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Abstract

This work is concerned with the application of finite difference simulation to

modelling the pressure response in partially penetrating oil wells. This has relevance

to the oil and hydrology industries where pressure behaviour is used to infer the nature

of aquifer or reservoir properties, particularly permeability. In the case of partially

penetrating wells, the pressure response carries information regarding the magnitude

of permeability in the vertical direction, a parameter that can be difficult to measure

by other means and one that has a direct influence on both the total volumes of oil that

can be recovered and on the rate of recovery.

The derivation of the non-linear differential equations that form the basis for multi­

phase fluid flow in porous media is reviewed and it is shown how they can be

converted into a set of finite difference equations. Techniques used to solve these

equations are explained, with particular emphasis on the approach followed by the

commercial simulation package used in this study. This involves use of Newton's

method to linearize the equations followed by application of a pre-conditioned

successive minimization technique to solve the resulting linear equations.

Finite difference simulation is applied to a hypothetical problem of solving pressure

response in a partially penetrating well in an homogenous but anisotropic medium and

the results compared with those from analytical solutions. Differences between the

results are resolved, demonstrating that the required level of accuracy can be achieved

through selective use of sufficiently small grid blocks and time-steps. Residual

discrepancies with some of the analytical methods can be traced to differences in the

boundary conditions used in their derivation.
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The simulation method is applied to matching a complex real-life well test with

vertical and lateral variation in properties (including fluid saturation). An accurate

match can be achieved through judicious adjustment of the problem parameters with

the proviso that the vertical permeability needs to be high. This suggests that the

recovery mechanism in the oil field concerned can be expected to be highly efficient,

something that has recently been confirmed by production results.
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Chapter 1: Review

1.1 Introduction

Pressure measurements made in oil and gas wells provide useful information on the

current and possible future performance of the individual well and the oil or gas field

as a whole. For example, some of the possibilities are:

• the determination of average pressures for the hydrocarbon reservoir may indicate

how quickly the field is being depleted by production, and hence how long the life

of the field will be;

• the analysis of individual well performance may indicate that remedial work is

needed to improve the productivity of a well;

• the degree to which different wells are in hydraulic communication may indicate

that a change in the production policy is necessary to maximise the recovery of

hydrocarbons.

Typically the data that are gathered about the properties of the hydrocarbon reservoir

are fairly sparse, being limited to information gathered from the intersections of the

reservoir by wells. Other data are often indirect: seismic reflections from the strata

containing the reservoir, for example. Pressure measurements represent a direct

measurement of the dynamic behaviour of the reservoir and are therefore very useful

in providing information about the properties and characteristics of the reservoir. This

in turn may reduce the uncertainties in forecasting the production from the reservoir,

and hence reduce the risk in developing the oil or gas field.

The application of pressure measurements first occurred in the 1920'sl in the United

States, where initially the main objective was to record a static reservoir pressure. It

was soon found that when a producing well was closed in order to allow the pressure

to build up to that of the surrounding reservoir, the length of time taken for the

pressure to stabilise was a function of the properties of rock.

It was not until 1937, when Muskat2 developed an extrapolation theory relating the

change in pressure with time to the properties of the reservoir, that a quantitative basis

for evaluating dynamic pressures existed. Muskat's theory, while a big step forward,

must be regarded as incomplete as it does not take into consideration the

compressibility of the reservoir fluid.
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In the early 1950s two different approaches were developed which include the effects

of fluid compressibility. These are the method of Miller, Dyes and Hutchinson3

(MDH) and the method of Homer4 which together form the basis for a large part of

modem well test analysis. In their simplest form these theories obtain a solution for

the pressure behaviour by assuming that the reservoir consists of a radially infinite,

homogeneous and isotropic, porous medium containing a fluid of constant viscosity

with small and constant compressibility. They also assume that the entire reservoir

interval has been intersected by the well and that flow takes place across the entire

length of the intersection. This geometry is depicted in Figure 1.1. The methods

show how the pressure measured in the production well responds to a change in

production rate for this simple geometry.

FIGURE 1.1: GEOMETRY OF A FULLY PENETRATING WELL
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In this thesis the pressure response in partially penetrating and partially completed

wells is considered.

The geometry of partially penetrating wells differs from the simple radial geometry

discussed above in that only a portion of the reservoir is intersected by the well (see

Figure l.2a). In other words, the fluid from the reservoir can only flow into the

wellbore from the portion of the reservoir that the well intersects. Partially completed

wells are wells that intersect the entire reservoir interval but are sealed off from the

reservoir over part of the intersection (see Figure 1.2b). For most practical purposes

partially penetrating wells can be regarded as being a subset of partially completed
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wells where the partial completion occurs at the top of the reSerVOlf. The

consequence of both these geometries is that, for a given flow rate, there is a greater

drop in pressure from the reservoir to the well than for the simple radial case. This

additional pressure drop is due to the convergence of the flow lines near the well

where the same volume of fluid is required to flow into a smaller well intersection.

FIGURE 1.2a: SCHEMATIC OF A PARTIALLY PENETRATING WELL
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FIGURE 1.2b: SCHEMATIC OF A PARTIALLY COMPLETED WELL
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Various authors5- IO have derived analytical solutions for partially perforated

geometries:

• Muskat5 calculated productivities for an anisotropic system under steady-state

conditions for incompressible fluid.
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Nisle6 derived a solution for partially penetrating wells in an isotropic medium.

Brons and Marting7 extended this work and calculated the impact of the partial

penetration on productivity. They evaluated the solution numerically in order to

produce tables of values that could be used to determine productivity impairment

for wells with a range of penetration ratios.

Hantush8 used a combination of Laplace and Fourier transforms to solve the

transient anisotropic version of the problem.

Odeh9 obtained a solution of the steady-state problem usmg a finite cosme

transform.

• Gringarten and Ramey 10 used Green's functions to solve the problem for the case

where the well-bore has constant pressure along its length. That is, the fluid

conductivity within the well itself is infinite in comparison to the conductivity in

the reservoir. Their approach was to superimpose a number of discrete flux

sections of different strengths in order to obtain a uniform pressure along the well.

Unfortunately most of these solutions are difficult to evaluate in that they involve

infinite series or integrals that need to be calculated numerically.

An alternative approach followed by some authors 11-13 has been to use finite

difference simulators to model the geometry of the problem, either to check the

analytical solutions or to derive useful correlations. Finite difference simulation

packages have become commonplace in the oil industry because of the need to

forecast and match historical production from fields with heterogeneities that are

difficult to account for in analytical models. Most engineers therefore have access to

these numerical simulation packages.

The work in this thesis was prompted by a simulation study conducted at the Southern

Oil Exploration Corporation (SOEKOR) on one of its partially completed wells l4 . In

this study it was found that the analytical formulae describing the additional pressure

drop due to partial completion broke down because the properties of the interval that

was open to flow were not characteristic of the reservoir interval as a whole.

Although the simulation model succeeded in explaining the observed pressure drop,

some problems were encountered in matching the rate of change of pressure shortly

after a change in production rate. These problems are believed to be related to errors

introduced by the discretisation of the finite difference approach.
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The aims of this thesis are two-fold: firstly, to investigate ways of minimising the

errors inherent in the simulation of partly completed wells through the use of standard

reservoir simulators that are commonplace throughout the oil-industry; secondly, to

gain a better understanding of the reservoir characteristics at the specific well being

analysed and consequent implications for future production.

Although specialised software exists that implements some of the numerical­

analytical methods, the use of such software in this study has been limited to

comparison purposes. The reasons for this are to try to make the techniques

developed in this thesis as broadly applicable as possible and to allow the reservoirs

with important heterogeneities or a mixture of fluid phases to be modelled.

An understanding of the errors is essential in determining the limits of applicability of

the techniques developed. Reducing the errors has the potential to greatly improve the

analysis of pressures measured in partially completed wells. Although the non-radial

geometry of partially completed wells introduces complications into the pressure

analysis, the pressures also carry additional information about the anisotropy of the

reservOIr. This information is of great importance in forecasting such reservoir

behaviour as gas or water coning, and also has a bearing on the fraction of oil in the

reservoir that is recovered by production.

1.2 Fluid Flow in Porous Media

In order to gain an understanding of the pressure behaviour in oil and gas wells it is

necessary to first cover the fundamentals of the behaviour of fluid flowing through

reservoir rock.

Any potential reservoir rock has pores or, in some cases, fractures which create a void

space between the grains of rock. This· space can be filled with water or a

combination of water and hydrocarbon liquids and/or gases. The degree to which the

pores are interconnected controls the ease with which the fluid can move from pore to

pore and ultimately into the wellbore. Resistance of the fluid to flow will also be

dependant on the of viscosity of the fluid. Thus we can expect the flow behaviour to

be a function of the properties of both the fluid and the rock.

A nineteenth century French engineer, Henry Darcy, was the first to publish an

account 15 of an experiment in which the flow of fluids through porous media was

investigated. He found that the velocity of the flow of water through a vertical sand

pack was directly proportional to the difference in the manometric height as evaluated

above and below the sand pack. Others later extended his work to other fluids
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(including compressible fluids) and to flow that IS not vertical, leading to the

formulation of Darcy's law

kyd(J)
U=---

Jl dl'
(1)

where u is the flow velocity, k is the fluid conductivity or permeability of the rock, Jl

is the viscosity of the fluid, y =pg, p is the fluid density, g is the acceleration due to

gravity, and (J) is the fluid potential.

In this equation and the other equations in this chapter, it has been assumed that a self­

consistent set of units such as SI is being used. This avoids unnecessary constants

other than those that arise naturally through the physics and geometry of the problem

at hand. A more complete description of the different systems of units is given in

section 1.5.

The fluid potential is in turn given by

"fdp(J)= --D,
pO Y

(2)

where p is the fluid pressure, pI! is a reference pressure, and D is the depth within the

porous medium. This definition of fluid potential is necessary to ensure the condition

of no flow under hydrostatic conditions for a compressible fluid. Although Darcy's

law was originally defined in a one-dimensional form (as given in Equation 1), it can

be extended into three dimensions, where it is normally assumed that permeability is a

diagonal property tensor of the form

lk X

k = 0

o
(3)

Darcy's law then becomes

ky k ( )y: = --V(J):::; -- Vp- rvD ,
It Jl

(4)

where y: is the flow velocity vector and V IS the differential vector operator

(%x, 0 joy, 0 /oz).

Although Darcy's law is empirically derived, King Hubbert 16 has shown how the law

can be derived from the well known Navier-Stokes equations.
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As given in Equation 4, the law assumes that the flow is monophasic. When extended

to multiphase flow it is normally assumed that the law applies separately to each fluid

with the proviso that permeability is modified to take into account the reduction of

available pore space due to the presence of another fluid. This is achieved through the

multiplication of permeability by a factor between zero and one. This factor is known

as relative permeability and is normally taken to be a function of fluid saturation and

sometimes saturation history. Relative permeabilities vary from reservoir to reservoir

and are therefore normally measured specifically for the reservoir of interest, using

elaborate laboratory experiments.

1.3 Problems with Analytical Solutions

Many of the analytical solutions of pressure behaviour in reservoirs are based on the

radial diffusivity equation,

fiplop JlcrjJ op
--+-------or 2 r or - k Of'

(5)

where p is the pressure in the reservoir, r is the radial distance from the centre of the

wellbore, Jt is the fluid viscosity, C is the fluid compressibility, rjJ is the fractional

porosity, k is the permeability, and f is time.

This equation is derived in Section 2.3. The assumptions implicit in the equation are

that: a single fluid of small and constant compressibility is present; the reservoir rock

is homogenous and isotropic; and gravitational terms are negligible (the pressure

increases linearly with depth). If in addition one assumes that the entire reservoir

interval is open to flow, that the volume occupied by well bore is insignificant, and

that the lateral extent of the reservoir is infinite, then it is possible to derive the well

known transient solution with a line-source,

(6)

The pressure response for a sequence of rate changes can be

where !:J.p is the change in pressure at time f and radial distance r , after a change in

flow rate from zero to q (q positive for flow from the reservoir to the well), h is the

thickness of the reservoir layer, Bo is the oil formation volume factor (a factor relating

the surface rate to the downhole rate), and Ei is the well known exponential integral,. re-
u

El(X) = -du.
x u

obtained from this basic solution by using the principle of superposition.
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Furthermore, if one uses the logarithmic approximation to the Ei function and

evaluates the equation at a radius equivalent to the wellbore radius, rw , then one

obtains

/)"p ~ - qllB" (In(t) + In[ 4k 2]J'
4Jrkh ~Jl cqJrw

where ~ = e0
577L

. 0.5772 ... is Euler's constant.

(7)

From Equation 7 it is evident that plotting the pressure drop against the logarithm of

time will give a line of constant slope. Plots of this kind will used in discussing the

theoretical response of partially completed wells.

Under normal circumstances it is difficult to keep the rate constant and the pressures

stable during a flow period. Thus the well is shut in after flowing for some time and

the pressures are monitored as they recover. This is known as a flow/build-up test. If

the length of the flow period is t and a time !it has elapsed since the well was shut in,

then by the principle of superposition the pressure change is given by

qJlB, ( ) qJlBo [t+!itJ/)"p=---' In(t+!it)-ln(!it) =---In -- ,
4Jrkh 4Jrkh !it

(8)

where the solution given in Equation 7 has been evaluated at time t +!it and rate q,

and summed with the solution at time !it and rate -q.

Equation 8 is the basis of the Homer4 method of well test analysis where pressure is

plotted against the logarithm of (t + !it)/!it. On such a plot pressure should follow a

linear trend with a slope proportional to qJl / kh. Plots of this kind will be used when

dealing with real life examples in Chapter 5.

In practice the assumptions that the formation is homogenous and isotropic are far

from correct. Sedimentary rocks generally exhibit some form of layering and

successive layers can have properties that differ by an order of magnitude. In spite of

this, the Homer method is often successful when used to infer average properties.

This is because the properties within a layer can be relatively constant. If all the

layers have been intersected by the well and the direction of the well is orthogonal to

the layers, then the permeability in the direction parallel to the well is relatively

unimportant.

Another inhomogeneity that affects the validity of the transient line-source solution is

the presence of a zone of altered permeability immediately about the wellbore. This
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zone is either a consequence of damage to the formation that occurred during the

drilling process, or the result of remedial work, such as acidizing that has improved

the permeability around the wellbore. The manifestation of this zone is an additional

(or reduced) pressure drop over and above that expected from Equation 7. Van

Everdingen 17 resolved this problem by introducing the concept of a skin effect which

changes Equation 7 to

/':Jp = - qJlBo [In(t) + In[ 4k J] + 2SJ'
4Jrkh ~JlcrjJr;,

where S is a skin factor, normally determined empirically.

(9)

As noted previously, the effect of partial completion is to introduce a pressure drop

additional to that expected in a fully completed well. This additional pressure drop is

often also modelled as a skin allowing the use of Equation 9 in describing the pressure

behaviour. Unfortunately this approach is only adequate in describing the well

behaviour some time after a change in rate. The characteristic pressure response of a

partially completed well after a change in rate is depicted in Figure 1.3.

FIGURE 1.3: TYPICAL PRESSURE RESPONSE IN A PARTIALLY

COMPLETED WELL
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Initially the well response is linear with respect to the logarithm of time, with a slope

inversely proportional to the value of kh for the perforated interval. This is followed

by a period of transition, the length of which is dependant on both the proportion of

the reservoir that has been completed and the vertical permeability of the rock.

Finally there is again a linear response, but this time the slope is proportional to the

value of kh for the entire reservoir interval.

In practice, the early-time pressure behaviour is often masked by effects related to the

compression or expansion of the volume of fluid within the wellbore itself. At late

times the response can be complicated by the perturbations related to the presence of

lateral boundaries some distance from the well.

Brons and Marting7 have produced tables and graphs that allow the skin factor

resulting from partial completion to be estimated. To obtain these values they

numerically evaluated an analytical solution of the partial completion problem derived

by Nisle6. The most serious shortcoming in their work is the assumption of isotropy

which is clearly inappropriate for most sedimentary rocks.

A set of correlations for the skin factor which takes into account the differences

between vertical and horizontal permeability has been presented by Odeh9. These

correlations were derived from an analytical solution of the steady state version of the

problem.

Both the Brons and Marting approach and the Odeh approach suffer from the

drawback that they assume constant flux along the length of the wellbore. In reality

the effective permeability in the wellbore is often several orders of magnitude higher

than that in the adjacent reservoir. A more realistic assumption under most

circumstances is therefore that of a constant pressure potential within the wellbore.

This is known as the infinite conductivity approach.

Both the Brons and Marting method and the Odeh method deal with steady state

behaviour. These results can be applied by analogy to the late-time transient well

behaviour. While such behaviour is applicable to production situations where major

rate changes occur infrequently, excessive concentration on this portion of the

pressure response ignores a major part of the information contained in transient well

tests.

Hantush8 solved the transient (infinite reservoir) case for an anisotropic reservoir

using Laplace and Fourier transforms. Evaluation of the Hantush solution requires the

numerical calculation of the expression
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!1p(r,z,t) = qf.lBo {Ei(f.lrP
Cr2

) +l!!- I~P(n7r)w(f.lrP
cr2

,nJrrD)} , (10)
4Jrk

H
h 4kt Jrhw n=1 n 4kt

where

P(nJr) =[sin(nJr~D) - sin(nJrh,D)] cos(nJrzD)'

00 ( fJ2)W(u,fJ) = f~ exp - y- 4y dy,
u

(11 )

(12)

(13)

r is the radial distance measured from the centre of the wellbore, z· is the vertical

position measured from the top of the reservoir, kv and kH are the vertical and

horizontal permeability respectively, and h, hw ' h" and ~ are lengths defining the

completion geometry as shown in Figure 1.4. Note that the notation hID implies that

the dimensionless length should be used, i.e. h,D = hi / h etc.

FIGURE 1.4: PARTIAL COMPLETION GEOMETRY FOR HANTUSH
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Equation 10 converges relatively slowly and this limits its use to non-interactive

applications. In this thesis the Hantush solution is compared with finite difference

simulations as well as the analytical solution from a commercial well-test analysis
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package. The Hantush solution is based on the constant flux assumption previously

described in the Brons and Marting and the Odeh approaches.

An infinite conductivity solution for anisotropic reservoirs has been derived by

Gringarten and Ramey10, who superimposed a number of discrete flux segments of

different strengths so that the pressure at the centre of each flux segment was constant.

Their method relies on the use of Green's functions. A comparison made between

constant flux and infinite conductivity solutions showed that the two are equivalent

provided that the constant flux solution is evaluated at the correct vertical position in

the wellbore.

More recently, Odeh and Babu 18 have developed a solution that obtains a solution for

a horizontal well by using the method of integrating point Green's functions. Their

method can be applied to partially completed wells by a simple rotation of the co­

ordinate system. This solution is used in the Intera well-test analysis package

WELTEST.

Another recent method is that of Ozkan and Raghavan 19, who derive solutions for a

variety of problems in the Laplace-transform domain. The Laplace-transform

inversion is performed numerically.

The concerns regarding the level of approximation relating to non-radial flow,

anisotropy and well boundary conditions are adequately dealt with by the more recent

analytical solutions. Problems still remain when trying to deal with inhomogeneity,

continuously or frequently varying flow rates, or multiple phases. In theory, varying

rates can be dealt with using the principle of superposition, but in practice the

numerical evaluation of the analytical solutions is too slow to allow more than a few

rate changes to be modelled comfortably. Specialised software is also necessary for

some of the more complicated solutions and the software imposes its own constraints.

The analytical models are sufficient for simpler wells but more complicated problems

require the use of numerical simulation. A set of correlations has recently been

presented by Ding and Reynolds20 to allow the partial completion skin to be

calculated for multi-layer reservoirs, which is the most common form of heterogeneity

encountered. These correlations are of course only useful in describing the late

transient or steady state well behaviour.
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1.4 Resolution of Analytical Problems using Simulation

There are various numerical simulation techniques that could be used to model the

problem. These include finite difference methods, finite element methods and various

hybrid schemes.

Finite element methods have been used in reservoir simulation but are often not as

computationally efficient as finite difference methods. Techniques have been

developed to deal with multi-phasic flow and time varying problems using finite

elements but most implementations are restricted to one or two spatial dimensions.

Commercial reservoir simulation packages are therefore almost exclusively based on

finite differences.

Finite difference simulators have the flexibility to model all the required effects and

have the added advantage that they are commonplace in the oil industry. Most of

these reservoir simulators have a large number of controlling options which allow the

well to be controlled according to surface rates, surface pressures, or bottomhole

pressures.

Finite difference simulators do however introduce their own set of problems. Most of

these relate to the fact that a physical process, continuous in time and space, has been

modelled in terms of discrete time steps and grid blocks. These errors can be reduced

by decreasing the length of the time steps and the size of the grid blocks, though

computer time and space availability limit the extent to which this can be pursued.

The best results are achieved by selectively reducing the size of blocks where changes

are most rapid. An example of this is given in this thesis for the partial completion

problem. Orientation of the simulation grid can also affect results, in that there may

be a preference for flow parallel to the axes of the grid as opposed to flow diagonally

across grid blocks. Other problems can be the stability of the solution and lack of

convergence. The simulator used in this thesis is Eclipse, a propriety reservoir

simulator from Intera. Eclipse uses a fully-implicit technique which is known to

provide stable and reliable solutions for difficult problems.

This thesis will concentrate on the single phase version of the partial completion

problem though the solution technique is capable of handling multiphase flow.

Extension of the Eclipse program input to deal with multiple phases is

straightforward. In reality it is a common occurrence to have a well that is perforated

in an oil zone with either an overlying gas cap or an underlying aquifer. It is

important that these situations can be modelled. The gas cap (or aquifer) is often

modelled analytically as an upper (or lower) constant pressure boundary, as in
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Strelstova-Adams21 ,22 for example. Simulation work by AI-Khalifa23 has shown that

to consider these situations as special cases of partially completed wells may be more

appropriate. The difference in viscosity between the oil and water, or the gas and oil,

immediately makes the problem inhomogeneous, thereby requiring the use of

simulation to achieve a solution.

1.5 Unit Convention

In this thesis two sets of units are used. For the theoretical equations the SI system of

units is used. This has the advantage that these units are self consistent (absolute) and

do not involve unnecessary constants that are a function of the chosen unit system.

The only constants entering the equations are a function of the geometry and physics

of the problem being considered. For the practical examples a hybrid system of units

known as "field" units has been used. These units consist of a mixture of imperial

units that have traditionally been used in the British and American oil industries and

are often of a more convenient size for the problems being considered. The use of

field units is still commonplace throughout the oil industry.

A third set of units known as Darcy units is also often used in the literature. This is a

set of hybrid units which, like the systems of absolute units, is designed to avoid

unnecessary constants but has units of a more convenient size. Unfortunately Darcy

units are only partly successful in that conversion constants are only avoided if the

gravity terms in Darcy's law are ignored.

Darcy's law expressed in each of the systems of units is given below:

k
Jd =-- (\Jp - pg\JD)

JL

!i = -1.127 xl 0-3~ (\Jp - 0.4335cv \JD)
JL

k
Jd = --(\Jp-9.869 X 10-7 pg\JD)

JL

Absolute units

Field units (for liquids)

Darcy units

The equation for field units has been expressed in terms of cv, the specific gravity of

the fluid.

To avoid confusion a table of the units used in the various systems has been modified

from that given by Earlougher24 and Dake25 and reproduced in Table 1.1 below. The

field units of stock tank barrels and stock tank barrels per day for volume and flow

rate are intended for liquids. Equivalent units for gases would be standard cubic feet
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(set) and thousand standard cubic feet per day (Mscf/d). The terms "stock tank" and

"standard" indicate that the volumes are measured at surface at standard conditions of

14.7 psia and 60°F. Note that the unit "psia" implies an absolute pressure, i.e. relative

to a complete vacuum, whereas the unit "psig" implies a pressure relative to a

atmospheric pressure. When describing a pressure change the unit simply becomes

"psi". Volumes expressed in SI units are often given at normal conditions of ooe and

101.5 Kpa.

1.6 Aims

In summary, the aims of this thesis are the following:

1. To review the literature relating to the pressure response III partially

penetrating wells

2. To gain insight into the solution techniques applied by the finite-difference

simulation package used in this thesis

3. To investigate ways of minimising the errors inherent in the simulation of

partly completed wells when using finite-difference simulation

4. To gain a better understanding of the reservoir characteristics at the specific

well being analysed and consequent implications for future production

The intention is that the techniques established to minimise the errors should be

widely applicable without the use of specialized software. Most practising reservoir

engineers would have access to finite difference reservoir simulation packages that

could be used to model the problems considered here.

In the next chapter the partial differential equations that govern fluid flow in porous

media will be derived. These equations form the basis of both analytical and

simulation methods. In subsequent chapters these equations will be converted to

finite difference form and the approach used to solve the equations will be discussed.

Application of finite difference simulation to an abstract and easily analytically

modelled problem will allow the magnitude of the errors associated with simulation to

be assessed. Steps will be taken to reduce, and as far as possible, eliminate the errors.

The lessons learned from the abstract problem will then be applied to modelling a

real-life problem, that of a partially penetrating well with lateral and vertical variation

in properties (including saturation).



Table 1.1: Comparison of Different Unit Systems

Parameter Symbol Dimensions SI Units Darcy Units Field Units
Length 1 L metre centimetre feet

m cm ft
Mass m M kilogram gram pound

kg gm lb
Time t T second second hour

s s hr
Velocity u LIT metres per second centimetres per second feet per second

m.s-1 cm.s-1 ft.s-1

Volume v L3 cubic metres cubic centimetres stock tank barrels
m3 cc stb

Flow rate q L3/T cubic metres per cubic centimetres per stock tank barrels per day
second second stb/d
m3.s-1 cc.s-1

Pressure p M/LT2 Pascal atmosphere pounds per square inch
Pa atm psia

Density p M/L-' kilograms per cubic grams per cubic pounds per cubic foot
metre centimetre lb/cu.ft

kg.m-3 gm.cc-1

Viscosity fl MILT Pascal-seconds centipoise centipoise
Pa.s cp cp

Permeability k L2 square metres Darcy milliDarcy
m2 D mD
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Chapter 2: Derivation of Equations

In this chapter the equations that govern fluid flow through porous media will be

derived. These equations are a result of the combination of the principle of

conservation of mass with Darcy's law. Multiphase flow of oil, gas, and water is

accommodated by the extension of Darcy's law to several phases. A simplified

equation is derived which is applicable to single phase flow of a fluid with small and

constant compressibility. Boundary conditions typical of many reservoir problems are

discussed. Some analytical solutions of this simplified equation when subject to the

boundary conditions are considered. The Black-oil model is used to simplify the full

equations in such a way that the fluid flow can be described in terms of the mass flow

of three independent components. This completes the description of the reservoir in

terms of a set of equations. Chapter 3 describes how these equations are solved

numerically.

2.1 Conservation of Mass

Consider the volume element llV = L1xllyllz within the reservoir as depicted in Figure

2.1. This volume element is assumed to have faces orthogonal to the principle axes at

positions x, x + ilx, y, Y + ily, Z, and z + llz respectively. By conservation of mass

the net inflow of fluids, 1, must equal the accumulation of mass, A, within the
volume element. If the mass flow rate vector, I, is broken up into flow components

parallel to the axes, then 1 represents the sum of the contributions from all the

components. For the component Ix the net inflow is the difference between the flow

across the face at x and the flow across the opposite face at x + L1x. Over a time

period M the net inflow due to Ix is given by [Ix(x)- Ix(X+L1x)]ilyllzM where

ilyllz is the area of the faces. Similarly for the components I y and !z giving a total

inflow of

[It (x) - It (x + L1x)]ilyllz

1 = ill + [.0, (y) - f y (y + ily) ]L1x/j,z

+[fJz)- !z(Z+/j,z)]L1xily

(14)

The accumulation of mass within the volume element must be equal to the change in

the product of pore volume and fluid density. Over a time period M the accumulation

is given by

(15)
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FIGURE 2.1 : GEOMETRY OF VOLUME ELEMENT

z

zw
. : - .. -

z -

Equating A and J and dividing by I::.. VM gives

.. -,

~( rjJ)= !,(x)- fx(x+t:..x) + fy(Y)- fy(Y+l::..y) + Iz(z)- fz(z+t:..z). (16)
o{ P t:..x I::..y t:..z

Taking the limit as t:..x,I::..Y,t:..z~ 0 gives

o-(prjJ) =-VI·ot -

Replacing 1 with Pld gives

(17)

(18)

which is the mass conservation equation for a single phase. If multiple phases and

components are present, then the equation needs to be modified to account for the

mass fraction of each component in each phase and for the fraction of the pore space

occupied by each phase. Each component must independently satisfy the equation
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(19)

where the notation Yp,c represents the mass-fraction of component c in phase p, and

S is the fraction of the pore space occupied by phase p.
p

2.2 Darcy's law

Darcy's law (Equation 4) can be used to relate Ye to the fluid pressure potential, <1>.

