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ABSTRACT

The development of fruit colour in the sweet orange (Citrus sinensis) is a cultivar

characteristic affected by climate and environment. Although external colour is not always

an indication of internal quality or maturity, it is probably the most important factor

determining consumer acceptance. In the present investigation, efforts were made to

determine the biochemical basis of colour as an aesthetic quality in C. sinensis 'Navel'

and 'Valencia'. Furthermore, the changes in pigment content and composition during the

period of colour development were recorded. Finally, in an attempt to manipulate citrus

colour, the effect of dehydrating agents (alcohols), plant hormones, micro-nutrients and

low temperature on flavedo carotenoid content was determined.

Saponification of the two major colour-imparting components resolved by thin layer

chromatography, followed by reversed-phase high performance liquid chromatography

revealed that the principal colour-imparting pigments in C. sinensis flavedo are the yellow-

coloured xanthophyll 9-Z-violaxanthin and the red C30 apocarotenoid (3-citraurin. Both

pigments occur in the flavedo in esterified form. Identification of the chromophores was

based on co-chromatography and online spectral analysis. The colour quality of mature

fruit was dependant on the content and relative amounts of 9-Z-violaxanthin and P-

citraurin. Quantitative results revealed that increased colour intensity of citrus flavedo

was associated with a decline in the 9-Z-violaxanthin : p-citraurin ratio from greater than

50 to below 10, and an increase in 9-Z-violaxanthin and (3-citraurin content. Measurement

of the mass and ratio of these pigments can be used to accurately colour-grade orange

fruit for local and export markets. These parameters will also aid in the evaluation of

colour manipulatory techniques.

Visual colour break in C. sinensis appears to be associated with a minimum in total

pigment as well as total carotenoid content. The period prior to colour break is

characterised by a reduction in chlorophylls, carotenes and free xanthophylls usually



associated with photosynthetic activity. Following colour break, a massive increase in

xanthophyll acyl esters (particularly 9-Z-violaxanthin) is observed.

Efforts were made to manipulate carotenoid content of citrus flavedo in vivo, with a view

to manipulate fruit colour commercially. It was shown that the micro-nutrients tungsten

and molybdenum, and the plant hormones abscisic acid and jasmonic acid increased

carotenoid content of flavedo discs; whereas the plant hormone gibberellic acid

decreased carotenoid levels. The dehydrating agents ethanol and butanol increased

carotenoid content in whole fruit flavedo and flavedo discs. Optimum concentrations were

shown to be 20-30% (v/v) for ethanol and 5-10% (v/v) for butanol.
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CHAPTER 1

GENERAL INTRODUCTION

Plant pigments in horticultural crops, including fruits, vegetables and

ornamentals, have been intensively studied because of their essential role in visual

appeal. Visual colour of flowers and fruit is produced by a surprisingly small number

of pigments. Most red and blue plant pigments belong to the class of water-soluble

anthocyanins. Many red, orange and yellow-coloured fruit such as citrus, owe their

colour to the presence of oil-soluble carotenoids. More recently attention has shifted

to the nutritional benefits afforded by pigments, particularly carotenoids (Bartley and

Scolnik, 1995), but horticulturists still consider colour as a major criterion for

determining both grade and quality of produce. In citrus, flavedo colour is likely the

most important external quality parameter used to determine consumer acceptance,

although it is not always an indication of internal quality. This demonstrates that

consumers buy fruit primarily on the basis of eye appeal.

Visual expression of citrus colour is a cultivar characteristic affected by climate and

environment that can, to some extent, be manipulated by cultural practice

(Goldschmidt, 1988). The South African citrus industry may incur losses amounting to

millions of Rand during production seasons that are not conducive to desirable colour

development. Even more important are unquantifiable losses due to a reduction in

market share, lost market opportunity, damage to brand names and increased

degreening costs. Competition between growers to secure and maintain niche markets

has therefore fuelled efforts to produce quality fruit of uniformly and consistently good

colour.

But what is colour? The phenomenon known as 'colour' involves an interaction

between the light incident on an object, the spectral reflectance characteristics of that

object, and the spectral sensitivity of the human eye (Voss and Hale, 1998). The basic

attributes of colour perception are hue, lightness and chroma. 'Hue' or 'tint' refers to

the perception of colour as red, orange, yellow, green, blue, purple or an intermediate

of these. 'Lightness' indicates the relative lightness or darkness of colour and ranges
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from black through grey to white. 'Chroma' indicates the degree of departure from grey

towards pure chromatic colour, and can be referred to as the purity, vividness, intensity

or saturation of colour (Macguire, 1992; Lancaster et al., 1997; Voss and Hale, 1998).

Careful colour evaluation is desirable for botanical and horticultural description, plant

breeding and quality management of horticultural produce. Communicating

perceptions of colour entails not only the evaluation and description of colour by an

individual, but also the visualisation of described colours by another (Voss, 1992).

Colour of horticultural products such as fruit, vegetables and flowers can be measured

in a number of ways and the use of colour charts has long played an important role in

colour measurement. Very detailed charts such as the 'Royal Horticultural Society

Colour Chart' are used for biological description, whereas less detailed charts are

available for selected produce e.g. the 'Outspan Citrus Colour Chart'. In this chart,

only different colour grades of citrus, from green through orange, are illustrated.

Although colour charts afford easy, nondestructive colour measurement, colour

evaluation utilising this method is subjective, and depends on an individual's ability to

perceive and distinguish between colours. Furthermore, factors such as the size of the

surface being viewed, the background or 'surround', presence or absence of gloss,

direction of illumination and viewing, and nature of the light source may all affect the

perception of colour (Voss and Hale, 1998).

The increased availability of rather costly, portable colour-measuring instruments (such

as the Hunter and Minolta colorimeter, and Colortron reflectometer), makes possible

a more objective notation of colour (Reeves et al., 1997). These instruments express

any given colour as a point in a three-dimensional space, where lightness is measured

directly, but some computation is required to yield explicit measures of hue and

chroma (McGuire, 1992). Although colorimeters provide a fairly undemanding and

nondestructive measurement of colour, they afford very little information on pigment

content and composition. Lancaster and co-workers (1997) report that there is no

unique linear combination of pigments that give rise to a unique point in the colour

space, in a wide variety of fruits and vegetables. In simple systems, where one

pigment predominates, or where only one pigment is present, linear relationships



between pigment content and colour may be significant. Colorimeters are therefore

convenient for descriptive studies, but care should be taken not to use these

measurements as descriptors for pigment change.

Any manipulation studies that endeavour to improve colour need to be evaluated by

examining pigment content and composition, as it is after all the plant pigments that

afford visual colour. Therefore, any visible manipulation of plant colour has to be

preceded by a change in pigment concentration and/or composition. Following

extraction of pigments, total pigment content can be determined very accurately with

the use of a spectrophotometer and the concentration and identity of individual

pigments can be determined using high performance liquid chromatography (HPLC).

In order to improve understanding and visualisation of the role of pigments in colour

expression, total and individual pigment concentration may be related to colour chart

readings. In this way, one can direct manipulation of pigments towards desirable

visual colour.

1.1 HORTICULTURE OF CITRUS

The term Citrus originated from the greek word 'Kedros', used to describe trees such

as cedar, pine and cypress. As the smell of citron leaves and fruit was reminiscent of

that of cedar, the name citrus was applied to the citron (Spiegel-Roy and Goldschmidt,

1996). The genus Citrus belongs to the family Rutaceae and is believed to have

originated in the tropical and subtropical regions of southeast Asia, from where it was

dispersed across the world through natural spread and cultivation. Modern molecular

biochemical techniques indicate that all known citrus species originate from three

groups viz: citron (Citrus medica L), mandarin or tangerine (C. reticulata Blanco) and

pummelo (C. grandis Osbeck). It is believed that the sweet orange (C. sinensis

Osbeck) originated as a natural hybrid between pummelo and mandarin grown in

village gardens in China. Citron and pummelo are cultivated on a small scale,

whereas mandarin is commercially produced. Other commercially important citrus

species include grapefruit (C. paradisi Macf.), lemon (C. limon (L) Burm.f.), sour

orange (C. aurantium L) and lime (C. aurantifolia Christm). Citrus is a widely

cultivated and variable genus and a number of commercially available cultivars are the



result of inter-species crosses and classical plant breeding practices (Spiegel-Roy and

Goldschmidt, 1996).

The sweet orange is considered the most important citrus group in terms of production

area and market value. Cultivars are usually classed as early, mid-season or late,

depending on the season of maturity (Jackson, 1990). The 'Washington Navel' is the

standard early or winter orange and is distinguished by the development of a 'navel'

at the stylar end of the fruit (in fact an aborted secondary fruit). Worldwide distribution

of Navel orange started after budwood was sent from Bahia, Brazil, to the US

Department of Agriculture in 1870 (Spiegel-Roy and Goldschmidt, 1996). 'Valencia'

is regarded as a late maturing cultivar and is also known for its late hanging quality.

Mature fruit can remain on the tree for four to five months before appreciable

deterioration of quality sets in. The exact origin of 'Valencia' is unknown, but it is

thought to be an old variety of the Mediterranean region. 'Valencia' was introduced

in the USA in 1873, from where it was spread to other citrus producing regions

(Bowman, 1956).

1.2 COLOUR DEVELOPMENT

1.2.1 Chromoplast development

Colour break in citrus peel is defined as the stage during which natural colour

conversion from dark green to an ultimate yellow or orange, has progressed to the

extent that a tinge of yellow or orange is apparent (Wardowski et al., 1986). Colour-

break coincides with the conversion of chloroplasts to chromoplasts (Eilati et al.,

1975), in which pigments associated with photosynthetic activity such as chlorophyll

a and b, a- and p-carotene, lutein and the unesterified xanthophylls: E-neoxanthin, E-

violaxanthin and E-antheraxanthin, decline (Gross, 1987). The typical chloroplast

carotenoid pattern is replaced by a complex chromoplast carotenoid pattern that is

characteristic of a specific fruit. Chromoplasts can be defined as plastids containing

pigments other than chlorophyll, usually carotenoids (Raven et al., 1986)

Chromoplasts can be subclassified into 4 groups (Thomson and Whatley, 1980;

Marano et al., 1993; Vishnevetsky et al. 1999), depending on the form of carotenoid

storage viz:
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- globular, in which the carotenoids are concentrated in plastoglobuli,

- tubular/fibrillar, characterised by the presence of numerous tubules,

- membranous, contain multiple arrays of membranes,

- crystalline, carotenoids are organized in the form of crystals.

Globular chromoplasts contain lens-shaped or spheroidal plastoglobules and are the

most common type. These are also considered to be the oldest and most primitive in

evolutionary terms. Plastoglobules have been proposed to consist of a monolayer of

polar lipids and proteins covering the surface, with apolar components buried in the

interior (Vishnevetsky et al., 1999). Thomson (1966) described the ultrastructural

changes associated with the development of globular chromoplasts in 'Valencia'

orange. During colour development, there was a co-ordinated disassembly of the

internal membrane system of the chloroplast, and large osmiophilic globules were

formed. It was originally suggested that these globules arose due to breakdown of

granal membranes and the synthesis of new carotenoids, but more recent studies

using tomato (Lycopersicon esculentum) and pepper (Capsicum annuum) mutants that

retain chloroplast thylakoids during chromoplast differentiation, indicate that the new

set of chromoplast substructures is formed de novo (Camara et al., 1995). Membranes

are always associated with the large globules, suggesting that carotenoid synthesis

takes place in association with chromoplast membrane formation. During regreening,

fully coloured citrus peel transforms to a yellow-green colour, a process that is usually

associated with a rise in temperature in early summer. Ultrastructural studies of

regreening Valencia flavedo indicate that chromoplasts are retransformed into

chloroplasts (Thomson et al., 1966). The osmiophilic globules are reduced in size and

number and the grana network system is evidently built up from small vesicles which

pinch off from the inner plastid membrane. Regreening involves the de novo synthesis

of chlorophyll and protein complexes of the photosynthetic apparatus, along with the

reassembly of thylakoid structure and re-acquisition of photosynthetic activity (Mayfield

and Huff, 1986; Goldschmidt, 1988).

Evidence from comparative biochemical and ultrastructural studies indicates that the

shape of chromoplasts is governed by their lipid-to-protein ratio (Deruere et a/., 1994).



A high proportion of lipid induces the formation of globular structures, whereas a high

proportion of protein leads to the formation of membranous or threadlike structures.

During chromoplast development in pepper, 95% of newly synthesized carotenoids

accumulate in specific lipoprotein fibrils. In addition to carotenoids, purified fibrils have

been shown to contain galactolipids, phospholipids, and a single 32-kD protein,

designated fibrillin (Deruere et al., 1994). These authors have therefore proposed a

model for fibril architecture and suggest that carotenoids accumulate and are

surrounded by a layer of polar lipids, which in turn are surrounded by an outer layer

of fibrillin protein. Vishnevetsky et al. (1999) propose an alternative model in which

polar lipids on the fibril surface are protected by carotenoid-associated proteins, whose

hydrophobic regions are embedded in the inner carotenoid core.

Both models indicate that carotenoid-associated proteins play a vital role in the

accumulation and sequestration of carotenoids in plants. In chromoplasts, special

plastid-lipid-associated proteins are involved in the sequestration of carotenoids. Two

chromoplast-specific proteins ChrA and ChrB (58- and 35-kD respectively) were

identified in pepper and shown to accumulate during ripening (Newman et a/., 1989).

Similarly, a carotenoid-associated 35-kD protein (ChrC) accumulated in cucumber

corollas during chromoplast development (Smirra et al., 1993; Vainstein et al., 1994).

It was later shown that ChrB is identical to fibrillin in peppers (Pozueta-Romero et al.,

1997) and that the predicted amino acid sequence of ChrC (in cucumber) shares

significant homology with fibrillin (Vishnevetsky et al., 1999). Furthermore, a cDNA

(CitPAP) homologous to ChrC was isolated from Satsuma mandarin (Moriguchi etal.,

1998). Pozueta-Romera and co-workers (1997) isolated a cDNA corresponding to a

single nuclear gene, PAP (plastid-lipid-associated protein), that encodes fibrillin. It

was revealed that this gene is expressed at a low level in every organ of the plant and

that the amount of corresponding transcript and protein dramatically increased in the

later stages of fruit development. Based on homology with the PAP gene, carotenoid-

associated genes of other plants that contain fibrillar and globular chromoplasts have

been discovered. These findings demonstrate the existence of a group of homologous

and highly conserved genes coding for carotenoid-associated proteins that aid in

carotenoid sequestration during chromoplast development (Vishnevetsky et al., 1999)
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Deruere etal. (1994) found that the type of carotenoids accumulated in chromoplasts

also play a role in determining chromoplast structure. Fibril reconstitution assays

showed that cyclic carotenoids (eg. zeaxanthin, zeaxanthin diester, capsanthin and

capsanthin diester) facilitated fibril assembly, whereas the acyclic carotenoid lycopene

inhibited this process. This was further confirmed by the application of 2-(4-

chlorophenylthio) triethylamine hydrochloride (CPTA) to intact pepper fruits (a

compound that inhibits cyclization of lycopene and leads to the accumulation of

lycopene (Benedict et al., 1985). Noticeable structural differences were observed in

chromoplasts, resulting in the formation of lycopene crystals with the absence of fibrils.

