing moieties are 

naturally acidic and therefore they introduce electron acceptor features to the MWCNTs [5.9].  

A possible mechanism involves an interaction between group one cation and species such as 

COO- and O-anions (conjugate ions of COOH and OH moieties) on the tube walls (equations 

2-4).  Additionally, surface functionalities enhance surface wettability, and this positively 

enhances charge storage, hence better charge storage functionality than pristine.   

From Figure 5.10, a slight semi-circle observed for rest of the samples, except with HCl 

treatment using Li2SO4 and K2SO4 electrolytes, in the high frequency region was attributed to 

some minimal charge transfer resistance [5.58] and this corroborates with the oval/ellipsoidal 

observed in the respective CV curves.  In Li2SO4, the order of charge transfer resistance 

deduced was HNO3 > pristine > HCl/HNO3 > H2O2 (insert in Figure 5.10a).  With Na2SO4, the 

order was HCl > HCl/HNO3 > HNO3 > pristine > H2O2 (insert in Figure 5.10b).  Whilst in 

K2SO4 electrolyte the order was HNO3 > HCl/HNO3 > H2O2 > pristine (insert in Figure 5.10c).  

The data shows that HCl treatment of MWCNTs enhances charge transfer resistance 

substantially in Na2SO4 than the rest of the samples.  A possible explanation is the increase in 

pore accessibility for the group one sulfate electrolytes due to abundance of oxygen groups and 

the attack of HCl on MWCNT walls interferes with charge transfer pathways in the MWCNT 

material.  
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Figure 5.10.  The EIS for pristine and the treated MWCNTs using (a) Li2SO4, (b) Na2SO4 and 

K2SO4 electrolytes. 

 

Additionally, the results show that oxygen-containing moieties from the various treatments 

alter the surface properties of MWCNTs [5.59].  The results corroborates the findings by Liu 

et al., [5.60] on activated carbon.  Short slope of about 45° in the intermediate frequency was 
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the evidence of the frequency dependence of the electrolyte ion diffusion from the group one 

sulfate electrolyte to oxygen functionalized MWCNT-based electrode, known as Warbug 

resistance [5.58,5.59].  The steepest slope was from HNO3 treatment in all electrolytes and this 

could suggest that the electrode efficiently permitted ion diffusion [5.61].  The slanted line in 

the low frequency region suggests less dominance of EDLC of all samples in all electrolytes 

[5.60].   

The most probable explanation is the contribution of oxygen-containing moieties to pseudo 

Faradaic reactions as proposed earlier in CV analysis (Section 3.6.1-3).  The oxygen moieties 

attached to MWCNTs enabled their enhanced functionality in group one sulfate electrolytes 

[5.60].  A closer analysis of Figure 5.10a indicates that HCl had best EDLC character whilst 

HNO3 and pristine treatments had comparable higher EDLC character in Li2SO4 but H2O2 

showed the poorest behaviour.  With reference to Table 5.1, HCl could have best EDLCs 

because it had the lowest oxygen-containing groups, but the minimal pseudo gave it an overall 

low Cs (Section 3.6.1-3).  Again, in this regard, the major contribution from pseudo 

electrochemical charge storage in HNO3 treated than in pristine MWCNTs could have also 

gave the former an overall higher Cs (Section 3.6.1-3).  In Figure 5.10b all samples, except HCl 

treated MWCNTs, had similar EDLC behaviour but H2O2 treated MWCNTs displayed the best 

eccentric in Na2SO4 with pristine being the poorest. 

A possible explanation is their minimal variations in terms of textural characteristics (Table 

5.2). Whereas in K2SO4, H2O2 and HNO3 treated MWCNTs exhibited the best EDLC 

behaviour than the rest (Figure 5.10c).  Again, the EIS could not corroborate the overall Cs 

values (Section 3.6.1-3) because it did not account for the pseudo electrochemical processes to 

charge storage.   

The proposed main mechanism for the current work, that corroborates with the work reported 

by Wang et al., [5.46] and Frackowiaka et al.,[5.62] involves reversible oxidation of oxygen-

containing groups as shown by the following equations: 

𝐶 − 𝑂𝐻 ↔ 𝐶 = 𝑂 + 𝐻+ + 𝑒−   (1)  

𝐶 = 𝑂 + 𝑒− ↔ 𝐶 − 𝑂−     (2) 

𝐶𝑂𝑂𝐻 ↔ 𝐶𝑂𝑂 + 𝐻+ + 𝑒−    (3) 
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5.3.7.  Conclusions 

From this study, ultra-sound water bath treatment of MWCNTs with oxidising agents was able 

to introduce surface functionalities that can alter physicochemical properties either negatively 

or positively with respect to charge storage mechanism.  HNO3 treatment introduced the 

highest carboxylic, lactonic and phenolic moieties on MWCNT walls as well as highest ratio 

of smaller OD (outer diameter) tubes.  The treatment in HCl/HNO3 solution reduced defect 

intensity of MWCNTs but with comparable lactonic and carboxylic acid group content relative 

to HNO3 treated samples.  The findings of the study support the view that the acidic nature of 

oxygen-containing groups modify electron-donor characteristics of MWCNTs and thus induce 

electron acceptor character.  On comparing the best Cs of treated MWCNTs, relative to Cs of 

pristine for each electrolyte, a 77, 2.5 and 4.9 times enhancement was noted for Li2SO4, Na2SO4 

and K2SO4, respectively.  Considering both rectangular shaped cyclic voltammograms and high 

Cs values over a wider range of scan rates, it is imperative to conclude that Na2SO4 electrolyte 

displayed the best performance as an electrochemical double layer device with the oxygen-

modified MWCNTs under study.  The variations in cationic radius down the group one 

elements electrolytes influence capacitive performances of MWCNTs.   

According to this study, oxygen-containing functionalities increased charge storage 

capabilities of MWCNTs in terms of Cs.  Addition of oxygen functionalities on MWCNT 

surfaces introduces pseudo characteristics, in addition to intrinsic EDLC mechanism.  The 

work fundamentally indicates that acid treatments often done to remove residual metal catalyst 

and as preliminary steps in modification of MWCNTs influence the overall electrochemical 

properties by introducing various functionalities and physicochemical properties.  Treatment 

transformed both qualitative and quantitative functionality of MWCNT in electrochemical 

capacitors. 
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Appendix: Supporting information for Chapter 5 

 

 

Figure 5.S1  The EDX mapping image and spectrum for pristine MWCNTs 

 

 

Figure 5.S2  The comparison of electrolytes for (a) pristine MWCNTs, and MWCNTs treated 

with (b) HNO3 (c) HCl, (d) H2O2, (e) HCl/HNO3  
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Figure 5.S3  The cycle stability test in sodium sulfate electrolyte at a scan rate of 50 mV s-1 

for (a) pristine MWCNTs, and MWCNTs treated with (b) HNO3 (c) HCl, (d) H2O2, (e) 

HCl/HNO3  

 

Table 5.S1  The integrated areas under the derivative weigh curve from TGA analysis surface  

Treatment % weight loss due to 

water Oxygen-

containing 

groups 

Carboxyli

c groups 

Lacton

es 

Phenol

s 

HNO3 5.84 20.21 8.94 1.44 1.02 

HCl 1.27 8.51 2.31 0.63 0.60 

H2O2 0.54 3.53 0.93 0.35 0.09 

HCl/HNO3 0.46 2.97 0.88 0.28 0.08 

pristine 0.44 3.31 1.16 0.30 0.09 
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Abstract 

Much focus with regards to graphene oxide (GO) reduction has been on reducing the 

oxygen:carbon ratio with little focus on other associated chemical transformations.  The current 

work presents an enlightening physical and chemical transformation study of reduced graphene 

oxide (RGO) samples with regards to use of ascorbic acid, hydrazine hydrate and sodium 

borohydride as reducing agents and their associated appropriateness in electrochemical 

capacitors.  The physical and chemical characteristics of RGO were compared by means of 

elemental analysis, infra-red spectroscopy, thermal gravimetric analysis, X-ray photoelectron 

spectroscopy, powder X-ray diffraction, textural characteristics, scanning and transmission 

electron microscopies, electron impedance spectroscopy and cyclic voltammetry.  Hydrazine 

hydrate was the most effective reducing agent with the highest nitrogen at.% (4.07), surface 

area of 390.55 m2 g-1 and was increased to 599.67 m2 g-1 upon thermal treatment at 750 ˚C.  

The nitrogen functionalities observed in pristine-GO, ascorbic acid and hydrazine hydrate 

reduced GO were sp3 N-C, pyrrolic and pyridinic, respectively.  Whereas sodium borohydride 

RGO were B-doped with at.% of 2.49 during the reduction reaction.  The N-doped RGO 

samples were more effective in charge storage than B-doped counterparts (76-fold better) and 

pyrrolic-N-doped was more effective than pyridinic- N-doped-RGO (1.35 times better). 

Keywords:  electrochemical capacitance, electrochemical double layer capacitor, nitrogen-

doped graphene oxide, boron-doped graphene oxide 
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6.1. Introduction 

Electrochemical capacitors, are a promising alternative to batteries with lower energy density 

but higher power density, and can store energy at the electrode-electrolyte interphase 6.1,6.2].  

Numerous studies have focussed on electrode materials as a way of enhancing energy density 

[6.3,6.4].  Carbon nano-materials such as graphene [6.1,6.5] and carbon nanotubes (CNTs) 

[6.6] are suitable electrochemical capacitance materials with power densities that can be altered 

by their physicochemical properties [6.7].  CNTs have dominated the carbon-based 

nanomaterial research area, but graphene is relatively cheaper [6.8].  Graphene has been known 
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as a building block for over 66 years, but experimental isolation was first achieved in 2004 

[6.3,6.9-6.11].  Attention on graphene was mainly triggered by extraordinary surface area, 

thermal, mechanical and electronic properties [6.11-6.15].  The near zero bandgap of graphene 

[6.3,6.16] has led to current leakages in most of its applications [6.14]. Graphene-based 

materials are promising nanomaterials for the next generation of electrodes in energy 

conversion systems [6.3,6.13].  Graphene is basically synthesised by two main techniques, the 

bottom-up (growth from elemental carbon) and top-down approach (mechanical, 

electrochemical or chemical exfoliation) [6.17].  The aforementioned ways culminates in 

different qualities of graphene sheets and also, electronic and capacitance in graphene-based 

materials is layer dependant [6.7].  However, charge carrier transport, often present in ideal 

graphene, is absent in typical graphene oxide (GO) and in addition, reduction is often used to 

enhance conductivity via restoration of the π system [6.18].  Understanding the physical and 

chemical properties of a typical reduced graphene oxide (RGO) sample is still an active 

research area. 

Chemical reduction of GO is considered an efficient, low cost and bulk scale approach to 

production of RGO [6.9,6.10,6.12,6.17,6.19].  Main chemical groups, located at basal planes, 

of GO are epoxides and hydroxyls whilst the minor components situated at the edges are 

carboxyl and carbonyls [6.9].  Several reducing agents have been reported such as aluminium 

powder in acid [6.12], hydrazine hydrate [6.20], ammonia [6.11], sodium borohydride [6.17], 

and ascorbic acid [6.19], amongst others.  Reduction of GO with ascorbic acid is a mild and 

green approach when compared to the use of hydrazine hydrate [6.19], whilst sodium 

borohydride is relatively expensive.  Concerns in reduction of GO is mainly on attainment of 

low oxygen content, production of defect-free sheets, selectivity of reduction agents and 

enhancement of dispersion stability, amongst other things [6.9,6.11,6.17].  The current work 

seeks to compare and ascertain the influence of chemical reduction of GO by use of ascorbic 

acid, hydrazine hydrate and sodium borohydride on physical and chemical properties of RGO.  

Additionally, the work also focuses on investigating the chemistry of the RGO samples with 

regards to chemical methods of choice and their associated suitability in electrochemical 

capacitance.  To the best of our knowledge, their suitability and associated influence on 

capacitance has not been compared in literature.  This is suitably important with regards to 

selection of chemical reducing agents for GO, where both the effectiveness of a reducing agent 

and the resulting chemical nature of the products must be critically considered. 
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6.2. Materials 

Graphite powder (< 150 µm, 99.99%), polyethylene glycol (PEG) (99.8%) and hydrazine 

hydrate (50-60%) were purchased from Sigma Aldrich, South Africa.  Hydrogen peroxide 

(30%), sodium borohydride powder (95%) and ascorbic acid (99%) were bought from Merck 

ltd, South Africa.  Potassium permanganate (99%), sodium nitrate (99%) and absolute 

methanol (99.5%, AR,) were all purchased from Associated Chemical Enterprise, South Africa.  

Sulfuric acid (98.37%) was procured from C.C. Imelmann Ltd, South Africa.  All the chemicals 

were used as-received with no dilutions. 

 

6.2.1 Methods 

The GO was synthesised from the modified Hummers method adapted from Mombeshora et 

al., [6.21].   

 

6.2.1.1 Reduction of GO 

In a typical synthesis of GO, graphite and sodium nitrate were mixed with H2SO4 (98%, 48 

mL) by stirring in an ice water bath.  The mixture was further stirred for 30 minutes and 

thereafter, KMnO4 (6 g) was slowly added to the mixture while maintaining the temperature 

below 10 ˚C.  Afterwards, the reaction mixture was further stirred at room temperature for 12 

hours and double deionised water (DI, 60 mL) was added dropwise slowly.  The reaction 

temperature, unlike the previous report, was brought to 50 ˚C and maintained at this 

temperature for 5 hours.  Thereafter, H2O2 (30%, 200 mL) was added to the mixture prior to 

several cycles of washing using DI until the filtrate was at neutral pH.   

The GO was then reduced by three different reagents, namely; ascorbic acid, hydrazine hydrate 

and sodium borohydride.  In a typical synthesis, accurately weighed GO (3 g) was dispersed in 

DI (50 mL) by an ultrasonic treatment in a water bath for 10 minutes.  Hydrazine hydrate (2 

mL) was added under stirring.  The mixture was heated up to 90 ˚C by means of an oil bath 

and kept constant for one hour.  Secondly, ascorbic acid (6 g) stabilised in 1% PEG was added 

to GO (3 g) initially dispersed in 50 mL DI under stirring followed by a temperature ramp to 

90 ˚C and kept constant for one hour.  The PEG was added to enhance the GO/ascorbic acid 

interaction, facilitate the reduction process and also acted as a stabiliser (lessens 
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agglomeration).  Similarly, sodium borohydride (6 g) was initially dissolved in DI (20 mL) 

then followed by addition of the solution to GO (3 g) dispersed in DI (20 mL) and reaction 

temperature ramped up and kept constant as in the above-mentioned steps.  The reducing 

agent/GO mass ratios in the synthesis were five times higher for both ascorbic acid and sodium 

borohydride than that of hydrazine hydrate.  This was because the latter was more effective 

than the former two, hence, a higher mass ratio was used as an attempt to boost their reducing 

effect.  The products were then washed five times with DI followed by washing four times with 

methanol under gravitational filtration.  The RGO samples were dried in an oven at 50 ˚C for 

at least 48 hours and thereafter kept in a desiccator.  The samples were named with respect to 

reduction reagent, i.e. pristine-GO, RGOAA, RGOHH and RGOSB for as-synthesised GO and 

that reduced by means of ascorbic acid, hydrazine hydrate and sodium borohydride, 

respectively. 

Thermal reduction effect on textural characteristics and capacitance was further investigated 

with RGOHH.  The thermal reduction was carried out at 500, 750 and 1000 ˚C using a ramp rate 

of 2 ˚C/ minute using a tube furnace and 10% hydrogen in argon. 

 

6.2.1.2 Characterization techniques 

The samples were analysed by means of attenuated total reflectance - Fourier transform 

infrared spectroscopy (Perkin Elmer spectrometer- Perkin Elmer spectrum 100 series with 

universal ATR accessory), thermal gravimetric analysis (TA Instruments Q seriesTM Thermal 

Analyzer DSC/TGA, Q600), powder X-ray diffraction (X-ray diffractometer, Rigaku MiniFlex 

60), textural characteristics (Micromeritics TRI STAR 3020V1.03 ,V1.03), transmission 

electron microscopy (JEOL TEM 1010 transmission electron microscope), scanning electron 

microscopy (JEOL JSM 6100 microscope), Raman spectroscopy analysis (100 mW Delta Nu 

Advantage 532TM spectrometer of 10 cm-1 resolution with a 2D CCD detector and grating lines 

were 1800 mm-1 with a laser source (Nd:YAG) at wavelength of 532 nm, four probe electron 

conductivity meter (model-DMV-001, ISO-9001-2000 certified with a PID oven controlled 

model-2000 and a low current source model-LC-02), elemental analysis (LECO CHNS-932 

elemental analyzer standardized with acetanilide) and X-ray photoelectron spectroscopy (XPS, 

with a Kratos Axis ultra DLD using an Al (monochromatic) anode equipped with a charge 

neutraliser and operating pressure was kept below 5 × 10-9 Torr).  The XPS parameters used 
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were an emission current of 10 mA, anode voltage (HT) 15 kV, resolution to acquire scan was 

160 eV using hybrid lens in the slot mode.  