Making these changes to Equation 18 gives

~ (PrP) = \1.( pky \I<1>J .
ot JL

(20)

This is the general mass-flow equation. Note that p, rP, It, and <1> can all be functions

of pressure which makes the equation non-linear.

When several phases are present, Darcy's law needs to modified to account for the

reduction of available pore space for each phase to flow through. This is traditionally

done through the inclusion of a factor between 0 and 1. This factor is known as

relative permeability and is a function of the phase saturation. The multi-phase form

of Darcy's law is

(21 )

where krp is the relative permeability for phase p. Substituting Equation 21 into

Equation 19 gives

(22)

which is the full mass-flow equation for multi-phase flow.

2.3 Diffusivity Equations

Since the mass flow equation is non-linear it is difficult to solve analytically. In order

to provide a basis for simpler solutions it is necessary to first linearize the equation.

The simplest method of linearizing the equation is to assume that the reservoir fluid

has a small constant compressibility. This is an appropriate assumption for most

liquid flow. There are other methods of linearizing the equation but they will not be

dealt with here. Although this thesis is primarily concerned with the finite difference
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formulation of the general equation, a simplified equation is useful when discussing

purely geometrical effects.

The defining expression for isothermal fluid compressibility, Ct' is

I OV 1 op
cl ==--- =

VOPr POPr
(23)

If ct is constant over the range of interest then Equation 23 can be integrated giving

(24)

where pO is the density at the reference pressure of pO. Rearranging Equation 24 and

using a Taylor expansion for the exponential function gives

p= pO exp[ct(p- pO)]

=PO[1 +cAp- po)+ ~! c/(p- por +...]

~ pO [I + ct (p - po)] . (25)

For small compressibilities, which is often the case for liquid flow, terms involving c2

or higher orders can be ignored. Similarly, the compressibility associated with the

pore space, Cr , is usually small and the porosity can therefore be adequately

represented by the equation

rjJ ~ rjJ0 [I + c
r
(p - po)] . (26)

Replacing rjJ and p in the left hand side of Equation 20 with the expressions given in

Equations 25 and 26 gives

~(rjJp)= rjJ" Po~[1 + C t(p - pO )][1 + c
r
(p - po)]ot ot·

;/,0 o( )OP= If' p cr + cl· -,. ot (27)

where the product rule for differentiation has been used and terms involving crc
t

have

been ignored. The right hand side of Equation 20 is given by



21

(28)

Expanding the first term on the right-hand side of Equation 28 using the relationship

y = pg and Equation 25 gives

pky gk 2 2pgk
\l-. \l<1> =- \lP .\l<1> =--Cj \lp. \l<1>,

~ ~ ~

(29)

where it has been assumed that k and ~ are constant. If it is assumed that the

pressure gradients, and hence the potential gradients, are small then this term can be

neglected as it contains a product of pressure and potential gradients multiplied by the

small fluid compressibility. Substituting Equation 27 and the remaining term from

Equation 28 into Equation 20 gives

(30)

/
. 1 l' h' 0<1> lop .Dividing both sides by pky ~ and usmg t le re atlOns Ip - = -- gIves

ot y ot

\l2<1>=L~rjJ()(c,+C/) 0<1> .
p k ot

(31)

But pO / p ~ I because the compressibility is assumed to be small, and Equation 31

becomes

? IlrjJo(C,. +c/.)o<1>
\l-<1> = .

k ot '
(32)

which is known as the diffusivity equation and is a second order linear differential

equation.

In practice, the linearization procedure is highly successful when applied to problems

involving relatively incompressible fluids such as water or oil, like those considered

in this thesis. As a consequence, virtually all the analytical solutions for pressure

behaviour in reservoir systems are based directly on solutions of the diffusivity

equation rather than the underlying mass flow equation. Further discussion of the

validity of the linearization procedure is beyond the scope of this thesis and analytical

solutions of the diffusivity equation will be regarded as representing the true solution

that reservoir simulation needs to match. Note that reservoir simulation solves the full

mass flow equation numerically and gives virtually identical pressure responses to the
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analytical solutions of the diffusivity equation for simple geometries, with any

differences being traceable to errors introduced by the simulation itself.

For oil reservoirs there is generally water accompanying the oil in the pore space.

This is because the pore space was originally occupied by water alone and some is

trapped by surface tension forces during the displacement by oil. If the water is

immobile then Equation 32 for single phase flow can be used with the proviso that the

compressibility is modified to take into account the fraction of the pore that IS

occupied by water. That is, the compressibility is given by C =cr + coS" + cwSw'

The cylindrical symmetry of the well suggests that it may be useful to express the

spatial derivatives in Equation 32 in the cylindrical co-ordinates (r, B,z), where the

well intersects the reservoir in the Z -direction, r represents the radial direction

measured outward from the centre of the well, and B is the tangential direction. Thus

0<1> / oB can be assumed to be zero if the reservoir properties are taken to be

symmetrical about the well giving:

(33)

Equation 5, which is the basis of the solution for the fully penetrating well, can be

derived from Equation 33 by ignoring gravitational effects ( i.e. assuming that

0<1> / 0 Z is constant and that gradients of <1> are equivalent to gradients of p).

2.4 Typical Boundary Conditions

Boundary conditions can be broken up into those that specify rate and those that

specify pressure (or potential) at a particular region in the reservoir. While it is

possible to have mixed boundary conditions, this will not be considered in this thesis.

Flow boundary conditions can implemented using the definition of Darcy's law,

Equation 4, by setting the spatial derivatives according to the equation

o f-l-<1>=--u
01 ky'

(34)

where 1 is a direction perpendicular to the boundary and u is required flow velocity in

this direction. A special case of the flow boundary conditions is the no-flow boundary

where a complete barrier to flow is modelled where the appropriate derivative is set to

zero. In the case of the partial penetration problem, the top and bottom of the

reservoir interval represent no-flow boundaries resulting in the condition



o
- <D = 0 , for z = 0 and z = h,oz

(35)
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where the origin of the co-ordinate system has been taken to be at the centre of the

well where it intersects with the top of the reservoir interval. The well itself is

required to produce at constant rate and also provides a flow boundary condition. If

the total required rate from the well is q then the radial velocity, and hence the radial

potential gradient, at the well is defined in terms of the equation

1>, ? k I>,;:),n. Hr y ·u'¥
q = -2Hrw fUdz = - w fa- dz ,

1>, Jl h, r
(36)

where the well geometry is shown in Figure lA. The constant flux assumption is that

u is constant along the well and the required constraint becomes

[
o<D J qJl
or r=r h <z<h = 2nrwkhwY .

w' \- - 2

(37)

On the other hand, if the infinite conductivity assumption is used then the potential is

constant along the well bore,

and

(

11, o<D J-dz = qJl .
} or r=r 2nrwky

w

(39)

(38)

Equations 37. 38, and 39 are difficult to deal with analytically and so are often taken

to apply only in the limit as rw ---+ O. Solutions using this assumption are known as

line source solutions.

Initially, before the flow begins, the reservoir is taken to be in hydrostatic equilibrium.

That is

<D = <D" at t = 0, for all r . (40)

To satisfy the requirement for transience the potential at any lateral boundary must be

unaffected by the disturbance at the well. To achieve this a constant potential can be

defined at an infinite distance from the well. For example,



<1> = <1>" at r =00, for all t . (41)
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The use of these boundary conditions (Equations 35, 37,40 and 41) in conjunction

with the diffusivity equation (Equation 33) is sufficient to fully describe the single

phase isotropic version of the problem for liquid flow. The anisotropic problem

requires slight modification to Equation 33 in that permeability needs to be treated as

a property tensor rather than as a scalar. Some additional formulae are needed for the

multi-phase problem and these are dealt with in Section 2.6.

2.5 Analytical Solutions of the Diffusivity Equation

The petroleum engineering literature is full of papers describing various solutions of

the diffusivity equation for specific boundary conditions and using different

approaches for solution. It is not intended to give anything other than a brief

description here.

Probably the most fundamental solution for the purpose of well test analysis is that of

a fully penetrating well in an infinite radially symmetric system subject to a boundary

condition of a single change in rate at the well bore with the rate held constant

thereafter. This is known as the constant terminal rate solution. A simplified solution

can be obtained using the line source inner boundary condition as mentioned in the

previous section. This leads to a simple two-dimensional problem that can be solved

using a simple transformation of variables giving an equation involving the

exponential integral with time and radius as variables (Equation 6). Using the

logarithmic approximation to the exponential integral and evaluating the function at

the well bore radius gives an equation where the pressure is a logarithmic function of

time (Equation 7).

A large part of well test analysis therefore consists of plotting pressure in terms of

logarithmic functions of time in order to assess the degree of adherence to ideal

behaviour. Variations from this behaviour can be interpreted in terms of deviations

from ideal geometry or in terms of changes in reservoir properties. In Chapter 5

analysis techniques based on the line source solution will be discussed further and will

be used to infer the magnitude of permeability in the well being modelled.

Much of the advantage in using the diffusivity equation as the basis for analytical

teclmiques is that it is linear and therefore more complex solutions can be built up

using superposition in time and space. In the case of real well tests the rate is

normally variable involving both flowing periods and periods when the well is closed

requiring superposition in time in order to model the pressure response. In other cases
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complex geometries can be built up through the superposition of flux elements. Many

of the partially penetrating well solutions mentioned in Section 1.1 are of this nature.

The application of Laplace transforms to the diffusivity equation for particular

boundary conditions often results in problems that are easier to solve. In many cases

the solution is left in Laplace space as an analytical inversion is difficult to obtain. In

Chapter 4 two such solutions for partially penetrating wells will be evaluated using a

numerical inversion of the Laplace space solution.

2.6 Black-oil Fluid Model

The complex behaviour of hydrocarbon fluids under changing conditions of pressure,

volume, and temperature (PVT) make it difficult to model multi-phase problems

adequately.

Most of the fluid behaviour in the reserVOlr can be regarded as occurring under

isothermal conditions. This is because the reservoir is relatively thin in comparison to

rock above and below it. The surrounding rock acts as a heat reservoir that can, for all

practical purposes, be regarded as infinite. However, when the reservoir fluid is

brought to the surface it undergoes changes in pressure and temperature. The major

source of difficulty is that as conditions change gas can be liberated from the liquid

phase and liquid can condense from the gas phase.

An approximation that is often used in the oil industry is to assume that the reservoir

hydrocarbons are made up of only two components, namely one that is liquid at

surface conditions (stock tank oil or condensate) and one that is gaseous at surface

conditions (dry gas). Both the reservoir liquid phase and the reservoir gas phase are

made up of both components. At reservoir conditions some of the surface gas

dissolves in the reservoir liquid and vaporised surface liquid is present in the gas

phase. This approximation is known as the black oil model and can adequately

describe PVT behaviour of hydrocarbons for many reservoir engineering problems.

Four parameters are needed for a complete description of the hydrocarbons. These

have been expressed in terms of field units below:

o Bo ' the oil formation volume factor. This is the volume that liquid occupies in the

reservoir relative to the volume of surface liquids that would be generated on

taking the reservoir liquid to surface. Bo has units of reservoir barrels per stock

tank barrel (rb/stb). Note that Bo is generally larger than one because of the extra

gas dissolved in the oil at reservoir conditions.
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B the gas formation volume factor. This is the volume that gas occupies in the
g'

reservoir relative to the volume of surface gas that would be generated on taking
the reservoir gas to surface. Bg is normally given in terms of reservoir barrels per

standard cubic feet (rb/scf).

oR" the solution (or dissolved) gas-oil ratio. This is the ratio of surface gas to

surface liquid that results when the reservoir liquid phase is brought to surface

conditions. R, has units of standard cubic feet per stock tank barrel (scf/stb).

o Rv' the vaporised oil fraction. This is the ratio of surface gas to surface liquid that

results when the reservoir gas phase is brought to surface conditions. Rv has units

of stock tank barrel per standard cubic feet (stb/scf).

A third component is necessary to describe the flow of reservoir brine or injected

water. It is generally assumed that there is no solubility between the hydrocarbons

and the water phase. Only one additional parameter is therefore necessary and this is

the water formation volume factor Bw '

The multi-phase flow equation (Equation 22) can now be defined for each component.
The product PpYI'.c can be replaced with the product of surface density and equivalent

surface volume. For example, for the component stock tank oil (sto) and reservoir oil

phase (ro), ProYro."" is replaced by P,w / Bo' Since the density at surface conditions is a

constant for each component and it appears on both sides of the equation it can be

eliminated, giving:

~[~ d.] = -v k[knvYw '1<D ]OrBIf' . B w'
w wJ.1w

(42)

(43)

(44)

which are the oil, gas, and water equations respectively. These equations can also be

expressed in terms of pressures using the approximate relationship

(45)

When more than one fluid occupies the pore space of the reservoir rock, surface

tension effects dictate that the pressures in the two phases are different. This pressure
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difference is known as the capillary pressure. Generally one of the phases has a

greater affinity for the surface of the rock than the other and therefore occupies the

smaller pores. This phase is known as the wetting phase. As the capillary pressure

increases the other (non-wetting) phase can enter smaller and smaller pores,

displacing the wetting phase. Thus, like relative permeability, capillary pressure is a

function of saturation and the pore geometry of the rock. It is therefore normally

measured in the laboratory on rock samples taken from the reservoir of interest.

Capillary pressure relationships allow the pressures and hence potentials of the gas

and water phases to be related to the oil phase pressure through the equations

(46)

and

(47)

A final equation that completes the description is

(48)

which is simply a statement of the fact that the pore space is completely occupied by

the three phases. Equations 42 to 48 can be solved for all the phase saturations and

pressures. The state of the system at any point in the reservoir is completely described
by the variables Po,S"" and SI!. since the other variables can be established using

Equations 46 to 48.

2.7 Compositional model

Some reservoir engineering problems deal with fluids whose PVT behaviour is too

complicated to be described using the black oil model. An example of such a fluid is

one that is close to its critical point. A small change in pressure for such a fluid can

dramatically change the ratio of liquid to vapour in the reservoir and also the

properties of each phase.

For these more difficult problems it is possible to model the fluid behaviour in terms

of the interaction of its molecular components. Typically this is achieved through the

use of an equation of state such as the Peng-Robinson equation of state. This allows

the molar fraction of each component in the liquid and vapour to be estimated, which

in turn allows the mass fractions to be substituted into the flow equation (Equation

22). Computationally, compositional models are very expensive as they require the

numerical solution of the equation of state at every grid block for every trial pressure.
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In practice it is not possible to deal with more than a few components and it is

therefore necessary to group together molecules with similar properties. In order to

have validity it is necessary to match the behaviour of the compositional model to

experiments performed on the reservoir fluid in the laboratory.

Compositional models will not be considered further in this thesis.

2.8 Chapter Summary

In this chapter the non-linear differential equations governing multi-phase fluid flow

in porous media were derived. Combining Darcy's Law with conservation of mass

led to the formulation of the mass-flow equation, which was extended to multi-phase

systems using the concepts of relative permeability and capillary pressure. Pressure

dependent properties were accommodated through the use of a simplified fluid PVT

representation, the black-oil model. In the special case of single phase flow of a

slightly compressible fluid, it is possible to make approximations that convert the

mass-flow equation to a second order linear equation known as the diffusivity

equation. This forms a basis for the analytical solutions that the simulation will be

compared to.

In the next chapter the numerical methods used to solve the multi-phase mass flow

equation will be reviewed. The differential equations will be approximated by a set of

finite difference equations that can more readily be solved numerically and that can

accommodate spatially varying properties such as those to be used in the real-life

problem.
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Chapter 3: Numerical Scheme

Analytical techniques attempt to solve the equations developed m Chapter 2 by

finding a function that satisfies the equations for a continuous interval in time and

space. While it is possible to solve these equations analytically for particular

simplified cases, general solutions are not possible. One of the factors that makes real

life problems difficult is the occurrence of heterogeneous properties. As has been

discussed in Chapter 1, heterogeneous and strongly anisotropic properties are the rule

rather than the exception when dealing with the sedimentary rocks that oil is

commonly found in.

This chapter discusses a numerical scheme that allows approximate solutions to be

obtained. This scheme, unlike the analytical techniques, evaluates the state of the

system at discrete points in time and space. For each of the chosen points in space the

future state of the point is determined from the current state of all the other points.

The equations given in Chapter 2 are modified to obtain new equations in terms of

these discrete points, the number of equations being related to the number of points

chosen. These equations are then solved simultaneously for each of the required time

values. It is possible to choose points that are sufficiently close together to obtain the

accuracy required for practical purposes, the major limitations being the speed and

memory capabilities of the computer used to solve the discrete equations.

3.1 Gridding

The process of choosing the spatial points (grid points) at which the discrete equations

will be evaluated is known as gridding. Typically, the reservoir is represented as a

series of discrete volume elements (grid blocks) with a single such element associated

with each grid point. Each property, although possibly varying within a grid block, is

represented by a single value at the grid point. An important consideration in terms of

minimising the errors associated with this simplification is the choice of the most

appropriate position of either the grid point within the grid block or alternatively the

grid block boundaries (faces) between grid points.

Various gridding systems are supported by reservoir simulation. The most common

forms of grid are the Cartesian grid and the radial grid. In the Cartesian grid, the grid

points are arranged in lines parallel to the Cartesian axes (x, y) giving rise to

rectangular grid blocks. Note that the spacing between successive lines of grid points

need not be constant. Three dimensional grids may consist of several layers.

Adjacent grid blocks may be displaced in the z-direction to accommodate changes in

the depth of a layer. An example of a Cartesian grid is shown in Figure 3.1.
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FIGURE 3.1: A SIMPLE CARTESIAN GRID

z • • -+--t--...J,..-:::~I--- grid point

grid block
face/boundary

FIGURE 3.2: A SIMPLE RADIAL GRID

cr--'z

Radial grids have grid points arranged along lines corresponding to a cylindrical co­

ordinate system (r, 8, z) resulting in grid blocks that are segments of cylindrical shells

about the line r=O. Because of their geometry, radial grids lend themselves naturally

to single well problems. The theta direction can be ignored when there is reason to

believe that there is cylindrical symmetry about the well bore, giving a two­

dimensional set of grid-points spaced along the rand z axes. Cylindrical symmetry is
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often a reasonable assumption when the well is vertical and the sedimentary layers of

the rock horizontal. An example of a radial grid is shown in Figure 3.2.

Real reservoirs are often structurally too complex to be accurately represented by a

rigid Cartesian grid. This has led to the use of gridding schemes with more

geometrical flexibility. One such scheme is the corner point geometry grid where the

individual blocks are no longer strictly rectangular. In this scheme the grid block

corners lie on lines that are not perfectly straight but are slightly distorted in order to

follow natural features in the reservoir.

FIGURE 3.3: A CORNER-POINT GEOMETRY GRID

A common reason for wanting to use corner point geometry is that the reservoir is

geologically faulted, i.e. layers that were originally adjacent have been displaced so

that they are no longer adjacent. The fault plane, or surface along which the

displacement has taken place, can be curved and may intersect the reservoir at an

angle. In this instance the corners of the grid blocks would be shifted so that they lie

on the fault plane. An example of a corner point geometry used to model a complex

reservoir is given in Figure 3.3. Unfortunately the added convenience comes at the

cost of reduced accuracy if a conventional numerical scheme is used to solve the flow
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equations for such a grid. Abdou et al26 have found significant differences between

simulation results obtained with a normal Cartesian grid and those obtained using a

corner point grid when simulating a highly faulted reservoir in the Middle-East.

Typically, the error in the solution is a function of the extent to which the grid blocks

differ from a perfect rectangular prism.

More recently, methods with even greater geometric flexibility and without the

reduced accuracy of the corner point grid have been developed. One such method is

the use of Voronoi, or perpendicular bisection (PEBI), grids which has been pioneered

by Heinemann27 for use in reservoir simulation. These grids have the property that

the faces of the grid blocks perpendicularly bisect the lines joining adjacent grid­

points. An example showing the block boundaries for a two-dimensional PEEl grid is

given in Figure 3.4.

FIGURE 3.4: A PEEl GRID

\
)---

Three dimensional PEBI grids usmg irregular polyhedral grid blocks can be

constructed but are complex to visualise. Usually a PEBI grid is defined in a

horizontal plane and then projected vertically onto a number of layers giving grid

blocks that are polygonal prisms. The grid construction is further complicated in three

dimensions when strong anisotropy exists between vertical and horizontal properties.

Amando et al
28

have demonstrated how arbitrary PEBI grid blocks can be constructed

for this case. There are few commercial reservoir simulators that currently offer PEBI
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grids. One of these is a well testing package from Intera which allows the user to set

up complex reservoir shapes and then simulate the pressure response that results.

3.2 Finite Difference Equations

The black-oil fluid flow formulae given in Equations 42 to 44 in Section 2.6 can be

summarised as:

o
-M =-\7 Fof . , (49)

where M and F are vectors with one element per component and are defined by

M= (50)

which represents the mass accumulation terms and

which represents the flow terms.

(51)

A backward difference approximation for the time derivative can be obtained by using

a Taylor series to expand the mass term at a new time, MU + M), about the current

mass term, M(t), giving

Re-arranging Equation 52 gives

oM M(t+l1t)-M(t)
--= +£
ot I1t t'

(53)

(52)
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where c, is the time discretisation error which can be ignored for sufficiently small

time increments.

Discretisation of the spatial derivatives is a little more complex. Aziz and Settari29

discuss three discretisation methods: the Taylor series method (similar to that used for

the time discretisation above); the integral method; the variational method. The

variational method is the basis of the finite element approach and will not be

discussed fUliher. From a physical point of view the integral method is the easiest to

understand and will be discussed here. The Taylor series is discussed further in

Section 4.5 where it is used to derive an alternative nine-point discretisation scheme.

As part of the gridding process the reservoir model has been broken up into a number

of grid blocks. Equation 49 applies to every point in the reservoir and can be

integrated over the volume of a grid block giving:

J
_M_(_f+_D._f)_-_M_C---'-.f) - - J

dV - V.FdV,
v D.{ v

(54)

where the time discretisation has been incorporated into the equation. Green's

divergence theorem can be used to convert the volume integral of the flow terms into

a surface integral:

- JV.F dV = - JF.n dA
If A

(55)

where the integral is over all the surfaces of the grid block and n is the outward unit

vector normal to the surface. The surface integral can be split into a sum of the

surface integrals for each face of the grid block so that:

J_M----:.(t_+_D.---:f)_-_M---,(~f) dV =-I JF. n dA
v!1t m Am

(56)

The integrals are now evaluated by taking the average value of the integrand and

multiplying by either the grid block volume or the face area as appropriate. For

example, the mass terms therefore simply become

JM(t + D.f)-M(t)dV ~[M(t+M)-M(f)]V,
v D.f D.f

where M is evaluated at the grid point of the block in question.

(57)
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The gradients inherent in the flow terms are converted into finite differences involving

the value of the appropriate variables at adjacent grid points. In the simplest case the

finite differences for a given face are formed only from the values of the two grid

points of the blocks that share the face. For example, the flow terms for the stock tank

oil component across a single face are approximated by

(58)

where it has been assumed that n is parallel to the line joining the grid points and

furthermore that the grid is oriented to coincide with the principal axes of the

permeability tensor. The average component of the permeability parallel to n has

been labelled kx ' Alii is the area of the common face and fix is the distance between

the grid points of the adjacent cells. In a practical sense in reservoir simulation and

for ease of use it is often more convenient to work in terms of pressure differences.

For this reason the potential differences are often expressed in terms of a pressure

potential, \fJ, that directly incorporates the fluid density gradient factor, r. The

relationship between the two types of potential is !1\fJ = A!1<D. The pressure potential

differences are then given by:

(59)

(60)

where D is the depth of the grid point and the subscripts, nand i , refer to the

neighbouring and current blocks respectively. Similar finite difference equations can

be defined for the other two components, water and gas. The water component

requires the definition of the water potential difference

!1\fJ = P - P - r (D - D ) - p + pw o,n 0,1 w n i COW,/1 cow,i . (61)

Note that potential differences are based on Equation 45, and have been expressed in

terms of the oil pressure using the capillary pressure relationships given in Equations

46 and 47.

The average permeability component across the face, k
r

, is normally calculated by

assuming that permeability is constant within each block and changes sharply at the

face of the grid block. The subscript x denotes the component of permeability in the
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x-direction, parallel to n. By assuming that steady state linear flow occurs between

the grid blocks one can show that the harmonic average

A'C
k, = I'u I'u'_n+_,

k k
X ,11 X,I

(62)

IS appropriate. In this formula the subscripts nand i indicate properties of the

neighbouring block and the initial block respectively. I'u is the distance between the

adjacent grid points, l'ull and I'u, are the distances from the appropriate grid point to

the common block boundary, as depicted in Figure 3.4. Typically the factor,

T = A,"k, / I'u. is grouped together as one item and is known as the transmissibility.

Note that there is no unique way of calculating the transmissibility. Aziz and Settari29

derive several equations that may be relevant for particular cases. In particular, the

assumption of linear flow may not be the most efficient in situations where one is

dealing with near well-bore effects such as the partially completed well considered in

this thesis. The calculation oftransmissibilities for a radial grid, given in Section 3.3,

takes this into account.

FIGURE 3.4: DISTANCES FOR HARMONIC AVERAGE

kx,i kx,n

Transmissibility is a constant throughout time for a particular pair of blocks and

applies equally to all the phases. The factors: kru / Buf.lu; k,'g / Bgf.lg; k,w / Bwf.lw' on

the other hand are fluid specific and are termed the fluid mobilities. They are

functions of the pressure and saturation of the block and therefore vary with time.

From a numerical point of view it would seem that these mobilities should be

evaluated using some sort of mid-point weighting scheme that uses the properties of
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the fluid in both blocks. Aziz and Settari29 have shown that a mid-point weighting

scheme can converge to a physically incorrect solution while an upstream weighting

scheme gives the correct solution. Generally, therefore, the mobilities and associated

Rand R are evaluated in the block that the flow is coming from. Formally, if A
s v

denotes the fluid mobility then

(63)

There is one outstanding issue that needs to be settled before the definition of the

finite difference equations is complete and that is the definition of the time variable

for the flow terms. For the mass terms it is quite clear at which time value the

variables are to be evaluated, but for the flow terms it is not clear if they should be

evaluated at the beginning, end, or middle of the time step. The simplest is clearly to

evaluate the flow terms at the beginning of the time step when all the values are

known from the previous time step. This is known as the explicit method. The

drawback of the method is that it is potentially unstable. Aziz30 states that the limits

placed on time step size by stability requirements in the explicit method are totally

impractical for typical compressibilities of reservoir fluids.

The method used by Eclipse31 is the fully implicit method which is totally stable. In

this method the values of all the variables affecting the flow terms are evaluated at the

end of the time step. This of course immediately implies a need to simultaneously

solve the entire set of difference equations for all the unknowns - the pressure and

saturations at each and every grid block.

Aziz and Settari29 deal at length with the problems of stability and consistency for

reservoir models. Stability relates to whether errors in the estimated solution grow

from time step to time step, and consistency relates to whether the errors tend to zero

as the time step and block size tend to zero. These issues, though important, will not

be dealt with further in this thesis. Suffice it to say that the Eclipse model satisfies

these constraints provided care is taken not to define highly irregular grids.

In summary, we now have a set of non-linear equations with one equation per grid

block per fluid component. These equations have the form:

R(X) = MU + t1t) - MU) V - FU + t1t) = 0
t1t '

(64)

where 0 is the null vector, M, F, and V are vectors with one element per grid block.

Furthermore, each element of M is itself a vector with one element per fluid
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component as defined by Equation 50. X is the state vector containing the values of

oil pressure, water saturation and gas saturation at the end of the current time step for

every grid block. Solution of the equations at each time step hinges on trying to find a

X such that R(X) = O. Elements of F are formed from the sum of the flows from

the neighbouring blocks and each element is also a vector with one element per fluid

component. That is, for the i-th block:

(65)
11

where the subscript n refers to the neighbouring block and

(66)

where A represents the fluid mobility and the pressure potential difference, f..\f' , is as

defined by Equations 59 to 61.

In a three-dimensional radial or Cartesian grid, the flow element for each block is a

function of the properties of seven blocks: the grid block being considered and the six

adjacent grid blocks that share faces with it. In a two dimensional grid the flow

element involves the properties of five blocks. These spatial discretisation schemes

are therefore known as the seven and five point methods respectively. For example, a

single element of R for the interior block with grid co-ordinates (i, j, k) is given by:

R.. = f..M(i.},k) ~i,J,k) _ F. . . - F. . . - F. ..
(/,j,k) f..t (/,j,k)(/-I,j,k) (/,j,k)(/+I,j,k) (/,j,k)(/,j-l,k) (67)

- F(i,J,k)(i,J+I,k) - F(i,J,k)(i.},k-l) - F(i,J,k)(i,J,k+l) ,

where f..M is a function of the properties at the block located at (i, j, k) only and each

of the F terms is a function of the properties at this block and a neighbouring block.

