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Abstract

We investigate the appropriate strategies that reduce the HIV transmission rate amongst the serodis-

cordant married couples. In particular, we formulate two discrete sub-models, the formation of

married serodiscordant couples through marriage of single individuals and the formation of married

serodiscordant couples through infection of HIV concordant negative married couples. We incor-

porate a constant treatment rate and solve these sub-models analytically. Our results showed that

the formation of married serodiscordant couples through marriage of single individuals sub-model

has no disease free equilibrium point because the serodiscordant couples are always present in the

population. We computed the invasion reproductive number and showed that the endemic equilib-

rium point is stable when the invasion reproduction number is greater than one. In the formation

of serodiscordant couples through infection of HIV concordant negative married couples, our results

revealed that there exist a disease free equilibrium point and the endemic equilibrium point. We use

the fixed point theory to determine the existence of the endemic equilibrium. We showed that when

the basic reproduction number is less than unity, then it will be possible to control the HIV epidemic

in serodiscordant couples otherwise the infection will persist. Sensitivity analysis revealed that for

the disease to be controllable, intervention strategies must target to increase the treatment rate to

reduce the HIV transmission rate. We then formulated the main model combining the dynamics of

the two sub-models and incorporate treatment rate as the price-dependent demand function. We

use the main model to explore the effects of treatment under eight different intervention strategic

scenarios. Our results showed that out of the eight strategies only six were capable of reducing the

HIV transmission rate amongst the serodiscordant married couples. The most effective intervention

strategy was to treat directly the serodiscordant married couples. This strategy is expected to be

cost efficient and could be implemented in poor resource setting.
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Chapter 1

Introduction

1.1 Background

An Infectious disease is an illness or disorder that is caused by a particular biological infectious agent

or even its toxic product resulting from an infected individual or animal to a disease free host, this can

happen directly or indirectly through plant intermediary, vector, animal host and inanimate environ-

ment [6]. The infectious diseases agents are metazoa, protozoa, fungi, bacteria, rickettsia, viruses and

prions, and each group has its own characteristics. The causes and examples of infectious diseases

are: Metazoa are mostly parasites and there are multicellular animals. Metazoa cause diseases such

as trichinosis, hookworm and schistosomiasis. Protozoa sometimes called human parasites directly

affect human and they are single-cellular organisms with a clear and structured nucleus. Protozoa

cause diseases such as malaria, giardiasis, toxoplasmosis and pneumocystis carinii pneumonia. Fungi

are organisms that are nonmotile and filamentous and can cause diseases that can be very difficult to

cure or treat, such as histoplasmosis and candidiasis. Bacteria are organisms without a nucleus and

there are single-celled. Most human diseases such as tuberculosis, staphylococcal disease, gonorrhea

and chlymidia, meningitis, tetanus and diphtheria, pertusis, haemophilus influenza and pneumococ-

cal disease are caused by bacteria. Rickettsia are infectious agents that are usually found in lice,

ticks, fleas and mites and they are genus of bacteria but there are smaller than most bacteria and

share some characteristics of viruses. Examples of infectious diseases caused by rickettsia are rocky

mountain spotted fever and typhus. Prions are organisms with no genes and they have protein with

an aberrant structure which replicates in animal or human tissue. Viruses are organisms that consists
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of an RNA or DNA core and an outer coat of protein and they are very small. Examples of diseases

which are transmitted by viral agents and confer immunity against infection are measles, chicken pox,

German measles and influenza. HIV is also transmitted by viral agent by does not confer immunity

against infection [7, 8].

Infectious diseases are responsible for a high mortality rate in low -and-middle-income countries and

also responsible for a quarter of all annual deaths worldwide. Infectious diseases have a negative

effect on the worlds economic growth and reduces the lifespan of the human population. Everyday

scientists attempt to formulate new models to capture the changing conditions of the real world

and also try to match infectious diseases with specific optimal intervention strategies. Mathemati-

cal models have been used for a very long time to capture the issue of epidemic infectious diseases

affecting the human population. Economists are interested in formulating economic models which

capture and seek solutions to the issue of infectious diseases [9, 7]. The concepts of mathematical

and economical epidemiology have been successful in explaining the theory of infectious diseases and

intervention strategies separately. It is however important to combine the two concepts to produce

improved models and better results [10].

The human population has been concerned about the Human Immunodeficiency Virus (HIV) which

is the cause of the Acquired Immunodeficiency Syndrome (AIDS) for more than three decades. This

infectious disease is one of the most vicious diseases that mankind has ever faced. The world leading

cause of death is the HIV/AIDS. Approximately 30 million people have died of AIDS-related causes

since the first case was reported in 1981. There is an estimated number of 35.3 million people living

with HIV, including 3.3 million children worldwide. The estimated number of new infections is 2.3

million per year. Despite treatment improvements and preventions, there is still no cure for HIV.

The most affected region in the world is the sub-Saharan African region with an estimated number

of 25 million HIV infected people. The largest number of people living with HIV in the sub-Saharan

African region is women with approximately 58%. An estimated 1.5 million new infections and 1.1

million people died of AIDS related causes in 2013 [11, 12]. The sub-Saharan region has a large

number of youth population that start having unprotected sex at very young age and contract the

HIV. Having multiple sexual partners is a norm in this region, even when people are married [13].

In recent years, the spread of the HIV disease has been mostly amongst the serodiscordant married
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couples in the sub-Saharan African region [14]. In most sub-Saharan countries, an estimated 60% to

94% of new infections resulted from the serodiscordant couples [15].

1.1.1 Mathematical Epidemiology

Mathematical epidemiology is the field that uses mathematical models to capture the mechanism

that influences the spread of diseases and seek better ways to control the spread of diseases [16].

Infectious diseases mathematical models have been used by scientists to improve public policies since

the eighteenth century. In 1766, Bernoulli did not understand the mechanism of infectious diseases

and how the diseases lead to the death of people but he projected smallpox mortality to contend for

increased inoculation [17]. In 1854, John Snow identified that a source of a cholera outbreak was

a single water pump and his finding contributed largely in epidemiology developments [7]. In 1882

Koch designed a formal structure to illustrate how specific microbes cause specific diseases and so

the process of how infectious agents spread was understood [18]. In the twentieth century, Hamer

and Ross formed models for measles in 1906 and malaria in 1910, respectively, and the mathematical

theory of epidemics was formed in 1927 by Kermack and Mckendrick. In 1950s mathematical models

were successful in finding infectious diseases stochastic aspects, the eradication of measles in partic-

ular, and a vital factor to sustain an epidemic [7]. In the second half of the twentieth century further

improvements were made on mathematical models to incorporate the incursion and persistence of

human pathogens. Consequently, the process of how epidemics spread and a proper way to allocate

measures to control the diseases in host populations, environment and to a wide range of pathogens

was established. Mathematical epidemiology models are formulated as MSEIR models in which the

epidemiological status of a person in the host population is illustrated as one of the following states:

M represents newly born babies who preserve some protective maternal antibodies, S represents a

class of susceptible individuals, E represents the exposed class of individuals which are infected but

not infectious, I represents infectious class, and R represents the removed class of individuals who are

dead or recovered. The quantitative influence on epidemiological parameters usually transmission

rates, infectious and latent periods are used to model control treatments [7].
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1.1.2 Economic Epidemiology

Economic epidemiology is the field that focuses on relating economics, human behavior, and ecology of

diseases and largely relies on the mathematical formulations [10]. The main aim of the field is to find

efficient policies and strategies to provide clear explanation about the issue of the spread of infectious

agents and to find optimal control measures. Many mathematical models have been formed in recent

years to test for the effectiveness and efficiency of public health intervention strategies. However,

mathematical models commonly do not take into account the changing individuals responses to the

outbreak of diseases and the models barely consider the social and economic perspective in which

public health policies are implemented and also individual response to those policies [10]. Economic

epidemiology is motivated by the economic impact of infectious diseases and the need to understand

individuals behavior and response to the infection and to find optimal ways to design and allocate

required resources to the communities through public health intervention programs [7]. The main

priority of epidemiological research in the context of economics during the twentieth century was

to focus on specific effects of income, nutrition, social class, occupation exposures and behaviors,

disease risks and mortality. Recently, the focus on epidemiological research expanded to include the

importance of macroeconomic influences on health to assist on understanding other environmental

factors which could contribute to the spread of infectious disease [9].

1.2 Problem statement

Infectious diseases contribute largely on the worlds mortality and there are responsible for about a

quarter of all deaths worldwide. The current literature on infectious diseases continue to exhibit the

challenges brought about by infectious diseases which affect human lives and the environment that

they live in as well as the global economy. Mathematical epidemiology has proven to be the powerful

field in identifying and capturing problems regarding infectious diseases and their spreading mecha-

nisms, and it is also playing a massive role in finding solutions to the infectious diseases problems.

The economic epidemiology is a field that is relatively new, combines economics, human behavior

and environment. Existing economic epidemiology research contributed positively in modeling and

resolving infectious diseases problems by incorporating additional factors from economics such as

costs and social welfare to improve the public health intervention strategies. Although mathematical

and economical epidemiology have shown excellency in modeling, solving and analysis of infectious
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diseases as separate fields, the two fields complement each other in formulation and implementation

of intervention strategies. The problem is that there has not been a balance of focus on these two

fields combined to evaluate the benefits and improvements which could be obtained from economic

epidemiology mathematical models. In this study we want to formulate a discrete mathematical

HIV model and incorporate economic aspects in the treatment rate. We want to investigate best

intervention strategy to prevent an increase in the rate of HIV transmission for HIV serodiscordant

couples.

1.3 Aim and Objectives

1.3.1 Aim:

The main aim of the study is to formulate a discrete mathematical model which incorporates eco-

nomics aspects in the treatment rate of HIV that can be used to enhance the understanding of

the impacts brought about by the intervention strategies for HIV epidemic factoring in the benefits

weighted against the costs of implementing the strategies.

1.3.2 Objectives:

In this study we seek to address the following:

1. Develop and analyze two discrete sub-models of HIV with a constant treatment rate, presenting

the formation of the serodiscordant married couples. Then combine the dynamics of the two

sub-models to formulate the main discrete mathematical model. In the main model incorporate

HIV treatment rate as the prevalence and price dependent demand function,

2. Analyze the main model numerically to obtain the best intervention strategies in terms of reduc-

ing HIV transmission amongst serodiscordant married couples and by other infected individuals

in resource-poor settings.
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1.4 Significance

Infectious diseases epidemics have devastating effects on public policies and responses to various

intervention strategies especially in resource-poor settings. Therefore, this study may contribute

significantly since economic and mathematical epidemiology provides an interface to enable health

officials to come up with policies that are informed by the processes and patterns emanating from in-

teraction on individuals with different infection capabilities as well as the trade-off based on decisions

made by such individuals.

1.5 Plan of the study

The study has five chapters with sections and subsections in each chapter. Chapter 1 gives in-

troduction, background information, problem statement and motivation, aims and objectives and

significance of the study. Chapter 2 will give the literature review and preliminaries. Chapter 3

will give the formulation of HIV sub-models and solve them analytically, and the formulation of

the main HIV model and incorporate the aspects. Chapter 4 will provide the numerical simulations

based on the main model to investigate effective intervention strategies of reducing the rate of HIV

transmission. Chapter 5 will provide discussion and recommendations and also the limitation of the

study.

1.6 Summary

This chapter gave an introduction to the problem under study, where it stated the effects of infectious

diseases in human lives and gave some examples of infectious diseases and also briefly stated the

importance of mathematical and economic epidemiology. It also looked at the background information

of mathematical and economic epidemiology, where detailed history of mathematical epidemiology

was stated and also indicated that economic epidemiology is relatively a new field which has proved

to be very useful in studying the infection diseases epidemics. The aim and objectives of the study

were stated in detail. The significance of the study was also stated, where it was indicated that

the importance and contribution the study could make on improving the public health intervention

strategies and policies. Finally, the chapter gave the structure of the study. In the next chapter, we
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review in detail some selected studies that give a deeper background of mathematical and economical

epidemiology to get an understanding of what has been done in these two fields and also highlight

some of the techniques used in the current study.
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Chapter 2

Literature Review And Preliminaries

In this chapter, we are going to review studies on mathematical and economic epidemiology of

infectious diseases. We will use these studies as building blocks to the problem under study. The

chapter will have a section on the review of studies in mathematical epidemiology and on economic

epidemiology. The chapter will also look at the preliminary concepts to be used in the study, where

we will look at some mathematical models and tools to solve these models.

2.1 Mathematical Epidemiology Review

Kar and Jana [19] investigated a theoretical study on mathematical modeling of an infectious disease

with application of optimal control. The aim of the study was to propose and analyze an epidemic

problem which could be controlled by vaccination as well as treatment. The study investigated dy-

namical system with fixed control for both treatment and vaccination. The system with fixed control

was modified to incorporate a control strategy which reduced the number of infected individuals and

the related costs. The results showed that vaccination as a strategy could be a powerful method in

controlling the disease but not perfect to eradicate the infection. Vaccination has been proven to

be too slow in reacting to prevent a large unexpected epidemic outbreak. This could be because of

adverse side effects posed by some vaccines. Therefore, in most cases, alternative control measures

like treatment are highly useful and recommended. The simulation results from the study were not

based on any real world data and sensitivity analysis was only based on selected parameters. Con-

sequently drawing conclusion on general level is not possible.
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Pienaar [20] studied a model on tuberculosis (TB) transmission and intervention strategies in an

urban residential area. The aim of the study was to use a mathematical model of TB transmission to

explore the dynamics of the spread of TB in an informal settlement and determine suitable interven-

tion strategies. The dynamics of the model distinguished between the three different social patterns:

interaction of random diurnal, commuters during travel and familiar exposure at night. The general

SLIR model was used, where the population was divided into susceptible (S), latently infected (L),

infectious (I) and recovered individuals. The risk of exposure for TB was based on the duration,

proximity and frequency of encounters with infectious persons. Strategies such as vaccination, latent

infectious prophylactic treatment, mask wear during the commune and treatment were investigated

by applying the SLIR model to a hypothetical population. Intervention parameters were varied in or-

der to determine the impact of different intervention strategies on the disease outcome over a number

of years. Results from the study revealed that smaller families were less responsible for transmission

of the disease than bigger families, regular users of the public transport contributed significantly to-

wards disease transmission, improved treatments and diagnosis contributed significantly in reducing

the spread of the disease when properly implemented and that it was important to put a detection

mechanism as soon as an outbreak was suspected.

Bowong and Alaoui [21] used the concept of optimal control to investigate the optimal intervention

strategy for TB. The aim of the study was to examine the optimal control of a deterministic model of

tuberculosis and interventions. A model on tuberculosis without control which incorporated the crit-

ical biological and epidemiological disease features was analyzed. The results exhibited the existence

of a backward bifurcation, where one or multiple stable endemic equilibria and a stable disease free

equilibrium co-exists when the related basic reproduction number is less than unity. It was shown

that the re-infectious of latently infected individuals caused the backward bifurcation. The tubercu-

losis control was formulated and solved as an optimal control problem based on the continuous model.

The model revealed how control terms on the chemoprophylaxis and detection should have been in-

troduced in the population to minimise the number of individuals with active tuberculosis. Through

simulations it was shown that the infection level decreased but was never eliminated. However, it was

also established that the level of infection could increase again at the end of the chemoprophylaxis

and detection. It was suggested that TB could be successfully controlled by a cost-effective balance

of detection and chemoprophylaxis.

Heffernan and Dunningham [22] simplified mathematical modelling to test intervention strategies
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for Chlymidia. The purpose of the study was to develop a simple mathematical model to study

the results of interventions in lowering rates of Chlymidia in a high-risk population of ages between

16 and 24. The model could be easily updated as data change frequently. They were three pre-

ventative strategies which were to be tested by this model, namely, screening, partner notification

and condom use. The population averaging model was used to show the impact of using a condom

when every other parameter is fixed. The model showed that infection rates decreased substantially

when condoms were used. A major decrease was observed in the occurrence of Chlymidia for 25

percent increase in the per-act rate of condom use. Results from the model also revealed that there

was a remarkable decrease when check-ups were done after every 12 to 15 months and a significant

decrease when check-ups were done every 9 months on average. Contact tracing was shown to be

least successful in decreasing the incidence of Chlymidia as a single strategy.

Granich et al. [23] studied a universal voluntary HIV testing with immediate antiretroviral therapy

(ART), the aim of the study was to investigate a theoretical strategy of universal voluntary HIV

testing and immediate treatment with ART and examine the conditions under which the HIV epi-

demic could be steered towards elimination. The deterministic transmission model was used to test

their test-case sample community aged 15 years and older, every 12 months people were given ART

immediately after they got diagnosed HIV positive. The strategy of antiretroviral therapy greatly

accelerated the transition from present endemic phase, in which most adults living with HIV were

not receiving ART. It was projected that ART strategy could reduce HIV incidence and mortality to

less than one case per 1000 people per year by 2016 or within 10 years of full implementation of the

strategy as well reduce the prevalence of HIV to less than 1 percent within 50 years. It was estimated

that in 2032, the yearly cost of the antiretroviral therapy and the theoretical strategy would be 1.7

billion US dollars. Beyond 2032 it was estimated that the cost of the ART would continue to increase

whereas that of the theoretical strategy would decrease. The study could be improved by using cur-

rent data. The study only considered a preliminary costing exercise. A full economic analysis of the

strategy that is proposed may be required to improve the understanding of the economic implications

of the theoretical strategy.

We have gathered that mathematical models are very useful in explaining the dynamics of infectious

diseases and also helps in the formulation and implementation of different intervention strategies as

mentioned in [19, 20, 21, 22, 23]. However, in the real world the mathematical epidemiological models

on their own live gaps especially when we look at the implementation of intervention strategies, as
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it requires a detailed economic analysis.

2.2 Economic Epidemiology Review

Greeff et al. [24] studied the economic analysis of pertusis illness in the Dutch population inves-

tigating the implications for current and future vaccination strategies. The study described the

age-specific health care utilization and costs associated with pertusis in the Netherlands taking into

account unregistered patients costs in the notification system. The study also evaluated the cost-

utility of the preschool booster vaccination introduced in the Netherlands in the beginning of 2002.

Patients registries from continuous registration and mandatory notification system were used to esti-

mate the number of patients with pertusis. The results showed that even though infants represented

5 percent of cases but they accounted for 50% of the total costs while the other 50% was distributed

amongst the other age groups. The study suggested that costs per infant case largely determined the

economic burden of pertusis . Results also indicated that the preschool booster was not considered

cost-effective, even though there was a huge reduction in the number of cases.

Jit and Brisson [25] modelled the epidemiology of infectious diseases for decision analysis. The aim of

the study was to model infectious diseases and take into account infectious diseases features that are

unique and can affect intervention estimated value. The study indicated that vaccination, screening,

social distancing, culling and post-exposure were interventions that could be modelled and imple-

mented at low costs if research is done. However, the study did not provide an equilibrium point

where interventions match the decisions of public health authorities and society.

Aadland, Finnoff and Haung [26] examined the dynamic properties of rational expectation models

of economic epidemiology. The study mainly investigated the stability properties of the relationship

between the public health intervention policy and models of economic epidemiology. Also key in the

study was investigating whether or not a well-structured public policy has potential to contribute to

aggregate public volatility and instability. In addition, the study investigated how susceptible individ-

uals incentives and choices may have caused the system to move towards a socially-optimal transition

path when multiple equilibrium paths existed. The results revealed that the economic SIRS system

was able to produce an unstable eradication steady state and two endemic steady states on average.

The SIRS system was recommended in general to handle cases of diseases with permanent immunity
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such as chicken pox, disease with permanent infection such as HIV/AIDS, and diseases with recovery

but no immunity such as common cold. The study showed that the marginal costs of additional ex-

posure was low and there was no endemic steady state exposure at low levels of the health gap. The

health gap was increased further and the marginal benefit and marginal costs curves reached a unique

endemic steady state exposure. The health gap was further increased and the marginal benefit and

marginal cost curves intersected and formed two endemic steady states, namely, low exposure steady

state where individuals were less exposed to HIV/AIDS and the high exposure steady state where

individuals were highly exposed to HIV/AIDS because of lack of information about HIV/AIDS and

lack of prevention methods . It was also indicated that the aggregate welfare was always higher along

the transition path to the low-exposure endemic steady state. The susceptible individuals optimized

value function is bigger along the transition path to the high-exposure endemic steady state in the

case of observed host immunity. The aggregate welfare was shown to be decreased by reducing the

health gap through drug treatment or new therapies. The marginal costs of exposure was shown to

have declined as health gap is decreased. In addition, it was revealed that the system can be moved

from a unique stable equilibrium to the high exposure steady state that showed indeterminacy and

aggregate instability, the cause of this is the reduction of the health gap. However this study does not

provide specific policy recommendations by looking at and examining policy costs. Also the study

could give more and detailed explanation to check if the methods outlined in the paper were applied

to specific diseases.

Economic epidemiology models play a vital role mostly in the analysis of the economic state of the so-

ciety in which interventions are to be implemented and also in the analysis of cost efficiency. However,

economic models do not capture the conditions and environment in broader scope as mathematical

models do.

Mathematical and economic epidemiology are two separate fields which have contributed largely in

the modeling of infectious diseases, even though economic epidemiology is relatively a new field.

However, these two fields combined have not been given much attention in modelling of infectious

diseases. Formulating models based on the combination of mathematical and economic epidemiology

models could improve the strategic choices taken by public health officers.
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2.3 Preliminary Concepts

Mathematical models give a clear structure within which to improve and communicate an under-

standing of the dynamics of infectious disease transmission and incorporates the dynamics of inter-

vention strategies [27]. We state and define some mathematical models and tools to solve population

dynamics models.