The working electrode was prepared by casting the sample mixed with nafion onto a 3 mm 

diameter glassy carbon electrode.  The deposited sample, on the electrode, was thereafter dried 

at room temperature.  The electrochemical characterisations were done by means of cyclic 

voltammetry (797 VA Computrace Metrohm CT798 application model with a 57970110-

dosing processor) and electrochemical impedance spectroscopy (CHI 600E work station, CHI 

Instruments, frequency range was 10000 - 1 Hz and AC voltage used was 0.005 V).  All the 

measurements were done using a three-electrode system in 0.5 M NaSO4 electrolyte.  The 

counter and reference electrodes were Pt and Ag/AgCl system, respectively. 

 

6.3. Results and Discussion 

The physical and chemical characterisation data is elucidated in the sections that follows. 

 

6.3.1 Chemical composition analysis 

The C1s peaks at 284.2 and 285.2 eV were assigned to C-C (C1) and C-OH (C3), respectively 

(Fig. 6.1 a) [6.17].  The unusually low BE for C1s in RGOSB was attributed to the presence of 

both Na and B in the sample.  This infers a transformed chemical environment due to a possible 

increase in valence charge on C from either B or Na.  Hence, the C-B interaction as dopant in 

the graphene framework is most likely due to similar sizes of the atoms.  The XPS spectra 

shows that the major component of oxygen-containing groups in the as-synthesised GO was 

C3 and substantially decreased upon reduction with the various agents (Fig. 6.1a).  This 

corroborates with elemental analysis, FTIR studies and TGA (Table 6.S1 in supplementary 

information, Fig. 6.3 and Table 6.1).  
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Fig. 6.1. XPS spectra for RGO samples (a) C1s, (b) N1s and (c) O1s. 

 

The TGA weight loss, under N2 atmosphere, in the temperature ranges 150-400 ˚C, 400-500 

˚C and 650-700 ˚C was assigned to loss from –COOH, lactones and -OH moieties [6.22,6.23], 

respectively.  The trend, obtained by means of both TGA and elemental analysis, in terms of 

decreasing content of oxygen-containing groups, was pristine-GO > RGOSB > RGOAA > 

RGOHH (Table 6.S1 in supplementary information and Table 6.1).  The TGA data also infers 

that reductants used in the current work had minimum influence on quantities of both lactones 

and phenols (Table 6.1).  In addition, sodium borohydride was the strongest –COOH reductant, 

followed by hydrazine hydrate but overall the latter was the most effective.   
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Table 6.1:  Quantification of oxygen-containing groups from TGA in nitrogen gas atmosphere 

Sample 

% weight loss due to 

Adsorbed 
water 

Oxygen 
containing-

groups 

Carboxylic 
acid groups 

Lactones Phenols 

Pristine-GO 22 44 28 4 3 

RGOAA 2 36 22 4 1 

RGOHH 7 20 15 3 2 

RGOSB 3 28 11 4 2 

 

The weight loss at ca 100 ˚C, due to water loss, correlated with the pronounced decrease in the 

FTIR peak at ca 3400 cm-1.  This FTIR peak was assigned to hydroxyl stretching vibrations 

either in adsorbed water molecules or phenol and hydroxyl groups due to presence of 

carboxylic functionalities [6.11,6.19,6.24] and decrease in hydrogen-containing groups (Fig. 

6.3, Table 6.S1 and Table 6.1).  The RGO only displayed weight loss due to more stable oxygen 

moieties, i.e. weight loss between 100 and 900 ˚C (Fig. 6.2 and Table 6.1).  The weight loss 

differences below 200 ˚C, due to different functional groups on RGO [6.11,6.25],  were also 

observed between RGOAA and RGOHH with different nitrogen functionalities. 

 

Fig. 6.2. TGA of pristine-GO and RGO samples in nitrogen (Condition: under nitrogen 

atmosphere, heating rate of 10 ˚C min-1 from room temperature to 900 ˚C). 
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The pristine-GO had the highest amount of oxygen at.% (Fig. 6.1c), respectively.  Additionally, 

oxygen:carbon (O:C) ratio for all the samples, calculated from XPS data analysis (Table 6.2), 

were 0.32, 0.31, 0.17 and 0.10 for pristine-GO, RGOSB, RGOAA, and RGOHH samples, 

respectively.  This trend corroborated with the absence of the broad peak at 3400 cm-1 (Fig. 

6.3) of RGO samples, data obtained from TGA and elemental analysis.  The O:C ratio 

calculated from elemental analysis is not a reliable method to conclusively determine the 

oxygen content in GO because it is almost impossible to completely dehydrate it [6.26].  

However, in the current work it was used because the samples were dried and stored under the 

same conditions. Hence, relative differences between samples can be identified. From the data, 

the number of hydrogen-containing groups was an indication of the OH moieties existence and 

likely hydrophilicity effects due to the chemical nature of the RGO.  

 

 

Fig. 6.3. ATR spectra of pristine-GO and RGO samples (reduced by means of ascorbic acid, 

hydrazine hydrate and sodium borohydride, respectively) restacked to avoid spectral overlap. 
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 Table 6.2: Summary of XPS for pristine-GO and RGO samples 

Sample Element Atomic 
concentration 

Binding energy (eV) 

pristine-GO 

C1s 75.33 285.2 

O1s 24.22 530 

N1s 0.45 399 

RGOAA 

C1s 84.85 284.2 

O1s 14.70 531 

N1s 0.45 403 

RGOHH 

C1s 87.19 284.2 

O1s 8.73 531 

N1s 4.07 398 

RGOSB 

C1s 73.44 283.5 

O1s 22.40 531 

N1s - - 

B1s 2.49 190 

Na1s 1.67 1070 

 

The XPS oxygen atomic concentration (at.%) were lower than those determined by both 

elemental analysis and TGA although the data followed the same O:C ratio trend.  This infers, 

with caution, that elemental analysis in conjunction with TGA (under nitrogen atmosphere) are 

a suitable method for determining, or at least an indication of, the effectiveness of reducing 

reagents on pristine-GO but maybe less accurate than XPS.   

Additionally, the reduction by means of sodium borohydride is most likely to occur via a 

hydride transfer from borohydride anion to form an oxyanion and an electron deficient BH3 

molecule [6.14].  This was a possible reason for the least amount of carboxylic acid groups in 

RGOSB (Table 6.1).  The elemental analysis and XPS data infers that this mechanism is less 

efficient and was associated with no observable N1s peak, but a B1s, in the samples (Table 

6.S1 and 6.2).  A possible reason for disappearance of N is that B, due to a smaller atomic 

radius and the electron deficient BH3 molecule form, was preferentially incorporated instead 

of N in the RGO.  Also, the reduction of pristine-GO with sodium borohydride is governed by 

the type of carbonyl [6.14].  The current results infer its high and low efficiency in -COOH and 

-OH moieties reduction, respectively. 
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The N1s peak at binding energy (BE) of 399 in pristine-GO was assigned to sp3 N-C [6.28].  A 

plausible rationale is that N is incorporated in the carbon structure (however not in the 

backbone of the graphitic framework) but exists as dangling bonds and this agrees with the 

observed FTIR N-H bending vibration (Fig. 6.3).  The most probable source of N in pristine-

GO is sodium nitrate used in the GO synthesis.  The XPS data (Table 6.2) shows that pristine-

GO and RGOAA had equal N1s at.% but in different forms.  In RGOAA, the N1s peak at BE of 

403 eV was ascribed to pyrrole-N-doping.  This suggests that ascorbic acid reduction facilitated 

a transformation of sp3 N-C to a pyrrolic nature.  In addition, N1s peak at BE of 398 eV was 

attributed to either pyridinic or carbonitrile species [6.28], and the atomic concentration of N1s 

was highest in the RGOHH sample (Table 6.2).  This shows that hydrazine hydrate can result in 

N-doping of RGO samples.  Whilst the presence of N moieties can infer presence of hydrazides 

and hydrazones from hydrazine reaction with lactones, anhydrides and quinones on pristine-

GO [6.17], there was no noticeable functional group to support their presence in the FTIR 

spectra (Fig. 6.3).  

A possible mechanism, reported by Pumera et al. [6.14] and Gao et al. [6.29], for the formation 

of typical N functionalities, in the current work, is through an attack of the epoxide moieties 

on pristine-GO.  This mechanism is further supported by the decrease of the epoxy C-O-C and 

alkoxy C-O stretching vibrations peak intensities from FTIR analysis (Fig. 6.3).  Additionally, 

the decrease in FTIR peak intensity at ca. 1500, 1600, 1250 and 980 cm-1, attributed to aromatic 

sp2 C꞊C bonds, N-H bending, epoxy C-O-C and alkoxy C-O stretching vibrations 

[6.19,6.24,6.27,6.28], respectively (Fig. 6.3) concurs with this mechanism.  The absence of a 

C-N peak, particularly in the RGOAA and RGOHH, due to aliphatic amine stretching at ca 1074 

cm-1 [6.11] suggest inclusion of N in the graphitic structure.  In short, current results, show that 

pyrrolic- and pyridinic-N-doping of RGO can be facilitated by means of ascorbic acid and 

hydrazine hydrate GO reduction, respectively.   

Hence, the current work, shows that the chemical method used for GO reduction is a 

manipulative means of tuning oxygen moieties content and other elemental compositions such 

as B, N and the N functional groups.  These are phenomena often ignored in the reduction of 

GO in which most works focus on the reduction of O at.%. 
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6.3.2 Physical properties: defects, surface area, porosity and morphology 

The powder X-ray diffraction peak at 2θ of 10º is a suitable qualitative indicator for the 

structure of GO [6.28].  Hence, the pronounced decrease in both the peak intensity and width 

is an indication of an effective reduction of GO indirectly through structural transformation 

(Fig. 6.S6, supplementary information).  This decrease in peak intensity is an indication of 

destruction of regular stacking of pristine-GO during reduction [6.29].  The Raman peaks were 

fitted using a Lorenztian function.   

The Raman D-band, often located at 1350 cm-1 (Fig. 6.S5, supplementary information), is an 

indicator of disruptions of the symmetrical hexagonal graphene lattice due to edge defects, 

internal structural defects and dangling bonds [6.29].  Typically, the more wrinkled appearance 

on RGO (Fig. 6.S7, supplementary information) is an indication of defects [6.13,6.16,6.30]. 

This suggests, from the RGO TEM images which were more transparent than pristine-GO, that 

exfoliation was further facilitated in the RGO samples (Fig. 6.4).    

 

 

Fig. 6.4.  TEM images for (a) pristine-GO, (b) RGOAA, (c) RGOHH and (d) RGOSB. 
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Whereas the G-band located at 1550 cm-1 (Fig. 6.S5, supplementary information) is due to in-

plane sp2 carbon-carbon stretching vibrations.  The ID/IG ratio, as defect density indicator, was 

determined by dividing the area under the D-band by that of G-band. The defect density of 

RGOAA and RGOSB were higher than that of pristine-GO (Fig. 6.S6b, supplementary 

information) due to associated reduction processes.  However, the lowest defect density of 

RGOHH is possibly due to both the lowest amount of oxygen-containing moieties and high 

fragmentation of sp2-dormain [6.31].  The TGA thermogram indicates that all the RGO samples 

were more thermally stable than GO.  A possible reason, which concurs with the work reported 

by Sandoval et al. [6.15] is the decrease in defects, that can be oxidised, upon RGO doping.  

Additionally, least possibility of electrostatic interactions, facilitated by the above-mentioned 

reasons, between RGOHH sheets can be associated with minimum chances of agglomeration.  

Hence, it is associated with the largest surface area.  The highest surface area of RGOHH can 

also be attributed to highest N-doping [6.32].  Hence, from the current work, it can be 

ascertained that only reduction with hydrazine hydrate enhanced surface area (Table 6.3).  

 

Table 6.3:  Textural characteristics for pristine-GO and RGO samples 

Treatment Surface area 

(m2/g) 

Pore volume 

(cm3/g) 

Pore size (nm) 

Pristine-GO 185.43 0.26 6.36 

RGOAA 17.85 0.05 10.32 

RGOHH 390.55 0.26 3.45 

RGOSB 4.22 0.01 4.71 

 

Since RGOSB and RGOAA were both more agglomerated and randomly oriented than RGOHH 

(Fig. 6.S7, supplementary information and Table 6.3), a possible rationale for the reduced 

surface areas of RGOAA and RGOSB is that chemically reduced GO is associated with π-π 

stacking between RGO sheets and this led to formation of agglomerates [6.19].  Agglomeration 

is enhanced by Van der Waals forces from the π-π interactions between RGO sheets [6.3].  

Additionally, porosity in GO sheets is derived from the spaces between sheets [6.3], the 

decrease in pore volume in RGOAA and RGOSB (Table 6.3) is a further indication of 

agglomeration.  In pristine-GO, the oxygen containing groups on the sheet surface introduces 

repulsive forces that may aide in separating the graphene layers, hence, any spaces between the 
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layers contributes to surface area and porosity [6.21].  Upon reduction (RGOAA and RGOSB 

samples), some of the processes removed or altered some of the oxygen moieties on the 

surfaces and this induced agglomeration and blocked or removed some spaces between RGO 

sheets.   

The highest pore size (Table 6.3) and defect intensity (Fig. 6.S6b, supplementary information) 

in RGOAA can conceivably suggest that ascorbic acid reduction of GO increases pore sizes.  

This possibly culminated on the highest compressive strain of the graphene framework.  This 

was deduced from the highest blue shift of both the Raman spectroscopy G- and 2D-band 

(Table 6.S2, supplementary information).  It is interesting to note that the surface area of 

pristine-GO was almost five times (185.43 m2 g-1) more than the usual experimental values 

between 30-40 m2 g-1 but less than theoretical values of approximately 2600 m2 g-1 [6.33].  The 

lower experimental values are due to strong hydrogen bonding [6.33] that cause agglomeration 

of sheets and therefore reduce contribution of the spaces between sheets and the individual 

layers.  In short, the textural characteristics data (Table 6.3 and Fig. 6.S6, supplementary 

information) infers that use of different chemical reagents during reduction of pristine-GO is a 

possible route of tailoring physical properties. 

 

6.3.3 Electrochemical characterization 

A small intercept in the real axis of the Nyquist plot (Fig. 6.5) hints at an associated small 

internal resistance (Ri).  The ascending order of Ri was RGOAA, RGOHH, pristine-GO then 

RGOSB (Fig. 6.5).  This infers that pyrrolic-N-doping of RGO, in the current work, has lower 

Ri than pyridinic and they are both better than pristine-GO (Table 6.2 and Fig. 6.5).  Also, B-

doping increased Ri from that of pristine-GO and low Ri is significant in energy storage devices 

because it minimises energy wastage via production of unwanted heat during charging and 

discharging [6.34].  Pristine-GO had the largest Faradaic charge transfer resistance (Rct) but, 

as deduced from the absence of a semi-circle, the rest of the samples had no clear resistance to 

charge flow (Fig. 6.5).  A suitable reason for poorer electrochemical characteristics for pristine-

GO is linked to high oxygen-containing groups [6.7].   
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Fig. 6.5. Nyquist plot in the frequency range of 10000 - 1 Hz for pristine-GO and RGO 

synthesised from different reducing agents. 

 

In the intermediate frequency, the negligible Warburg curve of RGOHH  (100-50 Hz, Fig. 6.5) 

was an indication of short ion diffusion path [6.35] and this suggested excellent electrolyte ion 

penetration [6.36,6.37].  This infers that pyridinic-N-doping positively facilitated sodium 

sulfate electrolyte ion penetration.  RGOSB displayed the longest diffusion path (9000-2000 

Hz) and this means B-doping enhanced the diffusion path length.  A larger slope associated 

with RGOHH, i.e. almost vertical line, graph in the low frequency region was an indication of 

ideal EDLC behaviour [6.7,6.32,6.38]. 

The poor conductivity of pristine-GO is due to the disruption of the extended π-system but the 

reduction process restores it (Fig. 6.6) [6.30].  The pristine-GO conductivity behaviour was 

typical of a metal but reduction of GO render it semi-conducting [6.39].  This could be because 

the energy gap in pristine-GO depends on the level of oxidation, species of oxygen-containing 

groups and level of exfoliation [6.16,6.40], hence, a variation via reduction transforms the 

conductivity in typical materials.  This concurs with blue and red shifting of the Raman G- and 
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2D-band peaks (Table 6.S2, supplementary information), associated with n- and p-type 

conducting [6.16,6.32,6.41] in the N- and B-doped-RGO, respectively.  Additionally, doping 

of GO distorts the π electron cloud and this hinders in-plane electron movement [6.1], hence, 

doping was associated with lower conductivity.   

 

 

Fig. 6.6.  Conductivity of (a) pristine-GO, (b) RGOAA, (c) RGOHH and (d) RGOSB. 

 

It can be deduced that RGOSB still retained the intrinsic pristine-GO metallic conducting 

characteristics at lower temperatures.  This can be attributed to high residual oxygen 

functionalities (Table 6.1) [6.14] and absence of N in the carbon framework as well as the 

presence of Na and B (Table 6.3).  Two important remarks deduced from this data, firstly, 

pristine-GO was a better conductor at ambient temperatures than all RGO samples (Fig. 6.5).  

Secondly, there is a possibility that defects created during reduction process act as charge traps.  