There are other discretisation methods which also involve the properties of the

diagonally adjacent blocks giving a nine point scheme in two dimensions and a

twenty-seven point scheme in three dimensions.

3.3 Calculation of Transrnissibilities for a Radial Grid

Radial grids are often used for near well-bore problems where pressure as a function

of radius is strongly non-linear. For these grids, therefore, it is better to calculate

transmissibilities using the assumption that pressure varies linearly according to the

logarithm of radial distance from the well-bore. As will be shown this gives a
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transmissibility that exactly relates the flow to pressure drop for steady-state radial

flow. In the vertical direction it is normally assumed that pressure varies linearly.

The basis of both calculations is the definition of transmissibility, T, as providing a

constant of proportionality between rate and potential difference:

(67)

where q is the rate of flow between the blocks, Af = k,f I Bf j.1f is the mobility of the

fluid in question, and !':J.\fI is the difference in pressure potential at the two grid points.

For purposes of calculating the transmissibility, it can be assumed that the mobility is

constant.

FIGURE 3.5: GEOMETRY FOR VERTICAL TRANSMISSABILITY

CALCULATION

To calculate the transmissibility in the vertical direction, the steady state relationship

between pressure potential and rate within a grid block of constant properties is used.

From Darcy's Law (Equation 1), the potential difference between the centre of the

block and the face of the vertically adjacent block can be shown to be given by:
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(68)

where f!.l is the distance over which the potential difference is measured, A is the

area over which the flow is measured, k is the component of permeability in the

direction of flow, and where the grid block is a cylindrical slice (Figure 3.5) of angle

(), vertical thickness h, inner radius RI' outer radius R2 , and kz is the component of

the permeability tensor in the vertical direction.

The overall potential difference from the centre of block i to the centre of block j is

then the sum of the potential differences within each block:

(69)

where the rate is constant because of the steady state assumption. Comparison with

Equation 67 shows that the vertical transmissibility, T., between blocks i and j is

given by:

(70)

The transmissibility in the radial direction presents more of a problem. For purely

radial, steady state flow from the radius r2 to the radius r, in a cylindrical slice of

angle () and vertical thickness h, the relationship between rate and potential

difference is given bi5
:

(71)

where () is measured in radians and k r is the permeability in the radial direction.

Let RI be the innermost radius of block i, R2 be the outermost radius of block i and

innermost radius of block j, and R) be the outermost radius of block j. If one assumes

that kl" (), and h, are constant within each block and change sharply at the block

boundary then Equation 71 can be used to evaluate the potential drop between grid

point and block boundary for each block, giving:

(72)
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where r
j

is the radius of the grid point for block i, rj is the radius of the grid point for

block}. The geometry of the blocks is depicted in Figure 3.6.

FIGURE 3.6: GEOMETRY FOR RADIAL TRANSMISSABIUTY CALCULATION

Comparing Equation 72 with Equation 67 shows that

(73)

There are a number of possible assumptions for the position of the grid point:

(a) Grid Point at the Geometric Mean of Inner and Outer Radii

Typically a radial grid will have grid blocks that have a geometric spacing in the radial

direction. This minimises the truncation errors in the discretisation of the flow terms

because there is an equal pressure drop across each cell for steady state radial flow. It

therefore seems reasonable to assume that the grid point is at the geometric mean of

the inner and outer radii will put the grid point at a position where its pressure

potential is midway between that at the two boundaries. Thus the radius of the grid
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point for block i is r, = ~R)R2 and that for block} is rj = ~R2R) . Substituting for r,

and r in Equation 73 gives
.I

T,. = In(R
2

/ JR:R;) + In(W;/R2 ) .

k,." Bjh, k,.,j Bjhj

Simplifying leads to

(74)

(75)

This equation assumes that the grid point is at the pressure centre of the grid block.

Note that this is not the same as the centre of mass of the grid block. This may cause

problems with the mass accumulation terms in the finite difference equations if the

mass in the block is strongly related to the pressure.

(b) Grid Point at the Centre of Mass

If one assumes that the grid point is at the centre of mass of the grid block then the

radii of the grid points become 'i =~(R)2 + R2
2) / 2 and rj =~(R/ + R/) / 2 for

blocks i and} respectively. Substituting these new radii in Equation 73 gives:

(76)

Simplifying leads to:

(77)

This still does not completely solve the problem since we really need the radius at

which the pressure is equal to the volume weighted average pressure. This is also

known as the pressure equivalent radius.
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(c) Grid Point at the Pressure Equivalent Radius

To calculate the pressure equivalent radius it is first necessary to calculate the volume

weighted average pressure, p, for the block concerned. For steady state radial flow in

block i the pressure as a function of radius is given by

(78)

where c = q / Arkr,/Jjhj is a constant for the block. p is obtained by integrating the

pressure over the volume of the block and dividing by total block volume.

I R2

P= ~ fpdV = (2 2) fp(r)2ffrdr.
V ffR 2 -R\ R,

Evaluating the integral and simplifying:

The pressure equivalent radius, rj , is the radius such that p(rj ) =p.
Equations 78 and 80 and solving for rj gives

(79)

(80)

Equating

(81 )

The equation for r j can be obtained by substituting R2 for RI' and R3 for R2 , so that

(82)

Substituting these radii in Equation 73 and simplifying gives:

(83)

which is the formula used by Eclipse.

3.4 Boundary Conditions and Well model

The finite difference equations derived so far have not incorporated the required

boundary conditions discussed in Section 2.4. The no-flow boundaries are easily dealt
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with by simply setting the transmissibility of the appropriate face to zero. Where this

face corresponds to the edge of the grid this is the default situation anyway. This is

the method used by Eclipse. Aziz and Settari29 have pointed out that this is a poor

approximation and that ideally the grid point, as opposed to the grid face, should lie at

the boundary. It is possible to achieve this using Eclipse by defining grid blocks that

extend beyond the boundary with the grid point lying on the boundary. The pore

volume and transmissibilities of the block parallel to the boundary are then reduced to

compensate for the portion of the block that lies outside the boundary.

The remaining boundary conditions are associated with the well and its interface to

the reservoir. Ultimately the problem that is being considered by this thesis is to be

able to solve for the well bottom hole pressure, Pbh' that results from a particular

sequence of fixed production rates. It is necessary, therefore, to relate the Pbh to the

well rate, q, and the pressure of grid blocks adjacent to the well. The flow rate of an

individual cell into the well bore is given by:

(84)

where T
W1

represents the transmissibility between the well-bore and the grid point of

block i, Hi is a hydrostatic head correction for the difference in depth between the

datum plane for Phh and the grid block, and the mobilities, A, are evaluated in block i.

In a radial grid the qi represent additional flow terms associated with the inner

boundary of the innermost cells of the radial grid. To maintain consistency with the

rest of the grid q; is taken as positive for flow from the well into the grid block. The

description is completed by the constraint:

(85)

The well transmissibilities are calculated by assuming steady state radial flow between

the well-bore radius and the pressure equivalent radius of the connecting grid block.

For the rate convention of this section the steady state equation iS25
:

(87)

where S is the skin factor. Substituting Equation 81 for the pressure equivalent radius

and simplifying gives:
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where R
2

is the outer radius of the connecting grid block. Comparison with Equation

84 shows that:

(90)

As a result of including the well the finite difference equations need to be expanded

to:

R(X) = M(t + t::.t) - M(t) V - F(t + !'J.t) - Q(t + !'J.t) = 0,
!'J.!

(91)

where Q represents the mass sink due to the well. In addition, the state vector X has

been expanded by adding a single new element, w, that describes the state of the well.

The three state variables for ware the flowing fractions for water and for gas, and the

bottom hole flowing pressure. In other words, the well itself is treated as an

additional grid block with the well bottom hole pressure acting as the equivalent of

grid block pressure and the flowing fractions acting as the equivalent of the grid block

saturations. Transmissibilities between the well and other grid blocks have already

been defined through Equation 90. In this way the solution of the well variables

becomes strongly coupled to the solution of the rest of the grid blocks.

3.5 Solution of the Implicit Finite Difference Equations

An outline of the procedure used to solve the finite difference equations is as follows:

First the non-linear equations of Equation 91 are linearized using a Newton-Raphson

method. The resulting linear equations that are created at each Newton iteration are

solved to a high level of precision using an iterative procedure known as Orthomin.

Orthomin was developed by Vinsome32 to solve sparse banded sets of simultaneous

linear equations. It makes use of an easily inverted approximation of the equations to

be solved to calculate the changes to be made for the next iteration. At each iteration

the residual error in current estimate is evaluated using the original equations. The

easily inverted approximation is known as a preconditioning matrix. Eclipse uses

Nested Factorisation, a method developed by Appleyard and Cheshire33 , to perform

the preconditioning. Cheshire34 claims that Orthomin preconditioned by Nested
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Factorisation remams the most powerful technique in common use in reserVOIr

simulation for the solution of large difficult problems. Cheshire's account of how

Eclipse solves the finite-difference equations forms the underlying basis of what is

given here, though this account has been expanded, restructured, and reworded to

clarify some issues.

3.6 Solution of the on-linear Equations

Newton's method is derived using the Taylor expansion:

oR(X")
R(X"+ 1

) ;::; R(X") + (X"+ 1
- X"),ar (92)

where X" is the current best estimate for X and X"+ 1 is the best estimate at the next

iteration. We are trying to find X such that R(X) = O. Setting the left hand side of

Equation 92 to zero and rearranging gives:

o R(X") (X"+1 _ X")= -R(X") .
oX

(93)

This gives a system of linear equations to be solved at each Newton iteration. The

equations are linear because the differential is treated as a constant within each
iteration. The Jacobian oR / oX is a matrix with elements of the form oR / ar .., j

That is, every element of R is differentiated by every element of X. Since each

element of X and R is itself a 3-component vector, each element of oR / oX is a

matrix of the form:

oROi oROi oRa;

o p"J OSW} OSgj

oR, oRw1 oR
w1 oRw1

oX o P"j OSWj osgjj

oRg, oRg; oRg;

o P"j OSwJ os!Y

Equation 93 is commonly expressed in the form:

Ax =b

where the residual, b is given by

!1M
b=-R=--+F+Q

!1t

(94)

(95)

(96)
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and the Jacobian, A, can be expanded as

oR 1 oM of oQA----------
- OX - I::.t oX OX OX'

(97)

Before considering the structure of A, an ordering system that relates the co-ordinate

of a cell in the grid to its position in the vector needs to be defined. The simplest

system for a 3-dimensional Cartesian or radial grid is to cycle through all the cells in

line before moving to the next line. When all the lines in a plane have been

completed then the cycling proceeds on the next plane, continuing until all the planes

have been completed. Thus, the position of the cell with grid co-ordinates i, j, k is

given by i +(J - 1) x m + (k - 1) x n x m where m is the number of cells in a single line

of the grid and n is the number of lines in a plane.

The mass terms, M, for a given block are a function only of the state variable at that

block and therefore contribute only to the diagonal of A. Likewise the mass sink

terms, Q, are a function only of the state variable at the block itself and the well

variable and therefore also contribute only to the diagonal.

The flow terms, F, on the other hand are a function of the state variable at the block

itself and the state variables at each of the adjacent blocks as indicated by Equation

67. Therefore of / oX is zero for all non-adjacent blocks. As a result, the flow

terms contribute only to the diagonal and to several off centre diagonal bands. The

innermost bands correspond to cells that are neighbours within a given line and thus

are the bands that are immediately adjacent to the diagonal. The next set of bands

correspond to cells that are in adjacent lines with the same position in a line. These

bands are offset from the diagonal by the number of cells in a line. The outermost set

of bands arises through cells that lie in adjacent planes but have the same position in

the plane. These outermost bands are offset from the diagonal by the number of cells

in a plane. Note that there may be gaps in the bands that correspond to the edge of the

grid. That is, a cell that lies at the edge of the grid does not have neighbouring cells in

certain directions and the flow terms, and hence derivatives, corresponding to these

directions are therefore zero.

As an example, A for a grid with 4 cells in a line, 2 lines in a plane, and 3 planes has

the structure:

(98)
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Note that the positions of the non-zero values are symmetrical but that the values
themselves are not because, in general, 0 Fij / OXj "* 0 Fj ; / oX;.

After the linear equations have been solved the state vector is updated and a new

residual R(X"+ 1
) is calculated. Two separate measures are used to determine whether

a sufficient degree of accuracy has been reached. The first is the overall material

balance error, which assesses whether the change in mass of fluids in the reservoir is

sufficiently close to the mass of fluid that has been extracted from, or injected into,

the wells. Material balance for each component is assessed by summing the residuals

for that component over all the blocks in the reservoir. The second constraint is

whether the residuals for the individual cells are sufficiently small for all components.

The maximum residual found in all the cells of the reservoir is compared to a user

defined maximum error to determine whether to continue with the iterations.

It is useful to adjust the residual so that it reflects errors in saturation rather than the

error in terms of volume at standard conditions. This is achieved by dividing the

residual for each block by the pore volume for each block. The reason this is

necessary is that the volume of the blocks can vary greatly, particularly for radial

grids. If the block volume is large then it may have a large residual in terms of

standard volumes of the components without having any discernible effect on the

outcome of the simulation. On the other hand, blocks with very small volumes will

always have small residuals in terms of standard volumes even when the proportion of

the components in the block is totally wrong. The material balance error used by
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Eclipse is also specified in terms of a saturation, in this case as a fraction of the field

pore volume.

A high level algorithm for the Newton iterations is as follows:

1. Compute initial residual, R(Xo) = -b, using state vector from previous time

step as an initial guess for the solution.

2. While the material balance error and maximum saturation weighted residual

are too large:

2.1.

2.2.

2.3.

2.4.

Calculate the Jacobian, A =_OR_(_X_
n

_)

OX

Solve the linear equations, Ax = b, for x

Update the state vector, X n
+

1
= X n

- X

Calculate the new residual, R(X n
+I) = -b

3.7 Direct Solution of the Linear Equations for a One-Dimensional Grid

The direct solution of the linear equations arising at each Newton iteration for typical

problems is not practical from a computational point of view. The complex, three­

dimensional, and frequently three-phase, problems often specified by reservoir

engineers would simply take too long to solve. Iterative techniques are therefore

normally used in solving the linear equations. Useful insight into the iterative

techniques can however be gained by considering the direct solution of one of the

simplest cases, namely that arising from a linear grid.

For a linear grid, the Jacobian has a tri-diagonal structure. For example, for a grid

with 4 cells:

d l u1

A=d+u+l=
I1 d2 u2

(99)
12 d3 u3

13 d4

where u and 1 are respectively the upper and lower diagonal side bands. This can be

factorised into the product of lower triangular, diagonal, and upper triangular

matrices:



A = (a- + l)a-- I (a- +U)

= (a- + l)(l + a--1u)
(100)
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where a- is a diagonal matrix. Note that a-- I is easily calculated since it is a

diagonal matrix. Expanding Equation 100 and equating to Equation 99 gives:

(101)

The calculation of a- can now be made sequentially since the calculation of the first

element of a- only involves d. The calculation of the second element of a- involves

d and the first element of a- , and so on. That is:

a- I =d l

a-2 =d2-11a-1-1U1
-I

a-3 = d3-12a-2 u2

a-4 = d4 -13a-3-
lu3

(102)

The solution ofAx = b involves two passes. In the first pass the equation
(a-+l)y=b is solved for y. In the second pass the equation (l+a--1u)x=y is

solved for x. For the first, forward, pass (a-+l)y=b therefore y=a--I(b-ly) and

the solution is again sequential:

-I
bYI = a- I I;

Y2 = a-2-I (b2-llyJ;

Y3 = a-3-I (b3-12Y2);

Y4 = a-4-I (b4 -13Y3)'

(103)

For the second, backward, pass (I + a--1u)x =y therefore x =y - a--1ux and the

sequential solution is:

-I
x3 = Y3 -a-3 U3X4;

-I
x2 =Y2 - a-2 U2X3;

-I
X1=YI-a- 1 UI X2·

(104)

This technique is in fact equivalent to solving the tri-diagonal equation using

Gaussian elimination as can easily be seen if one works through the equations. In the

petroleum engineering literature it is frequently referred to as the Thomas algorithm.

The method has been presented here to aid in the understanding of the nested

factorisation method of inverting an approximation ofthe Jacobian.
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3.8 Iterative Solution of the Linear Equations using Orthomin

Most simulators use iterative methods to solve the linear equations. Eclipse uses a

technique known as Orthomin. This technique relies on the ability to calculate an

easily inverted approximation, B, to the Jacobian, A. B- 1 is then used to calculate a

vector that represents the direction to move in that will bring one closer to the

required solution. The solution is updated by moving along the vector by an amount

that optimises the residual. This in turn involves a pre-multiplication by A in order to

calculate the new residual. A special feature of the method is that the change to be

made to the residual at each iteration is forced to be orthogonal to all previous

changes. This speeds convergence by minimising the number of iterations required to

reach a solution.

Orthomin is computationally very efficient, requiring one multiplication by the pre­

conditioning matrix B- 1 and one multiplication by A at each iteration. The enforced

orthogonalisation does however require the storage of all previous changes to the

solution and the residual which can use a considerable amount of computer memory.

The objective is to solve Equation 95 for x which can be re-phrased as reducing the

residual, r" = b - Ax 11' to zero where Xn is an estimate of the required solution. Note

that if A could be inverted, an exact solution could be obtained by calculating

/),x" = x - XII = A-Ir" and adding this to the current estimate. In practice however,

inverting a matrix such as A is a non-trivial task. The change to be made to the

solution is therefore calculated using the approximation B- 1
•

At the first time step the initial estimate, xo, gives rise to the initial residual,

(105)

A new search direction for the solution, /),xo, is given by

(106)

But since B-
1 is only an approximation for A-I the solution is updated by moving a

distance along the solution search direction that minimises the square of the new

residual, r l . Thus:

(107)

and



r) =b- Ax)

= b - Ax 0 - a oA L1xo

= ro- aoMo'

(108)

52

where the residual search direction, ilro, is given by &0 = A L1xo = AB -I ro and a o is a

scalar. To find the optimum value of ao, r\2 is differentiated with respect to a o and

set to zero.

(109)

therefore

(110)

givmg:

(111 )

Note that this choice of a o implies that the new residual is orthogonal to the previous

search direction because r). ilro = o. The residual vectors are depicted in Figure 3.7.

FIGURE 3.7: THE RESIDUAL VECTORS IN ORTHOMIN

It is important that no part of ilro enters the residual at any subsequent iteration since

the absolute minimum in the square of the residual has already been found for this
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search direction. This is achieved by forcing the residual search direction to be

orthogonal to all previous residual search directions. For the second iteration the extra

degree of freedom needed is provided by adding a component of the previous search

directions. The new search directions then become:

(112)

(113)

where PlO is chosen so that

(114)

Substituting Equation 113 in Equation 114 gives:

(115)

As before, the solution and residual are updated using the search directions:

X 2 =X1 +aJ&J

r2 = r l - a,l1r,
(116)

where a J is calculated to minimise r2
2

. Differentiating r2
2 with respect to a

l
and

equating to zero gives:

(117)

so that r2 ·&0 = 0 and r2 .l1r
J
=0, which implies that the current residual is orthogonal

to both of the previous residual search directions.

At the next iteration the new search directions must be orthogonal to both sets of

previous search directions therefore a component of XI is added, giving:

(118)

(119)

where P21 and P20 are chosen so that:

(120)

(121)
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Substituting Equation 119 into 120 gives:

(122)

because the term involving 1320 is multiplied by the dot-product of the orthogonal

vectors &0 and t.r
l
• Similarly, if Equation 119 is substituted into 121:

(123)

For the n-th iteration it becomes necessary to calculate n-1 coefficients and the search

directions become:

11-1

~11 = B-\, + I13l1m~m ;
m=O

n-I

t.r" = AB -\ + I13nm&m ,
m=O

where

Eclipse makes some slight modifications to the basic Orthomin procedure.

(124)

(125)

(126)

The first is that the residuals being minimised are saturation normalised as previously

discussed for the non-linear iterations. Thus the procedure minimises r,,2 giving an

optimum step size, an' of:

r" .t.r"
an =-_-?-,

t.r" -
(127)

where r signifies a residual that has been saturation normalised for each cell by

multiplying by the time-step and fluid volume factor and dividing by the cell pore

volume. That is, for cell i and component c, the saturation normalised residual is

given by:

(128)

where t.t is the time-step, Bc is the fluid volume factor for the component, and V, is

the pore volume of the block. Convergence is determined by checking whether the
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maximum saturation normalised residual for all the cells is within the specified

bounds. It is not necessary to test for material-balance in the linear iterations because

the pre-conditioning matrix used by Eclipse preserves material balance at each linear

iteration.

A second modification is that the initial approximation is calculated as

(129)

If the approximation B- 1 does not introduce any material balance error then this

ensures that material balance is preserved throughout the entire procedure.

A high level algorithm for the Orthomin procedure is as follows:

1. Calculate the initial estimate Xo = B-'b .

2. Calculate the initial residual ro = b - Ax o.

3. While the maximum saturation residual is greater than the user specified limit:
n-I

3.1. Compute new search directions, &n = B-'r" +I fJnlll & 111 ,

111=0
n-I

!1r" = AB -I rn + IfJnlll!1r,n ,
111=0

fJ
= (AB-

l
r,,}!1rll/

/1/11 !1r 2 •
11/

32 D . l· . r".!1f". . etermme t le optImum step sIze, an =~
urn

3.3. Update the solution and residual, xn+1 = Xn+ an&n'

rn+1 = rn - a n !1r,,·
3.4. Store previous search directions and increment n.

3.9 Nested Factorisation

Nested Factorisation is the pre-conditioning method used by Eclipse. The aim is to

determine a matrix B that is a good approximation to A and to solve B-Ir" each time

a new search direction is needed by the linear solver. One of the important

considerations for a good approximation is that it should not introduce any material

balance error. It will be demonstrated that this is the case if the sum of the elements

in each column of A equals the sum of the elements of the equivalent column of B.

Let y be an approximate solution obtained through solving the equation:

By=b, (130)
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then the residual is given by:

r=b-Ay =(B-A)y. (131)

This residual is a vector that represents the material balance error introduced into each

cell by substituting B for A. To obtain the overall material balance error for the grid

as a whole we sum the residual over all the blocks in the reservoir. Therefore the

overall material balance error is zero if:

Ir; = I(B-A)ijYj =0.
ij

(132)

One way of satisfying Equation 132 is if each coefficient of Yj is zero. That is,

(133)

which is equivalent to

or

Colsum(B) = Colsum(A) ,

(134)

(135)

where Colsum( B) is a diagonal matrix with each element on the diagonal equal to the

sum of the elements in the equivalent column of B. Nested factorisation uses this

constraint to eliminate the overall material balance error in the linear equations by

adding terms to B to make its column sum equal to that of A.

The structure of the Jacobian can be thought of as a nested tri-diagonal matrix. An

illustration of this is given in Figure 3.8 for the Jacobian that results from a 4 by 3 by

3 grid. At the outermost level there are two side bands, u3 and 13 , that represent

interactions between planes of the grid, and a block diagonal made up of square

matrices. Each of these square matrices represents the equations for one plane and is

itself a nested tri-diagonal. The side-bands for this level, u2 and 12 , represent

interactions between lines of cells in the grid and each square matrix in the block

diagonal represents the equations within a line of cells. The innermost level is a

simple tri-diagonal with side-bands, u, and I" that result from interactions of cells

within a line.
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FIGURE 3.8: THE NESTED TRI-DIAGONAL STRUCTURE OF THE JACOBIAN

FOR A 4 BY 3 BY 3 GRID

d u1 u2 u3
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.... ·.·.11 d

12

12
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u2

u2

Nested factorisation exploits this nested structure by defining B In terms of the

equations:

B =(P +13 )P-1(P +u3 ),

P = (T +12 )T-1(T + U 2 ),

T = (a + I, )a-I (a + U 1),

(136)
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where 0' is a diagonal matrix that is defined in such a way that material balance is

preserved. This recursive definition appears to be a natural extension of the

factorisation used in the Thomas algorithm. Expanding B gives:

Comparing the structure of A in terms of side bands,

(138)

with Equation 137 shows that if 0' is chosen so that

(139)

then the column sums of the two matrices will be equal and no material balance error

will be introduced by the approximation. At first sight it may seem as if Equation 139

is self referential but this is not the case because of the structure of the inverse

matrices and effect of multiplying by the side bands I and u.

In general, the position of the elements of an arbitrary matrix C in the product matrix

Cu are shifted to the left by a number of cells that is equivalent to the offset of the

side band from the diagonal. This fills the first n columns with zeros where n is the

offset. In addition each element of Cu has a factor that corresponds to the element of

u in that same column. For example:

CII C12 CI3 CI4 CI5 CI6 U1

C21 cn cn C24 C25 C26 u2

Cu=
C31 c32 C33 C34 C35 C36 u3

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

C11U1 c12 u2 c13u3

C21 U 1 C22 U2 cn u3

C31 U1 C32 U2 C33 U3
= (140)

C41 U 1 C42 U2 C43 U3

C51 U 1 C52 U2 C53 U3

C61 U 1 C62 U2 C63 U3

Similarly, if C is pre-multiplied by I the effect is to shift the elements down by a

number of rows that is equivalent to the offset of I . The elements of C that remain in
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the product are multiplied by the element of 1 in the equivalent row. A combination

of pre-multiplying by 1 and post-multiplying by u shifts the elements down and to

the right by the offset. Each remaining element of C is multiplied by the element of I

in the equivalent row and the element of u in the equivalent column.

In considering the structure of the inverse matrices it is important to consider the

impact of the gaps in the side bands. These gaps are associated with the edges of the

grid. Expanding the defining equation for T gives:

(141)

Thus T is a tri-diagonal equation with gaps in the side-bands in the same position as

the original matrix A. In this case the gaps separate lines in the grid with the result

that the first portion of the inverse depends only the cells in the first line. Similarly

the second portion of the inverse depends only on the cells in the second line and so

on. The resulting inverse, T- 1
, is therefore a block diagonal matrix with each block of

non zero cells having the same number of rows and columns as there are cells in a

line. Expanding the defining equation for P gives:

(142)

Since T- 1 is a block diagonal matrix, 12r-
1
U2 is also a block diagonal matrix, though

with zeros as elements for the first block as a result of the shifting action of

multiplying by the side-bands. The structure of P is therefore that of a block diagonal

with side-bands, although in this case the gaps separate planes in the grid. The

resulting inverse is therefore a block diagonal with the number of rows and columns

per block equal to the number of cells in a plane.

Thus the calculation of 0' can proceed sequentially. For the first cell, 0' =d. For

subsequent cells in the first line the shifting effect of the innermost side-bands, I
1

and

u1' is such that once 0' is known for a cell its contribution to 0' for the next cell can

be calculated. There is no contribution to 0' from the term Colsum(l2T-1u2) until 0'

for all the cells in the first line has been calculated. This is because the side-bands 12

and U2 shift the inverse by the number of cells in a line. For each subsequent line it is

only necessary to know T- 1 on the previous line to perform the calculation. Similarly,

there is no contribution from Colsum(l3p-1u3) until 0' for all the lines on the first

plane has been calculated. Once P is known for a plane its contribution to 0' on the

next plane can be calculated.

Each Newton iteration requires the definition of a new pre-conditioning matrix Band

therefore the calculation of 0' is performed once per Newton iteration. This is stored
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and used to solve the equation Bx =b at each iteration of Orthomin. At the highest

level B can be re-written as:

(143)

The solution therefore is performed in two phases. First (P +13 )y = b is solved for y

and then (l + P- 1
U3 )X = y is solved for x. The first phase is performed by sweeping

through the equations, one plane at a time, calculating:

(144)

where the contribution of 13y lags one plane behind thus allowing the equation to be

solved. The second phase calculates:

(145)

starting on the last plane and moving backward. Note that u3x makes no contribution

to elements on the last plane. Once x is known on the last plane the contribution of

u3x to the previous plane can be calculated, and so on.

The calculation of s = p-1r within each plane follows a similar logic. Re-writing the

defining equation for P gives:

P = (T + 12 ) (I + r Iu2 ) , (146)

so that (T +12 )t = r is solved on the forward sweep and (l + r 1u2 )s = t is solved on

the backward sweep. The calculation of

(147)

is performed one line at a time starting from the first line on a plane and ending on the

last line on the plane. On the backward sweep:

(148)

which is evaluated one line at a time starting with the last line on the plane and ending

on the first line on the plane. Within a line the solution of the tri-diagonal, g = r1f,
can proceed in the same fashion which, on this level, is identical to that used in the

Thomas algorithm. Thus the forward calculation is:

(149)

and the backward calculation is:
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(150)

The efficiency of the Nested Factorisation procedure depends on the ordering of the

axes. Typically the direction associated with the innermost level of the solution is

taken to be the z (vertical) direction because the transmissabilities are normally

highest in this direction. Other considerations are the number of blocks in each

direction and the predominant flow direction.