Crystalline chromoplasts are characteristic of tomato, a fruit that accumulates large

amounts of lycopene (Mohr, 1979). Chromoplasts containing lycopene crystals are

also characteristic of the pulp of 'Ruby Red' grapefruit (Gross, 1987).

1.2.2 Regulation of colour development

The transformation of chloroplasts to chromoplasts and the resultant colour change

seems to be under environmental, nutritional, hormonal and genetic control, and the

control mechanisms appear to be strongly interrelated (Goldschmidt, 1988).

In general, rind colour of citrus fruit is more brilliant the closer the trees are cultivated

to their climatic limit in terms of winter temperature. Citrus fruit grown in tropical areas,

often remain green long after internal maturation has been reached, whereas brilliantly

coloured fruit are produced in areas with a distinct seasonal cold period (Reuther and

Rios-Castano, 1969). It should also be noted that the occurrence of regreening in

Valencia orange has been closely correlated with a rise in average air temperature

during the summer months (Coggins et al., 1981, El-Zeftawi, 1977). The optimal

conditions for rapid loss of chlorophyll and the accumulation of carotenoids is a day

(air) temperature of 20 °C, night temperature of 7 °C and soil temperature of 12 °C

(Young and Erickson,1961). Colour break usually occurs in autumn or early winter,

and is accompanied by a sudden drop of temperature which is referred to colloquially

as a 'cold snap'. An effect of temperature on the level of specific carotenoids has also

been noted. In tomato (Goodwin and Jamikorn, 1952), Redblush grapefruit (Meredith

and Young, 1971) and bittermelon (Lan Huong Tran and Raymundo, 1999),



temperatures above 35 °C inhibited lycopene accumulation whereas the accumulation

of B-carotene was not significantly affected by high temperature. Stewart and

Wheaton (1971) also reported reduced accumulation of B-citraurin in the flavedo of

citrus at temperatures above 30 °C.

Although other factors are involved in colour development, these seem less important

than changes in temperature. For example, light effects have been noted. Fruit

located near the outside of the canopy usually experience colour-break earlier than

fruit on the inside and these can therefore be harvested earlier, but only if internally

mature (Krajewski, 1998). Similarly, de Vries and Bester (1996) observed that fruit

near the outside and in the top of the tree canopy matured earlier in terms of colour,

total soluble solids (TSS), and TSS/titratable acidity (TA) ratio. Relative humidity is

also implicated in the regulation of colour development as uniformly brightly coloured

fruit is usually produced in areas typified by a dry climate (Stewart, 1977). A possible

reason for this is that growing regions with low humidity are usually characterised by

greater day-night temperature extremes.

Nutrition status of orchards impacts on colour development and it is known that

excessive nitrogen in the soil delays degreening and promotes regreening (Huff,

1984). The form in which nitrogen is provided also plays a role. Trees supplied with

an ammonium-nitrate nitrogen produce better coloured fruit than trees fertilized with

nitrate alone (Collado et a/., 1996). Huff (1983; 1984) investigated the effect of

nutritional status of the plant on chloroplast/chromoplast transformation in a series of

in vitro experiments using citrus flavedo discs. It was found that high nitrogen favoured

the development of chloroplasts (regreening), whereas high sucrose in the medium led

to the development of chromoplasts (degreening). The effect of other nutrients on the

progression of colour development is less marked and also less well-documented.

Potassium was reported to have both promotive (Trudel and Ozbun, 1970; 1971), and

inhibitory (Wardowski et a/., 1986) effects on fruit colour.

The likelihood that sugars play a role in plastid transformation and hence colour

development is strengthened by the observation that colour break and colour
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development in citrus is accompanied by an increase in sugar levels in the juice and

flavedo (Tadeo et a/., 1987). Furthermore, the late season citrus cultivar 'Hernandina'

remains green until late in the season and displays sugar accumulation at a much

reduced rate when compared to 'Washington Navel' (Tadeo et al., 1987), a variety in

which development of maturity and colour is rapid. Reducing sugars are believed to

play an important role in a plants resistance to chilling injury (Purvis et al., 1979) and

it was reported that reducing sugar level increased in the flavedo of 'Marsh' grapefruit

when trees were exposed to cold hardening temperatures and decreased at

dehardening temperatures (Purvis and Grierson,1982; Purvis and Rice, 1983).

Invertase activity was shown to parallel the levels of reducing sugars in grapefruit

flavedo (Purvis and Rice, 1983). In addition, a fivefold increase in invertase activity

was reported in pepper fruit during chromoplast differentiation (Camara et al., 1995).

Considerable attention has also been given to the effect of exogenously applied plant

growth regulators and plant hormones on degreening and regreening of citrus fruit

peel. Gibberellin (GA) delayed the loss of green pigmentation and accumulation of

carotenoids in 'Navel' (Coggins and Hield, 1962; Lewis and Coggins, 1964) and

'Shamouti' oranges (Goldschmidt and Eilati, 1970), and enhanced regreening of fully

coloured 'Valencia' fruit, although no regreening was observed in 'Navel' (Coggins and

Lewis, 1962). Similarly, application of cytokinin resulted in delayed colour

development of 'Valencia' (Rasmussen et al., 1973). No effect of auxin on peel colour

was noted, although the shelf-life of fruit treated with 2,4-dichlorophenoxyacetic acid

(2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and naphthaleneacetic acid (NAA)

was increased and processes associated with senescence were delayed (Kefford and

Chandler, 1970). Exogenous abscisic acid (ABA) treatment did not have consistent

effects on citrus fruit colouration, but application of ABA accelerated fibril synthesis

and enhanced the formation of chromoplasts in pepper, whereas GA and indole-3-

acetic acid (IAA) delayed this process (Deruere et al., 1994). Ethylene treatment is

reported to result in rapid degreening and colour development in numerous citrus

cultivars, including Temple' (Stewart and Wheaton, 1971), 'Valencia' (Wheaton and

Stewart, 1973) and Satsuma mandarin (Le Roux et al., 1997). Ethylene appears to

enhance colouration by influencing the de novo synthesis of chlorophyllase (Trebitsh



etal., 1993), the chlorophyll degrading enzyme, and by inducing carotenoid synthesis

(Stewart and Wheaton, 1971; 1972). An increase in ABA content (Brisker eta/., 1976),

free amino acids, respiration rates, reducing sugars, and appearance of phenylalanine

ammonia lyase activity were also reported following ethylene treatment of citrus fruit

(Goldschmidtefa/., 1977).

Far less is known about the role of endogenous plant hormones in chromoplast

formation and colour development, although correlative evidence has been established

in some cases. In Satsuma mandarin peel, GA-like activity decreased rapidly once the

fruit were fully expanded and remained at a low level until fruit maturity (Kuroaka et ai,

1977). It was also noted that an increase in GA activity in the flavedo of 'Valencia'

oranges preceded an increase in chlorophyll content during regreening (Rasmussen,

1973). Furthermore, greater amounts of GA-like substance were found in rough-

peeled than in smooth-peeled 'Shamouti' orange (El-Otmani etal., 1995; Erner etal.,

1976). Rough-peel disorder occurs in 'Shamouti' orange grown under marginal

conditions and results in fruit with excessively rough peel, greater acid content and

delayed peel colouring, which is indicative of a delay in maturity. This disorder can be

overcome in part by pre-harvest application of the growth retardants daminozide and

chlormequat, that act as GA inhibitors (Monselise and Goren, 1978).

Richardson and Cowan (1995) described the change in ABA content of citrus flavedo

in relation to colour development. ABA content increased throughout the course of

colour change and reached a maximum at time of colour-break. A decline in ABA

content occurred concomitantly with full expression of colour, probably due to

enhanced catabolism and formation of ABA conjugates. These results are in

accordance with a previous study (Harris and Dugger, 1986), in which it was shown

that ABA levels remained fairly stable during chromoplast development, but that levels

of the ABA conjugate increased approximately 12-fold in flavedo tissue. Aung et al.

(1991) also reported an increase in ABA conjugates in the peel of mature, coloured

lemon. These results are not surprising considering that the biosynthetic route to ABA

is now accepted to occur predominantly via the metabolism of epoxy-carotenoids and

in particular the 9-Z-xanthophylls, neoxanthin and violaxanthin (Li and Walton, 1990;

Rock and Zeevaart, 1991; Cowan and Richardson, 1997; Schwartz etal., 1997).
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The role of endogenous ethylene in ripening and colour development of citrus

deserves some attention, as citrus is known to be a non-climacteric fruit (Baldwin,

1993). Gas chromatographic analysis has revealed measurable, although relatively

small amounts of ethylene in both the internal atmosphere of, and emanations from,

mature orange fruit (Apelbaum et ai., 1976, and references therein), but it has been

difficult to establish a correlation between ethylene evolution and colour development

(Goldschmidt, 1988). Apelbaum et ai. (1976) showed that by reducing the level of

endogenous ethylene in intact orange fruit, using subatmospheric pressure, the rate

of chlorophyll destruction or colour change remained unchanged. By comparison,

Purvis and Barmore (1981) reported that hypobaric storage greatly reduced chlorophyll

destruction in citrus. It seems, however, that these authors did not allow for the

maintenance of a sufficiently high O2 concentration during hypobaric storage, which

is known to delay the degreening process (Goldschmidt et ai., 1993). The use of

ethylene antagonists, such as norbornadiene and silver nitrate, counteracted the

degreening process by 55-60%, suggesting that endogenous ethylene is involved in

the process of colour development in citrus (Goldschmidt et ai., 1993). In fact,

ethylene induced changes in the level of a number of specific mRNAs in citrus fruit that

are regulated both by ethylene treatment and maturation (Alonso et ai., 1995). It is

therefore possible that gene expression is activated by an increase in sensitivity to

basal ethylene levels or by the low increase of ethylene concentration during fruit

maturation.

1.3 CAROTENOID BIOSYNTHESIS

An understanding of the biosynthesis and interrelationship of carotenoids is deemed

essential before any attempt at colour manipulation can be undertaken. The

biosynthesis of carotenoids, including biochemical and molecular aspects, has been

extensively reviewed by a number of authors (Goodwin, 1961; Bartley et ai., 1994;

McGarvey and Croteau, 1995; Chapped, 1995; Cunningham and Gantt, 1998).

Current knowledge of the molecular biology of carotenoids is derived primarily from the

study of the pathway in specific organisms, including the photosynthetic prokaryotes

Rhodobacter and Synechococcus, bacteria of the genus Erwinia, the fungi Neurospora

and Phycomyces, and the higher plants corn (Zea mays), tomato, daffodil (Narcissus

pseudonarcissus) and pepper (Bartley et ai., 1994).
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Carotenoids can be broadly divided into carotenes (hydrocarbons) and their

oxygenated derivatives, the xanthophylls. They are generally C40 terpenoid

compounds formed by the condensation of eight isoprene units (Bartley and Scolnik,

1995). The linkage order at the center of the molecule is reversed, so that the

molecule as a whole is symmetrical (Gross, 1987). A series of conjugated double

bonds termed the chromophore is responsible for the absorption of light in the visible

region of the spectrum (MacKinney, 1961)

1.3.1 Source of isopentenyl diphosphate (IDP)

The central metabolite and building block of all isoprenoid compounds is the 5-carbon

compound isopentenyl diphosphate (IDP). A modular assembly process that produces

compounds of 5,10,15, 20 or more carbons (in multiples of 5) allows the biosynthesis

of the many and varied isoprenoids (Cunningham and Gantt, 1998). The 'classical'

acetate/mevalonate route to IDP proceeds from acetyl-CoA via 3-hydroxy-3-

methylglutaryl-coenzyme A (HMG-CoA) to mevalonic acid (MVA). The reduction of

HMG-CoA to produce MVA is catalysed by the enzyme HMG-CoA reductase (HMGR)

and is purported to be an irreversible, rate-determining step in mammalian systems

(Chappell, 1995). HMGR has been localised in the cytosol of plants. Emerging

evidence points to the existence of a non-mevalonic acid pathway for the generation

of IDP in plastids (Lichtenthaler et a/., 1997). The non-mevalonate pathway, as

derived from 13C-incorporation studies, is involved in the biosynthesis of all essential

chloroplast isoprenoids e.g. phytol, carotenoids and plastoquinone (Rohmer, 1999).

This pathway begins with the condensation of pyruvate (C2) and glyceraldehyde-3-

phosphate (C3) to yield 1-deoxyxylulose-5-phosphate (DOXP), which is transformed

in several steps to IDP (Lichtenthaler et a/.,1997). Bouvier and co-workers (1998b)

recently described the characterization of two cDNAs, CapTKTI and CapTKT2, from

pepper, that encode transketolases with distinct specificities. CapTKTI is primarily

involved in plastidial pentose phosphate and glycolytic cycle integration, whereas

CapTKT2 initiates the synthesis of isoprenoids in plastids by catalysing the formation

of DOXP. CapTKTI is almost constitutively expressed during chloroplast-to-

chromoplast transformation, while CapTKT2 is overexpressed during this period and

more than likely provides IDP necessary for increased carotenoid synthesis. In
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addition, DOXP is involved in thiamine and pyridoxine synthesis and CapTKT2 plays

a key role in this pathway. This may explain the observation that the thiamine-

biosynthesis gene c-thi1, is strongly induced during natural and ethylene-induced

ripening in citrus fruit (Jakob-Wilk etal., 1997).

1.3.2 Assembly of the C40 backbone

Cloned plant genes for enzymes involved in carotenogenesis, as discussed in section

1.3.2 to 1.3.4, are shown in Table 1.1 and the carotenoid biosynthetic pathway is

illustrated in Fig. 1.1.

Table 1.1 Cloned plant genes of the carotenoid biosynthetic pathway

Gene Plant Reference

Geranylgeranyl

diphosphate synthase

Phytoene synthase

Phytoene desaturase

Lycopene cyclase

Zeaxanthin epoxidase

Capsanthin-capsorubin

synthase

Arabidopsis, lupine, pepper

Pepper, tomato,

arabidopsis, maize,

daffodil, rice

Tomato, arabidopsis,

maize, daffodil, pepper,

rice, soybean, wild tobacco

Arabidopsis, tomato,

tobacco, pepper

Pepper, tobacco

Pepper

Bartley and Scolnik, 1994;

1995; Bouvier ef a/., 1998a.

Giuliano et a/.,1993; Bartley

and Scolnik, 1995; Bouvier

etal, 1998a.

Giuliano et a/., 1993;

Bartley and Scolnik, 1995;

Bouvier et a/., 1998a.

Bartley and Scolnik, 1995;

Bouvier et al., 1998a.

Bouvier et al., 1998a;

Cunningham and Gantt,

1998.

Bouvier et al., 1994; 1998a.

The reversible isomerization of IDP to its allylic isomer dimethylallyl diphosphate

(DMADP) is carried out by the soluble enzyme IDP isomerase. Geranylgeranyl

diphosphate (GGDP) is formed by the sequential addition of three molecules of IDP
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to one molecule of DMADP. These three successive condensation reactions are

carried out by GGDP synthase. In addition to its role in carotenoid biosynthesis,

GGDP is a precursor of plant compounds (e.g. GA3), and its synthesis is therefore

more than likely subject to complex regulation (Bartley and Scolnik, 1995). In the first

dedicated step of carotenoid biosynthesis, phytoene synthase (PSY) catalyses the two-

step condensation of two molecules of GGPP into phytoene via prephytoene

pyrophosphate. PSVwas found to be peripherally associated with plastid membranes.