2.3.1 Deterministic models

Deterministic models are mathematical models that describe basic fundamental relationships between

variables of a problem. In most cases deterministic models are constructed on macro-level states or

group aggregate. Where the number of infectious individuals is very small the deterministic models

are not appropriate for modeling the beginning and the end of an epidemic [28]. Deterministic models

are classified into continuous and discrete models.

Discrete models

Discrete models use difference equations to show the change in the population model over the en-

tire time step used. The discrete models present a discrete data which ensures that the formulated

model matches the data directly. Lags are easily incorporated in discrete time systems. Lags include,

time spent exposed to disease, time spent infected, length of time lived before death after infection,

etc. Stochastic processes can be in incorporated easily, probabilities instead of proportions. Im-

plementation of intervention processes are more realistically incorporated in discrete systems since

interventions are often discrete. Discrete systems improve computational efficiencies, therefore pro-

viding accurate numerical integration. Discrete time models require an appropriate discretization of

parameters of event under study into a finite number of temporally-regular time steps of which for

complex system its tedious. Careful consideration of the specific time step length in discrete time

analysis is important because if the time step is not chosen to match the scale of the system, errors

could be experienced. Discrete models can be more computationally demanding than continuous

models [27].
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Continuous models

In continuous models, modelling events happen at some point in time. The presentation of those

models is in differential equations. Models of discrete systems are often an approximation to the

models of continuous system, and simplifying assumptions may be needed. In general, a discrete

model results tend to be closer to those of the continuous time model when the time interval is

shorter. In continuous models it is easy to establish a comparison baseline[1].

2.4 Tools to solve mathematical models

2.4.1 Basic epidemiology terminology [1, 2]

1. The prevalence is a percentage of a specific observed population that is infected with a particular

disease. Usually the introduction of a disease into a population leads to an increase in the

prevalence rate.

2. The incidence of a disease is the rate at which new infections occur. LetR be the size of

the population, i, be the infected individuals at the start of a specific year and p be the new

infections occurring in that year. Then the prevalence rate is
i

R
and the incidence rate is

p

R− i
per year .

3. Serodiscordant couple is a couple where one partner is infected with a disease and the other

partner does not have that disease. The infected partner is referred to as seropositive partner

and the uninfected partner is referred to as seronegative partner.

4. Concordant negative couple is a couple where both partners do not have a disease in their

systems.

5. Concordant positive couple is a couple where both partners are infected with a disease.

2.4.2 Invariance principle

Definition 1. A set N is an invariant set with respect to a system of ordinary differential equations
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ẏ = f(y) if y(0) ∈ N y(t) ∈ N, for all t ∈ R.

A set N is positively invariant set with respect to ẏ = f(y) if y(0) ∈ M ⇒ y(t) ∈ M, for all t ≥ 0

[29].

2.4.3 Equilibrium [3, 4, 5]

Consider the autonomous system of ordinary differential equations

ẋ = f(x) y ∈ Rn (2.1)

Definition 2. x∗ is an equilibrium point if
dx

dt
= f(x) and f(x∗) = 0. This applies to a continuous

model or differential equation.

Definition 3. An equilibrium of the difference equation is a value x∗ such that f(x∗) = x∗, so that

xn = x∗ (n = 0, 1, 2, ...) is a constant solution of the difference equation.

Definition 4. An equilibrium point is said to be stable if all solutions sufficiently close to x∗ remain

close for all t ≥ 0, otherwise it is unstable.

Definition 5. (Asymptotic Stability)

An equilibrium point of (2.1) is asymptotically stable if it is stable and there exists a constant c > 0

such that if | y(t, x0 − x∗) |→ 0 as t→∞.

2.4.4 The basic reproduction number

Definition 6. Basic reproduction number, denoted as R0 is the average number of secondary infec-

tions resulting from introducing an infected individual into a disease-free population.

If R0 < 1 , then on average a few infected individuals brought into a fully susceptible population

will not be able to replace themselves and the disease will not spread. If R0 > 1, then the number

of infected individuals will increase with each generation and the disease will spread. For simple

compartments with one infected class we can calculate R0 simply by the definition of transmission

rate multiplied by the infection period. However, for complex models with several infected classes,

we need to make use of the next generation matrix method to determine R0 as presented in Van den

Driessche and Watmough [30].
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2.4.5 The next generation matrix method

Van den Driessche and Watmough introduced the next generation matrix method for the discrete

-time epidemic models to determine the reproduction number, R0, where we have more than one

infected class [31].

Let Y = (y1, y2, ..., yn)T present population’s n states corresponding to their disease status (suscep-

tible, infectious, recovered, etc). Let

Y (t+ 1) = D(Y (t)), t = 0, 1, ..., (2.2)

define the population states variable dynamics over discrete time intervals, where D:Rn
+→ Rn

+ and

D ∈ C1(Rn
+) for Rn

+= {Y = (y1, y2, ..., yn) | yj ≥ 0, j = 1, 2, ..., n}. Suppose the first m states,

m < n, presented as Y0 = (y1, ..., ym)T , are infectious or exposed states and n−m states are uninfected

states presented as Y1 = (ym+1, ..., yn)T . Therefore, (2.2) can be expressed asY0(t+ 1)

Y1(t+ 1)

 =

D0(X(t))

D1(Y (t)).

 (2.3)

We assume a unique disease-free equilibrium of a system (2.2) exists, where Y0 = 0 and Y1 > 0. We

also assume that the discrete system (2.4) could be linearized about the disease free equilibrium and

obtain the linearized system

X(t+ 1) = JX(t), (2.4)

where J is the n×n Jacobian matrix evaluated at the disease free equilibrium. Matrix J is presented

as

J =

F + T O

A C

 , (2.5)

where F and T are positive m × m submatrices, F + T is irreducible and O is the zero matrix.

Through differentiation with respect to states Y0 and evaluated at the disease free equilibrium we

obtain the matrices F and T. Identify the terms in D0 corresponding to those in T and those in

F . Let D0(Y (t)) = F(t) + T (t), where the vector of new infections surviving the time interval is

presented by F and the vector of any other transition leading to F and T is presented by T . We
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assume that the disease free equilibrium is locally asymptotically stable when there is no disease.

Hence, the spectral radius of C is less than one. The spectral radius of T is required to be less than

one. Hence, ρ(T ), ρ(C) < 1. The stability of the linear system , X(t + 1) = JX(t), is dependent on

the eigenvalues of F + T and does not depend on matrix A, since ρ(C) < 1 and matrix J is block

triangular. The matrix G = F (I −T )−1 is the next generation matrix, where I is the m×m identity

matrix. since the spectral radius of T is less than one, i.e ρ(T ) < 1,

G = F (I + T + T 2 + ...).

Let I0 be the density or initial number of infectious individuals vector, then during the lifespan of

the population the distribution of all infections is represented by,

GI0 = F (I0 + TI0 + T 2I0 + ...),

.

The basic reproduction number(R0) is defined as the spectral radius of the matrix G,

R0 = ρ(F [I − T ]−1) = ρ(G). (2.6)

2.5 Summary

In this chapter we reviewed the literature on mathematical and economic epidemiology. The literature

showed that the mathematical epidemiology is a very useful concept to present epidemic infectious

diseases into simple and complex mathematical models which have to be solved and analyzed to

produce the required results from the problem under study. However, the mathematical epidemiology

models focus mostly on the dynamics and transmission of infectious diseases and gives less attention to

effects of intervention strategies and implementation in terms of environmental, social and economic

costs and benefits. The Economic epidemiology concept has not been used much in investigating the

epidemics of infectious diseases but has proven to be vital in the analysis of social economic welfare

and strategic implementation costs analysis. However, the economic epidemiology models give better

results when the model under study is not too broad. Therefore, mathematical and economic models

combined may capture a bigger scope of epidemic infectious disease problems and more accurate and
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good results could be obtained. Preliminary concepts were also looked at in this chapter, where some

types of mathematical models and tools to solve the mathematical tools were looked at in details.

Some of the mathematical models and tools looked at in this chapter will be applied to the problem

under study in the next chapter.
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Chapter 3

Models of the formation of serodiscordant

couples and the dynamics of HIV with

treatment

3.1 Introduction

HIV/AIDS is one of the infectious diseases with a rapid spreading behavior in the society and in time

it changes its distribution in space. Various factors and influences are responsible for an increased

HIV infection risk. Recent research showed that the most heavily affected region by HIV/AIDS in

the world is the sub-Saharan Africa [11]. The focus on preventing HIV in the first two decades of the

HIV epidemic in sub Saharan Africa was on HIV negative individuals mainly prostitutes, individuals

with more than one sexual partner and children and women. Most HIV transmission in sub-Saharan

African region occurs amongst stable long term relationships, cohabitating and married serodiscor-

dant couples [32, 33]. Standard mathematical models have been applied to model and analyze the

spread of HIV amongst single individuals, cohabitating couples and married couples. Mathematical

models have also been used to seek ways to minimize the risks of HIV infection [34, 35]. In this

study we investigate the best intervention strategies that could minimize risks of HIV transmission

among the HIV serodiscordant couples using mathematical and economic aspects. We formulate

the two sub-models of single individuals and married couples HIV transmission dynamics and the

main complex model which combines the single individuals and married couples HIV transmission
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dynamics.

We consider the dynamics of HIV transmission and serodiscordant formation through three models,

namely, serodiscordant couples formation from marriage of single individuals, formation of serodiscor-

dant couples through infection of HIV concordant negative couples and single’s and married couples

HIV transmission and formation of serodiscordant couples. We have nine compartments in the dy-

namics, namely, the single HIV negative individuals, SN , with high risk of getting HIV infection,

the single HIV positive individuals, SP , who are infectious and can actively transmit HIV to other

individuals, the HIV negative concordant couples, MNN , who are married susceptible couples free of

HIV but at risk of getting HIV infection, the HIV-serodiscordant couples, MNP , where one partner

is HIV positive and infectious and one is HIV negative with high chances of getting HIV infection,

the HIV concordant positive couples, MPP , who are married and can transmit HIV infection to other

individuals, the treated single HIV positive individuals, TSP
, the treated HIV serodiscordant couples,

TMNP
, and the treated HIV concordant positive married couples, TMPP

. The parameters and their

description are presented in Table 3.1. In the HIV positive single individuals compartment one indi-

vidual takes treatment. In the serodiscordant married couples compartment the seropositive partner

takes treatment. In the HIV concordant positive married couples both partners in marriage take

treatment.

We use proportions to indicate the number of individuals treated in each compartment. In the sub-

models we assume that proportions are based on the the least number of infected individuals taking

treatment in each compartment, out of the least case of total infected individuals in the same com-

partment. In, Sp, we have at least one taking treatment, for ,MNP , we have one out of two taking

treatment,
1

2
, and in, MPP , we have,

2

2
, taking treatment. While in the main model proportions are

based on the least case of infected individuals taking treatment per compartment, out of the least

case of the total infected individuals in a population. In, SP and MNP , we have ,
1

4
, and ,MPP ,

we have ,
2

4
. This is because we would like to incorporate treatment and use these proportions in

determining the best strategies based on the least case of the total infected in the population rather

than per compartment. However, the constant treatment rate implemented in each sub-model is the

same.

We assume the population can mix homogeneously, meaning any member of the population is free

to sexually commit to anyone in the population. We also assume that there is no re-infection of HIV
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Table 3.1: Parameters and description

Parameters Description

µ Natural death rate

δ HIV induced death rate

α Marriage rate regardless of the HIV status

β HIV infection rate

ε Treatment rate

π Recruitment rate

within the population. The change of HIV status with time of single individuals and married couples

determine the classes they move to. We assume that the married couples stay married throughout

the duration of study and there is no marriage dissolution. This is a simplifying assumption and we

acknowledge that including marriage dissolution and remarriage will definitely alter the predictions

of the current models. We assume that every individual or couple leaves the population through

death only and there is no immigration of married couples. We further assume that the only allowed

marriage dynamics of single individuals is the one that may lead to the formation of serodiscordant

couples immediately or later due to infection.

3.2 Serodiscordant couples formation from marriage of sin-

gle individuals

We consider a sub-model that shows HIV transmission amongst single individuals and the formation

of serodiscordant couples. The sub-model consists of five compartments, namely, SN , SP , TSP
where

single individuals from these compartments could marry each other to form the serodiscordant couples

compartment MNP and TMNP
. We assume that the subtotal population is

K = SN + SP +MNP + TSP
+ TMNP

. (3.1)

When the single HIV negative individuals, SN , get an infection from single HIV positive individuals

they move to the class of single HIV positive individuals, SP . When a single HIV negative individual

gets married to the single HIV positive individual, the couple will join the HIV serodiscordant couples.
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We assume that the constant rate of recruitment of all single susceptible individuals into the pop-

ulation is, π. Single HIV negative individuals are removed from the susceptible compartment , SN ,

either through natural death at a constant death rate µ, or through union in marriage to HIV positive

single individuals at a marriage rate α, and through HIV infection from infectious individuals with

a force of infection, ΛN(SP ,MNP , TSP
, TMNP

) (see equation 3.2).

Single HIV positive individuals compartment, SP , recruitment is through HIV infected individu-

als from the compartment, SN . Single HIV positive individuals are removed from this class through

blanket death at a rate, (µ+ δ). Blanket death is the combination of natural death, µ, and a disease

induced death, δ. They are also removed when single HIV positive individuals get married to single

HIV negative individuals to form HIV serodiscordant couples at a rate, α.

We assume that HIV serodiscordant couples compartment, MNP , recruits couples when HIV negative

individuals get married to HIV positive individuals, α(SN + SP ). HIV Serodiscordant couples are

removed from the compartment, MNP , through change of status when the HIV negative partner gets

infected and the couple is removed at a constant rate, φ, and through natural death at a constant

death rate µ.

We assume that HIV positive individuals from the compartment who take treatment at a rate,

ε, progress to the HIV single individuals treated compartment, TSP
. Individuals are removed from

this compartment through union in marriage to HIV negative single individuals at a rate, α, and

through natural death at a constant death rate, µ.

We also assume that a seropositive partner in the serodiscordant couples compartment who take

treatment progress to the HIV serodiscordant couples treated compartment, TMNP
, at a rate, ε. The

serodiscordant couples are also recruited into this compartment as result of a marriage union of

individuals from the compartments, SN and TSP
at a rate α. The couples are removed from this

compartment at a constant rate φNP through change of status when the seronegative partner gets

infected and they are also removed through natural death at a rate, µ.
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3.2.1 Force of infection for SN

A force of infection is the rate at which susceptible individuals contract an infectious disease [36].

We have seven individuals in the model of serodiscordant couples formation from marriage of single

individuals that are involved in the transmission dynamics of HIV at any particular time, one from

each of the compartments, SN , SP , TSP
and two from each of , MNP and TMNP

. Every HIV negative

individual in the population has chances of being infected by HIV positive individuals from the four

sources of infection compartments, SP , TSP
, MNP and TMNP

. There are four infectious individuals,

one from the HIV positive single individuals compartment, one from the serodiscordant couple’s

compartment and each from the treated compartments, TSP
and TMNP

. Hence, the chances of an

HIV negative individual to get infected with HIV from each source of infection compartment, SP ,

TSP
, TMNP

and MNP are
1

4
for each of the sources of infection. We assume that the infection rate,

β, of each infected individual is the same.

We also assume that single individuals have high chances of having several regular and casual sexual

partners and that HIV positive single individuals, SP , have greater chances of spreading HIV than

married couples, since they are not necessary bounded by any contractual obligation [37]. We assume

that individuals who are taking treatment are more cautious than those who are not treated because

of the intensive HIV counseling that they go through before they are given treatment. Hence, the

transmission rate from SP compared to the one from MNP , TSP
and TMNP

is , βη, where η > 1. η,

is an amplification factor. Whilst the transmission rate from MNP , TSP
and TMNP

is β. The force of

infection for HIV negative individuals, SN , denoted by, ΛN , is given by

ΛN =
β

4K
(ηSP +MNP + TSP

+ TMNP
). (3.2)

The HIV transmission dynamics illustrated in Figure 3.1 are presented by the continuous system as
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Figure 3.1: Schematic diagram that represents the formation of serodiscordant couples through

marriage of single individuals.

follows:

dSN
dt

= π − ΛNSN − (2α + µ)SN , (3.3)

dSP
dt

= ΛNSN − (α + ε+ µ+ δ)SP , (3.4)

dMNP

dt
= α(SN + SP )− (φ+

1

2
ε+ µ)MNP , (3.5)

TSP

dt
= εSP − (α + µ)TSP

, (3.6)

dTMNP

dt
=

1

2
εMNP + α(SN + TSP

)− (φNP + µ)TMNP
. (3.7)

where φ > φNP and the treatment rate is 0 ≤ ε ≤ 1.
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3.2.2 Feasible region

The region Ω =
{

(SN , SP ,MNP , TSP
, TMNP

) ∈ R5
+|K(t) ≤ π

µ

}
, is feasible if it is positively in-

variant with respect to the system(3.3)-(3.7). Therefore, we have to prove that all the classes

SN , SP ,MNP , TSP
and TMNP

are non-negative at all times (t ≥ 0) and are bounded in the region

Ω. We state and prove the positive invariance of solutions as in [38, 39]. The system of equations

(3.3)-(3.7) has initial conditions given by SN(0) ≥ 0, SP (0) ≥ 0, MNP (0) ≥ 0, TSP
(0) ≥ 0 and

TMNP
(0) ≥ 0.

Theorem 1. The region Ω ∈ R5
+ is positively invariant with respect to the system of equations

(3.3)-(3.7) and a non-negative solution exists for all time 0 < t <∞.

Proof. We can prove that the solutions in region Ω are positive by contradiction. Assume that there

exits a first time,

tN such that: SN(tN) ≤ 0, and SN(t) > 0, SP (t) > 0, MNP (t) > 0, TSP
and TMNP

for 0 ≤ t ≤ tN , if

we apply these conditions in the model system (3.3)-(3.7) we find that,

S ′N(tN) = π > 0, (3.8)

hence, if we integrate S ′N(tN) we get that SN(tN) > 0 which gives a contradiction to the assumption

that SN(tN) ≤ 0, hence SN remains positive for all t ∈ [0, tN ]. If tN →∞, then SN > 0 ∀ t ∈ [0,∞).

Similarly, SP > 0, MNP > 0, TSP
> 0 and TMNP

> 0 ∀ t > 0.

Therefore in all cases SN , SP ,MNP , TSP
and TMNP

remain positive for all t ≥ 0, hence the region Ω

has positive solutions. The change in total population, K, over time of model (3.3)-(3.7) is

dK

dt
=

d

dt
(SN + SP +MNP + TSP

+ TMNP
) = π − µK − δ(SP ) (3.9)

since K(t) ≥ SP (t) , then

π − (µ+ δ)K(t) ≤ K ′(t) ≤ π − µK(t). (3.10)

To determine the upperbound of K(t) we integrate

dK

dt
≤ π − µK,
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that is, ∫ K

K(0)

dV

π − µV
≤
∫ t

0

du,

hence,

− 1

µ

[
ln|π − µV |

]K
K(0)
≤
[
u
]t
0
.

Hence we obtain,

K(t) ≤ π

µ
(1− e−µt) +K(0)e−µt, (3.11)

for all t > 0. Consequently, lim sup
x→∞

K(t) ≤ π

µ
. If K(0) ≤ π

µ
, then

π

µ
is the upperbound for K. This

K(t) is uniformly bounded, this means that SN , SP ,MNP , TSP
and TMNP

have a common upperbound.

To determine the lowerbound of K(t) we integrate both sides of

dK

dt
≥ π − (µ+ δ)K,

that is, ∫ K

K(0)

dP

π − (µ+ δ)P
≥
∫ t

0

dr,

Hence we obtain,

K(t) ≥ π

µ− δ
(1− e−(µ+δ)t) +K(0)e−(µ+δ)t, (3.12)

for all t > 0. Consequently, lim inf
x→∞

K(t) ≥ π

µ+ δ
. If K(0) ≥ π

µ+ δ
, then

π

µ+ δ
is the lowerbound for

K(t). SN , SP ,MNP , TSP
and TMNP

have a common lowerbound. Therefore, all solutions starting in

the region Ω enter or remain in Ω for all time. Thus we conclude that the region

Ω =

{
(SN , SP ,MNP , TSP

, TMNP
) ∈ R3

+|K(t) ≤ π

µ

}
(3.13)

is positively invariant for the model (3.3)-(3.7). The solutions of the model (3.3)-(3.7) are considered

to be both biologically and mathematically feasible in the region Ω, hence it is sufficient to study the

dynamics of the model in Ω.
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The system of continuous differential equations (3.3)-(3.7) can be transformed into the following

system of discrete difference equations:

(SN)t+1 = (SN)t + π − (ΛN)t(SN)t − (2α + µ)(SN)t, (3.14)

(SP )t+1 = (SP )t + (ΛN)t(SN)t − (α + ε+ µ+ δ)(SP )t, (3.15)

(MNP )t+1 = (MNP )t + α((SN)t + (SP )t)− (φ+
1

2
ε+ µ)(MNP )t, (3.16)

(TSP
)t+1 = (TSP

)t + ε(SP )t − (α + µ)(TSP
)t, (3.17)

(TMNP
)t+1 = (TMNP

)t +
1

2
εMNP + α(SN + TSP

)t − (φNP + µ)(TMNP
)t. (3.18)

3.2.3 Existence of equilibria and Invasion reproduction number

We shall determine the equilibrium points and the invasion reproduction number, Rinv, and the

stability analysis of the discrete model (3.14)-(3.18). The discrete system has only one equilibrium

point, the endemic equilibrium point E1. We do not have a disease free equilibrium point for the

discrete model (3.14)-(3.18) because we always have serodiscordant couples present in the population.