3.10 Solution of Well Variables

The solution technique described so far has concentrated on solving for the state

variable at each of the grid blocks and has not considered the fact that the equations

need to be expanded to include the well variable, w (See Section 3.4).

Eclipse uses a method known as the strongly coupled, fully implicit well model. This

is described at length by Holmes35 . In general it is possible to have many wells in the

simulation model with complex hierarchical control mechanisms which involve

interactions between the wells. For the problem being considered in this thesis a

much simpler model is sufficient. The discussion given here will therefore

concentrate on how Holmes' method would be implemented for a single well under oil

rate control.

The relationship between w and the state variables for the grid blocks connected to

the well has been described in Section 3.4. At each Newton iteration the change, x, in

the state variables is calculated using Equation 93. If w is directly incorporated into

the state vector X then x and the residual need to be expanded by a single element

and the Jacobian is expanded by a row and a column. The equations to be solved then

become:

A : C x R:

= (151)
:...... _- -- ......... _.. __ .

E : D Xw Rw,

where A is the banded matrix 0 Ri /0Xi that we have considered previously, C is a

vector with elements of the form 0 R, / ow, E is vector with elements of the form

o R,,'/ oX)' D =0 R,,'/ ow, X w is the change to be made to w, Rand R
w

are the

residuals for the cells in the grid and the well respectively. Note that if the simulation

model had several wells then C, D, and E would all be matrices.

Equation 151 can be partitioned into two equations, namely:



Ax +Cxw = -R;

Ex + Dx w = -RII"

Re-writing Equation 153 gives:

Xw =- D-' (Rw + EX) ,

which can be used to eliminate X w from Equation 152 so that:

(152)

(153)

(154)

(155)
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This Equation can be solved by making a few simple modifications to Orthomin and

Nested Factorisation. The first is to substitute A - CD-I E for A in the matrix

multiplication step of Orthomin which is described by Equation 125 and hence also

in the enforced orthoganalisation of Equation 126. Calculation of the pre­

conditioning matrix B proceeds as before but with the inclusion of the term

Colsum(CD-I E) in the diagonal matrix in order to preserve material balance. The

modifications are completed by the extension of the residual to include the term

CD-1R
w

'

Once the linear iterations of the Orthomin procedure are completed the change to be

made to the grid block variables prior to the next Newton iteration is known. The

change to be made to the well variable can then be determined from Equation 154.

3.11 Chapter Summary

In this chapter the methods by which the flow equation is converted to a set of finite

difference equations and then solved numerically have been reviewed. The concept of

breaking the problem up into a number of grid blocks and the use of different gridding

systems are introduced. Flow from grid block to grid block is approximated using the

differences in state variables at adjacent grid points. Discretisation in time is achieved

through the introduction of the concept of time-steps with temporal derivatives being

replaced by the differences in the values of the variables at the beginning and end of

the time-step.

Appropriate relationships for transmissibility that give the correct flow from block to

block are derived. In the case of a radial grid these involve the use of the assumptions

that within a given time-step the flow in the vertical direction corresponds to steady­

state linear flow whereas flow in the radial direction corresponds to purely radial (in

the cylindrical sense) steady state flow. Use is made of a fully implicit method that
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requires that the flow is assessed using the value of the variables at the end of the

time-step. This necessitates the simultaneous solution of a set of non-linear finite

difference equations that describe the flow into, and the mass accumulation within,

every grid block.

The simultaneous equations are solved through iterative use of a Newton-Raphson

method where the gradient of the residual is used to update the state variables at each

iteration. Differentiation of the residual vector creates a matrix known as the

Jacobian. The calculation of the update vector for the Newton method requires the

solution of a set of linear equations involving the Jacobian. This is achieved through

the use of a successive minimization scheme, Orthomin, that uses an easily inverted

approximation of the Jacobian to update the solution at each iteration, a method

known as pre-conditioning. The pre-conditioning technique used is known as Nested

Factorisation and exploits the tri-diagonal nature of the Jacobian in performing an

approximate inversion. In summary, the solution technique relies on two levels of

solution, an outer level where the non-linear equations are solved using Newton's

method generating a set of linear equations in the process, and an inner level where

the linear equations are solved using Orthomin pre-conditioned by Nested

Factorisation.

In the next chapter finite-difference simulation using the solution techniques reviewed

in this chapter will be applied to solving a hypothetical problem, that of a partially

penetrating well in an anisotropic medium. The understanding of: solution

techniques; errors introduced by the discretisation process; the importance of choosing

appropriate transmissibilities and grid block sizes; and the nature of the well boundary

conditions, will play a role in optimising the simulation results for the hypothetical

problem. Discussion of the calculation of grid block transmissibilities in the case of

heterogeneous properties has relevance to the real-life problem discussed in the

Chapter 5.
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Chapter 4: Application to a Hypothetical Problem

This chapter applies the numerical model derived in Chapter 3 to solving the pressure

response of a partially completed oil well to changes in oil rate. The method is

applied to a hypothetical well with properties that allow the pressures to be modelled

using an analytical solution. Comparison between the numerical and analytical

solutions reveals errors. The source of these errors is discussed and various practical

means of reducing the errors are investigated.

4.1 Definition of Hypothetical Problem

The problem to be solved is that of the pressure response of a partially completed oil

well after being subjected to a change in rate. A rate change from zero to a fixed

constant rate is the simplest case and is therefore that considered here. More complex

rate constraints can be modelled by a superposition of solutions for this case. The

flow rate that has been chosen is 5000 stb/d, which is similar to rates that have been

achieved in wells in South African waters.

In order to allow the application of analytical solutions it has been assumed that the

properties of the rock are homogenous. Permeability is anisotropic but radially

symmetric with the horizontal component, kh , having a magnitude of 500 mD. The

ratio of vertical permeability, kv ' to kh is 0.1. Only two phases are assumed to be

present, namely oil and water with the water having an initial saturation of 0.1 of the

pore volume. The relative permeabilities are defined so that the water is immobile

while the relative permeability to oil is 1. In other words the oil can move freely

through the rock with an effective permeability equal to absolute permeability without

being hindered in any way by the presence of the water. This is simply a convenience

to allow the analytical solutions, which are defined in terms of the effective

permeabilities, to be easily compared to the simulation. The oil viscosity is 0.5 cP.

Although no mass transfer of water can take place in this model the water does have
an influence on the result through its compressibility, cw ' of 3.0 x 10-6 pSi-I. As a

result the fraction of the pore space available to the oil will vary as a function of

pressure. Similarly the total pore volume can also change as a result of rock

compaction effects. This is accounted for through the use of a rock compressibility,

Cr , in this case having a value of 2.0 x 10-6 pSi-I. The initial pore volume is 0.2 of the

total volume. The compressibility of the oil phase, co' at 20 x 10-6 psi-I is far greater

than that for either the water or the pore volume. The relationship between the surface

and downhole flow rates is defined through the specification of the formation volume

factor, Bo ' which has a value of 1.5 rb/stb at the initial fluid pressure of 3500 psia.
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The geometry of the problem is defined in Figure 4.1. A reservoir of 80 feet in

thickness is intersected by a well with a radius, rw ' of 0.3615 feet. Only the first 20

feet of the intersection is perforated, the rest of the well is sealed off from the

formation. The lateral extent of the reservoir is assumed to be infinite, though in

practise it only needs to be far enough for the lateral boundaries to have a negligible

influence on the pressure response.

FIGURE 4.1: CROSS-SECTION SHOWING THE GEOMETRY OF THE

HYPOTHETICAL PROBLEM

i ...
~=20'=hw OPEN .. ", FLOW

~

~ ~'--- INTO

"-
WELL

h=80'

FLOW TO SURFACE

IMPERMEABLE t UPPER BARRlE_R_--_~,
'----.------.---1

IMPERMEABLE LOWER BARRIER

The pressures are to be modelled for a flow period of 4 hours in duration. A rule of

thumb for the furthest boundary that will have a measurable influence on the pressure

response is given by the formula I:

"" =O.03~ id ,r/JJLC
(156)

where 'inv is the radius of investigation (or distance of the furthest boundary), t is the

duration of the flow period, and c is the saturation weighted compressibility
cr + Swcw + S"c". This distance is 1845 feet for the current problem.

A summary of the properties is given in Table 4.1.
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Table 4.1: Properties of the Hypothetical Model

Rock Properties

Porosity rjJ 0.2

Horizontal Permeability k" 500 mD

Permeability Ratio kv / k" 0.1

Rock Compressibility cr 2.0 x 10-6 psi

Fluid Properties

Oil Viscosity JLo 0.5 cP

Oil Formation Volume Factor Bo 1.5 rb/stb

Oil Compressibility Co 20.0 x 10-6 psi

Water Compressibility Cw 3.0 x 10-6 psi

Water Saturation Sw 0.1

Initial Fluid Pressure Pi 3500 psia

Reservoir Geometry

Reservoir Thickness h 80 feet

Perforated Interval hw 20 feet

Distance to the Top Perforation hi ofeet

Distance to the Bottom ~ 20 feet

Perforation

Wellbore Radius rw 0.3615 feet

Flow Specification

Flow rate q 5000 stb/d

Flow Duration /).t 4 hours

4.2 Modelling the Hypothetical Problem

The hypothetical problem was modelled using the Eclipse program from Intera which

implements the numerical scheme discussed in Chapter 3. A radial grid was defined

with grid-block dimensions typical of a detailed coning study. In this grid the radial

width of the innermost cell is 0.5 feet with each subsequent cell doubling in width.

Choosing a geometric progression for the cell widths ensures an equal pressure drop

across each cell for purely radial steady state flow. This in turn minimises the

truncation errors that result in the discretisation process. The grid is made up of a

total of 14 cells in the radial direction giving an outer radius of the grid of

approximately 8200 feet. This is considerably further than the radius of investigation

and therefore the model will behave as though it has infinite lateral extent. Vertically
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the grid is split into 20 layers of 4 feet in thickness giving a total of 280 cells in the

grid. The perforated interval is modelled by defining well connections between the

wellbore and the innermost radial cells of the first 5 layers.

The rock and fluid properties are defined according to Table 4.1. The oil

compressibility is not entered explicitly but is instead defined in terms of the rate of

change of the formation volume factor for oil according to the formula:

oB);;P = -c"B" . Relative permeability tables are provided which ensure that the

relative permeability to oil is 1.0 for water saturations less than 0.5 of the pore

volume. Similarly the relative permeability to water is zero over the same saturation

range. Capillary pressure curves have no effect on the flowing behaviour of the model

because they are only used in determining the water phase pressure and hence flow

rate which is zero at all times. The curves are therefore defined in such a way as to

ensure that the initial saturation is 0.1 of the pore volume throughout the grid, with

little regard for how the capillary pressure changes as a function of saturation.

The time steps are defined in such a manner that the first time-step is very small

(0.00004 Days ~ 0.001 Hours = 3.6 Seconds) and each subsequent time step increases

by a constant factor thereafter. The rationale behind this choice lies in the desire to

minimise the time discretisation (or truncation) error that is introduced in

approximating the derivatives with respect to time. Examination of Equations 52 and

53 shows that the error is given by:

(157)

where the first term will dominate for small time-steps, !1t. Initially the changes are

rapid and a small time-step is needed. As the flow proceeds the system becomes

closer to steady state behaviour with changes that are almost constant from time-step
to time-step. Thus the magnitude of if- M/a2 becomes smaller as time goes on and

so the same degree of accuracy can be achieved with a much longer time-step.

A second reason for choosing increasing time-steps is a purely practical one. Most of

the diagnostic plots display some function of pressure versus a logarithmic function of

time. Allowing the time-step to increase gives a more even distribution of points on

such a plot than a constant time-step would.

The control file containing the Eclipse commands for the simulation model has been

included in Appendix 1.
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The results of the simulation are displayed in Figure 4.2 where they are compared

with two analytical models. It can be seen that the analytical models agree closely

with each other, but that the Eclipse simulation has pressures that are too high soon

after the flow begins and too low towards the end of the flow period. It is also clear

that the rate of change of pressure with respect to time is too high at small time values

for the Eclipse simulation. At large time values, when the slope is related to the

permeability thickness product, kh, of the entire interval, the slopes agree.

FIGURE 4.2: COMPARISON OF SIMULATED PRESSURES WITH TWO

ANALYTICAL SOLUTIONS
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The two analytical solutions used in Figure 4.2 are the method implemented in the

WELTEST program from Intera and an implementation of the Hantush solution

described by Equations 10 to 13, Chapter 1.

As mentioned in Chapter 1, the WELTEST program uses the horizontal well solution

of Odeh and Babu 18 to calculate the pressure response for partially completed wells.

A computer program was written to evaluate the Hantush solution. In this program,

the exponential integral is evaluated using the well known series equivalent:

00 ( )"

Ei(x)=-Ye -lnx-I~,
11=1 n.n!

(158)
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where re =0.5772156. The series is terminated when the terms become too small to

have a significant influence on the result.

The integral, W( u, 13) , in the Hantush method eEquation 12) is calculated by splitting

the improper integral into a series of definite integrals and using a Simpson's rule

procedure to evaluate each of the definite integrals.

An improper integral such as W can be defined in terms of limits as:

00

flex) dx =
L

u

lim flex) dx.
U~O

L

(159)

This can in turn be used to rewrite the improper integral as a series,

00 ~ 00

flex) dx = flex) dx + I t" lex) dx,
L L n=! n-I

(160)

where Un has been chosen to equal IOUn-l' The numerical sum is terminated when

the term to be added becomes sufficiently small. Each definite integral in the series is

evaluated using an adaptive form of Simpson's rule where the number of intervals

used for the integration is doubled until the required accuracy is reached.

A listing of the computer program, which was written using Borland Turbo C++ 3.0,

is given in Appendix 2

The Hantush solution is based on the assumption that the flux along the borehole is

constant. As a result the pressure along the wellbore varies. The Eclipse simulation

models the infinite conductivity solution, where pressure is constant along the

wellbore. Gringarten and RameylO state that the results arising from the constant flux

approximation are equivalent to those from the infinite conductivity solution provided

the pressure is evaluated at the correct position along the length of the well. They

provide a chart that relates the correct position to the dimensionless quantity

h =~/f"wD .
rw k=

For the current problem the correct position, which was used in preparing Figure 4.2,

is 72.4% of the length along the perforated interval.

The good agreement between the two analytical solutions is encouraging and they will

be regarded as representing the true solution that the Eclipse simulation must try to

duplicate.
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4.3 Improvements to the Initial Model

The most likely source of the error in the Eclipse simulation is the truncation error

introduced in the discretisation process. Sources of error such as round-off error are

likely to be negligible, in part because high precision arithmetic is used by Eclipse and

in part because the solution technique is iterative and therefore does not allow the

error to accumulate. The truncation errors involved in terminating the Newton­

Raphson and Orthomin iterations are directly controlled through the specification of

the maximum permissible residual. Default values for these residuals are very low.

The discretisation error can be split into two parts, namely: that introduced by the

discretisation in time and that resulting from the spatial discretisation. Time

discretisation errors have been discussed in the previous section and could be reduced

by shortening the time-steps. Such a change is, however, only likely to change the

results soon after a rate change when the pressure distribution is far from that which

would be obtained under steady state flow. The discrepancy in the late time pressures

suggests that the bulk of the error is due to spatial discretisation error.

Evaluation of the spatial discretisation error is difficult when the integral method has

been used to derive the finite difference equations that the simulation is based on. If a

Taylor series method is used then the error is given by the higher order terms in the

series that are not directly incorporated into the finite difference approximation of the

spatial derivatives.

When the finite difference equations were derived it was assumed that the average

flow across the face could be represented in terms of a pressure (or more correctly

pressure potential) difference between the two grid-points that share the face as a

block boundary. The transmissibility, which is a geometric coefficient of

proportionality between flow rate and pressure difference, was defined so as to give an

exact flow rate for steady state radial flow between the grid points.

The current problem, because of the flow convergence and the transient pressure

behaviour, is neither steady state nor radial. This deviation from the assumed

behaviour will therefore introduce discretisation errors. There are two aspects to these

errors. The first relates to the estimation of the gradient of pressure potential at the

block boundary between the two grid points and would be a source of error even for a

purely radial, but transient, problem.

The second relates to the change of the potential gradient across the face of the block,

which is a consequence of the non-radial nature of the problem being considered.
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This problem will be greatest close to the end of the perforated section of the wellbore

where the potential gradient may be sharply angled to the grid axes. Lines of iso­

potential are also expected to converge towards the base of the perforated section.

The magnitude of this error is difficult to estimate but is represented schematically in

Figure 4.3.

FIGURE 4.3: SCHEMATIC OF POTENTIAL AND ERROR IN FLOW TERM

ACROSS A GRID FACE
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The first problem can be examined in more detail. At best, the approximation of the

gradient of pressure in terms of a pressure difference at two points will be a first order

one. That is, the dominant term in the error function will be proportional to the block

size, probably multiplied by a second order derivative of pressure with respect to

distance. This is demonstrated below by using a Taylor series discretisation to obtain

the mid-point approximation for V'\fJ .
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FIGURE 4.4: GEOMETRY OF ADJACENT RADIAL BLOCKS
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Consider the two adjacent radial blocks depicted in Figure 4.4. One is trying to find a

formula that relates o\fl/or at the block boundary to the potential difference between

the grid points, ~\fI = \fill - \fIi' For simplicity it will be assumed that the permeability

in both blocks is constant. Using a Taylor series to expand the potentials at each of

the grid-points gives:

(161)

and

(O\flJ ~rn 2 (o2\f1J ~rn3 (o3\f1J\fI =\fI +~r - +- -- +- -- +... (162)
17 h 17:::J 2:::J 2 31 :::J 3 'ur b ur b . ur b

where ~r, and ~r" are the distances from the grid-points to the common boundary,

and the subscript b implies that the quantity is to be evaluated at the grid block

boundary.

Subtracting Equation 161 from 162 gives:

(o\flJ - \fill - \fI, + R
or h ~rl1 +~ri

where the remainder, R, is

(163)
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Thus the portion of the potential that does not obey steady-state radial flow will be

subject to errors that are dominated by the first term.

It may seem as if it would have been better to define blocks with a constant increase in

radius that is 6.r = 6.r since this would have eliminated the first term giving a higher, n / ,

order of approximation. This is not necessarily the case as the choice of

transmissibilities made in Section 3.3c eliminates the remainder term completely for

the portion of the potential that corresponds to radial steady-state flow. For the

portion of the grid far from the well the radial assumption is a good one. Similarly the

steady state flow assumption becomes a good one at late times. Thus the portion of

the potential that does not obey these conditions is often small.

There are several possibilities that could be investigated as providing ways of

reducing the errors. The most obvious of these is to reduce the block size, which

should reduce both sources of error. Another might be to investigate alternative

formulations for the transmissibilities, particularly in the problem areas close to the

well and at the base of the perforations. The discretisation method could be extended

to provide a better model for the potential gradients. One way of doing this would be

to include additional grid points by using a nine point discretisation scheme.

4.4 Use of a Refined Grid

A number of experiments were performed to determine whether the discrepancy

between the analytical models and the Eclipse simulation could be improved by

defining smaller blocks. It was immediately apparent that there was an improvement,

but the degree to which the block size had to be reduced in order to begin to approach

the analytical solution was surprising. As a result the number of blocks in the grid

soon became unmanageable.

A strategy of only decreasing the block size in the problem areas was followed in

order to achieve a similar accuracy without using so many blocks. The grid was

therefore refined close to the wellbore and also towards the base and immediately

below the perforations. The radial width of the innermost block was ultimately

reduced to 0.1 feet. Similarly the thickness of the layers at base of the perforations

was also reduced to 0.1 feet.

The result of the refined grid simulation is displayed in Figure 4.5. There is now good

agreement in the late time portion of the data and the slope of the early time data is

now closer to that of the analytical model.
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FIGURE 4.5: COMPARISON OF REFINED GRID SIMULATIONS

WITH THE HANTUSH SOLUTION
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A cross-section view of the distribution of pressure potential for the refined grid is

given in Figure 4.6 for two different times. In creating these plots it has been assumed

that the potential is initially zero and the potential difference has been displayed as a

positive quantity. The convergence of the isopotential contours towards the base of

the perforations is clearly visible, thus confirming the need to define fine layers in this

area.

The sequence of development of the pressure field in a limited entry well is as

follows. Initially the pressure disturbance is confined to an area immediately adjacent

to the well interval that is open to flow. In the limiting case of zero vertical

permeability the pressure disturbance would continue to be confined to this interval

but would propagate radially outward with time. The pressure at the wellbore would

decline linearly with respect to the logarithm of time and with a slope inversely

proportional to the permeability thickness product of the open interval. If the vertical

permeability is not zero then the pressure disturbance grows both radially and

vertically. The wellbore pressure declines less rapidly than for zero vertical

permeability owing to the increased volume of fluids accessible to the well. The

pressure decline is concave upward when plotted against the logarithm of time and

bears some similarity to that expected for hemispherical flow. As the pressure

disturbance grows still further it reaches the lower no-flow boundary and this starts to

have an impact on the wellbore pressures. Ultimately the shape of the pressure
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contours in the inner region stabilise throughout the vertical section and the remaining

growth of the pressure disturbance is purely radial as reflected by a linear decline of

pressure with respect to the logarithm of time. The slope of the late time decline is

inversely proportional to the permeability thickness product of the entire reservoir

interval.

FIGURE 4.6: PRESSURE-POTENTIAL DISTRIBUTION FOR REFINED GRID
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For our test case Figure 4.6 shows that at 0.01 hours the lower boundary has not had a

significant influence on the wellbore pressure in that change in potential has not yet
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reached this boundary. The radial influence is also limited to the region close to the

wellbore. After flowing for 4 hours the shape of the contours in the inner portion of

the grid has stabilised. The outermost contour now runs from the upper to the lower

boundary implying that the full influence of the lower boundary should have been

established. These observations are consistent with the pressure response plotted in

Figure 4.5 where the transition to the final linear decline period only starts taking

place at approximately 0.08 hours. At 4 hours the pressure is well onto the final

period indicating that radial flow has been established over the entire reservoir

interval.

During the expansion of the pressure disturbance the reservoir can be divided into

three broad regions:

• A outer region where pressures have not yet been affected by the flow

• A inner region where the pressures have been reduced but the shape of the

pressure contours has stabilised

• A transition region where rapid changes are taking place and the shape and

spacing of the pressure contours has not stabilised

The inner region is one where flow approximates steady state behaviour very closely.

AIso noteworthy from the potential distribution is the fact that the radial spacing of

the contours is almost constant in log space for the innermost portion of the grid.

Under these circumstances the transmissibility calculation will be exact for the point

at the centre of the grid block face. As a consequence one would expect spatial

discretisation errors in this portion of the grid to be purely related to the contour

convergence effect previously mentioned in Section 4.3. Pressure changes in the outer

region are so small as to have no discernible effect on the wellbore pressure.

This leaves the transition region as the only portion of the grid where the steady state

approximation is not honoured. The reason for the transition region can be

demonstrated for a purely radial problem by differentiating the transient line-source

solution (Equation 6) with respect to the radius, giving:

o'f' = qliB" e-'PI/cr 2/4kt

01' 2TCkhr
(165)

This can be compared with the potential gradient for radial steady-state flow that is

given by:

o'f' qJlB"
=

or 2TCkhr
(166)
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When the radius, r, is small the exponential factor in Equation 165 tends to unity and

the transmissibility calculation is exact. As the time, t, increases, r can be larger

while still preserving the same level of agreement between the equations. Thus the

region displaying a constant potential gradient in log space will grow with time.

Beyond this ilmer region the exponential factor starts to have a big impact on the

potential gradient, defining the transition region. At still larger radii the potential

gradient tends to zero and therefore the error in the flow terms also tends to zero.

It may therefore seem possible that one way of reducing the error in the simulation is

to define smaller blocks in portion of the grid that corresponds to the region of

transition at early times in the simulation. This does not necessarily comprise the

innermost cells in the grid. Examining Figure 4.6 shows that the region of transition

is from 20 to 70 feet from the wellbore for a time of 0.01 hours. At a time of 0.001

hours the transition will occur at a distance that is closer by a factor of

1/JiO =0.316... or 6.3 to 22 feet.

Several simulation runs were made to check the hypothesis that defining smaller

blocks in the transition zone from 6 to 70 feet could reduce the early-time error. The

results were only slightly different from those obtained using the original refined grid.

This suggests that the bulk of the remaining spatial discretisation error is due to the

fact that the potential gradient is not constant across the face of the block and not to

the unsteady-state behaviour.

As a further check a purely radial, one-dimensional, simulation with a fully completed

well was set up. The radial wi'dths of the cells in this model were identical to those in

the partial penetration simulation. Comparison of the results with the exact radial

transient solution involving the Ei function (Equation 6) showed extremely close

agreement confirming that the unsteady state behaviour is not the reason for the

residual errors.

Further attempts to achieve a closer match to the Hantush solution concentrated on

defining smaller cells in the problem areas or by optimising the grid spacing using the

pressure potential plot of Figure 4.6 as a guide. Little improvement was achieved by

either of these methods.
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FIGURE 4.7: EARLY-TIME PRESSURES FROM SIMULATIONS USING

VARIOUS TIME-STEP LENGTHS

3350

3330

Dl = 4.8 E-3

Pressure
(psia)

3310

3290

3270

3230

'~.....
" ..

'" ......~,
"-

Dl = 4.8 E-4

Dl = 4.8 E-5

Dl = 4.8 E -6

--- Hanlush

0.001 0.01

Time (hours)

0.1

Up till now it has simply been assumed that the time steps are sufficiently small for

the time discretisation errors to be small. In order to confirm this and determine an

optimum time step size a number of simulations with different time step sizes were

run using the refined grid. The results are given in Figure 4.7, where it can be seen

that there is a big change in moving from a second time step of 0.005 days to 0.00005

days. Decreasing the length of the time-step still further makes very little difference.

One would expect the simulated result to converge on the analytical solution as the

time step and the grid spacing is reduced. The residual discrepancy therefore casts

some doubt on the validity of the analytical solution. This prompted an examination

of the differences in the assumed boundary conditions for the two methods. Given

that the discrepancy occurs soon after a rate change it is likely that the problem lies

with the inner boundary condition, namely at the wellbore itself.

There are two major difference in the way the two methods treat the inner boundary.

The first is that the Hantush solution assumes a line source for the well withdrawal

(the well flow is assumed to originate at an infinitesimally thin line positioned at the
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centre of the wellbore), whereas the simulation assumes a finite wellbore size. The

second relates to the flux and potential distribution within the wellbore. The Hantush

solution assumes that the flux distribution along the wellbore is constant whereas the

simulation assumes potential is constant.

In the case of a fully penetrating well the differences between line source and finite

wellbore solutions are well understood. Typically the differences are small enough to

be ignored for 1110st practical purposes and are confined to very early time. A

commercially available well test analysis program was used to assess the impact of

these assumptions for the same formation permeability as used in the test case.

Differences between the solutions were barely noticeable even at 0.001 hours. It is

conceivable that the differences could be amplified in the case of a partially

penetrating well. It is however unlikely that they could account for more than a small

portion of the observed discrepancy between simulation and the Hantush solution.

Flux and potential distributions along the wellbore were previously discussed In

Section 4.2. The assumption of uniform flux used by the Hantush solution is simply a

convenience to aid the superposition of flux elements used in deriving the solution.

The uniform potential assumption used by the simulation is closer to the physical

reality given the very high conductivity of the wellbore. Muskae6 showed that infinite

conductivity (uniform potential) and uniform flux solutions are equivalent for steady­

state flow provided that the uniform flux solution is evaluated at a particular point

along the wellbore. Gringarten and RameylO derived an infinite conductivity solution

based on the superposition of flux elements of varying strength along the wellbore.

They concluded that the infinite conductivity and uniform flux solutions are also

equivalent for transient flow and provide a chart for calculating the position at which

the uniform flux solution is to be evaluated. Most well test analysis packages use this

result and indeed this was also the basis for the calculation of pressures using the

Hantush solution as presented in this thesis.

Gringarten and Ramey's conclusion is somewhat misleading when subjected to closer

examination. Their results are based on a stabilised flux distribution along the

vvcllbore. In reality the flux distribution varies initially and only stabilises once the

impact of the lower boundary is fully realised. Thus their result only applies the late

time portion of the pressure response when the pressure declines linearly with respect

to the logarithm of time. The misinterpretation of their results as being applicable to

the entire time range is a consequence of the use of the word "transient" in their

conclusions. To some engineers transience implies that the spatial gradients of

pressure are still changing with time and is used to distinguish between this and
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steady, or semi-steady, state behaviour (pressures changing at a constant rate). To

other engineers the term implies a specific form of pressure behaviour associated with

radial flow in a laterally infinite reservoir. This latter sense of the word is what

Gringarten and Ramey are implying in their paper.