1.3.3 Desaturation and cyclization

Phytoene, the first lipophilic compound in the pathway, undergoes a series of four

desaturation reactions that transforms the colourless compound into yellow, orange

and red carotenoids. Phytoene desaturase {PDS) and (-carotene desaturase (ZDS)

are responsible for the formation of phytofluene, (-carotene, neurosporene, and

lycopene, and are membrane-associated enzymes (Cunningham and Gantt, 1998).

Cyclization of lycopene leads to the formation of a- and (3-carotene. P-Cyclase (LCYB)

is responsible for the formation of (3-rings, whereas e-rings are formed by e-cyclase

(LCYE). (3-Carotene, with two (3-rings, serves as the precursor to several other

carotenoids. a-Carotene, with one p- and one e-ring, is the immediate precursor to

lutein, the predominant carotenoid in photosynthetic membranes of many green plants,

and formed in an apparently futile pathway (Pogsonef a/., 1998). Carotenoids with two

e-rings are not commonly found in plants. Lactucaxanthin is one of the rare examples

of a carotenoid with two s-rings, and accumulates in lettuce (Cunningham and Gantt,

1998).

1.3.4 Xanthophyll formation

Xanthophylls are hydroxy, epoxy, furanoxy and oxy derivatives of the carotenes formed

in the later stages of the pathway (Bartley and Scolnik, 1995). Hydroxylases transform

a- and p-carotene into lutein and zeaxanthin (via P-cryptoxanthin) respectively. The

epoxidation of zeaxanthin to form violaxanthin (via antheraxanthin) and de-epoxidation

of violaxanthin to regenerate zeaxanthin is known as the xanthophyll cycle. These

reactions are carried out by zeaxanthin epoxidase (ZEP) and violaxanthin de-

epoxidase (VDE) (Cunningham and Gantt, 1998).
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Figure 1.1 The carotenoid biosynthetic pathway (adapted from Gross, 1987).
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Violaxanthin

Neoxanthin

Figure 1.1 (cont.) The carotenoid biosynthetic pathway (adapted from Gross, 1987).
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Bouvier etal. (1994) isolated and characterized capsanthin-capsorubin synthase, the

enzyme responsible for the conversion of the 5,6-epoxycarotenoids, antheraxanthin

and violaxanthin, into the ketocarotenoids capsanthin and capsorubin. These

ketocarotenoids are characteristic of pepper fruit and responsible for the bright red

colour. It was later shown that oxidative stress induced the expression of multiple

carotenogenic gene mRNAs that give rise to capsanthin (Bouvier et al., 1998a).

1.3.5 Carotenoid catabolism

Apocarotenoids, carotenoids with fewer than 40 carbon atoms, are formed from the

cleavage of carotenoids. Citrus is a particularly rich source of apocarotenoids (Table

1.2), including (3-citraurin and (3-citraurin epoxide (Molnarand Szabolcs, 1980). Other

apocarotenoids include (3-ionone, retinal and the plant growth hormone, ABA. Cowan

and Richardson (1993a; 1993b; 1997) developed a cell-free system from citrus to study

the conversion of epoxycarotenoids to ABA and successfully demonstrated the in vitro

conversion of 9-Z-neoxanthin to ABA via xanthoxin (XAN), XAN-acid, and 1'4'-E-

ABAdiol. Cleavage of 9-Z-neoxanthin is regulated by the activity of an inducible

enzyme, probably a dioxygenase with a high turnover rate (Parry, 1993). Attempts to

define the characteristics of the cleavage enzyme using inhibitors of lipoxygenase

activity suggest that the in vivo reaction is catalysed by a non-heme oxygenase with

lipoxygenase-like properties (Creelman et al., 1992). The terminal step in ABA

formation is thought to be mediated by a molybdenum-containing oxidase enzyme

(likely a molybdo-aldehyde oxidase), indicating a molybdenum requirement (Walker-

Simmons etal., 1989; Richardson and Cowan, 1996; Lee and Milborrow, 1997)

1.3.6 Carotenoid conjugation

Xanthophylls and apocarotenoids in chromoplasts are usually found in conjugated

form, either through the process of glucosylation or esterification. Esterified

xanthophylls have been described in flower petals (Kleinig and Nietsche, 1968), citrus

(Eilati et al., 1972), and peppers (Camara and Moneger, 1978). The physiological

significance of these catabolites may be attached to the fact that acylation increases

the lipophilic nature of xanthophylls and thereby makes possible their accumulation in

plastoglobules. Further, esterified carotenoids are more stable than the unesterified
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forms and esterification with saturated fatty acids is responsible for the increased

stability (Minguez-Mosquera and Hornero-Mendez, 1994).

1.4 CITRUS CAROTENOIDS

By 1973, more than 110 different carotenoids had been reported to occur in citrus

(Stewart and Wheaton, 1973). Zechmeister and Tuzson are reported (MacKinney,

1961) to have made the first systematic attempt to isolate individual pigments in the

orange in 1931. They isolated cryptoxanthin, lutein, zeaxanthin, p-citraurin and what

was probably violaxanthin. Curl (and co-workers) reported some 74 carotenoids in

several varieties of citrus between 1953 to 1967 (Curl, 1953; 1956; 1960; 1962a;

1962b; 1967; Curl and Bailey, 1954; 1955; 1956; 1957; 1959; 1961). Pigment

identification methods included countercurrent distribution, chromatography,

spectrophotometry and reaction with hydrochloric acid. The credibility of these

methods was later questioned (Stewart and Wheaton, 1973b) and it was subsequently

shown that trollixanthin and trolliflor were in fact identical to all-E-neoxanthin from

chromatographic, visible (Vis) and infra-red (IR) spectrometry, nuclear magnetic

resonance (NMR) spectrometry, mass spectrometry (MS), optical rotary dispersion

(ORD) and circular dichroism (CD) data (Buchecker and Liaaen-Jensen, 1975). It is

also likely that many of the reported carotenoids are the result of artifacts formed

during extraction. This was shown to be the case for reticulataxanthin and

citranaxanthin, formed artifactually from P-citraurin and p-apo-8'-carotenal during the

saponification of citrus carotenoids in the presence of small amounts of acetone

(Stewart and Wheaton, 1973a). The analysis of crystalline material using NMR,

infrared and high resolution mass spectrometry should therefore be the recognised

standard in the absolute identification of carotenoids. A list of carotenoids identified

in citrus flavedo utilising modern biochemical techniques, is shown in Table 1.2.
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Table 1.2 Carotenoids identified in citrus flavedo using modern biochemical techniques

Carotenoid Citrus species / Identification

cultivar method

Reference

Colourless

Carotenoids

Phytofluene

^-Carotene

Neurosporene

Carotenes

Lycopene

5-Carotene

a-Carotene

(3-Carotene

xanthophylls

Lutein

Mutatoxanthin

(3-Cryptoxanthin

Cryptoxanthin 5,6-

epoxide

Zeaxanthin

Antheraxanthin

mandarin

Sinton citrangequat

mandarin

Sinton citrangequat

mandarin

mandarin

mandarin

Sinton citrangequat

mandarin

mandarin

mandarin

Sinton citrangequat

Valencia

mandarin

mandarin

mandarin

Valencia

mandarin

MS

UV-vis, TLC

MS

UV-vis, TLC

MS

MS

MS

UV-vis, TLC

MS

MS

MS

UV-vis, TLC

UV-vis, MS, CD

MS

MS

MS

UV-vis, MS, CD

MS

Farin et a/., 1983

Yokoyama and

White, 1966

Farin et a/., 1983

Yokoyama and

White, 1966

Farin et a/., 1983

Farin et a/., 1983

Farin et a/., 1983

Yokoyama and

White, 1966

Farin et a/., 1983

Farin et a/., 1983

Farin et a/., 1983

Yokoyama and

White, 1966

Molnar and

Szabolcs, 1980

Farin et a/., 1983

Farin et a/., 1983

Farin et a/., 1983

Molnar and

Szabolcs, 1980

Farin et a/., 1983
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Carotenoid

9-Z-Violaxanthin

all-E-Violaxanthin

Di-Z-Violaxanthin

E-Neoxanthin

9-Z-Neoxanthin

Apocarotenoids

(3-Citraurin

(3-Citraurin epoxide

P-Citraurinene

p-Citraurol

p-Apo-8'-carotenal

P-Apo-10'-carotenal

Apo-8'-violaxanthal

Apo-10'-

violaxanthal

Apo-12'-

violaxanthal

Citrus species /

cultivar

Valencia

Valencia

Valencia

mandarin

mandarin

Sinton citrangequat

Valencia

mandarin

Valencia

Robinson (Orlando

tangelo*clementine

mandarin)

Robinson (Orlando

tangelo*clementine

mandarin)

Sinton citrangequat

Sinton citrangequat

Valencia

Valencia

Valencia

Identification

method

UV-vis, MS, CD

UV-vis, MS, CD

UV-vis, MS, CD

MS

MS

UV-vis, TLC

UV-vis, MS, CD

MS

UV-vis, MS, CD

UV-vis, TLC,

HPLC, IR, MS,

NMR,

UV-vis, TLC,

HPLC, IR, MS,

NMR,

UV-vis, IR, TLC

UV-vis, IR, TLC

UV-vis, CD, MS,

UV-vis, CD, MS,

UV-vis, CD, MS,

Reference

Molnarand

Szabolcs, 1980

Molnarand

Szabolcs, 1980

Molnar and

Szabolcs, 1980

Farin et a/., 1983

Farin et a/., 1983

Yokoyama and

White, 1966

Molnar and

Szabolcs, 1980

Farin et a/., 1983

Molnarand

Szabolcs, 1980

Leuenberger and

Stewart, 1976a

Leuenberger and

Stewart, 1976b

Yokoyama and

White, 1966

Yokoyama and

White, 1966

Molnar and

Szabolcs, 1980

Molnarand

Szabolcs, 1980

Molnarand

Szabolcs, 1980
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1.5 OBJECTIVES

The bulk of available literature pertaining to citrus carotenoids and colour development

was written in the period 1970-1985, with little recent interest in the subject. An

understanding of pigments involved in colour development and colour regulatory

aspects in Citrus sinensis (and other carotenogenic fruit) is however considered

essential to any manipulation of this characteristic. The objectives of the current study

were therefore:

1. To provide a biochemical basis for the question: 'What is good colour';

2. To determine the changes in flavedo pigment content and composition during

colour development;

3. To establish the effect of a variety of plant growth regulators, dehydrating

agents and metal ions on carotenoid content and composition with a view to

manipulate the process of colour development.
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CHAPTER 2

MATERIALS AND METHODS

2.1 CHEMICALS

2.1.1 Authentic carotenoids

Carotenoid standards were kindly supplied by Dr. Peter Molnar, Dept. Medical

Chemistry, Pecs University, Hungary and were prepared as described by Molnar and

Szabolcs(1979).

2.1.2 Growth regulators

(±)-Z,E-abscisic acid (ABA), gibberellic acid (GA3), indole butyric acid (IBA) and

jasmonic acid (JA) were purchased from Sigma Chemical Co. (St. Louis, Mo, USA).

2.1.3 General chemicals

Potassium molybdate (K2MoO4) and potassium tungstate (K2WO4) were obtained from

Aldrich Chemical Co. (Milwaukee, USA). Cobaltous sulphate (CoSO4) and nickel

sulphate (NiSO4) were purchased from Saarchem (Krugersdorp, South Africa).

Diethyldithiocarbamate (DDC) and butylated hydroxy toluene (BHT) were purchased

from Sigma Chemical Co. (St. Louis, Mo, USA). Tween-20 and potassium hydroxide

(KOH) were purchased from BDH Laboratory Supplies (Poole, UK).

2.1.4 Solvents

HPLC grade solvents (acetonitrile, methanol, ethyl acetate, methylene chloride and

hexane) were purchased from Burdick and Jackson (Allied Signal Inc., Muskegon, Ml,

USA). Ethanol, propan-(1)-ol, butan-(2)-ol and acetone were of analytical grade and

were purchased from BDH Laboratory Supplies (Poole, UK). Triethylamine (TEA) was

purchased from Sigma Chemical Co. (St Louis, Mo, USA).

2.2 CHROMATOGRAPHIC MEDIA

Thin layer plates of silica gel, type 60 (20 x 20 cm, 0.25 mm thickness), were

purchased from Merck (Darmstadt, Germany).
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2.3 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) SYSTEM

The HPLC system comprised of a 5|jm Vydac 201TP54 C18 (250 x 4.6 mm i.d.) column

(VYDAC, Hesperia, CA, USA), a SpectraSYSTEM P2000 pump, UV3000 rapid-

scanning detector and PC1000 software (Thermo Separations Products, Fremont, CA,

USA).

2.4 PLANT MATERIAL

Fruit was harvested from ten-year old C. sinensis Navel and Valencia trees on rough

lemon rootstocks from Orangewood farm, located in the Albert falls region (29°25'S

and 30°22'E), KwaZulu-Natal midlands, South Africa. Fruit from ten 'Navel' and ten

'Valencia' trees (in a row) were harvested, constituting a simple randomised design.

Annual rainfall in this region has averaged 983.7 mm over a 90 year period (Anon,

2000). The period from May to August is considered to be ecologically dry, with the

remaining months being ecologically humid. Mean maximum and minimum

temperatures in January are 28 °C and 17 °C respectively, with the July maximum and

minimum being 22 °C and 5 °C. Mean maximum and minimum temperatures

experienced in 1996 are illustrated in Fig. 2.1

N

-minimum -maximum

Figure 2.1 Minimum and maximum temperatures experienced at the study site in 1996.

(Source CCWR, Pietermaritzburg)
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Trees were cultivated in a Hutton form soil which is characterised by an orthic A

horizon overlying a red apedal B horizon. Typically these soils are medium to heavy

textured (with a clay content of 35-55%) and form in well-drained oxidising

environments. They generally have weakly structured, acidic topsoils (MacVicar et al.,

1984).

All trees were subjected to orchard management practices commonly employed in this

area. No cover crop was planted and the orchard was irrigated through a micro-jet

system.

2.5 APPLICATION OF CHEMICALS

2.5.1 Post-harvest application of chemicals to intact fruit

Fruit were harvested at different stages of colour development and treated with

dehydrating agents. Intact fruit were surface sterilised by immersion in 1% (v/v)

sodium hypochlorite for 20 min followed by two changes of distilled water and

subsequently dipped in aqueous solutions of methanol, ethanol, propanol and butanol

at 40°C for 4 min. (The hot water/fungicidal bath in most citrus packhouses operates

at 40 °C and fruit spend approximately 4 min in this solution. It is envisaged that any

successful treatments may be incorporated in the hot water bath). Nine fruit were

included in each treatment. Treated fruit were allowed to dry and wrapped in

polyethylene film or waxed. Control fruit were dipped in water at 40 °C for 4 min, and

untreated fruit were also included in the experiment. Fruit was incubated in cardboard

boxes at room temperature (in darkness) to simulate packhouse conditions.