Endemic equilibrium point E1

The endemic equilibrium point of the discrete system (3.14)-(3.18) is given by,

E1 = (S∗N , S
∗
P ,M

∗
NP , T

∗
SP
, T ∗MNP

). (3.19)

where

S∗N =
π

Φ1 + Λ∗N
, S∗P =

πΛ∗N
Φ2(Φ1 + Λ∗N)

, (3.20)

M∗
NP =

π(Φ2 + Λ∗N)

Φ2Φ3(Φ1 + Λ∗N)
, T ∗SP

=
πΛ∗N

Φ2Φ4(Φ1 + Λ∗N)
, (3.21)

T ∗MNP
=

Φ6 + Φ7Λ
∗
N

Φ8(Φ1 + Λ∗N)
(3.22)

where,

Φ1 = 2α + µ, Φ2 = α + ε+ µ+ δ, Φ3 =
α

φ+
ε

2
+ µ

, Φ4 =
ε

α + µ
, Φ5 = φNP + µ,

Φ6 = Φ2(2πΦ4α + ε), Φ7 = 2πΦ2
4α + ε2, Φ8 = 2Φ2Φ4Φ5ε
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and

Λ∗N =
β

4K∗
(ηS∗P +M∗

NP + T ∗SP
+ T ∗MNP

) (3.23)

We consider the following equation to solve for Λ∗N

4K∗Λ∗N − β(ηS∗P +M∗
NP + T ∗SP

+ T ∗MNP
) = 0 (3.24)

which when simplified we obtain, the equation

a2Λ
2
N + a1ΛN + a0 = 0, (3.25)

where

a2 = 4(π(Φ3Φ4Φ8 + Φ4Φ8 + Φ3Φ8) + Φ2Φ3Φ4Φ7) (3.26)

a1 = 4(πΦ2Φ3Φ4Φ8 + πΦ2Φ4Φ8 + Φ2Φ3Φ4Φ6)− β(πΦ4Φ8 + Φ2Φ3Φ4Φ7) (3.27)

a0 = −βΦ4(ηπΦ3Φ8 + πΦ2Φ8 + Φ2Φ3Φ6). (3.28)

.

The nonnegative solution of (3.25) is

Λ∗N =
−a1 +

√
a21 + 4a2a0

2a2
. (3.29)

Invasion Reproduction number

The invasion reproduction number is determined the same way as the basic reproduction number

but using the endemic equilibrium point E1 [40]. We will use the next generation matrix by Van

den Driessche and Allen [41] to determine the invasion reproduction number of the discrete system

(3.14)-(3.18). Since we have two infected compartments, we let Fi be the rate of appearance of new

infections in compartment i and let Ti be the transfer rate of individuals into and out of compartment

i by all other means. Then

Fi =


ΛNSN(t)

0

0

0

 , (3.30)
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Ti =


(1− α− ε− µ− δ)SP (t)

α(SN(t) + SP (t)) + (1− φ− ε

2
− µ)MNP (t)

εSP + (1− α− µ)TSP
(t)

α(SN + TSP ) +
ε

2
MNP − (1− φNP − µ)TMNP

(t)

 . (3.31)

The matrices F and T are defined by;

F =

[
∂Fi(E1)

∂xj

]
and T =

[
∂Ti(E1)

∂xj

]
, (3.32)

for 1 ≤ i, j ≤ 4. The state with no force of infection is represented by the vector x0 = E1. We

determined F and (I − T )−1 to be,

F =



a

4(ΛNP1 + P2)

b

4(ΛNP1 + P2)

c

4(ΛNP1 + P2)

d

4(ΛNP1 + P2)

0 0 0 0

0 0 0 0

0 0 0 0


(3.33)

where

a = π(α + µ)(α + δ + ε+ µ)(ε+ 2(φ+ µ))(φNP + µ)(βη − 4ΛN) (3.34)

b = c = d = π(α + µ)(α + δ + ε+ µ)(ε+ 2(φ+ µ))(φNP + µ)(β − 4ΛN) (3.35)

and

P1 = π(ε(µ+ 2φNP )(ε+ 2(φ+ µ)) + α((ε+ 2µ)(1 + α + µ) + (α + µ)(φNP + µ)(ε+ 2(φ+ µ))

+ 2(φ+ φNP (α + µ))))

P2 = π(α + δ + ε+ µ)(2α(ε+ 2µ+ φ) + µ(ε+ 2(φ+ µ)) + φNP (2α + ε+ 2(φ+ µ)))

,

T =


1− α− ε− δ − µ 0 0 0

α 1− φ− ε

2
− µ 0 0

ε 0 1− α− µ 0

0
ε

2
α 1− φNP − µ

 (3.36)
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then,

(I−T )−1 =



1

α + δ + ε+ µ
0 0 0

2α

(α + δ + ε+ µ)(ε+ 2(φ+ µ))

1
ε

2
+ φ+ µ

0 0

ε

(α + µ)(α + δ + ε+ µ)
0

1

α + µ
0

m
ε

(ε+ 2(φ+ µ))(φNP + µ)

α

(α + µ)(φNP + µ)

1

φNP + µ


(3.37)

where,

m =
αε(α + ε+ 3µ+ 2φ)

(α + µ)(α + ε+ δ + µ)(ε+ 2(φ+ µ))(φNP + µ)
.

The next generation matrix F (I − T )−1 is given as

F (I − T )−1 =


Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

Q9 Q10 Q11 Q12

Q13 Q14 Q15 Q16

 , (3.38)

where

Q1 =
q1 + q2

4(ΛNr1 + r2)
,

q1 = π(β − 4ΛN)(αε(α + ε+ 3µ+ 2φ) + 2α(α + µ)(φNP + µ) + ε(ε+ 2(φ+ µ))),

q2 = (α + µ)(ε+ 2(φ+ µ))(φNP + µ),

Q2 =
π(α + µ)(α + δ + ε+ µ)(ε+ 2µ+ 2φNP )(β − 4ΛN)

4(ΛNr1 + r2)
,

Q3 =
π(α + δ + ε+ µ)(ε+ 2(φ+ µ))(β − 4ΛN)(α + φNP + µ)

4(ΛNr1 + r2)
,

Q4 =
π(α + µ)(α + δ + ε+ µ)(ε+ 2(φ+ µ))(β − 4Λ)

4(ΛNr1 + r2)
,

r1 = πε(µ+ 2φNP )(ε+ 2(φ+ µ)) + πα((ε+ 2α)(1 + α + µ) + 2(φ+ φNP (α + µ)),

+ π(α + µ)(φNP )(ε+ 2(φ+ µ)),

r2 = π(α + δ + ε+ µ)(2α(ε+ 2µ+ φ) + µ(ε+ 2(φ+ µ))) + φNP (2α + ε+ 2(φ+ µ)).

The invasion reproduction number is given by

Rinv = Q1. (3.39)
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We require that the condition, β− 4ΛN > 0, always hold for the invasion reproduction number to be

greater than zero and be valid. Where, ΛN , is the real value obtained in equation (3.29).

Stability of an endemic equilibrium point E1

The system (3.14)-(3.18) also has an endemic equilibrium points, the jacobian matrix is given by

J(S∗N , S
∗
P ,M

∗
NP , T

∗
SP
, T ∗MNP

) = 

a b c d e

f g h i j

k l m n o

p q r s t

u v w x y


(3.40)

where

a = 1− ΛN(1− SN
K∗

)− 2α− µ, b = −S
∗
N(βη − 4ΛN)

4K∗

(c, d, e) = −S
∗
N(β − 4ΛN)

4K∗
, f = ΛN , g =

S∗N(βη − 4ΛN)− 4K∗(α + ε+ δ + µ)

4K∗

(h, i, j) =
S∗N(β − 4ΛN)

4K∗
, (k, l, x, u) = α, m = 1− φ− ε

2
− µ, (n, p, r, t, v) = 0, q = ε,

s = 1− α− µ w =
ε

2
, y = 1− φNP − µ

K∗ =
π(k∗1 + k∗2)

k∗3

k∗1 = ε(µ+ 2φNP )(ε+ 2(φ+ µ)) + πα((ε+ 2µ)

(1 + α + µ)2φ+ 2φNP (α + µ) + π(α + µ)(φNP + µ)(ε

+ 2(φ+ µ)))

k∗2 = π(α + δ + ε+ µ)(2α(ε+ 2µ+ φ) + µ(ε+ 2(µ+ φ))

+ φNP (2α + ε+ 2(φ+ µ)))

k∗ = (α + µ)(α + ε+ δ + µ)(ε+ 2(φ+ µ))(φNP + µ)

(2α + λN + µ)

The characteristic equation for the matrix is given by

z0λ
5 − λ4z1 − λ3z2 − λ2z3 − λz4 − z5 = 0 (3.41)

31



where

z0 = 1

z1 = s+ g + y +m+ a

z2 = qi+ c+ lh− eu− bf − sg − sy − sm− sa− gy −mg −my − ag − ay −ma

z3 = lcf − lhy + w − cg − cy − sc+ kbh+ df − qiy + qxj − qmi+ sgy + smg + sag

+ smy + say +mas+mgy + gya+mag +may + bfs+ bfm+ bfy + eus+ eum

− buj − eug

z4 = qkdh− qkli+ qmiy − qmxj + aiyq − axjq − qdfm− dfy + duj + efx− skbh

+ scg + scy − sew − kbhy + kbwj + cgy − ewg − slah− slcf + lwj − lcfy + lujc

+ lefw − lhu− smgy − sagy −masg −masy −magy − smbf − smeu− bfys− bfym

+ bujs+ bujm+ eugs+ eugm

z5 = qkciy − qkcjx− qkdhy + qkdwj − qkewi− qmaiy + qmaxj + qdfym− qdujm

− qefxm+ qeuim+ skbhy − skbwj − scgy + sewg − slahy + slwja+ slcfy

− slcuj − slefw + slehu+masgy − bfysm− smuj − smeug
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Table 3.2: Descartes rule of signs on the characteristic equation (3.41)

z0 z1 z2 z3 z4 z5 Possible outcomes of positive and negative real roots and imaginary roots

+ - + + + + 2 or 0 positive; or exactly 1 negative; and 4 or 2 or 0 imaginary

+ - + + + - 3 or 1 positive; or atleast 2 or 0 negative; and 4 or 2 or 0 imaginary

+ - + + - + 4 or 2 or 0 positive; or atleast 3 or 1 negative; and 4 or 2 or 0 imaginary

+ - + - + + 4 or 2 or 0 positive; or atleast 3 or 1 negative; and 4 or 2 or 0 imaginary

+ - - + + + 2 or 0 positive; or atleast 3 or 1 negative; and 4 or 2 or 0 imaginary

+ - + + - - 3 or 1 positive; or atleast 2 or 0 negative; and 4 or 2 or 0 imaginary

+ - - + - - 3 or 1 positive; or atleast 4 or 2 or 0; and 4 or 2 or 0 imaginary

+ - - - + - 3 or 1 positive; or atleast 4 or 2 or 0; and 4 or 2 or 0 imaginary

+ - + - - - 3 or 1 positive; or atleast 2 or 0 negative; and 4 or 2 or 0 imaginary

+ - + - - + 4 or 2 or 0 positive; or 3 or 1 negative; and 4 or 2 or 0 imaginary

+ - - - - + 2 or 0 positive; or atleast 3 or 1 negative; and 4 or 2 or 0 imaginary

+ - - + - + 4 or 2 or 0 positive; atleast 3 or 1 negative; and 4 or 2 or 0 imaginary

+ - - - + + 2 or 0 positive; or atleast 3 or 1 negative; and 4 or 2 or 0 imaginary

+ - + - + - 5 or 3 or 1 positive; or 4 or 2 or 0 negative; and 4 or 2 or 0 imaginary

+ - - + + - 3 or 1 positive; or 4 or 2 or 0 negative; and 4 or 2 or 0 imaginary

+ - - - - - exactly 1 positive; or 2 or 0 negative; and 4 or 2 or 0 imaginary

The Table 1.1 shows the real and imaginary roots for each possible change of signs we could have

in the characteristic equation (3.41). There is at least one positive real root, hence, an endemic

equilibrium point is stable when max{|λ1|, |λ2|, |λ3|, |λ4|, |λ5|} < 1.

3.3 Formation of serodiscordant couples through infection

of HIV concordant negative married couples

We shall consider the model of the dynamics of HIV transmission amongst married couples and the

formation of serodiscordant couples. This network consist of five compartments, namely, MNN ,MNP ,

MPP , TMNP
and TMPP

. We assume the subtotal population to be

G = MNN +MNP +MPP + TMNP
+ TMPP

. (3.42)
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When one partner in the HIV concordant negative married couple, MNN , gets infected with HIV, that

couple progresses to join HIV serodiscordant couples in compartment, MNP . When both partners

from the HIV concordant negative couple, get infected with HIV, the couple progress to the HIV

concordant positive couple’s compartment, MPP . The HIV concordant negative married couples

are recruited at a constant rate, ζ. They are removed through infection with a force of infection,

ωNN (see equation 3.43) and through natural death at a rate, µ. Couples from this compartment are

removed at the rate, τNP , to form serodiscordant couples and, τPP , to form HIV concordant positive

couples so that τ = τNP + τPP .

Serodiscordant couples recruitment is from the proportion of concordant negative married couple

that is removed because one partner has been infected with HIV. When a seronegative partner in the

serodiscordant couple gets infected with HIV, the couple will move to the HIV concordant positive

couple’s compartment, MPP ,. Serodiscordant couples are also removed from the compartment, MNP ,

when the HIV negative partner gets infected with a force of infection, ωNP , (see equation 3.44) and

move to the HIV positive concordant couple’s compartment. When the seropositive partner in a

serodiscordant couple takes treatment the couple moves to the treated serodiscordant compartment,

TMNP
, at a constant treatment rate, ε. We assume that when both partners in the HIV concordant

positive couple, MPP , take treatment the couple moves to the HIV concordant positive treated com-

partment at a constant treatment rate, ε, and also the couples are removed from this compartment

through the blanket death at a rate (δ + µ).

3.3.1 Forces of infection

The married couples HIV transmission network has a total number of ten individuals involved in the

transmission dynamics of HIV at any particular time, two from each compartment MNN , MNP , MPP ,

TMNP
and TMPP

. The compartments MNP , MPP , TMNP
and TMPP

are the four sources of infection

for every HIV negative individual in the population. Six individuals are infectious, one from each of

the serodiscordant couples, MNP , and TMNP
, two from each of the HIV positive concordant couples,

MPP and TMPP
. Hence, HIV negative individual’s chances of getting infected with HIV from MNP

and TMNP
is

1

6
and from MPP and TMPP

is
1

3
.
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Force of infection for MNN

We assume that HIV concordant negative couples are also exposed to the risk of being infected with

HIV by the HIV positive individuals from compartments, MNP , MPP , TMNP
and TMPP

. We also

assume that infectious individuals have the same HIV transmission rate. We assume that, θ > 1, is

amplification factor that indicates a greater chance that infectious individuals from MNP and MPP

have to infect HIV negative individuals compared to infectious individuals from the compartments

TMNP
and TMPP

who have less chances because of an intensive counseling they got before and after

taking treatment. Therefore the force of infection of MNN , is denoted by, ωNN , given by

ωNN =
β

6G
(θMNP + 2θMPP + TMNP

+ 2TMPP
) (3.43)

Force of infection for MNP

We assume that the HIV negative partners in serodiscordant couples are exposed to more risk of

contracting the disease from their HIV positive partners since couples stay together and have sex

frequently and the use of prevention measures is very low [42, 32]. However, we assume that the HIV

negative partners in serodiscordant couples are still at risk of contracting HIV from outside partners.

The HIV negative individual in the serodiscordant couple have a risk of being infected by individuals

from the compartments, MPP , TMNP
, TMPP

. We assume that, γ, indicates greater chances that

seropositive partner in the serodiscordant couple has to infect the seronegative partner compared to

the other infectious individuals. However, infectious individuals from the compartment, MPP have

an amplification factor, ψ, indicating greater chances of infecting HIV negative individuals compared

to individuals from the treated compartments, TMNP
, TMPP

. Therefore, the force of infection for the

HIV negative individual in the serodiscordant couples, MNP , denoted by, ωNP , given by

ωNP =
β

6G
(γMNP + 2ψMPP + TMNP

+ 2TMPP
) (3.44)

where γ > ψ > 1.

Force of infection for TMNP

We assume that the seronegative individuals from the treated serodiscordant couples compartment,

TMNP
, are also exposed to a risk of contracting HIV from the infectious individuals in the population.
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However, we assume that individuals who are on treatment are more cautious than individuals who

are not taking treatment because of counseling. Therefore, they will rather be engaged in an outside

sexual relationship with an individual who is also treated for HIV because they could be both willing

to protect each other but we do not neglect that there are possibilities that an individual from the

treated compartment could be in a sexual relationship with someone outside the treated compart-

ments. The chances in which individuals from the compartment, MNP and MPP , have to infect a

seronegative individual from a treated serodiscordant couple is the same, while the amplification fac-

tor, κ, indicates that the treated HIV concordant positive couple has greater chances of infecting the

seronegative individual in the treated serodiscordant couple compared to the compartments, MNP

and MPP . However, the amplification factor, $, indicates greater chances that seropositive partner

in the treated serodiscordant couple has greater chances infecting the seronegative partner compared

to all the infectious individuals in the population. We assume that ρ is the factor influencing the

transmission rate.

ωT =
ρβ

6G
(MNP + 2MPP +$TMNP

+ 2κTMPP
) (3.45)

where $ > κ > 1.

The illustration in Figure 3.2 can be presented in continuous system of equation as follows:

dMNN

dt
= ζ − τωNNMNN − µMNN , (3.46)

dMNP

dt
= τNPωNNMNN − (ωNP +

ε

2
+ µ)MNP , (3.47)

dMPP

dt
= τPPωNNMNN + ωNPMNP − (µ+ δ + ε)MPP (3.48)

dTMNP

dt
=

1

2
εMNP − ωTTMNP

− µTMNP
, (3.49)

dTMPP

dt
= ωTTNP + εMPP − µTMPP

. (3.50)
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Figure 3.2: Schematic diagram that represents the formation and progression of serodiscordant cou-

ples.

3.3.2 Feasible region

The region, Γ =
{

(MNN ,MNP ,MPP , TMNP
, TMPP

) ∈ R5
+ | G(t) ≤ ζ

µ

}
, is feasible if it is positively

invariant with respect to the model (3.46)-(3.50). Therefore, we have to prove that all the classes

MNN ,MNP , MPP , TMNP
and TMPP

are non-negative at all times (t ≥ 0) and are bounded in the region

Γ. We state and prove the positive invariance of solutions as in [38, 39]. The system of equations (3.46-

3.50) has initial conditions given by MNN(0) ≥ 0,MNP ≥ 0,MPP ≥ 0, TMNP
(0) ≥ 0, TMPP

(0) ≥ 0.

Theorem 2. The region Γ ∈ R5
+ is positively invariant with respect to the system of equations

(3.46)-(3.50) and non-negative solutions exist for all time 0 < t <∞.
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Theorem 5 can be proved using the same technique used in section 3.2.2 Thus, region

Γ =

{
(MNN ,MNP ,MPP , TMNP

, TMPP
) ∈ R5

+;G(t) ≤ ζ

µ

}
(3.51)

is positively invariant for the system (3.46)-(3.50). Therefore, it is sufficient to study the dynamics

of the model in region Γ, since all the solutions of the model (3.46)-(3.50) are both epidemiologically

and mathematically feasible.

The system of continuous differential equation (3.46)-(3.50) can be represented in the following dis-

crete form,

(MNN)t+1 = (MNN)t + ζ − τ(ωNN)tMNN − µ(MNN)t, (3.52)

(MNP )t+1 = (MNP )t + τNP (ωNN)t(MNN)t − (ωNP )t(MNP )t −
1

2
ε(MNP )t − µ(MNP )t, (3.53)

(MPP )t+1 = (MPP )t + τPP (ωNN)t(MNN)t + (ωNP )t(MNP )t − ε(MPP )t − (µ+ δ)(MPP )t, (3.54)

(TNP )t+1 = (TMNP
)t +

1

2
ε(MNP )t − ωT (TMNP

)t − µ(TMNP
)t, (3.55)

(TMPP
)t+1 = (TMPP

)t + ωT (TNP )t + ε(MPP )t − µ(TMPP
)t. (3.56)

3.3.3 Existence of equilibria and the basic reproduction number

We have to determine the equilibrium points and the threshold value, R0, and the stability analysis

on the difference equations (3.52)-(3.56). The discrete system has a disease free equilibrium E0 and

an endemic equilibrium E1.