In many ways patiially penetrating wells are very similar to horizontal wells (wells

that are approximately parallel to the top and base of the reservoir interval) in their

near well bore behaviour. As with partially penetrating wells the flux distribution for

the infinite conductivity case will change with time and the pressure disturbance will

grow from the tip of the well. It is therefore useful to consult the extensive literature

available on pressure behaviour in horizontal wells to determine the views on use of

different forms of the inner boundary condition.

"7Kuchuk et al~ present an alternative approach to the uniform flux solution for

horizontal wells where the pressure is averaged along the wellbore rather than

evaluated at an equivalent pressure point. They show that this solution differs

significantly from the conventional approach at early time. This would seem to imply

that the equivalent pressure point shifts along the well with time. They claim that the

pressure averaging should give an exact solution in the case of the wellbore radius

tending to zero. Details of why this should be the case are, however, not presented

within their paper but only within an internal service company document that is not

readily available to the general public. Several arguments as to why pressure

averagmg IS to be preferred are also given in their paper but none of these are

conclusive.

Ozkan et aeSJ9 have constructed a model for horizontal well pressure behaviour that

directly accounts for varying flux along the wellbore. Their method can accommodate

a wide range of wellbore conductivities including infinite conductivity as a limiting

case. The method breaks the wellbore into a number of discrete cylindrical strips

whose analytical response is known. A finite element method is then used to solve for

pressure losses in the wellbore and individual fluxes of the cylindrical strips.

In the case of a partially penetrating well the well length is typically considerably less

than for a horizontal well implying that the infinite conductivity assumption is a good

one. Ozkan's results show how the flux distribution for such a case varies with time.

Initially, at the time of the rate change, the flux distribution is uniform along the well.

Shortly after this the flux is concentrated at the tip of the well. The reason for this is

that at the tip the volume in which the pressure change takes place grows

hemispherically, whereas further along the well the volume grows cylindrically. Thus

the reservoir volume affected by the rate change, and therefore the flux, grows most
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quickly at the tip of the well. At later times the flux distribution becomes more

uniform but retains a degree of concentration towards the tip of the well.

The flux behaviour in the infinite conductivity case will mirror what happens with the

pressure distribution for a uniform flux case. At early time the pressure drop will be

concentrated near the tip of the well becoming more evenly distributed later. The

equivalent pressure point will therefore move along the well from near the tip at early

time to a position close to that suggested by Gringarten and Ramey at later time. If a

constant position is used for the equivalent pressure point then the uniform flux

solution will underestimate the true pressure and the error will be greatest at early

time. This is exactly what is observed for the difference between the simulated

pressure and the uniform flux solution in the partial penetration case. The hypothesis

is therefore that these differences are chiefly due to the difference in boundary

conditions and the use of a constant equivalent pressure point.

In order to test the hypothesis a uniform flux simulation with the same grid block

geometry as previously used was run. This allows the following:

1. Comparison of pressures from numerical simulation with those from analytical

solutions for the same boundary conditions

2. Comparison of pressure averaged along the wellbore in a uniform flux simulation

with the infinite conductivity case

3. Measurement of pressure distribution along the wellbore and location of the

equivalent pressure point

Results are displayed in Figure 4.8. The analytical (Hantush) solution agrees very

closely with the uniform flux simulation evaluated at Gringarten and Ramey's

equivalent pressure position. This suggests that the residual spatial and temporal

discretisation errors are negligible. The same will apply to the infinite conductivity

simulation as the two simulations have identical properties other than the inner

boundary conditions.

The pressure averaged along the wellbore is in good agreement with the infinite

conductivity simulation at early time but steadily diverges at later time. This suggests

that approximations of the infinite conductivity solution that are based on pressure

averaging are imperfect and should be used with caution. The consequence of the

difference in late pressure would imply a slight difference in the apparent skin.
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FIGURE 4.8: COMPARISON OF INNER BOUNDARY CONDITIONS
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The mismatch between infinite conductivity simulation and the uniform flux methods

could be more serious when analysing a real well test. If the early time behaviour

were used to assess the vertical permeability then erroneous conclusions could be

drawn through use of the uniform flux method. The potential error is proportional to

the difference in slope on a pressure versus log time plot or to the magnitude of
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pressure derivative with respect to the logarithm of time. In Figure 4.8 the difference

in derivatives is approximately 10%, which is barely acceptable. Errors of preferably

less than 5% and ideally of the order of 1% would be more acceptable.

FIGURE 4.9: PRESSURE DISTRIBUTION IN A UNIFORM FLUX WELL
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Figure 4.9 shows how the pressure distribution along the wellbore varies with time.

In this plot the pressures are relative to the average well pressure at the given time.

The plot confirms the earlier discussion of how pressure distribution will change with

time. It is clear that the equivalent pressure point would need to move with time but

stabilises at a position close that suggested by Gringarten and Ramey.

A literature survey was conducted in order to find analytical solutions based on an

infinite conductivity well boundary condition in order to provide a comparison with

the infinite conductivity simulation. Yiidiz and Bassiouni4o have derived such a

solution as an infinite Fourier-Bessel series in Laplace space:

(167)

where



k_( rw )2A = 5+-- mn-
1/1 k h',.

(168)

(169)

(170)

(171)
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Ko and K, are modified Bessel functions of the second kind with order zero and one

respectively, PI) (5) is the Laplace transform of the dimensionless pressure, PI) (tf)),

and 5 is the Laplace variable corresponding to the dimensionless time t f). See Figure

4.1 for a reminder of the geometry of the problem.

Dimensionless pressure and time are defined by:

C 2n krh ( )
PI) = I B P, - P ,

qf..l ()
(172)

where Cl is 1 for absolute unit systems and 1.127 x 10-3 for field units, and

(173)

where C2 is I for absolute unit systems and 2.637 x 10-4 for field units.

The pressure solution for our idealised problem was obtained by numerically inverting

the Laplace space solution using the Stehfest41 algorithm. The computer program

implementing the solution and the numerical inversion is listed in Appendix 2.

Comparison of the Yiidiz solution with the infinite conductivity simulation showed

very good agreement between the rate of change of pressure with time. The analytical

solution did however show a substantial and constant offset in pressure (14 psi).

Figure 4.10 shows the level of agreement once this offset was removed. The slight

oscillation in pressure for the Yiidiz solution at a time of 0.01 hr is believed to be an

artefact related to the use of the Stehfest algorithm for the numerical inversion. Better

results could probably be obtained using a more robust technique such as Talbot's

method42
. Nevertheless, the level of agreement is sufficient to confirm that the

infinite conductivity simulation is giving an accurate result.
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FIGURE 4.10: COMPARISON OF SIMULATION WITH YIIDIZ SOLUTION
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4.5 Use of a Nine-Point Scheme

A possible alternative to using a refined grid to improve accuracy is to use a higher

order approximation for the spatial derivative in the discretisation process. Typically

this would be achieved by increasing the number of points used in calculating the

derivative. One such method is the nine-point scheme devised by Yanosik and

McKraken43
. In this method transmissibilities are defined for diagonally adjacent grid

points in addition to the grid points from immediately adjacent blocks (i.e. blocks that

share a face with the block being considered). In two dimensions this implies an

increase from a five point to a nine point discretisation scheme (Figure 4.11) whereas

in three dimensions the increase is from seven to twenty-seven points. The nine-point

method was originally intended to reduce grid orientation effects but may be useful

for the current problem given the large diagonally orientated pressure gradients close

to the tip of the well.

Several approaches can be used to derive a nine-point method. The Yanosik and

McKraken approach is based on forming a linear combination of the five-point

equations for parallel and diagonal grids. The ECL advanced simulation course44
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presents an alternative approach using Taylor series. A modified version of their

approach as applied to deriving a nine-point method for a Cartesian grid is

summarised below:

FIGURE 4.11: ADJACENT GRID BLOCKS FOR DERIVATIVE ESTIMATION
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• Grid points used in conventional 5 point method

o Additional grid points used in 9 point method

The aim is to find a linear combination of adjacent grid point pressures (or strictly

speaking, pressure potentials) that approximates the flow divergence, \7.F = \7.k/!.\7\f' ,

as discussed in Chapter 3. For the purposes of the derivation the mobility, /!., is

assumed to be I as we are only concerned with saturation and component independent
properties. In other words we are trying to find the transmissibilities, T" that best

satisfy the equation:

\7.k\7\f' ~ IT,11\f', , (174)



87

where the sum is over the adjacent grid-points and ~qJI represents the potential

difference between a pair of grid-points.

To simplify the demonstration we assume that permeability is anisotropic and

homogenous. At a particular grid-point i,j the problem becomes equivalent to solving

for the coefficients a to I that best satisfy the equation:

~ aqJ,_I,I_1 + bqJ,_I,1 + CqJ,-I,J+I + cfI1,.J-1 + eqJI,J + jqJ,.J+1

+ gqJ,+I,I_1 + hqJ,+I,1 + fqJI+I,j+1. .

(175)

where qJ,+I,I_1 represents the potential at the grid point i+1, j-l. Expanding qJI+I,J-1 as

a Taylor series about the point i, j gives:

() ()
f.,x 2( 2 )O'qJ O'qJ j-I 0' qJ

qJ =qJ -f.,x - +~. - +----
I+I,J-I ',j j-I 0' Y, 0' 2 O'x 2

X i,j Y I,j I,j

(
0'2qJ) ~y2(0'2qJ)-f.,x !1 +-'- -- +R

J-I YI O'xO'y 2 O'y2 . 1+I,j-1
',J

where R,+ I, I-I represents all terms of third or higher order.

(176)

Similar series can be derived for all the other grid points surrounding i,j. Substituting

for the potential at all surrounding grid-points in Equation 175 we get an equation

involving only derivatives of the potential evaluated at the central point and grid point

distances on the right hand side of the equation. Grouping together terms involving

0'2qJ/ O'x 2 on both sides of this equation gives:

(177)

implying:

(178)

Similarly, grouping together other derivatives of the same order:

(179)

(180)



(C+f+l)fu;} -(a+d+g)fu;J_I =0;

(g + h + l)6y, - (a + b + C)6Y,_1 = 0 ;

a+b+c+d+e+f+g+h+I=O.

(181 )

(182)

(183)
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Equations 178 to 183 form a set of six simultaneous equations with nine unknowns.

In the special case where the block dimensions are constant throughout the grid,

symmetry requires that a = c = g = I, b = hand d = f. Substituting for these

variables eliminates Equations 180 to 182 and results in a system of three equations

with four unknowns:

(2a + b)6/ =k,;

4a + 2b + 2d + e = 0 .

(184)

(185)

(186)

In order to solve these equations we introduce a new variable, fJ, that represents the

degree to which the diagonal grid-points are used in calculating the flow divergence.

When fJ = I the result should revert to the standard 5-point method where a = 0 and

(187)

We therefore define fJ in terms of the equation:

(188)

The remaining variables then become:

(189)

(190)

(191)

The coefficients can be converted into transmissibilities by multiplying by the cell
volume, V :

" }
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• a V is the diagonal transmissibility;
1,./

• bV is the transmissibility in the y direction
1,./

• dV. is the transmissibility in the x direction.
1,./

Choosing f3 = 5/6 for square grid blocks gives an identical formulation to that of

Yanosik and McKraken.

No derivation of a nine-point method for a two-dimensional (rz) cylindrical grid could

be found in the literature. The Taylor series approach summarised above was

therefore used to try to find the necessary weighting factors.

In a two-dimensional radial co-ordinate system the equation to be satisfied is:

::::; a\.}l,_I,I_1 + b\.}l,_I,1 + c\.}li-l,i+l + d\.}l"./_I + e\.}li,1 + !\.}l',I+1

+ g\.}l'+I,I_1 + h\.}l,+"j + !\.}li+I,./+!

(192)

Substituting the Taylor expansions for potential at each of the adjoining grid points

and collecting terms of similar order gives:

(a + d + g )~rl_ll + (c + ! + t)~r./l = 2kr ;

k
(c + ! + t)~r./ - (a + d + g)~rj_1 = _r ;

r

(g + h + !)~, - (a + b + C)~'_I =0;

a+b+c+d+e+!+g+h+!=O.

(193)

(194)

(195)

(196)

(197)

(198)

In order to reduce the number of variables it is assumed that the spacing of the blocks

in the z-direction is constant. Note that the radial spacing cannot be assumed to be

constant as this would give a very unrealistic grid for single well problems. (In

Chapter 3 it was shown that steady state flow in a radial grid with a well at the centre

is best modelled using grid blocks where the radial width of adjacent blocks increases

by a constant factor.) These assumptions require that a = g, c =! and b = h.

Substituting into Equations 193 to 198 gives:
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2a + 2b + 2e + d + e + ! = 0

(199)

(200)

(201)

(202)

Thus we now have a system of 4 equations with 6 unknowns. Solving this system

requires the introduction of two new equations. We cannot therefore use exactly the

same approach as for the Cartesian case given above. One approach is to take the

formulae that would result for the five-point method and then assume that the

introduction of additional point points would act to scale down the contribution of the

laterally adjacent grid points in constant proportion. In other words, both the variables

d and ! would be reduced by a constant factor in the nine-point method in

comparison with their value in the five-point method.

Substituting a = e = 0 and solving the system of equations gIves the five-point

formulation where:

(203)

(204)

The two additional equations to be used in solving the nine-point method are therefore

given by:

j
.= fJ k,. (2 + /).1',_1 1')

J ,

!1r - +!1r !1r, ,-1.1

(205)

(206)

where fJ is a parameter to be optimised for the problem at hand. The resulting set of

equations (Equations 199 to 202, 205, and 206) were solved by substituting for d and!

in Equations 199 and 201, eliminating one of the remaining variables and then back

substituting, giving:



(1 - .8 )k r (2 - ~rJ / r)

a = 2~ri_l (~rH + ~rj) ,

(1 - .8 )kr (2 - ~rJ-1 / r)

c = 2~rJ (~rl_1 + ~rj )

2k_ (1- .8 )kr l~rj (2 - ~rj / r )+ ~rj_1 (2 - ~rJ-1 / r )J
b = ~ Z-2 - 2~rJ_' ~rj (~rJ-1 + ~rJ ) ,

4k
c

.8 kr l~rJ (2 - ~rj / r)+ ~rj_l (2 - ~rj_l / r )J
e = - ~ Z-2 - ~rJ-l ~rJ (~rl_1 + ~rJ )

(207)

(208)

(209)

(209)

9\

Comparison of analytically calculated derivatives with the nine-point approximation

showed that the optimum value of .8 was 1 suggesting that the assumptions reflected

by Equations 205 and 206 are not effective in producing an improvement over the

standard five-point method.

The difficulties in applying the ECL approach to a nine-point method for a radial grid

and the lack of any similar derivations in the literature prevented the application of the

method to the current problem. It is therefore not clear whether other formulations of

the method could have offered an improvement in accuracy. One possible alternative

approach that could be grounds for future research is to use the Control Volume Finite

Differencing (CVFD) technique suggested by Rozon45
.

In CVFD the grid block is sub-divided into smaller control volumes. Flow across

each sub-face is calculated assuming that pressure is bi-linearly related to the values at

the three closest grid points. When the flow is summed over all the sub-faces the

result is a flow accumulation term that depends on the values of the nine adjacent

points. Unlike the conventional nine-point method Rozon's method does not have

diagonal transmissibilities and would therefore require modifications to the simulation

program in order to implement the method. It therefore contradicts our aim of having

a technique that can be universally applied by engineers using their existing software.

Note that CVFD is currently being used successfully in implementing the flexible

PEBI grid approach discussed in Chapter 3 27,28.

Given the success and the transparency of the grid refinement procedure demonstrated

in Section 4.4, the failure of the nine-point method is not serious. Grid refinement

was therefore chosen as the method to be used in solving the real life problem.
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4.6 Chapter Summary

In this chapter finite-difference simulation was applied to modelling a hypothetical

partially penetrating well. Results of the simulation were compared to an analytical

solution for the same problem. Discrepancies between the two sets of results were

noted and attempts were made to resolve these through use of selective grid

refinement and use of small time steps. It was found that radial width of grid blocks

close to the well needed to be approximately 0.1 feet in order to improve the early

time match. A geometric increase of the block widths in the radial direction was

found to give good results. Similarly, the thickness of layers at the base of the

perforated interval needed to be reduced to approximately 0.1 feet. This is believed to

be a consequence of the high pressure gradients and the flow convergence that takes

place at the base of the perforated interval. Reducing time-step duration after rate

changes to below 0.00005 days (- 4 seconds) did not lead to any further improvement

in the match.

Residual early-time differences between simulated and analytically derived results

remained and proved to be related to the nature of the boundary conditions (uniform

flux along the perforated interval) used in the analytical solution. Implementation of

an infinite conductivity solution showed that the numerical simulation had reached a

high level of accuracy. The use of a nine-point discretisation method for spatial

derivatives was investigated as a means of obtaining a better pressure match without

needing the same degree of grid block refinement. It was found that the assumptions

that lead to a successful nine-point method for a Cartesian grid using a Taylor series

method fail to do the same for a radial grid. The reason for this is that the underlying

nature of the problem geometry and spatial derivatives leads to an underdetermined

set of equations. Attempts were made to solve the system by providing additional

equations that scale the transmissibilities used in the five-point method. These proved

to offer no improvement in accuracy over the traditional five-point method.

In the next chapter the finite difference approach will be applied to the modelling and

analysis of a real well test of a partially penetrating well. The same techniques of

selective grid refinement and use of small time steps after rate changes that were

perfected in this chapter will be applied to the real-life problem. The importance of

first modelling the hypothetical problem is that one can proceed with confidence that

all significant sources of numerical elTor have been eliminated. Any discrepancies

between the measured pressures and modelled pressures that are noted must then be

due to the mismatch of the properties and they can therefore be adjusted accordingly.
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Chapter 5: Application to a Real Life Problem

This chapter applies the numerical model derived in Chapter 3 to modelling the

pressure response of a real partially completed oil well to changes in oil rate.

Techniques were derived in Chapter 4 that succeed in matching analytical solutions

with the numerical model to a high level of accuracy. These are applied to the real life

problem to ensure that the results obtained are not an artefact of the modelling

process. Actual pressure results measured from the well are then used to constrain the

simulation model. The properties of the model are altered in order to obtain a match

to the recorded pressures. Implications of the matching properties are then discussed.

5.1 Background

The well to be modelled is the discovery well for one of SOEKOR's most promising

oil fields. For reasons of confidentiality the name of the field and well may not be

revealed. A total of five wells have been drilled in the area. These wells have been

labeled A to E in chronological order. Two of the wells CA and D) intersected an oil

bearing reservoir; wells Band C were drilled beyond the edge of the reservoir; and

well D was drilled into a water bearing interval to allow the injection of water during

production.

In this particular field, as in all the oil and gas finds offshore South Africa, the

reservoir lithology is sandstone. Overlying c1aystone and siltstone layers form

impermeable barriers to the oil, trapping its upward movement. Oil therefore

accumulates in the upper portion of the sandstone structure. Detailed descriptions of

the field geology and geophysics have been given by Winters and Pfderkamfer46. A

layman's description covering the chief points of interest is given below.

5.2 Geology and Geophysics

The field has been mapped by interpreting a seismic data set comprising a series of

seismic lines. Data from each line are processed to give a vertical slice of subsurface

reflections along the length of the line. The vertical axis of the plot is based on the

two-way travel time for the seismic pulses to travel from surface to a reflector and

then back again. Such a plot is known as a seismic section. The reservoir interval is

characterised by a change in seismic impedance in moving from the overlying shales

into the reservoir sandstone, followed by a reversal at the base of the reservoir. This

is visible on the seismic section as a peak that is related to the top of the reservoir

interval followed by a trough related to the base of the reservoir, which occurs at a

slightly later two-way travel time. Mapping out the peak and converting the travel
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time to a depth gives a depth map of the top of the reservoir. This, and the various

well locations, is depicted in Figure 5.1.

FIGURE 5.1: DEPTH TO THE TOP OF THE RESERVOIR INTERVAL

Geologically the reservoir is believed to be part of a turbidite system triggered by

changes in sea-level during the Cretaceous era approximately 100 million years ago.

Typically the turbidite system is initiated by a relative decrease in sea level that

exposes much of the continental shelf. The sediment on the shelf is then subject to

erosion. Accumulation of the eroded material at the self-edge can be unstable. A

turbidity current forms when portions of this material break free and rush down the

continental slope as a slurry of sediment and water, moving together. At the base of

the continental slope the velocity of the current diminishes and thus its ability to carry

solids decreases. Since the coarsest grained particles require the highest velocities to

remain in suspension they are deposited first. Finer grained particles are deposited as

the velocity of the current decreases. Sediment associated with a single turbidity
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current is known as a turbidite. The sandstone reservoir is a stacked succession of

many individual turbidites.

As the strength of each current diminishes it is possible for finer grained material to

be deposited leaving an impermeable layer above the sandy sediment. The next

turbidity current may erode all or part of this layer or may leave it intact forming a

barrier to vertical flow. Frequently, remnants of the finer grained material may be

found incorporated into the next sandy layer in the form of rip-up clasts even though

no intervening layer remains. Vertical permeability within the overall package is

therefore largely a function of the extent to which the impermeable (claystone or

siltstone) layers have been preserved. Within each of the sandstone layers the vertical

permeability is expected to be similar to the horizontal permeability. This has been

confirmed by core experiments on wells A and D which compare measurements made

using vertically cut plugs with those taken from horizontally cut plugs. Typically the

ratio of vertical permeability to horizontal permeability was about 0.8.

Outcrop studies conducted on turbidites near Laingsburg and Tankqwa47 In South

Africa have shown that the lateral extent of claystone and siltstone layers within

similar sandstone packages can vary enormously. In some cases the clay and siltstone

layers are almost entirely absent or only extend for a few metres. The ratio of vertical

to horizontal permeability for these cases would be close to unity. In other cases the

claystone layers can be followed for several hundred metres and the ratio of vertical to

horizontal permeability could be of the order of 0.01 or less.

Close examination of the core for well A has provided evidence that the energy of

deposition was high for the lower portion of the reservoir interval. Although

claystone layers are preserved in the core it is likely that these are not laterally

extensive. Closer to the top of the interval the energy of deposition appears to be less

and the claystone layers are believed to be more continuous. This upward fining

sequence is typical of channelized turbidites. The overall geological model for the

field is that of an amalgamated channel complex within a broad erosional valley.

Towards the edges of the valley the sediment is mud rich, as in wells Band C for

example, whereas the sediment in the centre of the valley is predominately sandstone

as detected by wells A, D, and E.

The reservoir properties and lithologies for well A, the well to be modelled, are

depicted in Figure 5.2.
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FIGURE 5.2: PROPERTIES OF THE RESERVOIR INTERVAL, WELL A

]00.

n

WA11,R
SATI)RATION

(°'0)

CORE
PERlvlEABILITY

(mD)

XXXXX>OOO< 0.0

0.2 2000
o

25.0

250

LOG
POROSITY

(%)

00

0.0

CORE
POROSITY

(°o)

XXXXXXX

2385

2390

mbKb

DEPTH

l
\ 2395\
?
\
l
J
J,
I
< 2400,
\
\
(
I
\
)
I
J

2405I
I

(
1
~
(
)
l
\

2410)
\
)
J

I

GAMMA RAY (API units)



97

Data used to create Figure 5.2 were gathered from a variety of sources. A portion of

the reservoir was cored and the rock sample brought to the surface for examination by

geologists. Rock plugs were subsequently cut from the core and subjected to

laboratory measurements that included porosity, permeability, and electrical

properties.

Special geophysical logging tools were run into the borehole to measure the natural

gamma ray radiation, density, and resistivity of the rock in-situ. The gamma ray

readings give an indication of the clay content. On the whole the intervals with a high

gamma ray reading consist of claystones or silts whereas the intervals with low

gamma ray values are sandstones. Density readings are used to derive a continuous

porosity curve that is calibrated against core porosities. Resistivity readings, when

used in conjunction with porosity, allow the hydrocarbon saturation to be determined.

Close examination of Figure 5.2 will reveal a prominent interval of high gamma ray

readings between the depths of 2391 and 2394 mbKB corresponding to interbedded

claystone and siltstone layers. Similar intervals have been noted in wells D and E. It

is therefore believed that this feature could be present over a large portion of the

reservoir and would represent a regional hiatus in sand deposition. As such, the

feature could provide a widespread seal between the upper and lower portions of the

reservoir. The three wells in question do, however, fall on a line that is almost

parallel to the direction that the channels are believed to follow. A higher degree of

continuity can be expected in a direction parallel to the channel axis than at right

angles to it. It is therefore possible that the layer is discontinuous in a direction

orthogonal to channel axis.

5.3 Reservoir Engineering

Numerous full field flow simulations of the reservoir have been conducted 14. These

have evaluated the sensitivity of production to the various geological uncertainties

including the presence or absence of the previously mentioned claystone/shale layer.

Whether the layer is continuous or not has a major impact on the forecasted oil

recovery for the field. If the layer was very discontinuous and overall vertical

permeability was high then recoveries of up to 52% of the oil in place could be

expected. On the other hand if the shale extended over the entire field and vertical

permeabilities were low throughout then the recovery could be as low as 38% of the

oil in place. The difference in total value of the oil produced under the two scenarios

is approximately $132 million for an oil price of $20/bbl and estimated oil in place of
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47 million stb. The impact on the economic value of the field could be even greater

than this because the recovery is accelerated if vertical permeabilities are high.

Clearly, prior knowledge of the likely magnitude of the vertical permeability is an

important parameter in making a development decision for an oil field.

In principle, the pressure behaviour of partially penetrating wells can be used to place

constraints on the vertical permeability. Analytical methods can be used to show how

the vertical permeability affects the character of the build-up pressure curve for a

hypothetical well. One such method is the solution of the Hantush equation that was

discussed in Section 4.2. This was used to prepare a series of pressure responses for a

hypothetical well with a penetration ratio of 25% and various ratios of vertical to

horizontal permeability. The bottomhole pressure and associated derivative versus

log of flowing time are displayed in Figure 5.3.

The derivative response can largely be broken into two periods, an initial decline of

the derivative with time followed by a period where the derivative has constant value.

In a physical sense this can be interpreted in terms of the propagation of the pressure

disturbance caused by the change of rate at the well bore. Initially the pressure

disturbance propagates both laterally and vertically. This is reflected by the

decreasing derivative curve. Once the disturbance has propagated to the top and base

boundaries and the pressure gradients near the well have stabilized then the further

propagation of the pressure pulse is laterally away from well. This is essentially

cylindrically radial flow over the entire reservoir interval. As a consequence the

derivative stabilizes to a constant value whose magnitude is inversely related to the

total permeability thickness product for the entire reservoir interval.

From Figure 5.3 it can be seen that the magnitude of the vertical permeability affects

the length of time taken for the late time linear (in Log time space) pressure decline

(or constant derivative) to be reached. In the case of a vertical to horizontal

permeability ratio of 1/1 00 the entire interval is only beginning to contribute to flow

some four hours after the start of production whereas in the case of equal horizontal

and vertical permeability the pressures are linear after as little as 0.06 hours of flow.

The magnitude of the early time derivative is a function of both horizontal and vertical

permeability. If the horizontal permeability is kept constant then as the vertical

permeability increases the early time derivative decreases. Thus, in principle, it is

possible to estimate the magnitude of vertical permeability by measuring the time

taken to reach the late time linear portion of the pressure plot or by matching the

initial decline in the pressure derivative.
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FIGURE 5.3: SENSITIVITY OF PRESSURE RESPONSE OF A PARTIALLY

PENETRATING WELL TO VERTICAL PERMEABILITY
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Although the rate of change of pressure at the end of the flow period is identical from

case to case, the final flowing pressures are displaced from each other with the lowest

flowing pressure corresponding to the lowest vertical permeability. If the pressure

response for a well that fully penetrates the reservoir interval were to be compared

with the other curves then we would find that this would have the highest flowing
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pressures. These pressure differences are a manifestation of what the literature has

often called flow convergence skin? (the concept of skin was discussed in Section

1.3). An additional pressure loss is incurred in comparison to a fully penetrating well

because the total fluid volume is forced to flow through a smaller interval and to

travel a greater hydraulic distance. Vertical permeability plays a role in that a vertical

component is introduced into the fluid movement. The lower the vertical permeability

the greater the loss of pressure in converging on the perforated interval.

Reservoir engineers are typically interested in using analysis of pressure response to

make long-term forecasts of well performance. In the case of a partially penetrating

well the long term behaviour is indistinguishable from true radial flow with high skin

damage. Analysis of these wells therefore often focuses on determining permeability

thickness product and apparent skin for the total interval from the late time portion of

the pressure response.