Carotenoid content of the flavedo of three fruit was determined spectrophotometrically

after 0, 1, 2 and 4 weeks.

2.5.2 In vitro treatment of flavedo discs

Sections, approximately 3 mm thick to ensure that the flavedo remained intact, were

cut from the peel of surface sterilised fruit with a razor blade and submerged in a

shallow tray containing distilled water. Discs were cut with a sterilised 10-mm-diameter

cork borer, floated on distilled water and 8 discs were distributed randomly in petri

dishes containing 8 mL of bathing solution. Treatments were replicated three times.
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All treatments (Table 2.1) were made up in 10 mM phosphate buffer, pH 7.4. Discs

were incubated at 22 °C in a Labcon incubator. 4 discs from each petri dish were

removed at 0, 24 and 96 h, and total carotenoid content determined

spectrophotometrically.

Table 2.1 Summary of treatments applied to Citrus sinensis flavedo discs

Treatment Concentration/time

Plant growth regulators 0.1 mM and 0.1 uM

IAA, GA3, ABA, JA

Dehydrating agents* 2.5, 10 and 20% (v/v)

ethanol and butanol

Micro-nutrients 1 uM and 10 |JM

Co/Ni, Mo, W

Temperature** 2, 6, 10 h

4°C

* incubated for 2 h in dehydrating agent and transferred to phosphate buffer (pH 7.4)
** incubated for 2, 6 and 10 h at 4 °C, transferred to 22 °C for remainder of time period

The effect of a short low temperature treatment on subsequent colour development

was investigated as colour break is usually correlated with a sudden decrease in

temperature. As the mean minimum during winter in the study area varies between 3

and 5 °C, a temperature of 4°C was chosen.

2.6 VISUAL DETERMINATION OF FLAVEDO COLOUR

Visual colour of whole fruit was determined by comparing the flavedo colour with

Outspan blemish standards chart no. 19 (colour) which is used for prescribing citrus

export and local market grading regulations in South Africa (Fig 2.2). Fruit are rated

on a scale of 1 (orange, fully coloured) to 8 (green, unmarketable), according to the

criteria used by the Southern African Citrus Growers' Association.
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2.7 PIGMENT EXTRACTION

The high degree of unsaturation in carotenoids renders the compounds heat and light

sensitive (Gross, 1986) and therefore all extraction and purification procedures were

carried out at low temperature and under reduced light intensity to avoid photo-

oxidation and isomerization of the compounds of interest.

The outer layer of the flavedo was grated from the fruit with a Moulinex™ hand grater

and finely homogenised to a powder in liquid nitrogen using a mortar and pestle.

Flavedo discs were sliced finely with a razor blade and crushed to a powder in liquid

nitrogen. For TLC separation, a larger amount of tissue was needed and flavedo was

grated and freeze-dried for a minimum of 48 hrs. 100 ug DDC in 3 g silica gel was

added to the bottom of the flasks to minimise oxidation. Dried samples were milled in

a Janke & Kunkel benchtop mill and stored in dry form at -20 °C in darkness under N2.

A number of solvents were evaluated for the extraction of carotenoids from citrus

flavedo. 1 g of fresh tissue was homogenised ( 2 x 1 min bursts), in 10 ml solvent

(Table 2.2) containing BHT (100 mg L1) and DDC (200 mg L'1) as antioxidants, with

PVP (Polyclar SB100, 1 g per 10 g fresh weight) using a Janke & Kunkel Ultra-Turrax

T25 top-drive tissue homogenizer.

Table 2.2 Summary of solvent systems for carotenoid extraction from C. sinensis flavedo

Solvent

Acetone/hexane (2:1, v/v)*

Methanol (MeOH)/chloroform (2:1, v/v)*

95 % Aqueous ethanol (EtOH) (v/v)

Methanol (MeOH)/ethyl acetate (EtoAc) (50:50, v/v)

*carotenoids partitioned with equal volume water and hexane
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Where necessary (Table 2.2), carotenoids were partitioned into hexane by the addition

of equal volumes of water and hexane. Homogenates were centrifuged for 5 min at

3800 rpm in a Hermie 2510 centrifuge. The carotenoid-containing hexane fraction or

supernatant was removed and the extraction process repeated to ensure complete

extraction of carotenoids. Extracts were pooled and subject to spectrophotometric or

HPLC analysis. Very dilute extracts were concentrated in vacuo at 35 °C, using a

Bibby RE 100 rotary evaporator. The efficiency of carotenoid extraction for a given

sample subject to HPLC analysis is illustrated in Table 2.3

Table 2.3 Comparative efficiency of different solvent systems in carotenoid extraction

Extraction method carotenoid content (pg p-carotene/g fw)

Acetone/hexane 85.15 ± 0.22

Methanol/chloroform 88.43 ± 0.37

95%Ethanol 92.18 ±0.13

Methanol/ethyl acetate 94.6 ± 0.14

The stability of carotenoid extracts were tested by leaving extracts at room

temperature, in darkness, for approximately 12 h. HPLC analysis revealed no

difference in carotenoid concentration and composition of these extracts when

compared to extracts analysed immediately, indicating that carotenoid extracts are

fairly stable. This is likely due to the fact that carotenoids accumulate in citrus peel in

esterified form (Philip, 1973a; 1973b).

2.8 THIN LAYER CHROMATOGRAPHY (TLC)

Concentrated crude extracts (approximately 100 ug) were resuspended in 500 uL

methanol/ethyl acetate (50:50; v/v), loaded onto silica gel plates (Type 60) and

developed to 15 cm in a closed tank using the solvent system hexane/ethyl

acetate/ethanol/acetone (95:3:2:2; v/v) at 2 - 4 °C in darkness (Molnar and Szabolcs,

1980). The plate was allowed to dry and the carotenoid-containing zones removed
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and eluted with acetone through small glass funnels plugged with glass wool. Rf

values of standards used in the system are illustrated in Table 2.4

Table 2.4 Rf values of authentic carotenoid standards subject to TLC analysis utilising the

solvent system hexane/ethyl acetate/ethanol/acetone (95:3:2:2)

Component Rf value

Antheraxanthin, violaxanthin

and neoxanthin

Lutein

Chlorophyll b

(3-citraurin

9-Z-Neoxanthin acyl ester

Chlorophyll a

(3-Citraurin acyl ester

0

0.04

0.047

0.057

0.1

0.113

0.33

2.9 SAPONIFICATION

Following extraction, pigments were resuspended in 8 ml_ of methanol to which was

added 2ml_ KOH (1M). Extracts were vortexed, and left to stand for approximately 12

h in complete darkness at room temperature. After removal of the methanol fraction

using a rotary evaporator (35 °C), 3 mL water and 5 ml_ diethyl ether was added and

thoroughly vortexed. The highly coloured ether fraction was removed and a further 5

mL ether added to the aqueous phase, vortexed and removed, until the ether fraction

remained clear. Combined ether fractions were pooled and reduced to dryness .

2.10 SPECTROPHOTOMETRY

Plant tissue was extracted in 95% (v/v) aqueous ethanol and the carotenoid

concentration determined spectrophotometrically at 470, 649 and 664 nm in a

Beckman DU-65 spectrophotometer as described by Lichtenthaler, 1987. Absorbance

values were computed to calculate the concentrations of chlorophyll a{Ca), chlorophyll

b (Cb), total chlorophylls (Ca+fi) and total carotenoids (Cx+C) using the following

equations:
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Ca =13.36/\664-5.19/\649

Cb =27.43/\649-8.12/\664

Ca+b = 5.244664 + 22.24/\649

Cx+C = 1000>V-2.13Ca-97.64C,

209

Equations were not recalculated against pure chlorophyll a and b (as described by

Lichtenthaler (1987)), as it was reported by Wellburn (1994) that chlorophyll a, b and

total carotenoid content of mixed extracts could be accurately determined with a range

of modern spectrophotometers using the equations published by Lichtenthaler (1987).

Pigment concentrations thus obtained were expressed as micrograms per millilitre

plant extract solution or converted to micrograms per gram dry or fresh weight.

2.11 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

Dry crude and saponified extracts were resuspended in methanol/acetonitrile (9:1,

v/v):ethyl acetate (50:50; v/v). Extracts were filtered using a 0.2 urn syringe filter and

individual carotenoids separated by reversed-phase HPLC on a 5 urn Vydac C18

column, eluted isocratically at 26 °C with methanol/acetonitrile (9:1; v/v) containing

0.1% (w/v) BHT and 0.05 % (v/v) TEA at a flow rate of 1 mL min"1. Compounds of

interest were detected at 460 nm and quantified by peak integration using a UV3000

rapid-scanning detector in the range 370 to 550 nm after calibration with authentic

standards. Identification was achieved with the use of PC 1000 software that allowed

for online comparison of absorption spectra of unknown compounds with authentic

carotenoid standards. Maxima and retention times of carotenoids eluted in the system

described above are illustrated in Table 2.5. The absorption spectra of the carotene

and xanthophyll standards are shown in Fig. 2.3, 2.4 and 2.5 and that of (3-citraurin,

an apo-carotenoid, is depicted in Fig. 2.6.
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Table 2.5 Retention times and spectral characteristics of chlorophylls and carotenoids eluted

isocratically with methanol/acetonitrile (9:1, v/v) at 1 mL min'1 in the reversed-phase HPLC

system described in section 2.12.

Component

E-Neoxanthin

9-Z-Neoxanthin

E-Violaxanthin

9-Z-Violaxanthin

Antheraxanthin

Chlorophyll b

Lutein

Zeaxanthin

(3-Citraurin

Chlorophyll a

a-Carotene

E-p-Carotene

9-Z-P-Carotene

Lycopene

Retention time

3.266

3.595

3.975

4.057

4.668

5.228

5.459

5.657

6.201

6.977

18.373

20.649

23.717

29.292

A max

434, 462, 414

436,464,413

438,468,415

435,464,412

444, 471

467

444, 471

449, 476

457

433, 421

445, 473

451,476

445, 467

470, 501,445
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CHAPTER 3

A BIOCHEMICAL BASIS OF COLOUR AS AN

AESTHETIC QUALITY IN CITRUS SINENSIS

3.1 INTRODUCTION

Visual colour of a plant organ results mainly from the plant pigments; chlorophyll and

carotenoids in the chloro- and chromoplasts, and phenolic pigments in the vacuole.

The expression of pigment colour can also be affected by a number of physical

characteristics such as surface topography, presence of cuticular waxes, epidermal

hairs and even the shape and orientation of cells in the epidermis and sub-epidermal

tissues (Lancaster et al., 1997). Although total carotenoid content is important in

visual colour perception, the presence or absence of certain pigments often play a

more significant role. This phenomenon is noticeable in peppers (C. annuum), where

lutein, neoxanthin and violaxanthin are characteristic pigments of yellow-fruited

varieties, whereas red-fruited varieties accumulate the characteristic paprika ketones,

capsanthin and capsorubin (Davies et al., 1970).

In citrus, violaxanthin and its Z-isomers (9-Z, 13-Z and di-Z-) have been shown to

predominate in the flavedo (Molnar and Szabolcs, 1980). Violaxanthin is typically a

yellow pigment and therefore unlikely to be solely responsible for good quality colour

of mature orange fruit. In fact, the presence of the red and orange pigments, (3-

citraurin and P-cryptoxanthin, have been reported to impart an intensive reddish tinge

to a mandarin hybrid (Farin et a/.,1983), 'Dancy' tangerine (Gross, 1981) and

'Minneola', 'Temple', 'Robinson' and 'Osceola' (Stewart and Wheaton, 1973b). In the

present investigation efforts were made to determine the biochemical basis of flavedo

colour as an aesthetic quality using 'Navel' and 'Valencia' fruit. Typically mature

'Navel' fruit are brightly coloured whereas 'Valencia' are recalcitrant with respect to

colour development and therefore ideal for comparative purposes.
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3.2 RESULTS

To address the question: 'What does good colour constitute?', carotenoid content and

composition of 'Navel' and 'Valencia' fruit of similar maturity, but differing in colour

grade/quality were examined.

3.2.1 Identification of colour-imparting carotenoids

Crude pigment extracts were prepared from flavedo of 'Navel' and 'Valencia' fruit of a

range of colour grades (colour grades 7, 5, 3 and 1 on the Outspan colour chart).

Separation of extracts on thin layers of silica gel revealed, in addition to numerous

minor pigment-containing zones, two intensely coloured bands at Rf 0.1 (yellow-

orange, zone A) and Rf 0.33 (orange-red, zone B) (Fig. 3.1) in fruit of colour grades

3 and 1. These bands were eluted from the gel and further analysed by reversed-

phase HPLC (rHPLC). The chromatographic profiles are illustrated in Fig. 3.2 and 3.3.

Since identical results were obtained for flavedo of both 'Navel' and 'Valencia' fruit,

and for ease of data presentation, only chromatograms for 'Valencia' are shown. The

results show that TLC zones A and B were each resolved into three major components

and that the retention time of the components in zone A was very similar to the

components in zone B. Online spectral analysis of components A1, A2 and A3 (Fig.

3.2) produced results consistent with a chromophore similar to 9-Z-violaxanthin (Amax

nm: 435) whereas B1, B2 and B3 (Fig. 3.3) produced spectra with a single maxima at

457 nm typical of (3-citraurin. Confirmation of the identity of these chromophores as

9-Z-violaxanthin and [3-citraurin was achieved by saponification of zones A and B from

TLC, prior to reversed-phase HPLC analysis. The results in Fig. 3.4 and 3.5 show that

after saponification, zones A and B yielded single peaks which co-chromatographed

with authentic standards of 9-Z-violaxanthin and (3-citraurin respectively. In addition,

comparison of spectral characteristics with those of authentic standards showed >99%

similarity between zone A and 9-Z-violaxanthin and zone B and (3-citraurin.

Furthermore, these results indicate that both 9-Z-violaxanthin and (3-citraurin

accumulate in orange flavedo in an esterified form and that esterification is responsible

for the differences in retention times noted in Fig.3.2 and 3.3.
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Colour grade 7 Colour grade 5

Colour grade 3 Colour grade 1

]B

]A

Figure 3.1 TLC separation of citrus fiavedo pigments extracted with MeOH/EtoAc (50:50; v/v)

indicating two colour-imparting zones A and B. TLC system utilised was hexane/ethyl

acetate/ethanol/acetone (95:3:2:2, v/v). Fruit were of four different colour grades (grade 1,

3, 5 and 7) on the Outspan colour chart.
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Figure 3.2 Reversed-phase HPLC (1) isoplot and (2) chromatogram at 460 nm of

unsaponified zone A from TLC separated crude pigment extracts of Valencia orange flavedo

(colour grade 1).
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Figure 3.3 Reversed-phase HPLC (1) isoplot and (2) chromatogram at 460 nm of

unsaponified zone B from TLC separated crude pigment extracts of Valencia orange flavedo

(colour grade 1).
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40



P-citraurin and 9-Z-violaxanthin acyl esters occur in close association when crude

flavedo extracts are analysed by HPLC (Fig. 3.6), complicating quantification of these

compounds. Saponification of crude extracts prior to HPLC analysis ensures that

these two major colour-imparting pigments are well resolved for quantification

purposes (Fig. 3.7). Therefore, accurate quantification of the chromophores of these

acyl esters is possible without prior separation by thin layer chromatography.