The lower conductivity of RGO relative to pristine GO, unlike the expected improvement on 

conductivity upon reduction, was also attributed to the poor contact in the RGO sheets prepared 

for conductivity measurements in the four-probe method.  This culminated from enhanced 

hydrophobic nature upon reduction and hence, poor contact sheets were produced.  RGOHH 

was the best semi-conductor in the current work and this was attributed to highest N content, 
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pyridinic-N-doping and the least defective nature.  In brief, the differences in RGO 

conductivity was influenced by the addition of heteroatoms, N and B during reduction [6.12]. 

Electrochemical reduction of pristine-GO is a possibility during the cyclic voltammetry 

experiments, where a quinone/hydroquinone redox occurs at ca 0.5 V [6.13], but was absent in 

the current work (Fig. 6.7 a-b).  RGOAA and RGOHH samples displayed good current responses 

at both scan rates of 5 and 100 mV s-1 (Fig. 6.7 a-b), and this can be attributed to their pyrrolic- 

and pyridinic-N functionalities, respectively, which enhanced semi-conducting character (Fig. 

6.6).  Also, even if RGOHH was the most reduced followed by RGOAA (Tables 6.1-6.2), they 

both displayed more pseudo characteristics, with narrower and more oblique CV curves, than 

pristine-GO and RGOSB (Fig. 6.7a).  This infers that N-doping in RGO introduced some pseudo 

characteristics and poor rate capabilities with regards to EDLC behaviour [6.34].  The distorted 

rectangular CV curves can also be attributed to the ion sieving effect within the electrode pores 

[6.37].  All the samples exhibited better rate capabilities and low internal resistance at higher 

scan rates (Fig. 6.7b). 

 

Fig. 6.7.  CV curves for pristine-GO and chemically reduced GO at scan rate of (a) 5 mV s-1, 

(b) 100 mV s-1 and (c) specific capacitance (Cs). 
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The GO reduction improved Cs significantly (Fig. 6.7c) and this can be credited to the structural 

and morphological modifications, smaller quantities -OH functional groups and O:C ratios, Ri 

decrease and the semi-conducting character, amongst other factors.  The most probable 

explanation for higher Cs of RGOAA than RGOHH is that pyrrolic N-doped-RGO has lower Ri 

than pyridinic counterparts (Fig. 6.5 and Table 6.3).  The overall higher Cs of N-doped-RGO 

despite the poor EDLC behaviour, relative to pristine-GO and RGOSB, is because N-doped-

RGO has charge storage contributions from both EDLC and pseudo mechanisms.  Also, 

RGOSB, without N, had smaller Cs but higher than that of pristine-GO.  This agreed with earlier 

reports in that heteroatoms and other functional groups increase wettability of carbon-based 

electrodes and ultimately enhance Cs [6.11,6.34,6.37].  The current results are a basis of the 

following deductions: 

i. Reduction of GO and N-doping of RGO both enhances Cs. 

ii. The influence of O:C ratio on Cs. in the current samples is outweighed by N-doping. 

iii. Pyrrolic N-doping moieties on RGO are better than pyridinic in terms of Cs. 

iv. The surface areas and porosity, determined by nitrogen sorption analysis, were not 

necessarily available for electrochemical processes.  

A possible rationale of these deductions is that pyridinic and pyrrolic N-doping are located near 

carbon vacancy with two carbon atom neighbours.  This facilitates two σ bonds with 

neighbours, one electron in the pz orbital for π-bonding and two lone pairs.  In this way, 

electrochemical processes were altered from that of pristine-GO. 

 

6.3.4 Thermal reduction studies  

RGOHH was thermally treated at temperatures of 500, 750 and 1000 ˚C to further investigate 

the influence of textural properties on RGO capacitance.  Thermal reduction, except at 1000 

˚C, of RGOHH enhanced both surface area and pore volume (Table 6.4).  The sites where 

oxygen was removed during thermal treatment are the probable influence of the observed larger 

surface areas and pore volumes.  A possible reason for the slight drop in surface area, after 

thermal treatment at 1000 ˚C, was that even though it restores the graphitic structure, thermal 

treatment enhanced agglomeration [6.42].  The defect intensity increased (Table 6.4) upon 

thermal treatment, a possible account of this unusual observation, is that defects such as 
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dangling bonds are created in the regions where oxygen and nitrogen moieties originally 

occupied in RGO.     

 

Table 6.4:  Textural characteristics and the ID/IG ratios determined from Raman spectroscopy 

of thermally reduced graphene oxide 

Reducing 

temperature 

Surface area 

(m2/g) 

Pore volume 

(cm3/g) 

Pore size (nm) 
ID/IG 

RGOHH 390.55 0.26 3.45 0.83 

500 569.39 0.39 3.43 1.52 

750 599.67 0.41 3.49 1.37 

1000 584.95 0.47 3.76 1.42 

 

The CV curves at both 5 and 100 mV s-1 showed pseudo rectangular shapes.  The EDLC quality 

slightly deteriorated upon thermal treatment at 500 ˚C and scan rate of 5 mV s-1 but thereafter 

improved with temperature raise.  The most probable reason is that surface area and pore 

volume available for N2 sorption is not necessarily available for the Na2SO4 electrolyte [6.3].  

Additionally, it has been reported that surface area is not the only influence on Cs [6.1].  

Thermal treatment of RGO lessen both N and O at.% [6.11,6.16,6.32], hence, it could be 

responsible for the observed traits.  Additionally, at 100 mV s-1, thermal treatment improved 

EDLC quality and this can be attributed to enhanced textural properties and hence, temperature 

of reduction was able to tailor the Cs of RGO.  Additionally, the samples reduced at 1000 ˚C 

was better than RGOHH (Fig. 6.8 c).  Whereas, at 100 mV s-1, thermal reduction culminated in 

enhanced Cs.  For thermal reduced RGO, Cs increased with temperature raise (Fig. 6.8c).  This 

means the heat treatment boosts the rate capability of RGOHH. 
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Fig. 6.8. CV curve for thermally reduced GO scan rate of (a) 5 mV s-1, (b) 100 mV s-1 and (c) 

specific capacitance (Cs). 

 

6.4. Conclusions 

The major oxygen-containing moieties in the as-synthesised graphene oxide (GO) was C-OH 

moieties.  GO was successfully reduced and the reductants transformed physical and chemical 

properties.  The descending order of oxygen:carbon ratio was pristine-GO, RGOSB (sodium 

borohydride reduced), RGOAA (ascorbic acid), and RGOHH (hydrazine hydrate reduced) 

samples. The N functionalities were sp3 N-C (0.45%), pyrrolic (0.45%) and pyridinic (4.07%) 

for pristine-GO, RGOAA and RGOHH, respectively.  RGOSB B-doped at.% content was of 2.49.  

Surface area of pristine-GO was improved from 185.43 m2 g-1 to 390.55 m2 g-1 and 599.67 m2 

g-1 upon reduction with hydrazine hydrate and subsequent thermal treatment, respectively.  

Additionally, RGO samples were more thermally stable than pristine-GO and pyridinic-N-

RGO was the least defective.  Reduction and N-doping transformed metallic conductivity 

behaviour of pristine-GO to semi-conducting in RGO. RGOSB still retained the intrinsic 

pristine-GO metallic conducting characteristics at lower temperatures.  N-doped-RGO had 

lower internal resistance, shorter diffusion path lengths and better charge storage performances 
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than B-doped.  On the other hand, pyrrolic-N-doped RGO had lower internal resistance and 

was more effective in charge storage than pyridinic.  The data indicates that thermally treated 

RGOHH was superior than untreated RGOHH.  RGO was tailored to have several attributes such 

as enhanced N content, semiconducting character, electrochemical behaviour and 

electrochemical double layer capacitor characteristics. 
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Appendix: Supporting information for Chapter 6 

 

Table 6.S1: Elemental analysis of pristine and reduced graphene samples 

Sample C H N O O:C ratio 

Pristine-GO 44.65 2.17 0.39 30.84 0.69 

RGOAA 72.99 1.76 0.25 14.92 0.20 

RGOHH 72.55 0.67 5.96 9.76 0.13 

RGOSB 48.73 0.74 - 19.70 0.40 

 

 

Table 6.S2: The Raman peak position analysis determined by fitting the spectra into the 

Lorentzian function 

Sample G-band (cm-1) 2D-band (cm-1) 

Pristine-GO 1595 2330 

RGOAA 1599 2331 

RGOHH 1597 2334 

RGOSB 1593 2329 
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Fig. 6.S1. Representative XPS spectra for as-synthesised GO.  

 

Fig. 6.S2. Representative XPS spectra for RGO reduced by ascorbic acid. 
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Fig. 6.S3. Representative XPS spectra for RGO reduced by hydrazine hydrate. 
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Fig. 6.S4. Representative XPS spectra for RGO reduced by sodium borohydride. 
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Fig. 6.S5.  The Raman spectra for pristine GO and GO reduced with ascorbic acid, hydrazine 

hydrate and sodium borohydride. 

 

Fig. 6.S6. (a) Powder XRD spectrum and (b) Raman spectroscopy ID/IG ratios for pristine-GO 

and the RGO samples from different reagents. 
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Fig. 6.S7. Scanning electron microscopy images of (a) pristine-GO, (b) RGOAA, (c) RGOHH 

and (d) RGOSB. 
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Fig. 6.S8.  Textural characteristics for RGO. 

 

 

Fig. 6.S9.  The representative Raman spectra peak fitting using the Lorentzian function. 
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Abstract 

The aim was to prepare mesoporous composites of graphene oxide (GO) and titania with 

improved physicochemical properties for use as electrodes in electrochemical double layer 

capacitors (EDLCs).  This was done by using a known amount of titania (5, 10, 20 and 40 

wt.%) to synthesise graphene oxide-titania (GOTi), reduced graphene oxide-titania (RGOTi) 

and nanocrystalline cellulose (NCC) reduced graphene oxide-titania (CRGTi) composites by 

sol-gel method.  Titania positively impacted the exfoliation of GO sheets but excess amounts 

culminated in large titania agglomerates in the composites.  The carbon-oxygen-titanium 

interactions, facilitated by oxygen moieties, were strongest in the GOTi composites.  The 

reduction of GOTi, to form RGOTi, enhanced the surface area from 136.89 to 434.24 m2 g-1 

for the 5 wt.% titania composites.  The RGOTi composites were more defective than the GOTi 

ones with an ID/IG ratio of 1.13 and 0.88, respectively, at 40 wt.% titania.  Inclusion of NCC in 

the synthesis of RGOTi composites enhanced the surface areas relative to those of both GOTi 

and RGOTi at 10-40 wt.% titania.  The 5 wt.% titania RGOTi composite displayed the best 

EDLC quality with the highest specific capacitance of 45 F g-1 in sodium sulfate electrolyte.   

 

Keywords:  reduced graphene oxide, graphene oxide, capacitance, titania, cellulose, 

composites 
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7.1 Introduction 

Graphene has been reported as a promising material for the next generation of electrochemical 

capacitor electrodes, particularly, if the electro-active area is modified and enhanced, amongst 

other manipulations. For instance, electrolyte ions can be tuned to diffuse easily into 

mesoporous structures and this lowers equivalent series resistance [7.1].  However, it is 

difficult to produce porous materials from graphene because layers easily stack on top of each 

other [7.1,7.2].  Composite formation is a suitable way to counter that setback and current 
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efforts are devoted to combining separate components to enhance electrochemical performance 

via synergistic effects [7.3,7.4].   

In particular, composites of carbon nanomaterials with titania have the advantage of chemical 

inertness and stability [7.3].  Additionally, incorporation of electron-accepting carbon 

nanomaterials, such carbon nanotubes [7.5,7.6] and graphene [7.7,7.8], enhance titania 

functionality by reducing electron/hole recombination in electronic devices.  On the other hand, 

semiconductor materials such as titania in graphene-based materials enhance the 

optoelectronic, electronic, electro-catalytic and photocatalytic properties of GO [7.9,7.10].  

Additionally, titania is suitable for electrochemical reactions because of its stability against 

photo- and electrochemical corrosion [7.11,7.9].  Also, the varied oxidation states of transition 

metals  enable easier charge transfer [7.3].  Thus, the inclusion of titania in carbon nanomaterial 

composites afford many benefits. 

Graphene oxide (GO) doped with titania has been widely used in photo-catalysis since GO is 

known to reduce the band gap of titania [7.11-7.13].  However, GO is not appropriate as a 

material for electrochemical capacitors (ECs) due to poor conductivity [7.14].  The current 

work investigates the modification of GO with titania as a strategy to enhance its suitability for 

use in ECs. A typical more intimate interaction between the components is preferred for easy 

electron transfer from titania to GO in ECs [7.9,7.15].  Hence, the focus in this regard has been 

on designing 3D nanostructures that reduce the ion diffusion path length and enhance the 

surface area available for improved electrochemical processes [7.3,7.14].   

ECs are of interest since they are known to be associated with low maintenance costs and longer 

cycle lives than batteries [7.6].  Additionally, graphene-based materials are ideal for ECs 

particularly because of their theoretically larger specific surface areas, greater mechanical 

strength and higher electrical conductivities, amongst other factors.  Hence, in this study, 

reduced graphene oxide (RGO) was used to modify the electrochemical properties of GO, 

titania and nanocrystalline cellulose (NCC). 

Fabrication of graphene based composites requires high quality graphene and effective 

incorporation into various matrices [7.16].  Two possible approaches are, namely, mixing of 

the two previously prepared components in solution, and in-situ growth of titania in the 

presence of a GO solution [7.12].  Several methodologies have been applied in the synthesis of 

graphene oxide-titania (GOTi) and reduced graphene-titania (RGOTi) composites by using 

different titania precursors.  For example, synthesis of the aforementioned composites has been 
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conducted from titanium(IV) tetrafluoride by means of hydrolysis [7.12] and liquid phase 

deposition [7.17], UV-irradiation of GO to obtain RGOTi from titanium(IV) tetrachloride 

[7.16], titanium(IV) fluoride by a solvothermal approach [7.18] and hydrothermal synthesis 

from titanium(IV) butoxide [7.9].  In the current work, composites were synthesised by the sol-

gel method.  Chemical reduction is more suitable for the synthesis of RGO-inorganic 

composites because of the associated low cost and the provision of several routes for 

functionalization [7.12].  Previous reports have investigated the influence of the GO wt.% in 

GOTi composites [7.9], hence, herein, the effects of the TiO2 wt.% in GOTi, RGOTi and 

CRGTi synthesised by the sol-gel method from titanium(IV) isopropoxide (TIP) were studied.  

Additionally, RGO (a closer resemblance to the newest member of the carbon family, 

graphene), is not well explored in terms of RGOTi composites for electrochemical applications 

[7.15] such as electrochemical double layer capacitance (EDLC). 

Additionally, the current work seeks to investigate the influence of NCC on the GOTi and 

RGOTi composites. Cellulose is renewable, biodegradable and the most abundant natural 

polysaccharide.  It is regarded as a green, inexpensive and sustainable material [7.19-7.22].  

Carbon materials for electrochemical double layer capacitance have been synthesised from 

cellulose [7.23]. NCC, synthesised by dissolving the amorphous regions by hydrolysis, consists 

of rod-like NCC whiskers of about 5-70 nm in diameter and lengths of over a hundred nm 

[7.23,7.24].  Size variations are dependent on the origin of the NCC, and the preparation 

method and conditions.  NCC has abundant hydroxyl groups and is held together by several 

inter- and intra-molecular hydrogen bonds [7.20].  Blending NCC with other materials is a 

lucrative direction towards the development of functional composites [7.22].  

 

7.2 Materials 

Graphite powder (< 150 µm, 99.99%) and hydrazine hydrate (50-60%) were purchased from 

Sigma Aldrich.  Hydrogen peroxide (30%) from Merck ltd, South Africa.  Titanium (IV) 

isopropoxide (TIP, 97%) was obtained from Alfa Aesar, whilst potassium permanganate 

(99%), sodium nitrate (99%) and absolute methanol (99.5%, AR,) were all purchased from 

Associated Chemical Enterprise, South Africa.  Sulfuric acid (98.37%) was procured from C.C. 

Immelmann Ltd, South Africa and was used as-received without dilution.   
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7.2.1 Experimental methodology 

GO was synthesised by a modified Hummer’s method as reported earlier [7.25].  In a typical 

synthesis procedure, graphite powder was mixed in a ratio 1:1 with sodium nitrate.  It was 

thereafter oxidised by use sulfuric acid, potassium permanganate and hydrogen peroxide.  NCC 

synthesis was via dissolving pulp attained from a hard wood source, through a hydrolysis 

treatment with sulfuric acid (65% w/w).  To dissolve pulp, 100 mL of sulfuric acid solution 

was added, and the mixture was stirred vigorously at 60 °C for 1 hour.  The mixture was diluted 

10-fold with double deionized water to terminate the hydrolysis reaction.  The composite 

synthesis was in several stages as elaborated below. 