It would seem that a measurement of apparent skin would be sufficient to determine

vertical permeability. This is not the case as the apparent skin is a composite value

comprising the flow convergence skin in addition to a mechanical skin owing to near

well formation damage (or stimulation) that is largely unknown. For many years there

has been a debate on how these two factors combine. Some authors maintain that the

two skins are purely additive while others suggest that the contribution of the

mechanical skin is amplified by dividing by the penetration ratio (the ratio of flowing

interval to total reservoir interval), that is:

(210)

where SII/ is the mechanical skin, bp is the penetration ratio, and SI' is the flow

convergence skin. If we define mechanical skin in terms of the degree of permeability

impairment (i.e. the mechanical skin used is that which we would see on a fully

penetrating well with the same degree of permeability impairment) then Equation 210

is the correct formula to use. This is relatively easy to prove for conditions of steady

state flow.

The perforated interval, 2382.4 to 2399.4 mbKB, is displayed in Figure 5.2 where it

can be seen that there is a dramatic increase in permeability immediately below the

base of the perforations. This will act to increase the partial completion effects on the

pressure behaviour.
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Al Khalifa and Odeh23 have suggested that the penetration ratio should be regarded as

the ratio of kh/ f.l for perforated interval to the composite kh/ f.l for the entire interval

(which may include a gas cap or aquifer), i.e.:

(211)

where the subscript p refers to properties measured over the perforated interval and

the subscript i refers to sub-intervals throughout the total interval of permeable

formation that is in direct pressure communication with the well. Note that use of

Equation 211 will reduce the calculated penetration ratio for cases where the

permeability of the perforated interval is much smaller than the rest of the interval.

The relationship between the flow convergence skin and the penetration ratio can

either be determined using a late time approximation to the Hantush solution (Section

4.2) or through use of a relationship given by Saidikowski 12:

(212)

Note that a small penetration ratio implies a large flow convergence skin.

5.4 Review of Well Test Using Analytical Techniques

It is useful to apply classical analysis techniques to the pressure response of the well

prior to applying reservoir simulation for matching purposes.

Properties to be used in the analysis are given in Table 5.1. Fluid properties are

derived from laboratory tests conducted on oil sampled from an adjacent well.

Porosity and water saturations are averages based on the log-derived porosity as

shown in Figure 5.2. Rock compressibility is an average value based on tests

conducted on core plugs that were obtained from the same formation in a nearby well.

The pressure record for drill stem test (DST) that was conducted on the well is shown

in Figure 5.4. The test comprised several flow periods at different rates (Table 5.2)

followed by periods of no flow (build-ups) where the well was closed off using a

downhole valve. Detailed analysis is normally restricted to the build-up periods

because the flow periods are often subject to changes in the rate that mask the pressure

response.



102

Table 5.1: Fluid and Rock Properties for Well A

Rock Properties

Porosity 1J 0.175

Rock Compressibility cl' 3.1 x 10-6 psi

Fluid Properties

Oil Viscosity JLo 0.43 cP

Oil Formation Volume Factor Bo 1.436 rb/stb

Oil Compressibility Co 16 x 10-6 psi

Water Compressibility Cw 3.0 x 10-6 psi

Water Saturation Sw 0.2

Initial Fluid Pressure Pi 3465 psia

Reservoir Geometry

Reservoir Thickness h 94.8 feet

Perforated Interval hw 54.7 feet

Distance to the Top Perforation hi 0.0 feet

Distance to the Bottom Perforation ~ 40.1 feet

Wellbore Radius rw 0.3615 feet

Table 5.2: Rates and Times for Flow Periods During DST#lA at Well A

Flow Rate (stb/d) Duration (hours) Comments

6000 0.2528 Perforation and initial flow

0 3.0083 Initial Build-up

2870 6.9861 Clean-up Flow

790 33.5778 Sampling Flow

0 33.7528 Sampling Build-up

5200 3.9944 Reservoir Evaluation Flow

0 8.0167 Reservoir Evaluation Build-up

7735 23.9778 Extended Flow

0 36.0333 Extended Build-up

8730 3.4639 Maximum flow

0 6.5417 Final Build-up

The method of Horner
4

(see Section 1.3) can be used to establish the portions of the

pressure response that correspond to transience (unbounded cylindrically radial flow).

This method assumes that the pressure during the build-up is the superposition of the
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solutions for the rate change at the beginning of the previous flow and at the

beginning of the build-up. The influence of earlier changes in rate is assumed to be

negligible. For a single rate change the pressure drop at the well is linear with respect

to the logarithm of time since the rate change took place. By transforming the time

variable when analysing a build-up, we can preserve linearity when transient flow is

taking place.

FIGURE 5.4: PRESSURE RESPONSE DURING DST#IA AT WELL A
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As shown in Section 1.3, under conditions of transience the pressure drop during a

build-up is given by

L'l = _ qj113" In(t + 0 t)
.p 4trkh ot' (213)

where t is the length of the flow period, and 0 t is the time since the build-up started.

Thus the transformed time variable is ,,= (t + 0 t)/0 t and plotting L'lp against log"

(typically known as a Homer plot) will give a straight line for transient flow. The

permeability thickness product of the interval corresponding to flow can be

determined from the slope, m, of the line from the equation



m = qJl"B" .
4nkh

(214)
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Calculating and plotting the derivative of pressure with respect to the logarithm of

transformed time (i.e 8p/8 In T) will allow the transient period to be identified and

highlight subtle changes in the slope that are related to changes in properties as one

moves away from the well bore.

The skin can only be evaluated from flowing data. During the build-up the flow is

negligible and the skin therefore drops out of the equation. In order to evaluate the

skin the flowing pressure at the end of the previous flow period is used in conjunction

with parameters determined from the build-up (Equation 214). The skin can be

shown25 to be given by

(215)

where Z· is the extrapolated pressure (intercept) on the Homer plot and ~ is the

exponent of Euler's constant (i.e. ~ =exp(0.5772...)~ 1.781). Both formulae

(Equations 214 and 215) assume the use of an absolute unit system such as the SI.

A Homer plot and associated derivative for the longest build-up in the testing

sequence is shown in Figure 5.5. Before calculating the parameters for each build-up

it is useful to make a qualitative assessment of what the pressure history plot and

Homer plot can tell us about the properties of the reservoir. What is noteworthy about

the pressure is the very stable and at times increasing pressure during the flow periods

(Figure 5.4). An increase in flowing pressure can only take place through a reduction

of rate (which the surface records show has not taken place) or a reduction in skin.

The nature of skin in a partially penetrating well is such that any changes in the skin

over the perforated interval are amplified by the penetration ratio (Equation 210).

Thus relatively small reductions in the mechanical skin throughout the test could

explain the very stable flowing pressure. This reduction could take place through

ongoing removal of fine debris from the perforation interval by the flowing fluid. In

this particular well the drilling mud was inadvertently allowed to fall back on the

perforated interval and it is quite likely that this would have had a partially plugging

effect on the perforations.
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FIGURE 5.5: PRESSURE RESPONSE DURING RESERVOIR
EVALUATION BUILD-UP AT WELL A
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The Homer plot shows a rapid decrease in slope/derivative initially (at large

transformed time r) followed by a more gradual decline. Towards the end of the

build-up (at small r) the overall slope/derivative increases once again. The

oscillations in the derivative towards the end of the build-up have a twelve-hour

period and are likely to be tidal in nature and not related to any variation in reservoir

properties. Note that there is no clearly defined portion of the build-up where the

slope is constant indicating transient flow and as a consequence no clear indication of

when the vertical growth of the pressure disturbance comes to an end.

Comparison of the magnitude of the derivative with what would be expected given the

core permeabilities suggests that the total thickness must be contributing to the flow

from very early on in the build-up implying a high vertical permeability. The bulk of

the build-up shows a slope that is too small given the core permeability. This implies
that the quantity kh/J1 must increase away from the well bore. One possible reason

for this is that the reservoir dips to the North North West (Figure 5.1). At the well

location the water contact falls near the base of the sandstone interval. As one moves

to the North North West the reservoir dips into the water and the proportion of the

sandstone that is water-bearing increases. As the viscosity of the water is less than

that of the oil (0.27 as opposed to 0.43) this implies that the total kh/ J1 must also
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increase even if the permeabilities remain constant. Thus the slope on the Homer plot

will decrease progressively as the thickness of the water bearing interval increases.

The late time uptum in the derivative is consistent with the presence of a distant no­

flow boundary such as would be provided by the presence of a sealing geological fault

or the edge of sandstone deposition. Exactly such a feature has been interpreted from

the seismic at a distance of roughly 500 metres to the South of the well. This distance

is largely consistent with the time at which the derivative starts to increase.

The effective permeability-thickness product, kh, and the apparent skin were

determined for each of the pressure build-ups using Homer analysis4
,25. In each case

the Homer slope was calculated using the pressures from between 0.1 and 0.2 hours

after the start of the build-up. The results are given in Table 5.3. Note the steadily

decreasing skin through the test. The overall skin values are higher than one would

normally expect from this sort of well. The permeability thickness product varies

from 35100 to 38500 mD.ft, which is somewhat higher than the core derived value of

29700 mD.ft.

Table 5.3: Results of Horner Analysis for DST#lA at Well A

Period Permeability Skin

Thickness

(mD.ft)

Sampling Build-up 38500 20.2

Reservoir Evaluation Build-up 35300 19.1

Extended Build-up 36800 16.1

Final Build-up 35 100 13.9

The penetration ratio calculated using the ratio of perforation length to total thickness

is 0.55. Using Equation 212 in conjunction with a vertical to horizontal permeability
ratio of 0.5 gives a partial penetration pseudo skin (Sp) of 4.9. Any mechanical skin

over the perforations would be further amplified by the inverse of the perforation ratio

as per Equation 210. In order to achieve a total skin of 13.9 the mechanical skin

would need to be 5.0. Similarly, to achieve a total skin of 20.2 the mechanical skin

would need to be 8.8. These mechanical skins are still unusually high. Typically, if

these skins were encountered in a fully penetrating well they would suggest that some

remedial action would need to be taken to remove the near well damage and improve

the productivity of the well. The factors to be considered are the potential cost of
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intervening to remove the well damage as compared with the potential loss of revenue

from the well producing at a lower rate than would otherwise be the case.

If the calculations are repeated using core permeabilities and taking the ratio of

perforated to total permeability thickness as shown in Equation 211 then the

penetration ratio drops to 0.34 and the pseudo skin becomes 11.6. The mechanical

skin will then be amplified by a factor of 3.0. A mechanical skin of 2.9 at the

beginning of the test dropping to 0.77 by the end of the test would be sufficient to

match the observed total skin. This suggests that the residual damage at the end of the

test is negligible and that there is little reason to intervene to remove it.

The simulation study will be used to confirm the small values of mechanical skin

needed to match the test.

5.5 Simulation Modelling of the Well Test

In addition to the properties already discussed in Sections 5.2 to 5.4, the simulation

model requires saturation dependent properties such as capillary pressure and relative

permeability. The time scale (well test duration) on which the simulation will be

conducted is such that large changes in the grid block saturations are not expected.

Thus the role of the saturation dependent properties is mainly to define the initial state

of the system. Capillary pressure curves define the initial water saturation as a

function of height. The hydrostatic pressure differences between the phases are

calculated using the live fluid densities and the height above the fluid contact. The

saturation is then adjusted so that the capillary pressure is equal to the hydrostatic

pressure difference. Relative permeability values define the extent to which the

effective permeability differs from absolute permeability given the initial fluid

saturation.

Relative permeability and capillary curves are a function of the saturation history of

the rock not just the present state. Drainage curves are those that result from an

increase of the non-wetting phase, in this case oil, whereas imbibition curves result

from the opposite process. Typically imbibition curves are used in modelling

production from a water-wet reservoir on the basis that the reduction of pressure in the

reservoir often leads to the influx of water from a neighbouring aquifer. Thus the

water saturation can be expected to increase. For the current problem, however,

drainage curves should be used as the water saturations in the reservoir are unlikely to

change significantly as a result of water influx during the short flow test. The process

that occurred as the oil migrated into the reservoir would have led to a steady

reduction of water saturation; hence the choice of drainage curves.
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Capillary pressure curves have been derived from numerous experiments performed

on core plugs. The full procedure followed is beyond the scope of this thesis but is

described in the SOEKOR development planning document for this field48
. In

summary, a correlating function known as the Leveritt J function was used to define a

characteristic curve for the formation that averages the capillary pressure results. This

curve is then used to generate capillary pressure curves for several rock classes based

on the core plug permeability and porosity. Finally a comparison is made between

water saturations derived from the capillary pressure curves and those calculated from

the geophysical logging tools. Parameters that control the shape of the curve are

varied to obtain an optimum agreement between the two methods. For the purposes

of this simulation capillary pressure curves have been defined for three rock classes:

1. Permeability less than 50 mD

2. Permeability greater than 50 mD but less than 200 mD

3. Permeability greater than 200 mD

The capillary pressure curves are displayed in Figure 5.6

FIGURE 5.6: CAPILLARY PRESSURE CURVES USED FOR SIMULATION
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Laboratory measurements of relative permeability for this field were acquired under

conditions of increasing water saturation and are therefore not appropriate for use in

this study. The endpoint relative permeability to oil at irreducible water saturation

will, however, be the same for both drainage and imbibition curves. Two rock classes

were defined on the basis of the endpoints. When permeability is less than 100 mD
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the endpoint is 0.636 otherwise the endpoint value is 0.840. At 100% water saturation

the relative permeability must be unity by definition. As the bulk of the model will be

at conditions of either close to irreducible water saturation or close to being fully

water saturated, the model should not be particularly sensitive to the shape of the

relative permeability curves between these points. Simplified curves using straight­

line sections were defined for both rock classes (Figure 5.7).

FIGURE 5.7: RELATIVE PERMEABILITY CURVES USED FOR SIMULATION
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Porosity and permeability for use in the model were derived from core and logging

measurements. The reservoir was split into a series of zones that showed similar

characteristics. Zone boundaries were placed at positions were the properties changed

or at positions of potential barriers or baffles to flow such as significant claystone

layers. The zone definition and properties are shown in Table 5.4.

A radial grid with 22, 8, and 44 cells in the radial, transverse, and vertical direction

respectively, was defined taking into account the lessons learned from modelling the

abstract problem. In the radial direction the cell widths increase in a geometric

progression staring from a width of 0.1 feet. In the vertical direction the layers are

defined to honour the zone boundaries with additional layers within some zones to

give the required level of detail at critical positions (such as at the base of the

perforated interval for example, where the layer thickness reduces to 0.1 feet).
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Zone Zone Net-to-gross Porosity Horizontal Number of Description
Thickness (fraction) (fraction) Permeability Layers

(feet) (mD)

1.1 8.39 0.83 0.134 60 2 Interbedded sandstone and shale layers

1.2 8.39 0.93 0.179 ]60 2 Massive sandstone interval

1.3 8.39 0.63 0.155 160 2 Occasional claystone layers within sandstone

2.1 7.57 0.20 0.120 30 2 Major interbedded silt/claystone interval

3.1 ]0.11 0.89 0.162 90 3 Occasional claystone layers within sandstone

3.2 13.80 0.97 0.200 770 22 1 High energy sandstone (erosive contacts) with minor
claystone layers, rip-up clasts

3.3 14.81 0.99 0.194 500 52 As above

3.4 11.61 0.98 0.181 480 3 As above

3.5 11.70 0.95 0.194 290 3 Occasional claystone layers within sandstone

1. Zone subdivided in layers with layer thickness in feet as follows:
2.27, 1.73, 1.29,0.97,0.73,0.54,0.41,0.31,0.23,0.17,0.13,0.10, 0.10, 0.13, 0.17, 0.23, 0.31, 0.41, 0.54, 0.73, 0.97, 1.33

2. Zone subdivided in layers with layer thickness in feet as follows:

1.78,2.37,3.16,3.75,3.75
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Breaking the grid into 8 segments allowed the elevation of the top of the reservoir to

be modelled so that the tilt of the reservoir into the aquifer could be accommodated

and so that a crude approximation of the field boundaries could be defined.

A rate schedule was defined based on the full test sequence as shown in Table 5.2.

The solver options were adjusted to give a highly accurate pressure solution with a

small initial time step after any rate change (0.001 days for flow period and 0.0001

days for a build-up). The well model used by the simulator is the strongly coupled

well model described in Section 3.10 with a constant pressure boundary condition

along the well bore.

Simulated well pressures were compared with measured pressures on a linear pressure

versus time plot and on a Homer plot for the extended build-up. It was observed from

the initial run that allowing the formation to dip into the water reproduced the

decreasing derivative during the latter portion of the build-up. The overall

permeability in the model would, however, need to be significantly increased to match

the overall magnitude of the derivative. There is therefore evidence that permeability

increases away from the well bore in addition to the increasing mobility as one dips

into the water. The high vertical permeabilities used in the initial model gave a good

early time match to the derivative. Flowing pressures were mismatched implying a

need to adjust the mechanical skin but did confirm that only a small mechanical skin

would be needed to match the test and that this skin needed to change through the test.

Additional runs were conducted with adjusted properties until an acceptable match

was obtained. The pressure match from the final model is shown in Figures 5.8 and

5.9 and the simulator command file is reproduced in Appendix 3. In order to achieve

a match, the horizontal permeability was increased by a factor of 1.6 from a distance

of 6 feet away from the well. This is justified on the basis that the core permeabilities

represent the permeability at the well itself. As permeability is a highly variable

property it is possible that the larger scale average is higher than that measured at a

single location. Vertical permeabilities equal to half of the horizontal permeabilities

are used in the matching model. Reducing the vertical permeability beyond this point

degrades the quality of the early time match to the derivative. The model is

particularly sensitive to the magnitude of vertical permeability below the perforations.

The mechanical skin was reduced in stages through the run. During the initial flow

periods a mechanical skin of 2.2 was used, reducing to 1.0 for the extended and

maximum rate flows. This confirms that the degree of near well damage is not

significant and has already been largely eliminated by progressive cleaning of the

perforations as the well flows.
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Some residual mismatches are evident from Figures 5.8 and 5.9. The flowing

pressures only match at the end of the flow period. This is a consequence of the fact

that the skin is continuously decreasing through the flow period and simulator file has

discrete changes in skin. The match at the end of the flow period shows that the skin

at this point in time is correct.

FIGURE 5.8: PRESSURE MATCH ON LINEAR TIME PLOT
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Homer derivatives from measured pressures are higher than simulated derivatives for

the first two points. This could be a consequence of what is known as well bore

storage or afterflow where the finite compressibility of the fluid in the well bore

implies that once the flow has been shut off by closing a valve the well continues to

flow for while in order to compress the fluid volume trapped between the valve and

the formation. In this well the valve is located down hole, close to the perforations, to

minimise the volume that needs to be compressed and hence the degree to which

afterflow takes place. Any afterflow should be eliminated in the first few seconds of

the build-up. Nevertheless, the first few points may still be affected by this

phenomenon.

The late time simulated derivative fails to match the increase observed on the

measured data. This is an indication that mapped distance to this boundary is

probably too great. Attempts were made to match this by moving the boundary closer

but these were of limited success partly because of the difficulty in defining a linear

boundary using a radial grid.

The residual mismatch in the derivative was investigated using a commercial well test

analysis package (Interpret 2001) with an analytical partially penetrating model. The

model was set up to have an adjusted penetration ratio of 0.34 thus crudely taking into

account the difference in permeability between the perforated and unperforated

intervals. A vertical to horizontal permeability ratio of 0.5 was used. Results are

shown in Figure 5.10 using what is known as a log-log plot. In this format two

quantities, the pressure change since the end of the previous flow period and an

associated pressure derivative, are plotted against the logarithm of time since the start

of the build-up. The derivative is the derivative of pressure with respect to the

logarithm of superposition time. This is very similar to the Homer derivative used

earlier in this chapter, the only difference being that superposition of the full rate

history of the test is used in forming the time variable instead ofjust using the last two

changes in rate.

A good match to the very early time derivative was obtained by adjusting the degree

of storage ultimately giving a compressibility volume product of 0.0006 bbls/psi.

Using the live oil compressibility of 16x10-6 /psi implies a storage volume of37.5 bbl,

which seems too large given the position of the testing valve. This early-time

difference between the measured data and simulation model may therefore be related

to other effects such as the time it takes the valve to completely seal or even to

transient gauge errors. More importantly, having a storage volume of considerably
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less than 37.5 bbl implies that storage effects should have been completely eliminated

even at very early times in the build-up and that the analysis for vertical permeability

will not be affected this phenomenon.

The shape and timing of the late time increase in derivative could be matched by

moving the no-flow boundary associated with the fault to a distance of 1000 ft

(~300m), somewhat closer than mapped. Note the mismatch on the magnitude of the

derivative at late time, a manifestation of the fact that the analytical solution does not

take the topography and consequent lateral changes in mobility into account.

FIGURE 5.10: ANALYTICAL PARTIALLY PENETRATING MODEL WITH

STORAGE
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5.5 Chapter Summary

In this chapter the real life problem of matching pressures recorded on a test of a

partially penetrating well was discussed. A successful match was obtained by using a

simulation model that accounted for vertical variation in rock properties, vertical and

lateral changes in fluid saturation, lateral boundaries to flow, near well geometry, and

reservoir topography. The accurate modelling of many of these effects is beyond the

capability of purely analytical methods. In the case of this well test significant errors
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would have been introduced by ignoring these factors. For example the dipping of the

reservoir into the aquifer introduced an uncertainty into the calculation of permeability

and could have led to unrealistic expectations for very high permeabilities away from

the well location. However, using analytical techniques in conjunction with

numerical simulation modelling proved to be a powerful way of evaluating the

possible impact of proposed changes and then testing them.

Specifically the modelling work conducted here indicates that:

• Average permeability at the well location is 60% higher than suggested by the

core values

• Vertical permeability is relatively high (greater than 50% of the horizontal

value)

• The distance to the edge of the field is approximately 300 metres (considerably

closer than mapped)

• A low mechanical skin can successfully match the flowing pressures implying

that there is little need for remedial action to remove near well damage

• Use of the permeability thickness products to calculate the penetration ratio is

an appropriate technique that leads to more realistic estimates of mechanical

skin for partially penetrating wells.

Using a simulation grid definition with small grid blocks (dimensions of as little as

0.1 feet) close to the well bore and at the base of the perforated interval has resolved

much of the early time mismatch that originally motivated this work. The results of

matching the analytical model were helpful in defining the level of detail that would

be required in terms of both spatial and temporal discretisation.

Implications of the high vertical permeability are that the vertical sweep efficiency can

be expected to be high and therefore the expected recovery should be towards the

upper end of the forecasted range of values. Since this work was conducted, the field

in question has been brought on production and the volumes of recovered oil have

been larger than expected. The work matching the well test provided early evidence

suggesting that the recovery would be high and helped to justify the upside forecasts.

This in turn increased the expectation value for net-present-value (NPV) for the field

providing an additional incentive to take the decision to develop the field, a decision

that has proved to highly successful. Results from this work should be useful in terms

of understanding the high recoveries in this field and using this insight to optimise

future production.
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Chapter 6: Conclusions

This study has achieved its main aims of:

1. Assessing and minimizing the errors inherent m simulating the pressure

response of partial penetrating wells;

2. Gaining an understanding of the reservoir characteristics of the specific well

being studied and the consequent implications for future production.

The required level of accuracy in modelling pressure behaviour in partially penetrating

wells using finite-difference simulation can be achieved through minimizing the

discretisation error by:

1. Selectively refining grid block sizes in areas with high pressure gradients;

2. Using sufficiently small time steps after any major change in rate.

In the case of a partially penetrating well this implies using grid blocks with small

radial width (~O.l feet) close to the well bore and thin layers (~O.l feet) at the base of

the perforations. In order to reduce the overall size of the grid the dimensions of the

blocks should be allowed to progressively increase when moving away from the

problem areas. In many respects horizontal wells represent a similar geometry to

partially penetrating wells and one could expect that accurate simulation of pressure in

this case would require using a higher degree of refinement at tips of the well (toe and

heel).

It is not necessary to use specialized software to achieve the required results for

partially penetrating wells; a conventional finite-difference reservoir simulation

package using an orthogonal radial grid is quite adequate. Such software is available

to the majority of practising reservoir engineers implying that the approach

demonstrated here is widely applicable. It would be useful to investigate whether

more geometrically flexible, though less widely available, techniques such as

perpendicular bisection (PEBI) grids may offer an advantage in terms of being able to

achieve the required accuracy with fewer grid blocks. The shape of the grid blocks

required could, however, become very complex for partially penetrating wells with

permeability anisotropy.

Another area that is worth researching further is the use of multi-point flux

approximations where diagonally adjacent grid blocks are used in addition to

immediately adjacent blocks in calculating the flux across the face of a grid block.

Attempts to derive such a scheme while preserving the use of a conventional

simulator proved to be unsuccessful for a radial grid. The approach that has been used

successfully to derive such a scheme for Cartesian grids cannot easily be extended to
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radial grids gIven the difference In the structure of the underlying differential

equations.

In comparing analytical solutions to the results of finite-difference simulation some

discrepancies were noted. These could be traced to the use of a constant flux

boundary condition at the well bore in some analytical solutions as opposed to the

more appropriate constant pressure boundary condition used by the simulation.

Analytical solutions that used a constant pressure boundary condition proved to be in

good agreement with the simulation results. The importance of this finding is two­

fold:

1. It demonstrates convergence between the analytical and simulation models as

the degree of spatial and temporal discretization is increased, which shows that

this approach is sufficient to model the problem

2. It highlights the fact that engineers need to be careful when trying to match

early-time data using the analytical methods available in many of the

commercial well test analysis packages

In some cases the phenomenon of well bore storage would mask the early time data

but in cases using downhole shut-in valves these data would be preserved. Although

the differences are small, conclusions regarding the degree of permeability anisotropy

based on matching the early time data with inappropriate analytical methods could be

invalid. This would have consequences for the estimated recovery factor from an oil

field and might influence the decision to develop a field or optimum choice of

development scenario for a field. Many of the analytical techniques used for

analysing horizontal well tests are also based on constant flux assumptions and can be

expected to suffer from the same problems at early time.

Application of the simulation approach to a real well test of a partially penetrating

well showed the power of the technique in being able to model lateral and vertical

property changes (absolute permeability, saturation and hence effective fluid mobility,

reservoir topography, no-flow boundaries). These variations in properties could not

be modelled in combination using purely analytical methods and proved to be

important in understanding the pressure response at the well in question. Ignoring

factors that cannot be modelled analytically could easily result in erroneous

interpretations. For example:

• Tilting of the reservoir into the aquifer resulted in a steadily decreasing

derivative that could easily be mistaken for an increase in permeability at a

distance from the well
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• The contrast in permeability over the perforated and unperforated intervals

magnified the apparent skin implying that only a small mechanical skin was

necessary to match the test

While both these influences on the pressure behaviour were suspected prior to running

the simulations, it was only through the simulation that these could be confirmed.

Thus, the simulation provided a basis for testing hypotheses regarding the nature of

the pressure behaviour.

In the case of the well being studied, it was possible to demonstrate that the vertical

permeability must be high in order to match the early time pressure behaviour. This

implies that the vertical sweep efficiency (ability to uniformly replace oil by water) of

this reservoir is also likely to be high. Oil recovery can therefore be expected to be

towards the upper side of the range of previously forecasted values with delayed water

breakthrough at the wells. Both of these factors (i.e. higher total oil recovery and

faster oil recovery) considerably enhance the value of the field in net-present-value

(NPV) terms. Recent production data from the field have confirmed that recoveries

are beyond expectation.

The use of numerical simulation to model well test behaviour is a powerful technique

that should be applied more often. It is of particular relevance to the high cost

offshore environment where development decisions can involve hundreds of millions,

or in extreme cases billions, of dollars. These decisions often need to be taken on the

basis of very limited data. Although numerical simulation of well test pressure

behaviour is extremely time consuming in comparison to the use of purely analytical

techniques it has the potential to extract additional information regarding reservoir

properties from the limited data available. This in turn should lead to a better

understanding of the risks involved in developing the field concerned and a more

accurate expectation value for the field concerned.
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Nomenclature

Roman Letters:

A The Jacobian matrix for solution on the finite difference equations

(Sections 3.6 to 3.10 only).

Am Surface area of the m-th face of the grid-block being considered.

b Represents the residual in the Newton iterations used in solving the

finite difference equations (Sections 3.6 to 3.10 only).

bp Penetration ratio in formulae for partial penetration skin.

B An easily inverted approximation to the Jacobian matrix used in solved

the finite difference equations (Sections 3.6 to 3.10 only).

Bo ' Bw ' Bg Formation volume factors for oil, water, and gas respectively.

C Total isothermal compressibility.

Co, cw ' cg Isothermal compressibilities for oil, water, and gas respectively.

Cr Compressibility associated with the reduction of pore space as pressure

Increases.

d

D

F

g

k

Diagonal In the tri-diagonal Jacobian matrix (Sections 3.6 to 3.10

only).

Depth.

Vector representing the flow terms in the black-oil fluid flow equations

(Section 3.2, Equation 51).

Acceleration due to gravity.

Permeability.

Component of permeability in the horizontal and vertical directions

respectively.

Horizontal permeability over the perforated interval.
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km' k
rw

, k,t: Relative permeability to oil, water, and gas respectively.