Additionally, the absorption spectrum of each pigment is unaffected by saponification

and is identical to the absorption spectra of the esterified compound. This indicates

that esterification does not affect the colour of 9-Z-violaxanthin and (3-citraurin.

3.2.2 Biochemical basis of flavedo colour

9-Z-Violaxanthin is the most abundant carotenoid in citrus flavedo (Molnar and

Szabolcs, 1980; Gross, 1987). As a yellow pigment, it contributes mainly to the

background colour of orange fruit flavedo. (3-Citraurin, a C30 apocarotenal, is a red-

orange pigment and is responsible for the bright orange colour of tangerine flavedo

(Farin ef a/., 1983). In order to demonstrate a similar role for (3-citraurin in flavedo

colour of C. sinensis, 9-Z-violaxanthin and (3-citraurin levels of different colour grades

of mature 'Valencia' and 'Navel' fruit were determined by HPLC after saponification.

The results are illustrated in Fig. 3.8. No fruit of Grade 7 or 8 were available at the

time of harvest and very brightly coloured 'Navel' fruit (more orange than Grade 1)

were designated Grade 0. Poorly coloured fruit (Grade 5-6) had high levels of

chlorophyll (data not shown), low levels of 9-Z-violaxanthin and almost undetectable

amounts of (3-citraurin. Fruit of average colour (Grade 3-4) had relatively low levels

of both colour-imparting pigments. Fruit of good colour (Grade 0-2) contained

increased levels of 9-Z-violaxanthin and (3-citraurin. Thus, an increase in the colour

grade (i.e. from 6 to 1) was associated with massive accumulation of 9-Z-violaxanthin

concomitant with a less dramatic increase in (3-citraurin in both 'Navel' and 'Valencia'

flavedo. More importantly however, the increase in colour grade occurred as a result

of a decline in the 9-Z-violaxanthin : (3-citraurin ratio from >50 to <10. For Grade 1

fruit, the (3-citraurin levels of flavedo of 'Navel' and 'Valencia' were similar but 9-Z-

violaxanthin levels were higher in flavedo of 'Valencia'.
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Figure 3.6 Reversed-phase HPLC (1) isoplot and (2) chromatogram at 460 nm of

unsaponified extracts of mature Valencia flavedo (colour grade 1). Peaks: A, 9-Z-violaxanthin;

B, p-citraurin
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3.3 SUMMARY

1. 9-Z-Violaxanthin and P-citraurin were identified as two important colour-imparting

pigments in the flavedo of C. sinensis 'Navel' and 'Valencia'.

2. Both these pigments occur in the flavedo in esterified form.

3. 9-Z-Violaxanthin and (3-citraurin can be quantified in citrus flavedo by

saponification of crude pigment extracts prior to reversed-phase HPLC analysis.

4. Well-coloured fruit display high levels of 9-Z-violaxanthin and p-citraurin and also

have decreased 9-Z-violaxanthin : P-citraurin ratios (<10).
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CHAPTER 4

COLOUR DEVELOPMENT AND THE MANIPULATION THEREOF

IN CITRUS SINENSIS

4.1 INTRODUCTION

During ripening, most carotenogenic fruit undergo an alteration in peel colour from

green to a characteristic yellow, orange or red. Colour development involves a change

in both hue and chroma of peel colour. In citrus fruit hue changes from green through

yellow to orange and the chroma also increases, as orange colour becomes more

intense. This period of colour change is characterised by alterations in the pigment

content and composition of fruit peel. Gross (1987) distinguishes between two

different fruit ripening patterns with regard to carotenoid content. In fruits that

synthesize large amounts of carotenoids, carotenoid content initially decreases to a

minimum level, after which massive carotenoid accumulation takes place. The

minimum in carotenoid content is correlated with the visual phenomenon of colour

break and has been reported for 'Cherry' tomato (Laval-Martin et ai, 1975), orange

(Eilati etal., 1975), Satsuma mandarin (Gross, 1987), Clementine (Farin et ai, 1983),

'Dancy' tangerine (Gross, 1981), a mandarin hybrid (Farin et ai, 1983), kumquat

(Huyskens et ai, 1985), persimmon (Gross, 1987), peach (Lessertois and Moneger,

1978) and banana (Gross 1987). Fruit in which the final peel colour is imparted by

anthocyanins, such as the sweet cherry (Okombi et ai, 1986), red currant and

strawberry (Gross, 1987) or fruit in which the yellow colour becomes apparent due to

'unmasking' of carotenoids as chlorophyll degrades, e.g. muskmelon and yellow cherry

(Gross, 1987), display a continuous decrease in carotenoid content during fruit

ripening.

An understanding of the pigments and regulational factors involved in colour

development may afford manipulation of the process, to ultimately improve fruit colour.

A number of cultural methods can be employed to enhance citrus fruit colouration, but

the effects are usually marginal (Krajewski, 1998). The only commercially utilised

method of carotenoid manipulation is that of ethylene degreening. Ethylene is applied

pre- or post-harvest (either as ethylene gas or as Ethrel® spray/dip), and brings about

colour improvement through the degradation of chlorophyll and accumulation of
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carotenoids. The term 'degreening' is therefore misleading, as the development of

good colour hinges not only on removal of green hue, but also the evolution of bright

orange hue and chroma. Although widely utilised, ethylene degreening may lead to

certain post-harvest problems that are usually associated with accelerated maturation.

These include advanced decay, loss of fruit buttons and shortened shelf-life

(Krajewski, 1998). Thus there is scope for the development of colour manipulation

techniques that produce excellent colour with reduced post-harvest decay problems.

The process of colour development in C. sinensis 'Navel' and 'Valencia' was

investigated by monitoring changes in pigment content and composition during fruit

development and maturation. Furthermore, the effect of a number of dehydrating

agents (alcohols), plant hormones, micro-nutrients and environmental stimuli on

carotenoid content and therefore colour development were investigated.

4.2 RESULTS

4.2.1. Pigment identification

In order to ascertain the pigments involved in colour development of Citrus sinensis,

flavedo pigment content of three distinct colour stages of 'Navel' and 'Valencia' fruit,

viz: green, yellow and orange were determined with the use of rHPLC. These colour

stages will be referred to as stage 1, 2 and 3 respectively. As identical results with

regards to pigment composition were obtained in both 'Navel' and 'Valencia' fruit, only

results for 'Navel' are presented. The chromatograms as well as a visual

representation of the corresponding colour stage are illustrated in Fig. 4.1.

The principal pigments identified in green, immature flavedo (stage 1) were the

xanthophylls E-neoxanthin, E-violaxanthin, E-antheraxanthin, lutein, zeaxanthin;

chlorophyll a and b, and a- and E-P-carotene. This pigment distribution pattern is

similar to that observed in foliar tissue and the very bright green colour of the flavedo

can be attributed to high levels of the green pigments, chlorophyll a and b. Yellow-

coloured fruit (stage 2) had just reached colour-break and visually the fruit displayed

a pale lime-yellow colour. rHPLC of flavedo extracts of stage 2 fruit reveal a much

reduced total pigment level; the free xanthophylls and carotenes present in immature,
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Figure 4.1 Reversed-phase HPLC chromatograms of crude pigment extracts of three distinct

colour stages of Navel flavedo. Stage 1, green, immature; stage 2, colour break; stage 3, fully

coloured. Peaks: 1, E-neoxanthin; 2, E-violaxanthin; 3, antheraxanthin; 4, lutein; 5,

zeaxanthin; 6, chlorophyll b; 7, chlorophyll a; 8, a-carotene; 9, (3-carotene; A1-3, 9-Z-

violaxanthin acyl esters; B1-3, (3-citraurin acyl esters
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green flavedo have reached almost imperceptible levels, while chlorophyll a and b are

present at low levels. The emergence of the three principal 9-Z-violaxanthin acyl

esters discussed in Chapter 3 can be noted in the chromatogram, but no P-citraurin

can be identified in crude extracts at this stage. Brightly coloured, orange flavedo

(stage 3) is characterised by an increase in the three principal 9-Z-violaxanthin acyl

esters. The p-citraurin acyl esters discussed in Chapter 3 are also identifiable in the

chromatogram (also refer to Fig. 3.6).

4.2.2 Pigment changes during colour development

An analysis of the pigments present in different colour stages of citrus fruit therefore

indicate that a decrease in the green chlorophylls and an increase in the yellow and

red carotenoids are responsible for the visual change from green through yellow to

orange.

In order to examine the role of these individual pigments in colour development more

closely, the changes in individual colour-imparting pigments were determined over the

full colour developmental period. Similar trends were observed during the 1995/6

period and only results for 1996 are presented.

4.2.2.1 Chlorophyll

The changes in total chlorophyll content of 'Navel' and 'Valencia' flavedo during colour

development were determined by rHPLC and are illustrated in Fig. 4.2. In both 'Navel'

and 'Valencia' chlorophyll content initially remains at a steady state level, after which

a rapid degradation of chlorophyll occurs. Chlorophyll degradation in 'Navel'

commences at approximately 180-190 days after full bloom (DAFB), whereas

chlorophyll levels in 'Valencia' remain steady until 250 DAFB. Rapid chlorophyll

degradation can be visually correlated with the initial loss of dark green flavedo colour

and concomitant yellowing of the peel that precedes colour break in citrus. The

approximate time of visual colour break is indicated in Fig. 4.2. Colour break occurs

±210 DAFB in Navel, and ± 270 DAFB in 'Valencia' and chlorophyll levels are below

50 ug/g fresh weight at the time of colour break. It is interesting to note that all

processes regarding the degradation of chlorophyll take place approximately 8 weeks

later in 'Valencia' than it does in 'Navel'; this includes initial degradation, time of colour
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break and time of attaining minimum chlorophyll levels. No regreening was observed

in either cultivar.

4.2.2.2 Total carotenoids

In Chapter 3 it was shown that total carotenoid concentration contributes to final colour

of citrus. The changes observed in total carotenoid content in 'Navel' and 'Valencia'

during colour development were therefore monitored and the results are illustrated in

Fig. 4.3. In both 'Navel' and 'Valencia' carotenoid levels initially decrease to a

minimum level whereafter massive carotenoid accumulation occurs. Minimum

carotenoid levels were 39.9 ± 5.8 ug (3-carotene equivalents (eqvs)/g fresh weight (fw)

and 39.1 ±8.1 ug (3-carotene eqvs/g fw for'Navel' and 'Valencia' respectively, and in

both cases the minimum in carotenoid level was correlated with visual observations of

colour break. Total carotenoids increased almost linearly in flavedo of both cultivars

after colour break and this time frame corresponds to the change in visual colour from

yellow-green to bright yellow to an eventual bright orange. Carotenoid levels increase

for approximately 12 weeks after colour break. Total carotenoid content was found to

be higher in fully coloured 'Valencia' peel when compared to 'Navel'; 206 ± 16.2 ug/g

fw as opposed to 164 ± 10.1 ug/g fw. Similar to results obtained with chlorophyll levels

(section 4.2.2.1) all aspects of colour development with regards to total carotenoid

content occurred 8 weeks later in 'Valencia' when compared to 'Navel'.

4.2.2.3 9-Z-Violaxanthin acyl esters

In Chapter 3 it was established that 9-Z-violaxanthin and (3-citraurin acyl esters are the

principal pigments involved in visual colour of citrus flavedo. Changes that occurred

in the levels of three main 9-Z-violaxanthin acyl esters (A1, A2 and A3) are illustrated

in Fig. 4.4. P-Citraurin cannot be readily identified in crude extracts and saponification

prior to rHPLC is required to quantify changes in the levels of this red pigment (section

3.2.2). The accumulation of 9-Z-violaxanthin acyl esters commences 3-4 weeks before

colour break and levels increase rapidly after colour break. At the time of colour break

the concentration of the individual compounds are comparable in 'Navel' and

'Valencia', whereas higher levels of all three compounds are detected in 'Valencia' at

full colour development when compared to 'Navel'. As with total carotenoid level, the

level of 9-Z-violaxanthin acyl esters increase for approximately 12 weeks after colour

break.
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Figure 4.2 Total chlorophyll content (ug/g fw) in the flavedo of Navel and Valencia during the

course of colour development. The time of visual colour break (CB) is indicated. Values

represent the mean ± SE of 4 replicate fruits.
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Figure 4.3 Total carotenoid content (ug/g fw) in the flavedo of Navel and Valencia during the

course of colour development. The time of visual colour break (CB) is indicated. Values

represent the mean ± SE of 4 replicate fruits.
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Figure 4.4 Content (ug/g fw) of 9-Z-violaxanthin acyl esters designated A1 (1), A2 (2) and

A3 (3) (Chapter 3) in the flavedo of Navel and Valencia. The time of visual colour break (CB)

is indicated. Values represent the mean ± SE of 4 replicate fruits.
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4.2.3 Manipulation of colour development

The effect of a number of alcohols, plant hormones, micronutrients and low

temperature on total carotenoid content of flavedo discs and where indicated, whole

fruit, was examined. Knowledge of agents that elicit a change in carotenoid content

may prove useful in the manipulation of fruit colour commercially.

4.2.3.1 Alcohol treatment

Ethanol is known to enhance fruit ripening and lycopene accumulation in tomatoes at

low concentrations, although high concentrations inhibited these responses (Bieulieu

and Saltveit, 1997). As part of a pilot study to determine the effect of alcohol treatment

on visual colour development of citrus, whole 'Navel' fruit harvested both before and

after colour break, were exposed to aqueous solutions of methanol, ethanol, propan-

(1)-ol and butan-(2)-ol at a concentration of 10% (v/v) and incubated at room

temperature for two weeks. Fruit colour was rated visually with the use of the Outspan

colour chart. This pilot study revealed that alcohol treatment had no effect on visual

colour development of fruit harvested before colour break had occurred (data not

shown). However, fruit harvested after colour break exhibited an improvement in

colour of 1 to 2 colour grades following treatment with ethanol and butan-(2)-ol.

Methanol and propan-(1 )-ol treatment had no visible effect on flavedo colour of 'Navel'.

As the effect of alcohol on flavedo colour is likely concentration dependant, whole

'Navel' fruit were exposed to aqueous solutions of ethanol and butan-(1)-ol at

concentrations of 5,10,20 and 30% (v/v) (40 °C) and incubated for four weeks at room

temperature. Total carotenoid content was determined spectrophotometrically at 0,1,

2 and 4 weeks and the results are illustrated in Fig. 4.5 and 4.6. As shown in Fig. 4.5,

30% ethanol induced a rapid accumulation of carotenoids within 7 days, and

carotenoid levels were maintained at a higher level than that of untreated fruit for the

duration of the experiment. At concentrations of 5 and 10%, ethanol was less effective

in increasing flavedo carotenoid content. At 5%, butan-(2)-ol induced rapid

accumulation of carotenoids and levels were sustained for the 28 day duration of the

experiment (Fig. 4.6). At higher concentrations butanol was much less effective and

routinely caused rind damage to the fruit, particularly in the navel area. The effect of

ethanol and butan-(2)-ol treatment on visual colour of whole fruit and typical rind

damage observed with butanol treatment is illustrated photographically in Fig. 4.7.
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Figure 4.5 Response of detached Valencia fruit to varying concentrations of ethanol (EtOH)

applied for 4 min at 40 °C. Fruit were harvested and treated after colour break and carotenoid

content determined spectrophotometrically. SE (diff) = 2.9 at 0 weeks, 5.3 at 1 week, 3.6 at

2 weeks and 5.7 at 4 weeks.