Disease free equilibrium point

The system of discrete model (3.52)-(3.56) has the disease free equilibrium given by,

E0 =

(
ζ

µ
, 0, 0, 0, 0

)
(3.57)

38



Basic reproduction number

The discrete system (3.52)-(3.56) has four infectious compartments, therefore we need to make use

of the next generation matrix as in [41]. Therefore we have that,

Fi =


τNP (ωNN)t(MNN)t

τPP (ωNN)t(MNN)t + (ωNP )t(MNP )t

0

ωTTMNP

 , (3.58)

and

Ti =


(1− ωNP − µ−

1

2
ε)(MNP )t

(1− ε− µ− δ)(MPP )t
1

2
εMNP − (1− ρ− µ)TMNP

εMPP − µTMPP


. (3.59)

To formulate the next generation matrix we need to generate the two 4×4 matrices, F and (I−T )−1,

for new infections and for transition, respectively. Where I is the identity matrix corresponding to

the 4× 4 matrix, T . The matrices F and T are defined by;

F =

[
∂Fi(E0)

∂xj

]
and T =

[
∂Ti(E0)

∂xj

]
, (3.60)

for 1 ≤ i, j ≤ 4. The disease free state is represented by the vector x0 = E0. We determined F and

(I − T )−1 to be,

F =



βτNP θ

6

βθτNP
3

βτNP
6

βτNP
3

βθτPP
6

βθτPP
3

βτPP
6

βτPP
3

0 0 0 0

0 0 0 0


(3.61)

and

T =


1− 1

2
ε− µ 0 0 0

0 1− ε− µ− δ 0 0
1

2
ε 0 1− µ 0

0 ε 0 1− µ


(3.62)
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therefore,

(I − T )−1 =



2

ε+ 2µ
0 0 0

0
1

ε+ µ+ δ
0 0

ε

µ(ε+ 2µ)
0

1

µ
0

0
ε

µ(δ + ε+ µ)
0

1

µ


(3.63)

Then the next generation matrix F (I − T )−1 is given as,

F (I − T )−1 =



βτNP (2θµ+ ε)

6µ(ε+ 2µ)

βτNP (θµ+ ε)

3µ(δ + ε+ µ)

βτNP
6µ

βτNP
3µ

βτPP (2θµ+ ε)

6µ(ε+ 2µ)

βτPP (ε+ θµ)

3µ(δ + ε+ µ)

βτPP
6µ

βτPP
3µ

0 0 0 0

0 0 0 0


. (3.64)

The eigenvalues of the matrix F (I − T )−1 are given by;

λ1,2 = 0, or λ2 − λ(a+ f) + af − be = 0

where

a =
βτNP (2θµ+ ε)

6µ(ε+ 2µ)
, b =

βτNP (θµ+ ε)

3µ(δ + ε+ µ)

e =
βτPP (2θµ+ ε)

6µ(ε+ 2µ)
, f =

βτPP (ε+ θµ)

3µ(δ + ε+ µ)
.

Note, af − be = 0, so that λ1,2,3 = 0 and λ4 = a+ f . Hence,

R0 =
β(τNP (ε+ 2θµ)(δ + ε+ µ) + 2τPP (ε+ θµ)(ε+ 2µ))

6µ(ε+ 2µ)(δ + ε+ µ)
. (3.65)

Endemic equilibrium point

The endemic equilibrium point of the discrete system (3.52)-(3.56) is given by,

E1 = (M∗
NN ,M

∗
NP ,M

∗
PP , TMNP

, TMPP
).
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where

M∗
NN =

ζ

τωNN + µ
, (3.66)

M∗
NP =

τNPωNN ζ

(τωNN + µ)(ωNP +
1

2
ε+ µ)

, (3.67)

M∗
PP =

ζωNN(τPP (ωNP +
1

2
ε+ µ) + τNPωNP )

(τωNN + µ)(ω +
1

2
ε+ µ)(ε+ δ + µ)

, (3.68)

T ∗SP
=

τNPωNNζε

2(τωNN + µ)(ωNP +
1

2
ε+ µ)(ωT + µ)

, (3.69)

T ∗MPP
=
ζωNNε(τNPωT (ε+ δ + µ) + 2(τPP (ωNP +

1

2
ε+ µ) + τNPωNP )(ωT + µ))

2µ(τωNN + µ)(ωNP +
1

2
ε+ µ)(ε+ δ + µ)(ωT + µ)

. (3.70)

and

ωNN =
β

6G
(θMNP + 2θMPP + TMNP

+ 2TMPP
), (3.71)

ωNP =
β

6G
(γMNP + 2ψMPP + TMNP

+ 2TMPP
) (3.72)

ωT =
ρβ

6G
(MNP + 2MPP +$TMNP

+ 2κTMPP
). (3.73)

We investigate the existence of endemic equilibrium points using the fixed point theory. Therefore,

we express the endemic equilibrium point in terms of the forces of infection (ωNN ,ωNP , ωT ). We

express the forces of infection in terms of MNN ,MNP , MPP , TMNP
and TMPP

and determine the

equilibrium points of the model (3.52)-(3.56) by finding the fixed points of the functions

ϕ =


ϕ1(ωNN , ωNP , ωT )

ϕ2(ωNN , ωNP , ωT )

ϕ3(ωNN , ωT , ωT )


given by


ϕ1(ωNN , ωNP , ωT )

ϕ2(ωNN , ωNP , ωT )

ϕ3(ωNN , ωNP , ωT )

 =


A

B

C

 (3.74)
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where

A =
βωNNa1(ε+ µ+ ωNP )

b

a1 = 2µ(θτNP (δ + ε+ µ) + θτPP (ε+ 2µ) + 2ωNP (τNP + τPP ))(ωT + µ+ ε(2τPP (ε+ 2µ+ 2ωNP ))

(ωT + µ) + τNP (4ωNP (ωT + µ) + ε(2τPP (ε+ 2µ+ 2ωNP )(ωT + µ) + τNP (4ωNP (ωT + µ)

+ (δ + ε+ µ)(2ωT + µ))))

b = 3(2µ(δ + ε+ µ)(ε+ ωNP + µ)(ε+ 2µ+ 2τNPωNN + 2ωNP )(ωT + µ) + ωNN(τPP (ε+ 2µ+ 2ωNP )

(ε2 + 4εµ+ 2µ2 + 2ωNP (ε+ µ))(ωT + µ) + τNP (2ωNP (δε+ (2ε+ µ)(ε+ 2µ))(ωT + µ) + 4ω2
NP

(ε+ µ)(ωT + µ) + ε(δ + ε+ µ)(2µ(ε+ µ) + ωT (ε+ 2µ)))))

B =
βωNNa2(ε+ µ+ ωNP )

b

a2 = 2µ(τPPψ(ε+ 2µ+ 2ωNP ) + τNP (γ(δ + ε+ µ) + 2ψωNP ))(ωT + µ) + ε(2τPP (ε+ 2µ+ ωNP )

(ωT + µ) + τNP (4ωNP (ωT + µ) + (δ + ε+ µ)(ωT + µ)))

C =
βωNNa3(ε+ µ+ ωNP )

b

a3 = ρ(2µτNP (δ + ε+ µ)(ωT + µ) + 2εκ(τPP (ε+ 2µ+ 2ωNP )(ωT + µ) + τNP ((δ + ε+ µ)ωT

+ 2ωNP (ωT + µ) + µ(2τPP (ε+ 2µ+ 2ωNP )(ωT + µ) + τNP (ε$(δ + ε+ µ) + 4ωNP (ωT + µ))))))

.

The fixed point (ωNN , ωNP , ωT ) = (0, 0, 0) of (3.74) corresponds to the disease free equilibrium point.

To determine the endemic equilibrium we consider the real valued function ϕ
(ωNN ,ωNP )
1 (ωT ) for a

fixed (ωNP , ωNN) as follows:

ϕ
(ωNN ,ωNP )
1 (ωT ) = A. (3.75)

We have that,

ϕ(ωNN ,ωNP )(0) =
q1
q2
> 0 (3.76)
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where

q1 = βωNN(ε+ ωNP + µ)(2µ(θτNP (δ + ε+ µ) + θτPP (ε+ 2µ) + 2ωNP (τNP + τPP ))(µ+ ε(2τPP

(ε+ 2µ+ 2ωNP ))µ+ τNP (4ωNP (µ+ ε(2τPP (ε+ 2µ+ 2ωNP )µ+ τNP (4ωNPµ+ (δ + ε+ µ)µ))))))

q2 = 3(2µ(δ + ε+ µ)(ε+ ωNP + µ)(ε+ 2µ+ 2τNPωNN + 2ωNP )µ+ ωNN(τPP (ε+ 2µ+ 2ωNP )

(ε2 + 4εµ+ 2µ2 + 2ωNP (ε+ µ))µ+ τNP (2ωNP (δε+ (2ε+ µ)(ε+ 2µ))µ+ 4ω2
NP (ε+ µ)µ+ ε(δ + ε+ µ)

(2µ(ε+ µ))))

and

lim
ωT→∞

ϕ
(ωNN ,ωNP )
1 (ωT ) =

q3
q4
<∞

where

q3 = βωNN(ε+ ωNP + µ)(2µθ(τNP (δ + ε+ µ) + τPP (ε+ 2µ) + 2ωNP (τNP + τPP ))

+ ε(4τNPωNP + 2(ε+ δ + µ)))

q4 = 3(2µ(δ + ε+ µ)(ε+ ωNP + µ)(ε+ 2µ+ 2τNPωNN + 2ωNP ) + ωNN(τPP (ε+ 2µ+ 2ωNP )

(ε2 + 4εµ+ 2µ2 + 2ωNP (ε+ µ)) + τNP (2ωNP (δε+ (2ε+ µ)(ε+ 2µ)) + τNP (2ωNP

(δε+ (2ε+ µ)(ε+ 2µ)) + 4ω2(ε+ µ) + ε(δ + ε+ µ)(ε+ 2µ))))

Therefore, 0 < ϕ
(ωNN ,ωNP )
1 (ωT ) < ∞, hence the function ϕ(ωNN ,ωNP )(ωT ) is bounded for every fixed

(ωNN , ωNP ) > 0.

We determine if the function ϕ
(ωNN ,ωNP )
1 (ωT ) is increasing or decreasing through the first derivative

given by

∂ϕ
(ω∗

NN ,ω
∗
NP )

1

∂ωT
=
r1
r2
> 0

r1 = βετNPωNNµ(δ + ε+ µ)(ε+ ωNP + µ)(2µ(θεωNN(τPP (ε+ µ) + 2ωNP (τNP + τPP ))

+ (δ + ε+ µ)((ε+ 2µ+ 2ωNP )(ε+ 2µ+ 2ωNP ) + τNPωNN(2ε+ εθ + 2µ+ 2ωNP ))) + ωNN(τPP

(ε+ 2µ+ 2ωNP )(3ε2 + 4εµ+ 2µ2 + 2ωNP (ε+ µ)) + τNP (ε(δ + ε+ µ)(3ε+ 2µ)

+ 2ωNP (ε(δ + ε+ µ)(3ε+ 2µ) + 2ωNP (ε(δ + 4ε) + 5εµ+ 2µ2 + ωNP (ε+ µ))))))

r2 = 3(2µ(δ + ε+ µ)(ε+ ωNP + µ)(ε+ 2µ+ 2τNPωNN + 2ωNP )(ωT + µ) + τNP (2(δε+ (2ε+ µ)

(ε+ 2µ))

(ωT + µ)ωNP + 4ω2(ε+ µ)(ωT + µ) + ε(δ + ε+ µ)(2µ(ε+ µ) + ωT (ε+ 2µ))))2
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and the second derivative of ϕ
(ωNN ,ωNP )
1 (ωT ) with respect to ωT is given by

∂2ϕ
(ωNN ,ωNP )
1

∂ω2
T

=
r3
r4
< 0

r3 = −(2βετNPωNNµ(δ + ε+ µ)(ε+ ωNP + µ)(2µ(εθωNN(τPP (ε+ 2µ) + 2ωNP (τNP + τPP ))

+ (δ + ε+ µ)((ε+ ωNP + µ)(ε+ 2µ+ 2ωNP ) + τNPωNN(2ε+ εθ + 2µ+ 2ωNP )))

+ ωNN(τPP (ε+ 2ωNP + 2µ)(3ε2 + 4εµ+ 2µ2 + ωNP (ε+ µ)) + τNP (ε(δ + ε+ µ)

(3ε+ 2µ) + 2ωNP (ε(δ + 4ε) + 5εµ+ 2µ2 + 2ωNP (ε+ µ))))(2µ(δ + ε+ µ)(ε+ ωNP + µ)

(ε+ 2τNPωNN + 2ωNP ) + ωNN(τPP (ε+ 2µ+ 2ωNP )(ε2 + 4εµ+ 2µ2 + 2ωNP (ε+ µ)ωNP )

+ τNP (ε(δ + ε+ µ)(ε+ 2µ) + 2ωNP (δε+ (2ε+ µ)(ε+ 2µ) + 2ωNP (ε+ µ)))))))

r4 = 3(2µ(δ + ε+ µ)(ε+ ωNP + µ)(ε+ 2µ+ 2τNPωNN + 2ωNP )(ωT + µ) + τNP (2(δε+ (2ε+ µ)

(ε+ 2µ))(ωT + µ)ωNP + 4ω2
NP (ε+ µ)(ωT + µ) + ε(δ + ε+ µ)(2µ(ε+ µ) + ωT (ε+ 2µ))))3.

Since
∂ϕ

(ω∗
NN ,ω

∗
NP )

1

∂ωT
> 0 and

∂2ϕ
(ω∗

NN ,ω
∗
NP )

1

∂ω2
T

< 0, the function ϕ
(ωNN ,ωNP )
1 (ωT ) is an increasing concave

down function. Hence, there exist a unique point ωT > 0 satisfying
∂2ϕ

(ω∗
NN ,ω

∗
NP )

1

∂ω2
T

= ωT .

For (ωNP , ω
∗
T ) we consider the real valued-function that depends on ωNN .

ϕ
(ωNP ,ω

∗
T )

2 (ωNP ) = B. (3.77)

Clearly

ϕ
(ωNP ,ω

∗
T )

2 (0) = 0, (3.78)

and

lim
ωNN→∞

ϕ
(ωNP ,ω

∗
T )

2 (ωNN) =
q5
q6
<∞.
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q5 = β(ε+ ωNP + µ)(2µ(τPPψ(ε+ 2ωNP + 2µ) + τNP (γ(δ + ε+ µ)))(ω∗T + µ) + ε

(2τPP (ε+ 2ωNP + 2µ)(ω∗T + µ) + τNP (4ωNP (ω∗T + µ) + (δ + ε+ µ)(ω∗T + µ))))

q6 = 3(4τNPµ(δ + ε+ µ)(ε+ ωNP + µ)(ω∗T + µ) + τPP (ε+ 2µ+ 2ωNP )

(ε2 + 4εµ+ 2µ2 + 2ωNP (ε+ µ))(ω∗T + µ) + τNP (2ωNP (δε+ (2ε+ µ)(ε+ 2µ))(ω∗T + µ) + 4ω2
NP

(ε+ µ)(ω∗T + µ) + ε(δ + ε+ µ)(2µ(ε+ µ) + ω∗T (ε+ 2µ))))

Therefore, 0 ≤ ϕ
(ωNP ,ω

∗
T )

2 (ωNN) < ∞, hence the function ϕ
(ωNP ,ω

∗
T )

2 (ωNN) is bounded for every fixed

(ωNP , ω
∗
T ) > 0

We also consider the first derivative with respect to ωNN of the function ϕ
(ωNP ,ω

∗
T )

2 (ωNN) and is given

as
∂ϕ2

∂ωNN
=

q7
3(q8)2

< 0 (3.79)

q7 = −(4βτNPµ(ε+ δ + µ)(ε+ ωNP + µ)(ω∗T + µ)(2γτNPµ(δ + ε+ µ)(ω∗T + µ) + 2ψωNNµ

(τ(ε+ 2µ) + 2ωNP (τNP + τPP ))(ω∗T + µ) + εωNN(2τPP (ε+ 2µ+ 2ωNP )(ω∗T + µ) + τNP

(4ωNP (ω∗T + µ) + (δ + ε+ µ)(2ω∗T + µ)))))

q8 = 2µ(δ + ε+ µ)(ε+ ωNP + µ)(ε+ 2τNPωNN + 2µ)(ω∗T + µ) + ωNN(τPP (ε+ 2ωNP + 2µ)

(ε2 + 4εµ+ 2µ2 + 2ωNP (ε+ µ))(ω∗T + µ) + τNP (2ωNP (δε+ (2ε+ µ)(ε+ 2µ))(ω∗T + µ)

+ 4ω2
NP (ε+ µ)(ω∗T + µ) + ε(δ + ε+ µ)(2µ(ε+ µ) + ω∗T (ε+ 2µ))))

and the second derivative of the function ϕ
(ωNP ,ω

∗
T )

2 (ωNN) with respect to ωNN is

∂2ϕ2

∂ω2
NN

=
q9

3(q8)3
> 0 (3.80)

q9 = 32βτ 2NPµ
2(δ + ε+ µ)2(ε+ ωNP + µ)(ω∗T + µ)2(2γωNNτNPµ(δ + ε+ µ)(ω∗T + µ)

2ψωNNµ(τPP (ε+ 2µ) + 2ωNN(τNP + τPP ))(ω∗T + µ) + εωNN(2τPP (ε+ 2ωNP + 2µ)(ω∗T + µ)

+ τNP (4ωNP (ω∗T + µ) + (δ + ε+ µ)(2ω∗T + µ))))
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Since
∂ϕ

(ωNP ,ω
∗
T )

2

∂ωNN
< 0 and

∂2ϕ
(ωNP ,ω

∗
T )

2

∂ω2
NN

> 0, therefore the real valued function ϕ
(ωNP ,ω

∗
T )

2 (ωNN) is a

decreasing concave up function. This means that there exist a unique point ω∗NN > 0 satisfying

ϕ
(ωNP ,ω

∗
T )

2 (ω∗NN) = ω∗NN .

For (ω∗NN , ω
∗
T ) we consider the real valued-function that depends on ωNP .

ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP ) = C (3.81)

Clearly

ϕ
ω∗
NN ,ω

∗
T

3 (0) =
q10
q11

> 0 (3.82)

q10 = βω∗NN(ε+ µ)(ρ(2µτNP (δ + ε+ µ)(ω∗T + µ) + 2εκ(τPP (ε+ 2µ)(ω∗T + µ) + τNP ((δ + ε+ µ)ω∗T

+ µ(2τPP (ε+ 2µ)(ω∗T + µ) + τNP (ε$(δ + ε+ µ) + 4ω∗NP (ω∗T + µ)))))))

q11 = 3(2µ(δ + ε+ µ)(ε+ ω∗NP + µ)(ε+ 2µ+ 2τNPω
∗
NN + 2ω∗NP )(ω∗T + µ) + ω∗NN(τPP (ε+ 2µ+ 2ω∗NP )

(ε2 + 4εµ+ 2µ2)(ω∗T + µ) + τNP ((ω∗T + µ)(ε+ µ)(ω∗T + µ) + ε(δ + ε+ µ)(2µ(ε+ µ) + ω∗T (ε+ 2µ)))))

and

lim
ωNP→∞

ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP ) =
q12
q13

<∞.

q12 = βω∗NNρ(2µτNP (δ + ε+ µ)(ω∗T + µ) + 2εκ(τPP (ε+ 2µ)(ω∗T + µ) + τNP ((δ + ε+ µ)ω∗T

+ µ(2τPP (ε+ 2µ)(ω∗T + µ) + τNP (ε$(δ + ε+ µ))))))

q13 = 3(2µ(δ + ε+ µ)(ε+ µ)(ε+ 2µ+ 2τNPω
∗
NN)(ω∗T + µ) + ω∗NN(2τPPωNP (ε2 + 4εµ+ 2µ2)(ω∗T + µ)

+ τNP (2(δε+ (2ε+ µ)(ε+ 2µ))(ω∗T + µ))))

Therefore, 0 < ϕ
(ω∗

NN ,ω
∗
T )

2 (ωNP ) < ∞, hence the function ϕ
(ω∗

NN ,ω
∗
T )

2 (ωNP ) is bounded for every fixed

(ω∗NN , ω
∗
T ) > 0
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We also consider the first derivative of the function ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP ) with respect to ωNP and is given

as

∂ϕ
(ω∗

NN ,ω
∗
T )

3

∂ωNP
=

q14
3(q8)2

q14 = −(βρ(8µτNP (δ + ε+ µ)(ε+ ωNP + µ)2(ωT + µ)(ωNNµ(δ + ε+ µ)(ωT + µ)

− εκωNN(µ(ε+ 2µ) + ωT (µ− δ) + 2τPPωNN(ωT + µ))) + ω2µ(2ε2τ 2

(ε+ 2µ+ ωNP )2(ωT + µ)2 − τNP τPP (ωT + µ)(−4ω2
NP (ε$ + 2(1 +$))µ+ µ2(ε$ − 2ε)

+ δε(ε$ − 2µ+$µ) + 2εωT (ε− δ − µ))− 8ωNP (ε3(ε$ − µ) + ε2µ(3ε$ − 2µ)

+ ε(3ε$ − 2µ)µ2 + ε$µ3 + δ(ε+ µ)(ε(ε$ − 2µ) + ε$µ)− εωT (δ + µ)(ε+ 2µ)

+ (δ + ε+ µ)(4εµ2(2µ− 3ε$)− 4ε$µ3) + 4ε2µ(4µ− 3ε$) + ε3(8µ− 3ε$) + ε3

(8µ− 3ε$) + 2εωT (ε+ 2µ)2)) + τ 2NP (4ω2
NP (ωT + µ)(ε2$(δ + ε) + µ(2ε2$ + δ

(ε$ − 2ε)) + µ2(ε$ − 2ε)− 2εωT (δ + µ)) + 8ωNP (δ + ε+ µ)(ωT + µ)((ε+ µ)