 

7.2.2 Synthesis of composites 

The targeted titania wt.% values were 5, 10, 20 and 40% on GO for all the composites.  In the 

case of the graphene oxide-titania (GOTi) composites, GO was dispersed in 10 mL of double-

deionised water (DI) by ultrasonication for 5 minutes and thereafter predetermined volumes of 

TIP were added with a micropipette whilst stirring.  The mixture was stirred for a further 30 

minutes and thereafter sonicated for 10 minutes.  The mixture was left under ambient 

conditions for at least 48 hours and this was followed by drying at 90 °C overnight.  Likewise, 

reduced graphene oxide-titania (RGOTi) composites were synthesised, with the addition of the 

same amounts of TIP to obtain the same titania to GO ratios as for the GOTi synthesis.  The 

additional steps, after the addition of TIP, involved the addition of hydrazine hydrate (2 mL) 

followed by raising the temperature to 90 °C and holding it there for one hour before finally 

vacuum filtering and washing the product several times with DI.  A control sample, RTi, was 

also prepared by adding hydrazine hydrate to TIP in the same manner as in RGOTi composite 

synthesis.  The NCC-reduced graphene oxide-titania (CRGTi) composites were synthesised, 

similarly to RGOTi, by dispersing GO in DI (10 mL) by means of an ultrasonic water bath for 

10 minutes followed by the addition of a predetermined constant volume of NCC (to provide 

a 1:1 NCC to GO ratio) and the other steps were conducted in the same way as for RGOTi.  

The composites were named as per the reagent composition, i.e. the intended titania wt.% on 

GO in the initial mixture. 

. 
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7.2.3 Characterisation techniques 

The samples were characterised by means of transmission electron microscopy (JEOL TEM 

1010 transmission electron microscope), scanning electron microscopy (JEOL JSM 6100 

microscope), attenuated total reflectance Fourier transform infrared spectroscopy (PerkinElmer 

spectrum 100 series infrared spectrometer with a universal ATR accessory), textural 

characteristics (Micrometrics TRI STAR 3020 surface area and porosity analyser), powder X-

ray diffraction (Rigaku MiniFlex 60), Raman spectroscopy (100 mW Delta Nu Advantage 

532TM spectrometer of 10 cm-1 resolution with a 2D CCD detector and grating lines of 1800 

mm-1 with a laser source (Nd:YAG) at a wavelength of 532 nm), X-ray photoelectron 

spectroscopy (Kratos Axis ultra DLD with an Al monochromatic anode equipped with a charge 

neutraliser and operating pressure was kept below 5 × 10-9 Torr, emission current of 10 mA, 

anode voltage (HT) 15 kV, resolution to acquire scan was 160 eV using hybrid lens in the slot 

mode), cyclic voltammetry (797 VA Computrace Metrohm CT798 application model with a 

57970110 dosing processor, using a glassy carbon electrode coated with the composite 

material, platinum wire counter electrode, Ag/AgCl reference electrode and 0.5 M sodium 

sulfate electrolyte) and electron impedance spectroscopy (CHI 600E work station, CHI 

Instruments).  

 

7.3 Results and discussion 

The materials in the current study were classified as graphene oxide-titania (GOTi), reduced 

graphene oxide-titania (RGOTi) and NCC reduced graphene oxide-titania (CRGTi) 

composites.  Their physicochemical and electrochemical properties are compared and 

discussed in the subsequent sub-sections. 

 

7.3.1 Physicochemical characterisation 

The GOTi composites synthesised from a reagent composition of 5, 10, 20 and 40 wt.% titania 

on GO are discussed first under each subheading. The RGOTi composites, synthesised via in-

situ reduction of graphene oxide in the presence of titania at 5, 10, 20 and 40 wt.% titania in a 

similar manner to GOTi composites, are presented second under all the subheadings. Also, the 
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CRGTi composites, similarly synthesised via the in-situ reduction of graphene oxide in the 

presence of a fixed amount of 50 wt.% NCC and with various titania wt.% of 5, 10, 20 and 40 

with respect to RGO are presented last.   The wt.% of both titania and NCC were determined 

with respect to GO in the initial reagent mixture. 

 

7.3.1.1 Textural characteristics 

The GO sheets in the synthesised composites displayed increased transparency and were 

thinner as the amount of titania increased from 5-40 wt.% (Fig. 7.1 a-d).  This trend suggests 

improved exfoliation with increase in titania wt.%.  Thus, the TEM images show that addition 

of titania enhances exfoliation of the GO sheets.  The functional groups on GO facilitate its 

dispersion and hence allow easier absorption in polar matrices, and this enables the formation 

of GO intercalated exfoliated composites [7.22]. In addition, the ratio of surface area covered 

with titania to size and/or the number GO sheets covered increased with increase in titania 

wt.%.  Titania was seen to deposit preferentially on the edges and wrinkles.  Wrinkles and 

oxygen functionalities are forms of defects which strain the graphitic structure in the sheets 

[7.26,7.27].  This is possibly because Ti4+ is a hard Lewis acid and functional groups on edges 

and wrinkles of GO, such as epoxides and hydroxyls, act as a template for nucleation 

[7.11,7.12]. 
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Fig. 7.1 TEM images of GOTi composites for (a) 5%, (b) 10%, (c) 20% and (d) 40% wt.% 

titania  

 

For the RGOTi composites, hetero-structures with a similar sheet coating to that observed in 

GOTi (Fig. 7.2 a-d) were produced.  The image shown in Fig. 7.2e was a 100% titania control 

sample made under a similar reducing environment.  The traits observed in the composites, that 

is of increased titania coated sheets with increase in titania wt.%, corroborated with earlier 

studies that used dissimilar experimental conditions and precursors [7.17,7.11].  This means 

that the oxygen functionalities in RGOTi, like in GOTi, help to control the composite 

morphology by regulating the nucleation of titania crystallites against growth. 
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Fig. 7.2 TEM images of RGOTi composites for (a) 5%, (b) 10%, (c) 20%, (d) 40% and (e) 

100% titania. 

 

Thin transparent films of CRGTi composites with opaque regions were obtained when NCC 

was added to the RGOTi composites (Fig. 7.3).  This indicates successful exfoliation of RGO 

sheets followed by coating with titania.  The coating intensity in CRGTi was seen to increase 

with increase in titania wt.%, from 5 to 40 wt.% titania (Fig. 7.3).  Also, it cannot be clearly 
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established where the NCC sits in the composites. This suggest a more intimate interaction 

with RGO and minimal agglomeration of both components. Furthermore, the intensity of 

titania coverage was similar to that in the RGOTi and GOTi composites which was influenced 

by the wt.% of titania. 

 

 

Fig. 7.3 TEM images of CRGTi composites for (a) 5%, (b) 10%, (c) 20% and (d) 40% titania 

 

7.3.1.2 Surface morphology 

Many difficulties were encountered during SEM analysis due to the high sample conductivity.  

The sizes of agglomerates increased with increase in the titania wt.% added during the GOTi 

composite syntheses (Fig. 7.4a-d).  This is due to the high rate of nucleation at higher TIP 

concentrations.  Lambert et al. [7.12] reported similar observations but theirs were seed-like 

agglomerates at high titania ratios.  Additionally, the GO surface was a suitable matrix for 

titania nucleation and the number of separate crystallites increased with titania wt.%.  This is a 

clear indication that varying the titania wt.% is a suitable approach for modifying the 
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morphology of typical composites with the possibility of altering other physical properties such 

as textural characteristics and Raman vibrations. 

   

 

 Fig. 7.4 SEM images of GOTi composites at titania wt.% of (a) 5%, (b) 10%, (c) 20% and (d) 

40%  

 

Similarly, the agglomerate sizes of titania also increased with increase in wt.% on RGO 

composites (Fig. 7.5a-d) and this corroborated with the TEM observations.  A possible cause 

of this effect is the residual oxygen-containing groups on the RGO sheets that directed the 

particulate growth. Hence, despite the titania agglomeration, an increase in the number of 

titania particles tends to effect a more open RGO sheet morphology (Fig. 7.5a-d).  On the other 

hand, a comparison of Fig 7.5 a-d with Fig. 7.5e  clearly shows that RGO acted as a substrate 

that reduced titania agglomeration. 
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Fig. 7.5 SEM images of RGOTi composites of (a) 5%, (b) 10%, (c) 20%, (d) 40% and (e) 100% 

titania 

 

With regards to the CRGTi composites, the SEM images exhibited rippled titania-coated 

reduced graphene oxide sheets (Fig. 7.6) with notable agglomerates.  The sizes of the titania 

agglomerates in the RGOTi samples increased with titania wt.%.  Again, NCC could not be 

clearly identified in the CRGTi samples. 
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Fig. 7.6 SEM images of CRGTi composites at (a) 5%, (b) 10%, (c) 20% and (d) 40% titania 

 

7.3.1.3 Surface functional groups 

The FTIR peaks at ca. 3400, 1600 and 800 cm-1 due to O-H stretching vibrations, aromatic sp2 

C꞊C bonds and Ti-O-C bonding vibrations [7.28-7.31], respectively (Fig. 7.7a), were more 

intense in the 10 wt.% titania GOTi.  Additionally, the peaks at ca. 1250 and 1400 cm-1, 

attributed to epoxy C-O and carboxy C-O vibrations [7.28,7.32], decreased with increase in 

titania content (Fig. 7.7a).  A large number of oxygen-containing moieties on graphitic 

frameworks are often associated with a higher defect intensity [7.25,7.33,7.27].  A possible 

explanation is that oxygen-containing functionalities act as anchoring sites for titania, hence, 

titania can be viewed as sitting on defects.  This corroborates with the TEM images that showed 

titania preferring edges and wrinkles of GO for nucleation.  This means that introduction of 

titania is associated with some chemical interactions which culminates in an intimate interfacial 

contact [7.18,7.11] and this is expected to impact the electrochemical processes on the surface.  
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Also, only the 5 wt.% titania GOTi composite displayed a peak at ca. 2300 cm-1 and this peak 

is due to carbon dioxide captured from the atmosphere [7.34]. 

 

Fig. 7.7 The ATR-FTIR spectra of (a) GOTi, (b) RTi and RGOTi and (c) CRGTi composites 

at various titania wt.%  

 

For the RGOTi composites, the peaks at 3400 and 1700 cm-1, representing OH and C=O, 

respectively, were present in all samples including RTi (100% Ti, Fig. 7.7b).  This means the 

RGOTi composites and RTi were hydrophilic and contained some carboxy C꞊O bonds from 

the precursor TIP.  Similar observations, from P25-graphene composites synthesised by the 

hydrothermal method, were reported by Zhang et al. [7.30].  The peak at 2300 cm-1, assigned 

to carbon dioxide captured from the atmosphere [7.34], had the highest intensity in the 5 wt.% 

titania RGOTi sample and decreased with increase in titania wt.% (Fig. 7.7b).  Additionally, 
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the peak was absent from RTi.  Also, the peak at ca. 1250 cm-1 due to C-O-C vibrations was 

absent in pure titania, RTi, and this infers that its source can only be unreduced C-O-C moieties 

from GO.  The small peaks at 500 cm-1 were absent in 5 and 10 wt.% titania RGOTi samples 

(Fig. 7.7b) and this peak can be ascribed to the Ti-O-Ti vibrations of titania [7.30,7.35]. 

The IR spectral peaks in the CRGTi composite were generally weaker than those of the RGOTi 

samples (Fig. 7.7b-c) and a possible reason for this is the occurrence of a chemical 

transformation between the constituents of the composites upon inclusion of NCC.  The broad 

and low intensity peak at 3400 cm-1 is due to O-H stretching vibrations from water.  This may 

suggest that NCC interferes with the hydrogen bonded water molecules between RGO sheets 

[7.36], and displaces them.  No clear trend in terms of the peak intensity at 2200 cm-1 in relation 

to the titania wt.% is evident.  This peak is assigned to carbon dioxide captured from the 

atmosphere [7.34].  Variations due to the presence of NCC were not expected since it was 

present in a constant amount in all the RGOTi composites.  All samples had broad peaks at ca. 

1740 and 1600 cm-1 (Fig. 7.7c), and this was assigned to the carboxyl C꞊O group from either 

carbonyl or carboxylic groups and C꞊C, respectively [7.28,7.32].  A possible reason for the 

peak broadening is the existence of an intramolecular hydrogen bond due to the presence of 

NCC in the composites [7.21].  This is highly likely as a result of the more intimate interaction 

deduced from the morphological studies (Fig. 7.3).  The epoxy C-O-C vibration peak at 1200 

cm-1 was more pronounced in 10 and 20 wt.% titania whilst it was absent in the other CRGTi 

composites.  The absence of this peak at both extreme loadings is probably due to obscuring of 

the vibrations by more titania in the composites. 

 

7.3.1.4 Surface area and porosity 

For the determination of textural properties, the composites were preheated under vacuum to a 

temperature of 200 °C.  This was done to remove any contaminants adsorbed onto the surface 

[7.37].  Adsorption isotherms were then deduced from the quantity of nitrogen adsorbed at 77 

K and the various gas pressures.  As pressure is increased, an adsorption monolayer forms and 

a further increase in the gas concentration culminates in the formation of multiple layers 

[7.37,7.38].  A further pressure increase facilitates capillary condensation in the pores.  At 

saturation, all pores are filled with liquid nitrogen and hence, the total pore volume can be 

determined [7.37].  A decrease in pressure will cause a desorption process.  The desorption and 

adsorption branches of isotherms give useful information on porosity and surface area.  This is 
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mostly calculated by use of the Brunauer-Emmett-Teller (BET) theory which gives the total 

surface area available for nitrogen sorption [7.37,7.39,7.40]. 

The textural characteristics in the current report clearly show, as did the work reported by Xiang 

et al. [7.9], a corresponding increase of both BET surface area and porosity (Table 7.1) with 

increase in titania wt.% in the GOTi composites.  The present results can be attributed to 

enhanced titania coated surfaces as well as anchored crystallites on the GO sheets, and 

morphological variations such as numerous separate crystallites and an increase in exfoliation 

levels (Fig. 7.1 and 7.4).  Increased exfoliation facilitates the creation of spaces between sheets 

by reducing agglomeration whilst nitrogen sorption by the titania particles also increasingly 

contributed to both the BET surface area and pore volume.  Despite the aforementioned traits, 

there was no clear relationship between the titania wt.% and the pore sizes of the GOTi 

composites in the current study.  This means the observed increase in pore volume was not 

influenced by pore sizes. 
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Table 7.1 Textural characteristics of GOTi, RGOTi and CRGTi composites  

Composite % Ti 
Surface area 

(m2/g) 

Pore volume 

(cm3/g) 
Pore size (nm) 

GOTi 

0 118.40 0.04 3.17 

5 136.89 0.16 4.41 

10 164.11 0.19 4.15 

20 171.05 0.24 4.98 

40 201.60 0.29 4.88 

RGOTi 

0 390.55 0.26 3.45 

5 434.24 0.41 3.94 

10 377.01 0.43 4.26 

20 255.99 0.46 6.74 

40 210.95 0.46 7.47 

RTi 100 117.89 0.37 9.56 

CRGTi 

5 394.24 0.30 3.43 

10 409.96 0.30 3.43 

20 401.26 0.31 3.48 

40 330.29 0.28 3.62 

 

It is a common phenomenon to have a decrease in surface area upon reduction of GO to RGO 

due to restacking which is facilitated by intensive π-π interactions [7.6].  It is interesting to note 

a reverse circumstance in the current study (Table 7.1).  This observation was attributed to both 

the presence of titania and residual oxygen in the composites.  A loading of 5 wt.% titania 

enhanced the surface area of RGO (Table 7.1) which was also higher than that of RTi.  A 

possible account for this observation is the existence of a chemical interaction between titania 

and the RGO sheets that inhibits agglomeration.  The higher surface areas at lower titania wt.% 

are attributed to the corresponding smaller pore sizes (Table 7.1) and the smaller titania 

crystallite sizes (Fig. 7.5).  From 10-40 wt.% titania, the surface areas of the RGOTi composites 

decreased with increased titania content and the values were in-between those of RGO and RTi 

(Table 7.1).  This may suggest that beyond 5 wt.% titania, additional titania just sits or is 

deposited on the RGO sheets without necessarily being involved in a chemical interaction.  

This highlights the effects of the titania wt.% in the RGOTi composites on the textural 

characteristics.  Similar composites prepared hydrothermally from TIP and reduction by NaOH 

recorded lower surface areas of 235 [7.12],  83 [7.9] and 22 m2 g-1 [7.41] , respectively. 

Unlike the RGOTi composites, for the CRGTi composites the surface area increased between 

5 and 10 wt.% titania, and thereafter decreased with increase in titania content (Table 7.1).  
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Also, the variation in terms of pore sizes was negligible, hence, unlike in the RGOTi 

composites, the variation in surface area was not influenced by pore sizes.  It was particularly 

interesting to note that the introduction of NCC blocks the ability to positively tailor the pore 

volumes and sizes by varying the titania wt.%.  Pore sizes increased slightly between 10 and 

40 wt.% titania, relative to those of RGO, in the CRGTi composites.  The surface areas of the 

CRGTi composites at 10-40 wt.% titania were higher than for the corresponding composites 

for both GOTi and RGOTi (Table 7.1).  This is attributed to morphological properties (Fig. 7.3 

and 7.6).  

In addition, the amount of sorbed nitrogen which clearly increased with increasing titania wt.%, 

for all GOTi composites showed clear hysteresis loops with H3-type isotherms (Fig. 7.8a).  

This means an increase in titania wt.% enhanced the mesoporosity in the GOTi samples.  

Additionally, Fig. 7.8a shows that increasing the titania wt.% leads to reduced participation of 

small pores in nitrogen sorption (region indicated by circle) and this can be attributed to titania 

blocking the smaller pores first.  