• untreated

BuOH 10%

control

• BuOH 20%

BuOH 5%

BuOH 30%

Figure 4.6 Response of detached Valencia fruit to varying concentrations of butanol (BuOH)

applied for 4 min at 40 °C. Fruit were harvested and treated after colour break and carotenoid

content determined spectrophotometrically. SE (diff) = 2.9 at 0 weeks, 5.6 at 1 week, 5.9 at

2 weeks and 5.1 at 4 weeks.

54



Figure 4.7 The effect of varying concentrations of (1) ethanol (EtOH) and (2) butanol (BuOH)

4 weeks after treatment on visual colour of Navel flavedo. Fruit were harvested after colour

break and incubated in aqueous solutions of alcohol (40 °C) for 4 min. (3)Typical rind damage

observed with butanol treatment.
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Treatment of whole fruit is often cumbersome and the use of a flavedo disc system to

study the effect of various treatments on carotenoid content was therefore evaluated.

Huff (1983, 1984) showed that flavedo discs could be used successfully to determine

the effect of nitrogen and sucrose treatment on de- and regreening of citrus peel. The

effect of ethanol and butan-(2)-ol treatment on carotenoid content (expressed as

percentage change) is demonstrated in Fig. 4.8. Discs were treated for 2 h, removed

from the alcohol and incubated in phosphate buffer for the remainder of the 96 h time

period to eliminate extreme dehydration and tissue damage associated with continuous

alcohol exposure. Ethanol at 10 and 20% (v/v) resulted in significantly higher

carotenoid levels when compared to control discs after 24 h. After 96 h, discs treated

with all concentrations of ethanol displayed higher carotenoid levels than control discs.

Thus, ethanol concentrations as high as 20% (v/v) did not inhibit carotenoid

accumulation in flavedo discs. Discs treated with butanol at 2.5 and 10% (v/v)

exhibited significantly higher carotenoid levels after 96 h when compared to control

discs. Higher concentrations of butanol (20%; v/v), however, caused a reduction in

carotenoid content. These results are in accordance with those obtained in whole fruit

and indicate that high concentrations of ethanol (30%; v/v) and lower concentrations

of butanol (5-10%; v/v) increase carotenoid accumulation, whereas high

concentrations of butanol cause a reduction in carotenoid content. The result further

illustrates that flavedo discs are an effective system for the evaluation of treatments

that may affect carotenoid accumulation and consequently colour development.

4.2.3.2 Plant hormones

The role of plant hormones in colour development has been partially established

through correlation of endogenous hormone levels with flavedo colour development

(Monselise and Goren, 1978); and through exogenous application of hormones to

citrus peel (Lewis and Coggins, 1964; Rasmussen etal., 1973; Wheaton and Stewart,

1973). The effect of indolebutyric acid (IBA), gibberellic acid (GA3), abscisic acid

(ABA) and jasmonic acid (JA) on total carotenoid content and therefore resultant colour

change of flavedo peel discs was investigated and the results are illustrated in Fig. 4.9.

Exposure of discs to IBA at 0.1 mM resulted in a significant reduction in carotenoid

content after 24 h when compared to discs exposed to distilled water (control).
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Figure 4.8 Percentage change in carotenoid content of 'Valencia' flavedo discs treated with varying

concentrations of ethanol (EtOH) and butanol (BuOH). Carotenoid content was determined

spectrophotometrically at 0,24 and 96 h. 0 h (100%) represents a carotenoid content of 11.72 ± 0.37

ug/cm2. Values are means of 12 discs ± SE. Bars of different letters (24 h) and numbers (36 h) are

significantly (95%) different. LSD005 = 7.75 at 24 h; 6.97 at 96 h.

Time (h)

• control •BAO.Ium pBAOImM

D ABA 0.1 uMB ABA 0.1 rriVlD JA 0.1 urn

GAO.Ium aGAO.ImM

Figure 4.9 Percentage change in carotenoid content of 'Valencia' flavedo discs treated with varying

concentrations of indolebutyric acid (IBA), gibberellic acid (GA).abscisic acid (ABA) and jasmonic

acid (JA). Carotenoid content was determined spectrophotometrically at 0,24 and 96 h. 0 h (100%)

represents a carotenoid content of 11.72 ± 0.37 ug/cm2. Values are means of 12 discs ± SE. Bars

of different letters (24 h) and numbers (96 h) are significantly (95%) different. LSD005 = 11.26 at 24

h; 6.03 at 96 h.

57



JA at 0.1 uM resulted in carotenoid levels higher than those reported at the start of the

experiment after 24 h, indicating that JA not only delays carotenoid loss, but enhances

carotenoid accumulation. No differences between ABA-treated discs and controls are

noted at 24 h, however, after 96 h, discs treated with ABA (0.1 uM) display significantly

higher carotenoid levels than control discs. Discs treated with GA3 have significantly

lower carotenoid levels after 96 h.

4.2.3.3 Micro-nutrients

Nutrient status of citrus trees have been reported to impact on colour development.

Trees fertilised with high levels of nitrogen often grow excessively vegetative and are

characterised by poorly coloured fruit. Huff (1983) showed that high nitrogen levels

in a flavedo disc system are inhibitory to degreening, carotenoid accumulation and

therefore colour development. Limited information is however available on the effect

of micro-nutrients on carotenoid accumulation and colour development. The effect of

cobalt (Co), nickel (Ni), molybdenum (Mo) and tungsten (W) on carotenoid content was

therefore investigated and the results are illustrated in Fig. 4.10. No significant

differences were noted after treatment with a combination of Co and Ni after 24 or 96

h. Disc exposure to Mo and W resulted in no significant differences after 24 h, but

after 96 h the carotenoid level of discs treated with Mo (10 uM) and W (1 and 10 uM)

were significantly higher than that of the control discs.

4.2.3.4 Temperature

Brilliantly coloured citrus fruit are usually associated with production areas that exhibit

a distinct seasonal cold period (Reutherand Rios-Castano, 1969) and it is known that

colour development is usually associated with a sudden drop in temperature. The

effect of a short, low temperature period (4 °C), followed by incubation at higher

temperatures (22 °C) on carotenoid content of citrus flavedo discs was investigated

and results are illustrated in Fig. 4.11. A low temperature period of 2, 6 and 10 h

resulted in a significant increase in carotenoid content after 24 h. The differences are

even more pronounced after 96 h. After 24 h, carotenoid content is higher than that

reported at the start of the experiment, indicating that a low temperature period

enhances carotenoid accumulation in flavedo discs, rather than merely delay

degradation. No differences were noted between treatments, suggesting that the

duration of the treatment is of secondary importance.
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Figure 4.10 Percentage change in carotenoid content of 'Valencia' flavedo discs treated with

varying concentrations of cobalt and nickel (Co/Ni), molybdenum (Mo) and tungsten (W).

Carotenoid content was determined spectrophotometrically at 0, 24 and 96 h. 0 h (100%)

represents a carotenoid content of 11.72 ± 0.37 ug/cm2. Values are means of 12 discs ± SE.

Bars of different letters (24 h) and numbers (96 h) are significantly (95%) different. LSD0 05 =

12.01 at 24 h; 8.59 at 96 h.
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Figure 4.11 Percentage change in carotenoid content of 'Valencia' flavedo discs exposed

to a temperature of 4 °C for a time period of 2, 6 and 10 h, followed by incubation at 22 °C.

Carotenoid content was determined spectrophotometrically at 0, 24 and 96 h. 0 h (100%)

represents a carotenoid content of 11.72 ± 0.37 ug/cm2. Values are means of 12 discs ± SE.

Bars of different letters (24 h) and numbers (96 h) are significantly (95%) different. LSD005 =

8.27 at 24 h; 6.69 at 96 h.

59



4.3 SUMMARY

1. The signature pigments of green, immature C. sinensis flavedo are E-neoxanthin,

E-violaxanthin, antheraxanthin, lutein, zeaxanthin, chlorophyll a and b, a- and E-0-

carotene.

2. Colour break in citrus coincides with a minimum in carotenoid levels.

3. After colour break the total level of carotenoids and that of 9-Z-violaxanthin and (3-

citraurin acyl esters increase dramatically.

4. Carotenoid manipulatory treatments have to be applied post-colour-break in order

to be effective.

5. The application of ethanol and butanol after colour break increased carotenoid

content of whole fruit and flavedo discs. Optimum concentrations are 20-30 % (v/v)

for ethanol and 5 % (v/v) for butanol.

6. Exogenous application of GA3 reduced carotenoid content of flavedo discs,

whereas JA and ABA increased carotenoid levels.

7. The micro-nutrients Mo and W increased carotenoid content of flavedo discs.

8. A short, low temperature period (4 °C), followed by higher temperatures (22 °C)

increased carotenoid content of flavedo discs.
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CHAPTER 5

GENERAL DISCUSSION AND CONCLUSION

5.1 GENERAL DISCUSSION

Colour expression in citrus is a cultivar characteristic affected by climate and

environment and can to some extent be manipulated by cultural practice (Goldschmidt,

1988). Although visual colour is not always an indication of internal maturity, it is

probably the single most important external quality parameter determining consumer

acceptance. Therefore, competition between growers to secure niche markets has

fuelled efforts to produce quality fruit that is uniformly of good colour.

Visual fruit colour in the South African citrus industry is routinely measured with the

use of the Outspan Colour Chart, which prescribes citrus export and local market

grading regulations (Fig. 2.2). Colour charts afford an easy, nondestructive method

of colour measurement, but it should be noted that colour evaluation is subjective, and

that external factors such as background light quality may influence the perceived

colour. Portable colour-measuring instruments make possible a more objective

notation of colour, although it may be difficult for an individual to visualise colour

expressed as a point in a three-dimensional space. Furthermore, these instruments

are costly, which may preclude their use in a packhouse environment. An intrinsic

problem of both colour-measurement techniques employed by the citrus industry, is

that neither method provides information on the pigment content and composition of

citrus flavedo. As it is after all the pigments that afford visual colour, it was reasoned

that a basic knowledge and understanding of the pigments involved in colour

development are essential before any attempt at colour manipulation is undertaken.

In an endeavour to address these issues, the present study provides the biochemical

basis for colour as an aesthetic, visual quality in C. sinensis. It is shown that an

increase in 9-Z-violaxanthin and (3-cttraurin content, concomitant with a decline in the

9-Z-violaxanthin : (3-citraurin ratio is associated with increased intensity of flavedo

colour and can be used to assess colour of mature fruit as a quality parameter.

Furthermore, the process of colour development as a function of pigment change over

time was determined. It was illustrated that colour break in C. sinensis coincides with
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a minimum in carotenoid and total pigment content. The period prior to colour break

is characterised by a decline in chloroplastic pigments, whereafter a massive increase

in xanthophyll acyl esters, particularly 9-Z-violaxanthin, occurs. Finally, in an attempt

to manipulate carotenoid content and resultant colour development, the effect of

dehydrating agents (e.g. alcohols), plant hormones, micro-nutrients and low

temperature on flavedo carotenoid content was examined. It was shown that the

micro-nutrients Mo and W, and the plant hormones ABA and JA may be utilised as pre-

harvest sprays to improve flavedo colour. Furthermore, post-harvest application of the

alcohols ethanol and butanol can improve visual fruit colour. The possible commercial

application of the abovementioned manipulatory techniques should be investigated in

more detail.

5.1.2 A biochemical basis of colour as an aesthetic quality in Citrus sinensis

The distribution pattern of carotenoids in citrus varies greatly and is responsible for

distinctive, varietal peel colour. Pale-coloured citrus fruit such as white grapefruit,

lemon and pummelo generally accumulate large amounts of the colourless carotenoid

precursors phytoene and phytofluene (Gross, 1983,1987). Although the coloured

carotenoid fraction is very low, these fruit nevertheless display a typical citrus

accumulation pattern with respect to xanthophyll accumulation. 9-Z-, 13-Z- and di-Z-

violaxanthin were shown to be the predominant xanthophylls. The combination of

predominantly colourless and yellow pigments is responsible for the pale colour of the

flavedo. Lycopene and 0-carotene accumulate in the flavedo of pink and red grapefruit

and pummelo and are responsible for the pink-orange tinge of the flavedo (Gross,

1983). The present study indicates that the principal colour-imparting pigments in C.

sinensis 'Navel' and 'Valencia' flavedo are the yellow-coloured xanthophyll 9-Z-

violaxanthin and the red C30 apocarotenal (3-citraurin. The structures of these

pigments are illustrated in Fig. 5.1.

It was further shown that both pigments accumulate in the flavedo of 'Navel' and

'Valencia' in esterified form. Saponification prior to rHPLC analysis ensures that the

two major colour-imparting pigments are well resolved for quantification purposes. The

absorption spectrum of the pigments were unaffected bysaponification, indicating that
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9-Z-Violaxanthin

OH

CHC

(3-Citraurin

Figure 5.1 The structure of 9-Z-violaxanthin and p-citraurin, the principal colour-imparting

carotenoids in C. sinensis flavedo

esterification does not alter the visual properties, and therefore perceived colour, of

carotenoids. While the identity of the esters was not determined in the present study,

(3-citraurin myristate has been isolated from the peel of 'Marsh Seedless' grapefruit

(Philip, 1973a) and the laurate esters of (3-cryptoxanthin, 9-Z-violaxanthin and [3-

citraurin have been detected in flavedo of 'Valencia' orange (Philip, 1973b).

Physiological significance may be attributed to the fact that esterification increases the

lipophilic character of the carotenoids, making possible their accumulation in
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chromoplast-localised globuli (Eilati et al., 1972). Acylation has also been shown to

increase the stability of pigments (Camara and Moneger, 1978).

9-Z-Violaxanthin is the most abundant carotenoid in C. sinensis flavedo (Molnar and

Szabolcs, 1980; Gross, 1987). As a yellow pigment it contributes mainly to the

background colour of orange fruit flavedo. p-citraurin has been reported to occur at

low concentrations (1% of total carotenoids) in 'Valencia' flavedo (Molnar and

Szabolcs, 1980). However, elevated concentrations have been reported in the flavedo

of brightly coloured mandarin (8%) (Gross, 1981), 'Dancy' tangerine (8%) (Gross,

1981) and a mandarin hybrid (26%) (Farin et al., 1983). The present study

(Oberholster et al., 2000, Appendix A) indicates that good colour development in citrus

flavedo occurs with an increase in the concentration of both colour-imparting

carotenoids concomitant with a decrease in 9-Z-violaxanthin: p-citraurin ratio from >50

to <10. Comparison of the pigment content and composition of fruit of different colour

grades depicted in Fig. 2.2 (Outspan colour chart) allows one to correlate pigment

levels with visual colour. Poorly coloured fruit (grade 5-6) display high levels of

chlorophyll, low levels of 9-Z-violaxanthin and almost undetectable levels of P-citraurin.