(ε2$ − 2ε$µ)− εωT (ε+ 2µ)) + (δ + ε+ µ)(2µ(ε+ µ)(ε2(ε$ − 4µ) + 4εµ(ε$ − µ)

+ 2ε$µ2) + ωT (δε3$ + (ε+ µ)(3ε2(ε$ − 4µ) + 8εµ(ε$ − 2µ) + 4ε$µ2)− 4ε

(ε+ µ)(ε+ 2µ)ωT )))) + 2ωNN(ε3κωNNτ
2
PP (ε+ 2µ+ ωNP )2(ωT + µ)2 − τNP (ωT + µ)

(2εκωNNτPP (2εµ((ε+ µ)2(δ + ε+ µ) + ωNP (ε(2δ + ε) + 2µ(δ + ε+ 2µ2 + ωNP

(δ + µ− ε)))− ((δ + ε+ µ)(ε3 + 4ε2µ− 4εµ2 + 2µ3) + 2ωNP (ε2(δ + 2ε) + εµ(2δ + 5ε) + 2µ2

(δ + 2ε) + 2µ3 + ωNP (2ε2 + µ(δ + µ) + µ2))ωT )− µ(δ + ε+ µ)(τPPωNN(3ε3 + 4ε2µ− 4εµ2

− 4µ3 + ωNP (ε− µ)(2(ε+ µ) + ωNP ))(ωT + µ) + 2µ(ε+ ωNP + µ)2(ε$(δ + ε) + µ(ε$ − 2ε)

− 4µ2 − 2(ε+ 2µ)ωT ))) + τ 2NP (µωNN(δ + ε+ µ)(ωT + µ)(2µ(ε+ µ)(ε2 − 2µ2) + (δε2 + (ε+ µ)

(3ε2 − 4µ2))ωT + 8ωNP (ε− µ)(ωT + µ) + 4ω2(ε− µ)(ωT + µ) + εκωNN(4ω2
NP (ωT + µ)(µ2 + µ

(δ + ε)− εµ(δ + µ))− 4ωNP (ωT + µ)(δ + ε+ µ)(2εµ(ε+ µ)− ωT (ε2 + 2εµ+ 2µ2)) + (δ + ε+ µ)

(−4εµ2(ε+ µ)2 − 4µ(ε− µ)(ε+ µ)2)ωT + (δε2 + (ε+ µ)(ε+ 2µ)2ω2
T )))))))
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and the second derivative of the function ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP ) with respect to ωNP is

∂2ϕ
(ω∗

NN ,ω
∗
T )

3

∂ω2
NP

=
2βρ(q15)

q16

q15 = −2τNP (ε+ 2µ+ 2ωNP )

(
8τNPωNN

(ε+ 2µ+ 2ωNP )2
− 2εωNN(τNP + τPP )

µ(δ + ε+ µ)(ε+ ωNP + µ)
−

4ωNN(τNP + τPP )

(δ + ε+ µ)(ε+ 2µ+ 2ωNP )
+

2ωNN(τNPωNP + τPP (
ε

2
+ µ+ ωNP ))

(δ + ε+ µ)(
ε

2
+ µ+ ωNP )2

4ε+ τNPωNN
(ε+ 2µ+ 2ωNP )2(ωT + µ)

+
εωNN(τNPωT (δ + ε+ µ) + 2(τNPωNP + τPP (

ε

2
+ ωNP + µ))(ωT + µ))

µ(δ + ε+ µ)(ε+ µ+ ωNP )2(ωT + µ)

)
(

2 +
4τNPωNN

ε+ 2µ+ 2ωNP
+

2ωNN(τNPωNP + τPP
( ε

2
+ µ+ ωNP

)
)

(δ + ε+ µ)
( ε

2
+ ωNP + µ

) +
εωNNτNP( ε

2
+ ωNP + µ

)
(ωT + µ)

+

εωNN(τNPωT (δ + ε+ µ) + 2(τNPωNP + τPP (0.5ε+ ωNP + µ))(ωT + µ))

µ(δ + ε+ µ)(ε+ ωNP + µ)(ωT + µ)

)
(µωNN(ε(δ$+ε−2µ+µ$−

4µ2 − 2ωT (ε+ 2µ)) + 2((µωNN(δ + ε+ µ)(ωT + µ)− εκωNN(µ(ε+ 2µ) + ωT (µ− δ)))))) + 4τNP

(
2 +

4τNPωNN
ε+ 2µ+ 2ωNP

+
2ωNN(τNPωNP + τPP (0.5ε+ µ+ ωNP ))

(δ + ε+ µ)(0.5ε+ ωNP + µ)
+

εωNNτNP
(0.5ε+ ωNP + µ)(ωT + µ)

εωNN(τNPωT (δ + ε+ µ) + 2(τNPωNP + τPP (0.5ε+ ωNP + µ))(ωT + µ))

µ(δ + ε+ µ)(ε+ ωNP + µ)(ωT + µ)

)2
(µωNN(ε(δ$ + ε$ − 2µ +

$µ−4µ2−2ωT (ε+2µ)))+2(µωNN(δ+ε+µ)(ωT )−εκωNN(µ(ε+2µ)+ωT (µ−δ))))+(ε+2µ+2ωNP )2( 8εωNNτNP
(ε+ 2µ+ 2ωNP )2

− 2εωNN(τNP + τPP )

µ(δ + ε+ µ)(ε+ ωNP + ε)
− 4ωNN(τNP + τPP )

(δ + ε+ µ)(ε+ 2µ+ 2ωNP )
+

2ωNN(τNPωNP + τPP (0.5ε+ µ+ ωNP ))

(δ + ε+ µ)(0.5ε+ ωNP + µ2)
+

4εωNNτNP
(ε+ 2µ+ 2ωNP )2(ωT + µ)

εωNN(τNPωT (δ + ε+ µ) + 2(τNPωNP + τPP (0.5ε+ µ+ ωNP ))(ωT + µ))

µ(δ + ε+ µ)(ε+ ωNP + µ)2(ωT+µ)

)2
(µωNN(2τPP (ε+2µ+2ωNP )(ωT+

µ) + τNP (ε$(δ + ε+ µ) + 4ωNP (ωT + µ))) + 2(µτNPωNN(δ + ε+ µ)(ωT + µ) + εκωNN(τPP (ε+ 2µ+

2ωNP )(ωT + µ) + τNP (ωT (δ + ε+ µ) + 2ωNP (ωT + µ)))))− (ε+ 2µ+ 2ωNP )2( 2τNPωNN
(0.5ε+ µ+ ωNP )3

− 2εωNN(τNP + τPP )

µ(δ + ε+ µ)(ε+ µ+ ωNP )2
− 8ωNN(τNP + τPP )

(δ + ε+ µ)(ε+ 2µ+ 2ωNP )2

2ωNN(τNPωNP + τPP (0.5ε+ ωNP + µ))

(δ + ε+ δ + µ)(0.5ε+ ωNP + µ)3
+ +

εωNNτNP
(ωT + µ)

+
εωNN(τNPωT (δ + ε+ µ) + 2(τNPωNP + τPP (0.5ε+ ωNP + µ))(ωT + µ))

µ(δ + ε+ µ)(ε+ ωNP + µ)3(ωT + µ)

)
(

2 +
4τNPωNN

ε+ 2µ+ 2ωNP
+

2ωNN(τNPωNP + τPP (0.5ε+ µ+ ωNP ))

(δ + ε+ µ)(0.5ε+ µ+ ωNP )
+

εωNNτNP
(0.5ε+ ωNP + µ)(ωT + µ)

εωNN(τNPωT (δ + ε+ µ) + 2(τNPωNP + τPP (0.5ε+ µ+ ωNP ))(ωT+µ))

µ(δ + ε+ µ)(ε+ ωNP + µ)(ωT + µ)

)
(µωNN(2τPP (ε+2µ+2ωNP )(ωT+

µ) + τNP (ε$(δ + ε+ µ) + 4ωNP (ωT + µ))) + 2(µτNPωNN(δ + ε+ µ)(ωT + µ) + εκωNN(τPP (ε+ 2µ+
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2ωNP )(ωT + µ) + τNP (ωT (δ + ε+ µ) + 2ωNP (ωT + µ)))))

q16 = 3µ(δ + ε+ µ)(ε+ 2µ+ 2ωNP )3(ωT + µ)
(

2 +
4τNPωNN

ε+ 2µ+ 2ωNP
+

2ωNN(τNPωNP + τPP (0.5ε+ µ+ ωNP ))

(δ + ε+ µ)(0.5ε+ ωNP + µ)
+

εωNNτNP
(0.5ε+ ωNP + µ)(ωT + µ)

εωNN(τNPωT (δ + ε+ µ) + 2(τNPωNP + τPP (0.5ε+ ωNP + µ))(ωT + µ))

µ(δ + ε+ µ)(ε+ ωNP + µ)(ωT + µ)

)
It is not clear whether the first and second derivatives are less than zero, or greater than zero, or

equal to zero because of the complexity of the derivatives and different signs of parameters. However,

the function ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP ) could be one of the following possibilities,

Table 3.3: Slope and concavity of the function ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP )

∂ϕ
(ω∗

NN ,ω
∗
NP )

3

∂ωNP

∂2ϕ
(ω∗

NN ,ω
∗
NP )

3

∂ω2
NP

Possible outcomes of ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP )

(i). < 0 < 0 Decreasing concave down function

(ii). > 0 > 0 Increasing concave up function

(iii). < 0 > 0 Decreasing concave up function

(iv). > 0 < 0 Increasing concave down function

(v). > 0 = 0 Increasing but no concavity

(vi). < 0 = 0 Decreasing but no concavity

(vii). = 0 = 0 neither increasing nor decreasing and no concavity

Therefore, we require that the function ϕ
(ω∗

NN ,ω
∗
T )

3 (ωNP ) be any of (i)-(iv) of the possible outcomes in

table 3.3, that would mean that there exist a unique point ω∗NP > 0 satisfying ϕ
(ω∗

NN ,ω
∗
T )

3 (ω∗NP ) = ω∗NP .

The possibilities (v)-(vii) allows the chance for change of convexity in the function.

3.3.4 Stability of equilibria

We determine the stability using the forces of infection equations (3.52)-(3.56). The Jacobian matrix

is,
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J∗ =


∂ϕ1

∂ωNN

∂ϕ1

∂ωNP

∂ϕ1

∂ωT
∂ϕ2

∂ωNN

∂ϕ2

∂ωNP

∂ϕ2

∂ωT
∂ϕ3

∂ωNN

∂ϕ3

∂ωNP

∂ϕ3

∂ωT

 . (3.83)

Stability of the disease free equilibrium point

We set forces of infection to equal to zero and the corresponding Jacobian matrix of the equations

(3.52)-(3.56) is given by,

J(0, 0, 0) =


β(τNP (δ + ε+ µ)(2θµ+ ε) + 2τPP (ε+ 2µ)(θµ+ ε))

6µ(δ + ε+ µ)(ε+ 2µ)
0 0

β(2µγτNP (δ + ε+ µ) + 2µψτPP (ε+ 2µ) + ε(2τPP (ε+ 2µ) + τNP (δ + ε+ µ)))

6µ(ε+ 2µ)(δ + ε+ µ)
0 0

βρ(τNP (δ + ε+ µ)(2µ+ ε$) + 2τPP (εκ+ µ)(ε+ 2µ))

6µ(δ + ε+ µ)(ε+ 2µ)
0 0


(3.84)

The eigenvalues are given by, λ1,2 = 0 and λ3 =
β(τNP (δ + ε+ µ)(2θµ+ ε) + 2τPP (ε+ 2µ)(θµ+ ε))

6µ(δ + ε+ µ)(ε+ 2µ)
.

To determine stability we require that max{|λ1|, |λ2|, |λ3|} < 1. Hence, the fixed point (0, 0, 0) is

stable when the dominant eigenvalue |λ3| = R0 < 1.

Stability of the endemic equilibrium E1

The Jacobian matrix of the function ϕ(ωNN , ωNP , ωT ) at the unique equilibrium point (ω∗NN , ω
∗
NP , ω

∗
T )

is given as

J(ω∗NN , ω
∗
NP , ω

∗
T ) =


∂ϕ1

∂ωNN
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ1

∂ωNP
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ1

∂ωT
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ2

∂ωNN
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ2

∂ωNP
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ2

∂ωT
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ3

∂ωNN
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ3

∂ωNP
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

∂ϕ3

∂ωT
|(ω∗

NN ,ω
∗
NP ,ω

∗
T )

 . (3.85)
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where

∂ϕ1

∂ωNN
|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) =

a1
a2

a1 = β(ε+ ω∗NP + µ)(2µ(µ+ ω∗T )(θτNP (δ + ε+ µ) + θ(τPP (ε+ 2µ) + 2ω∗NP (τNP + τPP ))))

+ ε(2τPP (µ+ ω∗T )(ε+ 2µ+ 2ω∗NP )) + τNP (4ω∗NP (µ+ ω∗T ) + (δ + ε+ µ)(ω∗T + µ))

a2 = 6µ(δ + ε+ µ)(ε+ ω∗NP + µ)(ε+ 2µ+ 2ω∗NP )(ω∗T + µ)

∂ϕ2

∂ωNN
|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) =

a3
a2

a3 = β(ε+ ω∗NP + µ)(2γτNPµ(ω∗T )(δ + ε+ µ) + 2ψµ(τPP (ε+ 2µ) + 2ω∗NP (τNP + τPP )))

+ ε(2τPP (ω∗T + µ)(ε+ 2ω∗NP + 2µ) + τNP (4ω∗NP (ω∗T + µ) + (δ + ε+ µ)(ω∗T + µ)))

∂ϕ3

∂ωNN
=
a4
a2

a4 = βρ(ε+ ω∗NP + µ)(2τNPµ(δ + ε+ µ)(ω∗T + µ) + 2εκ(τPP (ε+ 2ω∗NP + 2µ)(ω∗T + µ)))

τNP (ω∗T (δ + ε+ µ) + 2ω∗NP (ω∗T + µ)) + µ(2τPP (ω∗T + µ)(ε+ 2µ+ 2ω∗NP ) + τNP (ε$

(δ + ε+ µ) + 4ω∗NP (ω∗T + µ)))

∂ϕ1

∂ωNP
|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) =

a5
a6

a5 = 6βµ((ε+ 2µ)(2µ(ε+ µ)(δ + ε+ µ) + (ε2 + 4εµ+ µ2)τPPω
∗
NN)(ω∗T + µ) + τNPω

∗
NN

(δ + ε+ µ)(2µ(ε+ µ)(ε+ 2µ) + ω∗T (ε2 + 6εµ+ 4µ2))(θτNPω
∗
NN(δ + ε+ µ)

+ 2θτNPω
∗
NP + θτPP (ε+ 2ω∗NP + 2µ) + (δ + ε+ µ)(µ+ 2ω∗T )) + ω∗NN(θτNP (δ + ε+ µ)

+ θτPP (ε+ 2µ)(ω∗T + µ) + ε(2ω∗NP (µ(δ + ε+ µ) + τPPω
∗
NN(ε+ µ))))

(τNPω
∗
NN(δε+ (2ε+ µ)(ε+ 2µ) + 4ω∗NP (ε+ µ)(ω∗T + µ))

− 6(ε+ µ)(µ+ ω∗T )(2ω∗NP (µ(δ + ε+ µ) + τPPω
∗
NN(ε+ µ)))))

a6 = 9((ω∗T + µ)(2(δ + ε+ µ)(µ(ε+ µ)(ε+ 2µ) + 2ω∗2µ)

+ τPPω
∗
NN((ε+ 2µ)(ε2 + 4εµ+ µ2) + 4ω∗2NP (ε+ µ)) + τNPω

∗
NN(2ω∗NP (ω∗T + µ)

(δε+ (2ε+ µ)(ε+ 2µ)) + 8ω∗2NP (ε+ µ)(ω∗2T + µ) + (δ + ε+ µ)(2µ(ε+ µ)(ε+ 2µ)

+ ω∗T (ε2 + 6εµ+ 4µ2)))))2
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∂ϕ2

∂ωNP
|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) =

a7
a8

a7 = β(2γτNPω
∗
NNµ(ω∗T + µ)(δ + ε+ µ) + 2ψµω∗NN(2ω∗NP (ω∗T + µ)(τNP + τPP ))

+ ε(2τPP (2ω∗NPµ+ ω∗T ) + 4τNPω
∗
NP (ω∗T + µ)))(3(2µ(δ + ε+ µ)(ε+ µ)(ω∗T + µ)(ε+ 2µ

+ 2τNPω
∗
NN)ω∗NN(τPP (ε+ 2µ)(µ+ ω∗T )(ε2 + 4εµ+ µ2) + τNP (ε(δ + ε+ µ)(2µ

(ε+ µ) + ω∗T (ε+ 2µ))))))

− (3(4ωNPµ(ω∗T + µ)(δ + ε+ µ) + ω∗NN(4τPPω
∗
NP (ω∗T + µ)(ε+ µ) + τNP (2(ω∗T + µ)

(δε+ (2ε+ µ)(ε+ 2µ) + 4ω∗NP (ε+ µ)(ω∗T + µ)))))(β(ε+ µ)(2γτNPω
∗
NNµ)(ω∗T + µ)(δ + ε

+ µ)2τPPµ(ω∗T + µ)(ε+ 2µ) + εω∗NN(2τPP (ε+ 2µ)(ω∗T + µ) + τ(δ + ε+ µ)(2ω∗T + µ))))

a8 = (ω∗NP (3(4ω∗NPµ(ω∗T + µ)(δ + ε+ µ) + ω∗NN(4τPPω
∗
NP (ω∗T + µ)(ε+ µ) + τNP (2(ω∗T + µ)

(δε+ (2ε+ µ)(ε+ 2µ) + 4ω∗NP (ε+ µ)(ω∗T + µ))))) + β(2γτNPω
∗
NNµ(ω∗T + µ)(δ + ε+ µ)

+ 2ψµω∗NN(2ω∗NP (ω∗T + µ)(τNP + τPP ))

+ ε(2τPP (2ω∗NPµ+ ω∗T ) + 4τNPω
∗
NP (ω∗T + µ)))(3(2µ(δ + ε+ µ)(ε+ µ)(ω∗T + µ)

(ε+ 2µ+ 2τNPω
∗
NNω

∗
NN(τPP (ε+ 2µ)(µ+ ω∗T )(ε2 + 4εµ+ µ2) + τNP (ε(δ + ε+ µ)

(2µ(ε+ µ) + ω∗T (ε+ 2µ)))))))2

∂ϕ3

∂ωNP
|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) =

a9
a8

a9 = βρ(2µτNPω
∗
NN(µ+ ω∗T )(δ + ε+ µ) + 2εκω∗NN(τPP (ε+ 2µ+ ω∗NP )

(ω∗T + µ) + τNP (ω∗T (δ + ε+ µ) + 2ω∗NP (ω∗T + µ))) + µω∗NN(2τPP (ω∗T + µ)(ε

+ 2µ+ 2ω∗NP ) + τNP (ε$(δ + ε+ µ) + 4ω∗NP (ω∗T + µ)))(β(2γτNPω
∗
NNµ

(ω∗T + µ)(δ + ε+ µ) + 2ψµω∗NN(2ω∗NP (ω∗T + µ)(τNP + τPP )) + ε(2τPP (2ω∗NP

µ+ ω∗T ) + 4τNPω
∗
NP (ω∗T + µ)))(3(2µ(δ + ε+ µ)(ε+ µ)(ω∗T + µ)(ε+ 2µ+ 2τNPω

∗
NN)

ω∗NN(τPP (ε+ 2µ)(µ+ ω∗T )(ε2 + 4εµ+ µ2) + τNP (ε(δ + ε+ µ)(2µ(ε+ µ)

+ ω∗T (ε+ 2µ))))))− (ε+ µ)(3(4ω∗NPµ(ω∗T + µ)(δ + ε+ µ) + ω∗NN(4τPPω
∗
NP (ω∗T + µ)

(ε+ µ) + τNP (2(ω∗T + µ)(δε+ (2ε+ µ)(ε+ 2µ) + 4ω∗NP (ε+ µ)(ω∗T + µ))))))

∂ϕ1

∂ωT
|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) =

a10
a11
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a10 = βετNPω
∗
NN(ε+ ω∗NP + µ)(δ + ε+ µ)(2µ(εθω∗NN(τPP (ε+ 2µ) + 2ω∗NP (τNP + τPP ))

+ (δ + ε+ µ)((ε+ ω∗NP + µ)(ε+ 2µ+ 2ω∗NP ) + τNPω
∗
NN(2ε+ εθ + 2ω∗NP ))

+ ω∗NN(τPP (ε+ 2µ+ 2ω∗NP )(3ε2 + 4εµ+ 2µ2 + 2ω∗NP (ε+ µ)) + τNP (ε(δ + ε+ µ)(3ε+ 2µ)

+ 2ω∗NP (ε(δ + 4ε) + 5εµ+ 2µ2 + 2ω∗NP (ε+ µ))))))

a11 = 3(2µ(δ + ε+ µ)(ε+ ω∗NP + µ)(ε+ 2µ+ 2τNPω
∗
NN + 2ω∗NP (ω∗T + µ) + ω∗NN(ω∗T + µ)

(τPP (ε+ 2µ+ 2ω∗NP )(ε2 + 4εµ+ 2µ2 + 2ω∗NP (ε+ µ))) + τNP (2ω∗NP (ω∗T + µ)