 

Fig. 7.8 N2 adsorption isotherms for (a) GOTi, (b) RGOTi and (c) CRGTi composites 
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The RGOTi composites had higher pore volumes than both RGO and RTi.  This can be 

rationalised by the presence of both a chemical interaction between the titania and RGO sheets, 

that culminated in enhancement, and the excess titania physically sitting on the RGO sheets.  

Pore sizes and volumes increased with an increase in titania content, and this means that the 

porosity in typical RGOTi samples can be positively tailored by varying the titania wt.% (Table 

7.1 and Fig. 7.8b).  The ability to tailor pore sizes with titania wt.% was a distinguishable 

feature observed with GOTi composites.  Also, all the pore sizes fell in the range 3-10 nm and 

this means the material was mesoporous.  This corroborated with the type IV isotherms with 

H3-type hysteresis displayed for all RGOTi composites (Fig. 7.8b).  A noticeable feature was 

that RTi exhibited a type V isotherm with an H-3 hysteresis.  This suggests a transformation of 

the weak titania/nitrogen interaction to stronger RGOTi/nitrogen interactions in composites. 

However, relative to RGOTi, addition of NCC reduced the porosity in the composites (Table 

7.1).  All titania wt.% loadings showed a typical H3-hysterisis and a type IV isotherm (Fig. 

7.8c).  All the composites showed similar mesoporosity characteristics irrespective of the 

titania wt.%. 

 

7.3.1.5 Phase composition 

In the PXRD diffractograms, the peak intensity at ca. 10° 2θ, assigned to the 002 reflection of 

GO sheets [7.18], was almost the same for all GOTi composites (Fig. 7.9a).  This is expected 

from a non-reducing reaction.  The slight decrease in intensity of this peak with increase in 

titania wt.% is most likely to be due to the obscuring of GO sheets upon increased titania 

coverage, as well as disruption of the sheet arrangements caused by the anchored titania, and 

this corroborates with TEM observations (Fig. 7.9a).  This infers less disruption of the GO 

layered stacking in the composites [7.12] and that titania had no reduction effect on GO.  

Additionally, the appearance of peaks at 2θ of 25°, 38°, 48° and 55° was assigned to the 100, 

004, 200 and 105 reflection of the anatase phase of titania, respectively [7.17,7.8,7.5,7.42]. 
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Fig. 7.9 (a) PXRD diffractograms and (b) Raman spectroscopy ID/IG ratios calculated from the 

peak areas of the D- and G-bands of GOTi at various titania wt.% 

 

All the RGOTi samples still showed the peak typical of GO at 2θ of 10° (Fig. 7.10a).  Also, a 

small peak was observed at 2θ of 48° that can be assigned to the 200 reflection of the anatase 

phase of titania [7.8,7.17].  The observed peak broadening (Fig. 7.10a) in the nanocomposites 

was ascribed to surface pressure or surface confinement effects [7.31]. 

  

Fig. 7.10 (a) PXRD diffractograms and (b) Raman spectroscopy ID/IG ratios of RGOTi 

composites  
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All the CRGTi samples exhibitted the peak at 2θ of 10º, typical of GO (Fig. 7.11).  Furthermore, 

peak broadening at ca. 2θ of 18º was present in the PXRD diffractogram.  Peak broadening can 

be associated with short-range order in RGO sheets [7.19].  The peak at 2θ of 45º, assigned to 

the 200 anatase reflection of the phase of titania [7.17], was slightly blue shifted in CRGTi 

composites and this can be attributed to the change in chemical composition.  In addition, this 

peak decreased with increase in titania wt.% in the CRGTi samples (Fig. 7.11).  The peak 

observed at 2θ of 51º in the CRGTi composites was similarly assigned to the blue-shifted peak 

of the 105 reflection of the anatase phase of titania. 

  

Fig. 7.11 PXRD diffractograms of CRGTi composites  

 

7.3.1.6 Defects on graphene structures 

The Raman spectral peaks were fitted to Lorentzian functions as shown in Fig. 7.S1-7.S4 of 

the Supplementary Data.  The peaks at 1350 and 1550 cm-1 were assigned to the D- and G-

bands [7.43-7.46].  The G-band is due to in-plane sp2-hybridised carbon vibrations in the 

graphitic structure whilst the D-band is associated with defects on the graphitic structure.  No 

detectable D-band intensities were notable for the 5 wt.% titania GOTi composite and a suitable 

reason is that titania sits on the graphitic defects and hence suppresses the D-band.  This 

corroborates with the deduction of a Ti-GO chemical linkage via oxygen functionalities which 
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are usually detected as defects on graphitic materials.  Additionally, the deposition of titania at 

the oxygen functionalised edges and on the sheet wrinkles, which are both forms of defects 

[7.47,7.26,7.48] (Fig. 7.1-7.2), supports this view.  The ID/IG ratio was calculated by dividing 

the peak area, obtained from spectra fitted into the Lorentzian function, under the D-band with 

that under the G-band.  The ID/IG ratio is an indicator of defect intensity on the graphitic 

structure [7.31].  The defect intensities of the 10 and 20 wt.% titania GOTi composites were 

similar but increased for the 40 wt.% titania composites (Fig. 7.9b).  This infers that higher 

titania wt.% introduces more strain on the graphitic sheets whilst a lower titania wt.% 

eliminates it. 

For the RGOTi composites, the peaks were similarly assigned as in the GOTi composites.  

Peaks at ca. 274, 400, 514 and 636 cm-1 were assigned to the E1g, B1g, A1g and Eg vibrations of 

the anatase phase of titania [7.44,7.5,7.31,7.49], respectively, for the 20 and 40 wt.% titania 

materials (Fig. 7.S2-3, in Supplementary Data).  A possible reason why these peaks were 

detectable for the RGOTi composites was the enhanced number of separate crystallites (Fig. 

7.5).  Additionally, the peaks for the control sample (RTi, 100%), at 278, 397, 516 and 638 cm-

1, were similarly assigned.  Also, similarly to the 5 wt.% titania material in the GOTi 

composites, there was no detectable D-band intensity at 5-10 wt.% titania RGOTi and this can 

be explained by titania sitting on defects.  In addition, the reduction process eliminates defects 

associated with oxygen functionalities on the graphitic structure of RGO.  However, between 

20-40 wt.% titania, the defect intensity increased.  A possible rationale was that greater strain 

occurred in the RGO sheets at higher titania wt.% since there were less defects from oxygen 

functionalities, for the titania to sit on.  This is a conceivable reason for the higher defect 

intensity on RGOTi composites relative to GOTi composites. 

For a CRGTi composites, except that at 5 wt.% titania, no detectable D-band intensity was 

observed.  However, the D-band was also not observed for the 5 wt.% titania samples of both 

the GOTi and RGOTi composites.  A most probable reason is that NCC obscured the defects 

on the RGO sheets. The ID/IG ratio for the 5 wt.% titania CRGTi composite was found to be 

1.14. 

 

7.3.1.7 Chemical state and composition 

The GOTi composites showed a slight peak at ca. 290 eV and was assigned to C1s in the C-O-

Ti interaction but was not clearly observable in the RGOTi and CRGTi composites (Fig. 7.12a) 
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[7.50].  Additionally, a shoulder peak at 287 eV, ascribed to C1s in C-O and C=O, was more 

observable on the GOTi composites.  This was because reduction of GO minimised oxygen 

functionalities and this is a probable reason for the non-observable Ti bonding to C via oxygen 

moieties in the RGOTi and CRGTi composites.  Additionally, C1s on the graphitic framework 

at 285 eV slightly shifted to 284 eV for both the RGOTi and CRGTi composites.  A possible 

reason is weaker Ti-C interactions.  Also, this peak was sharper on CRGTi whilst a shoulder 

was observed at 282 eV in the RGOTi composites.  The shoulder was assigned to O(C-O-Ti) 

or C-Ti but the chemical interaction was weaker than that observed in GOTi composites. 

 

Fig. 7.12 Representative XPS spectra for GOTi, RGOTi and CRGTi composites for the peaks 

of (a) C1s, (b) N1s and (c) O1s 

 

The peak at ca. 400 eV was assigned to N1s and its intensity increased in both RGOTi and 

CRGTi.  The use of hydrazine hydrate, as a reducing agent in the preparation of RGO from 

GO, was the source of additional nitrogen (Fig. 7.12b and Table 7.2) whilst the source of the 
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small amount present in GOTi composites was impurities in the GO synthesis reagents.  This 

means the RGO utilised in this work was nitrogen-doped.  The O1s peak, assigned to surface 

oxygen, at 533 Ev, was notably higher in GOTi, whilst the peak at ca. 530.6 eV ascribed to 

lattice/bulky oxygen moieties was highest in RGOTi composites (Fig. 7.12c) [7.50,7.51].  The 

Ti2p3/2 at 459 eV was observed in all composites and this was a qualitative indicator of titania.  

The atomic concentration (at.%) was determined by use of the CasaXPS software. The at.% of 

oxygen was slightly smaller in RGOTi and the decrease was greater in CRGTi, whereas the 

at.% of nitrogen was raised in both types of composites for the aforementioned reasons (Table 

7.2).  The at.% of nitrogen, 3%, was comparable because the only difference between the 

composites was the inclusion of NCC.  The smallest value of at.% of oxygen in CRGTi was 

attributed to the reducing effect of NCC.  This corroborates with the work reported by Dong et 

al. [7.52] on reducing effect of NCC on silver particles . 

 

Table 7.2 Summary of the representative XPS data for GOTi, RGOTi and CRGTi composites 

Sample Element 
Atomic 

concentration 
Binding energy 

(eV) 

GOTi 

C1s 67.35 284 

O1s 26.72 530 

N1s 0.43 400 

Ti2p 5.50 459 

RGOTi 

C1s 64.26 283 

O1s 25.12 529 

N1s 2.61 399 

Ti2p 8.02 458 

CRGTi 

C1s 81.80 284 

O1s 12.92 530 

N1s 2.92 399 

Ti2p 2.36 458 

 

7.3.2 Electrochemical characterisation 

The section describes the suitability of the materials for electrochemical processes, in 

particular, for use in EC electrodes. 
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7.3.2.1 Cyclic voltammetry 

The specific capacitance, Cs, was determined from cyclic voltammetry and was calculated by 

using a method we reported earlier [7.43].  At all scan rates, in the current work, for 5 wt.% 

titania, the order of Cs was GOTi ˂ CRGTi ˂ RGOTi (Fig 7.13a-c).  This same order was 

observed at 20 and 40 wt.%.  However, titania unlike at 10 wt.% titania the order was GOTi ˂ 

RGOTi ˂ CRGTi.  Additionally, 5 wt.% titania RGOTi displayed the overall highest Cs of 45 

F g-1 at a scan rate of 5 mV s-1.  The second highest Cs was, 30 F g-1, obtained at the same scan 

rate, for the 10 wt.% titania CRGTi composite.  The Cs values obtained in this work are an 

improvement on those recently reported for titania nanotube/RGO composites [7.14].  Key 

deductions from the current data include:  

• The reduction process on GO improved Cs and this could be attributed to an enhanced 

BET surface area (Table 7.1) and, hence, the contribution via the electrochemical 

double layer capacitance (EDLC) increased. 

• The nitrogen doping of RGO in the RGOTi and CRGTi composites (Table 7.2) is also 

a conceivable reason for generally higher Cs values for both RGOTi and CRGTi 

composites than GOTi composites. 

• NCC addition in the composites had a negative effect with regards to Cs in all CRGTi 

composites except that for 10 wt.% titania.  This means that even though NCC generally 

boosts the BET surface area (Table 7.1), it reduces the charge storage capabilities of 

the composites.  The unusually high Cs of CRGTi at 10 wt.% titania can be attributed 

to a more uniform titania coating of the graphitic sheets (Fig. 7.3) than on either GOTi 

or RGOTi (Fig. 7.1 and Fig. 7.2, respectively).  This will influence critical parameters 

such as shortening of the diffusion pathlength for the electrolyte ions.  Additionally, 

another possible reason is the high surface area of the 10 wt.% titania CRGTi composite 

(Table 7.1).  The combination of both uniform sheet coating and high surface area, 

amongst other physicochemical properties, facilitated enhanced formation of a double 

layer and other positive redox activities. 

• The lowest scan rate, 5 mV s-1, displayed the highest Cs and it decreased with increase 

in scan rate, hence, this indicates high contributions from the EDLC mechanism.  This 

corroborates with the cyclic voltammogram rectangular shapes at this scan rate, 

especially for RGOTi (Fig. 7.14). 
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Fig. 7.13 Specific capacitance of GOTi, RGOTi and CRGTi composites at scan rates of (a) 5, 

(b) 20 and (c) 100 mV s-1 

 

Similar trends as obtained for increasing amounts of titania, were obtained when the best series 

of composites, i.e. the RGOTi, were fabricated into ECs by making pellets and measuring the 

capacitance with a capacitor meter (Fig. 7.S10 in Supplementary Data).  However, the Cs values 

were much lower than those obtained by the CV method (Fig. 7.13) and this was attributed to 

a more compact packing of the composites when made into pellets culminating in poor ion 

penetration in the electrode.  Also, the Cs values were stable over the period of 2 hours (Fig. 

7.S10 in Supplementary Data) but the measurements were not done beyond that because of the 

electrolyte drying effect.   

The electrochemical double layer quality for the GOTi, RGOTi and CRGTi composites for 5 

wt.% titania generally showed a deviation from the rectangular shape with increase in scan rate 

(Fig. 7.14a-c).  Additionally, the 5 wt.% titania RGOTi composite displayed the best EDLC 

behaviour (Fig. 7.14b). This change in performance with increase in scan rate corroborates with 

earlier reports [7.43,7.53-7.55] in that the best EDLC quality is displayed at lower scan rates.  
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This may infer slow current response, high ion mass transfer resistance and poor double layer 

capacitance at higher scan rates. Therefore, since the double layer formation is the main charge 

storage mechanism, the specific capacitance decreased with increase in scan rate. 

 

 

Fig. 7.14 The cyclic voltammograms for 5 wt.% titania composites of (a) GOTi, (b) RGOTi 

and (c) CRGTi at scan speeds of 5, 20 and 100 mV s-1 

 

There were no clear indications of a pseudo charge storage mechanism except for the GOTi 

composites (Fig. 7.15a-c).  Possible reasons are that either the GO reduction process renders 

titania an inactive component for charge storage or titania is inhibited in typical composites. 

These pseudo characteristics in the GOTi composites (Fig. 7.15a) can be largely ascribed to 

the presence of oxygen functionalities from GO in the composites.  Also, the control (100 wt.% 

titania) showed poor capacitance capabilities but RGOTi composites exhibited more 

rectangular CV curve shapes (Fig. 7.15b).  This is a manifestation of high contribution of 
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graphitic structures in the obtained EDLC character.  The high Cs calculated for 5 and 10 wt.% 

titania in RGOTi and CRGTi, respectively, can be easily visualised by the large areas under 

the CV curves (Fig. 7.15b-c).  Additionally, the highest current responses were observed with 

RGOTi composites.  A possible reason is improved conductivity of the GO sheet and 

components, upon reduction. 

 

 

Fig. 7.15 The cyclic voltammograms recorded at a scan speed of at 5 mV s-1 for (a) GOTi, (b) 

RGOTi and (c) CRGTi composites of 5, 10, 20 and 40 wt.% titania  

 

7.3.2.2 Electrochemical impedance spectroscopy 

There was no clear semi-circle, in the high frequency region of the Nyquist plot, for all the 

GOTi composites and, therefore, there was no evidence of charge transfer resistance (Rct, Fig. 

7.16a insert).  A possible reason is that GO displayed excellent charge transfer kinetics and 

titania did not introduce charge transfer inhibition.  The Warburg length tended to increase with 
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titania wt.% and the composite with 40 wt.% titania showed a very large diffusion path for the 

electrolyte (Fig. 7.16a insert).  This observation can be attributed to the increase in titania 

agglomerate sizes in the samples (Fig. 7.1 and 7.4) and this reduced the electrolyte ion 

penetration into the electrode.  These are the possible reasons for a decrease in Cs as the titania 

wt.% increased (Fig 7.13a-c).  Additionally, the 5 and 10 wt.% titania GOTi composites, with 

the highest slope in the low frequency region of the Nyquist plot had similar charge storage 

properties but this dropped with increase in titania wt.% in the 20-40 wt.% titania range (Fig. 

7.16a).  This means higher amount of titania reduce the ion diffusion rate and this was caused 

by an increase in titania agglomeration at higher titania concentrations.  Also, less wt.% of GO, 

in the composites, means lower numbers of tunnels for effective ion transport.  In short, the 

current EIS, SEM and TEM studies, show that larger amounts of titania enhanced the size of 

titania agglomerates which in turn reduces both the conductivity and electro-activity [7.3].  

With regards to the reduced GO composites (Fig. 7.16b), the negligible Rct means that the 

synthesis of the composites retained the charge transfers kinetics.  The 5 wt.% titania RGOTi 

composites had the smallest electrolyte diffusion path length and it increases thereafter for the 

other composites.  The 10 wt.% titania presented a negligible Warburg curve and the rest of 

the samples exhibited a corresponding increase with titania wt.% (Fig. 7.16b).  RTi displayed 

the smallest slope in the low frequency region of the Nyquist plot (Fig. 7.16b) and this suggests 

a strong hindrance to ion diffusion.  Additionally, the almost vertical line observed with 10 and 

20 wt.% titania in the intermediate frequency implies a fast electron transfer into the electrolyte 

and adsorption on the electrode surface.  This means addition of RGO in the RGOTi composites 

enhanced the charge transfer and capacitive character of titania.  This is attributed to enhanced 

electron transfer pathways introduced by RGO and the associated lower agglomeration level 

of the titania.  From the data, it can be deduced that the 10 wt.% titania RGOTi composite had 

the best capacitive character, even though it had an overall lower Cs value due to the lower 

surface area (Table 7.1) than the 5 wt.% titania composite. 