Ko, K
1

Modified Bessel functions of the second kind of order 0 and 1

respectively.

h

1

m

M

p

Pwl

P

p

q

Q

Formation thickness.

Length of well interval that is open to flow.

Lengths defining the completion geometry (Figure lA).

Hydrostatic head correction for calculating well flow (Section 3.2,

Equation 84).

The identity matrix.

Lower side bands in the Jacobian matrix (Sections 3.6 to 3.10 only).

Slope from a Homer plot.

Mass accumulation vector in black-oil fluid flow formula (Section 3.2,

Equation 50).

Pressure.

Initial pressure, i.e. pressure before any flow has taken place to disturb

initial equilibrium.

Well bottom hole pressure, finite difference model (Section 304).

Capillary pressure.

Well flowing pressure.

Laplace transform of pressure.

Matrix used in the nested factorisation process in solving a set of linear

equations (Section 3.9).

Fluid flow rate.

Mass sink vector associated with a well 111 the finite difference

equations (Section 3A).



r

r
111\1
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Radius or radial distance from centre of well to a given position.

Residual vectors in solution of a set of linear equations (Sections 3.8 to

3.10 only).

Saturation normalised residual vectors in solution of a set of linear

equations (Sections 3.8 to 3.10 only).

Radius of investigation.

Wellbore radius.

6J.ro , 6J.rl , 6J.rn Residual search directions m solution of a set of linear equations

(Sections 3.8 to 3.10 only).

R

s

S

Sill

T

T

u

Radial distance to face of adjacent grid cell (Section 4.3, Figure 4.4).

Radial distance between adjacent grid points (Section 4.5).

Residual vector for the solution of the non-linear finite difference

equations (Section 3.2).

Radii used in calculation oftransmissibilities (Section 3.3).

The transformed equivalent to time in the Laplace transform for

pressure.

The skin factor.

The fluid saturations for oil, water, and gas respectively.

Flow convergence or partial penetration skin.

Mechanical skin (skin due to near well damage).

Time.

Temperature when discussing PVT properties or transmissibility when

discussing flow from grid-block to grid-block.

Matrix used in nested factorisation procedure when solving a set of

linear equations (Section 3.9 only).

Flow velocity as a scalar property.



127

u

v

w

x,y

x

Upper side bands in the Jacobian matrix (Sections 3.6 to 3.10 only).

Flow velocity as a vector property.

Volume.

Represents the well state, i.e. flowing pressure and produced fluid

fractions for water and gas (Section 3.4).

Horizontal position in a Cartesian reference system.

The change in the state vector at each non-linear iteration when solving

the finite difference equations, note that this is equivalent to the

solution of the linear equations (Sections 3.6 to 3.10 only).

Estimates of required solution for set of linear equations (Sections 3.8

to 3.10 only).

&0' &1' &n Solution search directions for solution of a set of linear equations

(Sections 3.8 to 3.10 only).

x

z

z·

State vector for finite difference model, i.e. contains the value of oil

pressure, water saturation, and gas saturation for every grid block

(Section 3.2).

Vertical position (Cartesian or cylindrical reference system).

Vertical distance between adjacent grid points (Section 4.5).

Intercept on a Homer plot, i.e. extrapolation of best-fit line to infinite

time.

Greek Letters:

a o, ai' an Weighting factors used in solution of finite difference equations to

minimise residual when moving along a particular search direction.

f3 Weighting factor, used in nine point method to determine optimum

contribution of diagonal grid points (Section 4.5 only).



c,

p

Y

()

Subscripts:

D

i, j, k
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Weighting factors, used in solution of finite difference equations to

ensure each search direction is orthogonal to the last direction (Section

3.8 only).

Implies a change or difference.

Time discretisation error.

Density.

Fluid viscosity.

Fluid viscosity across the perforated interval.

Fluid potential.

Fluid mobility (Section 3.2).

Porosity.

Hydrostatic pressure gradient for a fluid, i.e. product of fluid density

and acceleration due to gravity.

Elder's constant, i.e. Ye = 0.5772,..

Diagonal matrix used in solution of set of linear equations with tri­

diagonal structure (Sections 3.7 to 3.10 only).

Homer or superposition/transformed time.

Pressure potential.

The exponent ofEuler's constant, i.e. ~ =exp(0.5772,..).

Tangential component in a cylindrical co-ordinate system.

Implies a dimensionless property.

Typically used as indices, when used in combination in a grid system

they represent the grid block index according to the three co-ordinate

axes.



o,w,g

x,y,z

v, h

p

Oil, water, or gas phase respectively.

Directions/components in a Cartesian reference system.

Vertical and horizontal direction/component respectively.

Either phase (oil, water, or gas) or partial depending on context.
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Glossary

Anisotropic - Implies properties that differ in value depending on the direction they

are measured in.

Absolute Permeability - The permeability associated with a porous medium when

the pore space is completely filled by a single fluid phase. (See also permeability,

effective permeability, and relative permeability)

Build-up - A period, following a flow period, when the well is closed to prevent

further flow to surface. During this time the pressure in the well will steadily increase

(build-up).

Capillary Pressure - The pressure difference between immiscible fluid phases that

share the pore space. This pressure difference is a consequence of the interfacial

tension between the phases.

Claystone - A rock that contains a large proportion of clay minerals and other very

fine grained material.

Compressibility - A measure of the degree to which the volume of a substance can

be changed by the application of pressure, i.e. the ratio of volume change to pressure

change per unit volume.

Coning - The formation of a cone of fluid from an overlying or underlying zone to

the well in response to the pressure drop at the well with the typical consequence that

unwanted fluid (water or gas) is produced.

Darcy Units - A hybrid system of units that avoids the use of unnecessary conversion

factors in flow equations and has units of more convenient size than the S.l. (Table

1.1: Comparison of Different Unit Systems)

Drainage - A dynamic process where the saturation of the wetting phase (i.e. the

phase that preferentially wets the surfaces of the grains) decreases with time.

Drill stem test (DST) - A well test that is conducted using drill pipe to convey the

fluid from the reservoir to surface or vice versa. (See also Well Test)

Effective Permeability - The permeability associated with a particular fluid phase

when the pore space is filled by more than one fluid phase. (See also permeability,

and relative permeability)
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Field Units - A system of imperial units that is commonplace in the oil industry

(Table 1.1)

Formation Volume Factor - The ratio of reservoir volume to surface volume for a

given fluid.

Heterogeneous - Implies properties that change from one position to another.

History Matching - The process of adjusting the properties in the simulation model

so that it is able to closely reproduce the observed production history.

Homogenous - Implies properties that are the same everywhere throughout the

system (note that a body may have homogenous but anisotropic properties).

Horner Plot - A specialized plot for analysing pressure behaviour during a build-up.

The x-axis is based on a transformed time function that is designed to give a straight

line on the plot when transient flow (i.e. infinitely acting radial flow) is taking place.

The slope of the line is inversely proportional to the permeability thickness of the

interval contributing to flow (Sections 1.3 and 5.4).

Imbibition - A dynamic process where the saturation of the wetting phase (i.e. the

phase that preferentially wets the surfaces of the grains) increases with time.

Interbedded - Alternating layers of different rock types.

Isotropic - Implies properties that are identical in all directions.

Lithology - Rock type, typically referring to the general characteristics of the rock

such as bulk composition and texture, for example.

Massive - As applied to describing rocks, it implies a single continuous body without

significant internal structure.

Net Present Value (NPV) - A measure of the total value of a future cash flow that

takes the time value of money (i.e. money now is better than money tomorrow) into

account. This is achieved by discounting cash flows by progressively larger amounts

the further in the future they occur. NPV can therefore be described as a cumulative

discounted cash flow.

Partially penetrating well - A well that does not completely penetrate the reservoir

interval (Figure 1.2a).
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Partially completed well - A well where only part of the reservoir interval is open to

flow (Figure 1.2b).

PEBI Grid - A perpendicular bisection grid, also known as a Voronoi grid. This is a

flexible gridding technique where the faces of the grid blocks perpendicularly bisect

the lines joining adjacent grid blocks (Section 3.1).

Permeability - The fluid conductivity of a porous medium, i.e. a measure of the ease

with which fluid can move through the medium. Permeability is a directional

property and is therefore normally described by a diagonal property tensor. It is

defined through Darcy's Law (Section 1.2, Equations 1 to 4).

Pore space - Space between the solid particles (grains) that make up the rock.

Porosity - The fraction of the bulk volume of rock that is not solid (pore space) and is

therefore available for occupation by gas or liquids.

PVT - Refers to measurements taken under changing conditions of pressure, volume,

and temperature (Section 2.6).

Relative Permeability - A factor that is applied to absolute permeability in order to

account for the reduction of the effective permeability when part of the pore space is

filled by another fluid (Section 2.2, Equation 21).

Sandstone - A rock that comprises mainly relatively coarse grains Cl /16 to 2 mm in

size), typically made up predominantly of quartz.

Saturation - The volume fraction of the pore space that is filled by a particular fluid.

Siltstone - A fine-grained rock with a grain size less than sandstone and coarser than

shale/claystone.

Seismic - Refers to the elastic waves that are used in order to assess sub-surface

geometry and properties. The waves are generated by a source and the resulting

reflections recorded. Changes in the elastic properties will cause the waves to reflect

and/or refract and thus interpretation of the recordings allow reconstruction of what

lies below the surface.

Skin - A factor that is introduced to account for an additional (or reduced) pressure

drop over and above that expected from homogenous transient flow (Section 1.3). It

is a manifestation of the difference between near-well and larger scale properties. In
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the case where there is a zone of damaged rock (reduced permeability) immediately

around the well bore, one would expect a high skin.

Solution Gas Oil Ratio - The volume of dissolved gas associated with a unit volume

of oil, both being measured at surface conditions. This gas would originally be

dissolved in the oil at reservoir conditions and is released by bringing the oil to

surface conditions.

Specific gravity - The density of a fluid relative to water, i.e. density divided by the

density of pure water, normally measured at a standard temperature and pressure.

Turbidite - The sediment deposited by, or associated with, a turbidity current

(Section 5.2). A turbidity current is essentially a slurry of water and sediment moving

together underwater. These currents form when sediment that is deposited on the

edge of the continental slope breaks free and rushes down the slope.

Viscosity - A fluid property that is a measure of the resistance of fluids to flow.

Well test - Typically describes the process of producing fluid from or injecting fluid

into a well under controlled conditions in order to assess the properties of the

reservOir.
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Appendix 1: Eclipse Command File for Hypothetical Problem

This is the command file listing for the Eclipse reservoir simulation package that was
used to model the hypothetical problem, that of a well test conducted on a partially
penetrating well in an homogeneous but anisotropic formation.

WELL, Kv/Kh = 0.1, half cell at base and top
NDIVIZ QRDIAL NUMRES QNNCON MXNAQN MXNAQC QDPORO

RUNSPEC
RAD8: PART. PEN.

= NDIVR NDIVTHETA
QDPERM

33 1 34 T 1 f o o F

YEAR
1993

QFMTOU
F

/

/
NCRTAB

o /

/

/

/ LIVE OIL ABOVE BUBBLE POINT

NMMVFT
o

MXCGOC
o

QRCREV
T

QHYSTR
F

QREVTH
T

MXMALQ
1

MXCWOC
o

QROCKC
F

QVEOPT
F

QTHPRS
F

/

/

/

/

/
NWGMAX MAXLGR MAXCLS NCOARS

1 0 00/

MXMGFR
1

MXCFLO
o

QFMTIN QUNOUT QUNINP
F f F /

NTROCC
1

QREVKR
T

QUIESC
F

DISGAS VAPOIL
f F

GAS
f

OIL WATER
T T

UNIT CONVENTION
'FIELD'

NRPVT NPPVT NTPVT
131

NSSFUN NTSFUN QDIRKR
3 1 f

NDRXVD NTEQUL NDPRVD
1 1 100

NTFIP QGRAID QPAIR
1 F F

NWMAXZ NCWMAX NGMAXZ
1 160 1

QEXGOP NWFRIC NUPCOL
F 0 3

MXMFLO MXMTHP MXMWFR
111

MXSFLO MXSTHP NMSVFT
110

NAQFET NCAMAX
o 0

DAY MONTH
11 'APR'

QSOLVE NSTACK
T 24

F /

END OF RUNSPEC SECTION=========================

GRID

IN THIS SECTION , THE GEOMETRY OF THE SIMULATION GRID AND
THE

ROCK PERMEABILITIES, POROSITIES AND NET-TO-GROSS RATIOS ARE
DEFINED.

===================================================================

ACTNUM
1122*1 /

INRAD
0.3615 /

DRV
0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.5 0.6 0.7 0.9 1.1 1.4 1.7 2.3 2.9

4.0
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5.5 8.2 13.0 20 32 51 80 126 200 315 499 788 1246 1968 3109

4913 /

DTHETAV
360 /

BOX
1 33 1 1 1 1 /

TOPS
33*7000 /

ENDBOX

EQUALS

'PERMR' 500 1 33 1 1 1 34 /
'NTG' 1.0 /
'PORO' .20 /
'DZ' 12.26 1 33 1 1 1 1 /
'DZ' 4.25 1 33 1 1 2 2 /
'DZ' 2.97 1 33 1 1 3 3 /
'DZ' 2.08 1 33 1 1 4 4 /
'DZ' 1. 46 1 33 1 1 5 5 /
'DZ' 1. 02 1 33 1 1 6 6 /
'DZ' 0.71 1 33 1 1 7 7 /
'DZ' 0.50 1 33 1 1 8 8 /
'DZ' 0.35 1 33 1 1 9 9 /
'DZ' 0.22 1 33 1 1 10 10 /
'DZ' 0.11 1 33 1 1 11 11 /
'DZ' 0.10 1 33 1 1 12 12 /
'DZ' 0.10 1 33 1 1 13 13 /
'DZ' 0.1 1 33 1 1 14 14 /
'DZ' 0.1 1 33 1 1 15 15 /
'DZ' 0.1 1 33 1 1 16 16 /
'DZ' 0.1 1 33 1 1 17 17 /
'DZ' 0.1 1 33 1 1 18 18 /
'DZ' 0.1 1 33 1 1 19 19 /
'DZ' 0.1 1 33 1 1 20 20 /
'DZ' 0.11 1 33 1 1 21 21 /
'DZ' 0.22 1 33 1 1 22 22 /
'DZ' 0.30 1 33 1 1 23 23 /
'DZ' 0.43 1 33 1 1 24 24 /
'DZ' 0.52 1 33 1 1 25 25 /
'DZ' 0.87 1 33 1 1 26 26 /
'DZ' 1.30 1 33 1 1 27 27 /
'DZ' 1. 83 1 33 1 1 28 28 /
'DZ' 3.09 1 33 1 1 29 29 /
'DZ' 4.43 1 33 1 1 30 30 /
'DZ' 8.33 1 33 1 1 31 31 /
'DZ' 12.62 1 33 1 1 32 32 /
'DZ' 12.62 1 33 1 1 33 33 /
'DZ' 25.26 1 33 1 1 34 34 /

/

COpy
'PERMR' 'PERMTHT' /
'PERMR' 'PERMZ' /

/

MULTIPLY
- - Define Kv/Kh
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'PERMZ' 0.1 /
/

TURN THE BLOCKS AT THE
BOX

1 33 1 1 1 1 /
MULTR

33*0.5 /
MULTPV

33*0.5 /
BOX

1 33 1 1 34 34 /
MULTR

33*0.5 /
MULTPV

33*0.5 /
ENDBOX

TOP AND BASE OF RESERVOIR INTO HALF BLOCKS

RPTGRID
1 0 1 1 1 1 1 0 0 0 1 1 1 1 / FOR DEBUGGING

35*0 / AFTER DEBUGGING

GRIDFILE
2 /

NEWTRAN

-- END OF GRID
SECTION=================================================

PROPS

- - RELATIVE PERMS AND PC'S
SWOF

SW KRW kro PC
0.10 0.0 1.000 1.0
0.5 0.0 1.000 0.5
1.0 1.0 0.000 0.0 /

REF. PRES. REF. FVF COMPRESSIBILITY REF VISCOSITY
VISCOSIBILITY
PVTW

3500 1.036 3.0E-6 0.272
/

ROCK COMPRESSIBILITY
REF. PRES COMPRESSIBILITY

ROCK

5.03E-6

3500 2.0E-6 /

DENSITY
SURFACE DENSITIES OF RESERVOIR FLUIDS

WATER ANALYSIS OF E-AD1 SAMPLE
WATER GAS
63.05 0.0888 /

FROM E-BT1 DST#l;
FLASHING)

&W = 1.01 FROM
OIL

50.6

&0 = 0.810; &G = 0.9430 (PVT REPORT FULL
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PVDO
OIL PVT FOR E-BT FROM DST#l AT E-BT1

Peq BO UO
(psia) (rb/stb) (cP)
3000 1.515 0.5
3500 1.500 0.5
4000 1.485 0.5 /

/

RSCONSTT
.750 2000 /

RPTPROPS
19*0 /

-- END OF PROPS
SECTION.================================================

REGIONS

RPTREGS
4*0 /

SOLUTION

THE SOLUTION SECTION DEFINES THE INITIAL STATE OF THE
SOLUTION
-------- VARIABLES (PHASE PRESSURES/ SATURATIONS AND GAS-OIL RATIOS)

DATA FOR INITIALISING FLUIDS TO POTENTIAL EQUILIBRIUM

DATUM DATUM MFWL MFWL GOC GOC RSVD RVVD
DEPTH PRESS DEPTH PCOW DEPTH PCOG TABLE TABLE

EQUIL
7000 3500 8500 0.0 6000 0 0 0

EBT1

-- SWITCH ON OUTPUT OF INITIAL SOLUTION
RPTSOL

o 0 1 0 0 042 1 /

SUMMARY

SOLN
METH

o /

================================================================

FOPR
FOPT
FWPR
FWPT
FWCT
WBHP

'W1' /

- oil production rate
- oil production total
- water production rate
- water production total
- water cut
- well bottom hole pressures

-- REQUEST A SEPARATE RUN SUMMARY FILE
RUNSUM
SEPARATE



RPTSMRY
1 /

SCHEDULE

RPTSCHED
6*0 4 2 2 0 2 2 0 0 2 /

WELSPECS
, W1' , RAD ' 1 1 1 * 'OIL' /

/

A1.5

COMPDAT
--WELL

'W1'
/

CONNECT
1 1 1 13

FLAG
'OPEN'

SAT TRANS DIA KH
1* 1* .7231*

S

0.0 /

-- FLOW PERIOD 1

WCONPROD
'W1' 'OPEN' 'ORAT' 5000 1* 1* 1* 1* 1000 /
/
TUNING
.000002 10 .000005 .015 1.09 /
/
/
TSTEP
0.166666667
/

END
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Appendix 2: Computer Program Listings

Listing of the program Hantush.cpp

Used to calculate pressures from the Hantush analytical solution.

II Hantush: Program to calculate pressures for a partially penetrating well
II using the Hantush analytical solution.

#include <iostream.h>
#include <math.h>
#include <stdio.h>

double pd( double td, double b, double hd, double hId, double h2d, double zd);
double improper ( double x, double beta);
double adapt (double lower, double upper, double beta);
double f( double x, double beta);
int enter_val(double *tmax, int *num_points ,double *td_mult, double *pd_mult,

double *b, double *hd, double *h1d, double *h2d, double *zd,
double *p_init);

void display_values ( double tmax, int num_points, double td_mult,
double pd_mult, double b, double hd, double hId,
double h2d, double zd);

const double gamma = 0.577215664901532;
const double pi = 3.14159265358979;
const double limit = 1e-5;

int main ()
{

double pressure [100] , time [100] , t, t_space, tmax, td_mult, p_init,
pd_mult, b, hd, h1d, h2d, zd;

int n,num_points;
char trash;
FILE *outfile;

}
fclose( outfile);
}

while (enter_val( &tmax, &num-points, &td_mult, &pd_mult,
&b, &hd, &hld, &h2d, &zd, &p init))

cout « "\n\nERROR IN ONE OF THE ENTERED VALUES. TRY AGAIN\n";
display_values ( tmax, num-points, td_mult, pd_mult, b, hd, hId, h2d, zd);
t_space = exp( (log(tmax)-log(O.OOl))/num points);
if ( (outfile=fopen("PRESS.LIS","w")) == NULL)

cout « "\nUnable to open output file";
else

{
for (zd=0.05; zd<=0.25; zd+=0.05)

{
for (t=O.OOl, n=O; n«num-points+1); t*=t_space, n++)

(
time[n] = t;
pressure[n] = p_init - pd_mult * pd( td_mult*t, b, hd, h1d, h2d, zd);
}

fprintf ( outfile, "\n zd = %f", zd) ;
fprintf( outfile, "\n Time Pressure");
for (n=O; n«num-points+l); n++)

fprintf ( outfile, "\n %f %f", time [nl, pressure [n]);

return 0;

void display_values ( double tmax, int num points, double td_mult,
double pd_mult, double b, double hd, double h1d,
double h2d, double zd)

char trash;
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cout « "\n\nTHESE ARE THE VALUES TO BE USED IN CALCULATING PD\n";
cout c< II\n tmax is I' « tmax;
cout C< 11 \n numpoints is " « num_points i

cout « "\n td mult is " « td_mult;
cout « "\n pd_mult is " « pd_mult;
cout « I'\n b is I' « bi
cout « "\n hd is " « hd;
cout « "\n hld is " « hld;
cout « "\n h2d is " « h2d;
cout cc "\n zd is 1I « zd;
cout « "\nEnter a character value to continue ";
cin » trash;

int enter val(double *tmax, int *num-points ,double *td_mult, double *pd_mult,
double *b, double *hd, double *hld, double *h2d, double *zd,
double *p_init)

double h,k,kv,poro,cr,sw,bo,co,uo,cw,rw,hl,h2,q,ct;
int error;

cout « "\nENTER THE FORMATION PROPERTIES:";
cout « "\nFormation thickness, h (feet) ";
cin » hi
cout « "Horizontal permeabilty, k (mD) , ";
cin » k;
cout « "Vertical permeability, kv, ";
cin » kv;
cout « "Porosity as a fraction, ".
cin » poro;
cout « "Rock (pore volume) compressibility, Cr (per psi), ";
cin » cri
cout « "Water saturation as a fraction, ";
cin » SW;

cout « "\nENTER THE FLUID PROPERTIES:";
cout « "\nOil formation volume factor";
cin » bo;
cout « "Oil compressibility, Co (per psi), ";
cin » co;
cout « "Oil viscosity, uo (cP),
cin » liO;

cout « "Water compressibility, Cw (per psi), ";
cin » cWi

cout « "Initial pressure, Pi (psia)";
cin » *p initi
cout « "\nENTER THE WELL PROPERTIES";
cout « "\nRadius of the wellbore, rw (feet), ";
cin » rWj
cout « "Distance from the top of the formation to the top of the perforations,";
cout « "\nhl (feet), ";
cin » hl;
cout « "Distance from the top of the formation to the bottom of the ";
cout « "\nperforations, h2 (feet), ";
cin » h2;
cout « "\nENTER THE PRODUCTION DETAILS";
cout « "\nRate of flow, q (stb/d), ";
cin » q;
cout « "Duration of flow in hours, ";
cin » *tmax;
cout « "Number of pressure points to simulate, ";
cin » *nuffi_points;
error = 0;
if ((sw<O.O)II(sw>l.O)) error=l;
ct = co*ll.O-sw) + cw*sw + cri
*td_mult = 0.0002637*k/(poro*uo*ct*rw*rw);
*pd_mult = 141.2*q*uo*bo/(k*h);
*b = (h2-hl)/h;
if 1(*b<O.O)III*b>l.O)) error=l;
if Ilhl<O.O) 11 (h1>h)) error=l;
if ((h2<0.0)lllh2>h)) error=l;
*hld = hl/h;
*h2d = h2/h;
*hd h*sqrt(k/kv)/rw;
*zd = (hl+h2)/2/h;
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return(error) ;

double f( double u, double beta)
// function to be integrated numerically
{ return ( exp( -l.O*u - beta*beta/(4.0*U)) / u ); }

double pd( double td, double b, double hd, double hld, double h2d, double zd)
// Calculate the dimensionless pressure for a given dimensionless time
// for a partially penetrating well using the Hantush solution.

(
double bn,check,delta,n,rn,total;

n = 1.0;
total = pi*b*improper(1.0/(4.0*td), 0.0)/2.0;
rn = 1.0;
do

{
bn = n*pi;
rn = 1.0/n * ( sin (bn*h2d) - sin (bn*hld) ) * cos (bn*zd) ;
check = improper ( 1.0/(4.0*td), bn/hd);
total += rn * check;
n += 1.0;
cout « "\nTOTAL=,r « total c< 11 N=rr « n « I' TD=11 « td;
cout « II\nZD=" « zd;
}

while (O.OOl<fabs(l.O/n*check));
return(total/(pi*b)) ;

double adapt(double lower, double upper, double beta)
// adapts the number of intervals used by simpsons rule until the required
// accuracy is reached
{

double f_start, f end, twos, fours, h, integ, last int, x·
int intervals, m;

h=(upper-lower)/2.0;
f_start=f(lower,beta) ;
fours=4.0*f(lower+h,beta);
twos=O.O;
f_end=f(upper,beta) ;
integ = (f_start+twos+fours+f_end)*h/3.0;
intervals=2;
do {

intervals*=2;
last_int=integ;
twos = twos + fours/2.0;
for (

m=l, h=(upper-lower)/double(intervals), fours=O.O, x=lower+h;
m«intervals/2+1) ;
fours+=4.0*f(x,beta) , x+=h+h, m++ );

integ = (f start+twos+fours+f end)*h/3.0;
) - -

while (fabs(last_int-integ»limit);
cout « "\nlntervals " « intervals « " lower" « lower « " upper" « upper;
return (integ) ;

double improper ( double x, double beta)
// Calculates the improper integeral of the function f from x to infinity
// by calculating the integeral to larger and larger limits
{

double h,integ,last int,lower,upper;
int count; -

count=l;
lower=x;
upper=50.0*x;



integ;adapt(lower, upper, beta);
while ((fabs(integ/limit)<lOO.O) && (upper<lOOO.O))

( upper;lO.O*upper; integ ; adapt (lower, upper, beta);
do (

lower;upper; upper;lO.O*lower;
last_int;integ;
integ+;adapt(lower,upper,beta) ;
count++i
}

while ((fabs(integ-last_int»limit) && (count<lO));
if (count ;; 10)

cout « "\nWARNING!! LIMIT EXCEEDED IN IMPROPER INTEGRATION"
«"\n RESIDUAL ERROR IS > " « fabs(integ-last int);

cout « "\nResult of integration is " « integ;
cout « "\nUpper limit is " « upper;
return (integ) ;

A2.4
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Listing of the program Stehfest.cpp

Used to calculate pressures from the Yiidiz and Bassiouni analytical solution using
the Stehfest algorithm for inverse Laplace transformation

II Stehfest: Program to calculate pressures for a partially penetrating well
II using the Yiidiz and Bassiouni analytical solution in Laplace space
II in conjunction with the Stehfest algorithmn for Laplace transform
II inversion. (J.P.Strauss, April 1997)

#include <iostream.h>
#include <stdio.h>
#include <math.h>
#include <alloc.h>
#include <process.h>

double pd( double td, double rD);
double pd inv( double s, double rD);
int enter=val(double *tmax, int *num-points ,double *td_mult, double *pd_mult,

double *hDp, double *hD, double *hDb, double *pi);
void display_values ( double tmax, int num_points, double td_mult,

double pd_mult, double hDp, double hD, double hDb);
void steh_weights(double *v, int n);

double KO (double x);
double Ei(double x);
double KO_div_Kl(double x);

const double gamma = 0.577215664901532;
const double pi = 3.14159265358979;
const double limit = le-5;

1* Stehfest weighting factors for n=12 *1
double v[12]={ -0.01666666666666, 16.01666666666,

27554.33333318, -263280.8333323,
-3891705.533308, 7053286.333279,
5552830.499949, -2155507.19998,

-1247.000000002,
1324138.699994,

-8005336.499933,
359251.1999968 };

double v2 [50] ;
FILE *s; 1* Output file for calculated pressures *1

int main ()
{

double pressure, pressl, pi, rD, t, t space, tmax, td_mult, pd_mult,
hDp, hD, hDb;

int i,n,num_points, n_weights;
char trash;

1* Open output file *1
if ((s=fopen("stehfest.txt", "wt"))==NULL)

cout « "\nUnable to open output file. Program terminating.\n";
else

(
fprintf(s,"\nIMPLEMENTATION OF THE GENERAL LINE-SOURCE, INFINITE-ACTING

SOLUTION") ;
fprintf(s,"\nUses the Stehfest algorithm with 12 weighting factors to numerically

") ;

fprintf(s,"\ninvert the solution in Laplace space and compares this to the
solution") ;

fprintf (s, "\nin real space (i. e. the exponential integral. \n") ;
while (enter_val( &tmax, &num_points, &td mult, &pd mult,