(δε+ (2ε+ µ)(ε+ 2µ)) + 4ω∗2NP (ε+ µ)(µ+ ω∗T ) + ε(δ + ε+ µ)(2µ(ε+ µ) + ω∗T (ε+ 2µ)))))2

∂ϕ2

∂ωT
|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) =

a12
a11

a12 = βετNPω
∗
NNµ(ε+ µ+ ω∗NP )(2εγµτNP + 2µ(εψω∗NN(ε+ 2µ+ 2ω∗NP )

+ (δ + ε+ µ)(ε+ 2µ+ 2ω∗NP )(ε+ ω∗NP + µ) + 2τNP (εψω∗NNω
∗
NP

+ ω∗NN(δ + ε+ µ)(ε+ ω∗NP + µ)) + ω∗NN(τPP (ε+ 2ω∗NP + 2µ)(3ε2 + 4εµ+ 2µ2 + 2ω∗NP

(ε+ µ)) + τNP (ε(δ + ε+ µ)(3ε+ 2µ) + 2ω∗NP (ε(δ + 4ε) + 5εµ+ 2µ2 + 2ω∗NP (ε+ µ))))))

∂ϕ3

∂ωT
|(ωNN ,ωNP ,ωT ) =

a13
a14

a13 = βρτNPω
∗
NNµ(

ε

2
+ ω∗NP + µ)(ε+ ω∗NP + µ)(ε+ 2ω∗NP + 2µ)(2µτNPω

∗
NN(δ + ε+ µ)

+ ετNPω
∗
NN(δε$ − (δ + µ)(ε$ + 4µ)) + (ε+ ω∗NP + µ)(τPPµ(2ε− 3ε$ − 2µ$)+

2ω∗NN(2ε(2µε− ε$(δ + µ)) + 4κµ(δ + ε+ µ)(ε+ 2µ+ 2τNPω
∗
NN)

+ 2(2κω∗NN(ετNP (δ + ε+ µ) + τPP (ε+ µ)(ε+ 2µ)))− ε$µ(δ + ε+ µ)(ε+ 2µ+ 2τNPω
∗
NN))))

− 4($ − 2κ)(ω∗T + µ)(µ(δ + ε+ µ) + ω∗NN(ε+ µ)(τNP + τPP ))

a14 = ετNPω
∗
NNµ(δ + ε+ µ)(ε+ µ+ ω∗NP )(ε+ 2ω∗NP + 2µ) + (

ε

2
+ ω∗NP + µ)(ε+ ω∗NP + µ)

(ω∗T + µ) + 2µτNPω
∗
NN(δ + ε+ µ)(ε+ ω∗NP + µ)(ε+ 2µ+ 2ω∗NP )(µ+ ω∗T ) + 2µω∗NN(ε+ ω∗NP+

µ)(ε+ 2µ+ 2ω∗NP )τNPω
∗
NP + τPP (

ε

2
+ µ+ ω∗NP )(ω∗T + µ) +

ε

2
ω∗NN(ε+ 2µ+ 2ω∗NP )2

(2τPP (ε+ 2µ+ 2ω∗NP )(ω∗T + µ) + τNP (ω∗T (2 + δ + ε+ µ) + 4ω∗NP (ω∗T + µ)))

The characteristic equation is given as

λ3 − λ2P1|(ω∗
NN ,ω

∗
NP ,ω

∗
T ) − λP2|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) + P3|(ω∗

NN ,ω
∗
NP ,ω

∗
T ) = 0 (3.86)
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where,

P0 = 1

P1 =
∂ϕ1

∂ωNN
+

∂ϕ2

∂ωNP
+
∂ϕ3

∂ωT
+

∂ϕ3

∂ωNN
− ∂ϕ1

∂ωNP

∂ϕ2

∂ωNN

P2 =
∂ϕ1

∂ωNN

∂ϕ2

∂ωNP
+

∂ϕ1

∂ωNN

∂ϕ3

∂ωT
+

∂ϕ1

∂ωNN

∂ϕ3

∂ωNN
+

∂ϕ2

∂ωNP

∂ϕ3

∂ωT
+

∂ϕ3

∂ωNN

∂ϕ1

∂ωNP

∂ϕ2

∂ωT

− ∂ϕ1

∂ωNP

∂ϕ2

∂ωNN

∂ϕ3

∂ωT
− ∂ϕ3

∂ωNN

∂ϕ2

∂ωNP
+
∂ϕ1

∂ωT

∂ϕ2

∂ωNN

∂ϕ3

∂ωNP
− ∂ϕ1

∂ωNN

∂ϕ1

∂ωNP

∂ϕ2

∂ωNN

P3 =
∂ϕ1

∂ωNN

∂ϕ2

∂ωNP

∂ϕ3

∂ωT
− ∂ϕ1

∂ωNN

∂ϕ3

∂ωNN

∂ϕ2

∂ωNP
+

∂ϕ1

∂ωNN

∂ϕ1

∂ωT

∂ϕ2

∂ωNN

∂ϕ3

∂ωNP

− ∂ϕ1

∂ωNN

∂ϕ3

∂ωNN

∂ϕ2

∂ωT

∂ϕ1

∂ωNP
− ∂ϕ1

∂ωNN

∂ϕ1

∂ωNP

∂ϕ2

∂ωNN

∂ϕ3

∂ωT

Every possibility we have on table 3.4 shows that there exist at least one positive real root. Hence,

Table 3.4: Descartes rule of signs on the characteristic equation 3.86

P0 P1 P2 P3 Possible outcomes of roots

+ + + + 0 positive; or atleast 1 negative; and 2 imaginary

+ + + - exactly 1 positive; or at least 2 or 0 negative; and 2 or 0 imaginary

+ + - + 2 or 0 positive; or at least 3 or 1 negative; and 2 or 0 imaginary

+ + - - exactly 1 positive; or at least 2 or 0 negative; and 2 or 0 imaginary

+ - + + 2 or 0 positive; or at least 1 negative; and 2 or 0 imaginary

+ - + - 3 or 1 positive; or at least 2 or 0 negative; and 2 or 0 imaginary

+ - - + 2 or 0 positive; or exactly 1 negative; and 2 or 0 imaginary

+ - - - exactly 1 positive; or 0 negative; and 2 imaginary

for possibilities where we have one positive real valued root we require that |λ| < 1 for the fixed point

to be stable, and for possibilities where we have more than one positive real root the fixed point is

stable when max{|λ1|, |λ2|, |λ3|} < 1.
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3.4 Sensitivity analysis of parameters

The successful implementation of possible intervention strategies requires that we know the param-

eters which the reproduction number, R0, and the invasion reproduction number, Rinv, are highly

sensitive to. We investigate the effect that the transmission rate β and the treatment rate ε has on the

reproduction number and the invasion reproduction number by performing the sensitivity analysis.

3.4.1 Sensitivity with respect to the transmission rate ,β,

We determine the change in R0 and Rinv obtained in the sub-models (3.14)-(3.18) and (3.52)-(3.56),

respectively, with respect to β. We have that

∂R0

∂β
=

(τNP (ε+ 2θµ)(δ + ε+ µ) + 2τPP (ε+ θµ)(ε+ 2µ))

6µ(ε+ 2µ)(δ + ε+ µ)
> 0 (3.87)

and
∂Rinv

∂β
=
r1
r2
> 0 (3.88)

where

r1 = π(αε(α + ε+ 3µ+ 2φ) + ε(ε(ε+ 2(φ+ µ)) + 2α(α + µ)(φNP + µ)))

r2 = 4(π(α + δ + ε+ µ)((2α + µ)(ε+ 2µ) + 2φ(α + µ)) + φNP (2α + ε+ 2(φ+ µ)) + λ

(πε(ε+ 2(φ+ µ))(2φNP + µ) + πα((2α + ε)(1 + α + µ) + 2φ+ (α + µ)((ε+ 2(φ+ µ))π

φNP + 2φNP ))))

Since ,
∂R0

∂β
> 0 and

∂Rinv

∂β
> 0, this means that the basic reproduction number, R0, and the

invasion reproduction number ,Rinv, increases with the transmission rate, β, in their respective sub-

populations. If the transmission rate is high, we expect to have a high number new infections

produced by an infectious individual introduced into the population. Therefore, the intervention

strategies should target to lower the transmission rate.

3.4.2 Sensitivity with respect to the treatment rate, ε,

We determine the change in R0 and Rinv obtained in the sub-models (3.14)-(3.18) and (3.52)-(3.56),

respectively, with respect to ε. For
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∂R0

∂ε
=
β(τNP (µ(1− θ)) + τPP (δ + µ(1− θ)))

3µ(ε+ 2µ)2(δ + ε+ µ)2
(3.89)

where θ > 1. If δ < µcn, where cn = θ − 1 is a positive constant term, then ,
∂R0

∂ε
< 0, this means

that an increase in treatment rate, ε, decreases the basic reproduction number, R0. This implies that

given the condition that the HIV induced death rate is less than the natural death rate, the treatment

rate is highly and positively effective on R0. Each new infectious individual can only produce few

number of new infections. If µ < bnδ, where bn =
τPP
α

is a positive constant term, then,
∂R0

∂ε
> 0,

this means that the treatment rate is not effective. This implies that given the condition that the

HIV induced death rate times some positive constant, bn, is greater than the natural death rate, the

treatment rate would not be effective in reducing the number of new infections.

The rate of change of the invasion reproduction number with respect to the treatment rate is found

as

∂Rinv

∂ε
=
r3
r4

(3.90)

where

r3 = −(π(2α + µ)(α + δ + 2ε+ 3µ) + ΛNπα(1 + α + µ) + ΛNπεµ+ 2πφ(α + µ)

+ ΛNπαφNP (α + µ) + φNP (1 + 2ΛNεπ))((α + µ)(ε+ 2(φ+ µ))(φNP + µ) + π(β − 4ΛN)

(αε(α + ε+ 3µ+ 2φ) + ε(ε+ 2(φ+ µ)) + 2α(α + µ)(φNP + µ))) + (π(β − 4ΛN)(αε

2(ε+ φ+ µ) + (α + µ)(φNP + µ))(π(α + δ + ε+ µ)((2α + µ)(ε+ 2µ) + 2φ(α + µ)) + φNP

(2α + ε+ 2(φ+ µ)) + ΛN(πε(ε+ 2(φ+ µ))(2φNP + µ) + πα((2α + ε)(1 + α + µ) + 2φ

+ (α + µ)((ε+ 2(φ+ µ))πφNP + 2φNP )))))

r4 = 4(π(δ + α + ε+ µ)((2α + µ)(ε+ 2µ) + 2φ(α + µ)) + φNP (2α + ε+ 2(φ+ µ)) + ΛN

(πε(ε+ 2(φ+ µ))(2φNP + µ) + πα((2α + ε)(1 + α + µ) + 2φ+ (α + µ)((ε+ 2(φ+ µ))πφNP

+ 2φNP ))))2.

Equation (3.90) indicates that the change in the invasion reproduction number with respect to the

treatment rate indicates that ,
∂Rinv

∂ε
< 0 or

∂Rinv

∂ε
> 0, depending on the values of parameters.

If
∂Rinv

∂ε
< 0, then the treatment rate is highly effective in reducing the number of new infections

produced by an infectious individuals introduced into the population that is not entirely susceptible.
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If
∂Rinv

∂ε
> 0, then the treatment rate is not effective in reducing ,Rinv, an alternative intervention

strategy should be considered.

When,
∂R0

∂ε
< 0, and ,

∂Rinv

∂ε
< 0, the treatment rate has a positive effect on reducing the num-

ber of secondary infections and this is a desired outcome. Therefore, intervention strategies target

must be to increase the treatment rate in the population.

3.5 Single’s and married couples HIV transmission and serodis-

cordant couples formation model

In this section we present the main model which combines the HIV transmission dynamics of single

individuals and married couples networks and formation of serodiscordant couples. The assumptions

and description of parameters made in section 3.1 still hold in the main model. The main model

consist of eight compartments, SN , SP ,MNN ,MNP ,MPP , TSP
, TMNP

and TMPP
, and the state variables

definitions are still as in section 3.1. The total population size, R, is given by

R = SN + SP +MNN +MNP +MPP + TSP
+ TMNP

+ TMPP
.

We assume the state variables SN , SP ,MNN ,MNP ,MPP , TSP
, TMNP

, TMPP
are all positive since they

represent compartments of the population which are assumed to have at least one or zero individual

present in each compartment. We assume that single individuals and married couples could have

sexual relations. We also assume that only the marriage dynamics that will lead to the formation

of HIV serodiscordant couple is allowed or the marriage dynamic that may lead to the formation of

serodiscordant couple in future. When the single HIV negative individuals from the compartment,

SN , get infected they progress to the compartment of single HIV positive individuals, SP ,. When

a single HIV negative individual gets married to the single HIV positive individual, the couple will

progress to the HIV serodiscordant couple’s compartment. When two single HIV negative individuals

get married to each other, they join the concordant HIV negative compartment. We assume that

two HIV positive single individuals are restricted from marrying each other since they do not form

serodiscordant couples and since there is no possibility that the couple may ever form serodiscordant

couple. When single HIV positive individuals take treatment they move to the treated single HIV
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positive individuals compartment, TSP
, . individuals from the treated single HIV positive compart-

ment could get married to HIV negative single individual from the compartment, SN . When one

partner from the HIV negative concordant couples, MNN , gets HIV infection the couple moves to

the HIV serodiscordant couples compartment, MNP , and when both partners get infected they move

to the HIV concordant positive couples compartment, MPP ,. When the seronegative partner takes

treatment the couple moves to the HIV serodiscordant treated compartment, TMNP
. When a HIV

negative partner from the serodiscordant couples gets the HIV infection the couple moves to the HIV

positive concordant couple’s compartment. When HIV positive concordant couple takes treatment

the couple moves to the treated HIV positive concordant couple’s compartment , TMPP
. We assume

the treatment rate to be a function of the demand for treatment rather than a constant treatment

rate as in the sub-models.

We assume that the description of the recruitment rate of all single individuals and that of the

proportion of HIV negative individuals recruited is the same as in section 3.2. Therefore the con-

stant recruitment rate for single susceptible individuals is, π. Single HIV negative individuals are

removed from the susceptible class , SN , either through natural death at a constant death rate µ,

or through union in marriage to HIV negative single individuals or HIV positive single individuals

or the treated HIV positive single individual at a marriage rate α, and through HIV infection from

infectious individuals with a force of infection, λN(SP ,MNP ,MPP , TSP
, TMNP

, TMPP
) (see equation

3.91). We note that in the case of single individuals who leave the class due to marriage, we have two

HIV negative individual marrying one HIV positive single individual and one treated HIV positive

single to form a serodiscordant couple that joins, MNP and TMNP
, respectively and also we have

two HIV negative singles getting married to each other forming a HIV negative concordant couple.

Therefore we have a total number of four individuals going out of this compartment at a constant

marriage rate α, so that the rate of removal through marriage is, 4αSN .

We assume that the description of the dynamics that occur to the compartment, SP , is the same as

that explained in section 3.2.. The recruitment of SP is dependent on HIV infected individuals from

SN . They are removed through blanket death, (µ+ δ), and through marriage of HIV negative single

individuals to form serodiscordant couples at a rate, α. They are also removed when a HIV single

individuals takes treatment and move to the compartment, TSP
, at a treatment rate, ε,. We assume

that individuals in the treated compartment, TSP
, are removed at a constant natural death rate, µ.
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HIV negative concordant couples, MNN , are recruited when two single HIV negative individuals

get married to each other. They are removed from this compartment through infection of one part-

ner with a force of infection, λNN(SP ,MNP ,MPP , TSP
, TMNP

, TMPP
) (see equation 3.93). We still

assume that the proportion of MNN removed is, τ , and , τ = τNP + τPP , as in section 3.3. They are

also removed through natural death at a rate, µ.

The serodiscordant couples are recruited when a single HIV negative individual, SN , marries sin-

gle HIV positive individual, SP , and when one of the HIV negative concordant couple partner gets

infected. Serodiscordant couples are removed from the compartment MNP if the seronegative partner

gets infected with a force of infection, λNP (SP ,MNP ,MPP , TSP
, TMNP

, TMPP
) (see equation 3.92), they

move to HIV positive concordant couple’s compartment. When the seropositive partner takes treat-

ment the couple moves to the treated HIV serodiscordant compartment, TMNP
at a treatment rate,

ε. We assume that married couples in the treated HIV serodiscordant compartment are removed at a

constant natural death rate, µ. We also assume that when the seronegative partner in the treated HIV

serodiscordant couple gets infected with a force of infection , λT (SP ,MNP ,MPP , TSP
, TMNP

, TMPP
),

that partner takes treatment immediately and the couples moves to the treated HIV positive concor-

dant couple’s compartment.

The HIV positive concordant married couples, MPP , are recruited from the HIV infection of the

HIV negative individual from the HIV serodiscordant couple, infection of both partners in the HIV

concordant negative couples single HIV positive, and also through marriage of two HIV positive sin-

gle individuals. We assume that for HIV positive concordant couples both partners take treatment

at the same time so that they move to the treated HIV positive concordant couple’s compartment.

The couples are also removed from this compartment through the blanket deaths at a rate, (µ+ δ).

We assume that couples from the treated HIV positive concordant compartment, TMPP
, are removed

at a constant natural death rate, µ.

3.5.1 Forces of infection

We assume that out of a total population R, for an infection to be possible, at most thirteen individ-

uals are involved in the HIV transmission event at any particular time one from each compartment,
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SN , SP and TSP
, and two from each class MNP ,MNN ,MPP , TMNP

and TMPP
. There are six com-

partments that are sources of infection for every HIV negative individual in the population namely

, SP ,MNP ,MPP , TSP
, TMNP

, TMPP
and eight individuals are infectious, one from the HIV positive

single’s and one from the treated HIV positive single’s, one from the HIV serodiscordant couple and

one from the treated HIV serodiscordant couple, and two from the HIV positive concordant couple

and two form the treated HIV positive concordant couple. Therefore, an HIV negative individual’s

chances of getting HIV infection from SP and TSP
is

1

6
, from MNP and TMNP

is also
1

6
and from MPP

and TMPP
is

2

6
.

Force of infection for HIV Negative Individuals, SN ,

We assume that the assumptions made in subsection 3.2.1 about the force of infection for, SN , holds.

We also assume that HIV positive single individuals from the compartment, SP , have greater chances

of spreading HIV to other single HIV negative individuals from the compartment, SN , because of

the same reasons stated in subsection 3.2.1. As a result SP ’s rate of infecting SN is amplified by a

factor η > 1. We assume that HIV positive married individuals from the compartment, MNP , MPP ,

TMNP
and TMPP

have equal and less chances of transmitting the disease to the HIV negative single

individuals, SN , since they are restricted by the wedlock obligation. The force of infection for, SN ,

denoted by, λN , is given by

λN =
β

4R
(ηSP +MNP + 2MPP + TMNP

+ 2TMPP
). (3.91)

Force of infection for HIV Serodiscordant Couples, MNP ,

The HIV negative individuals in the serodiscordant couples also have chances of being infected by

the three sources of infection. Evidence from the study in [32] showed that about 25% - 29% of HIV

transmission within the serodiscordant couples was from outside partners. Therefore, we assume that

outside partners have an equal chance to have sexual relationship with the HIV negative individual

in the serodiscordant couple. The force of infection for, MNP , denoted by, λNP , is given by

λNP =
β

6R
(SP + γMNP + 2ψMPP + TMNP

+ 2TMPP
) (3.92)

where γ > 1 indicates the higher chances the HIV seropositive partner have to infect the HIV seroneg-

ative partner within the serodiscordant couples and ψ > 1 also indicates better chances that HIV
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positive concordant couples have to infect the HIV seronegative partner in the HIV serodiscordant

couple.

Force of infection for HIV Concordant negative couples, MNN ,

The susceptible individuals from the the HIV concordant negative couples also have chances of being

infected with HIV by outside partners. The evidence available in [43] showed that in some countries

with poor resource settings most man in HIV concordant negative relationships spend most time in

bars and trading centres and most of them engage in multiple sexual relationships of which the level of

condom use is low mostly because of high alcohol consumption. Therefore, the compartment MNN is

also exposed to infection transmission from the six sources of infection. Assume that individuals from

the compartment, SP , have high chances of engaging and infecting individuals from the compartment,

MNN , because the single individuals are free to take decisions based on their interests without the

influence and pressure from any partner. We also assume that MNP , MPP , TMNP
and TMPP

have an

equal rate of infecting, MNN . As evidenced in [33, 42, 43, 32], where individuals have been found

to have a similar sexual behavior and both partners are most likely going to have sexual partners

outside their marriage, preferably single individuals. This still supports our assumption that MNP ,

MPP , TMNP
and TMPP

have less rate of infection than SP to transmit the infection to MNN . The

force of infection of, MNN , is denoted by, λNN , given by

λNN =
β

6R
(σSP +MNP +MPP + TSP

+ TMNP
+ 2TMPP

) (3.93)

where σ > 1 indicates the increased rate of infection that individuals from the class SP have to

transmit infection to MNN .

Force of infection for treated serodiscordant couples, TMNP
,

We assume that seronegative partners from the treated HIV serodiscordant are also exposed to the

risk of being infected by the HIV positive individuals from the sources of infection compartments.

We assume that the seropositive partner in the treated HIV serodiscordant couple has chances of

infecting the seronegative partner because of the frequency of sexual relation. We also assume that

the transmission rate of HIV to treated individuals is influenced by some term, ρ, indicating that
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treated individuals tend to be more cautious. The treated HIV positive concordant couple also

has better chances of infecting the seronegative partner in the treated HIV serodiscordant couple

compared to others who do not take treatment. The force of infection of, TMNP
, is denoted by, λT ,

given by

λT =
βρ

6R
(SP +MNP +MPP + TSP

+$TMNP
+ 2κTMPP

) (3.94)

where $ > κ > 1 are amplification factors and 0 < ρ < 1.