Absence of a semi-circle in the high frequency region of the Nyquist plot (Fig. 7.16c) is an 

indication of better accessibility of electrolyte ions into the composites.  The Warburg curve 

was small and steeper in the CRGTi composites with higher titania wt.%.  In terms of capacitive 

behaviour, 10 wt.% titania CRGTi was better than the analogous 5 wt.% titania composite and 

this suggest that the enhanced surface area (Table 7.1) available for double layer formation, 

from the addition of NCC, was a plausible reason.  This means 10 wt.% titania was the optimum 

for the RGOTi composites but the lower surface area gave it a disadvantage relative to the 5 
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wt.% composite.  Hence, addition of NCC was advantageous and culminated in a higher surface 

area and better capacitance. The 20 and 40 wt.% titania composites were almost similar but 

better than that containing 10 wt.% titania (Fig. 7.16c).   The high charge storage capabilities 

at 10 wt.% titania CRGTi corroborated with deductions from the CV data (Fig. 7.16 and Fig. 

7.15c).  This was a thought-provoking transformation in that a higher titania wt.% in 

composites performed better than lower loadings upon introduction of NCC.  A possible 

explanation is that, at 10 wt.% titania, the NCC effectively disrupted the restacking of the RGO 

sheets and it increased the surface available for growth of titania. Hence, NCC reduced 

agglomeration of both titania and RGO, and this positively influenced ion diffusion in the 

composites. 
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Fig. 7.16 The Nyquist plots of (a) GOTi, (b) RGOTi and (c) CRGTi composites 
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7.4 Conclusions 

Titania facilitated exfoliation of the graphene oxide sheets and the large crystallite sizes at 

higher titania wt.% supressed the carbon-based defects.  All composites in the current work 

were mesoporous.  The Ti atoms were chemically linked to graphitic carbon atoms via oxygen-

containing functionalities and this interaction was strongest in the GOTi composites. The 

surface area and porosity of the GOTi composites was tailored by changing the titania wt.%.  

The RGOTi composites were more defective than the GOTi composites.  The presence of the 

titanium cation on the sheet surface of GOTi reduced the EDLC performance of GO.  The 

surface area and specific capacitance of the GOTi composites was suitably improved by 

reduction with hydrazine hydrate. Also, NCC amplified the surface area of the RGOTi 

composites and the specific capacitance of the 10 wt.% titania composite increased from 7 to 

30 F g-1 at a scan rate of 5 mV s-1 upon the addition of NCC.  High amount of titania in the 

GOTi composites reduced the charge storage capabilities through an increased path length for 

ion diffusion and a reduced diffusion rate.  The optimum titania wt.% for the best EDLC quality 

and highest specific capacitance, of 45 F g-1, was 5% in the RGOTi composite.  The capacitance 

decreased with increase in titania wt.% in the RGOTi composites.  The best scan speed was 5 

mV s-1 and the main charge storage mechanism was the electrochemical double layer.  It 

appeared that the capacitor functionality of titania and GO can be improved by nitrogen doping 

of GO and synthesising suitable composites with appropriate distribution of components.  It 

would thus be worthy to deliberately dope GO and RGO with nitrogen and observe the charge 

storage properties. 
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Appendix: Supporting information for Chapter 7 

 

 

Fig. 7.S1  Raman spectra of 20 titania wt.% GOTi 

 

Fig. 7.S2 Raman spectra of 20 titania wt.% RGOTi composite 
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Fig. 7.S3 Raman spectra of 40 titania wt.% RGOTi composite 
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Fig. 7.S4 Raman spectra of 100 titania wt.% RTi 
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Fig. 7.S5 Raman spectra of 5 titania wt.% CRGTi 
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Fig. 7. S6 Representative XPS spectra for GOTi composites at 10 titania wt.% 
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Fig. 7.S7 Representative XPS spectra for RGOTi composites at 10 titania wt.% 

 

 Fig. 7.S8 Representative XPS spectra for CRGTi composites at 10 titania wt.%  
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Fig. 7.S9 Representative thermal stability comparison (a) wt.% thermogram and (b) derivative 

weight curve 

 

 

Fig. 7.S10 Representative specific capacitance values from the devices fabricated by making 

two pellets as electrodes, and using sodium sulfate and filter paper as electrolyte and electrode 

separator, respectively 

 

0

100

200

300

400

500

600

700

800

900

1000

0 10 30 120

S
p

ec
if

ic
 c

a
p

a
ci

ta
n

ce
 (

m
F

/g
)

Time (mins)

5 10 20 40



 

 

318 

 

 

Fig. 7.S11 CV curves for GOTi composites at (a) 10, (b) 20 and (c) 40 wt.% Ti  
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Fig. 7.S12 CV curves for RGOTi composites at (a) 10, (b) 20, (c) 40 and (d) 100 wt.% Ti  
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Fig. 7.S13 CV curves for CRGTi composites at (a) 10, (b) 20 and (c) 40 wt.% Ti 
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Abstract 

The study was aimed at understanding and tuning the electrochemical properties as well as 

other associated physicochemical properties of nitrogen-doped multiwalled carbon nanotubes 

(N- MWCNTs) for application in electrochemical double layer capacitors (EDLC).  This was 

done by synthesising composites of N-MWCNTs with both reduced graphene oxide (RGO) 

and titania.  The current study also investigated the suitability of composites from either sol-

gel or chemical vapour deposition (CVD) method in EDLC applications.  The physicochemical 

properties of the composites were investigated by means of transmission electron microscopy 

and scanning electron microscopy, thermogravimetric analysis, X-ray photoelectron 

spectroscopy, Raman spectroscopy, cyclic voltammetry and electrochemical impedance 

spectroscopy.  The study showed a deterioration of EDLC quality with increase in pyrrolic % 

composition of nitrogen moieties in N-MWCNTs from 35, 45 and to 60%.  The sol-gel was 

more appropriate for composite synthesis method than CVD since it provides both favourable 

physicochemical properties and specific capacitance (Cs).  The Warbug length was successfully 

reduced via synthesis of composites and this enhanced Cs of N-MWCNTs. RGO/N-MWCNTs 

composite exhibited the shortest diffusion path length and highest Cs of 30 F g-1.  Composite 

synthesis with RGO was a suitable way to positively tune the EDLC functionality of pyrrolic 

N-MWCNTs. 

 

Keywords: pyrrolic nitrogen, capacitance, composites, reduced graphene oxide, 

electrochemical properties 
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8.1. Introduction 

Reduced graphene-based materials are suitable materials for electrochemical capacitor (EC) 

applications and recent focus on them was prompted by their excellent mechanical strength, 

high electron mobility and surface area [8.1,8.2].  The KOH activation on microwave exfoliated 
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and thermally reduced graphene oxide (RGO) are some of the typical ways of enhancing 

surface areas [8.1,8.3] and ultimately better EC performances.  Graphene is the basic 

component of multiwalled carbon nanotube (MWCNT) sheets, each ring comprises of 

graphene sheets [8.4,8.5].  Both graphene and MWCNTs have interesting thermal, mechanical 

and electrical properties [8.4,8.6]. Hence, there is much interest is studying them towards 

energy conversion and storage devices, amongst others.  Graphene oxide (GO) is an 

inexpensive precursor of RGO [8.4].  Common drawbacks in both RGO and MWCNTs include 

high agglomeration and this has negatively impacted on the fabrication of energy devices via 

solution processing strategies [8.4].  In addition, use of surfactants and polymeric dispersants 

often decrease their maximum potential due to insulating effects.   

Composite synthesis, using two components of similar physical properties is a suitable way to 

generate useful synergistic and minimal adverse effects.  Also, nanocomposites benefit more 

from the synergy between inorganic and organic components and this plays a crucial role in 

the development of advanced materials [8.7-8.9].  Hence, the current work combines 2-D RGO 

and 1-D MWCNTs to possibly form 3-D scaffolds of RGO/MWCNT composites.  The 

graphene (G)/MWCNT composite is known to have high surface area and edge charge density 

which are favourable properties for EC applications [8.10,8.11].  MWCNTs are suitable 

components of bridging the defects between sheets and consequently can facilitate electron 

transfer [8.7,8.12], thus, can act as electrical conductivity networks. The co-deposition of both 

MWCNTs and GO in anhydrous hydrazine has been reported by Qiu et al. [8.4].  In their report, 

MWCNTs with oxygen-containing groups were found to disperse easily in polar hydrazine.  

The current work reports on MWCNTs and nitrogen-doped multiwalled carbon nanotubes (N-

MWCNTs) treated with HCl to purify them without adding oxygen-containing groups.  Also, 

the study aimed at understanding the influence of the different nitrogen species and their 

distribution.  For example, increasing compositional % of pyrrolic nitrogen moieties in EC 

quality of N-MWCNTs, amongst other physicochemical properties.  Additionally, 

enhancement of electrochemical double layer capacitance (EDLC) via synthesis of 3-D 

graphenated MWCNTs with variable foliate density has been reported [8.13,8.12].  However, 

the current work focus was on investigating the suitability of RGO/N-MWCNT, 

RGO/MWCNT/Ti and RGO/N-MWCNT/Ti composites in ECs.  Also, the current work 

investigates and eliminates the effect of titania precursors since the composites synthesised 

were from the same precursor, titanium (iv) isopropoxide (TIP) when sol-gel and CVD 

methods were compared. 



 

 

325 

 

 

8.2. Experimental 

The composites were synthesised as explained in the following subsection. 

 

8.2.1 Materials and methods 

MWCNTs (8 - 15 nm OD, length 10 - 50 𝜇 m, Ash 1.5 wt %, SSA  233 m2/g, EC  10-2 S/ 

cm, SKU number 030102) were bought from Cheaptubes.com (USA).  For the dispersion of 

the materials, an ultrasonic water bath (UD150SH-6L model at 40 Hz, Shalom laboratories) 

was used. 

In brief, GO was synthesised by a modified Hummer method as described in our previous 

article [8.14].  The GO was typically synthesised by mixing 1 g of graphite (< 150 µm, 99.99%, 

Sigma Aldrich), 1 g of Na2SO4 (99%, Associated Chemical Enterprise) and 48 mL of H2SO4 

(98%, C.C. Imelmann Ltd) and stirring in an ice water bath.  The reaction was kept in an ice 

bath for 30 minutes and thereafter KMnO4 (99%, Associated Chemical Enterprise) was slowly 

added to the mixture.  Afterwards, the reaction mixture was further stirred at room temperature 

for 12 hours and then double distilled water was added slowly.  The reaction temperature was 

then ramped to 50 °C and maintained for at least 5 hours.  H2O2 (30%, Merck ltd) was then 

added slowly and then the products were washed in several cycles using double distilled water 

till the filtrate was neutral in pH.   

Additionally, the N-MWCNTs were also synthesised as described in our previous submission 

[8.15].  In brief, N-MWCNTs were synthesised at 900 ℃ from N,N’-dimethylformamide (99.8, 

Sigma Aldrich) mixed with acetonitrile (99.9%, Sigma Aldrich) in a ratio of 1:3, respectively, 

as nitrogen and carbon sources. The catalyst was ferrocene carboxaldehyde (98%, Sigma 

Aldrich). The as synthesised N-MWCNTs were purified by refluxing in HCl (32%, Merck ltd) 

for 24 hours at 90 ℃.  The N-MWCNTs were washed with double distilled water several times 

and vacuum filtered till the filtrate was neutral in pH.  The N-MWCNTs were thereafter dried 

at 120 ℃ and stored in a dessicator. 

The first set of composites were synthesised with titania and either MWCNTs or N-MWCNTs 

using the sol-gel method. This method was adapted from Mombeshora et al. [8.16] and in short, 
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either MWCNTs or N-MWCNTs (0.2g) were dispersed by use of an ultra-sonic waterbath in 

absolute ethanol (10 mL), for  10 minutes.  This was followed by addition of 274.5 µL of TIP 

(97%, Alfa Aesar) under stirring condition and then stirred further for another 30 minutes.  

Thereafter, the reaction mixture was left under ambient conditions in a fume hood until the 

sample had dried. The sol-gel samples were then calcined at 400 ℃ for 30 minutes in a tube 

furnace under open air. On the other hand, chemical vapor deposition method (CVD) was 

similarly used to make corresponding composites.  The only variation here was that, after 

drying at ambient temperature, the CVD composites were then loaded into a reactor.  The 

reactor was evacuated for several hours before the temperature was ramped to 100 ℃ and kept 

constant for 30 minutes.  This was followed by further ramping temperature up to 400 ℃ and 

held constant for 30 minutes. 

The third set of composites, RGO/N-MWCNT, RGO/MWCNT/Ti and RGO/N-MWCNT/Ti, 

were synthesised by using a similar sol-gel method. The ratio of RGO to MWCNTs that gave 

the highest BET surface area was initially optimised.  In a typical synthesis, 22.2 g of  GO (2% 

GO in double distilled water) were dispersed in 20 mL of double distilled water by means of 

an ultra-sonic water bath for 10 minutes.  Also, 0.15 g of MWCNTs were dispersed in 20 mL 

double distilled water.  The dispersed MWCNTs were then stirred and thereafter, the dispersed 

GO was added dropwise under stirring.  After, 696 µL of TIP was added to the mixture under 

stirring and this was followed by a further stirring for 10 minutes, then treatment by an 

ultrasonic water bath.  Thereafter, 2 mL, of hydrazine hydrate (50-60%, Sigma Aldrich) was 

added to the mixture and then the temperature was ramped up to 90 ℃ and maintained for one 

hour. The synthesized RGO/MWCNT/Ti was washed several times with DI, vacuum filtered 

and dried at 90 ℃. N-MWCNTs was similarly used to make RGO/N-MWCNT (without 

addition of TIP) and RGO/N-MWCNT/Ti. 

Characterisation of composites were done by means of thermal gravimetric analyser (TA 

Instruments Q seriesTM Thermal Analyzer DSC/TGA, Q600), gas sorption analysis 

(Micromeritics TRI STAR 3020V1.03 ,V1.03), transmission electron microscopy (JEOL TEM 

1010 transmission electron microscope), scanning electron microscopy (JEOL JSM 6100 

microscope), Raman spectroscopy analysis (100 mW Delta Nu Advantage 532TM 

spectrometer at resolution of 10 cm-1 and wavelength of 532 nm with a 2D CCD detector and 

grating lines of 1800 mm-1 with a laser source (Nd:YAG) and X-ray photoelectron 

spectroscopy (SPECS PHOIBOS 150 analyser and a monochromatic Al source (1487.1 eV), 

total experimental resolution was approximately 0.7 eV).  
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The electrochemical analyses were done with cyclic voltammetry (797 VA Computrace 

Metrohm CT798 application model with a 57970110 dosing processor) and electrochemical 

impedance spectroscopy (CHI 600E work station, CHI Instruments). The working electrode 

was prepared by casting the composite mixed with nafion onto a glassy carbon electrode (3 

mm diameter).  The deposited composite, on the electrode, was dried under room temperature 

conditions.  Electrolyte, typically 1 M Na2SO4 (97%, Merck), was degassed with nitrogen for 

5 minutes prior to analysis.  The electrodes for electrochemical impedance spectroscopy were 

similarly prepared. All the electrochemical measurements were done using a three-electrode 

system.  The counter and reference electrodes were Pt and Ag/AgCl system, respectively. 

 

8.3. Results and discussion 

The composites were characterised by several techniques as mentioned in the synthesis and 

materials section and the data is presented and discussed in the following sub-sections.  

 

8.3.1 N-CNTs/Ti nanocomposites 

The sol-gel products, MWCNT/Ti composites (Fig. 8.1a and c) were less agglomerated than 

the CVD products (Fig. 8.1b and d).  This is similar to our earlier report in that the ultra-sonic 

water bath treatment in sol-gel method de-bundles the tubes [8.16].  Hence, both the MWCNTs 

and N-MWCNTs were coated as bundles in the CVD approach.  The N-MWCNTs, in the CVD 

approach (Fig. 8.1d), were coated as random entities unlike in the case of MWCNTs (Fig. 

8.1b).  This infers less agglomeration in the N-MWCNTs than MWCNTs.  In short, this means 

sol-gel method was a better facilitator for coating of individual or small collections of both 

MWCNTs and N-MWCNTs than the CVD method.  Also, the N-MWCNTs typically displayed 

bamboo compartments which are characteristic of their N-doping. 
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Fig. 8.1 TEM images of (a) MC/Ti sol, (b) MC/Ti cvd, (c) N-MC/Ti sol (d) N-MC/Ti cvd 

  

 

The SEM images corroborated the TEM analysis; specifically, the CVD composites were more 

agglomerated with some noticeable tube bundling (Fig. 8.2a - d).  The titania agglomerates 

were also larger on CVD composites than sol-gel.  This was because ultrasonic treatment, in 

the sol-gel approach, facilitates de-bundling of the CNTs and this provides more nucleation 

sites for the growth of TiO2.  Additionally, the same amount of titania nucleating on a greater 

amount of nucleation sites, should result in smaller agglomerates. 
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Fig. 8.2 SEM images of (a) MWCNT/Ti sol, (b) MWCNT/Ti cvd, (c) N- MWCNT/Ti sol (d) 

N- MWCNT/Ti cvd 

 

Raman spectroscopy investigates vibrational and physical properties of carbon structures 

[8.17].  The Raman peaks were fitted using a Lorentzian function.  The G-band, at 1550 cm-1, 

is associated with longitudinal optical phonon mode whilst the D-band, at 1350 cm-1, is due to 

special edge shapes, stacking disorder between layers and atomic defects within [8.17,8.18].  