Visually the fruit appear greenish as a result of the chlorophyll present, while the pale

yellow background colour is brought about by the yellow pigment 9-Z-violaxanthin.

Fruit of average colour (grade 3-4) contain relatively low levels of both colour-imparting

pigments. Green colour was receding due to reduced levels of chlorophyll, while the

yellow background colour was becoming more intense. Fruit of good colour (grade 1-

2) contained high levels of 9-Z-violaxanthin and P-citraurin and, furthermore, exhibited

a decline in 9-Z-violaxanthin : P-citraurin ratio when compared to fruit of an inferior

colour grade. Visually, these changes can be correlated to a change in hue from

yellow-orange to a deep orange, concomitant with an increase in the intensity of the

colour. It is tempting to suggest therefore that the amount of 9-Z-violaxanthin and P-

citraurin in citrus flavedo specify chroma (colour intensity) whereas the 9-Z-

violaxanthin : p-citraurin ratio is responsible for hue or shade perceived. This can be

compared to the addition of small amounts of red paint (P-citraurin) to yellow paint (9-

Z-violaxanthin), during which hue would change from yellow to orange.
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To manipulate carotenogenesis in vivo to improve flavedo colour and aesthetic quality

of orange fruits, knowledge of the major colour-imparting pigments in flavedo was

initially required. Clearly, in vivo manipulation of carotenoid content for improved

colour rests on an understanding of the biochemistry of the pigments concerned.

Nevertheless, the biosynthetic origin of both 9-Z-violaxanthin and p-citraurin remain

unresolved. It is assumed that 9-Z-violaxanthin arises due to isomerization of E-

violaxanthin in vivo. However, 9-Z-P-carotene and other Z-isomers of (3-carotene have

been shown to occur in plant tissue (Young and Britton, 1993), and the biosynthetic

pathway may therefore occur from 9-Z-P-carotene to 9-Z-violaxanthin via a series of

Z-isomers. p-Citraurin, a C30 apocarotenoid, is believed to be a degradation product

of either zeaxanthin (Yokoyama and White, 1966) or (3-cryptoxanthin, the mono-

hydroxy derivative of p-carotene (Gross, 1981), although other xanthophylls e.g. E-

neoxanthin, E-violaxanthin and E-antheraxanthin could also serve as parent pigments.

P-Citraurin may be formed through asymmetric degradation of a C10 fragment from one

side of the C40 parent carotenoid. A similar mechanism is thought to be responsible

for the exocentric cleavage of P-carotene in the formation of retinal (van Vliet et al.,

1996) and the plant hormone abscisic acid (Schwartz et al., 1997). Taylor and Davies

(1974) reported the existence of a group of C30 carotenes isolated from bacteria, these

include analogs of phytoene, phytofluene, ^-carotene and neurosporene. Their

existence may point to the existence of a separate C30 biosynthetic pathway, but these

compounds have never been isolated from plants. Xanthophyll cleavage is therefore

accepted as the more likely biosynthetic origin of apocarotenoids.

Citrus flavedo is considered an ideal system in which to study the expression of

genes/proteins involved in plant stress responses (Sanchez-Ballesta et al., 1999).

Richardson and Cowan (1995) showed that the levels of the plant stress hormone ABA

reached a maximum coincident with the onset of colour break, and that a subsequent

decline in levels of ABA correlated with expression of full colour. These authors further

showed that an enzyme system prepared from orange fruit flavedo converted 9-Z-

neoxanthin to xanthoxal (the aldehyde product of xanthophyll cleavage) and ABA

(Cowan and Richardson, 1997). Similar findings on the biosynthetic origin of ABA via

dioxygenase-mediated cleavage of 9-Z-xanthophylls, have been reported in other plant
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tissues in response to stress (Schwartz et al., 1997). The pathway for formation of

xanthoxal from 9-Z-xanthophylls is now well established and the enzyme responsible

for xanthophyll cleavage has been cloned (Cutler and Krochko, 1999). Furthermore,

expression of the mRNA for the xanthophyll cleavage enzyme increases in response

to water deficit, a stimulus known to induce ABA accumulation (Qin and Zeevaart,

1999). Since the development of colour in C. sinensis is exacerbated by low

temperature, a cold stress may be the stimulus required for synthesis and

accumulation of (3-citraurin via dioxygenase-mediated cleavage of the parent

xanthophyll. Parry and Horgan (1991) showed that lipoxygenase cleaved 9-Z-

neoxanthin and E-violaxanthin into apocarotenoids in in vitro assays. The majority of

these compounds were volatile (C9 to C13) compounds, many of which are important

aroma constituents, but others range in size up to C30, e.g. apo-8'-violaxanthal which

has been extracted from citrus peel (Molnar and Szabolcs, 1980). Further

investigations into citrus colour development should therefore concentrate on cloning

and characterization of the proposed dioxygenase enzyme. As a logical first step, a

product-precursor relationship between the parent xanthophyll and (3-citraurin needs

to be established. It might also be possible to clone and characterize the dioxygenase

enzyme if mutants deficient in (3-citraurin were identified.

5.1.3 Colour development in Citrus sinensis and the manipulation thereof

Visual colour break in C. sinensis 'Navel' and 'Valencia' appears to be associated with

a minimum in total pigment and total carotenoid content of flavedo tissue. The pigment

minimum observed at colour break has been shown to occur in a variety of citrus viz:

Satsuma mandarin (Gross, 1987), Clementine (Farin et al., 1983), 'Dancy' tangerine

(Gross, 1981), a mandarin hybrid (Farin et al., 1983) and kumquat (Huyskens et al.,

1985). Green, immature flavedo displays a pigment pattern similar to that observed

in leaf tissue and the period before colour break is characterised by a decline in all

pigments present. Colour break is followed by a massive accumulation of xanthophyll

acyl esters, in particular 9-Z-violaxanthin acyl esters. Colour break in C. sinensis

coincides with the conversion of chloroplasts to chromoplasts (Eilati et al., 1975) and

the conversion and resultant functional change accounts for the loss of photosynthetic,

chloroplastic pigments followed by an increase of chromoplastic pigments.
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A variety of treatments, including dehydrating agents (alcohols), plant hormones,

micro-nutrients and low temperature were evaluated for their efficacy in increasing

carotenoid content and hence improving fruit colour. It was concluded that any

attempts at colour manipulation must be carried out post-colour-break. Fruit that had

not attained a visual colour rating of at least colour stage 6 on the Outspan colour

chart did not respond favourably to any colour manipulation treatment. Krajewski

(1998) noted that ethylene degreening should only be considered once colour has

broken, and stated that fruit of colour grade 8 do not respond to treatment with this

plant growth regulator.

The most promising method of pre-harvest colour manipulation was that of micro-

nutrient treatment, followed by plant hormone application. It was observed that W- and

Mo-treated flavedo discs had significantly higher carotenoid content than untreated

discs 96 h after treatment, with W being the more effective treatment (also effective at

lower concentrations than Mo). The terminal step in ABA formation from 9-Z-

neoxanthin is mediated by a molybdo-aldehyde oxidase (Mendel, 1997), indicating a

molybdenum requirement for xanthophyll and ABA metabolism (Richardson and

Cowan, 1996). It may be expected that an increase in carotenoid level is responsible

for sustaining higher conversion rates to ABA. Conversely, W, as the element below

Mo in group Vlb of the periodic table could substitute for Mo and was shown to be a

specific inhibitor of the aldehyde oxidase involved in ABA biosynthesis (Lee and

Milborrow, 1997). Such an inhibition would lead to an accumulation of carotenoids.

The effect of Mo and W on carotenoid synthesis and/or accumulation needs to be

investigated in more detail, but it is envisaged that these micro-nutrients could be

applied as a pre-harvest spray to ensure rapid and uniform colour development.

The role of plant hormones in citrus colour development has been partially established

through exogenous application of hormones to citrus peel. GA3 application resulted

in a delay in flavedo colour development of 'Navel' and 'Valencia' (Coggins and Hield,

1962) and furthermore enhanced regreening in fully coloured 'Valencia' fruit (Coggins

and Lewis, 1962). Ethylene application has been shown to increase carotenoid

content and enhance colour development of citrus flavedo in a number of citrus
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species (Stewart and Wheaton, 1972; 1973; Le Roux et al., 1997). Commercially,

ethylene application pre- or post-harvest is employed to hasten colour development,

although problems such as enhanced post-harvest decay is often associated with the

use of ethylene (Krajewski, 1998). GA is applied to control creasing (a physiological

disorder leading to creased rind) in soft citrus and may retard fruit colour development

if applied within two months of harvest (Krajewski, 1998). GA may also be employed

to lengthen the harvesting season of grapefruit and 'Navel' oranges. In the present

study, both ABA and JA enhanced carotenoid content of flavedo discs, whereas GA

reduced carotenoid levels. The observation that treatment with Mo resulted in

increased carotenoid content may therefore be an indirect response to increased ABA

levels. Perez et al. (1993) reported that methyl jasmonate vapour promoted (3-carotene

synthesis and chlorophyll degradation in 'Golden Delicious' apple peel. The

application of ABA and/or JA may therefore prove to be beneficial in improving flavedo

colour in C. sinensis. It is however possible that senescence could be accelerated and

that enhanced post-harvest decay may be experienced with application of these plant

hormones.

Dehydrating agents such as ethanol and butanol warrant further investigation as a

post-harvest method of colour improvement. Ethanol and butanol increased

carotenoid content in whole fruit flavedo and flavedo discs and the optimum

concentrations were shown to be 20-30% (v/v) for ethanol and 5-10% (v/v) for butanol.

Fruit ripening in citrus is associated with an increase in lipophilic pigments (Eilati era/.,

1972) and concomitant dehydration, a process enhanced by alcohol application. Loss

of water through dehydration treatments may therefore facilitate carotenoid

accumulation in chromoplast-loca lised globuli. Citrus colour development is enhanced

by environmental stresses such as low temperature (Young and Erickson, 1961) and

drought conditions (Peng and Rabe, 1996), hence dehydration stress may play a role

in acceleration of colour expression. It should be noted that plant stress response is

usually associated with an increase in ABA (Raven et al., 1986). Ethanol application

has been shown to enhance fruit sensory quality (e.g. an increase in sugar content,

increase in sugar : acid ratio and flavour changes judged to be acceptable), in

blueberries, tomatoes, grapes and pears (Paz et al., 1981). Ethanol was also shown
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to enhance fruit ripening and lycopene accumulation in tomatoes at low

concentrations, although high concentrations inhibited these responses (Bieulieu and

Saltveit, 1997). This trend was observed in whole fruit and flavedo discs of citrus

treated with butanol, where high concentrations of butanol (>10%; v/v) inhibited

carotenoid accumulation. Of the two alcohols evaluated, ethanol was the more likely

choice as a commercial enhancer of citrus flavedo colour. Butanol-treated fruit

routinely exhibited rind damage whereas ethanol concentrations as high as 30% (v/v)

did not damage fruit peel. Furthermore, food-grade ethanol is safe for human

consumption and can be considered environmentally sound. Ethanol application could

be incorporated into the hot water bath (40-45C0) of a packhouse system without any

adjustment of equipment. Additional benefits are the fungicidal effects obtained from

ethanol application. It was shown that ethanol solutions heated to 45°C effectively

controlled post-harvest green mould {Penicillium digitatum) in lemon fruit without injury

to the flavedo (Smilanick et al., 1995).

In addition, a short low temperature treatment, followed by incubation at higher

temperatures resulted in increased carotenoid content of flavedo discs. While this

result supports the idea that low temperature stress enhances colour development, it

also indicates that regulation of post-harvest storage temperature may play an

important role in colour development. Fruit stored or shipped at a constant

temperature of 4.5 °C showed little improvement in fruit colour, whereas fruit exposed

to shipping temperatures of 11 °C displayed a consistent improvement in fruit colour

(Krajewski, 1998). A short low temperature period followed by shipping at slightly

elevated temperatures may prove to be effective in improving flavedo colour.

69



5.2 CONCLUSIONS AND FUTURE PROSPECTS

This study shows that brilliant orange rind colour in C. sinensis can be related to the

presence of the yellow xanthophyll 9-Z-violaxanthin and the red apocarotenal (3-

citraurin. Furthermore, the ratio of 9-Z-violaxanthin : p-citraurin was shown to be

critical for pleasing, visual colour perception. 9-Z-violaxanthin and p-citraurin content,

as well as 9-Z-violaxanthin : P-citraurin ratio in the flavedo of citrus fruit can therefore

be used to quantify visual colour and these parameters can aid in the evaluation of

colour and genetic manipulatory techniques. Further studies aimed at improvement

of citrus fruit colour should concentrate on delineating the biosynthetic pathway of the

colour-imparting carotenoids, and cloning and characterisation of the genes and

enzymes involved. Carotenoid manipulation studies should aim at increasing the level

of the colour-imparting carotenoids and decreasing the ratio of 9-Z-violaxanthin:P-

citraurin in citrus flavedo, thereby improving visual colour.
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The biochemical basis of color as an aesthetic quality in mature fruit of navel and Valencia orange
(Citrus sinensis) was determined. Saponification of the two major color-imparting components
resolved by thin-layer chromatography, followed by reversed-phase high-performance liquid
chromatography, revealed that these comprised acyl esters of (9Z)-violaxanthin and /3-citraurin.
Identification of the chromophores was based on cochromatography and online spectral analysis.
The color quality of flavedo of mature fruit was dependent on the content and relative amounts of
(9Z)-violaxanthin and /?-citraurin. Quantitative results revealed that increased color intensity was
associated with a decline in the (9Z)-violaxanthin:/J-citraurin ratio from greater than 50 to below
10, an increase in flavedo (9Z)-violaxanthin and /?-citraurin content, and that measurement of the
mass and ratio of these carotenoids can be used to accurately color-grade orange fruit for local and
export markets.

Keywords: Citrus sinensis; carotenoids; color; fi-citraurin; (9Z)-violaxanthin

INTRODUCTION
Plant pigments in vegetables, fruits, and ornamental

crops have been studied intensively because of their
vital role in visual appeal. Although attention has
shifted to the nutritional benefits afforded by plant
pigments, in particular carotenoids (Bartley and Scolnik,
1995; King et al., 1997), color is used by horticulturalists
as a major criterion for determining both grade and
quality of fruit. In citrus, flavedo color is probably the
most important external quality parameter used in
determining consumer acceptance. However, it is not
usually an indication of internal quality. Nevertheless,
visual expression of color is a cultivar characteristic
affected by climate and environment that can, to some
extent, be manipulated by cultural practice (Gold-
schmidt, 1988). Competition between growers to secure
niche markets has fueled efforts to produce quality fruit
that is uniformly of good color.