&hDp, &hD, &hDb, &pi)) - -
cout « "\n\nERROR IN ONE OF THE ENTERED VALUES. TRY AGAIN\n";

display_values ( tmax, num-points, td_mult, pd_mult, hDp, hD, hDb);

1* Define weighting factors *1
do

{
cout « "\nEnter the number of weighting factors to use \n";
cin » n_weights;
if (n weights>50) cout « "\nRestricted to less than 50. Tryagain!\n";
} -

whlle (n welghts>50),
steh_weights(v2. n welghts); II Calculate weighting factors
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/* Compare weighting factors */
if (n weights==12)

(
fprintf(s, "\n\nComparison of weighting factors\n");
fprintf(s,"\nOriginal Calculated Fractional error\n");
for (i=O; i<n weights; i++)

fprintf(s," ..-IS.Sf US.Sf US.Sf\n", v[i), v2[i], (v[i)-v2[i])/v2[i) );

/* Calculate time spacing for pressures */
t space = exp( (log(tmax)-log(O.OOI))/num_points);
rD=I.O;
fprintf(s, "\n\nCALCULATED SOLUTION\n");
fprintf(s,"\n LAPLACE INVERSION

INTEGRAL") ;
fprintf(s,"\n tD time pD deltaP

deltaP") ;
fprintf(s,"\n (hours) (psi)

(psi)") ;

EXPONENTIAL

pD

}
fclose(s) ;
}

return 0;

fprintf(s, "\n=======================================================================")

cout « "\ntD Pressure Pressl \n";
for (t=O.OOI, n=O; n«num-r0ints+l); t*=t_space, n++)

(
/* Calculate pressure drop for each time value */
cout« td mult*t «" ".
pressure = pd_mult * pd( td_mult*t, rD);
cout « pressure «11 1';

pressl = pd_mult * 0.S*Ei(rD*rD/(4.0*td_mult*t));
cout « pressl « "\n " ;
fprintf(s,"\n "10.2f "IO.Sf "IO.Sf "IO.Sf "IO.Sf %IO.Sf",

td_mult*t, t, pressure/pd_mult, pressure, pressl/pd_mult, pressl);

void display_values ( double tmax, int num_points, double td_mult,
double pd_mult, double hDp, double hD, double hDb)

fprintf(s, "\n\nDERIVED
fprintf(s,"\n td mult
fprintf(s, "\n pd_mult
fprintf(s,"\n hDp
fprintf(s,"\n hD
fprintf(s,"\n hDb

PARAMETERS USED IN SOLUTION");
%7.7f", td_mult);
%7.7f", pd_mult);
%7.7f", hDp);
%7.7f",hD);
"7.7f", hDb);

int enter val(double *tmax, int *num points ,double *td mult, double *pd_mult,
- double *hDp, double *hD~ double *hDb, double *pi)

double h,k,kv,poro,cr,sw,bo,co,uo,cw,rw,hl,h2,q,ct;
int error;
cout « "\nENTER THE FORMATION PROPERTIES:";
cout « "\nFormation thickness, h (feet) ";
cin » h;
cout « "Horizontal permeabilty, k (mD), ";
cin » k;
cout « "Vertical permeability, kv, ";
cin » kVj

cout « "Porosity as a fraction, ";
cin » poro;
cout « "Rock (pore volume) compressibility, Cr (per psi), ";
cin » cri
cout « "Water saturation as a fraction, ";
cin » SW;

cout « "\nENTER THE FLUID PROPERTIES:";
cout « "\nOil formation volume factor";
cin » ba;

cout « "Oil compressibility, Co (per psi), ";
cin » co;
cout « "Oil viscosity, uo (cP), ";
cin » uo;
cout « "Water compressibility, Cw (per psi), ";
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cin » CWj

cout cc "Initial pressure, Pi (psia)";
cin » *pi;
cout cc "\nENTER THE WELL PROPERTIES";
cout cc "\nRadius of the wellbore, rw (feet), ";
cin » rWj
cout cc "Distance from the top of the formation to the top of the perforations,";
cout cc "\nhl (feet), ";
cin » hl;
cout cc "Distance from the top of the formation to the bottom of the ";
cout cc "\nperforations, h2 (feet), ";
cin » h2;
cout cc "\nENTER THE PRODUCTION DETAILS";
cout cc "\nRate of flow, q (stb/d), ";
cin » q;
cout cc "Duration of flow in hours, ";
cin » *tmax;
cout cc "Number of pressure points to simulate, ";
cin » *num_points;
error = 0;
if «swco.o)ll(sw>l.O)) error=l;
ct = cO*(l.O-sw) + cw*sw + cri
*td mult = 0.0002637*k/(poro*uo*ct*rw*rw);
*pd=mult = l4l.2*q*uo*bo/(k*h);
*hDp = (h2-hl)/h;
if «(*hDpcO.O) 11 (*hDp>l.O)) error=l;
if «hlcO.O) 11 (hl>h)) error=l;
if «(h2cO. 0) 11 (h2>h)) error=l;
*hDb = hl/h;
*hD = h*sqrt(k/kv)/rw;
if (! error)

(
fprintf(s,"\nPROBLEM PARAMETERS WERE AS FOLLOWS:\n\nFORMATION PROPERTIES\n");
fprintf(s, "\nFormation thickness, h (feet), %S.Sf", h);
fprintf (s, "\nHorizontal permeabilty, k (mD) , %5 .Sf", k);
fprintf(s, "\nVertical permeability, kv, %S.Sf", kv);
fprintf(s, "\nPorosity as a fraction, %4.4f", poro);
fprintf(s,"\nRock (pore volume) compressibility, Cr (per psi), %S.Se", cr);
fprintf(s, "\nWater saturation as a fraction, %S.Sf", sw);
fprintf(s, "\n\nFLUID PROPERTIES");
fprintf(s, "\nOil formation volume factor, %S.Sf", bo);
fprintf(s, "\nOil compressibility, Co (per psi), %S.Se", co);
fprintf(s, "\nOil viscosity, uo (cP), %S.Sf", uo);
fprintf (s, "\nWater compressibili ty, Cw (per psi), %5. Se", cw);
fprintf(s,"\nInitial pressure, Pi (psia), %S.Sf", *pi);
fprintf(s,"\n\nWELL PROPERTIES");
fprintf(s,"\nRadius of the wellbore, rw (feet), %S.Sf", rw);
fprintf(s, "\nDistance from the top of the formation to the top of the

perforations,") ;
fprintf(s,"\nhl (feet), %S.Sf", hl);
fprintf(s,"\nDistance from the top of the formation to the bottom of the ");
fprintf(s, "\nperforations, h2 (feet), %S.Sf", h2);
fprintf(s, "\n\nPRODUCTION DETAILS");
fprintf(s,"\nRate of flow, q (stb/d), %S.Sf", q);
fprintf(s,"\nDuration of flow in hours, %5.5f", *tmax);
fprintf(s, "\nNumber of pressure points to simulate, %5u", *numyoints);
}

return (error) ;

void steh weights (double *v, int n)
/* Calcul~tes the Stehfest weighting factors */
(
double fact[SO];
~nt ~,j,k,l l~m, u_lim;

cout cc "\nCalculating Stehfest weighting factors for" cc n cc " weights\n";

«"\n ll
; }

fact[j-l]*(double)j;
cc "! is "cc fact[j]

/* Calculate the required factorials */
for(j=l, fact[O)=l.O; jcn+l; j++)

(
fact [j)
cout cc

/* Calculate weighting factors */
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for (i=l; i<n+l; i++)
{
if (i>(n/2)) u_lim=n/2; else u_lim=i;
1_lim=(i+l)/2;
v[i-l)=O.O;
for (k=l lim; k<u lim+l; k++)

v[i-l);=( pow(k~n/2)*fact[2*kl )/
( fact[n/2-kj*fact[kl*fact[k-l]*fact[i-k)*fact[2*k-i) );

if ( ((n/2+i)%2)==1 ) v[i-ll*=-1.0;
}

double pd( double td, double rD)
/* Uses the Stehfest Algorithm and the Laplace inverse of pd in

order to calculate pd */
{
double total,s;
int i;
for (i=l, total=O.O; i<13; i++)

total+=v2[l-1]*pd lnv( log(2.0)/td*(double)i, rD );
return(log(2.0)/td*total) ;
}

double pd_inv( double s, double rD)
/* The laplace inverse of the pd function */
(
double X;
x=sqrt(s) ;
if (x>lS) cout « "\nWarning! argument to KO div Kl is outside range of validity";
return(KO div Kl(x)/s/x);
} -

double KO(double x)
//The modified zero order Bessel function of the second kind
(

double KO,r,invr,x_sq,pow_x,phi,
lnx2,delta,loc limit;

char trash;

delta =1.0;
lnx2 = log(x/2.0);
KO = -lnx2-gamma;
phi = 0.0;
r =1. 0;
x sq=x*x/4.0;
pOW_X=l.O;
loc limit=limit*fabs(KO);
do

(
invr = 1.0/r;
phi += invr;
pow_x*=x_sq*invr*invr;
delta = pow_x*(phi-lnx2-gamma);
KO += delta;
r += 1.0;
loc limit=limit*fabs(KO);
} -

while (loc_limit<fabs(delta));
return(KO) ;

double Ei(double x)
{

double total,r,rfact,delta,loc limit;
char trash; -

*= ri

= pow((-l.O*x) ,r)/(r*rfact);

=1.0;
log(x)+gamma;
1. 0;

delta
total
rfact
r =1.0;
do

(
rfact
delta



total += delta;
r += 1.0;
loc limit=limit*fabs(total);
}

while (loc_limit<fabs(delta));
return(-l.O*total) ;

double KO div Kl(double x)
//Returns-KO(~)/Kl(X)

{
double KO, Kl,r,invr,invrl,x_sq,pow_x,pow_xl,phi,phil,

lnx2,delta,deltal, lim_Kl, lim_KO;

delta =1.0;
deltal=l.O;
lnx2 = log(x/2.0);
KO = -lnx2-gamma;
lim KO=limit*KO;
Kl : 1.0/x+(lnx2+gamma-0.S)*x/2.0;
lim_Kl=limit*Kl;
phi = 1.0;
phil=l.O;
r =1.0;
x_sq=x*x/4.0;
pow x=l.O;
POW=Xl=x/2.0;
invrl=l.O;
do

{
invr=invrl;
invrl=l. 0/ (r+l. 0) ;
phil += invrl;
if (lim KO<fabs(delta))

{ -

pow_x*=x_sq*invr*invr;
delta = pow_x*(phi-lnx2-gamma);
KO += delta;
lim KO=limit*KO;
} -

if (lim Kl<fabs(deltal))
{ -
pow_xl*=x_sq*invr*invrl;
deltal = pOw_xl*(lnx2+gamma-0.S*(phi+phil));
Kl += deltal;
lim Kl=limit*Kl;
} -

phi = phil;
r += 1.0;
}

while ( (lim_KO<fabs(delta)) && (lim_Kl<fabs(deltal)) );
return (KO/Kl) ;
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Appendix 3: Eclipse Command File for Real-Life Problem

This is the command file listing for the Eclipse reservoir simulation package for the
model that was used to match the pressure response for a real-life well test

Relative Permeability modified to immobilise water
vertical perm everywhere made equal to 0.5 kh
Closest boundary moved in by 400 ft

RUNSPEC
WELLARAD2: simulation of the Well A well test with a radial grid.

= NDIVIX NDIVIY NDIVIZ QRDIAL NUMRES QNNCON MXNAQN MXNAQC QDPORO

QDPERM
22 8 44 t 1 T 16 14 F

F /
OIL WATER GAS DISGAS VAPOIL

T T f f F / LIVE OIL ABOVE BUBBLE POINT

UNIT CONVENTION
'FIELD I /

NRPVT NPPVT NTPVT NTROCC QROCKC QRCREV
10 10 1 1 F T /

NSSFUN NTSFUN QDIRKR QREVKR QVEOPT QHYSTR
25 8 T F F F /

NDRXVD NTEQUL NDPRVD QUIESC QTHPRS QREVTH QMOBIL
20 1 100 F F T T /

NTFIP QGRAID QPAIR
4 F F /

NWMAXZ NCWMAX NGMAXZ NWGMAX MAXLGR MAXCLS NCOARS
3 328 2 4 0 4000 1550 /

QIMCOL NWCOLC NUPCOL
F 0 4 /

MXMFLO MXMTHP MXMWFR MXMGFR MXMALQ NMMVFT
7 3 7 4 0 2 /

MXSFLO MXSTHP NMSVFT MXCFLO MXCWOC MXCGOC NCRTAB
8 3 1 0 0 0 o /

NAQFET NCAMAX
0 0 /

DAY MONTH YEAR
14 'APR' 1991 /

QSOLVE NSTACK QFMTOU QFMTIN QUNOUT QUNINP
T 50 F F f F /

END OF RUNSPEC SECTION=========================

GRID

IN THIS SECTION , THE GEOMETRY OF THE SIMULATION GRID AND
THE

ROCK PERMEABILITIES, POROSITIES AND NET-TO-GROSS RATIOS ARE
DEFINED.

===================================================================

INRAD
-- inner radius for the radial grid, in this case the same as the
well bore

0.3617 /



DRV
1 2 3 4 5 6 7 8 9 10

0.1 0.2 0.4 0.8 1.6 3.2 6.0 9.7 15.8 25.5

41.3 66.9 108 176 284 461 480 963 1276 1530

2130 2840 /

DTHETAV
8*45 /

BOX
1 10 1 8 1 1 /

TOPS
80*7749.7 /

BOX
10 22 1 8 1 1 /
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TOPS
7749.927 7750.063 7750.281 7750.635 7751.209

7752.139 7753.644 7756.313 7760 7792

7809 7842 7874

7749.511 7749.372 7749.146 7748.782 7748.191
7747.235 7745.685 7741.986 7727 7743
7743 7743 7743

7749.147 7748.769 7748.156 7747.164 7745.558
7743.16 7743.16 7740.459 7741 7741

7741 7741 7741

7747.804 7746.544 7744.503 7742.571 7740.964
7738.362 7734.146 7726.675 7727 7727
7727 7727 7727

7749.147 7748.769 7748.156 7747.164 7745.558
7742.733 7733.95 7715.595 7700 7700
7700 7700 7700

7749.46 7749.289 7749.01 7748.559 7747.829
7746.646 7744.73 7735.986 7730 7727
7727 7727 7727

7750.441 7750.914 7751.679 7752.919 7754.928
7758.181 7762.155 7768.381 7776 7809
7809 7809 7809

7751.262 7752.274 7753.914 7756.569 7759.9
7761.687 7764.583 7769.715 7779 7809
7809 7809 7809 /

ENDBOX

-- DEFINE RESERVOIR SHAPE USING ACTIVE/INACTIVE BLOCKS
ACTNUM

7744*1 /

BOX
21 22 2 8 1 44 /

ACTNUM
616*0 /
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BOX
20 20 2 7 1 44 /

ACTNUM
264*0 /

BOX
18 19 3 4 1 44 /

ACTNUM
176*0 /

ENDBOX

COORDSYS
-- Make sure that the 1st and last block in the theta direction are
linked

the tal theta2
1 8 'COMP' /

DEFINE RESERVOIR PROPERTIES AND LAYER THICKNESSES
EQUALS

ZONE 1.1

'PERMR' 60
'PERMTHT' 60
'PERMZ' 60 /
'NTG' .83 /
'PORO' .134 /
'DZ' 4.195 /

ZONE 1.2

'PERMR' 160
'PERMTHT' 160
'PERMZ' 160
'NTG' .93 /
'PORO' .179 /
'DZ' 4.195 /

1

1

/
/

/
22 1

22 1

8

8

1

3

2 /

4 /

ZONE 1.3

'PERMR' 160 1 22 1 8 5 6 /
'PERMTHT' 160 /
'PERMZ' 160 /
'NTG' .63 /
'PORO' .155 /
'DZ' 4.195 /

ZONE 2 - SHALE LAYER, AS FOR THE REST OF THE GRID

'PERMR' 30 1 22 1 8 7 8 /
'PERMTHT' 30 /
'PERMZ' 30 /
'NTG' .20 /
'PORO' .120 /
'DZ' 3.785 /

-- ZONE 3.1



'PERMR' 90 1 22 1 8 9 11 /
'PERMTHT' 90 /
'PERMZ' 90 /
'NTG' 0.89 /
'paRa' .162 /
'DZ' 3.37 /

ZONE 3.2

'PERMR' 770 1 22 1 8 12 33 /
'PERMTHT' 770 /
'PERMZ' 770 /
'NTG' .97 /
'paRa' .200 /

THICKNESSES FOR ZONE 3.2
'DZ' 2.27 1 22 1 8 12 12 /
'DZ' 1. 73 1 22 1 8 13 13 /
'DZ' 1. 29 1 22 1 8 14 14 /
'DZ' 0.97 1 22 1 8 15 15 /
'DZ' 0.73 1 22 1 8 16 16 /
'DZ' 0.54 1 22 1 8 17 17 /
'DZ' 0.41 1 22 1 8 18 18 /
'DZ' 0.31 1 22 1 8 19 19 /
'DZ' 0.23 1 22 1 8 20 20 /
'DZ' 0.17 1 22 1 8 21 21 /
'DZ' 0.13 1 22 1 8 22 22 /
'DZ' 0.10 1 22 1 8 23 23 /
'DZ' 0.10 1 22 1 8 24 24 /
'DZ' 0.13 1 22 1 8 25 25 /
'DZ' 0.17 1 22 1 8 26 26 /
'DZ' 0.23 1 22 1 8 27 27 /
'DZ' 0.31 1 22 1 8 28 28 /
'DZ' 0.41 1 22 1 8 29 29 /
'DZ' 0.54 1 22 1 8 30 30 /
'DZ' 0.73 1 22 1 8 31 31 /
'DZ' 0.97 1 22 1 8 32 32 /
'DZ' 1. 33 1 22 1 8 33 33 /

ZONE 3.3

'PERMR' 500 1 22 1 8 34 38 /
'PERMTHT' 500 /
'PERMZ' 500 /
'NTG' .99 /
'paRa' .194 /

THICKNESSES FOR ZONE 3.3
'DZ' 1.78 1 22 1 8 34 34 /
'DZ' 2.37 1 22 1 8 35 35 /
'DZ' 3.16 1 22 1 8 36 36 /
'DZ' 3.75 1 22 1 8 37 37 /
'DZ' 3.75 1 22 1 8 38 38 /

ZONE 3.4

'PERMR' 480 1 22 1 8 39 41. /
'PERMTHT' 480 /
'PERMZ' 480 /
'NTG' .98 /
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'PORO' .181 /
'DZ' 3.87 /

ZONE 3.5

'PERMR' 290 1 22 1 8 42 44 /
'PERMTHT' 290 /
'PERMZ' 290 /
'NTG' .95 /
'PORO' .194 /
'DZ' 3.90 /

/

--------------------------------------------------------------

--EQUALS
VERTICAL PERMS FOR LAYERS ABOVE THE SHALE

'PERMZ' 0.6 1 22 1 8 1 6 /
VERTICAL PERMS FOR THE SHALE LAYER

'PERMZ' 0.0 1 22 1 8 7 8 /
--I

-- VERTICAL PERMS FOR LAYERS BELOW THE SHALE LAYER
MULTIPLY

INCREASE THE HORIZONTAL PERMS BY 60%
'PERMR' 1.6 6 22 1 8 1 44 /
'PERMTHT' 1.6 /

REDUCE VERTICAL PERMS TO HALF OF THE HORIZONTAL
'PERMZ' 0.5 1 22 1 8 1 44 /

/

RPTGRID
o 0 1 1 1 1 1 0 0 1 1 1 1 1 / FOR DEBUGGING

35*0 / AFTER DEBUGGING

GRIDFILE
2 /

NEWTRAN

-- END OF GRID
SECTION=================================================

PROPS

-- READ SATURATION TABLES
INCLUDE

'swof1.dat' /

REF. PRES. REF. FVF COMPRESSIBILITY REF VISCOSITY
VISCOSIBILITY
PVTW

6 /
3540 1.036 3.09E-6 0.272 5.03E-

ROCK COMPRESSIBILITY



ROCK
REF. PRES

3540

COMPRESSIBILITY

1.72E-6/
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DENSITY
SURFACE DENSITIES OF RESERVOIR FLUIDS

ANALYSIS OF E-AD1 SAMPLE
GAS

0.0888 /

FROM E-BT1 DST#l; &0 = 0.810;
FLASHING)

&W = 1.01 FROM WATER
OIL WATER

50.6 63.05

&G = 0.9430 (PVT REPORT FULL

2120
2460
2988
3465
4055

PVDO
OIL PVT FOR E-BT FROM DST#l AT E-BT1

Peq BO UO
(psia) (rb/stb) (cP)

2043 1.472 0.40
1.470 0.41
1.461 0.41
1.448 0.42
1.436 0.43
1.423 0.44 /

RSCONSTT
.654 2043 /

RPTPROPS
19*0 /

-- END OF PROPS
SECTION.================================================

REGIONS

-- READ REGIONS FOR FLUID IN PLACE AND SATURATIONS

--===============================================================

-- SPECIFY REGIONS FOR FLUID IN PLACE, AND SATURATION TABLES
-- FOR THE E-BT SENSITIVITIES (100x100)
--===============================================================

-- ONE EQUILIBRATION REGION FOR ENTIRE GRID
BOX

1 22 1 8 1 44 /
EQLNUM

7744*1 /

-- E-BT REGION - LAYERS ABOVE THE SHALE -

BOX
1 22 1 8 1 6 /

FIPNUM
1056*1 /

-- E-BT REGION - LAYERS BELOW THE SHALE -



BOX
1 22 1 8 9 44 /

FIPNUM
6336*3 /

-- E-BT REGION - SHALE LAYER --

BOX
1 22 1 8 7 8 /

FIPNUM
352*2 /

-- SATURATION TABLES FOR THE EBT REGION

-- TABLES FOR THE X AND Y DIRECTIONS
BOX

1 22 1 8 1 2 /
SATNUM

352*4 /

BOX
1 22 1 8 3 6 /

SATNUM
704*2 /

BOX
1 22 1 8 7 8 /

SATNUM
352*6 /

BOX
1 22 1 8 9 44 /

SATNUM
6336*8 /

-- TABLES FOR THE Z+ DIRECTION

BOX
1 22 1 8 1 2 /

KRNUMZ
352*3 /

BOX
1 22 1 8 3 6 /

KRNUMZ
704*1 /

BOX
1 22 1 8 7 8 /

KRNUMZ
352*5 /

BOX
1 22 1 8 9 44 /
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KRNUMZ
6336*7 /

ENDBOX

RPTREGS
4*0 /

SOLUTION
===============================================================

DATA FOR INITIALISING FLUIDS TO POTENTIAL EQUILIBRIUM

DATUM DATUM MFWL MFWL GOC GOC RSVD RVVD
DEPTH PRESS DEPTH PCOW DEPTH PCOG TABLE TABLE

EQUIL
8038.5 3576.6 7841.6 0.0 6000 0 0 0

EBT1

-- SWITCH ON OUTPUT OF INITIAL SOLUTION
RPTSOL

1 1 1 0 1 042 /

SUMMARY

SOLN
METH

-5 /

================================================================

FOPR
FOPT
FWPR
FWPT
FGPR
FGPT
FWCT
FGOR
WBHP

/
WTHP

/
FOIP
FVPT
FPR
rpr

/

- oil production rate
- oil production total
- water production rate
- water production total
- field gas production rate
- field gas production total
- water cut
- field gor
- well bottom hole pressures

well tubing head pressures

- field oil in place
- field production volume total
- AVERAGE FIELD PRESSURE

REQUEST A SEPARATE RUN SUMMARY FILE
RUNSUM
SEPARATE

RPTSMRY
1 /

SCHEDULE

RPTSCHED
6*0 1 2 2 0 3 3 0 0 3 /

WELSPECS
, EBT1' , EBT' 1 1 1 * 'OIL' /

/
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COMPDAT

'EBT1' 1 1 1 23 'OPEN' 1* 1* .723 1* 2.2 /
'EBT1' 1 2 1 23 'OPEN' 1* 1* .723 1* 2.2 /
'EBT1' 1 3 1 23 'OPEN' 1* 1* .723 1* 2.2 /
'EBT1' 1 4 1 23 'OPEN' 1* 1* .723 1* 2.2 /
'EBT1' 1 5 1 23 'OPEN' 1* 1* .723 1* 2.2 /
'EBT1' 1 6 1 23 'OPEN' 1* 1* .723 1* 2.2 /
'EBT1' 1 7 1 23 'OPEN' 1* 1* .723 1* 2.2 /
'EBT1' 1 8 1 23 'OPEN' 1* 1* .723 1* 2.2 /

/

SCHEDULE FOR FLOWS AND SHUT INS

-- FLOW PERIOD 1
WCONPROD
'EBT1' 'OPEN' 'ORAT' 2870 1* 1* 1* 1* 1000 /
/

TUNING
.05 2.0 .01 .015 /
/
12 1 75 /

TUNINGL
.05 2.0 .01 .015 /
/
12 1 75 /

TSTEP
0.3046296
/

-- FLOW PERIOD 2
WCONPROD
'EBT1'
/

'OPEN' 'ORAT' 790 1* 1* 1* 1* 1000 /

TUNING
.05 2.0 .01 .015 /
/
12 1 75 /

TUNINGL
.05 2.0 .01 .015 /
/
12 1 75 /

TSTEP
1.3855325
/

----------- ------------------------- -------------------
-- SHUT-IN 1
WCONPROD
, EBT1 ' , STOP'

/

TUNING

" 1* 1* 1* 1* 1* 1000 /



.0001 0.10 .0001 .015 1.16 /

/
12 1 75 /

TUNINGL
.0001 0.10 .0001 .015 1.16 /

/
12 1 75 /

TSTEP
1.4063658

/

-------------------------------------------------------

-- FLOW PERIOD 3

WCONPROD
'EBT1' 'OPEN' 'ORAT' 5200 1* 1* 1* 1* 1000 /

/

TUNING
.001 0.02 .01 .015 /

/
12 1 75 /

TUNINGL
.001 0.02 .01 .015 /

/
12 1 75 /

TSTEP
0.1664350

/

-- SHUT-IN 2
WCONPROD
'EBT1' 'STOP'" 1* 1* 1* 1* 1* 1000 /

/

TUNING
.0001 0.10 .0001 .015 1.16 /

/
12 1 75 /

TUNINGL
.0001 0.10 .0001 .015 1.16 /

/
12 1 75 /

TSTEP
0.3340288

/

FLOW PERIOD 4

adjust the well skin factor ie. cleaning up.
COMPDAT

'EBT1' 1 1 1 23 'OPEN' 1* 1* .723 1* 1.0 /
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'EBT1' 1 2 1 23 'OPEN' 1* 1* .723 1* 1.0 /
'EBT1' 1 3 1 23 'OPEN' 1* 1* .723 1* 1.0 /
'EBT1' 1 4 1 23 'OPEN' 1* 1* .723 1* 1.0 /
'EBT1' 1 5 1 23 'OPEN' 1* 1* .723 1* 1.0 /
'EBT1' 1 6 1 23 'OPEN' 1* 1* .723 1* 1.0 /
'EBT1' 1 7 1 23 'OPEN' 1* 1* .723 1* 1.0 /
'EBT1' 1 8 1 23 'OPEN' 1* 1* .723 1* 1.0 /

/

WCONPROD
'EBT1' 'OPEN' 'ORAT' 7735 1* 1* 1* 1* 1000 /
/

TUNING
.001 0.02 .01 .015 /
/
12 1 75 /

TUNINGL
.001 0.02 .01 .015 /
/
12 1 75 /

TSTEP
0.9990750
/

---------------------------------- ---------------------
-- SHUT-IN 3
WCONPROD
'EBT1' 'STOP'" 1* 1* 1* 1* 1* 1000 /
/

TUNING
.0001 0.10 .0001 .015 1.16 /
/
12 1 75 /

TUNINGL
.0001 0.10 .0001 .015 1.16 /
/
12 1 75 /

TSTEP
1.5013875
/
-------------------- ------------------------- ----------
-- FLOW PERIOD 5

WCONPROD
'EBT1' 'OPEN'
/

'ORAT' 8730 1* 1* 1* 1* 1000 /

TUNING
.001 0.02 .01 .015 /
/
12 1 75 /

TUNINGL
.001 0.02 .01 .015 /
/



12 1 75 /

TSTEP
0.1443292

/

-- SHUT-IN 4
WCONPROD
, EBT1 ' , STOP' " 1 * 1 * 1 * 1 * 1 * 1000 /
/

TUNING
.0001 0.10 .0001 .015 1.16 /
/
12 1 75 /

TUNINGL
.0001 0.10 .0001 .015 1.16 /

/
12 1 75 /

TSTEP
0.2725667

/

END
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