The ID/IG ratio was calculated by dividing the area under the D-band with that under the G-

band (Fig. 8.3).  The ID/IG is an indicator of degree of graphitization or defect density within 

carbon materials.  The data clearly shows that the composites synthesised by means of sol-gel 

method were associated with fewer defects than those from CVD.  Also, the inclusion of 

nitrogen as a dopant in MWCNTs increased the defect intensity of the respective composites.  

The increase in defect density due to N-doping is similar to several reports in the literature 

[8.19-8.22].  This is because the N-C bond length is shorter than the normal C-C bond, hence 

the former strains the graphitic framework. 
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Fig. 8.3 Comparison of the Raman spectroscopy ID/IG ratios calculated by dividing the 

integrated peak area under the D- and G-band, respectively  

 

Thermogravimetric analysis was done in oxygen from room temperature to 1000 ℃.  The 

weight loss at c.a. 100 ℃ was ascribed to water loss and the current data suggest that the sol-

gel composites were more hygroscopic than CVD for both N-MWCNT/Ti and MWCNT/Ti 

samples.  The TGA thermogram suggest that the sol-gel approach was a better loading method 

for titania and this is seen by values closer to the targeted wt.% of 20.  The source of higher 

residual metal in N-MWCNT/Ti is possibly attributed to encapsulated Fe metal inside the 

tubes.   All the composites, except MWCNT/Ti by sol-gel, displayed similar thermal stability 

properties despite their associated defect density (Fig. 8.4).  A possible reason for higher 

thermal stability of MWCNT/Ti CVD was that tubes were coated with larger titania 

agglomerates as bundles (Fig 8.1-8.2), hence, was associated with least exposure of MWCNTs 

during thermal decomposition.  Their counterparts, N-MWCNT/Ti had similar random 

oriented morphologies with less agglomeration, hence, were associated with negligible thermal 

stability differences.  This suggest that the defect density effects on thermal stability were 

outweighed by morphological variations. 
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Fig. 8.4 The thermal analysis of MWCNT/Ti and N-MWCNT/Ti composites 

 

The synthesis of composites culminated in a decrease in the surface area of pristine MWCNTs 

(Fig. 8.5a).  The increase in particulate size, i.e. increase in the overall size due to titania 

coating, is a possible reason for the decrease in BET surface area.  In addition, the effect was 

more on the CVD composites than sol-gel.  In general, the composites by means of the sol-gel 

method had higher BET surface area than those from CVD technique.  This agreed with our 

earlier explanation on the influence of the ultra-sonic treatment.  This is due to the 

agglomerated morphology observed on both TEM and SEM images (Fig. 8.1-2).  The N-

MWCNT/Ti composites and N-MWCNTs had lower surface area than MWCNT/Ti and 

MWCNTs, respectively (Fig. 8.5a-b).  A possible rationale is linked to the intrinsic properties 

of both MWCNTs and N-MWCNTs.  On the contrary to MWCNTs and MWCNT/Ti case, 

composites synthesis with N-MWCNTs, in N-MWCNT/Ti, enhanced BET surface area.  Both 

composites, of MWCNTs and N-MWCNTs, were meso-porous with and H3-type hysteresis 

loop (Fig. 8.S1 in the supplementary information). 
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Fig. 8.5 Textural characteristics of (a) MWCNT/Ti and (b) N- MWCNT/Ti composites 

 

Also, the determination of the nitrogen functionalities in the synthesised N-MWCNTs was 

determined by X-ray photoelectron spectroscopy and was reported in our earlier report [8.15].  

The suitability of N-MWCNTs with a varied composition of 35, 45 and 60% pyrrolic moieties 

in charge storage was studied (Fig. 8.6).  The CV data presented, with the aid of the inset, 

shows that enhancing the percent composition of pyrrolic functionalities in N-MWCNTs led 

to severe deterioration in EDLC quality and current response.  The poor capacitance is possibly 

associated with the resulting poor conductivity with increase in pyrrolic nitrogen composition 

[8.21].  Hence, an investigation using titania and the N-MWCNTs to make composites was 

conducted, as an approach towards enhancing the capacitance of the parent material.  The opted 

N-MWCNTs used to make the composites in the current work had a 45% pyrrolic nitrogen 

function.  The rationale behind the choice was that it had the highest overall at.% nitrogen i.e. 

overall highest nitrogen content.  The poor EDLC quality associated with use of N-MWCNTs 

alone provide a better reference point, for the current study, on the effect of composites 

synthesis. 
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Fig. 8.6 The electrochemical study of the percentage composition of pyrrolic nitrogen 

functionalities effect on N-MWCNTs in 1 M sodium sulfate electrolyte and at scan rate of 50 

mV s-1. 

 

The composites were then specifically tested for their suitability in electrochemical capacitance 

(EC) applications.  The MWCNT/Ti composites generally displayed better EDLC quality than 

N-MWCNT/Ti (Fig. 8.7a -b).  The slight redox activities in the MWCNT-based composites 

were attributed to the oxygen groups on titiana (Fig. 8.7a).  Hence, the redox activities were 

more pronounced in MWCNT/Ti composites by sol-gel method, with more sites for titania 

nucleation resulting in smaller titania agglomerates.  Additionally, the MWCNT/Ti composites 

synthesised by sol-gel method were better, in terms of both quality and specific capacitance 

(Cs), than those from the CVD approach (Fig. 8.7a and c) but it was vice-versa in the case of 

N-MWCNT/Ti composites (Fig. 8.7b-c).  This observed trait from CV data, highlights that the 

method of synthesis is an important parameter which is subjective to the materials under study.  

Also, the Cs at 10 mV s-1 was higher than that at 100 mV s-1.  The observed better capacity 

functionality in MWCNT/Ti composites and the performance difference between sol-gel and 

CVD methods was attributed to higher surface area.  In the current work, this means, the surface 

area determined by use of the BET equation, could be indicative of the active surface area 

available for the double layer formation.  Also, the lower Cs values for N-MWCNT/Ti is 

possibly due to the above-mentioned reasons.  The higher Cs value for the N-MWCNT/Ti CVD 

composites than sol-gel (Fig. 8.7b) can possibly be attributed to the morphological influence 

in which random orientation of coated tubes was favourable (Fig. 8.2).   
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Fig. 8.7 CV curves of (a) MWCNT/titania composites and (b) N-MWCNT/titania in 1 M 

sodium sulfate electrolyte and at scan speed of 10 mV s-1. (c) Specific capacitance of various 

composites 

 

The electrochemical properties, with regards to EC functionality, of composites were further 

studied with electrochemical impedance spectroscopy (EIS).  The Nyquist plot for MWCNT/Ti 

by both CVD and sol-gel methods displayed a semi-circle of almost the same size in the high 

frequency region (Fig. 8.8).  This infers that the methods of synthesis had no effect on charge 

transfer resistance (Rct) [8.2,8.8] with respect to MWCNT/Ti composites.  On the other hand, 

the N- MWCNT/Ti cvd composites exhibited high Rct values than MWCNT/Ti sol composites.  

This could be attributed to the dynamics linked to the intrinsic electrical conductivity of the 

pyrrolic nitrogen moieties in the N-CNTs.  The higher Rct in N-MWCNT/Ti composites is a 

possible reason for poorer EDLC quality and lower Cs values than MWCNT/Ti composites 

(Fig 8.7a-b).  Additionally, the Rct for N-MWCNT/Ti sol was lower than the N-MWCNT/Ti 

cvd.  This infers that morphological variations such as bundling of tubes and larger titania 

agglomerates (Fig. 8.1-8.2) effected by CVD synthesis method, influenced charge transfer 
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kinetics in N-MWCNT/Ti, unlike in MWCNT/Ti composites.  The higher Rct values of N-

MWCNT/Ti was a suitable reason for the perceived poorer EDLC functionality (Fig. 8.7). 

The Warburg path-length, except for N-MWCNT/Ti sol was similar in all composites (Fig. 8.8, 

intermediate frequency).  This means the electrolyte diffusion path-length was unusually higher 

for N-MWCNT/Ti sol.  This was a conceivable reason for the lowest Cs value and poorest 

EDLC quality associated N-MWCNT/Ti sol composite (Fig. 8.7c).  The effect of titania 

agglomerate sizes was minimal because the wt.% in the current work was small and same 

amount was added during synthesis.  Another distinctive feature noticeable with the current 

composites was that the associated ascending order of Nyquist plot length, MWCNT/Ti sol ˂ 

MWCNT/Ti cvd ˂ N- MWCNT/Ti cvd ˂ N-MWCNT/Ti sol (Fig. 8.8), substantiated the 

decreasing order of both Cs and EDLC quality (Fig. 8.7a-c CV). 

 

Fig. 8.8  Nyquist plot of MWCNT- and N- MWCNT-titania composites in 1 M sodium sulfate 

electrolyte  
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8.3.2 RGO/N-MWCNT/Ti nanocomposites 

Before the RGO/N-MWCNT/Ti nanocomposites were synthesised, the optimal ratio between 

RGO and MWCNTs was determined by textural characterisation, surface area was particularly 

determined by means of the BET equation (Table 8.1).  The synthesis of composites 

successfully tuned-up the surface area from that of both RGO and MWCNTs.  The BET surface 

area increased with increase in RGO wt.% in the sample and reached a plateau with 

RGO:MWCNT ratio of 3:1 and thereafter decreased with further increase (Table 8.1).  This 

surface area enhancement suggests the occurrence of chemical transformation in the 

composites.  Possible interactions between the two components include non-covalent 

interactions facilitated by π-π stacking between MWCNTs and RGO [8.12].  The porosity 

decreased with increase in RGO proportions in the composites. 
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Table 8.1: Tuning of textural characteristics by varying RGO to MWCNTs ratio 

RGO:MWCNT 

ratio 
Surface area (m2/g) 

Pore volume 

(cm3/g) 
Pore size (nm) 

0:1 135.36 0.64 19.26 

1:2 218.83 0.91 20.62 

1:1 253.86 0.78 16.01 

2:1 355.15 0.68 10.29 

3:1 417.46 0.48 4.95 

4:1 333.98 0.48 4.97 

1:0 390.55 0.26 3.45 

 

Hence, in the work reported herein, RGO/MWCNT/Ti, RGO/N-MWCNT and RGO/N-

MWCNT/Ti composites were synthesised using either RGO:MWCNT or RGO:N-MWCNT 

ratio of 3:1.  The TEM images showed the typical N-MWCNTs (Fig. 8.9a), with bamboo 

compartments, protruding from the transparent RGO sheets in the RGO/N-MWCNT 

composites (Fig. 8.9b).  Also, the titania coated MWCNTs instead of RGO sheets, i.e. the RGO 

was more transparent in RGO/MWCNT/Ti than in RGO/N-MWCNT/Ti (Fig. 8.9c-d).  This 

was further supported by a comparison between Fig. 8.9b and 9d, which shows that the 

composites were more transparent in RGO/N-MWCNT than in RGO/N-MWCNT/Ti. 
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Fig. 8.9  TEM images of of (a) N-MWCNTs, (b) RGO/N-MWCNT (c) RGO/MWCNT/Ti and 

(d) RGO/N-MWCNT/Ti 

 

The RGO/N-MWCNT composites were homogeneous with no distinguishable agglomerates 

of N-MWCNTs (Fig. 8.10a-b).  This was attributed to the ultra-sonic treatment in the sol-gel 

method and this facilitated the dispersion process by reducing agglomeration of tubes and 

hence, in terms of solution processing this was a better approach.  Also, the high aspect ratio 

of RGO to N-MWCNTs enabled the formation of a continuous network between the 

components [8.4].  Additionally, the lone pair of electrons on N-MWCNTs can also form a 

delocalised pi-system with RGO [8.23,8.6].  Similar observations were observed with 

RGO/MWCNT/Ti and the smaller MWCNT sizes are the possible reasons for the 

indistinguishable blend in the RGO/MWCNT/Ti composites (Fig. 8.10c).  With regards to the 

RGO/N-MWCNT/Ti composites, large titania agglomerates were noticed.  Additionally, 

titania coated both N-MWCNTs and RGO sheets (Fig. 8.10d).  This means there were two sites 

competing for titania nucleation. 
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Fig.  8.10  The scanning electron microscopy images of (a) N-MWCNTs, (b) RGO/N-MWCNT 

(c) RGO/MWCNT/Ti and (d) RGO/N-MWCNT/Ti 

 

 

Herein, the Raman spectroscopy data infers that synthesis of composites was an appropriate 

way to reduce defect intensity on N-MWCNT walls.  The three composites, RGO/N- MWCNT, 

RGO/MWCNT/Ti and RGO/N-MWCNT/Ti were typically tuned to have an almost equal 

defect intensity (Fig. 8.11).  This suggest negligible, if any, influence of defects with respect to 

EDLC functionality.  A probable reason for minimal variation in defect intensity is the high 

RGO ratio in composites which obscures the influence of defective N-MWCNTs.  The slight 

decrease in defect intensity in RGO/N-MWCNT/Ti, relative to RGO/N-MWCNT (Fig. 8.11), 

can be explicated by titania sitting on the graphitic defects.  This was a similar case, when N-
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MWCNTs defect intensity was compared to N-MWCNT/Ti composites synthesized by both 

sol-gel and CVD techniques. 

 

Fig. 8.11 Comparison of the Raman spectroscopy ID/IG ratios calculated by dividing the peak 

area under the D- and G-band, respectively 

 

The N-MWCNTs had the least metal residue, i.e. almost zero, and this conjectures that HCl 

purification was successful (Fig. 8.12).  The N-MWCNTs was also the most thermally stable 

with a steeper thermogram and this is an indication of a high sample homogeneity.  The 

RGO/N- MWCNT/Ti was the second most thermally stable but with the highest residual metal.  

Also, RGO/N-MWCNT/Ti was the least thermally stable with the second lowest metal 

residual.  This means RGO had some metal residual associated with it despite the dialysis 

purification process.  Another deduction with respect to RGO amalgams was that the titania 

inclusion enhanced thermal stability of the RGO/N-MWCNTs (Fig. 8.12).  This can be 

similarly explained by the limited exposure of graphitic structures to oxygen, via surface 

coverage, during thermal decomposition.  However, the defect intensity (Fig. 8.11) could not 

account for the difference in thermal stability, regarding N-MWCNTs, and this is because N-

MWCNTs proportion in composites was small (1: 3 wt.% ratio of RGO).   
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The composites had weight loss at 100 ℃  and between 200 - 400 ℃.  These losses were 

ascribed to adsorbed water from RGO as well as from titania components of the composites, 

i.e., amorphous carbon and other oxygen-containing moieties on RGO sheets, respectively.  In 

addition, the thermogram of both RGO/N-MWCNT and RGO/N-MWCNT/Ti show 

decomposition of sp2-hybridised carbons in two different structures, i.e. RGO and N-MWCNTs 

at temperatures of c.a. 400 and 500 ℃, respectively (Fig. 8.12).   

 

Fig. 8.12 Thermal analysis of N-MWCNTs, RGO/N-MWCNTs, RGO/MWCNT/Ti and 

RGO/N- MWCNT/Ti composites 

 

Composites synthesised with RGO showed enhanced surface area relatively to pristine N-

MWCNTs.  Additionally, associated surface area was comparable to the RGO/MWCNT/Ti 

even though RGO/N- MWCNT/Ti was slightly lower than both.  The conjectures here was that 

composite synthesis, via inclusion of RGO, was a fruitful solution processing strategy of both 

N-MWCNTs and MWCNTs in the current work.  The important deduction from Fig. 8.5 and 

Fig. 8.13 was that inclusion of RGO transforms surface areas of N-MWCNT/Ti and N-

MWCNTs to be comparable to that of MWCNT/Ti.  The surface area enhancement, of both 

MWCNT/Ti and N-MWCNT/Ti composites, via inclusion of RGO concurs with the work on 

MWCNT/NiO reported by Bai et al. [8.8]  Additionally, the surface area and ID/IG ratio trend 

corresponded, i.e. RGO/MWCNT/Ti > RGO/N-MWCNT > RGO/N-MWCNT/Ti, (Fig. 8.13 

and Fig. 8.11).  This also agrees with the report by Lin et al. [8.18] in that higher defect intensity 
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of MWCNT/Graphene was associated with higher surface areas.  The larger titania 

agglomerates in RGO/N-MWCNT/Ti composites (Fig. 8.10) are a suitable explanation for the 

decrease in surface area. 