Comparison of η, γ, σ, ψ, $, κ

The parameters, η, γ, σ, ψ, $ and κ indicate the amplification factors that HIV positive individu-

als may have to transmit HIV infection to HIV negative individuals. The amplification factor, γ,

corresponds to the HIV seropositive partner in the serodiscordant married couple in the force of

infection for serodiscordant married couples, individuals can easily transmit the HIV infection to

each other since individuals are married and likely to have sex frequently. The amplification factor,

η, corresponds to a single HIV positive individual in the force of infection for a single HIV negative

individual, single individuals have a greater rate of infection towards each other but their rate of in-

fection is not as high as that of married couples since they may not be able to have sex as frequently

as the married couples. The amplification factor, σ, corresponds to the single HIV positive individual

in the force of infection for HIV negative concordant couple. A single HIV positive individual has

a greater rate of infecting individuals from the HIV negative concordant couple class compared to,

MNP and MPP , since the married couples are more restricted than the single individuals in terms of

engaging with different sexual partners. The amplification factor, ψ, correspond to the HIV positive

concordant couples in the force of infection for HIV serodiscordant married couples indicating the

greater chances that infectious individuals from the compartment, MPP , have to infect seronegative

partner in the serodiscordant married couple compared to all other compartments except for, MNP ,.

The amplification factor, $, corresponds to the treated HIV serodiscordant married couple indicating

greater chances that the HIV seropositive partner have to infect the HIV seronegative partner for the

same reason given to HIV serodiscordant married couple without treatment. However, we assume

that a treated HIV seropositive partner is more cautious than untreated HIV seropositive partner

but this does not change the assumption that they have sex frequently with their HIV seronegative

partners than any other partner outside their marriage. The amplification factor, κ, correspond to

the treated HIV positive concordant married couple indicating a high chance that they have in in-
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fecting the seronegative partner in the treated HIV serodiscordant married couple. This is because

we assumed that individuals from the treated compartment mostly prefer to have sexual relations

with someone who has been exposed to HIV counseling and taking treatment.

In comparison, we assume that the amplification factors weights are, γ > $ > η > σ > ψ > κ > 1.

Figure 3.3: Schematic diagram that represent HIV transmission dynamics amongst single individuals

and married couples.

The HIV transmission dynamics explained in section 3.5 and illustrated in Figure 3.3 is described by

the system of continuous differential equations as follows;
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dSN
dt

= π − µ(SN)− (λN)(SN)− 4α(SN)− µ(SN), (3.95)

dSP
dt

= (λN)(SN)− α(SP )− ε

4
(SP )− (µ+ δ)(SP ), (3.96)

dMNN

dt
= 2α(SN)− τ(MNN)(λNN)− µ(MNN) (3.97)

dMNP

dt
= τNP (MNN)(λNN) + α(SN + SP )− 1

4
εMNP −MNPλNP − µ(MNP ), (3.98)

dMPP

dt
= MNPλNP + τPPMNNλNN −

ε

2
(MPP )t − (µ+ δ)MPP (3.99)

dTSP

dt
=
ε

4
SP − αTSP

− µTSP
, (3.100)

dTMNP

dt
=

1

4
εMNP + α(SN + TSP

)− λTTMNP
− µTMNP

(3.101)

dTMPP

dt
=
ε

2
MPP + λTTMNP

− µTMPP
. (3.102)

3.5.2 Feasible region

The region Ψ =
{

(SN , SP ,MNN ,MNP ,MPP , TSP
, TMNP

, TMPP
) ∈ R8

+;R(t) ≤ π

µ

}
is feasible if it is

positively invariant with respect to the model (3.95)-(3.102). Therefore, we have to prove that all the

classes SN , SP ,MNN ,MNP ,MPP , TSP
, TMNP

and TMPP
are non-negative at all times (t ≥ 0) and are

bounded in the region Ψ. We state and prove the positive invariance of solutions as in [38, 39]. The

system of equations (3.95)-(3.102) has initial conditions given by SN(0) ≥ 0, SP (0) ≥ 0,MNN(0) ≥

0,MNP (0) ≥ 0,MPP (0) ≥ 0, TSP
(0) ≥, TMNP

(0) ≥ 0, TMPP
(0) ≥ 0.

Theorem 3. The region Ψ ∈ R8
+ is positively invariant with respect to the system of equations

(3.95)-(3.102) and a non-negative solution exists for all time 0 < t <∞.

Theorem 3 can be proved using the same technique used in subsection 3.2.2. Thus, the region

Ψ =

{
(SN , SP ,MNN ,MNP ,MPP , TSP

, TMNP
, TMPP

) ∈ R8
+;R(t) ≤ π

µ

}
(3.103)

is positively invariant for the model (3.95)-(3.102). The solutions of the model (3.95)-(3.102) are

considered to be both biologically and mathematically feasible in the region Ψ, hence it is sufficient

to study the dynamics of the model in Ψ.

The continuous model system of equations (3.95)− (3.102) is transformed into the following discrete

model:
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(SN)t+1 = (SN)t + π − (λN)t(SN)t − 4α(SN)t − µ(SN)t, (3.104)

(SP )t+1 = (SP )t + (λN)t(SN)t − α(SP )t −
ε

4
(SP )t − (µ+ δ)(SP )t, (3.105)

(MNN)t+1 = (MNN)t + 2α(SN)t − τ(MNN)t(λNN)t − µ(MNN)t (3.106)

(MNP )t+1 = (MNP )t + τNP (MNN)t(λNN)t + α((SN)t + (SP )t)−
1

4
ε(MNP )t − (MNP )t(λNP )t − µ(MNP )t,

(3.107)

(MPP )t+1 = (MPP )t + (MNP )t(λNP )t + τPP (MNN)t(λNN)t −
ε

2
(MPP )t − (µ+ δ)(MPP )t (3.108)

(TSP
)t+1 = (TSP

)t +
ε

4
(SP )t − α(TSP

)t − µ(TSP
), (3.109)

(TMNP
)t+1 = (TMNP

)t +
1

4
ε(MNP )t + α((SN)t + (TSP

)t)− (λT )t(TMNP
)t − µ(TMNP

)t (3.110)

(TMPP
)t+1 = (TMPP

)t +
ε

4
(MPP )t + (λT )t(TMNP

)t − µ(TMPP
)t, (3.111)

where

λN =
β

6R
(ηSP +MNP + 2MPP + TSP

+ TMNP
+ 2TMPP

) (3.112)

λNN =
β

6R
(σSP +MNP + 2MPP + TSP

+ TMNP
+ 2TMPP

) (3.113)

λNP =
β

6R
(SP + γMNP + 2ψMPP + TSP

+ TMNP
+ 2TMPP

) (3.114)

λT =
β

6R
(SP +MNP + 2MPP + TSP

+$TMNP
+ 2κTMPP

) (3.115)

3.6 Existence of Equilibria

We have to determine the existence of the equilibrium points of the system (3.104)-(3.111).

3.6.1 Existence of equilibria

The discrete model (3.104)-(3.111) does not have a disease-free equilibrium point since the forces of

infections are never zero and the serodiscordant couples always appear at equilibrium which shows

the presence of the disease. Therefore, this system only has an endemic equilibrium point.
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Endemic equilibrium point E1

The model (3.104)-(3.115) has the endemic equilibrium point given by,

E1 = (S∗N , S
∗
P ,M

∗
NN ,M

∗
NP ,M

∗
PP , TSP

, TMNP
, TMPP

). where

S∗N =
π

4α + λ∗N + µ
, (3.116)

S∗P =
λ∗Nπ

(4α + λ∗N + µ)(α + ε+ µ+ δ)
, (3.117)

M∗
NN =

2απ

(4α + λ∗N + µ)(τλ∗NN + µ)
, (3.118)

M∗
NP =

2τNPαπλ
∗
NN(α + δ + ε+ µ) + (π(α + ε+ δ + µ) + πλ∗N)(τλ∗NN + µ)

(4α + λ∗N + µ)(τλ∗NN + µ)(α + ε+ δ + µ)
(3.119)

M∗
PP =

a0
(4α + λ∗N + µ)(τλ∗NN + µ)(α + ε+ δ + µ)

(3.120)

T ∗SP
=
πλ∗Nε

α + µ
(3.121)

T ∗MNP
=

a1
2(4α + λ∗NN + µ)(τλ∗NN + µ)(α + ε+ δ + µ)(λ∗T + µ)

(3.122)

T ∗MPP
=

a2
2µ(4α + λ∗NN + µ)(τλ∗NN + µ)(α + ε+ δ + µ)(λ∗T + µ)

, (3.123)

where

a0 = 2απτNPλ
∗
NN(α + ε+ δ + µ) + λ∗NP (2τλ∗NNαπ(α + ε+ δ + µ)

+ (π(α + ε+ δ + µ) + πλ∗N)(τλ∗NN + µ))

a1 = ε(2τNPλ
∗
NNαπ(α + ε+ δ + µ) + (π(α + ε+ δ + µ) + πλ∗N)(τλNN + µ))

+ 2(τλ∗NN + µ)(δ + ε+ α + µ)(απ(α + µ) + πλ∗Nε(4α + λ∗N + µ))

a2 = 2ε(λ∗T + µ)(2απτNPλ
∗
NN(α + ε+ δ + µ) + λ∗NP (2τλ∗NNαπ

(α + ε+ δ + µ) + (π(α + ε+ δ + µ) + πλ∗N)(τλ∗NN + µ))) + λ∗T (ε(2τNP

λ∗NNαπ(α + ε+ δ + µ) + (π(α + ε+ δ + µ) + πλ∗N)(τλNN + µ))

+ 2(τλ∗NN + µ)(δ + ε+ α + µ)(απ(α + µ) + πλ∗Nε(4α + λ∗N + µ)))
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3.6.2 Incorporating economic aspects

We consider and incorporate the economic aspects in the discrete system (3.104)-(3.111) to get an

economic understanding of the system. We assumed the treatment rate to be a constant parameter in

the sub-models, in this section we assume that it is an economic demand function of the prevalence,

It, of the disease and the treatment price, pt. This means that, ε = D(I t, pt). We also assume that

everyone who is infected and take treatment reduces the HIV transmission rate in the population.

We normalize the total population to unity,

(SN)t
R(t)

+
(SP )t
R(t)

+
(MNN)t
R(t)

+
(MNP )t
R(t)

+
(MPP )t
R(t)

+
TSP

R(t)
+
TMNP

R(t)
+
TMPP

R(t)
= 1, (3.124)

we assume that the state variables are presented as,

(SN)t
R(t)

= sn(t),
SP
R(t)

= sp(t),

MNN

R(t)
= mnn(t),

MNP

R(t)
= mnp(t),

MPP

R(t)
= mpp(t),

TSP

R(t)
= Tsp(t),

TMNP

R(t)
= Tmnp(t),

TMPP

R(t)
= Tmpp(t)

we also assume that the prevalence, It, of the disease is the total fraction of all the infected in the

population

It = sp(t) +mnp(t) +mpp(t) + Tsp(t) + Tmnp(t) + Tmpp(t). (3.125)

We assume that, I t ≡ {Ij; j ≥ t}, represents the prevalence future path and that, pt ≡ {pj; j ≥ t},

represents a price future path. Therefore, the demand for treatment at time t as a function of the
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two paths is given as D(I t, pt). The discrete system (3.104)-(3.111) is transformed to be

(sn)t+1 = (sn)t + π − (λn)t(sn)t − 4α(sn)t − µ(sn)t, (3.126)

(sp)t+1 = (sp)t[1−
1

4
D(I t, pt)] + (λn)t(sn)t − α(sp)t − (µ+ δ)(sp)t, (3.127)

(mnn)t+1 = (mnn)t + 2α(sn)t − τ(mnn)t(λnn)t − µ(mnn)t (3.128)

(mnp)t+1 = (mnp)t[1−
1

4
D(I t, pt)] + τnp(mnn)t(λnn)t + α((sn)t + (sp)t)− (mnp)t(λnp)t − µ(mnp)t,

(3.129)

(mpp)t+1 = (mpp)t[1−
1

2
D(I t, pt)] + (mnp)t(λnp)t + τpp(mnn)t(λnn)t − (µ+ δ)(MPP )t (3.130)

(Tsp)t+1 = (Tsp)t +
1

4
(sp)tD(I t, pt)− α(Tsp)t − µ(Tsp), (3.131)

(Tmnp)t+1 = (Tmnp)t +
1

4
(mnp)tD(I t, pt) + α((sn)t + (Tsp)t)− (λtn)t(Tmnp)t − µ(Tmnp)t (3.132)

(Tmpp)t+1 = (Tmpp)t +
1

2
(mpp)tD(I t, pt) + (λtn)t(Tmnp)t − µ(Tmpp)t, (3.133)

where

λn =
β

6R

(
ηsp +mnp + 2mpp + Tsp + Tmnp + 2Tmpp

)
, (3.134)

λnn =
β

6R

(
σsp +mnp + 2mpp + Tsp + Tmnp + 2Tmpp

)
, (3.135)

λnp =
β

6R

(
sp + γmnp + 2ψmpp + Tsp + Tmnp + 2Tmpp

)
, (3.136)

λtn =
β

6R

(
sp +mnp + 2mpp + Tsp +$Tmnp + 2κTmpp

)
, (3.137)

and

Rt = (sn)t + (sp)t + (mnn)t + (mnp)t + (mpp)t + (Tsp)t + (Tmnp)t + (Tmpp)t. (3.138)

The amplification factors have similar definitions and weights compared to each other as in subsection

(3.5.1), γ > $ > η > σ > ψ > κ, but each amplification factor is now between zero and one.

3.6.3 Influence of prevalence and price on the demand for treatment

The HIV treatments have shown positive and effective results on prolonging human lives when taken

accordingly. In regions like the sub-Saharan Africa mortality rates are very high due to HIV/AIDS

and one of the main reasons for that is that people do not have an easy access to treatment because

of high market prices of treatment. We focus on the assumption that the demand for treatment
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is determined by the increase or decrease of prevalence in the population and also of prices in the

medicine market and neglect all other economic factors which may also influence the demand for

treatment. We assume that there is a positive relationship between the prevalence and treatment

market prices. If the prevalence of HIV increases, the demand for treatment increases. Hence, the

treatment market price also increase to a certain level then remains constant for any further increase

in the prevalence. If the prevalence of HIV decreases, the demand for treatment also decreases in the

population. Hence, the treatment market price decreases to a certain level then remains constant

for any further decrease in the prevalence . Therefore, the demand for HIV treatment is said to be

prevalence dependent.

3.6.4 The value function

We formulate the value function for the system (3.104)-(3.111) to illustrate the idea of benefit and

costs of taking treatment. We assume we have a utility function u(h, d). We assume that, d, is a

binary demand for treatment. The binary demand means that either all the infected individuals

demand treatment, d = 1, or none of them do, d = 0. We also assume that, h, is the state variable

that represents the susceptible, s = sn+mnn, or infected, i = sp+mnp+mpp+Tsp +Tmnp +Tmpp . We

evaluate the value function in the infected state since we want to investigate the costs and benefits

of treatment and only the infected take treatment, then we have

V (i) = max{u(i, 1) + ςV (i), u(i, 0) + ς[βItV (i) + (1− βIt)V (s)]} (3.139)

where ς is the discount rate. Discount rate quantifies benefits and costs relative to time that allows

for an individual to choose the health state that has greater present value than at some time in

future. We assume that we could restrict the infected, i, into the following possibilities:

• i = sp,

• i = mnp,

• i = mpp,

• i = sp +mnp,

• i = sp +mpp,

• i = mnp +mpp.
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We assume that infected individuals weigh the costs and benefits of demanding treatment. If the

current benefits of demanding treatment outweigh the cost of demanding treatment in the future,

then they would take treatment now and that could reduce the risk of infecting the susceptible’s.

If the current cost of demanding treatment outweighs the benefits of demanding treatment in the

future, then they might forgo treatment and expose the susceptible individuals to HIV.

3.6.5 Price dependent deterministic demand functions

We explore the different types of price dependent deterministic demand functions because price is

the most dominant and a crucial economic factor that affects demand directly. There is a negative

relationship between demand and price when there is no other external factor influencing the demand.

Therefore, the demand function, d(p), is the decreasing function of price, p, given the absence of

external factors. The following are the different types of demand functions, where a1, a2, γ, φ, α are

constant terms [44],

1. Price-dependent linear models of demand

Quantitative problems in economics and most other fields, patterns of crucial variables are

described well by linear models. The linear models are very useful in determining optimal

solutions for economic problems pertaining demand and supply of resources and products and

their prices.

• d(p) = a1 − a2p where a1, a2 > 0

• d(p) = a1(t)− a2p(t) where a1(t), a2 > 0, t ∈ [0, T ]

• d(p) = a1(t)− a2(t)p(t) where t ∈ [0, T ]

• d(p, r) = a1 − φp− γ(p− r), a1, γ, φ > 0

2. Price-dependent power models of demand

These models are mostly applied in microeconomics and social sciences. Also applied in power

law which is the procedure taken by significant number of regularities in finance and economics.

• d(p) = a1p
−a2 , where a1, a2 > 0

• d(p) = (a1p+ a2)
−γ where a1, a2 > 0, γ > 1

• d(p) = (a1 − a2pγ)γ where a1, a2 > 0, γ ∈ (−∞,−1) ∪ (0,∞)

70



• d(p) = a1 − a2pγ where a1, a2 > 0, γ ≥ 1

• d(p) = (a1 − a2pα)γ where a1, a2, α ≥ 1, γ ≤ 1

• d(p) =
a1

a1 + a2pγ
where a1, a2, γ > 0

• d(p) = φ(a1 − a2p) + (1− φ)a2p
−γ where a1, a2, a3 > 0, γ > 1, 0 ≤ φ ≤ 1

3. Price-dependent exponential models of demand

Exponential models are among important models that could well describe nonlinear patterns

of change. These models are very useful in modelling and analysis of change in, pollution,

population, radioactive material, bank savings, etc.

• d(p) = a1exp(−a2p) where a1, a2 > 0

• d(p) = exp(a1 − a2p) where a1, a2 > 0

• d(p) = a1 − exp(a2p) where a1, a2 > 0

4. Price-dependent logarithmic model of demand

The logarithmic models have a close relation with exponential models. These models are useful

in studying demands in econometrics. There are also used in expansion of the Cobb-Douglas

production function, the Baumol money demand function, etc [45].

• d(p) = ln(a1 − a2p)γ where a1, a2γ > 0

5. Price-dependent logit models of demand

Logit models sparked significant attention to researchers from different fields, economics, mar-

keting, transportation science and operations management, to name a few. In economics, these

models are very useful for pricing purposes in firms offering products that are differentiated

and substitutable[46].

• d(p) =
a1exp(−a2p)

1 + exp(−a2p)
where a1, a2 > 0

• d(p) =
1

1 + exp(a1 + a2p)
where a1, a2 > 0

• d(p(t)) =
1

1 + exp(a1 ± a2p(t))
where a1, a2 > 0, t ∈ [0, T ]

The linear models, exponential model, power models and logarithmic models are mostly used in

economics, however, there are not applicable in this study. The price dependent demand function

that is of interest to us in this work is the price-dependent logit model of demand. This is because
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in our model we assumed that there is a positive relationship between price and the prevalence.

However, there is a maximum point in which the price is allowed to reach, beyond that price level

the market prices remain constant for any further increase in prevalence. The demand for treatment

is dependent on the prevalence and the market price as mentioned in subsection (3.62) and both the

prevalence and market price depend on time. Hence, the demand for treatment varies with time.

We then assume that the treatment rate as a demand function increases significantly in the first few

years of implementation, and start increasing at a decreasing rate and then remain constant over

time. This means we assume that after some years the treatment rate reaches a highest point that

the sub-Saharan region health authorities could afford to implement into the population given that

every economic factor remains constant in all these years.

3.7 Summary

In this chapter we formulated the two sub-models, the model of formation of serodiscordant married

couples through marriage and the model of formation of serodiscordant married couples through

HIV infection. We analyzed each sub-model analytically and found that, the model of the formation

of serodiscordant married couples through marriage did not have a disease free equilibrium point

and we could only determine the invasion reproduction number, Rinv. While, the model of the

formation of serodiscordant married couples through infection had the disease free and the endemic

equilibrium points. Hence, we could determine the basic reproduction number, R0. We used the fixed

point theory to determine the existence of the endemic equilibrium point. We also investigated the

sensitivity of the invasion reproduction number and the basic reproduction number with respect to

the HIV transmission rate and the constant treatment rate. We then combined the two sub-models

to form a complex model of singles and married couples HIV transmission and serodiscordant couples

formation model and incorporated economic aspects through the treatment rate. We assumed that

the treatment rate is the demand function of price and prevalence. We presented the value function of

taking treatment and stated that we could restrict prevalence into six different cases. We also looked

different types of price-dependent demand functions. We will use the singles and married couples

HIV transmission and serodiscordant couples formation model to investigate intervention strategies

that could reduce the rate of HIV transmission amongst serodiscordant married couples in the next

chapter.
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Chapter 4

Numerical Simulations

4.1 Introduction

In chapter 3 we formulated and solved the sub-models analytically to get an understanding of the

dynamics of the formation of the serodiscordant married couples and the transmission of HIV in

the sub-population of single individuals and that of married couples. We also combined the two

sub-models to formulate the main complex model that represents the dynamics of marriage and

transmission of HIV. Due to the model complexity and the objectives, in the main model we opt

to use the numerical techniques where we could use reasonable parameter values that could best fit

our strategic scenarios. We then use the results to provide an understanding of the strategies and

determine the best strategy that could be used to reduce the HIV transmission to serodiscordant

couples. We use the Matlab programming languages for the simulations. The focus of our analysis

is based on the effects of HIV treatment on the serodiscordant couples under different strategies. In

this chapter simulations are based on the model (3.126)− (3.133) where the treatment rate is a price

and prevalence dependent demand function rather than a constant as in the sub-models in chapter

3.