The development of color in citrus occurs concomi-
tantly with the transformation of photosynthetically
active chloroplasts to carotenoid-containing chromoplasts
(Thomson, 1966; Gross, 1987; Gross et al., 1983). Caro-
tenoids of the orange (Citrus sinensis (C. sinensis)) are
probably the most studied pigments in citrus, and the
flavedo of fully mature, colored fruit is one of the richest
sources of these pigments in plants. The carotenoid
content and composition of orange flavedo has been
described in detail (Curl, 1965, 1967; Curl and Bailey,
1956). More recently, Molnar and Szabolcs (1980)
reported on the identification of /3-citraurin epoxide (3-
hydroxy-5,6-epoxy-5,6-dihydro-8'-apo-/5-caroten-8'-al)and

*To whom correspondence should be addressed. Tele-
phone: +27 33 260 5472. Fax: +27 33 260 5073. E-mail:
cowan@nu.ac.za..

several isomers of violaxanthin (5,6,5',6'-diepoxy-5,6,5',6'-
tetrahydro-/?,/S-caroten-3,3'-diol) in flavedo of the "Va-
lencia" orange. These authors also provided quantitative
data on the spectrum of carotenoids in orange flavedo
and demonstrated that violaxanthin and its Z-isomers
(9Z-, 13Z-, and di-Z-) predominate. Violaxanthin is
typically a yellow pigment and therefore unlikely to be
solely responsible for good quality color of the flavedo
of the mature orange fruit. In fact, Gross (1981) showed
that although violaxanthin comprised 52.8% of the total
carotenoid content of the "Dancy" tangerine, it was the
red jS-citraurin (3-hydroxy-8'-apo-/?-caroten-8'-al) and the
orange /?-cryptoxanthin (/?,/?-caroten-3-ol) that were
responsible for the orange-reddish color of tangerine
fruit. The structures of these carotenoids are illustrated
in Figure 1.

In the present investigation efforts were made to
determine the biochemical basis of flavedo color as an
aesthetic quality in orange using navel and Valencia
fruit. Typically mature navel fruit are brightly colored,
whereas Valencia are recalcitrant with respect to color
development and therefore ideal for comparative pur-
poses. Identification of the major color-imparting caro-
tenoids is described and differences in the relative
amounts of (9Z)-violaxanthin and /?-citraurin used to
assess color of mature fruit as a quality parameter. It
is demonstrated that an increase in (9Z)-violaxanthin
and /?-citraurin content, concomitant with a decline in
the (9Z)-violaxanthin:/3-citraurin ratio, is associated
with increased intensity of flavedo color. Results are
discussed in terms of manipulation of carotenogenesis
in vivo to enhance flavedo color and.the aesthetic appeal
of orange fruits. ' *
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OH
9Z-violaxanthin

p-cryptoxanthin

P-citraurin

Figure 1. Structures of (9Z)-violaxanthin, /S-cryptoxanthin,
and /?-citraurin, the major color-imparting carotenoids in citrus
flavedo.

was homogenized in further methanol/ethyl acetate (50:50,
v/v). The combined supernatant was reduced to dryness in
vacuo at 35 °C using a rotary evaporator, and the extracts were
either analyzed immediately or stored under nitrogen at —20
°C.

Concentrated crude extracts were resuspended in organic
solvent and partially purified by thin-layer chromatography
(TLC) on layers (20 x 20 cm, 0.25 mm thickness) of silica gel
(Merck, Type 60) developed to 15 cm in a closed tank
containing hexane/ethyl acetate/ethanol/acetone (95:3:2:2, v/v)
at 2—4 °C in darkness. Carotenoid-containing zones were
scraped from the plate into small glass funnels plugged with
glass wool and the pigments eluted from the gel with acetone
and concentrated under a stream of nitrogen. Where specified,
saponification was carried out by resuspending pigment
samples in 8 mL of methanol to which was added 2 mL of KOH
(1 M), the mixture vortexed and allowed to stand for ap-
proximately 12 h in complete darkness at room temperature.
After removal of the methanol, 3 mL of water was added and
the carotenoids were partitioned into an equal volume of
diethyl ether (repeated three times). Combined ether fractions
were pooled and concentrated under nitrogen.

Crude and saponified extracts were filtered using a 0.2 /um
syringe filter and the individual carotenoids separated by
reversed-phase HPLC on a 5 /<m Vydac 201TP54 (VYDAC,
Hesperia, CA) C18 column (250 x 4.6 mm i.d.) eluted isocrati-
cally at 26 °C with methanol/acetonitrile (9:1, v/v) containing
0.1% (w/v) BHT and 0.05% (v/v) TEA at a flow rate of 1 mL
min"1, using a SpectraSYSTEM P2000 pump (Thermo Separa-
tions Products, Fremont, CA). Compounds of interest were
detected at 460 nm and quantified by peak integration using
a UV3000 rapid-scanning detector (Thermo Separations Prod-
ucts, Fremont, CA) in the range 370-550 nm calibrated using
authentic standards. Identification was achieved with the use
of PC1000 software (Thermo Separations Products) that
allowed for online comparison of absorption spectra of un-
known compounds with authentic (9Z)-violaxanthin and /S-ci-
traurin.

MATERIALS AND METHODS

Chemicals and Reagents. HPLC grade methanol, aceto-
nitrile, ethyl acetate, and hexane were obtained from Burdick
and Jackson (AlliedSignal Inc., Muskegon, MI). All other
solvents were of analytical grade and obtained from BDH
Laboratory Supplies (Poole, U.K.). Butylated hydroxytoluene
(BHT), diethyldithiocarbamate (DDC), and triethylamine (TEA)
were from Sigma Chemical Co. (St Louis, MO). (9Z)-Violax-
anthin and /3-citraurin were prepared as described previously
(Molnar and Szabolcs, 1979).

Plant Material and Growing Conditions. Fruits of C.
sinensis "navel" and "Valencia" were harvested from 10 year
old trees on rough lemon rootstocks in the Albert Falls region,
KwaZulu Natal midlands, South Africa. All trees were sub-
jected to the cultural practices commonly used in citrus
orchards in this region. Harvested fruit was surface-sterilized
by immersion in 1% sodium hypochlorite for 20 min followed
by several changes of distilled water. Fruit were graded
according to industry standards for visual color by comparing
flavedo color with the Outspan blemish-standards chart (no. 19,
color) that is used to prescribe citrus for export and assigned
a rating on a scale of 1 (orange, fully colored) to 8 (green,
unmarketable).

Carotenoid Extraction and Analysis. All steps for the
extraction and identification of carotenoids were carried out
under low temperature and light intensity to avoid photooxi-
dation and isomerization of the compounds of interest. The
outer layer of the flavedo (peel) was grated from the fruit,
finely crushed in liquid nitrogen using a mortar and pestle,
and homogenized (2 by 1 min bursts) in methanol/ethyl acetate
(50:50, v/v) containing BHT (100 mg L"1) and DDC (200 mg
L"1) as antioxidants, with PVP (Polyclar SB100, 1 g/(10 g of
fresh weight)) using an Ultra-Turrax top-drive tissue homog-
enizer. Homogenates were centrifuged for 5 min, and the pellet

RESULTS AND DISCUSSION

Identification of Color-Imparting Carotenoids.
The carotenoids present in flavedo of mature orange
fruit have been identified by physicochemical methods
(Molnar and Szabolcs, 1980). To gain insight into the
major color-imparting carotenoids in orange fruit fla-
vedo, we initially examined crude pigment extracts
prepared from brightly colored (Outspan color chart,
Grade 1) Valencia and navel fruit. Separation of extracts
on thin layers of silica gel revealed, in addition to
numerous minor pigment-containing zones, two in-
tensely colored bands atiJf 0.1 (yellow-orange, TLC zone
A) and i?f 0.33 (orange-red, TLC zone B). These were
eluted from the gel and further analyzed by reversed-
phase HPLC, and the chromatographic profiles are
illustrated in Figure 2. Since the identical results were
obtained for flavedo of both Valencia and navel fruits,
and for ease of data presentation, only chromatograms
for Valencia are shown. The results show that TLC
zones A and B were each resolved into three major
components and the retention time of the components
in zone A was similar to the components in zone B.
Online spectral analysis of components Al, A2, and A3
(Figure 2A) produced results consistent with a chro-
mophore similar to (9Z)-violaxanthin (Amax, nm: 435),
whereas components Bl, B2, and B3 in Figure 2B
produced spectra with a single maxima at 457 nm
typical of/3-citraurin (Figure 2C). Confirmation of the
identity of these chromophores as (9Z)-violaxanthin and
/3-citraurin was achieved by saponification of zones A
and B from TLC, prior to reversed-phase HPLC analy-
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Figure 2. Reversed-phase HPLC chromatograms of unsa-
ponified zone A (A) and zone B (B) from TLC-separated crude
pigment extracts of flavedo of color-grade 1 Valencia orange.
(C) Absorption spectra of Al, A2, and A3 (a) and Bl, B2, and
B3 (b).

sis. Zones A and B yielded single peaks which cochro-
matographed with authentic (9Z)-violaxanthin and
/J-citraurin, respectively. In addition, comparison of
spectral characteristics with those of authentic stan-
dards showed >99% similarity between zone A and (9Z)-
violaxanthin and zone B and /3-citraurin. Furthermore,
these results indicated that both (9Z)-violaxanthin and
/S-citraurin accumulate in orange flavedo in an esterified
form and that esterification is responsible for the
differences in retention time noted in Figure 2.

Although /?-citraurin and (9Z)-violaxanthin acyl esters
occur in close association when crude extracts are
analyzed by HPLC (Figure 3A), saponification prior to
HPLC analysis ensures that these two major color-
imparting pigments are well-resolved for quantification
purposes (Figure 3B). This result indicates that accurate
quantification of the chromophores of these acyl esters
is possible without prior separation by thin-layer chro-
matography. Additionally, the absorption spectrum of
each pigment is unaffected by saponification (data not
shown). While the identity of the esters was not
determined in the present study, /S-citraurin myristate
has been isolated from the peel of Marsh seedless
grapefruit (Philip, 1973a), and the laurate esters of
/3-cryptoxanthin, (9Z)-vioIaxanthin and y8-citraurin have
been detected in flavedo of Valencia orange (Philip,

0 2 4 6
Retention time (min)

Figure 3. Reversed-phase HPLC chromatograms of unsa-
ponified (A) and saponified (B) pigment extracts of flavedo of
mature color-grade 1 Valencia orange fruit. Peaks: A, (9Z)-
violaxanthin; B, /S-citraurin.

1973b). The physiological significance of esterification
may be attributed to the fact that it increases the
lipophilic character of the carotenoids, making possible
their accumulation in chromoplast-localized plastoglo-
buli (Eilati et al., 1972). Acylation has also been shown
to increase the stability of these pigments (Camara and
Moneger, 1978).

Biochemical Basis of Flavedo Color. (9Z)-Violax-
anthin is the most abundant carotenoid in citrus flavedo
(Molnar and Szabolcs, 1980; Gross, 1987). As a yellow
pigment, it contributes mainly to the background color
of orange fruit flavedo. /S-Citraurin, a C-30 apocarotenal,
is a red-orange pigment and is responsible for the bright
orange color of tangerine flavedo (Farm et al., 1983).
To demonstrate a similar role for jS-citraurin in flavedo
color of C. sinensis, (9Z)-violaxanthin and /S-citraurin
levels of different color grades of mature Valencia and
navel fruit were determined after saponification, by
HPLC, and the results are shown in Figure 4. No fruit
of grade 7 or 8 were available at the time of harvest,
and very brightly colored navel fruit (more orange than
grade 1) were designated grade 0. Poorly colored fruit
(grades 5-6) had high levels of chlorophyll (data not
shown), low levels of (9Z)-violaxanthin, and almost
undetectable amounts of /S-citraurin. Fruit of average
color (grades 3-4) had relatively low levels of both color-
imparting pigments. Fruit of good color (grades 0-2)
contained increased levels of (9Z)-violaxanthin and
/S-citraurin. Thus, an increase in the color-grade (i.e.
from 6 to 1) was associated with massive accumulation
of (9Z)-violaxanthin concomitant with a less dramatic
increase in /3-citraurin in both navel and Valencia
flavedo. In addition, the increase in color grade was
associated with a decline in the (9Z)-violaxanthin:/3-
citraurin ratio from >50 to <10. For grade 1 fruit, the
/3-citraurin levels of flavedo of navel and Valencia fruits
were similar, but (9Z)-violaxanthin levels were higher
in flavedo of Valencia. While this might be a factor in
the apparent recalcitrancy of color development in
Valencia, it clearly indicates that the-flavedo content
of, and relative level of, (9Z)-violaxanthin and /S-citrau-
rin is crucial for visual color appeal. It is tempting to
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Figure 4. Quantification of (9Z)-violaxarithin and /?-citraurin,
and the (9Z)-violxanthin:/?-citraurin ratio in flavedo of mature
navel (A) and Valencia (B) fruit color-graded using the Out-
span blemish standards chart (no. 19; color). Color grades: 6,
poor; to 1, fully/brightly colored.

suggest, therefore, that the amount of (9Z)-violaxanthin
and /?-citraurin specify chroma (color intensity), whereas
the (9Z)-violaxanthin:/?-citraurin ratio is responsible for
hue, in the quality assessment of fruit using a colorim-
eter (Voss, 1992; Reeves et al., 1997).

The study described in this paper was carried out with
a view to manipulating carotenogenesis in vivo to
improve flavedo color and aesthetic quality of orange
fruits. As a first step, the identity of, and relationship
between, the major color-imparting pigments in flavedo
was determined. Clearly, in vivo manipulation of caro-
tenoid content for improved color rests on an under-
standing of the biochemistry of the pigments concerned.
However, the biosynthetic origin of both (9Z)-violaxan-
thin and /3-citraurin remains unresolved. It is assumed
that (9Z)-violaxanthin arises due to isomerization of all-
i?-violaxanthin in vivo. By comparison, /?-citraurin (a C30
apocarotenoid) is believed to be a degradation product
of either zeaxanthin (Yokoyama and White, 1966) or
/?-cryptoxanthin (Gross, 1981). A similar mechanism is
thought to be responsible for the exocentric cleavage of
/3-carotene in the formation of retinal (van Vliet et al.,
1996).

Citrus flavedo is considered an ideal system in which
to study the expression of genes/proteins involved in
plant stress responses (Sanchez-Ballesta et al., 1999).
In earlier work, we showed that levels of the plant stress
hormone abscisic acid (ABA), in navel and Valencia
flavedo reached a maximum coincident with the onset
of color-break and that a subsequent decline in the
levels of ABA correlated with expression of full color
development (Richardson and Cowan, 1995). We later
showed that an enzyme system prepared from orange
fruit flavedo converted (9Z)-neoxanthin to xanthoxal
(the immediate aldehydic product of xanthophyll cleav-
age) and ABA (Cowan and Richardson, 1997). Similar
findings on the biosynthetic origin of ABA in other plant
tissues in response to stress, via dioxygenase-mediated
cleavage of (9Z)-xanthophylls, have been reported
(Schwartz et al., 1997). The pathway for formation of
xanthoxal from (9Z)-xanthophylls is now well-estab-

lished, and the enzyme responsible for xanthophyll
cleavage has been cloned (Cutler and Krochko, 1999).
Furthermore, expression of the mRNA for the xantho-
phyll cleavage enzyme (which is inhibited by low tem-
perature) increases in response to water deficit stress,
a stimulus known to induce ABA accumulation (Qin and
Zeevaart, 1999). Since the development of color in C.
sinensis is exacerbated by low temperature, a cold stress
may be the stimulus required for synthesis and ac-
cumulation of /3-citraurin via dioxygenase-mediated
cleavage of the parent xanthophyll.
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