 

 

Fig.  8.13 Textural characteristics of RGO/MWCNT/Ti and RGO/N-MWCNT/Ti composites 

 

The CV analysis data infers that RGO/N-MWCNT and RGO/MWCNT/Ti exhibited the best 

and second-best EC quality and Cs (Fig. 8.14).  The observations were both attributed to their 

higher surface areas.  This means there was minimum restacking of RGO sheets in the 

composites, hence, improved electrolyte penetration [8.4].  The inclusion of titania in the 

synthesis of RGO/N-MWCNT/Ti indicates that there was no improvement to N-MWCNTs 

capacitance.  Also, Cs was highest at 10 mV s-1 than at 100 mV s-1 and this infers a domination 

of double layer charge storage mechanism. 
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Fig. 8.14 (a) CV curves of RGO/MWCNT/titania and RGO/N-MWCNT/titania composites at 

scan speed of 10 mV s-1 in 1 M sodium sulfate electrolyte and (b) specific capacitance  

 

The N-MWCNTs, alone, was associated with detectable Rct but composite synthesis improved 

charge transfer (Fig. 8.15).  This was deduced from the presence and absence of a semi-circle 

in the high frequency region of N-MWCNTs and composites, respectively [8.2].  Additionally, 

composite synthesis with both RGO and titania severely reduced the Warbug curve and an 

almost straight line, parallel to the Rim axis was exhibited (Fig. 8.15) on the Nyquist plot of 

both RGO/N-MWCNT and RGO/MWCNT/Ti composites.  This was an indication of a more 

ideal capacitive character in the above-mentioned composites [8.2,8.24].  This means 

composite synthesis positively transformed the electrochemical properties.  Also, scrutiny of 

Fig. 8.15, with the aid of insert, shows that the ascending order of diffusion path-length was 

RGO/N-MWCNT ˂ RGO/MWCNT/Ti ˂ RGO/N-MWCNT/Ti ˂ N-MWCNTs.  This agreed 

with decrease in Cs and EDLC quality.  Additionally, the Nyquist plot in the low frequency 

region hints on the improvement of EDLC performance in the composite synthesised, 

predominantly with RGO (Fig. 8.15).  Also, the high Rct in N-MWCNTs was a possible reason 

for poor EDLC quality and Cs (Fig. 8.14). 
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Fig. 8.15 The Nyquist plot for graphenated MWCNTs and N-MWCNTs composites with 

titania 
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8.4. Conclusions 

The titania agglomerates were smaller and more uniformly distributed in the sol-gel method.  

Also, the chemical vapor deposition (CVD) technique was associated with more tube bundling 

than the sol-gel method. Tube bundling in multiwalled carbon nanotube/titania (MWCNT/Ti) 

composites synthesised via the CVD approach rendered them more thermally stable than sol-

gel counterparts.  CVD approach decreased the hydrophilic nature of both MWCNTs and 

nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) in their respective composites.  

Titania inclusion enhanced surface area in composites involving N-MWCNTs while an 

opposite effect was noticed in those made with MWCNTs.  In general, sol-gel had higher 

surface area than CVD composites.  Higher surface area was associated with better capacitor 

functionality.  According to the data presented in this work, the method of composite synthesis 

is an important parameter which must be cautiously optimised with respect to material 

functionality in electrochemical double layer capacitors (EDLCs).  MWCNT/Ti, via sol-gel 

method, had the best EDLC quality and highest specific capacitance (Cs) of 18 F g-1.  The 

longest Warbug length in N-MWCNT/Ti composites was associated with the poorest Cs values 

and EDLC quality. 

Then optimal RGO:MWCNT ratio, with respect to the highest BET surface area of 417.46 m2 

g-1, was 3:1.  The RGO/N-MWCNT was homogeneous and hence, the sol-gel method was an 

appropriate solution processing technique in the current work.  The N-MWCNTs was 

successfully purified with HCl reflux process.  Titania coverage of both graphitic structures, 

MWCNT/Ti and N-MWCNT/Ti, raised the thermal stability.  Further, synthesis of composites 

with the inclusion of RGO, is a suitable way to enhance textural characteristics of N-MWCNTs.  

RGO/N-MWCNT had the highest Cs of 30 F g-1 and the shortest diffusion path length.  The 

diffusion path length was inversely proportional to Cs.   The work showed that composite 

synthesis is a suitable strategy to enhance the capacitance and other physicochemical properties 

of N-MWCNTs. 
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Appendix: Supporting information for Chapter 8 

 

 

Fig. 8.S1 Textural characteristics isotherms of (a) MWCNT/Ti and (b) N-MWCNT/Ti 

composites 

 

 

Fig. 8.S2 CV curves of (a) MWCNT/Ti and (b) N-MWCNT/Ti composites at scan speed of 

100 mV s-1 
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Fig. 8.S4 The representative SEM image of RGO/MWCNT   
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Fig. 8.S5  Textural isotherms for RGO/MWCNT/Ti and RGO/N-MWCNT/Ti composites 
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Fig. 8.S6 CV curves of RGO/MWCNT and RGO/N-MWCNT titania composites at scan speed 

of 100 mV s-1 
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Chapter Nine 

Summary, conclusions and future work 

This chapter presented the overall summary, conclusions and future recommendations from the 

presented thesis. 

 

9.1. Project summary 

The current drive towards usage of renewable energy resources and the obligation to develop 

cheaper energy alternatives, to the existing sources, has spearheaded the advancement of 

energy storage systems to be a requirement.  Cheap carbon-based nanomaterials are promising 

electrode materials for the development of electrochemical capacitors.  The work reported 

herein investigated usage of nanostructured materials, namely, multiwalled carbon nanotubes 

(MWCNTs) and reduced graphene oxide (RGO) in electrochemical double layer capacitors 

(EDLCs).  This study included a thorough review of carbon nanomaterial applications in 

EDLC.  The main goal was to explore physicochemical properties and pursue feasible 

strategies of enhancing the EDLC functionality by use of carbon-based nanomaterials.  This 

encompassed tailoring physicochemical properties towards better EDLC performance by 

controlling synthesis parameters namely, reagent mixing ratios, reaction temperature and time.  

Functional materials synthesised, in the current study, include nitrogen-doped multiwalled 

carbon nanotubes (N-MWCNTs), graphene oxide (GO) and RGO.  The influence of both 

content and functional groups of nitrogen present in N-MWCNTs and RGO towards better 

EDLC performance was successfully studied.  The physicochemical traits associated with 

oxygen-modified MWCNTs and GO, both containing oxygen-containing groups, were also 

positively investigated and EDLC functionality was accordingly elucidated on this basis.    

Another physicochemical tuning approach studied was composite synthesis and the various 

components used in this regard were GO, RGO, MWCNTs, N-MWCNTs, titania and cellulose.  

The effect of different combinations and wt.% ratios on both physicochemical and EDLC 

characteristics were studied.  The suitability of group one sulfates, namely; lithium sulfate, 

sodium sulfate and potassium sulfate, were compared as electrolytes for EDLC testing and the 

best electrolyte was used in all the materials studied in this thesis. 
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9.2. Conclusions 

Energy storage devices still require a focused study to boost energy resources for viable 

economic growth and stability.  One of the key ways towards achieving this is development of 

electrode materials with functional shaped carbon nanostructured material (SCNM).  N-

MWCNTs were effectively synthesised from small molecules, as both carbon and nitrogen 

sources using the floating catalyst chemical vapor deposition method.  The sp3-hybridised 

nitrogen, in reagents, had better doping effect (5.87%) than sp-hybridised source (3.49%).  The 

synthesis temperature was a critical parameter which needed thorough optimization with 

respect to yield composition and wt.% of nitrogen in the N-MWCNTs.  Also, by changing the 

synthesis temperature, it was possible to tune the number of concentric shells of N-MWCNTs 

from sp3 sources.  On the other hand, within the reagent used, the ratio at which the sp3: sp 

nitrogen sources are mixed, influenced physicochemical properties of the N-MWCNTs.  The 

current work also showed that associated physicochemical properties of typical N-MWCNTs, 

such as porosity, nitrogen functional groups, metallicity, outer and inner diameters, can 

successfully be manipulated through changing of sp3: sp ratio of nitrogen sources in the reagent.  

The 1:3 ratio of sp3: sp-hybridised nitrogen sources, had the highest N-doping of 9.38%, hence 

it enhanced the doping effect of both sp3- and sp-hybridised sources.  The products consisted 

mostly of pyrrolic-nitrogen moieties and to less extent, some pyridinic- and quaternary-

nitrogen as well as nitrogen oxides.   

With regards to graphene oxide (GO) synthesis, the graphite: sodium nitrate ratios, as modified 

Hummer’s method reagents, were practically optimised.  Higher sodium nitrate proportion in 

the reagents was used to increase the oxygen-containing moieties, surface area, porosity, 

amongst other physicochemical properties.  Increasing oxygen-containing moieties on 

graphitic sheets amplified their defect intensity and was associated with overall decrease in 

thermal stability.  The 1:1 ratio, of graphite: sodium nitrate, produced GO with the least 

roughened sheet surfaces, highest exfoliation extent and with no detectable residual graphite in 

the products (reaction completion).  Hence, 1:1 ratio, of graphite: sodium nitrate, was optimised 

as the best reagent mixing ratio utilised for all the synthesis and applications that involved GO 

in the current thesis.  Additionally, the use of sodium nitrate, in the modified Hummer’s 

method, introduces nitrogen functionalities on GO sheets.  Furthermore, according to the 

current study, the intensity of defects, such as wrinkling and paper-like morphologies, can be 
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tuned-down by increasing reaction time.  In short, it is imperative to state that graphite to 

sodium nitrate ratio, in reagents of the modified Hummer’s method, affect the sheet roughness, 

exfoliation extent, overall defect intensity, oxygen concentration on the carbon framework, 

thermal stabilities and textural characteristics of the produced GO, amongst other 

physicochemical characteristics. 

A study to investigate the influence of oxygen-containing groups on SCNMs functionality in 

electrochemical capacitors (ECs) by use of group one sulfates; namely, Li2SO4, Na2SO4 and 

K2SO4, was done with oxygen-modified MWCNTs.  One of the key objective herein was to 

determine the best electrolyte for use with rest of the materials in this thesis.  The electrolyte 

with best overall EDLC quality and higher charge storage performances was Na2SO4.  The 

study could highlight that the cationic sizes of electrolytes must critically be considered when 

materials are tested for EDLC performances.  A bad electrolyte choice might give a wrong 

impression of the materials being examined.  In addition, oxygen modification on MWCNTs 

enhanced their EC functionality and the charge storage mechanism was deduced to be via both 

pseudo and EDLC.  This was an interesting transformation since the carbon materials are 

popularly known to store charge via the EDLC mechanism.  The data, presented in this thesis, 

infers that the ultrasonic treatment can suitably be utilised in introducing oxygen-containing 

groups on the tube walls and this modifies their physicochemical properties.  In summary, this 

deduction highlights the importance of critically considering the choice of reagents for 

purification of MWCNTs, particularly those for electronic applications.  This is often ignored 

as much focus is usually on the most effective purification method, with the least residual 

metal.  Also, attaching oxygen-containing moieties on MWCNTs was a fruitful approach of 

tailoring their physicochemical properties and positively tuned-up their charge storage 

performances. 

The elemental analysis, thermogravimetric analysis under nitrogen atmosphere and X-ray 

photoelectron spectroscopy, corroborated and, are all suitable techniques to evaluate the 

effectiveness of GO reductants towards graphene synthesis.  Hydrazine hydrate was the most 

effective reductant when compared to sodium borohydride and ascorbic acid since it produced 

RGO with the highest surface area and nitrogen content.  Viable manipulation of nitrogen 

moieties in RGO was achieved by varying the reductants.  Nitrogen moieties in GO existed as 

dangling bonds but reduction with ascorbic acid and hydrazine hydrate facilitated N-doping 

within graphitic structures as pyrrolic and pyridinic, respectively.  Additionally, sodium 

borohydride reduction doped RGO with boron and eliminated nitrogen moieties.  The study 
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also showed that N-doped RGO facilitated better performances in charge storage than B-doped.  

B-doped RGO lowered electrolyte ion penetration but pyridinic-nitrogen moieties positively 

transformed it in this regard.  N-doping decreased the intrinsic resistance, and this was a 

positive attribute since it minimises energy wastage as heat in charge storage devices.  Also, 

charge storage characteristics increased with raise in temperature of thermal treatment of 

hydrazine hydrate reduced GO.  To sum up, in the quest for effective reductants of GO, the 

choice must be scrutinised with regards to associated physicochemical transformations and 

intended applications.  Conductivity of RGO was tailored positively by increasing N-doping, 

changing nitrogen functional groups and controlling defect intensity by use of an appropriate 

reductant.  For ECs, N-doping positively tuned charge storage performances of RGO and 

typical materials stored charge by both pseudo and EDLC mechanism.  In terms of capacitance, 

the pyrrolic-N-doped RGO had better performances than pyridinic-counterparts.   

In the titania composites investigated, varying wt.% of titania was used as a strategy to alter 

morphology of RGO and GO sheets.  Increasing wt.% of titania aptly boosted the textural 

characteristics of graphene oxide/titania (GOTi) composites.  Higher oxygen-containing 

groups facilitated chemical bonding between GO and titania.  Reduction of GOTi was an 

efficacious approach of improving their charge storage performance whilst cellulose was a 

suitable way of improving their surface area, however, it caused detrimental effects to charge 

storage processes.  In summary, from the current investigation, higher titania wt.% deteriorated 

capacitance of the composites since it culminated in increasing diffusion path-length.  Also, a 

more compact packing of electrode materials negatively affected ion penetration.  The main 

charge storage mechanism of the reduced composites was EDLC and composite synthesis 

enhanced charge storage performances of titania.   

The N-MWCNTs were investigated and appropriately tuned as electrode materials of ECs.  

Their pyrrolic-nitrogen composition was practically tailored upwards by increasing the portion 

of sp3-hybridised nitrogen source in the reagent mixture which contained both sp and sp3 

nitrogen sources in solution.  In the current thesis, evaluation of the allied EC characteristics, 

showed a decrease with increase in pyrrolic-nitrogen content in N-MWCNTs.  The sol-gel 

method was suitable for producing de-bundled N-MWCNTs/titania composites with fewer 

agglomerates and low defect intensity, and higher surface areas than CVD approach.  In short, 

method utilised for composite synthesis is a feasible strategy to tune physicochemical 

properties but affected MWCNTs and N-MWCNTs in a different way.  The ratio of RGO and 

MWCNTs in composites was effectively exploited to control the associated surface areas and 
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enhanced the characteristics from that of individual components.  In addition, N-doping of 

MWCNTs improved metal adhesion on their walls with ultimate enhanced surface areas. The 

path-length associated with the N-MWCNTs was magnificently decreased via composite 

synthesis with RGO and this improved capacitance.   From the current work, it is important to 

highlight that the control of defect intensity, via variation of component compositions in N-

MWCNT/RGO/Ti and MWCNT/RGO/Ti composites, yield positive alterations of surface area 

and the main charge storage mechanism was EDLC.  The inclusion of RGO enabled a positive 

transformation in the above-mentioned composites by decreasing the diffusion path-length 

with an associated better-quality EDLC character.  In summary, the composite synthesis of N-

MWCNTs was an effective route that shortened the diffusion path-length for the electrolyte 

ion and this increased charge storage performances. 

From the data presented in this work, one of the fundamental deductions was that high oxygen 

content of MWCNTs enhanced capacitance whilst low content in RGO was associated with 

high capacitance.  This highlighted morphological influence on electrochemical capacitance of 

the typical materials, amongst other physicochemical properties.  The physicochemical 

properties of GO, RGO, MWCNTs and N-MWCNTs were successfully tuned via control of 

oxygen and nitrogen content, manipulation of associated functional groups and composite 

synthesis.  The associated nano-structural parameters were successfully studied and linked to 

charge storage characteristics.   

 

9.3. Future work 

1. Although the effect of pyrrolic-nitrogen composition on capacitance was studied in the 

current work, a future focused study on the influence of at.% of N-doping, particularly 

on pyridinic-nitrogen and quaternary-nitrogen moieties with respect to capacitance of 

graphitic structures is recommended. 

2. The influence of reagent ratios, namely sodium nitrate and graphite, in the initial step 

of the modified Hummer’s method were studied in this work.  The effect of the 

concentration of both sulfuric acid and hydrogen peroxide, and ratios of the sulfuric 

acid, hydrogen peroxide and potassium permanganate to graphite in the subsequent 

steps can be similarly studied. 

3. The work also opens new avenues for dedicated studies focusing on the influence of 

pore sizes of the materials in current study, and solvated ion sizes of various 
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electrolytes.  This can be approached by tuning pore sizes over a wider range and 

investigating the optimum pore sizes for the three group one sulfates investigated.  

Another interesting study would be the optimisation of group one sulfate electrolyte 

concentration with the deduced ideal pore sizes and the best group one sulfate 

electrolyte.  Other electrolytes such as ionic liquids and sulfuric acid can also be 

investigated with materials studied in the current work. 

4. Industrial test of the materials in the form of current commercial capacitors can be 

explored via fabrication of devices in the same form as industrial devices with the 

current materials pressed onto current collectors.  The charge/discharge experiments 

can be done at known currents with a galvanostat as a further characterisation 

technique. 

5. The work also opened new arenas for theoretical investigations through computational 

studies focusing on the influence of various oxygen functional groups of the oxygen-

modified MWCNTs and graphene oxide, and the formation of an electrochemical 

double layer. 