4.2 Intervention strategies

We use the initial conditions and the parameter values from Table 4.1 and Table 4.2 for illustration

and to create representative figures. In all simulations, the state variables initial conditions are as
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stated in Table 4.1. In all simulations we assumed that every infected individual and married couples

who take treatment reduces the transmission rate of HIV in the population since they go through an

intense counseling as mentioned in chapter 3. Hence, their sexual behavior changes drastically in a

positive manner. The treatment rate function is given by, D(I(t), P (t)) =
1

1 + exp(1− t)
, and the

treatment profile is shown in Figure 4.1

Figure 4.1: Profile presenting the treatment rate as a function of time-dependent demand.

Table 4.1: State variables initial conditions

sn(0) sp(0) mnn(0) mnp(0) mpp(0) Tsp(0) Tmnp(0) Tmpp(0)

0.6870 0.14364 0.009960 0.05370 0.1057 0 0 0

In this study we investigate the effects of treatment under eight different intervention strategic sce-

narios . We first consider the behavior of the population’s compartments when there is no treatment

introduced into the population. We use this strategy as a reference scenario to compare the trends

of other intervention strategies. The second strategy is to investigate the effects of treating the HIV

positive single individuals, sp. The third strategy is to investigate the effects of treating the serodis-

cordant couples, mnp. The fourth strategy is to investigate the effects of treating the HIV positive

concordant positive married couples, mpp. The fifth strategy is to investigate the effects of treating,

sp and mnp. The sixth strategy is to investigate the effects of treating, sp and mpp. The seventh

strategy is to investigate the effects of treating, mnp and mpp. The eighth strategy is to investigate

the effects of treating the entire infective compartments in the population.

Table 4.3 indicates the effects that each intervention strategy has in the population compartments.

We use arrows to show the trends, where an upward arrow indicates an increase, a downward arrow
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Table 4.2: Parameter values

Parameters Value Source

π 0.029 [47]

α 0.0035 [13]

µ 0.02 [48]

δ 0.044 [11]

β 0.0890 [11]

τ 0.2257 [14]

τNP 0.225 [14]

τPP 0.00070 [14]

ρ 0.0098 estimated

η 0.520 estimated

σ 0.420 estimated

γ 0.780 estimated

ψ 0.400 estimated

$ 0.580 estimated

κ 0.320 estimated

indicates a decrease, a downward and upward arrows indicates a decrease then increase until it sta-

bilizes, upward and downward arrows indicates an increase then decrease and a dash indicates that

there are no dynamics in that compartment.

We explore the effects of not introducing treatment in the population in Figure 4.2. The HIV negative

single individuals, sn, decrease over time. The HIV concordant negative married couples compart-

ment, mnn, increases for some time and then decreases over time. The infective compartments, sp,

mnp and mpp, all increase over time. The HIV concordant positive married couples, mpp, decrease

slightly before they start increasing. The serodiscordant married couples compartment, mnp, in-

creases significantly than, sp and mpp.

We explore the effects of treating the HIV positive single individuals, sp, in Figure 4.3. The HIV
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Table 4.3: Intervention strategic scenarios

Strategies Effects of the strategy

sn sp mnn mnp mpp Tsp Tmnp Tmpp

No treatment ↓ ↑ ↑, ↓ ↑ ↓, ↑ – – –

Treat sp ↓ ↓ ↑, ↓ ↑, ↓ ↓, ↑ ↑ – –

Treat mnp ↓ ↑ ↑ ↓, ↑ ↓, ↑ – ↑ –

Treat mpp ↓ ↑ ↑, ↓ ↑, ↓ ↓ – – ↑

Treat sp and mnp ↓ ↓ ↑ ↓ ↓ ↑ ↑ –

Treat sp and mpp ↓ ↓ ↑ ↑ ↓ ↑ – ↑

Treat mnp and mpp ↓ ↑ ↑ ↓ ↓ – ↑ ↑, ↓

Treat the entire infected compartments ↓ ↓ ↑ ↓ ↓ ↑ ↑ ↑, ↓

single individual’s compartment decreases sharply over a short period of time and remains constant

at some level. The HIV concordant negative married couples compartment increases sharply and

start decreasing a bit faster than in Figure 4.2. The HIV positive single individuals compartment

decreases sharply and that effect reflects through an increase in the treated HIV positive single indi-

viduals compartment, Tsp . The serodiscordant married couples compartment increases as in Figure

4.2 then decreases after some time until it remains constant. The HIV concordant positive married

couples compartment decreases initially as in Figure 4.2 then increases until it reaches some point

than remains constant over time.

We investigate the effects of treating the serodiscordant married couples, mnp, in figure 4.4. The

HIV negative single individuals compartment decreases in a similar way to Figure 4.2. The HIV con-

cordant negative married couples compartment increases more compared to, mnn, in Figure 4.2 and

then remains constant over time. The HIV positive single individuals compartment increases to some

point but lower than that of, sp, in Figure 4.2 then remains constant over time. The serodiscordant

married couples compartment decrease significantly in a very short period of time until it is or very

close to zero and then start increasing and then remains constant. The effect of the decrease in, mnp,

reflects through the increase of the treated serodiscordant married couples compartment, Tmnp . The

HIV concordant positive married couples compartment decreases significantly to some point then

increases slightly and remain constant.
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We investigate the effects of treating only the HIV positive concordant married couples, mpp, in

Figure 4.5. The compartment, sn, decreases and then reach equilibrium. The compartment, mnn,

increases and then start decreasing. The compartment, sp, increases and then remains constant over

time. The compartment, mnp, also increases to similarly to Figure 4.2 but decreases after some time.

The compartment, mpp, decreases significantly to some point and start to increase and then remains

constant. The effect is reflected through the increase of the treated HIV concordant positive married

couples compartment, Tmpp .

We study the effects of treating both the HIV positive single, sp, individuals and serodiscordant

married couples, mnp, in Figure 4.6. The compartment, sn, decreases significantly over time and

then remains constant. The compartment, mnn, increases to some point but not as high as in Figure

4.2 and then remains constant over time. The compartments, sp and mnp, decreases significantly

over a short period of time and then remain constant. The effects of the decrease in, sp and mnp,

are reflected through the increase in the compartments, Tsp and Tmnp . The compartment, mpp, also

decreases over time to some level and then remains constant.

We study the effect of treating both HIV positive single individuals, sp, and the HIV positive con-

cordant married couples, mpp, in Figure 4.7. The compartment, sn, decreases significantly in Figure

4.7 compared to Figure 4.2. The compartment, mnn, increases to some level lower than that in

Figure 4.2 and remains constant over time. The compartments, sp and mpp, decrease significantly

over a short period of time and reach equilibrium. The effect of a decrease in the compartments, sp

and mpp, is reflected through an increase in the treatment compartments, Tsp and Tmpp . The com-

partment, mnp, increases initially as in Figure 4.2 and then decreases and remains constant over time.

We examine the effects of treating serodiscordant married couples, mnp, and HIV positive concordant

positive married couples, mpp, in Figure 4.8. The compartment, sn, decreases significantly over time.

The compartments, sp and mnn, increase over time and then level off. The compartments, mnp and

mpp, decrease significantly and remain constant at some level. This effect is reflected through an

increase in the compartments, Tmnp and Tmpp .
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We explore the effect of treating the entire infective class in Figure 1.9. This strategy reduces

significantly every infective compartment, sp,mnp,mpp, in the population. The effect of an increase in

these compartments is reflected through the increase in the treatment compartments, Tsp , Tmnp , Tmpp .

The compartments, sn, decreases significantly and mnn increases to some level less than that in Figure

4.2 and then remain constant.

4.2.1 Best intervention strategies

The different scenarios of the intervention strategies gave us an idea of comparing the effectiveness of

each of the strategies. The Table 4.3 and Figure 4.2 - Figure 4.9 give us ideas of the overall effects of

strategies in each compartment. By comparing the strategies we can draw best strategies that could

be used to reduce the HIV transmission rate amongst the serodiscordant married couples and other

infective compartments. A strategy is deemed best if it reduces HIV transmission rate amongst the

serodiscordant married couples significantly and in other infected individuals from other compart-

ments, and when the least number of individuals could be treated and the required effects reflect on

most infected individuals. This condition allows us to take into consideration the expectations of

implementation costs of each strategy.

Our results illustrate that the most effective strategy is treating the serodiscordant married couples,

mnp. This strategy reduces the HIV transmission rate amongst the serodiscordant married couples

and the HIV concordant positive married couples compartments. At least one HIV seropositive

partner is treated and the required effects reflect on three infected individuals. Hence, costs of

implementing this strategy are expected to be low since at least one out of four infected individuals

demands treatment. The second effective strategy is treating the HIV positive single individuals, sp,

and the serodiscordant married couples, mnp. This strategy reduces the HIV transmission rate in

every infective compartment in the population. At least two infected individuals are treated from each

of the compartments, sp and mnp, and the required effects reflect on at least four infected individuals.

Therefore, costs of implementing this strategy are expected to be a bit higher than the first since at

least two out of four infected individuals demand treatment. The third effective strategy is treating

the HIV positive single individuals, sp. This strategy reduces the HIV transmission rate amongst

the serodiscordant married couples and the HIV positive single individuals. At least one infected

individual is treated in, sp, and the required effects reflect on at least two infected individuals. This
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strategy is expected to be the same as the first in terms of treatment costs. However, this strategy

is not considered to be the most effective as the first because it does not reduce HIV transmission

rate amongst the HIV concordant positive married couples, which has a huge influence in the rate of

infecting the serodiscordant couples. The fourth effective strategy is treating the HIV positive single

individuals, sp, and the HIV concordant positive married couples, mpp. This strategy reduces the HIV

transmission rate in every infected compartment in the population. At least three individuals are

treated from the compartments, sp and mpp, and the required effects reflect on at least four infected

individuals. This strategy is more costly to implement compared to the most effective strategy since

at least three infected individuals demand treatment. The fifth effective strategy is treating the

serodiscordant married couples, mnp, and the HIV positive concordant married couples, mpp. This

strategy reduces the HIV transmission rate amongst the serodiscordant married couples and the HIV

concordant positive married couples. At least three infected individuals are treated from, mnp and

mpp, and the required effects reflect on at least three infected individuals. This strategy is expected to

be similar to the fourth strategy in terms of implementation costs, since in both at least three infected

individuals demand treatment. The sixth effective strategy is treating every infected individual in

the population. This strategy is also very effective since it reduces the HIV transmission rate in

every infected compartment in the population. At least four infected individuals are treated and the

required effects reflect on at least four infected individuals. The implementation costs of this strategy

are expected to be more than any of the best strategies.

These best strategies imply that single individuals and married couples benefits of taking treatment

increase their overall utility since their health authorities can afford to provide treatment in time and

at reasonable costs. Hence, they continue to take treatment and further increase their utilities and

the value function since benefits would overweight costs.
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Figure 4.2: Profiles presenting population compartments without treatment and the state variables

are dimensionalized.
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Figure 4.3: Profiles presenting the scenario where only sp is treated in the entire population.
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Figure 4.4: Profiles presenting the scenario where only mnp is treated in the entire population.
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Figure 4.5: Profiles presenting the scenario where only mpp is treated in the entire population.
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Figure 4.6: Profiles presenting the scenario where only sp and mnp is treated in the entire population.
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Figure 4.7: Profiles presenting the scenario where only sp and mpp is treated in the entire population.
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Figure 4.8: Profiles presenting the scenario where onlymnp andmpp is treated in the entire population.
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Figure 4.9: Profiles presenting population with treatment in every infected compartment and the

state variables are dimensionalized.
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4.3 Influence of α and β in the population

The marriage rate, α, and the transmission rate, β, play a significant role in the behavior of the

population. We investigate the effect of various marriage rate and the transmission rate under the

scenarios where there is no treatment rate and where there is a treatment rate.

Figure 4.10 shows the behavior of the populations for various marriage rate values while other vari-

ables are fixed and there is no treatment. For lower values of , α, the single’s compartments, sn and

sp, increase indicating that few individuals are removed through marriage. Consequently, the married

couples compartments, mnn, mnp and mpp, decrease since there is less recruitment from the single’s

compartments. For larger values of, α, the single’s compartments decrease drastically indicating a

large number of individuals removed from this compartment through marriage. While the larger val-

ues of, α, leads to an increase in the married couples compartments. Figure 4.11 shows the behavior

of the population compartments for various transmission rate values while other variables are fixed

and there is no treatment. Lower, β, values have less effect in decreasing population compartments.

Larger, β, values have a greater effect on reducing the compartments, sn, mnn and mnp, and that

effect is reflected on the increase in the compartments, sp, and , mpp.

Figure 4.12 shows the behavior of the population compartments for various marriage rate values with

treatment and all other variables are fixed. Low values of, α, have less effect on removing the single

individuals from their respective compartments, sn, sp and Tsp . This means less recruitment for the

married couples compartments, mnn, mnp, mpp, Tmnp and Tmpp . For lager values of, α, the single’s

compartments decrease significantly and the effect of marriage is reflected on, mnp and Tmnp . The

presence of treatment in the population causes the compartments, mnp and mpp, to decrease even if

there is a huge inflow of married couples coming into these compartments due to high marriage rates.

Figure 4.13 shows the behavior of the population compartments for various transmission rate values

with treatment and all other variables are fixed. For low values of, β, the susceptible compartments,

sn and mnn, are least affected and they experience an increase. While the infective compartments

experience a decrease. The presence of treatment causes serodiscordant compartments, mnp and

Tmnp , to experience a slight decrease than the other married couples compartments at low, β, values.

For larger ,β, values the susceptible and the serodiscordant married couples compartments decrease

sharply regardless of the introduction of treatment in the population. While all other infective

compartments increase drastically at lager values of, β.
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Figure 4.10: Profiles presenting the behavior of the state variables for various values of the marriage

rate, α, while other variables are fixed and the treatment rate function is zero.
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Figure 4.11: Profiles presenting the behavior of the state variables for various values of the transmis-

sion rate, β, while other variables are fixed and the treatment rate function is zero.
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Figure 4.12: Profiles presenting the behavior of the state variables for various values of the marriage

rate, α, while other variables are fixed and the treatment rate varies.
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Figure 4.13: Profiles presenting the behavior of the state variables for various values of the transmis-

sion rate, β, while other variables are fixed and the treatment rate varies
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Chapter 5

Conclusion

This study was motivated by a concern of the high HIV transmission rate amongst the serodiscordant

married couples in the sub-Saharan African region. We used concepts from the fields of mathematical

and economic epidemiology to investigate and analyze the mathematical models of HIV formulated

in this work. In chapter 1 we gave a detailed explanation of infectious diseases and their causes and

examples. We looked at the history and importance of mathematical and economic modelling in

epidemiology. In chapter 2 a literature was reviewed on mathematical and economic models for dif-

ferent infectious diseases and also the preliminary concepts were looked at. In chapter 3 explored the

first objective of the study which was to formulate two sub-models and analyze them analytically in

order to gain insight to the dynamics of the formation of the serodiscordant married couples through

marriage and through infection. We then combined the two sub-models to form a more complex

model with some economic aspects incorporated.

The first sub-model involved the dynamics of marriage of HIV negative single individuals and HIV

positive single individuals to form the serodiscordant married couples. We carried out the model

analysis, where we proved boundedness and positivity of solutions. We also found that this sub-

model does not have a disease free equilibrium point but only has an endemic equilibrium point.

This means there is always a disease in this subpopulation because there are always serodiscordant

couples present. Hence, we determined the invasion reproduction number, Rinv, using the next gen-

eration matrix method for discrete systems [31]. Using the Descartes rule of signs we showed that

there is at least one positive real root and we required that the spectral radius be less than one to
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ensure the stability of the endemic equilibrium point.

The second sub-model involved the dynamics of only the married couples to form the serodiscor-

dant married couples through HIV infection. We analyzed the model and concluded that it has a

feasible region. We found that this model has the diseases free and the endemic equilibrium points.

We used the fixed point theory on three forces of infections to investigate the existence of the en-

demic equilibrium points. Stability analysis revealed that the disease free equilibrium point is locally

asymptotically stable if R0 < 1. This condition indicates that the disease is controllable.

The sub-models helped us understand the dynamics of the formation of the serodiscordant married

couples in the sub-population involving single individuals and in the sub-population involving mar-

ried couples with different HIV status. We then combined the dynamics of the two sub-model to

formulate a complex model of single individuals and married couples. In this model we incorporated

the treatment rate that is dependent on price and prevalence rather than the constant treatment rate

as in the sub-models. We solved this model using numerical techniques. We also investigated the

relationship between R0, Rinv and the transmission rate, β, and the constant treatment rate ε. The

change in the basic reproduction number and the invasion reproduction number, with respect to the

transmission rate indicated the positive relationship. This means that in order to reduce the basic

reproduction number and the invasion reproduction number intervention strategies should target to

decrease the transmission rate in these sub-populations. We also found that the change in, R0, and,

Rinv, with respect to the treatment rate must be less than zero for the treatment rate to be effective

in the sub-populations. We also explored the different types of price-dependent deterministic models

in order to find the type that is applicable to our model set up. We assumed the treatment rate to

be the logit demand function that depends on time.

In chapter 4 we explored the second objective of the study which was to analyze the main model

numerically to obtain the best intervention strategies in terms of reducing HIV transmission amongst

serodiscordant married couples and by other infected individuals. We performed numerical simula-

tions on the main model to investigate the best strategies that could reduce the HIV transmission

rate amongst the serodiscordant married couples and by other infected single individuals and married

couples which may contribute to an increase in the transmission rate in the population. In this study
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our only intervention strategy was the treatment. We had eight intervention strategies with which

we wanted to explore the effects of treatment implementation into the population. These strategies

were, no treatment implemented, treat HIV positive single individuals, treat serodiscordant married

couples, treat concordant positive married couples, treat HIV positive single individuals and serodis-

cordant married couples, treat HIV positive single individuals and HIV concordant positive married

couples, treat serodiscordant married couples and HIV positive concordant married couples and treat

every infected individuals in the population.

We found that six out of the eight strategies were capable of reducing the transmission rate amongst

the serodiscordant married couples. However, the most effective strategy was treating the serodis-

cordant couples directly. This strategy is not only effective in reducing the HIV transmission rate

amongst the serodiscordant married couples only but also amongst the HIV concordant positive

married couples. The HIV concordant positive married couples are the most important couples that

influence the rate at which seronegative partners contract the disease. In this strategy at least one

infected individual out of four is treated and the positive effects reflect on three individuals. Hence,

the demand for treatment in this case is low since only a small proportion of the total prevalence

demands treatment. The price for treatment in the market is also expected to be low in this strategic

scenario.

Based on our findings, we recommend that poor resource setting health authorities strive to imple-

ment one or more of the above best intervention strategies. However, the 2013/2014 data indicates

that the treatment coverage in the sub-Saharan region was approximately 41% and only 16% in the

world infected class, and this region highly depends on foreign aids [11, 12]. We therefore recommend

that one of the strategies, which is to treat the serodiscordant married couples be implemented in the

sub-Saharan region. This strategy is more effective in reducing the HIV transmission rate amongst

the serodiscordant married couples and affordable to implement in poor resource setting regions since

there are limited resources. It is evidenced in [49, 50], that treating the seropositive partner in the

serodiscordant relationship has a positive effect in reducing the rate of HIV transmission amongst

the serodiscordant couples. Nevertheless, the strategy of treating the HIV positive single individuals

could be very effective in poor resource setting regions like the sub-Saharan Africa that is dominated

by the youth population, and the marriage rate in this region is high. Therefore, reducing the rate

of HIV transmission by HIV positive single individuals will increase the number of newly recruited

serodiscordant couples with low rate of HIV transmission.
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In reality, it is important to note that treatment as the only intervention strategy is not enough.

The health authorities may need to use it in combination with other intervention strategies in order

obtain even better results [51]. The models we formulated do not present the entire reality since

its based on assumptions. In our models we restricted marriage interactions to only the possibilities

that led to the formation of serodiscordant married couples and that they only die of natural death,

which is not entirely true in reality. We also assumed that there is no immigration and emigration,

no marriage dissolution and no HIV re-infection, and these aspects play a vital role in the rate of

HIV transmission in poor resource setting regions where having multiple sexual partners is deemed

normal. The strategies could help in reducing rate of HIV transmission but it is not easy or possible

for health authorities to allow treatment access to only a class of certain individuals or married

couples in the communities. However, the models gave us a picture of the real problem in the poor

resource setting region and the findings could be very useful.

5.1 Future work

In future study, we could bring our model closer to reality by allowing recruitment through immigra-

tion of single individuals and married couples with different HIV status. We could also allow marriage

dissolution since marriage is one of the focal aspect in HIV transmissions in the poor resource set-

ting region. We could also consider to improve our results by including other forms of intervention

strategies in the model.
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